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RESUME 

Les grandes algues brunes sont des espèces clés dans les écosystèmes marins des latitudes 

tempérées où elles forment les forêts marines, parmi les écosystèmes les plus productifs et 

diversifiés au monde. En Méditerranée, elles sont représentées par les espèces du genre Cystoseira 

sensu lato, pour la plupart endémiques et caractérisées par leur longue durée de vie et faible 

dispersion. Cependant, les impacts anthropogéniques causent leur régression, entrainant des 

changements abruptes vers des communautés moins complexes (communautés gazonnantes et 

déserts marins), rendant l’écosystème potentiellement plus vulnérable aux phénomènes émergents, 

tels que les efflorescences de microalgues benthiques nuisibles. Les efflorescences de dinoflagellés 

benthiques du genre Ostreopsis, se développant sur les communautés macroalgales ont augmenté 

au cours des dernières décennies dans les régions tempérées, y compris la Méditerranée. Elles sont 

connues pour leurs effets néfastes sur la santé publique, les écosystèmes et l’économie qui en 

dépend.  

Les objectifs de cette thèse sont d’évaluer (i) les causes abiotiques (température et acidification) et 

biotiques (herbivorie, facilitation écologique) potentiellement à l’origine de la régression des forêts 

marines Méditerranéennes, et (ii) les éventuelles conséquences de cette régression dans la 

facilitation des efflorescences d’Ostreopsis spp. Les deux premiers chapitres de cette thèse sont 

focalisés sur les causes de la régression de Cystoseira s.l. Dans le Chapitre 1, les effets du 

changement climatique et de la facilitation écologique sur le recrutement de Cystoseira compressa 

ont été étudiées par des expériences en laboratoire. Un effet interactif du réchauffement et de 

l’acidification de l’océan, qui affecte négativement les recrues de C. compressa, a été observé, ainsi 

qu’un effet négatif de la présence d’algues corallines incrustantes. Dans le Chapitre 2, la pression 

herbivore de différents invertébrés sur les recrues de C. compressa a été étudiée par des expériences 

sur le terrain et en laboratoire. Les résultats montrent une forte pression herbivore de plusieurs 

espèces d’invertébrés (mollusques, décapodes et isopodes) sur les recrues de C. compressa, qui 

pourraient représenter une menace pour les populations à long terme et une cause d’insuccès des 

actions de restauration. 

Les chapitres 3 et 4 se focalisent sur le lien entre la perte de forêts marines et les efflorescences 

d’Ostreopsis spp. Dans le Chapitre 3, une revue bibliographique s’intéresse au rôle de l’habitat dans 

la facilitation/régulation des efflorescences. Malgré un évident manque d’informations à l’échelle 

globale sur les méso- et macrohabitat plus propices aux efflorescences, les connaissances actuelles 

démontrent que les substrats les plus échantillonnés pour étudier ces espèces sont des macroalgues 

formant des communautés peu complexes, suggérant que ces communautés hébergent les 

efflorescences les plus importantes. Dans le Chapitre 4, la relation entre les efflorescences 

d’Ostreopsis et les communautés macroalgales a été étudiée par des expériences sur le terrain en 
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Italie et en France. Des différences significatives ont été observées sur un des deux sites d’étude 

tandis que dans le deuxième on estime que la forte variabilité puisse avoir caché les éventuelles 

préférences d'Ostreopsis spp. Mais, des études à plus grande échelle seraient nécessaires pour 

conforter ces résultats. 

Les résultats de cette thèse représentent d’importantes avancées sur les causes et les effets de la 

régression des forêts de Cystoseira s.l., confortant l’importance de leur conservation et (où 

nécessaire) restauration, en contribuant à la conception de stratégies de gestion, non seulement pour 

préserver un des écosystèmes les plus productifs en Méditerranée, mais aussi dans le but de limiter 

d’éventuelles conséquences inattendues, telles que les efflorescences d’Ostreopsis spp. 

Mots clé : forêts marines, Cystoseira compressa, communautés de macroalgues, réchauffement des 

océans, acidification des océans, changement climatique, changements de régime, efflorescences 

algales nuisibles, dinoflagellés benthiques, Ostreopsis 
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ABSTRACT 

Large brown forest-forming macroalgae are dominant foundation species, ecosystem engineers of 

marine macroalgal forests. In the Mediterranean Sea, they are mainly represented by Cystoseira 

sensu lato spp. most of wich are endemic. They are also characterized for being long-lived species 

with short dispersal of the zygotes. Marine forests are one of the most productive and diverse 

ecosystems on earth. However, anthropogenic impacts are pushing them to the edge, causing regime 

shifts towards less complex communities such as shrubs, turfs, or even barren grounds. Marine 

forest loss affects the whole ecosystem, eventually making it more vulnerable to emergent 

phenomena such as benthic harmful algal blooms (BHABs). BHAB of the genus Ostreopsis spp. 

have been expanding in recent decades through temperate regions such as the Mediterranean Sea, 

where they have important public health, ecological and economic consequences. Major blooms 

are generally observed on macroalgal turfs and shrubs, suggesting that less structurally complex 

macroalgal communities could have an active role in promoting the proliferation of blooms.  

The main objectives of this thesis are (i) to assess some abiotic (climate change) and biotic 

(herbivory) causes of marine forests loss in the Mediterranean Sea and (ii) the potential 

consequences this loss can have in the context of BHABs proliferation. In the first two chapters, 

the causes of Cystoseira s.l. spp. loss were assessed. In Chapter 1, the effects of climate change and 

species facilitation on the recruitment of Cystoseira compressa were studied in controlled 

laboratory experiments. The major results from this chapter show that the interactive effects of 

ocean warming and acidification negatively affect C. compressa recruits, which are also negatively 

affected by the presence of crustose coralline algae. In Chapter 2 the grazing pressure and the effects 

of different invertebrates on recruits of C. compressa were assessed through field surveys and both 

field and laboratory-based experiments. The results obtained show a high grazing rate of several 

common invertebrate species (molluscs, decapods et isopods) on recruits of C. compressa, 

representing a threat to natural populations in the long term, but also affecting the success of 

restoration actions.  

In chapters 3 and 4 the consequences of forest loss and in particular, the facilitation of Ostreopsis 

spp. blooms was approached by a literature review and field experiments. The review, reported in 

Chapter 3, focussed on the role of habitat in the facilitation of Ostreopsis spp. blooms. Despite an 

evident lack of information at the global scale on the meso- and macrohabitat fostering Ostreopsis 

spp. blooms, the present knowledge suggests a relationship between the abundance of Ostreopsis 

spp. and the complexity of the macroalgal communities. In Chapter 4 Ostreopsis spp. blooms have 

been studied in relation to macroalgal communities in field experiments in Italy and in France. A 

high variability on Ostreopsis spp. abundances was observed in the different macroalgal species 
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and communities sampled, in some cases likely hiding other potential patterns of Ostreopsis spp. 

preferences. Larger scale studies would be needed to confirm these results. 

These findings provide important insights into the causes and effects of Cystoseira s.l. spp. loss and 

are of major interest for the conservation of Mediterranean marine forests, contributing to the 

development of effective management measures. The results presented support the importance of 

marine forests restoration in the Mediterranean Sea, as recommended by the 2030 European 

Biodiversity Strategy, the United Nations Decade on Ecosystem Restoration and the 2030 Agenda 

for Sustainable Development objectives. Such restoration actions will not only increase the 

productivity and biodiversity of coastal ecosystems but could potentially mitigate the public health, 

ecological and economic consequences of Ostreopsis spp. blooms. 

Keywords: marine forests, Cystoseira compressa, macroalgal communities, ocean warming, ocean 

acidification, climate change, herbivory, regime shifts, HABs, benthic dinoflagellates, Ostreopsiss
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THE MARINE ENVIRONMENT 

A threatened biodiversity 

Oceans constitute the largest volume of life on the planet covering 70.8 % of the Earth's surface 

(Boeuf, 2011). They host an important number of species but also play an important role in climate 

regulation and provide major ecosystem services for humans (Mcleod et al., 2011). However, the 

increasing number of human populations ( reaching 8 billion in November 2022; United Nations 

Department of Economic and Social Affairs, Population Division, 2022) is changing global 

biodiversity at unprecedented rates (Zalasiewicz et al., 2011). A large and rising proportion of the 

population lives close to the coast (three times more people than the global average is living less 

than 100 km from the sea; Small and Nicholls, 2003; Todd et al., 2019), negatively impacting the 

coastal environment, which constitutes an important zone with a lot of spatial heterogeneity 

influencing the temperature, salinity, and primary production of coastal ecosystems.  

Different types of anthropogenic stressors can impact marine ecosystems, some at a global scale, 

such as global warming and ocean acidification; and others at a regional or local scale, such as 

urbanisation, sedimentation, overfishing, invasive species and water pollution. As a consequence 

of these impacts and their interactions, reductions in habitat structure, biodiversity and trophic 

complexity are expected (Doney et al., 2012; Duarte, 2014; Hall-Spencer and Harvey, 2019). 

Among the anthropogenic pressures, climate change is expected to be the strongest force of 

biodiversity change at the global scale (Bellard et al., 2012). In the present, climate change is 

already producing changes in demographic rates and forcing the redistribution, adaptation and 

acclimation of species (Mooney et al., 2009; Doney et al., 2012, 2020; Bernhardt and Leslie, 2013). 

All these impacts will probably influence the communities composition and interactions among 

species (Bakker et al., 2016; Pagès et al., 2018), producing cascade effects at the ecosystem level, 

with ecological and socioeconomic consequences (Hoegh-Guldberg and Bruno, 2010; Pecl et al., 

2017; Doney et al., 2020). At present there is not a single marine ecosystem unthreatened by 

anthropogenic stressors (Halpern et al., 2008b, 20118), but the hard-bottom coastal areas and rocky 

reefs are the highest impacted (Halpern et al., 2007, 2019). To assess the ongoing impacts of climate 

change, the Intergovernmental Panel on Climate Change (IPCC) prepares Assessment Reports 

about the state of scientific, technical and socio-economic knowledge on climate change using the 

Shared Socioeconomic Pathways (SSPs). The SSPs are scenarios of projected socioeconomic 

global changes up to 2100 used to derive greenhouse gas emissions scenarios from different climate 

policies (IPCC; 2022). The last IPPC report is the Sixth Assessment Report (AR6 Climate Change 

2022: Mitigation of Climate Change — IPCC). 
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The key role of macroalgae dominated communities 

Macroalgae or seaweeds are key organisms in temperate coastal ecosystems functioning around the 

globe, largely contributing to benthic primary production (Steneck et al., 2002; Cheminée et al., 

2013; Teagle et al., 2017; Piazzi et al., 2018). Macroalgae also participate in carbon sequestration 

by capturing, storing, and potentially sequestering CO2 in the ocean through transportation to deep 

marine sediments (Krause-Jensen and Duarte, 2016; Krause-Jensen et al., 2018; Filbee-Dexter and 

Wernberg, 2020; Filbee-Dexter et al., 2022; Wright et al., 2022). Furthermore, they provide other 

invaluable ecosystem services such as supporting fisheries and mariculture, nutrient cycling and 

protecting the shoreline (Bennett et al., 2015a; Blamey and Bolton, 2018; Eger et al., 2021a). 

Consequently, changes in the macroalgal composition may sway coastal ecosystems (Sala et al., 

1998; Shears and Ross, 2010; Mineur et al., 2015; Smale et al., 2022). The diverse macroalgal 

species thriving on rocky reefs can be characterised by their sizes, shapes, structure and architecture 

of their thallus. Based on these factors, we can differentiate turf, erect and forest-forming or canopy-

forming macroalgae. Turf-forming macroalgae are represented by species with tightly packed 

fronds and filamentous thin axes, usually forming dense and compact mats (Stewart, 1983; Sala et 

al., 2012; Connell et al., 2014; Thiriet et al., 2016; Mauffrey et al., 2020). Erect macroalgae are 

described as foliose laminar, ribbon-like, massive or fan-like thallus and erect arborescent tufts, 

which do not form a canopy but a shrub (Sala et al., 2012; Thiriet et al., 2016; Bertolini, 2019). 

Forest-forming macroalgae include the most structurally complex macroalgae with cylindrical axes, 

branched and tree-like ramifications (Sala et al., 2012; Thiriet et al., 2014; Bertolini, 2019; 

Shelamoff et al., 2019; Assis et al., 2020). The macroalgae from this group are considered habitat-

forming species able to create three-dimensional habitats with a canopy and understory, which 

supports distinct communities of fish, invertebrates and other plants (Cheminée et al., 2013, 2017; 

Thiriet et al., 2016; Shelamoff et al., 2019; Wernberg and Filbee-Dexter, 2019). Analogically to 

terrestrial environments, the physical traits of the dominant species are used to classify macroalgal 

communities into turfs, shrubs and forests, indicating the functional similarities between habitats 

on land and in the sea (Figure 1; Wernberg and Filbee-Dexter, 2019). 

 

Figure 1: Different types of marine macroalgal habitats in function of the structural characteristics 

of the dominant species: marine forest, shrub and turf. Modified from Thiriet (2014). 
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MARINE FORESTS 

Macroalgal marine forests are constituted by large brown forest-forming macroalgae of the orders 

Laminariales, Tylopteridales, Desmarestiales and Fucales (Wernberg and Filbee-Dexter, 2019) and 

are considered among the most productive and biodiversity-rich ecosystems on Earth (Wernberg 

and Filbee-Dexter, 2019; Pessarrodona et al., 2022). They form the tallest biotic component of the 

seascape, altering the physical and biological environment in the understorey (Thiriet et al., 2014; 

Veiga et al., 2014). These foundation species dominate intertidal and subtidal rocky shores in 

temperate and polar regions worldwide (Figure 2; Feldmann, 1934; Boudouresque et al., 2016; 

Wernberg and Filbee-Dexter, 2019). They provide functions very similar to terrestrial forests such 

as: (i) habitat, food and shelter to a multitude of species at different life stages, (ii) supporting a 

high biodiversity of primary and secondary producers and decomposers, and (iii) playing an 

important role in the functioning and structure of the ecosystem maintaining food-webs and 

enhancing the secondary production (Ballesteros et al., 2009; Smale et al., 2013; Teagle et al., 2017; 

Wernberg et al., 2019a; Fragkopoulou et al., 2022). 

 

Figure 2: Distribution of marine forests of large brown macroalgae for different regions. Figure 

from Wernberg and Filbee-Dexter (2019). 

The structure and productivity of marine forests are influenced by many environmental factors that 

drive the growth, survival, reproduction and metabolism of forest-forming macroalgae, which in 

turn affect the whole habitat or ecosystem (Irving et al., 2009; Cardona et al., 2013; Pessarrodona 

et al., 2022; Smale et al., 2022; Smith et al., 2022). A variety of anthropogenic impacts are altering 

the environmental parameters that drive the functioning of ecosystems (Krumhansl et al., 2016; 

Pessarrodona et al., 2019), and as a result negatively affect marine forests that at the present are in 
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regression worldwide (Filbee-Dexter and Wernberg, 2018; Pessarrodona et al., 2021). Several local 

and global impacts are involved in the regression of marine forests such as urbanisation, marine 

farming, local pollution and herbivory (Steneck et al., 2002; Krumhansl et al., 2016; Orfanidis et 

al., 2021), but also ocean warming (OW) and potentially ocean acidification (OA; Wernberg et al., 

2011; Connell et al., 2013; Friedlander et al., 2020; Smale, 2020). These stressors are putting marine 

forests to the limit, confining them to refuge locations characterized by less unfavourable conditions 

(Straub et al., 2019; Verdura et al., 2021); and making them less resilient against future impacts 

(Capdevila et al., 2019; Straub et al., 2019). 

Global change effects on marine forests can vary according to the location, the population 

characteristics and the species (Krumhansl et al., 2016; Hollarsmith et al., 2020; Verdura et al., 

2021). There is evidence that early-life stages of these species are more vulnerable than adults and 

this, together with a very high natural mortality rate during early-life stages (Ang, 1991; Vadas et 

al., 1992; Capdevila et al., 2015), could lead, in the long term, to their loss (Coelho et al., 2000; 

Schiel and Foster, 2006; de Caralt et al., 2020). 

MEDITERRANEAN MARINE FORESTS 

The Mediterranean Sea is the largest (more than 2 500 000 km2) and deepest (average and maximum 

depth of 1 500 m and 5 267 m, respectively) enclosed sea on Earth (Coll et al., 2010). Nowadays 

the Mediterranean coasts support a high density of inhabitants and represent one of the first touristic 

destinations in the world, with the consequent environmental cost that it entails (Segreto et al., 

2009; Coll et al., 2010). The Mediterranean Sea, characterized by small tides, oligotrophic waters 

and high salinity and mean water temperature (Ros et al., 1985), is one of the major hotspots of 

biodiversity, especially on coastal areas (Coll et al., 2010). Some of these unique communities are 

the meadows of the endemic phanerogam Posidonia oceanica, the coralligenous community built 

up by crustose coralline algae, the vermetid platforms, the Litophyllum brissoides algal reef and the 

Fucales forests (Ros et al., 1985; Boudouresque, 2004).  

Macroalgal marine forests in the Mediterranean Sea are represented mainly by species belonging 

to the orders Fucales; in particular to the genera Cystoseira, Gongolaria and Ericaria, from now 

referred as Cystoseira sensu lato species (Box 1; Wernberg and Filbee-Dexter, 2019; Molinari - 

Novoa and Guiry, 2020). There are more than thirty different species, most of them endemic to the 

Mediterranean Sea (Molinari - Novoa and Guiry, 2020), they are the dominant forest-forming 

species in intertidal and sublittoral rocky bottoms and despite showing smaller average size have 

functional traits comparable to those of larger kelps (Wernberg and Filbee-Dexter, 2019). Only two 

species of Laminariales are found in the Mediterranean Sea forming marine forests: Laminaria 

ochroeluca, in the immediacies of the Strait of Gibraltar, western coast of Africa and the Strait of 
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Messina (Drew, 1974; Flores-Moya, 2012); and the critically endangered and endemic deep-water 

Laminaria rodriguezii (Feldmann, 1934; Bo et al., 2011). 

BOX 1: Cystoseira sensu lato species 

Cystoseira s.l. spp. have a high morphological plasticity that makes their identification complex using 

morphological traits only (Rožić et al., 2012; Orellana et al., 2019). Analysis of DNA demonstrated the 

multiple phylogenic origin of the Mediterranean genus Cystoseira (Draisma et al., 2010) leading to its 

division in three clades (Bruno de Sousa et al., 2019). A few years ago, Orellana et al. (2019) assigned 

three different genera to the clades based on their morphological characteristics: Cystoseira C. Agardh, 

1820; Treptacanta Kützing, 1843; and Carpodesmia Greville, 1830. More recently, Molinar-Novoa and 

Guiry (2020) revised this proposition concluding that Gongolaria Boehmer, 1760 and Ericaria 

Stackhouse, 1890 have priority over the ones proposed by Orellana et al. (2019), and now Cystoseira, 

Ericaria and Gongolaria are the accepted names for the three clades (Molinari - Novoa and Guiry, 2020). 

 

Shallow Cystoseira s.l. forest in Saint Honorat Island (Lérins Islands, Cannes, France) composed by 

Ericaria amentacea, Ericaria brachycarpa and Cystoseira compressa. 

Cystoseira s.l. spp. form canopies up to 1 m height in exposed or sheltered locations from the upper 

littoral to the circalittoral zone, down to 50 m depth, and represent the highest level of 

Mediterranean macroalgae complexity (Giaccone, 1973; Ballesteros, 1990a, 1990b; Sala et al., 

2012). Cystoseira s.l. spp. are considered habitat-forming as they generate a three-dimensional 

structure from which it is possible to differentiate different strata: an arboreal layer, on the upper 

part of the canopy made by the forest-forming species (i.e. Cystoseira s.l.) and the epiphytes; a 

middle shrubby layer on the middle canopy, formed by erect shrub-forming macroalgae; a turf 

layer, formed by turf-forming calcareous and sciaphilic macroalgae; and a basal layer, mainly 

formed by crustose calcifying algae (Ros et al., 1985). Cystoseira s.l. forests are one of the most 

productive habitats in the Mediterranean Sea (Figure 3; Ballesteros, 1989a; Sales and Ballesteros, 



GENERAL INTRODUCTION AND OBJECTIVES 

…………………………………………..……………………………… 

8 

2012; Duarte et al., 2022; Pessarrodona et al., 2022) and provide habitat to a large number of 

associated species, supporting trophic networks (Ballesteros, 1992; Ballesteros et al., 2009; Thiriet 

et al., 2016; Piazzi et al., 2018). 

In function of their distribution and vertical zonation (that is influenced by many factors such as 

depth, light intensity, hydrodynamics, resistance to breaking, temperature, nutrient availability and 

herbivory pressure; Feldmann, 1934; Vergés et al., 2009; Sant and Ballesteros, 2020a, 2021), the 

forests are dominated by different Cystoseira s.l. spp. Some species are widely distributed along 

the Mediterranean Sea and others restricted to very specific locations, being most of the species 

found on shallow sheltered or exposed locations (Ribera et al., 1992). 

Threats and status of Cystoseira sensu lato forests 

Many anthropogenic impacts are pushing Mediterranean marine ecosystems to the edge (Coll et al., 

2010). The overexploitation and habitat loss (e.g. urbanisation) have been affecting the ecosystems 

for centuries and at present, together with fishing impacts, pollution, eutrophication and climate 

change, represent the most important threats to almost all species, including Cystoseira s.l. forests 

(Mangialajo et al., 2008b; Coll et al., 2010; Giakoumi et al., 2012; Orfanidis et al., 2021). The 

Mediterranean Sea is very sensitive to climate change (Belkin, 2009; Lejeusne et al., 2010; Tuel 

and Eltahir, 2020) and the seawater temperature is already increasing (Lionello and Scarascia, 

2018) as well as the intensity and frequency of marine heatwaves (Oliver et al., 2018, 2019). In 

addition, global biodiversity scenarios also predict that invasive species will be an increasing 

problem in the Mediterranean Sea, which seems to be more threatened than other ecosystems (Sala 

et al., 2000). Therefore the introduction and the establishment of alien species of herbivores, 

macroalgae and microalgae can represent an additional stressor for marine forest (Vergés et al., 

2014a, 2014b; Marampouti et al., 2020; Iveša et al., 2021). 

As many other foundation species, Cystoseira s.l. spp. are very sensitive to both local and large 

scale variations on environmental conditions (Irving et al., 2009; Cardona et al., 2013; Mancuso et 

al., 2019; de Caralt et al., 2020) and, in some cases, the unfavourable conditions are restricting 

Cystoseira s.l. populations to refuge locations where requisites for their survival are ensured 

(Verdura et al., 2021). Because of the high sensitivity to human disturbances (Mangialajo et al., 

2008b; Sales and Ballesteros, 2009) these species are used in many protocols with the objective of 

characterising coastal habitats (De La Fuente et al., 2018; Bahbah et al., 2020). Since decades, 

declines of Cystoseira s.l. forests have been reported all along the Mediterranean Sea (Cormaci and 

Furnari, 1999; Thibaut et al., 2005, 2015; Bianchi et al., 2014; Buonomo et al., 2018; Mariani et 

al., 2019). Consequently, most of the Cystoseira s.l. spp. are included in the Annex II of the 

Barcelona Convention (UNEP/MAP, 2013) and considered threatened or endangered and in need 
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of protection measures (Verlaque et al., 2019). The only Cystoseira s.l. spp. not included in the 

annex is the shallow widely distributed Cystoseira compressa (Verlaque et al., 2019). 

Declines in marine forests are attributed mainly to anthropogenic factors, local stressors seem to 

have a strong direct and indirect impact (Russell et al., 2009; Leal et al., 2018; de Caralt et al., 2020; 

Gissi et al., 2021), but global stressors such as OW and OA are also affecting these ecosystems 

(Celis-Plá et al., 2015; Fernández et al., 2020; Smale, 2020; Verdura et al., 2021). Locally, the 

proliferation of herbivores is believed to be one of the most important biological factors controlling 

the mortality of early-life stages of Cystoseira s.l. spp. and responsible for the degradation and 

maintenance of post-regime shifts communities, such as turfs or barren grounds (Giakoumi et al., 

2012; Vergés et al., 2014a; Gianni et al., 2017). Alongside, eutrophication and pollution affect the 

biomass, growth and photosynthetic yield of Cystoseira s.l. spp. and have been responsible for the 

regression of the populations in many locations (Thibaut et al., 2005; Pinedo et al., 2013; Blanfuné 

et al., 2019; de Caralt et al., 2020). Globally, OW has already been signalled as a thread for the 

survival of both adults and recruits of Cystoseira s.l. spp., affecting their phenology, recruitment 

and growth (Celis-Plá et al., 2017a; Bevilacqua et al., 2019; Falace et al., 2021; Verdura et al., 2021; 

Bennett et al., 2022; Orlando-Bonaca et al., 2022). Instead, the effects of OA are expected to favour 

the growth of Cystoseira s.l. spp. when other environmental conditions, such as temperature and 

nutrients, are optimal (Celis-Plá et al., 2015, 2017a). However, the interactive effects of local and 

global stressors, need to be further investigated to better understand the causes of such declines 

(Hepburn et al., 2011; Connell et al., 2013; Celis-Plá et al., 2017a; Leal et al., 2017). 

The substitution of marine forests by structurally less complex macroalgal communities such as 

shrubs and turfs, and even barren grounds or deserts, has been observed and studied in the 

Mediterranean Sea (Chemello et al., 2018; Benedetti-Cecchi et al., 2019; Álvarez-Losada et al., 

2020) and the miniaturisation of the habitats is a common event on temperate areas worldwide 

(Filbee-Dexter and Wernberg, 2018; Pessarrodona et al., 2021). The loss of these habitat forming 

species involves a series of cascade effects with profound changes on the ecosystem function 

together with the loss of ecosystem services (Airoldi et al., 2008; Hall-Spencer and Harvey, 2019; 

Pessarrodona et al., 2019; Smale et al., 2022). 

The characteristics of Cystoseria s.l. spp., long-lived species with a short dispersal capacity 

(because of the large size of their zygotes, 100 – 120 µm), make very difficult the natural recovery 

of the forests, especially considering that populations are in many cases fragmented (Clayton, 1990; 

Capdevila et al., 2018; Riquet et al., 2021). Even if the improvement of environmental conditions 

has been attained in some locations (e.g. improvement in water quality) allowing the regeneration 

of some populations (Thibaut et al., 2005, 200; Perkol-Finkel and Airoldi, 2010; Blanfuné et al., 

2019), natural recovery is rare (Iveša et al., 2016). In most cases, the only solution for restoring 
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locally extinct or highly endangered populations is the active restoration (Gianni et al., 2013; Eger 

et al., 2022). Recently, great efforts have been done to explore innovative restoration techniques 

for recovering or improving the status of endangered populations (Falace et al., 2018; De La Fuente 

et al., 2019; Cebrian et al., 2021). So far, successful restoration actions of Cystoseira s.l. forests in 

the Mediterranean Sea are scarce (Falace et al., 2018; Verdura et al., 2018; De La Fuente et al., 

2019; Savonitto et al., 2021). The next main issues that need to be addressed and further studied for 

the accomplishment of restoration actions are herbivory and climate change (Gianni et al., 2013; 

Tamburello et al., 2019; Medrano et al., 2020). 

BENTHIC HARMFUL ALGAL BLOOMS PROLIFERATION 

The same factors that are driving Cystoseira s.l. forests to the edge (e.g. degradation of natural 

habitats due to pollution, urbanisation, overfishing and climate change) and are promoting regime 

shifts could also make ecosystems more vulnerable to new biological threats. Recently, an increase 

in harmful algal blooms (HABs) has been recorded in temperate locations around the globe 

including the Mediterranean Sea (Anderson et al., 2019). Anthropogenic activities and climate 

change are considered the main contributors of alien invasions and main enablers of HAB events 

(Marampouti et al., 2020). In the global change context, ocean warming is expected to promote the 

expansion and growth of tropical and sub-tropical harmful algal dinoflagellates, including the 

genera Ostreopsis, Gambierdiscus and Fukoya (Tester et al., 2020). A significant proportion of 

studies concerning benthic HABs are focused on tropical benthic dinoflagellate ecology, primarily 

as a result of the incidence of ciguatera fish poisoning (CFP) in tropical and subtropical areas 

(Litaker et al., 2009) and the expansion of toxic species in temperate waters (Rhodes, 2011). To the 

present, no CFP episodes have been reported in the Mediterranean Sea, but the recent findings of 

species of Gambierdiscus in Crete (Aligizaki and Nikolaidis, 2008) and in Balearic Islands (Laza-

Martínez et al., 2016; Tudó et al., 2018, 2020), are rising the alert. Still, Ostreopsis spp. (Box 2) are 

already widely distributed in the Mediterranean Sea, where their blooms are frequent and important 

in magnitude (Mangialajo et al., 2011; Accoroni et al., 2012; Accoroni and Totti, 2016; Açaf et al., 

2020). The increasing rate of Ostreopsis spp. blooms and the hazardous impacts that they have on 

the environment, economy, and human health make it important to have accurate knowledge about 

its development (Berdalet et al., 2016, 2022). The increased seawater temperatures in the 

Mediterranean Sea, predicted to become the norm in the mid-21st century, should stimulate more 

intense Ostreopsis spp. blooms in the future (Tester et al., 2020) and both Gambierdiscus and 

Ostreopsis populations are expected to increase, especially in warm locations (Açaf et al., 2020; 

Tester et al., 2020). 
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Proliferation of Ostreopsis species 

BOX 2: Ostreopsis Johs.Schmidt, 1901 

The genus Ostreopsis, belonging to the family of Ostreopsidaceae (Gonyaulacales, Dinophyceae, 

Dinozoa) includes several species largely distributed from tropical to temperate marine coastal areas 

worldwide. 

Ostreopsis is a benthic dinoflagellate that develop in close relationship with a biotic or abiotic substrate 

(Totti et al., 2010). Ostreopsis spp. are usually epiphytic on macrophytes (Rhodes, 2011), but can also be 

found on dead corals, sediments or rocks, constituting the stock of cells (A; Bomber et al., 1989; Vila et 

al., 2001; Shears and Ross, 2009; Totti et al., 2010). Also, due to a combination of physical and biological 

processes Ostreopsis spp. cells can be found in the water column (B) or forming aggregates on the water 

surface (C; Mangialajo et al., 2011; Pavaux et al., 2021; Berdalet et al., 2022). 

Ostreopsis spp. have been reported for a long time in tropical ciguatera endemic areas and, since some 

decades, have become common in temperate areas as well (Litaker et al., 2009; Rhodes, 2011). Recurrent 

Ostreopsis spp. blooms have been recorded throughout the globe (Chang et al., 2000; Rhodes et al., 2000; 

Lenoir et al., 2004; Shears and Ross, 2009; Nascimento et al., 2012b; Yamaguchi et al., 2012b; Gomaa et 

al., 2018; Tibirica et al., 2019; Solino et al., 2020; Zou et al., 2020) and in the Mediterranean Sea (Vila et 

al., 2001; Penna et al., 2005; Chiantore et al., 2008; Ismael and Halim, 2012; Açaf et al., 2020; Gémin et 

al., 2020). 

Within the eleven species of Ostreopsis identified (Fukuyo, 1981; Norris et al., 1985; Quod, 1994; Faust 

and Morton, 1995; Faust, 1999), at least five produce palytoxin-like compounds, known for being among 

the most toxic marine compounds (Usami et al., 1995; Ukena et al., 2001; Ciminiello et al., 2010; Suzuki 

et al., 2012; Varela et al., 2021). Humans can be affected by Ostreopsis spp. blooms by the inhalation of 

marine aerosols which can lead to respiratory disease (Tichadou et al., 2010; Tubaro et al., 2011; Vila et 

al., 2016). The most important human intoxications in temperate locations were recorded in the 

Mediterranean Sea, in Italy in 2001 and 2005 (Brescianini et al., 2006) and in Spain in 2004 and 2006 

(Barroso García et al., 2008), affecting hundreds of locals swimmers and beach goers, mainly affected by 

respiratory intoxications caused by the inhalation of seawater aerosols containing toxins (Mangialajo et 

al., 2011). Recurrent events of symptoms on humans due to Ostreopsis spp. blooms have been observed 

in several parts in the Mediterranean Sea (Tubaro et al., 2011; Illoul et al., 2012) and in 2021 an important 

event was recorded for first time in the Atlantic French coast (in Biarritz; Drouet et al., 2021; Chomérat 

et al., 2022). The whole ecosystem is also affected by Ostreopsis spp. blooms (Turner et al., 2021), and 

potentially macroalgae (Iveša et al., 2021). Most intense blooms of Ostreopsis spp. can result in mass 

mortalities of invertebrates such as bivalves, gastropods, crustaceans, and echinoderms (Shears and Ross, 

2009; Ramos and Vasconcelos, 2010; Guidi-Guilvard et al., 2012; Parsons et al., 2012; Accoroni and 

Totti, 2016; Migliaccio et al., 2016; Neves et al., 2018).  
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Original illustration from Alberto Molina Serrano, http://www.albertomolina.es/. 

