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Résumé

Un bandit est un problème d’apprentissage dans lequel un agent choisit séquentiellement de
tester une action parmi un ensemble de candidats fixé, collecte une récompense, et met en
place une stratégie dans le but de maximiser son gain cumulé. Motivés par une étude de cas
dans le domaine de l’agriculture, nous abordons dans cette thèse plusieurs problématiques
pertinentes pour les applications réelles des bandits.

La première question que nous considérons concerne les hypothèses faites sur les distri-
bution des récompenses. Alors qu’en théorie il est généralement commode de considérer des
hypothèses paramétriques simples (par exemples, des distributions gaussiennes), le practicien
peut avoir des difficultés à trouver un modèle adapté à son problème. Pour cette raison, nous
étudions deux familles d’algorithmes non-paramétriques, dans la mesure où ils ne nécessitent
pas d’hypothèses paramétriques fortes sur les distributions pour leur implémentation. Nous
montrons que ces deux approches peuvent obtenir de bonnes garanties théoriques pour le prob-
lème de bandits usuel, tout en utilisant moins d’hypothèses que les méthodes précédemment
proposées.

Nous proposons ensuite différentes extensions de ces algorithmes afin de faciliter leur mise
en pratique. La deuxième question principalement étudiée dans nos travaux concerne la prise
en compte de critères de performance alternatifs à l’espérance des récompenses cumulées, qui
pourraient potentiellement mieux refléter les préférences réelles du practicien. Nous proposons
notamment des algorithmes sensibles au risque, pour des problèmes dans lesquels l’objectif est
d’identifier un bras peu risqué selon une mesure: la Conditional-Value-at-Risk. Nous proposons
également des algorithmes efficaces pour un problème analogue au cas limite du précédent,
appelé Bandits Extrêmes. Enfin, nous adaptons nos méthodes pour traiter des variantes usuelles
du problème de bandit, avec notamment le cas de récompenses non-stationnaires et un exemple
où les données sont collectées dans des groupes d’observations et non dans un cadre purement
séquentiel.



Abstract

A Multi-Armed Bandits (MAB) is a learning problem where an agent sequentially chooses
an action among a given set of candidates, collects a reward, and implements a strategy in
order to maximize her sum of reward. Motivated by a case study in agriculture, we tackle in
this thesis several problems that are relevant towards real-world applications of MAB.

The first central question that we considered in this thesis is about the assumptions made
on the distributions of rewards. While in theory it is usually convenient to consider simple
parametric assumptions (e.g gaussian distributions), the practitioner may have some difficulty
to find the right model fitting their problem. For this reason, we analyze two families of non-
parametric algorithms, in the sense that they do not require strong parametric assumptions on
the distributions for their implementation. We show that these two approaches can achieve
strong theoretical guarantees in the standard bandit setting, improving what should be known
in advance by the learner compared with previous algorithms.

Then, we analyze some extensions of these algorithms that make them more suitable for
some real-world applications. A second focus of our work is to consider alternative performance
metrics, that may be more suitable than the expected sum of rewards for the practitioner. We
propose a risk-aware algorithm for a bandit problem where the learner wants to find a safe arm
according to a risk metric: the Conditional-Value-at-Risk. We also propose efficient algorithms for
a problem analogous to the limit case of this setting, known as Extreme Bandits. Finally, we also
adapt some of our approaches for standard variant of MAB, including one with non-stationary
rewards and one with feedback grouped into batches of observations.
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Foreword

From Machine Learning to Bandits

The works presented in this thesis are part of a vast branch of computer science called Machine
Learning, that includes any algorithm that is able to improve on a task by analyzing and
drawing inferences from patterns in data. We refer to (Hastie et al., 2001) for a complete
introduction of this field. In general the algorithm is presented some data, that have been
collected beforehand, and then tries to learn to solve a task by training on this database.
However, in some applications the data are collected during the training, and the algorithm
needs to continuously learn from the new data feeding the database. It may even be directly
responsible for the data collection process. In Reinforcement Learning (RL), the algorithm (called
agent) interacts with their environment and learns to collect and maximize rewards. A complete
introduction to RL can be found in (Sutton and Barto, 2018), some examples of applications
include interactive speaker recognition (Seurin et al., 2020), or self-driving cars (Leurent, 2020).

In RL, the agent navigates in its environment, performs actions and observe a feedback
(reward) associated with this action. The objective is to find the best action to do in every
situation provided by the environment. When the agent repeatedly faces the same situation the
problem becomes simpler, as it is reduced to the evaluation of each action: this is Multi-Armed
Bandits (MAB). The name comes from slot machines (one-armed bandits): the agent pulls an
arm, and observe a reward. Hence, each action is called an arm. The usual formulation of this
problem can be traced back as far as (Thompson, 1933), and a very complete introduction to
Bandits can be found in (Lattimore and Szepesvári, 2020). While this setting is relatively simple,
it is powerful to model a variety of problems. Hence, Multi-Armed Bandits are still a very
active research field. All the works presented in this thesis fit into this theoretical framework,
and in the next section we detail a case-study that motivated our research.

Figure 1 – Facing a complicated choice.
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Motivating application : a recommendation algorithm for agriculture

While the works presented in this thesis are mostly theoretical, many questions that we consid-
ered during these three years of research came after discussing with my supervisors and my
fellow PhD student Romain Gautron about the applications of bandits for a recommendation
problem in agriculture. Detailing this problem is a natural introduction for this manuscript
for several reasons: it is in our opinion an interesting illustrative example of the potential
applications of bandits in the real world, it is relatively easy to understand for people who are
not familiar with bandits, and it allows us to introduce the main research directions that we
considered in this thesis. As this manuscript is written from a mathematician’s perspective we
only introduce the aspects of the problem that raise the theoretical questions considered in this
thesis. For an agronomic point of view on this problem we refer to (Gautron et al., 2022a).

Experimental set-up Farmers have been reported to primarily seek advice that reduces un-
certainty in highly uncertain decision making environment (McCown, 2002; Hochman and
Carberry, 2011; Evans et al., 2017). Let us consider a group of farmers who would like to
collectively learn to improve their crop management practices for a rain-fed crop. In the context
of increasing global food demand, the experiment is aimed toward small farmers under chal-
lenging weather and soil conditions, such as maize farmers in Sub-Saharian Africa. The global
objective of the experiment is to help farmers find good crop-management practices, while not
putting their own food security at risk. We assume that some experts can provide a learning
algorithm that would meet these objectives, and that during several consecutive seasons some
volunteers in the group are willing to follow the suggestions of this learning system. In the
following, we try to define some of the most important aspects that need to be considered to
design such algorithm, and leading to the questions that we tried to tackle during this thesis.

We can first elaborate on what defines a crop management practice. In this experiment
the crop species and type of soils are fixed for the group of farmers, which still lets several
factors to optimize: the planting date, that impacts the weather during crop growth, or the
fertilization policy (quantity, planning, . . . ). Furthermore, all these elements can be defined as
a set of rules to follow, allowing some adaptation to external events (e.g weather conditions). A
crop management policy is then simply defined as the combination of all these choices (or rules).
All the parameters have a direct influence on the efficiency of the policy, with very intricate
effects. Hence, trying to optimize all of them at the same time is a very complex task since
there is a large number of possibilities. For this reason, we propose to simplify this problem by
leveraging existing expert knowledge on the field, by asking experts to design a set of reasonable
crop management policies to try. For each policy the rules are set in advance, and the farmers
will follow them each time the policy is tried.
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Harvest

Figure 2 – A very basic example of crop-management policy

From the point of view of the learning system, which will be our point of view for the rest
of this manuscript, all crop-management policies are in fact considered as black-boxes. We
assume that the joint impact of each part of the process may be very hard to model accurately,
and that the quantity of data we could collect in real life may not be enough to learn a complex
dynamic. We instead assume that we are given a set of policies to try, and that we do not have
enough knowledge to model their relationship. We can then define more precisely the objective
of the algorithm. Ultimately, it would be to find the policy that would be the best according to
the farmers’ needs. However, experiments are costly: each bad trial is potentially deleterious
to the farmer at all steps of the learning process. Hence, we would like to make farmers try
"good" policies most of the time. Summarizing the properties we established in this first part,
we obtain the first important characteristic that should be satisfied by a learning system.

Characteristic 1: The learning algorithm’s objective is to recommend most often the best policy
among a finite set of policies provided by experts, during the whole learning phase.

Evaluation of the policies In order to characterize our problem the next step is to define
how to compare policies and determine which one is the best. We first need to consider the
output obtained after a farmer applies a recommendation: at the end of the season, the crops
are harvested and the farmer can observe a realized yield for this season. The yield is simply
the ratio of the quantity of crop harvested divided by the field surface (e.g in kg/ha). More
sophisticated criterion can be used, for instance by taking into account the economic and
environmental performance of the fertilization policy. In any case, we consider that each
recommendation followed by the farmer leads to an observable numeric output at the end
of the season, that we call a reward. We also assume that the higher a reward is, the better
it is for the farmer. The main challenge for the learning strategy is that this output depends
on many factors that are external to crop-management: weather conditions during the crop
growing process (rainfalls, temperature,. . . ), potential diseases, pests, extreme climate events,
crops genetics . . .making the outcome very uncertain. Hence, for a fixed policy we can assume
that the rewards follow a probability distribution, and thus each policy needs to be tried many
times as they can all provide both good and bad outcomes.
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Characteristic 2: The outcome (reward) when applying a fixed crop-management policy is
uncertain, and follows a probability distribution.

To be able to learn something from the observed data we need some minimum knowledge
about these distributions. Fortunately, working with the DSSAT1 simulator (Hoogenboom et al.,
2019) can give us some intuitions. Harnessing more than 30 years of expert knowledge, this
simulator is calibrated on historical field data (soil measurements, genetics, planting date...)
and generates realistic crop yields. Such simulations can be used to explore crop management
policies in silico before implementing them in the real world, where collecting enough data
would take several years. Recently, Gautron et al. (2022b) implemented a Gym environment
compatible with DSSAT, making its access easier for the ML community.

With DSSAT, we can have a look at the kind of distributions we can expect to observe in the
real-world experiment. We implemented in the simulator conditions similar to Southern Mali
for maize crops, and sampled 106 observations obtained by trying 7 different planting dates.
Hence in this example each one of the 7 crop-management policy is simply characterized by
a unique planting date, everything else being equal. The resulting distributions incorporate
historical variability as well as exogenous randomness coming from a stochastic meteorologic
model. We provide the histogram obtained for each policy in Figure 3. The main remark that
comes from this figure is that the distributions hardly fit the usual parametric models that
are generally used in machine learning (e.g the distributions are gaussian): they are typically
right-skewed, multimodal and exhibit a peak at zero corresponding to years of poor harvest.
Hence, the question of the right assumptions we can make on the reward distributions is crucial
to design our learning algorithm.

Characteristic 3: The reward distributions do not necessarily fit a convenient parametric model
(e.g gaussian). We need to consider alternative assumptions.

Now that we raised the question of the kind of distributions that will generate the rewards we
need to define the way to evaluate and rank these distributions (and hence the crop-management
policies). The most intuitive criterion is certainly to compare their expected reward. However,
in our situation it is possible that the expected reward is not a satisfying metric. Assume a
context where we want to ensure food security for the community of farmers that is part of
the experiment. In that case, if we consider the distributions of Figure 3 we may prefer the
distribution in salmon (last one) with an average yield of 3504 kg/ha and a relatively small
probability of harvesting 0 kg/ha than the cyan distribution (3rd on top) with an expected

1Decision Support System for Agrotechnology Transfer is an open-source project maintained by the DSSAT Foundation,
see https://dssat.net/
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0 3013 9259 0 3271 8791 0 3630 8095 0 3397 8119

0 3179 8281 0 3317 8656 0 3504 7922

Figure 3 – Distribution of simulated dry grain yield (kg/ha) for seven different planting dates, all other
parameters being equal. Reported on the x-axis are the distribution minimum, mean and maximum
values. The optimal arm is the third one (mean 3630 kg/ha) if we want to maximize the expected yield.

reward of 3630 kg/ha (overall winner in terms of expectation) but a relatively large probability
of harvesting nothing. This kind of preference can be considered by the learning system by
introducing a risk-aware performance metric, for instance.

Characteristic 4: Depending on the preferences of the farmers, the performance of crop-
management policies can be evaluated using their expected reward or by considering alternative
performance metrics (e.g risk-aware).

The different elements introduced so far are already challenging from a theoretical point of
view and are at the core of our main contributions, but we can also introduce some additional
features of our problem that are relevant for practical implementation in real-world conditions.

Non-Stationarity As the experiment is going to last for several years, we can expect that some
factors may change between the beginning and the end (if there is one) of the experiment. For
instance climate change may have an impact on the quality of all crop-management policies,
potentially making a previously sub-optimal policy become optimal at some point.

Characteristic 5: The distributions of rewards may evolve with time due to external factors.

The literature on that topic is already quite diverse, but we will study how one of the
algorithms that we developed during this thesis (to address previous points) can be adapted
for this context.
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Batch learning In the previous parts we postulated that a group of farmers is willing to
participate in the experiment. We assume that we cannot control their numbers (it is given at
each season), but our algorithm needs to be able to simultaneously provide recommendations
to many farmers at the beginning of each season, and receive all the corresponding rewards
when the season ends. We call the group of farmers participating to the experiment during a
given season a batch. Ideally, we would like to diversify the recommendations in the early steps.

Characteristic 6: The learning algorithm needs to be adapted for a "batch" setting, and to
diversify the recommendations inside the first batches of the experiment.

This question was not central during the thesis, but we describe it for completeness in the
introduction of this realistic problem. Indeed, it is clear that without the batch setting it would
be impossible to collect enough data to train a learning algorithms, as a growing season can
take up to one year.

We see that this relatively simply formulated problem already raises several fundamental
questions, that are associated with different lines of research in Multi-Armed Bandit:

Summary of the features of our motivating example:

• Characteristics 1 and 2 describe the Stochastic Multi-Armed Bandits (MAB) problem in
the regret minimization setting.

• Characteristic 3 suggests to investigate in details the guarantees that MAB algorithms
can obtain according to the assumptions they make and use on the distributions. We
will explore the different kind of assumptions presented in the literature.

• Characteristic 4 suggests to consider alternative criterion to the expected reward,
with a focus on risk-awareness.

• Characteristic 5 made us explore the vast literature on non-stationary bandits.

• Characteristic 6 suggests to investigate how bandit algorithms can learn with batch
feedback.

In Chapter 1 we introduce the theoretical formalism associated with all these points, and the
related literature. After detailing the existing works on these topics, we explain our theoretical
contributions.
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Chapter 1

Introduction to some Bandit Problems

In this chapter we introduce the theoretical formalism associated with the different questions
raised by the recommendation problem in agriculture that we introduced in the preliminary
part of this thesis. After defining the proper mathematical formalism, we provide an overview
of existing works in each of these domains. We also explain how our contributions fit into the
context of existing research.
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Introduction to some Bandit Problems

1.1 Stochastic Multi-Armed Bandits

A Multi-Armed Bandit (MAB) is a sequential decision-making problem in which a learner (or
bandit algorithm) sequentially samples from K unknown distributions called arms. In each
successive round the learner chooses an arm At ∈ {1, . . . ,K} and obtains a random reward Xt

drawn from the distribution of the chosen arm. The choice of arm At depends on the strategy
of the learner, that is based on the past observations Ht = (A1, y1, . . . , At−1, Xt−1). In the
standard formulation of the bandit problem this strategy aims at maximizing the expected sum
of rewards obtained after a time horizon T . This is equivalent to minimizing the regret, defined
as the difference between the expected total reward of an oracle strategy always selecting
the arm with largest mean and the expected total reward of our strategy. In the rest of this
manuscript we denote by (νk)k∈{1,...,K} the distributions of the arms, (µ1, . . . , µK) their means,
and assume that the arms belong to a family of distributions F .

Definition 1.1 (Regret). Consider a policy π and a bandit problem ν = (ν1, . . . , νK). Using the
notation µ⋆ = maxk∈{1,...,K} µk, the regret after T rounds is

Rν(T, π) = µ⋆T − Eν,π

[
T∑
t=1

Xt

]
= Eν,π

[
T∑
t=1

(µ⋆ − µAt)
]
.

From that definition, it is clear that a policy that minimizes the regret needs to sample as
often as possible arms with means that are close to µ⋆. An arm k with mean µk < µ⋆ is said to
be sub-optimal, and we call the quantity ∆k = µ⋆ − µk the sub-optimality gap (often referred to as
gap for simplicity). We further define the number of pulls of any arm k ∈ {1, . . . ,K} at time T
as Nk(T ) =

∑T
t=1 1(At = k), which is simply the number of rounds at which arm k has been

selected by the algorithm and pulled. Using these two quantities, we can conveniently rewrite
the regret as

Rν(T, π) = Eν,π

[
T∑
t=1

(µ⋆ −
K∑
k=1

µk1(At = k))
]

=
K∑
k=1

∆kEν,π[Nk(T )] . (1.1)

Thanks to this equation, it appears clearly that an algorithm with small regret has to
minimize the expected number of pulls of each sub-optimal arm. To do that, it needs to balance
exploration (gaining information about arms that have not been sampled a lot) and exploitation
(select arms that look promising based on the available information). Before elaborating on
the many approaches that have been proposed to solve this problem, it is interesting to have a
look on the theoretical guarantees that are achievable by a bandit algorithm. To reformulate,
we want to know what is the smallest expected number of pulls of a sub-optimal arm an
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1.1 Stochastic Multi-Armed Bandits

algorithm can obtain for a specific class of problem F , that we also call family of distributions.
In the standard bandit setting the answer to this question has been known for a long time
already, with a first lower bound provided by Lai and Robbins (1985) for parametric families of
distributions. Before stating their result, we recall the definition of the Kullback-Leibler divergence
between two distributions ν1 and ν2, where ν2 is absolutely continuous with respect to ν1:

KL(ν1, ν2) = Eν1

[
log

(dν1
dν2

)]

Lemma 1.2 (Lai & Robbins lower bound (Lai and Robbins, 1985)). Assume that the distribu-
tions ν = (ν1, . . . , νK) ⊂ FK are continuously parameterized by their means. Then under any
uniformly efficient strategy π, that is any π satisfying Rν(T, π) = o(Tα) for any α > 0 and any ν,
the number of pulls of any sub-optimal arm k satisfies

lim inf
T→∞

Eν,π[Nk(T )]
log(T ) ≥ 1

kl(µk, µ⋆)
, (1.2)

where kl(µ, µ′) is the Kullback-Leibler divergence between the distribution of mean µ and that of
mean µ′ in the considered family of distributions.

This result applies to several families of distributions that are widely used in practice, such
as Gaussian (with shared variance), Bernoulli, Poisson or Exponential distributions. More
generally, the result holds if the distributions come from a single-parameter exponential family of
distributions (SPEF). A family F is a SPEF if there exists a parameter set Θ and some functions
A : R 7→ R and b : Θ 7→ R such that for any distribution ν ∈ F , there exists a parameter θ ∈ Θ
such that ν (that we denote then by νθ) satisfies

dνθ
dη (x) = exp(θx− b(θ)) ,

for any x, and where η is a reference measure. Some properties of these families of distribu-
tions can be found in (Cappé et al., 2013), among many other resources. For instance, the mean
of ν is then equal to b′(θ) and the KL divergence between the distribution of parameter θ1 and
the one of parameter θ2 is equal to

kl(b′(θ1), b′(θ2)) = (θ1 − θ2)b′(θ1) + b(θ2) − b(θ1) .

Back to bandit algorithms, the lower bound in Equation (1.2) teaches us that a reasonable
strategy can expect to pull the sub-optimal arms a logarithmic number of times, and that it is
impossible to obtain a better constant before the logarithm than the one in Equation 1.2. In the
first case we simply say that the algorithm has a logarithmic regret, while an algorithm matching
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Introduction to some Bandit Problems

this lower bound1 is said to be asymptotically optimal. Lemma 1.2 has later been extended by
Burnetas and Katehakis (1996) for any (possibly non-parametric) family of distribution F .

Lemma 1.3 (Burnetas & Katehakis lower bound (Burnetas and Katehakis, 1996)). Consider
a bandit ν = (ν1, . . . , νK) ⊂ FK . Under any uniformly efficient algorithm the number of pulls of
any sub-optimal arm k must satisfy

lim inf
T→∞

Eν,π[Nk(T )]
log(T ) ≥ 1

KF
inf(νk, µ⋆)

, (1.3)

where KF
inf(νk, µ⋆) = infG∈F {KL(νk, G) :EG(X)>µ⋆}.

Again, any algorithm matching this lower bound is said to be asymptotically optimal for the
family F . A very common example of such non-parametric family is the set of distributions with
supports admitting a known upper boundB. In that case, the KF

inf has been studied in depth by
(Honda and Takemura, 2010), who provide its dual form and use it to derive an asymptotically
optimal strategy.

Remark 1.4 (Other notions of optimality). In this thesis we study the optimality of bandit
algorithms in terms of problem-dependent guarantees. Other kind of results are studied in the
literature, such as minimax (worst-case) optimality (see for instance Chapters 9 and 15 of Lattimore
and Szepesvári (2020)). These bounds are typically in O(

√
KT ), and the constant does not depend

on the instance of the problem.

Notably, a line of work on best-of both worlds consists in deriving algorithms that would
achieve simultaneously optimal problem-dependent regret for stochastic bandits and optimal regret
for adversarial bandits (Zimmert and Seldin, 2021; Ito et al., 2022), but with a weaker notion of
problem-dependent optimality in the stochastic case. These work are out of the scope of this thesis.

1.1.1 A non-exhaustive overview of multi-armed bandit algorithms

Multi-Armed Bandits have been a very active research field in the past years, and summarizing
all contributions to this domain would be a tremendous task. For this reason we detail in this
section a selection of bandit algorithms, with a special focus on the ones that are asymptotically
optimal. We refer the reader to e.g (Lattimore and Szepesvári, 2020) for a broader survey of this
research area. Motivated by the third characteristic that we raised in the use-case considered
in the introduction we are specifically interested by the following questions: what type of

1i.e that satisfies lim infT →∞
Eν,π [Nk(T )]

log(T ) ≤ 1
kl(µk,µ⋆)
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1.1 Stochastic Multi-Armed Bandits

approaches can lead to optimal algorithms? For what type of distributions do they achieve
optimality? What kind of prior knowledge on the distribution do they require to be optimal?

Before detailing the main families of algorithms that can be found in the literature we define
an index policy, which is a generic name for a bandit algorithm that (1) computes a quantity
(index) for each arm using past observations for this arm only, and (2) pulls the arm with
the largest index. We detail this principle in Algorithm 1.1, that will be useful in the next
paragraphs since many bandit algorithms are index policies.

Definition 1.5 (Index policy). Consider any function I that, given the time horizon t and a
set of observations X returns a scalar I(X , t) (the output can be random or deterministic). Then,
algorithm 1.1 is called an index policy, based on I .

1 Input: Horizon T , K arms, function I
2 for t ∈ {1, . . . ,K} do
3 Pull arm t, set Xt = {Xt} ; ▷ Initialize by pulling each arm once
4 end
5 for t ∈ {K + 1, . . . , T} do
6 for k ∈ {1, . . . ,K} do
7 Get Ik = I(Xk, t) ; ▷ Obtain the value of the index for each arm
8 end
9 Pull arm At = argmax

k∈{1,...,K}
Ik ; ▷ Pull the arm with the largest index

10 Observe Xt ; ▷ Collect the corresponding reward
11 Update XAt = XAt ∪ {Xt} ; ▷ Add the reward to the history of At

12 end
Algorithm 1.1: Generic Index Policy

Optimism in Face of Uncertainty This family contains the famous Upper Confidence Bound
algorithm (UCB1) (Agrawal, 1995; Auer et al., 2002a). Algorithms based on the UCB principle
achieve logarithmic regret when it is possible to derive a concentration inequality on the empirical
means, typically in a setting with bounded/sub-gaussian distributions where the support/sub-
gaussianity parameter is known. For instance, UCB1 is an index policy that computes an
"optimistic" value for the empirical mean of each arm. For distributions bounded in [0, 1] this
strategy takes the form of Algorithm 1.2

Unfortunately, this simple strategy is not asymptotically optimal. A refinement of UCB with
tighter confidence intervals using the Kinf quantity provided in the lower bound was proposed
in (Cappé et al., 2013) in order to achieve asymptotic optimality: the KL-UCB algorithm is
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Introduction to some Bandit Problems

1 Input: Data Y = (y1, . . . , yn), time t

2 Return: IUCB = 1
n

∑n
i=1 yi +

√
2 log(t)
n ; ▷ Mean of observations + Confidence

Bonus
Algorithm 1.2: Index of UCB1 (Auer et al., 2002a) for a distribution supported in [0, 1]

optimal for bounded distributions with known upper bound, and kl-UCB is optimal for SPEF.
Interestingly, in a recent paper (Agrawal et al., 2021a) the KL-UCB algorithm has been proved to
be optimal for a third class of distributions with a bounded-moment condition, which is a usual
assumption for heavy tail distributions. We report in Algorithm 1.3 a generic KL-UCB strategy,
given that the family of distributions F is known and the function KF

inf can be computed.

1 Input: Empirical distribution FY built with n observations, t, family F , function f
2 Return: IKF

inf-UCB = max{µ : nKF
inf(FY , µ) ≤ f(t)}

Algorithm 1.3: Index of KF
inf-UCB (Cappé et al., 2013; Agrawal et al., 2021a)

Note that for parametric family (kl-UCB) the KF
inf function is replaced by the kl of Equa-

tion (1.2). The threshold f is typically of the form f(t) = log(t) + c log log(t), with a parameter
c > 2 (Cappé et al., 2013). Hence, the Optimism in Face of Uncertainty paradigm can lead to
optimal algorithms with appropriate knowledge on the family of distributions F .

Divergence-based algorithms We introduce a second class of algorithms that we consider as
a standard approach in Multi-Armed Bandits, relying on empirical estimates of KF

inf when the
family F is known. Let us denote by Fk(t) the empirical distribution of arm k at time t, µk(t) its
empirical mean, and define µ⋆(t) = maxk∈{1,...,K} µk(t). Then, the idea of these algorithms is to
directly use the empirical divergence KF

inf(Fk(t), µ⋆(t)). Indeed, this quantity measures how far
the empirical distribution of an arm is to the current best arm, and with appropriate concentra-
tion tools this is sufficient to build optimal strategies. Three approaches have been developed
using this principle: MED (Honda and Takemura, 2011), DMED (Honda and Takemura, 2010)
and IMED (Honda and Takemura, 2015). The first one is a randomized algorithm, where at
each round the probability of sampling an arm is proportional to exp(−Nk(t)KF

inf(Fk(t), µ⋆(t))).
Surprisingly this simple but intuitive strategy is proved to be optimal only for multinomial
distributions (Honda and Takemura, 2010). It was however recently re-discovered in (Bian and
Jun, 2022) under the name Maillard Sampling (MS) and analyzed for sub-gaussian distributions
(the authors proved logarithmic regret), showing its potential. On the other hand, DMED and
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1.1 Stochastic Multi-Armed Bandits

IMED are both deterministic approaches that compare the empirical divergences but adding
some costs to ensure sufficient exploration. As an example, we detail IMED in Algorithm 1.4.
Note that IMED is not an index policy in the sense that it uses the empirical best average at the
current time step for all arms. However, for simplicity we write it as an index policy, where the
minus sign is due to the fact that the selected arm minimizes the function inside the parenthesis.

1 Input: Empirical distribution FY computed with n data, family F , current best
empirical mean µ̂⋆

2 Return: IIMED = −
(
nKF

inf(FY , µ̂⋆) + log(n)
)

Algorithm 1.4: Indexed Minimum Empirical Divergence (Honda and Takemura, 2015)

As for KL-UCB, this algorithm can be implemented for any family of distributions F for
which KF

inf can be computed. In (Honda and Takemura, 2010, 2015) the authors respectively
prove the asymptotic optimality of DMED and IMED for bounded distributions with known
upper bound. IMED was later proved to be also optimal for light-tailed SPEF by Pesquerel et al.
(2021), and works very well in practice (see our experiments in Chapter 2 and 6).

Thompson Sampling The last widespread category of algorithms is Thompson Sampling (TS),
which is a family of Bayesian algorithms named after Thompson (1933). Contrarily to UCB-
based methods TS is a randomized algorithm, which means that if we run a step of the algorithm
twice with the same data a different arm can be pulled. Indeed, the learner provides a prior
distribution on the means of each arm to the algorithm, that then computes at each step the
corresponding posterior distribution given the observations collected for each arm. Then, a step
of TS consists in sampling a parameter (or to simplify, a mean) for each arm according to their
posterior distribution, and to choose the arm with the largest sampled mean. Hence, TS is still
an index policy, but with a randomized index. We summarize TS for a general prior/posterior
distribution in Algorithm 1.5.

1 Input: Data Y , prior distribution p
2 if Y = ∅: sample µ̃ ∼ p

3 else Sample µ̃ ∼ P(Y, p), where P(Y, p) is the posterior distribution after
4 observing the dataset Y and using the prior p.

Algorithm 1.5: Sampling step of TS for a general prior/posterior
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Introduction to some Bandit Problems

Historically, TS was first studied for Bernoulli distributions since the application considered
in (Thompson, 1933) was clinical trials. In this setting TS using a Beta-Bernoulli conjugate
prior is asymptotically optimal, which was proved much later by (Agrawal and Goyal, 2013a;
Kaufmann et al., 2012). This result was then extended to general SPEF in (Korda et al., 2013),
using Jeffreys prior. Intuitively, the algorithm works because: (1) in the first rounds the prior
distribution allows to explore each arm a sufficient number of times, and (2) when arms are
sampled enough the posteriors are concentrated around the true means so that the algorithm
will mostly exploit the best arm.

Recently, the principle of TS has been extended to obtain an optimal algorithm for bounded
distributions with known upper bound: Non-Parametric Thompson Sampling (NPTS) (Riou and
Honda, 2020). The idea of the authors is to build on the Beta-Bernoulli Thompson sampling.
They first extend it for Multinomial distributions, where the Beta-Bernoulli prior/posteriors
are naturally replaced by Dirichlet distributions (see Appendix 5.7 for a short summary of
the properties of this distribution). The resulting Multinomial TS algorithm is asymptotically
optimal when the arms have a known finite support. Then, applying the same mechanism
for general bounded distributions leads to using a sample from a Dirichlet distribution of
parameter (1, . . . , 1) to re-weight the observations. We denote this distribution by Dn for n-
dimensional weights. This procedure is actually known as the Bayesian Bootstrap, introduced
by Rubin (1981). To ensure sufficient exploration the known upper bound of the support is
added to the set of observations at the beginning of the experiment. We summarize NPTS in
Algorithm 1.6.

1 Input: Data Y = (y1, . . . , yn) upper bound B
2 Return: INPTS =

∑n
i=1wiyi + wnB, where w ∼ Dn+1

Algorithm 1.6: Index of Non Parametric Thompson Sampling (Riou and Honda, 2020)

The fact that NPTS is asymptotically optimal is noteworthy, because contrarily to KL-UCB it
does not require to explicitly compute KF

inf . This function naturally appears in the concentration
inequalities related to the Dirichlet distribution. This remarkable feature made us consider this
algorithm more thoroughly, and Part II of this thesis is dedicated to extensions of NPTS.

Re-Sampling algorithms In the past years, there has been a surge of interest for the design of
non-parametric algorithms that would perturb the empirical distribution of the data instead of
trying to fit it in an already defined model, and are therefore good candidates for the problem
in agriculture that we are considering. A first line of works explored re-sampling schemes (Efron
and Tibshirani, 1994) to balance exploration and exploitation (Osband and Roy, 2015; Kveton
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1.1 Stochastic Multi-Armed Bandits

et al., 2019a,b; Wang et al., 2020). The idea is to compute the mean of a noisy version of the
empirical distribution by, for instance, drawing random weights for each of their observations.
In (Kveton et al., 2019b) the authors propose the term of General Randomized Exploration for
index policies satisfying this principle.

In fact, Thompson Sampling algorithms are part of the GRE framework, but this family
contains also non-Bayesian algorithms such as the non-parametric bootstrap (sampling with
replacement) presented in Algorithm 1.7.

1 Input: Data Y = (y1, . . . , yn)
2 Return: IB = 1

n

∑n
i=1 zi, where ∀i, zi is drawn uniformly at random in Y

Algorithm 1.7: Index based on sampling with replacement

Unfortunately, re-sampling in itself is not enough: an index policy based on Algorithm 1.7
trivially fails to achieve sub-linear regret in some cases. The question is then to determine both
what kind of re-sampling procedure and/or what kind of modifications to the empirical data
are needed to make this method work. In (Kveton et al., 2019a,b), the authors propose to perturb
the empirical mean by adding fake rewards in the history (by either directly adding them or
sampling them at each step). They prove that when appropriately tuned these algorithms
can achieve logarithmic regret for bounded distributions. Interestingly, for the gaussian/sub-
gaussian case Wang et al. (2020) proposed an algorithm with gaussian weights, that also
achieves logarithmic regret. So far NPTS (Riou and Honda, 2020) is the only algorithm using
this principle that achieve optimality in its setting, using the Bayesian Bootstrap. An interesting
open question is to determine if non-Bayesian algorithms based on bootstrapping could achieve
optimal regret.

Intuitively, the reason for the failure of the non-parametric bootstrap is the potential under-
estimation of a good arm due to bad rewards in the first draws. To circumvent this issue,
TS uses a convenient prior distribution while the re-sampling based algorithms introduce
additional data points to improve exploration (e.g fake good samples). Interestingly, another
class of algorithms consider an alternative by instead penalizing the arms that have been pulled
the most so far, and hence do not require any exploration bonus: these algorithms are based
on sub-sampling. This idea was introduced in (Baransi et al., 2014) with Best Empirical Sample
Average (BESA). It relies on pairwise comparisons between arms: the arm was has been less
pulled (challenger) uses its empirical mean, while the other arm uses the empirical mean of a
sub-sample of its history of the same size as the challenger’s. The core idea is that if the two
means are computed with the same number of samples the comparison is "fair". In BESA, the
sub-sample is drawn using sampling without replacement. We summarize this comparison
step in Algorithm 1.8.
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1 Input: Arm 1 with X = (x1, . . . , xn), arm 2 with Y = (y1, . . . , ym), n ≥ m
2 Compute µy = 1

m

∑m
i=1 yi

3 Draw (z1, . . . , zm) without replacement in X , compute µz = 1
m

∑m
i=1 zi

4 Return: argmaxy,z{µy, µz} ; ▷ Return winning arm

Algorithm 1.8: pairwise comparison in BESA (Baransi et al., 2014)

When there are only 2 arms, at each round the arm winning the comparison is pulled. With
more arms, Baransi et al. (2014) propose to organize a tournament: in successive rounds half
of the arms is eliminated until only 1 arm remains. Unfortunately, the tournament is hard
to analyze and Baransi et al. (2014) prove logarithmic regret only for K = 2. Furthermore,
some of the assumptions they required may not be valid in general. However, the general
idea of comparing sub-samples of the same size is interesting and differs from all existing
approaches. More recently, Chan (2020) further explored this idea by proposing the Sub-Sample
Mean Comparison (SSMC) algorithm. To analyze the algorithm for K > 2 arms, the author
propose a more convenient leader vs challenger approach: the arm that has been pulled the
most so far is defined as leader, and then competes with every other arm (called challengers) in
pairwise comparisons. Then, any winning challenger or the leader (if none) is pulled. Another
difference with BESA is that this time the sub-sample used is not random: it is the worst
sequence of successive observations (in order of collection). Hence, the mean of this sub-
sample is intuitively an empirical lower bound of the true mean of the leader. We summarize
the comparison step of SSMC in Algorithm 1.9

1 Input: Arm 1 with X = (x1, . . . , xn), arm 2 with Y = (y1, . . . , ym), n ≥ m
2 Compute µy = 1

m

∑m
i=1 yi

3 Compute µx = minj∈{1,...,n−m+1}
1
m

∑m−1
i=0 xj+i

4 Return: argmaxx,y{µx, µy} ; ▷ Return winning arm

Algorithm 1.9: pairwise comparison in SSMC (Chan, 2020)

The strength of these algorithms is that they do not use any information on the arm’s distributions.
While the performance of BESA is not clear, in (Chan, 2020) the authors prove that SSMC is
asymptotically optimal when arms come from the same SPEF. This is actually a very strong
result, since the identity of the SPEF does not have to be specified by the learner. In the works
presented in this thesis we aim at extending these results and bridging the gap between BESA
and SSMC.
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1.1 Stochastic Multi-Armed Bandits

Summary In the previous paragraphs we detailed the three dominant families of bandit
algorithms (UCB-based algorithms, Thompson Sampling, and Minimum Empirical Divergence),
as well as alternative approaches based on re-sampling and sub-sampling. For the more standard
approaches we focused on the ones achieving asymptotic optimality, in the sense that their
regret matches the lower bound of Burnetas and Katehakis (1996). We motivate this choice
by the practical considerations related to the recommendation problem in agriculture that we
introduced in the preamble of this thesis. Indeed, we are more interested in problem-dependent
guarantees, since there is no reason for the bandit problem we consider to be arbitrarily difficult
in practice. Then, the experiments that we perform in the upcoming chapters actually show that
the asymptotically optimal algorithms are also performing better in practice in our examples,
including the ones using a realistic crop-yield simulator emulating our problem. We provide
in Table 1.1 a summary of asymptotically optimal algorithms, the family of distributions for
which they are optimal, and the knowledge they require to achieve these guarantees.

Table 1.1 – Comparison of competitor bandit algorithms matching the Burnetas & Katehakis bound
for various assumptions on an arm distribution ν. Elements listed as parameters are considered prior
knowledge and are used within the algorithm.

Algorithm Scope for optimality Algorithm parameters

kl-UCB1

IMED2

Thompson Sampling3

SSMC4

Single Parameter
Exponential Family (SPEF)

(νθ)θ∈Θ

kl(θ, θ′)
kl(θ, θ′)
Prior/Posterior
Non-Parametric

IMED2 Supp(ν) ⊂ (−∞, B]
ν is light-tailed⋆ KFB

inf

Empirical KL-UCB1

NPTS5 Supp(ν) ⊂ [b, B] KFB
inf
B

KLinf-UCB6 Fε,B = {ν : E[|X|1+ε] ≤ B} KFε,B

inf

1. Cappé et al. (2013), 2. Honda and Takemura (2015), 3. Thompson (1933); Agrawal and Goyal (2013a); Korda et al. (2013),
4. Chan (2020), 5. Riou and Honda (2020), 6. Agrawal et al. (2021a)
⋆ i.e there exists some λ0 ∈ R such that EX∼ν [eλX ] < +∞ for all λ ∈ [−λ0, λ0].

Contribution We consider light-tailed distributions, since extreme events in agriculture
are more likely to lead to poor yields than exceptionally good ones. We consider the
two dominant assumptions encountered in the literature: Single-Parameter Exponential
Families and bounded distributions. In each setting, one approach caught our attention:
NPTS for bounded distributions, as not having to compute the Kinf function at each step is
computationally appealing; and SSMC for SPEF since it does not require the knowledge of
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the SPEF to be optimal. Hence, we naturally studied extensions of these two algorithms to
consider the question:

How can we design algorithms with the best theoretical guarantees with a minimum knowledge on
the distributions?.

The first part of this thesis is dedicated to sub-sampling algorithms, inspired by SSMC and
BESA, while in the second part we study some generalizations of NPTS. Regarding the
standard regret minimization problem, in Chapter 2 we propose a family of algorithms
called Sub-Sampling Dueling Algorithm that is optimal for SPEF, but also achieves logarithmic
regret on a broader class of distributions that we further characterize. In particular, we
analyze the assumptions that are needed to obtain at least a logarithmic regret in a more
general setting than the ones with fully-parametric assumption. Then, in Chapter 6 we study
a generalization of Non-Parametric Thompson Sampling outside the family of bounded
distributions with a known upper bound, from alternative families of bounded distributions
to general light-tailed distributions. For the Dirichlet Sampling algorithm that we propose,
we found a trade-off between the theoretical guarantees (optimal, logarithmic, or super-
logarithmic regret) and the generality of the family of distributions considered, that can be
resolved by the practitioner depending on the knowledge available on the distributions.

1.2 Bandits with alternative performance metrics

Over the past few years, a number of works have focused on adapting multi-armed bandit
strategies to optimize another criterion than the expected cumulative reward. Indeed, in a
large number of application domains (healthcare, agriculture, marketing,...), one needs to take
into account personalized preferences of the practitioner that are not captured by the expected
reward. For example, in the preamble of this thesis we introduced a crop-management policy
recommendation problem: small farmers are typically risk-averse as their harvest is necessary
to ensure the subsistence of their household.

Assume that the learner decides to evaluate a bandit algorithm with a metric U . Then,
consider two datasets of n collected points X = (X1, . . . , Xn) and Y = (Y1, . . . , Yn) and assume
that U can return a numeric value for U(X ) and U(Y) for any value of n. We say that the
trajectory X is better than Y with respect to U if U(X ) > U(Y). This is sufficient to propose a
natural adaptation of the expected regret for an alternative performance metric U .
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1.2 Bandits with alternative performance metrics

Definition 1.6 (U-regret). Consider a metric U that can return a numeric value for any trajectory
of observations YT = (Y1, . . . , YT ) for any time horizon T , and that larger values of U are preferred
by the learner. Then, the U -regret can be defined as

RU
ν (T, π) = Eν,π⋆ [U(YT )] − Eν,π [U(YT )] ,

where π⋆ is the oracle optimal policy, π⋆ = argmaxπ Eν,π [U(YT )].

Sometimes the performance metric can only be defined for a sampleX1, . . . , Xn (e.g extreme
values, range), but in the majority of cases it can be defined more generally for a probability
distribution. Being able to compute the value of a performance metric for general distributions
is interesting because it allows us to evaluate the arms of a bandit problem of distributions
(ν1, . . . , νK). We choose to refer to the distributions through their cumulative distribution functions
(cdf) F1, . . . , FK , and to use the notation U(F ) (where F is a cdf). Then, we can compare the
quality of the arms by simply computing U(F1), . . . , U(FK). This allows us to define the
sub-optimality gap of an arm in an analogous way as for the standard expected regret.

Definition 1.7 (Sub-optimality gaps in terms of metric U). Consider a bandit ν =
(ν1, . . . , νK) ⊂ FK with respective cdf F1, . . . , FK . Consider a metric U : F → R, then the
U-gap of any arm k ∈ {1, . . . ,K} is defined as

∆U
k = max

j∈{1,...,K}
U(Fj) − U(Fk)

Interestingly, when U is not linear (as the expectation) the U-regret of Definition 1.6 may
not be convenient to obtain theoretical analysis of bandit strategies. In that case, it may be
relevant to consider an alternative regret definition inspired by Equation (1.1) and involving
the sub-optimality gaps, called proxy regrey.

Definition 1.8 (U-proxy regret). Consider a bandit ν = (ν1, . . . , νK) ⊂ FK with respective cdf
F1, . . . , FK . Denote their respective U-gaps by ∆U

1 , . . . ,∆U
k , then the U -proxy regret is defined as

RU,proxy
ν (T, π) =

T∑
t=1

∆U
k Eν,π [Nk(T )]

13
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Remark 1.9. This definition of the proxy regret is different from the one in (Cassel et al., 2018), that
consider another definition of sub-optimality gaps. However, as regret proofs for the proxy regret
consist in upper bounding the expected number of pulls of sub-optimal arms the guarantees obtained
with one definition easily translate to the other.

1.2.1 Risk Metrics

In statistics, a natural way to analyze a distribution is to compute its moments. The standard
bandit theory is based on evaluating the expectation of the arms, but one could want to consider
moments of higher order. For example some criteria aim at penalizing arms with high variance,
such as the mean-variance (Markowitz, 1952) and the sharpe ratio (Sharpe, 1994). The first
one is a linear combination of the two measures, while the second is the ratio of mean and
standard deviation. Both are widely used in finance due to their simplicity. However, if the
distributions have a complex shape the mean and variance may not capture well their risk
profile. It may be interesting to consider instead a quantile, or Value-at-Risk (VaR). Hence, we
denote by VaRα the quantile of order α ∈ [0, 1]. In order to better capture the behavior on the
tail of the distribution, one can further consider the Conditional-Value-at-Risk (Artzner et al.,
1999; Rockafellar et al., 2000). Several definitions of the CVaR exist in the literature, depending
on whether the samples are considered as losses or as rewards. We consider the reward version:
given a level α ∈ (0, 1], the CVaRα is easily interpretable as the expected reward in the worst
α-fraction of the outcomes. It can hence capture different preferences: α = 1 simply provides
the expectation of the distribution, which expresses risk-neutrality, while making α very small
corresponds to maximizing the expected reward in the worst-case scenarios. We illustrate this
in Figure 1.3. CVaR is further a coherent spectral measure in the sense of Rockafellar et al.
(2000), see (Acerbi and Tasche, 2002)). This definition entails some properties that are generally
considered as desirable for a risk metric. Other general families of risk measures have been
defined, such as spectral risk measures (SRM) (Acerbi and Tasche, 2002), and cumulative prospect
theory (CPT) (Tversky and Kahneman, 1992). Finally, Entropic Risk is also a way to penalize
distributions with heavy tails. We summarize in Table 1.2 some of the measures introduced in
this paragraph with their proper definition (for a distribution of CDF F ) and parameters.

We see that the risk metrics generally require to choose a parameter, that needs to be fixed
in advance by the learner to model its level of risk-aversion. In the next paragraph we introduce
the literature considering risk metrics to evaluate the performance of bandit algorithms.

Risk-aware bandits At a high level, the multi-armed bandit literature considering risk metrics
is largely based on adapting the popular Upper Confidence Bounds (UCB) algorithms (Auer
et al. (2002a)), and is hence mainly focused on deriving appropriate concentration tools for the
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1.2 Bandits with alternative performance metrics

Figure 1.1 – High risk aversion (α ≈ 20%) Figure 1.2 – Low risk aversion (α ≈ 80%)

Figure 1.3 – The Conditional Value-at-Risk (CVaR) of level α is the mean value of the blue area of the
distribution, that stops at VaRα. The red line is the average µ of the distribution.

risk metric under consideration. The first line of works on this topic followed this principle,
and considered variations of the mean-variance criterion (Sani et al., 2012; Vakili and Zhao,
2015; Vakili and Zhao, 2016; Zimin et al., 2014). Szorenyi et al. (2015) study algorithms for the
quantile (Value-at-Risk) criterion in both the regret minimization and the pure exploration
setting, while (David and Shimkin, 2016; Zhang and Ong, 2021) investigate the second problem
only. Interestingly, the algorithm proposed in (Szorenyi et al., 2015) for regret minimization
implements optimism for VaR by comparing the arms using rank statistics of larger order than
the one corresponding to the target quantile. Maillard (2013) focuses on the Entropic Risk and
extend the KL-UCB algorithm of Cappé et al. (2013) for this risk metric under the assumption
that the distributions are bounded with a known upper bound.

More recently the Conditional Value at Risk (CVaR) have received specific attention from the
bandit community (Galichet et al., 2013; Galichet, 2015; Tamkin et al., 2020; Prashanth et al.,
2020) to cite a few). These works focus on proving or refining concentration inequalities for
CVaR under different assumptions on the distributions (e.g as those of Brown (2007); Thomas
and Learned-Miller (2019); Prashanth et al. (2020); Holland and Haress (2020); Bhat and L.A.
(2019a)), and analyzing the corresponding bandit algorithm. Interestingly, Tamkin et al. (2020)
exhibits two possible approaches to implement optimism for CVaR bandits: adding directly an
exploration bonus to the empirical CVaR as in MaRaB (Galichet et al., 2013; Galichet, 2015),
U-UCB (Cassel et al., 2018) or Brown-UCB (Brown, 2007; Tamkin et al., 2020); or exploiting the
link between the CVaR and the CDF to build an optimistic CDF as in CVaR-UCB (Tamkin et al.,
2020), resorting to the celebrated Dvoretzky–Kiefer–Wolfowitz (DKW) concentration inequality
(see Massart (1990)). While the two approaches are equivalent for α = 1 (mean setting), the
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Table 1.2 – Overview of risk metrics

Metric Definition Parameters

Expectation EF [X] =
∫
xdF

Variance VF [X] = σF (X) =
∫

(X − EF [X])2dF

Mean-Variance MVρ = EF [X] − ρVF [X] scaling ρ

Sharpe ratio SRr0 = EF [X]−r0
σF (X) reference value r0

Value-at-Risk VaRα = sup{x ∈ R : F (x) ≤ α} quantile level α

Conditional Value-at-Risk CVaRα = supx∈R

{
x− 1

α

∫
(x−X)+ dF

}
quantile level α

Entropic Risk ERθ = −1
θ log (

∫
exp(−θx)dF ) risk level θ

Spectral Risk SRMϕ =
∫ 1

0 ϕ(β)F−1(β)dβ risk spectrum ϕ

empirical results from (Tamkin et al., 2020) suggest that the second method should be preferred
for α < 1. Our empirical results in Chapter 5 confirm these findings.

Notably, Cassel et al. (2018) provided a unified UCB1-like algorithm for various risk metrics
called U-UCB. They show that if the risk-metric is quasi-convex2 and is a strongly stable perfor-
mance metric the regret of an appropriately tuned U-UCB is logarithmic. The tuning depends
on the metric U , but also on the class of distributions considered, and scales in

√
log(T )/Nk(t)

in the case where the metric is Lipschitz. Strong stability is defined by the two following
properties (from (Cassel et al., 2018)).

Definition 1.10 (Strongly stable performance metric (Cassel et al., 2018)). A metric is said to
be strongly stable if:

1. There exists b > 0, q > 1 and a seminorm ||.|| such that on F extended to the set of empirical
distributions it holds that

|U(F ) − U(G)| ≤ b× (||F −G|| + ||F −G||q) .

2. There exists a > 0 such that for any F ∈ F and x > 0

P (||Fn − F || ≥ x) ≤ 2 exp(−anx2) ,

where Fn denotes an empirical distribution corresponding to n samples drawn from F .

2i.e for two distributions F , G and λ ∈ [0, 1] it holds that U(λF + (1 − λ)G) ≤ max{U(F ), U(G)}.
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1.2 Bandits with alternative performance metrics

For appropriate sets of distributions (e.g bounded), all the risk metrics we mentioned in this
section can satisfy this requirement. Hence, the analysis of U-UCB is very general. Investigating
if other families of algorithms could achieve this level of generality is an interesting perspective.
However, investigating other methods that would be tailored for a specific problem is also still
interesting since (1) the generality of U-UCB may have a cost on the empirical performance (the
confidence bound may not be tight), and (2) U-UCB adapts UCB1, that is known to perform
worse in practice than asymptotically optimal algorithms like TS or KL-UCB for the standard
bandit problem.

1 Input: Horizon T , K arms, performance metric U , (b, q, a) from def 1.10
2 Define IU-UCB : (Y = (y1, . . . , yn), t) 7→ U(FY) + ϕ

(
γ log(T )

n

)
,

3 where ϕ : x 7→ max
{

2b
(
x
a

)1/2
, 2b

(
x
a

)1/2
}

4 Return: IP(T , K arms, IU-UCB)
Algorithm 1.10: U-UCB (Cassel et al., 2018)

So far the only algorithms inspired by Thompson Sampling for risk-aware bandits are
restricted to the fully-parametric gaussian case: Zhu and Tan (2020) analyzed the mean-variance
criterion, while Chang et al. (2020) considered a risk-constrained setting mixing expectation
and CVaR. Hence, developing new TS algorithms for risk-aware bandits, especially for non-
parametric settings, is an interesting perspective. Finally, the notion of asymptotically optimal
bandit algorithm (Burnetas and Katehakis, 1996) has not been explored yet in risk-aware bandits
and defining the best achievable performance in that case is an interesting question that we
answer for the CVaR metric. Furthermore, this explains why divergence-based strategies have
not been developed yet for this setting.

Contribution In Chapter 5 we introduce an optimal Thompson Sampling algorithm for
CVaR bandits, building on the NPTS algorithm of Riou and Honda (2020). We chose
to study the CVaR because it is an easy to interpret and widely used metric, and the
choice of the quantile level α allows to model different possible levels of risk-awareness.
Furthermore, we think it may be better adapted than the risk metrics based on moments
(Mean-Variance, Sharpe ratio, . . . ) for the case study introduced in the foreword of this
thesis, as the distributions displayed in Figure 3 suggest that the mean and variance may
not be satisfying to evaluate them for this problem. We considered that the most accessible
information to the practitioner is often whether or not the distribution is discrete, and for
the continuous case how it is bounded. This assumption seems reasonable in applications
where the reward is bounded due to physical constraints. First, we extended the lower
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bound of Burnetas and Katehakis (1996) for CVaR bandits in this setting, establishing
the guarantees that should be achieve by asymptotically optimal algorithms. Then, we
extended the Non-Parametric Thompson Sampling algorithm under the two assumptions
considered: multinomial distributions (M-CVTS) and bounded distributions with known
support (B-CVTS). We prove that both algorithms are asymptotically optimal for the settings
they consider, which is the first result of this type for risk-averse bandits. Finally we show
empirically the benefits of the TS approaches over UCB-based algorithms in practice, on
problems using both synthetic data and the DSSAT simulator.

1.2.2 Extreme Bandits

In the previous paragraphs we introduced the vast literature on risk-aware bandits, and in
particular CVaR bandits that is the topic of Chapter 5. We explained that the CVaR relies on a
quantile level α ∈ (0, 1], where a small α allows to model risk-averse preferences. The question
we can ask is: what happens if we actually want to set α = 0? Intuitively, this would correspond
to an extremely risk-averse learner, wanting to avoid as much as possible worst case scenarii.
While the CVaR is not defined for α = 0, we can instead turn to extreme statistics, by trying for
instance to maximize the expected minimum value collected by the bandit algorithm during
a trajectory. A similar problem has been introduced in the literature by Cicirello and Smith
(2005), and is known as Extreme Bandits. In this setting, the learner’s objective is simply to
collect the largest possible reward. While the objectives are rather different, the theoretical
problems faced when trying to maximize the expected minimum or maximum are very similar.
Hence, the algorithms proposed in the literature for Extreme Bandits could also be applied in
our "extremely risk-averse" setting. For this reason in the following we introduce the literature
associated with the Extreme Bandit problem, even if the risk-averse objective actually suits
better our ideas of applications.

Letting Xk,t be the reward obtained from arm k at time t, a bandit algorithm selects an arm
It using past observations and receives the reward XIt,t. The rewards stream (Xk,t) is drawn
i.i.d. from νk and independently from other rewards streams. The case where distributions
have bounded support is studied by Nishihara et al. (2016), so in the following we assume
that the distributions have unbounded supports. To evaluate an extreme bandit algorithm,
Carpentier and Valko (2014) propose an adaptation of the regret called extreme regret that fits
Definition 1.6 for a performance metric U that returns the maximum of a set of observations,

Rπ
T = max

k≤K
E[max

t≤T
Xk,t] − Eπ[max

t≤T
XIt,t] . (1.4)
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1.2 Bandits with alternative performance metrics

This problem is hard because we are only interested in the asymptotic behavior of the right
tail of the distribution: an arm could be the best for extreme bandits while providing very bad
reward 99% of the time, so intuitively most observations may be useless (or even misleading
in some sense) to the algorithm. Furthermore, the optimal policy may change according to
the time horizon. Consider a simple example with two gaussian distributions N (1, 1) and
N (0, 1.7): for short time horizons the first arm should be preferred, for example with T = 1 the
arm with largest expectation should be preferred. On the other hand, for large time horizons
the arm with the largest variance will provide the best expected maximum. We illustrate this
in Figure 1.4 below.

1 10 20 30 40 50
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Expected maximum with (1, 1)
Expected maximum with (0, 1.7)

Figure 1.4 – Average maximum on 104 samples obtained from N (1, 1) and N (1, 1.7) for a number of
observations ranging from 1 to 50.

In this simple example there exists some time horizon T0 for which the optimal policy
changes. For this reason, we will consider asymptotic performance guarantees with the assump-
tion that one arm asymptotically dominates the others (i.e the optimal policy can only change a
finite number of times). Two types of performance guarantees have been derived in previous
works. Using the terminology of Bhatt et al. (2021), we introduce these two definitions below.

Definition 1.11. An Extreme Bandit algorithm π has a vanishing regret in the weak sense if

Rπ
T = o

T→∞

(
max
k≤K

E[max
t≤T

Xk,t]
)

(1.5)

and π has a vanishing regret in the strong sense if

lim
T→∞

Rπ
T = 0 . (1.6)
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It is now understood that the peculiarities of the Extreme Bandits setting make the al-
gorithms designed for the K-arm setting suboptimal. For this reason a line of works have
designed algorithms specifically for this setting. Furthermore, the question of the assumptions
that are made on the distributions needs to be considered. Existing algorithms for this problem
can be divided into three categories:

1. Fully-parametric approaches (Cicirello and Smith, 2005; Streeter and Smith, 2006a) where
the family of distributions is assumed to be known (e.g Frechet, Gumbel).

2. Semi-parametric approaches: (Carpentier and Valko, 2014; Achab et al., 2017) consider a
setting where distributions satisfy a second-order Pareto assumption.

3. Distribution-free approaches (Streeter and Smith, 2006b; Bhatt et al., 2021), that do not
leverage any assumption on the reward distributions. Assumptions are only required for
the analysis of the algorithms.

The fully-parametric setting is not so different from the standard bandit, since the problem
is reduced to using the estimated parameters to balance exploration and exploitation. The
semi-parametric setting allows more flexibility. To illustrate this, we detail the second-order
Pareto assumption used in (Carpentier and Valko, 2014; Achab et al., 2017).

Definition 1.12 (Second order Pareto (definition 2 in (Carpentier and Valko, 2014))). A
distribution F is se(α, β, C,C ′)-second order Pareto if for x ≥ 0:

|PF (X ≥ x) − Cx−α| ≤ C ′x−α(1+β) ,

which implies that PF (X ≥ x) = Cx−α + O(x−α(1+β)).

With this definition the tail of the distribution is asymptotically very close to the tail of a
Pareto distribution, and the parameter β controls the deviation wrt this asymptotic equivalent.
In (Carpentier and Valko, 2014), weakly vanishing regret is obtained under this assumption,
further assuming that a lower bound on a parameter of the distribution is known to the
algorithm. Achab et al. (2017) refined this analysis and obtained strongly vanishing regret
when this lower-bound is large enough. However, their approach still relies on the estimation of
the parameters. The variant compared with the fully-parametric approaches is that a decreasing
fraction of the samples (depending on the lower bound on β) is used to perform this estimation.

