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Abstract

In recent years, we have witnessed a paradigm shift in analytical database systems
over large and scalable resources. In particular, as an alternative to relational database
management systems (RDBMS) with local data storage, there is an emergence of new
data management systems (DMS) with remote and distributed data storage with respect
to big data and cloud computing. More precisely, such systems can employ a layer or
dis-aggregated storage model, where the elastic compute layer accesses data on an inde-
pendently scalable remote storage. Given the relatively high latency in communication
with respect to low bandwidth between these above layers, we consider that caching data
at the compute layer now has become more important. Indeed, a cache system can in-
crease fine-grained re-usability of data to mitigate unnecessary query re-executions. In
summary, we are witnessing a renewed spike in caching technology for these DMSs where
the hot data is kept at the compute layer in fast local storage of limited size to accelerate
query processing.

The caching solutions usually operate as a black-box for simplicity, employing standard
cache replacement policies such as Least Recently Used (LRU). In general, every applica-
tion implements its own caching layer tailored to its specific requirements. In short, these
above problems can be seen as basic concern of cache services, in particular, management
and replacement. Thus, we require a caching framework, which facilitates the construc-
tion process of cache services in a variety of applications. More precisely, such framework
should be flexible and scalable to different environments, infrastructures or requirements
regarding to architecture of DMS. Although the frameworks of cache services have been
studied, most of them are presented with respect to traditional caching mechanism, in
particular, page or block cache.

Conventionally, cache utilization like page or block seems to be low, as even one needed
record or value in a page/block requires to retrieve and cache the entire page/block, leading
to waste valuable space in the cache. Moreover, there is no exploitation of the knowledge
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of queries themselves or checking their partly equivalence. Thus, these cache mechanisms
can result to a low hit ratio, especially in applications with a chain of queries in order to
refine the results such as in log analysis domain.

As an alternative approach to the traditional caches, Semantic Caching (SC) overcomes
these issues by exploiting resources in the cache and knowledge contained in the queries.
Generally, most of the SC approaches evaluate the queries and reuse their information from
logical description, named semantic, rather than checking satsifiability of cached data with
respect to query condition. To do that, SC has to rewrite the original query if necessary to
new relevant sub-queries split in answerable (probe) and non-answerable (remain) parts of
cached data. Nevertheless, the complexity of this procedure, named query rewriting, can
induce a high overhead in checking equivalence or satisfiability because of its excessive
computation. Noticeably, beside the algorithm of query rewriting, the capability of the
infrastructure plays an important role to solve the presented issue in SC.

Basically, to maintain the performance of the infrastructure, there are two approaches
in terms of scaling-up (vertical scaling) with hardware resources. In particular, upgrading
Central Processing Units (CPUs) with multiple-cores technology or using more of them
as the first approach. Since CPU has "power wall" limitation (Moore’s law), as an alter-
native approach, replacing or accelerating with high computing specialized hardware, in
particular, Field Programmable Gate Arrays (FPGAs) have been proposed. Indeed, FP-
GAs have been noted to be good candidates for their high parallelism of multi-tasks, re-
configurability, low power consumption, and can be attached to the CPU as an IO device
accelerator. Additionally, FPGAs have been accepted gradually in many studies including
accelerations of database analytic or even commercial products. Therefore, FPGAs can be
seen as the candidate for two objectives at the same time: first, an acceleration for query
rewriting and second, part of query executing with respect to semantic cache concepts.

In summary, these different state-of-the-art elements, such as cache framework, se-
mantic caching with query rewriting, and FPGA-based database acceleration, seem to be
interesting to combine together. Therefore, we are interested in studying a flexible and
scalable framework for cooperation between procedures of SC and accelerators on FPGA.
To conclude, in this dissertation, our contributions is many-fold: 1) We present a modu-
lar approach to make SC is flexible, scalable and adaptable with different requirements,
environments and infrastructures. 2) We propose a novel approach of cache management
in terms of coalescing strategy and replacement policy. 3) We implement a mechanism
to handle select-project-join query in SC. 4) We exhibit a cooperative model between SC
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and FPGA where query processing is accelerated regarding to query rewriting and part
of query execution.

The first contribution is ModulAr Semantic CAching fRAmework (MASCARA) as a
cache management system (CMS) in the middleware layer of DMS. Our proposed frame-
work, MASCARA divides and regroups the functionalities, computations and procedures
of SC into modules and stages. Thus, the main contribution of this architecture is about
the flexibility, scalability and adaptability to different environments, infrastructures and
requirements. The experimental results exhibit the performance of SC in different aspects,
such as response time, hit ratio and transferred data from storage. The best case shows
that MASCARA is up to 3.9 times faster than the baseline (e.g., block cache). In con-
trast, we analyze a significant decline of response time in MASCARA when the query
complexity increases in terms of dimensions, e.g., in the worst case, MASCARA is 2.4
times slower than baseline.

The second contribution is cache management in MASCARA, from coalescing strategy
to replacement policy. We revisit the impact of conventional coalescing strategies, such
as Always and Never Coalescing. Then, we propose an heuristic solution which strikes a
good balance between the two extremes. By this way, the heuristic can increase hit ratio
and reduce cache space usage of MASCARA. Howoever, the experimental results show
that Coalescing Heuristic is 2.3 times slower than Always Coalescing.

The third contribution is MASCARA with Multi-view processing to handle (inner)
join queries. We present an approach, named Multi-view processing, which decomposes
an original (inner) join query into (select-project) sub-queries that belong to different
joined relations or views. However, this approach can cause a significant execution time
of Query Trimming in MASCARA due to the process of multiple generated sub-queries.
The experimental results show that performance of MASCARA based on CPU can be
reduced significantly. In particular, it runs 1.7 and 3.6 times slower than No-Cache and
Block-Cache when the dimension of the query and the number of segments is high.

The fourth contribution is MASCARA-FPGA, a cooperative model to accelerate range
query processing. We develop an integration combining MASCARA and FPGA which sup-
ports the execution of select-project-join range queries. To achieve this goal, we design
the query rewriting of MASCARA and their tasks with respect to FPGA accelerators in
bottom-to-top pipeline execution. We also develop the essential DB operators on FPGA
to execute the generated sub-queries from query rewriting, such as filter, project and sort-
merge-join. By coordinating all of them together, MASCARA-FPGA with single instance
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for every accelerator, is able to accelerate on average 6.9 times compared to MASCARA
based on CPU. It is worth noting that these accelerations can increase gradually if de-
ploying multiple instances of accelerators on FPGA. Since MASCARA-FPGA can handle
the drawbacks of coalescing heuristic for semantic management and multi-view process-
ing for (inner) join query, we revisit their benefits. On the one hand, MASCARA-FPGA
with heuristic exhibits an acceleration up to 2.5 times compared to MASCARA-Server
with Always Coalescing as the best case on a server. Additionally, heuristic also has the
highest hit ratio and a balance space usage in cache compare to the two conventional
approaches. On the other hand, overcoming the presented issue of Multi-view processing,
MASCARA-FPGA can maintain a high acceleration (e.g., on average 8.6 times for total
response time).
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Resumé

Ces dernières années, nous avons assisté à un changement de paradigme dans les sys-
tèmes d’analyse masses de données. En particulier, comme alternative aux systèmes de
gestion relationnelle des bases de données (RDBMS) stockées localement, il y a une émer-
gence de nouveaux systèmes de gestion des données (DMS) où celles-ci sont stockées à
distance et distribuées. Ainsi, les ressources de calcul peuvent y accéder de manière in-
dépendante. Compte tenu de la latence relativement élevée dans la communication entre
les couches de données et les ressources de calculs, le temps d’accès aux données est accru
considérablement. Cependant, la mise en œuvre d’un système de cache peut accroître la
réutilisation à grains fins des données et atténuer par conséquent les réexécutions inutiles
de requêtes. La technologie de mise en cache pour ces DMS conserve les données fréquem-
ment utilisées par la couche de calcul dans un stockage local et rapide (p. ex., la mémoire
principale) dont la taille est limitée accélérant ainsi le traitement des requêtes.

Ces solutions de mise en cache fonctionnent simplement sur la base de politiques de
remplacement utilisées classiquement dans les caches standards tels que "moins utilisés
récemment", LRU en anglais (Least Recently Used). En général, chaque application met
en œuvre son propre service de cache adapté à ses propres exigences. La gestion et le rem-
placement en mémoire peuvent être considérés comme une préoccupation fondamentale
et nécessitent la définition d’un environnement de développement qui facilite la construc-
tion des services de cache pour une grande variété d’applications. Plus précisément, cet
environnement devrait être flexible et évolutif selon les applications, les infrastructures
ou les exigences en matière d’architecture des DMS. Bien que les systèmes des services de
cache aient été étudiés précédemment, la plupart d’entre eux exploitent les mécanismes
de mise en cache traditionnels (cache de pages ou de blocs).

De manière classique, l’efficacité d’utilisation du cache par page ou bloc semble faible,
car l’enregistrement d’une valeur nécessite de récupérer et de mettre en cache la page ou le
bloc en entier, ce qui entraîne un gaspillage d’espace précieux dans le cache. En outre, il n’y
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a pas d’exploitation de la connaissance des requêtes elles-mêmes ou de vérification de leur
équivalence partielle. Ainsi, ces mécanismes de cache peuvent conduire à un faible taux
de réponse positive (cache hit), comme lors d’une succession de requêtes dans l’objectif
d’affiner les premiers résultats obtenus.

En tant qu’approche alternative, le Cache Sémantique (SC) surmonte ces problèmes en
exploitant à la fois les données dans la mémoire cache et les informations contenues dans
les requêtes. Généralement, la plupart des approches SC évaluent les requêtes et réutilisent
leurs informations à partir d’une description logique, appelée sémantique, plutôt que de
vérifier la compatibilité des données mises en cache par rapport à l’état de la requête.
Pour ce faire, un SC doit, si nécessaire, réécrire la requête originale en de nouvelles sous-
requêtes pertinentes et basées sur la connaissance des données mises en cache (probe) et
les données absentes du cache (remainder).Néanmoins, la complexité de cette procédure,
appelée réécriture de requête, peut induire un coût de calcul élevé dans la vérification de
l’équivalence ou de la satisfiabilité. Il est à noter qu’outre l’algorithme de réécriture des
requêtes, la capacité de l’infrastructure joue un rôle important pour résoudre le problème
présenté dans SC.

Fondamentalement, pour maintenir les performances de l’infrastructure, il y a deux
approches d’amélioration possibles au niveau des ressources matérielles. Tout d’abord,
il est possible de faire évoluer les processeurs utilisés vers des générations plus récentes
et/ou utilisant plusieurs cœurs. Cependant, la loi de Moore étant maintenant largement
répandue, il est communément admis que cette solution présente ses limites. Comme
approche alternative, l’utilisation de solution matérielles de type co-processeurs commen-
cent à être proposées (par exemple les FPGA). En effet, les FPGA ont été considérés
comme de bons candidats grâce à leur capacité à réaliser des calculs à parallélisme élevé,
leur reconfigurabilité, leur faible consommation d’énergie et la possibilité de les lier au
CPU comme accélérateurs. De plus, les FPGA ont été utilisés progressivement dans de
nombreuses études, notamment pour l’accélération de l’analyse de données y compris dans
l’utilisation de produits commerciaux. Par conséquent, dans le contexte qui nous intéresse,
les FPGA peuvent être considérés comme de bons candidats pour aussi bien permettre
une accélération dans la réécriture des requêtes, mais aussi pour accélérer une partie de
l’exécution de ces requêtes en supportant les concepts de cache sémantique.

En résumé, la combinaison de ces différents éléments (l’environnement de développe-
ment de cache, l’utilisation des concepts de cache sémantique avec réécriture de requêtes
et l’accélération de la base de données basée sur FPGA) nous semblent intéressant à ex-
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plorer. Par conséquent, nous nous sommes intéressés à présenter un environnement de
développement de cache flexible et évolutif pour la coopération entre les procédures de
SC et les accélérateurs sur FPGA. Pour conclure, dans cette thèse, nos contributions sont
multiples : 1) Nous présentons une approche modulaire pour rendre le SC flexible, évolu-
tif et adaptable avec des exigences, des environnements et des infrastructures différents.
2) Nous proposons une nouvelle approche de la gestion du cache en termes de stratégie
de regroupement et de politique de remplacement. 3) Nous mettons en place un mécan-
isme pour traiter la requête select-project-join dans SC. 4) Nous présentons un modèle
coopératif entre SC et FPGA où le traitement des requêtes est accéléré en ce qui concerne
la réécriture et une partie de l’exécution de celles-ci.

La première contribution, ModulAr Semantic CAching fRAmework (MASCARA), est
un système de gestion du cache (CMS) dans la couche intermédiaire de DMS. MASCARA
divise et regroupe à la fois les fonctionnalités, les calculs et les procédures de SC en
modules. La principale contribution de cette architecture est la flexibilité, l’évolutivité et
l’adaptabilité à différents environnements, infrastructures et contextes d’exécution. Les
résultats expérimentaux montrent les performances de SC sous différents aspects, tels que
le temps de réponse, le taux de réponse et la quantité de données transférées. Les résultats
montrent que MASCARA est jusqu’à 3, 9 fois plus rapide que le niveau de référence (c. à d.
cache de blocs implémenté sur Spark). En revanche, nous analysons une baisse significative
du temps de réponse dans MASCARA lorsque la complexité des requêtes augmente en
termes de dimensions. Par exemple, dans le pire des cas, MASCARA est 2, 4 fois plus lent
que le niveau de référence.

La deuxième contribution est la gestion du cache dans MASCARA, de la stratégie
de regroupement à la politique de remplacement. Nous revisitons l’impact des straté-
gies de regroupement conventionnelles Always Coalescing et itNever Coalescing. Ensuite,
nous proposons une solution à base d’heuristique (Coalescing Heuristic) qui établit un
bon équilibre entre ces deux stratégies. De cette manière, cette solution peut augmenter
le taux de réponses positives et réduire l’utilisation de l’espace cache de MASCARA.
Cependant, nous constatons que celle ci n’est pas préférable à utiliser avec MASCARA
sur processeur en raison de la complexité de la réécriture de la requête. Les résultats ex-
périmentaux montrent que notre solution Coalescing Heuristic est 2, 3 fois plus lente que
Always Coalescing.

La troisième contribution est MASCARA avec traitement multi-vue pour traiter les
requêtes inner-join. Nous présentons cette approche qui divise les requêtes inner-join
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en sous-requêtes select-project qui appartiennent à différentes relations ou vues jointes.
Cependant, cette approche peut causer une augmentation du temps d’exécution significa-
tive de la fonction du découpage de requêtes dans MASCARA en raison du nombre de
processus de sous-requêtes générées. Les résultats expérimentaux montrent que les perfor-
mances de MASCARA sur processeur peuvent être réduites de manière significative. En
particulier, en comparaison avec des solutions sans cache et avec caches de blocs, MAS-
CARA fonctionne respectivement 1, 7 et 3, 6 fois plus lentement quand la dimension de
la requête et le nombre de segments sont élevés.

La quatrième contribution est MASCARA-FPGA, un modèle coopératif pour accélérer
le traitement des requêtes d’intervalle. Nous développons une intégration entre MAS-
CARA et FPGA qui permet l’exécution de requêtes select-project-join. Pour atteindre cet
objectif, nous réécrivons les requêtes MASCARA et leurs implémentations pour une exé-
cution sur cible FPGA.Nous développons également les opérateurs de bases de données
essentiels sur FPGA pour exécuter les sous-requêtes générées, tels que filter, project et sort-
merge-join. En coordonnant efficacement les sous-requêtes, en utilisant une seule instance
par accélérateur, MASCARA-FPGA est capable d’accélérer en moyenne 6, 89 fois les
traitements par rapport à MASCARA sur processeur. Il est à noter que ces accélérations
peuvent augmenter graduellement si l’on déploie de multiples instances d’accélérateurs
sur FPGA. Nous évaluons MASCARA-FPGA dans sa capacité à améliorer les faibles per-
formances de MASCARA sur processeur au niveau des traitements Coalescing Heuristic
et multi-vue. D’une part, MASCARA-FPGA avec Coalescing Heuristic montre une ac-
célération jusqu’à 2, 5 fois supérieur par rapport au meilleur résultat de MASCARA sur
processeur avec la stratégie Always Coalescing. En outre, l’approche Coalescing Heuristic
a également le plus haut taux de réponses positives et une utilisation plus équilibrée de
l’espace du cache par rapport aux deux approches conventionnelles. D’autre part, nous
résolvons le problème présenté du traitement multi-vue. En effet, MASCARA-FPGA peut
assurer une accélération efficace, notamment nous obtenons un temps de réponse total 8, 6
fois plus rapide en moyenne comparé à une exécution sans accélérateur.
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Chapter 1

Introduction

Abstract: In this chapter, regarding to a renewed spike of caching technology for data
management systems over a large and scalable resources, we present our motivations and
objectives in terms of a semantic caching (SC) framework with acceleration by Field Pro-
grammable Gate Arrays (FPGA). In Section 1.1, we first present the problems of existing
solutions with respect to caching framework, SC and FPGA-based database. Then, by
coordinating all the above elements, we aim to propose a flexible and scalable framework
for cooperation between procedures of SC and accelerators on FPGA. To achieve this
goal, we particularly focus to find answers according to several dimensions, such as cache-
as-service, query rewriting on FPGA and cache management through coalescing strategy.
As the end of the chapter, in Section 1.2, we present the research contributions that will
be proposed in details later in the remainder of this dissertation.

1.1 Context and Motivation

In recent years, we have witnessed a paradigm shift in analytical database systems
over a large and scalable resources. In particular, as an alternative to relational database
management systems (RDBMS) with local data storage, there is an emergence of new
data management systems (DMS) with remote and distributed data storage with respect
to big data [24] and cloud computing [7]. More precisely, such systems can employ a layer
or dis-aggregated storage model, where the elastic compute layer accesses data on an
independently scalable remote storage. For example, what can be deployed on compute
layer is high performance large scale data processing engines, such as Apache Spark [8]
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CHAPTER 1. INTRODUCTION

and Greenplum [60] based on Massive Parallel Processing (MPP) architectures [67, 14].
Interestingly, these engines or frameworks can be expressed by a single node (machine) or
cluster of multiples nodes to provide greater processing power. By this way, they improve
data sharing and reduce query latency through efficient memory allocation and execution
plans. Basically, they can be built on top of a storage layer where the instance can be a
traditional RDBMS (e.g., PostgreSQL [46]), a distributed file system (Hadoop DFS [85]),
or even remote cloud storage (e.g., Amazon S3 [4]). Additionally, they store consistently
large amounts of data in different file formats, such as text, images, or videos regardless
of architectures. Therefore, a large number of applications in context of big data can be
developed based on these new DMSs, such as DNA analyzing [31], satellite data processing
[59] or geometric operations [97].

Given the relatively high latency in communication with respect to low bandwidth
between these above layers, we consider that caching data at the compute layer now has
become more important. Indeed, a cache system can increase fine-grained re-usability of
data to mitigate unnecessary query re-executions. For example, to enhance the perfor-
mance of security monitoring, a tool, which allows to analyze a large number of log files
(e.g., HTTP log files of Apache2 server [83]), can be used. Certainly, to handle a large
scale of read-only log files with respect to the contents, tools can be built based on the
presented data management system. The objective is to help the administrator (e.g., Bob)
to quickly detect suspicious behaviors or unauthorized changes. Let’s assume that the first
query has been done for a long time due to the fact that log files are large and stored
distributively or remotely. Bob wants to refine or filter his concerns by a second query.
Without caching system, this query is considered as a totally new one to be executed.
Obviously, Bob wasted his time although the result could be answered entirely or partly
by previous query’s content. This problem has become more serious when Bob needs to
run a sequence of queries to get the right answer before taking an action with respect
to security protocol. A cache system would reduce query latency and data communication
between engine and storage. In summary, we are witnessing a renewed spike in caching
technology for these DMSs where the hot data is kept at the compute layer in fast local
storage of limited size to accelerate query processing.

These caching solutions usually operate as a black-box for simplicity, employing stan-
dard cache replacement policies such as Least Recently Used (LRU). In general, every
application implements its own caching layer tailored to its specific requirements, result-
ing in a lot of duplication work across systems, reinventing choices such as what to cache,
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where to cache, when to cache, and how to cache. In short, these above problems can
be seen as basic concern of cache services, in particular, management and replacement.
Thus, we require a caching framework, which facilitates the construction process of cache
services in a variety of applications. More precisely, such framework should be flexible and
scalable to different environments, infrastructures or requirements regarding to architec-
ture of DMS. This approach has been either studied or deployed by several works, such as
adaptable cache services (ACS) [28, 26], Amazon Elastic Cache [3], and in-memory cache
Redis [76]. To summarize, most of these frameworks are presented to handle the services
with respect to traditional caching mechanism, in particular, page or block cache.

Conventionally, cache utilization like page or block seems to be low, as even one needed
record or value in a page/block requires to retrieve and cache the entire page/block, leading
to waste valuable space in the cache [30]. On the other hand, tuple cache which is not
compatible to be applied in big data since its overhead of data comparison. Additionally,
all of them use fault based mechanism (i.e., hit and miss) to answer the query. Moreover,
there is no exploitation of the knowledge of queries themselves or checking their partly
equivalence. Thus, these cache mechanisms can result to a low hit ratio, especially in
applications with a chain of queries in order to refine the results as in above example of
log analysis tool.

As an alternative approach to the traditional caches, Semantic Caching (SC) over-
comes these issues by exploiting resources in the cache and knowledge contained in the
queries. It enables effective reasoning (e.g., analysis and processing), delegating part of
the computation process to the cache, reducing both data transfers and CPU load on
compute layer. This approach was first proposed by [30] and was later extended and im-
proved by a large body of work [90, 34, 78, 52, 54, 38, 57, 80, 29, 27, 94]. Generally,
most of the SC approaches evaluate the queries and reuse their information from logi-
cal description, named semantic, rather than checking satsifiability of cached data with
respect to query condition. To do that, SC has to rewrite original query if necessary to
new relevant sub-queries split in answerable (probe) and non-answerable (remain) parts of
cached data. Nevertheless, the complexity of this procedure, named query rewriting, can
induce a high overhead in checking equivalence or satisfiability because of its excessive
computation. More precisely, such kind of checking raises nondeterministic polynomial
(NP)-complete problem which is considered as a challenge of query rewriting regardless
of algebraic or symbolic approach [18, 19, 98]. Some works present different algorithms to
handle this NP-Complete problem [43, 42, 79] which could result to a significant reduc-
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tion of SC’s performance. Noticeably, all of them agreed that the capability of CPU plays
an important role to solve the presented issue. Consequently, performance and overhead
of SC for range query processing are evaluated to show that it can work well in a range
of applications based on data management systems, both in high-bandwidth local area
network and network-constrained environments [52, 78].

In this dissertation, we focus on the problem of supporting non-aggregate Select Project
Join (SPJ) range queries for SC with multi-dimensions. A range query is a fundamental
operation in database that enables to express a bounded restriction over the fetched
records. For instance, the administrator Bob may pull out the records from a range of
Internet Protocol (IP) addresses because he thinks that an abnormal event could happen
here. This event can be found by a single or multiple of predicates based on the attribute
(e.g., name of column) of data set. Thus, he can use the following SQL-like query with
three dimensions, in particular, ip, date and time.

SELECT *

FROM log

WHERE ip > ’192.168.1.1’ AND ip < ’’192.168.1.255’ AND date > ’01-01-2020’

OR ip >= ’192.168.1.255’ AND time < ’12:00:00’

To maintain and enhance the performance of SC, basically, there are two approaches in
terms of scaling-up (vertical scaling) with hardware resources [6]. In particular, upgrading
Central Processing Units (CPUs) with multiple-cores technology or using more of them as
the first approach. Since CPU has "power wall" limitation (Moore’s law [9]), as an alterna-
tive approach, replacing or accelerating with high computing specialized hardware, such
as Graphics Processing Units (GPU) [12] and Field Programmable Gate Arrays (FPGAs)
have been proposed [36]. Indeed, FPGAs have been noted to be good candidates for their
high parallelism of multi-tasks, re-configurability, low power consumption, and can be at-
tached to the CPU as an IO device accelerator [23], [73]. Meanwhile, GPUs are designed
specifically to operate in Single Instruction Multiple Data (SIMD) streams fashion. In
fact, using GPU has dramatically evolved over the last few decades to have found exten-
sive use in the research surrounding machine learning, AI, deep learning and database
analytic [12] thanks to its mature eco-system. However, the emergence of new generation
of FPGA development tools in the recent years, in particular, High-Level Synthesis (HLS),
such as Catapult HLS [5] and Vitis HLS [53], has raised again the competition between
FPGA and GPU [21]. Specifically, data processing using an FPGA was discussed carefully
regarding to heterogeneous many-core systems which exhibit performance figures that are
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competitive with modern general-purpose CPUs [62]. Additionally, FPGAs have been ac-
cepted gradually in many studies including accelerations of database analytic ([81, 86,
95, 71, 91]) or even commercial products, such as Bing search [17] of Microsoft and Intel
with a network of 100,000 FPGAs, and EC2 platform of Amazon [2]. Noting that query
rewriting bottleneck comes from a large number of intersection and difference computing
tasks between logical descriptions of queries themselves, thus, using FPGAs seems to be
more preferable thanks to its pipeline execution model for tasks running concurrently and
low power consumption. However, we have to admit that FPGA vs GPU performance
comparison is always an open question [21]. For this dissertation, FPGAs can be seen as
the candidate for two objectives at the same time: first, an acceleration for query rewriting
and second, part of query executing with respect to semantic cache concepts.

In summary, these different state-of-the-art elements, such as cache framework, se-
mantic caching with query rewriting, and FPGA-based database acceleration, seem to
be interesting to combine together. More specifically, they mainly attempt to deal with
the problem independently. For example, FPGA-based database systems are proposed
without SC and vice versa. Meanwhile, none of the cache-as-service solution with respect
to semantic concept at middle-ware layer is considered. Therefore, we are interested in
studying a flexible and scalable framework for cooperation between procedures of SC and
accelerators on FPGA. By this way, we can fill in the gap between few-expressive hardware
acceleration and fine-grained knowledge expensive query processing for data management
system in the big data context. To conclude, in this dissertation, we particularly focus in
finding answers according to the following dimensions:

First, variety of applications based on data management systems often confront the
context where their tailored cache (e.g., block caching) at compute layer cannot bring
the highest performance due to limitation of conventional cache mechanism. Meanwhile,
SC has not been considered to be deployed as a middleware layer which sits between
query engine and storage in the system. In particular, SC in middleware layer can be seen
as cache management system (CMS) which can provide fast local storage co-located on
compute node and talk to (remote) storage to retrieve data as needed. To achieve this
goal, SC needs to be addressed as cache-as-service solution or a framework as in [28, 26].
By this way, SC could handle change of workload’s characteristics, running environment,
deploying infrastructure, application’s constraints, etc. Our observation shows that most
of existing SC contributions can not satisfy the above condition since their architectures
are not flexible and scalable [30, 78, 52, 54, 38, 57, 80, 29, 27, 94]. More importantly,
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without presenting the functionalities in terms of computing components, they cause many
obstacles in scaling and inheriting, such as customization of query equivalence checking,
analyzing bottleneck from excessive computation, and integrating new platform to run
query rewriting.

Second, in order to bring more benefits for SC framework, cache management is dis-
cussed in terms of coalescing strategy and replacement policy. In particular, coalescing
strategy can affect the response time, hit ratio, and cache space utilization. Most of the
works on SC use two conventional approaches, in particular, Always and Never Coalesc-
ing, where their trade-off can be seen as a question [30]. Revisiting the strengths and
mitigating the drawbacks from these conventional approaches may allow us to propose a
novel appropriate solution in cache management. Hence, a study of coalescing strategies
in terms of response time, hit ratio and cache space usage should be considered.

Third, processing select-project queries are seen as basic features of SC. Meanwhile,
join processing is more complex due to multiple of participated relations. Indeed, although
prior SC solutions present in details select-project queries, none of them describes how
to handle join query with respect to query rewriting and join result managing. A few
of works from other broad line of research, materialized view [40, 84, 89], present new
query rewriting procedure for join and aggregate query at the same time. However, their
approach has a high complexity which reduces significantly cache performance. Addition-
ally, their presented algorithms are not implemented and evaluated, especially in terms
of tracking and manipulating joined result. In summary, due to the shortfall of such com-
puting capacity, join query processing in SC has not yet been considered. Therefore, it is
essential to discuss a mechanism to process join queries regarding to the SC framework.

Fourth, in addition to the need of accelerating query rewriting, such kind of SC frame-
work is expected to leverage FPGA’s capabilities, for example, low latency accelerators
(kernels) for corresponding computing modules. Moreover, we also consider that the ex-
ecution of generated sub-queries as outputs from query rewriting can be boost-up by
FPGA-based database (DB) operators, such as filter, project, sort-merge-join, etc. Never-
theless, to the best of our best knowledge, most of the presented schemes of FPGA with
respect to data management systems, were proposed purely in accelerating in-memory
database (DB) or providing specialized DB accelerators [81, 86, 95, 71, 91, 32, 63, 13,
88]. In other words, there is no state-of-the-art work on FPGA which considering the
integration and acceleration of SC. Although this issue was mentioned in [25], it is just a
abstract vision about two layers architecture which misses important details, such as how
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to integrate, what kind of accelerators, or how to manage cache.

1.2 Research contributions

According to the drawbacks of existing schemes as presented in Section 1.1, we thus
resume the research goals of this dissertation. We recall that semantic caching (SC) is
emergent to apply in new data management system (DMS) to reduce query latency.
Thus, we need a SC framework as cache management system (CMS) in middleware layer
with respect to the architecture of the DMS. By this way, it can leverage the fast local
storage of compute layer meanwhile taking responsibility in communication with (remote)
storage layer. Moreover, such framework has to guarantee the flexibility, scalability and
adaptability in different application contexts. To overcome the potential bottleneck of
conventional SC, there is a need of combining between SC and FPGA through presenting
not only query rewriting but also database (DB) accelerators on FPGA. Cache man-
agement in terms of coalescing strategies are also revisited to find a more preferable and
optimized solution. Moreover, such framework towards FPGA acceleration should enables
query rewriting for not only basic (i.e., select-project) but also complex (i.e., join) queries.
As a consequence, we present following contributions:

1) ModulAr Semantic CAching fRAmework (MASCARA) as a cache man-
agement system in middleware layer of data management system [47]. Our
proposed framework, MASCARA, which divides and regroups the functionalities, com-
putations and procedures of SC into modules and stages. More precisely, this work can
be done by defining relevant templates, data structures, and interfaces. Thus, the main
contribution of this architecture is about the flexibility, scalability and adaptability to
different environments, infrastructures and requirements. Moreover, within the modular
approach, an analysis of bottleneck of SC can be revisited in details before converting
into relevant accelerations on FPGA. We evaluate MASCARA in the context of data
management expressed by Apache Spark ([8]) and HDFS ([85]) by running workload of
select-project queries (i.e., Q6) and data set generated from TPC-H benchmark [1]. The
experimental results exhibit the performance of SC in different aspects, such as response
time, hit ratio and transferred data from storage. The best case shows that MASCARA
is up to 3.9 times faster than the baseline (e.g., block cache). Meanwhile, it can have
a hit ratio up to 91% and thus save approximately 95% data transfer from the storage
layer when the cache size is large enough with respect to semantic locality of workload.
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In contrast, we analyze a significant decline of response time in MASCARA when the
query complexity increases in terms of dimensions, e.g., in the worst case MASCARA is
2.4 times slower than baseline. Finally, we confirmed that several heavy computing tasks
of query rewriting in MASCARA take advantage to FPGA accelerators.

