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Abstract

Specular reflection detection and removal is a fundamental yet non-trivial problem

in the image processing domain, including applications for segmentation, object

detection and decision-making systems. Most systems overlook the particular sce-

nario and ignore input images with specular highlights instead of mitigating them

in the pre-processing stage. This work presents techniques developed for accurately

segmenting specular regions in real-world images and generating specularity-free

images from a single image input without any additional guidance or parameters.

For reliable specularity detection we developed an efficient Specularity Segmenta-

tion (SpecSeg) deep neural network based on the U-net architecture. SpecSeg has

a fast inference time of 3.1ms and can be trained in only 40 minutes. We also de-

velop a fast colour Weighted Median Inpainting (WMI) method to quickly inpaint

large regions of affected specular regions with approximated colour. For specular

mitigation, we developed a multi-domain Specular Highlight Mitigation Genera-

tive Adversarial Network (SHMGAN) trained using multiple polarimetric images, for

synthesizing specularity-free images from a single image input. We take advantage

of the inherently polarized nature of specular highlights and varying illumination

information captured using polarizer filters. No external label or additional input

is required for the removal of specularity as the SHMGAN network uses a dynam-

ically generated self-attention mask for detecting specular regions. Both networks

are trained and tested on self-acquired and publicly available datasets of real-world

images. The images generated after specular mitigation are realistic and have min-

imal noise, distortions and aberrations compared to the existing state-of-the-art

methods.
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Resume

La détection et la suppression des reflets spéculaires est un problème fondamental

mais non trivial dans le domaine du traitement d’images, y compris dans les appli-

cations pour la segmentation d’images, la détection d’objets et les systèmes de dé-

cision basés sur l’image. La plupart des systèmes négligent ce scénario particulier

et ignorent les images d’entrée présentant des reflets spéculaires au lieu de les at-

ténuer au stade du prétraitement. Ce travail présente des techniques développées

pour segmenter avec précision les régions spéculaires dans les images du monde

réel et générer des images sans spécularité à partir d’une seule image d’entrée sans

aucune indication ou paramètre supplémentaire. Pour une détection fiable de la

spécularité, nous avons développé un réseau neuronal profond efficace de segmen-

tation de la spécularité (SpecSeg) basé sur l’architecture U-net. SpecSeg a un temps

d’inférence rapide de 3.1ms et peut être entraîné en seulement 40 minutes. Nous

développons également une méthode rapide de peinture médiane pondérée (WMI)

en couleur pour peindre rapidement de grandes régions spéculaires affectées avec

une couleur approximative. Pour l’atténuation des effets spéculaires, nous avons

mis au point un réseau adversarial génératif multi-domaines (SHMGAN) entraîné

à l’aide de plusieurs images polarimétriques, afin de synthétiser des images sans

spécularité à partir d’une seule image. Nous tirons parti de la nature intrinsèque-

ment polarisée des reflets spéculaires et des informations d’illumination variables

capturées à l’aide de filtres polarisants. Aucune étiquette externe ou entrée supplé-

mentaire n’est requise pour la suppression de la spécularité car SHMGAN utilise un

masque d’auto-attention généré dynamiquement pour détecter les régions spécu-

laires. Les deux réseaux sont entraînés et testés sur des ensembles de données

d’images du monde réel acquises par les utilisateurs eux-mêmes et accessibles au

public. Les images générées après l’atténuation de la spécularité sont réalistes et

présentent un bruit, des distorsions et des aberrations minimes par rapport aux

méthodes de pointe existantes.
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Chapter 1

Introduction

“There are two kinds of light - the

glow that illuminates and the glare

that obscures.”

James Thurber
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CHAPTER 1. INTRODUCTION

1.1 Digital imaging and specular reflections

"Light is the colour of the translucent", a rather ambiguous definition of light as a

natural phenomenon, given by Aristotle in his book On Sense and the Sensible in 350

BC. He believed that light was one of his four elements that composed matter and

was an essential property of various substances when subject to any reaction.

Aristotle based his theories on his greek predecessors, Empedocles, who had pro-

posed that light streaming out of our eyes and touching objects caused human vi-

sion. While flawed, this theory of treating light as rays became the fundamental

hypothesis on which later philosophers and mathematicians would construct some

of the most important discoveries in the fields of light, vision, and optics. In the 11th

century, Arab scientist Ibn-al-Haytham (also known as Alhazen) pioneered the cam-

era obscura or pinhole camera by generating a flipped image based on the prevalent

theory that light travels in a straight line. This became one of the most significant

concepts in all optics and imaging domains, inspiring research by many notable in-

ventors and visionaries, including Leonardo Da-Vinci in the 15th century, leading

up to the modern era of digital imaging. During this time, an alternate approach

was also put forward with treatment of light as a wave as opposed to a beam of

particles travelling in a straight line. This alternate treatment allowed the explana-

tion of some basic phenomena of light that were not explainable, considering it as

particulate in nature. Properties such as double refraction, diffraction and bringing

behaviours, among others, were only possible if light was treated as a wave. The

wave theory was initially established by Augustin Fresnel in the early 18th century,

leading to the proposal of the electromagnetic theory by James Clerk Maxwell in

1876. Although wave theory is generally correct when light propagation is described

(and of other electromagnetic waves), it fails when other light properties are to be

explained, especially the interaction of light with matter. In modern physics, this

duality of the nature of light is now widely accepted and used as deemed feasible.

Explaining how light travels through a medium and interacts with materials upon

striking a surface has been a prime area of understanding of classical physics and

a precursor for all photography and imaging research. Because of the physical na-

ture of light, there are two fundamental properties when interacting with any object,

refraction and reflection. refraction of light is the change in the direction of light oc-

curring at the boundary of the medium it strikes as it passes through it, whereas
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CHAPTER 1. INTRODUCTION

Figure 1.1: According to the law of reflection, the angle of incidence θi and angle of reflection
θr are symmetric about the surface normal n̂.

reflection of light is the rebounding back of light to the same incident medium. The

angle by which the transmitted ray of light changes direction when it passes through

a medium is determined by the material’s refraction index, and is defined by Snell’s

Law. Similarly, the angle of reflection is defined by the law of reflection of light,

which states that the angle of the reflected ray of light is always equal to the angle

of incidence of light about the surface normal (n̂). By convention, all geometric an-

gles and deviations in the path of a light ray are measured from the surface normal

at the point of the incident light, i.e. the line perpendicular to the surface at the

point of incidence, as shown in Figure 1.1. The reflected ray is always in the same

plane as the incident ray and the normal to the surface. Both the particle and wave

theories of light adequately explain the reflection of light from any given surface.

However, the particle theory additionally suggests that if the surface is very rough,

the light particles reflect back at varying angles scattering the light. This fits very

closely to experimental observation and makes the case for a particulate nature of

light far more substantial with regards to the reflection phenomenon than it is for

refraction.

As will be discussed in the subsequent chapters, both these concepts play a pivotal

role in shaping the different models for reflection of light. However, to generalise the

concept, the reflection of light can be roughly categorised into two types of reflec-

tions, specular reflection and diffuse reflection, which are both explored in depth in

the subsequent section.
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Figure 1.2: Figure depicting diffuse and specular reflection components from incident light
sources.

1.1.1 Specular and diffuse reflection components

Reflection is the inherent property of all waves, whether electromagnetic (such as

light) or particulate (such as sound) in nature. In the case of visible light, which ex-

hibits both electromagnetic wave and particulate nature, when it strikes a surface,

three distinct possibilities can occur simultaneously but in varying proportions, de-

pending on several factors. One possibility is that all or part of the incident light

is transmitted through the material. Secondly, it can be absorbed by the material

or lastly, all or part of the light can be reflected back to the incident medium from

the surface of the surface. Several factors decide the ratio of each of these possibil-

ities that applies to the incident light. The major factors include the material of the

surface, the material of the body and the angle of incident light about the surface

normal.

Specular highlights1are the shiny gloss and reflections in an image caused due to

light bouncing directly off the body surface without interacting with the material

of the surface or the material underneath the surface. Generally, the term ’specular

reflection’ defines the mirror-like reflection of waves from any surface about the sur-

face normal, as shown by the Figure 1.2. Due to this, the colour of specular reflection

generally represents the colour of the illuminant light source as it is reflected to the
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imaging device without undergoing any interaction. In contrast, diffuse reflections

are the rays of light that undergo two types of interactions that work according to

the law of reflection. Firstly, depending on the material of the surface, some of the

light rays penetrate below the surface and interact with the material of the object

before being reflected back to the viewer. Due to the interaction of light with the

material of the object, the diffuse light represents the colour of the object. Secondly,

if the surface is rough, some light rays are dispersed during the reflection phase due

to the surface roughness represented by the micro-facets. This causes the light to

reach the viewer or sensor in a weaker diffused state, i.e. the rays scatter.

1.1.2 Polarization and Specular Reflection

Specular reflection components of light are usually strong in intensity and signifi-

cantly polarised compared to the diffuse component of light [1]. This makes Cir-

cular Polarizer (CPL) filters an effective way to remove specular highlights in tradi-

tional photography manually. A CPL is basically a linear polarizer that can be ro-

tated manually to remove reflections or haze prior to taking the picture. By using

a rotating linear polariser, we can actively cancel out the polarised specular high-

lights for a particular polarizer angle ϕpol , partially solving the problem of specular

highlight mitigation.

Normal light from most sources is unpolarised and has equal irradiance in all di-

rections. Unpolarized light specularly reflected from a reflective surface becomes

partially polarized [1]. The angle of polarisation is variable as it depends on the sur-

face orientation as well as the orientation of the illuminating source. Therefore, the

specularly reflected light wave is a combination of polarised and unpolarised com-

ponents. According to Fresnel’s theory, this specularly reflected light wave can be

written as a combination of constant diffuse component Id and a varying specular

component Is , which is a sum of a constant component Isc and a cosine term Isv that

varies with the difference of polarizer orientationϕpol and the Angle of Polarization

1It should be noted that in literature, the terms ’specular reflection’ and ’specular highlight’ have
been used interchangeably by several authors. Following the same convention, throughout this text,
both these terms are also used interchangeably, and unless otherwise specified, it means the strong
reflections in any scene, represented by near-saturation pixels in the image.
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Figure 1.3: Variation in specularity with the variation of polarisation angle (orange areas) in
uncontrolled environments. Note that unpolarised light causes specular reflection regard-
less of polarisation filter angle (blue areas)

(α) as given in Eqn. 1.1.

I
(
ϕpol

)= Id + Is

Is = Isc + Isv (cos2
(
ϕpol −α

)
)

(1.1)

The intensity I of each pixel p is linked to the AoP (α), DoP (ρ) and polarizer angle

(ϕpol ) by eqn. 1.2.

Ip (ϕpol ) = I

2
Itot al

(
1+ρcos

(
2ϕpol −2α

))
(1.2)

For an image observed through a polarizer filter, the light intensity fluctuates sinu-

soidally as a function of the polarizer angle (ϕpol ), where the peak of the sinusoid is

the maximum intensity of light Imax , and the sum of the diffuse reflection, polarised

(Isv ) and unpolarised (Isc ) specular highlight [2] as shown in fig. 2.6. It is important

to note that the unpolarised specular reflection components (Isc ) pass through un-

hindered through a polariser filter, as is also visible in the Figure 1.3. This is why

a single polariser filter cannot completely mitigate specular reflections, and addi-

tional methods are still required for mitigation.
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1.2 Research Motivation

Specular highlights have especially gained importance for image processing since

the advent of digital image acquisition sensors. They are a highly informative fea-

ture as they convey photometric properties and are used in determining shape of

objects [3], surface orientations [4] and estimation of illumination chromaticity [5]

etc. Camera technology has come a long way since these times, but the funda-

mental physics behind cameras has not changed all that much. Besides the ad-

dition of lenses to focus light and to replace the wall of the camera obscura with

light-sensitive materials to capture the photograph, the concept that light travels

through a transmission medium in a straight line still applies. Modern cameras re-

place the imaging medium and photography films with imaging sensors that are

light-sensitive counterparts of traditional photography films. These sensor pixels

are prone to saturation when exposed to very strong lighting such as the ones con-

stituted by specular reflections, resulting in sensor clipping. When the sensor pixels

saturate, they non only lose the colour and textural information below the spec-

ular pixels but also cause discontinuities in the image leading to extremely bright

patches in the image where the specular reflection occurs. These discontinuous

regions pose a significant challenge for computer vision algorithms which is why

most algorithms have to ignore all cases where there is a specular reflection in the

image. However, ignoring specular highlights is not a feasible solution with the util-

ity of modern computer vision algorithms in a wide variety of real-world applica-

tions. These include applications where human life is directly impacted, such as

autonomous vehicles and life-saving medical imaging applications. Mitigation of

specular highlights is inherently an undetermined system and thus has a non-trivial

solution, requiring research to develop rigorous and robust solutions.

1.3 Problem formulation

The objectives of a specular highlight mitigation method is ideally two-fold. Firstly,

the aim is to accurately and correctly identify the specular pixels in an image; with-

out being affected by the shape, texture or colour of the underlying objects. Sec-

ondly, and most importantly, the ’Mitigation’ part is to recover the underlying ob-

ject’s diffuse colour and texture as close to the actual object as possible. As will

be explored in detail in sections 2.2, segmentation of specular highlights has seen
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significant research; however, a significantly large amount of techniques work only

on ideal images taken under controlled environments as opposed to real-world im-

ages captured under uncontrolled situations. Image regions affected by very strong

specular highlights are poorly estimated by most algorithms which completely or

partially fail to estimate and restore the underlying colour of the affected objects.

Most of the accurate and reliable methods trade-off highlight mitigation accuracy

with speed and thus are not suited for real-time applications. The recovered diffuse

images after mitigation are often not representative of the original diffuse colour

of the body, and there is an apparent loss of colour information, especially in ar-

eas of strong specular reflections. Furthermore, enforcing specular highlight mit-

igation to conform to unrealistic constraints such as single scene illuminant and

polarized light source does not represent real-world conditions for the application

of the state-of-the-art algorithms. Most methods often have adverse effects on the

recovered image, such as altering contrast and distorting the colour of the objects

in the scene. These problems are yet unsolved and indicate that specular highlight

mitigation is an area with a notable gap in the availability of a fast and accurate seg-

mentation and mitigation method.

1.3.1 Problem statements

1) Existing specular highlight detection methods are unable to detect and seg-

regate the specular reflections accurately from images taken in uncontrolled

environments.

2) In real-world images, the results of the recovered diffuse image are often not

representative of the original diffuse colour of the body, and there is an evi-

dent loss of colour information, especially in areas of strong specular reflec-

tions.

1.4 Research Questions

There are three main questions tackled by this research work that are enumerated

below:

1) How can we accurately separate specular pixels in any real-world image? Seg-

menting specular pixels is a non-trivial problem due to their similar nature to
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lighter coloured regions and other brightly-lit areas and the developed tech-

niques would be required to precisely give repeatable results in a wide variety

of scenarios.

2) How can modern polarimetric cameras with on-sensor polarizer filters be uti-

lized to find a robust and efficient specular mitigation method?

3) What are the most effective methods that can be explored and utilized for

specular highlight mitigation? Can traditional filtering or inpainting methods

sufficiently recover the affected colour information or can we utilize state-of-

the-art generative adversarial networks to provide an effective and robust so-

lution?

1.5 Research Objectives

This work is aimed to contribute to this need for specular highlight segmenta-

tion and mitigation by accurately segmenting and mitigating the specular high-

lights from real-world images. As will be explored in the in-depth literature re-

view in Chapter 2, utilisation of conventional image processing methods is not

favourable for a robust solution that applies to a wide assortment of real-world

images. This leads to exploring and developing deep-learning-based solutions for

more widespread applicability. Thus the main objectives of this thesis can be de-

fined as follows:

• Objective 1: To develop a deep learning-based segmentation network for

highly accurate detection of specular highlights in real-world images at near

real-time performance.

• Objective 2: To utilize polarimetric imaging and leverage specular highlight

polarization properties to learn accurate diffuse colour recovery.

• Objective 3: To develop a deep learning-based image translation network for

mitigating the detected Specular highlights and generating specularity-free

images from a single input image.
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1.6 Hypothesis

As specular highlights are polarized in nature, utilizing polarimetry to learn the true

diffuse colour is the primary way that specular reflections can be mitigated natu-

rally. This makes polarimetric solutions as a very viable go-to method that is accu-

rate and physically plausible. The research gap in mitigating specular highlights can

be addressed using classical methods as well as modern deep learning approaches.

There are benefits and trade-offs of selecting one method over the other, such as

computational power required, training data requirements and most importantly,

the robustness of the methods to meet the end objectives. While deep learning

based methods provide several benefits over the classical computer vision methods,

it is still worth it to explore the problem from a classical standpoint as some solu-

tions can be reasonable for meeting the relaxed requirements of some problems. To

summarize, the three main hypothesis of the thesis can be enumerated as follows:

H1: We can develop a lean deep-learning network for specular pixel detection and

segmentation that is fast to train and is able to accurately detect specular pix-

els in any real-world image.

H2: An initial mitigation solution can be based on a fast and simple inpainting

method on the affected area by utilizing the colour information of the sur-

rounding border pixels of the detected specular highlight.

H3: Utilizing the state-of-the-art generative adversarial networks, we can develop

a multi-domain image-to-image translation network, capable of generating

specular-free images from a single input RGB image by learning the illumina-

tion variation in polarimetric images.

1.7 Research Contributions

Two CNN-based networks deep learning are developed in this thesis to attain these

objectives and alleviate the effects of specular reflections. The first is a SpecSeg Net-

work that is able to accurately detect specular reflections in input real-world images

without any additional guidance or labelling. A second deep generative adversarial

network called SHMGAN is also developed that is able to generate a specularity-free

image from a single input image. The SHMGAN is trained to learn the illumination
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variation among polarimetric images and uses the specularity mask generated by

SpecSeg network as a self-guided attention layer to learn to mitigate the specular

reflections. The scope of the thesis has been limited to using only real-world images

and avoiding synthetic training images. Additionally, medical image segmentation

and generation were considered out of scope of the current problem domain, even

though the methods developed herein can also be trained and tested for medical

imaging applications. The research resulted in several peer-reviewed publications

that are listed in the list of publications.

1.8 Thesis organisation

A visual representation of the flow of the thesis can be given by the flow chart in Fig.

1.4 and the organisation and contents of each chapter are detailed below:

Chapter 1:

Chapter 1 setup the introduction to the problem being catered in the thesis, i.e spec-

ular highlights. The basic physical model for defining highlights,are explained, es-

tablishing the causes of the highlight formation in imaging. The research motiva-

tion and research questions to be answered are laid down along with the research

objectives and the proposed hypothesis.

Chapter 2:

The various physical models of light reflection such as the Torrence-Sparrow and

Dichromatic Reflection Model (DRM) are explained in detail along with other rel-

evant core concepts. In particular, the phenomenon of polarisation is discussed

in depth as it is of special importance due to the highly polarised nature of specu-

lar highlights. The disadvantages and issues caused by specular highlights are dis-

cussed forming the core justification for the developed work All prior literature fo-

cused on detecting specular highlights is reviewed in depth, including both classi-

cal image processing methods as well as deep learning-based solutions available.

Mitigation of specular reflections is the core focus of this thesis and the prior lit-

erature over the years that is relevant to specular highlight removal is explored in

depth, including both classical and deep learning-based state-of-the-art methods.

Lastly, multi-domain and multi-modal generative adversarial networks are briefly
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Figure 1.4: A flowchart of the thesis organization.

explained along with an details of the popular datasets used in lieterature for spec-

ular highlight detection and mitigation.

Chapter 3:

Chapter 3 details the step towards addressing the problem, i.e. detecting the regions

and pixels affected by specular reflections and recovering the affected information.

The developed deep convolutional network, SpecSeg is first explained in detail, cov-

ering all the decisions for selecting the various hyperparameters and network model

architechture. We also show a fast diffuse colour inpainting method that utilises the

detected regions from our developed SpecSeg network and inpaints the affected re-

gions with an estimated diffuse colour inferred from the boundary regions. The

advantages and limitations of this classical computer-vision based method are also

discussed and is followed by details of our developed multi-input SHMGAN net-

work. Usage of polarimetric images and the formation of a psuedo-specular free

image are explaiend along with the losses, hyperparameters selected, and the train-

ing techniques.

Chapter 4:

Chapter 4 combines the results of the three methods developed in Chapters 3. Spec-

ular highlight detection results from SpecSeg, specular mitigation results from the

developed Weighted median inpainting method, and the images generated from the

14
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SHMGAN are presented and analysed in detail. Qualitative and quantitative com-

parisons to other state-of-the-art methods are made to analyse the results. Ablation

studies are also explored to see the effect of the convnet components and their in-

dividual effects on the specular free images.

Chapter 5:

Conclusions of the thesis are presented in Chapter 5, assessing the feasibility and

improvement of the developed method in the state-of-the-art of specular highlight

mitigation. Limitations of the developed work are also discussed, along with the

future work that can lead to further state-of-the-art improvement.
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Chapter 2

Literature Review

“For light, I go directly to the source

of light, not to any of the

reflections.”

Mildred Norman

Chapter Abstract

In this chapter, we set the basis of diffuse colour and specular reflection from a phys-

ical and mathematical standpoint. The concepts explored herein build the frame-

work of the problem addressed in this thesis as well as establish the reasons and

background for selecting the segmentation and mitigation solutions proposed in the

thesis. Empirical and physical concepts such as intrinsic images, micro-facets and

chromaticity-based models are conceptualised in-depth, setting up the causes and

impact of diffuse colour and specular reflections in images. Properties of strong spec-

ular highlights that help understanding the issues caused by specular reflections are

elucidated in detail. The phenomenon of light polarisation is explored in depth, and

its relation to the highly polarised reflection components in images is also demon-

strated. Prior literature focused on detecting specular highlights is reviewed in depth,

including both classical image processing methods as well as deep learning-based

solutions available. Mitigation of specular reflections is the core focus of this thesis

and the prior literature over the years that is relevant to specular highlight removal

is explored in depth, including both classical and deep learning-based state-of-the-
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art methods. Multi-domain and multi-modal generative adversarial networks are

explained briefly along with an details of the popular datasets used in literature for

specular highlight detection and mitigation. Lastly, an in-depth criticism and limi-

tations of the state-of-the-art is discussed.
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2.1 Physical Model of Light Reflection

To understand and model the reflections mathematically, several different models

have been proposed over the years, with varying complexity and application areas
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in mind. Some earlier works were proposed with more ideal assumptions, whereas

several physics-based models were later developed that, under nominal assump-

tions, are able to describe the interaction of light following the laws of physics.

Models such as Lambertian, Phong, Cook-Torrance, Blinn, and lastly, the Dichro-

matic Reflection Model are generally the ones utilised in various applications. These

models are used in a wide variety of applications, including but not limited to dig-

ital imaging, 3D rendering, medical imaging, augmented and virtual reality etc.

However, some models have been traditionally more preferred than others by re-

searchers and the industry as they can represent and reproduce the interactions

of light accurately without requiring significant computational power. Some of the

core physics-based models that are most relevant to the problem of understanding

and mitigating specular reflections in images are detailed in the subsequent sub-

sections.

2.1.1 Torrance-Sparrow microfacet model

The Torrance-Sparrow model [6] is one of the most popular models for represent-

ing diffuse and specular reflection in the computer graphics domain. The model

is primarily used for Physically Based Rendering (PBR) procedures for generating

realistic and life-like 3D renderings used in various fields such as cinematography,

photography, graphics and cutting-edge applications such as Virtual Reality (VR)

and gaming engines. The model assumes that a surface is composed of a distri-

bution of randomly oriented, mirror-like micro-facets, as shown in Figure 2.1. The

perceived specular reflection from any surface is the resultant sum of reflection of

the incident light rays from these mirror-like surfaces. Cook et al. [7] proposed a dis-

tribution function of the reflected light alongside changes in the chromaticity as the

incident angle of light changes. The distribution function is called the Bi-directional

Reflectance Distribution Function (BRDF) given by equation 2.1.

ρλ

(
θi ,θr ,φ

)
= F

(
β,nλ,kλ

)
D(α)G

(
θi ,θr

)
4cosθi cosθr

(2.1)

Where:

• D is the distribution function of the micro-facets. The constant α indicates

the roughness of the material, with 0 indicating ideal smooth surfaces and 1

indicating maximum roughness.
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Figure 2.1: A visual representation of mirofacets as proposed by the Torrence-Sparrow
model. The microfacets are probabilistic in nature and cause light rays to reflect at random
directions.

• G is the geometric attenuation term, which deals with how the individual

micro-facets shadow and mask each other depending on the incident (θi ) and

reflected (θr ) angles.

• F is the Fresnel function that depends on the incident angle β and the complex

index of refraction (nλ,kλ) at wavelength λ.

The microfacet model plays an essential role in understanding how reflections are

created, as reflection is an important visual cue for perception and depth for human

vision [8]. These cues are also required to be reproduced realistically to enhance the

visual quality and realism of artificially generated scenes and images. The BRDF

function is the most common way to generate rendering equations to model the

behaviour of light upon interaction with material in 3D space and differentiate be-

tween diffuse reflection and specular reflection in the scene. This reinforces the

reason BRDF’s have been one of the central models in the development of com-

puter graphics and rendering domain, where the objective is to model and repro-

duce lighting effects in a scene. This includes both realistic diffuse and specular

reflections on all the objects in the scene as they heavily contribute to the realism of

modern 3D graphics and renderings.
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Figure 2.2: The Dichromatic Reflection Model (DRM) represents specularly reflected light
components about the surface normal n̂ at the same angle as the incident light rays.

2.1.2 Dichromatic Reflection Model (DRM)

The decomposition of an image into specular and diffuse images was first proposed

by Shafer et al. [9] as the Dichromatic Reflection Model (DRM). The DRM is a lin-

ear additive model according to which there are two luminance components. The

body reflectance comprises the part of wavelengths of the visible spectrum that is re-

flected after interacting with the particles of the body below the surface and there-

fore represents the colour of the target body. The interface reflectance is the part

of the wavelength that is reflected directly from the surface and represents the il-

luminant’s colour as shown in the Figure 2.2. The DRM is inherently an under-

determined system with a non-trivial solution for separating the two components

of an image. The model can be defined by the following equation:

L(λ, i ,e, g ) = md (i ,e, g )cd (λ) + ms(i ,e, g )cs(λ) (2.2)

Where d, s stand for the diffuse (body) and specular (interface) components, cd , cs

are the diffuse and specular spectral power distributions and md , ms are the geo-

metric scale factors respectively. The light wavelength is denoted by λ and i ,e, g

are angles of the incident light, emitted light and phase angle (with respect to the

surface normal), respectively. A matte surface is comprised mostly of the body re-

flectance, whereas specular surfaces contain a combination of both spectral and

diffuse components. Furthermore, the probabilistic independence of specular and

diffuse highlight is not constant as it depends on whether the surface is textured
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Figure 2.3: Variation of specular and diffuse reflections as surface roughness varies from
perfect specular to perfect Lambertian.

Table 2.1: Summary of DRM vs microfacet model for defining specular highlights in images

Dichromatic Reflection Model (DRM) Cook-Torrance Model

Model Physics based simpler model for sur-
face reflections

More realistic physical based model
for surface reflections

Material
Interaction

Does not depend on material-related
properties

Includes effect of material properties
such as refraction, surface roughness,
Fresnel conductance

Surface In-
teraction

Assumes body is Lambertian, scatters
diffuse illumination isotropically

Body is composed of micro-facets
with interreflection, shadow and
masking effects

Usage Useful for simplifying light models
and studying specular reflections on
surfaces

Generally used for accurate rendering
of specularity from non-Lambertian
surfaces with high performance.

or smooth, as shown in Figure 2.3. The DRM model as proposed is valid for op-

tically inhomogeneous materials only [9]. These materials are a composites of two

or more materials with different dielectric response functions and their appearance

varies from point to point [10]. Examples of inhomogeneous materials include most

daily life materials including most paints, varnishes, paper, ceramics, plastics etc.

