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Abstract

Quantum computing is based on quantum physics phenomena, such as superposition and entanglement,
and it promises to revolutionize the world of computing. Photonics is a prominent platform for realizing
fault-tolerant quantum computing. It has various qualities: working at room temperature, large-scale man-
ufacturability using existing foundries for silicon chips, and compatibility with optical communication to
interconnect different quantum computers.

Our main goal is to automate the design of photonic quantum circuits and of their interconnects. Before
a real photonic quantum computer can be manufactured, it is essential to numerically simulate and optimize
the corresponding circuits, which in practice are built out of Gaussian components such as squeezers, beam-
splitters, phase shifters, and homodyne detectors. To achieve universality, we also need non-Gaussian effects,
which can be supplied by photon-number-resolving detectors. We design circuits from this toolbox and
optimize them for various applications using various gradient descent algorithms, some of which we adapted
to our purpose.

The main contributions are:

1. In photonics, Fock space and phase space representations are both useful formalisms to describe quan-
tum states and transformations. We introduce a unified Fock space representation of all Gaussian
objects in terms of a single linear recurrence relation that can recursively generate their Fock space
amplitudes.

2. We find the composition rule of Gaussian unitaries in Fock space, which allows us to obtain the correct
global phase when composing Gaussian unitaries (normally absent from the phase space description),
and therefore to extend our model to states that can be written as linear combinations of Gaussians.

3. We first propose two methods to calculate the gradient of a Gaussian object based on our recursive
representation, which enables us to further adapt different gradient-based optimizations to the problem
of circuit optimization. The differentiability of our recursive representation allows for a straightforward
computation of the gradients. We implement a Euclidean optimizer (i.e., which doesn’t take the
geometry of parameter space into account) in order to optimize each parametrized component of a
circuit. Then we study two ways to account for geometry: first, we apply Riemannian optimization,
by combining all the Gaussian transformations into a global transformation and following a geodesic
on the manifold of symplectic matrices to find the optimized transformation, at which point we can
decompose it back into fundamental optical components. Second, we generalize a complex version of
the natural gradient for optical quantum circuits to accelerate the convergence of the training process.

4. We also give some optimal task-based strategies for using our recurrence relations. New algorithms are
proposed to calculate, for instance, the amplitudes of a mixed state and the transformation matrix of
interferometers. In addition, we derive a Gaussian evolution algorithm, which allows us to ”fuse” the
computation of the amplitudes of a Gaussian transformation and its action on any state.

5. We achieve the automated design of photonic quantum circuits by implementing the tools to simulate
and optimize the circuits built from our recurrence relation. We give state preparation as the first
example; we find circuits that can produce high-fidelity states in a reasonable time, such as cat states
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with mean photon number 4, fidelity 99.38%, and success probability 7.3%. We can also optimize a
216-mode interferometer to make a Gaussian Boson Sampling experiment harder to spoof.

6. We made this work available in various open-source libraries: TheWalrus, StrawberryFields, Poenta,
and MrMustard.
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Introduction en français

L’informatique quantique est basée sur des phénomènes de physique quantique, tels que superposition et
intrication, et il promet de révolutionner le monde de l’informatique. La photonique est une plateforme
de premier plan pour réaliser l’informatique quantique tolérante aux erreurs. Il possède diverses qualités
: fonctionnement à température ambiante, fabricabilité à grande échelle à l’aide des fonderies existantes
pour les puces de silicium et compatibilité avec la communication optique pour interconnecter différents
ordinateurs quantiques.

Notre objectif principal est d’automatiser la conception de circuits quantiques photoniques et de leurs
interconnexions. Avant de pouvoir fabriquer un vrai ordinateur quantique photonique, il est essentiel de
simuler numériquement et d’optimiser les circuits correspondants, qui sont en pratique construits à partir de
composants gaussiens tels que des squeezers, des séparateurs de faisceaux, des déphaseurs et des détecteurs
homodynes. Pour atteindre l’universalité, nous avons également besoin d’effets non gaussiens, qui peuvent
être fournis par des détecteurs résolvant le nombre de photons. Nous concevons des circuits à partir de
cette bôıte à outils et les optimisons pour diverses applications en utilisant divers algorithmes de descente
de gradient, dont certains que nous avons adaptés à notre objectif.

Les principaux apports sont :

1. En photonique, les représentations de l’espace de Fock et de l’espace des phases sont toutes deux des
formalismes utiles pour décrire les états et les transformations quantiques. Nous introduisons une
représentation unifiée dans l’espace de Fock de tous les objets gaussiens en termes d’une seule relation
de récurrence linéaire qui peut générer de manière récursive leurs amplitudes dans l’espace de Fock.

2. On retrouve la règle de composition des unitaires gaussiens dans l’espace de Fock, qui permet d’obtenir
la bonne phase globale lors de la composition des unitaires gaussiens (normalement absente de la
description de l’espace des phases), et donc d’étendre notre modèle à des états qui s’écrivent comme
combinaisons linéaires de gaussiennes.

3. Nous proposons d’abord deux méthodes pour calculer le gradient d’un objet gaussien à partir de notre
représentation récursive, ce qui nous permet d’adapter davantage différentes optimisations basées sur le
gradient au problème d’optimisation de circuit. La dérivabilité de notre représentation récursive permet
un calcul simple des gradients. Nous implémentons un optimiseur euclidien (c’est-à-dire qui ne prend
pas en compte la géométrie de l’espace des paramètres) afin d’optimiser chaque composant paramétré
d’un circuit. Ensuite, nous étudions deux façons de rendre compte de la géométrie : premièrement,
nous appliquons l’optimisation riemannienne, en combinant toutes les transformations gaussiennes en
une transformation globale et en suivant une géodésique sur la variété des matrices symplectiques pour
trouver la transformation optimisée, à quel point nous pouvons la décomposer dans les composants
optiques fondamentaux. Deuxièmement, nous généralisons une version complexe du gradient naturel
pour les circuits quantiques optiques afin d’accélérer la convergence du processus d’apprentissage.

4. Nous donnons également quelques stratégies optimales basées sur les tâches pour utiliser nos relations
de récurrence. De nouveaux algorithmes sont proposés pour calculer, par exemple, les amplitudes d’un
état mixte et la matrice de transformation des interféromètres. De plus, nous dérivons un algorithme
d’évolution gaussienne, qui nous permet de ”fusionner” le calcul des amplitudes d’une transformation
gaussienne et son action sur n’importe quel état.
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5. Nous réalisons la conception automatisée de circuits quantiques photoniques en implémentant les outils
pour simuler et optimiser les circuits construits à partir de notre relation de récurrence. Nous donnons
la préparation de l’état comme premier exemple ; nous trouvons des circuits capables de produire des
états haute fidélité dans un temps raisonnable, tels que des états cat avec un nombre moyen de photons
de 4, une fidélité de 99,38% et une probabilité de réussite de 7,3%. Nous pouvons également optimiser
un interféromètre à 216 modes pour rendre une expérience d’échantillonnage de boson gaussien plus
difficile à usurper.

6. Nous avons rendu ce travail disponible dans diverses bibliothèques open source : TheWalrus, Straw-
berryFields, Poenta et MrMustard.
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Chapter 1

Introduction

1.1 Background

Quantum mechanics is a fundamental theory in physics that provides a description of the physical properties
of nature on an atomic scale [1]. Richard Feynman’s talk in 1982 [2] proposed the idea of building a
universal quantum simulator to describe quantum phenomena. Although it turned out to be the field of
quantum simulation afterward, it didn’t spark much interest at that time.

The interest in Quantum computing arose since the development of Shor’s algorithm [3] in 1994,
which could find out prime factors of large numbers more efficiently and is believed to be hard for classical
computers and gives a shock to the security of the well-established cryptosystem RSA [4].

Quantum and classical computers are used to solve problems, but they fundamentally differ in manipulat-
ing data. Quantum computers involve quantum physics phenomena, such as superposition and entanglement.
The term quantum advantage is introduced with the goal of demonstrating that a quantum computer can
solve a problem that a classical computer can not solve in a reasonable time. It consists of two tasks:

• finding a problem that can be solved by a quantum computer and outperform the best-known algorithm
for a classical one;

• building a quantum computer in practice.

Google first claimed to have achieved quantum supremacy [5] in 2019 with a quantum computer called
Sycamore, which is based on superconducting materials and has 53-qubit. They chose the task of sampling
the output of a pseudo-random quantum circuit to compare with the state-of-the-art computers.

In 2020, a team from the University of Science and Technology of China reached this milestone with their
light-based quantum computer JiuZhang [6], which is able to finish a task in 200 seconds, while the classical
computer would take more than half a billion years. The Gaussian boson sampling task was performed on
it.

In late 2021, IBM’s “Eagle” processor claimed to have achieved quantum supremacy in their research
Blog, which broke the 100-qubit barrier and reached a 127-qubit quantum processor.

Xanadu won this race in 2022 [7] with their quantum computer Borealis, which carries the Gaussian
boson sampling task with 216-mode as well [8, 9] in 36 µs, whereas it requires more than 9,000 years for the
best available algorithms.

Though many demonstrations of quantum advantages exist, the way to a real usable quantum computer
is still difficult and long. The first problem for all possible quantum computer candidates is decoherence
which influences how many gates one can apply on the circuit successively. These factors can come from the
external environment or the interactions between blocks inside a quantum computer. Fortunately, quantum
error correction can help fight against this problem: the information can be protected by encoding it into
more qubits and can be corrected after a noisy process. Except for looking for the resolution in the way of
quantum error correction, researchers are now more or less working with noisy, intermediate-scale quantum
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(NISQ) devices. Threshold fault-tolerant quantum computing [10, 11] is another answer to the errors in the
quantum computer. Even though we don’t have fault-tolerant quantum computing today, it is on its way.

Quantum information can be realized in different techniques: photon [12], superconductor [13], ultra-
cold/Rydberg atom [14], electron spin [15] and ion traps [16]. This thesis focuses on quantum optical
computing. Among all possible implementations for quantum computing, photonics is a prominent plat-
form for several reasons. Photons are cheap, and building blocks are easy to make and add. Everything
with a photon works at room temperature except for the detectors. Because of its characteristics, there
are lots of options for encoding the information (polarization, time, frequency, photon number, quadrature,
or particular states). Light can transmit information on the way of propagation. Moreover, optical fibers
are everywhere and can be used directly for long-distance communication (compatibility). However, it has
some challenges. Photons do not interact with each other therefore it is difficult to make the operators like
squeezing effective. And the loss is also a big issue during transmission. So quantum error correction is also
of importance in the scheme of quantum optical computing.

The biggest challenge now is to build a fault-tolerant quantum computer in which every component
is lossy and noisy. And photonics quantum computer is a prominent platform for realizing fault-tolerant
quantum computing.

Before a real photonic quantum computer can be manufactured, it is essential to numerically simulate and
optimize the corresponding circuits, where “circuits” refer to the circuit model to represent the evolution
of quantum states inside a quantum computer. Photonic quantum circuits, in practice, are built out of
Gaussian components such as squeezers, beam-splitters, phase shifters, and homodyne detectors. There
needs to be more, as to achieve universality, we also need non-Gaussian effects, which are supplied by
Photon Number Resolving (PNR) detectors. In the numerical simulation, we design the circuits from the
two components above and then optimize them for various applications. Machine learning techniques are
used in our optimizations.

Machine learning techniques have become powerful tools in different areas of data processing [17]. The
idea is to combine machine learning techniques with quantum systems appears, which is known as quantum
machine learning. There are no definitions clearly now of what is quantum machine learning:

• from the point of view of data type and algorithm type, one can combine either classical data or
quantum data with the quantum algorithm or classical algorithm. For example, analyzing classical data
on a quantum computer is a CQ type (i.e., the quantum-enhanced machine learning [18]). Another
example can be a QQ type, which is to classify the quantum data with a quantum algorithm (i.e., the
quantum Grover search algorithm applied in the unstructured search for data processing [19]).

• one can also make the quantum computer as the quantum subroutines to run as part of classical machine
learning techniques, such as the famous variational quantum eigensolver (VQE) algorithm to search
the ground state of the electronic Hamiltonian of molecules [20]; formalizing problems of interest as
variational optimization problems, such as the quantum approximate optimization algorithm (QAOA)
[21] to find approximate solutions for MaxCut. This kind of hybrid quantum-classical algorithm would
be considered quantum machine learning sometimes.

• optimizing parameterized quantum circuits via Machine Learning techniques [22] is also a famous
direction. This approach is under the QQ type because both the learning device and the system are
quantum. Parameterized quantum circuits could be referred to as the quantum neural network if one
arranges the circuit in a layered structure and have the linear and activation part.

• other important quantum machine learning-related ideas: quantum reinforcement learning (combining
reinforcement learning with quantum properties [23], quantum annealing (solving large-scale combina-
torial optimization problems [24]), and hidden quantum Markov models (a quantum generalization of
classical Markov chains [25]).

This thesis uses the third idea above to optimize photonic parameterized quantum circuits via machine
learning techniques. Optimization is an aspect of Machine Learning, which is the process of training the
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parameters in the model iteratively in order to reach a maximum or minimum function evaluation. We use
one of the most important optimization algorithms: gradient descent.

In summary, this thesis focuses on the classical simulation and optimization of photonic parametrized
quantum circuits via machine learning techniques, with the objective of automatic circuit design.

1.2 Context on detailed questions

In this section, we elaborate on the specific questions addressed in this thesis, which are all geared toward
solving the following challenging task: how can we design photonic quantum circuits automatically? We
need to separate this task into several steps to answer this question.

The photonic quantum circuit is composed of fundamental optical components (such as phase shifters and
beam-splitters), non-linear optical components (such as Kerr gate and cubic gate), and detectors (such as
homodyne detectors and PNR detectors). “How can we work with Gaussian and non-Gaussian objects (such
as PNR detectors) in the same circuit” becomes our first question. To describe these fundamental optical
components in mathematical forms and then simulate them on a classical computer, one can use phase space
and Fock space representations, such as the coherent state that can be described both in phase space and Fock
space representation. Another example is the PNR detectors, which can be easily described in Fock space
representation but not in phase space. In this thesis, we develop the theory of Gaussian quantum mechanics
to generate the Fock representation of Gaussian objects and work with non-linear optical components and
detectors together in Fock space.

Our Gaussian quantum mechanics theory gives a mathematical tool to describe the evolution inside
the photonic quantum circuits: the recurrence relation. Based on this, we build the quantum circuit with
fundamental optical components, non-linear ones, and detectors and simulate the evolution of quantum states
through it. The circuit component is parametrized, and the output changes with different parameter values.
We can then train this parametrized circuit by calculating the gradient with respect to each parameter and
updating it. So, getting the gradient with respect to the parameters is the first step in training the circuit.
“How can we use the gradient to train a photonic quantum circuit” becomes the following question.

During the simulation, the Fock representation of a multi-mode Gaussian tensor occupies enormous
computational resources, such as a 3-mode Gaussian operator with a cutoff of 50 uses more than one billion
storing units, not to mention calculating the multiplication it with an input state. With a faster learning
speed, the simulation ability can increase a lot and it allows us to design on larger circuits. We then introduce
the idea “How can we improve the convergence rate”.

This work can be used to build a playground for quantum optical communities. Unlike doing experiments
in the laboratory directly, one can simply build the circuit, get all the optimized parameters that one wants
and start the experiment. We implemented all the methods in this thesis in the freely available open-source
library (which is a software library with an open-source license that is free to reuse, modify, and/or publish
without permission) for sharing our work.

Now we are going to elaborate on all details of each question:

• How can we work with Gaussian and non-Gaussian objects in the same circuit at the same time?

• How can we use gradient descent to train a photonic quantum circuit?

• How can we improve the convergence rate of gradient descent?

• What is the best way of making this work publicly available?

1.2.1 Gaussian quantum mechanics

Gaussian quantum mechanics is a subset of quantum mechanics that finds applications in several fields
of quantum physics, such as quantum optics [26], quantum key distribution [27], optomechanical systems
[28], quantum chemistry [20], condensed matter systems [29]. In the context of quantum optics, many
of the available states (e.g. coherent, squeezed, thermal), transformations (e.g., beam-splitter, squeezer,
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displacement, attenuator, amplifier), and measurements (e.g., homodyne, heterodyne) are Gaussian, which
are all characterized by a Gaussian phase space representation.

Gaussian objects are easy to manipulate inside the phase space representation. But it is essential to access
a universal set of states and transformations, that is, to include non-Gaussian effects as well, which can be
done by the photon number resolver. So the calculation is needed to transform from the Gaussian phase
space representation to the Fock space representation, where we can describe photon number measurements.
Hence, studying the Fock representation of Gaussian objects plays an important role in optical quantum
simulation and optical quantum information processing.

The Fock representation of Gaussian objects has been studied in different communities: in chemical
physics, one studies vibronic transitions using the Hermite polynomials as a computational tool [30, 31, 32,
33], and the matrix elements of Gaussian and non-Gaussian transformations have been evaluated in [34] by
using the multimode Bogoliubov transformation.

Our recurrence relation work in chapter 6 paves the way to work with Gaussian quantum mechanics in
Fock space. [35] introduced a method to compute the Fock space amplitudes of Gaussian unitary transfor-
mations using a generating function. Part of the thesis work is to extend that method to cover Gaussian
pure states, mixed states, and all Gaussian channels as well.

1.2.2 Gradient descent to train the optical quantum circuit

The most used algorithm to train the optimization circuits is gradient descent, which was first proposed
in 1847 by Augustin-Louis Cauchy [36]. The gradient of a function is the calculation in a numeric way to
point out where to adjust the parameters. Stepping repeatedly by applying the gradient will lead to the
minimum of that function. It has the disadvantage of converging into the local minimum depending on the
initial points. Also, the choice of the learning rate is challenging if one doesn’t know well the shape of the
parameter space; it could be too low or too high.

Usually, the gradient is to compute the partial derivatives of each parameter. So that it requires the cost
function to be differentiable; however, it is not an easy task in quantum optical circuits.

If we want to simulate the quantum optical circuit, we can consider the state as the vector, and the
operators are matrices. The evolution of the state in the circuit is matrix-vector multiplication. The difficult
part is to get the matrices for the operators. Each optical component is expressed as a matrix exponential
of a linear combination of infinite-dimensional non-commuting operators:

e
1
2 ẑ

TM ẑ+ẑT ẑ, (1.1)

where z is defined in Eq. (3.2).
One cannot keep the infinite-dimensional matrices when one tries to simulate this kind of infinite-

dimensional operator in matrix form. Therefore, truncation them with some cutoffs is a good choice, but
one cannot simply truncate the matrix at the exponent and compute the matrix exponential [35]:

trunc(exp(A)) ̸= exp(trunc(A)). (1.2)

The previous work in [35] proposed generating the matrix elements of general Gaussian transformations
recursively up to the desired cutoff dimension. Our recurrence relation work generalizes this work and
extends the recurrence relation to all Gaussian objects.

Because the equation is recursive and each element can be obtained from the linear combination of other
elements, we can differentiate it directly in order to get the gradient. We then show the differentiability of
our recurrence relation in section 7.2.3 and give the exact equation to calculate the gradients with respect
to each parameter.

1.2.3 Improvements in the speed of the optimization

Once the gradient for each element in the circuit is obtained, one can optimize the circuit by applying the
gradient at each step. We want to make the optimization faster so that we are able to train bigger circuits.
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We first develop the Euclidean method to optimize each parameter in specific circuits. Then we propose
to treat all Gaussian components into a global transformation whose symplectic matrix is endowed in the
Riemannian manifold. This is where the Riemannian optimization method comes from. After optimizing
the global transformation, we decompose it back to each component. Both the Euclidean and Riemannian
optimization methods are explained in section 7.3.

On the other side, our parameter space is complicated if we have many parameters in our circuit; it is
where we start to consider the natural gradient algorithm. This algorithm involves the underlying geometry
of the parameter space in the calculation of the gradient. The quantum version has been proposed in [37],
and we provide the complex natural gradient in section 7.4. Moreover, a systematic geometric framework
is presented to study the closed quantum systems from the point of view of the geometry of variational
quantum circuits [38].

Except for the improvements in the circuit, we can also find various algorithms to gain calculation speed
with various tasks. These strategies are introduced in chapter 8.

Complex natural gradient

The natural gradient (NG) has long been established as an approach to learning tasks that outperforms
vanilla gradient descent at the expense of needing a matrix inversion of an n× n matrix at each step, where
n is the number of parameters being updated during that step [39, 40, 41]. Such a matrix represents the
metric tensor of the parameter space as seen by the cost function, and we can use it to find the steepest
descent direction while taking into account the local geometry [40, 41, 42]. The NG approach has also been
proposed as a component of variational quantum algorithms [43].

In the context of parametrized quantum systems, the metric tensor for pure states is the Fubini-Study
metric tensor [37], which can then be adapted for density matrices [44]. The quantum NG has proven
successful in boosting hybrid quantum-classical algorithms such as VQE for qubit systems [37, 44, 45] out-
performing other optimization methods [42, 45]. In fact, the quantum NG yields stable results for various
system sizes, and it achieves convergence in fewer epochs than Euclidean gradient approaches [37, 44, 45].
In the VQE scenario, the metric tensor may be evaluated with the gradient directly on quantum hardware
[44, 46, 47, 48] and then inverted classically.

The quantum NG also looks promising in the noisy intermediate-scale quantum [49] computing paradigm,
as it helps with noisy measurement situations [44]. Furthermore, some block-diagonal approximations have
been introduced for layered quantum circuits [37], which can reduce the computational load without exces-
sively compromising the advantages. Note, however, that the metric tensor used for quantum states can be
noninvertible or ill-conditioned [42, 50, 45]. This corresponds to cases where one or more parameters become
redundant, which means that a single quantum state corresponds to multiple parameter values. To avoid
this, one can introduce regularization [37] and use the Penrose pseudo-inverse rather than the inverse of the
metric [51].

Our work complex natural gradient (published in [52]) extends NG from the real-valued parameters only
to the complex-valued parameters so that the inversion matrix has a shape n × n instead of 2n × 2n and
one can skip the step to separate the real and imaginary part and combine them. Moreover, our complex
version’s metric tensor is holomorphic, allowing us to use it in the AD model directly. More details can be
found in section 7.4.

Riemannian optimization

Differential-geometrical learning algorithms are well used in the machine learning community [53]. Usually,
the geometry of the parameter space is Euclidean, while some others are Riemannian. Riemannian manifold
in differential geometry is a real and smooth manifold equipped with a Riemannian metric on the tangent
space at each point.

If one obtains the Euclidean gradient ∂Mi

∂θ of matrix Mi and applies it:

Mi+1 ←−Mi − η
∂Mi

∂θ
. (1.3)
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The matrix Mi+1 would step out of its manifold.
The intuitive approach of Riemannian manifold optimization can be geodesic calculation (geodesic on

the Riemannian manifold is the shortest curve connection on the manifold between two points [54]), globally
convergent steepest descent [55], Newton [56], quasi-Newton [57] and the conjugate gradient methods [58].

In our work, we will optimize the real symplectic matrices by calculating the geodesic, which forms
a Lie group endowed with a Riemannian metric. The gradient flow needs to be considered because the
standard Euclidean gradient no longer works with the Riemannian manifold. The Riemannian gradient is
defined following the tangency condition and compatibility condition, which guarantees the gradient vector
is tangent to the manifold and the inner product is invariant.

This way, we can get the Riemannian gradient of the symplectic matrix and calculate the geodesic on it
to update the matrix [54, 59]. This is called the Riemannian optimization in section 7.3.2.

1.2.4 Best way to make our work useful

Several libraries are developed along with the thesis. For example, with the Poenta [60] library, one can
construct a layered-structure photonic quantum circuit and train it with a given cost function. MrMustard
[61] represents our bridge work between phase space and Fock space. I have also partly contributed to some
functionalities of TheWalrus [62], and StrawberryFields [63]. Different applications using our libraries are
shown in chapter 9, and we also give their code snippets in Appendix D.

There are also many other software libraries to simulate quantum optical circuits, such as QuTiP [64, 65]
and Perceval [66, 67]. However, they have different focuses and abilities in various quantum information
processing aspects.

• Strawberryfields (SF) [68] by Xanadu focuses on constructing and simulation continuous-variable
photonic quantum computing. It has several backends for the quantum circuit simulation: Gaussian,
Fock, and Bosonic numeric ones. It can, especially, contact with Xanadu’s quantum hardware. A
gallery of applications on near-term hardware is provided with examples. Some important functions in
SF are based on another library TheWalrus [62], which calculates hafnians, Hermite polynomials, and
Gaussian boson sampling.

• MrMustard (MM) [61] by Xanadu represents our work to bridge between phase space and Fock space
with rich functionality in both representations. It can work on both the TensorFlow and PyTorch
environments.

• QuTip [69] by Paul Nation, and Robert Johansson is a quantum Toolbox in python, focusing on calcu-
lating and simulating quantum circuits. Except for normal quantum objects like state vectors, density
matrices, and quantum operators, it can also work with super-operators (for master equations). Solving
the time-evolution is also its task according to the Schrödinger equation, von-Neuman equation, master
equations, Floquet formalism, Monte-Carlo quantum trajectors, and experimental implementations of
the stochastic Schrodinger/master equations, as they claim on their website.

• Perceval [70] by Quandela focuses on quantum optical simulation based on linear optics components,
defining single-photon sources, manipulating Fock states, running simulations, reproducing published
experimental papers, and experimenting with a new generation of quantum algorithms.

1.3 Thesis structure

My thesis flows with the construction of photonic parameterized quantum circuits and ends with some
applications. It is shown in Fig. 1.1.

The recurrence relation is at the core of this thesis, which gives the Fock representation tensors for
all Gaussian objects. With its differentiability, we are able to compute the gradient of the parameterized
quantum circuits together with the non-Gaussian effects. The two usual types of circuit structures are shown
in both figures: the Gaussian and non-Gaussian gates and the Gaussian gates with the measurements. Once
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Figure 1.1: The structure of the thesis. We generally have two optimization structures: Gaussian gates and
non-Gaussian gates, Gaussian gates and measurements (photon-number-resolving detectors). The discussion
about building the recurrence relation of Gaussian objects in Fock representation is shown in chapter 6 (red
rectangles). Because of the differentiability of the recurrence relation, we can calculate the gradient with
respect to each parameter in the circuit. The optimization of parameterized quantum circuits is shown in
chapter 7 (blue rectangles). Chapter 8 (pink rectangles) gives more optical task-based strategies for utilizing
recurrence relations. Finally, we build the trainable circuits based on our recurrence relation, and we show
that we can realize different optimization tasks in chapter 9 (purple rectangles).
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the circuit is built, we can optimize the circuit with different tasks. Otherwise, some strategies for utilizing
our recurrence relation are discussed for some given use cases. Last but not least, since our work is the
classical simulation of photonic quantum circuits, we still offer insight into turning the simulated circuits
into real ones in practice.

Converting Gaussian objects from phase-space representation to Fock representation: Chapter
6 is to find out the Fock representation of Gaussian objects (including Gaussian pure/mixed state, Gaussian
unitary, and Gaussian channel) from its phase-space representation, characterized by its covariance matrix
and mean vector.

1. The first idea is to show how to form the recurrence relation from the covariance matrix and mean
vector for the Gaussian object to generate its corresponding Fock representation. We then show the
equation for Gaussian pure/mixed state, Gaussian unitary, and Gaussian channel separately by using
the previous method, whether Choi-Jamiolkowski isomorphism or Bargmann representation.

2. The second idea is to show how to get the global phase when composing two Gaussian unitaries to
extend our recurrence method to objects beyond Gaussian.

In this chapter, we derive the bridge equation for Gaussian objects from phase-space representation to
Fock representation, which is a recurrence relation. Then the explicit formula of the global phase between
two Gaussian objects is proposed, which allows extending to bosonic qubits.

Optimization of parameterized quantum optical circuits: This chapter shows the differentiability of
the recurrence relation and two ways to optimize Gaussian unitaries: Euclidean optimization and Riemannian
optimization.

1. The first idea is to show how to calculate the gradient for each component of the circuit using automatic
differentiation techniques. And we can get the explicit expression of the differentiation for any Gaussian
object according to our recurrence relation. We propose the chain rule and the generating function
methods.

2. The second idea is to show the two optimizations of Gaussian operators: Euclidean and Riemannian
optimizations. Euclidean optimization is hardware-friendly because we decompose the Gaussian op-
erator into fundamental optical components and optimize them directly. Riemannian optimization is
theory-friendly because it optimizes the whole Gaussian operator using geodesic-based optimization,
and we can decompose the operator afterward into optical components.

3. The last one is the complex natural gradient algorithm to reach the steepest step during optimization
by considering the underlying geometry of the parameter space for optical components.

This chapter shows how to calculate the gradient from the recurrence relation, proposes two optimization
methods in optical circuits, and generalizes the complex version of the natural gradient algorithm.

Optimal task-based strategies for utilizing recurrence relation: This chapter gives some optimal
task-based strategies for using the recurrence relation we proposed in chapter 6 more cleverly.

Four algorithms are proposed:

1. The first idea is the global and local cutoff algorithm. By defining new cutoffs, we change the con-
struction way of the final Gaussian tensor from the recurrence relation;

2. The second idea is the diagonal algorithm to obtain the Fock amplitudes of a mixed state.

3. The third idea is the interferometer algorithm to obtain the tensor of the interferometer in two different
cases.
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4. The last one is the Gaussian evolution algorithm to get the transformed state directly rather than
matrix-vector multiplication.

In this chapter, we present four algorithms to accelerate the computation of tensors with the recurrence
relation.

Applications: This chapter shows that the photonic PQCs can do many optimization tasks depending on
various cost functions.

1. The first idea is to show the preparation task with different structures and gradient-based algorithms
to generate single-photon, NOON state, and GKP state is rapid and with high fidelity.

2. The second idea is to show that we can do some other optimization tasks based on one component in
the circuit.

3. The third idea is to find a realistic way for the optimized circuits. We propose the lossy model to make
the numerical simulations more reasonable.

This chapter gives some applications of optimization tasks with photonic PQCs and finally discusses how
to realize them in practice.
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Part I

Fundamental concepts
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Chapter 2

Brief introduction to quantum physics
and quantum optics

This chapter will first briefly review the main ideas of quantum mechanics [71]. Then, we review the second
quantization for a harmonic oscillator [72] and the Fock space representation in quantum optics.

2.1 Formalism of quantum mechanics

We consider the situation of an isolated quantum system: the state, the evolution, and the measurement.
We use the Dirac notation, or bra-ket notation, to describe them. This notation is based on vector spaces
and linear operations.

2.1.1 Linear algebra

The basic objects of linear algebra are vector spaces. The vector space V of interest is Cn, which is spanned
by n complex numbers (z1, . . . , zn). The elements of the vector space are vectors. Normally we write a vector
z as the column vector:

z =

z1...
zn

 . (2.1)

The addition operation and the scalar multiplication are defined by

z + z′ =

z1...
zn

+

z
′
1
...
z′n

 =

z1 + z′1
...

zn + z′n

 , (2.2)

cz = c

z1...
zn

 =

cz1...
czn

 , (2.3)

where c ∈ C.
The vector under Dirac notation is written with the ket |ψ⟩ ∈ V . And the vector dual to a ket is called

a bra ⟨ψ|, which is mathematically the hermitian (transpose conjugate) of its ket vector as the row vector.
The inner product between two vectors |ψ⟩ ∈ V and |φ⟩ ∈W is:

⟨ψ|φ⟩, (2.4)
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which can be considered as the row vector multiplying the column vector. If ⟨ψ|φ⟩ = 0, it means that these
two vectors are orthogonal to each other. The physical meaning of orthogonal is that one can distinguish
one state from another one with certainty.

The tensor product of two vectors |ψ⟩ ∈ V and |φ⟩ ∈W is:

|ψ⟩ ⊗ |φ⟩, (2.5)

which also describes the composition of two vector spaces V ⊗W .
A spanning set for a vector space V is a set of vectors {|v1⟩, . . . , |vn⟩} such that any vector |v⟩ in the

vector space can be written as linear combination |v⟩ =
∑
i ai|vi⟩. For instance, a qubit lies in the vector

space C2, and a spanning set of this vector space is

|v1⟩ =

[
1
0

]
; |v2⟩ =

[
0
1

]
. (2.6)

Any vector |v⟩ in this vector space

|v⟩ =

[
a1
a2

]
(2.7)

can be written as a linear combination |v⟩ = a1|v1⟩+ a2|v2⟩.
A set of vectors is linearly dependent if there is a nontrivial linear combination of the vectors that equals

the zero vector. If it is not linearly dependent, it is linearly independent. A set of linearly independent
vectors is a basis for V . The minimum number of elements in the basis is the dimension of V .

A linear operator A between two vector spaces V ∈ Cn and W ∈ Cm is defined to be any function
A : V −→W :

A (|v⟩) =
∑
i

aiA (|v1⟩) . (2.8)

The most convenient way to understand linear operators on a finite-dimensional vector space is in terms
of their matrix representations: the operator A sending vectors from V to W can be viewed as the matrix
multiplication of m× n matrix A by a vector in V .

Some important linear operators are the identity operator I|v⟩ = |v⟩ and the zero operator 0|v⟩ = 0.
The trace of a square matrix A, denoted Tr(A), is defined to be the sum of elements on the main diagonal

of A.
An operator A is positive semi-definite if ∀|ψ⟩ ≠ 0, ⟨Aψ|ψ⟩ = ⟨ψ|A|ψ⟩ ≥ 0.
A hermitian operator A is mathematically a self-adjoint operator A = A†. In its matrix representation,

.† means conjugate transpose of the matrix.
Suppose that vector spaces V,W,X and two linear operators A : V −→ W and B : W −→ X, the

composition of B with A is written as BA|v⟩ and the application order is first A then B.
An eigenvector of a linear operator A on a vector space is a non-zero vector |v⟩ such that

A|v⟩ = v|v⟩, (2.9)

where v ∈ C known as the eigenvalue of A.

2.1.2 Quantum state

The most fundamental element in quantum mechanics is the quantum state, which can be defined as a vector
in a Hilbert space:

|ψ⟩ ∈ Cn, (2.10)

and ⟨ψ|ψ⟩ = 1.
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Another way to describe the quantum state is by using the density operator. A density operator ρ is a
positive semi-definite, hermitian operator, which is defined in matrix representation as

ρ =
∑
j

pj |ψj⟩⟨ψj |, (2.11)

where ρ ≥ 0 and Tr(ρ) = 1.
A density operator represents a pure state if and only if it has purity one Tr(ρ2) = 1. Otherwise, it is a

mixed state.
For a mixed state, the quantum state fidelity is defined between two density matrices ρ and σ [73]:

F (ρ, σ) =

(
tr
√√

ρσ
√
ρ

)2

. (2.12)

It expresses the probability that one state will pass a test to identify as the other []. It can also be considered
as a measure of similarity between two states, indicating how close they are. For two pure states, given two
unit vectors |ψ⟩ and |ϕ⟩, the quantum state fidelity becomes:

F (ψ, ϕ) = |⟨ϕ|ψ⟩|2. (2.13)

We will use this definition in our numerical simulations and call it fidelity for short.

2.1.3 Quantum evolution

The deterministic evolution of a quantum state of a quantum system is described by a unitary transformation:

|ψ′⟩ = U |ψ⟩, (2.14)

where the state |ψ⟩ at time t1 is related to the state |ψ′⟩ at time t2 by a unitary operator U which depends
only on the time t1 and t2.

