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Chapter 0

Introduction

In this thesis, we will discuss a new model for gauge-Higgs unification
based on the compactification of a nilmanifold. Nilmanifolds are a class of
solvmanifold well studied in the mathematical literature (for harmonic analysis
see [1,2]). They have also been used in the context of string theory [3-12]
to investigate new possibilities for compactification. In our context, this new
approach gives a new tool to the already rich field of gauge-Higgs unification.
The main new tool presented in this thesis rely on the use of a twisted torus.
This twist results in a mass for the scalar fields along with a potential at tree-
level which circumvent the usual issue of having to rely on quantum corrections
to generate such a potential.

In 2012, the Higgs boson was discovered at the Large Hadron Collider (LHC).
This discovery solidified the idea put forward by Robert Brout and Frangois
Englert [13], Peter Higgs [14], and by Gerald Guralnik, C. R. Hagen, and Tom
Kibble [15]. In 1964, they independently proposed a model capable of pro-
ducing consistent massive gauge bosons, which later made possible the use of
Yang-Mills theories to describe weak interactions. This mechanism requires the
introduction of a scalar field responsible for the breaking of the gauge symmetry,
which results in the presence of massive gauge bosons in the spectrum. This
mechanism, now known as the Higgs mechanism, is one of the corner stones of
the celebrated Standard Model (SM) of particle physics. In the SM, the Higgs
field is in the two-dimensional complex representation of the gauge group SU(2)
and charged under U(1). The key ingredient is the self-interacting potential of
this scalar field, whose non-trivial minimum reduces the gauge symmetry to
U(1) at low energies. The Higgs mechanism is compatible with all the current
observations, but an interesting question is raised if we assume the existence of
a higher energy scale for the cutoff of the theory. Consider the possibility of a
grand unification scale for the fundamental forces of nature. The running of the
couplings of the SM seem to approximately converge for energies around ~ 10'6
GeV. If we assume the existence of a fundamental scalar field responsible for
the breaking of SU(2) x U(1) and it is part of this grand unification, quantum
corrections to the mass of this scalar field are quadratically divergent in the



cutoff A ~ 1016 GeV. Observations of the W, Z and Higgs boson masses force
the parameter —u? to be of the order ~ —(100 GeV)?2. If one wants to have
an effective value for the —u? parameter of the right order of magnitude, one
would need to take the bare value for —u? to be of order —A? and have the
quantum corrections of order A? produce the desired value. This fine tuning of
the mass squared of the Higgs would span 28 orders of magnitude. The ques-
tion of why the observed Higgs mass should be so small compared to the grand
unification scale is referred to as the gauge hierarchy problem. It possible that
this grand unification scale is somehow related to the unification of gravity with
the other forces. The typical scale at which gravity would become relevant for
fundamental particles is of the order of the Planck mass mp ~ 10'? GeV. The
effects of gravity would surely already be present at a scale of ~ 10'® GeV, not
so far from the already huge value suggested by the running of the couplings.
In this scenario, an explanation might be given by a theory of quantum gravity,
though this remains uncertain at this point.

It should be pointed out that the hierarchy problem may not be as much
of a problem as it has been suggested. This observation is made for a specific
choice of renormalization. How the scenario would change if other methods
were picked is not so clear as Mooij and Shapshnikov have argued in [16]. In
their paper, they use renormalization schemes that avoid UV divergences. The
method is based on the Callan-Symanzik (CS) equation [17,18]. Taking the
simple example of two massive scalar fields, one at with a much larger mass
than the other, they recall the standard procedure that leads to corrections to
the small mass that are proportional to the large mass squared. They then
derive the corrections for the same model using the CS method and show that
no infinities appear at any stage in the computation, and that the large mass
does not appear in the corrections to the small mass at one-loop order.

Scalar fields also lack any form of guiding principle. Gauge bosons and
fermions are well constrained by symmetry and anomaly cancellation. Unfor-
tunatly we don’t have anything similar for scalar fields. It may be that scalar
fields are not fundamental fields of nature, as suggested for example by com-
posite models where the Higgs is taken to be a fermionic bound state.

In any case, there have been many attempts at solving this seemingly para-
doxical observation and in understanding how to constrain scalar fields. Among
possible directions, supersymmetry has been a fruitful candidate to explain the
cancellations evoked earlier, among many other things. The absence of obser-
vation of super-partners at the LHC has raised some doubts on the validity
of the Minimal Supersymmetric Standard Model (MSSM), though it has not
been entirely excluded so far. Here we will consider another possibility called
gauge-Higgs unification.

Gauge-Higgs unification models are a class of models that seek to explain the
existence of the Higgs boson as some components of a higher dimensional gauge
field. Different scenarios have been put forward. Their common feature is the
existence of extra dimensions which give rise to scalar fields in four-dimensions
at low energies. Among the proposed models are large extra dimensions and
ADD type models [19-23]. Another class of models are based on Kaluza-Klein



compactifications. These types of model are often encountered in the context of
string theory, as it requires an explanation for the presence of the extra dimen-
sions compared to the four observed in our universe. In gauge-Higgs theories,
the concept can be traced back to Manton [24] and Hosotani [25] who presented
models where gauge degrees of freedom in the extra dimensions give effective
scalar fields once the compactification is performed. The first idea is that the
scalars are identified with the zero modes on the additional manifold. Typi-
cally, the manifold is taken to be S! or a torus. The scalars are massless at tree
level because they descend from the zero modes. One has to rely on quantum
corrections to generate the masses and effective potential. Another approach is
possible if the manifold for the extra dimensions is not simply connected. One
can introduce non-contractible Wilson loops whose phases can be identified with
scalar fields. These phases are dynamical quantities which modify the masses
of the Kaluza-Klein spectrum. Upon considering quantum corrections, an ef-
fective potential is generated for the phases which can result in a non-trivial
configuration for the phases, possibly breaking the gauge. This mechanism is
often referred to as the Wilson loop mechanism or the Hosotani mechanism.

In all these scenarios, the extra dimensions are small and the manifold is
compact, such as to be below current observational limits, but usually bigger
than the Planck’s length. Another possibility, inspired by string theory, is to
have the Standard model of particle constrained to a four-dimensional brane.
Gravity is the only force allowed to propagate through the bulk of the theory.
An example of such models is the Randall-Sundrum model (RS) where the extra
dimension is AdS-like [26].This class of gauge-Higgs models has been extensively
studied both in the electroweak sector [27,28] and in the application to grand-
unified theories [29,30]. Originally, the model was composed of a finite fifth
dimension. The SM was located on a brane at one of the boundaries where the
natural energy scale is set at the TeV. Another brane at the other boundary
is at the Planck scale. The hierarchy is solved in this context by the distance
separating the two branes. These models are also constrained by collider obser-
vations [31]. Radiative breaking of the electroweak symmetries is also studied
in brane models [32].

0.1 The Higgs mechanism

The observation of the W and Z bosons dates back to 1983, but the
weak interaction was known to exist before that. Enrico Fermi was the first
to propose a model based on contact interaction of four fermions to describe
beta decays. In this section we will review the Higgs mechanism, as it will be
relevant for the developments of this thesis. We start with the abelian case and
then move on the more general setting of non-abelian theories.

Consider the Lagrangian

L= *(quu)2 + |D/L¢|2 - V(¢) . (]‘)



where D,, = 0,,+1ieA,, and ¢ is a complex scalar field. The squared terms are un-
derstood to be contracted with the Minkowski metric 1, = diag(1, -1, -1, —1),
so with two 7 factors for the first term, and one in the second. This Lagrangian
is symmetric under local U(1) gauge transformations if we assume that the
potential only depends on |¢|. A local gauge transformation takes the form

o(x) = @ p(z) and Au(ac)%A#(x)—%a#a(x). (2)

Let us fix an expression for the potential. The usual choice is
2 % )‘ * 2
V(9) = 20"+ 5(9"9)° (3)

with 2 > 0. The potential has two extrema given by (¢) = ¢y = 0 and
|o| = 4/ ‘f\—z These are the solutions to the equation

oV
o
The complex conjugate of the field obey a similar equation which ensures that

¢y = 0 if ¢o = 0. The point ¢g = 0 is a local maximum while the other one
is a global minimum. The minimum has a U(1) symmetry. This means that

(¢)=0. (4)

there is an infinite number of equivalent vacua given by (¢) = 4/ ”726“9 . We can

choose the simplest (¢) = ¢g = 1/ “Tz We can now expand the potential around
the minimum by setting ¢ = ¢ + %(% + i¢2). We obtain

#4 1) 90
=—— 4+ =2 R
V(6) = b+ Soutet+ 5)
The dots represent higher order terms. So we observe that the field ¢, acquires
a mass \/ZLL while ¢o remains massless. We now consider how the kinetic term
transforms

1 1
|DM¢|2 = 5(8u¢1)2 + 5(8u¢2)2 + \/§€¢0Au M2 + 62¢(QJAMA“ +.... (6)
The last term is a mass term for the photon. The mass is given by
ma = V2edy (M)

By expanding the theory around the minimum of the potential, the theory now
describes two scalar fields, one massive, the other massless interacting with a
massive photon. The VEV of the scalar field is responsible for the mass of
the broken gauge boson. The model is said to exhibit spontaneous symmetry
breaking. The photon at the beginning was a massless particle. Massless particle
only have two degrees of freedom corresponding to the two helicities. If the
photon acquire a mass by this mechanism, an additional degree of freedom



should play the role of the longitudinal polarization of the particle. It is the
field ¢ who is responsible for that. To see this, consider the term

V2epoA, 8y . (8)
The vertex associated to this term in the quantum theory is
iV 2epo(—ik,) = mak, . (9)

If we look at the contributions to the two-point function for the photon, we will
have at leading order contributions of the form

. )
Zmixn,uu + mAkp,ﬁ(_mAkl/) (10)

. kuky
:ZmzA (77#” - 22 )

The first term is simply the mass term considered as a vertex. The second
corresponds to a photon transitioning to a scalar with the vertex (9) and then
back to a photon. The total contribution is exactly the one needed for the
longitudinal polarization of the photon. The field ¢, is called a Goldstone
boson in this context.

The Goldstone boson is not a physical particle of the theory. The easiest way
to see this is to fix a particular gauge called the unitary gauge in the starting
Lagrangian. This gauge corresponds to taking a local gauge transformation
such that the phase of the scalar field is zero everywhere. In this gauge, the
Lagrangian becomes

L=—(Fu)?+(0,0)° +epA, A" — V() . (11)

We can see directly that if the scalar ¢ acquire a VEV through the potential,
the interaction with the photon will result in a mass term. The field ¢, drops
completely from the action, making it clear that the associated particle is not
physical.

The mechanism presented is the Higgs mechanism. It allows a theory to
have massive gauge bosons in a consistent way. The main ingredient was the
scalar field along with non-trivial minimum in the potential. The non-trivial
minimum is seen as a VEV for the scalar field, which is responsible for the mass
term of the gauge boson. This mechanism can be generalized to non-Abelian
gauge theories. The generalization is rather straightforward, but we will present
it here for completeness.

In order to generalize the mechanism presented above, we must introduce
additional scalar fields. These scalar fields will be taken in some representation
of the gauge group G such that upon gauge transformation, the scalars obey
the transformation rule

¢ — e (12)



where the field ¢ is thought of as a vector with components ¢1, ¢2, ...and the
t* are matrices acting on ¢ as

(t“0)i = 13505 (13)

with a sum over j. The 6, are real parameters. Generally, the gauge group G
is taken to be a Lie group because we want to enhance the global symmetry to
a local one. The generators t* then form a representation of the associated Lie
algebra. The Lagrangian is typically built by using a bilinear form to write real
quantities dependent on the scalars. If we take for example ¢f¢, then invariance
under the group action corresponds to having (e?=")t = (¢®at")~1 j.e. it is an
element of some unitary group. This implies (t*)" = ¢ meaning that ¢¢ is an
hermitian matrix. We can write equivalently it* = T with T'* anti-hermitian.
We will take ¢ to be real as we can always write a complex scalar field as two
real fields. The generators are then anti-symmetric, with the 7% being real and
the t* pure imaginary. We now make the global symmetry local by imposing
invariance of the action under transformations with 6, (z) a function of position.
The covariant derivative is written

D = (9" —igAgt®)¢ = (0" + gALT*)o . (14)

The kinetic term of the Lagrangian can be expended and takes the form
1 s a 1 L s a
5(0"0:)* + gAL(0,0:T505) + 59" AL A (T°6)i(T"9); - (15)

Now, without specifying a potential for the scalars, imagine that they acquire
some VEV

(¢s) = (do)s - (16)
We can expand the field around this vacuum. The last term of (15) generates
the term
1 2 b (a b
AL = 59" A A (T%¢0)i(T"¢0)i (17)
and so defines a mass matrix for the gauge bosons

miy, = g% (T%0)i(T o) - (18)

This matrix is non-negative since all its diagonal entries m2, = g2(T%¢pq)? are

positive or zero. The directions a such that the entry is zero are the generators
that leave the vacuum invariant

Ty =0 . (19)

The symmetries of the vacuum correspond then to the residual gauge since for
each generator that leave the vacuum invariant, there is an associated massless
gauge boson. Just like in the abelian case, the Goldstone bosons will contribute

10



to the longitudinal polarization of the broken gauge bosons. To see this, consider
the term

9A5(0.9i(T*¢o);) (20)

coming from the second term in (15). These term will contribute to the two
point function of A# in the same way than in the abelian case. For each A¥
we will have a first contribution from the mass term, and a second from the
transition of the gauge boson to a scalar and then back to a boson. Those
contributions take the form of a sum

i
S (ghu(T%60),) 73 (=g (T"00);) - (21)
J
and we can consider all j since the term will be zero if it does not contribute.
We obtain again the same form for the correction to the two-point function

. k Lkl/
im2, (WW - ;{2 ) (22)

which accounts for the longitudinal polarization.

We are now ready to detail the Higgs mechanism for the Standad Model.
This theory is called the Glashow-Weinberg-Salam theory of weak interactions
[33,34], bearing the name of the authors who developed the model. Here, the
gauge group is chosen to be SU(2) x U(1). We choose a scalar field in the
fundamental representation of SU(2) and with a charge 1/2 under U(1). Its
gauge transformation is therefore

¢ — eio‘aTaeig(b . (23)

where 7% = ¢%/2 for ¢® the Pauli matrices. We choose the following VEV for
the scalar field

@w=(1) (21)

which is left invariant by the gauge transformation generated by 573 + 3/2 for
arbitrary . This is the only symmetry of the vacuum so the theory will have
one massless boson , while the other three will acquire a mass.

We write the covariant derivative as

Dt = (0" —igAtT® —ig' B*)¢ . (25)
The gauge bosons will acquire a mass according to equation (18). The resulting
term in the Lagrangian after simplification is

2

lv
AL =5 (A + (A7 + (~g°Ap +9'Bu)) - (26)

11



As expected, three bosons acquire a mass. We can change the basis in order to
have mass eigenstates. The change in basis is explicitly

1 . 1
Wi = 5(14;11 TiAY), Z, = W(Q“ﬁ —9'By) - (27)

The last component of the gauge, orthogonal to Z, is given by
1
A, = ————=(’A3 +¢'B,) . (28)
The masses now read

mwzgg , mZ:\/QQ—&—g’Qg and my=0. (29)

For an arbitrary field in a representation 7% of SU(2) and with an hypercharge
Y, the covariant derivative is written in the eigenmass basis

. g — . g . .
D,=29, — ZE(W;T+ + W, T7) — zF(mZ#(T3 —5in(0,)?Y) —ieA,Q
(30)
where we have defined the various terms as
_ g . 9
COS(QU;) = W y sm(@w) = 7\/.@ (3].)
T =T'4+iT* | Q=T3+Y and e=gsin(f,) =g cos(fy)

The model describes a massless field A, which is identified with the electromag-
netic potential, along with the three massive bosons Wiﬁ and Z,,. The electric
charge is given by @. The model is defined by three parameters, e, my and
0- The first one is the electromagnetic coupling constant. The second is the
mass of the W boson. The The last parameter is the Weinberg angle, which is
responsible for the mixing of the two part of the initial gauge. This can be seen
more clearly by noting that the change of basis can be written

(Z) _ <cos(9w) —sin(@w)) (A3> (32)
A)  \sin(6,)  cos(6y) B) -

There is more that can be said about this model. The logical continuity
would be to study fermions. In our universe, it so happens that only left handed
fermions couple to the W, boson. The theory is said to be chiral because left
handed fermions have different couplings to the gauge than right handed ones.
Classically, this wouldn’t be a problem. But in the quantum theory, anomalies
can arise in chiral theories. Anomalies are the failure of a symmetry to be carried
over to the quantum theory. They arise as terms violating the Ward identities.
For a chiral theory, the gauge anomaly restricts the possible fermionic content.
In the case of the Standard Model, all the anomalies vanish because of the
quantum numbers assigned to the fermions. But we will end this section here
as this question is not relevant to the development of this thesis.

12



0.2 Differential geometry and physics

Differential geometry is the mathematical theory that describes smooth
spaces. In physics, smoothness is often taken for granted, making differential
geometry a natural framework to describe physical processes, at least classi-
cally. Throughout this thesis, we will use notions and notations that come from
differential geometry. In this part, we will introduce the reader to the basics
of differential geometry. The interested reader not familiar with differential
geometry can find a more complete introduction to this very large subject in
Nakahara’s book [35] for example.

The first concept we are going to introduce is the concept of a smooth man-
ifold. A manifold is a space that locally looks like a vector space, here we take
this vector space to be R™. Intuitively, if we think of a sphere, we can imagine
zooming on a point of the sphere. As we zoom, the space starts to look more
and more like a flat plane around that point. This intuitive idea is precisely
what the notion of a manifold formalize. Close enough to any given point of a
manifold, the space should look like R™ for a n-dimensional manifold. Let us be
more specific.

A n-dimensional manifold M is a space equipped with the following struc-
tures :

(i) M is a topological space.

(ii) For each open set U; of the topology, there is an onto homeomorphism®
¢; : U; — V; for V; an open set of R™.

(iii) U; is a cover of M, meaning |J, U; = M

The pair (U;, ¢;) is called a chart and the collection of all the pairs is called an
atlas. ¢; defines a local coordinate system on the manifold. The U; are called
coordinate neighborhoods while the maps ¢; are the coordinate functions, or
simply the coordinates. That is because the maps ¢; take value in a open set of
R”, so they can be written as a collection of functions {x!(p),...2"(p)} which
can be understood as the coordinates in V.

The smoothness in the name smooth manifold comes from an additional
requirement for the maps ¢;. Smoothness is a term used to talk about functions
that are infinitely differentiable. Here the ¢; are maps from a subset of M to
a subset of R™, so we don’t have any well defined notion of differentiability.
Instead, what we can do is take two charts (U;, ¢;) and (Uj, ¢;) such that U; N
U, # 0, and ask for the following requirement to be fulfilled:

;= ¢;o ¢j—1: Vi = V; € C*(R") . (33)

This amount to ask that the possible coordinates are smoothly related. We can
define the differentiability of any map f: M — AN from a manifold to another

1Recall that a homeomorphism is a natural map in topology, it is a continuous function
with an inverse which is also continuous, so ¢; o ¢>i—1 =idy, and qﬁi_l o ¢; = idy, with ¢; and
qSi_l continuous.
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manifold. We take two charts (U], ;) and (Uj, ¢;) on N" and M respectively.
For such a function, the condition takes the form

Piofog;:V; = V/eC®, V;CR™, V/CR". (34)

We can restrict the class of smooth maps further by selecting only homeomorphic
maps f, whose inverse are also smooth. Those maps are called diffeomorphisms.
Clearly, if there exists a diffeomorphism from M to N, it implies that dim M =
dim A. Diffeomorphisms form a group under composition, noted Dif f(M),
since for every map f € Dif f(M) there exist a map g € Dif f(M) such that

fog=gof=idm . (35)

In a chart (U, ¢) such that ¢(p) = z#(p), a map [ takes a point p € M and
send it to f(p) such that ¢(f(p)) = 2*(f(p)) (assuming f(p) € U).

