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Introduction

The research works presented below represent a part of the general framework of the class

of natural exponential families. This class has drawn considerable attention of researchers and

numerous works have been realized on probability theory and statistical modeling. This gives

us the opportunity to develop some theoretical and applied results that study the class of the

Markov kernels distributions. In the particular case, this class represents a one of variance-

mean mixture models which widely used in the statistical field and, in terms of stochastic

processes, it could be considered as a class of subordinated Lévy processes.

My research has focused on studying three interrelated aspects of Markov kernels using the

natural exponential family theory, building upon the findings of my Ph.D. thesis. The research

axes represent an extension of my earlier work on the normal α-stable model, as published in [

4a], [ 9a], and [ 10a]. To be more specific, these research axes can be divided into the following

parts:

• Univariate Markov kernel natural exponential family: in this part, we characterize the

Markov kernel natural exponential family through its variance function. Besides, we

determine some related probabilistic properties such as the reciprocity and the duality.

We illustrate the results by some examples. In statistical point of view, we analyze the

proposed generalized linear model through the Markov kernel quasi-likelihood function.

We apply the results on the daily exchange rate returns of the Tunisian Dinar against
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Introduction

the US Dollar and the damage incidents of ships. These results and other related ones

are given in [1a ], [2a ], [3a ], [4a ], [5a ] and [1s ] in the list of publications.

• Multivariate Markov kernel natural exponential family: this part is devoted to the study

of the theory of multivariate generalized linear models for Markov kernels with known

and also unknown link and variance functions. Theoretical results are first shown for

the parametric case. To reduce the assumptions in a full parametric case, we consider

both link and variance functions to be unknown but smooth. These functions are then

estimated nonparametrically, through associated kernels as smoothers with respect to

the appropriate support. Hence, we obtain a three-level approach to this semiparametric

model from link function, variance function and the vector of regression coefficients in

the linear predictor of the model. Also, we theoretically suggest total deviances and

other deduced criteria, as Akaike and Bayesian information criteria. Finally, we apply

the results on the multivariate daily exchange rate returns. These results and other

related ones are given in [6a ], [10a ] and [2s ] in the list of publications.

• Characterizations of stable and related processes: in this part, we characterize the classes

of multivariate stable processes and the inverse stable subordinators through some in-

dependence properties. This led us to determine other characterizations related to the

Markov kernel models. These results and other related ones are given in [7a ], [8a ], [9a

] and [1b ] in the list of publications.

2 Farouk MSELMI



Chapter 1

Some background

In this chapter, we recall some definitions and notations dealing with the Natural Exponential

Families (NEFs) and their variance functions. Furthermore, we introduce the classes of Markov

kernels and stable processes.

1.1 Natural exponential families

The NEF generated by the finite positive measure µ on Rd, with d ≥ 1, is the set of probability

distributions

F = F (µ) = {P (θ, µ)(dx) = exp[〈θ,x〉 − logLµ(θ)]µ(dx); θ ∈ Θ(µ)},

where 〈·, ·〉 represents the scalar product and Lµ(θ) =

∫
Rd

exp(〈θ,x〉)µ(dx) defines the Laplace

transform of µ which is finite for θ in the domain Θ(µ). The so-called cumulant function of µ

is defined by Kµ(θ) = logLµ(θ). The map

Θ(µ) −→MF (µ); θ 7−→ m = K ′µ(θ) =

∫
Rd

xP (θ, µ)(dx)

is a diffeomorphism between Θ(µ) and its image MF (µ), called the domain of the means of

F (µ). The inverse function of the first derivative K ′µ is denoted by ψµ and is called the link

function. The second derivative K ′′µ defines the covariance operator of P (θ, µ) and is equal to

K ′′µ(θ) =

∫
Rd

x⊗ xP (θ, µ)(dx)−K ′µ(θ)⊗K ′µ(θ),

3



Some background

where x ⊗ x is the matrix x>x obtained from the product of the vector x and its transpose

x> which is a column vector. The variance function of the NEF F (µ) is defined on MF (µ) by

m 7−→ VF (µ)(m) = K ′′µ(ψµ(m)) =
[
ψ′µ(m)

]−1
.

Its importance emanates from the fact that it characterizes the family F within the class of

all NEFs. More exactly, if F1 and F2 are two NEFs such that the variance functions VF1(m) and

VF2(m) are equal on a nonempty open set of the intersection of the means domainsMF1∩MF2 ,

then F1 = F2. This means that the knowledge of the NEF is obtained by the knowledge of

its variance function, and conversely; see, e.g., Letac (1992) for more details. In this context,

many classifications of the NEFs according to the form of their variance functions have been

established; see, e.g., Casalis (1996) and Kokonendji and Moypemna Sembona (2018) for two

classes of multivariate NEFs and references. Thus, the generalized variance function is the

determinant of the variance function and it can be successively defined by

detK ′′µ(θ) = detK ′′µ(ψµ(m)) = detVF (µ)(m).

One can refer to Boubacar Maïnassara and Kokonendji (2014) and Mselmi et al. (2018) for

some details, and Kokonendji et al. (2020) for characterization attempts through a Monge-

Ampère property. Otherwise, a concise guide to statistical inference of multivariate NEFs can

be found in Bedbur and Kamps (2021).

In the univariate case, the notion of reciprocity in NEFs was introduced and charac-

terized by Letac (1986). In fact, let µ and ν be two positive measures in R and Θ̃(µ) ={
θ ∈ Θ(µ) such that K ′µ(θ) > 0

}
. The pair (µ, ν) is called reciprocal if

i. Θ̃(µ) and Θ̃(ν) are nonempty.

ii. The image of Θ̃(µ) by θ −→ −Kµ(θ) is Θ̃(ν), and the image of Θ̃(ν) by θ −→ −Kν(θ)

is Θ̃(µ).

iii. −Kν (−Kµ(θ)) = θ for all θ ∈ Θ̃(µ).

4 Farouk MSELMI



1.2 Markov kernels

The concept of reciprocity in NEFs was characterized by variance functions. This charac-

terization is given in the following theorem.

Theorem 1.1.1 (Letac and Mora (1990), Theorem 5.2) Let F (µ) and F (ν) be two NEFs in
R, and denote M̃F (µ) = MF (µ) ∩ (0,+∞) and M̃F (ν) = MF (ν) ∩ (0,+∞). Then (F (µ), F (ν))
is a reciprocal pair if and only if the following conditions hold:

i. M̃F (µ) and M̃F (ν) are nonempty.

ii. m −→ 1
m is a bijective mapping from M̃F (µ) onto M̃F (ν).

iii. VF (µ)(m) = m3VF (ν)(1/m) for all m ∈ M̃F (µ).

1.2 Markov kernels

Now, we briefly introduce the Markov kernel [e.g., Çinlar (2011, pp. 37-38)] of interest as a

mixture of distributions. Let (Y, Y ) be a couple of random vectors on (0,∞)×Rd−1 (d ≥ 2)

with distribution η(dy, dy) = Qy(dy)µ1(dy) such that µ1 represents a mixing measure with

Supp(µ1) ⊂ (0,∞) and the kernel Qy defines a convolution semigroup of the yth-convolution

power of Q1. The mixture distribution of interest is the marginal distribution of η(dy, dy)

with respect the second variable; and, it is denoted by µ(dy) =

∫ +∞

0
Qy(dy)µ1(dy). For all

θ ∈ {(θ1, θ2) ∈ R×Θ(Q1); θ1 +KQ1(θ2) ∈ Θ(µ1)}, the cumulant function of η is equal to

Kη(θ) = Kµ1(θ1 + KQ1(θ2)). This holds because its Laplace transform can be expressed as

follows:

Lη(θ) = E(eθ1Y+〈θ2,Y 〉) =

∫ ∞
0

∫
Rd−1

exp[θ1y + 〈θ2, y〉]Qy(dy)µ1(dy)

=

∫ ∞
0

eθ1y
(∫

Rd−1

e〈θ2,y〉Qy(dy)

)
µ1(dy) =

∫ ∞
0

ey(θ1+KQ1
(θ2))µ1(dy)

= Lµ1 (θ1 +KQ1(θ2)) = exp[Kµ1(θ1 +KQ1(θ2))]. (1.1)

By taking θ1 = 0 in (1.1), we get the Laplace transform of the mixture distributions

Lµ(θ2) = Lη(0, θ2) = exp[Kµ1(KQ1(θ2))], (1.2)

with θ2 ∈ Θ(µ) := Θ(Q1) ∩K−1
Q1

(Θ(µ1)).
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Some background

In the context of NEFs, let us recall the notion of cut in NEF introduced by Barndorff-

Nielsen and Koudou (1995). In fact, Let pro : (0,∞) × Rd−1 −→ (0,∞); (y, y) 7−→ y be a

canonical projection on (0,∞). The NEF F = F (η) has a cut on (0,∞), if pro(F ) is also a

NEF on (0,∞). The following lemma gives some results about the notion of cut in NEF.

Lemma 1.2.1 (Barndorff-Nielsen and Koudou (1995)) Let pro(F ) = {pro(η); η ∈ F}. The
following statements are equivalent:

1. The family pro(F ) is a NEF on (0,∞) (F has a cut on (0,∞)).

2. For all θ ∈ Θ(Qy), y 7−→ KQy(θ) is an affine function on (0,∞). There exist maps
H : Θ(Qy) −→ R and K : Θ(Qy) −→ R, such that the conditional cumulant function of
the distribution Qy is given by KQy(θ) = K(θ)− yH(θ), θ ∈ Θ(Qy).

1.3 Stable processes

Before defining the class of stable processes, we need first to define a larger class which is the

Lévy one.

Definition 1.3.1 A stochastic process (L(t))t≥0 on Rd is a Lévy process, if the following
conditions are satisfied:

1. L(0) = 0 almost surely (a.s.).

2. For any choice of n ≥ 1 and 0 < t1 < . . . < tn, the random variables L(t1),L(t2) −
L(t1), . . . ,L(tn)− L(tn−1) are independent.

3. The distribution of L(t+ s)− L(s)
L
= L(t), where L= denotes the equality in distribution.

4. For every ω ∈ Ω, t 7−→ L(t, ω) is càdlàg ( i.e., right-continuous in t ≥ 0 and has
left-limits in t > 0.)

A stable process (S(t))t≥0, with a parameter α ∈ (0, 2], is a Lévy process distributed by a

stable law. In fact, a random variable S on Rd is called α-stable if, for each n ≥ 2, there exist

a vector fn and n independent copies S1,S2, . . . ,Sn of S, such that

S1 + S2 + . . .+ Sn
L
= n1/αS + fn.

6 Farouk MSELMI



1.3 Stable processes

A Lévy process L = (L(t))t≥0 valued in Rd is said strictly stable of parameter α ∈ (0, 2] if

L(t)
L
= t1/αL(1), when α 6= 1. Furthermore, L = (L(t))t≥0 is said strictly 1-stable if, there

exists k ∈ Rd such that L(t)
L
= t(L(1)− log(t)k).

In the univariate case and according to Nolan (2008), page 94, the Laplace transform of

the stable process St := S(t) is given, for all θ < 0, by

LSt
(θ) =


exp(−cαt(−θ)α), α ∈ (0, 1) ∪ (1, 2] and cα > 0

−c(−θ) log(−θ), α = 1 and c > 0.

A Lévy process increasing in time is called a subordinator. As example of subordinator,

we could cite the stable one with α ∈ (0, 1). The inverse α-stable subordinator (E(t))t>0

defined, for any fixed t > 0, by E(t) = inf{z > 0 : S(z) > t} represents the first-exit time of

the α-stable subordinator (S(t))t>0, with α ∈ (0, 1). They are widely used as a time change

subordinator (see Kumar et al. (2011) and Meerschaert et al. (2011)). Recently, Meerschaert

and Scheffler (2008) have showed that the Laplace transform of the inverse stable subordinator

is expressed as follows

LE(t)(θ) = cα(−θ)α−1e−cαt(−θ)
α
, ∀θ < 0.

Moreover, according to Meerschaert and Scheffler (2004, 2008), we have the following relations

{E(t) ≤ z} L= {S(z) ≥ t} and E(t)
L
= tαE(1).

7





Chapter 2

Univariate Markov kernel for natural
exponential family

In this chapter, we determine the link and variance functions of the natural exponential family

generated by the class of Markov kernels. In this framework, we introduce a class of variance

functions that depends on the Lambert function. We call it the Lambert class. The concept of

reciprocity in natural exponential families was given in order to obtain an exponential family

from another one. In this context, we get the reciprocal class of the natural exponential family

generated by the class of Markov kernels. Besides, we study the notion of duality in the

class of Markov kernels and we give some illustrative examples. It is well known that the

variance function represents an essential element for the determination of the quasi-likelihood

and deviance functions. Then, we use the expression of our variance function in order to

maintain them. This leads us to analyze the proposed generalized linear model. We illustrate

some of our models with applications to the daily exchange rate returns of the Tunisian Dinar

against the US Dollar and the damage incidents of ships. The proofs and the auxiliary results

of Section 2.4 are given in Appendix 1. Other proofs are given in the work of Mselmi (2021a).
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Univariate Markov kernel for natural exponential family

2.1 Variance function

In this section, we determine the link function of the class of Markov kernels and we char-

acterize its NEF by the associated variance function. We illustrate our results by the most

known examples of Markov kernels in the literature.

In the following theorem, we state the link and variance functions which depend only on a

first-order differential equation.

Theorem 2.1.1 The link and the variance functions of the class of Markov kernels are given,
for all m ∈MF (µ) = MF (Q1), by

1. ψµ(m) = ψQ1

(
m

g(m)

)

2. VF (µ)(m) =

(
m

g(m)

)2

VF (µ1)(g(m)) + g(m)VF (Q1)

(
m

g(m)

)
where g : MF (µ) −→ (0,+∞) is a unique continuous function satisfying

g′(m) =
mg(m)

(
VF (Q1)

(
m
g(m)

))−1

(g(m))3 (VF (µ1)(g(m))
)−1

+m2
(
VF (Q1)

(
m
g(m)

))−1

with initial condition g
(
K ′Q1

(0)K ′µ1
(0)
)

= K ′µ1
(0).

Next, we express some examples that illustrate our results. More precisely, we treat the

cases of the normal Markov kernel mixed by the inverse Gaussian, the gamma, and the Poisson

distributions. Besides, we study the examples of the gamma and Poisson Markov kernels mixed

by the inverse Gaussian distribution.

