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Introduction to thermoforming processes

"Thermoforming" is a category of thermoplastic sheet-forming techniques during which a thermoplastic sheet is firstly softened by heat above its glass transition temperature, then subsequently deformed by bringing it into contact with the walls of a mold, and finally cooled to obtain a shell-like product [1].

Thermoformable thermoplastics are semi-products obtained by transforming pellets into flat sheets using standard forming processes such as extrusion and calendaring [2]. According to the thickness of the used semi-products, thermoforming processes can be categorized into: (i) thin gauge (thickness ≤ 0.25 mm), (ii) medium-weight sheet thermoforming (thickness ∈ [0.25;1.5] mm), or (iii) heavy-sheetgauge (thickness > 1.5 mm) [1]. Within the current report, the study is limited to plug-assisted mediumweight sheet thermoforming processes.

Applications and production market

Much of the inceptions of thermoforming processes emerged just before World War II when acrylic sheets were thermoformed to produce airplane canopies [3]. Since that period of time, versatile thermoplastics have found their place in a wide range of daily-life applications and high-technologicalvalue products. In the year 2020, the global thermoforming market was estimated at 12.38 billion US dollars, with a projected annual growth of almost 4% between 2021 and 2028, as shown in Figure 1 [4].

Figure 1: Thermoforming market estimates [4] In today's applications, amorphous thermoplastic grades such as polystyrene (PS), High impact polystyrene (HIPS), Polyvinyl Chloride (PVC), Acrylonitrile-butadiene-styrene (ABS), and polymethyl methacrylate (PMMA) are among the basic constituents. Most of these applications require combining the physico-chemical properties of different thermoplastics to complex multi-layer products. Based on a non-extensive review of patents and scientific articles, an overview of the key sectors of application of a few thermoformable amorphous thermoplastics is provided in Table 1. From a thermo-mechanical point of view, the interest attributed to amorphous thermoplastics is mainly justified by their wide forming window (FW), which is associated with a rubber-like behavior. Such thermo-mechanical behavior manifests above the glass transition (Tg), and it extends over a few dozens of degrees [2,19]. With respect to the formability limit within the corresponding FW, the thermoformability of a material requires a compromise between withstanding large deformations and keeping a certain degree of rigidity to prevent the pre-heated sheet from flowing. FW can be defined by a temperature sweep via Dynamic Mechanical Analyses (DMA) [20,21] and by following the evolution of storage moduli, as illustrated in Figure 2. For most amorphous thermoplastics, the FW ranges from 30 to 60 °C above Tg [20]. Whereas, for most of the semi-crystalline thermoplastics, the transition from the rigid to the rubbery states manifests at temperatures in the vicinity of the melting temperature Tm.

The current report is focused on the thermoforming of amorphous thermoplastics. 

Thermoforming cycle: Correspondence between technological operations and underlying physics

Thermoforming initially flat thermoplastic sheets into 3D hollow geometries implies the application of large deformations in the plane of the sheet and out-of-plane. To obtain the final geometry without causing the failure or excessive stretching of the sheet, thermoforming cycle englobes a chronological sequence of stages (i.e., operations) as illustrated in Figure 3. In the current report, the focus is limited to plug-assisted thermoforming processes. The first stage corresponds to clamping the edges of the sheet (Figure 4). Clamping is a purely mechanical problem that constrains all the degrees of freedom (i.e., displacements and rotations) at the edges of the thermoplastic sheet. With consideration of a material point M located on the surface of a thermoplastic sheet 𝛺 𝑠ℎ𝑒𝑒𝑡 which is bounded by the periphery 𝛤 𝑠ℎ𝑒𝑒𝑡 (Figure 4). Clamping corresponds to the application of initial mechanical boundary conditions 𝐵𝐶 0 and it can be expressed as follows:

∀ 𝑀 ∈ 𝛤 𝑠ℎ𝑒𝑒𝑡 ⟼ { 𝑥 𝑀 = 𝑦 𝑀 = 𝑧 𝑀 = 0; 𝑟𝑥 𝑀 = 𝑟𝑦 𝑀 = 𝑟𝑧 𝑀 = 0; 1 Where, 𝑥 𝑀 , 𝑦 𝑀 , 𝑧 𝑀 are displacements and 𝑟𝑥 𝑀 , 𝑟𝑦 𝑀 , 𝑟𝑧 𝑀 are rotations at the material point M within a Cartesian coordinates system associated with the sheet.

Figure 4: Considered domains of interest (Ω) and applied initial boundary conditions on the edges of

the sheet (Γsheet) [23] Once the initial mechanical boundary conditions 𝐵𝐶 0 are applied to the flat sheet, the heating stage starts (Figure 3.1). From a technological viewpoint, thermoforming machines are equipped with radiation heating ovens that are constituted of ceramic elements or halogen lamps emitting in the infrared domain. According to the used equipment and the thickness of the thermoplastic sheet, heating can be performed by exposing one single face or both faces of the sheet to radiation heating ovens. The operation consists of increasing the temperature by a generation of temperature gradients through the thermoplastic material [24,25]. The heating stage ends when the material's temperature reaches the FW [26]. However, the initial boundary conditions are no more preserved as the thermoplastic sheet undergoes thermally-induced deformations (𝐵𝐶 0 ).

The heating stage is then followed by a pre-stretching or inflation step via applying air pressure in the forming chamber (between the softened sheet and the plug) such that a positive pressure difference exists in case of air blowing operations to deform the sheet (Figure 3.2).

𝑀 ∈ 𝛺

𝑠𝑎𝑔 ; {|𝑃 -𝑃 𝑎𝑡𝑚 | > 0; 𝑇(𝑡) ≥ 𝑇 𝑔 } 2
Where, 𝑃 𝑎𝑡𝑚 is the atmospheric pressure, and P is the applied pressure.

Following pre-stretching, the shaping or molding of the sheet operation takes place. A solid-to-solid contact mechanical load is applied to assist large out-of-plane deformation of the sheet with a plug. In either of the variabilities of the plug-assisted thermoforming process (negative or positive), the mold coming into contact with the sheet is usually at a lower temperature than the sheet itself [5,27].

Therefore, the forming duration is relatively short (lasting at most for a few seconds) in order to create large deformations while ensuring that the drop of the material's temperature does not induce any breakage of the walls of the formed product [28].

Following the forming stage, the sheet is cooled by blowing non-thermally-conditioned air (Figure 3.3).

By decreasing the temperature of the sheet below Tg,, the rigidity of the material is increased, and the deformed shape of the sheet can be preserved. The formed product is demolded, unclamped, and trimmed (Figure 3.4).

Industrial context: Common thermoforming-induced flaws

From an industrial point of view, most of the R&D activities related to thermoforming of thermoplastics aim to optimize the balance between cost and quality of the final products. Indeed, reducing the cost and minimizing waste require (i) the reduction of the cycle-time and (ii) the optimization of each of the elementary operations by overcoming the corresponding process-induced flaws (see Section 1.1.2). The main technological challenges are related to the: (i) limited control of the homogeneity of temperature distributions [29,30], (ii) high thickness variation of the thermoformed products [31][32][33], (iii) high risk of sheet rupture in producing complex geometries [1,34], and (iv) irregularities in the local material physical properties (such as crystallinity and molecular orientations) related to processing history [35][36][37][38]. Technologically, numerous studies in literature have suggested solutions to overcome the aforementioned challenges by: (i) applying differential heating [1], (ii) introducing air pressure to prestretch the softened sheet after the heating stage [32,39], or (iii) to use a plug, in case of large out-ofplane deformations [40]. Nevertheless, these already existing technical solutions may introduce more complexities to the process.

Temperature heterogeneity following the heating stage

As indicated in section 1.1.2, infrared heating ovens are used to heat the core of thermoplastic sheets.

The quality of the heating operation and the homogeneity of the temperature field depend on (i) the location of the material point with respect to the infra-red emitting element, (ii) its in-depth position along the thickness of the sheet, and (iii) the efficiency of the heating element with respect of the emissivity of the used polymer [29]. Based on thermal energy balance, the dominating heat-transfer mechanisms can be subdivided into two spatial domains. The first spatial domain is defined between the infrared emitting elements and the exposed surface of the sheet (Figure 5a). Within this domain, heat transfer takes place via convection and radiation mechanisms [30]. The second spatial domain is within the material, where the heat transfer is induced by radiation absorption and distributed by thermal conduction between the exposed surface and the core of the sheet. In the case of a single-side infra-red heating (Figure 5b), the heat problem through the thickness obeys a transient heat equation:

𝜌𝐶 𝑝 𝑑𝑇 𝑑𝑡 = 𝑘 𝑑 2 𝑇 𝑑𝑧 2 + 𝑞̇𝑎 𝑏𝑠 3 
Where,

𝜌: density [kg / m 3 ] 𝐶 𝑝 : heat capacity [J / (kg.°C)] 𝑘: thermal conductivity [W / (m.K)]
From an experimental point of view, infra-red pre-heating of thermoplastic sheets has distinctive flaws such as: (i) the limited homogeneity of the temperature (shown in Figure 5) within the sheet zone facing 𝑧: coordinate in the thickness direction 𝑡: elapsed time since the heating start [s] 𝑞̇𝑎 𝑏𝑠 : heat absorbed from radiative heating the infra-red heater [2,23] and (ii) thermal gradients across the thickness of the sheet in the case of thick-gauge thermoforming [25].

a) b)

Figure 5: (a) Schema of single-side infrared heating of a thermoplastic sheet (inspired by [41]); (b) Temperature heterogeneity on HIPS sheet following single sided IR heating of a thermoforming machine [42] From a numerical point of view, numerous studies have addressed infra-red pre-heating of polymers via:

(i) modelling the transient heat transfer in the case of transparent and grey thermoplastic sheets, (ii)

optimizing the calibration of infra-red heating ovens based on metaheuristics [43,44], (iii) by relying on an iterative learning model to control to the heating phase [45], or (iv) numerical simulation of the polymer heating based on the ray-tracing method [46,47].

Effect of temperature on initial boundary conditions

In the case of large-drape forming (large extent of the sheet), the increase of the temperature of the clamped sheet can be associated with thermal deformations induced by the relaxation of residual stresses (related to the thermo-mechanical history). The sheet is mechanically constrained on all of its sides, and it droops (or sags) due to gravity force [48]. Sagging (as shown in Figure 6) results in a change of the distance between the sheet and the infra-red heaters, and thus, it alters the efficiency of radiative heat transfer [33]. Temperature homogeneity might not always be guaranteed due to the radiative heating technique used and the resulting sagging of the sheet. The radiative energy that is absorbed into a surface from a radiative source is dependent on the solid angle that the absorbing surface subtends with the source, which influences the radiation view factor [49]. As the sagging of the sheet deforms the absorbing surface, the angle subtended by a material point on the sheet varies based upon the location.

Therefore, such unbalanced heating from the ceramic radiators of the heater causes a difference in stretching between hot zones on the sheet (T > Tg) and the comparatively cooler ones. 

Contact and friction

The final thickness of the final product is governed by the temperature difference between the thermoplastic sheet and the plug, which determines whether the mechanical behavior during the forming stage stays in the FW or it shifts to the glassy domain [5]. The friction coefficient, which characterizes the contact surface between the sheet and the plug, can also influence the final thickness [20,27,48,50].

This has been highlighted in detail in Chapter 6. Figure 7 shows the variation of friction coefficient between a HIPS sheet and an aluminum plug as obtained by Marathe et al. [27]. It can be observed from Figure 7 that the friction seems to increase from almost 0.25 below the Tg to values higher than 0.4 within the FW of HIPS. This temperature dependent variation will be further highlighted in Chapter 6. 

Non-uniform wall thickness

One of the most important limitations to the thermoforming process is the non-uniform thickness distribution of the obtained parts [51]. Indeed, thin thermoplastic sheets can be assumed as incompressible materials. Based on the conservation of volume within the material, the extension of the sheet in any of its principle axes would result in diminishing its thickness. However, the ability of a thermoplastic to stretch depends on its local behavior, which in turn is governed by the local temperature after IR heating. Consequently, the output of a stretching operation during a thermoforming cycle relies heavily on having homogenous heating throughout the sheet. In the case of vacuum-assisted thermoforming, for example, it is commonly known that formed parts have considerable thickness variations throughout the piece. The walls of the sheet are the thinnest in zones of severe drawing (shown in Figure 8), which are located in the corners of the mold and near the bottom edges [34,52]. Figure 8: Variation of thickness ratio along the length of a part with complex geometry using (a) PMMA [34] and (b) PC, ABS, PPO, PEI [52] Consequently, mechanical stretching can result in uneven thickness distribution, which might drop below the critical minimum for which the product has been designed [5,53]. 

Pressure-induced out-of-plane instability

As mentioned previously, in the case of large drape thermoforming, the change of the sheet's geometry during the heating stage is associated with local changes of the distance and the orientation between the exposed zones of the thermoplastic sheet and the infra-red heating element. Hence, it is common practice to counter the sagging, Pressurized air is blown from the bottom of the sheet after the heating stage to inflate it slightly and make it flatter. However, when air pressure increases suddenly, it generates outof-plane damping oscillations of the sheet [23,54,55], as shown in Figure 10. Based on the provided non-extensive list of common thermoforming flaws related to plug-assisted thermoforming (in section 1.2.1), it is possible to match each of the flaws with the corresponding forming step of the thermoforming cycle. Table 2 provides an overview of the highest probability of a flaw to occur as reported in the literature. 

Stage

Ref.

Flaws [56,57] [58] [25] [59]

[54,

55]

[34]

[28] [31,32] [50] 

Scientific context

Requirement of thermoforming simulations

Process simulation tools are helpful to conduct virtual tests and ascertain different objectives before performing experimental work. A non-extensive overview of studies reporting numerical simulations of thermoforming indicates that such tools are useful to:

(i) Optimize geometric and mechanical parameters of both the process and the product (such as temperature distribution, thickness homogeneity, geometry of the mold, etc.) starting from the design phase in order to minimize the quantity of used materials [61].

(ii) Minimize process-induced flaws based on a defined material and geometry of the mold [64][22].

(iii)

Evaluate the residual constraints and parameters of mechanical performance of the product models in order to take them into account when studying the behavior of the product in service (behavior and appearance).

(iv)

Identify parameters of mechanical models based on inverse-identification approaches relying on experimental data [65].

(v)

Control phenomena which take place during shaping such as orientation or crystallization of polymer macromolecules in order to exploit them to increase the performance of the product or eliminate them if necessary [66].

One of the common control parameters for both product designers and thermoforming operators is to obtain an accurate estimate regarding the final thickness of the finished product beforehand [67].

Numerous commercial simulation software such as T-Sim, Formview, Polyflow, and PAM-FORM already exist. However, the accuracy level of most commercial software is limited especially when results are confronted with experimental measurements. In general, differences are observed between numerical thicknesses and experimental ones. On one hand, such differences can be attributed to the complexity of the "real" experimental conditions to which the material is exposed compared to some numerical assumptions (such as temperature homogeneity through the sheet thickness), which are inevitable to reduce computational times. On the other hand, the differences are related to the limited accessibility to modify or extend the in-built material models within commercial toolboxes as they can only be considered as black boxes which cannot be openly modified. Consequently, developing simulation tools that can overcome such limitations allow thermoforming operators to adapt their virtual tests to the experimental configurations they are using in industrial environments. An overview of the different considerations during the simulation of thermoforming used by authors in literature is provided in Table 3. In the following section the structure will provide more in-depth presentation of the elements provided in Table 3.

Introduction to the Finite Element Method in the context of thermoforming

During the last three decades, with the advancement of numerical modelling and computational capabilities, simulations of large deformation problems have become more and more performant. One of the most commonly used numerical methods in the case of solid mechanics is the finite element method (FEM). It is used to determine an approximated solution for the differential equations of motion in complex geometries. The use of FEM solvers in commercial software is a reliable computational procedure for the analysis of a continuous system with arbitrary geometry and material properties subjected to different types of loads. In general, the FEM consists of the transformation of a continuous system with an infinite number of degrees of freedom into an equivalent, discrete one, with an approximate geometry and physical properties, but with a finite number of degrees of freedom. The accuracy of the computed solution will depend on the used degree of approximation. Such degrees of freedom are related to the external forces (or any other disturbance) through a system of algebraic equations representing the general equilibrium state of the structure. The FEM flowchart to solve a raised engineering problem is illustrated in Figure 11. where each element is composed of a discrete number of points known as nodes. (iii) The system of discretized algebraic equations is then integrated to satisfy the equation of motion at discrete time intervals using different time integration methods [1].

FEM provides a dual advantage that is very beneficial for thermoforming. Firstly, it does not favor any specific geometry of the body undergoing deformation and hence is not restricted to a particular type (e.g., axis-symmetric geometry). Secondly, it enables the simulation of large strain/deformations of highly non-linear materials with the help of rigorous formulations, thus improving its accuracy.

Therefore, typically for a finite element simulation of thermoforming, the problem definition is threefold. The first lies in creating the boundary value problem, which consists of providing the thermomechanical boundary conditions or constraints at the beginning and the end of the time period during which the process occurs. The second lies in defining the elements or rather its type into which the whole body will be discretized. This is commonly referred to as the meshing operation. Finally, the material properties need to be incorporated in the numerical model that guides the simulation into predicting the deformability of this specific material under the prescribed boundary conditions [73]. Mechanical models that define the constitutive behavior of the material are thus embedded into each element. With this, all the aspects of the problem definition are complete, and a finite element (FE) solver can be launched [74].

Every FE solver allows the user to discretize the elements under shell elements or plate elements. The underlying difference between the two is those shell elements are modelled neglecting the individual thickness of the elements, whereas plate elements require a thickness value to be provided for the elements. Thus shell elements ignore the effects of through-plane bending resistance, transverse shearing, through-thickness change in out-of-plane stresses, etc. This is particularly well suited for thermoforming, as in the case of thin gauge thermoforming. The thermoplastic sheets can be formulated as a membrane made of shell elements, while in thick gauge thermoforming, it is considered as a thick sheet made of plate elements.

Thin membrane-based formulations

The primary assumption in considering the thermoplastic sheet as a membrane is that the sheet's thickness is minimal compared to its other in-plane dimensions (length and width) [1]. Since for the majority of the simulation of thermoforming, effects of through-plane bending are negligible (except for the edges near the clamps), this assumption is found reasonable. In a membrane assumption, the thickness variation throughout the thermoforming part is calculated, considering the sheets to be incompressible [75]. The position vectors of each element are updated by adding the displacement vector to the reference configuration. The choice of the reference configuration can be either the initial configuration at the origin of times or the last configuration at a time step. The former is known as the Total Lagrangian formulation, while the latter is called the Updated Lagrangian. Since the initial boundary conditions and reference configuration are well defined in thermoforming, it is more common to use the Total Lagrangian formulation. The iterative increments of the deformation become lesser and lesser as the solution of the finite element problem converges till it is smaller than a predefined value when it is said to have finished the simulation. For example, in the case of vacuum or negative thermoforming, it is assumed that there is little to no slip, during the real process, when the sheet comes into contact with the mold. Thus, the convergence is achieved when each node of the sheet touches the surface of the mold. To replicate the no slip condition, a node is made to be fixed in space as soon as it touches the mold's surface.

Thick sheet based formulations

Thick sheet formulations do not assume the thickness to be negligible, for which the effects of bending resistance, through-thickness stress and strain variations, temperature gradient, etc., cannot be ignored [1,71]. It is a more accurate representation of the sheets but brings an added layer of complexity to the problem. Unlike its membrane counterpart, a simple assumption of incompressibility cannot be made in the case of thick sheets and needs to be imposed manually by an extra constraint. Also, due to the fact that stress, strain, and temperature vary across the thickness of the element, the FEM problem is, by default, a more complex one than with membrane formulation. The thick sheet formulations can take localized phenomena into account, such as the stress concentrations near the plug and sheet boundary, bending near the clamps, etc. However, these have a minor effect on the actual sheet, and hence it is deemed unnecessary to conduct such a complex formulation in order to save computational time and cost [34].

Material constitutive laws

On a scientific background, modelling thin thermoplastic sheets undergoing thermoforming requires precise knowledge of the material constitutive laws. They are defined as the governing relations for a material that dictates the resulting response at a macroscopic level to the forces imposed on them [76].

Such laws must obey the laws of thermodynamics, in particular the second one, along with satisfying the conditions of material frame indifference and the Drucker stability criterion [77]. Constitutive laws take into account the specific entropy and free energy of a deforming body by considering that the work done by the stresses in the body must always be equal to or greater than the rate of change of its free energy for any type of deformation (tension, compression, shear, or twisting) [76,78]. In thermoforming, for example, there is a strong coupling between the thermal constitutive laws that govern the transition of the polymer from glassy solid-state to viscous rubbery state and the mechanical constitutive laws that govern stresses generated at large deformations [62,[START_REF] Maurel-Pantel | A thermo-mechanical large deformation constitutive model for polymers based on material network description: Application to a semi-crystalline polyamide 66[END_REF]. Such coupling laws are usually described by models that ultimately define the material's behavior under predefined boundary conditions and an applied load (strain, pressure). Mechanical models for materials can be broadly classified under two classes, notably phenomenological and physically-based. On the one hand, the phenomenological models consider the global macroscopic response of the material, such as the case of mathematical representation of strain energy of a material undergoing deformation, with no focus on the structural modifications. On the other hand, the physically-based models correlate the macroscopic response of the material to the physics associated with the structural changes occurring at lower scales (such as the variation of crystallinity or change of polymer chain orientations) along with some statistical methods [START_REF] Marckmann | Comparison of hyperelastic models for rubber-like materials[END_REF]. In the context of amorphous thermoplastic simulations, literature shows for the same material, different mechanical models, whether hyperelastic, viscoelastic, or visco-elastoplastic, can be adopted.

Such a choice is guided by the assumptions to be considered. A detailed description of the classification of the models is given in Chapter 2.

Thickness homogeneity as an output control parameter

As indicated in Table 3, one of the predominantly reported control parameters of the accuracy of thermoforming simulations is to obtain the final thickness distribution throughout the product as it determines the robustness and material properties of the finished product [13]. It is regarded as the primary criterion for quality control of a thermoformed part [START_REF] Oueslati | Transversely isotropic hyperelastic constitutive models for plastic thermoforming simulation[END_REF]. In case those valid model parameters are not used in the simulation, the resulting deformation profile and subsequently the thickness distribution obtained would be erroneous. In literature, many authors have studied the role of process parameters on thickness [5,27,50] and the efficiency of models in determining the thickness distribution of a thermoformed part [22,40,56,61,67,[START_REF] Oueslati | Transversely isotropic hyperelastic constitutive models for plastic thermoforming simulation[END_REF][START_REF] Atmani | Identification of a thermo-elasto-viscoplastic behavior law for the simulation of thermoforming of high impact polystyrene[END_REF][START_REF] Erchiqui | Thermodynamic approach of inflation process of K-BKZ polymer sheet with respect to thermoforming[END_REF]. This clearly shows the importance of maintaining a homogeneous thickness distribution in a thermoformed part.

Laboratory-scale characterization

With respect to the considered framework of small deformations or of large deformations, appropriate testing methods are required to translate experimental data into thermomechanical parameters of material constitutive models. In the case of thermoformable materials, the importance is attributed to the mechanical behavior following the heating stage. Based on literature, numerous techniques can be used to characterize thermoformable thermoplastics at the liquid or semi-solid states [START_REF] Sukiman | Design and numerical modeling of the thermoforming process of a WPC based formwork structure[END_REF]. The collected experimental data can take into consideration the effect of a single of multiple independent variables, including temperature, strain rates, load configuration, etc. Experimental characterizations rely predominantly on laboratory-scale tests. According to the class of the model (phenomenological or physically-based) and the considered framework of deformations experimental tests can be categorized into two classes. The first class englobes characterization campaigns relying on large deformations thermo-mechanical tests (uniaxial, multiaxial, shearing, etc., at varying temperatures and strain rates) assuming a semi-solid state of the thermoplastic. The second class assumes small deformations and tests the material at its liquid state based on rheological techniques (such as dynamic mechanical analysis, shear viscosity and extensional viscosity measurements) to identify more physical-anchored parameters.

In the current study, a greater focus is attributed to thermo-mechanical tests within the framework of large deformations based on the assumption that after the infra-red heating stage the thermoplastic is at a semi-solid state.

Thermo-mechanical characterizations

Mechanical characterization tests of thermoformable materials are needed to calibrate material models which represent their behavior in a large deformation framework. In order to cover as many as possible representative conditions to which thermoformable materials are subjected during thermoforming, at the laboratory-scale it is essential to (i) verify the basic assumptions that the considered model should meet (such as homogeneity of temperature and the acceptable limits of imposed strain rates or admissible deformation limits), (ii) rely on standard-based protocol to choose sample geometries, or (iii) design original protocols to replicate as much as possible the complex loads to which the material is subjected during the process.

In literature, laboratory-scale tests related to characterizing semi-solid thermoplastics can be categorized into three classes according to the considered strain rates: The first class includes quasi-static uniaxial and bi-axial tension tests [35,57] or compression tests [START_REF] Dooling | Hot-drawing of poly(methyl methacrylate) and simulation using a glass -Rubber constitutive model[END_REF][START_REF] Richeton | A unified model for stiffness modulus of amorphous polymers across transition temperatures and strain rates[END_REF] which are useful for both small and large deformations at high temperatures within the FW and strain rates ranging between 0.1 and 16 𝑠 -1 [38,[START_REF] Stephenson | Experimental study of the thermoforming of a blend of styrenebutadiene copolymer with polystyrene[END_REF][START_REF] Wei | Experimental characterisation on the behaviour of PLLA for stretch blowing moulding of bioresorbable vascular scaffolds[END_REF][START_REF] Richeton | Influence of temperature and strain rate on the mechanical behavior of three amorphous polymers: Characterization and modeling of the compressive yield stress[END_REF]. The second class includes multiaxial stretching tests based on free blowing techniques which include non-conventional testing equipment or rigs [START_REF] Sweeney | Application of an elastic model to the large deformation, high temperature stretching of polypropylene[END_REF][START_REF] Sweeney | Rate dependent and network phenomena in the multiaxial drawing of poly(vinyl chloride)[END_REF] to test mechanical responses at large deformations and higher strain rates reaching up to 133 𝑠 -1 . This is the case of bulging tests of membranes [START_REF] Machado | Membrane curvatures and stress-strain full fields of axisymmetric bulge tests from 3D-DIC measurements. Theory and validation on virtual and experimental results[END_REF] and free stretch blow of polymeric tubes used for stretch blow molding [START_REF] Wei | Experimental characterisation on the behaviour of PLLA for stretch blowing moulding of bioresorbable vascular scaffolds[END_REF][START_REF] Menary | Modelling of poly(ethylene terephthalate) in injection stretch-blow moulding[END_REF][START_REF] Zimmer | Evaluation method for stretch blow moulding simulations with process-oriented experiments[END_REF]. The third class includes dynamic testing equipment to characterize the mechanical behaviors of thermoplastics at high strain rates which can reach 800-5000 s -1 , such as the case of using a split-Hopkinson pressure bar [START_REF] Richeton | Influence of temperature and strain rate on the mechanical behavior of three amorphous polymers: Characterization and modeling of the compressive yield stress[END_REF]. At the industrial scale, the mechanical behavior of thermoplastics during thermoforming operations depends on the temperature heterogeneity following the heating operation. Such characteristic flaw, as indicated in section 1.2.1, makes the identification of material parameters highly sensitive to temperatures being used at the laboratory scale. Furthermore, in thermoforming according to the form of the mold, it is possible that the sheet undergoes different complex loads at different locations, including biaxial loads (towards the center or pole of the deformed shape), uniaxial (towards the clamped edge of the sheet), and shear (when plugs contain edges and corners) [26]. As highlighted by Marckmann and Verron [START_REF] Marckmann | Comparison of hyperelastic models for rubber-like materials[END_REF], the model parameters identified by one kind of extension is not applicable in another type throughout the entire deformation range and usually have a specific limiting value of the extension.

Different models have different limits of stretching, and this too plays a part in deciding the most suitable model to be used. Hence, it is evident that these model parameters identified from laboratory characterization campaigns may not be entirely valid when the behavior of the material is tested in real thermoforming conditions. It is challenging to exactly replicate the conditions that are taking place on the actual part in the laboratory.

Full-field measurement techniques: A potential solution for in-situ tests

At high temperatures and lower strain rates, conventional extensometric techniques are suitable to measure the macroscopic strain of the material, assuming a homogeneous temperature distribution within the material [67]. On the other hand, contact-less metrological techniques such as digital image correlation (DIC), moiré and speckle interferometry, grid method etc., became more frequent for capturing what is known as 'full field measurements' [START_REF] Avril | Overview of identification methods of mechanical parameters based on full-field measurements[END_REF]. In extensometric measurement procedures, assumptions of homogenous strain fields are considered within the region of interest. Contrary to this, full-field measurements allow higher capabilities by capturing more localized strains at each material point in this region. Therefore, not only do they provide the ability to grasp complex heterogeneous strain fields, but they are also more capable of processing larger sets of constitutive parameters in smaller tests [67,[START_REF] Avril | Overview of identification methods of mechanical parameters based on full-field measurements[END_REF]. Furthermore, DIC is especially suited for measuring large deformations, which makes it an ideal tool for conducting kinematic measurements while thermoforming the material [22].

Thus, the utility of using full-field measurements from DIC that enables the collection of heterogeneous strain data (owing to the heterogeneous temperature field as discussed before) and large deformations taking place in an actual thermoformed part for material characterization was identified [22]. It would further enable to characterize the material "in-situ" during the thermoforming process, thus bringing the actual conditions of the specific process for the particular part. This results in having a dual advantage.

Firstly, it facilitates time and cost-saving by directly conducting the characterization in the actual thermoforming process and can help avoid unnecessary characterization campaigns (uniaxial/biaxial/shear extension of material samples at a given temperature and strain rate) replicating process conditions in the laboratory. Secondly, the identified model parameters being representative of actual process conditions (temperature heterogeneity, boundary conditions) are more suited to obtain accurate simulations of thickness distribution.

Critical discussion and positioning of the current study

It is recurring in literature to consider reasonable assumptions (such as perfectly clamped edges, nonslipping contact, temperature homogeneity, etc.) for the stages that have not been taken into detailed consideration in the study. Among the various limits of thermoforming simulations, a few have been highlighted based on the conclusions from previous studies.

Firstly, the difficulty in attributing "real" material and "real" process-specific parameters to a thermoforming simulation. There is no existing methodology that can guide a user to establish a link between the actual parameters that occur in reality to the ones that are used in the simulation software [22]. Material properties such as compressibility, residual stresses are hard to characterize with standard tests, and it is thus commonly assumed in most of the studies that the sheet behaves as an incompressible and isotropic material. This assumption will be admitted as well in the current study. However, processinduced flaws such as non-homogenous temperature distribution, pressure-induced instabilities may contradict the basis of such assumptions. Similarly, process-specific parameters such as heating time, applied air pressure may be considered to occur at a 100% efficiency inside the simulation, which may differ in reality from one thermoforming machine to the other.

Secondly, commercial thermoforming simulation software that are presently used are like black boxes that do not give the user the ability to tweak the simulation problem based according to their needs. Even though these software simplifies the problem in a manner that is usable by a vast majority of thermoforming operators, they are often based on idealized conditions of thermoforming. Effects such as pressure instabilities, heterogeneous temperature distribution, heater efficiency are not taken into consideration and can cause a divergence from the results obtained in the real part. Furthermore, the material itself is modelled based on a few existing constitutive models inside its material database, limiting the user to incorporate other models existing in the literature. As every single thermoforming equipment is unique with the specific product that is manufactured, it is evident that general thermoforming simulation software cannot replicate the experimental results to the full extent. Ideally, every thermoforming application/machinery would require specific instrumentation of its equipment that would then allow the user to have more precise knowledge on his process parameters that he can then tweak and implement in a finite element model.

Finally, as discussed previously, the entire thermoforming process is a multi-physical problem. Ranging from purely mechanical to thermodynamics, it often contains the coupling of two such phenomena, such as the forming step (thermo-mechanical) or the pre-stretching step (fluid-structure interaction).

Therefore, the intricate understanding of how each of these physical phenomena interacts with one another and has a combined synergistic effect upon the inherent properties of the sheet material is a challenging task to be incorporated in a single simulation package. A more reliable approach is to consider each of the thermoforming operations as a separate block and build its complete numerical model considering all the physical phenomena involved in it. Once all the numerical blocks are complete, the problem can be viewed as a multi-step simulation process wherein all the blocks are linked one after the other, and the results are carried over in between them. Table 4 shows the summary of underlying physics that is involved in each of the thermoforming steps.

In this study, the forming operation was considered and studied for the construction of the numerical tool. A significant challenge occurring during the simulation of this operation is the uncontrolled boundary conditions present at the start of the step that is often neglected, and ideal conditions are assumed. Be it the thermal boundary conditions on the sheet (heterogeneous temperature distribution)

or the structural ones (sagging of sheet), it is irrefutable to consider the effects that they bring about in the final deformed sheet (shape, thickness distribution). The considered strategy implicates the use of full-field measuring instruments (such as stereo digital image correlation, infrared thermography), which can take into consideration the local heterogeneity following the heating operation. Compared to existing studies reporting the use of stereo-digital image correlation in thermoforming [22,[START_REF] Turner | Biaxial characterization of poly(ether-ether-ketone) for thermoforming: A comparison between bulge and in-plane biaxial testing[END_REF], the focus of this study will be brought to the quantification of measurement precisions within industrial thermoforming conditions. This study looks forward to bridge the existing gap between numerical output and experimental results that still exists due to the limited consideration of the real process conditions of the thermoformable sheet and the ideal ones that are implemented inside the numerical tools. It aims to provide some clarity to a simulation user concerning the exact conditions that are undergoing during the forming operation on the sheet and what parameters might be chosen in order to complete its simulation.

Conclusions and research plan

Thermoforming is a broad class of polymer processing technology that has found various applications ranging from food processing and pharmaceuticals to automotive and electronics. Even though overall, as a manufacturing process, thermoforming is relatively fast and straightforward, many technical complexities (such as temperature heterogeneity, post-heating sag, and warpage of sheet, out-of-plane instabilities, etc.) arise as a part of the processing conditions. These drawbacks have a visible impact on the thickness profile of the formed product and, therefore, must be taken into account from the early stages of consideration of processing conditions. With the advent of computing technologies and progress in computational power, numerical simulation has started replacing the age-old trial and error methods for perfecting these process conditions. It remains a challenge to integrate these drawbacks precisely into the simulations successfully and better predict the end product and, hence, better control on the production line. Over the last two decades, a considerable amount of research has been carried out to address these drawbacks individually and develop more accurate simulations. However, limited research was carried out, taking all of them into account simultaneously (which constitutes the real processing conditions) and simulating the entire thermoforming process. Commercial software enable the user to accurately simulate a product's thermoforming; however, for most of them, being considered as black boxes, their working flowchart offers limited freedom to modify them at will.

Among the goals of the current Ph.D. study is to (i) demonstrate the feasibility of carrying out full field optical measurements during a thermoforming cycle, (ii) provide more insight into the existing simulation frameworks of thermoplastic sheets, (iii) use of constitutive material models to characterize the large deformation behavior of thermoplastics, and (iv) generate hybrid methods to close the gap between thermoforming simulations and the actual conditions by identification of on-line process parameters.

Introduction

The current chapter presents a non-extensive literature review of constitutive models which are used to simulate the thermo-mechanical behaviors of amorphous thermoplastics sheets during thermoforming.

The first section provides the classification criteria of the identified models. The second section provides a more detailed presentation of hyperelastic, visco-elastic and visco-elastoplastic models and their applicability within the context of thermoforming simulations. The final section is focused on discussing the model selection criteria and defining the approach that was adopted during the current word to simulate the forming stage after the pre-heating stage.

Comparison between phenomenological and physically motivated models

As indicated in Chapter 1, the numerical simulation of forming thermoplastic sheets requires the selection of a thermo-mechanical model whose parameters establish a link with the observed experimental behaviors of the material observed during experimental testing campaigns. The model helps in predicting the behavior of the material under a given load and thus, obtain the final deformed shape, the distribution of strains, thickness or stress within the material. These results depend upon the framework in which the selected material model is defined and the accuracy of the integration schema according to which the model is implemented, based on an iterative resolution using the finite element method. It is seen throughout literature (as indicated in section 1.3.5) that the development of mechanical models usually encompasses around either of the two classes which are phenomenological or physicallymotivated [1][2][3][4][5]. From a material engineering point of view, the compromise between complexity and physically-anchored interpretation of mechanical behavior makes physical models more attractive to material developers. From the point of view of product designers, phenomenological models are more practical. However, they are relatively complex and costly to calibrate as they can contain a high number of parameters that should be identified (as many as ten, such as in the case of the glass rubber model [6]).

Phenomenological models

Phenomenological models are formulated to describe the macroscopic mechanical behaviors of materials when subjected to external loads [3]. According to the theory of continuum mechanics, amorphous thermoplastic within the forming window, and which are assumed in semi-solid state, can be treated as isotropic and homogeneous continuum media. Such assumptions are considered in literature to simulate mechanical and pressure-assisted forming, based on the hyperelastic phenomenological models for example (Table 3, Chapter 1).

The model parameters of phenomenological models are in most cases decoupled from the structural changes (i.e. macromolecular rearrangements) which may take place according to the load types (Uniaxial / Bi-axial / Shear or mixed loading state) upon which the model is built [5,7]. These parameters can be rather considered as numerical entities which are estimated from experimental data such as stressstrain responses of the material under a specific range of conditions (temperature, deformation, strain rate) [8]. The determination of parameters relies on purely numerical error minimizing procedures between the formulated phenomenological model and target experimental responses of the material.

Parameter-estimation procedures include: (i) the classical least square process or (ii) multi-stage identification processes in the case of highly non-linear problems such as the case of constrained inverseidentification procedures [9]. In both cases, such error minimization procedures do not go the lengths of explicitly correlating the macroscopic behavior with the fundamental microstructure changes within the continuum [1]. According to the basic needs defined for the numerical simulation (as defined in Chapter 1), phenomenological models are more useful from a purely engineering point of view to (i) optimize the product, (ii) minimize process-induced flaws and potentially (iii) evaluate residual stresses.

However, they may not be able to provide information about phenomena taking place within the material during the forming stage.

Physically motivated models

Physically-motivated models consider the elementary mechanisms that take place at a microscopic scale (scale of molecular chains) in the material under a given load. They integrate more physical constraints related to statistical behaviors of macromolecular chains (such as the relaxation modes) to describe deformations of materials [3,5,10]. The parameters of such models are material specific such as chain link density [11], or slip link factor [12,13] as examples. Consequently, parameters of physically-based models are more relatable to material properties compared to phenomenological models [5]. The identified model parameters are more relatable to material properties compared to phenomenological models [5]. The parameters for the material are usually not limited to a single type of deformation nor to a range of experimental conditions [14]. Owing to this, physically-based models are more suitable to cover the modelling of both semi crystalline as well as amorphous polymers [10].

Non-linear mechanical behaviors in the context of thermoforming

In the current section, an overview about most reported models used to simulate thermoforming is provided. As identified in Chapter 1, most of these models fall under three main categories which are:

time-independent hyperelastic models, time-dependent viscoelastic models and time-dependent viscoelastoplastic models.

Hyperelastic models (time-independent behaviors)

General forms of strain energy density

Hyperelastic models were first formulated for non-linear elastic materials of rubber-like behaviors assuming they are in a semi-solid state within the forming window. The non-linear elastic behaviors of such materials are governed by their ability of total restitution of strain energy per unit of volume which is known as the strain energy density function (W). According to the theory of continuum mechanics when a material point M undergoes a deformation from a reference 𝑿 to a current 𝒙 coordinates, it is possible to describe the deformation gradient 𝑭 by 𝑭 = 𝜕𝒙 𝜕𝑿 in terms of the right Cauchy-Green deformation tensor 𝑪 = 𝑭 𝑻 𝑭. For hyperelastic models, "W" can be expressed in terms of 𝑪, its corresponding eigen values 𝜆 𝑖 or its principal invariants 𝐼 𝑖 as given in Eq. 1:

𝑊 = 𝑊(𝑪) = 𝑊(𝜆 1 , 𝜆 2 , 𝜆 3 ) = 𝑊(𝐼 1 , 𝐼 2 , 𝐼 3 ) 1 
Where, 𝐼 1 , 𝐼 2 and 𝐼 3 are respectively the first, second and third invariants of 𝑪, which can be expressed in terms of the Eigen values 𝜆 𝑖 of 𝑪 as indicated in Eq. 2, 3, 4:

𝐼 1 = 𝜆 1 2 + 𝜆 2 2 + 𝜆 3 2 𝐼 2 = 𝜆 1 2 𝜆 2 2 + 𝜆 2 2 𝜆 3 2 + 𝜆 1 2 𝜆 3 2 𝐼 3 = 𝜆 1 2 𝜆 2 2 𝜆 3 2 2 3 4
𝜆 𝑖 is the stretch ratio which is defined as the ratio of the final length of a material undergoing deformation to its initial length along the principal material axes 1,2 and 3. The 2 nd Piola-Kirchoff stress components are obtained from the derivative of W with respect to Lagrangian strain tensor formulation [1,[15][16][17].

Such a relation can be expressed as indicated in Eq. 5:

𝑆 𝑖𝑗 = 𝜕𝑊 𝜕𝐸 𝑖𝑗 = 2 𝜕𝑊 𝜕𝐶 𝑖𝑗 5 
Where, 𝑆 𝑖𝑗 : Second Piola-Kirchoff stress tensor 𝐸 𝑖𝑗 : Lagrangien strain tensor 𝐶 𝑖𝑗 : Right Cauchy-Green deformation tensor

The hyperelastic constitutive law as expressed in Eq. 5 is suitable with membrane and finite shell elements. It can be resolved according to a Total Lagrangian formulation. A more detailed presentation of hyperelastic models in the framework of continuum mechanics will be provided in Chapter 3.