In the same line of reasoning, we can define curves and functions on M.
A curve is a smooth map ¢ : (a,b) — M, it is a list of points on M which
define a smooth trajectory. A function on the other hand is a map of the form
f : M — R, which a real valued function f(p). With this we can define the
map foc: (a,b) — R. This is simply a real valued smooth function f(c(t)).
Now, we can take the derivative of this function, which is well defined. Assume
the existence of some chart such that ¢(c(t)) = xz#(c(t)). The derivative at the
point ¢t = 02 can be written

d d 1
Z(foo)| == (fososo)| (36)
—o.f dat(c(t))
e dt t=0
The vector w is defined by the equivalence class of curves giving the same

coefficients. Dual to this vector is the differential of f, a function that depends
on the point ¢(t). These two vector-like object can be defined independently.
We write

V=V, and df=9,fdz" (37)
M M
with V¥ = W and (da",d,) = (9, da") = gz ="
t=0 g

V is called a vector. df is the differential of f. The last equation means that the
two are dual to one another. We can write the expression for a generic vector
and a generic "differential", which in this case is referred to as a one-form

X =X"9, and w=w,dz" . (38)
The scalar product of a vector with a one-form is given by

(X, w) = X w, . (39)

2This is a generic point, it could be any value but for simplicity we assume a parametrization
such that the point p at which we evaluate the derivative corresponds to ¢ = 0.
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These are the basics ingredients to construct the structures we are going to
develop. It can be easily shown that these objects are independent of the coor-
dinate system.

Notice that here we have two types of diffeomorphisms. The first one is
®;; which is a change of chart. This is in some sense a passive transformation,
as it corresponds only to a new choice of coordinates. The second one is f €
Dif f(M), which sends a point p € M to another point f(p) € M (this may
come with an additional passive transformation if f(p) is not in the same chart
as p). This transformation is active in the sense that the point in M was sent
to another point. Both results in a transformation for the vectors and one-
forms. Take the first case, we have two charts with the coordinates ¢; = x* and
¢; = y*. The map ®;; = 2*(y) can be seen as a list of differentiable function
depending on the y* coordinates. We have

_ dat(c(t)) _ doi(c(t))

v dt dt (40)
N L i G )
- % ((bl (bj ¢J C(t)) - 8yy dt :

In the case of an active transformation, we have
_da(f(c(t)) _ dei(f(c(t)))
Vi= dt N dt (41)

L O de ()
- a ((bz f ¢1 ¢z C(t)) - oxV dt

Hence it is easy to mix up the two at the level of the coordinate of the vectors
since they are both written as the Jacobian of the transformation.

We denote T},(M) the space of vectors at a point p and T, (M) the space
of one-forms dual to those vectors. Once vectors and one-forms are defined, we
can define any tensor as a multi-linear map from the tensor product of T,,(M)
and T, (M) to R

T T,(Me.. T,MSTM)@---0T;(M) =R (42)
A special class of tensors are the differential forms. They correspond to

w:Ty (M)A ANT;(M) = R (43)

p

where A is the antisymmetric part of the tensor product, so a Ab=1/2(a®b—
b®a). The form is then totally antisymmetric. We denote 2;(M) the space of
r-forms, so the space is described by elements with r indices

1
w = ﬁwm_nmdx’“ A Adahr . (44)

Now that forms are defined, we can describe an operation similar to the dif-
ferential on functions. Recall that the differential take a function f : M — R
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and send it to the one-form df € Q) (M). We can extend the definition of this
operation in the following way

. T r4+1
B0 - G M) (45)
w — dw (46)
where we define
dw= %3ﬂwﬂ1---urdx“ Adat A Adat (47)

One can show with an explicit computation that d?w = 0 for any form. This
operator, called the exterior derivative, can be used to further define an im-
portant structure on forms which is the de-Rham cohomology group. To define
this group we must first define two types of forms. We call an r-form w exact if
w = dW for some W € Q7 ~1(M), and we call an r-form closed if dw = 0. From
the definition, we see that an exact form is necessarily closed, but the converse
is not true in general. Understanding by how much the converse is not true is
the purpose of the de Rham cohomology group. Note that closed forms can be
understood as the kernel of d and the exact forms as the image of d. The r*"
de-Rham cohomology group is then defined by

H"™ (M) = ker(dy1)/im(d,) . (48)

Let us give a simple physical example for concreteness. If we take M = R",
then we know by Poincaré’s lemma that all the cohomology groups are trivial
(except for H°(R™) ~ R) since R" is contractible. In electromagnetism, half of
Maxwell’s equations can be formulated as dF = 0, where F is the electromag-
netic 2-form, so we know that it is closed. The equation is also immediately
obeyed by F' = F 4 dw for w € Q,(R™). So F is in the cohomology group
H?(R™), which is trivial in this case. So we can conclude that F is an ex-
act form globally. This allows us to define the one-form potential A such that
F = dA. Since any manifold is locally R™, this can always be done locally for
any manifold. The obstruction to make this expression global is given by the
second cohomology group H?(M).

In the case where the space M is endowed with a metric, the space is called
a Riemannian manifold. Additional structure exists for forms on a Riemannian
manifold. In particular, we have the Hodge transformation defined on an r-form
by

W = \% \g| M1t daFr+1 Ao AdxHe . (49)

- (n _ T)! Hi--fr Horg1e-fhn,

We have x1 = \/del A--+-Adz™ which is the volume form, it has the property
of being invariant under diffeomorphisms. The Hodge structure allows for the
identification of any w € Q"(M) with a form *xw € Q" 7"(M), and conversely.
The Hodge star is an involution of Q"(M) (up to a sign). We can also define
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an inner product on Q" (M) by
(w,m) = / w A x*n , for w,n e Q" (M), (50)
M

where the measure for this integral is the volume form. This can be used for
example to define the Lagrangian of the abelian Yang-Mills theory as

1
;C:_*/ F/\*F:—*/ F;LuFluja (51)
4 M 4 M

for F' the 2-form electromagnetic tensor. Hodge’s duality can also be used to
define the adjoint df of the exterior derivative d. It is defined as

dh = (=1)F % dx , (52)

where k depends on the degree of the form, the dimension of the space, and on
whether the space is Riemannian or pseudo-Riemannian. It is a map Q"(M) —
Q~Y(M). With d' and d, we can defined one last operation on Q"(M), and
that is the Laplacian. It is defined as

A=dd'+d'd. (53)

This operator reduces to the usual definition of the Laplacian in the case of a flat
space with Euclidian metric. Coming back to the example of the electromagnetic
tensor F', the rest of Maxwell’s equations can written using df. We had F = dA
in some chart, which solved the first set of equation dF' = 0. The other equations
are

diF=dfdA=, (54)

where j is the one-form matter current. We can fix a certain gauge A’ such that
dtA" = dTA + dfdf = 0, which corresponds to the Lorentz gauge. Maxwell’s
equations in this gauge take the form

d?A'=0 , AA=j. (55)
A central theorem of Riemannian geometry is the Hodge decomposition the-
orem. It states

Ywe Q' (M), 3 heHam" be Q1 2c Q! | w=h+db+diz.
(56)

Harm" is defined as the space of harmonic forms, i.e. such that Aw = 0. So any
form on a Riemannian manifold can be written as a sum of an harmonic form,
an exact form and a co-exact form.

The last ingredient we are going to discuss is the connection. A connection
on a manifold is a way to capture how vector fields change for an infinitesimal
displacement along a certain direction. A vector field is simply a vector that
evolves smoothly along a curve. We write the space of vectors fields X(M). A
connection is a map V : X(M) x X(M) — X(M) with the following properties
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() V(Y +2) = VxY +VxZ
(ii) Vx4zY =VxY +VzY,
(iii) VixY = fVxY,

(iv) VxfY = X[f]Y + fVxY.
In a chart, the connection, also called in this context the covariant derivative,
is specified by its action on the basis vectors. So we define

(Vo,0,,da?) =T,,°, (57)

nv

the connection coefficients. They can be thought of as a list of matrices
{T,”,...,T,,”}, one for each direction. These matrices are the transformations
that act on a vector when "moving" infinitesimally along each direction.

A generalization of what we presented is the concept of a fiber bundle. The
basic construction is very similar to the one of a manifold, though somewhat
more abstract. In fact a smooth manifold is a particular case of a fiber bundle
called the tangent bundle. In the language of fiber bundles, the tangent bundle
is the following. The space of vectors at a point p € M was written T, M. We
can take the union of those spaces for all the points p in a given chart U; to talk
about all the tangent spaces in a chart U;. So we write

U = |J M. (58)

peU;

This means that for any p € U;, we have a space T,,M € TU; associated
to this point. Since U; and T, M are both homeomorphic to R", T'U; can
be understood as the direct product R™ x R™ with the identification given by
(p,V) — (z*(p),V*(p)). A point u € TU; can always be decomposed as a
vector V and a point p at which the vector is evaluated. This is formalized by
a projection 7(u) = p for w € TU;. The fiber at a point p is then defined as
7~ 1(p), meaning all the points u € TU; such that their base point is p. In the
present case, we have for a fixed p, 7~ !(p) ~ R", which is the space of vectors
at a point p. We can define a diffeomorphism from the direct product U; x T, M
to the fiber by

©Y; - Uz X Tp./\/l — 7T71(U1') (59)

(V)= Vp) (60)

which are compatible with the projection : 7o ¢;(p,V) =p. On U;NU; # 0,

the maps ¢;(p, V) and ¢;(p, V) for a fixed point p are diffeomorphism of the
fiber T, M. They are related by

ozt

Tl (61)

vip(V) =tij(p)pjp(V) & VH =
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where t;;(p) € GL,(R). GL,(R) is called the structure group, it tells us how to
stitch the different fiber patches together. Finally, we call the collection of all
the charts on M the tangent bundle, and write it

TM= ] T,M. (62)
peEM

A vector field is then defined by the map X : M — T M. This maps associate
for each p a vector in T, M, so the vector field obeys the relation

ToX(p)=0p. (63)

Any map o from the base space to the fiber is called a section if it obeys the
above condition. In physics, sections correspond to the fields we use, such as
the one-form potential which is a section of a principal bundle.

Let us look at the example of a principal bundle more closely. A principal
bundle is defined by the fact that the fiber is the structure group itself. For
a principal bundle, the local trivializations are ¢; : U; x G — 7~ 1(U;) where
G is a Lie group. The projection is defined by 7 : P — M where P is the
total space of the principal bundle, locally diffeomorphic to the tensor space
M x G. The action of the transition functions on the fiber are simply given by
the multiplication on the left in the group, so for p € U; NU; # 0,

wi(p,9:) = (0, tji9:) = 05(p, 95) - (64)

But because of the group structure of the fiber, we also have the possibility of
acting on the right,

¢i(p, gi)a = ¢i(p, gia) (65)

This definition makes sense because @;(p, g) is an element of the fiber at p, so
multiplication is well defined. This multiplication is independent of the local
trivialization since we have for p € U; N U; # 0,

©i(p, gi)a = @i(p, gia) = pi(p, ti;(p)gja) = v;(p, g;a) . (66)

The right multiplication allows us to define a preferred local trivialization ¢;
given a particular section o;(p). We can always build a local trivialization by
multiplying a section o;(p) by an element g € G such that ¢;(p, g) = si(p)g. In
this local trivialization, the section o; is expressed

oi(p) = pi(p,e) (67)

where e € G is the identity element of the group. This choice of local trivializa-
tion is called the canonical local trivialization. Conversely, given a local trivial-
ization @;(p, g), we can build a canonical section o;(p) by ¢;(p, g) = vi(p,e)g =
oi(p)g-

A connection in this context is a separation of the tangent space T, P into a
vertical subspace (V,,P) and an horizontal one (H,P). These are define in the

19



following way. The right action on the bundle defines a right action on T, P.
This is written for X € T,,P and A a vector field such that g = exp(tA4) € G

d

= (f(ue)) (68)

A g dt t=0

The vector field A lies in the vertical subspace of T, P because if we note 7(u) =
p then 7(uet4) = p. So the vector field A lies in the fiber at p, the vertical
subspace is generated by moving only along the fiber.

A connection is then a g-valued one-form that projects T, P onto V,, P. More
precisely, writing this one-form w, we have

() wA)=Aeg,
(i) Riw =g 'wg .

The first line means that the w maps V,, P onto the Lie algebra. The second
line means that the one-form w transforms in the adjoint representation upon
right action of the group. Given the canonical trivialization, the connection is
locally the one-form potential, familiar to physicists.

Fiber bundles are the natural language for classical gauge theories. It gives
an interesting alternative point of view on physics. In this thesis, we will make
use of notions related to differential geometry and fiber bundles, while trying to
keep notations closer to the usual physics conventions. The basics of differential
geometry and fiber bundles explained above are sufficient to grasp the rest of this
manuscript, though much more should be covered for an extensive introduction.
We now dive into the main development, the study of nilmanifolds and their
use for gauge-Higgs unification.

Our study will focus on compact manifolds and more specifically on nilman-
ifolds, also known as twisted tori. The twist will be the main new ingredient in
our study. Our starting point will be a pure Yang-Mills theory in 7 dimensions.
The three extra dimensions form the simplest example of a nilmanifold, namely
the Heisenberg manifold (see for example [36]). Our first task will be to review
the geometry of this manifold and the solutions to the Laplace equation on this
space. Once we know the modes of the Laplacian, we will be able to study the
compactification of the model. The effective theory comprises adjoint scalar
fields with a mass and a potential at tree level. We then study the potential
to produce different breaking patterns. We also find a general approach to the
breaking of the gauge for an arbitrary semi-simple gauge group, allowing us to
study the renormalization on general grounds. Lastly we conclude our analysis
with an explicit renormalized example and some comments on the possibilities
and limits of the model.

0.3 Contributions

This manuscript is composed of a review of existing results along with my
original work. The preexisting material consists of the study of the geometry of
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the Heisenberg manifold and the study of the Laplace equation for the various
forms on this space. The scalar case was worked out for an arbitrary metric,
while the one-forms were only worked out for the case of the flat metric. I have
worked on solving the Dirac equation for an arbitrary metric and also on under-
standing how the eigenvalues of the constant eigen-1-forms of the Laplacian are
modified in the case of a general metric. The sections on the compactification,
the study of the potential and the discussion that follows are all part the work
I did during my PhD.
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Chapter 1

Nilmanifolds

In this section, we are going to explore the subject of nilmanifolds. The
first part will focus on definitions and general concepts. Next, we will focus on
a particular nilmanifold called the Heisenberg manifold. It will be the focus of
the rest of the manuscript so we will spend some time understanding as much as
we can about this specific space. We will first build the manifold explicitly by
choosing a set of coordinates. Then we will study the moduli space of metrics
on the manifold. We will then solve the Laplace equation for the various forms
on the space. We will end the section by solving the Dirac equation. We will
then have all the tools we need to study the compactification of a Yang-Mills
theory on this space.

1.1 Introduction

A nilmanifold is a type of differentiable manifold whose tangent vectors
locally look like a nilpotent Lie algebra. A nilpotent Lie algebra is a Lie algebra
g, such that the following series arrives at 0 at some rank n. Define the series
by gn = [9, 9n—1] and go = g, then we have the inclusions:

g>01> > gn - (1.1)

If g, = 0 (i.e. it is the zero algebra) for some n then the Lie algebra is said
to be n-step nilpotent. It was shown that every compact nilmanifolds can be
obtained by the following construction. We start with a nilpotent Lie group N
and a discrete subgroup I' C N. If the quotient space N/T is compact then the
space is called a compact nilmanifold. With compactification in mind, we will
only study compact nilmanifolds in the following. Additionally, we interested
only in Lie algebras that are in one-to-one correspondence with their Lie group.
Stated otherwise the group N considered is connected and nilpotent. As we will
see, that is the case for the Heisenberg manifold.

Let us be more specific by introducing a basis for a d-dimensional group
manifold. We call V,, a € {1,...,d} the tangent vectors (left-invariant vector
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fields that are globally defined). The Lie brackets between the vectors are
defined by

[Va, V] = [ Ve (1.2)

with f¢, = —f9, the structure constants. Dual to those vectors are the one-
forms obeying the Maurer-Cartan equations

1
de® = —3 et Ael (1.3)
By endowing the space with the metric ., we can compute the Ricci tensor.
For a unimodular Lie algebra (i.e. |det(Ad(g))| = 1 for g € N, or equivalently
Tr(ad(X)) = 0 for X € g, which is the case for nilpotent algebras), we get

1 1 ) )
Rea = 3 (— b e — 5bg5ahfhgc Lot §5ah5bj5ci5bgfbacflaj ghb) (1.4)

In the case of a nilpotent Lie algebra, the first term vanishes (it is the Killing
form on the space which is zero for nilpotent algebras). Further contracting the
Ricci tensor to obtain the Ricci scalar curvature gives

1
R = = 0a8"0% [, [y, (1.5)

which is constant and negative. Therefore nilmanifolds equipped with a flat
Euclidian metric are negatively curved spaces. Let us now take the lowest
dimensional nilmanifold and study this case in more details.

1.2 The Heisenberg manifold

This section will develop all the basic structure of the Heisenberg mani-
fold. References for the following derivations can be found in [37,38].
The simplest non-trivial example starts at d = 3. There are three possible
algebras. Only one of them is nilpotent. The vector algebra reads

Vi,Vo] = —£V3, [Vi, V5] = [V, V3] =0. (1.6)

such that £ = —f3,. Technically, this is a family of algebras all ismorphic to
one another that are labeled by the specific value assigned to £. Equations (1.3)
simplify to

de® =fe' Ne? s de' =0 de* =0. (1.7)

This manifold is known as the Heisenberg manifold because the commutation
relations form the algebra of the position and momentum operators (along with
the identity).
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In order to do explicit computations on this manifold, and study the physics
on this space we need a system of coordinates such that the above equations are
obeyed. A possible choice is

el =dX'; 2 =dX?; S =dX3 +£X'dX?. (1.8)

This is the most general solution up to redefinition of the coordinates. We can
choose to rescale the coordinates such that

X =iyt (1.9)

where the 7% are positive "radii" and the z* are "angular" coordinates. In those
new coordinates, equation (1.8) becomes

el =rldat; e® =r2da?; &3 =13 (dm3 + ledxg) , (1.10)
Flp2
where N = r—?’f . (1.11)

We will see later that consistency requires
NeZ. (1.12)

As explained in the beginning of the chapter, we now impose discrete identifica-
tions in order to make the manifold compact. Those identifications correspond
to the quotient by the discrete lattice. These are explicitly

ot~atdnt 2 ~ 2t n? s 2 vt 0 —ntNa? (1.13)

n',n? n3 € {0,1},

2

which are just translations by a unit angle, analogous to a full rotation along a
coordinate on a torus. This is not the only possible choice for the n’. Choos-
ing different integers would correspond to choosing a different lattice for the
quotient. A non unitary identification would result in a cell with the following
parameters

1,2 P2

nn

17 ) !
r=nr", N=N
!

For the same reason as in the case of n',n% n® € {0,1} (see 1.2.1 below), N
must be an integer. This implies that

nin?

n3

N VA (1.15)
Once the unit cell of the lattice is defined by equation (1.13), any combination
with n* € Z is also an identification. The identification is therefore consistent

throughout the manifold. From now, we take the identifications to be with
n' € {0,1}.
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This is a good time to pause and think about the geometry we are describing.
The 2! and 22 directions form a torus as can be seen from (1.7) and (1.8). The
23 direction can be interpreted as a U(1) fiber on the base torus. The fibration
is trivial in the case N = 0, where we recover the usual 3-torus. Here, the case
is more general, the fibration can be twisted, the "amount of twisting" is char-
acterized by N. As stated in Section 1, nilmanifolds can always be constructed
as a principal torus bundle over a principal torus bundle ...over a torus. This
fiber bundle interpretation is particularly useful in understanding the integrality
of N. We now turn to this question.

1.2.1 Integrality of N

There are several different ways to prove the integrality of N. The first
one is immediate, given some knowledge of fiber bundles. Indeed, viewing the
Heisenberg manifold as a principal U(1) bundle over a 2-torus, the first Chern
class is integral in cohomology and given by ¢; = Ndx! A dx?. Let us now show
this result explicitly.