Surface seawater temperature is thought to be one of the cardinal factors affecting the development 

of Ostreopsis spp. blooms, while the role played by other abiotic factors such as hydrodynamics, 

salinity and nutrients is still unclear (Accoroni and Totti, 2016). This lack of knowledge highlights 

that, as reported in Pavaux et al. (2020), only a small part of the studies on Ostreopsis spp. focus 

on its ecological aspects. Nevertheless, it seems that the synergic effect of more than one of these 

factors could influence the development of blooms (Accoroni and Totti, 2016). On one hand, most 

studies relate larger abundances of Ostreopsis spp. to sheltered or low hydrodynamic conditions 

(e.g. Chiantore et al., 2008; Shears and Ross, 2009; Richlen and Lobel, 2011; Mohammad-Noor et 

al., 2016; Asnaghi et al., 2017; Boisnoir et al., 2018; Hachani et al., 2018), while others suggest 

larger abundances of Ostreopsis spp. in higher or slightly higher levels of water motion (Vila et al., 

2001; Selina et al., 2014). The relationship between blooms of Ostreopsis spp. and hydrodynamics 

could be related to the dense mucilaginous aggregations formed by cells of Ostreopsis spp. covering 

different substrates (e.g. macrophytes), that can be released due to wave action and suspended in 

the water column or on the sea surface (Vila et al., 2001; Aligizaki and Nikolaidis, 2006; Chiantore 

et al., 2008; Shears and Ross, 2009; Totti et al., 2010; Tester et al., 2020). 

On the other hand, the inshore occurrence of Ostreopsis spp. has raised the question concerning 

their association with nutrient enrichments due to human activities (Faust et al., 1996), but there 

are mixed conclusions on how nutrient concentrations influence population dynamics of Ostreopsis 

spp. (Ungano et al., 2010; Cohu et al., 2011b; Accoroni et al., 2012). In some studies dinoflagellate 

abundances were positively correlated with several nutrient parameters, such as nitrates, nitrites, 

phosphates and silicates (Delgado et al., 2006; Parsons and Preskitt, 2007; Skinner et al., 2013; 

Accoroni et al., 2020), while other studies found no significant relationship (Okolodkov et al., 2007; 

Asnaghi et al., 2012; Nascimento et al., 2012a). Nevertheless, abundances of Ostreopsis spp. 

A B
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decrease with depth (Richlen and Lobel, 2011; Cohu and Lemee, 2012), maybe because of the light 

availability, even if, again, there are controversial results between light intensity and the growth of 

Ostreopsis spp. in experimental conditions (Accoroni and Totti, 2016). 

Preferences for Ostreopsis species proliferation 

Due to the benthic nature of Ostreopsis spp. is expected that the substrate plays a major role in the 

development of blooms. However, substrate preferences for Ostreopsis spp. are still ambiguous 

sometimes giving discordant patterns (Monti et al., 2007; Totti et al., 2010; Cohu et al., 2013; 

Blanfuné et al., 2015; Moncer et al., 2017; Meroni et al., 2018; Gémin et al., 2020; Ternon et al., 

2020). The abundances of Ostreopsis on different substrates are highly variable and linked to 

several assessment limitations that make comparisons difficult. The comparisons usually depend 

on the type and characteristics of the substrate (e.g. surface for rocks and fresh weight for 

macrophytes), ideally not allowing direct comparisons (Mangialajo et al., 2017; Tester et al., 2022). 

In order to avoid the technical issues linked to the measurements different techniques have been 

proposed such as the use of artificial substrates (Tester et al., 2014; Jauzein et al., 2016; Yong et 

al., 2018; Fernandez-Zabala et al., 2019; Carreira-Flores et al., 2020), the syringe method (Abbate 

et al., 2012) and the benthic dinoflagellate integrator device (BEDI; Mangialajo et al., 2017) to 

obtain comparable estimates of number of cells at multiple sites. However, these techniques are not 

yet widely used. The high variability on abundances of Ostreopsis spp. among substrates and the 

discordant patterns, could be due to several biotic and abiotic factors acting at a larger scale than 

the substrate itself, such as the morphology, palatability, and microbial community associated to 

the substrate and the herbivory and allelopathic interactions due to the production of secondary 

metabolites (Cruz-Rivera and Villareal, 2006; Totti et al., 2010; Accoroni et al., 2015; Pavaux et 

al., 2020; Ternon et al., 2020). 

Recent studies focusing on CFP are suggesting that the sea bottom complexity and heterogeneity 

could affect the development of benthic harmful dinoflagellates (Meroni et al., 2018; Yong et al., 

2018; Boisnoir et al., 2019; Bravo et al., 2020; Lee et al., 2020). Some studies suggest that 

Ostreopsis spp. prefer habitats with high coral cover (Yong et al., 2018) while others associate 

Gambierdiscus and Ostreopsis spp. with turf algal communities, suggesting an effect of the 

architecture of the thallus of the macrophyte on hosting benthic dinoflagellates (Totti et al., 2010; 

Catania, 2017; Mustapa et al., 2019; Bravo et al., 2020; Lee et al., 2020). Furthermore, lower 

abundances of Ostreopsis spp. could be related to Cystoseira s.l. forests (Catania, 2017; Meroni et 

al., 2018). These results are consistent with observations of higher abundances of Ostreopsis spp. 

at sites heavily impacted by humans where healthy macroalgal communities are replaced by 

opportunistic and fast-growing turf macroalgae (Rhodes, 2011; Fraga et al., 2012; Meroni et al., 

2018; Roselli et al., 2022). According to some authors, the continued and extensive destruction of 
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natural habitats and large metropolitan areas could promote Ostreopsis spp. and Gambierdiscus 

spp. blooms (Rhodes, 2011; Fraga et al., 2012; Meroni et al., 2018; Mustapa et al., 2019; Tester et 

al., 2020; Roselli et al., 2022). The artificialisation of the coast and the miniaturisation and 

degradation of macroalgal communities due to regime shifts could, therefore, favour the expansion 

of Ostreopsis spp. (Fraga et al., 2012; Mangialajo et al., 2017; Meroni et al., 2018; Lee et al., 2020; 

Tester et al., 2020; Roselli et al., 2022). 

OBJECTIVES 

The main objective of this thesis is to assess the causes and some potential effects of marine forests 

loss in the Mediterranean Sea. As causes of loss we assessed the effects of abiotic (climate change) 

and biotic (species facilitation and herbivory) factors. As effects of loss, we investigated for the 

first time the relationship between the present regression of marine forests and the proliferation of 

benthic harmful algal blooms. 

This thesis focuses on Cystoseira s.l. forests from shallow coastal areas, mainly inhabiting 

rockpools and shallow sheltered locations, usually very impacted by human activities (e.g. 

urbanisation, recreational activities, climate change) which could be magnified due to the low 

turnover rate conditions of these locations. In view of the new restoration techniques developed for 

Mediterranean Cystoseira s.l. forests (see Cebrian et al., 2021 for a review), we consider necessary 

to further study the causes that could negatively impact Cystoseira s.l. spp. in the future (e.g. climate 

change and species interactions) and compromise the success of such restoration actions. In 

addition, despite the efforts done in understanding the mechanisms compromising Cystoseira s.l. 

forests in the Mediterranean still little is known on how the interactive effects of climate change 

(i.e. ocean warming and acidification) affect this species, especially its early-life stages. We have 

selected Cystoseira compressa (Box 3) as a target species for several reasons. First, this macroalgal 

species is considered the most resistant Cystoseira s.l. spp. and, still at the present time, can be 

found in both cosmopolitan and pristine locations in many coastal areas (including the French 

Riviera; Thibaut et al., 2015; Verlaque et al., 2019). Second, there are currently no specific studies 

on the effect of climate change on adults and recruits of C. compressa, nor results of restoration 

attempts for this species. Thus, the first objective is to study the causes of loss, assessing how 

climate change and species interactions affect the recruits of C. compressa. 
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BOX 3: Cystoseira compressa (Esper) Gerloff & Nizamuddin 1975 

Caespitose macroalgae, light brown colour, very variable in size, from several centimetres to 80 cm 

in maximum height according to the degree of wave action. Some specimens are perennial but often 

present an annual development. Cylindrical or flattened axes of several centimetres high (2-3 cm), 

almost inexistent in juveniles (A). Apices of the axes are smooth (B). Tophules are absent. Primary 

branches totally flattened, at least at their base. No spiny appendages. Aerocysts usually associated 

with the receptacles. Receptacles in the apices of the terminal branches, simple or more frequently 

branched, sometimes located on an aerocyst. Male and female gametangia in conceptacles grouped 

in receptacles (C and D). They present a monophasic diploid life cycle (Garreta, 2000; Rodriguez-

Prieto et al., 2013). 

 

Image modified from Garreta (2000). 
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The disappearance of Mediterranean marine forests and their substitution by less structurally 

complex macroalgal communities could lead to profound changes on ecosystems, facilitating 

emergent phenomena such as harmful algal blooms. Thus, as an effect of Mediterranean marine 

forests loss, we selected the emergent phenomena of benthic harmful algal blooms proliferation of 

the genus Ostreopsis. Benthic harmful algal blooms are causing growing concerns in the 

Mediterranean Sea given their catastrophic impacts on coastal ecosystems and humans, and their 

economic consequences (tourism, fishing, etc.; Berdalet et al., 2022). While Ostreopsis spp. are 

well studied, not much is known about their ecology (Pavaux et al., 2020) and since they settle on 

benthic surfaces, a better understanding of their relationship with marine vegetation could improve 

the risk assessment and management of toxic blooms. Therefore, the second objective of this thesis 

is to study the proliferation of toxic benthic dinoflagellates from the genus Ostreopsis as potential 

consequence of Cystoseira s.l. forests loss. 

The chapters presented hereafter combine field surveys, experiments in the field, controlled 

experiments in the laboratory and a systematic review. The specific objectives of each chapter are 

detailed below: 

− Chapter 1. Climate change and species facilitation affect the recruitment of macroalgal 

marine forests. In this chapter we assess the effects of ocean warming, acidification and 

species facilitation on the recruitment of C. compressa in controlled experiments in the 

laboratory. We determine how future climate change scenarios could affect recruitment and 

growth of C. compressa and how the presence of crustose coralline algae can facilitate the 

recruitment under the different treatments of temperature and pH. 

− Chapter 2. Grazing effects on recruits of the forest-forming fucoid Cystoseira compressa. 

Here we examine the effects of different herbivorous species on recruits of C. compressa 

through (i) field surveys, to characterise the herbivores present in our experimental 

locations; (ii) experiments in the field, to study the effect of the in-situ herbivory on recruits 

obtained using different restoration techniques; and (iii) in the laboratory, specifically 

testing the potential of some selected species to graze on recruits of C. compressa.  

− Chapter 3. The role of habitat in the facilitation of Ostreopsis spp. blooms. This chapter is 

the first step to collect information and better understand the relationship between blooms 

of Ostreopsis spp. and marine vegetation. In this literature review, we collect information 

on Ostreopsis spp. blooms at the substrate, habitat, and ecosystem scale, in order to assess 

eventual preferences and trends for the development of blooms of Ostreopsis spp. 

− Chapter 4. Ostreopsis spp. blooms in relation to macroalgal communities. In this chapter 

we collect information on abundances of Ostreopsis spp. at the substrate, habitat and 
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ecosystem scale during an annual bloom in Rochambeau (Villefranche-sur-Mer, France) 

and Vernazzola (Genova, Italy), to assess the preferences and trends of Ostreopsis spp. on 

different types of substrates (macroalgal and artificial substrates) at different spatial scales. 
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ABSTRACT 

Marine forests are shrinking globally due to several anthropogenic impacts including climate 

change. Forest-forming macroalgae, such as Cystoseira s.l. spp., can be particularly sensitive to 

environmental conditions (e.g. temperature increase, pollution or sedimentation), especially during 

early-life stages. However, not much is known about their response to the interactive effects of 

ocean warming (OW) and acidification (OA). These drivers can also affect the performance and 

survival of crustose coralline algae, which are associated understory species likely playing a role in 

the recruitment of later successional species such as forest-forming macroalgae. We tested the 

interactive effects of elevated temperature, low pH and species facilitation on the recruitment of 

Cystoseira compressa. We demonstrate that the interactive effects of OW and OA negatively affect 

the recruitment of C. compressa and its associated coralline algae Neogoniolithon brassica-florida. 

The density of recruits was lower under the combinations OW and OA, while the size was 

negatively affected by the temperature increase but positively affected by the low pH. The results 

from this study show that the interactive effects of climate change and the presence of crustose 

coralline algae can have a negative impact on the recruitment of Cystoseira s.l. spp. While new 

restoration techniques recently opened the door to marine forest restoration, our results show that 

the interactions of multiple drivers and species interactions have to be considered to achieve long-

term population sustainability. 

Keywords: Macroalgal forests, Coralline algae, Climate change, Ocean acidification, Ocean 

warming, Species facilitation, Neogoniolithon brassica-florida, Cystoseira compressa 

1. INTRODUCTION 

The ocean plays an important role in the regulation of climate and offers numerous ecosystem 

services for humans. However, the ocean is affected by multiple anthropogenic impacts including 

climate change (IPCC, 2022). Ocean warming (OW) and ocean acidification (OA) are expected to 

affect most marine ecosystems with consequences to humans (Doney et al., 2012; Gattuso et al., 

2015; Hall-Spencer and Harvey, 2019). Ecosystems all around the globe are expected to experience 

reductions in habitat structure, biodiversity and trophic complexity as sea temperature rises (Straub 

et al., 2019) and oceanic pH decreases (Kroeker et al., 2011; Connell et al., 2013). At the same 

time, an expansion of opportunistic and turf-forming species is foreseen, with the consequent loss 

of ecosystem services (Wernberg et al., 2016; Sunday et al., 2017; Harvey et al., 2021). 

Large brown forest-forming macroalgae (which include the orders Laminariales, Tylopteridales, 

Desmarestiales, and Fucales) are dominant foundation species on intertidal and subtidal rocky 

shores in temperate and cold regions (Steneck et al., 2002). They form what is known as marine 

forests, which (Schiel and Foster, 2006; Wernberg and Filbee-Dexter, 2019) provide important 

ecosystem functions (Cheminée et al., 2013; Smale et al., 2013; Carbajal et al., 2022). However, 
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marine forests are shrinking globally (Filbee-Dexter and Wernberg, 2018; Pessarrodona et al., 

2021) due to several impacts such as urbanisation, marine farming, local pollution and herbivory 

(Steneck et al., 2002; Krumhansl et al., 2016; Orfanidis et al., 2021); making these habitats more 

sensitive to global change (Capdevila et al., 2019; Straub et al., 2019). The structure and 

productivity of marine forests are influenced by many environmental factors that drive the growth, 

survival, reproduction and metabolism of the organisms, which in turn affect the whole habitat or 

ecosystem (Irving et al., 2009; Smale et al., 2022; Smith et al., 2022). Global change effects on 

marine forests can vary according to the location, the population characteristics and the species 

(Krumhansl et al., 2016; Hollarsmith et al., 2020; Verdura et al., 2021). As a result, in several cases, 

marine forests are constrained to locations with the most favourable conditions which could act as 

a refuge (Mariani et al., 2019; Smale, 2020; Verdura et al., 2021). There is evidence that early-life 

stages of these species are more vulnerable than adults which could lead, in the long term, to the 

loss of marine forests (Coelho et al., 2000; Schiel and Foster, 2006; de Caralt et al., 2020). A high 

mortality rate is naturally observed during the early stages and the resilience of a population to 

future impacts can be largely dependent on efficient recruitment and development of juveniles 

(Vadas et al., 1992; Capdevila et al., 2015). 

The shift in carbonate chemistry associated with OA causes an increase in dissolved CO2 that could 

favour photosynthesis and then the growth of photosynthetic organisms (Connell et al., 2013; Koch 

et al., 2013). The increase in CO2 modifies the dissolved CO2 to O2 ratio at the RuBisCO active 

site, i.e., the key enzyme in carbon fixation metabolism. Because the latter emerged in an oxygen 

poor environment, it is characterised by a higher affinity for O2 than CO2 (Shih et al., 2016). 

Therefore, the current increase in dissolved CO2 to O2 ratio favours RuBisCO carbon fixation 

efficiency and then can favour the growth of photosynthetic organisms. To increase the RuBisCO 

carbon fixation efficiency, many algae also developed carbon concentration mechanisms (CCM), 

that increase the CO2 to O2 ratio in front of the RuBisCO fixation site (Connell et al., 2013; Cornwall 

et al., 2017a). Still, despite having or not having CCM it is not clear if most algae respond positively 

to an increase of CO2 (Hepburn et al., 2011; Connell et al., 2013; Cornwall et al., 2017a). OA might, 

therefore, have beneficial effects for some species like large brown forest-forming macroalgae, that 

are thought to thrive at high CO2 concentrations (Hepburn et al., 2011; Porzio et al., 2011; Connell 

et al., 2013). However, calcifying organisms (e.g. foundation species like corals and coralline algae) 

are expected to be particularly affected by OA (Kroeker et al., 2013a). In particular, crustose 

coralline algae, which are important components of the understory of marine forests, are among the 

organisms potentially the most susceptible to OA (Kroeker et al., 2010; Rindi et al., 2019). This 

species can be directly and indirectly impacted by OA due to reduced calcification rates and 

increasing competition with algae which benefit from elevated CO2 (James et al., 2014; Comeau 

and Cornwall, 2016; Cornwall et al., 2017a). Crustose coralline algae are among the first colonizers 
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of bare rock on euphotic marine habitats and are quickly overgrown by later successional species 

such as the more structurally complex large brown forest-forming macroalgae (Airoldi, 2000; 

Asnaghi et al., 2015). Some authors (Bulleri et al., 2002b) report that crustose coralline algae could 

help in the maintenance of alternative habitat states by preventing the recruitment of later colonizers 

(e.g. large brown macroalgae), even if this could be species-specific (Villas Bôas and Figueiredo, 

2004). While other studies suggest that crustose coralline algae could, in contrast, enhance 

biodiversity by facilitating the settlement of later colonists, including invertebrates (Bulleri et al., 

2002a; Maggi et al., 2011; Asnaghi et al., 2015) and by creating a positive association with the 

forest-forming macroalgae (Melville and Connell, 2001; Irving et al., 2004, 2005). Thus, a 

reduction of crustose coralline algae cover, because of climate change, may affect the recruitment 

of forest-forming macroalgae and therefore the maintenance of marine forest habitats (Breitburg, 

1984; Bulleri et al., 2016) and their resistance against climate change (Comeau and Cornwall, 2016; 

van der Heide et al., 2021). 

In Mediterranean rocky bottoms, Cystoseira sensu lato species (including the genera Cystoseira, 

Ericaria and Gongolaria, hereafter referred to as Cystoseira) are the main representatives of marine 

forests (Wernberg and Filbee-Dexter, 2019; Molinari - Novoa and Guiry, 2020). However, only a 

few studies have investigated the effect of climate change on this taxon and even fewer have 

focused on their early stages (Celis-Plá et al., 2017a; Hernández et al., 2018; Capdevila et al., 2019; 

Falace et al., 2021). Most studies show a negative impact of OW for both recruits and adults of 

Cystoseira on their survival (Falace et al., 2018, 2021; Verdura et al., 2021), resilience (Capdevila 

et al., 2019) and phenology (Bevilacqua et al., 2019; Savonitto et al., 2021). In contrast, decreasing 

pH increased the productivity, antioxidant activity and production of photoprotective compounds 

of adult Cystoseira (Celis-Plá et al., 2017a; Hernández et al., 2018). Despite that, some species of 

Cystoseira (including Cystoseira compressa and Cystoseira foeniculacea) are considered CCM 

species whose CCM does not downregulate due to additional CO2 and, thus, could not benefit from 

increasing CO2 (Cornwall et al., 2017a). To our knowledge, there are no studies on the combined 

effects of OW and OA on early-life stages or recruits of Cystoseira, and only one study (Celis-Plá 

et al., 2017a) has investigated the effects of both drivers on adults. 

Here, we tested the interactive effects of temperature, pH and species facilitation on the recruitment 

of Cystoseira compressa. This species is a common forest-forming macroalgae that can create dense 

populations on shallow and sheltered rocky shores around the Mediterranean Sea (Mangialajo et 

al., 2012). It is considered one of the most resistant Cystoseira species and it is the only one that is 

not protected under the Barcelona Convention (Annex II; United Nations Environment 

Programme/Mediterranean Action Plan-UNEP/MAP; Verlaque et al., 2019). We designed two 

separate experiments to test the effects of elevated temperature, low pH and the presence of crustose 

coralline algae on the early-life stages of C. compressa. The first experiment focused on the effects 
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of the temperature on the recruits of C. compressa. Based on the results of the first experiment, we 

ran a second complementary experiment to assess the role of the interactive effects of temperature, 

pH and species facilitation (crustose coralline algae) on the recruitment of C. compressa. Because 

coralline algae are sensitive to OA and are a potentially favourable substrate for the recruitment of 

Cystoseira, we assessed the recruitment of C. compressa on living and dead Neogoniolithon 

brassica-florida, one of the most common species in association with shallow Cystoseira forests 

(Benedetti-Cecchi and Cinelli, 1992; Asnaghi et al., 2015). We also compared the recruitment of 

Cystoseira on abiotic artificial clay substrates that have been proposed as an efficient substrate for 

restoration (Falace et al., 2018; De La Fuente et al., 2019; Orlando-Bonaca et al., 2021b). The main 

hypothesis of this study is that climate change will negatively affect the recruitment of C. 

compressa. Our hypotheses are that OW may have a direct negative impact on the recruits of C. 

compressa while OA may increase their growth and productivity. We also hypothesize that the 

settlement and survival of C. compressa might be indirectly affected by the effects of climate 

change on its associated understory species (crustose coralline algae) that act as a substrate. 

2. MATERIALS AND METHODS 

2.1. Experiment 1: Effects of ocean warming on the recruitment of Cystoseira compressa 

2.1.1. Collection and obtention of recruits 

Apical fertile branches of Cystoseira compressa were hand-collected on the 13th of July 2020 from 

a donor population situated in a rockpool (between the surface and 1m depth) in Sainte Marguerite 

Island (Lérins Islands, France). This site is a Nature 2000 site situated in front of the coast of Cannes 

and it is one of the last locations with healthy Cystoseira populations in the French Riviera (Thibaut 

et al., 2015). After visually checking that the receptacles contained fertile conceptacles, about 140 

gram fresh weight (FW) of apical fertile branches were manually collected and transported in cool 

and dark conditions in plastic bags to the laboratory. The sampling was non-destructive, as only 

apical branches (roughly 5 cm long) were collected. A temperature data logger (HOBO Pendant 

MX Temp, ONSET), that took measurements every hour, was installed in the rock pool to monitor 

the temperature in the donor population site. The receptacles were conserved at 4°C in the dark 

overnight before placing them in experimental tanks filled with filtered seawater (20 µm) and 

marble substrates that acted as settlement substrates (Falace et al., 2018; Verdura et al., 2018; 

Orlando-Bonaca et al., 2021b). In each tank, 15g FW of receptacles were placed in a net on the 

surface allowing the zygotes to fall on the substrates. The receptacles were kept in the tanks for 72 

hours without water circulation to facilitate the settlement of the zygotes. The temperature was 

maintained during the releasing and the settlement of the zygotes at the target temperature 

treatment. After opening the water system, the receptacles were removed and the recruits were kept 
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in tanks for 96 days. Submersible water pumps (NEWA) provided water motion in each 

experimental tank. 

2.1.2. Experimental set-up and treatments 

Three independent 5 L tanks (n=3) were set up for each temperature (24, 28 and 32°C; Table 1), 

for a total of 9 experimental tanks, with three square marble substrates of about 25 cm2 placed inside 

each tank. Filtered seawater (20 µm) pumped from Villefranche Bay at 3 m depth was continuously 

delivered into the experimental tanks at a rate of 7 L h-1. The experimental tanks were placed inside 

a thermoregulated bath to maintain the temperature at the targeted value. The temperature was 

controlled in two thermoregulated baths per treatment with a temperature controller (T 

CONTROLLER TWIN AQUA MEDIC). Light was provided by 37 W LED light bars (PRO² LED, 

Aquaristik) and the irradiance gradually increased from 0 μmol photons m
−2

 s
−1

 at 06:30 to a 

maximum of 110 μmol photons m-2 s-1 between 12:00 and 14:00, and gradually decreased to 0 μmol 

photons m
−2

 s
−1

 at 21:00 (LI-185B with an LI-190SB quantum sensor, LI-COR Biosciences, 

Lincoln, USA). The three temperature treatments were selected according to the temperatures 

registered in the donor population during the reproductive season of C. compressa and the expected 

increase in temperature due to global warming. 

Table 1: Measured (regular characters) and expected (bold characters) seawater physico-chemical 

parameters (temperature in °C, pHT in total scale, calculated pCO2 in µatm, and total alkalinity in 

µmol Kg -1 with mean ± SD) according to different treatments. 

Treatment 
Temperature 

(°C) 

pHT 

n = 15 

pCO2 (µatm) 

n = 15 

Total alkalinity 

(µmol kg-1) 

n = 8 

24°C 24.15 ± 0.43 

n = 23 

- - - 

28°C 28.3±0.41 

n = 23 

- - - 

32°C 31.47 ± 0.60 

n = 23 

- - - 

28°C pH 8.07 
28.22 ± 0.71 

n = 15 
8.04 ± 0.04 434.23 ± 42.63 2564.32 ± 5.80 

28°C pH 7.8 
28.37 ± 0.74 

n= 15 
7.83 ± 0.12 795.89 ± 170.97 2568.73 ± 22.51 

32°C pH 8.07 
31.56 ± 0.47 

n = 15 
8.01 ± 0.03 468.05 ± 45.53 2564.96 ± 6.23 

32°C pH 7.8 
31.61 ± 0.70 

n = 15 
7.83 ± 0.063 788.17 ± 135.69 2563.26 ± 5.50 

 

2.1.3. Measurements 

The density and size of C. compressa recruits were selected as response variables. The density of 

recruits was calculated by taking pictures every 10 or 15 days and counting from the picture the 

total number of recruits on a 3x3 cm area in the middle of each substrate using the software ImageJ 
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(ImageJ, NIH US Department of Health and Human Services). The size of recruits (µm) was 

determined monthly on 5 recruits that were removed from each substrate (n = 45). Their total length 

was measured using a microscope equipped with a graduated eyepiece.  

2.2. Experiment 2: Effects of climate change and species facilitation on the recruitment 

of Cystoseira compressa 

2.2.1. Collection and obtention of recruits 

Apical fertile branches of C. compressa were collected on the 4th of August 2021 from the same 

donor population as mentioned above and following the same protocol (see section 2.1.1.). For this 

experiment, about 500 g FW of apical fertile branches were manually collected and transported in 

cool and dark conditions in plastic bags to the laboratory. The receptacles were conserved at 4°C 

in the dark overnight before placing them under the experimental conditions, in the experimental 

tanks, to obtain recruits on the different substrates and under the different conditions of temperature 

and acidification. In each tank, 10 g FW of receptacles placed inside a net were kept on the surface 

for 72 hours. During this period, the temperature and pH were maintained at the target treatment 

conditions. Afterwards, the receptacles were removed and the recruits were kept in tanks for 75 

days. 

2.2.2. Experimental set-up and treatments 

The recruitment of Cystoseira compressa was assessed in two different conditions of temperature, 

28 and 32°C, and two pH levels, ambient (pHT = 8.07) and low pH (pHT = 7.8). In order to 

investigate the potential facilitation effect of Neogoniolithon brassica-florida, three different 

substrates were used for the settlement of recruits: 1) living and 2) dead N. brassica-florida 

(respectively factors “coralline” and “dead coralline”) and 3) artificial clay substrates (factor 

“artificial substrate”). The temperatures were selected according to the results obtained during the 

first experiment (experiment 1). The low pH condition (pHT = 7.8) corresponds to the pH value 

expected by the end of the century under the SSP2 - 4.5 CO2 emissions scenario (Celis-Plá et al., 

2015; Kwiatkowski et al., 2020). The surface of the three substrates was about 10 cm2 (3 cm 

diameter and 1 cm height for the artificial substrates). The coralline algae were collected in April 

2021 from Anse des Fossés (Saint-Jean-Cap-Ferrat, France) between 0.5 and 1 m depth. Samples 

that were the most homogeneous and the least colonized by other organisms were selected. Then, 

they were cleaned and epiphytes were removed using brushes and tweezers. Dead coralline 

substrates were obtained by putting the N. brassica-florida substrates in freshwater with bleach 

(1:50) for 24 hours. They were then rinsed several times with freshwater and dried, before placing 

them in the tanks. All the substrates were placed in the experimental tanks at ambient seawater 
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temperature and pH and gradually brought to the experimental temperatures and pH levels over 3 

months before the start of the experiment. 

The experimental set-up consisted of four independent 1.8 L tanks (n=4) for each of the 12 

conditions (Substrate type × pH × Temperature) for a total of 48 experimental tanks. Each tank 

contained five replicates of a substrate (either artificial, coralline or dead coralline substrates). One 

substrate from each experimental tank was used as a control and was not seeded with zygotes of C. 

compressa. Seawater from the Bay of Villefranche was continuously delivered into eight 20 L 

header tanks that then gravity fed six 1.8 L independent experimental tanks each with a water rate 

of 3 L h-1 (Figure 1). Seawater pH was manipulated inside 4 20 L header tanks. pH was maintained 

at the target value using pH controllers (APEX, Neptune Systems) that controlled the bubbling of 

pure CO2 in the header tanks. The experimental tanks were placed inside thermoregulated baths 

(four per temperature) connected to the same control system (APEX, Neptune Systems; Figure 6) 

to maintain the temperature at 28 and 32°C. Submersible water pumps (NEWA) provided water 

motion in each experimental tank. 

Light was provided by 89 W LED light bars (Aqualumix, Aquaristik) and irradiance gradually 

increased from 0 μmol photons m
−2

 s
−1

 at 06:30 to a maximum of 175 μmol photons m
−2

 s
−1

 

between 12:00 and 14:00, and gradually decreased to 0 μmol photons m
−2

 s
−1

 at 21:00 (LI-185B 

with an LI-190SB quantum sensor, LI-COR Biosciences, Lincoln, USA; Verdura et al., 2021). 

 

Figure 1: Experimental set-up used to test the effects of temperature (28 and 32°C), pH (ambient 

8.07, and low 7.8) and species facilitation (artificial, coralline and dead coralline substrates) on the 

recruits of C. compressa. The experimental set-up was repeated 4 times, resulting in 8 header tanks, 

and 48 experimental tanks in which the different types of substrates were randomly assigned. 
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2.2.3. Carbonate chemistry  

pH in the header and experimental tanks was measured weekly using a handheld pH-meter (826 pH 

mobile, Metrohm) calibrated with TRIS buffer (batch #T33 provided by A. Dickson, Scripps 

Institution of Oceanography). Total alkalinity was measured weekly in eight randomly selected 

tanks and was determined by potentiometric titration using a Metrohm 888 Titrando following the 

method of Dickson et al. (Dickson et al., 2007), the samples were measured three times and the 

mean value was used. Certified reference material (Batch #186) provided by A. Dickson was used 

to assess the accuracy of the measurements and was within 7.73 µmol  kg
−1

. The seawater from the 

Bay of Villefranche was 2565.41 ± 12.1 μmol kg
−1

 (mean ± SD; Table 1; Appendix A: Chapter 1 

Supplementary material S1). 

2.2.4. Measurements 

The density and size of recruits of C. compressa and calcification rate of the living coralline algae 

substrates were selected as response variables. The density of recruits was assessed by counting 

directly in the tanks the total number of recruits on the substrates using a magnifying table lamp. 