 Polynomial invariant-based models

The strain energy density in the case of homogeneous, isotropic and elastic materials can be expressed in terms of the three invariants 𝐼 𝑖 of the right Cauchy-Green deformation tensor 𝑪. As suggested by Rivlin [18], the expression of W corresponds to Eq. 6:

𝑊 = ∑ 𝐶 𝑖𝑗𝑘 (𝐼 1 -3) 𝑖 (𝐼 2 -3) 𝑗 (𝐼 3 -1) 𝑘 𝑁 𝑖+𝑗+𝑘=0 6 
Assuming material incompressibility (i.e. 𝐼 3 = 1), the general expression of 'W' is given by Eq. 7:

𝑊 = ∑ 𝐶 𝑖𝑗 (𝐼 1 -3) 𝑖 (𝐼 2 -3) 𝑗 𝑁 𝑖+𝑗=0 7 
Many authors have formulated and derived their strain energy density functions based on the Rivlin Sanders model [15]. In the case of tensile deformations for stretches reaching up to 100%, Rivlin and Sanders considered that the higher power terms (𝐼 1 -3) 𝑖 and (𝐼 2 -3) 𝑗 may be neglected [18] within the global expression of W. Thus, the expression obtained gives the Mooney -Rivlin model as expressed in Eq. 8 [19]:

𝑊 = 𝐶 01 (𝐼 1 -3) + 𝐶 10 (𝐼 2 -3) 8 
Biderman [3] considered retaining the strain energy density expression of Eq. 7 with only power terms subjected to the following conditions [𝑖 = 0 or 𝑗 = 0] and [𝑖 ≤ 3 and 𝑗 ≤ 1]. Both conditions resulted into maintaining only the first three terms for 𝐼 1 and only the first term for 𝐼 2 . Thus the Biderman model is expressed as given by Eq. 9:

𝑊 = 𝐶 10 (𝐼 1 -3) + 𝐶 20 (𝐼 1 -3) 2 + 𝐶 30 (𝐼 1 -3) 3 + 𝐶 01 (𝐼 2 -3) 9

In the case of isotropic and incompressible materials submitted to large deformations with stretches up to 350 %, James et al. [2] considered six terms from the general Rivlin Sanders form of W. Their corresponding form is given by Eq. 10:

𝑊 = 𝐶 10 (𝐼 1 -3) + 𝐶 01 (𝐼 2 -3) + 𝐶 11 (𝐼 1 -3)(𝐼 2 -3)

+ 𝐶 02 (𝐼 2 -3) 2 + 𝐶 20 (𝐼 1 -3) 2 + 𝐶 30 (𝐼 1 -3) 3 10

Even though most of the hyperelastic models have been formulated in the 20 th century, there have been a few developments in the recent years such as the work of Mansouri and Darijani [7,15,20]. Starting from the general motion of a continuum a wide array of 16 strain energy density functions was created with linear combinations of polynomial, logarithmic, power laws and exponential forms of W. On one hand, obtained results demonstrated that strain energy density functions (W) expressed in exponential forms are the most efficient in fitting the behaviors of compressible as well as incompressible materials compared to the other mathematical forms. On the other hand, the results proved that even if the first invariant 𝐼 1 is sufficient for modelling pure shear and extension, hyperelastic models which do not include the second strain invariant (𝐼 2 ) were unable to accurately describe the material behavior in simple shear and torsion. Both conclusions led Darijani et al. to replace the initial array of considered 16 functions by more simple function as expressed in Eq. 11:

𝑊 = 𝐴 1 [exp(𝑚 1 (𝐼 1 -3)) -1] + 𝐵 1 [exp(𝑛 1 (𝐼 2 -3)) -1] 11 
Where, 𝐴 1 and 𝐵 1 are material parameters and 𝑚 1 and 𝑛 1 are dimensionless model parameters obtained from curve fitting based on experimental data sets. The suggested new form of W (in Eq. 11) provided relatively accurate results in the cases of silicone, synthetic rubber and biological tissues [7,15,20].

 Principal stretch-based hyperelastic models

Compared to the previous expressions, Valanis and Landel provided an analytical expression of W as the summation of separable functions of the principal stretches 𝜆 𝑖 [21]. The authors postulated the expression in Eq. 12 in the case of an incompressible material of a given shear modulus 𝜇 and undergoing a tensile stretch (𝜆) in the range of 60% < 𝜆 < 250%.

𝑊 = 2𝜇 ∑ 𝜆 𝑖 (log 𝜆 𝑖 -1)

3 𝑖=1 12 
Ogden then based his model on the separable stretch ratio function proposed by Valanis and Landel. He extended the validity of the model beyond the stretch limit (𝜆 = 250%) to which the former model (Eq.

12) was restricted. He proposed that W could be represented by a series of separable functions which contain real positive and negative powers of the stretches [22,23]. For this he introduced a parameter α which is either an integer or an integral multiplier of a real number. The Ogden model is given by expression in Eq. 13:

𝑊 = ∑ 𝜇 𝑛 𝛼 𝑛 (𝜆 1 𝛼 𝑛 + 𝜆 2 𝛼 𝑛 + 𝜆 3 𝛼 𝑛 -3) 𝑁 𝑛=1 13 
Where, 𝜇 𝑛 • 𝛼 𝑛 > 0 is a stability condition and N is is the order of truncature of the model [24]. 𝜇 𝑛 is an experimentally-determined constant and implies summation over n terms.

Ogden carried out his experiments on natural rubber data from Treloar [14] and reported that N=3 was sufficient to model the stress-strain response. Furthermore, Ogden and Treloar formualted a few postulates for W [1,25]. They are:

1. W must be invariant to coordinate transformations.

2. W should be expressed as a function of either the stretch (𝜆) or strain invariants (𝐼) only.

3. W should be symmetrical to all the principal stretches 𝜆 1 , 𝜆 2 , 𝜆 3 , for isotropic materials.

4. W should be of a non-negative value for all deformations.

5. W should be equal to zero and at its minimum at the undeformed state.

6. W must approach positive infinity in the case of singularity, for very large deformations (where the stretch approaches +∞).

Hyperelastic models used in context of thermoforming

Following the previous non-extensive introduction of hyperelastic models in terms of invariants and principle stretches the following paragraphs will be more focused on hyperelastic models that have been reported in the case of thermoforming of thermoplastics. Hyperelastic models were admitted (Table 3,

Chapter 1) to model the deformation of thermoplastics mainly in their rubbery state within their forming window assuming [26][27][28] (i) high temperatures (ii) limited temperature drops and (iii) neglecting viscous effects. Indeed, as reported in literature, thermoforming strain rates usually range in between 0.1 -16 s -1 [12]. Within this range during the forming stage, which takes place in a few seconds, thermoplastic materials do not have a sufficient amount of time to undergo viscous dissipation. The materials are considered as isotropic and incompressible for the purposes of modelling. Among the identified hyperelastic models in the context of thermoforming ( 

Neo -Hookean Model: One parameter invariant based model

Treloar [14] was among the pioneers to attempt developing a physically-based model to characterize elastomers like carbon filled natural rubber. Adopting a minimalistic approach to develop W, this model contains only one parameter that needs to be experimentally determined. The model is derived from molecular network statistics which was based on the Gaussian statistical distribution. The Neo-Hookean form of W is given by Eq. 14:

𝑊 = 1 2 𝑛𝑘 𝑏 𝑇 (𝐼 1 -3) 14 
Where, 𝑛 is the chain density per unit volume of the material found from curve fitting, 𝑘 𝑏 is the Boltzmann constant = 1.38064852 × 10 -23 m 2 kg s -2 K -1 , 𝑇 is the absolute temperature in Kelvin.

The model is well capable of modelling different types of loading (unidirectional or biaxial tensile and shear) in the stretch range (𝜆 < 150%) as reported by [3,14,29]. Table 5 below summarizes the conditions and parameters at which the Neo-Hookean model has been reported in literature. of the hyperelastic models to simulate the inflation of multi-layered polymeric sheets. Kouba et al. [30] used the experimental data from a plug-assisted thermoforming of PMMA sheets inside a finite element model using thin membrane approximation. Their main goal was to show the computational efficiency of simulating the forming step and they concluded by stating that their model required 2.5 hours of computational time. Tshai et al. [31] carried out two loading conditions (equibiaxial and constant width deformation) on extruded HIPS samples and carried out a finite element simulation using the Neo-Hookean model. They concluded that the model was not capable to distinguish between both the loading conditions, as it gave an identical true stress-stretch curve in both cases. Furthermore, the mechanical stress-strain response was highly underpredicted in the simulations when compared with the experiments.

Mooney-Rivlin Model: Two parameters invariant based model

As indicated in section 2.3.1, it can be derived from the Rivlin-Sanders general form of strain energy density function for hyperelastic materials by considering two parameters (Eq. 8). Many authors have used the Mooney-Rivlin (MR) model for modelling of polymeric sheets [28,32,33]. The model is very commonly used for stretches lower than 300% [3], however numerous studies have not restricted themselves to such a criterion as highlighted in Table 6. This strain range even though satisfactory for small scale thermoformed products, it is not sufficient enough to deal with large drape forming which include higher strain levels. An overview about numerical and experimental studies reporting the use of MR model is provided in Table 6. 

MR-based studies: Assumption of isothermal temperature distribution

Song et al. [28] considered thick sheet finite elements to model the thermoforming of PMMA sheets by applying positive air pressure (i.e. inflation-assisted thermoforming). The temperature distribution was assumed isothermal and the load stiffness matrix was calculated taking into considerations tangential stiffness, small deflection stiffness and initial stress stiffness as the elements were modelled as thick sheet elements. The finite element formulation for the forming stage of the process was modelled using a Total Lagrangian approach. Other authors like Dong et al. [34,35] and Erchiqui and Derdouri [32] considered thin sheet (i.e. membrane) approximations along with isothermal considerations for numerically modelling the positive bubble inflation (i.e. inflation assisted thermoforming).

MR-based studies: Assumption of non-isothermal temperature distribution

Schmidt and Carley [27] assumed that temperature distribution on a heated sheet prior to bubble inflation was not homogenous and could vary as much as 20 °C from pole to the clamped edges. This formed the basis of work for DeLorenzi and Nied [38] who used the Mooney Rivlin model to simulate the prestretching followed by application of negative pressure or vacuum into a conical mold. The HIPS sheets were modelled as thin sheet (i.e. membrane) and a no slip contact was assumed with the contact surface of the mold. The authors reported that an assumption for a non-isothermal temperature distribution radiating from the center to the clamps, the thickness prediction was more accurate than one having isothermal assumption. Carlone and Palazzo [16] too carried out the modelling of the inflation of ABS sheets assumed as membranes, considering uniformly distributed pressure and temperature. However, a provision for inclusion of non-isothermal distribution in a simple manner was also proposed by their numerical model.

Nam et al. [33] provided insights by comparing the membrane formulation and thick sheet formulation for ABS sheets as well as comparing the effects of isothermal and non-isothermal assumptions. They reported that for an initial width to thickness ratio of the sheet greater than 100, the membrane formulation corresponded well with the thick sheet formulation. However, below this ratio it is the thick sheet formulation that gave a better thickness prediction. Again as in the case of DeLorenzi and Nied [38], the non-isothermal assumption was found to result in a thickness variation more corresponding to the experiments. Both authors reported that non isothermal assumption improves clamped edge thickness prediction. Finally, Li et al. [37] worked on the heating phase of thermoplastic sheets (HIPS, ABS, HDPE) modelled as polymer membranes. They demonstrated the effect of taking thermal warpage (sheet sagging) and non-isothermal temperature distribution into consideration of FEM simulation and their (warpage and non-isothermal heat) consequent result on parameter identification. They concluded that the resulting stresses arising due to thermal warpage should be addressed accordingly.

Ogden Model: Stretch based model

The Ogden formulation is based on the idea from the Valanis and Landel [21] model that represents strain energy density functions (W) in terms of the principal stretches 𝜆 𝑖 . It can be seen from the general representation of the Ogden model given in Eq. 13 that considering N = 1 and 𝛼 𝑛 = 2, it is possible to obtain the Neo-Hookean model in return. Ogden model can also correspond to a MR model by considering 𝑁 = 2, 𝜇 1 = 2𝐶 10 , 𝛼 1 = 2 , 𝜇 2 = -2𝐶 01 and 𝛼 2 = -2. Owing to its excellent results in thickness prediction [41], it is very commonly used in FEM simulations of hyperelastic materials [3].

Table 7 summarizes the conditions and parameters at which the Ogden model has been reported in literature. [30], [43] VA: Vacuum-assisted thermoforming PA: Plug-assisted thermoforming Iso: Isothermal

In: Inflation-assisted thermoforming UD: Uniaxial stretching Non-Iso: Non isothermal Kouba et al. [30] and Nied et al. [43] used the Ogden's model for polypophenylene oxide sheet undergoing thermoforming. The sheets were considered as a membrane. The temperature distribution was considered to be isothermal and the simulation of thermoforming by positive air pressure was modelled. Erchiqui et al. [32,42] also modelled the biaxial characteristics of HIPS and ABS by considering the sheet as membranes and isothermal distribution. The sheets were considered isotropic and incompressible and subjected to a positive air pressure for inflation into a mold cavity which was simulated in a finite element model considering Total Lagrangian approach. They reported that the final thickness distribution is not simply a function of the chosen material behavior model but also the shape of the mold. This reinforces the findings by Koziey and Ghafur [41] who also stated that predictability of thickness by a specific model depends on complexity of the mold, presence of deep drawing or plug assistance.

Viscoelastic models (time-dependent behaviors with no permanent deformation)

According to the requirement of simulating thermoforming (paragraph 1.3.1 in chapter 1), it is worth noting that hyperelastic models predict well the thickness distributions and deformation fields during the pre-stretching and the forming stages. However, these models do not accurately predict stresses and thus, they are of limited efficiency in case the simulation tool is required to estimate residual stresses at the end of the forming stage [44]. To have better estimation of final stresses numerous authors developed viscoelastic models to represent the response of thermoplastics [45]. A material that simultaneously exhibits viscous and elastic behaviors is termed as viscoelastic. The viscous component provides delayed deformation under external load. Whereas the elastic component ensures a time independent response once the external force is applied or removed. Consequently, unlike elastic materials which exhibit a unique linear stress-strain behavior, viscoelastic ones undergo hysteresis while successive loading and unloading paths (see Figure 13). Such non-linear nature is responsible of a dependence on strain rate and on the temperature of the material. 

Viscoelastic models used in context of thermoforming

In the current section, a focus is attributed to the viscoelastic models that were reported in studies related to thermoforming of amorphous polymers. Based on a non-extensive review of models reported in the context of thermoforming of amorphous thermoplastics and with respect of the criterion provided by Sukiman et al. [47], different categories of viscoelastic models exist in literature. The first category is integral or memory-function-based such as the Kaye-Bernstein-Kearsley-Zapa model [48]. The second category is hyper-viscolelastic and integrates a combination of a viscoelastic model based on Prony series combined to a hyperelastic form of strain energy density function. This is the case of the Chang, Bloch and Tschoegl (CBT) model [49] based on Ogden model and Christensen model [50] based on the Neo-Hookean form. The third category is more based on differential laws or stress derivation laws such as the Glass Rubber model [6]. A non-extensive presentation is provided in the following paragraphs about some of the pioneering works including the following models: (i) Kaye-Bernstein-Kearsley-Zapa (K-BKZ), (ii) Chang-Bloch-Tschoegl (CBT), (iii) Christensen and (iv) Buckley's Glass Rubber.

Kaye-Bernstein-Kearsley-Zapa (K-BKZ) Model and its derivatives

Use of the KBK-Z model in the context of thermoforming simulations

One category of commonly cited models that addresses viscoelasticity of thermoplastic polymers is the Kaye-Bernstein-Kearsley-Zapa or K-BKZ model and its derivatives [48]. The KBK-Z model is integrated in numerous thermoforming simulation software such as B-SIM / T-SIM / PAMFORM etc.

This model considers the macromolecular relaxation times and accounts for global rheological parameters of the material. As it is rheologically guided, it is more adapted to describe a flowing thermoplastic within the thermoforming window [29]. Table 8 summarizes the conditions and parameters at which the K-BKZ model has been evaluated. 

KBK-Z model and its calibration steps

The KBK-Z model estimates shear stress response (𝜏) and integrates: (i) a damping function ℎ(𝐼 1 , 𝐼 2 )

which describes the non-linearity of the deformation based on first and second invariants of Right Cauchy Green strain tensor (𝑪) and (ii) a time-dependent memory function 𝑚(𝑡 -𝑡 ′ ) whose parameters can be tuned based on classical rheometry [48]. The equation of this model is given by Eq. 15:

𝜏 = ∫ 𝑚(𝑡 -𝑡 ′ ) ℎ(𝐼 1 , 𝐼 2 ) 𝑡 -∞ 𝐶 -1 (𝑡′)𝑑𝑡′ 15 
Where, 𝑡 is the present point of time and 𝑡 ′ is the past point of time, 𝑚 is the time-dependent memory function, 𝐶 -1 is the inverse of the Right Cauchy Green strain tensor which is hereby referred as the Finger strain tensor.

The time-dependent memory function 𝑚(𝑡 -𝑡 ′ ) is obtained experimentally from small-strain data according to the theory of linear viscoelasticity. It is expressed as a sum of functions containing the relaxation times and moduli for a number (N) of relaxation modes. The choice of the number of modes depends on the polymer. However, it is commonly admitted that a maximum of eight modes is sufficient for most polymers [48,52,54]. It is generally assumed in the K-BKZ model that the rheological parameters obtained from the small strain data can be extrapolated to large deformations. The timedependent memory function is given by Eq. 16:

𝑚(𝑡 -𝑡 ′ ) = ∑ 𝑎 𝑘 𝜆 𝑘 exp (- 𝑡 -𝑡′ 𝜆 𝑘 ) 𝑁 𝑘=1 16 
Where, 𝜆 𝑘 represents the relaxation time and 𝑎 𝑘 the relaxation modulus of the k th mode.

After the identification of 𝑚(𝑡 -𝑡 ′ ), the parameters of the damping function ℎ(𝐼 1 , 𝐼 2 ) are adjusted to reproduce the large deformations of the material. The damping function has been defined in different ways by many authors. A list of possible expressions of ℎ(𝐼 1 , 𝐼 2 ) are given by Eqs. 17 -20 in Table 9 : . 

ℎ = 𝑒𝑥𝑝 (-𝑛√𝛽𝐼 1 + (1 -𝛽)𝐼 2 -3) 18 β is elongation data fitted [46] ℎ = 𝛼 (𝛼 -3) + 𝛽𝐼 1 + (1 -𝛽)𝐼 2 19 α is shear data fitted [55] ℎ = 𝛼 𝛼 + 𝛽(𝐼 1 -3) + (1 -𝛽)√𝐼 1 -3 20 α is shear data fitted β is elongation data fitted [56]
The damping function proposed by Papanastasiou-Scriven-Macosko [55] in Eq. 19 is the most widely used and hence the entire model is simultaneously also referred to as the K-BKZ/PSM model. Later

Olley [56] proposed the damping function in Eq. 20 in order to completely separate the shear and elongation contributions to visco-elastic stresses. This is done by obtaining an independent in-plane extensional behavior from the shear data without any compromise on the uniaxial elongation behavior.

Other authors, such as Luo and Tanner [57] proposed a more complete form of the model, dependent of first and second principal stresses and which takes into consideration the independent elongations of each relaxation mode. The global expression of this model is given by Eq. 21:

𝜏 = 1 1 -𝜃 ∫ ∑ 𝑎 𝑘 𝜆 𝑘 exp (- 𝑡 -𝑡′ 𝜆 𝑘 ) 𝑁 𝑘=1 𝛼 (𝛼 -3) + 𝛽 𝑘 𝐼 1 + (1 -𝛽 𝑘 )𝐼 2 𝑡 -∞ [𝑪 -1 (𝑡 ′ ) + 𝜃𝑪(𝑡′)]𝑑𝑡′ 21 
Where, 𝜃 is a constant and varies from 0 to -0.25. 𝛽 𝑘 corresponds to different behavior of elongation for each relaxation mode. The first and second normal stresses 𝑁 1 and 𝑁 2 verify the following expressions in Eq. 22:

𝑁 1 𝑁 2 = 𝜃 1 -𝜃 ; 𝑤ℎ𝑒𝑟𝑒 𝑁 1 = 𝜏 11 -𝜏 22 𝑎𝑛𝑑 𝑁 2 = 𝜏 22 -𝜏 33 22 
Under its general form in Eq. 21, the model of Luo and Tanner which is a derivative of the K-BKZ model, can be identified based on curve fitting. The relaxation times 𝜆 𝑘 and relaxation moduli 𝑎 𝑘 are found out by fitting the linear viscoelastic shear storage modulus 𝐺 ′ (𝜔) and loss modulus 𝐺 ′′ (𝜔) (where 𝜔 is frequency) which are expressed in Eq. 23:

𝐺 ′ (𝜔) = ∑ 𝑎 𝑘 ( (𝜔𝜆 𝑘 ) 2 1 + (𝜔𝜆 𝑘 ) 2 ) and 𝐺 ′′ (𝜔) = ∑ 𝑎 𝑘 ( 𝜔𝜆 𝑘 1 + (𝜔𝜆 𝑘 ) 2 ) 𝑁 𝑘=1 𝑁 𝑘=1 23 
Therefore for eight different modes, eight 𝑎 𝑘 and eight 𝜆 𝑘 are obtained. Next the shear fitted parameter α and the elongation fitted parameter β is obtained from the shear viscosity and extensional viscosity data respectively. In a simple shear flow of the material, the evolution of damping function ℎ(𝐼 1 , 𝐼 2 ) is measured based on shear strain 𝛾 sweep and the following expression in Eq. 24 can be used to identify the parameter 𝛼:

ℎ(𝐼 1 , 𝐼 2 ) = 𝛼 𝛼 + 𝛾 2 24
Similarly, the procedure is repeated with elongational data obtained from an extensional rheometer by which the value of β can be obtained by curve fitting. The constant 𝜃 in Eq. 24 can be taken as equal to zero if there is no second normal stress difference else a small negative value of -0.1 is adequate [57].

The principal components of Finger strain tensor 𝑪 -1 are given by:

In the case of for uniaxial elongation along 𝑒 1

In the case of equibiaxial extension along

𝑒 1 and 𝑒 2 𝑪 -1 = [ 𝜆 2 (𝑡) 𝜆 2 (𝑡 ′ ) 0 0 0 ( 𝜆(𝑡) 𝜆(𝑡 ′ ) ) -1 0 0 0 ( 𝜆(𝑡) 𝜆(𝑡 ′ ) ) -1 ] 𝑪 -1 = [ 𝜆 2 (𝑡) 𝜆 2 (𝑡 ′ ) 0 0 0 𝜆 2 (𝑡) 𝜆 2 (𝑡 ′ ) 0 0 0 ( 𝜆(𝑡) 𝜆(𝑡 ′ ) ) -4
]

Finally the equations for stresses 𝜎 1 and 𝜎 2 in principal directions are given by Eq. 25 and Eq. 26:

𝜎 1 (𝑡) = ∫ 𝑚(𝑡 -𝑡 ′ ) ℎ(𝐼 1 , 𝐼 2 ) 𝑡 -∞ ( 𝐶 11 -1 (𝑡 ′ ) -𝐶 33 -1 (𝑡′) ) 𝑑𝑡′ 25 𝜎 2 (𝑡) = ∫ 𝑚(𝑡 -𝑡 ′ ) ℎ(𝐼 1 , 𝐼 2 ) 𝑡 -∞ ( 𝐶 22 -1 (𝑡 ′ ) -𝐶 33 -1 (𝑡′) ) 𝑑𝑡′

Chang, Bloch and Tschoegl Model (CBT)

Shortly following the development of the K-BKZ models, the CBT model developed in 1976 by Chang, Bloch and Tschoegl [49]. Based on an integral form of representation, it is considered as a viscoelastic counter part of the hyperelastic Ogden model [50]. The principle stress equation is given by Eq. 27:

𝜎 𝑖 = ∑ 𝑔 0𝑛 (𝜆 𝑖 𝛼 𝑛 -𝜆 3 𝛼 𝑛 ) + 𝑁 𝑛=1 ∑ 𝑔 0𝑛 𝑁 𝑛=1 (𝑔 * 𝜆 𝑖 𝛼 𝑛 -𝑔 * 𝜆 3 𝛼 𝑛 ) 𝑤ℎ𝑒𝑟𝑒 𝑖 = 1,2 27 
Where, 𝑔 * 𝜆 𝑖 𝛼 𝑛 = ∫ 𝑔 1 (𝑡 -𝜏)

𝜕𝜆 𝑖 𝛼 𝑛 (𝜏) 𝜕𝜏 𝑡 0 𝑑𝜏 ; 28 
The relaxation function 𝑔 1 is given by the exponential law shown in Eq. 29:

𝑔 1 (𝑡 -𝜏) = 𝐶 1 exp ( -(𝑡 -𝜏) 𝜏 𝑅 ) 29 
Where, 𝑡 is the present point of time, 𝑔 0𝑛 and 𝛼 𝑛 are material constants to be found via curve fitting. 𝐶 1 is the relaxation modulus 𝜏 𝑅 is the relaxation time that needs to be determined. 𝜆 𝑖 is the stretch ratio in the respective directions. N is the number of expanded terms of the model as is required. A value of 3-4 was found sufficient for modelling the behavior of polymers.

Derdouri et al. [50] have modelled the bubble inflation of an ABS sheet at 143 °C using CBT model considering a membrane assumption for the sheets and isothermal temperature distribution. Even though they demonstrated that there exists a steep gradient of temperature near the clamped edges they based their experiments on the fact that the temperature around the center of the heated sheet was quasi isothermal. They used N = 3 in Eq. 27 thus generating eight model parameters. Table 10 below shows the conditions and parameters at which the CBT model has been evaluated. 

Christensen Model

Following the CBT model, Christensen [50] proposed a model to take into account the viscoelastic behavior of polymers. It is comprised of three model parameters and is given Eq. 30:

𝜎 𝑖 = 𝐶 0 (𝜆 1 2 -𝜆 3 2 ) + 1 2 𝜆 1 2 . { 𝑔 * 𝜆 1 2 } - 1 2 𝜆 3 2 . { 𝑔 * 𝜆 3 2 } 30
Where, i=1,2, and 𝐶 0 refers to a material constant obtained from curve fitting. 𝑔 * 𝜆 𝑖 𝛽 and 𝑔 1 (𝑡 -𝜏) are the same as defined in Eqs. 28 and 29.

Therefore the three model parameters are 𝐶 0 , 𝐶 1 and 𝜏 𝑅 . However in a study by Derdouri et al. [50] it was concluded that the Christensen model over predicted the stresses developed especially for strain rates imposed by compressed air fluxes lower than 20 L/s. Just like in the case of the CBT model the undeformed sheet was assumed as a membrane on which temperature distribution was isothermal. Table 11 below shows the conditions and parameters at which the Christensen model has been evaluated. VA: Vacuum-assisted thermoforming PA: Plug-assisted thermoforming Iso: Isothermal

In: Inflation-assisted thermoforming UD: Uniaxial stretching Non-iso: Non isothermal

Glass-Rubber Model

General description of the model

The Glass Rubber model (GRM) was initially developed by Buckley [6,59] and was later modified to serve as a model for amorphous polymers [60]. This model has the advantage to account for strainhardening of polymers. Within these stretch levels, the GRM takes into account the slippage of the entangled network of macromolecules as a whole. With consideration of its 1D rheological representation, this model consists of two parallel Maxwell branches which represent the viscoelastic behavior (see Figure 14). The first Maxwell branch deals with the bond stretching (i.e. the energy that goes into bond distortion ), while the second Maxwell branch deals with the conformation of the polymer molecules during extension [12]. Bond distortions are mainly constituted of perturbation of the interatomic energy potentials, while molecular conformations are more reserved to the spatial arrangement (such as a rotation around a single bond) of atoms inside the molecule during changes in its environment [61]. According to the literature, the GRM has already been reported to model viscoelastic behavior of materials such as PMMA, PS, and PLLA [12,60]. Therefore the principle idea of the GRM revolves around the fact that when a strain is applied to the polymer the initial stress goes in to the elongation of the polymer links that contribute to the bond stretching stress 𝜎 𝑏 . The conformational stress is very small at this point. As the yield stress of the polymer is approached the polymer chains tend to 'slip' against each other and this slippage gives rise to the conformational stress, 𝜎 𝑐 . At this point the bond stretching stress starts to relax and keeps on diminishing with further strain. An illustration of this phenomenon is shown in Figure 15. Table 12 the conditions and parameters at which the Glass rubber model has been evaluated.

Table 12 : GRM in the context of thermoforming. 

Material Thermal assumption

Testing

GR model constitutive equations and assumptions

In the GRM, the total stress 𝜎 is thought to be the summation of two stresses, the bond stretching stress 𝜎 𝑏 , and the conformational stress 𝜎 𝑐 . The Hooke's linear elasticity is incorporated into the bond stretching part by consideration of the shear modulus (𝐺 𝑏 ). The governing constitutive equations are given by Eq. 31 and 32:

Where, 𝑒 𝑖 is the principal natural strain in the i th direction (i=1,2,3), 𝜏 is the relaxation time derived from the non-Newtonian viscosity μ such as μ = 2𝐺 𝑏 𝜏.

Considering assumptions of incompressibility (𝐼 3 = 1) the tensile elastic modulus, 𝐸 is equal to three times the shear modulus, 𝐺 𝑏 for small strain (𝐺 𝑏 = 𝐸/3) [12]. Thus, by conducting a DMA test the tensile elastic modulus i.e. the storage modulus at Tg ( E = 𝐸 ′ at glassy state ) can provide 𝐺 𝑏 .

The conformational stress 𝜎 𝑐 is expressed as an Edwards-Vilgis spring that comprises of an activation energy function 𝐴 𝑐 which provides a hyperelastic component to the model as given in Eq. 33:

where, 𝐽 is the Jacobian (𝐽 = 𝑑𝑒𝑡𝑭; where 𝑭 is the deformation gradient tensor) and 𝜆 𝑖 𝑛 is the principal stretch of the network of macromolecules.

Similarly to the global stress 𝜎 (in Eq.31) it is assumed that like the stress part, the global stretch λ is also formed by the contribution of both the bond stretching part and conformational part and that it verifies the following Eq. 34:

Where, 𝜆 𝑖 𝑠 is known as the slippage stretch, obtained from the conformational part.

Considering the scale of a network of polymer chains, the contributions coming from elastic extension of the macromolecular entanglements contribute to the network stretch, while the flow due to entanglements slipping past each other result in the slippage stretch [60]. The slippage stretch rate is linked with the non-Newtonian slippage viscosity ƴ and deviatoric conformational stress 𝑠 𝑖 𝑐 by Eq. 35:

𝜎 = 𝜎 𝑏 + 𝜎 𝑐 31 2𝐺 𝑏 𝑑𝑒 𝑖 𝑑𝑡 = 𝑑𝜎 𝑖 𝑏 𝑑𝑡 + 𝜎 𝑖 𝑏 𝜏 32 𝜎 𝑖 𝑐 = 𝜆 𝑖 𝑛 𝐽 ( 𝜕𝐴 𝑐 𝜕𝜆 𝑖 𝑛 ) 33 λ = 𝜆 𝑖 𝑛 . 𝜆 𝑖 𝑠 34 
Where, 𝑠 𝑖 𝑐 = 𝜎 𝑖 𝑐 -

1 3 ∑ 𝜎 𝑖 𝑐 3 𝑖=1
Thus solving for Eq. 32 by an explicit integration solver the evolution of the stress under different strain rates can be obtained.

GR model calibration steps

The identification of model parameters is conducted close to the Tg of the material, where the yield point is first identified, which is distinct for higher strain rates. The shear modulus 𝐺 𝑏 is calculated by obtaining the storage modulus (𝐸 ′ ) from DMA at Tg and then dividing it by three as mentioned earlier.

The yield stress of the material is obtained graphically (at 0.2 strain) for all temperatures of interest post Tg. As the temperature rises significantly higher (30°C above Tg), the stress becomes quasi-stable. This entire stress is thought to be the contribution of 𝜎 𝑐 , as 𝜎 𝑏 approaches zero at such high temperatures. Thus, at increasing temperatures for a particular strain rate and strain, 𝜎 𝑏 gets lower and lower as seen in Figure 16. Meanwhile for small strains close to the yield point, owing to absence of slippage, 𝜎 𝑐 remains the same with increasing temperature and is accounted for by only the contribution from the Edward-Vilgis hyperelastic spring. Knowing 𝜎 𝑐 remains the same at small strains (for e.g. at yield point), it is subtracted from the yield stress at all the temperatures to obtain the 𝜎 𝑏 .

The bond stretching viscosity close to Tg is denoted by μ 0 =

E" 3ώ

where 𝐸 ′′ is the loss moduli and ώ the frequency of the DMA test. This is used along with the yield stress for different temperatures to give the variation of viscosity across all the temperatures. Finally, this information together with the explicit solution of Eq. 32 gives the user the entire variance of the bond stretching stress 𝜎 𝑏 across all temperatures and strain rates. Wei et al. [12] carried out the modelling with GRM for PLLA whose Tg = 57°C. The variation of 𝜎 𝑏 against temperature and strain rate for PLLA is shown in Figure 16. 𝜆′ 𝑖 𝑠 = ( 𝑠 𝑖 𝑐 ƴ )

35

The Edwards-Vilgis activation energy 𝐴 𝑐 is given by Eq. 36:

𝐴 𝑐 = 𝑁 𝑒 𝑘 𝑏 𝑇 2 [ (1 + ƞ) + (1 -𝛼 2 ) 1 -𝛼 2 ∑ (𝜆 𝑖 𝑛 ) 2 3 𝑖=1 ∑ (𝜆 𝑖 𝑛 ) 2 1 + ƞ(𝜆 𝑖 𝑛 ) 2 3 𝑖=1 + ∑ 𝑙𝑛(1 + ƞ(𝜆 𝑖 𝑛 ) 2 ) + ln (1 -𝛼 2 ∑(𝜆 𝑖 𝑛 ) 2 3 𝑖=1 ) 3 𝑖=1 ] 36 
Where 𝑁 𝑒 is the the material slip-link density of entanglement, 𝑘 𝑏 is the Boltzmann constant, T is temperature in Kelvin, ƞ is slip-link looseness factor, 𝜆 𝑖 𝑛 is the principal stretch. Here, 𝑁 𝑒 , ƞ, α are determined by curve fitting. Eq. 36 is then solved with Eq. 35 to obtain the conformational stress 𝜎 𝑐 across all temperatures as shown in Figure 17.

Finally, the slippage stretch 𝜆 𝑖 𝑠 is calculated considering the fact that at near Tg temperatures the global stretch λ (such as λ = 𝜆 𝑖 𝑛 . 𝜆 𝑖 𝑠 ) is entirely contributed by network stretch denoted by 𝜆 𝑛 . Therefore the slippage stretch verifies 𝜆 𝑠 =1. The slippage stretch 𝜆 𝑖 𝑠 at any other temperature is obtained by the difference between the global stretch λ at that stress level and the 𝜆 𝑛 obtained from the stretch at that same stress level for the material near the Tg. Slippage stretch 𝜆 𝑖 𝑠 increases with temperature but for every temperature it becomes constant after a certain amount of conformational stress 𝜎 𝑐 (illustrated in 

Visco-elastoplastic model (time-dependent with permanent deformation)

The third category of models integrates visco-elastoplastic models (EVP). The principle of viscoelastoplasticity consists of the same theory of non-linear viscoelastic models but with an additional consideration for the softening, consistency and the kinematic hardening during yield and post-yield regimes of the stress strain behavior [63]. Thus, these models are capable of describing stages like viscoelastic deformation and structural hardening.

Visco-elastoplastic models used in context of thermoforming

A non-extensive review of literature indicates that numerous EVP models have been used in thermoforming simulations. The identified models include (ii) Richeton model and (ii) G'sell model. A brief summary of these models is presented in the following paragraphs.

Richeton Model

Utility of the Richeton model The Richeton model assumes that at small deformations, the elastic behavior of polymers can be modelled by a linear spring obeying Hooke's law. However, this spring is both temperature and strain rate dependent. The model has been tested on PC and PMMA by Richeton [67]. Table 13 below shows the conditions and parameters at which the Richeton model has been evaluated. 

Calibration of the Richeton model (i) Linear spring:

The linear spring in the Richeton model is used to define the temperature and strain rate dependency of the Young's modulus. The initial approach proposed by Arruda and Boyce [68] to model the variation of Young's modulus considered a logarithmic decrease of the modulus with increasing temperature.

However, this model was only valid in the glassy region as it did not conform to the modulus once the glass transition phase begins. It was then modified by Drozdov [69] by including the value of the glass transition temperature. However even this modification proved insufficient to model the entire phase of glass transition up to the rubbery plateau. It provided at most the initial drop of modulus near Tg. Finally the model proposed by Richeton [66] was able to correctly quantify a temperature and strain rate dependent Young's modulus given by Eq. 37:

𝐸(𝑇, 𝜀) = (𝐸 1 (𝜀) -𝐸 2 (𝜀)). exp (-( 𝑇 𝑇 𝛽 (𝜀) ) 𝑚 1 ) + (𝐸 2 (𝜀) -𝐸 3 (𝜀)). exp (-( 𝑇 𝑇 𝑔 (𝜀) ) 𝑚 2 ) + 𝐸 3 (𝜀). exp (-( 𝑇 𝑇 𝑓 (𝜀) ) 𝑚 3 ) 37 
Where, 𝐸 𝑖 is the instantaneous stiffness or moduli, dependent only on the strain rate, at the beginning of each phase i.e. β transitions, 𝑇 𝑔 transitions and flow transitions. T is the temperature at which the Young's modulus needs to be evaluated, 𝑇 𝛽 (𝜀) is the strain rate dependent β transition temperature, 𝑇 𝑔 (𝜀) is the strain rate dependent glass transition temperature and 𝑇 𝑓 (𝜀) is the strain rate dependent flow temperature. 𝑚 𝑖 is the Weibull moduli representing the bond breakage statistics at each transition. It is constant for a material. These in turn are individually given by Eq. 38 -41. reference strain rate and finally s is a material constant related to the sensitivity of the material whose value is of the order 10 -2 . The stress in the linear spring is found by following the Hooke's law and multiplying the obtained temperature and strain rate dependent Young's modulus with the elastic strain.

𝑇

Calibration of the Richeton model (ii) Dashpot cooperative model:

The yield stress 𝜎 𝑦 of the polymer is modelled based on the consideration that yield occurs as a result of a cooperative jump between the polymer chains [64]. It is represented by a cooperative model dashpot given by Eq. 42-43:

𝜎 𝑦 = 𝜎 𝑖 (𝑇) + 2𝑘𝑇 𝑉 sinh -1 ( 𝜀 ε ̇0 exp (- ∆𝐻 𝛽 𝑅𝑇 ) ) 1/𝑛 𝑤ℎ𝑒𝑛 𝑇 < 𝑇 𝑔 42 𝜎 𝑦 = 2𝑘𝑇 𝑉 sinh -1 ( 𝜀 ε ̇0 exp (- ∆𝐻 𝛽 𝑅𝑇 ) exp ( ln 10 𝑐 1 (𝑇 -𝑇 𝑔 ) 𝑐 2 + 𝑇 -𝑇 𝑔 ) ) 1/𝑛 𝑤ℎ𝑒𝑛 𝑇 ≥ 𝑇 𝑔 43 
Where, k is Boltzmann constant, ∆𝐻 𝛽 is the β activation energy, V is the activation volume and n describes the cooperative character of the yield stress.

Calibration of the Richeton model (iii) Langevin spring:

The strain hardening behavior of the elongating polymers is modelled by the help of a Langevin spring.

When the polymer is further stretched, it overcomes the intermolecular resistance and the polymer chains orient themselves in the direction of the stretch which gives rise to the strain hardening behavior.

Such affect is modelled by a Langevin spring that is based on the 8-chain model of Arruda Boyce [68].

The principal components of the network stress tensor is expressed by Eq. 44:

𝐵 𝑖 = 𝐶 𝑅 (𝑇) √𝑁(𝑇) 3 ʆ -1 ( 𝜆 𝑐ℎ𝑎𝑖𝑛 √𝑁(𝑇) ) 𝜆 𝑖 2 -𝜆 𝑐ℎ𝑎𝑖𝑛 2 𝜆 𝑐ℎ𝑎𝑖𝑛 , 𝑖 = 1,2,3 44 
Where, 𝐶 𝑅 (𝑇) is the rubbery modulus, 𝑁(𝑇) are the number of rigid links between entanglements, 𝜆 𝑖 are the principal components of the plastic stretch tensor and ʆ -1 is the inverse Langevin function. The inverse Langevin function is approximated by ʆ

-1 (𝑥) = 𝑥. (3 -𝑥 2 )/(1 -𝑥 2 ) [67].
The rubbery modulus 𝐶 𝑅 (𝑇) and the number of rigid links 𝑁(𝑇), are given by Eq. 45 -48:

𝐶 𝑅 (𝑇 < 𝑇 𝑔 ) = 𝐶 𝑅 (0) -𝑎. 𝑇 𝑁(𝑇 < 𝑇 𝑔 ) = 𝑁(0) + 𝑏. 𝑇 𝐶 𝑅 (𝑇 ≥ 𝑇 𝑔 ) = 𝐶 𝑅 (0) -𝑎. 𝑇 𝑔 𝑇 𝑔 . 𝑇 𝑁(𝑇 ≥ 𝑇 𝑔 ) = 𝑁(0) + 𝑏. 𝑇 𝑔 45 46 47 48 
Where, 𝐶 𝑅 (0), 𝑁(0), 𝑎 and 𝑏 are material parameters.

G'Sell model and its derivatives

Utility of the G'Sell model

Atmani et al. [70] used the G'Sell model [71,72] to predict the elasticity at stretches < 110%, the post yield viscous behavior related to strain rate and the strain hardening of HIPS. The thermo-dependent parameters are modelled using an Arrhenius equation whilst the time-dependent parameters are modelled via a second order Prony series. The model was able to correctly identify viscoelastic deformation, structural hardening and viscoplastic deformation below 𝑇 𝑔 and also the viscoplastic deformation above 𝑇 𝑔 . Table 14 shows the conditions and parameters at which the G'Sell model has been evaluated. VA: Vacuum-assisted thermoforming PA: Plug-assisted thermoforming Iso: Isothermal UD: Uniaxial stretching In: Inflation-assisted thermoforming Non-iso: Non isothermal Atmani et al. [70,73] worked on developing a visco-elastoplastic model that was based on the G'Sell model. They modelled the bubble inflation and the plug-assisted thermoforming of HIPS considering membrane elements defined as a four node thermally coupled doubly curved element. A double sided convective heating model is considered containing the heat exchange coefficient derived from [29]. For the simulation of plug-assisted thermoforming, the Coulomb coefficient of friction was based on a temperature dependent model presented by Laroche et al. [75] and calculated as 0.7. The thickness distribution along the diameter as well as the bubble shape was considered as the basis for comparison in between the numerical and experimental results. The simulations of the plug-assisted forming step were found in accordance to that of experiments in terms of final deformed shape. However, there were discrepancies in the prediction of thickness distribution in the case of bubble inflation.

G'Sell model and its calibration steps

The constitutive equations which provide the global stress of the material are shown in Eq. 49 as follows:

𝑖𝑓 𝜎 ≤ 𝜎 𝑦 (𝑇) ; 𝑡ℎ𝑒𝑛 𝜎 = [𝐸(𝑇)𝜀]𝑔(𝑡) 𝑒𝑙𝑠𝑒 𝜎 > 𝜎 𝑦 (𝑇) ; 𝑡ℎ𝑒𝑛 𝜎 = [𝜎 𝑦 (𝑇) + 𝐾(𝑇){1 -exp(-𝑤𝜀 𝑝 ̅̅̅) × exp(ℎ(𝑇)𝜀 𝑝 𝑛 ̅̅̅ )} ]𝑔(𝑡) 49 
Where, 𝜎 𝑦 is the yield stress, 𝜀 is the total strain, 𝜀 𝑝 ̅̅̅ is the equivalent plastic strain, 𝑤 is a parameter that controls the initial deformation, 𝑔(𝑡) is the second order Prony series that defines the time dependent properties of the material and is given by Eq. 50:

𝑔(𝑡) = 1 -𝑔 1 (1 -𝑒 - 𝑡 𝑡 1 ) -𝑔 2 (1 -𝑒 - 𝑡 𝑡 2 ) 50 
Where, 𝑔 1 , 𝑔 2 , 𝑡 1 and 𝑡 2 are model parameters that have to be obtained using curve fitting.

