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Proteins are macromolecules at the base of the constitution of the living world. Certain regions within proteins have the ability to aggregate and form fibrils. These regions are called "amyloids" and are correlated with the onset of age-related diseases and neuropathologies. We can cite among the best known: Alzheimer's disease, x 1.2.4 Bioinformatic tools for protein aggregation prediction . . . . . 1.3 Objectives of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 2 TAPASS: Tool for annotation of protein amyloidogenicity in the context of other structural states 3 Census of exposed aggregation-prone regions in proteomes 4 AmyloComp: a bioinformatic tool for prediction of amyloid coaggregation

Huntington's disease, Parkinson's disease or type II diabetes. Knowing that the life expectancy increases, it is certain that the prevalence of these age-related diseases will rise in the years to come. Recent advances in technology have led to the publication of many protein sequences, structures and functions. This explosion of data has led to the emergence of a numerous bioinformatics resources and tools, notably for the prediction and analysis of amyloidogenic regions. It is in this context that we have developed TAPASS (Tool for Annotation of Protein Amyloidogenicity in the context of other Structural States), a tool for predicting amyloidogenic regions in protein sequences, as well as various other structural states. This pipeline includes ten prediction programs of different structural states of proteins : amyloidogenic regions, structured regions, unstructured regions, transmembrane regions, signal peptides and SLiMs (Short Linear Motifs). It allows us to efficiently detect potential amyloidogenic regions in the structural context of the protein. TAPASS is freely accessible all users via a web interface. Thanks to the execution speed, its use on large data sets for meta-analysis is also possible. In a second time, this thesis focused on the fundamental study of proteins amyloidogenicity. To do so, we build a database from the results of TAPASS execution on 76 reference proteomes representing the diversity of the three kingdoms of life (archaea, bacteria and eukaryote).

The database allowed us to study the amyloidogenic regions (AR) within the unstructured regions, also called exposed amyloidogenic regions (EAR), presenting a higher potential to aggregate. This allowed us to establish several novel correlations on the amyloidogenicity of different species. We found that prokaryotes have a higher proportion of AR containing proteins, while eukaryotes have more EAR containing proteins. Thermophilic prokaryotes, species living in high temperature environments, have fewer AR and EAR compared to mesophilic prokaryotes. We v have also established that EAR containing proteins are preferentially localized in the cell nucleus of eukaryotes, but tend to be more secreted in prokaryotes. In addition, the more the length of proteins increases, the less they contain ARs, but this decrease is not observed with EARs. We observed a significant enrichment of EAR containing proteins with SLiMs in comparison to intrinsically disordered proteins without EAR. Finally, proteins with high abundance have less EARs when compare to proteins with low abundance. Our analysis also showed that essential proteins have less EARs in comparison to non-essential ones. This thesis work also contributed to the development of AmyloComp. This program able to predict the co-aggregation between two different amyloidogenic regions. It is based on the detection of β-arches with the help of the improved version of ArchCandy 2.0.

Résumé

Les protéines sont des macromolécules à la base de la constitution du monde vivant.

Certaines régions des protéines ont la capacité de s'agréger et de former des fibrilles.

Ces régions sont appelées "amyloïdes" et sont corrélées à l'apparition de maladies et de neuropathologies liées à l'âge. On peut citer parmi les plus connues : la maladie d'Alzheimer, la maladie de Huntington, la maladie de Parkinson ou encore le diabète de type II. Sachant que l'espérance de vie augmente, il est certain que la prévalence de ces maladies liées à l'âge augmentera dans les années à venir. Les progrès technologiques récents ont conduit à la publication de nombreuses séquences, structures et fonctions de protéines. Cette explosion de données a conduit à l'émergence de nombreuses ressources et outils bioinformatiques, notamment pour la prédiction et l'analyse des régions amyloïdogéniques. C'est dans ce contexte que nous avons développé TAPASS (Tool for Annotation of Protein Amyloidogenicity in the context of other Structural States), un outil de prédiction des régions amyloïdogéniques dans les séquences protéiques, ainsi que de divers autres états structuraux. Ce pipeline comprend dix programmes de prédiction de différents états structuraux des protéines : régions amyloïdogéniques, régions structurées, régions non structurées, régions transmembranaires, peptides signaux et SLiMs (Short Linear Motifs). Il nous permet de détecter efficacement les régions amyloïdogéniques potentielles dans le contexte structurel de la protéine. TAPASS est librement accessible à tous les utilisateurs via une interface web. Grâce à sa vitesse d'exécution, son utilisation sur de grands jeux de données pour la méta-analyse est également possible. Dans un second temps, cette thèse s'est focalisée sur l'étude fondamentale de l'amyloïdogénicité des protéines. Pour ce faire, nous construisons une base de données à partir des résultats d'exécution de TAPASS sur 76 protéomes de référence représentant la diversité des trois règnes du vivant (archées, bactéries et eucaryotes). La base de données nous a permis d'étudier les régions amyloïdogéniques (RA) au sein des régions non structurées, également appelées régions amyloïdogéniques exposées (RAE), présentant un potentiel d'agrégation plus élevé. Cela nous a permis d'établir plusieurs nouvelles corrélations sur l'amyloïdogénicité de différentes espèces. Nous avons constaté que vii les procaryotes ont une proportion plus élevée de protéines contenant des RAs, tandis que les eucaryotes ont plus de protéines contenant des RAEs. Les procaryotes thermophiles, espèces vivant dans des environnements à haute température, ont moins de RAs et de RAEs que les procaryotes mésophiles. Nous avons également établi que les protéines contenant des RAEs sont préférentiellement localisées dans le noyau des cellules eucaryotes, mais ont tendance à être davantage sécrétées chez les procaryotes. De plus, plus la longueur des protéines augmente, moins celles-ci contiennent de RAs, mais cette diminution n'est pas observée avec les RAEs. Nous avons observé un enrichissement significatif en SliMs au sein des protéines contenant des RAEs par rapport aux protéines intrinsèquement désordonnées sans RAEs. Enfin, les protéines à forte abondance ont moins de RAEs par rapport aux protéines à faible abondance. Notre analyse a également montré que les protéines essentielles ont moins de RAEs par rapport aux protéines non essentielles. Cette thèse a également contribué au développement d'AmyloComp. Ce programme est capable de prédire la co-agrégation entre deux régions amyloïdogéniques différentes. Il est basé sur la détection des β-arches à l'aide de la version améliorée d'ArchCandy 2.0.

Chapter 1 Introduction

The study of the origin, anatomy and evolution of living organisms has been of our interest for centuries. The work of scientists around the world has contributed to always push further our understanding of nature. We can mention the first classification of species by Georges Lous-Leclerc de Buffon and Carl von Linné, the evolution theory of Charles Darwin, or the work of Franklin, Watson and Crick on DNA structure. Biology not only extended our knowledge and our understanding of the world surrounding us, but also allowed us to develop our medicine and technologies, essential for our society and pillars of research. Technical improvements in the last decades led us to make giant steps in the exploration of nature and particularly at the cellular and molecular level. This introduction aims to bring the essential informations and understanding of the topic studied in this thesis, which are protein structures and amyloids through a bioinformatic approach. 

Proteins

Proteins are involved in numerous aspects of cell operation, first of all as a structural component of membrane and some organelles. They can bind DNA and RNA to polymerize or regulate them. It is also very common that proteins interact with other proteins for transportation, modification, degradation or signaling. Proteins are macromolecules composed of 20 different amino acids (see Table 1.1) which are linked together by peptide bonds. The sequence of these 20 amino acids is unique and decisive in its folding and so on the shape and functions that this protein will adopt. The sequence of a protein is directly determined by the translation of the genetic code. Indeed, the nucleus of cells stores DNA, which contains the formula, called gene, required to synthetise proteins. The DNA sequence is made of a sequence of four different nucleotides, the bases adenine (A), cytosine (C), guanine (G) and thymidine (T). Three consecutive nucleotides form a codon and correspond to a specific amino acid. Based on this, the DNA sequence and so the genetic code generates the protein sequence, which determines its three dimensional structure.

The protein structure that can be described in four levels (described in this section).

Primary structure

The primary structure of a protein is its chemical structure representing a linear chain of covalently linked amino acid residues. The main chain of a protein, also called backbone, includes a C α -atom, a H α -atom, a N-atom and a C-atom linked to a O-atom. The N-atom and C-atom are responsible for the formation of peptide bonds between two amino acids. Each residue is bearing a side-chain, specific for each amino acid.

Amino acids characteristics

Amino acids are organic molecules that contain an amine group (NH2) and a carboxylic acid group (COOH) (see Figure 1.2) [2]. By convention a polypeptide sequence is represented from the amino group (N-terminus) to the carboxyl group (C-terminus). At pH corresponding to physiological conditions in the cells, the amine group carries a positive charge (NH3+) and the carboxylic acid group has a negative one (COO-). These two groups are bound to a chiral carbon atom (named carbon α), so amino acids have two isomers (except glycine) : D-amino acids and L-amino acids. The second isomer is commonly used in the formation of proteins.

In addition, the C α atom is bond to a hydrogen atom and to a lateral chain (usually represented by R) (see Table 1.1) [3]. This lateral chain is different for each amino acid and confers them specific properties that we group as follow :

• Aromatic : phenylalanine, tryptophane and tyrosine have large lateral chain residues with a cyclic compound.

• Charged : at physiological pH, lysine and arginine are positively charged, aspartate and glutamate are negatively charged.

• Polar : asparagine, histidine, serine, threonine and cysteine. Two cysteines can form a disulphide bond between each other.

• Non-polar : alanine, isoleucine, leucine, methionine, phenylalanine and valine.

• Particular : proline is an imino acid, which amino group forms a covalent bond with its C α -atom resulting in the most rigid amino acid. Glycine does not have a lateral chain, therefore it is the most flexible one and it does not have stereoisomers. A coil is made every 3.6 residues [6]. Not all amino acids are equitably present in α-helices : Glu, Ala, Leu, Met, Gln, Lys, Arg and His are preferred [7].

On the other hand, some amino acids are not favorable for the α-helix, like proline that does not have N H group available for an H-bond.

β-structure

The second most occuring secondary structure is β-structure. It consists of two or more β-strands, which have extended polypeptide conformation. They are almost flat and schematically represented by an arrow (see Figure 1.5). β-structures also have some amino acids that are preferred (Val, Ile, Tyr, Cys, Trp, Phe and Thr) [7].

One β-strand alone can not be stable, it requires to interact with another one for that. This results in the formation of β-structure, also called β-sheet, made of several β-strands having H-bonds between the backbones. β-strand orientation can be of two kinds, parallel when the strands are oriented the same way, in term of N and C-termini, and anti-parallel when they are oriented in opposite directions. Secondary structure units of a protein fold into a more solid and stable structure through weak interactions, usually adopting a globular shape. There are two main weak interactions : salt bridges between two residues with opposite charges and H-bonds between several hydrogen donnors and acceptors. Some protein structures form covalent disulphide bonds between the sulfur atoms of two cysteines. Specific enzymes can also catalyse modifications on the proteins, called post-translational modification (PTM). Some modifications can increase the stability of proteins (such as glycolsylation), some can alter it (like phosphorylation). These modifications not only have impact on the stability, but also on the proteinprotein interaction capability, the cleavage sites and the degradation of proteins. The fourth level of the protein structure corresponds to the assembly of several proteins. The interactions between proteins are very specific and decisive in the determination of the function in these complex structures.

Protein assembly of more than one polypeptide chain are referred as oligomers, the individual chains are designated monomers. Oligomers can be composed of 2, 3, 4 or more subunits, commonly called dimers, trimers, tetramers, and so on. Oligomers can be made of the same monomer (homodimer, homotrimer,...), or of different monomers (heterodimer, heterotrimer,...). The subcellular localisation of proteins is variable, depending on the presence of some motifs in their sequences. For instance, nuclear localisation signal, ubiquitin site and signal peptides are motifs that adress proteins to the nucleus, the lysosome and the secretory pathway respectively. Several bioinformatics have been developed in order to predict the localisation of proteins cell compartments. An other quite common class is membrane proteins that hanchor themselves in membranes with the help of helices going through cell membranes. These proteins are essential for functions of the cell such as ion transport, cell signaling and recognition of self. A relatively large collection of predictors have been developed for the identification of transmembrane proteins. The list of bioinformatics resources is quite large, it includes dababases of annotated proteins and prediction tools. These computational methods implement sequence based, machine learning or deep learning algorithms. They are available as standalone tools or webservices and provide a substantial accuracy [8,9]. These structures are stable by their interactions and the multiple bonds they form, but small changes in the environment (like pH modification) can affect the folding, and therefore disrupt the intramolecular and intermolecular bonds [10].

Structural states of proteins

Folded proteins

The folding of a protein is the process following the synthesis of the polypeptide, which results in a precise 3D structure. The completed fold and stable state of a fully functional protein is called the native state. However, in the "life" of a protein, its structure is not static as we might observe and represent them. In addition, proteins may experience many structural modifications in their environment. A simple mistake occuring during the translation step, or a change in cell environment (pH, temperature,...) can potentially affect the folding of a polypeptide [11]. In order to prevent any misfolding, chaperone proteins are fixing the eventual mistakes of the folding. Chaperones can intervene right after the synthese of the polypeptide or in response to a cell environment change. A well known example is the HSP70 [12], which fix protein folding after a stress situation on the cell induced by heat shock.

The chaperones are very well conserved among eukaryote and prokaryote organisms.

Misfolded proteins can also be efficiently degraded and recycled through appropriate pathways. All these processes are ensuring a quality control of the protein folding. However, it is not rare to have regions in the protein natively unfolded with no rigid and stable structure. Yet these regions are functional and referred as intrinsically disordered.

Intrinsically disordered proteins

Intrinsically disordered regions (IDRs) are polypeptide segments with no fixed and rigid tertiary or secondary structure. Some proteins can be fully unfolded in their native state and so be exposed to the solvent with a high flexibility [13]. They still play an important role in the functionnality of proteins as a ligand with other domains for example. It has been established that organisms from the three kingdoms of life have numerous proteins with long IDRs (more than 30 residues). According to DISOPRED2 prediction results, 33% of eukaryote proteins, 4.2% of bacteria proteins and 2.0% of archaea proteins have IDRs [14]. Being exposed to the solvent IDRs are mainly composed of hydrophilic amino acid residues and can adopt multiple conformations in space due to their high flexibility. The function of IDRs in proteins is not obvious at first sight, knowing the absence of a fixed structure and the multiple of conformations such a region can adopt (see Figure 1.8). One observed function is coming precisely from this unstructurality, as it serve as a flexible ligand to bind other proteins or enzymes following lock and key concept described by Fischer [13,15]. It permits to have a greatter surface and so multiple interaction sites for protein-protein binding. Short disordered regions are more easily reckon by enzymes allowing post-translational modifications, or used as ligand and binding site to other proteins. It is also used for transport of proteins or their degradation by the intermediate of markers, playing a crucial role in cell regulation [16].

The flexibility of IDR directly counteracts the simplified and commonly presented paradigm : one protein sequence -> one 3D structure -> function(s). It is important to keep in mind that the structural state of a proteins IDR or ordered region can be changed as it will encounter various environment conditions and molecules. Indeed, environmental changes, protein interactions and conformational instability of IDR are the conditions that lead to change of conformation during the life time of proteins. 

Protein aggregation and phase separation

In the vaste environment of cells, proteins transit through different conformational states depending on the polypeptide and cellular conditions. Intracellular assemblies present various natures going from biomolecular condensates, which are multicomponent, dynamic and reversible assemblages, to protein aggregates, inclusion body and amyloids.