The model is based on three core assumptions. Firstly, the reflection from the sur-

face is invariant with respect to rotation around the surface normal, and there are

no inter-reflections among surfaces. Secondly, the body reflection is Lambertian1,

which means that the brightness is independent of the viewing direction. More-

over, the specular reflection has the same colour as the illumination and tends to

be polarised [9]. While most of the assumptions seem to limit the model’s appli-

cability to real-world problems, these assumptions allow the generalisation of the

1Lambertian models describe a perfectly diffuse surface that scatters incident illumination
isotropically (equally in all directions) independent of the viewer’s position. Although this reflec-
tion model is not physically plausible, it is a reasonable approximation to many real-world surfaces
such as matte paint.
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model and increase its applicability to a wide assortment of problems. Thus even

after several ideal assumptions, the DRM model has broad applicability to under-

standing and mitigating specular highlights. A quick comparison of both DRM and

Torrance-Sparrow microfacet models for defining specular highlights is given in ta-

ble 2.1.

2.1.3 Intrinsic image decomposition and specular reflections

Another way to describe illuminations and reflections in a scene is by separating

them into intrinsic images, a term initially coined by Barrow and Tenenbaum [11].

Intrinsic images define scene characteristics into a model comprised of multiple in-

dependent images, where all images can be interpreted from the base illumination

image. With intrinsic characteristics, they essentially referred to a set of features

such as surface reflectance, distance or surface orientation, and incident illumi-

nation in a scene. They noted that humans are exceptional at judging an object’s

reflectance despite significant changes in illumination of the scene, a skill known

as "lightness constancy" [12]. We also have the ability to estimate intrinsic char-

acteristics from an image and do not seem to require familiarity with the scene or

with objects contained therein. Another important observation was that while lu-

minance can be directly observed, reflectance and illumination can only be derived

by perceptual processes as it provides visual cues required for scene understand-

ing. These observations led them to believe that separating the scene into separate

characteristics from image intensities would provide substantial advantages for an

effective visual system. A visual system must begin with the observed luminance

image, I(x, y), and infer the underlying shading and reflectance images, s(x, y) and

r (x, y). In a scene consisting of Lambertian surfaces illuminated by a single distant

light source, the observed luminance image I(x, y) is a set of intensity value pixels

that encode all the intrinsic attributes of the corresponding scene point. The image

can be defined as the product of the reflectance (albedo) image, r (x, y), the shad-

ing image s(x, y) and the addition of a specular image c(x, y) [13, 14], as given in

equations 2.3 and 2.4.

I(x, y) = reflectance × shading︸ ︷︷ ︸
diffuse reflection

+specular reflection (2.3)

I(x, y) = r (x, y)s(x, y)+ c(x, y) (2.4)
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Figure 2.4: Shading and reflectance intrinsic image samples from the MIT Intrinsic image
dataset [14].

The reflectance image comprises all material-dependent properties and remains

constant under different illumination, whereas Shading image comprises all light

dependent properties. Furthermore, the shading image itself is the product of the

luminous flux φv , and the cosine of the angle of incidence (i.e. the dot product

of the surface normal n̂(x,y) and the illumination direction L.) as given in equation

2.5. Note that both the surface normal n̂(x,y) and the illumination direction L are 3D

vectors [12].

s(x, y) =φv n̂(x,y) ·L (2.5)

Selected intrinsic images from the MIT Intrinsic Image dataset [14] are shown in Fig-

ure 2.4, including the reflectance, shading and specularity images. Another dataset

of intrinsic images has been provided by Beigpour et al. [15]. Several applications

benefit from intrinsic images. Shape from shading methods estimates the shape

(i.e. orientation, depth etc.) of the objects given a shading image. Colour constancy

methods estimate the illuminant of the scene, and highlight removal techniques es-

timate image specularities. [16].
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2.2 Specular highlight detection and segmentation

Regions with specular reflections in an image are generally unwanted yet mostly un-

avoidable feature. This is why the problem of Specular highlight detection is chal-

lenging and has been an area of progressive research for both traditional photogra-

phy and digital imaging since their inception. Specular reflections are extremely

hard to avoid in real-world conditions since they depend on several factors, in-

cluding variables related to the illuminating source as well as the target object in

the scene. These factors include the azimuthal and zenith orientations of the il-

luminating source and the object as the primary factor in the presence of specu-

lar highlight, alongside factors such as the material of the surfaces interacting with

the light. In most natural world conditions, one or more of these factors are un-

controllable, which makes the presence of specular reflections impossible to avoid.

Specular highlights are a highly informative feature, and they have an important

role in the fields of image processing and computer graphics. Specular reflections

are essential for human vision as they provide powerful visual cues about the shape

of the objects, the material of the object, and the location of the illuminating light

source. However, apart from specific applications, specular reflection is generally

considered an undesirable feature in the image processing domain, causing loss of

chromatic and textural information that is often vital to applications [3].

In digital imaging, the requirement of detecting the occurrence of specular reflec-

tions and identifying all the corresponding affected pixels accurately becomes an

essential and formidable task. The affected specular pixels have to be segmented

before any processing algorithm can be used to remove the specularity and mitigate

the undesirable effects of the reflection. This chapter addresses this task by propos-

ing a state-of-the-art solution that can precisely identify and segment all pixels in

an image affected by specular reflections.

Accurately segmenting and detecting specular pixels in an image is challenging for

several reasons. First and foremost, fundamentally, the DRM model is an ill-posed

problem with more unknown than know variables, as deliberated in-depth in chap-

ter 1. A single image does not provide information regarding the physical orienta-

tion of the light source or the surface orientation required to calculate the surface

normals about which light is specularly reflected. Since specular pixels are gener-

ally represented by the brightest pixels in an area making them hard to differentiate
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from lighter colours in the scene. This is further accentuated by the presence of

large brightly lit regions, such as the sky, or the presence of any light source directly

in the image. Similarly, in cases with patches of colour nearing the colour of the

specular reflection, it is hard to differentiate being specular reflections, thus mak-

ing accurate segmentation of specular pixels a highly arduous task. Furthermore,

since the strength of the illumination is captured in intensity values, specular pixels

are represented by higher intensity values, often nearing or fully saturation values

(i.e. (255,255,255) in a standard RGB image). The saturation of pixels means that the

object’s colour, texture, and other spatial information encompassed by the specular

pixels is lost. In order to recover this lost information, robust mitigation of the spec-

ular pixels is required so that the underlying features such as colour, texture etc.,

can be estimated correctly. Additionally, sensor-clipping due to over-pixel expo-

sure from strong specular reflection also results in loss of image information. This

further complicates the problem and requires detailed and intelligent methods of

accurate specular detection in images. Several real-world examples of images con-

taining varying amounts of specular pixels are shown in Figure 2.5. As can be seen,

the shape, size, area and locations of specular regions vary widely depending on

multiple conditions in which the image is taken in. Segmenting specular pixels is a

gruelling task for manual annotations, and it is even more challenging to automate

it by computer vision algorithms.

Before we go towards the developed solution of detecting specular highlights in real-

world images, in the following sections, we first go over an in-depth review of clas-

sical as well as state-of-the-art methods and techniques in literature used to detect

and segment specular reflections. As has already been established, specular high-

lights and reflections lower the visibility and clarity of the contents of the images.

This affects the results of other algorithms, such as segmentation and classifica-

tion etc., causing them to fail. Hence, while being an ill-posed problem, reflec-

tion removal is one of the most challenging in image processing. Over the years,

the problem of detecting specular pixels and the affected areas has been attempted

using handcrafted and predetermined techniques, falling under the classical tech-

niques. Recently, machine learning-based solutions have seen significant growth,

with promising results primarily from deep-learning-based solutions. Before we de-

velop any method for detecting specular pixels, we go over a detailed and in-depth

literature review of the developed solutions categories, as outlined in the following
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Figure 2.5: Real-world examples of specular reflection in indoor and outdoor images, caused
by ambient and multiple point light sources.

sections.

2.2.1 Classical specular detection and segmentation methods

Specular highlight segmentation has proven to be an extremely challenging prob-

lem over the years since it is an ill-posed problem. While specular reflections are

easily distinguishable by human vision, it is a tough ask for digital image processing

systems. Traditional techniques have always been based on simplifying the problem

in some manner, including assumptions regarding the colour of light, the transmis-

sion medium and its refractive index, the object’s material, etc. While most assump-

tions are valid for solving a problem, they are mostly unrealistic and do not repre-

sent an accurate real-world scenario. The DRM model has proven to be a reason-

ably accurate model to explain the causes of specular reflections and thus forms the

basis of a large selection of detection and mitigation techniques. The subsequent

sections will review the most used methods and techniques proposed by research

works over the years.
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Segmenting specular highlights using chromaticity

As explored in depth in section 2.1.3, Shafer et al. [9] were the first ones to propose

the DRM, which became the fundamental model for understanding and explaining

nearly all reflection models. Their breakthrough paper used the spectral distribu-

tion of light and its colour coordinates to identify and separate the colour pixels into

diffuse and specular components. Unlike previous models like the Phong model

[17] which uses specific reflectance functions to predict the reflection amount, DRM

is based on the physical model of reflection, making it more intuitive and realistic.

Klinker et al. [3] based their work on DRM and showed that the colour histogram of

an image forms a T-shaped distribution with uniform diffuse regions. This also re-

sults in the formation of linear clusters with diffuse and specular pixels. Using geo-

metric heuristics instead of colour information, they estimate a single global diffuse

colour, which can be extended to several segmented regions of homogeneous dif-

fuse colour and estimate the body and reflection components. Klinker and Shafer

et al. [18] also proposed modelling of highlights as a linear combination of both

surface and body reflections and modelled camera properties to account for cam-

era limitations and showed that generating the intrinsic images from a single im-

age was possible. Schluns et al. [19] proposed segmentation of specular regions by

transforming the 3-dimensional colour-space to consecutive two-dimensional de-

scriptors and thresholding specular pixels based on the projection distances. Bajscy

et al. [20] defined a Spectral Scene Radiance Model called S-space, which is a direct

transformation from the RGB space using three orthogonal basis functions. Assum-

ing a white illuminating source and analyzing a colour image in the S-space, the

specular reflection pixel clusters in the S space align with the brightness axis. They

can be used to segment out the specular pixels. However, the assumption of pure

white global illumination and uniformly single-coloured, non-textured objects limit

the application. Yang et al. [21] proposed a new colour space called Chromaticity

Coefficient of Variation (Ch-Cv) for specular reflection removal.Using their devel-

oped colour space, they propose a slope-based region growing method to separate

each pixel’s specular and diffuse components.

Tan and Ikeuchi et al. [22] proposed a method based on the difference in logarithmic

differentiation of the normalized input and specular-free images. Yoon et al. [23]

were the first to introduce the two-band Pseudo Specular Free (PSF) image obtained

by subtracting the minimum of the three RGB channel values from each pixel. These
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values are then compared to neighbour intensity ratios to their corresponding ratios

in the PSF representation for separating highlight pixels. The Pseudo Specular Free

(PSF) image is thus defined as the component of the RGB image without the spec-

ular component. The PSF image can be calculated by taking the minimum of each

pixel in all three channels.
Ir (p)

Ig (p)

Ib(p)

= md (p)


Λr (p)

Λg (p)

Λb(p)

+ms(p)


Γr (p)

Γg (p)

Γb(p)

 (2.6)

Imin(p) = min
c∈{r,g ,b}

Ic (p) (2.7)

the PSF image I is simply the original image I minus the original image entry-wise,

i.e.

Ĩ(p) = I(p)− Imin(p) (2.8)

Shen et al. [24] modified the PSF image by Yoon et al. to make its chromaticity

robust to noise by adding an offset factor and solving the DRM equation as a least-

square problem for mixed specular-diffuse regions. The pure diffuse regions have

the least distance in chromaticity coordinates from their solution. Later, Shen and

Cai [25] approached the removal problem by first segmenting into mixed specular

and diffuse and purely diffuse; however they corrected the values of specular regions

by solving for a constant gain with regards to the modified specular-free image. Yang

et al. [26] achieved highlight removal by applying a joint bilateral filter to smooth

out the maximum chromaticity regions of the observed image, using a PSF image to

guide the filter. Suo et al. [27] extended the DRM in terms of L2 normalization by

formulating the problem such that the illuminant is orthogonal to the chromaticity.

Their approach also requires clustering for the estimation of region-specific purely

diffuse colours. Kim et al. [28] introduced the concept of utilising the Dark Channel

Prior (DCP) concept, originally proposed for haze removal [29]. Kim et al. observed

that the dark channel provided an approximate specular-free image for most natural

images. They used this idea and approached the problem from an optimization

standpoint by formulating it in terms of a TV-L1 and TV-L2 optimization problem

in a Maximum Aposteriori (MAP) framework, which yields pleasing results.
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Specular segmentation using polarization

The concept of polarisation is directly related to the problem of specular highlight

segmentation due to the highly polarised nature of specular reflections [1]. Due

to this, significant research has been done for segmenting and removing specular

highlights in images using polarisation, which requires special consideration. It is

noteworthy that the significance of DRM is further increased since it can be used

in conjunction with the polarised nature of specular reflection to explain the occur-

rence and mitigation of specular reflections. Wolf et al. [2] were one of the earliest to

use polariser images for the classification of materials in images by using the Fres-

nel reflection model. They monitored the variation of light by capturing multiple

images while rotating the polariser filter in front of a camera and noted that the

brightness of diffuse materials varied as the polariser was rotated. They also noted

that the variation between the minimum and maximum intensity captured fluctu-

ates in a sinusoidal pattern as a function of the polariser angle. Nayar et al.[30] were

one of the first to use polarization and colour information simultaneously to sepa-

rate the diffuse and specular reflection components by capturing at least six images

captured at different polarizer angles. They use polarization to acquire indepen-

dent local estimates of the colour of the specular component, forcing each image

pixel to lie in a linear colour subspace and then thresholding it to achieve the de-

sired separation. Kim et al. [31] extended Nayar et al.’s work by dividing the colour

space into a specular line space and a diffuse plane space. The diffuse pixels are

selected by thresholding the intensity variation while rotating the polariser. The

spatial variation in the specular components is then smoothed out using an energy

function. Umeyama et al. [1] applied Independent Component Analysis (ICA) to

images captured through a rotating polarizer to separate the diffuse and specular

components. More recently, Wen et al. [32] proposed a polarisation-guided model

that can be used to cluster pixels with similar diffuse colours. They formulated the

problem in an optimized global energy minimization function, resulting in specular

reflection separation in images. As seen in the above literature review, the develop-

ment of classical methods that use polarization for specular reflection segmentation

has reduced significantly, favouring the state-of-the-art deep learning processes in

vogue. Deep learning methods have been proven to generate significantly improved

results using the additional information provided by polarisation imaging. A more

in-depth overview of such methods is provided in section 2.3.4.
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Low-rank approximations and other approaches

Over the years, one of the popular methods of solving the specular reflection prob-

lem has been to treat it as noise in an image and utilize techniques that can miti-

gate the effect of noise in images. By assuming specular reflections as noise, meth-

ods such as noise filtering, low-rank approximations and other minimization tech-

niques can be used to approximate the image data, freeing it from the effects of

noise. Zhang et al. [33] treated separation of specular reflection as a blind source

separation problem from polarization images. Using Singular Value Decomposition

(SVD), they are able to separate the two components using three images captured

at different polarizer angles. Akashi and Okatani [34] introduced a framework that

incorporated Non-Negative Matrix Factorization (NNMF) with a sparsity constraint

that limited the number of colours used to compose the image, taking advantage of

the fact that natural images have a limited number and composition of colours. One

of the bases of the factorization was the illuminant itself, and a cost function was

formulated to penalize the use of illuminant colour. Bochko et al. [35] used Prob-

abilistic Principal Component Analysis (PCA) to cluster the data into the highlight

and body-reflection computing the covariance matrices eigenvectors of the clusters.

Using the K-nearest-neighbour algorithm (KNN), they replaced highlight pixels with

body-reflection pixels removing specular highlights in RGB images. Guo et al. [36]

introduced a sparse and low-rank formulation and incorporated advances in non-

negativity and matrix factorization. They also introduce two auxiliary variables to

incorporate these formulations and iteratively solve the optimization problem. [37]

proposed an energy minimization framework for simultaneously estimating the dif-

fuse and specular highlight images from a single image and then recovering the dif-

fuse colour.

Multiple-images based methods

As shown by the DRM model, specular highlights are dependent on the incidence

and reflection angles between the light source and the observing camera or sen-

sor. This implies that any change in this angle can lead to diminishing or removing

specular highlight regions. Following this concept, an alternate approach to treat-

ing specular reflections is to capture multiple images from different angles either

by taking multiple images or using light field cameras specializing in taking multi-

focal but spatially coherent images. Lee and Bajcsy et al. [54] .captured spectral

33



CHAPTER 2. LITERATURE REVIEW

scene radiance from different views and proposed a spectral differencing algorithm

to compute a minimum spectral distance that represents specular reflections above

a threshold. Wang et al. [55] used the state of the art light field cameras to cap-

ture multi-focal light field images and apply depth estimation to cluster the spec-

ular pixels into saturated and unsaturated and do a colour variance analysis to re-

cover diffuse colour information. Islam et al. [56] also used a Multi-spectral Polari-

metric Light Field Imagery (MSPLFI) setup to segment out specular components

of a transparent object. They showed that polarimetry combined with the multi-

spectral aspect added to light field cameras effectively separates the specular reflec-

tion part quite reliably. However, the requirement of multi-spectral expensive light

field cameras is a limitation for general-purpose imaging. Zhouyu et al. [39] used

orthogonal subspace projection representation for removing specular reelections in

hyperspectral images, based on the DRM that was valid for single and multi-colour

illuminants.

With time, there has been an immense interest in developing deep learning-based

techniques for segmenting specular highlights in various applications. Two areas

stand out in particular for this task, medical imaging and real-world imaging. Spec-

ular highlight segmentation in medical imaging is especially critical, as all invasive

and non-invasive medical imaging procedures are generally done with a single cam-

era and a concentric light source that is attached to the camera. Procedures such as

endoscopy and colonoscopy are examples of such procedures. Detection of accu-

rate specular highlights is especially critical in medical imaging, where such proce-

dures are affected by extreme specular reflections from the singular light source with

the camera and can result in incorrect identification of regions of interest. Arnold et

al. [57] proposed a segmentation method based on non-linear filtering and colour

image thresholding of endoscopic images and then inpainting to fill in the damaged

areas. Alsaleg et al.[58] used a colour-adaptive threshold and a gradient-based edge

detector to detect the specular regions in endoscopic images and then inpainting

them. As can be seen, there has been a significant amount of research over the years,

and multiple ways and techniques have been attempted to segment out the dam-

aged pixels in an image. A summary of the classical methods for specular highlight

segmentation is given in Table 2.2.
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2.2.2 Deep learning based methods

As we can see in the preceding section, a significant amount of work has been done

on detecting and segmenting specular highlights using classical image processing

techniques. While there have been many studies of specular highlight detection

over the years, most classical methods conduct a visual evaluation on a few selected

images, mostly without annotated ground truth or highlight masks. This has led to

a very unrealistic quantitative evaluation of highlight detection algorithms on real-

world images where the lighting can vary significantly from ideal conditions. Spec-

ular reflections caused by inter-reflections between objects or due to light reflecting

off other surfaces in the scene cause multiple issues, which are often not addressed

by classical methods. During the last decade, the benefits of machine learning have

become quite evident with a substantial impact, especially in the fields of image

processing. Furthermore, deep learning has seen a significant amount of growth

and development not only in the core techniques but also in frameworks for imple-

menting efficient and robust deep-learning implementations.

Several solutions have been proposed in recent years to accurately identify the spec-

ular pixels in medical images by leveraging machine learning algorithms. Sanchez et

al. [59] used a two-stage segmentation and classification approach to identify spec-

ular regions in colonoscopic images and then filtered through a linear SVM classi-

fier. Akbari et al. [60] utilized an adaptation between RGB and HSV colour spaces

using a non-linear SVM classifier and then inpainted the detected regions. One of

the earliest methods toward a more generalized and innovative specular highlight

detection method was proposed by Lee et al. [61] which implemented detection of

specular reflections by a single layer perceptron. Moving forward toward the state-

of-the-art deep learning methods, Funke et al. [62] were the first ones to utilize a

Cycle-Consistent Generative Adversarial Network (CycleGAN) to localize specular

regions for endoscopic images. Their method used data with weak labels indicating

the presence or absence of specular highlight in a training image only.

It is worth mentioning that typically most of the state-of-the-art deep-learning-

based methods are geared towards training the network to mitigate the specular

highlights using supervised or unsupervised training methods. This means that

very few works exclusively focused on deep learning methods to detect specular

pixels, which is the focus of this work. One of the recent papers that focused on
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detecting specular highlights in real-world images was proposed by Fu et al. [63].

The proposed a Specular Highlight Detection Network (SHDNet), that used multi-

scale contrast features to detect specular pixels that are scale agnostic. SHDNET

uses a convenient and embeds a multi-scale context contrasted feature network for

successfully detecting specular highlights in real-world images. The authors also

present a large-scale dataset of roughly real-world images, which include manually

annotated highlight regions. In addition to the primary dataset, they also prepared a

testing dataset of 500 images in the wild called the WHU-TRIW dataset. Fu et al. [64]

proposed another large-scale dataset comprising 16k real-world images alongside a

multi-task network for Joint Specular Highlight Detection and Removal (JSHDR).

They propose a Dilated Spatial Contextual Feature Aggregation (DSCFA) to detect

and accurately remove highlights of varying sizes. A comprehensive list of the rele-

vant deep learning-based methods on real-world images (excluding medical imag-

ing systems) for detecting specular highlights in images is presented in table 2.3.
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Table 2.2: Summary of prominent non-deep learning based methods for specular highlight
segmentation

Name Year Category1,2 Technique Color
space

Bajcsy et al. [20] 1996 Segmentation Segmentation by Hue,
Saturation

S-space

Park et a. [38] 2003 Segmentation Least Squares, PCA RGB
Umeyama et al. [1] 2004 Separation Polarization, ICA Greyscale
Tan et al. [22] 2005 Separation Chromaticity, Colour

Spaces
RGB

Tan et al. [5] 2006 Separation Spatial Colour Distribu-
tions

RGB

Zhouyu et al. [39] 2006 Segmentation Subspace projection RGB
Shen et al. [24] 2008 Separation Chromaticity based RGB
Maxwell et al. [40] 2008 Segmentation Bi-illuminant DRM RGB
Shen et al. [25] 2009 Separation Pixel clustering RGBD
Mesloushi et al.[41] 2011 Segmentation Chromaticity CIE XYZ
Yang et al. [42] 2013 Separation Region growing algo-

rithm
HSI

Kim et al. [28] 2013 Segmentation Dark Channel Prior RGB
Zou et al. [43] 2013 Segmentation Dark Channel Prior RGB
Akashi et al. [34] 2016 Segmentation NMF RGB
Shah et al. [44] 2017 Segmentation SIFT in sequential im-

ages
RGB

Yamamoto et al. [45] 2017 Separation SVD, Energy minimiza-
tion

RGB

Alsaleh et al. [46] 2019 Separation Low-Rank Temporal
Data

RGB

Fu et al. [37] 2019 Separation Optimization RGB
Li et al. [47] 2020 Separation RPCA RGB
Son et al. [13] 2020 Separation convex optimization RGB
Ramos et al. [48] 2021 Separation histogram matching YCbCr
Haefner et al. [49] 2021 Separation HDR Imaging for separa-

tion
RGB

Bonekamp et al. [50] 2021 Separation Multi-Image Optimiza-
tion

RGB

Kim et al. [51] 2021 Segmentation Geometric estimation RGB
Ramos et al. [48] 2021 Separation histogram matching YCbCr
Tominaga et al. [52] 2021 Segmentation Iterative estimation pro-

cess
RGB

Wen et al. [32] 2021 Separation Polarization RGB
Li Furukawa [53] 2022 Separation RPCA, Photometric

Stereo
RGB

1 Separation: Methods that separate distinct specular and diffuse images that are additive.
2 Segmentation: Methods that segment out specular pixels from the original image, but do not gen-

erate diffuse image.
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Table 2.3: Summary of influential deep learning based methods for specular highlight segmentation

Author Year Category 3,4 Type5 Architecture Losses Eval Metrics

Lee et al. [61] 2010 Segmentation, Mitigation RW Single layer perceptron - -

Sanchez et al. [59] 2017 Segmentation MIS SVM - DICE

Akbari et al. [60] 2018 Segmentation MIS SVM - DICE, Specificity, Precision

Funke et al. [62] 2018 Segmentation, Mitigation MIS SpecGAN Cyclic loss MSE PSNR, SSIM

Fu et al. [63] 2020 Segmentation RW SHDNet BCE, IOUE F-measure, MAE, S-measure

Fu et al. [64] 2021 Segmentation, Mitigation RW JSHDR BCE, L2 Accuracy, BER

Monkam et al. [65] 2021 Segmentation, Mitigation MIS Scaled-UNet, GatedResUNet Mask, Valid,

Perceptual,

Style, Total

variation

SNR, DICE, SSIM, IoU

3 Mitigation: Methods that generate diffuse images.
4 Segmentation: Methods that segment out specular pixels from the original image
5 Type: Real-world (RW) images or Medical Imaging Systems (MIS)
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2.2.3 Limitations of the current state of the art

The accurate detection of specular highlights is significant in many applications.

Classical methods for accurately detecting specular highlights have difficulty de-

tecting pixels accurately in a wide variety of scenes containing lighter coloured ob-

jects, bright backgrounds, or complex-shaped objects with irregular specular re-

flections. One of the significant issues faced by the classical techniques is the ro-

bustness and generalization of techniques. While the methodologies are based on

firm mathematical foundations and optimization techniques, they are mostly based

on assumptions that significantly limit their applications to general real-world im-

ages that are not part of the work’s dataset. Thus while the results are significantly

better on the selected set of images, they do not apply to any general image taken

from a generic camera under uncontrolled settings. Several research works based

on treating specular reflections using colour space transformations attempted to

understand and tackle the problem purely from an objective often tested on a min-

imal set of images and failed to work beyond their preferred set. Methods based

on polarization classically use a manual polarizer filter that is rotated to acquire

images ad different polarimetric angles. This means that the images are temporally

incoherent, and unless taken of a static object under a static and controlled environ-

ment, the images face alignment issues where pixels do not share the same spatial

instance between the polar images. This also limits the number of images that can

be acquired as a significant amount of effort is required to take a broad and gener-

alized dataset.

Several assumptions are also made for classical methods to work, which are some-

times not reflective of real-world conditions. For, e.g., a single Illumination is mostly

assumed with a non-existent or minimum amount of inter-reflections from sur-

rounding surfaces. The illuminants selected are assumed to be of pure white colour

with known spectral power distribution (SPD) to simplify all chromaticity-based

methods. It is further assumed that each segmented cluster has uniform diffuse

chromaticity. While being very helpful for modelling the problem of specular high-

light, these and other assumptions are not reflective of the randomness of real-

world images and limit the generalization and applicability of methods. Since most

limitations are not considered for deep-learning-based methods, it is pretty clear

that modern state-of-the-art methods are significantly more robust and can cater to

a much more comprehensive range of images. These limitations are only enhanced
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in the presence of outdoor images, which have both intense illumination and inter-

reflections in an uncontrolled and often stochastic environment. Outdoor environ-

ments have illumination from the sun as an omnidirectional light source, causing

light to bounce off in often undesirable directions and strength. Strong light sources

also result in larger specular regions in images, which makes the regions easily visi-

ble but also easily confused with the objects in the scene, as well as causing a signif-

icant loss of information in the area, which hinders the recovery of colour and other

information in the affected region. Modern deep learning methods are a natural

progression to robust intelligent solutions that can distinguish specularity from the

background. However, deep learning methods are also challenged with some limi-

tations.