The total number of recruits was normalized by the surface of the substrate. The size of the recruits 

was determined by measuring the length of ten individuals randomly picked from each substrate (n 

= 160). When ten or fewer individuals were present on the substrate, all of them were measured. 

The measurements were done using graph paper under a magnifying table lamp. 

Total calcification rate of N. brassica-florida was assessed using the buoyant weight technique 

(Davies, 1989). Weighing was done before obtaining C. compressa recruits and at the end of the 

experiment, 64 days later. Changes in wet weight were converted to dry weight using the following 

equation: 

𝐷𝑟𝑦 𝑤𝑒𝑖𝑔ℎ𝑡 =  
𝑊𝑒𝑡 𝑤𝑒𝑖𝑔ℎ𝑡

(1 −  
𝑊𝑎𝑡𝑒𝑟 𝑑𝑒𝑛𝑠𝑖𝑡𝑦

𝐶𝑎𝑙𝑐𝑖𝑡𝑒 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 
)
 

with a calcite density of 2.73g cm-3. Calcification rate was determined as the change in dry weight 

normalized by the surface of coralline algae at the moment of the weighting and the number of days 

(64 days). Surfaces of coralline substrates were determined on photographs using the software 

ImageJ (ImageJ, NIH US Department of Health and Human Services). 

All experiments were carried out according to relevant regulations and guidelines concerning 

Cystoseira compressa and Neogoniolithon brassica-florida sampling. The latter were collected 

under prefectoral order No. 277, delivered by the Interregional Directorate of the Mediterranean 

Sea, Regulatory/Control Service, authorizing the ECOSEAS Laboratory to sample fauna and flora 

for scientific purposes only. 
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2.3 Data analysis 

Experiment 1: A Generalized Linear Mixed-Effects Model (GLMM), with a Poisson link log 

distribution function was used to test the effect of the temperature on the density of recruits, with 

temperature (three levels) and time (seven levels) as fixed factors, and substrate nested within tank 

as random. A two-way ANOVA was used to test the effect of temperature on the size of the recruits, 

with temperature (three levels) and time (three levels) as fixed factors. The assumptions of 

normality and equality of variance were evaluated through graphical analyses of residuals using 

QQ plot functions. An alpha of 0.01 was used when the assumption of equality of variance was not 

achieved. 

Experiment 2: A GLMM with a Poisson distribution was used to test the effect of temperature, pH 

and substrate type on the density of recruits, with temperature (two levels), pH (two levels), 

substrate type (three levels) and time (five levels) as fixed factors and substrate nested within tanks 

as random, to account for the lack of independence between observations (repeated measures over 

time). The response of the variable size to the treatments was analysed using a GLMM with a 

Gamma error distribution function and the logit link function ‘inverse’, with temperature (two 

levels), pH (two levels), substrate type (three levels) and time (three levels) as fixed factors and 

tank as random. The total calcification rate of the coralline algae was analysed with a Linear Model 

(LM), with temperature (two levels) and pH (two levels) as fixed factors. 

GLMM and LM models were fitted to analyse the effect of the variables and the AICs likelihood 

minimum was used to select the best model among the possible combinations. The different models 

were fitted using the functions “glmer” and “lm” from the package lme4 (Bates et al., 2015) in the 

statistical environment R (R: The R Project for Statistical Computing). P-values were obtained by 

means of a Wald χ2 test using the “ANOVA” function from the CAR package (Fox and Weisberg, 

2018). Finally, the function “emmeans” from the package emmeans (Lenth et al., 2022) was used 

to perform the post-hoc analysis of the LM and GLMM models while the test “snk” (Student-

Newman-Keuls) was used to perform the post-hoc analysis for the two-way ANOVA. 

3. RESULTS 

3.1 In-situ temperatures at the donor population location 

The temperatures at the Cystoseira compressa donor population site during the periods that cover 

the first (14th July-13th October 2020) and second experiment (10th August – 20th October 2021) 

varied between minimums and maximum values of 15.2°C (27th October) and 29.5°C (2nd August) 

in 2020 and between 19.4°C (14th July) and 29.0°C (22nd July) in 2021 (Figure 2). 
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Figure 2: In-situ mean seawater temperature at the donor population site. 

3.2 Experiment 1: Effects of ocean warming on the recruitment of Cystoseira compressa 

The temperature negatively affected the density of recruits since the beginning of the experiment 

(GLMM, P-value < 0.001; Appendix A: Chapter 1 Supplementary material S2). Recruit density 

was significantly lower at 32°C than at 28°C and 24°C since the first sampling dates (day 10; Figure 

3a), while from day 36 densities at 24°C remained higher than the ones at 28°C and 32°C (Figure 

3a). The temperature also affected the size of the recruits at the end of the experiment, recruits at 

24°C being significantly larger than the ones grown at warmer temperatures (ANOVA, P-value < 

0.001; Appendix A: Chapter 1 Supplementary material S2 and Figure 3b). 

 

Figure 3: Density (a) and size (b) of recruits of C. compressa as a function of temperature during 

the first experiment (96 days). The errors bars show the confidence intervals. 
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3.3 Experiment 2: Effects of climate change and species facilitation on the recruitment 

of Cystoseira compressa 

3.3.1. Recruits of Cystoseira compressa 

The temperature and pH, separately and together with substrate type and time, had an interactive 

effect on the density of recruits (GLMM, P-value < 0.001; Appendix A: Chapter 1 Supplementary 

material S3). There was a strong negative effect of the temperature on the density of recruits, 

especially in presence of Neogolithon brassica-florida (Figure 4). Low pH negatively affected the 

density of recruits in absence of N. brassica-florida, but no differences in density between pH levels 

were detected in presence of the coralline algae (Appendix A: Chapter 1 Supplementary material 

S3 and S4). The presence of the living and dead coralline algae negatively affected the density of 

recruits of C. compressa, compared to the higher densities found on artificial substrates. The 

interaction among temperature, pH and time (Temperature × pH × Time) also affected the density 

of recruits (GLMM, P-value < 0.001; Appendix A: Chapter 1 Supplementary material S3). Higher 

densities of recruits were found at low temperature-ambient pH while no differences between pH 

levels were detected at elevated temperature (Appendix A: Chapter 1 Supplementary material S3). 

In general, higher densities of recruits were found at low temperature, ambient pH and in absence 

of N. brassica-florida. The density of recruits decreased with time which led to a homogenization 

of results for most of the considered factors at the end of the experiment (significant differences in 

pH and temperature were found only in absence of the coralline algae and at low temperature, 

Appendix A: Chapter 1 Supplementary material S4). This is because only a few recruits survived 

until the end of the experiment (Figure 4). 

 

Figure 4: Densities of recruits on living and dead Neogoniolithon brassica-florida and on artificial 

substrates, as a function of temperature and pH under the different treatments. The errors bars show 

the confidence intervals. 
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Several interactive effects involving temperature, pH, presence of coralline algae and time affected 

the size of recruits (GLMM, P-value < 0.001 for the interactions pH × Substrate Type × Time, 

Temperature × pH and Temperature × Substrate type, Appendix A: Chapter 1 Supplementary 

material S3). The size of recruits was larger at low temperature and low pH. The size of recruits 

was also larger in absence of N. brassica-florida in all the treatment combinations (Figure 5). 

Differences in size were observed between recruits on living and dead N. brassica-florida, but only 

at low temperature. By the end of the experiment, recruits grown in association with the living 

coralline algae were smaller, while there were no differences in size between recruits grown on 

dead N. brassica florida and in clay substrates (Figure 5; Appendix A: Chapter 1 Supplementary 

material S5). 

 

Figure 5: Size of recruits on living and dead Neogoniolithon brassica-florida and on artificial 

substrates as a function of temperature and pH under the different treatments. The errors bars show 

the confidence intervals. 

3.3.2. Calcification of Neogoniolithon brassica-florida 

The temperature and pH negatively affected the net calcification of living Neogoniolithon brassica-

florida (LM, P-value < 0.01 for Temperature and P-value < 0.05 for pH; Appendix A: Chapter 1 

Supplementary material S3). Calcification rates were statistically significantly higher at 28°C than 

at 32°C and ambient pH than at low pH (Figure 6). 
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Figure 6: Calcification rate of Neogoniolithon brassica-florida after 64 days under different 

treatments. Error bars show the confidence intervals. 

4. DISCUSSION 

Marine forests are in regression in many locations worldwide (Filbee-Dexter and Wernberg, 2018; 

Christie et al., 2019; Pessarrodona et al., 2021) and particularly in the Mediterranean Sea (Thibaut 

et al., 2005, 2015; Orlando-Bonaca et al., 2021a). Despite this, the response of the different life 

stages to climate change remains poorly known, efforts have been done in recent years to evaluate 

the single or combined effect of climate change on forest-forming species together with other local 

stressors such as pollution, highlighting and strong negative effect of OW (Leal et al., 2018; 

Capdevila et al., 2019; Fernández et al., 2021). Our results showed that the temperature, pH and the 

presence of potentially facilitating species had substantial effects on the density of recruits of 

Cystoseira compressa. The warmer temperature had, in agreement with our initial hypotheses, the 

largest negative effect on both the density and the size of recruits, as already observed on other 

forest-forming species, both on recruits (Leal et al., 2018; Capdevila et al., 2019; Verdura et al., 

2021) and adults (Lind and Konar, 2017; Fernández et al., 2020; Smale, 2020; Falace et al., 2021). 

Warmer temperatures not only affect the survival and growth of Cystoseira but also affect their 

metabolism (Celis-Plá et al., 2015, 2017a; Mancuso et al., 2019). A study on C. compressa reported 

that the maximum quantum yield (Fv/Fm) of the macroalgae started decreasing from 28°C, while 

the total phenolic content increased with seawater temperature (Mancuso et al., 2019). Globally, 

the increase in seawater temperature is a direct threat to marine forests, isolating forest-forming 

macroalgae to refuge locations with more suitable conditions, while consequent local extinctions 

can be expected in the northern limits of distribution of some species (e.g. the northern limit of the 

Mediterranean Sea; Mariani et al., 2019; Verdura et al., 2021). Moreover, indirect temperature-

driven effects on marine forests are not negligible, because they contribute to the tropicalization of 
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habitats and the range expansion of warm water species that can re-shape algal communities and 

trophic cascades (Vergés et al., 2014a, 2014b). 

Seawater pH affected both the density and size of recruits in opposite ways, as density was 

negatively affected by the low pH, whereas size was positively affected. Low pH has been shown 

to negatively influence the settlement and early-life stages of other key species such as the giant 

kelp (Gaitán-Espitia et al., 2014; Hollarsmith et al., 2020), corals and molluscs (Kroeker et al., 

2013a) which has led to the paradigm that early-life stages could be more sensitive to global change 

and therefore could constitute a bottleneck (Capdevila et al., 2019; Falace et al., 2021). However, 

in our experiment, lower pH levels positively affected the size of C. compressa, potentially showing 

a better performance as reported in some studies for the giant kelp (Roleda et al., 2011; Leal et al., 

2017). Non-calcifying macroalgae are generally considered as not particularly sensitive to OA as 

they can benefit from increasing dissolved CO2, particularly the carbon-limited species that do not 

possess a CCM (Hepburn et al., 2011; Connell et al., 2013). The increase in dissolved CO2 with 

OA is therefore expected to positively affect carbon-limited species and neutrally or positively 

affect non-carbon-limited species with CCM (Hepburn et al., 2011). Most large brown macroalgal 

species have attributes suggesting the presence of CCM, and yet they benefit from increased CO2 

(Celis-Plá et al., 2015, 2017a; Zhang et al., 2020). The same seems to happen here with the 

beneficial effects of high CO2 on the size of the recruits. C. compressa, possessing a high affinity 

CCM for dissolved inorganic carbon (DIC), would not change the activity of the CCM due to OA 

and, thus, would not specially benefit under elevated CO2. As a result, they would potentially end 

up being less competitive than other species that will benefit from elevated CO2 (Cornwall et al., 

2017a). It is important to note that in some of our experimental conditions (i.e. 32°C and low pH), 

the biggest sizes corresponded to the lowest densities, which does not allow us to exclude the effect 

of density-dependent processes in addition to the effect of CO2. OA could also have indirect effects 

on marine forests, by favouring the increased performance of turfs that are generally carbon-limited, 

especially in the presence of nutrients (e.g. local nutrient pollution; Connell et al., 2013; Falkenberg 

et al., 2013). Turf-forming species are fast-growing and therefore are great space competitors that 

could limit the recruitment of long-life species such as forest-forming species. As a result, turf-

forming species could expand and replace foundation species (e.g. Cystoseira s.l. spp.) that are 

already affected by global warming and other anthropogenic impacts (Nagelkerken et al., 2016; 

Filbee-Dexter and Wernberg, 2018). This indirect effect of OA on marine forests might decrease 

the structural complexity of marine forests, compromising their functioning and promoting regime 

shifts (Connell and Russell, 2010; Connell et al., 2013; Wernberg et al., 2016). 

Our results are in agreement with studies suggesting that OA might have a lesser direct effect on 

forest-forming macroalgae than warming (Kroeker et al., 2013a): the effect of the pH on the density 

of recruits was likely masked by the strong effect of the temperature. Nevertheless, the highest 
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densities were recorded under low temperature (28°C) and ambient pH (8.07), while the size was 

negatively affected by the high temperature (32°C), but positively affected by a decrease in pH 

(7.8). Complex interactions of abiotic and biotic factors are well known in natural systems. In our 

study we initially hypothesized that OW and OA would have affected the early-colonizer coralline 

algae Neogoniolithon brassica-florida, decreasing its potential facilitative effect on C. compressa 

recruitment. The calcification rate of the coralline algae was strongly affected by the temperature 

and pH, probably explaining the stronger effects of the temperature and pH on recruits growing in 

association with the coralline algae. However, the presence of both living and dead coralline algae 

had a negative effect on both the density and the size of the recruits, with the artificial clay substrate 

being the most favourable. Contrary to what is reported in the literature for other species (Asnaghi 

et al., 2015), the very common coralline alga N. brassica florida did not have a facilitating role in 

the recruitment of the later successional species C. compressa in our experiment. Since the very 

beginning of the experiment fewer C. compressa were observed in association with the coralline 

algae, living and dead. In the case of the living coralline algae substrates, the physiological state of 

N. brassica-florida likely does not explain this result as they exhibited calcification rates consistent 

with those reported in other species of coralline algae (Martin and Gattuso, 2009; Cornwall et al., 

2017b). The lower recruitment on living coralline could be due to an inhibition of the settlement 

and development of recruits of C. compressa caused by changes in pH or other chemical parameters 

in the boundary layer formed on the surface of the coralline algae (Cornwall et al., 2014, 2017b). 

Furthermore, crustose coralline algae have biotic interactions linked to their microbiome (Gefen-

Treves et al., 2021) and to their physical and chemical anti-fouling mechanisms to control epiphytes 

(Johnson and Mann, 1986; Keats et al., 1997; Villas Bôas and Figueiredo, 2004). These 

characteristics of the surface of coralline algae could not be optimal for the recruitment of C. 

compressa and hence have reduced the settlement in our experiment. From an applicative point of 

view, it is worth noting that clay substrate, which is already used in many restoration actions in the 

Mediterranean Sea (Falace et al., 2018; De La Fuente et al., 2019; Orlando-Bonaca et al., 2021b), 

was an adequate substrate for the settlement of C. compressa. Our results support that this substrate 

is of particular interest because it favours settlement and offers many technical practicalities (e.g. 

they are cheap, biodegradable, easy to produce and can be formed into any shape; Falace et al., 

2018; De La Fuente et al., 2019; Orlando-Bonaca et al., 2021b). 

In general, our results show that OW and OA additively, affect both the recruitment of C. compressa 

and the calcification rate of N. brassica-florida. Interestingly the interactive effect of OW and OA 

are likely exacerbated in presence of the coralline N. brassica-florida. This could be 1) because of 

the lower recruitment in the presence of coralline algae or 2) because the effects of OW and OA on 

coralline algae exacerbate, in turn, its inhibiting effect on C. compressa (Maggi et al., 2011; Bulleri 

et al., 2016). Our experiment shows that complex interactions of biotic and abiotic factors could 
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affect the key species that shape marine forest communities, with an ultimate effect at the ecosystem 

level (Smale et al., 2022). As most experimental studies performed in controlled conditions, some 

limitations have to be highlighted. First of all, our experiment did not allow to separate the effects 

of the different drivers on the settlement process and the survival of recruits. Secondarily, epiphytes 

(turf algae) progressively appeared in our experimental tanks and their proliferation was enhanced 

at higher temperatures and low pH (author's personal observation), which in turn eventually affected 

the performance of C. compressa. But this phenomenon is likely to be observed also in natural 

conditions, where turf-forming species are expected to proliferate under OW and OA (Filbee-

Dexter and Wernberg, 2018). Many studies on recruits and adults of Cystoseira report elevated 

mortality under experimental conditions, which confirm the difficulty of maintaining Cystoseira in 

tanks (Falace et al., 2018; De La Fuente et al., 2019; de Caralt et al., 2020) and of replicating the 

conditions of natural habitats in the laboratory. This could be due to different variability in light, 

temperature and flow conditions in the aquarium facilities (Irving et al., 2009). Different associated 

organisms (e.g. microbiome, epiphytic algae, invertebrates) could also explain the different 

performances observed when culturing these algae (Mancuso et al., 2016). Our experiments were 

stopped when recruits showed signs of degradation, but the duration of our experiments is 

consistent with other studies on Cystoseira (de Caralt et al., 2020; Falace et al., 2021; Verdura et 

al., 2021). 

The densities obtained in our experiments are extremely high, reaching an average of 94 100.07 ± 

89 324.78 C. compressa ind. m-2 (mean ± SD, n = 28) after two months in the first experiment and 

14 213.20 ± 17.67 C. compressa ind. m-2 (mean ± SD, n = 197) after 2 months in the second 

experiment (min.: 1000 ind. m-2; max.: 320 000 ind. m-2 for the first experiment and min.: 10 000 

ind. m-2 and max.: 210 000 ind. m-2 for the second). Interestingly, a parallel study performed by our 

team at the same time as the first experiment, seedling natural stones with the same technique 

presented in this study directly in the field, produced lower densities after 2 months. On the 

contrary, the recruits growing in the field under natural conditions were bigger (11.33 ± 3.27 mm) 

than in the first (5.18 ± 2.70 mm) and second experiment (2.51 ± 1.61 mm) after 2 months, showing 

that the conditions in tanks are not optimal for the growth of C. compressa and/or that density-

dependent factors can result in high density and smaller size of recruits in the laboratory. Natural 

densities observed in the donor population reach only 76.36 ± 0.72 of C. compressa ind. m-2 (mean 

± SD, n = 22; maximum: 128 ind. m-2 and minimum: 16 ind. m-2; author’s personal observations, 

article in prep.). Even if the comparison with natural conditions often highlight some limitation for 

the studies in tanks, it is important to continue with this approach as it is the only one that allows 

testing multiple factors under controlled conditions (i.e. temperature and pH). 

The results from this study demonstrate that the interactive effects of climate change have a 

pronounced negative impact on shallow marine forests. This result is especially striking for forest-
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forming macroalgae thriving in rock pools, which are expected to be more acclimated to local 

factors variation (i.e. temperature and pH). Marine forests are facing several other stressors than 

global change (e.g. water pollution, urbanization, trampling, herbivory; Orfanidis et al., 2021) that 

already put them on the edge. Some of these stressors have been addressed by management 

measures and are now mitigated (e.g. water quality; Blanfuné et al., 2019) allowing, in a few cases, 

the natural recovery of the forest or the feasibility of planning restoration actions (Gorman and 

Connell, 2009; Gianni et al., 2013; Cebrian et al., 2021; Riquet et al., 2021). Recently, new 

restoration techniques opened the door to the possibility of restoring these ecosystems, still, marine 

forests will be increasingly impacted by global change (IPCC, 2022) and it has to be considered to 

achieve long-term population sustainability and/or successful restoration actions. The next step for 

the protection of these key ecosystems is to understand how climate change and other drivers acting 

at the local scale can interact, eventually providing additive or synergetic effects (Halpern et al., 

2008a), likely causing the restructure and redistribution of marine forests and affecting their ability 

to resist and recover under extreme conditions (Smale, 2020; Verdura et al., 2021; Smale et al., 

2022). 

DATA AVAILABILITY 

Data Availability Statement: Data Availability Statement: The datasets generated and analysed 

during the current study are available in the Knowledge Network for Biocomplexity repository, 

https://knb.ecoinformatics.org/view/urn:uuid:daa9cc97-47eb-48a3-addc-ed0047f0f3c4 

ACKNOWLEDGEMENTS 

This work is supported by a PhD grant funded by the Région Provence-Alpes-Côte d'Azur (contract 

Emplois Jeunes Doctorants 2019–2022) and the AFRIMED project funded by the Executive 

Agency for Small and Medium Enterprise (EASME) and European Maritime and Fisheries Fund 

(EMFF) under grant agreement N° 789059. We thank C. Carbonne for the fruitful exchanges and 

support and to all the internship students that helped during the project: M. Ortolani, B. Brunet, M. 

Gillio, K. Vigreux and A. Muret. We are grateful to Sandra from Atelier Terracotta (Nice, France) 

who helped us with the clay substrates. Thanks to M. Drake for the English proofreading of the 

article 

AUTHOR’S CONTRIBUTION 

Author Contribution Statement: L.M. got the funding. L.M., S.C. and M.M. designed the study. 

L.M., J.V. and M.M. were involved with fieldwork. L.M., S.C., J.V. and M.M. performed the 

experiments. G.S. and G.R. helped in counting and measures from the first experiment in 2020. 

M.M., G.R. and F.P. did the clay substrates. S.A. contributed to the maintenance and measures of 

https://knb.ecoinformatics.org/view/urn:uuid:daa9cc97-47eb-48a3-addc-ed0047f0f3c4


CHAPTER 1 

……….…………………….. 

38 

carbonate chemistry. S.C. and M.M. analysed the data. M.M. wrote the first draft of the manuscript 

which was then finalized by all co-authors. 

 



 

 

 

CHAPTER 2: GRAZING EFFECTS ON 

RECRUITS OF THE FOREST-FORMING FUCOID 

Cystoseira compressa 

 

  



 

 

 

 



CHAPTER 2 

…….….……………..…..… 

41 

ABSTRACT 

Grazing is one of the most important biological factors controlling the mortality of early-life stages 

of fucoids and one of the major problems when restoring marine forests. Benthic macro-

invertebrates (e.g. sea urchins) and fish shape and regulate benthic macroalgal communities from 

temperate to tropical regions, being responsible for the formation of turfs or even barren grounds. 

However, other smaller invertebrates associated with marine forests could significantly participate 

in the grazing, especially on early-life stages. Knowing which invertebrates could participate in the 

grazing of recruits of forest-forming macroalgae could be crucial for their conservation. We 

performed several experiments in the field and in mesocosms in order to investigate the herbivory 

pressure and the effects of different grazers on recruits of Cystoseira compressa. The results 

highlight that non-strict herbivorous species, such as Clibanarius erythropus, Cerithium vulgatum 

and Idotea balthica, can potentially graze on recruits of Cystoseira s.l. spp. probably affecting the 

success of marine restoration actions. From the different invertebrates studied in the mesocosms, I. 

balthica had the higher consumption rates of recruits of C. compressa. We conclude that biotic 

factors such as herbivory need to be well understood when planning restoration actions and that 

anti-herbivory devices adapted to the local diversity of potential herbivores should be included 

when restoring marine forests. 

Key words: Cystoseira compressa, Herbivory, Plant-herbivore interactions, Grazing, Restoration, 

Clibanarius erythropus, Cerithium vulgatum, Idotea balthica, Gammarus, sea urchins, Sarpa salpa 

1. INTRODUCTION 

Marine forests of large brown macroalgae represented by the species from the orders Laminariales, 

Tylopteridales, Desmarestiales and Fucales form structurally complex habitats in cold and 

temperate regions around the world (Wernberg and Filbee-Dexter, 2019). These forests, commonly 

located on intertidal and subtidal rocky bottoms, provide important ecosystem functions, such as 

habitat, food and shelter to multiple species and are one of the most productive ecosystems in the 

world participating in the carbon sink (Boudouresque et al., 2016; Wernberg and Filbee-Dexter, 

2019; Filbee-Dexter et al., 2022; Pessarrodona et al., 2022). Despite the important ecological 

functions marine forests provide, multiple anthropogenic stressors are pushing them to the edge 

(Filbee-Dexter and Wernberg, 2018; Carnell and Keough, 2019; Wernberg et al., 2019b). A 

worldwide decline of marine forests is occurring, mainly driven by the destruction of habitats, 

reduced water quality, global change and proliferation of herbivores (Wernberg et al., 2019b; 

Orfanidis et al., 2021; Pessarrodona et al., 2021). In particular, overgrazing by sea urchins and 

herbivorous fish species is in some locations responsible for such declines (Foster and Schiel, 2010; 

Gianni et al., 2017; Sharma et al., 2021; Barrientos et al., 2022), shaping and regulating benthic 

macroalgal communities in a variety of natural rocky reef systems from temperate to tropical 
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regions (Scheibling et al., 1999; Vanderklift et al., 2009; Vergés et al., 2009). Although local 

stressors and regional variations can dominate marine forest dynamics (Smith et al., 2017, 22; 

Smale, 2020; Verdura et al., 2021), many studies have shown how sea urchins, and native and 

invasive herbivorous fish, and even omnivorous fish, are a potential threat to macroalgal 

communities and are responsible in the formation of turfs or barren ground extensions (Tegner et 

al., 1995; Vergés et al., 2014b, 2016; Papadakis et al., 2021). Other smaller invertebrates associated 

to marine forests such as decapods, gastropods, amphipods and isopods can significantly participate 

in the grazing of different life stages of forest-forming species (Arrontes et al., 2004; Jonne et al., 

2006; Gunnarsson and Berglund, 2012; Hong et al., 2021; Navarro-Barranco et al., 2022; Molis et 

al., 2010) but little is known about the magnitude of their possible effects. 

In the Mediterranean Sea, density and abundance of macroalgae are also controlled by herbivorous 

(Vergés et al., 2009). The two species of sea urchin Paracentrotus lividus and Arbacia lixula are 

the most common benthic macro-herbivores of the sublittoral rocky bottoms (Bulleri et al., 1999; 

Agnetta et al., 2015). Both species of sea urchin have been responsible alongside anthropogenic 

stressors (e.g. date mussel harvesting), for the degradation and regime shifts of forest-forming and 

shrub-forming macroalgae assemblages to barren grounds, favouring the maintenance of post-

regime shifts stable states (e.g. bare rock) in many areas (Sala et al., 1998; Bulleri et al., 1999; 

Guidetti and Dulčić, 2007; Guidetti, 2011; Giakoumi et al., 2012). 

However, sea urchins are not the only macro-herbivores that play a role in the structure of 

macroalgal assemblages of the Mediterranean Sea. Salema fish, (Sarpa salpa), the only true native 

herbivorous fish in the Mediterranean Sea, is also important in structuring macroalgae communities, 

and can also be responsible for the depletion of Cystoseira s.l. forests (Gianni et al., 2017). More 

recently, the range-expansion of tropical herbivorous fishes such as the rabbitfish (Siganus spp.) 

has also been signalled for severely reducing the biomass and diversity of macroalgal species in the 

Mediterranean Sea, driving regime shifts from macroalgal dominated communities to barrens 

(Vergés et al., 2014b, 2016; Zarco-Perello et al., 2020). Herbivorous range-shifting fishes have also 

been reported for preferring to graze on turf, constituting also a menace for forest-forming species 

as they could graze on the microscopic life-stages present in the turf matrix (Barrientos et al., 2021). 

Cystoseira s.l. spp. in the Mediterranean Sea form prominent and dense canopies that are analogous 

to kelp forests of other temperate rocky coasts (Giaccone, 1973; Ballesteros et al., 1998), and are 

amongst the most productive and complex habitats of the Mediterranean Sea (Ballesteros, 1989a, 

1990a; Clayton, 1990). The vertical zonation of Cystoseira s.l. spp. depends on multiple depth-

dependent physical factors such as light, hydrodynamics, temperature, and availability of nutrients 

(Ballesteros, 1989b), but also on biotic factors such as herbivory (Ruitton et al., 2000; Vergés et 

al., 2009; Sala et al., 2011). 
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Because of the important ecosystem services marine forests provide, important efforts have recently 

been made to promote the conservation and the viability of their restoration (Eger et al., 2021b). 

Different restoration techniques have been used to restore marine forests from transplantation of 

adults to ex-situ and in-situ recruitment enhancement techniques (Verdura et al., 2018; Cebrian et 

al., 2021; Falace et al., 2018; De La Fuente et al., 2019; Savonitto et al., 2021). However, still, some 

problems need to be overcome (e.g. herbivory and climate change) to ensure the success of 

conservation and restoration actions (Gianni et al., 2013; Cebrian et al., 2021; Savonitto et al., 

2021). Because grazing is believed to be one of the most important biological factors controlling 

the survival of early-life stages of fucoids (Chapman, 1995), it constitutes one of the major problems 

when planning the restoration of marine forests (Gianni et al., 2013, 2018; Tamburello et al., 2019; 

Savonitto et al., 2021). Knowing which species graze on different life stages of forest-forming 

species could be crucial for successful conservation and restoration actions. It is of special interest 

to study early-life stages as they are more vulnerable than adults and high mortality rates are 

naturally observed (Aberg, 1992; Coelho et al., 2000; Schiel and Foster, 2006), and because the 

resilience of the whole population to future impacts can be largely dependent on efficient 

recruitment and growth of the recruits (Ang, 1991; Capdevila et al., 2015). 

The main objective of this study was to investigate the herbivory pressure in the field and the effect 

of different species (sea urchins, fishes, decapods, gastropods, amphipods and isopods) on recruits 

of Cystoseira compressa. In order to assess species-specific herbivory pressure on the survival and 

growth of recruits of C. compressa we performed experiments in the field and in mesocosms. More 

specifically, in the field we performed herbivory exclusion experiments on recruits of C. compressa 

obtained from both in-situ and ex-situ recruitment enhancement techniques. In laboratory, we 

assessed for the first time the potential grazing impact of non-strict herbivorous species that have 

not been considered before as potential herbivores (decapods, gastropods, amphipods and isopods) 

on recruits of C. compressa. 

2. MATERIAL AND METHODS 

2.1. Study sites and target species 

Cystoseira compressa was the selected species because it is considered one of the most resistant 

species to manipulation and the only Cystoseira s.l. spp. not protected under Barcelona Convention 

Annex II and United Nations Environment Programme/Mediterranean Action Plan-UNEP/MAP 

(Mangialajo et al., 2012; Verlaque et al., 2019). This species, that could also have a role in 

facilitating the settlement of other Cystoseira s.l. spp. (Mangialajo et al., 2012), is still present in 

the French Riviera, where patches can be found along exposed rocky shores but dense populations 

are only found on rockpools in Lérins Islands (author’s personal information; Thibaut et al., 2015). 
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Three sites were selected to study the herbivory pressure on recruits of C. compressa: one site on a 

Cystoseira s.l. forest (Sainte Marguerite Island) and two sites where C. compressa was reported in 

the past but where at present is lost (Beaulieu-sur-Mer and Passable; Thibaut et al., 2015). The 

forest site corresponds to a rockpool system located in Sainte Marguerite Island (from now Sainte 

Marguerite; WN-Mediterranean Sea - Lérins Islands, Cannes, France), a protected Natura 2000 site 

at 1.3 km from the coast of Cannes where there is one of the last well-conserved shallow marine 

forests in the Côte d’Azur (Figure 1). The rockpool system (between 0.2 and 1.0 m depth) is 

composed mainly of C. compressa, Gongolaria barbata, Ericaria crinita and Ericaria 

brachycarpa. The two sites deprived of Cystoseira s.l. forests are located on the continental open 

coast in (i) Fourmis’ Bay in Beaulieu-sur-Mer (from now Beaulieu), a semi-exposed site between 

0.5 and 1 m depth, and (ii) Passable in Saint – Jean - Cap – Ferrat (from now Passable), a sheltered 

site around 0.5 m depth (Figure 1). 