We start by parametrising the circle fiber by g = 2™’ with 23 € [0, 1].
Next we can read off of (1.8) the vertical displacement on the fiber

1
da® + Natdx? = %gfll?g , D=d+ A, (1.16)

with A = 2miN2'dz? the connection on the fiber. We now need to specify the
charts on the base torus. Since the torus is the tensor product of two circles
To = SL x Sk, we use the following cover

B+ = U+ X Sl

x

23 BL=U_ xSk (1.17)

where Uy = {—e < 2! <1—¢€} and U_ = {1 — 2¢ < 2! < 1+ ¢}. The overlap
U, NU_ in the limit ¢ — 0 is then given by the point x1+ = 0 or equivalently
from the point of view of the chart U_, x1 = 1. The intersection of the charts
Bi is

B,NB_=Q xSk, (1.18)

where Q = {2}, = 0} = {#L = 1}. The transition function that relates the
connections on the two charts is a map ¢ : Q x S, ~ S§' — U(1). This is
equivalent to a map from S! to S! ~ U(1) and is classified by the fundamental
group m(S') = Z. We can then write the map as ¢ : 22 — exp (2mima?) with
m € Z. Writing the connection on both charts as Ay = 2wiz} dz?%, we express
the relation between the two on the overlap Q x S;Q by the use of t,

Ay =t YAt +tdt . (1.19)
Applying this relation at the point O, this equation simplifies to

0=2miN+2mim < N=—m . (1.20)
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This shows that N € Z. Finally we can understand how the fibers are patched
together. Taking 23 to be the coordinates of the fiber on the charts B, a point

of the fiber of each chart is written g = e2™@%. The two points are related on
the overlap by the left action of the transition function,

gy =tg_ &2 =a2® — Na* . (1.21)

This equation describes the twist of the fiber, characterized by the integer N.
This relation is invariant under the lattice action 22 — 22 + 1 since the fiber
coordinate 3 is defined up to translations by an integer. For a fixed z2, this
equation can be interpreted as the number of turns by which the circle fiber
is rotated when going once along the ! coordinate. This rotation depends on
where we are on the circle S,. As an example, take N = 1, for 2 = 0 there is
no rotation of the fiber, while on the opposite side, for 22 = 1/2, the fiber circle
will rotate by .

Lastly, let us discuss in a little more details the different possibilities for
the lattice. Taking the identifications to be with n’ € Z, we have the following
relations that are true

(xt, 22, 2%) ~ (' +n', 2% 2%) ~ (2!, 2% 4 n?, 2?) (1.22)
~ ( 1,:172 +n2,x3 +n3) ~ (1,1 +TL1,:C2,I3 7n1NI2)

Using combinations of these identifications, we can arrive at the following chain
of identifications

(xl,wQ,I?)) ~ ( 1’x271,3 + 713) o ( I,I’Q,IES + Nnj) (123)
for any N € Z. But we also have
(zt, 22, 2%) ~ (' +n', 2% 2% — n! Nz?) (1.24)
~ (2t +nt 2t + 02 2% —ntNn? — n!N2?) ~ (2!, 2%, 23 — n'Nn?) .
For consistency throughout the lattice, we should have for some fixed NeZ

- nln?

N = 3

3
n N7 *

Remembering that the structure constant is proportional to N, we find the
result due to Mal’cev stating that a lattice exist if and only if there exists a
basis in which the structure constants are rational.

This concludes our study of nilmanifolds. After having discussed nilmani-
folds on rather general grounds in the first part, we picked the simplest exam-
ple, the 3 dimensional manifold called the Heisenberg manifold. By specifying
a coordinate system on the cotangent space, we were able to understand its
interpretation as a circle bundle over a torus. We also showed how topologi-
cal restrictions forced NV to be an integer. The degrees of freedom we need to
specify to fix the geometry are the radii 7* which have dimension of lengths,
and the twist parameter f, which has dimension of mass. Those parameters are
constrained by equation (1.11). We now proceed with the study of the possible
metrics on the Heisenberg manifold.
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1.2.2 Metrics on the Heisenberg manifold

So far we have been interested in understanding the geometry of the space.
We also have the liberty to endow the space with a metric. Let us take a look
at the space of left-invariant metrics. In vielbein coordinates, we can always
choose a basis such that the metric is the Euclidian metric globally. That is
because of the group structure of the initial nilpotent group.

ds® = 6,4, E°E® . (1.26)

Because we are interested in left invariant metrics, we can relate the £ basis
to the previous one using a transformation in GL(3,R) such that

E* = (L71)%eb . (1.27)

In this class of transformations, there exist transformations that are trivial from
the point of view of the local nilpotent algebra. More specifically, there are
transformations that leave the defining equation (1.3) invariant. We should
mod out those transformations from GL(3,R) to be left with only those giving
nonequivalent metrics on the space. We write (1.3) in another basis and impose
the condition that the equation should remain the same. We denote (Me)®* with
M € GL(3,R) the new basis. We have

d(Me)® = M%de® = —M4 fb, e Aed = —f4 . (Me)® A (Me)© . (1.28)
And so we find the constraint
ab bcd = faiJeMbcMed . (129)

Applying this constraint to the case of the Heinsenberg manifold, we find that
M is of the form

My Mo 0
M= | My M 0 , with My Moy — Mo Mo # 0 .
M3z My My My — Mo Moy
(1.30)

These matrices form a subgroup of GL(3,R) denoted Aut. If two "L" transfor-
mations are related by Ly = Ly "M, they are in the same class since the two
associated basis will only differ by M, which leave equation (1.3) invariant. It
is therefore natural to mod out the group of transformations GL(3,R) by the
group Aut of automorphism of the Heisenberg algebra. This is done by intro-
ducing the equivalence relation L=1 ~ L=1M on GL(3,R). Our task is now to
find a representative of each class. To do so, we will now denote M the matrix
in Aut such that

Gi1 Giz 0
Mg =|Ga Ga 0 , (1.31)
Gs1 Gz G11G22 — G12Gn
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where G;; are the coefficient of a matrix G € GL(3,R). Now, introduce an
arbitrary matrix G € GL(3,R). We have the relation

1 0 a
GMgi=(0 1 b], (1.32)
0 0 ¢
with
G13G33 Go3G33 (G33)?
= qet(@) VT den(@) T det(@) (1.33)

Therefore, VG € GL(3,R), we have G = L (Mg-1)"" where L is an element of

£ =< L= , a,beR ) ceR* 5 . (1.34)

S O =
O = O
o o9

This set turns out to be exactly the set of representative of the coset GL(3,R)/
Aut. Indeed, if we take L; € £, we can easily show LiM € £ & M =1. If
we now take two different Ly, Ly € &, then VM € Aut\{I}, LoM ¢ &, which
necessarily implies Lo M # L;. In the case where M is the identity, we still have
Lo # L; by assumption. From this we conclude that VM € Aut, LoM # Ly
and so the L matrices belong to different equivalence classes. This shows that
€ is indeed a set of representative of the coset GL(3,R)/Aut.

We can now apply a transformation with a generic element from the set £
to equation (1.26). This gives the most general metric on the nilmanifold

ds® = (e' +ae®)® + (2 + be®)? + 2(e*)?, a,beR, ccR*. (1.35)

We deduce /g = r'r?r3|c|, and the volume

V= /dx?’\/g =rir?rd|c| . (1.36)

To conclude this section, let us discuss the geometrical meaning of the pa-
rameters a, b, c. First of all, the parameter c¢ is redundant. It can be absorbed
by redefining the other parameters as follow:

r3 £
T %ﬂ, a — ale|, b—b|, f%ﬂ . (1.37)
c c
So we can set ¢ = 1 without loss of generality. The parameters a and b can be
interpreted as analogues of a complex structure on a torus. To see that, we fix
22 to a constant value, along with b = 0 and N = 0. The resulting structure is
an untwisted 2-torus with metric

ds? = (#)2 [ [ dat T3d32 T3d32
s°=(r) x —l—ar—l x® ] 4 gz . (1.38)
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To compare this with the torus, introduce the metric on a 2-torus with area v
and complex structure 7 = 71 + i7o:

a2 = ¥ ((dxl +rda?)’ + (TQd:ﬁ)?) . (1.39)
T2
Comparing the two, we arrive at the relations v = r'r3, 7 = ar3/r' and

75 = r3/r!. The two sets are therefore two equivalent parameterizations of the
torus. In particular, we have a = 71 /75 which relates it to the complex structure.
A completely similar analysis can be made for b.

1.3 Laplacian on the Heisenberg manifold

Our objective is to study the compactification of Yang-Mills theories on
nilmanifolds. A requirement is to understand the eigenforms of the Laplace
operator on the space since the compactification will be effectively done by
selecting the first lightest modes. The eigenvalues of the Laplacian are of mass
dimension 2, hence their interpretation as the masses squared of the modes. We
will begin this section by studying the case of the scalar field for an arbitrary
metric. Using those results, we will then workout the spectrum of one-forms,
but only in the case the Euclidian metric. After that, we will see how the first
modes are modified in the case of a general metric. Lastly, we will study the
spectrum of the fermions in the general case. We will follow the derivations
given in [37-39].

1.3.1 The scalar spectrum

With the metric given in the previous section, we can workout the ex-
pression for the Laplace operator on a scalar field. We start with the general
expression for the Laplacian acting on a scalar field. From Hodge theory, we
know that it can expressed as

1
A¢ = (dTd + dd")g = dTdp = ———=8,, (Vgg™"0n ) (1.40)
V9
The determinant of the metric is constant here, so it drops out of the equation.
Let us start with the simplest case possible, and go from there to study the
more general setting.

The simplest case of a =b=10

We start by studying the case where a = b = 0. Additionally, we set the
radii 7 = 1, ¢ = 1 and £ = 1 (or equivalently N = 1). The metric in this case
reads

ds® = (dz')? + (dz®)® + (dz® + mldx2)2 , (1.41)
and gives the Laplacian
Viu=Au= (0] + (92 —2'03)> + 93) u . (1.42)
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This setup has the advantage of simplifying the expressions while still retaining
the possibility to recover the dependence on the parameters at the end. The
objective is to find a basis of function that are invariant under (1.13).

A simple starting point is to observe the following: for functions that don’t
depend on z3 we can use the usual Fourier modes on the torus. If we set

Tpq(at, a?) = e2mHi g2maiat i DqEL, (1.43)
then the action of the Laplacian on those functions gives the eigenvalue equation
(V2 + 11,4)Tp.g =0, (1.44)

where we define
o, =4 (p* + ¢*) . (1.45)

This set of function is manifestly invariant under the identifications (1.13) and
forms the first set of eigenscalar. These are the modes that are limited to the
base torus.

Consider now the following set of functions, built from Weil-Brezin-Zak
transforms [40],

uhl(l’l,l‘Z, 1,3) _ e?ﬂki(13+$1$2)62ﬂ'lil‘l Z e27rkmix1f($2 +m); kleZ.
mEZ
(1.46)
First of all, one can check that these functions are invariant under the lattice
action (1.13). Acting on it with the Laplacian gives

Vzuk,l :627rki(:r3+zlz2)e27rlim1 (147)
X Z g2rkmiz’ {8% — 472 (k:2 + (k;(:c2 +m)+ l)2 ) }f(x2 +m) .
meZ

We consider here k # 0, otherwise the function wouldn’t depend on 3. Setting
Z2m =22 +m+1/k and g(z,,) = f(2* + m), we obtain

v2ukl _ e2ﬂki($3+£1£2)62ﬂ'lixl Z eQTrkmixl {83 _ (27T]€)2(Z$n + 1)}g(zm) )
meZ
(1.48)

We are now looking for eigen-functions of the differential operator inside the
sum. To this end, we recall the definition of the normalized Hermite functions

D,(z) = e_%zan(z) ;7 meN, (1.49)
where H, are the Hermite polyn;)miads.2 Recall that the Hermite polynomials
are defined as H,(y) = (—1)"e¥ d;e™¥ and satisfy the differential equation
O7H,, — 2ydyH, + 2nH, = 0. For A € R* we define

ON(2) = AT, (N 22) | (1.50)
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which obeys the differential equation
(02 = X222)DN (2) = —(2n + 1)\ @) (2) . (1.51)
Hence by setting A = 27k and g(z,,) = ®27%(2,,) in (1.48) we obtain:
(V2 + MZ, )ik =0, (1.52)
where the eigenvalues (i.e. the masses) My, are given by

2 + 1) (153)

M2, =@2rk)?(1+=——
k,l,n ( ™ ) ( + 2Tl"l€|
and we defined

: : l
uk . n(xl 22 IEB) 271'k:1(:v +zlz ) 2rlizt Z eZﬂ'k:mlxl(I)iﬂ’k(x2 +m+ E) :
meZ
[=0,... k-1, keZ, neN
(1.54)

Observe that the eigenvalues are degenerate since equation (1.53) doesn’t depend
on [. The parameter [ is defined modulo |k|, so the degeneracy is of order |k|.
This can be seen from the following identity

Uk 1phn (2, 22, 2%) = Gy 0 (2, 2%,2%) , VpeZ, (1.55)

which can be shown using the explicit form of @y ,. We can reintroduce the
parameters r* and f (along with ¢). We obtain

27r|f|

27 2
M, =k (r%> +(2n+1)

2 2
2 27
2 _ .2 2
Hpq =D (7,1> +4q (7"2> ’

The associated modes are

1003 12 o1 : 1
ukln £C CE .’E 27r1k(:v +Nz z )e2mlw E 6271'1kmav (b;\y,(wm) ,
|N|V A /anl
meZ

27r1px 27r1qx

vp,q(x €T ) ﬁ )

(1.56)

(1.57)

with A\ = kizigf and w,, = r? (22 + B + kLN) Note that the only massless
mode is g, Which is a mode coming from the base torus.
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General case

Remember from section 1.2.2; the orthonormal basis E* can be given in terms
of the defining basis e® of equation (1.3) by E* = L%e. We can write the
relation between the coordinate basis and the basis e® using the veilbeins e with
components e (e can be seen as a matrix acting on the coordinate basis). The
relation is

e= r? , et =epda™ (1.58)
r3Nzt o3

and we denote (e7!)™, = e™,. The general metric (1.35) can be written as a
matrix g = (Le)T6Le for L € £ (see section 1.2.2) with § = 13. This is simply
the Euclidian metric seen from the point of view of the coordinate basis, giving
the metric g. It is easy to verify the value of /g, already given in (1.36). The
inverse metric is then simply ¢! = (Le)™'6~!(Le)~T. The vector e~ 19, of
component (e~1),™d,, = €™,0m, is the dual vector or co-frame to the above
one-forms; analogously, (Le)~7d = L~Te~70 is the co-frame to E® (the L here
is the inverse of the one in (1.27)). Using (1.10), those vectors are given by

o1
ra

(Ley Mo =| % —fria'% . (1.59)
L (—aZ —b% + (1+£briat) %)

Since the determinant of the metric is constant, and because of the easily checked
property Op,e™, = 0 (without sum), the Laplacian (1.40) is simply given by the
square of these vectors

V20 = ((Le) T0) @ (1.60)

that results here in

o\> [0, 2\? 1 01 Oy 95\ 2
VZ= <r1> +<T2f1"1x1r3 JrcfQ far—lfbﬁwL(lJrfbrlxl)r—?) .
(1.61)

Introducing the dimensionful coordinates X" = r™z"™, the Laplacian reads
1
V2 = (3}(1)2 + (axz — fX18X3)2 + o) (8Xa —adx1 — b (8X2 — fX18X3))2 .

(1.62)
In terms of the X™’s the discrete identifications (1.13) take the form

X' Xt pnlrty X2~ X2 40207 (1.63)
X3~ X343 — gttt X2 nlin?nde{0,1}.
The following set of functions is invariant under these identifications,
s v3 142 sl | M
Upt(X1, X2, X3) = 2mKi(X°+1 X' X?) 2mLiX Z 2K MiX! <X2 + f) ’

mEZ
(1.64)
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where
k l r3 _
K:ng, L:TT7 M:Fm, m,kJEZ (165)
Now we follow a similar procedure as in the simple case before. We consider K #
0. Plugging (1.64) into the Laplacian (1.62), setting 2, = X+ M/f + L/(Kf)

and G(zn) = F (X? + &) we obtain
szkl :e2TrKi(X3+f X1X2)627rLiX1 Z eQﬂ'K]V[ixl
meZ
1 .
x {agm — (2nK£)%:2 + — (2nKi(1 - taz,) — b0, )° }G(zm> .
(1.66)

The above can also be rewritten as
. 3 1y2 syl syl iﬂ'Kb
VQUk,l :e27rK1(X +f XX )eQTrLlX Z 627rKM1X exp |:_ o2 zm(fazm _ 2):|
MEZL
y { 9 A2 K2 c?

2~ Gy [0 202+ 20+ D] JH )

(1.67)
where we have defined
b2 + 2 irKb
H(z) = 2 P p 2 z(faz — 2)} G(z) . (1.68)
With a further change of variable
W = Zm a4 , (1.69)

Cf(a? + b2+ )

equation (1.67) becomes (for convenience we do not change notation in the first
TOW: 2, should be thought of as a function of w,,)

; : . irKb
VQUN _2mKi(XP £ X X?) 2nLiX? Z 2K MiX! exp [_ b1277+ = 2 (Eazm — 2)]
meZ
" { 5 47T2K262 b2 + 62
W (b2 + 02)2 a2 + b2 + 62

+£2(a® + b + cz)wfn] }T(wm) ,
(1.70)
where T'(w,,) = H(zy,). Finally substituting in (1.70) T'(w,,) = ®) (w,,), with

2rKc , 4 9 g\ L

taking (1.51) into account, we obtain

(V2 + M2, ) Ukin =0, (1.72)
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where the Klein-Gordon masses My, ; , are given by

42k (2n + 1)r31| \
Myt = b + %)z 1.73
BT (9)2 (a4 02+ ¢2) [ 2m[ke| (a® + 5%+ %) } ;o (173)
and we defined
7‘2 1 i 3 12 sy 1 c o1
U (a' 22, 2%) = || oo e PRI XX 27 LiXE §7 2mIMIX
INIV \/2nnl\/7 =~
xoxp [~ (fazm —2)| ®p(wm); kE€Z' ,meN
Pl prg ez smitamm n(wm) 5 ;n €N,
(1.74)
Note that the Uy, differ from the Uy, by a factor 4 “GTV \/2"1n!ﬁ’

being the volume (1.36). This has of course no influence on the mass, but
allows the Uy, to be orthonormal as we will verify later on. We rewrite the
above as (with A given in (1.71))!

Uklnx z? x

27rKi(X3+fX1X2)627rLiX1 Z e27rKMiX1
\l N V .\ /on l
| | 2 n meZ

itKb g M L s M L
M L a
<I>’\ X2+ = —_ ] ;
8 < et R (a2+b2+c2)>’
1=0,...,/k|—1, k€eZ* ,neN.
(1.75)

As in the simple case, the range of [ is finite, leading to a finite degeneracy in
the masses. This can be seen from the invariance of (1.75) under L — L+ K P,
where P = :—?p with p € Z: taking (1.65) into account it then follows that (1.75)
is invariant under [ — [ + kp. It is also straightforward to recover the results of
Section 1.3.1 by setting the parameters to the appropriate values.

The masses obtained in (1.73) only depend on the radius of the fiber, r3
(or 73¢). This is a way to understand the modes just discussed as coming from
the fiber. As in the simple case, there should be other modes coming from the
base, independent of the fiber coordinate. The most general decomposition of

L As a side remark, we indicate that the product of exponentials can be rewritten as
2itK 2ir K
b (b(X2P X2 ——z + z )} ,
b2 + 2 b2 + 2 ( ( m) 2 "

where each of those two exponentials gets acted on non-trivially by only one of the three
terms in the Laplacian (1.62). This might be of interest in generalizing the solution to other
nilmanifolds.

exp

Ax3 +lezm)} exp [
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such modes, invariant under the identifications (1.63), can be given in terms of
a Fourier basis, i.e. in orthonormal form

Vyolala?) = — @2niPX max? | p_ P o T%, pgcZ. (1.76)

r

5-

One then gets

2 2 1 2

(V2412 Vg =0, p2,=A4r’ ((fl)z + (7?2)2 +5 (a% + bi) ) :

(1.77)
As expected, these masses only depend on the base radii. The modes V, , and
Uy,1,n form the complete set of eigenmodes of the Laplacian on M3, as will be
verified later on.

