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Résumé : L’analyse de la qualité de l’électricité
est une demande qui s’est vue augmentée au cours
des dernières décennies. Les creux de tension sont
les perturbations les plus fréquentes et les plus im-
pactantes dans les réseaux électriques industriels,
entraînant des pertes financières importantes pour
les clients industriels. Le cœur de ce travail de
thèse est dédié à la classification des causes de
creux de tension ainsi qu’à leur localisation relative
par rapport au point de mesure principale. L’algo-
rithme développé utilise les formes d’onde de ten-
sion et de courant comme entrées pour identifier
les causes des creux de tension dans les réseaux
industriels BT. La solution est basée sur des signa-
tures de séries temporelles quadridimensionnelles,
obtenues par l’application de la transformée de
Fourier court terme (STFT) et de la transformée
de Fortescue. La source d’un creux de tension est
identifiée à l’aide d’une stratégie de classification
basée sur la distance avec une mesure basée sur
l’algorithme Dynamic Time Warping (DTW). En
outre, l’algorithme soft-DTW est utilisé pour ré-
duire la taille de la base de signatures d’apprentis-
sage, augmentant ainsi la vitesse de classification.
Les performances de la méthode ont été analysées
en termes de séparabilité des classes, d’efficacité
de la prédiction (précision et robustesse au bruit)
et de sensibilité aux variations de la fréquence fon-

damentale. La méthode est robuste aux niveaux
de bruit jusqu’à un SNR = 15 dB et aux varia-
tions de fréquence fondamentale jusqu’à une valeur
de ϵ = ±0.5Hz. De plus, un indice de confiance
sur la prédiction est proposé, augmentant la fia-
bilité de l’algorithme. Le système offre une mise
en œuvre facile en milieu industriel sans avoir be-
soin de données enregistrées au préalable. La mé-
thode présente l’avantage d’utiliser une base de
données de référence de taille réduite, entièrement
composée de données synthétiques. Les principaux
avantages de la méthode proposée sont ses capa-
cités de généralisation et la possibilité de déclen-
cher une alerte basée sur l’indice de confiance. La
précision de classification obtenue sur des données
synthétiques comportant sept causes est de 100%.
La méthode atteint également un F1-score supé-
rieur à 99% avec des mesures terrain représentant
cinq classes sur trois sites industriels différents. En-
fin, nous étudions également l’impact des creux de
tension sur les équipements industriels. Nous pro-
posons une méthodologie pour estimer la compo-
sition de charges déconnectées suite à un creux de
tension. Les résultats ont montré des limites en
termes d’interaction harmonique entre les charges.
Ces limites sont discutées et plusieurs propositions
sont faites pour améliorer la méthode.
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Abstract : The demand for power quality analy-
sis has increased over the past decades. Voltage
sags are the most frequent and impactful distur-
bances in industrial power grids, leading to high
financial losses for industrial clients. The core of
this thesis work is dedicated to the classification
of voltage sag causes and their relative location
to the monitoring point. The solution uses vol-
tage and current waveforms as input to identify
the causes of voltage sags in LV industrial grids.
The methodology is based on four-dimension time
series signatures, obtained through the application
of the Short-Time Fourier Transform (STFT) and
the Fortescue Transform. The source of a voltage
sag is identified using a distance-based classifi-
cation strategy with a custom distance measure
based on the Dynamic Time Warping algorithm
(DTW). In addition, the soft-DTW algorithm is
used to reduce the size of the signature training
database and increase speed. The performance of
the method was analyzed in terms of class se-
parability, prediction efficiency (accuracy and ro-
bustness to noise), and sensitivity to fundamental
frequency variations. The proposal is resilient re-
garding noise levels up to an SNR = 15 dB and

fundamental frequency variations up to a shifting
value ϵ = ±0.5Hz. Moreover, a confidence index
on the prediction is proposed, increasing the al-
gorithm’s reliability. The proposal offers an easy
implementation in industrial applications with no
previous recorded data. It has the benefit of using
a reduced-size reference database, entirely compo-
sed of synthetic data. The main advantages of the
proposed method are its generalization capabilities
and the possibility of raising an alert based on the
confidence index. The obtained classification accu-
racy on synthetic data with seven causes is 100%.
The method reaches a classification F1-score hi-
gher than 99% with field measurements represen-
ting five classes obtained from three different in-
dustrial sites. Finally, we also study the impact of
voltage sags on industrial equipment. We propose
a methodology to estimate the self-disconnected
load composition following a voltage sag. The re-
sults showed some limitations in terms of harmonic
interaction among the loads. Some of the limits of
this approach are discussed and several proposals
to improve the load composition estimation for fu-
ture work are made.
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General Introduction

Background and Motivations

The increase in electricity consumption, new usages, and the need to preserve
the environment are at the origin of the energy transition. This transition is
profoundly modifying electrical networks with the greater penetration of renewable
energies associated with power electronics interfaces in the energy mix and control
digitalisation [5, 6]. Energy flows are becoming multidirectional and require more
intelligent control to meet the electrical power supply’s availability, reliability,
safety and quality.

Power quality analysis has become an increasing concern to energy suppliers
and their customers in the last few years. A reliable energy supply ensures regular
operation of the electrical equipment in the network. Poor power quality induce the
disruption of production lines or services, equipment malfunction, or even equip-
ment damage, resulting in important financial losses [7] for industrial and large
tertiary customers such as hospitals, data centers, etc. Indeed, energy quality is an
important issue for manufacturers facing global competition. Thus, identifying the
origin of power quality disturbances and assessing their effects on industrial equip-
ment is essential for finding and providing adapted and cost-effective mitigation
solutions to reduce the impact on the site’s productivity.

Today, the analysis of power quality disturbances is most usually performed
by experts in the field. It requires a high level of knowledge and expertise to
make a reliable diagnosis, and propose relevant solutions. However, this process
is highly time-consuming and requires specific intervention on-site for data acqui-
sition. In addition, some electrical disturbances are rare in terms of location and
frequency. Their measurement can therefore further prolong the data acquisition
stage. Power quality monitoring devices can be placed permanently to cope with
this issue. Nonetheless, processing and analyzing large amounts of data can also
be time-consuming. Because of all these reasons, the automatic analysis of power
quality data is a subject of growing demand, particularly for industrial and tertiary
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customers, due to the financial implications.

Problem statement and Objectives

This research work aims to develop an intelligent system to analyze power
quality disturbances by processing electrical measurements (three-phase voltage
and current) from a single monitoring device placed at the main electric supply
point of an industrial or tertiary site.

Among the power quality disturbances affecting industrial grids, voltage sags
are the most frequent and the most severe ones [8, 9, 10], as they can cause
equipment malfunction and unwanted stop of industrial processes. Therefore, they
will be the topic of this research. The analysis of voltage sags is carried out in two
steps: classification of voltage sag sources and analysis of their impact.

Understanding the origins of voltage sags is essential in the diagnosis process.
The literature already proposes different solutions that report high accuracy for
the classification of voltage sag causes. Our goal is to propose a solution that
will have similar classification performance but will overcome several of their main
limitations:

• The large majority of the state-of-the-art methodologies use statistical classi-
fiers, which are highly dependent on data. However, access to power quality
disturbance data, in the context of industrial grids, is not trivial.

• The generalization capabilities of these algorithms have not been evaluated
in most of the cases. The accuracy of these methods mostly relies on training
and testing data collected from the same source, which is not always practical
in industrial applications.

• The physical and electrical interpretation of the fault features is weak. This
makes the error analysis and trouble-shooting stage difficult to perform. In-
terpretable algorithms are preferable in industry for acceptability and relia-
bility issues.

• There is a risk of information loss if only scalar features are extracted since
the time dependence of electrical waveforms is not taken into account.

It should be noted that the algorithm we aim to develop has commercial pur-
poses, hence its implementation must be compatible with industrial needs. This
system should be able to be trained in factory using a reduced amount of synthetic

2



General Introduction

data. The system should be able to perform effectively in different industrial sites
without additional training. The decision-making process should be interpretable
and it should provide a confidence index associated with the prediction to increase
its acceptability and reliability.

Finally, once the source of a voltage sag is identified, its impact on the site
should be assessed. We consider that a voltage sag has an impact if one or more
loads trip after the voltage sag occurrence. The objective is to estimate the self-
disconnected load composition following a voltage sag. The goal is to take
advantage of the dynamic nature of voltage sags to estimate the load composition.
This study has its own challenges, but the most critical ones are:

• The access to a single monitoring location at the main electric supply point
of the site.

• The lack of information on the industrial equipment downstream the mon-
itoring point. The position of the monitoring device is fixed and imposed.
The objective of the diagnosis system is to be as little intrusive as possible,
with collected data from a unique monitoring point. This constraint limits
the global cost of the solution with less monitoring material and reduces the
risk of process dysfunction due to the installation and presence of external
equipment on the industrial site.

• The diversity of electrical devices with different levels of sensitivity to volt-
age sags. The tolerance to voltage sags depends not only on the sag char-
acteristics, but also on the characteristics of the industrial equipment. The
development of a system capable of adapting to this equipment diversity is
a real challenge.

To the best of our knowledge, the estimation of self-disconnected load compo-
sition after a voltage sag, with such constraints, has not yet been addressed in the
literature. Providing as much information as possible to the industrial manufac-
turer about the characteristics of the disconnected devices after a voltage drop is
essential for implementing adapted and cost-effective mitigation solutions, as only
sensitive equipment should be targeted by these countermeasures.
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Thesis outline

This PhD thesis is organized in five chapters:

• Chapter 1 introduces the basics and definitions of power quality. It also
discusses the characteristics of industrial and distribution electrical grids in
France. Additionally, it describes the main causes and consequences of power
quality disturbances affecting industrial networks.

• Chapter 2 presents the state-of-the-art methods used in the analysis of power
quality disturbances. Emphasis is given to the methods targeting the classi-
fication of voltage sags causes. A detailed comparison of the methods in the
literature is presented, as well as a discussion on their main limitations.

• Chapter 3 presents a new method for the classification of voltage sag causes,
given the voltage and current waveforms measured at the main energy sup-
ply point of the industrial site. The methodology follows a general four-
stage scheme: data acquisition, pre-processing, feature extraction, and fea-
ture analysis. Each stage is presented in detail.

• Chapter 4 investigates the performance of the methodology presented in the
previous chapter in terms of class separability, sensitivity to noise, sensitiv-
ity to fundamental frequency variations, and computational cost. We also
evaluate the algorithm’s global accuracy and generalization capabilities.

• Chapter 5 presents the problem of self-disconnected load composition es-
timation following a voltage sag. It introduces some of the most common
methods in the literature in the domain of load estimation. Then, we propose
an approach and apply it to a simple case study. We analyze the results ob-
tained and based on these results we discuss the challenges and perspectives
for future work.

Finally, a general conclusion and perspectives are provided.

Main contributions

The main contributions of this research work concern the development of a
ready-to-implement voltage sag cause identification algorithm, based on the clas-
sification of multivariate time series signatures. Its main advantages are:
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• The reduced amount of data necessary to build the reference signature database,
which can be entirely composed of synthetic data.

• The provision of a confidence index associated with the prediction.

• The electrical intepretability of the signatures and the decision-making pro-
cess.

• The robustness to noise levels up to SNR = 15 dB and to fundamental
frequency variations up to ±0.5Hz.

• The good generalization capabilities when implemented on real field data,
even for different industrial sites.

Finally, we also propose a first approach for the estimation of self-disconnected
load composition. The preliminary results allowed to provide several guidelines
for the improvement of the proposal in the future.
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Chapter 1

Power Quality of Industrial Grids

Power quality analysis has drawn attention in the last few years due to the in-
creasing sensitivity of electrical equipment integrating power electronics. A reliable
energy supply ensures normal operation of the electrical equipment connected to
the network. However, power quality disturbances can be responsible for disrupted
production lines or services, equipment malfunction or even equipment damage,
resulting into significant financial losses. Thus, the identification of the root causes
of power quality disturbances and measure their effects on industrial equipment is
a key step to provide adapted and cost-effective mitigation solutions, in order to
reduce the impact on the site’s productivity.

This chapter aims at providing relevant information on industrial electrical
grids and power quality disturbances. Section 1.1 briefly describes some of the
main characteristics of distribution and industrial grids, including the most rep-
resentative categories of industrial loads. Section 1.2 presents the different power
quality disturbances, as well as their impact in terms of financial losses for indus-
trial customers. This section also explains the reason why this research work fo-
cuses on voltage sags, and the need to consider harmonic distortion in the analysis.
Section 1.3 presents in detail the characterization of voltage sags, their main causes
and consequences on industrial equipment, and Section 1.4 briefly introduces rel-
evant notions regarding harmonic distortion, its main causes and consequences as
well. Finally Section 1.5 closes the chapter.
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1.1 Characteristics of Distribution and Industrial
Grids

1.1.1 Distribution Grids in France

Distribution grids are intended to supply electricity to end consumers. In
France, the standard voltage value for distribution networks is 20kV (medium
voltage or MV). Only few portions of the grid still remain at 10, 15 and 33kV. The
rated frequency is 50Hz, imposed by the transmission grid level.

Distribution substations are fed by the transmission network (63kV to 227kV)
through HV/MV power transformers. All distribution feeders and substations are
operated radially. Their rated power varies from 10 to 70 MVA. The total length
of MV lines in France is about 622 187 km, consisting of overhead lines and un-
derground cables. The MV network feeds more than 780 000 MV/LV substations.
The presence of a grounding system at this level helps to reduce overvoltages when
short-circuits occur by creating a low impedance path to earth. In France, two
main grounding systems exist at the HV/MV substations : impedance and com-
pensated neutral groundings. Fig. 1.1 illustrates a diagram of the distribution
network.

Faults on line segments are common events in distribution and transmission
networks. High currents due to short-circuits in the lines can seriously damage
the power system equipment if they are not extinguished quickly. Thus, dedicated
protection systems exist to protect the grid. Specific protection schemes are in
place to minimize the impact on the power quality delivered to end customers.
They relay on circuit breakers configured in a selective way to reduce the size of
the impacted area, and automates (shunt and automatic circuit recolser) to benefit
from faults’ self-extinction.

High-consumption customers such as large industrial sites can be fed directly by
the HV transmission network through a dedicated HV/MV transformer. Smaller
industrial sites are fed by MV networks through MV/LV transformers and operate
at low voltage levels (LV), set at 400 V/230 V (phase-to-phase and phase-to-ground
voltage respectively).

LV industrial clients are supplied through MV feeders by a MV/LV trans-
former located on site, with rated power ranging from 50 to 1600kVA. The most
common type of winding connections for transformers at this level is Dy. The
wye-connection at the secondary allows an appropriate grounding system for the
industrial facility, to reduce possible equipment damage due to faults. The most
common grounding systems for industrial networks in France are the TN-C and
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Figure 1.1: Simplified diagram of a distribution network. The monitoring device
at a LV industrial site is illustrated.

the IT configurations.

1.1.2 Main Industrial Loads and Equipment

There is a large variety of industries, types of processes and equipment. De-
pending on the activity sector, processes and loads can be very different. We can
classify them in five categories. [11, 12]:

1. Electrical motors. They are integrated in numerous types of processes
as they convert electrical energy into mechanical energy, in order to power
equipment. They represent more than 67% of the total electrical consump-
tion in French industries [13]. This category includes asynchronous motors,
synchronous motors and DC motors. In particular, induction motors are the
most widely used machines in industry due to their reliability and reduced
cost. They include applications such as pumps, fans, compressors, conveyors,
extruders, etc.

2. Power electronics. They are integrated in many industrial applications for
improved control and energy efficiency. Their implementation has increased
significantly in recent years. They include adjustable speed drives, AC/DC
converters, soft-starters, etc. The most representative device of this category
is the adjustable speed drive, which is coupled with induction motors for more
flexibility in the speed control.

3. Electrothermal devices. They represent the heat-related equipment used
in industry such as electrical heaters, induction/arc/resistance furnaces, weld-
ing machines, etc.
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4. Electronic devices. They are used for control and surveillance of digital
systems. They include programmable logic controllers (PLC), computers
(PC), micro-controllers, etc.

5. Lighting. It includes different types of light-emitting devices such as classic
incandescence lamps, gas-discharge lamps and light emitting diodes (LED).

1.2 Power Quality disturbances

The term power quality defined in [8] refers to a wide variety of electromagnetic
phenomena that characterizes the voltage and current at a given time and at
a given location in the power system. Power quality disturbances can also be
defined as any change (distortion or fluctuation) in the power supply parameters
outside the normative limits. These electrical disturbances can be caused by events
in the transmission/distribution network (line faults, transformer and capacitor
bank switching, etc.), or on the industrial site itself (large motor startup, power
electronics, arc furnaces, etc).

Table 1.1 displays some of the electrical disturbances’ characteristics according
to their spectral content, duration and magnitude, as well as some of their main
causes and consequences.

1.2.1 Impact of Electrical Disturbances on Industrial Grids

One of the main reasons for the rising research interest in the domain of power
quality is the increasing implementation of power electronics in industrial pro-
cesses due to their numerous benefits (more control flexibility, improved efficiency,
reduction of energy losses, etc.). However, these electronic devices are sensitive
to electromagnetic disturbances. At the same time, they generate disturbances,
possibly affecting other loads. The term electromagnetic compatibility (EMC) [8]
is used to describe the ability of a device to operate properly in accordance with
the standards. In this sense, power quality can be seen as a means of ensuring
EMC between the network and the connected loads.

Industrial processes are complex because they consist of different equipment
such as motors, speed drives, contactors, digital control systems, etc. If a produc-
tion unit contains equipment sensitive to a particular electrical disturbance, the
whole process is at risk if such a disturbance occurs. The financial costs due to
poor power quality can be particularly high, since the productivity and compet-
itiveness in many industrial sectors depend on the continuity of the production.
In [7], the economic losses in the industrial and service sectors of eight European
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Table 1.1: Typical characteristics of Power Quality Disturbances

Disturbance Duration Spectral content Amplitude Cause Consequence

Transient (im-
pulsive, oscilla-
tory)

<10 ms 5 kHz - 5 MHz 0-8 pu

Switching event,
transformer or
capacitor bank
energizing, light-
ning

Equipment dys-
function

Voltage sag 10 ms - 1 min 0.1-0.9 pu

Line faults,
motor startup,
transformer
energizing

Motor stalling,
equipment’s
protection trip-
ping, stopped
processes

Voltage swell 10 ms - 1 min 1.1-1.2 pu
Line faults, large
load switching,
load shedding

Equipment’s
protection trip-
ping, overcur-
rent, equipment
damage

Short interrup-
tion 10 ms - 1 min <0.1 pu

Line faults,
equipment mal-
function, loose
connections

Equipment’s
protection trip-
ping, overcur-
rent, equipment
damage

Harmonics steady-state 0-2 kHz1 0-20%

Non-linear loads
(power elec-
tronic devices,
arc furnace)

Heating, pre-
mature aging,
transformer
saturation,
performance
reduction

Interharmonics steady-state 0-2 kHz1 0-2%

Non-linear and
fluctuating loads
(arc furnace,
welding ma-
chine, wind
turbine)

Light flicker

Imbalance steady-state 0.5-5%
Asymmetrical
loads, one-phase
loads

Motor heating,
vibrations

Flicker steady-state 0.1-7%

Arc furnace,
welding ma-
chines, wind
turbines

Light flicker

Notching steady-state

Phase current
commutation in
power electron-
ics

Frequency or
timing errors in
power electron-
ics

1Frequencies in the range between 2-150 kHz are considered in the domain of supraharmonics [14]
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countries were estimated up to €150bn, representing around 1% of their annual
turnover, or more than 5% of their net profit.

Power quality costs can be divided into the following categories [15]:

• Production interruption costs: some products or services are not avail-
able as long as the process is stopped, causing delay costs affecting the pro-
duction. The duration of this interruption can vary from few seconds to few
hours.

• Process restart costs: some industrial processes require several hours to
be restored after an interruption. Several interventions may be necessary
(cleaning, emptying, repairing, etc.) The costs include delay costs, human
costs and material extra resources required to restart the process.

• Equipment damage costs: equipment can be damaged or can prematurely
age following abrupt stop or overheating due to disturbances. Depending on
the severity of the damage, reparation or complete replacement of several
devices may be necessary, leading to additional costs.

• Defective products costs: some processes will not completely stop if a
disturbance occurs. However, the high precision required for the fabrication
of certain items can be affected resulting in defective products and leading
to losses. The associated costs will depend on the possibility to recycle or
discard such products.

• Other indirect costs, include penalties or compensations due to defective
products or services. Mis-operation costs and energy losses due to inefficient
process functioning can also generate financial losses to the customer. These
costs are difficult to quantify. Depending on the industrial sector they can
represent a significant percentage of the poor quality costs.

Among the power quality disturbances that mostly affect the most industrial
power grids, are short interruptions (outages), voltage sags and harmonic distor-
tion. Short interruptions along with voltage sags are the most severe disturbances
with short-term consequences, since they can cause production interruption, de-
fective products, process restarts, equipment damage and other indirect financial
losses [7, 9]. Even if voltage interruptions have the highest impact, voltage sags
are by far more frequent [8, 9, 10].

Table 1.2 presents the results of the UNIPEDE DISDIP measurement campaign
[4] for 52 measurement sites with mixed networks (overhead and underground).
Nine countries of Europe co-operated to determine the number of voltage sags and
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short interruptions per year experienced by electricity clients connected to LV and
MV networks.

Table 1.2: Mixed networks: voltage sag incidence - 95th percentile [4]

Duration t
Residual voltage U

% of reference voltage 10 ≤ t < 100 ms 100 ≤ t < 500 ms 0.5 ≤ t < 1 s 1 ≤ t < 3 s 3 ≤ t < 20 s 20 ≤ t < 60 s
90 > u ≥ 70 61 68 12 6 1 0
70 > u ≥ 40 8 38 4 1 0 0
40 > u ≥ 0 2 20 4 2 1 0

u=0
(interruptions) 0 18 26 5 4 9

95th percentile of sags per site: 256

Depending on the characteristics of the voltage sag and the sensitivity of the
industrial devices, voltage sags can have different levels of impact on the customer.
This is the main reason why this work focuses on the analysis of voltage sags.
On the other hand, harmonic distortion is a steady-state disturbance with more
long-term consequences. Due to the large presence of power electronic devices in
industries, it is necessary to understand and consider the influence of harmonics
in the developed analysis methods.

1.3 Voltage Sags

1.3.1 Characterization of voltage sags

A voltage sag is defined as a decrease between 10% and 90% in the RMS
nominal voltage, with a duration between 0.5 cycle and 1 min [8]. The general
agreement when referring to the amplitude of a sag is to take the remaining voltage
as a percentage of the nominal voltage (IEEE standards 1346-1998, 493-2007, 1159-
2019).

Three-phase voltage sags are usually characterized by their amplitude and du-
ration. The amplitude of the sag is defined by the minimum voltage value within
the three phases as illustrated in Fig. 1.2a.

However this representation does not reveal all the characteristics of the three-
phase voltages. Since voltage (and current) are complex variables, each phase
voltage is defined by a magnitude and a phase shift. The three phases can be
represented in a phasor plot as shown in Fig. 1.2b. In a perfectly balanced three-
phase system, all voltage phasors have an amplitude of 1 pu and a phase shift of
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120° between one another. During a voltage sag, the amplitudes and phases of the
voltage phasors are affected (amplitude variation and phase-angle jump). These
variations will depend on the characteristics of the sag, as it will be described in
Section 1.3.2.

The time of occurence of the sag can also have an impact on some equipment.
It is referred to as point-on-wave on sag initiation, and corresponds to the phase
angle of voltage wave at which the voltage sag starts, taking as reference the zero
crossing. Fig. 1.2c illustrates the point-on-wave (POW) of each phase at sag
initiation. Although the impact of the POW is well-known for devices such as AC
contactors, its effect is lower than the amplitude, duration or phase-angle jump.

(a) Voltage RMS values (b) Voltage phasors

(c) Voltage waveforms

Figure 1.2: Different voltage sag representations

Voltage sags can be primarily classified as balanced or unbalanced, depending
on the affected phases. However, there are different methods for characterizing and
classifying voltage sags more precisely. One of the most widely used methods is the
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ABC classification proposed by Bollen et al. [16]. Voltage sags are described as a
three phasor system, where the amplitude variations and phase-angle jumps for the
three voltage components are represented. The method defines seven categories,
each labeled from A to G. The ABC classification is presented by the author
as a special case of the symmetrical-component classification method previously
proposed in [17].

Another popular method for the characterization of voltage sags is proposed
by Ignatova et al. [18]. This technique is based on a space vector representation
in the complex plane and the zero-sequence voltage for the classification of voltage
dips and swells, using the Clarke transformation. Voltage sags are represented as
ellipses in a 2d-space. Other techniques for the characterization of voltage sags
can be found in [19, 20, 21].

1.3.2 Main causes of voltage sags

The leading causes of voltage sags are: line faults, transformer energizing and
large induction motor startups2. These events significantly increase the absorbed
current, creating a drop in voltage RMS values. The current and voltage waveforms
depend on the event causing the voltage sag and on the loads connected to the grid.
Distribution grid characteristics, particularly the available short-circuit power at
the point of common coupling (PCC), has a significant impact on the voltage sag
magnitude. These events can occur at the level of the transmission/distribution
network, or on-site.

1.3.2.1 Voltage sags due to line faults

Line faults are the most common cause of severe voltage sags. They can occur
in the power supply network or at the level of the industrial grid as well. They
are caused by lightning strikes, wind, animals, or other objects in contact with
energized lines (power supply network), or by short-circuits due to isolation failures
or overloads (industrial grid).

Line faults can affect one or more phases. There are five fault types depending
on the affected phases:

• Single phase-to-ground fault (LG)
• Double phase fault (LL)

2Other events such as switching on of large loads are not included in the list because they
cause long-term voltage drops (undervoltages), which are not considered as voltage sags.
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• Double phase-to-ground fault (LLG)
• Three phase fault (LLL)
• Three phase-to-ground fault (LLLG)

They can also be classified in two groups: balanced and imbalanced faults.
Balanced faults correspond to three-phase faults or three phase-to-ground faults,
while imbalanced faults correspond to single-to-ground faults, double phase faults,
and double phase-to-ground faults. As an example, a voltage sag caused by a
double phase-to-ground fault (phases A and B) in the supply network is presented
in Fig. 1.3.

(a) Voltage waveforms (b) Voltage RMS values

Figure 1.3: Voltage sag representations of a double-phase fault

During the event, the faulted feeder causes a high inrush current, resulting in
a voltage drop on the remaining feeders of the same bus. The voltage is restored
as soon as the faulted feeder is detected and de-energized by the corresponding
protective device (fault in the supply network), or as soon as the protection device
or fuse trips due to overcurrent and disconnects the faulted asset (fault in the
industrial site). Therefore, the duration of the sag depends on the settings and
characteristics of the protection devices. For instance, in the case of faults in the
power supply network, the close-open duty cycle of automatic circuit reclosers can
cause two consecutive sags if the fault is not cleared successfully at the first reclose
attempt.

The amplitude and phase-angle jump of the voltage phases during the sag
depend on factors such as: the fault type, the fault resistance, the distance to the
fault, the number and the type of transformers through which the sag propagates
[16]. In particular, the propagation characteristics of the voltage sag in terms
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of amplitude and phase-shift will depend on the winding connections and the
grounding system of the transformers between the fault location and the location
of the measurement point [22].

Finally, it is important to point out the influence of directly connected induc-
tion motors since they contribute to the fault during the sag, as they operate as
generators for a short period of time and reduce the voltage drop. This explains
the non-rectangular shape of voltage sags in the RMS plot at the beginning of the
sag [16, 23]. Induction motors also have an impact on the voltage recovery, but
this aspect will be detailed in Section 1.3.3.

1.3.2.2 Voltage sags due to a transformer energizing

In the distribution network, transformer energizing usually follows the end of
a protection cycle. As the faulted feeder is disconnected, loaded transformers are
energized after fault clearance. Transformer energizing can also take place in the
industrial network if transformers are present at this level. This is particularly the
case for MV sites, or LV sites with isolation transformers (used for protection of
highly sensitive equipment).

During the transformer energizing, the magnetic flux in the windings can exceed
the saturation limits, creating a high inrush current, thus a voltage sag. Transient
magnetizing inrush currents can reach magnitudes as high as six to eight times the
rated current [24]. Core saturation affects the frequency spectrum of the wave-
forms during the event, introducing even harmonics, which are absent in normal
operation. A significant level of voltage unbalance between the three phases takes
place too. Another particular characteristic is the exponential voltage recovery,
which is determined by the time constant related to the flux offset decay in the
transformer core [25].

Fig. 1.4 illustrates a voltage sag at 0.05s caused by a transformer energizing.
The exponential shape of the voltage recovery and the voltage unbalance are clearly
visible in the RMS plot.

Different parameters influence the characteristics of the sag caused by trans-
former energizing, although the most important are: the switching-on-angle at
the energizing instant and the residual flux density in the transformer windings.
Other factors such as the short-circuit power of the supply network and the load
characteristics connected to the transformer influence the inrush current and the
voltage recovery [24].
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(a) Voltage waveforms (b) Voltage RMS values

Figure 1.4: Voltage sag representations due to a transformer energizing

1.3.2.3 Voltage sags due to induction motor startup

Induction motor direct on-line startup induces a high inrush current that can
reach 7 to 10 times the nominal value, resulting in a voltage sag at the level of
the bus feeding the motor. As the voltage drops, the current suddenly increases.
Then, the voltage recovers at the same rate, as the current slowly decreases. Fig.
1.5 illustrates the voltage waveforms and RMS values of a motor startup.

The total startup time depends on the motor electrical and mechanical char-
acteristics, such as: rated power, inertia, electro-mechanical and load torque. It
ranges from less than a second for small motors (5 to 45 kW), a few seconds for
medium size motors (45 to 150 kW) and it can reach a few minutes for large motors
(150 to 750 kW). We note that the typical power range for motors in LV indus-
trial sites is less than 150 kW. An excessive sag may even prevent the motor from
starting successfully [26]. This can be a serious issue when multiple motors are
switched on at the same time.