 

Figure 1: Location of the three experimental sites: the rockpool system in Sainte Marguerite Island 

in Lérins Islands (43°30’57.6’’N, 7°3’14.4’’E), and the two open coast locations Beulieu 

(43°42’3.6’’N, 7°19’48’’E) and Passable (43°41’42’’N, 7°16’33.6’’E). 

2.2. Herbivores survey 

Before the start of the experiments, the presence and density of known and potential herbivorous 

species, including sea urchins, decapods, gastropods and Sarpa salpa, were characterized at the 

three locations. The density of decapods and gastropod was determined using 20*20 cm quadrates 

in the rockpool system in Sainte Marguerite (n = 40) and in the open coast in Beaulieu (n = 20) and 
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Passable (n = 20); while the density of sea urchins was assessed using 50*50 cm quadrates (n = 20 

per site). The surveys were performed from summer to autumn 2020 and 2021 on five different 

days in Sainte Marguerite and in 2021 on three different days in Beaulieu and Passable. Herbivorous 

fish, mainly Sarpa salpa larger or equal to 5 cm length, were visually quantified in Sainte 

Marguerite, while in Beaulieu and Passable, herbivorous fish densities were quantified by recording 

stationary videos at random points and counting number of S. salpa individuals in a radius of 5 m 

during 5 min (n = 10; Sala and Ballesteros, 1997). 

2.3. Field experiment 1: Herbivory on in-situ recruitment substrates in a rockpool 

In order to study the effectiveness of the in-situ recruitment enhancement and the herbivory pressure 

on recruits in the field, an herbivory exclusion experiment was performed in the rockpool system 

in Sainte Marguerite (Figure 1). 18 substrates were randomly fixed using Epoxy to the bottom of 

the rockpool system, to provide free substrate. In order to test the effect of recruitment 

enhancement, half of these substrates were seeded using the non-destructive in-situ recruitment 

enhancement technique (Verdura et al., 2018). To do so, on July 2020, after having observed mature 

conceptacles under the microscope, apical fertile branches (ca. 3 cm in length) were manually 

collected and transported in cold and dark conditions in plastic bags to the laboratory. The 

receptacles were conserved at 4°C in the dark overnight before placing them on the selected 

substrates in-situ. On each substrate, a net bag containing 5 g fresh weight (FW) of receptacles was 

placed floating above the substrate for three days. In order to assess the herbivory impact on the 

recruits, again half of the substrates were protected (factor Protection, three levels) to avoid 

herbivory (mainly from fishes and sea urchins, factor level protected), artefact controls and 

substrates with no protection (levels artefact control and open, respectively) were also included 

(Figure 2; Recruitment enhancement × Herbivory Protection, n = 3). The density (as number of 

recruits per surface) and size (cm) as length of the longest axis of each C. compressa individual 

growing on the substrates were monitored at 2, 9 and 12 months and used as variables. The size of 

the recruits was calculated by measuring 10 individuals from each substrate, in the case of substrates 

with less than 10 individuals, all the individuals were measured. The natural density of the C. 

compressa individuals present in the rockpool of Sainte Marguerite was monthly monitored from 

May to October 2020 using 20*20 cm quadrats (n = 25) and the global mean value was used as a 

reference to assess the evolution during our experiments. 

The density of recruits of C. compressa on 0.04 m2 was used as response variable. A Generalized 

Linear Model (GLM), with a Quasipoisson link log distribution function, was used to test the effect 

of the herbivory protection and recruitment enhancement on recruits of C. compressa after 2 

months, with herbivory protection (three levels) and recruitment enhancement (two levels) as fixed 

factors. After testing the effect of the recruitment enhancement, this factor was no longer considered 
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for further analysis. Then, a Generalized Linear Mixed-Effects Model (GLMM) with a Poisson link 

log distribution function was used to test the effect of the factor protection over time with the factors 

protection and time (both three levels) as fixed factors and the factor substrate as random factor, as 

GLMM can cope with repeated measures over time (Pinheiro and Bates, 2000). A GLMM with an 

inverse gaussian link log distribution was used to test the effects of the herbivory protection on the 

size of the recruits (cm), with the factors herbivory protection and time (both three levels) as fixed 

factors and the substrate as a random factor. 

 

Figure 2: Representation of the different experiments performed. The two herbivory experiments 

in the field, to asses the herbivory pressure on recruits of C. compressa; and the mesocosm 

experiment, to assess the potential herbivory on recruits of C. compressa of the decapod 

Clibanarius erythropus, the gastropod Cerithium vulgatum, the amphipod Gammarus sp. and the 

isopod Idotea balthica. 

2.4. Field experiment 2: Herbivory on ex-situ recruitment substrates on the open coast 

In order to study the herbivory pressure in the field and the success of the ex-situ recruitment 

enhancement technique in absence of a Cystoseira s.l. spp. forest, an herbivory exclusion 

experiment was performed in the two locations situated in the open coast: Beaulieu and Passable 

(Figure 1). In August 2021, after having observed mature conceptacles under the microscope, about 

180 g FW apical branches of C. compressa containing fertile receptacles, were collected from the 

same C. compressa donor population located in the rockpool system in Sainte Marguerite, 

following the same non-destructive technique described before (see section 2.3; Falace et al., 2018; 

Verdura et al., 2018; De La Fuente et al., 2019). The apical branches were transported in cold and 

dark conditions and once in the laboratory they were gently cleaned with tweezers. To stimulate the 

release of gametes, the apical branches were maintained at 4°C in the dark overnight before placing 

them on the surface of three 30 L closed system tanks (60 g FW of fertile receptacles per tanks) to 

obtain recruits on substrates placed on the bottom of the tanks. The receptacles were kept for four 
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days on the surface of the tanks while releasing the zygotes. The recruits of C. compressa were kept 

for 1 month in the aquarium facilities, with air pumps and under natural light conditions, before the 

transplant to the two coastal locations was done. The seawater (filtered using a 200 µm mesh) of 

the tanks was changed every two days and no culture medium was provided to the cultures. After 

2.5 months in the tanks, 24 substrates with similar densities of C. compressa recruits were 

transplanted and fixed using Epoxy at the sea bottom of the two open coast locations in October 

2021. Some substrates with recruits were maintained in the aquarium facilities and used as controls 

(n = 6). As for experiment 1, half of the transplanted substrates were protected to avoid herbivory 

(mainly fishes and sea urchins), while the others were not (n=6; Figure 2). 

The density of recruits of C. compressa on 0.04 m2 was used as response variable. A Generalized 

Linear Mixed-Effect Model (GLMM) with a Poisson link log distribution function, was used to test 

the effect of the herbivory protection on recruits of C. compressa, with the herbivory protection 

(two levels) and time (two levels) as fixed factors, and the site (two levels) and substrate as random 

to cope with repeated measures over time (Pinheiro and Bates, 2000). 

2.5. Mesocosm experiment: Potential herbivory of different species 

Four experiments were done in a mesocosm in the laboratory to study the potential herbivory role 

of some invertebrates on recruits of C. compressa. The selected species consisted of a decapod 

(Clibanarius erythropus), a gastropod (Cerithium vulgatum), an amphipod (Gammarus sp.) and an 

isopod (Idotea balthica). The species and their densities were selected in function of the 

observations in the field and in function of the information reported in the literature for other 

herbivory experiments performed on fucoid species (Engkvist et al., 2000; Gunnarsson and 

Berglund, 2012; Suzuki et al., 2020; Hong et al., 2021; Navarro-Barranco et al., 2022). 

C. erythropus and C. vulgatum individuals were obtained in the Sainte Marguerite, within the 

marine forest, while I. balthica and Gammarus sp. were obtained from Anse des Fossés (Saint-

Jean-Cap-Ferrat, France) within leaves of Posidonia oceanica detritus. Different numbers of 

individuals of each species were selected and placed in separated close system experimental tanks 

(2.5 L). In each experimental tank, there was one substrate with similar biomass of recruits of 

Cystoseira compressa (between 2-3 months old). Recruits were obtained in the laboratory following 

the same ex-situ cultivation technique as in section 2.4 and kept in 30 L tanks until the beginning 

of the mesocosm experiment. The substrates with C. compressa were cleaned from epiphytes and/or 

growing biofilm with tweezers and a brush before the start of the experiment. The selected densities 

of individuals for C. erythropus were 1, 2 and 3 individuals per tank (n = 5); for C. vulgatum were 

1, 3 and 5 individuals per tank (n = 5); and for Gammarus sp. and I. balthica 1 individual per tank 

(n = 7). Controls with 0 herbivorous were included (n = 5). As the experiments with C. erythropus 

and C. vulgatum were performed simultaneously, the same controls (n = 5) were used for both 
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species. The experiments with Gammarus sp. and I. balthica were performed later and, as were 

again performed simultaneously, both species share the control experimental tanks with 0 

individuals (n = 5). This experiment consisted in a total of 50 experimental tanks. All the species 

were kept without food for 48h before the start of the experiment. Every two days the temperature 

was measured and the filtered seawater (200 µm mesh) of the tanks was changed, faeces were 

cleaned every day. C. erythropus and C. vulgatum were maintained in the experimental tanks 23 

days and Gammarus sp. and I. balthica 4 days, until they consumed all or almost all of the available 

biomass of C. compressa. C. erythropus and C. vulgatum were only weighted once at the end of the 

experiment (mg FW) after extracting them from their shells. Gammarus sp. and I. balthica 

individuals where weighted (mg FW) every 24h. The mean biomass of Gammarus sp. individuals 

was 0.08 ± 0.02 g and the mean biomas of I. balthica individuals was 0.07 ± 0.01 g (mean ± SD) at 

the beginning of the experiment. The consumption of the different species was assessed as the 

consumed biomass (mg FW) of recruits and calculated from the number of C. compressa recruits. 

At the start of the experiment the mean biomass of C. compressa on each tank was 5.02 ± 0.53 mg 

FW for C. erythropus and C. vulgatum and 6.05 ± 0.91 mg FW (mean ± SD) for Gammarus sp. and 

I. balthica (Appendix B: Chapter 2 Supplementary material). The biomass of recruits was evaluated 

every 24h the first week and then twice a week. 

The biomass (mg FW) of the C. compressa recruits was extrapolated from a linear regression 

[Volume (mm3) ~ biomass (mg FW)]. To do so, the volume of each recruit was calculated 

approximating its shape to a cone and semi sphere (Appendix B: Chapter 2 Supplementary 

material). The maximum length and maximum width of each recruit was measured under a 

stereomicroscope. Then this volume was transformed to g FW, using the previously adjusted 

volume (mm3) ~ biomass (mg FW) linear regression using other recruits (R2 = 0.994). To obtain 

the linear regression, the volume of 38 recruits was calculated by water displacement (mL). The 

volume of each recruit was measured six times and the mean of the measurements was used. Then 

each recruit was dried with absorbent paper before being weighed three times in mg (0.001), for 

obtaining the FW. Correlating the volume and the biomass of each recruit we adjusted the linear 

regression (Appendix B: Chapter 2 Supplementary material).  

A Linear Mixed-Effects Model (LMER) was used to test the cumulative biomass consumption of 

recruits of C. compressa by C. erythropus, C. vulgatum and I. balthica, with the density of 

herbivorous (four levels for C. erythropus, C. vulgatum and two levels for I. balthica) as a fixed 

factor, and time and the aquarium as a random factor as the LMER models can cope with repeated 

measures over time. Finally, a Linear Model (LM) was used to test the consumption rate (mg C. 

compressa mg herbivor-1 day-1) of the different species, with the species (three levels) as fixed 

factor. Gammarus sp. was exclude as no consumption was detected. 
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All the GLMM and LM models were fitted to analyse the effect of the variables and the AICs 

likelihood minimum was used to select the best model among the possible combinations. All the 

different models were fitted using the functions “glmer” and “lm” from the package lme4 (Bates et 

al., 2015) in the statistical environment R (R Core Team, 2019). For all the models, the assumptions 

of normality and equality of variance were evaluated through graphical analyses of residuals using 

QQ plot functions. P-values were obtained by means of a Wald χ2 test using the ‘ANOVA’ function 

from the car package (Fox and Weisberg, 2018). Finally, the function ‘emmeans’ from the package 

emmeans (Lenth et al., 2022) was used to perform the post-hoc analysis. 

3. RESULTS  

3.1. Herbivores survey 

In the open coast sites mean densities of Sarpa salpa of 1.1 ± 1.59 ind. 39.27 m-2 and of 1.2 ± 0.84 

ind. 39.27 m-2 (mean ± SD, hereafter) were respectively found in Beualieu and Passable. Sea urchins 

(Paracentrotus lividus and Arbacia lixula) were present at densities of 6.00 ± 6.86 ind. m-2 and of 

3.14 ± 3.89 ind. m-2; Paguroidea decapods were present at densities of 2.91 ± 6.32 ind. m-2 and of 

49.45 ± 69.29 ind. m-2; and Cerithium vulgatum was present at densities of 5.09 ± 18.07 ind.m-2 

and of 96.73 ± 116.27 ind. m-2, respectively for Beaulieu and Passable (Figure 3). In the rockpool 

system in Sainte Marguerite, neither Sarpa salpa (>5 cm) or sea urchins, Paracentrotus lividus or 

Arbacia lixula, were observed during the experiment. In this location mean density of Paguroidea 

decapods was 45.90 ± 102.18 ind. m-2 and of Cerithium vulgatum was 36.46 ± 73.73 ind. m-2 (mean 

± SD). Paguroidea decapods in the three locations consisted mainly in Clibanarius erythropus but 

individuals of Diogenes pugilator and few of Calcinus tubularis were also observed. In general, 

higher densities of herbivores were observed in Passable (Figure 3). 

 

Figure 3: Density of herbivores in the three studied locations. The errors bars show the standard 

error. 
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3.2. Field experiment 1: Herbivory on in-situ recruitment substrates in a rockpool 

The density of recruits (ind. 0.04 m-2) on the substrates in Sainte Marguerite, were affected at two 

months only by the herbivory protection, and not the recruitment enhancement (GLMM, P-value < 

0.001; Figure 4 and Table 1). At this time, the post-hoc analysis found higher densities of recruits 

on protected substrates than on open or artefact control substrates. Due to the non-significance of 

the factor recruitment enhancement on the density of recruits at two months, this factor was no 

longer considered and the data was pooled together in the next analysis. 

 

Figure 4: Boxplot of the density of recruits of C. compressa per 0.04 m2 of natural substrates in the 

rockpool in Sainte Marguerite 2 months after the starting of the experiment. The bold horizontal 

lines indicate the median value (Q2), the box marks the interquartile distances (Q1 and Q3), the 

whiskers mark the values that are less than Q3 + 1.5 * IQR but greater than Q1 – 1.5 * IQR. 

When considering the three sampling dates, the herbivory protection and the time exerted an 

interactive effect on the density of recruits (GLMM, P-value < 0.001 for the interaction Herbivory 

protection × Time; Figure 5 and Table 1). The post-hoc analysis detected differences in densities 

of C. compressa between the levels of herbivory protection for all sampling days. At month 2 and 

12 densities of C. compressa were higher on protected substrates, while at month 7 there were no 

differences between protected and open substrates. For all the herbivory protection levels, the 

densities of C. compressa decreased over time, but at month 12 they were still higher than the ones 

observed in the natural population (3.05 ± 0.14 ind. C. compressa 0.04 m-2 on natural populations; 

Figure 4). 
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Table 1: Results from the statistical analyses.  

Experiment Model Factor levels DF Chi sq P-value    

E
x

p
er

im
en

t 
L

ér
in

s 
glm (Density (ind 

0.04 m-2) 2 months ~ 

Protection * 

Recruitment 

enhancement, 

quasipoisson(link = 

"log")) 

Protection (Protected, Artefact 

control and Open) 
2 16.3084 < 0.001 *** 

 
Recruitment enhancemend 

(Yes/No) 
1 0.006 0.940 

  

Protection * Recruitment 

enhancemend 
2 2.238 0.327 

   

glmer (Density (ind 

0.04 m-2) ~ Protection 

* Time + (1 | 

Substrate), poisson 

(link = "log")) 

Protection (Protected, Artefact 

control and Open) 
2 19.872 < 0.001 *** 

 

Time (4 levels) 2 3736.725 < 0.001 ***  

Herbivory protection * Time 4 53.427 < 0.001 ***  

glmer (Size (cm) ~ 

Protection * Time + 

(1 | Substrate), 

inverse.gaussian(link 

= "log")) 

Protection (Protected, Artefact 

control and Open) 
2 1.595 0.450 

  

Time (4 levels) 2 409.251 < 0.001 ***  

Herbivory protection * Time 4 0.947 0.918    
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glmer (Density (ind 

0.04 m-2) ~ Protection 

* Time + (1 | Site) + 

(1 | Substrate), 

poisson (link = 

"log")) 

Herbivory Protection (Protected 

and Open)  
1 3.793 0.051 

  

Time (2 levels) 2 2115.406 < 0.001 *** 
 

Herbivory protection * Time 2 123.771 < 0.001 *** 
 

E
x
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t 
C

. 
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yt

h
ro

p
u

s lmer (Biomass 

consumption (mg 

FW) ~ n° herbivores 

+ (1 | Time) + (1 | 

Tank)) 

N° herbivores (0, 1, 2 and 3) 3 45.129 < 0.001 *** 
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m
 lmer (Biomass 

consumption (mg 

FW) ~ n° herbivores 

+ (1 | Time) + (1 | 

Tank)) 

N° herbivores (0, 1, 3 and 5) 3 42.651 < 0.001 ***  
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lmer (Biomass 

consumption (mg 

FW) ~ n° herbivores 

+ (1 | Time) + (1 | 

Tank)) 

N° herbivores (0 and 1) 1 45.562 < 0.001 ***  

A
ll

 h
er

b
iv

o
re

s lm (Consumption 

Rate mg FW C. 

compressa + mg FW 

herbivores -1 * Day -1) 

~ Species of 

herbivores) 

Species of herbivores (4 levels) 2 27.666 < 0.001 *** 

 

        

Only time, and not the herbivory protection had a significant effect on the size of the recruits 

(GLMM, P-value < 0.001 for the factor Time; Figure 6 and Table 1). The size was increasing during 

the sampling dates with a maximum at month 12 (July 2021), with a mean size of 9 ± 4.18 cm 

(mean ± SD), and maximum and minimum of 18 and 3 cm, respectively (Figure 6 and Table 1). 

The natural population density of Cystoseira compressa in Sainte Marguerite was 3.05 ± 0.14 ind. 
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0.04 m-2 (76.36 ± 0.72 individuals m-2; mean ± SD), with maximum densities of 5 and a minimum 

of 1 individual 0.04 m-2. 

 

Figure 5: Density of recruits of C. compressa per 0.04 m2 of substrates in the rockpool in Sainte 

Marguerite. The natural population densities of C. compressa in Sainte Marguerite are represented 

in red considering the mean and the standard error (3.05 ± 0.14 individuals 0.04 m-2, mean ± SD). 

The errors bars show the standard error. 

 

Figure 6: Size class distribution of the C. compressa recruits on Sainte Marguerite’s substrates 

over time for each treatment. The X-axis represent the size classes in 1 cm intervals and the Y-axis 

is the proportion of each size class per treatment. 

3.3. Field experiment 2: Herbivory on ex-situ recruitment substrates on the open coast 

The herbivory protection and time had an interactive effect on the density of recruits of C. 

compressa on the open coast (GLMM, P-value < 0.001 for the interaction Herbivory protection × 
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Time; Figure 7 and Table 1). The post-hoc analysis found higher densities of recruits of C. 

compressa on protected substrates after 1 and 12 days. However most of the recruits (> 95%), even 

on protected substrates, disappeared after 24h, while densities of the recruits that remained in the 

tanks in the laboratory (substrates that were not transplanted to the field) remained stable after 12 

days (Figure 7). 

 

Figure 7: Average evolution of the density of recruits of C. compressa (individuals per 0.04 m2) 

on the two open coast sites and in the laboratory controls. The density on the laboratory control 

substrates was lower as the most recruited substrates were selected to be transplanted to the field. 

The errors bars show the standard error. 

3.4. Mesocosm experiment: Potential herbivory of different species  

All the studied herbivorous species, except Gammarus sp., consumed recruits of C. compressa. For 

Clibanarius erythropus, Cerithium vulgatum and Idotea balthica the post-hoc analysis found 

significant differences in the consumption of C. compressa biomass when compared to the controls 

(factor number of individuals; GLMM, P-value < 0.001; Figure 8 and Table 1). No consumption 

and neither significant mortality of C. compressa was found in the tanks with Gammarus sp. (Figure 

8). 

For C. erythropus, the only differences were between the control and the presence of the herbivores, 

whatever the density was (without significant differences according to the number of individuals). 

While for C. vulgatum there were significant differences between the highest and the lowest number 

of individuals (5 individuals versus 1 individual; Figure 8 and Table 1). 24h after the start of the 

experiment, I. balthica individuals consumed 100% of the biomass of recruits available in four of 

the seven experimental tanks, and more than the 85% in two of the seven experimental tanks (Figure 

8). 
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Figure 8: Cumulative consumption of C. compressa biomass (mg FW) by Clibanarius erythropus, 

Cerithium vulgatum, Gammarus sp. and I. balthica, and control substrates. Not that the biomass 

loss in the controls (0 individuals) it is not due to herbivory. The errors bars show the standard 

error. 

Regarding the results of the LM used to test the consumption rate of C. compressa by C. erythropus, 

C. vulgatum and I. balthica, the last one was the herbivore consuming more C. compressa, with no 

difference between the consumption rate of C. erythropus and C. vulgatum (Figure 9 and Table 1). 

 

Figure 9: Consumption rate (mg C. compressa mg herbivore -1 day -1) for the three herbivores for 

the whole duration of each experiment. Gammarus sp. is not represented as we could not observe 

consumption of C. compressa by this species. The error bars show the standard error. 

4. DISCUSSION 

Our study is a first step to elucidate the herbivory pressure in the field and direct effects of different 

species on the grazing of recruits in the framework of shallow Cystoseira s.l. restoration, as grazing 

have been observed and quantified on transplanted adult individuals and recruits (Susini et al., 2007; 
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Mangialajo et al., 2012; Tamburello et al., 2019; Savonitto et al., 2021). During the experiments 

Cerithium vulgatum and decapods (mainly Clibanarius erythropus) were the most abundant 

herbivorous observed on all our sampling sites in exception of Beaulieu, and higher densities were 

observed on patches of bare rock just next to the macroalgal communities (author’s personal 

observation). In the rockpool system in Sainte Marguerite the density of Cystoseira compressa 

recruits changed in function of herbivory protection, showing how important it is to control 

herbivory on early-life stages for increasing restoration success. The first assessment of density and 

sizes of recruits on this location was performed 2 months after the substrates provision and 

recruitment enhancement because of the difficulty of identifying the early-life stages. Even if in 

this location the densities of recruits drastically decreased on month 7, on month 12 there were still 

significantly more recruits on the protected substrates than on the artefact control and open 

substrates. The variations on the density of recruits could be because of seasonal changes or also 

due to density-dependant effects: the density decreases as the size increases (Chapman, 1995). 

Nevertheless, on all the substrates from the three treatments (protected, artefact control, and open) 

the density of recruits of C. compressa after 12 months was still higher than the density observed 

in the surrounding natural population. On the experiment in the field we did not observe an effect 

of the factor recruitment enhancement, probably due to the presence of fertile C. compressa adults 

in the rockpool, which could have recruit on all our substrates. Also, the fact of not observing an 

effect of the recruitment enhancement factor could be because the recruitment enhancement 

performed on half of our substrates had a larger scale effect, affecting all the substrates and not only 

the substrate just underneath. In addition, there were no differences on the size of the recruits 

independently of the herbivory protection as the size of the recruits increased over time in all the 

substrates. At month 12, a slightly higher number of recruits was reported than at month 7, those 

new recruits were probably settled later during the season.  

In the two open coast locations, Beaulieu and Passable, the dramatic decrease in density of the 

transplanted recruits after only 24 h could be due to several reasons. Unlike in Sainte Marguerite, 

where the conditions for the growth of Cystoseira s.l. spp. were ensured (presence of a healthy 

forest), the environmental conditions for the survival of recruits of C. compressa in the two open 

coast locations might have not been adequate (e.g. water quality, hydrodynamics, irradiation, 

absence of a canopy… Irving et al., 2009). Another reason for this ex-situ technique to fail in these 

locations could be the methodology used for obtaining recruits: the recruits that were adapted to the 

stable conditions in the tanks for 2.5 months might have been sensitive to different environmental 

parameters such as hydrodynamics, variations in temperature, higher irradiance, different water 

chemistry etc. This problem could be solved by transplanting the recruits sooner to the sea, as 

suggested in other studies (Falace et al., 2018; De La Fuente et al., 2019; Savonitto et al., 2021). 

Replicating natural conditions in experimental tanks is difficult, and during the 2.5 month that the 
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recruits were in the laboratory we could observe that they grew less sizes than the recruits in Sainte 

Marguerite, obtained from the in-situ recruitment enhancement technique (author’s personal 

observation). Even if it is not considered a major stressor for the recruits (Falace et al., 2018; De 

La Fuente et al., 2019), the transport of the recruits from the laboratory facilities to the experimental 

locations on the coast could have affected the recruits. However, the fact of not observing mortality 

of recruits on the substrates that were kept in the laboratory (substrates that were not transplanted 

in Beaulieu and Passable and were kept as laboratory controls), could be due to the lower densities 

of recruits they had in comparison to the transplanted substrates in the field. As said before, 

substrates with higher densities of recruits could have experiences mortality due to density-

dependant effects, known as self-thinning (Chapman, 1995). 

The recruits for the two field experiments were obtained using different techniques in function of 

the characteristic of each location (Cebrian et al., 2021) which prevent from comparing the results 

obtained between Sainte Marguerite, and Beaulieu and Passable. In the rockpool system in Sainte 

Marguerite, the in-situ technique with substrate provision and natural and artificial seedling was 

used, as it is the one preferred for sheltered locations with low herbivory pressure (Cebrian et al., 

2021). While in the open coast in Beaulieu and Passable, the ex-situ technique was used as it is the 

one recommended for deforested locations (Cebrian et al., 2021). However, herbivory pressure 

change in function of the physical environmental conditions and the structure of the benthic 

communities (Lubchenco, 1986). One study (Gianni et al., 2018) performed on the open infralittoral 

fringe of the French Riviera (N-W Mediterranean Sea), where sea urchins were not present, 

concluded that S. salpa was the most efficient grazer on adult Cystoseira amentacea and able to 

limit the success of restoration actions. However, Ferrario et al. (2016) observed how individuals 

from the same species (fishes and decapods) exerted a stronger herbivory pressure on artificial 

habitats than on natural ones, and the same could have happened during our experiments in Beaulieu 

and Passable that are located in urbanized areas. The recruits obtained in the rockpool within a 

Cystoseira s.l. forest (Sainte Marguerite) could have been less affected by herbivores because of 

the lager abundance and variety of other more palatable species of macroalgae present in the site 

that were not present in the open coast location (Beaulieu and Passable), possibly explaining the 

rapid decrease in recruits observed in the urban open coast locations.  

The mesocosm experiment performed in this study is a first approach for elucidating which other 

species, apart from the most studied ones (mainly urchins and herbivorous fish), can have a role in 

the grazing of recruits of Cystoseira s.l. spp. Ferrario et al. (2016) already highlighted that most 

species consuming or interacting with Cystoseira s.l. spp. are usually classified as omnivorous 

rather than herbivorous. During our experiment, the species that had the highest and fastest 

consumption of recruits of C. compressa was Idotea balthica, followed by Clibanarius erythropus 

and Cerithium vulgatum. Even if in our experiment the amphipod (Gammarus sp.) did not graze on 
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recruits of C. compressa, it is reported that amphipods heavily feed on brown macroalgae (Duffy 

and Hay, 2000) including Fucales (Jonne et al., 2006), but they preferences could be species 

specific. Some studies have already shown how molluscs, and decapods can graze or interact (i.e. 

clipping and cutting the thalli) with recruits and adults of some forest-forming macroalgae including 

C. compressa (Lubchenco, 1983; Perkol-Finkel et al., 2012; Ferrario et al., 2016; Gianni et al., 

2017). 

I. balthica is the most widespread Idoteidae in European Seas (Guarino et al., 1993) that is 

frequently used as model species to study the interactions between macroalgae and herbivores 

(Gutow et al., 2014; Lavaut et al., 2022). This species can be found living in macroalgal 

communities and marine forests (Guarino et al., 1993; Lavaut et al., 2022) and it is an important 

consumer of forest-forming brown macroalgae such as the shallow Fucus vesiculosus in the 

Atlantic (Kotta et al., 2000; Jonne et al., 2006; Vesakoski et al., 2008; Molis et al., 2010; Schaal et 

al., 2016). I. balthica has an important grazing effect on structuring F. vesiculosus populations in 

the Baltic Sea, preferring younger tissue over older (Engkvist et al., 2000; Boström and Mattila, 

2005). It could also play an important role in grazing recruits of shallow Cystoseria s.l. spp. in the 

Mediterranean Sea according to our results. Even if macroalgae species, including Cystoseira s.l. 

spp., contain metabolites such as phenolic compounds, that deter feeding in macroalgae and 

especially on young tissue, this chemical defence may not be enough to prevent grazing by some 

herbivorous species. For example, in another mesocosm experiment (Vergés et al., 2007) C. 

vulgatum was the only invertebrate unaffected by the chemical deterrence extracts from the 

phanerogam Posidonia oceanica, and it was one of the species with the highest densities in our 

study location. It is however important to note that the lack of other potentially more palatable 

species of macroalgae or the limited amount of biomass of C. compressa in each tank could have 

impacted the consumptions rates of C. compressa reported here during the mesocosm experiment. 

We highlight that non-strict herbivorous species can potentially graze on recruits of Cystoseira s.l. 

spp. affecting the success of marine forests conservation and restoration actions. The protected 

substrates in the studied locations had significantly more densities of recruits of C. compressa, 

showing the negative effect of herbivory on early-life stages obtained from different recruitment 

techniques. However, we cannot exclude that others characteristics of the locations had an effect 

on the density of recruits. Despite adapting the restoration techniques to the particularities of each 

locations, the degree of success of the restoration is not assured. We conclude that, in addition to 

making sure that abiotic conditions (e.g. water quality, seawater temperature, anthropogenic 

pressures) are favourable for the restoration of marine forest, biotic factors such as herbivory should 

be well understood as a great variety of species could impact the recruits (e.g. in function of the 

size of the recruits). In locations with high herbivory pressure, anti-herbivory devices should be 

included when restoring marine forests (Cebrian et al., 2021) and these devices should be adequate 
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to the diversity of potential herbivorous species present in the site. More studies are needed to 

predict how the feeding behaviour and preferences of different native and invasive species could 

change under climate change to evaluate the threat they pose for marine forests conservation in the 

future (Tomas et al., 2011; Asnaghi et al., 2013; Gutow et al., 2014; Vergés et al., 2014b; 

Mitterwallner et al., 2021).  
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ABSTRACT 

In recent decades, recurrent Ostreopsis spp. blooms have been recorded throughout the globe, 

causing public health issues and mass mortalities of invertebrates. Ostreopsis spp. are benthic and 

develop in shallow waters in close relation with a substrate, but possible substrate preferences are 

still ambiguous. Bloom develops on both living and dead substrates and several interacting biotic 

and abiotic factors acting at different spatial scales can potentially foster or regulate Ostreopsis spp. 

development. The objective of this review is to collect and summarize information on Ostreopsis 

spp. blooms related to the habitat at different spatial scales, in order to assess preferences and trends. 

References including Ostreopsis spp. samplings in the field were analysed in this review, as 

potentially including information about the micro- (substrate), meso- (community) and 

macrohabitat (ecosystem) related to Ostreopsis spp. blooms. The sampled substrate and the 

ecosystem where Ostreopsis spp. were collected were generally reported and described in the 

studies, while the description of the mesohabitat was rarely reported. Ostreopsis spp. were generally 

described as attached to biotic substrates and in particular, macroalgae, even in studies conducted 

in coral reefs, where macroalgae are generally not dominant (but they can be in case of coral reef 

degradation). In both temperate and tropical areas, Ostreopsis spp. were mostly sampled on algal 

species usually forming medium or low complexity communities (erect or turf-forming algae), 

often characteristic of post-regime shift scenarios, and rarely on canopy-forming species (such as 

fucoids and kelps). This literature review highlights the need of collecting more information about 

the mesohabitat where important Ostreopsis spp. blooms develop, as much as of the underlying 

mechanisms driving eventual differences on Ostreopsis spp. abundances. This knowledge would 

allow a better risk assessment of Ostreopsis spp. blooms, identifying areas at high risk on the base 

of the benthic habitats. 