We conclude this section with a summary of the results. We studied the
spectrum of the Laplace operator acting on scalar fields on the Heisenberg man-
ifold. The study revealed two types of modes. The first ones are limited to
the base torus (the V, ,’s), while the others are modes on the whole space (the
Ukin's). As expected, these modes reproduce the results of the simple case
a ="b=0 of 1.3.1. These eigenfunctions of the Laplacian will be the building
blocks we will use to obtain the eigenforms and solve the Dirac equation on
the space. For convenience in practical applications, we give a summary of the
results. The eigenscalars are

1 . .
Vp7q(z1,x2) _ \/‘7 62771PX1627T1QX2 7 (1.78)
with P =5, Q= %, p,q €Z, and
7"2 1 Sy 3 142 syl -1
U (El .’£2 1,3 _ eQTrKl(X +£ X X )6271'L1X 6271'KM1X
k,l,n( ’ ’ ) |N‘V 2”77,'\/% Z
meZ

irKb (o, M L , M L
XeXp{_bQ—FcQ(X —i—f-i-[(f)(fa(X +f+[(f>_2>:|

M L a
X2 — - 1.
8 "< T T RE f(a2+b2+c2)>’ (1.79)
with 1 =0,...,]k| =1, k € Z* ,n € N. Their eigenvalues are respectively
2 2 2
2 _ 42 P q L/ p q
472 k> (2n + 1)r3|f] 3
Mg, = 1 2y 4z . (18l
k,,n (7‘3)2(a2 +b2+82) |: 27T|]€C| (CL + +c )2 ( )

The eigenscalars and their eigenvalues are related to one another by the two
equations

(V2 +pup WVoq =0, (V24 MZ;,)Upkin=0 (1.82)
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where the Laplacian reads

N> [0, 2\? 1 01 Oy 95\ 2
V2< > +<762f1"1x1r3 JrcfQ far—lfbﬁwL(lJrfbrlxl)r—?) .

' (1.83)

Orthonormality and completeness of the basis

We now show that the modes (1.74) are orthonormal, i.e.

/dgl‘\/‘gUkJ)n(xl,.’EQ,I‘S)ng7l/’n/($1,3’:2,1}3) = Ok k' O, O - (1.84)

To that end, we compute the left-hand side given by

- 2 1 o
~|N|2malyT

) 1
d?’x e27rla:3(k7k’)627rlfrf3xl(kzm‘k,l—k’zm/,k/’l/)
[0,1]3 (185)

m,m’€Z

X e r3(blgicT) (kzm,k.l(fazm,k,l—2)—k/sz,k/,l’(fazm’,k’,z’ —2))

X O (Wi e, t) Py (W i 1)

where 2z, ; and wy,, ,; correspond to z, and w,,, and we refer to Section
1.3.1 for the definitions of the various terms. First, the integral over x® gives
k.- Then, the integral over z! imposes similarly [ — I’ = —k(m — m’). Since
0 <1< |k| —1 and similarly for I, one deduces |m —m/| < 1 i.e. m = m/, thus
I =1". We deduce 2y, k,; = zm kv and similarly for w,,. We are then left with

r2 1 !
=601y — — dz? N (Wi 1.1) PN (Wi 1) - 1.
K,k 01,1 IN]| an!ﬁé/o z” &) (w ,k,l) (Wi k1) (1.86)
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We recall that w, r; = % (N2? + m+w) with w = £ — 8~ So

r2f(a?+b2+4c?)
5kk/(5ll Z/ 7y —(y+w) @A/()
|N| 2nn'f N N n
m—+1 dy

5kk5ll2n '\f / 1] (2(y+w)>¢>2,(...)

+oo 7,2
5kk6ll2n '\/>/ (j\za ( ( —i—w))qﬂ(,.)
= Sppr /md X (2)) (2)
ko QLU Sy = '\f z n

+oo
= I — d D,
(Sk;’]€ 5l,l 2"n!ﬁ /_Oo du n(u) n (u)

1 Foo )
:6k’k,§l’l/m/_oo due Hn(U>Hn/(u)
= Ok 01,10 Oy -

N+m

(1.87)

This concludes our proof of (1.84).
Lastly, the interested reader can find the proof for the completeness of the
set of modes in [37].

1.3.2 One-form spectrum

Following the study of the scalars on the Heisenberg manifold, we now
turn to the one-forms. Of course, our knowledge of the eigenscalars will be
our main tool in this study. The approach will be the following. We start by
laying out the equations for the one-forms, along with introducing the Hodge
decomposition for it. We then study each part of the decomposition. We will
see that the study of one-forms can be essentially reduced to the study of co-
closed one-forms. Once done with solving the Laplace equation for co-closed
one-forms, we discuss higher forms using Hodge duality and give a summary of
the results.

Hodge decomposition and exact one-forms

We are interested in the one-forms B on M satisfying the eigenvalue
equation
AB=1B, (1.88)

for a constant Y. The Laplacian operator is given by AB = (xd+xd+d*d*)B
where d is the exterior derivative on M with the Hodge star . The latter is
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defined on a p-form in D dimensions as

* (de™ AL Ada™r) = (Di '|‘q1|))‘em1""”Pnp+l,,,nD dz"**t AL A d2™P
1
= % (eal VANAN eap) = WGQI"‘QPap+1...aD et AL N eP 5
(1.89)

with €14 = 1 and curved or flat indices raised by g, or d,p respectively. We
also recall for a p-form A, that 24, = s(—1)P(P~P) 4, = s(—1)P(P+D A where
s is the signature of the D-dimensional space, i.e. *2 = 1 for our M.

The Hodge decomposition of B gives

B=do+dby+h, (1.90)

where ¢ is a globally-defined scalar, by a globally-defined two-form and h a
globally-defined harmonic one-form on the nilmanifold. The three terms on the
right-hand side above are orthogonal to each other with respect to the canonical
pairing of one-forms on M. Let us examine the first one and look for exact one-
forms solving the eigenvalue equation. The function ¢ can be expanded on the
basis of eigenfunctions already found. In addition, one verifies that

Advy 4 = _f‘z%,q dvpg ., Adugn = —M,?ylyn dugin (1.91)

from which we deduce a basis of exact one-eigenforms. These do not admit a
zero-mode, since one should exclude dvgy = 0. Using the orthonormality of
the eigenfunctions and proceeding as in the case of the scalars, one verifies that
these exact one-forms are orthonormal, up to a rescaling by i, 4 or My -

We now study the other two pieces of (1.90), which are co-closed: this
amounts to imposing the condition

d'B=0 & d*B=0. (1.92)

If one considers a theory with a gauge symmetry, (1.92) can also be viewed as
a gauge-fixing condition. Indeed, for such a theory, the exact piece of B could
be removed by a gauge transformation, without loss of generality.

Co-closed one-forms

We expand B as
B = pq(x)e*, (1.93)

with some scalars ¢,(x), a = 1,2,3. The exterior differential is also expressed
on this basis as

d=¢e"V,, (1.94)
where the vectors V,, introduced in (1.6), are given by
O 02 1103 03
i=3 Vo= 5 —talrl 5 V=3 (1.95)
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Using (1.89), the co-closed condition (1.92) takes the form
6V, 0, =0 . (1.96)

Moreover using the above equation (1.96), and the fact that Ap = 5%V, V; ¢
(see (1.60)), we compute

AB = (£Vaps + £Vaps — Apr) ! + (—£Vips — £V01 — Agy) € (1.97)
+ (£Vips — £Vop1 — Aps + £203) €, '

where we have used (1.96) and the commutations (1.6) of the V. The eigenvalue
equation (1.88) then gets decomposed on its various components as

fVaps + V302 — Ay = Ty (1.98)
—£Vigs — £V3p1 — Apa = Ty (1.99)
£Vigs — Va1 — Aps + £203 = Tog . (1.100)

We now expand our functions ¢, on the basis of Laplacian eigenfunctions pre-
viously determined,

Pa=0ab Y Cppptkin+0ab Y Db vpg (1.101)
kil,n P.q

with C' and D constant coefficients. The equations to be solved are linear, and
the dependence on z® in g, is exponential, so this dependence will not get
mixed between the two sums above; this is related to the orthogonality of the

eigenfunctions. We then treat these two sums independently.

Forms independent of z3

We start with the expansion of the ¢, (1.101) on the v, ;. The fact that they
are r>-independent simplifies the action of the V,,. The condition (1.96) and the
three equations (1.98), (1.99), (1.100), become

PD} ,+QD;, =0 (1.102)
itQD; , + (P> +Q*)D, ,=TD,, (1.103)
—itPD, ,+ (P*+Q*)D; ,=TD; , (1.104)
itPD; , —itQD, ,+ (P> +Q*)D; ,+£°D;  =YD3 . (1.105)
where we introduce
pP= QW% Q= 27r7% , PP QP =12, (1.106)

All solutions (except the trivial Dzl,zgf’ = 0) lead to the following eigenvalues
T =Y

£2 £2\°
Yi”“—P2+Q2+2i\/<P2+Q2+2> —(P2+@Q%)?* >0, (1.107)
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which solve the equation
(P4 = (Y= (PP+ Q) —£)(Y - (P*+ Q%) . (1.108)

The coefficients Dy , are fixed by the previous equations, giving the following
eigenforms

*rp,q _ P2 2
Forp? +¢*#0: BY'=D,, v, (Qel — P2+ = ( +Q )63>

if
0,0 0,0 0,0
Forp=¢q=0: Y =0: By :D070v07oel , By = Do ovo,0 e?
0,0 0,0
Y+’ =f2: B3’ = D()’() 00,0 e

(1.109)

Using the orthonormality of the v, 4, one verifies non-trivially that the above
forms are orthonormal

/ng A *Bg’q/ = 8y Og.qOecs (1.110)

upon fixing the normalisation constant D, 4, using (1.108), to the value

1
Dpq= forporgq#0, Dyo=1. (1.111)

VI P4 Q2

3

Forms dependent on x

We turn to the expansion of the ¢, (1.101) on the uy ., which depend on z3. We
first compute from (1.57), with y = |/\\%wm, A= k%f, and the normalisation

factor norm,, o (2"n!)~2

. q . . 2
Vit i = norm, |A|3 27K £N e g2rnlia! S ambmis! |3 4o~ son(\)yH,,(y) |

meZ
(1.112)
Voug,in =
- . B 72
normn|)\|%e2ﬂkl(w3+Nw1m2)e2ﬂ'l1ajl Z ekamlwl \)\ﬁe*% (fyHn(y) n H;(y)) )
meZ
(1.113)

We use the following properties of the Hermite polynomials Vn € N, with H_; =
0,

H! (w) = 2nH, _1(w)

2wH,(w) = Hyyq(w) + 2nH, 1 (w) , (1.114)
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to reconstruct the various uy ;. We get Vn € N

1
Viug,in = |)\\%§i sgn() ( 2(n+ 1) uk g my1 + \/2nuk717n,1) ) (1.115)
11
Vatrn = A2 5 (— 2(n+ 1) uk g1 + \/2nuk,l,n71> , (1.116)
Al
Vauk,in = %1 sgn(A) ki (1.117)

with uy ;-1 = 0. For convenience, we now change notations with respect to the
constant C' of (1.101), after which we have

2
/ C
= Z Cvlzuk,l,n 2nn)! , P2 = Z muk%n\/ 2npl ,

neN neN
3

ps=3 %"uk,lm\mnn! , (1.118)

neN

where in the new constants ¢ we drop for simplicity the indices k,! although
they should be understood as present.

This material allows us to reformulate the various constraints. We start with
the condition (1.96) that becomes

1, Az
SN sen () ( A2 (e — ) + f'> V2
neN
=0, (1.119)

where we introduced cl_f = 0. Each term of the sum should vanish, leading to,
Vn € N,

1
C3|>\|2
nof

We introduce for future convenience 01’2 = 0, giving with (1.120) ¢, = 0. We
turn to the Laplacian equations: (1 98) and (1.99) lead respectively to, ¥Yn € N

= (e 1) F2(n+ 1) (—cnpr F i) - (1.120)

Cn(Mi = 1) + nl/\\+ (o + Den1 = cpq) =0

(1.121)
|Al2E \ 2f

n(ME 1 = 1) + Al + == 2(n+ 1)ep g +c5y) =0,

where we used (1.91) for the mass. We add and subtract the above two equa-
tions, use (1.120), and obtain ¥n € N

(M =T+ A = (n+ 1)E) (e, + ) = 2(n+ 1) (n +2)£2(cppp — ¢ 1) = 0

(1.122)
f2

(Mg =T = N+ %) (= + 03) = S lepa + 6hg) = 0.

(1.123)
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Finally, using again (1.120), (1.100) becomes Vn € N

(M 1 =T NH£2) (e, ) F2(n 1) (MR =T+ +57) (4 —ciiq) = 0.
(1.124)

Introducing
vn > -2, ¢t =cl £ (1.125)

n

c Mf'% =—ct ; —2(n+1)c, (1.126)
(Mg =T+ A= (n+1)£*) —2(n+1)(n + 2)£3c,,, =0 (1.127)
ey (M2, =T — [\l +nf?) + %cgﬂ =0 (1.128)
(M =T = [N+ £2) + 2(n + D (ME = T+ [N +£7) =0

(1.129)

Equation (1.126) determines the coefficients ¢2 in terms of c¢}2. In their
turn the c»? are determined by the system of equations (1.127)-(1.129), which
is overdetermined. To see this more clearly it is convenient to perform a shift

in the index n, to bring the system to the following form,? Vn € N,

¢t (an — (n+1)£%) —2(n+ 1)(n+2)f%c, , =0 (1.130)
2+ 2¢, o (0 4+ 2[A[ + (n+2)£%) = 0 (1.131)
A (an +£2) +2(n+ 2)c, o(om + 2|\ + £%) =0, (1.132)

where we have introduced «,, = M ,f’l}n —T+|A|, and we have taken into account
that Mg, ., = M{,, +2p[A.

Equations (1.130)-(1.132) constitute a homogeneous system of three equa-
tions for two unknowns. Generically this system can only admit the trivial
solution where both ¢} and ¢, , vanish identically. The necessary and suffi-
cient condition for the existence of a non-trivial solution is the vanishing of all
2 x 2 sub-determinants of the 3 x 2 matrix of coefficients. Remarkably, the three
conditions thus obtained turn out to be identical: the system admits non-trivial
solutions for ¢, ¢, 4, provided a, obeys the following condition

4 an(F2+2\) —2(n+ DNE2 =0, (1.133)

which ensures that all three equations (1.130)-(1.132) become equivalent. ¢,

n
and ¢, , can then be non-zero, and one is given in terms of the other. From

2We are looking for a solution to the eigenvalue problem (1.88) with a given Y, and the
latter should therefore be considered as fixed. The solution is given by a set of coefficients
ch®®. Equations (1.127)-(1.129) involving these coefficients have been obtained by projecting
a sum over n on each uy; ,, but the projection could have been done equivalently on each
Uk,1,n+1, leading to shifted equations. Doing so would have given equations describing the
same solution with eigenvalue Y. So when shifting equations (1.127)-(1.129) as done to reach
(1.130)-(1.132), Y is considered as fixed.
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(1.133), v, and therefore Y is determined in terms of n; having other coefficients
ct, m € N, would then lead to different T and thus correspond to different
eigenmodes. For a given n, the system is then solved by setting ¢t = 0 for all
m, except for ¢ and ¢, ,. This implies that the non-vanishing coefficients of
the eigenmode are cy?, ci?, and ¢ ;. Moreover, those are determined up to
an overall constant, corresponding to the normalization of the one-form.
Explicitly, the eigenforms Bi"l’” and their eigenvalues T = Yfl’” (we recall

keZ*,neN1=0,...,|k|] —1) are given by

3
kiln _ E k,ln _a
B:I: - spa €
a=1

1 Vi +1)(n+2)f2
where @’f’l’" = 50\/ 2nn]! (uk,l,n - (n+ 1)in +2) Uk,l,n+2>

an + 2|\ + (n + 2)£2

B i n+1)(n+2)f2
<P]2€’l7 = —isgn()\)cx/m (Uk,l,n + ( ) ) Uk,l,nﬁ)

an + 2|\ + (n + 2)£2

1 £i/2 (o, + 2|2
kln _ L/l (n+1)(o + 2| l)
2\ an + 2]\l + (n+2)f

3 - Uk,l,n+1 5

(1.134)

with ¢ a constant to be determined by the overall normalization, and

1 1.,\°
YU = ME, L 42N+ §f2j: \/(|)\| + 2f2) +2(n+1)\2 >0, (1.135)
with M7, = i‘—j + (2n + 1)|A|, or more explicitly
21 2 1
kilnm _ 12 2

+ 2—7T|kf\ + g2 2 +2(n+ 1)2—7T|k:f|f2
r3 2 r3 '

(1.136)

As the coefficients " depend on oy, = M2, — Y™ +|)|, each of Y4 leads
to a different eigenmode B. The orthonormality of the eigenforms is expressed
as

k,l,n kU 3 ab, klmn,e, Kk'\l';n e __
/B6 /\*Be’ - /d x\/-ad Pa “b _5k,k'6l,l/6n,n’5e,e/ s

(1.137)
for ¢ = +, by appropriately choosing the constant ¢. The orthogonality can be
verified using the orthonormality of the Uk,l,n-g

3More generally, one can consider two co-closed one-eigenforms B1, By of eigenvalues Y7, Ya
in three dimensions. Using that A A *B = B A %A for forms of same degree, and integration
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1.3.3 Higher forms and summary

In a three-dimensional space, the spectrum of the two- and three-forms can be
deduced respectively from that of the one-forms and the scalars. Indeed, one
can always rewrite a p-form A, in terms of its Hodge dual as A, = *B3_,, and
one verifies that

AAy =TAs & AB; =TB; s AA3 = TA3 < ABy=TByq . (1139)

The complete spectrum of scalars and one-forms, as well as the basis of eigen-
modes, thus provides those of the two- and three-forms by a simple application
of the Hodge star. We summarize the former in Table 1.1.*

Eigenmodes Eigenvalues
Scalars Upq in (1.57) —pi. o in (1.56)
Ut 0 (1.57) | —Mi,, in (1.56)
Exact one-forms dvp,q with pg # 0 fu% ¢
du 1.n M),
Co-closed one-forms | BP7 in (1.109) Y% in (1.107)
BFEin (1.134) | Y2 in (1.135)

Table 1.1: Scalar and one-form eigenmodes with respective eigenvalues for the
Laplacian on the three-dimensional Heisenberg nilmanifold.

Finally, note we can introduce the following real eigenforms

1

I 1 _
kln _ k,l, kL, 4 , ;
Bri" = S (B + BetT) | B = —5(BEY + BEY) (1.140)
One has
/dsw G Uk Uk 1 = O~k X ooy /d?’x\/g Up,qUp',q' = Op,—p'Og,—q’ -
3 3

(1.141)

This implies that {B¥!"} or {BP2} form an orthonormal set if one restricts
e.g. to kk’ > 0 or pp’ > 0,qq" > 0.

Importantly, it should be noted that the case of an arbitrary metric hasn’t

been discussed. The study could be repeated in a similar fashion to obtain

the spectrum with the dependence on the parameters a and b of metric moduli

by parts, one can show
Y2/31A*E:/*BlAAE:YI/BlA*E. (1.138)

This implies that Bj is orthogonal to Bg if Y7 # Ys.

40ur convention for the Laplacian operator is such that A = xd xd + d * d* on any
p-form, p > 0. This is the reason for the different signs of the eigenvalues summarized in
Table 1.1, where we recall that Y9 > 0 and Y:IE’Z‘" > 0. The more conventional definition,

A = dfd 4 ddf, would provide a positive sign to all eigenvalues.
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space. When we will study the compactification of Yang-Mills theory on the
Heisenberg manifold, we will use the Euclidian metric § since the goal is to
develop a basic understanding of these type of spaces. This is still however
an important question. If we were to study gravity on the product space of
Minkowski times the Heinsenberg manifold, gravitational couplings between the
two space could lead to dynamical modifications of the spectrum. This is outside
the scope of this thesis, but would certainly be of interest if extensions of the
Standard Model can be found through the use of this geometry. For now, we
will simply show how the first massive mode of the one-forms is modified in the
case of a non-trivial metric.