Example 1: Normal inverse Gaussian distribution

The normal Markov kernel represents the most useful Markov kernel in scientific research

and it has applications in nearly all areas. Note that, in terms of stochastic process, it repre-

sents the distribution of a subordinated Brownian motion. In this context, many works have

focused on the study of this Markov kernel (see Ganti et al. (2009), Kim et al. (2009, 2012),

10 Farouk MSELMI



2.1 Variance function

Madan and Yor (2008), and Song and Vondraček (2003)). It has been applied on the model-

ing of stochastic volatility (see Barndorff-Nielsen (1997), Barndorff-Nielsen and Levendorskii

(2001), Barndorff-Nielsen and Shephard (2001) and Rydberg (1996)).

In this case, the distributions Q1 and µ1 are normal and inverse Gaussian respectively.

According to McCullagh and Nelder (1989) Page 30, we have ψQ1 = id, VF (Q1) = 1 and

VF (µ1)(m) = m3. Inserting these link and variance functions in Theorem 2.1.1, we ob-

tain ψµ(m) =
m

g(m)
, VF (µ)(m) = g(m)

[
m2 + 1

]
and the function g satisfies the differential

equation g′(m) =
mg(m)

1 +m2
with initial condition g

(
K ′Q1

(0)K ′µ1
(0)
)

= K ′µ1
(0). Solving the

differential equation and inserting the solution in the expression of ψµ and VF (µ), we get

g(m) = c
√

1 +m2, where c =
K ′µ1

(0)√
1 +

(
K ′µ1

(0)K ′Q1
(0)
)2

, ψµ(m) =
m

c
√

1 +m2
and

VF (µ)(m) = c
(
1 +m2

)3/2.
The variance function of the normal inverse Gaussian type was obtained by Kokonendji

(1995) in Example 2.5. Note that Louati et al. (2015a) have determined it, in the multivariate

case, in Remark 3.8.

Example 2: Normal gamma distribution

The normal gamma distribution, also known as the variance gamma distribution, is very

useful in the pricing options and applied in the modeling of credit risk in structural models

(see Fiorani et al. (2010), Hirsa and Madan (2003), Madan et al. (1998) and Madan and Seneta

(1990)). In this case g(m) =
1

2

(
c2 + c

√
2m2 + c2

)
, where c =

√
2K ′µ1

(0)√(
K ′µ1

(0)K ′Q1
(0)
)2

+ 2K ′µ1
(0)

,

ψµ(m) =
2m

c2 + c
√

2m2 + c2
, and VF (µ)(m) =

1

2

(
2m2 + c2

)
+
c

2

√
2m2 + c2.

Example 3: Normal Poisson distribution

11



Univariate Markov kernel for natural exponential family

In this example, the function g(m) equal to c exp

(
1

2
W
((m

c

)2
))

=
|m|√

W
((

m
c

)2) , where
c = K ′µ1

(0) exp

(
−1

2

(
K ′Q1

(0)
)2) and W is the Lambert function. Notice that this special

function is the solution of the equation u = W(u)eW(u) and its inverse function is given by

W−1(u) = ueu. Recently, this function has been used in many probabilistic research works. In

fact, some authors have noted the relationship between the mixture of Poisson distribution and

the Lambert function (see Bondesson and Steutel (2004) and Pakes (2011)). Other research

works investigated this function in the study of some other probability distributions such as the

log-normal and the Kendall-Ressel ones (see Asmussen et al. (2014) and Vinogradov (2011)).

The link and the variance functions of this distribution are ψµ(m) =
m

c
exp

(
−1

2
W
((m

c

)2
))

and VF (µ)(m) = c exp

(
1

2
W
((m

c

)2
))

+m2 1

c
exp

(
−1

2
W
((m

c

)2
))

.

Example 4: Gamma inverse Gaussian distribution

This distribution was applied in the statistical modeling of the loss functions and the life

testing (see Bhattacharya and Kumar (1986) and Frangos and Karlis (2004)). Furthermore,

Gómez-Déniz et al. (2013) have determined some of its properties and have given some of its ap-

plications. In this example, we obtain the following results g(m) = cm exp

(
1

2
W
(

1

(cm)2

))
,

where c =
(
K ′Q1

(0)
)−1

exp

(
− 1

2(K ′µ1
(0))2

)
, ψµ(m) = c exp

(
1

2
W

((
1

cm

)2
))

and

VF (µ)(m) = m2

[
1

cm
exp

(
−1

2
W

((
1

cm

)2
))

+ cm exp

(
1

2
W

((
1

cm

)2
))]

.

Example 5: Poisson inverse Gaussian distribution

The Poisson inverse Gaussian distribution has a lot of attention in the statistical field

and it was used in the study of regression models (see Dean et al. (1989), Holla (1967),

Ord and Whitmore (1986), Rigby et al. (2008), Tremblay (1992) and Willmot (1987)). In

this example, we have g(m) =
c

2

(
cm+

√
c2m2 + 2

)
, where c =

√
2K ′µ1

(0)√
2
(
K ′µ1

(0)
)2
K ′Q1

(0) + 1
,
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2.1 Variance function

ψµ(m) = log

(
2m

c2m+ c
√
c2m2 + 2

)
and VF (µ)(m) =

m

2

[
c2m2 + 2

]
+ cm2

√
c2m2 + 2. Note

that Kokonendji (1995) has determined the form of the variance function of the Poisson inverse

Gaussian distribution in Example 2.3.

Remarks 2.1.2 1. Several classifications of the NEFs according to the form of their vari-
ance functions have been given. More exactly, Morris (1982) has determined the real
quadratic NEFs that have the variance function of the form of a polynomial with a de-
gree less than or equal to two. Besides, Letac and Mora (1990) have studied the real cubic
NEFs that have the variance function which constitutes a polynomial with a degree less
than or equal to three. The quadratic and the cubic NEFs are called also the Morris and
the Letac-Mora classes. More larger class than the Morris and the Letac-Mora ones was
described by Letac (1992) Chapter 5 and called the Babel class. The form of the variance
function of this latter class is given by P∆ +Q

√
∆, where P , Q and ∆ are polynomials

of degree ≤ 1, ≤ 2, and ≤ 2 respectively. Note that the word "Babel" built by the first
letters of the names of the authors of Bar-Lev et al. (1991) and Letac (1991). In the
examples given above, we remark that five examples belong to the Babel class. These
examples are the normal inverse Gaussian and the normal gamma distributions (N-IG
and N-G), the gamma Poisson distribution (G-P), and the Poisson inverse Gaussian and
the Poisson gamma distributions (P-IG and P-G). It is worth mentioning that the Babel
class is closed by reciprocity, i.e. the reciprocal NEF of µ belongs to the Babel class. In
fact, let µ and ν be a reciprocal pair, then VF (ν) = P1∆1 + Q1

√
∆1, where P1, Q1, and

∆1 are polynomials of degree ≤ 1, ≤ 2, and ≤ 2 respectively (see Kokonendji (1995)).

We remark that we define a new class of NEFs that have the variance function depends
on the Lambert function. We called it the Lambert class. The normal Poisson distri-
bution (N-P), the gamma inverse Gaussian and the gamma gamma distributions (G-IG
and G-G), the inverse Gaussian Poisson distribution (IG-P), and the Poisson Poisson
distribution (P-P) belong to this class.

It is important to notice that from the examples, we get a new form of variance function
which is the one of the inverse Gaussian gamma distribution (IG-G). This example is
considered as a special case that we have not an idea about its class.

2. In some cases of Markov kernels, the explicit solution g(m) of the first order differential
equation, given in Theorem 2.1.1, cannot be found. As examples of these Markov kernels,
we may cite the Cauchy (1-stable), the stable (with α ∈ (0, 2) \ {1}), and the compound
Poisson Markov kernels. Therefore, we cannot determine the explicit form of their link
and variance functions. However, we may approximate them using the Euler method. In
fact, using the first steps m(0) = K ′Q1

(0)K ′µ1
(0) and g(0)(m(0)) = K ′µ1

(0), we obtain the

13



Univariate Markov kernel for natural exponential family

following Euler approximation of the function g

g(l+1)(m(l+1)) = g(l)(m(l))+δ
m(l)g(l)(m(l))

(
VF (Q1)

(
m(l)

g(l)(m(l))

))−1
(
g(l)(m(l))

)3 (
VF (µ1)

(
g(l)(m(l))

))−1
+
(
m(l)

)2 (
VF (Q1)

(
m(l)

g(l)(m(l))

))−1 ,
where l ∈ N and δ is a chosen size value of every step. This leads us to get the approx-
imations of the link and variance functions of the class of Markov kernels. Note that
Mselmi (2021b) has approximated the link and variance functions of the class Markov
kernels of the distribution of the time-changed Lévy processes by the first-exit time of the
inverse Gaussian subordinator by using this method. He investigated these approxima-
tions in order to get the one of the quasi-deviance functions.

2.2 The Lambert class

From the examples given in Section 2.1, we have noted that all the examples of the gamma

Markov kernels and the examples of Markov kernels with the Poisson mixing distribution,

except the gamma Poisson one, have variance functions that depend on the Lambert function.

Then, in this section, we focus on the study of the variance functions of the classes of the

gamma Markov kernels and the Markov kernels with the Poisson mixing distribution. It is

important to notice that we will use the Tweedie distribution which covers the normal, gamma,

Poisson, compound Poisson, and stable distributions (for more details about Tweedie model

the reader can see Boubacar Maïnassara and Kokonendji (2014)). Hence, we have the following

corollary:

Corollary 2.2.1 1. Let µ1 be the Poisson distribution and suppose that Q1 is the Tweedie
one (its variance function VF (Q1)(m) = mp, with p ∈ R \ {2 ∪ (0, 1)}). Then, the link
and the variance functions are equal to

ψµ(m) =


1

1−p
(
m
c

)1−p
exp

(
1−p
p−2W

((
m
c

)2−p))
, if p ∈ R \ {1, 2} ∪ (0, 1)

log
(
W
(
m
c

))
, if p = 1

and

VF (µ)(m) = mpc1−p exp

(
p− 1

p− 2
W
((m

c

)2−p
))

+
m2

c
exp

(
1

p− 2
W
((m

c

)2−p
))

,
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2.2 The Lambert class

where c = K ′µ1
(0) exp


(
K ′Q1

(0)
)2−p

p− 2

.

2. Let Q1 be the gamma distribution and suppose that µ1 is Tweedie distributed with positive
support. Then, the link and the variance functions are given by

ψµ(m) = c exp

(
1

p− 1
W
(

(cm)1−p
))

, p 6= 1

and

VF (µ)(m) = m2

[
1

cm
exp

(
1

1− p
W
(

(cm)1−p
))

+ (cm)p−2 exp

(
p− 2

p− 1
W
(

(cm)1−p
))]

,

where c = (K ′Q1
(0))−1 exp

(
(K ′µ1

(0))1−p

1− p

)
.

Remarks 2.2.2 1. Corollary 2.2.1 (1.) allows us to determine the link and the variance
functions of α-stable Poisson distribution (S-P), with α ∈ (0, 2] \ {1} (for more details
about stable distributions and processes see Louati et al. (2015b, 2017, 2020) and Mselmi
(2018b,c)). We have the following results

ψµ(m) = (α− 1)
(m
c

) 1
α−1

exp

(
− 1

α
W
((m

c

) α
α−1

))
and

VF (µ)(m) = m
α−2
α−1 c

1
α−1 exp

(
1

α
W
((m

c

) α
α−1

))
+
m2

c
exp

(
1− α
α
W
((m

c

) α
α−1

))
,

where c = K ′µ1
(0) exp

(
1− α
α

(
K ′Q1

(0)
) α
α−1

)
.

2. Using Corollary 2.2.1 (2.), we may express the link and variance functions of the gamma
α-stable distribution (G-S), with α ∈ (0, 1). More precisely, we have

ψµ(m) = c exp
(

(1− α)W
(

(cm)
1

α−1

))
and

VF (µ)(m) = m2

[
1

cm
exp

(
(α− 1)W

(
(cm)

1
α−1

))
+ (cm)

α
1−α exp

(
αW

(
(cm)

1
α−1

))]
,

where c = (K ′Q1
(0))−1 exp

(
(α− 1)(K ′µ1

(0))
1

α−1

)
.
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Univariate Markov kernel for natural exponential family

We present the following figure which summarizes all the examples given in this chapter

with respect to their classes:

 

Markov kernels 

 

Babel class 

Special case 

 

 IG-G 

 

Lambert class 

  G-IG               
 

 G-G 
 

 IG-P 

 

 P-P 

 

 N-P 

 

 G-S 

 

 S-P 

 

 CP-P 

 

 

 

 

 

 N-IG 
 

 N-G 
 

 G-P 
 

 P-IG 
 

 P-G 

 

 

 

 

Figure 2.1: The NEFs classes of some Markov kernels.
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2.3 The reciprocal class

2.3 The reciprocal class

In this part, we focus on the concept of reciprocity in the class of Markov kernels. More

precisely, we have determined the form of the link and the variance functions of the reciprocal

NEF of the class of the Markov kernels. We denote by Rµ, RQ1, and Rµ1 the reciprocal

measures of µ, Q1, and µ1 respectively.

Theorem 2.3.1 1. The variance function of the reciprocal NEF of the class of Markov
kernels is given, for all m̃ ∈ M̃F (Rµ), by

VF (Rµ)(m̃) =

(
m̃

g1(m̃)

)2

VF (RQ1)(g1(m̃))+g1(m̃)VF (Rµ1)

(
m̃

g1(m̃)

)
, where g1(m̃) = m̃g

(
1

m̃

)
.

2. The function g1 satisfies the following differential equation

g′1(m̃) =
m̃g1(m̃)

(
VF (Rµ1)

(
m̃

g1(m̃)

))−1

(g1(m̃))3 (VF (RQ1)(g1(m̃))
)−1

+ m̃2
(
VF (Rµ1)

(
m̃

g1(m̃)

))−1 ,

with initial condition g1

(
K ′RQ1

(0)K ′Rµ1
(0)
)

= K ′RQ1
(0).

3. The link function of the reciprocal NEF of the class of Markov kernels is given, for all
m̃ ∈ M̃F (Rµ), by

ψRµ(m̃) = ψRµ1

(
m̃

g1(m̃)

)
.