Keywords: benthic HABs, Ostreopsis, substrate, community, habitat, ecosystem, algae 

1. INTRODUCTION 

Over the past decades, coastal areas throughout the world experienced an accelerating trend of 

harmful algal blooms (HABs) events (Anderson et al., 2019) including the ones due to benthic 

species (Parsons et al., 2012). A significant proportion of studies concerning benthic HABs is 

focused on tropical benthic dinoflagellate ecology, mostly because of the incidence of ciguatera 

fish poisoning (CFP) in tropical and subtropical areas (Litaker et al., 2009) and the geographic 

expansion of some toxic species in temperate waters (Rhodes, 2011). Among them, recurrent 

Ostreopsis spp. blooms have been recorded throughout the globe: in the Mediterranean Sea (Vila 

et al., 2001; Penna et al., 2005; Turki, 2005; Aligizaki and Nikolaidis, 2006; Mangialajo et al., 

2008a; Totti et al., 2010; Cohu et al., 2011a; Ismael and Halim, 2012; Manca et al., 2015; Açaf et 

al., 2020; Gémin et al., 2020), the East Atlantic Ocean (Solino et al., 2020), the West Atlantic Ocean 
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(Nascimento et al., 2012b; Tibirica et al., 2019), the South-West Pacific (Chang et al., 2000; Rhodes 

et al., 2000; Shears and Ross, 2009), the North-West Pacific (Yamaguchi et al., 2012a; Zou et al., 

2020), the South-West Indian Ocean (Lenoir et al., 2004) and the Red Sea (Gomaa et al., 2018). At 

least five out of the eleven identified species (Fukuyo, 1981; Norris et al., 1985; Quod, 1994; Faust 

and Morton, 1995; Faust, 1999) produce palytoxin-like compounds, one of the most toxic marine 

compounds (Usami et al., 1995; Ukena et al., 2001; Ciminiello et al., 2010; Suzuki et al., 2012; 

Varela et al., 2021), causing respiratory disease after inhalation of marine aerosols (Tichadou et al., 

2010; Tubaro et al., 2011; Vila et al., 2016). The whole ecosystem is affected by Ostreopsis spp. 

blooms (Turner et al., 2021), due to mass mortalities of invertebrates such as bivalves, gastropods, 

crustaceans, and echinoderms (Shears and Ross, 2009; Ramos and Vasconcelos, 2010; Guidi-

Guilvard et al., 2012; Parsons et al., 2012; Accoroni and Totti, 2016; Migliaccio et al., 2016; Neves 

et al., 2018). In order to effectively manage and mitigate Ostreopsis spp. blooms, a thorough 

understanding of the bloom dynamics of these species is needed. Samplings have been worldwide 

restricted mostly to shallow waters as it has been demonstrated in both tropical and temperate areas 

that Ostreopsis spp. cell abundances are negatively correlated with depth (Richlen and Lobel, 2011; 

Cohu and Lemee, 2012). The mechanisms that affect Ostreopsis spp. populations are unclear, but 

most studies relate larger abundances of Ostreopsis spp. to sheltered zones or in low hydrodynamic 

conditions (Di Turi et al., 2003; Chiantore et al., 2008; Shears and Ross, 2009; Battocchi et al., 

2010; Cabrini et al., 2010; Richlen and Lobel, 2011; Accoroni and Totti, 2016; Mohammad-Noor 

et al., 2016; Boisnoir et al., 2018; Hachani et al., 2018; Meroni et al., 2018), while others suggest 

larger abundances of Ostreopsis spp. in higher or slightly higher levels of water motion (Vila et al., 

2001; Selina et al., 2014). The inshore occurrence of Ostreopsis spp. has also raised the question 

concerning their association with nutrient enrichments due to human activities (Faust et al., 1996), 

but there are mixed conclusions on how nutrient concentrations influence population dynamics of 

Ostreopsis spp. (Ungaro et al., 2010; Cohu et al., 2011a; Accoroni et al., 2012; Asnaghi et al., 

2012). A concise summary of the effects of surface seawater temperature, salinity and nutrient 

concentrations on Ostreopsis spp. populations in temperate areas can be found in Accoroni and 

Totti’s (2016) and Tester’s et al. (2020) reviews. Results from the above-mentioned studies are 

sometimes contradictory, likely due to the fact that Ostreopsis spp. blooms are a global 

phenomenon controlled by several factors in very different contexts and, as a consequence, blooms 

are very variable in space and time, making difficult defining general trends (Mangialajo et al., 

2011).  

Due to their benthic nature, Ostreopsis spp. develop in close relation with a substrate. Ostreopsis 

spp. are often described as epiphytic on macroalgae and seagrasses (Rhodes, 2011), but can also be 

found on dead corals, sediments, rocks, and in the water column (Bomber et al., 1989; Vila et al., 

2001; Shears and Ross, 2010, 2010; Totti et al., 2010). However, the substrate preferences of 



CHAPTER 3 

……………………………… 

63 

Ostreopsis spp. are still ambiguous (Vila et al., 2001; Cohu et al., 2013; Sparrow et al., 2017; 

Ternon et al., 2020; Tester et al., 2020), although some studies reported larger abundances on some 

substrates compared to others (Vila et al., 2001, 2012; Mohammad-Noor et al., 2007; Widiarti, 

2008; Cabrini et al., 2010; Totti et al., 2010; Accoroni et al., 2011, 2012; Mangialajo et al., 2011; 

Accoroni and Totti, 2016; Yong et al., 2018; Boisnoir et al., 2019; Bravo et al., 2020; Lee et al., 

2020). Such comparisons are difficult because of the limits of cell quantification in function of the 

type of substrate (i.e. surface for rocks, fresh weight for macrophytes), but also because the 

measures depend often on some characteristics of the substrate (i.e. the specific weight of sampled 

species). As an example, some macroalgae species seem to host larger abundance of Ostreopsis 

spp. than most other species, e.g. Corallina spp. (Simoni et al., 2004; Aligizaki and Nikolaidis, 

2006; Monti et al., 2007; Chiantore et al., 2008) and Padina spp. (Aligizaki and Nikolaidis, 2006; 

Cabrini et al., 2010; Hachani et al., 2018; Gémin et al., 2020). Nonetheless, other species provide 

discordant patterns such as: Ulva spp. (Aligizaki and Nikolaidis, 2006; Monti et al., 2007; 

Okolodkov et al., 2007; Totti et al., 2010; Ismael and Halim, 2012), Dictyota spp. (Cohu et al., 

2013; Blanfuné et al., 2015; González et al., 2019; Gémin et al., 2020; Ternon et al., 2020), and 

Cystoseira sensu lato spp. (Aligizaki and Nikolaidis, 2006, 2008; Monti et al., 2007; Blanfuné et 

al., 2015; Catania, 2017; Moncer et al., 2017; Meroni et al., 2018). Ostreopsis abundances on 

different substrates are highly variable and, despite the technical issues linked to the measurement 

cited above, several biotic factors acting at different spatial scales can be responsible for such 

variability: morphology and palatability of macrophytes, herbivory and allelopathic interactions 

due to the production of secondary metabolites by living substrates, among others (Cruz-Rivera and 

Villareal, 2006; Totti et al., 2010; Accoroni et al., 2015, 2016; Ternon et al., 2020).  

Benthic ecosystems are dynamic systems and, especially due to human impacts, can experience 

regime shifts, resulting in profound changes in the structure and composition of communities 

(Hughes, 1994; Benedetti-Cecchi et al., 2001; Chemello et al., 2018; Filbee-Dexter and Wernberg, 

2018; Johns et al., 2018; Melis et al., 2019; Pessarrodona et al., 2021). In both temperate and 

tropical reefs, regime shifts cause a change from healthy communities dominated by foundation 

species to communities dominated by less structurally complex species (Filbee-Dexter and 

Scheibling, 2014; Jouffray et al., 2015; Wernberg et al., 2016; O’Brien and Scheibling, 2018; 

Pessarrodona et al., 2021). In temperate areas forest-forming macroalgae are lost and replaced by 

less complex communities (Strain et al., 2014; Vergés et al., 2014a; Bulleri et al., 2016); several 

studies relate major densities of Ostreopsis spp. on algal turfs (Bravo et al., 2020) and in particular 

on highly urbanised coasts that are usually characterized by post-regime shift algal communities 

(Mangialajo et al., 2008a; Widiarti, 2008; Cohu et al., 2013), compared to healthier habitats 

dominated by forest-forming brown algae (Meroni et al., 2018). In tropical areas, ciguatera fish 

poisoning episodes recurrently follow disturbances to coral reefs by natural and artificial events 
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such as heat waves, hurricanes, dredging, and shipwrecks, among others, where regime shifts from 

coral to algae are observed (de Sylva, 1994; Jouffray et al., 2015; Rains and Parsons, 2015; Johns 

et al., 2018). In this case, higher benthic dinoflagellate abundances are recorded, both on turf-

forming (Yong et al., 2018; Lee et al., 2020) and forest-forming species, such as Sargassum spp. 

(Chinain et al., 2020).  

To our best knowledge, only few studies assessed the variability of Ostreopsis spp. at a level higher 

than the substrate (Cohu et al., 2013; Meroni et al., 2018; Yong et al., 2018; Bravo et al., 2020; Lee 

et al., 2020) with the aim of comparing different habitats to help understanding Ostreopsis spp. 

variability. To ascertain how the habitat positively or negatively affects Ostreospis spp. blooms, a 

literature review was conducted in order to describe trends at different spatial scales. In this review 

we define: (i) the microhabitat (substrate, spatial scale of cm2), as the biotic or abiotic object 

sampled to quantify/collect Ostreopsis spp. cells (including living or dead organisms and abiotic 

substrates), (ii) the mesohabitat, as the community or the abiotic material patch where the substrate 

is sampled (spatial scale of few to a dozen of m2, e.g. the macroalgal turf where a certain macroalgal 

species is sampled as a substrate or the sandy bottom where a pebble is sampled as a substrate; 

Meroni et al., 2018; Bravo et al., 2020; Lee et al., 2020), and (iii) the macrohabitat, as the ecosystem 

or the seascape (spatial scales of hundreds/thousands of m2) where the mesohabitat is found (i.e. 

coral reefs, macroalgal-dominated rocky shores; Yong et al., 2018). 

2. MATERIALS AND METHODS 

A bibliographic review assessment was performed using three databases: Aquatic Science and 

Fisheries Abstracts (ASFA), Web of Science (WoS) and SCOPUS (last update at 1st February 

2021). Search parameters were kept as wide as possible to ensure that all the relevant publications 

on the topic were found in the database search. The keyword used for the search was “Ostreopsis” 

and the parameters of the search were to find the word “Ostreopsis” ‘everywhere’ in the body or 

text of the publications, between anytime and February 1st, 2021.  

To quantify and compare the relationship between Ostreopsis spp. and the micro- meso and 

macrohabitats, only articles involving field collection of Ostreopsis spp. were included in this 

review. The key information extracted from each article included, when available: microhabitat 

(e.g. sampled substrates such as macrophytes, rocks, shells, artificial substrates, others), 

mesohabitat (community/abiotic patch type), macrohabitat (ecosystem/seascape), ocean and sea of 

study, country, temperate or tropical area (tropical areas were defined as areas between -35° and 

35°, including both tropical and subtropical climate), geographic coordinates (if not available, they 

were obtained from Google Earth, whenever possible) of the sampling location where Ostreopsis 

spp. were sampled, maximum recorded abundance in the study and sampling dates. The maximum 

abundances of Ostreopsis spp. recorded in the studies were classified in three categories: No bloom 
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(< 200 × 103 cells per gram fresh weight (FW) of macrophyte), Bloom (> 200 × 103 cells per gram 

FW of macrophyte) and Major bloom (> 1000 × 103 cells per gram FW of macrophyte) as in 

Mangialajo et al. (2017). Several studies (132) were conducted in two or more separate regions 

around the globe, seas, countries, locations and/or involving different substrates. In this case, a 

different line was inserted in the table for each different score, therefore it is possible that one article 

was accounted more than once. All the graphs have been produced using R Project version 3.6.2. 

(R: The R Project for Statistical Computing). 

Macroalgal species are characterised by different sizes and shapes, and the communities dominated 

by different species can be more or less structurally complex, comparable to continental forests, 

shrubs and turfs, terms often used in the scientific literature (see below). Because abundances of 

Ostreopsis spp. on macroalgae are subjected to differences in the structure, surface, and fresh 

weight, the different algal species sampled as a substrate in the reviewed studies were grouped in 

the following three categories according to their structural morphology: 

- Turf-forming algae: algae with tightly packed fronds and filamentous thin cylindrical axes, 

with a horizontal coverage several times higher than their height forming a dense and 

compact mat (Stewart, 1983; Tittley and Neto, 1995; Sales and Ballesteros, 2010; Sala et 

al., 2012; Connell et al., 2014; Thiriet et al., 2016; Mauffrey et al., 2020). 

- Shrub-forming algae: foliose laminar, ribbon-like, massive or fan-like thallus and erect 

arborescent tufts. Algae usually having a smaller size and forming less complex 

communities than forest-forming species. At the same time, in their region, they generally 

have a bigger size and form communities characterised by higher complexity than turf 

forming algae (Sala et al., 2012; Thiriet et al., 2016; Bertolini, 2019). 

- Forest-forming algae: cylindrical axes, branched and tree-like characterised by a complex 

tri-dimensional structure, generating a canopy. Algae having a large size compared to other 

algae growing in the same region. This term is generally used for Laminariales, Fucales 

and some Tilopteridales (Sala et al., 2012; Strain et al., 2014; Thiriet et al., 2014, 2016; 

Bertolini, 2019; Shelamoff et al., 2019; Assis et al., 2020). 

3. RESULTS 

The bibliometric search resulted in 1157 publications including the word “Ostreopsis” in the text 

from 1973 to 2021. Only 249 studies, published from 1981 to 2021, were based on field sampling 

of Ostreopsis spp. cells and were therefore considered as relevant for the review (Appendix C: 

Chapter 3 Supplementary material). The 249 considered studies comprise 957 sampling locations, 

involving a total of 1644 different substrates sampled between 1972 and 2019. 90% of the papers 

from this review (224) focused on Ostreopsis cf. ovata. 
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The number of studies per year reveals a positive trend of ecological studies involving sample 

collection in the field (Figure 1) in both temperate and tropical areas. The first studies involving 

field sampling were performed in the tropics, but, since year 2000, studies performed in temperate 

areas have exceeded in number the tropical ones. Since 2018 tropical studies are again more 

numerous than in temperate areas, but this trend has to be verified in the next years. Nearly half of 

the 957 different locations investigated between 1972 and 2019 are in temperate areas (471), the 

other half (486) in tropical ones. The exact geographical coordinates were available for 595 (62.2%) 

sampling locations and it was possible to position 132 (13.8%) additional ones on the basis of the 

description of the location in the text. A distribution map of the 727 locations, out of the 957 

sampled in the 249 relevant studies, is reported in Figure 2. 

 

Figure 1: Trend of the number of peer-reviewed studies involving field sampling of Ostreopsis 

spp. from 1981 to 2021. 

3.1 Spatial scales 

3.1.1 Macrohabitat  

The macrohabitat was detailed in a total of 197 out of the 249 papers (79.1%). In 12 of them (6.1% 

studies) at least two different ecosystems/seascapes were sampled. From the 957 sampled locations, 

897 (93.7%) included or allowed extrapolation of the information at the large scale 

(ecosystem/seascape; Figure 3). In temperate areas, Ostreopsis spp. is mostly sampled in rocky 

reefs (usually dominated by macroalgal communities), while in tropical areas Ostreopsis spp. is 

generally sampled in coral reefs. Soft bottoms are also regularly sampled, especially in tropical 

areas. 
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Figure 2: Map of the sampling locations. The colour corresponds to the year it was first sampled. 

The two red lines (35°N and 35°S) separate the tropical/subtropical from the temperate areas; (A) 

global distribution; (B) detailed map for the Mediterranean Sea. 

 

Figure 3: Macrohabitats where Ostreopsis spp. have been sampled in temperate and tropical areas. 

3.1.2 Mesohabitat 

The mesohabitat was detailed in a total of 87 out of the 249 papers (34.9%). In 30 of them (12% 

studies) at least two different mesohabitats were sampled. From the 957 sampled locations, 301 

(31.4%) included or allowed extrapolation of the information at the intermediate scale (Figure 4). 

In temperate and in tropical areas, Ostreopsis spp. is mostly sampled in algal communities (6.2% 

 

A 

B 
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and 7.3% respectively). Seagrass meadows are also regularly sampled, especially in tropical areas 

(5.2%). 

 

Figure 4: Mesohabitats where Ostreopsis spp. have been sampled in tropical and temperate areas. 

3.1.3 Microhabitat 

The microhabitat was detailed in a total of 243 out of the 249 (97.6%) studies considered. In almost 

half of the studies (113 studies, 45.4%) at least two different substrates were sampled. From the 

957 sampled locations, 950 (99.3%) included information about the sampled substrate. On 527 

(55.1%) sampled locations out of the 957, two or more substrates were sampled, resulting in a total 

of 1644 different sampled substrates. The frequency of the total sampled substrates is reported in 

Figure 5. 

Three additional substrates were sampled and are not accounted for in the present study: a Bryozoan 

(Di Pippo and Congestri, 2017), the gut contents of the herbivorous fish Sarpa salpa (Bellassoued 

et al., 2013) and floating plastic debris (Masó et al., 2003; Casabianca et al., 2019; Tibirica et al., 

2019, 2019). 

Artificial substrates, that allow an easier standardisation of Ostreopsis spp. abundances (Jauzein et 

al., 2018; Yong et al., 2018; Fernandez-Zabala et al., 2019; Lee et al., 2020); were used in 24 out 

of the 249 studies (3.6% in temperate areas and 6% in tropical), and in 136 out of the 1644 sampled 

substrates (2.3% in temperate areas and a 6% in tropical). Seawater is also commonly sampled and, 

in some countries, thresholds alerts are based on cell concentrations in seawater at dozen of 

centimetres above the sea bottom (Funari et al., 2015). Water was sampled in 100 out of the 249 

studies (32.5% in temperate and 7.6% in tropical areas) and represent 332 out of the 1644 sampled 

substrates (15.7% in temperate and 4.5% in tropical areas). 
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Figure 5: Microhabitats (substrates) where Ostreopsis spp. have been sampled in temperate and 

tropical areas. 

Without considering seawater, macroalgae are by far the preferred substrate for sampling 

Ostreopsis spp. Out of the 249 studies, 179 (71.9 %) included at least a macroalgal sample. A total 

of 792 macroalgae specimens were sampled in tropical and temperate areas. Macroalgae are 

commonly sampled both in temperate (where they dominate rocky reefs habitats) and in tropical 

areas (where, on the contrary, habitats are usually dominated by corals). The second preferred 

substrate is represented by seagrasses, followed by sand and sediments, coral fragments, 

pebbles/rocks and dead mollusc shells. Most studies (56.8%) sampling macrophytes identified the 

sample at the species level, while 20.1% out of them identified the macrophyte at genus level. Some 

studies (2.9%) identified the species sampled only at a level higher than genus or using non-

taxonomic classification (i.e. turf). The remaining fraction (20.2%) did not provide any taxonomic 

information. It is worth noting that quantification of Ostreopsis spp. cell abundances on 

invertebrates (corals or molluscs) is generally performed on dead coral fragments or shells (Faust 

et al., 1996; Faust, 1999; Mohammad-Noor et al., 2007; Okolodkov et al., 2007; Xu et al., 2014). 

Macroalgae samples, that involved the collection of 792 different specimens, represent nearly half 

of the sampled substrates (47.7%) and are a polyphyletic and extremely diversified group of 

organisms. The different macroalgal phyla, Rhodophyta, Ochrophyta and Chlorophyta (Ruggiero 

et al., 2015) were sampled in different proportions, in particular in temperate areas where 

Rhodophyta (49.2%) seem to be sampled preferentially, followed by Ochrophyta (36.7%) and 

Chlorophyta (14%). In tropical areas, the sampling frequency of each phylum is similar (39.4%, 

36.7% and 23.8%, respectively; Figure 6). 
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Figure 6: Macroalgae sampled in function of the phylum. 

One of the major limitations and controversies for studying macrophyte preferences is the difficulty 

of standardising cell densities. In order to compare and assess the role of each macroalgae species 

in structuring the community, we classified the macroalgae sampled as a substrate in three different 

groups according to their physical structure. The algae sampled in the considered studies were 

classified, based to our knowledge about their mean size and their appearance in “forest-forming”, 

“shrub-forming” and “turf-forming”, as defined in the “Materials and methods” section. Following 

this classification, most of the macroalgae sampled in both temperate and tropical areas correspond 

to the category shrub-forming (55.9%), followed by the turf-forming (31.7%) and the forest-

forming (12.3%; Figure 7). 

 

Figure 7: Macroalgae sampled in function of the type of community they can form. 

Of the 249 studies, 82 (32.9%) reported abundances of Ostreopsis spp. cells per gram FW of 

macrophyte. Such quantification is dependent on the specific weight and morphology of the 

different species (Mangialajo et al., 2017) and would not, ideally, allow a direct comparison of 
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abundances on different macroalgal species. At present, the few alternative methods allowing a 

standardised quantification (Tester et al., 2014; Jauzein et al., 2016; Mangialajo et al., 2017) are 

only sporadically applied and large-scale comparisons are performed on the measures of cells per 

gram FW. In order to have a global vision of the Ostreopsis spp. abundances, the maximal 

abundance reported on each study indicating the host macrophyte has been reported, when 

available, in Table 1 (expressed as cells/g of macroalga FW). From the data reported on Table 1, 

the maximum cell densities of Ostreopsis spp. (cells g-1 FW macroalgae) are grouped according to 

the type of mesohabitat the macroalgae sampled can form and the intensity of the bloom (N = 54; 

Figure 8; Mangialajo et al., 2017). In the case of Bloom and No bloom scenarios (according to 

Mangialajo et al. (2017)), the abundance of Ostreopsis spp. cells seems to be higher on shrub and 

turf-forming species. For the Major bloom scenario (see classification in Mangialajo et al. (2017)), 

the abundance of Ostreopsis spp. seems to be higher on shrub- forming species in temperate areas 

(followed by high values in forest-forming) and on forest-forming species in tropical areas. 

 

Figure 8: Maximum cell densities of Ostreopsis spp. (cells g-1 FW macroalgae) for each study 

grouped according to the morphological structure of the macroalgae. 
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Table 1: Maximum cell densities of Ostreopsis spp. (cells g-1 FW macrophyte) for each study on 

different microhabitats. 

Macrophyte 

Maximum 

abundance (cells 

Ostreopsis spp. g -1 

FW) 

Turf, shrub or 

forest-forming 
Country Tropical/temperate Reference 

Rhodophyta           

Acanthophora 

spicifera 
1500 Turf Belize Tropical Faust (2009) 

Acanthophora 

spicifera 
1500 Turf Belize Tropical 

Morton and 

Faust (1997) 

Asparagopsis 

taxiformis 
230000 Shrub Italy Temperate 

Carella et al. 

(2015) 

Asparagopsis 

taxiformis 
236276 Shrub France Temperate 

Bire et al. 

(2015) 

Corallina sp.  79000 Turf Algeria Temperate 
Illoul et al. 

(2012) 

Hypnea 

musciformis 
1700000 Turf Italy Temperate 

Totti et al. 

(2010) 

Ellisolandia 

elongata 
760000 Turf Spain Temperate 

Casabianca et 

al. (2013) 

Ellisolandia 

elongata 
28000 Turf Lebanon Tropical 

Accoroni et 

al. (2016) 

Ellisolandia 

elongata or Jania 

rubens 

1000000 Turf Spain Temperate 
Vila et al. 

(2016) 

Ellisolandia 

elongata or Jania 

rubens 

1480000 Turf Spain Temperate 
Carnicer et al. 

(2015) 

Ellisolandia 

elongata 
880694 Turf Lebanon Tropical 

Açaf et al. 

(2020) 

Galaxaura 

elongata 
186 Shrub Philippines Tropical 

Pocsidio and 

Dimaano 

(2004) 

Galaxaura sp. 10000 Shrub Mascarene Islands Tropical Quod (1994) 

Jania rubens 11000 Turf France Temperate 

Cohu and 

Lemée 

(2012) 

Laurencia complex 1040000 Turf Monaco Temperate 
Fricke et al. 

(2018) 

Laurencia sp. 99000 Turf Brazil Tropical 
Nascimento 

et al. (2012b) 

Pterocladiella 

capillacea 
18194 Turf 

Hawaii Island 

(USA) 
Tropical 

Parsons and 

Preskitt 

(2007) 



CHAPTER 3 

……………………………… 

73 

Pterocladiella 

capillacea 
545000 Turf Italy Temperate 

Ciminiello et 

al. (2014) 

Spyridia 

filamentosa 
2640000 Turf Croatia Temperate 

Gladan et al. 

(2019) 

Ochrophyta       

Carpophyllum 

maschalocarpum 
1095 Forest New Zealand Tropical 

Chang et al. 

(2000) 

Carpophyllum 

plumosum 
1406000 Forest New Zealand Temperate 

Shears and 

Ross (2009) 

Dictyopteris 

polypodioides 
1300000 Shrub Italy Temperate 

Accoroni et 

al. (2012) 

Dictyopteris sp. 33405 Shrub 
Galapagos 

(Ecuador) 
Tropical 

Carnicer et al. 

(2020) 

Dictyota dichotoma 330000 Shrub Italy Temperate 
Cabrini et al. 

(2010) 

Dictyota sp 79000 Shrub Cuba Tropical 
Moreira et al. 

(2012) 

Dictyota sp. 57000 Shrub Virgin Islands Tropical 

Kohler and 

Kohler 

(1992) 

Dictyota sp. 53231 Shrub Mexico Tropical 

Irola-

Sansores et 

al. (2018) 

Dictyota sp. 44000 Shrub Puerto Rico Tropical 
Ballantine et 

al. (1988) 

Dictyota sp. 220079 Shrub Cape Verde Tropical 

Fernandez-

Zabala et al. 

(2019) 

Dictyota spp. 8540000 Shrub France Temperate 
Cohu et al. 

(2013) 

Dictyota spp. 24939 Shrub 
Guadeloupe 

(France) 
Tropical 

Boisnoir et al. 

(2019) 

Dictyota spp. 830000 Shrub France Temperate 
Gémin et al. 

(2020) 

Ericaria crinita 334306 Forest Croatia Temperate 
Pfannkuchen 

et al. (2012) 

Halopteris 

scoparia 
658448 Shrub Italy Temperate 

Guidi-

Guilvard et 

al., (2012) 

Halopteris 

scoparia 
311552 Shrub France Temperate 

Blanfune et 

al. (2012) 

Halopteris 

scoparia 
330000 Shrub France Temperate 

Bire et al. 

(2013) 
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Halopteris 

scoparia 
2289000 Shrub Italy Temperate 

Jauzein et al. 

(2018) 

Halopteris 

scoparia 
2890528 Shrub Italy Temperate 

Meroni et al. 

(2018) 

Halopteris 

scoparia 
2289100 Shrub Italy Temperate 

Giussani et 

al. (2017) 

Halopteris 

scoparia 
195152 Shrub France Temperate 

Blanfune et 

al. (2015) 

Halopteris 

scoparia 
2900000 Shrub Italy Temperate 

Vassalli et al. 

(2018) 

Halopteris 

scoparia 
3700000 Shrub France Temperate 

Brissard et al. 

(2014) 

Halopteris 

scoparia 
596000 Shrub Spain Temperate 

Vila et al., 

(2001) 

Halopteris sp. 359900 Shrub France Temperate 
Mangialajo et 

al. (2017) 

Padina pavonica 1900 Shrub Egypt Tropical 
Ismael and 

Halim (2012) 

Sargassum sp. 2860 Forest Indonesia Tropical 
Skinner et al. 

(2011) 

Sargassum sp. 15000 Forest 

Saint Martin 

Island, Lesser 

Antilles 

Tropical 
Boisnoir et al. 

(2020) 

Sargassum sp. 19000000 Forest French Polynesia Tropical 
Chinain et al. 

(2020) 

Turbinaria 

decurrens 
143 Shrub Saudi Arabia Tropical 

Catania et al. 

(2017) 

Chlorophyta       

Cladophora sp. 16000 Turf Italy Temperate 
Battocchi, et 

al. (2010) 

Cladophora 

wrightiana 
102 Turf Korea Tropical 

Shah et al. 

(2013) 

Derbesia sp. 8660 Turf Korea Tropical 
Kim et al. 

(2011) 

Halimeda sp. 596 Shrub Kiribati Tropical 
Xu et al. 

(2014) 

Ulva rigida 74000 Shrub Italy Temperate 
Perini et al. 

(2011) 

Seagrasses       
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Cymodocea nodosa 1940  Tunisia Tropical 
Ben Gharbia 

et al. (2019) 

Halophila 

stipulacea 
1669  Guadeloupe 

(France) 
Tropical 

Boisnoir et al. 

(2018b) 

Posidonia oceanica 360000  Tunisia Tropical Turki (2005) 

Posidonia oceanica 2000  Tunisia Tropical 
Moncer et al. 

(2017) 

Thalassia 

testudinum 
3318  Colombia Tropical 

Arbelaez et 

al. (2017) 

4. DISCUSSION 

The first indexed papers involving Ostreopsis spp. sampling have been published in tropical areas. 

The bibliometric study shows a rise in scientific publications presumably linked to the increasing 

HABs incidences in recent decades (Anderson et al., 2019), and in particular since Ostreopsis spp. 

blooms have spread in temperate areas (Shears and Ross, 2009). The search performed in this study 

did not take into account non-indexed papers or grey literature likely providing a low estimation of 

old papers, in particular in developing countries. Since the 90s Ostreopsis spp. are reported in 

temperate areas; a rapid increase in publications in temperate areas after 2006 is likely due to the 

first recognised mass intoxication in Genoa (Italy) in 2005 (Brescianini et al., 2006) that encouraged 

several European research groups to focus on this emergent phenomenon. An increase in 

publications in tropical areas is registered after 2010, often in synergy with research performed in 

temperate areas. It is worth noting that the peak of Ostreopsis spp. publications in temperate areas 

registered in 2012 is due to the publication of 18 articles in a special issue (Cryptogamie Algologie) 

resulting from the proceedings of the International Congress on Ostreopsis Development (ICOD 

conference, 2011; Lemee et al., 2012). 

Benthic dinoflagellate development is affected by interacting biotic and abiotic factors linked to the 

habitat and acting at different scales (i.e. substrate, benthic community and seascape). Interestingly 

the present study highlighted that the sampled substrate (herein the microhabitat, e.g. coral 

fragment, macroalgal species) and the ecosystem (herein the macrohabitat, e.g. coral reefs, 

macroalgal-dominated rocky shores, sandy or muddy bottoms) where Ostreopsis spp. are sampled 

are generally reported and described. In 98% and 79% of the studies the sampled substrate and the 

seascape are respectively described or, alternatively, the text allows undoubtful extrapolation of 

this information. Concerning the microhabitat, and in particular organic substrates, most studies 

detail the species (56.8%), or at least the genus (20.1%) of the organisms sampled. Yet, even if the 

coral fragment or shell is identified at the species level, it is not clearly reported if 1) it is a living 

organism and 2) it is the direct Ostreopsis spp. host. Some studies (Widiarti, 2008; Yong et al., 
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2018) suggested that small filamentous macroalgae developing on dead or damaged coral surfaces 

could foster Ostreopsis spp. development, showing the role of macroalgae as a favourable substrate. 