Regarding non-parametric algorithms, a first algorithm inspired by UCB1, ThresholdAscent,
was proposed in (Streeter and Smith, 2006b). The principle is to compute the mean of a fixed
number of the largest samples obtain for an arm, with an exploration bonus. Unfortunately,
this very simple algorithm do not have theoretical guarantees, and its performance is very
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sensitive to the number of observations kept for the computation. Bhatt et al. (2021) recently
proposed Max-Median, an algorithm based on robust statistics that can be employed for any
kind of distribution. Max-Median is proved to have weak vanishing regret for polynomial-like
arms and strongly vanishing regret for exponential-like arms.

Contribution The recent work of Bhatt et al. (2021) suggests that non-parametric ap-
proaches could be an efficient way to tackle the Extreme Bandit problem. This can be
performed by finding a right way to compare the arms instead of individually estimating
some parameters. In Chapter 4, we propose a novel algorithm for Extreme Bandits based
on sub-sampling. This algorithm extends the Sub-Sampling Dueling Algorithm introduced
in Chapter 2, comparing arms with a robust estimator. We establish weakly vanishing
regret for non-parametric distributions, assuming only that one tail dominates the others
(we properly define this notion in the chapter), and refine these results for polynomial and
exponential arms. We believe these guarantees to be the most general obtained so far for
this problem.

1.3 Non-stationary Bandits

In the previous sections we considered bandit problems where the arms do not change during
the experiment. However, in many practical application they are likely to evolve: for example,
if we consider again the crop-management problem we can assume that if the experience lasts
for several years then climate change may have an impact on the reward distribution associated
with each policy.

In the following we get back to the standard setting where the learner aims at maximizing
her expected sum of rewards, as in Section 1.1, and introduce the different algorithms that have
been developed in the literature to handle non-stationary rewards. Before that we define the
dynamic regret, that naturally adapts Definition 1.1.

Definition 1.13 (Dynamic regret). For a policy π, the dynamic regret after T rounds is defined as

Rν(T, π) =
T∑
t=1

max
k∈{1,...,K}

µk,t − Eν,π

[
T∑
t=1

Xt

]
,

where ν = (νk,t)k∈{1,...,K},t∈{1,...,T} denotes the set of distributions corresponding to all arms at
each time step, and µk,t denotes the mean of νk,t (arm k at time t).
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The question is then : can a bandit algorithm learn to minimize the dynamic regret? If the
distributions can change completely arbitrarily, this task seems clearly impossible: it is necessary
to make some assumptions on the non stationarity. A natural idea consists in fitting a stochastic
model on the dynamic, as for instance Whittle (1988) that consider a markovian dynamic for the
arms. Under this assumption, changes can then be predicted by learning the model. However,
in many applications the learner may not have access to such knowledge and have to rely on
simpler assumptions. One of the most famous is assuming an abruptly changing (or piece-wise
stationary) environment: the distributions are assumed to be stationary between breakpoints,
which are the time instants when they can change. This number has to be limited to allow the
strategy to learn between the changes, and hence the number of breakpoints (denoted by ΓT ) is
assumed to be sub-linear in the time-horizon.

Definition 1.14 (Number of breakpoints). The number of break-points in a piece-wise stationary
model is formally defined as

ΓT =
T−1∑
t=1

1(∃k ∈ {1, . . . ,K} : µk,t ̸= µk,t+1) ,

where the times T = (t1, t2, . . . , tΓT
) := {t ∈ {1, . . . , T} : 1(∃k ∈ {1, . . . ,K} : µk,t ̸= µk,t+1)}

are called the breakpoints and a time interval [ti + 1, ti+1] is called a stationary phase.

Intuitively, the existence of these breakpoints forces the bandit algorithms to explore much
more than in the standard stochastic setting. Indeed, a strategy with a regret in O(log(T )) only
marginally explores arms that have been observed as sub-optimal after a sufficient number of
pulls. As breakpoints can occur at any time, an algorithm evolving in a piecewise-stationary
environment has to try regularly all arms to check if they have changed or not. This intuition
is formalized by a lower bound on the dynamic regret, first proved in Garivier and Moulines
(2011).

Theorem 1.15 (Theorem 31.2 in Lattimore and Szepesvári (2020)). Let k = 2, and fix ∆ ∈
(0, 1) and a policy π. Let µ be so that µi,t = µi is constant for both arms and ∆ = µ1 − µ2 > 0.
If the expected regret Rν(T, π) of policy π on bandit µ satisfies Rν(T, π) = o(T ), then for all
sufficiently large T , there exists a non-stationary bandit ν ′ with at most two change points and
mint∈[T ] |µ′

1,t − µ′
2,t| ≥ ∆ such that

Rν(T, π) ≥ T

22Rν′(T, π) .
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This result shows that no strategy can hope to obtain a better regret than Ω(
√
T ) for this

class of problems. In particular, it shows that the standard bandit strategies with O(log(T ))
regret in the stationary case will fail to achieve a sub-linear regret on all instances. The lower
bound was later refined by Seznec et al. (2020) who included the dependency in the number of
arms and number of breakpoints.

Theorem 1.16 (Proposition 4 in Seznec et al. (2020)). In a piece-wise stationary environment
with at most ΓT breakpoints, there exists an environment such that

R(T, π) ≥
√
KTΓT .

Hence, the best achievable worst-case guarantee that can be expected from a bandit algo-
rithm in an abruptly changing environment is of order O(

√
KTΓT )

An alternative way to model non-stationarity is to consider possibly smoother changes by
introducing a variation budget (Besbes et al., 2014) that controls the total amplitude of arms’
changes.

Definition 1.17. Define a bandit ν = (µk,t)k∈{1,...,K},t∈{1,...,T}, its variation budget is defined as

BT :=
T−1∑
t=1

max
k∈{1,...,K}

|µk,t+1 − µk,t| .

Contrarily to the piece-wise stationary model, this setting can allow for instance small
changes at any time step. A special case of slowly drifting environment, where the amplitude of
changes is controlled, was introduced recently in (Krishnamurthy and Gopalan, 2021). Besbes
et al. (2014) also proved a lower bound for the regret for the variation budget setting.

Theorem 1.18 (Theorem 1 in Besbes et al. (2014)). Assume that rewards have a Bernoulli
distribution. Then, there is some absolute constant C > 0 such that for any policy π and for any
T ≥ 1, K ≥ 2 and BT ∈ [1/K, T/K], the regret satisfies

Rν(T, π) ≥ C(KBT )1/3T 2/3 .

This result shows that a sub-linear regret is possible only if the variation budget is sub-
linear. We can also remark that the regret is in Ω(T 2/3) instead of Ω(

√
T ) for the piece-wise
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stationary model. Now that we introduced those two main assumptions we can detail the
different families of algorithms that have been proposed in the literature.

1.3.1 Algorithms for non-stationary bandits

During the past ten years, several works have considered non-stationary variants of the multi-
armed bandit model, proposing methods that can be grouped into two main categories: they
passively forget past information (Garivier and Moulines, 2011; Raj and Kalyani, 2017; Trovo
et al., 2020), or actively try to detect modifications in the distribution of the arms with change-
point detection algorithms (Liu et al., 2017; Cao et al., 2019; Auer et al., 2019; Chen et al., 2019;
Besson et al., 2022).

Passively forgetting strategy A natural idea is to consider adaptations of standard bandit
algorithms with simple mechanism to forget past data. The two standard idea for that are the
use of a sliding window or discounted rewards. In the first case all the algorithm works with only
the most recent collected rewards: if the window size is τ and rewards collected are denoted by
X1, . . . , XT then only rewardsXT−τ+1, . . . , XT are used. In the second case all rewards are kept
but the oldest rewards are discounted in order to have a reduced impact: using a fixed discount
rate γ, at time T the reward collected at time t is associated with a discount γT−t. In Garivier and
Moulines (2011) the authors analyze two variants of UCB1: SW-UCB and D-UCB, respectively
implementing UCB1 with a sliding window and discounted rewards. The algorithms are
proved to achieve a O(

√
KTΓT log(T )) dynamic regret in abruptly changing environment,

with an appropriate tuning of the window/discount factor requiring the knowledge of the
order of ΓT . Similarly the celebrated Thompson Sampling algorithm (Thompson, 1933) has also
been adapted to include these mechanisms, with the Discounted Thompson Sampling (DTS)
(Raj and Kalyani, 2017) and the Sliding Window Thompson Sampling (SW-TS) (Trovo et al.,
2020), though theoretical guarantees have been obtained only for SW-TS. In Algorithm 1.11 and
1.12, we respectively provide one time step of the generic adaptation of any bandit algorithm
for stationary rewards with a sliding window and a discount factor.

For example, we could naturally adapt KL-UCB (Cappé et al., 2013) and IMED (Honda
and Takemura, 2015) in the discounted computing the divergence function of an arm k with
n rewards y1, . . . , yn with the discounted empirical distribution Fk(t) : x 7→

∑n
i=1 ρi1(yi ≤

x), where the weights ρ1, . . . , ρn are computed following Algorithm 1.12 (and normalized)
according to the time where all rewards have been collected.

Another line of work inspired by adversarial bandits have been studied for non stationary
settings. In short, in adversarial bandits the rewards are not drawn from a probability distri-
butions but can be any arbitrary sequence: in this harder setting an adversary can decide the
next rewards, and hence try to confuse the algorithm. However, a usual assumption is that
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1 Input: Sliding window τ , rewards X = (X1, . . . , Xt) and corresponding arms
K = (k1, . . . , kt), Bandit algorithm π

2 if t ≤ τ then
3 return Arm chosen by π using X and K
4 end
5 else
6 return Arm chosen by π using (Xt−τ+1, . . . , Xt) and (kt−τ+1, . . . , kt)
7 end

Algorithm 1.11: Generic sliding-window strategy

1 Input: Discount factor ρ, rewards Y = (y1, . . . , Xt) and corresponding arms
K = (k1, . . . , kt), Bandit algorithm π

2 return Arm chosen by π using Y with discounts ρ̄ = (ρt, ρt−1, . . . , ρ2, ρ, 1) and K

Algorithm 1.12: Generic strategy with discounted rewards

the rewards are chosen independently of the bandit algorithm: the adversary is said to be
non-adaptive. In that case, the objective of the learner is to sample most often the action with
the best trajectory of rewards for the time horizon T considered: the best arm in hindsight. To
make it possible to solve this problem rewards are usually assumed to be bounded in [0, 1]. As
the adversarial setting is very general the algorithms proposed for this problem can be used
to tackle non-stationary rewards, even if their guarantees are defined according to the best
arm in hindsight and not the dynamic regret. For instance, the EXP3.S algorithm (Auer et al.,
2002b) can be used to benchmark non-stationary bandit algorithms, and even has guarantees
in the piecewise stationary setting. Furthermore, Besbes et al. (2014) proposed the Rexp3
strategy, which is simply a combination of EXP3 (Auer et al., 2002b) and scheduled restarts
of the algorithm. Interestingly, Rexp3 obtains an optimal worst-case regret for the variation
budget setting when an the budget BT are known.

Change-point detection algorithms The second main category of non-stationary bandit
algorithms consist in combining a stochastic bandit algorithm with a change-point detector (CPD).
As the name states, a CPD scans the history of rewards collected to determine if a change of
distributions occurred. If this is the case, the algorithm simply erases the history and restarts.
Two changepoint detection algorithms, CUSUM (Liu et al., 2017) and M-UCB (Cao et al., 2019),
have been proposed using the standard UCB algorithm. They obtain optimal guarantees
for respectively Bernoulli and bounded rewards in the piece-wise stationary environment,
with some assumptions on the detectability of the changes and the knowledge of the number
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of changes. Interestingly, a number of works have proposed algorithms that get rid of this
assumption and are instead fully adaptative (Chen et al., 2019; Auer et al., 2019; Besson et al.,
2022). For example, Besson et al. (2022) consider a GLR test combined with the KL-UCB
algorithm (GLR-KL-UCB) and an exploration scheme depending on the number of changes
already detected. GLR-KL-UCB achieves optimal guarantees in the abruptly changing setting
under a detectability assumption. On the other hand, (Chen et al., 2019; Auer et al., 2019)
propose algorithms based on elimination rules of empirically sub-optimal arms and scheduled
replay phases for the eliminated arms. ADSWITCH (Auer et al., 2019) is optimal in abruptly
changing environment, while ADA-ILTCB+ is optimal in both abruptly changing and variation
budget settings.

Recently, some works have tried to improve the practical performance of CPD-based algo-
rithm by considering most significant changes instead of restarting every time a change is detected.
Indeed, intuitively if the distributions change but the best arm remains the same we do not want
our algorithm to restart completely. For this reason, considering a number of breakpoints or a
variation budget may be too conservative with respect to the true complexity of the problem.
For instance, Manegueu et al. (2021) proposed a change point algorithm based on the empirical
gaps between the arms. Suk and Kpotufe (2022) further extended this idea by quantifying and
trying to detect significant shifts at each step of the algorithm. They also remarkably avoid using
knowledge on the non-stationarity by using an elaborate method to re-explore sub-optimal
arms often enough, and obtain optimal guarantees for both piecewise-stationary and variation
budget assumptions. Notably, an independent and parallel work of Abbasi-Yadkori et al. (2022)
also obtained comparable (but slightly weaker) guarantees in the abruptly changing setting
with similar ideas.

Contribution The family of non-stationary bandit algorithms is now very dense, and
under the assumption that rewards are bounded the practitioner can choose between many
options. This choice can depend on the complexity of the algorithms (the ones with the
best guarantees are unfortunately difficult to implement), their theoretical guarantees, and
the assumptions they need on the non-stationarity structure. To the best of our knowledge,
no work have tried to combine a mechanism for non-stationarity and a non-parametric
algorithm, able to tackle more structural changes. We study this in Chapter 3, with the
combination of a simple sliding window mechanism and the Last-Block Sub-sampling
Dueling Algorithm (LB-SDA) introduced in Chapter 2. We show that LB-SDA can achieve
optimal guarantees in the abruptly changing environment when the order of the number of
breakpoints is known. The main advantage of the resulting SW-LB-SDA algorithm is that
these guarantees allow more general changes of distributions than previous approaches.
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1.4 Batch Bandits

The formulation of batch bandits can be traced back to (Perchet et al., 2015), and this problem
have been studied for instance in (Gao et al., 2019; Esfandiari et al., 2021; Jin et al., 2021). Outside
of the example that we introduced in agriculture, clinical trials is a typical example where this
setting applies: patients come in cohorts, and the practitioner analyzes the results for each
cohort before considering the next one. The main questions considered in this literature are to
determine the number of batches, and the size of each batch necessary to obtain theoretical
guarantees that are as close as possible as the ones obtained in the purely sequential setting. For
example, Jin et al. (2021) consider grids of exponentially increasing size and obtain a logarithmic
regret (in the total number of trials) with a batch size of order Ω(log log(T )). Kalkanli and Ozgur
(2021) analyze Thompson Sampling for Gaussian rewards coupled with an algorithm that
defines the size of each batch accordingly to the previous plays of TS. They prove a logarithmic
regret and an expected number of batches of O(log log T ). While this line of work is interesting
it does not exactly correspond to the experiment introduced in the preamble of this thesis.
Indeed, in our crop-management problem the number of farmers is fixed at the beginning of
the experiment and we cannot decide how many farmers will participate at each season.

We propose in Theorem 5.11 an analysis of the B-CVTS algorithm introduced in Chap-
ter 5 in the batch setting, showing no performance loss compared with the purely sequential
setting. This analysis shows that this algorithm is suitable for the experiment in agriculture
introduced at the beginning of this thesis.
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1.5 Outline and Contributions

1.5.1 Thesis organization

After this introductory chapter, the thesis is divided in two parts corresponding to the two
families of algorithms that we studied. Each part provides an initial version of the algorithm
for the standard MAB setting, and then details their extensions to some of the variants of MAB
introduced in the previous sections.

The first part introduces the family of Sub-Sampling Dueling Algorithms (SDA), which is a
novel family of non-parametric bandit algorithms relying on fair pairwise comparisons between
arms using sub-samples to penalize the arms that have been explored the most.

• In Chapter 2 we introduce SDA in the standard MAB setting. We present both randomized
(RB-SDA, WR-SDA) and deterministic (LB-SDA) sub-sampling mechanisms. We prove
logarithmic regret for both RB-SDA and LB-SDA under some conditions on the arms’
distributions. In particular, we prove that for standard parametric assumptions (e.g
Bernoulli, Gaussian with shared variance) these algorithms are even asymptotically optimal.
This is interesting because these guarantees hold without the algorithm using any prior
knowledge of what distributions it is facing. We further discuss the merits of each
algorithm from a practical point of view.

• In Chapter 3 we extend the LB-SDA algorithm to tackle non-stationary rewards using
a sliding window and some additional mechanisms, which yields the SW-LB-SDA al-
gorithm. We prove that in abruptly changing environments the window can be tuned
efficiently to make the algorithm optimal, which is on par with similar strategies in the
literature. However, the non-parametric nature of SW-LB-SDA allows to obtain these
guarantees while allowing a potentially broader class of possible distribution changes.

• In Chapter 4 we prove that combining LB-SDA with a robust estimator based on the
upper tail of distributions can lead to efficient algorithms for the Extreme Bandit problem.
This setting is an example of bandits with alternative performance metric, as in that
case the learner wants to collect the largest possible reward. We illustrate the interest of
non-parametric approaches in this setting, where the learner would like to make as little
assumptions as possible on the tails of the distributions.

In the second part of this thesis we study algorithms inspired by the Non-Parametric Thompson
Sampling (NPTS) algorithm of Riou and Honda (2020).

• In Chapter 5 we propose an extension of NPTS for CVaR bandit under the name CVaR
Thompson Sampling (CVTS), with one algorithm for multinomial and one for bounded
distributions. After extending the notion of asymptotic optimality for CVaR bandits, we
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prove that the resulting M-CVTS and B-CVTS algorithms are the first algorithms to be
asymptotically optimal in a risk-aware setting. We further propose an empirical evaluation
of B-CVTS using the DSSAT simulator, that allows to emulate the recommendation
problem in agriculture introduced in the foreword of this thesis.

• In Chapter 6 we get back to the usual setting (maximizing the expected sum of rewards)
and propose extensions of Non Parametric Thompson Sampling for a broader class than
bounded distributions with a known upper bound: we call these strategies Dirichlet
Sampling (DS) algorithms. We propose different relaxations of this assumption and study
the performance guarantees of DS in each case. Interestingly, we exhibit a trade-off
between the level of generality of the assumptions and the theoretical guarantees that
can be obtained by the algorithms. However, our experiments show that in practice all
algorithms have similar performance and thus suggest that the most general algorithm,
namely Robust Dirichlet Sampling (RDS), should be used in practice.
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the Thirty-eighth International Conference on Machine Learning (ICML 2021). See Chapter 5.
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Chapter 2

Sub-Sampling Dueling Algorithms

In this chapter we propose a new family of bandit algorithms based on sub-sampling, called
Sub-sampling Dueling Algorithms (SDA). Unlike most existing approaches these algorithms do
not use any knowledge on the arms’ distributions. Still, we prove that some instances SDA can
achieve strong theoretical guarantees under some assumptions that we detail in this chapter.
In particular, they are asymptotically optimal when distributions come from the same Single-
Parameter Exponential Family, including some of the most common distributions encountered
in practice. After introducing this novel family of algorithms, we analyze some instances of
SDA and highlight the core properties that make this strategy work. Finally, we perform an
experimental study assessing the flexibility and robustness of this promising novel approach for
exploration in bandit models. This chapter unifies the results that were published in (Baudry
et al., 2020) and (Baudry et al., 2021b), respectively for the RB-SDA and LB-SDA algorithms,
and provides additional intuitions on this family of algorithms.
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2.1 Introduction

In this chapter we consider the standard Multi-Armed Bandit problem introduced in Chapter 1
(Section 1.1). We recall that a K-armed bandit is a sequential decision-making problem in
which a learner sequentially samples from K unknown distributions, called arms. In each
round the learner chooses an arm At ∈ {1, . . . ,K} and obtains a random reward Xt drawn
from the distribution of the chosen arm, that has mean µAt . The learner should adjust her
sequential sampling strategy π (or bandit algorithm) in order to maximize the expected sum of
rewards obtained after T selections. This is equivalent to minimizing the regret, defined as

Rν(T, π) = max
k∈{1,...,K}

µkT − E
[
T∑
t=1

Xt

]
= E

[
T∑
t=1

(
max

k∈{1,...,K}
µk − µAt

)]
; ,

An algorithm with small regret needs to balance exploration (gain information about arms
that have not been sampled a lot) and exploitation (select arms that look promising based
on the available information). In Chapter 1 we introduced the standard approaches used in
bandits. We also detailed the lower bounds of (Lai and Robbins, 1985; Burnetas and Katehakis,
1996), that set the target performance that we would like to obtain with a bandit algorithm. We
further discussed that most existing algorithms require knowledge on the arms’ distribution,
e.g to calibrate confidence bounds or use appropriate conjugate prior/posteriors with Bayesian
methods to reach these guarantees. The main question we study in this chapter is:

Under which conditions can we achieve strong theoretical guarantees with an algorithm that do not use
any knowledge on the arms’ distributions?

A recent family of algorithms based on sub-sampling (Baransi et al., 2014; Chan, 2020),
introduced in Section 1.1, seems promising to tackle this question. The Sub-sampling Dueling
Algorithms (SDA) that we propose in this chapter combine an algorithm structure based on
pairwise comparisons (that we call duels), inspired by SSMC, and generic sub-sampling schemes.
Our objective is to bridge the gap between BESA (Baransi et al., 2014) and SSMC (Chan, 2020)
by allowing both randomized and deterministic sub-sampling schemes in the same framework.

The rest of the chapter is structured as follows. In Section 2.2 we introduce the generic
principle of SDA and present different instances corresponding to possible choices for the
sub-sampling algorithms (that we also call samplers). In Section 2.3 we present general theo-
retical results for SDA. We provide a first regret upper bound for a category of sub-sampling
algorithms that we call Block Samplers, only assuming that the empirical means concentrate
with an exponential decay for each arm. This bound exhibits two terms: a term in O(log(T )),
and the sum of the probabilities that the optimal arm is under-sampled (i.e sampled less than
some quantity). We then further study this second term, exhibiting some sufficient conditions
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on the sub-sampling algorithm and the family of distributions to obtain a logarithmic regret. In
Section 2.4 we first show that the condition on the sampler is satisfied by at least two instances:
RB-SDA and LB-SDA. We then propose a condition on the family of distributions ensuring that
SDA is sufficient to avoid under-exploring the best arm. Finally, in Section 2.5 we present the
results of an empirical study comparing several instances of SDA to asymptotically optimal
parametric algorithms, and other algorithms based on re-sampling or sub-sampling. These
experiments reveal the robustness of the SDA approaches, which match the performance of
Thompson Sampling, without exploiting the knowledge of the distribution.

2.2 Sub-sampling Dueling Algorithms

In the following we define Sub-sampling Duelling Algorithms (SDA). We first introduce a few
notation: for every integer n, we let [n] = {1, . . . , n}. We denote by (Yk,s)s∈N the i.i.d. sequence
of successive rewards from arm k, drawn from a distribution νk with mean µk. For every finite
subset S of N, we denote by Ȳk,S the empirical mean of the observations of arm k indexed by S :
if |S| > 1, Ȳk,S := 1

|S|
∑
i∈S Yk,i. We also let Ȳk,n as a shorthand notation for Ȳk,[n].

A round-based algorithm Unlike index policies, SDA relies on rounds, in which several
arms can be played (at most once). In each round r the learner selects a subset of arms
Ar ⊆ {1, . . . ,K}, and receives Yk,Nk(r) for each arm k ∈ Ar, where Nk(r) :=

∑r
s=1 1(k ∈ As)

denotes the number of times arm k was selected up to round r. Letting r̄T ≤ T be the (random)
number of rounds used by the algorithm before the T -th arm selection, the regret of a round-
based algorithm can be upper bounded as follows.

Proposition 2.1 (Regret of a round-based algorithm).

RT (A) = E
[
T∑
t=1

(µ⋆ − µAt)
]

≤ E
[
r̄T∑
s=1

K∑
k=1

(µ⋆ − µk)1(k ∈ As)
]

≤ E
[
T∑
s=1

K∑
k=1

(µ⋆ − µk)1(k ∈ As)
]

=
K∑
k=1

(µ⋆ − µk)E [Nk(T )] . (2.1)

Hence, upper bounding the number of pulls after T rounds E[Nk(T )] for each sub-optimal arm
provides a regret upper bound (in the usual purely sequential sense).

Proposition 2.1 shows that adopting a round-based approach where several arms can
potentially be pulled per round do not really change the way to start analyzing the algorithms.
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Sub-sampling Duelling Algorithms SDA takes as input a sub-sampling algorithm SP(m,n, r)
that depends on three parameters: two integers n ≥ m and a round r. A call to SP(m,n, r) at
round r produces a subset of [n] that has size m, modeled as a random variable that is further
assumed to be independent of the rewards generated from the arms, (Yk,s)k∈[K],s∈N∗ . We also
call samplers such sub-sampling algorithms.

In the first round, a SDA selects A1 = [K] in order to initialize the history of all arms. Given
a sampler SP, we refer to the corresponding SDA as SP-SDA. For any r ≥ 1, at round r + 1
SP-SDA first defines the leader as one of the arms that have been selected the most in the first r
round, namely ℓ(r) ∈ argmaxkNk(r). Ties are broken in favor of the arm with the largest mean,
and if several arms are still candidate the algorithm chooses one of them at random. The set
Ar+1 is then initialized to the empty set and K − 1 duels are performed. For each "challenger"
arm k ̸= ℓ(r), a subset Srk of [Nℓ(r)(r)] of size Nk(r) is obtained from SP(Nk(r), Nℓ(r)(r), r), and
arm k wins the duels if its empirical mean is larger than the empirical mean of the sub-sampled
history of the leader. We can write that for any challenger k,

Ȳk,Nk(r) ≥ Ȳℓ(r),Sr
k

=⇒ Ar+1 = Ar+1 ∪ {k} .

If the leader wins all the duels, that is if Ar+1 is still empty after the K − 1 duels, we set
Ar+1 = {ℓ(r)}. Arms in Ar+1 are then selected by the learner in a random order and are pulled.
The pseudo-code of SP-SDA is given in Algorithm 2.1, for an horizon of T rounds.

1 Input: K arms, horizon of T rounds, Sampler SP, leader definition
2 ∀k ,Nk = 1,Hk = {Yk,1} ; ▷ Each arm is drawn once
3 for r ∈ {1, . . . , T} do
4 A = {}, ℓ = leader((Nk)k∈{1,...,K}, (Hk)k∈{1,...,K}, ℓ) ; ▷ Initialize the round
5 for k ̸= ℓ ∈ 1, ...,K do
6 Draw S̄rk ∼ SP(Nk, Nℓ, r) ; ▷ Sub-sample of ℓ used for the duel with k

7 if Ȳk,Nk
> Ȳℓ,S̄r

k
then

8 A = A ∪ {k} ; ▷ k added to A if it wins the duel against ℓ

9 end
10 end
11 if |A| = 0 then
12 A = {ℓ} ; ▷ If no challenger in A then ℓ is pulled
13 end
14 for a ∈ A do
15 Pull arm a, observe reward Ya,Na+1
16 Na = Na + 1, Ha = Ha ∪ {Ya,Na} ; ▷ Update number of pulls and history
17 end
18 end

Algorithm 2.1: Generic SP-SDA
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To properly define the random variable S̄rk used in the algorithm, we introduce the following
probabilistic modeling: for each round r, each arm k, we define a family (Srk(m,n))m≤n of
independent random variables such that Srk(m,n) ∼ SP(m,n, r). In words, Srk(m,n) is the
subset of the leader history used should arm k be a challenger drawn m times up to round r
dueling against a leader that has been drawn n times. With this notation, for each arm k ̸= ℓ(r)
one has S̄rk = Srk

(
Nk(r), Nℓ(r)(r)

)
. We recall that in the SDA framework, we require those

random variables to be independent from the reward streams (Yk,s) of all arms k. We call such
sub-sampling algorithms independent samplers.

Definition 2.2 (Independent Sampler). A independent sampler satisfies

∀(k, k′) ∈ [K], ∀r,m ≥ n : Srk(m,n) ⊥⊥
(
Yk′,s

)
s∈N .

Some instances of SDA We now present some sub-sampling algorithms that we believe are
interesting to use within the SDA framework. Intuitively, these algorithms should ensure
enough diversity in the output subsets when called in different rounds, so that the leader cannot
always look good, and challengers may win and be explored from time to time. The most
intuitive candidates are random samplers like Sampling Without Replacement (WR) and Random
Block Sampling (RB). But we also propose two deterministic sub-sampling algorithms: Last Block
Sampling (LB), and Low Discrepancy Sampling (LDS) that uses a predefined low discrepancy
sequence (ur)r∈N (Drmota and Tichy, 1997; Halton, 1964; Sobol, 1967). We summarize these
sub-sampling algorithms in the following, considering two sample sizes m ≤ n and a round r:

• Sampling Without Replacement (WR) returns a subset of size m selected uniformly at
random without replacement in [n] (i.e each element can be drawn only once).

• Random Block Sampling (RB) draws an integer n0 uniformly at random in [n−m] and
returns {n0, ..., n0 +m− 1}. This is faster than WR as only one element is drawn.

• Last Block Sampling (LB) simply returns the last observations {n−m+ 1, . . . , n}.

• Low Discrepancy Sampling (LDS) is a deterministic version of Random Block Sampling
where n0 is equal to ur at round r, for some low discrepancy sequence (ur).

We propose in Figure 2.1 below an example of sub-samples that could be returned for a
given duel by several of the algorithms that we propose.
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Figure 2.1 – Illustration of a duel step for a few sub-sampling algorithms. Each box represent an
observation, and in each figure the framed box are the observations selected by the sampler. For each
arm i ∈ {ℓ(r), k}, Hi denotes the history available for i at round r

We proposed WR and RB samplers in hope that their randomness will naturally introduce
sufficient diversity in the sub-samples. Similarly, LDS should ensure by construction the
exploration of different part of the history of the leader during successive rounds. On the
other hand, the reason why Last Block Sampling should work in producing diverse samples
is less intuitive: after a sufficient number of rounds we expect the leader to be pulled most
of the time, making the sub-sample move almost at each round in a sliding window fashion.
We will prove later in this chapter that this simple mechanism is actually enough to obtain
nice theoretical guarantees. Finally, we can remark that except the WR sampler most of the
proposed algorithms return a set of consecutive observations, which is generally faster from a
computational perspective. We call such algorithm a block sampler.

Definition 2.3 (Block Sampler). A Block Sampler is a sub-sampling algorithm that only returns
sub-sets of observations that have been collected successively in the history of an arm. Given
(m,n) ∈ N2, Srk(m,n) = {j, j + 1, . . . , j +m− 1} for some j ≤ n−m.

In section 2.3 we will show that Block Samplers have convenient properties for the regret
analysis of their associated SDA algorithm.
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2.2 Sub-sampling Dueling Algorithms

Links with existing algorithms The BESA algorithm (Baransi et al., 2014) with K = 2 coin-
cides with WR-SDA. However beyondK > 2, Baransi et al. (2014) rather suggest a tournament
approach, without giving a regret analysis. WR-SDA can therefore be seen as an alternative
generalization of BESA beyond 2 arms, that may perform better than the tournament, as can
be seen in experiments of Section 2.5. While the structure of SDA is close to that of SSMC
(Chan, 2020), SSMC is not a SP-SDA algorithm. Indeed, its sub-sampling algorithm heavily
relies on the rewards and is therefore not an independent sampler. It actually outputs the set
S = {n0 + 1, . . . , n0 + n} for which Ȳℓ(r),S is the smallest, which is hence the worst possible
sub-sample that can be returned by block samplers. For this reason SSMC may be more conser-
vative than SDA algorithms, that may able to "forget" faster a sequence of bad observations
that could have been drawn successively (or at least using them less often). Furthermore, our
intuition is that LB-SDA could actually been seen as a simpler and possibly faster version of
SSMC, as the two seem to perform very comparably in practice. Indeed, when an arm has been
leader for some time the challengers can be pulled only if the newly arriving data allows to get a
new sub-sample that is worse than the previous "worst sub-sample". Otherwise the comparison
used by SSMC is the same as the one used in the previous round, where the challenger lost.
Hence, the SDA framework is somehow unifying the ideas of BESA and SSMC as two of its
instances are close, and maybe improved, variants of these algorithms.

On the use of forced exploration In (Chan, 2020), SSMC additionally implements some forced
exploration: at a round r, each arm k such that Nk(r) is smaller than some value fr is added to
Ar+1. SSMC is proved to be asymptotically optimal for SPEF provided that fr = o(log r) and
log log r = o(fr). In the next sections, we show that SDA does not need forced exploration for
some family of distributions: Bernoulli, Gaussian and Poisson. However, we will show that
forced exploration allows to obtain more general theoretical guarantees and is not harmful in
practice. Indeed, the exploration in

√
log(r) suggested by Chan (2020) only forces to draw each

arm 4 times for a time horizon T = 107.

Finally, it is interesting to mention that duel-based algorithms were an early alternative
to index policies. As already mentioned by Chan (2020), the very first asymptotically opti-
mal algorithm proposed in (Lai and Robbins, 1985) already performed pairwise comparison
between the empirical mean of a leader (defined therein as the empirical best arm) and an
upper confidence bound of the challenger, UCBk(t), thus helping the challengers instead of
disadvantaging the leader.
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2.3 Generic Regret Analysis

In this section we present our core contributions for this chapter, which are the theoretical
guarantees for the SDA family of algorithms. We proceed step by step by sequentially including
new assumptions on the family of distributions and the sub-sampling algorithm, and analyzing
what can be obtained at each step. These guarantees come by deriving upper bounds on the
expected number of selections of each sub-optimal arm k, E [Nk(T )], which directly yields an
upper bound on the regret via Equation (2.1). To ease the presentation, we assume that there is
a unique optimal arm1, that we define as arm 1 for simplicity.

2.3.1 Concentration of means and sub-sample means

A first natural question is to consider whether computing empirical means is a good idea or not
for the family of distributions we consider. This is the case only if these empirical estimators
concentrate around the true means at a sufficient speed, that we formalize as follow.

Assumption 2.4 (Concentration of empirical means). For each arm k, the distributions νk (of
mean µk) admits a good rate function Ik : R 7→ R+, that is

∀x > µk, P
(
Ȳk,n ≥ x

)
≤ e−nIk(x) ,

∀x < µk, P
(
Ȳk,n ≤ x

)
≤ e−nIk(x) ,

where Ik is continuous and Ik(x) = 0 if and only if x = µk.

This assumption is satisfied by many usual families of distributions (SPEF, bounded, . . . ).
More generally it is satisfied by any light-tailed distribution, that we define as any distribution ν
for which

∃λ0 > 0 : ∀|λ| < λ0 ,EX∼ν [exp(λX)] < +∞ .

If Assumption 2.4 is satisfied it makes sense to compare sub-sample means, and we can then
start considering their concentration. Considering two arms ℓ and k and some x < µℓ, we want
to upper bound the probability P(Ȳℓ,Sr

k
≤ x,Nk(r) ≥ n0) at some round r and for some integer

n0. We now exhibit a convenient property of Block Samplers, introduced in definition 2.3.

1as can be seen in the analysis of SSMC Chan (2020), treating the general case only requires some additional
notation.
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2.3 Generic Regret Analysis

Lemma 2.5 (Concentration of sub-samples with Block Samplers). Let SP be a Block Sampler.
Consider a round r and n0 ∈ N, then it holds that

∀x > µk, P
(
Ȳk,Sr

k
(Nk(r),Nℓ(r)) ≥ x,Nk(r) ≥ n0

)
≤ r2

r∑
n=n0

P
(
Ȳk,n ≥ x

)
,

∀x < µk, P
(
Ȳk,Sr

k
(Nk(r),Nℓ(r)) ≤ x,Nk(r) ≥ n0

)
≤ r2

r∑
n=n0

P
(
Ȳk,n ≤ x

)
,

Proof. Consider the first inequality. We use a union bound on the possible values ofNℓ(r), Nk(r)
and of the first element of the block, which provides the result by further remarking that each
block of observation satisfy the same concentration properties as the first block.

P
(
Ȳk,Sr

k
(Nk(r),Nℓ(r)) ≥ x,Nk(r) ≥ n0

)
≤

r∑
nℓ=1

r∑
nk=1

r∑
i=1

P
(
Ȳk,i:i+nk−1 ≥ x

)

≤ r2
r∑

nk=n0

P
(
Ȳk,nk

≥ x
)
.

The exact same steps with x ≤ µℓ gives the second inequality.

To obtain this result we used that the number of blocks is at most linear in r. For a sampler
that is not using blocks this number can be much larger. For instance, with sampling without
replacement we would obtain

(nℓ
nk

)
sub-samples for each couple (nk, nℓ), making the upper

bound vacuous. Hence, samplers that do not use blocks require novel concentration tools. For
that reason, the results presented in the rest of this chapter are only valid for Block Slampers.

Unfortunately, the upper bound presented in lemma 2.5 is not sufficient in some parts of
the upcoming proofs. However, it can be improved under the additional event that the arm k

by summing on the consecutive rounds s = 1, . . . , r.

Lemma 2.6 (Concentration of sub-samples inside a trajectory of a bandit algorithm). Let
SP be a Block Sampler. Consider a round r and n0 ∈ N, then it holds that

∀x > µk,
r∑
s=1

P
(
Ȳk,Ss

k
(Nk(s),Nℓ(s)) ≥ x,Nk(s) ≥ n0, k ∈ As+1

)
≤ r

r∑
n=n0

P
(
Ȳk,n ≥ x

)
,

∀x < µk,
r∑
s=1

P
(
Ȳk,Ss

k
(Nk(s),Nℓ(s)) ≤ x,Nk(s) ≥ n0, k ∈ As+1

)
≤ r

r∑
n=n0

P
(
Ȳk,n ≤ x

)
,

41



Sub-Sampling Dueling Algorithms

The obtained bound is surprisingly better than when considering an individual sub-sample.

Proof. We first write that

(A) :=
r∑
s=1

P
(
Ȳk,Ss

k
(Nk(s),Nℓ(s)) ≥ x,Nk(s) ≥ n0, k ∈ As+1

)
=E

[
r∑
s=1

1

(
Ȳk,Ss

k
(Nk(s),Nℓ(s)) ≥ x,Nk(s) ≥ n0, k ∈ As+1

)]
.

Now let’s consider the sum inside of the expectation. It represents the count of the number of
times a block of ℓ of size Nk(r) has led to arm k being pulled. The rest of the proof is based
on the remark that each possible block of observations (for any size and any location in the
history of ℓ) can only have a cost of 1 in this sum: if k wins the duel its number of pulls will
increase. Hence, the sum is upper bounded by the total number of blocks with a sub-sample
mean satisfying the inequality, and we directly have

(A) ≤E
[

r∑
s=1

r∑
nk=n0

1(Ȳk,s:s+nk−1 ≥ x)
]

≤r
r∑

nk=n0

P
(
Ȳk,nk

≥ x
)

The results presented so far are sufficient to obtain a first upper bound on the number of
pulls of each sub-optimal arm, for any SDA equipped with a block sampler.

Lemma 2.7 (First upper bound). Consider a block sampler SP and a bandit ν = (ν1, . . . , νk) ∈
FK where F is a family of distributions satisfying Assumption 2.4. Then, for any suboptimal arm
k ̸= 1, the expected number of pulls of each sub-optimal arm k under SP-SDA is upper bounded by

E[Nk(T )] ≤ 1 + ε

I1(µk)
log(T ) + Ck(ν, ε) + 9

T∑
r=1

P (N1(r) ≤ C1 log(r)) ,

where Ck(ν, ε) and C1 are both problem-dependent constants.

This result is interesting because it shows that Assumption 2.4 along with elementary
properties of block samplers are enough to exhibit the logarithmic term that we hope to be
dominant in the regret upper bound.

The proof is inspired from the analysis of SSMC (Chan, 2020), using the concentration
inequality of Lemma 2.6. The details can be found in Appendix D of (Baudry et al., 2020). We
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refer the interested reader to Chapter 3 where we provide the proof of this result for a variant
of LB-SDA using a limited memory size, that is valid for Lemma 2.7 by setting the limit to +∞.

The rest of the analysis consists in further upper bounding the quantity P(N1(r) ≤ C1 log(r))
for a given round r. This probability corresponds to the case where arm 1 have been under-
explored. In the next part we examine the conditions that should be met to make this probability
small under an instance of SDA.

2.3.2 Avoiding under-exploration of the best arm

It is clear that whether the best arm is sure to be explored or not depends jointly on the sub-
sampling algorithm and the properties of arms’ distributions. First, we remark that if the
number of pulls of arm 1 stays below C1 log(r) then it has necessarily lost a lot of duels. We
will further prove that it has even lost a large number of duels against the same leader, and while
being stuck with some fixed sample the entire time. The question is then: has it been given a
fair chance and lost a lot of diverse duels, or has it been provided too few different duels? We
introduce the definition of non-overlapping sub-samples as a way to formalize this question.

Definition 2.8 (Non-overlapping sets). Two sets of integers I1 ⊂ N and I2 ⊂ N are non-
overlapping if I1 ∩ I2 = ∅. Furthermore, the sets in J = (I1, I2, . . . , IM ) are said to be pairwise
non-overlapping if for any pair (Ik, Ik′) ∈ J 2 it holds that Ik ∩ Ik′ = ∅.

Definition 2.8 allows to quantify more precisely what kind of diversity we care about: we
want sub-sampling algorithms to provide enough pairwise non-overlapping sub-samples during
a run of SDA. Note that we use the expressions non overlapping sets or non-overlapping sub-
samples indifferently due to the isometry between a sub-sample and the positions of its items
in the history of the arms.

Let us now consider the case for which the sampler was able to provide a large number
of pairwise non-overlapping sub-samples. If arm 1 has not been drawn, its sample mean was
smaller than the mean of each sub-sample from the leader. If the samples were non-overlapping,
this event can be written using the balance function, introduced by Baransi et al. (2014) and that
we recall here.

Definition 2.9 (Balance function). Letting νk,j denote the distribution of the sum of j independent
variables drawn from νk, and Fνk,j

its corresponding CDF, the balance function of arm k is

αk(M, j) = EX∼ν1,j

((
1 − Fνk,j

(X)
)M)

.
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For a fixed M and j, αk(M, j) corresponds exactly to the probability that arm 1 loses M
independent duels with its j first observations.

Then, using the result of Lemma 2.7, Definition 2.8 and Definition 2.9 we can formulate the
following definition of sufficient diversity for a given sampler SP.

Definition 2.10 (Sufficient Diversity). Consider a sampler SP, a forced exploration fr, and a
bandit problem ν = (ν1, . . . , νK). We say that SP introduces sufficient diversity in the sub-samples
if for any round r large enough SP-SDA satisfies

P (N1(r) ≤ C1 log(r)) =
K∑
k=2

r∑
j=fr

αk(Mj,r, j) + o(r−2) ,

for some sequence Mj,r that is linear in r up to poly-log terms.

In other words, SP provides enough pairwise non-overlapping sub-samples so that if arm 1 is
not pulled enough it is (with high probability) because it has lost a large number of diverse duels.

An interesting remark from this definition is that, if SP provides sufficient diversity, then
the guarantees of SP-SDA depends only on the family of distributions of the arms through their
balance function. Hence, we disentangled in the analysis the impact of the sampler and of the
family of distributions in the performance of an instance of SDA.

Furthermore, Definition 2.10 allows to naturally establish the condition we want to check
for a family of distributions to determine whether SP-SDA can work or not for this family.

Definition 2.11 (Balance condition). The balance condition is respected for a family F and a
forced exploration fr if for any sequence Mj,r satisfying Mj,r = Ω

(
r

(log r)a

)
for a large enough it

holds that
T∑
r=1

C1 log(r)∑
j=fr

αk (Mj,r) = o(log(T )) .

Note that the level of forced exploration at round r is included in these definitions, hence
some distributions may satisfy the balance condition for some values of fr but not for others.
We can now provide the main theorem of this chapter, that is using Lemma 2.7 and all the
definitions presented in this section. The statement remains as general as possible, and we refer
to the next section for its application to specific instances of SDA and families of distributions.
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Theorem 2.12 (Logarithmic Regret for SP-SDA). Consider a bandit ν = (ν1, . . . , νK) ∈ FK ,
where F is a family of distributions satisfying Assumption 2.4 (concentration of the means). Let SP
be a block sampler providing sufficient diversity. Further assume that all the arms drawn from
F satisfy the balance condition. Then for any ε > 0 the regret of SP-SDA is upper bounded by

Rν(T, πSP-SDA) ≤
K∑
k=2

1 + ε

Ik(µ1) log(T ) + oε(log T ) .

Proof. This result is a direct combination of Lemma 2.7, and the definition of sufficient diversity
and the balance condition.

The challenge is now to determine which samplers and family of distributions satisfy these
properties. However, these two investigations can be made separately. Before that, to provide
the reader further intuitions let us consider some simple examples of failure for SDA.

Example 1 (bad sampler): Consider a sampler returning the first successive observations
of the leader. Then, the regret of SDA is linear.

↪→ The sampler fails to provide enough diversity by returning always the same sub-
sample.

Example 2 (distributions unadapted to sub-sampling): Consider an interval [a, b] ⊂ R, and
a two-armed bandit where arm 1 is the best arm, Pν1([a, b)) = p, and ν2 is supported on
(b,+∞). Then, the regret of SDA is at least in Ω(pfT T ): if the first fT observations from ν1

are in [a, b) the arm is never pulled outside of forced exploration.

↪→ The worst rewards are more likely for the best arm than for the other, in that case
the sub-sampling is not enough to recover from them.

In the following we formalize some sufficient conditions to avoid these cases.

2.4 Theoretical guarantees for RB-SDA and LB-SDA

In this part we instantiate the results from previous section for some instances of samplers
and some families of distributions. We will first prove that both Random Block and Last Block
samplers ensures sufficient diversity. Then we will provide a general technique to upper bound
balance functions and some examples of distributions satisfying the balance condition.
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2.4.1 Analysis of LB and RB samplers

In this section we further analyze the Last Block (LB) and Random Block (RB) samplers. Both
are Block Samplers, as defined in 2.3, but the way they provide diverse sub-samples is very
different: while RB explores a random part of the history at each step, LB simply returns the
last observations. Our striking result is that both methods manage to ensure sufficient diversity.

Lemma 2.13 (Random Block Sampler). The Random Block sub-sampling algorithm ensures
sufficient diversity, as defined in 2.10.

In the following we sketch the main results that allow to prove Lemma 2.13. We introduce
the random variable Xm,H,j that denotes the maximal number of pairwise non-overlapping
subsets obtained in m i.i.d. samples from RB(j,H). We aim at upper bounding

P (Xm,H,j ≤ x)

for some values of m, H , j, and some specific value of x that will be specified later. Intuitively,
this probability is decreasing in H and m, and increasing in j. Furthermore, if m is large
compared to H we can reasonably expect to visit most of the history. Then, the proof of
Lemma 2.13 mainly relies on the results we propose in Lemma 2.14, that are written with
m = H . This is sufficient in our proof since during a run of RB-SDA we expect both the history
size of the leader and the number of duels played to be linear in r, so we can set the two values
equal to their minimum using that Xa,b,j ≥ Xa,a,j if a ≤ b.

Lemma 2.14 (Maximal number of non-overlapping subsets with RB-SDA). Consider a history
size H , a number of draws that is also H , a sub-sample size j, and some α ∈ (0, 1). Then, it holds
that

P
(
XH,H,j ≤

⌈
αH

j

⌉)
≤ P (XH,H,1 ≤ αH) .

Furthermore, if α is small enough it holds that

− log (P (XH,H,1 ≤ αH)) = O(H) .

Proof. The first part of Lemma 2.14 consists in showing that it is sufficient to study XH,H,1 to
get a result for any sub-sample size j. This result comes from block sampling: we can focus on
the number of unique elements drawn by RB (starting observation for each block). If M such
unique elements are available, then in the worst case these observations are successive in the
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history, and we have to skip j blocks for 1 observation to avoid overlaps. This result directly
yields the first statement of the lemma.

We now consider XH,H,1. In this case the distribution of the points collected is the one of
sampling with replacement in a set of size H . It has been well studied in the literature, that
allows to obtain the following upper bound.

Lemma 2.15. Combining the exact expression of P(Xm,H,1 = k) from (Mendelson et al., 2016)
and an upper bound on Stirling numbers of the second kind from (Rennie and Dobson, 1969), we
obtain that for any k ≤ H

P(XH,H,1 = k) ≤ 1
2

(
k

H

)H−k
(
H

k

)
.

As k should be small compared to H it is then natural to use
(H
k

)
≤ Hk

k! . We then bound
1/k! by its equivalent given by Stirling formula and introduce a multiplicative constant c to pay
for the approximation, (

H

k

)
≤ c

Hk

√
2πk × kk

ek .

Refactoring and assuming that k ≤ H − 2k we obtain

P(XH,H,1 = k) ≤ c

2
ek√
2πk

(
k

H

)H−2k
≤ c

2
√

2π

(
ke

H

)H−2k
.

To obtain the upper bound of Lemma 2.14 we need to consider this for k ≤ αH . We assume
that α < 1/e, so we can finally obtain

P(XH,H,1 ≤ αH) ≤ c

2
√

2π

⌊αH⌋∑
k=0

(αe)H−2k

= c

2
√

2π
(αe)H (αe)−2⌊αH⌋ − 1

(αe)−2 − 1
= O

(
(αe)H(1−2α)

)
,

which is exponentially decreasing in H for small enough α, and hence gives the result.
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The complete proof of Lemma 2.13, that relies on Lemma 2.14, can be found in Appendix 2.6.
It remains to prove that if arm 1 is not pulled then it has been stuck with its first j observations for
an interval of size Ω(r/ log(r)) in which the leader already had at least Ω(r/ log(r)) observations
(corresponding to m and H here).

Hence, the proof of sufficient diversity with Random Block relied on probabilistic arguments
due to the randomized sampling. For Last Block, on the contrary, all arguments will be purely
deterministic.

Lemma 2.16 (Last Block Sampler). LB-SDA ensures sufficient diversity in the sub-samples.

Proof. The main trick to prove this result is to show that for any trajectory of the bandit algorithm
the leader (whatever arm it is) will be played many times, making sure that the sub-samples
presented to the challengers will be diverse. To measure this, we define the number of rounds
for which the current leader was pulled up to a round r,

Wr = 1 +
r−1∑
s=1

1(As+1 = {ℓ(s)}) ,

where we added 1 for the first round where every arm (including the arbitrary leader) is pulled
once. For any trajectory, we show that this quantity is equal to the number of pulls of the leader,
that we know to be linear in r.

Proposition 2.17. For any round r ≥ 2, under LB-SDA it holds that

Wr = Nℓ(r)(r) ≥ r/K .

This proposition, formally proved in (Baudry et al., 2021b), comes from considering each
phase between changes in leadership, and that any time the leader gets ahead in terms of
number of pulls this arm must be drawn while being leader. We want to use this results on the
rounds for which arm 1 has already "enough" samples thanks to the sampling obligation. We
refer to Appendix 2.6.1, where we prove that if fr = (log r)1/k for k > 1 there exists a round
ar = o(r) for which N1(r) ≥ fr − 1. For the rest of the proof we consider the number of duels
lost by arm 1 after ar against unique sub-samples of a sub-optimal leader. The number of duels
won by the leader between the rounds ar and r is equal toWr−War . Out of those duels, at most
C1 log(r) can be won by the optimal arm. Consequently, there is at least Wr −War − C1 log(r)
duels won by a suboptimal leader between rounds ar and r. Using Lemma 2.17 and War ≤ ar
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we can then prove that for any β ∈ (0, 1), there exists a round rβ,K from which

Wr −War − C1 log(r) ≥ β
r

K
. (2.2)

UnderN1(r) ≤ C1 log(r) we are sure that there exists some j ∈ {1, ..., ⌊C1 log(r)⌋} such that
a fraction 1/(C1 log(r)) of the duels counted above have been played with N1(r) = j. Let us
denote W̃r = Wr−War −C1 log(r) and show this by contradiction. Out of those duels, we denote
W̃r,j the number of duels played withN1(r) = j. If we assume that for all j ≤ ⌊C1 log(r)⌋, there
is strictly less than β

C1 log(r)
r
K duels played with N1(r) = j. The following would hold,

W̃r := Wr −War − C1 log(r) =
⌊C1 log(r)⌋∑

j=1
W̃r,j <

⌊C1 log(r)⌋∑
j=1

β

C1 log(r)
r

K
< β

r

K
.

There is a contradiction with Equation (2.2) and so there is necessarily some j ≤ ⌊C1 log(r)⌋
and βr/(C1 log(r)K) duels such that arm 1 competes using exactly its first j samples.

Furthermore, with the same argument we are sure that a fraction 1/(K − 1) of these duels
is played against the same leader k ∈ {2, . . . ,K}. We would now like to obtain duels with
non-overlapping blocks. Even if the blocks are all consecutive, waiting for j steps is enough to
ensure that they are not overlapping. Hence, taking a fraction 1/j of the duels from the previous
subsets is a conservative estimate of the true number of non-overlapping blocks they contain.
Finally, we conclude that for any β ∈ (0, 1) there exists a constant rβ,K such that for any round
r > rβ,K , under the event {N1(r) ≤ C1 log r} there exists some k ∈ {2, . . . ,K} and some j ∈
{⌊fr − 1⌋, ⌊C1 log r⌋} such as arm 1 lost at least β r

K(K−1)(C1 log r)j duels against non-overlapping
blocks of arm k while k is the leader and 1 has exactly j observations. This term correspond
exactly to the balance function αk(M, j) from Definition 2.9, withM = β r

K(K−1)(C1 log(r))j . This
concludes the proof, as we obtain that LB-SDA satisfies

P(N1(r) ≤ C1 log(r)) ≤ rβ,K +
K∑
k=2

C1 log(r)∑
j=1

αk

(
β

r

K(K − 1)(C1 log r)j , j
)
,

which satisfies Definition 2.10 of sufficient diversity.

To conclude this section on sub-sampling algorithms we explain why the tournament
structure of BESA (Baransi et al., 2014) may not work due to problems related to the diversity of
sub-samples drawn. With the following example, we explain that the tournament (for K ≥ 4)
may fail because an under-sampled best arm will be required to win against other arms that
have not been sampled a lot too, potentially repeatedly playing the same unsuccessful duels.
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Example 2.18 (Failure of the tournament structure of Baransi et al. (2014)). Let us consider a
4-armed bandit with µ1 > µ2 > µ3 = µ4. Assume that N1(l) = C log(r) for some 0 < C < C1

(the constant in Lemma 2.7), and that Ȳ1,j ≤ µ4 − ε for some ε > 0. If all other arms are well
estimated (|Ȳk,Nk(r) − µk| ≤ ε for k ≥ 2), then 2 should be sampled most of the time (be the leader)
and 3 and 4 have O(log(r)) samples. Further assume that 3 and 4 have roughly C log(r) samples
too. Then, the best arm may sometimes win a duel against arm 2 thanks to diversity of sub-samples
and Assumption 2.20. However, after that it will most likely lose its duel against arm 3 or 4, and
hence take an unreasonably long time to be pulled because of its duels against other challenger arms.

2.4.2 A deeper look at the balance condition

In this section we consider properties of families of distributions, that are independent of
the run of SDA and the sampler it uses. We first exhibit a general property that ensures that
the balance condition is satisfied with some amount of forced exploration, and then show
that several families including SPEF actually satisfy it. We finally prove that several families
of distributions (Bernoulli, Gaussian, Poisson) satisfy the balance condition without forced
exploration, and on the other hand that some amount of forced exploration is necessary for
exponential distributions.

We first propose a general way to upper bound the balance function. We use the notation
Fk,j for the cdf of the distribution of the sum of j i.i.d samples drawn from any arm k, and
Gk,j = 1 − Fk,j . Then, the intuition is rather simple: take a reference value u, if arm 1 lost the
M duels then either (1) the sum of all the samples collected from arm 1 is smaller than u, or (2)
the sum of each of the M sub-samples drawn from the history of arm k is larger than u.

Proposition 2.19.
αk(M, j) ≤ F1,j(u) +Gk,j(u)M , ∀u ∈ R . (2.3)

The idea is then to consider values of u of the form u = G−1
2,j (1− (logM)a

M ), that allows to upper
bound the second term by M−a. We then need to control F1,j

(
F−1

2,j

(
(logM)a

M

))
. Interestingly,

only having F1,j(x) ≤ F2,j(x) for x small enough is not sufficient as log(M)a

M is not small enough
for the balance condition to hold. Interestingly, it is however enough to ensure a sub-linear
regret, more precisely a poly-logarithmic regret. In the following we show that a slightly
stronger condition is sufficient to ensure a logarithmic regret.
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2.4.3 A general family satisfying the balance condition

In this section we will prove that assuming the best distribution to have a "better" lower tail
than the others is enough to prove the balance condition. We formalize this as follow.

Assumption 2.20 (Dominant left tail).

∀k ≥ 2 : ∃yk ∈ R, ck ∈ (0, 1) : ∀x ≤ yk ,
dPν1

dPνk

(x) ≤ ck .

Under this assumption the worst rewards have to be more likely for bad arms than for good
arms, to avoid the best arm getting stuck for a long time with a "bad" sample. The parameter
c ≤ (0, 1) is added to ensure that the two tails are distinguishable enough for our proof to work.
In the following we discuss this condition and show that it is satisfied by many families of
distributions. We now prove that it is enough to make the balance condition hold, thanks to
the following result.

Proposition 2.21. If assumption 2.20 is satisfied with some parameters (ck, yk)k≥2, then for all
k ≥ 2, j ≥ 1 it holds that for all x ≤ yk:

F1,j(x) ≤ cjkFk,j(x) .

Proof. For any x ≤ yk The computation of F1,j(x) directly provides the result,

F1,j(x) =
∫ x

−∞

∫ x−x1

−∞
· · ·
∫ x−x1−···−xj−1

−∞
dPν1(x1) . . . dPν1(xj)

≤
∫ x

−∞

∫ x−x1

−∞
· · ·
∫ x−x1−···−xj−1

−∞
cjkdPνk

(x1) . . . dPνk
(xj)

= cjkFk,j(x)

This result allows to use Equation 2.3 to provide an upper bound on the balance function.

Lemma 2.22 (Balance condition under Assumption 2.20). Under Assumption 2.20, the balance
function of any arm k ≥ 2 can be upper bounded by

αk(M, j) ≤ γ × cjk
log(M)
M

+ 1
Mγ

,
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for any M ∈ N satisfying log(M)/M ≤ yk, any γ > 1, and j ∈ N. Furthermore, the balance
condition holds for any forced exploration fr satisfying fr

log log(r) → +∞.