Since the motor size and power requirements are known, the location and
installation are planned in such a way that its startup does not affect other sensitive
equipment. To limit the inrush currents, different starting methods are often used:
autotransformer starters, resistance starters, delta-wye starters, soft-starters and
variable speed drivers. Thus, voltage sags caused by induction motors are rarely
deeper than 85%.
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(a) Voltage waveforms (b) Voltage RMS values

Figure 1.5: Voltage sag representations due to an induction motor direct startup

1.3.3 Effects and consequences of voltage sags

The impact level of voltage sags depends on the sag’s characteristics, the grid
conditions, and the connected equipment. Depending on the severity of the sag
and the voltage tolerance characteristics of the processes, some will be able to ride
through and continue normal operation. However, if the sag is severe enough to
affect one or more sensitive devices involved in a certain process, the whole process
can be interrupted.

Sensitive loads at risk of disconnection regarding voltage sags include: ad-
justable speed drives, electronic devices, induction motors, AC contactors and
lighting [12, 16]. The tolerance of a given device regarding the amplitude and
the duration of voltage sags can be described in the so-called "voltage-tolerance
curves" [16].

1.3.3.1 Voltage-tolerance curves

Electrical equipment is designed to operate under specific voltage conditions.
If they are not respected, the devices are at risk of malfunction or simply may stop
working. The voltage limit conditions of a device in terms of magnitude and du-
ration are characterized in the voltage-tolerance curves (VTC). The first modern
voltage-tolerance curve was introduced for computers by the Computer and Busi-
ness Equipment Manufacturer’s Association, known as the CBEMA curve [27].
A revised version and widely adopted reference known as the ITIC curve [28],
was published later by the Information Technology Industry Council (successor

18



Chapter I: Power Quality of Industrial Grids

of CBEMA). The ITIC curve is intended to be used strictly on single-phase "in-
formation technology" equipment with 120V/60Hz-rated conditions, as testing in
different conditions was not specified. More recently, the SEMI F47 [29] curve has
been proposed by the Semiconductor Equipment Materials International associ-
ation for semiconductor processing equipment. Fig. 1.6 illustrates the tolerance
limits defined by these three standard curves. Some noticeable differences can be
observed in the area below 70% of voltage amplitude.

For other devices, the corresponding VTC is usually assimilated as a rectan-
gular curve with a "knee" at Vmax and tmax, as illustrated in Fig. 1.7. It defines
two zones, a normal operation zone and a malfunction or trip zone. This curve
helps to determine if a voltage sag with a given magnitude and duration will make
the device trip or not. This, under the assumption that two voltage sags of the
same magnitude and duration will have the same impact. However, this does not
always hold true, especially for three-phase equipment, since three-phase voltage
sags exhibit other characteristics than magnitude and duration, as described in
Section 1.3.1. The influence of the other voltage sag attributes such as the type of
sag, phase-angle jump and point-on-wave will depend on the nature of the affected
device.

Figure 1.6: CBEMA, ITIC and SEMI F47 curves, from [1]
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Figure 1.7: Voltage-tolerance curve (VTC)

1.3.3.2 Induction motors

Directly fed induction motors have relatively good voltage-tolerance capabili-
ties, although severe voltage sags can still stop them. The decay in voltage causes
a drop of the electrical torque, which is proportional to the square of the voltage,
thus a drop in the motor speed. The motor will be able to find a new operating
point as long as the mechanical torque is higher than the load torque, otherwise
it will continue to slow down until it stops. Induction motors usually can tolerate
voltage sags of up to 70% of the remaining voltage [16].

Once the fault is cleared the voltage will recover. If the motor did not slow
down completely, the voltage recovery will make the motor reaccelerate leading to
an inrush current [30]. At this stage, motors draw a large current, up to 8 times
their nominal current. Post-fault inrush current can lead to extended sags with a
duration up to few seconds. If the dragged current is too high for too long, the
overcurrent protection will activate and trip the motor, leading to a disconnection
even after the actual voltage sag. On the other hand, if the motor dropped out
during the sag but it is controlled by an ASD, an automatic reconnection operation
can take place to restart the motor. Special cautions should be taken when recon-
necting an induction motor that hasn’t completely stopped. For instance, if the
AC contactors are suddenly reclosed, there is a risk of "out-of-phase reconnection"
between the supply voltage and the residual voltage in the motor circuits, leading
to dangerously high inrush currents (up to 15 times nominal current)[31].
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1.3.3.3 Adjustable Speed Drives

The configuration of three-phase adjustable speed drives (ASDs) consists of a
rectifier, a DC bus, and a controlled inverter. When a voltage sag occurs, the
rectifier provides a lower mean voltage level and the inverter is partly powered
from the DC bus capacitor. If the sag is not too deep, an equilibrium point can
be reached. However, if the voltage sag is lower than a threshold, the rectifier
will stop conducting and it will only be able to supply the load for a short time,
since the capacitor has a limited amount of energy. Normally, the undervoltage
protection is set so it will activate before the minimum voltage threshold is reached
[16].

In addition, ASDs’ sensitivity highly depends on the type of voltage sag (bal-
anced or unbalanced). Since the voltage delivered from the three-phase inverter
to the DC bus depends on the phase-to-phase voltages, the ASD is able to ride
through shallow unbalanced voltage sags. However, it is much more sensitive to
balanced sags. It is also important to notice that the overcurrent transients due
to the recharge of the DC bus at the end of the sag and voltage recovery, can be
a potential source of damage [16]. To avoid this, an overcurrent protection is also
often implemented. This means that the ASD can trip either during the voltage
sag (due to the undervoltage protection, determining the duration limits), or at the
voltage recovery (due to the overcurrent protection, determining the magnitude
limits). Although ASDs voltage sag tolerance limits depend on various factors,
they can generally tolerate sags of magnitude between 70-90% and of duration
between 10-100 ms [32].

Finally, phase-angle jumps caused by a sag can also be a source of malfunction
since controlled inverters use phase-angle information (based on zero-crossings of
the supply voltage waveform) for firing power switches.

1.3.3.4 Computers and PLCs

Computers, programmable logic controllers (PLCs), and other electronic de-
vices are connected to the AC supply through a single-phase rectifier and a DC
voltage controller. Similarly to ASDs, the tripping of these devices during a volt-
age sag depends on the DC bus capacity. Although their electrical consumption
is much lower than other loads, the malfunction consequences due to voltage sags
can be significant. Computers can suffer from information loss. PLCs, being a
key component in complex processes, can produce incorrect control signals with
serious damage to the process.

Since the inverters are single-phase, these devices are equally sensitive to bal-
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anced or unbalanced sags. Computers’ voltage sag tolerance limits vary between
30-170 ms and 50-70%. Although extreme values can reach 8 ms, 88% and 210ms
and 30% [16]. PLCs voltage tolerance characteristics are variable too, although
they generally trip for sags of duration longer than 4 cycles (80 ms) and with a
magnitude between 35-80%. These can be very sensitive equipment since some
devices can trip as fast as after a half-cycle (10 ms) [16].

1.3.3.5 AC contactors

AC contactors connect motors to the power supply. Even if contactors are not
high energy-consuming devices, they are key elements regarding voltage sags. The
supply voltage powers an electromagnet which keeps the contact closed, and when
the supply voltage drops under a certain threshold, the contact opens, preventing
the motor from suddenly restarting when the voltage recovers. This mechanism
protects the motor from unexpected and sometimes dangerous restarting. AC
contactors usually trip for sags of magnitude lower than 30% and of duration
superior to 10 ms, but in some cases they can trip at sags as shallow as 75%. The
tripping of one motor caused by its contactor can turn down a whole process, even
if the motor itself would have been able to ride through the sag.

In addition to voltage magnitude and duration, contactors are very sensitive to
point-on-wave of sag initiation, as demonstrated by Djokic et al. in [33]. The point-
on-wave angle is measured between 0° and 90°, because the contactor’s sensitivity
exhibits a quarter-cycle symmetry. A voltage sag with point-on-wave at 90° will
cause the tripping of the contactor more rapidly than another voltage sag of the
same magnitude but with point-on-wave at 0°. This is because the current flowing
through the coil is responsible for the electromagnetic force keeping the contactor
closed. This characteristic explains the non-rectangular shape of the VTC curve
for AC contactors. Finally, while voltage tolerance limits are mostly influenced by
the POW [33], they also depend on the phase-angle jump.

1.3.3.6 Gas-discharge based lighting

The voltage tolerance of lighting equipment depends on the type of lamp. In
the case of gas-discharge lamps, voltage sags can extinguish the lamp, which needs
to cool down for one to several minutes before restarting. They usually trip for sags
of magnitude of 50% and 50ms duration, but these limits can also vary depending
on their age. They become more sensitive to less severe sags as they need a
larger voltage to operate. For instance, new lamps can tolerate sags of up to 45%
magnitude, whereas older lamps at the end of their useful life will only tolerate
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sags of up to 85% magnitude [16].

1.4 Harmonic distortion

Harmonic distortion is due to the presence of nonlinear devices. Electronic-
based loads are major contributors of harmonics in the power system. Due to the
widespread of power electronics systems, harmonics have become a key issue in
industrial, commercial and domestic installations [34].

1.4.1 Characterization of harmonics

Harmonics are sinusoidal voltages or currents whose frequencies are integer
multiple of the fundamental frequency. The harmonic order n indicates the har-
monic frequency fn, where f1=50Hz is the fundamental frequency. The distorted
waveform corresponds to the superposition of one or more harmonic components
to the fundamental frequency. Each harmonic component can be described by its
amplitude, frequency and phase-shift. Fig. 1.8 illustrates the phasor nature of
current harmonics, as well as the resulting waveform when they are superimposed.

Harmonic distortion levels in voltage or current waveforms at steady-state (pe-
riodic waveforms), can be characterized through the harmonic spectrum in the
frequency domain, obtained with the Fourier Transform. This representation de-
scribes the amplitude and frequency of each harmonic. The amplitude of each
component is given in percentage of the fundamental’s amplitude.

Another way of characterizing harmonics is to use the Total Harmonic Distor-
tion factor or THD. The THD factor for the current (THDI) is defined as in
equation (1.1), where I1 is the RMS value of the fundamental, In represents the
RMS values of the harmonic currents (f = n∗50Hz) up to the order N = 40 (har-
monic currents over this limit are considered as in the supraharmonic domain). An
equivalent formula is used for calculating the THDU factor for voltage harmonic
distortion as well.

THDI(%) =

√∑N
n=2 I

2
n

I1
∗ 100% (1.1)
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(a) Harmonic phasors (b) Harmonic waveforms

(c) Total harmonic waveform

Figure 1.8: Harmonic distortion of current and decomposition in harmonic com-
ponents

1.4.2 Main causes of harmonic distortion

The main sources of harmonic static and transient currents in the industrial
sector are [34, 26]:

• Electronic devices, which nowadays are powered via switched-mode power
supplies consisting of single-phase rectifiers. The current drawn by the rec-
tifiers contains large amounts of harmonics. However their total power con-
sumption is relatively low compared to other equipment (ie. induction mo-
tors).

• Three-phase converters, including variable speed drives and AC/DC con-
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verters mostly based on a three-phase diode bridge usually of "six-pulse"
type, which produces current harmonics of order 6n ± 1 3,4. Twelve-pulse
bridges are also used in industry (although less common), and they mostly
generate harmonics of order 12n± 1.

• Fluorescent and LED lamps are highly non-linear. They are interfaced to
the AC voltage supply through a single-phase rectifier. Their unitary power
consumption is low, but since they are installed to lighten large surfaces,
they can cause a noticeable level of harmonic distortion with mainly odd
harmonics.

• Transformers do not induce a significant level of harmonics in normal op-
eration. However, their harmonic content rises significantly within the sat-
uration region. In particular during transformer energizing, transformers
generate harmonics of order n = 2 and n = 3. The third harmonic is usually
filtered by transformers of Dy type, which is a commonly used configuration
in distribution and industrial networks.

• Arc furnaces produce harmonics of significant value from n = 2 up to
n = 9. The current distortion is highly variable and changes depending on
the heating stage of the furnace.

Table 1.3 illustrates the current waveforms and harmonic spectrum of some
of the industrial devices responsible for introducing harmonic distortion into the
industrial grid.

1.4.3 Effects and consequences of harmonic distortion

The injection of current harmonics by non linear loads to the grid may cause
adverse effects on equipment. For instance the following devices are particularly
sensitive to harmonic distortion [34, 26]:

• Capacitor banks are often used by industrial facilities to improve their
power factor in order to avoid financial penalties. However the presence of
these devices can potentially magnify harmonic currents and cause resonance
within the industrial grid. Resonance cause motors and transformers to
overheat, and leads to the misoperation of sensitive electronic equipment.

3The thyristor-based bridge is another possible architecture, however its frequency spectrum
is wider, and more variable as it depends on the firing angle.

4Frequency spectrum for a rectifier with no power factor correction (PFC).
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Table 1.3: Current waveforms and harmonic content of non-linear devices

Equipment Current waveform Harmonic spectrum

Single-phase
rectifier

Three-phase
rectifier

(6-pulse bridge)

LED lamp

Transformer
energizing

(after 150 ms)
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• Transformers experience additional heating, higher RMS current, eddy cur-
rent and core losses. These additional losses may result in a higher operating
temperature and premature aging.

• Motors normal operation can be affected by harmonic voltage distortion,
which induces harmonic fluxes in the machine. These harmonic fluxes cause
additional losses, decreased efficiency, heating and vibrations. These effects
can be considered as mid- or long-term consequences, and if they are not
corrected on time, they could reduce the motor’s lifetime.

• Phase and neutral conductors, could overheat in the presence of cur-
rent harmonics. Indeed, the total neutral current is almost zero in normal
operation. However this is no longer the case in the presence of the third
harmonic, which can add and flow through the neutral conductors. This can
be problematic since neutral currents can reach high values, superior to the
maximum capacity of neutral conductors.

• Converters and electronic devices can also be affected if they use con-
trolled inverters based on zero-crossing information of the supply voltage
waveform since harmonics can cause zero-crossing noise. Synchronization
errors may occur and improper switching of semiconductor equipment can
damage the device.

It is also important to note the effect of harmonic distortion in the calculation
of power quantities, as described in Table 1.3. Under sinusoidal conditions (no
harmonic distortion), the RMS voltage V and current I are equal to the RMS
values of the fundamental frequency, V1 and I1 respectively. The apparent power
S (VA), active power P (W) and reactive power Q (VAR) constitute a power
triangle of angle cos(φ1), equal to the phase-angle between voltage and current
fundamental waveforms.

The calculation of the RMS current I and RMS voltage V taking into account
harmonic distortion is given by the equation (1.2) and (1.3), respectively.

I =

√√√√I21 +
N∑

h=2

I2h (1.2)

V =

√√√√V 2
1 +

N∑
h=2

V 2
h (1.3)
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Harmonic distortion mainly affects harmonic currents. Harmonic voltages are
a consequence of harmonic currents flowing through the system. The voltage
provided by the power supply will be distorted by harmonic currents depending
on the magnitude of the source impedance. The smallest the source impedance,
the lesser the impact of harmonic currents on the voltage. In most cases the source
impedance is small enough to consider that the distortion of voltage waveforms is
minimal. Thus, the voltage waveforms can be assumed to be sinusoidal.

In the presence of harmonic distortion, the power triangle does not hold any-
more because the apparent power S contains cross term products due to the voltage
and current harmonic components. Thus, the calculation of the apparent power
S is modified by the introduction of a third power quantity, known as Distortion
power or D (VAD), as described in Table 1.4. Finally it is also important to note
that the power factor PF is equal to cos(φ1) in the absence of harmonics, however
this is no longer true in the presence of harmonic distortion.

Table 1.4: Effects of current harmonics on the calculation of power quantities.
Voltage harmonics are considered negligible.

Sinusoidal current Non-sinusoidal current

Active power P = V1I1cos(φ1)

Reactive power Q = V1I1sin(φ1)

Apparent power S = V1I1 S ≈
√

(V1I1)2 + V 2
1

∑N
h=2 I

2
h

Distortion power D = 0 D ≈ V1

√∑N
h=2 I

2
h

Power factor PF = P
S
= cos(φ1) PF = P

S
< cos(φ1)

Power triangle S =
√
P 2 +Q2 S =

√
P 2 +Q2 +D2
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1.5 Conclusion

This chapter has introduced the electrical background necessary for the un-
derstanding and development of automatic analysis methods of power quality dis-
turbances in industrial grids. Particular attention has been paied to voltage sags,
which will be the focus of the research work developed in the following.

After the characterization of voltage sags in terms of amplitude, duration,
phase-angle jump and point-on-wave, we have presented the main causes of voltage
sags: line faults, transformer energizing and direct motor startup. In a similar
way we have described the main effects and consequences of voltage sags on the
most sensitive industrial equipment: induction motors, adjustable speed drives,
computers and PLCs, AC contactors and gas-discharge lamps. The main causes
and consequences of harmonic distortion were briefly introduced as well.

The following chapter presents the state of the art methods used for the analysis
of power quality disturbances, including voltage sags.
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Chapter 2

Power Quality Analysis: Application
to Voltage Sags

2.1 Introduction

The purpose of this chapter is to present the methods and tools used in the
literature for power quality (PQ) analysis. Section 2.2 describes the three main
categories of PQ analysis: detection, location and classification1 of PQ distur-
bances, and Section 2.3 presents in more detail the automatic classification of PQ
disturbances. A general five-stage scheme is presented, with a description of the
state-of-the-art techniques. Then, in section 2.4 we focus on the classification of
the causes of voltage sags. A summary of the most relevant references addressing
this task is proposed, as well as a discussion on the main limitations of the methods
proposed in the literature.

2.2 Analysis of power quality disturbances

Research on PQ analysis can be divided into three main categories: detection,
location and classification of PQ disturbances, as illustrated in Fig. 2.1. Although
the objective of each type of analysis is different, they share common methods. A
brief description of the most relevant proposals for each category will be presented,
with a focus on the classification of PQ disturbances.

1We distinguish here the term "classification" as the identification or labellisation of an event,
from the machine learning notion of "classification" associated with supervised learning.
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Figure 2.1: Power quality analysis main categories

2.2.1 Detection of Power Quality Disturbances

The first step in PQ analysis consists of detecting the presence of an anomaly
in the voltage or current waveforms. It is usually based on a threshold analysis
combined along with segmentation techniques to determine the disturbance start-
ing and ending points. The precision to be achieved in this stage will depend on
the requirements of the detection stage and the types of analysis to be performed
(ie. location, classification, etc.). For instance, in [35], the authors specified that
a detection error higher than 1/4 of the duration of a cycle can have a significant
negative impact on the calculation of features for the characterization of trans-
former energizing. Other authors aim for a disturbance detection precision within
the first 1/16 cycle up to 1/8 cycle duration (or between 1.25 ms and 2.5 ms for a
frequency of 50 Hz) [36].

Waveform measurements can rapidly represent considerable amounts of data.
Saving the totality of this data is not feasible due to memory storage capacity.
For instance, a file containing the voltage and current waveforms during 1 s with a
sampling frequency of 12.8 kHz, is about 1.5 MB in size, which corresponds to 5.4
GB for one single day. The transmission and storage of this data to computation
centers can be financially costly as well. For this reason, PQ disturbance detection
algorithms are intended to be implemented at the monitoring device level, in order
to effectively detect the occurrence and only record the events of interest in detail.
Since the detection stage is performed online, its computation time performance
is essential. To cope with this, the methods and techniques for detection should
be compatible with real-time computing.

Different strategies for disturbance detection have been proposed in the liter-
ature. For instance, Nagata et al. [36] used Independent Component Analysis
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(ICA) for the detection and segmentation of voltage sags, obtaining near 100%
detection accuracy for tests on data with SNR = 60 dB. But with results were
significantly degraded with SNR = 40 dB. Bastos et al. [37] proposed a general
wave shape-based disturbance detection algorithm by comparing consecutive cy-
cles of data using a similarity metric. The method is able to identify slight PQ
disturbances without any assumptions on the system, and is robust to frequency
variations. However, the detection window is one cycle long, and no precise seg-
mentation within this one cycle window is performed.

2.2.2 Location of Power Quality Disturbances

Locating the origin of PQ disturbances (ie. voltage sags, transients, etc.) due
to short-circuit faults, capacitor switching or transformer energizing is of great
concern. The location methods can be divided into three types: relative location
(upstream or downstream the monitoring point), area location (branch of the grid )
and exact location (precise distance from the monitoring point). The exact location
of the source requires knowledge of the impedance and lengths of the electrical lines
[38, 39, 40]. Locating the source area requires knowledge of the topology of the
network studied and the use of several measurement points [41, 42]. Relative
location methods can be implemented using a single monitor point [43, 44].

Once the voltage dip has been detected in the industrial network, it must
be established whether its origin is in the upstream network or the downstream
network, i.e. at the industrial customer’s site. This identification is essential to
determine responsibilities and set financial penalties. We present hereafter a brief
description from the literature of the methods for the relative location. Let us
remind that one of the main constraints of our research work is the use of a single
monitoring point and the absence of precise information on the industrial electrical
installation and equipment. The methods for the relative location of the sources
of voltage sags can be divided into five categories [45]:

1. Disturbance power and energy changes. Voltage sags are a consequence of
events that can be considered as "energy sinks". The energy flow is analyzed
to determine the source location. [43, 46].

2. Voltage-current characteristics. During a voltage sag, the current tends to
increase for downstream events and to decrease for upstream events. The
peaks or slopes of voltage and current trajectories are used to determine the
location of the sag source [47, 48].

3. Impedance changes. An estimated impedance is calculated, both in mag-
nitude and angle. The variations of the sign and/or the angle are used to
locate the direction of the source [49, 50].
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4. Voltage characteristics only. Using only voltage measurements, the voltage
sag source direction can be estimated based on the phase angle jump and/or
the change in magnitude [51].

5. Current characteristics only. Sag source location is based on the changes of
current phase and/or magnitude [52, 53].

The majority of the methods proposed in the literature perform very well with
balanced voltage sags in single-source radial networks. However, some of them
tend to perform less effectively when applied to unbalanced sags or in meshed
grids with distributed generation. Variants of these methods were proposed using
positive-sequence phasors based on symmetrical components [54], providing no-
tably improved results [45, 55]. Due to the transient nature of voltage sags, the
instantaneous current positive-sequence [53] and the instantaneous current Clark
components [56] proved to perform better compared to conventional phasor-based
methods as presented in [45].

Notice that the effectiveness of the location methods depends on a proper
detection of the event. If the beginning of the disturbance is not available or
recorded, it will be impossible to determine the sag source location.

2.2.3 Classification of Power Quality Disturbances

In PQ analysis, there are three types of classification to be distinguished.

1. Classification based on the type of disturbance. The classes to be
identified are: interruption, voltage sag, voltage swell, harmonic distortion,
unbalance, flicker, etc. This domain has been widely addressed in the litera-
ture, and numerous classification methods have been proposed and reviewed
[57, 58, 59, 60]. Overall classification results are globally high. However,
there are still some key issues to be addressed in this area. For instance,
few proposals have been developed for three-phase systems and many meth-
ods are based and have been only tested on simulation data only. Although
more recent methods have focused on the classification of single and mul-
tiple events, a generalized approach is still needed. Another aspect to be
improved is the real-time performance which could be required for some ap-
plications. Finally, some authors have pointed out that more knowledge and
electrical expertise should be incorporated into the algorithms, specially with
statistical classifiers.

2. Classification based on the disturbance’s type and characteristics.
Given a specific type of disturbance, the goal is to classify it according to
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its characteristics. For instance, voltage sags can be classified according to
the affected phases, their magnitude and phase-angle jump. Several methods
are based on characterization of voltage sags and swells [18, 19, 20], often
using as reference the phasor-based ABC classification [16]. In this case, the
classification’s result can be observed directly from the measurements. Thus,
these methods have the advantage of not requiring a training database for
their development.

3. Classification based on the disturbance’s cause. The objective of this
type of classification is to determine the underlying event responsible of the
observed disturbance. Indeed, every disturbance can be related to an event
in the grid, but one event can induce different types of disturbances. For
instance, a voltage sag can be caused by a line fault, a transformer energizing,
or a starting motor. Steady-state harmonics can be caused by a variable
speed drive, an arc furnace or an AC/DC converter. Transients can be
caused by a transformer or capacitor switching.

Even though several techniques have been proposed in the literature based
on the type and characteristics of the disturbance, few cause-based classification
algorithms have been proposed. The need for methods that target the identification
of the underlying causes of PQ disturbances has been pointed out by different
authors [61, 62, 58]. "A classification approach based on the underlying causes of
disturbances may be more difficult but generally more relevant for the diagnosis
of the electrical system", as highlighted by Bollen et al. in [63]. Indeed, once a
particular disturbance has been correctly detected and identified, it is essential to
determine its cause and origin in order to apply appropriate countermeasures.

As presented in Chapter 1, this research work focuses on analysing voltage
drops, in particular on the classification of their causes and determining their
relative location. The following section presents the most relevant methods and
techniques used in the literature for this type of classification, as well as their
advantages and limitations.

2.3 Classification of power quality disturbances

The classical scheme of classification methods in the literature can be decom-
posed in the following five stages: data acquisition, pre-processing, feature extrac-
tion, feature selection and feature analysis, as illustrated in Fig. 2.2. In addition,
it should be noticed that some tools can be used in more than one stage. For
instance, Principal Component Analysis (PCA) can be used for feature extraction

34



Chapter II: Power Quality Analysis

or for feature selection; meta-heuristic optimization techniques can be used in the
feature selection stage or in the classification stage.

Figure 2.2: Generalized flowchart for power quality disturbance classification

2.3.1 Data acquisition

This stage provides input data to the rest of the algorithm. Data can be either
synthetic or real. Synthetic data can be obtained through mathematical equa-
tions or physics-based models describing the behavior of the studied system. Real
measurement data on the other hand can be recorded experimentally either in
a laboratory or in actual grids. However the main limitations of using measure-
ments of actual grids, is the reduced number of disturbances that can be recorded,
because they are operation anomalies.
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2.3.1.1 Synthetic data generation

• Numerical models

PQ disturbances can be synthesized using mathematical equations in order
to mimic the behaviour of voltage or current waveforms. The simplest rep-
resentation can be obtained using a pure sine single-phase voltage waveform,
defined as in equation (2.1).

V (t) = Asin(wt− φ) (2.1)

Where A is the peak voltage amplitude, w = 2πf (f being the fundamental
frequency) and φ the phase-angle. On this basis, we can model PQ distur-
bances in a simplified way as presented in Table 2.1 [64]. Where u(x) is the
step function, N the total number of cycles and T = 1/f .

Numercial models are a more accessible source of data, especially for the
early development of algorithms. They allow large amounts of data to be
generated quickly while controlling the various parameters.

Table 2.1: Numerical modeling of power quality disturbances

PQ disturbance Mathematical model

Sag V (t) = A[1− α(u(t− t1)− u(t− t2))]sin(wt− φ)

Swell V (t) = A[1 + β(u(t− t1)− u(t− t2))]sin(wt− φ)

Interruption V (t) = A[1− γ(u(t− t1)− u(t− t2))]sin(wt− φ)

Harmonics V (t) = A[sin(wt− ϕ) +
∑H

h=2 αhsin(hwt− ϕh)]

Flicker V (t) = A[1 + λsin(2πf ′t− ϕ)]sin(wt− φ)

Transient impulse V (t) = A[sin(wt− φ)− ρ(e−750(t−ta) − e−344(t−ta))(u(t− ta)− u(t− tb))]

Parameters

0.1 ≤ α ≤ 0.9, T ≤ t2 − t1 ≤ (N − 1)T 0.1 ≤ β ≤ 0.9, T ≤ t2 − t1 ≤ (N − 1)T

0.9 ≤ γ ≤ 1, T ≤ t2 − t1 ≤ (N − 1)T 2 ≤ H ≤ 40; ∀h ∈ [2, H], 0 ≤ αh

0.05 ≤ λ ≤ 0.1, 8Hz ≤ f ′ ≤ 25Hz 0.22 ≤ ρ ≤ 1.11, T ≤ ta ≤ (N − 1)T , tb = ta + 1ms

• Simulation models

Although numerical modeling is a useful approach for data generation, it
cannot reproduce all the dynamics that can be found in the disturbed wave-
forms. As presented in chapter 1, PQ disturbances are due to the response of
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power system components when specific events occur in the network (i.e. a
voltage sag or swell caused by a line fault). In this sense, simulation models
can generate more accurate waveforms as they emulate these same events and
calculate the response of the power equipment based on the combination of
more accurate physical equations. Some of the most widely used simulation
software for the analysis of power systems are Matlab/Simulink, EMTP-RV
and PowerFactory.

For instance, Fig. 2.3 illustrates the RMS2 voltages of a three-phase voltage
sag obtained with the numerical equations versus a sag obtained with the
simulation of a line fault close to an induction motor. The numerical model
generates a perfectly square-shaped RMS voltage, as it cannot capture the
influence of the induction motor during the voltage drop and recovery [16, 23]
as does the simulation model.

(a) Numerical model (b) Simulation model

Figure 2.3: RMS values of a synthetic voltage sag generated with a numerical
model (a) and a simulation model (b). Only the simulation model emulates the
influence of the induction motor (IM) on the sag.

2.3.1.2 Real data measurement

Real data measurement is generally preferred over synthetic data as it naturally
carries the physical phenomena and interactions, which otherwise would be difficult

2See glossary
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to reproduce with numerical or simulation models. Real data also allows evaluating
the algorithms under real measurement conditions (different noise levels, frequency
variations, etc). These measurements can be divided into experimental laboratory
data and field data.

• Experimental laboratory data

Data obtained in laboratory can be measured under controlled conditions.
However, laboratory facilities can be oversimplified configurations depend-
ing on the availability of the equipment. For example, replicating an en-
tire industrial site, even a small one, would require access to specific equip-
ment and machinery. The generation of several types of disturbances si-
multaneously remains limited. Electrical interactions (resonance, harmonic
distortion, etc.) between industrial loads and other network elements are
more challenging to reproduce. This requires the use of strategies such as
hardware-in-the-loop (HLP) simulation. This could be a good compromise
between simulation and actual measurement data acquisition, provided that
the models are sufficiently accurate.