The temperature-dependent parameters in Eq. 49 which are the elastic modulus 𝐸(𝑇), the yield stress 𝜎 𝑦 (𝑇), the consistency 𝐾(𝑇) and the hardening ℎ(𝑇) are modelled by the Arrhenius equation as expressed in Eq. 51-54:

𝐸(𝑇) = 𝐸 0 exp (𝐴 𝐸 ( 1 𝑇 - 1 𝑇 𝑔 )) 𝜎 𝑦 (𝑇) = 𝜎 0 exp (𝐴 𝜎 ( 1 𝑇 - 1 𝑇 𝑔 )) 𝐾(𝑇) = 𝐾 0 exp (𝐴 𝐾 ( 1 𝑇 - 1 𝑇 𝑔 )) ℎ(𝑇) = ℎ 0 exp (𝐴 ℎ ( 1 𝑇 - 1 𝑇 𝑔 )) 51 52 53 54 
Where, 𝐸 0 , 𝜎 0 , 𝐾 0 , ℎ 0 , 𝐴 𝐸 , 𝐴 𝜎 , 𝐴 𝐾 and 𝐴 ℎ are model parameters obtained from curve fitting.

Thus, in all, the EVP model of G'Sell requires eight parameters that are inversely identified by curve fitting [70].

Critical discussion of models and conclusion

The section provides a critical discussion based on the non-extensive review that was conducted in the previous sections. First, a synthetic overview of the identified thermo-mechanical models is provided to identify the limits and assumptions that were reported by the authors who used each of the three classes hyperelastic, viscoelastic and visco-elastoplastic models. Second, factors influencing the choice of a model are presented. Finally, the considered approach that will be adopted during the current thesis project is defined.

Comparative summary of models in the context of thermoforming

A global overview about the list of thermomechanical models that were provided in previous sections and which are specifically reported for modelling the thermomechanical behaviors of amorphous thermoplastics in the context of thermoforming is given in Appendix 1. The previously reported hyperelastic models have been known for their relative low number of parameters that can be easily identified using uniaxial or biaxial tensile experimental campaigns. Consequently, they can be considered as experimentally more simple to identify their parameters based on large deformations tests.

This also makes them numerically suitable for implementation in iterative schemes as the computational time required for a single iteration in their case is much less owing to the relative low number of parameters. This category of models is also reported in modelling pre-stretching and forming stages to predict thickness distributions and deformation fields. However, hyperelastic models are less accurate than viscoelastic models to predict stresses which make the simulation limited if residual stresses should be considered among the numerical outputs. In addition, according to Verron et al. [3] models such as Mooney Rivlin and Neo-Hookean are limited by elongational stretches upto 300 % and 150 % which hinders their use in specific thermoforming cases such as deep drawing. Moreover, according to the identified studies reporting the use of hyperelastic models the ranges of temperature, strain rates and reported stretch levels are not always well defined by the authors. However, these models can be useful to predict thickness distributions following the deformation of thermoplastic sheets with respect of a justified choice of (i) defining the independent variables which are temperature and strain rates and (ii) homogeneity of temperature distributions following the heating stage.

Viscoelastic and visco-elastoplastic models exhibit simultaneous behaviors of viscous flow as well as that of elasticity, while undergoing deformation. They are usually characterized by higher number of parameters that need more extended mechanical as well as rheological testing campaigns to identify their thermomechanical parameters (Appendix 1). These models are also computationally heavy especially for an implementation in an iterative scheme. Integral-based models such as the K-BKZ model assumes that the polymer is at its liquid state within the FW. It integrates a damping function and a time-dependent memory function and it considers eight relaxation modes of macromolecules chains to estimate shear stress. Hyper-viscoelastic models such as the CBT and Christensen models are more suitable to provide principal stresses by enriching hyperelastic models with viscous counter parts of integral forms to consider relaxation modes of macromolecular chains. The glass rubber model assumed thermoplastics at their liquid state within the FW. It is more suitable to predict total stress above 𝑇 𝑔 by assuming that the stress is the combination of bond stretching and conformational stresses. According to this consideration this viscoelastic model is able to predict strain hardening at relatively high deformations of the polymer.

Finally, visco-elastoplastic models have the ability to provide global stresses with consideration of irreversible plastic deformations and strain hardening. Thus, they can be applied to any form thermoforming cases even when the material undergoes deep drawing.

Factors influencing the choice of model and situation of the current study

The fundamental aspects of model classification adopted in the simulation of amorphous thermoplastics used in thermoforming have been described in this chapter. It is possible to classify the models under phenomenological or physically-based ones, depending on the principles of the approach to formulate them. Physically-based models are anchored to mechanisms at a microscopic scale and takes physical constraints into consideration while phenomenological models are only based on macroscopic phenomena. According to the conducted non-extensive review of the identified models listed in Appendix 1 the choice of material model can be justified based on the study outputs of the cited references. Among these outputs it is possible to identify:

(i)
The considered forming stage to simulate as well as the physical state of the thermoplastic within the forming window (liquid or semi-solid).

(ii)

The ease of model to predict thickness distributions at large deformations with respect of isothermal and non-isothermal temperature distributions following the heating operation.

(iii)

The ability of the model to provide global stresses with consideration of time-dependent viscous behaviors related to relaxations of macromolecular chains, activation of strain hardening or consideration of permanent plastic deformations at relatively high deformations.

(iv)

The complexity of the needed experimental campaign (mechanical uniaxial, biaxial or shear test and rheological tests) for identification of the model parameters with respect of consideration of single or multiple variables such as temperature, strain rates, etc.

According to the objectives of numerical simulations of the thermoforming process (section 1.3.1 in Chapter 1) and the previously indicated factor for defining, it is worth to precise that the current study is focused on simulating the forming stage of thin thermoplastic sheets after infra-red heating. The main objectives will be related to (i) reducing the complexity of required experimental campaigns and (ii) closing the gap between numerical results and experimental results to predict thickness distributions and deformation fields within industrial environments. For this purpose, hyperelastic models are considered by assuming isotropic, homogeneous materials assimilated to thin sheets. Compared to existing studies in the literature, the model calibration will not be limited to macroscopic curve fitting approaches, however the identification approach will be extended to incorporate the heterogeneous distributions of temperatures and deformations observed in industrial environments by relying on full-field measurement techniques. In addition to the previously indicated criteria, the choice of hyperleastic models can be further justified by the considerations from literature. Indeed, Muller et al. [76] adopted hyperelastic models (Mooney Rivlin and Neo-Hookean) and assumed that the polymeric chain mobility of amorphous thermoplastics is equivalent to a rubbery network in the case of high impact polystyrene (HIPS). Such assumption was also confirmed by Erner [29] who recommended avoiding high temperature (between 130 to 150 °C for HIPS) or too low speeds (5 × 10 -3 to 5 × 10 -1 s -1 for HIPS) which may lead to the activation of viscous effects which are assumed negligible when relying on hyperelastic constitutive laws. A significant disentanglement of the polymeric chains occurs resulting in a part of deformation that is non recoverable. Thus, in the forming window and strain rates (1 s -1 to 16 s -1 ) the deformations of amorphous thermoplastics can be modelled using hyperelastic models [38,77,78].

Finally, a consideration of the mold should be done as stated by Koziey et al. in the case of a deep drawn or complex mold which requires visco-elastoplastic models while hyperelastic models can suffice for a simple or shallow mold [41]. Based on these considerations of a thermoforming range of temperature and strain rates suitable for hyperelastic materials and given the use of a simple plug (truncated square pyramid) in the current study, a hyperelastic model approach was considered for the HIPS material that shall be thermoformed. Such hyperelastic models have already been used in the context of thermoforming of thermoplastics [32][33][34][35]37]. are used in research due to their ease of application where a suitable material model can be selected form the inbuilt library that fits the material behavior. Hyperelastic models are one such group of material models that are used frequently in the case of thermoplastic polymers [2]. However, with developments in formulating novel hyperelastic models, their application become limited as it is not possible for the FEA software to continuously update their database of material models [3].

Fortunately, ABAQUS ® gives the freedom to the user to define a user-defined model by implementing subroutines that define the constitutive behavior of the material. The subroutine is called for in each increment of the time step in ABAQUS ® and for every iteration of the Newton-Raphson process to attain equilibrium [4]. The liberty to define such user defined materials mainly focuses on two main formalisms for isotropic hyperelastic materials viz UMAT and UHYPER subroutines. The difference between the two formalisms lies in the way the model is described in each one of them and the way ABAQUS ® interacts with both [1,3,5]. UHYPER models are specifically made for hyperelastic functions and hence necessitates that the user has a formulation of the strain energy density function (𝑊) of the material in terms of the invariants (𝐼 1 , 𝐼 2 , 𝐼 3 ) or the principal stretches (𝜆 1 , 𝜆 2 , 𝜆 3 ) of the Right Cauchy Green deformation tensor (C). Suchocki stated the model parameters containing the 1 st invariant (𝐼 1 ) are more sensitive while being identified from a uniaxial test data than an equibiaxial one.

Conversely parameters containing the 2 nd invariant (𝐼 2 ) are more sensitive while being identified by an equibiaxial test than a uniaxial one [3]. The user defines the derivatives of 𝑊 (

𝜕𝑊 𝜕𝐼 1 , 𝜕𝑊 𝜕𝐼 2 , 𝜕𝑊 𝜕𝐽 , 𝜕 2 𝑊 𝜕𝐼 1 2 …) with
respect to the invariants and the volume ratio in the subroutine and the solver then proceeds to solve a set of linear equations giving the resulting forces or displacement as an output [6,7]. Moreover, the works of Baaser et. al [6] showed that the use of UHYPER subroutine should be judiciously made based on the type of load in use (compressive/tensile) and the material assumption made (incompressible/ quasi-incompressible/ highly compressible).

UMAT on the other hand is a more generalized approach of defining the material behavior and constitutive laws. Writing the hyperelastic model in a UMAT formalism however is not a trivial task.

The subroutine primarily requires the user to define the stress tensor and the material Jacobian (also referred to as stiffness tensor, elasticity tensor, tangent modulus tensor) in the current configuration [3,4]. The stress tensor comes into play in order to define the equilibrium equation of balancing external and internal forces for a nonlinear boundary value problem. The material Jacobian is used to solve the implicit FE solver of the equilibrium equation via the Newton Raphson (NR) method. In order to have a proper convergence of the NR method to a solution, it is mandatory to have an analytical and accurate material Jacobian [2]. This ensures what is known as quadratic convergence as demonstrated by Stein and Sagar for Neo-Hookean model [8]. A quadratic convergence ensures that the square of error in each iteration is proportional to the error in the previous iteration. Hence if error in iteration n is at one significant digit, then at n+1 it will be at two digits, four at n+2 and so on and so forth [7]. Despite the clear advantage of an analytical definition of the material Jacobian, it can be difficult to derive even for a relatively simple model like the Neo-Hookean model. Requiring extensive use of tensorial algebra and tensor calculus it needs to be very meticulously derived [9]. Approximate tensors are used for this reason as the solution is supposed to be not affected by the approximation of the tensor as explained in the ABAQUS ® guide [4,7]. However, there is a worsening of convergence (with total non-convergence on certain occasions) and some loss in accuracy of the results. Thus it is deemed necessary to use analytically derived expressions of the tensor as much as one can [2,3,10].

In literature there are only a few studies providing the step by step guide of deriving the analytical material Jacobian tensor and thus, it can be a daunting task for someone implementing a complex material model [1,2]. Some earlier works by Belytschko et al [11] and Holzapfel [9] provide the guide to derive the material Jacobian tensor in a tensorial index form. They are used in the works of Suchocki for deriving the stiffness tensor of "Knowles" hyperelastic model which is a 1 st invariant-based model [1]. The paper provided very detailed method to arrive at the final expression of stress and the material Jacobian tensor. It was not until more recent works by Cheng and Zhang [2], Suchocki and Jemiolo [3] that we get a step by step guide to derive the tensors for any general hyperelastic model with two invariants present. Finally, in literature thermoplastic materials have been mostly modelled considering a quasi-incompressible nature as explained in Chapter 2. The incompressibility or slightly compressible nature of the material is incorporated by the addition of a penalty function to the defined strain energy density function (𝑊) [5].

Suchocki and Jemiolo [3] provide a list of penalty functions that can used in order to simulate this behavior. They proposed a computationally efficient and faster method of writing the material Jacobian tensor by considering the deviatoric parts of the deformation tensors in the equation. The penalty function contains the term (𝐷 1 ) that links directly with the bulk modulus κ of the material and hence is the term that relates to the material incompressibility. While in UHYPER the user has the option to include compressibility in the graphical user interface of the ABAQUS ® software (the effect due to 𝐷 1 is ignored if this is not checked), in UMAT it can only be taken into account by the proper inclusion of the penalty function into both the stress and material Jacobian definition. Baaser et al. [6] reported that for the Neo-Hookean hyperelastic model, both the formalisms gave exactly similar results as the inbuilt model for a quasi-incompressible material undergoing a radial pressure loading. However, while considering the compressibility of the material and giving a compressive load, the results were inconsistent with the internal one.

This chapter looks to provide a general equation of the material Jacobian as proposed by Suchocki and Jemiolo [3] and that of the stress tensor to provide a better understanding and application to various hyperelastic models. The developed equation would then be used to numerically conduct a uniaxial tensile, shear and compressive test on a specimen considering first a quasi-incompressible assumption, followed by a compressible one. The work would look to extend the study undertaken by Baaser et al.

[6] to Mooney Rivlin model as well as the Neo-Hookean model. The aim of this study is to see the differences in the material response (Stress-Strain curve) obtained for the two formalisms discussed when compared to the in-built one and the effect of taking the quasi-incompressibility condition into assumption.

Derivation of tensors for a general hyperelastic material

Before proceeding to the derivations of the stress and material Jacobian tensor in their tensorial index form, it is necessary to recapitulate a few definitions involving the kinematics of a deforming body.

Suppose a body undergoes a deformation such that in the reference configuration a particle at position 𝑋 ⃗ is now at a position 𝑥 ⃗ in the current deformed configuration. Therefore at a given time instant 't' a mapping exists that connects both by the relation 𝑥 ⃗ = 𝑓(𝑋 ⃗ , 𝑡). For every such body there exists a tensor called the deformation gradient F which in index form is expressed in Eq. 55:

𝑭 𝒊𝒋 = 𝜕𝑥 𝑖 𝜕𝑋 𝑗 for i, j = 1,2 and 3 55

The positive symmetric right Cauchy-Green and left Cauchy-Green deformation tensors are respectively related to the deformation gradient by the relations, 𝑪 = 𝑭 𝑇 𝑭 and 𝑩 = 𝑭𝑭 𝑇 respectively. These two tensors facilitate the expressions of isotropic hyperelastic models. The deformation gradient is further decomposed into an isochoric deformation (𝑭 ̅ ) and a volumetric one (𝑭 𝒗 ). The former accounts for deformations at a constant volume (including rotation and stretching), while the latter takes into account deformation having volume changes.

𝑭 = 𝑭 𝒗 𝑭 ̅ where 𝑭 𝒗 = 𝐽 1/3 𝟏 and 𝑭 ̅ = 𝐽 -1/3 𝑭 56

Here J refers to volume ratio between deformed state and undeformed state and is given by J =det 𝑭.

Consequently the volume preserving isochoric right Cauchy-Green and left Cauchy-Green deformation tensors are given by 𝑪 ̅ = 𝑭 ̅ 𝑇 𝑭 ̅ and 𝑩 ̅ = 𝑭 ̅ 𝑭 ̅ 𝑇 . This leads to the relation 𝑪 = 𝐽 2/3 𝑪 ̅ and 𝑩 = 𝐽 2/3 𝑩 ̅ . The invariants of the isochoric deformation tensors are given by 𝐼 1 ̅ and 𝐼 2 ̅ . The decoupling of the strain energy function into volumetric and isochoric parts reduces the complexity of deriving the stress and material Jacobian tensors. It is thus given by Eq. 57:

𝑊(𝑪) = 𝑈(𝐽) + 𝑊 ̅ (𝑪 ̅ ) 57 
Here U(J) is the penalty function as mentioned earlier that incorporates the property of material incompressibility by containing the term 𝐷 1 which links to the bulk modulus κ. Lower the bulk modulus more is the compressibility and vice versa. The most common penalty function as used in literature [1], [3] is given in Eq. 58:

𝑈(𝐽) = 1 𝐷 1 (𝐽 -1) 2 58 
Applying the rules of energy conservation and angular moment conservation we get a time derivative relation of the energy density function as:

𝜕𝑊 𝜕𝑡 = 1 2 𝑺 ( 𝜕𝑪 𝜕𝑡 ) .
Here 𝑺 is known as the second Piola-Kirchoff stress tensor which is the stress in the deformed body taken in the reference configuration. Now applying chain rule to the expression,

83 𝜕𝑊 𝜕𝑪 . 𝜕𝑪 𝜕𝑡 = 1 2 𝑺 ( 𝜕𝑪 𝜕𝑡 ) 59 
𝑜𝑟, 0 = 1 2 (𝑺 -2 𝜕𝑊 𝜕𝑪 ) ( 𝜕𝑪 𝜕𝑡
) for any value of 𝑪 Therefore it leads to the final expression of the second Piola-Kirchoff tensor given in Eq. 60

𝑺 = 2 𝜕𝑊 𝜕𝑪 60 
This is the most basic form of the constitutive equation for a hyperelastic material. However, since this definition is in the reference configuration it cannot be directly indicted in the ABAQUS ® subroutine environment that requires the definition in the current configuration for the FEM solver to work on.

Thus the stress needs to be expressed in terms of the Cauchy stress tensor 𝝈.

𝑺 = 2 𝜕𝑊 𝜕𝑪 = 2 𝜕𝑈 𝜕𝐽 . 𝜕𝐽 𝜕𝑪 + 2 𝜕𝑊 ̅ 𝜕𝑪 ̅ . 𝜕𝑪 ̅ 𝜕𝑪 = 𝐽. 2 𝐷 1 (𝐽 -1). 𝑪 -𝟏 + 2𝐽 -2/3 . 𝜕𝑊 ̅ 𝜕𝑪 ̅ . (𝐈 ̿ - 1 3 𝑪 ̅ ⊗ 𝑪 ̅ -𝟏 ) = 𝐽. 2 𝐷 1 (𝐽 -1). 𝑪 -𝟏 + 2𝐽 -2/3 . ( 𝜕𝑊 ̅ 𝜕𝑪 ̅ - 1 3 ( 𝜕𝑊 ̅ 𝜕𝑪 ̅ . 𝑪 ̅ ) 𝑪 ̅ -𝟏 ) 61 
Here the two identities of tensor derivatives with respect to 𝑪 have been used which are

𝜕𝐽 𝜕𝑪 = 1 2 𝐽𝑪 -𝟏 and 𝜕𝑪 ̅ 𝜕𝑪 = 𝐽 -2 3 ( 𝐈 ̿ - 1 3 𝑪 ̅ ⊗ 𝑪 ̅ -𝟏 )
where 𝐈 ̿ is the fourth order identity tensor given by I 𝑖𝑗𝑘𝑙 = 1 2 (𝛿 𝑖𝑘 𝛿 𝑗𝑙 + 𝛿 𝑖𝑙 𝛿 𝑗𝑘 )

Finally in order to express the Cauchy stress in the current configuration a push forward operation on the second Piola-Kirchoff stress tensor has to be performed according to (𝝈 = 1 𝐽 𝑭𝑺𝑭 𝑻 ). Thus the general expression of the Cauchy stress tensor for any hyperelastic material is given by Eq. 62

𝝈 = 2 𝐷 1 (𝐽 -1). (𝑭. 𝑪 -𝟏 . 𝑭 𝑻 ) + 2 𝐽 [𝐽 -2/3 (𝑭. 𝜕𝑊 ̅ 𝜕𝑪 ̅ . 𝑭 𝑻 ) - 1 3 ( 𝜕𝑊 ̅ 𝜕𝑪 ̅ . 𝑪 ̅ ) 𝐽 -2 3 𝑭. 𝑪 ̅ -𝟏 . 𝑭 𝑻 ] 62 
Using the given definitions of 𝑪 and 𝑪 ̅ stated earlier we have in the end

𝝈 = 2 𝐷 1 (𝐽 -1). (𝟏) + 2 𝐽 [𝐽 -2/3 (𝑭. 𝜕𝑊 ̅ 𝜕𝑪 ̅ . 𝑭 𝑻 ) - 1 3 ( 𝜕𝑊 ̅ 𝜕𝑪 ̅ . 𝑪 ̅ ) (𝟏)] 63 
The fourth order elasticity tensor 𝐂 ̿ also called the tangent modulus is given by the relation

𝐂 ̿ = 2 𝜕𝑺 𝜕𝑪 = 4 𝜕 2 𝑊 𝜕𝑪 2 = 2 𝜕 𝜕𝑪 (𝐽. 𝜕𝑈 𝜕𝐽 . 𝑪 -𝟏 + 2𝐽 -2/3 . ( 𝜕𝑊 ̅ 𝜕𝑪 ̅ - 1 3 ( 𝜕𝑊 ̅ 𝜕𝑪 ̅ . 𝑪 ̅ ) 𝑪 ̅ -𝟏 )) = 2 𝜕 𝜕𝑪 (𝐽. 𝜕𝑈 𝜕𝐽 . 𝑪 -𝟏 ) + 2 𝜕 𝜕𝑪 (2𝐽 -2/3 . ( 𝜕𝑊 ̅ 𝜕𝑪 ̅ - 1 3 ( 𝜕𝑊 ̅ 𝜕𝑪 ̅ . 𝑪 ̅ ) 𝑪 ̅ -𝟏 )) 64 
Making the use of the product rule and chain rule for partial derivatives we get

𝐂 ̿ = 2 𝜕𝑈 𝜕𝐽 . 𝑪 -𝟏 ⊗ 𝜕𝐽 𝜕𝑪 + 2𝐽 𝜕𝑈 𝜕𝐽 𝜕𝑪 -𝟏 𝜕𝑪 + 2𝐽𝑪 -𝟏 ⊗ 𝜕 𝜕𝑪 ( 𝜕𝑈 𝜕𝐽 ) + 4 [ 𝜕𝑊 ̅ 𝜕𝑪 ̅ - 1 3 ( 𝜕𝑊 ̅ 𝜕𝑪 ̅ . 𝑪 ̅ ) 𝑪 ̅ -𝟏 ] ⊗ 𝜕𝐽 -2 3 𝜕𝑪 + 4𝐽 -2 3 𝜕 𝜕𝑪 [ 𝜕𝑊 ̅ 𝜕𝑪 ̅ - 1 3 ( 𝜕𝑊 ̅ 𝜕𝑪 ̅ . 𝑪 ̅ ) 𝑪 ̅ -𝟏 ] 65 
Where, ⊗ refers to the dyadic product. The following identities expand the above equation

𝜕𝐽 𝜕𝑪 = 1 2 𝐽𝑪 -𝟏 , 𝜕𝑪 -𝟏 𝜕𝑪 = -I 𝐶 -1 = -(𝑪 -𝟏 ◇𝑪 -𝟏 ) = - 1 2 (𝑪 𝒊𝒌 -𝟏 𝑪 𝒋𝒍 -𝟏 + 𝑪 𝒊𝒍 -𝟏 𝑪 𝒋𝒌 -𝟏 ) 𝜕𝑪 ̅ 𝜕𝑪 = 𝐽 -2 3 ( 𝐈 ̿ - 1 3 𝑪 ̅ ⊗ 𝑪 ̅ -𝟏 ), 𝜕𝑪 ̅ -𝟏 𝜕𝑪 = 𝐽 -2 3 ( 1 3 𝑪 ̅ ⊗ 𝑪 ̅ -𝟏 -𝐽 4 3 I 𝐶 -1 )
Finally, the general expression for the elasticity tensor as given by Suchocki [1] is obtained as

𝐂 ̿ = 𝐽 𝜕𝑈 𝜕𝐽 (𝑪 -𝟏 ⨂𝑪 -𝟏 -2𝑰 𝑪 -𝟏 ) + 𝐽 2 𝜕 2 𝑈 𝜕𝐽 2 𝑪 -𝟏 ⨂𝑪 -𝟏 - 4 3 𝐽 -4 3 ( 𝜕𝑊 ̅ 𝜕𝑪 ̅ ⨂𝑪 ̅ -𝟏 + 𝑪 ̅ -𝟏 ⨂ 𝜕𝑊 ̅ 𝜕𝑪 ̅ ) + 4 3 𝐽 -4 3 ( 𝜕𝑊 ̅ 𝜕𝑪 ̅ . 𝑪 ̅ ) (𝐽 4 3 𝐼 𝐶 -1 + 1 3 𝑪 ̅ -𝟏 ⨂𝑪 ̅ -𝟏 ) + 𝐽 -4 3 [4 𝜕 2 𝑊 ̅ 𝜕𝑪 ̅ 𝟐 - 4 3 [( 𝜕 2 𝑊 ̅ 𝜕𝑪 ̅ 𝟐 . 𝑪 ̅ ) ⨂𝑪 ̅ -𝟏 + 𝑪 ̅ -𝟏 ⨂ (𝑪 ̅ . 𝜕 2 𝑊 ̅ 𝜕𝑪 ̅ 𝟐 )] + 4 9 (𝑪 ̅ . 𝜕 2 𝑊 ̅ 𝜕𝑪 ̅ 2 . 𝑪 ̅ ) 𝑪 ̅ -𝟏 ⨂𝑪 ̅ -𝟏 ] 66 
The constitutive Eq. 59 can be expressed in the linearized incremental form at the reference configuration by writing it as given in Eq. 67:

𝜵𝑺 = 𝐂 ̿ . 1 2 𝜵𝑪 67
This linearized incremental form of the constitutive law is needed in the ABAQUS ® framework in order to carry out each increment defined in the step. However, the definition being in the reference configuration needs to be converted into the current configuration before implementation in the subroutine. The velocity gradient (L), spin tensor (W) and strain rate tensor (D) are given by Eq. 68:

𝑳 = 𝑫 + 𝑾 = 𝑭 ̇𝑭-𝟏 = -𝑭. 𝑭 ̇-𝟏 𝑫 = 𝟏 𝟐 (𝑳 𝑻 + 𝑳) 𝑾 = 𝟏 𝟐 (𝑳 -𝑳 𝑻 ) 68 
Where the 𝑭 ̇ indicate the time derivative of 𝑭. Similarly the material time derivative of Eq. 67 is

𝑺 ̇= 𝐂 ̿ . 1 2 𝑪 ̇ 69 
Deriving the time derivatives of 𝑺 and 𝑪 tensor we get

𝑪 ̇= 𝑭 ̇𝑻𝑭 + 𝑭 𝑻 𝑭 ̇ ; 𝑺 ̇= 𝑭 ̇-𝟏 𝝉𝑭 -𝑻 + 𝑭 -𝟏 𝝉̇𝑭 -𝑻 + 𝑭 -𝟏 𝝉𝑭 ̇-𝑻 70 
Where 𝝉 is the Kirchhoff stress tensor [1,3] (𝝉 = 𝑭𝑺𝑭 𝑻 ). Using these the material time derivative becomes 𝑭 ̇-𝟏 𝝉𝑭 -𝑻 + 𝑭 -𝟏 𝝉̇𝑭 -𝑻 + 𝑭 -𝟏 𝝉𝑭 ̇-𝑻 = 𝐂 ̿ . 

𝝉̇-𝑾𝝉 -𝝉𝑾 𝑻 = (𝐂 ̿ 𝝉𝐶 + 𝑯). 𝑫 𝑜𝑟, 𝝉̇-𝑾𝝉 -𝝉𝑾 𝑻 = 𝐂 ̿ 𝝉𝑍-𝐽 . 𝑫 78 
Where, the new elasticity tensor corresponding to the Zaremba-Jaumann rate of Kirchoff stress is denoted by 𝐂 ̿ 𝝉𝑍-𝐽 = 𝐂 ̿ 𝝉𝐶 + 𝑯.

Finally, converting the Kirchhoff stress definition to Cauchy stress (using the relation between the two as 𝝉 = 𝐽. 𝝈), the consistent material Jacobian to be coded in the UMAT is given by Eq. 79:

𝐂 ̿ 𝑀𝐽 = 1 𝐽 𝐂 ̿ 𝝉𝑍-𝐽 79 
order to be written in the UMAT it is essential to write both the stress and material Jacobian tensor in the index form. The material Jacobian is then written to the 6x6 matrix in the UMAT formalism denoted by DDSDDE. Thus if we have C 𝑖𝑗𝑘𝑙 𝑀𝐽 as the material Jacobian and 𝝈 𝒊𝒋 as the Cauchy stress tensor, the mapping used by ABAQUS ® [7,12,13] is given in Table 15:

Table 15: Representation for mapping inside ABAQUS ® of the stress and elasticity tensor

𝐂 ̿ 𝑀𝐽 = 𝝈 =
Both the tensors are symmetric in nature. We now take some common examples of Hyperelastic models to develop the expression of the stress tensor and the material Jacobian in the index form.

Neo-Hookean model

The Neo-Hookean model is one of the simplest hyperelastic models used in literature for thermoplastic materials as explained in Chapter 3. It has a minimalist approach for describing the strain energy density function in terms of the invariants and was developed by Treloar [14]. It is given by

𝑊 = 1 2 𝑛𝑘𝑇 (𝐼 1 ̅ -3) + 1 𝐷 1 (𝐽 -1) 2 80 
Where, 𝑛 is the chain density per unit volume of the material found from curve fitting, 𝑘 is the Boltzmann constant, 𝑇 is the absolute temperature in Kelvin.

Here the deviatoric strain energy density 𝑊 ̅ is given by 

𝝈 𝒊𝒋 = 2 𝐷 1 (𝐽 -1). 𝛿 𝑖𝑗 + 2 𝐽 𝐶 10 [𝑩 ̅ 𝑖𝑗 - 1 3 (𝐼 1 ̅ )𝛿 𝑖𝑗 ] 84 
The first term on the right hand side of the expression (

2 𝐷 1
(𝐽 -1). 𝛿 𝑖𝑗 ) is ignored in case of assuming incompressibility. Similarly, for deriving the material Jacobian we have the isochoric elasticity tensor as

𝐂 ̿ = 𝐽 𝜕𝑈 𝜕𝐽 (𝑪 -𝟏 ⨂𝑪 -𝟏 -2𝐼 𝐶 -1 ) + 𝐽 2 𝜕 2 𝑈 𝜕𝐽 2 𝑪 -𝟏 ⨂𝑪 -𝟏 - 4 3 𝐽 -4 3 𝐶 10 ( 𝟏⨂𝑪 ̅ -𝟏 + 𝑪 ̅ -𝟏 ⨂ 𝟏) + 4 3 𝐽 -4 3 𝐶 10 ( 𝟏. 𝑪 ̅ ) (𝐽 4 3 𝐼 𝐶 -1 + 1 3 𝑪 ̅ -𝟏 ⨂𝑪 ̅ -𝟏 ) 85 𝑜𝑟, 𝐂 ̿ = 𝐽 𝜕𝑈 𝜕𝐽 (𝑪 -𝟏 ⨂𝑪 -𝟏 -2𝐼 𝐶 -1 ) + 𝐽 2 𝜕 2 𝑈 𝜕𝐽 2 𝑪 -𝟏 ⨂𝑪 -𝟏 - 4 3 𝐽 -2 3 𝐶 10 ( 𝟏⨂𝑪 -𝟏 + 𝑪 -𝟏 ⨂ 𝟏) + 4 3 𝐶 10 ( 𝐼 1 ̅ ) ( 𝐼 𝐶 -1 + 1 3 𝑪 -𝟏 ⨂𝑪 -𝟏 ) 86 
Carrying the push forward operation to convert the elasticity tensor into current configuration 

𝐂 ̿ 𝝉𝑐 = 𝐽 𝜕𝑈 𝜕𝐽 (𝟏⨂𝟏 -2𝐈 ̿ ) + 𝐽 2 𝜕

Mooney Rivlin model

The Mooney Rivlin model is based on both the first invariant and second invariant of the Right Cauchy green deformation tensor. It is given by the Eq. 92

𝑊 = 𝐶 01 (𝐼 1 ̅ -3) + 𝐶 10 (𝐼 2 ̅ -3) + 1 𝐷 1 (𝐽 -1) 2 92 
Thus the expression for (𝐽 -1). 𝛿 𝑖𝑗 ) on the right hand side is neglected in case of incompressibility assumption. The expression of the material Jacobian is more complex due to the added terms present in the expression of 𝜕𝑊 ̅ 𝜕𝐶 ̅ that increase the total number of terms finally present in the index form of the expression. Substituting Eq. 93 in Eq. 66 , the elasticity tensor becomes

𝐂 ̿ = 𝐽 𝜕𝑈 𝜕𝐽 (𝑪 -𝟏 ⨂𝑪 -𝟏 -2𝐼 𝐶 -1 ) + 𝐽 2 𝜕 2 𝑈 𝜕𝐽 2 𝑪 -𝟏 ⨂𝑪 -𝟏 - 4 3 𝐽 -2 3 𝐶 10 [𝟏⨂𝑪 -𝟏 + 𝑪 -𝟏 ⨂𝟏 -𝐼 1 (𝐼 𝐶 -1 + 1 3 𝑪 -𝟏 ⨂𝑪 -𝟏 )] + 4𝐽 -4 3 𝐶 01 (𝟏⨂𝟏 -𝐈 ̿ + 2 3 𝐼 2 𝐼 𝐶 -1 - 2 3 𝐼 1 (𝟏⨂𝑪 -𝟏 + 𝑪 -𝟏 ⨂𝟏) + 2 3 (𝑪⨂𝑪 -𝟏 + 𝑪 -𝟏 ⨂𝑪) + 4 9 𝐼 2 𝑪 -𝟏 ⨂𝑪 -𝟏 ) 98 
Using the relation of isochoric invariants as 𝐼 1 ̅ = 𝐽 -2 3 𝐼 1 and 𝐼 2 ̅ = 𝐽 -4 3 𝐼 2 . According to Suchocki and Jemiolo [3] the use of the deviatoric tensor is found to be numerically efficient and less complex in illustrating the stiffness tensor. The deviatoric deformation tensor is denoted by 𝑑𝑒𝑣 (𝑩) and gives the deviatoric part of the left Cauchy green deformation tensor in the current configuration. It is expressed as 𝑑𝑒𝑣(𝑩) = 𝑩 -1 3 (𝑩. 𝟏). The required terms are clubbed together in Eq. 98 in order to express the above expression with the deviatoric terms. Finally, the push forward operation is carried which gives

𝐂 ̿ 𝝉𝑐 = 𝐽 𝜕𝑈 𝜕𝐽 (𝟏⨂𝟏 -2𝐈 ̿ ) + 𝐽 2 𝜕 2 𝑈 𝜕𝐽 2 𝟏⨂𝟏 - 4 3 𝐶 10 [𝑑𝑒𝑣(𝑩 ̅ )⨂𝟏 + 𝟏⨂𝑑𝑒𝑣(𝑩 ̅ ) -𝐼 1 ̅ (𝐈 ̿ - 1 3 𝟏⨂𝟏)] + 4𝐶 01 (𝑩 ̅ ⨂𝑩 ̅ -𝑩 ̅ ◇𝑩 ̅ + 2 3 𝐼 2 ̅ (𝐈 ̿ - 2 3 𝟏⨂𝟏) + 2 3 (𝑑𝑒𝑣(𝑩 ̅ -𝟏 )⨂𝟏 + 𝟏⨂𝑑𝑒𝑣(𝑩 ̅ -𝟏 ))) 99 
Where, 𝑑𝑒𝑣(𝑩 ̅ -𝟏 ) = 𝑩 ̅ 𝟐 -𝐼 1 ̅ . 𝑩 ̅ + 

Testing Method

The expressions developed in the previous section were incorporated for the UMAT formalism and compared with the inbuilt option for both Neo-Hookean and Mooney Rivlin model. The subsequent UHYPER formalisms were also written and compared against the same. The assumption of quasiincompressibility was tested first, followed by a compressible one using the penalty method described before. Finally, the stress strain curves are plotted for both assumptions to compare between the three formats. The objectives are to (i) quantify the deviation or relative error that can be produced owing to the quasi-incompressible assumption (ii) to verify the accuracy of the UMAT and UHYPER assumptions. The numerical model consisted of a solid extruded part as shown in Figure 19. applying the load on the negative X direction. An illustrative table presenting the boundary conditions in each of the three cases is presented in Table 16. 

Neo-Hookean model

The Neo-Hookean model is first tested for a uniaxial tensile load applied by a displacement of 100 mm.

The model parameter values for quasi-incompressible case were chosen according to the works of Verron and Marckmann [15] which are 𝐶 10 =0.2 MPa and 𝐷 1 =0.0002MPa. For the compressible case, only the value of 𝐷 1 was changed to 2.5 MPa [6]. The results of the FEM simulation illustrating the stresses generated due to the application of the displacement load for the inbuilt Neo-Hookean model is given in Table 17.

Table 17 : Resulting stresses from applied load using the inbuilt Neo-Hookean model

Resulting Von Mises Stress Legend

Tensile case

Shear case

Compression case

The stress strain curves for the uniaxial tensile case are shown in Figure 20a.The relative difference between the two assumptions (comp/incomp) against the level of strain is shown in Figure 20b. For the simple shear test a displacement of 20 mm was given to the positive Y direction while maintaining the distance of 100 mm in between the two faces. The stress strain curves for the X-Y inplane shear stress vs strain is shown in Figure 21a and the relative difference between the two assumptions against the level of strain is shown in Figure 21b. It is quite evident that the assumption of quasi-incompressible and compressibility doesn't have any significant effect on the shear stress vs strain curve as the relative difference between the two assumptions is lower 1.5% in the given strain range. Finally, for the compression test a load of 20 mm was applied to the negative X direction on the right hand face. Having the compressible assumptions the stress strain curve is shown in Figure 22. Since the UMAT implementation converges to an identical result in terms of stress vs strain as obtained from both the inbuilt and UHYPER option, it can be concluded that the written expression of the Cauchy stress and elasticity tensor in Eq. 84 and 91 is valid. However, as it takes a longer computational time, it is not considered during the subsequent comparison for the Mooney Rivlin model.

Mooney Rivlin model

Similar to the application in the Neo-Hookean case, a displacement load equal to 100 mm was given for the Mooney Rivlin model. The model parameters chosen for the quasi-incompressible assumption are 𝐶 10 =0.6 MPa and 𝐶 01 =0.01 MPa respectively and 𝐷 1 =0.0002 MPa. For the compressible case, the value of 𝐷 1 was changed to 2.5 MPa. The results of the FEM simulation illustrating the stresses generated due to the application of the displacement load for the inbuilt Mooney Rivlin model is given in Table 18.

Table 18 : Resulting stresses from applied load using the inbuilt Mooney Rivlin model

Resulting Von Mises Stress Legend Tensile case

thermoforming where a combination of tensile, biaxial, and shear loads exist. Keeping this in mind the inbuilt option is regarded as a more robust option to implement in an iterative scheme such as those exploited in Chapter 5 and Chapter 6 in terms of overall computational time and file size.

Conclusions

In this Chapter, the general formulations of expressing the stress and elasticity tensor inside a user defined subroutine for ABAQUS ® has been explored. In the context of hyperelastic models, two such formalisms exist for material definition i.e. UHYPER and UMAT. The validity of the derived expressions has been verified by comparing the formalisms with the results obtained from the inbuilt definition of the Neo-Hooekan and Mooney-Rivlin definitions. The Neo Hookean quasi-incompressible model had an average error of 0.019 % for the UMAT and 0.020 % for the UHYPER formalisms indicating the high replicability of the user subroutines to the inbuilt option. For the compressible one an average error of 0.008% was obtained for both the formalisms.

Similarly, the Mooney Rivlin quasi-incompressible model had an average error of 0.011 % for the UHYPER formalisms indicating a replicability of equal magnitude between the user subroutines to the inbuilt option. For the compressible one an average of error of 0.0019% was noticed for the UHYPER formalism. The relative error between the quasi-incompressible and the compressible assumption increases with the level of strain for both the models in the uniaxial tensile loading for volumetric elements. The compressible assumption makes the material less stiff. It can be seen from Figure 23 that the quasi-incompressible assumption gives a non-linear curve when compared against the compressible one. This indicates that when working with large deformations one should be particularly careful of which assumption to choose.

It was observed that the difference between the two assumptions is less in the case of simple shear tests (~3% for MR model) than that of uniaxial tensile test (~60 % for MR model). The reason for this can be assumed that in shearing deformations the volumetric change for compressible assumption is much lesser due to the lesser magnitude of strain than those in the uniaxial loading. Thus the difference observed in between the two assumptions is relatively lesser. Finally, a comparison among the UMAT and UHYPER formalisms and the inbuilt option reveals that the UMAT simulation requires a larger file size and greater computational time as compared to the other two. This could exponentially increase in the case of considering an FEM simulation of forming step of plug assisted thermoforming. For these reasons the inbuilt option has been considered as a more robust method of implementing the material model inside the simulations.

Introduction to digital image correlation

The current chapter explores generation of experimental full-fields of displacements within the range of the forming temperatures of an amorphous grade of an HIPS. These data will serve to (i) measure experimental displacements that will be used as experimental boundary conditions and (ii) feed a finite element modelling updated procedure to identify the parameters of the considered hyperelastic model in Chapter 3. For these purposes, the developed approach relied on stereovision digital image correlation (stereo-DIC) which is an optical-numerical technique which generates full-fields of displacements and strains. The main reason of considering a full-field technique is its sensitivity to catch local heterogeneities in material displacements and deformations.

The principal challenge addressed in this Chapter was the quantification of the uncertainties and errors of stereo-DIC measurements within the forming window of HIPS. Indeed, the refraction index of air along the optical field separating the stereovision system (i.e. system of optical cameras) and the Among the potential solutions is the use of in-situ (on-line) full field measurement techniques of strains and temperatures to collect real experimental displacements, strains and temperatures. This chapter will address the need of in-situ full field measurements during processing operations to consider effective experimental heterogeneities. The focus will be on stereo-DIC to measure displacements in the framework of large deformations and the error quantification related to measurements conducted in presence of external heat sources which affect optical measurements.

Full field measurements

Full-field measurement techniques have the potential to provide extensive fields of experimental data including displacements, strains or temperatures. These measurements are not limited to the global macroscopic behavior of a material, but they can also provide local behaviors of material points forming a mechanical continuum. The potential advantages of full-field measurements compared to localized ones (such as strain gauge based measurements) are: (i) the relatively high number of experimental data points to monitor during one single experimental test and (ii) the sensitivity of output data to the local heterogeneities with respect of the defined field discretization scale. As indicated in literature, the local heterogeneities can include: structural anisotropy of the material [1], non-uniformity of the geometry of the tested sample near notches [2] or non-uniform temperature distribution following infra-red heating of thermoplastics [3,4] etc.

Digital image correlation techniques

Digital image correlation (DIC) is a category of an optical-numerical techniques which combines optical imaging and numerical correlation procedures to measure kinematic full-fields of displacements and strains. The stereo-DIC technique is known for its precision in presence of perturbation sources compared to interferometric techniques [5]. Provided the optical accessibility to a region of interest on the surface of a material, a standard DIC flowchart starts with a calibration of the imaging system to define its intrinsic and extrinsic parameters. Then, the deformations of random patterns (i.e. speckle) applied at the surface of a specimen are recorded while the specimen is submitted to a load. The recorded set of images are then used as input to the DIC algorithm to conduct correlation operations. The postprocessing of recorded images can be conducted by a subset-based correlation procedure. Where a correlation operation identifies the most likelihood between local pixel intensity within a subset surrounding a pixel identified on a reference image and its deformed twin on the set of recorded images during deformation of the ROI. The output of the correlation-based procedure are full-fields of displacements with respect of the considered reference-state (ideally representing an undeformed state).