Proof. Using Proposition 2.21 and Equation 2.3, for any x ≤ yk the balance function of any arm
k ≥ 2 can be upper bounded by

αk(M, j) ≤ cjkFk,j(x) +Gk,j(x)M = cjkFk,j(x) + (1 − Fk,j(x))M

Interestingly, to provide the smallest possible upper bound on αk(M, j) we can simply consider
minimizing the function z 7→ cjkz+ (1 − z)M . For simplicity we use that (1 − z)M ≤ exp(−Mz),
and then consider the value zM = γ log(M)

M for some γ > 1 (which is not exactly the minimizer
but of the same order). This provides the first statement for M large enough such that zM ≤ yk.

Now, consider a sequence Mj,r = (log r)a

r for some a > 1 (we omit potential constants for
simplicity of notations). We consider the

∑T
r=1

∑C1 log(r)
j=fr

αk(Mj,r). We use the upper bound
we obtained on αk(Mj,r), and first remark that for any γ > 1 it holds that

T∑
r=1

C1 log(r)∑
j=fr

1
Mγ
j,r

=
T∑
r=1

C1 log(r)∑
j=fr

(log(r))aγ

rγ

=
T∑
r=1

C1
(log(r))aγ+1

rγ

= O(1) ,

for any value of fr. Hence, the difficulty comes from upper bounding the term resulting from
the first part of the upper bound of αk(M, j),

T∑
r=1

C1 log(r)∑
j=fr

cjk
log(Mj,r)
Mj,r

=
T∑
r=1

C1 log(r)∑
j=fr

cjk
log(r/(log(r)a))
r/(log(r)a)

≤
T∑
r=1

C1 log(r)∑
j=fr

cjk
log(r)a+1

r

≤
T∑
r=1

log(r)a+1

r

+∞∑
j=fr

cjk

=
T∑
r=1

log(r)a+1

r

cfr

k

1 − ck

= 1
1 − ck

T∑
r=1

log(r)a+1cfr

k

r
.
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We now investigate the possible values of fr to make this sum converge. For any ε > 0, this
is the case if

log(r)a+1cfr

k = exp((a+ 1) log log(r) − fr log(1/ck)) ≤ log(r)−(1+ε) ,

which holds if fr ≥ a+2+ε
log(1/ck) log log(r). Summarizing these results, we obtain that the

balance condition holds for fr satisfying fr

log log(r) → +∞.

Examples We provide a few examples of problems for which Assumption 2.20 holds. The
first one is Single Parameter Exponential Families (SPEF), that contain some usual families of
distributions.

Proposition 2.23 (Any SPEF satisfies Assumption 2.20). Assume that for a family of distribution
F there exists some functions g, ψ and a set Θ such that for any ν ∈ F there exists θ ∈ Θ satisfying

dPν
dη

= eg(θ)y−ψ(θ) ,

for a reference measure η and with g(θ) that is increasing with the mean of ν. Then any bandit
problem with arms in F satisfy Assumption 2.20.

Proof. According to the definition and properties of SPEF for any x ≤ µk it holds that

dPν1

dPνk

(x) = exp ((g(θ1) − g(θk))x− Ψ(θ1) + Ψ(θk))

≤ exp ((g(θ1) − g(θk))µk − Ψ(θ1) + Ψ(θk))

≤ exp (−kl(µk, µ1)) ,

with kl(µk, µ1) > 0 as µk < µ1. This is exactly what we need for Assumption 2.20 with yk = µk

and ck = exp(−kl(µk, µ1))

This result combined with Lemma 2.22 show that SPEF are well adapted to sub-sampling
based algorithms, but we can find other type of assumptions on the distributions that would
make Assumption 2.20 hold. For instance, a quite common assumption in bandits is to consider
that rewards are generated by adding a noise to their mean, i.e any reward Xk received from
arm k can be written as

Xk = µk + η ,
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where µk is the mean of arm k and η is a noise, drawn from some fixed probability distribution
of mean zero. For instance, η can be a be a sub-gaussian or sub-exponential noise. In that case, if
the noise admits a density f then the densities of arm 1 and arm k in any x are respectively
f(x− µ1) and f(x− µk). Hence, Assumption 2.20 is valid if there exists ck ∈ (0, 1) such that
for x small enough

f(x− ∆k)
f(x) ≤ ck .

If the noise is supported on R this depends of the asymptotic behavior of f . This will be
typically true if f has an exponential or gaussian asymptotic equivalent.

Another question is to determined whether or not forced exploration is necessary. Indeed,
the upper bound on the balance function may not be tight and it may be possible to improve
it for specific distributions. In Appendix 2.7 we actually prove that forced exploration is not
necessary for Gaussian (with shared variance), Poisson and Bernoulli distributions. On the
other hand, we discuss that the balance condition cannot be satisfied without at least some
forced exploration for exponential distributions. Finding other characterizations of families
of distributions that can satisfy the balance condition and the level of forced exploration they
need is an interesting future research direction.

2.4.4 Summary of our results

We provide a short summary of the results we obtained in previous sections:

• With Theorem 2.12, we proved that SP-SDA has a regret of order
(∑K

k=2 I1(µk)−1
)

log(T )
if the family of distribution F satisfies Assumption 2.4 (concentration of means with
exponential decay) for some rate functions (Ik)k∈{1,...,K}, if SP is a block sampler bringing
sufficient diversity, and if any bandit problem from F satisfies the balance condition.

• Lemma 2.13 and Lemma 2.16 show that both the Random Block and Last Block samplers
bring a sufficient diversity of sub-samples to their respective algorithms.

• Lemma 2.22 shows that the balance condition is satisfied if F satisfies Assumption 2.20
with forced exploration fr satisfying fr/ log log(r) → +∞. Furthermore, Proposition 2.23
shows that this assumption holds if F is a SPEF.

Hence, we can conclude this part with two results that showcase the potential of the
algorithms based on sub-sampling.

Corollary 2.24 (of Theorem 2.12, Lemma 2.13, 2.16 and Lemma 2.22). Let ν = (ν1, . . . , νK) ∈
FK be a bandit problem satisfying assumption 2.20 (dominant tail for the best arm), with arms
satisfying assumption 2.4 (concentration of empirical means) with rate functions I1, . . . , IK . Then,
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2.4 Theoretical guarantees for RB-SDA and LB-SDA

if the forced exploration fr satisfies fr

log log(r) → +∞ and fr = o(log(r)) the number of pulls of each
sub-optimal arm k > 2 for LB-SDA and RB-SDA can be upper bounded by

E[Nk(T )] ≤ 1 + ε

I1(µk)
log(T ) + Oε(1) ,

for any ε > 0.

As the LB and RB samplers are proved to be sufficient, the learner only needs to check that the
family of distributions satisfy the two assumptions we consider. We recall that assumption 2.4 is
always valid if the distributions are light-tailed, which is in general a knowledge that is affordable
in practice. The other assumption may be more difficult to check but is easy to re-formulate as:
worst-case scenarios need to be less probable for better arms. We showed that this is true for SPEF (e.g
Bernoulli, Gaussian with shared variance, Poisson, . . . ), that are very common distributions.
Furthermore, Corollary 2.24 can be further refined for SPEF by remarking that these families
of distributions satisfy I1(µk) = kl(µk, µ1) (the proof simply relies on Chernoff inequality), so
that the regret upper bound actually matches the lower bound of Lai and Robbins (1985).

Corollary 2.25 (Asymptotic optimality for SPEF). Let ν = (ν1, . . . , νK) ∈ FK be a bandit
problem, where F is a SPEF satisfying Assumption 2.4. Then, if the forced exploration fr satisfies

fr

log log(r) → +∞ and fr = o(log(r)) the number of pulls of each sub-optimal arm k > 2 for LB-SDA
and RB-SDA can be upper bounded by

E[Nk(T )] ≤ 1 + ε

kl(µk, µ1) log(T ) + Oε(1) ,

for any ε > 0. Both RB-SDA and LB-SDA are then asymptotically optimal.

Again, a striking result is that these theoretical guarantees are simultaneously achieved for
very different examples of distribution: some are bounded (Bernoulli), un-bounded (Gaussian,
Poisson, Exponential), discrete or continuous, . . . and SDA works without using any of those
information in its implementation. The only algorithm with the same guarantees is SSMC (Chan,
2020), that inspired SDA, and we think that we demonstrated further interesting properties
of algorithms based on sub-sampling. First, we bridged the gap between BESA and SSMC by
proposing algorithms that are their close variants (WR-SDA and LB-SDA respectively) in the
same framework, with LB-SDA being simpler and more computationally efficient than SSMC.
Then, we showed that both randomized and deterministic samplers can achieve strong theoretical
guarantees, for families of distributions satisfying a generic property that we defined. Both
approaches can have their interest according to additional constraints faced by the learner.
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Finally, we also showed that forced exploration is not necessary for some distributions (Bernoulli,
Gaussian, Poisson), but it seems necessary to some extent for others (Exponential).

We further remark that RB-SDA and LB-SDA being asymptotically optimal for binomial
distributions is noteworthy. Indeed, this ensures that it is possible to build on these algorithms
to propose a bandit algorithm that has logarithmic regret for distributions that are bounded in
a known support. To do so, we can use the binarization trick already proposed by Agrawal
and Goyal (2013a) for Thompson Sampling, and run RB-SDA or LB-SDA on top of a binarized
history H′

k for each arm k in which a reward Yk,s is replaced by a binary pseudo-reward is Y ′
k,s

generated from a Bernoulli distribution with mean Yk,s. The resulting algorithm inherits the
regret guarantees of these algorithms applied to Bernoulli distributions.

An interesting future work consists in finding a variant of SDA that could work when As-
sumption 2.20 is not satisfied. For bounded distributions this can be done with the binarization
trick introduced in previous paragraph. However, the right way to achieve this goal is much
less clear for unbounded distributions.

2.5 Experiments

In this section, we perform experiments on simulated data in order to illustrate the good
performance of the four instances of SDA algorithms introduced in Section 2.2 for various
distributions. The Python code used to perform these experiments is available on Github.

Bernoulli and Gaussian arms First, in order to illustrate Corollary 2.25, we investigate the
performance of SDA for both Bernoulli and Gaussian distributions (with known variance 1).
Our first objective is to check that for a finite horizon the regret of SDA is comparable with
the regret of Thompson Sampling (with respectively a beta and improper uniform prior),
which efficiently use the knowledge of the distribution. Our second objective is to empirically
compare different variants of SDA to other non-parametric approaches based on sub-sampling
(BESA, SSMC) or on re-sampling. For Bernoulli and Gaussian distribution, Non-Parameteric
TS coincides with Thompson Sampling, so we focus our study on algorithms based on history
perturbation. We experiment with PHE (Kveton et al., 2019a) for Bernoulli bandits and ReBoot
(Wang et al., 2020) for Gaussian bandits, as those two algorithms are guaranteed to have
logarithmic regret in each of these settings. As advised by the authors, we use a parameter
a = 1.1 for PHE and σ = 1.5 for ReBoot. As results in Appendix 2.7 show that SDA do not
require forced exploration with Bernoulli and Gaussian arms we set fr = 1.

We ran experiments on 4 different Bernoulli bandit models, that we present in Table 2.1.
The objective of the experiments is to test different cases that can happen with Bernoulli
distributions: large mean, high variance (µ around 0.5), low mean, and many similar arms.
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2.5 Experiments

Table 2.1 – Experiments with Bernoulli arms
Name Number of arms Means {µ1, . . . , µK}
xp 1B K = 2 µ = {0.8, 0.9}
xp 2B K = 2 µ = {0.5, 0.6}
xp 3B K = 10 µ1 = 0.1, µ2:4 = 0.01, µ5:7 = 0.03, µ8:10 = 0.05
xp 4B K = 8 µ = {0.9, 0.85, . . . , 0.85}

We then propose 3 experiments with gaussian arms N (µk, 1), that we present in Table 2.2.

Table 2.2 – Experiments with Gaussian arms with variance σ2 = 1
Name Number of arms Means {µ1, . . . , µK}
xp 1G K = 2 µ = {0.5, 0}
xp 2G K = 4 µ = {0.5, 0, 0, 0}
xp 3G K = 4 µ = {1.5, 1, 0.5, 0}

For each experiment with Bernoulli and Gaussian arms, Table 2.3 and Table 2.4 report an
estimate of the regret at time T = 20000 based on 5000 independent runs, as well as standard
deviation across al trajectories. The best performing algorithms are highlighted in bold. In
Figure 2.2 we further plot the regret of several algorithms as a function of time (in logarithmic
scale) for t ∈ [15000; 20000] for one Bernoulli and one Gaussian experiment respectively. We
also add the Lai and Robbins lower bound (Lai and Robbins, 1985). These figures aim at
showing that the first order term of the empirical regret matches the lower bound for SDA (and
other) algorithms.

Table 2.3 – Regret and at T = 20000 for Bernoulli arms, with standard deviation

Benchmark SDA
xp TS PHE BESA SSMC RB WR LB LDS

1B 11.2 25.9 11.7 12.3 11.5 11.6 12.2 11.4
(10.) (87.9) (12.1) (7.3) (10.1) (10.2) (7.4) (9.0)

2B 22.9 24.0 22.1 24.3 22.0 21.5 24.0 21.8
(29.2) (22.0) (25.2) (38.2) (34.5) (17.3) (24.6) (24.5)

3B 94.2 248.1 88.1 100.1 89.0 86.9 100.7 89.2
(15.8) (25.5) (89.2) (20.0) (19.8) (21.7) (21.3) (21.8)

4B 108.1 216.5 147.5 119.9 105.1 106.9 119.6 106.8
(45.1) (89.8) (209.8) (40.8) (41.1) (42.1) (42.7) (47.7)

In all of these experiments, we notice that SDA algorithms are indeed strong competitors
to Thompson Sampling (with appropriate prior) for both Bernoulli and Gaussian bandits.
Figure 2.2 further show that they are empirically matching the Lai and Robbins’ lower bound
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Table 2.4 – Regret and at T = 20000 for Gaussian arms, with standard deviation

Benchmark SDA
xp TS ReBoot BESA SSMC RB WR LB LDS

1G 24.4 92.2 25.3 26.9 25.6 24.7 25.1 26.5
(17.1) (23.4) (27.1) (52.8) (62.8) (20.6) (17.9) (140.2)

2G 73.5 277.1 122.5 74.8 71.0 71.1 74.6 69.0
(107.8) (41.3) (585.5) (34.7) (152.2) (50.2) (35.1) (50.4)

3G 49.7 190.9 72.1 51.3 50.4 50.0 51.2 48.6
(26.9) (29.6) (410.3) (23.7) (156.5) (33.3) (22.4) (41.6)
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Figure 2.2 – Regret as a function of time for xp 3B and xp 2G (Right), for T = 2×104 and 5000 simulations.
The y axis is in logarithmic scale, and the x axis starts at T = 15×104 to illustrate the "asymptotic" regime
of the algorithms (parallel straight lines correspond to a logarithmic regret with the same constant
before the log).

on two instances, just like SSMC, which can be seen from the parallel straight lines with the x
axis in log scale. The fact that the lower bound is above shows that it is really asymptotic and
only captures the right first order term. The same observation was made for all experiments, but
is not reported due to space limitation. Even if we only established the asymptotic optimality
of RB-SDA and LB-SDA, these results suggest that the other SDA algorithms considered in
this chapter may also be asymptotically optimal. Compared to SDA, re-sampling algorithms
based on history perturbation seem to be much less robust. Indeed, in the Bernoulli case, PHE
performs very well for experiment 2, but is significantly worse than Thompson Sampling on
the three other instances. In the Gaussian case, ReBoot always performs significantly worse
than other algorithms. Finally, we notice that the standard deviations are comparable for SDA
algorithms and TS. However, for gaussian arms some of them may experience large standard
deviations for some experiments. This may be due to the fact that the constant upper bounding
the balance function is larger than for bernoulli distributions, and may be reduced by the
asymptotically negligible forced exploration in fr =

√
log(r) (which would correspond to only

4 samples in our case). However, we notice that even TS suffers from this problem (xp 2G)
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Turning our attention to algorithms based on sub-sampling, we first notice that WR-SDA
seems to be a better generalization of BESA with 2 arms than the tournament approach currently
proposed, as in experiments with K > 2, WR-SDA often performs significantly better than
BESA. Then we observe that SSMC and SDA algorithms have similar performance. Looking a
bit closer, we see that the performance of SSMC is very close to that of LB-SDA as we intuited
in previous sections, whereas SDA algorithms based on “randomized” (or pseudo-randomized
for LDS-SDA) samplers tend to perform slightly better on average, at the cost of larger variance
in the results.

Truncated Gaussian Theorem 2.24 suggests that RB-SDA and LB-SDA may attain logarithmic
regret beyond exponential families. As an illustration, we present the results of experiments
performed with Truncated Gaussian distributions (in which the distribution of arm k is that of
Yk = 0 ∨ (Xk ∧ 1) whereXk ∼ N (µk, σ2)). These distributions trivially satisfy Assumption 2.20
since the probability of obtaining 0 is strictly smaller for the best arm than for the other arms.
We present in 2.5 the 4 problems we considered in this setting, and report in Table 2.6 the
regret at time T = 20000 (estimated over 5000 runs) of various algorithms on four different
problem instances:

Table 2.5 – Experiments with Truncated Gaussian arms
Name Number of arms Means {µ1, . . . , µK} and Std

xp 1TG K = 2 µ = {0.5, 0.6}, σ = 0.1
xp 2TG K = 2 µ = {0, 0.2}, σ = 0.3
xp 3TG K = 2 µ = {1.5, 2}, σ = 1
xp 4TG K = 4 µ = {0.4, 0.5, 0.6, 0.7}, σ = 1

We include Non-Parametric TS which is known to be asymptotically optimal in this setting
(while TS which uses a Beta prior and a binarization trick is not), PHE, and all algorithms
based on sub-sampling. We again observe the good performance of SSMC and SDA algorithms
across all experiments. They even outperform NPTS in some experiments, which suggests SDA
algorithms may be also asymptotically optimal for this class of distributions.

Exponential Arms In Appendix 2.7, we show that exponential actually requires some level
of forced exploration. In this section we propose to check the performance of our algorithms
without and with forced exploration to see if it seems really necessary in practice or if forced
exploration is just a proof artifact. We performed 6 experiments, with mean parameters reported
in Table 2.7.

It is interesting to remark that the standard deviation of an exponential distribution is equal
to its mean, so with similar gaps problems are harder when the means are high. We first report
in Table 2.8 our result without forced exploration.
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Table 2.6 – Regret at T = 20000 for Truncated Gaussian arms

Benchmark SDA
xp TS NPTS PHE BESA SSMC RB WR LB LDS

1TG 21.9 4.2 22.3 1.4 1.5 1.4 1.4 1.5 1.4
(20.4) (0.6) (2.6) (1.7) (0.7) (1.1) (0.8) (0.7) (0.8)

2TG 13.3 8 19.5 4.6 4.7 4.4 4.5 4.6 4.3
(7) (1.8) (3.8) (3.3) (2.3) (4.6) (3.1) (2.4) (2.9)

3TG 9.7 7.8 48.5 7.8 7.6 7.1 7.7 8.2 7.1
(10.1) (4.5) (217.8) (9.4) (5) (10) (13.4) (27.5) (5.8)

4TG 86.6 70 86 76.5 69.5 64.9 64.8 68.7 63.2
(57.8) (39.4) (53.7) (113.9) (40.9) (60.5) (43.9) (39.1) (51.1)

Table 2.7 – Experiments with Exponential arms
Name Number of arms Means {µ1, . . . , µK} and Std
xp 1E K = 2 µ = {1.5, 1}
xp 2E K = 2 µ = {0.2, 0.1}
xp 3E K = 2 µ = {11, 10}
xp 4E K = 4 µ = {4, 3, 2, 1}
xp 5E K = 4 µ = {0.4, 0.3, 0.2, 0.1}
xp 6E K = 4 µ = {5, 4, 4, 4}

First, we notice that the performance of the SDA in terms of the average regret are reasonable,
although less impressive than with the other distributions we tested. IMED is almost always
the best algorithm in these experiments, and SSMC performs pretty well on many examples
(note that we left fr =

√
log(r) for SSMC). We remark that there is much more variability

in the results of RB-SDA, WR-SDA and LDS-SDA than before, where they performed quite
similarly. For instance, we notice that on example 3, LDS-SDA and RB-SDA are much worse
than WR-SDA. A look at the quantile table for this experiment (Table 2.9), which displays the
empirical quantiles of the regret estimated over 5000 runs, shows that this is due to a small
number of "bad" trajectories for these algorithms:
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Table 2.8 – Average Regret with Exponential Arms (with std) without forced exploration

xp TS IMED BESA SSMC RB WR LB LDS

1E 48.2 40.0 45.7 41.9 44.8 45.4 46.6 45.5
(191.8) (78.4) (114.1) (84.2) (121.4) (134.4) (176.8) (109.7)

2E 3.8 3.4 4.2 3.6 4.1 3.9 3.9 5.4
(9.9) (3.6) (25.1) (41.9) (14.3) (13.4) (8.7) (49.5)

3E 832.8 779.9 820.5 856.9 848.4 778.4 846.7 877.7
(1065.1) (896.9) (1304.6) (1111.0) (1533.3) (1118.7) (1150.1) (1708.7)

4E 258.3 234.6 525.4 251.3 272.6 262.1 263.8 258.4
(519.6) (126.6) (2115.1) (328.3) (692.2) (524.4) (477.9) (599.0)

5E 25.6 24.0 55.7 25.6 25.5 25.0 26.5 24.7
(51.2) (33.6) (219.9) (23.6) (46.7) (24.0) (36.8) (37.6)

6E 618.7 603.6 1184.2 627.9 595.7 616.0 652.6 605.9
(672.3) (576.8) (3096.4) (755.6) (790.7) (780.2) (685.3) (871.4)

Table 2.9 – Quantiles of the distribution of empirical regret at T = 104 for Experiment 3 with exponential
arms, over 5000 runs.

% of runs TS IMED SSMC RB WR LB LDS

20% 319.8 336.0 335.0 261.0 290.0 326.0 261.8
50% 626.0 650.0 661.0 532.0 568.5 642.0 536.0
80% 1122.0 1080.0 1142.0 1006.0 1019.0 1143.2 1020.2
95% 1924.1 1704.0 1846.0 2199.0 1817.2 1869.1 2134.1
99% 4209.4 2632.9 3536.8 6813.1 4146.0 3762.3 7396.7

We see that up to the 80% quantile, RB-SDA and LDS-SDA are even significantly better
than IMED. This is very different when we look at the 95% and 99% quantiles, which are much
greater for our 2 algorithms (even 2.5 times greater for the 99% quantile).

We believe that this very high variability prevents SDA to have a logarithmic regret for
exponential arms. Still, the regret is not as bad as being linear, and a closer look at the balance
function allows to prove a O((log(T ))2) regret, with the term P(N1(r) < C1 log(r)) becoming
the first order term of the regret. Hence, the experiments seem to confirm that the asymptotically
negligible forced exploration is actually necessary for exponential arms. In Table 2.10 we run
the same experiments but choose fr =

√
log(r) as suggested in (Chan, 2020)

We remark that adding forced exploration results in a noticeable improvement for SDA
algorithms, with RB-SDA, WR-SDA and LDS-SDA becoming competitive with IMED on most
examples. Furthermore, LB-SDA becomes again comparable with SSMC. Considering all these
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Table 2.10 – Average regret with exponential arms: SDA with forced exploration

xp RB-SDA WR-SDA LB-SDA LDS-SDA

1E 44.9 42.5 42.4 45.0
(167.3) (107.4) (60.5) (176.0)

2E 3.6 3.4 4.0 3.6
(9.2) (2.2) (27.9) (11.2)

3E 837.5 788.5 827.7 832.3
(1466.1) (1222.1) (1055.3) (1514.6)

4E 244.8 238.9 251.7 246.0
(403.3) (250.8) (248.5) (323.4)

5E 23.6 25.1 25.4 24.9
(33.4) (41.0) (23.4) (42.2)

6E 578.9 595.1 631.2 577.8
(651.9) (561.3) (446.4) (652.7)

results and the fact that a forced exploration of fr =
√

log(r) is not harmful in practice we
recommend to always run SDA with this level of exploration.

Bayesian Experiments So far we tried our algorithms on specific instances of the distributions
we considered. It is also interesting to check the robustness of the algorithms when the means
of the arms are drawn at random according to some distribution. In this section we consider
two examples: Bernoulli bandits where the arms are drawn uniformly at random in [0, 1], and
Gaussian distributions with the mean parameter of each arm itself drawn from a gaussian
distribution µk ∼ N (0, 1). In both cases we draw 10000 random problems with K = 10 arms
and run the algorithms for a time horizon T = 20000. We experiment with TS, SSMC, RB-SDA
and WR-SDA and IMED. We do not add LDS-SDA and LB-SDA as they are similar to RB-SDA
and SSMC, respectively. In the Bernoulli case, we also run the PHE algorithm, which fails to
compete with the other algorithms. This is not in contradiction with the results of Kveton et al.
(2019a) as in the Bayesian experiments of this paper, arms are drawn uniformly in [0.25, 0.75]
instead of [0, 1]. Actually, we noticed that PHE with parameter a = 1.1 has some difficulties
when several arms are close to 1.
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Table 2.11 – Average Regret on 10000 random
experiments with Bernoulli Arms

T TS IMED PHE SSMC RB WR

102 13.8 15.1 16.7 16.5 14.8 14.3
103 27.8 31.9 39.5 34.2 31.8 30.9
104 45.8 51.2 72.3 55.0 51.1 50.6
2.104 52.2 57.6 85.6 61.9 57.7 57.3

Table 2.12 – Average Regret on 10000 random
experiments with Gaussian Arms

T TS IMED WR RB SSMC

102 41.2 45.1 38.3 38.1 40.6
103 76.4 82.1 72.7 70.4 76.2
104 118.5 124.0 115.8 111.8 120.1
2.104 132.6 138.1 130.2 125.7 135.1

Results reported in Tables 2.11 and 2.12 show that RB-SDA and WR-SDA are strong com-
petitors to TS and IMED for both Bernoulli and Gaussian bandits. Recall that these algorithm
operate without the need for a specific tuning for each distribution, unlike TS and IMED.
Moreover, observe that in the Bernoulli case, TS further uses the same prior as that from which
the means are drawn.

Computational aspects To choose a sub-sampling based algorithm, numerical consideration
can be taken into account. First, compared to algorithms like UCB1 or Thompson Sampling
the main drawback of sub-sampling based algorithms is that they require to store the full
history of rewards. This motivated our study in Chapter 3 about a variant of LB-SDA with
limited memory. On the other hand, the computation cost of sub-sampling varies across
algorithms: block samplers are generally more efficient than WR-SDA as the latter requires
to draw a random subset while the formers only need at most to draw the random integer
starting the block and compute the sub-samples’ mean. However, for distributions with finite
supports WR-SDA can be made as efficient as TS using multivariate geometric distributions.
LDS-SDA could be preferred to RB-SDA to avoid randomization, as it uses a deterministic
sequence. Finally, LB-SDA has the smallest computational cost in the SDA family and while its
performance is very close to that of SSMC, it can avoid the cost of scanning all the sub-sample
means in this algorithm. The computational cost of these two algorithms depends on what
happened during the round: their update can be made very efficient when the leader does not
change and is pulled. Indeed, in that case one only needs to update K − 1 means by replacing
the oldest observation by the last collected. However, the alternative case is costly for SSMC as
it requires to perform a complete scan of the leaders’ history. Under such scenario LB-SDA is
much more efficient, and does not cost more than a step of RB-SDA. We complete this discussion
in next chapter.
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2.6 Appendix A: Sufficient diversity for RB-SDA (Lemma 2.13)

We start with a decomposition that follows the steps of Baransi et al. (2014) for BESA with 2
arms that we generalize for K arms. Furthermore, in the following we first write the proof
for a forced exploration fr = 1, as the notations are already heavy, and we detail in the next
section 2.6.1 why introducing an asymptotically negligible forced exploration does not change
the proof.

We first denote by rj the round of the jth play of arm 1 with r0 = 0 and let τj = rj+1 − rj .
We notice that τ0 ≤ K as all arms are initialized once. Then:

P (N1(r) ≤ C1 log(r)) ≤ P (∃j ∈ {1, ..., C1 log(r)} : τj ≥ r/C1 log(r) − 1)

≤
C1 log(r)∑
j=1

P (τj ≥ r/C1 log(r) − 1)

Indeed, if we assume that ∀j τj ≤ r/C1 log(r) − 1 then tC1 log(r) =
∑C1 log r
j=0 τj < r, which

yields Nℓ(r) > C1 log r + 1. We now fix j ≤ C1 log(r) and upper bound the probability of the
event

Ej := {τj ≥ r/C1 log(r) − 1} .

On this event arm 1 lost at least r/C1 log(r) consecutive duels between rj + 1 and rj+1 (either
as a challenger of as the leader) which yields

P(Ej) ≤ P(∀s ∈ {rj + 1, ..., rj + ⌊r/C1 log(r) − 1⌋} :

{Ȳ1,j ≤ Ȳℓ(s),Ss
1(Nℓ(s)(s),j), N1(s) = j,Nℓ(s)(s) ≥ j} ∪ {ℓ(s) = 1, N1(s) = j})

The important change compared to the proof of Baransi et al. (2014) is that with K > 2, we
don’t know the identity of the leader and the leader is not necessarily pulled if it wins its duel
against 1. We then notice that when r is large, the time range considered in each Ej includes a
large number of rounds. By looking at the second half of this time range only, we can ensure
that the leader has been drawn a large number of times. More precisely, introducing the two
intervals

M1
j,r =

[
rj + 1, rj +

⌊
r/(C1 log(r)) − 1

2

⌋]
M2

j,r =
[
rj +

⌈
r/(C1 log(r)) − 1

2

⌉
, rj + ⌊r/(C1 log(r))⌋ − 1

]
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it holds that

P(Ej) ≤ P(∀s ∈ M2
j,r :{Ȳ1,j ≤ Ȳℓ(s),Ss

1(Nℓ(s)(s),j), N1(s) = j,Nℓ(s)(s) ≥ j}

∪ {ℓ(s) = 1, N1(s) = j}) .

But we know that on M2
j,r the leader must has been selected at least 1

K

(
j +

⌈
r/(C1 log(r))−1

2

⌉)
times. Let rK be the first integer such that C1 log(r) < 1

K−1

⌈
r/(C1 log(r))−1

2

⌉
, for every r ≥ rK ,

as j ≤ C1 log(r), the leader has been selected strictly more than j times, which prevents arm 1
from being the leader for any round in M2

j,r. Hence, for r ≥ rK , for all j ≤ C1 log(r),

P(Ej) ≤ P
(
∀s ∈ M2

j,r : {Ȳ1,j ≤ Ȳℓ(s),Ss
1(Nℓ(s)(s),j), N1(s) = j,Nℓ(s)(s) ≥ j}

)
.

To remove the problem of the identity of the leader we would like to find a way to fix
our attention on one arm. To this extent, we notice that during an interval of length |M2

j,r|, if
there are only K − 1 candidates for the leader then one of them must have been leader at least
mr := |M2

j,r|/(K − 1) − 1 times during this range. We also know that at any round in M2
j,r, the

leader satisfiesNℓ(s)(s) ≥ (tj+⌊ r/C1 log(r)−1
2 ⌋)/K−1 ≥ (⌊ r/C1 log(r)−1

2 ⌋)/K−1 = |M1
j,r|
K −1 := cr.

Observe that mr > cr. Finally, we introduce the notation

Ikj,r = {s ∈ M2
j,r : ℓ(s) = k}

for the set of rounds in M2
j,r in which a particular arm k is leader. From the above discussion,

we know that there exists an arm k such that |Ikj,r| ≥ mr.

To ease the notation, we introduce the event

Wk
s,j =

{{
Ȳ1,j < Ȳk,Ss

1(Nk(s),j)
}
, Nk(s) ≥ cr, N1(s) = j

}
and write

P(Ej) ≤ P
( ⋂
s∈M2

j,r

K⋃
k=2

{ℓ(s) = k, 1 /∈ As)}
)

≤ P
(

K⋂
k=2

⋂
s∈Ik

j,r

Wk
s,j

)

≤ P

 K⋃
k=2

|Ikj,r| > mr,
⋂

s∈Ik
j,r

Wk
s,j




≤
K∑
k=2

P

|Ikj,r| > mr,
⋂

s∈Ik
j,r

Wk
s,j

 .
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Finally, we define for any integerM the event that we can findM pairwise non-overlapping
sub-samples in the set of the sub-samples of arm k drawn in rounds s ∈ Ikj,r:

Fk,r
j,M =

{
∃i1, ..., iM ∈ Ikj,r : ∀m < m′ ∈ [M ], Sim1 (Nk(im), j) ∩ S

im′
1 (Nk(im′), j) = ∅

}
Introducing Hk

j,r = mins∈Ik
j,r
Nk(s), the minimal size of the history of arm k during rounds in

Ikj,r (which is known to be larger than cr as k is leader in these rounds), one has

P(Ej) ≤
K∑
k=2

P
(
|Ikj,r| > mr,∩s∈Ik

j,r
Ws,j ∩ {Fk,r

j,M ∪ F̄k,r
j,M}

)

≤
K∑
k=2

P
(
|Ikj,r| ≥ mr, H

k
j,r ≥ cr, F̄k,r

j,M

)
+

K∑
k=2

P
(
|Ikj,r| > mr,∩s∈Ik

j,r
Ws,j ∩ Fk,r

j,M

)
(2.4)

Upper bound on the first term in (2.4) The probability P
(
|Ikj,r| ≥ mr, H

k
j,r ≥ cr, F̄k,r

j,M

)
can

be upper bounded by

P
(

#
{

pairwise non-overlapping subsets in (Ss1(Nk(s), j))s∈Ik
j,r

}
< M

∣∣∣ {|Ikj,r| > mr, H
k
j,r ≥ cr

})
.

This probability can be related to some intrinsic properties of the sampler SP(H, j). To formalize
this, we introduce the following definition.

Definition 2.26. For every integers N,H, j such that H > j, XN,H,j is a random variable which
counts the maximum number of non-overlapping subsets among N i.i.d. samples from SP(H, j).

Letting H1, . . . ,Hmr be integers that are all larger than cr, and letting S1, . . . , Smr be inde-
pendent subsets such that Si ∼ SP(Hi, j), the above probability is upper bounded by

P (# {pairwise non-overlapping subsets in (Si)mr
i=1} < M)

which is itself upper bounded by P (Xmr,cr,j < M).

This last inequality is quite intuitive: if one draws subsets of size j from histories that may
be larger than cr, there is more “room” for non-overlapping subsets than if we always draw
them from the same history of size cr. For Random Block sampling, where the drawn subset
is fully determined by the random position of its first element, to formalize this intuition it is
sufficient to prove that if Xi, Yi are two sequences of random variables such that Xi is uniform
in [Hi − j] and Yi is uniform in [H − j], where Hi ≥ H , the random variable that counts the
maximal number of elements in the sequence (Yi) whose pairwise distance are larger than j is
stochastically dominated by that the same random variable but for the sequence (Xi).
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Upper bound on the second term in (2.4) On the event
(
|Ikj,r| > mr,∩s∈Ik

j,r
Ws,j ∩ Fk,r

j,M

)
, one

can define ı̃1, . . . , ı̃M the first M rounds in Ikj,r for which the subsets S̃m := S ı̃m(Nk (̃ım), j) are
pairwise non-overlapping and we get

P
(
|Ikj,r| > mr,∩s∈Ik

j,r
Ws,j ∩ Fk,r

j,M

)
≤ P

(
∀m ∈ [M ], Ȳ1,j ≤ Ȳk,S̃m

)
.

By definition the subsets S̃m are pairwise non-overlapping, hence the sub-samples Ȳk,S̃m
are

independent. We prove that this probability can be in fact upper bound by the balance function
we defined in section 2.3.

Indeed, introducing X ∼ ν1,j and an independent i.i.d. sequence Zi ∼ νk,j , one can write

P
(
|Ikj,r| > mr,∩s∈Ik

j,r
Ws,j ∩ Fk,r

j,M

)
≤ P(X < min

i∈[M ]
Zi)

= EX∼ν1,j

Z∼ν⊗j
k,j

[
M∏
i=1
1X≤Zi

]

= EX∼ν1,j

[
E
Z∼ν⊗j

k,j

[∏
i

1X≤Zi

∣∣∣∣∣X
]]

= EX∼ν1,j

[
(1 − Fk,j(X))M

]
= αk(M, j).

Conclusion Putting things together, we have proved that

P(Ej) ≤ (K − 1)P (Xmr,cr,j < M) +
K∑
k=2

αk(M, j),

where XN,H,j and αk(M, j) are introduced in Definition 2.26 and 2.9 respectively. If we replace
M by the sequence βr,j we have

T∑
r=1

P(N1(r) ≤ C1 log(r)) ≤ rK +
T∑

r=rK

C1 log(r)∑
j=1

[
(K − 1)P (Xmr,cr,j < βr,j) +

K∑
k=2

αk(βr,j , j)
]

≤ rK +
T∑

r=rK

C1 log(r)∑
j=1

[
(K − 1)P (Xcr,cr,j < βr,j) +

K∑
k=2

αk(βr,j , j)
]
,

as cr ≤ mr. We then conclude by using Lemma 2.14, introduced earlier in this chapter. The
quantity P (Xcr,cr,j < βr,j) admits an exponential upper bound in cr, which ensures that

T∑
r=rK

C1 log(r)∑
j=1

(K − 1)P (Xcr,cr,j < βr,j) = O(1) ,
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which concludes the proof that RB-SDA provides sufficient diversity according to defini-
tion 2.10.

2.6.1 Adding Forced Exploration in the proof

The idea is to use the same proof sketch as without forced exploration. We consider any
sequence fr of the form fr = (log r)

1
k for some k > 1 for simplicity. The following proof sketch

can be adapted to other sequences. Let us denote for simplicity f−1(x) = inf{r ∈ N : fr ≥ x}
for any x ∈ R.

Let us consider the round ar = f−1(fr − 1). At this round, the value of exploration function
is fr−1 = log(r)1/k−1, which means that the number of pulls of arm 1 is at least ⌊(log r)1/k−1⌋.

Now we aim at proving that the number of rounds in the interval r − ar is very close to r
when r is large. To do that, we use that

ar = f−1(fr − 1)

= exp(((log r)
1
k − 1)k) .

We then compare the exponent with log r. For η ∈ (0, 1) and r large enough it holds that

log(r) − ((log r)
1
k − 1)k = log(r)

(
1 −

(
1 − 1

(log(r))1/k

)k)

≥ log(r)
(

1 − exp
(

− k

(log r)1/k

))
≥ log(r)

(
1 −

(
1 − η

k

(log r)1/k

))
= ηk log(r)1− 1

k

−→ +∞ ,

so ar = o(r), and we can conclude that for any γ ∈ (0, 1), there exists some round rγ such
that for r ≥ rγ ,

r − ar ≥ γr .

This means that after the round ar arm 1 faces a linear amount of duels, and has an history
of at least j = ⌊(log r)1/k − 1⌋ samples. Introducing br the random variable giving the first time
when N1(br) = ⌊(log r)1/k − 1⌋, we necessarily have br ≤ ar.

Then, using the exact proof as in the previous section we finally obtain a result of the form
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T∑
r=1

P(N1(r) ≤ C1 log(r)) ≤ r′
K +

T∑
r=r′

K

(log r)2∑
j=⌊fr⌋−1

[
(K − 1)P(Xcr,cr,j < M ′

r,j) +
K∑

k=2
αk(M ′

r,j , j)
]

(2.5)

for a new sequence Mr,j smaller than the previous one but of the same order in (r, j), and a
new constant r′

K . This result concludes this part.

2.7 Appendix B: Further Analysis of the Balance Function of some
distributions

In this section we detail the upper bound on the balance function that allows to show that
gaussian distributions do not require forced exploration. This proof can be found in Appendix
G of (Baudry et al., 2020), where we also prove similar results for the Bernoulli and Poisson
distributions. We choose to provide the results for Gaussian distributions as an example of
how such bound can be derived. Then, we provide a simple result that shows that exponential
distributions require forced exploration to some extent.

In the next parts we use the notation G(x) = 1 − F (x) where F if the CDF of the distribu-
tion considered. For some arm distribution νi the distribution of the sum of j independent
observations drawn from νi is denoted by νi,j . With this notation, for two arms 1 and 2 we
write

α(M, j) = EZ∼ν1,j [G2,j(Z)M ]; .

2.7.1 Gaussian Distribution

For the Gaussian distribution we leverage the fact that both the PDF and CDF can be expressed
with the PDF and CDF of the standard normal distribution. We use the notations f and F for
the PDF and CDF of the N (0, 1) distribution, write G = 1 − F , ∆ for the gap between the two
arms, and compute the expectation

α(M, j) =
∫ +∞

−∞
f1,j(x)G2,j(x)Mdx

≤
∫ z

−∞
f1,j(x)G2,j(x)Mdx+G2,j(z)M , ∀z ∈ R

≤
∫ z

−∞
f
(√

j(x− µ1)
)
G
(√

j(x− µ2)
)M

dx+G2,j(z)M

≤ 1√
j

∫ √
j(z−µ2)

−∞
f
(
y −

√
j∆
)
G(y)Mdy +G2,j(z)M .
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At this step we use that f(x− a) = e−a2/2+axf(x) for all a, x, and that the function h : x →
(M + 1)f(x)G(x)M is a probability distribution of CDF x → 1 − G(x)M+1. These properties
allow to write

α(M, j) ≤ 1√
j

e−j∆2
2

M + 1

∫ √
j(z−µ2)

−∞
e

√
j∆yh(y)dy +G2,j(z)M

≤ 1√
j

e−j∆2
2

M + 1e
j∆(z−µ2)

(
1 −G

(√
j(z − µ2

)M+1
)

+G
(√

j(z − µ2)
)M

≤ 1√
j

e
−j
(

∆2
2 −∆(z−µ2)

)
M + 1 +G

(√
j(z − µ2)

)M
.

As the inequality is true for all z ∈ R, it holds that

∀y ∈ R, α(M, j) ≤ e−j∆2
2

M + 1e
√
j∆y +G (y)M .

Now let yM be such as G(yM ) = 1 − 1√
M

. This value ensures that the second term satisfies
G(yM )M ≤ e−

√
M = o(M−2). Observe that yM = F−1( 1√

M+1). Using the following equivalent
of the quantile function of the normal distribution when the quantile is small (see for instance
Ledford and Tawn (1997)):

F−1(p) = −
√

log 1
p2 − log log 1

p
+ log 2π + op→0(1) ,

there exists a constant C ∈ R such that yM ≤ −C
√

logM − log logM + log 4π. This yields

α(M, j) ≤ e−j∆2
2

M + 1e
−C

√
j∆

√
logM−log logM+log 4π + e−

√
M .

We then remark that for all k ∈ N∗,

k log logM = o(C
√
j∆
√

logM − log logM + log 4π)

and as a consequence that

α(M, j) = o

 e−j∆2
2

(M + 1)(logM)k

 ,
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for any k ∈ N∗.

This is sufficient to prove that the Gaussian distribution is balanced. Indeed, with M =
O(r/(C1 log r)) the series in r is convergent (O

(
1

r(log r)k

)
for some k > 1).

2.7.2 Exponential Distribution

For j = 1, a direct calculation yields

α(M, 1) = 1
1 +

(
µ1
µ2

)
M
.

Using this and M = β r
log r we then obtain

T∑
r=1

⌊C1 log(r)⌋∑
j=1

αk(⌊βr/ log r⌋ , j) ≥
T∑
t=1

αk(⌊βr/ log r⌋ , 1)

=
T∑
t=2

1
1 +

(
µ1
µk

)
⌊βr/logr⌋

≥
T∑
t=2

1
1 +

(
µ1
µk

)
βr/ log r

≥ C
T∑
r=2

log(r)
r

= Ω(log(T )2),

where C is some small enough constant that depend on µ1, µk and β.
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Chapter 3

LB-SDA with Limited-Memory

In the previous chapter we introduced the family of Sub-Sampling Dueling Algorithms, based
on the principle of pairwise comparisons between arms with sub-samples of the same size.
We proposed various sub-sampling schemes and derived theoretical guarantees along with
general intuitions on why this principle works in bandits. Strikingly, we showed that a very
simple algorithm returning the Last Block of observations achieve strong theoretical guarantees.
In this chapter we propose to extend this Last Block Sub-Sampling Dueling Algorithm (LB-SDA),
in two directions. First, we prove that its guarantees hold when limiting the algorithm memory
to a polylogarithmic function of the time horizon. Then, we consider non-stationary scenarios
in which the arm distributions evolve over time. We propose a natural variant of the algorithm
in which only the most recent observations are used for sub-sampling, achieving optimal
regret guarantees under the assumption of a known number of abrupt changes. Numerical
simulations highlight the merits of this approach, particularly when the changes are not only
affecting the means of the rewards.
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LB-SDA with Limited-Memory

3.1 Introduction

In this chapter we still consider the Multi-Armed Bandit problem introduced in Chapter 1, as
well as the algorithms based on sub-sampling that we introduced in Chapter 2. More specifically,
we build on the Last-Block Sub-sampling Dueling Algorithm (LB-SDA), that we introduced
and analyzed, and that is particularly attractive because of its simplicity and computational
efficiency compared to other instances of SDA. Our first contribution in this chapter is to show
that the theoretical guarantees of LB-SDA still hold, without additional changes, for a variant
of the algorithm using a limited memory of the observations of each arm. We prove in particular
that storing a poly-logarithmic amount of observations (instead of linear) in the number of
rounds played is sufficient to maintain the theoretical guarantees, making the algorithm more
tractable for larger time horizons. This is interesting since the main drawback of the algorithms
analyzed in Chapter 2 is the requirement to store all T rewards.

Furthermore, building a sub-sampling algorithm based on the most recent observations
makes it an ideal candidate for a passively forgetting policy in a non-stationary environment.
We presented a short introduction to the vast literature on non-stationary bandits in Section 1.3
of Chapter 1, detailing some known theoretical results in this setting along with common
approaches to tackle this problem. Our second contribution is to propose a natural extension of
the LB-SDA strategy to non-stationary environments by using a sliding window. By limiting the
extent of the time window in which sub-sampling is allowed to occur, one obtains a passively
forgetting non-parametric bandit algorithm, which we refer to as Sliding Window Last Block
Sub-sampling Duelling Algorithm (SW-LB-SDA). To analyze the performance of this algorithm,
we assume an abruptly changing environment in which the reward distributions change at
unknown time instants called breakpoints. We show that SW-LB-SDA guarantees a regret of
order O(

√
ΓTT log(T )) for any abruptly changing environment with at most ΓT breakpoints,

thus matching the lower bounds from (Garivier and Moulines, 2011), up to logarithmic factors.
The only required assumption is that, during each stationary phase, the reward distributions
satisfy Assumption 2.4 and 2.20, introduced in the previous chapter.

Due to its non-parametric nature, this algorithm can thus be used in many scenarios of
interest beyond the standard bounded-rewards / change-in-the-mean framework. We discuss
some of these scenarios in Section 3.5, where we validate numerically the potential of the
approach by comparing it with a variety of state-of-the-art algorithms for non-stationary
bandits. Hence, our contribution is not about providing novel insights on how non-stationarity
can be handled by a bandit algorithm, but about analyzing the adaptation of a non-parametric
algorithm to include a well-known passively forgetting strategy, that can tackle settings that
are potentially not covered by existing approaches in terms of the family of distributions and
changes that are allowed.
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3.2 Preliminaries

Just as in Chapter 2, the algorithms to be presented below are designed for the stochastic K-
armed bandit problem. We briefly re-introduce the two variants of this basic model that will be
considered in the chapter: stationary and abruptly changing environments.

Stationary environments When the environment is stationary, we recall that the K arms are
characterized by the reward distributions (νk)k≤K and their associated means (µk)k≤K , with
µ⋆ = maxk∈{1,...,K} µk denoting the highest expected reward. We denote by (Yk,s)s∈N the i.i.d.
sequence of rewards from arm k. We further recall that LB-SDA operates in successive rounds,
whose length varies between 1 and K time steps. At each round r, the leader denoted ℓ(r) is
defined and (K − 1) duels with the remaining arms called challengers are performed. Denoting
by Nk(r) the number of pulls of arm k up to the round r, the leader is the arm that has been
most pulled: ℓ(r) ∈ argmaxk∈{1,...,K}Nk(r). When several arms are candidate, the one with
the largest sum of rewards is chosen. If this is still not sufficient to obtain a unique arm, the
leader is chosen at random among the arms maximizing both criteria. At round r, a subset
Ar ⊂ {1, ...,K} is selected by the learner based on the outcomes of the duels against ℓ(r). Next,
all arms in Ar are drawn, yielding Yk,Nk(r) for k ∈ Ar, where Nk(r) =

∑r
s=1 1(k ∈ As).

We refer the reader to definition to Section 1.1 for the definition of the regret and the lower
bounds of Lai and Robbins (1985) for parametric families of distributions.

Abruptly changing environments In Section 3.4, we consider abruptly changing environ-
ments that we introduced in Section 1.3. We recall that the number of breakpoints up to time
T , denoted ΓT , is defined by

ΓT =
T−1∑
t=1

1{∃k, νk,t ̸= νk,t+1},

and that the time instants (t1, ..., tΓT
) associated to these breakpoints define ΓT + 1 stationary

phases where the reward distributions are fixed. In such environments, letting µ⋆t denote the
best arm at time t, the performance of a policy is measured through the dynamic regret defined
as

RT = E
[
T∑
t=1

(µ⋆t − µAt)
]
.

In the non-stationary case, the lower bound for the regret takes a different form: for any
strategy, there exists an abruptly changing instance such that RT = Ω(

√
TΓT ) (Garivier and

Moulines, 2011; Seznec et al., 2020). In this chapter, we only consider this type of non-stationary
environments, and hence target this theoretical performance.
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3.3 LB-SDA with Limited Memory in Stationary Environments

In this section we recall the general principle of LB-SDA and analyze a variant with limited
memory, that we call LB-SDA-LM.

3.3.1 Last Block Sampling

We recall the general principle of SDA: at each round r, the algorithm (1) selects a leader ℓ(r),
(2) makes this leader compete against every other arm (called challenger) in duels (pairwise
comparisons), and (3) at the end of the round each winning challenger (if any) is pulled,
otherwise the leader is pulled. This general principle is detailed in Algorithm 2.1, and in the
following Algorithm 3.1 we simply recall the duel step of LB-SDA. In the rest of this chapter
we assume that LB-SDA uses a forced exploration fr =

√
log(r), as suggested in Chapter 2.

1 Input: 2 arms ℓ (leader) and k (challenger), History Hℓ = (Yℓ,1, . . . , Yℓ,Nℓ
) and

Hk = (Yk,1, . . . , Yk,Nk
), set of arms to pull A.

2 Define Ȳk,Nk
:= 1

Nk

∑Nk
i=1 Yk,i and Ȳℓ,Nℓ−Nk+1:Nℓ

:= 1
Nk

∑Nk
j=1 Yℓ,Nℓ−Nk+j

3 if Nk ≤
√

log(r) or Ȳk,Nk
≥ Ȳℓ,Nℓ−Nk+1:Nℓ

; ▷ Using last block for the leader
4 then
5 Add k to A
6 end

Algorithm 3.1: Duel step of LB-SDA

We finally recall that LB-SDA works because it provides a sufficient diversity of sub-samples
so that the challenger has a fair chance of winning. This is due to the fact that the leader will
be pulled a linear number of times during a run of the algorithm. According to Lemma 2.16
and Definition 2.10, the performance of LB-SDA depends only on the family of distributions of
the arms, that needs to satisfy the balance condition (Definition 2.11) to ensure a logarithmic
regret. For example, Single Parameter Exponential Families (SPEF) satisfy this condition with
fr =

√
log(r), and LB-SDA is even asymptotically optimal in that case as the upper bound of the

regret matches the lower bound of Lai and Robbins (1985).

In the rest of this chapter we present our results assuming that the arms come from the
same SPEF, as our focus is on the mechanisms to ensure the performance of LB-SDA in two
settings with limited memory. We refer the interested reader to Chapter 2 for discussions on
the assumptions that can be made on the arms’ distributions to ensure the performance of
LB-SDA. All the results we are going to present are valid for distributions satisfying the more
general Assumptions 2.4 and 2.20.
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3.3.2 Memory-Limited LB-SDA

One of our main motivations for further studying LB-SDA is its simplicity and efficiency. Yet, all
existing subsampling algorithms (Baransi et al., 2014; Chan, 2020; Baudry et al., 2020), including
the vanilla version of LB-SDA (see Chapter 2), have to store the entire history of rewards for all
the arms. In this section, we explain how to modify LB-SDA to reduce the storage cost while
preserving the theoretical guarantees.

Consider a family of distributions for which LB-SDA has logarithmic regret. When T is
large, the arm with the largest mean is the leader with high probability, and all the challengers
should have a number of pulls that is of order O(log T ) only. With duels based on the last block,
this would mean in particular that only the last O(log T ) observations from the optimal arm
should be stored and that very old observations will never be used again in practice. Based on
this intuition, one might think that keeping only log(T )/(µ⋆ − µk)2 observations is enough for
LB-SDA. However, this could only be done with the knowledge of the true gaps.

We propose instead to limit the storage memory of each arm at round r to a quantity

mr = Ω
(
log(r)1+γ

)
,

for some γ > 0. Following the definition of Agrawal and Goyal (2012b), we then define the set
of saturated arms at a round r as

Sr = {k ∈ {1, . . . ,K} : Nk(r) ≥ mr} .

The only modification of LB-SDA is the following: at each round r, if a saturated arm is pulled
then the newly collected observation replaces the oldest observation in its history. The following
result shows that LB-SDA-LM keeps the same asymptotical performance as LB-SDA for mr

satisfying mr/ log(r) → +∞. We stated this result for SPEF for simplicity, but the guarantees
under Assumption 2.20 translate similarly.

Theorem 3.1 (Asymptotic optimality of LB-SDA with Limited Memory). For any bandit
model ν = (ν1, . . . , νK) ⊂ PK

Θ where PΘ is any single parameter exponential family of distributions
satisfying Assumption 2.4, if mr/ log(r) → ∞, the regret of memory-limited LB-SDA satisfies, for
all ε > 0,

RT ≤
∑

k:µk<µ⋆

1 + ε

kl(µk, µ⋆)
log(T ) + C ′(ν, ε,M) ,

where M = (m1,m2, . . . ,mT ) denotes the sequence (mr)r∈N and C ′(ν, ε,M) is a problem-
dependent constant.
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We detail the proof of this result, making explicit all the constant terms. Furthermore, we
highlight that it also works for Lemma 2.7 for LB-SDA by setting mr = +∞ or mr = r in some
parts of the proof (that we will point out).

Proof. We introduce a sequence mr of allowed memory for each arm at a round r. In the
beginning of the proof we do not make any assumption on the sequence (mr)r≥1 except that
mr/ log(r) → +∞, which is required in the statement of Theorem 3.1. We further assume
that mr is an integer for any round r, which does not change anything for the algorithm but
simplifies the notation for the proof. Without loss of generality, we assume that the arm 1
is the unique optimal arm, µ1 = maxk∈[K] µk. We also recall that the arms are assumed to
come from the same SPEF for simplicity, so Assumption 2.4 is satisfied for some rate functions
(Ik)k∈{1,...,K}. In terms of notation, we remark that if Nk(r) ≥ mr and ℓ(r) ̸= k then the duel
between k and ℓ(r) is the comparison between Ȳk,Nk(r)−mr+1:Nk(r) and Ȳℓ(r),Nℓ(r)(r)−mr+1:Nℓ(r)(r).
Otherwise, if Nk(r) ≤ mr and ℓ(r) ̸= k then the duel is the comparison between Ȳk,Nk(r) and
Ȳℓ(r),Nℓ(r)(r)−Nk(r)+1:Nℓ(r)(r), which is the same as for the vanilla LB-SDA.

We recall that the set of saturated arms at round r is defined as Sr = {k : Nk(r) ≥ mr}.

To simplify the notation for each arm kwe define the real number xk = µ1+µk
2 ∈ (µk, µ1), and

write ωk = min(I1(xk), Ik(xk)). Hence, we will write most of our results using concentration
with this value ωk for arm k.

Our first step decomposes the number of pulls of arm k depending of if arm 1 is the leader
or not, and if it is the case whether k is saturated or not, which gives

E[Nk(T )] ≤ 1 + E
[
T−1∑
r=1

1(ℓ(r) ̸= 1)
]

︸ ︷︷ ︸
Zr

+E
[
T−1∑
r=1

1(k ∈ Ar+1, k /∈ Sr, ℓ(r) = 1)
]

︸ ︷︷ ︸
Gr

+ E
[
T−1∑
r=1

1(k ∈ Ar+1, k ∈ Sr, ℓ(r) = 1)
]

︸ ︷︷ ︸
Ḡr

.

We first study Ḡr, and start the sum on the rounds at 2m1 because two arms cannot be saturated
before this round is reached. We upper bound Ḡr by taking a union bound on the sample size
of each arm, and that if two random variables (X,Y ) satisfy X > Y then either X ≥ ξ or Y ≤ ξ

for any real value ξ. We then obtain

Ḡr ≤
T−1∑
r=2m1

P (ℓ(r) = 1, k ∈ Ar+1, Nk(r) ≥ mr, N1(r) ≥ mr)
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≤
T−1∑
r=2m1

P
(
N1(r) ≥ Nk(r) ≥ mr, Ȳk,Nk(r)−mr+1:Nk(r) ≥ Ȳ1,N1(r)−mr+1:N1(r)

)

≤
T−1∑
r=2m1

r∑
nk=mr

P
(
Ȳk,nk−mr+1:nk

≥ xk, Nk(r) = nk
)

+
T−1∑
r=2m1

r∑
n1=mr

P
(
Ȳ1,n1−mr+1:n1 ≤ xk, N1(r) = n1

)

≤2
T−1∑
r=2m1

re−mrωk ,

where we used the concentration inequality of Assumption 2.4, that is satisfied for SPEF.

We then consider Gr and distinguish two cases, whenever Nk(r) ≤ n0(T ) or not at each
round, for some n0(T ) that will be specified later. First, we have that

Gr ≤ n0(T ) + E
[
T−1∑
r=1

1(k ∈ Ar+1, k /∈ Sr, ℓ(r) = 1, Nk(r) ≥ n0(T ))
]
.

We then use that on the event k /∈ Sr the duels played between k and 1 will be the classical
duel with the last block: k will compete with its empirical mean and 1 with the mean of its last
block of size Nk(r). We define some ηk ∈ (µk, µ1) and write

Gr ≤ n0(T ) + E
[
T−1∑
r=1

1(k ∈ Ar+1, k /∈ Sr, ℓ(r) = 1, Nk(r) ≥ n0(T ))
]

≤ n0(T ) + E
[
T−1∑
r=1

1(k ∈ Ar+1, Ȳk,Nk(r) ≥ Ȳ1,N1(r)−Nk(r)+1:N1(r), Nk(r) ≥ n0(T ))
]
.