2) Cache management in MASCARA: from coalescing strategy to replace-
ment policy [65]. We revisit the impact of conventional coalescing strategies, such as
Always and Never Coalescing. Then, we propose an heuristic solution which strikes a
good balance between the two extremes. In particular, it can decide when to coalesce
data regions based on the recency of usage (temporal locality) and percentage of response
contribution (spatial locality) that are presented through a new replacement function. By
this way, the heuristic can increase hit ratio and reduce cache space usage of MASCARA.
Importantly, we explain why the heuristic is not preferable to use with MASCARA based
on CPU due to the complexity of query rewriting. We evaluate our solution by using
workload of select-project queries (i.e., Q6) and data set based on TPC-H benchmark
[1]. The experimental results show that Coalescing Heuristic is 2.3 times slower than
Always Coalescing. Consequently, we consider that the benefits of heuristic will become
more remarkable when MASCARA is already accelerated by a specialized hardware (e.g.,
FPGA).

3) MASCARA with Multi-view processing to handle (inner) join queries.
We present an approach, named Multi-view processing, which decomposes an original
(inner) join query into (select-project) sub-queries that belong to different joined relations
or views. In other words, instead of processing a (inner) join query, we process a list of sub-
queries and join their results at the end. However, this approach can cause a significant
execution time of Query Trimming in MASCARA due to the process of multiple generated
sub-queries. We evaluate our solution by using workload of inner join queries (i.e., Q5) and
data set based on TPC-H benchmark [1]. The experimental results show that performance
of MASCARA based on CPU can be reduced significantly. In particular, it runs 1.7 and
3.6 times slower than No-Cache and Block-Cache when the dimension of the query and
the number of segments is high. Consequently, we expect this issue can be overcome if
MASCARA is accelerated with a specialized hardware (i.e., FPGA).

4) MASCARA-FPGA: a cooperative model to accelerate range query pro-
cessing [66]. We develop an integration combining MASCARA and FPGA which sup-
ports the execution of select-project-join range queries. To achieve this goal, we design
the query rewriting of MASCARA and their tasks with respect to FPGA accelerators in

8



bottom-to-top pipeline execution. We also develop the essential DB operators on FPGA
to execute the generated sub-queries from query rewriting, such as filter, project and sort-
merge-join. We organize cache on off-chip memory (i.e., DRAM) of FPGA which supports
a reasonable capacity and high bandwidth connection to accelerators. Besides the main
components of MASCARA on FPGA, we also provide some modules to bridge the gap
between high level services and low level accelerators, such as FPGA-Adaptor and Query
Process Controller. By coordinating all of them together, MASCARA-FPGA with single
instance for every accelerator, is able to accelerate on average 6.9 times compared to MAS-
CARA based on CPU, with workload of select-project queries (i.e., Q6) and data set from
TPC-H [1]. It is worth noting that these accelerations can increase gradually if deploying
multiple instances of accelerators on FPGA. Since MASCARA-FPGA can handle both
the drawbacks of coalescing heuristic for semantic management and multi-view processing
for (inner) join query, we revisit their benefits regarding to MASCARA-FPGA. On the one
hand, MASCARA-FPGA with heuristic exhibits an acceleration up to 2.5 times compared
to MASCARA-Server with Always Coalescing as the best case on a server. Additionally,
heuristic also has the highest hit ratio and a balance space usage in cache compared to
the two conventional approaches. On the other hand, overcoming the presented issue of
Multi-view processing, MASCARA-FPGA can maintain a high acceleration (e.g., on av-
erage 8.6 times for total response time) with workload of inner join queries (i.e., Q5 of
TPC-H [1]).

1.3 Outline

The remainder of this dissertation is organized as follows. Chapter 2 gives background
knowledge of big data, semantic caching (SC) and FPGA acceleration for serving the
understanding of our contributions. Then, it presents the related works of SC and FPGA-
based databases acceleration that motivates our study. Chapter 3 describes a ModulAr
Semantic CAching fRAmework (MASCARA) where the definitions and functions of each
module are explained in detail. It also exhibit a coalescing heuristic with new replacement
value function in terms of semantic management. Moreover, it presents the Multi-view
processing in order to handle (inner) join queries. Chapter 4 presents a cooperative model
MASCARA-FPGA through relevant components and accelerators within pipeline exe-
cution model. Lastly, Chapter 5 gives a conclusion in terms of contributions and future
works in perspective of query optimization, SC and FPGA acceleration.
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Chapter 2

Background and Related Work

Abstract. This chapter aims at giving the principles and related work about semantic
caching (SC) and FPGA-based database acceleration in order to improve performance
of new data management system (DMS) in large-scale environment. In Section 2.1.1, we
explain the advantages and compatibility of DMS when handling the characteristics of big
data applications compared to Relational database management system (RDBMS). Next,
in Section 2.1.2, we present the fundamentals of query processing, such as type, operation
and dimension that are concerned within the scope of this dissertation. We explain In
detail the principles of semantic caching (SC) in Section 2.1.3. Later, in Section 2.1.4,
we discuss the acceleration possible gain from specialized hardware (i.e., FPGA) with
respect to data processing paradigm. Finally, we summarize the related work from SC
and FPGA-based database system in Section 2.2.

2.1 Background

2.1.1 Emergence of new data management systems

In this section, we explain the advantages and compatibility of DMS when handling
the characteristics of big data applications compared to Relational database management
system (RDBMS).
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a) Relational database management system (RDMBS)

Generally, a traditional database with varied size can be seen as an organized collec-
tion of data with fixed format stored in a centralized architecture [45]. To facilitate the
interaction or administration of databases, database management systems (DBMS) or in
short, database systems, maintain the connection between end-users, applications and the
database itself [45]. It is worth noting that the term "database" is often used to refer
to any of DBMS or applications associated with the database. Traditionally, structured
query language (SQL) is used in DBMS to manipulate data within database. Accord-
ing to the data model which determines the logical structure of a database, we can have
two types of DBMS, relational (i.e., RDBMS) and non-relational (i.e., NoSQL DMBS).
For example, PostgreSQL [46] is a RDBMS, meanwhile, MongoDB [49] exhibits NoSQL
mechanisms. In this dissertation, our solution is tailored basically for SQL-like queries in
RDBMS where records can be stored by row or column oriented [45].

b) Big data emergence

During the last years, big data have been increasingly used both in the public (research
laboratories and government agencies) and private sectors. Big data allows to economically
extract value from very large Volumes of a wide Variety of data, by enabling high-Velocity
capture, discovery and/or analysis [24]. Data Volume means the size of data, Data Velocity
means the speed at which new data arrives and Variety means that data is extracted from
varied sources and can be either unstructured, semi structured or structured.

Big data includes several characteristics, such as distributed redundant data storage,
parallel task processing, scalability, etc [48] that require a paradigm shift in data man-
agement. Indeed, traditional RDMBS seems to be not compatible to handle these above
characteristics of big data [37]. In detail, many of query engines at compute tier of RDMBS
provides only vertical scalability which is also known as scaling-up a machine by adding
more Central Processing Units (CPUs) or memories. Unfortunately, this approach is ex-
pensive and the scalability is limited. In other words, it requires to consider also horizontal
scalability as a complement, which is also known as scaling-out by adding machines in
computing cluster. Another problem is about the centralized architecture of storage layer
in RDBMS works better when the volume of data is low. As a result, within the big
data context, distributed redundant data storage plays an important role. Limitations of
RDBMS regarding to big data application are discussed in detail in [37].

12



c) New data management system

Regarding to the problems of RDBMS, we are witnessing an emergence of new DMS
with respect to big data [24] and cloud computing [7]. In detail, the novel DMS can work
transparently within various kind of databases, data warehouses, big data distributed
storage or even a cloud environment in terms of storage layer. Interestingly, cloud storage
as a part of cloud computing can also provide large scale data storage solution. It can be
classified into three categories: public cloud as Amazon [4] or Google [41], private cloud,
and hybrid cloud. More details about these categories and cloud computing services can
be found in [7]. Our solution is expected to work with either distributed data storage
system or cloud storage service.

Meanwhile, for compute layer, DMS also exhibits high performance frameworks, in
terms of query engine, which execute big data analytic by splitting them across different
nodes in a cluster. Most of these engines are based on Massive Parallel Processing (MPP)
architecture [67, 14] where a large number of local or distributed CPUs and/or nodes can
simultaneously perform a set of coordinated computations in parallel. Thus, they overcome
the limitation of traditional RDBMS and satisfy the scalability issue of computing in big
data.

As an example, such a DMS can deploy, at compute layer, a large scale data process-
ing engine like Apache Spark [8]. Meanwhile, at storage layer, Hadoop Distributed File
System (HDFS) [85] can be used. A combination between Spark and HDFS seems to be
appropriate to represent the functionalities of DMS. It is worth noting that the expensive
communication between these two instances or layers when processing query can reduce
the overall performance of DMS.

2.1.2 Basic concepts in databases

Since new data management system can work on top of (relational) databases, we
present the fundamentals of query processing, such as type, operation and dimension that
are considered within the scope of this dissertation.

a) Range query

Range query is current operation that retrieves all records where some value is be-
tween an upper and a lower boundary. Let’s assume that we have two related data sets,
log and users, that represent connections to Apache2 HTTP server and information on
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corresponding user, respectively. Figure 2.1 illustrates the relationship between log and
users as well as their main attributes through Unified Modeling Language (UML). Here,
a log can contain one or multiple connection from multiple users.

Figure 2.1 – Relationship of users and log through UML.

An administrator, Bob, wants to find a connection to the server that he thinks may
be abnormal. Thus, he can make a range query where he puts some conditions to get the
desirable results. One example of such range query (in forms of a SQL query) can be:

Q1: SELECT ip, date, time

FROM log

WHERE ip >= ’134.76.249.10’ and ip <= ’154.10.10.10’

b) Select-project query

The previous range query example consists of two basic operations, select and project,
thus, it can be also seen as a select-project query. In detail, the select or selection operator
makes it possible to find and filter rows or tuples in a data set that satisfy the query’s
condition expressed in the "WHERE" clause. Meanwhile, the project or projection operator
expressed in the "SELECT" clause, picks the attributes or columns of the data set to be
returned.

c) Dimension of query

It is worth noting that the number of attributes which appear in the selection is called
dimension of query. Generally, since the complexity of query is presented by filtering
condition, dimension of query is about the number of attributes in the conditions. For
example, the above Q1 is a two-dimension (2D) query. If we add time in the filtering
condition of Q1, it will become a three-dimension (3D) query which is considered more
complex for processing in semantic caching. To conclude, we focus on non-aggregate range
queries since they are one of the most basic operations.
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d) Join query

In addition to select-project query, join query is another usual type of query. It includes
different operators namely inner join, left outer join, or right outer join, etc. Assuming
that Bob not only want to know the suspicious IP addresses related to abnormal connec-
tion, but also the owner of these addresses, he can write the following equivalent (inner)
join SQL like queries:

Q2a: SELECT users.name, users.dept, log.ip, log.date, log.action

FROM log

INNER JOIN users ON users.ip = log.ip

WHERE log.ip = ’109.10.10.1’ AND log.date = ’02-02-2022’

AND users.dept = ’zone-7’

Q2b: SELECT users.name, users.dept, log.ip, log.date, log.action

FROM log

INNER JOIN users ON users.ip = log.ip

AND log.ip = ’109.10.10.1’ AND log.date = ’02-02-2022’

AND users.dept = ’zone-7’

Q2c: SELECT users.name, users.dept, log.ip, log.date, log.action

FROM log

WHERE users.ip = log.ip

AND log.ip = ’109.10.10.1’ AND log.date = ’02-02-2022’

AND users.dept = ’zone-7’

Obviously, a join query works with multiple data sets (e.g., users, log) where there is a
relationship between them. For example, users connects to log through a same attribute,
ip, which appears in both of them as users.ip = log.ip condition. Basically, to present
explicitly a join from a logical perspective, a query uses "[TYPE] JOIN ... ON " where
[TYPE] is for example with "INNER", "OUTER", "LEFT OUTER", etc with respect
to the syntax of the DBMS. Otherwise, join can be implicit moving the join condition
users.ip = log.ip in the "WHERE" condition. However, this way is not recommended
since it reduces the readability of queries. To conclude, in this dissertation, we focus on
(inner) join query since it can be converted simply from explicit to implicit format and
vice versa with respect to our processing purposes in semantic caching. The other types
of join can be handled later by improving the semantic representation for equivalence
checking.
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2.1.3 Semantic Caching

In this section we describe In detail the principles of semantic caching (SC). We also
discuss the advantages and drawbacks of SC. Last, we illustrate the operation of SC
through an example of a log analysis tool.

a) Principles

The performance (in response time) of the new DMS (e.g., Spark-HDFS) could be
reduced when executing queries that have significant overlaps in different meanings (i.e.,
redundant execution of certain sub-queries). Indeed, DMS works in context of big data
where queries always run over a large scale data sets. Running them without caching
re-usable results is not a good idea. For example, around 45% of the queries executed on
Microsoft’s SCOPE service have computation overlap with other queries [51]. The per-
centage of overlapping could be increase up to 75% in satellite data processing [59]. Thus,
execution of query without re-using the previous answers damages the total response time
of system. Recall that this problem comes from costly communication between compute
and storage layer. As a result, it increases consumption of computational resources, higher
data processing costs, and unnecessary query execution times.

To handle this issue, it is necessary to have a cache system which increases data
availability at the compute tier in the DMS by answering query rapidly rather than com-
municating with the storage layer. Generally, most of query engines at compute tier are
implemented with tailor page or block cache system to overcome this problem. Moreover,
they can integrate a third-party cache-as-service solution as middleware tier in their archi-
tecture, such as Redis [76] and Amazon Elastic Cache [3]. Nevertheless, their mechanism
is based on either page, block or object that examine the satisfiability of cached answers
to be reused with new queries at the data level. In other words, they cannot exploit the
specified information of queries, named semantic, that can be extracted from a query’s
logical description (i.e., query’s condition) at the semantic level. Therefore, they are less
efficient in answering partial query where the compute layer needs a smaller portion of
data from the storage layer rather than entire blocks or pages [30].

Semantic Caching (SC) at the middleware layer seems a relevant alternative to address
this issue [54]. According to [30], [54], it can provide better performances than presented
conventional approaches (e.g., page or block). In particular, SC achieves a significant
load reduction in distributed systems and allows to exploit resources in the cache and
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knowledge (semantic) contained in the queries themselves. In short, it enables effective
reasoning (analysis and processing), delegating part of the computation process to the
cache, reducing both data transfers and CPU load on servers [30]. SC is particularly
attractive for different applications in specific domains, such as online analytical processing
(OLAP) [34], light weight directory access protocol (LDAP) [20], web queries [57] and
heterogeneous systems [39]. Moreover, satellite data processing [59], mobile tracking [77],
or log analysis tool [25] where accessing to storage layer is expensive, could be interesting
for SC.

In this dissertation, we define SC by the following main properties that are referenced
from [30, 38].

— A query cache: SC is a query-based cache which stores query results and its identifi-
cation (blueprint). In other words, SC could be seen as two linked sub-caches where
one is built for the answers (called data region), and the other is for their logical
description (called semantic segment).

— Semantic segment: a special data structure to maintain logical expression of query
in terms of semantic segment which points to its corresponding data region answer.
Besides logical expression, segment consists of other information, for example, times-
tamp or LRU value for the replacement policy. This approach makes SC a logical
cache and distinguishes it from conventional approaches.

— Disjointedness: such characteristic depends on the design choice. According to the
design of [78, 30], no data is stored more than once in SC. Hence, redundancy in
the cache is reduced. Meanwhile, in [54], SC allows to store duplicated tuples.

— Partial answering (as shown in Figure 2.2): SC reuses partial matches of previous
query results. Each query which is processed by the SC is split into two disjoint parts.
First, the Probe Query (PQ) is the intersection between the query and segments.
It is completely answered by the cache at middleware layer. Second, the Remainder
Query (RQ) which is the difference between the query and the segments, it thus
requires to be executed at the compute layer with data coming from the storage
layer. Such kind of execution could take a long time due to the communication
between these two layers. As a result, the final answer will be combined from the
PQ and the RQ. Such a procedure of finding PQ and RQ is called query rewriting.

Besides its advantages, SC has impediments for its growth and its application in DMS.
First, SC can have a heavy execution (i.e., RQ) which could take long time, to fullfill the
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Figure 2.2 – Semantic caching with partial answering.

final answer. Fortunately, the probability of such computation could decrease over time if
workload has a relatively high semantic locality [30]. In particular, new coming queries can
be totally answered by previous queries since they may consists in a refining procedure of
the user. For example, within log analysis tool, assuming that Bob often wants to refine
his requests gradually to filter potential IP addresses, the appearance of RQ is alleviated.

Second, SC manages non-overlapping data regions with (non-overlapping) associated
segments that can help reducing the complexity of query rewriting. Although this is
desirable, non-overlapping regions impose a non-negligible overhead [30]. In detail, finding
the intersection and difference between queries and segments in query rewriting grows
combinatorially with the number of segments and their complexity [43, 42, 79]. Actually,
regarding to big data, a cache can hold several thousands or even millions of segments
that are presented in multi-dimension, the aforementioned problem is expensive to solve.

Third, maintaining and manipulating a large number of segments that have relation-
ship, become complex and cumbersome. Thus, the mechanisms and policies required for
managing the cache efficiently (e.g., hit ratio) become challenging. In fact, this problem
can be simplified by keeping the segments in the cache independent of each other. How-
ever, it can lead to a sequential query rewriting for all of the segments in cache instead
of potentially related elements. We doubt that this problem could not be handled well
by scaling-up the hardware resources of compute tier (e.g., CPUs, RAMs) since they will
soon reach "power wall" limitation [9] when processing a huge number of computing itera-
tions. Furthermore, distributed tracking and manipulating can become more severe when
scaling-out in terms of using multiple nodes.

Fourth, SC saves spaces by using dynamic data regions rather than fixed pages or
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blocks to store results. In other words, SC only needs receiving exact portion of missing
data from the storage layer. Thus, this requires the cache and the storage layer to have
a same organization in terms of data unit. However, it is difficult to deploy such kind
of agreement from a low-level perspective (e.g,. file system) with respect to the variety
of data sources and formats in the storage layer integrated into DMS. To alleviate this
problem, a cache can be considered as a flexible and adaptable intermediate interface or
middleware layer, which is co-located with compute layer in DMS.

To conclude, with the emergence of specialized hardware in the compute tier in terms
of scaling-up, these above problems of SC can be mitigated by advanced parallel archi-
tectures, such as Single Instruction Multiple Data (SIMD) of Graphics Processing Unit
(GPU), and task parallelism within pipeline of Field Programmable Gate Array (FPGA).
More precisely, SC could be deployed as a cache management system (CMS) which is
co-allocated on the compute layer and is able to interact with the storage layer. In other
words, a key design goal is to make SC sufficiently generic so that it can be plugged into an
existing big data system with minimum engineering effort. To achieve this goal, the aim
is to serve as the middleware layer between big data systems and distributed storage or
even cloud service, exploiting fast local storage in compute nodes to reduce data accesses
remotely.

b) Example

To understand well SC, we present in this section an example of the query rewriting
procedure. Assuming that we have a log file, named log, which has a format such as the
one referenced by EDGAR [82]. In particular, log consists of several attributes (columns),
such as ip, date, time, etc. We have three SQL select-project range queries Q3, Q4 and
Q5, to be posed and processed in the following order:

Q3: SELECT * Q4: SELECT *

FROM log FROM log

WHERE ip > ’127.1.0.0’ AND ip < ’127.1.255.0’ WHERE date < ’2020-03-16’

Q5: SELECT *

FROM log

WHERE (date > ’2020-01-16’ AND date < ’2020-05-16’)

AND (ip > 127.0.0.0 AND ip < 127.1.255.255)

Assuming that Q3 and Q4 have already been executed and that their answers are now
stored in the SC at the middleware layer (as shown in Figure 2.3). Since the segments of Q3
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and Q4 overlap each other, their answers in SC could be maintained in terms of a combined
non-rectangle (dotted line) data region. Indeed, SC can use a segment which has the logical
description: Q3 ∪ Q4: (ip >′ 127.1.0.0′ ∧ ip <′ 127.1.255.0′) ∨ (date <′ 2020 − 03 − 16′).
It is worth noting that answers of Q3 and Q4 in terms of segments could be maintained
in other ways. For example, the segment Q3 can be left unchanged meanwhile the RQ

of Q5 represents the new results to be stored in cache [78]. By this way, we have two
independent segments, original Q3 and RQQ4.

Figure 2.3 – Example of query matching in Semantic Caching

When Q5 is posed, the relationship between Q5 and Q3 ∪ Q4 could be identified as
the green bounded rectangle. In particular, the SC needs to compute the PQ from the
intersection and the difference between Q5 and Q3 ∪ Q4. Then, PQ can be answered
rapidly by the compute layer with the cached data indicated by the combined segment
of Q3 ∪ Q4. Meanwhile, the RQ should be slowly executed by retrieving the data from
the distribute file system at the storage layer. The final result of Q5 is the combination
between the answer of PQ and RQ.

Obviously, in the previous example, we consider a small number of segments (e.g.,
three segments) where logical descriptions are not complex. Moreover, it consists of only
two attributes ip and date which means that the SC has two-dimension (2D). All together,
the complexity of query rewriting in this example is small. Practically, such complexity
increases dramatically when processing the difference in the generation of the RQ that
involved in generating the RQ can become very intense quickly.
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2.1.4 FPGA’s acceleration

In this section, we first present the principles of FPGA’s architectures. Then, we discuss
the advantages of data processing paradigms in CPU, FPGA, and GPU to clarify why
FPGA can play an important role in DMS. Last but not least, we introduce the high-level
synthesis HLS in developing accelerated solutions on FPGA.

a) Principles

The computational capacity of the Central Processing Unit (CPU) is currently not
improving as fast as in the past, or not growing fast enough to handle the significantly
growing volume of data with respect to big data. Even though CPU core-count continues
to increase in terms of scaling-up, power per core from one technology generation to the
next one does not decrease at the same rate and thus the “power wall” limits progress [9].
Unfortunately, this issue remains despite the scaling-out of compute layer in DMS. Fur-
thermore, limitation of CPU’s capability can happen similarly with respect to the issues
of query rewriting and manipulating the segments in SC. Therefore, we are witnessing a
demand of new architectures for not only data processing in DMS but also query rewriting
in SC, for example, Field Programmable Gate Arrays (FPGA).

(a) Overview of FPGA architecture. (b) Internal structure of CLB.

Figure 2.4 – Island-style global FPGA architecture. A unit tile consists of Configurable
Logic Block (CLB), Connect Block (CB) and Switch Block (SB) [75].

FPGAs have been acknowledged for their high parallelism, re-configurability, and low
power consumption [56]. Moreover, they can be attached to the CPU as an IO device to
accelerate the analysis in DMS [81, 86, 95, 71, 91]. [75] presented In detail the simplified
architecture through the perspective of island-style global which is predominant in com-
mercial FPGA (in Figure 2.4). To begin with, there are identical unit tiles arranged in a
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rectangular grid interconnected with routing channels of width W . In detail, each of them
consists of three types of blocks: Configurable Logic Block (CLB), Connect Block (CB)
and Switch Block (SB) (as shown in Figure 2.4a).

As one of the main component, CLB provides re-configurable logic based on Look Up
Table (LUT), Flip-Flop (FF) and Multiplexer (as shown in Figure 2.4b). It is worth noting
that these blocks are connected to I/O resources where they can receive analog and digital
inputs and return back the output at the end of computations. The advantage of LUT is
that it provides a fast way to retrieve the output of a logic operation since possible results
are stored and then referenced rather than computed. To save logic states during the logic
computation of CLB, FF with a single bit is used to represent two stable states (e.g., 1 or
0). At the end the output of CLB is selected thanks to the Multiplexer. Moreover, a set
of Block RAMs (BRAM) surrounds the organization of CLBs. Specifically, they can be
seen as on-chip memory which works as local and rapid storage for computation of CLBs
rather than communicating with an external memory (i.e., off-chip DRAM) of FPGA.
However, their capacity is very small compared to the DRAM.

Another block is CB which connects selectively inputs/outputs of CLB to designated
routing tracks in a channel through configurable routing multiplexers. As a complement
of CB in on-chip programmable interconnect network, SB provides connectivity between
horizontal and vertical routing channels, allowing routing tracks to either extend along
their current channel or turn a corner to a different channel.

b) Compute paradigm

In this part, we discuss the distinct models, also known as compute paradigm, between
CPU and FPGA, to clarify why FPGA is considered as a solution for manipulating and
managing data in SC (as shown in Figure 2.5).

In Figure 2.5a, CPU uses most popular compute paradigm where it fetches sequen-
tially instructions (from the instruction stream), decodes them, fetches operands (from
the operand stream), processes them by an Arithmetic logic unit (ALU) and writes them
to a register file or memory. The shortcoming of this model can be: 1) instructions (e.g.,
fetch, decode, execution) processed in a sequential stream, 2) considerable hardware re-
sources on chip for instruction fetch and decode, 3) power consumption, and 4) I/O
throughput for getting the instruction stream. Meanwhile, in Figure 2.5b, FPGA presents
a re-configurable datapath to process the same instruction stream. Instead of performing
different instructions on a single ALU as in the CPU, a chain of dedicated processing
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(a) CPU processing. (b) FPGA processing.

Figure 2.5 – Compute paradigm of CPU and FPGA [55].

stages forms a pipeline execution. Thus, in such datapath paradigm, there is no instruc-
tion stream and the original instruction sequence is decomposed in a chain of simple
arithmetic operators. In other words, there is no need for instruction fetch, decode or
execute since they are encoded directly into the structure of the datapath. Therefore,
FPGA presents better performances than CPU thanks to its highly specialized elements
in terms of pipeline model.

Within modern CPU, to fulfill demands for more performance, parallel execution can
be applied by distributing the problem to multi cores. More precisely, instead of running
sequentially through a piece of code on one core, multiple cores are working side-by-side
in this model. Similarly, parallel execution by more processing elements can also be done
on FPGA. Additionally, FPGA enables different processing elements to perform different
operations (typically in a pipelined fashion) at the same time. In contrast, with multiple
CPUs, with a sequence of instructions, it is not easy to parallelize by executing the first
half of the instructions on one CPU and the other half on another CPU. Therefore,
parallelizing an algorithm on FPGAs can in some cases be easier than multiple core
processors [36, 55].

We also acknowledge the strong growth of Graphic Processing Unit (GPU) as a com-
petitor of FPGA in terms of specialized hardware for acceleration. In particular, GPUs
use a large amount of lightweight vector processing elements that can process multiple
input data in forms of vector(s). By this way, sharing the same instruction stream (i.e.,
same control flow), GPU can process in parallel multiple values. Such paradigm is called
Single Instruction Multiple Data (SIMD) and can be implemented in terms of Thread
Level Parallelism (TLP). In short, GPU performs well on data-parallel problems that can
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be vectorized and for problems that needs control flow and synchronization with other
threads or tasks as in multi-core CPU. In other words, it is still based on control flow
paradigm where the instruction needs to be processed similarly to CPU (i.e., fetch, de-
code, execute). It is worth to remind that FPGA with datapath paradigm can implement
any digital circuit that follows architectures of CPU, vector processing, or GPU model.

To conclude, there is not a clear winner between FPGA and GPU acceleration. De-
pending on the problem and requirements, one or the other is better [55, 21]. However,
according to [21], FPGA has shown more efficiency (i.e., performance and energy) for
almost all application domains against MPP with respect to big data compared to GPU.
Therefore, in this dissertation, with a rising demand for parallelizing algorithms, in partic-
ular, query rewriting of SC towards new DMS, it is worth looking into FPGA acceleration
[36, 56].

c) High level synthesis

The user-defined logic in FPGA is generally specified using a hardware description
language (HDL), mostly VHDL or Verilog. Unlike software programming languages, they
require developers to have knowledge on digital electronics design, meaning understanding
how the system is structured, how components run in parallel, how to meet the timing
requirements, and how to trade off between different resources. Fortunately, with the emer-
gence of FPGAs in database acceleration and else where the development tool chains are
improving. In particular, these improvements range from high-level synthesis (HLS) tools
to domain-specific FPGA generation tools such as query-to-hardware compilers [36]. HLS
tools such as Vitis HLS [53] and Altera OpenCL [87] allow software developers to pro-
gram in languages such as C/C++ but generate hardware circuits automatically. In other
words, HLS users write C code meanwhile the interface protocol and micro-architecture
are done, generated and managed automatically by the platform. Since our work mainly
requires an improvement of query rewriting through the parallelism of complex tasks, it
can be done within the software acceleration perspective. Specifically, the HLS approach
(i.e., Vitis HLS [53]) seems to be more compatible and preferable with our objective.

Basically, our accelerated solution consists of two distinct components: a software
program (on host) and an FPGA binary containing hardware accelerated kernels (i.e.,
query rewriting of SC, database operators). In detail, the host program in C/C++ runs
on a conventional CPU. It can use Application Programming Interfaces (APIs) with re-
spect to a runtime library of the platform to interact with the acceleration kernel in
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the FPGA device. Meanwhile, the accelerators (kernels) are written in C/C++ and run
within the programmable logic part of the FPGA device. They can be integrated into a
software/hardware platform using standard interfaces for interconnection (i.e., AXI).

In fact, there are multiple ways by which the software program can interact with the
hardware kernels. We illustrate a simplified communication between kernel and host in
Figure 2.6. Generally, the step 1, 3, 5 and 6 allow to read and write results between host
program and kernel. We can create corresponding buffers in (logical) global memory which
can represent the device memory (i.e,. DRAM of FPGA) or shared memory. Moreover, the
host program has to define the events with relevant triggers to enable the operations on
kernels (i.e., step 2). Meanwhile, with step 4, kernel performs the required computation,
accessing global memory to read or write data, as necessary. Additionally, it can use
streaming connections to communicate with other kernels. When the tasks are completed,
a notification is created and sent from the kernel to the host (i.e., step 7).

Figure 2.6 – Simplified interaction between host and kernels.

2.2 Related work

2.2.1 Semantic Caching of SQL Queries

SC has first been proposed by S. Dar et al. [30] for simple select-project queries on
single relations. In particular, they introduced the basic terminology of SC, including the
concept of probe query and remainder query. They compared SC with tuple and page
caching to show that SC generally outperforms them. In addition, they studied cache
management in terms of replacement policies and coalescing strategies for SC. However,
their work did not cope with join queries.

A. Keller and J. Basu [54] presented an abstract SC framework for select-project
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and join queries. They also discussed the challenge of maintaining cache currency due to
inserts, updates and deletes by presenting a control protocol. Although providing concepts,
designs and directions for SC, there was no implementation to evaluate the effectiveness
of query processing.

P. Godfrey and J. Gryz [38] introduced a general logical framework for SC in context
of heterogeneous databases or data warehouses to optimize query evaluation. In partic-
ular, they specified conditions that were relevant with different types of overlaps and
subsumptions between queries. In other words, they focused mainly on answering the
queries without considering the characteristics of workload and cache management that
could impact to performance. Nevertheless, they did not have any kind of evaluation for
their proposal.