4. If Rµ1 defines a convolution semigroup and RQ1 has a positive support, then the distri-
bution that generates the reciprocal NEF of the class of Markov kernels is given by

Rµ(dy) =

∫ +∞

0
Rµ1y(dy)RQ1(dy).

Remarks 2.3.2 1. From the distribution of the Markov kernel, we deduce that the recipro-
cal of the kernel Q1 is considered as a mixing distribution and the reciprocal of the mixing
distribution µ1 is taken as a kernel. Using this and Letac and Mora (1990) page 23, we
obtain the reciprocal distributions of some examples of the class of Markov kernels given
in Section 2.1. These examples are summarized in the following table:

From Table 2.1, we deduce that we have three self-reciprocal examples which are the N-IG,
G-P, and the P-G distributions.
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Univariate Markov kernel for natural exponential family

Markov kernel N-IG N-G N-P G-IG G-G G-P P-IG P-G P-P
Its reciprocal N-IG P-IG G-IG N-P P-P G-P N-G P-G G-G

Table 2.1: Markov kernels and their reciprocals

2. In 1990, Letac and Mora (1990), page 25, have noted that the reciprocal of an α-
stable distribution Sα, with 1 < α < 2, is also an α1-stable distribution Sα1, with

α1 =
1

α
∈
(

1

2
, 1

)
. Besides, they indicated, in page 24, that for 0 < α < 1/2, there

is no reciprocal for the α-stable distribution. Using these results and Theorem 2.3.1, we
deduce that the reciprocal of the gamma α1-stable distribution G-Sα1 , with 1/2 < α1 < 1,
is the α-stable Poisson distribution Sα-P, with 1 < α < 2.

3. The distribution of the inverse Gaussian Markov kernel could not has a reciprocal one. In
fact, the reciprocal of its kernel, which is the normal distribution, could not be considered
as a mixing distribution since its support equal to R. We announce the same remark for
the compound Poisson Poisson distribution CP-P.

2.4 Some results on the duality

Recently, Letac (2021) has defined and studied the notion of duality for NEFs which could

be investigated, in the case of existence, in the large deviation principle. In this context, let

us use some notations, given by Letac (2021), in order to simplify the description of duality

between two natural exponential families. Let us, first, define the bilateral Laplace transform

Bµ(s) = Lµ(−s), for all s ∈ S(µ) = −Θ(µ). We modify, also, the description of some classical

objects associated to the NEF F = F (µ) as follows

`µ(s) = Kµ(−s), m = −`′µ(s) = K ′µ(−s), s = πµ(m) = −ψµ(m), `′′µ(s) = K ′′µ(−s) (2.1)

and VF (µ)(m) = −(π′µ(m))−1. Now, we could define the duality of NEFs by the following way:

if there exists a positive measure µ∗ such that

− `′µ∗(−`′µ(s)) = s, (2.2)

then we say that µ∗ is the dual measure of µ. In case of existence, the dual measure is

investigated in the large deviation principle. In fact, let Y1, . . . , Yn be n-independent random
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2.4 Some results on the duality

variables with the same distribution P in TF (µ) with mean m0 (TF (µ) is the union of all the

translations of the NEF F (µ) and is equal to {P (−s, µ) ∗ δm0 ; s ∈ S(µ),m0 ∈ R}). Then

− lim
n→+∞

1

n
log

(
P

(
1

n

n∑
i=1

Yi > m

))
= h(m0,m) =

∫ m

m0

m− t
VF (P∗)(t)

dt.

Note that, the function h(m0,m) represents the rate function. For m0 < m two points of the

mean domain MF (µ), if the dual measure P∗ of P exits, then

log(BP∗m0
(m)) = h(m0,m), where P∗m0

= e`P∗ (m0)−m0`′P∗ (m0)P∗ ∗ δ`P∗ (m0).

This gives the link between duality and large deviation principle (For more details, the reader

can see Letac (2021), Subsection 3.5). We express the cumulant, the link and variance functions

of the dual measure µ∗ in function of the ones of the kernel and mixing distributions in the

following proposition:

Proposition 2.4.1 Suppose that the dual measure, denoted by µ∗, of µ exists. Then, for all

s ∈ S(µ) and m ∈ MF (µ), `µ∗(m) =

∫
ψQ1

(
m

g(m)

)
dm, ψµ∗(s) = −K ′Q1

(−s)K ′µ1
(KQ1(−s))

and VF (µ∗)(s) =
(
K ′′Q1

(−s)K ′µ1
(KQ1(−s)) + (K ′Q1

(−s))2K ′′µ1
(KQ1(−s))

)−1
.

Some existing dual measures

We illustrate the results of Proposition 2.4.1 by some examples. We have used the ex-

pression of ψµ(m) = ψQ1

(
m

g(m)

)
, given in the examples of the work of Mselmi (2021a), in

order to obtain the function `µ∗(m). Before stating the expression of the link and variance

functions of F (µ∗), we need first to prove the existence of dual measure through `µ∗ . We give

the following table in which summarizes some known results about the most useful NEFs in

the literature. These results will be used in the examples below.
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Univariate Markov kernel for natural exponential family

NEF ψµ VF (µ) MF Kµ Θ(µ)

Gaussian m 1 R θ2/2 R

Inverse Gaussian −1/2m2 m3 (0,+∞) −2
√
−θ (−∞, 0)

Poisson log(m) m (0,+∞) exp(θ) R

Gamma −1/m m2 (0,+∞) − log(−θ) (−∞, 0)

Compound Poisson
m1−p

1− p
mp (0,+∞)

[(1− p)θ](p−2)/(p−1)

(2− p)
(−∞, 0)

Positive stable (α− 1)m
1

α−1 m
α−2
α−1 (0,+∞)

α− 1

α

[
θ

α− 1

]α
(−∞, 0)

Table 2.2: Summary of some results about some known NEFs.

Note that for the compound Poisson distribution, one has p ∈ (1, 2) and for the positive

stable distribution, the parameter α in the set (0, 1). Before expressing the examples, we need

first to state the following remarks:

Remarks 2.4.2 1. In the examples of the gamma and inverse Gaussian Markov kernels,

Mselmi (2021a) has considered the canonical link functions
1

m
for the gamma distribution

and
1

m2
for the inverse Gaussian one. However, in this section, we add some minor

changes in the expression of these link functions. In fact, by using Table 2.2, the link
functions of the mixture of the gamma and inverse Gaussian kernels are, respectively,

given by ψµ(m) = −g(m)

m
and ψµ(m) = −1

2

(
g(m)

m

)2

.

2. In some examples, we use a drifted cumulant function Kµ(θ + θ∗) − Kµ(θ∗), where
θ∗ ∈ Θ(µ), instead of the canonical one as indicated in Table 2.2.

3. We recall the definition of Bernstein function which will be used for proving the existence
of the dual measure µ∗. A function f : (0,+∞) −→ R is a Bernstein function if f
is of class C∞, f(ϑ) ≥ 0, for ϑ > 0, and (−1)n−1f (n)(ϑ) ≥ 0, for all n ∈ N∗ and
ϑ > 0. Besides, A function f : (0,+∞) −→ R is a Bernstein function if, and only if, it

admits the representation f(ϑ) = a+ bϑ+

∫ +∞

0
(1− e−ϑu)ζ(du), where a, b > 0 are non-

negative constants and ζ is a measure on (0,+∞) such that
∫ +∞

0
(1 ∧ u)ζ(du) < +∞,
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2.4 Some results on the duality

called the Lévy measure. From this, we deduce that if f : (0,+∞) −→ [0,+∞) is
a Bernstein function then, e−f represents the Laplace transform of a unique positive
measure (for more details see Schilling et al. (2010)).

Example 1: The negative Binomial distribution (the Poisson gamma distribution: P-G)

The negative Binomial distribution represents a mixture between a Poisson kernel and

gamma mixing distribution. In this case, KQ1(θ) = exp(θ) and Kµ1(θ0) = − log(1 − θ0) for

all θ ∈ R and θ0 ∈ (−∞, 1). For all s ∈ (0,+∞), one has the following cumulant function

Kµ1 (KQ1(−s)) = − log(1− e−s). Recall that, in this case, ψQ1

(
m

g(m)

)
= log

(
m

m+ 1

)
on

(0,+∞) (see Mselmi (2021a), supplementary material, example 3). Thus, we obtain the

function `µ∗(m) = m log (m)− (m+ 1) log(m+ 1). Note that −`µ∗(m) represents a Bernstein

function (see Schilling et al. (2010), example 31, p. 230) and then exp(`µ∗(m)) represents

the Laplace of a positive probability measure. This prove the existence of the dual measure

µ∗. We remind that this example was treated by Letac (2021) in Subsection 5.1. For all

s ∈ (0,+∞), the link and variance functions of F (µ∗) are given by ψµ∗(s) =
e−s

e−s − 1
and

VF (µ∗)(s) = es(e−s − 1)2.

Example 2: The gamma Poisson distribution: G-P

The gamma Poisson distribution represents a mixture between a gamma kernel and Poisson

mixing distribution. Recall that, in this case, KQ1(θ) = − log(−θ) and Kµ1(θ0) = exp(θ0), for

all θ ∈ (−∞, 0) and θ0 ∈ R. The cumulant function of the gamma Poisson distribution is equal,

for all s ∈ (0,+∞), to Kµ1 (KQ1(−s)) =
1

s
. For all m ∈ (0,+∞), one has ψµ(m) = −1/

√
m

(see Mselmi (2021a) supplementary material, example 2 and Remark 2.4.2(1.)). It follows that

`µ∗(m) = −2
√
m. This represents the cumulant function of the canonical inverse Gaussian

distribution, and then, we deduce that the dual measure of the gamma Poisson distribution

represents the inverse Gaussian one. Its associated link and variance functions are given by

ψµ∗(s) =
−1

s2
and VF (µ∗)(s) =

s3

2
.

In the following Proposition, we express some non trivial examples of dual measures. Some

of them depend on the Lambert function W.
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Proposition 2.4.3 1. The gamma gamma distribution (G-G) has a dual measure. Fur-
thermore, we have, for all m ∈ (0,+∞) and s ∈ (1,+∞),

−`µ∗(m) = log

(
1

W
(

1
m

))+
1

W
(

1
m

) + C, where C ∈ R, ψµ∗(s) =
−1

s log(s)

and VF (µ∗)(s) = (s log(s))2(1 + log(s))−1.

2. The inverse Gaussian gamma distribution (IG-G) has a dual measure. Besides, for all
m ∈ (0,+∞) and s ∈ (0,+∞), one has

−`µ∗(m) =
1

4
m+

1

2
log(m)+

1

4

√
m+ 4

(√
m+

4 sinh−1 (
√
m/2)√

m+ 4

)
+C, where C ∈ R and

sinh is the hyperbolic sine functions. ψµ∗(s) =
−1√

s(1 + 2
√
s)

and VF (µ∗)(s) =
2s3/2(2

√
s+ 1)2

4
√
s+ 1

.

3. The inverse Gaussian Poisson distribution (IG-P) has a dual measure. For all m ∈
(0,+∞) and s ∈ (0,+∞), we obtain

−`µ∗(m) =
1

2
exp

(
−W

(
1

m

))(
W
(

1

m

)
+ 2

)
+ C, where C ∈ (0,+∞),

ψµ∗(s) =
−1√
s

exp(−2
√
s) and VF (µ∗)(s) =

2s3/2 exp(2
√
s)

1 + 2
√
s

.

4. The compound Poisson Poisson distribution (CP-P) has a dual measure. For all m ∈

(0,+∞) and s ∈ (0,+∞), one gets −`µ∗(m) =

(
W(m2−p) + p− 1

)
p− 1

exp

(
1

2− p
W(m2−p)

)
− 1,

ψµ∗(s) = −
exp

(
1

2−p [(p− 1)s]
p−2
p−1

)
[(p− 1)s]

1
p−1

and VF (µ∗)(s) =
exp

(
1
p−2 [(p− 1)s]

p−2
p−1

)
(

[(p− 1)s]
p

1−p + [(p− 1)s]
2

1−p
) .

5. For α ∈ (0, 1/2), the stable Poisson distribution (S-P) has a dual measure. For all
m ∈ (0,+∞) and s ∈ (0,+∞), we obtain

−`µ∗(m) = (1−α)

(
W(m

α
α−1 ) +

1

1− α

)
exp

(
α− 1

α
W(m

α
α−1 )

)
+C, where C ∈ (0,+∞),

ψµ∗(s) = −
exp

(
α−1
α

[
s

1−α

]α)
[

s
1−α

]1−α and VF (µ∗)(s) =
exp

(
1−α
α

[
s

1−α

]α)([
s

1−α

]α−2
+
[

s
1−α

]2(α−1)
) .
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2.4 Some results on the duality

Next, we focus on the notion of infinite divisibility of some examples given in Proposition

2.4.3.

Corollary 2.4.4 The dual measures of the gamma gamma (G-G), the Inverse Gaussian Pois-
son (IG-P), the compound Poisson Poisson (CP-P) and the stable Poisson (S-P with α ∈
(0, 1/2)) distributions are infinitely divisible.

Non existence of some dual measures

We check the non existence of the dual measures by two ways. For the first one, we refer

to Letac (2021), Subsection 3.6, who has studied the non existence of duality of some NEFs

by checking the Taylor series expansion of exp(`µ∗(m)). In fact, if some coefficients the Taylor

series expansion are negative (for even order), we deduce that the dual measure does not exists.

For the second way, we investigate the Bernstein function theory. We consider the following

examples of Markov kernels NEFs that have not dual:

Example 1: The normal inverse Gaussian distribution: N-IG

The kernel Qx1 here represents the centered normal distribution N(0, x1) with cumu-

lant function KQ1(θ) =
θ2

2
on R. Its mixing distribution represents the inverse Gaussian one,

IG(1, 1), and it has the following cumulant functionKµ1(θ0) = 1−
√

1− 2θ0 for θ0 ∈
(
−∞, 1

2

)
.

Then, we obtain the cumulant function of the normal inverse Gaussian distribution which is

given, for all s ∈ (−1, 1), byKµ1 (KQ1(−s)) = 1−
√

1− s2. For allm ∈ R, ψµ(m) =
m√

1 +m2

and then, we deduce that `µ∗(m) =
√

1 +m2 − 1. In this case, exp(`µ∗(m)) = 1 +
m2

2
+ o(m5).

It follows that
∫
R
x4µ∗(dx) = 0. This prove the non existence of the dual measure µ∗. Note

that Letac (2021) has studied this example, in Subsection 3.6, without mentioning that it

represents the normal inverse Gaussian model.