We then use the same trick as for Ḡr to separate the means of the two arms, before taking a
union bound on the sample size for arm k, and use Lemma 2.6 for the leader. These steps give

Gr ≤ n0(T ) +
T−1∑

nk=n0(T )
P
(
Ȳk,nk

≥ ηk
)

+
T−1∑

nk=n0(T )

T−1∑
n1=n0(T )

P
(
Ȳ1,n1−nk+1:n1 ≤ ηk

)
.

for any ηk ∈ R. We remark that the sum on r disappeared for arm k. Indeed, the fact that arm
k is pulled ensures that

∑T−1
r=1 1(k ∈ Ar+1, Nk(r) = nk) ≤ 1. We finally obtain
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Gr ≤ n0(T ) + e−n0(T )Ik(ηk)

1 − e−Ik(ηk) + T
e−n0(T )I1(ηk)

1 − e−I1(ηk) .

We then calibrate n0(T ) and ηk in order to makes these terms converge properly. We define
ε > 0 and state n0(T ) = 1+ε

I1(µk) log T . We then use the continuity of the rate functions on (µk, µ1)
to state that for any ε > 0 there exists ηk ∈ (µk, µ1) satisfying I1(ηk) ≥ I1(µk)

1+ε . That translates in
our result to Te−n0(T )I1(ηk) ≤ 1, and the remaining term is upper bounded by a constant that
depends on ε (typically, in O(ε−2)). Hence, for any ε > 0 it holds that

Gr ≤ 1 + ε

I1(µk)
log T + Ck,ε ,

where Ck,ε is a constant. Combining these results we can write a first upper bound on
E[Nk(T )] as

E[Nk(T )] ≤ 1 + 1 + ε

I1(µk)
log T + 2

T−1∑
r=2m1

re−mrωk + Ck,ε +
T−1∑
r=2m1

P(ℓ(r) ̸= 1) . (3.1)

We remark that without the memory limit (equivalently mr = +∞) the first sum vanishes.
Indeed this expression provides an explicit dependence in mr, that justifies the condition in
Theorem 3.1 for mr ( namely, mr/(log r) → +∞) to make the sum converge.

We then work on upper bounding Zr. As in the proof of Chan (2020) this part is the most
technically challenging. In the next steps we will consider the same events as in the original
proof, but the storage limitation will add some complexity to the task. We first recall that at
each round the leader satisfies

ℓ(r) = k ⇒ Nk(r) ≥
⌈
r

K

⌉
.

However, adding the storage constraint we have that for any r satisfying r ≥ Kmr the leader
has necessarily more than mr observations. For this reason, its history will be always truncated
to the mr last observations. For r is reasonably large, mr is still large enough to guarantee a
good concentration of the empirical mean of the saturated arms. We define ar =

⌈
r
4
⌉
, and write

P (ℓ(r) ̸= 1) = P ({ℓ(r) ̸= 1} ∩ Dr) + P
(
{ℓ(r) ̸= 1} ∩ D̄r

)
. (3.2)

We define Dr the event under which the optimal arm has been leader at least once in [ar, r].

Dr = {∃u ∈ [ar, r] such that ℓ(u) = 1}.
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We then upper bound the term in the left hand side of Equation (3.2). As Chan (2020), we use
that if arm 1 is not the leader and Dr holds, a leadership takeover happened (arm 1 was leader,
arm k becomes the next leader). In that case, some arm k′ had at some point a better empirical
average as the leader while having the same sample size. We denote this event by Dk′

r . For any
r0 ∈ N it holds that

T−1∑
r=r0

P
(
Dk′
r

)
≤ E

[
T−1∑
r=r0

r∑
u=ar

1(Ȳ1,N1(u) ≤ Ȳk′,Nk′ (r), N1(u) = Nk′(u), N1(u) ≤ mu)
]

+ E
[
T−1∑
r=r0

r∑
u=ar

1(Ȳ1,N1(u)−mr:N1(r) ≤ Ȳk′,Nk′ (r)−mr:Nk′ (r), N1(u) = Nk′(u), N1(u) ≥ mu)
]
.

We remark that if r0 is large enough such that for r ≥ r0 it holds that

ar
K

− 1 ≤ mar ,

then the first term is equal to 0, and the leader is necessarily saturated. It remains to upper
bound the second term. Similarly as for the upper bound of Ḡr a union bound on the sample
sizes provides

T−1∑
r=r0

P
(
Dk′
r

)
≤ E

[
T−1∑
r=r0

r∑
u=ar

1

(
N1(u) = Nk′(u), Ȳ1,N1(r)−mr+1:N1(r) ≤ Ȳk′,Nk′ (r)−mr+1:Nk′ (r)

)]

≤ r0 +
T−1∑
r=r0

r∑
u=max(ar,2m1)

2ue−muωk′

≤ r0 + 2
T−1∑
r=r0

r2e−marωk′ .

We first use this result without commenting its dependence in the sequence (mr)r≥1. Summing
on all suboptimal arms k′ we obtain

T−1∑
r=r0

P ({ℓ(r) ̸= 1} ∩ Dr) ≤ 2
K∑
k′=2

T−1∑
r=r0

r2e−marωk′ . (3.3)

Again, the constraint mr/ log(r) → +∞ is sufficient to ensure a proper convergence of this
sum to a constant with the same arguments as before, because ar is still linear in r.
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Remark 3.2. In that case we can again set mr = +∞ to obtain the proof without limited memory,
so this last term would be 0. However, our argument to discard the "unsaturated leader" case is not
valid anymore. Deriving an upper bound for this term would give 2

∑K
k′=2

∑T−1
r=1 e

−brωk′ instead,
which is smaller.

Hence, the limited memory makes sub-optimal leadership takeovers more likely (which is intu-
itive).

We then consider the event for which arm 1 has never been the leader between ar and r.
The idea in this part is to leverage the fact that if the optimal arm is not leader between ⌊r/4⌋
and r, then it has necessarily lost a lot of duels against the current leader at each round. We
then use the fact that when the leader has been drawn "enough", concentration prevents this
situation with large probability. We introduce

Lr =
r∑

u=ar

1(Cu) ,

with Cu defined as Cu = {∃k ̸= 1, ℓ(u) = k, 1 /∈ Au+1}. The following holds

P(ℓ(r) ̸= 1 ∩ Dr) ≤ P(Lr ≥ r/4) . (3.4)

This result comes from (Chan, 2020), along with the direct use of the Markov inequality to
provide the upper bound

P(Lr ≥ r/4) ≤ E(Lr)
r/4 = 4

r

r∑
u=ar

P(Cu) . (3.5)

We further decompose P(Cu) in two parts according to the number of selections of arm 1. For a
constant C > 0, we write

T−1∑
r=r0

P({ℓ(r) ̸= 1} ∩ Dr) ≤
T−1∑
r=r0

4
r

r∑
u=ar

P
(
N1(u) ≤ C

4 log(u)
)

︸ ︷︷ ︸
D̄1

+
T−1∑
r=r0

4
r

r∑
u=ar

P
(

Cu, N1(u) ≥ C

4 log(u)
)

︸ ︷︷ ︸
D̄2

.

We consider D̄2. Again, we decompose it according to if the optimal arm is saturated or not.
We also introduce Cuk = {ℓ(u) = k, 1 /∈ Au+1} for any k ∈ {2, . . . ,K}. We first upper bound
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D̄k,1 :=
T−1∑
r=r0

4
r

r∑
u=ar

P
(

Cuk , N1(u) ≥ C

4 log(u), 1 ∈ Su
)

≤
T−1∑
r=r0

8
r

r∑
u=ar

ue−mauωk

≤ 8
T−1∑
r=r0

r∑
u=ar

e−mauωk

≤ 8
T−1∑
r=r0

re−marωk .

Then, we consider the alternative

D̄k,2 :=
T−1∑
r=r0

4
r

r∑
u=ar

P
(

Cuk , N1(u) ≥ C

4 log(u), 1 /∈ Su
)

≤
T−1∑
r=r0

4
r

r∑
u=ar

P
(
Ȳk,Nk(u)−N1(u)+1:Nk(u) > Ȳ1,N1(u), Nk(u) ≥ N1(u) ≥ C

4 log(u), 1 /∈ Su
)

≤
T−1∑
r=r0

4
r

[ 1
1 − e−ωk

e− C
4 log(ar)ωk + r

1 − e−ωk
e− C

4 log(ar)ωk

]

≤
T−1∑
r=r0

4(r + 1)
r(1 − e−ωk)e

− C
4 log(ar)ωk

≤
T−1∑
r=r0

6
1 − e−ωk

e− C
4 log(ar)ωk .

So finally,

D̄2 ≤
K∑
k=2

[
8
T−1∑
r=r0

re−marωk +
T−1∑
r=r0

6
1 − e−ωk

e− C
4 log(ar)ωk

]
.

At this step we need to choose the constant C large enough in order to make this sum
converge, which is possible since C is only a parameter of the analysis. Furthermore, the first
sum vanishes if we set mr = +∞, and again converges if mr/ log(r) → +∞.

We then consider the term D̄1. We transform the double sum in a simple sum by simply
counting the number of times each term is included.,

D̄1 =
T∑

r=r0

4
r

r∑
u=ar

P
(
N1(u) ≤ C

4 log(u)
)

=
T∑

r=r0

 r∑
t=ar0

4
t
1(t ∈ [r, 4r])

P
(
N1(r) ≤ C

4 log(r)
)
.
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If we remark that
∑r
t=1

4
t1(t ∈ [r, 4r]) ≤ 4 log(4r/(r − 1)) ≤ 9 for r ≥ 2, we finally get:

T∑
r=r0

P({ℓ(r) ̸= 1} ∩ Dr) ≤ r0 + 9
T∑

r=r0

P
(
N1(r) ≤ C

4 log(r)
)

+ O(1). (3.6)

Combining (3.3) and (3.6) yields

T∑
r=r0

P (ℓ(r) ̸= 1) ≤ r0 + 9
T∑

r=r0

P
(
N1(r) ≤ C

4 log(r)
)

+ O(1) .

Hence, the storage limit may introduce larger constant terms in the proof, but asymptotically
the dominant terms are the same as in the proof of the vanilla LB-SDA algorithm.

Remark 3.3. This step concludes the proof of Lemma 2.7 for LB-SDA by setting mr = +∞ when
the memory limit is used. Note that the proof only requires slight adaptations for any block sampler.
Details can be found in (Baudry et al., 2020).

The last step is to show that we can upper bound the remaining term with the same
results as the ones we used in Chapter 2. We only need to prove that if r0 is large enough and
{N1(r) ≤ C/4 log(r)}, then the arm 1 has not been saturated for a long time. Indeed, in that case
the saturation would have no impact in the way to upper bound this term. Defining m−1(x) =
inf{r : mr ≥ x}, and knowing that if C and r ≥ r0 (we can increase r0) are large enough mr ≥
C log r and so m−1(x) ≤ exp(x/C), we have m−1(C/4 log r) ≤ exp(C/4 log(r)C−1) = r1/4.

Hence, after the round r0 we are sure that arm 1 has never been saturated since the round
r1/4, but also that the sub-sample required by LB-SDA-LM at each step will not be altered
by the memory limit too. In this scenario LB-SDA-LM does exactly the same as LB-SDA. As
LB-SDA ensures sufficient diversity (Lemma 2.16) we conclude that if the arms come from the
same SPEF,

T∑
r=r0

P
(
N1(r) ≤ C

4 log(r)
)

= O(1) .

3.3.3 Storage and Computational Cost

To the best of our knowledge, LB-SDA-LM is the only bandit algorithm based on the idea
of sub-sampling that does not require to store the full history of rewards. In Table 3.1 we
compare estimates of the computational cost of LB-SDA-LM and the other algorithms based on
sub-sampling. We consider best and worst cases since SSMC and LB-SDA can be updated se-
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quentially when the leader does not change and is pulled. The estimates we provide correspond
to the cost of a single step of the algorithm at time T .

Table 3.1 – Memory and computational costs at round T for existing subsampling algorithms.

Algorithm Memory Computational cost
Best-Worst case

BESA
Baransi et al. (2014)

O(T ) O((log T )2)

SSMC
Chan (2020)

O(T ) O(1)-O(T )

RB-SDA
Baudry et al. (2020)

O(T ) O(log T )

LB-SDA
(this chapter)

O(T ) O(1)-O(log T )

LB-SDA-LM
(this chapter)

O((log T )2) O(1)-O(log T )

Efficient updates for LB-SDA Let us detail the possible scenarios for a given leader and
challenger. Assume that at round r the leader was using the sample mean ȲN−n+1:N for some
(n,N) ∈ N2. If it is pulled then YN+1 is collected, and at next round it will use ȲN−n+2:N+1

against the same challenger. An efficient update consists in computing

ȲN−n+2:N+1 = ȲN−n+1:N + 1
n

(YN+1 − YN−n+1) ,

which comes at almost no cost. Furthermore, an efficient update can also be performed if the
challenger is pulled. In that case, the leader is not pulled and needs to use ȲN−n:N , that can be
computed as ȲN−n:N = n

n+1 ȲN−n+1:N + 1
n+1Yn. Hence, the most costly scenario is when the

leader changes, and new sub-sample means have to be computed. However, our proof shows
that the number of changes of leadership is expected to be finite if there a single best arm.

Updating SSMC We can compare these results to possible updates of SSMC. We denote
by Y −

r = minj∈[N−n+1] Ȳj:j+n−1 the sub-sample mean used at a given round against some
challenger. In the first scenario we described (when the leader is pulled), we need to compute
Y −
r+1 = min{Y −

r , ȲN−n+2:N+1} at next round. If the value of Y −
r and of the sub-sample mean

of the last block (as for LB-SDA) are kept in memory, then the update costs the same as for
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LB-SDA: only the last block can change the outcome of the duel. In the second and third
scenario, however, the leader needs to perform a screening of its entire history. This comes
at a linear cost in terms of the sample size of the leader, which is itself linear in the round r.
Contrarily to the number of leadership changes, the number of rounds when a challenger is
pulled is expected to be logarithmic in the time horizon.

Details for other algorithms The computational cost can be broken into two parts: (a) the
sub-sampling cost and (b) the computation of the means of the samples. We assume that
drawing a sample of size nwithout replacement has O(n) cost (independently of the size of the
set) and that computing the mean of this sub-sample costs another O(n). Furthermore, at round
T , each challenger to the best arm has about O(log T ) samples. This gives an estimated cost
of O

(
(log T )2) for BESA (Baransi et al., 2014). For RB-SDA (see Chapter 2) the estimated cost

is O(log(T )), because the sampling cost for random block sampling is O(1) but a sub-sample
mean is recomputed at each round.

For the three deterministic algorithms (namely SSMC (Chan, 2020), LB-SDA, LB-SDA-LM),
when the leader arm wins all its duels, we assume that the sequential update costs O(1). This
is the best case in terms of computational cost. However, we detailed that in some cases SSMC
requires a full screening of the leader’s history, with O(T ) cost, while LB-SDA and LB-SDA-LM
need at most the computation of the mean of the last O(log T ) samples from the leader.

3.4 LB-SDA in Non-Stationary Environments

In stationary environments, LB-SDA achieves optimal regret rates, even when its decisions are
constrained to use at most (for instance) O((log T )2) observations. One might think that this
argument itself is sufficient to address non-stationary scenarios as the duels are performed
mostly using recent observations. For instance, if the distribution of the best arm changes we
can hope that LB-SDA will "adapt" to this change relatively fast. However, there are other cases
where LB-SDA is not sufficient. For instance, if an arm has been bad for a long period of time
and suddenly becomes the best arm, adapting to the change would still be prohibitively slow.
For this reason, LB-SDA has to be equipped with an additional mechanism to perform well in
non-stationary environments.

3.4.1 SW-LB-SA: LB-SDA with a Sliding-Window

We keep a round-based structure for the algorithm, where, at each round r, duels between arms
are performed and the algorithm subsequently selects the subset of arms Ar that will be pulled.
In contrast to Section 3.3.2, where we introduced a constraint on the number of observations

86



3.4 LB-SDA in Non-Stationary Environments

kept in memory for each arm, we propose here to use a sliding window of length τ to limit
the historical data available to the algorithm to that of the last τ rounds. We highlight the
fundamental difference between the two approaches: the sliding window will make LB-SDA
forget old observations for all arms, whether they have been sampled a lot or not.

Modified leader definition The introduction of a sliding window requires a new definition
for the leader. By analogy with the stationary case, the leader could be defined as the arm that
has been pulled the most during the τ last rounds. However, with the inclusion of the sliding
window, a new phenomenon, which we call passive leadership takeover, can occur. Let us define
N τ
k (r) =

∑r−1
s=r−τ 1 (k ∈ As+1), the number of times arm k has been pulled during the last τ

rounds and consider a situation with 3 arms {1, 2, 3}. Assume that the leader is arm 1 and at a
round (r − 1) we have N τ

1 (r − 1) = N τ
2 (r − 1). If the leader has been pulled τ rounds away

and wins its duel against arm 2 but looses against arm 3, only arm 3 will be pulled at round r.
Consequently, at round r, arm 2 will have a strictly larger number of pulls than arm 1 without
having actually defeated the leader. This situation, illustrated on Figure 3.1, is not desirable.
We fix this by imposing that any arm has to defeat the current leader to become the leader itself.
Let us define

Br = {k ∈ Ar+1 ∩ {N τ
k (r + 1) ≥ min(r, τ)/K}} .

Then for any r ∈ N, we propose a new definition of the leader as round r + 1 as

ℓτ (r + 1) =

 argmaxk∈{1,...,K}N
τ
k (r + 1) , if N τ

ℓτ (r)(r + 1) < min(r, τ)/(2K) .
argmaxk∈Br∪{ℓτ (r)}N

τ
k (r + 1) otherwise.

This modified definition of the leader ensures that an arm can become the leader only after
earning at least τ/K samples and winning a duel against the current leader, or if the leader
loses so many duels that its number of samples falls under a fixed threshold. Thanks to this
definition it always holds that N τ

ℓτ (r)(r) ≥ min(r, τ)/(2K).

Additional diversity flags As in the vanilla LB-SDA, we use a sampling obligation to ensure
that each arm has a minimal number of samples. However, in contrast to the stationary case,
this very limited number of forced samples may not be sufficient to guarantee an adequate
variety of duels, due to the forgetting window. To this end, the sampling obligation is coupled
with a diversity flag. We define it as a binary random variable Dτ

k(r), satisfying Dτ
k(r) = 1 only

when, for the last ⌈(K − 1)(log τ)2⌉ rounds the three following conditions are satisfied: 1) some
arm k′ ̸= k has been leader during all these rounds, 2) k′ has not been pulled, and 3) k has
not been pulled and satisfy N τ

k (r) ≤ (log τ)2. In practice, there is a very low probability that
these conditions are met simultaneously but this additional mechanism is required for the
theoretical analysis. Note that the diversity flags have no impact on the computational cost
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r − τr − τr − τ r − 1r − 1r − 1

loose

w
in

ℓ(r − 1)ℓ(r − 1)ℓ(r − 1)

ℓ(r)ℓ(r)ℓ(r)
round rrr

r − τ + 1r − τ + 1r − τ + 1 rrr

Figure 3.1 – Illustration of a passive leadership takeover with a sliding window τ = 4 when the standard
definition of leader is used. The bold rectangle correspond to the leader. A blue square is added when an
arm has an observation for the corresponding round and the red square correspond to the information
that will be lost at the end of the round due to the sliding window.

of the algorithm as they require only to store the number of rounds since the last draw of the
different arms (which can be updated recursively) as well as the last leader takeover. Arms
that raise their diversity flag are automatically added to the set of pulled arms.

Bringing these parts together and keeping a forced exploration fτ =
√

log(τ) gives the
pseudo-code of SW-LB-SDA in Algorithm 3.2.

3.4.2 Regret Analysis in Abruptly Changing Environments

In this section we aim at upper bounding the dynamic regret in abruptly changing environments,
as defined in Section 3.2. Our main result is the proof that the regret of SW-LB-SDA matches
the asymptotic lower bound of Garivier and Moulines (2011).

Theorem 3.4 (Upper bound on the dynamic regret of SW-LB-SDA). If the time horizon T and
number of breakpoints ΓT are known, choosing τ = O(

√
T log(T )/ΓT ) ensures that the dynamic

regret of SW-LB-SDA satisfies

RT = O
(√

TΓT log T
)
,

if Assumptions 2.4 and 2.20 are satisfied during each stationary phase.

To prove this result we need to assume that, during each stationary period, the rewards sat-
isfy Assumptions 2.4 (concentration of the means with exponential decay) and 2.20 (dominant
left tail for the best arm). In contrast, current state-of-the-art algorithms for non-stationary ban-
dits typically require the assumption that the rewards are bounded to obtain similar guarantees.
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Hence, this result is of particular interest for tasks involving unbounded reward distributions.
SW-LB-SDA can also be used for general bounded rewards with the same guarantees by using
the binarization trick (Agrawal and Goyal, 2013b). However, the knowledge of the horizon T
and the estimated number of change point ΓT is still required to obtain optimal rates, and
removing this assumption is an interesting direction for future works, for instance inspired by
(Auer et al., 2019; Besson et al., 2022). In the following we provide a high-level outline of the
analysis of Theorem 3.4. Our objective is to provide an intuition on the dominant terms of the
regret, and on the interest of the additional mechanisms introduced compared to LB-SDA.

Proof sketch For the ΓT + 1 stationary phases [tϕ, tϕ+1 − 1] with ϕ ∈ {1, . . . ,ΓT }, we define
rϕ as the first round where an observation from the phase ϕ was pulled. Introducing the gaps
∆ϕ
k = µ∗

tϕ
− µtϕ,k and denoting the optimal arm k⋆ϕ, we can rewrite the regret as

RT = E

 ΓT∑
ϕ=1

rϕ+1−2∑
r=rϕ−1

∑
k ̸=k⋆

ϕ

1 (k ∈ Ar+1) ∆ϕ
k

 =
ΓT∑
ϕ=1

∑
k ̸=k∗

ϕ

E[Nϕ
k ]∆ϕ

k ,

where we define Nϕ
k =

∑rϕ+1−2
r=rϕ−1 1(k ∈ Ar+1) as the number of pulls of arm k during a phase

ϕ when it is suboptimal. We highlight that the sequence (rϕ)ϕ≥1 is a random variable that
depends on the trajectory of the algorithm, but this causes no additional difficulty for upper
bounding the regret. We introduce δϕ = tϕ+1 − tϕ the length of a phase ϕ. Using Lemma 25
from Garivier and Moulines (2011), we obtain the following result.

Proposition 3.5. Consider a phase ϕ and defineAϕ,τk = bϕk log(τ) for some constant bϕk > 0. The
expected number of pulls of a sub-optimal arm k can be upper bounded as

E[Nϕ
k ] ≤ 2τ + δϕA

ϕ,τ
k

τ
+ cϕ,τk,1 + cϕ,τk,2 + cϕ,τk,3 ,

where denoting byDτ
k(r) ∈ {0, 1} the variable stating if the diversity flag is raised or not we defined

cϕ,τk,1 = E

 rϕ+1−2∑
r=rϕ+2τ−2

1

(
k ∈ Ar+1, ℓ

τ (r) = k∗
ϕ, N

τ
k (r) ≥ Aϕ,τk , Dτ

k(r) = 0
) ,

cϕ,τk,2 = E

 rϕ+1−2∑
r=rϕ+2τ−2

1

(
ℓτ (r) = k∗

ϕ, D
τ
k(r) = 1

) ,

cϕ,τk,3 = E

 rϕ+1−2∑
r=rϕ+2τ−2

1

(
ℓτ (r) ̸= k∗

ϕ

) .
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Though the notation is more complicated these three terms are actually quite similar to the
decomposition in the stationary case. Furthermore, our objective will be to prove that they are
actually not dominant in the regret bound. Re-defining the notion of saturated arm of previous
section as each arm k that have been sampled more than the threshold Aϕ,τk it holds that

• cϕ,τk,1 is an upper bound on the expected number of times a saturated sub-optimal arm can
defeat k∗

ϕ while k∗
ϕ is the current leader.

• cϕ,τk,2 is an upper bound on the regret that can be caused by the diversity flag.

• cϕ,τk,3 is, as E
[∑T−1

r=1 1(Zr)
]

in the previous section an upper bound of the regret that can
be caused by the leader being a sub-optimal arm.

The three terms have hence intuitive interpretation and summarize well the technical
contributions behind Theorem 3.4. We now introduce the novel concentration result for SW-
LB-SDA that will allow us to upper bound these terms.

Lemma 3.6. We consider a stationary phase ϕ and a MAB (νϕ1 , . . . , ν
ϕ
K). Let k∗

ϕ denote the arm
with the largest mean. We assume that each arm νϕk satisfies Assumption 2.4 for some rate function
Iϕk . Then, for any constant n ∈ N satisfying n ≥ fτ =

√
log τ , by letting ñ = min(n, ⌊τ/(2K)⌋)

under SW-LB-SDA it holds that

E

 rϕ+1−2∑
r=rϕ+2τ−2

1

(
k ∈ Ar+1, ℓ

τ (r) = k∗
ϕ, N

τ
k (r) ≥ n,Dτ

k(r) = 0
) ≤ δϕ(τ + 1) e−ñωϕ

k

1 − e−ωϕ
k

,

(3.7)
where we defined ωϕk = min

(
Iϕk

(
1
2(µϕk + µϕk∗

ϕ
)
)
, Iϕk∗

ϕ

(
1
2(µϕk + µϕk∗

ϕ
)
))

, and δϕ is the length of
the phase and τ the size of the sliding window. Similarly,

E

 rϕ+1−2∑
r=rϕ+τ−2

1

(
k∗
ϕ /∈ Ar+1, ℓ

τ (r) = k,N τ
k∗

ϕ
(r) ≥ n

) ≤ δϕ(τ + 1) e−ñωϕ
k

1 − e−ωϕ
k

. (3.8)

Proof. We start with the first claim. Under the considered event, (n ≥ f(τ) and Dτ
k(r) = 0)

arm k can be drawn only if it has won its duel against k∗
ϕ. The duel itself is a comparison

between the mean of two blocks containing at least ñ = min(n, τ/(2K)) observations because
of the definition of the leader in this part. For any constant ξk, we have either µ̂τk(r) ≥ ξk or
µ̂τℓ,k(r) ≤ ξk, where µ̂τk(r) and µ̂τℓ,k(r) denote respectively the mean used by arm k and arm ℓ in
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their duel at round r. For the sake of simplicity we choose ξk = 1
2(µϕk + µϕk∗

ϕ
). We then write

A := E

 rϕ+1−2∑
r=rϕ+2τ−2

1

(
k ∈ Ar+1, ℓ

τ (r) = k∗
ϕ, N

τ
k (r) ≥ n,Dτ

k(r) = 0
)

≤ E

 rϕ+1−2∑
r=rϕ+2τ−2

1

(
k ∈ Ar+1, µ̂

τ
k∗

ϕ
,k(r) ≤ ξk, N

τ
k∗

ϕ
(r) ≥ τ/(2K), N τ

k (r) ≥ n
)

+ E

 rϕ+1−2∑
r=rϕ+2τ−2

1

(
k ∈ Ar+1, µ̂

τ
k(r) ≥ ξk, N

τ
k∗

ϕ
(r) ≥ τ/(2K), N τ

k (r) ≥ n
) .

Assuming rewards are sequentially collected in a stream Y ϕ
k,1, . . . , Y

ϕ

k,∆̂ϕ

for a given arm k, all

possible blocks of observations are uniquely described by two quantities: Nϕ
k (r) (number of

data collected since the beginning of phase ϕ) and N τ
k (r) (number of data collected in the last τ

rounds). We will use this property to bound the two sums.

We start by the term featuring the arm k, and introduce

Sn,mk (r) = {k ∈ Ar+1, µ̂
τ
k(r) ≥ ξk, N

ϕ
k (r) = m+ n− 1, N τ

k (r) = n} ,

that allows to use that

{k ∈ Ar+1, µ̂
τ
k(r) ≥ ξk, N

τ
k (r) ≥ n} ⊂

δ̂ϕ⋃
nk=n

δ̂ϕ⋃
mk=1

Snk,mk
k (r) . (3.9)

Furthermore, the same block (same value for both n and m) can not be used for upcoming
rounds because the total count will be incremented. More specifically, for the arm k for any
possible block there is at most one round for which the indicator function can be 1., i.e.

δ̂ϕ∑
nk=n

δ̂ϕ∑
mk=1

rϕ+1−2∑
r=rϕ+2τ−2

1
(
Snk,mk
k (r)

)
≤

δ̂ϕ∑
nk=n

δ̂ϕ∑
mk=1

1

(
Ȳk,mk:mk+nk−1 ≥ ξk

)
.

Similarly, we denote Yk⋆
ϕ
,1, ..., Yk⋆

ϕ
,δ̂ϕ

the set of possible rewards for the arm k⋆ϕ and let

Sn,mk⋆
ϕ

(r) = {k ∈ Ar+1, µ̂
τ
k⋆

ϕ
,k(r) ≤ ξk, N

ϕ
k∗

ϕ
(r) = m+ n− 1, N τ

k∗
ϕ
(r) = n} .

We also have

{k ∈ Ar+1, µ̂
τ
k⋆

ϕ
,k(r) ≤ ξk, N

τ
k⋆

ϕ
(r) ≥ n′} ⊂

δ̂ϕ⋃
n⋆=n′

δ̂ϕ⋃
m⋆=1

Sn
⋆,m⋆

k⋆
ϕ

(r) . (3.10)
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The main difference here is that several rounds can use the same block of observations of k⋆ϕ.
This can be explained because when the indicator function equals 1 the arm k is drawn instead
of k⋆ϕ and the previous argument do not hold anymore. Yet, N τ

k∗
ϕ
(r) can not remain unchanged

for more than τ steps because of the sliding window. This implies in particular,

δ̂ϕ∑
n⋆=n′

δ̂ϕ∑
m⋆=1

rϕ+1−2∑
r=rϕ+2τ−2

1(Sn
⋆,m⋆

k⋆
ϕ

(r)) ≤ τ

δ̂ϕ∑
n⋆=n′

δ̂ϕ∑
m⋆=1

1

(
Ȳk∗

ϕ
,m⋆:m⋆+n⋆−1 ≤ ξk

)
.

Bringing things together and applying the previous inequality with n′ = ⌊τ/(2K)⌋ we obtain

A ≤ E

 δ̂ϕ∑
m⋆=1

δ̂ϕ∑
n⋆=n′

τ1
(
Ȳk∗

ϕ
,m⋆:m⋆+n⋆−1 ≤ ξk

)
+

δ̂ϕ∑
mk=1

δ̂ϕ∑
nk=n

1

(
Ȳk,mk:mk+nk−1 ≥ ξk

) .

We then have to handle carefully the fact that δ̂ϕ is a random variable depending on the bandit
algorithm. Indeed, as several arms can be pulled at each round we don’t know what will be the
length of a phase in terms of rounds. However, this quantity is upper bounded by the length
of the phase in terms of arms pulled δϕ.

Thus, using the concentration inequality corresponding to the family of distributions for an
appropriate rate function we can write

A ≤
δϕ∑

m⋆=n

δϕ∑
n⋆=n′

τP
(
Ȳk∗

ϕ
,m⋆:m⋆+n⋆−1 ≤ ξk

)
+

δϕ∑
mk=1

δϕ∑
nk=n

P
(
Ȳk,mk:mk+nk−1 ≥ ξk

)

≤
δϕ∑

m⋆=1

δϕ∑
n⋆=n′

τe
−n⋆Ik∗

ϕ
(ξk)

+
δϕ∑

mk=n

δϕ∑
nk=n

e−nkIk(ξk)

≤ δϕ

τ e
−n′Ik∗

ϕ
(ξk)

1 − e
−Ik∗

ϕ
(ξk) + e−nIk(ξk)

1 − e−Ik(ξk)


≤ δϕ(τ + 1) e−ñωk

1 − e−ωk
,

where in the last inequality we have introduced ñ = min(n, n′) = min(n, ⌊τ/(2K)⌋).

Finally, the proof of the second statement is a direct adaptation of this proof by inverting k
and k∗

ϕ. We don’t need the event Dϕ
k (r) = 0 because if k∗

ϕ is not drawn it has necessarily lost its
duel against the leader k.
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Upper bounding cϕ,τk,1 Equation (3.7) in Lemma 3.6 is enough to upper bound cϕ,τk,1 , by replacing
n by Aϕ,τk . Assuming that Aϕ,τk ≤ τ/(2K) it holds that

E[cϕ,τk,1 ] ≤ δϕ(τ + 1) e
−Aϕ,τ

k
ωk

1 − e−ωk
. (3.11)

Upper bounding cϕ,τk,2 If the diversity flag is activated while k∗
ϕ is leader, then k∗

ϕ has lost at
least ⌈(K − 1)(log τ)2⌉ successive duels while being leader. Hence, for at least one of them the
sub-optimal arm has at least (log τ)2 observations, and by definition the diversity flag was not
activated during this round. Hence, we can apply again Lemma 3.6 with n = (log τ)2, obtaining

E[cϕ,τk,2 ] ≤
∑
k′ ̸=k∗

ϕ

δϕ(τ + 1)e
−(log τ)2ωk′

1 − e−ωk′
. (3.12)

Upper bounding cϕ,τk,3 As in the stationary case, this term is the most difficult to handle. The
main challenge is to upper bound the probability that the optimal arm is not saturated after a
large number of rounds.

The remaining parts of the proof are similar to the stationary case. We first consider the
case when the optimal arm has already been leader during the last τ rounds. The additional
mechanisms in the non stationary case (new definition of leader, diversity flag) adds new
possible scenario for a leadership takeover, and details can be found in (Baudry et al., 2021b).
We only report that the contribution of this term to the upper bound of cϕ,τk,3 is of the form

Dϕ := 3(K − 1)δϕ(τ + 1)3 ∑
k ̸=k∗

ϕ

e
−
⌊

τ
2K(K−1)

⌋
ωk

1 − e−ωk
,

which comes from identifying the relevant events for leadership takeovers and using Lemma 3.6.
For large enough τ this term is actually smaller than the previous ones we derived due as it
decays exponentially with τ (up to polynomial terms).

We then consider the case when k∗
ϕ has never been leader during the last τ rounds, and use

Markov inequality to relate this event to the number of duels lost by arm k∗
ϕ and obtain an

upper bound

D̄ϕ := E

 rϕ+1−2∑
r=rϕ+2τ−1

2
τ

r−1∑
s=r−τ

1

(
k∗
ϕ /∈ As+1, ℓ

τ (s) ̸= k∗
ϕ

) .

We then consider whether N τ
k∗

ϕ
(r) ≥ Aϕ,τk∗

ϕ
or not. If this is the case we can use Lemma 3.6 to

derive a first upper bound
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D̄ϕ
1 ≤ 2E

 rϕ+1−2∑
r=rϕ+2τ−2

1

(
k∗
ϕ /∈ Ar+1, ℓ

τ (r) ̸= k∗
ϕ, N

τ
k∗

ϕ
(r) ≥ Aϕ,τk∗

ϕ

) ≤ 2δϕ(τ + 1)
∑
k ̸=k∗

ϕ

e
−Aϕ,τ

k∗
ϕ
ωk

1 − e−ωk
.

The rest of the proof requires additional work compared with the stationary case. Indeed,
if k∗

ϕ has been pulled a lot in the previous windows its index may change a lot. To avoid this
we further consider whether N τ

k∗
ϕ
(r − τ) ≥ Aϕ,τk∗

ϕ
or not.

In the first case, k∗
ϕ necessarily lost a duel with exactly Aϕ,τk∗

ϕ
observations at some point.

Using a union bound and Lemma 3.6 this event contributes to our upper bound up to the
following factor

D̄ϕ
2 := δϕτ(τ + 1)e

−Aϕ,τ

k∗
ϕ
ωk

.

In the last remaining case both N τ
k∗

ϕ
(r − τ) and N τ

k∗
ϕ
(r) are smaller than Aϕ,τk∗

ϕ
. In that case,

we can finally use the arguments introduced in Chapter 2 to conclude, evaluating the diversity
of sub-samples and using the balance condition.

Under these events k∗
ϕ competes with at most 2Aϕ,τk∗

ϕ
different sub-sample means in the entire

window [r−τ, r−1]. This is due to the fact that the sub-sample changes only if k∗
ϕ is pulled (can

happen at most Aϕ,τk∗
ϕ

times) or if k∗
ϕ loses one observation from the window [r − 2τ, r − τ − 1]

due to the sliding window (which can also happen at most Aϕ,τk∗
ϕ

times).

Thanks to these properties we know that during the interval [r − τ, r − 1], k∗
ϕ lost at least

τ −Aϕ,τk∗
ϕ

duels and that a fraction 1/(2Aϕ,τk∗
ϕ

) of them occurred while the index of k∗
ϕ remained

the same. Applying the same methodology as in the stationary case we can identify that there
exists some β ∈ (0, 1) such that for any value of τ large enough k∗

ϕ lost at least a number of
duels M τ against non-overlapping blocks of some challenger k, with a fixed sub-sample of size
larger than fτ (the forced exploration), with

M τ =

 βτ

2(K − 1)2(log τ)2(Aϕ,τk∗
ϕ

)2

 .

These observations allow to obtain a final contribution to our upper bound with the term

D̄ϕ
3 := 2δϕAϕ,τk∗

ϕ

∑
k ̸=k∗

ϕ

Aϕ,τ

k∗
ϕ∑

j=
√

log τ
αϕk(M τ , j) ,
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where we assumed for simplicity that Aϕ,τk∗
ϕ

is integer. Here αϕk are balance functions, as defined
in Definition 2.9, for arm k and phase ϕ.

We recall (Proposition 2.23) that for SPEF the balance function satisfies

αk(M τ , j) ≤ e−jωϕ
ku+ (1 − u)Mτ

.

for some constant ωϕk . We choose the value u = 3 log τ
Mτ , which leads to

(1 − u)Mτ = exp (M τ log(1 − u))

= exp
(
M τ log

(
1 − 3 log τ

M τ

))
≤ exp (−3 log τ)

≤ 1
τ3 .

If we plug this expression to upper bound the sums we obtain

D̄ϕ
3 ≤ 2δϕAϕ,τk∗

ϕ
(K − 1)

e−
√

log τωϕ

1 − e−ωϕ

3 log τ
M τ

+
Aϕ,τk∗

ϕ

τ3

 ,

where ωϕ = mink ̸=k∗
ϕ
ωϕk . Even if these terms look impressive we explain in the next section

that they are not first order terms in the regret analysis.

Summary Due to the large number of terms introduced in the analysis we provide in this
section a clarification of the final upper bound we obtained for the regret. We proved that for
any given phase ϕ,

E[Nϕ
k ] ≤ 2τ + δϕA

ϕ,τ
k

τ
+ E[cϕ,τk,1 ] + E[cϕ,τk,2 ] +Dϕ + D̄ϕ

1 + D̄ϕ
2 + D̄ϕ

3 ,

where we provided explicit upper bounds for all the terms, summing as

E[Nϕ
k ] ≤ 2τ + δϕA

ϕ,τ
k

τ
+ δϕ(τ + 1) e

−Aϕ,τ
k

ωk

1 − e−ωk
+ δϕ(τ + 1)

∑
k′ ̸=k∗

ϕ

e−(log τ)2ωk′

1 − e−ωk′

+ 3(K − 1)δϕ(τ + 1)3 ∑
k ̸=k∗

ϕ

e
−
⌊

τ
2K(K−1)

⌋
ωk

1 − e−ωk
+ 2δϕ(τ + 1)

∑
k ̸=k∗

ϕ

e
−Aϕ,τ

k∗
ϕ
ωk

1 − e−ωk
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+ δϕτ(τ + 1)e
−Aϕ,τ

k∗
ϕ
ωk

+ 2δϕAϕ,τk∗
ϕ

(K − 1)

e−
√

log τωϕ

1 − e−ωϕ

3 log τ
M τ

+
Aϕ,τk∗

ϕ

τ3

 .

While this bound is relatively scary, we can now tune Aϕ,τk and τ to obtain the desired order
of magnitude. First, we can tune Aϕ,τk = O(log(τ)) large enough in order to make all the terms
with Aϕ,τk in their exponent as o

(
δϕ

τ

)
. We then remark that this condition is also satisfied by

the terms with exponents in Ω((log τ)2) and Ω(τ). The most challenging term is the first term
of the upper bound of D̄ϕ

3 . Thankfully, the exponent in
√

log(τ) ensures an upper bound in e.g

O

 δϕA
ϕ,τ

k∗
ϕ

τ log(τ)

. Putting these results together we conclude that

E[Nϕ
k ] ≤ 2τ + O

(
δϕ log(τ)

τ

)
+ o

(
δϕ log(τ)

τ

)
.

We can finally tune τ by considering the first two terms of the upper bound and summing
on the phases, which provides the optimal tuning and guarantees of Theorem 3.4.

3.5 Experiments

In this section we test empirically the algorithms presented in this chapter. We first check that
the performance of LB-SDA-LM is indeed close to the one of LB-SDA in stationary environments,
and then implement some experiments with non-stationary arms.

Limiting the storage in stationary environments. In our first experiment1 reported on Fig-
ure 3.2, we compare LB-SDA and LB-SDA-LM on a stationary instance with K = 2 arms
with Bernoulli distributions for a horizon T = 10000. We add natural competitors (Thomp-
son Sampling (Thompson, 1933), kl-UCB (Cappé et al., 2013)), that know ahead of the ex-
periment that the reward distributions are Bernoulli and are tuned accordingly. The arms
satisfy (µ1, µ2) = (0.05, 0.15) with a gap ∆ = 0.1. We run LB-SDA-LM with a memory limit
mr = log(r)2 + 50, which gives a storage ranging from 50 to 150 samples for each arm (much
smaller than the horizon T = 10000). The regret are averaged on 2000 independent replications
and the upper and lower quartiles are reported. In this setup LB-SDA-LM performs similarly
to KL-UCB, and the impact of limiting the memory is mild, when compared to LB-SDA. This
illustrates that even with relatively small gaps (here 0.1), a substantial reduction of the storage
can be done with only minor loss of performance with LB-SDA-LM.

1The code for obtaining the different figures reported in the chapter is available at https://github.com/
YRussac/LB-SDA.
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Figure 3.2 – Cost of storage limitation on a Bernoulli instance. The reported regret are averaged over
2000 independent replications.

Empirical performance in abruptly changing environments. In the second experiment, we
compare different state-of-the-art algorithms on a problem with K = 3 Bernoulli-distributed
arms. The means of the distributions are represented on the left hand side of Figure 3.3 and
the performance averaged on 2000 independent replications are reported on Figure 3.4. Two
changepoint detection algorithms, CUSUM (Liu et al., 2017) and M-UCB (Cao et al., 2019) are
compared with progressively forgetting policies based on upper confidence bound, SW-klUCB
and D-klUCB adapted from (Garivier and Moulines, 2011), or Thompson sampling, DTS (Raj
and Kalyani, 2017) and SW-TS (Trovo et al., 2020). We also add EXP3S (Auer et al., 2002a)
designed for adversarial bandits and our SW-LB-SDA algorithm for the comparison. The
different algorithms make use of the knowledge of T and ΓT .

Figure 3.3 – Evolution of the means: Left, Bernoulli arms (Fig. 3.4); Right, Gaussian arms (Figs. 3.5
and 3.6).
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Figure 3.4 – Performance on the Bernoulli instance of Figure 3.3, on 2000 independent replications.

To allow for fair comparison, we use for SW-LB-SDA, the same value of τ = 2
√
T log(T )/ΓT

that is recommended for SW-UCB Garivier and Moulines (2011). D-UCB uses the discount
factor suggested by Garivier and Moulines (2011), 1/(1 − γ) = 4

√
T/ΓT . The changepoint

detection algorithms need extra information such has the minimal gap for a breakpoint and the
minimum length of a stationary phase. For M-UCB, we set w = 800 and b =

√
w/2 log(2KT 2)

as recommended by Cao et al. (2019) but set the amount of exploration to γ =
√
KΓT log(T )/T

following (Besson et al., 2022). In practice, using this value rather than the theoretical suggestion
from (Cao et al., 2019) improved significantly the empirical performance of M-UCB for the
horizon considered here. For CUSUM, α and h are tuned using suggestions from (Liu et al.,
2017), namely α =

√
ΓT /T log(T/ΓT ) and h = log(T/ΓT ). On this specific instance, using

ε = 0.05 (to satisfy Assumption 2 of (Liu et al., 2017)) and M = 50 gives good performance.
For the EXP3S algorithm, following (Auer et al., 2002a) the parameters α and γ are tuned as
follows: α = 1/T and γ = min(1,

√
K(e+ ΓT log(KT )/((e− 1)T ).

This problem is challenging because a policy that focuses on arm 1 to minimize the regret in
the first stationary phase also has to explore sufficiently to detect that the second arm is the best
in the second phase. SW-LB-SDA has performance comparable to the forgetting TS algorithms
and is the best performing algorithm in this scenario. Note that both TS algorithms use the
assumption that the arms are Bernoulli whereas SW-LB-SDA does not. SW-klUCB performs
better than D-klUCB and its regret closely matches the one from the changepoint detection
algorithms. By observing the lower and the upper quartiles, one sees that the performance
of CUSUM vary much more than the other algorithms depending on its ability to detect the
breakpoints. Finally, EXP3S, which can adapt to more general adversarial settings, lags behind
the other algorithms in this abruptly changing stochastic environment.

In the third experiment with ΓT = 3 breakpoints, the K = 3 arms comes from Gaussian
distributions with a fixed standard deviation of σ = 0.5 but time dependent means. The
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evolution of the arm’s means is pictured on the right of Figure 3.3 and Figure 3.5 displays the
performance of the algorithms. CUSUM and M-UCB can not be applied in this setting because
they both consider bounded distributions. Even if no theoretical guarantees have been proved
for Thompson sampling with a sliding window or discount factors when the distribution are
Gaussian, we add them as competitors. The analysis of SW-UCB and D-UCB was done under
the bounded reward assumption but the algorithms can be adapted to the Gaussian case. Yet,
the tuning of the discount factor and the sliding window had to be adapted to obtain reasonable
performance, using τ = 2(1 + 2σ)

√
T log(T )/ΓT for D-UCB and γ = 1 − 1/(4(1 + 2σ))

√
ΓT /T

for SW-UCB (considering that, practically, most of the rewards lie under 1 + 2σ). For reference,
Figure 3.5 also displays the performance of the UCB1 algorithm that ignores the non-stationary
structure. Clearly, SW-LB-SDA, in addition of being the only algorithm analyzed in this setting
with unbounded rewards, also has the best empirical performance.

Figure 3.5 – Performance on a Gaussian instance with a constant standard deviation of σ = 0.5 averaged
on 2000 independent runs.

Changes affecting the variance. The last experiment features the same Gaussian means
but with different standard errors. The standard error takes the values 0.5, 0.25, 1 and 0.25,
respectively, in the four stationary phases. The algorithms based on upper confidence bound
are given the maximum standard error σ = 1, whereas SW-LB-SDA is not provided with any
information of this sort. Figure 3.6 shows that the non-parametric nature of SW-LB-SDA is
effective, with a significant improvement over state-of-the-art methods in such settings.
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Figure 3.6 – Performance on a Gaussian instance with time dependent standard deviations averaged on
2000 independent replications.

100



3.5 Experiments

1 Input: K arms, horizon T , τ length of sliding window
2 Initialization: t = 1, r = 1, ∀k ∈ {1, ...,K} : Nk = 0, N τ

k = 0
3 while t < T do
4 A = {}, ℓ = leader(N,Y, τ)
5 if r = 1 then
6 A = {1, . . . ,K} ; ▷ Draw each arm once
7 end
8 else
9 for k ̸= ℓ ∈ {1, ...,K} do

10 Compute Dτ
k(r) ; ▷ Compute the diversity flag

11 if N τ
k ≤

√
log(τ) or Dτ

k(r) = 1 then
12 A = A ∪ {k} ; ▷ k pulled because of diversity flag or forced

exploration
13 end
14 else
15 Run LB-SDA duel between ℓ and r with their history collected during

the τ last round. ; ▷ k pulled by winning the duel
16 end
17 end
18 if |A| = 0 then
19 A = {ℓ} ; ▷ If no winning challenger ℓ is pulled
20 end
21 end
22 for k ∈ A do
23 Pull arm k, observe reward Yk,t
24 Update Nk = Nk + 1, N τ

k = N τ
k + 1, t = t+ 1

25 end
26 for k ∈ {1, ...,K} do
27 if k ∈ Ar−τ+1 then
28 N τ

k = N τ
k − 1

29 end
30 end
31 r = r + 1
32 end

Algorithm 3.2: SW-LB-SDA
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Chapter 4

Sub-sampling for Extreme Bandits

In Chapters 2 and 3 we proved that an algorithm based on a simple sub-sampling scheme,
LB-SDA, performs very well for some bandit problems. In this chapter we consider a variant
of bandits where the learner seeks to collect the largest possible reward, known as Extreme
Bandits. This problem is difficult because the algorithm has to compare the heaviness of the
distributions’ tails, with potentially little prior information. In that case the non-parametric
nature of LB-SDA is appealing, but requires to carefully choose a criterion to compare two
tails. To that extent, we introduce Quantile of Maxima (QoMax) after studying properties
of the maximum of i.i.d random variables under mild assumptions. We show that QoMax
allows to build a simple Explore-Then-Commit (ETC) strategy, QoMax-ETC, achieving strong
asymptotic guarantees despite its simplicity. We then propose and analyze a more adaptive
algorithm, QoMax-SDA, performing pairwise comparison of QoMax estimates inside LB-SDA.
Strikingly, QoMax-ETC and QoMax-SDA are more efficient than existing approaches under
several aspects: (1) their non-parametric nature allows to derive strong theoretical guarantees
under very mild assumptions on the tails, (2) in the experiments that we performed they lead
to overall significantly better empirical performance, and (3) they enjoy a significant reduction
of the memory and time complexities. This chapter if adapted from (Baudry et al., 2022).
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4.1 Introduction

In this thesis we consider the question of adapting Multi-Armed Bandits algorithms to work
with alternative performance metric to the expected reward, that can be of practical relevance.
In Section 1.2.2 of Chapter 1 we introduced Extreme Bandit, that is a variant of MAB where
the learner seeks to collect the largest possible reward. We discussed that the algorithms that
have been developed in this setting could also be used for an alternative problem where the
learner would like to maximize the expected minimum, or equivalently sample most often the
arm with the lightest left tail (asymptotically, if it exists). While this variant is maybe more
relevant for the case-study in agriculture that we introduced by being a way to model extreme
risk-aversion of the farmers, we consider in this chapter following the version of this problem
with the maximum.

Letting Xk,t be the reward that would be obtained from sampling arm k at time t, a bandit
algorithm (or policy) selects an arm It using past observations and receives the reward XIt,t.
The rewards stream (Xk,t) is drawn i.i.d. from νk and independently from other rewards
streams. In this work, we assume that all arms have an unbounded support (the finite support
case is studied by (Nishihara et al., 2016)), and define the extreme regret of a policy In this context,
(Carpentier and Valko, 2014) define the extreme regret of a policy as

Rπ
T = max

k≤K
E[max

t≤T
Xk,t] − Eπ[max

t≤T
XIt,t] . (4.1)

We recall from Section 1.2.2 that we expect an extreme bandit algorithm to achieve a
vanishing regret, in the weak sense (Rπ

T = o (maxk≤K E[maxt≤T Xk,t])) or in the strong sense (if
limT→∞ Rπ

T = 0). To obtain these guarantees, algorithms need to use available information on
the tails of distributions. However, precise knowledge (e.g a parametric or semi-parametric
model) may not be accessible to the learner in many realistic cases.

For this reason, we revisit the extreme bandit problem with the idea of designing algorithms
based on pairwise comparisons of tails with provable guarantees under minimal assumptions
on the arms. The motivation clearly stems from the study of bandit algorithms based on
sub-sampling in Chapter 2 and 3, that perform “fair” pairwise comparisons of empirical means
based on an equal sample size, and attain good performance for several types of distributions
without changing the algorithm.

In Section 4.2, we highlight the limitation of comparing directly the maxima of n i.i.d.
samples and introduce the Quantile of Maxima (QoMax) estimator. Instead of computing the
maximum of n samples, the learner separates the collected data into batches of equal size and
compute the quantile of order q of the maxima over the different batches. QoMax is inspired
by the Median of Means estimator (Alon et al., 1999) that was used for heavy-tail bandits
(Bubeck et al., 2013). We derive upper bounds on the probability that one QoMax exceeds
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another, that are instrumental to design our algorithms. In Section 4.3, we first propose an
Explore-Then-Commit algorithm using QoMax, for which we establish vanishing regret in the
strong sense under the mild assumption that the bandit model has a dominant arm. Albeit
simple, this approach requires some tuning which depends on the horizon T . To overcome
this limitation, we propose in Section 4.4 the QoMax-SDA algorithm which combines QoMax
with the LB-SDA strategy. We prove that it achieves vanishing regret for arms with exponential
or polynomial tails and also provide some elements of analysis under the weaker dominant
arm assumption. In Section 6.6, we highlight the efficiency of our algorithms which allow for
a significant reduction of the storage and computational cost while outperforming existing
approaches empirically.

4.2 Comparing Tails of Distributions with Quantiles of Maxima

In this section, we motivate our new Quantile of Maxima (QoMax) estimator used for comparing
the tails of two distributions based on n i.i.d. samples of each. We first present the assumptions
under which we are able to exhibit some properties of QoMax.

The first way to judge the heaviness of a distribution is to evaluate what probability is
allocated into extreme values. To do that, we introduce the survival function of a distribution.

Definition 4.1 (Survival Function). We define the survival function G of the distribution ν as

G(x) : x ∈ R 7→ PX∼ν(X > x) .

This notion is central in the assumptions we will make on the arms’ distributions. In the
following we will consider two different assumptions: a first one where tails have a parametric
asymptotic equivalent, and a mild non-parametric assumption.

Definition 4.2 (Exponential or polynomial tails). Let ν be a distribution of survival function
G. If when x → +∞,

1. G(x) ∼ Cx−λ for some C > 0, λ > 1 then ν has a polynomial tail.

2. G(x) ∼ C exp(−λx) for some C > 0, λ ∈ R+ then ν has an exponential tail.

These semi-parametric assumptions (which say nothing about the lower part of the distribu-
tion) have been introduced by Bhatt et al. (2021). We remark that a polynomial tail is a weaker
condition than the second-order Pareto assumption from (Carpentier and Valko, 2014) that
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we introduced in Chapter 1 (Definiton 1.12). We now define a general notion that allows to
compare two (arbitrary) tails.

Definition 4.3 (Dominating tail). Let G1 and G2 be the survival functions of two distributions
ν1 and ν2. We say that the tail of ν1 dominates the tail of ν2 (we write ν1 ≻ ν2) if the ratio of their
survival functions is larger than a fixed constant for large enough values, that is

ν1 ≻ ν2 ⇐⇒ ∃C > 1, ∃x ∈ R : ∀y > x , G1(y) > CG2(y) .

In the rest of the chapter we will consider a bandit model that has a dominating arm,
denoted by 1 without loss of generality: we assume that ν1 ≻ νk for all k ̸= 1. Under this
assumption, arm 1 is optimal in the sense that for T large enough an oracle strategy would
select this arm only. To the best of our knowledge, this is the weakest assumption introduced
so far for extreme bandits.

4.2.1 Direct Comparison of Maxima

Let νX and νY be two distributions from which we observe n i.i.d. samples denoted by
X1, . . . , Xn and Y1, . . . , Yn respectively. A natural idea to compare their tails is to use the
samples’ maxima, that we denote by X+

n and Y +
n respectively. For these estimators to serve

as a proxy for comparing the tails, we need the probability P(X+
n < Y +

n ) to decay fast enough
when νX ≻ νY , ideally exponentially with the sample size. Unfortunately, the following result
shows that this is not possible even under semi-parametric assumptions.

Lemma 4.4 (Lower bound). Assume that both νX and νY have either polynomial or exponential
tails, with respective parameters (CX , λX) and (CY , λY ), with λX < λY (so that νX ≻ νY ). Then,

P
(
X+
n ≤ Y +

n

)
= Ω

(
n

− λY
λX

)
.

Proof. Let FX and FY be the respective cdf of the two distributions. For any sequence (mn)n∈N

we lower bound the probability of interest as follows:

P(X+
n ≤ Y +

n ) ≥ P(Y1 ≥ max
1≤i≤n

Xi)

= EY1 [FX(Y1)n] =
∫
R
FX(x)ndFY (x)
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≥
∫ +∞

mn

FX(x)ndFY (x) ≥ FX(mn)n(1 − FY (mn)) .

For exponential tails we can choose mn = 1
λX

log(n) and obtain an asymptotic equivalent of
this term of e−CX CY

n

λY
λX

. Furthermore, choosing mn = n1/λX for polynomial tails provides the

same result. This concludes the proof.

Lemma 4.4 proves that direct comparison of maxima is not satisfying to obtain an exponen-
tial decay (in n) of P(X+

n < Y +
n ). However, it is also interesting to determine if there is a decay

at all. We hence propose an upper bound of this probability. To obtain it, we use a trick that
we already used in previous chapters: for any sequence (xn), it holds that

P(X+
n < Y +

n ) ≤ P(X+
n ≤ xn) + P(Y +

n > xn) .

Using first that P(X+
n ≤ x) = (1 − GX(x))n ≤ exp(−nGX(x)) and then that P(Y +

n > x) ≤∑n
i=1 P(Yi > x) = nGY (x), and optimizing for xn yields the following result, that will be useful

in the next section.

Lemma 4.5 (Comparison of Maxima under semi-parametric assumptions). Assume that
both νX and νY have either polynomial or exponential tails, with respective second parameter λX
and λY , with λX < λY (so that νX ≻ νY ). Define δ = λX

λY
− 1 > 0, then there exists a sequence

(xn) and an integer nX,Y such that for all n ≥ nX,Y ,

max{P(X+
n ≤ xn),P(Y +

n ≥ xn)} = O
(

(logn)δ+1

nδ

)
.

Proof. The key of the proof is to consider xn "slightly" below G−1
X (1/n). Consider the expo-

nential tails first, for which GX(x) ∼ CX exp(−λ1x) and GY (x) ∼ CY exp(−λY x). We prove
without loss of generality the result by continuing the proof as if the survival functions were
exactly equal to their asymptotic equivalents. We choose

xn = 1
λX

(logn+ log(CX) − log(δ logn)) ,

and then compute GX(xn) and GY (xn). First,

GX(xn) = CX exp(−(logn+ logCX − log(δ logn)))
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= δ(logn)
n

.