2.3 Specular highlight mitigation

The core contribution of this thesis is on the mitigation of specular reflections, as

will be explored in the following sections. As we have seen in the previous chap-

ter, there has been a significant amount of research in detecting specular regions;

however, once the affected regions are detected, there are two options available for

algorithms to explore. One option is to use that information to ignore the affected

areas and pixels and process the image with the remaining information. The second

and the most favourable option is that we are able to remove the specularity from

the image and recover the information that is in place of the affected region. The

subsequent sections will, first of all, explore the prior literature over the years that

is relevant to specular highlight removal in depth, including both classical and deep

learning-based state-of-the-art methods. Based on the literature review, we explore

a fast diffuse colour inpainting method that utilizes the detected regions from our

proposed SpecSeg network and inpaints the affected regions with an estimated dif-

fuse colour inferred from the boundary regions. The advantages and limitations of

this method are also discussed and are followed by details of our developed Specu-

lar Highlight Mitigation Generative Adversarial Network (SHMGAN). By leveraging

the advantages of deep convolutional networks, we are able to mitigate the affected

region and recover the lost information successfully.
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2.3.1 Classical methods of specular highlight mitigation

Using colour space transformation

There have been several studies to mitigate specular highlights over the years. With

the advent of digital imaging, colour spaces were a prime area of research to inter-

pret the pixel information captured from sensors. This also led to increased interest

in using various transformations and interpretations to convert the captured infor-

mation from the RGB colour space to various other spaces and separate the specu-

lar and diffuse components of the DRM model. Bajscy et al. [20] presented a linear

basis model based on DRM with an orthogonal HSL colour space, where weighting

factors for surface reflectance lead to the identification of specular and diffuse com-

ponents based on the difference of the saturation values. Mallick et al. proposed us-

ing transformations in the SUV colour space [66, 67] and using Spatio-temporal in-

formation, proposed a partial differential equation that iteratively erodes the spec-

ular component at each pixel to find the maximum diffuse chromaticity. Yang et al.

[21] introduced a Chromaticity Coefficient of Variation (Ch-Cv) colour space where

the surface points with the same diffuse chromaticity have the same slope. Using a

slope-based region growing method in the specular regions, they were able to sep-

arate the reflection components for each segmented region. They also explored the

separation of specular highlights in HSI colour space [42], where they use a region-

growing algorithm to locate adjacent pixels with similar diffuse chromaticity. Yu et

al. [68] also utilized HSV space to remove specular reflection from metallic surfaces.

Akbar et al. [69] introduced a new XYZ colour space transformation from RGB and

showed that using sparse coded decomposition, a specular-free image can be gen-

erated for each RGB channel.More recently, [70] and [48] utilized the YCbCr colour

space for generating specularity free images. YCbCr colour space has the property

of being specular-free in the Y (Luma) channel [71]. For a pixel p, the DRM model

defined by equation (2.2) in YCbCr colour space can be written as equation 2.9:
Iy (p)

Icb(p)

Icr (p)

= A


Ir (p)

Ig (p)

Ib(p)

= A


Ir d (p)+ Is(p)

Ig d (p)+ Is(p)

Ibd (p)+ Is(p)

+offset (2.9)

Where d, s are the diffuse and specular components respectively, normalized offset

is defined by [0,128/255,128/255]T and A is the direct transform matrix to convert
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from RGB to YCbCr given by equation 2.10.

A =


0.299 0.587 0.114

−0.173 −0.339 0.511

0.511 −0.428 −0.083

 (2.10)

If the illuminant Is is normalized for an RGB image, the chroma channels (Cb and

Cr) are invariant to specularity as RGB values in Cb and Cr sum to zero using the

transformation matrix. Because of the way the transformation matrix has been de-

veloped for the YCbCr colour space, after multiplication, the resulting equation only

contains the specular component in the Y channel, whereas the specular compo-

nent in the Cb and Cr channels are removed as shown in equation 2.11.
Iy (p)

Icb(p)

Icr (p)

= A


Ir d (p)

Ig d (p)

Ibd (p)

+


Is(p)

0

0

+ offset (2.11)

This makes the usage of the Y channel quite enticing for any algorithms for specular

reflection removal, as will be seen in the subsequent subsections.

Noise filtering and inpainting

Several authors proposed treating specularity as noise in an image and have shown

the benefits of using noise filters such as low-pass filters to remove specular pixels to

an extent. Filtering techniques such as joint bilateral filtering [72, 26, 73] have been

shown to perform in near real-time on videos owing to the high performance imple-

mentations of traditional filtering. Inpainting methods have also been a very popu-

lar research area as they are very close to the idea of taking the surrounding spatial

and/or temporal information and filling in the affected areas. Tan et al. [74] used

highlight colour analysis to improve the estimation of underlying diffuse colour es-

timation for inpainting. Yu et al. [68] utilized inpainting to remove highlights on

metallic surfaces by inpainting in HSV colour space and Islam et al. [56] used in-

painting to mitigate highlights on transparent objects. Inpainting has been of spe-

cial interest in the medical imaging domain, where endoscopic and colonoscopic

imaging [57, 41, 58, 75, 60, 76, 77] have been prime application areas that require

specular highlight removal.
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Dark channel prior, low-rank approximations, clustering and other approaches

DCP was initially proposed by He et al. [29] for haze removal from images. Kim et

al. [28] later proposed using the concept of DCP for estimating a PSF image by sub-

tracting the dark channel from all RGB colour channels. Several other works [43, 78,

79] have also used DCP for estimating the global illumination component of the im-

age and approximating the PSF component. Several authors have used the benefits

provided by multiple images to remove specular highlights. Multi-image methods

include images taken from different orientations or at multiple time instants and

use the information to recover the affected regions. Shah et al. [44] used multi-

ple images taken from different spatial orientations and applied feature extraction

using SIFT to match features between them. Once the images are mapped, they

replace the specular pixels with the minimum of the two matched images. Light

Field imaging is a modern branch of computational photography where a micro-

lens array is used to capture the direction of light in addition to its intensity in a

spatially-coherent set of images. This allows post-capture applications, such as re-

focusing and altering viewpoints. Wang et al. [55] applied light field imaging for

specularity removal in HSI colour space. Other works [55, 80, 81, 82] also show the

benefits of multiple views from a single camera to restore highlight information.

However, since these cameras are specialized equipment and emerging technology,

the utilization of light field cameras is not as widespread. Several classical methods

such as pixel clustering [27, 83], histogram matching [71], intensity ratios [84] and

low-rank optimization methods [85, 86, 87] have been shown to remove specular

highlights with varying effectiveness on a limited set of images. Ramos et al. [88]

provided a publicly available repository of several DRM-based specular highlight

mitigation methods for performance comparison.

2.3.2 Polarization and specular highlights

In 1852, George Gabriel Stokes initially established a mathematical description of

this incoherent or partially polarised nature of light. Later in 1890, Henri Poincaré

proposed the existence of the state of polarization and later proposed a spheri-

cal representation to describe these states of polarisation known as the Poincare

Sphere. Polarisation is a natural property of transverse waves that specifies the ge-

ometrical orientation of the oscillations. As light is fundamentally also a transverse

electromagnetic wave with oscillations that are orthogonal to the direction of mo-
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tion, it possesses a state of polarisation characterising the vibrational orientations

of the electric field component [2]. An electromagnetic wave such as light consists

of a coupled oscillating electric field E and magnetic vector field B which are al-

ways orthogonal to each other and are defined by Maxwell’s equations. By conven-

tion, however, the polarisation of electromagnetic waves refers to the direction of

the electric field E and is described by projections of the electric field vectors in an

x − y plane that is orthogonal to the direction of propagation of the wave. For the

electromagnetic field E, let z be the direction of propagation of the wave and ω be

the frequency of the wave along the time axis t . Then the electric field vector can be

written as two components, Ex and Ey such that

~E(z, t ) = (Ex(z, t ),Ey (z, t )) (2.12)

Where Ex and Ey represent the scalar components along the axes x and y respec-

tively. The components can also be written in a column vector notation as:

~E(z, t ) =


Ex(z, t )

Ey (z, t )

Ez(t )

=


Ex cos(ωt −kz)

Ey cos
(
ωt −kz +ϕ)

0

 (2.13)

Where Ex and Ey represent the maximum amplitudes of each component, ϕ =
ϕy −ϕx represent the phase shift between the two components, ω is the angular

frequency, k is the wave number (spatial frequency) that is directly related to the

wavelengthλby k = 2π
λ n, where n is the refractive index of the propagation medium.

The polarization state of an electromagnetic wave given by equations 2.12 and 2.13

is defined by the curve of the tip of the resultant electric field vector E as a function

of time t , projected into the plane orthogonal to the direction of propagation z [89].

Considering a uni-directional wave and projecting the waves on an x-y plane, we get

scalar projections defined by the following equations.

Ex(t ) = Ex cos(ωt ) (2.14)

Ey (t ) = Ey cos(ωt +φ) (2.15)

If φ varies with time such that −1 ≤ sin(φ) ≤ 1, then the wave is said to be unpolar-

ized as tip of the resultant vector obeys a random trajectory over time. If the angle

is sin(φ) =±1, the wave is said to be circularly polarized, with +1 being right circular
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Figure 2.6: Polarised nature of specular reflection after passing through a polarizer filter
causes it to oscillate in a sinusoidal pattern as a function of the polarizer angle ϕpol .

and -1 being left circular. By convention, the direction of rotation is determined to

be clockwise and counterclockwise when looking in the direction of propagation. If,

however, the angle sin(φ) is zero, the electric field oscillates along a straight line and

is said to be linearly polarised. For a linearly polarized light, the plotted amplitude

and direction does not change over time. Waves that have orthogonal components

that are out of phase but have the same amplitude will result in a superposition of

a circularly polarised wave. For image processing, however, assuming the rays are

linearly polarised only and ignoring circular polarisation is sufficient for describ-

ing most cases and is, therefore, the most widely accepted usage for processing po-

larised images. Since an electromagnetic wave exhibits polarised nature, its orthog-

onal components described above can be attenuated such that all components of

the wave are cancelled out except one as shown in Figure 2.6. Such attenuation de-

vices are called Polarisers, which are filters that effectively attenuate all other com-

ponents of the wave except the angle of the polariser. Polarisers are described by

an attenuation law, first devised by the French physicist Étienne Louis Malus who

discovered it in 1809. Malus’ law states that an incoming wave with intensity Ii n

with an angle of polarisationψ, passing through a perfect polariser with optical axis

θ, produces an outgoing polarisation state whose intensity Iout as described by the

equation:

Iout = Ii n cos2(ψ−θ) (2.16)

Thus the resultant of components ~Ex and ~Ey at polariser angle θ of the incoming

wave, coinciding with the angle of polarisation ψ of the filter, will pass through the

polariser and the remaining components will be attenuated by the polariser.
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Stokes parameters

An alternative model for describing the states of polarisation of electromagnetic

waves was introduced by George Gabriel Stokes in 1852 and called Stokes parame-

ters. To remove the dependence on instantaneous time functions Ex and Ey , Stokes

proposed a matrix based on four elements arranged in a column matrix called po-

larisation space that can be used to construct four real parameters called the Stokes

parameters for describing polarisation. A stokes vector is estimated by combining

the measurement of the polarisation of light from the projection of different polari-

sation filters. The resulting intensity measurement I taken by the polariser filter rel-

ative to polarisation states S can be defined by equations 2.17 and 2.18. To calculate

Stokes vectors, a series of measurements must be taken with a set of Q polariser fil-

ters. It is assumed that during the whole measurement process, the incident Stokes

vector is the same for all the filters in use.

I = AS (2.17)


I1
...

IQ

=


a0,0 a0,1 a0,2 a0,3

...
...

...
...

aQ−1,0 aQ−1,1 aQ−1,2 aQ−1,3




S0

S1

S2

S3

 (2.18)

The analyser matrix A is characterised by the number of polariser filters Q oriented

at different angles θi . The matrix becomes nonsingular for Q ≥ 4. Note that if Q > 4,

the analyser matrix A cannot be inverted normally, however it is possible to use the

Moore-Penrose pseudo-inverse (A+) to calculate the stokes vector as given by the

equations 2.19.

S = A+I

where A+ = (ATA)−1.AT
(2.19)

Thus a stokes vectors comprising of four stokes components S = [S0,S1,S2,S3]T can

be formed from 4 polarimetric angle measurements. Each Stokes parameter has

a physical interpretation related and can be expressed as sums and differences of
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Table 2.4: Different polarisation states as represented by elements of stokes vector

Stokes Unpolarized
light

Linear
Hori-
zontal

Linear
Vertical

Linear
+45

Linear
-45

Left
Circular

Right
Circular

S0 1 1 1 1 1 1 1
S1 0 1 -1 0 0 0 0
S2 0 0 0 1 -1 0 0
S3 0 0 0 0 0 -1 1

electric field intensities as given in equation 2.20.

S =


S0

S1

S2

S3

=


E2

x +E2
y

E2
x −E2

y

2ExEy cos(φ)

2ExEy sin(φ)

 (2.20)

• S0 represents the total intensity of light, irrespective of the state of polariza-

tion. This value is always 0 < S0 ≤ 1.

• S1 represents the intensity of linear horizontal or vertical polarization

• S2 represents the intensity of linearly polarised light at ±45◦

• S3 gives the difference of the right minus the left circularly polarised light.

Furthermore, in the case of a fully polarised light, the Stokes parameters obey the

following physical admissibility constraints given by equation 2.21 [90].

S0 > 0

S2
0 ≥ S2

1 +S2
2 +S2

3

(2.21)

Substituting for Q = 4 stokes parameters in equation 2.17 the image intensity vector

for 4 polarimetric angles 0◦,45◦,90◦ and 135◦ can be written as equation 2.22.

I =


I0

I45

I90

I135

= Ai deal


S0

S1

S2

S3

 (2.22)
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Where Ai deal is the matrix defining an ideal linear polarizer and defined as equa-

tion 2.23. A summary of the representation of the various polarisation states related

to the Stokes parameters as calculated from different values of the Ai deal matrix is

given by the table 2.4.

Aideal =
1

2


1 1 0 0

1 0 1 0

1 −1 0 0

1 0 −1 0

 (2.23)

The equation 2.20 can also be rewritten as sums and differences of the pixel inten-

sities of the four polarimetric images as shown in equation 2.24.

S =


S0

S1

S2

S3

=


I0 + I90

I0 − I90

I45 − I135

Il − Ir

 (2.24)

Where I0 and I90 represent the light intensities polarised along the horizontal and

vertical axis x and y respectively, I45 and I135 represent the light intensities polarised

at ±45◦, and Il and Ir represent the light intensities polarised in a left circular and

right circular state. The equation 2.24 allows estimation of stokes parameters from

intensity images taken from 4 linear polariser filters, oriented at a difference of 45◦

angles. This is applicable for the acquisition of both greyscale and RGB images from

polariser filters on standard imaging sensors. Additionally, the images’ maximum

and minimum intensity pixel values can be calculated from the Stokes parameters

using equation 2.25.

Imax = 1

2

[
S0 +

√
S2

1 +S2
2

]
Imin = 1

2

[
S0 −

√
S2

1 +S2
2

] (2.25)

In general usage, the normalised Stokes vector is used. Normalisation is done with

respect to S0 and represents the state of polarisation-independent from the inten-
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sity of light, as well as bounds the vector components to the [−1,1] interval.

S =


1

S1/S0

S2/S0

S3/S0

 (2.26)

For the fully polarized light the Stokes vector S has components
[

1,0,0,1
]T

, whereas

the Stokes vector for unpolarized light is always of the form
[

1,0,0,0
]T

.

Degree and angle of polarization

The degree of polarisation (DoP) ρ is a measure of the extent to which the light is

polarised and is defined as the ratio of the polarised component state to the total

intensity. The DoP varies between 0 for unpolarised light and 1 for fully polarised

light. Similarly, we can also define the DoLP by taking the circular polarisation com-

ponent S3 = 0. The DoP in pixel intensity is given by equation 2.27 and in terms of

stokes parameters by equation 2.28, where 0 ≤ ρ≤ 1.

ρ= Imax − Imin

Imax + Imin
(2.27)

ρl i near =
(√

S2
1 +S2

2

)
/S0 (2.28)

When the polarisation planes of the lens and the light source are in parallel with

each other, this combination results in the brightest possible image with the elimi-

nation of the non-polarised ambient light. The DoP can be calculated for each im-

age pixel, thus forming an image called the DoP image.

The Angle of Polarisation (AoP) ϕpol is the direction of the reflected light’s polar-

isation. The AoP is determined by the angle of an unpolarised incident light, the

surface orientation of the object and the material of the object. This causes the AoP

to vary randomly from pixel to pixel for rough surfaces due to the existence of micro-

facets. For a smooth surface, however, the AoP changes smoothly and continuously

[91]. The AoP can be extracted from each image pixel, thus forming an image called

the AoP image. AoP can be calculated as equation 2.29 and a comparison of AoP,
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DoP and the stokes parameters is given in Figure 2.7.

ϕpol =
1

2
arctan

(
S2

S1

)
, 0 ≤ϕpol <π (2.29)

Polarimetric cameras and imaging sensors

Polarisers have been widely used in imaging systems, both traditional and digital.

Traditional polarisers are freely rotating filters mounted on standard camera lenses

and can be manually rotated to any desired angle. While this allows capturing an

image at any polariser angle, it limits capturing only one polarimetric angle at one

instance. Furthermore, since the rotation of the polarimetric filter is manual, there

is a chance of slightly altering the camera’s field of view during the rotation. There-

fore capturing four spatially and temporally coherent polarimetric images is impos-

sible with externally mounted polariser filters.

With the development of advanced digital imaging sensors, polarisers that are fit-

ted directly to the sensor (i.e., on-sensor filters) have also been developed. These

polarizers consist of four different filters on one pixel and are pre-aligned at 0°, 45°,

90°, and 135°. Such filters are mounted on the sensor permanently and integrated

into the vision system. The lifespan of the filters, which are protected from the ex-

ternal environment, is longer than that of external polarizers. This setup captures

four spatially and temporally coherent images at four different polarimetric angles

in a single shot. However, the image resolution is a quarter of the image sensor, due

to the separation of the images by demosaicing. A generic on-sensor polarimetric

filter configuration is shown in Figure 2.8.

2.3.3 Mitigation of specular highlights using Polarization

As has already been established that light from most sources is unpolarized and has

equal irradiance in all directions. However, unpolarized light specularly reflected

from a reflective surface becomes partially polarized [1]. For an image observed

through a polarizer filter, the intensity of reflected light cancelled out by the polar-

izer fluctuates sinusoidally as a function of the polarization angle as shown in Fig.

2.6. Nayer et al. [30] were one of the first to use colour and polarization information

simultaneously to obtain constraints on the reflection components. Umeyama et
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Figure 2.7: Comparison of all polarimetric angles I0, I45, I90, I135 and calculated parameters
such as AoP, DoP and linear stokes parameters S0, S1 and S2. Notice that the DoP can be
interpreted easily indicating the highly polarized areas as the brightest in the image however
AoP is more difficult to physically interpret without any reference object with known AoP.
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Figure 2.8: Modern on-sensor polarimetric filters are able to capture 4 polarimetric images
that are spatially and temporally coherent in both greyscale and RGB colourspace (depend-
ing on the sensor configuration). The raw images can then be demosaiced to recover four
separate polarimetric angle images. The colour Bayer sensors use a super-pixel configura-
tion to capture polarimetric images in each colour.

al. [1] showed that diffuse and specular components could be separated by apply-

ing ICA to the images observed through a polarizer. Kim et al. [31] applied PDEs,

whereas Wang et al. [92, 93] applied global energy minimization to polarizer images

for inpainting the specular regions with diffuse colour.
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Table 2.5: Summary of various classical computer vision techniques for specular highlight mitigation in literature.

Author Year Technique Colorspace Evaluation Metrics

Kim et al. [31] 2002 Energy minimization and polarization RGB -

Umeyama et al. [1] 2004 Energy minimization and polarization Greyscale -

Mallick et al.[66] 2005 Eroding S channel RGB, SUV -

Mallick et al.[67] 2006 Inpainting using PDE RGB, SUV -

Ortiz et al. [94] 2006 Intensity-Saturation diagram Greyscale -

Yoon et al. [23] 2006 Specularity-Invariant Value and Ratio RGB -

Shen et al. [25] 2009 Modified specular-free (MSF) image RGB -

Yang et al. [73] 2010 Bilateral filtering RGB PSNR

Jung et al [72] 2012 Joint Bilateral Filtering RGB -

Zhang et al. [33] 2011 Statistical analysis, polarization RGB -

Shen et al/ [84] 2013 Intensity ratio RGB PSNR

Kim et al. [28] 2013 Dark channel prior RGB -

Yang et al. [21] 2013 Lease square chromaticity error Ch-CV -

Yang et a;l. [42] 2013 Region-Growing Algorithm HSI PSNR

Zou et al [43] 2013 Dark Channel Prior RGB -

Nguyen et al. [95] 2014 Tensor voting RGB MSE

Yu et al. [68] 2014 Inpainting HSV MOS

An et al. [27] 2015 Clustering using K-Means RGB PSNR

Fang et al. [78] 2015 Dark channel prior, polarization RGB -

Yang et al. [26] 2015 Bilateral Filter RGB PSNR

Zhao et al. [96] 2015 Local Structural Similarity RGB CurveletQA

Akbar et al. [69] 2016 Sparse Coded Decomposition ZYZ MAE

continued . . .53
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. . . continued

Author Year Technique Colorspace Evaluation Metrics

Wang et al. [92] 2016 Global energy minimization and polarization RGB Std. Dev of histogram

Yang et al. [97] 2016 Polarization based mitigation RGB -

Wang et al. [93] 2017 Global energy minimization, polarization RGB -

Shah et al. [44] 2017 Feature correspondence RGB PSNR

Wang et al. [98] 2018 Inpainting RGB -

Souza et al. [83] 2018 Pixel Clustering RGB PSNR

Xu et al. [99] 2020 Chromaticity Analysis RGB PSNR, SSIM

Chao et al. [100] 2021 Repairing highlight regions RGB PSNR, SSIM

Liang et al. [101] 2021 intrinsic decomposition from polarization RGB MSE, MAE, SSIM, MSSSIM, PSNR

Ramos et al. [48] 2021 Histogram matching YCbCr PSNR, SSIM

Xin et al. [79] 2021 Dark Channel prior RGB -

Huang et al.[70] 2021 L0 gradient minimization YUV H V NIQE

Wen et al [32] 2021 Polarization guided optimization RGB PSNR, SSIM, CA, SD

Feng et al. [82] 2022 Total variation optimizations RGB PSNR, RMSE, SSIM

Shakeri et al [86] 2022 Low Rank and Sparse decomposition RGB SSIM, PSNR
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Zhang et al. [33] applied blind source separation using SVD to determine the spec-

ular, diffuse and phase angle images separately from polarized images. [37] utilized

the fact that specular highlights are sparse in distribution and proposed an opti-

mization framework that recovers diffuse components using L0 norm and encoding

coefficient sparseness. Recently, Wen et al. [32] proposed a polarization-guided

model to generate a polarization chromaticity image that is illumination colour in-

variant. They utilized scaled Lagrange multipliers and ADAM optimization to opti-

mize their polarization-guided specular reflection separation algorithm. A compre-

hensive table of the classical methods for specular highlight mitigation is given in

table 2.5.

2.3.4 Deep learning based methods

One of the earliest methods toward a more generalized and smart specular highlight

detection method was proposed by Lee et al. [61] which implemented the detec-

tion of specular reflections by a single layer. Almost a decade later, a lot of atten-

tion towards application of deep learning towards specular highlight segmentation

as already discussed in depth in sections 2.2.2 and table 2.3. Similarly, the bene-

fits of deep learning in image generation and image-to-image translation were be-

ing explored with promising results in applications such as image inpainting [102].

Georgoulis et al. [4] introduced a deep convolutional neural network that directly

predicts a reflectance map from the input image itself using supervised learning.

The usage and power of deep CNN networks have really exploded since the pro-

posal of GAN by Goodfellow et al. [103], and CycleGAN [104], image synthesis and

image to image translation have gained massive popularity among researchers for

various applications. One of the initial usages of GANs for specular highlight mit-

igation was by Funke et al. [62] using a CycleGAN for generating specular free en-

doscopic images using manually labelled data for training the network. Lin et al.

[105] developed a GAN network and trained it on a synthetic dataset of 3D models

to estimate diffuse components on real and synthetic test images. Their discrimina-

tor was trained as a multi-class discriminator instead of a binary one. The authors

proposed this to help the discriminator pinpoint the desired manifold with a multi-

class classification layer. Xu et al. [106] proposed their CDFF-Net and also trained it

on a synthetic dataset for specular highlight removal. They proposed a cumulative

dense feature connection between each downsampling layer of a pre-trained VGG-
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16 encoder to give more weight to lower-level features in all channels. Madessa et

al. [107] proposed a deep learning-based inpainting method to inpaint an automat-

ically generated semantic mask on the specular pixels with a partial weighted con-

volution operation. They generated their mask using the classical Otsu’s binariza-

tion method with a global image thresholding technique. They also explained that

during their experiments, a regional convolutional Mask R-CNN network by He et

al. [108] was unable to generate accurate specular masks and failed to detect small

specular regions. Recently, Fu et al. [63] released their specular highlight detection

network (SHDNet) comprised of multi-scale context contrasted features to detect

specular highlights from real-world images. They also released two large datasets

that have aided research for specular highlight detection greatly. The first dataset,

titled the "WHU-Specular dataset", consists of over 4000 images with manually an-

notated specular masks for each image. They also released a second smaller dataset

called the WHU-TRIIW dataset consisting of 500 real-world images containing spec-

ular regions of varying size and strengths. The dataset, however, does not con-

tain any specular masks for the specular regions in the images. The Whu-specular

dataset especially has been key in training and testing our developed SpecSeg net-

work as detailed in sections 3.2 and 4.2. Muhammad et al. [109] developed two net-

works, Spec-Net and Spec-CGAN, for specularity removal from monochrome and

RGB face images, respectively. They also introduced the Spec-Face dataset contain-

ing 2805 real-world face images from 187 3D models. Wu et al. [110] trained their

specular highlight removal GAN network on 600 captured images with encourag-

ing results. Fu et al. [64] later proposed a multi-task network for JSHDR alongside

a dataset named SIHQ. The SHIQ dataset consists of 10,825 images cropped from

MIT’s Multi-Illumination Images in the Wild (MIW) dataset [111]. Each image is

then processed to generate a highlight-free image, a specular illumination image

and a highlight binary mask. Hou et al. [112] introduced an application-oriented

network to improve the accuracy of text detection by removing highlights from im-

ages with text. They proposed a two-stage framework with highlight detection and

removal implemented as separate sub-networks called Net D and Net R respectively.

Jimenez-Martin et al. [113] showed that it was possible for specular reflections re-

moval in colonoscopic images by training their GAN network with specular masks

generated from thresholding the maximum intensity in the images. Another med-

ical imagining-oriented solution was proposed by Monkam et al. [65] whose two-

stage network called EasySpec inpaints the specular regions in endoscopic images.
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Specular reflection datasets have been very sparse in terms of the number of real-

world images until recently. Another large dataset for rectifying this situation was

proposed by Wu et al. [114] with their Paired Specular-Diffuse (PSD) dataset. The

PSD dataset is the largest polarization image dataset to date, consisting of 13,380

images. The PSD dataset consists of manually acquired a set of 12 polarimetric im-

ages per scene of real-world objects taken at a polarizer angle of ϕpol = 30◦. Being

the biggest publicly available polarimetric dataset to date, the PSD dataset adds a

much-needed boost to research on polarimetric images, especially for data-centric

methods such as deep CNN-based networks. Wu et al. also proposed a GAN net-

work for specularity removal. Xu et al. [115] also proposed a GAN network; however,

it is trained to work on greyscale images only. Of the most recent research works,

Wang et al. [116] released SIHRNet, which utilizes extracted layers from a pretrained

VGG-19 network trained on ImageNet dataset and adds nine convolutional blocks

to generate specular free images from an input image.
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Table 2.6: Table of prominent research works on specular highlight mitigation by deep learning

Name Year Network Loss Functions Eval Metrics

Funke et al. [62] 2018 SpecGAN Cyclic loss MSE, PSNR, SSIM

Lee et al. [117] 2019 CollaGAN Cycli loss SSIM

Lin et al. [105] 2019 SRN Content loss, adversarial loss L2, DSSIM

Xu et al. [106] 2019 CDFF-Net L1 loss, perceptual loss PSNR, SSIM, RMSE

Muhammad et al. [109] 2020 SpecCGAN FID, LMSE, PSNR, SSIM

Wu et al. [110] 2020 GAN Cyclic, RaSGAN, Identity Loss DSSIM, MSE, PSNR

Fu et al. [64] 2022 JSHDR BCE IOUE F-measure, MAE, S-measure

Hou et al. [112] 2021 NetD, NetR Highlight Detection, Reconstruction, Text-Related F-measure, PSNR, Precision, Recall,

SSIM

Jimenez-Martin et al. [113] 2021 GAN MSE (L2 norm) MSE

Monkam et al. [65] 2021 Unet Mask, Valid, Perceptual, Style, Total Variation Dice Coefficient, IOU, SNR, SSIM

Wu et al. [114] 2021 GAN Adversarial, Feature, Focal, Pixel MSE, PSNR, SSIM

Yoo et al. [118] 2021 EfficientNet, Unet Color constancy, coefficient, reconstruction, tem-

poral regularization

Mean, Median, Tri-mean

Daher et al. [119] 2021 Temporal GAN Temporal GAN Inpainting RMSE

Xu et al. [115] 2022 CycleGAN MSE, SSIM, Attention, adversarial RMSE

Wang et al. [116] 2022 SIHRNet Structure loss, Feature loss, Region loss SSIM, PSNR

Xu et al. [115] 2022 Attentive GAN MSE Loss, SSIM Loss SSIM, PSNR, MSE

58



CHAPTER 2. LITERATURE REVIEW

Figure 2.9: A general end-to-end flow for developing a deep-learning-based solution from
dataset to the required output.