D. Lee and W. Chu presented CoWeb [57], a SC for web sources. Typically, web
sources provided less querying possibilities than traditional database systems. Hence,
they introduced a query matching algorithm which finds the best matched query based
on the capabilities of the web source. Their work only supported query with conjunctive
predicates and it does not allow Join. In addition, they studied semantic locality, i.e., the
similarity among queries, and its effect on SC through USAir Flight Schedule dataset [93].

Q. Ren et al. [78] were the first to introduce a formal SC model in which they described
segments and query processing with detail implementation. Their SC only allowed select-
project queries on single relations. They explained coalescence and decomposition, which
are needed to avoid redundant data in SC. In addition, they studied the impact of physical
organization in database like indexing and clustering, the query workload, and the network
bandwidth on SC through the Wisconsin benchmark [35].

B. Jónsson et al. [52] revisited SC for select-project queries over single relation. They
presented a detailed performance analysis of SC using various workloads from simple
to complex within Wisconsin benchmark [35]. For simple workloads, their performance
showed that SC produced low overhead, was insensitive to clustering, unburdens the
network, and can answer queries without contacting the server. For more complex work-
loads, they showed that SC strained the server due to the complex remainder queries
that required more effort. However, they proved that SC uses the network efficiently and
successfully reduced query response times. Therefore, they concluded that SC context can
be applied to various workloads in a wide range of applications.

N. Ryeng et al. [80] applied SC as site autonomous caching in context of distributed
database system. Thereby, the caches of nodes in their distributed database system were
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not limited to base tables, but can contain intermediate results. Their work supported all
types of queries, included aggregate and join, but the corresponding query execution was
not mentioned. They also studied different Least Recently Used (LRU)-based replacement
policies, for example, LRU with cost or height. They evaluated their system with the TPC-
H benchmark [1] to show the high hit ratio of SC as well as an improvement in execution
time. Thus, they concluded that SC in distributed database systems enabled scaling the
system without excessive network traffic.

d’Orazio et al. [29] designed Dual Cache to improve select-project query evaluation over
data sources distributed across a grid. Dual Cache managed a pair composed of a query
cache and an object cache. In particular, the query cache managed query results and object
cache is linked to the query cache thanks to the identifiers. Their work was evaluated by
using a biological database of protein sequences from Swiss-Prot1 [74]. Thus, they showed
that they can maximize advantages of querying caching which were the reduction of both
data transfers and query computation. Later, they proposed to extend their work [27], to
adapt it to pervasive grids. This was a collaborative cache system based on a lightweight
mobile dual cache for Mobile Station (MS) and a proxy dual cache for Mobile Support
Station (MSS).

Vancea et al. [94] presented CoopSC that supports n-dimensions range select-project
queries for enhancement of the performance of not only read-intensive query workloads
but also the update queries. They claimed that CoopSC was the first one to handle the
generic n-dimensions range selections. Moreover, they presented an approach of combining
multiple entries to answer a given query in distributed environment thanks to the Dis-
tribute Rewriting component. Last, they validated the proposal by using the Wisconsin
benchmark [35] which showed their gains in response time and hit ratio regarding the size
of cache.

Recenlty, d’Orazio et al. [25] presented a vision of deploying SC in the middleware
layer of DMS to handle a large number of HTTP log files. Specifically, their novel idea
is the integration of SC and FPGA acceleration. Thus, they described the potentials as
well as the challenges of implementing SC through a proposed multi-layer architecture
which consists of two sides: server and FPGA. After that, Maghzaoui et al. [61] with the
preliminary results showed the feasibility of implementing cache on FPGA. In particular,
their prototype with a small (conventional) cache on FPGA can accelerate the response
time of simple queries (i.e., with two dimensions). Nevertheless, both of them [25, 61] did
not present enough the principles and architecture of SC with FPGA acceleration.
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Besides SC in RDBMS for SQL like query, there are other relevant contributions with
SC where they focus mainly on the query rewriting procedure [44, 40, 84, 89]. In detail,
they studied answering queries using materialized views and/or analyze the NP-complete
problem. However, several reasons make them difficult to use in SC. For example, they
do not support partial answering or they only consider conjunctive queries. We also have
other non-SQL applications with SC, such as XML databases [15, 58, 92] and web queries
[16, 10, 72], that have particular characteristics and may not be compatible to apply to
SQL query-based database.

2.2.2 FPGA based database system

FPGAs have been integrated with database systems in various ways [36]. Based on
interconnection, FPGA can be considered to be used conventionally as IO accelerator
where task are sent from the CPU to the FPGA via the host memory and then the device
memory (as shown in Figure 2.7a). Meanwhile, recent technology allows FPGA to act as
a co-processor where communication between CPU and FPGA is done through a shared
memory (as shown in Figure 2.7b). Furthermore, based on functions, we can use FPGA
in RDBMS as framework and specialized accelerators. In this dissertation, we present a
FPGA-based database system with respect to framework and accelerators category.

(a) FPGA as IO accelerator
.

(b) FPGA as co-processor
.

Figure 2.7 – Integration of FPGA into database systems with CPU

The RDBMS frameworks include solutions that provide a software and hardware stack
for accelerating user-defined database operations. Woods et al. [95, 96] presented Ibex, an
intelligent database storage framework for MySQL [70]. In particular, they provided a
limited set of query processing operations to work directly with data inside the Solid
State Drive (SSD). They deployed FPGA into the data path between the data source and
the host system.

Owaida et al. [71] provided a hardware-software acceleration framework, called Cen-
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taur, which consisted of two parts, the hardware part called the "FThreads manager" and
the software part called the "Application interface". In particular, the Interface supported
API calls in C++ through the User Defined Function (UDF) functionality of MonetDB
[50]. Meanwhile, the FThreads manager was responsible for managing the different user-
defined hardware in terms of resource utilization, memory accesses, and also pipelining.
By this way, Centaur framework facilitated the development of applications to software
and hardware perspective where tasks can be optimized by the experts.

After that, Sidler et al. [86] presented DoppioDB as an extension of Centaur framework.
This work can be seen as a demonstrated system from academia for deploying FPGA to
act as co-processor with CPU. In DoppioDB, FPGA can access the host memory directly,
and the communication with CPU was done through shared memory. They proved that
DoppioDB with FPGA can execute SQL queries for an analytical relational database with
over three times speedup when compared to the baseline.

Another framework, called AxleDB, that was presented by Salami et al. [81]. AxleDB
is a fast query processing FPGA-based framework in which they provide a large subset
of SQL queries that are supported by specialized accelerators, such as filter, arithmetic,
aggregate, group by, table join, or sort. They evaluated AxleDB with five decision support
queries from the TPC-H benchmark [1].

Sukhwani et al. [91] presented an FPGA-based query processing engine which was
attached to a DBMS via PCIe-3. The supported functionalities are filter, join and sort.
To increase the throughput, this engine was equipped with a data compression capability.
In particular, the data was compressed by the host and decompressed on FPGA as the
first step in their query processing pipeline. As a result, processed queries were sent back
in decompressed form.

Dennl et al. [32, 33] first presented concepts for on-the-fly hardware acceleration of
SQL queries. Then, they proposed a query processing platform that leveraged the partial
dynamic reconfiguration capability of FPGAs to better fit the requirements of each query
on-the-fly. Their work supported for column and row oriented data store. Moreover, their
library consisted of query primitives, such as filter, aggregation, hash join, and sort.

Regarding to specialized accelerators, we reviewed a series of database operators on
FPGA in terms of accelerators. In general, most of them were inspired from SQL queries
since it was almost an universal language for expressing database operations. Database
operator accelerators can be dispatched into one of the following categories: sort, select,
join, string matching, filter and arithmetic. Among them, join and sort have received a lot
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of attentions from the database community due to their impact on query processing. To
begin with, Mueller et al. [63] proposed Glacier, the query to hardware compiler, which can
compose a digital circuit using various implemented operators. It took a continuous query
from data streams and generated a corresponding file written in VHDL that was then
translated to a FPGA configuration. After that, they studied in detail the performance
of sorting networks on FPGA, such as odd-even sort and bitonic sort. [64], but their work
did not cover join operator. Casper et al. [13] created a full equi-join with merge sort
implementation in FPGA for minimizing the bandwidth bottleneck They showed that
this implementation was memory-bound, meaning that with advances in memory system
technology it had the potential to further exceed the performance of a CPU-only solution.
Srivastava et al. [88] further optimized bitonic sort for accelerating big data applications.
They showed that the last merge operations of merge-sort were a bottleneck for large-scale
sorting and replaced them with a heavily-pipelined bitonic network for higher throughput.

To summarize, in Section 2.2.1, SC contributions in the middleware layer of DMS are
limited to few solutions, such as [38, 29, 94, 25]. Nevertheless, they are conducted without
considering the expansion and inheritance of SC functionalities in case of changing the
environment, requirements or infrastructure regarding to the application context. Another
point is that most of them did not present an integration of specialized hardware (e.g.,
FPGA) to handle SC main bottleneck (i.e., query rewriting for multi-dimesion). Unfor-
tunately, FPGA-based databases or accelerations are presented in Section 2.2.2 without
considering SC. Consequently, this dissertation expect to renew the interest of SC towards
FPGA acceleration as a cache management system (CMS).

2.3 Conclusion

This chapter mainly focuses on background knowledge and related work. More specifi-
cally, we present principles of DMS, SC and FPGA-based database acceleration regarding
to big data applications. Moreover, we illustrate how SC works through an example of
log analysis tool and the benefits of FPGA data processing. We then consider the related
work of SC and FPGA-based database acceleration in DMS and their drawbacks. Indeed,
to the best of our knowledge, none of the existing schemes consider an integration between
SC and FPGA as a framework at the middleware layer of DMS to reduce unnecessary
query re-execution. Thus, these drawbacks mainly lead to our contributions that will be
presented in the next chapters.
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Chapter 3

MASCARA

Abstract: Regarding to the emergence of big data, a large number of applications
can be developed based on DMS. To maintain the performance, caching can be a solution
when the DMS must execute multiple queries with significant overlaps. In particular,
semantic caching (SC) as a cache management system (CMS) is promising to overcome
the limitations of more traditional approaches (page and block cache) to answer partial
queries. Nevertheless, most of SC existing solutions do not discuss the construction of
SC in terms of cache-as-services within the middleware layer of DMS. Moreover, these
contributions do not consider the expansion and inheritance of SC’s functionalities to
the change of running components, system requirements, environments or infrastructures.
Therefore, in this chapter, to address such issue, we present ModulAr Semantic CAching
fRAmework (MASCARA) as a middleware layer which is co-located with the compute
layer in DMS. The key idea behind MASCARA is to divide and regroup the functionalities,
computations and procedures of SC into modules and stages. As a result, we increase the
flexibility, scalability and adaptability of using SC. Based on MASCARA, we present a
coalescing heuristic and new replacement value function in terms of cache management.
This approach strike a balance between conventional strategies, such as Always and Never
Coalescing, to optimize semantic management of cache. Then, we study the compatibility
of such approach in MASCARA with respect to CPU’s capability. Moreover, to enable
query rewriting of join queries, we introduce the Multi-view concept which enable to run
a list of sub-queries from multiple relations rather than the original join query. However,
the issue of this approach is a significant increase of query rewriting. Finally, we exhibit
experimental results to show the performances and the bottlenecks of MASCARA.
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3.1 Introduction

Regarding the emergence of big data, a large number of applications can be developed
based on new data management systems (DMS), such as DNA analyzing [31], satellite
data processing [59] or geometric operations [97]. Most of them can rely on an two-layer
architecture where the elastic compute layer accesses persisting data on an independently
scalable (remote) storage layer. On the one hand, the storage layer of the DMS can be
expressed in terms of different databases, data warehouses, distributed file systems and
even cloud storage services. On the other hand, for the compute layer, DMS exhibits high
performance frameworks, in terms of query engine, which can execute big data analytics
by splitting tasks across different nodes in a cluster. Such a kind of DMS can be deploy,
at the compute layer, a large scale data processing engine like Apache Spark [8] on top of
the storage layer, in particular, Hadoop Distributed File Systems (HDFS) [85].

However, the performance (response time) of the new DMS (e.g., Spark-HDFS) could
be reduced dramatically when executing queries that have significant overlaps (i.e., re-
dundant execution of certain sub-queries). More precisely, this problem comes from the
costly communication between the compute and the (remote) storage layer. For exam-
ple, around 45% of the queries executed on Microsoft’s SCOPE service have an overlap
with the other queries [51]. Thus, executing of query without reusing previous answers
degrades the overall performance of the system. Moreover, it also increases the consump-
tion of computational resources, data processing costs, and unnecessary query execution
times.

To handle this issue, it is necessary to have a cache system which increases data
availability at the compute tier in the DMS by answering queries rapidly rather than
communicating with the storage layer. Generally, most of query engines at the compute
layer are implemented with traditional cache systems (e.g., page or block) that examine
the satisfiability of the query to reuse cached answers at the data level. In other words,
they cannot exploit the specified information of queries, named semantic, that can be
extracted from query’s logical description (i.e., query’s condition) at the semantic level.
Therefore, they are less efficient in partially answering query when the compute layer only
needs a new small portion of data from the storage layer rather than an entire block or
page [30].

To overcome this problem, Semantic Caching (SC) can be seen as a candidate to be de-
ployed as a cache management system (CMS) between the compute and the storage layer
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[54, 30]. Indeed, SC achieves a significant workload reduction in distributed systems and
allows to exploit resources in the cache and knowledge (semantic) contained in the queries
themselves. In short, it enables effective reasoning (analysis and processing), delegating
part of the computation process to the cache, reducing both data transfers and CPU load
on servers [30]. Nonetheless, most of the existing works [30, 90, 34, 78, 52, 54, 38, 57,
80] do not discuss the construction of SC in terms of CMS or cache-as-services solution.
Indeed, these approaches focus mainly on building a physical cache which depends heavily
on the agreement on the same data source organization and format between the compute
and the storage layer of DMS. However, such kind of solution becomes a challenge since
DMS can change the running components, system requirements, environments or infras-
tructures regarding to the application context. Therefore, it is essential to provide a SC
framework in terms of CMS or cache-as-services solution of DMS. Few proposals, such as
[38, 29, 94, 25] discussed this idea but they do not consider the expansion and inheritance
of SC’s functionalities with respect to flexibility and scalability.

In this chapter, first, we propose a ModulAr Semantic CAching fRAmework (MAS-
CARA) at the middleware layer which is co-located with the compute layer in the DMS.
We present MASCARA through the definitions of SC that are referenced from studies
of [30, 78]. Our choice is motivated by the fact that their model in terms of definitions
and theorems have been proved formally within algebraic approach. More important, the
key idea of MASCARA is to divide and regroup the functionalities, computations and
procedures of SC into modules and stages. This approach has been applied in some aca-
demic contributions [28, 26] or third-party cache services (e.g., Redis [76], Amazon Elastic
Cache [3]) without considering the concepts and principles of SC. In contrast, MASCARA
presents templates, data structures, and interfaces to facilitate the customization (e.g.,
add, remove) and inheritance of computing modules that are based on SC. By this way,
we increase the flexibility, scalability and adaptability of using SC with MASCARA with
respect to different requirements, environments and infrastructures. Moreover, another
benefit of modules and stages is that they can be analyzed in details regarding to their
performances. In other words, we can identify excessive computing modules (e.g., query
rewriting), that can turn into bottleneck of MASCARA.

Second, most of the presented existing SC use one of two conventional coalescing
approaches. In particular, Always and Never Coalescing, which can affect the response
time, hit ratio, and cache space utilization. We exploit the strengths and mitigate the
drawbacks of above straightforward approaches to propose a novel balanced solution in
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cache management, named coalescing heuristic. In details, it can decide to coalesce or
not data regions based on the recency of usage (temporal locality) and the percentage of
a response contribution (spatial locality) that are presented through a new replacement
function. Unfortunately, the performance (in response time) of this Coalescing Heuristic
can be less impressive compared to Always Coalescing. Thus, we doubt that coalescing
heuristic may not be compatible with MASCARA based on CPU.

Third, although prior SC solutions present in details select-project queries, none of
them describes how to handle join query with respect to query rewriting and join result
managing. In fact, since they do not want to increase the complexity of query rewriting,
they ignore the solutions proposed from other broad line of research, called materialized
view [40, 84, 89]. Nevertheless, the presented solutions are not implemented and evalu-
ated, especially in terms of tracking and manipulating joined results. We thus present an
approach for query rewriting of select-project-join in MASCARA, named Multi-view pro-
cessing, which brakes down an original (inner) join query into (select-project) sub-queries
that belong to different joined relations or views. In other words, instead of processing
a (inner) join query, we process a list of sub-queries and join their results at the end.
Additionally, query rewriting of MASCARA is expressed as computing modules, thus,
processing for join query is equivalent to call Query Trimming multiple times or run them
in parallel. Although enabling query rewriting for join queries, MASCARA can induce
some overhead due to handling many generated sub-queries from each relation in dur-
ing the query rewriting. Hence, it can make the bottleneck become worse and reduce
significantly the performance of MASCARA.

The contributions of MASCARA in this chapter can be summarized as follows:
1. We present MASCARA with stages and modules that represent the functionalities

in SC.
2. We propose a coalescing heuristic and a new replacement value function in terms of

semantic management in MASCARA.
3. We provide the Multi-view concept to enable query rewriting of select-project-join

queries in MASCARA.
4. We extensively evaluate the performance of MASCARA with respect to the response

time, the hit ratio and the transfer data (from the storage layer) within generated
data set of the TPC-H benchmark [1].

The chapter is structured as follows. In Section 3.2, we give the basic definitions
of semantic caching. Next, we describe in details modules and stages of MASCARA in
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Section 3.3. In particular, we first introduce the architecture and principles of MASCARA.
Then, we explain carefully the responsibility of each stages and modules, especially the
query rewriting procedure in Section 3.3.3. Regarding to conventional coalescing strategies
of semantic management presented in Section 3.3.4, we then propose a heuristic with a new
replacement value function in Section 3.3.5. Later, we present the Multi-view concept for
query rewriting of select-project-join queries in MASCARA in Section 3.3.6. We exhibit
experimental results to show the performances and the bottlenecks of MASCARA with
respect to our contributions in Section 3.4. Finally, in Section 3.5, we summarize the
benefits and limitations of MASCARA in order to raise the challenge of acceleration with
FPGA.

3.2 Basic definitions

Since the core of MASCARA is semantic caching (SC), it is essential to provide basic
definitions with respect to semantic segments that are referenced in [30, 78]. Our choice
is motivated by the fact that their model in terms of definitions and theorems have been
proved formally within algebraic approach. Regarding to the presented properties of SC
in Section a), SC in MASCARA consists of two linked sub-caches, one is for answers (i.e.,
records) of query and the other is for logical expressions of queries.

Suppose that we have a relational database D consisting of a number of relations
R1, R2, ..., Rn, for example, D = Ri, 1 ≤ i ≤ n. An instance of a relation Ri is a set of
tuples or records, in which each tuple has the same number of Attributes A or Columns
as defined in the relation schema of D. Then we have ARi

that stands for the attribute
set defined by the schema of Ri and A = ∪ARi

which represents the attribute set of the
whole database D. We give the following definition of atomic predicates, through which
a SC is constructed:

Definition 3.2.1. In the database D with its attribute set A = ∪ARi
, an Atomic Pred-

icate AP is represented in forms of a op v where a ∈ A, op can be {≤, <, =, >,≥, ̸=}
and v is a constant value in a specific domain.

It is worth to note that the operator ̸= brings much more complexity in reasoning,
transforming and rewriting over the predicates AP . In fact, the problem could become
NP-complete in the domain of integers [79, 43, 42].

Basically, SC allows to process and store the selection condition or logical expression
of a query (i.e., "WHERE" clause with AND and OR operators) in terms of disjunction of
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conjunctions of atomic predicates AP . In other words, the presentation of such condition
is called Disjunctive Normal Form (DNF) in which atomic predicates APi are managed
in Conjunctive Normal Form (CNF). Thus, we give the definition of DNF as follows:

Definition 3.2.2. In the database D with its attribute set A = ∪ARi
, a logical expression

of query is presented by DNF = CNF1 ∨ CNF2 ∨ ... ∨ CNFn where each CNFi =
AP1 ∧ AP2 ∧ ... ∧ PAn.

We illustrate this definition through the following SQL like query:

Q1: SELECT ip, date, time

FROM log

WHERE ip >= ’134.76.249.10’ AND ip <= ’154.10.10.10’

OR date = ’2020-02-05’

As it can be seen, the logical expression of the query is transformed into DNF = CNF1∨
CNF2 in which CNF1 = AP1 ∧ AP2 and CNF2 = AP3. The OR and AND operators
are represented in forms of ∨ and ∧ respectively with regards to the relational algebra.
In details, AP1 is ip >=′ 134.76.249.10′, AP2 is ip <=′ 154.10.10.10′, and AP3 is date =′

2020− 02− 05′.
Unlike an ordinary cache, SC has to store the logical expression of query in terms of

a DNF into a specialized data structure, named semantic segment S [30]. Such kind of
structure is original, decomposed, or coalesced with the query answer. Moreover, every
segment points to its actual content, called data region, which is the result of query in
terms of tuples or records. The definition of semantic segment is described as follows:

Definition 3.2.3. In the database D with its attribute set A = ∪ARi
, a semantic segment

S is represented in forms of < SR, SA, SDNF , SD > where relations is SR ∈ D, attributes
of relation is SA ⊆ ASR

, DNF expression is SDNF , and pointed data region SD.

Assuming that we already get the answer for query Q1. Thus, a segment is formed
with the following elements: SR = log, SA = ip, date, time, SDNF = CNF1, CNF2, and
SD is the pointer of corresponding Q1’s answer set (i.e., collection of satisfied tuples).

Since the segment represents for the query answer, we can qualify the semantic in-
formation of query, named query segment Q, in the same way as we specify segment.
However before queries get answered, corresponding answer of query segment is empty,
in particular, QD = ∅). Therefore, we formally define a query segment just as we did for
semantic segment as follows:
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Definition 3.2.4. In the database D with its attribute set A = ∪ARi
, a query segment Q

is represented in forms of < QR, QA, QDNF , QD >.

To reduce space overhead, the cached segments S do not overlap with each other
since it can help reduce the complexity of query rewriting [78, 52]. Thus, the concept of
disjointed segments are defined as follows:

Definition 3.2.5. Semantic segment Si = SiR
, SiA

, SiDNF
, SiD

and
Sj = SjR

, SjA
, SjDNF

, SjD
with i ̸= j are said to be disjointed if and only if

1. SiA
∩ SjA

= ∅ where ∩ represents for intersection of two sets.
OR

2. SiDNF
∧SjDNF

is unsatisfiable which implies that there is no relevance between SiDNF

and SjDNF
.

As a result, we can formally define a Semantic Caching SC a set of disjointed segments
S as follows:

Definition 3.2.6. Semantic Cache SC = is a list of S where ∀i, j : Si ∈ SC ∧ Sj ∈
SC ∧ i ̸= j ⇒ Si and Sj are disjointed.

3.3 MASCARA

3.3.1 Principles

This section describes MASCARA, a ModulAr Semantic CAching fRAmework where
the main goal is to divide and regroup the functionalities, computations and procedures
into specialized modules or stages. More precisely, MASCARA presents relevant tem-
plates, data structures, and interfaces to facilitate the customization (e.g., add, remove)
and inheritance of computing modules that are based on SC. By this way, we increase the
flexibility, scalability and adaptability of using SC in MASCARA with respect to differ-
ent requirements, environments and infrastructures. For instance, the original module of
date comparison supporting for attribute date in data set log [82] can be converted and
extended to work with pos (position) in satellite data processing [59].

As depicted in Figure 3.1, MASCARA consists of four main stages: Query Broking,
Query Trimming, Semantic Management, and Result Refining. To begin with, when user
makes a new query, this query is received, transformed and materialized by Query Broking.
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Figure 3.1 – As middleware layer in DMS, MASCARA architecture consists of stages and
computing modules.

More precisely, this stage will construct the query segment < QR, QA, QDNF , QD > based
on query extracted information from query, such as projected attributes and logical ex-
pression.

Then, this query segment Q is forwarded to Query Trimming, where the query rewrit-
ing procedure is implemented. In particular, this Q will be matched against each semantic
segment S that are stored in the semantic caching SC. In order to check the satisfiability
and implication between Q and S, a sub-stage Semantic Matching is proposed, that con-
sists of two modules: Attribute Matching and Predicate Matching. In particular, Attribute
Matching examines the relationship of QA, SiA

, meanwhile, Predicate Matching checks
the equivalence of QDNF , SiDNF

. Since we have to compute the equivalence of each atomic
predicate AP in QDNF and SDNF , it is meaningful to use the term Predicate Matching
instead of DNF Matching. Note that checking two perspectives, attribute and predicate,
is mandatory to identify that query Q is answerable by S and allows generating new
specialized sub-queries in the next sub-stage (i.e., Semantic Extracting).

The outputs of these presented matching modules, such as Common Attributes or
Intersection of DNFs, are used to generate the logical expressions of the probe query PQ

and the remainder query RQ in the sub-stage Semantic Extracting. RQ, which cannot
be answered by the SC of MASCARA, will be handled by the compute layer. Since such
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kind of computation requires data transferred from the storage layer, it can consume a
lot of time that depends on the size of data set. Meanwhile, PQ is executed rapidly by
MASCARA with cached data coming from SC. Generally, SC can be organized either
on main memory (i.e., RAM) or disk storage co-located with the compute layer. In this
dissertation, we focus on in-memory SC to optimize the benefits of MASCARA which
can be brought as middleware layer in DMS.

The results from both PQ and RQ are combined together in Result Refining stage and
sent back to user. If there are multiple PQs and RQs, this stage is responsible to track
and merge their result in-order or out-of-order in case of matching described by Query
Trimming.

Besides the presented computing stages, MASCARA packages the functionalities of
cache management on SC, such as coalescing and replacing segment S and its corre-
sponding data region DR, into Semantic Management stage. In particular, it decides to
keep, remove or replace the cached data in SC with respect to the applied strategies and
policies. Finding appropriate coalescing strategies and replacement policies can improve
cache performance in terms of response time, hit ratio and cache space usage.

3.3.2 Query Broking

The main objective of this stage is to transform and materialize a SQL like query
to the corresponding elements of query segment < QR, QA, QDNF , QD >. Most of the
elements can be extracted straightforwardly from the "SELECT" and "WHERE" clause
of query. For example, QR receives the relations and QA receives the attributes that the
query works on. Meanwhile, the element QD is empty since answer of query has not been
found yet. The procedure to find the value of the last element, QDNF , is considered as
the main functionality of the Query Broking.

In RDBMS, the logical expressions of query are conventionally stored as an Abstract
Syntax Tree (AST). Processing on a large number of arbitrarily nested expressions (with
AND and OR) can become a challenge later in Query Trimming stage. Therefore, it is
essential to transform and maintain the logical expression of query within the Disjunctive
Normal Form (DNF) instead of a complex AST.

The construction of the DNF follows two steps. First, from AST, all negations are
pushed as far as possible into the tree which results in Negation Normal Form (NNF)
by using De-Morgan rules. After receiving the NNF, Query Broking can distribute con-
junctions over disjunctions. Then, the distributive law pushes OR(s) higher up in the tree
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which results in the DNF. To illustrate such procedure, we use the following SQL like
query Q2. Details of the transformation is depicted in Figure 3.2.

Q2: SELECT ip, date, time

FROM log

WHERE ip >= ’134.76.249.10’

AND (date > ’2020-02-05’ OR time > ’10:00:00’)

Based on the NNF of this query, Query Broking transforms from and(ip, or(date, time))
to or(and(ip, date), and(ip, time)). As a result, the DNF tree could be generated with OR
as the root. Although this algorithm within Query Broking can create 2n leaves in theory,
this issue does not become the bottleneck of MASCARA.

Figure 3.2 – Transforming any predicate tree of SQL like query into DNF

Since the tree is presented in DNF, the description QDNF stores the pushed-down
CNF as a list of attribute restrictions (i.e., atomic predicate AP ). Since, some of AP can
belong to a same attribute, we propose to store and represent them with a new element,
named Range-Object. By this way, we can group and manage efficiently AP regarding to
different attributes. Such approach is motivated by object-oriented in which the operations
or functions could be called or invoked by another (larger) object. Moreover, it also gives
the capability to execute multi-dimensions query without exacerbating the problem of
complexity in query rewriting. As a result, we present as follows a new definition in terms
of specialized objects that manage query Q and semantic segment S:

Definition 3.3.1. In the database D with its attribute set A = ∪ARi
, a query segment

< QR, QA, QDNF , QD > or semantic segment < SR, SA, SDNF , SD > is considered and
managed as the following objects:

1. A Range-Object QROj
= list of AP that belong to a same attribute j ∈ ARi

.

2. A CNF-Object QCNF = list of QRO.
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3. A DNF-Object QDNF = list of QCNF .

To illustrate, reusing the DNF from presented query Q2, we assign the corresponding
values for Q2 =< QR, QA, QDNF , QD >.

— QR = log.

— QA = {ip, date, time}.

— QDNF = {QCNF1 , QCNF2} where

— QCNF1 = {QROtime
, QROip

} with QROtime
>′ 10 : 00 : 00′, QROip

>=′ 134.76.249.10′.

— QCNF2 = {QROdate
, QROip

} with QROdate
>′ 2020−02−05′, QROip

>=′ 134.76.249.10′.

— QD = null since query has not received the answer yet.

Each Range-Object ROj could be expressed in different forms, such as LowerBound,
UpperBound, constant value, is null, or is not null. It can be seen that the parentheses "(",
and ")" can be replaced with the square brackets "[", and "]" respectively to support the
operators "less-than-or-equal-to" (≤), "greater-than-or-equal-to" (≥) in atomic predicates
AP . Meanwhile, the AND operators is maintained implicitly between the Range-Objects
QRO in CNF-Object QCNF . We do similarly for OR operators in list of CNF-Objects
QCNF in DNF-Object QDNF .

Consequently, such a kind of presented hierarchical objects within DNF converting
procedure, there is no more than one Range-Object, which belongs to an attribute, that
appears in a CNF-Object. For example, QCNF1 has only one instance of QROtime

. If there
are two or more Range-Object that represent for an attribute in CNF, they should be
merged into one. If they are unmergeable, they have to be split into two new different
CNF-Objects as can be found in tree of DNF converting procedure.

3.3.3 Query Trimming

This stage is first responsible to check the satisfiability or implication relationship
between a constructed query segment Q and the list of cached semantic segments S. Then,
based on this relationship, Query Trimming extracts the semantic information from query
segment Q to generate the corresponding probe queries PQ and remainder queries RQ.
Consequently, these two presented procedures in Query Trimming are grouped into two
sub-stages, Semantic Matching and Semantic Extracting, respectively.
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a) Semantic Matching

We consider the Semantic Matching problem from two aspects that can be processed
in parallel: Attribute Matching and Predicate Matching. More precisely, we look at how
to find the relevance between attributes of query segment QA and semantic segment SA.
At the mean time, we examine similarly for DNF of query segment QDNF and semantic
segment SDNF .

In order to reach this goal, we first present the following definitions (from Definition
3.3.2 to 3.3.5 )that correspond to Attribute Matching perspective.

Definition 3.3.2. Given the attribute set QA and SA, Common Attribute CA is a set of
attributes that are common among QA and SA.

Definition 3.3.3. Given the attribute set QA and SA, Difference Attribute DA is a set
of attributes that exist in Q but not in S.