One problem cells are facing is the coordination of protein and chemical interactions in space. The organelles play the role of small compartments dedicated to specific tasks, like cell respiratory channel and ATP production within the mitochondria or protein transport and export by the Golgi apparatus. These organelles are usually delimited by lipidic membranes able to exchange components freely, facilitating chemical reactions inside them. However, some compartments are membraneless, like the nucleoli, the centrosome and stress granules. If no membrane is keeping the proteins of these organelles in one place, then something else is avoiding them to spread and mix with other surrounding organelles.

One strategy is to densify these membraneless organelles into a liquid-like, gel-like or solid-like compartment that will be separated from the cytoplasm. The physical state of matter of these organelles is difficult to characterize due to the constant changes of their size and density. It can fluctuate between a liquid-like to an almost solid state. The physical process behind that relates to the phenomenon when a solution being saturated with components spontaneously separates itself into two phases coexisting with each other. One phase is more dense and the other one is more dilute. This is the so called phase separation process that is used to describe, for example, P granules [17] formation or the nucleoli physical state [18]. However, the concentration of proteins comprises a risk. As the density of proteins increases and their proximity decreases, their aggregation tends to be triggered, resulting in solid aggregate with strong interactions [19]. Even though cell mechanisms are meant to prevent protein aggregation through degradation, these processes are not effective in all conditions. Indeed, some proteins naturally aggregate more easily and cells struggle to dissolve or limit the aggregate expand. It has been established that the presence of aggregate in human tissues is correlated with the development of neurodegenerative diseases [20]. For example, with TDP-43 which under normal condition is able to bind both DNA and RNA. It has functions in pre-mRNA splicing, mRNA transport, and translation [21]. TDP-43 is known to be a component of insoluble inclusions responsible of the loss of structure and function of neurons in amyotrophic lateral sclerosis, frontotemporal lobar degeneration, Alzheimer's disease, Parkinson's disease and Huntington's disease [22,23]. 

Amyloids

The term "amyloid" was first introduced by Matthias Schleiden in 1838 to describe a plant component as a starch like substance and by Rudolph Richow in 1854 to name the deposits observed in human tissues. It originates from amylum in Latin and amylon in Greek meaning starch and "oid" meaning like. First observations performed by Rudolph Virchow involved the combined usage of iodine followed by the addition of sulfuric acid to cerebral corpora amylacea. The sample resulted in a pale blue stain under the presence of iodine and violet upon the addition of sulfuric acid. At the time it was a common reaction to starch component, leading to the mistaken intrepretation [25]. Even though the etymology of the word is wrong, the terms of amyloid, amyloid fibrils and amyloid plaques are widely used for the description of aggregate and fibrous proteinaceous deposits.

In the 20 th century the technological improvement in histopathology and imaging allowed important discoveries. In the 1920's the use of the dyes Thioflavin T (ThT) and Congo-red conducted, at the time, to the conclusion that amyloid of different sources are structurally amorphous. Congophilia associated with apple green birefringeance became the first standard criterion adopted to pinpoint amyloid [25]. The observation of amyloid deposits under electron microscopy (see figure 1.10) revealed the fibrillar organisation, as a common feature shared by all amyloids [26]. Shortly after, in 1968, the high level of cross-β organization was shown by X-ray diffraction [27]. The term cross-β appeared due to the fact that β-strands lie perpendicular to the axis of the fibril, forming a cross with the axis. Glenner and Wong were the first to establish the biochemical evidence of a link between Alzheimers disease and the Down syndrome [28]. Indeed, the amyloid precursor protein (APP) located on chromosome 21 is cleaved by β-secretase and γ-secretase to yield Aβ peptide. Aβ-peptide is the main extracellular component of amyloid plaques found in Alzheimer's brain patients. Patients with Down syndrome have an extra chromosome 21 resulting in a greater number of Aβ-peptides, increasing the risk of neuropathology development. It has been shown by extrapolation, that all adults with Down syndrome have a level of neuropathology that can diagnose all them with dementia by the age of 40 [29].

Today, dozens of amyloid proteins with various structures have been discovered and it is certain that more new proteins will be determined. The objective of the next section is to provide an insight on amyloids, with a specific focus on their structure and involvement in organisms, both deleterious and functional. Usually amyloids are formed by regions of soluble functional proteins. Numerous bioinformatic strudies have stated that a large number of proteins and peptides have the potential to form amyloid fibrils under different conditions [30][31][32][33][34][35][36][37][38][39][40][41]. Surprisingly, only few proteins are known to actually form such aggregates [42,43], they vary from small peptides of 6 residues [44] to longer ones of more than 40 residues [45]. Interestingly, amyloid precusor proteins have various functions and there is no amino acid sequence pattern shared between them. However, in their 3D structures a structural motif, called β-arch, is repeated all along the axis of the fibril (see Figure 1

.11).

A β-arch is made of two β-strands connected by a loop, also called β-arc. From this point of view it is similar to the β-hairpin structure that constitutes β-sheets (see Figure 1.12). The difference lies in the H-bonds formed between two β-strands. In β-hairpins two β-strands are H-bonded to each other, but in β-arches they interact with β-strands of another β-arch. In the amyloid fibril, β-strands from two distinct β-arches are making H-bonds between each other, forming a β-arcade [START_REF] Kajava | B-arcades: recurring motifs in naturally occurring and disease-related amyloid fibrils[END_REF]. An important feature helping in the stabilization of the fibril is the complementarity between lateral chains oriented inside the fibril. In addition, cysteines can form disulphide bonds and two opposite charged residues can form salt bridges. Additional H-bonds between the side chains are also possible and all these interactions are reffered as "steric-zipper" [START_REF] Michael | Atomic structures of amyloid cross-β spines reveal varied steric zippers[END_REF][START_REF] Nelson | Structure of the cross-β spine of amyloid-like fibrils[END_REF]. 

Formation of amyloid fibrils

To form amyloid fibrils, proteins need to interact with each other in amyloid forming conformation. A condition for amyloidogenic regions to interact between each other is to be accessible to solvent like in the case of an IDR. Misfolding of the proteins or changes in cell environment can affect its structure and expose to the solvent amyloidogenic regions. Some pathways are meant to repair protein misfolding with chaperone proteins. The other mechanisms mediate their degradation.

Under normal conditions folded proteins have potential amyloid regions buried in the hydrophobic core. In order to aggregate amyloid regions need to be exposed to the solvent and they have to be able to interact with each other. It can happen after a misfolding event of the protein. In the case of an amyloid region in an IDR the aggregation is facilitated as it is directly exposed to the solvent. The fist stable structure of an amyloid fibril is the seed phase that takes place through the nucleation process. For all these reasons the aggregation of amyloid proteins is unlikely, making the first phase of seed formation the most difficult. Amyloid-forming regions start to assemble and form a stable structure called the nucleus. Then quickly the amyloid proteins aggregate in the protofibrils which will finally assemble into mature fibrils (see Figure 1.13) [START_REF] Theodoros | Mechanisms of amyloid formation revealed by solution NMR[END_REF]. 

Structural polymorphism of amyloids

A particularity of amyloid-forming proteins is their capacity to adopt different fibril structures having the same amino acid sequence. This polymorphism of amyloid cross-β structure is at the level of the protein fold in the axial arrangement. A concrete example is the Aβ peptide coming from the enzymatic cleavage by βsecretase and γ-secretase of the amyloid precursor protein (APP). Several structures of Aβ peptide 40 or Aβ peptide 42 have been determined and do not aggregate in the same way [START_REF] Gremer | Fibril structure of amyloid-b (1 -42) by cryo -electron microscopy[END_REF][START_REF] Fang | Amyloid beta: Structure, biology and structurebased therapeutic development[END_REF][START_REF] Tycko | Amyloid Polymorphism: Structural Basis and Neurobiological Relevance[END_REF]. The diversity of amyloids formed by Aβ is manifested in the different number of β-arches and their conformations (see Figure 1.14).

The second aspect of the polymorphism of amyloids lies in the interactions between protofibrils and formation of mature fibrils. Difference in the β-arch conformation leads to the difference in the twists and number of protofibrils in the mature fibrils. The fragment of transthyretin protein (TTR 105-115) is a surprising example of polymorphism in mature fibrils. Two of these short fragments assemble together as antiparallel β-strands and aggregate to form a stable protofibril. These protofibrils are then capable of making head to tail H-bonds between Y105 of one fragment and S115 of a second fragment. As a result mature fibrils are found in three distinct conformations involving four, six or even eight protofibrils [START_REF] Anthony | Atomic structure and hierarchical assembly of a crossβ amyloid fibril[END_REF]. Tau protein is another case, highlighting the various possible fibril interactions in between amyloids with identical sequences [START_REF] Hallinan | Structure of Tau filaments in Prion protein amyloidoses[END_REF]. Tau has multiple amyloid conformations that can form fibrils alone or associated by two, three or four fibrils [START_REF] Lövestam | Assembly of recombinant tau into filaments identical to those of Alzheimer's disease and chronic traumatic encephalopathy[END_REF]. Indeed residues on the surface of protofibrils have several ways to form a steric zipper between each other. This multivalency allows diversity in the formation of mature fibrils, resulting in various final structures. 

Deleterious amyloids

Disease-related amyloids

Amyloids are sadly known to be associated with neurodegenerative and age related diseases (see Table 1.2). Among the most known we can cite the Huntington syndrome, Parkinson syndrome and Alzheimer [20]. Early this year Alzheimer's Disease International organization published their report and stated 55 million people are living with Dementia worldwide and around 75% are not diagnosed. This number is expected to rise to 78 million people living with dementia in 2030 as global population is increasing and tends to live longer. In some cases, neurodegenerative disease can develop at an early age in different tissues due to a genetic condition that favors amyloidogenicity [START_REF] Webster | World Alzheimer Report 2021 Abridged version[END_REF].

The neurodegenerative diseases caused by prions with the PrP protein is a special case having the specificity to be transmissible. Cannibalism and brain consumption in New Guinea tribes (Kuru plague) and the mad cow crisis, also known as spongiform encephalopathy, were proofs of the transmissibility of the prion infection through meat consumption. 

Cytotoxicity mechanism

Even though amyloids have been long studied since their first observation in 1854, the cytotoxity mechanism behind amyloids is not fully understood. It has been established that amyloids are able to aggregate either inside or outside the cells.

Several hypothesis exist on the way they affect cell and tissue integrity until the point to cause their death.

Presence of huge aggregates correlates with disease and has been thought to be the toxic species for a long time. Oligomers and mature amyloid fibrils were considered for a long time as the toxic species of amyloids. Yet, it has been suggested that protofibrils are probably a more deleterious form [START_REF] Bitan | Neurotoxic protein oligomers -What you see is not always what you get[END_REF]. Amyloids are known to interact with the membranes of cells on different ways. Several hypothesis are proposed such as detergent effect, carpet effect or pore formation (see Figure 1.15).

The latest one is the most chararacterized as it has been shown that amyloids can form pore-like structures in the membrane disrupting the isomeric equilibrium of the cell [START_REF] Berthelot | What does make an amyloid toxic: Morphology, structure or interaction with membrane?[END_REF]. 

Functional amyloids

Amyloids got infamous for their involvement in numerous human diseases like presented previously. A concept that emerged in the last two decades is that amyloids can be functional for cells in bacteria and also eukaryote organisms [START_REF] Fowler | Functional amyloid -from bacteria to humans[END_REF].

Biofilm in microorganisms

Biofilms are set of microorganisms comprise and attached to a surface by a selfproduced extracellular polymeric matrix. It is made of secreted proteins from one or several bacterial species. Formation of biofilm is a strategy well used in microorganims from archaea, bacteria and eukaryote [START_REF] Erskine | Functional Amyloid and Other Protein Fibers in the Biofilm Matrix[END_REF]. It helps in the adhesion of cells, it provides protection against UV or other environment dangers and favors the formation of colonies through quorum sensing. Studies of biofilm has become of a special interest as a potential therapeutic target in pathogenic infectious microorganisms.

One of the most studied protein is the curli protein found in Escherichia coli and close species (see Figure 1.17 and maintain the hydrophobic coating crucial for the hyphae to pierce out of the water and grow into the air [START_REF] Claessen | A novel class of secreted hydrophobic proteins is involved in aerial hyphae formation in Streptomyces coelicolor by forming amyloid-like fibrils[END_REF]. Functional amyloids are not restricted to bacteria but are also present in eukaryotes such as fungi. Hydrophobins are a protein family working similarly to chaplins, they assemble into an amphipathic fiber at the hydrophobic-hydrophilic interfaces, including the interface between air and water. It is forming an hydrophobic coating for the fungi, enabling the surface adherence in a host organism and consequently its pathogenicity [START_REF] Mackay | The hydrophobin EAS is largely unstructured in solution and functions by forming amyloid-like structures[END_REF].

RIP1 and RIP3 kinases in programmed necrosis

Eukaryote organisms also manage to exploit amyloids in protective functions. In mammals, the two kinases RIP1 and RIP3 are involved as a regulatory complex in induced programmed necrosis, a crucial function for cells [START_REF] Li | The RIP1/RIP3 necrosome forms a functional amyloid signaling complex required for programmed necrosis[END_REF]. It is induced by a stress signal related to injury or infection, such as the tumor necrosis factor (TNF). The kinases are not simply capable to form fibrils, but rather the formation of an amyloid fibril is required for the signal mechanism to be fully functional.

A malfunction of these proteins can cause various diseases like immunodeficiency, autoimmune response or tumor development. Both kinases share the motif RHIM which is the part of the proteins capable to form amyloid fibrils. They have the possibly to co-assemble into heterodimeric amyloid fibrils (see Figure 1.19) and will act as a signaling complex of TNF, also called necrosome. It has been shown that this motif has a structure similar to the HET-s prion protein [START_REF] Kajava | Evolutionary link between metazoan RHIM motif and prion-forming domain of fungal heterokaryon incompatibility factor HET-s/HET-s[END_REF]. Interestingly, evolution of RHIM line can be tracked down to single cell organisms like the fungi Podospora anserina suggesting a conservation of the motif and its function from fungi to mammals. 

Pmel17 role in melanin synthesis

Functional amyloids are not exclusively restricted to biofilms in microorganisms, more complex eukaryote species found their way to take advantage of the singular structure of amyloids.

Melanocytes cells in mammals are, among other things, responsible for the synthesis of melanin in skin. The secretion of melanin takes place in a very specific organelle, the melanosome. The amyloid protein Pmel17 regulates and facilitates the activity of small molecule quinone precursors such as 5,6-indolequinone (DHQ).

Pmel17 is firstly synthetised as membrane protein in the endoplasmic reticulum, then it is transported to the Golgi apparatus, before ending up in melanosomes organelles. The cleavage of Pmel17 creates two fragments Mα and a transmembrane fragment Mβ. The two fragments stay attached with the help of a disulphide bond.

The Mα is the one with the capacity to form amyloid fibrils after being released from its link with Mβ. The disulphide also has the property of preventing uncontrolled amyloid fibril formation (see Figure 1.18). Mα fibers are templating the chemical synthesis of melanin by directing and accelerating the polymerization of its precursors like DHQ [START_REF] Fowler | Functional amyloid -from bacteria to humans[END_REF][START_REF] Raposo | The dark side of lysosome-related organelles: Specialization of the endocytic pathway for melanosome biogenesis[END_REF]. 