• Field data

Field data are measured with PQ monitors placed at strategic locations in
the studied network. The installation of such devices can be expensive de-
pending on the hardware and software characteristics of the monitor. The
installation can also require specific procedures such as power cuts depend-
ing on its location in the site’s network, affecting the normal site’s operation.
To evaluate the performance of algorithms, only results obtained with field
data are conclusive. However, this approach has several drawbacks, such
as controlled measurement conditions and non-repeatability of events. The
non-controlled conditions can induce incomplete information on the analyzed
event. Similarly, the inherent nature of disturbances as anomalies can make
it very difficult to generate a significant amount of data. This can negatively
affect the constitution of a complete and meaningful data set, which is es-
sential for developing and validating PQ analysis algorithms. This is not a
problem for disturbance characterisation, since the ground truth can be ex-
tracted directly from the recorded waveforms. However missing information
about the event conditions (source, connected devices, impact, etc.) can not
always be extracted directly from the electrical waveforms.

Most of the methods in the literature use simulation data for their development
and testing, as it is challenging to access large, representative and labelled real
data sets. Simulation models also allow for generating data for a wide range of
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controlled parameters and for analysing the algorithm’s performance in extreme
scenarios that are rare and difficult to record in existing power systems. Neverthe-
less, validation with field data is mandatory if the algorithms are to be deployed
in actual operating conditions. Therefore, a combination of simulation and field
data seems to be a relevant approach to develop a robust solution.

2.3.2 Pre-processing

The pre-processing stage prepares raw data for further feature extraction and
analysis. Pre-processing can consist of data cleaning, segmentation and format
transformation.

2.3.2.1 Data cleaning

Errors can occur when measuring data. These errors are mainly due to the
monitoring device, including missing data points, latched data, abnormal range
or extreme values [8]. Tgese must be eliminated before further processing. Re-
sampling data streams to obtain a more suitable sampling rate can be necessary.
Denoising techniques can be applied to improve the overall performance of the
algorithms. For instance, noise filters using wavelets such as Translation-Invariant
Wavelet (TI-W) [65] improved the classification accuracy in [66].

2.3.2.2 Segmentation

At the end of this stage, the electrical waveforms are segmented. Segmentation
allows selecting only the section of the data stream to be processed. The required
accuracy of the segmentation depends on the feature extraction methods. Seg-
mentation methods with high precision are similar to those used for disturbance
detection, presented in Section 2.2.1. When analyzing short-term disturbances,
several feature extraction methods require the voltage waveforms to be split into
transients and steady-state segments. A low accurate waveform segmentation can
lead to a wrong calculation of features [35], degradation of the global performance
of the classification algorithm.

2.3.2.3 Format transformation

Electrical data are primarily measured as waveforms. This is the most usual
format for electrical input data and it is generally preferred as it preserves the
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maximum information. Nonetheless, voltage and current waveforms can be trans-
formed into other formats such as RMS values or images for further processing,
as illustrated in Fig. 2.4. Normalization may be also applied at the end of this
process.

(a) RMS values of voltage sags

(b) Gray-scale images of voltage sags

Figure 2.4: Format transformation from voltage waveforms to (a) RMS values and
(b) and gray-scale images, for voltage sag source identification based on image
processing techniques. [2].

2.3.3 Feature extraction

The obtained data after pre-processing can be used directly as input for the
classification stage as some classifiers are designed to handle raw time series. Oth-
erwise, a feature extraction stage is necessary. The goal of this stage is to apply
one or more transformations and processing techniques to bring out the most rele-
vant information from the input signal segments. A large majority of the methods
in the literature apply one or more signal processing techniques and then extract

40



Chapter II: Power Quality Analysis

numerical features from the processed signals. However, features are not restricted
to numerical format. They can also be time series, or 2D and 3D images.

2.3.3.1 Time-frequency transformations

Time-frequency transformations are the most common methods used in the
literature for PQ disturbance classification. They allow voltage (and current)
waveforms to be represented in a time-frequency space.

• Short-time Fourier Transform

Fourier transform (FT) [67] is a well-known time-frequency transformation
method, particularly useful for harmonic analysis. However, its implementa-
tion is limited to stationary signals. One of its variants, Short-Term Fourier
Transform (STFT) [67], can be applied to non-stationary signals. It pro-
vides information in the time-frequency domain as it computes the FT on
short segments of the signal. STFT has been used for detection and feature
extraction of PQ disturbances [37, 68, 69]. STFT is also easy to implement.
However, its main limitation is the time-frequency resolution, which depends
on the length and overlap of the sliding time window.

• Wavelet Transform

Wavelet transform (WT) [70] is one of the most popular time-frequency tech-
niques for feature extraction. It has been applied for the analysis of PQ dis-
turbances in [71, 72, 73, 74, 75], and more specifically for the classification of
voltage sag causes in [76, 77, 78]. One of the advantages of WT over STFT is
the possibility of having a variable resolution. Some of its variants are: Con-
tinous Wavelet Transform (CWT), Discrete Wavelet Transform (DWT) and
Wavelet Packet Transform (WPT). DWT is usually coupled with a multi-
resolution analysis (MRA) and is less computational expensive than CWT.
WPT can be interpreted as an extension of DWT, providing more precise
frequency resolution than DWT, resulting in an equal-width sub-band fil-
tering of the signals. WPT also has the advantage of being an orthogonal
transform, which means that the energy in the signal is preserved.

Compared to the STFT, WT allows a fine temporal decomposition of the
spectral content. But such a high level of decomposition can also be compu-
tational expensive. WT is also highly sensitive to noise. Finally, note that
the performance of the transformation depends on the choice of the mother
wavelet function. For PQ analysis, the daubechies 4 wavelet (Daub4) is usu-
ally implemented because of its good performance for disturbance detection
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and classification of short-term events, especially for slow frequency distur-
bances [79].

• Stockwell Transform

Stockwell transform (ST) [80] is another time-frequency transformation tool,
based on a scalable sliding Gaussian window. It can be interpreted as a
generalization of STFT or an extension of CWT, overcoming some of their
disadvantages as better resolutions in time and frequency are achieved. ST
and its variants have been largely implemented for the classification of voltage
sag causes [81, 66, 82], as well as for the detection and classification of other
PQ disturbances [83, 84, 85]. However, besides the high computational cost,
ST is not suitable for harmonic analysis because the widths of the frequency
windows are directly related to their central frequency.

• Hilbert-Huang Transform

Hilbert-Huang transform (HHT) [86] is a method combining the Empirical
Mode Decomposition (EMD) and the Hilbert transform (HT). EMD is a
method used to recurrently decompose a signal into "modes" in the time-
domain. The obtained intrinsic mode functions (IMF) can provide useful
information contained in the signal, decomposing it into different spectral
bands. Then, the HT is applied to the IMFs to obtain instantaneous fre-
quency data, which makes it suitable for the analysis of non-stationary
signals. Several authors have successfully implemented this technique in
[87, 88, 89] for disturbance type classification, and in [90, 91] for voltage
sag cause classification. One advantage of HHT is that the composition
does not require a window selection. On the other hand, it has limited per-
formances for discriminating components in narrow band signals, and the
time-frequency decomposition is more difficult to interpret than other meth-
ods.

• Variational Mode Decomposition

Variational Mode Decomposition (VMD)[92] is a variant of EMD. It was
developed in an attempt to improve the performance of EMD, in particular
in terms of sensitivity to noise. Mishra et al. [66] used a combination of
ST and VMD for the classification of voltage sag causes, and Sahani et al.
[93] used VMD for the identification of single and multiple PQ disturbances.
Although VMD is more robust to noise, its main drawback is the boundary
effects.
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2.3.3.2 Space transformation methods

Space transformation methods are more rarely used for the classification of
PQ disturbances according to their type or cause. Their implementation mainly
concerns the characterization and localisation of disturbances.

• Clarke transform

Clarke transform is used to transform a three phase system (XA, XB, XC)
into an orthogonal system of three components (Xα, Xβ, Xγ). In a balanced
system, the third component Xγ is zero, which simplifies the analysis. It is a
power invariant transformation particularly used for space vector modulation
control in AC drives.

In [18], the authors used a space vector method derived from the Clarke
transformation using the ellipse-shaped Clarke’s components when plotted
in a cartesian system for voltage sag and swell characterization. A similar
approach was used in [21] for the characterization of fault-caused voltage
sags. In [56], the Clarke’s components of the instantaneous line current
vector was used for the localisation of the sources of voltage sags. Clarke
transform is a time-domain analysis tool, which means that no information
in the frequency domain is provided.

• Fortescue transform

Fortescue transform [94] is a linear transformation in the complex domain
widely used in the analysis of unbalanced three-phase power systems. It
allows representing an unbalanced set of three phasors (XA, XB, XC) into a
new balanced system known as symmetrical components (X+, X−, X0).

In [95, 19] the authors proposed an algorithm for voltage sag characteriza-
tion based on the analysis of the symmetrical components. As mentioned
in section 2.2.2, the use of positive-sequence phasors improved the results
of voltage sag source location methods in [55] when applied to asymmet-
rical sags, and in [53, 96] the authors went a step further by employing
instantaneous symmetrical components for the same task. A symmetrical
component-based modified technique has also been used in [97] for the clas-
sification of disturbance type. As for Clarke transform, Fortescue transform
is a time domain technique with no spectral information provided. Neverthe-
less, the main advantage of Fortescue transform over other transformations is
the electrical interpretability of its symmetrical components. Indeed, differ-
ent electrical power equipment (generators, lines, transformers, motors, etc.)
can be modeled using equivalent circuits based on symmetrical components
[98].
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Some of the main benefits and drawbacks of the presented signal processing
techniques are synthesized in Table 2.2. However, a detailed comparison of their
performance and efficiency is not provided since there is no standard open source
PQ disturbance database for benchmarking. As a consequence, each author uses
custom data sets, which differ in size, source (synthetic or real), noise levels, cat-
egories of PQ disturbances analyzed and classification goal (type-, characteristic-
or cause-based).

2.3.3.3 Signal descriptors and statistical moments

Statistical parameters and signal descriptors are numerical values. They are
extracted from transformed signals and grouped into a feature vector, which is
frequently used as unique output of the feature extraction stage.

• Signal descriptors

They include various numerical features that are calculated from time series
signals such as: minimum and maximum values, energy, spectral entropy,
Shannon entropy, etc. They also include electrical descriptors such as total
harmonic distortion (THD).

• Statistical moments

Statistical moments are frequently used for characterizing the transformed
signals and their subcomponents. They include mean, standard deviation,
also called low-order statistics, and skewness and kurtosis, also referd as
high-order statistics (HOS).

Table 2.3 presents a brief description of some examples of features extracted
based on different signal processing tools.

2.3.4 Feature selection

Feature selection is an optional stage between feature extraction and classifi-
cation stages. The goal is to optimally choose the most relevant features for the
final feature analysis stage. Indeed, feature extraction can result in a large num-
ber of features including redundant and correlated values. The complexity of the
algorithms can rapidly increase if the number of features is too large. In fact, the
performance of many classifiers such as machine learning models highly depend
on the quality of the selected input features. Although the feature selection stage
is not systematically included in the classification methods, some authors have
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Table 2.2: Benefits and drawbacks of signal processing techniques

SP technique Benefits Drawbacks Ref.

Short-time Fourier Trans-
form (STFT)

Useful for time-frequency
analysis of non-stationary
signals. Easy to imple-
ment.

Limited time-frequency
resolution due to fixed
window.

[37, 68,
69]

Wavelet Transform (WT) Allows a fine decomposi-
tion of the spectral con-
tent in time.

Performance depends
on the choice of mother
wavelet. High level of
decomposition can be
computationally expen-
sive. Very noise sensitive.

[71, 72,
73, 74, 75,
76, 77, 78]

S-Transform (ST) Suitable for time-
frequency analysis.
Good trade-off between
time and frequency res-
olution thanks to its
frequency-dependent vari-
able window.

Not suitable for harmonic
analysis because the
widths of frequency win-
dows are directly related
to their central frequency.
High computational cost.

[81, 66,
82, 83, 84,
85]

Hilbert-Huang Transform
(HHT)

Able to identify subtle
changes in frequency. De-
composition does not re-
quire a window selection.

Limited performance
when discriminating com-
ponents in narrow band
signals. Time-frequency
decomposition is more
difficult to interpret than
other methods.

[87, 88,
89, 90, 91]

Variational Mode Decom-
position (VMD)

Corrects sampling and
noise sensitivity compared
to EMD. The modes are
extracted concurrently.

Boundary effects are one
of its main drawbacks.

[66, 93]

Clarke Transform Power-invariant transfor-
mation. Converts a three-
phase system into a two-
phase system, if the sys-
tem is balanced.

Time domain analysis
only. No information
provided in the frequency
domain.

[18, 21]

Fortescue Transform Physical and electrical
interpretability. Well-
known tool for analysis of
unbalanced three-phase
systems. Low computa-
tional cost.

Time domain analysis
only. No information
provided in the frequency
domain.

[95, 19,
97]
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Table 2.3: Example of common extracted features using different signal processing
techniques

Signal processing
method

Extracted features

STFT Energy, standard deviation, skewness, entropy. Kurtosis and
maximum value of 50-Hz contour. Entropy and mean value of
150-Hz contour [99].

WT Using db4 as mother wavelet. Minimum and maximum of the
four-level decomposition. Energy, minimum, maximum, and
central cumulants of statistical parameters (second, third and
fourth order) of 50Hz. [100].

ST Minimum and maximum values, standard deviation of S-
contours. Energy and estimated frequency at the maximum
amplitude from ST matrix [101].

HHT Energy, entropy, skewness, minimum and maximum of ampli-
tude curve from the first IMF. Standard deviation, skewness
and energy of phase curve [66].

VMD Relative energy ratio (RER), mode instantaneous amplitude
(IA), number of zero crossings, center frequencies from each of
the modes (four levels) [66].

pointed out the importance of selecting relevant and non redundant features and
their impact on the classifiers’ results [100].

2.3.4.1 Filters, wrappers and embedded methods

There are three classic categories for feature selection algorithms: filter-based,
wrapper-based and embedded-based methods [102].

• Filter methods define the relevance of features (or feature importance)
using variable ranking techniques as criteria for selection, ie. Pearson corre-
lation, Chi-square test, etc. The selection does not depend on the classifica-
tion’s performance. In [103], a filter-based approach was used for PQ event
identification, achieving a feature size reduction between 50 to 86% with-
out any compromise in the classification performance. The main advantage
of filters is the possibility to obtain a generic feature subset independently
of the chosen classifier. For this reason they are faster than wrappers and
embedded methods and it is a good approach when the number of features
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is large. It avoids overfitting but it may fail to effectively perform the best
selection of features.

• Wrapper methods use the classification output as the objective function
to evaluate the optimal feature subset. The subsets of features are obtained
through search algorithms such as sequential selection methods. In [104],
Huang et al. apply Sequence Forward Search (SFS) for various types of PQ
disturbance classification, obtaining a reduction in the number of features
and a good classification result with low noise sensitivity. Wrappers are
on one hand more computationally expensive than filters and less effective
for a large number of features. On the other hand, they generally give
better results. They should be implemented carefully as they are prone
to overfitting.

• Embedded methods incorporate feature selection as part of the model
learning process. They combine the advantages of filter and wrapper meth-
ods. Some of the most common examples of this category are Decision Trees
(DT), Random Forests (RF), Least Absolute Shrinkeage and Selection Op-
erator (LASSO), etc. For instance, [105] incorporates the feature selection in
the process of design of a DT classifier using Gini index as optimization cri-
terion. Embedded methods are more computationally expensive than filters
but they are faster than wrappers. They are also very effective and less prone
to overfitting. However, they cannot be associated with any classifier, as the
feature selection process needs to be integrated into the classifier structure.

Metaheuristic optimization techniques are also popular for feature selection. They
are usually implemented as wrappers using the classifier output as objective func-
tion, but they can also be used in a filter-based approach if the objective function
is defined with a metric independently of the classifier. Search algorithms in-
clude Genetic Algorithms (GA), Particle Swarm Optimization (PSO), Ant Lion
Optimization (ALO), Teaching-learning-based Optimization (TLBO), etc. These
nature-inspired algorithms can be applied for the optimal selection of features, but
also for the classifiers’ parameters optimization. Jamali et al. [99] use a combina-
tion of GA, SFS and mRMR for optimal selection of various sets of features. Saini
et al. [78] implement ALO for feature selection applied to voltage sag cause clas-
sification. Behera et al. [101] use a fuzzy adaptive PSO technique for optimizing
expert system rules for PQ disturbance type classification.
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2.3.4.2 Dimensionality reduction methods

• Principal Component Analysis

Principal component analysis (PCA) is a statistical technique for feature
dimensionality reduction that allows the representation of a set of features
into a new space of linearly uncorrelated features. Reducing the dimension
of the feature vector allows to reduce the redundancy of features and to
better control the complexity of the classification algorithms, also known as
the "curse of dimensionality". In [76] PCA is applied to reduce the number
of features, improving the voltage sag source overall classification results
when using a Support Vector Machine (SVM) as classifier. The use of a
reduced subset of features decreased the computational cost and significantly
improved noise sensitivity of the SVM (up to 40%) compared to the classifier
trained with the original feature set.

• Autoencoder

Autoencoders are a type of unsupervised neural network, used for learning
data representation while reducing dimensionality. The dimensionality re-
duction is learned and data-driven. They are composed of two subnetworks:
an encoder and a decoder. The encoder compresses the input data into a
latent-space representation, and the decoder is able to reconstruct the origi-
nal input using the latent-space representation. The autoencoder is trained
using both subnetworks, although the encoder is in reality the structure of
interest as it creates the latent-space representation. This type of architec-
ture is usually embedded inside deep neural networks. Autoencoders are
used for unsupervised feature extraction and selection in [106], as part of a
deep neural network model for voltage sag source’s classification.

2.3.5 Feature analysis

The final stage of the process is feature analysis. There are two main cate-
gories: rule-based and machine learning techniques. Rule-based methods include
threshold analysis and expert systems. The most recent literature proposals use
machine learning techniques for classification, as they are more flexible and achieve
better overall results. However, the complexity level and the performance of these
classifiers are usually correlated to the amount of necessary training data, which
varies between 100 to 500 events per class in the reviewed literature.

Some of the techniques in both categories have also been combined with other
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approaches such as Fuzzy Logic3, giving as result hybrid methods such as fuzzy
expert systems and neuro-fuzzy systems.

We present here a brief description of the most common methods in the liter-
ature to provide a global overview. Table 2.4 summarizes their main benefits and
drawbacks. As for feature extraction methods in Section 2.3.3, a detailed com-
parison of their performance and efficiency is not provided since the data used for
training and testing, as well as the number of classes and classification goals differ
from one publication to another. However, such detailed results are presented in
Section 2.4, where methods applied to the classification of voltage sag causes are
addressed and can be effectively compared as in Table 2.5.

2.3.5.1 Rule-based methods

• Threshold analysis

One of the most basic techniques for decision-making is threshold analysis.
The threshold values can be defined using theoretical values or calculated
values from observations of the data. In [107] electrical features extracted
from RMS voltages are used (amplitude, duration, phase-asymmetry, etc.),
and the voltage sag source identification is performed based on set of rules
according to pre-defined thresholds. Similarly in [108], electrical features
such as changes in active and reactive power, second order harmonic ampli-
tude, RMS voltage shape, etc. are used to define a rule-based framework.
In other cases, thresholds are defined for features obtained after processing
the original waveforms (Hilbert-Huang transform [90], and Clarke transform
[18]). When thresholds are defined through data observation, their robust-
ness depends on the size and representativity of the analyzed data. The
advantages of rule-based methods through threshold analysis is their easy
implementation and that no learning process is needed. Depending on the
method used for determining the thresholds, generalization capabilities can
not be guaranteed.

• Expert Systems

An expert system is an algorithm that represents knowledge and mimics the
decision-making ability of a human expert. A set of rules is defined based on
this knowledge and its performance depends strongly on human expertise.
It usually consists of a user interface, an inference engine and a knowledge
base. In [109] an expert system is used for the classification of different types

3Fuzzy logic is an approach that imitates human-like reasoning in which the true value of a
number may be between 0 and 1.
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of power system events causing voltage sags and interruptions. Similarly, a
fuzzy expert system is employed in [110] for the identification of power sys-
tem events in MV grids. As for threshold analysis, expert systems do not
require large amounts of data since there is no learning process. Their mod-
ular structure allows to easily add new classes if needed, without requiring
to modify the existing blocks (or re-training as it is the case for statisti-
cal classifiers). However, they are difficult to develop and require expert
knowledge.

2.3.5.2 Machine learning methods

Machine learning methods are subdivided in different subcategories. They can
be supervised, unsupervised or semi-supervised, depending on the characteristics
of the input data. In supervised learning, a set of labeled data is given to the
algorithm for "training" the model’s internal parameters to better predict the out-
put labels. In unsupervised learning the data is unlabeled, and in semi-supervised
learning only a small amount of data is labeled, combined with a large amount
of unlabeled data. Depending on the final task, machine learning models are also
divided into classification or regression models. The goal of classification models
is to predict a categorical label, whereas regression models are used to predict
continuous numerical values.

In the reviewed literature, the totality of the machine learning methods used
for the classification of PQ disturbances belong to the subcategory of supervised
classification models.

• Decision tree

A Decision Tree (DT) is a machine learning method that has a flowchart-like
structure. Each internal node represents a condition on a specific feature,
each branch represents a possible outcome based on the condition and each
leaf node represents a class label. The method is based on the choice of a
feature that maximizes and fixes data division. There are different criteria
used to select the feature that maximizes data division, such as Gini index,
entropy, information gain, etc. In [105] this technique is used in a solution
proposed for the classification of PQ disturbances. The Gini diversity index
is used as fitness measure for the construction of the decision tree. Compared
to manually defined thresholds in rule-based techniques, DTs’ decision rules
are obtained automatically from features. They also have the advantage of
having an interpretable decision-making process. The main drawback is their
instability risk, as small changes in data can cause large structural changes.
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• Random Forest

Random Forests (RF) consists of many DTs combined together to get a more
precise result. It is less prone to overfitting, and is generally more robust.
However it is more computationally costly and more difficult to visualize and
interpret compared to DTs. In [2, 111], the authors use a RF classifier for
the classification of voltage sag causes. They obtained better classification
results with RF when compared to SVM, ANN and DTs, using the same set
of features (between 3% to 7% increase in global accuracy).

• Support Vector Machine

A Support Vector Machine (SVM) is a supervised model-based on statisti-
cal learning theory. Its objective is to construct an optimal decision function
that accurately predicts new data by minimizing the classification error. The
separation of classes is achieved by minimizing the margin of separation be-
tween classes in a high-dimensional feature space where the initial features
have been implicitly mapped. Feature mapping into a new high-dimensional
space is performed through kernel functions. There are different kernel func-
tions: Linear, Polynomial, Gaussian, Radial Basis Function (RBF), Sigmoid,
etc. Other parameters to be tuned include the regularisation parameter C,
that allows to control the trade-off between misclassification tolerance and
overfitting, and the parameter γ that regulates the influence of the most
distant data points on the decision boundary definition. The choice of an
adapted kernel function and correct parameter definition have a significant
effect on the efficiency of the SVM.

SVM is a technique frequently used for PQ disturbance classification tasks.
In [112, 76], the authors implement a SVMs and in [113] Sha et al. proposed
a Least Squares SVM (LS-SVM) for the classification of voltage sag causes.
One of its main benefits is the good trade-off between generalization perfor-
mance and complexity. It is also fast to train compared to other approaches.
However its performance depends highly on the kernel selection, and the final
model is difficult to interpret.

• Artificial Neural Network

An Artificial Neural Network (ANN) is an statistical model capable of learn-
ing non-linear functions. An ANN is typically composed of an input layer, an
output layer, and one or more hidden layers. ANN is the most most popular
classification technique used in the classification of PQ disturbances. The
most implemented variant is the multilayer perceptron (MLP). The inner
neuron’s parameters (weights and biases) are optimized in an iterative way
using a gradient descent-based method, which is usually backpropagation.
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MLP is implemented in [36] for the classification of voltage sag sources. The
authors report better classification results using MLP compared to SVM
(+7%), where accurate results are obtained even with features calculated on
the first 1/2 cycle window. ANNs are versatile and are able to represent
complex non-linear functions. However they are highly data-driven, diffi-
cult to interpret and prone to overfitting. Other popular variants used for
PQ analysis include Probabilistic Neural Network (PNN), Extreme Learning
Machine (ELM) and Neuro-fuzzy Systems (NFS).

PNN is a neural network based on Bayesian theory. Unlike other neural
networks, PNNs do not require a learning process or initial weights. Manjula
et al. [91] reported better results with a PNN as classifier compared to MLP
(+3%).

ELM [114] is based on a single hidden layer feedforward neural network.
Different from gradient-based methods, ELM assigns random values to some
of its weights which are frozen during training. This technique allows the
algorithm to converge much faster than gradient-based ANNs, while achiev-
ing good generalization performance. ELM shows higher accuracy when
compared to ANN, k-Nearest Neighbors (kNN) and SVM in [66] and better
trade-off between accuracy, computational cost and noise sensitivity when
compared to PNN and two different fuzzy clustering classifiers in [82].

Finally, NFS is a combination of ANN and fuzzy logic. Their fast learning
and generalization capabilities are their main benefits. In [115] a 3D space
and PCA-based approaches are combined with NFS for the classification of
various PQ disturbances.

• Deep Neural Network

In recent years deep learning (DL) algorithms have gained attention from
different fields such as speech recognition, computer vision and signal pro-
cessing. DL algorithms have the ability to learn optimal features from train-
ing data, avoiding manual extraction and selection of features. Deep Neural
Networks (DNN) contain multiple layers resulting in higher complexity dur-
ing the training stage, but can outperform classical ANNs. Increasing the
depth (number of layers) increases the capacity of the model. However if the
model is too deep and the training dataset is not large enough, it can rapidly
lead to overfitting and poor generalization capabilities.

Some of the most commonly used DNN architectures include Convolutional
Neural Networks (CNN) and Long-Short Term Memory networks (LSTM).
CNNs use convolution for processing and extracting features of 2D or 3D
data, one of the reasons why it is mainly used for image processing. In
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[106, 116], the voltage waveforms are converted to 2D gray-scaled images and
are fed to the network as input. LSTM is a type of recurrent neural network
(RNN). The feedback connections allows the model to learn dependencies
between sequence data, making them more suitable for the analysis of time
series. In [117, 118] the authors successfully implement a bidirectional LSTM
model (Bi-LSTM) for voltage sag source identification.

Some of the main properties of the presented classification techniques are sum-
marized in Table 2.4.

Table 2.4: Main properties of classifiers used for power quality classification

Classifier Benefits Drawbacks References

Threshold analysis Rule-based, easy to im-
plement. No learning
needed.

Generalization capabili-
ties are not guaranteed.
Threshold values are
manually defined.

[18, 90, 107,
108]

Expert System (ES) Good performances re-
gardless of the amount of
data. Modular structure
allows to easily add new
classes.

Costly to develop. Re-
quires expert knowledge.

[109, 110]

Decision tree (DT) Decision rules obtained
automatically. Inter-
pretable decision making
process.

Instability risk. Small
changes in data can cause
large structural changes.

[105]

Random Forest (RF) Automatically generate
uncorrelated DT. Glob-
ally robust and minimal
outlier influence.

Difficult to interpret and
visualize. Computation-
ally intensive.

[2, 111]

Support Vector Machine
(SVM)

Good trade-off between
generalization perfor-
mance and complexity.
Fast training.

Data-driven. Perfor-
mance depend on kernel
selection. Final model
difficult to interpret.

[76, 112,
113]

Artificial Neural Networks
(ANN, MLP, PNN, ELM)

Good global perfor-
mances, versatile and
able to represent complex
non-linear functions.

Highly data-driven and
prone to overfitting. Very
difficult to interpret.

[36, 66, 91,
114, 115]

Deep Neural Networks
(DNN, CNN, LSTM)

Outstanding accuracy in
pattern recognition tasks.
No need of previous fea-
ture extraction or selec-
tion stage. Optimal fea-
ture extraction is learnt
during training.

Requires important
amounts of data. High
computational cost for
training, usually needs
specific hardware (GPU).

[106, 116,
117, 118]
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2.4 Classification and relative localisation of volt-
age sag causes

In the previous section, we presented a general scheme for the classification of
PQ disturbances based on their type, characteristics or underlying causes. This
scheme as well as the presented methods and techniques are also valid for the
classification of voltage sag causes.

Table 2.5 summarizes the main characteristics of the most relevant proposals
in the literature. All the methods are capable of identifying the three main causes
of voltage sags: line faults (F), transformer energizing (TE) and induction motor
startup (MS). Some of these proposals are also able to identify combinations (C)
of the previous categories (ie. voltage sag caused by a line fault followed by a
motor starting). Other methods are designed to differentiate multiple types of
short-circuit faults depending on the affected phases. They are noted as F(n), n
being the number of fault types.

2.4.1 Discussion and main limitations of the methods in the
literature

The global classification accuracy of the methods referenced in Table 2.5 is
very high. Nevertheless, there are some limitations in the presented approaches
regarding training and testing data that should be highlighted. The major ones
can be considered as :

1. Large amount of labeled training data is required. Most of the ap-
proaches in the literature are based on statistical classifiers, thus highly
data-driven. Machine learning techniques, and particularly deep learning
networks, require a significant amount of data for effective training. Consti-
tuting a large and diverse dataset can be challenging since voltage sags are
anomalies, and therefore not frequent events. In addition, the dataset must
be labeled as classifiers are supervised, which can be difficult to obtain.

2. The generalization capabilities have not been fully evaluated. The
large majority of the methods need to be trained and tested using data
from the same data pool (either simulation or field data). Only [116, 118,
117] present results using a mix of simulation and field data. Although the
classifier is firstly trained with synthetic data, it still requires a portion of field
data for the final parameter tuning. The authors explain that this strategy
is used with the objective of accelerating the learning process and improving
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Table 2.5: Comparative review of Voltage Sag Cause Classification methods in the
literature

Ref. Data ac-
quisition

Pre-
processing

Feature
extraction

Feature
selection

Feature
analysis

VS causes Accuracy Location

[90] Simulation - HHT - Rule-based F(1), TE, MS 96% No

[91] Simulation - HHT - PNN F(1), TE, MS 98.63% No

[76] Simulation - WT PCA SVM F(1), TE, MS,
C

99.67% No

[113] Field data RMS k-means
SVD

- LS-SVM F(1), TE, MS 92% No

[2] Simulation - DWT - ML-RF F(4), MS 95% Yes

[77] Simulation Segm VQ,DWT PSO NBC F(1), TE, MS 95% No

[78] Simulation Norm,
Segm

L-WT ALO SVM, PNN,
MLP

F(5), MS 99.6% No

[82] Simulation Norm ST - ELM F(1), TE, MS,
C

100% No

[66] Simulation TI-W ST, VMD - ELM F(1), TE, MS 100% No

[36] Field data ICA HOS TLBO MLP F(5), TE, MS 99.14% No

[106] Field data Norm,
2D-image

- - CNN F(6), TE, MS 97% No

[117] Simulation
+ Field
data

Norm - - Bi-LSTM F(1), TE, MS,
C

98% No

[118] Simulation
+ Field
data

Norm - - Bi-LSTM F(1), TE, MS,
C

99% No

[116] Simulation
+ Field
data

Norm,
2D-image

- SDADE
(autoen-
coder)

CNN F(1), TE, MS,
C

99.22% No

[111] Simulation RMS FLAG,
Shaplet
transform

- RF F(4), TE, MS 99.4% No
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overall results. However, results of these networks exclusively trained with
simulation data and tested on field data have not been reported.