As mentioned in 1.2.2, once a metric has been chosen for the space, we can
always choose a basis in which the metric is the Euclidian one. This gives the
basis of one-forms E® from equation (1.26). The eigen one-forms are linear
combinations of the coframe associated with the metric. We write

3
A=Y "cE", (1.142)
a=1

where the ¢,’s are real constants to be determined in the following and,
E'=c' tae®; E?=e?+0be®; E3=é (1.143)

From the expression of the eigenvalues for the one-forms, we see that in the case
of an undeformed metric (a,b = 0), the low-lying Laplacian eigen one-forms are
el2, which are harmonic, and e®, which has eigenvalue £2 (see eq. (1.102)). To
see how this spectrum is modified for a general metric (a,b # 0), we need to
compute the action of the Laplacian A on A

3
AA = "c,(dd" +dTd)E, (1.144)
a=1

where df = xdx. The Hodge star is calculated with respect to the metric (1.26),
and operates canonically on E®

3
a 1 abc b c
* B = ibzle E" A E°, (1.145)

while the action of the exterior derivative on E“ is calculated from (1.7), (1.143).
It is then easily verified that the coframe is co-closed, dtEe = 0, and,

AA =£2(a® +b* +1)(acy + beg + c3)(aE' + bE? + E®). (1.146)

Setting ¢; = a, ¢y = b, c3 = 1, it follows that aE' + bE? + E® is a Laplacian
eigen one-form with eigenvalue £2(a? + b + 1)2. Moreover, we obtain a two-
dimensional space of harmonic one-forms, parameterized by the solutions of
aci + bey + c3 = 0. As we will later see, after compactification, the use of a
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non-trivial metric on the space doesn’t really bring any new parameters, it just
modifies the "geometrical" mass. But more on this later.

This concludes our study of forms on the Heisenberg manifold. The last in-
gredients we need in order to have all the tools for compactification and model
building are the eigen-spinors of the Dirac operator. We now address this ques-
tion.

1.3.4 Dirac operator

In this section we will solve the Dirac equation on the Heisenberg manifold
[39]. To do this end, we must first fix some conventions for our spinors. Once
this is done, we will lay out the system of equation explicitly, and use the basis
of eigen-scalars to try to find a family of solution for the Dirac operator. As in
the previous case, we will first study the Dirac operator with a flat metric on
the space. This will build our intuition in order to solve the general case. The
story goes similarly to the case of the one-forms.

Simple case a =b =0

As a warmup let us consider the Dirac operator eigenvalue problem on Mgj in
the simplified case a = b = 0. The Dirac eigenvalue equation reads,

(D—=NY=0; D=7"€"0(0n + twmpr"), (1.147)
where wy,p. is the spin connection. The independent non-vanishing components
of the flat spin connection wgepe = € qWmpe 0N M3 are given by

f
Wiz3 = W23l = —Ws12 = o (1.148)
The Dirac operator then takes the form
f
D ="V +iy, (1.149)
where the V,’s were given in (1.6). The +*’s can be taken to be the Pauli

matrices, so that (1.147) reduces to the following set of equations,

Vaths + (Vi = Va)bs — (A= i) =0

(1.150)
Vs + (Vi +iVa)h = (A= i) = 0.

Next we expand the two-component Dirac spinor on the complete basis of Lapla-
cian eigenfunctions on M3,>

Cl Dl
Y= (ig) = Z (C’g,lm> Ukt + pzq: (D%Z) Vpas (1.151)

kdn k,l,n

5This expansion implicitly assumes that the Dirac spinor on M3 returns to its original
value after a going around each of the three circles parameterized by x®. This condition can
be relaxed, leading to what is known as nontrivial spin structures [41].
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where, following [38], we use the notation uy;, and v, g, for the a,b — 0 limit
of the functions given in (1.75) and (1.76) respectively. Since the two sets of
functions are orthogonal to each other, we can treat the two cases independently.
The action of the V,, on the v-basis reads,

Vivp,qg =iPvpq 5 Vatpg =iQuUpq , V3Upq =0, (1.152)
so that (1.150) reduces to

. . 'f
i(P— ZQ)DZ,q = (Apg — ZZ)D:zqu =0

£ (1.153)
i(P +iQ) Dy = (Apg —i3) Dy = 0.
From this system we deduce the eigenvalues
f
~idpg =7 EVPT Q2 (1.154)
and the corresponding eigen-spinors
/P2 2
Vp.q = <Up’q ) ;oa=% JfQ ) (1.155)
QUpq (P —iQ)

up to a normalization constant C € C.
Let us now turn to the g, series. Using the action of the V’s on the basis,

. ol .
iVaug,1n = Jjj|Slgn(ﬂ)wc,l,n
olz
Vougin = | 2| (— 2(n + Dug i nt1 + \/%Uk,z,rhl) (1.156)
1
. oz
Viug n = — d sign(o) (\/Q(n + Dug i n+1 + V 2nuk,l,n,1) ,

with o defined in (1.71), we obtain

. f o 1 _
[1)\k,l,n + (Z + E)}Cli,l,n = *|0|é [p*(cr) \% anlg,l,n—l +p (0)v2(n+ 1)C£,l,n+1]
. f o ir _
[Nk + (Z - ?)}Ci,l,n = —|o]Z [p (o)v chii,z,nﬂ +p"(0)V2(n+ 1)Cé,l,n+1]7
(1.157)
where we have defined p* (o) = M. We thus obtain
. f o) .
—i\kin =7 + 7 + lo|(pt(o)2n 4+ p=(0)2(n + 1)). (1.158)

Note that the set of eigenvalues is the same for either sign of o: they are just
offset by one increment of n. Moreover there is a degeneracy, since in there is
no dependence of the eigenvalues on [. The associated eigen-spinors read

Vi =C < Uhk,d,m > 7 (1.159)

pt(o)augin1+p (0)Bukini1
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where C' € C is a normalization constant and,

2
2+/(5) +lol2n

2 \/(5)" +1o0n 1)
EENCCER R

ﬁ:_

(1.161)

Non-trivial metric
For the most general metric given in (1.35), the Dirac operator takes the form
D =~"E™ (O + twimper™), (1.162)
where E™, = (E~1)™,, is the inverse vielbein associated with (1.35), so that [37],
Vi
ETo= Va , (1.163)
Vs —aVy — bV,

with the V,’s given in (1.6). Moreover the independent non-vanishing compo-
nents of the flat spin connection wyp. = E™ qwmpe read

wip = —fa; wig=1fab; wig = 3f(—a®+b* +1)
worz = —fb; worz = *%f(az — b+ 1) ; waz =—fab (1.164)
w312 = %f(a2 +0% - 1) i wais =1fb;  w3es = —fa.

Taking (1.163), (1.164) into account, (1.162) reduces to

f
D =~4"Vi + Vo +4* (V3 — aVy — bVa) +i1(1+a2+b2). (1.165)

As in the case of the scalars and one-forms, the spectrum falls into two distinct
series, depending on whether or not there is non-trivial dependence on the x*
coordinate. Let us first examine the x3-independent case. We expand the Dirac
spinor as follows

Vpg = (g) V. (1.166)
for some constants «, 5 € C. The action of the V, on the V], ,-basis (1.76) reads
ViVpg =iPVyg; VaVpa=1QVog, ViV =0, (1.167)

so that the eigenvalue equation

Dy = A, (1.168)
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reduces to
—aPa+ (P —iQ)B + [iApq + 1£(a® + 0> +1)]a =0

bQB + (P +iQ)a + [iAyq + 1£(a® + 6% + 1)] 8 = 0, (1.169)

where we have taken (1.165) into account. From this system we deduce the
eigenvalues

“idpg = 1£(a2 + B2+ 1) + L(bQ — aP) £ \/P2 +Q2 + LaP + Q)2

(1.170)
The Dirac eigen-spinor (1.166) is determined, up to an overall normalization
constant, by the equation

$(aP +bQ) + \/P2 + Q%+ L(aP +bQ)?
g = P10 a. (1.171)

In the case of nontrivial 23-dependence the relevant basis is given by the polyno-
mials (1.75). In order not to clutter the notation, we will present the calculation
of the spectrum for the case o > 0, cf. (1.71). The U-polynomials obey

(Vs —aVi — Vo) U 1 = KUk 1n + \/g ('LU*\/ (n+1) Ukpnt1 —wyn Uk,l,n—l)
(1.172)

V1 +iVa)Ukn = (1.173)
k2Uk, 1 + z\/g (\/ (n+1)(B- 4+ bw*)Uk 1 nt1 + vVn(By — bw)UkJ)n_l)

(Vl — i‘/vQ)U]c’l)n = (1.174)
HZ*UkJ,n + i\/g (\/ (77, + 1)(B+ — bw*)Uk,l,7L+1 + \/H(B_ + bw)UM,n_l) R

where we have defined

2miK ia 142
zi=a+ib; kKi=——; Wi=bt———e—; By =414+ ———.
14 |Z‘2 /1+ 2|2 + ( ) 122 BB
(1.175)

Let us now come to the Dirac eigenvalue problem. We start with the following
ansatz for the Dirac spinor:

Uk i.n + BUk 1 n—1
= " i . 1.176
v <7Uk,l,n—1 + 5Uk,l,n) ( )

49



Imposing

.z o\ — (@ Ukin + B'Ukgn-1
[D =i (L [2*)]w = (v’Uk,z,n_l +Upn ) (1.177)

for arbitrary coefficients o', ', v/, ¢’, taking (1.172) into account, leads to a
system of four homogeneous equations for the four coefficients o, ..., . Noting
the identity

(B_ +bw)(By — bw) = w?, (1.178)
this system turns out to be equivalent to the following two conditions
i(B_ +b i(B_ + bw*
ﬂ:%v; 5:Z(w+w)a, (1.179)

where it is assumed that a, b are not both zero. Imposing in addition the eigen-
value equation
Dy = Xm0, (1.180)

taking (1.179) into account, leads to a system of four homogeneous equations for
a,. Clearly this is highly overdetermined. Remarkably, however, the system
admits a nontrivial solution, provided

—idkin = (14 |2?) £ \/fjfjli FArnKE/I+ 2], (1.181)

where we took (1.71) into account. As was observed in the case of the scalar
spectrum, the eigenvalues depend on the a, b parameters only through the norm
of z. As in the previous cases, we see that there is a degeneracy, since the
eigenvalues are independent of [.

1.4 Summary

In this chapter, we explored the concept of nilmanifolds. After a general
introduction, we discussed in great detail the structure of the Heisenberg man-
ifold, the simplest (i.e. the lowest dimensional) example of a nilmanifold. We
worked out a geometrical interpretation of this space as a torus with a circle
fiber. We then studied fields living on the space, first by solving the Laplace
equation for scalars, then using this result to solve the Laplace equation for
forms. The various eigenmodes always come in two families, one living on the
base 2-torus, the other living on the whole space. One of the attractive feature
of this space is that all the Kaluza-Klein spectrum is explicitly known for all
the fields, allowing great control over the compactification of the theory. Let us
remind the reader of the main properties of the space, they will be relevant for
the following chapters. The space is first characterized by its radii !, 2 and 3,
the first two form the base 2-torus, while 73 is the radius of the circle fiber. Next
we have the parameter £, the only non-vanishing structure constant of the local

a0



nilpotent algebra. It is proportional to N which was the parameter controlling
the twist of the circle fiber. In our study we found the relation £ = N73/rlr2
with N an integer, and we also were able to compute the volume V = rlr2sr3,
These two parameters will be the main leftovers of the geometry once our theory
will be compactified, along with the field content. We are now finally ready to
dive into the physics of this space.
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Chapter 2

Compactification

The last chapter was dedicated to the study of nilmanifolds and in par-
ticular to the Heisenberg manifold. We solved the Laplace equation for various
fields, giving us a basis on which we can expand fields living on the Heisenberg
manifold. With these tools in our hands, we can dive into the study of the
compactification. Of course, in order to study the physics associated with the
compactification on this space, we must specify a theory. A sensible choice is to
study the compactification of Yang-Mills theory. This has two main interesting
aspects. The first and foremost is the hope to find a model which would relate
the gauge group to the scalars of the theory. In quantum field theory, the gauge
group is structured by the local symmetries of our theory. The scalar sector on
the other hand has no guiding principle. Trying to explain the origin and struc-
ture of the observed Higgs field is a major question. Compactification models
have this very property of generating scalars as a byproduct of the compactifi-
cation. These scalars are intimately related to gauge, giving an origin story to
such fields. In that framework, scalars are not fundamental objects of nature,
but rather the approximate degrees of freedom of the gauge fields living on the
extra dimensions. Of course this is not a new idea. The model from Kaluza
and Klein [42,43] initiated this line of reasoning. Their work was concerned
with how electromagnetism could be related to gravity in 5 dimensions. This
model inspired several lines of developments. The usual story for compactifi-
cations in the context of Yang-Mills theories uses tori as the compact space.
The problem of such models is that the low lying scalars that are generated are
massless, leaving the task of giving them a mass to quantum corrections. This
of course sets the scale for the masses of the scalars to be of the same order
as the coupling constant. This fails to give high enough masses in practical
models. But our story is different. As we will see, the 4-dimensional model
keeps some information about the non-trivial structure of our compact space,
more specifically of the local algebra, resulting in a mass at tree level for one of
the scalars. This is one of the main results of this model. The twisting of the
Heisenberg manifold is seen as a mass scale for the scalar of the 4-dimensional
theory. This chapter will be composed of two parts based on the work done

92



in [39] and [44]. The first part will focus on the compactification of the gauge
fields, giving rise to an effective field theory composed of scalar fields and the
4-dimensional gauge fields. This compactification will be general in the sense
that we won’t need to specify the gauge group. We will then move on to the
study of the compactification of fermions.

2.1 Reduction of 7-dimensional Yang-Mills the-
ory to 4 dimensions

We start by giving the seven-dimensional (7d) pure Yang-Mills action for
a gauge group in the adjoint representation of a general Lie group G:

S= Tr(F A #7F) = / Tr(taty) F A x7F° (2.1)
M7 M7

where F is the field strength, a two-form that takes values in the Lie algebra
of G, the t,’s are a basis of the Lie algebra under consideration (Einstein’s
convention on the summation of indices is implied), and *7 is the Hodge star
in seven dimensions. The integral is taken over M7, a 7d space formed of the
direct product of Minkowski space M, and the Heisenberg manifold Hs, i.e.

M7 = My x H3 . (2'2)
The field strength is expressed in terms of the gauge potential A as:
F =ta (dA® + 3 [ A" NAY) |, Firn =200 A%) + [ Al As . (2.3)

where the indices M, N run through the different coordinates on the 7d space
and f%. are the structure constants defined as:

[to, te] = taf e - (2.4)

Inserting the expression for the field strength in terms of the gauge potential,
allows us to rewrite the action in the following way:

S=8+83+84, (25)
where Sy = /Tr(tatb) dA® A x7d AY | (2.6)
7
Sy =2 / Tr(tat) 3 £ e dA® A x7 (A A AD) | (2.7)
7

Sy = /Tr(tatb)ifacd FPepAS A AL A x7(A° A AT (2.8)
7

Now we are going to use the following ansatz to separate the gauge potential as
a sum of 4d-forms and 3d-forms:

A* = A (2M)da™ = A% (M) dat + AS, (M) da™ (2.9)
= Z UI(acm)AZI(x”)dx“ + ¢ (z") By (2™)dz™ (2.10)
I
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where M =0,...,6, 4 =0,...,3 and m = 4,5,6. In a shorter notation, we can
write the gauge potential as:

AT =" AU + ¢ By (2.11)
I

where Ur and By are respectively 3d eigenscalars and 3d eigen-one-forms of
the Laplacian on the nilmanifold, while A%/ and ¢%! are a 4d one-form and a
4d scalar respectively. The I is a multi-index that sums over the basis of 3d
eigenforms. The analytical expression for these eigenforms was found in the last
chapter. By the property of Laplacian eigenforms, we have:

*3d*3 dU] = /\UIUI 5 *3d *3 dB[ = )\BIB[ 5 /\UI < 0 s )‘BI > 0 5 (2.12)

where the conditions on the signs of the eigenvalues come from the explicit so-
lution of the system, and we have restricted to co-closed one-forms. We refer
the reader to the last chapter for a detailed explanation. After certain manipu-
lations,' we get the following expressions for the different parts of the action:

Sy = /VOI4 Tr(tatb) ((Qa[MAZ]Ia#AbJV _ )\UJAZIAbJM) YUIUJ (213)
4

+ (6M¢alaﬂ¢a<] + ABJd)alﬁbaJ) YBIBJ) ,

S; =2 / voly Tr(tats) fbcd(Qé)[HAﬁ]’ ATHARY Y G (2.14)
4
+ 28H¢UJACJ ;qudK YU]BIBK
o 2AZIACJ H¢dK YUJdUIBK

+ ¢ 1o 6 Yup, B, By )

Sy = / voly Tr(taty) 3 f%caf e (2A7 AL AT AT Y Yy vvpv, (215)
4

—|—4AZJA6L'“¢dK¢fM YUJULBKBM

+ ¢5J¢dK¢eL¢fM YBJBKBLBIVI) )

where the Y'’s are given by:

YUIUJ = /VOlgU[UJ = /U] ANx3Uj | YBIBJ = /B[ N*3Bj ; (2.16)
3 3 3

1One needs in particular to decompose the 7d Hodge star into 4d and 3d ones. To that
end, the following definitions and properties are useful: we first take epi23456 = 1, and have
(x3)2 = 1, x3volg = 1, and (x4)?4, = (=1)PT1, %41 = voly, x4voly = —1 with A4, a 4d
form and By a 3d form. We also have 74, = %44, A vols, *7B, = volg A *3B,, and
*7(A1 A Bl) = — x4 A1 A *3B1.
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Yo,u,uk = /VOlsUIUJUK ; (2.17)

3
Yu,B,Bx = /3UJBI N 3Bk, (2.18)
Yo, av B = /3UJdUI N (2.19)
YiB,B,Bx = /3dBI A*3(Bj A Bg) ; (2.20)
YU,ukULUN = /3V013UJUKULUM ; (2.21)
YU,0LBxBy = AUJULBK N*3Bu (2.22)
YB,BkBLBy = /SBJ N By N*3(Br, A B . (2.23)

A problem remains: the sums over the indices I, J, K, L, M, are infinite sums
over the basis of eigenforms. If we want to make this action manageable, a
possibility is to organize these terms according to their masses and select only
the light modes.

2.1.1 The truncation

We would like to organize this infinite series of modes according to their
masses, which can be read off from the quadratic terms in S;. To space out the
masses as much as possible, we take the following geometrical limit:

1 1 1

This limit, known as the small fiber/large base limit [38] can be understood
by considering the expression for the masses Ay;,. Remember the scalar modes

come in two families:
2 2
2 2T
M;,Qy,q =p’ (7’1> +¢° (73) (2.25)

27 27 | £ ]

2
Mo = (%) + vy k) 20 (2:26)
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where p,q € Z, k € Z*, n € N, 1 =0,1,...,| k |. In the case of one-forms, the
expression for the masses A\p, were:

£2 £2)
qup2+Q2+2i\/<P2+Q2+2> —(P?+@%)?, (2.27)
, 2t
Yi’l’n = M’ilm +2 | k’l"i?’ ‘ (228)
2
1., 2t 1 2nf
7+ k—— | +=£2 2n+1) | k—- | £2 2.2
i \/(| T pt?) 2t ) 2, 29)

where P = p27/r!, Q = q27/r?. As shown in [38], we then have the following
lightest modes (in a basis of real orthonormal eigenmodes):

Scalars:

1
Ur= \/V ; /\U1 0, (2.30)
where we recall that V' = 717273 is the volume of the nilmanifold. This mode
correspond to the eigenvalue 1, 4 for p = ¢ = 0q. The following eigenvalues
go like ~ 1/(r12)2. The lowest mass for the M}, is of order ~ 1/(r%)? (for
|k| = 1,1 =0, n=0). This will be important when we will compare it to the
rest of the masses of the one-forms.

Co-closed one-forms:

1

Br— = —kvel : Ap, =0
1

B]:Q = W€2 H )\32 =0 (231)
1 .