2.4 Multi-domain Generative adversarial networks

Before we delve into the details of image segmentation and mitigation methods us-

ing deep learning methods, it will be appropriate to explain some basic nomen-

clature and concepts related to deep learning basics and the methods developed

in particular for image segmentation. Appendix A covers some core deep learning

concepts relevant to the developed method. While deep learning has grasped the

attention of academia, the public and the industry, it is not the first successful form

of machine learning. However, it is safe to say that many of the machine learning

algorithms used in the industry today are adapting to deep neural network-based

algorithms. For a long time, the missing piece for this adaptation was an efficient

way to train large neural networks. This changed in the mid-1980s, when multiple

people independently rediscovered the Backpropagation algorithm using gradient-

descent optimisation and started applying it to neural networks. The first success-

ful practical application of neural nets came in 1989 from Bell Labs when Yann Le-

Cun et al. introduced LeNet [120] and combined convolutional neural networks

and backpropagation and applied them to classify handwritten digits. In 2011, Dan

Ciresan from Istituto Dalle Molle di Studi sull’Intelligenza Artificiale (IDSIA) [121]

proposed DanNet, the first pure deep convolutional neural network (CNN) to win

a computer vision contest and became the first practical precursor of modern deep

learning. The “deep” in “deep learning” is not a reference to any kind of deeper un-
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derstanding achieved by the approach. Instead, it stands for this idea of successive

layers of representations that contribute to a model of the data. The first practical

success of modern deep learning came in 2012 with the entry of Geoffrey Hinton’s

group [122] in the yearly large-scale image-classification challenge ILSVRC (Ima-

geNet Large Scale Visual Recognition Challenge), who achieved a top-five accuracy

of 83.6% which was a significant breakthrough at that time. Since 2012, deep CNN

have become the go-to algorithm that is used almost universally for all computer

vision tasks, natural language processing and other applications. The fundamental

difference between a densely connected layer and a convolution layer is that dense

layers learn global patterns in their input feature space, whereas convolution layers

learn local patterns in the feature space [123]. These learned patterns are translation

invariant and are spatially hierarchical. Arguably, the two main drivers for this have

been the large-scale availability of processing hardware (i.e. GPUs) and digital data,

which has led to significant investments in further development. A general process

of a deep learning process is visualised in the flowchart 2.9. We first establish the

basics of CNN and then present the intuition behind them to solve more complex

problems. Relevant concepts and explanations of parameters for CNNs such as fil-

ter size, stride, batch size, padding and poling are presented first, followed by details

on the types of activation layers used. These basic notions are essential to under-

standing the functioning of image segmentation algorithms. The theory behind all

these concepts supports the different experiments carried out for specular highlight

segmentation (Chapter 2) and mitigation (Chapter 3).

2.4.1 Generative Adversarial Networks (GANs)

Deep learning-based image processing really came under the spotlight after the

development of methods that fall under the image-to-image translation category.

In image-to-image translation, networks are fed input images and, based on the

learned weights, transform the image after the application of filters. While image

processing filters have been around for decades, deep-learning-based image-to-

image translation filters’ robustness and quality were unmatched by any prior so-

lution and ushered in a new era in image transformation techniques. One of the

methods that led to massive popularity among researchers for various applications

was the proposal of GAN by Goodfellow et al. [103]. GANs are algorithmic architec-

tures that use two neural networks, pitting one against the other (thus the “adversar-

60



CHAPTER 2. LITERATURE REVIEW

ial”) in order to generate new, synthetic instances of data that can pass for real data.

They are used widely in image generation, video generation and voice generation.

Both generator and discriminator work in tandem and learn to mimic the distribu-

tion of the training dataset. GANs are part of image synthesis or image-to-image

translation networks.

GANs are unsupervised learning algorithms that use a supervised loss as part of the

training. The latter appears to be where you are getting hung up. When we talk

about supervised learning, we are usually talking about learning to predict a label

associated with the data. The goal is for the model to generalise to new data. In

the GAN case, we do not have either of these components. The data comes in with

no labels, and we are not trying to generalize any kind of prediction to new data.

The goal is for the GAN to model what the data looks like (i.e., density estimation),

and be able to generate new examples of what it has learned. The GAN sets up a

supervised learning problem to do unsupervised learning, generates fake/random-

looking data, and determines if a sample is generated fake or real data. This is a

supervised component, yes. However, it is not the goal of the GAN, and the labels

are trivial. The idea of using a supervised component for an unsupervised task is not

particularly new. Random Forests have done this for a long time for outlier detection

(also trained on random data vs real data), and the One-Class SVM for outlier detec-

tion is technically trained in a supervised fashion with the original data being the

real class and a single point at the origin of the space (i.e., the zero vector) treated as

the outlier class. The significant difference of GANs with traditional deep learning

networks lies in the requirement of a cost function. While traditional cost functions

need to be carefully designed for best results, GANs learn the latent distribution of

the training dataset on their own, based on the min-max game of the generator and

discriminator guided by an objective function(s). Mathematically, both generator

and discriminator are engaged in a min-max game over an objective function their

losses, respectively, in order to achieve their target results as described by equation

2.30, where D(x) is the discriminator, G(x) is the discriminator, and Ex denotes the

expectation with respect to the distribution x.

min
G

max
D

V(D,G) := min
G

max
D

(
Ex∼µ[logD(x)]+Ez∼γ[log(1−D(G(z)))]

)
(2.30)

Recently, an in-depth analysis of the mathematics of GANs was done by Wang [124]

giving deep insight into the mathematics and learning of weights by backpropaga-
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Figure 2.10: A generic generative adversarial network (GAN) with a single generator-
discriminator pair.

tion during training. As can be seen in the Figure 2.10, the discriminator network

tries to learn the boundary between the classes so that it can flag the fake data,

whereas the generator tries to learn the distribution of class and replicate the la-

tent features to generate samples that can be passed as real examples by the dis-

criminator. GAN models are significantly hard to train as they suffer from several

significant problems such as non-convergence, mode collapse, diminishing gradi-

ent etc., which can cause the trained model to not converge or over/under fit the

trained weights causing undesired outputs. They are also highly sensitive to the

training hyperparameters, and thus the proper selection of hyperparameters out-

lined in section A.1.3 carries enormous significance and impact on the results. The

GAN is itself limited by the training library available; therefore, it will not do well if

an attempt is made to generate images outside of the scope of its training data. Dur-

ing the training, the generator may collapse to a setting where it always produces

the same outputs. This is a typical failure case for GANs, commonly referred to as

Mode Collapse. Even though the generator might be able to trick the corresponding

discriminator, it fails to learn to represent the complex real-world data distribution

and gets stuck in a small space with extremely low variety. Some researchers per-

ceive the root problem as a weak discriminative network that fails to notice the pat-

tern of omission, while others blame a bad choice of objective functions. Salimans
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Figure 2.11: The CycleGAN architecture as proposed by Zhu et al [104] uses a two genera-
tors with feedback from two separate discriminators to train them in a cyclic fashion. Each
additional domain requires a separate generator-discriminator pair.

et al. [125] discussed the problem with GAN’s gradient-descent-based training pro-

cedure. They concluded that as two models are trained simultaneously to find a

Nash equilibrium in a two-player non-cooperative game, each model updates its

cost independently with no respect to another player in the game. Updating the

gradient of both models concurrently cannot guarantee a convergence since If the

discriminator misbehaves, the generator does not have accurate feedback, and the

loss function cannot represent reality. Alternatively, if the discriminator does a great

job, the gradient of the loss function drops down to close to zero and the learning

becomes super slow or even jammed.

CycleGAN and StarGAN

Zhu et al [104] proposed an important variant of the vanilla GAN, known as Cycle-

GAN. It is an extension of Pix2Pix architecture [126] which involves simultaneous

training of two generator models and two discriminator models. CycleGAN is a type

of generative adversarial network for unpaired image-to-image translation. Cycle-

GAN learns a mapping for two domains G : X → Y and F : Y → X and then uses the

intuition that these mappings should be reversible and equally applicable to both

domains, as shown in the Figure2.11. This is achieved through a cycle consistency

loss as defined by equation 2.31.
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Figure 2.12: StarGAN architecture as proposed by Choi et al. [127] trains a single generator-
discriminator pair, replacing the requirement of a separate pair per domain.

Lc yc (G,F) = Ex∼pd at a (x) [||F(G(x))−x||1]+Ey∼pd at a(y)
[||G(

F
(
y
))− y ||1

]
(2.31)

Combining this cyclic loss with the standard adversarial losses yields the full objec-

tive function for unpaired image-to-image translation. For the CycleGAN generator

G, the objective can be defined as equation 2.32.

LGAN (G,DY,X,Y) = Ey∼pd at a(y)
[
logDY

(
y
)]+Ex∼pd at a (x)

[
log (1−DY (G(x))

]
(2.32)

As in a regular GAN, the objective is to solve the min-max equation 2.33.

G∗,F∗ = argmin
G,F

min
DX ,DY

LGAN (G,F,DX,DY) (2.33)

While CycleGAN has the ability to map the translation between two domains, it re-

quires a Generator-Discriminator pair for every pair of domain. This becomes very

inconvenient if we require the GAN to translate images between multiple domains

as each domain pair would require a separate generator-discriminator network pair

which would be highly costly and inefficient. A solution to this multi-domain para-

dox was proposed by Choi et al. as StarGAN [127]. StarGAN is a generative adversar-

ial network capable of learning mappings among multiple domains. It builds upon

the CycleGAN paired architecture to a unified architecture allowing simultaneous

training of multiple domains as well as different datasets within a single network.

StarGAN is a robust and scaleable approach able to perform image-to-image trans-

lation among multiple domains using a single model and can generate higher visual
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Figure 2.13: CollaGAN by Lee et al. [117] improves StarGAN for image imputation of a miss-
ing domain among multiple inputs.

Table 2.7: Brief comparison of StarGAN and CollaGAN networks.

Property StarGAN CollaGAN

Category Image to Image translation Image Imputation
Inputs Required Single RGB image Multiple RGB images (all domains)
Training Inputs Multi-domain RGB images Multi-domain RGB images
Working Color space RGB RGB/YCbCr
Output Type RGB RGB / Grayscale
Key Feature Cross-domain, image-to-image

translation
Missing domain imputation
among multiple domains

quality images compared to a vanilla CycleGAN. An example of the StarGAN model

is given in Figure 2.12.

For a multi-domain translation problem, if there are domains that are missing or

imbalanced, it often introduces large amounts of bias in the trained network. To

impute the missing data, Lee et al. proposed Collaborative Generative Adversar-

ial Network (CollaGAN) [117]. CollaGAN, as shown in Figure 2.13, treats the image

imputation problem as a multi-domain images-to-image translation task so that a

single generator and discriminator network can successfully estimate the missing

data using the remaining clean data set. Since the missing data domain is not dif-

ficult to estimate a priori, the imputation algorithm can estimate the missing data

in any domain by exploiting the data in the remaining domains. CollaGAN retains

the one-generator architecture similar to StarGAN, which is more memory-efficient

than CycleGAN but requires all the domains as input to generate the missing do-

main. A brief comparison of StarGAN and CollaGAN is given in table 2.7
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Self-attention mechanisms in deep-learning networks

The human visual attention system allows us to focus on regions with high impor-

tance simultaneously while perceiving the surrounding image and the background

of lower importance. Similarly, we can infer the relationship between words in one

sentence or close context. Based on this premise, attention in deep learning can

be broadly interpreted as a vector of importance weights in order to predict or infer

one element, such as a pixel in an image or a word in a sentence. Attention helps

estimate how strongly the vector is correlated with other elements and take the sum

of their weighted values as the approximation of the target.

The concept of Attention was introduced initially in the Natural language Process-

ing (NLP) domain in the paper by Sutskever et al [128]. Their work was motivated

by how humans correlate words in one sentence or pay visual attention to different

regions of an image, and aimed to transform arbitrary length input sequences to

output sequences of words to form a sentence. Looking towards the breakthrough

results in automated machine translations [129], attention mechanism made its way

into computer vision by Xu et al. [130], followed by several other works implement-

ing some form of attention mechanism into their networks. Attention can be di-

vided into several categories such as Self-Attention, Global or Soft attention or local

or hard attention, each with different concepts as described in the table 2.8. Out

of these, Self-attention for generative adversarial networks was first intorduced by

Zhang et al. [131] in their SAGAN network, and added self-attention layers in both

their generator and discriminator to better model relationships between spatial re-

gions. Later Radford et al. [132] in their network DCGAN added a soft self-attention

mechanism to learn the positional relationship between pixels. This allowed them

to handle the details of the generated images in a better way. The SAGAN adopts

the non-local neural network to apply the attention computation. The convolu-

tional image feature maps is branched out into three copies, corresponding to the

concepts of key, value, and query in the transformer: Mathematically, it can be de-

fined by equation 2.34 Then we apply the dot-product attention to output the self-

attention feature maps:

o j = W

(
N∑

i=1
αi , j h (xi )

)
(2.34)

where αi , j is the weighted attention of the i-th value when calculating the j-th loca-

tion, multiplied by W, a 1×1 convolutional filter.
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Table 2.8: Different types of attention in deep neural networks

Atention type Description

Self-Attention Relating different positions of the same input sequence. In theory, self-
attention can adopt loss function by replacing the target sequence with
the same input sequence.

Global/Soft Attention Attending to the entire input state space.
Local/Hard Attention Attending to the part of input state space i.e. a patch of the input image

2.4.2 Popular datasets for specular highlight research

For recent deep-learning-based methods, one of the main requirements of the de-

velopment, training and testing of networks is the availability of large datasets

that accurately encompass various specular reflections and their respective ground

truths. While acquiring real-world images with specular reflections is relatively easy,

acquiring the pure diffuse images of the same scene is a complicated task. This

is because the only way to achieve images without specular reflections in natural,

uncontrolled environments is to acquire images using a polarizer. However, even

with a polarizer, completely removing all specular reflections in a scene is not eas-

ily achieved due to the presence of multiple light sources and random orientations

and materials of the objects in the scene. This makes the acquisition of comprehen-

sive datasets challenging and amplifies the importance and significance of datasets

painstakingly acquired by researchers.

One of the reasons for the lack of research using polarimetric information for spec-

ular highlight mitigation has been due to expensive polarimetric cameras and the

effort required to capture multiple images by manually rotating the polarizing fil-

ter. This leads to the lack of availability of large annotated datasets with specular

highlights that can be used for research and explicitly training deep learning net-

works. Several solutions are now available that are cost-effective and have sensors

with multiple polarizer angles embedded into the image sensor in a super-pixel con-

figuration. Therefore, a single image can capture four polarimetric angles in one

instance, and the resulting raw image can be demosaiced to get four polarimetric

images, as shown in Fig. 2.8. The cameras were used to capture the four polarimet-

ric angles simultaneously in a single acquisition generating a super-pixel image that

can be demosaiced according to the Bayer pattern, as shown in Fig. 2.8. Simultane-

ous acquisition of all polarimetric angles provides spatial and temporal coherency

among the polarimetric images and removes the need to register or align the images
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Figure 2.14: Set of classical images used for specular highlight mitigation in literature

manually, as well as reducing any blur due to accidental unwanted camera move-

ments etc., such as the ones faced by [114]. This ensures that the only variation in

the image is luminance, including specular reflection variations between the polari-

metric images.

Additionally, most publicly available datasets lack pure diffuse images (ground-

truth) by using cross-polarization (images captured with a polarized light source)

and thus are insufficient for training machine learning algorithms for specularity re-

moval. Some works have recently made available reliable datasets, thereby further

enabling research. A comprehensive table of relevant datasets for specular high-

light mitigation is given in table 2.9 summarising the essential characteristics of the

datasets. The most extensive dataset of real-world images with a matching specu-

lar mask was recently made available by Fu et al. titled Whu-Specular dataset [63].

They curated a large dataset of approximately 500 real-world images in the wild with

specularity and have provided manually annotated specular pixel masks for each

image. The authors also proposed a deep learning-based SHDNET that uses multi-

scale context contrasted features to detect specular highlights. Similarly, [64] also

generated a large-scale real-world highlight dataset of around 4500 images contain-

ing a wide variety of material categories, with diverse highlight shapes and appear-

ances; with each image provided with its annotated ground truth. Wu et al. [114]

provide a large Paired Specular-Diffuse (PSD) dataset consisting of roughly 12000

images acquired over 12 polarimetric angles and 1600 paired specular-diffuse pairs

of images. The pure diffuse images are acquired using cross-polarization, which en-

sures the removal of specular highlights in the diffuse images. A smaller dataset of

40 scenes captured with polarimetric cameras is also provided by Qui et al. [133]

containing several objects of varying materials with specularity. A quick summary

of the popular datasets and sets of images used in literature can be seen in table
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2.9. Some of the earliest literature on specular highlight mitigation only acquired a

few images due to the lack of polarizers and digital imaging equipment. However,

repeated usage of the early images made them popular for usage by literature and

are still used to this date. A few of the example images are attached as Fig. 2.14.

2.5 Datasets for specular highlight mitigation

One of the reasons for the lack of research using polarimetric information for spec-

ular highlight mitigation has been due to expensive polarimetric cameras and the

effort required to capture multiple images by manually rotating the polarizing fil-

ter. This leads to the lack of availability of large annotated datasets with specular

highlights that can be used for research and explicitly training deep learning net-

works. Several solutions are now available that are cost-effective and have sensors

with multiple polarizer angles embedded into the image sensor in a super-pixel con-

figuration. Therefore, a single image can capture four polarimetric angles in one

instance, and the resulting raw image can be demosaiced to get four polarimetric

images, as shown in Fig. 2.8. The cameras were used to capture the four polarimet-

ric angles simultaneously in a single acquisition generating a super-pixel image that

can be demosaiced according to the Bayer pattern, as shown in Fig. 2.8. Simultane-

ous acquisition of all polarimetric angles provides spatial and temporal coherency

among the polarimetric images and removes the need to register or align the images

manually, as well as reducing any blur due to accidental unwanted camera move-

ments etc., such as the ones faced by [114]. This ensures that the only variation in

the image is luminance, including specular reflection variations between the polari-

metric images.

Additionally, most publicly available datasets lack pure diffuse images (ground-

truth) by using cross-polarization (images captured with a polarized light source)

and thus are insufficient for training machine learning algorithms for specularity

removal. Some works have recently made available reliable datasets, thereby fur-

ther enabling research. Fu et al. [63] have curated a large dataset of approximately

500 real-world images in the wild with specularity and have provided manually an-

notated specular pixel masks for each image. Similarly, [64] also generated a large-

scale real-world highlight dataset of around 4500 images containing a wide variety

of material categories, with diverse highlight shapes and appearances; with each
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Table 2.9: Table listing notable datasets with publicly available specular highlight imaging
datasets especially used for machine learning algorithms

Dataset Name Year Cat.5,6,7 Total
images

Specular
Mask

Diffuse
Image

Test-
train
split

Size

Spec-DB [38] 2003 RW 300 3 3 7 10 MB
MIT Intrinsic Images
dataset [14]

2009 RW 20 3 3 7 97 MB

IIW [134] 2014 RW 5000 7 7 7 1.5 GB
CVC-ClinicDB [135] 2015 MI 612 3 7 7 263 MB
CVC-ClinicSpec [59] 2017 MI 59 3 7 7 6 MB
LIME [136] 2018 Syn, RW 10k, 45 7 3 3 34 GB
Polarization Image
dataset [133]

2019 RW 40 7 7 7 935 MB

Whu Specular [63] 2020 RW 4310 3 7 3 2 GB
PolaBot [137] 2020 RW 177 3 7 7 584 MB
SHIQ [64] 2021 RW 10825 3 3 3 10.8 GB
Whu TRIW [63] 2021 RW 500 7 7 7 835 MB
PSD-dataset [114] 2021 RW 13,380 7 3 3 7.4 GB
2022 SIHR [116] 2022 RW 200 7 3 3 503 MB
SHMGAN (Ours) 2022 RW 330 7 7 7 2.3 GB

5 RW: Real-world
6 MI: Medical Imaging
7 Syn: Synthetic Images

image provided with its annotated ground truth. Wu et al. [114] provide a large PSD

dataset consisting of roughly 12000 images acquired over 12 polarimetric angles and

1600 paired specular-diffuse pairs of images. The pure diffuse images are acquired

using cross-polarization, which ensures the removal of specular highlights in the

diffuse images. A smaller dataset of 40 scenes captured with polarimetric cameras

is also provided by Qui et al. [133] containing several objects of varying materials

with specularity.

2.6 Criticism on state-of-the-art

The accurate detection of specular highlights is significant in many applications and

therefore has been an area of research for several decades. The current state-of-

the-art for specular detection and mitigation faces several challenges and issues as

highlighted below.
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2.6.1 Issues with current specular detection methods

Generalized and robust solutions

Classical methods for accurately detecting specular highlights have difficulty de-

tecting pixels accurately in a wide variety of scenes containing lighter coloured ob-

jects, bright backgrounds, or complex-shaped objects with irregular specular re-

flections. One of the significant issues faced by the classical techniques is the ro-

bustness and generalisation of the techniques. While the methodologies are based

on firm mathematical foundations and optimisation techniques, they are primar-

ily based on assumptions that significantly limit their applications to general real-

world images that are not part of their dataset. Thus, while the results are signifi-

cantly better on the selected set of images, they do not apply to any general image

taken from a generic camera under uncontrolled settings. Multiple research works

on treating specular reflections using colour space transformations attempted to

understand and tackle the problem purely from an objective often tested on a min-

imal set of images which fails to work beyond their preferred set. Methods based on

polarisation classically use a manual polariser filter that is rotated to acquire images

at different polarimetric angles. This means that the images are temporally incoher-

ent, and unless taken of a static object under a static and controlled environment,

the images face alignment issues where pixels do not share the same spatial instance

between the polar images. This also limits the number of images that can be ac-

quired as a significant amount of effort is required to take a broad and generalised

dataset.

Illumination colour and SPD assumptions

Several assumptions are also made for classical methods to work, which are some-

times not reflective of real-world conditions, e.g., a single illumination is mostly as-

sumed with a non-existent or minimal amount of inter-reflections from surround-

ing surfaces. The illuminants selected are assumed to be of pure white colour with

known spectral power distribution (SPD) to simplify all chromaticity-based meth-

ods. It is further assumed that each segmented cluster has uniform diffuse chro-

maticity. While being very helpful for modelling the problem of specular highlight,

these and other assumptions do not reflect real-world images’ randomness and

limit the generalisation and applicability of methods. Since most limitations are not

considered for deep learning-based methods, it is quite clear that modern state-of-
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the-art methods are significantly more robust and can cater to a much more com-

prehensive range of images. However, limitations are enhanced in the presence of

outdoor images, which have both strong illumination and inter-reflections in an un-

controlled and often stochastic environment. Simplifying the proposed networks to

reduce the number of existing parameters and upgrade the presumption rapidity

for its usages on the mobile computing programs [138, 139].

Outdoor environments

Outdoor environments have illumination from the sun as an omnidirectional light

source, causing light to bounce off in often undesirable directions and strength. The

synthesized and real-world images in some datasets of the proposed algorithms are

all indoor scenes that may not be suitable for outdoor scenes. These proposed net-

works were not very effective and almost failed in outdoor scenes [140]. Strong light

sources also result in more significant specular regions in images, which makes the

regions easily visible but also easily confused with the objects in the scene, as well

as causing a significant loss of information in the area, which hinders the recovery

of colour and other information in the affected region.

2.6.2 Limitations in mitigation of specular reflections

Imaging and scene conditions

Most proposed methods for specular highlight nitigation are not only unable to

properly mitigate specular highlights but often have adverse effects on the image,

such as altering contrast and distorting the colour of the objects in the scene [5].

Several proposed solutions are highly dependent on illumination conditions, re-

flectance, material properties and colour of the source lighting. Furthermore, ex-

isting traditional methods cannot often distinguish coloured specular reflections in

images. Similar to the issues for specular highlight detection, image regions affected

by extreme specular highlights and saturation are especially poorly estimated by

most algorithms that entirely or partially fail to estimate and restore the underlying

colour of the affected objects. Generally, accurate and reliable methods trade-off

highlight-mitigation accuracy with speed and thus are not suited for real-time ap-

plications. These problems are unsolved and indicate that specular highlight miti-

gation is an area with a notable gap in the availability of a fast and accurate detection

and mitigation method.
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Limited datasets, handcrafted features and deep neural networks

The state of the art in specular highlight mitigation are deep neural networks which

have shown to provide reasonable amount of mitigation to most non-ideal images

with strong reflections [114, 112, 64] and provide confidence for future development

in the field. In some other networks, the diversity of scenarios and capturing set-

tings for the images which are included in the synthetic dataset needs to be im-

proved. These problems in data generation may restrict the generalization ability

of the dataset [141]. When the whole images are dominated by reflection or ghost-

ing reflection, which makes it so hazy and blurry, or the reflection layers and back-

ground are overlapped, the effectiveness of the proposed networks may drop, and

these networks may not be able to completely remove the reflections, and the eval-

uated background still remains visible residual edges. Also, the proposed technique

may have some problems with gradient disappearing when the deep learning tech-

nique is trained directly on the images [140, 142]. According to the fact that some

of the presented networks are operating based on the extracted edges, these algo-

rithms may not work properly whenever there is a loss of edge information, or the

edge information is low-confident [140]. Some of the proposed networks rely on

handcrafted features. Proposing and designing a more hand-free and automated

reflection removal algorithm than the proposed ones, which can free users from

guidance and suppress reflection with high quality, can be mentioned as a future

direction, and it is expected to successfully deal with the limitations in challenging

reflection removal tasks [140].

2.7 Summary

In this chapter, we firstly explored in depth the various physical models of reflection

of light that have been developed to explain the phenomenon in a generalized man-

ner. Specifically, the DRM model by Shafer et al. has proven to be simple yet diverse

enough for the development of accurate detection and mitigation methods. The im-

portance of specular highlight detection and mitigation, the relevant literature and

its real-world applications are explored in depth. Detection and segmentation of

specular reflections was explored in detail. Both classical and deep-learning solu-

tions were reviewed, giving a broad overview as well as deep insight on the benefits

and pitfalls of classical computer vision based methods. The polarisation character-
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istics that are inherent to reflection were specially studied in depth as they provide

a promising and a plausible way for removal of specular reflections based on phys-

ical properties of light. The limitations of the current state-of-the-art methods on

detection and segmentation were also explored based on the extensive literature

and research works available. Having developed a strong foundation of the current

methods in vogue and their benefits, in the next chapter, we will addressthe de-

tection and mitigation of the detected specular highlights by developing separate

methods that are specialized for each task, and extend them to a wide range of im-

ages taken under various conditions.
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Methodology

"There’s a benefit to losing; You get

to learn from your mistakes!”