Bioinformatic tools for protein aggregation prediction

Many studies have been dedicated to the understanding of amyloids, either to determine their structures, origins, involvement in diseases or their role as functional elements of the cells. Most of the methods used are empirical, so they have the benefice to bring concrete evidences, however they are costly, time consuming and not always guaranteed to be successful. Therefore, computational methods have a real meaning in the study of protein aggregation. Thanks to their speed and ease of use, they revealed to be of a great help to study protein aggregation potential.

Bioinformatic tools make also possible the evaluation of protein aggregation at a larger scale with proteomes, allowing to track down the evolution of proteins and their functions.

From the past years several prediction tools have been developped, almost all of them only require protein sequence as an input. Each method is implementing its own algorithm, based on available knowledge on amyloid. We can group them in four categories as many of them use similar approaches (see Table 1.3) [START_REF] Navarro | Computational methods to predict protein aggregation[END_REF]. The first one rely on the recognition of typical features in amyloids, like amino acid specific pysicho-chemical properties, their distribution in sequence and capacity to form β-sheets or β-arches. It is certainly the most common and spread method, probably because the most ancient and easy to develop. The recent advancements in artificial intelligence logically led to the appearence of tools implementing machine learning algorithms. They constitute the second largest group of predictors. Like every tool based on machine learning algorithms, their precision is directly related to the quality and amount of data. Fortunately, several databases classified amyloid and non amyloid proteins with additional informations exploitable by such methods. These tools are suitable for quick evaluation of the quality of experimental data and their prediction accuracy is slitghly better in comparison to tools previously presented [START_REF] Wojciechowski | PATH -Prediction of Amyloidogenicity by Threading and Machine Learning[END_REF]. The third group is based on the 3D structure of proteins to determine aggregation prone regions. They do not only use protein sequence, but rather rely on structure and atoms position from a 3D structure file coming, for example, from PDB. Previous methods usually ignore the structural context in which the potential amyloidogenic regions are. Most of the time these regions are buried in the hydrophobic core of a domain and thus can not interact with each other to aggregate, unless of an unfolding of the domain. These prediction methods based on the structure consider protein structure more globally and the capacity of potential aggregation-prone regions depending on their accessibility to solvent. On the one hand, they are more accurate compared to linear algoritms, but on the other hand these tools demand more time to compute and work with a protein structure not just its sequence. The last kind of predictor is in fact a collection of several already existing predictors, also called meta-predictor, that crosses the multiple outputs to give a consensual result. Amylpred2 [START_REF] Antonios | A Consensus Method for the Prediction of 'Aggregation-Prone' Peptides in Globular Proteins[END_REF] is a meta-predictor made of eleven prediction tools. It considers a region as aggregation-prone if at least half of the tools are positively predicting an amyloidogenic region. The second meta-predictor is MetAmyl [START_REF] Emily | MetAmyl: A METa-predictor for AMYLoid proteins[END_REF], made of four predictors on which a logistic regression method is applied to obtain a combined score. 

Predictors names

Objectives of the thesis

Technological improvements in biology are increasing the amount of data on protein sequences, structures and functions. This led to the development of bioinformatics tools to study these data on various themes. Bioinformatics analysis of protein amyloidogenicity is one subject with great challenges. Indeed, their presence in the three kingdoms of life and their capacity to form fibrils has been studied for many years. It is also a subject of particular importance due to their involvement in human age-related diseases. One of the most infamous being Alzheimer's disease, which is expected to concern more and more people over the coming years. For developed countries these diseases will surely be a public health matter of first plan [START_REF] Webster | World Alzheimer Report 2021 Abridged version[END_REF]. Yet, amyloids are not exclusively deleterious, some are known to be involved in cellular functions and are beneficial for prokaryote and eukaryote organisms.

This thesis aim to study the distribution, evolution and functions of amyloidforming proteins in a large set of proteomes that cover the diversity of the three kingdoms of life. To address these issues, a new computational method for the prediction of amyloidogenic regions is required. This new method will provide more precise and relevant ways to look at the amyloidogenicity in proteins. The tool will predict various protein structural states with precision based on their sequences in a sufficiently reduced amount time. This accuracy and speed will allow us to annotate proteins on a large set of data and establish correlations between protein annotations.

This manuscript is based on the articles already published, or soon to be published, coming from the doctoral studies made in the past 4 years :

1. Development of a pipeline for the prediction of amyloidogenic regions in protein sequences. The method is suitable for the study of large sets of proteomic data and freely available on web for all users.

2. Application of the new bioinformatic tool on a large set of reference proteomes. Analysis and establishment of several consensual correlations on amyloid prevalence in the three kingdoms of life. Numerous studies have demonstrated that the propensity of a protein to form amyloids or amorphous aggregates is encoded by its amino acid sequence. This led to the emergence of several computational programs to predict amyloidogenicity from amino acid sequences. However, a growing number of studies indicate that an accurate prediction of the protein aggregation can only be achieved when also accounting for the overall structural context of the protein, and the likelihood of transition between the initial state and the aggregate. Here, we describe a computational pipeline called TAPASS, which was designed to do just that. The pipeline assigns each residue of a protein as belonging to a structured region or an intrinsically disordered region (IDR). For this purpose, TAPASS uses either several state-of-the-art programs for prediction of IDRs, of transmembrane regions and of structured domains or the artificial intelligence program AlphaFold. In the next step, this assignment is crossed with amyloidogenicity prediction. As a result, TAPASS allows the detection of Exposed Amyloidogenic Regions (EARs) located within intrinsically disordered regions (IDRs) and carrying high amyloidogenic potential. TAPASS can substantially improve the prediction of amyloids and be used in proteome-wide analysis to discover new amyloid-forming proteins. Its results, combined with clinical data, can create individual risk profiles for different amyloidoses, opening up new opportunities for personalised medicine. The architecture of the pipeline is designed so that it makes it easy to add new individual predictors as they become available. TAPASS can be used through the web interface (https://bioinfo.crbm.cnrs.fr/index.php?route=tools&tool=32).

Introduction

A number of normally innocuous and soluble proteins aggregate to form insoluble amyloid fibrils in several serious neurodegenerative diseases including Alzheimer's disease, Huntington's disease, and the transmissible prion diseases (Pepys, 2006). In addition, an increasing number of studies describe so called "functional" amyloids, which have beneficial roles in organisms (Erskine et al., 2018; Greenwald and Riek, 2010; [START_REF] Otzen | We find them here, we find them there: Functional bacterial amyloid[END_REF]. Although amyloidogenic precursor proteins differ with respect to amino acid sequence, the resulting amyloid fibrils have similar generic features such as being straight, rich in β-structure, around 10 nm in diameter, thermostable, and proteaseresistant (Steven et al., 2016). The incidence of amyloid aggregates in important human diseases, and increasing evidence on the involvement of amyloids in a variety of critical biological functions, have attracted much effort towards elucidating the relationship between the amino acid sequence and aggregation potential of proteins. Numerous studies have demonstrated that the propensity to form amyloids is coded by the amino acid sequence (Ahmed et Benchmarks of these programs show that depending on the datasets or a given protein, some perform better than others, however, there is no general agreement about which program is best. Today, the most appropriate approach to predict amyloidogenicity of proteins is to use a combination of several available software products, which allow a consensus to be reached. Therefore, in this work, we designed a bioinformatics pipeline for annotation of protein amyloidogenicity utilising three predictors of amyloidogenicity, ArchCandy (Ahmed et al., 2015), TANGO (Fernandez-Escamilla et al., 2004) and PASTA (Walsh et al., 2014). They were selected based on their popularity, diversity of basic principles and algorithms, and the ability to be executed locally for analysis of a large number of sequences.

The novelty of this tool is amyloidogenicity prediction in the context of other known or predicted structural states, such as intrinsically disordered regions (IDRs), transmembrane regions, structured domains and others. Data increasingly indicate that an accurate estimation of the structural state(s) encoded by a given amino acid sequence requires evaluation of the probabilities of a protein region to have either stable 3D structure or an unstructured state, as well as the likelihoods of transition between these states and insoluble aggregates [START_REF] Harrison | Amyloid peptides and proteins in review[END_REF][START_REF] Ahmed | Breaking the amyloidogenicity code: methods to predict amyloids from amino acid sequence[END_REF].

Thus, here, we describe a computational pipeline called TAPASS (Tool for Annotation of Protein Amyloidogenicity in the context of other Structural States) allowing the attainment of consensual results on the occurrence and distribution of amyloid-forming regions in proteins assessed through the prism of the overall structural context. TAPASS pays special attention to the amyloidogenic regions located in IDRs by considering them as the most likely elements leading to aggregation. The pipeline can be used to analyse both individual proteins of interest and large data sets including several proteomes. It can launch experiments to discover new amyloid-forming proteins and interpretation of experimental results. As genome sequencing combined with clinical data becomes more affordable, our tool provides an opportunity to create individual risk profiles for the different types of amyloidoses ushering in an era of personalised medicine.

Results and discussion

Relationship between amyloidogenicity and the other structural states

It has been observed that proteomes contain a very high percentage (up to 90%) of proteins with amyloidogenic regions (AR) (Monsellier et al., 2008;Prabakaran et al., 2017) contrary to the small number of proteins known to be involved in amyloidoses (Pepys, 2006). This can be explained by the fact that most of the predicted ARs are hidden within or constrained by the 3D structure and, in reality, cannot interact with each other in an amyloid-forming β-structural conformation. To be able to form cross-β amyloid fibrils, the structured domains must become partially or completely unfolded. This additional obstacle makes the amyloidogenesis via ARs of structured domains less probable than via ARs located within naturally unfolded regions. Indeed, in most of the known cases of amyloidoses, the native conformation of the polypeptide chains, which are known to form amyloid deposits in vivo, is intrinsically disordered. Thus, to get a more realistic census of the aggregation prone regions in the proteomes, it is necessary to cross amyloidogenicity prediction with information about the location of the IDRs (hereinafter also referred as unstructured region) (Fig. 1). Therefore, during design of the pipeline, we focused on such "Exposed Amyloidgenic Regions" (EARs) located within IDRs and carrying high amyloid-forming potential. Note that the EARs differ from the previously discussed ARs, which are exposed on the surfaces of the structured domains (Louros et al., 2020). In the latter case, the constrained conformations of the ARs normally do not allow them to adopt the required amyloid-forming conformation.

Design of a pipeline

The TAPASS pipeline is able to detect structured and unstructured regions of proteins and to cross them with the prediction of amyloidogenic regions (Fig. 2). The pipeline has two input options called "Protein sequence query" and "AlphaFold model query". The input file with the first option contains protein sequences in FASTA format. In the standalone version, the pipeline can also deal with text files with proteomes extracted from the UniProt database (Bateman, 2019). Input files in this format allow us to collect additional information about proteins (gene id, GO terms, version, modification date and others).

Once protein sequences are extracted from the input file, the following predictors are launched: for detection of intrinsically disorder regions we use IUPred (Dosztányi et al., 2005) 2A). Default parameters recommended by the authors of the tools were set for IUPred, TMHMM, SignalP, Arch-Candy2.0 and TANGO. The self-aggregation option of Pasta 2.0 was chosen as the most suitable for large-scale analyses. The Pasta 2.0 program requires the specification of a maximum number of hits per protein with the default number equals 10 best hits. This restriction may lead to the absence of many statistically significant hits in an output of a given protein, especially in IDRs. To overcome this limitation, we used Pasta to detect the EARs that are located exclusively within IDRs. For the analysis of ARs we summarized 10 best hits in the whole protein sequence and 10 best hits located within IDRs.

Structured CATH and Pfam domains were detected by running the input sequences against their libraries of HMMs. Only significant hits with E-values for CATH and PFAM HMMs below 0,001 were kept. To predict short linear motifs (SLiMs) present in eukaryotic and prokaryotic organisms, we used their corresponding sets of regular expressions. To complete the IUPred predictions, we added our in-house predictor of Fig. 1. Simplified scheme illustrating the transition between the principal structural states of proteins (stable structured domain, membrane domain, and intrinsically disordered region) and the aggregates. The depicted hypothetical protein has amyloidogenic regions (shown in red) in all main structural states. The likelihood of transition from each principal state to the aggregates is denoted by the thickness of the arrows. The amyloidogenic regions hidden within the structured domains need to be unfolded prior to the aggregation, significantly decreasing their propensity to transition, while the amyloidogenic regions located within IDRs are exposed and can readily self-assemble into the amyloids.

intrinsically disorder regions (BISMM filter), which selects highly (over 75%) hydrophilic and proline-rich (over 25%) regions.

For this pipeline, our first version of the ArchCandy program (Ahmed et al., 2015) for predicting amyloidogenic regions was updated by improving scoring functions and adding new β-arc types. This updated version, ArchCandy 2.0, was used in the pipeline.

The input file of "AlphaFold model query" contains the atomic coordinates with per-residue confidence scores (pLDDT) of an AlphaFold model in the PDB format. By using this file, TAPASS generates an amino acid sequence of the analyzed protein together with information about structured and unstructured regions within this protein (Fig. 2B).

Priority rules to cross results of the predictors for assignment of structured/unstructured regions

The pipeline assigns each residue of the analysed protein as belonging to a structured or an unstructured region. In general, we consider a region as structured if it contains a hit of CATH or TMHMM (Fig. 3). If both BISMM filter and IUPred do not predict an IDR at a given region, it is mapped as structured. If either BISMM filter or IUPred predicts an unstructured state for an analysed region, it is considered as an IDR. For some protein regions, predictions of structured domains by CATH and TMHMM contradict predictions by IUPred or BISMM filter. To overcome this problem, we formulated the following priority rules. If a structured region predicted by CATH or TMHMM overlaps with IDR prediction by IUPred and BISMM filter, this region is considered as structured. At the same time, structured regions of less than 30 residues are considered as unstructured because these regions are too short to form a stable 3D structure. For the same reason, we consider proteins shorter than 30 residues as unstructured. An exception is made for TMHMM prediction of transmembrane regions, which being shorter than 30 residues, are still considered structured. IDRs of less than 20 residues are considered as structured because they frequently represent long loops of protein structures. N-terminal regions predicted as signal peptides are excluded from our subsequent analysis. Fig. 3 shows an example of binary structured/unstructured region assignment of a protein based on CATH, IUPred, TMHMM and SignalP predictions and application of the priority rules. In the case of "AlphaFold model query", we developed an algorithm and program to transform the structural models to the assignment of structured versus unstructured regions for each protein. The detection of IDRs was based on two criteria that must be met simultaneously: (1) level of the AlphaFold model confidence (pLDDT) is lower than 70%, (2) a sliding 10-residue window contains less than 2 residues hidden in the structure while the remaining ones are exposed to the solvent. Our decision whether the side chains are hidden or exposed were based on calculation of Relative Accessible Surface Area (Lee and Richards, 1971) with the threshold of above 0.15 for the side chains exposed to the solvent. After this, we applied the priority rules implemented in TAPASS to the AlphaFold assignment. Namely, structured regions of less than 30 residues predicted by AlphaFold were considered as unstructured, with an exception for regions that were overlapped at least 50% with TMHMM prediction of transmembrane regions. IDRs of less than 20 residues were considered as structured.

Identification of ARs and EARs

The results of the three amyloid predictors, ArchCandy 2.0 (Ahmed et al., 2015), TANGO (Fernandez-Escamilla et al., 2004) and PASTA 2.0 (Walsh et al., 2014), were treated separately. Each predictor distinguished between two types of regions in a protein sequence: amyloidogenic regions (ARs) and non-amyloidogenic regions, with the best scores over and below the threshold, respectively. To detect EARs, predicted ARs were superimposed on IDRs (Fig. 4). An AR was considered as EAR if at least 80% of a hit of AR predictor overlapped with an IDR.