Bi=3 = W@‘S i Apy = £? )

where the e one-forms satisfy the Maurer Cartan equation (1.8). We observe
that the lowest eigenvalue for the "™ is of order ~ My, ~ 1/(r®)? in our
geometrical limit. We can therefore conclude that the next masses in any of
the eigenvalue series are much higher than the ones we picked. The eigenvalues
define the masses for the selected modes. Almost all of these are massless except
for the one-form Bs, which has a mass £2 directly related to the local algebra
of the geometry, cf. Eqgs. (1.6), (1.8). The decomposition in Eq. (2.79) of the
gauge potential simplifies to:

3
A= AUy + > ¢"' By . (2.32)

I=1

The resulting non-vanishing couplings are as follows,

YUlUl =1, YBIBJ =417, (233)
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for the quadratic couplings, together with

1
YUIUJUK : YU1U1U1 = W

1
Yu,B,Bx © Yu.B.B, = N L=1,2,3

f
YaB,B;Bx © YdBsB:B: = —YdB3B By = i

1
YUIUJUKUL : YU1U1U1U1 = V
1
Yv,u;BeBL ¢ Yuouu BB, = Vv L=1,2,3
1
YB,B,BBL * YBiB2B1B, = YB1ByB1Bs = YByB3 BBy = v (2.34)

where in the last line we can also have anti-symmetric permutations of the first
two and/or the last two indices. After the truncation to these light modes, we
can finally write the action as:

3
S = /dx‘*’I‘r(%FﬂuF’“’ +3 . D,d D¢+ MP(6%)? + u) : (2.35)
I=1
where s
U=Te(—2gMlo" ¢%6° + 1g* 3 (07,0710 07)) | (2.36)
I,J=1

with F},, = 20}, A,) +g[Au, A)] and D, = 0, + g[A,.,-]. We have relabelled the
parameters such that g = 1/v/V and M =| £ |.

Lastly, we want to perform a set of transformations in order to retrieve the
usual Yang-Mills conventions:

ty — 1,
(2.37)
77;“/ — _77;41/ 9
resulting in the final expression:
3
S = /dx‘m( — 1L F 43 Do DRl — M2 (§%)? — u) . (239
I=1

where: s
U=Te( - 2gM[s", 66" + 3° 3 [0, 6710 6°]) . (2.39)
I,J=1

We see that the original seven dimensional pure Yang-Mills theory gives rise to,
upon compactification and truncation to the light modes, a low energy effective
action consisting of a four-dimensional Yang-Mills coupled to three scalar fields
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in the adjoint representation. Moreover, one of these scalars is massive and all
three scalars interact via the potential. The next step would be to understand
the structure of the potential in order the find a vacuum of the theory, i.e. a
local minimum of the potential. This is generally-speaking not a trivial question.
The potential has a total number of independent variables that are three times
the dimension of the Lie algebra associated to GG, meaning that even for low
dimensional Lie algebras, the number of real independent variables can be quite
large. We will discuss this in great detail in the next chapter. For the moment,
let us turn our attention to the compactification of fermions.

2.2 Reduction of gauge-fermion theory

In order to include fermions in our model, we now analyze how fermions
living on the 7-dimensional manifold would be compactified in the scenario
mentioned in the last section. Our approach is straight forward, we will use the
same ansatz for the gauge fields, along with the geometrical limit of a large base,
small fiber of (2.62). Let us start by fixing some conventions on the fermions in
the various spaces of interest before diving into the actual compactification.

2.2.1 Fermion conventions

In a space of arbitrary dimension and Lorentzian signature, the gamma
matrices are taken to satisfy

(rM)t = oMo, (2.40)
We define the antisymmetric product of n gamma matrices by
F]\/[l___Mn = F[Ml ~--FMn]~ (241)

Given a spinor 1 we define -
= ptTO, (2.42)

Given a spinor ¢ in a space of arbitrary dimension and arbitrary signature, we
define 5
Y=, (2.43)

where C' is the charge conjugation matrix. This has the property that for any
spinors 1, x, the bilinear ¥I'ys, . ar, x is an antisymmetric tensor of order n.

4D Minkowski space

The charge conjugation matrix in 1 4 3 dimensions satisfies
Cr=-C;  (Oy)" =-0y". (2.44)
The chirality matrix is defined by

Y=t () =1 (2.45)
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The fundamental, positive-chirality (Weyl), two-component, spinor represen-
tation 4 is complex, meaning that its complex conjugate ¥_ has negative
chirality. The complex conjugate ¢ of ¢ is defined by

QL— = E-}-a (246)

which also implies ~
by =—0_. (2.47)
We stress that these are not reality conditions: they simply define ¢_ in terms
of 1, or vice-versa. Indeed a reality condition would equate (up to a constant)
) 4 and %, which is impossible in four dimensions.
Let x4, ¥+ be arbitrary anticommuting Weyl spinors of positive or negative
chirality. We have the following useful relations

dixs =03 Yryuxe =0. (2.48)
The following symmetry relations are valid for Weyl spinors of any chirality
DX =X Yy = X (2.49)

It is also useful to note the following complex conjugation relations

(Prvux+)" = —Xaemuths 5 (bixs) = Xz¥+. (2.50)

Let us now consider an arbitrary anticommuting Dirac spinor ¥p. It can be
written in terms of two arbitrary Weyl spinors y; and 6

Yp =x+ +0_, (2.51)

where _ is the complex conjugate of 6, given by (2.46). The “Dirac mass” is
given by ~

Yp¥p =X 0- +0 x4 =Xx-0- — 0 x4, (2.52)
which is real, as can be verified using (2.50).

A Weyl spinor can be considered as a special case of a Dirac spinor whose
component of negative or positive chirality vanishes. Therefore it is sometimes
said that the Dirac mass of a Weyl spinor vanishes: indeed setting x or 6 to zero
would make the right hand side of (2.52) vanish. Nevertheless a mass term can
be defined for a single Weyl spinor: it suffices to set 1 = x4 in (2.52). This is
sometimes described as defining a Majorana spinor

Ynm = X+ + X, (2.53)

which is nothing other than a Dirac spinor whose negative-chirality component
is the complex conjugate of its positive-chirality component.? A real mass term
for a Weyl spinor x can then be written in terms of ¥,

Y m = X4 X— + Xo X4 = X=X— — X+ X+ (2.54)

This is sometimes called the Majorana mass.

2In our conventions the Majorana spinor satisfies the reality condition: (ys%as) = Was-
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3D Riemannian space

In a 3D space of Euclidean signature the gamma matrices can be taken to be the
Pauli matrices, while the charge conjugation matrix can be taken as C' = ios.
We have

T =-C;  (Cy™MT =0y (2.55)

The irreducible spinor representation of Spin(3) has two complex components.
We thus have the following useful symmetry properties

Py ey = (—1) 2P P2 gamamy (2.56)

where x, 1 are arbitrary commuting spinors. We define the complex conjugate
. of 9 via ~

P =T, (2.57)
so that . transforms as a spinor. We then have the complex conjugation
properties,

(Jer™ )" = —(~1)Pymr o, (2.58)

Spinors in 7D Lorentzian space

The irreducible spinor representation of Spin(1,6) has eight complex compo-
nents. In terms of an Spin(1,6) — Spin(1,3) x Spin(3) decomposition, the 7D
spinor ¥ decomposes as

b= (x4 +0-) ¢, (2.59)

where x, 6 are irreducible Weyl spinors of Spin(1,3) and £ is an irreducible
spinor of Spin(3). The seven-dimensional gamma matrices ' decompose as

TH=At®ly; TT =7 04", (2.60)

where © = 0,...,3 and m = 1,2,3. We are now ready to proceed with the
model and its compactification.

2.2.2 Compactification of fermions

We would now like to examine the 4D effective theory arising as the low-energy
limit of a 7D gauge-fermion theory compactified on the Heisenberg nilmanifold
M. The 7D Lagrangian consists of a Yang-Mills term L3} studied in the pre-
vious section and a fermion term Et;D. The effective theory in four dimensions,
L% will be given by

gt = / By (L + £5,). (2.61)

The right-hand side above indicates the KK reduction of the seven-dimensional
theory, and involves integrating over the three-dimensional internal space pa-
rameterized by the y-coordinates.

60



Moreover, we will place ourselves in the same limit as in the previous section,
i.e. we are taking the small fiber/large base limit,

1 1
|f|<<ﬁ’ 1 =1,2,3 = 7’7<< - (262)

In this limit all fields whose masses carry an r’ dependence (i.e. all the KK
modes) decouple, leaving in the theory only those fields with masses of either
the order of |f|, or zero. The fermionic Lagrangian will be taken to be of the
form

L8 =, TM (89 pp + i A5 p )5 + EFan ph DY NPy + Mo, (2.63)

where the hermitian matrices p%/ provide a representation R of the Lie algebra
of the gauge group, so that ¢,5 = 1,...,dim(R), and 1); transforms in the R
representation. We have also allowed for a constant background zero-form flux
(a mass term) My, and a three-form flux Fjsnp, which will be assumed to be

along the internal manifold M3 in order not to break the 4D Lorentz invariance.?
This implies that the only non-vanishing component is given by
anp - Mlgmnp; (264)

for some real constant M, and the Levi-Civita symbol is a tensor in our con-
ventions.
Our reduction ansatz for the 7D spinors is as in (2.59),

Vi = (Xix +0i—) ®E, (2.65)

where x;, 6; are Weyl 4D spinors and ¢ is a spinor on M3. We can already see

that the resulting 4D model will necessarily be non-chiral since, the 4D positive

and negative chiralities of the spinors both transform in the same representation
R.

We expand £ on a basis of normalized eigen-spinors of the Dirac operator in
3D

0"V i€ = A€, (2.66)

where the eigenvalues of the Dirac operator on M3 were given in 1.3.4. In the

limit (2.62) of decoupling of the KK modes, only the lowest eigenspinor is kept,
corresponding to eigenvalue A = i£(a? —|—b2+1) cf. (1.170). Moreover we assume

that £ is normalized: fdgy £7¢ = 1. Putting everything together we obtain

/ddy L?D - Ekinetic + LYukawa + ﬁmassa (267)
where
Linetic = Xi1 7" (698, +ig A5 p? ) x4 + 0:-7" (870 +igAlpl )0,
Lyukawa = i9(0i—X;+ — Xi10;-)p7 @ (2.68)

£mass = Mc gi—Xi-i— + Mc* YH—ei—)

3We may also allow for other types of fluxes, however this will result in a similar mass
terms as in (2.72) below, so we do not introduce them independently.
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and we have defined a complex “mass” M,
M. = My+i[M +£@®+v* +1)]. (2.69)
The adjoint scalar ®* is defined by

3

o=y el (2.70)
=1
where the three constants ¢! are given by ¢! := ¢fo’é. To make this more

explicit, let us give a parameterization for £&. Up to an unimportant overall

phase we may set
e P cos <
a=< s ) (2.71)
2

for some angles o, 3. We then find ¢! = sina cos 3, ¢ = sinassin 3, ¢® = cos a.
Le. ¢ can be thought of as a unit vector of R3.

The final expression for the fermionic 4D theory can also be expressed in
terms of 4D Dirac spinors ¥, :=iy;4+ + 6;—

/ &Py Lin =TTH(590, +igAlp )T, + gpif T, T; (2.72)

The 7D parameters My 1 are free (up to flux quantization), and can be thought
of as arising from the inclusion of constant background flux on the nilmanifold.

With the compactification of gauge fields and fermions, we now have the
possibility to explore realistic model building in this setting. The Yang-Mills
theory in 7 dimensions gives rise to a Yang-Mills theory coupled to three scalars
in 4 dimensions. The scalars have a potential involving three terms, a quadratic
mass term, a trilinear and a quartic term. In the context of a realistic model,
the fermions introduced here would not make good candidates for the matter
content of the standard model since they are both massive and not chiral. Those
problems could be circumvented by introducing localized matter on the nilman-
ifold. This scenario would make sense if we were to add for example orbifolds to
the geometry. This will be discussed after we study the potential for the scalars,
which will be done in the following chapter. But before that, I would like to
propose an introduction to a point of view on fermions not so popular among
physicists. The usual approach to fermions is done through the use of their rep-
resentations. When we discuss gamma matrices and their actions on fermionic
fields, we are really using matrix representations of the Spin(p,q) group and
their action on a vector space representing the spinors. A reasonable question
one may wonder about is how is the Spin group fundamentally defined, and
hence how are the spinors really defined on a given space. This next section is
an invitation to the formalism used by mathematicians to talk about spinors.
This part sits slightly outside of the main discussion, but is nonetheless useful
to the avid learner. The reader interested only in the main development of this
thesis may skip this part.
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2.2.3 Spinors as Clifford minimal ideals

We are going to use the notion of Clifford algebras to define spinors. The
purpose is to propose an alternative way of thinking about spinors. Clifford
algebras are central objects in the study of vector spaces equipped with a metric.
It is the natural space to describe all the geometrical objects associated to such
spaces. It can be used to formulate classical physics in a unified and compact
formalism. This algebra can be referred to as the geometric algebra [45] in this
context to emphasis its central role. This is not a complete introduction to
Clifford algebras and their full theory, but rather an invitation to another point
of view, less used in physics, but useful in my opinion. A This formalism is
powerful as it can be extended to encapsulate We start with the definition of a
Clifford algebra.

A (real) Clifford algebra is a (real) vector space, equipped with a metric g,
such that the following product is defined on the space :

{ep, e} =enen +evey =29, (2.74)

where {e,} is an orthonormal basis of the vector space. This product can be
decomposed into the two following identities,

epe, = —eye, for p# v, and epe, = guu = £1, (2.75)

where the sign depends on the whether the direction is timelike or spacelike.
So the elements of the algebra under consideration anticommutes (from the
first relation), and each element squares to the identity (or minus the identity).
We will denote Cl(p, q) (or Cl,,) the metric space equipped with the Clifford
product we just defined, and where the metric has signature (+,...,4+,—, ..., —)
with p "+" and ¢ "—". So for example, Minkowski space in the mostly "+"
signature is associated with the Clifford algebra CI(3, 1), while the mostly "—"
signature it is associated with C1(1,3). The distinction between the two space
is important since they are isomorphic as vector spaces but not as real algebras.
Elements of this algebra can be decomposed on the standard basis composed of
the elements

liessenens o5 er...eq, (2.76)

where n is the dimension of the vector space. We identify the starting vector
space with the grade 1 generated by the elements e,,. We call vectors elements of
this subspace and scalars element of the grade 0 (proportional to the identity).

Let us now study the Clifford algebra associated to our case. Locally, the
total space for our theory is given by a seven dimensional space with two possible
choice for the metric, giving a different algebra for each choice:

Clyg ~ C(8) (2.77)

where we used the notation A(n) for the matrix algebra of dimension n x n with
entries in A. C denotes the complex numbers while H represent the quarternions.

63



Note the equality for the dimensions of the spaces: dim(C(8)) = 8*8*2 =128
and dim (H(4) ¢ H(4)) = 4«4x4+4x4%4 = 128. Of course this also matches the
dimension of the Clifford algebra, dim(Cl,, ;) = 2PT9 = 27 = 128, hence the fact
that they are isomorphic as vector spaces but not as algebras. Without making
a definite choice for the moment, we can use the following two isomorphisms of
Clifford algebra to decompose the algebra in a Minkowski part and a nilmanifold
part. The isomorphism is

Cl176 >~ Cl1,3 ® Cl3
or (2.79)
Clg1 ~Cl31 ®Cly 3z

This is possible here because Minkowski space is even dimensional. We pick for
notation {e,} , a € {1,2,3} for the nilmanifold and {,} , p € {0,1,2,3} for
Minkowski space. The map is given explicitly by :

(z,y) 2 2@ 1+wey (2.80)

with @ € Cly3 or Cls1, y € Cls or Clys and w = 7994243 such that w? =
—1. Note the change in signature for Cls and Cly g in (2.79) because of the
square of w being —1. Let us look at how the vectors are mapped. Let us
take the example of Clg ;. We denote the generators for the vectors in Clg ; as
{To,...,I'3,T4,...,T6}, and we have the relations I'2 = —1, and I'? = 1 for all
the others. The map gives

F0*>70®1,F14)’)/1®1,F24)’}/2®1,Fg*)’}/;g@l (281)
and
I't—ww®er , I's vw®es , g vw®es . (2.82)

Observe that (w®e;)? = —1®—1 = 1®1 = I'7, hence the fact that the signature
changes with the decomposition.

The spinor space S is defined as a left minimal ideal in Clg; or Cl; ¢ de-
pending on the choice. This means that S is a subalgebra such that when acting
on by an element of Clg 1, the product remains in S. Explicitly we write S as
S = Clg f, where f is a primitive idempotent element of Clg;, meaning that
f? = f (idempotent) and Clg 1 f cannot be decomposed into a direct sum (prim-
itive). This element acts as a projector on the space. To find such an element,
we use a non-scalar elements 'y (from the standard basis, it may be a product
of vectors) such that ' = 1. We can then build two orthogonal projectors
e=1/21—-T7) and f =1/2(1+T'r) such that ef = fe=0and e+ f =1.
We may find another element I'79 such that it commutes with I'p. In that case
we project again building the projectors in the same way. More generally, one
first find all the elements I'r; such that I'p;I'r; = I'p;I'py and I‘%i =1. If we
find the maximum number k of such elements then f is written as the product
of projectors:

f= 2%(1+FT1)~~(1+FTI€) (2.83)
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Thankfully, we don’t have to try the entire algebra to know the maximum
number of such elements, the general theory tells us that for the Clifford algebra
Cl,, 4 there are k = ¢ — r4—;, elements I'r where the r; are the Radon-Hurwitz
numbers given by:

ro=0, rm=1,
ro =2, r3=2, (2.84)
T4 = 3 9 s = 3 )
Te = 3 , T'r= 3 s
along with ;48 =r; +4 and r—_; =1 —i 4 r;_o. In the case of Cls; and Cl; ¢
we have k = 3. Looking at the first case, consider the following elements:
a = F3 =73 02y 17
b=Topn=71%1®1=7%n®1, (2.85)
¢ =To123456 = L1230 56 = (w @ 1)(w® @ €123) = 1 @ €123
where we used the notation I',, = I',I',. We have a? =0 =¢* =1 and

a,b,c all commute with each other. f can be decomposed using the algebra
isomorphism presented above:

(14+a)(1+b)(14+¢)

f= 5 5 5 (2.86)
_(191+%e)(1@1+7901®1) (18141 era)
2 2 2
I+ @1 (I+701)®1 1® (14 e123)
o 2 2 2
(T 4+93) (T +vm) ® (14 e123)
2 2 2
=f1®f

where in the first line we factorized the projectors. This decomposition is not
trivial, and requires that the element f may be factorized on the tensor product
space. By acting with the basis of the algebra on f we can generate the spinor
spaces which are :

Cls fr = C? (2.87)
01073,]02 ~H. (288)

Therefore we can decompose our 7-dimensional spinors into a tensor product
of the usual Weyl spinor and a quaternion. It should be pointed out that
for Cl3; we find k = 2 and for Clps we have £k = 1. f; and f, are indeed
primitive idempotent in there respective space. So the decomposition is pretty
straightforward here.

We now proceed in the same way for the opposite metric. This case is more
interesting because as we will see, the decomposition isn’t as clear as in the last
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example. We make the following choice for the element:

a=TIy= Yo ® 1,
b= —T1231 = —Y123w @ €3 = 0 ® €3 (2.89)
c=-Toosa=-w'Res=1Re3

where the minus signs where picked for convenience. We have again a, b and ¢

squaring to 1, and they all commute with each other. Note that we have ab = c.
Now writing the primitive idempotent element f, we find

;= (1—;—(1) (1—25-5) (1—2|-C) _ (;(1+70)®;(1+e3)> %(1@14—70@63)
(2.90)
= % (;(1 +7) ® %(1 +e3) + %(1 + %)% @ %(1 +63)63>
:%(1+70)®%(1+63)=f1®f2

This is somewhat surprising. The three projectors found in the Clifford algebra
Cly ¢ combine into only two projectors on the tensor product. The two projec-
tors match what we would find in the spaces Cl; 3 and Cl3. As we said before,
k =1 for both of them. We can take ~ for Cl; 3 and ez for Cls. Those give
exactly the same result as in (2.90). There spinor spaces are respectively

Cll’g,fl ~ (C4 s (291)
Clzfo ~ C? . (2.92)

The spinor space derived from the 7-dimensional Clifford algebra Cl; ¢ (so acting
with the three projectors) is 273 = 16 dimensional, while the spinor space found
from the tensor product is 247! x 23~ = 32. So it seems that the isomorphism
of Clifford algebra doesn’t go through as an isomorphism of spinors, instead, a
double copy of the 7d spinors is isomorphic to the tensor product of spinors. We
showed that the spinor space Cl; ¢ f can be decomposed into Cl; 3 f; ® Cls fo on
which the Clifford algebra Cl; 3 ® Cl3 acts naturally by multiplication on the
left.
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Chapter 3

The potential

In the last chapter we have obtained the effective 4 dimensional theory
coming from the a 7 dimensional Yang-Mills theory. Upon compactification and
restriction to the first modes, the theory is equivalent to a 4 dimensional Yang-
Mills theory coupled to a scalar sector. The three scalars are in the adjoint
representation of the gauge group as they stem from the higher dimensional
gauge fields, and are coupled via the potential. We recall for clarity the expres-
sion of the Lagrangian and the potential:

3
L= Tr( —1F, ™ + Y D¢ Dre! — M3 (¢)? — u) : (3.1)
I=1
where:
3
U= = 2igM[e", 60" + 3g* 3 01,6707, 07]) . (3:2)
I,J=1

This part is based on the work developed in [39,44,46] and extends it by propos-
ing a general approach to the study of this potential.