Then,

GY (xn) = CY exp (−(δ + 1) (logn+ logCX − log(δ logn))

= 1
nδ+1 × (δ logn)δ+1 × CY

Cδ+1
X

So finally, we obtain

P
(
Y +
n ≥ xn

)
= O

(
(logn)δ+1

nδ

)
and P

(
X+
n ≤ xn

)
≤ 1
nδ

,

which gives the first part of the result.

For polynomial tails we define the sequence

xn = (CXn)
1

λX × (δ logn)− 1
λX .

We obtain exp(−nGX(xn)) = n−δ, and nG2(xn) = O
(

(logn)δ+1

nδ

)
, completing the proof.

Lemma 4.5 shows that we can upper bound the decay rate of the probability that one
maximum exceeds another. However, this rate δ is problem-dependent and can be arbitrarily
small. As pointed out by Carpentier and Valko (2014) it can actually be seen as the Extreme
Bandits equivalent of the gap in bandits, we therefore call δ the tail gap. With this notation the
lower bound of Lemma 4.4 is of order Ω(n−(1+δ)).

Interestingly, we can also obtain a result when the two distributions only satisfy νX ≻ νY

without further assumption.

Lemma 4.6. Assume that νX ≻ νY . Then, for any q ∈ (0, 1) there exists nνX ,νY ,q ∈ N, a sequence
(xn)n∈N and some ε > 0 such that for all n ≥ nν1,ν2,q,

P(X+
n ≤ xn) ≤ q − ε , and P(Y +

n ≤ xn) ≥ q + ε .

Proof. Let q ∈ (0, 1) and ε ∈ (0, q). We define the sequence (xn) by

GX(xn) = 1 − (q − ε)
1
n ,

so that P(X+
n ≤ xn) = q − ε. As νX ≻ νY , there exists a constant C > 1 such that GX(x) ≥

CGY (x) for x large enough. Hence, as xn → +∞ it holds that G1(xn) > CG2(xn) for n large
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enough. For such n we have

P(Y +
n ≤ xn) = (1 −GY (xn))n

≥ (1 − 1
C
GX(xn))n

=
(

1 − 1
C

(
1 − (q − ε)

1
n

))n
.

We then use that for 0 ≤ x ≤ 1, log(1 − x) ≥ −x√
1−x to get

P(Y +
n ≤ xn) ≥ exp

 n

C

(
(q − ε)

1
n − 1

)
× 1√

1 − 1
C (1 − (q − ε)

1
n )


≥ exp

 log(q − ε)
C

1√
1 − 1

C (1 − (q − ε)
1
n )


and then state that for n large enough this lower bound can be arbitrarily close to (q − ε)

1
C ,

which can be made strictly larger than q + ε if ε is small enough, as C is fixed. Hence, for an
appropriate choice of ε we found a sequence xn satisfying the statement of the lemma.

4.2.2 Quantile of Maxima (QoMax)

Results similar to those of Section 4.2.1 have been previously encountered in the bandit literature.
In (Bubeck et al., 2013), the authors study the problem of bandit with heavy tails, prove a
concentration inequality in n−δ for some δ > 0 and use this result to build several estimators
with faster convergence. Among them, they consider the Median-of-Means (MoM) introduced
by Alon et al. (1999). Building on the results of previous section, we consider a natural variant
of MoM, that we call Quantile of Maxima (QoMax). The principle of QoMax is simple: the
learner chooses a quantile q, and has access to N = b × n data Y = (Ym,i)m≤n,i≤b. It then
allocates the data in b batches of size n and: (1) finds the maximum of each batch, (2) computes
the empirical quantile of order q of the b maxima. We summarize QoMax in Algorithm 4.1.

1 Input: quantile q, b batches of size n, table of observations (Ym,i)m≤n,i≤b
2 for i = 1, . . . , b do
3 Compute (Y +

n )(i) = max{Y1,i, . . . , Yn,i}
4 end
5 Return: quantile of order q of {(Y +

n )(1), . . . , (Y +
n )(b)}

Algorithm 4.1: Quantile of Maxima (QoMax)
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For a finite set of size b, the quantile q is simply the observation of rank ⌈bq⌉ in the list of
sorted data (in increasing order). In the sequel we denote by X̄q

n,b and Ȳ q
n,b the QoMax of order

q computed from two datasets (Xm,i)m≤n,i≤b and (Ym,i)m≤n,i≤b.

We are now ready to state the crucial property of QoMax estimators that will be used in the
analyses of our algorithms for Extreme Bandits.

Theorem 4.7 (Comparison of QoMax). Let νX and νY be two distributions satisfying νX ≻ νY

and q ∈ (0, 1). Then, if b is large enough there exists a sequence xn, a constant c > 0, and an
integer nν1,ν2,q such that for n ≥ nν1,ν2,q,

max
{
P(X̄q

n,b ≤ xn),P(Ȳ q
n,b ≥ xn)

}
≤ exp(−cb) .

If the tails are furthermore either polynomial or exponential with a positive tail gap, then the result
holds for any c > 0 and n larger than some nc,ν1,ν2,q.

Proof. We let kl(x, y) = x log(x/y) + (1 − x) log((1 − x)/(1 − y)) denote the binary relative
entropy. Just like for the analysis of Median-of-Means, the starting point is to relate deviations
inequalities for a QoMax to deviation inequalities for binomial distributions. Letting (X+

n )(i)

(resp. (Y +
n )(i)) denote the maximum over the i-th batch of observations from νX (resp. νY ),

P(X̄q
n,b ≤ x) ≤ P

(
b∑
i=1

1

(
(X+

n )(i) ≤ x
)

≥ bq

)
≤ exp(−b× kl(q,P(X+

n ≤ x))) .

The last step applies the Chernoff inequality to a binomial distribution with parameters b
and p = P(X+

n ≤ x), and holds whenever P(X+
n ≤ x) ≤ q. Similarly, if P(Y +

n ≥ x) ≤ 1−q−1/b,
we have

P(Ȳ q
n,b ≥ x) ≤ P

(
b∑
i=1
1

(
(Y +
n )(i) ≥ x

)
≥b− bq − 1

)
≤ exp(−bkl(1 − q − 1/b,P(Y +

n ≥ x)))

For exponential and polynomial tails, thanks to Lemma 4.5 there exists a sequence (xn) such
that both P(X+

n ≤ xn) and P(Y +
n ≥ xn) satisfy the desired property, and the result follows

easily. With the notation of Lemma 4.6, Theorem 4.7 then holds for

c = min (kl(q, q − ε), kl(1 − q − ε/2, 1 − q − ε)) ,

provided that the batch size is larger than 2/ε.
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It follows from Theorem 4.7 that P(X̄q
n,b ≤ Ȳ q

n,b) ≤ 2 exp(−cb) for n large enough. Strikingly,
this result tells us that, under the simple assumption that one tail dominates, the comparison
of QoMax computed with the same parameters will not be in favor of the dominating arm with
a probability that decreases exponentially with the batch size.

Remark 4.8. In general QoMax is not an estimate of the expectation of the maximum. We will use
it only for the purpose of comparing two tails, in order to find the heaviest.

Remark 4.9 (Choice of quantile level q). Note that Theorem 4.7 holds for any value of q ∈ (0, 1),
but the impact of q is materialized in the (problem-dependent) sample size nν1,ν2,q needed for the
inequality to hold. For the practitioner, we think that in most cases choosing q = 1/2 is appropriate.
Still, in Section 6.6 we exhibit a difficult setting where a choice of q close to 1 is helpful.

4.3 QoMax-ETC

In this section, we propose QoMax-ETC, a simple Explore-Then-Commit algorithm using
QoMax estimators. The algorithm is reported in Algorithm 4.2 and works as follows. First, the
learner selects a quantile q, and given the time horizon T picks a batch size bT and a sample
size nT . Then, the exploration phase starts where every arm is pulled NT = bT × nT times
allocated in bT batches of size nT . At the end of this step, the learner computes a q-QoMax
estimator from the history of each arm using the different batches. Next comes the exploitation
phase where the algorithm pulls the arm IT with the largest QoMax until time T .

1 Input: K arms, horizon T , quantile q, number of batches bT , number of samples
per batch nT

2 for k = 1, . . . ,K do
3 Pull arm k, bT × nT times
4 Allocate the data in bT batches of size nT
5 Compute their QoMax, Ȳ q

k,nT ,bT
(Algorithm 4.1)

6 end
7 for t = K × nT × bT + 1, . . . , T do
8 Pull arm IT = argmaxkȲ

q
k,nT ,bT

9 end
Algorithm 4.2: QoMax-ETC

We remark that an ETC algorithm has already been proposed by (Achab et al., 2017) for
extreme bandits. Their algorithm differs from ours by the choice of the arm IT drawn in
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the exploitation phase: they build an upper confidence bound on the maximum under the
assumption that the distributions are second-order Pareto (Definition 1.12) and select IT as the
arm with largest upper confidence bound. In contrast, QoMax-ETC does not assume anything
about the arms distributions. In our case, Theorem 4.7 is the main motivation for building
an ETC strategy: with a large enough batch size bT and sample size nT strong concentration
of QoMax estimates can be obtained. We now analyze QoMax-ETC under a bandit model
ν = (ν1, . . . , νK) such that ν1 ≻ νk for all k ̸= 1.

Proposition 4.10 (Regret of QoMax-ETC). Let π be an ETC policy sampling NT = nT × bT

times each arm during the exploration phase. If T ≥ KNT ,

Rπ
T ≤ E

[
max
t≤T

Y1,t

]
− E

[
max

t≤T−KNT

Y1,t

]
︸ ︷︷ ︸

Exploration cost

+P(IT ̸= 1)E
[
max
t≤T

Y1,t

]
︸ ︷︷ ︸

Cost of picking a wrong arm

.

Proof. We recall that NT = bT × nT is the number of pulls of each arm during the exploration
phase of the ETC algorithm (see Algorithm 4.2) and that Xk,t corresponds to the observation
of arm k at time t (if any). We also denote by Yk,n the n-th observation collected from arm k.
The ETC simplifies a lot the study of the extremal regret, as we can separate the explore and
commit phase in the analysis. First, an exact decomposition of the expected value of the policy
is

E
[
max
t≤T

XIt,t

]
= E

[
max

{
max
k

max
t≤KNT

Xk,t, max
t=[KNT +1,T ]

XIT ,t

}]
.

We obtain the lower bound by ignoring the exploration phase and using that the rewards
collected during the exploitation phase are conditionally independent of the outcome of the
exploration phase

E
[
max
t≤T

XIt,t

]
≥ E

[
max

t=[KNT +1,T ]
XIt,t

]
= E

[
max

t=[KNT +1,T ]
XIT ,t

]

= E
[

max
t=[KNT +1,T ]

XIT ,t

K∑
k=1

1(IT = k)
]

=
K∑
k=1

E
[

max
t=[KNT +1,T ]

XIT ,t1(IT = k)
]

=
K∑
k=1

P(IT = k)E
[

max
t=[KNT +1,T ]

Yk,t

]
≥ P(IT = 1)E

[
max

t=[1,T−KNT ]
Y1,t

]

= (1 − P(IT ̸= 1))E
[

max
t=[1,T−KNT ]

Y1,t

]

≥ E
[

max
t≤T−KNT

Y1,t

]
− P(IT ̸= 1)E

[
max
t≤T

Y1,t

]
.
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We also used that if the distributions are supported on R the expectation of their maximum
is positive for T large enough. This concludes the proof.

This proposition shows that the regret of the ETC algorithm can be properly controlled by
two factors:

1. the probability of picking a wrong arm for the exploitation phase.

2. the gap between the growth rate of the maximum over T or T −KNT observations of
the dominant arm, that we call "exploration cost" as it is fully determined by the length
of the exploration phase and the arms’ distributions.

In the rest of the chapter we will assume that the distribution of the dominant arm satisfies
the following assumption.

Assumption 4.11. E
[
Y +
T

]
= o(T ), and for any γ < 1 if NT = o(T γ) then

E
[
Y +
T

]
− E

[
Y +
T−NT

]
−−−−−→
T→+∞

0 .

This condition is satisfied for nearly all distributions encountered in practice (e.g polynomial,
exponential or gaussian tails). The following results support this claim by providing a generic
way to upper bound the exploration cost and an application to semi-parametric tails.

Proposition 4.12 (Universal upper bound on the exploration cost). For any distribution of
survival function G, for any constant B > 0 it holds that

E[Y +
T ] − E[Y +

T−NT
] ≤ NT

(
B

T
+
∫ ∞

B
G(x)dx

)

Proof. We write

E[Y +
T ] − E[Y +

T−NT
] = E

[
Y +
T−NT +1:T1

(
Y +
T ̸= Y +

T−NT +1:T

)]
≤ E

[
Y +
T−NT +1:T1

(
Y +
T ̸= Y +

T−NT +1:T

)
1

(
Y +
T−NT +1:T ≤ B

)]
+ E

[
Y +
T−NT +1:T1

(
Y +
T−NT +1:T > B

)]
≤ BP

(
Y +
T ̸= Y +

T−NT +1:T

)
+
∫ ∞

B
P
(
Y +
T−NT +1:T > x

)
dx
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= B
NT

T
+
∫ ∞

B
P
(
Y +
NT

> x
)
dx

≤ B
NT

T
+NT

∫ ∞

B
P(Y1 > x)dx

≤ NT

(
B

T
+
∫ ∞

B
G(x)dx

)
.

where we have used the fact that that maximum has the same probability to be attained in each
element and the union bound P

(
Y +
NT

> x
)

≤
∑NT
i=1 P(Yi > x).

To prove that Assumption 4.11 is satisfied for exponential and polynomial tails, we then
exhibit a value of B such that the resulting upper bound in Proposition 4.12 tends to 0.

Lemma 4.13. Assumption 4.11 is satisfied for exponential and polynomial tails.

Proof. If the tail is exponential there exists λ > 0 and for any choice of B there exists a constant
CB such that G(x) ≤ CBe

−λx if x ≥ B, so

E[Y +
T ] − E[Y +

T−NT
] ≤ NT

(
B

T
+ CB

∫ ∞

B
e−λxdx

)
= NT

(
B

T
+ CB

λ
e−λB

)
.

If there exists γ ∈ (0, 1) such that NT = o(T γ), choosing B = log(T )
λ yields the result.

If the tail is polynomial, there exists similarly a constant λ and for any B a constant CB such
that G(x) ≤ CBx

−λ for x ≥ B, so

E[Y +
T ] − E[Y +

T−NT
] ≤ NT

(
B

T
+ CB

∫ ∞

B

1
xλ

dx
)

= NT

(
B

T
+ CB

λ
B1−λ

)

Choosing B = T 1/λ yields

E[Y +
T ] − E[Y +

T−NT
] ≤

(
1 + CB

λ

)
NT

T 1− 1
λ

If for all γ ∈ (0, 1), NT = o(T γ) then in particular NT = o(T 1− 1
λ ) and limT→∞ E[Y +

T ] −
E[Y +

T−NT
] = 0.
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Remark 4.14. In both cases we chose B = G−1(1/T ), which should work for other cases as well.

We now state our main theoretical claim for QoMax-ETC.

Theorem 4.15 (Vanishing regret of QoMax-ETC). Consider a bandit ν = (ν1, . . . , νK) with
ν1 ≻ νk for k ̸= 1. Under Assumption 4.11, for any quantile q ∈ (0, 1) and any sequence (bT , nT )
satisfying

bT
log(T ) → +∞ and nT → +∞ ,

the regret of QoMax-ETC with parameters (q, bT , nT ) is vanishing in the strong sense. Further-
more, for polynomial/exponential tails with positive tail gaps this result also holds for bT = Ω(log T ).

Proof. From Theorem 4.7, there exists constants ck for k ≥ 2 such that for T large enough (such
that nT becomes larger than nν1,νk,q), it holds that

P(IT ̸= 1) ≤
K∑
k=2

P(X̄q
k,nT ,bT

> X̄q
1,nT ,bT

) ≤
K∑
k=2

e−ckbT

It follows that P(IT ̸= 1) = o(T−1) if bT / log(T ) → ∞ and we conclude with Proposition 4.10
and Assumption 4.11. For polynomial or exponential tails, as the above inequality holds for
any value of ck, bT = Ω(log T ) is sufficient to obtain P(IT ̸= 1) = o(T−1).

Even if Theorem 4.15 is stated in an asymptotic way, we emphasize that its proof provides a
finite-time upper bound on the probability of picking a wrong arm, P(IT ̸= 1), that is valid
provided that T is larger than some (problem-dependent) constant. In particular, T needs to be
large enough so that nT ≥ maxk ̸=1 nν1,νk,q where nν1,νk,q is the number of samples needed in
Theorem 4.7 for the concentration of QoMax. This number is not always large. For example if
we have two Pareto distributions with parameters λ1 = 1.5 and λ2 = 2, nT = 3 is enough. Using
our regret decomposition, this result would lead to a finite-time upper bound on the extremal
regret for distributions for which a finite-time bound on the exploration cost is available.

To satisfy the theoretical requirements while obtaining good empirical performance, we
recommend using bT = (log(T ))2 and nT = log(T ) when running the algorithm. All the
experiments reported in Section 4.5 use these values. QoMax-ETC is computationally appealing
and has strong asymptotic guarantees. However in practice we found that its performance can
vary significantly depending on the choices of bT and nT , which should in particular use a
reasonable guess for the horizon T . For this reason, in the next section we propose QoMax-SDA,
which is still based on QoMax comparisons but is anytime (i.e. independent on T ) and requires
less parameter tuning.
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4.4 QoMax-SDA

In this section we present QoMax-SDA, an algorithm using a sub-sampling mechanism based
on LB-SDA, that we studied extensively in Chapters 2 and 3. We detail the key principles of
the algorithm and propose a theoretical analysis.

4.4.1 Algorithm and Implementation

From a high level QoMax-SDA follows the structure of the Sub-sampling Dueling Algorithms
(SDA) introduced in Chapter 2. The algorithm operates in successive rounds composed of (1)
the selection of a leader, (2) the different duels between the leader and the challengers and (3) a
data collection phase. We develop each of those steps in the sequel.

Data and leader selection At the beginning of a round r, the learner has access to the history
of the different arms denoted by Yr

k . For the needs of the QoMax, the collected rewards for arm
k are gathered within bk(r) batches of equal size nk(r) such that |Yr

k | = bk(r)nk(r). nk(r) is
called the number of queries and corresponds to the number of times the arm k has been selected
by the learner at the end of round r. The leader at round r, denoted by ℓ(r), is the arm that has
been queried the most up to round r, that is ℓ(r) ∈ argmaxk≤K nk(r). The K − 1 remaining
arms are called challengers. In case of equality, ties are broken first in favor of the arm with the
largest QoMax, then at random.

Duels Once the leader is selected, it plays a duel against each challenger. As in previous
chapters we denote by Ar+1 the set of arms that will be pulled at the end of round r. An arm k

is added to Ar+1 in two cases: (1) if it wins its duel or (2) if its number of queries is too small:
nk(r) ≤ f(r) for a fixed function f(r) representing the forced exploration. As for standard SDA
the leader is pulled only if no challenger is added to Ar+1. We now detail the duel procedure
that is reported in Algorithm 4.3. We assume that an infinite stream of rewards is available
for each arm, in the form of an array with an infinite number of rows and columns, so that we
denote the rewards of arm k by (Yk,n,b)n∈N,b∈N, where Yk,n,b corresponds to the n-th sample of
b-th batch from arm k. We further assume that the number of batches available for an arm k

depends only on its number of queries nk(r) so that bk(r) = ⌈B(nk(r))⌉ for some function B.
Following the principle of SDA, the duel is a comparison of the QoMax of the challenger using
its entire history and the QoMax of the leader on a sub-sample of its history.

Our sub-sampling mechanism is inspired by LB-SDA, but has to consider two dimensions:
we keep the rewards collected from nk(r) the last queries of the bk(r) first batches from ℓ(r).
This way the QoMax from the leader and the challenger are computed using the same amount
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1 Input: q, arm k, leader ℓ, current history, batch count and batch size: (Ym, bm, nm)
for m ∈ {k, ℓ}

2 Compute Ik = QoMax(q, bk, nk,Yk) (Alg. 4.1) ; ▷ QoMax of the challenger

3 Collect Yℓ = (Yℓ,i,j)i∈[nℓ−nk+1,nℓ],j∈[1,bk] ; ▷ Leader’s sub-sample

4 Compute Iℓ = QoMax(q, bk, nk,Yℓ) (Alg. 4.1) ; ▷ QoMax used for the leader

5 Return: argmaxm∈{k,ℓ}Im

Algorithm 4.3: Duel (q-QoMax comparison)

of data, but the diversity in the sub-samples (see Chapter 2 for intuitions on this topic) comes
from the "query" dimension. We explain why in next paragraph.

Data Collection We now detail the data collection procedure that is used by QoMax-SDA
and illustrated on Figure 4.1. If we query an arm k at round r, we will (1) add 1 observation to
each existing batch, and (2) collect enough data to build a new batch. We formalize this for one
arm in Algorithm 6.

1 Input: queried arm k, history Yk of size nk × bk, target batch size S

2 Add bk new data drawn from νk in a new row of Yk ; ▷ Update existing batches

3 while bk < S do
4 Add nk + 1 data drawn from νk in a new column of Yk ; ▷ Create new batch
5 bk = bk + 1 ; ▷ Update batch count
6 end

Algorithm 4.4: CollectData procedure (without storage reduction trick)

Implementation of QoMax-SDA The combination of the leader selection, the duel step, and
the data collection gives QoMax-SDA, reported in Algorithm 4.5. While we wrote the algorithm
with this function for simplicity, we actually do not recommend to use Algorithm 6 for the data
collection step. Indeed, our algorithm can enjoy a significant reduction of storage with two
different tricks:

1. The maxima can be stored efficiently : when a new value x is added inside a given batch,
all stored values smaller than x are deleted as the algorithm will never need them again.
However we need to store the round at which the observation was collected in case we
have to sub-sample this arm.
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Add a batch
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<latexit sha1_base64="SP1SDK9SC2OsBxkrGz7cMss4rw4="></latexit><latexit sha1_base64="SP1SDK9SC2OsBxkrGz7cMss4rw4="></latexit><latexit sha1_base64="SP1SDK9SC2OsBxkrGz7cMss4rw4="></latexit><latexit sha1_base64="SP1SDK9SC2OsBxkrGz7cMss4rw4="></latexit>

X r
k

<latexit sha1_base64="WXXPt4R060tyxm+ZNB64z1pP4GY="></latexit><latexit sha1_base64="WXXPt4R060tyxm+ZNB64z1pP4GY="></latexit><latexit sha1_base64="WXXPt4R060tyxm+ZNB64z1pP4GY="></latexit><latexit sha1_base64="WXXPt4R060tyxm+ZNB64z1pP4GY="></latexit>

Figure 4.1 – Illustration of the CollectData procedure at round r for a challenger k ∈ Ar+1 with data X r
k .

2. Create new batches for the leader only when it has to match the number of batches of
the second most pulled arm, to avoid creating (and storing) unused batches. Indeed,
if the algorithm ends up pulling an arm most of the time (which is expected), this will
create new batches for the leader that are never used in the duels because only the first
bk(r) batches are used when the leader competes with arm k. In the implementation
this requires to (1) never add new batches when the leader is pulled, and (2) create a
new batch for the leader (i.e pull it nℓ(r) times) when a challenger k is pulled such that
bk(r) > bℓ(r)

The second point is furthermore interesting for exploration as it allows to play more duels
for a fixed number of draws. We provide some results on the memory saved thanks to those
tricks in Appendix 4.7.

Finally, we can note that a forced exploration, through the function f (independent on T ),
is necessary under general assumptions as in all existing algorithms.

4.4.2 Extreme Regret Analysis

We now provide an analysis of QoMax-SDA under the same assumption as before: ν1 ≻ νk

for all k ̸= 1. Let Nk(t) denote the number of pulls of arm k at time t. We start with a generic
regret decomposition.

Proposition 4.16 (Regret decomposition with a low probability event). Define the event

ξT := {N1(T ) ≤ T −KMT } ,
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4.4 QoMax-SDA

1 Input: K arms, quantile level q
2 exploration function f , batch function B
3 Initialization: r = 1
4 ∀k ∈ {1, ...,K}: nk = 1, Yk = {Xk

1 } ; ▷ Draw each arm once
5 for r ≥ 2 do
6 A = {}, ℓ = leader((nk)k∈{1,...,K}, (Yk)k∈{1,...,K}) ; ▷ Define the leader
7 end
8 for k ̸= ℓ ∈ {1, ...,K} do
9 if nk < f(r) or Duel(k, ℓ) = k (Alg. 4.3) then

10 A = A ∪ {k} ; ▷ k pulled if it is not enough explored or wins the duel
11 end
12 end
13 if |A| = 0 then
14 A = {l} ; ▷ Draw the leader if no winning challenger
15 end
16 for k ∈ A do
17 CollectData(Yk, B(r)) (Alg. 6) ; ▷ Data collection
18 nk = nk + 1
19 end

Algorithm 4.5: QoMax-SDA (simplified data collection procedure)

where (MT )T∈N is a fixed sequence. Then, for T ≥ KMT , for any constant xT ∈ R, it holds that,

Rπ
T ≤ E

[
max
t≤T

Y1,t

]
− E

[
max

t≤T−KMT

Y1,t

]
︸ ︷︷ ︸

Exploration cost

+xTP(ξT ) + E
[
max
t≤T

Y1,t1

(
max
t≤T

Y1,t ≥ xT

)]
︸ ︷︷ ︸

Cost incurred by ξT

.

Proof. Performing the exact same steps as for the proof of Proposition 4.10 one can first obtain

E
[
max
t≤T

XIt,t

]
≥ E

[
max

t≤T−KMT

Y1,t

]
− E

[
max
t≤T

Y1,t1(ξT )
]
.

However, contrarily to the ETC strategy for SDA the variable 1(ξT ) and the rewards are not
conditionally independent. Additional steps are required to analyze the two quantities sep-
arately. Using the notation Y +

T = maxt≤T Y1,t for simplicity, and then considering a constant
xT ∈ R we can write

E
[
max
t≤T

Y1,t1(ξT )
]

= E[Y +
T 1(ξT )] ≤ E[Y +

T 1(ξT )1(Y +
T ≤ xT )] + E[Y +

T 1(ξT )1(Y +
T ≥ xT )]

≤ xTP(ξT ) + E[Y +
T 1(Y +

T ≥ xT )] .
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This concludes the proof.

Remark 4.17 (Comparison with Proposition 4.10). The expression we obtained can be compared
with the result for ETC strategies. The first part (exploration cost) is the same. However, the second
term is more complicated as we could simply write P(ξT )E[maxt≤T X1,t] for the ETC strategy. If we
did this we would now obtain P(ξT ) ×E

[
Y +
T |ξcT

]
, where the second term is unfortunately not equal

to E
[
X+
T

]
. We cannot proceed further with this upper bound as the conditional expectation may

be very intricate to compute. However, we conjecture that the upper bound E
[
Y +
T |ξcT

]
≤ E

[
Y +
T

]
should hold. Indeed, ξcT and the maximum should be positively correlated, as this event corresponds
to arm 1 being pulled a lot, and hence performing quite well. This seems however difficult to prove.

Another interesting observation is that, even if the “cost incurred by ξT ” features two terms,
interestingly only the first term depends on the algorithm. In fact, just as with Proposition 4.10
our analysis again depends mostly on upper bounding the probability of a "bad" event. We
propose the following result for QoMax-SDA.

Lemma 4.18 (Upper bound on P(ξT ) for QoMax-SDA). Consider a bandit ν = (ν1, . . . , νK)
satisfying ν1 ≻ νk,∀k ̸= 1. For any q ∈ (0, 1), any MT and any γ > 0, under QoMax-SDA with
parameters B(n) = nγ and f(r) = (log r)

1
γ ,

P(ξT ) = O
(

(log T )
1
γM

− 1
1+γ

T

)
.

Moreover, for all k ̸= 1, E[nk(T )] = O((log T )1/γ).

Sketch of proof. We first use that P(ξT ) ≤
∑K
k=2 P(Nk(T ) ≥ MT ). Using that Nk(T ) = bk(T ) ×

nk(T ) = nk(T )1+γ and Markov inequality we obtain

P(ξT ) ≤ M
− 1

1+γ

T

K∑
k=2

E[nk(T )] .

It remains to study the expected number of queries of sub-optimal arms k ≥ 2. This can be
done following the outline of the proof of Theorem 2.12 in Chapter 2 for SDA in the standard
setting while using the deviation inequalities from Theorem 4.7 instead of the ones from
Assumption 2.4.

The second term in the “cost incurred by ξT ” only depends on the distribution of the optimal
arm and can be further upper bounded assuming exponential and polynomial tails, leading to
the following result.
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4.5 Practical performance

Theorem 4.19 (Upper bound on the regret of QoMax-SDA). Under the assumptions of
Lemma 4.18 it further holds that

1. the regret of QoMax-SDA is vanishing in the strong sense for exponential tails

2. the regret of QoMax-SDA is vanishing in the weak sense for polynomial tails.

Sketch of proof. For parametric tails, we can compute the growth rate of E[maxt≤T X1,t] with
respect to T . This permits to tune the values of MT and xT to properly balance the terms in the
regret decomposition. The difference in the convergence for (1) and (2) comes from the fact
that the exploration cost scales logarithmically with the time horizon when using exponential
tails, whereas the dependency is polynomial with polynomial tails.

We note that there is no hope to upper bound the last term in the regret decomposition
of Proposition 4.10 assuming only that arm 1 dominates the others, so we could not establish
vanishing regret for QoMax-SDA under this assumption. However, at least weakly vanishing
regret could be established using the conjecture we make in Remark 4.17. Even if we were
not able to prove this, we note that QoMax-SDA achieves state-of-the-art performance for
exponential and polynomial tails, and that Lemma 4.18 provides a strong indicator of the good
performance of QoMax-SDA under more general assumptions, as it shows that the algorithm
queries each sub-optimal arm O((log T )

1
γ ) times. With this number of queries the total number

of data collected from sub-optimal arms would be O((log T )1+ 1
γ ). Knowing if it is possible to

design an extreme bandit algorithm that would use only O(log(T )) data for sub-optimal arms
as in the standard setting under mild assumptions on the tails is an interesting open question.
We now turn our attention to the practical benefits of using QoMax-based algorithms.

4.5 Practical performance

In all of our experiments, we compare QoMax-SDA and QoMax-ETC with ThresholdAscent
(Streeter and Smith, 2006b), ExtremeHunter (Carpentier and Valko, 2014), ExtremeETC (Achab
et al., 2017) and MaxMedian (Bhatt et al., 2021). We use the parameters suggested in the
original papers (see details in Baudry et al. (2022)). Namely, b = 1 for ExtremeHunter/ETC,
s = 100, δ = 0.1 for ThresholdAscent, εt = (t+ 1)−1 for MaxMedian. For QoMax-ETC, we use
bT = (log T )2 batches of nT = log T samples. This matches the size of the exploration phase of
ExtremeETC and allows for a fair comparison. For QoMax-SDA, we choose γ = 2/3, which
seems to work well across all examples. All the results presented in this section are obtained
with these values.
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4.5.1 Time and Memory Complexity

We summarize in Table 4.1 the storage and computational time required by the different
adaptive and ETC algorithms that we consider, with the aforementioned parameters. The
smallest values in each category are colored in blue. We do not include ThresholdAscent in the
table because the comparison is unfair, as it uses a fixed number of data but is not theoretically
grounded. We refer the reader to (Bhatt et al., 2021) for the complexities of the baselines, and we
refer to Appendix D.2 of (Baudry et al., 2022) for details of all computation, and the expression
of the complexities according to the algorithms’ parameters.

For QoMax-ETC, the memory needed is KbT as we only store the current maximum of
each batch during the exploration phase. The time complexity is O(max(KbTnT , bT log bT )) by
comparing the duration of the experiment and the time needed to compute the quantiles before
exploiting. We just assumed that finding a quantile of a list of size n costs Ω(log(n)), plugging
the values of bT and nT gives the result. The time complexity of QoMax-SDA is in O(KT log T )
as its main cost consists in sorting data online, just like MaxMedian. The storage of QoMax-SDA
is obtained thanks to the two tricks: one allows to keep O(log T ) batches, the other O(log T )
samples per batch for the leader. On the contrary, the complexity for the challengers remains in
O(log T log log T ), therefore the dependency in K only appears as a second order term.

Table 4.1 – Average time and storage complexities of Extreme Bandit algorithms for a time horizon T .

Algorithm Memory Time

Extreme Hunter T O(T 2)

MaxMedian T O(KT log T )

QoMax-SDA O((log T )2) O(KT log T )

Extreme ETC O
(
K(log T )3) O

(
K(log T )6)

QoMax-ETC O(K(log T )2) O(K(log T )3)

QoMax-SDA offers an exponential reduction of the storage cost compared to ExtremeHunter
and MaxMedian, while being as computationally efficient as MaxMedian. On the other hand,
choosing the same length for the exploration phase of the two ETC leads to a significantly
smaller time complexity for QoMax-ETC. Hence, both QoMax-SDA and QoMax-ETC present a
substantial improvement over their counterparts.
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4.5 Practical performance

4.5.2 Empirical Performance

We compare the empirical performance of the QoMax algorithms with the different competitors
on synthetic data. We reproduced 6 experiments from previous works: all experiments from
(Bhatt et al., 2021) (Experiments 1-4 for us), and the experiments 1 and 2 from (Carpentier and
Valko, 2014) (5-6 in this work). We also implement new experiments with other families of
distributions to highlight the generality of our approach. We choose to present in this section
our methodology for evaluating Extreme Bandits algorithms, and the results for a selection of
experiments, that illustrate well our findings across all the settings we tested. The results for
the other experiments can be found in (Baudry et al., 2022).

Empirical evaluation We consider 4 performance criteria:

I Empirical evaluation of the extreme regret, by averaging the maxima collected on
each trajectory.

II Fraction of pulls of the optimal arm.

III Empirical distribution of the number of pulls of optimal arm, to observe potential
failures for some trajectories or how greedy an algorithm can be.

IV Empirical distribution of the maximal reward and in particular some quantiles, that
will be more robust that the empirical expected maximum.

In our experiments each criterion is estimated over N = 104 independent trajectories for
different values of the horizon T . Most works report only criteria (I), and (II) was first proposed
by (Bhatt et al., 2021). Our analysis shows that the extreme regret of a strategy is closely related
to its capacity to sample the optimal arm T − o(T ) times, so we think that (II) is indeed a
good performance indicator. Criterion (III) gives a broader picture of what can happen in the
experiments, and in our results we display the following quantiles of the empirical distribution
of best arm pulls: [1%, 10%, 25%, 50%, 75%, 90%, 99%]. In particular, the lower quantiles are
interesting to see how much an algorithm can under-sample the best arm.

Regarding (I), we note that estimating the expectation E[maxt≤T XIt,t] featured in the
extreme regret is very hard: we highlight the fact that this expectation is taken on the distribution
of the maximum over T samples, which is heavy-tailed in many cases. For that reason, standard
Monte-Carlo estimators will have a very large variance. Hence, we propose the following
estimation strategy when a tight approximation of E[Y +

1,T ] is known. We first find the value q+
T such

that E[X+
1,T ] is equal to the quantile of order q+

T of the distribution of Y +
1,T . We then compute

the empirical quantile of order q+
T of the set of maxima collected in each trajectory, denoted by
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X⌈q+
T ⌉, as an estimator of their expected maximum. This allows to compute what we call Proxy

Empirical Regret (PER), that we define below.

Definition 4.20 (Proxy Empirical Regret (PER)). Assume that we perform N runs of the algo-
rithm up to horizon T . Further assume that E[Y +

1,T ] is known, and that the distribution of Y +
1,T is

also known and is denoted by ν+
T . Let q+

T be the quantile of ν+ satisfying VaRq+
T

(ν+
T ) = E[Y +

1,T ].
Then, the Proxy Empirical Regret is computed by replacing the empirical estimate of E[X+

T ] by
the empirical estimate of q+

T in the regret definition, namely

Rproxy
T,π =

E[Y +
1,T ] −X+

⌈q+
T ⌉

E[Y +
1,T ]

,

where X+
1 , . . . , X

+
N are the maxima obtained in each of the N runs. The normalization aims at

facilitating the check of a weakly vanishing regret.

More precisely, by definition q+
T satisfies q+

T = P(X+
T ≤ E[X+

T ]) ≈ exp(−TG(E[X+
T ])). In

the experiments we plug the equivalents of E[X+
T ] in each setting: for Pareto distribution we

obtain q+
T ≈ exp

(
− 1

Γ(1−1/λ)λ

)
, while for exponential distributions we obtain q+

T ≈ e−1.

We are able to compute the PER to approximate (I) for experiments 1-6. When (I) is not
available we recommend looking at (IV) with the same quantiles as for (III).

Experiments We describe the settings of a selection of experiments from (Baudry et al., 2022)
that we present in this section. We will then refer to them by their number (e.g exp.1), keeping
the same numbering as in the paper.

• Experiment 1 (exp.1 in (Bhatt et al., 2021)): K = 5 Pareto distributions with tail parameters
λk ∈ [2.1, 2.3, 1.3, 1.1, 1.9].

• Experiment 3 (exp.3 in (Bhatt et al., 2021)) K = 10 Exponential arms with a survival
function Gk(x) = e−λkx with parameters λk = [2.1, 2.4, 1.9, 1.3, 1.1, 2.9, 1.5, 2.2, 2.6, 1.4].

• Experiment 6 (exp.2 in (Carpentier and Valko, 2014)) K = 3 arms, including 2 Pareto
distributions with λk ∈ [1.5, 3], and arm 3 is a mixture Dirac/Pareto: pulls 0 with 80%
probability, reward from a Pareto distribution with λ = 1.1 with 20% probability. Hence,
the last arm dominates asymptotically.

• Experiment 7: we consider K = 5 log-normal arms with parameters µk ∈ [1, 1.5, 2, 3, 3.5]
and σk ∈ [4, 3, 2, 1, 0.5]. When T is large enough the parameter σ determines which arm
dominates (arm 1 in our case). We recall that if X follows a log-normal distribution with
parameters (µ, σ) then log(X) ∼ N (µ, σ)
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The code to reproduce the experiments is available on Github.

Objective of each experiment Before reporting the results, we explain why each experiment
is interesting for the empirical evaluation of Extreme Bandits algorithms. Experiment 1 is quite
difficult because the tail gap between arm 3 and arm 4 is relatively small. All algorithms are
supposed to have guarantees in this setting so their comparison is fair. Experiments 3 allows to
test the different algorithms with exponential tails, showing the performance of the algorithms
when the tails are not polynomial. Experiment 6 will be interesting for discussing the limits
of parameter-free approaches, as the dominant tail provides low rewards with relatively high
probability. Finally, experiment 7 allows to try the algorithms on heavy-tail distributions that
do not have a polynomial tail.

Parameters We recall the parameters used for the different experiments. For each experiment,
we run N = 104 independent trajectories for 10 time horizons T ∈ [103, 2.5 × 103, 5 × 103, 7.5 ×
103, 9×103, 104, 1.5×104, 2×104, 3×104, 5×104]. This methodology allows for a fair comparison
between ETC and more adaptive strategies, and can stabilize the results as an extreme trajectory
can introduce bias for only one time horizon. The parameters we used for each algorithm are
the following:

• ThresholdAscent: s = 100, δ = 0.1, as suggested in (Streeter and Smith, 2006b).

• ExtremeETC/ExtremeHunter: b = 1, as in (Carpentier and Valko, 2014). As the authors,
we use δ = 0.1 for the experiments instead of the theoretical value that is too large for
the time horizons considered, and D = E = 10−3 for the UCB. Other theoretically-
motivated parameters are r = T−1/(2b+1) (fraction of samples used for the tail estimation),
N = (log T )

2b+1
b (length of the initial exploration phase). δ = exp(− log2(T ))/(2TK) in

the paper but set to 0.1 here.

• MaxMedian: The exploration probability is set to εt = 1/(1 + t) as suggested in (Bhatt
et al., 2021).

• QoMax-ETC: We test q = 1/2 and q = 0.9, bT = (log T )2 and nT = log T to match both
the theoretical requirements of Section 4.3 and the length of the exploration phase of
ExtremeETC for a fair comparison.

• QoMax-SDA: f(r) = (log r)
1
γ and B(n) = nγ for γ = 2/3, which works well across all the

experiments. The quantile is either equal to q = 1/2 or q = 0.9.

Results For each experiment, we report the results according to the criteria (I)-(IV) that are
defined above. The criteria (I)-(II) are reported side by side for each experiment in Figures 4.2-
4.8, except for Exp.7 for which (I) cannot be computed. Tables 4.3-4.9 associated with (III)

125

https://github.com/ExtremeBandits/ExtremeBandits_submission


Sub-sampling for Extreme Bandits

report the result for the statistics on the number of pulls of the best arm on all trajectories at
T = 5 × 104 . Finally, Tables 4.4-4.10 related to (IV) report the results for the statistics on the
empirical distribution of the maxima on all trajectories at T = 5 × 104.

We summarize our key observations on the results with the following points:

• Non-robustness of reporting the average maximum collected. Several examples can
serve to illustrate this point. For experiment 1 (Table 4.4) if we look at the average
maximum only, we would conclude that QoMax-SDA with q = 1/2 is by far the best
algorithm with an average of 1.8 × 105 (1.1 × 105 for the second). However, we see that
the quantiles of the maxima distributions are almost identical to those of other QoMax
algorithms. Hence, even if 99% of their distribution matches, QoMax-SDA with q = 1/2
has a nearly 70% better average caused by less than 1% of the trajectories. The same thing
seems to happen on different problems: the 104 and 8.5 × 103 of 1/2-QoMax-ETC and
ExtremeETC are clearly over-estimated means in experiment 2 considering that they both
have the same quantiles as 1/2-QoMax-SDA (even a bit worse), which has an average of
7.5 × 103, and MaxMedian with 7.9 × 103. Without surprise, this phenomenon is more
present when the tails are heavier. Hence looking at the average maxima is meaningful
only with the statistics from Experiments 3 and 4 with lighter tails.

• QoMax Performance. QoMax algorithms clearly outperform their competitors in Ex-
periments 1, 3, 7 according to all criteria. As those experiments include polynomial,
exponential and log-normal tails with different number of arms, this shows the gener-
ality and efficiency of the QoMax approach. QoMax-SDA seems to work better than
QoMax-ETC, in particular it is competitive even for small time horizons (T < 5 × 103) in
most experiments. However, we see that QoMax-ETC almost matches the performance of
QoMax-SDA for T = 5 × 104. For a practitioner who would be interested in larger time
horizons QoMax-ETC seems to be a perfectly suitable choice.

• On the contrary, ExtremeHunter performs significantly better than ExtremeETC for
larger horizons: the probability of mistake of the latter is still quite large, and the ability
of ExtremeHunter to recover from a mistake is valuable, but we recall that the time
complexity of ExtremeHunter is detrimental for the practitioner. Results from Experiment
3 show that the two algorithms are not able to handle exponential tails.

• ThresholdAscent is never the best algorithm but has the advantage of being consistently
better than the uniform strategy (according to (II)), as it always pulls the best arm at a
frequency larger that 1/K. It is the most stable baseline in terms of (III) (it always has
the narrowest range for the statistics we consider), but this is detrimental to its capacity
to collect large values.
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• We tested MaxMedian on larger time horizons than in the original paper, which explains
the difference in some results. Indeed, we observe that in Experiments 1, 3, 5, MaxMedian
is quite competitive for shorter time horizons (T ≤ 104), but almost stops improving at
this step. This suggests that the algorithm does not explore enough, which is confirmed
by a closer look at (III): the number of pulls of the best arm are either very close to 0%
or to 100% in most of the cases, which is a behavior specific to this algorithm and that
we would like to avoid in practice. This behavior also has an impact on the statistics on
the maxima distributions (IV). The exploration function may be responsible for this, and
results may be better with a larger forced exploration.

• Experiment 6 shows that in some examples parametric algorithms can perform much
better than non-parametric approaches. Indeed, the distribution of arm 3 enters in the
second-order Pareto family, and the parameter b = 1 makes ExtremeHunter calibrate its
parameters with the ≈ 5% best samples of each arm. This is enough for the algorithm
to "detect" the Pareto tail of the mixture and sample it most often. Most of the other
algorithms fail, including QoMax. However, two important remarks on QoMax can be
made based on this experiment: the 0.9-QoMax-SDA performs much better than the
others, showing that when the tails are harder to detect choosing a larger quantile can
be valuable. Furthermore, we tested another experiment imposing at least 100 samples
in each batch. This time, 0.9-QoMax-SDA was able to pull the best arm 60% of the time.
Hence, the practitioner has the ability to increase the exploration and the quantile q if
very difficult tails are expected (typically where the value x of Definition 4.3 is large),
which depends on the characteristics of the problem at hand.

Conclusion of the experiments Overall, QoMax-based algorithms seem to be solid choices for
the practitioner, as demonstrated in a variety of examples. Their strong theoretical guarantees
and implementation tricks reducing the time and space complexities make them an efficient
solution for the Extreme Bandits problem. They work well on most examples that we tried with
the same parameters (avoiding painful tuning), including settings with different kind of tails
(polynomial, exponential, log-normal) with different number of arms, and both easy and hard
instances. We explained however with experiment 6 the limits of a distribution-free approach if
we consider a hard problem. It also showed that in this case augmenting the quantile q (and/or
the forced exploration function f for QoMax-SDA) used in QoMax algorithms can be beneficial.
Furthermore, we can recommend to use QoMax-ETC when the time horizon is expected to be
very large (larger than 5 × 104 for instance) and QoMax-SDA for smaller time horizons, as it
seems to learn faster on all examples but it is more computationally demanding.
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Experiment 1

Figure 4.2 – Experiment 1: Proxy Empirical Regret (left) and Number of pulls of the dominant arm (right),
averaged over 104 independent trajectories for T ∈ {103, 2.5 × 103, 5 × 103, 7.5 × 103, 9 × 10, 104, 1.5 ×
104, 2 × 104, 3 × 104, 5 × 104}.

Figure 4.3 – Statistics on the number of pulls of the best arm at T = 5 × 104, Experiment 1.
Algorithm Average (%) 1% 10% 25% 50% 75% 90% 99%

QoMax-SDA (q = 1/2) 92 42 90 93 94 95 95 95
QoMax-SDA (q = 0.9) 93 14 87 93 96 97 98 98
QoMax-ETC (q = 1/2) 89 90 90 90 90 90 90 90
QoMax-ETC (q = 0.9) 88 3 90 90 90 90 90 90

ExtremeETC 71 3 3 90 90 90 90 90
ExtremeHunter 79 3 5 89 90 90 90 90

MaxMedian 72 0 0 0 100 100 100 100
ThresholdAscent 53 46 50 52 53 55 56 57

Figure 4.4 – Statistics on the distributions of maxima at T = 5 × 104, Experiment 1. Results divided by
100 to improve readability.

Algorithm Average 1% 10% 25% 50% 75% 90% 99%

QoMax-SDA (q = 1/2) 1852 41 81 130 245 547 1350 11371
QoMax-SDA (q = 0.9) 1042 39 78 128 239 529 1363 12539
QoMax-ETC (q = 1/2) 1058 40 79 126 232 530 1324 11054
QoMax-ETC (q = 0.9) 919 34 75 122 230 511 1301 10080

ExtremeETC 882 16 44 86 183 426 1089 9515
ExtremeHunter 1092 21 61 104 208 477 1226 9799

MaxMedian 785 3 37 83 180 436 1126 9240
ThresholdAscent 748 27 51 82 156 351 853 7771
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Experiment 3
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Figure 4.5 – Experiment 3: Proxy Empirical Regret (left) and Number of pulls of the dominant arm (right),
averaged over 104 independent trajectories for T ∈ {103, 2.5 × 103, 5 × 103, 7.5 × 103, 9 × 10, 104, 1.5 ×
104, 2 × 104, 3 × 104, 5 × 104}.

Figure 4.6 – Statistics on the number of pulls of the best arm at T = 5 × 104, Experiment 3.
Algorithm Average (%) 1% 10% 25% 50% 75% 90% 99%

QoMax-SDA (q = 1/2) 81 2 72 82 86 88 88 89
QoMax-SDA (q = 0.9) 80 2 59 80 87 91 93 95
QoMax-ETC (q = 1/2) 73 3 77 77 77 77 77 77
QoMax-ETC (q = 0.9) 69 3 3 77 77 77 77 77

ExtremeETC 13 3 3 3 3 3 77 77
ExtremeHunter 15 3 3 3 3 7 67 77

MaxMedian 59 0 0 0 98 100 100 100
ThresholdAscent 27 21 24 26 28 29 31 33

Figure 4.7 – Statistics on the distributions of maxima at T = 5 × 104, Experiment 3.
Algorithm Average 1% 10% 25% 50% 75% 90% 99%

QoMax-SDA (q = 1/2) 32 26 28 29 31 34 37 43
QoMax-SDA (q = 0.9) 32 25 28 29 31 34 37 44
QoMax-ETC (q = 1/2) 32 25 28 29 31 34 36 43
QoMax-ETC (q = 0.9) 31 24 27 29 31 33 36 43

ExtremeETC 26 18 21 23 25 29 32 39
ExtremeHunter 27 19 22 23 26 29 32 39

MaxMedian 31 21 25 28 31 33 36 43
ThresholdAscent 29 23 25 27 29 31 34 41
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Experiment 6
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Figure 4.8 – Experiment 6: Proxy Empirical Regret (left) and Number of pulls of the dominant arm (right),
averaged over 104 independent trajectories for T ∈ {103, 2.5 × 103, 5 × 103, 7.5 × 103, 9 × 10, 104, 1.5 ×
104, 2 × 104, 3 × 104, 5 × 104}.

Figure 4.9 – Statistics on the number of pulls of the best arm at T = 5 × 104, Experiment 6.
Algorithm Average (%) 1% 10% 25% 50% 75% 90% 99%

QoMax-SDA (q = 1/2) 14 1 1 2 4 15 45 95
QoMax-SDA (q = 0.9) 36 0 1 3 22 75 90 98
QoMax-ETC (q = 1/2) 3 3 3 3 3 3 3 3
QoMax-ETC (q = 0.9) 15 3 3 3 3 3 95 95

ExtremeETC 79 3 3 95 95 95 95 95
ExtremeHunter 87 3 85 95 95 95 95 95

MaxMedian 1 0 0 0 0 0 0 5
ThresholdAscent 43 27 34 38 43 49 53 60

Figure 4.10 – Statistics on the distributions of maxima at T = 5 × 104, Experiment 6. Results divided by
100 to improve readability.

Algorithm Average 1% 10% 25% 50% 75% 90% 99%

QoMax-SDA (q = 1/2) 60 5 9 12 21 41 91 635
QoMax-SDA (q = 0.9) 120 6 10 15 28 64 155 1144
QoMax-ETC (q = 1/2) 40 5 8 11 18 33 64 306
QoMax-ETC (q = 0.9) 59 5 8 12 20 40 93 702

ExtremeETC 267 6 14 24 47 108 266 2687
ExtremeHunter 232 8 17 28 53 116 305 2620

MaxMedian 35 0 7 10 17 30 60 306
ThresholdAscent 136 7 12 18 33 70 170 1299
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Experiment 7
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Figure 4.11 – Experiment 7 (Log-normal arms): Number of pulls of the dominant arm, averaged over
104 independent trajectories for T ∈ {103, 2.5 × 103, 5 × 103, 7.5 × 103, 9 × 10, 104, 1.5 × 104, 2 × 104, 3 ×
104, 5 × 104}.

Table 4.2 – Statistics on the distributions of number of pulls of the best arm at T = 5 × 104, Exp. 7

Algorithm Average 1% 10% 25% 50% 75% 90% 99%

QoMax-SDA (q = 1/2) 94 85 94 95 95 95 95 95
QoMax-SDA (q = 0.9) 97 89 96 97 98 98 98 98
QoMax-ETC (q = 1/2) 90 90 90 90 90 90 90 90
QoMax-ETC (q = 0.9) 90 90 90 90 90 90 90 90

ExtremeETC 55 3 3 3 90 90 90 90
ExtremeHunter 63 13 40 45 53 90 90 90

MaxMedian 7 0 0 0 0 0 0 100
ThresholdAscent 57 55 56 57 58 58 58 58

Table 4.3 – Statistics on the distributions of maxima at T = 5 × 104, Experiment 7. Results divided by
1000 to improve readability.

Algorithm Average 1% 10% 25% 50% 75% 90% 99%

QoMax-SDA (q = 1/2) 1393 73 151 257 488 1090 2259 13764
QoMax-SDA (q = 0.9) 1401 79 163 260 524 1171 2830 13839
QoMax-ETC (q = 1/2) 1337 77 154 245 430 1007 2664 13651
QoMax-ETC (q = 0.9) 1459 84 150 251 461 987 2419 12654

ExtremeETC 957 6 12 30 214 581 1511 7422
ExtremeHunter 867 32 85 156 297 666 1569 10855

MaxMedian 76 0 0 0 0 0 15 1678
ThresholdAscent 1043 43 94 160 311 667 1648 10715
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4.6 Appendix A: proofs of section 4.4 (SDA)

4.6.1 Proof of Lemma 4.18

We recall ξT := {N1(T ) ≤ T −KMT }. First, using
∑K
k=1Nk(T ) = T , we remark that

P(N1(T ) ≤ T −KMT ) ≤ P(∃k ≥ 2, Nk(T ) ≥ MT ) ≤
K∑
k=2

P(Nk(T ) ≥ MT ) ,

We denote by rT the index of the round for which the number of observations equals or
exceeds T . As at least one observation is collected at the end of the round it holds that rT ≤ T .
Hence, we can obtain

P(N1(T ) ≤ T −KMT ) ≤
K∑
k=2

P(nk(rT )bk(rT ) ≥ MT ) ≤
K∑
k=2

P(nk(T )bk(T ) ≥ MT ) .

Using bk(T ) = nk(T )γ and Markov inequality gives

P(N1(T ) ≤ T −KMT ) ≤
K∑
k=2

P(nk(T )1+γ ≥ MT ) ≤
K∑
k=2

P(nk(T ) ≥ M
1

1+γ

T ) ≤
K∑
k=2

E[nk(T )]

M
1

1+γ

T

.

For all k ≥ 2, Lemma 4.21 shows that E[nk(T )] = O
(
(log T )

1
γ

)
with the tuning we choose

for the algorithm. This is sufficient to conclude on the result.

Lemma 4.21. Under assumption 4.11 and if ν1 ≻ νk for all k ∈ {1, . . . ,K}, if we consider
QoMax-SDA with parameters B(n) = nγ and f(r) = (log r)

1
γ , then for all k ≥ 2 there exists a

constant Ck such that the number of pulls of arm k at time T satisfies

E[nk(T )] ≤ Ck (log(T ))
1
γ + O(1) .

We omit the proof of this result in this manuscript, as it is redundant with the proofs of
Chapters 2 and 3. The interested reader can find the complete version in Baudry et al. (2022).
The main ingredient is to replace the deviation inequalities of Assumption 2.4 by the ones
we obtained for the QoMax estimates in Theorem 4.7. Furthermore, in this setting the forced
exploration of f(r) = (log r)

1
γ queries (and hence log(r) batches due to the rule we set for the

number of batches) ensures enough forced exploration so that we do not need to consider
balance conditions, which provides the values we set for f(r) and b(r).
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4.6.2 Proof of Theorem 4.19

Theorem 4.19 (Upper bound on the regret of QoMax-SDA). Under the assumptions of
Lemma 4.18 it further holds that

1. the regret of QoMax-SDA is vanishing in the strong sense for exponential tails

2. the regret of QoMax-SDA is vanishing in the weak sense for polynomial tails.

Proof. We instantiate the decomposition of Proposition 4.16 using the value of P(ξT ) obtained
in Lemma 4.18. Plugging all of these values and using Proposition 4.12, we write for π being
any instance of QoMax-SDA with parameter γ,

Rπ
T ≤ E

[
max
t≤T

Y1,t

]
− E

[
max

t≤T−KMT

Y1,t

]
︸ ︷︷ ︸

Exploration cost

+xTP(ξT ) + E
[
max
t≤T

Y1,t1

(
max
t≤T

Y1,t ≥ xT

)]
︸ ︷︷ ︸

Cost incurred by ξT

≤ KMT

[
BT
T

+
∫ +∞

BT

G1(x)dx
]

︸ ︷︷ ︸
A1

+xT
C(log T )

1
γ

M
1

1+γ

T︸ ︷︷ ︸
A2

+T

∫ +∞

xT

G1(x)dx︸ ︷︷ ︸
A3

,

for any values of xT , BT ,MT , that we now specify for each of the two families considered.

Exponential tails We recall that if G1(x) = O(exp(−λx)), then for any y ∈ R we have

∫ +∞

y
G1(x)dx = O (exp(−λy)) .

First, if we choose BT = 1
λ log(T ) then A1 vanishes for any choice of MT = Tα with 0 <

α < 1. Similarly, choosing xT = 2
λ log T ensures that A3 = O(1/T ). Then, A2 is O

(
(log T )1+ 1

γ

M
1

1+γ
T

)
,

which is vanishing for any choice of MT = Tα, α ∈ (0, 1). We conclude that for exponential
tails, limT→∞ Rπ

T = 0.

Polynomial tails Consider again MT = Tα, for some α ∈ (0, 1). This time,

∫ +∞

y
G1(x)dx = O

( 1
yλ−1

)
.
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Plugging intoA3, we get a term of order O(T×x1−λ
T ). Let’s take xT = T β for some β ∈ (0, 1),

we then have
A3 = O(T 1+β(1−λ)) .

Now consider A2, omitting the polylog terms we obtain

A2 = O(T β− α
1+γ ) .

Consider finally A1. Choosing BT = T
1
λ (as in Appendix ??) we obtain the tightest upper

bound on the exploration cost:

A1 = O
(
MT

T 1− 1
λ

)
= O(Tα−1+ 1

λ ) .

To get the smallest order with this proof technique we want to equalize all these three
exponents, which gives

α− 1 + 1
λ

= β − α

1 + γ
= 1 + β(1 − λ) .

For simplicity we write β = 1
λ + η and try to find η instead. Re-writing the the three

equalities yields

α+ 1
λ

− 1 = 1
λ

+ η − α

1 + γ
= 1
λ

− (λ− 1)η .

This can be further simplified in

α− 1 = η − α

1 + γ
= −(λ− 1)η .

This gives in particular a system of two equations with two unknowns η and α. By substi-
tuing α we get

η − 1 − (λ− 1)η
1 + γ

= −(λ− 1)η

⇔ η [1 + γ + λ− 1 + (λ− 1)(1 + γ)] = 1 ,

which gives η = 1
λ(2+γ)−1 and α = λ(1+γ)

λ(2+γ)−1 .
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Plugging in these values, we obtain thatA1,A2 andA3 are all in O
(
T

1
λ

− λ−1
λ(2+γ)−1

)
= o(T 1/λ).