Definition 3.3.4. Given the attribute set QA and SA with QR = SR, it is said that
QA ∩ SA ̸= ∅ if and only if CA ̸= ∅. Note that ∩ represents the intersection between QA

and SA.

Definition 3.3.5. Given the attribute set QA and SA with QR = SR, it is said that
QA ⊆ SA if and only if CA ̸= ∅ and DA = ∅. Note that a ⊆ b means that a is contained
in b.

Example: we reuse the DNF of Q2 =< log, {ip, date, time}, {ROip, ROdate}, QD >

in Definition 3.3.1. Assuming that MASCARA contains two formatted segment S1 and
S2 (as can be seen in Table 3.1). Note that they are simplified by hiding the details of
their DNF . In particular, ROip and ROdate are not required to show in this example. The
Attribute Matching results are shown in forms of CA, DA, QA ∩ SA and QA ⊆ SA. More
precisely, Q2A has intersection with S1A meanwhile it is contained in in S2A.

Index Simplified structure
< SR, SA, SDNF , SD >

Relevance with Q2
CA DA QA ∩ SA QA ⊆ SA

S1 < log, {ip, date}, {ROip, ROdate}, SD > {ip, date} {time} YES NO
S2 < log, {ip, date, time, code}, {ROip, ROdate}, SD > {ip, date, time} {code} YES YES

Table 3.1 – Attribute Matching between segments and query Q2.

In order to check the relevance between DNF of query and segments from Predicate
Matching perspective, we have the following definitions (from Definition 3.3.6 to 3.3.8 ).
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Recall that the predicate satisfiability between query and segment are expressed in three
scenarios: implication, satisfiability and unsatisfiability [78]. However, presenting their
matching computations is a challenge and can turn into NP-complete problem in the
integer domain [43, 42, 79]. More precisely, to check predicate implication between Q and
P with respects to Boolean algebra could be complex to represent due to a large of number
of predicates of query and segment. Therefore, in this dissertation, we mainly focus on
providing the simplified matching computations between two objects QDNF and SDNF .
In particular, we use ints as Intersection and diff as Difference for the computations.

Definition 3.3.6. Given QDNF and SDNF with QR = SR, implication QDNF →
SDNF holds if and only if the entire content (i.e., all objects as Range-Objects and
CNF-Objects) of QDNF is contained in SDNF . The computation can be expressed by:
(QDNF ints SDNF ) diff QDNF = null.

Definition 3.3.7. Given QDNF and SDNF with QR = SR, predicate satisfiability holds
if and only if a part (i.e., some objects as Range-Objects and CNF-Objects) of QDNF is
answerable from SDNF . The computation can be expressed by: QDNF ints SDNF ̸= null.

Definition 3.3.8. Given QDNF and SDNF with QR = SR, predicate unsatisfiability holds
if and only if there is no overlap part (i.e., none of Range-Objects and CNF-Objects)
between QDNF and SDNF . The computation can be expressed by: QDNF ints SDNF = null.

Example: to simplify the presentation of matching between query and segment, we use
a new query Q3 which has DNF form: Q3 =< log, QA, {ROip, ROdate}, null >. Note that
QA and SA are not required to be addressed in this example. In detail, QDNF consists of
ROip = (′192.168.1.10′,′ 192.168.1.50′), ROdate =′ 2020−05−03′. Meanwhile, MASCARA
contains three segments S1, S2 and S3 in forms of S =< log, SA, {ROip, ROdate}, SD >

(as can be seen in Table 3.2). Thus, we get the results in term of Predicate Matching.
More precisely, implication is held by (Q3, S1), satisfiability is held by (Q3, S2) and un-
satisfiability is held by (Q, S3).

In order to determine the relationship between QDNF and SDNF , computing the In-
tersection (QDNF ints SDNF ) and Difference (QDNF diff SDNF ) can be seen as basic
actions. Meanwhile, Implication actually consists of Intersection and Difference in its
computing formula, in particular, (QDNF ints SDNF ) diff QDNF . Thus, we focus mainly
on the process of Intersection and Difference in this dissertation. Since our approach is
object-oriented, they should be addressed from Range-Object RO to CNF-Object CNF .
For example, assuming that we have the following SQL like queries:

43



CHAPTER 3. MASCARA

Index Simplified structure
< SR, SA, SDNF , SD >

Relevance with Q3 < log, QA, {ROip, ROdate}, null >
QDNF → SDNF QDNF ints SDNF

S1
< log, SA

ROip = (′192.168.1.1′,′ 192.168.1.100′)
ROdate = (′2020 − 05 − 01′,′ 2020 − 05 − 05′), SD >

YES YES

S2
< log, SA

ROip = (′192.168.1.30′,′ 192.168.1.100′)
ROdate = (′2020 − 05 − 01′,′ 2020 − 05 − 05′), SD >

NO YES

S3
< log, SA

ROip = (′192.168.1.200′,′ 192.168.1.250′)
ROdate = (′2020 − 05 − 10′,′ 2020 − 05 − 15′), SD >

NO NO

Table 3.2 – Predicate Matching between segments and query Q3.

S: SELECT ip, date, time

FROM log

WHERE ip = ’10.0.0.20’

AND date = ’2020-03-05’

OR ip = ’10.0.0.200’ AND time = ’12:00:00’

Q: SELECT ip, date, time

FROM log

WHERE ip >= ’10.0.0.15’ AND ip <= ’10.0.0.35’

AND date = ’2020-02-05’ AND time >= ’10:00:00’

OR ip = ’10.0.0.100’ AND time <= ’08:00:00’

Then we can construct the objects for QDNF and SDNF as shown in following Figure
3.3. The "matching" action of ROs between QDNF and SDNF represents for Intersection,
Difference and Implication. Such kind of procedure can be implemented by a nested loop
over the list of CNF-Objects and Range-Objects. For example, CNF1 of QDNF has to
match first with CNF1 of SDNF . Then, it continues to match with CNF2 of SDNF . It
is worth recalling that the matching action operates only with RO that have the same
attribute. In particular, we cannot make the intersection or difference between a ROip

and ROdate. By this way, we mitigate the unnecessary matching over RO.
Matching action of QDNF and SDNF can be expressed in different computations. Thus,

we present Intersection and Difference as following since they can be seen as the funda-
mentals of other computations.

Intersection. The implementation of Intersection can be done efficiently by making
the comparisons between either bounds or exact values of RO. Recall that, this compu-
tation has to consider also the characteristic of "(", ")" and "[", "]". The performance of
Intersection depends on the number of objects in DNF since they can slow down the iter-
ation of matching tasks. Thus, parallelization of these tasks can be seen as a solution. In
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Figure 3.3 – Matching between the DNF-Object of query Q and segment S.

summary, we simplify the procedure of finding Intersection between two CNF of QDNF

and SDNF through Algorithm 1.
Applying this algorithm, QDNF ints SDNF can be shown as in Figure 3.4. First we find

the intersection between CNF1 of QDNF and SDNF . Since there is no ROtime in CNF1
of SDNF , we create it with null value. Then, intersection between ROip =′ 10.0.0.20′ and
ROip = [′10.0.0.15′,′ 10.0.0.35′] is ROip =′ 10.0.0.20′ which is stored in CNF1 of the result.
In opposite, we found that ROdate(′2020−02−05′) ints ROdate(′2020−03−05′) = null. In
other words, computing Intersection between these CNF1 stops due to breaking condition
of loop in Algorithm 1. As a result, we conclude that CNF1 of QDNF and SDNF have
no intersection. Similarly, the computing can be done for the remaining iterations (e.g.,
CNF1 of QDNF and CNF2 of SDNF ). Unfortunately, all of the intersection results are
null. Therefore, we can say that there is no intersection between QDNF and SDNF which
can be described formally by QDNF ints SDNF = null.

Figure 3.4 – Intersection between the DNF-Object of query Q and segment S.
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Algorithm 1: Intersection between CNF-Objects
Input: cnf_q := QCNF 1, cnf_s := SCNF 1
Output: cnf_rs

/* One of two CNF-Objects is empty (list of Range-Objects = 0) */
if (cnf_q.isEmpty || cnf_s.isEmpty) then

return cnf_rs
end
ro_rs := new Range-Object to store result of intersection
set_att = union set of attributes from cnf_q and cnf_s
/* Process for two Range-Objects that have the same attribute */
for i← set_att do

/* Range Object ROi of cnf_s is null */
if (cnf_q.ROi ̸= null, cnf_s.ROi == null) then

ro_rs := cnf_q.ROi
end
/* Range Object ROi of cnf_q is null */
else if (cnf_q.ROi == null, cnf_s.ROi ̸= null) then

ro_rs := cnf_s.ROi
end
/* Two Range-Objects are not null */
else if (cnf_q.ROi ̸= null, cnf_s.ROi ̸= null) then

ro_rs := cnf_q.ROi.intersection(cnf_s.ROi)
/* Intersection is not null */
if (ro_rs != null) then

/* Add intersection of range into CNF-Object result */
cnf_rs.addRange(ro_rs)

end
/* Intersection is null */
else if (ro_rs == null) then

break the loop
end

end
end

Difference. Unlike the Intersection, computing Difference is more complicated due
to the generation of additional unwanted CNFs for the result. In particular, Difference
(RO1 diff RO2) where RO1 with a form [LowerBound, UpperBound] and RO2 with an
exact value can result to a decomposition in RO1 if value of RO2 is contained in RO1.
Thus, we can have two new Range Objects ROnew1 = [LowerBound, ExactV alue) and
ROnew2 = (ExactV alue, UpperBound] that are stored in two new CNF −Object instead
of only one as in Intersection. In the worst case, if all RO from QCNF and SCNF has the
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Difference, then the number of additional CNFs can grow combinatorially. The analysis
for complexity of such kind of computing is also presented in works [79, 43, 42]. Therefore,
we consider that Difference is the most excessive computation in Query Trimming. Note
that matching tasks in such procedure can be parallelized similarly with Intersection to
improve the performance. We present simplified Difference algorithm for CNF-Objects in
Algorithm 2.

Algorithm 2: Difference between CNF-Objects
Input: cnf_q := QCNF 1, cnf_s := SCNF 1
Output: dnf_rs

list_ro_rs := new list of Range Object to store result of difference
/* Iteration over list of RO in SCNF 1 */
for i← cnf_s.attribute() do

/* Get or create ROi in cnf_q with respect to ROi in cnf_s */
cnf_q.ROi := get or create new
/* If Range Object ROi of cnf_q is not null */
if (cnf_q.RQi ̸= null) then

/* Computing list of Difference of two Range-Objects */
list_ro_rs := cnf_q.ROi.difference(cnf_s.RQi)

end
/* If Range Object ROi of cnf_q is null */
else if (cnf_q.ROi == null) then

/* Calling NOT on ROi of cnf_q */
list_ro_rs := cnf_q.ROi.not()

end
new_cnf := create new from cnf_q −ROi

for j ← list_ro_rs do
temp_cnf := new_cnf
temp_cnf.addRange(list_ro_rs.ROi)
dnf_rs.addCNF (temp_cnf)

end
end

Applying this algorithm, computing QDNF diff SDNF can be shown as in Fig-
ure 3.5. After finding the Difference between ROip =′ 10.0.0.20′ and ROip =
[′10.0.0.15′,′ 10.0.0.35′], the results (red box) are stored in two different CNF1 and
CNF2. The result of Difference (purple box) between ROdate =′ 2020 − 02 − 05′ and
ROdate =′ 2020 − 03 − 05′ is stored in only one CNF3. Repeating the algorithm until
reaching the end of both list CNF , we will have 12 CNFs in total to be managed in the
result. Consequently, this number will grow dramatically when a query Q matches with
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multiple segments S in cache.

Figure 3.5 – Difference between the DNF-Object of query Q and segment S.

Based on the results from Attribute Matching and Predicate Matching, we now can
verify the equivalence of Q and S. Thus, we have the following definitions for relationship
of Q and S.

Definition 3.3.9. Given a query segment Q and a semantic segment S, query implication
Q→ S holds if and only if two conditions are satisfied:

— QA ⊆ SA.

— QDNF → SDNF .

Definition 3.3.10. Given a query segment Q and semantic segment S, query satisfiability
holds if and only if two conditions are satisfied:

— QA ∩ SA ̸= ∅.

— Sastifiability is held between QDNF and SDNF .

Definition 3.3.11. Given a query segment Q and semantic segment S, query unsatisfi-
ability holds if one of the two conditions is satisfy:

— QA ∩ SA = ∅.

— Unsastifiability is held between QDNF and SDNF .

Example: by adding the details of SA for the segments and query Q3 from Table 3.2,
we have the new Table 3.3 which shows the Query Matching in forms of Attribute and
Predicate Matching. Regarding to Table 3.3, we conclude that Q3→ S1, (Q3, S2) holds
the satisfiability and (Q3, S3) holds unsatisfiability.
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Index Simplified structure
< SR, SA, SDNF , SD >

Relevance Q3 < log, {ip, date}, {ROip, ROdate}, null >
Attribute Matching Predicate Matching

S1
< log, {ip, date}

ROip = (′192.168.1.1′,′ 192.168.1.100′)
ROdate = (′2020 − 05 − 01′,′ 2020 − 05 − 05′), SD >

QA ⊆ SA QDNF → SDNF

S2
< log, {ip, time}

ROip = (′192.168.1.30′,′ 192.168.1.100′)
ROdate = (′2020 − 05 − 01′,′ 2020 − 05 − 05′), SD >

QA ∩ SA ̸= ∅ QDNF ints SDNF ̸= null

S3
< log, {time, code}

ROip = (′192.168.1.200′,′ 192.168.1.250′)
ROdate = (′2020 − 05 − 10′,′ 2020 − 05 − 15′), SD >

QA ∩ SA = ∅ QDNF ints SDNF = null

Table 3.3 – Query Matching of segments and Q3 from attribute and predicate perspective.

Regarding the definition of satisfiability and implication between Q and S, we present
here five possible particular relations between QD and SD. There exist more scenarios
where S is partially or totally contained in Q, however, since these scenarios are symmetric
to the case 2, 3 and 4, we can apply similar strategies. These relations are also illustrated
in Figure 3.6).

1. QD and SD do not match when query unsatisfiability holds with: QA ∩SA = ∅ and
QDNF ints SDNF = null. We thus call it Miss Matching.

2. QD is contained in SD when query implication holds with: QA ⊆ SA and QDNF →
SDNF . We thus call it Totally Matching.

3. QD is vertically and partially contained in SD when query satisfiability holds verti-
cally with: QA ∩ SA ̸= ∅ and QDNF → SDNF We thus call it Vertically Matching.

4. QD is horizontally and partially contained in SD when query satisfiability holds hor-
izontally with: QA ⊆ SA and QDNF ints SDNF ̸= null. We thus call it Horizontally
Matching.

5. QD is horizontally and vertically contained in SD when query satisfiability holds
partially with: QA∩SA ̸= ∅ and QDNF ints SDNF ̸= null. We call Mixed Matching.

Figure 3.6 – The possible relations between Q and S that are addressed through Attribute
and Predicate aspect.
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b) Semantic Extracting

Receiving the results from Semantic Matching, Semantic Extracting is responsible to
generate probe query PQ and remainder query RQ. Based on the presented scenarios of
matching, PQ and RQ will use the results from (QA, SA) and (QDNF , SDNF ). We present
in the following the Algorithm 3 to extract and construct PQ and RQ.

Algorithm 3: Semantic Extracting
Input: Q<QR, QA, QDNF , QD >, S < SR, SA, SDNF , SD >
Output: PQ, RQH , RQV

/* Case: Totally matching */
if QA ⊆ SA and QDNF → SDNF then

PQ :=< QR, CA, QDNF , QD >
RQH := NULL, RQV := NULL

end
/* Case: Horizontal Matching */
else if QA ⊆ SA and QDNF ints SDNF ̸= ∅ then

PQ :=< QR, CA, QDNF , QD >
RQH :=< QR, CA, (QDNF ints SDNF ), DMS >
RQV := NULL

end
/* Case: Vertical Matching */
else if QA ∩ SA ̸= ∅ and QDNF → SDNF then

PQ :=< QR, CA, QDNF , QD >
RQH := NULL, RQV :=< QR, DA, QDNF , DMS >

end
/* Case: Mixed Matching */
else if QA ∩ SA ̸= ∅ and QDNF ints SDNF ̸= null then

PQ :=< QR, CA, QDNF , QD >
RQH :=< QR, CA, (QDNF ints SDNF ), DMS >
RQV :=< QR, DA, QDNF , DMS >

end
/* Case: Miss Matching */
else if QA ∩ SA = ∅ and QDNF ints SDNF = ∅ then

PQ := NULL
RQ :=< QR, DA, QDNF , DMS >

end

As it can be seen, PQ and RQ are constructed similarly with query Q and semantic
segment S. In case of vertically and horizontally matching, we can have two types of RQ,
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a vertical remainder query RQV and a horizontal remainder query RQH , respectively.
These RQs are executed in DMS by compute layer with data transferred from storage
layer. Interestingly, in case of Mixed Matching, we have both of them at the same time.
Such kind of matching is the most complicated since the results of RQH and RQV are
difficult to combined and described by only one segment. Thus, we decide keeping and
processing them separately. Finally, when Miss Matching happens, one RQ, which consists
of both missing attributes and predicates, is constructed . As a consequence, PQ could
be executed by MASCARA as soon as they appear, meanwhile RQ has to be examined
further with remaining segments in case of multiple matching between Q and SC.

c) Complexity of Query Trimming

While every individual segment S may contain only a small part of Q answer, multiple
segments can be combined together to generate a bigger part of, or even the entire result. In
other words, MASCARA has to repeatedly run Algorithm 3 over the list of the remaining
segments S in SC. For example, assuming that after matching and extracting Q with
S1, we have PQ RQH and RQV . Their pointed data regions (e.g., PQD) are shown in
Figure 3.7). Then, RQV will be compared with the next candidate S2 that results in
another Mixed Matching. Meanwhile, RQH is checked and found that it has Horizontally
Matching with S3. Continuously, Query Trimming runs to the end of the list of segments.
In other words, until it cannot find any more S which can contribute to the answer of Q.
As a result, in this example, we get finally three PQ (red) and three RQ (orange).

Figure 3.7 – Relationship of data regions in case of multiple matching between Q and list
of S in MASCARA.

Standing for the overall complexity of Query Trimming, we have
Complexity_QueryTrimming. From Algorithm 3 and Figure 3.7, we consider
that this stage checks implicity or satisfiability among Q and list of S in SC. Thus,

51



CHAPTER 3. MASCARA

Complexity_QueryTrimming is determined by the number of segments N and the
complexity of trimming algorithm algo which is implemented by object oriented ap-
proach: Complexity_QueryTrimming = N ∗ algo. If single matching happens (N = 1),
Complexity_QueryTrimming = algo. It is difficult to precise the complexity of algo

since it depends on many different parameters, such as complexity of functions (e.g.,
Intersection, Difference), number of CNF , number of dimensions (i.e., attributes) in
DNF , etc. In short, they can lead to an excessive computation of algo which is illustrated
in details through Figure 3.4 and 3.5. Specifically, with multiple matching, assuming that
number of cached segment N is huge, Complexity_QueryTrimming becomes the main
bottleneck in computing of MASCARA. Indeed, this issue has also been studied in [79,
43, 42]. Consequently, in this dissertation, we will revisit this bottleneck practically with
respect to CPU’s capability later in Section 3.4.

3.3.4 Semantic Management

a) Cache organization

MASCARA composes two parts of caching: the data region DR and the semantic
segment S. Regarding with a semantic segment S, there is a pointer to the corresponding
data region DR (as shown in Figure 3.8). The semantic segment can be seen as the index,
meanwhile, data region is the content of the cache. Obviously, this segment structure is
consistent with the formal definition of the semantic cache that we present before. In ad-
dition to the four basic components of a segment, we can add other items for maintenance,
such as ST S as replacement value. Since segment and data region have a strong relation,
if there is an event on segment, for example, divide it to multiple segments or merge it
with other segments, this also results to a relevant transformation of data region.

The conventional way to organize the query answer is to store a DR as a set of tuples
(results as rows). This approach works fine for select-only queries with a key advantage
of easy maintenance. For example, tuples can be added, deleted or moved between data
regions conveniently. However, manipulating over the set of tuples can result in many I/O
operations and large space overhead. Moreover, within the select-project queries, their
results may not have the same lengths which makes the maintenances more complicated.

In MASCARA, instead of the tuple approach, we define the data structure, called
block, to represent DR. In detail, every DR is stored as a linked list with one or multiple
blocks where the pointer of S points to the first blocks of DR in the memory. The main
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Figure 3.8 – Table of semantic description S and its corresponding data regions DR.

idea of this approach is that block has dynamic size which is manipulated through the
Application Programming Interfaces (APIs) of current deployed data management sys-
tems. In other words, it entrusts the organization of data in memory to these systems,
meanwhile focusing on the increased flexibility of MASCARA. For example, in Spark
[8], we can build the block based on DataFrame API to facilitate the manipulation with
in-memory data, such as data indexing, memory allocation, etc.

The cache space is managed at block level which makes semantic segment and its data
region allocation and de-allocation more straightforward and simpler. More precisely, if
there are enough free space to hold S, then we allocate the blocks to store its DR.
Meanwhile, for de-allocation, the list of blocks, that represent DR, are removed from
cache.

b) Replacement policy.

The main role of replacement policy is to decide which semantic segment S and its data
region SD should be removed or replaced by another one when there is insufficient space
in the cache. In particular, the replacement value functions used by semantic caching can
be based on temporal locality (e.g., LRU, MRU), or on semantic locality of regions (e.g.,
Manhattan distance). An example about using Manhattan distance is shown in Figure
3.9. With the appearance of new query Q2 in (b), the replacement value of DR1 is the
negative of Manhattan distance (i.e., rv = 2) between the "center of gravity" of current
segment (DR1) and the "center of gravity" of the most recent query DR2. Similarly, when
new query Q3 appears in (c), replacement values of DR1 and DR2 are recalculated based
on the distances from their "center of gravity" to the new "center of gravity" of DR3.
Therefore, with this distance function, regions that are "closed" to the most recent query
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have a small negative value, irrespective of when they were created, and are hence less
likely to be discarded when free space is required.

Figure 3.9 – Replacement policy with Manhattan distance.

Although the policies based on semantic locality are more efficient, they lack of gen-
erality by depending heavily on the semantic characteristics of workload. Moreover, it is
mandatory to propose a method of calculating the "center of gravity". However, it results
to the necessity of a cost model where many parameters should be considered, such as
benefits of cached results, caching patterns, and reuse frequency of candidate. To the
best of our best knowledge, SC uses Manhattan distance to enhance semantic locality
is limited to few works. In particular, mobile navigation applications [30, 77] where the
queries represent for the user’s location and direction of motion. Consequently, to keep
the generality and performance of MASCARA in different application contexts, a novel
replacement value function may be proposed.

c) Coalescing strategy

To illustrate coalescing heuristic, let’s examine the relationship of (QDNF , SDNF ) and
(QA, SA) in Query Trimming. We found that there is an overlap between QD and SD with
respect to Case 3, 4 or 5 (as shown in Figure 3.6). A question is raised here: should this
part be merged into the data region of query QD, or should it remain in data region of
segment SD, or should it become a new independent part? Answering this question can be
seen as coalescing strategies, one of the functionalities of cache management. Thus, two
main approaches can be considered: Never Coalescing and Always Coalescing (as show in
Figure 3.10).

Suppose that we have a sequence of three queries Q1, Q2 and Q3 and Always Co-
alescing is applied in Semantic Management. In (a), after answering Q1, DR1 pointed
by segment S1 is created. Next, to answer Q2, DR2 can be formed, as shown in (b).
Recall that data regions in cache must be mutually disjoint. In other words, DR1 must
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Figure 3.10 – Forming of data region in Always Coalescing and Never Coalescing.

be transformed into a new region that is disjoint with DR2 since they overlap. Mean-
while, DR2 will compose the overlapped part of DR1. Later, when Q3 is issued, a similar
transformation occurs due to the overlap between DR3 and DR1 in (c). The result is a
new DR1 that decomposes its overlapped part to merge into DR3. As opposite to Always
Coalescing, in Never Coalescing, the overlapped part between (DR1, DR2) in (b) and
(DR1, DR3) in (c) will become the new independent DR with new corresponding seg-
ments S. In addition, DR1, DR2 and DR3 have to transform to the new shapes without
overlapped fractions.

Through this example, we consider that Never Coalescing turns the overlapped part
to a new independent DR with its new corresponding S which is deduced from the in-
tersection between QDNF and SDNF . This approach reflects the frequency of reference at
a finer granularity. However, the disadvantage is that it may result in a large number of
small semantic segments, which increases the overhead of cache management and query
processing. Meanwhile, Always Coalescing merges the overlapped part into data region of
query segment QD. In other words, the old data region of semantic segment SD has been
split to a new one without the contribution of overlapped part. Recall that the semantic
segment of this new data region is constructed from logical expression of remainder query
RQ. However, when a data region DR is excessively large and it needs to be replaced
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due to its low replacement value (i.e., LRU value), this results in poor cache utilization.
Thus, we can say that either Always or Never Coalescing causes the problem in differ-
ent aspects, such as response time, cache efficiency and cache space usage. Finally, since
the approach of keeping overlapped part in data region of semantic segment SD cannot
effectively express the frequency of reference, it is not discussed in this dissertation.

3.3.5 Coalescing heuristic

By striking the balance between Always and Never Coalescing, we propose a novel
coalescing strategy, named coalescing heuristic. Unlike these conventional strategies, our
solution can use alternatively the mechanisms of Always and Never Coalescing by check-
ing the current situation of data regions DR and/or their future contributions in cache.
In particular, segment S which represents corresponding DR should be measured and
indexed by their "profit" SV as new element added into S. The function of calculating SV

is based on temporal (i.e., LRU) and spatial locality (i.e., contribution to query answer-
ing). Additionally, this new replacement function value can be seen as a complement of
coalescing heuristic in terms of semantic management. Remember that, this can be also
used in replacement policy since it consists of LRU value in its function.

Given the recency of usage, we assume that the most recent coalescing/replacement
value is Vmax , which is increased by one for each new Q. Meanwhile, the coalesc-
ing/replacement value for each data region is SV . The process of finding the profit of
a DR is divided into two steps: first, computing the intermediate profit and deciding
whether to merge, based on its value, and second, computing future profit of the remain-
ing part (as shown in Algorithm 4).

As the first step of heuristic, we measure the percentage of DR that contributes to the
query answer: p = RQ/R, where RQ is the number of records that match the query answer
and R is the total number of records in the region. Then, the new replacement/coalescing
value is temporarily updated as follows: SV = SV +(Vmax−SV )∗p. Note that (Vmax−SV )
ensures that the new SV does not have a higher value than Vmax. In other words, the new
data region with respect to the last query Q will have the highest value SV . This function
is adaptable for all regions in SC, regardless whether the region contributes to answering
the query or not.

Based on the updated SV for all regions contributing to the query answer, we propose
a threshold T ∈ R as a part of "coalescing filter" SV < QV ∗ T that decides whether to
merge all, some or none of them. In general, T can scale from 0 (Never Coalescing) to
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Algorithm 4: Coalescing heuristic with new replacement value function
Input: Input: cache with list of S, DR and a query Q
Output: Output: cache updated with coalescing heuristic
Pass Query Trimming, outputs are: PQ, RQ
Execute PQ and RQ
/* Replacement with the minimal ratio */
while r ̸= End Of List do

r := SV /size_of_SD

Finding the minimal r

end
V ictim := S with DR that has minimal r
Remove V ictim
Add RQ with new DR
/* Heuristic of coalescing: step 1 */
Choosing threshold T
Assign QV := V max
while S ̸= End Of List do

p := RQ/R
SV _inter := SV _ori + (Vmax − SV _ori) ∗ p
if SV < QV ∗ T then

Coalescing between SD and QD

end
else if SV >= QV ∗ T then

No-coalescing between SD and QD

end
end
/* Heuristic of coalescing: step 2 */
while S ̸= End Of List do

pdis := SV _inter − SV _ori

SV := pdis ∗ (1− p) + SV _ori

end

1 (Always Coalescing). Meanwhile, QV = Vmax is the value of the new DR with respect
to the new query which appears. If SV < QV ∗ T , the overlapping part between existed
DR and new DR of Q will be merged (coalesced) into the old one. Thus, the number
of generated or cached segments are stored, resulting in an efficient response time of
MASCARA. Otherwise, if SV >= QV ∗ T , the new DR of Q will be cached which has
the same value SV as its predecessor DR. By this way, this decision increases the data
granularity of the cache, resulting in higher efficiency. Although we have not yet explored
the cost model related to the "coalescing filter" as well as the optimization problem (e.g.,

57



CHAPTER 3. MASCARA

Knapsack or Dynamic Programming [11]), we can adjust the threshold T in practical to
find a "reasonable coalescing filter" based on response time, data granularity, and space
utilization.

As the second step, after merging some of the DR, the remaining ones might shrink
into the new parts. Therefore, their future profit that could be evaluated for the next
queries should be recalculated as follows: SV = pdis ∗ (1− p) + SV _ori where SV _ori is the
original profit of the DR before starting the procedure. pdis = SV _inter −SV _ori, consists
of the profit distance, is the gap between the intermediate profit SV _inter and the original
profit SV _ori. An example of these two steps is shown in following Figure 3.11.

Figure 3.11 – The coalescing heuristic in cache management

We assume that the contribution of DRi and DRj to the query answer is pi = 0.75
and pj = 0.71, respectively. The last value Vmax = 35 for the appearance of query Q.
Although pi, pj are nearly equal, their contributions to the answer are different in size
(i.e., DRi > DRj). From (a) to (b), the SV of Si has increased significantly from 10.3 to
18.4. If we choose T = 0.5, then T ∗ QV = 0.5 ∗ 35 = 17.5 does not pass the condition
of "coalescing filter" (17.5 < 18.4). Thus, cache will keep the overlapping part between
DRi and DRQ as a totally new one. In contrast, with the same procedure, DRj does not
pass the "filter". It means that cache will merge the overlapping part of DRj into DR of
Q. At the end of the procedure, in (c), we reevaluate the future profit of DRi, DRj to
prepare the next Q. For example, using the formula consists of pdis, the future profit of
the remaining DRi is: SV = (18.4− 10.3) ∗ (1− 0.75) + 10.3 = 12.325.

Since SV is used for both coalescing and replacement, our heuristic overcomes the
limitation of LRU in the context of SC. Indeed, considering that DR can vary in size,
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removing it from the cache should depend not only on its contribution to the last query
response, but also on its actual size. In other words, we calculate the ratio r between
the actual coalescing/replacement SV and its size s in the cache: r = SV /size_of_SD.
Thanks to the real representation of r (e.g., SV = 12.325 in the above example) if the
cache needs space for a new data region DR, the selection of a victim would be more
accurate than LRU. It should be noted that DR which overlaps the query response are
excluded from this procedure. In summary, by approximating both temporal and spatial
locality, the impact of query workload (i.e., semantic locality) could be alleviated in general
applications.

To conclude, we question about the compatibility of heuristic in MASCARA. In par-
ticular, such kind of compatibility should be evaluated carefully in different metrics, such
as response time, hit ratio and cache space utilization. Our coalescing heuristic may be
less interesting (in response time) compared to Always Coalescing in MASCARA due
to the limited throughput of Query Trimming based on CPU when complexity of query
rewriting is high. However, the other benefits of coalescing heuristic, such as hit ratio
and cache space usage, probably allow its contribution to be guaranteed in MASCARA.
Therefore, this question will be answered practically in details through experiments in
Section 3.4.