For example, the Pauli matrices

σx =

[
0 1
1 0

]
, (2.15)

σy =

[
0 −i
i 0

]
, (2.16)

σz =

[
1 0
0 −1

]
, (2.17)

are unitary operators on a single qubit that perform a π rotation around an axis.
If we do not give two specific times t1 and t2 and want to describe the evolution of a quantum system in

continuous time, we should use the Schrödinger equation:

iℏ
∂

∂t
|ψ⟩ = H|ψ⟩, (2.18)

where ℏ is the reduced Planck constant, H is a fixed Hermitian operator known as the Hamiltonian of
the system. If we know the Hamiltonian of a closed system, its dynamics are governed completely by this
equation.

Because the Hamiltonian is a Hermitian operator (all eigenvalues are real), it can be expressed as a
spectral decomposition

H =
∑
E

E|E⟩⟨E|, (2.19)

where energy eigenvalues E correspond to normalized eigenvectors |E⟩.
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2.1.4 Observable

The observable is a linear Hermitian operator associated with a physical property on a Hilbert space, such
as position and momentum. The corresponding physical property is measurable.

2.1.5 Measurement

A collection of measurement operators describes the measurement. Quantum measurement is based on the
Born rule, which describes the probability of a given result in a measurement. If a quantum state |ψ⟩ is
measured by a probability operator Mm, the probability that the result m occurs is

p(m) = ⟨ψ|Mm|ψ⟩, (2.20)

where M is semi-definite, and the completeness guarantee that all possible outcomes’ probability sums up
to 1 (

∑
mMm = 1).

The projective measurement is the collection of measurement operators Pm equivalent to an observable,
and P 2

m = Pm. We call them projectors with the corresponding eigenvalue m.

2.1.6 Heisenberg uncertainty principle

The commutator of two operators A and B is defined as

[A,B] = AB −BA. (2.21)

If this commutator is zero and both of the operators are Hermitian, then the observables A and B are
said to be compatible, which means that one can measure them in any order without influencing the result.
The commutator of an operator A and the operator product BC can be easily obtained:

[A,BC] = B[A,C] + [A,B]C. (2.22)

One important commutator is the position operator q and the momentum operator p:

[q, p] = iℏ. (2.23)

They do not commute with each other, which means that we cannot measure them at the same time with
arbitrary accuracy. Or in other words, the measurement of one will interfere with another one. This is what
we call the uncertainty principle.

A more general version of the uncertainty principle is:

(∆A)2(∆B)2 ≥ |[A,B]|2/4, (2.24)

where (∆A)2 and (∆B)2 denote the variances of the measured values defined as

(∆O)2 = ⟨O2⟩ − ⟨O⟩2, (2.25)

and the ⟨.⟩ denotes the expectation of the operator.

2.2 Quantization of a harmonic oscillator

In quantum optics, the harmonic oscillator is an important model to characterize a mode. This section will
start from the Hamiltonian and introduce the creation and annihilation operators.

The concept of modes [74] consists of two aspects: the modes are solutions for the propagation of light;
the number of photons in the different modes describe the transport of energy or information. In this thesis,
a mode refers to a single electromagnetic field characterized by its frequency, polarization, phase and etc.
Its classical field energy, Hamiltonian H, is equivalent to a harmonic oscillator of unit mass, so we use a
harmonic oscillator to characterize it.
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2.2.1 Hamiltonian

The Hamiltonian operator of a one-dimensional harmonic oscillator can be written as:

H =
1

2
(p2 + ω2q2), (2.26)

where ω is the frequency of the mode, and the q and p are canonical position and momentum operators,
which are Hermitian and correspond to the observables.

2.2.2 Canonical commutation relation

The Canonical Commutation Relation (CCR) describes a pair of self-adjoint position q and momentum
operators p that satisfy

[q, p] = iℏ. (2.27)

2.2.3 Ladder operators

Paul Dirac proposed the ladder operator method in order to obtain the energy eigenvalues without solving
the differential equation. The two ladder operators a and its adjoint a† are defined from the quadrature
operators q and p:

a =

√
1

2ℏω
(ωq + ip) , (2.28)

a† =

√
1

2ℏω
(ωq − ip) . (2.29)

Note that a and a† do not commute:

[a, a†] = 1. (2.30)

These two operators, a and its adjoint a†, are not Hermitian, so they are not observables.
As a result, the Hamiltonian operator is written as

H = ℏω
(
a†a+

1

2

)
. (2.31)

We can also define the number operator as:

N = a†a, (2.32)

and its name comes after the property N |n⟩ = n|n⟩. So that the Hamiltonian operator becomes to

H = ℏω
(
N +

1

2

)
. (2.33)

We denote energy eigenstates as {|n⟩, n ∈ N}, also known as the Fock states, with the energy eigenvalue
En. Then we have

H|n⟩ = ℏω
(
N +

1

2

)
|n⟩ = En|n⟩. (2.34)

When applying both ladder operators on the eigenstates, we have:

a†|n⟩ =
√
n+ 1|n+ 1⟩, (2.35)

a|n⟩ =
√
n|n− 1⟩. (2.36)
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a† adds the photon number of the state, while a removes one. We refer to them as creation and annihilation
operators.

If we continue to apply the annihilation operators on the state |n⟩, we will reach the smallest eigenvalue
0:

n = ⟨n|N |n⟩ = ⟨n|a†a|n⟩ = (a†|n⟩)†a|n⟩ ≥ 0. (2.37)

So that we have a ground state |0⟩ with the lowest energy ℏω
2 and such a state is referred to as the vacuum

state.

In the second quantization picture, the Fock state |n⟩ represents the presence of n energy quanta for a
bosonic quantum field. In this thesis, we work with photons, and the Fock state |n⟩ therefore represents the
presence of n photons.

2.3 Fock space representation

The Fock state |n⟩, or number state is the energy eigenstates of the harmonic oscillator. The Fock basis is a
set of Fock states {|0⟩, |1⟩, . . . }. The vector space spanned from the Fock basis is a Fock space.

So, any pure quantum state |ψ⟩ can be expressed in the Fock space V as

|ψ⟩ =

∞∑
n=0

cn|n⟩, (2.38)

where cn ∈ C and |cn|2 denotes the probability of having n photons if it is a normalized vector. The Fock
representation of this state is the column vector:

|ψ⟩ =

c0c1
...

 . (2.39)

The Fock space representation can also be used to describe the mixed states, transformations, and mea-
surements.

The Fock representation of a mixed state with a density operator ρ is the corresponding matrix form
V ⊗ V ρ00 ρ01 . . .

ρ10 . . . . . .
. . . . . . . . .

 , (2.40)

where ρij ∈ C. The same as the pure state case, if it is a normalized matrix, the |ρii|2 denotes the probability
of having the projector |i⟩⟨i|.

The vector space of the multi-mode Fock representation is the tensor product of the single-mode ones,
and we use the tensor to express the elements in its Fock representation, shown in Tab. 2.1.

The tensor has two parameters to identify:

• the dimension (the number of vector spaces).

• the cutoff (the number of basis elements for each vector space).

A scalar is a 0-dimensional tensor. A tensor with one dimension can be thought of as a vector, a tensor
with two dimensions is a matrix, etc.
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tensor dimension cutoff(s)
pure state 1 C

mixed state 2 [C,C]
single-mode operator 2 [C,C]

M-mode operator 2M [C,C,. . . ]
M-mode channel 4M [C,C,C,C,. . . ]

Table 2.1: Fock representations for each element..

2.4 Fock-Bargmann representation

Irving Segal and Valentine Bargmann introduced a new way to define the Fock space. The Fock space is
defined with the Fock basis in discrete, while the Segal-Bargmann space, also known as Fock-Bargmann space,
is the space of holomorphic functions F in n complex variables satisfying a square-integrability condition
with respect to a Gaussian measure:

Fn =

{
F : F is entire on Cn and ||F ||2F =

∫
|F (z)|2e−π|z|

2

dz <∞
}
. (2.41)

Fock-Bargmann representation is another interesting realization of the infinite-dimensional representa-
tion to analyze Hilbert space. The states and operators are presented as holomorphic functions in this
representation. This holomorphic characteristic allows us to do more analytic analysis than only in the Fock
space.

We will first give some basic definitions from the book by Folland [75]. And we list all the elements in
Tab. 2.2 compared with the Fock photon-number space to understand the Fock-Bargmann representation.
Then, finally, some more details about this representation will be discussed.

2.4.1 Bargmann transform

The Bargmann transformation is defined as:

Bf(z) = 2n/4
∫
f(x)e2πxz−πx

2−π
2 z

2

dx, for z ∈ Cn. (2.42)

B is a unitary operator from L2(R) to Fn. Bf is an entire analytic function on Cn because of the integral
over all x ∈ Cn.

2.4.2 Basis

The orthonormal basis on Fn can be defined

ζα(z) =

√
π|α|

α!
zα, (2.43)

where α are positive integers.

2.4.3 Reproducing kernel

If the map F −→ F (z) is a bounded linear functional on Fn for each z, there is a Ez such that:

F (z) = ⟨F,Ez⟩F , (2.44)

and we know that F (z) can also be written as:

F (z) =

∫
eπzw

∗
F (w)e−π|w|2dw. (2.45)
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We call the term Ez(w
∗) = eπzw

∗
as the reproducing kernel. Note that the scalar product on Fn is defined

by ⟨·, ·⟩F , which is not the inner product as we usually understand.
The existence of reproducing kernel helps to write every bounded operator on Fn as an integral operator.

2.4.4 Ladder operators

Given a function F ∈ Fn, the ladder operators Aj and A∗
j can be expressed as

AjF =
1√
π

∂F

∂zj
, (2.46)

A∗
jF =

√
πzjF. (2.47)

Aj decrements the power of the variable z by deriving it, and A∗
j increments it by multiplying.

These two operators satisfy the CCR:

[Aj , Ak] = [A∗
j , A

∗
k] = 0, [Aj , A

∗
k] = δjkI. (2.48)

If we act them on the basis, we have:

Ajζα =
√
αjζα−1i , (2.49)

A∗
jζα =

√
αj + 1ζα+1j . (2.50)

Aj decrements the power of the basis on the variable z, and A∗
j increments it.

2.4.5 Operator’s kernel

If T is a bounded operator on Fn, the kernel for T can be written as KT (z, w∗) = TEw(z) on C2n, and the
application of this operator can be written as:

TF (z) =

∫
KT (z, w∗)|F (w)|e−π|w|2dw for all F ∈ Fn and z ∈ Cn. (2.51)

2.4.6 Comparison in general

In Table 2.2, we compare the elements in the Fock-Bargmann representation and Fock photon-number space
representation.

As we explained before, they are connected by the Bargmann transformation:

L2(Rn) −→ L2(Cn, e−π|z|
2dz), (2.52)

where dz is the Lebesgue measure on Cn.
For instance, to describe a single photon state, we would have an analytic function z1 in the Fock-

Bargmann space, while |1⟩ in the Fock photon-number space. They both have the annihilation and creation
operators and the commutation relations between them hold.

2.4.7 Some special examples for Fock-Bargmann representation

The ket state:

|g⟩ −→ F (|g⟩, z) = e
1
2 |z|2⟨z∗|g⟩ =

∞∑
n=0

gn
zn√
n!
. (2.53)

The coherent state:

|α⟩ −→ exp(−1

2
|α|2 + αz). (2.54)
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Fock-Bargmann Fock photon-number

basis ζα(z) =
√

π|α|

α! z
α, |α| ≥ 0 |n⟩

CCR [Aj , Ak] = [A∗
j , A

∗
k] = 0, [Aj , A

∗
k] = δjkI [ai, ak] = [a∗i , a

∗
j ] = 0, [a, a†] = 1

Ajζα =
√
αjζα−1i , A

∗
jζα =

√
αj + 1ζα+1j a|n⟩ =

√
n|n− 1⟩, a†|n⟩ =

√
n+ 1|n+ 1⟩

Arbitrary state F (z) =
∑
α aα

√
π|α|

α! z
α = ⟨F,Ez⟩F |ψ⟩ =

∑
n an|n⟩

Arbitrary operator KT (z, w) = TEw(z) Um,n

Table 2.2: Dictionary for Bargmann-Fock space and Fock photon-number space.

39



40



Chapter 3

Quantum information with continuous
variables

Unlike the Fock representation using the discrete photon number basis, the phase space representation offers
a compact and efficient formalism to deal with quantum states as well. In phase space representation, the
states are defined with the quadrature operators q and p, which are continuous variables (CVs).

3.1 Phase space representation

3.1.1 CCR in a compact way

Given an M -mode quantum system, the annihilation and creation operators aj , a
†
j ; j ∈ {1, 2, . . . ,M} satisfy

the CCR:

[ai, a
†
j ] = δij , [ai, aj ] = [a†i , a

†
j ] = 0. (3.1)

We can express these relations in a compact way by defining a vector of annihilation and creation operators
z = (a1, . . . , aM , a

†
1, . . . , a

†
M ), so that we can write

[zi, z
†
j ] = Zij , (3.2)

with

Z =

(
1M 0M
0M −1M

)
. (3.3)

An alternative way to describe the system is to use the hermitian position q and momentum p operators,
which can be obtained from Eq.(2.29) and Eq.(2.28) by setting the frequency ω = 1:

qj =
√

ℏ
2 (a†j + aj), pj = i

√
ℏ
2 (a†j − aj). (3.4)

We can group these operators into a quadrature vector r = (q1, . . . , qM , p1, . . . , pM ) so that r is related
to z by the unitary matrix W :

r =
√
ℏWz, (3.5)

where

W =
1√
2

(
1M 1M
−i1M i1M

)
, (3.6)
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where i =
√
−1 is the imaginary unit.

Combining Eq. (3.5) and Eq. (3.2), we have:

[rj , rk] = ℏ(W †ZW )jk = iℏΩjk, (3.7)

where Ω is the skew-symmetric matrix:

Ω =

(
0M 1M
−1M 0M

)
=

(
0 1
−1 0

)
⊗ 1M , (3.8)

which is central to the description of the symplectic group (see more details in Appendix B).

3.1.2 Phase space

Phase space is a real space of dimension 2M with coordinates of position variable q = (q1, . . . , qM ) and
momentum variable p = (p1, . . . , pM ).

In phase space, the quantum state is described by a quasiprobability distribution, and the operator
multiplication is replaced by a star product.

The phase space description offers a compact and efficient formalism to deal with Gaussian objects.
Before going into a more detailed introduction to Gaussian objects, we will give some definitions in phase
space.

3.1.3 Coherent state

The coherent state is an interesting class of quantum states with the dynamics most closely resembling the
oscillatory behavior of a classical harmonic oscillator as the state of minimum uncertainty. It can be easily
and clearly described in phase space formalism. A coherent state is also easy to generate experimentally, in
contrast with the Fock state or quadrature eigenstate.

Mathematically, a coherent state |α⟩ is defined as the eigenstate of the annihilation operator a with the
corresponding eigenvalue α:

a|α⟩ = α|α⟩, (3.9)

where α ∈ C.
In Fig. 3.1, a coherent state in phase space is an uncertainty circle located at the point α = 1√

2ℏ (q+ ip).

We need to emphasize that the notation |α⟩ here does not refer to a Fock state. The exception is the
vacuum state which is both a Fock state and a coherent state. The expression |α⟩ with α = 1 represents a
coherent superposition of Fock number states |n⟩ with a mean of unity photon number (the distribution is
Poissonnian and relative phase 0), while the state |n⟩ with n = 1 is the single-photon Fock state, shown in
Fig. 3.2.

The coherent state can be obtained by displacing a state from the original point to a location α in phase
space. We can write this with the displacement operator D(α):

|α⟩ = eαa
†−α∗a|0⟩ = D(α)|0⟩, (3.10)

which is also called the Weyl operator. The displacement operator is unitary and has the following properties:

D(α) = D†(−α) = D−1(−α). (3.11)

We can then write the coherent state in the Fock basis as:

|α⟩ = e−|α|2/2
∞∑
n=0

αna†n√
n!
|0⟩ = e−|α|2/2

∞∑
n=0

αn√
n!
|n⟩. (3.12)
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Figure 3.1: Coherent state in phase space.
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Figure 3.2: Poisson distribution with mean 1 and the single-photon Fock state.
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If we apply the displacement operator to the annihilation and creation operator, we have the following:

D†(α)aD(α) = a+ α, (3.13)

D†(α)a†D(α) = a† + α∗. (3.14)

Also, we can deduce the action of the displacement operator on the quadrature operators:

D†(α)qD(α) = q +
√

2ℏRe(α), (3.15)

D†(α)pD(α) = p+
√

2ℏIm(α). (3.16)

where Re(α) and Im(α) refers respectively to the real and imaginary part of α. We interpret the displacement
operator as displacing the state Re(α) along the quadrature q, and Im(α) along the quadrature p in phase
space.

Coherent states are often referred to the quasi-classical states since they reach the minimum of the
Heisenberg uncertainty:

∆2q = ⟨q2⟩ − ⟨q⟩2 =
1

2
, (3.17)

∆2p = ⟨q2⟩ − ⟨p⟩2 =
1

2
. (3.18)

Two coherent states are not orthogonal to each other:

⟨α|β⟩ = e−
1
2 (|α|2+|β|2)

∞∑
n=0

(α∗β)n

n!
̸= 0. (3.19)

So that we can not distinguish two coherent states perfectly.
Coherent states also satisfy the completeness relation:

1

π

∫
C
d2α|α⟩⟨α| = 1, (3.20)

where d2α = dRe(α)dIm(α).
If we have a M -mode coherent state:

1

πM

∫
C
d2Mα|α⟩⟨α| = 1, (3.21)

where d2Mα = dRe(α)dIm(α).

3.1.4 Characteristic function

The characteristic function of a state with density matrix ρ is defined as:

χ(α; ρ) = Tr(D(α)ρ). (3.22)

3.1.5 Different phase space distributions

There are several different phase space distributions to describe the quantum state.

Wigner distribution

The Wigner distribution W (q, p) of a quantum state with density matrix ρ is defined as:

W (q, p) =

∫
1

πℏ
⟨q − y|ρ|q + y⟩e−2ipy/ℏdy, (3.23)

where (q, p) is the conjugate variable pair in phase space.
The Wigner distribution or Wigner function is an important tool for studying quantum mechanics in

phase space. Normally, the Wigner function is a real-valued function, and it does take on negative values
when it has quantum properties that do not correspond to classical properties.
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Husimi Q distribution

Another quasiprobability distribution is the Husimi Q in phase space of a quantum state. It can be calculated
by:

Q(α) =
1

π
⟨α|ρ|α⟩, (3.24)

which can be considered a trace of the density matrix ρ over the coherent state {|α⟩}.

Glauber–Sudarshan P distribution

Glauber-Sudarshan P distribution is defined implicitly as:

ρ =

∫
P (α)|α⟩⟨α|d2α, d2α = dRe(α)dIm(α). (3.25)

3.1.6 Comparison between different representations

The representation of a pure quantum state |ψ⟩ can be interpreted as projecting the state into different
bases. For example, the wavefunction on position and momentum spaces:

⟨q|ψ⟩, ⟨p|ψ⟩. (3.26)

The representation of a mixed quantum state ρ can be interpreted as tracing the density operator with
an operator-valued function in phase space:

Tr [ρ∆(α)], (3.27)

where α is the coherent state.
In [76], Husimi Q, Wigner, and P functions are in the same family of phase space functions parametrized

by a number s, corresponding to the values +1, 0, and −1, respectively. For example, the ∆(α) of Husimi Q
function is

∆(α) = |α⟩⟨α|. (3.28)

∆(α) is known as Stratonovich-Weyl (SW) kernel ∆(s)(α) with respect to s in [77].
With the same idea, we summarize the representations of pure state and mixed state in Tab. 3.1.

⟨z|ψ⟩ Tr[ρ∆(α)]
wavefunction ψ(q) = ⟨q|ψ⟩

ψ̃(p) = ⟨p|ψ⟩
Husimi Q representation ⟨α|ψ⟩ Q(α) = Tr[ρ∆(+1)(α)]

Wigner representation W (α) = Tr[ρ∆(0)(α)]

P representation P (α) = Tr[ρ∆(−1)(α)]
Fock representation ψn = ⟨n|ψ⟩ ρmn = Tr[ρ|m⟩⟨n|]

Fock-Bargmann representation e
1
2 |α|2⟨α|ψ⟩ F (α) = e|α|

2

Tr[ρ∆(+1)(α)]

Table 3.1: Comparison of different phase space representations.

3.2 Gaussian quantum mechanics

Gaussian quantum mechanics is a subset of quantum mechanics that is related to objects whose representa-
tions in phase space are Gaussians. Gaussian objects are Gaussian states, Gaussian unitaries and Gaussian
channels. They are in the center of CV quantum systems because they are easy to manipulate in practice.
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3.2.1 Gaussian states

Gaussian states are any states whose characteristic functions and quasi-probability distributions are Gaussian
functions in phase space [78]. Some well-known examples are coherent states, squeezed states, thermal states,
and the vacuum state (which is the only state which is at the same time Gaussian and a number eigenstate).

For a Gaussian state, we write the characteristic function in terms of its mean vector r̄ and covariance
matrix V as [78]

χ(s; ρ) = exp
[
− 1

2s
TΩTV Ωs− ir̄TΩs

]
, (3.29)

where

r̄i = ⟨ri⟩, (3.30)

Vij =
1

2
⟨rirj + rjri⟩ − r̄ir̄j . (3.31)

Note that the covariance matrix V is a real, symmetric, positive definite matrix with the basis of quadrature
vector r defined in Eq. (3.5).

If we use the basis z of annihilation and creation operators z defined in Eq. (3.2), we find the mean
vector µ̄ and the covariance matrix σ:

µ̄i = ⟨zi⟩ =
1√
ℏ
(
W †r̄

)
i
, (3.32)

σij =
1

2
⟨ziz†j + zjz

†
i ⟩ − µ̄iµ̄

†
j =

1

ℏ
(W †VW )ij . (3.33)

Compared with the real covariance matrix V , we denote the σ as the complex covariance matrix.
For example the vacuum state |0⟩, which satisfies aj |0⟩ = 0, has zero mean vector and covariance matrix

V = ℏ
21.

In this thesis, we will write the phase space description of a Gaussian state as the pair (V , r̄) or (σ, µ̄)
depending on which basis we use.

state mean vector r̄ covariance matrix V

vacuum state |0⟩ 0 ℏ
21

coherent state |α⟩
√

2ℏ[Re(α), Im(α)] ℏ
21

squeezed state |r⟩ (ζ is real) 0 ℏ
2

[
e−r 0
0 er

]
Table 3.2: Some examples of Gaussian states

3.2.2 Gaussian operators

Gaussian unitaries are those that map Gaussian states to Gaussian states [78], thus in the Schrödinger
picture, an input Gaussian state ρ is mapped to an output Gaussian state

ρ 7→ ρ′ = UGρU
†
G (3.34)

Gaussian unitaries have polynomials of at most degree 2 in the quadrature (or equivalently in the creation
and annihilation operators) as generators.

In the Heisenberg picture, a Gaussian unitary (parameterized by a 2M × 2M S matrix and a real vector
d with size 2M) transforms the quadrature operators as follows

r 7→ r′ = U†
GrUG = Sr + d. (3.35)
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Since r′ is obtained from r by unitary conjugation, it must satisfy the canonical commutation relations
Eq. (3.7). This implies that the matrix S satisfies

SΩST = Ω, (3.36)

that is, S must be an element of the (real) symplectic group, S ∈ Sp(2M,R).
In general, Gaussian unitaries transform the mean vector r̄ and the covariance matrix V of a Gaussian

state as:

(V , r̄) 7→ (V ′, r̄′) = (SV ST ,Sr̄ + d). (3.37)

A M -mode Gaussian unitary generated by a second-degree polynomial in the quadratures can be decom-
posed into a M -mode displacement Dd and a M -mode unitary U generated by a strictly quadratic unitary
that is responsible for the symplectic matrix S appearing in Eq. (3.35) and thus we can write [79]

UG = DdU(S), (3.38)

where Dd is the displacement operator, parametrized by a real vector d of size 2M . We can also express
the M -mode displacement operator as the tensor product of the single-mode displacement operator, with a
complex vector γ of size M :

D(γ) = exp

[
M∑
i=1

(γia
†
i − γ

∗
i ai)

]
. (3.39)

The relation between them can be derived from Eq. (3.4):

d =
√

2ℏ[Re(γ), Im(γ)]. (3.40)

Single-mode Gaussian unitaries

We will give the definitions of single-mode Gaussian unitaries, noting that their multi-mode version is just
the tensor product extension of their single-mode version.

We have already defined the single-mode displacement operator D(α) in the Eq. (3.10):

D(α) = eαa
†−α∗a. (3.41)

It has

d =
√

2ℏ[Re(α), Im(α)], (3.42)

and Sdisp = 1 for the phase space representation.
The single-mode rotation operator

R(ϕ) = exp
[
iϕa†a

]
, (3.43)

and it has drot = [0, 0] and

Srot =

[
cosϕ − sinϕ
sinϕ cosϕ

]
. (3.44)

The single-mode squeezing operator

S(ζ) = exp

[
1

2
ζ∗a2 −H.c.

]
(3.45)

where ζ = reiδ, and it has dsq = [0, 0] and

Ssq =

[
cosh(r) −e−iδ sinh(r)

−eiδ sinh(r) cosh(r)

]
. (3.46)
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Other Gaussian unitaries

The two-mode squeezing operator

S(2)(ζ) = exp(ra†1a
†
2 −H.c.), (3.47)

where r ∈ R. It has d
(2)
S = [0, 0, 0, 0] and its symplectic matrix is

SS(2) =


cosh r sinh r 0 0
sinh r cosh r 0 0

0 0 cosh r − sinh r
0 0 − sinh r cosh r

 . (3.48)

A M -mode interferometer is defined as [80]

W(J) = exp

i M∑
k,l=1

Jk,la
†
kal

 (3.49)

has dintf = 0, and

Sintf =

[
Re(U) −Im(U)
Im(U) Re(U)

]
. (3.50)

where U = exp [iJ ] is a unitary matrix (since J = J†).
A particular instance of an interferometer is the beamsplitter B(θ, ϕ), parametrized in terms of transmis-

sion angle θ and a phase ϕ (the energy transmission is given by cos2 θ). In this case, we have

J = i

[
0 θe−iϕ

−θeiϕ 0

]
, U =

[
cos θ −e−iϕ sin θ

eiϕ sin θ cos θ

]
. (3.51)

Note that our definition of interferometer immediately implies that W(J)|0⟩ = |0⟩ without any ambiguity
in the global phase of the state on the right hand side.

Note that Sintf ∈ Sp(2n,R) ∪ O(2n) ∼= U(n) where Sp(2n,R) is the symplectic group, O(2n) is the
orthogonal group and U(n) is the unitary group (More information is shown in Appendix B).

The most general Gaussian unitaries

The most general M -mode Gaussian unitary can be expressed as the combination of the fundamental Gaus-
sian unitaries DM (α),SM (ζ),RM (θ) in an arbitrary order:

RM (θ)DM (α)SM (ζ), SM (ζ)DM (α)RM (θ), . . . (3.52)

The book [27] gives the commutation rules (11.176) to change the order of the fundamental unitaries.
Ma and Rhodes, in paper [80], proved that for a general M -mode quadratic Hamiltonian, a unitary

operator e−iH/2 can be written as:

U = eiγMRM (θ)DM (α)SM (ζ), (3.53)

where eiγM is a phase factor, of which we give the explicit derivation in section 6.3.

3.2.3 Gaussian channels

A map Φ between density operators represents a deterministic physical dynamical process [78], which needs
to be
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• Linear: Φ(αρ+ βσ) = αΦ(ρ) + βΦ(σ)∀α, β ∈ C and for all linear operators ρ and σ;

• Trace-preserving: Tr [Φ(ρ)] = Tr [ρ];

• Completely positive map (CP-map): Φ ⊗ I(|ψ⟩⟨ψ|) ≥ 0,∀|ψ⟩ ∈ HA ⊗ HB , where Φ acts on linear
operators on HA and I is the identity super-operator (an operator acting between linear operators on
a Hilbert space) on HB .

Such deterministic physical quantum maps are known as completely positive maps or “quantum chan-
nels”.

A deterministic Gaussian quantum channel maps Gaussian states to Gaussian states. Such a channel is
characterized by two matrices X, Y and a vector d. The action of the channel on a Gaussian state (V , r̄) is

(V , r̄) 7→ (XVXT + Y ,Xr̄ + d). (3.54)

where the matrices X and Y need to satisfy

Y + i
ℏ
2

Ω ≥ iℏ
2
XΩXT . (3.55)

More generally, the action of a Gaussian channel on the characteristic function of an arbitrary state
amounts to

χ(s) 7→ χ′(s) = χ(Xs) exp
(
− 1

2s
TY s

)
. (3.56)

Note that unitary channels such as Eq. (3.37) are special cases of a Gaussian channel where Y = 0 and
X is symplectic. More generally, when X is not symplectic and thus the channel is not unitary, the matrix
Y represents added noise in the state.

Single-mode attenuator channel

An attenuator channel is a deterministic Gaussian CP-map

X = cos θ12 and Y = (sin θ)2nth12, (3.57)

where θ ∈ [0, 2π[ and nth ≤ 1. If nth = 1, it refers to a pure loss channel.

Single-mode amplifier channel

An amplifier channel is a deterministic Gaussian CP-map

X = cosh r12 and Y = (sinh r)2nth12, (3.58)

where r ∈ [0,∞[ and nth ≤ 1. If nth = 1, it refers to a quantum-limited amplifier.

Multi-mode lossy channel

An example of a multi-mode Gaussian channel is the lossy interferometer parametrized in terms of a trans-
mission matrix T with a singular value upper-bounded by 1. For this channel, we find

X =

[
Re(T ) −Im(T )
Im(T ) Re(T )

]
, (3.59)

Y =
ℏ
2

(
12M −XXT

)
, (3.60)

d = 0. (3.61)

Note that in the case where T is unitary, then X is symplectic and orthogonal, and thus Y = 02M recovering
the results from the previous subsection about the multi-mode interferometer.
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3.3 Non-Gaussian objects

Gaussian objects are a well-defined and restricted ensemble, while non-Gaussian objects are part of a sub-
stantial and diverse ensemble.

3.3.1 Non-Gaussian states

The paper [81] gives a full tutorial about the non-Gaussian states; it claims that the stellar rank and Wigner
negativity are both quantifiers of non-Gaussianity.

We will optimize our quantum circuit to prepare different quantum states in our final task in section
9.2.2. There are non-Gaussian states such as cat state, Gottesman-Kitaev-Preskill (GKP) state, etc.

3.3.2 Non-Gaussian operators

Non-Gaussian operators are also vital in quantum optical circuits. Commonly we would choose the cubic
phase gate and the Kerr gate.

The cubic phase gate is defined as:

V (γ) = exp(i
γ

3
q3), (3.62)

where γ is proportional to the third-order nonlinearity of the medium, q is defined in Eqs.(2.28) and (2.29).
The Kerr gate is defined as:

K(κ) = exp(iκN2), (3.63)

where κ is Kerr constant of the Kerr medium, N is defined in Eq. (2.32).
We will discuss the implementation of the Kerr gate in section 9.4, which is regarded as the most promising

non-Gaussian gate to be realized.
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Chapter 4

Automatic differentiation and
gradient descent algorithm for
optimization

This chapter gives the definition of cost function and gradient. Then we introduce Automatic Differentiation
(AD) and gradient descent algorithm.

One of the most used optimization algorithms is the gradient descent algorithm, which was first proposed
in 1847 by Augustin-Louis Cauchy [36]. Gradient descent is finding the local minimum of a differentiable
function closest to the starting point. It gives a way to adjust the parameters of a cost function during each
step of the optimization and to minimize the cost function step by step.

4.1 Cost function

The cost function L is a scalar-valued differentiable function. The cost function quantifies the distance
between the targeted result and the actual result obtained with the current parameters, and then, by learning
from this distance, we can adjust the parameters.

4.2 Gradient

Given a scalar-valued differentiable function L : Cn −→ R or L : Rn −→ R, the gradient of L with respect to
the variables at point p = (x1, . . . , xn) is defined as

∇pL =

 ∂L
∂x1

. . .
∂L
∂xn

 , (4.1)

where ∂L
∂xi

denotes the partial derivative of L with respect to xi.

In the landscape of the function L, one can visualize that the gradient vector can be interpreted as the
direction of the fastest increase of L. If the gradient is non-zero, the direction of the gradient is the direction
where the function increases most quickly. The gradient thus plays a fundamental role in optimization theory,
where it is used to minimize a cost function by gradient descent i.e., taking steps in the direction opposite
to the gradient.
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4.3 Introduction to the Automatic differentiation

Automatic differentiation (AD), also called algorithmic differentiation, computational differentiation, or
auto-differentiation, is to give the computer a precise series of functions in the program and let it evaluate
the derivative automatically. This is the technique we use in our work to calculate the gradients of each
parameter of photonic quantum circuits.

AD has two distinct modes: forward mode and reverse mode. We show how these two modes work in
Fig. 4.1. They are both computing the chain rule. The forward mode goes from the input to the output,
while the reverse mode computes the gradients in the opposite direction.

To have more efficient computations, we are interested in pushing gradient computations from a few units
towards many. The choice of mode depends on input and output dimensions n and m:

• n >> m: If the input vector is much larger than the output, the reverse mode is computationally
cheaper (e.g. in a neural network classifier).

• n << m: If the output vector is much larger than the input, the forward mode is computationally
cheaper (e.g. for a generative neural network).

(a) Reverse mode of AD. (b) Forward mode of AD.

Figure 4.1: The comparison of reverse and forward mode of AD.

4.3.1 An example of the reverse mode

In this thesis, our optimization task corresponds to multiple inputs and a single cost function at the end, so
it is better to use the reverse mode. Let’s use an example to explain how the reverse mode works.

Supposing that we have a sequence of operations:

w1 = G1(θ1)x1,

w2 = G2(θ2)x2,

w3 = G3(θ3)(w1 ⊗ w2),

y = L(w3).
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Figure 4.2: Adjoint graph of a sequence of operations to describe the reverse mode of AD.

We could also show this sequence of operations in an adjoint graph 4.2.

If we follow the arrows from left to right, this refers to the forward pass, which describes the input state
x1 and x2 pass all operators and get the value of the cost function L at the end, which corresponds the
application of gates in the parametrized quantum circuit.

In the other direction, the backward pass consists of the calculation of the derivatives, which shows the
accumulation of the derivatives of each parameter in the circuit. Once we have the ∂L

∂w3
after evaluating the

cost function L, the derivatives can be backpropagated following the backward pass in the graph:

∂L

∂θ3
=

∂L

∂w3

∂w3

∂G3
∂G3
∂θ3

, (4.2)

∂L

∂θ2
=

∂L

∂w3

∂w3

∂w2

∂w2

∂G2
∂G2
∂θ2

, (4.3)

∂L

∂θ1
=

∂L

∂w3

∂w3

∂w2

∂w2

∂G1
∂G1
∂θ1

. (4.4)

TensorFlow is one library that uses the reverse mode to realize AD. We will explain it in detail in section
7.2.2.

4.4 Gradient Descent algorithm

Gradient descent algorithm can be visualized as a ball rolling down a hill (as shown in Fig. 4.3a). The aim
of the ball is to reach the lowest point.

The value of the cost function L changes with different values of parameters. The parameters update is
repeated, and the value of L keeps getting smaller and smaller until it reaches the minimum, as the steps
shown in Fig. 4.3b.