Example 2: The variance gamma distribution (the normal gamma distribution: N-G)

In this example the kernel distribution represents the normal one as in the case of the

normal inverse Gaussian model. However, the mixing distribution represents the gamma

one, G(1, 1), and it has the following cumulant function Kµ1(θ0) = − log(1 − θ0) for θ0 ∈
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(−∞, 1). Thus, we have the following cumulant function Kµ1 (KQ1(−s)) = − log

(
1− s2

2

)
,

for all s ∈
(
−
√

2,
√

2
)
. For all m ∈ R, one has the link function ψµ(m) =

2m

1 +
√

2m2 + 1

and then `µ∗(m) =
√

2m2 + 1− log(
√

2m2 + 1 + 1) + log(2)− 1. Thus, we have the following

Taylor series exp(`µ∗(m)) = 1 +
m2

2
+ o(m5). As in (1.)

∫
R
x4µ∗(dx) = 0 and then, the dual

of variance gamma distribution does not exists.

Example 3: Neyman type A distribution (the Poisson Poisson distribution: P-P)

The mixture of two Poisson distributions called in the literature the Neyman type A

model. It has, for all s ∈ R, Kµ1 (KQ1(−s)) = exp(exp(−s)). According to Mselmi (2021a),

supplementary material, example 4, we have, for all m ∈ (0,+∞),

−`′µ∗(m) = −ψQ1

(
m

g(m)

)
= − log(W(m)).

This function does not keep a nonnegative sign and then its primitive does not represents a

Bernstein function (see Chapter 3 of the book of Schilling et al. (2010)). This implies that the

Neyman type A distribution has not a dual measure.

2.5 Generalized linear model

Generalized Linear Model (GLM) was introduced by Nelder and Wedderburn (1972) and

Wedderburn (1974) in order to study the statistical inference for the models with normal and

non-normal data. In fact, it extends the concept of linear regression and takes into account

that the linearity of the model cannot be obtained in a variety of practical situations.

Then, in this section, we focus on the study of the GLM of the distribution of the class of

Markov kernels. In fact, we introduce the method of estimation and give the residual analysis

of the GLM.

2.5.1 Quasi-likelihood function

The variance function is used in the determination of the quasi-likelihood estimator and is

applied in the analysis of GLMs (see McCullagh and Nelder (1989), Nelder and Wedderburn
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2.5 Generalized linear model

(1972) and Wedderburn (1974)). The quasi-likelihood function is given by

Q(y,m) =

∫ m

y

y − u
VF (µ)(u)

du. (2.3)

Note that the properties of the quasi-likelihood function are similar to the log-likelihood one.

That is why it can be useful when the likelihood function cannot be obtained.

In the case where we could not determine the explicit quasi-likelihood function, we may

approximate it using Monte Carlo’s method. In fact, the quasi-likelihood function is given by

Q(y,m) =

∫ m

y

y − u
VF (µ)(u)

du = (m−y)

∫
R

y − u
VF (µ)(u)

1

m− y
1[y,m](u)du = (m−y)E

(
y − U

VF (µ)(U)

)
,

where U is a continuous uniform random variable on [y,m]. This leads us to get the following

approximation

Q(y,m) ≈ (m− y)

N

N∑
l=1

y − ul
VF (µ)(ul)

,

whereN ∈ N\{0} is large enough and u1, . . . , uN areN simulated elements from the continuous

uniform random variable U .

Using the quasi-likelihood function given in (2.3), we obtain the deviance function which

measures the discrepancy between observations and its expected value

D(y,m) = −2Q(y,m). (2.4)

2.5.2 Estimation

Let n ∈ N \ {0} and Y> = (Y1, . . . , Yn) be a random vector with i.i.d. components generated

by the distribution µ. Recall that the vector Y> represents the transpose of Y. Suppose

that, for i ∈ {1, . . . , n}, the response random variable Yi has a mean mi and covariates xij for

j ∈ {1, . . . , k} with k ∈ N\{0} and xi1 = 1. In the particular case, when the response data are

normal, we obtain a linear regression model with mean mi assumed to be a linear function of

the covariates xij . Since the GLM provides the relationship between the linear predictor and

the mean of the distribution function using the link function, then we have, for i ∈ {1, . . . , n},

the following relation

ψµ (mi) = ψµ (E(Yi|Xi)) = X>i β,
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where X>i = (xi1, . . . , xik) and β = (β1, . . . , βk)
> is the unknown vector of regression coeffi-

cients. Assume that, the random variable Yi has the variance V (Yi) = σ2VF (µ)(mi), where

i ∈ {1, . . . , n} and σ2 is a known parameter or is an additional one to be estimated from

the data. In what follows, we denote by m the transpose of the vector (m1, . . . ,mn) and we

write as Y or y without subscripts. According to McCullagh and Nelder (1989) page 327, the

estimation of the unknown vector of regression coefficients is obtained by the differentiating

the quasi-likelihood function Q(y,m) =
1

σ2

n∑
i=1

Q(yi,mi). Then, in order to calculate β̂, we

solve the quasi-score equation corresponding to

U(β) =
1

σ2

n∑
i=1

DirV
−1
F (µ)(mi)(yi −mi) = 0,

where r ∈ {1, . . . , k} andDir =
∂mi

∂βr
. Using the fact thatDir =

∂mi

∂ψµ (mi)

∂ψµ (mi)

∂βr
= VF (µ)(mi)xir,

we obtain the following quasi-score equation

U(β) =
1

σ2

n∑
i=1

xir(yi −mi) =
1

σ2

n∑
i=1

xir(yi −K ′µ(X>i β)) = 0. (2.5)

Note that the quasi-likelihood estimating equations coincide with the ordinary likelihood ones.

In general, the equation (2.5) is a nonlinear equation and is solved iteratively by Fisher’s scoring

method

β̂new = β̂old+
(
D>V −1

F (µ)(m)D
)−1

D>V −1
F (µ)(m)(y−m) = β̂old+

(
XVF (µ)(m)X>

)−1
X(y−m),

where VF (µ)(m) = diag
(
VF (µ)(m1), . . . , VF (µ)(mn)

)
,X = (X1, . . . ,Xn) andD = (Dir)1≤i≤n,1≤r≤k =

VF (µ)(m)X>. The asymptotic variance of β̂ is estimated by

V (β̂) ≈ σ2
(
XVF (µ)(m)X>

)−1
. (2.6)

It is important to notice that this matrix plays the same role as the inverse matrix of the

Fisher information for the ordinary likelihood functions. In the case where the parameter σ2

is unknown, it could be estimated by the Pearson estimator

σ̂2 =
1

n− k

n∑
i=1

(yi − m̂i)
2

VF (µ)(m̂i)
=

1

n− k

n∑
i=1

(
yi −K ′µ(X>i β̂)

)2

VF (µ)

(
K ′µ(X>i β̂)

) . (2.7)
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2.5 Generalized linear model

The confidence interval of the coefficients βj , j ∈ {1, . . . , k} was given by Jørgensen (2013)

for the cases when σ2 is known and unknown. More precisely, for σ2 known the confidence

interval for βj is given by β̂j ± se(β̂j)z1− ξ
2
, where se(β̂j) is calculated as the square-root of

the jth diagonal element of the matrix V (β̂) and z
1− ξ

2
is the 1− ξ

2 standard normal quantile.

When σ2 is unknown, we replace σ2 by its estimated value in (2.6) and we take t
1− ξ

2
(n − k)

instead of z
1− ξ

2
in (2.7), where t

1− ξ
2
(n−k) is the 1− ξ

2 quantile of the Student’s t distribution

with n− k degrees of freedom.

2.5.3 Residual analysis

The residual analysis is used to check the adequacy of fit of a model with respect to the choice of

the link and variance functions. In this context, McCullagh and Nelder (1989) have introduced

three forms of residuals that are the Pearson, the Anscombe, and the deviance. The classical

proposal is the Pearson residual which is defined by rPi =
yi − m̂i√
VF (µ)(m̂i)

. Unfortunately, this

residual is inadequate for the study of non-normal data (see McCullagh and Nelder (1989),

page 38). For this reason, the use of the Anscombe and the deviance residuals deal better

with GLMs. The Anscombe residual is defined using a function A(•) =

∫ •
−∞

(
VF (µ)(u)

)− 1
3 du

and has the following form

rAi =
A(yi)−A(m̂i)

A′(m̂i)
√
VF (µ)(m̂i)

.

For the examples given as above, we get an explicit form for the Anscombe residual of the of

the N-IG and the G-P distributions. In fact, the Anscombe residual of the N-IG distribution

is given by rAi =
asinh(yi)− asinh(m̂i)

√
c(1 + m̂2

i )
1
4

. Furthermore, the Anscombe residual of the G-P dis-

tribution is equal to rAi =
√

2cm̂
− 1

4
i

(√
yi −

√
m̂i

)
. Despite we cannot explicit the Anscombe

residual of the majority of examples, we can calculate it by using the Monte-Carlo’s approxi-

mation. In fact,

A(yi)−A(m̂i) =

∫ yi

m̂i

(
VF (µ)(u)

)− 1
3 du = (yi−m̂i)E

((
VF (µ)(U)

)− 1
3

)
≈ yi − m̂i

N

N∑
l=1

(
VF (µ)(ul)

)− 1
3 ,
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where N ∈ N\{0} is large enough and u1, . . . , uN are N simulated elements from a continuous

uniform random variable U on [m̂i, yi]. This implies that the Anscombe residual has the

following approximation

rAi ≈
(yi − m̂i)

∑N
l=1

(
VF (µ)(ul)

)− 1
3

N
(
VF (µ)(m̂i)

) 1
6

.

In 1986, Pierce and Schafer (1986) have studied and compared all types of residuals of GLMs.

They have concluded that the most appropriate residual to GLMs is the deviance one. It is

defined as follows

rDi = sign(yi − m̂i)
√
D(yi, m̂i), (2.8)

where D(yi, m̂i) is the deviance function given in (2.4). Recall that Pierce and Schafer (1986)

have noted that the deviance residual has the following bias −
E
(

(Yi − m̂i)
3
)

6σ2
(
VF (µ)(m̂i)

) 3
2

which must

be subtracted from (2.8). In the numerical study of some examples, McCullagh and Nelder

(1989) and Pierce and Schafer (1986) have indicated that the Anscombe and deviance residuals

are very similar, in spite of the difference of their functionals.

2.6 Data analyses

In this part of our study, we focus on the applications of the GLMs for discrete and continuous

data. We analyze this set of data by the GLMs of the N-IG, N-G, P-IG, and P-G distributions.

2.6.1 Data 1

This data represents the daily exchange rate returns of the Tunisian Dinar against the US

Dollar. It spans over the period from 4 January 2016 to 30 December 2016. The series of

exchange rate data are collected from the Datastream database with size n = 250. The daily

exchange rate returns are calculated in terms of:

yi = 100× (log(Pi)− log(Pi−1)),
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2.6 Data analyses

where yi denotes the daily exchange rate return at time i, Pi represents the nominal exchange

rate at time i and Pi−1 corresponds to the nominal exchange rate at time i− 1. We focus on

the study of this data through the autoregressive model of order 1 (AR(1)).

In this example, we choose to study a nonlinear AR model with errors N-IG and N-G

distributions. Then, we have, respectively, the representations of the (N-IG)-AR(1) and the

(N-G)-AR(1) models

ψN−IGµ (mi) =
mi√

1 +m2
i

= β0 + β1yi−1 and ψN−Gµ (mi) =
2mi

1 +
√

2m2
i + 1

= β0 + β1yi−1.

Notice that, in this application, the constant c is fixed and is equal to 1 and the number of

coefficients k = 2. Tables 2.3 and 2.4 give us the estimated values of β0 and β1 of the (N-IG)-

AR(1) and the (N-G)-AR(1) models, their variances and their 95% confidence intervals. In

order to study the adequacy of the models, we add the estimated variance σ̂2 introduced in

(2.7), the deviance D(y,m) =
n∑
i=1

D(yi, m̂i), the deviance residual rD =
n∑
i=1

rDi , the unbiased

deviance residual rD∗ =

n∑
i=1

rDi +
E
(

(Yi − m̂i)
3
)

6σ̂2
(
VF (µ)(m̂i)

) 3
2

, the Anscombe residual rA =

n∑
i=1

rAi , the

Akaike information criterion AIC = D(y,m) + 2k and the Bayesian information criterion

BIC = D(y,m) + log(n)k.

Variable Estimate Variance 95% confidence in-
terval

β0 -0.0239 0.0002 (-0.0486,0.0009)
β1 -0.1673 0.0039 (-0.2891,-0.0455)
σ̂2 0.0396 - -
D(y,m) 9.2982 - -
rD 0.2243 - -
rD∗ -3.8005 - -
rA 0.2467 - -
AIC 13.2982 - -
BIC 20.3411 - -

Table 2.3: The estimated values of the (N-IG)-GLM.
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Variable Estimate Variance 95% confidence in-
terval

β0 0.4261 2.5× 10−5 (0.4162,0.4359)
β1 2.3788 0.0001 (2.3577,2.4000)
σ̂2 0.2856 - -
D(y,m) 142.6275 - -
rD -99.9491 - -
rD∗ 6.6296× 105 - -
rA -96.0790 - -
AIC 146.6275 - -
BIC 153.6705 - -

Table 2.4: The estimated values of the (N-G)-GLM.

From Tables 2.3 and 2.4, we deduce that the Anscombe residuals rA are closer to zero

than the unbiased deviance residuals rD∗. We notice that all the residuals of the (N-IG)-GLM

are better than the ones of the (N-G)-GLM. Besides, the AIC and BIC information criteria

of the (N-IG)-GLM are less than the ones of the (N-G)-GLM. From this, we deduce that

the modeling by the (N-IG)-GLM is adequate to the data more than the modeling by the

(N-G)-GLM.

2.6.2 Data 2

This data is obtained from the book of McCullagh and Nelder (1989), page 204. It represents

discrete data in which the outputs are the numbers of damage incidents of ships and the

observed inputs are the type of ship, the year of construction, the period of operation, and the

months of service. McCullagh and Nelder (1989) have analyzed this data by using the GLM

of Poisson distribution. That is why we study the same data by the GLMs of the P-IG and

P-G distributions. Then, we have, respectively, the following representations of the P-IG and

the P-G GLMs

ψP−IGµ (mi) = log

 2mi

mi +
√
m2
i + 2

 = β0 + β1xi1 + β2xi2 + β3xi3 + β4xi4
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2.6 Data analyses

and

ψP−Gµ (mi) = log

(
mi

mi + 1

)
= β0 + β1xi1 + β2xi2 + β3xi3 + β4xi4.