3.3.6 Multi-view processing

Up to now, Query Trimming allows to process range queries with multi dimension.
More precisely, these queries consists of select and project operation in their logical ex-
pression. However, in practice, since data is structured in a large number of tables, there
is a need to join the results from multiple tables based on their logical relationship. In
other words, join queries should also be supported in MASCARA. In fact, query rewriting
of join is more complex than select-project query due to multiple participated relations.
Unfortunately, although prior SC solutions [30, 78, 52, 54, 38, 57, 80, 29, 27, 94] present
in details select-project queries, none of them describes how to handle join query with
respect to query rewriting and join result managing. A few of works from other broad
line of research, materialized view [40, 84, 89], present new query rewriting procedure for
join and aggregate query at the same time. However, their approach results to a high
Complexity_QueryTrimming which reduces significantly cache performance. This re-
sult also comes from the fact that their approach stores not only the segment S but also
its relationship. Moreover, since their work aims to apply SC co-located with RDMBS,
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they raise a challenge of maintaining data region in physical layer. Finally, the presented
algorithms are not implemented and evaluated, especially in terms of tracking and ma-
nipulating joined result. In summary, by coordinating the above elements, join query
processing in MASCARA should be revisited.

To reach this goal, we first simplify the scope of study about join query in this dis-
sertation. In particular, we focus on inner join query in which the conditions of filtering
can be put in "WHERE" or "ON" clause and vice versa. Our choice is motivated by the
fact that processing inner join query is not affected by the order of execution of filter and
join. To explain, assuming that we have a SQL like inner join query as follows:

Q: SELECT users.name, users.dept, log.ip, log.date, log.action

FROM log

INNER JOIN users ON users.ip = log.ip

WHERE log.ip = ’109.10.10.1’ AND log.date = ’02-02-2022’

AND users.dept = ’zone-7’

Processing this query can be done with two different approaches as illustrated through
Figure 3.12. As it can be seen, the approach on left side makes join first and filters the
result at the end. In contrast, the approach on right side filters first and makes join the
results at the end. More precisely, it splits the original query into two sub-queries, one is
executed over user relation and the other over log relation. In other words, such approach
processes an inner join query as list of select-project sub-queries over different relations.
Consequently, processing of these sub-queries are already presented in Query Trimming
of MASCARA in Section 3.3.3.

Meanwhile, in a left join, placing a filter condition in the "ON" clause will affect a
query result differently. For example, assuming that we have the two following left outer
join queries:

Q2: SELECT users.name, users.dept, log.ip, log.date, log.action

FROM log

LEFT OUTER JOIN users ON log.ip = users.ip

WHERE log.ip = ’109.10.10.1’ AND log.date = ’02-02-2022’

AND users.dept = ’zone-7’

Q3: SELECT users.name, users.dept, log.ip, log.date, log.action

FROM log

LEFT OUTER JOIN users ON log.ip = users.ip

AND log.ip = ’109.10.10.1’ AND log.date = ’02-02-2022’

AND users.dept = ’zone-7’
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Figure 3.12 – Processing inner join query with two different approaches.

It should be apparent now that the two seemingly similar left join queries have two
completely different results. In Q2, a filter condition was placed in the "WHERE" clause
to filter records on the joined result at the end of processing. In contrast, in Q3, a filter
condition was placed in the "ON" clause to filter the tables before starting join processing.
In fact, Q3 can have NULL entries on the joined result whenever a match of users could
not be made to log. Thus, such order of filter and join can lead to an erroneous result
even though the semantic segment is well presented. Moreover, unlike inner join, left and
right outer join has to process the input tables from left to right which could make query
rewriting more complex. To summarize, we can conclude that such outer joins can create
an issue of matching and creating corresponding semantic segment due to its seemingly
similar but different results in business requirements. Therefore, to begin with, in this
dissertation, we extend MASCARA with explicitly or implicitly inner join query.

Regarding the consistence result from process of inner join queries, we consider that it
can be split into smaller sub-queries. Each of them consists in the filtering condition itself
and works in context of corresponding relation. For example, according to presented inner
join query Q, we can have two sub queries, Q11 on users and Q12 on log as following.

Q11: SELECT users.ip, users.name, users.dept

FROM users

WHERE users.dept = ’zone-7’
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Q12: SELECT log.ip, log.date, log.action

FROM log

WHERE log.ip = ’109.10.10.1’ AND log.date = ’02-02-2022’

Obviously, these two queries are Select-Project queries already supported by MASCARA.
In details, they can be matched, extracted and executed through Query Trimming and
Probe Query Executing respectively. Splitting query into multiple sub-queries is an action
in the novel approach, called Multi-view processing, in which we propose to support inner
join query.

Figure 3.13 – Simplified workflow of inner join query in MASCARA with respect to Multi-
view processing

We illustrate the workflow of Multi-view processing for inner query Q1 or Q2 in Figure
3.13. As it can be seen, two sub-queries run on two different views: users and log. First,
Query Broking is extended to distribute attributes and predicates in original query to sub-
queries. Now, each of them can be seen as a normal query which needs to match and extract
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relevant semantic information from list of segments in the same view. In particular, Q11
needs to pass Query Trimming with list of segments that have SR = users, meanwhile,
Q12 is compared with list of segments that have SR = log. Their local results are combined
at the end with a join condition (e.g., log.ip = users.ip) to have a materialized result which
is stored in the form of new data region in cache. Moreover, no matter which coalescing
strategy is applied in cache management, the impact of such result to cache space seems
to be similar as the other data regions from Select-Project queries.

Regarding this Multi-view, Query Trimming, which is called two times by Q11
and Q12 respectively, could greatly increase the response time due to the fact that
Complexity_QueryTrimming is the bottleneck of MASCARA. In other words, applying
Multi-view to process inner join query on MASCARA can cause a noticeable trade-off
in response time. Obviously, this problem becomes more severe when handling multi-join
conditions and multi-dimension in generated sub-queries. The compatibility of Multi-view
processing with MASCARA is evaluated practically later in Section 3.4. Such evaluation
allows us to prepare a plan of accelerating MASCARA on FPGA.

To sort and merge the results from sub-queries, MASCARA requires to implement a
procedure, such as sort-merge-join. In general, sort-merge-join can be seen as the most
effective without considering the cost of necessary pre-processing (i.e., sorting the inputs).
Basically, sort-merge-join can be implemented with divide-and-conquer procedure from
software perspective. However, the main drawback is that time complexity is O(nlogn)
since the task of sorting and merging are not executed in parallel. Thus, an input with
large size can lead the sort-merge-join on MASCARA is overhead rapidly.

Since the sub-queries can run independently in Query Trimming, it is essential to
multiply table of semantic description by number of views in query. For example, if we
have segments from two sub-queries Q11 and Q12, we need to organize two semantic
tables: first table stores segments on users and the second table is for log. Recall that
these tables have structure described in details by Figure 3.8 in Section 3.3.4. To maintain
the relationship of segments Q11 and Q12 in two tables, we provide a new pointer SM in
the segment (as shown in Figure 3.14).

As it can be seen, Q11 of table users link to Q12 of table log through a pointer. Thus,
the data region for materialized result is represented by multiple segments. Furthermore,
both Q11 and Q12 keep the connection to their data region. By this way, if a new query
has one view (relation), it requires to check only either table users or log. Interestingly, it is
possible to take a corresponding portion of this data region without unnecessary running
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Figure 3.14 – Managing multiple semantic description tables within Multi-view processing.

Query Trimming on both tables. Last, to ensure the consistency between segments of
table, we consider that the timestamps of linked segments are synchronized for cache
replacement.

3.3.7 Result Refining

In order to merge the results from PQ and RQ, it is necessary to have a data structure
to express the relationship between every part of query segment Q and the involved
semantic segments S. In other words, combination of results seems to be the puzzle issue
in which we need to identify the position, the order and the type of combining. Therefore,
to reach this goal, in Result Refining stage, we use a binary tree, named Query Plan Tree
(QPT) which is referenced in [78].

Each non-leaf node of QPT represents a type of combination, such as vertical com-
bining V C and horizontal combining HC with respect to the type of matching we have.
Meanwhile, a leaf node can be the result of PQ on a specified segment S, or RQV or
RQH on server. The QPT is constructed from top-to-bottom in parallel with the Query
Trimming stage. More precisely, a node as well as its ancestor or children will be created
if and only if its relative Query Trimming was finished. Finally, to combine the results,
we need to traverse the QPT. Using the presented example in Figure 3.7, a QPT can be
constructed simultaneously with Query Trimming stage as shown in Figure 3.15.

Consider the case when Q has Mixed Matching with S1. After passing the semantic
extraction, the root of tree, node N1, is created with label HC, which means that the
results of the sub-trees must be appended horizontally. Also, N1’s sub-trees represent the
two trimmed parts: left sub-tree for Horizontal Matching between Q and S3, and right-sub
tree for Mixed Matching between Q and S2. Thus, node N2 with HC and N3 with V C

are created for these two sub-trees. Until now, the left sub-tree of N2 cannot be further
trimmed, it stands for the PQD that is executed over data region S3D. Its RQH will be
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Figure 3.15 – A query plan tree with respect to mutiple matching in Query Trimming.

processed by the DMS to return the result RQHD. In opposite, the QPT grows up with its
right-sub tree N3 in which we get the remaining nodes, such as N8 (RQHD), N7 (PQD),
etc. After having all the results of nodes, we can combine them to get the final answer by
traversing the QPT with respect to the green arrows.

The time to generate this QPT depends on the time complexity of Query Trimming
Complexity_QueryTrimming for N segments. Meanwhile, time to traverse it to com-
bine the result depends on the time to process PQ and RQ, and the time to execute
the combine action V C or HC. In our study, time of query execution which depends on
relational evaluation and combine action can be simplified no matter the size of results.
Consequently, through examining the QPT of Result Refining, we can say that the im-
provement of SC performance can be done mainly by accelerating Query Trimming and
PQ execution. Meanwhile, acceleration of RQ as black-box between the compute and the
storage layer of DMS, is not coped in this dissertation.

3.4 Validation

In this section, we present the experimental results with respect to the following objec-
tives. First, we want to compare the performances of MASCARA with the other solutions,
such as No-Cache and Block-Cache. Second, we also show the limitations (e.g., dimension
of DNF, multi-view processing) that can reduce the performance of MASCARA. Thirdly,
we show the unsuitability of our coalescing heuristic for MASCARA based on CPU where
we need to prioritize accelerating the performance (i.e., response time). Based on these
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above elements, we raise the question of hardware acceleration for MASCARA in differ-
ent aspects, such as query rewriting for select-project-join query, coalescing strategies and
probe query executing. To conduct the experiments, we present the benchmark environ-
ment, data sets as well as the impact factors in Section 3.4.1. Then, we give the results
of our solutions in Section 3.4.2.

3.4.1 Validation environment

a) Configuration

We conducted all experiments on a server consisting a single node which is equipped
with one Intel® Xeon® Gold 5118 CPU running at 2.30GHz. Moreover, this server has
64GB of RAM. The software stack of this system consists of Linux Ubuntu 16.04.4 Long
Term Support, Hadoop 2.6.0 [85], and Spark 3.0.0 [8], and MASCARA.

The compute layer of DMS on server is deployed with a query engine, Apache Spark
3.0.0 [8], to execute the remainder queries. Spark can be seen as a general-purpose cluster
computing engine with libraries for streaming, graph processing, machine learning and
SQL. Moreover, SparkSQL for database processing, provides DataFrame API that can
perform relational operations on different formats in various kinds of storage. In order to
run the remaining queries, Spark is configured to run in a "Standalone Mode", a simple
cluster manager incorporated with Spark. We use the default configuration for the amount
of memory and CPU cores in Spark to execute the remaining queries. In details, it will
take up to 12 cores of the server node and 64GB RAM to distribute to corresponding
executors. Here, we configure only one Java Virtual Machine (JVM) Executor with all 12
cores.

Meanwhile, for the storage layer of DMS, we use Hadoop Distributed File System
(HDFS) [85] to cooperate with SparkSQL, that provides reliable, scalable and fault tol-
erant data storage on specialized hardware. In addition, HDFS is designed to hold large
amount of data and provides faster access to data from Spark SQL. We use the default
chunk or block size of HDFS, in particular, 128MB for each block that is replicated three
times.

Since MASCARA is the middleware layer of DMS, we implement it (in Java) on top of
Spark to execute the probe queries. This prototype can be named as MASCARA-Server.
Query Trimming of MASCARA is implemented to be processed with (logical) multi-
threads. Each thread is invoked to run the comparison between a pair of available CNF
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between Q and S. However, internal tasks or functions, in particular, range comparison
and read/write of CNF are not executed in parallel since implementing them on CPU can
be seen as a challenge in terms of task and event management. Similarly, generated PQ

from Query Trimming can be executed in parallel by multi-threads. Meanwhile, sort-merge
in sort-merge-join can run with three threads that correspond to three joined relations
lineitem, orders, and customer. To summarize, in our experiment, we fix to have 24
(logical) threads running in parallel over 12 cores of CPU.

It is reasonable enough to study the performance and main bottlenecks of MASCARA
(i.e., Query Trimming) in single node. The reason is within a server node, data commu-
nication between the compute (i.e., Spark) and the storage layer (i.e., Hadoop) is still
expensive. This issue is even worse in case of we extend to a cluster of computing nodes
where the restriction of network bandwidth emphasizes more the role of MASCARA.

b) Datasets and workloads

We use the data set that is generated by TPC-H benchmark tool kit[1]. Using the
integrated tool DBGen, we can generate different sizes of tables by configuring the Scal-
ing Factor (SF). For example, SF = 1GB means that we generate a data set with
many tables which total size is 1GB. In our experiments, we need only three main re-
lations, such as lineitem, order and customer that consumes approximately 84% of
total size. Moreover, the tuples of this lineitem table is computed by bs_tuple ∗ SF

where bs_tuples = 6, 000, 000. Similarly, bs_tuples of order and customer are equal to
1, 500, 000 and 150, 000. As consequence, this data set will be loaded in HDFS with the
default configuration blocks (i.e., 128MB).

To create the workload, we customize two queries of TPC-H, Q6 and Q5 [1]. Our choice
is motivated by the fact that Q6 heavily utilizes the filtering operation and also is I/O
intensive (with storage layer). In other words, executing for a large number of Q6(s) can
clarify the role of caches. Meanwhile, Q5 can be seen as a typical join query which runs
over the three largest relations of TPC-H: lineitem, order and customer. Additionally,
their logical expression are also modified by adding more attributes (as multi-dimensions)
and CNFs (in terms of atomic predicates). Such customization facilitates the analysis
of MASCARA’s performance and bottleneck. In short, Q5 is suitable to analysis the
capability of MASCARA with respect to Multi-view processing.

Regarding to the schema of the three relations, we assume that the candidate keys are
always requested in queries. Furthermore, since MASCARA supports multi-dimension

67



CHAPTER 3. MASCARA

queries, it allows to request multiple attributes that are either integer or decimal in
relations. For example, with three dimensions (3D) query, in lineitem, we can have
l_linenumber, l_quantity and l_shipdate in the condition of customized Q6. Thus, a
customized Q6 can be generated as following:

SELECT *

FROM lineitem

WHERE l_shipdate >= ’1994-01-01’ AND l_shipdate < ’1995-01-01’

AND l_quantity <= 24 and l_quantity > 10

OR l_linenumber = 120 AND l_shipdate > ’1997-02-02’

Specifically, in customized Q5, we make an explicit or implicit inner join query between
three presented tables. We also consider that such kind of query always consists of joined
key in the projection. Thus, a customized Q5 can be generated as follows:

SELECT *
FROM customer, orders, lineitem
WHERE c_custkey = o_custkey

AND l_orderkey = o_orderkey
AND o_orderdate >= ’1994-01-01’
OR l_shipdate >= ’1994-01-11’ AND l_quantity <= 24

Each run consists of a sufficient number of queries to warm up firstly the cache, based
on the requirement of cache initialization. Then, for each measurement, a workload of 500
queries will be taken. Consequently, we obtain the final result to present each experiment
by an average of five times running.

c) Metrics

We measure the main metrics, such as total response time, hit ratio with respect to
semantic locality of workload, and data transferred from the storage layer in order to
exhibit the benefits of MASCARA. Moreover, we also consider cache space utilization to
compare different coalescing strategies in semantic management.

d) Impact factors

The performances of MASCARA could be affected by many factors. Regarding to the
presented metrics, the impact factors as shown in Table 3.4.
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Impact factors Description Affected procedure Affected metric
CNF_Seg Number of CNF in segment

Query Trimming
RQ Execution
PQ Execution

Response Time
Dim_Seg Dimension of segment

Or number of attributes in DNF
CNF_Query Number of CNF in query
Dim_Query Dimension of query

Nb_Seg Number of segments
SF Scaling factor of data set

SK Skew of query accesses
to Hot Region Cache Management

PQ Execution
RQ Execution

Hit Ratio

Response TimeHR Hot Region of data set
Size_C Size of cache

Table 3.4 – Impact factors of MASCARA’s performance

As it can be seen, we have a group of impact factors that are related to the complexity
of queries or segments, such as CNF_Seg or Dim_Query. Obviously, this group affects
the execution time not only in Query Trimming but also in PQ and RQ. For example,
increasing the Dim_Seg or CNF_Seg in segments can result to an excessive computation
in Query Trimming. Moreover, if we have RQ at the end of Query Trimming, its form
could be complex and can thus results in a high latency in execution.

Meanwhile, the second group affects hit ratio and transferred data from server. With
respect to the size of cache Size_C, the hit ratio can be improved in case cache is large
enough to hold always frequently accessed data. Thus, according to the increase of hit
rate, cache can save the data required from the server. Besides the size of cache Size_C,
we have two other factors: SK for Skew and HR for Hot Region. More precisely, HR

represents the data that is frequently requested by the queries. In complement with Hot
Region, Skew is a fixed fraction of the queries in the workload that access around the center
point within the Hot Region. For example, Figure 3.16 shows that the access pattern is
skewed 80% with Hot Region for 40% of the data set. Thus, it can be seen that 80% of the
queries in workload will access this Hot Region. Moreover, scaling SK to generate queries
over predefined Hot Region HR of the data set can be seen as such a kind of simulation
for semantic relevance between queries.

In fact, there are many other impact factors that are not listed in the Table 3.4. In
particular, regarding to the Query Trimming’s output, we can have a list of probe queries
PQ to be executed over their associated data regions DR in cache. The execution of this
list can consume much more time than expected due to its size (i.e., number of generated
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Figure 3.16 – An example about Hot Region of data set and Skew in query generator.

PQ). PQ could be processed in parallel depending on the resources of the server node.
Moreover, assuming that the data region DR are large, thus, scanning over them in PQ

without using an index technique could increase the latency of the system.
Regarding to inner join query processing, we propose to add a new factor, called

Nb_Table, which represents the number of participating relations in the query. Moreover,
the size of tables from views to be joined, called Size_V iewRS, impact the execution of
sort-merge-join of MASCARA.

e) Evaluated prototype

We use three prototypes to evaluate the performance: No-Cache, Block-Cache and
MASCARA-Server (MAS-Server). Since the comparisons of Semantic with Page and Tuple
caching were done in [30, 78], we propose to use another simplified prototype to analysis
side-by-side with MAS-Server. In details, we present Block-Cache which stores only the
data without any semantic information of queries. Unlike MAS-Server, it needs to compare
all data in cached blocks to the condition of query rather than checking the equivalence of
query’s logical expression. Thus, it supports only two types of matching: Totally Matching
and Miss Matching. Obviously, if a query matches with multiple blocks, then its results, to
be cached, could be duplicated with other existing blocks. Block-Cache can be constructed
based on the caching mechanism of the compute layer (i.e., Spark) and added policies and
strategies corresponding to the block’s characteristic.

Furthermore, we can extend MAS-Server with different coalescing strategies, such
as Always Coalescing (AC), Never Coalescing (NC) and Coalescing Heuristic (CH). In
complement, the conventional strategies work with Least Recently Used (LRU) policy,
except the heuristic which uses its own "profit" value.
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3.4.2 Experimental results

In this section, we present first the overall performance (in response time) of MAS-
CARA. Then, we study in details the partition of execution time for each computing
modules. It is worth noting that Multi-view processing is also evaluated together. By this
way, we can identify the suitable components to be accelerated by hardware later. Other
benefits of MASCARA are also presented through hit ratio and data transferred. Finally,
we explain why our coalescing heuristic is not compatible to be used on MASCARA based
on CPU through reevaluating the performance with different strategies.

a) Performances

We present response time of running workloads of Q6 customized in Figure 3.17 in
which we change Dim_Query, SF and Nb_Seg since they can affect significantly the
performance of MASCARA.

(a) Dim_Query ≤ 3
.

(b) 3 < Dim_Query ≤ 5
.

(c) 5 < Dim_Query ≤ 8
.

Figure 3.17 – Response time of Q6 mod

For each evaluation, the workloads are generated by skewing up to 0.9 (i.e., Skew
SK = 0.9) within a Hot Region HR = 10% of the relation lineitem. By this way, the
cache size is large enough to entirely store HR, thus, increasing hit ratio for both Block-
Cache and MAS-Server.

We need to warm up the cache through a sufficient number of warm-up queries that
depends on the running context. In particular, MAS-Server-50S means that MAS-Server
should be initialized with 50 segments before running the experiments. We do simi-
larly for two other testing scenarios, MAS-Server-150S and MAS-Server-250S. Meanwhile,
the Block-Cache is warmed-up by using the same workload of MAS-Server-50S. Finally,
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MAS-Server applies Never Coalescing strategy as baseline of semantic management. We
present in details the value of factors for queries and segments, such as CNF_Query or
CNF_Seg in Table 3.5.

Impact factors Value
CNF_Seg vary from 40 to 50 CNFs in semantic segment
Dim_Seg vary with dim ≤ 3, 3 < dim ≤ 5, 5 < dim ≤ 8

CNF_Query vary from 40 to 50 CNFs in query segment
Dim_Query vary with dim ≤ 3, 3 < dim ≤ 5, 5 < dim ≤ 8

Nb_Seg 50, 150, and 250 segments initialized in cache
SF vary from 1GB to 10GB for dataset
SK 0.9 of Hot Region
HR 10% of lineitem

Size_C 30% of lineitem

Table 3.5 – Details of (Select-Project) queries and segments for evaluating response time
of MASCARA-Server

Evaluation of Q6. In Figure 3.17a, with Dim_Query ≤ 3, the response time of No-
Cache is the highest because all of the queries are executed by the server where cost of data
transfer from the storage to the compute layer is expensive. Moreover, this response time
increases dramatically when scaling factor SF = 10GB. Meanwhile, the Block-Cache has
a better response time although its hit ratio is less than 40% (more details in Section c)).
In particular, Block-Cache is 1.5 and 2.3 times faster than No-Cache when SF = 1GB and
SF = 10GB, respectively. Block-Cache does not have Partial Matching, thus, it has low
hit ratio and its benefit is limited in terms of executing many RQ in DMS. Moreover, the
cached answer in Block-Cache can be duplicated since missing record(s) in block requires
a new block from storage Thus, this problem can degrade cache space usage.

Our MAS-Server runs faster than Block-Cache with all scenarios. This acceleration
comes from its high hit ratio (up to 90% approximately, more details in Section c)) when
cache size Size_C is large enough (e.g., 30% of data set). By this way, MAS-Server
generates less RQ that are expensive to be executed. We consider that MAS-Server-50S is
the fastest one because its Query Trimming seems to be less expensive (with Nb_Seg =
50) compared to the others. For example, with SF = 1GB, MAS-Server-50S is 6.0 and 3.9
times faster than No-Cache and Block-Cache, respectively. In opposite, response time of
MAS-Server-250S is increased due to its high number of initialized segment, Nb_Seg =
250. In particular, it can result to be only 4.6 and 2.0 times faster than No-Cache and
Block-Cache respectively with SF = 10GB.
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Regarding to Figure 3.17b, the performances of MAS-Server are reduced. In detail, the
speed-ups of MAS-Server-50S compared to No-Cache and Block-Cache, are only 2.6 and
1.6 times respectively with SF = 1GB. This phenomenon is even worse for MAS-Server-
250S. More precisely, it is only 1.2 times faster than No-Cache with SF = 1GB. Interest-
ingly, we found that MAS-Server-250S is slower than Block-Cache. Although MAS-Server-
50S and MAS-Server-150S still remain better than Block-Cache, their performances reduce
dramatically. The reason is the complexity of Query Trimming, in particular, Dim_Query

and Dim_Seg that could be up to five attributes. Indeed, MASCARA allows to handle
Query Trimming by multiple threads of comparison CNF between Q and S. However, the
internal task of CNF , in particular, Range-Object comparison (with if-else) statement
can be executed in pipelining fashion. Therefore, when Dim_Query and Dim_Seg in-
crease, multiple threading of CPU is not capable to handle, unless concurrency of threads
is considered.

As shown in Figure 3.17c, in all of three scenarios, MAS-Server runs slower than Block
Cache when greater number of dimension (i.e., 5 < Dim ≤ 8). Notably, the response time
of MAS-Server-250S is obviously slower than No-Cache due to the fact that a bottleneck
can appear in Query Trimming. It is worth to note that the growth of dimension in query
does not only degrade Query Trimming but also leads to the high latency of PQ and RQ

due to their generated complex format. Thus, response time of MAS-Server-250S can be
even worse. Consequently, the worst case of MASCARA is when it has a large number of
complex segments in Dim and DNF that turns to be the main bottleneck of computing
as shown in MAS-Server-250S.

Evaluation of Q5. To continue, we present the performance of MASCARA when
running workloads of customized Q5(s) (as shown in Figure 3.18). We focus only on
MAS-Server with 250 segments, named MAS-Server-250S, where Multi-view processing
creates the overhead of computing (i.e., Query Trimming multiple times). It is worth to
note that Dim represents the dimension of lineitem. Meanwhile, the other dimensions
from orders and customer are fixed with three and one, respectively since they have a
limitation of integer or decimal attributes.

We found that MAS-Server can improve the execution performance compared to No-
Cache and Block-Cache if the number of dimensions is small (i.e.,Dim_Query ≤ 3) (as
shown in Figure 3.18a). Otherwise, its response time increases dramatically (as shown in
Figure 3.18b and 3.18c). For example, with SF = 10GB and a high number of dimensions
(i.e., 5 < Dim ≤ 8), it runs 1.67 and 3.61 times slower than No-Cache and Block-Cache,
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(a) Dim_Query ≤ 3
.

(b) 3 < Dim_Query ≤ 5
.

(c) 5 < Dim_Query ≤ 8
.

Figure 3.18 – Response time of Q5 mod

respectively. To explain, MAS-Server (i.e., MAS-Server-250S) deploys Multi-View process-
ing with multi-threads on CPU. Thus, each thread is responsible to run Query Trimming
for a relation. When a thread runs, it invokes the sub-threads to handle computation of
Query Trimming. However, they are not efficient in processing overlapped tasks as we ex-
plained before in overall evaluation of Q6. As a result, Query Trimming for a relation can
meet the overhead quickly, especially when the number of dimensions of Q and S increase
(i.e., 5 < Dim ≤ 8). Moreover, sort-merge-join of MASCARA at the end of Multi-view
processing is not optimized since it relies on a divide-and-conquer algorithm which tra-
verses the viewed results sequentially. Consequently, Multi-view concept enables query
rewriting for join query in MASCARA, however, it is not compatible with MASCARA-
Server because of lack of task parallelism and an efficient sort-merge-join operator.

b) Partitions of response times

In order to find out the potential of acceleration, it is better to know in details about
the execution of each stage or procedure in MAS-Server. Thus, regarding to Figure 3.17,
we illustrate the partition of execution time for workload of Q6 and Q5 respectively within
MAS-Server-250S and SF = 1GB. Note that the total execution time of the partitions
in Figure 3.19 can be greater than the end-to-end execution time in Figure 3.17 because
some of the processes overlap or work in parallel. For example, the execution on a list of
PQ has been launched as soon as they appear while waiting the return from remainder
queries RQ running from DMS.

In Figure 3.19a, Query Trimming is always the highest partition compared to other
procedures. In particular, it consumes 41.9% of the time when 1 ≤ Dim < 3 and in-
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(a) Partition of workload Q6(s). (b) Partition of workload Q5(s).

Figure 3.19 – Partitions of execution time on MAS-Server-250S.

creases up to 70.9% of the time when 5 ≤ Dim ≤ 8. In other words, this is the result
of increasing query complexity through dimension of query and segment. We also notice
that the execution time of PQ consumes in average 8.9% of the time since a large number
of them can be generated with respect to the multiple matching between Q and the list
of S. Generally, execution time of PQ can also increase due to its complex logical expres-
sion with respect to dimension of Q and S. Meanwhile, we notice that RQ takes a large
time partition (i.e., 41.87%) when Q and S are not complex (i.e., Dim is less than 3).
This partition is reduced significantly (i.e., to 9.6% of the time) when Query Trimming
has more Dim in computing (i.e., Dim is greater than 5). In other words, when Query
Trimming is complex enough, it overcomes the RQ execution to be the main bottleneck
of MASCARA-Server. However, the partition of RQ execution over total response time
can regain when SF is high (e.g., SF = 100GB). It is even worse where the storage layer
is a cloud service where communication with the compute layer is expensive. This issue
can be alleviated if hit ratio of MASCARA is high to minimize the operations from DMS.

Other elements, in particular, Query Broking and a group of small executions, such
as replacing segments in the cache, combining results, etc., take small partitions since
their complexities can be negligible as explained before in this chapter. Finally, Result
Refining, which runs in parallel with Query Trimming, is not necessary to presented here.

In Figure 3.19b, we see Query Trimming still occupies the largest partition, about
32.5− 45.9% in total response time of MASCARA-Server. Within Multi-view processing,
the number of generated PQ increases due to the fact that processing of three relations.
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Thus, the partition of PQ execution consumes more than it used to be for Q6(s) (in average
18.8% of total time). Interestingly, with the emergence of sort-merge-join in MASCARA-
Server, RQ execution now takes a small part (i.e., 8.6% of total time) for SF = 1GB.
Indeed, sort-merge-join with non-optimal divide-and-conquer algorithm, can consume up
to 39.1% of total time when viewed results are less than 5% of the size of the data set.
It is worth noting that the execution time of such operation can increase significantly in
case sizes of generated viewed results are larger.

To conclude, excluding RQ execution, we consider that Query Trimming, PQ execu-
tion and sort-merge-join are the elements that consume large proportions in MAS-Server
based on CPU. Fortunately, they can be accelerated with an appropriate specialized hard-
ware (i.e., FPGA) thanks to the modular approach of MASCARA. To do it, we expect
to offload the computations of Query Trimming that are represented in modules of MAS-
CARA into the hardware accelerators. Moreover, developing necessary database operators,
such as filter, project and sort-merge-join would be relevant to maintain the execution of
PQ and allow Multi-view processing. In contrast, RQ is executed by DMS and depends
heavily on its formats, query engine and storage system. It then turns into the issue of
query optimization that could be studied by different approaches, such as query plan
optimization, management of data partitions, or even acceleration by FPGA. In this dis-
sertation, the processing on DMS is seen a black-box and thus is out of the scope of our
dissertation.

c) Hit ratios

Hit ratio the metric which can be used to enhance the performance of MASCARA by
alleviating the emergence of RQ execution in DMS. Hence, it is meaningful to compare
the hit ratio of MAS-Server with Block-Cache. To do that, we need to examine different
impact factors. First, the semantic locality of the workload which is represented by Skew
SK of generated queries and Hot Region HR of relation. Second, size of cache Size_C

which varies from small to large (as shown in Table 3.6) can limit the maximum hit ratio
that can be achieved. As a result, we illustrate the hit ratio of MAS-Server with Never
Coalescing and other solutions in Figure 3.20.