Plugging the rate of growth of the maximum for polynomial tails we get that

Rπ
T = o

T→∞

(
E
[
max
t≤T

Y1,t

])
.

Remark 4.22. With this last result we can further say that the regret of QoMax-SDA is strongly
vanishing if λ1 is larger than 2+

√
3, but we omitted this result in our statement since it is impossible

to know in advance.

4.7 Appendix B: Implementation Tricks for QoMax-SDA

In this section we provide both empirical and theoretical evidences on the memory gains
obtained with the implementation trick we introduced for the storage of maxima in QoMax-
SDA. We first recall this procedure in Algorithm 4.6

1 Input: List of indices I = {i1, . . . , iL}, sorted list X = {X1, . . . , XL},
X1 > X2 > · · · > XL, new index i, new data X

2 Find the largest j ∈ {1, . . . , L} satisfying Xj > X ; ▷ Binary search
3 Set X = {X1, X2, . . . , Xj , X} ; ▷ Remove Xj+1, . . . , XL and add X

4 Set I = {i1, . . . , ij , i} ; ▷ Remove ij+1, . . . , iL and add i

5 Return: List of indices I, list of data X .
Algorithm 4.6: Efficient Update of a list of maxima for QoMax-SDA

Empirical evidences of the efficiency of the storage trick We propose simulations to verify
that the solution we propose to store the data used by QoMAx-SDA is indeed efficient. We
performed 1000 simulations for each sample sizeN ∈ [102, 5 × 102, 103, 2 × 103, 5 × 103, 104, 2 ×
104, 3 × 104, 5 × 104]), and for 4 distributions: (1) a Pareto distribution with tail parameter 1.1,
(2) a Pareto distribution with tail parameter 3, (3) an exponential distribution with parameter 1,
(4) a standard normal distribution. We report in Figure 4.12 the average number of data stored
by the algorithm for each sample sizes, along with the empirical 5% and 95% quantiles on the
1000 simulations and the curve y = log(N) for comparison. We observe that: (1) The results
do not depend on the distribution. (2) All 4 curves are very close to exactly

∑N
n=1

1
n , which is

as small as ≈ 10 for a sample size of 5 × 104. (3) 90% of the simulations have no more than 17
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data stored, and the maximum we observe on all 4 experiments is actually 23 which is very
small compared to N = 5 × 104.

Therefore, we conclude that the trick we introduced is indeed efficient and our experiments
corroborate the intuition that it allows to store O(logN) data out of N on average. We now
prove it formally in Lemma 4.23

Figure 4.12 – Average number of data kept in memory with the efficient storage of maxima, for 1000
simulations with sample size N ∈ [102, 5 × 102, 103, 2 × 103, 5 × 103, 104, 2 × 104, 3 × 104, 5 × 104] and
the empirical 5% and 95% quantiles.

Lemma 4.23 (Expected memory with the efficient storing of maxima). Denote by CN the
random variable denoting the memory usage of a random i.i.d sample of size N drawn from any
distribution with the implementation trick from Alg. 4.6. For any ν, it holds that

E[CN ] =
N∑
n=1

1
n

≈ log(N) .

Proof. Denote the sorted random samples by X1 > · · · > XN . As the observations are i.i.d,
all of them are equally likely to be in the last position. We consider IN the random variable
denoting the index of the last observation, it holds that

E[CN ] = 1
N

N∑
j=1

E[CN |IN = j] .
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Then, we remark that if IN = j, all observations of higher order Xj+1, . . . , XN are removed
from the history. Hence, it only remains to count the average amount of data considering
only X1, . . . , Xj−1, which is equal to E[Cj−1] and add 1 for the last observation. Using that
E[C1] = 1,

E[CN ] = 1
N

N∑
j=1

E[CN |IN = j] = 1
N

N∑
j=1

(1 + E[Cj−1])

⇒ (N + 1)E[CN+1] −NE[CN ] =
N+1∑
j=1

(1 + E[Cj ]) −
N∑
j=1

(1 + E[Cj ]) = 1 + E[CN ]

⇒ (N + 1)(E[CN+1] − E[CN ]) = 1

⇒ E[CN+1] = E[CN ] + 1
N + 1

⇒ E[CN ] =
N∑
n=1

1
n
.
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Chapter 5

Non-Parametric Thompson Sampling
for CVaR bandits

In this chapter we consider the CVaR bandit problems introduced in Chapter 1 (Section 1.2).
While existing works in this setting mainly focus on Upper Confidence Bound algorithms, we
present a new Thompson Sampling approach for CVaR bandits on bounded rewards that is
flexible enough to solve a variety of problems with finite rewards. Building on a recent work by
Riou and Honda (2020), we introduce B-CVTS for continuous bounded rewards and M-CVTS
for multinomial distributions. On the theoretical side, we provide a non-trivial extension of their
analysis that enables to upper bound their CVaR regret. Strikingly, our results show that these
strategies are the first to provably achieve asymptotic optimality in CVaR bandits, matching the
corresponding asymptotic lower bounds for this setting. We furthermore illustrate empirically
the benefits of Thompson Sampling approaches, both in an experiment in agriculture using
the DSSAT simulator and on various synthetic examples. The results presented in this Chapter
were published in (Baudry et al., 2021a), and in Section 5.5 we present theoretical results that
are not in the paper but are of interest for the practitioner.
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Non-Parametric Thompson Sampling for CVaR bandits

5.1 Introduction

In Section 1.2 of Chapter 1 we presented the literature on bandit algorithms with alternative per-
formance metric, with a focus on risk-aware bandits, and more specifically on bandit algorithms
evaluating the arms’ distributions through their Conditional Value at Risk.

The Conditional Value at Risk (CVaR) at level α ∈ [0, 1] (see (Mandelbrot, 1997; Artzner et al.,
1999)) is easily interpretable as the expected reward in the worst α-fraction of the outcomes,
and hence captures different preferences, from being neutral to the shape of the distribution
(α = 1, mean criterion) to trying to maximize the reward in the worst-case scenarios (α close
to 0, typically in finance or insurance). Several definitions of the CVaR exist in the literature,
depending on whether the samples are considered as losses or as rewards. (Brown, 2007; Thomas
and Learned-Miller, 2019; Agrawal et al., 2021b) consider the loss version of CVaR. We here
follow Galichet et al. (2013) and Tamkin et al. (2020) who use the reward version, defined for
arm k with distribution νk as

CVaRα(νk) = sup
x∈R

{
x− 1

α
EX∼νk

[
(x−X)+

]}
. (5.1)

This implies that the best arm is the one with the largest CVaR. To simplify the notation we
write cαk = CVaRα(νk) in the sequel. Following e.g. (Tamkin et al., 2020), for unknown arm
distributions ν = (ν1, . . . , νK) we measure the CVaR regret at time T for some risk-level α of a
sequential sampling strategy A = (At)t∈N as

Rα
ν (T ) = Eν

[
T∑
t=1

(
max
k

cαk − cαAt

)]
=

K∑
k=1

∆α
kEν [Nk(T )] , (5.2)

where ∆α
k = maxk′ cαk′ − cαk is the gap in CVaR between arm k and the best arm, and Nk(t) =∑t

s=1 1(As = k) is the number of selections of arm k up to round t. This corresponds to the
proxy regret of Definition 1.8 using the CVaRα as performance metric. However, for the problem
we consider (CVaR bandits with bounded distributions) it will be easier to analyze than the
regret of definition 1.6, furthermore (Cassel et al., 2018) proved that upper bounds on the proxy
regret translates into an upper bound on the true regret. For this reason, we will actually call
CVaR regret the proxy regret defined in Equation (5.2) for the rest of this chapter.

Some basic CVaR properties Before continuing this chapter we explain some well-known
properties of the CVaR in order to improve the intuitions of the un-familiar reader. First, the
definition of the CVaR as the solution of an optimization problem was first introduced by
Rockafellar et al. (2000), to formalize previous heuristic definitions of the CVaR as an average
over a certain part of the distribution. The definition (5.1) is indeed appealing as it applies
to any distribution for which E[(x−X)+] is defined, including both discrete and continuous
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distributions. To understand the CVaR it is particularly useful to look at its expression in these
two particular cases. First, for any continuous distribution ν of CDF Fν it can be shown (see,
e.g. Acerbi and Tasche (2002)) that

CVaRα(ν) = EX∼ν
[
X|X ≤ F−1

ν (α)
]
.

This expression provides a good intuition on what the CVaR represents, as the expectation
of the distribution including only the worst scenarios, representing the fraction α of the total
mass. A similar definition exists for real-valued distributions ν with discrete support X =
(x1, x2, . . . ) (either finite or infinite). Assuming that the sequence (xi) is increasing and letting
pi = PX∼ν(X = xi), one has

CVaRα(ν) = sup
xn∈X

{
xn − 1

α

n−1∑
i=1

pi(xn − xi)
}
. (5.3)

Indeed, the function to maximize in (5.1) is piece-wise linear, so the maximum is necessarily
achieved in a point of discontinuity. In particular, we can easily prove that if nα is the first
index satisfying

∑nα
i=1 pi ≥ α, then the supremum is achieved in nα and

CVaRα(ν) = xnα − 1
α

nα−1∑
i=1

pi(xnα − xi)

= 1
α

(
nα−1∑
i=1

pixi +
(
α−

nα−1∑
i=1

pi

)
xnα

)
.

Hence in that case the CVaR can also be seen as an average when we consider the lower part of
the distribution before reaching a total mass α.

From the general definition (5.1), one can also observe that for α = 1, CVaRα(ν) = EX∼ν(X).
Moreover, the mapping α 7→ CVaRα(ν) is continuous on (0, 1]. Thus, considering CVaR bandits
allows to smoothly interpolate between standard bandits (that correspond to α = 1) and
risk-averse problems. Finally, the CVaR is also conveniently Lipschitz w.r.t some well-chosen
distances between distributions when they are bounded. This property is useful to prove the
results presented in this chapter.

Contributions Our objective is to find algorithms minimizing the CVaR regret (Eq. 5.2)
considering either distributions with discrete, finite support, or with continuous and bounded
support, as we believe this is a relevant problem, motivated by the case-study in agriculture
introduced at the beginning of this thesis. More precisely, we target first-order asymptotic
optimality for these (sometimes called “non-parametric") families and first derive in Theorem 5.3
a lower-bound on the CVaR regret, adapting that of (Lai and Robbins, 1985; Burnetas and
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Katehakis, 1996) to the CVaR criterion. This result highlights the right complexity term that
should appear when deriving regret upper bounds.

On the algorithms side, two powerful variants of Thompson Sampling were introduced
recently by Riou and Honda (2020) for the mean criterion, that enable to overcome the “para-
metric" limitation, in the sense that these approaches reach the minimal achievable regret given
by the lower bound of Burnetas and Katehakis (1996) respectively for discrete and bounded
distributions: Multinomial Thompson Sampling (MTS) and Non-Parametric Thompson Sampling
(NPTS). This timely contribution opens the room for a generalization to CVaR bandits, that
we introduce in Section 5.2 with B-CVTS for bounded supports, and M-CVTS for multinomial
arms. We then show that the two algorithms are asymptotically optimal (Theorem 5.4), and sketch
the proof of the result for B-CVTS. Up to our knowledge, these are the first results showing
asymptotic optimality of a CVaR regret minimization strategy. As expected, adapting the regret
analysis from (Riou and Honda, 2020) is non-trivial; we highlight the main challenges of this
adaption in Section 5.4. For instance, one of the key challenge was to handle boundary crossing
probability for the CVaR, and another difficulty comes in the analysis of the non-parametric
B-CVTS due to regularity properties of the Kullback-Leibler projection. In Section 5.6, we pro-
vide empirical results on a simplified version of the case-study in agriculture introduced in the
foreword of this thesis, using the well-established DSSAT crop-yield simulator (Hoogenboom
et al., 2019). These simulations highlight the benefits of using strategies based on Thompson
Sampling in this CVaR bandit setting against state-of-the-art baselines: We compare to U-UCB
and CVaR-UCB as they showcase two fundamentally different approaches to build a UCB
strategy for a non-linear utility function. The first one is closely related to UCB, the second one
exploits properties of the underlying CDF, which may generalize to different risk metrics. As
claimed in (Tamkin et al., 2020), our experiments confirm that CVaR-UCB generally performs
better than U-UCB. However, both TS strategies outperform UCB algorithms that tend to suffer
from non-optimized confidence bounds. We complete this study with additional experiments
on synthetic data that also confirm the benefits of TS.

5.2 Non-Parametric Thompson Sampling for CVaR Bandits

We present two novel algorithms based on Thompson Sampling and targeting the lower bound
of Theorem 5.3 on the CVaR-regret, for any specified value of α ∈ (0, 1]. These algorithms
are inspired by the first algorithms based on Thompson Sampling matching the Burnetas and
Katehakis lower bound for bounded distributions in the expectation setting, recently proposed
by Riou and Honda (2020).
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Notation We introduce the notation Cα(X , p) for the CVaR of a discrete distribution of sup-
port X and probability p ∈ P |X |, where Pn denotes the probability simplex of size n. For a
multinomial arm k we denote its known support by Xk = (x1

k, . . . , x
Mk
k ) for some Mk ∈ N, and

its true probability vector by pk. We also define N i
k(t) as the number of times the algorithm has

observed xik for arm k before the time t. For general bounded distributions we denote by νk the
distribution of arm k and introduce Xk,t the set of its observed rewards before time t, augmented
with a known upper bound Bk for the support of νk. We further introduce Dn as the uniform
distribution on the simplex Pn, corresponding to the Dirichlet distribution Dir((1, ..., 1)) (with
n ones). We provide some properties of the Dirichlet distribution in Appendix 5.7.

M-CVTS For multinomial distributions M-CVTS (Multinomial-CVaR-Thompson-Sampling),
described in Algorithm 5.1, directly follows the Thompson Sampling principle introduced in
Chapter 1. For each arm k, the probability pk is assumed to be drawn from DMk

, the uniform
prior on PMk . The posterior distribution at a time t is Dir(βk,t), with βk,t = (N i

k(t)+1)i∈{1,...,Mk}.
At time t, M-CVTS draws a sample wk,t ∼ Dir(βk,t) for each arm k and computes cαk,t =
Cα(Xk, wk,t). Then, it selects At = argmaxkc

α
k,t. For α = 1, this algorithm coincides with the

Multinomial Thompson Sampling algorithm of (Riou and Honda, 2020).

1 Input: Level α, horizon T , K, supports X1, . . . ,XK

2 Init.: t = 11, ∀k ∈ {1, ...,K}: βk = (1, . . . , 1)︸ ︷︷ ︸
length Mk

3 for t ∈ {2, . . . , T} do
4 for k ∈ {1, . . . ,K} do
5 Draw wk ∼ Dir(βk) ; ▷ Draw a probability from the posterior
6 Compute ck,t = Cα(Xk, wk) ; ▷ Compute the corresponding CVaR
7 end
8 Pull arm At = argmaxk∈{1,...,K}ck,t.
9 Receive reward rt,At .

10 Update βAt(j) = βAt(j) + 1, for j as rt,At = xjk ; ▷ Update the posterior
11 end

Algorithm 5.1: M-CVTS

B-CVTS We further introduce the B-CVTS algorithm (Bounded-CVaR-Thompson-Sampling)
for general bounded distributions. B-CVTS, stated as Algorithm 5.2, bears some similarity with
a Thompson Sampling algorithm, although it does not explicitly use a prior distribution. The
algorithm retains the idea of using a noisy version of νk, obtained by a random re-weighting of
the previous observations. Hence, at a time t the index used by the algorithm for an arm k is
ck,t = Cα(Xk,t, wk,t), where wk,t ∼ DNk(t) is drawn uniformly at random in the simplex P |Xk,t|.
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B-CVTS then selects the arm At = argmaxkck,t. For α = 1, this algorithm coincides with the
Non Parametric Thompson Sampling of (Riou and Honda, 2020) (NPTS). NPTS can be seen
as an algorithm that computes for each arm a re-weighted average of the past observations.
Our extension to CVAR bandits required to interpret this operation as the computation of the
expectation of a random perturbation of the empirical distribution, which can be replaced by the
computation of the CVaR of this perturbed distribution. Note that this idea generalizes beyond
using the CVaR, that can be replaced with any criterion.

1 Input: Level α, horizon T , K, upper bounds B1, . . . , BK
2 Init.: t = 1, ∀k ∈ {1, ...,K}, Yk = {Bk}, Nk = 1 ; ▷ Init. each history with Bk

3 for t ∈ {2, . . . , T} do
4 for k ∈ {1, . . . ,K} do
5 Draw wk ∼ DNk

; ▷ Draw a weight vector uniformly at random
6 Compute ck,t = Cα(Yk, wk) ; ▷ CVaR of the re-weighted emp. distrib.
7 end
8 Pull arm At = argmaxk∈{1,...,K}ck,t, receive reward rt,At .
9 Update YAt = YAt ∪ {rt,At}, NAt = NAt + 1.

10 end
Algorithm 5.2: B-CVTS

Remark 5.1. Interestingly, B-CVTS also applies to multinomial distributions (that are bounded).
The resulting strategy differs from M-CVTS due to the initialization step using the knowledge of
the support in M-CVTS. As we’ll show, both actually have the same theoretical guarantees when
distributions are multinomial.

5.3 Asymptotic optimality of the CVTS algorithms

In this section we prove, after defining this notion, that M-CVTS and B-CVTS are asymptotically
optimal in terms of the CVaR regret defined in Equation (5.2) for the distributions they cover.

5.3.1 Asymptotic Optimality in CVaR bandits

Lai and Robbins (1985) first gave an asymptotic lower bound on the regret for parameteric
distribution, that was later extended by Burnetas and Katehakis (1996) to more general classes
of distributions. We present below an intuitive generalization of this result for CVaR bandits,
first introducing the function that measures the complexity of a CVaR bandit problem.
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Definition 5.2. Let F be a family of distributions, α ∈ (0, 1], and KL(ν, ν ′) be the KL-divergence
between ν ∈ F and ν ′ ∈ F . For any ν ∈ F and c ∈ R, we define

Kα,F
inf (ν, c) := inf

ν′∈F

{
KL(ν, ν ′) : CVaRα(ν ′) ≥ c

}
.

This definition generalizes the KF
inf function considered in Chapter 1 for the expectation

setting. We now state our result.

Proposition 5.3 (Regret Lower Bound in CVaR bandits). Letα ∈ (0, 1]. Let F = F1×· · ·×FK

be a set of bandit models ν = (ν1, . . . , νK) where each νk belongs to the class of distribution Fk.
Let A be a strategy satisfying Rα

ν (A, T ) = o(T β) for any β > 0 and ν ∈ F . Then for any ν ∈ D,
for any sub-optimal arm k, under the strategy A it holds that

lim
T→+∞

Eν [Nk(T )]
log T ≥ 1

Kα,Fk
inf (νk, c⋆)

,

where c⋆ = maxi∈[K] CVaRα(νi).

Using Equation (5.2), this result directly yields an asymptotic lower bound on the regret.
The proof of Proposition 5.3 follows from a classical change-of-distribution argument, as that
of any lower bound proof in the bandit literature. It follows from the proof of Theorem 1 in
(Garivier et al., 2019) originally stated for α = 1, and the details can be found in Appendix D.1
of (Baudry et al., 2021a).

It is well known in the bandit literature that this lower bound can lead to the desired scaling
of the regret in terms of the gaps. Indeed, for α = 1, Pinsker inequality provides that for a
distribution ν ∈ F and µ ∈ R satisfying µ− Eν [X] = ∆ > 0, K1,F

inf (ν, µ) ≥ ∆2

2 . This scaling in
the gap is convenient to analyze algorithm that do not target asymptotic optimality, and we
say that an algorithm achieving E[Nk(T )] = O

(
log(T )/∆2

k

)
achieves order optimality (which is

stronger than simply having a logarithmic regret).

We can now discuss how the lower bound in Proposition 5.3 yields a weaker regret bound
expressed in terms of the CVaR gaps (by Pinsker inequality). Using Lemma A.2 of Tamkin et al.
(2020), we can show that for any distributions νF and νG with respective CDFs F and G that
are supported in [0, 1],

|CVaRα(F ) − CVaRα(G)| ≤ 1
α

||F −G||∞ .
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Non-Parametric Thompson Sampling for CVaR bandits

It follows from Pinsker’s inequality that KL(νF , νG) ≥ α2 (CVaRα(F ) − CVaRα(G))2 /2. There-
fore, in a bandit model in which all νk are supported in [0, 1] (that is, all Dk are equal to P([0, 1]),
the set of probability measures on [0, 1]), it follows that

Kα,D
inf (νk, c∗) ≥ (α∆α

k )2/2.

Combining this inequality together with the lower bound of Theorem 5.3, we obtain that
the regret of an algorithm matching the lower bound is upper bounded by O

(∑
k:cα

k
<c⋆

log(T )
α2∆α

k

)
,

which is precisely the scaling of the CVaR regret bounds obtained for the U-UCB (Cassel et al.,
2018) and CVaR-UCB (Tamkin et al., 2020). Assuming the above inequalities are tight for some
distributions (which may not be the case), one may qualify these algorithms as "order-optimal",
as their CVaR regret makes appear the good scaling in the gaps and in α, just like the UCB1
algorithm (Auer et al., 2002a) for α = 1. In this chapter we go beyond order-optimality, and we
strive to design algorithms that are asymptotically optimal.

5.3.2 Regret Guarantees for M-CVTS and B-CVTS

In the next section we prove that both M-CVTS and B-CVTS match the lower bound of Theo-
rem 5.3 for the families of distributions they respectively tackle, assuming that they are given
the support of each distribution. Hence, under these hypotheses, the two algorithms are asymp-
totically optimal. Despite the recent development in CVaR bandits literature, to our knowledge
no algorithm has been proved to match this lower bound yet.

Theorem 5.4 (Asymptotic Optimality of M-CVTS and B-CVTS). Consider ν = (ν1, . . . , νK)
a bandit, and denote the best CVaR by cα⋆ = maxk∈{1,...,K} CVaRα(νk).

(I) Assume that ∀k, νk is multinomial with known support Xk ⊂ RMk for someMk ∈ N. Then,
for any ε > 0 the regret of M-CVTS satisfies

Rα
ν (T ) ≤

∑
k:∆α

k
>0

∆α
k

1
Kα,Xk

inf (νk, cα⋆ ) − ε
log T + oε(log(T )) .

(II) Assume that ∀k ∈ {1, . . . ,K}, νk belongs the family CBk of continuous distributions
supported in [ak, Bk] for some known Bk > 0 and ak ≤ Bk. Then, for any ε > 0 the regret of
B-CVTS on ν satisfies

Rα
ν (T ) ≤

∑
k:∆α

k
>0

∆α
k

1
Kα,CBk

inf (νk, cα⋆ ) − ε
log T + oε(log(T )) .
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The two parts of this theorem are proved in (Baudry et al., 2021a). In this manuscript
we choose to only focus on the B-CVTS algorithm as the proofs of the two statements share
many similarities. In the following we highlight the key steps of the analysis. First, using
Equation (5.2) it is sufficient to upper bound E[Nk(T )] for each sub-optimal arm k. As in
previous chapters we assume that arm 1 is optimal to ease the notation. Then our analysis
follows the general outline of that of Riou and Honda (2020), but some steps require a careful
adaptation to CVaR bandits. First, the proof leverages some properties of the function Kα

inf for
the sets of distributions we consider. Secondly, it requires novel boundary crossing bounds for
Dirichlet distributions that we detail in Section 5.4.

Proof Sketch The first step of the analysis consists in upper bounding the number of selections
of a sub-optimal arm by a post-convergence term (Post-CV) and a pre-convergence term (Pre-CV).
The first term controls the probability that a sub-optimal arm over-performs when its empirical
distribution is “close" to the true distribution of the arm, while the second term considers
the possibility that the CVaR of arm 1 could be under-estimated. To measure how close two
distributions are we use the Levy distance, that is defined as follow for two distributions of
respective cdf F and G,

DL(F,G) = inf {ε > 0 : ∀x ∈ [0, B], F (x− ε) − ε ≤ G(x) ≤ F (x+ ε) + ε} .

The following result summarizes this decomposition in two terms.

Proposition 5.5 (Decomposition in Post-CV and Pre-CV terms). Under B-CVTS, the number
of pulls of each sub-optimal arms satisfy

E[Nk(T )] ≤ n0(T ) +
T∑
t=1

Eνk,π

[
1 (Gk(t)) × Pw∼DNk(t) (Cα(Yk(t), w) ≥ cα1 − ε1)

]
︸ ︷︷ ︸

post-convergence term (Post-CV)

+
T∑
n=1

EYn∼νn
1

[
Pw∼Dn (Cα(Y1,n, w) ≤ cα1 − ε1)

1 − Pw∼Dn (Cα(Y1,n, w) ≤ cα1 − ε1)

]
︸ ︷︷ ︸

pre-convergence term (Pre-CV)

+O(1) ,

where Gk(t) = {Nk(t− 1) ≥ n0(T ), DL(Fk(t), Fk) ≤ ε2} is the event corresponding to arm
k being sampled "enough" and "close" to its true distribution, Y1,n is the set of n first data collected
from arm 1 and Yk(t) is the set of data collected from arm k up to time t. The empirical distribution
Fk(t) includes the upper bound B added to the set of observations.
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The proof of proposition 5.5 uses standard arguments in bandits, and is a direct adaptation
of the proof of NPTS from (Riou and Honda, 2020). It decomposes the number of pulls of
each sub-optimal arm between a constant n0(T ), a post-convergence, and a pre-convergence terms.
Interestingly, the former depends only on arm k, and corresponds to this arm being sampled
while having a sufficient number of samples and an empirical cdf that accurately reflect its
true cdf. On the other hand, the later is the cost of under-estimating the best arm in the regret.
Finally, the additional constant term corresponds to

∑T
t=1 P(Gk(t)c, At = k). Riou and Honda

(2020) provide a method to derive a constant upper bound, that can be refined by using DKW
inequality instead (Massart, 1990). We omit the development of this part, that can be found in
the paper.

Further upper bounding (Post-CV) and (Pre-CV) requires to provide upper and lower bound
on boundary crossing probabilities for Dirichlet random variables, that we define as follows.

Definition 5.6 (Boundary Crossing Probabilities (BCP)). A BCP is a probability of the form

Pw∼Dir(β) (Cα(Y, w) ≥ c) ,

for some known support Y = (y1, . . . , yn), parameter β ∈ Rn+ of the Dirichlet distribution, and
some real value c that are defined in context.

Finally, proving the asymptotic optimality of B-CVTS consists in showing that both the
pre-convergence and post-convergence terms can be further upper bounded by constants, while
choosing

n0(T ) = 1
Kα,CBk

inf (νk, cα⋆ ) − ε
log(T ) ,

for any constant ε > 0. In the next section we present the technical tools that allow to draw
these conclusions.

5.4 Further upper bounds on Pre-CV and Post-CV

In the analysis of NPTS, Riou and Honda (2020) provide several results to upper and lower
bound the BCP for α = 1. However, replacing the linear expectation by the CVaR, that is
non-linear, causes several technical challenges that makes the adaptation not direct. In this
section we provide the technical results that allow to complete the proof of Theorem 5.4 from
Proposition 5.5: the dual form of the Kα,D

inf function, and upper and lower bounds on the BCP.
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5.4 Further upper bounds on Pre-CV and Post-CV

5.4.1 Technical tools

Dual of Kα,D
inf Our first result is the derivation of the dual formulation of the Kα,D

inf functional,
providing an extension of the result of Honda and Takemura (2010) when α = 1.

Lemma 5.7. If a discrete distribution F supported on Y satisfies EF
[

(y−c)α
(y−X)+

]
< 1, then for any

c > CVaRα(F ) it holds that

Kα
inf(F, c) = inf

y∈Y
max

λ∈
[
0, 1

α(y−c)

) g(y, λ,X) ,

with g(y, λ,X) = EF
[
log(1 − λ((y − c)α) − (y −X)+)

]
.

If EF
[

(y−c)α
(y−X)+

]
≥ 1, then for any c > CVaRα(F )

Kα
inf(F, c) = inf

y∈Y
EF

(
(y −X)+

(y − c)α

)
.

Proof. We let PM denote he simplex of dimension M . We rewrite the optimization problem,
defined for any p ∈ PM , α ∈ (0, 1] and c ∈ [0, 1] as

Kα,D
inf (p, c) = inf

q∈PM
{KL(p, q) : Cα(Y, q) ≥ c} .

First of all, we recall that Cα(Y, q) = supx∈D

{
x− 1

αEX∼q
(
(x−X)+)}. We then introduce

the set

PM
y,α,c =

{
q ∈ PM : y − 1

α
EX∼q((y −X)+) ≥ c

}
=
{
q ∈ PM : EX∼q((y −X)+) ≤ (y − c)α

}
.

Thanks to this definition we can rewrite the problem as

Kα,D
inf (p, c) = min

y∈D

{
inf

q∈PM

{
KL(p, q) : y − 1

α
EX∼q((y −X)+) ≥ c

}}
,

where we used that {q : Cα(Y, q) ≥ c} = ∪y∈D
{
q ∈ PM : y − 1

αEX∼q
(
(X − y)+) ≥ c

}
.

151



Non-Parametric Thompson Sampling for CVaR bandits

Now, we can first solve the problem infq∈PM
y,α,c

KL(p, q) for a fixed value of y, satisfying
y > c (else the feasible set is empty). We write the Lagrangian of this problem:

H(q, λ1, λ2) =
M∑
i=1

pi log
(
pi
qi

)
+ λ1

(
M∑
i=1

qi − 1
)

+ λ2

(
M∑
i=1

qi(y − yi)+ − α(y − c)
)
,

and want to solve maxλ1>0,λ2>0 minqH(q, λ1, λ2). To this end, we write

∂H

∂qi
= −pi

qi
+ λ1 + (y − yi)+ .

Setting the derivative to 0 yields

qi = pi
λ1 + λ2(y − yi)+ .

We can check that the inequality constraint is achieved. Moreover, exploiting the two
constraints leads to λ1 + λ2α(y − c) = 1. This finally gives

qi = pi
1 − λ2((y − c)α− (y − yi)+) .

Note that this solution is only valid if λ2 ≤ 1
α(y−c) . We have two possibilities: 1) the

maximum is achieved in [0, 1
α(y−c)), in this case we have

Kα,D
inf (p, c) = inf

y∈D
max

λ∈
[
0, 1

α(y−c)

) M∑
i=1

pi log
(
1 − λ2((y − c)α− (y − yi)+)

)
= inf
y∈D

max
λ∈
[
0, 1

α(y−c)

)EX∼p[log
(
1 − λ2((y − c)α− (y −X)+)

)
] .

The other possibility is that the function is still increasing in λ2 = 1
α(y−c) . For this case, we

check the sign of ∂EX∼F [log(1+λ2((y−c)α−(y−X)+))]
∂λ at point λ = 1

α(y−c) , that is the same as the one
of (y−c)α

(
1 − EF

(
(y−c)α

(y−X)+

))
. We see that the function can only be increasing ifEF

(
(y−c)α

(y−X)+

)
<

1, and the solution is then qi = pi(y−c)α
y−yi

, which provides Kα,D
inf (p, c) = infy EF

(
(y−X)+

(y−c)α

)
. This

concludes the proof.

This result matches the one of Honda and Takemura (2010) for α = 1 and y = 1, and is
similar to the one obtained by Agrawal et al. (2021b)[Theorem 6] for a more complex set of
distributions (which is hence less explicit). Furthermore, Agrawal et al. (2021b)[Lemma 4]
prove the continuity of Kα,Y

inf under this condition, which is required in several part of our
proofs.
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Upper Bound on the BCP Building on the dual form of the Kα,D
inf for discrete distributions we

just introduced, we can derive an upper bound of the BCP using similar techniques as Riou and
Honda (2020). We consider a known support Y = (y1, . . . , yn) and the Dirichlet distribution
Dn defined in Section 5.2. We further denote by FY the uniform distribution on Y (or empirical
distribution of Y), and Cα(Y) its CVaR.

Lemma 5.8 (Upper Bound on the BCP). Let Y = (y1, . . . , yn) for some known B > 0 and
n ∈ N, for any c > Cα(Y) it holds that

Pw∼Dn(Cα(Y, w) ≥ c) ≤ n exp−nKα,Ȳ
inf (FY ,c) ,

where Ȳ = max{y1, . . . , yn}. Furthermore, the multiplicative factor n can be removed if α = 1.

Proof. We first use the formulation of the CVaR of Equation (5.3) for discrete distributions, and
a union bound to obtain

Pw (Cα(Y, w) ≥ c) = Pw

(
sup
y∈Y

{
y − 1

α

n∑
i=1

wi(y − yi)+
}

≥ c

)

≤
∑
y∈Y

Pw

(
y − 1

α

n∑
i=1

wi(y − yi)+ ≥ c

)

≤ nmax
y∈Y

Pw

(
y − 1

α

n∑
i=1

wi(y − yi)+ ≥ c

)

We see that the multiplicative n comes from the union bound on the possible values of y
for the quantile of order α. When α = 1 it is always equal to the maximum value in Y , hence
the union bound is not necessary.

We then handle P
(
α(y − c) −

∑n
i=1wi(y − yi)+ ≥ 0

)
for a fixed value of y. We follow the

path of Riou and Honda (2020), using that a Dirichlet random variable w = (w1, . . . , wn) can
be written in terms of n independent random variables R1, . . . , Rn following an exponential
distribution, as wi = Ri∑n

j=1 Rj
. Using this property and multiplying by

∑n
j=1Rj we obtain

Py := P
(
α(y − c) −

n∑
i=1

wi(y − yi)+ ≥ 0
)

≤P
(

n∑
i=1

Ri
(
α(y − c) − (y − yi)+

)
≥ 0

)

≤E
[
exp

(
t
n∑
i=1

Ri
(
α(y − c) − (y − yi)+

))]
,
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where we used Markov’s inequality for some t ∈
[
0, 1

(y−c)α

)
. We then conclude by deriving the

MGF of the exponential variables,

Py ≤
n∏
i=1

E
[
exp

(
Rit

(
α(y − c) − (y − yi)+

))]
≤ exp

(
−

n∑
i=1

log
(
1 − t

(
α(y − c) − (y − yi)+

)))
≤ sup
y∈[c,B]

{
exp

(
−nEFY

[
log

(
1 − t

(
α(y − c) − (y − Y )+

))])}
.

We then put the sup on y inside the exponent, and recognize the dual form of Kα,Y
inf , which

concludes the proof.

Lower Bounds on the BCP We now establish two lower bounds on the BCP. The first one
concerns the case where we only want the CVaR of the noisy distribution to exceed the CVaR
of the empirical distribution generated by the dataset Y .

Lemma 5.9. Assume that Y = (y1, . . . , yn) and y1 < · · · < yn, then y⌈nα⌉ is the empirical α
quantile of the set and y1 its minimum, and it holds that

Pw∼Dn (Cα(Y, w) ≥ Cα(Y)) ≥ 1
25n3 (y⌈nα⌉ − y1) .

Proof. We assume that Y is known and ordered, i.e y1 ≤ y2 ≤ · · · ≤ yn. We then write

A = Pw∼Dn (Cα(Y, w) ≥ Cα(Y)) .

Thanks to the definition of the CVaR provided by Equation (5.1) it holds that

A = Pw

(
sup
y∈Y

{y − 1
α

n∑
i=1

wi(y − yi)+} ≥ sup
z∈Y

{z − 1
αn

n∑
i=1

(z − yi)+}
)
.

First, if we know y1, . . . , yn then the second term is deterministic and the sup is actually
achieved in y⌈nα⌉. Secondly, the inequality is true if at least one term in the left element satisfies
it, so we can write
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A =P
(

sup
z∈Y

{
z − 1

α

n∑
i=1

wi(z − yi)+
}

≥ y⌈nα⌉ − 1
αn

n∑
i=1

(y⌈nα⌉ − yi)+
)

≥P
(
y⌈nα⌉ − 1

α

n∑
i=1

wi(y⌈nα⌉ − yi)+ ≥ y⌈nα⌉ − 1
αn

n∑
i=1

(y⌈nα⌉ − yi)+
)

=P
(

n∑
i=1

wi(y⌈nα⌉ − yi)+ ≤ 1
n

n∑
i=1

(y⌈nα⌉ − yi)+
)

=P
(

n∑
i=1

wi
B − (y⌈nα⌉ − yi)+

B
≥ 1
n

n∑
i=1

B − (y⌈nα⌉ − yi)+

B

)
.

As the variable B−(y⌈nα⌉−yi)+

B belongs to [0, 1] we can apply the lemma 17 of Riou & Honda
and get

A ≥ 1
25n2B

(
B − 1

n

n∑
i=1

(B − (y⌈nα⌉ − yi)+)
)

= 1
25n3B

n∑
i=1

(y⌈nα⌉ − yi)+ .

We conclude by omitting all the terms except (y⌈nα⌉ − y1) in the sum.

We finally study the case when the size of the support is |Y| = M , for some known M ∈ N
and when the considered distributions are the frequencies of each observation in Y out of n ∈ N
many observations, which we represent by the set QM

n =
{

(β, p) ∈ N∗n × PM : p = β
n

}
. Our

last result is a lower bound on the BCP for distributions in QM
n .

Lemma 5.10 (Lower Bound on the BCP for multinomial distributions). For any (M,n) ∈ N2

and (β, p) ∈ QM
n , let p⋆ ∈ PM be any vector satisfying Cα(X , p⋆) ≥ c. It holds that

Pw∼Dir(β) (Cα(X , w) ≥ c) ≥ n!∏M
i=1 βi!

βM
np⋆M

M∏
j=1

(p⋆j )βj

≥ 1
n
PMult(n,p)(β) × e−nKα,X

inf (p,c) ≥ CM
exp

(
−nKα,X

inf (p, c)
)

n
M+1

2
,

where CM =
√

2π
(
M

2.13

)M
2 , and PMult(n,q)(β) denotes the probability that a vector drawn from a

multinomial distribution with n trials and probability q is equal to β.

Proof. We follow the sketch of the proof of Lemma 14 of Riou and Honda (2020) using Equa-
tion (5.3). We start by stating that there exists some p∗ such that Kα,Y

inf

(
β
n , c

)
= KL

(
β
n , p

∗
)
. The

existence of p∗ is ensured by the fact that the function Kα,Y
inf is the solution of the minimization
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of a continuous function on a compact set. We consider the set

S2 = {w ∈ PM+1 : wi ∈ [0, p∗
i ],∀j ≤ M − 1, wM ≥ p∗

M}.

Let us remark that ∀p ∈ S2, Cα(Y, p) ≥ Cα(Y, p∗) ≥ c. Indeed, if we transfer some of the mass
from some items of the support to largest items we can only increase the CVaR. It then holds
that

Pw∼Dir(β) (Cα(Y, w) ≥ c) ≥ Pw∼Dir(β) (w ∈ S2)

= Γ(n)∏M
i=1 Γ(βi)

∫
x∈S2

M∏
i=1

yβi−1
i dx

≥ Γ(n)∏M
i=1 Γ(βi)

(p∗
M )βM −1

M−1∏
j=1

∫ p∗
j

yj=0
y
βj−1
j dyj

= Γ(n)∏M
i=1 Γ(βi)

(p∗
M )βM −1

M−1∏
j=1

(p∗
j )βj

βj

= Γ(n)∏M
i=1 Γ(βi)

βM
p⋆M

M∏
j=1

(p∗
j )βj

βj
,

which proves the first inequality. We then exhibit the KL-divergence between two multinomial
distributions using

Pw∼Dir(β) (w ∈ S2) ≥ Γ(n)∏M
i=1 Γ(βi)

M∏
j=1

(p∗
j )βj

βj

= Γ(n)∏M
i=1 Γ(βi)

M∏
j=1

(
p∗
j

βj

)βj

×
M∏
j=1

β
βj−1
j

= Γ(n)∏M
i=1 Γ(βi + 1)

M∏
j=1

(
p∗
j

βj/n

)βj

×
M∏
j=1

(
βj
n

)βj

= Γ(n)∏M
i=1 Γ(βi + 1)

M∏
j=1

(
βj
n

)βj

exp
(

−nKL
(
β

n
, p⋆
))

.

This corresponds to the second inequality in the lemma, as we can remark that the terms before
the exponential correspond to the desired multinomial distributions, up to a factor 1/n. We
finally provide a lower bound of this quantity using Stirling formula (similarly to the proof
scheme of Riou and Honda (2020)),

√
2πn

(
n

e

)n
≤ n! ≤

√
2πn

(
n

e

)n
(1 + C(n)) ,
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with C(n) = 1
12n + 1

288n2 . We then obtain that

Γ(n)∏M
i=1 Γ(βi + 1)

M∏
j=1

(
βj
n

)βj

= 1
n

n!
nn

M∏
j=1

β
βj

j

βj !

≥
√

2π
n
e−n ×

M∏
j=1

1
1 + C(βj)

eβj√
2πβj

=
√

2π
n

M∏
j=1

1
(1 + C(βj))

√
2πβj

≥
√

2π
n
e

−M
12

M∏
j=1

1
(1 + C(βj))

√
2πβj

≥
√

2π
n
e

−M
12

1
√

2πM
×
(
M

n

)M
2

≥ e− M
12M

M
2

√
2πM−1 n

− M+1
2

≥
√

2π
(
M

2.13

)M
2

× n− M+1
2

= CMn
− M+1

2 ,

where we used that C(n) is maximum when n = 1 and that 1/12 ≥ log(25/288), and on the
other hand that

∏M
j=1 βj is minimized when all βj are equal to n/M (if we allow continuous

values).

The results presented in this section contains most of the difficulty induced by the replace-
ment of the expectation by the CVaR in the proofs. Extending these results to other criterion is
an interesting future work and may help generalize the Non Parametric Thompson Sampling
algorithms to broader settings. In the next section we use these results to complete the proof of
the asymptotic optimality of B-CVTS for bounded distributions.

5.4.2 Application to derive upper bounds on Post-CV and Pre-CV

We now use the results from previous section in order to prove that both Post-CV and Pre-CV
are upper bounded by constants.

Upper bounding (Post-CV)

We start with this term because the result is direct using Lemma 5.8 and the continuity of Kα,Bk
inf .

The continuity ensures that for any ε0 > 0 there exists ε1 > 0 such that if DL(Fk(t), Fk) ≤ ε ⇒
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Kα,Bk
inf (Fk(t), c1 − ε2) ≥ Kα,Bk

inf (Fk, c1) − ε0. For that reason, for any ε, with well chosen (ε1, ε2)
we can write

(Post-CV) ≤
T∑
t=1

E
[
1(Gk(t))Nk(t) exp

(
−Nk(t)Kα,Bk

inf (Fk(t), c1)
)]

≤Tn0(T ) exp
(
−n0(T )

(
Kα,Bk

inf (Fk, c1) − ε0
))

,

if n0(T ) ≥ 1
Kα,Bk

inf (Fk,c1)−ε0
. We now choose n0(T ) = log(T )+log(log T )

Kα,Bk
inf (Fk,c1)−ε0

to obtain that for T ≥ 3,

(Post-CV) ≤ 1
Kα,Bk

inf (Fk, c1) − ε0

(
1 + log(T )

log(log(T ))

)
≤ 2

Kα,Bk
inf (Fk, c1) − ε0

.

Upper bounding (Pre-CV)

We recall that the (Pre-CV) term is expressed as

A :=
T∑
n=1

EYn∼νn
1

[ Pw∼Dn (Cα(Yn, w) ≤ cα1 − ε1)
1 − Pw∼Dn (Cα(Yn, w) ≤ cα1 − ε1)

]
.

Inspired by (Riou and Honda, 2020) we split this expectation into different regions depend-
ing of the value of the CVaR of the empirical distribution (including the term y0 = B added at
the beginning of the history of observations).

We split the upper bound on A into three terms

A ≤ A1 +A2 +A3 ,

whereA1 corresponds to the region {Cα(Yn) ≥ cα1 −ε1 /2},A2 to the region {cα1 −ε1 ≤ Cα(Yn) ≤
cα1 − ε1 /2} and A3 to {Cα(Yn) ≤ cα1 − ε1}.

We now upper bound each of these three terms, for any value of ε1.

Upper bounding A1 We do not detail this part because this region corresponds to the most
favorable case, as the CVaR of arm 1 is reasonably estimated. Hence, the BCP admits an
exponential upper bound that can be derived with similar techniques as for Lemma 5.8, and so
A1 is upper bounded by a constant.
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Upper bound on A2 In order to control the term A2 we can upper bound the numerator by 1
and use Lemma 5.9 to obtain

A2 ≤
T∑
n=1

Ey1,...,yn

[
1 (cα1 − ε1 ≤ Cα(Yn) ≤ cα1 − ε1 /2) 25n3

1(Y1 < cα1 − ε1)
Y⌈nα⌉ − Y1

]
.

Here, we have introduced Y1, . . . , Yn to denote the ordered list of (y1, . . . , yn) (i.e Y1 ≤
Y2 ≤ · · · ≤ Yn). We also added the indicator 1(Y1 ≤ cα1 − ε1) because if Y1 ≥ cα1 − ε1 then
Cα(Yn, w) ≥ cα1 − ε1 for any w ∈ Pn. Furthermore, under the events we consider it also holds
that

Y⌈nα⌉ ≥ Cα(Yn) ≥ cα1 − ε1 .

Note that it is impossible to conclude at this step in general because the variable Y⌈nα⌉ − Y1

may be arbitrarily small in case all the n observations are very concentrated. However, if n is
large and the distribution is continuous this event can only happen with a very low probability.
This is a place in the proof where continuity is crucial. To do so, we upper bound the rest of
the terms with a peeling argument on the values of Y1. This is done using the closed-form
formulas for the distribution of the minimum of n random variable that are independent and
identically distributed. Indeed, if f1 denotes the density of arms 1, and we write the cdf and
pdf of the minimum of n independent observations of ν1 respectively Ln and ln, then it holds
that ∀x ∈ [0, B]

Ln(x) = 1 − (1 − F1(x))n .

Now, since ν1 is continuous it follows that in each point the density is ln(x) = nf1(x)(1 −
F1(x))n−1. The next step consists in defining a strictly decreasing sequence (ak)k≥0, and to look
at the intervals Sk = [cα1 − ak − ε1, c

α
1 − ak+1 − ε1]. On each of these intervals we obtain by

construction that Y⌈nα⌉ ≥ cα1 − ε1 ≥ Y1 + ak+1, and thus

EYn

[
25n3

Y⌈nα⌉ − Y1
1 (Y1 ∈ Sk)

]
≤ 25n3

ak+1
× P (Y1 ∈ Sk) .

Using the properties of the density ln it holds that

P (y1 ∈ Sk) =
∫ cα

1 −ε1 −ak+1

cα
1 −ε1 −ak

nf1(x)(1 − F1(x))n−1dx

≤ sup
x∈[0,B]

f1(x)
∫ cα

1 −ε1 −ak+1

cα
1 −ε1 −ak

n(1 − F1(x))n−1dx

≤ sup
x∈[0,B]

f1(x)(ak − ak+1)n(1 − F1(cα1 − ε1 −ak))n−1 .
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With these results we can now upper bound A2 by writing

A2 ≤
T∑
n=1

Ey1,...,yn

[
1 (cα1 − ε1 ≤ Cα(Yn) ≤ cα1 − ε1 /2) 25n3

Y⌈nα⌉ − Y1
1(y1 ≤ cα1 − ε1 −a0)

]
︸ ︷︷ ︸

A21

+
T∑
n=1

Ey1,...,yn

[
1 (cα1 − ε1 ≤ Cα(Yn) ≤ cα1 − ε1 /2) 25n3

Y⌈nα⌉ − Y1
1(y1 ≥ cα1 − ε1 −a0)

]
︸ ︷︷ ︸

A22

.

The left-hand side term can be handled thanks to Brown’s inequality (Brown, 2007), which is
the equivalent of Hoeffding’s inequality for CVaR. Using that Y⌈nα⌉ −Y1 ≥ a0 on the considered
interval, we obtain

A21 ≤
T∑
n=1

25n3

a0
e

−2n
(

α(a0+ε1)
Bk

)2

= O(1) .

Regarding the second term A22 we have

A22 ≤
T∑
n=1

sup
x∈[0,B]

nf1(x) ×
+∞∑
k=0

ak − ak+1
ak+1

(1 − F1(cα1 − ε1 −ak))n−1 .

We first use that the cdf is increasing, which enables to upper bound (1−F1(cα1 −ε1 −ak))n−1

by the quantity (1 − F1(cα1 − ε1 −a0))n−1. It remains to choose the sequence (ak) in order to
make the sum

∑+∞
k=0

ak−ak+1
ak+1

converge. We define recursively the sequence as ak+1 = 2k

2k+1ak,
starting from a0 = cα

1 −ε1
2 . This way,

∑+∞
k=0

ak−ak+1
ak+1

=
∑+∞
k=0

1
2k = 2. This shows that

A22 ≤ 50
T∑
n=1

n4 sup
x∈[0,B]

f1(x) exp (−n log(1 − F1(cα1 − ε1))) = O(1) .

Hence, both terms A21 and A22 are upper bounded by constants, so A2 = O(1).

Upper bound on A3 To upper bound A3 we use the same discretization arguments as in
(Riou and Honda, 2020). More precisely, we introduce a number of bins M that is specified
later in the proof, and for any i ∈ {1, . . . , n+ 1} we define ỹi = ⌊Myi⌋

M and Ỹn the corresponding
set of truncated observations. Thanks to these definitions we can upper bound Ā3 as
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A3 ≤
T∑
n=1

EYn

[
1

(
Cα
(
Ỹn, w

)
< cα1 − ε1

) 1
Pw∼Dn(Cα(Ỹn, w) ≥ cα1 − ε1 −1/M)

]

≤
T∑
n=1

EYn

[
1

(
Cα
(
Ỹn, w

)
< cα1 − ε1 − 1

M

) 1
Pw∼Dn(Cα(Ỹn, w) ≥ cα1 − ε1 −1/M)

]
.

Now, we use the first result of Lemma 5.10 that provides with the additional observation
on the last item

Pw∼Dn(Cα(Ỹn, w) ≥ cα1 − ε1 −1/M) ≥ 1
n

n!∏M
i=1 βi

M∏
j=1

(p⋆j )βj ,

where p⋆ ∈ PM is a well chosen weight vector. We choose ε1,M small enough so that the order
of the CVaRs of the arms is preserved with the discretization. Writing ε1 +1/M = ε′

1. Using
with a slight abuse of notations M the set of allocations considered in the expectation, we can
further write

A3 ≤
T∑
n=1

∑
β∈M

n

n!∏M

i=1 βi!

∏M
j=1(p̃i)βi

n!∏M

i=1 βi!

∏M
j=1(p⋆i )βi

=
T∑
n=1

n
∑
β∈M

M∏
j=1

(
p̃i
p⋆i

)βi

=
T∑
n=1

n
∑
β∈M

exp
(

−n
(

KL
(
β

n
, p̃

)
− KL

(
β

n
, p⋆
)))

Interestingly, the discretization allows to consider for each possible allocation of n data the
ratio between the probability of pulling arm 1 in this situation, and the probability of drawing
this allocation. This quantity is easy to interpret, and can be upper bounded by two terms
involving the KL between the empirical frequency and some probability vector.

We can now choose p⋆ in order to have KL
(
β
n , p

⋆
)

= Kα,Y
inf

(
β
n , c

α
1 − ε1 − 1

M

)
. Furthermore,

it holds by definition that KL
(
β
n , p̃

)
≥ Kα,Ỹ

inf

(
β
n , c

α
1 − 1

M

)
. We can hence write

KL
(
β

n
, p̃

)
− KL

(
β

n
, p⋆
)

≥ Kα,Ỹ
inf

(
β

n
, cα1 − 1

M

)
− Kα,Y

inf

(
β

n
, cα1 − ε1 − 1

M

)
,

which is strictly positive using basic properties of Kinf on the set of bounded distributions. This
is however not sufficient to conclude, but we can further introduce

δ = inf
p∈PM :Cα(Y,p)≤cα

1 −ε1− 1
M

[
Kα,Ỹ

inf

(
p, cα1 − 1

M

)
− Kα,Ỹ

inf

(
p, cα1 − ε1 − 1

M

)]
,
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where Ỹ is Ỹn but with each item only repeated once (the set built from Ỹn). The compacity of
the set of distributions supported in [0, B] ensures that δ > 0, and we finally obtain

A3 ≤
T∑
n=1

nM+1 exp(−nδ) = O(1) .

Hence, A3 is also upper bounded by a constant. This final result concludes the proof of
optimality of B-CVTS for continuous bounded distribution, as we finally have

(Pre-CV) ≤ A1 +A2 +A3 = O(1) .

5.5 Additional theoretical results of practical interest

In this section we provide two results that are not presented in the initial paper on CVTS
(Baudry et al., 2021a) but can be of interest for the practitioner. The first one is that the
theoretical guarantees are preserved if CVTS runs in a batch setting where the number of
participants in each batch is upper bounded by some constant, while the second shows that
if the learner cannot provide an upper bound on the support setting B = +∞ still leads to
logarithmic regret guarantees when α < 1.

5.5.1 Optimality in the batch setting

With the application of agriculture in mind, we consider running B-CVTS on T time steps that
we call seasons and assume that at the end season t a number of arms nt ∈ [M ] will be drawn,
where M ∈ N is an unknown upper bound on the possible number of draws for each season.

More precisely, for each season t ∈ [T ] and for each integer f ∈ [nt] the B-CVTS algorithm
chooses an action At,f to play, where the choice of At,f can depend only on the observations
made up to (and including) season t− 1. We call this algorithm Batched–B-CVTS.

With the following result we quantify the impact of the batched feedback on the CVaR
regret of Batched–B-CVTS, and show that if the upper bound M is independent of the time
horizon the algorithm remains asymptotically optimal, as in the purely sequential setting.
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Theorem 5.11 (CVaR Regret of Batched–B-CVTS). Consider a bandit problem (F1, . . . , FK) ∈
FK , with respective CVaRα denoted by (c1, . . . , cK) with c1 = argmaxk=1,...,Kck. Assume that the
algorithm runs for T seasons, and that at each season the size of the batch is nT ≤ M ∈ N. Then, for
any ε > 0 small enough there exists some ε1 > 0, ε2 > 0 such that the regret of Batched–B-CVTS
satisfies

Rα
T ≤

K∑
k=2

∆α
k

(
mk
T + M + 2M e−2mk

T ε
2
1

1 − e−2 ε1
1

+ Cα1,ε2

)
,

wheremk
T = log(T )+log(M)

Kα
inf(Fk,c1)−ε andC1,ε2 is a constant depending only on the distribution F1, the family

F and ε2.

We see that if M is indeed a constant (i.e does not depend on the time horizon) when T
is large enough it has not impact on the scaling of the regret. Before proving this result we
explain the intuition behind the new terms depending on M . First, the dominant term in
mk
T = O(log(TM)) is expected since it corresponds to what we would obtained by playing

at most TM times in the purely sequential setting. The main impact of the batch setting lies
instead in the additive M , and corresponds to the sub-optimal arm being sampled for the
whole season just before being sufficiently sampled to be identified as sub-optimal. Finally, the
multiplicative M term corresponds to the empirical distribution of arm k begin mis-estimated
and "costing" a full batch.

Proof. We decompose the expected number of pulls of each sub-optimal arm inside the cohort
in a similar fashion as in the proof of Theorem 5.4. First, the expected number of pulls of arm k

during the total duration of the experiment is

E[Nk(T )] = E

 T∑
t=1

nt∑
f=1

1(At,f = k)

 ,

whereAt,f denotes the recommendation to farmer f at season t. For anymT ∈ R we decompose
the expectation according to whether Nk(t− 1) ≤ mT or not. We handle the corresponding
first term by considering the random variable τ = {supt≤T : Nk(t− 1) ≤ mT }. By construction,
τ is the last season for which the total number of observations for arm k is smaller than mT .
We obtain that

ET,1 :=
T∑
t=1

nt∑
f=1

1(At,f = k,Nk(t− 1) ≤ mT )

≤
τ∑
t=1

nt∑
f=1

1(At,f = k,Nk(t− 1) ≤ mT ) +
T∑

t=τ+1

nt∑
f=1

1(At,f = k,Nk(t− 1) ≤ mT )

163



Non-Parametric Thompson Sampling for CVaR bandits

≤ Nk(τ) +
nτ+1∑
f=1

1(Aτ+1,f = k)

≤ mT +M ,

which is fully deterministic and gives the first two terms of the theorem. We now consider the
case Nk(t− 1) ≥ mT , that we further analyze according to the same events as for Theorem 5.4 ,
i.e using that

1(Fk(t− 1) /∈ Bε1(Fk)) + 1(Fk(t− 1) ∈ Bε1(Fk), c̃k,t,f ≥ c1 − ε2) + 1(c̃1,t,f ≤ c1 − ε2) ≥ 1 ,

where Bε1(Fk) is an ε1-Levy ball around Fk, and ε1, ε2 are two small positive constants. We
denoted by (c̃k,t,f ) the noisy CVaRS computed by the algorithm for any arm k, season t and
farmer f . Using the notation ET,2 = E

[∑T
t=1

∑nt
f=1 1(At,f = k,Nk(t− 1) ≥ mT )

]
this leads to

ET,2 ≤ E

 T∑
t=1

nt∑
f=1

1(At,f = k,Nk(t− 1) ≥ mT , Fk(t− 1) /∈ Bε1(Fk))


︸ ︷︷ ︸

e1

+ E

 T∑
t=1

nt∑
f=1

1(At,f = k,Nk(t− 1) ≥ mT , Fk(t− 1) ∈ Bε1(Fk), c̃k,t,f ≥ c1 − ε2)


︸ ︷︷ ︸

e2

+ E

 T∑
t=1

nt∑
f=1

1(At,f = k,Nk(t− 1) ≥ mT , c̃1,t,f ≤ c1 − ε2)


︸ ︷︷ ︸

e3

.

Upper bounding e1 Denoting by Fk,n the empirical distribution of arm k after a total number
of pulls n (instead of after season t), we obtain

e1 := E

 T∑
t=1

nt∑
f=1

1(At,f = k,Nk(t− 1) ≥ mT , Fk(t− 1) /∈ Bε1(Fk))


≤ E

 T∑
t=1

1(Nk(t− 1) ≥ mT , Fk(t− 1) /∈ Bε1(Fk))
nt∑
f=1

1(At,f = k)


≤ E

 T∑
t=1

T∑
n=mT

1(Nk(t− 1) = n, Fk,n /∈ Bε1(Fk))
nt∑
f=1

1(At,f = k)

 ,
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with a union bound on the number of pulls. UnderNk(t− 1) = n it holds that Fk(t− 1) = Fk,n,
and so we can further write that

e1 ≤ E

 T∑
t=1

T∑
n=mT

1(Nk(t− 1) = n, Fk,n /∈ Bε1(Fk))
nt∑
f=1

1(At,f = k)


≤ E

 T∑
n=mT

1(Fk,n /∈ Bε1(Fk))
T∑
t=1

nt∑
f=1

1(At,f = k,Nk(t− 1) = n)


≤ ME

[
T∑

n=mT

1(Fk,n /∈ Bε1(Fk))
]

= M
+∞∑
n=mT

P(Fk,n /∈ Bε1(Fk))

Finally, using the Dvoretzky–Kiefer–Wolfowitz inequality (Massart, 1990) we obtain

e1 ≤ M
+∞∑
n=mT

2e−2n ε2
1

≤ 2Me−2mT ε
2
1

1 − e−2 ε2
1

.