Megamind

Chapter abstract

In this chapter, we tackle the problem of detecting, segmenting and mitigating spec-

ular highlight pixels in real-world images. With extensive literature review done in

chapter 2, traditional image processing methods are shown to be inadequate for a

generic solution that works under a wide assortment of real-world images. We take

inspiration from the current state-of-the-art and apply the philosophy of Occam’s ra-

zor to simply the network and the resources required to get at-par or better results than

competing methods. To this end, we develop Specular Segmentation (SpecSeg), a fast-

to-train yet highly effective deep learning network that is able to accurately detect and

segment out the specular pixels and regions with precision. We also show a fast dif-

fuse colour inpainting method that utilises the detected regions from our developed

SpecSeg network and inpaints the affected regions with an estimated diffuse colour

inferred from the boundary regions. The advantages and limitations of this classi-

cal computer-vision based method are also discussed establishing the need for deep

neural networks for a robust solution. We leverage deep neural networks and take

advantage of the varying illumination information in polarimetric images for syn-

thesizing specular free images. For this, we develop a multi-domain attention-based
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Specular Highlight Mitigation Generative Adversarial Network (SHMGAN) trained

using multiple polarimetric images simultaneously. The developed network uses a

dynamically generated attention mask and requires no manual input for segment-

ing specular pixels. The network is able to learn the illumination variation between

the four polarimetric images and a pseudo-diffuse image without requiring extensive

training data or time. Once trained, SHMGAN is able to generate specular-free im-

ages from a single RGB image as input; without requiring any additional external or

pixel labels.
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Figure 3.1: A flowchart of the methodology showing the three developed namely, WMI in-
painting method, SpecSeg and SHMGAN networks.

3.1 Overview

Exploring the state-of-the-art methods used to detect and mitigate specular high-

lights, it is evident that classical computer vision methods have been developed

with an in-depth understanding and mathematical modelling of light reflection,

polarization and other physical properties. However, the robustness of such meth-

ods is still found lacking as they are mostly applicable to limited images, taken in

mostly controlled environments. Over the recent years, deep-learning-based so-

lutions have not only shown spectacular results but also have shown to work on a

wide variety of images that were not possible by classical methods. taking inspi-

ration from the state-of-the-art, we explore and develop three methodologies in

this chapter. Deep-learning based specular highlight detection and segmentation

network, a fast inpainting method using calculated weighted median, and lastly a

multi-domain generative adversarial network that uses polarimetric information for

learning to mitigate specular highlights. An overview of the methodology chapter

and the three methods developed is given in Figure 3.1. The developed methods are

explored in depth, addressing the details and reasons for the selection of various

parameters and concepts that have been learned from the literature as well as from

experimentation.

77



CHAPTER 3. METHODOLOGY

3.2 Specular Segmentation (SpecSeg) network

In this section, we explore the motivation and details of the different building blocks

of the developed SpecSeg Network in detail and the unique characteristics of Spec-

Seg Network itself. We conclude this section with a detailed comparison between

the developed SpecSeg Network and state-of-the-art networks for specular highlight

segmentation.

3.2.1 Motivation

As already detailed in the preceding section, accurate detection and segmentation

of specular pixels from real-world images have significant implications in various

fields. This work intends to fill the research gap and add to the current state of the

art in specular highlight segmentation. To achieve this, we propose a specular high-

light segmentation network that is simple to model, fast to train and works on im-

ages used in literature as well as a wide variety of general real-world images. Most

state-of-the-art deep learning models are complex structurally, with a complex or-

ganization of deep hidden layers and innovative, unique features such as attention

and other methods. Secondly, due to their complex design, they require a significant

time to train and fine-tune due to a large number of hyperparameters in the model

and deep neural network layer structure. This, in turn, causes significant hindrances

in research and development due to unoptimized training times required while ex-

pected nominal results are not achieved. Furthermore, complex and deep networks

also mandate the utilization of expensive and powerful hardware, consuming a lot

of power while training and re-training.

We avoid both these pitfalls by our developed Specular Highlight Segmentation Net-

work (SpecSeg Network for short), based on the proven U-Net model, which is a

highly reliable yet straightforward model that was initially proposed for medical

segmentation [143]. Our experiments show that this decision makes the specular

highlight detection network simple to build and requires significantly less time and

fewer resources to train. This enables increased experimentation and re-training

opportunities without trading accuracy or precision from the existing state-of-the-

art methods. Furthermore, we also show that using SpecSeg Network; it is possible

to detect specular highlights after a speedy training process on a relatively small

dataset and generate accurate detection results on real-world images. The affected
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pixels are accurately marked in a wide assortment of images taken in random un-

controlled settings and improve upon the existing state-of-the-art in specular high-

light detection.

3.2.2 U-Net and image segmentation

With a brief introduction of the basics of deep learning covered in the previous sec-

tion, we now move on to our application-specific convnets, namely the networks

used for image segmentation. There are three essential computer vision tasks:

image classification, image segmentation, and object detection. In image classi-

fication, the goal is to assign one or more labels to each image pixel, depending

on whether the problem is a single-label classification or multi-label classification

problem. In an image segmentation task, the goal is to "segment" or "partition" an

image into different areas and provide an outline of the region within the image,

such as background and foreground, specular and non-specular etc. Each segment

can then be used for algorithms for analysis or other tasks, such as mitigation in

the case of specular highlights. An image segmentation task generates a segmenta-

tion mask, which is the same size as the input image and can be a binary or multi-

channel image based on a single or multi-class segmentation problem. For the case

of specular highlight segmentation, the required mask has to be a binary image,

segmenting each pixel in either specular or non-specular categories. To differenti-

ate between image classification and segmentation, the former process groups all

the relevant regions into a groups or categories whereas segmentation only sepa-

rates out all regions of interest in an image. Both image classification and object

detection are a precursor of image segmentation as both techniques must occur be-

fore segmentation can begin. One of the first CNN architectures to allow automatic

end-to-end semantic segmentation is the FCN [144]. FCNs are derived from deep

classification models such as VGG16 [145], AlexNet [122] or GoogLeNet [146], by re-

moving the corresponding classification layers, i.e., replacing their fully connected

layers with convolutional ones, and plugging in an upsampling path that is dedi-

cated to transforming coarse outputs into dense predictions. .

With its ability to extract multi-scale features, fully connected networks set a mile-

stone in segmentation approaches and paved the way for encoder-decoder segmen-

tation networks. To increase depth and precision within the learnt contextual fea-

tures, many works within the field advocate going deeper with FCN layers ([145];
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[146]). Improving a model’s prediction ability by adding deeper hidden layers to a

fully connected layer is a task of increasing difficulty. One side effect of adding the

said deeper layers is the loss of global and spatial information leading the network

[147] and prone to produce fuzzy or blurred predictions and segmentations. More-

over, deepening the convolutional network will often increase the model’s complex-

ity, thus subjecting the training to additional challenges such as vanishing gradi-

ents. As a result, deep FCNs may suffer from performance saturation or degradation

while training. To address these issues, many FCN improved variants have emerged,

among which is the very well-known U-Net introduced by Ronneberger et al. [143]

Since its inception, U-Net has proven to be a breakthrough for segmentation tasks

and has been instrumental in paving the way for developing a more advanced

encoder-decoder style of networks. The network is named after the U-shape of the

hidden layers, combining an encoder-decoder arrangement with convolution, acti-

vation and pooling operations between its successive hidden layers. With its pecu-

liar arrangement, this specific architecture allows the network to propagate context

information to higher resolution layers by introducing skip-connections between

the encoder and decoder parts. The encoder-decoder generator architecture takes

an image as input and downsampling it over a few layers until it becomes a bot-

tleneck layer. The representation is then upsampled over a few layers before out-

putting the final image with the desired size. The U-Net model architecture is very

similar in that it involves downsampling to a bottleneck and upsampling again to

an output image. However, links or skip connections are made between layers of

the same size in the encoder and the decoder. It learns to segment images in an

end-to-end setting, i.e. the network input is a raw image (which can be in a single or

multi-channel colour space), and the output image is in the form of a segmentation

map. The traditional U-Net is able to segment multiple objects in an image even

if their boundaries are colliding. Skip connections allow high-level features from

the encoder to be passed on to the decoder’s generated outputs and significantly

affect the quality and accuracy of the U-Net output [148]. By parsing the input im-

age through down convolutions and pooling in an encoder, the network learns to

identify the target regions in a scale-agnostic manner. The U-Net network has been

shown to work with high accuracy and detect objects with substantial shape varia-

tions, weak borders and inset or overlapping objects. Due to these properties, the

U-Net forms the primary building block of our developed SpecSeg Network for de-
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tecting specular highlights in real-world images.

3.2.3 SpecSeg network model and implementation

Since its inception, U-Net has proven to be a breakthrough for segmentation tasks

and has been instrumental in paving the way for the development of a more ad-

vanced encoder-decoder style of networks. The network is named after the U-shape

of the hidden layers, combining an encoder-decoder arrangement for downsam-

pling the input to a bottleneck and upsampling again to an output image, with

convolution, activation and pooling operations between its successive hidden lay-

ers. Skip connections allow the network to propagate context information from

higher resolution layers to the decoder’s generated outputs and significantly affect

the quality and accuracy of the U-Net output [148]. By parsing the input image

through down convolutions and pooling in an encoder, the network learns to iden-

tify the target regions in a scale-agnostic manner. The network thus learns to seg-

ment images in an end-to-end setting, i.e. the network input is a raw image (which

can be in a single or multi-channel colour space), and the output image is in the

form of a segmentation map. The U-Net network has been shown to work with high

accuracy and detect objects with substantial shape variations, weak borders and in-

set or overlapping objects. It has also been shown in literature that a simple but

properly trained U-Net architecture can match and even surpass the state-of-the-

art approaches for image segmentation [149]. Due to these properties, the U-Net

forms the primary building block of our developed SpecSeg Network network for

detecting specular highlights in real-world images. The developed deep convolu-

tional network layout is shown in 3.2, and the following sections discuss the design

and reasons for selecting the hyper-parameters.

Encoder and decoder blocks

SpecSeg comprises of 5 encoder blocks and 4 decoder blocks based on the classical

U-Net pattern, and each path from the encoder is passed to the decoder via a skip

connection. Each encoder block consists of two 2D convolutional layers with filters

(k) = 3 and stride (s) = 3 with ′same ′ padding and uses ReLU activation in the out-

put of each convolutional layer. The (3×3) filter has been inspired by the original

proposed U-Net configuration. However, a stride of (3×3) is added to avoid over-

lap when convolving the filter, as it was experimentally determined to give the most
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favourable results during testing and evaluation. While in the original paper, Ron-

neberger et al. [143] propose unpadded convolutions in the encoder section, it has

been shown [150] that the choice of padding has a direct effect on the performance

of a model. Without padding, the input layer volume size reduces too quickly as a

deeper network is designed. Stacking multiple unpadded layers also ignores the im-

age’s border pixels, resulting in a loss of learnable information around the borders.

Since specular highlights can also extend to the border of the input images, adding

padding around the border increases the chances of detecting specular pixels near

the border of the input image.

An incremental dropout of 10%,20% and 30% respectively is also introduced be-

tween the two convolutional layers of the first, third and fifth encoder block to

improve the robustness of the learned features. By incrementally increasing the

dropout, the network is able to learn sparser representations of the high-level fea-

tures and in return, improves the accuracy of the detection of specular pixels. The

training was done on a batch size of 16, and a BN layer was introduced in the en-

coder sections before the pooling layer. BN has proven to be a reliable normaliza-

tion method for segmentation networks [123], and the same was confirmed by our

experimentation as well, making it a sound choice. Lastly, to reduce the variance

and computational complexity as we go deeper in the U-Net, we need to reduce the

size of the feature map. This is achieved with a MaxPooling layer which selects the

maximum value out of a 2×2 block, reducing the size of the feature set. Maxpooling

ensures that the most critical features (denoted by the maximum valued pixels) are

taken from each block only.

The decoder block mostly mirrors the encoder block setup defined above with a

few notable changes. Firstly the decoder performs an upscaling operation. This is

done using 2D transpose convolutional layers with filters k = 2 and stride s = 2. A

similar incremental dropout between two consecutive convolutional layers is also

used. However, the final convolutional layer uses filter and strides of k = 1, s = 1

respectively and sigmoid activation to generate a 256×256×16 mask images of the

entire batch similar in size the input images.

Thus the overall U-Net structure takes batches of 16 images of resolution 256×256

as input and generates mask images as output for all of the 16 images while learning

the weights during the downscaling-upscaling operations in the encoder-decoder
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Figure 3.2: SpecSeg configuration based on the U-Net architechture

pairs.

Loss functions

As the training progresses and the network learns the weights related to the feature

maps, the error for the model’s current state must be estimated repeatedly. This is

part of the optimization algorithm being employed. The set of functions used to es-

timate this error is called a loss function. Loss functions depend profoundly on the

problem being solved and are often tailored to the task at hand. As deep learning has

progressed, researchers have developed and proposed several known loss functions

over the years that have shown to be very reliable for particular problems. Further-

more, total losses formed by weighted additions of different losses have proven very

useful. For specular highlight segmentation, we selected a linear combination of

Dice similarity coefficient (DSC) [151], and Focal loss [152] as experiments proved

that the combination of these losses showed the best segmentation results.

Dice similarity coefficient: DSC is a spatial overlap index developed to measure the

pixel-level similarity between two images, where one is generally the binary mask

image. DSC loss function has values ranging between 0-1. Lower values indicate
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minimum spatial overlap between two sets of binary segmentation results, whereas

larger values nearing 1 indicate increasing overlap, where 1 represents 100% com-

plete overlap. The Dice similarity coefficient has been adopted widely in biomed-

ical segmentation problems where manually annotated lesions or cancerous cell

datasets are available to train segmentation algorithms. Mathematically, the dice

similarity loss (or dice loss for short) is defined as 3.1.

LDi ce (p, p̂) = 1− 2
∑

ph,w p̂h,w∑
ph,w +∑

p̂h,w
(3.1)

The loss is calculated in terms of the per-pixel classification of TP, TN, FP and FN.

Where p is the ground truth, p̂ is the predicted probability and

ph,w ∈ {0,1} and 0 ≤ p̂h,w ≤ 1

Focal loss: [152] addresses class imbalance during training by applying a modulat-

ing term to the cross entropy loss to focus learning on hard misclassified samples.

Alternatively, it can also be visualized as a dynamically-scaled cross-entropy loss,

where the scaling factor decays to zero as confidence in the correct class increases.

Intuitively, this scaling factor automatically down-weights the contribution of eas-

ier training samples and rapidly converges the model to focus on harder examples.

Mathematically focal loss can be defined as:

LFocal (p, p̂) =−α(1− p̂)γp log(p̂)−α(1−p)p̂γ log(1− p̂) (3.2)

Total loss: By adding the losses mentioned above, we can create a total loss that cal-

culates the true positive segmented pixels and enables the network to focus on the

misclassified samples of the training dataset. The dice loss maximizes the overlap

between predicted and actual labels, whereas the focal loss addresses class imbal-

ance by reducing the effect of biased or skewed classification on the predicted re-

sults. The total loss function is defined as a linear combination of both the Dice loss

and Focal loss and is used for backpropagating over all learnable parameters.

LTot al = κdLDi ce +κ f LFocal (3.3)

This weighted combination of both dice and focal losses provides the most accurate
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Figure 3.3: YCbCr colour space transformation from RGB colour space.

segmentation results, as will be shown in the results section. After several experi-

ments carried out to find the most suitable weights, κd = κ f = 1 was found to be the

most suitable set of weights with repeatable results.

Results of specular highlight segmentation

As already highlighted in the proposed flowchart at section 1.8, specular highlight

segmentation is a precursor to specular highlight mitigation techniques developed

in Section 3. The results and discussions on the image segmentation are discussed

at length in section 4.2.

3.3 Weighted-median inpainting for specular highlight

removal

One of the most feasible methods to mitigate specular reflection is inpainting,

where the target region pixels are replaced by colour information that is inferred

by the method in use. This replacement can be iteratively or in one go depending

on the method in use. However, iterative inpainting methods have shown to be sig-

nificantly slower in estimating the diffuse colour. So one of the target objectives of

any inpainting method is to improve the estimation time with a little trade-off to the

estimated colour accuracy. Taking inspiration from the state-of-the-art inpainting

methods, we propose a fast inpainting method that infers the colour information
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of the affected region from the neighbouring pixels of the affected region and is ex-

plained in depth in the subsequent sections.

3.3.1 YCbCr colour space for illumination separation

While RGB colour space is the defacto standard for developing image processing

algorithms, there are several disadvantages related to the colour space. One of the

primary issues is that the three-channel colour space combines the illumination in-

formation and the colour information of the objects. While this is not a concern for

most applications in the computer vision domain, it is not beneficial for our partic-

ular problem, which requires colour information to separate out the specular effects

of the illuminant. An alternative to the RGB colourspace is the YCbCr space. It is de-

fined by a coordinate transformation of the associated RGB colour space and has a

similar three-channel configuration, and is visualized in the Figure 3.3. YCbCr was

developed as a practical approximation to colour processing and perceptual unifor-

mity. YCbCr is used to separate out a luma signal (Y) and two chroma components

(CB and CR). Luma is the weighted sum of RGB components of a colour image after

gamma correction. If the weighted sum is only of the non-gamma-corrected RGB

values, then it is called ’relative luminance’.

In order to separate out the illumination information from the colour, we proposed

using the YCbCr colour space for specular highlight segmentation. This decision

was made because of the fact that it has been shown mathematically that the CbCr

channels in the YCbCr colour space are free of the specular highlights [71]. Another

pertinent observation regarding specular highlights in the YCbCr domain is that due

to the way RGB colour space is oriented in YCbCr space, the black-white (0 to 255)

RGB colour axis is arranged along the Z-axis (Y-Channel), whereas the Cb and Cr

axes values are at 0.5. Due to this arrangement, whenever a region is affected by a

white specular highlight, the pixel colour of that region in YCbCr space always shifts

towards this central axis, and the intensity of the specular highlight is along the Y-

Channel. This colour shift information can be useful since the colour of the specu-

lar region can be inferred from the pixel values of the surrounding region where the

shift approximately starts. The observation holds in cases where the specular high-

light saturates the imaging sensor, and there is a strong peak in the Y-channel along

with a clear shift of the surrounding region in Cb and Cr channels to 0.5. This con-

cept lies at the core of our developed inpainting method, where the specular region
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Figure 3.4: Flowchart explaining the weighted median inpainting method.

is first segmented out in the image, and then the colour of the surrounding region

(from where the colour shifts) is estimated.

3.3.2 Segmenting specular highlights using Y-Channel

The developed method for specular highlight inpainting is composed of two major

stages, namely, specular segmentation and weighted median inpainting. A com-

plete flowchart of the entire process is shown in Fig. 3.4 and the pseudocode of

the developed method is also given in Algorithm 1. The first stage of the proposed

method is separating diffuse and specular images using the Modified Specular-Free

(MSF) image technique by Shen et al. [25]. However, in contrast to using the three

channels of the RGB colour space, the proposed method utilizes only the Y-Channel

from the YCbCr colour space. This allows the processing of the luma channel of

the images without affecting the colour information by utilizing only the Y-channel.

Ideally, the output of the MSF using an RGB image as input is a diffuse image. How-

ever, since only the luma (Y) channel is used for generating the specular free image,

the algorithm output is a single channel luma image with receded intensity values

in specular regions of the image. This reduction automatically reduces the specu-

lar pixel intensities in the image. After processing the MSF using the Y channel, the

chroma channels Cb and Cr from the original image are combined with the result-

ing MSF image to get the final diffuse image. This combined image is the diffuse

component without specular highlights, and the specular image can then be sepa-

rated by taking the difference of this concatenated diffuse image from the original

image in YCbCr space. For a pixel p, the DRM model defined by equation 2.2 in

YCbCr colour space can be written as equation 2.9. Also part of the first stage is to

generate a specular mask of the affected pixels. Several classical methods from the

ones listed in Table 2.2 were tested to get an accurate masks. However most of the
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Figure 3.5: Mesh displaying the distance transform

methods failed to be robust enough for a generalized and reliable solution. There-

fore, we used the output of the developed SpecSeg network as it proved to be robust

and accurate as will be shown in the quantitative and qualitative results in section

4.2. The correct segmentation of the specular image is critical and has a significant

impact on the final diffuse image as better segmentation results in reliable thresh-

olding and estimation of the colour from the surrounding region.

Since real-world images can contain multiple objects or regions in a scene that are

affected by specular reflection, each area will have its own base diffuse colour, which

is not necessarily unique. To cater for this issue, the mask is then used to gen-

erate three different sub-images, namely region segments, region boundaries and

distance transform images. Firstly, the specular image is segmented into separate

regions using the mask based on contiguous connectivity, and each region can be

treated as a separate entity for performing all subsequent calculations. Secondly,

the boundary pixels of the segmented specular regions are identified. Lastly, a nor-

malized weight matrix is generated using the Euclidean distance transform of each

region, where the weight increases from zero at the boundary pixels to the centre of

the region. These three sub-images are used together for generating the inpainting

matrix in the next stage.

In diffuse images generated in the first stage, there is a clear loss of colour infor-
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mation in places where the pixels were affected by specular highlights. This is be-

cause specular reflection distorts the colour information of the body, and once the

specular highlights are removed, most methods do not attempt to explicitly improve

upon the colour information. For our case, since only the Y-Channel is utilized for

generating the specular image leaving the colour channels Cb and Cr untouched,

the situation is the same and needs to be followed up with a method to improve the

colour information recovery in the diffuse image. In the second stage, once different

regions in an image are segmented using the mask, each region can be processed

independently of the other. The localized colour information of each segmented

region can be theoretically approximated by the median colour of that segment.

However, this colour information is lost due to the superposition of the illuminant

colour. The segmented diffuse image (obtained after removing specular highlights)

also contains colour information of the region surrounding the specular highlight.

The median of this surrounding region can, therefore, be considered as represent-

ing the diffuse colour of the region. A median is preferred over a mean to avoid any

skewing of colour data in the presence of dark or extremely bright pixels in the sur-

rounding region of the specular highlight. However, filling the entire region with

a constant colour value results in a discontinuous colour patch. Therefore the in-

painted value needs to be adjusted so that it gradually increases from the boundary

towards the calculated median value.

Utilizing this concept, the three sub-images mentioned above are used to inpaint

the specular regions with a Weighted-Median (WM) of the information in the three

channels (not to be confused with the statistical quantity weighted median). The

weighted median is calculated using the euclidean distance transform, as proposed

by Maurer et al. [153], which is a fast sequential algorithm to calculate the exact

euclidean distance transform of pixels in a binary image defined by Equation 3.4,

where wn is the weight of the i , j coordinates of the pixel of a k dimensional binary

image. The p value of 1, 2 and ∞ are known as the Manhattan, Euclidean, and

chessboard distances, respectively.

∆
(
i , j

)= (
k∑

n=1
|wn

(
in − jn

) |p)1/p

(3.4)

The distance transform results in floating-point distances between the current pixel

and the nearest non-zero pixel of the binary image and can be treated as a weight
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Algorithm 1 Weighted median inpainting psuedo-code.

Input: An RGB image I of size m,n and pixel p
Output: Specular and Diffuse images in RGB colour space

1: read I ← image
2: η= 0.5
3: IYCbCr ← Y, Cb, Cr
4: MSF ← IYp −mi n(Ip )∗βs

where βs = (IYmi n −η).∗ (IYmi n > η)
5: Id(YCbCr ) ← concat (MSF,Cb,Cr )
6: Ispecul ar ← SpecSeg (r g b2g r e y(I))
7: for numr eg i ons do
8: Ω(i ) ← r eg i ons(Ispecul ar (i ))
9: ∂Ω(i ) ← bound ar y(Ispecul ar (i ))

10: ∆(i ) ← nor mali ze(∆
(
xi , yi

)× Ispecul ar (i ))
11: µ̄r (i ) = medi an(I(x, y))∀(x, y) ∈Ω(i )
12: µ̄b(i ) = medi an(I(x, y))∀(x, y) ∈ ∂Ω(i )
13: for c = 1...3 do
14: Ic (x, y) = (∆(x, y).∗ µ̄r )+ ((1−∆(x, y)).∗ µ̄b)
15: end for
16: end for
17: Id(YCbCr ) ← concat (Ic=1..3)
18: IRGB ← conver t (Id(YCbCr ))

matrix for multiplication with the calculated region median. The benefit of using a

distance transform over a centroid-based approach is that weights conform to the

shape of the region instead of a fixed centre of mass. Only utilizing this weighted

matrix for inpainting still results in an unnatural transition of colour and causes a

colour discontinuity in the image. To circumvent this, a normalized weighted matrix

is utilized such that the values along the boundaries transition gradually from the

edge towards the centre of the region and ensure that the pixels values at the edge

of the region do not go below the minimum colour of the boundary. This can be vi-

sualized using the gradient colour image in Fig. 3.5, where the normalized weights

increase along the edge of the region towards the median value in the centre. Con-

sider an image I(m,n) such that I(i , j ) is the pixel location inside Ω (the area to be

inpainted) and ∂ Ω is the said regions’ boundary. Then the median of the region µ̄r

and boundary µ̄b pixels can be calculated using Eqn’s 3.5 and 3.6 respectively :

µ̄r = median(I(i , j )) for ∀(i , j ) ∈Ω (3.5)
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µ̄b = median(I(i , j )) for ∀(i , j ) ∈ ∂Ω (3.6)

Let∆be the distance transform matrix for the region. Multiplying∆with the median

value of the region and boundary values, as shown in Eqn. 3.7, it can be ensured that

the inpainted colour gradually scales up from the boundary colour to the centre of

the region (median value) for each pixel in the region.

Wm,n(i , j ) = (∆(i , j ).∗ µ̄r )+ ((1−∆(i , j )).∗ µ̄b) (3.7)

This weighted median matrix is applied to all three channels, which can then be

combined to form an updated diffuse image, inpainted with the estimated colour of

the body.

3.3.3 Summary - WM inpainting for specular mitigation

The developed method developed in the previous section is a relatively fast inpaint-

ing method that utilizes the accurate segmentation information from SpecSeg net-

work and inpaints using the surrounding colour pixel information to fill in the af-

fected regions. As will be shown in the results section 4, inpainting is a fast and

moderately accurate method to mitigate the specular regions and estimate the dif-

fuse colour that is used to replace the specular reflection region. The estimated

colour information is a good approximation of the diffuse colour of the body as it

depends on the surrounding pixel colours and attempts to smoothly reproduce the

colour from the boundaries to the centre of the affected region. While the colour

recovered is a good approximation, as discussed in section 4.3, there are several

limitations and drawbacks, similar to those associated with classical computer vi-

sion algorithms for specular highlight removal. Firstly, the mitigation is not able to

recover the textural information of the surface as it does not cater for the surround-

ing texture of the region. Only plain coloured surfaces are restored using inpaint-

ing. Additionally, the recovery is dependent on the pixel-accurate segmentation of

the specular region so that the correct boundaries are identified for colour recovery.

Any erroneous pixel misclassified as non-specular affects the final recovery as the

colour information propagates while inpainting the region.

These limitations in the simplistic weighted median inpainting method lead us to

further explore methods that are agnostic to prior segmentation of specular re-

gions as well as being able to recover textural information intelligently. The modern
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state-of-the-art methods enable intelligent learning networks that can be trained

to work with very little prior information required for restoring damaged images.

These methods fall under the broad category of image-to-image translation net-

works, which learn the information from the images in the training dataset to trans-

late the learned information to other images that are given as inputs. An in-depth

explanation of the developed network, including development techniques and net-

work structure, is given in section 3.4.

3.4 Specular Highlight Mitigation GAN (SHMGAN)

Over the years, a wide variety of classical methods have been developed for miti-

gation of specular highlights in images as surveyed in section 2.3.1. Some of the

proposed works also showed high performance in the images that were selected for

evaluating the performance. However, almost all classical methods have shown to

be significantly less robust to images taken in an uncontrolled environment, which

have several issues varying from large saturated specular regions to multiple colour

specular reflections from non-dielectric objects such as metals. The DRM model

was developed for di-electric materials since the reflectivity of metals causes signif-

icant challenges due to inter-reflections from the surroundings. While DRM is ex-

tremely successful in modelling the problem of specular reflections, there is a need

for developing material and model-agnostic methods that are robust to the number

and colour of lights in the scene as well as the types of materials of the target ob-

ject. Keeping this in view, we propose the utilization of deep learning based models

for mitigation. There are several state-of-the-art networks that can be used to treat

similar problems, as highlighted in depth in section 2.3.4. However, by leveraging

the strengths of generative models such as GANs, it might be possible to train net-

works that learn the underlying diffuse colour of objects without delving into the

segmentation of intrinsic sub-components.