Nevertheless, we know from [63, 112] that this is not a trivial task. Both
authors report good results when training a SVM classifier with field data
from one network and testing it on a different one. However, the classifier’s
performance significantly deteriorate when trained with simulation data and
tested with real data. The same authors also point out that the usefulness
of these methods for commercial purposes depends on the capacity of the
classifier to be pre-trained on factory and work accurately when deployed in
different networks, as it is not realistic that customers can train the algo-
rithms themselves. In addition, from an implementation point of view, it is
highly demanded that classifiers are purely based on synthetic data, which
is easier to obtain [112].

In a similar way, the performance of the algorithms depend on the choice of
features, which should be done carefully to avoid the loss of relevant information.
Thus, there are some aspects regarding the feature extraction process to be noted:

1. Low interpretability of the extracted features. Most of the used trans-
formations do not integrate the physical and electrical properties of the PQ
events. Thus, trouble-shooting and error analysis become tedious since most
machine learning classifiers are "black-box" models. The generalization ca-
pabilities of the algorithms are also compromised, as it is difficult to provide
guarantees on the behaviour of the selected features when applied to new field
data. Therefore, the general interpretability of the decision-making process
is particularly interesting for industrial applications because of reliability and
acceptability issues.

2. Scalar feature extraction and risk of information loss. Classical ma-
chine learning algorithms such as DT, SVM and ANN take as input a vector
of scalar features. This approach may be well suited to the analysis of steady-
state disturbances. However, the time dependence of electrical waveforms is
important for analyzing short-duration disturbances such as voltage sags.
The information related to the underlying cause is encoded through the en-
tire duration of the event, and extracting scalar features involves a risk of
information loss [119]. There is also a higher risk of error in the calculation
of scalar features if their extraction depends on a precise segmentation of
transients and steady-states [35].

For this reason, a classification approach based on time series seems more
relevant for an efficient analysis of voltage sags. From the methods presented
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above, only [113, 111] and the deep learning-based methods [106, 116, 117,
118] proposed a time series classification approach, without the need to cal-
culate and extract scalar features.

Finally, it should be noted that all but one [2] of the previous literature ref-
erences, target all the three main events responsible for voltage sags, regardless
of their relative location (upstream or downstream). Nevertheless, industrial cus-
tomers need to know whether the voltage drop is due to an event in the upstream
distribution grid or the downstream industrial network in order to implement ap-
propriate countermeasures. Indeed, if voltage sags are originated at the industrial
site (downstream), corrective solutions can be more easily implemented to avoid
future sags. However if the sags are originated at the level of distribution grid
(upstream), corrective solutions are more difficult and very expensive to imple-
ment. In this case, industrial customers will prefer targeted mitigation solutions
to protect sensitive equipment on their sites.

2.5 Conclusion

Power quality analysis is divided in three categories: detection, location and
classification. Each category has a different goal, but they share common methods.
We made a focus on the classification task and we presented a general five-stage
scheme: data acquisition, pre-processing, feature extraction, feature selection and
feature analysis. We also presented the most relevant techniques proposed in the
literature for the classification of PQ disturbances.

The classification of voltage sag causes follows the same five-stage scheme and
shares similar methods. Although the global classification accuracy of the pro-
posals is globally high, we pointed out some important limitations that should be
addressed in the development of our proposal:

• The large majority of the state of the art methodologies use statistical classi-
fiers, which are highly data-driven. Thus, a large amount of data is required
for the training of these type of classifiers. Access to these data is difficult,
and therefore it should be limited.

• The generalization capabilities of these algorithms have not been evaluated,
since all the methods have been trained partially or entirely with data ob-
tained from the same source as the test data. This approach is not always
feasible from an industrial implementation point of view, since real data
is difficult to obtain and customers are not always capable of training the
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algorithms themselves. We should aim to develop an automated, scalable
and generalizable methodology to be applied in different industrial sites. It
should ideally be trained entirely on synthetic data prior to its deployment.

• Most of the extracted features are not easily interpretable from an electrical
point of view. This can make the error analysis and trouble-shooting stage
difficult to perform. Interpretable algorithms are preferable for acceptability
and reliability issues. We should aim for an algorithm that integrates expert
knowledge by selecting physical meaningful features.

• The extraction of scalar features from non-stationary signals involves a risk
of information loss, since the time dependence of electrical waveforms is not
taken into account. Alternative feature extraction methods should be studied
in order to take into account this aspect.

• Few methods proposed a combined classification and location approach. In-
formation on the relative location of disturbances is key to industrial cus-
tomers, and therefore it should also be addressed.

The literature already proposes a large variety of solutions that report high ac-
curacy for the classification of voltage sag causes. Our goal is to propose a solution
that achieves such standards, but that at the same time addresses the aforemen-
tioned limitations. The algorithm to be developed has commercial purposes, hence
its implementation must be realistic from an industrial point of view.

From the above analysis, we decided to propose a solution based on the ex-
traction of meaningful and interpretable features by integrating expert knowledge
in the process. These features are multivariate time series signatures, which com-
pared to scalar values, have a lower risk of information loss. Then, we propose a
time series classification approach to classify the signatures. Although this method
is data-driven, we demonstrate that the amount of data required for the develop-
ment of the solution is significantly lower compared to other approaches in the
literature. In addition, we will ensure that the required data is accessible through
simulation and that the developed algorithm is able to perform effectively in dif-
ferent industrial networks.
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Classification of Voltage Sag Causes

3.1 Introduction

In Chapter 2 we presented the most relevant methods and techniques applied
to power quality analysis and the classification of voltage sag causes. Most of
the proposals in the literature are based on the analysis of scalar features, with
only a few algorithms making use of time series. Some of the major drawbacks
of these methods include the risk of information loss linked to the extraction of
scalar features, the low interpretability of the decision-making process and the
high amount of data required for the training.

Therefore, inspired by pattern recognition, we propose a voltage sag classifi-
cation algorithm based on the recognition of multivariate time series signatures.
The signatures are obtained through a feature extraction stage mainly based on
the Fortescue Transform (symmetrical components), which presents many advan-
tages in terms of electrical interpretability. Although this transform has been
applied in the literature for the characterization [95, 19] and location [53, 96] of
voltage sags, to the best of our knowledge, the obtained patterns have not been
exploited for the classification of voltage sag causes. The signatures are classified
using an approach based on the distance between an unknown signature and the
labeled signatures in a previously built reference database. This approach has the
advantage of requiring a reduced amount of data for its implementation.

This chapter will describe the characteristics of our proposal. Each stage of the
algorithm is presented, but the results and performance analysis will be further
detailed in Chapter 4.
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3.2 Classification algorithm scheme

The algorithm consists of four stages: data acquisition, pre-processing, feature
extraction, and feature analysis. We distinguish two modes of operation: a ref-
erence database constitution mode, prior to the implementation of the algorithm,
and a classification mode, during the algorithm’s operation. In the first mode, we
build a reference database using the processed labeled events. In the classification
mode, the unknown voltage sags, are processed by all of the algorithm’s steps
including the feature analysis step. The two modes are illustrated in Fig. 3.1.

Figure 3.1: Flowchart of the two modes: reference database constitution and
classification
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The first stage is the data acquisition of three-phase voltage and current wave-
forms. There are two sources of data available: synthetic data from numerical sim-
ulations and field measurements. In both cases, first, the data are pre-processed
to ensure completeness, uniform length, and a correct sampling rate for all wave-
forms. Then, the Short-Time Fourier Transform (STFT), Fortescue transform,
and Minmax normalization are applied to the waveforms in the feature extraction
stage, providing a 4-dimension time series signature. At the end of this stage,
the signatures of the labeled events are used for the constitution of the reference
database.

The final stage is the feature analysis, which consists of calculating the distance
between a new signature and the ones in the reference database. To calculate the
distance between two signatures, we first align them in time and space using the
Dynamic Time Warping (DTW) algorithm. The distance of the new signature to
the different classes in the database is estimated, and the predicted label is given
according to the closest class to the signature to classify. Finally, a confidence
index associated with the predicted label is computed. The final output of the
algorithm consists of the predicted voltage sag source and a confidence score.

Three main events are responsible for voltage sags: line faults, transformer en-
ergizing, and induction motor direct startup. These events can be generated in the
distribution network (upstream) or the industrial network (downstream). While
line faults and transformer energizing have been considered at both upstream and
downstream locations, the induction motor direct startup has only been consid-
ered downstream due to its limited impact on the voltage of parallel feeders in LV
sites. We also distinguish between balanced and unbalanced faults, depending on
the fault causing the sag (see Chapter 1). As a result, we define seven classes for
our classification problem, as detailed in Table 3.1.

Table 3.1: Definition of classes

Class Voltage sag cause

A1 Upstream balanced fault

A2 Upstream unbalanced fault

B1 Downstream balanced fault

B2 Downstream unbalanced fault

C1 Upstream transformer energizing

C2 Downstream transformer energizing

D Downstream motor startup
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3.3 Data acquisition

The final goal of this research work is to obtain an algorithm that will be
applied to the data collected from different industrial sites. Each industrial site
will be equipped with a single monitoring device on the LV side of the MV/LV
main transformer. The algorithm could be deployed in two ways: in a centralized
server where the data of several industrial sites would be analyzed, or directly on-
site where the data are collected and processed locally (decentralized approach).
Fig. 3.2 illustrates both approaches.

(a) (b)

Figure 3.2: (a) Centralized and (b) decentralized approaches for data collection
and processing

The algorithm should ideally be developed using only real field data. However,
as discussed in Chapter 2, a significant drawback of this type of data is the difficulty
of collecting a sufficient number of PQ events because they are power system
anomalies and, therefore, rare. Another limiting aspect of field data is the labeling
of events, which requires expert analysis. In addition, the human factor must be
considered, as there is a risk of error in the labeling process.

Therefore, it is preferable to rely on synthetic data to create a large and rep-
resentative dataset. It allows us to obtain large amounts of labeled and controlled
measurements, even for events that are so rare that they have not been registered
yet or for which we have few records. Moreover, since we can control different
parameters, we can evaluate the algorithm’s robustness regarding noise levels or
frequency variations.
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3.3.1 Real field data

Field data were acquired at three industrial sites over a period of 1.5 years,
each from a different sector: metal equipment manufacturing, agri-food industry,
and chemical manufacturing. These LV sites are fed from the 21 kV distribution
network via a 21 kV/400 V Dyn transformer. It is important to note that no prior
knowledge of the industrial network topology or equipment was used to develop
this algorithm, as this information is unavailable.

The voltage sag detection algorithm, which is based on threshold analysis, is
built into the monitoring device at factory. Once a voltage sag is detected, the
voltage and current waveforms for 16 cycles are recorded with a sampling frequency
of 12.8 kHz1. As presented in Table 3.2, the field dataset consists of 385 voltage
sags, belonging to 5 available classes out of the 7 considered: Upstream balanced
faults (A1), upstream unbalanced faults (A2), downstream unbalanced faults (B2),
upstream transformer energizing (C1) and downstream motor starting (D). The
classes corresponding to downstream balanced faults (B1) and downstream trans-
former energization (C2) were not recorded during this monitoring period. The
data labeling has been validated by two power quality experts.

Table 3.2: Real dataset description

Class Site 1 Site 2 Site 3 Total
A1 - 35 - 35
A2 23 103 29 157
B1 - - - -
B2 - - 90 90
C1 7 - 2 9
C2 - - - -
D 93 - 1 94

Total 123 138 120 385

Note that the spread of the events across classes and sites is not uniform. In-
deed, upstream unbalanced faults are the most common source of voltage sags,
followed by upstream balanced faults (three-phase faults). However, their occur-
rence depends on the characteristics of the distribution network feeding the site,
and the three monitored sites are geographically located in different regions of
the country (different feeder lines). Similarly, the frequency of sags caused by up-
stream transformer energizing will depend on the distribution grid characteristics.

1Sampling frequency imposed and set as default on the monitoring device.
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On the other hand, downstream faults are less frequent. Voltage sags caused by
the direct startup of downstream induction motors are due to oversized motors
without starting devices and depend on how the site has been sized. Finally, iso-
lation transformers are not always present in LV sites and should be oversized to
cause voltage sags.

3.3.2 Synthetic data generation

3.3.2.1 Characteristics of the simulated industrial grid

The simulated case study is designed using the EMTP-RV (ElectroMagnetic
Transients Program) software. The model comprises two sub-networks: the in-
dustrial network and the distribution network, as displayed in Fig. 3.3. It should
be noted that the monitoring device is located downstream of the main MV/LV
transformer. Thus, events occurring in the distribution network are qualified as
upstream (regarding the monitoring point), and those occurring in the industrial
network as downstream.

Figure 3.3: Simplified diagram of the simulated industrial network.

64



Chapter III: Classification of Voltage Sag Causes

Industrial network

For our study, the nominal voltage of the industrial network is 400 V, and the
frequency is 50 Hz. The site is connected to a Dy11n 21 kV/400 V transformer of
400kVA. We have included the loads described in Table 3.3 to model the behavior
of a small but representative LV industrial site.

Table 3.3: LV industrial loads

Load Rated power Other characteristics
Induction motors 22 to 110 kW Variable inertia and torque
Variable speed drives 22 to 110 kW Scalar control
Three-phase rectifiers 30 kW (DC loads) 6-pulse
Three-phase loads 30 kW cosφ = 0.9

Single-phase loads 5.5 kW cosφ = 0.6

Three-phase isolation transformers 100 to 250 kVA 400 V/ 400 V, of type Dyn and YNyn

The loads are not all simultaneously connected. For instance, the large motors
and transformers are connected only for the motor startup and the transformer
energizing scenarios.

The total power consumption of the modeled industrial site is lower than 380
kVA. The main 400 kVA transformer is not optimally sized since we want to em-
ulate a critical state where the power grid is susceptible to experiencing voltage
sags while maintaining a total load just under the nominal transformer capacity.
Finally, we note that some of the devices are sources of permanent disturbances,
frequently present in industrial networks:

• Harmonics: Variable speed drivers and 6-pulse rectifiers generate current
harmonics, mostly of order 5 and 7.

• Unbalance: The presence of single-phase loads simulates the injection of a
moderate level of unbalance.

Distribution network

The distribution or upstream network has a voltage level of 21 kV. The main
busbar’s nominal power varies from 10 to 100 MVA, and the ratio of the reactance
to the system’s resistance is 0.1. The length of the MV lines varies between 0 and
30 km. Two feeder lines2 connect the 21 kV busbar to the main industrial network

2A feeder line of "feeder" is a power line that carries electricity from a substation to con-
sumers.
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and to a secondary site. The latter is connected to the grid through two Dyn11
transformers with power ratings ranging from 500 to 1250 kVA. The transformers
are connected in parallel, each feeding a 300 kW load.

3.3.2.2 Generation of voltage sags

The generated voltage sags vary between 10% and 98% (residual voltage).
Although a voltage sag is defined as the reduction of RMS voltage under 90%
of its rated value, shallow voltage drops are also included in the dataset. Their
identification can be more complex because the voltage and current variations can
be very small. A description of the parameters used for the generation of voltage
sags is given below:

• Line faults

Different line fault types are generated: single line-to-ground faults (L-G),
line-to-line faults (LL), double line-to-ground faults (LL-G), and three-phase
faults (LLL) and three-phase-to-ground faults (LLL-G). The magnitude of
the voltage sag mainly depends on the fault type, the distance to the fault
(line’s length), and the value of the ground fault resistance. The duration of
the sag, in this case, depends on the action of protective devices. The fault
clearance time varies between 50, 100, and 200 ms to obtain sags of varying
duration. We also varied the distance between the monitoring and fault
injection points to obtain a significant variation in voltage dip amplitudes.
For upstream faults, we varied the distance between 0 and 30 km, and the
value of the ground fault resistance between 0 and 40 Ω. For downstream
faults, we varied the distance between 0 and 20 m and the fault resistance
between 0.1 and 10 Ω. This type of event is generated at three locations:
the MV feeder of the secondary site (upstream), the 400 V busbar of the
main industrial network (downstream), and the secondary side of an isolation
transformer (downstream).

• Transformer energizing

The magnitude of the voltage sag caused by this event depends on the trans-
former’s power and its initial core’s flux (different from zero when the core
has not been entirely demagnetized before re-powering). The duration of the
sag depends on the transformer’s characteristics. These events were gener-
ated using transformers with power ratings of 500 and 1250 kVA for upstream
transformers and 100 to 250 kVA for downstream transformers. We varied
the initial core’s flux and the energizing starting time within a cycle duration
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(0 ms, 5ms, 10ms, and 18ms). This type of event is generated at two loca-
tions: the secondary side (upstream) and the 400 V busbar of the industrial
network (downstream).

• Induction motor direct startup

The magnitude of the voltage sag caused by a motor startup depends on
its power, torque, and total inertia. These parameters also determine the
duration of the event and the sag amplitude. We simulated various profiles
of motor direct startups using induction motors with power ratings varying
from 22 to 110 kW. The load torque and inertia are also varied according to
the motor’s size. This type of event is generated by directly connecting the
induction motor to the 400 V busbar of the industrial network (downstream).
It should be noted that the presence of variable speed drivers, three-phase
rectifiers, and unbalanced loads simulate harmonic distortion and unbalance.

We have generated a synthetic dataset of 100 events for each of the seven
defined classes (i.e., 700 events). The sampling frequency of the synthetic data is
set at 12.8kHz to match the settings of the actual monitoring device. However, we
will see later that this value can be reduced up to 400 Hz without degrading the
algorithm’s performance.

3.4 Pre-processing

At this stage, we perform simple operations on the voltage and current wave-
forms to ensure the uniformity of the data. First, the sampling frequency of all
the voltage and current waveforms is recalculated, and if needed, they are resam-
pled to match the reference value (12.8 kHz). The waveforms are also trimmed to
obtain a uniform length.

Then, the sag’s completeness is verified since the monitoring device may some-
times record incomplete voltage sags. Ideally, there is at least one healthy cycle
previous to the sag. However, the proposed solution can tolerate up to a single
healthy half-cycle before the sag.

Finally, to avoid the "loss" of a cycle when calculating the Short-Time Fourier
transform in the feature extraction stage, we artificially add one pre-sag period by
copying the first cycle in voltage and current. The reason for this "lost cycle" is
due to the moving window in the STFT since it uses the first cycle to calculate
the first data point of the transformed signal.
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3.5 Feature extraction: Multivariate Time Series
Signature

The main objective of this step is to bring out features from the voltage and
current waveforms that are common to events from the same class but different
from those in other classes. Transforming the raw waveforms into simpler but
meaningful components helps and simplifies the classification task. Indeed, using
raw waveforms or even RMS curves directly would require classification algorithms
of a higher level of complexity, requiring larger amounts of training data. In
addition, the decision-making process would be more challenging to interpret.

In this stage, the pre-processed voltage and current waveforms are transformed
into a 4-dimension time series signature. This transformation combines the Short-
Time Fourier Transform (STFT) and the Fortescue transform. Finally, a min-max
normalization is applied to the extracted signatures since the classification is based
on the shape of the signatures. Each step is detailed in this section.

3.5.1 Short-Time Fourier Transform

STFT is first used to decompose the signal into its harmonic components, ex-
tracting only the harmonics of interest and avoiding those affected by the industrial
loads. For instance, harmonics of orders 5 and 7 are affected by 6-pulse rectifiers,
present in variable speed drivers and three-phase rectifiers. Their elimination in-
creases the generalization capability of the algorithm despite the different load
types present in the industrial network. This also allows us to reduce the number
of simulated scenarios for the "training" stage compared to other methods in the
literature that take as input raw waveforms, including all the harmonic content.

The fundamental frequency (first harmonic, f = 50Hz) contains prime infor-
mation for the analysis of voltage sags because sags are low-frequency disturbances.
The presence of even harmonics due to transformer energizing is also helpful in-
formation for its identification. Thus, the = second harmonic (f = 100Hz) is also
retained. Finally, the first two harmonics will be used for the analysis of voltage
sags.

The second reason for implementing STFT is that the Fortescue transform
(which is applied next) is defined in the complex domain. Thus, at the end of this
step, the voltage and current waveforms are converted into two complex harmonic
phasors.

The Short-Time Fourier Transform (STFT) [67] is a technique used to analyze
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the frequency content of a non-stationary signal. It is performed by applying the
Discrete Fourier transform (DFT) to the discrete time signal through a sliding
window of length WL. The window overlap between the signal segments compen-
sates for the signal attenuation at the window edges. The DFT of each segment
is stored in a matrix containing the magnitude and angle for each data point in
time and frequency.

The matrix is defined in equations (3.1) and (3.2).

STFT (x) = [X0(f), X1(f), ..., XT (f)] (3.1)

Xm(f) =
∞∑

n=−∞

x(n)g(n− sWH)e
−j2πfn (3.2)

Where m is the window number, n is the length of the discrete signal x(n),
X(f) is the DFT of the windowed signal centered at time sH, WH is the hop
length between successive windows3 and g(n) is the window function. Fig. 3.4
illustrates the calculation process of the STFT.

Figure 3.4: Short-Time Fourier transform calculation

The parameters are set as: WL = Fs/F , with Fs the sampling frequency of x(n),
F the nominal frequency (50Hz), WH = 1 and g(n) is a rectangular window. The
signal is decomposed into a set of frequency bands corresponding to its harmonics
(f1 = 50Hz, f2 = 100Hz, f3 = 150Hz...). The rectangular window avoids amplitude

3The overlap between two successive windows corresponds to WL −WH .
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attenuation. The minimum distance between adjacent windows with WH = 1
(maximum overlap) gives the best time resolution. The influence of the window
type and hop length WH are shown in Fig. 3.5 and Fig. 3.6 respectively. Finally,
Fig. 3.7 illustrates the result of the one-phase current signal and the module of its
STFT.

Figure 3.5: Influence of window type on the STFT result

(a) WH = 1 (b) WH = WL/2 (c) WH = WL

Figure 3.6: Influence of window hop length WH on the STFT result

(a) (b)

Figure 3.7: One-phase current signal (a) and the module of its corresponding
Short-Time Fourier Transform (b).
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3.5.2 Fortescue transform

The choice of the Fortescue transform compared to other transformations such
as the Wavelet transform (WT), S-transform (ST), Hilbert-Huang transform (HHT),
and even the Clarke transform is due to its electrical interpretability. Indeed, elec-
trical equipment can be modeled using equivalent circuits based on symmetrical
components [98]. For instance, Milanovic et al. [23] presented an analytical ap-
proach for analyzing the interaction between induction motors and voltage sags.
The analytical equations derived from the equivalent circuits based on symmetri-
cal components proved to accurately reproduce the behavior of the corresponding
transient simulation model. Moreover, the voltage sag’s 4-D signature that we
propose for class A2 (upstream unbalanced faults) is found and analyzed in detail
by the authors in this reference.

Fortescue transform [94] is a linear transformation used to analyze unbalanced
three-phase power systems. It transforms an unbalanced set of three phasors (XA,
XB, XC) into a balanced set of three symmetrical components: the positive (X1),
negative (X2) and zero-sequence (X0), as illustrated in Fig. 3.8 and described in
equation (3.3).

Figure 3.8: Fortescue transform applied to a three-phase unbalanced system.
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XA

XB

XC

 =

Xa0

Xb0

Xc0

+

Xa1

Xb1

Xc1

+

Xa2

Xb2

Xc2

 (3.3)

The three symmetrical systems are perfectly balanced, with an angle equal to
2
3
π between each phase. Therefore, each phase in the system can be written in

function of the phasor rotation operator α = ej
2
3
π and Xa0, Xa1, Xa2, which will be

simply referred as X0, X1, X2. Note that the positive sequence can also be noted
as X+ and the negative sequence as X−. The Fortescue transform of a three-phase
system for a given harmonic h is defined in (3.4).

X0

X1

X2


{h}

=
1

3

1 1 1
1 α α2

1 α2 α

XA

XB

XC


{h}

(3.4)

The Instantaneous Symmetrical Components or ISCs (X0{h1}(t), X+{h2}(t),
etc.) of the harmonics extracted from the voltage and current waveforms are
calculated using the instantaneous complex values previously determined by STFT,
as illustrated in Fig. 3.9.

Figure 3.9: Fortescue transform applied to three-phase voltage time series (har-
monic 1 or fundamental), resulting in three instantaneous symmetrical components

The positive-sequence component of the fundamental frequency represents the
actual voltage and current being provided to the load. In a perfectly balanced
system, the negative and zero-sequence components are equal to zero. The zero-
sequence is directly related to the grounding system and transformer winding con-
nections. Thus, an increase of this component is visible for line-to-ground faults
(L-G, LL-G, LLL-G) but not for line-to-line faults (LL or LLL). This is true for
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downstream faults, however, for upstream disturbances, the zero-sequence compo-
nent is filtered [22] since MV/LV transformers of industrial sites usually have a Dy
winding connection. No zero-sequence current is generated because the induction
motors’ windings are connected in delta (D) or ungrounded wye (Y ). Thus, the
zero-sequence voltage is not influenced by the induction motor either [120].

For these reasons, four ISCs are selected to compose a 4-dimensional time series
signature:

(a) Voltage positive-sequence, harmonic 1
(b) Voltage negative-sequence, harmonic 1
(c) Voltage positive-sequence, harmonic 2
(d) Current positive-sequence, harmonic 1

The characteristics of each ISC depending on are described in more detail in
Section 3.5.4.

3.5.3 Min-max normalization

The selected ISCs constitute a 4-dimension time series signature. We use the
shape of each ISC as the main discriminant characteristic between classes. Thus,
the amplitude difference among events from the same class must be reduced since
it is not a discriminant criterion. This should be achieved without degrading
the original shape. Therefore, the most suitable normalization method is min-
max, which rescales the entire time series proportionally within a defined value
range. It also preserves the shape characteristics of the signature contrary to z-
score normalization, whose goal is to obtain a zero mean and a unitary standard
deviation.

For this reason, we apply a min-max normalization to each ISC to perform
a shape-based time series classification. Minmax normalization with a re-scaling
between [la, lb] is defined in (3.5) with X being the ISC to be normalized, la = −0.5
and lb = 0.5.

X[la,lb] =
X −min(X)

max(X)−min(X)
∗ (lb − la) + la (3.5)

The ISCs are first re-scaled, then zero-centered by subtracting the first point
value from the rest of the sequence. Each time series is defined between [−1, 1]
but with a spread equal to one at the end of this operation. Fig. 3.12 illustrates
the feature extraction process and the obtained components at each stage, down
to the four-dimensional signature considered.
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To reduce the overall computation time, we apply a resampling operation of
1/32 to each ISC. This is possible because, as mentioned previously, the minimum
sampling rate for the waveforms can be reduced up to 400 Hz without degrading
the algorithm’s performance because the Shannon theorem Fs ≤ 2 · fmax is still
respected, with fmax = 100Hz (second harmonic). As an example, Fig. 3.10
illustrates the third ISC of the signatures obtained from downsampled waveforms.
The error due to the downsampling can be estimated by calculating the Normalized
Root Mean Squared Error (NRMSE) between the obtained signatures. For this,
we used the 700 events in the synthetic dataset. The NRMSE in two dimensions
(L, D) is defined in (3.6). Where L is the length of each ISC, D the number of
dimensions, s the original signature at 12.8 kHz and s′ the signature obtained from
the downsampled waveforms. Because we applied a minmax normalization, the
spread of each ISC is |lb − la| = 1. Fig. 3.11 summarizes the RMSE between the
reference signatures obtained from the original waveforms at 12.8 kHz, and those
obtained from the downsampled waveforms at 6.4 kHz, 400 Hz, and 200 Hz. The
results show that a sampling rate up to 400 Hz is possible with an error of 4.02%
in the feature extraction process.

Figure 3.10: Waveform downsampling effect on the extracted signatures

NRMSE(s, s′) =
1

|lb − la|

√√√√ 1

L ·D

D=4∑
d=1

L∑
i=0

(s(i, d)− s′(i, d))2 ∗ 100% (3.6)
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Figure 3.11: RMSE (%) as a function of the sampling frequency of the electrical
waveforms

The four-dimension signatures of voltage sags from field data records are il-
lustrated: Fig. 3.13 corresponds to an upstream unbalanced fault, Fig. 3.14
corresponds to an upstream transformer energizing, and Fig. 3.15 corresponds to
a downstream motor direct startup. It should be noted that the four components
of the signature or ISC are correlated in time. The differences between the three
events are more visible with the signatures than with the raw waveforms. The
simplicity of these signatures is an advantage to the classification stage.

Figure 3.12: Feature extraction process and the obtained components.

Moreover, Fig. 3.16 illustrates the advantages of the feature extraction process
for bringing out relevant and common characteristics between events of the same
class (upstream unbalanced fault). Although there are notable similarities in the
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waveforms and RMS curves, the differences in amplitude, the affected phases, and
the harmonic content are not negligible. Using this type of data as input to the
classifier would require the implementation of complex algorithms. However, these
differences are minimized when their signatures are compared, with only a signifi-
cant difference in the fault duration. The signatures are particularly invariant to
the variation of the sag’s amplitude. These characteristics will allow the use of a
simple but effective approach for the classification step.
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(a) Voltage and current waveforms (b) Time series signature

Figure 3.13: Voltage sag caused by an upstream unbalanced fault (field data).

(a) Voltage and current waveforms (b) Time series signature

Figure 3.14: Voltage sag caused by an upstream transformer energizing (field data).