However, only one single parameter is rare, and usually the parameter space contains several parameters
and exhibits a complicated geometry. This is one important reason to take geometry into consideration
during our optimization tasks, which we managed in the generalization of the complex natural gradient
algorithm in section 7.4 and the work of geodesic-based Riemannian manifold optimization in section 7.3.2.
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(a) Ball down the hill (b) Ball downhill with steps

Figure 4.3: Ball down from the hill as an example of the gradient descent algorithm.

4.5 Update rule

4.5.1 Real parameter update

For a real parameter θ, the gradient descent update uses the partial derivative of a real cost function L:

θ ← θ − η ∂L
∂θ
, (4.5)

where ∂L
∂θ is the gradient that we can compute following the chain rule explained in the section 4.6, and η is

the learning rate, which is an important hyper-parameter in the circuit optimization.

4.5.2 Complex parameter update

For a complex parameter ξ, the gradient descent update step should use the partial derivative of a real cost
function L with respect to the conjugate of the parameter [82, 83]:

ξ ← ξ − η ∂L
∂ξ∗

. (4.6)

Proof. The differential df of a complex-valued function f(z) can be expressed as [84]

df =
∂f(z)

∂z
dz +

∂f(z)

∂z∗
dz∗. (4.7)

When it refers to a real-valued function L(ξ), the differential dL can be expressed as:

dL = 2Re

(
∂L(ξ)

∂ξ∗
dξ∗
)
, (4.8)

dL is maximized for real-valued part ∂L(ξ)
∂ξ∗ dξ∗ if the norm of dξ is fixed.

Hence, the gradient descent update step uses the partial derivative of a real-valued cost function L with
respect to the conjugate of the parameter ∂L

∂ξ∗ [84, 85]:

z ←− z + 2
∂L(ξ)

∂ξ∗
ds, (4.9)

where ds is the real-valued differential and the steepest ascent point to the direction of ∂L(ξ)
∂ξ∗ .

This update rule goes back to the regular rule for a real parameter ξ = ξ∗.
To compute the gradient for the update, we need to treat complex variables and their conjugate as

independent variables, which allows us to compute gradients of non-holomorphic functions [82].
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4.5.3 Learning rate

The learning rate η is a hyperparameter that controls that controls the size of the step. Choosing the learning
rate is challenging because if one chooses it too small, it may result in a long training process that could get
stuck at some points, whereas a value too large may result in an unstable training process or jumping over
the minimum it should arrive at. For these reasons, a proper learning rate is a trade-off between convergence
speed and overshooting.

The learning rate schedule is introduced to adjust the learning rate with the progress of learning. Some
learning rate schedules correspond to a pre-defined schedule, such as time-based decay, step decay, and
exponential decay. (The function of the changes in the learning rate is defined.) Some other adaptive learning
rate methods are proposed as well [86], such as Adaptive gradient algorithm (Adagrad) [87], Adadelta [88],
Root Mean Squared Propagation (RMSprop) (unpublished, course notes1) and ADAptive Moment estimation
(ADAM) [89].

4.6 Chain rule

The chain rule is a formula to calculate the derivative of the composition of any number of differentiable
functions in terms of their derivatives and the functions. It can be extended to get the derivative of the
composition of several differentiable functions.

An example here is to explain the chain rule of the two functions f and g. Suppose that there is a series
of functions:

y = f(g(x)), (4.10)

and one can also define the output of g as w:

w = g(x). (4.11)

To get the dy
dx , the chain rule gives the intermediate calculations

dy

dx
=
dy

dw

dw

dx
. (4.12)

The chain rule combines the derivatives with respect to the successive variables, starting from x, using the
function g(·) and the function f(·) successively; each derivative corresponds to a single function’s input and
output (for instance for the function f(·)), the derivative dy

dw uses the input w and output y.

4.7 Jacobian-vector product and vector-jacobian product

The Jacobian is the matrix of partial derivatives of a vector-valued function of several variables. Given a
function f : Rn −→ Rm where first-order partial derivatives exist on Rn, for each input x, it gives an output
f(x) ∈ Rm. The Jacobian matrix of f is defined as:

J =
∂f

∂x
=

[
∂f

∂x1
. . .

∂f

∂xn

]
=


∂f1
∂x1

. . . ∂f1
∂xn

...
. . .

...
∂fm
∂x1

. . . ∂fm
∂xn

 , (4.13)

where each row vector in the final matrix is defined as the transpose of the gradient of the i component

∇T fi =
[
∂f1
∂x1

. . . ∂f1∂xn

]
.

This Jacobian matrix is the core of our optimization task, as the gradient update depends on the product
of the Jacobian matrix and a vector v ∈ Rn.

There are two forms of this product corresponding to the forward and reverse modes of AD:

1http://www.cs.toronto.edu/ hinton/coursera/lecture6/lec6.pdf
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• the vector-Jacobian product (VJP) ∇xf = vTJ is used in the reverse mode. v is a cotangent vector.

• the Jacobian-vector product (JVP) ∇xf = Jv is used in the forward mode. v is a tangent vector.

This v will be introduced as the upstream in the reverse mode of AD in section 7.2.2.
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Chapter 5

Basics of parametrized quantum
circuits

This thesis uses the quantum circuit model to describe the computing scheme, specifically, the photonic
quantum circuit model.

In this circuit model, each wire represents an optical mode and each gate corresponds to an optical
component, which could reach a universal and fault-tolerant computing [90]. All components in this kind
of circuit are parameterized, which is called parameterized quantum circuit (PQC) (or variational
quantum circuit).

The most famous result of PQC is the variational quantum eigensolver algorithm (VQE) [91, 92], which
is a hybrid algorithm combining a quantum circuit with an optimizer in the classical computer to calculate
the ground state of the molecular. It is processed as follows: measuring results from the quantum processor
and transmitting, examining the cost function and calculating gradients of the parameters, updating the
parameters in the quantum processor and starting the processor, and measuring again until the cost function
converges. This work paves the way to consider the quantum processor as a learning model and to combine
the idea of the cost function and optimization in machine learning.

This parameterized way to make quantum circuits and to serve with different quantum problems starts
a new research direction: such as the programmable quantum processor [93, 94, 95], the programmable
quantum computer [5, 6], or the programmable quantum simulators [96]. Even though the realization of
quantum circuits is different for them (as I mentioned before, using photons, ultra-atoms, superconductors,
etc.) and their names are different as well, they have the same core inside, which is the programmability,
where the device is parameterized.

5.1 Continuous variable model with parametrized quantum cir-
cuits

Unlike the quantum computing models using “qubits”, the CV models use the observables, referring to the
model in the platform for optical quantum computing. The results of the CV models can be extended to
other models of quantum computing [97].

The general optimization scheme is provided in this section, which consists of the parametrized quantum
circuits, the cost function, and the gradient descent algorithm to update the parameters. Our model contains
Gaussian and non-Gaussian effects [98]. Since Gaussian unitaries provide Gaussian effects, we are going to
talk about two optimization schemes to realize the non-Gaussian effects:

1. optimization scheme with Gaussian and non-Gaussian gates;

2. optimization scheme with Gaussian gates and measurements.
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5.1.1 General optimization scheme

Figure 5.1: General optimization scheme with CV model.

In general, optimization refers to picking up the best elements regarding some criteria. A real function
L(θ) is defined at the beginning with parameters θ. The idea is to minimize this function L by choosing
different θ in a given set Θ and computing the function L until one finds the best one locally:

θbest = min
θ∈Θ

L(θ). (5.1.1)

This kind of optimization is local because the search space of the parameters θ is in a given set. In
contrast, global optimization focuses on finding the path to the best possible solution in the entire search
space.

The general optimization scheme is shown in Fig. 5.1. We have a parametrized circuit model θ, the
output of the circuit would be:

|ψ⟩out = U(θ)|ψ⟩in. (5.1.2)

The cost function L is a function of this output state, and it can be written as L(θ). The optimization in
this circuit is to update parameters θ by calculating the gradients ∂L

∂θ and updating the parameters θ′.

5.1.2 Non-Gaussian effects

Non-Gaussian operators

It is natural to obtain non-Gaussian effects from non-Gaussian operators. Typically, the cubic phase gate
and the Kerr gate are used as the non-Gaussian ones, defined in Eq. (3.62) and Eq. (3.63), respectively.

For example, the CV neural network proposed in the paper [97] consists of Gaussian and non-Gaussian
gates to mimic the affine transformation and nonlinear activation functions in neural networks. An inter-
ferometer, local squeezing gates, a second interferometer, local displacement gates, and local non-Gaussian
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G(M)
1

K(κ11) . . .. . .

G(M)
l

K(κM1 )

K(κ12) . . .. . . K(κM2 )

. . . . . . . . .

K(κ1M−1) . . .. . . K(κMM−1)

K(κ1M ) . . .. . . K(κMM )

Figure 5.2: M -mode l-Layered architecture (the circuit is composed of Gaussian and non-Gaussian gates,
and states get transformed from right to left).

Figure 5.3: Optimization scheme with the circuit of Fig. 5.2.
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gates construct one layer. And then, one can concatenate several layers to make a multi-layer CV quantum
neural network, shown in Fig. 5.2.

The circuit shown in Fig. 5.3 consists of Gaussian and non-Gaussian gates in each layer. In this scheme,
the non-Gaussian operator is easy to manipulate in numerical experiments but challenging to implement in
the laboratory.

Measurement

The non-Gaussian effect can be introduced by measurement.

Figure 5.4: Optimization scheme with Gaussian gates and measurements.

It is difficult for photons to interact with each other, but it is needed if we want to reach universal
quantum computing. The famous Hong-Ou-Mandel effect [99, 100] gives rise to the photon bunching (the
incoming photons pair off together), which lies at the heart of linear optical quantum computing. However,
the paper [101] claims that this is not enough to make deterministic linear optical quantum computing
possible. The famous KLM scheme [102] induces the interaction between photons by making projective
measurements with photon detectors, which gives non-deterministic quantum computation.

The circuit shown in Fig. 5.4 involves a multimode Gaussian state and measures all modes using photon-
number-resolving (PNR) detectors except one that gives the desired state[103, 104]. The measurement
induces a non-Gaussian effect to prepare the desired target state, conditioned on observing a particular
measurement pattern. Such an output state is also known as “heralded” by the measurement outcome.

5.2 PQC optimization steps

The PQCs have an initial input state, a sequence of quantum gates that depend on free parameters, and the
measurements at the end of the circuit. Someone also calls it a programmable quantum processor.

The PQCs (as shown in Fig. 5.1) consist of four steps:

• Prepare the initial state |ψ⟩in;
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• Apply the quantum circuit (the corresponding of a unitary operator), parameterized by free parameters
θ;

• Calculate the cost function L(θ) with the output state |ψ⟩out;

• Update the parameters θ′ until the cost function converges.

5.3 PQC optimization element

In this section, we explain the building blocks for PQCs: a cost function, a parameterized circuit, gradient
calculation, and an optimizer to update the parameters.

5.3.1 Cost function

One important part of PQC is encoding the problem into a suitable cost function. The cost function defines
the landscape of all the trainable parameters, and the optimizer navigates through it to find the global
minimum.

Our general cost function L(θ) can be expressed as a function of all the elements inside the PQC.
On the one hand, if the cost function is related to the input states {ρ}, the parameters θ, and observable

{O}, it can be expressed as [105]

L(θ) = f
(
Tr[OU(θ)ρU†(θ)]

)
, (5.3.1)

for some cost functions f . This kind of cost function has been used intensively in lots of variational quantum
algorithms, where the cost function depends on the measurement of the observables.

On the other hand, the cost function can be related to the output state directly:

L(θ) = f(U(θ)ρinU
†(θ)). (5.3.2)

In the case of the pure state, we have the following:

L(θ) = f(U(θ)|ψin⟩). (5.3.3)

5.3.2 Parameterized circuits

These gates with free parameters sometimes are called ansatz. The specific structure of the ansatz depends
on what is the purpose, such as the hardware-efficient ansatz aiming at reducing the circuit depth needed,
the well-used problem-inspired unitary coupled clustered ansatz for quantum chemistry problems, or the
hybrid ansatz.

In our work, we will not call these gates ansatz. Instead, we will use some specific structure depending
on the character of quantum optical elements. The discussion of the structure is shown in section 5.1.

5.3.3 Gradient

Once we have defined the cost function and the circuit, the training of the circuit is to minimize the cost
function by updating the parameters θ. The gradient of the cost function is calculated and applied in the
optimization part for each parameter.

A hardware-friendly protocol is proposed in the paper [106] to evaluate the partial derivative of L with
respect to θ: parameter-shift rule. And the paper [46] extended it. The main idea of the parameter-shift
rule is that the partial derivative of a transformation can be calculated as a linear combination of the same
transformation but with different parameters.

Another straightforward way to get the gradient of a transformation is to make the transformation
differentiable. That is why our method explained in section 6.2 is a breakthrough for the simulation of the
photonic quantum circuits: we can simulate and differentiate our transformations (shown in section 7.2.3)
and get its gradient directly (shown in section 7.2.1).
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5.3.4 Optimizer

The efficiency and reliability of the optimization method used in the PQC play an important role. Because
the optimization is normally processed in the classical optimizer, we can try to adapt the optimizer used in
the classical machine learning or deep learning task.

The most common optimization is to update the parameters by their gradient in the steepest direction,
which corresponds the update rule shown in section 4.5.

Adam is a ubiquitous gradient-descent optimization method that has the ability to select a step size
dynamically and has a good performance in a great many deep-learning applications.

Natural gradient (NG) has long been established as an approach to learning tasks that outperforms
vanilla gradient descent at the expense of needing a matrix inversion depending on the underlying geometry
parameter landscape[39, 40, 41]. We have also adapted the NG into the complex version in section 7.4.

Simultaneous perturbation stochastic approximation (SPSA) [107] is another approach. SPSA
can be considered as an approximation to gradient descent along a randomly chosen direction. SPSA has
thus been put forward as an efficient method as it avoids computing many gradient components at each
iteration.

In addition, it has been shown that one can encounter new challenges when optimizing the PQC: such
as the presence of “barren plateaus”, where the variance of the gradients vanish exponentially with the
increasing number of qubits [108], specific cost functions [109], entanglement [110] and noise [111].

5.4 PQC application

PQC provides the framework to tackle different tasks:

• Universal quantum computing. The universal means the ability to achieve any desired unitary. We
can build any unitary from a set of basic gates. For a qubit-based circuit, one example of the gate sets
consists of Clifford gates and non-Clifford gates [112], while for a CV circuit, one example of the gate
sets consists of Gaussian gates and non-Gaussian gates[97].

• Finding ground and excited states in quantum chemistry. The Variational Quantum Eigensolver (VQE)
is a flagship algorithm in quantum chemistry using near-term quantum computers to calculate the
ground state [20] and excited states of molecules [113].

• Optimization problem. The Quantum Approximate Optimization Algorithm (QAOA) [21] is a method
for combinatorial optimization problems, such as Max-Cut problems [21, 114], where the evolution
inside the circuit is governed under an engineered Hamiltonian.

• Mathematical applications. PQCs are widely used in different mathematical problems such as solving
linear [115, 116], or non-linear systems [117], and the famous Shor’s algorithm for factoring [118].

• Machine Learning techniques. Some CV quantum neural networks are considered as the quantum
machine learning [97], which refers to the tasks of using a quantum computer to learn patterns as
classifiers [119, 120, 97], or of comprising quantum data into a quantum auto-encoder [121, 97]. It can
also be used in deep reinforcement learning [122]. Generative adversarial networks (GANs) play an
important role in classical machine learning to generate new data with the same distribution as the
training set, and a quantum version of GANs is proposed using the PQCs as the neural networks [123].

• Quantum devices design. A Quantum device can be defined as a device that runs depending essentially
on quantum mechanical effects. PQCs are also good candidates to design any quantum device. For
example, one can implement the Quantum RAM [124] for generative applications. Moreover, the PQC-
based quantum repeater (will be introduced in section 10.2.1) is also a good application. However, the
practical implementation of PQC-based devices is still limited because of noise and errors.

• Quantum Tomography. Quantum Tomography is the process of reconstructing a quantum state using
measurements on an ensemble of identical quantum states [125].
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Part II

Automated design of photonic
quantum circuits
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Chapter 6

Converting Gaussian objects from
phase space representation to Fock
representation

6.1 Introduction

We introduce a unified and differentiable Fock space representation of Gaussian objects, namely, pure and
mixed states, unitaries, and channels in terms of a single linear recurrence relation that can generate their
Fock space amplitudes recursively. Here the Fock space amplitude refers to the elements of the matrix
representation of the Gaussian objects.

Talking about Gaussian objects, the first easy-manipulated representation that comes into mind is the
phase space representation. For example, a Gaussian state is characterized by its mean vector and the co-
variance matrix defined in phase space. On the other hand, its density matrix also has complete information:
its characteristic function, then, is defined by tracing the product of the density matrix and the displacement
operator, and the Wigner function is defined as the complex Fourier transform of the characteristic function.

In the previous work, the Fock representation of Gaussian objects has not been investigated intensively
for a long time because the phase space representation is easier and more comfortable to deal with: the
Fock representation is based on the tensor product of infinite-dimensional Hilbert space with the Fock basis,
while the phase space representation is finite-dimensional with the coordinates of position and momentum
variables. However, because we are working in the bosonic system, we need to use the Fock representation,
such as the PNR detector that is widely used to introduce the non-Gaussian effects inside the system.

That is why we developed this recurrence relation for all Gaussian objects in this chapter, from its phase
space representation to its Fock space representation. As we explained before, we consider the quantum
state evolution in the circuit as the matrix-vector multiplication. However, because of the existence of the
cutoff (we can not simulate the infinite-dimensional Hilbert space), there are imperfections in the numerical
simulation. Our method can reduce these imperfections by treating the Gaussian operator as a whole instead
of decomposing it into fundamental components and calculating their evolution successively.

In the end, we also find the composition rule of Gaussian operators expressed in the recurrent form, which
allows us to obtain the correct global phase when composing Gaussian operators. Moreover, it extends our
model to states that can be written as linear combinations of Gaussians.
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6.2 The recurrence relation for Gaussian objects in Fock repre-
sentation

In this section, the main problem is to give the way to write the Fock representation for Gaussian objects,
which includes M -mode Gaussian pure states, mixed states, unitaries, and channels.

6.2.1 The general formula

We can write M -mode pure states, mixed states, unitaries, and channels in the Fock representation as

|ψ⟩ =
∑
k

ψk|k⟩, (6.2.1)

ρ =
∑
j,k

ρj,k|j⟩⟨k|, (6.2.2)

U =
∑
j,k

Uj,k|j⟩⟨k|, (6.2.3)

Φ[|j⟩⟨l|] =
∑
i,k

Φk,l,i,j |i⟩⟨k|, (6.2.4)

where the Fock representation indices are expressed as a multi-index k = (k1, k2, ..., kM ). We now simplify
the notation by considering the collections of amplitudes ψk, ρj,k, Uj,k and Φi,j,k,l as instances of a tensor
Gk where k is M -dimensional index vector for pure states, 2M -dimensional index vector for mixed states
and unitary transformations, and 4M -dimensional index vector for channels.

One way to produce the Fock space amplitudes of a Gaussian object is to start from a generating function
Γ(α) and then compute its derivatives. The generating function Γ(α) is also known as the stellar function
[126] or the Bargmann function [75]. To obtain the generating function, one needs to contract each index of
a Gaussian object with a rescaled multi-mode coherent state

e
1
2 ||α||2 |α⟩. (6.2.5)

For example, for a pure state, we have

Γψ(α) = e
1
2 ||α||2 ∑

k

ψk⟨α∗|k⟩ =
∑
k

ψk
αk

√
k!
, (6.2.6)

= cψ exp

(
αT bψ +

1

2
αTAψα

)
, (6.2.7)

where Aψ is an M ×M complex symmetric matrix, bψ is an M -dimensional complex vector and cψ is the
vacuum amplitude.

For unitaries, AU and bU are of size 2M × 2M and 2M . We can recall a previous work in the paper [35],
the generating function for the matrix elements of the unitary is defined as

ΓU (α,β) = e
1
2 (||α||2+||β||2)⟨α∗|U |β⟩, (6.2.8)

= C exp

(
µTν − 1

2
νTΣν

)
. (6.2.9)

In the following chapter, we will compare our results AU and bU with Σ and µ. But it is clear that, for
unitaries, the generating function is in exponential form and the exponent is a polynomial of degree 2.

In the case of density matrices, we obtain an analogous exponential as in Eq. (6.2.6), except that Aρ and
bρ are of size 2M × 2M and 2M respectively. And for channels AΦ and bΦ are of size 4M × 4M and 4M ,
respectively.
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Therefore, all Gaussian objects are characterized by a complex symmetric matrix A, a complex vector b
and a complex scalar c = G0, or conversely given valid A and b and c, we can calculate the coefficients Gk
by computing derivatives of the appropriate order of the generating function Γ(α):

Gk = c
∂kα√
k!

exp

(
αT b+

1

2
αTAα

) ∣∣∣∣
α=0

. (6.2.10)

In this way, we unify the calculation of the amplitudes of Gaussian objects into a single method that works
in all cases, depending on which triple (A, b, c) one is considering.

Multivariate derivatives of the exponential function can be computed with a linear recurrence formula
[35], and in case the function is a polynomial of degree D, the recurrence relation has order D. In our case,
the polynomial has degree 2, which means we can write a linear recurrence relation of order 2 between the
Fock space amplitudes:

Gk+1i =
1√
ki + 1

biGk +
∑
j

√
kjAijGk−1j

 , (6.2.11)

with the vacuum amplitude initialized as G0 = c.
In this recurrence relation, k + 1i is like k but the i-th index has been increased by 1 (and similarly for

k−1j , where it is decreased by 1). If we define w =
∑
i ki as the weight of the index, the recurrence relation

allows us to write amplitudes of weight w + 1 as linear combinations of amplitudes of weight w and w − 1.
By applying it repeatedly, one can reach any Fock space amplitude (in practice, one eventually reaches a
numerical precision horizon [127]). More details will be discussed in chapter 8.

This is clear that in our recurrence relation formula, it is important to find out the three entities: a
complex symmetric matrix A, a complex vector b and a complex scalar c = G0. In the following sections,
we are going to give the A, b, and c for each Gaussian object.

To obtain the results (AX , bX , where X = {ψ, ρ, U,Φ}), our work develops in two ways:

• The first one is the extract way: we can get Aρ for mixed states and in the case of pure states, Aρ

becomes to a form of a diagonal block, and we can extract the block of Aψ from Aρ. For transforma-
tions, using the Choi-Jamio lkowski duality, we can treat channels as mixed states and get AΨ, and in
case of a unitary channel, one obtains AU of Gaussian unitaries by extracting the block of AΨ.

• The second one is only related to the Gaussian unitaries: we can get AU directly from its Fock-
Bargmann representation.

Note that we will also compare our generalized results with the previous work of Gaussian unitaries AU

in [35], and they correspond well with each other.

6.2.2 Multidimensional Hermite Polynomials

We first recall the definition of the multidimensional Hermite polynomials as the Taylor series of a multidi-
mensional Gaussian function

KA(y, b) = exp
(
yT b+ 1

2y
TAy

)
=
∑
k≥0

GA
k (b)

k!
yk. (6.2.12)

Note the sign of the quadratic term in the exponential, which can differ from other conventions. In the last
equation b ∈ Cℓ is a complex vector, A = AT ∈ Cℓ×ℓ is a complex symmetric matrix and k ∈ Zℓ0 is a vector
of non-negative integers. This notation makes it explicit that[

ℓ∏
i=1

(
∂

∂yi

)ki]
KA(y, b)

∣∣∣∣∣
y=0

= GA
k (b). (6.2.13)
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These polynomials satisfy the recurrence relation

GA
k+1i(b)− biG

A
k (b)−

M∑
j=1

Ai,jpjG
A
k−1j (b) = 0, (6.2.14)

where 1i is a vector that has a 1 in the i-th entry and 0s elsewhere. Note that GA
0 (b) = 1, GA

1i(b) = bi and
that GA

1i+1j (b) = bibj +Aij .
The multidimensional Hermite polynomial is related to the loop-hafnian function introduced in Ref. [128],

which counts the number of perfect matching of weighted graphs, including self-loops. Hence, our method
can be converted into the calculation of the loop-hafnian function in the graph.

They are related as follows

GA
k (b) = lhaf(fdiag(Ak, bk)), (6.2.15)

where fdiag fills the diagonal of the matrix in the first argument using the vector in the second argument.
Note that Ak is the matrix obtained from A by repeating its i-th row and column ki times. Similarly, bk
is the vector obtained from b by repeating its i-th entry ki times. Note that when ki = 0 the relevant row
and column of A and entry of b are deleted. The best known methods to calculate the single loop-hafnian

in Eq. (6.2.15) requires O(C3

√∏ℓ
i=1(1 + ki)) steps where C is the number of nonzero entries in the vector

k [129].
We will show below that the Fock representation of a pure Gaussian state, a mixed Gaussian state, a

Gaussian unitary, or a Gaussian channel can all be written as

c× GA
k (b)√
k!

, (6.2.16)

where c is a scalar, b is a vector of dimension ℓ, A is square matrix of size ℓ× ℓ and k ∈ Zℓ≥0. The integer ℓ
equals M, 2M, 2M, 4M for pure states, mixed states, unitaries or channels on M modes respectively.

Note that the quantity in Eq. (6.2.16) is potentially the ratio of two large numbers. In particular, since
this quantity represents a probability or a probability amplitude, it should be bounded in absolute value by
1. Thus it is often convenient, especially for numerical purposes, to introduce renormalized multidimensional
Hermite polynomials as

GAk (b) = c× GA
k (b)√
k!

, (6.2.17)

which satisfy the recurrence relation in Eq. (6.2.11).

6.2.3 States

In this subsection, we show how to turn the symplectic representation of a Gaussian state into the Fock space
representation of the same object. This follows the developments in Refs. [130, 131, 8, 132, 133, 134, 135].
Another work [136] has also developed similar results for Gaussian states from the point of view of Hermite-
like polynomials to describe them.

To compute the Fock space amplitudes of a Gaussian pure state we need the triple (Aψ, bψ, cψ) where
Aψ and bψ are M -dimensional. If the state is mixed, we need the triple (Aρ, bρ, cρ) where Aρ and bρ are
2M -dimensional. We are now going to show we use the extract method to obtain these triples for mixed
states first and then transfer them to triples for the pure states.

Mixed state

In this part, the mixed state ρ is characterized by the complex covariance matrix σ and the mean vector µ̄.
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As the complex covariance matrix σ introduced in Eq.(3.33), it is convenient to introduce the s−parametrized
complex covariance matrix

σs = σ +
s

2
12M , (6.2.18)

by definition σ0 ≡ σ and moreover we use the shorthand notation σ± ≡ σ±1. σ+ is also called the Husimi
covariance matrix.

We recall the results derived in Ref. [134]. An expression for the Fock representation of the Gaussian
state is

⟨m|ρ|n⟩ = cρ ×
M∏
s=1

∂nsαs∂
ms
α∗
s√

ns!ms!
exp

[
1
2y

TAρy + yT bρ
]
, (6.2.19)

where, relative to Eq. (6.2.13), we identified y = [ α
α∗ ], k = n ⊕m, ℓ = 2M and used the results from

Refs. [8, 132, 135] to write together with the definitions in Eqs. (3.32)

Aρ = PM
[
1− σ−1

+

]
= PMσ−σ

−1
+ = PMσ

−1
+ σ−, (6.2.20)

bρ =
[
σ−1
+ µ̄

]∗
, (6.2.21)

cρ = ⟨0|ρ|0⟩ =
exp

[
− 1

2 µ̄
†σ−1

+ µ̄
]√

det(σ+)
, (6.2.22)

PM =
[
0M 1M
1M 0M

]
, (6.2.23)

to finally write

⟨m|ρ|n⟩ = cρ ×
G

Aρ

n⊕m(bρ)√
n!m!

. (6.2.24)

Pure state

In the case where ρ = |Ψ⟩⟨Ψ| is a pure state, it is easy to show that

Aρ = A∗
ψ ⊕Aψ, (6.2.25)

bρ = b∗ψ ⊕ bψ, (6.2.26)

and then we can write

G
Aρ

n⊕m(bρ) = G
A∗
ψ⊕Aψ

n⊕m (b∗ψ ⊕ bψ) (6.2.27)

= G
A∗
ψ

n (b∗ψ)×GAψ
m (bψ) (6.2.28)

= [G
Aψ
n (bψ)]∗ ×GAψ

m (bψ), (6.2.29)

which allows us to write the probability amplitude of a pure state

⟨m|Ψ⟩ = cψe
iφΨ

G
Aψ
m (bψ)√
m!

, cψ = c∗ρcρ, (6.2.30)

up to a global phase φ that cannot be determined from the covariance matrix and vector of means of the
pure Gaussian state. This will be discussed in section 6.3.
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Examples

We now give a few examples.
The recursive representation of a single-mode coherent state of amplitude α is given by Aψ = 0, bψ = α

and cψ = ψ0 = e−
1
2 |α|2 :

ψcoh
k+1 =

1√
k + 1

αψcoh
k . (6.2.31)

A squeezed state with squeezing parameter r and angle ϕ is given by Aψ = tanh(r)eiϕ, bψ = 0 and

cψ =
√

sech(r):

ψsq
k+1 =

√
k

k + 1
tanh(r)eiϕψsq

k−1. (6.2.32)

Note that, as expected, this recurrence relation skips odd indices. A displaced squeezed state (which
is the most general pure single-mode Gaussian state) is given by Aψ = tanh(r)eiϕ, bψ = α and cψ =√

sech(r)e−
1
2 |α|2 :

ψdsq
k+1 =

1√
k + 1

(
αψdsq

k +
√
k tanh(r)eiϕψdsq

k−1

)
. (6.2.33)

For the simple case of M squeezed states with parameters ri sent into an interferometer with unitary U

we have that Aψ = −U
[⊕M

i=1 tanh ri

]
UT .

The thermal state is given by Aρ = n̄
n̄+1 ( 0 1

1 0 ), bρ = 0 and c = 1
1+n̄ , where n̄ is the average photon

number, giving rise to the recurrence relations:

ρthk1+1,k2 =

√
k2

k1 + 1

n̄

n̄+ 1
ρthk1,k2−1, (6.2.34)

ρthk1,k2+1 =

√
k1

k2 + 1

n̄

n̄+ 1
ρthk1−1,k2 . (6.2.35)

For a squeezed state along the q-quadrature by r > 0 (the symplectic matrix S can be found in Eq. (3.46))
that undergoes loss by transmission factor η, we start from the vacuum state with V = ℏ

21, we apply the
squeezing operator V ′ = SV ST , we make the state pass through the lossy channel V ′′ = XV ′XT + Y ,
and we obtain its covariance matrix σ = 1

ℏW
†V ′′W . Then it is easy to find Aρ from Eq. (6.2.20) that

Aρ =
η

coth2 r − (η − 1)2

[
− coth r 1− η

1− η − coth r

]
. (6.2.36)

In the limit of no loss we find Aρ = −[tanh r⊕ tanh r] while in the limit of zero transmission we retrieve the
single-mode vacuum, Aρ = 02.

6.2.4 Unitaries

The three parameters AU , bU and cU of the Gaussian unitaries can be found in two ways: the extract
method by following the Choi-Jamiolkowski isomorphism in the next section to get the channel parameters
first and then extract part of it; or use the Fock-Bargmann method. Here in this section, we will focus on
the Fock-Bargmann method.

As we have already shown in section 2.4, in the Fock-Bargmann representation, we are working with the
complex parameter z ∈ Cn.

If we have a symplectic matrix M ∈ Sp on R2n, the linear transformation to map it onto the Cn is:

Mc = W †MW , (6.2.37)
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where W is defined in Eq.(3.6). And now the Mc ∈ Spc.

If we have a unitary operator ν(Mc) and the Mc =
[

P Q
Q∗ P ∗.

]
, then

KMc
(z,w∗) = CMc

exp

{
1

2
(zTQ∗P−1z + 2w†P−1z −w†P−1Qw∗)

}
, (6.2.38)

where CMc
= 1√

detP
and z,w ∈ Cn.

In addition, there is a special operation β, which can be seen as a corresponding displacement operator
in Fn:

β(w)F (z) = e−
1
2 |w|2−zw∗

F (z +w). (6.2.39)

A M -mode Gaussian unitary generated by a second-degree polynomial in the quadratures can be decom-
posed into a M -mode displacement Dd and a M -mode unitary so that we can write

UG = DdU(S), (6.2.40)

where Dd is the displacement operator, parametrized by a real vector d of size 2M . In the same way, we
can write it in Fn:

β(−γ∗)ν(Mc)F (z) = e−
1
2 |γ|2+zγTF (z − γ∗) (6.2.41)

= e−
1
2 |γ|2+zγ

∫
KM (z − γ∗,w∗)F (w)e−|w|2dw (6.2.42)

= e−
1
2 |γ|2+zγ

∫
1

detP
exp

1

2

(
zTQ∗P−1z − γ†Q∗P−1z

− zTQ∗P−1γ∗ + γ†Q∗P−1γ∗ + 2w†P−1z − 2w†P−1γ∗ −w†P−1Qw∗
)

dw

(6.2.43)

= e−
1
2 |γ|2+zγ

∫
1√

detP
exp

{
1

2

(
γ†Q∗P−1γ∗ − 2w†P−1γ∗ − γ†Q∗P−1z

)}
dw

∗ exp

{
1

2

(
zTQ∗P−1z + 2w†P−1z −w†P−1Qw∗)} (6.2.44)

=

∫
exp

{
1
2

(
−|γ|2 + γ†Q∗P−1γ∗)}
√

detP
exp

{[
−γ†Q∗P−1 + γT −γ† (P−1

)T ] [ z
w∗

]}
∗ exp

{
1

2

([
z w∗]T [Q∗P−1

(
P−1

)T
P−1 −P−1Q

] [
z
w∗

])}
dw. (6.2.45)

Since the exponential term has a similar form with Eq.(6.2.10), if we let ν =

[
z
w∗

]
, we get

A′
U =

[
Q∗P−1

(
P−1

)T
P−1 −P−1Q

]
, (6.2.46)

b′U =
[
−γ†Q∗P−1 + γT −γ†

(
P−1

)T ] , (6.2.47)

c′U =
exp

{
1
2

(
−|γ|2 + γ†Q∗P−1γ∗

)}
√

detP
, (6.2.48)

where P and Q come from the complex matrix Mc. Note that, in this paper, ν =

[
z∗

w

]
, so with this method,

the final result should be the conjugate of what we have:

A′
U =

[
Q
(
P−1

)∗ (
P−1

)†(
P−1

)∗ −
(
P−1

)∗
Q∗

]
. (6.2.49)
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Now we have the three entities for Gaussian unitaries. The paper [35] gives us the value of these three
entities as well in a special case where the Gaussian unitary is defined as

G(γ,W, ζ, V ) = D(γ)U(W )S(ζ)U(V ). (6.2.50)

In [35], C, µ, and Σ are defined as follows:

C =
exp

(
− 1

2

[
||γ||2 + γ†W diag(eiδ tanh r)W Tγ∗])√∏M

i=1 cosh ri

, (6.2.51)

µT =[
γ†W diag(eiδ tanh r)W T + γT ,−γ†W diag(sech r)V

]
, (6.2.52)

Σ =[
W diag(eiδ tanh r)W T −W diag(sech r)V
−V T diag(sech r)W T −V T diag(e−iδ tanh r)V

]
, (6.2.53)

where γ is the vector of displacement parameters, δ, and r are the polar coordinates of the complex vector ζ
of squeezing parameters, and W and V are unitary covariance matrices describing the two interferometers.