In these GLMs, we fix the constant c = 1. As in the first application, we estimate β0 and

β1, their variances, their 95% confidence intervals, the parameter σ̂2, the deviance D(y,m),

the deviance residual rD, the unbiased deviance residual rD∗, the Anscombe residual rA, the

Akaike information criterion AIC and the Bayesian information criterion BIC.

Variable Estimate Variance 95% confidence in-
terval

β0 -0.0296 0.8817× 10−4 (-0.0480,-0.0112)
β1 -0.0021 0.014× 10−4 (-0.0044,0.0002)
β2 0.0032 0.0107× 10−4 (0.0012,0.0052)
β3 0.0087 0.0653× 10−4 (0.0037,0.0137)
β4 4.88× 10−7 1.85× 10−14 (2.2 × 10−7,7.55 ×

10−7)
σ̂2 0.1167 - -
D(y,m) 16.3748 - -
rD -10.9034 - -
rD∗ -0.1630 - -
rA -6.5225 - -
AIC 26.3748 - -
BIC 34.0066 - -

Table 2.5: The estimated values of the (P-IG)-GLM.

Tables 2.5 and 2.6 give us unbiased deviance residuals rD∗ more close to zero than the

Anscombe ones rA. Furthermore, we note that all the residuals of the (P-IG)-GLM are better

than the ones of the (P-G)-GLM. For the information criteria, we remark that the AIC and

BIC criteria of the (P-IG)-GLM are less than the ones of the (P-G)-GLM. Then, we deduce

that the modeling by the (P-IG)-GLM is adequate to the data more than the modeling by the

(P-G)-GLM.
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Variable Estimate Variance 95% confidence in-
terval

β0 -0.4170 0.0229 (-0.7139,-0.1201)
β1 -0.0245 0.0004 (-0.0651,0.0160)
β2 0.0427 0.0005 (-0.0003,0.0858)
β3 0.1076 0.0026 (0.0082,0.2069)
β4 6.77× 10−6 3.67× 10−12 (3.02 × 10−6,1.05 ×

10−5)
σ̂2 1.2022 - -
D(y,m) 42.002 - -
rD -13.0242 - -
rD∗ -8.9989 - -
rA -12.8316 - -
AIC 52.0020 - -
BIC 59.6338 - -

Table 2.6: The estimated values of the (P-G)-GLM.
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Chapter 3

Multivariate Markov kernel for
natural exponential family

In this chapter, we characterize the NEF generated by the distribution of multivariate Markov

kernels through its associated variance function. Additional results as the link and generalized

variance functions have been established. Some examples related to the multivariate normal

and Poisson Markov kernels have been given. Since all the results related essentially to a

nonlinear first order differential equation which has a complicated structure, then we con-

sider a nonpaprametric method for estimating the associated link and variance functions. We

check the performance of our estimated results through the mean squared error. We propose

a MGLM for the class of Markov kernels by investigating the parametric and nonparametric

results. Besides, we suggest a new multivariate total deviance function which was used for

introducing the multivariate Akaike and Bayesian information criteria. We apply our para-

metric and nonparametric works to the multivariate daily exchange rates against US dollar.

Proofs and auxiliary results are given in Appendix 2.

3.1 Variance and generalized variance functions

Here, we present some theoretical properties around variance functions of Markov kernels such

as link, variance and also generalized variance functions.
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Theorem 3.1.1 The link function of the NEF F (µ) is given, for all m ∈ MF (µ) = MF (Q1),
by

ψµ(m) = ψQ1

(
m

g(m)

)
, (3.1)

where g : Rd−1 −→ (0,∞) is a unique continuously differentiable function satisfying

g′(m) =
g(m)

[
VF (Q1) (m/g(m))

]−1
m>

[g(m)]3
[
VF (µ1)(g(m))

]−1
+m

[
VF (Q1) (m/g(m))

]−1
m>

(3.2)

with initial condition g
(
K ′Q1

(0)K ′µ1
(0)
)

= K ′µ1
(0).

Recently, Mselmi et al. (2018, Theorems 3.4 and 4.2) have determined the form of the

variance and generalized variance functions of the NEF generated by the class of variance-

mean mixture of two infinitely divisible distributions. Nevertheless, these functions have not

an explicit form and they depend on the unknown link function. Note that the variance and

generalized variance functions of the Markov kernel have the same form of the ones given by

Mselmi et al. (2018). In fact, they have the following expressions

Proposition 3.1.2 One has:

VF (µ)(m) =
‖K ′Q1

(ψµ(m)) ‖2

‖m‖2
VF (µ1)

(
‖m‖

‖K ′Q1
(ψµ(m)) ‖

)
m⊗m

+
‖m‖

‖K ′Q1
(ψµ(m)) ‖

VF (Q1)

(
m‖K ′Q1

(ψµ(m)) ‖
‖m‖

)

and

detVF (µ)(m) =
[ϕ(m)]d−1 detVF (Q1) (φ(m))

1− [ϕ(m)]−2VF (µ1)(ϕ(m))m
[
VF (µ)(m)

]−1
m>

,

with

φ(m) =
m‖K ′Q1

(ψµ(m)) ‖
‖m‖

, ϕ(m) =
‖m‖

‖K ′Q1
(ψµ(m)) ‖

and

[
VF (µ)(m)

]−1
= −

VF (µ1) (ϕ(m))
[
VF (Q1) (φ(m))

]−1
m⊗m

[
VF (Q1) (φ(m))

]−1

ϕ(m)
{

(ϕ(m))3 + VF (µ1) (ϕ(m))m
[
VF (Q1) (φ(m))

]−1
m>
}

+
[
ϕ(m)VF (Q1) (φ(m))

]−1
.
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3.2 Some illustrative examples

Inserting the link function ψµ given in Theorem 3.1.1 in the expression of the (generalized)

variance functions of Proposition 3.1.2, we directly obtain the following corollary.

Corollary 3.1.3 From the NEF F (µ) of Proposition 3.1.2 and Theorem 3.1.1, one has:

VF (µ)(m) = g(m)VF (Q1)

(
m

g(m)

)
+

1

g(m)2
VF (µ1)(g(m))m⊗m

and

detVF (µ)(m) =
[g(m)]d−1 detVF (Q1) (m/g(m))

1− [g(m)]−2VF (µ1)(g(m))m
[
VF (µ)(m)

]−1
m>

,

with

[
VF (µ)(m)

]−1
= −

VF (µ1) (g(m))
[
VF (Q1)

(
m
g(m)

)]−1
m⊗m

[
VF (Q1)

(
m
g(m)

)]−1

g(m)

{
g(m)3 + VF (µ1) (g(m))m

[
VF (Q1)

(
m
g(m)

)]−1
m>
}

+

[
g(m)VF (Q1)

(
m

g(m)

)]−1

.

3.2 Some illustrative examples

We now present two kinds of examples related to the multivariate normal and also of Poisson

Markov kernels that illustrate our previous results.

Example 1: Multivariate normal Markov kernel

The conditional distribution Qy here represents the (d − 1)-variate centered normal dis-

tributed N(0, yId−1). Its unit variance function is given by VF (Q1)(m) = Id−1 on Rd−1 with

KQ1(θ) = (θ2
1 + · · ·+ θ2

d−1)/2 on Rd−1.

1. Multivariate normal inverse Gaussian distribution (MNIG)

For instance, we refer to Boubacar Maïnassara and Kokonendji (2014, Example 2.1) and

reference therein withKµ1(θ0) = −
√
−2θ0 on (−∞, 0]. For c =

K ′µ1
(0)√

1 +
(
K ′µ1

(0)
)2 ‖K ′Q1

(0)‖2
,

one has the following results g(m) = c
√

1 + ‖m‖2, ψµ(m) = m/(c
√

1 + ‖m‖2), VF (µ)(m) =
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c
√

1 + ‖m‖2 (Id−1 +m⊗m),
[
VF (µ)(m)

]−1
=

Id−1

c
√

1 + ‖m‖2
− m⊗m
c (1 + ‖m‖2)3/2

and

detVF (µ)(m) =

(
c
√

1 + ‖m‖2
)d−1

1− c
√

1 + ‖m‖2 m
[
VF (µ)(m)

]−1
m>

.

2. Multivariate normal gamma distribution (MNG)
Also, following Boubacar Maïnassara and Kokonendji (2014, Example 2.2) one has

Kµ1(θ0) = − log(−θ0) on (−∞, 0). Let c =

√
2K ′µ1

(0)√(
K ′µ1

(0)
)2 ‖K ′Q1

(0)‖2 + 2K ′µ1
(0)

. Then,

we have the following results g(m) =
(
c2 + c

√
2‖m‖2 + c2

)
/2, ψµ(m) = 2m/(c2 +

c
√

2‖m‖2 + c2), VF (µ)(m) = m⊗m+ 2−1
(
c2 + c

√
2‖m‖2 + c2

)
Id−1,

[
VF (µ)(m)

]−1
=

2 Id−1(
c2 + c

√
2‖m‖2 + c2

)− 4m⊗m(
c2 + c

√
2‖m‖2 + c2

) [(
c2 + c

√
2‖m‖2 + c2

)
+ ‖m‖2

]

and detVF (µ)(m) =

{(
c2 + c

√
2‖m‖2 + c2

)
/2
}d−1

1−m
[
VF (µ)(m)

]−1
m>

.

Example 2: Multivariate Poisson Markov kernel

Here, we consider Qy as the (d−1)-variate uncorrelated Poisson distribution with parame-

ter yId−1. Its unit variance function is equal to VF (Q1)(m) = Diagd−1(m) = Diagd−1 (m1, . . . ,md−1),

the (d − 1)-diagonal matrix of the vector m = (m1, . . . ,md−1) ∈ (0,∞)d−1 with KQ1(θ) =

exp θ1 + · · ·+ exp θd−1 on Rd−1.

1. Multivariate Poisson inverse Gaussian distribution (MPIG)
From Mselmi et al. (2018, Section 6.1), the MPIG is the particular case of the mul-
tivariate Poisson α-stable with α = 1/2; see also Jørgensen and Kokonendji (2016,
Section 3.5) for the univariate case. With Kµ1(θ0) = −

√
−2θ0 on (−∞, 0], we con-

sider the constant c =
√

2K ′µ1
(0)/

√
2
(
K ′µ1

(0)
)2 〈K ′Q1

(0)Id−1〉+ 1. One gets g(m) =

c
(
c〈m, Id−1〉+

√
c2〈m, Id−1〉2 + 2

)
/2,

ψµ(m) =

log
2m1

c
(
c〈m, Id−1〉+

√
c2〈m, Id−1〉2 + 2

) , . . . , log
2md−1

c
(
c〈m, Id−1〉+

√
c2〈m, Id−1〉2 + 2

)
 ,
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VF (µ)(m) = Diagd−1 (m) +
c

2

(
c〈m, Id−1〉+

√
c2〈m, Id−1〉2 + 2

)
m⊗m,

[
VF (µ)(m)

]−1
= Diagd−1

(
1

m1
, . . . ,

1

md−1

)

−
c
(
c〈m, Id−1〉+

√
c2〈m, Id−1〉2 + 2

)
2 + c

(
c〈m, Id−1〉+

√
c2〈m, Id−1〉2 + 2

)
mDiagd−1

(
1
m1
, . . . , 1

md−1

)
m>
×

Diagd−1

(
1

m1
, . . . ,

1

md−1

)
m⊗mDiagd−1

(
1

m1
, . . . ,

1

md−1

)

and detVF (µ)(m) =
2

2− c
(
c〈m, Id−1〉+

√
c2〈m, Id−1〉2 + 2

)
m
[
VF (µ)(m)

]−1
m>

d−1∏
i=1

mi.

2. Multivariate negative binomial distribution (MNB)

We here consider a classical mixture of the multivariate Poisson Qy by a gamma gener-

ated by µ1 withKµ1(θ0) = − log(−θ0) on (−∞, 0). For c = K ′µ1
(0)/[1+K ′µ1

(0)〈K ′Q1
(0), Id−1〉],

one has g(m) = c(1 + 〈m, Id−1〉), VF (µ)(m) = Diagd−1 (m1, . . . ,md−1) + m ⊗m, with

ψµ(m) =

(
log

m1

c (〈m, Id−1〉+ 1)
, . . . , log

md−1

c (〈m, Id−1〉+ 1)

)
,

[
VF (µ)(m)

]−1
= −

Diagd−1

(
1
m1
, . . . , 1

md−1

)
m⊗mDiagd−1

(
1
m1
, . . . , 1

md−1

)
1 +mDiagd−1

(
1
m1
, . . . , 1

md−1

)
m>

+Diagd−1

(
1

m1
, . . . ,

1

md−1

)

and detVF (µ)(m) =
1

1−m
[
VF (µ)(m)

]−1
m>

d−1∏
i=1

mi.

3. Multivariate Neyman type A distribution (MNTA)

According to the univariate Neyman type A model, e.g. Jørgensen and Kokonendji (2016,

Example 2.1), the MNTA is the mixture of the multivariate Poisson Qy by the univariate

Poisson generated by µ1 withKµ1(θ0) = exp θ0 onR. Let c = K ′µ1
(0) exp(−〈K ′Q1

(0), Id−1〉),

then g(m) = c exp {W(〈m, Id−1〉/c)},

VF (µ)(m) = Diagd−1 (m) + c−1 exp {W(〈m, Id−1〉/c)}m⊗m,
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ψµ(m) =

(
log

{
m1c

−1 exp

[
−W

(
〈m, Id−1〉

c

)]}
, . . . , log

{
md−1c

−1 exp

[
−W

(
〈m, Id−1〉

c

)]})
,

[
VF (µ)(m)

]−1
= −

Diagd−1

(
1
m1
, . . . , 1

md−1

)
m⊗mDiagd−1

(
1
m1
, . . . , 1

md−1

)
c exp

[
W
(
〈m,Id−1〉

c

)]
+mDiagd−1

(
1
m1
, . . . , 1

md−1

)
m>

+Diagd−1

(
1

m1
, . . . ,

1

md−1

)

and detVF (µ)(m) =
1

1− c−1 exp [−W (〈m, Id−1〉/c)]m
[
VF (µ)(m)

]−1
m>

d−1∏
i=1

mi, whereW

is the Lambert function.

3.3 Associated kernel estimations for variance functions

In this section, we nonparametrically estimate the function g introduced in Theorem 3.1.1.