(a) Voltage and current waveforms (b) Time series signature

Figure 3.15: Voltage sag caused by a downstream induction motor startup (field
data).
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(a) Event A - Waveforms (b) Event B - Waveforms

(c) Event A - RMS curves (d) Event B - RMS curves

(e) Event A - 4D signature (f) Event B - 4D signature

Figure 3.16: Two voltage sags caused by upstream unbalanced faults (A2)

3.5.4 Electrical interpretation of the voltage sag signatures

The four-dimensional signatures obtained at the end of the pre-processing stage
are interpretable from an electrical point of view. We detail in the following section
the main characteristics of each ISC. The full list of signatures corresponding to
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each class is illustrated in Appendix A.

1. Voltage positive-sequence harmonic 1 (Fig. 3.17). This component
represents the voltage evolution during the sag, with very similar charac-
teristics to the RMS three-phase voltage curves. The rapid drop is directly
related to the occurrence of the voltage sag. For example, the quasi-square
shape is characteristic of fault-induced voltage sags. Recovery is rapid af-
ter the fault is cleared, as shown in Fig. 3.17a. Sags caused by starting
motors and energized transformers have, in contrast, a progressive recovery
with characteristics similar to their RMS voltage curves, as illustrated in
Fig. 3.17b and 3.17c. This first component helps distinguish between drops
due to a fault, the energizing of a transformer, or the direct starting of a
motor. However, this component alone does not provide sufficient informa-
tion to determine whether the fault is balanced or unbalanced, or where it
is located.

(a) (b) (c)

Figure 3.17: Voltage positive-sequence harmonic 1: (a) fault, (b) transformer
energizing and (c) motor startup

2. Voltage negative-sequence harmonic 1 (Fig. 3.18). This component
reflects the unbalanced nature of the voltage sag. For instance, the rapid
increase and maintenance at relatively high values during the fault are ex-
pected characteristics of an unbalanced line fault, as shown in Fig. 3.18a.
On the contrary, a balanced fault will only have two peaks at the beginning
and end of the sag transients, as illustrated in Fig. 3.18b. In Fig. 3.18c,
turning on a transformer will first cause a sharp rise, then a slight decrease
until the voltage is restored. This behavior is also expected as transformers
cause unbalanced voltage drops. Finally, starting a three-phase motor (Fig.
3.17c) will show only one peak with one or more lobes in the first and only
transient, as this type of event causes a balanced sag.
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(a) (b) (c)

(d)

Figure 3.18: Voltage negative-sequence harmonic 1: (a) unbalanced fault, (b)
balanced fault, (c) transformer energizing and (d) motor startup

3. Voltage positive-sequence harmonic 2 (Fig. 3.19). This component is
especially helpful for clearly identifying a voltage sag caused by a transformer
energizing because it is the only event leading to the sustained onset of even
harmonics, as illustrated in Fig. 3.19b. On the contrary, if the sag is due to
a fault occurrence, there are only two peaks at the beginning and the end of
the sag, as shown in Fig. 3.19a. For the starting of the motor in Fig. 3.19c,
only one peak is visible at the beginning of the event, corresponding to a
transient as well.

(a) (b) (c)

Figure 3.19: Voltage positive-sequence harmonic 2: (a) fault, (b) transformer
energizing, (c) motor direct startup
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4. Current positive-sequence harmonic 1. (Fig. 3.20) We use this com-
ponent to determine the relative location of the event (upstream or down-
stream of the monitoring device) [49, 53, 96]. This component increases and
remains constant for the duration of the voltage sag for downstream events.
It then decreases proportionally to the voltage sag recovery curve. Fig. 3.20a,
3.20b and 3.20c illustrate this for the cases of a downstream fault, a down-
stream transformer energization and a downstream direct motor start. For
upstream events, on the contrary, it rapidly decreases when the event starts.
This phenomenon can be explained by the energy sink analogy presented in
[43], where events such as faults or load connections consume high amounts of
current and energy. Then, the current recovers and stabilizes, particularly in
the case of fault-induced sag. When the voltage is restored at the end of the
sag, the current will reach a peak value higher than its nominal value. The
magnitude of the peak depends on the duration and severity of the voltage
drop and the connected loads (motor power and inertia, DC bus capacity,
etc.) Fig. 3.20d and 3.20e illustrate the current component corresponding
to an upstream fault and an upstream transformer energizing respectively.

(a) (b) (c)

(d) (e)

Figure 3.20: Current positive-sequence harmonic 1: (a) downstream fault, (b)
downstream transformer energizing, (c) downstream motor startup (d) upstream
fault and (e) upstream transformer energizing
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3.6 Feature analysis: Distance-based signature clas-
sification

As previously mentioned, several methods in the literature use classical ma-
chine learning algorithms that mainly exploit scalar features. This approach is
more suitable for the analysis of steady-state disturbances. However, the time
dependence of electrical waveforms is important for analyzing short-duration dis-
turbances such as voltage sags.

Therefore, we propose a time series classification approach, exploiting the mul-
tivariate time series signatures obtained after the feature extraction process. Time
series classification methods are usually based on: distance measures, shaplets, dic-
tionaries, interval summarising or deep learning (neural networks). Among these
methods, 1-Nearest Neighbor with Dynamic Time Warping (1NN-DTW) is a rec-
ommended benchmark due to its simplicity and hard-to-beat accuracy [121, 122].
It also requires significantly less data than deep learning algorithms.

For these reasons, we have chosen the 1NN-DTW algorithm as our first ap-
proach for our task. A new voltage sag is then classified by calculating the distance
between its signature and the ones in the reference database (distance-based clas-
sification). We first define a distance measure to compare multivariate time series
signatures based on Dynamic Time Warping. However, one of the main drawbacks
of 1NN-DTW is its low robustness to outliers since the prediction is defined based
on a single neighbor.

Therefore, we proposed an improved version of 1NN-DTW, which we refer
to as Nearest Neighborhood classifier. It is based on the distance to an entire
"neighborhood" or class, instead of a single neighbor. In addition, we present
two methods for the distance-to-class calculation: a mean estimation method with
bootstrapping and a centroid estimation method with soft-Dynamic Time Warping
(soft-DTW). Finally, we define two confidence scores associated with the label
prediction.

3.6.1 Distance between signatures

Voltage sags caused by the same event (i.e., belonging to the same class) have
very similar signatures, as previously illustrated in Fig. 3.16. The signatures are
invariant regarding sag’s amplitude variations, thanks to Min-max normalization.
Most notable differences are due to varying starting times and duration of the
events, which result in time misalignments. Another possible source of misalign-
ments between signatures is the imprecision in the detection algorithm within the

82



Chapter III: Classification of Voltage Sag Causes

monitoring device. Indeed, an imprecise detection can sometimes cause incom-
plete recordings, resulting in space misalignments. Therefore, we first perform a
spatio-temporal alignment to compare the signatures’ similarities properly.

3.6.1.1 Space alignment

The characteristics and parameters of the monitoring device may not always
be perfectly calibrated. This can cause incomplete event recordings, affecting the
signature’s matching process. As presented in the pre-processing stage, a complete
recorded voltage sag would ideally have one or more healthy cycles prior to the
sag. However, thanks to the feature extraction process that we have proposed, it
is still possible to evaluate the event if there is at least a 1/2 pre-sag cycle. In this
case, an offset will be applied to correct the space misalignment.

We first check whether there is a risk of having less than one reference period
due to an incomplete recorded event by calculating the difference between the av-
erage values of the first period and the last period for each ISC in the signature. If
the difference δ is higher than a minimum threshold of 0.05 pu, an offset must be
added to improve the alignment. A vector containing the possible offsets is defined
as Xoff = −sign(δ) ∗ [0, 0.05, 0.1, ...δ] and the Euclidean distance is calculated be-
tween the ISC query plus the offset and the ISC reference. The minimal Euclidean
distance gives the optimal offset, which is applied at the end of this stage.

3.6.1.2 Time alignment using Dynamic Time Warping

Dynamic Time Warping for multivariate time series

Classical distance measures such as Euclidean distance can result in poor results
because they do not consider the differences in speed and time delay between time
series [121, 122]. Therefore, we use the Dynamic Time Warping (DTW) algorithm
proposed in [123] for handling time alignment differences between two univariate
time series4. Fig. 3.21 illustrates the difference between the standard Euclidean
distance and Dynamic Time Warping when matching two time series.

The alignment of two time series, r (reference) and q (query) of length Lr and
Lq respectively, is given by the warping path ϕ = (ϕ(1), ..., ϕ(Lw)) of length Lw.
Where ϕ(l) = (ϕr(l), ϕq(l)) ∈ [1 : Lr] × [1 : Lq], for l ∈ [1 : Lw], satisfying the
following conditions:

4We have implemented the python library "dtw-python" described in [124], with minor ad-
justments.
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• Boundary condition: ϕ(1) = (1, 1) and ϕ(Lw) = (Lr, Lq)

• Monotonicity condition: ϕr(l − 1) ≤ ϕr(l) and ϕq(l − 1) ≤ ϕq(l)

• Step size condition: ϕr(l)− ϕr(l − 1) ≤ 1 and ϕq(l)− ϕq(l − 1) ≤ 1

(a) (b)

Figure 3.21: Time series matching using (a) Euclidean distance and (b) Dynamic
Time Warping algorithm.

Although the algorithm can handle time series of different lengths, the lengths
of the compared signatures are uniform and will be referred to in the following
as L. To calculate the optimal warping path that best aligns both times series,
we first calculate a local distance matrix of size L × L, L being the length of the
signature. Each element of the distance matrix is defined through a chosen distance
measure, the Euclidean distance being usually the privileged choice. The equation
calculating the elements a(i, j) of the distance matrix A for two univariate time
series q (query) and r (reference) with indexes i, j ∈ [0, L] is given by equation
(3.7).

a(i, j) =
√
(q(i)− r(j))2 (3.7)

The optimal warping path ϕ is found through the minimization of the cumu-
lative cost E defined in (3.8) obtained from the distance matrix. It is given by
two vectors of integers ϕq(l), ϕr(l) of same length Lw (with L <= Lw <= 2L),
mapping the time axis of the query q to the reference r, and w(l) is an optional
per-step weighting coefficient. These vectors indicate the time alignment to be
applied to all the dimensions of both signatures q and r. Fig. 3.22 illustrates the
principle of time alignment of two univariate time series.

E(q, r) = min
ϕ

Lw∑
l=1

a(ϕq(l), ϕr(l))w(l) (3.8)
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Figure 3.22: Time alignment of two univariate time series. The optimal warping
path is given by the lowest value of the cumulative cost E, obtained from the
distance matrix A.

Extending this algorithm to multivariate time series can be achieved in two
ways. We can independently calculate the DTW distance for each dimension and
add the calculated distances (independent dynamic time warping DTWI). We can
also calculate the DTW distance across all the dimensions simultaneously (depen-
dent dynamic time warping or DTWD)[122]. Both approaches are illustrated in
Fig. 3.23. In our case, the four dimensions of each signature are time-correlated,
and a single optimal time alignment warping path is calculated for all four dimen-
sions.

(a) (b) (c)

Figure 3.23: Time alignment of (a) two multivariate time series with (b) Dependent
DTW and (c) Independent DTW [3].

The equation to calculate the elements a(i, j) of the distance matrix A for
two multivariate time series signatures q and r of dimension D = 4 with indexes
i, j ∈ [0, L] becomes:

a(i, j) =
D=4∑
d=1

(q(i, d)− r(j, d))2 (3.9)
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Finally, we define a normalized distance D(q, r) between the aligned query q and
reference r, as defined in equation (3.10). The distance is normalized by the length
Lw. This normalization helps to obtain a similarity measure independent of the
signature deformation since Lw tends to increase when dilations or compressions
are applied to the signature during time alignment.

D(q, r) =
1

Lw

D=4∑
d=1

√√√√ Lw∑
l=1

(q(ϕq(l), d)− r(ϕr(l), d))2 (3.10)

Local constraint optimization

DTW is a powerful tool for time series distance measurement. Nonetheless,
it can lead to pathological alignments caused by the so-called "singularities", as
illustrated in Fig. 3.24. A singularity is a data point from one time series that
matches a large section of the second time series, leading to highly distorted se-
quences. This is an important issue for our problem since the classification is
shape-based. Thus, the global shape of the signatures should be kept as close to
its initial form as possible. Local or global constraints can be applied to limit this
phenomenon. These constraints are applied by modifying the per-step weights
w(l) used to calculate the cumulative cost.

Global constraints such as the Sakoe-Chiba band [123] or the Itakura parallel-
ogram [125] limit the distance of the warping function to the main diagonal, as
shown in Fig. 3.25. However, these constraints are not suitable for our problem as
they may prevent an optimal alignment of two similar events but with very differ-
ent durations, thus limiting the time dilation (stretching) or compression capability
of the DTW algorithm.

Figure 3.24: Poor time alignment due to singularity points (red) can lead to high
distortion of time series.
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(a) (b)

Figure 3.25: Global constraints on the warping path (a) Sakoe-Chiba band and
(b) Itakura parallelogram

Local constraints include step patterns, which are more flexible but still can
limit severe signal distortion. Step patterns describe the per-step weighting coeffi-
cients w(l) to include in the cumulative cost equation in (3.8). Fig. 3.26 illustrates
three well-known step patterns: symmetric2, symmetric1 and asymmetric [124].
The numbers on the transitions indicate the multiplicative per-step weight. Note
that the asymmetric step pattern is the only one that does not respect the step
size condition, but it is still considered a valid step pattern in the literature. Sym-
metric2 is the default choice in various DTW implementations [124].

(a) (b) (c)

Figure 3.26: Local step patterns: (a) symmetric2, (b) symmetric1, (c) asymmetric

The selection of the best step pattern requires the definition of a coefficient
that allows us to compare the time alignment performance of the step patterns.
However, classical error metrics such as mean absolute percentage error (MAPE)
can not be directly applied for this purpose since it requires knowing the optimal
warping path or ground truth for a given time alignment between two signatures,
which is impossible to know in practice.
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Therefore, for our application, we look for the best trade-off between distance
and signature distortion. The best step pattern should allow minimal distance
between signatures of the same class and maximal distance between signatures
of different classes, while assuring a minimal distortion of the time series in both
cases.

The distance D(q, r) between two signatures is given by equation (3.10). We
defined a distortion rate Z(%) in equation (3.11) based on a similar coefficient
presented in [126], with Lw being the warping path length, and L the length of
the original signature. Since the two compared signatures have the same length,
a perfect time-alignment would correspond to a diagonal warping path of length
Lw = L and Z(%) = 0. The maximum warping path length being Lw = 2L, the
maximum value of Z(%) = 100.

Z(%) =
Lw − L

L
(3.11)

We have compared these three step patterns using the distortion rate Z, the
distance D between signatures belonging to the same class (intra-class distance),
and the distance between signatures of different classes (inter-class distance). From
the results summarized in Table 3.45, we can conclude that symmetric1 exhibits the
best trade-off between minimal intra-class distance, maximal inter-class distance,
and minimal distortion rate. The results are better illustrated in Figs. 3.27 to
3.29.

Table 3.4: Step pattern comparison

symmetric2 symmetric1 asymmetric
D (e-02) Z (%) D (e-02) Z (%) D (e-02) Z (%)

Intra-class 1.41 71.83 1.85 19.79 2.26 40.74
Inter-class 6.26 90.11 9.48 20.59 6.89 47.15

For instance, Fig. 3.27 illustrates the time alignment result using the sym-
metric2 and symmetric1 step patterns between two signatures belonging to the
same class (intra-class). We note that the time alignment result is correct in both
cases. This is reflected in Table 3.4, where the intra-class distances of symmetric2
and symmetric1 are very close (1.41 and 1.85 respectively). However, the warping
path is smoother and closer to a diagonal for symmetric1 compared to symmet-
ric2, resulting in a much lower distortion rate (19.79% for symmetric1, compared
to 71.83% for symmetric2 ).

5The signatures correspond to the synthetic dataset of 700 sags for the seven defined classes.
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(a) Symmetric2 step pattern

(b) Symmetric1 step pattern

Figure 3.27: Time alignment results of two signatures of the same class, using (a)
symmetric2 and (b) symmetric1 step patterns.

The time alignment in Fig. 3.28 is performed between signatures belonging to
different classes (inter-class). When using the symmetric1 step pattern, the DTWD

algorithm attempts to align both signatures while preserving the original shape,
resulting in a low distortion rate. This is not the case for symmetric2, where the
query signature is significantly distorted to fit the reference signature. This high
distortion is due to the presence of multiple singularity points, corresponding to a
warping path with long vertical and horizontal segments. Moreover, such distortion
within the signatures can lead to false low distances D between signatures of
different classes, resulting in misclassification errors due to poor time alignment.
The results in Table 3.4 illustrate this issue: the symmetric2 step pattern has a
higher distortion rate of 90.11% and a lower inter-class distance of 6.26, compared
to symmetric1 with a distortion rate of 20.59% and an inter-class distance of 9.48.
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(a) Symmetric2 step pattern

(b) Symmetric1 step pattern

Figure 3.28: Time alignment results of two signatures belonging to different classes,
using (a) symmetric2 and (b) symmetric1 step patterns.

Finally, Fig. 3.29 shows the results when comparing the asymmetric and sym-
metric1 step patterns. The asymmetric step pattern fails to align both signatures
since it has a reduced dilation capacity. On the other hand, the symmetric1 step
pattern allows a more flexible stretching of the query signature resulting in better
results. This is also reflected in Table 3.4, with an inter-class distance of 2.26 for
asymmetric and 1.85 for symmetric1.

In summary, the symmetric1 step pattern favors oblique steps over horizontal
or vertical ones. This characteristic limits distortion compared to the symmet-
ric2 step pattern, which considers a vertical plus horizontal step equivalent to an
oblique step. The symmetric1 step pattern also allows a higher degree of dilation
or compression compared to the asymmetric step pattern since the latter imposes
a single match point for each point in a time series.
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(a) Asymmetric step pattern

(b) Symmetric1 step pattern

Figure 3.29: Time alignment results of two signatures belonging to the same class,
using (a) asymmetric and (b) symmetric1 step patterns.

Fig. 3.30 illustrates the result of the space and time-alignment step using the
symmetric1 step pattern between two voltage sags caused by upstream transformer
energizing.

Although DTW is a well-known algorithm in fields such as speech processing
and time series analysis, it has only been implemented, to our knowledge, once for
the classification of types of PQ disturbances by Youssef et al. in [69]. The authors
used Fast Fourier transform (FFT), and Walsh transform for feature extraction
and a combination of Vector Quantization (VQ), fast matching technique, and
DTW for the identification of six classes of numerically simulated disturbances,
including the following classes: no disturbance, voltage swell, voltage sag, har-
monics, voltage flicker, and oscillatory transient. The success rate was 97%, and
the fast matching technique helped reduce the overall computation time by 66.6%.
However, a significant drawback is the number of disturbances needed to constitute
the training dataset, with 200 events per class.
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(a) Before space and time-alignment (b) After space and time-alignment

Figure 3.30: Result of the space and time alignment step.

3.6.2 Distance-based classification

We present in this section two distance-based classification methods: 1-Nearest
Neighbor (1NN) classifier and Nearest Neighborhood classifier. Both classifiers use
the distance D(q, r) defined in equation (3.10), based on the DTW. The 1NN-DTW
classifier is first explored as a benchmark. Then, to overcome the limitations of
1NN-DTW, we propose an improved version of this classifier based on the distance
to an entire "neighborhood" or class instead of a single neighbor. Two methods
for estimating the distance to a given class are also presented.

3.6.2.1 1-Nearest Neighbor classifier

The 1-Nearest Neighbor with Dynamic Time Warping (1NN-DTW) classifier
was first selected since it is a recommended benchmark for time series classification
due to its simplicity and hard-to-beat accuracy [122]. However, a requirement
for better results when using distance-based classifiers is to have a good class
separability. This aspect will be studied in further detail in Chapter 4.

1NN-DTW is based on the k-Nearest Neighbors algorithm, κ representing the
number of closest neighbors (for 1NN, κ = 1). It works by calculating the distances
between a query (new event to classify) and the references in the training dataset.
It selects the closest reference to the query, and the selected reference’s label gives
the classification result. Considering that it is a distance-based classifier, the choice
of the distance measure is essential. To properly calculate the distance between two
multivariate time series signatures, we use the distance D(q, r) defined in (3.10),
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based on the dependent Dynamic Time Warping algorithm (DTWD). Fig. 3.31
illustrates the principle of classification using 1-Nearest Neighbors.

The efficiency and simplicity of this solution makes it a good first approach.
However, there are some limitations because the classification is only based on a
single neighbor. Indeed, the robustness of the algorithm is not guaranteed, since
the presence of one or more outliers in the training or reference database may
cause misclassification errors.

Figure 3.31: 1-Nearest Neighbor classifier using a custom distance.

In addition, k-NN does not provide a probability or confidence index associated
with the prediction. The closest method to calculate a similar score is a majority
voting system. For this, the number of closest neighbors κ must be set to a
value higher than 1. The result would be the number of neighbors of each class,
divided by the total of κ neighbors. For instance, take κ = 5, with three neighbors
belonging to class 1 and the other two neighbors belonging to class 2 and class 3.
The "probability" of the new event belonging to class 1 would be 3/5 (or 60%), 1/5
(or 20%) for class 2 and 1/5 (or 20%) for class 3. This estimate of the probability
of membership is neither accurate nor sufficiently robust enough.

Finally, there is also a limitation in terms of computation speed. Searching
for the closest neighbor requires calculating the distance to all the events in the
reference database. Real-time calculation is not a primary constraint, given that
the mitigation solutions can only be deployed after analyzing a certain amount
of historical data. However, a reduced computation time is still desirable. This
can be particularly useful if the classification algorithm is to be implemented in a
decentralized platform with limited hardware resources.
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For these reasons, we propose an improved solution based on this first approach
to overcome these limitations.

3.6.2.2 Nearest Neighborhood classifier

The sensitivity of the 1NN-DTW classifier to outliers can be reduced if we
estimate the distance to an entire class or "neighborhood". Therefore, to increase
the robustness of the 1NN approach, we consider the totality of the signature
references in the database. Thus, a new signature is classified by calculating the
distance to entire groups of signatures belonging to the same class. The new
signature is then labeled according to the closest class. We propose two methods
for calculating the distance to a particular class of a new sag in the following
sections: a mean distance estimation with bootstrapping and a distance calculation
with centroid estimation.

Mean distance estimation with bootstrapping

The most intuitive method for calculating the distance of a new voltage sag
signature q∗ to a class Ck of size Nk, is to calculate the mean distance to all the
reference signatures rk in the class. However, the mean is not a robust estimator
for outliers. Thus, to obtain a more robust estimator of the mean distance to
each class dk(q

∗), we define d̂k(q
∗) using a bootstrapping approach as described

in (3.12), where B is the total number of sub-samples XD,b extracted from the
population of distances XD = {D(q∗, rk,n)} with n = 1, 2, ..Nk, and d̄k,b is the
mean of XD,b as defined in (3.13). It can be noted that this is a resampling with
replacement technique. Therefore the size of the sub-samples B can be equal to
the number of signatures per class Nk, which is the case here (B = Nk). Fig. 3.32
illustrates the distance calculation strategy using bootstrapping.

dk(q
∗) ≈ d̂k(q

∗) =
1

B

B∑
b=1

d̄k,b (3.12)

d̄k,b(q
∗) =

1

N

N∑
n=1

D(q∗, rk,n) (3.13)

Once the distances dk(q∗) between the new voltage sag signature q∗ to each class
Ck are calculated, we obtain a vector containing the distances to the K classes.
The closest class gives the label y∗ assigned to the event, such as:

y∗ = argmin
k∈{1,...,K}

([d1(q
∗), d2(q

∗), dk(q
∗)..., dK(q

∗)]) (3.14)
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Figure 3.32: Calculation of the distance to a class Ck using bootstrapping

With this approach, the sensitivity to outliers can be effectively reduced. How-
ever, the total computational cost remains very high. The cost due to the distance
calculation to each element in the database is O(Nk · K · D · L2), Nk being the
number of signatures per class, K the number of classes, D the dimensions of the
signature and L the length of the time series. Therefore, a second method for
distance-to-class calculation is explored.

Centroid estimation with soft-DTW

The main disadvantage of the mean distance estimation with bootstrapping is
the computational cost, since the method requires the calculation of the distances
to all the signatures in the database. The distance of a new voltage sag signature q∗
to each class can also be obtained by reducing the class to a single representative
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signature. This signature can be assimilated as the centroid of the class. The
classification of a new voltage sag would be performed by calculating the distance
of the new signature to each centroid in the database. Then, the new signature is
labeled according to the closest centroid.

In terms of computational cost when evaluating a new voltage sag, the cost of
1NN-DTW and Nearest Neighborhood using mean distance with bootstrapping is
O(Nk · K · D · L2), Nk being the number of signatures per class, K the number
of classes, D the dimensions of the time series and L the time series length. The
new approach reduces the computational cost by Nk because each class is now
represented by a single centroid. The distance dk(q

∗) between a new signature q∗

and a class Ck is given by the distance to its centroid.

Nevertheless, determining the centroid of a multivariate time series cluster
is not trivial. Calculating the barycenter of a set of time series requires time
alignment, as achieved with Dynamic Time Warping (DTW). For this reason, we
have implemented a state-of-the-art variant of DTW for barycenter calculation:
soft-Dynamic Time Warping (soft-DTW). Fig. 3.33 illustrates the Nearest Neigh-
borhood with a centroid estimation approach using soft-DTW. It is to be noted
that the centroid estimation is performed once and in "off-line" mode, prior to the
implementation of the algorithm during "on-line" operation.

Figure 3.33: Nearest Neighborhood with centroid estimation using soft-DTW.

Soft-DTW [127] is a smoothed formulation of DTW that computes the soft
minimum of all alignment costs. Moreover, soft-DTW is a differentiable loss func-
tion, which makes it suitable for optimization tasks such as averaging time series
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and calculating centroids of time series clusters. The soft-DTW between two time
series (a query sequence q and a reference sequence r), is defined in (3.15) con-
sidering the generalized min operator given in (3.16). Where ∆(q, r) is the cost
matrix, A the alignment matrix, ⟨.⟩ the inner product and γ the smoothing pa-
rameter (γ ≥ 0). Note that the original DTW is obtained when setting γ = 0.

DTWγ(q, r) :=
γ

min{⟨A,∆(q, r)⟩} (3.15)

γ

min{a1, ..., an} :=

{
mini≤n ai, γ = 0,

−γlog
∑n

i=1 e
−ai/γ, γ > 0.

(3.16)

Soft-DTW allows to estimate the barycenter or centroid r̂k of class Ck, com-
posed of a set of Nk time series (rk,1, rk,2, ..., rk,Nk

) of same length L, by minimizing
the loss function defined in (3.17) through gradient descent.

min
r̂k

Nk∑
i=1

DTWγ(r̂k, rk,i) (3.17)

Soft-DTW is not the only method in the literature that performs time series
averaging. Another well-known method is DTW Barycenter Averaging (DBA),
proposed by Petitjean et al. in [128]. It is an iterative method that starts with
an average sequence and improves it at each iteration following an expectation-
maximization scheme. However, the best results in our case are obtained with
soft-DTW, as shown in Fig. 3.34.

The figure presents the centroid estimation of signatures belonging to voltage
sags caused by an upstream unbalanced fault (A2) using a set of reference signa-
tures of the same class. We compare the centroid estimation results performed by
(a) Euclidean distance, (b) DBA and (c) soft-DTW with γ = 0.5. Note that since
the estimation is applied to the four dimensions simultaneously, the dimensions of
the centroid signature are also time-correlated.

The results of the standard Euclidean averaging compared to the soft-DTW are
significantly worse. The estimated centroid is obtained by averaging the curves
without considering the temporal dimension. This is even more visible in the
third component of the signature (voltage positive-sequence harmonic 2), where
four peaks are observed instead of two peaks corresponding to the transients at
the beginning and end of the sag.
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(a)

(b)

(c)

Figure 3.34: Centroid estimation for multivariate time series using (a) a standard
Euclidean averaging, (b) DBA with expectation minimization, (c) soft-Dynamic
Time Warping (γ = 0.5).
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The soft-DTW also provides a smoother and more representative centroid than
DBA: its characteristics are displayed in Table 3.5 for different values of gamma
(γ). The best centroid estimation is obtained with soft-DTW with the lowest mean
distance to the centroid for values of gamma γ ≤ 2.

Table 3.5: Comparison between centroid estimation methods

D̄ (e-02)
Mean distance to centroid

Euclidean averaging 5.20
DBA 1.342

soft-DTW

γ = 0.01 0.842
γ = 0.10 0.859
γ = 0.50 0.986
γ = 1.00 1.108
γ = 2.00 1.328
γ = 10.0 4.607

A correct setting of γ is required for an accurate centroid estimation. If γ is
too low or too high, it can result in a distorted centroid, as observed in Fig. 3.35.
An optimal value for γ should ensure a minimal distance between the reference
signatures used for its calculation while maintaining a minimal distortion rate. For
this, we calculate the distances D(rk,i, r̂k) and the corresponding distortion rate
Z(%) for each class in the synthetic data, as defined in equations (3.10) and (3.11)
respectively. Fig. 3.36 illustrates the result, where the optimal value of γopt = 0.1.

(a) γ = 0.01 (b) γ = 10

Figure 3.35: Centroid estimation using soft-DTW with different values of γ.
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Figure 3.36: Optimization of the parameter γ

The centroid estimation method can drastically reduce the total computa-
tional cost. However, it requires the correct setting of the parameter γ for an
accurate centroid estimation. An incorrect value of this parameter can lead to
non-representative and distorted class centroids, resulting in significant misclassi-
fication errors. Therefore, its applicability is conditioned to the choice of γ, for
which an optimization is required.

3.6.3 Confidence score calculation

In addition to the class label of a new voltage sag, we propose to compute a
confidence score associated with the prediction’s result. Providing such a score
increases the reliability of the classifier’s output, as well as its interpretability.
In the case of a decentralized approach to data processing, the availability of a
confidence index could also reduce data traffic costs by limiting the amount of data
uploaded to the server by selecting only those events with a low confidence index
for further analysis. It can be noted that none of the methods in the literature
described in Chapter 2 provide a confidence score associated with predicted label.