Mapping amyloidogenicity prediction on functional annotations and cellular localization.

In addition to the amyloidogenicity prediction, TAPASS outputs information about the cellular localisation, post-translational modifications, and function of proteins. For example, secreted proteins are identified by the presence of the signal peptides predicted by SignalP, membrane proteins are detected by TMHMM prediction, and proteins 

Execution time

To assess the speed of the pipeline when processing large volume of data, we selected 76 reference proteomes with 1 123 749 proteins in total from the UniProt databank (Bateman, 2019). The proteomes belong to the three kingdoms : eukaryote, bacteria and archaea. Our tests of the execution time showed that all 1 123 749 proteins were analysed in around 350 core-hours by using a 64-bits machine with a core i7 CPU (3.6 GHz).

TAPASS prediction of structured vs unstructured regions from protein sequence queries compared with AlphaFold predictions.

A recently developed artificial intelligence program AlphaFold [START_REF] Jumper | Highly accurate protein structure prediction with AlphaFold[END_REF] is becoming the gold standard computational technique for assessing the predictive power of other approaches. Currently, in contrast to the TAPASS option with sequence queries, the AlphaFold option is not suitable for a large-scale analysis of proteomes due to a time-consuming step of the model construction. However, we can use it to benchmark the results of the sequence query analysis at the stage of structured versus unstructured region assignment. For this purpose, we downloaded structural models of 20,294 human proteins built by AlphaFold, and their sequences by using https://alphafold.ebi. ac.uk. We run TAPASS separately against both sequences and structural models from the AlphaFold set. As a result, we obtained predictions of structured/unstructured regions for 20,294 human proteins using both options of TAPASS. Our comparison of the results showed that the value of accuracy of TAPASS prediction from the sequences is quite high (equals 0.81). This value is calculated as (N -total_incorrect)/N, where N is total a number of amino acids in the set and we consider the AlphaFold prediction as a true result. The correlation coefficient (Fisher, 1958) between sequence and AlphaFold predictions equals 0.62, indicating a strong positive correlation. The detailed output information used for the cross-correlation is in Supplementary Data. Thus, the TAPASS option with protein sequence queries works accurately to assign structured/ unstructured regions. At the same time, currently, it is the most suitable option for proteome-wide analysis in comparison to the option with AlphaFold.

Web-interface of TAPASS

TAPASS can be used through the web interface (https://bioinfo. crbm.cnrs.fr/index.php?route=tools&tool=32). On the input page, the user can paste or upload a query sequence in the FASTA format, or a query AlphaFold model in the PDB format, and choose the predictors.

The TAPASS output page displays predictions of all programs in a schematic graphical manner mapped on the amino acid sequence of the analysed protein (Fig. 5), where specific regions of interest can be magnified. The summarized structured/unstructured region assignment is called "IDR_consens", with the unstructured regions shown as green boxes. SLiMs are shown only within the "IDR_consens" regions. Since the amyloidogenicity prediction (AR and, especially, EARs) represent the main result of this pipeline, these regions are grouped at the top of the graphical output. In addition, in the online version of TAPASS, we display localisation of tandem repeat regions identified by the Meta-RepeatFinder (Richard and Kajava, 2014). These repetitive regions are frequently associated with the amyloidogenicity. The results can be downloaded in CSV format.

Conclusions

An adequate prediction of protein aggregation requires both the usage of several software to obtain a consensus, and the superimposition of these results on the assignment of structured/unstructured regions. Here, we describe the TAPASS pipeline, which was designed for such purposes. The pipeline is focused on the detection of Exposed Amyloidogenic Regions, which by definition are located within IDRs and carrying high amyloidogenic potential. TAPASS also provide information about the cellular localisation, post-translational modifications, and functions of amyloid-forming proteins. In addition to the protein sequence input, users can submit the atomic coordinates of the Alpha-Fold model of any given protein to obtain its EARs. A large-scale analysis of these models can be done by using AlphaFold structures already predicted from proteomes stored at https://alphafold.ebi.ac.uk.

Our pipeline can be used to discover new aggregation-prone proteins, as well as formulate experimental studies and interpret their results. As genome sequencing data linked with clinical data become more affordable, TAPASS can be used to predict individual risk profiles for different amyloidoses.

The architecture of the pipeline allows completing it with the other predictors. For example, recently, protein aggregation in Liquid-liquid Phase Separation has emerged as a new paradigm in the regulation of cellular activities [START_REF] Molliex | Phase Separation by Low Complexity Domains Promotes Stress Granule Assemblyand Drives Pathological Fibrillization[END_REF] and new computational programs to predict this aggregation can be included in the TAPASS. 

INTRODUCTION

Proteins are usually soluble molecules interacting transiently with each other or the other biomolecules.

After performing their functions, they are degraded by proteases. Thanks to the dynamic balance between protein synthesis and degradation, living organisms can efficiently regulate many different processes.

However, occasionally, some proteins, frequently for not entirely clear reasons, form aggregates. Most of the aggregates have a very characteristic structure of amyloid fibrils. These fibrils are typically straight, around 10 nm in diameter, thermostable, protease resistant, and rich in β-structure (Steven, A.C., Baumeister, W., Johnson, L.N., & Perham, 2016). They are completely or partially insoluble and frequently lead to a variety of age-related diseases including Alzheimer's disease, Parkinson's disease and others [START_REF] Benson | Amyloid nomenclature 2020: update and recommendations by the International Society of Amyloidosis (ISA) nomenclature committee[END_REF]. In some cases, the amyloid fibrils (named prions) can be "infectious agents". The prion fibrils, which are found themselves in another organism or a cell, can trigger the formation of similar fibrils and cause transmissible neurodegenerative diseases (Prusiner, 1998). The amyloid deposits can not only be composed of copies of the same protein, but also represent coaggregates of two or more proteins and by doing so simultaneously impairing several biological processes [START_REF] Bondarev | Protein coaggregation related to amyloids: Methods of investigation, diversity, and classification[END_REF]. At the same time, not all amyloid fibrils are linked to diseases.

Increasing number of studies describe so called "functional" amyloids, which fulfill beneficial roles in the organism (Erskine et al., 2018;Greenwald and Riek, 2010). For example, curli proteins from some gramnegative bacteria form amyloid fibrils on the bacterial surface. They are involved in biofilm formations, which is a successful strategy allowing microorganisms to resist the threats of the environment (UV radiation, oxygen, desiccation etc) [START_REF] Barnhart | Curli biogenesis and function[END_REF]. Other examples from mammals are RIP1 and RIP3 proteins whose co-aggregation into amyloid fibrils mediates a key interaction of necroptosis signaling (Kajava et al., 2014;[START_REF] Li | The RIP1/RIP3 necrosome forms a functional amyloid signaling complex required for programmed necrosis[END_REF].

Despite great interest in protein aggregation, especially regarding amyloids, until now, scientists focused on a few most devastating amyloidoses or well-known cases of functional amyloids. However, the overall prevalence of the protein aggregation in organisms is not yet well studied. This analysis requires computational methods for in silico prediction of the aggregation. The propensity to form aggregates is coded by the amino acid sequence, therefore, several computational programs have been developed cerevisiae, C. elegans, D. melanogaster, M. musculus and H. sapiens) using a specially developed algorithm, demonstrated that the average aggregation propensity of a proteome correlates inversely with the complexity and longevity of the studied organisms [START_REF] Tartaglia | Organism complexity anti-correlates with proteomic β-aggregation propensity[END_REF]. In the other analysis of the proteomes of D. melanogaster, S.cerevisiae and C. elegans by using TANGO predictor (Fernandez-Escamilla et al., 2004) it was shown that proteins, which are essential to organism fitness (knockdown of these genes leads to lethality), have a lower aggregation score than nonessential proteins [START_REF] Chen | Natural selection against protein aggregation on self-interacting and essential proteins in yeast, fly, and worm[END_REF]. The analysis of human proteome by Zyggregator method [START_REF] Pawar | Prediction of "aggregation-prone" and "aggregation-susceptible" regions in proteins associated with neurodegenerative diseases[END_REF] suggested that proteins involved in the secretion pathway are more prone to aggregate compared to all non-membrane proteins in general (Monsellier et al., 2008). Application of 3D profile method to the proteomes of E. coli, S. cerevisiae, and H. sapiens showed that the predicted high propensity for amyloid formation in the proteomes does not reflect well the limited number of proteins involved in disease-related or functional amyloid deposits [START_REF] Goldschmidt | Identifying the amylome, proteins capable of forming amyloid-like fibrils[END_REF]. The same analysis of proteins from PDB suggested that most of the predicted aggregation prone regions are hidden within the 3D protein structure and, therefore, inaccessible for intermolecular interactions such as amyloid formation. The analysis of cytosolic bacterial (E. coli) and eukaryotic (H. sapiens) proteomes indicated that the aggregation propensity of proteins anti-correlates with their abundance (Antonets et al., 2018; Antonets and Nizhnikov, 2017; Tartaglia and Vendruscolo, 2009). Most of these data are in agreement with the conclusion that the evolutionary pressure acts on the proteins to minimize their aggregation propensity.

In several publications, it was noticed that proteomes contain a very high percentage of proteins with amyloidogenic or aggregation-prone regions (AR), which is in obvious conflict with a small number of the known proteins involved in amyloidoses (Prabakaran et al., 2017). It was explained by the fact that most of the predicted ARs are hidden within the 3D structure preventing amyloid formation [START_REF] Falgarone | TAPASS: Tool for annotation of protein amyloidogenicity in the context of other structural states[END_REF]. Indeed, in most of the known cases of amyloidosis, the native conformation of the polypeptide chains, which are known to form amyloid deposits in vivo, is unfolded (or intrinsically disordered). Thus, to get a more realistic census of the aggregation prone regions in the proteomes, it is necessary to cross aggregation prediction with information about the location of the intrinsically disordered regions (IDRs).

The IDRs are always exposed for the intermolecular interactions, which are critical for the aggregation.

We used this concept to develop a computational pipeline TAPASS [START_REF] Falgarone | TAPASS: Tool for annotation of protein amyloidogenicity in the context of other structural states[END_REF], which can detect such "Exposed Amyloidogenic Regions" or, otherwise "Exposed Aggregation-prone Regions" (EARs) located within IDRs and carrying high potential to aggregate (see Figure 1). To obtain the most consensual results on the occurrence and distribution of the EARs in proteomes we selected three predictors of aggregation (TANGO, Pasta 2.0 and ArchCandy 2.0) (Ahmed et al., 2015;Fernandez-Escamilla et al., 2004;Walsh et al., 2014). They were selected based on their popularity, diversity of their basic principles, and possibility to be downloaded for analysis of a large number of sequences. TAPASS also provides information about the cellular localization, post-translational modifications, and functions of aggregation-prone proteins.

In addition to the advances with the predictors of aggregation, the past few years were marked by a significant increase in the number and quality of whole proteome sequencing data, Thus, the advances with methods predicting aggregation potential, the development of TAPASS pipeline as well as an increasing number of high quality whole-proteome sequencing data, all this made a new census of amyloid-forming regions in proteins timely with a high probability of obtaining interesting results. In this paper, we present the detailed analysis of 76 full reference proteomes from the UniProt databank.

structures (orange) and two EARs (magenta) located at the C-terminal IDR. Figure 1. A general scheme showing mapping of ARs and EARs on a structural model of human TAR DNA-binding protein 43. This protein forms amyloid fibrils by the C-terminal Low Complexity Domain (LCD, 274-414) (Cao et al., 2019). TAPASS predicts several ARs, which are located within the 3D

MATERIAL AND METHODS

TAPASS pipeline

The input file of TAPASS requires protein sequences in Fasta format and can contain additional The results of the three amyloid predictors, ArchCandy 2.0, Pasta 2.0 and TANGO, were treated separately. Each predictor gaves the start and end positions of ARs in protein sequences. An AR was considered as EAR if at least 80 % of an individual hit of AR predictor overlap with an IDR. Thus, our analysis led to three independent censuses of the aggregation-prone regions. If all three censuses observed similar regularities, then these regularities were considered more reliable and treated with special attention.

Selection of proteomes for large scale analysis

76 reference proteomes with 1 123 749 proteins in total were selected from the UniProt databank (Bateman, 2019). The proteomes belong to the three kingdoms of life: eukaryote, bacteria and archaea.

The selection of species was made to have well-annotated and complete reference proteomes covering the diversity of living organisms. Viral proteomes were not considered in this analysis due to small size of their proteomes yielding very different results depending on the strains. Their analysis will be a subject of our future study.

RESULTS

Occurrence of ARs and EARs in the proteomes

Previous studies detected a very high percentage of AR-containing proteins in proteomes with almost each protein having at least one predicted AR [START_REF] Castillo | Prediction of the aggregation propensity of proteins from the primary sequence: Aggregation properties of proteomes[END_REF][START_REF] Goldschmidt | Identifying the amylome, proteins capable of forming amyloid-like fibrils[END_REF]Monsellier et al., 2008). The results of our analysis of 76 reference proteomes agree with this conclusion predicting 68.6 %, 79.3 % and 90.0 % of AR-containing proteins by ArchCandy 2.0, Pasta 2.0 and TANGO, respectively. The coverage of ARs, obtained by dividing the number of amino acid residues involved in ARs by the number of all residues in proteins, is equal to 12.6 %, 6.2 % and 11.3 % for ArchCandy 2.0, Pasta 2.0 and TANGO respectively. A very high percentage of AR-containing proteins is in contradiction with a small number of proteins known to be involved in different amyloidoses or functional amyloids.

However, if we consider EARs, the number of potential aggregation-prone proteins is drastically reduced. EAR-containing proteins represent 9.0 %, 6.8 % and 19.5 % of all proteins with coverage of 0.8 %, 0.2 % and 0.4 % of residues according to ArchCandy 2.0, Pasta 2.0 and TANGO respectively. This result suggests that a low percentage of proteins with EARs, in contrast to a very high percentage of ARs, agrees better with the small number of the known proteins involved in aggregation in vivo.

Aggregation-prone regions in prokaryotic and eukaryotic organisms

Analyzing the 76 selected proteomes we observed a relatively uniform distribution of AR-containing proteins among the organisms (Figure 2). Curiously, Homo sapiens has the least number of ARcontaining proteins. At the same time, we saw a large variation in the proportion of EAR-containing proteins. Among the organisms with the least number of EAR-containing proteins are thermophilic prokaryotes (6 archaea and 5 bacteria: Chloroflexus aurantiacus, Thermodesulfovibrio yellowstonii, Dictyoglomus turgidum, Nanoarchaeum equitans, Sulfolobus solfataricus, Thermotoga maritima,

Archaeoglobus fulgidus, Thermococcus kodakaraensis, Methanocaldococcus jannaschii, Candidatus korarchaeum, Aquifex aeolicus).

The eukaryotes with the simplest level of organization, mostly unicellular (or partially unicellular) protists such as Plasmodium falciparum, Leishmania major, Thalassiosira pseudonana, Trypanosoma cruzi, Toxoplasma gondii and Dictyostelium discoideum have the greatest numbers of EAR-containing proteins (Figure 2). High level of EAR containing proteins are also found in two fungi (Ustilago maydis, Neurospora crassa), fruit fly (Drosophila melanogaster), the mosquito (Anopheles gambiae) and chicken (Gallus gallus). Most of them are known to have the greatest number of low-complexity repetitive sequences [START_REF] Mier | Assessing the low complexity of protein sequences via the low complexity triangle[END_REF]. This is particularly the case of Trypanosoma cruzi and Dictyostelium discoideum, which have an abnormal high level of Asn/Gln rich regions, two types of amino acids frequently found in amyloids. Among analyzed mammalians, Homo sapiens has the least number of EARcontaining proteins (Figure 2).