As it can be seen, we run MAS-Server with three scenarios (i.e., workload of Q6s),
SK = 0.5, SK = 0.7 and SK = 0.9. In opposite, with the Block-Cache, we apply the
best scenario (i.e., SK = 0.9) to compare with our MAS-Server. Meanwhile, size of cache
is initialized based on size of data set, in particular, table lineitem. Other factors of
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(a) With HR = 5%
.

(b) With HR = 10%
.

Figure 3.20 – Hit Ratio

workload and segments in MAS-Server can be found in Table 3.6.

Impact factors Value
CNF_Seg from 40 to 50 CNFs in semantic segment
Dim_Seg 3 < dim ≤ 5

CNF_Query from 40 to 50 CNFs in query segment
Dim_Query 3 < dim ≤ 5

Nb_Seg 150 segments are initialized in cache
SF 1GB for data set
SK vary with 0.5, 0.7 and 0.9
HR 10% of lineitem

Size_C vary from 5% to 30% of lineitem

Table 3.6 – Details of queries and segments for evaluating hit ratio of cache

In Figure 3.20a, where the cache size Size_C is small, hit ratios of all scenarios are very
low. In particular, with Size_C = 5%, hit ratios are 8.2%, 7.9%, 8.3% and 8.3% for Block-
Cache, MAS-Server-0.5, MAS-Server-0.7 and MAS-Server-0.9, respectively. The reason is
that cache size is too small to keep the data of Hot Region consistently, thus, replacement
happens more frequently. When cache sizes are large enough, the hit ratios increase. For
example, Size_C = 15%, hit ratios are 25.3%, 39.9%, 55.9% and 70.6% for Block-Cache,
MAS-Server-0.5, MAS-Server-0.7 and MAS-Server-0.9, respectively. Obviously, hit ratio
of Block-Cache is small, even if SK = 0.9, since it does not support partial matching.
Thus, MAS-Server can have higher possibility to find out entire or partial of answers when
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SK increases. In particular, with SK = 0.9, hit ratio of MAS-Server-0.9 can reach 90%.
Other scenarios have less possibility to have overlap queries, such as MAS-Server-0.5 and
MAS-Server-0.7, they thus have lower hit ratios, 56.4% and 75.3%, respectively.

In Figure 3.20b, when HR = 10%, the cache size needs to be equal to 10% or
larger than 15% of relation (i.e., lineitem) to have a good hit ratio. More precisely,
from Cache_S = 20%, hit ratios of MAS-Server increase dramatically. For example, they
are 49.2%, 69.4%, and 83.2% for MAS-Server-0.5, MAS-Server-0.7 and MAS-Server-0.9
respectively. Consequently, hit ratio of MAS-Server, even if with low semantic relevance
(i.e., SK = 0.5), outperforms the Block-Cache when cache size is large enough to store
Hot Region.

d) Data transferred

Expensive data communication between the compute and the storage layer in DMS can
reduce dramatically the performance of query processing, especially in distribute systems
or with a cloud service storage. Another metric we want to measure is the transferred
data from the storage to the compute layer in case MASCARA does not find any match
between Q and SC (as shown in Figure 3.21).

(a) With 3 ≤ Dim (b) With 3 < Dim ≤ 5 (c) With 5 < Dim ≤ 8

Figure 3.21 – Data needs to be transferred.

We use workload of Q6(s) which SK = 0.9 and HR = 10% to measure the data
transferred. Moreover, each Block-Cache and MAS-Server have two testing scenarios,
with Cache_S = 15%, and Cache_S = 30% of relation. Other parameters can be found
in Table 3.7.

As it can be seen, No-Cache has the worst results while it executes queries repeatedly
without reusing previous data. In other words, it does not save any data to be transferred
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Impact factors Value
CNF_Seg from 40 to 50 CNFs in semantic segment
Dim_Seg vary with dim ≤ 3, 3 < dim ≤ 5, 5 < dim ≤ 8

CNF_Query from 40 to 50 CNFs in query segment
Dim_Query vary with dim ≤ 3, 3 < dim ≤ 5, 5 < dim ≤ 8

Nb_Seg 150 segments are initialized in cache
SF vary from 1GB to 10GB for data set
SK 0.9
HR 10% of lineitem

Size_C vary with 15% and 30% of lineitem

Table 3.7 – Details of queries and segments for evaluating transferred data of cache

from the storage layer. Meanwhile, Block-Cache reduces the volume of transferred data
thanks to its caching mechanism (i.e., Totally Matching). For example, in Figure 3.21a,
with SF = 1GB, Block-Cache-15% reduces 14.9% of answer while Block-Cache-30%
reduces 34.7% of answer compared to No-Cache. However, when a MISS happens, it
requires to take full answer from storage instead of considering only the missing data.
Moreover, having only Totally Matching, thus, hit ratio of Block-Cache is not high (as
presented in Section c)) which limits the data can be saved.

In opposite, MAS-Server saves a significant amount of data thanks to its capability
of partial answering. This thus leads to high hit ratio. In particular, with SF = 1GB, it
can save up to 75.6% and 95.8% of answer with MAS-Server-15% and MAS-Server-30%,
respectively, compared to No-Cache. These results are still the best when increasing the
dimension Dim (as shown in Figure 3.21b and 3.21c). It is worth noting that, despite
the configuration of SK and HR, the correlation between generated queries can vary
randomly. More precisely, the number of overlapped attributes is three but the attributes
may vary. It thus results in different amounts of transferred data when changing the
dimension of queries of segments. In summary, MAS-Server saves the most amount of
data transferred from the storage layer thanks to its highest hit ratio regarding to the
semantic locality addressed by SK = 0.9 and HR = 10%.

e) Performances with coalescing heuristic

We analyze in the following how much performance (i.e., response time) can be gained
from applying different coalescing strategies in semantic management of MASCARA-
Server (as shown in Figure 3.22). Our motivation is to show the unsuitability of coalescing
heuristic for MASCARA-Server where we need to prioritize accelerating the performance
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(i.e., response time).

(a) Workload of Q6(s). (b) Workload of Q5(s).

Figure 3.22 – Response time of different coalescing strategies

In this experiment, we use workload of Q6(s) and Q5(s) with respect to the pa-
rameters presented in Table 3.6. In particulars, we focus mainly on the issue of multi-
dimensions and large number of segments since they are the bottlenecks of Query Trim-
ming in MASCARA-Server. Thus, we initialize Dim between five and eight attributes and
Nb_Seg = 250. Meanwhile, we fix a balance value T = 0.5 for threshold when applying
coalescing heuristic.

In Figure 3.22a, NC has the worst results. As already discussed in Section a), response
time of NC is also slower than No-Cache and Block-Cache due to its large number of
processed segments and multi-dimensions in Q and S. Meanwhile, AC exhibits the best
result since it generates less number of segments. For example, with SF = 1GB, MAS-
Server-AC is 2.5, 1.6, and 3.9 time faster than No-Cache, Block-Cache and MAS-Server-
NC, respectively. Our heuristic CH gives better results than NC but it is still worse than
Block-Cache. Indeed, although the number of generated segments in CH is reduced, CPU
still meets the overhead of computing in Query Trimming. Additionally, MAS-Server-CH
is 2.3 times slower than MAS-Server-AC. In other words, CH does not exhibit a convincing
enough result compared to AC which is more preferable in MASCARA-Server. This issue
is confirmed when observing the results in Figure 3.22b. In details, with SF = 1GB,
MAS-Server AC is 5.5 and 2.4 times faster than MAS-Server-NC and MAS-Server-CH,
respectively.

To conclude, we consider that response time of MAS-Server has the highest priority
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compared to other metrics, such as data granularity and cache space usage. More precisely,
MAS-Server requires AC to mitigate the issue of Query Trimming which is considered
as the computing bottleneck. In other words, AC which brings more acceleration than
NC and even our heuristic CH, is preferable to be applied on MAS-Server in big data
application. However, let’s assume that MASCARA will be accelerated soon by hardware
accelerators, especially with Query Trimming. In other words, Query Trimming would
not be the main bottleneck anymore in such kind of acceleration. Thus, the priority of
AC could be reduced due to its drawback in hit ratio. Meanwhile, CH which exhibits
balanced results in different aspects may become the chosen. Therefore, the response time
and other benefits, such as hit ratio and cache space usage of CH, will be revisited when
MASCARA will be accelerated.

3.5 Conclusion

This chapter presents a ModulAr Semantic CAching fRAmework (MASCARA) as a
middleware layer in architecture of a new data management system (DMS). The main ob-
jective of MASCARA is to provide semantic cache-as-service by dividing and regrouping
the functionalities, computations and procedures of semantic caching (SC) into modules
and stages. By this way, we increase the flexibility, scalability and adaptability of MAS-
CARA with respect to the change of requirements, environments and infrastructures.
Moreover, MASCARA can be seen as our foundation of SC performance improvement
partly or entirely by using I/O device accelerators. The best case shows that MASCARA
is up to 3.9 times faster than the baseline (i.e., block cache). Meanwhile, it can have a hit
ratio up to 91% and thus save approximately 95% data transfer from the storage layer
when the cache size is large enough with respect to the semantic locality of workload.

By striking the balance between Always and Never Coalescing, we propose a novel
coalescing strategy, named coalescing heuristic. Unlike these conventional strategies, our
solution can use alternatively the mechanisms of Always and Never Coalescing by checking
the current situation of data regions DR and/or their future contributions in cache. In
short, this heuristic can decide to coalesce data regions based on temporal locality and
spatial locality that are represented through a new replacement value function. However,
the experimental results show that Coalescing Heuristic is 2.4 times slower than Always
Coalescing. Thus, we consider that such heuristic is not compatible with MASCARA
based on CPU as Always Coalescing. Indeed, it is urgent to alleviate the bottleneck of
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Query Trimming in MASCARA by reducing number of generated segments as done in
AC. Therefore, if the excessive computing of Query Trimming is solved or accelerated (i.e.,
by FPGA), coalescing heuristic could able to compete with Always Coalescing, especially
its hit ratio and cache space usage.

We also present an approach for query rewriting of select-project-join in MASCARA,
named Multi-view processing, which decomposes an original (inner) join query into (select-
project) sub-queries that belong to different joined relations or views. In other words,
instead of processing a (inner) join query, we process a list of sub-queries and join their
results at the end. Enabling join processing in the cache may lead to handle many gener-
ated sub-queries and thus may be expensive. Moreover, the sort-merge-join procedure of
results from views has also a negative impact on the total response time. The experimental
results show that performance of MASCARA based on CPU can be reduced significantly.
In particular, it runs 1.7 and 3.6 times slower than No-Cache and Block-Cache when the
dimension of the query and the number of segments is high. Thus, we expect the draw-
back of Multi-view processing can be solved when performance of Query Trimming in
MASCARA is enhanced, for example, with hardware accelerators on FPGA.

In fact, MASCARA shows a significant decline in performance with the bottleneck in
computing of Query Trimming. Therefore, in the next chapter, we will propose a cooper-
ative model between MASCARA-FPGA which accelerates not only the Query Trimming
but also the other modules, such as filtering-projecting and sort-merge-join. Such model
is expected to overcome the problem of Multi-view processing in MASCARA by lever-
aging the high throughput of FPGA accelerators. Finally, we will revisit the benefits of
coalescing heuristic within MASCARA-FPGA, such as total response time, hit ratio and
cache space usage. By doing so, we acknowledge that the heuristic is compatible to be
used with FPGA acceleration.
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Chapter 4

MASCARA-FPGA

Abstract: The previous chapter presented ModulAr Semantic CAching fRAmework
(MASCARA) as middleware layer of DMS in order to handle the problem of query re-
execution. Nevertheless, MASCARA is less efficient when Query Trimming grows combi-
natorially with the a large number of segments in cache and high number of dimensions
in query. To overcome this limitation, this chapter aims to use FPGA as a solution to
accelerate the performance of MASCARA. Moreover, FPGAs have shown more efficiency
for almost all application domains against MPP with respect to big data . Therefore, we
present MASCARA-FPGA, a cooperative model, to accelerate not only the Query Trim-
ming but also generated probe queries regarding to MASCARA. In details, we design
the relevant accelerators for Query Trimming on FPGA with respect to bottom-to-top
pipeline execution. We also develop the essential database (DB) operators on FPGA to
execute the generated sub-queries. Additionally, we provide the other components to link
MASCARA and FPGA, such as FPGA-Adapter and Query Process Controller (QPC).
Since MASCARA-FPGA can handle the drawbacks of coalescing heuristic for semantic
management and multi-view processing for (inner) join query, we revisit their benefits on
MASCARA-FPGA. Firstly, we show an appropriate acceleration (in response time), high
hit ratio and low cache space usage of the heuristic. Secondly, we prove that MASCARA-
FPGA overcomes the bottleneck of Multi-view in processing inner join queries.

83



CHAPTER 4. MASCARA-FPGA

4.1 Introduction

Although MASCARA can help to solve the issue of fine grained data usability in DMS,
it shows a significant decline in performance due to the complexity of Query Trimming.
The reason is that finding the intersections and differences between queries and segments
in Query Trimming grows combinatorially with the number of segments and dimensions of
query [43, 42, 79]. Moreover, maintaining and manipulating a large number of segments
that have relationship, become complex and cumbersome. More specifically, regarding
to big data, a cache can hold several thousands or even millions of segments that are
presented in multi-dimensions, the aforementioned problem is expensive to solve. Thus,
we doubt that the problem of Query Trimming in MASCARA could be handled well by
scaling-up the hardware resources of compute tier (e.g., CPUs, RAMs) since they will soon
reach "power wall" limitation [9] when processing a huge number of computing iterations.

In order to overcome this limitation, this chapter aims to use FPGA as a solution
to accelerate the performance of MASCARA. Our choice is motivated by the fact that
FPGA has shown more efficiency for almost all application domains against MPPin the
domain of big data [36]. Moreover, with a rising demand for parallelizing algorithm, in
particular, Query Trimming, it is worth looking a combination between MASCARA and
FPGA. Nevertheless, to the best of our knowledge, most of the presented schemes of
FPGA with respect to DMS, were proposed purely in accelerating in-memory database
(DB) or providing specialized DB accelerators [81, 86, 95, 71, 91, 32, 63, 13, 88]. In other
words, there is no state-of-the-art work on FPGA which considers the integration and
acceleration of SC.

Therefore, we present a novel approach, named MASCARA-FPGA cooperative model,
to accelerate not only the Query Trimming but also range query processing. To achieve this
goal, we design the query rewriting of MASCARA and their tasks with respect to FPGA
accelerators in bottom-to-top pipeline execution. We also develop the essential database
(DB) operators on FPGA to execute the generated sub-queries from query rewriting,
such as filter, project and sort-merge-join. We organize cache on off-chip memory (i.e.,
DRAM) of FPGA which supports a reasonable capacity and high bandwidth connection
to accelerators. Besides the main components of MASCARA on FPGA, we also provide
some modules to bridge the gap between high-level services and low-level accelerators,
such as FPGA-Adapter and Query Process Controller (QPC).

We recall that MASCARA based on CPU limits the benefits of two other contribu-
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tions, coalescing heuristic for semantic management and multi-view processing for (inner)
join query. Currently, with the high throughput accelerators within MASCARA-FPGA,
we re-evaluate that their benefits can be increase. On the one hand, we show that the
acceleration of MASCARA-FPGA with CH is guaranteed meanwhile CH can bring other
benefits, such as hit ratio and cache space usage. More precisely, by using "profit" as
replacement value, hit ratio of the heuristic can be boosted up while keeping an appro-
priate number of segments. Additionally, cache space usage can be reduced by removing
duplicated key attributes in data regions. On the other hand, by deploying multiple ac-
celerators of Query Trimming to run in parallel, MASCARA-FPGA overcomes the bot-
tleneck of Multi-view processing and exhibits a high acceleration with workload of inner
join queries. In other words, MASCARA-FPGA now allows to process inner join query
rapidly.

Consequently, the contributions of this chapter can be summarized as follows:

1. We present an architecture of cooperation between MASCARA and FPGA where
the accelerators and their tasks can work in parallel.

2. We design Query Trimming accelerators to overcome the bottleneck of excessive
computation, for example, Intersection and Difference in terms of Predicate Match-
ing.

3. We implement basic DB operators, such as filter, project and sort-merge-join, to
handle a large number of generated probe queries on FPGA.

4. We extensively analyze the response times of MASCARA-FPGA with the data sets
of the TPC-H benchmark [1], especially, the speed-up which can be increased from
each accelerator individually.

5. We reevaluate the benefits of coalescing heuristic in MASCARA-FPGA within dif-
ferent aspects, such as response time, hit ratio and cache space usage.

6. We revisit and prove that the bottleneck of Multi-view processing for (inner) join
query in MASCARA is overcomed by high throughput accelerators on FPGA.

The chapter is structured as follows. In Section 4.2, we introduce the architecture and
the main components of MASCARA-FPGA. We then present a specialized adapter, in
Section 4.2.2, to bridge the gap between high-level interfaces of MASCARA with low-
level functions on FPGA. Next, we present the accelerators of Query Trimming in Section
4.2.3. Later, in Section 4.2.5, we discuss the implementation of the DB accelerators to
process select-project-join queries. We evaluate the performance of MASCARA-FPGA in
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Section 4.3. At the same time, we analyze the benefits of FPGA accelerators to overcome
the bottleneck of Multi-view processing and coalescing heuristic. Finally, we make the
conclusion and present challenges of MASCARA-FPGA in Section 4.4.

4.2 MASCARA-FPGA

4.2.1 Principals

As can be shown in Figure 4.1, this section describes the cooperative model
MASCARA-FPGA as well as its major components that contribute to the integration
and operation of accelerators on FPGA. It is worth to note that MASCARA-FPGA is
developed, in terms of the architecture where FPGA is used as an IO accelerator.

Figure 4.1 – Cooperative model MASCARA-FPGA with its major components.

Generally, the workflow of query processing in MASCARA-FPGA is similar to
MASCARA-Server, except that the Query Trimming and its outputs (i.e., list of probe
queries) are done on FPGA. In other words, the stages of MASCARA now are distributed
in two different sides, server and FPGA. More precisely, we keep Query Broking and
Result Refining in server side while Query Trimming and Semantic Management are of-
floaded into FPGA. Since the throughput of Query Broking does not cause any problem
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to MASCARA, CPU’s capability of server is reasonable enough to maintain it. Anyway,
the answers of remainder queries are generated by DMS on the server side and combined
together with results coming from FPGA later. It is thus meaningful to deploy Result
Refining on server before returning the final answer to the user. Note that, to execute
remainder queries with data coming from the storage layer, we can use a data process-
ing framework (e.g., Spark [8]) which can consist of multiple steps for optimization and
execution (as presented by yellow blocks in Figure 4.1). These steps could be expanded
and customized to accelerate the execution of remainder queries through several sets of
defined rules which handles different phases of query execution: analysis, logical optimiza-
tion, physical planning, and code generation.

Due to the fact that MASCARA serves as a middleware layer in DMS, it should
be developed with a high-level programming language, like Java or Scala that operates
in Java Virtual Machine (JVM). In opposite, the accelerators can be created by High-
Level Synthesis (HLS) languages (e.g., C++14) [53]. To leverage the functionalities on
FPGA, the need of Java-to-native bridge is essential in our model. To overcome this
problem, we use a component called FPGA-Adapter which can encapsulate or wrap the
native functionalities into high-level interfaces. By this way, the communication between
MASCARA and FPGA can be handled without being forced to rewrite the code.

To maintain the communication between stages of MASCARA from server to FPGA,
Peripheral Component Interconnect express (PCIe) which has an extremely high band-
width, can be used. As a part of such communication, PCI Driver and PCI Controller
are mandatory to control bus specific functions and support issuing standardized trans-
actions. Recently, the new generation of FPGA developing platform, for example, Xilinx
Vitis HLS [53], can handle the communication through PCIe automatically.

In opposite to Query Broking and Result Refining, Query Trimming now is offloaded
and accelerated on FPGA. In detail, the two sub-stages, Semantic Matching and Se-
mantic Extracting are converted to corresponding accelerators. For example, Semantic
Matching category can consist of the accelerators (also called kernels) for two main func-
tions: Attribute Matching and Predicate Matching. It is worth to note that a kernel can be
divided into smaller accelerated engines to increase the level of task parallelism on FPGA.
In particular, the kernel Predicate Matching can be split to three different functions as
engines: Intersection (QDNF ints SDNF ), Implication (QDNF → SDNF ) and Difference
(QDNF diff SDNF ). Meanwhile, Attribute Matching won’t be split since its computation
for relation between QA and SA through Common Attribute CA and Difference Attribute
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DA is straightforward.
After passing Semantic Extracting, the outputs, list of probe queries will be stored

temporally in a buffer and executed in parallel depending to the availability of database
(DB) operators on FPGA. Such list can consist of many primitive functions to construct
the relevant DB kernels, such as scan, filter, combine, etc.

A small component called Query Process Controller (QPC) is responsible for the man-
agement of the returned signals, statuses and results within the workflow of Query Trim-
ming and execution of PQ on FPGA. Moreover, it can have a Finite State Machine (FSM)
if necessary to handle the complex PQ when MASCARA-FPGA will be extended for other
inputs, such as aggregate or top-n queries. Before running, the kernels are initialized with
a number of sufficient instances, called Computing Units (CUs) that are deployed phys-
ically on different dedicated regions on FPGA. To facilitate the development, HLS tools
like Xilinx Vitis HLS [53] or Catapult HLS [5], can be used.

As complement of the accelerators, we also organize and manage SC on off-chip mem-
ory (i.e., Dynamic Random Access Memory DRAM) of FPGA. In fact, with a large scaled
data set (i.e., 10GB), on-chip memory (i.e., Block RAM BRAM) of FPGA is not appro-
priate obviously to cache the data since its capability is too small. Thus, an alternative
approach on DRAM is preferable thanks to its larger spaces. Moreover, it also provides a
high bandwidth connection from cache to kernels through a DDR Controller.

4.2.2 FPGA-Adapter

In this dissertation, we consider that MASCARA is developed in Java/Scala while
FPGA accelerators are developed in C++14 through a particular HLS platform (i.e.,
Vitis HLS). Thus, FPGA-Adapter should be constructed to bridge the gap between high-
level application and low-level accelerators. Basically, such approach can be implemented
based on Java Native Interface (JNI) [68]. Generally, the JNI is a native programming
interface which allows Java code to inter-operate with applications and libraries written
in other programming languages, for example C++.

Thus, we present a simple overview of FPGA-Adapter in Figure 4.2. As it can be
seen, a JNI enables Java application which runs in its master thread, hands control to the
native interface at the call site, stalls until the native thread returns and then continues
execution.

The integration is done via function calls (of native code from main application). To
simplify the development, we focus only on the Java-to-C++ function calls, since this
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Figure 4.2 – Native Java-application overview.

yields the smallest overhead and allows full control of FPGA accelerators. The functional
flow of deploying JNI can be described as follows:

— We implement the top-level architecture of MASCARA in Java, leaving out portions
that are suitable for integration through JNI: legacy code or user implemented
functionality.

— We create the native prototypes in the form of: public native return_type native-
Func(type1 arg1, type2 arg2,...);

— We create JNI function headers to invoke FPGA accelerators through
JDK tool (i.e., javah [69]). Then, we compile Java classes that con-
tain native functions in the following form: JNIEXPORT jobject JNICALL
Java_SomeUserClass_nativeFunc(JNIEnv *, jobject, jobject, jobject,..);

At high-level, we maintain the processing of MASCARA by object oriented, such
as DNF-Object or CNF-Object meanwhile the kernels are developed functionally. Thus,
FPGA-Adapter also handles the data representation (as show in Figure 4.3).

As depicted in Figure 4.3, a specialized interface, named Bean class, generalizes spec-
ification of computing modules in MASCARA, such as Intersection and Difference of
predicate matching that are presented as objects of JavaType. Such implementation is
derived from the JavaBeans concept presented by Java Enterprise Edition. In details, it is
responsible to encapsulate the objects of MASCARA and their computing modules into
native objects CppType with native fields, methods or constructors. Moreover, the Bean-
derived user class should have a similar representation with accelerators, at least for the
core components that are exposed both to the Java and C++ environment. Therefore,
JavaType, CppType and their defined objects have the same fundamental data represen-
tation.
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Figure 4.3 – Concept of data representation through FPGA-Adapter.

4.2.3 Accelerators of Query Trimming

Since the accelerators are used for computing modules of Query Trimming, we have
three main categories: 1) Attribute Matching, 2) Predicate Matching, and 3) Semantic
Extracting. In this dissertation, all of them are designed and described through a HLS
language (i.e., C++14) within a particular platform (i.e., Xilinx Vitis HLS [53]). Thus,
we present the details and functionalities of these accelerators with respect to a software-
centric approach. Moreover, we describe their functions and tasks from bottom-to-top to
emphasize the parallelism which can be achieved on FPGA. In particular, we first present
the primitive computations that can be contained and used by the relevant top functions.
Then, the top function will be wrapped into a kernel which belongs to one of the three
above main categories. We illustrate such a kind of presentation in the following Figure
4.4. For example, to have the kernel match_Att_ker, we need to have the top function of
this kernel: match_Att_func which can consist of many primitive functions to complete
its computation, such as split_element, common_Att and diff_Att.

Before presenting in detail the parallelism of Query Trimming accelerators, we present
its data flow on FPGA (as shown in Figure 4.5). Considering that cache SC of MAS-
CARA is organized on memory of FPGA (i.e., DRAM), to send the segments S to Se-
mantic Matching’s accelerators, we use two streams, one for the query and another for
the list of segments. Note that the elements in the two streams could be pre-processed
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Figure 4.4 – An example of bottom-to-top presentation in the development of Query
Trimming’s accelerators.

to keep the necessary information (e.g, QDNF ). Semantic Matching can run two acceler-
ators in parallel, Attribute Matching and Predicate Matching. Moreover, to increase its
throughput, multiple instances of these accelerators can be deployed to work indepen-
dently. After matching, the outputs of the accelerators, such as an array of intersection
predicates, or status of implication, could be stored temporally in on-chip memory (i.e.,
BRAM of FPGA) to be reused rapidly for next computations. By this way, they can be
forwarded with a minimum latency to Semantic Extracting which is waiting for the signal
from Semantic Matching (i.e., Predicate Matching) to be started. Since this accelerator
contains mainly if...else condition statements to construct PQ and RQ, it does not require
to divide into smaller specialized accelerated engines as in Semantic Matching. Similarly
to Semantic Matching, we can also deploy multiple instances of Semantic Extracting.

a) Primitive functions

The basic elements of each accelerator are the primitive functions. Generally, they are
the local functions invoked by the top function to run a computation. For example, the
Intersection of Predicate Matching is a primitive function, named inter_dnf . Interest-
ingly, it can call other primitive functions in same context (i.e., Predicate Matching), such
as combine, isEqual and isEmpty to process. Since the primitive functions have a similar
design within HLS perspective, we focus here in the following inter_dnf . Our choice is
motivated by the fact that it can be seen as the basic computing of Predicate Match-
ing, one of the most important accelerators in Query Trimming. Thus, the declaration of
inter_dnf can be shown in HLS pseudo code as follows.

template <list_CNF List>

void inter_dnf (hls::stream<List>& query_strm,

hls::stream<List>& segment_strm,

91



CHAPTER 4. MASCARA-FPGA

Figure 4.5 – Overview of the data flow in Query Trimming accelerators.

hls::stream<List>& result_strm)

As it can be seen, we create a streaming data structure based on predefined library
hls :: stream to read the inputs from Q and S (i.e., query_strm and segment_strm).
Moreover, outputs of the computation are put in to result_strm and can be transferred
to next computation, for example, Implication impli_dnf . In order to explain in detail
the advantage of inter_dnf on FPGA, we present an example as can be shown in Figure
4.6. Processing of tasks inside inter_dnf is the first level of acceleration that we gain
compared to the baseline computing on CPU.

As depicted in Figure 4.6, we assume that this function consists of only three main
operations: operate1, operate2 and operate3. Note that operate2 is implemented in terms of
a nested loop to make the run over the lists of CNFs in Q and S. Regarding to MASCARA-
Server, every operation only starts when the previous has finished since it can not be
represented by a (logical) thread on the CPU. Indeed, manipulating operations or tasks
to run concurrently in a thread can be seen as a challenge of engineering. As a result, this
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Figure 4.6 – Pipelining behavior for operations in function inter_dnf . Implementation
by using a specified directive (i.e., # pragma HLS pipeline).

process on CPU requires a total of (N operations * time_per_operation) to complete
all the computations of inter_dnf . In contrast, on FPGA, the operations of inter_dnf

can be implemented to run in parallel in terms of pipeline execution model (as shown in
Figure 4.6). Moreover, since these operators are decomposed and represented in a chain
of simple arithmetic operators on FPGA, they can run rapidly without having to fetch,
decode or execute like with the compute paradigm of CPU. All together, both the latency
of execution and initiation interval between operations in inter_dnf can be improved
substantially.

More importantly, inter_dnf has to iterate a nested loop over the lists of CNFs
from two streams of Q and S that is presented in operate2. Let’s assume that operate2
consists of three steps: task1, task2 and task3. Thus, unrolling operate2 means that these
steps can be executed in parallel (as can be shown in Figure 4.7). Based on several
specific conditions, such as available hardware resources and data dependency between
these steps, the unrolling can be done either partially or entirely on FPGA. In opposite,
unrolling nested loop of operate2 on CPU raise a challenge of thread concurrency.

Thus, loop unrolling leads to a very fast design, with significant parallelism that can
be seen as a complement of the pipeline for primitive function (e.g., inter_dnf). Nev-
ertheless, the limitation of this approach is that we need a large amount of hardware
resources. In particular, loop has a large number of internal operations and iterations.
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Figure 4.7 – Partially and fully unrolling nested loop (operate2) in function inter_dnf
by using a specified directive (i.e., # pragma HLS unroll).

Regarding to MASCARA, the comparison between CNF-Objects can be done indepen-
dently or we can say data dependency in this loop is zero. In other words, as long as
we have enough hardware resources, the performance of inter_dnf could be maximized.
However, MASCARA can be applied on different applications where we do not know ex-
actly the number of CNF in Q and S. Thus, it is preferable to unroll the loop partially in
MASCARA by defining a fixed value of unrolled iterations. As a consequence, by pipelin-
ing the execution of inter_dnf and unrolling its nested loop in MASCARA-FPGA, we
achieve a task parallelism of primitive computing which can give better performance than
MASCARA-Server.

b) Top functions

A top function, for example, pre_top_func can invoke the primitive functions, such as
inter_dnf , impli_dnf and diff_dnf . Additionally, such kind of top function represent
for the working perspective of accelerator, such as, attribute and predicate. In particular,
pre_top_func is implemented on top of Predicate Matching accelerator. We illustrate the
design of pre_top_func with inputs and outputs in following Figure 4.8. Remember that
we can do similarly for other top functions, such as att_top_func and ext_top_func.