Now we try to calculate three entities with our general method but using the same decomposition of
Gaussian unitaries in Eq. (6.2.50).

We first write the symplectic matrix M of this specific Gaussian unitary (except the displacement):

M =

[
ℜ(W ) −ℑ(W )
ℑ(W ) ℜ(W )

] [
diag(cosh r + cosθ sinh r) diag(sinθ sinh r)

diag(sinθ sinh r) diag(cosh r − cosθ sinh r)

] [
ℜ(V ) −ℑ(V )
ℑ(V ) ℜ(V )

]
,

(6.2.54)

and we can compute the matrix Mc by sandwiching it with W † and W :

Mc =

[
P Q
Q∗ P ∗

]
=

[
W 0
0 W ∗

] [
diag (cosh r) diag

(
eiδ sinh r

)
diag(e−iδ sinh r) diag(cosh r)

] [
V 0
0 V ∗

]
(6.2.55)

=

[
W diag(cosh r)V W diag(eiδ sinh r)V ∗

W ∗ diag(e−iδ sinh r)V W ∗ diag(cosh r)V ∗

]
. (6.2.56)

Then we can calculate(
P−1

)∗
= V T diag(sech r)W T , (6.2.57)

(P−1)† = W diag(sech r)V , (6.2.58)

Q
(
P−1

)∗
= −W diag(eiδ sinh r)V ∗ (V T diag(sech r)W T

)
= −W diag(eiδ tanh r)W T . (6.2.59)

We will have

A′
U = −

[
W diag(eiδ tanh r)W T −W diag(sech r)V
−V T diag(sech r)W T −V T diag(e−iδ tanh r)V

]
, (6.2.60)

which corresponds to Eq. (6.2.53) with a minus sign.

6.2.5 Channel

A Gaussian channel Φ[·] is uniquely determined by the triplet X,Y ,d and acts on a Gaussian state as
(V , r̄) 7→ (XVXT + Y ,Xr̄ + d). We are going to find out the AΦ, bΦ and cΦ:

⟨i| (Φ [|j⟩⟨l|]) |k⟩ = cΦ ×
GAΦ

k⊕l⊕i⊕j(bΦ)
√
i!j!k!l!

, (6.2.61)

In this section, we employ the Choi-Jamio lkowski isomorphism [137, 138, 78] to reduce the calculation
of the matrix elements of an arbitrary Gaussian channel in M to the calculation of the matrix element of a
Gaussian state with 2M . And then we will give the expressions of AΦ, bΦ and cΦ. For the unitary operator,
AU , bU and cU can be found through the Choi-Jamio lkowski isomorphism.
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Choi-Jamio lkowski isomorphism

Figure 6.1: 2M -mode circuit for implementing the Choi-Jamio lkowski isomorphism. Φ is the channel
(parametrized by the triplet X,Y and d) applied on the first half M modes, and the two dots represent a
two-mode squeezing operator connecting two modes: one comes from the first M modes, and the other one
comes from the second M modes.

The Choi-Jamio lkowski isomorphism refers to the correspondence between the quantum channels and
the quantum states. It is also called the channel-state duality [139]. This correspondence would help us to
get the channel parameters from the corresponding states.

We first consider a collection of systems with arbitrary but identical dimensionality N .
We write the state right before the channel Φ is applied to the first half of the modes in Fig. 6.1 as

|Ψ⟩ =
√
N

N−1∑
n=0

τn|n⟩ ⊗ |n⟩, (6.2.62)

where
∑N−1

n=0 ≡
∑N−1
n1=0 . . .

∑N−1
nM=0, N is a normalization constant to be determined in a moment and τ is

the squeezing parameter of the two-mode squeezing operator connecting the first M modes and the second
M modes. The density matrix of the state |Ψ⟩ is simply

|Ψ⟩⟨Ψ| = N
N−1∑
m=0

N−1∑
n=0

τn+m|n⟩⟨m| ⊗ |n⟩⟨m|. (6.2.63)

We can now write the output of the circuit after the application of the channel Φ as

ρ = (Φ⊗ I) [|Ψ⟩⟨Ψ|] = N
N−1∑
m=0

N−1∑
n=0

τn+mΦ [|n⟩⟨m|]⊗ |n⟩⟨m|. (6.2.64)

We can premultiply the equation above by ⟨i| ⊗ ⟨j| and postmultiply by |k⟩ ⊗ |l⟩ to obtain

(⟨i| ⊗ ⟨j|) ρ (|k⟩ ⊗ |l⟩) = N τ j+l⟨i| (Φ [|j⟩⟨l|]) |k⟩. (6.2.65)

In finite-dimensional systems it is convenient to pick τ = (1, . . . , 1) and the normalization N is simply given
by the dimensionality of the system NM . For infinite dimensional systems, if one were to try to pick the
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same normalization as for a finite-dimensional, one would obtain a non-normalizable state |Ψ⟩. Thus it is
convenient to pick τ = (τ, . . . , τ) with τ = tanh t < 1 and then

N = (1− τ2)M = (1− tanh2 t)M , (6.2.66)

τ l+j = (tanh t)
∑M
i=1 li+ji . (6.2.67)

For a rigorous justification of this derivation, see sec 5.5 of Serafini [78]. Now consider the case where the
channel Φ is Gaussian parametrized by

X =

[
Xqq Xqp

Xpq Xpp

]
, Y =

[
Yqq Yqp
Ypq Ypp

]
, d =

[
dq
dp

]
. (6.2.68)

Then the output state is also Gaussian since the input state to the channel is nothing but one-half of a
two-mode squeezed state. In this case, we can write the quadrature covariance matrix and vector of means
of the output state as

V = X̃T (t)

(
ℏ
2
14M

)
T (t)T X̃T + Ỹ =

ℏ
2
X̃T (2t)X̃T + Ỹ , r̄ =


dq
0
dp
0

 , (6.2.69)

where

X̃ =


Xqq 0M Xqp 0M
0M 1M 0M 0M
Xpq 0M Xpp 0M
0M 0M 0M 1M

 , Ỹ =


Yqq 0M Yqp 0M
0M 0M 0M 0M
Ypq 0M Ypp 0M
0M 0M 0M 0M

 , (6.2.70)

T (t) =


cosh t1M sinh t1M 0M 0M
sinh t1M cosh t1M 0M 0M

0M 0M cosh t1M − sinh t1M
0M 0M − sinh t1M cosh t1M

 , (6.2.71)

and we used the fact that T (t)T (t)T = T (t)T (t) = T (2t) and T is the symplectic matrix of two-mode
squeezing operator defined in Eq. (3.48).

Now, we are going to calculate the Aρ, bρ, cρ for the output state, and take out three entities AΦ, bΦ, cΦ
of the channels from them.

In turn, the complex covariance matrix σ of the output state is

σ = W

(
1

2
X̃T (2t)X̃T +

Ỹ

ℏ

)
W †, (6.2.72)

where W is defined in Eq.(3.6) and it is unitary. Note that (T (t))T = T (t) is symmetric, X̃ is symplectic

if X =
[
Xqq Xqp
Xpq Xpp

]
is symplectic.

Let

Q′ =

(
14M

2
+

1

2
X̃T (2t)X̃T +

Ỹ

ℏ

)
, (6.2.73)

then (σ + 14M

2 )−1 = W (Q′)−1W †. Now we define

Q = LQ′LT , (6.2.74)
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with

L =


1M 0M 0M 0M
0M 0M 1M 0M
0M 1M 0M 0M
0M 0M 0M 1M

 . (6.2.75)

Then we have that Q−1 = L(Q′)−1LT , which implies that LTQ−1L = (Q′)−1. So calculating Q−1 gives
(Q′)−1 and therefore (σ + 14M

2 )−1.

Expressing Q as a block matrix Q =

[
A B
C D

]
, we can write Q−1 using Schur complements as [78]

Q−1 =

[
ξ−1 −ξ−1BD−1

−D−1Cξ−1 D−1 +D−1Cξ−1BD−1

]
, (6.2.76)

where the Schur complement is ξ = A−BD−1C. The blocks A, B, C, and D, are given by

A =
Y

ℏ
+
12M

2
+

1

2
cosh(2t)XXT , (6.2.77)

B =
1

2
sinh 2t

[
Xqq −Xqp

Xpq −Xpp

]
=

1

2
sinh 2tXZ, (6.2.78)

C =
1

2
sinh 2t

[
XT
qq XT

pq

−XT
qp −XT

pp

]
= BT =

1

2
sinh 2tZXT , (6.2.79)

D = cosh2(t)

[
1M 0M
0M 1M

]
, (6.2.80)

where Z =
[
1M 0M
0M −1M

]
. We now use these to calculate the blocks of Q−1 starting with ξ,

ξ = A−BD−1C =
1

2

(
12M +XXT +

2Y

ℏ

)
= ξT , (6.2.81)

which turns out to be independent of t. Next, we find

−ξ−1BD−1 = − tanh(t)ξ−1XZ, (6.2.82)

−D−1Cξ−1 = − tanh(t)ZXT ξ−1. (6.2.83)

Finally, the bottom right block, which can be simplified by substituting the other three blocks, is given by

D−1 +D−1Cξ−1BD−1 =
(
1− tanh2(t)

)
12M + tanh2(t)ZXT ξ−1XZ, (6.2.84)

= 12M + tanh2(t)Z
(
XT ξ−1X − 12M

)
Z. (6.2.85)

Putting these blocks together, we get the expanded form of Q−1

Q−1 =

[
ξ−1 − tanh(t)ξ−1XZ

− tanh(t)ZXT ξ−1 12M + tanh2(t)Z
(
XT ξ−1X − 12M

)
Z

]
. (6.2.86)

Now we known Q−1 and then
(
σ + 14M

2

)−1
, we can use Eq. (6.2.20) and Eq. (6.2.21) to write down Aρ

and bρ for the output state.
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We can write

Aρ = P2M (14M − σ−1
+ )︸ ︷︷ ︸

14M −
(
σ +

14M

2

)−1

= WLT
(
14M −

[
ξ−1 − tanh(t)ξ−1XZ

− tanh(t)ZXT ξ−1 12M + tanh2(t)Z
(
XT ξ−1X − 12M

)
Z

])
LW †,

= WLT
[

12M − ξ−1 tanh(t)ξ−1XZ

tanh(t)ZXT ξ−1 tanh2(t)Z
[
12M −XT ξ−1X

]
Z

]
LW †. (6.2.87)

Defining the matrix F =
[
12M 02M
02M Z tanh(t)

]
, we can rewrite the last equation as

14M −
(
σ +

14M

2

)−1

= WLTF

[
12M − ξ−1 ξ−1X
XT ξ−1 12M −XT ξ−1X

]
F TLW †, (6.2.88)

= E(t)R

[
12M − ξ−1 ξ−1X
XT ξ−1 12M −XT ξ−1X

]
R†E(t), (6.2.89)

where we noted that WLTF = WLF = E(t)R, where

E(t) = 1M ⊕ (tanh t1M )⊕ 1M ⊕ (tanh t1M ) , (6.2.90)

and

R =
1√
2


1M i1M 0M 0M
0M 0 1M −i1M
1M −i1M 0M 0M
0M 0M 1M i1M

 , (6.2.91)

PM =
[
0M 1M
1M 0M

]
. (6.2.92)

Then we have

Aρ = P2M

(
14M − σ−1

+

)
= P2ME(t)R

[
12M − ξ−1 ξ−1X
XT ξ−1 12M −XT ξ−1X

]
R†E(t). (6.2.93)

Note that E(t) and P2M commute with each other so that we can write it like:

Aρ = E(t)P2MR

[
12M − ξ−1 ξ−1X
XT ξ−1 12M −XT ξ−1X

]
R†E(t) = E(t)AΦE(t). (6.2.94)

We would also like to find

bρ =
(
σ−1
+ µ̄

)∗
=

(
WLQ−1LW †

[
1√
ℏ
Wr̄

])∗
=

1√
ℏ
(
WLQ−1Lr̄

)∗
=

1√
ℏ

(WL)∗Q−1

[
d
0

]
, (6.2.95)

=
1√
ℏ

(WL)∗
[

ξ−1d
− tanh tZXT ξ−1d

]
=

1√
ℏ

(WLF )∗
[

ξ−1d
−XT ξ−1d

]
=

1√
ℏ
E(t)R∗

[
ξ−1d

−XT ξ−1d

]
= E(t)bΦ. (6.2.96)
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We can also obtain the expression for the scalar c

cρ = (⟨0| ⊗ ⟨0|) ρ (|0⟩ ⊗ |0⟩) = N ⟨0| (Φ [|0⟩⟨0|]) |0⟩ = N cΦ. (6.2.97)

The Husimi covariance matrix of the state Φ [|0⟩⟨0|] is simply ℏξ and its vector of means is d and thus
we can write

⟨0| (Φ [|0⟩⟨0|]) |0⟩ =
exp

[
− 1

2d
T (ℏξ)−1d

]√
det (ξ)

. (6.2.98)

In conclusion, we use the Choi-Jamio lkowski isomorphism to get three entities of the output state and
then extract the expression by getting rid of the input two-mode squeezing part E(t) in order to write the
three entities of the channel:

Aρ = E(t)AΦE(t), (6.2.99)

AΦ = P2MR

[
12M − ξ−1 ξ−1X
XT ξ−1 12M −XT ξ−1X

]
R†, (6.2.100)

= P2MR

(
14M −

[
ξ−1 −ξ−1X

−XT ξ−1 XT ξ−1X

])
R†, (6.2.101)

bρ = E(t)bΦ, (6.2.102)

bΦ =
1√
ℏ
R∗
[

ξ−1d
−XT ξ−1d

]
, (6.2.103)

cρ = (1− tanh2 t)McΦ, (6.2.104)

cΦ =
exp

[
− 1

2ℏd
T ξ−1d

]√
det(ξ)

, (6.2.105)

where ξ = 1
2

(
12M +XXT + 2Y

ℏ
)
, and E(t),R, P are defined in Eqs. (6.2.90) (6.2.91) and (6.2.92).

Note that ξ is nothing but the qp-Husimi covariance matrix (in units where ℏ = 1) of the state obtained
by sending the M mode vacuum state in the process specified by X and Y .

With these results we can write

(⟨i| ⊗ ⟨j|) ρ (|k⟩ ⊗ |l⟩) = cρ ×
G

Aρ

k⊕l⊕i⊕j(bρ)√
i!j!k!l!

. (6.2.106)

Now we recall a fundamental property that multidimensional Hermite polynomials inherit from loop-hafnians [128],
namely that if E = ⊕ℓi=1Ei is a diagonal matrix then

GEAE
n (Eb) =

(
ℓ∏
i=1

Enii

)
GA

n (b), (6.2.107)

We can use the definitions from Eq. (6.2.99) to Eq. (6.2.105) together with the Eq. (6.2.65) and the relation
Eq. (6.2.106) to find

⟨i| (Φ [|j⟩⟨l|]) |k⟩ =
(⟨i| ⊗ ⟨j|) ρ (|k⟩ ⊗ |l⟩)

N τ j+l
=

cρ
N τ j+l

×
G

Aρ

k⊕l⊕i⊕j(bρ)√
i!j!k!l!

= cΦ ×
GAΦ

k⊕l⊕i⊕j(bΦ)
√
i!j!k!l!

, (6.2.108)

which allows us to find the matrix elements of the channel without any reference to the specific amount of
squeezing used to create the two-mode squeezed vacuum.
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Channel A, b, c

To summarize, we can then write

AΦ = P2MR

[
12M − ξ−1 ξ−1X
XT ξ−1 12M −XT ξ−1X

]
R†, (6.2.109)

bΦ =
1√
ℏ
R∗
[

ξ−1d
−XT ξ−1d

]
, (6.2.110)

cΦ =
exp

[
− 1

2ℏd
T ξ−1d

]√
det(ξ)

, (6.2.111)

and

R =
1√
2

[
1M i1M 0M 0M
0M 0 1M −i1M
1M −i1M 0M 0M
0M 0M 1M i1M

]
, (6.2.112)

ξ =
1

2

(
12M +XXT +

2Y

ℏ

)
. (6.2.113)

Examples

For example, for a single-mode amplifier channel with gain g ≥ 1 we find

AΦ =


0 1√

g
g−1
g 0

1√
g 0 0 0

g−1
g 0 0 1√

g

0 0 1√
g 0

 , bΦ = 0, cΦ = 1/g. (6.2.114)

For the case of the M -mode lossy interferometer with transmission matrix T we find

AΦ =


0M T ∗ 0M 0M
T † 0M 0M 1M − T †T
0M 0M 0M T
0M 1M − T TT ∗ T T 0M

 , (6.2.115)

bΦ = 0, (6.2.116)

cΦ = 1. (6.2.117)

Unitary operator A, b, c via the Choi isomorphism

In the case where the channel is unitary, we can write Φ[·] = U{·}U† and then we obtain

⟨i| (Φ [|j⟩⟨l|]) |k⟩ = ⟨i|U |j⟩⟨l|U†|k⟩. (6.2.118)

This corresponds to the case where Y = 02M and X = S is symplectic.
Since S is symplectic, then we can write a symplectic singular-value decomposition

S =

[
ℜ(U1) −ℑ(U1)
ℑ(U1) ℜ(U1)

] [
e−r 0M
0M er

]
︸ ︷︷ ︸

≡λ

[
ℜ(U2) −ℑ(U2)
ℑ(U2) ℜ(U2)

]
= O1λO2, (6.2.119)

where U1,U2 are M ×M unitaries and r = ⊕Mi=1ri represents squeezing. We can now calculate the Schur
complement to find

ξ =
1

2

(
12M + SST

)
, (6.2.120)

ξ−1 = 2O1
12M

12M + λ2
OT

1 , (6.2.121)
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and then we find[
12M − ξ−1 ξ−1X
XT ξ−1 12M −XT ξ−1X

]
=

[
O1

λ2−12M

λ2+12M
OT

1 O1
2λ

λ2+12M
O2

OT
2

2λ
λ2+12M

OT
1 −OT

2
λ2−12M

λ2+12M
O2

]
(6.2.122)

=

[
O1 02M
02M OT

2

] [λ2−12M

λ2+12M

2λ
λ2+12M

2λ
λ2+12M

−λ2−12M

λ2+12M

] [
OT

1 02M
02M O2

]
. (6.2.123)

Note that

λ2 − 12M

λ2 + 12M
=

[
− tanh r 0M

0M tanh r

]
,

2λ

λ2 + 12M
=

[
sech r 0M

0M sech r

]
. (6.2.124)

We can now calculate

R

[
12M − ξ−1 ξ−1X
XT ξ−1 12M −XT ξ−1X

]
R† = R

[
O1 0M
0M OT

2

]
R†R

[
λ2−12M

λ2+12M

2λ
λ2+12M

2λ
λ2+12M

−λ2−12M

λ2+12M

]
R†R

[
OT

1 0M
0M O2

]
R†

(6.2.125)

=

 U1 0M 0M 0M
0M UT

2 0M 0M
0M 0M U∗

1 0M

0M 0M 0M U†
2

[ 0M 0M − tanh r sech r
0M 0M sech r tanh r

− tanh r sech r 0M 0M
sech r tanh r 0M 0M

] U1 0M 0M 0M
0M UT

2 0M 0M
0M 0M U∗

1 0M

0M 0M 0M U†
2

†

(6.2.126)

= −
[

0M AU

A∗
U 0M

]
, (6.2.127)

where

AU =

[
U1 0M
0M UT

2

] [
tanh r − sech r
− sech r − tanh r

] [
U1 0M
0M UT

2

]T
= AT

U . (6.2.128)

So we then have

AΦ =

(
A∗
U 0M

0M AU

)
, (6.2.129)

bΦ =
(
b∗U bU

)T
, (6.2.130)

that is

AΦ =A∗
U ⊕AU , (6.2.131)

bΦ =b∗U ⊕ bU , (6.2.132)

and then we have

⟨i| (Φ [|j⟩⟨l|]) |k⟩ =
G

A∗
U⊕AU

k⊕l⊕i⊕j(bU ⊕ b∗U )
√
i!j!k!l!

(6.2.133)

=
G

A∗
U

k⊕l(b
∗
U )

√
k!l!

×
GAU

i⊕j(bU )
√
i!j!

(6.2.134)

=

[
GAU

k⊕l(bU )
]∗

√
k!l!

×
GAU

i⊕j(bU )
√
i!j!

. (6.2.135)

Comparing Eq. (6.2.118) and the last equation we easily identify

⟨i|U |j⟩ = cUe
iφU

GAU

i⊕j(bU )
√
i!j!

, cΦ = c∗UcU , (6.2.136)
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Operator A b c Σ µT c

D
[

0 1
1 0

] [
γ
−γ∗

]
e−

1
2 |γ|2

[
0 −1
−1 0

]
[γ,−γ∗] e−

1
2 |γ|2

S
[
− tanh r sech r

sech r tanh r

]
0 sech r

[
tanh r − sech r
− sech r − tanh r

]
0 sech r

Table 6.1: Relation of A, b, c and Σ,µ, c.

where φU is a phase that will be discussed in the next section.
Note that the quantities cU , bU and AU correspond to the C,µ,−Σ introduced in Eq. (26) of Ref. [35].

And we show examples in Tab. 6.1 with the displacement operator D and squeezing operator S.

Non-unitary operator A, b, c via the Choi isomorphism

Now consider the case of non-unitary passive process specified by a transfer matrix T , T †T ≤ 1M . For this

process X =
[
ℜ(T ) −ℑ(T )
ℑ(T ) ℜ(T )

]
and Y = ℏ

2

(
12M −XXT

)
.

Since the process is passive we know that ξ = 12M . We can simplify the expression to obtain

P2M

[
14M −

(
σ +

14M

2

)−1
]

= E(t)


0M T ∗ 0M 0M
T † 0M 0M 1M − T †T
0M 0M 0M T
0M 1M − T TT ∗ T T 0M

E(t) (6.2.137)

.
Following the Choi-Jamio lkowski relation we gave in Eq. (6.2.99), the AΦ for the lossy interferometer is

AΦ =


0M T ∗ 0M 0M
T † 0M 0M 1M − T †T
0M 0M 0M T
0M 1M − T TT ∗ T T 0M

 . (6.2.138)

If we sandwich AΦ with a permutation matrix P4123, we would have:

P4123AΦP
T
4123 =

 0 1M − T †T T †

T 0
1M − T TT ∗ T T

T ∗ 0
0

 . (6.2.139)

To get the probability with a measurement of photon number pattern j = (j1, . . . , jM ) given the input
i = (i1, . . . , iM ), we let k = i, l = j in (6.2.61):

GAΦ

i⊕j⊕i⊕j(0) =G
P4123AΦPT

4123

P4123(i⊕j⊕i⊕j)(0) (6.2.140)

=
1

i!j!
haf(P4123AΦP

T
4123)j⊕i⊕j⊕i (6.2.141)

=
1

i!j!
perm

[
1M − T †T T †

T 0

]
j⊕i

. (6.2.142)

6.2.6 Conclusion for recurrence relation of Gaussian objects

The summary of all recurrence relations is shown in Table 6.2.
Tab. 6.3 gives the characteristics of typical Gaussian objects (note that A is 1× 1 for single-mode pure

states).
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Object A b c

Mixed state ρ PM (1 − σ−1
+ ) PMσ−1

+ µ̄
exp

[
− 1

2
µ̄†σ−1

+ µ̄
]

√
det(σ+) Aρ = A∗

ψ ⊕Aψ ,

Pure state ψ * * cρ = c∗ψcψ bρ = b∗ψ ⊕ bψ

Channel Φ P2MR

[
12M − ξ−1 ξ−1X
XT ξ−1

12M −XT ξ−1X

]
R† 1√

ℏ
R∗

[
ξ−1d

−XT ξ−1d

]
exp

[
− 1

2ℏdT ξ−1d
]

√
det(ξ) AΦ = A∗

U ⊕AU ,

Transformation U

[
Q∗P−1 (P T )−1

P−1 P−1Q

]
* cΦ = c∗U cU bΦ = b∗U ⊕ bU

Table 6.2: A, b, c for Gaussian objects. The * means we do not give the equation to get the value directly.

Pure State Aψ bψ cψ
single-mode coherent 0 α e−|α|2

single-mode squeezed vacuum − tanh(r)eiϕ 0
√

sech(r)

single-mode displaced squeezed − tanh(r)eiϕ α
√

sech(r)e−|α|2

thermal state n̄
1+n̄ [ 0 1

1 0 ] 0 1
1+n̄

Unitary AU bU cU
single-mode displacement [ 0 1

1 0 ]
[ γ
−γ∗

]
e−

1
2 |γ|2

single-mode squeezing
[
−eiδ tanh(r) sech(r)

sech(r) e−iδ tanh(r)

]
02

√
sech(r)

single-mode rotation
[

0 eiϕ

eiϕ 0

]
02 1

Channel AΦ bΦ cΦ

single-mode amplifier


0 1√

g
g−1
g 0

1√
g 0 0 0

g−1
g 0 0 1√

g

0 0 1√
g 0

 04
1
g

M -mode lossy interferometer

[
0M T ∗ 0M 0M
T † 0M 0M 1M−T †T
0M 0M 0M T

0M 1M−TTT ∗ TT 0M

]
04 1

Table 6.3: Useful results for Gaussian states, unitaries, and channels.

6.3 Explicit global phase formula for Gaussian operators

In the phase space representation, transformations are specified by a symplectic matrix and a displacement
vector. However, these two quantities do not uniquely specify the evolution of a quantum state. For example,
when two displacement operators with parameters d1 and d2 are composed in the Gaussian representation,
their effect is just another displacement with parameter d = d1 + d2. However, the unitary representation
acquires a global phase:

D(α)D(β) = e(αβ
∗−α∗β)/2D (α+ β) , (6.3.1)

i.e. we do not only add up both displacement parameters D(α + β) here, but also get an extra part
e(αβ

∗−α∗β)/2, which is a global phase. Such a global phase is important when evolving linear combina-
tions of Gaussian states with Gaussian operators [140]. This section will compute this global phase and
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provide some examples.
Eq. (23) of Ref. [35] shows that the Husimi Q function of an arbitrary Gaussian unitary can be charac-

terized by three quantities C,µ, and Σ. As we already know the relation between C,µ,Σ and cU , bU ,AU

in the previous section, now we will rewrite the Husimi Q function for an arbitrary Gaussian unitary as:

⟨α∗|G|β⟩ = exp
(
− 1

2

[
||α||2 + ||β||2

])
cU exp

(
bTUν +

1

2
νTAUν

)
, (6.3.2)

where

ν =

[
α
β

]
. (6.3.3)

If we compose two Gaussian operators, they should be able to write as a new Gaussian operator with an
extra global phase:

G1(AU1 , bU1 , cU1)G2(AU2 , bU2 , cU2) = e?Gf (AUf , bUf , cUf ). (6.3.4)

The question now is how to find a phase φ containing inside cUf as a function ofAU1
, bU1

, cU1
andAU2

, bU2
, cU2

.

6.3.1 How to compute the global phase

Completeness of the coherent states So we first extend the Husimi Q function of the two successive
M -mode Gaussian operators G1,G2 by inserting an identity between them and using the completeness of the
coherent states, and we combine them into two Husimi Q functions:

⟨β∗|G1G2|β′⟩ = ⟨β∗|G1IG2|β′⟩ =
1

πM

∫ +∞

−∞
d2Mα⟨β∗|G1|α⟩⟨α|G2|β′⟩, (6.3.5)

where d2Mα = dRe(α)dIm(α).
And then we extend the expressions of ⟨β∗|G1|α⟩, ⟨α|G2|β′⟩:

1

πM

∫ +∞

−∞
d2Mα exp

(
− 1

2

[
||β||2 + 2||α||2 + ||β′||2

])
cU1

cU2
exp

(
bTU1
ν1 +

1

2
νT1 AU1

ν1 + bTU2
ν2 +

1

2
νT2 AU2

ν2

)
,

(6.3.6)

where

νT1 = [β,α], (6.3.7)

νT2 = [α∗,β′]. (6.3.8)

Integral α In order to integrate the α with its real and imaginary parts, we introduce the following vectors
because the integral of the multi-dimensional Gaussian expression is based on the real parameters:

xTr = [Re(α), Im(α),Re(β), Im(β),Re(β′), Im(β′)], (6.3.9)

xTc = [α,α∗,β,β∗,β′,β′∗], (6.3.10)

and it is clear to transfer from xr to xc with the matrix M0:

xc = (M0 ⊕M0 ⊕M0)xr, (6.3.11)

where

M0 =

[
1 i1
1 −i1

]
. (6.3.12)
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Next step, we replace all elements in Eq. (6.3.6) in terms of xTc .
So we have:

||α||2 =
1

2
xTcM2xc,

ν1 = M3xc,

ν2 = M4xc, (6.3.13)

where

M2 =


0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 , (6.3.14)

M3 =

[
0 0 1 0 0 0
1 0 0 0 0 0

]
, (6.3.15)

M4 =

[
0 1 0 0 0 0
0 0 0 0 1 0

]
. (6.3.16)

We can now rewrite Eq. (6.3.6) as a function of xc:

⟨β∗|G1IG2|β′⟩ =
1

πM

∫ +∞

−∞
d2Mα exp

(
− 1

2

[
||β||2 + ||β′||2

])
cU1

cU2

exp

[
(bTU1

M3 + bTU2
M4)xc +

1

2
xTc (MT

3 AU1M3 +MT
4 AU2M4 −M2)xc

]
=

1

πM

∫ +∞

−∞
d2Mα exp

(
− 1

2

[
||β||2 + ||β′||2

])
cU1

cU2
exp

(
BTxc +

1

2
xTc Axc

)
, (6.3.17)

where

BT = bTU1
M3 + bTU2

M4

=
[
dT1 cT2 cT1 0 dT2 0

]
=
[
BTl ,B

T
r

]
, (6.3.18)

A = MT
3 AU1M3 +MT

4 AU2M4 −M2

=



D1 −1 CT
1 0 0 0

−1 B2 0 0 C2 0

C1 0 B1 0 0 0

0 0 0 0 0 0

0 CT
2 0 0 D2 0

0 0 0 0 0 0


=

 A1 A2

A3 A4

 , (6.3.19)

and we write bUi and AUi in block:

bTUi =
[
cTi ,d

T
i

]
, (6.3.20)

AUi =

 Bi Ci

CT
i Di

 . (6.3.21)
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It is obvious that A, A1 and A4 are all symmetric because of the symmetric of AU1 and AU2 .

Now we want to separate out the components with α from exp
(
BTxc + 1

2x
T
c Axc

)
in order to calculate

the integral. We first redefine the vector as:

xTr =
[

Re(α) Im(α) Re(β) Im(β) Re(β′) Im(β′)
]

= [xrl,xrr]
T , (6.3.22)

where xrl is the term related to α. So that we have:

xc = (M0 ⊕M0 ⊕M0)xr =

 M0xrl

(M0 ⊕M0)xrr

 =

xcl
xcr

 . (6.3.23)

Then we rewrite Eq. (6.3.17) with xcl and xcr:

⟨β∗|G1IG2|β′⟩ =
1

πM

∫ +∞

−∞
d2Mα exp

(
− 1

2

[
||β||2 + ||β′||2

])
cU1

cU2

exp

(
BTr xcr + BTl xcl +

1

2

(
xTclA1xcl + xTclA2xcr + xTcrA3xcl + xTcrA4xcr

))
, (6.3.24)

because of the symmetry of A and xcl = M0xrl, we have:

⟨β∗|G1IG2|β′⟩ = exp
(
− 1

2

[
||β||2 + ||β′||2

])
cU1

cU2
exp

(
BTr xcr +

1

2
xTcrA4xcr

)
∗ 1

πM

∫ +∞

−∞
d2Mxrl exp

((
BTl + xTcrA3

)
M0xrl +

1

2
xTrlM

T
0 A1M0xrl

)
. (6.3.25)

We can integrate the multi-dimensional Gaussian expression with xrl = [Re(α), Im(α)]:

exp
(
− 1

2

[
||β||2 + ||β′||2

])
cU1

cU2
exp

(
BTr xcr +

1

2
xTcrA4xcr

)
∗ 1

πM
(2π)M√
det(A′)

exp

(
−1

2
B′T (A′)−1 B′

)
,

(6.3.26)

where

B′T =
(
BTl + xTcrA3

)
M0, (6.3.27)

A′ = MT
0 A1M0. (6.3.28)

Derivition of cUf , bUf and AUf So we now write the Husimi Q function of two Gaussian unitaries as:

⟨β∗|G1IG2|β′⟩ = exp
(
− 1

2

[
||β||2 + ||β′||2

]) 2McU1
cU2√

det(A′)

exp

(
BTr xcr +

1

2
xTcrA4xcr −

1

2

(
BTl + xTcrA3

)
A−1

1

(
BTl + xTcrA3

)T)
= exp

(
− 1

2

[
||β||2 + ||β′||2

]) cU1cU2√
(−1)M det(A1)

exp

(
−1

2
BTl A

−1
1 Bl +

(
BTr −BTl A

−1
1 AT

3

)
xcr +

1

2
xTcr

(
A4 −A3A−1

1 AT
3

)
xcr

)
. (6.3.29)

We need to notice that, because of the integral, we are working with xTcr = (M0⊕M0)[Re(β), Im(β),Re(β′), Im(β′)],
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however, we need to go back to the vector with complex expressions ν′T = [β,β′,β∗,β′∗]. We have:

ν′ =


1 i1 0 0

0 0 1 i1

1 −i1 0 0

0 0 1 −i1

xrr = M5xrr = M5(M0 ⊕M0)−1xcr. (6.3.30)

Then we rewrite the expression with ν′:

⟨β∗|G1G2|β′⟩ = exp
(
− 1

2

[
||β||2 + ||β′||2

])
cUf exp(b′Uf

Tν′ +
1

2
ν′TA′

Uf
ν′), (6.3.31)

where

cUf =
cU1cU2√

(−1)M det(A1)
exp(−1

2
BTl A

−1
1 Bl),

b′Uf
T = (BTr −BTl A

−1
1 AT

3 )(M0 ⊕M0)M−1
5 ,

A′
Uf

= (M−1
5 )T (M0 ⊕M0)T (A4 −A3A−1

1 AT
3 )(M0 ⊕M0)M−1

5 . (6.3.32)

In order to get the explicit formula, we compute:

(M0 ⊕M0)M−1
5 =


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

 , (6.3.33)

and by using the Schur complement, since A1 is symmetric, D1 and B2 are both symmetric, we can define
the inverse of A1:

A−1
1 =

D1X−1 X−1(
XT

)−1

D1

(
XT

)−1

 , (6.3.34)

where

X = B2D1 − 1. (6.3.35)
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Then we can get:

cUf =
cU1cU2√

(−1)M det(A1)

exp

[
−1

2

(
dT1D1X−1d1 + cT2

(
XT

)−1

d1 + dT1 X
−1c2 + cT2D1

(
XT

)−1

c2

)]
, (6.3.36)

b′Uf =


c1 −C1D1X−1d1 −C1

(
XT

)−1

c2

d2 −CT
2 X

−1d1 −CT
2 D1

(
XT

)−1

c2

0M

0M

 =

bUf
02M

 , (6.3.37)

A′
Uf

=


B1 −C1D1X−1CT

1 −C1X−1C2 0M 0M

−CT
2

(
XT

)−1

BT
1 D2 −CT

2 D1

(
XT

)−1

C2 0M 0M

0M 0M 0M 0M

0M 0M 0M 0M

 =

AUf 02M

02M 02M

 . (6.3.38)

So that finally, we can write:

⟨β∗|G1G2|β′⟩ = exp
(
− 1

2

[
||β||2 + ||β′||2

])
cUf exp

(
bTUfν +

1

2
νTAUfν

)
, (6.3.39)

cUf contains the global phase we want.