The same considerations could be valid for shells, pebbles, and stones, but there is no specific 

literature on these particular cases to our knowledge. On the contrary, the description of the 

mesohabitat (e.g. macroalgal turfs, macroalgal forests, coral-dominated communities, seagrasses, 

or sandy patches) is rarely reported (35% of the considered studies). As highlighted in Pavaux et 

al. (2020) it is undeniable that only a small part of the research on Ostreopsis spp. is focused on 

ecological aspects. Interestingly, recent studies, mainly focused on tropical species related to 

ciguatera, suggest that habitat heterogeneity and complexity affect benthic dinoflagellate 

communities (Rains and Parsons, 2015; Meroni et al., 2018; Yong et al., 2018; Boisnoir et al., 2019; 

Bravo et al., 2020; Lee et al., 2020). In particular Yong et al. (2018) found higher Gambierdiscus, 

Prorocentrum and Amphidinium cell abundances on reefs with high turf algal cover and coral 

rubble, while Ostreopsis preferred mesohabitats with high coral cover. Lee et al. (2020) found that 

the mesohabitat influence the distribution of benthic harmful algal blooms and that Ostreopsis and 

Gambierdiscus are both associated with turf algal communities and hard coral. Bravo et al. (2020) 

observed an influence of the macrophyte’s thallus architecture on dinoflagellates abundances and 

also reported higher abundances of Ostreopsis on turf Rhodophyta, while Gambierdiscus and 

Sinophysis seem to be more abundant on Rhodophyta and Ochrophyta. More information at the 

global scale on how habitat affects benthic dinoflagellate blooms would allow to better disentangle 

the different factors playing a role in Ostreopsis spp. blooms. 

Results from this literature review highlight that most data available on benthic substrates are from 

studies focusing on Ostreopsis spp. attached to biotic substrates and in particular, macroalgae. 

Interestingly, independently of the macrohabitat sampled, most of the studies in both temperate and 

tropical areas chose macroalgae (mainly visually obvious macroalgae species) as substrate. Even 

in studies conducted in coral reefs (where macroalgae are usually not dominant), macroalgae, rather 

than living corals or dead coral fragments, are selected as sampled substrate, meaning that i) 

macroalgae could be very abundant in this particular site and/or ii) scientists believe there are larger 

abundances of Ostreopsis spp. on macroalgae rather than on other substrates. However, choosing 

macroalgae over corals as substrate to be sampled could be for ethical reasons (coral species may 

be protected under international or national environmental law) or other practicalities of the 

sampling. Concerning the different species, Park et al. (2020) report higher Ostreopsis spp. 

abundances on red (Spyridia filamentosa and Laurencia complex) and brown macroalgae (i.e. 

Dictyota spp., Halopteris scoparia, Dictyopteris polypodioides and Carpophyllum plumosum) that 

are also the most sampled macroalgal groups while lower densities are reported in Chlorophyta, 

and in particular Ulva spp. Conversely, some of these results contrast with the results from studies 

on the effect of metabolites from macroalgae on the growth and settlement of Ostreopsis cf. ovata 
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(Accoroni et al., 2015; Ternon et al., 2020) that suggest a strong negative effect of some Dictyotales 

on O. cf. ovata. However, Pavaux et al. (2020) and Ternon et al. (2020) suggest that macroalgae 

surface chemistry may be not enough to explain Ostreopsis spp. settlement preferences and that 

other factors such as other organisms of the epiphytic community (bacteria, viruses, parasites, 

microalgae, and fauna) and the whole surrounding community are likely to modulate the growth of 

Ostreopsis spp. 

With respect to the mesohabitat, the information in the literature is scarce. The most sampled 

macroalgae are species forming medium to low complexity communities, such as shrubs formed 

by Padina spp., Dictyota spp., Halopteris spp. (Cabrini et al., 2010; Widiarti and Anggraini, 2012; 

Cohu et al., 2013; Blanfuné et al., 2015; Boisnoir et al., 2019) and turfs formed by Corallina spp., 

Jania spp., Laurencia spp., Hypnea spp. (Simoni et al., 2004; Monti et al., 2007; Totti et al., 2010; 

Kim et al., 2011; Abbate et al., 2012; Ismael and Halim, 2012; Blanfuné et al., 2015; Yong et al., 

2018). The sampling is often performed on the most abundant or predominant macroalgal species 

(Mangialajo et al., 2008a, 2011; Accoroni et al., 2011; Lemee et al., 2012; Rhodes et al., 2017; 

Jauzein et al., 2018; Boisnoir et al., 2019; Chinain et al., 2020; Gémin et al., 2020) and it can 

therefore be deduced that the representative mesohabitats in the sites where scientists study 

Ostreopsis spp. blooms are potentially characterized by algal shrubs and turfs. This is in agreement 

with the results of the few ecological studies considering the mesohabitat scale, where larger 

Ostreopsis spp. densities are found on low-complexity macroalgal communities (shrubs or turfs) 

characteristic of post-regime shift scenarios in highly impacted locations (Mangialajo et al., 2008a; 

Meroni et al., 2018; Bravo et al., 2020; Lee et al., 2020). This is particularly true in temperate areas, 

where macroalgal communities dominate rocky reefs, and suggest that lower abundances of 

Ostreopsis spp. could be found on large brown algae forests of fucoids and kelps, e.g. Cystoseira 

sensu lato spp., Sargassum spp., etc; (Mangialajo et al., 2008b; Catania, 2017, 2; Meroni et al., 

2018). Nevertheless, blooms are observed on Ericaria crinita in the Adriatic Sea (Pfannkuchen et 

al., 2012) and on Carpophyllum plumosum populations in New Zealand (Shears and Ross, 2009). 

In tropical areas important blooms of Ostreopsis spp. can be observed on forest-forming macroalgal 

species (Sargassum spp., Chinain et al., 2020), where regime shifts from coral to algae (often with 

a dominance of large size species; Payri and Naïm, 1983; Stiger and Payri, 1999) and subsequent 

coral reef degradation, are usually associated to human impacts (Stiger and Payri, 1999). But such 

results, based on the maximum Ostreopsis spp. abundances occurring at a study site have to be 

considered with care, because of the potential bias linked to the classic sampling method, that 

quantify cells/gram of macroalga, providing an estimate that is species dependent (i.e. specific 

weight, Mangialajo et al., 2017). 

The present review reveals that most studies do not provide detailed descriptions of the 

mesohabitats (or benthic communities) where the studied blooms occur and how the mesohabitat 
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could play a role on Ostreopsis spp. bloom dynamics. Benthic dinoflagellate preferences at different 

habitat scales (substrate, community, and ecosystem) and biotic interactions present untapped fields 

of research with great potential which still need to be addressed in the future. Our results seem to 

predict a larger risk exposure to toxic effects for humans in post-regime shifts communities such as 

urban or degraded areas, where marine forests of large brown algae and/or reef building corals are 

often lost and replaced by less complex species that could host large densities of Ostreopsis spp. 

(Hughes, 1994; Benedetti-Cecchi et al., 2001; Mangialajo et al., 2008a; Catania, 2017; Filbee-

Dexter and Wernberg, 2018; Johns et al., 2018; Meroni et al., 2018). Understanding the underlying 

mechanisms on how the habitat can affect Ostreopsis spp. blooms, would allow a better risk 

assessment of the phenomenon, identifying areas at risk simply on the base of the benthic habitats. 

These findings underline the need of a better understanding of Ostreopsis spp. ecology to prevent 

socio-economic damage, reduce human health risks in coastal regions, and reduce ecological 

impacts to marine coastal ecosystems.  
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ABSTRACT 

There has been an increasing occurrence of benthic harmful algal blooms (BHAB) in temperate 

locations during the last decades. Moreover, the expansion and growth rates of benthic harmful 

dinoflagellates of the genus Ostreopsis could be favoured under future ocean warming scenarios. 

Ostreopsis spp. are known to develop on the surface of macroalgae in both temperate and tropical 

areas. There is evidence that the morphology of the macrophytes could play a role in the abundance 

of dinoflagellates, being the filamentous morphotypes suggested to host higher abundances of the 

genus Ostreopsis. The fact that Ostreopsis spp. could be associated with structurally less complex 

macroalgal communities is of special interest, due to the generalized phenomenon of habitat 

miniaturization as the result of regime shifts in temperate ecosystems. In the present study samples 

for Ostreopsis spp. were taken at different spatial scales and on different macroalgal species and 

communities, using different sampling techniques and methodologies to quantify abundances. The 

objective was to understand the role that different macroalgal species (microhabitat) and 

communities (mesohabitat) can play in controlling the distribution and abundance of Ostreopsis 

spp. In general, the results obtained highlight the high variability and wide distribution of 

Ostreopsis spp. among macroalgal species and communities during a bloom, and the suitability of 

less complex macroalgal communities in hosting Ostreopsis spp. The high variability of Ostreopsis 

spp. abundances on bloom locations could be due to the stronger effects at the large scale, that in 

turn, could influence the dominance of specific macroalgal communities in the location. Larger 

scale studies would be needed to confirm these results. 

Keywords: Ostreopsis, Benthic HABs, macroalgae, community, habitat, substrate 

1. INTRODUCTION 

Harmful algal bloom (HABs) events have been increasing in coastal areas around the globe in the 

last decades (Anderson et al., 2019). Such increase is referred to ocean warming resulting from 

global change that would favour the expansion and growth rates of tropical and sub-tropical benthic 

harmful dinoflagellates including the genera Ostreopsis, Gambierdiscus and Fukoya in areas where 

habitat requirements are satisfied (Tester et al., 2020). The expansion and faster growth rates of 

toxic benthic dinoflagellates could multiply the number and intensity of benthic harmful algal 

blooms (BHABs) events in temperate areas, which could have negative repercussions on human 

and marine ecosystems health (Tester et al., 2020).  

The genus Ostreopsis, belonging to the family of Ostreopsidaceae (Gonyaulacales, Dinophyceae, 

Dinozoa) includes several species largely distributed from tropical to temperate marine coastal 

areas worldwide. Ostreopsis is a benthic dinoflagellate that has been reported for a long time in 

tropical ciguatera endemic areas and, for some decades has become common in temperate areas as 

well (Litaker et al., 2009; Rhodes, 2011; Zingone et al., 2020). In temperate areas, its blooms are 
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often associated with toxic effects on humans and benthic marine ecosystems (Accoroni and Totti, 

2016). Some species of Ostreopsis produce palytoxin-like compounds, one of the most toxic marine 

compounds (Ukena et al., 2001; Suzuki et al., 2012; Varela et al., 2021), causing respiratory disease 

after inhalation of marine aerosols in humans (Vila et al., 2016) and mass mortalities of 

invertebrates in marine ecosystems (Parsons et al., 2012; Accoroni and Totti, 2016). With the aim 

of better understanding and modelling blooms of Ostreopsis spp. an important research effort has 

been done for assessing the role of the effects of environmental factors (e.g. nutrients, salinity and 

seawater temperature) on the occurrence and dynamics of HABs. The results of such studies are 

often contrasting, showing a highly variable response of Ostreopsis spp. to these factors (reviewed 

in Parsons et al., 2012; Accoroni and Totti, 2016). 

Ostreopsis spp. blooms develop in close relationship with the substrate and different interactions at 

different special scales (i.e. microhabitat, mesohabitat and macrohabitat) could regulate Ostreopsis 

spp. development (Cohu et al., 2013; Monserrat et al., 2022). Even if an antagonistic relationship 

between macroalgae and microalgae has been reported in both natural and experimental conditions 

(Lee and Olsen, 1985; Fong et al., 1993), Ostreopsis spp. are known to develop on the surface of 

macroalgae forming a biofilm (Totti et al., 2010; Accoroni et al., 2015). In both temperate and 

tropical areas Ostreopsis spp. are mainly sampled on macroalgal species that form low or medium 

complex communities (turf and shrub-like macroalgal communities), typical of post-regime shift 

scenarios and degraded habitats (Mangialajo et al., 2008a; Sales and Ballesteros, 2010; Meroni et 

al., 2018; Yong et al., 2018; Bravo et al., 2020; Lee et al., 2020). Recent studies highlighted the 

importance of the macrophyte morphology on the abundance of dinoflagellates: filamentous 

morphotypes and macroalgae forming entangled groups (turf-forming macroalgae) are suggested 

to host higher abundances, especially from the genus Ostreopsis (Totti et al., 2010; Mustapa et al., 

2019; Bravo et al., 2020). The fact that BHABs could be associated with structurally less complex 

macroalgal communities (turf and shrubs) is of special interest, due to the generalized phenomenon 

of habitat miniaturization result of regime shifts in temperate ecosystems (Pessarrodona et al., 

2021). Mainly due to anthropogenic pressures (e.g. local pollution, habitat destruction, climate 

change), structurally complex macroalgal communities, such as marine forests, are being 

substituted by less complex macroalgal communities, such as turfs, with the consequent loss of 

ecosystem functions and perturbations at the ecosystem level that could favour BHAB (Parsons et 

al., 2012; Filbee-Dexter and Wernberg, 2018; Benedetti-Cecchi et al., 2019; Orfanidis et al., 2021; 

Smale et al., 2022). Furthermore, it is thought that the metabolites produced by some macroalgal 

species could also influence the settlement and growth of Ostreopsis spp. (Accoroni et al., 2015; 

Ternon et al., 2020). Some macroalgal species such as brown macroalgae are known to produce 

secondary metabolites with an important chemical effect against marine herbivores (Schnitzler et 

al., 2001; Wiesemeier et al., 2007; Jormalainen and Ramsay, 2009). Some studies even suggest the 
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use of macroalgae in the prevention, control and mitigation of BHABs as some macroalgal species 

have been proven to exert negative effects against harmful benthic dinoflagellates, including 

Ostreopsis cf. ovata (Accoroni et al., 2015; Ternon et al., 2020). Nevertheless, the substrate and 

habitat preferences of Ostreopsis spp. are still unclear, and possibly linked to other biotic and abiotic 

factors including other components of the epiphytic community (Pavaux et al., 2020; Ternon et al., 

2020; Roselli et al., 2022). Because of that, the existence of direct and indirect effects at smaller 

(e.g. epiphytic community) and larger (e.g. the macroalgal community) spatial scales than the 

substrate that affect Ostreopsis spp. proliferation are expected. 

Yet, direct comparisons among different macroalgae, the most common sampled substrate 

(Monserrat et al., 2022), are hindered by the quantification procedure that, most of the time takes 

into account the number of microalgal species as cells per gram of fresh weight (FW) of the 

macroalgae. Such quantification is strongly affected by the specific weight and morphology of the 

macroalgae, therefore not allowing appropriate comparisons between macroalgal species (Totti et 

al., 2010; Mangialajo et al., 2017; Tester et al., 2022). Even if efforts have been performed using 

alternative methodologies independent from the specific weight of the substrate allowing a 

standardized quantification, they are not yet applied at a large scale (Tester et al., 2014; Jauzein et 

al., 2016; Mangialajo et al., 2017), hindering finding trends for Ostreopsis spp. preferences. 

There is currently a need for a better understanding of the ecology of Ostreopsis spp. and to reduce 

human health and ecological risks in coastal regions, preventing indirect socioeconomic damage 

(Berdalet et al., 2016). Understanding the mechanisms affecting Ostreopsis spp. blooms, would 

allow a better risk assessment of BHABs, and eventually the identification of areas at risk in 

function of their benthic characteristics. The objective of this study is to assess the effect of different 

macroalgal species (small scale or microhabitat) and macroalgal communities (medium scale or 

mesohabitat) on the abundances of Ostreopsis spp. We hypothesise that (i) individual forest-

forming macroalgae and marine forests, the most structurally complex macroalgal communities 

(dominated by large brown forest-forming macroalgae) will host lower abundances of Ostreopsis 

spp.; while (ii) medium and low structurally complex macroalgal species and related macroalgal 

communities (dominated by fast-growing macroalgal species with a larger number of filaments and 

entangled clumps, (i.e. shrub and turf-forming macroalgae) characteristic in post-regime shift 

scenarios and degraded habitats; will foster the highest abundances of Ostreopsis spp. 

As Ostreopsis spp. abundances on the biofilm associated to macroalgae can vary in function of 

different factors at the microhabitat (macroalgae) scale (i.e. morphology, surface, allelopathy) and 

at the mesohabitat (macroalgal community) scale (i.e. resistance to wave energy, presence of 

herbivores), in each location we sampled: (i) different macroalgal species according to their 

structural morphology (i.e. turf-forming, shrub-forming and forest-forming); (ii) artificial 
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macroalgae also according to their structural morphology, dismissing any chemical or allelopathic 

effect; and (iii) different macroalgal communities, characterized by the same dominant species 

sampled for the microhabitat scale preference assessment. 

2.1. MATERIAL AND METHODS 

2.1. Sampling sites 

Two locations with known annual summer blooms of Ostreopsis spp. were selected for the study. 

The two sampling sites, Rochambeau and Vernazzola, are situated on the continental N-W 

Mediterranean coast more than 150 km apart. The sampling site Rochambeau (Villefranche-sur-

Mer, France; 43°41′34.83′′ N and 7°18′31.66′′ E), consists in a small creek of the Bay of 

Villefranche-sur-Mer characterized by a sheltered rocky coast. The sampling site Vernazzola 

(Genova, Italy; 44°23′24.23′′ N and 8°58′40.13′′ E), consists in a shallow exposed rocky coast next 

to the centre of Genova (Figure 1). The marine vegetation in both locations is characterized by turf 

and shrub-forming macroalgae, mainly Halopteris scoparia and Padina pavonica and to a lesser 

extent Dictyota spp., Ulva spp., Caulerpa cylindracea and Jania rubens. In each sampling site, we 

sampled different types of natural and artificial macroalgae species (for the small scale or 

microhabitat scale) and macroalgal communities (for the medium or mesohabitat scale) according 

to their structural morphology: turf, shrub and forest-forming macroalgae species were sampled. 

However, not all the different types of macroalgae species were present in the sampling locations, 

in this case, we transplanted individuals and stones colonized with the missing macroalgal species 

one week before starting the experiment. 

For the microhabitat preference assessment, in each sampling location five species (or groups of 

species) of individual natural macroalgae were sampled (n = 4; Cohu et al., 2013; Jauzein et al., 

2018). The sampled macroalgal species are reported in Table 1; as much as possible the same 

species were selected in the two sampling locations. Artificial macroalgae made of latex with the 

same surface area but different sizes and number of ramifications were also sampled for the 

microhabitat preference assessment. The artificial macroalgae were attached to a plastic lid and 

fixed to the sea bottom with cable tides as in Fricke et al. (2018) in both sampling locations (n = 4; 

see Appendix D Chapter 4, Supplementary material S1). Four different types of artificial 

macroalgae were used and classified according to their similarity to natural macroalgae, from a 

smaller and higher number of ramifications to larger and fewer number of ramifications: artificial 

Turf, Dictyota, Halopteris and Cystoseira like, and an empty lid was used as a control treatment 

(Appendix D Chapter 4 Supplementary material S1). 
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Figure 1: The two sampling locations: Rochambeau in the Bay of Villefranche-sur-Mer (France) 

and Vernazzola in Genova (Italy). 
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Table 1: Macroalgae species (microhabitat) and communities (mesohabitat scale) sampled in 

Rochambeau and Vernazzola. 

MACROALGAL 

SPECIES AND 

COMMUNITIES 

SAMPLING 

SITE 

BIOMASS (g 

FW / 0.04 m2, 

mean ± SD) 

COMPOSITION 

TURF – DICTYOTA 

SPP. 

TURF - FORMING 

Rochambeau  Jania rubens (80%), Dictyota spp. (20%) 

TURF 

TURF - FORMING 
Rochambeau 55.34 ± 16.45 

Small Padina pavonica and Halopteris scoparia 

(80%), J. rubens (10%), crustose coralline (10%), 

Acetabularia acetabulum and Cladophora sp. (1%) 

TURF 

TURF - FORMING 
Vernazzola 133.50 ± 26.16 

Polysiphonia sp, Chondracantus acicularis and 

other filamentous macroalgae (50%), Dictyota spp. 

(20%), Ellisolandia elongata (20%), Caulerpa 

cylindracea (5%), Hypnea sp. (5%) and Ulva sp. 

(2%) 

DICTYOTA SPP. 

SHRUB -FORMING 
Rochambeau 75.65 ± 22.30 

Dictyota spp. (80%), J. rubens (10%) and crustose 

coralline (10%) 

DICTYOTA SPP. 

SHRUB -FORMING 
Vernazzola 87.00 ± 25.45 Dictyota spp. (80%) and crustose coralline (20%) 

HALOPTERIS 

SCOPARIA 

SHRUB -FORMING 

Rochambeau 135.98 ± 34 .36 

H. scoparia (90%), P. pavonica (10%), A. 

acetabulum and Haliptilon virgatum (2%), 

Caulerpa cylindracea, Peyssonnelia sp., 

Sphaerococcus coronopifolius and E. elongata 

(1%) 

HALOPTERIS 

SCOPARIA 

SHRUB -FORMING 

Vernazzola 120.00 ± 45.25 
H. scoparia (70%), Dictyota spp. (20%), Caulerpa 

cylindracea (5%), E. elongata (5%) 

CYSTOSEIRA 

COMPRESSA 

FOREST-FORMING 

Rochambeau 150.75 ± 59.44 
Cystoseira compressa (90%), crustose coralline 

(10%) * 

CYSTOSEIRA 

COMPRESSA 

FOREST-FORMING 

Vernazzola 241.50 ± 34.65 
C. compressa (85%), Sargassum vulgare (10%), 

crustose coralline (5%) 

GONGOLARIA 

BARBATA 

FOREST-FORMING 

Rochambeau 53.79 ± 1.77 
Gongolaria barbata (90%), crustose coralline 

(10%) * 

SARGASSUM 

VULGARE 

FOREST-FORMING 

Vernazzola 96.50 ± 21.92 
S. vulgare (90%), C. compressa (5%), crustose 

coralline (5%) 

* By the end of the experiment the two transplanted macroalgal communities in Rochambeau corresponding to Cystoseira 

compressa and Gongolaria barbata, experienced a reduction in the macroalgal biomass. 

 

The sampled macroalgal communities (mesohabitat scale) were dominated by the same species of 

macroalgae selected for the microhabitat assessment (Table 1). However, because of the lack of 

forest-forming species in Rochambeau, stones colonized by Cystoseira compressa and Gongolaria 

barbata were transplanted to Rochambeau for the duration of the experiment from Sainte 

Marguerite Island (Lérins Islands, Cannes, France). Sainte Marguerite Island is one of the last 

locations with healthy Cystoseira sensu lato forests in the French Riviera (Thibaut et al., 2015). In 

Rochambeau, a modified BEDI device (Benthic Dinoflagellate Integrator; Mangialajo et al., 2017) 

was used in order to sample the selected communities (see section 2.2. Collection and processing 

of samples). In both sites, 0.04 m2 scrapings (n=3) of the selected communities were performed in 
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order to extrapolate the abundances of Ostreopsis spp. from the communities, expressed as cells 

per surface of seabottom (see section 2.2. Collection and processing of samples).  

For each site, also abundances of Ostreopsis spp. cells on the surrounding water were sampled (n 

= 4 in Rochambeau and n = 2 in Vernazzola). The temperature was monitored every hour during 

the duration of the experiment at both sampling sites at 0.5 m depth using a temperature data logger 

(HOBO Pendant MX Temp, ONSET). 

2.2. Collection and processing of samples 

Ostreopsis spp. cells on the surrounding water were determined from seawater samples collected 

in 250 mL plastic flasks 20 cm above the natural macroalgal substrate, in particular turf (Table 1), 

as described in Cohu et al. (2013). Samples of individual natural macroalgae (microhabitat scale 

samples) were carefully collected into a 250 mL flask with the surrounding water, as described by 

Cohu et al. (2013). Abundances of Ostreopsis spp. on artificial macroalgae, with the surrounding 

water, were sampled in 1 L flasks coiled to the lid at the base of the artificial macroalgae, in a 

similar way as in Fricke et al. (2018), closing the flask underwater. Then, once the flask was 

hermetically closed, the lid with the macroalgae and the flask were detached from the base cutting 

the cable tides and pulled out of the water. Afterwards the flask was shaken to detach the cells of 

Ostreopsis spp. from the artificial macroalgae and the lid. Finally, the 1 L flask with the sample 

was closed using another lid and the lid with the artificial macroalgae was fixed again at the same 

point on the sea bottom with cable tides. 

The cells at the mesohabitat scale were assessed in two ways: (i) using the BEDI device and (ii) 

extrapolated from the total biomass of macroalgae obtained from the scraping. In the first 

assessment, a modified adapted BEDI device (Mangialajo et al., 2017) consisting of a hollow plastic 

cylinder open at both ends was used. In order to avoid cell loss, the bottom part was provided of a 

fixed rubber seal and the upper part was kept out of the water. The adapted BEDI device used in 

this study covered an area of 314.16 cm2 of the sea bottom and had a total volume of 9.42 L. To 

homogenize cells of Ostreopsis spp. in the area and volume covered, a propeller was installed on 

the inside upper part of the BEDI. Once the device was placed on the macroalgal communities, the 

sea water level inside the BEDI was noted and the propeller was rotated 10 times from the outside 

of the BEDI thanks to a crank. Then a 60 mL sample was extracted from the inside of the adapted 

BEDI device using a syringe. For the second assessment, the total biomass of macroalgae for each 

macroalgal community was calculated from the total biomass of macroalgae obtained from the 

scrapings. In both sites, 0.04 m2 of all the considered communities were sampled (n = 3). Once in 

the laboratory, the dominant species were centrifugated for 30 seconds and weighted (FW). In both 

cases (BEDI sampling and extrapolation from scrapings) the results can be expressed as the number 
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of cells per seabottom surface area (i.e. 0,04 m2) independently of the specific weight of the 

substrate (Mangialajo et al., 2017).  

All the samples were fixed with acidic Lugol (2% v/v). For the seawater samples the Utermöhl 

method (Utermöhl, 1958) was used to estimate abundances (in number of cells / L). The fixation of 

the natural macroalgae samples was followed by vigorous shaking and filtration of the sample 

through a 500 μm mesh to separate the macroalgae from the seawater containing Ostreopsis spp. 

cells and the macroalgae were weighed (± 0.01 g; Jauzein et al., 2018). The abundances of 

Ostreopsis spp. cells on natural macroalgae, artificial macroalgae and macroalgal communities 

were estimated under a microscope (Axio Observer D1, Zeiss) using a Sedgewick Rafter counting 

chamber. The abundance of cells at the microhabitat scale were expressed as number of cells per 

gram of fresh weight of macroalgae (cells / g FW). The density of cells of Ostreopsis spp. on 

artificial macroalgae was expressed as cells / cm2 of surface of artificial macroalgae (Appendix D 

Chapter 4 Supplementary material S1). At the mesohabitat scale abundances were expressed as 

cells / 0.04 m2. 

Our study was conducted during the different phases of the bloom (exponential, peak and 

decreasing phase) to assess eventual changes in Ostreopsis spp. preferences in function of the 

dynamic of the bloom. In order to define the magnitude of the bloom, the sampled abundances of 

Ostreopsis spp. were classified in Major bloom (>1000 × 103 cells / g FW), Bloom (>200 × 103 

cells / g FW), Alert (>30 × 103 cells / L), and No bloom (<200 × 103 cells / g FW) according to the 

definition from Funari et al. (2015) and Mangialajo et al. (2017). 

2.3. Data analysis 

Abundances of Ostreopsis spp. on natural macroalgae (microhabitat scale): A Generalized Linear 

Mixed-Effects Model (GLMM), with a Gamma link log distribution function was used to test the 

effect of the macroalgal species on the abundance of cells of Ostreopsis spp. The variable tested 

was cells per gram of macroalgal FW in Rochambeau and Vernazzola, with (i) macroalgal species 

(five levels) as a fixed factor, and (ii) the sampling day (5 levels in Rochambeau and 6 in 

Vernazzola) as random. 

Abundances of Ostreopsis spp. on artificial macroalgae (microhabitat scale): A GLMM with a 

Gamma link log distribution function was used to test the effect of the macroalgal morphology on 

the abundance of cells of Ostreopsis spp. The variable was cells per surface (cm2) in Rochambeau 

and Vernazzola with (i) macroalgal species (five levels) as a fixed factor, and (ii) the sampling day 

(5 levels) and the replicate as random to account for repeated measures over time. 

Abundances of Ostreopsis spp. on macroalgal communities (mesohabitat scale): A GLMM with a 

Gamma link log distribution function was used to test the effect of the benthic macroalgal 
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community on the abundance of cells of Ostreopsis spp. The tested variable were cells in 0.04 m2 

of sea bottom using the adapted BEDI device in Rochambeau and cells in 0.04 m2 of sea bottom 

extrapolated from the biomass of macroalgae obtained from the scrapings in Rochambeau and 

Vernazzola, with (i) the macroalgal community type (five levels) as a fixed factor, and (ii) the 

sampling day (6 levels) and the replicate as random to account for repeated measures over time. 

All GLMM were fitted to analyse the effect of the variables and the AICs likelihood minimum was 

used to select the best model among the possible combinations. The different models were fitted 

using the functions “glmer” and “lm” from the package lme4 (Bates et al., 2015) in the statistical 

environment R in the statistical environment R (R: The R Project for Statistical Computing). P-

values were obtained by means of a Wald χ2 test using the “ANOVA” function from the CAR 

package (Fox and Weisberg, 2018). Finally, the function “emmeans” from the package emmeans 

(Lenth et al., 2022) was used to perform the post-hoc analysis of the GLMM models.  

RESULTS 

The mean seawater temperature was 24.99 ± 1.25°C and 26.77 ± 1.68°C (mean ± SD), respectively 

in Rochambeau and Vernazzola, during the duration of the experiment, with maximum and 

minimum temperatures of 28.27°C (on the 30th of July 2021) and 21.49°C (on the 2nd July 2021) in 

Rochambeau and of 30.54°C (on the 15th of August 2021) and 23.59°C (on the 28th of June 2021) 

in Vernazzola. 

3.1. Ostreopsis spp. concentrations in seawater 

Concentrations of Ostreopsis spp. in the water in Rochambeau (n = 4) situate the peak of the bloom 

on 15/07 (day 3, mean cell abundance of 5.25 × 104 Ostreopsis spp. cells / L), reaching a maximum 

concentration of 7.90 × 104 Ostreopsis spp. cells / L (the maximum cell concentration in seawater 

measured in this study; Figure 2A). In Vernazzola, the seawater samples of Ostreopsis spp. (n = 2) 

show the peak of the bloom on day 3 (21/07, mean cell abundance of 8.47 × 103 Ostreopsis spp. 

cells / L), reaching a maximum concentration of 1.26 × 104 Ostreopsis spp. cells / L (Figure 2B). 

According to the definition of bloom (Funari et al., 2015; Mangialajo et al., 2017), the seawater 

samples from Rochambeau reached concentrations corresponding to a state of alert (>30 × 103 cells 

/ L) the sampling days 1 (07/07), 3 (15/07) and 4 (21/07), while seawater abundances of Ostreopsis 

spp. in Vernazzola never surpassed the values of routine monitoring. 
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Figure 2: Abundances of Ostreopsis spp. in seawater (1000 Cells Ostreopsis spp. / L) for 

Rochambeau (n = 4) and Vernazzola (n = 2) for the duration of the experiment. The confidence 

interval represents the standard error. 

3.2. Abundances of Ostreopsis spp. on natural macroalgae (microhabitat scale) 

The ANOVA from the GLMM model did not find differences in abundances of Ostreopsis spp. 

among the different macroalgal species sampled in Rochambeau (Table 2). For this sampling site, 

the peak of the benthic bloom on natural macroalgae was on day 2 (11/07, mean cell abundance of 

2.06 × 106 cells / g FW), with maximum benthic abundances of Ostreopsis spp. reaching 4.00 × 106 

cells / g FW (the maximum benthonic cell abundances measured in this study) on turf (day 2, 11/07; 

Figure 3A). Major bloom abundances were reached on days 1 (07/07), 2 (11/07) and 3 (15/07; on 

35 out of 83 total samples), and bloom abundances on days 1 (07/07), 2 (11/07), and 5 (05/08; on 

29 out of 83 total samples). Abundances of no bloom on macroalgae were recorded on days 4 

(21/07) and 5 (05/08; on 19 out of 83 total samples). 
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Figure 3: Abundances of Ostreopsis spp. on natural macroalgae (cells Ostreopsis spp. / g FW 

macroalgae) in Rochambeau (A) and Vernazzola (B). The error bars show the standard error. 

In Vernazzola, significant differences on abundances of Ostreopsis spp. were found among 

macroalgal species (Figure 3B and Table 2). Significantly higher abundances of Ostreopsis spp. 

were found on Dictyota fasciola than in Sargassum vulgare, Cystoseira compressa and turf. 