Based on local approximations of displacements full-fields of strains can be computed by derivation [6][7][8][9].

Classification of DIC techniques

Digital image correlation techniques can be classified according to different criteria. Within the current chapter two criteria were identified:

The first classification criterion is reported by Bing [10]. It relies on the type of input images (2D, stereo, volumetric) to be supplied as input to DIC algorithms and on the type targeted full-fields of motions or deformations (planar, non-planar or volumetric). With respect of such criterion, three major categories can be identified: The second classification criterion is based on the scale of the output full-fields of deformations and strains. According to Sutton et al. [11], DIC measurements can be categorized into: (ii) Finite element-based (Global DIC): It uses finite element method instead of subsets and does not club pixels into the mentioned facets. It rather considers that the solution to every single finite element node is dependent on all the nodes in its vicinity.

In the scope of this PhD work all measurements have been conducted using the local stereo-DIC method.

A general overview of the fundamentals of stereo-DIC provided and discussed in detail in section 4.2.

Classification of DIC-based studies

A non-extensive state of the art indicates that dedicated research studies reporting the use of DIC techniques can be classified into (i) fundamental studies which are more related to extending theoretical frameworks, the precision of correlation algorithms, etc. and (ii) applicative studies which are more dedicated to exploring the reliability of measurements of an existing system under specific applications.

Figure 26: Illustration of the three categories of digital image correlation [10] In literature, stereo-DIC measurements were reported within cases of study conducted within the confines of laboratories while using standard mechanical testing equipment or using more original nonusual equipment such as rigs. Under such conditions, the considered mechanical problem implicates well-defined thermal and mechanical boundary conditions and the output full-fields are useful to identify model parameters. Other studies included laboratory scale tests conducted at very high temperatures such the case of metallic materials. A third category is more related to industrial environment tests outside the walls of laboratories.

Stereo-DIC in the context of thermoforming

In 

Stereo-DIC framework theory

Stereo-DIC technique combines stereoscopic vision that permits to have a perception of depth for the targeted region of interest from two different angles and an image correlation algorithm [13]. Indeed stereo-DIC relies on multiple-angle recordings of the same deforming region of interest of the surface of a sample submitted to an external load to generate three dimensional displacements of material points within a Cartesian referential and to then to compute corresponding strains [12,14]. Stereo-DIC can be considered as an extension of DIC. It relies on recording a sample deformation from at least two different angles of view to measure in-plane and out-of-plane full-fields of deformations and strains. Calibration and correlation are the two main operations of stereo-DIC which are based on similar principles as DIC.

The particularity of stereo DIC is that it relies on stereoscopic measurements and epipolar geometry to evaluate three dimensional displacement vectors from pairs of 2D images which correspond to the projection of the real world where a specimen is deformed on the referential of each of the observation cameras.

Sample preparations

Among the simplest techniques to apply random patterns there are: paint-sprays, manual printing, chemical etching or light projection methods, etc. [15]. Due to the random nature of the speckles, in general, a few empirical precautions should be respected: (i) the size distribution of the random patterns as the minimum size of a single dot within a defined speckle should cover at least a region of 3x3 pixels within the recorded images, (ii) typically each subset (i.e. small computation window ) should contain at least 3 speckles to avoid aliasing [16], (iii) a minimum subset size of 7x7 pixels is considered the lowest admissible in order to ensure relatively high density of speckles inside a subset [17]. In the context of large deformations of polymeric materials such as thermoforming, a few additional precautions should be considered to ensure convergence of the correlation algorithms, these include: (i)

avoiding excessive stretching of the speckle spots, (ii) cracking and de-cohesion of the applied speckle [3].

Defining a reference state of deformations

In general, the reference state of deformations is attributed to the undeformed state of the sample before being subjected to an external thermal or mechanical load. However, the choice of a reference state of correlation algorithms may become problematic when the stereovision does not keep permanent track of the observed region of interest during a specific test. As reported by Ayadi et al. [3] in the context of plug-assisted thermoforming where the sheet can be hidden by the heating system during infra-red heating and the thermal-induced deformations may result in a skewed form of initially flat sheets. In addition, Rokos et al. [18] indicated that the choice of the reference state of correlation computations can constitute a critical source of errors in the cases when the boundary conditions of the thermomechanical test are defined outside the considered field-of-view of the stereo-vision system. The authors concluded if such a choice does not take into consideration the changes of boundary conditions during the experimental test, then the accuracy of digital image correlation results is not guaranteed. It is only after clearly defining a reference state that correlation algorithm should be executed to identify and track the speckle patterns as they evolve through time. After specifying measurement precautions, in the following paragraphs the three major operations taking place behind the functioning of a stereo-DIC system are presented [19,20]. These operations correspond to: calibration, correlation and interpolation and they are based on similar principles as DIC.

Calibration of a stereo-DIC system

Calibration of a stereo-DIC system can be considered equivalent to the separate calibration of each of the single stereoscopic cameras of the stereovision system. Thus, it is possible to explain its principles based on single camera configuration. By default, every stereo-DIC setup needs a defined set of coordinate systems in order to assign the positions of each material point on the sample. The global coordinate system is assigned to the environment in which the speckled sample is kept and would deform. The camera coordinate system is the one defined at the pinhole of the cameras, and finally the sensor coordinate system that is defined on the light capturing sensor plane of the cameras. Before 

Correlation: case of 2D DIC

Correlation refers to tracking subsets by comparison of a reference image and deformed ones based on an identification of similarity between their characteristic patterns [12]. The operation defines how a considered undeformed subset should move and deform to much its corresponding deformed twin on deformed image. The pattern identification is done at the center point of a subset by a robust correlation criterion (Zero normalized cross correlation, sum of squared differences) which enables to match the grey-level intensity of the point at reference state and a deformed state [22]. The tracking is done by the help of shape functions that predict approximately the change of a given speckle pattern under various loadings (translation, rotation, shearing etc.) before and after deformation.

Shape functions: case of 2D DIC

Before the correlation between a deformed image and a reference image an approximation of the pattern is made for each subset in the reference image. This is then deformed according to subset shape functions in order to track deformation that the speckled sample is undergoing [23]. Subset shape functions are of zero-order in the case of rigid body motion and of first and second-order in the case of more complex affine and rotational displacements [24]. The correlation procedure needs a shape function which defines an approximation of the subset speckle intensity to optimize objective functions based on correlation coefficients which define the similarity between the deformed and undeformed subset. An iterative solver is generally used to conduct the optimization process until convergence is obtained for the desired deformed subset based on a correlation criterion, so as to obtain the magnitude of displacements. The initiation point for this solver should be no more than 7 pixels from the right matching position [25].

Thus, the subset shape functions act as a low pass filter to the resulting displacement field and limit the spatial resolution of the DIC method [8,26,27]. The first order shape function that quantifies linear transformation is given by the Eqs. 104 and 105 :

𝑋 = 𝑢 + 𝛿𝑢 𝛿𝑥 ∆𝑥 + 𝛿𝑢 𝛿𝑦 ∆𝑦 104 𝑌 = 𝑣 + 𝛿𝑣 𝛿𝑥 ∆𝑥 + 𝛿𝑣 𝛿𝑦 ∆𝑦 105 
Where X and Y are the displacements of a reference subset point A along the direction of X and Y axes.

The displacement of the subset center is given by u and v while the gradients are given by [14] The second order shape function englobes the ability to describe further complex transformations as expressed by Eqs. 106 and 107:

𝑋 = 𝑢 + 𝛿𝑢 𝛿𝑥 ∆𝑥 + 𝛿𝑢 𝛿𝑦 ∆𝑦 + 1 2 𝛿 2 𝑢 𝛿𝑥 2 ∆𝑥 2 + 1 2 𝛿 2 𝑢 𝛿𝑦 2 ∆𝑦 2 + 𝛿 2 𝑢 𝛿𝑥𝛿𝑦 ∆𝑥∆𝑦 106 
𝑌 = 𝑣 + 𝛿𝑣 𝛿𝑥 ∆𝑥 + 𝛿𝑣 𝛿𝑦 ∆𝑦 + 1 2 𝛿 2 𝑣 𝛿𝑥 2 ∆𝑥 2 + 1 2 𝛿 2 𝑣 𝛿𝑦 2 ∆𝑦 2 + 𝛿 2 𝑣 𝛿𝑥𝛿𝑦 ∆𝑥∆𝑦 107 
Where, the second order derivative terms for displacement gradients are added to Eqs. 104 and 105.

As the type of deformation is not known beforehand, it can be often tricky for the operator to choose an appropriate shape function that can define the deformation adequately. Lava et al. [24] showed that higher order shape functions are more efficient in limiting the systematic errors of displacements. As a rule of thumb Xu et al. [28] stated that it is more likely to obtain convergence in the case of choosing second order shape function directly over first order functions for local deformations.

Defining a correlation criterion: case of 2D DIC

The matching of intensity between a subset in the initial image and the deformed image is carried out based on certain attributes known as the correlation criteria [8,23,29]. The correlation coefficient quantifies the similarity between these two images and constructs a 3D surface of this criterion over the spatial domain of every subset. Once a match is found between the target image and the reference image a non-linear numerical optimization (most commonly Newton Raphson) is carried in order to precise the deformation at the center point of the subset [23]. This quantitative evaluation may be provided by several norms that describe the criteria for matching. However, two of these are the most popularly used in the case of DIC. One is by maximizing the cross correlation criterion surface to match the grey level intensity between a subset in the reference and target images and find its position [30,31]. The other way is by minimizing the error given as the sum of the squared differences of the grey level intensities [32,33]. The former known as the zero mean normalized cross-correlation criterion or CZNCC is given by Eq. 108:

𝐶 𝑍𝑁𝐶𝐶 = ∑ ∑ [ [𝑓(𝑥, 𝑦) -𝑓 𝑚 ] × [𝑔(𝑥′, 𝑦′) -𝑔 𝑚 ] √∑ ∑ [𝑓(𝑥, 𝑦) -𝑓 𝑚 ] 2 × 𝑀 𝑗=-𝑀 √∑ ∑ [𝑔(𝑥′, 𝑦′) -𝑔 𝑚 ] 2 𝑀 𝑗=-𝑀 𝑀 𝑖=-𝑀 𝑀 𝑖=-𝑀 ] 𝑀 𝑗=-𝑀 𝑀 𝑖=-𝑀 108
The latter is called the zero-mean normalized sum-of-square difference criterion CZNSSD and is given by Eq. 109:

𝐶 𝑍𝑁𝑆𝑆𝐷 = ∑ ∑ [ [𝑓(𝑥, 𝑦) -𝑓 𝑚 ] √∑ ∑ [𝑓(𝑥, 𝑦) -𝑓 𝑚 ] 2 𝑀 𝑗=-𝑀 𝑀 𝑖=-𝑀 - [𝑔(𝑥′, 𝑦′) -𝑔 𝑚 ] √∑ ∑ [𝑔(𝑥′, 𝑦′) -𝑔 𝑚 ] 2 𝑀 𝑗=-𝑀 𝑀 𝑖=-𝑀 ] 2 𝑀 𝑗=-𝑀 𝑀 𝑖=-𝑀 109 
Where 𝑓(𝑥, 𝑦) is the gray-scale function at coordinates (x,y) in the subset of the initial image and 𝑔(𝑥′, 𝑦′) is the grey-scale function at coordinates (x', y') in the target subset of the deformed image. The size of the subsets is defined as (2M+1) × (2M+1). The mean grey-scale values 𝑓 𝑚 and 𝑔 𝑚 of the reference and deformed subsets, respectively, are defined according to Zhao et al. [14] as expressed in Eqs. 110 and 111: The relation between the two criteria is given by Eq. 112:

𝑓 𝑚 = 1 (2𝑀 + 1) 2 ∑ ∑ [𝑓(𝑥, 𝑦)]
𝐶 𝑍𝑁𝐶𝐶 = (1 -0.5 × 𝐶 𝑍𝑁𝑆𝑆𝐷 ) 112 
Pan et al. [34] proved the efficiency of these two correlation coefficients to be identical by utilizing both theoretical and experimental data. In order to reduce the sensitivity to changes in environmental light the criterions are normalized [25].

Interpolation function to evaluate subpixel accuracy: case of 2D DIC

Interpolation refers to the scheme used to achieve subpixel accuracy, i.e. reconstruct the grey-level values at subpixel level in order to have their displacements and thus generate a full-field of deformation [14]. After successful correlation at the integer pixel levels, the DIC algorithm carries out an interpolation to obtain the information at the subpixel level. It ensures the regeneration of the grey level intensities at the subpixel level. The accuracy of this step is highly influential of the final resulting fullfield measurement and hence it is of utmost importance to choose a proper interpolant function [14].

Usually higher order interpolation schemes are more accurate in terms of convergence of the non-linear optimization scheme than a simpler bilinear function, and thus frequently used [35]. The most commonly used interpolation function is the bi-cubic and the B-spline interpolation functions which are effective in reducing systematic errors arising from this step [36]. Different authors have subsequently compared newer interpolant functions such as Lagrange polynomials [37] to the B-spline and bi-cubic function in order to test their efficiency [24,38].

Post processing of full-field measurements: case of 2D DIC

With the tracking and interpolation operations successfully completed, the data can now be postprocessed to extract the required full fields of desired measurements. The most fundamental quantity extracted being the displacements that are extracted from the centers of each subsets, separated from each other by distance known as the step size. In order to reduce the computational time of the tracking of every single subset simultaneously in the region of interest, the initialization is carried out on only one arbitrary subset that is provided by the user [25]. This method is referred to as seeding which enables the algorithm to initiate the tracking process from a starting subset and then consecutively the subsets adjacent to it are tracked and so on and so forth.

Even though the most easily available full field measurement extracted from DIC is the displacement, what is of interest to the community of experimental mechanics is the possibility to extract the surface strains undergone by the deforming body. However, such information should be used keeping some precaution in mind. For calculating the strains any image correlation software uses a spatial partial derivative of the full fields of displacements. However experimental data is often contaminated with noise which only gets amplified when differentiated [30,39,40]. This gives rise to strain data with incorporated random errors resulting directly from the differential operator. A filtering operator combined with the differential may help alleviate some of the problems by smoothing the displacement data that can improve the accuracy of the calculated full field strain [41]. Even then these filtering operations can be overly complex and can blur out sharp features present in the deforming body such as crack initiation, localized large deformations etc. [42] and hence is best avoided.

Extending DIC operations to Stereo-DIC

Similarly, to 2D DIC, stereo-DIC integrates operations of calibration, correlation and interpolation. The calibration operation is the same between the two techniques. The only difference is the requirement of two sets of calibration images used separately to calibrate each of the camera pinhole models. Regarding the correlation (i.e. subset matching operation), for every single material point on the surface of the specimen, the operations are conducted on two sets of 2D images to match two in-plane subsets, one from each of the sets of projected images. The calibration parameters of each of the camera models are then used to compute the in-plane and out-of-plane displacements in the global referential of the real world, where the specimen is being deformed. Contrary to 2D DIC, the correlation operation of stereo-DIC is not limited to temporal matching by matching subsets between reference and successive deformed images during time. It also comprises of a stereo matching operation of subsets between the pairs of images.

Indeed, stereo-matching determines the positions of the subset including the material point in both image sets. Thus, a pair of subsets is attributed to each material point. The temporal matching corresponds to processing each set of images separately to identify each subset match evolution during time similarly to the 2D DIC approach. Displacement transformation is then applied to image pairs similarly to temporal matching. Hence by considering a reference pair of subsets, in-plane displacement determined by temporal matching between reference and deformed pairs of subsets can provide the location of the subset pair in the plane. Triangulation is then applied to determine the coordinates of the material point in the real world or the metric measurements [5]. The described procedure is repeated through the entire set of pairs of subsets identified between pairs of images and is completed by a temporal matching operation to evaluate the full-field of displacements. This is illustrated in Figure 29.

In the literature, stereo-DIC has found the potential to be used in a wide range of industrial applications.

One of the newest domains being thermoforming, where the applicability of stereo-DIC is being sought to incorporate the rich heterogeneous strain distribution of thermoformed sheets to improve simulation and close its gap to reality [3,43,44]. Such an application brings about a lot of challenges for stereo-DIC, such as thermally induced errors, errors induced by correlation of a large deformation problem (speckle distortion, grey level contrast) to name a few. 

Uncertainty vs error measurements

The process of evaluating the uncertainty of a measurement is known as uncertainty analysis or error analysis. With no clear adequate estimation of uncertainty, it seems difficult to be assertive regarding the agreement of the measurement with a theoretical prediction or other results from other experiments.

To avoid confusion in meanings in this work it is assumed that error and uncertainty are respectively used to describe imprecision and inaccuracy. This assumption will be respected throughout the following parts. By assuming that experimental measurement of a metrological variable 𝑥 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 obeys to a normal law, the measured variable can be expressed as in Eq. 113:

The uncertainty estimate

The uncertainty estimate associated with a measurement should account for two entities which are (i)

accuracy and (ii) precision:

(i) Accuracy designates how close a measured value (𝑥 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 ) is from a known and admissible value (𝑥 𝑘𝑛𝑜𝑤𝑛 ). The amount of inaccuracy is considered as measurement error. It is reported quantitatively by using relative error given by Eq. 114: 

𝑅𝐸𝑟 = | 𝑥 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 -

Random and systematic measurement errors

Similar to other metrological techniques, the quality and precision of stereo-DIC measurements (i.e full fields of displacements and strains) can be quantified using metrological descriptors (Figure 30). Among the used descriptors in literature there are: (ii) Systematic errors also called by measurement bias which correspond to lack of accuracy of measurements [19,20,22]. They are reproducible inaccuracies which cannot be statistically analyzed. Calibration against a standard is required to apply correction to compensate their effect and reduce the bias. Unlike random errors, systematic errors cannot be reduced by increasing the number of observations. Bias errors (𝐵𝐸𝑟) can be measured as follows: (i) image correlation, (ii) image acquisition, (iii) experimental setup or (iv) position/motion/strain related sources of errors [46]. A non-extensive summary of the different studies focused on DIC errors is provided in Table 19. Based on the classification of DIC-based studies in section 4.1.2.2, the principle observation is that fundamental studies are much more focused on addressing intrinsic sources of errors [22,25] than the extrinsic ones. The extrinsic sources of errors are more addressed in applicative cases of studies.

𝐵𝐸𝑟 = 𝑥 𝑎𝑣𝑔 -𝑥 𝑘𝑛𝑜𝑤𝑛 116

Intrinsic sources of errors

In the context of addressing intrinsic sources of errors, numerous efforts have suggested guidelines for generation of speckle patterns in order to reduce any error arising from correlation problems [14,47]. Su et al. [48] also suggested a method for studying the quality of speckles by formulating the root mean square error of the sum of random and systematic errors. Their method dictates two parameters which one can use as a scale of reference for the quality of the speckles. Others like Blenkinsopp et al. [49] developed method based on numerical deformation of synthetic speckle patterns to measure calibration quality and increase its precision in the context of large deformations. A potential for accuracy in large deformations was shown by the nominal overestimation of strain at such conditions. Pan et al. [20] in the measured data. An emphasis was given on the variation of these errors over a range of temperature 

Theoretical formulation of optical path through heterogeneous refractive index

Optical imaging in ambient air may present inevitable distortions when parts of the optical path between the observed object and the optical device are affected by a change of the refraction index of air due to heat sources. Temperature has an influence on density of gaseous medium which tends to decrease upon temperature increase. The velocity of light travelling through a gaseous medium such as air is a function of its refractive index. According to Ciddor [45], the linear variation of refractive index of air according to the ambient temperature is given by Eq. 117:

𝑛 = 𝑚𝑇 + 𝑛 0 117
where, n is the current refractive index of air (lying between 20°C -150°C), 𝑛 0 is the refractive index of air at 20 °C given by 1.00, T is the temperature in °C and m is a constant obtained from linear fitting given by -7.217 x 10 -7 °C-1 .

As reported by Ma et al. [50], the presence of a temperature gradient in the field of view of a stereoscopic system would result in a deviation in the path of light according to Fermat's principle given by Eqs. 118 and 119:

𝑑 2 𝑥 𝑑𝑧 2 = [1 + ( 𝑑𝑥 𝑑𝑧 ) 2 + ( 𝑑𝑦 𝑑𝑧 ) 2 ] [ 1 𝑛 𝜕𝑛 𝜕𝑥 - 𝑑𝑥 𝑑𝑧 1 𝑛 𝜕𝑛 𝜕𝑧 ] 118 
𝑑 2 𝑦 𝑑𝑧 2 = [1 + ( 𝑑𝑥 𝑑𝑧 ) 2 + ( 𝑑𝑦 𝑑𝑧 ) 2 ] [ 1 𝑛 𝜕𝑛 𝜕𝑦 - 𝑑𝑦 𝑑𝑧 1 𝑛 𝜕𝑛 𝜕𝑧 ] 119 
Where, n is the refractive index of air and z is the direction of the optical axis of the stereoscopic system.

After making assumptions of paraxial rays and isotropic variation of the refractive index [45], the equation finally becomes

𝑑 2 𝑥 𝑑𝑧 2 = 1 𝑛 0 𝜕𝑛 ′ 𝜕𝑥 120 𝑑 2 𝑦 𝑑𝑧 2 = 1 𝑛 0 𝜕𝑛′ 𝜕𝑦 121 
Where 𝑛 0 is refractive index of air at standard conditions and 𝑛 ′ the deviation of the current refractive index of air 𝑛 from base value 𝑛 0 which verifies: 𝑛′ = 𝑛 -𝑛 0 .

The authors demonstrated based on pure geometric considerations (as illustrated in Figure 31) with respect to the previous equations, that the spatial deviation ∆x (i.e. the thermal bias) within the plane of observation located at a distance (𝑎 + 𝑏) where the heat-affected domain is located at a distance (𝑎) from the optical device can be expressed as indicated in Eq. 122:

∆𝑥 = (𝑎 + 𝑏) 𝑛 0 ∫ ( 𝜕𝑛′ 𝜕𝑥 ) 𝑑𝑧 𝑏 2 ⁄ -𝑏 2 ⁄
122 Furthermore, hot air being lighter tends to rise as cold air rushes to occupy its place. This gives rise to convective flow of air known as heat waves. These heat waves cause a heterogeneous spatial distribution of refractive indexes in the affected zone which causes the path of light to be subjected to multiple deviations resulting in an effect of shimmering when an object is viewed through the heat waves. In the context of stereoscopic measurements, the shimmering phenomenon results in a distortion of the position the speckle patterns and thus induces noise into the computed full-fields of displacements or strains.

Figure 31 shows an illustration of the phenomenon occurring during the stereo-DIC under ambient thermal conditions. 

Equipment and experimental setup

Both rigid body tests and unidirectional stretching tests (elaborated in Chapter 5) were conducted using the same tensile machine (Roell Z010, from Zwick) which has maximum crosshead speed of 500 mm/min. This equipment is featured by pneumatic clamps, a load cell of 10 kN and a regulated convective oven. The oven has a precision of ± 0.1 °C measured by a thermocouple in the ambient air inside the oven. A ventilation fan makes sure of efficient distribution of heat throughout the chamber by convection. It is also equipped by an access window which allows introducing samples after temperature regulation and observation of samples using optical cameras. A commercial stereo-DIC system (from LaVision) was used to record the specimen deformations at 5 Hz frequency by two CCD cameras of 4

Megapixels each. To illuminate the speckle patterns applied to the sample surface, an external continuous white source of light was used. Before starting stereo-DIC measurements and upon temperature stabilization inside the heating oven, the ventilation fan was turned off to avoid fluctuating light reflections on the sample surface. The stereoscopic cameras are positioned far enough from the access window, at a distance of 600 mm from the surface of the sample, in order to not bring any adverse effect of high heat to the equipment (in Figure 34). The regeneration of a domain of heterogeneous refraction indexes consisted on regulating the heating chamber at a target temperature, then stopping the convective vent when the target temperature is achieved, then opening the small access window located separating the speckled ROI and the stereo-vision system. Temperature gradient between the hot chamber and the room temperature (25 °C) generates a natural convective flow from inside the chamber towards the CCD cameras which are located at 600 mm far from the speckled sample. The same configuration was respected for all rigid body and UD tests. An overview of the experimental setup has been shown in Figure 34. 

Accuracy of temperature regulations:

Additional to thermocouple-based control of the temperature inside the heating oven, complementary measurements using an IR-camera were conducted to measure the spatial average of temperatures at sample surface starting from the moment of opening the stereoscopic observation window. The region of interest for thermal measurements was fixed and covered the largest observable zone of the sample facing the stereoscopic system. Thermal data were collected over time and the spatial average values from each of the conducted rigid body tests are reported in Figure 36.

Figure 36: Sample temperature evolution as measured using IR-thermography

The requirements of these complementary measurements were mainly attributed to (i) get precise data of the considered thermal regulation procedure on the initial material temperature and to (ii) monitor the temperature drop during stereovision measurements due to the thermal gradient emerging from the oven towards the laboratory environment where the stereoscopic system is located. As the thermal measurements are intended to support the analysis of measured stereo-DIC displacements the considered time durations were limited to 15 seconds following the opening of the access window. More precision about such a choice will be provided in section 4.5.4.4.

Obtained temperature profiles indicate that the regulation procedure provides an underestimation of the sample temperatures. Such underestimation can be attributed to a non-precise choice of the emissivity of HIPS which was assumed equal to unity for reasons of simplification. With consideration of the same regulation temperature, it is also clear that the stabilization of the oven based on the thermocouple of the oven was relatively limited. Indeed, thermocouples are known to provide conduction-based thermal local measurements in the zone where they are positioned. Moreover, the precision of thermocouple measurements is limited to 1 °C. On the other hand, generated thermal profiles based on the IR-camera, confirm that there are no temperature overlapping when the regulation temperatures were changed from 105, 115 and 120 °C. Adding to that, during the stereoscopic measurements for almost 15 s at displacement speeds of 10, 50 and 100 mm/min the drop is limited to almost 1 °C. More significant temperature drops were observed in the case of samples tested at 365 mm/min. This observation can be explained by the fact that the defined ROI for thermal measurements was fixed and that the targeted material points within the field of measurements were moving fast until coming out of the control area within the IR images. To summarize, the obtained data indicates (i) a relatively controlled thermal regulation procedure with consideration of the used equipment and (ii) existence of limited temperature drop of almost one to two degrees Celsius following the opening of the access window. Both conclusions are characteristic of the regenerated quasi-isothermal environment where stereo-DIC measurements were conducted. For reasons of simplifications, the output of rigid body tests conducted at 365 mm/min will not be considered in the next sections as the effect of measurement frequency on the accuracy of measurements was not considered among the principal goal of the conducted experimental campaign.

Calibration of Stereo-DIC

The principle of triangulation is the driver behind stereo-DIC being able to correctly attribute the position of each point on the sensor coordinate system to one in the global coordinate system before a correlation is established [13,55]. The knowledge of the intrinsic parameters of the stereo system is thus imperative in order to calibrate and compensate the undesired effects of optical imprecisions. A calibration procedure was conducted by positioning a target grid containing target points and DaVis (LaVision ® , Germany) software inside the window of sight of the stereoscopic system. Then, the grid was translated and rotated in the (XY) plane of the hydraulic clamp of the Zwick machine to record pairs of images corresponding to each new position. Figure 37 shows the two positions of the target grid used for the calibration procedure and the respective detected target points.

Figure 37: Illustration of the two representative positions of the target grid and the corresponding detected target points from each pair of stereoscopic images

According to the accessible space within the heating oven, a total of five pairs of images was the required minimum to guarantee convergence of the macro of automatic detection of the target points. A pinholebased calibration is then conducted on the software DaVis to identify the intrinsic and extrinsic parameters of the system and define a common origin for coordinate system of both cameras. The output data from the calibration procedure using DaVis are indicated in Table 20. 

Stereo-vision recordings

The recording sequence comprised of a series of protocol that was established to maintain repeatability consequently each single subset or material point can be considered as an independent test itself. Second, the total of 16 rigid body tests provided more than 200 Gigabytes of raw data which required an adequate post-processing strategy without the need of duplicating measurements. For reasons of simplification as will be further detailed in the following sections, the post processing will be limited to: (i) three temperatures of 105, 115 and 120 °C, three displacement speeds of 10, 50 and 100 mm/min and the processing duration will be limited to 15 seconds starting from the reference state of displacements.

Post-processing of stereo-vision pairs of images

The particular aspects regarding the stereo-DIC post-processing operations in the context of the current study are related to: (i) definition of the region of interest (ii) choice of the size of subsets and step size (iii) the choice of the correlation method (iv) the identification of the reference state of displacements, and (v) the type of statistical description of obtained data. The process of correlation, selection of a step size and subset size as well as the retained region of interest has been mentioned in Appendix 2. A root mean square (RMS) of the error between imposed displacement and the full field measurement of displacement at each subset center was considered to select an adequate subset size. Finally, the chosen subset size corresponded to 19×19 pixels with a step size of 9 pixels.

Reference state evaluation

Operating two separate systems (i.e Zwick and LaVision) requires their synchronization. This task was resolved first by extending the stereovision recordings before the end of the temperature regulation defined by the instant of opening of the access window until the end of the displacement. Second, identifying a common origin of times corresponding to the start of motion of the moving crosshead of the tensile machine and stereo-DIC measurements. This required introducing a reproducible method to define the origin of displacements at high temperatures as the initial speckle (before the pre-heating procedure) cannot be observed due to the stereoscopic system being located outside the oven.

Indeed, during the temperature regularization operations, in both rigid body and stretching tests the thermal induced-deformations of the samples cannot be monitored as the access window is sealed.

Consequently, there was a need to objectively identify the pairs of images which correspond to the state of the speckle at the end of the temperature regularization step and at the moment of starting the effective mechanical displacements. Two conditions were required to identify the reference state of displacements: (i) to objectively identify the origin of times at which the stereo-DIC displacement field detects the imposed displacement without any dependency of the operator. (ii) to check the existence of inertial effects of the crosshead of the tensile machine which may manifest before reaching a steady displacement speed.

Origin of stereoscopic times

It is important to note that having an incorrect reference state affects the final deformations calculated at the end of target time. The opening of the oven creates a thermal gradient oriented from the pre-heated air inside the oven and the ambient air in the laboratory environment. This gives rise to natural convection of the air and creates heat waves in the optical path between the CCD cameras and the sample. Due to the variation of the refractive index of cold and hot air distortions of the optical field is inevitable while recording the stereoscopic images. As a consequence, the start of motion is difficult to capture amidst these fluctuations in displacement (as illustrated in Figure 38). Therefore, the considered method for identifying the origin of times was based on a backwards chronological post-processing of recorded pairs of stereoscopic images starting from the end of the experiment when the instabilities in the air flow are considered to be the least significant.

To illustrate the method, a case of study corresponding to rigid body test conducted at 110°C and 10 

Presence of inertial effect

To match the reference of times of measured stereo-DIC displacements with the recorded data by the tensile machine there was a requirement to quantify inertial effects of the equipment. These inertial effects designate all mechanical phenomena that may be responsible for a delayed response of the tensile Despite the imposed rigid body motion being supposed to be limited to pure displacement along the Y axis, the obtained averaged displacement components over time were extracted to provide clear insight of the effective base lines of displacements that the equipment was able to provide. Indeed, time evolutions of 𝑉 𝑦 component in the translation direction of the imposed load seem to be superposed with the measured displacements by the Zwick (tensile machine). Moreover, 𝑉 𝑥 components did not indicate any in-plane translation along the X axis during the rigid body test. Nevertheless, 𝑉 𝑧 components indicate that the sample seems to exhibit out-of-plane displacements. Such effect can be attributed to the hydraulic clamping which imparts relatively elevated pressure that causes the flat sample to bend outof-plane. Such effect is not visible by the operator and only by analyzing the output of stereo-DIC along the Z axis can it be observed. The corresponding time evolution becomes more and more significant as the time exceeds 15s from the defined reference of displacements.

Despite all stereoscopic recordings having exceeded time durations of 45s, an assumption was made to limit the error quantification to 15s to maintain the out-of-plane displacements lower than 0.32 mm. To provide more insight of the spatial distributions of displacement components, Figure 41 illustrates the obtained full fields of each of the displacement components at the considered time limit of 15s.

Reference of displacments : Moment of opening the access window

Reference of displacments : Objectively identified

Figure 41: Spatial representation of the components of displacement vectors at a time stamp of 15s corresponding to a rigid body test performed at RT and a crosshead speed of 10 mm/min

In the current study the focus is limited to stereovision duration of almost 15s following the defined reference of displacements. By recalling the acquisition frequency of 5Hz each of the post processed displacement fields included a total of 75 temporal increments. As can be seen from Figure 41, the full fields of out-of-plane displacements (𝑉 𝑧 ) are lesser than 0.32 mm at the chosen time stamp of 15s, while it is negligible for the 𝑉 𝑥 components at the said moment.

The temporal analysis of stereo-DIC displacements requires reducing the extent of the full-fields. In this context the data presented in Figure 41 can be converted into a distribution of local displacements and a mean displacement value can be considered. For each of the considered time increments (𝑡), the statistical mean of displacement components within the region of interest is assumed to define the measured displacement value 𝑥 DIC (𝑇, 𝑡). The histograms as well as the computed mean values of displacement components of the data presented in Figure 41 are provided in Figure 42. 

Reference of displacements : moment of opening the access window

Effect of reference on stereo-DIC displacement measures: Normal law distribution

Short duration

To highlight the importance of defining the reference state of deformations and displacements, as well as the control of the extrinsic parameters which may affect the precision of computations five time points were chosen at 1, 2, 3, 4 and 5 seconds from each of the considered references of displacements in steps one and two. The corresponding displacement fields were extracted from the first and second stereo-DIC computations. In the case where the reference of displacements is coincident with the origin of stereoscopic recordings (T1), the distribution of algebraic difference between measured displacements and imposed displacements (in the Y axis) does not obey to a single normal law (as shown in Figure 43). 

𝑓(𝑥) = 1 𝜎√2𝜋 × exp [-( 𝑥 -µ 𝜎√2 ) 2 ] = 𝑎 × exp [-( 𝑥 -𝑏 𝑐 ) 2 ] 123 
Where, 𝜎 is the standard deviation, µ is the mean, and 𝑥 = 𝑣 𝐷𝐼𝐶 -𝑣 𝑖𝑚𝑝𝑜𝑠𝑒𝑑 .

To support such interpretations, the output of data fitting using double vs single normal laws are provided in Appendix 2. Such difference can be attributed to residual light reflections that seem to affect the precision of the measured displacements once the reference state is affected to the moment of opening the access window. Such effect is attenuated once the origin of times is objectively identified as the inertial motion of the convective fan of the heating oven is completely stopped. As the imposed displacements are relatively small the dispersion of displacements from the mean values indicate Gaussian distributions with an increase of the standard deviation.

For precision reasons, only 𝑣 𝑦 components were used as they can be compared to the imposed displacements by the tensile machine.

Long duration

Based on the same previous computation procedures, higher time durations were considered. At such durations the effect of error accumulation from one image to the other upon applying the sum of squared At such relatively elevated durations, local heterogeneities at each time stamp were less sensitive to illumination noises. Based on data fitting using a single normal law, the increase of identified standard deviations with respect of time seem to be more indicating an accumulation of relative errors for both data sets (with respect of the identified reference state of displacements). As the main focus of the chapter is related to evaluating the effect to errors induced by heat waves, the post-processing duration was limited to 15 seconds following the objectively identified reference state (i.e. 𝜎 < 0.02). Obtained fitting data are reported in the Appendix 2.

Error quantification procedure of quasi-isothermal rigid body tests

Before studying the effect of heat waves on stereo-DIC measurements based on rigid motion tests (imposed displacement and zero strain conditions), the baseline of noise was calculated at room temperature conditions (25°C). The considered crosshead speeds of 10; 50 and 100 mm/min along the Y axis of the global Cartesian system of coordinates attached to the stereo-DIC system. The recordings were carried out at a frequency of 5 Hz (i.e 5 images per second) for duration of 15s following the effective mechanical motion after stabilization of the inertial effects.

Global descriptors (independent of time) of stereo-DIC errors

Random errors or noise

Random errors (or noise) give a measure to the precision of the obtained displacement field. The quantification of random errors presented by heat sources have been coined under two categories as presented in literature [45,50]. The spatial random errors (i.e. spatial standard deviation) and temporal random errors (temporal standard deviation) of displacements are computed accordingly. Spatial random error refers to the variation of the errors over a given space or region of interest at a specific instance of time (or one single image). This standard deviation is next averaged over the stereoscopic time or in other words throughout the rest of the temporal correlation operations to give spatial standard deviation (S_Stdev). To further explain how S_Stdev was evaluated an illustrative example is provided in Figure 45. (pixel or a subset) over duration of time (or a set of images). This is then averaged over space for all the remaining subsets to compute the temporal standard deviation [50]. To further explain how T_Stdev was evaluated an illustrative example is provided in Figure 46. In the current study rigid body motion based tests were adopted to quantify thermally induced errors.

The displacement value at each subset center was subtracted by the displacement reported by the tensile equipment (𝑣 𝑖𝑚𝑝𝑜𝑠𝑒𝑑 ) at any given time tn > tref in order to obtain a full-field of displacement deviations from the imposed value. Then, the spatial standard deviation of these errors was evaluated and averaged over time. Figure 47 shows the variation of the spatial standard deviation for the three components of displacements (𝑣 𝑥 , 𝑣 𝑦 , 𝑣 𝑧 ). This is intuitive because the hotter the air, the lighter it is and hence more is the convective flow in presence of surrounding colder air. The spatial standard value reaches almost ten times the magnitude of the baseline noise which was also observed by Ma et al. [50] in their studies.

Temporal descriptors of stereo-DIC errors

Evolution of uncertainties in accuracy with time and temperature

Accuracy of stereo-DIC measurements is evaluated based on monitoring the evolution of relative errors during time. With consideration of the reference base lines of relative errors at RT conditions (i.e.

absence of heat source), the temporal evolution indicates an exponential decrease during the first two to three seconds (i.e. corresponding to almost ten correlation iterations). With consideration of the acquisition frequency of 5 Hz, the correlation computation output seems to be of limited accuracy as the imposed displacements are relatively limited with the consideration of the applied crosshead speeds.

Figure 49 shows the temporal evolution of uncertainties in the accuracy for different temperatures and crosshead speeds. 

Evolution of uncertainties in precision with time and temperature

The evaluation of precision of measurements was based on the quantification of relative uncertainties.

At RT conditions uncertainties are highest at the initial three to five seconds. Figure 50 shows the temporal evolution of uncertainties in the precision for different temperatures and crosshead speeds. For higher time durations relative uncertainties evolve towards asymptotic limit of 4.0, 3.3 and 3.1% respectively from displacement speeds of 10, 50 and 100 mm/min. Following an increase of regulation temperatures, the relative uncertainties tend to increase in case of 10 mm/min compared to RT conditions. However, these uncertainties decreased for the 50 and 100 mm/min cases following an increase of the regulation temperatures. Contrarily to the limited detection of the effect of increasing the intensity of heat waves, precision seem to be more sensitive to displacement speeds at the considered acquisition frequency of 5Hz. Indeed, by considering the same regulation temperature, uncertainty decreases clearly as the speed was increased. Based on such observation, the accuracy descriptor does not seem to be as effective as precision to highlight the temporal evolution of heat waves but rather a more efficient descriptor to objectively evaluate the effect of the imposed displacement on the correctness of stereo-DIC displacement measurements. cameras. This shimmering of the recorded stereoscopic images seems to limit bias errors as their slopes of the temporal curves tend towards the zero line of displacement errors. In addition, as time increased the heat waves are expected to be less and less influential and thus, the absolute values of bias errors seem to deviate from the zero line of displacements.

Error correction technique based on bias errors

According to the considered thermal experimental conditions, evaluated bias errors can be further respectively at 105, 115 and 120 °C. Such results indicate that time evolution of heat rectification functions seem more sensitive to imposed displacement speeds. The effect of imposed temperatures seems to be limited to a positive shift of the ordinate at the origin notably at 50 mm/min. However, at 100 mm/min an aberration is noticed between 115 and 120 °C cases. Moreover, the amount of thermal bias errors within the expected displacements at 15 seconds and 120 °C conditions is limited respectively to 3.90, 2.72 and 1.97 % as the speed increased from 10, 50 to 100 mm/min. Such decrease indicates that heat waves are mostly significant as the displacement is relatively as low as 10 mm/min (with respect of the considered experimental campaign).

Two additional remarks can be provided. First, despite heat waves are expected to decrease during 15 seconds from opening the access window, refraction functions do not seem to reflect such expected decrease as oscillations caused by transient effects seem to be at lower length scales compared to overall imposed displacements. Second, the aberration observed at 100 mm/min speeds as temperature shifted from 115 to 120 °C can be related to the limited acquisition frequency and existence of a speed threshold over which temporal shimmering of speckle patterns can no more be detected by the temporal correlation of stereo-DIC as the displacement jumps become relatively significant between successive iterations.

These remarks require more extensive experimental work to clarify them which was considered out-ofthe scope of the current study due to the limited amount of time accorded to the global PhD project.

Spatial representation of heat waves: Case of rigid body tests conducted at 120 °C

Based on the previous interpretations of the time evolution of heat refraction functions, an assumption is made by the authors to consider quasi-linear time-evolution of all heat rectification functions. Based on such assumption, it is possible to define a time-based correction of the effect of heat waves. Such correction procedure is judged of interest to further evaluate the spatial effect of heat waves as stereo-DIC is a full-field measurement technique. The suggested correction schema is presented in Figure 53. The output of these respective corrections correspond to the contributions of bias errors induced from the intrinsic errors of DIC arising due to correlation. The result of such operations is provided in Figure 55. In the third step the heat rectification functions at 120 °C were identified (shown in Table 22) and a further temporal correction is conducted to eliminate displacement errors induced by heat waves. Finally, Figure 56 shows the residual bias errors of thermal origins after the correction of DIC-related bias errors as well as thermally induced bias errors. Based on the conducted two-step filtering operations, it is possible to get not only final displacement full fields but also to rely on temporal corrections to get an approximation of the spatial distributions of stereo-DIC induced bias errors and thermally induced bias errors. To illustrate the successive effects on overall displacement fields, histograms of displacement fields were generated. The output of conducted operations is illustrated in Figure 57. Despite the difference between previously identified correction, functions computed shifts following similar correction steps of displacement components (𝑣 𝑦 ) seem to be unexpectedly of similar orders of magnitude. On one hand, similar off-sets of 0.7487 mm and 0.2954 mm were respectively obtained following the elimination of bias errors of stereo-DIC origins and of both bias errors of stereo-DIC and thermal origins (Table 23). Such observation can be justified as the same equipment, calibration and correlation procedures were applied to post-process the collected stereoscopic pairs of images. On the other hand, the similarity between off-sets following correction of both bias errors of stereo-DIC and bias errors of thermal origins can only reflect that the mean of bias errors induced by heat waves (with consideration of the same regulation temperature of 120 C) are almost similar. With respect of the same regulation temperature and same time stamp, this latter conclusion indicates that despite the change of displacement speeds, temporal correction of bias errors is independent of local heterogeneities of 𝑣 𝑦 which can be caused by presence of heat waves. The change of displacement speeds seems to be limited to affecting the overall extent of the obtained histogram, which confirms previous conclusions related to spatial analysis of bias errors. 