Final result We can now write down the explicit formula:

AUf =

B1 −C1D1X−1CT
1 −C1X−1C2

−CT
2

(
XT

)−1

CT
1 D2 −CT

2 D1

(
XT

)−1

C2

 , (6.3.40)

bUf =

 c1 −C1D1X−1d1 −C1

(
XT

)−1

c2

d2 −CT
2 X

−1d1 −CT
2 D1

(
XT

)−1

c2

 , (6.3.41)

cUf =
cU1cU2√

(−1)M det(A1)
exp

[
− 1

2

(
dT1D1X−1d1 + cT2

(
XT

)−1

d1

+ dT1 X
−1c2 + cT2D1

(
XT

)−1

c2

)]
, (6.3.42)

where bTUi and AUi are written in block form:

bTUi =
[
cTi ,d

T
i

]
, (6.3.43)

AUi =

 Bi Ci

CT
i Di

 , (6.3.44)

And we define a new matrix X :

X = B2D1 − 1. (6.3.45)

Eq. (6.3.42) is the term of global phase for the composite Gaussian operators.
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6.3.2 Some examples

As examples, we show the composition of two single-mode displacements and the composition of two single-
mode squeezers.

For displacement operators D(α),D(β), we have

det(D1B2 − 1) = −1, X = −1. (6.3.46)

So we obtain the global phase:

cUf = cUαcUβ exp (−α∗β) (6.3.47)

= cU(α+β)
exp

(
1
2αβ

∗ − 1
2βα

∗) , (6.3.48)

where the global phase is the term φ = i
2 (αβ∗ − βα∗), which corresponds to Eq. (6.3.1).

For two squeezers S(ζ1),S(ζ2), since bU is zero, we have

det(D1B2 − 1) = −1− ei(δ2−δ1) tanh r1 tanh r2, (6.3.49)

and in turn, we get

cUf =
cU1cU2√

− det(D1B2 − 1)
(6.3.50)

=

√
sech r1 sech r2√

1 + ei(δ2−δ1) tanh r1 tanh r2
, (6.3.51)

which coincides with the results from Refs [141, 142].

6.4 Conclusion

In this chapter, a single recurrence relation for all Gaussian objects is defined by a complex symmetric matrix
A, a complex vector b, and a scalar c, which are used to construct their Fock representations. Our work
bridges the phase space representation and Fock space representation for all Gaussian objects, allowing us
to include more elements in Fock space representation in numerical simulations (such as the PNR detectors)
and the non-Gaussian gates (Kerr gates).

In addition, the explicit global phase formula is also derived, following the composition rule of Gaus-
sian operators. This inspires the simulation of some non-Gaussian states, which can be written as linear
combinations of Gaussian states.

This linear recurrence relation is recursive and differentiable, so it is simple to implement in the simulation
and calculate its gradient of the Fock amplitudes directly, which will be explained in the following chapter.
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Chapter 7

Optimization of parameterized
quantum optical circuits

7.1 Introduction

In our optimization, the gradient descent is used to update the parameters θ in PQCs. The cost function L
is defined according to the different tasks, and concrete examples will be detailed in the next chapter.

The calculation of gradients is introduced first in this chapter, together with how the differentiability of
our recurrence relation facilitates the gradient calculations. Two methods are proposed to use the differen-
tiability: the chain rule and the generating function.

Next, we illustrate Euclidean and Riemannian optimizations of Gaussian objects in PQCs. These two
types of optimization differ in how we treat the Gaussian operators:

• Euclidean optimization: we decompose the Gaussian operator into fundamental optical components
and optimize each of them.

• Riemannian optimization: we take all the Gaussian operators as one global object first, optimize it and
then decompose it into fundamental optical components. Note that the special case of the Gaussian
operator is the interferometer. The unitary optimization is derived for the interferometer as well.

If the PQC is small, Euclidean optimization is the best choice to get the values for each component,
while if the PQC is large, optimizing each parameter is redundant, so it is better to take them as a global
Gaussian operator and use the Riemannian optimization.

Moreover, regarding the complex parameters in our quantum optical circuits, we propose the complex
natural gradient algorithm to adapt the natural gradient with complex parameters instead of separating the
complex parameters into the real and complex parts, which speeds up the gradient calculations. In addition,
our adaptation version of the natural gradient is a holomorphic function that is differentiable and easy to
use in different analytical techniques.

7.2 Gradient calculation with AD and differentiability of recur-
rence relation for Gaussian objects

In this thesis, we do numerical simulations to construct quantum optical circuits and optimize them au-
tomatically with the help of the gradient descent algorithm. As introduced in chapter 4, we use gradient
descent as our optimization method. Thus, we need to find out how to calculate the gradient of operators
with respect to their parameters in quantum optical circuits.

To avoid lots of unnecessary gradient calculations manually, we want to use AD. TensorFlow (TF), which
is an open-source library to construct the machine learning model and train it, uses the AD technique. And
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AD plays an important role in our numerical simulations to compute the gradients automatically. So we will
first introduce how to calculate the gradient in mathematical forms in section 7.2.1 and how we realize it
with TF in section 7.2.2.

Since we use the recurrence relation to simulate the Gaussian objects inside the circuits, we then discuss
the differentiability of our recurrence relation in section 7.2.3. Thanks to this differentiability, we can compute
the gradients directly.

7.2.1 Calculation of the gradient for quantum optical circuits

As explained in chapter 4, the update rule of each parameter for the gradient descent algorithm depends on
the gradient calculation.

Let’s take an example into consideration.
If we concatenate a squeezer S on the first mode, then a beam-splitter B on both the first and second

modes, and after that, a rotation operator R on the second mode, we would have a circuit like this:

S(ζ)
B(θ, φ) ψ1

R(ϕ)
ψ2

Figure 7.1: A quantum optical circuit (states move through the circuit from left to right).

In Fig. 7.1, this operator G is characterized by a vector of parameters x = [ζ, θ, φ, ϕ], and we define the
cost function L with the output of the circuit.

The chain rule to write the gradient with respect to the real parameter θ would be:

∂L

∂θ
=

∂L

∂ψ2

∂ψ2

∂ψ1

∂ψ1

∂θ
. (7.2.1)

first two terms are called the upstream, which comes from the backward pass of TF’s calculation. The
upstream can be obtained directly once the circuit is built. The last term ∂ψ1

∂θ is the derivative provided
by our recurrence relation. All details about how to get this derivative are shown in section 7.2.3. We only
need to use the tf.custom gradient in TF to define this term with our equations.

S(ζ)
B(θ, φ) G2ψ0 ψ1

R(ϕ)
ψ2 ψ3

Figure 7.2: A quantum optical circuit (states move through the circuit from left to right).

If we concatenate one more operator G2 as shown in Fig. 7.2, since they are all independent variables,
the chain rule of the parameter θ looks like:

∂L

∂θ
=

∂L

∂ψ3

∂ψ3

∂ψ2

(
∂ψ2

∂ψ1

∂ψ1

∂θ

)
=

∂L

∂ψ3

∂ψ3

∂ψ2

(
∂ψ2

∂θ

)
(7.2.2)

=
∂L

∂ψ3

∂(G2ψ2)

∂ψ2

∂(Gψ0)

∂θ
=

∂L

∂ψ2
G2
(
∂ψ2

∂θ

)
, (7.2.3)

the operator G2 is integrated into the upstream part and the derivative part ∂ψ2

∂θ is always the same according
to the same operator.

Therefore, if we want to update the variable vector x, by using the upstream provided by TF, we only
need to compute the Jacobian matrix for the Gaussian operator according to each variable and execute the
JVP.
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7.2.2 Library implementation based on TF

TF is an open-source library used to develop and train Machine Learning models. One can either create
models by plugging building blocks together or create a model and write the forward pass.

TF implements AD using symbol-to-symbol derivatives. In this case, gradients are computed by con-
structing a graph with all the operations. This graph is built by listing the successive operations in the
forward pass. Then, in the backward pass, the calculation of derivatives traverses the list of operations and
uses the chain rule to connect each operation.

TF functions

TF provides the tf.GradientTape API for AD. No matter a function, or a model, we can get the gradient
by putting the function or the model inside the “tape” and obtaining the gradient directly. One example is
shown in Fig. 7.3.

Figure 7.3: Example code for GradienTape function of TF.

As we explained, we have two parts to calculate the gradient: the upstream part and the derivative to
get the gradient of the parameter inside the optical quantum circuits. The derivative can be realized by
defining the custom gradient function tf.custom gradient. One example code of a custom gradient function
is shown in Fig. 7.4.

Figure 7.4: Example code for CustomGradient inside TF.

The variable dy is defined as the upstream gradient. By chain rule, we know that

dy

dx
=

dy

dx0

dx0
dx1

...
dxi
dxi+1

...
dxn
dx

, (7.2.4)

where dxi
dxi+1

is the gradient of current function and it is defined inside the function with the name grad. Here

we know that dy is dxi+1

dxi+2
...dxndx . The upstream gradient multiplied by the current gradient is then passed

downstream.
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Complex parameter gradient update

In addition, for most Machine Learning models, the parameters are real. However, in our case, we have both
real parameters and complex parameters in our quantum optical circuits. It is a big challenge to update the
complex gradients and realize them inside TF.

In order to update the complex parameter, we need to find out the gradient with respect to the conjugate
of the parameter. Then, we write the chain rule by

∂L

∂ξ∗
=

∂L

∂ψoutM

∂ψoutM
∂ψoutM−1

...
∂ψoutn
∂ξ∗

+
∂L

∂ψ∗
outM

∂ψ∗
outM

∂ψ∗
outM−1

...
∂ψ∗

outn

∂ξ∗
, (7.2.5)

In this case, the downstream for gradient calculation with respect to the complex parameter ξ would be
written as:

graddown = dy(
∂ψoutn
∂ξ

)∗ + dy∗
∂ψoutn
∂ξ∗

. (7.2.6)

As part of our work, we show how to calculate the partial derivative of complex functions with respect
to complex variables in Appendix A.1.

7.2.3 Differentiability of the recurrence relation

This part is to explain how to get the partial derivative of each element inside a Gaussian object, which is
∂G
∂θ (or ∂G

∂θ∗ for complex parameters).
Here we recall our general recurrence relation in Eq. (6.2.11) for all Gaussian objects:

Gk+1i =
1√
ki + 1

biGk +
∑
j

√
kjAijGk−1j

 , (7.2.7)

G0 = c. (7.2.8)

One critical insight of this kind of recursive function coming from the generating function method is that
when we want to compute the tensor elements’ gradients, we can directly differentiate this equation with
respect to the parameters.

This differentiability can be developed in two ways:

• using the chain rule to connect the three entities A, b, c with any parameters;

• evaluating the generating function gives a direct way to write the derivatives of the parameters.

Chain rule method

The derivative of L with respect to an arbitrary parameter ξ can be obtained by the chain rule:

∂L

∂ξ
=
∂L

∂G
∂G
∂ξ
, (7.2.9)

where ∂L
∂G is the upstream gradient which can be obtained from AD, so we need to know how to get the

second part ∂G
∂ξ .

Since our recurrence relation for all Gaussian objects is parametrized by triplet A, b, c, we apply the
chain rule again here:

∂G
∂ξ

=
∑

X∈{A,b,c}

∂G
∂X

∂X

∂ξ
. (7.2.10)
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The first term ∂G
∂X in Eq. (7.2.10) can be obtained by differentiating the recurrence relation in Eq. (6.2.11)

with respect to A, b, c.

The derivative ∂X
∂Y with respect to a matrix Y needs to use matrix calculus. Give X ∈ Rp×q and

Y ∈ Rm×n, the derivative ∂X
∂Y is a matrix with the size of mn × pq, which looks like to concatenate the

shape of two objects and calculate the derivatives. The “shape” of one object is one vector to describe its
dimension and the cutoffs on each dimension. If X and/or Y are vectors or scalars, ∂X

∂Y degenerates to the
Jacobian matrix of Y .

So now we know that ∂cG has the same shape as G and it is simply a derivative with respect to a scalar
c:

∂cGk =
Gk
c
. (7.2.11)

∂bG has the shape (G.shape + b.shape) and the derivative can be calculated to fill in the G shape part and
the b shape part:

∂bGk+1i =
1√
ki + 1

(
bi∂bGki +

∑
l

√
klAil∂bGk−1l

)
, (7.2.12)

∂biGk+1i = Gki . (7.2.13)

The same idea to get two parts of ∂AG, which has the shape (G.shape +A.shape):

∂AGk+1i =
1√
ki + 1

(
bi∂AGki +

∑
l

√
klAil∂AGk−1l

)
, (7.2.14)

∂Ail
Gk+1i =

√
(k + 1i)l√
ki + 1

Gk−1l . (7.2.15)

The second term ∂X
∂ξ in Eq. (7.2.10) depends on ξ, which can be two different types of parameters:

• the exact parameter of each optical component if the Gaussian object is decomposed, such as the angle
of the rotation operator;

• the symplectic matrix S and the displacement vector d of the Gaussian object.

ξ as the exact parameter Let us take the single-mode Gaussian operator Gm,n as an example, which is
defined in Eq.(43) of [35] as the product of displacement, rotation, and squeezing operators:

G(γ, ϕ, ζ) = D(γ)R(ϕ)S(ζ), (7.2.16)

and the three entities c, b,A are

c =
exp

(
− 1

2

[
|γ|2 + γ∗2ei(δ+2ϕ) tanh r

])
√

cosh r
, (7.2.17)

b =

γ∗ei(δ+2ϕ) tanh r + γ

−γ∗eiϕ sech r

 , (7.2.18)

A =

 −ei(δ+2ϕ) tanh r eiϕ sech r

eiϕ sech r e−iδ tanh r

 . (7.2.19)
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To differentiate the Gaussian object G with respect to ϕ, one must calculate the derivatives ∂c
∂ϕ , ∂b

∂ϕ and
∂A
∂ϕ :

∂c

∂ϕ
= −icγ∗2ei(δ+2ϕ) tanh r, (7.2.20)

∂b

∂ϕ
=

2iγ∗ei(δ+2ϕ) tanh r

−iγ∗eiϕ sech r

 , (7.2.21)

∂A

∂ϕ
=

 −2iei(δ+2ϕ) tanh r ieiϕ sech r

ieiϕ sech r 0

 . (7.2.22)

Then plugging the expressions of ∂X∂ξ in Eq. (7.2.10) and then in Eq. (7.2.9), we are able to get the partial
derivative with respect to any parameter ξ then get the full gradient.

ξ as S,d Now we can use all equations that we have developed in chapter 6 to go from S,d to A, b, c. As
we explained about the AD framework, we can simply code all the relations within the TF functions, and
then the derivatives of S,d with respect to A, b, c are obtained automatically.

Generating function method

The generation function of the Gaussian tensor G with its Fock indices k = (k1, . . . , kℓ) (where ℓ can be
M -dimensional vector, 2M -dimensional vector, and 4M -dimensional vector) is:

Γ(α) =

∞∑
k=0

αk

k!
Gk, (7.2.23)

where we use the shorthand notation
∑∞

k=0 =
∑∞
k1=0 · · ·

∑∞
kℓ=0, α is the rescaled multimode coherent state

and k denotes the Fock indices of the tensor. So it is clear that if we want to get the Gaussian tensor Gk
from this generating function, we can differentiate it k times and set α as 0:

Gk =
∂kα√
k!

Γ(α)

∣∣∣∣
α=0

. (7.2.24)

This generating function is in exponential form for Gaussian objects:

Γ(α) = c exp

(
αT b+

1

2
αTAα

)
, (7.2.25)

because of this exponential, we could recursively express the high-order derivatives of Gaussian objects.
If we want to get the derivative with respect to the parameter ξ, we need to derive the Gaussian object’s

generating function and set α as 0:

∂Gk
∂ξ

=
∂kα√
k!
∂ξΓ(α)

∣∣∣∣
α=0

. (7.2.26)

By inserting the exponential form in Eq. (7.2.25), we have:

∂Gk
∂ξ

=
∂kα√
k!
∂ξce

(αT b+ 1
2α

TAα)

∣∣∣∣
α=0

(7.2.27)

=
∂kα√
k!

Γ(α)

(
∂ξc

c
+ ∂ξ(α

T b+
1

2
αTAα)

) ∣∣∣∣
α=0

(7.2.28)

=
∂kα√
k!

Γ(α)

(
∂ξc

c
+αT∂ξb+

1

2
αT∂ξAα

) ∣∣∣∣
α=0

. (7.2.29)
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In this equation, we also have the following:

∂kα√
k!
αnΓ(α)

∣∣∣∣
α=0

=
√

(k)nGk−n, (7.2.30)

where (k)n = k(k−1)(k−2) . . . (k−n+1). Using Eq. (7.2.30), Eq. (7.2.24) to replace the term in Eq. (7.2.29),
we have:

∂Gk
∂ξ

=
1

c

∂c

∂c
Gk +

∑
i

∂ξb
√
kiGk−1i +

∑
i>j

∂Aij

∂ξ

√
kikjGk−1i−1j +

1

2

∑
i

∂Aii

∂ξ

√
ki(ki − 1)Gk−2i . (7.2.31)

This equation provides the derivative of our recurrence relation for all Gaussian objects with respect to the
parameter ξ. It is a more direct way to compute the derivatives and the gradient without passing through
the chain rule.

In the example of the single-mode Gaussian operator, we only need to insert the derivatives, and we
obtain::

∂Gm,n
∂ϕ

= −iγ∗2ei(δ+2ϕ) tanh rGm,n + 2iγ∗ei(δ+2ϕ) tanh r
√
mGm−1,n − iγ∗eiϕ sech r

√
nGm,n−1

+ieiϕ sech r
√
mnGm−1,n−1 +

1

2

[
−2iei(δ+2ϕ) tanh r

√
m(m− 1)Gm−2,n

]
. (7.2.32)

7.3 Two ways to optimize Gaussian operators

Depending on how to treat the Gaussian operators, we have two optimizations:

• decomposition of the Gaussian operators into fundamental quantum optical components corresponds to
the Euclidean optimization. This method is considered as hardware-friendly because one can directly
obtain the values for each component.

• update of the Gaussian operators and decomposes it afterward, corresponding to the Riemannian
optimization. Moreover, this method is theory-friendly because only the update of the symplectic
matrix needs to be computed in this method.

7.3.1 Euclidean optimization, hardware-friendly

The hardware-friendly optimization refers to the gradient update of each optical component we use in the
quantum circuits. All the elements need to be updated during each optimization iteration, where each
component has its CV parameters.

This section explains how to decompose the Gaussian operators. The update rule of real and complex
parameters is shown in section 4.5.

For example, we have a M -mode circuit characterized by M squeezing gates S(ζ), M displacement gates
D(γ), M Kerr gates K(κ) and two interferometers V1, V2, there are

2M + 2M +M + 2 ∗M2 = 2M2 + 5M (7.3.1)

real parameters inside the circuit; therefore, to update all the real or complex parameters inside this circuit,
we need to compute 2M2 + 5M derivatives each run.

Gaussian operators decomposition

Rather than working on single-mode Gaussian objects, the multi-mode Gaussian object is more interesting
because it can exhibit entanglement, which is a key for various quantum applications, such as quantum
computing and quantum cryptography.
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Here we present the decomposition of an arbitrary Gaussian operation G based on the Bloch-Messiah
decomposition [143, 144]. The Bloch-Messiah reduction allows decomposing of the Gaussian operation into a
very simple scheme with fundamental optical components, such as rotation operators, displacement operators,
squeezing operators, beam-splitters, and interferometers. In this way, one can take an arbitrary Gaussian
operator as a whole and decompose it with implementable optical components.

We note that the rotation gate R, the beam-splitter B, and the interferometer W are the real-valued
parameterized gates, whereas the squeezing gate S and the displacement gate D are complex-valued param-
eterized gates.

Decomposition of single-mode Gaussian operators In the single-mode case (as in Fig. 7.5), we use a
sequence of single-mode squeezer S(ζ), single-mode phase rotation R(ϕ) and single-mode displacement gates
D(γ):

G(1)(γ, ϕ, ζ) = D(γ)R(ϕ)S(ζ). (7.3.2)

S(ζ) R(ϕ) D(γ)

Figure 7.5: Single-mode Gaussian transformation architecture (states move through the circuit from left to
right).

Decomposition of two-mode Gaussian operators In the two-mode case (as in Fig. 7.6), we have a
first beam-splitter B(θ′, φ′), two single-mode squeezers S(ζ1),S(ζ2), another second beam-splitter B(θ, φ),
two single-mode phase rotations R(ϕ1),R(ϕ2) and two single-mode displacement gates D(γ1),D(γ2):

G(2)(γ,ϕ, θ′, φ′, ζ, θ, φ) = D(γ)R(ϕ)B(θ′, φ′)S(ζ)B(θ, φ). (7.3.3)

B(θ, φ)
S(ζ1)

B(θ′, φ′)
R(ϕ1) D(γ1)

S(ζ2) R(ϕ2) D(γ2)

Figure 7.6: Two-mode Gaussian transformation architecture (states move through the circuit left to right).

Decomposition of multi-mode Gaussian operators For M -modes (as in Fig. 7.7), we have the
structure composed by an M -mode interferometer W(V2), M single-mode squeezers S(ζi), a second M -
mode interferometer W(V1) and M single-mode displacements D(γi). Afterward, the interferometers can
be decomposed as a suitable arrangement of beam-splitters, for example, following Clements decomposition
[145, 146, 147].

G(M) = D(γ)W(V1)S(ζ)W(V2), (7.3.4)

where V1 and V2 are unitary matrices.
This optimization is really clear to understand the parameter evolution inside the circuit for each element,

and also easy to pass them into constructing a parameterized photonic integrated circuit. However, the
redundancy of the calculation for each operator would be a big issue when it comes to a higher number of
modes. That is why we come up with the idea of considering all Gaussian components as a single global
object to optimize in the next section.
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W(V2)

S(ζ1)

W(V1)

D(γ1)

S(ζ2) D(γ2)

. . .

S(ζM−1) D(γM−1)

S(ζM ) D(γM )

Figure 7.7: M-mode Gaussian transformation architecture (states move through the circuit left to right).

7.3.2 Riemannian optimization, theory-friendly

The theory-friendly optimization refers to the gradient update depending on the whole Gaussian operator; we
can decompose the Gaussian operator afterward into the fundamental optical components. The advantage
of considering only one Gaussian operator is to avoid calculating enormous gradients for each element, which
is the redundant part of the optimization.

In section 3.2.2, we point out that the M -mode Gaussian unitary is characterized by a 2M × 2M real
symplectic matrix and a 2M real vector on the phase space. Therefore the update of the Gaussian operator
turns into the update of the real symplectic matrix and the real vector. The update of the real vector is the
same idea as the update of the real parameter in section 4.5.1:

d←− d− η ∂L
∂d

, (7.3.5)

using the Euclidean gradient ∂L
∂d .

Let us now discuss how to update the real symplectic matrix. Especially when the Gaussian unitary
refers to an interferometer, the real symplectic matrix becomes the corresponding unitary matrix and it
belongs to a unitary group. We also show the unitary group update for interferometers.

Update the real symplectic matrix

Riemannian manifold Sp(2n) We describe the manifold of real symplectic 2n × 2n matrices as an em-
bedded submanifold of R2n×2n:

Sp(2n,R) = {S ∈ R2n×2n|SΩST = Ω}, (7.3.6)

where Ω =
(

0 1
−1 0

)
. Given that the condition SΩST = Ω is quadratic in S, the manifold of symplectic

matrices is not a linear subspace of R2n×2n, which means that we are likely to leave the manifold after a
straight step of gradient descent. The following sections explain how to overcome this difficulty by using the
geodesic on the manifold.

Note that unless details are relevant, we abbreviate Sp(2n,R) with Sp.

Tangent and Normal spaces If we differentiate the quadratic condition SΩST = Ω we obtain the linear
tangency condition XΩST + SΩXT = 0. All the matrices X that satisfy the new condition form a linear
subspace of R2n×2n called the tangent space of Sp at the point S:

TSSp = {X ∈ R2n×2n|XΩST + SΩXT = 02n} (7.3.7)

= {SΩA|A = AT }. (7.3.8)

Eq. (7.3.8) is a compact way of parametrizing the tangent space at S using symmetric matrices. The tangent
space can be found by imposing X = SΩA in the tangency condition.
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As a special case, the Lie algebra of sp is the tangent space at the identity, i.e.

sp(2n,R) = TeSp(2n,R) (7.3.9)

= {X ∈ R2n×2n|XΩ + ΩXT = 02n} (7.3.10)

= {ΩA|A = AT }. (7.3.11)

We can then define the normal space at S as the linear space containing all the elements that are orthogonal
to TSSp:

NSSp = {W ∈ R2n×2n|Tr(W TX) = 02n,X ∈ TSSp} (7.3.12)

= {ΩSB|B = −BT }, (7.3.13)

with Eq. (7.3.13) showing that we can parametrize the normal space at each point in Sp using anti-symmetric
matrices.

Riemannian metric on Sp(2n) A Riemannian manifold such as Sp(2n,R) comes equipped with an inner
product ⟨·, ·⟩S on the tangent space TSSp at each point S ∈ Sp. The family of inner products forms the
Riemannian metric tensor. The inner product in TSSp is defined as

⟨X,Y ⟩S = ⟨S−1X,S−1Y ⟩ = ⟨RX,Y ⟩, (7.3.14)

where R = S−TS−1 = ΩSSTΩT and note that R−1 = SST .
Consider now a cost function L : Sp→ R. The Euclidean gradient ∂L at the point S (which is computed

using the embedding coordinates in R2n×2n) is related to the Riemannian gradient ∇L ∈ TSSp by the
compatibility condition

⟨∇L,X⟩S = ⟨∂L,X⟩ ∀X ∈ TSSp. (7.3.15)

After rearranging the terms, the condition is equivalent to

⟨R∇L− ∂L,X⟩ = 0 ∀X ∈ TSSp. (7.3.16)

This means that R∇L− ∂L ∈ NSSp and therefore, it must be possible to write

R∇L− ∂L = ΩSB, (7.3.17)

for some anti-symmetric matrixB. At the same time we have the tangency condition∇LΩST+SΩ∇TL = 0.
If we replace ∇L from Eq. (7.3.17) into the tangency condition, we obtain an expression for B and we can
finally write the Riemannian gradient on the symplectic group:

∇L =
S

2
(Z + ΩZTΩ), (7.3.18)

where Z = ST∂L.
The symplectic matrix that describes an interferometer (defined in Eq. (3.50)) belongs to the intersection

of the orthogonal group O(2n) and the symplectic group Sp(2n), which is a Unitary group U(n):

U(n) = {M ∈ Cn×n|M †M = MM † = 1n}. (7.3.19)

We can go through the same arguments as with the symplectic group and obtain the Riemannian gradient
in the unitary group (More calculation details are in Appendix B):

∇L =
M

2

(
Z −Z†) , (7.3.20)

where Z = M †∂L.
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Geodesic optimization on Sp(2n) and U(n) The shortest curve connecting two points on a Riemannian
manifoldM is called a geodesic, and it can be defined by the starting point γ(0) = p and its velocity on the
tangent space at that point: V = γ̇(0) ∈ TpM. For the symplectic and unitary groups, geodesics take the
following form (which can be found by minimizing a variational formulation of the path length between two
points [54, 59]):

γSp(2n)(t) = Set(S
−1V )T et[S

−1V −(S−1V )T ], (7.3.21)

γU(n)e(t) = Met(M
†V )T . (7.3.22)

By using a geodesic, we guarantee that each update step remains on the manifold.
For gradient descent, we use V = −∇L:

γSp(2n)(t) = Se−tY e−t(Y −Y T ), (7.3.23)

with Y = S−1∇L = 1
2 (Z + ΩZTΩ). For the unitary group, we obtain

γU(n)(t) = Me−tY , (7.3.24)

with Y = M †∇L = 1
2 (Z − Z†) = 1

2 (M †∂L − (∂L)†M). We now have a geodesic update formula that we
can apply instead of the usual gradient descent step. The parameter t takes the role of the learning rate
(which we fix depending on the application). For the symplectic group, we have

Zk ← STk ∂L, (7.3.25)

Yk ←
1

2
(Zk + ΩZTk Ω), (7.3.26)

Sk+1 ← Ske
−tYke−t(Yk−Y T

k ). (7.3.27)

For the unitary group, we have

Zk ←M †
k∂L, (7.3.28)

Yk ←
1

2
(Zk −Z†

k), (7.3.29)

Mk+1 ←Mke
−tYk . (7.3.30)

Finally, we obtain the orthogonal matrix of the interferometer using Eq. (3.50).

The Riemannian update step in practice

In practice, once the relevant Euclidean gradient ∂L has been computed, we can compute the Riemannian
gradient ∇L and update the real symplectic matrix with S the Eq. (7.3.27).

The backpropagation procedure is shown in Fig. 7.8.
We can first go with the right side arrows to see the forward pass in solid lines. Since we have the real

symplectic matrix S and the real displacement vector d to characterize any Gaussian transformation, we
can calculate its real covariance matrix V and mean vector r̄; then, we change the basis to the complex
covariance matrix and calculate the Cayley transform of the covariance matrix, to get the triplet (A, b, c);
by using this triplet, we can write down the Fock representation of this Gaussian evolution; next step is to
supply this into the cost function and get the final value. This forward pass explains how the math works
in our equations to get the triplet.

Secondly, we are going to see the backward pass in dotted lines. Thanks to the Auto Differentiation
technique, for any transformation, once we write down the function in their way, it automatically gives the
gradient related to the input and output variables. The partial derivative goes from the cost function to the
Fock representation by AD; and then the chain rule between the triplet (A, b, c) to the Fock representation
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Figure 7.8: The detailed forward (solid line) and backward (dotted line) passes.
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is computed by the differentiability of the recurrence relations; at the end, the partial derivative of S and d
with respect to the triplet (A, b, c) is also given by AD.

The Riemannian gradient ∇L for the geodesic update is calculated via the chain rule and Eq. (7.3.18),
which backpropagates the gradient of the cost function with respect to the Fock amplitudes ∂L

∂Gk
all the way

to ∇L, while the gradient ∂L
∂d is used directly to optimize d on R2n.

For example, the Euclidean gradient of the symplectic matrix can be calculated via the chain rule:

∂L

∂S
= 2ℜ

 ∑
X=A,b,c

∑
k

∂L

∂Gk
∂Gk
∂X

∂X

∂S

 . (7.3.31)

In this expression, ∂L
∂Gk is the upstream gradient which can be obtained from an AD framework such as

TensorFlow, ∂Gk∂X is computed by differentiating the recurrence relation in Eq. (6.2.11) and ∂X
∂S is also handled

by the AD framework, and it depends on the functional relation between the symplectic matrix and X =
A, b, c.

7.4 Complex natural gradient descent algorithm

The natural gradient (NG) is known as the gradient descent algorithm that points the steepest direction
on the manifold at the expense of needing a matrix inversion of an n × n matrix at each step, where n is
the number of parameters being updated during that step [39, 40, 41]. Such a matrix represents the metric
tensor of the parameter space as seen by the cost function.

We will recall how the natural gradient is introduced on Riemannian manifolds and describe the Fubini-
Study (FS) metric tensor. Then, we introduce our work about extending the metric tensor to complex
parameters.

7.4.1 Steepest-step on the Riemannian manifold and the Fubini-Study metric
tensor

Steepest descent on Riemannian manifolds

Let us define a differentiable cost function L : Rn → R which maps a vector of real parameters θ =
[θ1, ..., θn]T ∈ Rn to a value in R. Our objective is to minimize L(θ) with respect to θ. A relatively simple
optimization procedure is based on gradient descent, which in turn is based on a first-order expansion of
L (throughout this section, we use the Einstein summation convention, i.e., repeated indices are summed
over):

L(θ + dθ) ≈ L(θ) +
∂L(θ)

∂θi
dθi. (7.4.1)

Therefore, we can use the following rule:

θt+1 = θt − ηt
∂Lt
∂θ

, (7.4.2)

where η is the learning rate and may depend on step t.
In Eq. (7.4.2), each direction is weighted equally by a uniform learning rate ηt, which is fine if infinitesimal

distances on the manifold are Euclidean:

dE(θ,θ + dθ) =
√
dθidθi. (7.4.3)

However, if distances are computed using a different metric, such as the Riemannian metric, the gradient
computed from the cost function as in Eq. (7.4.2) no longer points in the optimal direction. Let us then
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endow the parameter space with a metric tensor g(θ) such that an infinitesimal length at the point θ is
computed as

d(θ,θ + dθ) =
√
g(θ)ijdθidθj . (7.4.4)

Eq. (7.4.2) corresponds to g(θ) = 1.
We now have a Riemannian structure on the parameter space, characterized by the metric tensor g(θ),

which effectively describe the space. From an infinitesimal perspective, the steepest ascent or descent direc-
tion is going to be adjusted by the presence of g. From a macroscopic perspective, distances between points
must be computed by integrating along geodesics, with the consequence that the shortest path between two
points is generally no longer a straight line as in Euclidean space. Note that from now on, we will omit the
dependence on θ when writing g, but we stress that g is generally a local quantity.

It can then be shown using the method of Lagrange multipliers [40] that the steepest descent direction
on a Riemannian manifold is given by the so-called natural gradient ∇θ, defined as

∇θ := g−1 ∂

∂θ
. (7.4.5)

This leads to a new parameter update rule:

θt+1 = θt − ηt∇θLt (7.4.6)

= θt − ηtg−1 ∂Lt
∂θ

. (7.4.7)

Note that the metric tensor g may happen to be noninvertible for some values of θ. This corresponds to
singular points in the parameter space and will be discussed briefly later on.

As an example, consider polar coordinates for the two-dimensional plane [41]. When using (r, ϕ) ∈
R+ × [0, 2π[ to identify points, one must remember that ϕ represents an angle and, therefore, not a distance
per se. Thus, if one moves away from the point (r, ϕ) with infinitesimal shifts dr and dϕ, the infinitesimal
distance will be computed as

ds =
√
dr2 + r2dϕ2. (7.4.8)

Therefore, the metric tensor for polar coordinates is

g =

1 0

0 r2

 . (7.4.9)

The natural gradient for a cost function defined on polar coordinates then becomes

∇(r,ϕ)L =

 ∂L
∂r

1
r2
∂L
∂ϕ

 . (7.4.10)

We can easily see that the metric is singular at the origin, where it becomes noninvertible (there is a zero
eigenvalue). This does not mean that infinitesimal distances from the origin cannot be calculated or that
distances somehow lose meaning; it simply means that at least one parameter becomes redundant because
at the origin ds = dr with no dependence on ϕ. We can mitigate this issue by using pseudoinverses and
introducing regularization in practice, which is introduced in Eq. (9.2.8).

The Fubini-Study metric tensor

We now describe a metric in the space of quantum states. Let us consider a parametrized quantum state ψθ

where the parameters are real, i.e. θ ∈ Rn:

ψθ = U(θ)ψ0. (7.4.11)
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where U(θ) denotes a parametrized unitary transformation, and ψ0 a fixed initial state. Typically, such a
state can be used to describe an ansatz prepared by a parametrized quantum circuit [44].