This leads us to smooth the link and variance functions. In the next results, we express two

nonparametric estimations through an associated kernel Km,H(·) of both functions ψµ(m)

and VF (µ)(m), for a given bandwidths matrix H = (hij)1≤i,j≤d−1; see, e.g., Kokonendji and

Somé (2018, 2021). According to the support of m, we will consider two kinds of continuous

associated kernels:

Km,H(·) = |H|−1/2K
[
H−1/2(m− ·)

]
and Km,H(·) =

d−1∏
j=1

Kmj ,hjj (·),

where K is a d-variate classical (symmetric) kernel (e.g., standard normal), |H| is the deter-

minant of the matrix H, m = (m1, . . . ,md−1) and Kmj ,hjj , j = 1, . . . , d− 1, belong either to

the same family or to different families of univariate (classical or purely as gamma) associated

kernels; see also Somé et al. (2022).

Proposition 3.3.1 Let f : (0,∞) → (0,∞) be a bijective continuous function such that

λ :=

∫
Rd−1

f ◦ g(m)dm ∈ (0,∞). Then, the associated kernel estimators of the link and vari-

ance functions ψµ(m) and VF (µ)(m) are given, respectively, by

ψ̂µ(m) = ψQ1

(
m

f−1(λn−1
∑n

i=1Km,H(mi))

)
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and

V̂F (µ)(m) =

{
f−1(λn−1

n∑
i=1

Km,H(mi))

}−2

VF (µ1)

(
f−1

(
λ

n

n∑
i=1

Km,H(mi)

))
m⊗m

+f−1

(
λ

n

n∑
i=1

Km,H(mi)

)
VF (Q1)

(
m

f−1(λn−1
∑n

i=1Km,H(mi))

)
,

where m = (m1, . . . ,md−1) and mi = (mi1, . . . ,mi(d−1)) for i = 1, . . . , n (n ∈ N) are (d− 1)-
vectors.

Remarks 3.3.2 1. Unfortunately, the estimation of the parameter λ was not possible in
this work. For this reason and in order to compare our numerical results, we have
computed λ ∈ (0,∞) for some known examples and we have compared the results of our
estimation for the real value of λ and λ = 1. We have noted from Table 3.1 and Figure
3.1 that the value of λ has not an important impact on the estimation of the link and
variance functions.

2. The choice of the function f is crucial in this nonparametric part. In practice, we propose
an appropriated function f(·), like exp(−·) but other examples of functions, that satisfies
the conditions of Proposition 3.3.1, can be used.

Figure 3.1 provides some plots of link and variance functions as well as their smoothed

versions using the Gaussian kernel for some normal mixture distributions (NIG, NG and NP)

with λ 6= 1 and λ = 1. They generally have similar behaviours.
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Figure 3.1: Plots of link and variance as well as their smoothed functions by the Gaussian
kernel for some normal mixture distributions (NIG, NG and NP) with λ 6= 1 and λ = 1. Note:
NG means normal gamma or variance gamma.
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3.4 Multivariate generalized linear model

Tables 3.1 and 3.2 present numerical results of mean squared errors for three normal

mixture models (NIG, NG and NP) with different values of parameters in univariate and

bivariate, respectively, setups.

Model Link func-
tion

Variance
function

λ h m

NIG 0.0278/0.0120 0.3705/0.5759 1.2038/1 0.8 [−1.5, 1.5]
NG 0.0881/0.0176 0.2116/0.1197 1.4208/1 0.8 [−1.5, 1.5]
NP 0.4974/0.0237 0.2711/0.0348 1.7563/1 0.8 [−1.5, 1.5]

Table 3.1: Mean squared errors for three normal mixture models (NIG, NG and NP) with
different values of λ and fixed m ∈ [−1.5, 1.5] and h = 0.8 in the univariate standard Gaussian
kernel.

Model Link func-
tion

Variance
function

λ h m

NIG 0.0156 0.9366 1 0.3 [−1.5, 1.5]2

NG 0.0217 0.3704 1 0.5 [−1.5, 1.5]2

NP 0.0171 0.0686 1 0.3 [−1.5, 1.5]2

Table 3.2: Mean squared errors for three bivariate normal mixture models (NIG, NG and NP)
with fixed λ = 1 and H = Diag2(h, h) in the bivariate standard Gaussian kernel.

3.4 Multivariate generalized linear model

In this section, we focus on the study of the multivariate generalized linear model (MGLM)

which represents an extension of the GLM; e.g., McCullagh and Nelder (1989). In fact, we

have the same concept in order to determine the coefficients and some related new properties.

Let k, n ∈ N\{0} and Y1 = (Y11, . . . , Y1k)
>, . . . ,Yn = (Yn1, . . . , Ynk)

> be n random vector

with i.i.d. components generated by the mixture distribution µ and let Y = (Y1, . . . ,Yn)>

be nk × 1 response vector. Suppose that, for i ∈ {1, . . . , n}, the response random vector Yi

has a mean vector mi = (mi1, . . . ,mik)
>. Consider X = (X1, . . . ,Xn)> be nk× pk covariates

matrix, where Xi = ([xi]jl)1≤j≤k,1≤l≤pk is a k × pk matrix with p ∈ N \ {0}. The MGLM

provides the following relationship between the linear predictor and the mean vector of the
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distribution function by using its link function for all i ∈ {1, . . . , n}

ψµ (mi) = ψµ (E(Yi|Xi)) = Xiβ,

where β = (β1, . . . ,βk)
> is the pk × 1-unknown vector of regression coefficients such that

βj = (βj1, . . . , βjp)
> for all j ∈ {1, . . . , k}. The estimation of the unknown matrix of regression

coefficients is obtained by solving the following quasi-score equation

U(β) =

n∑
i=1

D>i V
−1
F (µ)(mi)(Yi −mi) = 0, (3.3)

where Di = ∇β(mi) is a k × pk matrix and ∇β is the gradient operator with respect to β.

Note that

Di = ∇β(mi) = ∇ψµ(mi)(mi)∇β(ψµ (mi)) = VF (µ)(mi)Xi.

The equation (3.3) is a nonlinear equation and is solved iteratively by the Fisher scoring

method

β̂
new

= β̂
old
− S−1

β U(β),

with Sβ = −
n∑
i=1

D>i V
−1
F (µ)(mi)Di. We approximate the covariance matrix of β̂ as follows:

Cov(β̂) '

(
n∑
i=1

X>i VF (µ)(mi)Xi

)−1

. The confidence interval of the coefficients βj,`, for j ∈

{1, . . . , k} and ` ∈ {1, . . . , p}, is given by β̂j,` ± z1−ξ/2

√
V (β̂j,`), where z1−ξ/2 is the 1 − ξ/2

standard normal quantile.

In order to check the adequacy of fit of a model with respect to the choice of the link and

variance functions, we introduce the new quasi-deviance function, for all i ∈ {1, . . . , n}, as

follows:

D(Yi, m̂i) =

∫ Yi

m̂i

V −1
F (µ)(ui)(Yi − ui)dui =

∫ Yi1

m̂i1

. . .

∫ Yik

m̂ik

V −1
F (µ)(ui)(Yi − ui)dui1 . . . duik

= (D1(Yi, m̂i), . . . ,Dk(Yi, m̂i))
>,

where ui = (ui1, . . . , uik)
>, m̂i = K ′µ

(
Xiβ̂

)
and V −1

F (µ) is given as in Corollary 3.1.3. We

therefore define the total deviance and the residual deviance, respectively, in the following
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sense: T D(Yi, m̂i) =
k∑
j=1

Dj(Yi, m̂i) and rDi = 〈sign(Yi − m̂i),D(Yi, m̂i)〉, with

sign(Yi − m̂i) = (sign(Yi1 − m̂i1), . . . , sign(Yik − m̂ik))
>. This implies that the total resid-

ual deviance rD =

n∑
i=1

rDi , the Akaike information criterion AIC = T D(Y, m̂) + 2kp and the

Bayesian information criterionBIC = T D(Y, m̂)+kp log(kn), with T D(Y, m̂) =

n∑
i=1

T D(Yi, m̂i).

3.5 Applications to multivariate daily exchange rates

We here analyze some sets of data in finance by the (M)GLMs for multivariate mixture models

with (un)known link and variance functions.

In this general example, we consider the 7-variate daily exchange rate returns of the British

pound (GBP), Canadian dollar (CAD), Chinese yuan (CNY), EURO (EUR), Moroccan dirham

(MAD), Tunisian dinar (TND) and Turkish lira (TRL) against the US Dollar (USD).

In fact, let Yi1, Yi2, Yi3, Yi4, Yi5, Yi6 and Yi7 be, respectively, the exchange rate returns of

GBP/USD, CAD/USD, CNY/USD, EUR/USD, MAD/USD, TND/USD and TRL/USD on

the day i ∈ {1, 2, . . . , n = 4366}. Note that the parameter k is here equal to 7. Thus, the

vector Yi which is defined by Yi = (Yi1, . . . , Yi7)> has a mean vector mi = (mi1, . . . ,mi7)>.

The covariates matrix Xi can be written as:

Xi =



1 Y(i−1)1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 Y(i−1)2 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 Y(i−1)3 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 Y(i−1)4 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 Y(i−1)5 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 Y(i−1)6 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 Y(i−1)7


.

Hence, we define the following multivariate nonlinear autoregressive model MAR(1) with

(un)known errors MNIG distributions: ψµ (mi) = ψµ (E(Yi|Xi)) = Xiβ, where β = (β1, . . . ,β7)>

is the 14 × 1-unknown vector of regression coefficients such that βj = (βj1, βj2)> for all

j ∈ {1, . . . , 7}. Here we also have p = 2. The results of estimations under known (parametric)

and unknown (nonparametric) link and variance functions are given in Tables 3.3 and 3.4.
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Parametric
Variable Estimate Variance 95% confidence in-

terval
β11 −3.02× 10−3 2.29× 10−4 (−0.0293,0.0300)
β12 2.10× 10−2 3.64× 10−3 (−0.1001, 0.1364)
β21 2.57× 10−4 2.29× 10−4 (−0.0269, 0.0324)
β22 −6.23× 10−3 3.66× 10−3 (−0.1206, 0.1166)
β31 1.18× 10−3 2.30× 10−4 (−0.0262, 0.0332)
β32 −1.65× 10−2 1.20× 10−1 (−0.6900, 0.6708)
β41 −2.07× 10−3 2.29× 10−4 (−0.0286, 0.0307)
β42 −1.75× 10−5 2.97× 10−3 (−0.1042, 0.1094)
β51 −2.11× 10−3 2.29× 10−4 (−0.0286, 0.0307)
β52 −4.88× 10−2 4.56× 10−3 (−0.1659, 0.0990)
β61 −9.74× 10−3 2.29× 10−4 (−0.0343, 0.0250)
β62 −8.54× 10−2 5.00× 10−3 (−0.1993 ,0.0781)
β71 −2.72× 10−2 2.29× 10−4 (−0.0472,0.0122)
β72 −1.13× 10−2 9.90× 10−4 (−0.0675,0.0560)

Table 3.3: On regression coefficients of MNIG-MGLM by a multivariate Gaussian kernel for
the full dataset.

Nonparametric
Variable Estimate Variance 95% confidence in-

terval
β11 2.38× 10−3 1.24× 10−3 (−0.0115, 0.0162)
β12 1.64× 10−2 1.97× 10−3 (−0.0136, 0.0463)
β21 4.30× 10−3 1.24× 10−3 (−0.0089, 0.0175)
β22 5.10× 10−4 1.98× 10−2 (−0.0182, 0.0192)
β31 4.84× 10−3 1.24× 10−3 (−0.0097, 0.0193)
β32 −5.51× 10−3 6.51× 10−1 (−0.3245, 0.3135)
β41 2.94× 10−3 1.24× 10−3 (−0.0112, 0.0171)
β42 4.14× 10−3 1.60× 10−3 (−0.0374, 0.0456)
β51 2.92× 10−3 1.24× 10−3 (−0.0113, 0.0171)
β52 −2.43× 10−2 2.47× 10−2 (−0.0537, 0.0051)
β61 −1.54× 10−3 1.24× 10−3 (−0.0158, 0.0128)
β62 −4.57× 10−2 2.71× 10−2 (−0.0979,0.0068)
β71 −1.17× 10−2 1.24× 10−3 (−0.0215,−0.0019)
β72 −2.44× 10−3 5.36× 10−3 (−0.0116, 0.0067)

Table 3.4: On the nonparametric regression coefficients of MNIG-MGLM by a multivariate
Gaussian kernel for the full dataset.
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Chapter 4

Characterizations of stable and related
processes

This chapter deals with some characterizations of the classes of multivariate stable processes

and the inverse stable subordinators using some independence properties with a positive ran-

dom variable. Moreover, we establish some characterizations of some multivariate Lévy pro-

cesses, related to the class of Markov kernels, based on the notion of cut in a natural exponential

family. This allows us to draw some related characteristic properties. Proofs and auxiliary

results are given in Louati et al. (2017) and Mselmi (2018b).

4.1 Characterization of multivariate stable processes

This section is devoted to a characterization of the multivariate stable processes. We study

the cases α 6= 1 and α = 1 separately. In the following theorem, we prove that a necessary

and sufficient condition for a Lévy process to be α-stable is that it satisfies some independence

properties with a positive random variable T .

Theorem 4.1.1 1. Let α ∈ (0, 1) ∪ (1, 2], L a multivariate Lévy process independent of
T > 0, where the closed support of T is [0,+∞). Then L is strictly stable of parameter
α if and only if T−1/αL(T ) and T are independent.

2. Let L be a multivariate Lévy process independent of T > 0, where the closed support of
T is [0,+∞). Then L is strictly 1-stable if and only if there exists k ∈ Rd \ {0} such
that T−1L(T ) + log(T )k and T are independent.
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Now, we consider the joint distribution
(
ηt(dy, dy) = µ1,t(dy)Qy,t(dy)

)
t>0

on (0,+∞)×Rd−1

with the two following properties:

• The cut property: if (Y, Y ) has a distribution belonging to the natural exponential family

generated by ηt(dy, dy), then the distribution of Y belongs to the natural exponential family

generated by µ1,t.

• For all y > 0, (Qy,t(dy))t>0 is a convolution semigroup. We consider a Lévy process Zy(t)

governed by this convolution semigroup. We denote by Ft = F (ηt) the NEF generated by ηt.

Theorem 4.1.2 Let (Y, Zy) and T be independent with Pr(T > t) = e−t, and let p > 1 be
fixed. Then the two following statements are equivalent:

1. T−pY(T ) and Y(T ) are independent and Zy (T )/
√
T and T are independent.

2. there exist κ > 0 and two symmetric positive matrices B0 and B1 such that, for all
(a, b) ∈ {(a, b) ∈ R×Rd−1; a + 1

2〈b, B1b〉 > −1/κ}∫
(0,+∞)×Rd−1

e−ay+i〈b,y〉ηt(dy, dy) = exp t

(
1− (1 + κ(a +

1

2
〈b, B1b〉))

1
p − 1

2
〈b, B0b〉

)
.