This upper bound holds for any choice of mT , ε1, and we remark that if mT → +∞ then
e1 → 0.

Upper bounding e2 The term e2 can be upper bounded with the exact same steps as in the
purely sequential setting. Further using the continuity of Kα,D

inf for any ε > 0 we can choose
ε1, ε2 small enough such that the proof leads to

e2 ≤ M × T × e−mT (Kα,D
inf (Fk,c1)−ε) .

Choosing mT = log(TM)
Kα,D

inf (Fk,c1)−ε
then ensures that e2 ≤ 1 and mT becomes the dominant term

in the regret bound.
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Upper bounding e3 The final term is the one leading to the most complicated part of the
analysis of B-CVTS. Fortunately, the batch setting have no impact on this part, so we can directly
reuse the upper bound of e3 in the proof of Theorem 5.4. Indeed, we can re-write e3 to make it
equivalent to the corresponding term in the purely sequential problem:

e3 = E

 T∑
t=1

nt∑
f=1

1(c̃1,t,f ≤ c1 − ε2)

 = E

 ST∑
r=1

1(c̃1(r) ≤ c1 − ε2)

 ,

where c̃1,t,f denotes the noisy CVaR computed at season t for farmer f , while (c̃1(r))r≥1 repre-
sent the same quantities but assigning CVaRs computed in the same batch an arbitrary order.
We used the notation ST =

∑T
t=1 nt ≤ MT .

We further remark that contrarily to the previous terms, the upper bound of A3 does not
depend on M at all since the upper bound is a convergent series.

5.5.2 Logarithmic regret with B = +∞

This result comes from a discussion with Junya Honda, after talking about the experimental
results of the next section reporting that the performance of B-CVTS does not seem to be
altered by setting a conservative upper bound. The question is then to determine how far
this observation can hold, and pushing it to the limit what guarantees we would obtain by
setting B = +∞. The striking result that we obtained is that if α < 1 then B-CVTS still attains
logarithmic regret, and the upper bound of the expected number of pulls still matches the lower
bound in some "easy enough" cases. However, this comes at the price of losing asymptotic
optimality in general.

Before stating the result we explain howB = +∞ can be allowed in B-CVTS. First, we recall
that for a probability distribution defined by a probability w = (w1, . . . , wn+1) and a set X =
(X1 < · · · < Xn+1) the CVaR can be expressed using nα(w) = inf{j ∈ [n+ 1] :

∑j
i=1wi ≥ α} as

Cα(X , w) = 1
α

(
nα−1∑
i=1

wiXi +
(
α−

nα−1∑
i=1

wi

)
Xnα

)

if nα(w) ≥ 2, otherwise Cα(X , w) = X1. Hence, we remark that if nα ≤ n+ 1 (or equivalently,
wn+1 > 1 − α) then the value of exact Xn+1 does not matter in the computation of Cα(X , w), it
just needs to be larger than Xn. This allows us to adapt B-CVTS as follows: for a given arm,
draww ∼ Dn+1 and compute nα(w). If nα(w) = n+1 the bonus is included in the computation,
we then set the noisy CVaR of this arm to +∞. Otherwise, we use the above formula to compute
the perturbed CVaR by replacing (X1, . . . , Xnα(w)) by their corresponding values in the history
of the arm. These two steps are actually at the core of the proof of the following Theorem 5.12.
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5.5 Additional theoretical results of practical interest

Theorem 5.12 (Regret of B-CVTS with B = +∞). Consider ν = (ν1, . . . , νK) a bandit,
and denote the best CVaR by cα⋆ = maxk∈{1,...,K} CVaRα(νk). Assume that ∀k ∈ {1, . . . ,K},
νk belongs the family CBk of continuous distributions supported in [ak, Bk] for some unknown
Bk > 0 and ak ≤ Bk. Then, for any ε > 0 the regret of B-CVTS using the exploration bonus
B = +∞ on ν satisfies

Rα
ν (T ) ≤

∑
k:∆α

k
>0

∆α
k

1
min

(
log(1/α),Kα,CBk

inf (νk, cα⋆ ) − ε
) log T + Oε(1) .

Proof. The analysis again relies on the upper and lower bounds we can obtain for the BCP if
B = +∞. First, the pre-convergence term is trivially smaller than with a finite B, and does not
need to be further examined here. We now have a look at the upper bound of the BCP, with a
quite straightforward proof. Denoting by YB the history augmented by B (Y∞ for B = +∞)
we first distinguish the case whether B is actually "used" in the noisy CVaR or not,

P(Cα(Y∞, w) ≥ c) = P(Cα(Y∞, w) = +∞) + P(Cα(Y∞, w) ≥ c, Cα(Y∞, w) < +∞)

= P(wn+1 ≥ 1 − α) + P(Cα(Y∞, w) ≥ c, wn+1 < 1 − α) .

Now we can use that the marginal distribution of wn+1 is a beta distribution β(1, n), and
that under the events considered in the second term the +∞ item is not considered in the
computation of the CVaR, hence it could in fact be replaced by anything larger than the
maximum value collected so far. For this reason, for bounded distributions we can simply write

P(Cα(Y∞, w) ≥ c) = αn + P(Cα(Y∞, w) ≥ c, wn+1 < 1 − α)

= αn + P(Cα(YB, w) ≥ c, wn+1 < 1 − α)

≤ αn + P(Cα(YB, w) ≥ c)

≤ αn + exp
(
−nKα,CB

inf (F̃B, c)
)

≤ 2 exp
(
−nmin

{
log(1/α),Kα,CB

inf (F̃B, c)
})

,

where the second line comes from the fact that if wn+1 < 1 − α the last term is not used
in the CVaR and could be anything larger than the other items, and the second term on the
last line comes from the upper bound we provided in previous works. F̃B is the empirical
distribution of the history augmented by B. Finishing the proofs requires only to use this
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upper bound on the BCP and follow the same steps as for Theorem 5.4 for the post-convergence
term.

We believe this result is somehow surprising, or at least quite original in bandits as it
is known that in the standard setting (α = 1) it is impossible to obtain logarithmic regret
without knowledge of the upper bound (Hadiji and Stoltz, 2020). A very interesting remaining
question is to determine whether this algorithm could have guarantees for a broader family
of distributions (e.g light-tailed?). This would require to derive new techniques at different
steps of the proof. A related question is to analyze if the function Kα,+∞

inf would be actually
well defined, continuous in all the arguments and if the upper bound we provide matches it,
or could be improved to match it.

5.6 Experiments

In this section we report the results of experiments with the algorithms presented in the
previous sections, first on synthetic examples, and then on a use-case study in agriculture based
on the DSSAT agriculture simulator. With this second set of experiments we aim at showing
the potential of B-CVTS to tackle the realistic problem introduced in the preamble of this thesis.

The experiments presented here are a selection of those displayed in (Baudry et al., 2021a),
and we chose to focus on the B-CVTS algorithms as in the rest of this chapter. The conclusions
made in this section are however still valid for M-CVTS.

5.6.1 Preliminary Experiments on Synthetic Examples

We first performed various experiments on synthetic data in order to check the good practical
performance of B-CVTS on settings that are simple to implement and are good illustrative
examples of the performance of the algorithms.

Truncated Gaussian Mixtures (TGM) In this section we consider bounded multi-modal
distributions, built by truncated Gaussian Mixture models in [0, 1]. We call these distributions
Truncated Gaussian Mixtures (TGM for short). We first remark that these distributions are not
continuous because they can have a positive mass in 0 and 1, but it is still a good illustrative
example to check the performance of B-CVTS. Indeed, as a sanity check we performed all
the experiments presented in this part by making the distributions continuous (instead of
truncating, we re-sampled observations until they were in (0, 1)) and the results were deemed
to be exactly the same.
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5.6 Experiments

First set of experiments We first consider experiments with two modes, each mode being
equi-probable and having the same variance for simplicity (σ = 0.1) in all experiments. It is for
example interesting to set up experiments with arms whose modes are relatively close, and
other arms that have a large mass of probability close to the two support bounds (e.g one mode
close to 1 and one close to 0).

We experiment 4 possible configurations of the modes, denoted by parameters (µi)i∈{1,...,4}:
µ1 = (0.2, 0.5) (arm 1), µ2 = (0, 1) (arm 2), µ3 = (0.3, 0.6) (arm 3), µ4 = (0.1, 0.65) (arm 4).

Before detailing the experiments we can look at the CVaRs of these distributions for different
values of parameter α. For example, arm 2 has a larger mean than the one with arm 1, but
the 50% CVaR of 1 is larger. We represented the CVaR for each parameter for different values
of α ∈ (0, 1] in Figure 5.1, with the thresholds α ∈ {0%, 10%, 90%} (used in our experiments)
represented by the vertical lines. Interestingly, with these arms the most difficult problems
are not necessarily those with smallest values of α. Indeed, for α = 80% it may be particularly
difficult to choose between arm 2 and 3, or between arm 1 and 4, while arm 3 is the clear winner
for α = 10% due to the distribution being very concentrated around 0.5. Furthermore, the arm
2 provides observations mostly around 0 and 1 but has a larger mean than the others, so it
becomes the best arm for values of α that are close to 1.

0.2 0.4 0.6 0.8 1.0

0.0

0.1

0.2

0.3

0.4

0.5 1

2

3

4

Figure 5.1 – CVaR of each TGM distribution νi (with centers µi), i = 1, . . . , 4 for different values of α

We run the algorithms for α = 10%, 50% and 90% on four bandit problems with the
following characteristics : arm 1 and 2 (Exp. 1), arm 1 and 3 (Exp. 2), arm 1 and 4 (Exp. 3), and
all arms from 1 to 4 (Exp. 4). In Tables 5.1, 5.2, 5.3 and 5.4 we report the results for the four
considered problems (mean regret and standard deviation at T = 10000). On these examples
B-CVTS significantly outperforms the two UCB algorithms for all levels of α.
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Table 5.1 – CVaR regret (average and std) for
Exp. 1 at T = 10000 for 5000 replications.

α U-UCB CVaR-UCB B-CVTS

10% 274.9 (1.8) 5.3 (1.5) 1.1 (0.5)
50% 127.0 (19.3) 135.3 (41.1) 29.8 (17.2)
90% 80.5 (10.4) 53.5 (6.7) 10.2 (17.9)

Table 5.2 – CVaR regret (average and std) for
Exp. 2 at T = 10000 for 5000 replications.

α U-UCB CVaR-UCB B-CVTS

10% 373.7 (4.1) 72.8 (9.6) 4.1 (2.3)
50% 135.8 (8.9) 37.9 (7.5) 5.5 (2.7)
90% 62.6 (7.1) 43.9 (5.1) 5.0 (1.8)

Table 5.3 – CVaR regret (average and std) for
Exp. 3 at T = 10000 for 5000 replications.

α U-UCB CVaR-UCB B-CVTS

10% 269.4 (1.8) 23.2 (4.8) 2.8 (1.5)
50% 138.5 (12.4) 71.8 (19.0) 14.7 (8.3)
90% 53.1 (6.6) 34.5 (6.6) 20.2 (22.4)

Table 5.4 – CVaR regret (average and std) for
Exp. 4 at T = 10000 for 5000 replications.

α U-UCB CVaR-UCB B-CVTS
10% 958.9 (4.8) 230.5 (25.3) 10.4 (3.2)
50% 318.4 (12.2) 147.7 (17.9) 21.2 (6.4)
90% 154.3 (11.9) 119.5 (11.7) 25.1 (14.1)

Testing α = 1% We then check the robustness of B-CVTS to a smaller value of the parameter
α by setting α = 1%. The bandit of Experiment 5 (Exp. 5) has six TGM arms with respective
mean and variance parameters µ135 = (0.3, 0.6), µ246 = (0.25, 0.65), σ12 = 0.05, σ34 = 0.06,
σ56 = 0.07. This experiment allows to additionally check if adding different variances to
the arms affects the performance of the algorithms. However, we keep the probability of
each mode to 0.5. This problem provides the following CVaR values for each arm at level
1%: c0.01

1:6 = [0.18, 0.13, 0.15, 0.10, 0.13, 0.08]. The results are reported in Table 5.5, in which we
observe a very large performance gap between B-CVTS and UCB algorithms. This is particularly
interesting because it shows that the UCB algorithms are not really able to learn for very small
values of α (indeed α = 1% is very small when drawing only a total number of 104 observations)
before the horizon becomes extremely large. We already observed this behavior for CVaR-UCB
in previous experiments, but this time we can see as well that its average regret is even higher
than the one of U-UCB, and its variance spiked. On the other hand, B-CVTS seems to learn
smoothly even for α = 1%, as its average regret only doubles between T = 1000 and T = 5000,
and increases even less between T = 5000 and T = 10000.

Random Problems with more modes and more arms Finally, we further check the robustness
of B-CVTS to more arms and more diverse distribution profiles by increasing the number
of possible modes. To do so, we implement an experiment with K = 30 arms, with TGM
distributions with 10 modes exhibiting different means and variances, which covers a large
variety of shapes of distributions. All of those parameters are drawn uniformly at random, and
we summarize their distributions as (µ, σ) ∼ U([0.25, 1]10 × [0, 0.1]10), and p ∼ D10 (uniform
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Table 5.5 – CVaR regret (average and std) for Exp. 5 at α = 1%, for T ∈ {103, 5 × 103, 104} for 5000
replications.

T U-UCB CVaR-UCB B-CVTS

1000 49.1 (0.3) 53.2 (5.6) 18 (37)
5000 245 (1.1) 263.2 (24.7) 35.5 (51)
10000 489.1 (2.2) 518.4 (45.0) 41 (66)

distribution on the simplex, presented in Section 5.3). We name this setting TGM Experiment 6.
The results of this experiment are reported in Table 5.6 for a parameter α = 0.05 averaged over
400 random instances. Again, we choose a smaller value for α than in the previous extensive
sets of experiments because problems with small α seem to be more challenging. The results
highlight that best performances are obtained by B-CVTS.

Table 5.6 – CVaR regret (average and std) for Exp. 6, α = 5%, averaged over 400 random instances for
T ∈ {104, 2 × 104, 4 × 104} for 5000 replications.

T U-UCB CVaR-UCB B-CVTS

10000 2149.9 (263) 2016.0 (265) 210.9 (6.4)
20000 4276.4 (538) 3781.3 (521) 237.1 (15.4)
40000 8493.4 (1085) 6894.1 (985) 263.5 (17.9)

Summary We preliminary evaluated the CVaR bandit algorithms on synthetic problems
before testing them on a realistic-world bandit environment in the next section. These experi-
ments seem to highlight a greater robustness of B-CVTS to many different settings regarding
several parameters: the risk-level α, the number of arms K and the different possible shapes
of the distributions (materialized by the number of modes and variances in our synthetic
experiments). In particular, B-CVTS is the only algorithm that has not shown to be affected
by the value of α, as the two UCB algorithms had their respective performances degraded to
some extent depending on α values.

5.6.2 Experiments with DSSAT crop-model

Setting In this section we study a simplified version of the problem in agriculture we intro-
duced in the preamble of this thesis. We consider the choice of the best planting date for a
maize crop in conditions emulating the types of soil and climate that can be found in Southern
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Mali. We use the DSSAT simulator, to test our algorithms on this problem in silico decision. We
specifically address maize planting date decision, as maize is a crucial crop for global food
security (Shiferaw et al., 2011). Each simulation is assumed to be realistic, and starts from
the same field initial conditions as ground measured. The simulator takes as input historical
weather data, field soil measures, crop specific genetic parameters and a given crop manage-
ment plan. Modeling is based on simulations of atmospheric, soil and plants compartments
and their interactions. In the considered experiments, after a decision is made on planting date
in the simulator, daily stochastic meteorologic features are generated according to historical
data (Richardson and Wright, 1984) and injected in the complex crop model. At the end of crop
cycle, a maize grain yield is measured to evaluate decision-making. We parameterized the
crop-model under challenging rainfed conditions on shallow sandy soils, i.e. with poor water
retention and fertility. Such experiment intends to be representative of realistic conditions
faced by small-holder farmers under heavy environmental constraints, such as in Sub-Saharan
Africa. Thus, this setting can help picturing how CVaR bandits may perform in real-world
conditions. Furthermore, we recall that that risk-aware bandits are particularly relevant for
this experiment since bad trials are deleterious to the farmers, that rely on their harvest for the
subsistence of their household. Depending on her profile, a farmer may be more or less risk
averse, and the Conditional Value at Risk can be used to personalize her level of risk-aversion. For
instance, a small-holder farmer looking for food security may seek to avoid very poor yields
compromising auto-consumption (e.g α ≤ 20%), while a market-oriented farmer may be more
prone to risky choices in order to increase her profit but still not risk neutral (e.g α = 80%).
Furthermore, yield distributions are supposed to be bounded. Indeed, a finite yield potential
can be defined under non-stressing conditions for a given crop and environment (Evans and
Fischer, 1999; Tollenaar and Lee, 2002). Observed yields can be modeled as following Von
Liebig’s law of minimum (Paris, 1992): limiting factors will determine how much of the yield
potential can be expressed. Hence, this experiment fits the theoretical setting we consider
in this chapter. Finally, we built a bandit-oriented Python wrapper to DSSAT that we made
available1 to the bandit community for reproducibility.

Experiment with 4 planting dates We test bandit performances on the 4 armed DSSAT envi-
ronment described in Table 5.7. To illustrate the non-parametric nature of these distributions,
we report in Figure 5.2 estimations of their density obtained with Monte-Carlo simulations, as
well as of their CVaRs. The resulting distributions are typically multi-modal, with one of their
mode very close to zero (years of bad harvest), and with upper tails that cannot be properly
characterized. However the practitioner can realistically assume that the distributions are
upper-bounded, due to the physical constraints of crop-farming. The yield upper-bound is set
to 10 t/ha thanks to expert knowledge for the considered conditions.

1 https://github.com/rgautron/DssatBanditEnv
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Figure 5.2 – Empirical simulated yields and
respective CVaRs at 20% estimated after 106

samples in DSSAT environment.

day (action). CVaRα
5% 20% 80% 100%

057 0 448 2238 3016
072 46 627 2570 3273
087 287 1059 3074 3629
102 538 1515 3120 3586

Table 5.7 – Empirical yield distribution metrics
in kg/ha estimated after 106 samples in DSSAT
environment

The presented DSSAT environment advocates for the use of algorithms specifically designed
for CVaR bandits, as the optimal arm can change depending on the value of the parameter α.
Our experiment consists in running 64 trajectories for three algorithms U-UCB, CVaR-UCB
and B-CVTS defined in Section 5.2. Experiments are carried out with an horizon of 104 time
steps, and we compare the results for each algorithm for α ∈ {5%, 20%, 80%} to see how the
parameter impacts their performance. Indeed we want a strategy to perform well on all α
choices, allowing to freely model any farmer’s risk aversion level. As shown in Figure 5.3
and Table 5.8, B-CVTS appears to be consistently better than its UCB counterparts in DSSAT
environment for all tested α values, which is encouraging for real-life applications.

α U-UCB CVaR-UCB B-CVTS
5% 3128 (3) 760 (14) 192 (11)
20% 4867 (11) 1024 (17) 202 (10)
80% 1411 (13) 888 (13) 287 (12)

Table 5.8 – Empirical yield regrets at horizon 104 in t/ha in DSSAT environment, for 1040 replications.
Standard deviations in parenthesis.

Experiment with 7 planting dates We consider a bandit instance that consists of 7 arms, each
arm corresponds to a planting date spaced of 15 days from the previous one. An illustration
of the underlying distributions is given in Figure 5.4. In this case, the best arm is consistent
with all values of α, as shown in Table 5.9. Nevertheless, arms exhibit different gaps when
considering different values of α. This experiment intends to evaluate B-CVTS performance
with a greater number of real-world alike arms with a diversity of reward distribution shapes.
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Figure 5.3 – Regret comparison in DSSAT environment, averaged over 1040 experiment replications,
α = 5% (Left) and α = 80%, along with 90% confidence intervals.

The results are reported in Table 5.10. Furthermore, the regret curves for the three algo-
rithms, with α ∈ {20%, 80%} parameter are illustrated in Figure 5.5.

In this experiment, by exhibiting superior performances B-CVTS appears to be more robust
than the algorithms based on UCB for CVaR bandits when we increase the number of arms. In
practice for the planting-date problem, a global, few months planting-window is known but
needs further refinements e.g. to identify the best two-week time slot for planting. That is to
say, the number of arms is unlikely to be greater that what has been tested in this experiment,
making B-CVTS a particularly fit-for-purpose candidate in this setup.
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Figure 5.4 – Monte-Carlo estimate of the dis-
tributions using 106 samples from DSSAT; 7-
armed problem (Left) and 4-armed problem
with over-estimated upper bound.

day (action) CVaRα

5% 20% 80% 100%

057 0 448 2238 3016
072 46 627 2570 3273
087 287 1059 3074 3629
102 538 1515 3120 3586
117 808 1832 3299 3716
132 929 1955 3464 3850
147 1122 2203 3745 4112

Table 5.9 – 7-armed distributions CVaRs for
different levels of α
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α U-UCB CVaR-UCB B-CVTS

5% 5687 (5) 1891 (18) 700 (22)
20% 6445 (10) 1795 (19) 489 (17)
80% 3367 (14) 1580 (15) 293 (8)

Table 5.10 – Results for DSSAT 7-armed experiment, empirical regret at T = 10000 in t/ha for 1040
replications. Standard deviations in parenthesis.

0 2000 4000 6000 8000 10000
time step t

0

1

2

3

4

5

6

em
pi

ric
al

 y
ie

ld
 re

gr
et

 (k
g/

ha
)

1e6 Averaged over #1040 replications for α= 5%

B-CVTS
U-UCB
CVaR-UCB
0.05 to 0.95 quantile range

0 2000 4000 6000 8000 10000
time step t

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

em
pi

ric
al

 y
ie

ld
 re

gr
et

 (k
g/

ha
)

1e6 Averaged over #1040 replications for α= 80%

B-CVTS
U-UCB
CVaR-UCB
0.05 to 0.95 quantile range

Figure 5.5 – Regret comparison with the 7-armed DSSAT environment, averaged over 1040 experiment
replications, α = 5% (Left) and α = 80%, along with 90% confidence intervals.

Impact of support upper bound over-estimation In this experiment we get back to the 4-
armed problem, but here we largely over-estimate the yield upper-bound to 30 t/ha, when
a close to reality yield upper bound is about 10 t/ha. From an agronomic point of view,
this yield value is a very unlikely over-estimation in the given conditions. This experiment
intends to empirically evaluate how a rough arms’ upper-bound estimation affects algorithms’
performances, when little expert knowledge is available. An illustration of the underlying
distributions and how the upper-bound estimation is exaggerated is given in Figure 5.4.

We provide the results of this experiment in Table 5.11, and display the regret curves in
Figures 5.7.

This experiment addresses one possible concern for practitioners: the prerequisite of re-
wards’ support upper bound. We empirically demonstrate that with realistic simulations, when
a highly over-estimated, unrealistic support upper-bound is given to all algorithms – triple of
expert’s estimation –, B-CVTS keeps outperforming UCB-like CVaR bandit algorithms. We
show that this over-estimation did not affect B-CVTS performances compared to the situation
of correct support upper-bound identification as presented in Section 5.6. In particular, it even
slightly improved its performance for α = 80%. This result is counter-intuitive, but it can be
explained by the fact that the extra exploration induced by the larger upper bound may have
sped up learning in this particular case, improving overall performances. On the other hand,
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CVaR-UCB seems much more impacted by this over-estimation (regret is respectively increased
by about 150%, 75% and 78% for α ∈ {5%, 20%, 80%}). Similarly U-UCB’s performance is
altered, despite its already unsatisfying results when fed the true upper bound.
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Figure 5.6 – Illustration of the over-estimated
upper bound with the empirical distributions
of Figure 5.2.

α U-UCB CVaR-UCB B-CVTS

5% 3179 (2) 759 (14) 195 (11)
20% 5644 (6) 1020 (17) 202 (10)
80% 2642 (10) 888 (13) 284 (12)

Table 5.11 – Results for DSSAT Empirical regret
at T = 10000 in t/ha for 1040 replications for
the 4-armed experiment with over-estimated
upper bound.
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Figure 5.7 – Regret comparison with the 4-armed DSSAT environment and an over-estimated upper
bound, averaged over 1040 experiment replications, α = 5% (Left) and α = 80%, along with 90%
confidence intervals.

Conclusion of the experiments B-CVTS appeared to be a satisfying candidate for real-world
alike problems, as shown with the planting date bandits. We empirically showed that the B-
CVTS algorithm was best able to deal with a greater number of planting date arms than its UCB
counterparts. We showed as well that B-CVTS remained the best performer despite considering
a very unlikely support upper-bound estimation. We think that in many physical resource-
based problems, this should be reassuring for practitioners, in particular when compared with
UCB algorithms’ sensibility to the input upper bound.
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5.7 Appendix A: Basic properties of the Dirichlet distribution

We consider the Dirichlet distribution Dir(α) for some parameter α = (α1, . . . , αn). Let w =
(w1, . . . , wn) be a random variable drawn from the distribution Dir(α). We first recall that w
takes its values in the probability simplex Pn = {p ∈ [0, 1]n :

∑n
i=1 pi = 1}. The distribution

admits the following density,

f(w1, . . . , wn) = Γ(
∑n
i=1 αi)∏n

i=1 Γ(αi)

n∏
i=1

wαi−1
i ,

where Γ denotes the Gamma function. In this manuscript we only consider integer values for
the coefficient (αi)i∈N, and for any m∈N Γ(m)=(m− 1)!.

This distribution has convenient properties. First, using the notation
∑n
i=1 αi = N and

interpreting αi/N as the frequency of an item in a set of observations drawn from a finite
collection (empirical distribution), andw a random re-weighting of these observation providing
a "noisy" empirical distribution, the Dirichlet distribution ensures that the new frequency of
each item is unbiased with respect to the observed frequency, with a variance that is inversely
proportional to the total number of items collected. For any i ∈ [1, n],

E[wi] = αi
N

, and V(wi) = αi(N − αi)
N2(N + 1) ,

and the marginal density of each component of w is actually a distribution Beta(αi, N − αi).
This explains the use of the Dirichlet distribution to generalize the Beta-Bernoulli Thompson
Sampling.

In this manuscript we also use two main properties of the Dirichlet distribution, both
using the relation between the Dirichlet distribution and the Exponential distribution. Let
R1, . . . , Rn be n i.i.d random variables drawn from exponential distributions with respective
parameters αi, Ri ∼ E(αi). Then the vector w = (w1, . . . , wn) with wi = Ri∑n

j=1 Rj
follows a

Dirichlet distribution Dir(α).

The second property is a consequence of the first one, and is that the components of a random
variable drawn from a Dirichlet distribution can be aggregated, providing another Dirichlet
distribution: ifw ∼ Dir(α), thenw′ = (w1, . . . , wi+wj , . . . , wn) ∼ Dir((α1, . . . , αi+αj , . . . , αn))
(putting the sum in the i−th slot and removing the j-th slot without changing the other indices).
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Chapter 6

Dirichlet Sampling Beyond Bounded
Rewards

In Chapter 5 we showed that NPTS can be successfully of extended to CVaR bandits
when distributions are bounded. However, the existence and knowledge of the upper bound
may sometimes not be precisely accessible to the practitioner, raising the question of the
robustness of bandit algorithms to model misspecification. In this chapter we extend this
strategy for alternative assumptions on the distributions. We study a generic Dirichlet Sampling
(DS) algorithm, based on pairwise comparisons of empirical indices computed with re-sampling
of the arms’ observations and a data-dependent exploration bonus. We propose variants of
this strategy achieving respectively optimal regret when the distributions are bounded and
logarithmic regret for semi-bounded distributions with a mild quantile condition. Furthermore,
a simple tuning can lead to consistent guarantees inside a large class of unbounded distributions,
at the cost of slightly larger than logarithmic regret. We finally provide numerical experiments
further showing the merits of DS in the decision-making problem on synthetic agriculture data
introduced in Chapter 5. The results we present were published in (Baudry et al., 2021c).
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Dirichlet Sampling Beyond Bounded Rewards

6.1 Introduction

In this chapter we get back to the standard bandit problem, where the learner sequentially
chooses an action (arm) and collect a reward, with the objective of maximizing the expected
sum of rewards. We recall that this is equivalent to minimizing the regret, defined as

RT = E
[
T∑
t=1

µ⋆ − µAt

]
=

K∑
k=1

∆kE [Nk(T )] , (6.1)

where Nk(T ) =
∑T
t=1 1(At = k) denotes the number of selections of arm k after T time steps,

µ⋆ = maxj∈{1,...,K} µj and ∆k = µ⋆ − µk is called the gap between arm k and the largest mean.
We also recall that if the arms’ distributions (ν1, . . . , νK) all belong to a family of distributions
F , a uniformly efficient1 bandit algorithm on F must satisfy

lim inf
T→∞

RT

log(T ) ≥
∑

k:∆k>0

∆k

KF
inf(νk, µ⋆)

, KF
inf(νk, µ⋆) = inf

G∈F
{KL(νk, G) :EG(X)>µ⋆} . (6.2)

A bandit algorithm is then called asymptotically optimal for a family of distributions F when
its regret matches this lower bound. In Chapter 1 we showed that such algorithm exists for
instance if F is a Single-Parameter Exponential Family (SPEF) (Cappé et al., 2013; Kaufmann et al.,
2012), for which KF

inf is simply the Kullback-Leibler divergence between the distribution of
mean µk and that of mean µ⋆ in F ; and for bounded distributions with a known upper bound
(Cappé et al., 2013; Honda and Takemura, 2015; Riou and Honda, 2020). In this chapter we will
use the notation KB

inf for this family for an upper bound B.

Motivations While many algorithms achieve optimal regret for bounded distributions with
the sole knowledge of the upper bound, the algorithms tackling unbounded distributions
(e.g SPEF, sub-Gaussian, sub-exponential) generally assume a known parametric model for
the tails. While such assumption entails convenient properties on the theoretical side, the
practitioner may have some difficulty to determine which setting/parameters correspond to
her problem. Furthermore, this uncertainty raises the question of robustness with respect to
these hypotheses. Several works have considered this question: Hadiji and Stoltz (2020) show
that adapting to an unknown bounded range requires a tradeoff between instance-dependent
and worst-case regret, and recently (Agrawal et al., 2021b; Ashutosh et al., 2021) proved the
impossibility of an instance-dependent logarithmic regret for light-tailed distributions without
further assumptions on the tail parameters. The root cause for this is the lack of compactness
of such families F , which allows mass to "leak" at infinity so that confusing distributions with
mean µ∗ exist arbitrarily close to νk, meaning KF

inf(νk, µ∗) = 0. Ashutosh et al. (2021) also
1That is, for each bandit on F , for each arm k with ∆k >0, then E[Nk(T )]=o(T α) for all α∈(0, 1].

180



6.1 Introduction

introduce a robust variant of UCB, that trades off logarithmic regret for O (f(T ) log(T )), where
f essentially tracks the possible mass leakage at infinity. These results puts into question the
usual hypotheses under which bandit algorithms are designed: considering a parametric control
of the tails is indeed sensitive to model mis-specification, but on the other hand the examples
chosen to prove infeasability results seem a bit extreme for the practitioner.

In the first part of this thesis we proposed a family of algorithms based on sub-sampling,
that can achieve strong theoretical guarantees under non-parametric assumptions on the arms
(see Assumption 2.20). The kind of structure it requires on the arms, while being more flexible
than the SPEF assumption, can still be somehow difficult to verify in some case-studies, e.g for
the distributions we presented in Figure 3. Hence, in this chapter we propose a complementary
approach, that is inspired by an optimal algorithm for bounded distributions, Non-Parametric
Thompson Sampling (NPTS), that we already studied in Chapter 5 in the context of CVaR bandits.
Building on NPTS, we propose in this chapter simple alternative setups allowing unspecified
tail shapes but avoiding "mass leakage" to infinity, for instance with mild conditions linking
the quantiles and the means of the distributions. As in the rest of this manuscript we consider
the case of light-tailed distributions (that we define below). This problem is already non-trivial,
so we let possible extensions for heavy-tail distributions for future work (e.g with tools like
median-of-means, see (Bubeck et al., 2013)).

Definition 6.1 (Light-tailed distribution). We say that a distribution ν is light-tailed if there
exists λ0 > 0 such that ∀λ : |λ| ≤ λ0 it holds that

EX∼ν
[
eλX

]
< +∞ .

Outline Following the central question that we consider in this thesis, we want to deign
algorithms that require as little knowledge on the tails of distributions as possible. To this
extent, NPTS (Riou and Honda, 2020) is a good candidate, considering its simple scheme that
is sufficient to reach asymptotic optimality for bounded distributions with known bounds, and
that in particular does not explicitly rely on the computation of the KB

inf function contrarily
to other asymptotically optimal algorithms. Furthermore, the flexibility of this algorithm has
been demonstrated in Chapter 5 with its adaptation in a risk-aware setting. We provide an
extension of the principle of NPTS that we call Dirichlet Sampling (DS): we combine the core
elements of NPTS and the duel-based framework that we already used in the first part of this
thesis for the SDA algorithms and that is inspired by (Chan, 2020). This framework allows
to introduce data-dependent exploration bonuses using the history of two arms. We present
the resulting algorithm and detail the technical motivations of this approach in Section 6.2.
We then introduce in Section 6.3 a first decomposition of the regret of DS algorithms under
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general assumptions, and the technical results that allow to fine-tune the algorithm for different
families (see Section 6.3.1). Then, we detail three instances of DS algorithms and their regret
guarantees in Section 6.4: Bounded Dirichlet Sampling (BDS) tackles bounded distributions with
possibly unknown upper bounds, Quantile Dirichlet Sampling proposes a first generalization to
the unbounded case using truncated distributions. Last, Robust Dirichlet Sampling (RDS) has a
slightly larger than logarithmic regret for any unspecified light-tailed unbounded distributions,
making it a competitor to the Robust-UCB algorithm of (Ashutosh et al., 2021). Finally, we
consider in Section 6.6 the use-case in agriculture introduced in Chapter 5 using the DSSAT
simulator (see Hoogenboom et al. (2019)), which naturally faces all the questions (robustness,
model specification) that motivate this work and shows the merit of DS over state-of-the-art
methods for this problem.

6.2 Dirichlet Sampling Algorithms

In this section we introduce Dirichlet Sampling, a strategy extending the Non-Parametric
Thompson Sampling algorithm of Riou and Honda (2020) outside the scope of bounded
distributions with a known support upper bound. For this purpose, we build an adaptive
strategy in a duel-based framework, already used in the sub-sampling based algorithms we
introduced in Part I. We motivate this choice in the following.

Background We introduced NPTS in Chapter 1 (see Algorithm 1.6), and recall that it is
identical to the B-CVTS algorithm introduced in the previous chapter when the risk parameter
considered is α = 1. The simplicity and strong theoretical guarantees of this algorithm
are appealing for further generalization. As we fully depart from the Bayesian approach,
considering alternative exploration bonuses, we derive a new family of algorithms under the
name of Dirichlet Sampling. We keep the two principles of re-weighting the observations using
a Dirichlet distribution and helping exploration by adding a bonus to the collected data, and
explore how to apply them to more general (e.g unbounded) distributions. In particular, we
allow in DS some pre-processing of the observations before re-weighting (see section 6.3.1 and
6.4) and motivate in Section 6.3.1 the use of a data-dependent bonus, that use information from
several arms. The complexity introduced by such bonus in the analysis requires a change of
algorithm structure, dropping the index policy for a leader vs challenger approach (Chan, 2020).

Round-based algorithm We define a round as a step of the algorithm at the end of which a
set of (possibly several) arms are selected to be pulled. Let Ar ⊂ {1, . . . ,K} be the subset of
the arms pulled at the beginning of a round r, as in Chapters 2-3 we call T -round regret the
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quantity

R̄T = E
[
T∑
r=1

K∑
k=1

∆k1(k ∈ Ar)
]

=
K∑
k=1

∆kE[Nk(T )] , (6.3)

where we slightly change the definition of Nk (compared to the one in 6.1) to Nk(T ) =∑T
r=1 1(k ∈ Ar). We recall that the T -round regret is an upper bound of the regret after

T pulls. At the beginning of each round we define a reference arm (leader), and then organize
pairwise comparisons called duels between this arm and the other arms (challengers). The
leader is chosen as the arm with largest sample size, that is ℓ(r) ∈ argmaxk∈{1,...,K}Nk(r).We
choose to break ties first in favor of the best empirical arm, then with a random choice. A
major motivation for this choice is that the leader will have a sample size that is linear in the
number of rounds, as at least one arm is chosen at each round. This ensures strong statistical
properties that we will exploit to design the exploration bonus of DS strategies. For that reason,
randomizing the index of the leader is also unnecessary: it competes against each challenger
with its empirical mean. We suggest to do the same with all the arms k satisfying Nk(r) = Nℓ(r).
These choices have a practical interest as they avoid the computation time of drawing the largest
weight vectors. We believe this can be an alternative of independent interest to computationally
intensive index policies. For instance, most of the computational cost of NPTS (Riou and Honda,
2020) comes from drawing the random weights for the arm we define as the leader. Finally, we
can remark that this use of the duel-based structure differs from SSMC (Chan, 2020) and SDA
(see Part I of this thesis) since these algorithms use the empirical means of the challengers and
sub-samples from the leader in the duels.

Challenger’s index We define an index that is not dependent on the round, but only on the
history of the challenger and the leader available at this round, that we denote respectively by
X = (X1, . . . , Xn), Y = (Y1, . . . , YN ) for simplicity of notation. We denote by X̄n and ȲN their
respective averages. We propose a duels in two steps, with a first comparison of the means and
then a comparison using a Dirichlet re-sampled mean for the challenger. This is summarized
in Algorithm 6.1 below.

1 Input: History X = (X1, . . . , Xn) of the challenger, history Y = (Y1, . . . , YN ) of the
leader

2 Draw a Dirichlet Sampling (DS) mean µ(X ,Y) for the challenger.
3 if max{X̄n, µ(X ,Y)} ≥ ȲN then
4 Challenger wins ; ▷ Two chances to win: with empirical mean and DS mean
5 end
6 Otherwise, leader wins.

Algorithm 6.1: Generic Dirichlet Sampling duel step
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In Dirichlet Sampling, these duels take place inside a round-based framework that we
summarize in Algorithm 6.2. We write it for a generic "Dirichlet Sampled mean" µ that must
be computed by a re-weighting of the observations augmented by an exploration bonus. As in
NPTS, the weights are drawn with a Dirichlet distribution. For instance, we propose a standard
way to define a Dirichlet Sampling mean with a data-dependent (instead of constant) bonus
B(X ,Y).

Example 6.2. Consider a bonus B(X ,Y) and weights (w1, . . . , wn+1) ∼ Dn+1, the following
expression is a possible re-sampled mean with Dirichlet Sampling,

µ(X ,Y) =
n∑
i=1

wiXi + wn+1B(X ,Y) .

However, the algorithm structure in Algorithm 6.2 could be combined with any randomized
index, which is of independent interest as we will see in Section 6.3. In the next section we
study the theoretical properties of Dirichlet Sampling, and discuss the choice of the index µ for
different families of distributions.

1 Input: K arms, horizon T
2 Init.: t = 1, r = 1, ∀k ∈ {1, ...,K}: Yk = {Y k

1 }, Nk = 1; ▷ Draw each arm once
3 while t < T do
4 A = {} ; ▷ Arm(s) to pull at the end of the round
5 ℓ = Leader((Y1, N1), . . . , (Yk, Nk)) ; ▷ Choose a Leader
6 for k ∈ {1, . . . ,K} : Nk < Nℓ do
7 if k wins the duel then
8 A = A ∪ {k} ; ▷ Play the duels
9 end

10 end
11 Draw arms from |A| if A is non-empty, else draw arm ℓ.
12 Update t, r, (Nk)k∈{1,...,K}, (Yk)k∈{1,...,K}. ; ▷ Collect Reward(s) and update

data
13 end

Algorithm 6.2: Generic round-based strategy

6.3 Regret Analysis and Technical Results

In this section, we analyze the regret of DS algorithms. We first derive a general regret decom-
position for the generic round-based strategy we described in Algorithm 6.2, that holds only
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thanks to the duel-based structure and a standard assumption on the concentration of the arms’
means. We then introduce several properties of Dirichlet sampling, that theoretically guide
proper tuning of the exploration bonus used in DS. We finally instantiate the algorithm for
three different problems and provide regret bounds in these settings. Starting with the regret
decomposition, we exhibit general conditions to ensure guarantees that are independent of the
index used. Allowing a different family of distribution Fk for each arm k, the first one concerns
the concentration of the mean of each distribution.

Assumption 6.3 (Concentration of means). For all νk ∈ Fk, there exists a good rate function
Ik satisfying Ik(x) > 0 for x ̸= µk and for all x > µk, y < µk, and any i.i.d sequence Y1, . . . , Yn

drawn from νk

P
(

1
n

n∑
i=1

Yi ≥ x

)
≤ e−nIk(x) , and P

(
1
n

n∑
i=1

Yi ≤ y

)
≤ e−nIk(y) . (6.4)

This hypothesis is standard in the bandit literature, and is for instance satisfied by any light-
tailed distributions (see Definition 6.1). We refer to (Dembo and Zeitouni, 2010) for techniques
to derive the rate function of a distribution. We recall that we already made this assumption in
the first part of this thesis (Assumption 2.4).

We now provide an upper bound on the round-regret presented in Section 6.2 for Algo-
rithm 6.2. To simplify the notation we consider that there is only one optimal arm and, without
loss of generality, that ∀k > 1, µk < µ1. Furthermore, for simplicity we write the following
theorem for an index µ(Y, µ̂), that depends on Y through the empirical mean of the history,
denoted by µ̂.

Theorem 6.4 (Generic regret decomposition of DS). Consider a bandit model ν = (ν1, . . . , νK),
where all distributions in ν satisfy (C1). Then for any Dirichlet sampled mean depending only
on the history of the leader through its empirical mean, the expected number of pulls of each
arm k ∈ {2, . . . ,K} under the round-based strategy of Algorithm 6.2 is upper bounded for each
ε ∈ [0,∆k) by

E [Nk(T )] ≤ nk(T ) +Bk
T,ε + Cν,ε ,

where Cν,ε is independent on T and,

nk(T ) = E
[
T−1∑
r=1

1(k ∈ Ar+1, ℓ(r) = 1)
]
,
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and denoting Yn the set of n first observations of arm 1,

Bk
T,ε =

K∑
k′=2

⌈2 log(T )/I1(µk+ε)⌉∑
n=1

sup
µ̂∈[µk′ −ε,µk′ +ε]

E
[
1 (µ(Yn) ≤ µ̂)
P(µ(Yn, µ) ≥ µ̂)

]
.

The proof follows the general outline of Chan (2020) that we already used in the analysis of
LB-SDA in Chapter 3, and details all the components of Ckν,ε. This term is related to deviations
of sample means for arm k and arm 1 and is typically bounded by a (problem-dependent)
constant under light-tail concentration (Assumption 6.3) so it does not depend on µ but only on
the rate functions and the means of each arm. The other two terms of the upper bound reflect
the exploration strategy. nk(T ) is the expected number of pulls of arm k when the best arm
is the leader; we interpret it as the sample size required to statistically separate both arms at
horizon T . On the other hand, Bk

T,ε measures the capacity of the best arm to recover from a
bad (small-sized) sample.

We now prove the theorem, but skip some details that were provided in Chapter 3 for the
analysis of LB-SDA to avoid redundancy.

Proof. Thanks to the duel structure of DS, the fact that an arm is pulled or not depends of its
status as a leader or a challenger. Furthermore, a challenger can be pulled only if it wins its
duel against the leader. Consider an arm k ∈ {2, . . . ,K}, we first write

E[Nk(T )] ≤ E
[
T−1∑
r=1

1(k ∈ Ar+1, ℓ(r) = 1)
]

︸ ︷︷ ︸
nk(T )

+1 + E
[
T−1∑
r=1

1(ℓ(r) ̸= 1)
]

︸ ︷︷ ︸
ET

.

We already extracted the first term nk(T ) of Theorem 6.4, and further work on the term ET

corresponding to upper bounding the expected number of rounds with a sub-optimal leader.
As in Chapter 3 we consider two alternatives, defining the sequence ar = ⌈r/4⌉ for r ∈ N and
the event

Dr = {∃u ∈ [ar, r] : ℓ(u) = 1} .

We recall that for any round s ≥ ar the number of pulls of the leader is larger than
br := ⌈ar/K⌉, and consider the event ℓ(r) ∩ Dr, that can only happen in case of a leadership
takeover: a sub-optimal arm has the same sample size as arm 1 (larger than br) and a better
empirical average. Summarizing this, starting the sum at any round r0 we have
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T−1∑
r=1

P (ℓ(r) = 1,Dr) ≤ r0 +
T−1∑
r=1

K∑
k′=2

r∑
u=ar

r∑
n=br

E
[
1

(
Nk′(u) = N1(u) = n, Ȳk′,n ≥ Ȳ1,n

)]
.

We classically use that for any xk′ ∈ R, {Ȳk′,n ≥ Ȳ1,n} ⊂ {Ȳk′,n ≥ xk′ ∪ Ȳ1,n ≤ xk′}, and
thanks to Assumption 6.3 we finally obtain

T−1∑
r=1

P (ℓ(r) = 1,Dr) ≤ r0 +
K∑
k′=2

T−1∑
r=1

r2
(
e−brI1(xk′ ) + e−brIk(xk′ )

)
= O(1) .

This term is hence part of the constant Cν,ε. We now consider
∑T−1
r=1 P(ℓ(r) = 1, D̄r). As in

Chapter 3, we can upper bound these events by the number of total duels lost by arm 1 against
a sub-optimal leader, using that

T−1∑
r=1

P(ℓ(r) = 1, D̄r) ≤ 9 × E
[
T−1∑
r=1

K∑
k′=2

1(ℓ(r) = k′, Ck′
r )
]
,

where Ck′
r is the event corresponding to arm 1 losing a duel against the leader k′. We can now

fix any sub-optimal leader k′ and upper bound the term Ck′
r . We recall that arm 1 has two

chances to win the duel: first with its empirical mean, and then with a Dirichlet sampled mean.
Furthermore, the bad outcome can come from either bad estimation of arm k′ or of arm 1. For
any ε > 0, it holds that

Ck′
r ⊂

{∣∣∣Ȳk′,Nk′ (r) − µk′

∣∣∣ ≥ ε, ℓ(r) = k′
}

∪
{∣∣∣Ȳk′,Nk′ (r) − µk′

∣∣∣ ≤ ε, ℓ(r) = k′, Ȳ1,N1(r) ≤ µk′ + ε, µ
(
YN1(r), Ȳk′,Nk′ (r)

)
≤ Ȳk′,Nk′ (r)

}
.

Thanks to the concentration of the leader, the expected number of pulls caused by the first
term can be upper bounded by

T−1∑
r=1

P
(∣∣∣Ȳk′,Nk′ (r) − µk′

∣∣∣ ≥ ε, ℓ(r) = k′
)

=
T−1∑
r=1

r∑
n=⌈r/K⌉

P
(∣∣∣Ȳk′,n − µk′

∣∣∣ ,≥ ε
)

= O(1).

For the simplicity of notation we keep the notation Ck′
r to define the remaining term. We

then continue the analysis of Ck′
r by considering whether N1(r) ≥ n1(T ) or not, for some new

function n1(T ). The idea is to choose n1(T ) such that Ck′
r is unlikely for n ≥ n1(T ) thanks to the
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first step of the duel with empirical means. Writing Ck′ :=
∑T−1
r=1 P

(
Ck′
r , ℓ(r) = k′

)
we obtain

Ck′ ≤
T−1∑
r=1

P
(
Ck′
r , N1(r) ≥ n1(T ), ℓ(r) = k′

)
+
T−1∑
r=1

P
(
Ck′
r , N1(r) ≤ n1(T ), ℓ(r) = k′

)

≤
T−1∑
r=1

T−1∑
n=n1(T )

P(Ȳ1,n ≤ µk′ + ε) +
T−1∑
r=1

P
(
Ck′
r , N1(r) ≤ n1(T ), ℓ(r) = k′

)

≤
T−1∑
r=1

P
(
Ck′
r , N1(r) ≤ n1(T ), ℓ(r) = k′

)
+ O(1) ,

if n1(T ) ≥ log(T )
I1(µ′

k
+ε) . We then consider the remaining term, that we denote by

Hr,n
k′ =

{
N1(r) = n,

∣∣∣Ȳk′,Nk′ (r) − µk′

∣∣∣ ≤ ε, Ȳ1,n ≤ Ȳk′,Nk′ (r), µ
(
Yn, Ȳk′,Nk′ (r)

)
≤ Ȳk′,Nk′ (r)

}
,

and use it to write that

T−1∑
r=1

P
(
Ck′
r , N1(r) ≤ n1(T ), ℓ(r) = k′

)
≤

T−1∑
r=1

n1(T )∑
n=1

P
(
Hr,n
k′
)
.

Following for instance (Riou and Honda, 2020) we can further state that

T−1∑
r=1

1(Hr,n
k′ ) =

T−1∑
m=1

1

 T−1∑
r=ar0

1(Hr,n
k′ ) ≥ m

 ,

and define as τn1 , . . . , τnm the m first rounds for which Hr,n
k′ hold. If 1

(∑T−1
r=ar0

1(Hr,n
k′ ) ≥ m

)
is

true then Hτj ,n
j holds for any i ≤ m and all these τi are finite, which provides

1

 T−1∑
r=ar0

1(Hr,n
k′ ) ≥ m

 ≤
m∏
i=1
1

(
Hτn

i ,n
k′

)
.

The remaining term can be upper bounded as

Dk′
T,ε :=

n1(T )∑
n=1

T−1∑
m=1

E
[
m∏
i=1
1

(
Hτn

i ,n
k′

)]

=
n1(T )∑
n=1

T−1∑
m=1

EYn

[
m∏
i=1

P
(
µ
(
Yn, Ȳk′,Nk′ (τn

i )
)

≤ Ȳk′,Nk′ (τn
i )

∣∣∣Yn)1 (Hτn
i ,n
k′

)]
.

We remove the dependency of the index in Yk
Nk′ (τn

i ), knowing that it only depends of its
mean that is located in a small range around µj . We finally obtain
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Dk′
T,ε ≤

n1(T )∑
n=1

T−1∑
m=1

sup
µ̂∈[µk′ −ε,µk′ +ε]

EYn

[
P (µ (Y1,n, µ̂) ≤ µ̂)m 1

(
Ȳ1,n ≤ µ̂

)]

≤
n1(T )∑
n=1

sup
µ̂∈[µk′ −ε,µk′ +ε]

EYn

[P (µ (Yn, µ̂) ≤ µ̂)
P (µ (Yn, µ̂) ≥ µ̂)1

(
Ȳ1,n ≤ µ̂

)]
.

This concludes the proof if we define Bk
T,ε =

∑K
k′=2D

k′
T,ε in Theorem 6.4.

Theorem 6.4 is formulated to be as general as possible and can be regarded as a counterpart
of existing results for the analysis of other randomized strategy, such as Theorem 1 of Kveton
et al. (2019b) for General Randomized Exploration or Theorem 36.2 in (Lattimore and Szepesvári,
2020) for Thompson Sampling.

Remark 6.5 (Further generalizations). Theorem 6.4 still holds under more general assumptions.
First, we could replace the empirical averages by any robust estimator of the means in the first
comparison step, and require Assumption 6.3 to hold for this estimator instead (e.g with median-
of-means or truncated means for heavy-tailed bandits). Then, the exploration bonus could use any
statistics on the leader’s history that have concentration properties similar to Assumption 6.3 with
slight adaptations of the proof. This can include quantiles (that we can concentrate e.g thanks to
DKW inequality, see (Massart, 1990)), or moments of higher order under some assumptions on the
distributions.

Finally, Assumption 6.3 could actually be relaxed and require inequalities in o(n−3) (instead of
exponential decay in n) to obtain the same final result (but different constant terms) with our proof
scheme.

We will later analyze instances of Dirichlet Sampling where the first-order term of the regret
is driven entirely by nk(T ). We therefore introduce the following assumptions to control the
contribution of Bk

T,ε to the regret.

Assumption 6.6 (Sufficient exploration of arm 1). For any ε > 0, and any n1(T ) = O(log T )
it holds that

n1(T )∑
n=1

EYn∼νn
1

[
1(Ȳ1,n ≤ µ1 − ε)

Pw∼Dn+1 (µ(Yn, µ1 − ε) ≥ µ1 − ε)

]
= o(log T ) .
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The LHS represents the expected cost in terms of regret of underestimating the optimal
arm; intuitively, it measures the expected number of lost duels before finally winning one
when starting with low rewards. This is a classic decomposition in bandit analysis, and a
counterpart of Assumption 6.6 holds for most index policies with provable regret guarantees,
e.g Theorem 1 in Kveton et al. (2019b) (GIRO) or Lemma 4 in Agrawal and Goyal (2012a))
(Bernoulli Thompson Sampling). We find it noteworthy that this regret decomposition depends
only on the distribution of the best arm and its randomized Dirichlet Sampling index when it
is a challenger.

Corollary 6.7 (Conditions for controlled regret). If Assumptions 6.3 and 6.6 hold for the DS
index on the families of distribution (Fk)k∈{1,...,K}, the regret of the DS algorithm satisfies

RT ≤
K∑
k=2

∆knk(T ) + o(log T ) .

Up to this point this result is quite abstract, but this standardized analysis allows us to
instantiate the Dirichlet Sampling algorithm on different class of problems and calibrate it
in order to ensure that Assumption 6.6 holds and to make nk(T ) explicit. In particular if
nk(T ) = O(log T ), we recover the logarithmic regret. In the next section, we present technical
results to justify calibrations of the DS index for several kind of families.

6.3.1 Technical tools: boundary crossing probability of a DS index

In this section, we highlight some key properties of a sum of random variables re-weighted by
a Dirichlet weight vector that help us suggest a sound tuning of the bonus B(Y,Y) for different
kind of families. We then detail such tuning. We first recall the definition of Boundary Crossing
Probabilities (BCP), that we already used in Chapter 5.

Definition 6.8 (Boundary Crossing Probability (BCP)). Consider a set of n+1 observation
points Y = (Y1, . . . , Yn+1) ⊂ Rn+1. Then, for any µ ∈ R, a “Boundary Crossing Probability”
(BCP) conditionally on Y is defined as

[BCP] := Pw∼Dn+1

(
n+1∑
i=1

wiYi ≥ µ

)
,

where we recall that Dn+1 is the Dirichlet distribution with parameter (1, . . . , 1) of size n+1, i.e
the uniform distribution on the (n+ 1)-simplex. We emphasize that here Y is considered fixed, and
the only source of randomness comes from the weights w.
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When all observations are distinct from each other this BCP has a closed formula, which
has been derived for instance in (Cho and Cho, 2001) as

Pw∼Dn+1

(
n+1∑
i=1

wiYi ≥ µ

)
=

n+1∑
i=1

(Yi − µ)n+∏n+1
j=1,j ̸=i(Yi − Yj)

. (6.5)

This expression is obtained by computing the volume of the half-space of the simplex
defined by the hyperplane

∑n+1
i=1 wiYi ≥ µ. Unfortunately, this formula is not very informative:

for sorted data the terms are alternatively positive and negative, and can take large values
(compensating each other). This makes the exact formula hardly tractable even for numerical
simulations. We also add that the closed formula does not exist for a Dirichlet distribution
with some parameters larger than 1.

This quantity is of much interest as both the growth of nk(T ) and checking that Assump-
tion 6.6 holds can be performed by respectively upper and lower bounding for the BCP. In
Chapter 5 we provided such bounds for the CVaR case, that are still valid here because the
standard setting is a special case of CVaR bandits with a risk level α = 1. These results resort
on usual properties of the Dirichlet distribution that were given in Appendix 5.7. The lower
bounds suggest non-trivial tuning of the bonus. We first exhibit a necessary condition when
the bonus is not allowed to depend on the set of observations Y .

Lemma 6.9 (Necessary condition with a data-independent bonus). Consider a fixed bonus
Bµ, and a distribution F (with CDF also denoted F ). Assumption 6.6 holds only if

Bµ > µ+ 1
1 − F (µ)EY∼F [(µ− Y )+] .

Proof. When all the observations are below the threshold Equation (6.5) provides

Pw∼Dn

(
n∑
i=1

wiYi + wn+1B(µ) ≥ µ

)
=

n∏
i=1

B − µ

B − Yi
,

so plugging this term in Assumption 6.6 gives the expression

E
[
n∏
i=1

(
B − Yi
B − µ

)
1(Yi ≤ µ)

]
= EY1∼F

[(
B − Y1
B − µ

)
1(Y1 ≤ µ)

]n
.

The assumption can then hold only if the expectation is smaller than 1, which is equivalent to

(B − µ)(1 − F (µ)) ≥ E [(µ− Y )+] ,
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which gives the result.

This result is obtained using a "worst-case" scenario in which all the observations are below
the threshold µ. Hence, it does not cover all possible trajectories, yet it suggests to investigate the
properties of bonuses with a similar form. Since the right-hand side of the inequality requires a
knowledge on the arms distributions that we would like to avoid, we use an empirical estimator
for the expectation. This suggests to introduce some parameter ρ and data-dependent bonuses
of the form

Definition 6.10 (Canonical bonus). For a dataset Y = (Y1, . . . , Yn), a parameter ρ and a threshold
µ we define

B(Y, µ, ρ) = µ+ ρ× 1
n

n∑
i=1

(µ− Yi)+ . (6.6)

We interpret ρ as the leverage of the empirical excess gap 1
n

∑n
i=1(µ−Yi)+ w.r.t the threshold

µ. We then tune ρ according to the hypothesis we make on the arm distributions, which is
much less constraining than assuming knowledge of the shape of the entire tail. In all DS
algorithms we proposed (see next section), we use Equation (6.6) as the basis for defining the
appropriate bonus. Finally, we provide in Lemma 6.11 a novel lower bound on the BCP that
reveals that, in the general light-tailed unbounded case, without further processing of the data,
DS cannot achieve a logarithmic regret when the empirical maximum of the observations tends
to +∞ at some rate g(n).