Figure 2. Proportion of (A) AR-and (B) EAR-containing proteins per organism predicted by using three amyloid predictors, ArchCandy 2.0 (red), Pasta 2.0 (blue) and TANGO (green). Archaea, bacteria, eukaryotes and mammalian eukaryotes are outlined by yellow, orange, blue and violet respectively (made by using free options in iTOL, https://itol.embl.de/ (Letunic and Bork, 2021)).

Having a global view on the dispersion of aggregation potential of the proteomes, it was interesting to analyze the tendencies associated with groups of the organisms. First, we compared prokaryotic and eukaryotic organisms. All three predictors detect more AR-containing proteins and higher AR-coverage in prokaryotes in comparison to eukaryotes (Figure 3A and3B). The tendency is opposite when we compare the occurrence of EARs (Figure 3C). The percentage of EAR-containing proteins and coverage of EARs are noticeably higher in eukaryotic than in prokaryotic organisms (Figure 3C and3D). This can be explained by a higher number of IDRs in eukaryotes, which require these IDRs to mediate a more complex network of protein-protein interactions in comparison to prokaryotes [START_REF] Pancsa | Structural disorder in eukaryotes[END_REF][START_REF] Ward | Prediction and Functional Analysis of Native Disorder in Proteins from the Three Kingdoms of Life[END_REF]. At the same time, the coverage of EARs in IDRs is greater in prokaryotes compared to eukaryotes (Figure 3E). Thus, the eukaryotic IDRs are less amyloidogenic in average than the prokaryotic ones suggesting a higher negative selective pressure. 

Figure 3. Level of amyloidogenicity according to the three amyloid predictors in prokaryotes and eukaryotes. Coverage of ARs (A), proportion of AR-containing proteins (B), coverage of EARs (C), proportion of EAR-containing proteins (D) and coverage of EARs in IDRs (E). For statistical analysis between eukaryotic and prokaryotic organisms we performed a t-test for amyloidogenic predictors individually (ns

The more thermophilic the less aggregation-prone

A unique feature of prokaryotes is the wide range of their optimal growth temperatures (OGTs) reaching for some of them temperatures above 105°C [START_REF] Stetter | History of discovery of the first hyperthermophiles[END_REF]. We estimated the aggregation potential of the prokaryotic proteomes depending on the OGTs. For this purpose, we subdivided the selected reference proteomes into two groups: 20 mesophilic organisms, those with an OGT below 41°C and 11 thermophilic organisms with an OGT above 41°C. The comparison of proportion and coverage of ARs from these groups do not lead to the same conclusion: ArchCandy 2.0 predicts the decrease of ARs with the thermophilic organisms while PASTA 2.0 and TANGO show the opposite tendency (see Supplementary figure 1). However, evaluation of EARs by all the predictors clearly demonstrated that they decreases with the increase of OGT (Figure 4). It has been also shown that the frequency of glutamine residue, which has a high amyloidogenic potential, decreases, while the total frequency of charged residues, which can block amyloid-formation, increases in thermophilic proteins [START_REF] Villain | Aspartate-phobia of thermophiles as a reaction to deleterious chemical transformations[END_REF]. At the same time, the temperature increase may favor aggregation. For example, it has been shown that the amyloidogenesis rate constant of Aβ-peptide increases and the lag time decreases with increasing temperature [START_REF] Tiiman | In vitro fibrillization of Alzheimer's amyloid-β peptide (1-42)[END_REF]. Considering all this, we can conclude that the decrease of the EARs with OGT can be a result of an evolutionary pressure on the thermophilic proteins to avoid the aggregation.

Occurrence of EARs in proteins depending on their length

In general, the longer is a protein chain the higher is the probability for it to have both ARs and EARs.

One would expect that if the ARs or EARs are uniformly distributed in protein sequences, the occurrence of them would correlate linearly with the protein length. To see the tendency better, one can normalize the occurrence of ARs/EARs by the length of proteins. Previously, a similar analysis has been done for the ARs by using bacterial proteins (De Groot and Ventura, 2010) and human proteome (Monsellier et al., 2008). Both studies showed that the aggregation potential of a protein normalized by its length goes down with the increase of protein size. To compare this conclusion with our results of the 76 selected proteomes , we analyzed the normalized proportion of AR-containing proteins and normalized ARcoverage depending on the length (Figure 5 A,C).

In agreement with the previous studies, we observed a slow decrease of the normalized proportion of ARcontaining proteins and AR coverage with the length. The steady decrease starts after 500 residues. The graph of AR coverage has a sharp peak at around 350-residue length. Clustering proteins by MMseqs2 (Steinegger and Söding, 2017) at 30 % of sequence identity, we found that this peak contains a significant excess of G protein-coupled receptors having high AR coverage. It explains this anomaly.

The 200-500 residue region with the highest AR coverage and proportion coincides with the length ranges where proteins are predicted to be the most structured (Figure 5E) and in general, it negatively correlates with the IDR coverage with the protein length. Thus, the AR proportion and coverage curves can be explained by the fact that the structured regions have a higher probability to contain ARs and proteins of less than 500 residues are mostly structured.

Figure 5. Plots of the proportion of AR (A) and EAR (B) containing proteins depending on the protein length. Plots of coverage of AR (C) and EAR (D) in proteins according to their length. Plots of coverage of IDR (E) and EAR in IDR (F). Proteins are grouped by subsets of 50 residues (e.g. 1-50, 51-100 etc). Proteins longer than 2000 were grouped into one subset. The predictors used have systematic biases at the terminal regions of proteins and this affects results on the short sequence lengths. To take this bias into account, we also run the predictors against a set of randomized sequences. This set contains proteins from our database with each sequence computationally shuffled, respecting the average amino acid composition of our database and having the same distribution of protein lengths. This allowed us to determine a correction coefficient which was used to adjust the values of EAR, AR and IDR.

Our analysis of the dependence of EARs on the protein length demonstrated that it differs from AR ones (Figure 5 B,D). The predictors show a plateau with the lowest EAR-coverage for the shortest proteins (less than 350 residues), which steadily goes up for longer proteins. A similar trend is observed when we plot the dependence of proportion of EAR-containing proteins by the length.

The dependence of the coverage of predicted IDRs against protein length (Figure 5E) is similar to the one of EAR-containing proteins that explains the high aggregation potential of the short sequences by their tendency to be in IDR. Indeed, the region of 200-400 residues, which corresponds to the stable structural domains of proteins has the lowest coverage of IDRs and EAR-containing proteins.

To see the tendency linked only to the characteristics inherent to the IDR sequences, we analyzed the dependence between the EAR coverage in IDRs and the length of proteins. The analysis shows that for TANGO and PASTA 2.0, the shorter sequences have higher EAR coverage in IDRs. In contrast, ArchCandy 2.0 predicted an increase of EAR coverage in IDRs with protein length (Figure 5F). One explanation of this discrepancy between the predictors maybe the fact that ArchCandy predicts Asn/Glnrich regions, which are frequently found in the long proteins, as aggregation prone, while TANGO and PASTA do not. Thus, we do not observe the decrease of aggregation potential with the increase of the protein size when we consider EARs. The longer is a protein chain the higher is the chance for it to be aggregation prone.

Therefore, a question arises what is the mechanism that prevents fibril formation of long proteins. One possible explanation can be that long intrinsically disordered proteins, having multiple random coil conformations, represent "steric brushes" preventing their intermolecular interactions. Therefore, the flexibility of a long intrinsically disordered protein can inhibit the amyloidogenesis due to the high entropic barrier [START_REF] Ahmed | Breaking the amyloidogenicity code: methods to predict amyloids from amino acid sequence[END_REF].

Occurrence of EAR containing proteins in different cellular compartments

Proteins having different cellular localizations may differ in the aggregation potential. Therefore, we analyzed the occurrence of AR and EAR containing proteins in 4 major subcellular localizations: secreted proteins identified by SignalP (Petersen et al., 2011), transmembrane proteins by using TMHMM (Krogh et al., 2001), nuclear proteins with NLS (nuclear localization signals) found by SLiMs (Kumar et al., 2020) and the remaining proteins that were considered as mostly cytosolic (Figure 6). We observed similar levels of AR containing proteins in all compartments except the transmembrane proteins, which have the noticeable highest level (Supplementary figure 2). The high level of AR containing proteins among the transmembrane proteins was expected because their hydrophobic TM helices are detected as ARs by all predictors. The most striking observation was the high level of EAR containing proteins in nuclear proteins of eukaryotes, which is about two times higher than in the other cellular localizations (Figure 6A). In line with this result, it has been shown previously that under stress conditions proteins in the nucleus tend to form aggregates [START_REF] Karamanos | Mechanisms of amyloid formation revealed by solution NMR[END_REF].

In prokaryotes, we observed more EAR-containing proteins among those involved in the secretory pathway in comparison to the transmembrane and cytosolic proteins (Figure 6B). This tendency suggests that the secreted proteins being outside of the cell are under a reduced evolutionary pressure to avoid aggregation. Formation of amyloids out of the cell may be less deleterious for unicellular prokaryotic organisms in comparison with most of the eukaryotes, which can accumulate unwanted deposits within extracellular space of their tissues. Moreover, it is known that many prokaryotes use secreted proteins to form functional amyloids (Erskine et al., 2018).

Figure 6. Plots of proportion of EAR-containing proteins according to the protein localization in eukaryotic (A) and prokaryotic (B) organisms. Proteins are splitted in four groups: cytosolic proteins, extracellular ones with signal peptides (SP), transmembrane proteins (TM) and nuclear proteins having nuclear localization signals (NLS)

. The proportions of the analyzed proteins are: in eukaryotes, 58.5% are cytosolic, 6.2% have SPs, 21.4% are transmembrane proteins and 13.9% have NLS. In prokaryotes, 71.9 % are cytosolic, 4.3% have SPs and 23.7% are transmembrane proteins. For statistical analysis between the different cell compartments we performed an anova test for amyloidogenic predictors individually (ns : non-significant; * : p-value < 0.05 ; ** : p-value < 0.01 ; *** : p-value < 0.001 ; **** : pvalue < 0.0001).

Relationship between cellular abundance of proteins and ARs/EARs frequencies

The number of genome-wide data on the gene expression has drastically increased in the past few years [START_REF] Stephens | Big data: Astronomical or genomical?[END_REF]. Frequently, the data comes from various technologies, organisms, tissues (normal or disease related) making it difficult to compare them in a large scale analysis. In this situation, we found that the data coming from PaxDb database [START_REF] Wang | Version 4.0 of PaxDb: Protein abundance data, integrated across model organisms, tissues, and cell-lines[END_REF] are the most suitable for our purpose. PaxDb represents protein abundance by "protein per million" (ppm) and by doing so, it solves the problem of variability of cell size or dilutions in the samples used and makes the comparison between them possible. PaxDb has the protein expression level in different tissues or organs of organisms.

Additionally, it provides an average abundance of a protein in the whole organism. We used this average abundance value to analyze the expression level of AR/EAR containing proteins, which are available both in PaxDb and in our dataset.

Expression level ranges from almost 0 up to more than 100 000 ppm. The majority of proteins have values of less than 2 ppm. The number of EAR containing proteins with the abundance more than 50 ppm drops significantly (Figure 7). We grouped these proteins together. Our analysis showed that the frequency of occurrence of EAR containing proteins decreases with the ppm growth and is becoming lower than non-EAR containing proteins. From the observed dependence of the ratio between EAR-and non EAR-containing proteins, we can conclude that highly expressed proteins are less prone to aggregate in accordance to the results of the three predictors used. We observed similar tendency with the frequency of occurrence of AR containing proteins depending on the abundance (see Supplementary figure 3). It suggests that highly expressed proteins are under a greater selective pressure to avoid aggregation. This conclusion is in agreement with the previous study of human proteins also suggesting that aggregation-prone proteins and gene level expression are anti-correlated (Tartaglia and Vendruscolo, 2009). 

EAR level in essential proteins

As demonstrated previously, essential genes are subjected to a greater selection pressure than nonessential ones [START_REF] Jordan | Essential Genes Are More Evolutionarily Conserved Than Are Nonessential Genes in Bacteria[END_REF][START_REF] Wang | Version 4.0 of PaxDb: Protein abundance data, integrated across model organisms, tissues, and cell-lines[END_REF]. It has also been shown that essential proteins are less prone to aggregation [START_REF] Chen | Natural selection against protein aggregation on self-interacting and essential proteins in yeast, fly, and worm[END_REF][START_REF] Tartaglia | Correlation between mRNA expression levels and protein aggregation propensities in subcellular localisations[END_REF]. In order to find essential proteins in our database, we used the DEG database of essential proteins [START_REF] Luo | DEG 15, an update of the Database of Essential Genes that includes built-in analysis tools[END_REF] and run BLAST program with E-value < 0,001 [START_REF] Altschul | Basic local alignment search tool[END_REF]. By this approach we identified 705692 essential proteins (~62,6 %) in our database. Analysis of these proteins by the three predictors showed a lower EAR-coverage and, in a less extent, EAR proportion in the essential eukaryotic proteins in comparison to non-essential ones (Figure 8 A,C). Our results are in agreement with previous conclusions that essential proteins have a lower aggregation score than non-essential proteins [START_REF] Chen | Natural selection against protein aggregation on self-interacting and essential proteins in yeast, fly, and worm[END_REF]. In prokaryotes, we observe an opposite tendency for both EARs (Figure 8B,D). Previous analysis of ARs (not EARs) made on a smaller scale in bacteria (De Groot and Ventura, 2010) have shown that essential proteins have less ARs. Our results of AR analysis in prokaryotes (see Supplementary figure 4) are in agreement with this conclusion. 

Figure 8. Coverage of EAR in essential and non-essential proteins in eukaryote (A) and prokaryote (B) organisms. Proportion of EAR containing proteins known as essential or non-essential in eukaryote (C) and prokaryote (D) organisms. For statistical analysis between essential and non-essential proteins we performed a t-test for amyloidogenic predictors individually

Short Linear Motifs (SLiMs) in EARs

A significant portion of protein interactions are mediated by short linear motifs (SLiMs) preferentially found in IDRs (Kumar et al., 2020). As EARs are also located within the IDRs, it was interesting to analyze cooccurrence of SLiMs and EARs in proteins. Although both prokaryotes and eukaryotes have functional SLiMs, the eukaryotic linear motifs are more common, better classified and documented. Most of the eukaryotic SLiMs can be found in the ELM resource (Kumar et al., 2020) alongside with their descriptions, experimental evidence from the literature and Regular Expressions (RegEx) of the recurrent patterns.

Therefore, we focused our analysis on the SLiMs from eukaryotes. For this purpose, we applied the RegEx from ELM database (Kumar et al., 2020) to the IDRs determined by our pipeline [START_REF] Falgarone | TAPASS: Tool for annotation of protein amyloidogenicity in the context of other structural states[END_REF]. The SLiMs are subdivided in 6 major classes: (LIG) ligand binding motifs and (DOC) docking sites both involved in protein-protein interactions of the functional complexes, (MOD) modification sites covering several post-translational modifications of proteins (e.g. phosphorylation, palmitoylation, glucosylation), (DEG) sites of proteins that are important in regulation of protein degradation rates, (TRG) targeting sites responsible for protein sorting in cellular compartments and (CLV) specific cleavage sites.