In the following sections, the developed generative adversarial network for the task

of mitigating specular highlights in real-world images is described in depth. The

main objective of developing the network is that there are the network is able to

mitigate specular highlights in natural real-world images. Additionally, there are no

requirements for prior segmentation of the affected region or any limitations to the

amount or type of illuminants used for the acquisition of the image.
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The developed network is a multi-domain image-to-image translation generative

adversarial network using a Single Generator-Discriminator pair inspired by Star-

GAN by Chi et al. [127]. Similar to StarGAN which is aimed at image to image trans-

lation between multiple domains, SHMGAN is aimed towards image synthesis after

learning the variation between multiple domains (in this case polarimetric images

from different angles) and generate specular-free images from a single RGB image

input. SHMGAN utilizes polarimetric images in YCbCr colour space and learns the

variation in illumination in the Y channel of the images. This allows the separation

of the colour components from the illumination such that any alteration to the luma

does not distort the hue of the pixels. The CbCr channels also have the property of

being specularity free as shown by Ramos et al. [71]. The developed network gener-

ates cyclic Y-channel images and uses a combination of self-attention and multiple

losses to remove the specularity from the input RGB images. To give a complete

overview of the developed network, we first establish the polarimetric images used

as input, followed by the details of the network architecture of the deep neural net-

work as shown in Fig. 3.6 and 3.7.

3.4.1 Polarimetric images

The SHMGAN generator-discriminator pair is modelled to learn the illumination

variation between 5 input images. We use four orthogonal pairs of polarimetric im-

ages I0,45,90,135 to capture the maximum variation in specular highlights. The cam-

eras used for acquiring our data were polarimetric colour and monochrome Polar-

Cam cameras from 4DTechnology and demosaiced to get the four polarimetric im-

ages as shown in Fig. 2.8. This facilitated in capturing of spatial and temporally co-

herent polarimetric images in various settings. To ensure replication of real-world

settings, a significant part of the data collected was using unpolarized lights to re-

produce the images acquired under natural conditions. A smaller set of images was

also captured using cross-polarization by using a single polarized light source to il-

luminate the objects, which maximizes the chance of getting a pure diffuse image

in at least one of the four polarimetric channels. Objects included in the data ac-

quisition consisted of different materials, including plastic, metals, glass and other

transparent objects. Images were also acquired outdoors under sunny conditions

to capture severe specular highlights of cars and signboards. Some of the various

images captured can be seen in Fig. 2.7.
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3.4.2 Pseudo-diffuse image

In addition to the four polarimetric images, a pseudo-diffuse image IED is estimated

and passed on to the network as the fifth input domain. This is based on the intu-

ition explained by Eqn. 1.1 that the illumination is a linear sum of the diffuse im-

age, polarized specular highlight and unpolarized specular highlight. The pseudo-

diffuse image (ED) is calculated by taking the element-wise minimum of the four

polar images Iϕpol shown in Eqn. 3.8; resulting in the removal of maximum polarized

specular highlights. It is considered the target image for the network to generate as

specified by the target on-hot encoded labels.

IED(x,y) = mi n(Iϕpol(x,y) ) ∀ ϕpol (3.8)

This estimated diffuse image can be considered an initial solution to the specular-

free image as it contains the least specular reflection component and is required to

aid the convergence of SHMGAN towards the desired specular-free image. Provid-

ing this estimated diffuse image also circumvents the requirement of a fully-diffuse

image as the target domain, which can only be acquired by image acquisition un-

der strict cross-polarization conditions and a single illuminant. As a result, real-

world images taken under various conditions, including multiple unpolarized light

sources and brightly illuminated outdoor environments, can be used, and a target

domain can be provided to the developed SHMGAN. Furthermore, since the net-

work is designed to learn over a large number of polarimetric images, inaccuracies

(such as small-scale specularities) in the pseudo-diffuse image are easily compen-

sated while learning.

3.4.3 SHMGAN network structure

Generator

The developed SHMGAN network consists of a single Generator (G) and a Discrimi-

nator (D). The generator is based on the U-net structure and consists of 5 encoders,

four decoders and one residual block, with each path from the encoder passed to

the decoder via a modified skip connection. All blocks consist of 2D convolutions

layers with LeakyReLU activation followed by an Instance Normalization (IN) [154]

layer. The encoder uses average pooling to downsize the layers, whereas the de-
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Figure 3.6: The developed SHMGAN generator network consists of 4 decoder-encoder
blocks with skip connections, and outputs a 128×128×1 greyscale image.

coder uses a stride (s) of 2 to upscale the inputs. The output layer of the generator

is a dense layer with filter (k) with k = 1, s = 1. The decoder consists of a series of

5 convolution layers with s = 2, and the 2D convolutions blocks use Leaky ReLU

activation functions followed by Instance Normalization.

Self-attention mechanism

For SHMGAN, we use the output of the pre-trained SpecSeg network developed in

section 3.2. The SpecSeg network is trained on the Why-Specular dataset as de-

scribed in chapter 2 and outputs a binary specularity mask. The mask is Maxpooled

and convolved with two 2-D convolutional layers with k=3, s=3 and ’same’ padding,

followed by a LeakyReLU acivation. The attention masks calculated at the encoder

side are then added to the corresponding decoder side.
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Figure 3.7: The developed SHMGAN discriminator network consists of four blocks with self-
attention layer between third and fourth blocks. Outputs of the discriminator are real/fake
probability and predicted class of the image.

Discriminator

The discriminator is comprised of 5 blocks of 2D convolutional layers with kernel

sizes k = 4 and s = 2, followed by an instance normalization and LeakyReLU acti-

vation and the same padding. The self-attention mechanism is also added to the

discriminator before the last convolutional layer block. The discriminator has two

outputs; one is the classification of the real or fake (Dcl s f ) while the other is the

target label of the generated images (Dad v ). The real/fake classification is a 2D con-

volutional layer with Leaky ReLU activation, whereas the target label classification

is done using a dense layer with softmax activation.
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One-hot encoding

All input images are converted to the YCbCr colour space and normalized to [0,1]

before being input to the generator but converted back to RGB before being fed to

the discriminator. The five Y-channels of the input images I0,45,90,135,ED are con-

catenated along the channel dimension to form a 5D tensor. The images are then

one-hot encoded along the channel dimension as binary matrices with the exact di-

mensions as the input image for a tensor of dimensions (b,n,m,10) where b is the

mini-batch size, n,m are the image dimensions and the channel dimension is 10.

The one-hot encoded channels are used to designate the target images for the gen-

erator as well as the target label for the discriminator. We use a mini-batch size of 1,

where each batch is considered as a set of the five spatially and temporally coherent

input images I0,45,90,135,ED.

3.4.4 Network losses

In order to train the single generator-discriminator pair, we introduce several losses

and minimization constraints. An ablation study is explored in this paper in section

4.4.4 to explore the effect of the losses L further.

Multiple cyclic consistency loss

The classic cyclic consistency loss proposed by CycleGAN has to be modified to

cater for multiple inputs. For a multi-input system, assuming one of the output

from the generator is x̃a then the combinations of cyclic reconstructed images from

the generator can be represented by x̃b|a , x̃c|a , x̃d |a and x̃e|a where each of the do-

mains a −e can be represented as the set of Eqn. 3.9 [117].

x̃b|a = G({x̂a , xc , xd } ;b)

x̃c|a = G({x̂a , xb , xd } ;c)

x̃d |a = G({x̂a , xb , xd } ;d)

x̃e|a = G({x̂a , xb , xc } ;e)

(3.9)

The multiple cyclic consistency loss Lc yc,a for a multi-input system can then be
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defined as:

Lc yc,a = ∥∥xb − x̃b|a
∥∥

1 +
∥∥xc − x̃c|a

∥∥
1 +

∥∥xd − x̃d |a
∥∥

1 +
∥∥xe − x̃e|a

∥∥
1 (3.10)

where ‖‖1 is the L1-norm.

L1 loss

To ensure a sound quality generation of images similar to the input image, the L1

loss is used to guide the generator. It is defined by Eqn. 3.11, which is the abso-

lute difference between the generated cyclic images and the original polarimetric

images, and the error is back-propagated, allowing the generator to synthesize re-

alistic images. L1 loss has shown to perform significantly better than L2 loss and

encourages lesser blurring in the output images [126] as was also confirmed during

our experimentation.

LL1 =
n∑

i=1

∥∥yi −xi
∥∥

1 (3.11)

Structural similarity (SSIM) loss

Structural Similarity Index (SSIM) is one of the most robust and state-of-the-art

metrics to measure image quality. The commonly used L2 loss, widely used for im-

age restoration tasks, has been reported to cause blurriness and artefacts in the re-

sults [117]. SSIM is one of the core perceptual metrics for realistic image generation,

and it is also differentiable so that it can be back-propagated. The SSIM for pixel p

is defined between 0 and 1, and the loss function for SSIM can be calculated as Eqn.

3.13.

LSSIM = SSIM(X,Y) (3.12)

=− log

(
1

2|P|
∑

p∈P(x,y)
(1+SSIM(p))

)
(3.13)

where P(x, y)) denotes the pixel location set and |P| its cardinality.

Specular loss

The intuition behind this loss is to force the generator and discriminator to specif-

ically compare the regions with specular highlights so that they are generated and
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Algorithm 2 SHMGAN algorithm overview. All experiments use m,n = 128, batch
size of 1, ADAM optimiser with β1 = 0.5, β2 = 0.99, l rg en = 2e−6, l rdi sc = 1e−6, decay-
ing every 10k steps with a base of 0.95.

Input: Four Polarimetric and one pseudo-diffuse RGB image
Output: Specular-free RGB image

1: for k = 1. . .epochs do
2: xi ← Sample mini-batch i = 0,45,90,135,ED
3: χr / f ,χcl s f ← D(xi )
4: xi ← YCbCr colorspace, normalize to [0,1]
5: CbCrav g = (

∑5
i=1 xiCbCr )/5

6: OHl abel = (0,0,0,0,1) :=
{

1m×n if l abel ∈ Target domain,

0m×n if l abel ∉ Target domain.
7: xi ← concatenate (xi ,OHl abel )
8: Ig en ← G(xi )
9: Ig en ← concatenate (xi ,CbCrav g )

10: χr / f ,χcl s f ← D(Ig en)
11: Ic yc ← Randomly replace Ig en in xi

12: for q = 1. . .5 do
13: Ic ycl i cRGBq ← concatenate (Ic ycq ,CbCrav g )
14: Ic ycl i cRGBq ← G(Ic ycl i cRGBq )
15: χr / f ,χcl s f ← D(Ic ycl i cRGBq )
16: χr / f ,χcl s f ← D(Ior i g i nalq )
17: end for
18: Calculate Ltot al =Lg en +Ldi sc

19: ωG,ωD ← Adam(Ltot al )
20: ωG,ωD ← clip (ωG,ωD,−1,1)
21: end for

evaluated correctly, respectively. To promote this, we introduce a weighted L2 norm

of the masked regions of both the original and the generated images. Let M be

the binary specular candidate (from the self-attention mechanism (section 2.4.1)),

Ic ycy be the cyclic Y-channel and In be the original polarimetric images (where

n = 0,45,90,135,ED). Then the specular loss can be calculated by the L2 norm

of element-wise multiplication of the specular candidate and the input images, as

given by eqn. 3.14.

LSpecLoss = ‖λ1(M ¯ Ic ycy )−λ2(M ¯ In)‖2 (3.14)

1OH : One Hot 2-D matrix labels
2r/f : Real/Fake classification result of the discriminator
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Style transfer loss

Style Transfer is a technique popularised by the advancement in GANs for stylized

generation of images with the same "content" as a base image but the "style" of

another image. Traditionally style transfer is implemented by taking the weights

from multiple frozen layers of pre-trained VGG networks to learn and superimpose

the style onto the target image.

Using the same analogy, we treat the Estimated Diffuse (ED) image as the specular-

free ’style’ that we want to superimpose on the input image ’content’. The content

loss is the intermediate and high-level feature representation of the input image cal-

culated as the L2 loss of the input image Ii nput to the generated cyclic diffuse image

Ic ycED. The style loss for SHMGAN is calculated by a weighted L2 loss of the Gram

matrices of the style Gst yle and content Gcontent images. The Gram matrices pro-

vide the cross-correlation between vectorized style and content images. The total

style loss LSt yleTx is calculated as a sum of the individual style. Lst yle and content

Lcontent losses.

LSt yleTx =ω1Lst yle +ω2Lcontent (3.15)

Lcontent = ‖Ii nput − Ic ycED‖2 (3.16)

Lst yle =
1

4n2m2

(‖Gst yle −Gcontent‖2
)

(3.17)

where n,m are the image dimensions, ω1 and ω2 are the weights with values 1 and

100, respectively. The weights were selected after experimentation based on the

proposed ratio ω2/ω1 of 2 to 3 orders of magnitudes between them [155].

Discriminator loss

The discriminator loss Ldi sc is defined as the sum of the individual losses of the two

discriminator outputs Dad v and Dcl s f . The Dad v loss is the adversarial loss of the

discriminator, classifying the generated images as real or fake. It is calculated using

the Least Square GAN (LSGAN) loss [156] which has proven to cater to the vanishing

gradient problem in adversarial loss and is beneficial for GAN convergence. Intu-

itively, LSGAN wants the target discriminator label for real images to be 1 and gen-

erated images to be 0. Furthermore, for the generator, it wants the target label for
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generated images to be 1 which can be calculated as follows:

min
D

LLSGAN(D) = 1

2
Ex∼pdata(x)

[
(D(x)−1)2]+ 1

2
Ez∼pz (z)

[
(D(G(z)))2]

min
G

LLSGAN(G) = 1

2
Ez∼pz (z)

[
(D(G(z))−1)2] .

(3.18)

The classification loss Dcl s f calculates the probability of each generated image be-

longing to a particular class by calculating the cross entropy between the generated

image and the target labels and passes it through a softmax function as defined by

eqn. 3.19, where χ
(
x j

)
represents the one-hot target labels.

Dcl s f =
1

5

5∑
i=1

exp
(
D(xi )T χ (xi )

)∑5
i=1 exp

(
f (Di )T χ

(
x j

)) (3.19)

We also add the specular loss and style transfer loss from the generator for improv-

ing the generator performance.

Total SHMGAN loss

The total loss can be defined as the sum of the total generator and discriminator

loss. These losses are calculated as follows:

Ltot al =Lg en +Ldi sc (3.20)

Ldi sc =Σ(γ1Lcl ass ,γ2LSpecLoss ,γ3LSt yleTx) (3.21)

Lg en =Σ(λ1Lc ycl i c ,λ2LL1 ,λ3LSSIM,λ4LSpecLoss ,λ5LSt yleTx) (3.22)

Where γ1 = 1, γ2 = 10, γ3 = 5, λ1 = 1, λ2 = 10, λ3 = 5, λ4 = λ5 = 10 from experimenta-

tion.

A detailed flowchart of the developed network is shown in Fig. 3.8, and the proposed

training method is detailed in Algorithm 2.

3.4.5 SHMGAN hyper-parameter selection and implementation

The network was implemented in Tensorflow 2 and trained on a single Nvidia

RTX3070 GPU with 8GB memory for 140 epochs. The model was optimized using

ADAM optimizer with β1 = 0.5 and β2 = 0.99. Individual learning rates for train-

ing the generator and discriminator were used as suggested by the Two Time-scale
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Figure 3.8: Flowchart explaining the working of SHMGAN. All original and generated po-
larimtric images are passed through the discriminator in the forward and cyclic pass, but
the discriminator weights are only updated using real images.

Update Rule (TTUR) rule [157] as it helps in convergence. The starting learning

rates for generator and discriminator were 2e−6 and 1e−6 respectively, decaying ev-

ery 10,000 steps with a base of 0.95. Both discriminator and generator were trained

simultaneously with a batch size of 1. The network kernels were initialised with

mean µ= 0 and standard deviation σ= 0.02 as proposed by DCGAN [132]. The im-

ages were resized to a resolution of 128×128, and all processing, such as resizing,

conversion to YCbCr etc., were done at runtime. To improve training, the images

were augmented by random flipping. A dropout of 20% was used before the dis-

criminator’s dense layers along with L2 regularization.

Input randomization is implemented by substituting the labels of the cyclic images

with zeros. Other techniques such as label smoothing, gradient clipping, adding

noise to the inputs etc., were also utilized to improve the training results. A detailed

flow chart of the implementation is shown in Fig. 3.4 and the related pseudocode is

given as Algorithm 2. As shown by the flowchart, the SHMGAN generator is called

twice to generate images from augmented inputs ( Algorithm 2 line numbers 8, 14

for the input image and cyclic image generation respectively), whereas the discrim-

inator is called four times (Algorithm 2 line numbers 3, 10, 15, 16 for learning to

discriminate original images, generated image, cyclic image and target images re-

spectively), during a single training step. The combined loss function is then calcu-

lated as described in section 3.4.4 and back-propagated.
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Table 3.1: Summary of the datasets used for training and testing

Mode Dataset Images Mask

SpecSeg Training Whu-Specular Dataset 4310 3

Testing
Whu-Specular [63] 1293 3

PSD 38 7

TRIIW [64] 500 7

WMI1

Testing
Classical images 50 Partial
Whu-Specular dataset 1293 3

In-house dataset 330 7

SHMGAN Training PSD dataset train set 3072 3

Testing

Whu-Specular Dataset 1293 3

TRIW 500 7

PSD dataset test set 54 7

In-house dataset 330 7

3.4.6 Datasets used for evaluation

To qualitatively and quantitatively compare the generated images, datasets com-

prising real-world images, both with and without ground truth, were used. A de-

tailed table of the dataset and the exact number of images used for training and

testing are given in Table 3.1. The most extensive dataset available with pure dif-

fuse ground truth images was recently made available by Wu et al. [114]. The au-

thors provide 12 polarimetric images per scene with 30deg increments; however, we

only selected four orthogonal angles for training, namely I0,60,90,150 and the pseudo-

diffuse IED image was calculated using these images. These polarimetric angles

were selected to capture maximum specularity variation in the orthogonal images.

Data was also acquired in-house using monochrome and colour polarimetric cam-

eras in various settings and lighting conditions, as described in section 3.4.1. The

data acquired consists of 330 images captured with multiple light sources and were

used for testing purposes.

The training was thus done on a total of 1295 images, including the datasets men-

tioned in Table 3.1. To qualitatively and quantitatively compare the generated im-

ages, datasets comprising real-world images, both with and without ground truth,

were used. The WHU-Specular dataset [63] provides 4310 real-world image pairs

containing specular reflections of various intensities along with manually labelled

ground truth masks for each image. The training set consisted of 3017 images, out of

1Weighted median Inpainting
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which 10% randomly selected images were used for validation. The remaining 1293

images were used for testing the network. For testing, the SpecularityNet was also

trained separately on the dataset provided by the authors and quantitative analy-

sis was done by training the developed network on the same dataset. Other large

datasets comprising real-world images with manually labelled specular pixels are

Whu-Specular, and TRIIW datasets [63, 64]. No ground-truth diffuse images are

provided in these datasets; therefore, they can only be used to qualitatively test the

results of specular highlight mitigation on real-world images taken under random

conditions. The results on all these datasets are compared qualitatively and quan-

titatively and presented in the following sections. We compare our developed net-

work’s results with classical and state-of-the-art data-driven specular reflection mit-

igation methods. Classical methods based on chromaticity [25], bilateral filtering

[21] were used. For deep learning-based comparison, SpecularityNet [114] was the

most relevant to the developed method and target application. All networks were

trained and tested on the same dataset and resolution for a fair comparison. All

metrics were calculated in MATLAB 2021a. Note that While the developed network

also takes inspiration from CollaGAN [117], it cannot be used for direct comparison

to SHMGAN results since CollaGAN is targeted at image imputation and requires

multiple image inputs (all the domains) for generating the missing domain as op-

posed to the single-input single-output concept of our developed network.

3.4.7 Metrics used for evaluation

In order to evaluate the performance of any segmentation algorithm, several met-

rics have been developed over the years. While a qualitative review of Image seg-

mentation gives a broad overview of the success or failure of a method, it is biased

toward human perception and the ability to see fine details. Quantitative segmen-

tation requires a ground truth label or mask image that exactly marks the pixels as

falling into a category. Semantic segmentation requires multiple masks for a multi-

class classification problem for specular segmentation, but for our particular case,

a binary mask is enough to classify a pixel as specular or non-specular. With the

ground truth available, the accuracy of the segmented images can be evaluated us-

ing several metrics. The most popular metrics used are explored below in brief so

they can allow us to understand the results in a better way.

While several qualitative measures have been introduced over the years to measure
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Table 3.2: Table of different evaluation metrics used in literature. � indicates higher value
is better (generally scaled to 1), whereas � means a lower value is better (generally scaled to
0).

Error Abbreviation Better if Compare with

Jaccard index / IOU IOU � Mask
Dice Coefficient / F1 Score F1 Score � Mask
Precision, Recall PR � Mask
F-measure F � Mask
Mean Absolute Error MAE � Mask
Root Mean Squared Error RMSE � Mask
Peak Signal to Noise Ratio PSNR � Image
Delta E DE � Image
Structural Similarity SSIM � Image

the performance of generative models like GANs, there is no consensus as to which

measure best captures the strengths and limitations of generative models. As in

other areas of computer vision and machine learning, it is critical to settle on one

or few suitable measures to steer the progress in this field. Qualitative metrics are

very subjective and often have a human bias associated with them. Quantitative

measures are less subjective and do not directly correspond to how humans per-

ceive and judge images. However, several perceptually meaningful image similarity

measures make the results more intuitive to how we perceive an image. Borji et al.

[158] extensively reviewed the pros and cons of GAN evaluation metrics, including

the traditional log-likelihood, image quality metrics such as Peak Signal to Noise

Ratio (PSNR), Structural Similarity Index Measure(SSIM) and Precision, Recall and

F1 scores etc. A detailed explanation of each of the metrics used for analysis is also

presented in Appendix B.

3.5 Summary

Specular highlight mitigation is a challenging problem with non-trivial solutions

and affects real-world images and modern vision-based applications. Detecting

and mitigating specular highlights using state-of-the-art deep learning networks

have been quite promising and have shown significant improvement over the clas-

sical methods. In this chapter, three distinct methodologies were developed to

achieve the goals of specular highlight detection and mitigation. Firstly, to detect
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specular pixels in a wide variety of real-world images independent of the number,

colour, or type of illuminating source, we propose an efficient Specular Segmenta-

tion (SpecSeg) network based on the U-net architecture that is expeditious to train

on nominal-sized datasets. The proposed network can detect pixels strongly af-

fected by specular highlights with a high degree of precision, as shown by compar-

ison with the state-of-the-art methods. We also proposed a fast Weighted Median

Inpainting method for replacing the affected pixels with the colour of the region that

is approximated from the boundary pixels. The method is fast and quite effective in

inpainting small regions that are comprised of a single colour. Lastly, for a more

robust specular highlight mitigation, we developed a deep generative adversarial

network called SHMGAN with a dynamically generated self-attention mechanism

to remove specular highlights in images. The network is trained to take advantage

of the varying illumination information in polarimetric images and synthesises a

specular free image from a single image input. No manual segmentation or mark-

ing is required for the specular pixels in the scene. The network is composed of

a single generator-discriminator pair, eliminating the need for a separate network

pair per polarimetric angle. As we will show in the following chapter, both Spec-

Seg and SHMGAN networks outperform state-of-the-art approaches and are able to

detect and mitigate specular reflections in scenes, independent of the material of

the object or the colour of the illuminating light sources. Extensive qualitative and

quantitative testing done on real-world images from inhouse collected dataset as

well as publicly available datasets verify the results.
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Chapter 4

Results and Discussions

“The important thing about a prob-

lem is not its solution but the

strength we gain in finding the solu-

tion."

Seneca

Chapter abstract

This chapter culminates the results of the three methods proposed in this thesis. The

chapter starts with accurate segmentation of specular highlights using the developed

SpecSeg network (section 3.2) in real-world indoor and outdoor images, which are

analyzed qualitatively and quantitatively by comparing to the modern state-of-the-

art competing methods. The segmented results are used for mitigating specular re-

flections in images using the proposed weighted-median inpainting method. We also

show a fast diffuse colour inpainting method that utilises the detected regions from

our developed SpecSeg network and inpaints the affected regions with an estimated

diffuse colour inferred from the boundary regions, followed by the results of our de-

veloped multi-domain SHMGAN adversarial network (section 3.4). The qualitative

and quantitative results are complimented with an extended ablation study and dis-

cussed in depth. The results show that SHMGAN can successfully learn the variation

of illumination from polarimetric images and apply the learned weights to mitigate
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specular reflections in real-world images on previously unseen images.
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4.1 Results overview

The subsequent sections go in depth to evaluate the detecting and mitigating meth-

ods for specular highlights developed in this thesis. The three developed methods

including SpecSeg (3.2) for specular highlight detection, Weighted Median Inpaint-

ing (3.3) and SHMGAN (3.4) for specular highlight mitigation are analysed and eval-

uated in depth. Before going into the results, the datasets and metrics used to test

and evaluate the methods are reviewed briefly. As we will see, all methods have been

compared to the state-of-the-art methods both qualitatively and quantitatively and

show the new additions and advancements to state-of-the-art brought by the devel-

oped work.
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4.2 Detection of specular highlights using Specular

Segmentation (SpecSeg) network

4.2.1 Network implementation and training

The network was implemented using Python language and Tensorflow 2.8, a pop-

ular, free, open-source software library for machine learning and deep learning

library developed by Google. Tensorflow’s Sequential API was used to develop

the U-net based architecture of SpecSeg network as it provided easy and high-

performance execution of the relatively more straightforward network.

The SpecSeg network model has been discussed in depth in section 3.2. A brief sum-

mary of the network is presented here for context, along with reasons for selecting

the specific hyperparameters for training. Definitions and benefits of the param-

eters used are discussed in depth in section A.1.3. SpecSeg uses the U-net archi-

tecture to allow the propagation of context information to higher resolution layers.

It comprises of 5 encoders and 4 decoder blocks, with each path from the encoder

passed to the decoder via a skip connection. Each encoder block consists of two 2D

convolutional layers with filters (k) = 3 and stride (s) = 3 with ReLU activation and
′same ′ padding. To improve the robustness of the learned layers, an incremental

dropout of 10,20 and 30% respectively is also introduced between the two convolu-

tional layers of the first, third and fifth encoder block for regularization. This is fol-

lowed by a batch normalization layer and a MaxPooling layer to downscale the layer

for the subsequent layers. The decoder block upscales the layers using 2D transpose

convolutional layers (k = 2, s = 2) with a similar incremental dropout between two

consecutive convolutional layers. The final convolutional layer uses k = 1, s = 1 to

generate a 256×256 image after sigmoid activation.

The model was optimized using Adaptive moment estimation (ADAM) optimizer

with β1 = 0.9 and β2 = 0.999. A batch size of 16 was used for training the network.

All network kernels were initialized with a normal distribution. The initialization of

kernels with a normalized range of known standard deviation is an essential factor

in achieving the proper training in deep learning. It is one of the many granular

implementation techniques that have been acquired after many observations and

experiments.
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The tota loss is a sum of Dice similarity coefficient (DSC) [151] and Focal loss [152]

as described in section 3.2 as the combination of both dice and focal losses with

α= 0.25 and γ= 2.0 proved to be efficient and highly effective for binary segmenta-

tion problem of segmenting specular pixels. The dice loss maximizes the overlap be-

tween predicted and actual labels, whereas the focal loss addresses class imbalance

by reducing the effect of biased or skewed classification on the predicted results.

As deep learning training and evaluation depends significantly on the specialized

hardware used, the choice of hardware is an explicit consideration in measuring the

network’s performance and comparing it with competing methods. All training and

testing for SpecSeg network was done on the Nvidia P100 card, released in April 2016

and based on Nvidia’s proprietary Pascal Architecture.

Several datasets with specular masks are available publicly for testing, as detailed

in the table 3.1, but for testing and comparison, two of the most recent datasets

were used; namely Whu-Specular dataset [114], and SHIQ dataset [64]. The datasets

were split into train, validation sets in 80%, 10% ratio respectively, whereas the ini-

tially provided Test sets with each dataset were used for testing. The qualitative and

quantitative results are discussed in the following subsections in detail.