Conclusions

This chapter focused on qualitative and quantitative study of the effect of heat waves on the accuracy and precision of stereo-DIC measurements of displacements. A special importance was attributed to errors arising while conducting stereoscopic measurements within the range of thermoforming temperatures of thin HIPS sheets. For this purpose, an experimental procedure based on rigid body tests was designed and then tested at four different temperatures and three displacement speeds. First, experimental verifications were conducted and allowed to address challenges related to (i) the inertial effects of the tensile equipment, (ii) the identification of the reference state of displacements following thermal heating and (iii) the temporal synchronization between the tensile system and the stereo-DIC system. Second, different precision and error descriptors were evaluated to assess the effect of heat waves on measured displacements. Time independent random temporal as well as random spatial errors were evaluated. Random spatial errors indicated that for higher temperatures the presence of the convective heat waves is higher. This is due to the hotter air being lighter is more susceptible to convective flow in presence of surrounding colder air. The spatial random errors are highest at lower speeds where the effect of heat waves manifest more perturbations in the calculated displacements in between two successive images.

Computed full-fields of random temporal errors were able to reflect existence of heat-wave related temporal dispersion of errors as well as existence of local imprecisions at the center of subsets located at the edge of the considered regions of interest. Such local dispersions of random errors were the most significant at 10 mm/min displacement speeds and was less significant at 50 and 100 mm/min. The time evolution of relative errors indicated that the accuracy of stereo-DIC was the most significant during the first two to three seconds from the start of stereoscopic measurements. Oscillatory behaviors indicating convective turbulence caused by local heat waves were observed at 10 mm/min with respect to the used acquisition frequency of 5Hz. For time durations higher than five seconds following the end of heating, the accuracy of stereo-DIC evolved towards a stabilized asymptotic time limits for all considered displacement speeds. Under the effect of temperature increase, an aberrant behavior at 115 and 120°C

was observed for imposed speed of 100 mm/min. Such abnormal effect was attributed to the oscillatory behavior of heat waves which may induce optical dilatation as well as potential optical retraction of the projected images of the speckle patterns on each of the camera sensors.

The time evolution of precision was based on the quantification of relative uncertainties. Obtained results indicated that accuracy was not able to highlight the temporal evolution of heat waves compared to precision. However, temporal evolution of relative uncertainties can be rather more efficient to objectively evaluate the effect of the imposed displacement speed on the precision of stereo-DIC displacements.

Temporal evolution of bias error (which designates the deviation of the mean of measured displacement from the imposed displacement along the Y axis) indicated the existence of quasi-linear deviation from zero line for all tests. Based on the obtained time behaviors it was clear that the existence of heat waves was limited to divergence of stereo-DIC measurement as compared to RT baselines. Based on the assumption of additive contribution of bias errors related to stereo-DIC correlation and bias errors induced by heat waves a temporal correction schema of displacement fields was suggested. Refractive functions were used to impose global correction based on the time evolution of the mean values.

Representative cases of study at a time stamp of 15 s extracted from rigid body tests conducted at 120°C, indicated that the correction schema does not affect the local displacement heterogeneities induced by heat waves but rather can be considered as imposing global displacement off-sets. Despite the difference between identified refraction functions, studied cases indicated that the correction schema was not dependent of the imposed displacement speed but rather can be useful to correct the time drift of the stereo-DIC correlations.

Despite the originality of the conducted work to detect and quantify the effect of heat waves within the range of thermoforming HIPS, more work is needed to better the influence of acquisition frequency of the stereoscopic system on the detection of more significant effects at displacement speeds exceeding 50 mm/min. Moreover, the correction procedure should be extrapolated to measured displacements while stretching tests of HIPS samples to correct displacement and strain full-fields to further quantify deformation errors when heat waves are present within the optical field of stereoscopic cameras.

Introduction to inverse identification problems

The current study focuses on representative unidirectional stretching tests under isothermal conditions conducted on high-impact polystyrene (HIPS) specimens with free lateral edges. The aim is to identify the parameters of the Mooney-Rivlin hyperelastic model, which is generally admitted in the case of the HIPS for temperatures above the glass transition. To measure the non-negligible out-of-plane deformations which manifest during the stretching operation, a hybrid numerical-experimental approach is introduced. This approach combines kinematic fields measured by the stereo digital image correlation (stereo-DIC) technique and a finite element model updating (FEMU) procedure. First, a dataset of displacement fields measured during stretching tests at controlled temperatures and strain rates is constructed. Second, sequential quadratic programming (SQP) based inverse identification procedure is implemented to minimize an objective function that combines the experimental and numerical displacement fields. A case study is presented to test the limits of the hybrid numerical-experimental approach under incremental stretching levels. The optimization results indicate that the extent of the kinematic fields compared to the effective size of the tested specimen and the excessive stretching of the stereo-DIC speckle are the major limits to the applicability of the approach. The conducted study constitutes a preliminary step towards more accurate consideration of real boundary conditions to simulate thermoforming of thin thermoplastic sheets. The results of this chapter has been published by the authors in the form of a peer reviewed conference paper in the journal Procedia Manufacturing [1].

Inverse identification is an intuitive term that musters material characterization along with techniques to identify constitutive parameters [2]. In the context of reverse engineering, it consists of typically solving a physical problem in an inverse manner and hence the association of the term inverse problem to it [3]. A forward problem in the realm of continuum mechanics describes one where the solver looks to obtain the outcome of a deforming body that is subjected to a certain set of loads given its geometry, constitutive parameters, and boundary conditions [4]. Contrary to this, inverse methods look to identify the constitutive parameters given the macroscopic behavior that the deforming body is exhibiting [5].

Inverse problem has garnered the biggest amount of interest from the community of full-field measurements [6]. One of the direct benefits of this method is the elimination of the assumption of homogenous strain throughout the domain of the body. It is much easier to understand this difference between the two by highlighting the matrix representation of Hooke's law that states for a body under a deforming load:

[𝐾(𝜉)] {𝑢} ⃗⃗⃗⃗⃗⃗⃗ = {𝐹} ⃗⃗⃗⃗⃗⃗⃗ 125 157

Where, 𝐹 ⃗ signifies the vector of forces applied to the body, while 𝑢 ⃗⃗ stores the displacement vector containing every possible degree of freedom. 𝐾 is the stiffness matrix containing the constitutive model parameters 𝜉.

Thus in a direct problem 𝑢 ⃗⃗ is solved by inverting the known stiffness matrix (due to the known constitutive model parameters) given the applied load vector 𝐹 ⃗ . However, in an inverse problem, the stiffness matrix is identified via tweaking the model parameters 𝜉 which best identifies with the measured displacement field 𝑢 ⃗⃗ and force 𝐹 ⃗ while satisfying static and kinematic admissibility conditions [5]. While for some specific cases of homogenous strain fields, a closed-form solution to the inverse problem is possible, most complex mechanical tests (like those seen in the field of thermoforming) have heterogeneous local strains, and hence, the relation between the parameters and the full field of measurements cannot be expressed by an explicit formula [2]. Before delving into the details of the types of inverse identification procedure presently used in literature for parametric identification in the domain of continuum mechanics, it is important to recapitulate a few governing equations that hold true for any general elastic body occupying a volume Ω and undergoing deformation. Considering that body forces can be neglected, these sets of equations can be coined under equilibrium equations given in Eq. The kinematic compatibility equations are stated by Eq. 127:

𝑢 ⃗⃗ = 𝑢 𝑠 ⃗⃗⃗⃗⃗ 𝑜𝑛 𝑆 127

𝜀 = 1 2 (∇ 𝑢 ⃗⃗ + ∇ 𝑇 𝑢 ⃗⃗) 𝑖𝑛𝑠𝑖𝑑𝑒 Ω
Where 𝑢 ⃗⃗ is the displacement vector and 𝜀 the strain tensor. Finally, the constitutive equation that is given by the double dot product of the strain tensor and the 4 th order stiffness tensor 𝐂 ̿ .

𝜎 = 𝐂 ̿ ∶ 𝜀 128

In the realm of inverse identification, the strain tensor is obtained from the full field of surface strains, and the stress tensor may be obtained from pressure or force sensors, as the case may be. Therefore the components of the stiffness tensor can be calculated from Eq. 128, and the material parameters can be inversely identified that result in the obtained stiffness tensor. The development of computational power and several optical techniques such as image correlation and interferometry have aided enormously in the enhancement of inverse identification problems. Typically the identification is achieved by solving an optimization problem that minimizes the calculated full field of kinematic measurements, resulting from an arbitrary set of constitutive model parameters and the experimentally obtained ones [7,8]. It relies heavily on the richness of input data in order to accurately identify the parameters [9]. Despite this, inverse problems are often hampered by errors from the measured full-field quantities that render it quite sensitive in order to obtain a unique solution from the optimization [2,10]. It is common to have problems in convergence due to the presence of local minima that are a direct result of the experimental noise [4,6]. Badaloni et al. [11] have suggested the use of simulators that disentangle the involvement of separate sources of noise in order to understand their impact on the identified parameters or the use of different optimization algorithms as suggested by Kowalewski and Gajewski [12] that don't rely on differentiation of the measured fields, to avoid amplification of the noise.

Different types of inverse analysis techniques

Different techniques to perform and solve inverse problems have been developed, out of which the most recurring ones in literature are the equilibrium gap method, virtual fields method, constitutive equation gap method, reciprocity gap method, and finally, the finite element model updating method [2,5]. The methods are discussed in brief below:

Equilibrium gap method (EGM)

It is based on discretizing the equilibrium equations of a deforming body in order to minimize it. The method is often useful in the determination of damage in heterogeneous elastic fields [2,13]. A full field measurement data is obtained on a regular deforming grid which is then exactly replicated in the form of a FEM mesh. Thus the nodes in the measurement ideally are coincidental with the nodes in the FEM mesh. It works with the logic of substituting a numerical displacement vector {𝑢} ⃗⃗⃗⃗⃗⃗⃗ 𝐹𝐸𝑀 with the measured displacement vectors {𝑢} ⃗⃗⃗⃗⃗⃗⃗ 𝐸𝑋𝑃 which results in a vector of residual forces. However, at an internal point inside the body the residual forces are 0 as there is no external force. Henceforth, an iterative solver is run to minimize the force vector by tweaking the constitutive parameters (𝜉) [5].

[𝐾(𝜉)] [𝑀( {𝑢} ⃗⃗⃗⃗⃗⃗⃗ 𝐹𝐸𝑀 )] = 0 129

Where, M is a FEM shape function that links a kinematically admissible trial displacement vector {𝑢} ⃗⃗⃗⃗⃗⃗⃗ 𝑇 and the FEM displacement vector {𝑢} ⃗⃗⃗⃗⃗⃗⃗ 𝐹𝐸𝑀 by

[𝑀( {𝑢} ⃗⃗⃗⃗⃗⃗⃗ 𝐹𝐸𝑀 )] = {𝑢} ⃗⃗⃗⃗⃗⃗⃗ 𝑇 130

Thus the identified constitutive parameters 𝜉 * is one that minimizes the residual force vector {𝐹} ⃗⃗⃗⃗⃗⃗⃗ in the equation via a least-square iterative scheme [13].
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Virtual fields method (VFM)

This method is based on the notion of the principle of virtual work generated by the application of a well-defined set of virtual fields. The primordial requirement in this technique is the full field of strain measurements [2] which can be obtained from the derivative of the displacement field {𝑢} ⃗⃗⃗⃗⃗⃗⃗ 𝐸𝑋𝑃 . With the assumption of no body forces in the static condition the weak form of the equilibrium equation is broken into the two-part integration as shown in Eq. 132 [10]. The first part relates to work done by forces acting inside the body, while the second relates to the work by forces on the surface [5].

-∫ 𝜎: 𝜀( 𝑢 * ). 𝑑𝑉 + ∫ 𝑇.

𝑆 { 𝑢 * } ⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ . 𝑑𝑆 = 0 𝛺 132
Where, { 𝑢 * } ⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ is a virtual field of full field displacement which gives a full field strain ε. Ω is the volume occupied by the body, while S is the surface of this volume. It is important that the full field of strains obtained on the external surface by any technique should have the possibility to be analytically extrapolated to obtain the strains inside the volume of the solid. Finally, a series of virtual fields { 𝑢 * } can be so chosen as to have a system of linear equations which are equal to or greater than the number of constitutive model parameters 𝜉. Each of the linear equations contains the stress tensor, which is linked to the strain field by Eq. 133:

𝜎 = 𝐂 ̿ (𝜉): 𝜀( 𝑢 𝐸𝑋𝑃 ) 133

Where, 𝐂 ̿ (𝜉) is the 4th order stiffness tensor. Thus by substituting equation to replace the expression of 𝜎 in the system of equations, we directly obtain the stiffness tensor without the need for any iteration and thus the associated parameters(𝜉) [3]. There are a few significant drawbacks to this method. Firstly, the full field information from the entire surface must be available as missing information would hinder the calculation of strain inside the volume Ω. Secondly, as stated in Chapter 4, derivatives of displacement measurements to obtain strains are often spurious as they are hampered by the amplification of experimental noise. Thus, adequate filtering techniques must be previously employed on the data before feeding it to the solver [5].

Constitutive equation gap method (CEGM)

The constitutive equation gap method works by minimizing the distance between an applied stress field and a second one calculated via the constitutive law for a defined displacement field. Among the list of inverse techniques listed previously, it is the only one that is capable of working with both full-field measurement and without it. However, the data from the system has to be overdetermined [2]. An explicit minimization is performed after providing the equilibrium and kinematic admissibility constraints to the stress definition with the help of Lagrange multipliers. Alternatively, in order to avoid measurement noise, the requirement of applying the exact kinematic data can be overcome by adding a penalty function in terms of positive weighting coefficients to the displacement field [14]. Despite the use of finite element interpolation of the admissible stress fields, this method doesn't require an exclusive finite element model to be solved iteratively [5].

Reciprocity gap method (RGM)

Another iterative method that uses the principle of virtual work is the reciprocity gap method [15]. It requires well-defined field measurements on the entire boundary and is thus essentially a full-field inverse identification method [5]. Thus the key to this method lies in knowing the Dirichlet and ⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ . An iterative procedure ensures the recreation of the entire field of displacement inside the body along with the stiffness tensor 𝐂 ̿ . This method was reported to be useful for the identification of linear crack initiation in 2D elastodynamic problems as studied by Bui et al. [16].

Finite element model updating method (FEMU)

The finite element updating method (FEMU), as it is so often referred to in literature, is an iterative solver that uses a finite element model to reduce the difference between the predicted full-field measurement (displacement or force) and the imposed one [2]. It works based on the assumption of reverse analogy that if every system having a unique set of properties and boundary conditions gives a unique displacement field to an applied load, a measured displacement field should also lead to the identification of the unique set of properties [6]. In literature, it has found its use by authors in multiple fields of inverse identification, including anisotropic plastic models [7], elasto-plastic models [9,12,17],

non-linear orthotropic models [18], elasto-viscoplastic models [19], hyperelastic models [8] etc.

A wide variety of loading applications ranging from static to dynamic can be treated by this method for complex shaped bodies, which make it suitable for full-field measurement techniques [2]. This method requires the exact same mesh which was used to generate the full field data as the one that is used in the finite element model as well. The inverse identification is carried out by iteratively updating a set of arbitrarily chosen constitutive model parameters that minimize a cost function built upon with the data from experimental and numerical fields [6]. A drawback of this method is that with the presence of experimental noise and multiple parameters to be identified, the minimization problem might not find the global minima, which renders the solutions to the problem to be non-unique [6,10]. The method can be divided into three principal categories based on the type of measurement data that is being compared between the experiment and finite element model in order to identify the constitutive parameters.

Force balance method (FEMU-F)

This method looks to iteratively minimize the difference between the imposed load or force that was applied to a deforming body and the force resulting from the output of the finite element model. This necessitates that the full-field measurement of displacement to be fed to the finite element solver must be complete in the entire domain Ω of the body together with the prescribed forces on the boundaries Г [2]. Thus from Eq. 125 we inject the known quantity of displacement {𝑢} ⃗⃗⃗⃗⃗⃗⃗ 𝐸𝑋𝑃 onto each node in the FEM mesh and iteratively update the stiffness matrix 𝐾(𝜉) by tweaking the model parameters 𝜉 in each iteration to obtain the nodal forces {𝐹} ⃗⃗⃗⃗⃗⃗⃗ 𝐹𝐸𝑀 on the boundary Г, which is then compared with the prescribed force {𝐹} ⃗⃗⃗⃗⃗⃗⃗ 𝐸𝑋𝑃 on the same boundary. Having a set of equations equal to or greater than the number of material parameters enable the user to arrive at a solution.

However, in reality, the verification of the set of equations is approximate due to errors spewing up from the errors that occur during experiments and approximations of modelling [10]. This poses a substantial difficulty in arriving at a unique set of parameters. Added to this is the fact that with the present fullfield measurement techniques, it is often not possible to guarantee the availability of data on every single point on the surface of the body.

Displacement minimization method (FEMU-U)

The drawbacks of the force balance encouraged researchers to look into a different entity in order to compare the experimental and simulation data. The most prospective candidate that sprang up was obviously the objective to minimize the displacement between the experimental and the simulated results. This method is also known as the output residual method and is less strict in terms of having a complete full field of measurements in order for it to work, which makes it more attractive [20]. In this method, the known force {𝐹} ⃗⃗⃗⃗⃗⃗⃗ 𝐸𝑋𝑃 is prescribed on whole or part of the boundary of the finite element model [10]. The objective function is defined by the difference between experimentally measured nodal displacements and the simulated displacement by solving the finite element problem. The conditions of equilibrium and kinematic admissibility are automatically taken into consideration as long as the FE model converges and gives a solution. An iterative optimization scheme is needed to minimize the nonlinear objective function which keeps altering the model parameters 𝜉, and thus the simulated field of displacement {𝑢} ⃗⃗⃗⃗⃗⃗⃗ 𝐹𝐸𝑀 which in turn affects the objective function. This minimization can in reality be performed without the necessity of imposing any load constraints if they are not fully known [2].

However, it is advised to apply the load on the entire boundary and take great care of the experimental conditions, which renders the solution less susceptible to inaccuracies brought about by rigid body movement [10].

Mixed minimization method (FEMU-U-F)

Some other authors have worked on a further subvariant of this method which benefits from the advantages of both the above-listed variants. While the necessities of complete full-field measurement of FEMU-F can be bypassed, the method allows hybrid incorporation of displacement as well as force data on the part of the boundary. The goal lies in minimizing the objective function that is a mixed misfit function containing both the displacement and force terms. This methodology is often referred to as FEMU-U-F [10,12,21,22].

Data driven identification methods

Finally, state of the art in inverse identification of material response to a given loading is based on datadriven algorithms. One of the biggest challenges until now consisted of representing the mechanical response of thermoplastic materials with a single constitutive law that covers the entire range of large deformation and temperature. Data-driven algorithms look to circumvent this problem by proposing a model-free framework that uses a large database of force and displacement responses from mechanical tests considering various loading conditions [23]. This may be achieved by matching the mechanical states (or stress-strain couples) from a finite element solver and the material states from the experimental campaign while respecting equilibrium and compatibility conditions. This minimization scheme can be achieved by the use of artificial neural networks to reproduce known constitutive laws based on hyperelasticity or viscoelasticy [24,25]. Additionally, such methods can be used in the automated discovery of new interpretable constitutive laws by using a vast library of mathematical functions and applying regression to arrive at the final expression best representing the data [26]. However, one of the biggest setbacks of these methods is the high demand for computational power and the enormous amount of data required for training the algorithm. Different techniques to deal with sparsely available data exist in literature to expand the database, such as the lp regularization scheme [26] or linearization and shrinking schemes [27].

Ultimately the choice of the method to be employed depends entirely upon the experimental setup available, the experimental conditions, type of test to be conducted etc. Based on these criteria, a choice was made in this study to employ the FEMU-U method of inverse identification for the hyperelastic material parameters. The choice between the force balance and displacement minimization variant was made by focusing on the fact that indeed it is more difficult to ensure a complete full-field displacement data of the entire sample than it is to ensure the limitation of rigid body motion. For this purpose, a certain protocol has been defined during the inverse identification study to limit any sort of rigid body motion during the experimental tests. More on this is discussed in the following sections.

Optimization algorithms used for minimizing objective function

In general terms the word optimization appeals to everyone as it refers to finding the optimal set of inputs that either maximize or minimize the output (based on what the output is). For example, in a warehouse, inventory optimization could refer to the optimum way of stacking storage packages in order to maximize the available free space. Conversely, in the case of production, optimization can be the use of optimal production parameters in order to minimize the time and cost of production. Thus we see that depending on the circumstances surrounding the problem at hand, an optimization problem can be single-objective or multi-objective, etc. In the case of inverse analysis, optimization refers to identifying the specific set of material model parameters that reduce the error between the measured and the simulated data. For this purpose, an objective function mentioned in the previous section is defined, which is then solved by an appropriate algorithm to give the optimum set of parameters.

Mathematically speaking the objective function 𝜑(𝜉), containing the set of parameters 𝜉, which are constrained by a set of linear or non-linear constraints c, that impose the conditions of equality or nonequality among the set of parameters [5]. These parameters may themselves be bounded with limits in which they can vary. An example can be highlighted by equation: this study is detailed in the following section.

Sequential quadratic programming algorithm

Constrained optimization problems are often solved with sequential quadratic programming (SQP), which is an algorithm that is used to solve a set of equations known as non-linear programs. Presently one of the state-of-the-art methods in its field, SQP is known for its robustness and relatively lesser computational time [28]. The versatility of the algorithm lies in its applicability to be used in both the trust-region as well as the line search concept [29]. The requirement for the objective functions and their respective constraints is that they must be twice differentiable inside the domain of search.

The underlying principle behind the working of SQP lies in approximating the Hessian matrix of the non-linear objective function. It divides the problems into smaller sub-problems known as quadratic programming sub-problems which are subjected to the same sets of constraints at each iteration [28].

The solution to this problem gives the search direction and the size of the step for the next iteration. This is achieved by representing the problem in the form of a Lagrangian function L that contains the entire information of the objective function f, and the set of inequality or equality constraints denoted h and g.

Mathematically speaking, the problem is represented as:

min 𝑓(𝑥), subjected to ℎ(𝑥) = 0, 𝑎𝑛𝑑 𝑔(𝑥) ≤ 0 136

In the present study, the FEMU-U approach was considered as the choice of method. Being simple to set up with a DIC equipment, it is a more intuitive method to relate with a body undergoing deformation.

Utilizing the same mesh that is used in the full field measurements ensures the exact tracking of each and every point on the material. The SQP algorithm is particularly well adapted to handle non-linear problems such as those that arise during the FEMU-U of a deforming body. Especially for inverse identification of a two-parameter hyperelastic model, SQP is known to provide quick convergence rates.

Materials and methods

The The same protocol was repeated to conduct an experimental work that covers three temperatures of 105, 110 and 115 °C at a constant cross-head speed of 50 mm/min. Having a characteristic length of 61 mm of the sample in between the two clamps, resulted in a strain rate of 0.0136 s -1 . For each of the considered experimental conditions, a set of three specimens were tested. Thus, a total of 9 specimens were tested.

Figure 61 illustrates the stress-strain curves corresponding to a cross-head speed of 50 mm/min. Here S1, S2, and S3 refer to the three specimens. As can be observed from Figure 61, a significant difference between the experimental stress-strain curves was mostly observed at 105 °C. Indeed, the limited reproducibility can be hypothetically accounted for the residual stresses which are related to the manufacturing history of the used HIPS sheets. The target temperature of 105 °C, being relatively close to Tg of HIPS, could result in localized zones of disproportional relaxations of these residual stresses. At higher temperatures, once the residual stresses get mostly nullified, the stress-strain curves have much better coherence to each other, as can be observed at 110 and 115 °C. In the current study, it was deemed to focus mainly on the data corresponding to the tests S2 and S3 obtained at 110 °C. 

Evaluation of kinematic fields from Stereo DIC

The image correlation technique consists of guessing a hypothetical deformed image of the reference by the use of a deformation model and then using an iterative optimizer to find the best match between the reference (the non-deformed state) and the actual deformed image [31]. According to the conducted unidirectional stretching protocol, all the HIPS specimens which were initially flat were folded by the end of the imposed three minutes' latency duration. It is this folded state of each specimen at the moment of initiation of each stretching test that was considered as the first reference of stereo-DIC kinematic fields. DaVis software was used to post-process the stereoscopic images that were recorded during the unidirectional stretching. All stereo-DIC computations considered a virtual gauge which covers the largest accessible domain of the specimen (see Figure 62). The used subset and the step-size corresponded respectively to 19×19 pixels and 9 pixels that was also used for post processing the stereoscopic recordings of Chapter 4. The choice of subset selection is given in detail in Appendix 2. As the deformations of the HIPS specimens were large (>100 %), the sum of the differential method was considered to conduct the image-correlation computations [7]. It consisted in evaluating displacement vectors at a time increment tn by summing all the elementary increments of displacement vectors evaluated between the time increments ti and ti+1. Where 𝑖 ∈ {0,1,2, … , 𝑛 -1} and t0 corresponded to reference of times attributed to the reference state of image-correlation computations. We can clearly see from Figure 62b that as the stretch level increases the speckles deform further and further losing their black and white contrast. This is evident from the fact that the histogram of the pixels according to their grey level, shows that for stretches λ = 1.2 and 1.4 the darker grey level pixels get attenuated and more pixels attain an intermediate grey value. In the realm of stereo DIC a loss of contrast results directly in poor correlation of the deforming pattern which may lead to erroneous full field measurements [15]. Hence, it was decided to limit the inverse identification to a maximum stretch level λ = 1.4 in order to guarantee appropriate correlation. In this study, the main focus was attributed to displacement vectors as output of the image-correlation computations. Figure 63 (at time = 39.2 seconds) with respect to reference 1 enables to obtain the displacements along the global X, Y and Z directions of the common Cartesian referential of the stereoscopic cameras. It can be observed from Figure 63 that the out-of-plane displacement that the surface is no longer flat but a curved one. In fact, the surface has a double curvature along both the X and Y axes as observed from Figure 63c Naturally when the load is initially applied the specimen doesn't undergo purely extension but rather unfolds its curvature along the 2 axes mentioned before. Once the surface becomes quasi-flat, it is then that the pure extension begins. Therefore, during this duration, the strains so obtained are a partial combination of extension and rigid body motion. Hence, it is deemed necessary to omit this part from the post processing as it would lead to errors during the inverse identification. Consequently, a second reference of stereo-DIC computation was defined. This new reference state is referred to as reference 2.

It is thus defined as the point of time after the beginning of the loading at which the surface becomes quasi-flat.

Matching the Stereo DIC and FEM meshes

For the purpose of inverse identification all the full field displacements have been exported to ABAQUS from the DIC software. It is important to note that since the FE mesh is exported directly from the DIC software, the same nodes defined in the stereo-DIC software were used by the FE solver. The fineness of the mesh is dependent upon the step size chosen. As the DIC software imparts the full field displacement data on the subset centers, it is these points that become the respective nodes in the ABAQUS file. Therefore, the chosen step size influences greatly the fineness of the mesh and thus also the computational time of simulation. So our experimental field for the inverse analysis consists of the nodal displacements (U, V, W) with respect to reference 2 along the three coordinate axes.

To replicate the same in the FE model, the experimental displacements were defined as boundary conditions at the nodes in the direct vicinity of the clamps. Thus, only the nodes at the top most and bottom most 3 rows were considered for defining the boundary conditions. These are referred to as the control lines, containing the information from the experimental displacements and hence would mimic the action of the clamps pulling the specimen. Figure 64 illustrates the control nodes marked in red in Figure 65: Flowchart of the FEMU-U inverse identification procedure considered in the study [1] In the current study, the objective function 𝜑 is expressed in Eq. 139 as function of displacement fields. Moreover, the difference in magnitude for C1 and C2 values obtained from two kinematic fields at similar stretch levels for the same experimental condition indicates a significant dependence with the considered experimental fields. Indeed, there is an effect of the selected region of interest (ROI) in the spatial configuration or the global coordinate system as this affects the final expression of the objective function, which in turn affects the minima of the function and thus the identified optimum parameters.

Robert et al. [17] shared the same viewpoints during their inverse identification of hardening parameters of aluminum alloy. They reported that depending upon the area that was chosen for obtaining the full field of displacement in the objective function, as much as 5% of discrepancy was obtained for the parameters. However, in our case, ensuring the same ROI in between two different specimens at the same testing conditions does not prove to be trivial as each specimen folds into the double-curved surface under the influence of heat. This is a result of the relaxation of residual stresses for that specific sample accumulated as an outcome of the material processing history and is not feasible to control. The use of the same ROI in the global coordinate system is limited throughout all the tests.

Another key factor affecting the identified parameters is the presence of noise and bias error that may be introduced into the experimental data due to external factors. As discussed in chapter 4, carrying out DIC in a high heat environment risks the introduction of errors brought about by changes in the refractive index. In our case of inverse identification, and in general, for the implementation of Stereo DIC in thermoforming, the reference image is taken in a heated environment where the heat-induced effects are already manifested into it. Siddiqui et al. described that such noise in the measured displacement field can cause problems in the convergence of the FE problem and also result in the iterative solver getting stuck at a local minimum [4,6].

Finally, there was no clear evolution (either increasing or decreasing) of the identified parameters with respect to a change in temperature. Erner [32] reported the same difficulties in the inverse identification of parameters of G'Sell model for polystyrene (PS). They concluded from their results (shown in Figure 67b), that the evolution of the parameters based on temperature was non-unique. Additionally, they state that the interpolation or extrapolation of the evolution of these parameters based on this data would be critical. The identification procedure is delicate, and the solution is highly dependent on the protocol used. Keeping into mind all of these conclusions, one can speculate that the current method is dependent on the accuracy of the stereo-DIC computations, the thermal history of the tested specimen as it affects the folding of the speckled surface during the heating latency duration, and the deformation level of the initial speckle. 

Conclusions

The conducted work demonstrated the capability of using Stereo DIC with the FEMU-U method to identify the parameters of the MR hyperelastic model. Under isothermal conditions at temperatures higher than Tg, the stereo-DIC was able to detect the existence of the double curvature effect of HIPS specimens. Such change of the initial boundary conditions of the unidirectional stretching problem corresponded to an initial unfolding deformation that can be approximated to a rigid body motion of the specimen before the effective stretching takes place. Such an effect imposed the need to define a twostep post-processing procedure using the image correlation algorithm by defining a second reference of the kinematic fields.

The potential of the considered hybrid approach lies within its ability to characterize the hyperelastic behavior of thin HIPS samples. However, caution should be undertaken during the experimental campaign of collecting the full field data as numerous challenges present difficulties in obtaining a unique solution of the FEMU-based inverse identification. Indeed, the quality of the results depends not only on the experimental noise but also on the thermal history of the material and well-chosen parameters for post-processing the full-field data (subset, step size, ROI).

Despite this, the stereo-DIC technique can be of important interest to feed an inverse identification procedure. Additionally, it provides much important and rich information based on the local heterogeneities of strain data in multiaxial large deformation problems such as thermoforming. This ensures the accurate representation of the type of loading for each material point which can be later exploited to understand the thickness profiles of thermoformed parts. This shall form a core element in the following Chapter 6, where the information from an online stereo DIC is the key in obtaining frictional parameters regarding the FE simulation of thermoforming.

Introduction to thermoforming simulation

With the ever increasing demand for the thermoforming market as explained in Chapter 1, more and more materials are being involved in the process. The biggest focus in this regard comes on the proper implementation of a circular economy by recycling conventional thermoplastics that can be subsequently thermoformed. Furthermore, a large domain of interest lies within the implementation of bio-sourced and bio degradable materials in this process, especially in the food packaging industries.

One cannot overlook the underlying fact though that any form of introduction of a new material, whether recycled or bio-sourced, necessitates the prior mastering of the thermoforming process. This is the key behind the motivation of this project that looks to cut down some of the assumptions used in the present day methodologies in order to ameliorate the understanding of the process.

The advent of simulation tools has no doubt advanced our capabilities in this regard by a huge margin, saving precious time and money involved in prototyping tests conducted previously. Nonetheless any powerful tool is just as good as the user behind it, which holds true for such software as well. Ultimately the objective of these tools is to bridge the gap existing between the simulations and the actual thermoforming results. This proves to be tricky as the user is presented with the dilemma of choosing between precision of material models and taking into consideration the complex reality of the industrial environments during simulations. Regardless of the simulation tool used some of the assumptions should be classified before modelling the process:

(i) The choice of a material model to characterize mechanical responses (ii) The incorporation of real boundary conditions from the thermoforming machine (iii) The understanding of heat-transfer between sheet, plug and the environment at the end of the IR preheating stage (iv) The consideration of contact properties including the friction between the plug and the sheet As specified in Chapter 1 (section 1.4) the current work is focused on the forming stage which takes place after the IR pre-heating in a plug-assisted thermoforming process. Besides the challenge of accurately representing specific parameters to be used in the simulation, it is often difficult to establish a connection between the process parameters and ones that go into simulation. Naturally the user is often bound to take into consideration simplified assumptions that affect the simulations in the minimum possible way while guarding the computational efficiency and the accuracy of results. This can be manifested in several forms varying from case to case (Temperature homogeneity throughout sheet, neglecting zone specific type of loading on sheet, neglecting warpage and sag of sheet as initial boundary conditions, considering absence of friction etc.) as mentioned in Table 2 of Chapter 1. The reliability of the data (such as constitutive model parameters, specific heat capacity, coefficient of friction, yield strength etc.) being fed to a numerical solver (which can be considered as a blackbox) is decisive to get physically reasonable results from the simulations. Having an accurate simulation tool can then be made part of optimization cycles where in the process parameters (such as heating time and temperature, plug speed or plug force, cooling time etc.) are fine tuned to achieve the desired quality of product performance while reducing manufacturing time.

A fundamental aspect in this study was to incorporate the use of digital image correlation during the process of thermoforming in order to have an on-line recovery of full-fields of displacements and strains that the material is undergoing during positive plug assisted thermoforming. This concept of instrumentation has recently been applied to plug assisted thermoforming and bubble inflation in other doctoral works [1][2][3] where in the Stereo digital image correlation (Stereo DIC) was conducted to obtain full fields data of the thermoforming sheet in order to have a comparative study between finite element simulations and experimental results in terms of principal strains, thicknesses and out-of-plane displacements. The current work looks to go a level deeper into testing the ability to extract maximum possible information from a thermoforming process, by installing in situ equipment (such as infrared thermography cameras and Stereo DIC), in order to facilitate the choice of realistic process parameters for simulation. A particular emphasis is laid on to the contact properties of friction which need to be meticulously considered during simulations as it has a profound impact on the final thickness of the thermoformed product.

The chapter is divided into two main categories. The first category consists of the experimental part which deals with the characterization of the material, setup of equipment, the protocol followed for the test and the process parameters considered for the thermoforming cycle. The second category consists of the numerical part that consist of incorporation of the full field data of strains and thermal fields, assigning the appropriate material parameters, imparting appropriate boundary conditions, setting up the finite element simulation and calculating the results.

Experimental campaign

Sheet material used for thermoforming

The material used for the thermoforming was the same HIPS grade reported in Chapter 5. For preparing the sheets to be used in the thermoforming equipment, they were cut to a smaller rectangular size of 350×250 mm 2 . Differential scanning calorimetry was conducted on the sample in order to find the glass transition temperature (Tg) of the said material. A sample of 7.25 mg was heated from 30 °C to 140 °C with a heating ramp of 3°C / min. The temperature is maintained at this level for 1 minute before cooling it back to 30 °C at the same rate. This cycle is repeated twice in order to remove any thermal history that may be incorporated during the manufacturing process. The Tg is thus taken from the second heating run, which indicates a value of 96°C as indicated from Figure 68. As can be seen from the plot, the standard deviation of the values is higher towards the lower temperatures. This can be explained from the fact that at lower temperatures of 100-105°C, the specimen is in the glass transition zone, and is undergoing relaxation from the residual stress built up during the material production. This zone being highly sensitive to even small changes in temperatures in terms of mechanical properties can result in localized zones of disproportionate relaxation. The resulting Young's modulus may vary largely from one sample to another. At higher temperatures the mechanical response is less sensitive to small heterogeneities in temperature and hence shows smaller standard deviation.

This phenomenon was also explained in Chapter 5. Secondly it is also observed that at higher temperatures of 120 °C, regardless of the strain rate used, the resulting modulus converged to a very small modulus value in the range of 0.4 MPa. Similar results

were observed from the work of Atmani and Abbes [4].

Material used for Plug

The plug used in the study is a 3-D printed plug using Somos® PerFORM material which is a high temperature resistant thermoset having the capability to provide unmatched detail in surface resolution.

This makes it an ideal material for creating strong stiff parts in tooling such as thermoforming plugs, injection molding etc where the material is expected to withstand high impact forces. The technical data sheet of the material can be found in Appendix 4. The final plug shape is in the form of a truncated square pyramid with chamfered edges on the top face as shown in Figure 71. 

Equipment used for thermoforming study

Thermoforming operations were conducted on an Illig KF G30 machine equipped by a single top heating bank. To insure temperature control, the machine was instrumented by a PI 640i infra-red camera from Optris and a series of eight k-type thermocouples connected to a labView interface (Figure 72). The considered HIPS heating sequence corresponded to a 22 seconds long infra-red pre-heating step to bring the HIPS sheet to almost 130 °C. Representative data from the infra-red camera as well as the thermocouples are provided Figure 73. In function with the subset and step size chosen, the generated input file contains defined nodes on which the full fields of displacement are provided as a boundary condition. Therefore, the raw Abaqus file contains the coordinate positons of the nodes on the mesh, their respective displacements in terms of boundary conditions, and the element (sheet elements S4R) definition formed by each of the nodes. The protocol adopted in this study looks forward to assign individual material constitutive model to each of the mesh elements. Some of the assumptions that have been used in this study for the numerical simulation are:

(i) Quasi instantaneous deformation of the sheet by the plug which assumes that there is no thermal dissipation in the limited short time between the plug and the sheet.

(ii) The thermal gradient through the thickness of the sheet as stated earlier is ignored during the numerical simulation.

(iii) No dissipation of temperature is considered on the sheet surface to the surroundings in between the time that the heaters are retracted and the plug touches the sheet.

(iv) A decoupled thermo-mechanical simulation is carried out where only the mechanical deformation part is modelled with respect to step time without changing the temperature through time.

This task is broken down into several components as it is undertaken step by step.

Thermal field assignment

The first component consists of post processing the thermal fields in order to assign each element with a respective temperature. The resulting thermal field from the IR camera is given in the form of a matrix containing 640 × 480 elements that correspond to the temperature at each pixel. As can be seen from Figure 75, the plane of the sheet is at a skewed angle with the optical axis of the camera. Having multiple data acquisition system hinders in and around the thermoforming machine renders it difficult to ensure that the camera's optical axis remains perpendicular to the sheet. This is resolved by using a projective transformation using Matlab to correct the skewed thermal field based on a geometric criterion to align the edges of the sheet with the horizontal and vertical boundaries of the image without inducing any excessive out of plane distortions.

For this purpose, first the edges of the sheet are detected using the Prewitt algorithm. The algorithm is based on the approximation of the gradient of the image intensity function. It uses a 3 × 3 kernel in order to detect the changes in the image intensity gradient in the vertical and the horizontal direction. Any abrupt changes in the gradient reflect the chances of the pixel lying on an edge as compared to a smooth change. A threshold is then defined which controls the magnitude of the allowable difference in the gradient in order for it to be categorized as an edge. The resulting image using the algorithm is shown in Figure 75. Then using the detected edges the alignment is carried out based on in-plane rotation of the edges to obtain the final thermal field that is perpendicular to the focal axis of the IR-camera as shown in Figure 76.

Next, in order to correlate the points on the thermal image to the full field of displacement captured by the stereo DIC system it is necessary to have the same referential across both the systems (IR and stereo-DIC). Defining a common origin for both the systems will make sure that any material point on one of them can be located on the other. During the calibration operation of DaVis, an origin is defined on global coordinate system based on the cross correlation of the stereo system and the origin on the sensor coordinate system of each camera (explained in Chapter 4). Every coordinate point is expressed by the stereoscopic system with reference to this origin. Thus the centroid or the geometrical center of the zone is given by Eq. 140.

𝑋 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 = 1 𝑁 ∑ 𝑋 𝑖 𝑁 𝑖=1 ; 𝑌 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 = 1 𝑁 ∑ 𝑌 𝑖 𝑁 𝑖=1 140 
Where, N is the number of nodes in the zone of maximum displacement and 𝑋 𝑖 , 𝑌 𝑖 are the coordinates of the i th node. Once the center of the sheet is located on the full field of displacements this shall be coincided with the position of the center of the sheet from the IR thermal measurements. For this purpose, the origin of the IR field is adjusted so as to be at the same position as that from the stereoscopic measurements. As previously stated the sheet size used for thermoforming was 350 × 250 mm 2 . While this entire sheet is represented in the thermal field by the 640 × 480 pixels, we have a ratio of 1.89 pixel/mm for the X direction and 1.92 pixel/mm in the Y direction. This interconversion ratio between the stereoscopic and the IR field helps to shift the origin in the IR field and define an updated origin based on the relative location of the origin with respect to the center of the sheet as identified in both the systems. The thermal field with the updated origin is shown in Figure 78b. The zone of the sheet that is observed by the stereoscopic recordings is marked by the black dotted lines.

With that operation being done, every single element defined in the Abaqus input file can now be accurately tracked back on to the thermal field. The centroid of each element is located on the thermal field via the interconversion ratio and the temperature at this point is assigned for material characterization of that element. 

Strain rate assignment

Once the information of the temperature associated with each element is obtained, the next step involves in associating a strain rate to each of the elements. As the constitutive behavior of the HIPS sheet is described by both the temperature and strain rate it is only imperative to assign a strain rate to each element just as that for its temperature. In order to calculate this the forming time used in the thermoforming cycle needs to be ascertained. This is done by using the stereoscopic measurements where the out of plane displacement is plotted against stereoscopic time. It is given that the out of plane displacement starts as soon as the plug starts to make contact with the sheet and stops once the moving plateau reaches its maximum height. The intersections of the tangential lines are designated as the end of forming time. As can be seen from Figure 79, the forming time is identified as 0.6 seconds.

Figure 79 : Out of plane displacement of the sheet due to the plug movement along time

Next from the stereoscopic recordings the information regarding the maximum in plane principal strain is obtained. On an element level the principal strain is the direction or orientation in the material at which the normal strains are at its extreme while the shear strains are zero. Thus the strain rate essential to characterize the material constitutive behavior can be obtained by dividing the maximum principal strains by the forming time thus identified. It should be kept into mind that the value of maximum principal strains from LaVision Davis is given in terms of logarithmic strain.

The cloud of strain points at the end of the plug-assisted forming step as obtained from the stereo-DIC system is shown in Figure 80 based on the maximum and minimum principal strain of each element.

Strain points in the first quadrant containing positive values for both maximum and minimum principal strain represent zones undergoing biaxial extension (zone in contact with the plug). On the other hand, the point near the contact zone with the plug corner (triangle) undergoes less maximum strain at 0.3 seconds in the principal direction than the far away points (rectangle and diamond). However, a change is observed as the sheet continues to get stretched by the plug until 0.6 seconds. Finally, between the two faraway points (rectangle and diamond), the one closer to plug experiences more strain as the time elapses due to the fact that the zone immediately after the plug contact undergoes extensive thinning than around the edges. This is because this region falls in between two regions of quasi-fixed contacts, the one in the center with the plug and the other at the edges with the clamps.