The results of all three aggregation predictors showed that a great majority of EAR-containing proteins are enriched in SLiMs in comparison to IDR-containing proteins without EARs (Figure 9). By using the exact Fisher test, we were able to select SLiMs, which are significantly enriched in EAR containing proteins compared to just IDR containing proteins. Interestingly, 20 of the 25 degradation motifs (proteasome pathway) from DEG class occur more frequently in EAR containing proteins than in non-EAR containing proteins (Figure 9). 17 of the 22 TRGs are also more frequently present in EAR containing proteins than in IDR containing proteins. Among them, 3 were found to be involved in the Endosome-Lysosome-Basolateral sorting signals. These results suggest that EAR-containing proteins tend to be more degraded by the proteasome and the lysosome pathways compared to just IDR containing proteins. This might be a strategy used by organisms to prevent protein aggregation by increasing degradation of potential aggregation-prone proteins. Cleavage sites (CLV) are less present in EARs, which may prevent the release of smaller amyloidogenic peptides such as the well-known Aβpeptide [START_REF] Lu | A second cytotoxic proteolytic peptide derived from amyloid β-protein precursor[END_REF]. and zinc-finger domains (CL0511, CL0390) (see Supplementary data 1). We searched experimental evidence of aggregation by these domains in the literature and found that the nucleoporin proteins are known to form amyloids [START_REF] Danilov | The human nup58 nucleoporin can form amyloids in vitro and in vivo[END_REF]. EAR containing proteins predicted by both ArchCandy 2.0 and TANGO are positively enriched in nucleoporin FG repeat region (CL0647). From the known functional amyloids described in the literature, we also found back RIPK1 and RIPK3 (Kajava et al., 2014) and PMEL17 [START_REF] Raposo | The dark side of lysosome-related organelles: Specialization of the endocytic pathway for melanosome biogenesis[END_REF], which were conserved in 6 distinct proteins from mammalians with the prediction of ArchCandy 2.0 but not Pasta 2.0 or TANGO.

Previous studies of Pfam domains and gene ontology (GO) term enrichment in amyloidogenic proteins [START_REF] Das | Sequence complexity of amyloidogenic regions in intrinsically disordered human proteins[END_REF]Prabakaran et al., 2017) pointed out the over-representation of membrane transport activity, pH and ion regulation and even cytoskeleton organization. However, they considered ARs not EARs. Therefore, we did not find back most of the previously mentioned functions in our analysis.

EAR sequences conserved in organisms

Another approach to find new functional amyloids is to search for EARs that are conserved among the organisms. For this purpose, we reduced EARs predicted by either ArchCandy 2.0, TANGO or Pasta 2.0 with CD-HIT [START_REF] Li | Cd-hit: A fast program for clustering and comparing large sets of protein or nucleotide sequences[END_REF]) at 70 % sequence identity and 90 % of coverage, to obtain a nonredundant set of the EARs (Table 1). Then, we selected conserved EAR sequences by running BLAST [START_REF] Altschul | Basic local alignment search tool[END_REF] for each EAR sequence against all proteins from our redundant database (Figure 10). This gave us for each EAR a Multiple Sequence Alignment (MSA) of similar sequences found in other proteins. Some sequences of the MSA were EARs the others were not according to the predictors.

We selected the MSAs with EARs in more than five other proteins and further reduced the MSA number by merging some of them, which shared at least 80 % of the same conserved EAR. This clustering results in 2218, 869 and 178 of the most conserved EAR sequences for ArchCandy 2.0, Pasta 2.0 and TANGO, respectively (Table 1). One can see that only a small number of EAR sequences are conserved out of more than one million proteins. Among them we found already known functional amyloids, such as RIPK3 and RIPK1 (Kajava et al., 2014) and PMEL17 [START_REF] Raposo | The dark side of lysosome-related organelles: Specialization of the endocytic pathway for melanosome biogenesis[END_REF]. This suggests that the list of the conserved EARs found by this protocol (Supplementary data 2) can be used for detection and experimental test of new functional amyloids. First, we detected a significantly lower percentage of EAR-containing proteins (about 10%) in comparison with a high percentage of AR-containing proteins in proteomes (about 80%). It shows that EARs correlate better with a small number of the known proteins forming aggregatres in vivo, and, therefore, EARs can be suggested as a more precise measure of the aggregation potential of proteins. We showed that there are more ARs in prokaryotes than in eukaryotes but this tendency is inverted for EARs. Second, we found that the thermophilic prokaryotes have significantly less EARs and ARs in comparison to mesophilic prokaryotes. The correlation may reflect an evolutionary pressure on the thermophilic proteins, because the amyloid formation rate constant increases with temperature [START_REF] Tiiman | In vitro fibrillization of Alzheimer's amyloid-β peptide (1-42)[END_REF].

In addition, in agreement with the previous studies, we observed slow decrease of the normalized AR coverage with the protein length. However, we do not observe the decrease of aggregation potential of sequences with the increase of the protein size when we consider EARs. In our opinion, the mechanism of prevention of aggregation of the long proteins has an entropic basis, when the other parts of the chain generate repulsive forces for intermolecular interactions similar to molecular brushes.

It worth mentioning that our analysis did not confirm previously published conclusions that the average aggregation propensity of a proteome correlates inversely with the complexity and longevity of the studied organisms [START_REF] Tartaglia | Organism complexity anti-correlates with proteomic β-aggregation propensity[END_REF]) [START_REF] Tartaglia | Organism complexity anti-correlates with proteomic β-aggregation propensity[END_REF].

It was also shown that proteins having different cellular localizations differ in the aggregation potential.

For example, the level of EAR containing proteins in nuclear proteins of eukaryotes is about two times higher than in the other cellular localizations. In prokaryotes, we observed more EAR-containing proteins among those involved in the secretory pathway in comparison to the transmembrane and cytosolic proteins. This tendency suggests that the secreted proteins being outside of the cell are under a reduced evolutionary pressure to avoid aggregation. Remarkably, a great majority of EAR-containing proteins are enriched in SLiMs in comparison to IDR-containing proteins without EARs. We also noticed that highly expressed proteins are less prone to aggregate suggesting that highly expressed proteins are under a greater negative selective pressure in order to avoid the aggregation. Finally, we revealed a greater level of aggregation predicted in non-essential proteins compared to essential proteins.

Thus, by leveraging the new computational tools for prediction of ARs and EARs and having access to high quality whole-proteome sequencing data, we performed the census of these regions in proteomes. A number of new relationships found in this work allowed us to understand better the functional and evolutionary relations of the protein aggregation in the organisms from the three kingdoms of life: eukaryote, bacteria and archaea.

The organisms selected in this study are well known and are representative of the diversity in the three kingdoms of life. Yet, we highlighted unique correlations between the level of aggregation-prone regions in some organisms, like for the example the lower level of aggregation-prone regions in thermophilic organisms. In order to increase the statistic relevance of these correlations, it would be beneficial to integrate more proteomes. Since the release of AlphaFold, thousands of precise protein structures are now available. It would be a great initiative to use these structures, associate them with the predictions of TAPASS and conduct similar analysis.

Introduction

Numerous soluble proteins convert to insoluble amyloid fibrils having crossβ-structure [1]. Formation of these fibrils can be associated with serious diseases called amyloidoses. Well known examples of amyloidoses include Alzheimer's disease, Diabetes type 2 and the spongiform encephalopathies (Mad cow disease). In addition, a number of functional amyloids have been identified, which have important, 'beneficial' roles [2]. The core of a majority of disease-related and functional amyloid fibrils is a columnar structure produced by stacking of β-strand-loop-β-strand motifs called 'βarches' [3][4][5][6][7][8][9][10][11][12]. Typically, the amyloid fibrils are homogeneous consisting of multiple copies of the same protein. In these fibrils, each polypeptide chain has the same βarc-containing conformation and these chains are stacked in a parallel and in-register manner (Fig. 1A). By now, however, a considerable body of data has been accumulated about co-aggregation of different amyloid-forming proteins in a common fibril [13]. A number of in vitro experiments show that small amyloid aggregates of one protein can serve as "seeds" for the aggregation of other proteins, which leads to the heterologous amyloid fibrils [14]. More importantly, the co-aggregation of the amyloid-forming proteins in vivo is linked to several fundamental phenomena. The most known of them is an infectivity of amyloid fibrils observed in prions. For example, 'mad cow' disease is intimately associated with conformational conversion of the soluble cow protein, PrP C , into an prion form, PrP Sc able to form amyloids [15]. Once these amyloids from cow protein find themselves in human cells, they co-aggregate with homologous human proteins transmitting 'mad cow' disease to human. The co-aggregation also plays a key role in the molecular mechanisms of functional amyloids. A well-known example is an axial co-aggregation of RIP1 and RIP3 kinases into amyloid fibrils via regions that are similar to RHIM-motif [16,17]. These fibrils participate in the induction of mammalian necrosis regulating cell death in response to viral infection or extracellular factors. Finally, the knowledge of molecular mechanisms of co-aggregation within the amyloid fibrils can open an avenue for a number of applications in nanobiotechnology, such as design of heterogeneous amyloids and their oligomers which carry different functional globules [18][19][20]. Among over 30 known cases of amyloid-related co-aggregation [13], an axial stacking of different proteins within the same amyloid fibril is one of the most common type of protein co-aggregation. The axial co-aggregation can differ by the distribution of two or more types of proteins alone the fibril. For example, two proteins can alternate with each other along the fibril axis; (ii) proteins stack within fibril without any particular order; and, (iii) a part of the fibril is formed by the first protein and the other part is formed by the second protein (Fig 1B). The amyloidogenic regions (AR) of the coaggregated proteins usually have similar amino acid sequences, as, for example, in RHIM motif of Rip1 and Rip3. However, in some cases, the amino acid sequences can be quite different (for example, in co-aggregated Sup35 and Rnq1 proteins).

Despite the importance of co-aggregation in the numerous processes, our knowledge of its structural aspects are limited. Furthermore, although bioinformatics tools for prediction of amyloid-forming regions are available, such as ArchCandy, Aggrescan, Pasta and Tango [21,24], methods for prediction of co-aggregation are absent. In this work, we developed and tested AmyloComp program, which is the first software allowing prediction of axial co-aggregation of proteins.

Results and Discussion

Structural principles underlining the algorithm

One characteristic common to many naturally-occurring and disease related amyloids is a cross-structure with parallel and in-register arrangement of βstrands [1]. The core of these amyloid fibrils is a columnar structure produced by axial stacking of β-strand-loop-β-strand motifs called 'β-arches' [8]. In the stacked b arches, their 2 strands are integrated into 2 different βsheets. These parallel in-register β-sheets face each other. The interior of this double-layer structure may accommodate axially stacked "ladders" of both apolar residues as well as H-bonded polar Asn and Gln. Our algorithm for prediction of the axial co-aggregation is based on the principle that a βarch, newly associated with the fibrils, should have a surface, which is complementary to the surface of the growing tips of amyloids (Fig 1C). One of the requirements impose by this rule is the continuation of the existing axial "ladders" of both apolar residues and polar Asn and Gln upon the binding of a new protein or peptide to the amyloid. To implement this rule, we need to have the 3D structure of amyloid fibril formed by the first protein and to evaluate the "complementarity" of axial stacking of the second protein onto the initial structure.

This method requires knowledge of the 3D structure of the analyzed amyloids. However, only several dozens of amyloid structures are known. It limits this approach to these known structures and makes impossible the large-scale analysis of co-aggregation, which represent the most interesting task. To overcome this problem, in addition to the known structures, we used β-arch structures predicted by ArchCandy. Furthermore, the application of ArchCandy allowed us to solve the problem of amyloid structure polymorphism. As a rule, the stacked β-arches have the same conformation within a given amyloid fibril, however, frequently, a protein with the same amino acid sequence can also form the homogeneous fibrils built of axial repetition of a different β-arch. For example, at present, about a dozen of different amyloid structures have been determined experimentally for Aβ-peptides related to Alzheimer's disease [25,26] and, probably, a number of the structures are still unknown. In this situation, again, we need to use a β-arch prediction method, such as ArchCandy to obtain a more complete set of possible β-arch-containing structures. Figure 2 shows a general scheme of the algorithm. First, the amyloidogenic regions of two analyzed proteins and their β-arches are predicted by ArchCandy. The recommended ArchCandy score was equal or over 0.56. This score was divided by a correlation factor ArchLengthScore , which depends on the length of the β-strands. The ArchLengthScore= 1-(0.0003462x(2xL-7-45) 2 ), where L is a total length of β-strands in the β-arch. This factor was used to penalize the selection of very short β-arches in the original ArchCandy scoring function [21]. Second, the β-arches of two proteins are evaluated for their potential to stack in a common cross-β fibril. If the compatibility of the β-arches are found, our program predicts co-aggregation of these two proteins and if not then the conclusion is that these proteins cannot form the common fibril (Fig 2 ). 

Prediction and filtering of β-arches

The ArchCandy program [21] was updated [27] and used in this work. The predicted ARs overlapping with regions having potential to form any stable 3D structures were excluded from the analysis and only ARs, and more exactly, β-arches consisting of a β-arc and at least three flanking residues from both sides located within intrinsically disordered regions (IDR) were considered. The IDRs were predicted by the IUPred program [28]. A certain region was marked as IDR if it had at least 30 residues and all these residues had IUPred score more than 0.3. The default value of the score (0.5) recommended by IUPred was changed to 0.3 because this threshold provides a better correlation with the results of MetaDisorderMD2, which gave the best results at the CASP9 contest (Suppl Fig 1) [29]. This conditions were applied to proteins of more than 45 residues. Shorter peptides independently of their IUPred scores were considered as unstructured by default.

Scoring function for evaluation of β-arch compatibility

To evaluate the probability of two β-arches to stack along the fibril axis we introduced a scoring function, called Compatibility Score (CS), that is a product of several scores reflecting specific interactions that are essential for β-arch co-aggregation: CS = CS ARC × CS OUT × CS IN × ArchLengthScore. The values of the total and individual scores range from 0 (improbable candidate) to 1 (highly probable candidate). The individual scores are: compatibility of β-arc conformations (CS ARC ), compatibility of side chains located inside and outside of the β-arches (CS IN and CS OUT ), and a correction factor, which depends on β-strand lengths in the β-arches (ArchLengthScore).

Compatibility of the backbone H-bonding (CS ARC )

Previously, we identified 7 principal β-arcs in the known 3D structures of βsolenoid proteins [30]. These β-arcs were used in ArchCandy1.0 [21]. Arch-Candy2.0 [27] uses two additional β-arcs found in our updated dataset of βsolenoids bringing the total number of β-arcs to 9 (Fig 3F). CS ARC score evaluates potential of two different β-arches to form H-bonds between their peptide groups when these β-arches are axially stacked in the parallel and in register arrangement. CS ARC score (Fig. 3F) is a product of CS ARC_RMSD and CS ARC_H scores (Supplementary Tables 1, 2 and 3).