In a VQE context, a Hamiltonian H is eventually evaluated. In this case, the cost function represents
the energy that one aims to minimize:

L(θ) := ⟨ψθ|H|ψθ⟩. (7.4.12)

Otherwise, for the purpose of state preparation or gate synthesis, one would seek to maximize the quantum
fidelity [148, 35, 149].

Note that minimization of this cost function is equivalent to a minimization of the energy, where the
Hamiltonian is H = −ψtargetψ

†
target. Rather conveniently, fidelity is not sensitive to the global phase of ψθ

or ψtarget, which is a useful feature, given that the global phase is physically unobservable. Sensitivity to the
global phase (as we will see shortly) would be an issue for using Euclidean distance (such as ∥ψtarget − ψθ∥)
as a loss.

Following the approach of Provost and Vallee [150], we consider the infinitesimal Euclidean distance
between two states, and then we adjust it to be insensitive to the global phase. We start from a first-order
expansion of ψθ around θ:

ψθ+dθ ≈ ψθ +
∂ψθ

∂θi
dθi. (7.4.13)

The Euclidean distance between ψθ and ψθ+dθ is

ds2 = ∥ψθ − ψθ+dθ∥2 =

〈
∂ψθ

∂θi

∣∣∣∣∣∂ψθ

∂θj

〉
dθidθj . (7.4.14)

Separating the real and imaginary parts of the Hermitian tensor, we can write〈
∂ψθ

∂θi

∣∣∣∣∣∂ψθ

∂θj

〉
= γij + iσij , (7.4.15)

where γij = γji and σij = −σji due to the inner product having to satisfy ⟨a|b⟩ = ⟨b|a⟩∗. This implies that
effectively only the real part matters (as the full contraction of a symmetric tensor with an anti-symmetric
one yields zero), i.e.,

∥ψθ − ψθ+dθ∥2 = γijdθidθj . (7.4.16)

The anti-symmetric part σij = Im[⟨ψθ, ∂jψθ⟩] is known as the Berry curvature [151], and its significance is
beyond the scope of this work.

At this stage, we cannot yet interpret γij as a metric tensor on the space of physical quantum states
because it is sensitive to global phase: had we used the physically identical state ψ′

θ = eiα(θ)ψθ for some real
function α(θ), the tensor γij would have been

γ′ij = Re

[〈
∂ψ′

θ

∂θi

∣∣∣∣∣∂ψ′
θ

∂θj

〉]
(7.4.17)

= γij + (
∂α

∂θi
)βj + (

∂α

∂θj
)βi + (

∂α

∂θi
)(
∂α

∂θj
), (7.4.18)

with βj = −i⟨ψθ|∂ψθ

∂θj
⟩. Note that βj ∈ R due to the norm of ψθ being a constant:

0 =
∂

∂θj
⟨ψθ|ψθ⟩ =

〈
ψθ

∣∣∣∣∣∂ψθ

∂θj

〉
+

〈
∂ψθ

∂θj

∣∣∣∣∣ψθ

〉
(7.4.19)

⇒

〈
ψθ

∣∣∣∣∣∂ψθ

∂θj

〉
= −

〈
∂ψθ

∂θj

∣∣∣∣∣ψθ

〉
= −

〈
ψθ

∣∣∣∣∣∂ψθ

∂θj

〉∗

. (7.4.20)
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Under a change in global phase, we have βj → βj + ∂α
∂θj

, which together with Eq. (7.4.18) implies that the

real, symmetric, positive-definite tensor

gij = γij − βiβj (7.4.21)

= Re

[〈
∂ψθ

∂θi

∣∣∣∣∣∂ψθ

∂θj

〉]
−

〈
∂ψθ

∂θi

∣∣∣∣∣ψθ

〉〈
ψθ

∣∣∣∣∣∂ψθ

∂θj

〉
(7.4.22)

is invariant under changes in the global phase. The tensor gij is known as the FS metric.

An alternative way of obtaining the FS metric is to start from a distance measure that is already invariant
under a change in global phases, such as 1 minus the fidelity:

ds2 = 1− |⟨ψθ|ψθ+dθ⟩|2 (7.4.23)

= 1− |1 +

〈
ψθ

∣∣∣∣∣∂ψθ

∂θi

〉
dθi +

1

2

〈
ψθ

∣∣∣∣∣ ∂ψθ

∂θi∂θj

〉
dθidθj |2 (7.4.24)

= −
(

1

2

〈
ψθ

∣∣∣∣∣ ∂ψθ

∂θi∂θj

〉
+

1

2

〈
∂ψθ

∂θi∂θj

∣∣∣∣∣ψθ

〉

+

〈
∂ψθ

∂θi

∣∣∣∣∣ψθ

〉〈
ψθ

∣∣∣∣∣∂ψθ

∂θj

〉)
dθidθj (7.4.25)

=

(
Re

[〈
∂ψθ

∂θi
,
∂ψθ

∂θj

〉]
−

〈
∂ψθ

∂θi

∣∣∣∣∣ψθ

〉〈
ψθ

∣∣∣∣∣∂ψθ

∂θj

〉)
dθidθj , (7.4.26)

where we used a second-order expansion and where the last step is due to the identities

∂

∂θi

〈
ψθ

∣∣∣∣∣∂ψθ

∂θj

〉
=

〈
∂ψθ

∂θi

∣∣∣∣∣∂ψθ

∂θj

〉
+

〈
ψθ

∣∣∣∣∣ ∂ψθ

∂θi∂θj

〉
, (7.4.27)

∂

∂θi

〈
∂ψθ

∂θj

∣∣∣∣∣ψθ

〉
=

〈
∂ψθ

∂θi∂θj

∣∣∣∣∣ψθ

〉
+

〈
∂ψθ

∂θj

∣∣∣∣∣∂ψθ

∂θi

〉
, (7.4.28)

and therefore, given that ∂
∂θi

〈
ψθ|∂ψθ

∂θj

〉
= − ∂

∂θi

〈
∂ψθ

∂θj
|ψθ

〉
, if we add Eqs. (7.4.27) and (7.4.28), we obtain

〈
ψθ

∣∣∣∣∣ ∂ψθ

∂θi∂θj

〉
+

〈
∂ψθ

∂θi∂θj

∣∣∣∣∣ψθ

〉
= −

〈
∂ψθ

∂θi

∣∣∣∣∣∂ψθ

∂θj

〉
−

〈
∂ψθ

∂θj

∣∣∣∣∣∂ψθ

∂θi

〉

= −2Re

[〈
∂ψθ

∂θi

∣∣∣∣∣∂ψθ

∂θj

〉]
. (7.4.29)

7.4.2 Complex natural gradient descent algorithm on quantum optical circuits

We now generalize the FS metric to the case where the parametrization of ψ can involve a mix of real and
complex parameters, and we apply it to the optimization of quantum optical circuits.

We will achieve our goal in two steps: first, we will convert complex parameters into their real and
imaginary parts; second, we will reassemble the two parts by applying the rules of the Wirtinger calculus
[152, 82, 153] to rewrite the Riemannian metric tensor in terms of derivatives with respect to complex
parameters and their conjugate as independent variables. Using a complex version of the FS metric makes
it straightforward to deal with non-holomorphic cost functions, as it removes the need to treat complex
parameters as pairs of real parameters, leading to simpler and faster computations of the complex gradients.
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Real and complex parameters

A complex parameter z and its conjugate z∗ are related to the real and imaginary parts of z by a linear
transformation W :  z

z∗

 =

1 i

1 −i

zR
zI

 = W

zR
zI

 (7.4.30)

zR
zI

 =
1

2

 1 1

−i i

 z

z∗

 = W−1

 z

z∗

 , (7.4.31)

where zR = Re(z) and zI = Im(z). Similarly, the gradients with respect to z and z∗ and the gradients with
respect to zR and zI are related by a linear transformation V , which we can find by applying the chain rule:

∂ψ

∂zR
=
∂ψ

∂z

∂z

∂zR
+
∂ψ

∂z∗
∂z∗

∂zR
=
∂ψ

∂z
+
∂ψ

∂z∗
(7.4.32)

∂ψ

∂zI
=
∂ψ

∂z

∂z

∂zI
+
∂ψ

∂z∗
∂z∗

∂zI
= i

(
∂ψ

∂z
− ∂ψ

∂z∗

)
, (7.4.33)

i.e., ∂zR = ∂z + ∂z∗ and ∂zI = i(∂z − ∂z∗). Conversely, ∂z = 1
2 (∂zR − i∂zI ) and ∂z∗ = 1

2 (∂zR + i∂zI ), which
means  ∂z

∂z∗

 =
1

2

1 −i

1 i

∂zR
∂zI

 = V

∂zR
∂zI

 (7.4.34)

∂zR
∂zI

 =

1 1

i −i

 ∂z

∂z∗

 = V −1

 ∂z

∂z∗

 . (7.4.35)

In the next section, we will write V and W even for larger collections of parameters, with the understanding
that V and W will be block-diagonal with 2× 2 blocks for complex parameters and, if a parameter is real,
its block will be 1× 1 with a value of 1.

The FS metric for complex parameters

In this section, we will derive an expression for the Hermitian FS metric f for complex parameters (and by
extension for a mix of parameters of any type).

Instead of writing the FS metric tensor using the real-part function (which is not holomorphic), we write
it using the fact that the FS metric is the symmetric part of the Riemannian metric tensor Gij , defined in
Eq. (7.4.37):

g =
G+GT

2
, (7.4.36)

where

Gij =

〈
∂ψ

∂θi

∣∣∣∣∣ ∂ψ∂θj
〉
−

〈
∂ψ

∂θi

∣∣∣∣∣ψ
〉〈

ψ

∣∣∣∣∣ ∂ψ∂θj
〉
. (7.4.37)

Using such a linear relation between g and G, we can write the FS metric with respect to a mixture of
real and complex parameters. We define ξ as our parameter vector, containing real parameters and complex
parameters with the provision that for each complex parameter, we also include its complex conjugate. In
this way, the all-real natural gradient update rule

θ ← θ − ηg−1 ∂L

∂θ
, (7.4.38)
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turns into the more general update rule

ξ ← ξ − ηf−1 ∂L

∂ξ∗
, (7.4.39)

which works for any type of parameter, real or complex.
Note that the natural gradient update rule differs from the general ones defined in section 4.5 by the

inverse FS-metric factor f−1.
We then show how to derive the general FS metric f in two steps. First, we write

∂L

∂θ
= V −1∗ ∂L

∂ξ∗
= W † ∂L

∂ξ∗
, (7.4.40)

where we used the functional relation V −1 = W T . Second, we transform the basis from θ to ξ in Eq. (7.4.38)
using Eq. (7.4.30) to obtain the gradient updates for ξ:

ξ ← ξ − ϵW g−1W † ∂L
∂ξ∗

. (7.4.41)

So we deduce by comparing (7.4.39) and (7.4.41) that the metric tensor with respect to the complex param-
eters is given by

f = (W g−1W †)−1 = (W †)−1gW−1 (7.4.42)

=
(W †)−1GW−1 + (W †)−1GTW−1

2
(7.4.43)

=
V ∗GV T + V ∗GTV T

2
. (7.4.44)

In the last step, we used the functional relation W−1 = V T . Finally, we find the expression for fmn by
inserting Eq. (7.4.37) into Eq. (7.4.44):

fmn =
1

2

〈
Vmi

∂ψ

∂θi

∣∣∣∣∣Vnj ∂ψ∂θj
〉
− 1

2

〈
Vmi

∂ψ

∂θi

∣∣∣∣∣ψ
〉〈

ψ

∣∣∣∣∣Vnj ∂ψ∂θj
〉

+
1

2

〈
V ∗
nj

∂ψ

∂θj

∣∣∣∣∣W ∗
mi

∂ψ

∂θi

〉
− 1

2

〈
V ∗
nj

∂ψ

∂θj

∣∣∣∣∣ψ
〉〈

ψ

∣∣∣∣∣W ∗
mi

∂ψ

∂θi

〉
(7.4.45)

=
1

2

〈
∂ψ

∂ξm

∣∣∣∣∣ ∂ψ∂ξn
〉
− 1

2

〈
∂ψ

∂ξm

∣∣∣∣∣ψ
〉〈

ψ

∣∣∣∣∣ ∂ψ∂ξn
〉

+
1

2

〈
∂ψ

∂ξ∗n

∣∣∣∣∣ ∂ψ∂ξ∗m
〉
− 1

2

〈
∂ψ

∂ξ∗n

∣∣∣∣∣ψ
〉〈

ψ

∣∣∣∣∣ ∂ψ∂ξ∗m
〉
. (7.4.46)

Note that for real parameters, the expression for f in Eq. (7.4.46) falls back to the usual FS metric. Also
note that the tensor f is Hermitian rather than symmetric (i.e. fT = f∗), which is to be expected, as the
metric tensor of a complex manifold is Hermitian.

7.5 Conclusion

Thanks to the differentiability of our recurrence relation, this chapter showed us how to calculate the gradient
in optical quantum circuits. Then we illustrated Euclidean and Riemannian optimizations of Gaussian
operators. We also generalized the natural gradient algorithm to its complex version.

Our recurrence relation is differentiable, and we provide two ways to calculate its derivatives in order
to finally derive the gradient in the optical quantum circuits: the chain rule and the generating function.
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The generating function is a more direct method, while the chain rule allows us to get gradients in both
optimizations.

Based on the circuits with the decomposed fundamental optical components, we developed Euclidean
optimization, which optimizes each component in a Euclidean way. If we combine all the Gaussian operators
as a global object, we can then optimize it on its Riemannian manifold and then decompose it back into
fundamental optical components if we want to realize it in practice. This idea reduces the optimization
time with fewer parameters and smaller parameter space; even with a circuit with hundreds of modes, the
optimization works well. We found a geodesic-based Riemannian optimization method to update the real
symplectic matrix on the Riemannian manifold, together with the unitary optimization for interferometers
as a special case.

In addition, because our optical quantum circuit also has complex variables, we will generalize the Fubini-
Study metric for complex parameters and derive the complex version of the natural gradient algorithm.

The next chapter provides some extra strategies for better using our recurrence relation for some particular
tasks.
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Chapter 8

Optimal task-based strategies for
utilizing recurrence relation

8.1 Introduction

The recurrence relation of the Gaussian objects in chapter 6 can construct the elements of a tensor Gk in
Fock representation by linearly combining their neighbors. This chapter introduces various algorithms to
use the recurrence relation in different situations.

We call default method to use the recurrence relation vanilla version and we explain it in section 8.2.

Here are the four new algorithms that we propose:

• Global and local cutoff algorithm in section 8.3: by defining the global cutoff G and local cutoffs
C = [C1, C2 . . . ] of the tensor, one can change the way of constructing the tensor. With the new
algorithm, we can make the computation parallel and faster.

• Diagonal algorithm in section 8.4: to obtain the Fock amplitudes of a mixed state, we propose the
diagonal algorithm, which requires calculating O(CM ) amplitudes compared with the vanilla version
that computes O(C2M ) amplitudes (assuming all cutoffs are C).

• Interferometer algorithm in section 8.5, we propose two algorithms in different cases to obtain the
amplitudes Jk (in Eq. (3.49)) of an interferometer that conserves the total photon number. The first
algorithm is under the assumptions that we can have at most one photon per mode, we already know the
input and output pattern, and we want to calculate the corresponding probability: suppose that there
are N photons injected in the interferometer and N << M , we need to compute O(2N ) amplitudes
compared with the vanilla version with O(22N ). As for the second algorithm, we do not limit the
number of photons on each mode, and we propose two versions to calculate the probability of multiple
input and output patterns.

• Gaussian evolution algorithm in section 8.6: this algorithm gives a new recurrence relation for trans-
formed states directly. Compared with the old matrix-vector multiplication method (usually used in
evolution simulation), this new algorithm benefits both the forward pass and backward pass. The
complexity scales O(CM ) rather than O(C2M ).
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8.2 Vanilla version of recurrence relation

We recall the recurrence relation defined in chapter 6:

Gk+1i =
1√
ki + 1

biGk +
∑
j

√
kjAijGk−1j

 , (8.2.1)

with the vacuum amplitude initialized as G0 = c.
In Fig. 8.1, we show a tensor with two indices. The element Gm,n+1 can be obtained by linearly combing

the neighboring elements Gm,n, Gm−1,n and Gm,n−1. We can also find out that the elements Gm+1,n can be
obtained with the same elements as the element Gm,n+1 only with different coefficients A and b.

Figure 8.1: The vanilla recurrence relation. The two blue amplitudes can be computed by linearly combining
the three orange ones.

This section first gives the graphical representation of the vanilla version of the recurrence relation and
introduces some important definitions to understand our algorithms (local and global cutoffs, pivot read and
write, and partition).

8.2.1 Cutoffs

For a Gaussian tensor Gk, the local cutoffs C are defined as

C = [C1, C2, . . . , Cℓ], (8.2.2)

where ℓ is the length of index vector k and it is also the dimension of the tensor G. In case we do not mention
the explicit local cutoffs, we talk about the equal local cutoffs C = [C,C, . . . , C].

In section 8.3, we will introduce a global cutoff G, which means that we will calculate the tensor with an
index vector k where ∑

i

ki < G. (8.2.3)

8.2.2 Vanilla version

To fill the Gaussian tensor in Fock representation with the vanilla version of recurrence relation, we compute
one new item at each iteration: we start from the first element with an index of all zeros and continue
to add one more element on the last index until we reach the cutoff and move to the next index value.
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Given an example of an index vector k with 3 indices and a cutoffs C = [2, 2, 2] of each index:

k = (000) −→ (001) −→ (002) −→ (010) −→ (011) −→ (012) −→ (020) −→ (021) −→ (022) −→ (100) −→ (101) −→
(102) −→ (110) −→ (111) −→ (112) −→ (200) −→ (201) −→ (202) −→ (210) −→ (211) −→ (212) −→
(220) −→ (221) −→ (222). (8.2.4)

Let us see another example of a matrix (a 2-dimensional tensor) and the equal local cutoffs C = [6, 6].
The vanilla version of the recurrence relation is applied as follows: we fill the first row and then fill each row.
Fig. 8.2 shows the filling process of the matrix.

Figure 8.2: Vanilla version of recurrence relation with a 2-dimensional tensor. The elements are computed
in the first row and fill each row in the vertical direction. The blue elements can be obtained by linearly
combining the orange elements.

Given a ℓ-length index vector k and equal local cutoffs C = [C,C, . . . , C], we need to compute Ck

elements for the full tensor, which costs more computational resources and memory for the computation
process with the increase of the length ℓ of index vector k.

8.2.3 Pivot, read and write

In the vanilla version, we describe the combination of recurrence relation in a graphical version as in [35].
We introduce the new notations with the example of a 2-dimensional tensor: we call the elements (like

Gm,n) “pivot”, the elements (like Gm,n−1 and Gm−1,n) “read” and the new elements (Gm,n+1 and Gm+1,n)
“write”, as shown in Fig. 8.3. So we say that when we have the orange elements “pivot”, we can “write” the
two green elements by “reading” the values of blue elements, which means that we can calculate the green
elements from the orange and blue ones.
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Figure 8.3: The pivot read and write in the vanilla version of the recurrence relation.

8.2.4 Partition

We define the partition of weight w as the collection of all strings s with length ℓ such that the sum of each
element is the same w:

Pℓ(w) = {s|
ℓ−1∑
i=0

si = w}. (8.2.5)

For example the partition of weight 2 in 4-mode is P4(2) = {0002, 0020, 0200, 2000, 0011, 0101, 0110, 1100}.

8.3 Global and local cutoff algorithm

In the vanilla version, the recurrence relation is used to calculate one element at a time. Then we try to
express the relation in the way of “pivot, read and write”. This new pattern gives us a new point of view
to look into the recurrence relation, and we came up with the idea of grouping elements with the same
combination pattern. We notice that in Fig. 8.4, all pivots, reads, and writes have the same pattern: the
sum of their two indices is equal (m+ n+ 1 for both), which is defined as weight in the following.

Suppose that we have a Gaussian tensor with an index vector k of length ℓ. We define the weight of the
index vector k as the sum of its coordinates:

w(k) =

ℓ−1∑
i=0

ki. (8.3.1)

w(k) corresponds to the total photon number of a basis vector if the index vector refers to a ket, such as
|k⟩. The set of index vectors of weights w and length ℓ is the partition Pℓ(w).

The global and local cutoff algorithm is shown in Algo.1. We define a global cutoff G and local cutoffs
C = [C1, C2, . . . , Cℓ] and start from the first element G0 = c. We progressively calculate all the tensor
elements with a constant weight w. Each time we pick a pivot from the partition Pℓ(w), which connects
“read” elements in partition Pℓ(w − 1) and produces “write” elements Pℓ(w + 1). This process can also be
viewed as we pick the pivots with weight w, we already have computed all the elements with a lower weight
w − 1, and we are calculating the elements with higher weights w + 1. During the calculation, the index
vector can also satisfy the local cutoffs C.
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Figure 8.4: Grouping tensor elements with index vector of the same weight.

Algorithm 1 Global and local cutoff algorithm

1: initialize the global cutoff G and local cutoffs C = [C1, C2, . . . , Cℓ].
2: initialize the pivot as 0k = c.
3: for w ← 1 to G do
4: calculate the partition Pℓ(w) of all length-ℓ indices.
5: for ind in Pℓ(w) do
6: if ind satisfies local cutoffs C then
7: take ind as pivot and calculate all “write” elements.
8: end if
9: end for

10: end for
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Figure 8.5: Visualization of two ways of using the recurrence relation. On the left we fill the tensor along
the m and n indices. On the right we fill it by computing all the indices with equal weight.

The difference between this global and local cutoff algorithm and our vanilla version is shown in Fig. 8.5
with an example of 2-dimensional tensor. With the definition of recurrence relation, we have:

G0,n =
b2√
n
G0,n−1 +A22

√
n− 1

n
G0,n−2, (8.3.2)

Gm,n =
b1√
m
Gm−1,n +A11

√
m− 1

m
Gm−2,n +A12

1√
m
Gm−1,n−1. (8.3.3)

We need to calculate the first row of the tensor elements and then we can derive all the others. However,
if we derive the tensor elements with the increase in weight, each time we calculate all elements in one
off-diagonal. Hence, the tensor elements would be computed in the diagonal direction.

When w = 0, the first element G0 is obtained. When w = 1, we would obtain 2M elements having only
a “1”: G1000...,G0100...,G0010..., . . . . The number of elements sharing the same weight increases binomially.
This scheme also looks like a tree structure, where each weight value corresponds to a layer. A three-mode
tree is shown in Fig. 8.6. We show the partition P3(w) corresponding to increasing weight w.

8.3.1 Parallelization of the calculation

With the new global and local cutoff algorithm, we increase the weight each round; all elements sharing
the same weight can be calculated in parallel. For example, in Fig. 8.6, the weight 3 has ten independent
elements that can be obtained simultaneously. The higher weight and more elements we have, the more
beneficial this parallelization is.

8.3.2 Norm bound

The idea here is to use bounds related to the physical meaning of the elements we are calculating. For
instance, if we are calculating a normalized state, the tensor elements represent the Fock amplitudes, and
we can get the norm of the state by adding them up.

Before the calculation, we set a norm bound of the state we want to achieve, for example, 0.99. Then,
while computing the elements by increasing the index vector weight w, we could sum up all the elements in
the tensor and evaluate it. If it is at least 0.99, we will stop the calculations of the elements in the tensor.
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Figure 8.6: Three-mode tree of the recurrence relation elements.

Considering the single-mode case, the tensor would be a matrix (shown in Fig. 8.7). The left upper part
of the matrix corresponds to low energy (or weight w), while the right bottom part corresponds to high
energy. The matrix elements are computed in the direction of the diagonal, top to down. After filling the
matrix for each weight, the norm is calculated. When the norm is higher than the bound, such as 0.99, the
other parts in the matrix remain 0.

Figure 8.7: Example of using the norm bound to stop the calculation. The sum of elements corresponding
to green points is enough to reach a high norm, and there is no need to compute the remaining elements
corresponding to blue points.
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8.3.3 No displacement

If the Gaussian tensor is a Gaussian unitary, the Gaussian object parameters have special meaning: b is
related to the displacement operator, and A is related to the interferometer and squeezing operator.

In case that there is no displacement, b = 0, our recurrence relation becomes:

G0 = C, (8.3.4)

Gk+1i =
1√
ki + 1

2ℓ∑
l=1

√
klGk−1lAil. (8.3.5)

We find that we skip the odd parity indices and the filling of the tensor requires half the steps.

8.4 Diagonal algorithm for mixed states

If the Gaussian tensor refers to a Gaussian state, especially if it is a mixed state, the Fock probability
(amplitude) of the state depends on the main diagonal of the tensor.

To better explain our algorithm, we define a diagonal number k of a matrix (m,n) as

• k = 0, 0-diagonal represents the main diagonal;

• k > 0, k-diagonal represents the elements (0, k), (1, k + 1), (2, k + 2), . . . above the main diagonal;

• k < 0, k-diagonal represents the elements (k, 0), (k + 1, 1), (k + 2, 2), . . . below the main diagonal.

Fig. 8.8 explains k-diagonal.

Figure 8.8: The definition of k-diagonal.

Since we are only interested in the elements on the diagonals of the tensor, it is not necessary to fill the
full tensor. If we consider the main diagonal as the pivot, we can get ±1-diagonals and the main diagonal.
However, to get ±1-diagonals, one needs one of ±2-diagonals as “reads”. Hence, to get all the elements in
the main diagonal, we have the main diagonal and 1-diagonals as “pivots” as shown in Fig. 8.9.

The corresponding algorithm to calculate all diagonals is written in Alg.2.
A special case to consider is when there is no displacement in the operator (b = 0). The computation

pattern simplifies to require only one pivot for each run, which is shown in Fig. 8.10.
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Figure 8.9: Computation pattern for single-mode mixed states. We aim for the elements on the main
diagonal. We need two diagonals as pivots to get all of them: the main diagonal and 1-diagonal.

Algorithm 2 Diagonals algorithm

1: initialize the pivot as 02M with w(pivot) = 0.
2: initialize the vector C as cutoffs on each mode, and hence the max weight that needs to be computed

as W =
∑
i Ci.

3: for w ← 0 to W do
4: calculate the set diag set of all length-2M indices (a, a, b, b, c, c, ...) that satisfy a+ b+ c+ ... = sum

and (a, b, c, ...) < cutoffs
5: for diag in diag set do
6: apply diag as pivot
7: for d← 1 to M do
8: if the first 2(d− 1) elements of diag are 0 then
9: apply diag + 12d−1 as pivot

10: end if
11: end for
12: end for
13: end for
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Figure 8.10: Computation pattern for single-mode mixed states without displacement. We aim for the
elements on the main diagonal. Without displacement, only pivots along the 1-diagonal are picked (and
their value is zero, so they don’t even contribute).

Discussion for the complexity. We can say that we need two diagonals to calculate the next one which
defines the depth of our recurrence relation to be equal to 2. With the increasing number of modes, we
need more k-diagonals to be filled to get all the elements in the main diagonal. The increasing complexity
is linear with the number of elements in the main diagonal O((2M + 1)CM ) ≈ O(CM ). This is a quadratic
improvement compared with the vanilla version O(C2M ).

8.5 Interferometer algorithms

If the Gaussian unitary is an interferometer, we have the following:

c = 1, (8.5.1)

b = 0, (8.5.2)

A =

 0 V

V T 0

 . (8.5.3)

Accordingly, the recurrence relation becomes:

Um+1i,n =
1√

mi + 1

M∑
p=1

√
npVipUm,n−1p , (8.5.4)

Um,n+1i =
1√

ni + 1

M∑
p=1

√
mpVpiUm−1p,n. (8.5.5)

The main idea is that the interferometer conserves photon numbers; hence we are calculating the ampli-
tudes with the index vector k = [m,n] and w(m) = w(n).
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At most 1 photon on each mode

We adopt a helpful notation where we specify which indices have a 1, e.g., k = 010011100→ s = [2, 5, 6, 7].
We will use this notation for the indices of U as well.

In our algorithm, we begin from the vacuum to vacuum amplitude U[],[] = 1, and we build our way toward
Us(out),s(in) . At each step, we add one new photon to the output where we expect one (according to the target
specification), and we apply the recurrence formula. In the formula, we consider 1i to be the newly added
output photon and k(in) to be all the possible inputs compatible with the target input state that generate
it.

We exemplify this procedure by computing the amplitude for transforming |111000⟩ = [1, 2, 3] to |101010⟩ =
[1, 3, 5]. Notice that at each step, we only need amplitudes that have already been computed at the previous
step.

step 0 (vacuum to vacuum) : U[],[] = 1.

step 1 (k(out) = [], i = 1) :

U[1],[1] = V11, (8.5.6)

U[1],[2] = V12, (8.5.7)

U[1],[3] = V13. (8.5.8)

step 2 (k(out) = [1], i = 3) :

U[13],[12] = V32U[1],[1] + V31U[1],[2], (8.5.9)

U[13],[13] = V33U[1],[1] + V31U[1],[3], (8.5.10)

U[13],[23] = V33U[1],[2] + V32U[1],[3]. (8.5.11)

step 3 (k(out) = [13], i = 5) :

U[135],[123] = V53U[13],[12] + V52U[13],[13] + V51U[13],[23]. (8.5.12)

This algorithm can be represented in the tree scheme as well. In Fig. 8.11, we have a 6-mode interfer-
ometer.

Normally, we need many more elements to be computed for each weight level; however, as for the
interferometer (which holds the same photon number at the input and the output), the tree has degenerated
into a much easier one.

For an m-photons input-output target on M modes, we need to compute
(
m
k

)
amplitudes at step k by

summing k elements each and therefore
∑m
k=0

(
m
k

)
= 2m amplitudes. Interestingly, this number does not

depend on M .
Compared with the vanilla version with a complexity O(22m), we only need O(2m).

Multiple inputs and outputs

Sometimes we will want to optimize for multiple input and output states. This is the case, for example,
when we have an input/output state that is not an eigenstate of the number operator in each mode. In order
to minimize the runtime and memory use, we adopt a tree strategy.

Ultimately, for a superposition of m inputs and n outputs, we will have to compute mn amplitudes, but
we can be more clever than simply re-running the algorithm mn times.
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Figure 8.11: Interferometer weight tree scheme.

Multiple outputs If we have the same input pattern s(in) going into multiple outputs s
(out)
i , we could

run the same algorithm from top to bottom several times, generating all the necessary amplitudes, but this
could be very wasteful. A better solution is to reuse what we have already computed.

Following the example above, if we wanted to compute the output [1, 3, 6] after the previous computation is
over, we would only need to redo the last step and obtain U[136],[123] = V63U[13],[12]+V62U[13],[13]+V61U[13],[23],
i.e., the amplitudes computed in step 2 would be reused. This is because the only difference is one output
photon. If two photons were to differ (e.g. [1, 2, 6]), then we would need to go back two steps, etc... The

scheme is shown in Fig. 8.12. So, in essence, for each output pattern s
(out)
i , we only need to go back until we

have found the most similar pattern that was already computed and restart from there instead of restarting
from scratch.

Figure 8.12: Multiple outputs tree scheme.
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Algorithm 3 Multiple outputs algorithm

1: the input pattern is s(in) and the multiple output patterns are {s(out)}, combining the input and output
pattern, they all have the same weight w.

2: initialize the sets of weights W (0),W (2), . . . ,W (w− 2) as vide, and W (w) contains the multiple output
patterns {s(out)} with the fixed input pattern.

3: for snow ∈ {W (w)} do
4: CalculatePattern(snow).
5: end for
6: procedure CalculatePattern(s)
7: wnow =

∑
i si

8: if wnow == 0 then
9: return 1.

10: end if
11: calculate patterns s′ with weight wnow − 2 and corresponds to s.
12: for s′i ∈ s′ do
13: if s′i not in W (w − 2) then ▷ here is the reuse of strings that have been calculated!
14: return cs′

i,s
*CalculatePattern(s′i). ▷ cs′

i,s
is the coefficient between the two strings.

15: else
16: return the value of s′i.
17: end if
18: end for
19: end procedure

Multiple inputs Suppose we have multiple inputs s
(in)
i and a fixed output s(out), it holds the same strategy

if we change the label of in and out.

In conclusion, with the tree strategy, for a superposition of m inputs and n outputs, we will have to
compute mn times, however, the recursive algorithm stops when the result is already in the sets. The
complexity of this algorithm depends largely on the similarities between the set of inputs and the set of
outputs.

8.6 Gaussian evolution algorithm

As for the previous way to evolve a quantum state under Gaussian operators G, we need to fill the Gaussian
transformation matrix recursively (the recursive relation in chapter 6 for generating the matrix elements of
a Gaussian transformation in the Fock space representation) and then take the matrix-vector product G|ψ⟩
with the input vector |ψ⟩. Note that if the Gaussian operator is multimode, the matrix-vector product turns
to the contraction of tensors.

Here we present a Gaussian evolution algorithm that directly computes the transformed state under
Gaussian operators without generating the full transformation matrix, which works by “fusing” the matrix
generation step and inner product step.

Based on our recurrence relation in Chapter 6, this new algorithm is differentiable, which means we can
use it in conjunction with gradient-based optimizers for circuit optimization tasks.
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Algorithm 4 Multiple inputs algorithm

1: the output pattern is s(out) and the multiple input patterns are {s(in)}, combining the input and output
pattern, they all have the same weight w.

2: initialize the sets of weights W (0),W (2), . . . ,W (w− 2) as vide, and W (w) contains the multiple output
patterns {s(out)} with the fixed input pattern.

3: for snow ∈ {W (w)} do
4: CalculatePattern(snow).
5: end for
6: procedure CalculatePattern(s)
7: wnow =

∑
i si

8: if wnow == 0 then
9: return 1.

10: end if
11: calculate patterns s′ with weight wnow − 2 and corresponds to s.
12: for s′i ∈ s′ do
13: if s′i not in W (w − 2) then ▷ here is the reuse of strings that have been calculated
14: return CalculatePattern(s′i).
15: else
16: return the value of s′i.
17: end if
18: end for
19: end procedure

8.6.1 Forward pass

General Gaussian transformed state

Recall the recursive relation in Eq. (6.2.11) :

Gk+1i =
1√
ki + 1

(
Gkµi −

2M∑
l=1

√
klGk−1lΣil

)
.

When the tensor refers to Gaussian operators, the index k can be split into two parts: output indices m
and input indices n. We also need to recall our definition of k + 1i, which means to increase 1 on the i-th
index of vector k.