Lemma 6.11 (Lower bound for the BCP). Consider a set Y = (Y1, . . . , Yn+1) ∈ Rn+1 and
any threshold µ, and assume that max

i∈{1,...,n+1}
Yi ≥ g(n) ≥ µ for some function g. Denoting by

∆̄+
n = 1

n

∑n+1
i=1 (µ− Yi)+ the empirical excess gap, it holds that

Pw∼Dn+1

(
n+1∑
i=1

wiYi ≥ µ

)
≥ exp

(
−n ∆̄+

n

g(n) − µ

)
.

Proof. We obtain this lower bound by truncating all the observations that are larger than the
threshold except the maximum, allowing to use Equation 6.5. Combining this property with
log(1 + x) ≤ x we obtain

Pw∼Dn+1

(
n+1∑
i=1

wiYi ≥ µ

)
≥ Pw∼Dn+1

(
n∑
i=1

wi min(Yi, µ) + wn+1 max
j=1,...,n+1

Yj ≥ µ

)
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= (maxj=1,...,n+1 Yj − µ)n∏n
i=1(maxj=1,...,n+1 Yj − min(Yi, µ))

= exp
(

−
n∑
i=1

log
(

maxj=1,...,n+1 Yj − min(Yi, µ)
maxj=1,...,n+1 Yj − µ

))

= exp
(

−
n∑
i=1

log
(

1 + µ− min(Yi, µ)
maxj=1,...,n+1 Yj − µ

))

≥ exp
(

−
n∑
i=1

µ− min(Yi, µ)
maxj=1,...,n+1 Yj − µ

)

= exp
(

−
n∑
i=1

(µ− Yi)+
maxj=1,...,n+1 Yj − µ

)
,

which yields the result.

In particular, we see in this expression that g(n) may hinder the exponential rate in n. In
the next section we discuss three examples of DS algorithms and their theoretical guarantees.
Before that, we state a result that will be useful in the analysis of DS algorithms using the
canonical exploration bonus.

Corollary 6.12. Let Y = (Y1, . . . , Yn, Yn) be a set and Yn+1 = B(Y, µ, ρ) for some parameters
ρ, µ. Then, it holds that

Pw∼Dn+1

(
n+1∑
i=1

wiYi ≥ µ

)
≥ exp

(
−n

ρ

)
.

The result is direct by replacing g(n) by the expression of the bonus in Lemma 6.11.

6.4 From optimality to robustness: three instances of DS

Building on the results from the previous section, we now instantiate the DS algorithms for
three bandit problems. We first prove that optimal guarantees can be derived for DS with
bounded distributions under a non-standard definition of the problem (i.e unknown upper
bound but alternative assumptions), motivated by practical considerations. Then, we consider
a natural extension to unbounded distributions using a simple truncation mechanism, ensuring
logarithmic regret under assumptions on some quantile of the distributions. Finally we consider
a simple DS algorithm, securing slightly larger-than-logarithmic regret for the entire family
of light-tailed distributions. In the following we denote by B(X , µ, ρ) the bonus defined in
Equation 6.6 that we call canonical bonus (Definition 6.10) for a set X , a mean µ and some
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parameter ρ. For simplicity we will keep a generic µ in our exposition, while its value is in
practice the empirical mean of the leading arm. We will use this expression when detailing the
value of the re-sampled means used in the algorithms that we propose.

A sketch of the proofs of the three theorems can be found in Section 6.5. They consist in
deriving an expression for nk(T ) and showing that Assumption 6.6 (sufficient exploration)
holds for the algorithms in the settings they tackle.

6.4.1 Bounded Dirichlet Sampling (BDS): optimality for an alternative family of
bounded distributions

Let F[b,B] be the set of distributions supported in [b, B], and consider a bandit ν = (ν1, . . . , νK)
with νk ∼ F[bk,Bk] for someBk ∈ R. If we assume thatBk is known (case 1), then simply defining
Bk as the exploration bonus ensures an asymptotically optimal regret, with a direct adaptation
of the proof of NPTS (Riou and Honda, 2020). However, the precise knowledge of the upper
bound for each arm is sometimes inaccessible to the practitioner (e.g if the environment is new,
or if no expert is available to provide a reasonable upper bound). We propose an alternative
setting, with the family Fγ,p

B = {∃B : ν ∈ F[b,B],Pν([B − γ,B]) ≥ p} ⊂ F[b,B]. Bk is unknown
but we assume it is detectable in the sense that we will observe a sample from its neighborhood
[Bk −γ,Bk] with a reasonable probability of at least p, with known γ, p. In this case we propose
the following bonus, allowing to obtain theoretical results in this setting for some values of ρ
that we will precise later,

B(Y, µ̂) := max{Y++γ,B(Y, µ̂, ρ)} , where Y+ = max{y : y ∈ Y}. (6.7)

We summarize the re-sampled mean used by BDS in Algorithm 6.3.

1 Input: Set Y = (Y1, . . . , Yn), mean of the leader µ̂, parameters γ, ρ
2 Draw w = (w1, . . . , wn+1) ∼ Dn+1

3 return
∑n
i=1wiYi + wn+1 max (maxni=1 Yi + γ,B(Y, µ̂, ρ))

Algorithm 6.3: Bounded Dirichlet Sampling re-sampled mean

We then provide in Theorem 6.13 the theoretical guarantees obtained for BDS under this
alternative "bounded distributions" assumption.
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Theorem 6.13 (Theoretical guarantees of BDS). If ∀k ∈ {2, . . . ,K} , νk ∼ Fγ,ρ
B , choosing the

exploration bonus of Equation 6.7 with ρ ≥ −1/ log(1 − p) ensures that

E[Nk(T )] ≤ log(T )
KBρ,γ

inf (νk, µ1)
+O(1) ,

where Bρ,γ = max (B + γ, µ1 + ρEX∼νk
[(µ1 −X)+])).

This setting is a first example of the interest of data-dependent bonuses. It makes sense in
practice by avoiding for instance distributions with a small mass arbitrarily far from the rest
of their support, which may not be likely in a real-world application. We now consider the
unbounded case. Before that, we make a remark related to the B-CVTS algorithm of Chapter 5.

Remark 6.14. The changes of the proof allowed by the round-based structure allows to remove the
assumption that the distributions are continuous that was needed in the theoretical guarantees of
B-CVTS, as the term A2 in the proof of Theorem 5.4 is no more considered here thanks to the first
comparison of sample means. We could thus analyze a duel-based variant of B-CVTS for arbitrary
bounded distributions.

6.4.2 Quantile Dirichlet Sampling (QDS): truncating the upper tail for logarith-
mic regret with unbounded distributions

Let us consider the family F[b,+∞] for some unknown b ∈ R. A natural way to extend algorithms
designed for F[b,B] (where B < +∞) is to truncate the upper tail of the distributions. We
propose a simple way to do this, by considering (as a parameter of the algorithm) a quantile
α, denoted by qα(ν) for a distribution ν, and a truncation operator Tα that (1) do not change a
distribution below its α quantile, and (2) "summarizes" its upper tail by its expectation, known
as Conditional Value at Risk (CVaR)2. Formally, we obtain

∀A ⊂ [b, qα(ν)] : Tα(ν)(A) = ν(A) , and ∀x > qα(ν) : Tα(ν) ({x}) = α1(x = Cα(ν)) ,

with Cα(ν) = E[X|X > qα(ν)]. We then propose Quantile Dirichlet Sampling (QDS), that com-
putes the index of a challenger (say arm k, with observations Yk) during a duel as follow: (1)
apply Tα to the empirical distribution, (2) compute the bonus B(Yk, µ̂, ρ), and (3) re-sample
the truncated empirical distribution with weights drawn according to Dir(1, . . . , 1, nα) where
parameter nα is for the weight used with the empirical CVaR, and is the number of observations
used to compute it (to avoid a bias in the re-sampled mean). This procedure is summarized

2Defined on the upper tail, contrarily to Chapter 5 where we consider the lower tail
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in Algorithm 6.4. If presenting this algorithm and its guarantees is rather technical, its imple-
mentation is in fact quite simple. Furthermore, the computation time of these steps can be
optimized in practice (keeping in memory the sorted data, quantile and CVaR).

1 Input: Sorted data Y = (Y1 ≤ · · · ≤ Yn), leader mean µ̂, quantile α, ρ

2 Set quantile index nα = ⌈nα⌉/n

3 Set Cα = 1
n−nα+1

∑n
i=nα

Yi ; ▷ Compute the CVaR := average of largest data

4 Draw w = (w1, . . . , wnα+1) ∼ Dir((1, . . . , 1,nα, 1)) ; ▷ Parameter 1 except for wnα

5 return
∑nα−1
i=1 wiYi + wnαCα + wnα+1B(Y, µ̂, ρ)

Algorithm 6.4: Quantile Adaptive Dirichlet Sampling re-sampled mean

We can analyze this algorithm for the subset of distributions

Fα
[b,+∞) = {ν ∈ F[b,+∞) : ∀µ > Eν(X),KF[b,+∞)

inf (ν, µ) ≥ KMk
inf (Tα(ν), µ)} ,

where Mk = max{qα(νk), µ1 + ρEνk
[(µ1 − X)+]}, and the second Kinf is taken on the family

F[b,Mk] (using previously introduced notations). Although technical, this condition essentially
states that the bandit problem taken on the complete family F[b,+∞) is no harder than an
alternative bandit problem considering the truncated distributions and a bounded family, with
an upper bound depending on the 1 − α quantile and the leverage ρ of the exploration bonus.

Theorem 6.15 (Logarithmic Regret of QDS). Consider a bandit model ν = (ν1, . . . , νK) satis-
fying ∀k, νk ∈ Fα

[b,+∞) for some b > −∞ (lower-bounded support) and a known α > 0. Then, for
any ε0 > 0 small enough QDS with any parameters α′ < α and ρ ≥ (1 + α′)/α′2 satisfies

E[Nk(T )] ≤ log T

KMC
k

inf (Tα(νk), µ1) − ε0

+ O(1) ,

with MC
k = max{Cα(νk), µ1 + ρEν [(µ1 −X)+], and Tα is the truncation operator we defined.

This result captures the continuum between bounded and light-tailed distributions. In
our opinion, it sheds new light on the interpretation of infeasability results of e.g Ashutosh
et al. (2021): logarithmic regret can be achieved without specifying the tail with precise parameters,
but some simple realistic assumptions (e.g avoiding very small mass at a very large value, for
instance after some quantile) can be enough to avoid pathological distributions that make little
sense in practice.
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Remark 6.16. The restriction to the semi-bounded case b > −∞ is due to our proof technique,
based on a discretization of the support of the truncated distribution (see next section). Note that
the actual value of b is not known by the algorithm. This is intuitive since KF−∞,B

inf = KFb,B

inf for
all b, B ∈ R, as proved in Theorem 2 of (Honda and Takemura, 2015). Different theoretical tools
could allow to prove a logarithmic regret for QDS in the doubly unbounded case, possibly with a
symmetric treatment of the two tails. We leave this extension for future work.

One may wonder whether the couple quantile condition/truncation is necessary to achieve
theoretical results as well as good practical performance. Our last algorithm tackle this question.

6.4.3 Robust Dirichlet Sampling (RDS) for light-tailed distributions

We call Robust Dirichlet Sampling (RDS) the algorithm with bonusB(Y, µ, ρn), where the leverage
ρn is a function of the sample size n = |Y|. We prove that while being very simple, RDS
achieves a robust sub-linear regret bound when each arm comes from any unknown light-tailed
distribution, that we define following 6.1 as the family

Fℓ = {ν ∈ F(−∞,+∞) : ∃λν > 0, ∀λ ∈ [−λν , λν ],Eν [exp(λX)] < +∞} .

RDS is the simplest instance of Dirichlet Sampling that we propose, as can be seen in
Algorithm 6.5, and is also the one with the less restrictive family of distributions.

1 Input: Data Y = (Y1, . . . , Yn), mean µ, (ρn)n∈N
2 Draw w = (w1, . . . , wn+1) ∼ Dn+1

3 return
∑n
i=1wiYi + wn+1B(Y, µ, ρn)
Algorithm 6.5: Robust Dirichlet Sampling re-sampled mean

The regret bound of RDS only depends on the choice of an increasing sequence ρn satisfying
ρn → +∞ and ρn = o(

√
n), and Theorem 6.17 shows that RDS attain slightly larger than

logarithmic regret under very general assumptions.

Theorem 6.17 (Robust regret bound for RDS). Let ν = (ν1, . . . , νK) a bandit model satisfying
νk ∈ Fℓ for all k. Consider any increasing sequence (ρn)n∈N with ρn → +∞, ρn = o(n). Then,
for T large enough the expected number of pull of any sub-optimal arm k in RDS is upper bounded
by

E[Nk(T )] ≤ nη,ε0
k (T ) + O(1) ,
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where for any η ∈ (0, 1], ε0 > 0, nη,ε0
k (T ) is the sequence satisfying

nη,ε0
k (T ) = log T

η(∆k−ε0)(Mk,n
η,ε0
k

(T ) − µ) ,

with
Mk,n=max

{
F−1
k

(
exp

(
− 1
n2(logn)2

))
, ρn

}
.

In particular, if ρn = O(logn) then E[Nk(T )] = O(log(T ) log log(T )) for any light-tailed
distribution νk ∈ Fℓ.

The sequence Mk,n is a high probability upper bound of the maximum of n observa-
tions from Fk, that we discuss in next section. For light-tailed distributions, it holds that
Mk,n = O(logn) (using Jensen inequality as in the proof of Theorem 2.5 in (Boucheron et al.,
2013)). Hence, choosing ρn = O(logn) we can further obtain the simpler upper bound in
O(log(T ) log log(T )). This slightly larger-than-logarithmic rate is a consequence of Lemma 6.11.
In our opinion this is a small cost compared to the generality of the guarantees of RDS. We call
the algorithm robust because these theoretical guarantees are obtained on the broad class of
light-tailed distributions, without any additional assumption. We recommend the leverage
function ρn = O(

√
log(1+n)), which corresponds to the growth rate of the maximum of sub-

Gaussian samples and is empirically validated (see Section 6.6). We emphasize that RDS thus
avoids all hyperparameter tuning, a desirable feature for the practitioner with little information
on the problem at hand. Furthermore, in the next section we show that this algorithm performs
very well in practice despite its non-logarithmic asymptotic guarantees.

6.5 Proof Sketch

In this part we provide a general overview of the proofs of Theorem 6.13, 6.15 and 6.17. The
full proofs can be found in Appendix D of (Baudry et al., 2021c). Here, we try to highlight the
key ingredients that lead to the results provided in the previous section.

We recall that the three family of distributions are light-tailed and hence satisfy assump-
tion 6.3. So, starting from Corollary 6.7 our objective is to derive the dominant term nk(T ) and
to prove that Assumption 6.6 is satisfied in the three examples we consider.

6.5.1 Deriving the dominant term: characterizing nk(T )

In this section we consider an arm k ∈ {2, . . . ,K}, of distribution νk. We first derive a general
proof sketch that will be used for each algorithm. The idea is simple, and inspired by the proof
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for B-CVTS in Chapter 5: we want to find a large probability confidence ball for the empirical dis-
tribution of νk in which the BCP can be conveniently upper bounded. Lemma 6.18 summarizes
this principle.

Lemma 6.18. Assume that νk satisfies Assumption 6.3, and denote by Yk
n = (Y k

1 , . . . , Y
k
n ) a set

of n random variables drawn from νk. For a given Dirichlet sampled mean µ, assume that for any
n ∈ N there exists a subset Bk,n ⊂ Rn satisfying

1. There exists a strictly increasing function fk such that for any threshold µ̂ < µ1,

Yk
n ⊂ Bk,n ⇒ P

(
µ(Yk

n, µ̂) ≥ µ̂
)

≤ exp (−fk(n,Bk,n, µ̂)) .

2.
∑T−1
n=1 P

(
Yk
n /∈ Bk,n

)
= O(1).

If these two conditions hold, then one can obtain

nk(T ) = mk(T ) + O(1) ,

where for any ε > 0, mk(T ) is the sequence satisfying fk(nk(T ),Bk,n, µ1 − ε) = log T .

Proof. As in several proofs presented in previous chapter our initial upper bound is

nk(T ) ≤ mk(T ) + E
[
T−1∑
r=1

1(k ∈ Ar+1, ℓ(r) = 1, Nk(r) ≥ mk(T ))
]
,

for any sequence mk(T ). We then consider the remaining term according to the "good" event

Grk =
{

Yk
Nk(r) ∈ Bk,Nk(r)

}
∩
{
Ȳ1,N1(r) ≤ µ1 − ε1

}
,

where ε1 > 0. Without detailing the steps (that are similar to those for B-CVTS), we claim that
under the first assumption of Lemma 6.18 this event contribute to the upper bound of nk(T )
with

CG = T exp
(
−fk(mk(T ),Bk,mk(T ), µ1 − ε1)

)
.

Then, if G is not true one of the two events it contains does not hold. The first additional
term (empirical distribution of k not in the ball) is

CḠ,1 :=
T−1∑
r=1

T−1∑
n=mk(T )

E
[
1(k ∈ Ar+1, Nk(r) = n,Yk

Nk(r) /∈ Bk,Nk(r))
]
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≤
T−1∑

n=mk(T )
P
(
Yk
n /∈ Bk,n

)
,

and the second term (empirical mean of the leader over-estimated) can be upper bounded
by CḠ,2 :=

∑T−1
r=1 re

−⌈r/K⌉I1(µ1−ε1) = O(1), using the concentration of the leader and a union
bound on its sample size.

Combining these results, we obtain the following bound on nk(T ) for arm k as

nk(T ) ≤ mk(T ) + Te−fk(mk(T ),Bk,mk(T ),µ1−ε1) +
T−1∑

n=mk(T )
P
(
Yk
n /∈ Bk

)
+ O(1) .

If the assumptions of the lemma are satisfied and mk(T ) is chosen as suggested the result
is proved.

The objective is then to find the proper confidence ball Bk,n and associated rate function fk
under the assumptions of the three theorems considered.

BDS As the distributions are bounded Bk,n can be chosen as a Levy ball, as in Chapter 5.
Furthermore, Lemma 5.8 provides

Pw∼Dn+1

(
n∑
i=1

wiYi + wn+1BBDS(Y, µ̂) ≥ µ̂

)
≤ e−(n+1)KBBDS(Y,µ̂)

inf (Fk,n,µ̂) ,

where BBDS denotes the exploration bonus of BDS and Fk,n is the empirical distribution asso-
ciated to the data points and the bonus (counting as one observation). Setting mk(T ) as the
dominant term of the theorem and using the continuity of the Kinf for bounded distributions
(in the upper bound too) provides the result.

QDS We form Bk,n with a Levy ball around the true distribution, that we augment with the
concentration of the bonus and CVaR,

Bk,n = {Y ∈ Rn : dL(νY , νk) ≤ ε, |B(Y, ρ, µ) −Bk,ρ,µ| ≤ ε1, Cα(νY) ≤ Cα(νk) + ε2} ,

for some ε > 0, ε1, ε2 > 0, denoting by νY the empirical distribution associated with a set Y ,
Bk,ρ,µ = µ + ρ × Eνk

[(µ−X)+]. If X ∼ νk, (µ − X)+ is also a light-tailed variable, so the
corresponding term in the upper bound of nk(T ) is an additive constant. For the CVaR, we rely
on the concentration of Wasserstein metrics for light-tailed distribution, using that (Lemma 2
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from (Bhat and L.A., 2019b)) for two distributions ν and ν ′ it holds that

|Cα(ν) − Cα(ν ′)| ≤ 1
1 − α

W1(ν, ν ′) .

Then, Theorem 2 from (Fournier and Guillin, 2015) provides a concentration inequality for
the Wasserstein distance. Combining these elements we obtain

+∞∑
n=1

PYn (Yn /∈ Bk,n) < +∞ .

We can now consider the BCP under Yn ∈ Bk,n. The upper bound of lemma 5.8 still holds,
even if it is used with the truncated distribution. Hence, the QDS index satisfies

P (µ(Yn, µ̂) ≥ µ̂) ≤ exp
(
−(n+ 1)KMYn

inf (T (νYn), µ̂)
)
.

If Yn ∈ Bk,n, then MYn is upper bounded by

MYn ≤ max (Cα(νk), Bk,ρ,µ) + max(ε1, ε2) ,

We then define MC
k = max (Cα′(νk), Bk,ρ,µ), that is independent of the run of the ban-

dit algorithm. Finally, the definition of the Levy distance ensures that d (νYn , νk) ≤ ε ⇒
d (T (νYn), T (νk)) ≤ ε. Hence, we can use the continuity of KMk

inf in all arguments (including
MYn , see e.g (Honda and Takemura, 2015)) and obtain that for any ε0 we can calibrate ε, ε1, ε2

in order to obtain for any µ̂ ≤ µ1 − ε1

P (µ(Yn, µ̂) ≥ µ̂) ≤ exp
(

−(n+ 1)
(

KMC
k

inf (T (ν), µ1) − ε0

))
,

which gives the first order term of the regret upper bound choosing mk(T ) = log T

K
MC

k
inf (T (νk),µ1)−ε0

in Lemma 6.18.

RDS In this setting, we only need to control the sample Yn through its mean, the "positive
gap" used in the bonus, and a range on its maximum value. Hence, we fix some ε > 0 and
consider

Bk,n =
{

Y ∈ Rn : Ȳn ≤ µk + ε, Z̄n ≤ ∆+
k + ε, σ(Y, µ) ≤ σk,µ + ε,Y+ ∈ [mn,Mn]

}
,

where Y+ the maximum of the set Y , (mn)n∈N, (Mn)n∈N are two fixed sequences, and Z̄n =
1
n

∑n
i=1(µ− Yi)+ is the empirical excess gap.
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We start by claiming that the two conditions {µ(Y) ≤ µk + ε} and {µ(Y+) ≤ ∆+
k + ε} lead

to a constant upper bound, just as in the previous paragraph. To obtain the same result with the
event involving the standard deviation we consider the Wasserstein metric Wp, that is defined
between two distributions ν and ν ′ of real random variables as

Lp(ν, ν ′) = inf
{∫

R×R
|x− y|pξ(dx, dy) : ξ ∈ H(ν, ν ′)

}
,

where H(ν, ν ′) is the set of all probability measures on R × R with marginals ν and ν ′. Then,
the Wasserstein metric Wp(ν, ν ′) is defined as Wp(ν, ν ′) = Lp(ν, ν ′)1/p for p > 1. Two reasons
motivate the use of this metric in our case: 1) concentration inequalities exist for Lp for light-
tailed distribution, and 2) the moments of order p are continuous with respect to the Wasserstein
metricWp (see Theorem 6.9 in (Villani, 2008)). These two properties makeWp a good substitute
for the Levy metric used for bounded distributions. Here we choose W2 as we want to control
moments of order 2, and obtain with the parameters of Theorem 2 of (Fournier and Guillin,
2015) a concentration inequality that is sufficient to conclude.

We now investigate possible values for the sequence mn and Mn that would allow Bk,n to
happen with high probability. As we saw in Chapter 4, the maximum Y+

n of a set of n i.i.d
random variables Yn = (Y1, . . . , Yn) has an explicit distribution, which is (in terms of the cdf
Fk of νk) for any x ∈ R,

PYn∼νn
k

(Y+
n ≤ x) = Fk(x)n .

First we calibrate the termMn, we calibrate it to ensure that P(Y+
n ≤ Mn) ≥ 1 − 1

n log(n)2 , so that

Mn = F−1
k

((
1 − 1

n(logn)2

) 1
n

)
≤ F−1

k

(
exp

(
− 1
n2(logn)2

))
.

This way,
∑

P(Y+
n ≤ Mn) converges. Then we consider mn, and this time we want P(Y+

n ≤
mn) ≤ 1

n log(n)2 to ensure the same convergence guarantees. We obtain

mn = F−1
k

(
1

n(logn)2

1
n

)
= F−1

k

(
exp

(
− logn+ 2 log logn

n

))
.

Combining all these results, we obtain

T−1∑
n=1

PYn∼νn
k

(Yn /∈ Bk,n) = O(1) .

We now use Lemma 5.8 and the fact that for any η ∈ [0, 1) and x ∈ (−∞, η], − log(1 − x) ≤
x+ 1

1−η
x2

2 . Denoting MYn = max
(
Ȳn, B(Yn, ρn, µ)

)
, Yn+1 = B(Yn, ρn, µ) and using the repre-

sentation of Dirichlet samples as normalized exponential variables, the Chernoff inequality

202



6.5 Proof Sketch

provides

Pw∼Dn+1

(
n∑
i=1

wiYi + wn+1B(Yn, ρn, µ) ≥ µ

)

≤ exp
(

−
n+1∑
i=1

log
(

1 − η
Yi − µ

MYn − µ

))

≤ 1
1 − η

exp
(

−
n∑
i=1

log
(

1 − η
Yi − µ

MYn − µ

))

≤ 1
1 − η

exp
(

n∑
i=1

(
η
Yi − µ

MYn − µ
+ η2

2(1 − η)

(
Yi − µ

MYn − µ

)2
))

= 1
1 − η

exp
(

−nη ∆̄n

MYn − µ
+ n

η2

2(1 − η)
σ̄n(µ)2

(MYn − µ)2

)
,

where ∆̄n = 1
n

∑n
i=1 µ− Yi, σ̄2

n(µ) = 1
n

∑n
i=1(Yi − µ)2.

We recall that we consider this upper bound under the event Yn ∈ Bk,n, which ensures that
1) Ȳn ∈ [mn,Mn] with the sequences we defined, 2) ∆̄n ≥ µ − µk + ε, 3) the bonus is upper
bounded by µ+ ρn × (∆+

k + ε), and 4) the quadratic deviation satisfies σ̄n(µ) ≤ σk,µ + ε. For
any ε0 > 0, if we further assume that Mn = o(m2

n), for any n large enough these results finally
provide

P (µ(Yn, µ) ≥ µ) ≤ 1
1 − η

exp
(

−nη ∆k − ε

max(Mn, Bn) − µ
+ n

η2

2(1 − η)
(σk,µ + ε)2

(mn − µ)2

)

≤ 1
1 − η

exp
(

−nη ∆ − ε0
max(Mn, Bn) − µ

)
,

where Bn = µ+ ρn (Eνk
[(µ−X)+] + ε). The condition Mn = o(m2

n) is satisfied for light-tailed
distributions, as they generally have at most a poly-logarithmic growth of the maximum (e.g
log(n) for exponential tails,

√
logn for gaussian tails, . . . ) and so Mn and mn are actually of

the same order of magnitude. We then recover all the terms of Theorem 6.17 by matching the
exponent of the upper bound with − log T .

6.5.2 Proof of sufficient exploration

In the following we denote by En the term to upper bound to prove Assumption 6.6.

BDS We use the hypothesis P([B − γ,B]) ≥ p and the second component of the bonus,
Ȳn + γ := max Yi + γ along with Corollary 6.12 to obtain
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En ≤EYn

[
1(µ(Yn) ≤ µ)(1(Ȳn ≤ B − γ) + 1(Ȳn ≥ B − γ))

P (µ̃(Yn, µ) ≥ µ)

]

≤ (1 − p)ne
n
ρ︸ ︷︷ ︸

En,1

+EYn

[
1(µ(Yn) ≤ µ)1(Ȳn + γ ≥ B)

P (µ̃(Yn, µ) ≥ µ)

]
︸ ︷︷ ︸

En,2

.

The two terms correspond to the two possible expressions for the bonus. The term En,1

gives the sufficient condition for the tuning of ρ in Theorem 6.13 with

ρ >
−1

log(1 − p) ⇒
+∞∑
n=1

En,1 = O(1) .

In the second term, the exploration bonus is larger thanB, so we can use the proof technique
of Riou and Honda (2020), based on a discretization scheme and on Lemma 5.10. Hence,∑T−1
n=1 En = O(1) and so Assumption 6.6 is satisfied by BDS if ρ satisfies the condition of

Theorem 6.13.

QDS We use the assumption that rewards are semi-bounded with a range [b,+∞] to apply
again the proof based on discretization of Riou and Honda (2020). We first find a value y
and a discretization step η (unknown to the algorithm) such that truncating the values Yi to
min(Yi, y), and truncating each Yi < y to Ỹi = η

⌊
Yi
η

⌋
preserves the ranking of the arms. We

denote by S the number of items, and β ∈ NS the vector of counts for each item. We directly
use Lemma 5.10 and for any β ∈ NS : ||β||1 = n we want to lower bound

Kβ = KL(β/n, ν̃1) − Kmβ

inf (β/n, µk) ,

where ν̃1 denote the discretized/truncated version of ν1 and mβ denotes the maximum
between the largest item with a non-zero coefficient in β and the exploration bonus.

We recall that QDS summarizes the information larger than the empirical (1 − α)-quantile
by their mean (i.e the CVaRα of the empirical distribution). The truncation in y does not change
that, and will simply makes this quantity smaller which will itself makes the BCP smaller. We
use the result from Honda and Takemura (2010) (proof of Theorem 7) stating that for any β

Kmβ

inf (β/n, µk) ≤ ∆̄n

mβ − µ
≤ ∆̄n

ρ∆̄+
n

≤ 1/ρ ,
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since mβ is at least larger than the exploration bonus. This means that for any ξ > 0 it holds
that KB ≥ ξ on all the sub-space of empirical distributions satisfying KL(β/n, ν̃1) ≥ (1 + ξ)/ρ.
We now use Pinsker inequality to link the KL divergence with the total variation δ, in the
sub-space where KL(β/n, ν̃1) ≤ (1 + ξ)/ρ,

δ(β/n, ν̃1) ≤
√

1 + ξ

2ρ .

If this quantity is small, we can control the probability of each measurable event. In
particular, we want the quantile used by the algorithm to be strictly larger than the (1 − α)-
quantile of the assumption of Theorem 6.15. If the parameter of the condition of the theorem is
α, and we run the algorithm with a parameter α′ < α, we know that with proper tuning of ρ
we will have Fk,n(q1−α(Fk)) < 1 − α. This means that the true quantile q1−α(νk) is present in the
set Yn and is not truncated by the algorithm. In particular, if ρ ≥ 1+α′

α′2 this is satisfied, and finally

KL(β/n, ν̃1) − Kmβ

inf (β/n, µk) ≥ KF
inf(β/n, µ1 − η) − Kq1−α′

inf (β/n, µk)

≥ Kq1−α

inf (β/n, µ1 − η) − Kq1−α′
inf (β/n, µk)

≥ Kq1−α′
inf (β/n, µ1 − η) − Kq1−α′

inf (β/n, µk)

≥ κ ,

for some κ > 0 and thanks to the definition of the family Fα
[b,+∞]. This result concludes the

proof as it ensures that Assumption 6.6 is satisfied by the QDS algorithm on Fα
[b,+∞].

RDS Corollary 6.12 gives a lower bound of the BCP in e− n
ρn . We directly use this result and

obtain

En ≤ e−n(I1(µ)−1/ρn) ,

and for n large enough ρn > 2I1(µ), which is sufficient to obtain the convergence of
∑+∞
n=1En.

Hence, for RDS the increasing exploration bonus directly provides larger-than-logarithmic
exploration.
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6.6 Experiments: crop-farming and synthetic problems

6.6.1 Application in agriculture: bandits with DSSAT

We benchmark our algorithms using the DSSAT crop yield simulator3 (Hoogenboom et al.,
2019), to emulate a simplified version of the decision problem in agriculture we introduced in
the preamble of this manuscript. We consider the same use-case as in Section 5.6.2 of Chapter 5.
More specifically, we model the problem of selecting a planting date for maize grains among 7
possible options, everything else being equal, as a 7-armed bandit. We recall that the resulting
distributions incorporate historical variability as well as exogenous randomness coming from a
stochastic meteorologic model. We illustrate this in Figure 6.1 with their histogram computed
on 106 samples. They are typically right-skewed, multimodal and exhibit a peak at zero
corresponding to years of poor harvest, hence they hardly fit to a convenient parametric model
(e.g SPEF/sub-Gaussian. . . ). This problem is the same as the one studied in the previous
chapter, but this time we consider standard regret minimization instead of CVaR bandits.

0 3013 9259 0 3271 8791 0 3630 8095 0 3397 8119

0 3179 8281 0 3317 8656 0 3504 7922

Figure 6.1 – Distribution of simulated dry grain yield (kg/ha) for seven different planting dates over
106 samples. Reported on the x-axis are the distribution minimum, mean and maximum values. In the
setting considered in this chapter the optimal arm is the third one (mean 3630 kg/ha).

Benchmarks A natural choice for the learner would be to use algorithms adapted for bounded
distributions with known support. Indeed, one could argue that crop yields are fundamentally
bounded by a very large value, that can be provided with some expert knowledge. However
this method may have limits when the upper bound cannot be estimated accurately (few data,
new environment, . . . ), as a conservative bound can have a cost on the regret. For this reason,

3Decision Support System for Agrotechnology Transfer, https:// dssat.net/
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we believe that the novel Dirichlet Sampling algorithms we introduce in Section 6.4 are a good
alternative choice for this problem. In particular, the three algorithms we propose in this
chapter are relevant in this setting: BDS keeps the bounded-support hypothesis but introduces
the possible uncertainty on the bound, while the light-tailed hypothesis of RDS and the quantile
condition of QDS look reasonable.

We compare the three DS algorithms with some of the algorithms introduced in Section 1.1
that assume bounded distributions. Under this assumption one can use classical algorithms
such as UCB1 (Auer et al., 2002a) or Thompson Sampling with Beta prior using the binarization
trick introduced in (Agrawal and Goyal, 2012a). These algorithms enjoy logarithmic regret
without the optimal rate of (Burnetas and Katehakis, 1996). We also compare DS with two
optimal algorithms: IMED (Honda and Takemura, 2015) and NPTS (Riou and Honda, 2020).
We recall that the former is based on the explicit calculation of the Kinf function for bounded
distributions. These algorithms require the explicit knowledge of an upper bound on the
support of the arms distributions. To represent the fact that a tight bound is sometimes
unknown to the practitioner (uncertain environment, possibility of yet unobserved black swan
events...) we run two variants of the above algorithms, one with the exact maximum yield
across all simulated data, which we believe is a strong prior information, and one with the same
bound inflated by 50%, which we deem a conservative estimate. Finally, we include RB-SDA
(presented in Chapter 2) that requires no parameter and is then agnostic of the choice of the
upper bound. However, its theoretical guarantees are not clear here.

Tuning For BDS we choose the parameters ρ = 4, γ = 3500, corresponding to p ≈ 20% in the
hypothesis of Theorem 6.13, which is conservative in our example. For QDS, we set ρ = 4 to be
able to compare with BDS and a quantile 95%. Finally for RDS, we choose ρn =

√
log (1+n),

which enters into the theoretical framework of Theorem 6.17.

Results We report the performance of DS algorithms and their competitors on the bandit
problem using the DSSAT simulator we introduced in the two settings we propose: the first
with a tight upper bound, and the second with a "conservative" estimate (1.5 times larger).

We present the empirical regret of the algorithms for T = 104 and 5000 simulations in
Figure 6.2. The first striking result is that the three DS algorithms perform similarly to the
optimal algorithms using the exact upper bound (IMED and NPTS), and clearly outperform the
non-optimal ones (UCB1 and binarized TS). The poor performance of non-optimal algorithms
hints that this particular bandit instance is not easy and requires more sophisticated methods.
Furthermore, Table 3 in (Baudry et al., 2021c) shows that if RB-SDA achieves good performance,
it also exhibits larger dispersion than other methods (95% quantile is 0.99 × 106, standard
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deviation is 0.26 × 106). It is not clear that RB-SDA operates in its theoretical scope in this
setting.

0 5K 10K

0

1M

2M
UCB1
TS (binarization)
empirical IMED
NPTS
RB-SDA
BDS
RDS
QDS

0 5K 10K

0

1M

2M

UCB1
TS (binarization)
empirical IMED
NPTS
RB-SDA
BDS
RDS
QDS

Figure 6.2 – Average regret on 5000 simulations and horizon T = 104. Dashed lines correspond to
5%-95% regret quantiles. UCB1, Binarized Thompson Sampling, Empirical IMED and NPTS are run
with exact upper bounds around 1.5 × 104 kg/ha (left) and the conservative upper bound 1.5 × 104

kg/ha (right). BDS: ρ = 4. RDS: ρn =
√

log(1+n). QDS: ρ = 4, α = 5%.

For these reason, we know focus on the comparison with IMED and NPTS only, plotting the
regret of a selection of algorithms in Figure 6.3 for better visualization. Interestingly, RDS is the
overall winner of the experiment considering the two settings (tight and conservative bounds).
We see that if Dirichlet Sampling algorithms achieve similar regret to their competitors when the
latter are allowed to use the "exact" upper bound, they compare favorably with the conservative
estimate. Indeed, the performance of NPTS (and to a lesser extent IMED) is deteriorated by
the conservative upper bound. Considering this, RDS seems to be the overall winner in both
experiments. We think this demonstrates the merits of trading-off logarithmic regret (albeit
only by a factor O (log log T )) for finite-time adaptation to the tail behavior via the leverage ρn.
As a side remark, note that our round-based implementation is more efficient than NPTS as it
does not draw random weights for the leader, which is the most costly operation at each round.

0 5K 10K

0

300K

600K

empirical IMED
NPTS
BDS
RDS
QDS

0 5K 10K

0

300K

600K

empirical IMED
NPTS
BDS
RDS
QDS

Figure 6.3 – Average regret on 5000 simulations and horizon T = 104. Dashed lines correspond to
5%-95% regret quantiles. Empirical IMED and NPTS are run with exact upper bounds around 1.5 × 104

kg/ha (left) and the conservative upper bound 1.5 × 104 kg/ha (right).
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6.6.2 Experiments on synthetic data

To further illustrate the properties of DS algorithms, we perform additional experiments on
synthetic examples. First, we test the sensitivity of DS w.r.t its hyper-parameters, and check
that their impact on the performance of the algorithms is moderate. Then, we show the merits
of RDS in case of model mis-specification, inspired the robustness experiments of Ashutosh
et al. (2021). Finally, we consider the case of Gaussian mixtures, a common tool to model non-
parametric distributions via kernel density estimation, and show that they fit the scope of DS but
not that of usual bandit algorithms.

Sensitivity of BDS to its parameters We study the sensitivity of BDS to its parameter ρ.
Theorem 6.13 suggests to scale the exploration bonus Bρ,γ as ρ = −1/ log(1 − p), which is a
proxy of an upper bound of 1/ (1 − F (µ1)) in Lemma 6.9. We believe this bonus to be rather
conservative when p is small and the distributions considered exhibit little skewness; as an
example, if a distribution is such that at most 25% of its mass is located to the right of the
optimal mean reward µ∗, ρ ≈ 4 should be a suitable tuning.

To investigate this, we consider a toy bandit instance with two arms following uniform
distributions on [0, 1] and [0.2, 0.9] respectively (note that the upper bound is different for each
arm yet the distribution of mass near their respective bounds is the same, thus fitting the setting
of BDS). These distributions are shown in Figure 6.4, and in particular their means are 0.5
and 0.55 respectively. For γ = 0.1, we compute the expected regret of BDS obtained with the
theoretical tuning ρ = −1/ log(1 − p) ≃ 9.5, and compare it with other choices of ρ. Figure 6.4
shows that only the most extreme tuning ρ = 50 exhibits significant, albeit still sublinear, regret.
Small deviations from the theoretical tuning yields similar regret, the heuristic ρ = 4 discussed
above being slightly better, which tends to confirm our belief that the analysis of Theorem 6.13
can be sharpened. Note that the exploration incentive given by ρ is necessary since smaller
values (e.g ρ = 0.1) tends to accumulate more regret.

0.0 0.2 0.4 0.6 0.8 1.0

0 = 0.50
1 = 0.55

0 5K 10K

0

25

50
= 0.1
= 1
= 2
= 4

9.5 (theory)
= 50

Figure 6.4 – Left: bandit with two uniform arms U(0, 1) and U(0.2, 0.9) (104 samples each). Right:
average regret on 5000 simulations and horizon T = 104 of BDS for various values of ρ.
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Robustness for light-tailed bandits: comparison with R-UCB-LT The study of statistically
robust bandit algorithms is fairly recent, and as such is yet to have well-established benchmarks.
Ashutosh et al. (2021) introduce R-UCB-LT, an adaptation of the standard sub-Gaussian UCB to
enforce robustness w.r.t light-tailed distribution. We reproduce the setting of their experiment,
namely two Gaussian arms N (1, 1) and N (2, 3), and compare several variants of both R-UCB-
LT and RDS against a misspecified UCB1 (the misspecification takes the form of an overly
optimistic 1-sub-Gaussian assumption, while the second arm is only

√
3-sub-Gaussian). Both

R-UCB-LT and RDS rely on a slowly growing exploration bonus, denoted respectively by f
and ρ; we run both algorithms with f and ρ equal to log2, log and

√
log.

Results are reported in Figure 6.5. As expected, the misspecified UCB1 exhibits much faster
regret growth than the robust algorithms. However, RDS seems to outperform R-UCB-LT,
the best average regret being achieved by RDS with ρn =

√
log(1+n) and ρn = log(1+n).

Furthermore, the regret of RDS appears to be somewhat monotonic (slightly increasing) with
respect to the hyperparameter ρ, and the best results are achieved by the one matching the
asymptotic growth rate of the maximum of a i.i.d Gaussian samples, as recommended by
Theorem 6.17. On the other hand, the best version of R-UCB-LT is obtained with f ≈ log (for
which we do not find a theoretical intuition) and the performance gap is significant when other
bonuses are considered. We also tested R-UCB-LT with powers of log log with similar results;
we do not report these curves for the readability of the figures. In light of these results, RDS
seems less sensitive to its parameter choice than R-UCB-LT.

10 5 0 5 10 15

0 = 1.00
1 = 2.00

0 25K 50K

40

400

4K

UCB1
R-UCB-LT log2

R-UCB-LT log
R-UCB-LT log
RDS log2

RDS log
RDS log

Figure 6.5 – Left: Gaussian arms N (1, 1) and N (2, 3) (5 × 104 samples each). Right: average regret (in
log scale) on 5000 simulations and horizon T = 5×104. UCB1 runs assuming a 1-sub-Gaussian instance.

Gaussian Mixture Many real-world situations (loss profile of a portfolio of financial assets,
crop yields, statistics of heterogeneous populations...) exhibit multimodal distributions. The
Gaussian mixture model is perhaps the simplest example of such distributions and is ubiquitous
in many areas of machine learning and engineering (speech recognition, clustering...), in
particular as a nonparametric model for kernel density estimation. Still, to the best of our
knowledge, it escapes the scope of current optimal bandit methods as it is neither bounded
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nor SPEF. Thanks to the different sets of assumptions in which they operate, both RDS and
QDS are eligible algorithms to tackle the problem of sequential decision-making in a Gaussian
mixture environment, at the cost of slightly larger-than-logarithmic regret and slightly lower
Kinf rate respectively.

We consider two arms distributed as a 50%-50% independent mixture of N (−0.3, 0.52)
and N (1.3, 0.52) and a 10%-80%-10% independent mixture of N (−1.5, 0.52), N (0.6, 0.52) and
N (2.5, 0.52). Note that both mixtures have total variance equal to 0.52. Due to the lack of theo-
retically grounded benchmark, we run three SPEF algorithms (kl-UCB, IMED and Thompson
Sampling) assuming the arms belong to the SPEF of Gaussian distributions with fixed variance
0.52. This is an example of model misspecification.

We run RDS with ρn =
√

log(1+n), which matches the asymptotic growth rate of the
maximum of i.i.d Gaussian samples, and QDS with α = 5%, ρ = 4. Note that the use of QDS
in this context is technically out of scope of Theorem 6.15 since Gaussian mixtures are not
lower bounded; we believe however that this is an artifact of our proof technique that could be
avoided with a finer analysis.

Results are reported in Figure 6.6. Both RDS and QDS outperform other existing methods;
in particular, among the misspecified SPEF algorithms, only IMED exhibit comparable regret
growth. This good performance of IMED is remarkable (across all our experiments), but we
do not have the intuitions to explain its better consistency w.r.t for instance TS or kl-UCB.
We finally note that as this bandit problem is complicated (small optimality gap, non-SPEF
distributions), all algorithms have a relatively large variance.
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Figure 6.6 – Left: Gaussian mixture arms (104 samples each). Right: average regret on 5000 simulations
and horizon T = 104. kl-UCB, IMED and Thompson Sampling are run assuming Gaussian arms with
same variance as the mixtures. RDS: ρn =

√
log(1+n). QDS: ρ = 4, α = 5%.
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Chapter 7

Conclusion and Perspectives

In this thesis we proposed novel algorithms to tackle several variants of the Multi-Armed
Bandit problem, motivated by a case-study in agriculture. This application of bandits made us
consider specifically the regret minimization setting, where the performance of the algorithm is
evaluated throughout the whole duration of the experiment. In the preamble of this manuscript
we introduced some of the challenges raised by this real-world problem, and among them two
questions were particularly central in our works. The first one is about deriving algorithms with
strong theoretical guarantees and practical performance while using as little prior knowledge
as possible on the arms’ distributions. The second question that we examined with care is
the evaluation of bandit algorithms, that led us to consider alternative performance metrics
to the expected sum of reward. This point is central for real-world applications of machine
learning algorithms, where the agents involved may be risk-averse. This led us to consider
CVaR bandits, where the learner wants to pull as often as possible the arm with the largest
Conditional Value at Risk for some risk level α, and its limit case when α → 0 that we related to
the Extreme Bandit problem. Finally, to make algorithms more practical we also considered the
performance of our approaches to incorporate non stationary rewards or batch feedback, that are
commonly encountered in real problems. We developed two families of algorithms to tackle
these questions, that we view as complementary approaches with their own merits and scopes.

7.1 Sub-Sampling Dueling Algorithms (SDA)

The family of algorithms considered in Part I of this thesis is based on the principle of pairwise
comparisons between arms, that we call duels, where the arm that has been the most selected
(leader) competes against each other arm (challengers) with sub-samples of its observations.
The idea is that playing a variety of duels with "independent" sub-samples from the leader
gives a fair chance for an under-sampled challenger to recover from potentially bad first rewards.
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The algorithms that we proposed are inspired by BESA (Baransi et al., 2014) and SSMC (Chan,
2020), bridging the gap between the two approaches and avoiding some of their shortcomings.

In Chapter 2 we introduced in detail the SDA framework, and proposed several examples
of sub-sampling algorithms, for instance Sampling Without Replacement (WR-SDA), Random
Block Sampling (RB-SDA), or Last Block Sampling (LB-SDA). While WR-SDA matches BESA for
two arms, RB-SDA and LB-SDA are closer in spirit to SSMC by using sequences of successively
collected data, that we call blocks of observations. Hence, we call these sub-sampling algorithms
Block Samplers. Our analysis can be divided in two parts. We obtained a first upper bound on
the number of pulls of each sub-optimal arms for SDA using a Block Sampler, assuming only
that the empirical means concentrate around the true means with an exponential rate. This
property is quite general, as it is for instance satisfied by any light-tailed distribution. This upper
bound showcases a term in O(log(T )) that would ideally be the dominant term of the upper
bound, and the term

∑T−1
r=1 P(N1(r) ≤ C log(r)) for a constant C, that sums the probability that

the best arm (denoted by arm 1 for simplicity) is under-sampled. In a second part of the analysis,
we showed that these probabilities are small if:

1. The sub-sampling algorithm allows the arms to play a sufficient diversity of duels

2. Playing many "diverse" duels is enough to avoid under-exploration of the best arm: it
must be unlikely that that the best arm loses a very large number of duels against a
sub-optimal arm, even if its first draws were unlucky.

We formalized these two intuitions, that allow to conveniently separate the properties that
need to be satisfied by the sub-sampling algorithm (first statement) and by the arms’ distribu-
tions (second statement). We then established that the Last Block and Random Block samplers
are suitable sub-sampling algorithms, before exhibiting a sufficient condition (Assumption 2.20)
on the arms’ distributions to obtain logarithmic regret for SDA. Intuitively, this result states that
sub-sampling works if obtaining "low" rewards is more likely for the sub-optimal arms than
for the best arm. We further showed that this assumption holds for some widely used families
of distributions, such as Single Parameter Exponential Families (SPEF) or some models where a
reward is obtained by adding a random noise (whose distribution is common for all arms) to the
mean. In the former case LB-SDA and RB-SDA are even asymptotically optimal, in the sense that
their regret upper bound matches the lower bound of Lai and Robbins (1985). Strikingly, these
results hold without using any information on the arms’ distributions for the implementation of
the algorithms. Furthermore, their practical performance backs up the theory, and we showed
that the instances of SDA introduced perform comparably to state-of-the-art bandit algorithms
in many settings.

Considering these promising results, we decided to study possible extensions of these
algorithms. In particular, in Chapters 3 and 4 we chose to work with LB-SDA due to its
simplicity and low computational cost. In Chapter 3 we analyzed two variants of this algorithm
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using a limited memory, i.e that do not keep in memory all the rewards collected, avoiding
the main drawback of approaches based on sub-sampling. We first showed that a variant of
LB-SDA with a poly-logarithmic memory in terms of the time horizon has the same asymptotic
performance as the vanilla LB-SDA, allowing for a significant reduction of the memory usage
(initially linear in the time horizon). Secondly, we proposed a natural adaptation of LB-SDA for
non-stationary environments, equipping it with a sliding window. We proved that the resulting
SW-LB-SDA algorithm achieves similar theoretical guarantees as comparable benchmarks
(such as Sliding Window UCB), but in potentially broader settings where the mean of the
distributions would not be the only feature evolving with time. In our experiments, we showed
the interest of this approach with a simple example with Gaussian arms with both evolving
means and variance: while the competitors require either to know the variance during each
phase (strong knowledge) or at least an upper bound of possible variances (weaker knowledge,
but deteriorated performance when the variance is actually smaller), SW-LB-SDA adapts
naturally to changes. Hence, we believe that this adaptation of LB-SDA shows the potential of
fully non-parametric algorithms in bandits.

Finally, LB-SDA inspired us to develop novel algorithms for Extreme Bandits, that we in-
troduced in Chapter 4. We replaced the comparison of empirical means in previous chapters
by the comparison of a robust estimator of the "heaviness" of a tail, that we call Quantile of
Maxima (QoMax). We first proposed an Explore-Then-Commit strategy using this estimator
(QoMax-ETC), before proposing QoMax-SDA, adapting LB-SDA for QoMax comparisons. We
proved strong theoretical guarantees for these two algorithms, under minimal assumptions on
the tails of the distributions. For instance, some of our results are obtained only assuming that
one tail "dominates" (i.e is heavier than) the others asymptotically (we refer to Definition 4.3).
To the best of our knowledge, this is the least restrictive assumption considered in this literature,
showing again the power of non-parametric approaches, and especially of algorithms based on
sub-sampling. Furthermore, both QoMax-based algorithms perform very well in practice in
the experiments that we implemented, and are more efficient than their competitors in terms
of computation and memory cost.

7.2 Dirichlet Sampling

In Part II of this thesis we proposed extensions of the Non-Parametric Thompson Sampling algo-
rithm of Riou and Honda (2020). This algorithm computes noisy evaluations of the empirical
means of each arm by re-weighting their observations with weights drawn from a Dirichlet
distribution, initializing their history with the known upper bound of the distributions’ sup-
port. In Chapter 5 we analyzed an extension of this algorithm for CVaR bandits, that we call
Bounded – CVaR Thompson Sampling (B-CVTS). We proved that this algorithm is asymptotically
optimal when distributions are bounded with a known upper bound, in the sense that the
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expected number of pulls of each sub-optimal arm matches the adaptation of the lower bound
of Burnetas and Katehakis (1996) for CVaR bandits. This result is interesting because B-CVTS
is the first algorithm with such guarantees in CVaR bandits. Indeed, most existing competitors
are adaptations of the optimism in face of uncertainty principle, that requires a careful design of
confidence intervals on the empirical CVaR. Deriving such intervals is still an active research
field, and so existing CVaR bandit algorithms may have sub-optimal performance because
they are not optimally calibrated. For this reason, algorithms such as B-CVTS are particularly
appealing in this setting, and the detailed experiments seem to prove the merits of this alter-
native approach compared to its competitors. In particular, we implemented an experiment
using the DSSAT simulator that emulates the crop-management problem that we introduced
in the foreword of this thesis, and for which B-CVTS clearly outperforms the other algorithms.
In addition, we proved some results that further advocate for the use of B-CVTS in practice:
we first showed that rewards coming in batches do not change the theoretical guarantees of
B-CVTS, and we then showed that using over-estimated upper bound of the support does not
alter significantly the performance of the algorithm. In fact, we even showed that for α < 1 (i.e
not in the "expectation" case) setting this upper bound to +∞ still allows to prove a logarithmic
CVaR-regret.

In Chapter 6 we extended NPTS in a different direction, back in the standard (expectation)
setting, and analyzed possible generalizations of NPTS for alternative assumptions on the arms
that could include unbounded distributions. We carefully analyzed Boundary Crossing Probabili-
ties for the Dirichlet distribution, in order to provide sound theoretical tuning of an exploration
bonus that would replace the support’s upper bound. As the empirical version of this bonus
uses the history of two arms, we proposed to use the leader vs challenger framework introduced
in (Chan, 2020) already used for Sub-Sampling Dueling Algorithms. This algorithmic structure
has computational advantages (we can avoid sampling weights for the most pulled arm), and
allowed us to provide theoretical guarantees for this strategy. We call any algorithm combining
these factors an instance of Dirichlet Sampling (DS). Motivated by our theoretical results, we
proposed three DS algorithms that progressively relax the initial assumption of NPTS on the
distributions’ support: Bounded Dirichlet Sampling (BDS) achieves asymptotic optimality when
the upper bound is unknown but detectable, for Quantile Dirichlet Sampling (QDS) we obtained
a logarithmic regret when the arms satisfy a mild quantile assumption, and Robust Dirichlet
Sampling (RDS) ensures a slightly larger than logarithmic regret when assuming only that the
distributions are light-tailed. Hence, these three algorithms exhibit a theoretical trade-off
between the level of generality of the assumption on the arms and the performance that can
be guaranteed. However, our experiments showed that the three algorithms actually perform
very similarly in practice, advocating for the use of the most robust one.
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7.3 Conclusions on our contributions

We think that the works presented in the two parts of this thesis show the potential of non-
parametric bandit algorithms, which we describe as algorithms that do not use a parametric
model on the distributions for their implementation. For example, the Last Block Sub-sampling
Dueling Algorithm (LB-SDA) and Robust Dirichlet Sampling (RDS) introduced respectively
in Chapter 2 and 6 do not require any information on the arms for their implementation.
As those two algorithms achieve strong theoretical and practical performance, the central
message of this thesis is that using less information on the arms’ distribution is not necessarily
costly in terms of regret and/or practical performance. We even proved that in some cases
the contrary can be true, as in some examples the algorithms are more robust to a potentially
complicated or mis-specified model. We view the two families of algorithms that we studied as
complementary: when the learner knows absolutely nothing on the arms’ distribution except
that they are light-tailed we recommend the use of RDS, if the distributions are bounded and
can exhibit weird shapes (e.g as in Figure 3) NPTS or BDS are suitable, and when the learner
can reasonably assume that Assumption 2.20 holds we recommend using either RB-SDA or
LB-SDA. Indeed, we proved that these algorithms may have optimal theoretical guarantees
even if the learner cannot precisely characterize the family of distributions.

We further showed that these two families of algorithms can be extended to broader settings,
for instance considering alternative performance metrics. One of our main discoveries is that a
simple adaptation of NPTS/DS can lead to optimal algorithms for CVaR bandits, and that
similarly a variant of SDA with a robust estimator can achieve state-of-the-art performance
for Extreme Bandits. Both settings could be of interest in practical use-cases such as our crop-
management problem in agriculture. In the two cases the novel approaches that we introduced
allowed to tackle the problems under a different perspective compared to existing literature, for
instance by avoiding the conservative (and sometimes complicated) design of tight confidence
intervals. These findings may open new doors for future improvements, and extensions to
other settings that we did not consider during this thesis. Finally, we further demonstrated the
flexibility of our algorithms by analyzing their natural extensions in usual variants of the bandit
problems, respectively non-stationary bandits for LB-SDA and bandits with batch feedback for
B-CVTS.

7.4 Perspectives

Our research was largely motivated by the crop-management problem introduced in the
preamble in this thesis, and several challenges still remain open before implementing our
algorithms in the real-world. For instance, we did not consider the use of contextual information
in our algorithms. So far we would implement one model for each possible combination of

217



Conclusion and Perspectives

crop, soil, and climate types that we would encounter (or focus on one combination), while it
may be possible to discover a general structure for these parameters that would allow to use a
meta-model covering every combination. Some problems may also rise from the batch setting:
spatial correlations between crop yields from the same years, or temporal correlations between
crop yields from the same field across the seasons. Intuitively, we would like to reduce the
weight of correlated data in the learning process. Furthermore, in such realistic application
we may want to use all available information to improve our algorithms. For instance, the
farmers may have access to weather predictions at the beginning of and during the season, or
some ground measures may help adapt the strategies. So far, these considerations have been
completely out of the scope of our works, that have been dedicated to solving some of the more
fundamental problems we introduced. Finally, the non-stationarity (e.g due to climate change)
may also be analyzed with more precise models: changes of distributions may have a structure
(e.g following a climate model), and it may be possible to think about smarter ways to adapt to
them if we knew something about this structure.

On the theoretical side, we did not consider some questions that could be of interest. For
instance, we may want to analyze equivalents of the DS algorithms for CVaR bandits, and in
particular what kind of performance could be expected from an algorithm like RDS. Also, we
focused on the CVaR case as an example of alternative performance metric, but the NPTS/DS
principle may work just as well for a broader variety of risk metrics.

Regarding the Sub-sampling Dueling Algorithms, several questions are also interesting
for future research. For instance, we showed that Assumption 2.20 is sufficient to make SDA
work, but we wonder if it is actually necessary. Furthermore, there may be a way to circumvent
this assumption and to make SDA works in settings for which it currently fails. For instance,
in (Baransi et al., 2014) the authors suggest a larger amount of forced exploration to ensure
with large probability that the best arm will be estimated "well enough" so that sub-sampling
is sufficient to balance exploration and exploitation. This is a possibility that we could consider.
We could also imagine algorithms working in two steps: in a first step the arms are sampled
enough times to ensure that some condition is met (e.g: the support is "well-covered" for all
arms), and in a second step we would use SDA. A last open question that we did not have
time to consider during this thesis is about the generalization of SDA to structured setting.
While the number of pulls accurately represent the "quantity of information" collected for an
arm in the standard setting, this is no more true in the structured case (e.g in linear bandits).
Finding alternative "information measures" and new ways to implement pairwise comparisons
in structured bandits is an interesting and challenging open question.
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