Before the strain rate is calculated for each of the elements from the full field maximum principal strain measurements, a Gaussian filter is applied over the entire full field data in order to smoothen it. The purpose of applying the filter is to remove any noise that can lead to a sharp change in the maximum principal strains at a local position. This could lead to a sharp change in the material properties between two adjacent elements that can further cause severe mesh distortions. Smoothening the maximum principal strain ensures that this change in strain rate is gradual from element to element and thus there is no sudden change in the material properties.

The full field displacement data is treated with a Gaussian kernel with a default size of 3 × 3 pixel and a standard deviation of 0.5. 

Material property definition

The most challenging task in the considered simulation strategy of thermoforming lies in the appropriate definition of the model parameters to be assigned to the thermoplastic sheet. The heterogeneity of temperature and strain rate distribution over the sheet ensures that a realistic simulation would require zone-wise definition of material property on the sheet with individual temperature and strain rate pairs. Since it is practically not possible to experimentally characterize the material for every possible pair of temperature and strain rate, interpolation techniques need to be undertaken from the experimental data that is available. The experimental campaigns that have been already carried out during the course of this study constitute a rich database which can be used for generation of statistical data via 2D interpolation techniques. A few interpolation techniques have been tested for this purpose.

Two dimensional surface interpolation

The 2D surface interpolation enables to interpolate surfaces, that have been defined by a fixed number of points on a grid, at intermediate location on the grid. Thus a surface formed by an initial coarse grid can be interpolated on a finer grid by using such techniques. While this can be handy, a physical interpretation of such interpolated surfaces are necessary post this operation in order to check that they adhere to the physical reality of the material behavior. To proceed with this operation, the stress strain characteristic curves shown in Figure 69 is broken down into strain (ε engg ) levels of 0.1. Thus for each level of strain an associated stress value can be identified for a particular pair of temperature and strain rate. Given the four temperatures and five strain rates that form the experimental database, a total of 20 possible combinations are used to create an extrapolated grid in order to feed the interpolation scheme.

If the X axis represents the temperature and the Y axis represents the strain rates, a surface can be defined Thus using the spline interpolation violates the constitutive laws of thermoplastic material behavior which limits its use in our study. The modified Akima hermite interpolation on the other hand has the versatility to use a combination of different degree polynomials including 1 st order linear equation (as compared to only cubic equations for spline) that reduces the undulations that result in between two successive data points. Figure 88 shows the stress surface using this interpolation method at the two chosen strain levels. As can be seen from Figure 90, the spline interpolation has a larger area of the curve in the negative slope domain than the modified Akima interpolation. This confirms our assertions of the modified Akima interpolation representing a more realistic stress surface than the spline interpolation despite the fact that even this interpolated surface contains regions of decreasing stress values in the direction of increasing strain rate. 

Kriging interpolation

Kriging is a form of spatial interpolation tool that is frequently used in the field of geosciences for weather forecast, mining geology, elevation surveying etc. The approach is based on Gaussian processes which uses the property of marginalization and stationarity of a Gaussian process [5]. It attempts to interpolate and create a continuous spatial field given some sparse input data. It is stochastic in nature where the estimated values at one of the query points depends on the values at the closest neighbors among the available data [6]. The interpolated values are called the best linear unbiased predictors (BLUP) because not only does the method give the value but also a probability of the data being accurate at that point. The bias is reduced in the predictions by associating weights to the input data based on their distance from the query point in question. Farther the point lesser is the weight associated to it.

Thus the weights defined by this spatial autocorrelation (statistical relations within the input data) of the variable, considers the arrangement of the entire data set.

In principle, a semi-variogram is plotted that contains the squared difference between the measured values in the Y axis and their spatial distance in X axis. By fitting this semi-variogram with an appropriate model, a continuous function is obtained that gives a prediction at the unsampled locations based on their distance from the known ones [7]. Among the several variants, the two principal ones are simple kriging and ordinary kriging. In simple kriging it is assumed that the mean and variance of the given data are known and taken as constant over the spatial field. However, the mean is often unknown and needs to be calculated as well. Hence simple kriging, though computationally faster than the other, is limited in its use for geospatial interpolations. Ordinary kriging on the other hand relaxes such assumptions by letting the mean and variance to change at different locations based upon the spatial distribution of the data. For our study, the kriging model is carried out with the initial set of 20 data points in order to interpolate on the 31 × 31 grid between temperature and strain rate. The resulting variogram has been fitted with a 'stable' model [8] which is a modified version of the Gaussian variogram containing different exponents. The interpolated stress surface for the two strain levels 𝜀 𝑒𝑛𝑔𝑔 = 0.1 and 0.4 are shown in Figure 91. It can be observed that akin to the modified Akima hermite interpolation, the surface has less undulations as compared to the spline fit. This is confirmed by the strain rate sweeps performed at every 2.5°C just as in the case with the previous two interpolations. It can be seen in Figure 92 the interpolated lines are linear in nature and do not contain any undulation whatsoever due to the absence of polynomial functions as is in the case of spline and modified Akima interpolation fits. However, it is observed that for the kriging interpolation the interpolated surface fails to pass through the original data points for multiple test cases. As evident from Figure 92, the curves for temperature of 110 °C and 115 °C do not pass through the provided experimental data at the different strain rates. Only the at the two extremum temperature cases of 105 °C and 120 °C does the interpolation pass through all its data points. This trend is observed for the both strain levels ε engg = 0.1 and 0.4 which provides a challenge in adopting this interpolation technique. To highlight the ability to regenerate the tested data, stress strain curves were created using both the interpolation techniques for the case of 110 °C (given previously in the Figure 202 69) at the 5 tested strain rates along with 4 intermediate ones at strain rate values midway between two tested strain rate values. This is shown below in Figure 93.

As observed from Figure 93 in the case of the 0.013s -1 strain rate (marked in green circles) we see that the kriging interpolation starts to deviate from the experimental data post the 0.8 strain mark. On the contrary, the modified Akima interpolation sticks to the experimental data through-out the strain range.

This fact coupled with the efficiency demonstrated in the strain rate sweeps confirms that the available data is more suitable for interpolation using the modified Akima curves than stochastic methods such as kriging. Abaqus contains an added feature wherein the material data can be input as a uniaxial test data containing stress vs strain points. A curve fitting is then conducted by the software to fit with a respective constitutive law as chosen to identify its model parameters. In our case a hyperelastic Mooney Rivlin law is chosen as already explained in Chapter 2. In this method of material definition, the incompressibility of the material is attributed by defining the Poisson's ratio for the material.

Thermoplastic materials are conventionally modelled as incompressibile or quasi-incompressible material where it is assumed that the deforming body doesn't undergo any volumetric changes. 

Material property assignment

Once the material constitutive behavior is defined in terms of stress strain response individual elements are assigned with their respective constitutive properties. A temperature and strain rate was identified for each of the elements by locating its centroid on the IR thermal and max principal strain fields. In order to allocate them to the respective elements, an element set is created for each of the 17904 S4R sheet elements present in the FEM input file. Next a section property is assigned to each of the element by allocating the respective material behavior for its specific temperature and strain rate pair. The thickness of the sheet elements is defined as 1.5 mm thick. For assigning the material behavior the temperature and strain rate is broken down into intermediate intervals. The temperatures and strain rates that fall within that interval are all assigned with the same tag. Table 28 highlights the intervals of temperature and strain rate and the corresponding tag used for defining the material. The material behavior, described in the previous section, which has been written in the input file are named with these tags. Table 29 shows the name of each material which is thus formed by a pair of the temperature and strain rate. 

Boundary condition definition

After defining the material models and assigning them to the respective element sets, the boundary conditions of the finite element model needs to be defined. It should be noted that the full field of stereoscopic measurements give the individual nodal displacement already defined as a boundary condition in the Abaqus input file.

The initial mesh is reconstructed based on the surface created by the reference image that was used for the stereoscopic post processing. In our case this is the image that gets recorded immediately after the heaters are retracted. Thus the surface state at this point is automatically integrated into the input file due to which the initial surface is not flat but contains the warped surface that results post heating. The boundary conditions given in terms of nodal displacement are described from this warped state and not the initial flat state of the sheet. The objective of this part of the pre-processing of the input file is to only keep these in situ nodal displacement values in the zones near the edges of the observable domain of the sheet and to omit the ones on the remaining nodes (central zone). The displacement on these nodes shall be obtained from simulation given the presence of the prefixed displacements on the nodes close to the edges. The initial reference surface after reconstruction inside Abaqus can be seen in Figure 95. The upper side of the generated surface is towards the retracted heater while the bottom side is towards the stereoscopic cameras and the user. This is the reason why we observe a missing patch on the top left corner, where the stereoscopic recordings failed to correlate owing to the presence of the heater handle which blocked its view. The DIC system thus allows taking advantage of incorporating the in situ actual boundary conditions and initial surface conditions inside the FEM simulations instead of the conventional approaches where the sag is assumed negligible and boundary conditions along the edges are taken as perfectly clamped. The full field deformed surface obtained from the DIC system is given in Figure 96 along with an illustration of the sagged surface during the heating phase. 

.Scientific context

Friction plays an important role in the finite element simulation of positive thermoforming as the contact between the plug and the sheet determines the amount of sliding that the sheet experiences as the plug 208 continues to move inwards into the sheet. Having a higher coefficient of friction between the plug and the sheet would lead to a sticky contact that prevents sliding at the zone of contact and hence stops the thinning in this zone. On the other hand if the friction coefficient is low, the sheet continues to slide post the contact and hence thinning occurs mostly at the zone of contact [4,9]. Hence the overall thickness distribution of the thermoformed product is highly dependent on the friction coefficient chosen and hence affects the quality of the product.

Several studies have been conducted into the effective consideration of frictional properties in simulation of thermoforming. Morales et. al [9] studied the effect of temperature on the coefficient of friction between high impact polystyrene / polypropylene sheets thermoformed by an aluminum / steel plug. They concluded that the friction coefficient stayed within a range of 0.6 -0.9 for HIPS for both plugs in a temperature range below the Tg and up until 115 °C. Post this temperature a sticky condition prevailed and they reported the possibility of the friction coefficient exceeding value of 1. They also showed that the velocity of the slippage seemed to have a very nominal effect on the frictional coefficient. Bernard et al. [10] and Bellet et al. [11] used the values of friction coefficient (0.7 with a felt plug and 0.4 with a metal plug respectively) from literature to define a Coulombs law of friction for a plug assisted thermoforming simulation. Erner [12] studied exclusively on the effects of frictional coefficient varied with sheet temperature and velocity of traction. The used a torsional rheometer to characterize the frictional coefficient in between the felt material and HIPS. They reported a value of 2.5 for 120 °C and 7.7 mm/s traction velocity for a normal force 10N. To incorporate the effect of temperature on the coefficient an Arrhenius equation is used. They concluded that the cooling of the sheet at the zone of contact with the plug plays a very important role in determining the effective amount of sliding that occurs upon contact with the plug.

Similar studies were carried out by Marathe et al. [13], Collins et al. [14] and Hegemann et al. [15] where they studied the effect of temperature on the coefficient of friction of HIPS against polymer plugs using a torsional rheometer. Their common conclusion rests on the fact that the coefficient of friction rests in the vicinity of 0.5 -0.7 below the Tg of HIPS but shows a drastic increase post this temperature and upto values as high as 3 for 130 °C. Figure 99 gives the static and dynamic coefficients of friction as a function of temperature for a polymeric plug against HIPS sheet as observed by Hegemann et al [15].

Figure 99 : Static and dynamic coefficient of friction for HIPS against polymeric plug with increasing sheet temperature [15] In literature the most common technique used to determine the friction properties between the plug and the thermoforming sheet appears to be the use of torsional rheometers, or in house developed tooling that allows the sliding of two surfaces while under a specified load. This experiment is either repeated under different controlled temperatures of the sheet material to have a frictional law that varies with temperature. Or it may be used as an input at a reference temperature to be modelled into an Arrhenius equation containing the required temperature and its consequent friction coefficient. Nonetheless, such experimental setup is quite challenging and maybe limited in terms of feasibility of carrying out in the industry.

Moreover, friction is a surface property rather than a material property. Despite the fact that a friction coefficient is obtained between a plug material and a thermoforming sheet material, it doesn't imply under any circumstances that the same magnitude of friction will occur upon thermoforming with this pair on an industrial scale thermoforming machine. It is indeed the surface rugosity of the actual plug used on the line that will determine the friction coefficient. In fact, a same plug might not have a fixed frictional coefficient against a particular material as it is repeatedly used over time. The smoothening of the surface of the plug as a result of several thermoforming cycles would affect the friction coefficient between the surfaces under contact and hence needs to be re-evaluated. Secondly, the testing of the friction coefficient occurs under controlled temperatures where the surface temperature at the interface between the sheet and the plug can be assumed to be isothermal. However in reality, under thermoforming conditions it is rarely the case as industrial scale thermoforming machine have large amount of temperature heterogeneity on the sheet as has been shown in Figure 76. As already established friction is a function of the interface temperature and hence using the coefficient of friction from experimental campaigns of isothermal conditions can be a strong assumption.

In this study, a different approach is provided in order to determine the actual friction coefficient between the thermoset plug and HIPS sheet used during positive thermoforming. A manual iterative procedure is carried out by updating the friction coefficient in order to evaluate the final thickness profile of the sheet, and thus determine the actual friction coefficient between the surfaces from the experimental thickness data. As the amount of friction affects the thickness of the part of sheet under contact with the plug, the objective is to reduce the difference between average thickness of the part of sheet that is under contact with the plug in the simulation and as obtained from the experimental measurements. The advantages that this method brings is that firstly the frictional coefficient is identified between a specified plug and a specific sheet material for a particular thermoforming equipment. Secondly the temperature heterogeneity of the sheet is already englobed in the manual iterative procedure as the finite element model has been created considering the heterogeneous distribution of temperature wherein separate material behavior has been described for each element. A universal friction of coefficient shall thus be identified for the plug and the non-isothermal sheet. This approach is proposed as an easy to implement procedure for most industries that look forward to carry out simulation of thermoforming.

Definition of Coloumb friction coefficient

Before the finite element model is launched for the determination of the friction coefficient, the interaction between the plug and the sheet is defined in the finite element model. Finite sliding is defined in between the slave surface (sheet) and the master surface (plug). A surface to surface discretization method is used that ensures that the nodes on the master surface interact with a cluster of nodes centered around it on the slave surface. A hard contact is established for the normal direction behavior in the interaction property. The tangential behavior at the interaction was modelled with penalty friction formulation. It relies on the basic coulomb friction model as given by the Abaqus documentation [16].

The law relates the maximum frictional shear stress across a contact surface between two bodies as a function of the contact pressure between them. The equation is given by Eq. 142:

𝜏 𝑐𝑟𝑖𝑡 = 𝜇. 𝑃 142 
Where, 𝜏 𝑐𝑟𝑖𝑡 is the critical value of the frictional shear stress beyond which the surface stars to slip or slide relative to one another, P is defined as the contact pressure exerted in between the surfaces and 𝜇 is the friction coefficient. In the penalty formulation the value of 𝜇 is directly entered by the user. It is this parameter that will be determined using the developed simulation procedure based on real experimental data of thickness distribution of the thermoformed sheet.

Objective function

The objective function to be minimized is based on the thickness distribution of the thermoformed part.

For this purpose a mid-section parallel to the X axis was chosen, similar to what was conducted in Figure 84 to obtain the strain rate distribution across this section. The thickness along this section is obtained from both the experimental data and simulated one. In order to calculate the experimental thickness of the sheet the information from the full field of maximum and minimum principal strains is used according to the formula proposed by Van Mieghem et al [17]. It states that for logarithmic principal strains, the thickness at any point is given by Eq. 143.

𝑡 𝑓𝑖𝑛𝑎𝑙 = 𝑡 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 . 𝑒 -(𝜀 𝑚𝑎𝑥 +𝜀 𝑚𝑖𝑛 ) 143

Where, 𝑡 𝑓𝑖𝑛𝑎𝑙 is the final thickness at a point given initial thickness 𝑡 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 , maximum principal strain 𝜀 𝑚𝑎𝑥 and minimum principal strain 𝜀 𝑚𝑖𝑛 at that same point. The zone of contact with the top surface of the plug and the sheet as observed from Figure 78 Where, 𝑡 𝑀 𝑒𝑥𝑝 is the mean experimental thickness along the mid-section for the range M that is described in between x = -34.14 mm and 36.36 mm, 𝑡 𝑀 𝑛𝑢𝑚 (𝜇) is the mean numerical thickness dependent on the friction coefficient(𝜇), along the mid-section for the same range.

Elastic slip definition

In Abaqus a tweaking parameter exists to control the amount of slip occurring in contact problems involving sliding of one surface over another. The term elastic is attached to it because of the fact that a plot of the frictional shear stress vs the total slip is analogous to the elasto-plastic constitutive behavior of a material. It is shown in Figure 100. As can be seen from the thickness distribution the simulated thickness follows a similar profile to that of the experimental one. However, the simulation seems to be not fully efficient in capturing the two zones immediately after the top edge of the plug on both sides, which undergoes the most thinning. The reason behind this can be assumed to be the fact that by default the stereo correlation software exports the Abaqus input file containing S4R sheet elements. This type of element definition inside Abaqus contains no intermediate node along the direction of thickness. Oueslati [1] conducted similar simulations of thermoforming experiments where he studied the effect of different element types based on the number of nodes in their thickness direction. They concluded that the S4R elements are less capable of capturing the full extent of thinning as compared to other element types such as SC8R continuum 8 node hexahedron sheet elements due to the added flexibility of adding additional nodes in the thickness direction. In our case though this is limited as the element definition is prefixed by the generated Abaqus input file from the Stereo-DIC software. Secondly, on the top surface of the simulated thickness, we observe some fluctuations in the continuity of the thickness profile. This could be caused due to the varying material behavior as a result of the heterogeneous thermal distribution on this region.

Similar fluctuations although smaller in magnitude can be observed in the experimental profile as well.

Thus the thickness comparison also reveals that the actual value of friction is higher than the last converged friction value.

Even though from the determination of the friction coefficient the developed procedure doesn't reach to the point where the average thickness in the central part of the sheet in contact with the plug for the simulated part is identical to the experimental one, an extrapolation of a curve fit could potentially help different local material responses at different points on its surface. Moreover, depending on the plug shape and the plug velocity / force used, different zones on the sheet undergo different modes of loading.

Conventionally in simulations, temperature dependent material behaviors are assigned to the entire region of the respective sheet that is archetypal of only a single combination of temperature and strain rate. The limit is related to the non-consideration of local heterogeneities induced by the real process conditions. Thus as shown in this study, it is possible to identify clusters of separate temperature ranges (using IR thermal camera) along with the undergoing strain rate (using stereo DIC) at those locations.

This permits a more localized definition of material behavior uniquely for each element in the numerical model with the respective temperature-strain rate pair that it experiences. Laboratory campaigns of uniaxial tensile data at different temperature and strain rate combinations aid in defining the material behavior in the numerical model. Given the practical impossibility to conduct a test of the material at every single combination that arises on the thermoforming sheet, interpolation techniques such as kriging or modified Akima hermite interpolation can be used, as shown in this study, that allow to complete the stress surface over different levels of strains. Thus it is possible to interpolate the stress strain curves at any required temperature and strain rate within the tested ranges of parameters. Even though it is known that the central plug zone of the sheet undergoes biaxial deformation, such experimental campaigns are difficult owing to the required equipment. Since the biaxial data of the HIPS sheet was not available, the test data from the uniaxial campaigns were assigned for these regions as well.

Finally having defined the material behavior and the respective boundary conditions, an incremental iterative procedure is carried out to obtain the value of surface friction at the point of contact between the plug and the sheet. Thickness, being the primary entity to get affected by the friction at the contact point, is obtained numerically and compared with the experimental results to fine tune the friction coefficient parameter. The utility of Stereo Digital image correlation comes handy in obtaining the maximum and minimum principal strains that help to identify the thickness profile, in a non-destructive way, at the mid-section of the sheet (considering the thermoplastic sheet to be quasi-incompressible).

The numerical model is found to be effective in replicating the overall experimental thickness profile.

However, the zones of extreme thinning immediately after the plug contact prove to be difficult for the numerical model to achieve. This can be linked to the choice of shell element type used in the simulation according to thin membrane assumption. Near the center of the sheet where the plug makes contact the thickness is found to contain fluctuations that may be caused by the changing material behavior owing to the temperature heterogeneity. Finally, an incremental iterative procedure is set up that looks to determine the actual friction coefficient between the plug and the sheet. The mean thickness from the contact domain is used from both simulated and experimental results to define an objective function an alternative to thermoforming simulation users who have to rely on theoretical values of friction coefficient reported in literature.

Future perspectives for added developments

During the course of this study, some potential areas were identified for further development of the developed hybrid experimental / numerical simulation procedure.

1. The material model chosen was the two parameter Mooney Rivlin model for its computational ease in implementation of the iterative scheme in Chapter 6. However other hyperelastic models such as Ogden, Yeoh, Gent, Shariff etc. can be implemented in the numerical brick of the hybrid method given that the user defined subroutine for general hyperelastic materials has been developed in the course of the study. This could potentially alleviate some of the problems regarding the matching of thickness at the zones of extreme thinning.

2.

The assumption of incompressibility can be challenged by incorporating the volumetric part of strain energy density functions for a hyperelastic model. The volumetric representation of the strain energy density function is characterized by a penalty parameter whose value is considered close to zero to consider the material as incompressible. However, the penalty parameter is derived directly from the bulk modulus which in turn depend on the Young's modulus and

Poisson's ratio of the material. The uniaxial tensile experimental campaign at different temperatures and strain rates can be exploited by the stereo-DIC system to give an evolution of the Poisson's ratio for each set of conditions based on the computed longitudinal and transversal strains. This can help to define objectively the evolution of the penalty parameter along temperature and strain rates and thus incorporate the required compressibility of the material at respective zones on the sheet.

3. The identified errors and imprecisions during conducting rigid body tests coupled to stereo DIC measurements at high temperature can be rectified using time dependent filters in the Fourier domain of the obtained noise. The rectification method due to heat waves alone can then be implemented on a thermoforming machine following the same protocol as conducted on the uniaxial tests. Furthermore, the effect of acquisition frequencies on the some of the displacement speed related aberrations can provide more insight about the potential existence of a displacement speed threshold to catch the effect of heat waves within the ranges of considered temperatures.

4. The use of more robust optimization techniques such as genetic algorithm, particle swarm optimization etc. can be investigated in the FEMU inverse identification of model parameters based on unidirectional stretching tests of HIPS samples. These methods, even though computationally heavy are known to avoid problems of local minima that often plague the results of gradient based methods. Using such techniques could reduce the non-unicity observed among the identified model parameters giving a more coherent trend of their evolution with temperature and strain rate. In addition, further experimental investigation could be of interest to better correlate the observed double curvatures with residual stresses related to the thermal history of tested HIPS samples.

5. The plug-assisted forming step in this study has been simulated as a decoupled thermomechanical operation. The thermal profile as observed by the IR camera could be propagated through the thickness of the sheet using a finite difference scheme and with thermocouple measurement points on the bottom of the sheet to obtain the full field of temperatures on the bottom of the sheet. Knowing the full thermal profile of the sheet elements at contact with the plug, the FEM model can be defined as a thermo-mechanically coupled step where the heat exchange is allowed in between the plug and the sheet. to make a reliable match between the deformed and undeformed pairs of subsets. However, having an overestimated subset size reduces the spatial resolution of the obtained field along with incorporation of systematic errors. The step-size defines the richness of the full field by clustering the resultant output information in a more compact (small step size) or scattered form (larger step size). It is the distance in pixels separating two adjacent subset centers. It is at this central point where the deformation information for the specified subset is given as an output. Where, 𝑣 𝑦 𝑐 is the calculated components of displacement vectors at every calculation point 𝑣 𝑦 𝑚 is the overall imposed displacement during the rigid body test at room temperature 𝑛 is the total number of calculation points.

The obtained results are reported in Figure 109.

to a global minimum however depends heavily on the starting point considered [8]. This method has often found its use in the FEMU method of inverse identification because it is computationally economical, requiring a relatively lesser number of finite element simulations, and is effective with problems involving a moderate number of unknowns [9][10][11].

Example of minimization using Sequential Quadratic Programming

We recall the general expression obtained from the first order approximation given by the Karush-Kuhn-Tucker (KKT) conditions )
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Where the subscripts refer to the iteration number. Thus supposing we give a starting value of (0,0) for (𝑥 0 ,𝑦 0 ) and 𝜆 0 = 0 we get ) 152

Which gives us 𝛿 𝑥 = -2, 𝛿 𝑦 = 0 and 𝛿 𝜆 = 2. Thus for the next iteration, we have (𝑥 1 ,𝑦 1 ) = (-2,0) and 𝜆 1 = 2. This is continued until the step length falls below a certain tolerance, after which the function is said to be minimized.
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 2 Figure 2: Theoretical variation of Young modulus according to temperature for amorphous and semi-crystalline polymers[20] 

Figure 3 :

 3 Figure 3: Steps of negative (top) and plug assisted (bottom) thermoforming processes[22] 

Figure 6 :

 6 Figure 6: (a) Recording showing the sagging of the sheet followed by heating [23]; (b) Verticaldisplacement and temperature of the sheet as a function of time during heating stage[48] 

Figure 7 :

 7 Figure 7: Coefficient of friction between a HIPS sheet and an Aluminium plug as a function of plug temperature [27]

Figure 9

 9 Figure 9 shows the variation of thickness profiles at different locations from the base center of a thermoformed HIPS yogurt cup under the effect of the forming temperature. At a distance of 120 mm from the center of the plug, the sheet is at its thinnest with a variation of 11.5 % and 59.2%, respectively, for 130 °C and 140 °C compared to the measured values for 120 °C. a) b)

Figure 9 :

 9 Figure 9: (a) Thickness profile of a plug assisted thermoforming part from HIPS sheet at 120°C temperature; (b) Variation of thickness profile for different sheet temperatures [5]

Figure 10 :

 10 Figure10: Out-of-plane displacement with oscillations during pre-stretching as a function of time[23] 

  ; M = Mechanical; FSI = Fluid structure interaction; TM = Thermo-mechanical; * = Coupling of thermal and mechanical phenomenon considered.

Figure 11 :

 11 Figure11: Flowchart of the process followed to find a solution to a problem by means of the FEM[72] 

Figure 12 :

 12 Figure 12: (a) Illustration of biaxial stretch testing corresponding to equal biaxial (EB) and constant width (CW) configurations; (b) State of a PLLA sheet before and after biaxial stretching.[38] 

Figure 13 :

 13 Figure 13: Loading, unloading and reloading of HIPS at different temperatures showing hysteresis[46] Viscoelasticity of thermoplastic polymers is governed by the rearrangement of macromolecular chains under the effect of the imposed loads. These rearrangements are however temporary and exist only until the loads are sustained. As soon as the loads are removed the chains start relaxing and going back to their original arrangements thus, accounting for the elastic behavior. During this relaxation period the stress in the material decreases with time until it reaches a steady value. The time-dependence of viscoelastic behaviors can manifest by following the stress relaxation as a function of time when the material is submitted to an imposed constant strain.

Figure 14 :

 14 Figure14: Schematic representation of the Glass Rubber model[12] 

Figure 15 :

 15 Figure 15: Illustration showing the polymer bonds stretching initially and slipping later

Figure 16 :

 16 Figure 16: Variation of Bond Stretching stress during equibiaxial load of PLLA vs Strain for varying (a) temperature and (b) strain rate[12] 

Figure 17 )

 17 Figure 17). This stopping of slippage stretch also indicates the beginning of strain hardening. This is what is known as critical slippage stretch at that specific temperature and represents infinite slippage viscosity for that temperature. This completes the tuning of both the Maxwell branches of the glass rubber model. a) b)

Figure 17 :

 17 Figure 17: Variation of (a) Conformational stress of PLLA vs Stretch for varying temperature and (b)Slippage stretch vs Conformational stress for varying temperature[12] both during equibiaxial stretching tests

Bernard

  et al.[64] proposed a visco-elastoplastic model in order to accurately simulate the plug-assisted thermoforming of Polystyrene sheets. EVP models are known to take into account both strain rate and temperature dependence of polymers as well as the permanent plastic deformation they undergo. The model was based on the pioneering work by Richeton et al. [65-67]. Richeton's model was formulated to accurately model the drop in storage modulus (𝐸 ′ ) during β and glass transition phases of amorphous polymers. A schematic diagram of the Richeton model is shown in Figure 18.

Figure 18 :

 18 Figure 18: Schematic diagram of the Richeton model [67]

Nomenclature𝑊=

  Strain energy density function 𝑈(𝐽) = Volumetric part of strain energy density 𝑊 ̅ = Isochoric part of strain energy density 𝑺 = Second Piola Kirchoff stress tensor C = Right Cauchy Green deformation tensor 𝑪 ̅ = Isochoric Right Cauchy Green deformation tensor B = Left Cauchy Green deformation tensor 𝑩 ̅ = Isochoric Left Cauchy Green deformation tensor 𝐼 1 ̅ , 𝐼 2 ̅ = Invariants of Isochoric Right Cauchy Green deformation tensor 𝟏 = Second order identity tensor 𝐈 ̿ = Fourth order identity tensor J = Jacobian of the deformation gradient F 𝐂 ̿ = Fourth order elasticity tensor 𝜹 = Kronecker Delta3.1 IntroductionSimulating the behavior of a material undergoing kinematic deformation requires the proper definition and understanding of the material model. Materials such as polymers exhibit a non-linear elastic behavior specially at large deformations. Such non linearity can be replicated in a numerical model via the use of Finite Element Analysis (FEA)[1]. Many commercially available software for e.g. ABAQUS ®

Figure 19 :

 19 Figure 19: Numerical model of a 3D plate of dimension 100 x 20 x 1.5 mm 3

  mm in positive Y direction Load : 20 mm in negative X directionThe element type in the incompressible assumption was C3D8H or a hybrid formulation as explained in[7] is necessary for simulation of incompressible materials. Whereas for the compressible one, a general 8 node linear 3D element or C3D8 is used. The relative error between the two assumptions based is calculated by Eq. 103:

Figure 20 :

 20 Figure 20: (a) True stress vs True strain for Neo-Hookean model considering both quasiincompressible and compressible assumptions for uniaxial tension; (b) Evolution of difference between the two assumptions with respect to True strain.

Figure 21 :

 21 Figure 21: (a) Shear stress vs Shear strain for Neo-Hookean model considering quasi-incompressible and compressible assumptions for simple shear; (b) Evolution of difference between the two assumptions with respect to Shear strain.

Figure 22 :

 22 Figure 22: Compressive stress vs strain for Neo-Hookean model The computational time for the tensile case considering the three formalisms were compared on a PC powered by an Intel Xeon CPU E5-2650 (2.3GhHz) and 196 Gb of RAM. We find that the UHYPER formalisms replicates the exact time as that of the inbuilt function (both on 64s) which is less than the UMAT formalism (74s).

  observed sample is affected by temperature. Within the range of forming temperatures of amorphous polymers literature does not provide any standard to quantify the magnitudes of potential image distortions on the precision of stereo-DIC output. In this context, an in-house designed procedure was developed to regenerate quasi-static thermal conditions and to assess stereo-DIC uncertainties by comparing reference stereo-DIC results obtained at room temperature to high temperature tests within the forming window of HIPS.To address the previous challenges, this chapter was structured as follows: First part, presents a nonextensive review about stereovision digital image correlation (stereo-DIC) and about potential sources of errors affecting the precision of measured kinematic full-fields are provided. A focus is attributed to the presence of heat sources within the optical fields of the cameras. Second part presents an error quantification protocol combining stereo-DIC measurements with rigid body motion tests (i.e. displacements with no mechanical strains). Third part details a case of study where in a correction procedure is applied to reduce the by thermal induced and internal Stereo-DIC errors in full field of displacements of the rigid body motion tests.During thermoforming process, thermoplastic materials are known to exhibit highly non-linear behaviors. In the case of thin thermoplastic sheets, such behaviors can be hyperelastic, viscoelastic, viscoelastoplastic, visco-hyperelastic, etc. In literature numerous activities focused on developing adequate constitutive laws to model such behaviors as detailed in Chapter 1. Nevertheless, a few aspects are still not yet well addresses such as (i) the effect of local heterogeneities in industrial environments compared to laboratory scale tests, (ii) the extensive model recalibration when the forming configuration changes, (iii) the ability of a model to integrate uncontrolled bias emerging at the industrial scale such in the case of plug-assisted thermoforming, where a infra-red pre-heated sheets are generally deformed in non-thermally-conditioned forming chambers.

  Digital image correlation (2D-DIC): 2D images of an in-plane deforming or moving planar ROI. In general, one single camera is required and the optical focal axis should be perpendicular to the observed surface.(ii) Stereo-vision digital image correlation (Stereo-DIC): Synchronized sets of 2D images are recorded from two or more different angles to have a stereoscopic vision. Technologically multiple cameras can be used to conduct stereo-vision of non-planar surfaces. Alternatively, one single camera combined with adequate optical reflecting mirrors can be also used. Similar to the principle of human stereovision, both in-plane and out-of-plane shapes and surface curvatures can be measured. Stereo-DIC is more versatile than 2D-DIC and has the capability to capture out-of-plane motions. (iii) Digital volume correlation (DVC): a set of volumetric (3D) images are required to quantify volumetric deformations with the considered ROI within a deforming object. DVC technique requires the use of specific volume acquisition techniques such as computed X-Ray tomography. Figure 26 provides an illustrative summary of the three major categories of stereo-DIC.

  It considers the entire region of interest to be broken down into multiple small defined facets of pixels called 'subsets'. The correlation result corresponding to the central pixel of a defined subset is only affected by the other pixels present inside the same facet[12].

  the current PhD work the accessible realm of developments is oriented towards an explorative study of stereo-DIC reliability in thermoforming environment. In this context, the aim of the current chapter is to quantify the accuracy and uncertainty of stereo-DIC measurements in presence of heat sources within the context of thermoplastic thermoforming. The aim is to generate full-field displacement fields within industrial environment such as in the case of plug-assisted thermoforming. To the best knowledge of the authors, quantifying the errors and uncertainties of measurements within thermoforming forming window are not already treated in the literature.Commercial stereo-DIC systems include ready-to-go routines with limited possibilities to access main source codes, the conducted work is focused on quantification and correction of measurement errors based on a standard stereo-DIC flowchart. The developed experimental and numerical procedures constitute respective steps before and after the execution of stereo-DIC correlation algorithms. The objective is to identify and filter uncertainty sources affecting the measured displacement and strain fields. The conducted experimental work was designed to test measurement precisions (i) during quasiisothermal conditions in a controlled laboratory environment and then (ii) in industrial thermoforming environment of the same material.

  calibration a set of images of a target plate are recorded to capture the positions of a regular arrangement of calibration targets points. The calibration operation of each camera first identifies the parameters of the corresponding pinhole model based on the known positions of the calibration target points in all referential. A cross correlation between the cameras takes place after to assign their equivalent positions on the global coordinates system. The calibration of the stereoscopic system helps to calculate the intrinsic parameters (such as lens distortion parameters, focal length, etc.), as well as the extrinsic parameters which define the translation and rotational matrix to convert in between the sensor and global coordinate system[21]. Figure27shows the three coordinates systems which should be well defined and linked during the calibration phase in order to coordinate the projected images M S 1 and M S 2 on the respective sensors of the cameras of a point MG located within the global referential.

Figure 27 :

 27 Figure 27: Illustration of the three coordinate referentials of stereo DIC

  ∆𝑥 and ∆𝑦 represent the initial distance between a specific material point and its corresponding subset center. These gives rise to six different forms of linear transformations for the subset in question as illustrated by Figure28:

Figure 28 :

 28 Figure 28: Types of affine transformation[14] 

Figure 29 :

 29 Figure29: Implementation procedures of 2D-DIC and stereo DIC[10] 

  Random errors also called by noise which refer to lack of precision. They are statistical fluctuations in measured data and are mainly related to precision limitations of the measurement equipment. They can be reduced by averaging over a large number of measurements. It is evaluated as twice the standard deviation of measured values (2 * 𝑆𝑡𝐷𝑒𝑣(𝑥)).

Figure 30 :

 30 Figure 30: Illustration of random error and systematic error

  and stereoscopic time. Once quantified precisely, the effectiveness of improving the accuracy in displacement measurements by Stereo DIC of isothermal large deformation of HIPS is verified by removing the respective thermal errors. The suggested experimental work includes isothermal tests combining stereo-DIC and IR thermal measurements that were conducted to quantify the thermal errors under four different temperatures in the range of the forming window of HIPS as a standard polymer in the thermoforming process. Rigid body motion tests were conducted under room temperature (25°C) as a reference and elevated temperature (105°C-120°C) in order to quantify the heat induced effects on systematic and random errors. Finally, isothermal uniaxial tensile tests of HIPS are conducted to adjudge the improvements of full field of displacements brought in by error elimination. To the best of the author's knowledge an error quantification of a stereo DIC system using rigid body motion and uniaxial tensile tests, within the range of thermoforming temperatures of thin sheet polymers has not been reported in literature.
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 314523233 Figure 31: Illustration of stereo DIC in thermally affected optical field of view.

Figure 34 :

 34 Figure 34: (a) Entire experimental setup (b) Stereoscopic setup in front of the access window

Figure 35 :

 35 Figure 35: Temperature evolution inside the heating oven after stopping regulation and opening the access window With consideration of the technical characteristics of the regulated heating oven four test temperatures within the thermoforming windows of HIPS were considered (105; 110; 115 and 120 °C) along with the

  among the tests. It corresponded to: (i) Automatic regularization of the temperature of the heat chamber by the interface of the Zwick equipment (ii) Once the oven temperature is stabilized, the sample is introduced and a latency duration of almost three minutes was applied to heat the sample. (iii) By the end of the three minutes the convective fan inside the heating oven is stopped, infra-red and stereoscopic acquisitions are started before opening the access window (iv) The access window is opened and displacement command is activated (v) The stereoscopic recordings are continued for at least 120 seconds until saturation of the random memories of each of the CCD cameras (limited to four Gigabytes each) (vi) An average of 700 pairs of full resolution stereoscopic images (2048×2048 pixels coded in 8bit) were collected from each conducted rigid body tests.The considered experimental campaign included total of four regulation temperatures of 105, 110, 115 and 120 °C and four displacement speeds of 10, 50, 100 and 365 mm/min. For each pair of temperature/ displacement speeds, one single rigid body test was conducted. No further tests were considered for two reasons: first, displacement and thermal measurements were based on full-field techniques,

Figure 38 :

 38 Figure 38: (a) Rigid body motion displacement with stereoscopic time for 110°C and 10 mm/min highlighting the reference time; (b) Fluctuations at start of clamp motion in recorded displacement due to heat waves.

Figure 39 :

 39 Figure 39: (a) Relative displacement from tensile equipment (𝑣 𝑖𝑚𝑝 ) vs time for difference crosshead speeds; (b) Evolution of first time derivative of displacement As seen from Figure 39 the Zwick equipment is configured to acquire data at a frequency of 5 Hz and the average trigger time is estimated to be equal to 0.4 s for the considered crosshead speeds. This delay corresponds to the time response of the tensile equipment to reach the targeted crosshead speed from its initial equilibrium state. Thus for matching the identified origin of stereo-DIC computations with the

Figure 40 :

 40 Figure 40: Time evolution of mean of displacement components from stereo-DIC data.

Figure 42 :

 42 Figure 42: Histograms of the spatial representation of the displacement components at a time stamp of 15s corresponding to a rigid body test performed at RT and a crosshead speed of 10 mm/min

Figure 43 :

 43 Figure 43: Normal law distribution of displacements in the first 5 seconds considering: (a) 1 st processing conducted from reference 1 (T1); (b) 2 nd processing conducted from reference 2 (Ref) However, the data obtained based on the objectively identified state (Ref) of displacements (after eliminating the inertial effects) seem to obey a single normal law distribution (Figure 43) of the form:

Figure 44 :

 44 Figure 44: Normal law distribution of displacements in the first 45 seconds considering: (a) 1 st processing conducted from reference 1 (T1); (b) 2 nd processing conducted from reference 2 (Ref)

Figure 45 :

 45 Figure 45: Illustrative example to show the calculation of spatial standard deviation Temporal random error (T_Stdev) refers to the variation of errors at a specific material point in space

Figure 46 :

 46 Figure 46: Illustrative example to show the calculation of temporal standard deviation

Figure 47 :

 47 Figure 47: Variation of spatial standard deviations of the three principle displacement components for the tested temperaturesSimilarly, the temporal variation of errors for each subset center was evaluated by subtracting the respective 𝑣 𝑖𝑚𝑝𝑜𝑠𝑒𝑑 at different instances of time (tn, tn+1, tn+2 etc.) from the computed DIC displacements at each subset with respect of the considered time instances. The output of standard deviations along time for each subset center in the selected region of interest is provided in Figure48. This standard deviation of all the subset centers is then averaged over space to give the temporal standard deviation.At RT conditions, obtained full-fields of temporal standard deviations of displacement errors indicate the existence of dispersed variations of errors during time. A few subsets located mostly at the edge of the considered ROI indicate local maxima which result from the limit of the correlation procedure to track the speckle patterns at those locations. Moreover, the temporal standard deviations at RT reflect the baseline of stereo-DIC induced errors in absence of heat sources. It is interesting to note that the spatial standard deviation of the noise increased for higher temperatures indicating that the presence of the convective heat waves is higher.

Figure 48 :

 48 Figure 48: Full fields of temporal standard deviations of 𝑣 𝑦 displacement components for the considered temperatures and crosshead speeds

Figure 49 :

 49 Figure 49: Evolution of uncertainties in accuracy with time and temperature for different crosshead speedsFor time durations higher than three seconds, the relative errors tend towards asymptotic limits around -3.6, -3.1 and -3.6% respectively for 10, 50 and 100 mm/min complementarily to the indicated observations, it is worth noticing that at 10 mm/min the temporal evolution of relative errors exhibits an attenuated oscillatory behavior. Such behavior was clearly intensified with the increase of the regulation temperatures from 105, 115 then 120 °C. As rigid body tests are conducted following opening of the access window of the oven such behavior seems to reflect the existence of heat waves and then their attenuation during time as the heat transfer is limited to natural convection between the hot oven and the RT conditions outside the oven.
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 5051 Figure 50: Evolution of uncertainties in precision with time and temperature for different crosshead speeds 4.6.2.3 Evolution of systematic errors or bias with time and temperature

Figure 52 :

 52 Figure 52: Time evolution of thermal bias errors (𝐵𝐸𝑟 𝑡ℎ ) for all conducted rigid body tests

Figure 53 :Figure 54 :

 5354 Figure 53: Schematic representation of the thermal bias correction approach

Figure 55 :

 55 Figure 55: Spatial distributions of bias errors after DIC-related corrections (𝐵𝐸𝑟 𝑅𝑇 (𝑡)) at a time stamp of 15s for tests conducted at 10, and 100 mm/min and 120 °C.

Figure 56 :

 56 Figure 56: Spatial distributions of bias errors after DIC-related corrections (𝐵𝐸𝑟 𝑅𝑇 (𝑡)) and thermally corrections 𝐵𝐸𝑟 𝑡ℎ (𝑇, 𝑡) at time stamp of 15s for tests conducted at 10, and 100 mm/min and 120 °C.