Confidence scores are commonly calculated for classifiers such as Support Vec-
tor Machines (SVM) and Artificial Neural Networks (ANN). These type of classi-
fiers inherently provide a continuous output value due to their structure (softmax
function for ANNs and distance to decision boundary for SVMs), which is used for
calculating a posteriori membership probability. In addition, a confidence score
calibration stage is usually recommended to provide probability estimates that
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are representative of the true likelihood, using post-processing techniques such as
Platt’s scaling [129]. However, as discussed in subsection 3.6.2.1, k-NN and par-
ticularly 1-NN can not provide such scores. For this reason, we have extended
the k-NN concept to a Nearest Neighborhood classifier presented in subsection
3.6.2.2 and we use the distance-to-class estimation for calculating a confidence
score associated with the classifier’s label prediction.

In this section we propose two distance-to-class-based confidence indexes: a
probabilistic-based index (NB-KDE) and a relative distance-based index (RD).
Both confidence scores are described hereafter, but their performance will be eval-
uated and compared in Chapter 4.

3.6.3.1 Probabilistic (NB-KDE) index

This first confidence index is obtained through a set of K binary Naive Bayes
classifiers using a Kernel Density Estimator (NB-KDE). Each binary classifier
is trained using a one-vs-rest approach. According to Bayes theorem in (3.18),
the posterior probability P (y = Ck|x) is proportional to the likelihood function
estimated by the KDE P (x|y = Ck) and the prior P (Ck), with x = dk(q

∗), and y
being the label. Fig. 3.37 shows the likelihood function and the output score of a
binary Naive Bayes classifier using KDE.

P (y = Ck|x) ∝ P (x|y = Ck)P (y = Ck) (3.18)

The probabilistic index NB-KDE associated with the prediction given in (3.14)
is the output provided by the binary classifier k = y∗, as defined in (3.19).

NB-KDE = P (x|y = Cy∗)P (y = Cy∗) (3.19)

The closer a new voltage sag signature q∗ is to the reference signatures rk of
a given class Ck in the database, the higher the NB-KDE confidence index will
be. As expected, the database size influences the estimation of the likelihood
function. An extensive and variate database will provide a reasonable estimate of
the likelihood function by the KDE, thus, a more accurate NB-KDE confidence
index. On the contrary, a reduced database will produce a poor likelihood function
estimation, and the NB-KDE confidence index will not be considered reliable. The
influence of the database size on the NB-KDE index will be presented in Chapter
4.
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(a) Likelihood function (b) Output score

Figure 3.37: (a) Likelihood function and (b) output score of a binary Naive Bayes
classifier using KDE for a new voltage sag signature q∗ to the class C2, given the
distance to the class x = d2(q

∗).

3.6.3.2 Relative distance-based (RD) index

The second confidence index is based on the calculated distances to the different
classes. According to Ben-Israel et al. [130], several relations can be assumed
between the distance dk(q

∗) and its membership probability pk(q
∗), including the

working principle defined in (3.20), where F (q∗) is a function depending only on
q∗.

pk(q
∗)edk(q

∗) = F (q∗) (3.20)

This relation shows that the probabilities decrease exponentially as distances
increase. Thus, the membership probability pk(q

∗) can be defined as in equation
(3.21), as proposed in [130]. The confidence index RD is the membership proba-
bility pk(q

∗) of the predicted class k = y∗.

pk(q
∗) =

∏
j ̸=k

edj(q
∗)

K∑
i=1

∏
j ̸=i

edj(q
∗)

, k = 1, 2, ..., K (3.21)

Fig. 3.38 illustrates the distance-to-class and the corresponding membership
probabilities of a new voltage sag caused by an upstream balanced fault (class
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A1). Although an extensive and diverse database would naturally improve the
estimation of class distances dk(q

∗), the relative distance-based index is in theory
less sensitive to the database’s size than the NB-KDE index. As for the NB-KDE
index, the influence of the database’s size on the RD index will be investigated in
Chapter 4.

(a) Distance-to-class (b) Membership probability

Figure 3.38: (a) Distances dk(q
∗) of a new sag q∗ to each class k, and the corre-

sponding (b) membership probabilities pk(q
∗).

3.7 Conclusion

In this chapter, we presented a new methodology for classifying the causes of
voltage sags based on multivariate time series analysis. It consists of four stages:

1. Data acquisition. Two data sources are available: numerical simulation
(synthetic) data and real field measurements. For the generation of synthetic
data, an industrial grid model is developed. Although the validation of
the algorithm is to be performed on real field data, synthetic data is still
necessary to cope with the limited size of the real datasets and to evaluate
the algorithm’s performance in different and controlled scenarios.

2. Pre-processing. This stage ensures the uniformity of the data in terms of
length and sampling rate. It also allows for filtering incomplete voltage sags.

3. Feature extraction. The algorithm can transform voltage and current
waveforms into electrically interpretable 4-dimension time series signatures
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through this process. This aspect is essential because it allows us to un-
derstand the overall decision-making process of the algorithm, which is a
differentiating advantage compared to other methods in the literature. The
description and the interpretation of the signatures belonging to the seven
classes of voltage sag causes were also presented in detail.

4. Feature analysis. Using the DTW algorithm, we defined a distance mea-
sure for multivariate time series based on a space and time alignment process.
Then, we proposed a distance-based algorithm for multivariate time series
classification. It consists of an improved version of the well-known 1NN-
DTW algorithm, whose major drawbacks are the sensitivity to outliers and
high computational cost. Thus, we proposed a Nearest Neighborhood clas-
sifier, which instead of selecting the closest neighbor for the classification
of a new signature, selects the closest class. The distance calculation of a
new signature to a particular class can be obtained by estimating the mean
distance value to all the class signatures or by estimating the distance to the
classes’ centroids. The latter significantly reduces the computational cost,
but its applicability is conditioned to a correct parameter setting. Finally, we
proposed to calculate two confidence indexes associated with the prediction.

In Chapter 4, we will compare the two methods for distance-to-class estimation
and the two techniques for the confidence score calculation. We will also analyze
the effectiveness of the feature extraction process by studying the separability
between classes. The algorithm robustness will be evaluated in terms of noise
levels and fundamental frequency variations, and the minimum database size will
also be optimized. Finally, the generalization capabilities of the algorithm on
synthetic and real field data will be presented.
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Chapter 4

Classification of Voltage Sag Causes:
Performance Analysis

4.1 Introduction

This chapter investigates the performance of the methodology presented in
Chapter 3 in terms of class separability, sensitivity to noise, sensitivity to funda-
mental frequency variations, and computational cost. We will compare the two
methods presented for the distance-to-class calculation: mean distance with boot-
strapping and centroid estimation using soft-DTW. We will also compare the two
methods for determining the confidence index associated with the prediction: NB-
KDE index and RD index. Finally, the reference database size is optimized, and a
cross-data source approach using synthetic and real field data is applied to evaluate
the algorithm’s global accuracy and generalization capabilities.

4.2 Class separability analysis

Evaluating the separability of classes is a way to verify the efficiency of the
feature extraction process. We will study the separability of two classes by analyz-
ing their intra-class and inter-class distances. The intra-class distance distribution
Hk is defined as the ensemble of distances D(xk,i, xk,j) of all the pairs of elements
xk,i and xk,j belonging to the same class Ck. The inter-class distance distribution
Hk−k′ corresponds to the ensemble of distances D(xk,i, xk′,i) between all the pairs
of elements xk,i and xk′,i from two different classes Ck and C ′

k respectively. Fig.
4.1 illustrates both intra-class and inter-class distances.
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Figure 4.1: Intra-class and inter-class distances

For this study, we use the Bhattacharyya coefficient (BC), as defined in equa-
tion (4.1), to evaluate the separability of the classes. This coefficient varies from
0 to 1, and can be interpreted as the overlap between two distributions H and H′.

BC(H,H′) =
∑
x∈X

√
H(x)H′(x) (4.1)

To study the class separability of a particular class α in a multi-class classi-
fication problem, we compute the Bhattacharyya coefficient BC(Hα,Hα−β) be-
tween its intra-class distribution Hα and the inter-class distributions Hα−β, with
β = {1, ...K}, α ̸= β.

For example, in the case of two classes alpha and beta, they will be considered
well separated if the overlap between the intra-class and inter-class distributions is
close to zero. This would correspond to BC(Hα,Hα−β) and BC(Hβ,Hβ−α) close
to zero. For all the considered seven classes, the BC coefficients are computed and
displayed in Table 4.1.

From these results, we can consider that the classes are sufficiently well sep-
arated: all the BC values are close to zero, except on the diagonal, where they
are equal to one because they correspond to the calculation between two identical
distributions. The largest overlap (worst case) corresponds to BC = 0.07, for the
intra-class distribution HC2 and the inter-class distribution HC2−C1.
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Table 4.1: Bhattacharyya coefficient (BC) between the intra-class and inter-class
distance distributions

Inter-class distribution Hα−β

Hα

distribution
Intraclass

Hα−A1 Hα−A2 Hα−B1 Hα−B2 Hα−C1 Hα−C2 Hα−D

HA1 1.00 0.00 0.00 0.00 0.00 0.00 0.00
HA2 0.01 1.00 0.00 0.00 0.00 0.00 0.00
HB1 0.00 0.00 1.00 0.00 0.00 0.00 0.00
HB2 0.00 0.00 0.04 1.00 0.00 0.00 0.00
HC1 0.03 0.06 0.03 0.04 1.00 0.00 0.00
HC2 0.00 0.00 0.00 0.06 0.07 1.00 0.00
HD 0.00 0.00 0.04 0.00 0.00 0.00 1.00

Indeed, the first three ISCs of their signatures are identical. Only the current
component (fourth ISC) discriminates the upstream event from the downstream
one. The overlap between these two distributions is due to the higher dispersion of
HC2 compared to HC2−C1. Fig. 4.2 illustrates the intra-class distribution of class
C2 (downstream transformer energizing) and the inter-class distribution between
C2 and C1 (upstream transformer energizing)1.

Figure 4.2: Intra-class distribution HC2 and inter-class distribution HC2−C1, with
BC = 0.07.

1See Table 3.2 for a description of classes.
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4.3 Evaluation of the performance using synthetic
data

This section compares the performance of the two distance-to-class estimation
methods, and the two confidence indexes presented in Chapter 3. We analyze
the sensitivity of the different methods to increasing noise levels and variations
of the fundamental frequency. We will study how to determine the optimal size
of the database and compare the computational costs. For this analysis, we use
the synthetic dataset presented in the previous chapter to evaluate the algorithm’s
limits and validate the methodology’s relevance.

4.3.1 Sensitivity analysis

4.3.1.1 Metrics and criteria

We can evaluate the sensitivity to noise and frequency variations by analyzing
their impact on the classification’s accuracy, and the confidence in the prediction.
The standard metrics for classification algorithms commonly used to evaluate the
performance of label prediction are precision, recall, and F1-score2. The F1-score,
described in equation (4.2), is a good metric for summarizing the first two, but it
is mainly applied to balanced datasets. A perfect classification is obtained with
an F1-score equal to one.

F1 = 2 ∗ precision ∗ recall
precision+ recall

(4.2)

However, the metrics mentioned above are not suitable for evaluating the con-
fidence score associated with the prediction provided by the algorithm. A more
appropriate metric for this task is Log-Loss. This metric penalizes predictions
with a low confidence score. The definition of Log-Loss is given in equation (4.3),
where y = {0, 1} and p is the associated probability estimate with p = P (y = 1).

Llog = −(ylog(p) + (1− y)log(1− p)) (4.3)

Although raw Log-Loss values can be hard to interpret, lower values mean
predictions with higher confidence. For instance, a perfect classifier would have
a Log-Loss equal to 0. A random guess Log-Loss baseline score can be useful for

2The predicted label is obtained based on the minimum distance to each class as defined in
equation (3.14). Therefore, the F1-score is calculated independently of the confidence index.
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interpreting this metric. The Log-Loss value for p = 0.5 is Llog = 0.693. Any value
higher than this baseline (represented as a red dashed line on figures 4.3 to 4.7)
can be interpreted as worse than random guessing.

4.3.1.2 Sensitivity to noise

To study the classifier’s robustness to noise, we constitute two different refer-
ence databases used for "training"3, and the algorithm is tested on 16 test sets
with increasing noise levels.

• Reference database A contains the original 700 synthetic voltage sags
from the synthetic dataset (with no added noise)

• Reference database B comprises the original 700 synthetic voltage sags
plus 700 sags with additional white Gaussian noise at SNR=25 dB (1400
sags in total)

• Test sets, 16 in total. Each test set contains 700 synthetic voltage sags
with added Gaussian noise with an SNR = [40, 38, 36, ... ,12, 10] dB. For
instance, test set no. 1 contains noisy signatures at SNR = 40 dB, test set
no. 2 contains signatures at SNR = 38 dB, and so on.

Reference database B is used to evaluate if enriching the "training" set with
noisy data can improve the classification results. It should be noted that reference
database B is enriched with noisy signatures at SNR = 25 dB, which is a noise
level not included in any test set. The closest are test set no. 8 and no. 9 with
SNR = 26 dB and SNR = 24 dB, respectively.

The results of the experiments with reference databases A and B, for the
distance-to-class calculation method using bootstrapping, are illustrated in Fig.
4.3, and for the centroid estimation method in Fig. 4.4.

The evolution of the F1-score (Fig. 4.3a and Fig. 4.4a) is almost identical for
both methods, independently of the used reference database. F1-score reaches its
maximum value close to 100% from 40 dB to 20 dB, and slowly decreases in the
range 20 to 10 dB to reach 90%.

The main differences are found in the estimated confidence indexes. Indepen-
dently of the method or the reference database, the mean values of the NB-KDE

3In a distance-based approach such as Nearest Neighbors, there is not such a training pro-
cesses that involves the optimization of internal parameters of the classifier. The reference
database is sometimes referenced in the text as training data, but this term is only used to
facilitate the reader’s understanding.
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(a) (b)

Figure 4.3: Bootstrapping method: (a) F1-score and mean values for NB-KDE and
RD indexes and the corresponding (b) Log-loss values associated to the output
predictions for 16 different noise levels.

(a) (b)

Figure 4.4: Centroid estimation method: (a) F1-score and mean values for NB-
KDE and RD indexes and the corresponding (b) Log-loss values associated to the
output predictions for 16 different noise levels.
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and RD indexes are stable between 40 to 30 dB (Fig. 4.3a and Fig. 4.4a), and
their Log-Loss values are inferior to 0.05 (Fig. 4.3b and Fig. 4.4b). However, for
SNR levels between 30 to 10 dB, we note a rapid degradation of the NB-KDE in-
dex, which exceeds the random-guess baseline around 20 dB for the bootstrapping
method in Fig. 4.3b, and around 25 dB for the centroid estimation method in Fig.
4.4b. The use of an enriched database (reference database B) helps to improve the
results of the NB-KDE index. This is an expected behavior since a more diverse
database leads to a larger likelihood distribution. However, the performance of
this index within this range of noise levels is still very poor.

In contrast, the RD index seems much more stable, with an average value above
75% for the bootstrapping method in Fig. 4.3a, and up to 80% for the centroid
estimation method in Fig. 4.4a, even for noise levels corresponding to SNR of
10 dB. We also note that the addition of noisy data to the reference database
(reference database B) does not significantly influence the RD index.

Figure 4.5: Varying noise levels on the voltage waveform and their impact to the
signatures

In summary, we can conclude that the classification’s performance represented
by the F1-score for both distance-to-class methods is robust enough in the standard
range of noise levels corresponding to SNR between 40 to 15 dB (above 95%). This
is because the feature extraction step only retains the low-frequency components,
implicitly filtering out the high-frequency noise when applying STFT. Fig. 4.5
illustrates the second ISC (voltage negative-sequence harmonic 1) of a sag caused
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by an upstream balanced fault with different noise levels. It can be observed that
the noise in the voltage waveforms have a low impact on the signatures. Finally,
we also note that the RD-index is significantly more robust than the NB-KDE
index for noise levels with an SNR between 25 and 10 dB.

4.3.1.3 Sensitivity to fundamental frequency variations

The nominal supply frequency in France is 50 Hz. However, this frequency can
slightly fluctuate around this value due to changes in the supply and demand for
electricity in the grid. To evaluate the sensitivity to frequency variations around
the fundamental frequency (50 Hz), we proceed as before with experiments based
on two reference databases and 6 test sets with increasing levels of frequency
variation.

• Reference database A contains the original 700 synthetic voltage sags of
the synthetic dataset at the rated fundamental frequency of 50.0 Hz

• Reference database C contains the 700 original synthetic voltage sags plus
105 sags at 49.75 Hz and 105 sags at 50.25 Hz (910 sags in total)

• Test sets, 6 in total. Each test set contains 210 synthetic voltage sags with
a fundamental frequency F = 50Hz± ϵ, where ϵ = {0.0, 0.1, 0.2, 0.3, 0.4, 0.5}
Hz.

The range of frequency variation corresponds to the maximum frequency fluc-
tuations (50Hz ±1%) allowed by the French and European regulatory standards
regarding the power supply at the distribution level for synchronous connection to
an interconnected system [131].

The results for the bootstrapping distance estimation method are plotted in
Fig. 4.6, and for the centroid estimation method in Fig. 4.7.

For reference databases A and C, the values of the F1-score are above 95% for
the bootstrapping method in Fig. 4.6a and the centroid estimation method in Fig.
4.7a.

The NB-KDE index is more sensitive than the RD index to increasing fre-
quency variation levels for both methods. However, its mean and Log-Loss values
are improved using the enriched reference database C. This improvement is more
significant with the centroid estimation method illustrated in Fig. 4.7a, where
the mean value at ϵ = 0.2 changes from 50% with reference database A, to al-
most 90% with reference database C (+40% improvement). An improvement in
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the bootstrapping method (+20% for ϵ between 0.2 to 0.5) is also visible in Fig.
4.6a. The Log-Loss values for this index for both methods evolve similarly (Fig.
4.6b and Fig. 4.7b). The use of reference database C helps to noticeably decrease
the Log-Loss values for the bootstrapping and centroid estimation methods, with
values close to the random guess baseline for ϵ = 0.3. However, the overall results
obtained with the NB-KDE index are not sufficient.

(a) F1-score and mean values for NB-KDE
and RD confidence indexes

(b) Log-loss values for NB-KDE and RD
confidence indexes

Figure 4.6: Bootstrapping method: F1-score and mean values for NB-KDE and
RD indexes (a) and the corresponding Log-loss values (b) associated to the output
predictions, for 5 different levels of fundamental frequency variation.

(a) F1-score and mean values for NB-KDE
and RD confidence indexes

(b) Log-loss values for NB-KDE and RD
confidence indexes

Figure 4.7: Centroid estimation method: F1-score and mean values for NB-KDE
and RD indexes (a) and the corresponding Log-loss values (b) associated to the
output predictions, for 5 different levels of fundamental frequency variation.
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On the other hand, we note that the RD index is significantly more stable,
remaining above 90% even for fluctuations up to 0.5 Hz, for both distance-to-class
methods and both reference databases (Fig. 4.6a and Fig. 4.7a). Regarding the
Log-Loss values in Fig. 4.6b and Fig. 4.7b, the RD index remains low and stable
despite frequency variations, with values significantly lower than the random guess
baseline. We note that the enriched reference database C has a more noticeable
impact on this index in the case of the centroid estimation method (Fig. 4.7).
Reference database C slightly improves the RD index’s results in terms of mean
and Log-Loss values.

The impact of fundamental frequency variations on the signatures is illustrated
in Fig. 4.8, with the second ISC (voltage negative-sequence harmonic 1) of a
sag caused by a transformer energizing. We observe that although the frequency
variation causes visible oscillations in the signature, the global shape that allows
the classification is still preserved.

Figure 4.8: Effects of the fundamental frequency variations on the second ISC of
a voltage sag caused by a transformer energizing.

Finally, we can conclude that the classification performance measured by the
F1-score is very high (above 97%) even for fundamental frequency variations of
ϵ = 0.5Hz. We also note that the RD index proves to be more robust once again,
achieving a mean value higher than 90% for both distance-to-class methods and
both reference databases.
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4.3.2 Minimum database size setting

Classification algorithms in the literature generally require large amounts of
data to perform, from a few hundred to thousands of training samples. Unfor-
tunately, in industrial applications, the availability of disturbed electrical data in
various operating conditions is hard to obtain. Therefore, in this area of research,
it is essential to perform the classification with a small database size. This sec-
tion determines how to adjust the optimal size of the database to achieve the best
possible compromise in terms of performance.

The results are obtained using the original synthetic dataset of 700 sags (no
added noise or fundamental frequency variations). The training database contains
a determined and increasing percentage of the synthetic dataset, and the test set
contains the remaining data. We also use a random permutation strategy of five
balanced splits for more representative results.

Results for the mean distance estimation with bootstrapping are illustrated in
Fig. 4.9, and for the centroid estimation method in Fig. 4.10.

A good trade-off between minimum database size and high confidence for the
NB-KDE and RD indexes is obtained for a database size containing no more than
20% of the original synthetic dataset. The F1-score and the RD index reach high
scores for even less data, but a minimum of 20 signatures per class are required in
the database to obtain a reliable score for the NB-KDE index. Above this ratio,
there are no significant improvements in performance.

(a) (b)

Figure 4.9: Bootstrapping method: (a) F1-score and mean values for NB-KDE and
RD indexes and the corresponding (b) Log-Loss values associated to the output
predictions, for different sizes of the synthetic database.
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(a) (b)

Figure 4.10: Centroid estimation method: (a) F1-score and mean values for NB-
KDE and RD indexes and the corresponding (b) Log-Loss values associated to the
output predictions, for different sizes of the synthetic database.

We present hereafter the detailed classification results for a database with
20 signatures per class (140 signatures for the 7 defined classes). The reference
database contains 20% of the original synthetic dataset and the remaining 80% is
used for testing. The results for the mean distance with the bootstrapping method
are presented in Table 4.2 and for the centroid estimation method in Table 4.3.
They are obtained through a cross-validation strategy using five balanced splits,
so the whole synthetic dataset is evaluated.

Table 4.2: Prediction and confidence index results using synthetic data - Mean
distance with Bootstrapping method

Class Database size Test set size Bootstrapping
Synthetic Synthetic F1-score (%) NB-KDE (%) RD (%)

A1 20 80 100 99.99 96.71
A2 20 80 100 99.82 97.84
B1 20 80 100 99.99 95.60
B2 20 80 100 99.97 97.80
C1 20 80 100 99.99 99.07
C2 20 80 100 97.54 94.61
D 20 80 100 98.14 92.26

Total/Average 140 560 100 99.35 96.27

The results for the label prediction, reflected by the F1-score, are optimal
for both distance-to-class estimation methods with a 100% success rate for each
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Table 4.3: Prediction and confidence index results using synthetic data - Centroid
estimation method

Class Database size Test set size Centroid estimation
Synthetic Synthetic F1-score (%) NB-KDE (%) RD (%)

A1 20 80 100 99.98 97.04
A2 20 80 100 97.54 96.55
B1 20 80 100 99.97 94.54
B2 20 80 100 99.99 98.06
C1 20 80 100 99.99 99.31
C2 20 80 100 91.07 94.68
D 20 80 100 97.29 95.02

Total/Average 140 560 100 97.97 96.46

class. In terms of confidence in the prediction, the best results are achieved with
the bootstrapping method combined with the NB-KDE index (99.35% of mean
confidence across all classes). However, the sensitivity analysis in Section 4.3.1
showed that the NB-KDE index is highly sensitive to increasing noise levels or fre-
quency variations. On the other hand, the RD index is slightly lower but still with
very satisfactory results for both distance estimation methods: 96.27% of mean
confidence for the bootstrapping method and 96.46% for the centroid estimation
method. Therefore, we select the RD index as confidence score in the following
sections.

4.3.3 Computational cost evaluation

Using the synthetic dataset, we compare the computational cost of the distance-
to-class calculation methods: mean distance estimation with bootstrapping and
centroid estimation using soft-DTW. The execution time for classifying a single
signature (test runtime) with different database sizes is presented in Table 4.4. In
addition, the computation time used by the centroid estimation method to estimate
the barycenters is also given as a reference (training runtime). The bootstrapping
method does not require any prior calculations before implementing the algorithm,
therefore its train runtime is not provided. Note that only the label prediction time
is measured to compare the speed performance of these two methods. The time
to compute the confidence index is not considered, as it is negligible compared to
the time to compute the distance-to-class. The experiments are performed with
an Intel Core i7-8750H processor in a Windows 10, 64 bits operating system. Ten
successive runs are performed and the average value is provided.
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Table 4.4: Computational cost comparison

Nk Database size Bootstrapping Centroid estimation Test time
Train time (s) Test time (s) Train time (s) Test time (s) ratio*

20 140 - 0.70 1.88 0.03 23.33
30 210 - 0.98 3.06 0.03 32.66
50 350 - 1.55 4.21 0.03 51.91
80 560 - 2.56 6.89 0.03 85.36
100 700 - 3.08 8.37 0.03 102.81

*Test time ratio = bootstrapping test time / centroid estimation test time

The centroid estimation method is faster than the mean distance estimation
with bootstrapping approach during the test runtime. The test time ratio of
this method is proportional to the number of events per class Nk. By reducing
the reference signature database to a single centroid per class, we can efficiently
reduce the overall classification computation time by a factor equal to Nk. The
centroid estimation testing time is stable whatever the number of signatures per
class Nk. The centroid estimation training runtime increases linearly with the size
of the database. However, the centroid estimation is only performed once, prior
to the implementation of the algorithm.

In the previous sections, we studied the performance of two methods for distance-
to-class estimation and two methods for calculating the confidence score associated
with the prediction. The sensitivity analysis to noise and frequency variations high-
lighted the robustness of the RD index compared to the NB-KDE index. For a
fixed-size database, the mean distance estimation with the bootstrapping method
provided similar results to the centroid estimation with soft-DTW. However, the
latter outperforms the first in terms of computational speed by a factor equal to
Nk (number of signatures per class). The centroid estimation with soft-DTW and
RD index as confidence score are the most suitable methods in terms of speed and
robustness. Therefore, they are retained for validation using real field data in the
following sections.

4.4 Validation using real field data

The performance of our proposal with field data is evaluated in this section. We
also evaluate its capability of generalization with different data sources (synthetic
and real field data). The analysis is performed under the scope of the confusion
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matrix4 and F1-score metrics. Misclassification errors are also assessed, and the
results highlight the usefulness of the proposed confidence index in identifying and
excluding possible false results.

4.4.1 Cross-data source evaluation

The overall classification accuracy of some methods in the literature is very
high, (over 99%) [82, 111, 116, 117, 118]. Nevertheless, there is an important
limitation regarding the required data for the development and deployment of
these algorithms: these classifiers are systematically trained and tested using data
from the same data pool (either simulation or real data).

In the case of deep learning classifiers, a mix of synthetic and real data is
used for training to deploy the algorithm on real data [116, 118, 117]. This is
partly because these algorithms require important amounts of data to converge,
and this strategy is used to accelerate the learning process and improve overall
results. However, the authors have not reported the results of these classifiers
when exclusively trained with simulation data and then tested on real data.

We know from [63] and [112] that this is not a trivial task. Both authors report
good results when training an SVM classifier with field data from one network and
testing it on a different network. However, the classifier’s performance significantly
deteriorates when trained with simulation data and tested with field data. The
authors also pointed out that the usefulness of these methods for commercial pur-
poses depends on the ability of the classifier to be factory pre-trained and perform
accurately when deployed in different networks, as it is not realistic for customers
to train the algorithms themselves. Furthermore, from an implementation per-
spective, it is a strong demand for classifiers to be based solely on synthetic data,
as it is more accessible than field data [112].

We evaluate the accuracy and generalization capabilities of the classifier with
the centroid estimation method. For this, we conducted four experiments described
in Table 4.5, using the synthetic and real datasets described in Chapter 2. The
synthetic and real datasets are split into two groups: 20 signatures per class for
the reference database (training), and the rest for testing.

Note that for the real dataset from three industrial sites, classes B1 and C2
are not present since no recordings were available during the monitoring period
of time (see Table 3.2). Also note that class C1 has very few signatures: the real
field reference database comprises 5 events instead of 20 for the other classes.

4A confusion matrix is commonly used to evaluate the performance of a classification model.
It compares the predicted values of the classifier with the actual ground truth values.
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Table 4.5: Description of the experiments

No. Reference database Testing set
Type Size Type Size

1 Synthetic 140 Synthetic 560
2 Real 85 Real 300
3 Synthetic 140 Real 385
4 Real 85 Synthetic 700

For experiments No. 1 and 2, the training and testing sets are from the same
source (either synthetic or real). In experiments No. 3 and 4 the training and
testing sets are from different sources: the reference training databases have 20
signatures per class but the algorithm is tested on the entire dataset of the second
data source.

The results of experiment 1 are presented in Table 4.6. The classification is
optimal across the 7 classes, with an F1-score equal to 100% and an average RD
index equal to 96.46%.

Table 4.6: Experiment 1: Training and testing with synthetic data

Database size Class A1 A2 B1 B2 C1 C2 D F1-score (%) RD index (%)
20 A1 80 0 0 0 0 0 0 100 97.04
20 A2 0 80 0 0 0 0 0 100 96.55
20 B1 0 0 80 0 0 0 0 100 94.54
20 B2 0 0 0 80 0 0 0 100 98.06
20 C1 0 0 0 0 80 0 0 100 99.31
20 C2 0 0 0 0 0 80 0 100 94.68
20 D 0 0 0 0 0 0 80 100 95.02

Average 100 96.46

For experiment 2, the results in Table 4.7 show that the F1-score is equal to
90.19% for 5 classes out of 7, and the average confidence score is 92.64%. The
errors are due to the misclassification of 4 voltage sags belonging to class A2
(upstream unbalanced fault) predicted as events of class C1 (upstream transformer
energizing).

The classification errors in experiment 2 are due to a distorted estimated cen-
troid for class C1, which caused a forced time alignment between four events of
class A2 with the centroid of class C1. The distorted centroid for class C1 is
mainly due to one out of five signatures used for the estimation that presents some
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Table 4.7: Experiment 2: Training and testing with real field data

Database size Class A1 A2 B1 B2 C1 C2 D F1-score (%) RD index (%)
20 A1 15 0 0 0 0 0 0 100 89.24
20 A2 0 133 0 0 4 0 0 84.27 84.26
- B1 - - - - - - - - -

20 B2 0 0 0 70 0 0 0 100 98.08
5 C1 0 0 0 0 4 0 0 66.67 91.78
- C2 - - - - - - - - -

20 D 0 0 0 0 0 0 74 100 99.81
Average 90.19 92.64

oscillations and irregularities. Since the number of signatures used for the centroid
estimation is low (only five), a single outlier can affect the barycenter estimation
process. This problem could be prevented by: discarding outliers from the refer-
ence signatures used for centroid estimation, by increasing the number of reference
signatures, or by increasing the value of γ to obtain a smoother centroid.