Remark 4.1.3 Note that, under the same conditions of Theorem 4.1.2 and by taking a = 0,
we get the Fourier transform of the normal tempered stable process (Y (t))t≥0, that’s

F
Y (t)

(b) = e
t

(
1−(1+κ

2
〈b,B1b〉)

1
p− 1

2
〈b,B0b〉

)
.

Next, we prove that the conditional distribution of Zy(T ) is multivariate Laplace dis-

tributed. For this purpose, we recall some facts concerning this distribution. Let Γ be a

(d− 1)−symmetric definite positive matrix. Recall that the multivariate Laplace distribution

on Rd−1 (for more details, we can see Kotz et al. (2001), p. 235), with a variance-covariance

parameter Γ, is

fΓ(z) =
1

(2π)
d−1

2 det(Γ)
1
2

2K d−3
2

(√
2〈z,Γ−1z〉

)
(√

1
2〈z,Γ−1z〉

) d−3
2

, (4.1)

where Kχ denotes the modified Bessel function of the third kind with order χ (see Kotz et al.

(2001), p. 315). For all θ ∈ Rd−1, this distribution is characterized by its Fourier transform

FΓ(θ) =
1

1 + 1
2〈θ,Γθ〉

. (4.2)
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4.2 Characterization of the inverse stable subordinator

(see Kotz et al. (2001), p. 235).

Theorem 4.1.4 Let Zy and T be independent with Pr(T > t) = e−t, and suppose that
Zy(T )/

√
T and T are independent. Then Zy(T ) is multivariate Laplace distributed a variance-

covariance parameter B0 + yB1, where B0 and B1 are (d− 1)-symmetric positive matrices.

4.2 Characterization of the inverse stable subordinator

In this section, we characterize the inverse stable subordinator (E(t))t>0 by an independence

condition with a positive random variable T . Furthermore, we extend this subordinator to a

bivariate stochastic process ((E1(t), E2(t)))t>0 and we characterize this process by its Laplace

transform.

Theorem 4.2.1 Let α ∈ (0, 1), (L(t))t>0 be a Lévy process independent of a random variable
T with closed support [0,+∞), and E(t) = inf{z > 0 : L(z) > t} be the first-exit time of
L(t). Then (E(t))t>0 is an inverse stable subordinator with a stability index α if and only if,
T−αE(T ) and T are independent.

Note that the Laplace transform of E(T ) is given, for all θ < 0, by

E(eθE(T )) =

∫ +∞

0

E(eθE(t))fT (dt) = cα(−θ)α−1
∫ +∞

0

e−tcα(−θ)
α

fT (dt) = cα(−θ)α−1LT (−cα(−θ)α),

where fT is the density of T . In the case where T has the standard exponential distribution,

we deduce that the Laplace transform of E(T ) is equal to

E(eθE(T )) =
1

(−θ)
cα(−θ)α

1 + cα(−θ)α
.

This Laplace transform represents the double Laplace transform of the inverse stable subor-

dinator given by Alrawashdeh et al. (2017) and Meerschaert and Straka (2013) and it has

been used in order to solve some diffusion equations such as the tempered fractional telegraph

equation.

Consider now a bivariate stochastic process ((E1(t), E2(t)))t>0 defined on (0,+∞)×R gov-

erned by a distribution belonging to the natural exponential family generated by ηt(dx1, dx2) =

µ1,t(dx1)Qx1,t(dx2). In what follows, we assume that the conditional distribution Qx1,t(dx2)

generate the continuous time Lévy process denoted by (Ax1(t))t>0 = (E2(t)|E1(t) = x1)t>0.
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Characterizations of stable and related processes

Besides, we suppose that, for all t > 0, Ft has a cut on (0,+∞) and that (E1(t))t>0 is the

first-exit time of a Lévy process.

Theorem 4.2.2 Let α ∈ (0, 1), τ ∈ (0, 1) ∪ (1, 2] and (E1(t))t>0, (Ax1(t))t>0 be independent
of a random variable T with closed support [0,+∞). Then the following two statements are
equivalent:

1. T−αE1(T ) and T are independent and T−
1
τAx1(T ) and T are independent.

2. The Laplace transform of (E1(t), E2(t)) is given, for all θ1, θ2 ≤ 0, by

Lηt(θ1, θ2) = cα(tετ (−θ2)τ − θ1)α−1 exp (−t [δτ (−θ2)τ + cα(tετ (−θ2)τ − θ1)α]) ,

where cα, ετ and δτ are three strictly positive constants.

Note that in the case where τ = 2, the process ((E1(t), E2(t)))t>0 is related to the notion

of normal variance-mean mixture introduced by Barndorff-Nielsen (1997).

Now, we focus our attention to the case where τ = 1 which is slightly different of the case

where τ ∈ (0, 1) ∪ (1, 2]. In this case, the process (Ax1(t))t>0 is a 1-stable process.

Theorem 4.2.3 Let α ∈ (0, 1) and (E1(t))t>0, (Ax1(t))t>0 be independent of a random vari-
able T with closed support [0,+∞). Then the following two statements are equivalent:

1. There exists k ∈ R \ {0} such that T−1Ax1(T ) + log(T )k and T are independent and
T−αE1(T ) and T are independent.

2. The Laplace transform of (E1(t), E2(t)) is given, for all θ1, θ2 ≤ 0, by

Lηt(θ1, θ2) = cα(tλ0(−θ2) log(−θ2)− θ1)α−1e(−t[λ1(−θ2) log(−θ2)+cα(tλ0(−θ2) log(−θ2)−θ1)α]),

where cα, λ0 and λ1 are three strictly positive constants.

48 Farouk MSELMI



Perspectives

We end this habilitation thesis by the following short-term prospectives:

1. Normal tempered stable Bayesian network:

Bayesian network is a probabilistic graphical model that analyzes a set of conditional in-

dependence relationships between a set of variables and consists of a directed acyclic

graph. Let us consider d ∈ N \ {0} and X = (X1, X2, . . . , Xd) a set of variables

(commonly called nodes) connected with a set of directed edges and a set of condi-

tional probability distributions. The distribution of X is defined through the chain rule

P(X1, X2, . . . , Xd) =

d∏
i=1

P(Xi|Pa(Xi)), where Pa(Xi) denotes the parents of the node

Xi. In this field, I will suppose that the distribution of the random variables Xi|Pa(Xi),

for i ∈ {1, . . . , d}, is normal tempered stable. Note that, in this work, I will use the

techniques and results of GLM given in the work of Mselmi (2021a), and Mselmi and

Kokonendji (2022).

2. Generalized probit model

A probit model represents a classification model that uses the cumulative distribution

function of the normal distribution ΦN(0,1), and is defined as follows:

P(Y = 1|X) = P(Y ∗ > 0) = ΦN(0,1)(X
Tβ),

where Y is a binary response variable, X is a vector of regressors, β is an unknown

vector of regression coefficients to be estimated and Y ∗ is an auxiliary random variable

49



Perspectives

called the latent variable. The latent variable has the following relation Y ∗ = XTβ + ε,

where ε ∼ N(0, 1), and it is positive if Y = 1. In this framework, I will change the error

of the expression of the latent variable by the following way: Y ∗ = g(XTβ) + ε, where

ε is normal tempered stable distributed. Note that, the function g represents the link

function of the GLM of the normal tempered model (see Mselmi (2021a) and Mselmi

and Kokonendji (2022)). Also, it is important to notice that the choice of the normal

tempered stable distribution comes from the fact that it represents a generalization of

the normal one. The random variable Y still a binary one and the change of the model

will be on the cumulative distribution function, i.e. I will use the one of the normal

tempered stable distribution ΦNTS(g(XTβ)). This cumulative distribution function will

be estimated through the Monte-Carlo method.

3. R and Matlab packages

In this part, I will develop some packages for GLMs of the mixture distributions of

interest by using R and Matlab. Some examples have been done in the work of Mselmi

(2021a) and Mselmi and Kokonendji (2022). In fact, I will take the following steps:

• Develop the GLM packages for some univariate examples.

• Develop the GLM packages for some multivariate examples.

• Develop the nonparametric GLM packages.

• Develop a package for the normal tempered stable Bayesian network.

• Develop a package for the Generalized probit model.
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Appendix 1

Proofs and auxiliary results for Section 2.4

We refer to the book of Schilling et al. (2010) for introducing the notion of Bernstein

function theory. Let us, first, give some definitions related to this theory.

Definitions 4.2.4 (Bernstein function theory)

1. A function f : (0,+∞) −→ R is a completely monotone function if f is of class C∞

and (−1)nf (n)(ϑ) ≥ 0, for all n ∈ N and ϑ > 0. The family of all completely monotone
functions will be denoted by CM.

2. A (non-negative) Stieltjes function is a function f : (0,+∞) −→ [0,+∞) which can be

written in the form f(ϑ) =
a

ϑ
+ b+

∫ +∞

0

1

ϑ+ u
ς(du), where a, b > 0 are non-negative

constants and ς is a measure on (0,+∞) such that
∫ +∞

0

1

1 + u
ς(du) < +∞. We denote

the family of all Stieltjes functions by S.

3. A function f : (0,+∞) −→ R is a Bernstein function if f is of class C∞, f(ϑ) ≥ 0, for
ϑ > 0, and (−1)n−1f (n)(ϑ) ≥ 0, for all n ∈ N∗ and ϑ > 0. The family of all Bernstein
functions will be denoted by BF . Besides, A function f : (0,+∞) −→ R is a Bernstein

function if, and only if, it admits the representation f(ϑ) = a+ bϑ+

∫ +∞

0
(1− e−ϑu)ζ(du),

where a, b > 0 are non-negative constants and ζ is a measure on (0,+∞) such that∫ +∞

0
(1 ∧ u)ζ(du) < +∞, called the Lévy measure.

4. A function f : (0,+∞) −→ R is an extended Bernstein function if f is of class C∞ and
(−1)n−1f (n)(ϑ) ≥ 0, for all n ∈ N∗ and ϑ > 0. The family of all extended Bernstein
functions will be denoted by EBF .

5. A Bernstein function f is said to be a complete Bernstein function if its Lévy measure
η has a completely monotone density %(u) with respect to Lebesgue measure. The family
of all complete Bernstein functions will be denoted by CBF .
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6. A C∞ function f : (0,+∞) −→ (0,+∞) is said to be logarithmically completely mono-
tone if −(log(f))′ ∈ CM.

Now, we express, in the following lemma, some known properties that give the relationship

between the classes S, CM, CBF , BF and EBF .

Lemma 4.2.5 1. S ⊂ CM and CBF ⊂ BF ⊂ EBF .

2. If f : (0,+∞) −→ R is a completely monotone function, then it represents the Laplace
transform of a unique positive measure µ (see Schilling et al. (2010), Theorem 1.4, page
3).

3. f : (0,+∞) −→ [0,+∞) is a Bernstein function if, and only if, e−f is a completely
monotone function (see Schilling et al. (2010), Theorem 3.6, page 19).

4. A non-negative C∞-function f : (0,+∞) −→ R is a Bernstein function if, and only if,
f ′ is a completely monotone function.

5. If f an extended Bernstein function, then f ′ is a completely monotone function.

6. If f ∈ S \ {0}, then 1

f
∈ BF (see Kalugin et al. (2012), Section 3).

7. f ∈ CBF ⇐⇒ 1

f
∈ S \ {0} (see Kalugin et al. (2012), Section 4).

Proof of Proposition 2.4.1

According to (2.1), we have m = −`′µ(s) = K ′µ(−s). It follows that, s = −ψµ(m). This

and (2.2) imply −`′µ∗(m) = −`′µ∗(−`′µ(s)) = s = −ψµ(m) = −ψQ1

(
m

g(m)

)
. Integrating this,

we obtain `µ∗(m) =

∫
ψQ1

(
m

g(m)

)
dm. Using the fact that K ′µ∗(−m) = −`′µ∗(m) = s,

we obtain ψµ∗(s) = −m = −K ′µ(−s) = −K ′Q1
(−s)K ′µ1

(KQ1(−s)). Differentiating this link

function, we obtain the expression of the variance function as stated in Proposition 2.4.1. �

Proof of Proposition 2.4.3

1. According to Mselmi (2021a), supplementary material, example 1 and Remark 2.4.2(1.),

one has ψµ(m) = − 1

m

(
W
(

1

m

))−1

(Note that according to Kalugin et al. (2012) The-

orem 2.6(c), −ψµ(m) ∈ S). It follows that

−`µ∗(m) = log

(
1

W
(

1
m

))+
1

W
(

1
m

) + C,
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where C ∈ R. From Lemma 4.2.5 and Theorem 2.6(b) of Kalugin et al. (2012), we

deduce that W
(

1

m

)
∈ S and then

1

W
(

1
m

) ∈ BF . So, our problem, now, is to show

that log

(
1

W
(

1
m

)) ∈ EBF . According to Kalugin et al. (2012), Section 4, one has

W(m) ∈ CBF . Using equation (7.3) of Schilling et al. (2010), page 66, we obtain

mW
(

1

m

)
∈ CBF . Since the function m 7−→ m is a trivial CBF (see Remark 7.8,

Chapter 7 of Schilling et al. (2010)), then m+mW
(

1

m

)
∈ CBF . Using Lemma 4.2.5,

one gets
1

m+mW
(

1
m

) ∈ S ⊂ CM. From this, we deduce that

−
(

log

(
W
(

1

m

)))′
= −

(
W
(

1
m

))′
W
(

1
m

) =
W ′
(

1
m

)
m2W

(
1
m

) =
1

m+mW
(

1
m

) ∈ CM.

It follows that W
(

1

m

)
is logarithmically completely monotone. According to Schilling

et al. (2010), Theorem 5.9, page 38, we obtain log

(
1

W
(

1
m

)) ∈ EBF . Using this and

the fact that
1

W
(

1
m

) ∈ BF , one has −`(m) ∈ EBF . Thus, we get the existence of

the dual measure of the gamma-gamma distribution. For all s ∈ (1,+∞), one has

Kµ1 (KQ1(−s)) = − log(log(s)). From the first and second derivatives of this function,

we obtain ψµ∗ and VF (µ∗).