CS ARC_RMSD evaluates the H-bonding network of the β-strands by calculating the RMSD between the axial projections of these β-arches, namely, between the superimposed Cα atoms of 3 residue β-stands adjacent to the β-arcs (Fig 3E). The rationale behind this approach was that when two β-arches do not have an axial displacement in the parallel and in register arrangement, as it is observed, for example, between β-arches with the same β-arc conformation, their β-stands form the ideal H-bond network. Any displacement leads to the deformation of the H-bonding (Supplementary Table 4 [MinRMSD]). The scoring function CS ARC RMSD was calculated by using a formula CS ARC RMSD = 20 / (e (5 × RMSD) + 19) that was found empirically to yield the best results (Supplementary Table 2). Examples of pairs of βarches with small (arcs GBPL and BEPL) and high (GBPL and GBEB) displacement of β-strands are presented on the figure 3E. The PyMol software was used for the superposition of the β-arches [45]. CS ARC _H score evaluates the H-bonding of peptide groups between two stacked β-arcs. We manually analyzed the network of hydrogen bonds in the 3D structures of all possible pairs of β-arcs. The results of this analysis with the values of CS ARC H are summarized in the Supplementary 

Compatibility of side chains within β-arches (CS IN and CS OUT )

In addition to the compatibility of the backbone conformations, the axial stacking of β-arches requires compatibility of protein sequences. Usually, the known amyloid structures represent the stacked columns of the parallel and in-register β-arches. In such arrangements, the same side chains recur in the same positions and are axially nearest neighbors. The constraints imposed by inner side chains of β-arches on stabilization of the fibril structure are more important than the ones of outer residues. Generally, the axially nearest neighbors in the hydrophobic interior of the fibril may accommodate either apolar residues or uncharged polar Asn and Gln engaged in Hbonded ladders [8]. At the same time, the outer side chains are less restrictive being exposed to the solvent. Therefore, we used two separate scores: CS IN and CS OUT for inner and outer side chains, correspondingly. Individual compatibility scores (CS AA_IN or CS AA_OUT ) for all pairs of residues are presented on Figure 3C and Supplementary Tables 5 and6. They were chosen based on physico-chemical properties of amino acid side-chains and frequency of occurrence of these pairs in the known β-solenoid structures. The CS IN and CS OUT scores are the geometrical means of the individual scores for residues in the analyzed pair of β-arches. The geometrical mean is chosen to enhance the impact of the prohibiting rules (zeros in matrices of CS AA_IN ). 

Trimming and evaluation of compatibility of two β-arches

Prior to the calculation of the CS score, when the lengths of the β-strands in the two evaluated β-arches were different, we trimmed down the longest βstrands to equalize them with the shortest ones. Thereafter, we continued to trim two evaluated β-arches simultaneously at the N-and C-termini until their β-strands become 3-residue long and calculate the CS score of the all shorten variants. Finally, for a given pair of the compared β-arches, we store the variant with the highest CS score.

Evaluation of possibility for two proteins to co-aggregate

An amyloidogenic region of a protein usually folds in the same conformation in the amyloid fibril. However, β-arch-containing conformation of a given AR is not unique and this AR can form several other β-arch conformations, which can also be stacked into an amyloid fibrils of different structure [25,26]. To predict the potential of two different proteins to co-aggregate we needed to compare the most complete set of their ARs taking into consideration all possible conformations of each AR. For this purpose, at the initial stage of the analysis, we used ArchCandy2.0 program to predict all possible β-arches within the evaluated ARs. Thereafter, AmyloComp program compared all possible combinations of the predicted β-arches. If the CS score for a certain pair was above the threshold (0.33, see the Result section for details), these β-arches were considered to be compatible. At the next step, the compatible β-arches are used for the calculation of Cumulative CS. This score is represented as a matrix (Fig 4), with the number of rows corresponding to the length of the first protein and the number of columns -to the length of the second protein. Each value of the matrix element is the sum of CS scores for β-arch pairs located in this matrix element (Fig. 4). Finally, the conclusion about the probability of the axial co-aggregation of two proteins is made based on the maximal value of Cumulative CS in the matrix.

Construction of a dataset of proteins with the known co-aggregation properties

For a benchmark of the AmyloComp performance and calibration of its parameters, we selected pairs of proteins, which are known from experimental data to be able (or not) to co-aggregate (Table 1). Among them are 9 pairs of proteins, which are able to co-aggregate and 3 pairs of Prions het-s and het-S [41] Prion het-s and NWD2 [42] HELLP and SBP [43] PGRP-LE and Imd [38,44] Known pairs of proteins unable to co-aggregate

Rip1 and Rip3, with core motif VQVG substitute by AAAA [38] Prion het-s and HELLP [43] PGRP-LC and Imd [38,44] Benchmark of AmyloComp on the dataset of proteins with the known coaggregation properties

Thanks to the benchmark dataset, we were able to adjust the threshold values of the scores. For pre-selection of β-arches of two analyzed proteins, we used the ArchCandy score threshold divided by the β-strand correlation factor (ArchLengthScore) mentioned above. As a result, this threshold was equal to 0.56. The threshold of CS for a positive decision about the ability of two β-arches from different proteins to co-aggregate was chosen as 0.33 (Fig 5). This value gives the best proportion of true positive vs false negative. The Cumulative CS was used for the final decision about co-aggregation of two proteins. Based on the analysis of the known pairs of proteins, we established a value of Cumulative CS, which allows the best distinction between co-aggregated and aggregated separately pairs of proteins, as 0.735 (see Fig. 5). 

Conclusions

Despite the importance of co-aggregation of proteins in the amyloid structures, computational tools for prediction of co-aggregation are absent. By using an approach based on structural similarity of the growing tips of amyloids, we developed a computer program AmyloComp to predict amyloidogenic β-arch structures that are able to interact with each other by the axial stacking. Furthermore, we built a dataset of a dozen of the experimentally known pairs of proteins that are either co-aggregate or aggregate separately from each other. We used this data for the benchmark and improvement of our algorithm. As far as we know, the AmyloComp program is the first software allowing prediction of the axial co-aggregation of proteins in the amyloid fibrils. Its development should speed up the experimental tests of co-aggregation and eventually lead to the understanding of this phenomenon.
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The second main objective was the study of amyloidogenicity on a large set of proteins. We performed this analysis by applying TAPASS on 76 reference proteomes from the three kingdoms of life (archaea, bacteria and eukaryote), for a total of 1 123 749 proteins. The study of the generated data allowed us to establish several consensual observations on the amyloidogenicity of proteins. Among other things, we have shown the relevance of studying exposed amyloidogenic regions as a more precise metric to evaluate the potential of proteins amyloidogenicity. To continue the exploration of the amyloidogenicity in proteins, we can perform a similar analysis, this time by focusing on isoform proteins. Indeed, our study considers full reference proteomes which contain both canonical and isoform proteins. It will be of great interest to focus on the comparative study of amyloid structures between canonical proteins and their isoforms. We can also perform a large scale analysis of the amyloidogenicity in viral proteomes. Plus, the prediction of AmyloComp on viral proteins could lead to the identification of co-aggregation between viral and human proteins.

Further discoveries are expected to come in the area of structural predictions, especially with the improvement of deep learning and machine learning. A breakthrough has already been done with AlphaFold [START_REF] Jumper | Highly accurate protein structure prediction with AlphaFold[END_REF], that showed a precision in structure prediction never seen before. Yet, there is always room for improvement, the present version of AlphaFold can not be used for the prediction of amyloid structures.
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 11 Figure 1.1. Animals classification from Systema Naturae 10th edition (Carl von Linné, 1758)

Figure 1 . 2 .

 12 Figure 1.2. Peptide bond formation between two amino acids adapted from [1].
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 112 Protein backbone and its torsion anglesEach amino acid residue in the polypeptide backbone has 3 specific torsion angles defining its conformation. The ψ, φ and ω angles correspond to the torsion angle between C -Cα bond, N -Cα bond and N -C bond respectively (see Figure1.3)[4].

Figure 1 . 3 .

 13 Figure 1.3. Graphical representation of the polypeptide backbone with the three torsion angles.

Figure 1 . 4 .

 14 Figure 1.4. Ramachandran plot, φ angle in abscisse and ψ angle in ordinate ranging from -180°to 180°, showing about 100,000 data points for general amino-acid types (not Gly, Pro, or pre-Pro) in high-resolution crystal structures, adapted from [5].

Figure 1 . 5 .

 15 Figure 1.5. Secondary structure representation : (A) stick representation of an α-helix with intramolecular H-bonds in yellow; (B) cartoon representation of four α-helices; (C) stick representation of three β-strands forming a β-sheet, H-bonds are in yellow; (D) cartoon representation of three anti-parallel β-strands.

Figure 1 . 6 .

 16 Figure 1.6. Structure representation of human FLRT3 LRR domain using Pymol software on 6JBU structure from PDB.
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 14 Figure 1.7.Structure representation of human FLRT3 LRR domain in complex with mouse CIRL3 olfactomedin like domain using Pymol software on 6JBU structure from PDB.

Figure 1 . 8 .

 18 Figure 1.8. Structure representation of 5 different models from spinach thylakoid soluble phosphoprotein using Pymol software on 2FFT structure from PDB. The α-helix has a stable conformation, unlike the IDRs neighbouring having very different conformations.

Figure 1 . 9 .

 19 Figure 1.9. Protein phase transition : Material state and dynamics can vary in a wide range from liquid-like to solid-like states (A). The protein FUS, which can span the entire range of material states in vitro (B). Membraneless organelles and their reconstituted in vitro counterparts (C). Several membraneless organelles have complex topologies with different subcompartments that may belong to different states (D). Scale bars are 5 µm unless indicated, adapted from [24].
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 110 Figure 1.10. Fibril organization of amyloid observed under electron microscopy, adapted from [26].
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 21 Structure and aggregation attributes of amyloids 1.2.1.1 Common structural characteristics

Figure 1 .

 1 Figure 1.11. Schematic representation of a single amyloid structure (A) and the amyloid fibril that it is forming (B), using Pymol software on 2MPZ structure from PDB.

Figure 1 .

 1 Figure 1.12. H-bond (dotted lines) between β-strands (arrows) in β-hairpin (left) and between two β-arches (right) [46].

Figure 1 . 13 .

 113 Figure 1.13. Simplified representation of the phases in amyloid fibrils formation [49].

Figure 1 . 14 .

 114 Figure 1.14. Amyloid folds and protofibril polymorphism, using Pymol software on structures 2BEG (A), 6Y1A (B), 2M4J (C), 7MKF (D), 7QJX (E) and 3ZPK (F) from PDB.

Figure 1 . 15 .

 115 Figure 1.15. Brain section under MRI depicting normal (a), mild (b), moderate (c), and severe (d) cortical atrophy, respectively [56].

Figure 1 . 16 .

 116 Figure 1.16. Representation of hypothesis on amyloids interaction with membrane [58].

  ). The curli fibers CsgA, attached to the membrane, are secreted from bacterial cells after CsgB nucleates fibrillization of CsgA. Curli expression is dependent on the nutrient availability, as it increases in response to starvation. It provides cell adhesion, protection against environment and helps in the formation of a network essential for the prosperity of a colony[START_REF] Serra | Microanatomy at cellular resolution and spatial order of physiological differentiation in a bacterial biofilm[END_REF]. The well studied filamentous bacteria Streptomyces coelicolor is exploiting the special structure of amyloid with the secretion of the chaplins protein family. It allows the formation of a mat of fibers and the growth of aerial hyphae. Chaplins provide rigidity, protection

Figure 1 . 17 .

 117 Figure1.17. Scaning electon microscopy (SEM) images of curli fibers in Escherichia coli colony with a magnification of 12000x (A) and 50000x (B) (adapted from[START_REF] Serra | Microanatomy at cellular resolution and spatial order of physiological differentiation in a bacterial biofilm[END_REF]).

Figure 1 . 18 .

 118 Figure 1.18. Cell death caused by amyloid formation of RHIM-like motifs [65].

Figure 1 . 19 .

 119 Figure 1.19. Pmel17 function in the synthesis of melanin, (a) Pmel17 is synthesized in the endoplasmic reticulum (i); it is trafficked first to the Golgi (ii) and finally to melanosome organelles. Proprotein convertase (PC) cleavage in a post-Golgi compartment creates a lumenal fragment, Mα, and a transmembrane fragment, Mβ. Mα remains disulfide-bonded to Mβ to prohibit aberrant Mα amyloidogenesis (iii). Degradation of Mβ releases Mα from the membrane (iv), enabling Mα to form amyloid fibers within the melanosome organelle (v). Mα amyloid fibers orchestrate the synthesis of melanin (vi). (b) Electron micrograph depicting the four-stage process of melanosome maturation. Adapted from [59, 66].
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 3 Development of a bioinformatic method to predict the co-aggregation of amyloidogenic regions, called AmyloComp. It evaluates the compatibility of two different β-arches to aggregate with each other. The method is based on the detection of β-arches with the help of the improved version of ArchCandy 2.0. Chapter 2 TAPASS: Tool for annotation of protein amyloidogenicity in the context of other structural states Aggregation AlphaFold Amyloid Intrinsically Disordered Regions Proteome-wide analysis Bioinformatics A B S T R A C T

  and an in-house predictor called BISMM filter, for structured domains we use CATH associated with HMMER 3.3 (Dawson et al., 2017; Eddy, 2011), for transmembrane regions, TMHMM (Krogh et al., 2001), for signal peptides, SignalP (Petersen et al., 2011), for short linear motifs, SLiMs (Kumar et al., 2020; Ruhanen et al., 2014), for structural and functional domains, Pfam (El-Gebali et al., 2018), for amyloidogenic regions, ArchCandy 2.0 (Ahmed et al., 2015), TANGO (Fernandez-Escamilla et al., 2004) and PASTA 2.0 (Walsh et al., 2014) (Fig.

Fig. 2 .

 2 Fig. 2. Component diagram of TAPASS (standalone version) with option Protein sequence query (panel A) and option AlphaFold model query (panel B). For proteome-wide analysis, the first type of input represents a file in the UniProt Text format, which can be downloaded automatically from the UniPort database (Bateman, 2019). Every component of the pipeline works independently from the others. It allows to manage different predictors in a cluster computing environment.The result of the analysis can be stored as a CSV, a YAML file or get inserted in a relational database (MySQL). For the online tool designed for the prediction of individual proteins, the input is either an amino acid sequence in the FASTA format or AlphaFold model in the PDB format. The output is graphically visualized and can be downloaded by users as a CSV file.

Fig. 3 .

 3 Fig. 3. Prediction of unstructured (IDR) and structured (SR) regions based on the priority rules used in the pipeline. An N-terminal region predicted as a signal peptide is excluded from our SR /IDR assignment.

  located in the nucleus carry a Nuclear Localisation Signal (NLS), which can be found by the presence of 4 SLiMs (ELME000270, ELME000271, ELME000276 and ELME000278) (Kumar et al., 2020). Furthermore, SLiMs detection can tell us to which other cellular compartments the analysed protein is addressed, the post-translational modifications it can have (phosphorylation, glycosylation,…), its cleavage sites, potential degradation motifs, and protein-protein interactions. TAPASS is also using CATH and Pfam (Dawson et al., 2017; El-Gebali et al., 2018) predictions that represent sources of information regarding structure and function of protein domains.

Fig. 4 .

 4 Fig. 4. AlphaFold model of Human Receptor-interacting serine/threonine-protein kinase 3 (hRIPK3). Structured domain is shown in blue, IDR is in yellow and EAR predicted by ArchCandy is in magenta. The EAR correspond to the RHIM motif, which is known to form functional amyloid fibrils mediating virus-induced necrosis of human cells (Kajava et al., 2014).

Fig. 5 .