Halopteris scoparia hosted significantly higher abundances of Ostreopsis spp. than C. compressa 

(Figure 3B). For this sampling site, the peak of the benthic bloom on natural macroalgae was on 

day 3 (21/07, mean abundance of 1.03 × 106 cells / g FW), and the maximum abundances were 

observed on D. fasciola. (3.76 × 106 cells / g FW; Figure 3B). In Vernazzola major bloom and 

bloom abundances (Funari et al., 2015; Mangialajo et al., 2017) were reached on days 2 (12/07), 3 

(21/07), 4 (30/07), 5 (11/08) and 6 (01/09; on 28 and 49 out of 97 total samples for the major bloom 

and the bloom scenarios respectively), and no bloom abundances on days 1 (23/06), 4 (30/07) and 

5 ( 11/08; on 20 out of 97 total samples). 
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Table 2: Results from the statistical analysis. 

Experiment Model Factor levels DF Chi sq P-value   Site 

Cells Ostreopsis spp. 

/ FW macroalgae 

Cells Ostreopsis spp. / g FW 

macroalgae ~ Algal species + 

(1|Sampling day), Gamma (link 

= "log") 

Algal species (5 levels) 

4 0.567 0.967   

R
o

ch
am

b
ea

u
 

4 40.404 <0.001 *** 

V
er

n
az

zo
la

 

Cells Ostreopsis spp. 

/ cm2 artificial 

macroalgae 

Cells Ostreopsis spp. / cm2 ~ 

Algal types + (1|Sampling day) 

+ (1|Replicates), Gamma (link = 

"log") 

Algal species (5 levels) 

4 1.800 0.772   

R
o

ch
am

b
ea

u
 

4 21.656 <0.001 *** 

V
er

n
az

zo
la

 

Cells Ostreopsis spp. 

/ 0.04 m2 macroalgal 

community - BEDI 

Cells Ostreopsis spp. / 0.04 m2 

of sea bottom~ Macroalgal 

communities + (1|Sampling 

day) + (1|Replicates), Gamma 

(link = "log") 

Communities (6 levels) 5 2.902 0.715 

  R
o

ch
am

b
ea

u
 

Cells Ostreopsis spp. 

/ 0.04 m2 macroalgal 

community – From 

scrapings 

Cells Ostreopsis spp. / 0.04 m2 

sea bottom~ Macroalgal 

communities + (1|Sampling 

day) + (1|Replicates), Gamma 

(link = "log") 

Communities (5 levels) 

4 12.578 <0.05 ** 

R
o

ch
am

b
ea

u
 

4 13.948 <0.005 *** 
V

er
n

az
zo

la
 

 

3.3. Abundances of Ostreopsis spp. on artificial macroalgae (microhabitat scale) 

The ANOVA from the GLMM model did not find differences in abundances of Ostreopsis spp. 

among the different types of artificial macroalgae, neither with the control in Rochambeau (Figure 

5A and Table 2). In Rochambeau, abundances of Ostreopsis spp. on artificial macroalgae remained 

high until day 3 (15/07) when they started decreasing (Figure 4A). The highest abundances on 

artificial macroalgae reached 1.38 × 105 cells / cm2 on turf the day 3 (15/07), mean abundances on 

this sampling day were also the highest (mean abundance of 5.57 × 104 cells / cm2). 
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Figure 4: Abundances of Ostreopsis spp. on artificial macroalgae (cells Ostreopsis spp. / cm2 

artificial macroalgae) in Rochambeau (A) and Vernazzola (B). The error bars show the standard 

error. 

However, significant differences among types of artificial macroalgae were found in Vernazzola, 

where the control hosted lower abundances of Ostreopsis spp. than the artificial algal types 

Cystoseira, Dictyota and Turf (Figure 5B and Table 2). In this sampling location, abundances of 

Ostreopsis spp. on artificial macroalgae remain high on the two first sampling days (12/07 and 

21/07) when they start decreasing (Figure 5B). Maximum abundances on artificial macroalgae in 

Vernazzola were lower than in Rochambeau, reaching only 2.33 × 104 cells / cm2 on turf on day 1 

(12/07), the highest mean abundances were recorded on day 2 (mean abundance of 32/07; 8.54 × 

103 cells / cm2). 

3.4. Abundances of Ostreopsis spp. on macroalgal communities (mesohabitat scale) 

The ANOVA from the GLMM model did not find significant differences in abundances of 

Ostreopsis spp. among the different macroalgal communities sampled with the adapted BEDI 

device in Rochambeau (Table 2). The peak of the bloom on natural communities (mesohabitat 

scale) in Rochambeau was day 3 (15/07, mean abundance of 3.98 × 106 cells / 0.04 m2), and after 

this day the abundances started decreasing (Figure 5). The maximum abundances measured reached 

8.95 × 106 cells / 0.04 m2 on the turf community on day 4 (21/07). Ostreopsis spp. abundances on 
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natural communities in Rochambeau reached values corresponding to a major bloom (> 1319 cells 

/ cm2) on the sampling days 1 (07/07), 2 (11/07), 3 (15/07) and 4 (21/07), globally on 76 out of 100 

total samples. Bloom values (> 279 cells/ cm2) were reached on days 4 (21/07) and 5 (05/08), and 

globally on 13 out of 100 total samples (for major bloom and bloom definition, see Mangialajo et 

al., 2017). 

 

Figure 5: Abundances of Ostreopsis spp. on natural macroalgal communities (cells Ostreopsis spp. 

/ 0.04 m2 macroalgal communities) sampled in Rochambeau with the adapted BEDI device. The 

error bars show the standard error. 

Regarding the cells of Ostreopsis spp. on 0.04 m2 of sea bottom (mesohabitat scale), extrapolated 

from the total biomass of macroalgae obtained from the scrapings, significant differences were 

found among the different communities sampled in both Rochambeau and Vernazzola (Table 2). 

In Rochambeau, the abundances of cells was significantly higher on Halopteris scoparia than on 

Gongolaria barbata dominated communities, without differences among the other species (Figure 

6A). The highest mean abundances of cells of were recorded the day 2 (11/07; mean abundance of 

1.90 x 108 cells / 0.04 m2). In Vernazzola significantly higher abundances were found on Dictyota 

spp. dominated communities than on all the other communities (Figure 6B). The highest mean 

abundances were recorded the day 3 (21/07; mean abundance of 1.45 x 108 cells / 0.04 m2). 
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Figure 6: Concentration of Ostreopsis spp. on natural macroalgal communities (cells Ostreopsis 

spp. / 0.04 m2) in Rochambeau (A) and Vernazzola (B). The error bars show the standard error. 

DISCUSSION 

The objective of this study was to expand our understanding of the role that macroalgal species 

(microhabitat) and/or communities (mesohabitat) can play facilitating blooms of Ostreopsis spp. 

To do so, samples of Ostreopsis spp. were taken at different spatial scales and on different 

macroalgal species and communities, using different sampling techniques and methodologies to 

quantify abundances of Ostreopsis spp.  

The maximum concentrations of cells of Ostreopsis spp. in the seawater observed in this study are 

comparable with the ones reported in Rochambeau (10.4 × 104 cells / L), and the ones reported in 

several sites in Genova, including Vernazzola (8.4 × 104 cells / L; Mangialajo et al., 2008a, 2011). 

On both sampling sites, the number of cells of Ostreopsis spp. on natural macroalgae (cells / g FW) 

reached abundances characteristic of a major bloom (Funari et al., 2015; Mangialajo et al., 2017) 

and are comparable with the maximum abundances reported in other studies in or near the same 

locations. In Rochambeau in July 2008 one of the maximal epiphytic abundances reached 8.54 × 

106 cells / g FW on Dictyota spp. (Cohu et al., 2013). In Genova-Quarto on July 2017 Meroni et al. 

(2018b) reported abundances reaching 2.89 × 106 cells / g FW on Halopteris scoparia. 
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The present study highlights the high variability of Ostreopsis spp. preferences when using different 

sampling techniques to assess the abundances of cells. At the microhabitat scale, in Rochambeau 

abundances of cells of Ostreopsis spp. per gram FW of macroalgae were not significantly different 

for the sampled species. Contrarily, significant patterns were observed in Vernazzola, where the 

cells of Ostreopsis spp. per gram FW of macroalgae were higher on Dictyota fasciola and 

Halopteris scoparia than on most of the other sampled macroalgal species. Such results are in 

agreement with our hypotheses that higher abundances are found on shrub-forming macroalgae (D. 

fasciola and H. scoparia) than on forest-forming (Cystoseira compressa and Sargassum vulgare; 

Meroni et al., 2018; Yong et al., 2018; Bravo et al., 2020; Lee et al., 2020). 

Some recent studies already highlighted the importance of the macrophyte morphology on the 

abundance of dinoflagellates (Vila et al., 2001; Parsons and Preskitt, 2007; Totti et al., 2010), and 

the need for standardized methods allowing direct comparisons, as some of the ones used in the 

present study (i.e. cells per surface of artificial macroalgae or cells per surface of sea bottom). Our 

study did not highlight significant differences among the different artificial macroalgae. In 

Vernazzola the control was hosting a significantly lower number of cells in 3 out of the 4 treatments 

(except Halopteris), while in Rochambeau even the control was not significantly different from the 

other treatments. Therefore, highlighting that the considered different morphologies of artificial 

macroalgae are not influencing Ostreopsis spp. abundances (no differences among treatments); that 

allelopathic interactions may be at the origin of the patterns observed; and that the small scale 

variability can be very high (no significant differences with the control in Rochambeau). The 

maximum abundances of Ostreopsis spp. recorded on the artificial macroalgae were found in 

Rochambeau, and were of the same order of magnitude of the abundances observed on natural 

macroalgae (Totti et al., 2010) in the Adriatic Sea and higher than the abundances reported on other 

artificial substrates in the N-W Mediterranean Sea (Fricke et al., 2018).  

At the mesohabitat scale, no differences in Ostreopsis spp. per cm2 of sea bottom were found among 

the sampled macroalgal communities using the adapted BEDI device in Rochambeau. This result 

can be explained by the high variability in cell abundances observed in this location. When 

extrapolating the abundances of cells of Ostreopsis spp. per surface of sea bottom using the total 

biomass of macroalgae obtained from the scrapings, significant differences at the mesohabitat scale 

among communities were found both in Rochambeau (Halopteris scoparia higher than Gongolaria 

barbata) and in Vernazzola (Dictyota spp. higher than all the other communities). Yet, while no 

differences among communities were highlighted by the cell’s abundances obtained with the BEDI 

device, the extrapolation of the same variable using the total biomass of macroalgae obtained from 

the scrapings allowed to observe higher abundances on a shrub-forming species (H. scoparia) than 

on a forest-forming (G. barbata) in agreement with our hypothesis. Nevertheless, such results have 

to be taken with care as the abundances on the other considered communities were not significantly 
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different. We cannot exclude that such results could be due to a high variability associated to the 

BEDI sampling, that can be difficult to apply on irregular sea bottoms and that integrates the cells 

of Ostreopsis spp. on the macroalgal community and the cells present in the water column, 

potentially confusing the absolute values of the cells in the macroalgal biofilm, especially in the 

situations of “bloom” or “major bloom”. Nevertheless, our calculations suggest that the mean cells 

of Ostreopsis spp. sampled in seawater, represent less than the 10 % of the mean cells in the 

macroalgal biofilm. Concerning the transplanted communities, we observed that the C. compressa 

and G. barbata dominated communities moved to Rochambeau from Sainte Marguerite Island lost 

about a 30 % of their biomass by the end of the experiment, possibly reducing the facilitating or 

deterrent effects of these communities on Ostreopsis spp. proliferation. The loss of biomass of the 

transplanted forest-forming communities was partially due to fish grazing, but sign of degradation 

were also observed, potentially due to unfavourable environmental conditions in Rochambeau or 

to the effects of the bloom, that have been suggested to negatively impact other Cystoseira s.l. spp. 

(Jauzein et al., 2017; Iveša et al., 2021). 

In Vernazzola, patterns were more clear, observing higher abundances of cells at the mesohabitat 

scale on Dictyota spp. dominated communities, in agreement with the samplings at the microhabitat 

scale (cells / g FW macroalgae) and with other studies on other locations in the Mediterranean Sea 

(Blanfuné et al., 2015; González et al., 2019; Gémin et al., 2020; Ternon et al., 2020). It is worth 

noting that one of the maximal epiphytic abundance ever reported for Ostreopsis cf. ovata in the 

N-W Mediterranean was found on species belonging to this genus (Cohu et al., 2013). Nonetheless, 

studies in mesocosm found that Dictyota spp. could inhibit the growth of Ostreopsis cf. ovata 

(Accoroni et al., 2015; Ternon et al., 2020). These differences among studies in the field and in 

laboratory could be due to the changes in macroalgal metabolites when exposed to culture 

conditions or because of the lack of other effects at larger scale that could modify the preferences 

of Ostreopsis spp. (Mancuso et al., 2016). Moreover, older identifications of Dictyota spp. as 

substrate for the development of Ostreopsis spp. should be reviewed as this genus has suffered 

taxonomic changes (Tronholm et al., 2010). 

Overall, the results obtained extrapolating the Ostreopsis spp. cells in 0.04 m2 of sea bottom from 

the cells per gram FW of macroalgae are in agreement with the results from other studies reporting 

higher abundances of cells of harmful benthic dinoflagellates in shrubs and turfs (Meroni et al., 

2018b; Yong et al., 2018; Bravo et al., 2020) and from a recent review (Monserrat et al., 2022). 

Some studies (Yong et al., 2018; Lee et al., 2020) highlight the importance of the mesohabitat for 

the proliferation of BHAB and developed methodologies (artificial substrates) to allow the 

comparison between different macroalgal communities. Unfortunately, studies using either 

artificial substrates or quantification of cells per surface of sea bottom (using the BEDI device or 
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extrapolating from macroalgal biomass) are scarce and do not allow us to compare the results 

obtained in this study.  

The comparison of cell abundances between different macroalgal species from the literature is 

controversial, especially due to differences on macrophyte morphologies and surfaces (Totti et al., 

2010; Mangialajo et al., 2017). Our results, as the ones reported in other studies (Totti et al., 2010; 

Blanfuné et al., 2015; Meroni et al., 2018b; Bravo et al., 2020) show an important variability in the 

abundance of Ostreopsis spp. in function of the sampled macroalgal species and communities, 

sometimes not allowing to find clear patterns of preference for Ostreopsis spp. (Berdalet et al., 

2017; Jauzein et al., 2018; Tester et al., 2022) as in the case of Rochambeau. The abundance of 

cells per area of sea bottom could be a measure better estimating the public health risk of blooms, 

as it represents the total number of cells in a determinate area (Mangialajo et al., 2017). The 

methodologies and standardisations better representing the reality of the ecosystem (e.g. real 

macroalgal biomass and area available for the settlement of Ostreopsis spp. per sea bottom surface) 

should be further studied and, if possible, preferred (Tester et al., 2022). 

In general, the results obtained in this study highlight the wide and highly variable distribution of 

Ostreopsis spp. on all macroalgal species and communities sampled. Nevertheless, the fact of not 

having found in some cases clear preferences on cell abundances among natural or artificial 

macroalgae could be due to the high abundances of Ostreopsis spp. during the bloom that could 

homogeneously colonize all the available substrates. This could be the case of Rochambeau, the 

sampling location where higher abundances of Ostreopsis spp. were observed in this study, and 

where the preferences of Ostreopsis spp. were less clear. In this site, the variability on Ostreopsis 

spp. abundances could also be due to the characteristic morphology of the coast, consisting in a 

small bay with different expositions affecting in different ways important environmental factors 

such as hydrodynamics and light. On the opposite, in Vernazzola the coast is more homogenous 

and the whole sampling location is equally exposed, possibly leading to smaller variability in cell 

abundances (Figure 1). Furthermore, Ostreopsis spp. abundance variability in Rochambeau could 

be spatial and temporal, as the exposition of the coast can condition the sooner or later development 

of the bloom (Chang et al., 2000; Shears and Ross, 2009b; Accoroni and Totti, 2016; Fricke et al., 

2018). 

Our results highlight that preferences of Ostreopsis spp. can be species-, site- and period of the 

bloom-specific. Effects at a larger scale (i.e. at the macrohabitat scale, not assessed in this study) 

could in turn directly influence Ostreopsis spp. abundances or have indirect effects influencing the 

dominance of specific macroalgal communities that could facilitate or regulate Ostreopsis spp. 

blooms (Mangialajo et al., 2008b). Results from this study show how variable Ostreopsis spp. cell 

assessment can be in function of the scale (micro and mesohabitat) and of the quantification method 
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used, opening new research topics such as the study of blooms at a bigger scale (macrohabitat) and 

testing different methods for the standardization of the cells independently on the substrate. Some 

patterns of substrate’s preferences for Ostreopsis spp. proliferation have been observed, indicating 

the role that benthic communities can potentially play in the frequency and magnitude of blooms. 

The effect of the dominant macroalgal communities has to be further investigated in order to: (i) 

mitigate BHABs on current and future regime shift scenarios, where the most complex forest-

forming macroalgal communities, possibly hosting fewer abundances of benthic toxic 

dinoflagellates, are disappearing (Rindi et al., 2020; Pessarrodona et al., 2021); (ii) better assess 

locations with high public health risk of BHABs and (iii) estimate priority locations for possible 

actions of mitigation (remediation and/or restoration). 
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The aim of this dissertation is to unravel some of the effects of global change on shallow Cystoseira 

s.l. forests, using a cosmopolitan habitat-forming species, Cystoseira compressa, as a model species 

and to assess if the proliferation of blooms of Ostreopsis spp. could be a consequence of Cystoseira 

s.l. forests loss. Considering that in each chapter a specific discussion was addressed, we present 

here the main findings of the experiments focussing on some causes involved in the loss of 

Cystoseira s.l. forests and the consequences, such as the proliferation of benthic harmful algal 

blooms (BHAB) of Ostreopsis spp. In this section, we provide a discussion on the implications of 

the loss of coastal Mediterranean marine forests and the expansion of Ostreopsis spp. in the 

conservation of shallow coastal habitats, as well as a view of the application and contribution of the 

thesis to coastal conservation, management and restoration. 

THE DECLINE OF MARINE FORESTS AND REGIME SHIFTS 

Forest-forming brown macroalgae, covering ~28% of the coastline worldwide have been valued at 

over 106 USD km-1 year-1 (Filbee-Dexter and Wernberg, 2018) and their conservation and 

restoration is clearly justified by the importance of these species in hosting high biodiversity, 

providing several ecosystem services and being highly productive (Filbee-Dexter and Wernberg, 

2018; Wernberg et al., 2019a; Pessarrodona et al., 2022). It is then critical to understand the factors 

promoting the decline of forest-forming brown macroalgae and its consequences for ecosystem 

functioning, such as fostering harmful algal blooms. Therefore, we investigated different ecological 

interactions, such as species facilitation (Chapters 1, 3 and 4), and herbivory (Chapter 2), which are 

key factors in structuring communities and ecosystems (Stachowicz, 2001; Kordas et al., 2011; 

Kroeker et al., 2013b).  

Microalgae and macroalgae are the base of marine trophic nets and any perturbation in their 

populations can have an enormous effect on the whole ecosystem (Cardona et al., 2013; Smale et 

al., 2022). Human impacts on forest-forming macroalgae are expected to continue or increase in 

the future (Halpern et al., 2007, 2019), potentially leading to changes in the macroalgal composition 

and its structural complexity (i.e. regime shifts). The substitution of long-lived large brown forest-

forming species, including Cystoseira s.l. spp., by fast-growing opportunistic turf-forming 

macroalgae and even barren grounds (Chemello et al., 2018; Filbee-Dexter and Wernberg, 2018; 

O’Brien and Scheibling, 2018) have already been reported along hundreds of kilometres along 

Canadian, European, and Australian coasts (Filbee-Dexter and Wernberg, 2018). Regime shifts 

have also been observed for Cystoseira s.l. spp. in several areas of the Mediterranean Sea. It is 

expected that only the most tolerant populations or species will be able to resist under future global 

change scenarios (Thibaut et al., 2005, 2015; Blanfuné et al., 2016; Rindi et al., 2020; Orlando-

Bonaca et al., 2021a). For example, in the Mediterranean Sea, Thibaut et al. (2005) and (2015) 

report the high regression and fragmentation of Cystoseira s.l. populations in the French Riviera 
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and Alberes Coast (North Western Mediterranean), where only five of the fifteen historically 

present species were still thriving and only C. compressa presented no signs of regression. The 

causes responsible for regime shifts and miniaturisation of habitats are multiple and ultimately 

related to anthropogenic activities (Benedetti-Cecchi et al., 2001; Mangialajo et al., 2008b; Sala et 

al., 2012; Chemello et al., 2018). Some of the abiotic and biotic stressors related to marine forests 

decline have been addressed in this thesis, using the Mediterranean widely distributed Cystoseira 

compressa as a model for forest-forming macroalgae. C. compressa, independently of being the 

only non-protected Cystoseira s.l. spp. (Verlaque et al., 2019), is considered very tolerant to 

manipulation and interesting in the restoration of Mediterranean marine forests due to its potential 

facilitation role in the recruitment of other forest-forming species (Mangialajo et al., 2012). 

ABIOTIC INTERACTIONS ON MARINE FORESTS: CLIMATE CHANGE 

Abiotic factors such as habitat destruction, local pollution, eutrophication and overfishing 

contribute to the loss of marine forests (Connell et al., 2013; de Caralt et al., 2020; Smale, 2020; 

Verdura et al., 2021), but climate change is expected to be the ultimate impact that all species 

around the world will need to overcome, especially macroalgae (Doney et al., 2012; Harvey et al., 

2013; Smale, 2020).  

Ocean warming 

Ocean warming (OW) is expected to affect forest-forming macroalgae around the globe, including 

Cystoseira s.l. spp. (Wernberg et al., 2016; Capdevila et al., 2019; Smale, 2020). Several studies in 

the Mediterranean Sea already linked the increase in seawater temperatures with (i) perturbations 

in the phenology of Cystoseira s.l. (Bevilacqua et al., 2019), (ii) a decrease in the resilience of adults 

(Capdevila et al., 2019), and, in agreement with the results presented in this thesis, (iii) a higher 

mortality of early-life stages in the laboratory and in the field (Falace et al., 2018, 2021; Capdevila 

et al., 2019; Verdura et al., 2021). Because early-life stages are more sensitive than adults to any 

change in environmental conditions (Coelho et al., 2000; de Caralt et al., 2020; Verdura et al., 

2021), and present high mortality rates (Chapman, 1995), they are considered as a bottleneck for 

the continuity of the populations. Therefore, further studies on the recruits of these species are 

needed for the conservation and restoration of marine forests of Cystoseira s.l. spp.  

In our experiment, the warmest temperature (32°C) had a negative effect on the density of recruits 

since the start of the experiment, while differences in the density of recruits at 28°C and 24°C were 

only observed after one month and a half. However, no differences in the size of recruits relative to 

the different temperature treatments were observed until the third month, potentially indicating that 

the temperature was not affecting the growth of the surviving individuals (Celis-Plá et al., 2015, 

2017a; Mancuso et al., 2019). These results on C. compressa show how recruits of this species 

could be more tolerant and resistant to climate change, and thus more widely distributed, than early-
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life stages of other Cystoseria s.l. spp. (Bennett et al., 2022). For example, Ericaria crinita, 

drastically decreased in density after 5 days in experimental tanks at 28°C (Verdura et al., 2021) or 

Ericaria giacconei, which zygotes did not survived at 28°C in the laboratory (Falace et al., 2021). 

The contrasting responses against OW of different Cystoseira s.l. spp. manifest that not all the 

Cystoseira s.l. spp. are ecological analogues (Bruno de Sousa et al., 2019; Orellana et al., 2019). In 

general, the negative effects of OW have already been observed on other forest-forming species, 

both on recruits (Leal et al., 2018; Capdevila et al., 2019; Verdura et al., 2021) and adults (Lind and 

Konar, 2017; Fernández et al., 2020; Smale, 2020; Falace et al., 2021). 

Specific studies on the effect of OW on adults of C. compressa in the Mediterranean Sea have also 

been performed. In a mesocosm experiment, Bennett et al. (2022) found the maximum gross 

primary production of C. compressa from Cyprus and Mallorca (Balearic Islands) at 28 ± 4 °C, and 

a thermal limit where the net production become negative at 23 ± 0.5 °C. The results reported by 

Bennett et al. (2022) on adult C. compressa, presumably less sensitive than recruits, are comparable 

with the mortality we observed in the tanks at similar temperatures. Our results in the treatments at 

warmer temperatures (28 °C and 32°C) are also in concordance with the results reported by 

Mancuso et al. (2019) who observed a decrease in the photosynthetic activity of C. compressa from 

28°C. Moreover, C. compressa shows a reduction in net production (Bennett et al., 2022) and an 

increase in phenolic contents (Mancuso et al., 2019) with the increment in temperature. The impacts 

of OW and extreme climatic events such as marine heat waves have also been claimed as 

responsible for the decline and local extinction of Cystoseira s.l. populations in the Mediterranean 

Sea (Mariani et al., 2019; Verdura et al., 2021). In fact, OW can, in some cases, limit populations 

to specific refuge locations with more favourable conditions (Smale, 2020; Verdura et al., 2021). 

Finally, indirect temperature-driven effects, such as the range expansion of warm water, fast-

growing or opportunistic species, on marine forests are not negligible, because they contribute to 

the tropicalization of habitats and can re-shape macroalgal communities (Vergés et al., 2014a, 

2014b). 

Ocean acidification 

Ocean acidification (OA) due to increasing anthropogenically-derived atmospheric CO2 levels is 

leading to an increase in dissolved inorganic carbon (DIC), a decrease in pH, CO3
2- and carbonate 

saturation state, having adverse consequences for marine calcifiers, such as crustose coralline algae, 

and probably affecting the organisms’ cellular homeostasis (Hurd et al., 2020). Nevertheless, the 

increase in CO2 and DIC levels can be beneficial for some non-calcifying macroalgae (Connell et 

al., 2013; Cornwall et al., 2017a). For instance, OA could stimulate photosynthesis (Connell et al., 

2013; Fernández et al., 2015; Rautenberger et al., 2015; Zhang et al., 2020), thus favouring carbon-

limited macroalgae and macroalgae with the ability to down-regulate their carbon concentration 
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mechanisms (CCM; Cornwall et al., 2017a; Cornwall and Hurd, 2019), altering the dominant 

species and re-shaping macroalgal communities (Hepburn et al., 2011; Connell et al., 2013; Koch 

et al., 2013; Sunday et al., 2017). 

Besides the evident impact of climate change on forest-forming species around the world, studies 

on the interactive effects of OW and OA have focused on Laminariales rather than on Fucales 

(Poore et al., 2013; Gaitán-Espitia et al., 2014; Leal et al., 2018; Hollarsmith et al., 2020; Fernández 

et al., 2021) and to my knowledge, this study represents the first quantification of the effects of OA 

on the recruitment of Cystoseira s.l. spp. In the first chapter of this thesis, and as reported in other 

studies, OA seems to have a less pronounced effect on recruits of C. compressa. than OW. 

Experiments on the effects of OA on adults of Cystoseira s.l. spp. (Celis-Plá et al., 2017b, 2017a) 

showed that OA could be beneficial when there are enough light and nutrients and in moderate 

temperature ranges. In agreement with our results, the few studies investigating the interactive 

effects of OW and OA on adult Cystoseira s.l. spp., performed on Ericaria selaginoides by Celis-

Plà et al. (2017b, 2017a), found that the negative effects were due to the increase in temperature. 

The same authors showed that low pH increased biomass, maximal electron transport rate (ETRmax), 

polyphenol content and antioxidant activity (EC50) of E. selaginoides in ambient temperature 

(20°C). They also concluded that ongoing OW and OA can increase photoprotection and 

photosynthesis of shallow forests of Cystoseira s.l. spp.  

In our experiment, lower pH levels positively affected the size of C. compressa, potentially showing 

a better performance under elevated CO2. Indeed, OA seems to favour the size of Cystoseira s.l. 

spp. (Celis-Plá et al., 2017b, 2017a), including C. compressa, even if they are considered CCM 

species that cannot down regulate their CCM and thus are not expected to be as favoured by OA as 

other carbon-limited macroalgae or macroalgae that can down regulate their CCM (Cornwall et al., 

2017a). In the Mediterranean Sea, surveys of coastal CO2 seeps have repeatedly shown how brown 

macroalgae, such as Cystoseira s.l. spp., Dictyota spp., Sargassum vulgare and Padina pavonica, 

proliferate as CO2 levels rise (Porzio et al., 2011; Baggini et al., 2014). Moreover, one specific 

study performed in CO2 vents investigating the effects of OA on C. compressa, reports that in 

elevated CO2 and shaded conditions, C. compressa had higher carbon content and antioxidant 

activity, independently of nutrients concentrations (Celis-Plá et al., 2015). 

However, future responses of Cystoseira s.l. spp. to OA may depend on multiple factors, such as 

temperature, light and nutrient availability (Celis-Plá et al., 2014, 2015, 2017b, 2017a). For 

example, Britton et al. (2016) reported that Eklonia radiata, a CCM-enabled species, relies on 

diffusive CO2 as a carbon source for photosynthesis when exposed to lower daytime pH, but did 

not show an increase in growth rates, as expected when CCMs are down-regulated. Some studies 

on the giant kelp Macrocystis pyrifera (Roleda et al., 2011; Leal et al., 2017) reported better 
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performance and increased growth rates of the macroalgae under OA treatments, while others did 

not report any benefit of elevated CO2 on the photosynthesis and growth of the same species 

(Gaitán-Espitia et al., 2014; Fernández et al., 2021). This suggests that the benefits of OA on non-

calcifying macroalgae depend on multiple drivers or combined effects of multiple environmental 

factors, like temperature and nutrient availability, (Fernández et al., 2015) and also on the possible 

effects of the seawater carbonate system on physiological processes (Hurd et al., 2020). 

In the first chapter, the effects of the low pH on the density of recruits of C. compressa seemed to 

be negatively stronger during the first experimental days. Similarly, OA showed a negative 

influence on the settlement and early-life stages of other forest-forming macroalgae such as giant 

kelp (Gaitán-Espitia et al., 2014; Hollarsmith et al., 2020), and other key species such as corals and 

molluscs (Kroeker et al., 2013a). These results together with the magnified effects of OW on 

recruits of Cystoseira s.l. spp. (Capdevila et al., 2019; Falace et al., 2021; Verdura et al., 2021) has 

led to the paradigm that early-life stages could be more sensitive to global change and therefore 

could constitute a bottleneck (Chapman, 1995; Coelho et al., 2000). 

Overall, OA could act both as a stressor and as a resource (Connell et al., 2013), favouring the 

replacement of some species by others more resistant and with different functional roles, 

compromising ecosystem function and stability (Kroeker et al., 2013b; Teixidó et al., 2018). 

Changes in the biomass of macroalgal species can directly affect their consumers (Ghedini and 

Connell, 2016; Nagelkerken and Connell, 2022), leading to bottom-up driven alterations to the food 

web (Nagelkerken et al., 2020; Smale et al., 2022). Under climate change, key species could be 

replaced by opportunistic species able to survive in disturbed environments (O’Brien and 

Scheibling, 2018; Álvarez-Losada et al., 2020) and physiologically less sensitive to the effects of 

OA (Connell et al., 2013; Wittmann and Pörtner, 2013; Sunday et al., 2014). 

Our results on OW and OA are striking for C. compressa thriving in rock pools, which are expected 

to be more acclimated to large variability in environmental factors (i.e. temperature, pH, salinity). 

Rockpools can experience strong fluctuations of biotic and abiotic factors due to biological activity, 

irradiance variation, tides, weather-driven changes in water level, etc (Truchot and Duhamel-Jouve, 

1980; Morris and Taylor, 1983; Olabarria et al., 2013). C. compressa can express a high plasticity 

in function of the origin location (Bennett et al., 2022), and our recruits, obtained from a donor 

population situated in a rockpool, are expected to be adapted to a high range of temperatures, pH 

and salinity. Populations usually exposed to larger extremes in temperatures, such as our 

population, could have higher thermal tolerances than populations of the same species not 

acclimated to such environmental variations, however, the effects of pH variability are less clear to 

provide a better adaptation to future OA (Rivest et al., 2017; Cornwall et al., 2018; Legrand et al., 

2018). It has already been demonstrated how intraspecific variability of other Cystoseira s.l. spp. 
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to certain environmental parameters such as irradiance allows these species to be better adapted to 

them (Sant and Ballesteros, 2020b, 2021). Nonetheless, in habitats where organisms are near, or at 

their physiological limits, environmental variability could exacerbate even more the future effects 

of climate change (Lawson et al., 2015; Pansch and Hiebenthal, 2019; Kroeker et al., 2020). 