2. According to Mselmi (2021a), supplementary material, example 5 and Remark 2.4.2(1.),

one has −ψµ(m) =
1

8m

[√
m+

√
m+ 4

]2
=

1

4
+

1

2m
+

1

4

√
4 +m

m
. From Remark 7.8 of

Schilling et al. (2010) page 65, the function
√

m

4 +m
∈ CBF (the functions

ϑ

ϑ+ t
and

ϑa are complete Bernstein functions for ϑ, t > 0 and 0 ≤ a ≤ 1). It follows that√
4 +m

m
∈ S ⊂ CM. Lemma 4.2.5 implies that

∫ √
4 +m

m
dm =

√
m+ 4

(√
m+

4 sinh−1 (
√
m/2)√

m+ 4

)
∈ BF , (4.3)
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where sinh−1 is the inverse hyperbolic sine function. Besides, One has
1

m
is logarith-

mically completely monotone function
(

1

m
∈ S ⊂ CM

)
. According to Schilling et al.

(2010), Theorem 5.9, page 38, we obtain

log(m) ∈ EBF . (4.4)
Using the fact that the function m 7−→ m is a trivial Bernstein function and equations
(4.3) and (4.4), one gets

−`µ∗(m) = −
∫
ψµ(m)dm =

1

4
m+

1

2
log(m)+

1

4

√
m+ 4

(√
m+

4 sinh−1 (
√
m/2)√

m+ 4

)
+C ∈ EBF .

Thus µ∗ has a dual measure. For the link and variance functions, we consider KQ1(θ) =

−2
√
−θ and Kµ1(θ0) = − log(1 − θ0) for all θ ∈ (−∞, 0) and θ0 ∈ (−∞, 1). For

s ∈ (0,+∞), one has Kµ1 (KQ1(−s)) = − log(1 + 2
√
s). From the first and second

derivatives of this function, we obtain ψµ∗ and VF (µ∗).

3. According to Mselmi (2021a), supplementary material, example 6 and Remark 2.4.2(1.),

one has −ψµ(m) =
1

2

(
W
(

1

m

))2

. From Theorem 3.4 (b) of Kalugin et al. (2012), we

obtain −ψµ(m) ∈ CM. Integrating −ψµ(m), one gets

−`µ∗(m) =
1

2
exp

(
−W

(
1

m

))(
W
(

1

m

)
+ 2

)
+ C,

where C ∈ R. Since lim
m→+∞

−`µ∗(m) = +∞, then, by using the definition of limits, we

deduce that for B� 1 large enough, there exists A� 0 large enough such that

B =
1

2
exp

(
−W

(
1

A

))(
W
(

1

A

)
+ 2

)
+ C ≈ 1 + C.

It follows that C ≈ B−1 > 0

(
lim

m→+∞
W
(

1

m

)
= 0

)
. Thus C > 0 and then −`µ∗(m) ≥

0. This together with the fact that −ψµ(m) ∈ CM imply −`µ∗(m) ∈ BF (see Lemma

4.2.5). Thus, µ∗ has a dual measure. In this case Kµ1 (KQ1(−s)) = exp(−2
√
s). From

the first and second derivatives of this function, we obtain ψµ∗ and VF (µ∗).

4. The compound Poisson distribution is characterized by its variance function which equal

to mp with p ∈ (1, 2). According to Mselmi (2021a), Corollary 1.(1), one has

−ψµ(m) =
1

p− 1
m1−p exp

(
1− p
p− 2

W
(
m2−p)) =

1

p− 1

(
W
(
m2−p)) 1−p

2−p .
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From Theorem 3.4 (c) of Kalugin et al. (2012), we obtain −ψµ(m) ∈ CM. Integrating

−ψµ(m), we obtain

−`µ∗(m) =
1

p− 1
W(m2−p) exp

(
1

2− p
W(m2−p)

)
+ exp

(
1

2− p
W(m2−p)

)
+ C,

where C ∈ R. Since −`µ∗(0) = 1 + C = 0, then C = −1. Using the fact that

exp
(

1
2−pW(m2−p)

)
≥ 1, we conclude that −`µ∗(m) ≥ 0. This together with the fact

that −ψµ(m) ∈ CM imply −`µ∗(m) ∈ BF (see Lemma 4.2.5). Hence, µ∗ has a dual

measure. For all s ∈ (0,+∞), one has Kµ1 (KQ1(−s)) = exp

(
1

2− p
[(p− 1)s]

p−2
p−1

)
.

From the first and second derivatives of this function, we obtain ψµ∗ and VF (µ∗).

5. The stable distribution is characterized by its variance function which equal to m
α−2
α−1

with α ∈ (0, 2) \ {1}. According to Mselmi (2021a), Remark 2.(1), one has

−ψµ(m) = (1− α)m
1

α−1 exp

(
− 1

α
W
(
m

α
α−1

))
= (1− α)W

(
m

α
α−1

) 1
α
.

For α ∈ (0, 1/2) and from Theorem 3.4 (b) of Kalugin et al. (2012), we obtain −ψµ(m) ∈

CM. Hence

−`µ∗(m) = (1− α)

(
W(m

α
α−1 ) +

1

1− α

)
exp

(
α− 1

α
W(m

α
α−1 )

)
+ C, where C ∈ R.

As in (3.), we deduce for B � 1 large enough, there exists A � 0 large enough such

that

B = (1− α)

(
W(A

α
α−1 ) +

1

1− α

)
exp

(
α− 1

α
W(A

α
α−1 )

)
+ C ≈ 1 + C.

It follows that C ≈ B− 1 > 0. Thus C > 0 and then −`µ∗(m) ≥ 0. This together with

the fact that −ψµ(m) ∈ CM imply −`µ∗(m) ∈ BF (see Lemma 4.2.5). Hence, µ∗ has

a dual measure. For all s ∈ (0,+∞), one has Kµ1 (KQ1(−s)) = exp

(
α− 1

α

[
s

1− α

]α)
.

From the first and second derivatives of this function, we obtain ψµ∗ and VF (µ∗).
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Lemma 4.2.6 (Proposition 3 of Letac (2021)) Let µ ∈ M and assume that a dual measure

µ∗ does exist. Then µ∗ is infinitely divisible if, and only if, m 7−→ 1

VF (µ)(m)
is the Laplace

transform of some measure.

Now, we are able to express the following corollary which study the infinite divisibility

property of some examples.

Proof of Corollary 2.4.4

1. The gamma gamma case: According to Mselmi (2021a), supplementary material, exam-

ple 1, we deduce that VF (µ)(m) = m2

[
1 +W

(
1

m

)]
. Then,

1

VF (µ)(m)
=

1

m2
[
1 +W

(
1
m

)] .
Since

1

m
[
1 +W

(
1
m

)] ∈ S and m 7−→ 1

m
is a trivial Stieltjes function, thus

1

VF (µ)(m)
is

the product of two Stieltjes functions. By using Corollary 1.6 of Schilling et al. (2010),

page 5, we deduce that
1

VF (µ)(m)
∈ CM (recall that S ⊂ CM). Lemma 4.2.6 implies

that the dual measure of the gamma gamma distribution is infinitely divisible.

2. The inverse Gaussian Poisson case: According to Mselmi (2021a), supplementary mate-

rial, example 6, we deduce that VF (µ)(m) =
m

W
(

1
m

) [1 +
1

W
(

1
m

)] =
m(

W
(

1
m

))2 [1 +W
(

1

m

)]
.

Then,
1

VF (µ)(m)
=

(
W
(

1
m

))2
m
[
1 +W

(
1
m

)] . Since the function
1

m
[
1 +W

(
1
m

)] ∈ S ⊂ CM and(
W
(

1

m

))2

∈ CM (see Theorem 3.4(b) of Kalugin et al. (2012)), thus
1

VF (µ)(m)
∈ CM

(see Corollary 1.6 of Schilling et al. (2010), page 5). This and Lemma 4.2.6 imply that

the dual measure of the inverse Gaussian Poisson distribution is infinitely divisible.

3. The compound Poisson Poisson case: According to Mselmi (2021a), corollary 1, we

deduce that

VF (µ)(m) = mpe
p−1
p−2
W(m2−p) +m2e

1
p−2
W(m2−p) = m

(
W(m2−p)

)− p−1
p−2 [1 +W(m2−p)].

Note that the right side of the latter equation was obtained from eW(m2−p) =
m2−p

W (m2−p)
.

Then,
1

VF (µ)(m)
=

(
W(m2−p)

) p−1
p−2

m [1 +W (m2−p)]
. From Kalugin et al. (2012)) Theorem 3.4(c), we
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deduce that
1

VF (µ)(m)
∈ CM (in fact −1 < p− 2 < 0 and

p− 1

p− 2
< 0). This and Lemma

4.2.6 imply that the dual measure of the compound Poisson Poisson distribution is

infinitely divisible.

4. The stable-Poisson case (α ∈ (0, 1/2)): According to Mselmi (2021a), remark 2(1), we

deduce that

VF (µ)(m) = m
α−2
α−1 e

1
α
W
(
m

α
α−1

)
+m2e

1−α
α
W
(
m

α
α−1

)
= m

(
W(m

α
α−1 )

)− 1
α

[1 +W(m
α
α−1 )].

Then,
1

VF (µ)(m)
=

(
W(m

α
α−1 )

) 1
α

m
[
1 +W

(
m

α
α−1

)] . From Kalugin et al. (2012)) Theorem 3.4(b),

we deduce that
(
W(m

α
α−1 )

) 1
α ∈ CM (in fact −1 <

α

α− 1
< 0 and

1

α
> 0). So, our main

problem, now, is the show thatm−1
[
1 +W

(
m

α
α−1

)]−1
∈ CM. According to Kalugin et

al. (2012), Section 4, one has W(m) ∈ CBF . Furthermore, m−
α
α−1 ∈ CBF (see Remark

7.8 of Schilling et al. (2010) page 65). It follows that the composite functionW(m−
α
α−1 ) ∈

CBF (see Corollary 7.9 of Schilling et al. (2010) page 66). Using equation (7.3) of

Schilling et al. (2010), page 66, we obtain mW
(
m

α
α−1

)
∈ CBF . Since the function

m 7−→ m is a trivial CBF (see Remark 7.8, Chapter 7 of Schilling et al. (2010)), then

m+mW
(
m

α
α−1

)
∈ CBF . Using Lemma 4.2.5, one gets

1

m+mW
(
m

α
α−1

) ∈ S ⊂ CM.

From this and the fact that
(
W(m

α
α−1 )

) 1
α ∈ CM, we deduce that

1

VF (µ)(m)
∈ CM (see

Corollary 1.6 of Schilling et al. (2010), page 5). This and Lemma 4.2.6 imply that the

dual measure of the stable Poisson distribution (with α ∈ (0, 1/2)) is infinitely divisible.
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Proof of Theorem 3.1.1

Using (1.1), we get

K ′η(θ1, θ2) =

(
∂Kη

∂θ1
(θ1, θ2),

∂Kη

∂θ2
(θ1, θ2)

)
=

(
K ′µ1

(θ1 +KQ1(θ2)),K ′Q1
(θ2)K ′µ1

(θ1 +KQ1(θ2))
)

=: (m,m). (4.5)

Using the fact that K ′µ1
(θ1 + KQ1(θ2)) = m > 0 and (4.5), we deduce, for all m ∈ MF (µ) =

MF (Q1), that

θ2 = ψQ1

(m
m

)
and θ1 = ψµ1(m)−KQ1

(
ψQ1

(m
m

))
. (4.6)

By taking θ1 = 0 and using (1.2), we conclude that

∂Kη

∂θ1
(θ1, θ2)

∣∣∣
θ1=0

= K ′µ1
(KQ1(θ2)) = m(0, θ2) (4.7)

and

K ′µ(θ2) =
∂Kη

∂θ2
(θ1, θ2)

∣∣∣
θ1=0

= K ′Q1
(θ2)K ′µ1

(KQ1(θ2)) = m(0, θ2). (4.8)

From the last equality, we obtain θ2 = ψµ(m(0, θ2)). This together with (4.6) imply

θ2 = ψµ(m(0, θ2)) = ψQ1

(
m(0, θ2)

m(0, θ2)

)
and 0 = ψµ1

(m(0, θ2))−KQ1

(
ψQ1

(
m(0, θ2)

m(0, θ2)

))
. (4.9)

Without loss of generality and in what follows, we denote by m := m(0, θ2) and m := m(0, θ2).

Let f : Rd−1 × (0,∞) −→ (0,∞); (z, t) 7−→ f(z, t) = ψµ1(t) − KQ1 (ψQ1 (z/t)). The

function f is continuously differentiable and from the second equation of (4.9), we obtain

f(m, m) = 0. The partial derivative of f with respect to t is given by

∂f
∂t

(m, m) =
[
VF (µ1)(m)

]−1
+

1

m3
m
[
VF (Q1)

(m
m

)]−1
m>.
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Since m > 0, VF (µ1)(m) > 0 and VF (Q1) (m/m) is a symmetric definite positive matrix, then

we deduce that there exists δ > 0 such that
∂f
∂t

(m, m) > δ. The global implicit function

theorem given by Zhang and Ge (2006) implies that there exists a unique continuous function

g : Rd−1 −→ (0,∞) such that f(m, g(m)) = 0. Differentiating f with respect to m, we obtain

f′(m, g(m)) =
∂f
∂z

(m, g(m)) +
∂f
∂t

(m, g(m)) ◦ g′(m) = 0Rd−1 .

It follows that

−1

[g(m)]2

[
VF (Q1)

(
m

g(m)

)]−1
m>+

{[
VF (µ1)(g(m))

]−1
+

1

[g(m)]3
m

[
VF (Q1)

(
m

g(m)

)]−1
m>

}
g′(m) = 0Rd−1 .

This involves that g satisfies the differential equation (3.2). Inserting g in the first equality

of (4.9), we conclude that Equation (3.1) holds. Setting θ2 = 0 in (4.7) and (4.8), we get the

initial condition g
(
K ′Q1

(0)K ′µ1
(0)
)

= K ′µ1
(0) of (3.2). �

Proof of Proposition 3.3.1

Since λ ∈ (0,∞) then the function G(m) := f ◦ g(m)/λ represents a multivariate probabil-

ity density function. Using a multivariate associated kernel estimation method, we obtain

Ĝ(m) =
1

n

n∑
i=1

Km,H(mi). It follows that

ĝ(m) = f−1

(
λ

n

n∑
i=1

Km,H(mi)

)
.

Inserting the estimator of g in the expressions of the link and variance functions, given in

Theorem 3.1.1 and Corollary 3.1.3, we obtain the required results. �
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