The following identities hold:

Gm,n−1i

√
ni = Gm,nai, (8.6.1)

where ai is the annihilation operator acting on i-th input indices n. We can then write the annihilation
operator vector as

ak = (a1, . . . , aM ), (8.6.2)

which indicates whether there is an annihilation operator on each index of n.
We write down Eq. (6.2.11) together with Eq. (8.6.1):

Gm,n =
µi√
mi
Gm−1i,n −

M∑
l=1

Σil√
mi

√
(m− 1i)lGm−1i−1l,n −

2M∑
l=M

Σil√
mi
Gm−1i,nal−M . (8.6.3)

The input state in our algorithm can be any multi-mode pure state, and we use the notation ψn in this
section to take it as a n-dimensional tensor.
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Now we can define a new tensor Rk
m by sandwiching the annihilation operator vector ak with the input

state tensor ψn and Gaussian operator tensor Gm,n:

Rk
m = Gm,nakψn, (8.6.4)

where we adopt Einstein’s summation convention.
We can then try to express this new tensor with the help of our recurrence relation:

Gm,nψn︸ ︷︷ ︸
R0

m

=
µi√
mi
Gm−1i,nψn︸ ︷︷ ︸

R0
m−1i

−
M∑
l=1

Σil√
mi

√
(m− 1i)l Gm−1i−1l,nψn︸ ︷︷ ︸

R0
m−1i−1l

−
2M∑
l=M

Σil√
mi
Gm−1i,nal−Mψn︸ ︷︷ ︸

R
1l−M
m−1i

. (8.6.5)

The relation holds for any k, so we get:

Rk
m =

µi√
mi

Rk
m−1i −

M∑
l=1

Σil√
mi

√
(m− 1i)lR

k
m−1i−1l

−
2M∑
l=M

Σil√
mi

R
k+1l−M
m−1i

. (8.6.6)

Here Eq. (8.6.6) is our main result and the transformed state is R0
m. This equation explains that to get

the elements in the tensor Rk
m, one needs to combine its neighboring elements from the previous level of

m− 1i and m− 1i − 1j with the same k or k+ 1. Because of this kind of dependence, it is not necessary
to calculate the entire tensor to get the transformed state finally.

In the next section, we’ll elaborate on how this R tensor could be used in single-mode and two-mode
cases. We will also discuss the complexity reduction for each case.

Single-mode transformed state

A single-mode Gaussian transformation can be expressed as a 2-dimensional tensor Gm,n. As explained in
the previous section, to fill in the full tensor, we need to first use Eq. (8.6.5) and then in Eq. (8.6.25). For
the single-mode case, according to Eq. (6.2.11), the first row is given by:

G0,n =
µ2√
n
G0,n−1 − Σ22

√
n− 1

n
G0,n−2, (8.6.7)

where the first element is G0,0 = C.
By using Eq. (6.2.11) again, each successive row of the Gaussian transformation can be computed recur-

sively:

Gm,n =
µ1√
m
Gm−1,n − Σ11

√
m− 1

m
Gm−2,n −

Σ12√
m
Gm−1,na, (8.6.8)

where a is the annihilation operator acting on the index n (in the single-mode case, there is only one index
of n).

Given a vector of the input state ψn, the amplitude of the output state is given by Gm,nψn. Therefore,
using the recurrence relation for the rows in Eq. (8.6.8), we can write it for the single-mode case by using
the definition of Rkm in Eq. (8.6.4):

Gm,nψn︸ ︷︷ ︸
R0
m

=
µ1√
m
Gm−1,nψn︸ ︷︷ ︸

R0
m−1

−Σ11

√
m− 1

m
Gm−2,nψn︸ ︷︷ ︸

R0
m−2

−Σ12√
m
Gm−1,naψn︸ ︷︷ ︸

R1
m−1

. (8.6.9)

This relation must hold for any k ≥ 0:

Rkm =
µ1√
m
Rkm−1 − Σ11

√
m− 1

m
Rkm−2 −

Σ12√
m
Rk+1
m−1, (8.6.10)
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Figure 8.13: Any element in the R matrix (e.g. the blue one at the bottom) can be calculated as a linear
combination of the three neighboring matrix elements shown in orange.

which means that we can write all the final amplitudes R0
m as linear combinations of elements in Rk0 .

Imagine now Rkm as a matrix whose rows are indexed by m and whose columns are indexed by k. From
Eq. (8.6.10) we know that each element in R only depends on its three neighboring elements (see Fig. 8.13).

As we are now interested in the transformed state, which is the first column of R0
m, we start by filling

the first row Rk0 and then apply the rule iteratively, stopping at one fewer element per row, effectively filling
half of the matrix.

In our Python code, we proceed as follows:

1. We build a vector of square roots of integers up to N to avoid having to recompute them often.

2. We build the first row of the transformation matrix, G0,n.

3. We build the first row Rk0 by computing G0,nakψn for k ≤ N . To do so we take inner products only
between the relevant part of the vector G0,n and we update the state as akψn for the next value of k.

4. Starting from m = 1, we compute each row Rkm using Eq. (8.6.10), but we only need N −m elements.

5. After we have built the last row R0
N (consisting of a single element), we read out the final result from

the first column R0
m.

The code can then be sped-up by using the Numba [154] decorator numba.njit, and it will be compiled
at the first call.

Special case: large squeezing If the squeezing parameter is large, we don’t need to generate the whole
R matrix to find the transformed state.

Notice that in Eq. (6.2.53), we can approximate sech(r) ∼ 0 and tanh(r) ∼ 1 as r → ∞. We keep√
sech(r) in C, as it is quadratically larger than sech r.
For a single-mode Gaussian transformation, we have:

C ∼
√

sech r exp

(
−1

2
|γ|2 − 1

2
γ∗2ei(δ+2ϕ)

)
, (8.6.11)

µT ∼ [γ∗ei(δ+2ϕ) + γ, 0], (8.6.12)

Σ ∼

 ei(δ+2ϕ) 0

0 −e−iδ

 , (8.6.13)
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We can hence rewrite the recurrence relations of Eqs. (8.6.7) and (8.6.10) for a single-mode Gaussian
transformation with large squeezing:

ßG0,n ∼ e−iδ
√
n− 1

n
G0,n−2, (8.6.14)

R0
m ∼

γ∗ei(δ+2ϕ) + γ√
m

R0
m−1 − ei(δ+2ϕ)

√
m− 1

m
R0
m−2. (8.6.15)

Notice that in the second relation, R0
m does not depend on Rkm for k > 0. We then use the first relation to

compute R0
0 and the second to compute the output state directly. We remark that under these conditions,

one can (differentiably) approximate the transformed state up to a cutoff in the order of seconds.

To assess the quality of the approximation within the cutoff, in Fig. 8.14, we show the deviation from the
normalized overlap with respect to the exact state as a function of the parameter r of the squeezing for a
few random states. The error in the normalized overlap between the approximated state and the exact state
(here, a set of 10 random states) goes to zero as the magnitude of the squeezing parameter r = |z| increases.
Note that the overlap only includes photon number states up to n = 50. Also, note that such large values of
r are unreachable in practice.

Note that we need the renormalization because we compute the exact output state only up to a fixed
cutoff dimension, but large squeezing also populates Fock states with very large photon numbers.
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Figure 8.14: Normalized error between approximated and exact states for large squeezing parameter.

Two-mode transformed state

The transformation operator of a two-mode Gaussian transformation is a 4-dimensional tensor Gm,n,p,q, so
we need to compute its elements by using our recursive equations four times. We start from the input index,
which is the last two indices p, q, and continue to calculate the R tensor combining the output index m,n
with the input pure state ψm,n.
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The first two indices are filled by applying the recurrence relation in Eq. (6.2.11):

G0,0,0,q =
1
√
q

(
G0,0,0,q−1µ4 −

√
q − 1G0,0,0,q−2Σ44

)
, (8.6.16)

G0,0,p,q =
1
√
p

(G0,0,p−1,qµ3 −
√
p− 1G0,0,p−2,qΣ33 −

√
qG0,0,p−1,q−1Σ34). (8.6.17)

In this case, we now have two different annihilation operators a1, a2 on each mode:

Gm,n,p−1,q
√
p = Gm,n,p,qa1, (8.6.18)

Gm,n,p,q−1
√
q = Gm,n,p,qa2. (8.6.19)

We then apply the recurrence relation again to fill the third and fourth indices m,n:

G0,n,p,q =
1√
n

(µ2G0,n−1,p,q − Σ22

√
n− 1G0,n−2,p,q − Σ23G0,n−1,p,qa1 − Σ24G0,n−1,p,qa2), (8.6.20)

Gm,n,p,q =
1√
m

(µ1Gm−1,n,p,q − Σ11

√
m− 1Gm−2,n,p,q − Σ12

√
nGm−1,n−1,p,q − Σ13Gm−1,n,p,qa1

− Σ14Gm−1,n,p,qa2). (8.6.21)

To compute the transformed output state Gm,n,p,qψp,q, we need to rewrite the recurrence relation in
Eqs. (8.6.20) and (8.6.21) with R matrix. We get:

G0,n,p,qψp,q︸ ︷︷ ︸
R0,0

0,n

=
1√
n

(µ2 G0,n−1,p,qψp,q︸ ︷︷ ︸
R0,0

0,n−1

−Σ22

√
n− 1G0,n−2,p,qψp,q︸ ︷︷ ︸

R0,0
0,n−1

− Σ23 G0,n−1,p,qa1ψp,q︸ ︷︷ ︸
R1,0

0,n−1

−Σ24 G0,n−1,p,qa1ψp,q︸ ︷︷ ︸
R0,1

0,n−1

), (8.6.22)

Gm,n,p,qψp,q︸ ︷︷ ︸
R0,0
m,n

=
1√
m

(µ1 Gm−1,n,p,qψp,q︸ ︷︷ ︸
R0,0
m−1,n

−Σ11

√
m− 1Gm−2,n,p,qψp,q︸ ︷︷ ︸

R0,0
m−2,n

− Σ12

√
nGm−1,n−1,p,qψp,q︸ ︷︷ ︸

R0,0
m−1,n−1

−Σ13 Gm−1,n,p,qa1ψp,q︸ ︷︷ ︸
R1,0
m−1,n

−Σ14 Gm−1,n,p,qa2ψp,q︸ ︷︷ ︸
R0,1
m−1,n

). (8.6.23)

The relation holds for any j and k, so we finally obtain the recurrence relation for R:

Rj,k0,n =
1√
n

(µ2R
j,k
0,n−1 − Σ22

√
n− 1Rj,k0,n−2 − Σ23R

j+1,k
0,n−1 − Σ24R

j,k+1
0,n−1), (8.6.24)

Rj,km,n =
1√
m

(µ1R
j,k
m−1,n − Σ11

√
m− 1Rj,km−2,n − Σ12

√
nRj,km−1,n−1 − Σ13R

j+1,k
m−1,n − Σ14R

j,k+1
m−1,n). (8.6.25)

Similar to the single-mode case, because of the dependencies between neighboring elements, we compute
the output state R0,0

m,n and the number of elements that need to be computed has an order of O(G2) rather
than the whole tensor O(G4).

In our python code for the two-mode case, we proceed as follows :

1. We build a vector of square roots of integers up to N to avoid having to recompute them often.

2. We compute the tensor G0,0,p,q using Eq. (8.6.16) and Eq. (8.6.17).

3. We compute Rj,k00 by multiplying G0,0,p,qaj1ak2 and ψp,q. This step is analogous to the single-mode case,
except that we loop over two indices instead of one.
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4. We compute index by index from Rj,k0,n using Eq. (8.6.24) to Rj,km,n using Eq. (8.6.25). We do the first
equation under the conditions: n < N, j < N − n, k < N − n− j, and the second equation under the
conditions: m < N, n < N, j < N −m, k < N −m− j, which allows us to compute only one-quarter
of the possible N4 elements of Rj,km,n.

5. We read out the final result from R0,0
m,n.

8.6.2 Gradient calculation of new recurrence relation

The recurrence relations that we have presented are all linear, and therefore they can be easily differentiated.
This gives us a direct way of computing the gradient of the transformed state with respect to the parameters
of the transformation.

To compute the desired gradients (here for a single-mode), we differentiate Eqs. (8.6.8) and (8.6.10) with
respect to a parameter ξ (or its conjugate ξ∗):

∂ξG0,n =
1√
n

[
µ2(∂ξG0,n−1) + (∂ξµ2)G0,n−1 −

√
n− 1

n
(∂ξΣ22)G0,n−2 + Σ22(∂ξG0,n−2)

]
, (8.6.26)

∂ξR
k
m =

1√
m

[
(∂ξµ1)Rkm−1 + µ1(∂ξR

k
m−1)−

√
m− 1(∂ξΣ11)Rkm−2 + Σ11(∂ξR

k
m−2)

]
− 1√

m

[
(∂ξΣ12)Rk+1

m−1 + Σ12(∂ξR
k+1
m−1)

]
. (8.6.27)

And we obtain the gradient from the first column:

∂ψm
∂ξ

= ∂ξR
0
m. (8.6.28)

These recurrence relations can be computed once the R matrix is known. Therefore, after generating the R
matrix, we keep it in memory for the computation of the gradient.

From a practical point of view, the backpropagated gradients have the same shape as the state tensor
rather than the shape of the transformation tensor, which is a quadratic advantage over previous approaches.
We still have to compute the transformation itself to backpropagate the gradients, but instead of the trans-
formation gradient, we can just compute the gradient of R.

8.6.3 Comparison with state of the art

This section presents benchmarks of comparison between experiments based on our new method and state
of the art.

We benchmark the runtime to compute the transformed state (i.e., the forward pass) against the current
state of the art. We obtain the transformed state by three methods: constructing the Gaussian transforma-
tion matrix by using a sequence of gates in StrawberryFields [63] and taking the matrix-vector product by
getting the Gaussian transformation matrix from previous work in the Ggate branch of The Walrus [155] and
taking the matrix-vector product, and with the method in this work to get the transformed state directly.

The results are summarized in Fig. 8.15 and Fig. 8.16:

1. Fig. 8.15 is realized in 2019, state of the art was StrawberryFields (version 0.17.0), the Ggate we use
is only a branch Ggate in TheWalrus (version 0.14.0).

2. Fig. 8.16 is realized recently in 2022, state of the art is StrawberryFields (version 0.22.0-dev) and
TheWalrus (version 0.18.0).

In both figures, our implementation (lowest line, green line) is up to an order of magnitude faster at
generating the output of a Gaussian transformation than the other methods. For the two-mode case, Straw-
berry Fields has the advantage of exploiting the photon-number conservation of the beamsplitter to spare
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Figure 8.15: Comparison of the runtime to generate the transformed Gaussian states with SOTA in 2019.
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Figure 8.16: Comparison of the runtime to generate the transformed Gaussian states with SOTA.
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one nested loop. In the other two implementations, we build the matrix all at once; therefore, we don’t
have access to the same savings. Despite this, our implementation is still faster and even more so when the
backward pass is computed, as the backpropagated gradients have the shape of the state rather than the
shape of the transformation.

8.7 Conclusion

The recurrence relation can be considered as a math tool that can solve lots of different problems. One
can largely simplify the calculation for some special cases with specific constraints. This chapter gives some
significant algorithms.

1. The first global and local cutoffs algorithm gives a new view to evaluate the linear combinations of the
recurrence relation. Unlike the vanilla version, where one can only compute one element at a time, the
algorithm combines the elements with the same weight and can calculate them all at a time.

2. The diagonal algorithm is proposed specifically for calculating the Fock amplitudes of mixed states.
The complexity improves from O(C2M ) to O(CM ).

3. As for the interferometer, the first algorithm is proposed in case that we have at most one photon
on each mode, and the total photon number n is less than the number of modes M , we improve the
complexity quadratically from O(22n) to O(2n) and the complexity is independent of the number of
modes M . The second and third algorithms are proposed based on the tree strategy to cope with
the multi-inputs and multi-outputs. Their performances are changeable depending on how similar the
inputs and the outputs are.

4. We also propose a faster evolution algorithm under Gaussian operations, which not only gives the
transformed output directly, avoiding the matrix multiplication errors but also is written as a recurrence
equation preserving the differentiability.

The next chapter will give some examples and applications for optimizing photonic quantum circuits.
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Chapter 9

Applications

9.1 Introduction

This chapter introduces applications based on optimizing photonic quantum circuits to show the excellent
performance obtained with Poenta [60] and MrMustard [61] libraries that I have contributed to.

As a preliminary consideration, let us compare two libraries. The comparison between the two libraries is
shown in Tab. 9.1. They are all based on the TF backend to take advantage of AD. The recurrence relation
in chapter 6 is the core for both of them to build the differentiable photonic quantum circuits. If one uses
the measurement in MrMustard to introduce the non-Gaussian effects, then the output state depends on the
value of the measurement, and it is a conditional state preparation. Two optimization methods for Gaussian
operators are explained in section 7.3, where Poenta uses the hardware-friendly one while MrMustard has
them both. Moreover, Poenta implements the complex natural gradient we developed in section 7.4 and
the fast evolution algorithm of Gaussian operators in section 8.6 as well. In addition, Poenta can build
the circuit up to 2 modes for now because with the increasing number of modes, the hardware-friendly
optimization would need to write down the custom gradient with respect to each parameter of the circuit,
which would become very fastidious. This problem is solved in MrMustard because we use theory-friendly
optimization instead and gradient update focuses only on the symplectic matrix and the mean vector of
Gaussian operators. That is why we say we can process infinite modes, and in practice, we will optimize a
216-mode circuit as an example.

Poenta MrMustard

Backend TF TF

Elements Gaussian + non-Gaussian Gaussian + measurement

Gaussian Opt. Euclidean Euclidean + Riemannian

Technical part Recurrence relation + CNG + Fast evolution Algo. Recurrence relation

Scaling Up to 2-modes ∞-mode

Table 9.1: Comparaisong between library Poenta and MrMustard

As shown in our optimization structures, we can build photonic PQCs and then optimize them with a
given suitable cost function L. This chapter also shows examples of cost functions L corresponding to specific
applications.

The first example is the state preparation task, which is widely considered as an important application,
such as the preparation of Gottesman-Kitaev-Preskill (GKP) states, which paves the way to fault-tolerant
quantum computing [10]. The suitable cost function is the quantum state fidelity, representing how close the
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output and desired state are. We also show the state preparation task using the complex natural gradient
algorithm we developed in section 7.4. The libraries Poenta, and MrMustard are used.

We can broaden the optimization task from the global optimization of the full circuit (first task) to the
local optimization of one component (second task). The second task is optimizing the matrix A (defined in
chapter 6) so that it has some properties to speed up the classical simulation of Gaussian Boson Sampling
(GBS). The suitable cost function is related to the properties we expect with respect to A. MrMustard [61]
is the library we use in this part.

After training the circuit and obtaining the corresponding parameters’ values in the circuit, implementing
them in practice is also a big challenge. There are several essential points: in the layered structure, how to
deal with the non-Gaussian operators (Kerr gate) we are widely using in the simulation; how to manipulate
the imperfections of the components in practice and introduce them into the simulation; and other effects,
such as decoherence.

This chapter is structured as follows: firstly, we produce GKP, single-photon, NOON, and cat states by
using different libraries, such as Poenta [60] and MrMustard [61]. Then we show an example to optimize the
matrix A with a 216-mode circuit of GBS. Last but not least, we discuss challenges and opportunities from
our theoretical optimization to the experimental aspect and propose the lossy model of components of the
circuits.

9.2 Quantum state preparation task

Quantum state preparation uses the PQCs and optimizes them to prepare some given states. In this case,
the cost function is one minus the quantum state fidelity. The circuit’s output, hence, becomes closer to the
given state with the decrease of the cost function.

Depending on which library we use, there are two types of preparations:

• deterministic preparation, where non-Gaussian effects come from the non-Gaussian operators.

• conditional non-Gaussian state preparation. a conditioning measurement in a non-Gaussian basis,
often the Fock basis, collapsing the wave function over the remaining mode(s), the signal, into a
non-Gaussian state [134].

In this section, we first define the cost function for the quantum state preparation task. Then we define
the states to prepare: the single-photon state, the cat state, the NOON state, the GKP1 state, and the
GKP0 state. Last but not least, we show the ability to prepare these states with high fidelity in both
libraries (Poenta and MrMustard) and discuss the runtime issue compared with state-of-the-art (SOTA).

9.2.1 The cost function for quantum state preparation task

Cost function in state preparation

To prepare a single pure state, it is simply to use one minus the fidelity (defined in Eq. (2.13)) of the output
state to the target state as the cost function:

L(θ) = 1− |⟨Ψtarget|U(θ)|Ψin⟩|2, (9.2.1)

where U(θ) is our parametrized circuit and its parameters θ, U(θ)|Ψin
s ⟩ denotes the output state of the

circuit.
To prepare the superposition of a set of pure states, one would need to sum up the fidelity (defined in

Eq. (2.13)) across the state set and get the average of them. With a set of S required input and target pairs
{(Ψin

s ,Ψ
target
s )}, the cost function would be:

L(θ) = 1− 1

S

S∑
s=1

|⟨Ψtarget
s |U(θ)|Ψin

s ⟩|2, (9.2.2)
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where U(θ) is our parametrized circuit and its parameters θ, U(θ)|Ψin
s ⟩ denotes the s-th output state of

the circuit. Therefore, the inner product here is the average fidelity of the output states to their respective
target states.

9.2.2 States

GKP state

Gottesman-Kitaev-Preskill (GKP) states are a way to encode a qubit in a CV system (such as an optical
oscillator) in order to achieve error correction capabilities [156]. GKP state is one of the most famous and
important bosonic codes in quantum communication [157] because of its error resistance. However, the ideal
GKP states have infinite energy and cannot be realized in practice.

We consider finite-energy versions of these states obtained by applying the energy damping operator

E(ϵ) = e−ϵa
†a (with ϵ = 0.2) to the ideal GKP states [156, 140]:

E(ϵ)|ψ⟩gkp = cos
θ

2
E(ϵ)|0⟩gkp + e−iϕ sin

θ

2
E(ϵ)|1⟩gkp, (9.2.3)

where

|µ⟩gkp =
∑
n

|(2n+ µ)
√
πℏ⟩q, (9.2.4)

and |x⟩q is an eigenstate of the quadrature q =
√

ℏ
2 (a+ a†) with eigenvalue x.

In our experiment, we generate two ideal GKP states from the library StrawberryFields as the target
state. The GKP state in Fig. 9.2a is defined as GKP1, which has ϵ = 0.1, θ = π, and ϕ = 0. The GKP state
in Fig. 9.5a is defined as GKP0, which has ϵ = 0.2, θ = 0, and ϕ = 0.

single-photon state

Single-photon sources play an essential role in quantum key distribution [158] and quantum computing.
The single-photon state (shown in Fig.9.1a) in the Fock representation is written as |1⟩.

NOON state

NOON states are important as they are known to be an optimal resource for quantum metrology and
quantum sensing for their ability to allow precise phase measurements, which saturates the Heisenberg limit
for the error. They were first introduced in the paper [159] and got named in paper [160].

A 2-mode NOON state is defined as:

|ΨNOON⟩ =
|N, 0⟩+ |0, N⟩√

2
, (9.2.5)

where the first term denotes N particles in the first mode and vacuum in the second mode and vice versa in
the second term.

Cat state

Cat states are superpositions of coherent states, which we write as

|cat±⟩ = N (|α⟩ ± | − α⟩) , (9.2.6)

where N is a normalization constant and |α⟩ = D(α)|0⟩ is a coherent state. In the last equation, the
plus sign corresponds to even cat states and the minus corresponds to odd cat states. The normalization
constant is never 1/

√
2 as the two coherent states are never fully orthogonal, but they approach orthogonality

exponentially fast in |α|.
For this example, we will target the generation of an odd cat state with α = 2. The ideal cat state is

shown in Fig. 9.6a.
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9.2.3 State preparation in both libraries

We produce the GKP, single-photon, and NOON states in Poenta, which matches the targets of Refs. [148, 35,
149] and allows for a comparison. And with MrMustard, we produce two candidate states for fault-tolerant
quantum computing: GKP and Cat states.

Poenta MM

GKP state × ×

single-photon ×

NOON state ×

Cat state ×

Table 9.2: State preparation list

Poenta

We benchmark a circuit optimization task for various one-and two-mode states.
Our architecture is made of a sequence of L layers, each formed by a Gaussian gate followed by a single-

mode Kerr gate in each mode:

U(β) =

L∏
ℓ=1

Gℓ(αℓ)K(κℓ), (9.2.7)

where αℓ denotes the parameters of the ℓ-th Gaussian layer and β denotes the parameters of the whole
circuit. One can also find the scheme in Fig. 5.2.

We need to point out that because our benchmark is based on the numerical simulation, we will not
discuss if the value of κ here of the Kerr operator is realistic for the presently-available technologies or not.
But in Appendix D, as an example in Poenta, we give optimized circuit parameters in the table to prepare
a single-mode state. In addition, MrMustard adds the choice of bounds when defining operators, allowing
us to have a more realistic optimization.

We ran benchmarks on generating a single-photon (|Ψtarget⟩ = |1⟩), NOON state with N = 5 (|Ψtarget⟩ =
(|5, 0⟩ + |0, 5⟩)/

√
2) and GKP1 state (defined in section 9.2.2). And all initial states are the vacuum state

|Ψin⟩ = |0⟩. The optimized single-photon state and the comparison with the target single-photon state are
shown in Fig.9.1. Also, the optimized GKP1 state and the comparison are shown in Fig.9.2. The fidelity for
the single photon is 99.996%, while the GKP1 has 99.721%.

The details about the hyperparameters of training and the results are shown in Tab.9.3. One can
compare them with the previous implementation in table I of [35] and the original implementation in table
I of [148] while taking into account differences in computational hardware, and we achieved about twice the
performance in the runtime with high fidelity.

MrMustard

We elaborate on how we can accomplish the state preparation task inside the library MrMustard (version
0.3.0) [61] with different kinds of optimization methods: such as euclidean, unitary, and symplectic. GKP0
state and cat state are generated as examples.

As for the circuit, we propose three kinds of simple circuits:

1. Gaussian gates with symplectic optimization;

2. Squeezing gate and multi-mode interferometers with unitary optimization;
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Single-photon GKP1 NOON

Work [148] [35] This [148] [35] This [148] This

Hyperparameter

Cutoff 6 100 100 50 100 50 10 10

Layers 8 8 8 25 35 25 20 20

Steps 1500 1500 1500 10000 5000 10000 5000 3000

Results
Fidelity (%) 99.998 99.998 99.996 99.83 99.60 99.721 99.89 99.913

Runtime (s) 65 50 15 6668 720 286 1270 145

Table 9.3: Runtime for three circuit optimization tasks (single-core on an Apple M1 chip) compares with
previous implementations.
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(b) Optimized single-photon state with fidelity 99.996%.

Figure 9.1: The target single-photon state and the optimized one. (With Poenta)
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(b) Optimized GKP1 state with fidelity 99.721%.

Figure 9.2: The target GKP1 state and the optimized one. (With Poenta)

3. Squeezing gate and beam-splitter with Euclidean optimization.

We will show three optimization methods in the experiments, including the Euclidean method for the
basic optical components (single-mode squeezing, rotation operator, beam-splitter, etc.), the Unitary method
for the multi-mode interferometer, and the Symplectic method for Gaussian objects.

We generate the GKP0 state (defined in section 9.2.2)) from the library StrawberryFields.
We have three state preparation circuits for the GKP0 state (shown in Fig. 9.3), which use different

optimizers: symplectic optimizer, orthogonal optimizer, and euclidean optimizer.
The first one consists of a three-mode Gaussian gate with the measurements on the first and second

modes, and then the third mode is the output of the GKP0 state. The circuit is shown in Fig. 9.3a. Its
optimization is based on the symplectic optimizer for the Gaussian gates, and the result is shown in Fig. 9.5b
with a fidelity of 93.04%.

The second one consists of three single-mode Squeezing and a three-mode interferometer and the mea-
surements on the first and second modes. We can get the GKP0 state on the third mode. The circuit is
shown in Fig. 9.3b. Its optimization is based on the orthogonal optimizer for the multi-mode interferometer
and the result is shown in Fig. 9.5c with a fidelity of 93.00%.

The last experiment consists of three single-mode Squeezing, a beamsplitter on the first and the second
mode, and a beamsplitter on the second and the third mode. After measuring the first and second modes,
we can get the GKP0 state on the third mode. The circuit is shown in Fig. 9.3c. Its optimization is based
on the euclidean optimizer for all the basic optical gates (squeezing gate and beamsplitter), and the result
is shown in Fig. 9.5d with a fidelity of 93.01%.

To obtain the cat state, we also tried two different optimizers in our library: the symplectic one and the
euclidean one.

The first circuit (shown in Fig. 9.4a) consists of a Gaussian gate and photon-number measurement on the
first mode and generates the (approximate) cat state in the second mode. We use the symplectic optimizer
to train the Gaussian gate. The result is shown in Fig. 9.6b with a fidelity of 99.42% and 5.40% success
probability.

In the second circuit (shown in Fig. 9.4b), we use a simple two-mode circuit, starting with two single-
mode squeezers followed by a beamsplitter and ending with a Fock measurement of 3 photons on the first
mode. We train the circuit from random initial parameters for two squeezers and a beamsplitter. We obtain
Fig. 9.6c as a result with a fidelity of 99.38% and 7.39% success probability.
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(b) The trainable circuit consists of squeezing gates S and multi-mode interferometer W and
measurements M , using orthogonal optimization and euclidean optimization.
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(c) The trainable circuit consists of squeezing gates S and beam-splitters B and measurements
M , using only euclidean optimization.

Figure 9.3: GKP0 state preparation circuits. In the example optimization, we choose both M = 6.
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(a) The trainable circuit consists of a Gaussian gate G and a measurement M , using symplectic
optimization.
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(b) The trainable circuit consists of squeezing gates S and a beam-splitter B and measurements
M , using euclidean optimization.

Figure 9.4: Cat state preparation circuits. In the example optimization, we choose M = 3.
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(a) Target state of the GKP0 state from the library
StrawberryFields.
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(b) The optimized output state with the circuit in
Fig. 9.3a.
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(c) The optimized output state with the circuit in
Fig. 9.3b.

P
ro

b(
x)

cu
to

ff 
= 

50

abs( )

5 0 5
x

5

0

5

p

Prob(p)

(d) The optimized output state with the circuit in
Fig. 9.3c.

Figure 9.5: The target GKP0 state and the optimized state. (With MrMustard)
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(a) Target cat state defined in
Eq. (9.2.6) with α = 2.
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(b) Optimization of the cat state with
the circuit in Fig. 9.4a.
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(c) Optimization of the cat state with
the circuit in Fig. 9.4b.

Figure 9.6: The target cat state and the optimized cat state. (With MrMustard)

These results are interesting in that we can generate cat and GKP states with such simple circuits and
achieve high fidelity. Compared with the simulation of layered structure circuits in Poenta, MrMustard
gives a great solution with much fewer elements and without the non-Gaussian gates. This inspires us to
think about what is the minimum resources for state preparation tasks and how to find them (one of the
perspectives in section 10.2). Since we use PNR detectors at the end of circuits in MrMustard to supply
the non-Gaussian effects, the state preparation task is conditional, and the success probability is important
in this case and depends on the measurements. As for the cat state example in Fig. 9.4b with a fidelity of
99.38%, the success probability is 7.39%. However, the success probability of the GKP state preparation is
really low because the two measurements have a high number of 6 photons, such as the circuit in Fig. 9.3c
with a fidelity of 93.00%, its success probability is 5.93e-06%. In the future, it is possible to take the
measurement value as one of the optimization’s hyperparameters to have a higher success probability.

9.2.4 Complex Natural Gradient in Poenta

We have implemented the complex natural gradient algorithm in our library Poenta.
There are two ways to compute the natural gradient: The first is with respect to all the parameters in

the entire circuit at once; the second is with respect to the parameters of the layer being updated. In the
first case, we compute the gradient of the cost function with respect to the entire collection of parameters
of the circuit; then we compute the full Hermitian metric tensor, we invert it, and finally, we apply it to the
full gradient vector before performing a single gradient-descent step. This can be very costly if the number
of layers is large, as the effective number of parameters (i.e., counting twice as many for complex ones) in
each N -mode layer is n = 2N2 + 4N , and the metric tensor is n × n. This gives an estimate of the cost of
matrix inversion as O(n3) = O(N6). In the second case, we compute the Hermitian metric in block-diagonal
form, where we include only the parameters that belong to the same layer in each block. This technique
was studied in [51], where it was shown that using the block-diagonal metric is, in practice, just as good
as using the full metric while sparing a significant amount of computation. Finally, we note that before
the (pseudo)inversion step, we add a constant regularization term, as we observed that the metric is often
singular [42]:

f̃+ = (f + λ1)+, (9.2.8)
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where we set an empirical value of λ ≈ 0.1 after assessing the results of numerical experiments. As mentioned
before, the singularities in the metric correspond to points in parameter space where at least one of the
parameters cannot influence the quantum state [as an intuitive analogy, compare a qubit in the state |0⟩ (on
the north pole) with a qubit in the state |+⟩ = (|0⟩+ |1⟩)/

√
2 (on the equator): the |+⟩ state is going to be

very sensitive to a rotation around the z axis, but the |0⟩ state is completely insensitive to it].

In the following experiments, we compare vanilla gradient descent (vanilla GD), Adam, and natural
gradient descent (NGD) using the optimal learning rate for each one. In particular, Adam [89] is a ubiquitous
gradient-descent optimization method that can dynamically select a step size and performs well in many
deep-learning applications.

In order to compare the gradient-descent algorithms fairly, we cannot use the same learning rate, as it
means different things for different algorithms. Moreover, in Adam, the learning rate evolves over time.

To determine the best learning rate for each algorithm, we search for it by trial and error as the one that
allows the optimizer to reach the lowest cost function value quickly without incurring excessive oscillations
if we let it run.

We run tests separately with the three different algorithms (vanilla GD, NGD, and Adam) to train the
single-mode quantum circuit for generating a single-photon and GKP1 state.

For each algorithm, we use 20 random seeds to generate the initial parameters in the circuit and test for
a range of learning rates from 0.0001 to 0.5. The curves are made by averaging the 20 different tests. We
present in Figs. 9.7 and 9.8 a few typical curves around the optimal learning rate to show how we choose it
for each of them.

In Fig. 9.7, we look for the optimal learning rate in the single-photon preparation task that allows the
optimizer to reach the lowest cost function value quickly without incurring excessive oscillations if we let it
run. The optimal learning rate to generate a single photon is 0.02 for vanilla GD, 0.02 for NGD, and 0.01
for Adam.
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Figure 9.7: Find the optimal learning rate of single-photon preparation task. (a) Vanilla GD. (b) NGD. (c)
Adam.

In Fig. 9.8, we look for the optimal learning rate in the GKP1 preparation task. The optimal learning
rate to generate a single photon is 0.001 for vanilla GD, 0.02 for NGD, and 0.001 for Adam.

After choosing the best learning rate for each optimizer, we compare them in each state preparation task.

The first target that we choose is a single-photon state |ψtarget⟩ = |1⟩ and the initial state is a vacuum
state. We employ an eight-layer circuit with a total of 8× 6 = 48 parameters and a Fock-space cutoff of 100.

We report the results of the optimization in Fig. 9.9. The NGD converges significantly faster than Adam
and vanilla GD, all the while following a smooth decay of the cost function.

The second target is the GKP1 state, and the initial state is the vacuum state. We use a 25-layer circuit
with a total of 150 parameters and a Fock-space cutoff of 50.
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Figure 9.8: Find the optimal learning rate of GKP1 preparation task. (a) Vanilla GD. (b) NGD. (c) Adam.
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Figure 9.9: Optimization of the single photon generation circuit for vanilla GD, NGD, and Adam.
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Figure 9.10: Optimization of the GKP1 state-generation generation circuit for vanilla GD, NGD, and Adam.

This is a much more challenging optimization task than the single-photon target, and the cost landscape
is much more rugged, as can be seen from the behavior of the vanilla GD curve. Adam also seems to suffer
from the rugged landscape, albeit much smaller. In contrast, the NGD curve is smoother even at a learning
rate of 0.02, allowing it to converge quickly to a high-fidelity output.