Figure 57 :

 57 Figure 57: Effect of DIC-related corrections (𝐵𝐸𝑟 𝑅𝑇 (𝑡)) and thermally corrections (𝐵𝐸𝑟 𝑡ℎ (𝑇, 𝑡)) on the distribution of 𝑣 𝑦 displacements conducted at 10, 50 and 100 mm/min and 120 °C at time stamp of 15s. Obtained histograms of 𝑣 𝑦 components of displacement vectors (aligned in the load direction) indicate that the temporal corrections based on refraction equations are equivalent to applying global off-sets to the full-field of computed stereo-DIC output. The temporal correction of stereo-DIC related bias-errors based on RT conditions in the three considered cases exhibit higher shifts compared to the combination of successive corrections including bias errors of thermal origins. This observation can indicate that image shimmering related to presence of heat waves (within thermoforming range of temperatures of HIPS) seem to be beneficial to limit the amount of bias errors of stereo-DIC origins.

  ̂= 𝑇 ⃗⃗ 𝑠 𝑜𝑛 𝑆 126 Where, 𝜎 is the Cauchy stress tensor, 𝑇 ⃗⃗ 𝑠 the surface traction on surface S, which has a unit normal vector 𝑛 ̂ pointing perpendicularly outwards from it. Figure 58 shows an illustration of the Cauchy stress acting on a surface.

Figure 58 :

 58 Figure 58: Illustration showing the Cauchy stress acting on a surface

  Neumann boundary conditions on the surface of the body, which are denoted by the vectors { 𝑢 } ⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ and { 𝑇 } ⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ for example. Let us consider that this deforming body is characterized by a stiffness tensor 𝐂 ̿ . Thus by combining the principle of virtual work given by equation or the reciprocity theorem of Maxwell-Betti we obtain [2]: ∫ 𝜀( 𝑢 ): [𝐂 ̿ -𝐂 ̿ * ]: 𝜀( 𝑢 * ). 𝑑𝑉 = ∫ ( 𝑢 * } ⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ represents the 'adjoint state' displacement field induced by a traction distribution { 𝑇 * } ⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ on the surface S of the body sharing the same geometric features however, with a trial stiffness tensor 𝐂 ̿ * . Thus the reciprocity gap function R(𝐂 ̿ , 𝑢 * ) is known for the experimental data { 𝑢 } ⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ , { 𝑇 } ⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ and must follow that R(𝐂 ̿ * , u ; 𝑢 * ) = 0 for all { 𝑢 * }

  min 𝑜𝑟 max 𝜑(𝜉) | 𝑐(𝜉 𝑖 ) < 0 ∀ 𝜉 𝑖 ∈[0, 10] 135This equation is iteratively solved by a defined algorithm until a minimum or maximum is reached. In order to identify a minimum, the algorithm states that for an n th iteration 𝜑 𝑛+1 -𝜑 𝑛 < 𝛿, where 𝛿 is the tolerance of the objective function. Upon satisfying this, the optimization is said to be converged for the set of parameters 𝑥 𝑖 used in that iteration. Many different algorithms exist in the literature for the purpose of optimization ranging from gradient-based, simplex algorithms to genetic algorithm based on hierarchical optimization. The most commonly used algorithms for inverse identification in literature are the Nelder-Mead algorithm, Levenberg-Marquardt algorithm and the sequential quadratic programming (SQP). The Nelder-Mead algorithm and Levenberg-Marquadt algorithm are provided in details in Appendix 3 and the theory behind the used sequential quadratic programming algorithm in

  used HIPS grade is commercialized in the form of flat sheets of 2000×1200×1.5 mm3 under the trade name Athpol P91 ® to conduct the study in Chapter 4 as already described. Tensile specimens of geometry similar to ISO 527-3 type IV, were laser cut from the raw sheets as previously explained. All unidirectional stretching tests were conducted on the tensile testing machine (Zwick, Roell Z010) used to conduct the rigid body motion tests of Chapter 4. The specimen deformations were recorded using the protocol described for recording the rigid body motion tests (Section 4.5.2.2 of Chapter 4) at 5 Hz using a stereo-DIC system from LaVision, which is equipped with two 4 Megapixels cameras and a white light source. The setup of the entire experiment is given in Figure 59b.

Figure 59 :

 59 Figure 59: (a) Overall experimental setup of the uniaxial tensile testing equipment coupled with the stereo DIC system ; (b) Components of the stereo DIC system in front of the tensile testing machine 5.5.1. Calibration of the stereo-DIC system

Figure 61 :

 61 Figure 61: Stress-Strain curves of the unidirectional stretching tests conducted at 105, 110 and 115 °C for 50 mm/min

Figure 62 :

 62 Figure 62: (a) Raw images recorded by camera 1 at different stretch levels. The considered virtual gauge for evaluation of kinematic fields is illustrated at λ = 1 ; (b) Grey level distribution in region of interest of the speckled deforming body at different stretch levels.

Figure 63 :

 63 Figure 63: Full field of the displacement vector components along (a) X axis, (b) Y axis and (c) Z axis

  is the total number of measured nodes; 𝝃 is the vector of parameters of the constitutive law; 𝑢 𝑘 𝑒𝑥𝑝 and 𝑢 𝑘 𝑛𝑢𝑚 (𝝃) are respectively the amplitudes of the final experimental and numerical displacement vectors in a node k. Thus, both the final numerical field (𝑢 𝑛𝑢𝑚 ⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗) and the final experimental field (𝑢 𝑒𝑥𝑝 ⃗⃗⃗⃗⃗⃗⃗⃗⃗)have been imported from Abaqus into the optimization solver. Since both these variables contain the nodal displacements at the final state, the difference between the two is the numerical error which has to be minimized in order to find the optimized model parameters, C1 and C2. The objective function is normalized by taking a relative value of the difference between the two fields over the experimental field. The formulation is based on a least squared approach and is averaged over the total number of nodes.After an extensive study of the MR parameters reported in literature suitable bounds were chosen for the model parameters. The optimization problem is unconstrained and the parameters are bounded in a range as follows: C1 = [0.05, 2] and C2 = [0.001, 0.2]. The optimization solver is then launched for each of the recorded stereo-DIC recordings in order to obtain the optimized model parameters. The objective function tolerance is kept at 10 -6 , which means that a change in the function value lesser than this for any successive iteration would result in the optimizer to finish its optimization and display the optimized parameters. The final values of the C1, C2 are reported as the required model parameters. Figure 66 illustrates the evolution of the objective function along with C1, C2 as function of the iterations at a stretch level of λ = 1.3 for the sample marked S2 at 110 °C and 50 mm/min.

Figure 67 :

 67 Figure 67: (a) Inverse identification of G'Sell-Jonas parameters for uniaxial tensile test at 4 temperatures ; (b) Evolution of the identified parameters with temperature [32].

Figure 68 :

 68 Figure 68 : Evaluation of Tg of sheet material from DSC curve 6.2.1.1.Unidirectional stretching tests within the forming window of HIPS

Figure 69 :

 69 Figure 69 : Stress vs Strain response for HIPS material for varying temperatures at (a) 105°C, (b) 110°C, (c) 115°C, (d) 120°C.To highlight the significance of such database the Young's moduli of the material for the different pairs of temperature and strain rate is shown in Figure70along with the standard deviation.

Figure 70 :

 70 Figure 70 : Evolution of Young's modulus of HIPS with temperature and strain rate

Figure 71 :

 71 Figure 71 : Thermoforming plug made up of Somos® PerFORM material

Figure 72 :

 72 Figure 72 : Experimental setup of the thermoforming equipment along with the thermal measurement systems and stereo DIC systems. Thermal data from thermocouples served to have control of the HIPS sheet during the pre-heating operation. While the temperature fields from infra-red camera provided more insight of the temperature spatial distribution and its temporal evolution starting from the moment of total retraction of the top heating bank.

Figure 73 :

 73 Figure 73 : Thermal data from IR camera and thermocouples from 2 material points on the sheet

Figure 75 :

 75 Figure 75 : (a) Skewed thermal image from IR camera (b) edge detection on the thermal image using Prewitt algorithm

Figure 76 :Figure 77 .

 7677 Figure 76 : Perpendicularly projected thermal image

Figure 77 :

 77 Figure 77 : Contour plot of thermal field

Figure 78 :

 78 Figure 78 : (a) Zone of maximum displacement (orange) on the sheet (blue) as observed by the stereo DIC system along with the center of the sheet; (b) Updated reference of the thermal contour plot with the stereo DIC system

Figure 79 shows

 79 Figure79shows the plot of out of plane displacement along time. It can be seen from Figure79, that during the forming stage the sheet starts to move at around 3 seconds following the start of stereoscopic recording. The out-of-plane displacement at mid height exhibits a slope change which indicates strain hardening of the pre-heated sheet. For simplification reasons, the observed change of slope is neglected in the current chapter and a single tangential line is used to fit the quasi-linear time evolution of the displacement. The out-of-plane displacement reaches a plateau which marks the end position of the moving plateau of the forming machine. Two tangential lines are drawn, one during the zone of plug movement in the Z direction and one at the final stationary zone after the plug stops moving.

Figure 80 :

 80 Figure 80 : Cloud of points from the principal strains on the sheet at the end of forming step

Figure 81 :

 81 Figure 81 : (a) Specific points on the surface of the sheet where principal strains are extracted; (b) Evolution of principal strains along with time on the specific points It is observed that the strain at the point (circle) inside the domain of contact between the plug and the sheet barely evolves with time, indicating the presence of a near perfect sticky contact between the both.

  Figure 82(a) shows the unfiltered maximum principal strain while Figure 82(b) shows the image filtered with the Gaussian kernel. Histograms of the max principal strains before and after filtering are given in Figure 83. It can be seen that even though the default Gaussian kernel smoothens the data on a very small margin without inducing any significant change of the distribution of the logarithmic maximum principal strains.

Figure 82 :

 82 Figure 82 : (a) Unfiltered maximum principal strain (b) Gaussian filter applied on maximum principal strainFinally, based on the values post filtering, the logarithmic strain of each point is converted into engineering strain in order to calculate the strain rate and have the same strain definition as used during

Figure 86 :Figure 87 .

 8687 Figure 86 : Stress surface with spline interpolation for varying temperature and strain rates at (a) εengg = 0.1 (b) εengg = 0.4 In order to qualitatively interpret the generated interpolation surfaces, a sweep across all the interpolated values of strain rates is carried out for each 2.5 °C temperature starting from 105 °C and is shown in Figure 87. The experimental data is plotted alongside at the measured points to check the efficiency of the interpolation to replicate the experimental data already collected. As can be seen from Figure 87 (a), (b) the spline interpolation produces large undulations in between the measured points, especially for the temperature curves between 115 °C and 120 °C. The curves for temperatures 115°C and 117.5 °Cshow a decrease post the 0.04 s -1 mark which is followed by an increase until 0.1 s -1 for both strain levels 𝜀 𝑒𝑛𝑔𝑔 = 0.1 and 0.4. Technically this is not possible in reality as the stress values cannot decrease for a particular temperature upon increasing the strain rate.

Figure 87 :

 87 Figure 87 : Stress curves for strain rate sweeps with spline interpolation for varying temperature at (a) εengg = 0.1 (b) εengg = 0.4

Figure 88 :

 88 Figure 88 : Stress surface with modified Akima hermite interpolation for varying temperature and strain rates at (a) εengg = 0.1 (b) εengg = 0.4 The strain sweeps carried out for the algorithm have been plotted in Figure 89 and they show improved results when compared to the spline interpolation. The drop and subsequent rise in the stress values for the temperature curves of 115°C and 117.5 °C post the 0.04 s -1 mark are visibly reduced in this interpolation method. In order to quantify the improvement, the slope for the 115°C curve is plotted for both the interpolation methods (Spline vs modified Akima hermite interpolation) in Figure 90.

Figure 89 :

 89 Figure 89 : Stress curves for strain rate sweeps with modified Akima hermite interpolation for varying temperature at (a) εengg = 0.1 (b) εengg = 0.4

Figure 90 :

 90 Figure 90 : Slope of stress vs strain rate curve at a temperature of 115°C

Figure 91 :

 91 Figure 91 : Stress surface with Kriging interpolation for varying temperature and strain rates at (a) εengg = 0.1 (b) εengg = 0.4

Figure 92 :

 92 Figure 92 : Stress curves for strain rate sweeps with Kriging interpolation for varying temperature at (a) εengg = 0.1 (b) εengg = 0.4

Figure 93 :

 93 Figure 93 : Stress vs strain curves for temperature of 110 °C at different strain rates using (a) modified Akima hermite interpolation (b) Kriging interpolation However, as discussed in the works of Oueslati [1], depending on the identified model parameters the assumption of complete incompressibility might incur the finite element model to have a highly unstable response. At other parametric values such an assumption might be completely fine. Thus they converged to and suggested using a value of Poisson's ratio = 0.495 which embodies the quasi-incompressibility of the material. The same value has been chosen in this study during the material definition. Figure 94 shows the fitting of the Mooney Rivlin model inside Abaqus for a representative case of temperature 110°C and strain rate 0.027 s -1 .

Figure 94 :

 94 Figure 94 : Curve fitting using 2 parameter Mooney Rivlin hyperelastic material model inside Abaqus for uniaxial material test data at temperature of 110°C and 0.027 s -1

Table 28 :

 28 Temperature and strain rate tags with their respective intervals

Figure 95 :

 95 Figure 95 : Reference surface as captured by the stereo DIC system before mechanical deformation reconstructed in Abaqus

Figure 96 :

 96 Figure 96 : (a) Illustration showing the sagging of the thermoplastic sheet surface during heating (b)Full field deformed surface obtained from the DIC system post mechanical deformationA key challenge encountered during the image correlation of large out of plane deformations, such as in our case of positive thermoforming, is the correlation of parts of the sheet behind the deformed part. As the plug moves upwards into the sheet deforming it, the area behind it gets obstructed from the field of view. The illumination on this part of the sheet gets reduced as well as the surface becomes oblique, thus changing the angle of incidence with which the stereo cameras observe this zone. This results in fictitious displacement measurements in this zone as the speckle appears less elongated than reality.Thus incorporating the full field displacements as boundary conditions from this part of the sheet proves to be tricky and risks the simulation to have convergence issues. Nonetheless a limited amount of nodal displacement from this part near the edges needs to be kept as the boundary condition on the edge cannot be modelled as a free edge.

Figure 97 :

 97 Figure 97 : Retained nodal displacement (highlighted in red) defined as boundary conditions of the sheetThe plug has been integrated inside Abaqus. It has been meshed and modelled with a solid element C3D8R which is a general purpose linear brick element inside Abaqus with reduced integration. Figure98shows the numerical model of the plug. In the experiment the plug is moved with a force of 98 N and until a final displacement of 81.5 mm. This is introduced as a boundary condition on the plug and the entire thermoforming step is defined for a step time of 0.6s. Once the boundary conditions have been imposed successfully, the finite element model can be completed by defining the contact properties between the plug and the sheet.

Figure 98 :

 98 Figure 98 : Numerical model of the plug, meshed with C3D8R elements

2 ⎹

 2 is from -34.14 mm to 36.36 mm on the X axis. As the frictional shear stress acts in between this zone of the sheet, the thickness evaluation used to determine the coefficient of friction shall be taken only from this part of the sheet. Thus finally the objective function (𝜑) is defined as the minimization of the squared error or conventionally called the quadratic error:𝜑 =min (𝑡 𝑀 𝑒𝑥𝑝 -𝑡 𝑀 𝑛𝑢𝑚 (𝜇)) 𝑀 → 𝑥 ∈ [-34.14, 36.36 ] 𝑚𝑚 144

Figure 100 :

 100 Figure 100 : Illustration of elastic slip of two sliding surfaces under contact

Table 30 :ElasticFigure 101 :

 30101 Figure 101 : Thickness profile comparison at mid-section (Y = 34.21 mm) for elastic slip 0.05 & 0.005

Figure 105 :

 105 Figure 105 : (a) Evolution of objective function with respective friction coefficients (b) Thickness profile at mid-section (Y = 34.21 mm) for friction coefficient = 2.1

6 .

 6 Finally, alternative to the interpolation technique used to generate the stress vs strain profiles at intermediate temperatures and strain rates, data driven identification (DDI) methods can be used to obtain the stress fields without the need of having a particular constitutive equation. Using repetitive experimental campaigns at different experimental conditions, an artificial neural network (ANN) algorithm can be trained to generate the stress profile at the required condition of temperature and strain rate as obtained from the sheet elements. This is an ongoing field of development in present day research which looks to adapt DDI methods in the context of large deformation problems.

Figure 108 :

 108 Figure 108: Schematic illustration of the change of position of a subset center at three different moments during a rigid body test To quantify the effect of the subset size on the measured rigid body displacement (along the Y axis of the global Cartesian referential of the stereo-DIC system), root-mean-square errors (RMS) were evaluated as function of the subset size based on a representative region of interest covering almost 370 × 430 pixel 2 . The ROI was extracted from the recorder pairs of stereoscopic images recorded during a rigid body test conducted at 10 mm/min at room temperature (RT) with no presence of any heat source in the optical domain of the stereoscopic system. A time stamp at 30 seconds following the effective start of the upper cross head motion was considered to evaluate the correlation maps and the RMS errors according to Eq. 147:

  us take an example. Suppose the objective function is given by 𝑓(𝑥, 𝑦) = 𝑥 2 𝑦 2 + 2𝑥 and 𝑔(𝑥, 𝑦) = 𝑥 2 + 𝑦 2 -2 = 0. To find the minimum the Lagrangian is given by L = 𝑥 2 𝑦 2 + 𝜆(𝑥 2 + 𝑦 2 -2).Therefore, from equation 137 we have,
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Table 1 :

 1 Applications of standard thermoformable amorphous thermoplastics

	Thermoformable amorphous thermoplastics	HIPS	PS	PMMA	PVC	ABS	PC
			Tg (°C)	96	90	100	90	90-120	150
	Forming window (°C)	160-205	150-190	150-190 110-150 150-205 175-230
			Food packaging [2,5-7*]				
			Disposable containers,	[8]*	[9]*	[10]*	
			Serving trays, Plastic cups				
	Daily life	products	Healthcare and medical Tablet packaging [2,11*] Cosmetic cases, Trays,	[8]*			[12]*
			Consumer goods [13]				
			Masks, Textured surfaces	[8]*	[9]*	[10]*	
			Inner liner of refrigerators				
			Electronic components				
	High technology	products	[14-17] 2.5 D shaped circuits, Encapsulation of printed circuit board assemblies Transport sectors [2,3] Car dashboards, Compartment doors,	[8]* [8]*			[2]	[2]	[18]*
			Aircraft cabin wall panels,				
	(*) Patents				

Table 2 :

 2 Non-extensive overview of thermoforming flaws and their respective considerations in simulation-based studies

Table 3 :

 3 Non-extensive summary of thermoforming simulations and their respective assumptions

		Process			FEM based simulations	
	Ref.	VA PA In	Mat.	Model H VE VEP Mem.	Assumptions Friction Formulation	Control
	[68]		ABS		Thin	No slip	T-Lagrangian	Thickness
	[52]		ABS		Thin	No slip	T-Lagrangian	Thickness
	[34]	 PMMA 	Thin	No slip	T-Lagrangian	Thickness
	[61]	 PMMA 	Thin	No slip	T-Lagrangian PAM-FORM*	Mesh refinement
	[40]		PMMA 	Thin	No slip		Thickness
	[69]		ABS		Thin	C-fc = 0.25		
	[39]		PS		Thin	C-fc = 0.40		Thickness
	[32]		HIPS		Thin	C-fc = 0.50	PAM-STAMP*	Thickness
	[60]		HIPS			C-fc = 0.70		Thickness
	[70]		HIPS			Frictionless		Thickness
	[21]		HIPS		Thin	Temperature -dependent	T-Lagrangian	Thickness
	[27]		HIPS			Temperature dependent	T-Lagrangian T-SIM *	Thickness
	[56]		PET		Thin		T-Lagrangian ThermoFORM*	Stress
	[71]	 PMMA 	Thick		T-Lagrangian	Thickness

VA: Vacuum assisted thermoforming PA: Plug assisted thermoforming In: Inflation assisted thermoforming C-fc: Coulomb's Friction coefficient Mem.: Membrane assumption H: Hyperelastic model VE: Viscoeleastic model VEP: Visco-elasto-plastic model T-Lagrangian: Total Lagrangian formulation (*): Commercial software : Not enough precisions

Table 4 :

 4 Correspondence between thermoforming steps and the underlying physics

	Thermoforming			
	step	Clamping Heating Pre-stretching	Forming (*)	Cooling
	Underlying physics Mechanical Thermal Fluid-structure Thermo-mechanical Thermal
	(*) Considered step in the current Ph.D. study.		

Table 3

 3 

	, Chapter 1) are invariant based

Table 5 :

 5 Neo-Hookean model in the context of thermoforming.

	Material	Thermal assumption	T (°C)	Testing Conditions 𝝀 (%) Load	Process / Test VA PA In	BA	Ref.
	PMMA	Iso -	163 225 160 225	--			[28] [30]
	HIPS	-	135 120-	400	2 -10 s -1				[31]
	VA: Vacuum-assisted thermoforming	In: Inflation-assisted thermoforming
		PA: Plug-assisted thermoforming		BA: Biaxial stretching
		Iso: Isothermal			Non-Iso: Non isothermal
	Song et al. [28] used the Neo-Hookean formulation in a finite element model to simulate the inflation
	of PMMA sheets based upon a thick sheet assumption. They successfully demonstrated the capability

Table 6 :

 6 Mooney Rivlin model in the context of thermoforming.

	Material	Thermal assumption	Testing Conditions (°C) T 𝝀 (%) Load	Process / Test VA PA In	UD	Ref.
		Iso	160 350 250 mm/min					[34,35]
	PMMA	Iso	160	-	Pressure (0.115 MPa)				[36]
		Iso	163	-	0.187 MPa				[28]
		Non-Iso	130-	300 500 mm/min				[33]
			170				
	ABS	Non-Iso	150	-	3 L/s				[37]
		Iso	145 450	-				[32]
		Non-Iso	-	-	-			[16]
		Iso	150 470	-				[32]
	HIPS	Non-Iso	125 1000	4.8 psi				[27]
		Non-Iso	-	200	7 psi				[38]
	Num.	-	-	-	-				[39]
	studies	-	-	-	-			[40]
	VA: Vacuum-assisted thermoforming	In: Inflation-assisted thermoforming
	PA: Plug-assisted thermoforming		UD: unidirectional stretching
		Iso: Isothermal			Non-Iso: Non isothermal

Table 7 :

 7 Ogden model in the context of thermoforming.

	Material	Thermal assumption	T (°C)	Testing Conditions 𝝀 (%) Load	Process / Test VA PA In	UD	Ref.
	PMMA	Iso	160	350	250 mm/min			[34, 35]
		Iso	150	470	-			[32]
	HIPS	-	135 120-	400	2 -10 s -1			[31]
	ABS	Iso	143	170	-			[42]
	PPO	Iso	149	600	~ 1525 mm / min			

Table 8 :

 8 K-BKZ model in the context of thermoforming.

	Material	Thermal assumption	T (°C)	Testing Conditions 𝝀 (%) Load	Process / Test VA PA In UD	Ref.
	HIPS	Iso	145 130-	275	mm/min 100 -1000			[51]
		Iso	160	400	200 mm/s			[52]
	ABS	Iso	170	330	1 s -1			



[53] 

VA: Vacuum-assisted thermoforming PA: Plug-assisted thermoforming Iso: Isothermal

In: Inflation-assisted thermoforming UD: Uniaxial stretching Non-Iso: Non isothermal

Table 9 :

 9 A list of expressions for the damping function ℎ(𝐼 1 , 𝐼 2 ) as reported in literature 𝒉(𝑰 𝟏 , 𝑰 𝟐 )Eq. No.

	Parameter to fit	Ref.

Table 10 :

 10 CBT model in the context of thermoforming.

	Material	Thermal assumption	T (°C)	Testing Conditions 𝝀 (%) Load	Process / Test VA PA In UD	Ref.
	ABS	Iso	143	230	L/s 11 , 19 , 27		[50]
	VA: Vacuum-assisted thermoforming	In: Inflation-assisted thermoforming
		PA: Plug-assisted thermoforming		UD: Uniaxial stretching	
		Iso: Isothermal			Non-Iso: Non isothermal	

Table 11 :

 11 Christensen model in the context of thermoforming.

	Material	Thermal assumption	T (°C)	Testing Conditions 𝝀 (%) Load (L/s)	Process / Test VA PA In	UD	Ref.
	ABS	Iso Iso	143 145	230 275	11 , 19 , 27 11 , 19 , 27	 		[50] [58]
	HIPS	Iso	150	275	11 , 19 , 27		



[58] 

Table 13 :

 13 Richeton model in the context of thermoforming.

	Material	Thermal assumption	Testing Conditions (°C) T 𝝀 (%) Load	VA	Process / Test PA UD	SS	Ref.
	PMMA PC	--	130 220 0.001 -0.1 s -1 150		 	 	[67]

  𝑇 𝛽 𝑟𝑒𝑓 , 𝑇 𝑔 𝑟𝑒𝑓 , 𝑇 𝑓 𝑟𝑒𝑓 is the β transition, glass transition and flow temperatures at a reference strain rate of 𝜀̇𝑟 𝑒𝑓 , k is the Boltzmann constant, ∆𝐻 𝛽 is the β activation energy, 𝑐 1 𝑟𝑒𝑓 and 𝑐 2 𝑟𝑒𝑓 are the Williams-Landel-Ferry equation parameters relative to the 𝑇 𝑔 𝑟𝑒𝑓 , 𝐸 𝑖 𝑟𝑒𝑓 is the instantaneous Young's Modulus at

	𝐸 𝑖 = 𝐸 𝑖 𝑟𝑒𝑓 (1 + 𝑠 log (	𝜀 𝑒𝑓 )) ε̇𝑟
	𝛽	=	1 𝑇 𝛽 𝑟𝑒𝑓 +	𝑘 ∆𝐻 𝛽	𝜀̇𝑟 𝑒𝑓 𝑙𝑛 ( 𝜀̇)	38
	𝑇 𝑔 = 𝑇 𝑔 𝑟𝑒𝑓 +	-𝑐 2 𝑟𝑒𝑓 log ( 𝑐 1 𝑟𝑒𝑓 + log ( 𝜀̇𝑟 𝑒𝑓 𝜀̇) 𝜀̇𝑟 𝑒𝑓 𝜀̇)	39
	𝑇 𝑓 = 𝑇 𝑓 𝑟𝑒𝑓 (1 + 0.01 log (	𝜀 𝑒𝑓 )) ε̇𝑟	40

41

Where,

Table 14 :

 14 G'Sell model in the context of thermoforming.

	Material	Thermal assumption	Testing Conditions (°C) T 𝝀 (%) Load	VA	Process / Test PA In	UD	Ref.
	HIPS	Non-Iso	80 -140	175	50 -500 mm / min				[70, 73]
			140,	220	10, 50,					[74]
	HIPS	Iso	150		100 mm /			
					min			

  Recalling the definition of the strain rate tensor 𝑫 we haveThe right hand side of the equation is nothing but the push forward operation of the elasticity tensor 𝐂 ̿ from the reference configuration to the current one by C 𝒊𝒋𝒌𝒍 𝝉𝐶 = 𝐹 𝑖𝑃 𝐹 𝑗𝑄 𝐹 𝑘𝑅 𝐹 𝑙𝑆 C 𝑃𝑄𝑅𝑆 . The left hand side of the equation meanwhile defines the convected rate or Olroyd rate of the Kirchoff stress tensor 𝝉. Thus the Eq. 75 is reduced to𝝉̇-𝑳𝝉 -𝝉𝑳 𝑻 = 𝐂 ̿ 𝝉𝐶 . 𝑫76However in recent versions of ABAQUS ® (2014 and above) it is the Zaremba-Jaumann rate of Kirchoff stress that is defined for the material time derivative[2,3,7] given by 𝝉̇-𝑾𝝉 -𝝉𝑾 𝑻 . Using 𝑳 = 𝑫 + 𝑾 the Eq. 76 becomes 𝝉̇-𝑾𝝉 -𝝉𝑾 𝑻 = 𝐂 ̿ 𝝉𝐶 . 𝑫 + 𝑫𝝉 + 𝝉𝑫 𝑻 = 𝐂 ̿ 𝝉𝐶 . 𝑫 + 𝑯. 𝑫 77

	Where 𝑯 𝒊𝒋𝒌𝒍 =			
					1 2	(𝑭 ̇𝑻𝑭 + 𝑭 𝑻 𝑭 ̇ )	71
	Multiplying 𝑭 and 𝑭 𝑻 on both sides we get		
	𝝉̇+ 𝑭𝑭 ̇-𝟏 𝝉 + 𝝉𝑭 ̇-𝑻 𝑭 𝑻 = 𝑭 [𝐂 ̿ .	1 2	(𝑭 ̇𝑻𝑭 + 𝑭 𝑻 𝑭 ̇ )] 𝑭 𝑻	72
	Rearranging them we get			
	𝝉̇+ 𝑭𝑭 ̇-𝟏 𝝉 + 𝝉(𝑭𝑭 ̇-𝟏 ) 𝑻 = 𝑭 [𝐂 ̿ .	1 2	{𝑭 𝑻 (𝑭 -𝑻 𝑭 ̇𝑻 + 𝑭 ̇𝑭-𝟏 )𝑭}] 𝑭 𝑻	73
	Or			
	𝝉̇-𝑳𝝉 -𝝉𝑳 𝑻 = 𝑭 [𝐂 ̿ .	1 2	{𝑭 𝑻 ((𝑭 ̇𝑭-𝟏 ) 𝑻 + 𝑭 ̇𝑭-𝟏 )𝑭}] 𝑭 𝑻	74

1 2 (𝛿 𝑖𝑘 𝝉 𝑗𝑙 + 𝛿 𝑖𝑙 𝝉 𝑗𝑘 + 𝝉 𝑖𝑘 𝛿 𝑗𝑙 + 𝝉 𝑖𝑙 𝛿 𝑗𝑘 ). Therefore:

  𝐶 10 , a general constant for the Neo-Hookean model the index form becomes

			𝝈 =	2 𝐷 1	(𝐽 -1). (𝟏) +	2 𝐽	(	𝑛𝑘𝑇 2	) [𝑩 ̅ -	1 3	(𝐼 1 ̅ )(𝟏)]	83
	𝝈 𝟏𝟏 𝝈 𝟏𝟐 𝝈 𝟏𝟑 𝝈 𝟐𝟐 𝝈 𝟐𝟑 𝑛𝑘𝑇 Taking ( 2 ) =							C 1111 𝑀𝐽	C 1122 𝑀𝐽 C 2222 𝑀𝐽	C 1133 𝑀𝐽 C 2233 𝑀𝐽	C 1112 𝑀𝐽 C 2212 𝑀𝐽	C 1113 𝑀𝐽 C 2213 𝑀𝐽	𝑀𝐽 C 1123 C 2223 𝑀𝐽
			𝝈 𝟑𝟑							C 3333 𝑀𝐽	C 3312 𝑀𝐽	C 3313 𝑀𝐽	C 3323 𝑀𝐽
												C 1212 𝑀𝐽	C 1213 𝑀𝐽	C 1223 𝑀𝐽
												C 1313 𝑀𝐽	C 1323 𝑀𝐽
												C 2323 𝑀𝐽
												1 2 𝑛𝑘𝑇 (𝐼 1 ̅ -3). Thus the expression for	𝜕𝑊 ̅ 𝜕𝐶 ̅ is
	calculated by										
									𝜕𝑊 ̅ 𝜕𝐶 ̅ =		𝜕𝑊 ̅ 𝜕𝐼 1 ̅	.	𝜕𝐶 ̅ 𝜕𝐼 1 ̅	81
	For Neo-Hookean model	𝜕𝑊 ̅ 𝜕𝐼 1 ̅ =	𝑛𝑘𝑇 2 and	𝜕𝐼 1 ̅ 𝜕𝐶 ̅ = 𝟏. Therefore the expression for the Cauchy stress 𝝈 from
	Eq. 63 becomes										
	𝝈 =	2 𝐷 1	(𝐽 -1). (𝟏) +	2 𝐽	[𝐽 -2/3 (	𝑛𝑘𝑇 2	𝑭. 𝟏. 𝑭 𝑻 ) -	1 3	( 𝑛𝑘𝑇 2	𝟏. 𝑪 ̅ ) (𝟏)]	82
	Using the relation 𝟏. 𝑪 ̅ = 𝐼 1 ̅ we get				

  𝛿 𝑖𝑘 𝝈 𝑗𝑙 + 𝛿 𝑖𝑙 𝝈 𝑗𝑘 + 𝝈 𝑖𝑘 𝛿 𝑗𝑙 + 𝝈 𝑖𝑙 𝛿 𝑗𝑘 ) 𝛿 𝑖𝑘 𝝈 𝑗𝑙 + 𝛿 𝑖𝑙 𝝈 𝑗𝑘 + 𝝈 𝑖𝑘 𝛿 𝑗𝑙 + 𝝈 𝑖𝑙 𝛿 𝑗𝑘 ) 90 Using the expression of 𝝈 in Eq. 84 and putting in the above equation we get

	C 𝒊𝒋𝒌𝒍 𝝉𝑍-𝐽 = 𝐽	2 𝐷 1	(𝐽 -1)(𝛿 𝑖𝑗 𝛿 𝑘𝑙 -𝛿 𝑖𝑘 𝛿 𝑗𝑙 -𝛿 𝑖𝑙 𝛿 𝑗𝑘 ) + 𝐽 2 2 𝐷 1	𝛿 𝑖𝑗 𝛿 𝑘𝑙 -	4 3	𝐶 10 (𝑩 ̅ 𝑖𝑗 𝛿 𝑘𝑙 + 𝛿 𝑖𝑗 𝑩 ̅ 𝑘𝑙 )
					+ +	4 3 1 2	𝐶 10 ( 𝐼 1 ̅ ) ( 𝐽(89 1 2 (𝛿 𝑖𝑘 𝛿 𝑗𝑙 + 𝛿 𝑖𝑙 𝛿 𝑗𝑘 ) + 1 3 𝛿 𝑖𝑗 𝛿 𝑘𝑙 )
	Finally, the material Jacobian is expressed as
	C 𝑖𝑗𝑘𝑙 𝑀𝐽 =	2 𝐷 1	(𝐽 -1)(𝛿 𝑖𝑗 𝛿 𝑘𝑙 -𝛿 𝑖𝑘 𝛿 𝑗𝑙 -𝛿 𝑖𝑙 𝛿 𝑗𝑘 ) + 𝐽	2 𝐷 1	𝛿 𝑖𝑗 𝛿 𝑘𝑙 -	4𝐶 10 3𝐽	(𝑩 ̅ 𝑖𝑗 𝛿 𝑘𝑙 + 𝛿 𝑖𝑗 𝑩 ̅ 𝑘𝑙 )
					+		4𝐶 10 3𝐽	( 𝐼 1 ̅ ) (	1 2	(𝛿 𝑖𝑘 𝛿 𝑗𝑙 + 𝛿 𝑖𝑙 𝛿 𝑗𝑘 ) +	1 3	𝛿 𝑖𝑗 𝛿 𝑘𝑙 )
	+ (C 𝑖𝑗𝑘𝑙 1 2 𝑀𝐽 = 2 𝐷 1 (2𝐽 -1)𝛿 𝑖𝑗 𝛿 𝑘𝑙
					+		2𝐶 10 𝐽	[	1 2	(𝛿 𝑖𝑘 𝑩 ̅ 𝑗𝑙 + 𝛿 𝑖𝑙 𝑩 ̅ 𝑗𝑘 + 𝑩 ̅ 𝑖𝑘 𝛿 𝑗𝑙 + 𝑩 ̅ 𝑖𝑙 𝛿 𝑗𝑘 ) -	2 3	𝛿 𝑖𝑗 𝑩 ̅ 𝑘𝑙 -	2 3	𝑩 ̅ 𝑖𝑗 𝛿 𝑘𝑙	91
					+		2 9	𝛿 𝑖𝑗 𝛿 𝑘𝑙 𝐼 1 ̅ ]
	2 𝑈 𝜕𝐽 2 𝟏⨂𝟏 -In the case of assuming incompressibility the first term ( 4 3 𝐽 -2 3 𝐶 10 ( 𝑩⨂𝟏 + 𝟏⨂𝑩) + 2 𝐷 1 (2𝐽 -1)𝛿	4 3	𝐶 10 ( 𝐼 1 ̅ ) ( 𝐈 ̿ +	1 3	𝟏⨂𝟏)
	= 𝐽	2 𝐷 1	(𝐽 -1)(𝟏⨂𝟏 -2𝐈 ̿ ) + 𝐽 2 2 𝐷 1	𝟏⨂𝟏 -	4 3	𝐶 10 (𝑩 ̅ ⨂𝟏 + 𝟏⨂𝑩 ̅ )
					+	4 3	𝐶 10 ( 𝐼 1 ̅ ) (𝐈 ̿ +	3 1	𝟏⨂𝟏)	87
	Therefore, writing this in index form we get
	C 𝒊𝒋𝒌𝒍 𝝉𝐶 = 𝐽	2 𝐷 1	(𝐽 -1)(𝛿 𝑖𝑗 𝛿 𝑘𝑙 -𝛿 𝑖𝑘 𝛿 𝑗𝑙 -𝛿 𝑖𝑙 𝛿 𝑗𝑘 ) + 𝐽 2 2 𝐷 1	𝛿 𝑖𝑗 𝛿 𝑘𝑙 -	4 3	𝐶 10 (𝑩 ̅ 𝑖𝑗 𝛿 𝑘𝑙 + 𝛿 𝑖𝑗 𝑩 ̅ 𝑘𝑙 )
					+	4 3	𝐶 10 ( 𝐼 1 ̅ ) (	1 2	(𝛿 𝑖𝑘 𝛿 𝑗𝑙 + 𝛿 𝑖𝑙 𝛿 𝑗𝑘 ) +	3 1	𝛿 𝑖𝑗 𝛿 𝑘𝑙 )	88
	Expressing it for the Zaremba-Jaumann stress rate

𝑖𝑗 𝛿 𝑘𝑙 ) of Eq. 91 is neglected.