The most significant results are those from experiments 3 and 4, since the
reference training database and the test set belong to different data sources.

The results of experiment 3 are displayed in Table 4.8. They show that the
algorithm can use a synthetic database for training and obtain satisfactory results
when tested on real field data with a 99.32% average F1-score and an average
confidence score of 87.02% for 5 out of 7 classes. The results from this experiment
are the most relevant since, as previously mentioned, an algorithm with commercial
purposes should be ideally trained only with synthetic data before deploying it in
actual grids to evaluate real field data.

Table 4.8: Experiment 3: Training with synthetic data, and testing with real field
data

Database size Class A1 A2 B1 B2 C1 C2 D F1-score (%) RD index (%)
20 A1 35 0 0 0 0 0 0 97.22 88.43
20 A2 2 155 0 0 0 0 0 99.35 92.94
20 B1 - - - - - - - - -
20 B2 0 0 0 90 0 0 0 100 92.80
20 C1 0 0 0 0 9 0 0 100 86.32
20 C2 - - - - - - - - -
20 D 0 0 0 0 0 0 94 100 74.63

Average 99.32 87.02
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In experiment 3, only two sags of class A2 (upstream unbalanced line fault)
were misclassified as belonging to class A1 (upstream balanced line fault). This
classification error is due to an overlap of the two peaks in the third ISC of the
signature (voltage positive-sequence harmonic 2) because of the short duration of
both sags (less than 30 ms). This overlap is responsible for a poor time alignment
with both reference signatures A1 and A2. Fig. 4.11 and Fig. 4.12 show a
comparison between the new sag signature (30 ms) and a reference signature of
class A1 (50 ms), and a reference signature of class A2 (50 ms), respectively.

We can observe that an incorrect time misalignment led to the distortion of
the signature in both cases, resulting in a distance-to-class A1 of D = 5.52e − 02
(false class) and D = 5.96e− 02 to class A2 (true class). However, both distances
are significantly higher compared to the average inter-class distances for class A1
and A2 (lower than D = 3.50e− 02).

This is a limitation of the feature extraction process for sags with a duration
inferior to 30 ms. However, classification errors due to poor time alignment can be
detected and may raise an alert if the confidence score (RD index) is low and the
intervention of a human expert is required. In this case, a human eye would have
rapidly observed that the signature of the new event is closer to the signature of
class A2 than to class A1, due to the voltage negative-seq H1 (second ISC), despite
the peak overlap in the third ISC. Error analysis using the confidence index will
be further studied in the next section.

(a) Before alignment (b) After alignment

Figure 4.11: Classification errors in experiment no. 3. Reference signature of class
A1 (50 ms) and query signature of class A2 (30 ms)
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(a) Before alignment (b) After alignment

Figure 4.12: Classification errors in experiment no. 3. Reference signature of class
A2 (50 ms) and query signature of class A2 (30 ms)

Finally, although experiment 4 is not to be replicated in practical applications,
the results presented in Table 4.9 are still interesting from a validation perspective
for the proposal’s capability of generalization. For this experiment, the algorithm
achieves a F1-score of 100% and 93.23% for the RD index.

These last two experiments demonstrate the algorithm’s capacity to properly
generalize across data from different sources (either synthetic or real). It should
be noted that such tests and have not been performed by other methodologies in
the literature for the classification of voltage sag causes.

Table 4.9: Experiment 4: Training with real field data, and testing with synthetic
data

Database size Class A1 A2 B1 B2 C1 C2 D F1-score (%) RD index (%)
20 A1 100 0 0 0 0 0 0 100 89.80
20 A2 0 100 0 0 0 0 0 100 93.09
- B1 - - - - - - - - -

20 B2 0 0 0 100 0 0 0 100 99.21
5 C1 0 0 0 0 100 0 0 100 89.90
- C2 - - - - - - - - -

20 D 0 0 0 0 0 0 100 100 94.05
Average 100 93.23
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4.4.2 Accuracy and error analysis

This section analyzes the classification errors for experiment 3 (synthetic database
and real test set) presented in 4.8. Two voltage sags of the real dataset belonging
to class A2 were misclassified as belonging to class A1. If we analyze the rela-
tive distance-based confidence index of all the voltage sags, we observe that only
5 events out of 385 were classified with a confidence index lower than 60%, as
illustrated in Fig. 4.13. Among these events, two correspond to misclassification
errors.

The classification error appears between two classes that only differ on the bal-
anced/unbalanced nature of the event. Classes A1 and A2 correspond to voltage
sags due to upstream line faults. The consequences of this error could even be
considered minor since the location (upstream) and the source event (line fault)
of the sag are the most helpful information for the industrial client. A prediction
with a confidence index below a certain threshold would trigger an alert for further
analysis by an expert. The end-user of the system can set this threshold according
to his needs. A threshold set at 60% for the RD index seems to be a good compro-
mise between the number of events triggering an alert and the risk of overlooking
a classification error. The possibility of setting such a threshold reduces the time
spent by experts in analyzing voltage dips. For the evaluated data, only 5 events
out of 385 (i.e. less than 2%), would have required a detailed study.

The two events classified in class A1 have an RD index of 41.01% and 42.34%,
respectively. These values are significantly lower than the median RD index for
this class, close to 91%. In addition to this, we note that the next highest mem-
bership probability for both events are 29.66% and 38.93%, respectively, which
correspond to class A2, the true class. We can also observe that some classes with
low membership probability can be quickly excluded. In the case of a more de-
tailed analysis required by an alert, this information can help reduce the number
of possible class labels to be analyzed from seven to only two or three.
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(a)

(b)

Figure 4.13: Analysis of misclassified events for experiment 3: (a) Boxplot of the
RD confidence index, 5 events raise an alert due to low confidence index, with two
of them corresponding to the misclassification errors and (b) detailed membership
probabilities according to RD index for the events raising an alert.

4.5 Conclusion

This chapter analyzed the algorithm’s performance in terms of class separabil-
ity, robustness to noise, and fundamental frequency variations for classifying the
causes of voltage sags. Two methods for distance-to-class estimation were com-
pared, and the centroid estimation with soft-DTW method was found to be as
efficient but significantly faster than the bootstrapped mean distance estimation
method. Similarly, two methods for calculating the prediction confidence index
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were investigated, and the RD index was found to be much less sensitivity to noise
and frequency variations than the NB-KDE index. Table 4.10 briefly summarizes
the criteria for the selection.

Table 4.10: Comparison between two distance-to-class calculation methods and
two confidence scores

Confidence score Robustness to noise frequency variations
Robustness to fundamental

method
Selected

NB-KDE index - - -

RD index + ++ X

estimation method
Distance-to-class Low computational cost Accuracy method

Selected

with bootstrapping
Mean distance estimation - - ++

with soft-DTW
Centroid estimation ++ ++ X

The results proved that the proposal is resilient for noise levels up to SNR =
15 dB and fundamental frequency variations up to ϵ = ±0.5 Hz. The algorithm
was evaluated using a cross-data source approach using synthetic and real field
data through four experiments, showing very good generalization capabilities. The
algorithm reached a F1-score of 100% across seven classes with a reduced synthetic
database of only 140 events when tested on synthetic data. However, the most
relevant results were obtained with a synthetic signature database for training
and testing on real field data collected from three different industrial sites. The
algorithm reached a F1-score of 99.32% for five out of the seven defined classes.

In summary, the main advantages of the proposed algorithm are:

1. The reduced amount of data necessary to build the signature database

2. The signature reference database can be entirely composed of synthetic data

3. The good generalization capabilities when implemented on real field data,
even for different industrial sites

4. The electrical intepretability of the signatures and the decision-making pro-
cess

5. The computation of a confidence index associated with the prediction
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The first three characteristics make the algorithm easy to implement in real in-
dustrial applications with no previously recorded data. The last two characteristics
make the troubleshooting process easier and increase the general interpretability
of the decision-making process, which is a demand from industrial customers for
reliability issues.
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Chapter 5

Impact of Voltage Sags in Industrial
Grids

5.1 Introduction

Once a voltage sag has been detected by the monitoring device, and its root
cause has been identified, the next step is to analyze the impact on industrial
equipment.

Voltage sags are indeed one of the main causes of load self-disconnection [132].
The impact in terms of load-shedding caused by a voltage sag depends on the char-
acteristics of the sag and the resilience of the industrial grid and its processes. This
study aims to propose a methodology capable of estimating the self-disconnected
load composition in an industrial facility after a voltage sag. For this, we consider
that we only have access to the electrical measurements provided by a unique mon-
itoring device at the LV side of the industrial grid’s main MV/LV transformer.

In this chapter, we present the problem of load self-disconnection after a voltage
sag and introduce some of the most common methods in the literature for load
estimation, particularly for load composition estimation. Then, we propose a first
approach for the problem of self-disconnected load composition estimation. We
present the obtained results for a simple case study and analyze the method’s
limitations. Finally, we discuss the challenges and perspectives.
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5.2 Self-disconnected loads due to voltage sags

Voltage sags may or may not cause an impact on the industrial facility. A
voltage sag with impact refers to a sag causing load self-disconnection of sensitive
equipment. The duration of the impact is variable and depends on the time needed
to restore the normal operation of the affected processes. Indeed, the restoration
can be automatic with certain variable speed drives restarting the motors once the
voltage conditions are met, or may require human intervention for more complex
processes. The total duration before the restoration of the stopped processes has
a direct impact on the financial losses, as presented in Chapter 1.

(a) (b)

Figure 5.1: (a) Voltage sag without impact and (b) voltage sag with load self-
disconnection or load tripping

Fig. 5.1a presents a voltage sag with a magnitude of 87%, without impact. We
can observe that the current and the active power return to their pre-sag values
after the voltage is restored. In the contrary, Fig. 5.1b illustrates a voltage sag
with a magnitude of 43%, causing the disconnection of multiple loads. The impact
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is particularly visible when comparing the pre-sag and post-sag values in current
(∆I) and active power (∆P ). This voltage drop causes a loss of 64% of the total
active power consumed by the site.

This study aims to develop an algorithm that provides as much information as
possible on the disconnected loads following a voltage sag, with limited access to
electrical measurements. However, it is not feasible to determine the actual char-
acteristics of the devices connected downstream to the single monitoring point.
Therefore, we group the loads based on their dynamic response in five load cate-
gories including the most common equipment in industry [133]:

1. Direct connected induction motors
2. Adjustable speed drivers (ASD)
3. Resistive loads
4. Switched-mode power supply (SMPS) feeding electronic devices
5. Energy efficient lighting

The objective is to estimate within these five load categories the composition
of the disconnected loads due to a voltage sag.

Load composition estimation is actually an area of application of load estima-
tion techniques. So, in the following, we first introduce a brief literature review
on load estimation techniques. Then, we propose a first approach to estimate the
self-disconnected load composition after a voltage sag.

5.3 Load estimation methods: Literature review

Accurate load estimation is essential for power analysis, planning and control
[134]. Load estimation can be divided in two stages: load modeling and parameter
estimation.

5.3.1 Load models

Load models can be designed with analytical relations (polynomial, exponen-
tial, non-linear, etc.) that describe the load’s response to variations of the input
voltage or/and frequency. Models can also be built from equivalent electrical cir-
cuits, whose parameters are related to the characteristics of the load.

Machine learning techniques like Artificial Neural Networks (ANN) can also be
used to model loads. They are helpful for modeling loads whose physical structure
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is unknown or whose electrical behavior is too complex to be formulated through
mathematical equations. However, as discussed in Chapter 2, these methods re-
quire huge amounts of data for training. Their accuracy and particularly their
generalization capabilities will depend largely on the diversity and representative-
ness of the data used for training.

The domain of validity should be considered when selecting a load model [135].
Sometimes the model is an approximation around an operating point, for instance
up to 5% voltage sag [133]. However, in case of a deeper voltage sag, several
electrical components may exhibit a very different behavior than the one observed
in nominal conditions, and in consequence, the model becomes invalid.

The final use of the model is also a criterion that should be considered [135].
For example, stability analysis, electrical consumption forecasting, load parameter
estimation, load composition, etc. For example, a steady-state model of aggre-
gated loads is sufficient for consumption forecasting studies. However, dynamic
and physics-based models are required to estimate the electrical and mechanical
parameters of electrical motors.

The selection of a load model depends on the characteristics of the parameters
to estimate, which can be:

• The coefficients of analytical equations, with no direct physical interpretation

• The electrical or mechanical parameters of a specific device

• The load composition1 of a residential, industrial or commercial grid

In summary, load models can be grouped into three categories: static models,
dynamic models and composite models.

Static models

Static models represent loads that reach a new equilibrium point immediately
after a voltage disturbance without significant transient. They are suitable for
analyzing steady-state characteristics. The most common models in this category
are [134]:

1. ZIP model: it consists of two polynomial equations describing the active
and reactive power as defined in (5.1). Each equation is represented by three
components, namely, a constant impedance part (Z), a constant current part
(I), and a constant power (P) part. P0 and Q0 are the active and reactive

1Load composition is used to to estimate the proportion of load types in the sub-network. It
is different form load class estimation, which is devoted to determine the type of sub-network:
residential, industrial, or commercial.
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powers at the rated voltage V0. V is the variable voltage of the device and the
coefficients ap, aq, bp, bq, cp and cq are to be estimated. These coefficients
depend on the load’s characteristics. In [136] a ZIP model was used to
represent a feeder serving a residential area (aggregated loads).


P = P0

(
ap

(
V

V0

)2

+ bp

(
V

V0

)
+ cp

)

Q = Q0

(
aq

(
V

V0

)2

+ bq

(
V

V0

)
+ cq

) (5.1)

2. Exponential model: it relates the power of a load with its voltage supply
by an exponential equation as presented in equation (5.2). P0 and Q0 are the
active and reactive powers at the rated voltage V0. The coefficients np and
nq are estimated from the electrical behavior of the load. This model has
fewer parameters to estimate compared to the ZIP model, but might have
a more limited domain of validity. This type of model was implemented
in [137] for the modeling and load aggregation of transformers in a MV
distribution system with high penetration of distributed generation. The
exponential model displayed a lower and more consistent estimation error
(MSE = 0.010) than the ZIP model (MSE = 0.274) for six synthetic events.


P = P0

(
V

V0

)np

Q = Q0

(
V

V0

)nq
(5.2)

3. Frequency dependent model: it represents the relationship between power
with both voltage and frequency of the load’s supply. It is obtained by ap-
plying a frequency-dependent coefficient to a ZIP or exponential model. The
frequency-dependent factor is described in equation (5.3), where f0 is the
nominal frequency, f the frequency at the bus voltage and af the parameter
to estimate. A ZIP model incorporating a frequency-dependent term was
used in [138] for an event-oriented method for online load modeling for the
Illinois Insitute of Technology microgrid. The load model was able to capture
oscillation and damping information successfully, obtaining better approxi-
mation results (NMSE = 0.010) compared to a classic ZIP model (NMSE =
0.215) and an induction motor (IM) model (NMSE = 0.152).

1 + af (f − f0) (5.3)
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Dynamic models

Dynamic models, particularly required for stability studies, are designed to
represent the dynamic behavior of loads. They can capture short-term or long-
term dynamics depending on the selected model. The most common models in
this category are [134]:

1. Induction Motor (IM) model: is derived from the dynamic equivalent
electrical circuit of the induction motor. Thus, it is considered a physics-
based model. In [139], the authors compared an IM model and a static
exponential model for aggregated induction motor load modeling. The au-
thors concluded that although the static model could in some cases reproduce
the response of motor loads to voltage disturbances, only the IM model was
able to capture the dynamic behavior by taking into account the load inertia
on the system stability.

2. Exponential Recovery Load Model (ERL): is used to represent slowly
recovering loads. The model is represented as a set of non-linear first-order
equations, as in (5.4). In [140] an oscillatory component load model based
on a static, exponential recovery and damped oscillatory components was
proposed for representing industrial, residential and commercial loads. The
authors validated the model’s performance using real field measurements.

Tp
dxp

dt
= −xp + P0(V/V0)

Nps − P0(V/V0)
Npt

Pd = xp + P0(V/V0)
Npt

Tq
dxq

dt
= −xq +Q0(V/V0)

Nqs −Q0(V/V0)
Nqt

Qd = xq +Q0(V/V0)
Nqt

(5.4)

Composite models

Composite models are a combination of static and dynamic models. They are
expected to provide more accurate results benefiting from the qualities of both
models. Some of the most widely used composite models are:

1. ZIP + IM: is one of the most flexible and commonly used composite models,
for its simplicity and easy application [134]. It combines the characteristics
of a static model (ZIP) representing an aggregation of static loads with the
dynamic model of an induction motor (IM). It was implemented for stability
analysis in [135] and for transient stability using measured data to predict
unseen data in [141].
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2. Complex Load Model (CLOD): is a model that includes: large and
small motors, a discharge lighting block, a transformer saturation block, a
constant power load (MVA), shunt capacitors, and a series impedance. It has
been included in the Siemens PTI PSS/E stability program and successfully
implemented for modeling the dynamic response of a pulp and paper mill
facility to a voltage sag in [142], after conducting an in-depth load survey
for parameter setting.

3. Western Electricity Coordinating Council (WECC-CLM): is a com-
posite model consisting of several models: a static load model, a model for
power electronics, and four motor models with different mechanical loads.
The composite model also includes a representation of a distribution system
(a substation transformer, a shunt reactance, and a line feeder). It was de-
veloped by WECC for commercial and residential areas and implemented
in Siemens PTI PSS/E, an industry-level simulation software. While the
WECC-CLM model provides a very detailed representation, it can be diffi-
cult to implement due to the high number of parameters to estimate (131 in
total) [134]. In [143], the author proposed a generic composite load model
structure for industrial facilities using a similar structure as the WECC com-
posite model. The method falls into the component-based approach category,
which means that the parameters of the model are defined based on survey
results.

In summary, static models are relevant for steady-state studies such as the load
consumption estimation of aggregated loads in residential or commercial areas.
However, they are not adapted for stability analysis as they ignore the dynamic
behavior of the loads, whereas dynamic models are preferred. Loads can also be
modeled using analytical equations or physics-based models. Analytical equations
are useful if we are only interested in replicating the load’s behavior. However,
these models are not adapted if the goal is to model a group of loads as these
equations do not allow to differentiate them.

5.3.2 Estimation methods

There are two main approaches for estimating load model parameters: component-
based and measurement-based methods [134].

Component-based methods

Component-based methods rely on general knowledge of physical behavior and
mathematical relationships describing loads. This approach is mainly used for
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power flow, voltage profile, and load demand studies [144]. These types of studies
do not require highly precise models as long as the global response of the model
is representative of the real installed load. The load model parameters are set
according to tables with standard values [143]. Nonetheless, such information is
not always available or precise enough.

Measurement-based methods

Measurement-based methods are used to develop accurate load models. They
use identification and estimation techniques to fit the structure and parameters
of the model with measurement data. Some of the most usual algorithms for
parameter identification are: least-squares [145], genetic algorithms [146], fuzzy
regression [147, 148] and particle swarm optimization (PSO) [149].

In our application, field measurements provided by a monitoring device are
available at the LV industrial site. Therefore, the use of measurement-based meth-
ods are relevant to estimate the load composition. However, in the load estimation
domain, very few methods are focused on load composition estimation. Most of
the measurement-based approaches are used for electrical/mechanical parameter
estimation of specific devices and equivalent load response modeling for stability
analysis [135, 149].

The closest study to our problem is reported in a technical report published
by the Electric Power Research Institute (EPRI) on a methodology for load com-
position estimation [147]. The study is based on a composite model composed of:
three ASM with different power ratings, an incandescent and discharge lighting, a
thermostatic load and an electronic load. The active and reactive powers during a
voltage sag are used as input of a fuzzy regression algorithm. The authors achieved
good approximation with simulation data (a mean estimation error less than 2%).
However, the models of individual loads are very simplified analytical equations
that do not accurately reproduce their behavior in real conditions. For validation,
only qualitative results were provided with field data.

Sagi et al. [148] proposed a method for load composition estimation using
fuzzy regression and evaluated the proposal with synthetic data. The authors
used a component and physics-based model that included: incandescent and dis-
charge lighting, electronic devices, ASD, thermostatic, small, medium and large
motors. The authors also used generic load models assuming standard parame-
ter values. The results showed that load composition could be estimated using
the active and reactive power information with an acceptable accuracy despite a
parameter mismatch (particularly power factor mismatch). The estimates for in-
dividual motor types (small, medium and large) were mismatched by a maximum
of 8%, but the estimate for motor loads as a group was more accurate (less than
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2% estimation error).

Soon et al. [150] proposed a methodology based on the harmonic content of in-
dividual loads and a reduced multivariate-polynomial model for the estimation of
electric load composition. However, the instantaneous harmonic current signatures
i(t) of the four considered loads (incandescent lighting, fluorescent lighting, com-
puter, and motor drive) are modeled using static analytical equations independent
of voltage variations.

Finally, Duan et al. [151] proposed a ANN to estimate the load composition
of commercial and residential grids. The algorithm exploits the current harmonic
content. It is based on the assumption that the total measured current waveform
can be approximated as the weighted sum of a set of current waveforms flowing
in the connected loads. However, the harmonic content of each load is considered
as constant and is not obtained from a load model. The authors use as input the
harmonic spectrum at the service point and a table of the harmonic content of
typical residential electrical loads (9 in total). The output are the weights of the
individual loads (load composition). Only two experimental results were provided,
with a percentage relative error (PRE) of 9% in both cases.

The load composition methods found in the literature either use the active and
reactive powers, or the current and its harmonic content. The methods using active
and reactive powers use load model approximations that are only valid for shallow
voltage variations (around ± 5% of nominal value). These models are not accurate
enough to replicate the response of the electrical devices to voltage sags (between
90% and 10% of the remaining voltage). In the other hand, methods using the
current and its harmonic component provide new and useful information for the
load composition estimation, particularly for differentiating devices with power
electronics. However, the harmonic current models are based on static analytical
equations that do not take into account voltage variations.

5.4 Self-disconnected load composition estimation:
A first approach

Inspired by the load estimation methods in the literature, we propose an ap-
proach based on two steps to estimate the composition of self-disconnected loads
due to voltage sags:

1. Load composition estimation after a voltage sag without impact

We first consider voltage sags without impact (no self-disconnected loads).

136



Chapter V: Impact of Voltage Sags

We select the load model structure as well as the load estimation method and
validate the approach to determine the load composition of the industrial site
when voltage sag occurs.

2. Load composition estimation after a voltage sag with impact

Once the load model and estimation method are validated in the first step,
we consider voltage sags with self-disconnected loads. For this, the load
model will be modified to include the voltage tolerance curves (VTC) of the
equipment in the industrial facility.

Figure 5.2: Two-step approach for load composition estimation after a voltage sag
with and without impact

The two-step approach is described in Fig. 5.2. However, we assume the
following hypotheses:

• All the industrial loads can be classified into one of the five categories de-
scribed in section 5.2. This first approach does not consider less frequent
loads such as arc furnaces.
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• We have access to a detailed list of the electrical equipment in the industrial
facilities and their characteristics, and therefore it is possible to model each
one of the existing devices. However, their operating cycles are unknown.

• The voltage tolerance curves (VTC) are known and are similar for all the
devices in the same category. In addition, the VTCs have a rectangular
shape with two parameters: Vmax and tmax.

• The voltage sags are caused by upstream line faults (balanced or unbalanced)
in a parallel line feeder.

5.4.1 Load modeling

To estimate the load composition of an industrial grid, we should have for
each load category an accurate model that is able to reproduce the behavior of
the group, before, during and after the voltage sag. Thus, we must use dynamic
models.

The use of models based on analytical equations requires setting the coefficients
beforehand. However, our goal is to estimate the weights corresponding to the load
composition. Therefore, dynamic analytical models, which can be very complex,
are not the best choice for our problem. Consequently, we select the simulation
software EMTP-RV to have access to more accurate physics-based models. Fig.
5.3 illustrates the approach.

Figure 5.3: Diagram of the load model used for the load composition estimation
during a voltage sag
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The voltage and current measurements during the sag are recorded by the
monitoring device in the actual industrial grid. Then, the three-phase voltages are
injected into the load models of EMTP-RV. Finally, the currents absorbed by each
load during voltage sags are collected and used by the load composition estimation
algorithm.

5.4.2 Load composition estimation

The proposed load composition estimation method is a measurement-based ap-
proach. The constrained least-squares algorithm is used to estimate, at the voltage
sag occurrence, the weighting coefficients that represent the load composition, at
first without load tripping.

The dynamic response of each load category to a voltage variation, such as a
voltage sag, is different. The first two equations of the load models should express
the relation between the total active (P) or reactive (Q) power variations during
a sag as the sum of the powers drawn by each load.

The harmonic content of power electronic devices such as ASD, three-phase
rectifiers, and energy-efficient lighting is an important characteristic. One may
intuitively think of the distortion power (D) as the third equation for load estima-
tion. However, it is important to note that harmonics vary both in amplitude and
phase. Therefore, the total distortion power (D) at the main feeder is not equal
to the algebraic sum of the distortion powers drawn by each load. Therefore, har-
monics can only be added in their complex form. We retain the fifth harmonic
current as a reference for the harmonic content. This harmonic is usually the
second component with the highest amplitude after the fundamental due to the
presence of six-pulse rectifiers in the loads with power electronics.

The load composition is obtained by the estimation of the weighting coefficients
that represent the different load categories. The equations are described in (5.5)
and (5.6), where the error estimate e = {eP , eQ, eI} is minimized. PX(t), QX(t)
and the real component of Ih5X(t) are the measurements per phase of length
L, with X = {A,B,C} obtained from by the monitoring device in the actual
industrial grid. P̂X(t), Q̂X(t) and ˆIh5X(t) are the load model’s estimates. They are
calculated by adding the individual response of each load defined as P̂i,X(t), Q̂i,X(t)

and ˆIh5i,X(t), multiplied by a weight coefficient αi,X . To ensure the proportionality
between the active power, reactive power and fifth harmonic current, the equations
are normalized with the nominal active power prior to the sag PX(0), P̂X(0) and
P̂i,X(0).
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eP =
L∑

t=0

[PX(t)− P̂X(t)]
2

eQ =
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2
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2

(5.5)
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Fig. 5.4 illustrates the measurement-based approach, where the objective is to
determine the weight coefficients that minimize the error e between the measure-
ments of the actual industrial grid y and the model estimates ŷ.

Figure 5.4: Measurement-based approach for load composition estimation

There are fifteen weighting coefficients to estimate for the five load categories
in three phases. However, except for lighting, all of the modeled loads are three-
phase loads. Thus, for these loads we can consider that: αi,A = αi,B = αi,C = αi,
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which reduces the number of variables to be estimated to seven, as described in
(5.7).

α =


α1,A α1,B α1,C

α2,A α2,B α2,C

α3,A α3,B α3,C

α4,A α4,B α4,C

α5,A α5,B α5,C

 =


α1 α1 α1

α2 α2 α2

α3 α3 α3

α4 α4 α4

α5,A α5,B α5,C

 (5.7)

The weight coefficients αi,X are defined in the range [0, 1], and their sum per
phase should be equal to one. However, to allow for a small margin error the sum
is constrained in the range [0.98, 1] to allow for a soft convergence of the algorithm.


0 ≤ αi,X ≤ 1

0.98 ≤
5∑

i=1

αi,X ≤ 1
(5.8)

5.4.3 Results

To evaluate this first approach while controlling the entire set of parameters, we
use EMTP to model a complete industrial grid that represents an actual industrial
grid. This model includes a section of the distribution grid, where a line fault is
simulated in a parallel feeder, causing a voltage sag with a magnitude of 78%
(remaining voltage) and a duration of 300 ms. The voltage and current waveforms
are registered at the main monitoring point, and the three-phase voltages are used
as input for the load model. The main goal is to estimate the load composition
of this network by exploiting the fifth harmonic current, the active and reactive
power registered during the voltage sag.

The load model is also modeled using EMTP. However, this model is a sim-
plified version of the industrial grid, as it does not include a distribution network
because the parameters and characteristics of the upstream grid are supposed to
be unknown. This model is used to obtain the response to a given voltage sag pro-
file for each load measured at the monitoring point. The injected voltages contain
harmonic distortion due to the presence of power electronic loads. However, no
additional upstream harmonic voltage source is considered at the busbar to model
the disturbances affecting the upstream network. Both models have the same five
load categories, which are described in Table 5.1.
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Table 5.1: Load composition estimation - Load description

Load ASD + motor Motor Resistive load Electronic load Lighting
Reference Power (kW) 22 44 15 15 6.5

Motor load (pu) 0.6 0.6 - - -
Active Power (kW) 13.4 34.8 15 15 6.5

Reactive Power (kVAR) 2.6 35.6 0 0.33 -0.25

We define thirteen case scenarios with different configurations of connected
loads, as presented in the table in Fig. 5.5a. The estimation errors on the weight
coefficients for each scenario and for each load type are presented in the table in
Fig. 5.5b. Estimation errors higher than 5% are highlighted in orange and those
higher than 10% in red.

The results for eight out of thirteen cases can be considered satisfactory, with
estimation errors of less than 5%. However, they are particularly high for five
cases, for which we found that the sum of the individual harmonic current wave-
forms measured in the load model was not equal to the total harmonic current
waveform measured at the monitoring point of the detailed model of the actual
industrial grid. This error is not caused by the least-squares algorithm, but by the
approximation made in the system of equations in (5.5). The system assumes that
the load models have little impact on the voltage at the measurement point, and
vise-versa. While it is the case for grids with a high level of short-circuit power,
this assumption is not verified in most real cases. Although the voltage at the
supply point has a limited impact on the active (P) and reactive (Q) operation
point, the impact on the harmonic components can be significant because of the
harmonic interactions between loads [152].

Although partial harmonic cancellation between loads due to harmonic phase
angle difference is considered when using the current waveform, the presence of
multiple power electronic devices has an influence on the harmonic profile in mag-
nitude and phase angle of the individual loads. Therefore, the responses provided
by the load model are different from those obtained in the model of the complete
industrial grid.