3.1 A first approach to the potential

To obtain the masses of the fields we must diagonalize the mass matrix of
the quadratic fluctuations around the vacuum configuration. First, let us define
the potential we want to study as the sum of the interaction terms and the mass

term. Explicitly:
1%

M2

= Tr(¢*)? + % . (3.3)
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A vacuum configuration is a solution of:

V(6 +66) — V(o) _
M2

Tr <2¢35¢3) _ 2i%Tr<[¢l,¢2]5¢3 + [¢3’¢1]5¢2 + [¢2,¢3}5¢1)
+2%H(Z§,J:1[¢I,<¢>"H¢>’,6¢>J]) =0. (3.4

We can see the theory contains a class of vacua of the form ¢! = constant,
where,

¢’ =0; [¢',6°]=0. (3.5)

Once a vacuum ¢! = ¢} is found, infinite classes of other vacua are generated by
conjugation of arbitrary elements U € G, ¢{ — UT¢lU. Since this conjugation
is a symmetry of the potential, it is a map from vacua to vacua. Moreover,
if the vacuum ¢} is not invariant under the conjugation, it will be mapped
to a different vacuum with the same energy. This is of course the Goldstone
mechanism, implying the existence of various massless 4d scalars in the vacuum,
as we will confirm explicitly in the following.

Now that a class of minima has been identified in (3.5), we can develop the
potential to second order in the variations of the fields. The variation of the
potential reads:

62y
202

= Tr(06")° - %Tr ([661, 03] 56° + [04, 66%] 6¢°)
+ iTr( [66%, 63)° + [96%, 04" + [06%, 04]” + [06%, 65]”
M2 » 70 s Y0 » Po » 9o
+2[60", 03] [05.067] ) . (3.6)

where ¢} and ¢3 are the values of the fields at the minimum. This expression
gives a matrix of dimension (3 x dim(Lie(G))?, where dim(Lie(G)) is the di-
mension of the Lie algebra associated to the gauge group G. In order to obtain
the masses of the fields around this minimum one would have to diagonalize
this matrix once a specific gauge group has been chosen. There is actually a
way to compute the masses and the potential for an arbitrary gauge group. We
leave this approach for later, as we will first build some intuition about the
model by fixing some specific gauge groups. The question is, what are sensible
options to look first 7 It may be obvious to some that the purpose here is to
reproduce the Higgs field since it is the only fundamental scalar field observed
in nature. The Higgs field before the electroweak symmetry breaking is in the
fundamental representation of the weak SU(2) and has an hypercharge equal to
1. In our context, the vacuum we select is going to break the gauge symmetry
to some subgroup. We could start with an SU(2) gauge, but remember that the
scalar fields are in the adjoint representation. So it won’t reproduce the right
representation. The next guess would be SU(3). This is an interesting choice
since it contains exactly SU(2) x U(1) along with a fundamental representation
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with the right quantum numbers. Bigger gauge group of the SU(N) type will
also be considered. Their study will give us the first hint that the masses don’t
really depend on the gauge structure.

3.1.1 From SU(3) to SU(2) x U(1)

The first case of interest is SU(3): it is a minimal setup that contains SU(2) x
U(1), which is suitable to model the electroweak sector. Also, its Lie algebra
is eight dimensional, making it rather manageable. We denote by su(3) the
Lie algebra associated to SU(3). A matrix A € su(3) is characterized, in our
conventions, by A = AT and Tr(A) = 0. We shall use the Gell-Mann convention
for the SU(3) generators [47]. As already remarked, the vacuum solution that
we choose may have some residual symmetries. These symmetries will determine
the residual gauge symmetry after the vacuum solution has been selected.

Let us start by explaining how to choose the vacuum in order to have an
unbroken SU(2) x U(1) gauge: we want that ¢} and ¢2 commute, in order for
them to satisfy condition (3.5) for a minimum. We can thus simply choose them
as combinations of the diagonal Gell-Mann matrices, which we know commute:
indeed the diagonal Gell-Mann matrices form the Cartan subalgebra of su(3),
i.e. its maximal Abelian subalgebra. A simple way to parameterize our vacuum
is to take ¢f = ¢2 and take ¢g to be a generic element of the Cartan subalgebra:

1 (@
¢(1):¢(2):¢0:ﬁ 8

o ot O

0
ol . (3.7)
C

with a, b, ¢ real parameters and a +b+c = 0, since ¢y € su(3). The factor 1/v/3
was picked for convenience. We want to leave an su(2) subalgebra unbroken,
in other words, we want that ¢y commutes with the elements that generate an
su(2). If we take a = b, so that the trace condition imposes ¢ = —2a, it follows
that ¢g = alg. Only one parameter remains free, the normalization of the field.
In this case ¢g commutes with the Gell-Mann matrices A1, A2, A3 and Ag, which
generate an su(2) @ u(1) subalgebra of su(3).

We need to diagonalize the matrix (3.37) of second derivatives of the poten-
tial at the point ¢ = 0,¢' = ¢? = ¢ (this is a 24 x 24 matrix). The result
is a list of masses, where the multiplicity of each mass indicates the dimension
of the representation of the new gauge group (i.e. after symmetry breaking) in
which this mass transforms. In our case we obtain the following masses for the
scalar fields:

12 massless degrees of freedom (dof) (3.8)
Mg = M? (4 dof)

(3.9
2
M2 = EMQ 1432+ /1+ 6a2£ (4-+4 dof) (3.10)
£~ 9 M2 M?2 ’
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Mass (in M2 units)

m M A
101 A M2 =
——- 2M2 A
A
A
8 1 A
A
A
A
6 1 A
A
A
N A
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N ]
]
"
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-
]
]
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Figure 3.1: Diagram of the three types of scalar masses of the SU(3) model.
This diagram is relevant for the other models too since all the masses are of
the form M? =1+ a? + /14 2a7 with «; being linear combinations of the
vacuum parameters. We can see that M? goes to zero for small «; while the
two other masses remain around the M? scale.
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where in the last line (4+4 dof) means that the subspace associated to the mass
Mi is four dimensional, and likewise for the one associated to M?2.

Let us see how to associate each mass to a representation. From the eigen-
vectors (not listed here) one can read that the masses M3 are in a (2,1) rep-
resentation of the gauge group SU(2) x U(1). The mass Mg is in the adjoint
representation of SU(2) x U(1). Lastly, we can deduce the representation of the
massless modes by a counting argument. We started with three copies of the
adjoint representation of SU(3). We used twice the two- (complex) dimensional
representation for the masses M3 . We used one adjoint representation for Mg.
We are therefore left with two copies of the adjoint representation and one of the
two-dimensional representation. The total dimension of these representations is
2x 444 = 12, just like the multiplicity of the massless modes. We can also note
that the massless two-dimensional representation is not really in the spectrum
and serves as the longitudinal degree of freedom of the the broken gauge boson.

There is also a more intuitive reasoning that could have let us guess the solu-
tion: it can be seen that the masses MZ = M? are in the adjoint representation,
since we chose ¢ to commute with the generators of su(2) and Ag that generates
U(1). We would therefore expect the mass of these states not to be modified by
the vacuum we selected. Hence the su(2) ®u(1) part of ¢* remains with a mass
M?. The other two massive states depend on the parameter a and are in the
only representation that doesn’t commute with ¢q, namely the two-dimensional
one. We will see that this pattern persists for bigger gauge groups.

Finally, we can also calculate the mass of the gauge bosons corresponding
to the broken generators. It is simply given by the coupling terms between the
scalars and the gauge fields:

mgosons = 29261’2 ) (3'11)
where on the right-hand side the sum is over the gauge fields associated to the
broken generators Ag, A5, Ag, A7.

Now that all the masses have been determined, the effective theory is fully
determined. However there is still some freedom in the hierarchy of the masses.
Let us now turn to this point: the model has two scalar fields in a (2,1) rep-
resentation of the gauge, that correspond to the masses M2 and Mi These
representations are SU(2) doublets, suitable for the description of the Higgs field.
The mass M? is a difference of two terms. In the limit where a2g?/M? — 0,
this mass also goes to zero, while Mf_ will be of order M?. If we consider the
region M 2> a%¢® > ml?imit where my;mi: is the maximum detectable mass, we
can adjust the ratio a®g®/M? so that M2 = Mz, ., while all the other fields
can have masses well beyond detection.

3.1.2 The case of SU(5)

In this section we study an SU(5) gauge symmetry that breaks spontaneously
to SU(3) x SU(2) x U(1). We start again by giving the explicit matrix repre-
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sentation of su(5), where the general element of su(5) is of the form:

a; +c a4 as hi ho
aj{ az + ¢ ag hs hy
at ag  —(a1+a2)+c hs he . (3.12)
R R h -3 by
h h; h b3 b — 3¢

This matrix is traceless and Hermitian (the diagonal elements are taken to be
real) and therefore lies in su(5). The parameters have been chosen so that the
decomposition is made explicit. Indeed, the a’s generate an su(3) algebra: the
b’s generate an su(2), the ¢ a u(1), while the h’s are in the (3,2)- (complex)
dimensional representation of respectively su(3) and su(2). The h’s are also
charged under u(1). We see that this situation is very similar to the one we had
before for SU(3). Again, we want to find a vacuum ¢' = ¢? = ¢ such that this
vacuum commutes with the generators of the unbroken gauge group. We can
construct ¢g in a similar fashion as before. Let us take ¢¢ to be:

¢0 = a . (313)

3
2

[S][eY

a

The invariance of ¢y can then be seen at the level of the algebra since:

V= (A B) esu(d), [Ago]=0, (3.14)

where A € su(3), B € su(2) and of course Tr(\) = Tr(A) = Tr(B) = 0. Note
that ¢¢ also commutes with all the generators of the Cartan subalgebra since
¢p itself is in the Cartan subalgebra.

Applying the same procedure as before to the now 72 x 72 mass matrix, we
find the masses to be:

Massless (36 dof) (3.15)
Mg = M? (12 dof) (3.16)

1 2 2
M2 = M2 (1 + 100a2% 1+ 200a2]\942> (12+12 dof) . (3.17)

These masses are very similar to the masses found for the SU(3) gauge. The
masses Mf_ and M? fall again into the only representation that does not com-
mute with the gauge, namely the (3,2,1) representation generated by the h’s
in Eq. (3.12). The mass M} is again in the adjoint representation of the new
gauge. The dimension of this adjoint representation is the sum of the dimen-
sions of each adjoint representation, 8 +3 + 1 = 12. Again, we can compute the
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mass of the broken gauge bosons that we find to be:
25
Myoson = ZQZGP . (318)

These also transform in the (3,2,1) representation of the gauge group.

The argument about the masses discussed for SU(3) is also valid here, and
we can have the field with the mass M2 at a much lower scale than the rest of
the masses. This state is also charged under the strong interactions in this case.

3.1.3 The case of SU(6)

SU(6) has the advantage of breaking into SU(3) x SU(2) x U(1) x U(1), which
is close to the SM gauge, and allows for a (1,2,1,1) representation of the new
gauge group (i.e. after symmetry breaking) at an arbitrary low mass. Quite
similarly to the su(5) case, we can write a general element of su(6) as:

a; +c—+ d aq as h1 h2 ll
G,Z as + ¢+ d Qg hg h4 lQ
ai ag —(a1 +az)+c+d hs he I3
i h hi by —3c+d bs P
3 h i b3 —bi—3c+d po
i 15 l3 Pi J2 —4d

(3.19)

Again the parameterization makes explicit the decomposition. The a’s generate
an su(3), the b’s an su(2), ¢ and d are two copies of u(1), the h’s are in the
(3,2,1,0), the I’s in the (3,1,2,1), the p’s in the (1,2,1,1). For each representation
the charge under the two U(1)’s is calculated simply by using the commutation
relations between the generators of the U(1)’s and the generators of the repre-
sentation. This example is interesting because it is the first example that gives
different massive representations of the gauge group. We can parameterize the
vacuum in the following way:

Po = b—a . (3.20)

—(2b+a)

This is the first example where the parameterization of ¢ leaves two parame-
ters free. The reason is simply that here we decompose su(6) into sufficiently
many subalgebras, so that even with the trace condition we still have two free
parameters. For this vacuum, the diagonalization of the now 105 x 105 mass
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matrix gives:

Massless (48 dof) (3.21)
MZ = M? (13 dof, rep:(8,3,1,1)) (3.22)
2 = %M2 (1 + A%a? +4/1+ 2]\*"422(1?) , (3.23)
where
of = 1446*  (rep:(1,2,1,1)) (3.24)
a3 = 64(a+b)* (rep:(3,1,2,1)) (3.25)
a3 =16(2a — b)*  (rep:(3,2,1,0)) . (3.26)

The representations can be associated to the masses simply by using the dimen-
sion of each representation and the multiplicity of the masses in the diagonalized
mass matrix. We can reach the same conclusion by using the following reasoning.
Let us first see why «; is associated with the (1,2,1,1) representation. If we take
the limit b — 0, ¢9 becomes invariant under the group SU(3) x SU(3) x U(1).
The mass M goes to zero, and the masses M3 and M3 become equal. In this
case only one non-adjoint representation remains and is a (3,3,1) representation
of the gauge SU(3) x SU(3) x U(1), generated by the h’s and !’s in the decom-
position (3.19). So we see that the p’s generate the mass M?. We can use a
similar reasoning in order to associate the correct representations to the masses
M3 and M3Z. We take the limit where b — 2a, so that the mass M2 goes to
zero. The masses M? and M2 become equal. The gauge group in this case is
SU(5) x U(1), and of course the massive states are generated by the !’s and
p’s. We already know that the p’s were associated to the mass M7, therefore we
know that the I’s are associated to the mass MZ. Once again, we can calculate
the masses of the broken gauge bosons:

M o1 = 99°0%  (rep:(1,2,1,1)), (3.27)
Mpoons = 49%(a+b)*  (rep:(3,1,2,1)), (3.28)
Mggoms = 9°(b—2a)*  (rep:(3,2,1,0)) . (3.29)

In order to have the (1,2,1,1) representation at a much lower mass than the
other massive representations, all we have to do is take M2, a? > b%. Indeed,
taking M? > b? allows for M?_ to be very small, while a®> > b? forces the
other masses to be much higher. Just like before, we can then adjust the ratio
9¢2b?/M? in order to match M? with the mass of the Higgs boson.

3.1.4 Some insights

Having solved those specific examples, we see a pattern emerge. The
masses always have the same generic expressions. The details of the coefficient
in front of the vacuum parameter seem to depend on the specific algebra under
consideration. This is a clear hint that the expression for the masses may
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be found in a more general setting. This will be the main focus of the next
part. At this stage of our understanding of the model, we would like to expand
the potential around the vacuum and have all the coupling terms involving
the scalars around the selected vacuum. We would then be able to compute
Feynman diagrams, and understand how the model behaves under one-loop
renormalization. This would have to be done using the rotation matrix used
to diagonalize the mass matrix. As we saw, the number of scalar degrees of
freedom becomes quickly quite significant, and we would have to treat each case
separately. Instead we will reserve this step for the next section, when we will
have a general approach to the diagonalization problem.

3.2 General treatment

In order to treat the potential on more general grounds, without having
to specify the gauge group, we can notice the following point. Remember the
expression for the mass matrix (3.37). When putting this expression into ma-
trix form, off-diagonal terms come from the commutators. They mix terms of
different, directions in the Lie algebra. Notice how all the commutators in the
mass matrix are of the form [¢), - ]. When studying our examples, we picked
the ¢} and ¢3 as the diagonal matrices of the representation of SU(N) to en-
sure that the two vacua commute, and later restrict to the study of ¢f = ¢2 for
simplicity. This can be generalized for any semi-simple Lie algebra by making
use of what is called the Weyl-Cartan basis. This basis is characterized by pick-
ing the maximal abelian subalgebra, calling it the Cartan subalgebra, and then
looking at its action on the rest of the generators, which are referred to as the
roots. The action of the Cartan subalgebra on the roots is diagonal, so if we
pick the vacuum to be in the Cartan subalgebra the mass matrix will be block
diagonal in this basis. From there, the diagonalization follows quite simply, as
it only takes place in 3 x 3 blocks of the matrix. We start by establishing our
conventions and reviewing the aforementioned basis. Then we move on to the
study of the potential.

3.2.1 Lie Algebra and the Cartan-Weyl basis

We begin by considering a Lie algebra in the Cartan-Weyl basis. Any semi-
simple Lie algebra can be put into this form. The algebra decomposes into two
parts, the Cartan subalgebra and the complementary space of root vectors. The
commutation relations take the form

[Hi7Hj] =0 5 [HiyEa} = aiEa 5
[Ea, B3] = NopEorp , [FarE_o] = ZaiHi ) (3.30)
In the third equation, N,g = 0 if a+f is not a root. This can be shown by acting

on the equation with a generator of the Cartan subalgebra and then using the
Jacobi identity. This computation can also be used to prove the last equation,
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up to some choice of normalization for the H;. Additionally, and without loss
of generality, we can assume we are working with some matrix representation
of the algebra such that
([HzﬁEoc])T = (aiEa)T

< = [HZT7E<L] = Oé;kEL

& [HE_J)=—alE_, . (3.31)
where we chose Ef = E_,. This in turns imply that if H; is hermitian then
the a’s are real, and if H; is antihermitian then the a’s are pure imaginary. We
choose the latter for the rest of the proof. This is our reality condition that will
ensure that the potential is real. Similarly, we can fix our reality condition for
the other commutators to be

[Ea, Eg]" = (Nag Eatp)’
B0 Egl = Ny E_oop

[E-a; E_g] = —Nap E_a-p (3.32)

where the step from the first to the second line is made by using E/, = E_,. This

implies the relation Njz; = —N(_q)(—p). Lastly, we assume the existence of a
Trace on the representation, matching the Killing form, with the normalization

Tr (EaEp) = Coatpo (3.33)
Tr (H;H;) = C6y; . (3.34)

We also have the consistency condition
Tr ([Ea, Ep |Ey) = CNag (3.35)

where we define v = —(a + ). Using the fact that the trace is invariant by
cyclic permutations it implies the relation

Nog = Ngy = Ny - (3.36)

3.3 The Mass Matrix

Our starting point is the mass matrix for the potential found in (3.37). In order
to limit the factors of i we write it in the antihermitian convention
52V

s = Te66%) — LT ([561, 03] 66° + (64, 66%) 66°)

2

+ Lome([661,63)° + [66°, 6] + [50°, 03] + [66°, 8]

+2[66", 03] [05,067] ) . (337)
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Since the potential is real, the fields must also obey some reality conditions:

(50")" = 0"
& (36" HI + (66")" Ef, = 60!
& — (00") H; + (¢") E_q = 00" (3.38)
which implies
(3¢1)" = 69! and (64")" = —dp!(~) (3.39)

We now develop the fields using the basis of 3.2.1. The vacuum condition for
the fields ¢y can be fulfilled if we take them to be in the Cartan subalgebra:

d¢! =061 H,; + 661 E, (3.40)
60” = 00" Hi .
In this basis, the mass matrix reads
&y
2M?