  𝛿 𝑖𝑘 𝝈 𝑗𝑙 + 𝛿 𝑖𝑙 𝝈 𝑗𝑘 + 𝝈 𝑖𝑘 𝛿 𝑗𝑙 + 𝝈 𝑖𝑙 𝛿 𝑗𝑘 ) 𝛿 𝑖𝑘 𝝈 𝑗𝑙 + 𝛿 𝑖𝑙 𝝈 𝑗𝑘 + 𝝈 𝑖𝑘 𝛿 𝑗𝑙 + 𝝈 𝑖𝑙 𝛿 𝑗𝑘 )

	C 𝒊𝒋𝒌𝒍 𝝉𝑍-𝐽 = 𝐽	2 𝐷 1	(𝐽 -1)(𝛿 𝑖𝑗 𝛿 𝑘𝑙 -𝛿 𝑖𝑘 𝛿 𝑗𝑙 -𝛿 𝑖𝑙 𝛿 𝑗𝑘 ) + 𝐽 2 2 𝐷 1	𝛿 𝑖𝑗 𝛿 𝑘𝑙
			+	4 3	𝐶 10 [𝐼 1 ̅ ( 1 2	(𝛿 𝑖𝑘 𝛿 𝑗𝑙 + 𝛿 𝑖𝑙 𝛿 𝑗𝑘 ) -	1 3	𝛿 𝑖𝑗 𝛿 𝑘𝑙 )
			-(𝑑𝑒𝑣(𝑩 ̅ ) 𝑖𝑗 𝛿 𝑘𝑙 + 𝛿 𝑖𝑗 𝑑𝑒𝑣(𝑩 ̅ ) 𝑘𝑙 )] + 4𝐶 01 [𝑩 ̅ 𝑖𝑗 𝑩 ̅ 𝑘𝑙 -1 2 (𝑩 ̅ 𝑖𝑘 𝑩 ̅ 𝑗𝑙 + 𝑩 ̅ 𝑖𝑙 𝑩 ̅ 𝑗𝑘 ) + 2 3 𝐼 2 ̅ ( 1 2 (𝛿 𝑖𝑘 𝛿 𝑗𝑙 + 𝛿 𝑖𝑙 𝛿 𝑗𝑘 ) -2 3 𝛿 𝑖𝑗 𝛿 𝑘𝑙 ) + 2 3 (𝑑𝑒𝑣(𝑩 ̅ -𝟏 ) 𝑖𝑗 𝛿 𝑘𝑙 + 𝛿 𝑖𝑗 𝑑𝑒𝑣(𝑩 ̅ -𝟏 ) 𝑘𝑙 )] + 1 2 𝐽(101
	2 3 𝐼 2 ̅ . 𝟏 Finally, the material Jacobian is expressed as	
	Thus finally the index form expression of the elasticity tensor is C 𝒊𝒋𝒌𝒍 𝝉𝐶 = 𝐽 2 𝐷 1 C 𝑖𝑗𝑘𝑙 𝑀𝐽 = 2 𝐷 1 (𝐽 -1)(𝛿 𝑖𝑗 𝛿 𝑘𝑙 -𝛿 𝑖𝑘 𝛿 𝑗𝑙 -𝛿 𝑖𝑙 𝛿 𝑗𝑘 ) + 𝐽 2 𝛿 𝑖𝑗 𝛿 𝑘𝑙 𝐷 1 (𝐽 -1)(𝛿 𝑖𝑗 𝛿 𝑘𝑙 -𝛿 𝑖𝑘 𝛿 𝑗𝑙 -𝛿 𝑖𝑙 𝛿 𝑗𝑘 ) + 𝐽 2 2 𝐷 1 + 4 3 𝐶 10 [𝐼 1 ̅ ( 1 2 (𝛿 𝑖𝑘 𝛿 𝑗𝑙 + 𝛿 𝑖𝑙 𝛿 𝑗𝑘 ) -1 3 𝛿 𝑖𝑗 𝛿 𝑘𝑙 ) 𝛿 𝑖𝑗 𝛿 𝑘𝑙 -(𝑑𝑒𝑣(𝑩 ̅ ) 𝑖𝑗 𝛿 𝑘𝑙 + 𝛿 𝑖𝑗 𝑑𝑒𝑣(𝑩 ̅ ) 𝑘𝑙 )] + 4𝐶 01 (𝑩 ̅ 𝑖𝑗 𝑩 ̅ 𝑘𝑙 -1 2 (𝑩 ̅ 𝑖𝑘 𝑩 ̅ 𝑗𝑙 + 𝑩 ̅ 𝑖𝑙 𝑩 ̅ 𝑗𝑘 ) + 2 3 𝐼 2 ̅ ( 1 2 (𝛿 𝑖𝑘 𝛿 𝑗𝑙 + 𝛿 𝑖𝑙 𝛿 𝑗𝑘 ) -2 3 𝛿 𝑖𝑗 𝛿 𝑘𝑙 ) + 3 (𝑑𝑒𝑣(𝑩 ̅ -𝟏 ) 𝑖𝑗 𝛿 𝑘𝑙 + 𝛿 𝑖𝑗 𝑑𝑒𝑣(𝑩 ̅ -𝟏 ) 𝑘𝑙 )) 2 + 4𝐶 10 3𝐽 [𝐼 1 ̅ ( 1 2 (𝛿 𝑖𝑘 𝛿 𝑗𝑙 + 𝛿 𝑖𝑙 𝛿 𝑗𝑘 ) -1 3 𝛿 𝑖𝑗 𝛿 + 4𝐶 01 𝐽 [𝑩 ̅ 𝑖𝑗 𝑩 ̅ 𝑘𝑙 -1 2 (𝑩 ̅ 𝑖𝑘 𝑩 ̅ 𝑗𝑙 + 𝑩 ̅ 𝑖𝑙 𝑩 ̅ 𝑗𝑘 ) + 2 3 𝐼 2 ̅ ( 1 2 (𝛿 𝑖𝑘 𝛿 𝑗𝑙 + 𝛿 𝑖𝑙 𝛿 𝑗𝑘 ) -2 3 𝛿 𝑖𝑗 𝛿 𝑘𝑙 ) + 2 3 (𝑑𝑒𝑣(𝑩 ̅ -𝟏 ) 𝑖𝑗 𝛿 𝑘𝑙 + 𝛿 𝑖𝑗 𝑑𝑒𝑣(𝑩 ̅ -𝟏 ) 𝑘𝑙 )] + 1 2 (102 100
	Expressing it for the Zaremba-Jaumann stress rate

𝑘𝑙 ) -(𝑑𝑒𝑣(𝑩 ̅ ) 𝑖𝑗 𝛿 𝑘𝑙 + 𝛿 𝑖𝑗 𝑑𝑒𝑣(𝑩 ̅ ) 𝑘𝑙 )]

Table 16 :

 16 

Boundary conditions applied to the FEM model for the three cases

  Precision defines how well a result can be determined without referring to the known value (𝑥 𝑘𝑛𝑜𝑤𝑛 ). It characterizes the repeatability and reproducibility of the result. It is quantitatively reported by calculation of the relative uncertainty (RU) given by Eq. 115:

		𝑥 𝑘𝑛𝑜𝑤𝑛 𝑥 𝑘𝑛𝑜𝑤𝑛	|	114
	(ii) 𝑅𝑈 = |	2 * 𝑆𝑡𝐷𝑒𝑣(𝑥) 𝑥 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 |		115

Table 20 :

 20 Intrinsic and extrinsic parameters of stereo DIC system

		Camera 1		Camera 2
	Positions (mm)	(-14.2457, -195.191, 645.764)	(-22.3268, -192.428, 653.943)
	Rotations (°)	(37.034, -2.979,	-2.15737) (36.0142, 6.37808, -0.85384)
	Focal length (mm)	43.158		43.3402
	Origin (pixel)		(871.535, 2117.65)
	Scale factor (pixel/mm)		11.1511
	Pixel aspect ratio		1
	Pixel size (µm)		5.5

Table 21 :

 21 Refraction functions at room temperature conditions

	Crosshead speed	Slope	Intercept
	10 mm/min	6.03×10 -3	6.04×10 -3
	50 mm/min	-28.8×10 -3	47.95×10 -3
	100 mm/min	-51.1×10 -3	17.74×10 -3

Table 22 :

 22 Heat rectification functions at 120°C

	Crosshead speed	Slope	Intercept
	10 mm/min	3.08×10 -3	40.72×10 -3
	50 mm/min	18.91×10 -3	49.98×10 -3
	100 mm/min	33.97×10 -3	-56.25×10 -3

Table 23 :

 23 Quantification of off-set brought about by DIC-related and thermal bias error corrections

	Disp. speed (mm/min)	𝑉 𝑦_𝑖𝑚𝑝𝑜𝑠𝑒𝑑 (mm)	Raw	𝑉 ̃𝑦_𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 (mm) Stereo-DIC correction Stereo-DIC & heat corrections	Off-set (mm) Stereo-DIC Stereo-DIC & heat correction corrections
	100	25	24.1502	24.8989	24.4456	0.7487	0.2954
	50	12.5	11.8392	12.5879	12.1346	0.7487	0.2954
	10	2.5	2.4979	3.2467	2.7934	0.7488	0.2955

Table 25 :

 25 Optimized parameters of Mooney Rivlin for two tests conducted at 110°C

		Test 1 (110 °C / S2)	Test 2 (110 °C / S3)
		C1	C2	𝜑 (final) C1	C2	𝜑 (final)
		(MPa)	(MPa)		(MPa)	(MPa)
	Initial	0.325	0.035		0.325	0.035
	λ = 1.1	1.9371 0.001 0.0784	1.305	0.001	0.0532
	λ = 1.2	1.1121 0.001 0.0731	1.8266 0.001	0.0491
	λ = 1.3	1.77	0.001 0.0707	1.2988 0.001	0.0478
	λ = 1.4	1.234	0.001 0.069	-	-	-

Table 26 :

 26 Optimized parameters of Mooney Rivlin for two tests conducted at 115°C

		Test 1 (115 °C / S2)	Test 2 (115 °C / S3)
		C1	C2	𝜑 (final) C1	C2	𝜑 (final)
		(MPa)	(MPa)		(MPa)	(MPa)
	Initial	0.325	0.035		0.325	0.035
	λ = 1.1	1.0571 0.001 0.1059	1.7394 0.001	0.082
	λ = 1.2	1.1066 0.001 0.1219	1.7197 0.001	0.095
	λ = 1.3	1.6260 0.001 0.1188	1.0451 0.001	0.102
	λ = 1.4	2.0000 0.001 0.1275	-	-	-

Table 29 :

 29 Material names and their respective stress-strain constitutive behavior

	No.	Material tag	Constitutive behavior
	1	T1S1	Stress Strain curve defined by 105°C and 0.0027 s -1
	…	…	…
	…	…	…
	12	T2S3	Stress Strain curve defined by 107.5°C and 0.013 s -1
	13	T2S4	Stress Strain curve defined by 107.5°C and 0.0205 s -1
		…	…
	63	T7S9	Stress Strain curve defined by 120°C and 0.1 s -1

Thermoforming cases of study:

  Flowing polymer in the FW o It considers eight relaxation modes of macromolecules chains o It estimates shear stress response o It integrates a damping function and a time-dependent memory function o FEM: Thin sheet (membrane assumption) o Thermal BCs: iso-thermal  Model calibration: o Based on rheological measurements o 18 parameters to be identified: (eight pairs of relaxation times and relaxation moduli (𝑎 𝑘 , 𝜆 𝑘 ) in Eq. 16 + one shear fitted parameter α + one elongation fitted parameter β (extensional viscosity) in Eq. 19. o One weighting constant to define 𝜃 (equal to zero or to -0.1) in Eq. 21 Eight model parameters to be identified (for N=3, in Eq. 27 ): Three pairs of (𝑔 0𝑖 and α i ) + one relaxation modulus 𝐶 1 + one relaxation time τ R in Eq. 29.  Three model parameters to identify: one material constant from curve fitting 𝐶 0 + one relaxtion modulus 𝐶 1 + one relaxtion time 𝜏 𝑅 (Eq. 30) o The least number of parameters to be identified in the class of viscoelastic models Flowing polymer in the FW o Ability to provide total stress at temperatures above 𝑇 𝑔 o It assumes that total stress is the summation of bond stretching and conformational stresses (Eq. 31) o Ability to model strain hardening o Explicit numerical integration (Eq. 32)  Model

		o ABS: o HIPS:
		 Forming stages: Vacuum-assisted  Forming stages: Inflation
		 Stretch levels: 170 %  Stretch levels: 275 %
		o HIPS:
		 Forming stages: Inflation
		 Stretch levels: 400 %  Class: Physically-based o PMMA:  Assumptions and characteristics:  Forming stages: Inflation  Stretch levels: 350 % o
		Visco-elastic models
		 Class: Phenomenological
		 Simulation assumptions:
	K-BKZ Glass Rubber	Thermoforming cases of study: o 
		o ABS:
		 Forming stages: Vacuum-assisted
		 Stretch levels: 170 %
		o HIPS:
		 Forming stages: Vacuum-assisted and Plug-assisted
		 Stretch levels: 275-400 %
		 Class: Phenomenological
		 Simulation assumptions:
		o It estimates principal stresses
		o FEM: Thin sheet (membrane assumption)
		o Thermal BCs: iso-thermal
	CBT	 Model calibration: o o ABS:
		 Forming stages: Inflation
		 Stretch levels: 230 %
		 Class: Phenomenological
		 Simulation assumptions:
		o It estimates principal stresses
		o FEM: Thin sheet (membrane assumption)
		o Thermal BCs: iso-thermal
		 Model calibration:
	Christensen	o  Thermoforming cases of study:
		o ABS:
		 Forming stages: Inflation
		 Stretch levels: 230 -275 %

calibration: (refer to Wei. 2019, PLLA) o

  Six model parameters to be identified: One parameter (μ 0 ) to identify from DMA tests + Three parameters related to chain entanglement (𝑁 𝑒 , ƞ, 𝛼) using fitting in Eq. 36 + Two parameters (𝐺 𝑏 , 𝑘 𝑏 ) from Eyring plots of linear viscoelasticity in Eqs. 32 and 36. o Three material parameters: Activation enthalpy Δ𝐻 0 , Shear activation volume 𝑉 𝑠 , Pressure activation volume 𝑉 𝑝  Thermoforming cases of study: Ability to provide total stress at temperatures below 𝑇 𝑔 (Eq. 42) and above 𝑇 𝑔 (Eq. 43). o It assumes that total behaviour is the combination of three elements:  A linear spring: Defines temperature and strain rate dependency of Young's modulus (Eq. 37)  Dashpot cooperative model: Defines temperature and strain rate dependency of yield stress (Eq. 42-43)  Langevin spring based to model strain hardening behaviour during elongation of polymers  Model calibration: o 14 of parameters to be identified: Three Weibull parameters (𝑚 1 , 𝑚 2 , 𝑚 3 ) + Two WLF parameters (𝑐 1 , 𝑐 2 ) + One material constant (s) + Four parameters from the dashpot model (∆𝐻 𝛽 , β, V and n) + Four material parameters from the Langevin spring (𝐶 𝑅 , 𝑁, 𝑎 and 𝑏) It estimates principal stresses (Eq. 49) o Time-dependent parameters are modelled using Prony series (Eq. 50) o Temperature-dependent parameters are modelled using Arrhenius equation (Eq. 51-54) o Ability is able to predict:  Stresses at small strains  Post yield viscous behavior  Strain hardening o FEM: Thin sheet (membrane assumption) o Thermal BCs: iso-thermal/non-isothermal  Model calibration: 14 parameters to identify: Eight temperature dependent parameters (𝐸 0 , 𝜎 0 , 𝐾 0 , ℎ 0 , 𝐴 𝐸 , 𝐴 𝜎 , 𝐴 𝐾 and 𝐴 ℎ ) + Four time dependent parameters (𝑔 1 , 𝑔 2 , 𝑡 1 and 𝑡 2 )

		 Simulation assumptions:
		o  Thermoforming cases of study:
		o HIPS:
		 Stretching tests: UD tests, plug-assisted and Inflation
		 Stretch levels: 175-220 %
		o PLLA:
		 Stretching tests: BA
		 Stretch levels: 250 %
		o PET:
		 Stretching tests: BA
		 Stretch levels: 350 %
		o PMMA:
		 Stretching tests: UD
		 Stretch levels: 400 %
		Visco-elastoplastic models
		 Thermoforming cases of study:
		o PC:
		 Stretching tests: UD and Simple shear loading
		 Stretch levels: 220 %
		o PMMA:
		 Stretching tests: UD and Simple shear loading
		 Stretch levels: 220 %
	G'Sell	 Class: Phenomenological
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Richeton  Class: Physically-based  Assumptions and characteristics: o
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Shear case

Compression case

The stress strain curves for the case of uniaxial tension are shown in Figure 23a.The relative difference between the two assumptions (compressible /quasi-incompressible) against the level of strain is shown in Figure 23b. It is observed that the UHYPER formalism is able to replicate the inbuilt option of the Mooney Rivlin model. However, having the presence of a second invariant seems to affect the relative error between the quasi-incompressible and compressible assumptions by a greater margin than for the Neo-Hooken model (only first invariant) as the relative error is found to reach close to 60% at a strain of 0.7. For the simple shear test a displacement of 20 mm was given to the positive Y direction while maintaining the distance of 100 mm in between the two faces just like in the Neo-Hookean case. The stress strain curves for the X-Y in-plane shear stress vs strain is shown in Figure 24a and the relative difference between the two assumptions against the level of strain is shown in Figure 24b. Once again it is seen that the assumption of quasi-incompressible and compressibility doesn't have any significant effect on the shear stress vs strain curve as the relative difference between the two assumptions is <3% in the given strain range. Finally, for the compression test a load of 20 mm was applied to the negative X direction on the right hand face. Having the compressible assumptions the stress strain curve is shown in Figure 25. The computational time for the UHYPER formalism and the inbuilt option was once again verified for the tensile case. As obtained for the Neo-Hookean model, the computational time was similar for both (65s). However, it is observed in the Mooney-Rivlin model that the output file size is actually less in the case of the inbuilt option even though the computational time is the same. Such a difference in the file size is expected to increase largely in a FEM model consisting of the simulation of the forming step in worked on the effect of changing the order of shape functions on random errors and systematic ones.

They concluded that second order shape functions induce mild additional random errors but no systematic errors compared to first order that produces both random and systematic errors. Zhao et al. [14] and Ma et al. [50] also suggested that random errors can be minimized by taking a time average of finite number of images. Haddadi et al. [29] studied the effect of subset size, speckle pattern, lighting, out of plane motion, in plane rotation and translation using rigid body motion in 2D DIC. They concluded that out-of-plane motion and lighting are the most critical sources of error. Balcaen et al. [51] used images that were virtually deformed by a FE mesh to quantify a selective source of errors arising due to experimental setup. Their findings supported that in a horizontal setup of camera, systematic errors are position dependent as they increase from the center of the region of interest towards its edge. [14,29] Subset size  Image Correlation [14] Interpolation [14] Correlation criteria [14,20] Overestimated order of shape functions (2 nd order). [14,29,48,49,51] Speckle quality, patterns, noise, contrast, large deformation  Image Acquisition [49] Calibration 

Experimental setup [14] Image distortion from camera [19,52,53] Self-heating of cameras in inducing heat errors.  [14] Environment temperature [29] Environment luminosity [14,29] In-plane translation  Position, motion, strain In-plane rotation Out of plane motion Out-of-plane translation

Extrinsic sources of errors: High-temperature DIC measurements

In the context of addressing extrinsic sources of errors, one of the earliest source of error recognized in this domain was the self-heating of cameras that eventually hampered the intrinsic calibration of the stereo-DIC system [19,52,53]. However, a newer domain of interest lies in quantifying errors brought by conducting stereo-DIC in a heated environment itself. This study thus looks to address the quantification of random and systematic errors brought about by conducting stereo-DIC in a heated environment. Indeed, DIC is an optical-numerical measurement technique. Thus, a particular attention is attributed to the presence of potential heat source along the optical path of used cameras. These sources of heat can cause changes of refraction index of the air and result into uncontrolled distortions of the recorded images. Such a phenomenon is known by heat waves or heat haze. This type of errors is different from errors related to measurement drifts which are more related to the cameras overheating.

Yu et al. [54] conducted an extensive review about the developments related to strain measurements at high temperatures using DIC. Their study addressed three main challenges in performing hightemperature DIC measurements and provided counter measures: (i) image saturation due to radiative heating, (ii) degradation of image contrast due to different parameters including de-bonding of speckle patterns and (iii) image distortion because of heat waves. They also provided an overview of a classification of DIC techniques based on white-lights and ultra-violet lights where most of the interest was focused on temperatures ranging between 3 × 10 2 and 3 × 10 3 °C which are more applicable in the case of metals and ceramic materials. Within the current study, the main focus is to be attributed to the quantification of errors induced by heat waves within the range of thermoforming temperatures of thin HIPS sheets (less than 150 °C). Errors induced by heat-drift of cameras is assumed negligible due to the limited time-interval of stereoscopic recordings (less than 3 minutes).

Based on the previous consideration, a more focused literature review on studies reporting error quantification during DIC measurements conducted at temperatures lower than 150 °C. Only a few research studies have tried to quantify the effect of convective heat waves manifested in between stereo-DIC system and the object in a temperature range suited much to thermoforming (100°C-150°C) [45,50]. Ma et al. [50] suggested a backward oriented schlieren (BOS) method to correct the disturbances in displacement observed through these heat waves. They justified the disturbances as a main distortion from the real location along with an oscillating random distortion about this point. Their method of removing the main distortion from each image using the BOS method was followed by time averaging of the corrected images. This approach showed reduced errors in both systematic and random errors. Jones and Reu [45] studied different types of heat wave sources during DIC-based measurements within different environments including heating ovens, light sources and even out-of-laboratory measurements under sunlight. They focused on mitigating the errors caused by each one of these sources principally by increasing convective heat dissipation to stabilize the temperature fluctuations. They concluded that using a fan in the field-of-view did not completely eliminate errors. Spatial filtering was not possible in the studied cases due to the spatial frequency of error being too close to the magnitude of the displacement itself. High pass temporal filter proved effective to nullify the false displacements caused by the heat waves. They concluded by saying that the best attempt in reducing heat waves induced errors consisted of controlling the heat source experimentally before the heat waves could manifest into the captured images.

The current chapter presents a method to quantify stereo-DIC errors within the range of thermoforming temperatures of High impact polystyrene (HIPS). The method is designed for isothermal uniaxial tensile tests conducted using a regulated heating chamber. These include thermally induced effects such as change in refractive index, convection of heat waves etc. which bring both systematic and random errors which leads to the Lagrangian of the function, L(𝑥) = 𝑓(𝑥) + 𝜆 . ℎ(𝑥) + 𝜇 . 𝑔(𝑥). Here 𝜆 and 𝜇 are referred to as Lagrange multipliers. From the linear first-order approximation given by the Karush-Kuhn-Tucker (KKT) conditions, it is possible to get

Where 𝛿 𝑥 is the step length between two successive iterations for the searching parameter x and 𝛿 𝜆 is the step length between two iterations for a Lagrange multiplier [30]. At each iteration, these two-step lengths are updated in order to find the new x and 𝜆 for the next iteration. SQP has found its use in many inverse identification studies that rely on the FEMU method. Kowalewski and Gajewski [12] demonstrated the high performance of the SQP algorithm based on the number of iterations required to minimize the objective function. However, they stated that functions with a higher number of unknown parameters would drastically reduce this efficiency. Giton et al. [22] used SQP to find the hyperelastic model parameters of a silicone-filled rubber based on standardized tear tests. Siddiqui [6] used it to identify in-plane material properties of composite and aluminum plates using a simple tension and threepoint loading method. He concluded that the absolute relative error drops upon using the algorithm to less than 10%. Hmida-Maamar [8] used the technique to inverse identify the biaxial Mooney Rivlin model parameters by conducting FEMU on a bulge test. An example of an iteration during the minimization by SQP is given in Appendix 3.

Reliability of FEMU-U for large deformation problems at high temperature

In the context of thermoforming, the mechanical problem risks being ill-posed due to uncontrolled temperature-induced deformations, and thus inverse methods are required to integrate the effect of local heterogeneities in the identification procedure. However, before testing the feasibility on a full-scale industrial thermoforming rig, the hybrid inverse identification procedure developed in this study is tested on a laboratory-controlled tensile testing machine. Uniaxial tensile load is applied to high impact polystyrene (HIPS) samples under oven-controlled temperatures to determine the Mooney Rivlin parameters for different sets of temperature and strain rate. An advantage of this simplified approach is also that the tensile testing machine is already equipped with a force sensor that is able to capture the total force experienced on the top boundary of the sample in the direction of pull. First, the in-plane and out-of-plane displacements were computed using the image correlation method with consideration of an appropriate reference state. Second, the identical mesh used to assess the experimental nodal displacements was exported to finite element software ABAQUS ® (Dassault Systemes, France) to define boundary conditions at a set of control nodes. Then, an iterative minimization procedure of an objective function is defined based on the difference between the nodal displacements of the experimental and numerical fields.

was used using the same reference grid and the software DaVis (LaVision ® , Germany). Table 24 shows the intrinsic parameters of the used stereoscopic system as a result of the calibration operation. 

Unidirectional stretching procedure

The stretching procedure consisted of heating the regulated chamber. Once the target temperature is reached, the operator introduces the speckled HIPS specimen and fixes it at two areas by activating the pneumatic system of the clamps. Then, a fixed latency duration of three minutes is defined to ensure that the material's temperature reaches the temperature of the heating chamber. This duration was defined based on trial tests and thermocouple measurements, as illustrated in 

Results and discussion

To test the reliability of the considered hybrid numerical-experimental approach, two kinematic fields 1.2 and 1.3 were also defined. In total, for each test, the procedure was conducted four times.

The results of all the optimization procedures are provided in Table 25 starting points seem to be required to assess the most significant solution. This was also concluded from the works of Jekel et al. [18], who conducted the inverse bubble inflation analysis of the hyperelastic non-linear model. They considered 50 random starting points for their gradient-based optimizer to converge to a global minimum.

During the forming operation stereo-DIC measurements were conducted to monitor the surface deformations. The system was preliminarily calibrated using a reference grid covering the entire forming field. The output of the calibration procedure is provided in Table 27. For post-processing, the first pair of stereoscopic images following the total retraction of the heating oven were considered as reference of displacements and deformations. The selected subset size was 35 × 35 pixel 2 along with a step size of 15 pixels. The output of stereo-DIC in term of full fields of out-of-plane displacements as well as shear strains are illustrated in Figure 74. 

Numerical simulation

In this second part of the chapter, the actual simulation of the thermoforming campaign conducted is carried out. All the data thus collected must be unified before feeding to the finite element solver in order for it to run the simulation. A challenging task ensues henceforth to make sure that the data from individual systems can be correlated to one another in order to precisely track the behavior of the sheet at specific points and later justify their behavior based on the available data. The behavior of a thermoplastic is primarily dependent on the temperature and the strain rate with which it undergoes deformation. Both of these information is collected respectively from the IR thermography camera and the Stereo DIC system. The stereo DIC tool (LaVision ® Davis) gives the possibility to export the full field mesh used in the stereoscopic recording of displacements into the input file for Abaqus as explained the uniaxial tensile tests conducted during the experimental campaign previously. The conversion formula is given by Eq. 141:

Finally, the strain rate of each point on the full field data is derived from dividing the engineering strain by the forming time. A histogram of the strain rate distribution against the number of elements is shown in Figure 84(a). A large number of elements (~3500) undergo a small strain rate of about < 0.25s -1 .

Figure 84(b) shows a section drawn through the middle of the sheet parallel the X axis and its corresponding engineering strain rate on the elements it passes through. As can be seen the central zone denoting the top face of the plug that is in contact with the sheet undergoes the least strain rates. This is because of the friction between the plug and the sheet that forms a sticky contact at the top surface of the plug and thus limiting the amount of sliding that occurs in this zone.

Figure 83 : Histogram of maximum principal strain distribution over the sheet

Conversely just after the edges of the top face a zone of maximum extension is observed that manifest into the two peaks in Figure 84(b) along the mid-section with the highest strain rate. More discussion on the effect of friction in simulation will be provided in Section 6.3.6. Henceforth the centroid of the elements is located on the full field map of maximum principal strain and their corresponding strain rate is assigned for material characterization of that element.

at each level of strain by considering the stress levels in the Z axis. For illustrations this surface with the initial grid is represented in Figure 85 for two strain levels (𝜀 𝑒𝑛𝑔𝑔 = 0.1, 0.4). To carry out 2D non-linear interpolation a few options were tested. Among them, the ones that are adequately suited for carrying out interpolation on unevenly spaced grids (such as in our case) are spline fit and the modified Akima cubic Hermite fit. The spline is based on a cubic interpolation at the query points by considering the values at its neighboring grid point. For this purpose, a minimum of four points in each of the two axes is required. The Akima cubic Hermite interpolation on the other hand is based on a piecewise function of polynomials. These polynomials do not have a fixed degree and can be a combination of 1 st , 2 nd or 3 rd order which is evaluated along with the values from the neighbouring grid points. The interpolation functions were conducted on Matlab, where the Akima cubic Hermite interpolation algorithm is pre-modified in Matlab's internal database to avoid overshooting of the given data and requires at least 2 points (as compared to 4 for the spline) in each of the two axes. The resulting interpolated surface thus produces fewer undulations than a Spline fit and is computationally more efficient.

To compare both these techniques the interpolated stress surfaces are plotted at 𝜀 𝑒𝑛𝑔𝑔 = 0.1 and 0.4. The grid has been refined so as to have 31 equally spaced points on each of the two axes. The grid thus has a temperature discretization of 0.5 °C and a strain rate difference of 0.0032 s -1 between two consecutive points. Figure 86 shows the spline interpolation at these two strain levels.

Typically when the frictional shear stress is less than the critical value 𝜏 𝑐𝑟𝑖𝑡 which quantifies the start of sliding between the two surfaces, the total slippage occurring between the between the surfaces is limited to the elastic slip limit 𝛾 𝑐𝑟𝑖𝑡 . Thus the elastic slip is defined as the amount of distance within which the surfaces slip against one another just as they begin to slide. For rough surfaces having a very high coefficient of friction this is a small value as the surfaces slip by a small amount when they just begin to slide and vice versa. The definition of elastic slip is mandatory while choosing the penalty formulation for friction definition in Abaqus.

The critical elastic slip plays another important role in simulation of contact problems. A very large value of 𝛾 𝑐𝑟𝑖𝑡 makes the convergence less computationally expensive and rapid. However, there can be a loss in the accuracy of the solution as the surface will tend to slip more even for a rough surface. On the other hand having a very small value of 𝛾 𝑐𝑟𝑖𝑡 increases the accuracy of the results however they tend to cause more problems in convergence leading to increased computational times. Typically Abaqus defines the elastic slip as a fraction of the characteristic contact surface length 𝑙 𝑐ℎ𝑎𝑟 which is calculated at each iteration after scanning all the surfaces of the slave (sheet) surface and master (plug) surface.

Thus at each contact point of the two surfaces a 𝑙 𝑐ℎ𝑎𝑟 is defined to calculate the allowable elastic slip at that point. The relation is given by Eq. 145:

Where, ƒ is the fraction of the characteristic contact surface length (𝑙 𝑐ℎ𝑎𝑟 ) that is defined in Abaqus. By default, the value of ƒ is taken as 0.005. The Abaqus documentation provides a typical range of ƒ to retain the accuracy of simulations as in between 10 -2 to 10 -4 . Since the simulation of thermoforming in our case is a computationally heavy one, a reduction in the computational time is much sought after, especially in the case of an iterative procedure where multiple such simulations shall be run to determine the frictional coefficient. In our study, the control parameter to adjudge the coefficient of friction is the thickness obtained from the mid-section as explained previously. In order to demonstrate the effect of changing the elastic slip on the computational time and accuracy of thickness calculation at mid-section a check was conducted with a friction coefficient of 1.6 and choosing two elastic slip fraction ƒ = 0.005 (default) and 0.05. The value of 0.05 was chosen keeping in mind the recommended range of the parameter (max order of magnitude of 10 -2 ) as suggested in the Abaqus documentation [16]. The The change of elastic slip seems to have a negligible effect on the thickness profile however it significantly affects the computational time. Table 30 shows the difference between the computational time of both the cases when performed on a PC powered by an Intel Xeon CPU E5-2650 (2.3GhHz) and The simulated maximum principal strains are the highest around the corners of the plug contact as expected however the magnitude is different on both. While on the experimental results strain levels of ~2 were reached, the simulated maximum principal strains showed a maximum magnitude of ~1 around the corners. This points out that there has been relatively more slip in the zone of contact in the identify the actual friction coefficient in between the two surfaces. From the obtained intermediate steps of friction coefficient, a curve fitting can be conducted using a power law that extends after the last converged value of 2.1 until the average simulated thickness equals to that of the experimental one which is 1.462 mm. Figure 106 shows the resulting thickness values for the considered friction values and the curve fit conducted using a power law.

Figure 106 : Curve fitting for evolution of average thickness at zone of plug contact with friction coefficient

The fitted power law has a correlation coefficient (R 2 ) of 0.9989 and is extrapolated to find the point of intersection with the required experimental thickness. The power law function is given by Eq. 146:

𝑓(𝜇) = -11.11 𝜇 -0.0156 + 12.38 146

Where, 𝜇 is the coefficient of friction.

Therefore, substituting the required value 1.462 mm for 𝑓(𝜇) the identified value of the friction coefficient from Figure 106 is obtained as 3.06 which is similar to the experimentally determined frictionally values reported by Hegemann [15] given in Figure 99, in the temperature range identical to our central zone of the sheet (125 °C -130 °C). Such result indicates the potential of the developed simulation procedure to rely on full field stereo-DIC measurements to identify contact properties.

Conclusions

In this chapter, the study focused on the incorporation of full fields of displacement and temperatures collected "in-situ" to numerically simulate the forming stage of a positive thermoforming process.

Realistic conditions are incorporated to enable the user to bridge the existing gap between the simulations and reality. The thermal distribution heterogeneity renders the thermoplastic sheet to have based on the quadratic error between the two. A power law is fit to the results obtained from the iterative procedure in order to find the required friction coefficient given the experimental thickness. The obtained result was confronted to literature based work which shows that for the same sheet material and a similar plug material, values of friction coefficient is identical to the one obtained by the developed hybrid procedure.

Chapter 7: General conclusions and perspectives

General conclusion of the conducted work

The current study sheds light on bridging the gap between experimental and numerical results related to the forming stage of a positive plug-assisted thermoforming process. A non-extensive literature review about the existing simulation packages applied to thermoforming was conducted to understand the causes that limit the precision in predicting the thickness distribution of the formed products. The two main factors which have been considered by the authors as process-induced were (i) the heterogeneous temperature distribution and (ii) the change of initial boundary conditions. The main output result is the implementation of a hybrid experimental/numerical simulation procedure which incorporates 'real' full-fields of temperatures and displacements under process conditions of thin thermoplastic sheets. To achieve such goal multiple steps were considered and a list of conclusions were obtained.

First, a comparative study between mechanical models used to simulate thermoforming of amorphous polymers indicated that the choice of a model can be justified based on (i) the range of mechanical deformations under consideration, (ii) the type of experimental campaign that is available for material characterization and (iii) the ease of its implementation. Second, the Mooney Rivlin hyperelastic form of the strain energy density function was chosen to predict thickness distributions and geometric changes following the deformation of thin thermoplastic sheets. Based on literature, this choice has been proved as the thermoplastic can be considered at its rubbery state with respect of the (i) high strain rates and (ii) forming range of temperatures during the forming step of the thermoforming process.

Third, the general UHYPER and UMAT formalisms were successfully implemented into ABAQUS ® software. The validity of the derived expressions has been verified by comparing the numerical results obtained from the inbuilt definition and general UHYPER and UMAT formalisms, which were respectively used to implement Neo-Hookean and Mooney-Rivlin hyperelastic models. Obtained results revealed that the UMAT simulations required a greater computational time as compared to the UHYPER and in-built simulations. In addition, the relative error between the quasi-incompressible and the compressible assumption indicated that the compressibility assumption has a non-negligible effect when the material is subjected to large deformations under tensile load.

Following, the choice of the model and verification of the theoretical formalism, experimental work was conducted to assess full-fields of displacements. In this study, stereo-DIC was considered as potential tool for the monitoring of the in-situ process conditions. Based on rigid body motion tests, obtained results revealed that random spatial errors indicate a greater presence of the convective heat waves for higher temperatures and lower speeds where the effect of heat waves manifest more perturbations in the calculated displacements in between two successive images. Random temporal errors pointed out the existence of local imprecisions at the center of subsets located at the edge of the considered regions of interest. The time evolution of relative errors indicated that the accuracy of stereo-DIC was the most significant during the first two to three seconds from the start of stereoscopic measurements. For time durations higher than five seconds following the end of heating, the accuracy of stereo-DIC evolved towards a stabilized asymptotic time limits for all considered displacement speeds.

However, unexpected behaviors may be observed at higher speeds, where a clear evolution of the errors with increasing temperature seems to fade away as a direct result of the oscillatory behavior of heat waves. Temporal evolution of bias error indicated the existence of quasi-linear deviation from zero line for all conducted tests. Representative cases of study extracted from rigid body tests conducted at 120 °C, indicated that the correction schema does not affect the local displacement heterogeneities induced by heat waves but rather can be considered as imposing global displacement off-sets. Both relative errors and bias errors at different displacement speeds stayed within the limit of 2% -4% of the imposed values. However, in the context of thermoforming, the magnitude of such errors was considered too small to be corrected in the full field thermoforming measurements.

Based on unidirectional stretching tests under quasi-isothermal conditions, the reliability of inverse identification of hyperelastic model parameters using the finite element model updating Finally, a simulation of the plug-assisted thermoforming process was carried out in ABAQUS ® considering a thin sheet approximation. The in-situ experimental data obtained using stereo DIC and IR cameras, helped to define the initial state (mechanical and thermal) of the sheet post heating, and the final deformed shape post the plug forming operation. To surpass the correlation limit between changes of conditions and identified model parameters using the FEMU approach, the modified Akima hermite stochastic interpolation scheme proved to be of higher accuracy compared to the krigging and spline interpolations. Numerical and experimental thicknesses of the sheet indicated the existence of zones of limited precisions near the clamping edges and at the lateral walls of the considered form of the positive plug. Such result can be related to the type of sheet meshing element used in the simulation that was automatically assigned by the surface generation exported from the DIC software into Abaqus.

Near the center of the sheet where the plug makes contact the thickness is found to contain fluctuations that may be caused by the changing material behavior owing to the temperature heterogeneity.

To further demonstrate the utility of the hybrid experimental / numerical procedure, the numerical study was extrapolated to contact properties between the pre-heated sheet and the positive plug. The quadratic difference between experimental and numerical thickness profiles Appendix 2: Post-processing of stereo-DIC measurements

Post-processing of stereo-vision pairs of images

The process of correlation, selection of a step size and subset size as well as the region of interest used in Chapters 4 and 5 is mentioned in the following paragraphs.

Retained region of interest

The choice of a region of interest (ROI) for conducting spatial and temporal correlations considered having the largest accessible speckle area of the observed surface of each of the samples. As the used composite reference material is known to exhibit negligible thermal deformations within the HIPS thermoforming window, the extent of the defined ROI was unchanged after changing the regulation temperatures from one test to another. An illustration of the extent of the considered ROI is shown in Figure 107. 

Subset and step size selection

Following the selection of the ROI, the calculation of full fields of displacements requires definition of the subset size, step size and seeding points from which the spatial discretization of the chosen ROI begins. Moreover, a correlation criterion (Zero normal squared sum of differentials) and a shape functions (bi-cubic) was required to conduct the correlation process. In the context of the current chapter, a compromise between the minimizing the subset size and having a reasonable convergence duration were the main calibration criteria. Indeed, the subset size should be large enough to contain significant speckle patterns by incorporation of at least three speckle features. Such condition should be respected With consideration of the existence of such asymptotic limit of the subset size, the precision of measurements is at the level of 15 × 10 -4 mm for an expected displacement of 5 mm (for a duration of 233 30 seconds with respect of the considered displacement speed of 10 mm/min). In other terms, the choice of a small subset size of 19x19 pixels can induce almost 3 × 10 -3 % of errors for measurements conducted at RT conditions however, it provides high enough number of subsets within the extent of the considered ROI. On the other hand, the challenge in the current study is to get the maximum number possible of subsets within the observation ROI limited by the used sample widths. As the RMS variation based on the calibrated industrial stereo-DIC system is limited to 1.5 µm between asymptotic and the minimum tested subset size of 19×19 pixels, the decision was made to adapt the minimum subset size of 19×19 pixels tolerated by DaVis software. The choice of the step size as the overlapping distance between the adjacent subsets was fixed to 9 pixels to limit the total durations of spatial and temporal correlations to almost 30 min for each tests using a computer equipped with an Intel Xeon CPU E5-2650

(2.3GhHz) and 196 Gb of RAM.

2.2 Effect of reference on stereo-DIC displacement measures: Normal law distribution

Short duration

The data fitted parameters to the single and double normal law used in the case of computation from the 1 st and 2 nd reference as shown in Figure 43 of Chapter 4 for short durations is given below in Table 32: 

Long duration

The data fitted parameters to the normal law used in the case of computation from the 1 st and 2 nd reference as shown in Figure 44 of Chapter 4 for long durations is given below in Table 33:

Table 33: Data fitting parameters for a normal law using the 1 st and 2 nd reference at long durations 

Nelder-Mead algorithm

Nelder-Mead algorithm [1] is often called the downhill simplex algorithm, the method consists of continuously evaluating a function at n +1 points in the space of R N , which forms the simplex shape.

For a two-dimensional optimization problem (n = 2), this simplex reduces down to a triangular shape which is used to locate the minimum. This shape flip flops towards its goal by changing its shape according to a set of rules. This set of rules can be classified under four main operations: reflection, expansion, contraction and shrinkage. The target in each iteration of the algorithm is to remove the worst performing point among the n + 1 points and to replace it with a point that performs better than at least one of the remaining n points. The set of rules mentioned above are ways in which this new point can be obtained by joining the line that connects the worst point in the iteration to the centroid of the remaining points.

If 𝑥̅ is the centroid of the remaining n points, then the line joining the worst point and the centroid [1] is given by: 𝑥̅ (t) = 𝑥̅ + 𝑡(𝑥 𝑛+1 -𝑥̅ ) 148

Where t is the reflection coefficient.

This operation, when repeated several times, converges to the minimum. Thus at the end of every iteration, a convergence criterion is checked, which is generally defined either by the standard deviation of the function at the n+1 points being smaller than a prefixed tolerance or by when the difference between the cost function gradient at two successive iterations is smaller than a specified value. To understand better, an illustration of minimization in the two-dimensional space with a triangular simplex is illustrated in the following steps.

Assuming the three starting points to be u, v, w; the function is evaluated at these three points to arrange them in the ascending order of value such that, 𝑓(𝑤) < 𝑓(𝑣) < 𝑓(𝑢)
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The worst performing point w has to be replaced in the next iteration. The first operation to be conducted is reflection, where the point w is reflected through the centroid c of u and v, in order to get the point r which is equidistant from c. If now 𝑓(𝑣) < 𝑓(𝑟) < 𝑓(𝑢)

The worst point w from 1 st iteration is removed, and the convergence criterion is checked before moving on to the 2 nd iteration. This operation is called reflection, as shown in Figure 111. Finally, if none of the three operations manages to be better than at least one of the remaining points, a shrinkage operation is performed wherein the best performing point is kept stationary while the simplex is shrunk by moving the other two points closer along the line, joining them to the best point. This usually occurs when the optimization is about to converge to a minimum. Although it is a fairly simple algorithm to execute, the method is known to stagnate itself at several non-optimal points as reported in [1] and by Kowalewski and Gajewski [2], who showed that the method underperformed when determining the global minimum of benchmark functions from several starting points even though the number of evaluations needed was low.

Levenberg-Marquardt algorithm

The Levenberg-Marquardt algorithm is a gradient-based algorithm that is based on the trust-region strategy of finding the direction of descent in the objective function. The algorithm associates a 'trusting' parameter to the outcome of the function at a specific point [1]. The higher the trusting parameter, the lower is the level of trust for the outcome of the function at this point and vice versa. The objective of the algorithm is to gradually converge towards the minimum while reducing the 'trusting' parameter. In between two successive iterations, if the trusting parameter is small enough, it reflects that the checking point in the latter iteration is actually closer to the former one, and the value of the function at this point can be trusted [3]. This is based on the fact that if the two points are close enough, the algorithm has successfully computed the function value at the previous iteration can evaluate the value at the second point at a high level of accuracy.

Typically, the objective function is expressed as the sum of residuals in the least square formulation.

The difference with other gradient methods, such as the Gauss-Newton method, is that this algorithm uses an effective approximation of the Hessian matrix of the function [4]. A stabilization component is added to the Gauss-Newton algorithm that ensures stability around the required minimum [5]. It not only provides a rapid convergence to the solution but also an approach that is more precise as the solution is approached [6]. If 𝑥 𝑘 is the k th iteration then the algorithm states that

Where 𝐻{𝑓(𝑥 𝑘 )} is the Hessian matrix approximation of the objective function at 𝑥 𝑘 , I is the identity matrix and ∇𝑓(𝑥 𝑘 ) is the derivative of the objective function written in the form of a Jacobian [7] 

Abstract

This thesis presents insights into the modelling and simulation of the forming stage of a plug-assisted thermoforming of amorphous thermoplastic sheets. An emphasis has been laid on the development of a hybrid experimental-numerical method to bridge the gap between the existing numerical results and experimental measurements. The method utilizes different bricks including (i) a phenomenological modelling approach, (ii) integration of realistic full-field experimental data based on stereo-DIC instrumentation, and (iii) a finite element method updating (FEMU) approach. For this purpose, both the technological and the scientific contexts of thermoforming were first investigated. Second, the main flaws encountered during the process and the challenges during numerical simulations were highlighted. After, a non-extensive literature review of commonly used constitutive models in the context of thermoforming simulations was conducted. Consequently, a two-parameter hyperelastic Mooney-Rivlin model was considered for the numerical brick of the hybrid method. The FEMU method was firstly fed by experimental full-field of displacement data obtained from stereo-DIC measurements combined to quasi-isothermal unidirectional stretching of High Impact Polystyrene (HIPS), to inversely identify the hyperelastic model parameters. Results of the inverse identification show that identified model parameters are highly sensitive to the heterogeneity of the experimental fields and the selected region of interest. Thus, an original approach using rigid body motion tests was suggested to quantify the uncertainties and errors affecting the stereo-DIC data within the range of thermoforming temperatures. Finally, the hybrid method has been extrapolated to non-isothermal conditions based on a "real" plugassisted thermoforming case. A proof of concept of the developed hybrid experimental-numerical method is demonstrated to fine-tune the actual coefficient of friction in a Coulomb model.

Résumé

Cette thèse est focalisée sur la simulation et la modélisation de l'étape de formage d'un procédé de thermoformage assisté par poinçon, pour la mise en forme de feuilles thermoplastiques amorphes. L'étude a été orientée vers le développement d'une méthode hybride expérimentale-numérique pour combler la divergence entre les résultats numériques approximatifs et les mesures expérimentales. La méthode hybride se base sur différentes briques élémentaires, notamment (i) une approche de modélisation phénoménologique, (ii) une intégration de données expérimentales de champs complets « réalistes » obtenus par la technique de stéréo-corrélation d'images numériques et (iii) une approche « finite element method updating » (FEMU). Pour cela, dans un premier temps les contextes technologiques et scientifiques du thermoformage ont été investigués. Dans un deuxième temps, les principaux défauts liés à ce procédé ainsi que les défis rencontrés lors des simulations numériques ont été mis en évidence. Par la suite, une revue non exhaustive de la littérature a été menée sur des modèles constitutifs couramment utilisés dans le cadre des simulations de thermoformage. Par conséquent, un modèle du type Mooney-Rivlin hyperélastique à deux paramètres, a été considéré pour la brique numérique de la méthode hybride. La méthode FEMU a été d'abord alimentée par des données expérimentales de champs complets de déplacements obtenus à partir de mesures stéréo-DIC combinées à des tests d'étirement unidirectionnel quasi-isotherme de polystyrène choc (PSC) afin d'identifier par méthode inverse les paramètres du modèle hyperélastique. Les résultats de l'identification inverse montrent que les paramètres identifiés du modèle sont très sensibles à l'hétérogénéité des champs expérimentaux et au choix de la région d'intérêt. Ainsi, une approche originale utilisant des tests de mouvement de corps rigides a été proposée pour quantifier les incertitudes et les erreurs affectant les données stéréo-corrélation d'images numériques dans la gamme de températures de thermoformage. Enfin, la méthode hybride a été extrapolée à des conditions non isothermes sur la base d'un « vrai » cas d'étude de thermoformage assisté par poinçon. Une preuve de concept de la méthode hybride expérimentale-numérique développée est démontrée pour identifier le coefficient de frottement réel dans un modèle de Coulomb.