4.2.2 Qualitative results

The results of segmenting specular highlights using SpecSeg network on the Whu-

Specular dataset [114] are shown in Figure 4.2 and on the SIHQ dataset [64] in Figure

4.3. The input image in the top row, followed by the manually generated mask of the

specular highlights in the second row as given in the Whu-Specular dataset by Fu et

al. [63]. The last row is the predicted specular pixels from our SpecSeg network. Vi-

sually comparing with the manually annotated masks, we can see that the network

can detect all specular regions and generate masks closely resembling the ground-

truth images. The detection of specular regions is valid for various materials in the

images, including plastic, wood, metallic and ceramic objects of irregular shape.

Even small specular regions in the images are detected quite accurately. Further-

more, the images are taken under natural lighting conditions and have an unknown

number and orientation of light sources. This results in specular pixels of various

intensities and colours depending on the illuminating source colour. Additionally,

specular highlights on light-coloured surfaces are also detected accurately, which
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Figure 4.1: Segmentation results of SpecSeg network as compared to manually labelled
ground truths in the Whu-Specular dataset [114]
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Figure 4.2: Segmentation results of SpecSeg network as compared to manually labelled
ground truths in the Whu-Specular dataset [114]

Figure 4.3: Segmentation results of SpecSeg network as compared to manually labelled
Ground Truths (GT) in the SIHQ dataset [64]

is often hard for most conventional algorithms. Note that the manually annotated

masks result from human visual interpretation of specular pixels in an image and

are therefore susceptible to misrepresentation, especially around the region bor-

ders. While the highly saturated pixels are easy to identify and mark, the distinction

becomes significantly challenging and blurry around the edges of the specular re-

gion, where the falloff to diffuse colour can be soft enough such that some pixels

may be wrongly marked as specular and vice versa. This is challenging in real-world

images because there are multiple light sources in various orientations and of dif-

ferent strengths. As opposed to medical image masks, where there is a single illumi-

nation positioned nearly concentric with the camera for acquiring endoscopic and

colonoscopic images. This results in very sharp specular boundaries that medical

experts can mark, resulting in the masks being highly accurate, making the qual-

itative analysis easier and quantitative analysis more meaningful. Despite these

shortcomings, the manually annotated masks provided are an excellent baseline for

evaluating all qualitative and quantitative segmentation methods. Looking at a few
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Figure 4.4: Zoomed-in ground truth (GT) and prediction (Pred) views of the marked sec-
tions in RGB images. SpecSeg network is successfully able to detect regions that are (a) on
light-coloured objects, (b) small in size, (c) in multiple blocks with cavities inside specu-
lar regions, (d) clipped around the edges of the image, (e) detect specularity correctly from
images on a white background.

segmentation results more closely in image 4.4, we can see that SpecSeg network

is successfully able to detect regions that are on light coloured objects (a), small in

size (b), in multiple blocks with cavities inside specular regions (c) clipped around

the edges of the image (d) and most importantly detect specularity correctly from

images on a white background (e). As can seen in the Figure (4.4(c)), non-specular

regions surrounded by specular pixels are accurately detected despite the small size.

Specualar regions that are along the image edges like Figure (4.4(d)) are also accu-

rately detected without any problem. Additionally, almost all classical segmentation

methods are unable to distinguish white backgrounds in images from specular pix-

els (fig 4.4(e)) and are often some of the most challenging images to segment out for

SOTA algorithms. SpecSeg is able to perform reliably in all these unique conditions.

4.2.3 Quantitative results

The quantitative results of the testing done on the datasets are presented in Table

4.1. A statistical summary of the results achieved is also presented in Fig. 4.6. The

quantitative comprising was done using three metrics: S-measure, mean F-measure

(meanF), and MAE. Several segmentation methods were evaluated by Fu et al. [37]

and have been directly included here from their works for a broader comparison. In

their paper, all learning-based methods were retrained on the same dataset (WHU-

Specular dataset), and the authors fine-tuned the hyperparameters to give the best

possible results. SpecSeg was also trained on the same training dataset, and the

same validation and test sets were used to generate a fair comparison. The results of

the segmentation masks generated by SpecSeg are significantly better than the clas-

sical methods. The results are also comparable to other SOTA deep learning-based
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Table 4.1: Qualitative comparison of SpecSeg network to classical and deep learning state-
of-the-art methods

Metrics Year Type S-m 1 meanF 1 MAE 2

Tchoulack et al. [159] 2008 Classical 0.132 0.027 0.423
Chen et al. [160] 2018 Deep learning 0.619 0.451 0.019
Zhang et al. [161] 2019 Classical 0.521 0.410 0.021
Hou et al. [162] 2019 Classical 0.491 0.218 0.053
Zheng et al. [163] 2019 Deep learning 0.480 0.202 0.049
Hu et al. [164] 2020 Deep learning 0.412 0.108 0.091
Fu et al. [37] 2020 Deep learning 0.793 0.676 0.006
SpecSeg 2022 Deep Learning 0.676 0.502 0.008

1 Higher is better
2 Lower is better.

Figure 4.5: Specular segmentation results on outdoor images acquired on a sunny day
and under clear sky conditions. Specular reflections detected under extreme conditions
are plausible and significantly better than any other state-of-the-art technique. Note that
brightly lit regions such as the sky or water puddles are not detected as specular regions.

methods and achieve. SpecSeg is able to achieve a higher MAE score while getting

very close and comparable results for S-measure and F-Measure to Fu et al.’s SHD-

Net. As seen by the statistical summary of the entire test dataset shown in Figure

4.6 the scores are within a tightly bound distribution with only a couple of outlier

cases. Owing to several challenges as discussed earlier, there is a significant lack

of specular datasets containing images taken outdoors in bright sunny conditions

with specular pixel annotations or ground truth diffuse images. Therefore, training

a specular segmentation network with large amounts of outdoor images is impos-

sible. As shown in Figure 4.5, specular regions are detected reasonably well despite

the presence of bright sky areas and intense reflections. The sky and water puddles

are not falsy detected as specular regions, nor are large white regions on road signs

or car bodies. As expected, there are a few challenges, and specular reflection de-

tection can be improved on outdoor images. There are no ground truth diffuse im-
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Figure 4.6: (a) A summary of the metrics over the entire dataset. (b) Training and validation
losses after 200 epochs. The training was stopped after 200 epochs to avoid overfitting by
the network.

ages or specular annotations publicly available to analyze the results quantitatively.

However, to our knowledge, this work is the first to present an accurate specular

highlight detection network that works on indoor as well as outdoor images with

reasonably accurate results on the latter, despite no availability of any large outdoor

specular dataset available to train the network.

4.2.4 Performance comparison

One of the most significant caveats of deep learning is the significantly staggeringly

large times required for training the networks. To compare training time with the

other methods, our developed network was trained on the Whu-specular training

dataset for 200 epochs for a mere 40 minutes on a P100 (Pascal architecture). In

comparison, the SHDNet achieved its results after training for 100 epochs in 80

hours on a GTX-1080Ti (also Pascal architecture). This significantly reduces training

time without the need for additional computational power to achieve comparable

segmentation results. For training and inference comparison, Fu et al. [63] trained

and tested their network on the NVIDIA GeForce GTX 1080Ti, which was released in

March 2017 and is based on the Pascal Architecture by Nvidia. in comparison, our

training and testing were done on the NVIDIA P100, released in April 2016 and also

based on Pascal Architecture. Having the same architecture helps to maintain sim-

ilarity in the performance, allowing to compute performance metrics to be as close

as possible. Note that the authors of SHDNet have not provided their PyTorch or
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Table 4.2: Training time comparison of different segmentation networks

Author Network GPU Epochs Training
Time

Inference
Time

Monkam et al. [65] ScaledUNetGTX 2080Ti 50 - 3.43 ms
Ronneberger et al.
[143]

UI-Net NVidia Titan - 10 h 14.13

Fu et al. [63] SHDNet GTX1080Ti 100 80 h -
Fu et al. [64] JSHDR GTX 2080Ti 100 3 days -
Proposed SpecSeg Nvidia P100 140 40 mins 3.1ms

Tensorflow implementation code for public access, so retraining their network on

any dataset was impossible. It is clear from the results in table 4.2 that the training

time required by SpecSeg is an Order of magnitudes better than all other compet-

ing networks. Furthermore, the inference time is also faster than the competing

networks. As noted above, since the code or training weights of SHDNet or JSHDR

have not been provided publicly, it was impossible to retrain and test on the same

hardware for a 100% fair comparison. However, the hardware used is comparable

and can be treated as similar for all intents and purposes for deep neural network

training.

4.2.5 Ablation studies

In order to test the developed network, an in-depth ablation study was carried out

by varying different aspects of the network. As shown by the performance com-

parison in table 4.2, the training time for the network is very low, which signifi-

cantly helps in testing different configurations and hyper-parameter tuning of the

network. Several variations were constructed by editing the activation functions of

the SpecSeg network. A separate training session also noted the benefit of using

batch normalization. Additionally, varying the loss functions with alternate losses

versus the proposed joint loss LTot al was also studied. A comparison of different

metrics calculated from the resulting ablation studies is shown in the table 4.3. The

proposed losses combined with batch normalization and LRelu activation give the

best results for PSNR, MSE, Dice and S-measure scores, whereas the SSIM score is

lower only by a negligible amount. Using Leaky ReLU activation gives the overall

best scores as it avoids the vanishing gradient problem. The combination of dice

and focal losses appear to converge successfully towards the best results on the test
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Table 4.3: Ablation study results of different variations of the SpecSeg network

PSNR ↑ SSIM ↑ MSE ↓ F_m ↑ S_m ↑
No BN 23.7213 0.9539 0.0092 0.4662 0.6643
BN+SparseCE loss 25.2064 0.9628 0.0076 0.5072 0.6598
Elu Activation 21.9828 0.9494 0.0122 0.4308 0.6138
Linear Activation 24.0415 0.9609 0.0092 0.0067 0.5214

Baseline(BN+LReLU+LTot al ) 25.2211 0.9625 0.0073 0.5278 0.6761

dataset. All ablation tests were carried out on the same hardware and did not see

any change in training time.

4.3 Mitigation of specular highlights using weighted-

median inpainting

Testing the weighted median inpainting method was also done on several datasets,

as mentioned in table 3.1. Testing on a large set of real-world images helped prove

the effectiveness of the simple method while also reinforcing the reasons for the

inability of classical methods to deal with real-world images at large. The results

and the limitations of the classical inpainting method are discussed in the following

subsections.

4.3.1 Qualitative results

The developed method’s qualitative comparison of specular and diffuse images is

shown in Fig. 4.7. The top row is the input RGB image, whereas the bottom row

is with the specular highlights inpainted using the colour information using the re-

gional pixels. The developed weighted median inpainting method shows that the

specular regions are replaced with a reasonably good estimate of the homogenous

diffuse colour of the underlying object. The proposed weighted median inpainting

equation can be interpreted as lowering the intensity peak in the Y channel while

increasing or decreasing the colour values in the Cb and Cr channels to gravitate

towards the colour values of the surrounding region. This enables significantly im-

proved lost colour information restoration in specular regions without generating

sharp discontinuities in the resulting diffuse images.
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Figure 4.7: Specular mitigation results by using weighted median inpainting method

The Figure 4.8 shows the limitation of the inpainting method. One of the most com-

mon issues of inpainting is the desaturation of colours in the inpainted images. Ad-

ditionally, several streaks of the inpainted colour overlap different objects and the

background since the inpainting methods fail to differentiate between the objects

and attempt to fill in the colour from the surrounding pixels.

The limitations in the inpainting method reinforced the idea that the development

of intelligent methods is mandatory to mitigate specular highlights in real-world im-

ages using a robust, generic algorithm. Classical methods have proven insufficient

to deal with specular highlights in real-world images in uncontrolled environments,

as shown during the extensive literature review in section 2.2. Due to their depen-

dence on explicit or implicit dependence on queues in the scene, single image miti-

gation methods are unable to mitigate reflections effectively. Multi-image methods
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Figure 4.8: Limitations of weighted median inpainting method

that often use spatial and temporal information of the images are viable. However,

they require taking multiple images from various orientations or multiple images

over time, both of which not only add additional variables to the problem but also

increase the acquisition and processing time. Our developed network, SHMGAN,

as defined in section 3.4 is meant to alleviate these challenges by mitigating specu-

lar reflections. The training methodology and results are discussed in depth in the

subsequent sections.

4.4 Generating specular-free images using SHMGAN

The SHMGAN network was implemented using Python and Tensorflow 2.8, similar

to SpecSeg network. However, Tensorflow’s Functional API was used to develop the

multi-input GAN network as it provides versatility and customization to develop

any level of deep and complex networks.

The SHM network model has been discussed in depth in section 3.4. A brief sum-

mary of the network is presented here for context, along with reasons for select-

ing the specific hyperparameters for training. Definitions and benefits of the most

essential hyperparameters used are discussed in depth in section A.1.3. SHMGAN
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utilizes polarimetric images in YCbCr colour space and learns the variation in il-

lumination in the Y channel of the images. It comprises the Y (luma), Cb (blue-

difference) and Cr (red-difference) chroma components, where the luma encodes

the light intensity in the scene in the form of a grey channel. The developed SHM-

GAN network consists of a single Generator (G) and Discriminator (D), modelled to

learn the illumination variation between 5 input images. We use four orthogonal

pairs of polarimetric images I0,45,90,135. In addition to the four polarimetric images,

a pseudo-diffuse image IED is estimated and passed on to the network as the fifth

input domain. This estimated diffuse image can be considered an initial solution to

the specular-free image as it contains the least specular reflection component and

is required to aid the convergence of SHMGAN towards the desired specular-free

image. The generator is based on the U-net structure and consists of 5 encoders, 4

decoders and 1 residual block, with each path from the encoder passed to the de-

coder via a modified skip connection. All blocks consist of 2D convolutions layers

with LeakyReLU activation followed by an Instance Normalization (IN) [154] layer.

The encoder uses average pooling to downsize the layers, whereas the decoder uses

a stride (s) of 2 to upscale the inputs. The output layer of the generator is a dense

layer with filter (k) with k = 1, s = 1. The decoder consists of a series of 5 convolution

layers with s = 2, and the 2D convolutions blocks use Leaky ReLU activation func-

tions followed by Instance Normalization. The U-net skip connections are modified

by the element-wise addition of a dynamically generated self-attention mask that

enhances the attention of the generator network on specular highlights as described

in section 3.4. The discriminator is comprised of 5 blocks of 2D convolutional lay-

ers with kernel sizes k = 4 and s = 2, followed by an instance normalization and

LeakyReLU activation and the same padding. The self-attention mechanism is also

added to the discriminator before the last convolutional layer block. The discrimi-

nator has two outputs; one is the classification of the real or fake (Dcl s f ) while the

other is the target label of the generated images (Dad v ). The real/fake classification

is a 2D convolutional layer with Leaky ReLU activation, whereas the target label clas-

sification is done using a dense layer with softmax activation. All input images are

converted to the YCbCr colour space and normalized to [0,1] before being input to

the generator but converted back to RGB before being fed to the discriminator. The

five Y-channels of the input images I0,45,90,135,ED are concatenated along the chan-

nel dimension to form a 5D tensor. The images are then one-hot encoded along

the channel dimension as binary matrices with the exact dimensions as the input

122



CHAPTER 4. RESULTS AND DISCUSSIONS

image for a tensor of dimensions (b,n,m,10) where b is the mini-batch size, n,m

are the image dimensions and the channel dimension is 10. The one-hot encoded

channels are used to designate the generator’s target images and the discriminator’s

target label. We use a mini-batch size of 1, where each batch is considered as a set

of the five spatially and temporally coherent input images I0,45,90,135,ED.

The model was optimized using ADAM optimizer with β1 = 0.5 and β2 = 0.99. In-

dividual learning rates for training the generator and discriminator were used as

suggested by the Two Time-scale Update Rule (TTUR) rule [157] as it helps in con-

vergence. The starting learning rates for generator and discriminator were 2e−6 and

1e−6 respectively, decaying every 10,000 steps with a base of 0.95. Both discrimina-

tor and generator were trained simultaneously with a batch size of 1. The network

kernels were initialized with mean µ = 0 and standard deviation σ = 0.02 as pro-

posed by DCGAN [132]. The images were resized to a resolution of 128×128, and all

processing, such as resizing, conversion to YCbCr etc., were done at runtime. To im-

prove training, the images were augmented by random flipping. A dropout of 20%

was used before the discriminator’s dense layers along with L2 regularization. Input

randomization is implemented by substituting the labels of the cyclic images with

zeros. Other techniques such as label smoothing, gradient clipping, adding noise to

the inputs etc., were also utilized to improve the training results. The total loss can

be defined as the sum of the total generator and discriminator loss and is defined by

equation 3.22 in section 3.4.4. The network was trained on a single Nvidia RTX3070

GPU with 8GB memory for 140 epochs, as well as the Nvidia P100 with 16GB RAM

for comparison. The total training time for 140 epochs was around 24 hours. The

total memory consumed was around 5GB for an image resolution of 128×128. The

psuedocode for SHMGAN is given in Algorithm 2.

Input randomization is implemented by substituting the labels of the cyclic images

with zeros. Other techniques such as label smoothing, gradient clipping, adding

noise to the inputs etc., were also utilized to improve the training results. A detailed

flow chart of the implementation is shown in Fig. 3.4 and the related pseudocode is

given as Algorithm 2. As shown by the flowchart, the SHMGAN generator is called

twice to generate images from augmented inputs ( Algorithm 2 line numbers 8, 14

for the input image and cyclic image generation respectively), whereas the discrim-

inator is called four times (Algorithm 2 line numbers 3, 10, 15, 16 for learning to

discriminate original images, generated image, cyclic image and target images re-

123



CHAPTER 4. RESULTS AND DISCUSSIONS

Table 4.4: Summary of the datasets used for training and testing the developed SHMGAN.

Mode Dataset Images Ground truth Specular mask

Training PSD dataset train set [114] 3072 No No

Testing

In-house 330 No No
PSD dataset test set [114] 54 Yes No
Whu-Specular [63] 1293 No Yes
TRIW [64] 500 No No

spectively), during a single training step. The combined loss function is then calcu-

lated as described in section 3.4.4 and back-propagated.

4.4.1 Datasets and methods for training and testing

To qualitatively and quantitatively compare the generated images, datasets com-

prising real-world images, both with and without ground truth, were used. A de-

tailed table of the dataset and the exact number of images used for training and

testing are given in table 3.1 and a confusion matrix of the training result is dis-

played in Figure 4.9. The most extensive dataset available with pure diffuse ground

truth images was recently made available by Wu et al. [114]. The authors provide 12

polarimetric images per scene with 30deg increments; however, we only selected

four orthogonal angles for training, namely I0,60,90,150 and the pseudo-diffuse IED

image was calculated using these images. These polarimetric angles were selected

to capture maximum specularity variation in the orthogonal images. Data was also

acquired in-house using monochrome and colour polarimetric cameras in various

settings and lighting conditions, as described in section 3.4.1. The data acquired

consists of 388 images captured with multiple light sources and additional 59 scenes

captured with cross-polarization to get specular-free images in one of the polar an-

gles. The training was thus done on a total of 1295 images, including the datasets

mentioned in table 3.1.

For testing, the SpecularityNet was also trained separately on the Whu-Specular

dataset and quantitative analysis was done by training the developed network on

the same dataset. Other large datasets comprising real-world images with manually

labelled specular pixels are Whu-Specular, and TRIIW datasets [63, 64]. No ground-

truth diffuse images are provided in these datasets; therefore, they can only be used
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Figure 4.9: Confusion matrix of the training SHMGAN on PSD dataset.

to qualitatively test the results of specular highlight mitigation on real-world im-

ages taken under random conditions. The results on all these datasets are compared

qualitatively and quantitatively and presented in the following sections.

We compare our developed network’s results with classical and state-of-the-art

data-driven specular reflection mitigation methods. Classical methods based on

chromaticity [25], bilateral filtering [21] were used. For deep learning-based com-

parison, SpecularityNet [114] was used as being the most relevant to the developed

method as well as the target application. All networks were trained and tested on the

same dataset and resolution for a fair comparison, and all metrics were calculated

in MATLAB 2021a. Note that While the developed network also takes inspiration

from CollaGAN [117], it cannot be used for direct comparison to SHMGAN results

since CollaGAN is targeted at image imputation and requires multiple image inputs

(all the domains) for generating the missing domain as opposed to the single-input

single-output concept of our developed network.

4.4.2 Qualitative results

As the developed network is developed as a multi-input CycleGAN, SHMGAN gener-

ates images across all input images in a cyclic fashion. While we are primarily inter-

ested in generating the specular-free images from the network, other polarimetric
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Figure 4.10: All polarimetric angles generated by SHMGAN network. The polarimetric im-
ages generated are realistic and have a variation of specular illumination in all polar angles.
However, this variation cannot be considered as physically accurate as the target image was
only the diffuse image, and no polarimetric constraints are provided to ensure physically
accurate generation.

images are also generated, and the results can be seen in Fig. 4.10. The realistic im-

ages show variation in the illumination in all polarimetric domains, verifying that

the network learns the variation similar to polarimetric images. The network at-

tempts to recreate the sinusoidal variation in illumination across all domains, with

the strength varying from image to image.

It is pertinent to mention that since there are no polarimetric constraints such as an-

gle of polarization, degree of polarization, stokes parameters etc., enforced on im-

age generation, the resulting images cannot be evaluated as true representatives of

the polarimetric images. During the development of the network, experiments were

conducted to quantify and relate the artificially synthesized images as possibly con-

verging towards realistic polarimetric images, including experimenting with various

physical constraints. However, generating polarimetric images is an ill-posed prob-

lem from a physics perspective. Thus, while the GAN produces visually convincing
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Figure 4.11: Visual comparison of testing on the PSD dataset [114]. The methods compared
include both traditional image processing techniques [24, 25, 73] and modern GAN based
methods [117, 114].

results, they cannot be verified to conform to the physics of polarimetry and are

therefore deemed to be out of the scope of the current work.

The qualitative results of the testing done on the PSD, in-house, TRIW and Specu-

larityNet datasets are presented in Fig. 4.11, 4.13, 4.14 and 4.15 respectively. Com-

paring visually, SHMGAN is able to generate realistic specular-free images with re-

moved or significantly reduced strong specular reflections in the scene, irrespective

of the content or material of the objects. The diffuse images generated are artefact

free and closer to the ground truths compared to the other methods. Images are
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Figure 4.12: Visual comparison of testing on data collected outdoors. The classical image
processing methods are unable to perform due to the presence of large regions of brightly
lit areas in the scene. SpecularityNET has some visible distortions in the images, whereas the
developed network is able to generate images with slightly reduced reflections but without
noticeable distortions.

generated with no noticeable distortion or aberrations. Additional testing results

on other datasets are also presented in appendix A. The mean inference time for

generating the five images is 0.4795 seconds or an average of 0.0959 seconds per

image on an RTX3070.

Outdoor Image testing was also done to generate specular-free images on outdoor

scenes. To our knowledge, no other work has shown the results of specular high-

light mitigation on outdoor images captured under natural sunlight and often with

extreme specular reflections, as seen in Fig. 4.12, SHMGAN can somewhat miti-

gate the effect of extreme specular reflections in outdoor images. The results are

distortion-free and significantly better than other compared methods. Classical im-

age processing methods are not able to cope with images with large amounts of

bright pixels and often detect large regions of the sky as specular reflections result-

ing in poor images. Comparing to other GAN-based methods, the outdoor images

have reduced distortions and colour aberrations. While the diffuse colour is not

fully recovered, the resulting images have lesser reflection strength than the gener-

ated images.
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Figure 4.13: Visual comparison of testing on the in-house dataset. The methods compared
include both traditional image processing techniques [24, 25, 73] and modern GAN based
methods [117, 114].

Figure 4.14: Results of detected specularity by self-attention mechanism and diffuse images
by SHMGAN, on the TRIW dataset.
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Figure 4.15: Results of detected specularity by self-attention mechanism and diffuse images
by SHMGAN, on the SHIQ dataset.

4.4.3 Quantitative results

For qualitative comparison, the metrics used for comparison are Mean Square Error

(MSE), Structural Similarity Index (SSIM), Peak Signal to noise ratio (PSNR) and ∆E.

∆E is the measure of change in visual perception of two given colours calculated in

the Lab colour space. On a typical scale, the ∆E value will range from 0 to 100, with

lower values representing a lower colour difference. Two different CIE standards

were used to compare the∆E results since both are widely used; however, the values

are calculated slightly differently in each standard.

As can be seen, by the results in tables 4.5, for the PSD dataset, SHMGAN can out-

perform the classical and state-of-the-art techniques. While the SSIM and PSNR are

very close to [114], the images produced by SHMGAN have lesser colour distortion

and a higher PSNR. The mean ∆E of the image generated by SHMGAN are lower

than the competing methods signifying lesser colour aberrations and distortions in

both datasets. As expected, the classical methods of specular highlight mitigation

methods cannot perform on most real-world images, as represented by their low

overall scores. For the in-house dataset, overall, SHMGAN performs better or at par

with all competing methods by generating images with low noise and MSE. The ∆E

is also at par with the competing methods. The complete picture of testing GAN net-
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Table 4.5: Mean qualitative comparison of the generated test images from PSD test dataset
and selected appropriate methods with the best results in bold text.

Method
PSD Test set

PSNR SSIM MSE ∆ECIE76 ∆ECIE94

Shen et al. [25] 18.5649 0.8478 0.02227 72.0296 46.2681
Yang et al. [73] 14.9773 0.8065 0.03742 86.9731 43.2086
SpecularityNET [114] 17.8149 0.8305 0.02727 73.3086 48.2662
SHMGAN 19.5700 0.8625 0.0153 68.2535 42.9445

Inhouse dataset

Shen et al. [25] 13.215 0.5737 0.0688 68.1804 39.0154
Yang et al. [73] 11.585 0.5007 0.0975 69.7143 37.8468
SpecularityNET [114] 13.7769 0.6415 0.0609 74.0787 40.7022
SHMGAN 15.0282 0.6322 0.0449 72.6276 37.9153

works over a large number of images is often not fully represented by single mean

values. Therefore we also present a summary of the trend over the entire test set

in Figure 4.16. The generated specular-free images by our developed network has

a tighter spread of PSNR, MSE and SSIM values with fewer outliers, strengthening

the confidence in the quality of the resulting images. The network is also able to

produce realistic colours, but the overall spread of the resulting images shows some

room for improvement in future works.

4.4.4 Ablation studies

Several ablation studies were conducted to verify the developed SHMGAN network.

The network architecture and losses were selectively removed and replaced to verify

the effect and significance of each sub-part of the developed network that achieves

the best results.

• To validate the usage of multiple polarimetric images, a network was trained

with two images only, the diffuse image and a single RGB image. As expected,

the network was unable to mitigate specular reflections since it was unable to

learn enough variation in illumination between images as shown in the Figure

4.17. Polarimetric images allow the network to learn the subtle variations in

illumination in the different angles, each cancelling out a portion of specular

reflection in that angle.
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Figure 4.16: Summary of quantitative results comparing the spread of results of the devel-
oped network with SpecularityNet. in the (a) PSD dataset and (b) in-house dataset.

• Detailed experiments were conducted to validate several parameters of the

designed network. The network was trained without the developed attention

mechanism to see the additional benefit of adding the self-attention mecha-

nism to the network. Adding self-attention to the network improves the miti-

gation results, resulting in fewer artefacts and better removal of smaller spec-

ular regions as shown in Figure 4.18.

Network losses

To verify the benefit of the individual loss function, an ablation study was done by

varying the losses such as the SSIM loss, specular loss etc. as shown in the Figure

4.19

• The SSIM loss enables the network to generate more realistic results, closer to

the diffuse ground truth.

• The specular loss enables the network to focus on the specular highlight re-

gions and learn the variation of illumination between the polarimetric images

and the estimated diffuse image.

• Overall, the proposed total loss results in visually appealing images after the
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Figure 4.17: Results of ablation study after 70 epochs of training with only two input images
(RGB and IED) instead of the developed five images show that even after extended training,
the network generates images with artefacts and is unable to remove specular reflections
effectively.

Figure 4.18: Results of ablation study after 70 epochs of training without self-attention show
that the specular reflections are not fully mitigated, and the images generated have distorted
colours.