9.3 Maximizing the entanglement in Gaussian Boson Sampling

We first analyze high-dimensional Gaussian Boson Sampling (GBS) instances similar to the 216-mode circuit
of the photonic processor Borealis [7]. In a high D−dimensional GBS instance with M = dD modes, a set
of K ≤ M squeezed modes are sent into an interferometer composed of layers of beamsplitter gates (with
a local rotation gate in the first mode) between modes i and i + τ with τ ∈ {1, d, d2, . . . , dD−1} as shown
schematically for d = 6 and D = 3 in Fig. 9.11.

One desirable property of any GBS instance is that its adjacency matrix, which corresponds to Aψ in
our notation, should not have any special property like being banded, sparse, or low-rank. This is because
these types of properties can be exploited to speed-up the classical simulation of GBS.

For high-dimensional GBS instances like the one implemented in Borealis, it is known that the Aψ is
full-rank (since every input is squeezed) and not banded (due to the long-ranged gates). However, one needs
to judiciously choose the parameters of the beamsplitter so that the distribution of its entries is not heavily
dominated by just a few of them. For example, if one chooses the rotation gates and the transmission angles
of the beamsplitters to be uniformly random in [−π2 ,

π
2 ], one obtains the distribution shown in blue bars

in Fig. 9.12c and the Aψ matrix show in Fig. 9.12a. For these results and following Ref. [7], we fix the
phase angle of the beamsplitter to be π/2, we set the input squeezing parameter in all the modes to be
r = arcsinh 1 ≈ 0.8813736 and take D = 3, d = 6 and thus a total of M = 63 = 216 modes. Note that the
values of the matrix are heavily concentrated, i.e., for each row and column, a few values are overwhelmingly
larger than the rest.

We can now use the methods we developed to try to spread out the entries of the matrix Aψ. We can
then optimize the cost function

min
∑
ij

(|Aψ|2ij −mean|Aψ|2)2. (9.3.1)

We perform this optimization by obtaining the distribution shown with the orange bars in Fig. 9.12c and
the matrix shown in Fig. 9.12b. Notice that now the values are more evenly distributed.
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Figure 9.11: Schematic of the connectivity of the 216-mode circuit of the photonic processor Borealis, where
all the nearest neighbor modes are connected by beam splitters, then all pairs at a distance 6 and finally all
pairs at a distance 36. The arrows represent beam splitters.

9.4 From theoretical optimization to experimental aspect

This section discusses how to transfer the circuits we use in the optimization task into a real optical circuit.
Introducing the numerical simulation with the optimization method can help us to prove the feasibility
of various experiments before launching, arrange new quantum optical experiments, and even design new
quantum devices.

Recall in chapter 5, we give two optimization schemes: one using Gaussian and non-Gaussian gates
(Fig. 5.3), another one using Gaussian gates with measurements (Fig. 5.4). Both schemes are used to
complete the state preparation task in section 9.2.

At the starting stage of my thesis, we developed the library Poenta to simulate the scheme with Gaussian
and non-Gaussian gates. As shown in Tab. 9.3, we can produce really high-fidelity quantum states with a
short runtime to run the simulation. However, the difficulty bringing those circuits into realistic things is
the non-Gaussian gates.

The Kerr gate we use in this layered structure is defined in Eq. (3.63), whose parameter κ is the one that
we try to find in the optimization. The parameter κ is proportional to the third-order nonlinear susceptibility
χ(3). We derive the explicit expression between the third-order nonlinear susceptibility χ(3) and the Kerr
parameter κ.

The energy of the Kerr operator can be expressed as

H = P (3)E = ϵ0χ
(3)|E|4. (9.4.1)

The energy density of N photons per unit volume is Nℏω, and the energy density of the optical field is
W = 2ϵn|E|2, so we have

Nℏω = 2ϵn|E|2, (9.4.2)

where ω is the frequency of the light, ϵ = ϵrϵ0 = ϵr8.854 × 10−12F/m = J.V −2.m−1 is the permittivity of
free space and ϵr is the relative permittivity between the Kerr medium and free space, n is the refractive
index of the Kerr medium, and E is the amplitude of the optical field.

We then replace E in Eq. (9.4.1) by using Eq. (9.4.2):

H =
χ(3)ℏ2ω2

4ϵn2
N2. (9.4.3)
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Figure 9.12: Maximizing the entanglement in Gaussian Boson sampling

144



Compared with the definition of Kerr Hamiltonian in Eq. (3.63), we can get the expression of κ:

κ =
χ(3)ℏ2ω2

4ϵn2
. (9.4.4)

The magnitude order of χ(3) is always small for us to simulate, for example 3.55×10−12m2/V 2 for Nitroben-
zene [161]. If we take the visible light ω = 600THz, we have

κ ≈ 3.55× 10−12m2/V 2(6.63× 10−34J.s)2(6× 1014s−1)2

4ϵr8.854× 10−12J.V −2.m−1n2
≈ 10−40J.m3. (9.4.5)

The magnitude order of κ in this example is 10−40. There is one example in Appendix D.1, the optimized
value of κ varies in [−0.115, 0.310], which is too large compared with the magnitude of κ. Moreover, if we
start our simulation from κ = 0, the learning rate is always 0.001; after one step of updates, the optimized
value of κ is 0.001 or −0.001, which are all impossible to realize in practice.

Since it is impossible to realize the non-Gaussian gates with a parameter that we want in the labora-
tory, we changed the scheme to the second one with Gaussian gates and measurements and developed the
library MrMustard. This section talks about how to transform the results of our simulations into realistic
experiments of the optimization scheme with measurements.

To transform the numerical simulation results into realistic photonic circuits, our optimized circuits can
be considered as the first step. There are still several effects that should be taken into account:

• imperfection of the components in the circuits;

• decoherence.

In the circuit, photon loss is the first imperfection. Photon loss can happen during light transmission
and traversing different elements. We propose a lossy model to include the imperfections of components in
our simulation scheme. We give examples of imperfect gates and detectors in section 9.4.1.

The decoherence problem comes from environmental noise, such as light or other electronic devices.
Moreover, the rise of integrated photonics chips [162, 163, 164] would make it possible to implement our

parametrized circuits into a single small chip and thus minimize some of these problems.

9.4.1 Include the imperfections of components in the simulation

The idea would be to add some more gates in the optimization scheme to mimic the imperfections that could
happen in practice.

Imperfections of gates

Fig. 9.13 gives an example of the rotation gate R(ϕ).
One could optimize the full circuit with the ideal gate R(ϕ) shown in Fig. 9.13 (a) and then replace

the ideal gate with our lossy model shown in Fig. 9.13 (b), which uses beam-splitters B(θ, φ) to introduce
photon loss. We use an ancilla mode with the vacuum input, let the state passes a beam-splitter and throw
out the ancilla mode, an ideal gate, and a second ancilla mode with the vacuum input with another beam-
splitter, and then throw out the second ancilla mode. This lossy model can describe the photon loss between
two elements and inside the operator together. The parameters θ, φ of the beam-splitter come from prior
experiments in the laboratory. Rerun this lossy model, we can obtain a new parameter ϕ′ for the rotation
gate. By analyzing the nuances between ϕ and ϕ′, one can recognize how the loss influences the parameters.

Imperfections of detectors

Photon number resolving (PNR) detectors are used in various applications, such as quantum key distribution
[165], quantum imaging [166], and quantum computation [101]. In our optimization scheme, we use the PNR
detector to do the herald state preparation.
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Figure 9.13: Simulate imperfections of gates. (a) Ideal rotation gate. (b) Lossy model of rotation gate with
two beam-splitters.

An ideal PNR detector gives the number of photons of the signal independently of its other parameters.
However, imperfections exist in practice. For example, the detector can not detect any number of photons,
so there is a largest photon number. PNR quality is defined in [167] to evaluate the detector’s accuracy.
There are some other characteristics of a PNR detector: quantum efficiency is 1, instant response time, no
noise counts, no limit on the flow rate or on time between two detections, dark count rate, etc. Moreover,
the wavelength of the PNR detector is also an essential characteristic in some quantum communication
applications [168].

Figure 9.14: Simulate imperfections of detectors. (a) Ideal PNR detector. (b) Lossy model of PNR detector
with attenuator.

Our lossy model of the PNR detector is in Fig. 9.14. Compared with the ideal PNR detector shown
in Fig. 9.14 (a), we add one attenuator channel before the PNR detector in Fig. 9.14 (b) to describe the
imperfections, such as the photon loss or dark count, in the PNR detector. The attenuator channel is defined
in Eq. (3.57). The parameter of the attenuator also comes from prior knowledge.

9.5 Conclusion

This chapter showed examples of various optimization tasks by defining a suitable cost function and opti-
mizing the parameterized circuits.
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Two libraries based on our work are used: Poenta and MrMustard. Poenta is better for designing a
layered neural network consisting of Gaussian and non-Gaussian gates in each layer. Thanks to the CNG
algorithm and the fast evolution algorithm under Gaussian operators, Poenta greatly performs Euclidean
optimization. On the other hand, MrMustard outperforms in its Riemannian optimization to contain the
evolution of the quantum states in phase space as long as possible, which is powerful in optimizing large
multi-mode photonic PQCs.

The state preparation task was the first example. First, we showed the single-photon, hex-GKP, and
NOON state preparation in Poenta with high fidelity and a significantly reduced run-time. Then, simple
circuits are presented with the optimization of the cat state and GKP state in MrMustard.

We proposed some first ideas for a lossy model for gates and PNR detectors to include their defects and
the loss in the simulation. Ultimately, with this lossy model, we can better transfer the optimized circuit in
numerical simulation into the photonic circuits in practice.

Moreover, our work of optimization PQCs paves the way for quantum device design in future work.
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Chapter 10

Conclusion and perspectives

10.1 Conclusion

We first build a toolbox to bridge the phase space and Fock space representations for Gaussian objects. It
is a rich theory that includes pure and mixed states, unitary transformations, and channels. It gives us
the possibility to simulate the quantum circuits in phase space representation and then transfer them into
Fock space representation. The numerical simulation of Gaussian objects in phase space is much simpler.
However, in order to simulate interesting and realistic photonic circuits that include devices such as PNR
detectors, it is necessary to work in Fock space representation.

The recurrence relation for generating the Fock amplitudes for Gaussian objects plays an important role
in realizing the numerical simulation of photonic PQCs. Especially the generating function of Gaussian
unitaries is also related to other mathematical concepts, such as the Hermite polynomials and the Hafnian,
which gives more opportunities to find out more properties through their relations. Our approach is also
linked to the Fock-Bargmann representation, which has recently been used to describe holomorphic quantum
computing [169].

We also find the composition rule of Gaussian operators in Fock space, which allows us to obtain the
correct global phase when composing Gaussian operators (which normally is absent from the description of
Gaussian objects), and therefore to extend our model to states that can be written as linear combinations
of Gaussians.

Because of the recurrence relation’s differentiability, we can calculate the gradient of the Gaussian objects.
We implement numerically a simulator that can leverage AD and allow us to optimize photonic circuits.

We can execute the optimization task with our quantum circuits. We have implemented two methods of
optimizing the Gaussian operators: the Euclidean method optimizes the individual gate parameters for each
optical component; the Riemannian method optimizes the entire Gaussian operator as a whole, which we
can then decompose into fundamental optical components. To make the optimization fast, we developed and
implemented the complex natural gradient algorithm by using the geometry of the underlying parameter
space to accelerate gradient descent. We observed that the Riemannian optimization is better than the
Euclidean one for solving the problem with a large number of modes.

We presented some state preparation tasks as examples of optimization. We showed

• 8-layer Gaussian and non-Gaussian circuits for the preparation of single-photon state with fidelity up
to 99.996% in 15s on a laptop.

• 20-layer Gaussian and non-Gaussian circuits for the preparation of NOON state with fidelity up to
99.913% in 145s on a laptop.

• 25-layer Gaussian and non-Gaussian circuits for the preparation of Hex GKP state with fidelity up to
99.721% in 286s on a laptop.

• simple Gaussian circuits for the heralded preparation of GKP states with fidelity up to 93.01%.
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• simple Gaussian circuits for the heralded preparation of cat states with mean photon number 4, fidelity
99.38%, and success probability 7.39%.

We also show the optimization to analyze high-dimensional GBS instances similar to the 216-mode circuit
of the photonic processor Borealis [7].

I developed or contributed to several libraries based on this thesis:

• Poenta [60], which optimizes layered-structure circuits with Gaussian and non-Gaussian operators. I
contributed to most of the development work.

• MrMustard [61], which optimizes circuits with Gaussian operators and measurements. I contributed
to part of the development work.

• TheWalrus [62], where I implemented the calculations of multidimensional Hermite functions.

• StrawberryFields [68], where I implemented the general Gaussian gate in the TF backend.

The library based on this work is powerful and valuable. It can do many tasks: simulate the optical
experiments as in the laboratory and find out the best setting with optimization, do the quantum computing
work simulation, etc. Moreover, the way to use them is easy. Some code snippets are shown in Appendix D.

Optical quantum computing is a promising platform for fault-tolerant quantum computing, and our work
is one important step in that way. For example, the GKP state can be used for quantum error correction,
and we look for circuits to produce GKP states.

10.2 Perspectives and ideas for future work

10.2.1 Quantum repeater based on bosonic error correction code

In quantum communication, quantum information becomes degraded as it is transmitted, and the rules of
quantum mechanics do not allow signals to be amplified by conventional repeater nodes. A quantum repeater
(QR) is needed in this case.

There are three generations of quantum repeaters [170], which are proposed to defend against photon
loss and imperfect operations:

• The first-generation QRs generate entanglement signals between neighboring nodes and use entan-
glement swapping to link them. It asks for also entanglement purification to increase the fidelity of
corrupted entanglement resulting from noisy quantum channels.

• The second-generation QRs employ the same entanglement generation as the first one, while the
imperfect operations are overcome by quantum error corrections.

• The third-generation QRs aim to use quantum error corrections to overcome both photon loss and
imperfect operations.

Our idea is related to the third-generation QRs: quantum information is encoded into logical qubits and
transmitted over noisy quantum channels, the quantum repeater will recover the logical qubits, and one can
continue to transmit the quantum information in quantum channels and repeaters until the last node. This is
the one-way quantum repeater, and it is still in the theoretical stage. The unitary one-way quantum repeater
[171] is proved to be workable; theoretically, it has been proved to beat the fundamental repeater-less key
rate bound even in the presence of an additional coupling loss. Some specific bosonic error correction codes
are also designed to realize the one-way quantum repeater [172, 173].

We, therefore, want to find a way to design the one-way quantum repeater without committing to a
specific bosonic code in quantum communication and with no need for quantum memory.

Since PQCs can solve the optimization problem with a suitable loss function, we want to try to design the
quantum repeater with it. The simple quantum one-way communication structure, as shown in Fig. 10.1 (a),
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includes a quantum encoder, a quantum lossy channel, and a quantum decoder (e.g., the quantum repeater
within the transmission and the quantum error corrector at the end). Usually, we encode our quantum
information in some specific quantum error correction code (e.g., to the GKP code and cat states).

Figure 10.1: Quantum repeater scheme. For scheme (a), we fix an error-correcting code and only train
the parametrized quantum repeater during transmission. For scheme (b), we also include the encoder and
decoder in training. Hence we do not need to choose a specific code.

However, to achieve the one-way quantum repeater without committing to a specific bosonic code, we
propose scheme (b) in Fig. 10.1. The new structure with parameterized quantum circuits combines all
elements (encoder, decoder, and quantum repeater) and trains them together. We could conduct numerical
simulations to design the exact structure for the one-way quantum repeater and find the bosonic code with
reasonable assumptions. Then, it could be implemented as a real component of quantum communication.

10.2.2 Parameterized quantum circuits for quantum devices

Our simulation results showed the ability of parametrized circuits to prepare different quantum states by
training the circuit with respect to all parameters for state generation. Hence, this can be considered the
quantum state generator, such as the example of the single-photon generator where we use the layered
quantum circuits to generate single-photon states in section 9. With the circuit structure we have given, one
can design and optimize quantum circuits even though one is unfamiliar with quantum optics.

Moreover, integrated optical devices’ development paves the way to transfer our optimized quantum
optical circuit into small chips to be used in practice, especially as the quantum devices in quantum com-
munication (such as the quantum emitter, quantum repeater, and quantum receiver). Ideally, the hardware
can be designed like Field Programmable Gate Arrays (FPGAs), like quantum FPGA [174]. One can first
get the optimized parameters of the circuit in simulation with our libraries, then program it on the quantum
FPGA.

10.2.3 Recurrence relation formula for non-Gaussians

This thesis introduces the non-Gaussian effects in our numerical simulation: using the non-Gaussian operator
directly, such as the cubic gate or Kerr gate, or adding the measurement at the end of the circuit by using
a PNR detector. Although the Kerr gate is very easy to use in quantum simulations because its Fock
representation is a diagonal matrix, it is challenging to implement in practice. We, therefore, want to
find out the recurrence relation formula for some other non-Gaussian transformations. For instance, in the
appendix of the paper [35], the formula of the cubic gate is given.
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10.2.4 How to define the minimum resources for quantum state preparation

One interesting question in the machine learning or deep learning community is how to configure the number
of layers and nodes in the neural network. These are two essential hyperparameters in the training process.
Unfortunately, too many layers and nodes sometimes lead to a complicated and heavy network to train and
learn, while one single layer seems insufficient for the task.

For instance, to prepare the GKP state in section 9.2.3, we used two different circuits: one single-mode
circuit with 25 layers (Gaussian transformation and non-Gaussian transformation in each layer), while the
other three-mode one only has one single Gaussian transformation and two PNR detector measuring two
modes. This leads to the question of how to get the minimum resources for one task for quantum state
preparation.

There are several ways are recommended in the machine learning community:

• By experimenting: one can change the hyperparameters each time and find out which is the least
resources with the highest fidelity (or the lowest loss function). This way takes time and needs some
chances.

• By intuition: the prior knowledge can help to estimate the difficulty of the task and pick up the right
settings;

• Just go for deeper: most machine learning or deep learning textbooks would suggest that the deeper
networks perform better, so it is always better to choose a deeper network.

• Smartly go for deeper: one can also develop the efficient neural architecture search algorithm, which
is the hot direction now in Automated Machine Learning as neural architecture search.

Even though the paper [97] shows that the classical network can be embedded into the quantum CV
neural network. This is a good start for quantum machine learning. However, we are eager to find out what
the quantum neural network is capable of and have not started that much-automated architecture searching
in quantum formalism.

10.2.5 Riemannian manifold optimization

In our present work, Gaussian objects can be parametrized by elements of the symplectic group, and one
can optimize them directly on the corresponding manifold. However, our implemented technique uses the
Riemannian gradient to follow geodesics using a fixed learning rate. One step further could be to learn more
about the Riemannian manifold optimization problem: such as the generalization of ADAM to Riemannian
Manifolds [175] and to add momentum [176] to the optimization, which will improve the speed, stability,
and reliability of the training procedure.
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Appendix A

TensorFlow

A.1 Calculate the partial derivative of complex functions with
respect to complex variables

This section introduces how to get the gradient of complex-valued functions with respect to complex-valued
variables.

In TF, we have a record operation for automatic differentiation: tf.GradientTape. One could ”record”
the computation steps inside this tape with TensorFlow’s trainable variables, then the gradient with respect
to the trainable variables can be obtained with AD. However, TF works only for real-valued variables and
functions.

Suppose a complex function f(z) = U + iV with respect to a complex variable z = x+ iy, where U, V, x, y
are real, the partial derivative of function f with respect to z is:

∂f

∂z
=
∂U

∂z
+ i

∂V

∂z
.

With the Wirtinger derivatives [152], it can be extended to

∂f

∂z
=
∂U

∂z
+ i

∂V

∂z

=
1

2

(
∂U

∂x
− i∂U

∂y

)
+
i

2

(
∂V

∂x
− i∂V

∂y

)
.

And, the partial derivative of f with respect to z∗ is

∂f

∂z∗
=
∂U

∂z∗
+ i

∂V

∂z∗

=
1

2

(
∂U

∂x
+ i

∂U

∂y

)
+
i

2

(
∂V

∂x
+ i

∂V

∂y

)
.

However, with TF, the gradient function is calculated by combing the two partial derivatives of the real
part U of the complex function f(z)

tf.gradient(f, z) =
∂U

∂x
+ i

∂U

∂y
. (A.1.1)

This is not the gradient we expect, which lacks the derivative of the imaginary part V . So we need to get
this part and add it to the calculation of the gradient.
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We can compute the gradient of function if = −V + iU to turn the imaginary part into the real part of
the function, then we have the missing imaginary part:

tf.gradient(if, z) =
∂(−V )

∂x
+ i

∂(−V )

∂y
. (A.1.2)

Finally, one can calculate the gradients of a complex function with respect to a complex variable:

∂f

∂z
=

1

2
(tf.gradient(f, z) + itf.gradient(if, z))

∗
,

and

∂f

∂z∗
=

1

2
(tf.gradient(f, z)− itf.gradient(if, z)) .

158



Appendix B

Some facts about the groups

B.1 Definition

The general linear group is defined as:

GL(n, k) = {T ∈M(n, k) : det(T ) ̸= 0}, (B.1.1)

where k = R or C, and M(n, k) denotes the space of all n× n real or complex matrices.
The real symplectic group is defined as

Sp(2n,R) = {S ∈ R2n×2n|SΩST = Ω}, (B.1.2)

where Ω is defined in Eq. (3.8). Some properties of this group:

Ω ∈ Sp(2n,R), (B.1.3)

Ω−1 = ΩT = −Ω ∈ Sp(2n,R), (B.1.4)

S−1 = −ΩSTΩ ∈ Sp(2n,R). (B.1.5)

The orthogonal group is defined as

O(2n) = {M ∈ R2n×2n|MTM = MMT = 12n}. (B.1.6)

B.2 2-out-of-3 property

The unitary group is the 3-fold intersection of the orthogonal, complex, and symplectic groups:

U(n) = O(2n) ∩GL(n,C) ∩ Sp(2n,R). (B.2.1)

The definition of the unitary group is

U(n) = {M ∈ Cn×n|M †M = MM † = 1n}. (B.2.2)

B.3 The singular value decomposition

A real symplectic matrix S can be decomposed as

S = O1ΛO2, (B.3.1)
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with O1,O2 ∈ C(n) and

Λ = Λx ⊗ Λ−1
x , (B.3.2)

with Λx = diag(λ1, . . . , λn) and λj > 0∀j ∈ [1, . . . , n]. C(n) denotes the intersection between the real sym-
plectic group and the orthogonal group: C(n) = Sp2n,R ∩O(2n). Any symplectic matrix can be decomposed
into a diagonal and positive semi-definite matrix Z with two orthogonal matrices O1 and O2, which stands
for the passive transformation (interferometer).
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Appendix C

Some facts about the Riemannian
manifold

In differential geometry, a Riemannian manifold is a smooth manifold M equipped with a positive-definite
inner product gp on the tangent space TpM at each point p.

C.1 Riemannian metric

The inner product, also called the Riemannian metric, allows for defining distances and angles on the
manifold.

The Riemannian metric of the symplectic group at point A is:

⟨X,Y ⟩A = ⟨A−1X,A−1Y ⟩12n
= Tr

(
(A−1X)TA−1Y

)
, X,Y ∈ TASp(2n,R). (C.1.1)

The same for the orthogonal group.
The Riemannian metric of the unitary group at point A is:

⟨X,Y ⟩A = ⟨A−1X,A−1Y ⟩12n = Tr
(
(A−1X)†A−1Y

)
, X,Y ∈ TAU(n,C). (C.1.2)

C.2 Tangent space

The tangent bundle (or Tangent space) of a smooth manifold M assigns to each point A of M a vector
space: the tangent space TAM of M at A.

For the symplectic group, we differentiate the quadratic condition AΩAT = Ω in Eq. (B.1.2), we obtain
the linear tangency condition XΩAT +AΩXT = 0:

TASp = {X ∈ R2n×2n|XΩAT +AΩXT = 02n}. (C.2.1)

It can be expressed in a compact way by parametrizing the tangent space at A using symmetric matrices
with the tangency condition X = AΩT . Then we have:

TASp = {X ∈ R2n×2n|XΩAT +AΩXT = 02n} (C.2.2)

= {X = AΩT |T = T T }. (C.2.3)

As a special case, the Lie algebra of Sp is the tangent space at the identity, i.e.

sp(2n,R) = TeSp(2n,R) (C.2.4)

= {X ∈ R2n×2n|XΩ + ΩXT = 02n} (C.2.5)

= {ΩA|A = AT }. (C.2.6)
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With the same idea, we can calculate the tangent space of an orthogonal group O(2n) at A:

TAO = {X ∈ R2n×2n|XTA+ATX = 02n} (C.2.7)

= {X = AT |T T = −T }. (C.2.8)

The tangent space of a unitary group U(n) at A is

TAU = {X ∈ Cn×n|X†A+A†X = 0n} (C.2.9)

= {X = AT |T † = −T }. (C.2.10)

C.3 Normal space

We can then define the normal space at A as the linear space containing all the elements that are orthogonal
to TASp:

NASp = {W ∈ R2n×2n|Tr(W TX) = 02n,∀X ∈ TASp} (C.3.1)

= {W = ΩAN |N ∈ R2n×2n,N = −NT }. (C.3.2)

The normal space at A for an orthogonal group is:

NAO = {W ∈ R2n×2n|Tr(W TX) = 02n,∀X ∈ TAO} (C.3.3)

= {W = NA|N ∈ R2n×2n,N = NT }. (C.3.4)

The normal space at A for a unitary group is:

NAU = {W ∈ Cn×n|Tr(W †X) = 0n,∀X ∈ TAU} (C.3.5)

= {W = NA|N ∈ Cn×n,N = N †}. (C.3.6)

C.4 Riemannian gradient

The Euclidean gradient ∂f at the point A (which is computed using the embedding coordinates in R2n×2n)
is related to the Riemannian gradient ∇L ∈ TASp. Now we will show the calculation of the Riemannian
gradient with the symplectic group, orthogonal group, and unitary group.

The Riemannian gradient ∇Af at point A of a sufficiently regular function f : Sp(2n,R −→ R) associated
to the Riemannian metric satisfies [59]

∇Af =
1

2

(
AAT∂Af +AΩ∂TAfAΩ

)
. (C.4.1)

The Riemannian gradient ∇Af at point A of a sufficiently regular function f : O(2n,R −→ R) associated
to the Riemannian metric satisfies [54]

∇Af =
1

2

(
∂Af −A∂TAfA

)
. (C.4.2)

The Riemannian gradient ∇Af at point A of a sufficiently regular function f : U(n,C −→ C) associated
to the Riemannian metric satisfies

∇Af =
1

2

(
∂Af −A∂†AfA

)
. (C.4.3)
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Proof. According to the compatibility of the Riemannian gradient with the Riemannian metric (defined in
Eq. (C.1.2)), we have:

⟨∇Af,T ⟩A = ⟨∂Af,T ⟩euc, ∀T ∈ TASp, (C.4.4)

that it,

⟨∂Af −A−†A−1∇Af,T ⟩euc = 0. (C.4.5)

This implies that ∂Af −A−†A−1∇Af ∈ NAU. So we have, with AA† = 1:

∂Af −A−†A−1∇Af = AN (C.4.6)

∂Af = ∇Af +AN . (C.4.7)

Using the tangency condition ∇Af ∈ TAU, we know

(∇Af)†A+A†∇Af = 0n. (C.4.8)

Together Eq. (C.4.8) and Eq. (C.4.7) with N = N †, we solve

N =
1

2

(
A†∂Af + ∂†AfA

)
. (C.4.9)

Thus we obtain

∇Af = ∂Af −A
1

2

(
A†∂Af + ∂†AfA

)
(C.4.10)

=
1

2

(
∂Af −A∂†AfA

)
. (C.4.11)
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Appendix D

Code snippet

This section gives some code snippets to show the functionalities and feasibility of our libraries, Poenta and
MrMustard.

D.1 Poenta

Poenta is a predefined library to generate layered quantum circuits and train them. In each layer, we
predefine the Gaussian unitaries and non-Gaussian unitaries: the Gaussian unitaries are decomposed by the
Bloch-Messiah algorithm, and we provide only Kerr gate as the non-Gaussian operation. The cost function
is also predefined as the one minus the quantum state fidelity.

In Fig. D.1, we give an example to generate the single-photon state. One only needs to define the initial
state, target state, and hyperparameters (layer, number of modes). A learning rate scheduler is employed for
the optimization, and one can choose the initial learning rate and the optimizer. Moreover, one can choose
to use the complex natural gradient or not.

Figure D.1: The code snippet for the circuit in Poenta.

The cost function evolution is shown in Fig. D.2.
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Figure D.2: The cost function of single-photon state preparation.

After training, the output state vector is |ψ⟩out = [6.82938689e−04−5.17996126e−04j, 7.40702608e−01+
6.71675751e−01j,−8.41573328e−04+3.11787605e−04j,−1.57652647e−04+1.68166768e−04j, 2.72393795e−
04+6.03049731e−04j, 1.61324384e−04+1.58101522e−03j, 9.49653617e−04+2.01800991e−03j, 2.59675565e−
03 − 1.78774201e − 03j, . . . ]. The probability is obtained by ||ψ⟩out|2 = [7.34725240e − 07, 9.99788668e −
01, 8.05457178e− 07, 5.31344191e− 08, 4.37867358e− 07, 2.52563469e− 06, 4.97420600e− 06, 9.93916138e−
06, . . . ], where the second term 0.9998 is the probability of getting single photon.

This example is single-mode, so we have four gates in each layer: displacement gate D(γ), rotation gate
R(ϕ), squeezing gate S(ζ), and Kerr gate K(κ) in each layer. The optimized circuit’s parameters are shown
in Tab. D.1.

Layer γ ϕ ζ κ

1 0.126+0.038j -0.045 0.293-0.011j -0.023

2 0.243+0.159j -0.074 0.199+0.001j 0.118

3 0.099+0.061j -0.091 0.190-0.039j 0.143

4 0.196-0.036j -0.124 0.211-0.051j 0.140

5 0.072+0.090j 0.127 0.179-0.138j 0.140

6 0.150+0.046j 0.082 0.242-0.033j 0.178

7 0.200+0.060j 0.140 0.195+0.023j 0.310

8 0.212-0.010j 0.170 0.106+0.025j -0.115

Table D.1: The values of the parameter in the circuit to prepare the single-photon state.

D.2 MrMustard

MrMustard is a more free library compared with Poenta. The user will not be contained in the layered
structure and can choose any gates to design the circuit together with any kind of measurement.

Like the two examples in Figs. D.3 and D.4, one needs to define the cost function and connect all elements
in the circuit.
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Figure D.3: The code snippet for the circuit shown in Fig. 9.3a.

Figure D.4: The code snippet for the circuit shown in Fig. 9.4a.
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Another advantage of MrMustard is one can set bound values for each parameter. For example, it is
possible to set the upper bound u and lower bound l of a rotation operator’s parameter ϕ when defining this
object: In this way, we can have more reasonably optimized parameters to realize them in practice.
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[172] Johannes Borregaard, Hannes Pichler, Tim Schröder, Mikhail D. Lukin, Peter Lodahl, and Anders S.
Sørensen. One-way quantum repeater based on near-deterministic photon-emitter interfaces. Phys.
Rev. X, 10:021071, Jun 2020.

[173] Sreraman Muralidharan, Chang-Ling Zou, Linshu Li, and Liang Jiang. One-way quantum repeaters
with quantum reed-solomon codes. Phys. Rev. A, 97:052316, May 2018.

[174] Jialin Chen, Lingli Wang, and Bin Wang. Quantum FPGA architecture design. In 2013 International
Conference on Field-Programmable Technology (FPT). IEEE, dec 2013.

[175] Gary Bécigneul and Octavian-Eugen Ganea. Riemannian adaptive optimization methods, 2018.

[176] Foivos Alimisis, Antonio Orvieto, Gary Becigneul, and Aurelien Lucchi. Momentum improves opti-
mization on riemannian manifolds. In Arindam Banerjee and Kenji Fukumizu, editors, Proceedings of
The 24th International Conference on Artificial Intelligence and Statistics, volume 130 of Proceedings
of Machine Learning Research, pages 1351–1359. PMLR, 13–15 Apr 2021.

178



Titre : Conception automatisée de circuits quantiques photoniques

Mots clés : optique quantique, apprentissage d’automatique, optimisation, mécanique quantique gaussienne,
photonique, circuits quantiques

Résumé : La photonique est une plate-forme de
premier plan pour réaliser l’informatique quantique
tolérante aux erreurs. Notre objectif principal est d’au-
tomatiser la conception de circuits quantiques photo-
niques et de leurs interconnexions. Avant de fabriquer
un véritable ordinateur quantique photonique, il est
indispensable de simuler numériquement et d’optimi-
ser les circuits correspondants, qui sont en pratique
construits à partir de composants gaussiens. Pour at-
teindre l’universalité, nous avons également besoin
d’effets non gaussiens, qui peuvent être fournis par
des détecteurs résolvant le nombre de photons. Nous
concevons des circuits à partir de cette boı̂te à outils
et les optimisons pour diverses applications en utili-
sant des algorithmes de descente de gradient.
Dans cette thèse, nous introduisons une
représentation unifiée dans l’espace de Fock de
tous les objets gaussiens en termes d’une seule
relation de récurrence linéaire qui peut générer de
manière récursive leurs amplitudes dans l’espace de

Fock, de sorte que l’on peut ensuite inclure les ef-
fets non gaussiens dans la simulation. Nous propo-
sons deux méthodes pour calculer le gradient d’un
objet gaussien, ce qui nous permet d’adapter da-
vantage différentes optimisations basées sur le gra-
dient au problème d’optimisation de circuit. De plus,
nous généralisons une version complexe du gra-
dient naturel pour les circuits quantiques optiques afin
d’accélérer la convergence du processus d’apprentis-
sage. Nous donnons également quelques stratégies
optimales basées sur les tâches pour utiliser nos re-
lations de récurrence afin de réduire la complexité de
calcul, au moins quadratique.
Avec la simulation sur des circuits quantiques photo-
niques différentiables construits à partir de la relation
de récurrence, nous pouvons concevoir automatique-
ment des circuits quantiques photoniques.
Nous avons rendu ce travail disponible dans diverses
bibliothèques open source : TheWalrus, Strawberry-
Fields, Poenta et MrMustard.

Title : Automated design of photonic quantum circuits
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Abstract : Photonics is a prominent platform for
realizing fault-tolerant quantum computing. Our main
goal is to automate the design of photonic quan-
tum circuits and of their interconnects. Before a real
photonic quantum computer can be manufactured,
it is essential to numerically simulate and optimize
the corresponding circuits, which in practice are built
out of Gaussian components. To achieve universa-
lity, we also need non-Gaussian effects, which can be
supplied by photon-number-resolving detectors. We
design circuits from this toolbox and optimize them
for various applications using gradient descent algo-
rithms.
In this thesis, we introduce a unified Fock space repre-
sentation of all Gaussian objects in terms of a single
linear recurrence relation that can recursively gene-
rate their Fock space amplitudes, so that one can

then include the non-Gaussian effects in the simula-
tion. We propose two methods to calculate the gra-
dient of a Gaussian object, which enables us to fur-
ther adapt different gradient-based optimizations to
the problem of circuit optimization. In addition, we
generalize a complex version of the natural gradient
for optical quantum circuits to accelerate the conver-
gence of the training process. We also give some opti-
mal task-based strategies for using our recurrence re-
lations to reduce the computation complexity, at least
quadratic.
With the simulation on differentiable photonic quan-
tum circuits built from the recurrence relation, we can
design photonic quantum circuits automatically.
We made this work available in various open-source
libraries: TheWalrus, StrawberryFields, Poenta, and
MrMustard.
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