From two HLS streams of Q and S, pre_top_func distributes the arguments into
relevant primitive functions, for example, inter_dnf or impli_dnf by defining its local
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Figure 4.8 – Design of pre_top_func which is implemented on top of corresponding the
Predicate Matching accelerator.

variables. Outputs of these computations are the elements to be reused soon in Semantic
Extracting to generate the segments for PQ and RQ. Thus, they should be saved in BRAM
to accelerate the decision making (i.e., relationship of matching) between Q and S. We
remind that BRAMs is on-chip memory type with limited size which work as local and
rapid storage for computations (as presented in Section 2.1.4). Fortunately, the outputs
are presented in terms of arrays or lists of CNFs where each of them has a small size (i.e.,
less than 64bytes). Meanwhile, size of the list depends on the number of dimensions and
CNFs of Q and S. Practically, a list with up to hundreds of CNF-Objects only consumes
a small amount of available BRAMs. For example, within a match between Q and S, with
50 CNFs for each, their results of Intersection and Difference consume less than 64KBytes

that can be stored by two BRAMs. As a result, we can also store the outputs of Q and
SC which consists of a list of S thanks to the sufficient size of BRAMs.

Similarly with the primitive functions, we also consider managing the workflow of
pre_top_func to run its operations in parallel. Within an HLS approach, a directive can
be specified in the implementation of pre_top_func. By this way, the HLS platform will
analyze automatically the data flow between these tasks and create the appropriate chan-
nels that allow consumer function to start before the producer function completes More
importantly, it requires us to apply the producer-consumer paradigm to pre_top_func

in order to extract functionality that can be executed in parallel to improve performance.
In other words, we have to figure out which parts of pre_top_func can be forked off
for parallel computation and which parts need to be executed sequentially. As a result,
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it can increase the overall throughput of pre_top_func in case data availability is high
frequently. In fact, such approach can be done on CPU by creating a master thread which
performs some initialization steps and then forks off a number of child threads to do
some parallel computations. Although we can interleave the execution of the steps of each
thread, this requires careful analysis to exploit the underlying multi-threading which is
expensive in time.

Figure 4.9 – Primitive functions of pre_top_func are pipelined as soon as data are
available by using a specified directive (i.e., # pragma HLS dataflow).

We illustrate the execution in parallel of the primitives functions in pre_top_func in
terms of data flow management through Figure 4.9. The default behavior is to execute and
complete inter_dnf , then impli_dnf , and finally diff_dnf . However, we can schedule
the impli_dnf and diff_dnf to start as soon as the data (i.e., pair of CNF-Objects from
query and segment) is available. For example, since the computations are iterated from
CNF-Objects to Range-Objects, Difference between (QCNF 1, SCNF 1) can start when In-
tersection between (QCNF 2, SCNF 2) executes. To create data transferring channel between
each of the functions, a first-in-first-out (FIFO) buffer acts as a queue to provide data-
level synchronization between the functions and achieves better performance. The reason
is that data stored in the array (i.e., a list of CNF-Objects) is consumed or produced
in a sequential manner. Finally, due to the custom architecture of FPGA, these func-
tions can be executed simultaneously with little or no overhead leading to a considerable
improvement in throughput.

c) Accelerators

To use a top function (e.g., pre_top_func), it is essential to provide the relevant
accelerator, in particular, Predicate Matching of Query Trimming. To maximize the per-
formance, the accelerators of Query Trimming should run in parallel, taking into account
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data dependencies (as shown in Figure 4.10). In particular, Query Trimming of MAS-
CARA consists of three accelerators: Attribute Matching, Predicate Matching and Se-
mantic Extracting. We consider that Attribute Matching and Predicate Matching can
run in parallel since they work independently with two different perspectives. Meanwhile,
Semantic Extracting has to wait and be invoked after Predicate Matching finishes.

Figure 4.10 – Accelerators work in parallel. Each of them can be initialized in terms of
one instance, called Computing Unit (CU).

To create such a kind of parallelism, we first deploy each accelerator in terms of a
Computing Units (CU) that are identical clones. In fact, the number of generated CUs
depends on the available hardware resources of the FPGA, such as Flip Flop (FF), BRAM,
or Configurable Logic Block (CLB). It is essential to create a command queue to manage
the order of execution as well as data flow for these CUs. Importantly, such queue has to
keep the CUs as busy as possible to maximize the performance. Moreover, it is responsible
to manage data dependencies between CUs through events and wait list. More precisely, if
a CU depends on another one, the event should be passed into a wait list where all events
have to finish before executing it. Thus, we can categorize the queue with two types: an
in-order command queue and an out-of-order command queue.

Figure 4.11 illustrates how we use command queues to manage the order of execution
between the accelerators. As it can be seen, we can do that by either using an out-of-order
queue or two in-order queues. For the first approach, we have to define event dependencies
and synchronizations explicitly. Meanwhile, the second approach pulls out the CUs in-
order implicitly. In this dissertation, we use out-of-order command queue since we create
more of them to manage multiple generated CUs of each accelerator later.

Obviously, with only one CU for an accelerator, MASCARA uses it in a sequen-
tial manner which can impact overall application performance. In particular, Predicate
Matching with only one CU does not allow to run in parallel the matching of two pairs
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Figure 4.11 – Using an out-of-order command queue or two in-order command queues to
manage the execution of CUs in parallel.

(QDNF , S1DNF ) and (QDNF , S2DNF ). Additionally, a high latency of Predicate Matching
for (QDNF , SiDNF

) increases the stall of comparing (QDNF , SjDNF
) with j = i + 1 and

j < Nb_Seg (number of segments) in SC. Fortunately, this issue can be overcome by in-
stantiating multiple independent CUs from a single accelerator. By this way, the Predicate
Matching composed by multiple CUs can execute in parallel. We illustrate the running of
multiple CUs in parallel in Figure 4.12. In complement, out-of-order command queue is
preferable to use in this case study since it avoids to manage a large number of in-order
queues.

Figure 4.12 – Multiple of CUs (i.e., 2 CUs for each kernel) work in parallel. Two out-of-
order command queues are instantiated to manage their data flow.

In conclusion, by designing Query Trimming’s accelerators with respect to the bottom-
to-top parallelism, the performance of MASCARA can be improved compared to the
current implementation with multi-threads on CPU. In fact, due to the challenge of en-
gineering, our implemented (logical) multi-threading over CPU with multi-cores cannot
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support the parallelism of the tasks. In particular, the management of a master thread
and its child threads can lead to the complex issue of thread concurrency. Moreover, shar-
ing and moving data between threads are another problems that result to a challenge
in memory management and synchronization. Meanwhile, FPGA facilitates the develop-
ment of parallel execution in Query Trimming as we presented from primitive functions
to accelerators in this section. Therefore, we consider that converting Query Trimming
of MASCARA to FPGA accelerators is meaningful enough, especially when we can also
leverage other benefits from FPGA, such as execution of PQ, Multi-view processing and
coalescing heuristic.

Therefore, we consider Query Trimming is more suitable to be accelerated by FPGA
which can boost up the performance of MASCARA as much as possible, especially with
multi-dimensional condition.

4.2.4 Semantic Cache Management on FPGA

Since Query Trimming’s accelerators takes the inputs (i.e., list of segments) to process,
it is reasonable to move cache organization from the main memory of the server to the
off-chip memory (i.e., DRAM) of the FPGA. Indeed, placing cache on FPGA side can
reduce the communication with server’s memory for each matching between the query
and the list of segments. Although fetching data of DRAM is less efficient than BRAM, it
has a larger space (i.e., up to 64GB with four DDR in Xilinx Alveo U200), which is ready
to be run in big data applications. Combining the hierarchy of FPGA memory to deploy
cache is not studied currently in this dissertation. Therefore, similarly with MASCARA
on server node, MASCARA-FPGA contains two parts for semantic caching in DRAM: an
index table that manages list of segments and a collection of corresponding data regions.

Using HLS development platform, we can declare a segment S on FPGA as a global
variable (i.e., a template). Thus, S consists of the essential elements that are fully pre-
sented in Section 3.3.4. Moreover, lists of semantic segments S are composed of fixed size
arrays in terms of Semantic Description Tables of SC. In fact, the maximum capacity of
these arrays can be pre-defined statically before running MASCARA on FPGA.

Meanwhile, to create corresponding data region DR of S, we need to propose a mech-
anism of generating tables on FPGA. In particular, after executing the RQ on DMS, the
result set is returned and stored in the main memory (i.e., RAM) of the compute layer.
Since we have to cache this result on FPGA, MASCARA has to prepare a data structure
that supports either generating row or column-oriented table on DRAM of FPGA. Thus,
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a class or an interface which consists of the properties and methods to interact over these
structures should be proposed. Obviously, this interface has to work with a well-known
schema of the database (e.g., data sets of TPC-H [1]) where types of column are possible
to be defined through the HLS platform. Based on this knowledge, a data structure can
be created dynamically thanks to the arguments that represent existed attributes in the
result set. Making a general interface for any kind of data sets has not been considered
yet in this dissertation. All the above details can be summarized into Figure 4.13.

Figure 4.13 – A reading interface to create data regions on DRAM of FPGA.

As an example, we assume that the queries run over only one table (i.e., lineitem)
generated from the data set of the TPC-H [1]. Within reading interface, we can create a
class which represents row-oriented content of this table or part of it. Note that we have
to define earlier several specified data types, such as d_long and d_string are wrapper
of "long" and "char[]", respectively. This class consists of two main methods that overload
the operators << and >> for input and output streams, respectively. A simplified version
of this class is presented as following.

class lineitem_t { //Row oriented table

public:

d_long orderkey;

d_long partkey;

d_long suppkey;

d_long linenumber;

d_string<TPCH_READ_MAXAGG_LEN + 1> shipinstruct;

//...other required attributes

std::ostream& operator<<(std::ostream& output, lineitem_t& source);

std::istream& operator>>(std::istream& input, lineitem_t& target);
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Meanwhile, we also have another class for column-oriented table. Basically, it is similar
with row-oriented class, except that the attributes are addressed through a vector. For
example, linenumber is declared with std::vector<d_long> linenumber with the capabil-
ity to be resized if necessary. Based on the reading interface, the server will create the
corresponding buffers with required attributes and extra information, such as pointer of
corresponding segment to transfer data to DRAM. From now, as we mentioned, it is pretty
straightforward to be implemented as others read and write procedure between CPU and
DRAM of FPGA. To optimize the space of data regions on cache, it is essential to know
well about width and length of prepared regions on FPGA. A part of this procedure (i.e.,
creating buffer on server) can be described as following.

int create_buffers(cl_context ctx,

cl_kernel kernel,

int i,

uint32_t* raw_filter_cfg,

DATE_T* col_l_shipdate,

MONEY_T* col_l_discount,

...

cl_mem* buf_filter_cfg,

cl_mem* buf_l_shipdate,

)

4.2.5 Accelerators of Probe Query

Besides Query Trimming accelerators, MASCARA-FPGA is responsible to execute
probe queries (i.e., select-project-join query) based on the database (DB) operators. In
the following sections, we present the principals as well as primitive functions which
correspond to the steps in query execution plan. It is worth to note that the DB operators
are developed similarly with Query Trimming accelerators with task parallelism from
bottom-to-top.

a) Filter

Among the various operations in relational database, condition filtering or predicate
evaluating is one of the most commonly used. More precisely, it can select the rows of
interest from a table (relation) by applying filtering criteria (predicates) on one or more
columns of the rows. From a CPU consumption perspective, this procedure becomes an
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intensive operation as the number of predicates increases, especially for a large filtering
from millions to billions of rows in big data context. Moreover, regarding with semantic
caching (SC), a large number of generated probe queries PQ from Query Trimming,
results to worse performance. Interestingly, we can represent such kind of filter through
corresponding FPGA accelerators. In particular, since this expression-based filter works
with Boolean conditions, in MASCARA-FPGA, we present an accelerator filter_kernel

in which the expressions are evaluated in parallel (as shown in Figure 4.14).

Figure 4.14 – Expression-based filter kernel. Predicate Cells (PCs) operate concurrently
and independently. Reduction Cells (RCs) combine the individual outputs of PCs.

The basic unit (top function) for evaluating query predicates on FPGA is a predicate
cell (PC) which receives data (rows) from HLS streams. We remind that they are used
to transfer data from DDR to FPGA kernel and is contained in a primitive function,
for example, scan_dr for scanning data region as following. Then, a PC evaluates an
atomic predicate by comparing a constant value (c) against up to a 64 bits long column
of the streaming database rows. A chain of PC(s) (i.e., PC1− PC4) can be organized to
evaluate complex predicate expressions since they can run concurrently and independently
each other. Later, a network of Reduction Cells (RCs) (i.e., RC1 − RC3) combines the
individual outputs of the PCs. In other words, this network works sequentially with the
PCs. Since PCs and RCs consists of different computation modules, an operator control
is essential to indicate which operation they should process.

The number of PCs and the size of the RC network inside a filter kernel are variable
which results to a trade-off between area and complexity. For example, our filter_kernel

is declared with four streams and four constant values as inputs. However, it can be
extended with more input streams (e.g., six streams) to achieve a faster evaluating. Note
that, for certain queries, the number of PCs inside the scanner may be fewer than that
required to evaluate the query. In addition to the predicate level parallelism, filter_kernel
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of MASCARA-FPGA also provides row level parallelism by creating multiple instances
of scan_dr.

We illustrate the internal structure of PC in filter_kernel by Figure 4.15a. As it
can be seen, it can provide up to four kinds of computing unit: Comparison, Boolean
algebra, Multiplex and Math. For the first two computations, the results can be expressed
in Boolean, while the two last can generate non-Boolean results. Meanwhile, RC needs
to process both Boolean and non-Boolean results from PCs (as shown in Figure 4.15b).
In particular, based on basic operators, such as AND, OR, NOT, a RC can implement
switch-case structure in a comparison module to make a Boolean algebra between the
inputs.

Assuming that to perform date < ’2022-11-11’, PC1 takes first input date = ’2022-
10-11’ as a record of the data set. The second (constant) input is ’2022-11-11’. Obviously,
passing the comparison module, the output is false. Meanwhile, at the same time, we also
need to perform ip > ’192.168.1.100’ on PC2. Consider that the output of this comparison
is true with first input ip=192.168.1.111. Finally, on RC1, it makes a decision based on
Boolean algebra (e.g., AND, OR) for two inputs: false and true. As a consequence, if
the output is true, the input row is satisfied with condition and vice versa when output
is false.

(a) Predicate Cell (PC). (b) Reduction Cell (RC).

Figure 4.15 – Internal structure of PC and RC.

b) Project

Projection is the operation that extracts desired attribute fields (columns) from a
database row based on "SELECT" statement. Generally, it can be seen as the complement
of the filter operation. On MASCARA-FPGA, we present the project kernel which can
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perform in parallel filters and providing bandwidth and storage savings. Indeed, this result
is achieved by removing unwanted columns from data regions which need to be cached
with respect to the Query Trimming of MASCARA. Moreover, this kernel is essential to
extract the dedicated columns that form the key for sorting the records, making projection
a prerequisite step for the sort operation of merge join later.

We illustrate the integration of project and filter kernel in Figure 4.16 in the case of
query processing in pipeline. Obviously, each filter is paired with a project kernel. Rows
are evaluated against the predicates in the filter, then projected in the project kernel which
captures the required columns and forwards them to the projected row buffer and/or the
sort key buffer.

Figure 4.16 – Internal structure of Project which selects the projected columns from the
output of Filter kernel.

In details, it consists of a module called Column Decider which masks the selected
columns based on one-hot encoding (i.e., each bit corresponds to a column name). Then,
if the corresponding bit for a column name is one, data field of this column is put into
the output buffer (e.g., projected row buffer). Otherwise, it is discarded. To simplify the
implementation, we consider that the columns have a fixed length that can be predefined
before processing the query. For example, it can operate directly on the incoming 64 bits
streams that conveniently correspond to the data width of a column. As consequence, it is
worth to note that the implementation of project can be optimized by merging filter kernel.
In other words, we could have a two step filter-project accelerator for both operations:
pre-fetching and processing for filter to improve the throughput of the query execution.

c) Sort-Merge

A join operation aims to match records from two or more tables based on a common
field (i.e., the key field). Since the nested loop implementation increases computational
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complexity, most DBMSs deploy sort-merge-join or hash-join for efficient computation.
Hash-join often performs better because of its linear algorithmic complexity, though hash-
ing introduces false positives that must be resolved. An another commonly applied method
for joins is sort-merge join where the main operation is sorting the tables to be joined.
In this dissertation, we choose to implement sort-merge-join to support processing inner
join query regarding to Query Trimming of MASCARA.

As the first stage in sort-merge-join, we have to consider a variety of sorting algorithms
that have different impacts to hardware resource requirements, throughput (i.e., number
of keys sorted in a given time), sorted run size (i.e., number of keys to be sorted) and the
size of the sort key. Several works have implemented a single sorting algorithm on FPGA,
meanwhile some have explored high performance sorting large size inputs with low level
hardware description languages [36]. To simplify the development, in this dissertation, we
focus only to the Merge Sort algorithm (for primitive function) within the tree structure
called Merge Sort Tree (for top function). To explain, merge sort is organized in a strict
data flow and there is no need for any control logic. Other sorting algorithms or networks,
for example bitonic network, could be considered as an extension of MASCARA-FPGA
in future.

The divide-and-conquer procedure of sorting (by joined key) an input (i.e., result table
of sub-query in Multi-view processing) can be described as following:

— Dividing stage: we divide this unsorted input into n sub-inputs by their joined key.
Each sub-input contains one element, thus it is considered sorted.

— Conquering stage: we merge repeatedly sub-inputs to produce new sorted sub-output
until there is only one sorted sub-output remaining at the end.

On MASCARA-FPGA, regarding the conquering stage, we present a merge primitive
called Merge Unit (MU) to combine two sorted n/2 size inputs into a sorted output of
size n. We illustrate the structure of MU in Figure 4.17. The comparison component is
implemented with processing elements that can sort when two conditions are met: the
output is not full and both input hold data to sort. If these conditions are met, sorting
takes place from the input and the smaller value will be pushed into the output.

This primitive function can be described by the following HLS simplified code. Note
that its implementation works with the streaming First In First Out (FIFO) inputs and
output. As it can be seen, IN1 and IN2 are two sorted arrays and OUT is the merged
outputs. The for loop runs n times where n/2 is the size of IN1 and IN2. It reads one
elements from either IN1 or IN2 on each iteration and writes it to the output until the
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Figure 4.17 – Internal structure of 2-to-1 Merge Unit.

end of the FIFO is reached. The tasks of this loop is also pipelined to operate one read
at every cycle.

void merge_Unit(hls::stream<int> &IN1, hls::stream<int> &IN2

hls::stream<int> &OUT, int n)

{

int a, b;

int index1 = 1, index2 = 1;

IN1.read(a); IN2.read(b);

for (int i = 0; i < n; i++){

if(index1 == n/2 + 1){

OUT[i] = b;

IN2.read(b);

index2++;

} else if(index2 == n/2 + 1){

//... }

else if (a < b){

//... }

else {

//... } //end of if-else

} //end of for

}

Generally, from pure software perspective, this primitive function will be called re-
cursively to address the divide-and-conquer procedure. However, recursive function calls
is no longer allowed on HLS tools (i.e., Xilinx Vitis HLS [53]). Thus, to overcome this
issue and employ multiple levels of MUs simultaneously, we organize them in terms of a
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binary logical sort tree structure (as shown in Figure 4.18). In this example, there are
eight pre-sorted inputs and each of them has a size of n/8. Thus, we can deploy a tree
of seven MUs in total to merge their results together through three stages from top to
bottom. By this way, such kind of tree can replace a recursive function with a higher
parallelism thanks to multiple MUs. In general, for a depth n merge sort tree, it requires
O(2n) FIFO entries that can consume a large amount of memory resources. In short,
merge sort tree on MASCARA-FPGA can run nlog(n) tasks in parallel to achieve O(n)
complexity. However, the area consumption grows exponentially with the problem of size.
Note that for large size n, the data buffering process in the node (MU) at the bottom of
the tree has to be performed using device memory (DDR) which thus could impact the
performance. Furthermore, if the size of the tree is small compared to unsorted input, we
have to split this input to smaller parts and then call the tree multiple times to sort. As
a result, this problem damages greatly the response time of sort merge on FPGA.

Figure 4.18 – Sort merge tree structure with depth=3.

d) Pre-sorted join

After having the results from multiple views that are sorted by presented merge-sort
tree, the last step is to join them together based on their joined condition (i.e., joined
key). We illustrate the design of presorted-join operator in Figure 4.19.

The top function merge_Join receives two FIFO input streams that consist of the
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Figure 4.19 – Join of two ascend tables. Descend tables can be done similarly.

key type and payload (content) type. In other words, the left and right result tables of
views are pushed out in separate streams. Assuming that we need to join two tables in
ascending order, every clock cycle, merge_Join compares the keys from left and right
tables by primitive function compare_Ascend. If the keys are not the same, it pulls the
stream with a smaller key and there is no output. If the keys are the same, it pulls the
right stream and pushes the keys and payloads to the output stream.

4.3 Validation

In this section, we present the experimental results with the following objectives.
First, we validate the performance of MASCARA-FPGA compared to other solutions,
such as MASCARA-Server, Block-Cache and No-Cache. Second, we show the accelera-
tion in response time of Query Trimming and Probe Query. Third, we exhibit that the
bottleneck of Multi-view processing can now be handled by MASCARA-FPGA thanks to
its top-to-bottom parallelism. Fourth, we reevaluate the benefits of coalescing heuristic
on MASCARA-FPGA.

4.3.1 Validation environment

The experiments to evaluate MASCARA-FPGA have the same environment set up
as presented for MASCARA-Server in Section 3.4.1. In particular, data sets, workloads,
warm-up queries, measurement method, evaluated metrics, impact factors and testing
prototypes are reused. Moreover, since MASCARA-FPGA can deploy multiple kernels to
run in parallel, we use two new testing prototypes: MAS-FPGA-1K as using one kernel
and MAS-FPGA-2K as using two kernels.
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Moreover, to run MASCARA-FPGA, we need to use an accelerator card as an instance
of the FPGA side. Thus, we use Xilinx® Alveo™ U200 Data Center accelerator card which
has 65MB Block RAM and four 16GB off-chip memory DDR4 with total bandwidth up
to 77GB/s. The connection between CPU (server node) and FPGA is established by PCI
Express Gen3x16 and network interfaces typed Ethernet support 100Gbits/s.

4.3.2 Experimental results

a) Overall performance

Performance of Q6 workload. We present the following Figure 4.20 in which we
change the dimension of query Dim_Query and SF since they can affect significantly
the performance of MASCARA. To simplify the presentation of results, we only exhibit
the most complex case where SC has 250 segments.

(a) Dim_Query ≤ 3
.

(b) 3 < Dim_Query ≤ 5
.

(c) 5 < Dim_Query ≤ 8
.

Figure 4.20 – Response times of Q6 mod

In Figure 4.20, obviously, response times of No-Cache are the highest for all SF as
discussed in Section 3.4 since all queries are executed by DMS on server node. Meanwhile,
MAS-Server and Block-Cache can reduce the response time. However, when number of
dimensions in Q and S is high, MAS-Server is less efficient than Block-Cache (as shown
in Figure 4.20b and even worse than No-Cache (as shown in Figure 4.20c) due to the
overhead of Query Trimming.

With MAS-FPGA, the performance of MASCARA is now guaranteed. In Figure 4.20a,
with SF = 1GB, MAS-FPGA-1K is 5., 3.8 and 1.7 times faster than No-Cache, Block-
Cache and MAS-Server, respectively. Interestingly, unlike MAS-Server where the perfor-
mance declines in case of having a high number of dimensions, MAS-FPGA overcomes
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such kind of bottleneck. For example, in Figure 4.20c, with SF = 1GB, while MAS-Server
is even 1.5 times slower than No-Cache, MAS-FPGA-1K can achieve up to 4.2 and 2.7
times faster than No-Cache and Block-Cache, respectively. In other words, MAS-FPGA-
1K accelerates 6.4 times MAS-Server’s processing. Thus, we acknowledge that applying
MAS-FPGA can lead to better results in acceleration, especially when MAS-Server is
no longer able to handle Query Trimming with high complexity (i.e., 5 < Dim ≤ 8
and Nb_Seg = 250). Indeed, without parallelism of tasks or data processing in threads,
MAS-Server runs the nested loop (i.e., intersection or difference) inefficiently. In opposite,
MAS-FPGA-1K can run in-parallel from tasks to top functions, thus, it alleviate this issue
to get stable response times with minimum effects from multi-dimensions.

Moreover, with two kernels deployed, MAS-FPGA can achieve a better performance.
For example, with SF = 1GB, MAS-FPGA-2K is 6.4, 4.0 and 9.7 times faster than
No-Cache, Block-Cache and MAS-Server, respectively (as shown in Figure 4.20c). It is
worth noting that having two kernels does not mean the acceleration can be doubled
since the output results also depend on the optimization of the workflow in processing of
MASCARA-FPGA. For example, multiple mixed matching needs to check not only the
(Q,SC) but also the (RQ,SC) that can reduce the benefits of multiple kernels.

Performance of Q5 workload. We present the Figure 4.21 to prove that
MASCARA-FPGA can overcome the issue of Multi-view processing which happens in
execution of inner join queries (i.e., workload of Q5).

(a) Dim_Query ≤ 3
.

(b) 3 < Dim_Query ≤ 5
.

(c) 5 < Dim_Query ≤ 8
.

Figure 4.21 – Response times of Q5 mod

As it can be seen, we reconfirm that although MAS-Server enables Multi-view pro-
cessing for workload of Q5(s) customized, its performances decline dramatically when the
number of dimensions is high. Moreover, this decline is more severe than it is in workload
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of Q6(s). The main reason is invoking Query Trimming multiple times and sort-merge-join
is not optimal on MAS-Server. More details have been already presented in Section 3.4.
Meanwhile, MAS-FPGA which has accelerators for Query Trimming and sort-merge-join,
can overcome the bottleneck of Multi-view processing. For example, in Figure 4.21c, with
SF = 1GB while MAS-Server is even 1.9 times slower than No-Cache, MAS-FPGA-1K
can be 4.4 and 1.8 times faster than No-Cache and Block-Cache, respectively. In other
words, MAS-FPGA-1K accelerates 8.5 times MAS-Server’s processing. Interestingly, we
acknowledge the impact of accelerators in MAS-FPGA-1K which become more remark-
able compared to both No-Cache and MAS-Server when SF increases. In particular, with
SF = 10GB, MAS-FPGA-1K is 5.2, 2.4 and 8.7 times faster than No-Cache, Block-Cache
and MAS-Server, respectively.

Similarly with workload of Q6(s), we also see an acceleration of MAS-FPGA when us-
ing two kernels. Indeed, we increase the performance of Multi-view processing by handling
two (i.e., lineitem and orders) out of three views in parallel before joining their viewed
results at the end. In particular, with SF = 1GB and dimension changes from simple
(i.e., Dim ≤ 3) to complex (i.e., Dim ≤ 8) (as shown in Figure 4.21), MAS-FPGA-2K
brings an acceleration up to 3.9, 8.1 and 13.7 times compared to MAS-Server. Therefore,
we can conclude that Multi-view processing is preferable to be deployed in MAS-FPGA,
with multiple instances (i.e., Query Trimming) accelerators.

b) Performance of accelerators

In this section, we present in details the performance of Query Trimming and DB
operators in terms of PQ execution. To simplify the presentation of the results, we focus
only to MAS-Server and MAS-FPGA that have same computing modules. Using only one
kernel is reasonable enough to present the impact of acceleration which can be gained by
FPGA compared to server when changing the coalescing strategies. Moreover, we present
the results of MASCARA with SF = 1GB.

Query Trimming. As it can be seen in Figure 4.22a with workload of customized
Q6(s) and SF = 1GB, when Dim is small (i.e., Dim < 3), MAS-Server is capable to
handle the computation in Query Trimming in a relative short time. For example, with
Dim = 1, MAS-FPGA with one kernel of Query Trimming, named MAS-FPGA-QT-1K,
is only 1.5 times faster than Query Trimming on MAS-Server (i.e., MAS-Server-QT).
Using two kernels, MAS-FPGA-2K-QT increases slightly the performance, in particular,
it is 1.6 times faster than MAS-Server-QT. The reason is that the second kernel is not used
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(a) QT and PQ in workload of Q6(s). (b) QT and PQ in workload of Q5(s).

Figure 4.22 – Execution time of Query Trimming (QT) and Probe Queries (PQs) with
workload of customized Q6(s) and Q5(s) respectively.

since Query Trimming can be handle-well by one kernel. In other words, the performance
of two kernels is not impressive with light computations in Query Trimming. In contrast,
when number of dimensions increases (i.e., Dim ≥ 3), accelerators have a real impact on
performance. In particular, wit Dim = 7, MAS-FPGA-QT-1K is 7.1 times faster than
MAS-Server-QT. Moreover, in case of two kernels that run with minimum idle state, this
acceleration is increased to 10.7 times.

Similarly, in Figure 4.22b with workload of customized Q5(s), when number of dimen-
sions is high (i.e., Dim = 7), MAS-FPGA-QT-1K is 8.5 times faster than MAS-Server.
Since Query Trimming is called multiple times in this case, performance of MAS-Server is
far behind that of MAS-FPGA-QT-1K. Cloning the kernel by two (i.e., MAS-FPGA-2K-
QT) can boost up this acceleration to 13.2 times by processing multiple views in parallel.
To summarize, Query Trimming on MAS-FPGA shows better performances compared to
MAS-Server, especially when dimension of query is high.

Filter and Project. Another aspect of acceleration, which can be gained on FPGA, is
executing generated select-project PQ. Figure 4.22a shows the response times of executing
PQ which consists of filter-project accelerators. In particular, MAS-FPGA-PQ-1K is 6.3
and 8.5 times faster than MAS-Server-PQ, with Dim = 3 and Dim = 7, respectively.
We notice that there is a slight increase of acceleration gained by MAS-FPGA-PQ-1K
when number of dimensions is high. The reason is that the formats of generated PQs

become more complex, thus, MAS-Server takes more time to execute meanwhile MAS-
FPGA-PQ-1K has in parallel execution presented in filter-project accelerators. Moreover,
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this is also related to data regions (DR) that have different sizes, such as number of
attributes or records. Within these experiments, most of DR size are less than 3% of
its related table(s) no matter what the dimension is. In fact, MAS-FPGA-PQ-1K has
enough hardware resources to handle efficiently such volume of data for each generated
PQ. Thus, the acceleration of PQ on MAS-FPGA-PQ-1K is guaranteed. Moreover, with
two kernels, MAS-FPGA-PQ-2K can accelerate more, in particular, it is 11.5 times faster
than MAS-Server-PQ.

Similarly, with workload of Q5(s) in Figure 4.22b, MAS-FPGA-1K-PQ is 9.8 times
faster than MAS-Server-PQ. In this case, more numbers of PQs can be generated due
to Multi-view processing. Thus, the acceleration of MAS-FPGA-1K-PQ on workload of
Q5(s) is increased slightly compared to the acceleration on workload of Q6(s). Deploying
two kernels (i.e., MAS-FPGA-PQ-2K), the acceleration can be increased up to 13.2 times
compared to MAS-Server-PQ.