Therefore, it is very important to know the variability species are dealing with at present as this 

could affect their responses under climate change scenarios or ongoing marine heat waves. 

Assessing the interactive effects of OW and OA on marine forests is, therefore, essential for their 

conservation and restoration. Next steps to evaluate the responses of Mediterranean marine forests 

under climate change could be: (i) testing the interactive effects of OW and OA on recruits of other 

Cystoseira s.l. spp., including deep-sea species, as some species could be more sensitive than others 

(Capdevila et al., 2019; Falace et al., 2021; Verdura et al., 2021); (ii) studying the effects of climate 

change on recruits of the same species form different locations, e.g. from the open coast and from 

rockpools, as the effects of their environmental story could make them more resistant to variations 

in environmental factors (Fernández et al., 2021; Sant and Ballesteros, 2021; Verdura, 2021; 

Bennett et al., 2022); (iii) elucidating the interactive effects of climate change on the development 

and settlement of the recruits (Leal et al., 2017; Savonitto et al., 2019); and (iv) assessing how the 

photosynthetic activity and metabolome of the recruits change under future climate change 

scenarios (Fernández et al., 2015; Celis-Plá et al., 2017a; Mancuso et al., 2019). 

BIOTIC INTERACTIONS ON MARINE FORESTS: SPECIES FACILITATION 

AND HERBIVORY  

Species facilitation 

Marine forests are complex and rich ecosystems interacting (i.e. predation, competition, facilitation, 

allelopathy) with other species of macroalgae, microalgae, vertebrates, and invertebrates. 

Therefore, in the first chapter we considered it important to evaluate the direct and indirect effects 

of climate change in presence of other species. Several studies have already investigated the role 

the canopy has on the maintenance of the understory crustose coralline algae (Melville and Connell, 

2001; Connell, 2003; Irving et al., 2004, 2005; Irving and Connell, 2006), however, the role of 

understory crustose coralline algae on the latter successional forest-forming species is less well 

understood (Benedetti-Cecchi and Cinelli, 1992; Asnaghi et al., 2015). We evaluated the role of 

one of the most common crustose coralline algae in shallow Mediterranean forests, Neogoniolithon 

brassica-florida (Benedetti-Cecchi and Cinelli, 1992; Braga et al., 2009), on the recruitment of C. 

compressa under different OW and OA treatments. Our results show strong effects of OW and OA 

on the calcification rate of N. brassica-florida which could have cascading effects on later 

successional species such as C. compressa. From the start of our experiment, C. compressa showed 

lower densities when associated with the crustose coralline algae, either living or dead. Studies at 
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CO2 seeps (Porzio et al., 2011; Baggini et al., 2014) have reported a decrease in coralline algae 

abundance with decreasing pH and CO3
2-, while brown algae, such as Cystoseira s.l. spp., 

proliferated. This suggests that the disappearance of crustose coralline algae does not affect the 

maintenance of Cystoseira s.l. spp. Even if some studies (Asnaghi et al., 2015) found a facilitation 

effect of N. brassica-florida on Cystoseria s.l. spp., our experiment showed lower densities of 

recruits of C. compressa in association with this crustose coralline algae, independently of the 

treatment. This result potentially relates to the anti-fouling mechanisms of crustose coralline algae 

(Johnson and Mann, 1986; Keats et al., 1997; Villas Bôas and Figueiredo, 2004) and is of major 

importance for future restoration actions, because it suggest that natural biotic substrate are not 

necessarily the best option. Supporting the suitability of the bare substrate, including the widely 

used artificial clay substrate in the Mediterranean Sea (Falace et al., 2018; De La Fuente et al., 

2019) for the settlement of Cystoseira s.l. spp. 

Forest-forming macroalgae as refuge from ocean acidification 

Forest-forming macroalgae can metabolically induce diel pH fluctuations through photosynthesis 

and respiration (higher pH during the daytime, lower at night) modifying local seawater chemistry 

and therefore, potentially acting as a refuge from OA in the vicinity of these habitats for sensitive 

species such as calcifying organisms (Middelboe and Hansen, 2007; Wootton et al., 2008; Krause-

Jensen et al., 2015, 2016). Nevertheless, it is not established if these refuges from OA could still be 

effective under future OA scenarios (Britton et al., 2016; Murie and Bourdeau, 2020), especially 

considering the above mentioned negative effects of climate change on marine forests. Fucus 

vesiculosus can induce diurnal pH fluctuations of about one pH unit (Middelboe and Hansen, 2007; 

Saderne and Wahl, 2013), but the magnitude of the fluctuations would be inversely proportional to 

the spatial scale considered, being more important in locations with little water turnover rates such 

as rockpools (Wahl et al., 2015, 2018). Moreover, pH fluctuations are not temporally and spatially 

uniform at the community and organismal scales (Britton et al., 2016). For example, Houlihan et 

al. (2020) show that an increase in irradiance and thus, photosynthesis, and low hydrodynamics, 

increase pH and the thickness of the diffusion boundary layer (Hurd et al., 2011; Cornwall et al., 

2015) of crustose coralline algae, affecting an habitat at the dozen of microns to millimetres scale, 

in which sea urchin larvae, and other species of invertebrates and algae can settle. However, this 

increase in pH would not perdure during the night due to strong variations in the pH at such a small 

scale because of respiration processes (Hurd et al., 2011; Cornwall et al., 2015). In fact, Cornwall 

et al. (2013) report pH fluctuations of 0.94 units within a shallow Macrocystis pyrifera forest 

demonstrating that diurnal variability in pH was as important as a mean decrease on pH due to OA 

in controlling the growth rates of understory coralline algae. 
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Herbivory 

Biotic factors such as the proliferation of herbivorous species can be responsible for driving 

complex systems toward range shifts (Sala et al., 1998, 199; Chemello et al., 2018). In tropical 

areas, the impact of benthic herbivores such as sea urchins is well documented (Lewis and 

Wainwright, 1985; Foster, 1987; Coyer et al., 1993; Burkepile and Hay, 2008) although omnivorous 

and herbivorous fishes exert the greatest control on macroalgal abundance and distribution (Hiatt 

and Strasburg, 1960; Cronin et al., 1997; Vergés et al., 2016). In contrast, in temperate areas, 

herbivory by benthic invertebrates, especially sea urchins and gastropods seems to be predominant 

(Hagen, 1983; Harrold and Reed, 1985; Norderhaug and Christie, 2009; Filbee-Dexter and 

Scheibling, 2014). However, while there is a considerable amount of information showing an 

inverse correlation between the abundance of macroalgae and sea urchin densities (Giakoumi et al., 

2012; Sala et al., 2012), the relationship between herbivorous fish and other invertebrates 

(decapods, gastropods, amphipods, isopods) and the conservational status of Cystoseira s.l. forests 

has not been assessed. Recently, the proliferation of herbivorous fish such as Sarpa salpa, and also 

omnivorous species such as Diplodus vulgaris, Coris julis or Thalassoma pavo, in the 

Mediterranean Sea has been related to the formation of shrubs and turfs, where forest-forming 

species are substituted by erect and/or turf-forming macroalgae (Vergés et al., 2009; Gianni et al., 

2017; Papadakis et al., 2021). These post regime shift scenarios (i.e. shrubs, turfs or barren 

grounds), either created by the proliferation of sea urchins, herbivorous fish or other herbivores, are 

considered stable states because of the difficulty to reverse the ecosystem to its original state of 

healthy marine forests, mainly due to the demographic characteristics of the forest-forming 

macroalgae (i.e. long lived and short dispersal; Chapman, 1995; Capdevila et al., 2018; Riquet et 

al., 2021). The effects of gastropods, decapods, amphipods and isopods have also been investigated 

on forest-forming species, revealing a variety of behaviours of the herbivores towards the 

macroalgae such as physical damage or clipping, facilitation effects by removing sediments or 

herbivory (Pavia and Toth, 2000; Perkol-Finkel et al., 2012; Gutow et al., 2014; Suzuki et al., 2020). 

However, the herbivory pressure is more studied on adults of Cystoseira s.l. spp. (Vergés et al., 

2009, 2014b; Gianni et al., 2017; Papadakis et al., 2021) than on recruits. Since some studies found 

that a variety of invertebrates could graze on early-life stages of forest-forming macroalgae 

(Lubchenco, 1983; Korpinen and Jormalainen, 2008; Alestra and Schiel, 2014; Suzuki et al., 2020; 

Barrientos et al., 2021; Savonitto et al., 2021) we wanted to study the potential herbivory effect of 

species usually present within shallow Cystoseira s.l. forests on recruits of these species. 

In the Mediterranean Sea, the grazing on Cystoseira s.l. spp. has been principally studied on adults 

and for sea urchins and Sarpa salpa (Vergés et al., 2009; Agnetta et al., 2015; Gianni et al., 2017; 

Medrano et al., 2020; Miller et al., 2022). But as herbivory is believed to contribute to the high 

mortality observed during early-life stages (Chapman, 1995), in the second chapter we performed 
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a series of experiments in the field and in the laboratory to better understand the herbivory pressure 

on Cystoseira s.l. recruits and for the first time, we selected small size non-strict herbivorous species 

(Clibanarius erythropus, Cerithium vulgatum, Idotea balthica and Gammarus sp.). The experiment 

in the field allowed us the elucidate the herbivory pressure in locations with different characteristics 

(e.g. presence or past presence of a Cystoseira s.l. forest). We observed a high mortality rate of the 

early-life stages, possibly linked to density-dependant processes, but also a significant effect of the 

herbivory protection. However, the effects of herbivory on recruits in the field should be reviewed 

and monitored during larger periods of time, as Cystoseira s.l. spp. are long-lived species and 

macroalgal populations that need decades to become functional and self-sustaining. 

The experiments in the laboratory reported in the second chapter of this thesis also demonstrate that 

a variety of other non-strict herbivorous species usually found in shallow macroalgal communities 

(Clibanarius erythropus, Cerithium vulgatum and Idotea balthica) can graze on recruits of C. 

compressa, potentially contributing to the mortality of recruits observed in the field. These 

experiments represent a first approach to evaluate the role of potential herbivores and to elucidate 

which species must be considered to reduce or avoid grazing on recruits of Cystoseira s.l. spp. The 

results observed during our experiment are in agreement with the results performed with other 

species of fucoids and other macrophytes, reporting the important role Clibanarius erythropus, 

Cerithium vulgatum and Idotea balthica exert in structuring macroalgal assemblages (Jonne et al., 

2006; Vergés et al., 2007; Gunnarsson and Berglund, 2012; Suzuki et al., 2020). Our results showed 

that fish, sea urchins, decapods, gastropods and isopods can exert a top-down control potentially 

limiting the recruitment of shallow Cystoseira s.l. forests by consuming early-life stages of these 

species.  

Contrarly to the effects of OW and OA on marine forests, the effects of the proliferation of 

herbivores are usually local and, therefore, could be addressed to prevent the loss of key species 

with effective management of affected adult or young restored populations (Gianni et al., 2018, 

2020; Suzuki et al., 2020; Tamburello et al., 2021). To achieve this, recruits and mature adults of 

threatened populations should be protected against herbivory by using deterrent devices to ensure 

the continuity of the population (Gianni et al., 2020; Savonitto et al., 2021). In the case of smaller 

invertebrates the herbivory deterrens may not be sufficient and when considering restoration actions 

the use of more expensive ex-situ cultivation techniques could be evaluated, as larger recruits could 

be less susceptible to the herbivory effects of smaller invertebrates (Cebrian et al., 2021). Despite 

that, these measures will not address the underlying cause of the proliferation of herbivores and are 

unlikely to provide a long-term solution to conserve and restore forests and ecosystem function on 

its own (Miller et al., 2022). Due to the growing number of restoration projects the topic of 

herbivory is more up to date than ever for being considered as one of the main causes for 

unsuccessful restoration actions of marine forests (Gianni et al., 2013; Tamburello et al., 2019; 
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Savonitto et al., 2021). The regulation of populations of herbivores could also be considered as 

tested by Medrano et al. (2020) and Miller et al. (2022). Therefore, when considering or performing 

restoration actions it is critical to include herbivory management actions to limit its effects on the 

survival of recruits and adults transplanted (Cebrian et al., 2021). As an example, the proliferation 

of sea urchins has been largely related with the creation of barren grounds or marine deserts 

(Giakoumi et al., 2012; Sala et al., 2012; Azzarello et al., 2014; Agnetta et al., 2015) and their 

removal is considered a tool for restoring macroalgal forests (Miller et al., 2022). Assessing the 

herbivory pressure in marine forests is essential for their conservation and restoration and for the 

conception of efficient herbivory deterrents. Further studies could be: (i) better identifying species 

grazing on Cystoseira s.l. populations in function of the life stage, (ii) performing feeding 

preference experiments to elucidate the real impact that potentiall herbivores have in locations 

where marine forest populations are present, and (iii) to elucidate if the feeding preferences and 

behaviours of these species can change under global change (Barrientos et al., 2021). 

In particular, climate change can affect herbivores either by altering their densities, changing their 

feeding behaviour, their food preferences or their consumption rates (Gutow et al., 2014; Barrientos 

et al., 2021; Mitterwallner et al., 2021). On one hand, sea urchins have been reported to decrease in 

abundance near natural CO2 seeps, possibly decreasing its herbivory rate and being less competitive 

under OA (Porzio et al., 2011; Asnaghi et al., 2013, 2020; Baggini et al., 2014). On the other hand, 

the proliferation of non-indigenous warm water herbivorous fish, such as Siganus spp., is an indirect 

effect of OW on macroalgal communities, potentially leading to higher herbivory pressure and 

regime shifts (Vergés et al., 2014a, 2014b; Bennett et al., 2015b; Barrientos et al., 2021). It is 

suggested that range-shifting herbivorous fish can also affect recruits by consuming microscopic 

stages present in the turf matrix (Bennett et al., 2015b; Barrientos et al., 2021). In addition, 

metabolic rates of herbivores could increase due to OW and OA increasing also their consumption 

rates (Rich et al., 2018). For example, according to Barrientos et al. (2021) the feeding rates on 

early-life stages of Eklonia radiata were higher under most tropicalized scenarios. Also, the carbon 

content of macroalgae could increase under OA altering, in some cases, the consumption rates by 

herbivores (Gutow et al., 2014; Leung et al., 2018). 

MARINE FORESTS LOSS AND FACILITATION OF BLOOMS OF TOXIC 

BENTHIC DINOFLAGELLATES 

The degradation and losses that marine forests are experiencing and will experience under global 

change, will have profound consequences for the ecosystems (Álvarez-Losada et al., 2020; Smale 

et al., 2022). We have already discussed some causes responsible for marine forests loss: the abiotic 

interactive effect of OW and OA and the biotic effects of species facilitation and herbivory on 

recruits of C. compressa. In the framework of interspecific interactions, in the two last chapters of 
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this thesis, we investigated a possible effect of marine forests loss, in particular the blooms of 

Ostreopsis spp. The results from the third chapter of this thesis, in agreement with the results of the 

latest bibliographic reviews on the ecology of toxic benthic dinoflagellates (Berdalet and Tester, 

2018; Tester et al., 2020), clearly demonstrate the current proliferation of blooms of Ostreopsis spp. 

in temperate zones, including the Mediterranean Sea. The observed increase in harmful algal 

blooms in the last decades relates to more effective detection through improved observation and 

monitoring capacities (Hallegraeff et al., 2021), but also to the increasing anthropogenic impacts 

and global climate change effects (Berdalet et al., 2017; Tester et al., 2020). 

It is expected that the ongoing OW can facilitate the expansion and proliferation of blooms of the 

genus Ostreopsis, as their seasonal variation is often linked to temperature fluctuations, especially 

in the warm season (Ingarao and Pagliani, 2013; Accoroni and Totti, 2016). The effects of OA on 

Ostreopsis spp. still require further investigations, but Di Cioccio et al. (2014) found bloom 

abundances of Ostreopsis cf. ovata in CO2 seeps in Ischia Island (Mediterranean Sea) where pH 

values are similar to those predicted for the end of the century. Furthermore, an indirect effect of 

OW and OA on the proliferation of blooms in tropical areas could be the substitution of corals for 

macroalgae, that are a preferred substrate for the development of Ostreopsis spp. (Berdalet et al., 

2017). Our results, predicting larger abundances of Ostreopsis spp. on shrub and turf-forming 

macroalgal communities; also foresee climate change to indirectly promote the development of 

blooms of Ostreopsis spp. through regime shifts, either from corals to macroalgae (Jouffray et al., 

2015; Rains and Parsons, 2015, 2015; Johns et al., 2018) or from complex macroalgal communities 

to less complex ones (Bulleri et al., 2016; Filbee‐Dexter and Scheibling, 2017; Pessarrodona et al., 

2021), that can trigger this species development (Fraga et al., 2012). Despite that, our bibliographic 

review makes patent that the ecological aspects involved in the proliferation of blooms of 

Ostreopsis spp. are still largely understudied and that most of the studies do not focus on the ecology 

of these species (Pavaux et al., 2020) and in particular on the description of the meso- and 

macrohabitat of the sampled locations. 

Even if the growth, abundance, and distribution of benthic dinoflagellates are controlled by 

chemical (nutrients and salinity) and physical (temperature, irradiation and hydrodynamics) factors, 

biological (competition, predation, facilitation) factors are likely to influence Ostreopsis spp. 

(Pavaux et al., 2020; Tester et al., 2020). It has been recently suggested that the characteristics of 

the macroalgal substrate, such as the thallus architecture and the production of allelopathic 

compounds, could facilitate or regulate the development of epibenthic dinoflagellates (Totti et al., 

2010; Accoroni et al., 2015; Ternon et al., 2018; Pavaux et al., 2020; Tester et al., 2022). 

Allelochemicals produced by many macrophytes can inhibit or stimulate epibionts (Accoroni et al., 

2015; Ternon et al., 2018, 2020) and consequently affect the epibenthic community. Following the 

trend highlighted in the third chapter, where certain macroalgal groups are more commonly sampled 
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in Ostreopsis spp. studies, we performed a preference experiment in the field. In the last chapter, 

we tested the effects of the micro- and mesohabitat on the facilitation of Ostreopsis spp. 

proliferation in the field, during an annual bloom. The effects at large scale were, in some cases, 

more important than the effects at small scale for the proliferation of Ostreopsis spp. The high 

variability on cell abundances and the contradictory results among macroalgal species and habitats 

in function of the sampling and methodology used for the quantification of the cells, has already 

been reported in other studies (Berdalet et al., 2017; Jauzein et al., 2018; Tester et al., 2022). At the 

small scale, the variability in the abundance of cells can be high, and linked to local habitat 

characteristics such as hydrodynamics, light exposure, predation, nutrients, available surface, etc. 

(Berdalet et al., 2017; Tester et al., 2020). However, our results indicate that the physical structure 

of macroalgae alone does not explain the preferences of Ostreopsis spp. Overall, according to our 

results, Dictyota spp. seems to be a good substrate for the development of Ostreopsis spp. (this 

thesis Chapter 4; Park et al., 2020; Ibghi et al., 2022), contrarly to the results from studies on 

allelopathic interactions (Accoroni et al., 2015; Ternon et al., 2020) that suggest a strong negative 

effect of some Dictyotales on Ostreopsis cf. ovata. The preferences could be due to physical 

characteristics of the macroalgae, to their allelochemical proprieties, to the presence of other 

organisms from the epyphitic community or to environmental factors acting at larger scale (Ternon 

et al., 2018; Pavaux et al., 2020). 

As reported, in the last two chapters, abundances of Ostreopsis spp. can change in function of the 

methodology used in the sampling and quantification of the cells (Mangialajo et al., 2017; Jauzein 

et al., 2018; Vassalli et al., 2018). Therefore, the highly used quantification of cells of Ostreopsis 

spp. per gram FW of macroalgae may not be representative of what is really happening in the 

macroalgal community, as it is dependent on the specific weight of the macroalgae. The 

methodologies and quantifications that are best representing the reality of the ecosystem should be 

further investigated and better implemented in future studies. Finding the ideal sampling procedure 

for Ostreopsis spp. will not be an easy task, and should reflect the real risk of bloom for the sampled 

location. Also, the method should consider the structural complexity and characteristics of the 

benthic habitats sampled, the diversity of available substrates and the spatial and temporal scales of 

variability (Berdalet et al., 2017). The high variability on preferences of Ostreopsis spp. at the small 

scale (micro- and mesohabitat) could be influenced by conditions acting at the large scale, at the 

ecosystem level (abundance of patches of favourable mesohabitat, hydrodynamics, water quality 

temperature…), and for this reason so far has not been possible to reach clear conclusions (Accoroni 

and Totti, 2016; Fricke et al., 2018). 

Macroalgal species can affect benthic dinoflagellates abundances, but epiphytic dinoflagellates in 

turn can also affect the macroalgal substrates (Iveša et al., 2021). For example, O. cf. ovata cells 

show a high affinity for ammonia (Berdalet et al., 2017; Jauzein et al., 2017) which can lead to 
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thallus necrosis in Cystoseira s.l. populations due to the ammonium concentrations present on the 

mucilaginous aggregates of the microalgae during blooms (Iveša et al., 2021). Further studies are 

needed to investigate the effects of Ostreopsis spp. biofilm on macroalgae, therefore we cannot 

exclude that recurrent blooms of benthic dinoflagellates could constitute another factor favouring 

the local loss of fucoids (Iveša et al., 2021). To better understand the link between the disappearance 

of marine forests and the proliferation of blooms of Ostreopsis spp., we should collect information 

about the deterioration of the environmental parameters in locations with annual bloom of 

Ostreopsis spp., and historical and present data about marine forest presence. 

Managing harmful algal blooms is extremely important, and with the increasing number of coastal 

urban areas, mitigating the impacts of blooms of Ostreopsis spp. on human health is becoming of 

major interest (Berdalet et al., 2016, 2022). The contact with contaminated seawater or the 

inhalation of aerosols can result in human intoxications and with ecological (mass mortalities of 

invertebrates) and socio-economic consequences in coastal touristic locations, such as the 

Mediterranean coast (Berdalet et al., 2016, 2017, 2022). It is estimated that in the Provence-Alpes-

Côte-d’Azur region, N-W Mediterranean Sea, an increase in Ostreopsis spp. outbreaks could have 

an economic cost from several hundred thousand to several million euros from loss tourism (Lemee 

et al., 2012). The results obtained in this thesis highlight the high variability of Ostreopsis spp. 

abundances on macroalgal species and communities. However, the comparisons of cell abundances 

of Ostreopsis spp. on macroalgal species is controversial and makes it difficult to find clear patterns 

for the development of blooms of Ostreopsis spp. Next steps to better elucidate the relationship 

between Ostreopsis spp. blooms and macroalgal communities should involve: (i) setting similar 

studies at large scale, avoiding transplantation of missing macroalgal communities (Bravo et al., 

2012, 2020; Accoroni et al., 2014; Yong et al., 2018; Lee et al., 2020), (ii) performing allelopathic 

experiments on different species of Ostreopsis and macroalgae (Accoroni et al., 2015; Ternon et 

al., 2020), and (iii) extending these experiments to other species of toxic benthic dinoflagellates 

(Mustapa et al., 2019; Bravo et al., 2020). 

GENERAL CONCLUSIONS 

Globally, the results of this thesis allowed a step forward in the understanding of the causes and 

effects of Cystoseira s.l. forests loss in the Mediterranean Sea in the framework of BHABs 

proliferation. The findings provide important insights into the causes and effects of Cystoseira s.l. 

spp. loss and are of major interest in the conservation of Mediterranean marine forests, contributing 

to the development of effective management measures. The early-life stages of Cystoseira 

compressa are negatively affected by ocean warming and acidification, and by the presence of 

Neogoniolithon brassica-florida. Recruits of C. compressa can also be affected by the herbivory 

pressure of several non-strict herbivorous species. Blooms of Ostreopsis spp. seem to prefer shrub 
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and turf-forming macroalgae, such as Dictyota spp. and Halopteris scoparia, even if, in some 

locations, the high variability of cells of Ostreopsis spp. among substrats and communities could 

hide other potential patterns of Ostreopsis spp. preferences. Larger scale studies would be needed 

to confirm these results. 

The restoration of ecosystems is essential in slowing biodiversity and ecosystem services loss. 

Marine forests, due to their ecosystem services, offering nursery, habitat, protection and food for 

many invertebrates and fishes, have to be considered when restoring coastal locations (Wernberg 

and Filbee-Dexter, 2019). It is important to know the causes driving marine forest loss and prevent 

the effects of their decline, such as BHABs. It is not always possible to remove environmental 

causes of marine forests loss (e.g. herbivory), or even virtually impossible (e.g. OW and OA). 

Future restoration actions could limit the effects of marine forests loss, especially through joint 

efforts, selecting the most adequate techniques prioritizing resistant species and/or populations and 

the less impacted areas for restoration. Such restoration actions will not only increase the 

productivity and biodiversity of coastal ecosystems but could potentially mitigate the public health, 

ecological and economic consequences of Ostreopsis spp. blooms.  

The results presented in this thesis follow the European Union Biodiversity Strategy for 2030, 

United Nations Decade on Ecosystem Restoration and the 2030 Agenda for Sustainable 

Development objectives, widening the view of the effects of global change (i.e. OW, OA and 

herbivores proliferation) on the disappearance of marine forests, potentially triggering the 

development of Ostreopsis spp. blooms in the Mediterranean Sea. Overall, the insights reported in 

this thesis can be useful across species and could help us (i) in the conservation of Cystoseira s.l. 

forests, (ii) in the conception of future restoration actions and guidelines in a changing sea, and (iii) 

in better assessing and eventually regulating Ostreopsis spp. blooms. 
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Key highlights by chapter 

Chapter 1 

− High temperatures (32°C) and low pH (7.8) negatively affect the density of recruits of Cystoseira 

compressa and the calcification rate of its associate understory crustose coralline algae 

Neogoniolithon brassica-florida. 

− C. compressa recruit size is larger under lower temperatures (24°C and 28°C) and low pH (7.8). 

− The presence of N. brassica-florida negatively affect the recruitment of C. compressa, 

independently of the temperature and pH level. 

− OW and OA are expected to have a negative impact on C. compressa populations. 

− Clay substrates are a good support for the recruitment of C. compressa and recommended for 

restoration actions. 

Chapter 2 

- Herbivory control has to be considered for the protection of Cystoseira s.l. forests and the success 

of restoration actions. 

- Herbivory pressure on recruits of C. compressa can differ among locations. 

- Different herbivorous and omnivorous species can graze on recruits of Cystoseira compressa 

compromising the population recruitment and future restoration actions. 

Chapter 3 

− Studies involving field sampling of Ostreopsis spp. increased in the last decade in both temperate 

and tropical areas. 

− In both temperate and tropical areas, erect and turf-forming macroalgae are the most sampled 

substrate for Ostreopsis spp. sampling, independently of the mesohabitat or macrohabitat 

dominant in the sampling location. 

− Ostreopsis spp. are often sampled on macroalgal communities characteristic of post-regime shift 

scenarios. 

− The description of the mesohabitat where Ostreopsis spp. are sampled is rarely reported. 

− There is a need to collect more information at the mesohabitat scale to better understand the 

preferences of Ostreopsis spp. 

Chapter 4 

- Ostreopsis spp. seem to prefer shrub and turf-forming macroalgae even if, in Rochambeau, the 

high variability of cells among substrats and communities could hide other potential patterns of 

Ostreopsis spp. preferences. Larger scale studies would be needed to confirm these results. 

- Dictyota spp. are potentially a good substrate for Ostreopsis spp. proliferation in Vernazzola. 

- The morphology of the macroalgae alone, excluding allelopathic interactions, is likely not 

enough to explain Ostreopsis spp. preferences. 

- The macroalgal preferences of Ostreopsis spp. can vary in function of the counting methodology 

and the type of quantification used for the sampling. 
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APPENDIX A: CHAPTER 1 SUPPLEMENTARY MATERIAL 

Supplementary material S1: Measured (regular characters) and expected (bold characters) 

seawater physico-chemical parameters (temperature in °C, pHT in total scale, calculated pCO2 in 

µatm, and total alkalinity in µmol Kg -1 with mean and SD) according to different treatments and 

substrate types. 

 

  

Treatment Substrate type Temperature (°C) pH p CO2 (µatm) 
Total alkalinity 

(µmol kg-1) 

  Mean SD Mean SD Mean SD Mean SD 

28°C pH 8.07 

Artificial 28,25 0,79 8,05 0,05 429,42 57,51 2562,06 5,79 

Coralline 28,19 0,66 8,04 0,04 439,46 50,41 2563,77 3,60 

Dead Coralline 28,21 0,69 8,04 0,04 435,52 50,13 2566,66 7,20 

28°C pH 7.8 

Artificial 28,29 0,75 7,83 0,14 807,15 192,03 2564,20 3,52 

Coralline 28,38 0,73 7,84 0,07 784,99 154,70 2564,79 15,41 

Dead Coralline 28,43 0,73 7,84 0,13 793,41 166,83 2561,56 3,59 

32°C pH 8.07 

Artificial 31,57 0,44 8,01 0,04 468,46 47,74 2566,97 5,36 

Coralline 31,58 0,48 8,00 0,03 477,15 39,59 2565,73 6,77 

Dead Coralline 31,56 0,48 8,02 0,04 459,05 47,13 2562,03 6,51 

32°C pH 7.8 

Artificial 31,61 0,76 7,82 0,07 805,88 155,87 2561,92 4,89 

Coralline 31,54 0,70 7,83 0,06 783,92 135,27 2562,58 6,06 

Dead Coralline 31,67 0,64 7,84 0,05 774,72 112,88 2565,43 5,90 
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Supplementary material S2: Statistic results from the experiment 1. 
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Supplementary material S3: Statistic results from the experiment 2. 
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Supplementary material S4: Results from the post-hoc analysis of the experiment 2 on the density of C. 

compressa for the significant interactions pH × Substrate Type × Day, Temperature × Substrate Type × Day 

and Temperature × pH × Day. AS is artificial substrates, CS coralline algae substrates and DCS dead coralline 

algae substrates. * means significant differences and = means no significant differences. 
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Supplementary material S5: Results of the post-hoc analysis of the experiment 2 on the size of 

C. compressa for the significant interactions pH × Substrate Type × Day, Temperature × Substrate 

Type and Temperature × pH. AS is artificial substrates, CS coralline algae substrates and DCS dead 

coralline algae substrates. * means significant differences and = means no significant differences. 
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APPENDIX B: CHAPTER 2 SUPPLEMENTARY MATERIAL 

Supplementary material S1 

  

 

Image of the substrates used in the mesocosm experiment recruited with 2 – 3 months old 

Cystosseira compressa (5.02 ± 0.53 mg FW C. compressa; mean ± SD). 
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APPENDIX D: CHAPTER 4 SUPPLEMENTARY MATERIAL 

Supplementary material S1: Artificial macroalgae design 

ARTIFICIAL 

MACROALGAE 

TYPE 

NUMBER 

OF 

ALGAL 

UNITS 

DIAMETER 

(CM) 

THICKNESS 

(CM) 

TOTAL 

SURFACE 

(CM2) 

FIGURES 

OF THE 

UNITS 

PHOTOS OF 

ARTIFICIAL 

MACROALGAE 

CYSTOSEIRA 2 0.5 0.2 99.99 1 1 

DICTYOTA 4 1.1 0.2 100.85 2 2 

HALOPTERIS 2 0.4 0.2 100.98 3 3 

TURF 16 0.2 0.2 99.77 4 4 

CONTROL 0 - - 

0 (78.5 

lid’s 

surface) 

- 5 

 

Figure 1: Real size artificial macroalgae unit Cystoseira type. The measures are in mm. 
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Figure 2: Real size artificial macroalgae unit Dictyota type. The measures are in mm. 

 

Figure 3: Real size artificial macroalgae unit Halopteris type. The measures are in mm. 

 

Figure 4: Real size artificial macroalgae unit turf type. The measures are in mm. 



APPENDICES 

………………………………… 

193 

 

Photo 1: Artificial macroalgae Cystoseira type. 

 

Photo 2: Artificial macroalgae Dictyota type. 
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Photo 3: Artificial macroalgae Halopteris type. 

 

Photo 4: Artificial macroalgae turf type. 

 

Photo 5: Control for the surface of the artificial macroalgae (the lid). 
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