Figure 4.19: Results of ablation study after 70 epochs of training with various loss combina-
tions. (a) For ablation results without specular loss (b) ablation results without SSIM loss.

removal of specular highlights regardless of the object’s material or the quan-

tity of illuminating light sources in the scene. In other cases, the mitigation

fails to remove the specular highlight or the region is filled with a dark colour.

Experiments were also run to test the effect of removing and adding hidden layers of

discriminator and generator and trying to achieve a balance between quality of gen-

eration results versus training time. This aided in selecting the proposed number of

layers for the generator and discriminator.
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Figure 4.20: Ablation study (after 50 epochs) of clipping gradients before backpropagating
weights. Clipping the gradients to [0, 1] resulting in exponentially increase in the generator
loss and produced poor resulting images.

Image standardization and gradient clipping

Training GAN’s is a notoriously difficult task and since it is a continuously evolving

field of research with constant development, there are no fully reliable methods that

ensure confirmed image generation. However there are several techniques and tips

that have been suggested by authors mostly in their presentations, online blog posts

or lectures. Minor changes and small tweaks that have been perfected over hours

of traning and experimentation, have been shown to profoundly affect the output

generation of images. Some examples are initialzing the kernel with a mean µ =
0 and standard deviation σ = 0.2 by DCGAN [132], using TTUR rule or initializing

seaprate learning rates for discriminator and discriminator [157] etc. Unfortunately,

there are no mathematical basis or explanations for many of these techniques and

are only learned over time due to the nature of deep learning and our understanding

of the latent space that is learnt by the GAN networks. Several such techniques were

also experimented while developing and training the developed SHMGAN network

over countless hours and experiments. Some of the key factors that proved to be

key for the generation of realistic images at the output are presented here with their

effects clearly visible in the ablation results.

Figure 4.20 shows the effect of gradient clipping on the network. Before the learned

weights are backpropogated and the weights are updated, clipping the gradient to

certain bounds is recommended to avoid the vanishing gradient problem. The Fig-

ure shows the comparison of using the [0, 1] bounds versus [1, -1]. As the results

clearly show that clipping the gradients to [0, 1] causes the generator training loss

to grow uncontrollably out of bounds, resulting in the generator to output poor im-

ages. The Figure shows the results after training 50 epochs only, as training any
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Figure 4.21: Ablation study of benefits of image standardization on GAN generation. Non
standardizing images results in loss of colour generation and large blobs only after ten
epochs.

further would prove to be meaningless. Another minor yet key factor is scaling the

image to [0, 1] (from standard RGB values) and normalizing it by using the equation

4.1 after loading the each image where Ip is each image pixel, µ is the mean and σ is

the standard deviation of the image respectively.

Ip = x −µ
σ

(4.1)

This result in a standard Gaussian of pixel values with a mean of 0.0 and a standard

deviation of 1.0 and has been shown to improve the results of GAN networks. The

same was also realized during SHMGAN training as is shown by the Figure 4.21.

After only 10 epochs, we can see that not only the images start to look washed out

with reduced colour generation, the network also starts to generate dark blobs and

regions. In the developed SHMGAN, the images are scaled to [0, 1] range and then

standardized by using equation 4.1 in all the presented results.

4.5 Summary

In this chapter, we qualitatively and quantitatively analyzed the different method-

ologies developed in Chapter 3. We show that the proposed SpecSeg network is

significantly fast to train with limited images and accurately detects specular reflec-

tions in real-world images with no restriction on illumination conditions for im-

age acquisition. We achieve very low scores that are comparable to the state-of-

the-art methods. Furthermore, the proposed network’s training time requirement

and inference performance are significantly better than other competing networks

trained and tested on comparable hardware and it is able to train in just 40 minutes.

135



CHAPTER 4. RESULTS AND DISCUSSIONS

Qualitatively, the segmented specular highlights are comparable with state-of-the-

art specular detection methods provided in the literature. We also show that the

proposed network can detect specular highlights in outdoor images taken under ex-

tremely bright conditions, with good results. To our knowledge, no other prior work

has presented a specular highlight detection network that works on indoor and out-

door images with reasonably accurate results on both conditions. Once the spec-

ular pixels are detected, we show that our proposed Weighted Median Inpainting

method can fill in the estimate diffuse colour with reasonable accuracy in regions

that are texture-less. But for a more robust solution, inpainting does not work as

dynamically for complex images. To improve the robustness, we show that the de-

veloped SHMGAN network is able to remove specular highlights in images without

any additional input. The network is trained to take advantage of the varying illumi-

nation information in polarimetric images and synthesises a specular free images.

No manual segmentation or marking is required for the specular pixels in the scene,

and the network learns by a self-attention mechanism by utilizing the developed

SpecSeg network, as described in section 3.2. SHMGAN outperforms state of the art

approaches and is able to mitigate specular reflections on objects, independent of

the material of the object or colour of the illuminating light sources. Extensive quali-

tative and quantitative testing is done on real-world images from in-house collected

dataset as well as publicly available datasets to verify the results. The resulting im-

ages were realistic visually, with noticeably 9.33% higher signal to noise ratio, low

artefacts and chromatic aberrations as compared to other state of the art methods.

Testing was also done on outdoor images captured under bright sunny conditions,

something that has not been reported by any other work to our knowledge.
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Chapter 5

Conclusions and future work

“I love it when a plan comes

together.”

John “Hannibal” Smith

- The A-Team
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5.1 Conclusions

The main objective tackled by this thesis was the challenging problem of specular

highlight detection and mitigation using state-of-the-art deep-learning-based solu-

tions. There were three main research questions selected as the focal point of this

research work, as described in section 1.4. Namely, how can we accurately sepa-

rate specular pixels in any real-world image? And how can polarimetric cameras

with on-sensor polarizer filters be utilized to find a robust and efficient specular

mitigation method? And lastly, what are the most effective methods that can be ex-

plored and utilized for specular highlight mitigation? The answer these questions,

two broad objectives were selected as the main focus of this thesis and the ensu-
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ing research work. Both the objectives and the resulting work of this thesis can be

summarized as given below:

• Objective 1: To develop a deep learning-based segmentation network for

highly accurate detection of specular highlights in real-world images at near

real-time performance.

– Contribution: A fast and accurate Specular Highlight Segmentation Net-

work (SpecSeg) was developed that is able to accurately detect and seg-

ment out the specular pixels with a very low MAE score of 8×10−3 and

mean inference time of 3.1ms.

–

• Objective 2: To utilize polarimetric imaging and leverage specular highlight

polarization properties to learn accurate diffuse colour recovery.

• Objective 3: To develop a deep learning-based image translation network for

mitigating the detected Specular highlights and generating specularity-free

images from a single input image.

– Contribution: Two methods for Specular highlight mitigation were de-

veloped. A fast diffuse colour inpainting method that utilizes the de-

tected regions from our developed SpecSeg network and inpaints the af-

fected regions with an estimated diffuse colour inferred from the bound-

ary regions. And a Multi-domain Specular Highlight Mitigation Genera-

tive Adversarial Network (SHMGAN). SHMGAN is trained with datasets

of real-world polarimetric images and is able to learn the variation of po-

larized specular reflections between the different polarimetric images.

SHMGAN generates a specular-free image from a single input RGB im-

age with a mean improvement of 9.33% mean SSIM score over the state-

of-the-art methods.

Both qualitative and quantitative comparisons and ablation studies of both Spec-

Seg and SHMGAN networks on publicly available datasets were performed. We

show that our methods perform well on real-world images and are able to gener-

ate images that mitigate the specular reflections in the affected region. In summary,

we demonstrate in this thesis that polarimetric imaging can be highly beneficial to

138



CHAPTER 5. CONCLUSIONS AND FUTURE WORK

Figure 5.1: Pipeline implementing specular highlight detection and mitigation networks.
Due to their fast inference times, developed networks SpecSeg and SHMGAN can easily be
integrated into existing pipelines for specular highlight removal.

learning specular variation, and the illumination variation can be learnt by genera-

tive adversarial networks and regenerated without any additional input.

5.2 Application pipeline of SpecSeg and SHMGAN

Specular highlight mitigation is a challenging problem with non-trivial solutions

and affects real-world images and modern vision-based applications. Developing

successful mitigation techniques means that they must be usable in any image pro-

cessing pipeline without causing any significant disruption or major rework. Keep-

ing this in mind, the developed networks in this thesis can be integrated easily into

any standard image or video processing method, as shown in the Figure 5.1. An

image can be parsed through SpecSeg network, which would be able to detect the

presence of specularity in an image due to the significantly fast inference time, as

already proven in table 4.2. The image or video frame can be ignored if there is no

specularity. Alternatively, if the image contains specularity, it can be passed on to

SHMGAN, which uses the specular generated by the specular mask to generate the

same image without specularity. This generated image can then be fed back to the

regular pipeline for further processing as the target application requires. As the in-

ference time for detection and generation is relatively less time-consuming, there

should be a minimal impact on the processing performance of the pipeline while

improving the results due to the removal of specular reflection from the images.
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5.3 Limitations and Future Work

During this thesis, several limitations were identified that directly affected the re-

search for specular highlight mitigation.

Firstly, the proposed SpecSeg network achieves reliable and accurate with an order

of magnitude improvement in training time with the state-of-the-art methods, in

the the quantitative results it was unable to outperform the method proposed by Fu

et al. [63] in terms of detection accuracy and mean error scores. While the result-

ing metrics are very close, there is still room for fine-tuning and improvement and

we are quite confident that SpecSeg can be improved to outperform all competing

networks with relative ease.

For generation of polarimetric images, the developed SHMGAN generates all polari-

metric angles for the input images; however, no physical polarimetric constraints

are provided to ensure the physical plausibility of the generated images to be real

polarimetric images. Previous Efforts have been made to use polarimetric admis-

sibility conditions to try to generate polarimetric images from a single input im-

age [165, 166] especially for adverse weather conditions, however there is currently

no feasible way to verify the polarimetric properties of the generated images with

real-world polarimetric images. This was also corroborated during our research.

However, this is an exciting and open problem and can significantly impact future

understanding of polarimetric image generation and validation methods.

Furthermore, generating higher resolution images right now requires significantly

large amounts of memory as well as computing power. This is due to the require-

ment of deep CNN layers. While it has been shown by state-of-the-art generative

models such as DALL·E [167] and DALL·E 2 [168], generating high-resolution mod-

els is quite possible with the availability of large data centres and TPU clusters for

training and inference.

The current CNN-based generative adversarial networks are extremely hard to train

and require a significant amount of fine-tuning to get realistic and plausible results.

Several up-and-coming alternative models to CNN networks are being developed

or adapted from other applications. Transformers are networks originally intended

for NLP tasks that have shown promising results for high-resolution image gener-

ation. Recently, Diffusion Models have emerged as a powerful class of generative
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learning methods. These models, also known as denoising diffusion models or

score-based generative models, demonstrate surprisingly high sample quality, of-

ten outperforming traditional generative adversarial networks. Both these models

can be explored for specular highlight mitigation models to extend current work

performance. Additionally, as the Tensorflow framework is in a constant state of ac-

tive development, some of the performance-related issues are being catered to in

forthcoming updates. However, some cross-compatibility issues of CUDA, NumPy

and other packages require the constraining of the version used for developing and

training the model. It is hoped that with Tensorflow 3.0 release in the near future,

several performance issues should be tackled alongside compatibility with newer

packages allowing for reduced training times.

The proposed pipeline for implementation of polarimetric images is feasible to im-

plement; however, the implementation was out of the scope of this research thesis

as the focus of this research thesis was only on the accurate detection and removal

of specular reflections in images. Real-time implementation requires significant

optimization and is dependent on several hardware and software constraints and

parameters and is very likely to be explored in the future. Especially the implemen-

tation to outdoor images is an area that requires further exploration as outdoor im-

ages taken on a bright sunny day produce significantly larger specular regions due

to strong direct and inter-reflections between objects. This can prove to be a vital

area of research for robotics as well as ADAS systems.
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Appendix A

Deep Learning Fundamentals and

hyperparameters

A.1 Fundamentals

A.1.1 Convolutional and transposed convolutional layers

Convolutional Neural Networks (CNN or ConvNet) are made up of neurons that

have learnable weights wi and biases b. Each neuron receives an input tensor xi ,

performs a convolution operation and optionally follows it with a non-linearity ac-

tivation function f . The entire operation can be described by the equation A.1. The

last layer of the CNN is generally a fully-connected layer which is regulated using a

loss function (explained in the following sections).

z = f (
∑

i
wi xi +b) (A.1)

The input tensor can be a representation of anything such as text or image how-

ever, we will primarily be considering image as input tensors. A key property of

CNN’s is that the whole network is fully differentiable. This allows for backpropoga-

tion, a widely used algorithm to train neural networks. Backpropagation computes

the gradient of the loss function f with respect to the weights of the network wi in

an efficient manner than direct computation of the gradients with respect to each

weight individually. The gradients are calculated for each layer and iterated back-
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Figure A.1: Figure depicting a generic deep convolutional network configuration as pieces
of LEGO®.

wards from the last layer, updating the weights by minimizing the loss function after

each step.

Convolutional layer’s parameters consist of a set of learnable filters. Every filter is

small spatially 2D (along width and height), but extends through the full depth of

the input tensor. During the forward pass the filter slides (or convolves) across the

width and height of the input tensor and computes dot products between the fil-

ter and the input as shown in the figure A.2. As the filter slides over the width and

height of the input tensor, a 2-dimensional activation map is generated that gives

that filter’s responses at every spatial position. Translation invariance allows a CNN

to recognise a pattern in any location in an image. Spatial hierarchy allows the net-

work to learn increasingly complex and abstract concepts. Intuitively, the network

will learn filters that activate when they see some type of visual features, such as an

edge of some orientation or a blotch of some colour on the first layer, and eventu-

ally, the entire patterns on higher layers of the network. A convolutional layer has

an entire set of filters, and each of them produces a separate 2D activation map that

is stacked along the depth dimension to produce the activation maps as an output

tensor.

Each layer of a CNN can also be thought of as individual pieces of LEGO® with two

spatial axes (height and width) and a depth or channel axis, that are stacked one on

top of each other to form a complete CNN layer as shown in the figure A.1. Each

CNN layer is represented by the yellow bricks, followed by an activation function

(blue). CNN layers are downsampled or encoded using pooling operation to reduce
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Figure A.2: Figure depicting a generic kernel filter in a convolutional neural network.

Figure A.3: Figure depicting upscaling or encoding using a generic transposed convolution

the spatial dimensions. The last layer can be one or more labels as represented in

the figure (orange and pink). This concept is very intuitive and highly analogous

as each layer of the CNN works on the input from the preceding layers and learns

the weights in each layer after convolution and then backpropogated to update the

weights.

Transposed Convolutional Layers

Unlike typical CNN where convolutional layers are used to downsample features

from an input image, Transposed Convolution is used for upsampling feature maps.

Thus, the kernels are used to learn meaningful decompression or up-scaling instead

of compression as in Normal Convolutions. Transposed convolutions are mostly

used when we need to decompress abstract spatial representation from the latent

spaces into meaningful outputs such as images or classification scores, as shown in
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Figure A.4: A generic residual connection layout where the input features are added to the
output layer before passing to the succeeding layers.

the figure A.3. For Example, it is used in many encoder-decoder-based architectures

such as Autoencoders or U-net (Semantic Segmentation)

A.1.2 Residual networks or skip connections

Neurons in a fully connected (or dense) layer have full connections to all activa-

tions in the previous layer, as seen in regular Neural Networks. Their activations can

hence be computed with a matrix multiplication followed by a bias offset. In CNN,

however, the convolution operation is the sum of element-wise multiplication be-

tween the sliding window and the filter and can be defined as A.2. Residual or skip

connections provide another path for data to reach the latter parts of the neural

network by skipping some layers.

y(i , j ) =
n∑

a=1

n∑
b=1

k(a,b)x(i +a, j +b),

∀i = 1, . . . ,H−n +1,

∀ j = 1, . . . ,W −n +1,

(A.2)

Where *x* is the input tensor of shape *H × W*, *y* is the output tensor of shape

*(H-n+1) × (W-n+1)* and *k* is the *n×n* convolution layer. Graphically residual

networks can be represented as shown in figure A.4.
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A.1.3 CNN hyperparameters

Some additional and critical parameters for CNN are padding, stride, batch size and

pooling, which can be explained as follows.

Padding

Padding consists of adding an appropriate number of rows and columns on each

side of the input feature map so as to make it possible to fit centre convolution win-

dows around every input tile. A padding of ’same’ means to add padding so that the

output has the exact dimensions as the input. A ’valid’ padding means no padding

is used (only valid window locations are used). The output size after the padding

operation can be calculated by A.3.

O = (W −k +2p)

s
+1 (A.3)

Where O is the output size, W is the input dimension, k is the filter size, p is padding,

and s is the stride.

Stride

In simplest terms, a stride is the jump distance between the current and following

pixel positions on which the convolution is applied. It has the additional effect of

downscaling the shape of the output feature map by the stride factor. Strided con-

volution is generally not used in classification problems but significantly impacts

the segmentation and generation of images. The output of strided feature maps are

explained by A.4 where s is the convolution stride.

y(i , j ) ∀ i =
⌊

H−n + s

s

⌋
, j =

⌊
W −n + s

s

⌋
(A.4)

Pooling

Pooling is typically used to reduce the dimensions of feature maps as the network

depth increases. This reduction in spatial dimension is generally done after the non-

linear convolution and also aids the reduction of computational resources. Pooling

is done by dividing the image into ωp ×ωq windows and applying either the maxi-
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Figure A.5: Visualising dropout between CNN layers. Red nodes represent dropped nodes
that are randomly selected at every pass during the training period, and all connections are
severed for that training pass.

Figure A.6: Popular activation layers used in CNNs.

mum (for Maxpool) or mean (for Average poolng) operations on each patch. Pooling

operations also make the network invariant to small transformations such as distor-

tion or translation and scaling [166]. Pooling can be defined by equation A.5.

y(i , j ) ∀ i =
⌊

H

ωp

⌋
, j =

⌊
W

ωq

⌋
(A.5)

Dropout

Dropout is a regularisation method in which, during training, a percentage of out-

put layer connections are randomly ignored or ‘dropped out‘ This makes the net-

work treat the layers with a different number of connected nodes to the prior layer,

as shown in the figure A.5. In effect, each update to a layer during training is per-

formed with a different “view” of the configured layer. Dropout adds noise to the

training process, simulating a sparse activation from the prior layer, thus encourag-

ing the network to learn sparse representation and avoiding over-fitting of learned

weights [169].
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Activation functions

An activation function is an operation applied on a neural network node and is de-

fined as the weighted sum of the input layers into an output layer or node. A network

may have three types of layers: *input layers* that take raw input from the domain,

*hidden layers* that take input from another layer and pass output to another layer,

and *output layers* that make a prediction. All hidden layers typically use the same

activation function. The output layer will typically use a different activation func-

tion from the hidden layers and is dependent upon the type of prediction required

by the model. Furthermore, activation functions are differentiable, so they can be

used for back-propagation to update the layers’ weights. Activation functions are a

critical part of the design of a neural network. And the choice of activation function

impacts the capability and performance of the neural network, and different activa-

tion functions may be used in different parts of the model to achieve various goals.

An activation function f is mathematically defined as equation A.6 [170].

y = f

(
m∑

j=1
w j x j −w0

)
(A.6)

where x = [x1, x−2, . . . xm]T is the input neuron, y is the neuron output, w = [w1, w−
2, . . . wn]T are the weights, w0 is the bias. Several activation functions have been

proposed over the years, each having its benefits and usage in various scenarios.

Some popular activation functions and their profiles are illustrated in A.6.

Batch and Batch Normalization (BN)

Before the batch images are passed on to the next block of the network, they have

to be normalised as a pre-processing step to standardise the weights. This enables

faster training speeds and allows for using higher learning rates. The mainstream

normalisation technique widely adopted for convnets is BN Proposed by Google

in 2015 [171], BN normalises all images across the batch and spatial locations and

can accelerate a model’s converging speed while alleviating issues such as Gradient

Dispersion, making it easier to train models. Mathematically, batch normalisation

is defined as A.7:

z = g (w, x); zN =
(

z −mz

sz

)
·γ+β; a = f

(
zN)

(A.7)
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Figure A.7: Example of various non-destructive and destructive transformations for data
augmentation that can be used for increasing the dataset size without causing the network
to overfitting trained weights.

Where zN is the output of Batch Norm, mZ is the mean of the neurons’ output, sz is

the standard deviation of the output of the neurons, and γ and β are the learning pa-

rameters of Batch Norm which shift the standard deviation and mean respectively.

The outputs of a batch norm over a layer result in a distribution with a mean β and

a standard deviation γ. These values are learned over epochs and the other learn-

ing parameters, such as the weights of the neurons, aiming to decrease the loss of

the model. A particular parameter is chosen based on experiences shared by pa-

pers and experts in the field and our own experimentation to verify the selection.

In their original paper [171], the authors claim that BN reduces the internal covari-

ate shift of the network and has a regularisation effect because it is computed over

mini-batches and not the entire data set.

Data augmentation

For training a deep learning network, it is always beneficial to have large amounts

of data with enough variation so that it can be generalised to the problem. This

enables the neural network to learn the important features and characteristics of

the data without over or under fitting. However, acquiring more data is not always

possible or feasible due to many reasons. An alternative to acquiring more data is

making the existing dataset larger with simple transformations to the existing data.

If, for example, an entire image is shifted left by a few pixels, the change is imper-

ceptible to a network that only sees intensity values and numbers. This shift can

be fairly significant as the classification or label of the image does not change while
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the underlying data array changes. Approaches that alter the training data in ways

that change the array representation while keeping the label the same are known

as data augmentation techniques. They are a way to expand the dataset artificially.

Some popular augmentations people use are grayscales, horizontal flips, vertical

flips, random crops, colour jitters, translations, rotations, and more as shown in the

figure A.7.
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Appendix B

Metrics for Quantitative analysis

B.1 Metrics used

B.1.1 Jaccard index / intersection over union

The Intersection-Over-Union (IoU), also known as the Jaccard Index, is one of the

most commonly used metrics in semantic image segmentation. IoU is the area of

overlap between the predicted segmentation and the ground truth divided by the

area of union between the predicted segmentation and the ground truth, as shown

in the figure. This metric ranges from 0 - 1, with 0 signifying no overlap and 1 sig-

nifying perfectly overlapping segmentation. Overlap is the region common to both

the target image and ground truth when both images are overlayed one on top of the

other, whereas union consists of all of the pixels classified as the target label from

both target image and ground truth, minus the overlap/intersection. The F1 Score

or IOU can be calculated using the equation

F1 Score = TP

TP+FP+FN
(B.1)

Where

• True positive (TP) = pixels correctly identified as specular

• True negative (TN) = pixels correctly identified as non-specular

• False positive (FP) = pixels incorrectly identified as specular
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• False negative (FN) = pixels incorrectly identified as non-specular

B.1.2 Dice coefficient / F1 score

The dice coefficient, also known as the Dice-Sørensen coefficient or F1 Score, is a

spatial overlap index developed to measure the pixel-level similarity between two

images, where one is generally the binary mask image. Dice score has values rang-

ing between 0-1. Lower values indicate minimum spatial overlap between two sets

of binary segmentation results, whereas larger values nearing 1 indicate increasing

overlap, where 1 represents 100% complete overlap. Dice similarity coefficient has

been widely adopted in biomedical segmentation problems where manually anno-

tated lesions or cancerous cell datasets are available for training segmentation algo-

rithms. The dice score can be calculated using equation B.2 whereas the IOU.

Dice Score = 2TP

2TP+FP+FN
(B.2)

Note that the F/2 ≤ IoU ≤ F and both metrics are used often. However, the IoU

metric generally tends to penalize single instances of bad classification more than

the Dice score.

B.1.3 Precision and recall

Precision is how precise the model is, as given by the number of positive prediction

values. It is a measure of the quality of the predictions made by the algorithm. i.e.

out of all the positive predictions, how many are True Positives predictions. The

higher the precision score, the better. On the other hand, Recall is the True Positive

Rate, i.e. out of all the actual positives, how many are True Positives predictions.

Both can be calculated using equations B.3 and B.4.

Precision = TP

TP+FN
= TP

Ground truth
(B.3)

Recall = TP

TP+FP
= TP

Total predictions
(B.4)

Another way to understand Precision and recall in segmentation context can be de-

scribed as comparing all the affected pixels, how many were correctly labelled as

specular (Recall) and how many were specular. (Precision)
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B.1.4 F-measure

The F-Score or F-measure is a derived metric calculated from the precision and re-

call scores. This way, both metrics are weighted equally and are the most common

metric when classifying imbalanced data. It can be calculated using equation B.5.

F−Measure = 2∗Precision∗Recall

Precision+Recall
(B.5)

Similar to both Precision and Recall, a lower F-measure score is undesired, whereas

a score of 1.0 is considered perfect.

B.1.5 Mean Absolute Error (MAE) and Root Mean Squared Error

(MSE)

MAE measures the average over the test sample of the absolute differences be-

tween prediction and actual observation where all individual differences have equal

weight. RMSE is a quadratic scoring rule that also measures the average magnitude

of the error. It is the square root of the average squared differences between predic-

tion and actual observation. Both MAE and RMSE express average model prediction

error in units of the variable of interest. Both metrics can range from 0 to inf and

are indifferent to the direction of errors. They are negatively-oriented scores, which

means lower values are better. For n samples, the MAE and RMSE can be calculated

using equations B.6 and B.7.

MAE = 1

n

n∑
j=1

∣∣y j − ŷ j
∣∣ (B.6)

RMSE =
√√√√ 1

n

n∑
j=1

(
y j − ŷ j

)2 (B.7)

Since the errors are squared before they are averaged, the RMSE gives a relatively

high weight to large errors. This means the RMSE should be more useful when large

errors are particularly undesirable. RMSE does not necessarily increase with the

variance of the errors. RMSE increases with the variance of the frequency distribu-

tion of error magnitudes. RMSE has the benefit of penalizing large errors more, so it

can be more appropriate in some cases
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B.1.6 Peak Signal to Noise Ratio (PSNR)

Peak signal-to-noise ratio (PSNR) is used as a quality measurement between the

original image and reconstructed image after noise removal, or in our case, specular

mitigation. The higher the PSNR, the better the quality of the reconstructed image,

which is calculated using the equation B.8.

PSNR = 10log10

(
R2

MSE

)
(B.8)

Where R is the maximum pixel value in the image (255 in an 8-bit image or 1 in a

normalized image.)

B.1.7 Delta E (∆E )

∆E, also known as the CIE76 standard, is the measure of change in visual percep-

tion of two given colours calculated in the Lab colour space. On a typical scale, the

∆E value will range from 0 to 100, with lower values representing a lower colour

difference. Two different CIE standards were used to compare the ∆E results since

both are widely used; however, the values are calculated slightly differently in each

standard as shown by equation B.9.

∆E =
√

(L1 −L2)2 + (a1 −a2)2 + (b1 −b2)2 (B.9)

∆E is used to quantify the overall colour difference between the sample and ground

truth. Lower∆E values indicate a closer colour comparison to the ground truth (dif-

fuse image in our case) and provide a value indicating the overall difference between

two colours. It does not provide any colour-related data, such as which colour is

lighter or darker. The CIE94 is an improved formula over CIE76 that provides about

95% accuracy in correlation to human perception of colour differences.

B.1.8 Structural Similarity (SSIM)

The Structural Similarity Index (SSIM) is another perceptual metric similar to ∆E

that quantifies image quality degradation after processing or regeneration. It is cal-
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culated with uncompressed reference (ground truth) image.

SSIM(x, y) =
(
2µxµy + c1

)(
2σx y + c2

)(
µ2

x +µ2
y + c1

)(
σ2

x +σ2
y + c2

) (B.10)

where

• µx , µy are the mean of x and y

• σ2
x , σ2

y are the variance of x and y

• σx y the covariance of x and y

• c1 = (k1L)2,c2 = (k2L)2 variables to stabilize division

• L the dynamic range of the pixel-values

• k1 = 0.01 and k2 = 0.03 by default.

The SSIM index ranges between 0 and 1, with the value of 1 representing two iden-

tical sets of images and therefore indicating perfect structural similarity.
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