Sort-Merge-Join. We consider that the acceleration of sort-merge-join for the result
(tables) from each view in MASCARA does not have any affect from dimensions in the
query. However, with a fixed number of joined views (i.e., three relations), sort-merge-join
depends on the scaling factor SF . Thus, we exhibit the performance of sort-merge-join in
Figure 4.23 regarding to change of SF .

Figure 4.23 – Sort-Merge in workload of customized Q5(s).

On MAS-FPGA, join is implemented as a procedure of if-else statement which pro-
cesses at high speed over two pre-sorted (on join columns) input streams. On the other
hand, sort is deployed by a sort-merge binary tree which consists of 2-to-1 merge units
(MUs) limited by the resources of FPGA and impacted by the size of the input. Thus, we
consider that sort process is the main element to bring the acceleration of sort-merge-join
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on FPGA.
With one kernel, MAS-FPGA-1K-SMJ is 3.0 times faster than MAS-Server-SMJ when

data set is small (SF = 1GB). Moreover, with SF = 10GB, the acceleration can be up
to 7.7 times. The reason is that execution time of MAS-FPGA-1K-SMJ increases slightly
with its large sort-merge-tree meanwhile MAS-Server-SMJ runs slowly divide-and-conquer
sorting. With two kernels, MAS-FPGA-2K-SMK can achieve an acceleration around 9.0
times compared to MAS-Server-SMJ with SF = 10GB. Importantly, such a kind of
acceleration could be much more in case the number of views increases and each of views
has a large content combined from multiple of PQ and RQ.

Theoretically, without considering memory capacity and bandwidth connections, we
can say that there is no limit on how many 2-to-1 Merge Unit (MUs) could be deployed
using such a sort-merge scheme. In other words, with sizes of results from which each view
are frequently less than 5% of the relation, it is reasonable to have a sort merge tree up to
512 2-to-1 MUs. Moreover, to reduce the recursive complexity, this tree could be expressed
as multiple sorting networks for un-sorted data before processing in each networks if there
are enough hardware resources on FPGA. Therefore, unlike MAS-Server-SMJ, such kind
of implementation keeps sort-merge-join to operate with low latency most of the time
even if SF increases.

To summarize this section, although each of the presented accelerators can achieve
impressive results compared to MAS-Server, their aggregated result can be limited by
the frequency of RQ occurrence and their execution time. Moreover, in case of multiple
computing nodes for RQ, this issue could be more severe due to restricted communication
between compute and storage layers. As a result, the acceleration of MAS-FPGA could
decline since it takes a small partition of total response time which includes RQ execution.
In our experiment, hit ratio of MASCARA is guaranteed above 90% with respect to
high semantic locality in the workloads and data sets that are presented by SK and
HR. Therefore, MAS-FPGA maintain its high acceleration compared to MAS-Server.
In particular, it is 6.9 and 8.7 times faster compared to MAS-Server with workload of
customized Q6(s) and Q5(s), respectively.

c) Performances with coalescing heuristic

We remind that MASCARA based on CPU limits the benefits of two other contribu-
tions, coalescing heuristic for semantic management and multi-view processing for (inner)
join query. Currently, with the presented accelerations, especially in Query Trimming,
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with MASCARA-FPGA, we have to re-evaluate the benefits which can be gained by
the coalescing heuristic. Thus, we present the results by two figures: 4.24a for workload of
Q6(s) and 4.24b for workload of Q5(s). In short, Always Coalescing, Never Coalescing and
Coalescing Heuristic are named respective AC, NC, and CH (with threshold T = 0.5) to
be applied on MAS-Server or MAS-FPGA. Thus, we have a total of six testing prototypes.

(a) Workload of customized Q6s. (b) Workload of customized Q5s.

Figure 4.24 – Response times of MASCARA with respect to different coalescing strategies.

Regarding to response time, Always Coalescing can bring the best results, coalescing
heuristic shows a balance and Never Coalescing takes the last place for either server
or FPGA. Considering that MAS-Server prefers to apply Always Coalescing since it
can reduce the generated segments, thus resulting to better response times compared
to Never Coalescing and Coalescing Heuristic. In Figure 4.24a, we found that the ac-
celerations which can be gained within these pairs (MAS-FPGA-NC, MAS-Server-AC),
(MAS-FPGA-CH, MAS-Server-AC), and (MAS-FPGA-AC, MAS-Server-AC) are on av-
erage 1.7, 2.5 and 3.8 times, respectively. Or in Figure 4.24b, they are 1.5, 2.85 and 4.9
when running workload of Q5(s). As it can be seen, despite the change of coalescing
strategies, MAS-FPGA is always faster than (the best case of) MAS-Server. More impor-
tantly, we notice that there is a slightly decline in acceleration compared to MAS-Server
when changing from Always Coalescing to Coalescing Heuristic on MAS-FPGA. On the
other hand, we also notice that MAS-FPGA-AC is on average 1.5 times faster than MAS-
FPGA-CH when running workload of Q6(s). Coordinating all the above comparisons,
we consider performance of MAS-FPGA-CH is not too much inferior to MAS-FPGA-AC
since its generated segments can be handled well within the capability of Query Trim-
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ming’s accelerators. Thus, changing from Always Coalescing to Coalescig Heuristic on
MAS-FPGA allows to continue having an appropriate acceleration while also maximizing
the other benefits of Coalescing Heuristic such as hit ratio and cache space usage.

Since Query Trimming is the most clearly affected when changing coalescing strategies,
we also show its performance on FPGA and server to evaluate (in Figure 4.25).

(a) Workload of customized Q6s. (b) Workload of customized Q5s.

Figure 4.25 – Response times of Query Trimming accelerators with respect to different
coalescing strategies.

In Figure 4.25a with workload of customized Q6(s), Query Trimming of MAS-FPGA
with Coalescing Heuristic, named MAS-FPGA-CH-QT, is on average 6.4 times faster
than Query Trimming of MAS-Server with Always Coalescing (i.e., MAS-Server-AC-QT).
Meanwhile, if using Always Coalescing on FPGA, such a kind of acceleration is slightly
higher (i.e., 5.3 times). We also found the similar decrease of such acceleration for Query
Trimming with workload of customized Q5(s) (in Figure 4.25b), in particular, it drops from
9.6 to 8.2 times when changing from Always Coalescing to Coalescing Heuristic on FPGA,
compared to the best strategy for server (i.e., MAS-Server-AC-QT). In other words, al-
though the Always Coalescing gives the best result for Query Trimming on FPGA, Query
Trimming with respect to Coalescing Heuristic is still remarkable. Nonetheless, with Never
Coalescing, Query Trimming of FPGA (i.e., MAS-FPGA-NC-QT) brings the lowest accel-
eration compared to the MAS-Server-CH-QT (i.e., on average 2.3 times). Thus, with the
capability of Query Trimming accelerators, the Coalescing Heuristic now becomes com-
petitive with the previous most popular approach, Always Coalescing. In fact, Coalescing
Heuristic strikes the balance in making decision of coalescing, its number of generated
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segments is slightly higher than the best case (i.e., Always Coalescing). By this way, it
can gain other benefits, such as hit ratio and cache space usage that are presented in next
sections.

d) Hit ratios with coalescing heuristic

Besides the performance (in response time), in this section we evaluate the hit ratio
as one of the other benefits of Coalescing Heuristic (in Figure 4.26). Since hit ratio is
impacted by the threshold T of Coalescing Heuristic, we assign T as 0.3, 0.5 and 0.7
respectively before starting MASCARA. Moreover, we reuse the impact factors that are
presented in Table 3.6 of Section 3.4. Interestingly, hit ratio of MASCARA is not affected
by using either FPGA or server, thus, here we present only the results on FPGA. Note
that changing type of query from select-project to inner join query is negligible to hit
ratio. Thus, it is reasonable enough to present the results with workload of Q6(s).

(a) Skew SK = 0.5. (b) Skew SK = 0.9.

Figure 4.26 – Hit ratio of different coalescing strategies on MAS-FPGA.

As it can be seen in Figure 4.26, hit ratio of all testing prototypes, Coalescing Heuristic
included, are low when cache size is small since it cannot store the whole of Hot Region
HR. Another reason is that frequency of replacement is high due to lack of space to store
new data regions. Thus, small cache size always leads to a poor performance in all aspects
(more details in Section 3.4).

When Size_C is large enough, hit ratios of different strategies become more obvious.
In particular, with Size_C = 15% of data set and SK = 0.5 as in Figure 4.26a, hit
ratios are on average 26.4%, 18.8% and 33.5% for MAS-FPGA-NC, MAS-FPGA-AC and
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MAS-FPGA-CH, respectively. MAS-FPGA-AC brings the worst result in contrast to its
performance in terms of response time. The reason is that a large merged portion from
overlapped data regions DR could be replaced frequently in Always Coalescing. Thus,
hit ratio can be seen as a trade-off of Always Coalescing. In contrast, MAS-FPGA-NC
shows better results thanks to its higher data granularity in terms of a large number of
tiny fractions of answer. Meanwhile, our solution, MAS-FPGA-CH gives the best results.
In details, some of data regions with a high "profit" may not be coalesced in Coalescing
Heuristic, thus, it maintains a balance number of fragments between Always Coalescing
and Coalescing Heuristic. Moreover, by extending basic replacement value (i.e., LRU)
in terms of "current profit" and "future profit" in Coalescing Heuristic, we strike spatial
and temporal locality at the same time even if semantic locality of workload is low (i.e.,
SK = 0.5). Thus, hit ratio of Coalescing Heuristic is the highest among the coalescing
strategies by having an appropriate number of segments that are most likely to contribute
to the next queries.

We remind that T is used as a condition of filtering to decide for coalescing. In other
words, increasing or decreasing T can affect the hit ratio which can be gained by Coalescing
Heuristic. In details, low threshold (i.e., T = 0.3) means that the number of data region
which could be merged together is decreased. In opposite, with T = 0.7, data regions have
more opportunities to coalesce. Obviously, T = 0.5 can be seen as a balanced condition
value of filtering. For example, with Size_C = 15% and SK = 0.9 in Figure 4.26b, MAS-
FPGA-CH-0.3, MAS-FPGA-CH-0.5 and MAS-FPGA-CH-0.7 present 60.2%, 57.3% and
52.7% of hit ratio, respectively. All of the strategies start to converge when cache size
is large enough. Consequently, since there is only a slightly decline of acceleration when
changing from Always Coalescing to Coalescing Heuristic, we agree it is worth to apply
Coalescing Heuristic on MAS-FPGA to get higher hit ratios.

e) Cache space usage with coalescing heuristic

The last benefit of CH we want to discuss is the cache space usage. In details, coalescing
or decomposing the data regions with respect to strategies can lead to different amount
of spaces to be used in cache. Thus, we run the experiments over workload of Q6(s) to
evaluate cache space usage for each coalescing strategies (in Figure 4.27). More precisely,
the experiments in Figure 4.27a conducted with presented impact factors can be found in
Table 3.6. Meanwhile, Figure 4.27b is presented based on Table 3.7. More importantly,
capacity of SC can be seen as unlimited (but bounded by size of the card Alveo U2OO)
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in all of the above experiments to simplify the measurement without considering cache
replacement.

(a) SK is changed. (b) SF is changed.

Figure 4.27 – Content of cache with respect to applied coalescing strategies.

In Figure 4.27a with SK = 0.3 over HR = 10% as low hit ratio of cache, total used
space in cache for all strategies is high. For example, total used space can be more than
500MB whatever the strategy is. Indeed, when miss happens frequently, MAS-FPGA
receives more new results, thus it consumes more spaces at the end. In contrast, when hit
ratio increases thanks to change of semantic locality (i.e., SK = 0.9 over HR = 10%),
cache consumes less space since only a few of the remainder queries with small answer
could appear, in particular, total used space is less than 175MB for every strategy.

Even though space used in cache synchronously increases or decreases with respect
to change of SK, there are still certain differences regarding applied coalescing strategy.
More precisely, with SK = 0.3, spaces used in cache are on average 546MB, 498MB and
534MB for MAS-FPGA-NC, MAS-FPGA-AC and MAS-FPGA-CH, respectively. Since
cache size is unlimited, it is obvious that AC brings the best result in saving space of
cache. Meanwhile, with NC, cache decomposes all of overlapped data regions with query
answer to the new independent fragments. However, each of them has to store all of key
attributes of the data set. Thus, this way causes an overhead of space in cache to store the
duplicated key attributes for each of new data regions. Noticeable, when SK increases,
space overhead of NC compared to AC gets worse due to more numbers of overlapped
DR and larger size contributed to query answer. In particular, with SK = 0.3, MAS-
FPGA-NC uses only 9.6% more spaces than MAS-FPGA-AC, but when SK = 0.9, this
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gap increases to 36.3%.
Although CH does not bring the best results as AC in saving space of cache, it con-

sumes less than NC. In particular, with SK = 0.9, MAS-FPGA-CH-0.3 uses 20.6% more
spaces than MAS-FPGA-AC. Meanwhile, increasing T allows CH to coalesce more data
regions. As a result, amount of duplicated keys can be reduced. Thus, T = 0.7 gives the
best cache space usage meanwhile T = 0.3 is the worst case in using CH. Once again,
choosing value of threshold T leads to the trade-off in hit ratio and space consumption of
cache.

As it can be found in Figure 4.27b, when SF increases with fixed SK = 0.9, cache
space usage increases for all strategies. This is the result of having many data regions
DR with larger sizes that contribute to query answer when cache hit happens. More
precisely, with SF = 10GB, NC now uses more than 39.2% spaces than AC. Meanwhile,
the best case of heuristic, CH with T = 0.7 only uses more than 13.6% spaces than AC.
Consequently, in all cases of SK, space overhead of MAS-FPGA-CH compared to MAS-
FPGA-AC can be acceptable thanks to its high hit ratio that results to less execution of
RQ in DMS.

f) Device utilization

In this dissertation, we analyze resource requirements on the device (i.e., Alveo U200)
for the acceleration kernels of different query processing presented in MASCARA-FPGA
(as shown in Table 4.1).

Type Component Number of units LUTs FFs 36KB BRAM

DB operators

Filter/Arithmetic 1 (64PCs and 32 RCs) 13366 9469 92
Project 1 1454 927 -

Sort Merge Tree-512 nodes 2 184672 31572 421
Join 1 1449 762 -

Query Trimming
Attribute Matching 1 876 214 3
Predicate Matching 16 21668 16621 114
Semantic Extracting 1 1138 582 7

Cache manager Query Process Controller (QPC) 1 1571 413 12
Cache Filter: Heuristic 1 1263 629 10

Total resources 267457 61189 659
Percentage (%) of usage 25.48% 3.3% 37.29%

Table 4.1 – Hardware Resource Utilization of MASCARA-FPGA with one kernel.

This hardware resource consumption is given for the different MASCARA-FPGA’s
parts, such as Query Trimming and Probe Query Executing (as illustrated in Figure
4.1) on FPGA for one kernel. Looking into the components of Query Trimming in Table
4.1, the most expensive kernel is Predicate Matching which consists of heavy tasks as

120



computing units, such as Intersection, Difference and Implication. Currently, we deploy
up to 16 instances for such procedure that works with 32 bit-width input streams of
Range-Objects. Moreover, BRAMs are used a lot to store the results of computations and
forward to next round (i.e., Semantic Extracting). In contrast, Attribute Matching has a
small resource cost since its iteration is limited by the set of attributes which appear in
the projection condition of the query. Indeed, the total number of (range-type) attributes
in three relations lineitem, orders and customer are less than 15. Moreover, matching an
attribute is a simple comparison over string type data. Similarly, Semantic Extracting also
requires a small amount of resources with its straightforward implementation for if-else
statements.

In MASCARA-FPGA, we control query processing and manage data coalescing in
cache through two small components on FPGA. In particular, query plan of MASCARA-
FPGA is static to simplify the executing. Thus, a simple QPC is reasonable for presented
input queries without considering aggregate or complex join operations. Meanwhile, filter
of coalescing heuristic maintains the "profit" value in terms of an arbitrary precision fixed-
point data type 32 bit-width instead of floating type. Therefore, with the above elements,
these components do not demand a large amount of resources.

Meanwhile, regarding to DB operators, Filter which includes several kinds of compu-
tations, requires a large number of LUTs. The reason is that it has to scan and evaluate
streams of data in parallel by using a chain with 64 PCs and a network of 32 RCs as inputs.
In opposite, Project consumes a few hardware resources (without considering scanning)
due to its simple operation where column is selected by a masking mechanism. The most
expensive accelerator is Sort-Merge in terms of sort-merge-tree. In fact, it can be con-
figured with different depths, widths or ascending/descending orderings that results to
changes on the report of resources used. In details, although nodes of tree (i.e., 2-to-1
MU) are tiny, an entire of tree which has multiple nodes can consume significant re-
sources, especially BRAM utilization its proportional to the size of the tree. As it can be
seen in Table 4.1, we deploy two sort-merge trees with 512 nodes. By this way, we ensure
that all results from multi-view processing are sorted in parallel. In other words, we want
to maximize the performance of sort-merge on FPGA. However, if we deploy only one
tree, the acceleration of sort-merge is still acceptable compared to same computing on
software implementation of server.
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CHAPTER 4. MASCARA-FPGA

4.4 Conclusion

This chapter presents a cooperative model MASCARA-FPGA for multi-dimension
range query processing to overcome the drawbacks (i.e., Query Trimming) of original
MASCARA. Specifically, we design the Query Trimming accelerators to boost up the
heavy computations, such as Intersection, Difference and Implication, between query and
segments. Regarding to the design, computation tasks in terms of the iterations over
the list of objects (i.e., CNF-Object, Range-Object) are presented from bottom-to-top
parallelism. Additionally, we also implement DB operators, such as Filter and Project,
that work with high-speed stream inputs to accelerate the execution of generated probe
queries on FPGA. Regarding to the large scale size of processed data, off-chip memory of
FPGA (i.e., DRAM) is used to cache and manage answers of queries in terms of SC man-
agement. In order to maintain the workflow between high level MASCARA and low level
FPGA’s accelerators, our prototype consists of other components, such as FPGA-Adapter
and Query Process Controller (QPC). Furthermore, regarding the high throughput ac-
celerators of MASCARA-FPGA, we reevaluate the benefits of our coalescing heuristic,
especially the hit ratio and cache space usage. Last but not least, we prove that the bot-
tleneck of Multi-view processing for inner join query on MASCARA is now overcomed by
leveraging acceleration on FPGA.

In the experiments, we implement MASCARA-FPGA with single or multiple kernels
(i.e., two) to evaluate how much acceleration can be gained compared to other solutions.
Indeed, the results show that MASCARA-FPGA provides better performance (in response
time) compared to Block-Cache and MASCARA-Server. In particular, MASCARA-FPGA
with single kernel, can accelerate on average 2.9 and 6.9 times compared to Block-Cache
and MASCARA-Server, respectively, using workload of Q6(s) from TPC-H. More pre-
cisely, Query Trimming on FPGA is 7.1 times faster than on CPU when complexity
of query (e.g., Dimension of attributes) increases to seven. Meanwhile, the execution of
(select-project) probe queries on FPGA is speed up to 8.5 times compared to CPU. Ac-
cording to Multi-view processing, sort-merge-join on FPGA is 7.7 times faster than soft-
ware implementation on server, using workload of Q5(s) from TPC-H. In complement of
semantic management, our CH applied on MASCARA-FPGA exhibits an acceleration up
to 2.5 times compared to MASCARA-Server with Always Coalescing as the best case on
server. Finally, CH also has the highest hit ratio (i.e., 33.5 with SK = 0.5 and HR = 10%)
and a balance space usage in cache compared to the two conventional approaches.
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Chapter 5

Conclusion and Future Works

5.1 Summary of contributions

In this dissertation, we study the acceleration for range query processing in a new data
management system (DMS) by deploying semantic caching (SC) framework in cooperation
with an FPGA.

In particular, it seems relevant to consider a SC framework as cache management
system (CMS) at the middleware layer of the DMS to ensure fine grained data re-usability
and alleviate the problem of unnecessary query re-execution. Thus, we propose a ModulAr
Semantic CAching fRAmework (MASCARA) where we divide and regroup functionalities
of SC in terms of modules and stages. More precisely, this work is done by defining relevant
templates, data structures, and interfaces. Thus, the main contribution of this architecture
is its flexibility, scalability and adaptability to different environments, infrastructures and
requirements. Moreover, MASCARA leverages the fast local storage of the compute layer
meanwhile taking responsibility in communication with the (remote) storage layer of the
DMS. We carry out extensive experiments based on data set generated from the TPC-H
benchmark with various scenarios. The experimental results exhibit the performance of
MASCARA in different aspects, such as response time, hit ratio and transferred data
from storage. The best case shows that MASCARA is up to 3.9 times faster than the
baseline (e.g., block cache). In contrast, we analyze a significant decline of response time
in MASCARA when the query complexity increases in terms of dimensions, e.g., in the
worst case MASCARA is 2.4 times slower than baseline. Therefore, we confirm that several
heavy computing tasks of query rewriting in MASCARA will take advantages on FPGA
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accelerators to enhance computing performances.

In order to bring more benefits for the SC framework, cache management of MAS-
CARA is discussed in terms of coalescing strategy and replacement policy. In particular,
we revisit the impact of conventional coalescing strategies, such as Always and Never
Coalescing. By exploiting the strengths and mitigating the drawbacks from these conven-
tional approaches, we propose a novel appropriate solution in cache management, named
coalescing heuristic. In particular, it can decide when to coalesce data regions based on
the recency of usage (temporal locality) and percentage of response contribution (spa-
tial locality) that are presented through a new replacement function. Thus, it strikes a
good balance between the two conventional approaches. Moreover, the heuristic can also
increase hit ratio and reduce cache space usage of MASCARA. Importantly, we explain
why the heuristic is not preferable to use with MASCARA based on CPU due to the com-
plexity of the query rewriting. The experimental results show that Coalescing Heuristic is
2.3 times slower than Always Coalescing. We consider that this heuristic will become more
noticeable when applying in MASCARA when it is accelerated by a specialized hardware
(e.g., FPGA).

Processing select-project queries are seen as basic features of MASCARA. Meanwhile,
join processing is more complex due to the participation of multiple of relations. Thus, we
present an approach, named Multi-view processing, which brakes down an original (inner)
join query into (select-project) sub-queries that belong to different joined relations or
views. However, this approach can cause a significant execution time of Query Trimming
in MASCARA due to the process of multiple generated sub-queries. The experimental
results show that performance of MASCARA based on CPU can be reduced significantly.
In particular, it runs 1.7 and 3.6 times slower than No-Cache and Block-Cache when the
dimension of the query and the number of segments is high. Fortunately, we also explain
that this issue can be overcome if MASCARA is accelerated with a specialized hardware
(i.e., FPGA).

In addition to the need of accelerating Query Trimming, MASCARA is expected to
leverage FPGA’s capabilities, for example, low latency accelerators for the correspond-
ing computing modules. Thus, we present a cooperative model between MASCARA and
FPGA. To achieve this goal, we design the query rewriting of MASCARA and their tasks
with respect to FPGA accelerators. We also develop the essential DB operators on FPGA,
such as filter, project and sort-merge-join. We organize cache on off-chip memory (i.e.,
DRAM) of the FPGA which supports a reasonable capacity and high bandwidth connec-
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tion to the accelerators. By coordinating all of them together, MASCARA-FPGA with
single instance for every accelerator, is able to accelerate on average 6.9 times compared
to MASCARA based on CPU. More precisely, Query Trimming on FPGA is 7.1 times
faster than on CPU when the complexity of the query (e.g., Dimension of attributes)
increases to seven. Meanwhile, the execution of (select-project) probe queries on FPGA is
speed up to 8.5 times compared to CPU. According to Multi-view processing, sort-merge-
join on FPGA is 7.7 times faster than the software implementation on the server. Since
MASCARA-FPGA can handle the drawbacks of coalescing heuristic for semantic manage-
ment and multi-view processing for (inner) join query, we revisit their benefits regarding
to MASCARA-FPGA. On the one hand, MASCARA-FPGA with heuristic exhibits an
acceleration up to 2.4 times compared to MASCARA-Server with Always Coalescing as
the best case on the server. Additionally, heuristic has the highest hit ratio and a balance
space usage in cache compared to the two conventional approaches. On the other hand,
overcoming the presented issue of Multi-view processing, MASCARA-FPGA can main-
tain a high acceleration (e.g., on average 8.6 times for total response time) with inner join
queries.

5.2 Future works

a) An extension of MASCARA-FPGA

MASCARA might be used to answer more complex queries in the future, such as
outer join, ordering or top-n queries. To achieve this goal, our general idea to process
such queries is to push all the basic operations that MASCARA can handle to the bottom
of the query plan. Continuously, MASCARA could evaluate the remaining operators on
the results of those selections. Multi-view processing is an instance for this approach
where changing the order of filter and join operation does not affect to the final result.
Certainly, other types (e.g., ordering) require more complex evaluations to prevent missing
any semantic overlapping between query and segments. Otherwise, miss matching could
happen and could reduce significantly the performance of MASCARA or waste cache
space with duplicated data.
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b) DB operators with respect to query plan

In this dissertation, MASCARA-FPGA is presented without implementing other
database operators, such as hash join, group-by, and aggregation. Thus, it seems first
interesting to extend the library of DB operators on FPGA to execute different kinds of
(probe) queries. Second, such a kind of library may allow MASCARA to generate and se-
lect one of the execution plans which results to optimal performance of queries. This issue
can be seen as an optimization in the (query) physical planning on FPGA. In particular,
due to the resource limitation of FPGA kernels, query plan has to consider the possibility
of using single or multiple FPGA kernels. To do that, a challenge is to propose an optimal
query plan in a short time for FPGA specific cost model. To summarize, this model could
consist of two components: a unit cost and an optimal query plan generation.

c) Satisfiability modulo theories SMT

We remind that satisfiability checking in Query Trimming can be seen as the NP-
complete problem. Fortunately, a NP problem can be reduced with a polynomial time
many-one reduction to the boolean satisfiability problem (SAT), in particular, the problem
of determining whether a boolean formula is satisfiable [22]. Thus NP complete problem,
which is reduced with SAT, can be resolved with SAT solver. Last recent years, the
extension of SAT, named satisfiability modulo theories (SMT), from the boolean domain
to various domains, such as the integer, real number or bit vector domains, has gained
much attention. Thus, we consider that using SMT to check query equivalence in Query
Trimming of MASCARA may be used. However, to use SMT solver in SQL expressions, we
need to apply a transformation function from two-valued propositional or first-order logic
into three-valued logical [18, 19]. By this way, we can model the semantics of widely-used
SQL features, such as complex query predicates, arithmetic operations, and three-valued
logic rather than simple range predicates. Additionally, FPGA also supports to convert
SAT or SMT solvers into accelerators. In summary, a novel approach to implement Query
Trimming which leverages on SMT solvers rather than an algebraic representation with
respect to FPGA acceleration can be seen as a research challenge.

d) Optimization of cache management

In fact, reusing ratio of answers in cache depends on several factors, such as query
workload characteristics, cache management, reuse algorithm, etc. Thus, in this disserta-
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tion, we presented a coalescing heuristic with new replacement value function and make
a comparison with other conventional approaches. Nonetheless, none of the presented co-
alescing strategies present a cost model to estimate and track completely the benefits of
cache in terms of cached data regions, candidate for admission, reuse frequency of candi-
dates, etc. It is worth to note that these above elements should be examined carefully with
respect to changing the pattern of the workload or access statistics in the database. Thus,
this work can be done to increase the usefulness of MASCARA-FPGA under any context
of applications. However, proposing such kind of model could raise a detailed study which
covers a lot of aspects, such as estimation of probability or approximate cost value func-
tions (e.g., Knapsack problem, Dynamic Programming [11]). Obviously, it could result in
a long latency both in coalescing strategy and replacement policy due to the complexity
of computing and estimating the profit of data regions. Therefore, once again, it seems
meaningful enough to leverage FPGA to accelerate partly or entirely this procedure.

e) Cache hierarchy

As a complement of the optimization problem, we also consider restructuring cache
organization. In details, we can split the original cache into two children: fast cache (FC)
and oracle cache (OC). On the one hand, OC can model and solve the computation
issue of the cost model, which aims to find the nearly optimal set of data regions that
should be retained. We assume that such kind of optimization problem is expensive and
thus cannot be performed on a per-request basis. Thus, OC only recomputes its contents
periodically, and mainly targets queries that have sufficient statistics in history. On the
other hand, the FC cache serves as a fast "buffering" to temporarily store the answers for
recent queries until OC collects sufficient statistics to make longer-term decisions. In other
words, FC is optimized for an incoming query at that time, and can react immediately to
workload changes. Collectively, the two caches can offer an efficient and reactive solution
for MASCARA. Consequently, this work can be initialized with FC on server and OC on
FPGA to accelerate the computations.
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Titre : Contribution à l’accélération FPGA de cache sémantique pour le traitement des requêtes
d’intervalles dans le domaine des masses de données

Mot clés : FPGA accélération, système de gestion de données, cache sémantique

Résumé :
Avec l’émergence de nouveaux systèmes

de gestion de données pour le big data et
le cloud computing, la mise en cache des
données est devenue importante car elle per-
met de réduire l’exécution de requêtes in-
utiles. Dans ce contexte, le cache sémantique
(SC) est une technique qui permet d’exploi-
ter les ressources de la mémoire cache et les
connaissances contenues dans les requêtes.
Néanmoins, la réécriture de la requête avec
un cache sémantique peut parfois induire un
surcoût important en raison des calculs né-
cessaires. Dans cette thèse, nous cherchons
à combiner l’infrastructure du cache, le cache
sémantique et l’accélération de bases de don-
nées sur FPGA pour accélérer le traitement

des requêtes d’intervalles dans le domaine
des masses de données. Les contributions de
cette thèse sont : 1) Nous présentons un sys-
tème de gestion du cache dans la couche in-
termédiaire du système de gestion de don-
nées (MASCARA). 2) Nous proposons une
heuristique de regroupement avec une nou-
velle fonction de valeur de remplacement pour
la gestion du cache dans MASCARA. 3) Nous
mettons en œuvre un mécanisme, appelé trai-
tement multi-vues, pour gérer la requête dites
de jointure en cache sémantique. 4) Enfin,
nous présentons un modèle coopératif, ap-
pelé MASCARA-FPGA, où le traitement des
requêtes, en ce qui concerne la réécriture des
requêtes et une partie de l’exécution des re-
quêtes, est accéléré sur FPGA.

Title: Semantic caching framework towards FPGA acceleration for range query processing in
domain of massive distributed data

Keywords: FPGA acceleration, data management systems, semantic caching

Abstract: With the emergence of new data
management systems (DMS) in context of big
data and cloud computing, caching data has
become important since it can reduce un-
nescessary query execution. To address it, se-
mantic caching (SC) is a candidate since it
allows to exploit the resources in the cache
and knowledge contained in the queries. Nev-
ertheless, the complexity of query rewriting
in SC, can induce a high overhead because
of its excessive computations. Therefore, we
aim to combine cache framework, SC and
FPGA-based database acceleration together
to accelerate range query processing in the

domain of massive distributed data. In this
dissertation, we present the contributions as
follows: 1) We present ModulAr Semantic
CAching fRAmework (MASCARA) in the mid-
dleware layer of DMS. 2) We propose a co-
alescing heuristic with a new replacement
value function in terms of cache management
in MASCARA. 3) We implement a mecha-
nism, named Multi-view processing, to handle
select-project-join query in SC. 4) We exhibit a
cooperative model, called MASCARA-FPGA,
where query processing is accelerated regard-
ing query rewriting and part of query execu-
tion.
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