 5 Fig. 5. An output webpage of TAPASS showing, as an example, the prediction results for human oligodendrocyte-myelin glycoprotein protein (OMGP_HUMAN). More detailed information about positions of the regions, IDs of SLiMs, CATH, PFAM is stored in the corresponding CSV file.
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  Ahmed et al., 2015; Ahmed and Kajava, 2013; Conchillo-Solé et al., 2007; Fernandez-Escamilla et al., 2004; Gaetano Tartaglia and Vendruscolo, 2008; Thompson et al., 2006; Walsh et al., 2014). (Louros et al., 2020; Wojciechowski and Kotulska, 2020). Availability of the computational tools for prediction of amyloidogenic regions made it possible to obtain a more general view on this phenomenon by using in silico analysis of the whole-proteome data. Previous in silico studies revealed a number of interesting observations (Antonets et al., 2018; Antonets and Nizhnikov, 2017; Castillo et al., 2011; Chen and Dokholyan, 2008; Das et al., 2014; De Groot and Ventura, 2010; Goldschmidt et al., 2010; Monsellier et al., 2008; Prabakaran et al., 2017; Tartaglia et al., 2008, 2005; Tartaglia and Vendruscolo, 2009). For example, a study of six proteomes (P. tetraurelia, S.

  informations from UniProt (Bateman, 2019) (gene id, GO term, version, modification date...). The pipeline uses: IUPred (Dosztányi et al., 2005) and our in-house predictor (IDRs), CATH associated with HMMER 3.3 (structural domains) (Dawson et al., 2017; Eddy, 2011), TMHMM (transmembrane regions) (Krogh et al., 2001), SignalP (signal peptide) (Petersen et al., 2011), SLiMs (short linear motifs) (Kumar et al., 2020; Ruhanen et al., 2014), Pfam (structural and functional domains) (El-Gebali et al., 2019), Pasta 2.0 (Walsh et al., 2014), TANGO (Fernandez-Escamilla et al., 2004) and updated version of ArchCandy 2.0 (aggregation-prone regions) (Ahmed et al., 2015; Falgarone et al., 2022).

  Figure 3. Level of amyloidogenicity according to the three amyloid predictors in prokaryotes and eukaryotes. Coverage of ARs (A), proportion of AR-containing proteins (B), coverage of EARs (C), proportion of EAR-containing proteins (D) and coverage of EARs in IDRs (E). For statistical analysis between eukaryotic and prokaryotic organisms we performed a t-test for amyloidogenic predictors individually (ns: non-significant; * : p-value < 0.05 ; ** : p-value < 0.01 ; *** : p-value < 0.001 ; **** : pvalue < 0.0001).

Figure 7 .

 7 Figure 7. Frequency of occurrence of EAR containing proteins predicted by ArchCandy 2.0 (A), Pasta 2.0 (B) and TANGO (C). Proteins are grouped based on their abundance in ranges of 5 ppm, proteins with 50 ppm or more are grouped in one range.

  Figure 8. Coverage of EAR in essential and non-essential proteins in eukaryote (A) and prokaryote (B) organisms. Proportion of EAR containing proteins known as essential or non-essential in eukaryote (C) and prokaryote (D) organisms. For statistical analysis between essential and non-essential proteins we performed a t-test for amyloidogenic predictors individually(ns : non-significant; * : p-value < 0.05 ; ** : pvalue < 0.01 ; *** : p-value < 0.001 ; **** : p-value < 0.0001).

Figure 9 .

 9 Figure 9. Ratio of proportions of SLiMs in EAR-containing proteins and in IDR-containing proteins without EAR, predicted by three predictors. Each dot represents a given SLiMs grouped in 6 classes denoted by different colors. The majority of the SLiMs have their ratios greater than 1.0 (red dotted line), meaning that they are enriched in EAR-containing proteins.

Figure 10 .

 10 Figure 10. Protocol for the evaluation of EAR sequence conservation.

Figure 1 .

 1 Figure 1. A. Typical amyloid fibrils consist of multiple copies of the same protein (in green) stacked in a parallel and in-register manner. B. Different types of axial co-aggregation of two different proteins (in green and magenta) in one common fibril. C. Schematic picture explaining basic rules on which the principles of the axial co-aggregation are based. One of the requirements impose by this rule is the continuation of the existing axial "ladders" of either apolar residues and polar Asn and Gln upon the binding of a new protein or peptide to the amyloid.

Figure 2 .

 2 Figure 2. A general scheme of the algorithm.

Fig. 3 .

 3 Fig. 3. The CS calculation. A. An example of two β-arches, which are tested for the ability to stack to each other. Different colors mark residues being exposed or not to the solvent. B. A schematic representation of β-arches from the panel A. Red lines links the residues, which are compared. C. The matrices of CS AA_INNER and CS AA_OUTER . D. The analysis of hydrogen bonds compatibility between the β-arcs. Only the main chains of β-arches are shown. The color of the main chains corresponds to different types of β-arcs E. The analysis of β-strands displacement caused by the difference of β-arcs conformations. Dotted lines mark Cα atoms, which are used for alignment and RMSD calculation. F. The matrix of CS ARC. The color code is the same as in the Panel C.

Figure 5 .

 5 Figure 5. Selection of the thresholds for score of ArchCandy, CS and Cumulative CS. The results of the analyzed threshold values (on the left) suggest the best combination of ArchCandy score and CS thresholds (outline by red frame) at which we do not have false negative results and have the maximal number of true positive predictions. On the right, a histogram of the maximal 𝐶𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝐶𝑆 for the analyzed pairs of proteins from our dataset at the most optimal values of the thresholds (𝐶𝑆 > 0.33, 𝐴𝑟𝑐ℎ𝐶𝑎𝑛𝑑𝑦𝑆𝑐𝑜𝑟𝑒 > 0.56). Red horizontal line is equal to the recommended threshold of 𝐶𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝐶𝑆 = 0.735 for detection of proteins able to co-aggregate.
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1. 20 amino acids names, 3 and 1 letter code, chemical structures and physico-chemical properties
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	Amyloid	Precursor protein	Systemic (S), localised (L)	Disease or organ involved
	AL	Immunoglobulin light chain	S, L	All organs, usually except CNS
	AH	Immunoglobulin heavy chain	S, L	All organs except CNS
	AA	(Apo) serum amyloid A	S	All organs except CNS
	ATTR	Transthyretin, wild type	S	Heart mainly in males, lung, ligaments, tenosynovium
	ATTR	Transthyretin, variants	S	PNS, ANS, heart, eye, leptomeninges
	Aβ2M	β2-microglobulin, wild type	S	Musculoskeletal system
	Aβ2M	β2-microglobulin, variants	S	ANS
	AapoAI	Apolipoprotein A I	S	Heart, liver, kidney, PNS, testis, larynx, skin
	AApoAII	Apolipoprotein A II, variants	S	Kidney
	AApoAIV Apolipoprotein A IV, wild type	S	Kidney
	AApoCII	Apolipoprotein C II, variants	S	Kidney
	AApoCIII	Apolipoprotein C III, variants	S	Kidney
	AGel	Gelsolin, variants	S	KidneyPNS, cornea
	ALys	Lysozyme, variants	S	Kidney
	ALECT2	Leukocyte chemotactic factor-2	S	Kidney, primarily
	AFib	Fibrinogen α, variants	S	Kidney, primarily
	ACys	Cystatin C, variants	S	CNS, PNS, skin
	ABri	ABriPP, variants	S	CNS
	ADanb	ADanPP, variants	L	CNS
	Aβ	Aβ protein precursor	L	Alzheimer
	AαSyn	α-Synuclein	L	CNS
	ATau	Tau	L	Tauopathy
	APrP	Prion protein	L	Spongiform encephalopathy
	APrP	Prion protein variant	S	Spongiform encephalopathy
	ACal	(Pro)calcitonin	LS	C-cell thyroid tumoursKidney
	AIAPP	Islet amyloid polypeptidec	L	Islets of Langerhans, insulinomas
	AANF	Atrial natriuretic factor	L	Cardiac atria
	APro	Prolactin	L	Pituitary prolactinomas, aging pituitary
	AIns	Insulin	L	Iatrogenic, local injection
	ASPCd	Lung surfactant protein	L	Lung
	ACor	Corneodesmosin	L	Cornified epithelia, hair follicles
	AMed	Lactadherin	L	Senile aortic, media
	AKer	Kerato-epithelin	L	Cornea, hereditary
	ALac	Lactoferrin	L	Cornea
	AOAAP	Odontogenic ameloblast -associated protein	L	Odontogenic tumours
	ASem1	Semenogelin 1	L	Vesicula seminalis
	AEnf	Enfurvitide	L	Iatrogenic
	ACatKe	Cathepsin K	L	Tumour associated
	AEFEMP1e	EFEMP1	L	Portal veinsAging associated
	Ap53	P53	S	Cancer

2. List of human diseases linked to amyloid proteins, adapted from

[20] 

Table 1 .
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	AGGRESCAN ; Zyggregator ; Waltz ; SALSA ; PAGE ;
	TANGO ; FoldAmyloid ; PASTA 2.0 ; SecStr ;
	ArchCandy ; BetaSerpentine ; BETASCAN ;
	AmyloidMutants ; STITCHER ; GAP
	ANuPP ; PATH ; NetCSSP ; FISH amyloid ;
	RF Amyloid ; Budapest ; CORDAX ; AgMata ;
	Pre-Amyl-MLP ; AbAmyloid ; Pafig ; APPNN ;
	Amylogram
	Solubis ; Aggscore ; SAP ; AGGRESCAN3D 2.0 ; Camsol
	Amylpred 2 ; MetAmyl

3

. List of amyloid predictor tools, adpated from

[START_REF] Navarro | Computational methods to predict protein aggregation[END_REF] 

  al., 2015; Conchillo-Solé et al., 2007; Fernandez-Escamilla et al., 2004; Gaetano Tartaglia and Vendruscolo, 2008; Thompson et al., 2006; Walsh et al., 2014). Based on this data, several computational programs for prediction of protein amyloidogenicity have been developed (reviewed in Ahmed and Kajava, 2013).

Table 1 .

 1 Number of EARs at each step of the protocol.

	Predictor	Number of	EARs found	EARs found 2	EARs	Number of clusters
		non-redundant	one time in	to 5 times in	found	with the most
		EARs	MSA	MSA	more than	conserved EARs
					5 times in	
					MSA	
	ArchCandy 2.0	93229	72153	16124 (17.3%) 4952	2218
			(77.4%)		(5.3%)	
	Pasta 2.0	42997	35412	5683 (13.2%) 1902	869
			(82.4%)		(4.4%)	
	TANGO	13816	12342	1219 (8.8%)	255	178
			(89.3%)		(1.8%)	

Table 3 [

 3 CS ARC

_H ]. Examples of compatible (GBPL and BEPL) and incompatible (GBPL and GBEB) β-arcs are presented on the figure 3D.

Table 3 [

 3 CS ARC_RMSD ]

	BLLPBL BLPPPX AXEBL BED BLLPBL 1.000 0.002 0.013 0.176	BEPL BLBBL GBEB GBPL PPL 0.717 0.920 0.331 0.444 0.083
	BLPPPX 0.002 AXEBL 0.013	1.000 0.000	0.000 1.000	0.015 0.218	0.107 0.384	0.026 0.118	0.001 0.003	0.003 0.567	0.010 0.484
	BED BEPL	0.176 0.717	0.015 0.107	0.218 0.384	1.000 0.798	0.798 1.000	0.589 0.857	0.027 0.116	0.787 0.963	0.950 0.877
	BLBBL GBEB	0.920 0.331	0.026 0.001	0.118 0.003	0.589 0.027	0.857 0.116	1.000 0.547	0.547 1.000	0.690 0.142	0.313 0.042
	GBPL PPL	0.444 0.083	0.003 0.010	0.567 0.484	0.787 0.950	0.963 0.877	0.690 0.313	0.142 0.042	1.000 0.938	0.938 1.000
	Supplementary Table 4 [Min_RMSD]					
	BLLPBL BLPPPX AXEBL BED BLLPBL 0 1.866 1.463 0.91	BEPL BLBBL GBEB GBPL PPL 0.437 0.202 0.745 0.652 1.081
	BLPPPX 1.866 AXEBL 1.463	0 3.385	3.385 0	1.441 0.857	1.024 0.7	1.327 1.003	1.997 1.796	1.791 0.558	1.518 0.621
	BED BEPL	0.91 0.437	1.441 1.024	0.857 0.7	0 0.36	0.36 0	0.541 0.294	1.319 1.007	0.372 0.114	0.143 0.267
	BLBBL GBEB	0.202 0.745	1.327 1.997	1.003 1.796	0.541 1.319	0.294 1.007	0 0.573	0.573 0	0.46 0.96	0.761 1.225
	GBPL PPL	0.652 1.081	1.791 1.518	0.558 0.621	0.372 0.143	0.114 0.267	0.46 0.761	0.96 1.225	0 0.168	0.168 0
	Supplementary							

Table 5 [

 5 CS AA_IN ]
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Chapter 3

Census of exposed aggregation-prone regions in proteomes
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Abstract

Motivation: Typically, naturally occurring amyloid fibrils consist of multiple copies of the same protein. In these fibrillar structures, each polypeptide chain has the same β-arc-containing conformation and these chains are stacked in a parallel and in-register manner. In the last few years, however, a considerable body of data has been accumulated about co-aggregation of different amyloid-forming proteins. Among known examples of the co-aggregation are heteroaggregates of PrP Sc prion from human and animals, of different yeast prions, of human proteins Rip1 and Rip3 and of bacterial CsgA and CsgB proteins. Since the coaggregation is linked to such important phenomena as infectivity of amyloids and molecular mechanisms of functional amyloids, we analyzed its structural aspects in more details.

Results: An axial stacking of different proteins within the same amyloid fibril is one of the most common type of protein co-aggregation. By using an approach based on structural similarity of the growing tips of amyloids, we developed an algorithm to predict amyloidogenic β-arch structures that are able to interact with each other by the axial stacking. Furthermore, we built a dataset of a dozen of the experimentally known pairs of proteins that are able to co-aggregate and used this data to test and improve our algorithm.

protein that form only homo-fibrils in the mixed solution. Sup35 and Rnq1 [32][33][34][35][36][37] Rip1 and Rip3 [16] Rip1 and Rip3, with core motif VQVG substitute by VTFG [38] csgA and csgB [39,40] Author contributions 

Conclusions and perspectives

This manuscript presents the work done during the four years of my thesis on the study of protein amyloidogenicity. Amyloids are of a special interest, firstly, for their ability to form fibrils, which appear more frequently in aged people. Secondly, for their implication in several neuropathologies, like Alzheimer's disease, Huntington's disease, Parkinson's disease or type II diabetes. Taking into consideration that the life expectancy of the population increases, it is certain that these diseases will be of greater importance in the years to come. Thirdly, despite their deleterious aspect for cells, some organisms dealt with it and used amyloid fibrils to their advantage.

Several examples of functional amyloids are known from prokaryote to eukaryote organisms. This rise the question about the way amyloidogenic proteins evolved in the living world.

This thesis had two main objectives. First, the development of tools for the prediction of amyloidogenic regions. Second, the use of these tools on a large scale comparative analysis of proteomes in order to study the protein amyloidogenicity in organisms. It has been done with TAPASS that gives a census result with the use of three amyloidogenic predictors. But more importantly, it also brings a structural context in which amyloidogenic regions are in the proteins, an element that was lacking in the other existing tools despite its importance. TAPASS was made available for all users on our web interface. Then, we developed AmyloComp program, for the prediction of co-aggregation between two different amyloidogenic regions.

The recent publications of new experimentally determined amyloid structures offer new perspectives in this area of research. The new structures show a more complex diversity of the fibrils, especially for β-arch containing structures, that existing predictors can not identify. Our amyloidogenic predictor, ArchCandy, is based on the detection of classical β-arches, so its update based on these new data is expected in the near future. We can say the same about TAPASS, the databases and predictors of protein structures will surely be improved, and so, TAPASS will have to continuously be kept updated as well. Thanks to a good architecture, it will be easy to replace or add new tools into this pipeline.

List of Figures