To the best of our knowledge and to this date, there are no other proposals
for self-disconnected load composition estimation considering industrial loads to
which we can compare our results.
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(a)

(b)

Figure 5.5: (a) Description of cases with different configurations of connected loads
and (b) estimation errors per case and per load
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5.4.4 Discussion, challenges, and perspectives

There are several challenges to address in order to develop an efficient algorithm
for the estimation of load composition during a voltage sag, with and without load
self-disconnection:

• Harmonic interaction between loads. As discussed in the previous sec-
tion, harmonic interactions cause significant errors in the estimation of load
composition if the total fifth harmonic current is assumed to be a simple
superposition of the individual harmonic responses of the loads. Indeed, the
presence of multiple non-linear loads modifies the voltage harmonic content
and thus their harmonic profile, compared to when they are measured sepa-
rately. However, the harmonic content of the power electronic devices pro-
vides essential information to differentiate these load categories from the oth-
ers. Therefore, other estimation methods different than least-squares should
be explored to better handle the non-linear coupling of harmonics.

• Influence of the supply equivalent impedance. The obtained results
showed the limits of this first approach. Although the load model allows the
injection of a voltage sag profile including harmonic distortion due to the
presence of power electronic loads in the industrial grid, it fails to reproduce
the harmonic behavior of the loads when measured individually. This could
be explained by the absence of an equivalent impedance corresponding to
the upstream distribution network, whose introduction in the load modeling
could improve the estimation results. Unfortunately, the current version
of EMTP does not allow the injection of a specific voltage profile and the
inclusion of an equivalent system impedance at the same time.

• Diversity of power electronics architecture. One of the hypotheses
used in this first approach was the capacity to accurately model the indus-
trial equipment. However, for several devices, it is a real challenge to find
information on their actual parameters, such as the electrical parameters of
induction motors or the internal parameters of the power electronic devices,
which are rarely provided by the manufacturers. Moreover, a sensitivity anal-
ysis for each load category should be performed as well, since the variation of
some parameters may significantly affect the responses, particularly in terms
of harmonic distortion. Estimation methods such as stochastic optimization
techniques for model parameters under uncertainties could be considered.
The load models could also be improved with the introduction of filters or
compensation modules.
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• Load aggregation. Modeling each device within the load categories in an
industrial site would be tedious and complex to achieve in reality. Therefore,
load aggregation techniques should be explored to reduce the total number of
electrical devices into a single equivalent load model representing each load
category. Some techniques have been proposed in the literature, particularly
for the aggregation of induction motors [153, 154, 155, 156].

• Accurate voltage tolerance curves. We have also assumed in this first
approach that the voltage tolerance curves (VTC) have a perfectly rectan-
gular shape. In reality, their shape are different, and vary according to the
device’s characteristics, even within the same load category [33, 157, 32].
An improvement would be to integrate this diversity of VTCs and take into
account their uncertainty for sensitive equipment with probability density
functions, as it was proposed by Milanovic et. al in [158].

5.5 Conclusion

Voltage sags can cause load tripping, depending on the severity of the sag
and the sensitivity of industrial equipment involved in a process. It is of great
interest to provide as much information as possible about the impact of a sag on
the affected loads. This issue motivated the study of a methodology to estimate
the self-disconnected load composition after the occurrence of a voltage sag.

Load composition estimation is one application of a broader domain called
load estimation. Thus, we introduced a brief literature review on some of the most
common methods for load estimation, including load modeling and parameter
estimation. However, for load composition estimation, it is generally advised to
use dynamic and physics-based models as they provide a more accurate response.
Models based on analytical equations are not adapted for this task as the loads
are aggregated into a single model regardless of their category. Similarly, static
models are not well-adapted as it is the dynamic response during voltage sags that
contains the most relevant information for differentiating the load categories. In
general, there are fewer methods dedicated to the estimation of load composition
than for stability analysis or consumption forecasting. Moreover, to the best of
our knowledge, there are no other proposals in the literature that study the self-
disconnected load composition estimation after a voltage sag. This represents an
opportunity to provide new solutions in the domain of voltage sag impact analysis.

Inspired by the load estimation techniques found in the literature, we proposed
an approach in which we first estimate the load composition of an industrial site
during a voltage sag without impact, before investigating the case of voltage sags
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with load self-disconnection. The results, even promising, showed some limita-
tions of the method, particularly in terms of harmonic interactions between loads.
Finally, we made several proposals to improve the load composition estimation
method.
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The growing concern with power quality disturbances has increased these recent
years due to the introduction of more sensitive and polluting power electronics
devices at different levels of the electrical system. For our research, we focused on
voltage sags, as they are the most frequent and impactful disturbances in industrial
power grids. The financial losses linked to voltage sags are particularly high.
Understanding their causes and estimating their impact are two key steps toward
the implementation of adapted and cost-effective mitigation solutions.

Voltage sags are characterized in terms of amplitude, duration, phase-angle
jump, and point-on-wave. The main events causing voltage sags are: line faults
(balanced or unbalanced), transformer energizing, and direct motor startup. These
events can take place either upstream or downstream of the monitoring point.

The core of this thesis work is dedicated to the classification of voltage sag
causes and their relative location to the monitoring point. Although there is a
large variety of solutions achieving high accuracy (up to 99%) for the classification
of voltage sag causes, these methods encounter some limitations that prevent their
application in a real industrial context, such as the requirement of large amounts of
training data, low interpretability of the decision-making process and poor or un-
evaluated generalization capabilities across different data sources. Our objective
was to propose a solution that achieves such accuracy levels while addressing these
limitations.

We developed a classification algorithm based on multivariate time series sig-
natures. The methodology follows a four-stage scheme: data acquisition, pre-
processing, feature extraction, and feature analysis. It uses voltage and current
waveforms as input to identify the causes of voltage sags in LV industrial grids
among seven classes. The solution is based on four-dimension time series sig-
natures, obtained through the application of the Short-Time Fourier Transform
(STFT) and the Fortescue Transform. The identification stage is achieved through
a distance-based classification approach referred as Nearest Neighborhood classifi-
cation. Thus, the identification of a new and unknown voltage sag is achieved by
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comparing it to a reference signature database previously constituted. For this, we
use a custom distance measure based on the dependent Dynamic Time Warping
algorithm (DTWD).

In addition, two methods for the distance-to-class calculation were proposed
and compared. The most effective is based on soft-Dynamic Time Warping (soft-
DTW), that is used to reduce the reference signature database into representative
centroids, and in consequence significantly decreases the total computation time.

The performance of the method was analyzed in terms of class separability,
prediction efficiency (accuracy and robustness to noise), and sensitivity to fun-
damental frequency variations. The results proved that the proposal is resilient
regarding noise levels up to a SNR = 15 dB and fundamental frequency variations
up to a shifting value ϵ = ±0.5Hz. Moreover, two confidence indexes (NB-KDE
and RD index) were proposed and compared. The RD-index proved to be signifi-
cantly more robust and stable. The information provided by this index increases
the reliability of the classification process by alerting when predictions with low
confidence scores are obtained and the intervention of a human expert is required,
while maintaining a high degree of automation in the analysis.

Finally, the generalization capabilities of the algorithm with different data
sources were evaluated using different combinations of "training" and testing data:
synthetic-synthetic, real-real, synthetic-real and real-synthetic. The results were
satisfactory in the four cases. The results when using a purely synthetic reference
database were particularly interesting. The algorithm achieved a F1-score of 100%
for the seven classes when tested on synthetic data, and a F1-score higher than 99%
for the five classes existing in the database when tested with field measurement
data from three different industrial sites.

In summary, the main advantages of the proposed algorithm are:

1. The reduced amount of data necessary to build the signature database (20
samples per class).

2. The possibility to constitute the signature reference database using 100%
synthetic data.

3. Good generalization capabilities when implemented with field data, even if
this is collected from different industrial sites.

4. Electrical interpretability of the signatures and the decision-making process.
5. Provision of a confidence index associated with the prediction.

The first three characteristics make the algorithm easy to implement in real
industrial applications with no previous recorded data. The system can be de-
veloped in factory using 100% synthetic data and be directly deployed in actual
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industrial sites without additional training. The last two characteristics make
the troubleshooting process easier and increase the general interpretability of the
decision-making process, which is a requirement from industrial customers for re-
liability issues.

The fifth chapter focused on the impact analysis of voltage sags and, more
specifically, on a methodology to estimate the self-disconnected load composition
following a voltage sag. We presented a brief literature review of some of the most
common methods for load estimation, including load modeling and parameter es-
timation methods. Most of the load estimation methods are developed for voltage
stability analysis and load consumption estimation studies. The models used for
these studies aim to reproduce the electrical response of aggregated loads, regard-
less of their individual responses. Other approaches using individual load models
do not consider the devices’ dynamic behavior, which is crucial for our analysis.
Thus, the large majority of the methods in the literature were not adapted for the
estimation of load composition.

Therefore, we proposed a first and simplified approach for this analysis. We
first estimate the load composition of an industrial site for a voltage sag without
impact before investigating the case of voltage sags with self-load disconnection.
The results, even promising, showed some limitations, particularly in terms of
harmonic interaction among the loads. Finally, we discussed some of the limits of
this first approach and made several proposals to improve the load composition
estimation providing guidelines for future work.

Perspectives

• Concerning the classification of voltage sag causes

The algorithm should be implemented on data collected from new industrial
sites for longer periods of time to validate its effectiveness with field data on classes
B1 (downstream balanced faults) and C2 (downstream transformer energizing),
which where not available in the field dataset used for testing. A larger dataset
could also be helpful to validate the method’s performance with class C1 (upstream
transformer energizing), which had less than 10 events for testing.

The methodology could also be improved to avoid classification errors in the
case of voltage sags of very short duration (inferior to 30 ms), which have a risk of
a peak overlap in the third ISC of their signature. Currently, these errors can be
identified thanks to the confidence index. However, improvements in the feature
extraction or the spatio-temporal alignment steps could be investigated.
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The voltage sag cause classification algorithm is a ready-to-implement solution
for low voltage (LV) sites. Nonetheless, the approach is scalable and could be
extended to include new classes such as voltage sags caused by multiple faults. For
instance, the algorithm could be adapted for medium voltage (MV) sites (industrial
or tertiary). In MV grids, faults can cause voltage swells and a specific type of
voltage sag due to single line-to-ground faults on compensated grounding systems.
Preliminary observations let us think that the distinctive characteristics of these
signatures should easily allow their correct identification.

Moreover, the time series classification approach presented in this PhD disser-
tation offers new ways to analyze short-term power quality disturbances compared
to proposals in the literature. Using the entire time series reduces the risk of
information loss due to the extraction of scalar features. If adequate and rele-
vant transformations are applied, only the most meaningful characteristics of the
electrical waveforms are extracted. Physically interpretable features should be
preferred, since understanding their electrical behavior provides certain guaran-
tees and reduces the amount of data necessary for the algorithm’s development.
In consequence, the classification stage can be significantly simplified. The trans-
formations or number of harmonics considered in the feature extraction stage can
be adapted to each case study, and the dimensions of the time series can be in-
creased if necessary. The class separability analysis for the time series signatures
proposed in this work may also be used to validate the new feature extraction
process.

• Concerning the self-disconnected load composition estimation

To overcome some of the limitations of the load model, other machine learning
techniques such as ANNs or DNNs could be explored. Indeed, these methods allow
more flexibility to model the harmonic interactions between loads and to obtain
an electrical response that also considers the short-circuit power and upstream
system equivalent impedance.

Machine learning or stochastic optimization techniques could also be imple-
mented for the parameter estimation stage. These methods would allow to inte-
grate uncertainties in the electrical/mechanical parameters of the loads, due to the
large diversity of equipment characteristics within the considered load categories.

Load aggregation techniques should be explored to reduce a group of electrical
devices into a single equivalent load model representing each load category. There
are some proposals in the literature, particularly for the aggregation of induction
motors [153, 154, 155, 156]. Finally, more realistic representations of the VTCs
should be investigated, for instance, with probability density functions as proposed
in [158].
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L’augmentation de la consommation d’électricité, les nouveaux usages et la
nécessité de préserver l’environnement sont à l’origine de la transition énergé-
tique. Cette transition modifie profondément les réseaux électriques avec une
plus grande pénétration des énergies renouvelables dans le mix énergétique, à la
fois associée à des interfaces d’électronique de puissance et à la digitalisation du
contrôle-commande [5, 6]. Les flux d’énergie deviennent multidirectionnels et né-
cessitent une gestion plus intelligente pour répondre aux exigences techniques en
termes de disponibilité, fiabilité, sécurité et qualité de l’alimentation électrique.

L’analyse de la qualité d’électricité est ainsi devenue une préoccupation en
forte hausse pour les fournisseurs d’énergie de même que pour leurs clients au
cours des dernières années. Un approvisionnement énergétique fiable garantit le
fonctionnement optimal des équipements électriques du réseau, alors qu’une mau-
vaise qualité d’électricité peut avoir comme conséquence l’interruption des lignes
de production ou des services, le dysfonctionnement des équipements, et leur en-
dommagement allant jusqu’à la casse. Les pertes financières associées peuvent
être importantes [7] pour les industriels et les grands clients tertiaires tels que des
hôpitaux, des datacenters, etc. Ainsi, identifier l’origine des perturbations de la
qualité de l’énergie et évaluer leurs effets sur les équipements industriels est essen-
tiel pour identifier et proposer des solutions palliatives qui soient à la fois adaptées
et rentables, afin de réduire l’impact sur la productivité du site.

Aujourd’hui, l’analyse des perturbations de la qualité d’électricité est le plus
souvent réalisée par des experts du domaine. Elle nécessite un haut niveau de
connaissances et d’expertise pour établir un diagnostic fiable, et proposer des so-
lutions pertinentes. Cependant, ce processus est très chronophage et nécessite une
intervention spécifique sur site pour l’acquisition des données. De plus, certaines
perturbations électriques sont rares en termes de localisation et de fréquence. Leur
enregistrement peut donc prolonger encore l’étape d’acquisition des données. Des
dispositifs de surveillance tels que des qualimètres peuvent alors être placés en
permanence pour faire face à ce problème. Néanmoins, le traitement et l’analyse
de grandes quantités de données peuvent également prendre un temps conséquent.
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De ce fait, ce travail de recherche vise à développer un système intelligent
d’analyse des perturbations en traitant les mesures électriques (tension et courant
triphasés) provenant d’un seul dispositif de mesure placé au point d’alimentation
électrique principal d’un site industriel ou tertiaire.

Parmi les principales perturbations affectant les réseaux industriels, les creux
de tension sont les plus fréquents et les plus impactants [8, 9, 10], car ils peuvent
provoquer le dysfonctionnement de certains équipements ainsi que l’arrêt intem-
pestif des processus industriels. Pour ces raisons, nous nous sommes focalisés
sur cette type de perturbation. L’analyse des creux de tension s’effectue en deux
étapes: classification de sources de creux de tension et analyse de leur
impact sur les équipements industriels.

Cependant, il y a un certain nombre de défis à rélever afin de développer une
telle méthodologie. Parmi les plus importants nous pouvons noter :

• L’accès à un unique point de mesure au niveau du point de raccordement
principal du site. L’objectif du système de diagnostic est d’être le moins in-
trusif possible, avec des données collectées à partir d’un seul point de mesure.

• Le manque d’informations sur la topologie du réseau industriel (interne) ainsi
que sur les équipements industriels en aval du point de mesure.

• La diversité des appareils électriques, avec différents niveaux de sensibil-
ité aux creux de tension. La tolérance aux creux de tension dépend non
seulement des caractéristiques des creux, mais aussi des caractéristiques de
l’équipement industriel. Le développement d’un système capable de s’adapter
à cette diversité d’équipements répresente un vrai défi.

Dans le Chapitre I, nous présentons le contexte électrique nécessaire à la
compréhension et au développement de méthodes d’analyse automatique des per-
turbations électriques. Une attention particulière est portée aux creux de tension.
Après la caractérisation des creux de tension en termes d’amplitude, de durée, de
saut de phase et de point sur l’onde, nous abordons leurs principales causes: dé-
fauts de ligne, enclenchement de transformateurs et démarrage direct de moteurs
asynchrones. De la même manière, nous décrivons les principaux effets et con-
séquences des creux de tension sur les équipements industriels les plus sensibles:
moteurs à induction, variateurs de vitesse, ordinateurs et PLC, contacteurs AC et
lampes à décharge. Les principales causes et conséquences de la distorsion har-
monique sont également abordés. La Figure 1 présente un schéma simplifé d’un
réseau électrique industriel en basse tension (BT).
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Figure 1: Schéma simplifié d’un réseau électrique industriel en BT.

Dans le Chapitre II, une étude bibliographique dans le domaine de l’analyse
de la qualité d’électricité est présentée, avec un focus sur la classification de per-
turbations. Nous présentons ensuite un comparatif entre les différentes méthodes
dans la littérature pour la classification des causes creux de tension. Bien que la
précision de classification globale des méthodes soit élevée (entre 92% et 100%),
nous avons identifié certaines de leurs principales limitations, afin de les pren-
dre en compte dans le développement de notre solution, parmi lesquelles les plus
importantes sont :

• La nécessité d’avoir accès à d’importantes quantités de données pour le
développement des algorithmes, notamment dû à l’utilisation des méthodes
statistiques pour la grande majorité des solutions dans la litérature. Ces
méthodes sont fortement dépendantes de données d’entraînement. L’accès à
ces données étant difficile, la quantité minimale requise doit être limitée.

• Les capacités de généralisation de ces algorithmes ne sont pas fournies car
elles ne sont souvent pas évaluées. Ces méthodes sont entraînées partielle-
ment ou entièrement avec des données obtenues à partir de la même source
que les données de test. Cette approche n’est pas toujours réalisable lors
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du déploiement industriel. D’une part car les données réelles sont diffi-
ciles à obtenir en amont, et d’une autre part car les utilisateurs finaux ne
sont pas toujours en capacité de ré-entraîner les algorithmes eux-mêmes avec
leurs propres données lors du déploiement. Ainsi, la méthodologie doit être
généralisable et évolutive pour être appliquée dans différents sites industriels.
Idéalement, elle devrait être entièrement entraînée sur des données synthé-
tiques préalablement à son déploiement.

• La plupart des indicateurs extraits ou features ne sont pas facilement in-
terprétables du point de vue électrique. Les algorithmes interprétables sont
préférables pour des questions d’acceptabilité et de fiabilité, ainsi que pour
l’analyse des erreurs de classification. L’algorithme à développer doit ainsi
intégrer des connaissances théoriques dans le domaine du génie électrique
afin de séléctionner des indicateurs physiques pertinents.

• L’extraction d’indicateurs scalaires à partir de signaux non-stationnaires
comporte un risque de perte d’information, puisque la dépendance temporelle
des formes d’ondes électriques n’est pas prise en compte. Des méthodes al-
ternatives d’extraction d’indicateurs doivent être étudiées afin de prendre en
compte cet aspect.

• Peu de méthodes proposent une approche combinant classification et local-
isation. La localisation relative des perturbations est essentielle pour les
clients industriels, et il convient de l’aborder également.

Notre objectif est de proposer une solution qui atteigne de tels standards, mais
qui en même temps traite les limitations mentionnées ci-dessus. Nous tenons en
compte également que l’algorithme à développer a comme finalité d’être deployé
et commercialisé. Sa mise en œuvre se doit donc d’être réaliste d’un point de vue
industriel.

Dans le Chapitre III, nous présentons une nouvelle méthodologie de classifi-
cation des causes des creux de tension. Les sept classes définies sont les suivantes :
défaut amont équilibré, défaut amont déséquilibré, défaut aval équlibré, défaut aval
déséquilibré, enclenchement transformateur amont, enclenchement transformateur
aval et démarage moteur aval. La solution proposée est basée sur l’extraction
d’indicateurs interprétables, intégrant des connaissances expert. Ces indicateurs
sont des signatures de séries temporelles multivariées qui, comparées aux indi-
cateurs scalaires, présentent un risque plus faible de perte d’information. En-
suite, nous proposons une approche par classification des séries temporelles pour
classer les signatures. Bien que cette méthode soit basée sur une base de don-
nées d’entraîenement (référence), nous démontrons par la suite que la quantité de
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données requise pour le développement de la solution est bien inférieure à celle
des autres approches de la littérature. En outre, nous nous assurons que les don-
nées requises soient accessibles par simulation et que l’algorithme développé soit
capable de fonctionner efficacement dans différents types de réseaux industriels.
Comme illustré sur la Figure 2, la méthode est composée de quatre étapes:

Figure 2: Schéma global de l’algorithme avec deux modes de fonctionnement:
constitution de la base de données et classification d’un nouveau creux de tension.
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1. Acquisition de données. Deux sources de données sont à disposition : des
données de simulation numérique (synthétiques) et des mesures réelles sur le
terrain. Pour la génération des données synthétiques, un modèle de réseau
industriel est développé sur le logiciel EMTP.

2. Prétraitement. Cette étape assure l’uniformité des données en termes de
longueur et de fréquence d’échantillonnage. Il permet également de filtrer
les creux de tension incomplets.

3. Extraction d’indicateurs. Les formes d’onde de tension et de courant sont
transformés, et des signatures sous la forme de séries temporelles quadridi-
mensionnelles sont extraites par l’application de la transformée de Fourier
à court terme (STFT) et de la transformée de Fortescue. L’interprétabilité
électrique de ces signatures est essentielle car elle permet de comprendre
la prise de décision de l’algorithme, ce qui constitue un avantage par rap-
port aux autres méthodes dans la littérature. La description de signatures
appartenant aux sept classes définies sont également présentées en détail.

4. Analyse d’indicateurs. Nous avons défini une mesure de distance pour
comparer les séries temporelles multivariées. Un alignement spatio-temporel
est réalisé au préalable en se servant de l’algorithme Dynamic Time Warp-
ing (DTW), comme illustré sur la Figure 3. Puis, une stratégie basée sur la
distance entre signatures multivariées est utilisée afin d’effectuer la classifi-
cation. Il s’agit d’une version améliorée de l’algorithme 1NN-DTW, dont les
principaux inconvénients sont la sensibilité aux valeurs aberrantes et un coût
calculatoire trop élevé. Nous proposons donc un classificateur de type Near-
est Neighborhood qui, au lieu de sélectionner le voisin le plus proche pour la
classification d’une nouvelle signature, sélectionne la classe la plus proche.
Le calcul de la distance d’une nouvelle signature à une classe particulière
peut être obtenu : en estimant la valeur moyenne de la distance à toutes les
signatures de la classe (mean distance with bootstrapping), ou en estimant
la distance aux centroïdes des classes (centroid estimation with soft-DTW ).
Enfin, nous proposons de calculer deux indices de confiance associés à la
prédiction.
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Figure 3: Alignement spatio-temporel entre deux signatures appartenant à la
même classe.

Le Chapitre IV est dédié à l’analyse de performances de l’algorithme en
termes de séparabilité des classes, de robustesse au bruit et de variations de la
fréquence fondamentale pour classer les causes des creux de tension. Deux méth-
odes d’estimation de la distance à la classe ont été comparées, de même que deux
méthodes de calcul de l’indice de confiance sur la prédiction. L’indice de confi-
ance RD a donc été retenu comme solution et nous avons mis en évidence que
son utilisation permettait d’anticiper des possibles erreurs de classification en aler-
tant l’utilisateur quand des événements sont classés avec un indice de confiance en
dessous d’un seuil minimum (établi à 60%), comme illustré sur la Figure 4.

Figure 4: Analyse d’erreurs de classification en utilisant l’indice RD, où 5 événe-
ments déclenchent une alerte en raison d’un faible indice de confiance, et dont
deux correspondent à des erreurs de classification.
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Les résultats prouvent que la méthode est résiliente face à des niveaux de bruit
allant jusqu’à un niveau SNR = 15 dB et des variations de fréquence fondamentale
jusqu’à ϵ = ±0, 5 Hz. L’algorithme a été évalué sur de données croisées, synthé-
tiques et réelles, montrant de très bonnes capacités de généralisation. L’algorithme
atteint un F1-score de 100% sur les sept classes définies avec une base de données
synthétique réduite (140 événements) lorsqu’il a été testé sur des données syn-
thétiques. Cependant, les résultats les plus intéressans ont été obtenus avec une
base de données de signatures synthétiques lors de l’entraînement et appliqué à
des données de terrain provenant de trois sites industriels différents pour la partie
test. L’algorithme atteint ici un F1-score de 99,32% pour cinq des sept classes
définies.

Le Chapitre V traite sur l’analyse de l’impact des creux de tension et, plus
particulièrement, sur une méthodologie permettant d’estimer la composition de
la charge auto-déconnectée suite au creux. La déconnexion de charges étant en
fonction de la gravité du creux et de la sensibilité des équipements industriels.

Il est important de souligner qu’à notre connaissance, il n’existe pas à ce jour
de propositions dans la littérature qui étudient l’estimation de la composition de
la charge auto-déconnectée après un creux de tension. Pour cette raison, nous
présentons une brève étude bibliographique sur un sujet plus large qui est celui de
l’estimation de la charge ou load estimation en anglais.

A partir de cette étude, nous proposons une approche dans laquelle nous esti-
mons d’abord la composition de la charge d’un site industriel lors d’un creux de
tension sans impact, avant d’étudier le cas avec un creux de tension causant la
déconnexion des charges. Les résultats, même prometteurs, ont montré certaines
limites de la méthode, notamment en termes d’interactions harmoniques entre les
charges. Finalement, nous préconisons plusieurs propositions pour améliorer la
méthode.

En conclusion, l’essentiel de ce travail de thèse est consacré à la classification
des causes de creux de tension et à leur localisation relative par rapport au point
de mesure. Bien qu’il existe une grande variété de solutions permettant d’atteindre
une précision élevée (entre 92% et 100%) pour la classification des causes de creux
de tension, ces méthodes rencontrent certaines limitations qui empêchent leur ap-
plication dans un contexte industriel réel, telles que la nécessité d’un accès à de
grandes quantités de données d’entraînement, la faible interprétabilité du proces-
sus de prise de décision, et des capacités de généralisation faibles ou non évaluées
sur différentes sources de données. Notre objectif était de proposer une solution
permettant d’atteindre des niveaux de précision équivalents ou supérieurs, tout en
surmontant ces limitations.
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Ainsi, un algorithme de classification basé sur des signatures de séries tem-
porelles multivariées a été développé. La méthodologie suit un schéma en quatre
étapes afin d’identifier les causes de creux de tension dans les réseaux industriels
BT parmi les sept classes définies. Les principaux avantages de cette méthodologie
sont :

• La quantité réduite de données nécessaires pour construire la base de données
de signatures de référence, qui peut être entièrement composée de données
synthétiques.

• La fourniture d’un indice de confiance associé à la prédiction.

• L’interprétabilité électrique des signatures et le processus de décision.

• La robustesse aux niveaux de bruit jusqu’à un SNR = 15 dB et aux variations
de la fréquence fondamentale jusqu’à ±0.5Hz.

• Ses bonnes capacités de généralisation lorsque l’algorithme est appliqué sur
de données de terrain réelles, même pour des sites industriels différents.

Les trois premières caractéristiques rendent l’algorithme facile à mettre en œu-
vre dans des applications industrielles réelles. Le système peut être développé en
amont en utilisant 100% de données synthétiques et être directement déployé sur
des sites industriels réels. Les deux dernières caractéristiques facilitent le processus
d’analyse d’erreurs et augmentent l’interprétabilité générale de la solution.

La deuxième partie de la thèse a été consacrée à l’analyse de l’impact des creux
de tension et, plus précisément, à une méthodologie d’estimation de la composition
de la charge auto-déconnectée suite à un creux de tension. Une première approche
pour cette analyse a été proposée. Nous avons d’abord estimé la composition
de la charge d’un site industriel pour une chute de tension sans impact avant
d’étudier le cas des chutes de tension avec déconnexion de charges. Les résultats,
même prometteurs, ont montré certaines limites, notamment lorsqu’il existe de
l’interaction harmonique entre équipements. Enfin, nous avons analysé les limites
de cette première approche et nous avons fait plusieurs propositions pour améliorer
la méthode en fournissant des pistes pour de travaux futurs.

En ce qui concerne les perspectives elles peuvent être envisagées dans les deux
directions suivantes :

• Concernant la classification des causes des creux de tension
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1. L’algorithme peut être appliqué sur des données provenant de nouveaux sites
industriels pendant des périodes plus longues afin de valider son efficacité sur
les deux classes manquantes.

2. La méthodologie pourrait également être améliorée pour éviter les erreurs de
classification dans le cas de creux de tension de très courte durée (inférieures
à 30 ms), qui présentent un risque d’erreur de classification.

3. L’approche étant évolutive, elle pourrait être étendue pour inclure de nou-
velles classes telles que les creux de tension causés par des défauts évolutifs.

De plus, l’approche par classification des séries temporelles présentée dans ces
travaux offre de nouvelles façons d’analyser les perturbations électriques court-
terme par rapport aux méthodes dans la littérature. L’utilisation intégrale des
séries temporelles permettant de réduire le risque de perte d’information due à
l’extraction d’indicateurs scalaires.

• Concernant l’estimation de la composition des charges auto-déconnectées
suite à un creux de tension

1. Pour surmonter certaines des limites du modèle de charge, d’autres tech-
niques d’apprentissage automatique telles que les ANN ou les DNN pour-
raient être explorées. En effet, ces méthodes offrent plus de flexibilité pour
modéliser les interactions harmoniques entre les charges. Il faudrait égale-
ment utiliser des modèles qui tiennent compte de la puissance de court-circuit
et de l’impédance équivalente du réseau amont.

2. Des techniques d’apprentissage automatique ou d’optimisation stochastique
pourraient être mises en œuvre pour l’étape d’estimation de paramètres.
Ces méthodes permettraient d’intégrer les incertitudes des paramètres élec-
triques/mécaniques de charges, dues à la grande diversité d’équipements au
sein des catégories de charges considérées.

3. Il conviendrait aussi d’explorer les techniques d’agrégation des charges. Pour
ceci, il existe quelques propositions dans la littérature, notamment pour
l’agrégation des moteurs à induction [153, 154, 155, 156].

4. Finalement, des représentations plus réalistes des courbes de tolérance VTC
devraient être étudiées, par exemple, avec des fonctions de densité de prob-
abilité comme proposé dans [158].
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