:(5¢3a5¢3ﬁ - 2% (g2 56 567 + iy 69 6%°) (3.41)

+ 5 (0038,6870910917 + cih B0 66° 66
+ g 1067 06°7 0% + ;03 B0 6567
- 2ai¢éiﬂj¢§j5¢2a5¢w))C5a+3,0 + (5¢3i5¢3j) Cdi;

In order not to clutter the notation, we now write
g

bl = 1700 (3.42)
We rewrite the mass term as a the scalar product

52y

A = (6¢)" M5 (3.43)

and define J¢'" = (§¢1”‘1 Y et B, Y SN SR ) such that the «,, are
organized by pairs of opposite roots. The matrix M takes the form

CAa,
CA,

M = (3.44)
Cl;

where A, is a 3 x 3 matrix. The first dots represent the other roots (with the
same structure). The matrix J; is also a 3 x 3 matrix along the H; direction
and takes the form

Ji == E33 (345)
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with Ej; the canonical basis of 3 x 3 matrices. Using the fact that b}~ ® = —p{®

we find the expression for the matrix A,

b

—(69)? b5l b3
Ao = | bPbg  —(b9)? —b¢ . (3.46)
by by 1 ()2 — (59)?
As expected, M is hermitian (since bga)
diagonalized with eigenvalues

is pure imaginary). This matrix can be

0, % (1 —2((67)* + (b%)?)) £ \/1 —4((b)2 + (bg)z))> . (3.47)

Writing explicitly the imaginary unit in the roots «, we recover the expressions
for the masses derived in section 3.1:

0, (m%)?= % (1 +2((67) + (b3)?)) + \/1 +4((b)2 + (bg)?))) . (3.48)

where this expression is to be understood with «; € R, which we will continue
to use for the rest of this section.
The diagonalization of A, can be done explicitly. We define P such that

Ay =PIiD,P, and PIP, = PPl =1, (3.49)
with
(mz)* 00
Da=| 0 0 o |, (3.50)
0 0 (m})?
—icos(f) cos(v) icos(f)sin(v)  sin(f)
Po = isin(v) icos(v) 0 (3.51)

isin(f) cos(v) —isin(0)sin(v) cos(f) .

The sines and cosines are expressed in terms of the vacuum parameters as

1
cos(v) = ——— , (3.52)
V0g2+1
1+ 202 + 202 + /1 + 4b2 + 452
cos(f) = || AR TV T LTS (3.53)
1+ 403 + 4b2 + /1 + 4b? + 403

We drop the a index for clarity, but it should be emphasized that the angles
depend explicitly on the root under consideration.

Lastly, we will make use in the following of two simple relation for the ma-
trices A, and P,

A_o =A% and P_, = (Po)" . (3.54)
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Our analysis shows that the diagonalization of the mass matrix can be done
in general given the appropriate basis for the Lie algebra. The resulting masses
are given in (3.48) for a given root vector. Along this direction, two fields
become massive with masses m2, while one remain massless. This massless
degree of freedom is actually the one used for the longitudinal polarization of
the associated broken gauge boson. To see this, consider the mass term coming
from the coupling of the scalars to the gauge, and write it the Cartan-Weyl
basis:

9T (00, Aul®) =g"n™ ¢ Ay AT ([Hi, Bo][Hj, Ep)) (3.55)
=g%Cn" iy’ Ay Bi b’ AlSacr .0
=M2Cn b b AC ABS o s -

Therefore the masse for the boson in the « direction is

(MG ge)? = MO0 (3.56)

gauge

If the direction is left untouched by the vacuum, we have bf = 0 and the
boson remains massless. For non zero b¢, the boson becomes massive, and the
longitudinal polarization is given by the massless scalar in the same direction,
making it effectively drop out of the spectrum.

So for each root o with non-zero b, we have two massive scalar degrees of
freedom, and a massive broken gauge boson. On the other hand, the degrees of
freedom untouched by the vacuum, meaning the roots a such that b¢ = 0 and
the H; directions of the Cartan subalgebra, still have each two massless degrees
of freedom coming directly from ¢! and ¢?, and a massive degree of freedom of
mass M? = £2 coming from ¢3. The results are summed up in Table 3.1.

Spin Mass? Representation of G.csidual Generators in g
P! 0 0 Adjoint H; and E, (b$ =0)
2 0 0 Adjoint H; and E, (b7 = 0)
P 0 £2 Adjoint H; and E, (b¢ =0)
H | 0 (m;)? Depends on breaking E, (b3 #0)
H, 0 (mt)? Depends on breaking E, (b #0)
A, 1 0 Adjoint (gauge fields) H; and E, (b¢ =0)
X, | 1 | (mGauge)? Depends on breaking E, (b9 #0)

Table 3.1: List of the different types of fields after symmetry breaking. G esiduai
is the new gauge group after the symmetry breaking, and g denotes the Lie
algebra associated with the original gauge group G. There may be numerous
fields Hy, Hs and X, the number of degree of freedom in a representation

depends on the number of directions with identical (b)), So we could have
several Hy-type fields, with different masses (m, )2, (mg,)?, ... and in different
representations.

This is our theory after symmetry breaking at the classical level. The generic
features, independent of the gauge, are the adjoint scalar fields, which were
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expected to appear because of the adjoint scalars they come from. We have the
H~ fields whose masses go to zero when the vacuum parameters are taken to
be small, the H™ fields whose masses go to M? = £2 in the same limit, and the
broken boson X,,. A natural question at this point is how is the mass hierarchy
modified when loop effects are considered. To answer this, we have to know the
potential in the broken phase of the theory, so we now turn our attention to this
issue.

3.4 The coupling terms

The study of the different coupling terms will be split into two parts.
First we will study the scalar potential, treating first the trilinear term then the
quartic one. Once done we will move on to the study of the coupling terms with
the broken gauge boson, where we will follow the same approach. Our goal is to
organize the terms in such a way that a systematic approach for any gauge group
is possible, simplifying expressions in order to make practical computations as
straight forward as possible.

3.4.1 The Trilinear term

Having found the mass basis for the system, we can now write the po-
tential in the new basis using the matrix P,. We start with the trilinear term
given in (3.2):

Te((¢", ¢°)6°) =5 ([67,6710")
E”K LI (010670 R T (B, B Ey)
o ([Ba, E5)Hy)
+ 01167 G T ([H,, Eg|E,)
+ 016 N T (B, HIE,) ) (3.57)

The last three terms take similar expressions,

TI'([d)l,ng](b?’) _ Naﬁ €I:;]'K ¢IG¢JB¢K'Y604+B+7,O

+ Bia; LK 0107 6" s (3.58)

where a; € R as already mentioned. We now use the fact that
¢’ = (P10 (3.59)
and define the tensor

Trarsxy = 1 (P 1 (P75 (PH S (3.60)
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In order to keep expressions compact, we can extend the definition of the above
tensor to the Cartan subalgebra by adding the condition PZ-T = [ for ¢ a direction
in the Cartan subalgebra (along H;). So the trilinear term is

1 R
Tr([¢", 6°16%) = 57 NapTia 18,190 " ¢"7 6" dars10
L. TIa 1JB IKi
+ 510 Ti0,15,Ki0" 676" 0atp0 (3.61)

The second line can be further simplified. The sum is over all the roots (a, —a, . ..)
and S is fixed to be the opposite of a, so we have the terms

Tl g (—o)xi® 0" and  — i Tr(_aygaxid Vo7 (3.62)

Taking the expression for T, we observe
1 ! !
Ti(—a),Ja,Ki = §€I’J’K(Pia)II(PcI)JJ
1 ! ’
== gerrx(PD (P

== TJa1(~a).Ki - (3.63)

And so, up to a change in the I,J indices, we see that those two terms are
actually the same. The second line takes the simple form

- ZZ.O‘i,]—loc,‘](—a),Kiq;Ia(éJa)*q;Ki (364)

at

where the sum is taken over each positive root. Now we are left with the task
of actually computing the tensor 7. We first note

TIa,J(—a),Ki —€I'J'K’ (Po't)II(Pia)JJﬂg
=er (P (P
=er (P (P17

=T (3.65)
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where the last line is just to make the notation more evident. The non-zero
entries for the tensor 7 are

3"‘2% = sin()
233 = sin(0)

1 = —icos(6)
5 = i cos(0)

@i = sin(26) sin(v)
s

)
)

2"1“2 = sin(f) sin(v

& = sin(#) sin(v
ot = —icos(f) cos(v)
22t = jcos(f) cos(v)

% = icos(20) cos(v)

% = —icos(20) cos(v)

b = —cos(v)sin()

3t = icos(20) sin(v)

% = — cos(v) sin(6)

4 = —icos(20) sin(v)

2t = —2cos(f) sin(0) sin(v)

@1 = cos(v) sin(26)
3 = i cos(6) sin(v)

oah = —icos(6) sin(v)

ot = —2cos(f) cos(v) sin() . (3.66)
Of course, the dependence on « is through the angles 6 and v as defined in

(3.52). We now turn to terms coupling the roots with each other. We start by
studying the trilinear term

1

30 NopTro,8.5-,0 072 57 (3.67)

Let us fix three roots «, 5 and 7 such that

v =—(a+p) (3.68)

First there is also a term

1

30 NsaT1p,70,.k-0 P75 (3.69)

Using the properties Nog = —Ngo and 718, ja,kyv = —7Tja,18,K~, We see that
those two terms are the same (upon renaming the dummy indices I + J). So
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we can further simplify the expression by adding a factor of 2 and counting pairs
of roots only once.
In the sum there is an additional term involving the opposite roots.

1 ) T8 R
3 Nca)=p) Ti(=a).0(=) K—()¢' T/ TAGHD
1 * * TTa* (7 *0 7 *
= g Naﬁﬂa,]ﬁ,K'}/((bI ) (¢J6) (QSK’Y) (370)

which is the complex conjugate of the first term. Additionally we can invert
the relation between the roots to obtain additional terms involving those three
roots (and their opposite)

p=—(a+7) (3.71)
a=—(8+7) (3.72)

All in all, for three fixed roots, the related terms are

1 R
3 NagTia 18,7067 "7 + c.c.

1 o
T3 NyoTry,00,k80" 070" P + c.c.

1

3

N Tig,0v. k00765 4+ c.c. (3.73)

Now we can use the fact that Nog = N, = Ng, from section 3.2.1. Rela-
beling the I, J, K indices and using the fact that 7 is invariant under cyclic
permutations, we arrive at the simple term

NopTra,8.x-,0' 07657 4 c.c. (3.74)

where we have to consider one triplet for the roots only once. The trilinear
terms are then simply written

Tr([¢', ¢%]0%) = = > 10 Tra.1(~a). i@ “(67*) ¢

«
+ > NapTrassxyd 0’6" + cc. (3.75)
pairs «a,f3,

y=—(a+8)

3.4.2 Quartic terms
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Proceeding similarly, we can compute the quartic term of the scalar potential:

Tr([¢", ¢7]?) = ¢"*¢"P¢"¢"° Tr([Ea, Ep][E,, Es])
+ 20" 7P " ¢ Tx ([H;, 3] [E,, Es))
+2¢"¢7 6" ¢ Tr(|Eq, Hil[E,, Es))
+ 20" 7P " ¢ Tr([H,, Eg][H;, Es))
+ 200" 91 ¢ Tr([Ea, H,][H, EaD
= NagNy 50" 0" "¢ (a+ B+~ + 6)
+2i%0;6; (¢7' 97 — ¢T*¢7") ¢TI 7050150 - (3.76)

We use the same trick as before to further simplify the second term so that the
sum is only on the positive roots.

Z4aiaj¢li¢.]j¢la(¢.la)* . 4aiaj¢1i¢lj¢Ja(¢.la)* (377)
at
We now transform the scalars in the eigen-mass basis.
> dai; (P (P15 01167781 (372)" (3.78)
at

— daia; (BY)y (PL) "6 67 (65"

Notice the first term uses the product Pf(P!)*7, which is of course the identity
by unicity of P,. Hence the term simplifies

S devse; Qup @I () — daiagd NG (379)
at

where we define
OQryry = (P (PL)5 (3.80)
The entries relevant for mass renormalization are

Q3322 =0

Q3311 = sin®(0)
Q3333 = cos”(0)
Q1122 = sin®(v)
Q2909 = cos?(v)

Q2233 = Sin2 (9) SinZ(V)

Q1111 = cos?(#) cos?(v)
Q1133 = cos?(v) sin?(0)
Q2911 = cos?(6) sin?(v) (3.81)
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Let us now study the term involving only roots
NagNasp' 7P ¢l g7 (3.82)
We fix the roots such that
a+pB=—(y+9) (3.83)

and a+f is aroot (and therefore v+ too). Let us start with the term involving
the same two roots for both commutator. This means we are taking v = a and
0 = p or v = and v = a. Listing the terms give the following sum:

2NapN_a—pd"*¢" (67%)* (¢77)" + 2NapN_g_ad'¢"? (677" (¢7*)*  (3.84)

where the factor of 2 comes from taking a <> —«, 8 <> —f in the first term
and a <> — 0, B <> —a in the second one. An additional factor of 2 comes from
taking the symmetry a <> § in both terms and relabeling the dummy indices
I,J. We have

4| Nos26707P(619) (67P)" + 4 Nas 26167 (619)" ()" . (3.85)
Transforming the fields in the mass basis gives
_4|Na/3’|2 (&Iaé]b’(é[a)*(é]ﬁ)* _ RI’a,Kﬁ,J’ﬁ,LaJ)I/a(QgKﬁ)*d;J/ﬁ((Z)La)*) )
(3.86)
and we define
Rrva.k.pna =P (PY)  (PH7, (P,
=(PsP) k1 (PaP}) L (3.87)

Now we can consider how the terms simplify in the case where « and § are
different roots whose sum give the opposite of o + 8. We can use symmetries
again to regroup similar terms.

NogNas¢'*¢7P 167 + NopNay ¢! ¢" 61067

NpaNas #6717 67 + Npa Noy P 9761007 . (3.88)
Using the symmetries and relabeling the indices we obtain
2NaﬁN75¢Ia¢Jﬁ¢17¢J§ o 2NaﬂN75¢Ia¢Jﬂ¢J’y¢16 (389)

An additional factor of 2 comes from exchanging the two pairs in each term:
ANos N5 7P 1737 — AN N 50" 6" 77" + c.c . (3.90)

The sum is over the pairs of roots such that their sum is opposite. Rotating the
basis to have mass eigenstates, we obtain

ANogNys (Sla,Jw,Kﬁ,Lélea&"”é}wém

- SIa,Jé,Kﬁ,L'yQBIQQZJ(;QEKﬁQ;L’Y) +cc. (3.91)
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defining the tensor S as
Staryip.Ls = (P (P (PH (P (3.92)
Putting everything together, we obtain the quartic term

Tr([¢", ¢71?) =
— 42 (aiaqufiggljg)]a(d}]a)* — a0y QIJI,J/QEIZ’QEJ]’QZI’&((Z;J/a)*>

- 4|Na5‘2 (élaélﬁ(éﬁ'la)*(é‘]ﬁ)* — RI’a,K,{i’,J’@Laa)I,a(&Kﬁ)*g)Jlﬁ(quO‘)*)

+ 4NapNys (Sla,Jw,KB,LééIa(l;J’y(l;Kﬁ(l;Lé - Sla,J§,KB,LW(;ICK(Z~5J6(Z~5K’B(Z~5L'Y) +cc.
(3.93)

The sum in the second line is over pairs of roots whose sum is a root, i.e.
a + B € Roots, each pair being counted once only. In the last line, the sum is
over pairs of roots such that o+ 8 = —(v +§) and a + § is a root, each pair of
pairs being counted once.

The expressions obtained for the scalar potential are fairly simple and allow
the study of any breaking pattern. The tensors Q, R and S are all defined in
terms of the rotation matrix P, making their computation fairly straightfor-
ward. Since we are interested in the renormalization of the masses, not all the
coefficient will be needed as we will see. We now move on to the terms coupling

the gauge to the scalars.

3.4.3 Gauge bosons

The gauge couplings are more numerous and the terms are less simple
because of the fewer symmetries making their expressions a little less compact.
The computation is very similar to what we have done so far. We start with the
terms involving the vacuum. We first consider the trilinear term that include
the vacuum. The philosophy of the computation hasn’t changed. We find:

29Tr (9, 0" [A", ¢}]) =290,0"* AP ¢ Tr (B4 [Eg, Hy)) (3.94)
= —29C0, " AP B¢ "Satp0
:29Cai¢éi #d)IaA“(*“)
=2MCH™M 8,7 A=)

Rotating the scalars in the mass basis, we obtain:

29Tr (8,07 [A*, §}]) =2MCb™ (P1)! 0,67 > A=) . (3.95)
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Next we have the quartic term involving the vacuum:

57T (196, Aul[6!, AM)) = 20 9l A1 AT (Hy, Eo][Bp, B]) - (3.9)
TP G AL AT ((H,, EA)[H,, BS))
+ g*0" ¢y A% oTP AT Ty ([H;, Eo)[Ep, Hj))
= g% Ny 6" o AP A)04 .0
+ i M i  AG ST AY 6 agn 0
— gPiciB; 0" o' A% TP Al S0
= QQiQiNﬁv‘SW@béiAz¢IBAZ5B+%@
n 92aiajéuy¢éiAﬁ¢le;a
— GPaya 6 gAY YT AT
Taking into account the various related terms in each line, and rotating to the
mass basis, we obtain

G Tr (195, Aul[6, AM)) = igM N3 8 o) (P11, A2 P A7 + cc.
+ cyclic permutations in a, 3, 7y
+ gMa; o b (PL L ASGT I AL + cc.
— gMay 6" b (P ASH! D AT e

(3.97)

Now moving on to the trilinear and quartic terms involving the scalars around
the vacuum:
29Tr (9,0'[A", 6"]) = 29C8,¢"* A" ¢" Ty (Eo[Ep, E)) (3.98)
+2gC0, " AP "' Tr (E,[Eg, Hj))
+2gC0,¢"° AMi " Tr (E[H;, E))
+29C0, 0" AMP ' Tr (H;[Eg, Es))
= 29CNp, 00" A1 b0y 54y
+ 2igCa AP (9,076 — ¢T*0,0"")
+ 2igCa; AM19, ¢! () gl
The first line can be further simplified. Let us fix three roots such that o =
—(8 + ). In the sum over the roots, we have the terms
29C N3, 0, T  AFP ST 4 (o 5 ) (3.99)
= 2gCNp,0,0"* AMP 17+ 2gC N5, 0,67 AFP HT™
= 2QCN/3WAHB (8M¢IQ¢H - ¢Iaau¢17)

87



where in the last line we used Ngo, = —Ng,. On top of those terms, there are
also the cyclic permutations. We also perform the change of basis resulting in
the expression

29Tr (90" [A", 6"])
= 2%CN (P (P)!,, 478 (9,67"677 — 97'*0,07) +c.c.

+ cyclic permutations (3.100)
+ Q’L‘gC('P:L)II/OLiAH(ia) (a#d;['aqﬁli o J)['aaud)li)
+ 2igCa; AP0, ¢! () gl

Lastly, we have the quartic term
ST (10, 4,81, AM]) = g 9 AL AN (1B, BB, EN]) - (3.101)
+2g%0" T AL ¢! AY T ([H, Eo[Ep, B,))
+ 2% ' Al,¢"P A Tr ([Eq, Hi)[Ep, E))
+ g o AL OT AV T ([Hi, Eo[Hj, E))
+g*n o' AL 0" AL T ([Ea, Hi[E,, Hj))
+ 2% 1 AL AT ((H;, Bl (B, Hj))
= g T ALY ASNapNoxS(a + B+ 7 + A)
+29°n" ;" ALGTP ALb a5y
— 20" " ;" AL " A G
+ &0 @iy ¢ AT AY b agn 0
+ 9277“V0¢i’Yj¢IaAL¢”Ai5a+w,0
—20°n" i B " A% TP Al G0

And putting the expression in the mass basis we have

S0P (167, A0, %)
= ¢®n" NagNoA (P (P11 ABGT Y AYS (o + B+ v+ N)
+ 200" i (P 1 6" AP ALb o oy
— 200" i (PL) 1 (P87 AL A6 s (3.102)
+ 9277“1'0%%'¢HAﬁ¢IjAZ5a+y,o
+ 9277“”OéﬂjcglaALéhA%aﬂ,o
— 200" 0; B;(PL) 1 ¢ ASGT P Al by 50

Notice that here, we did not go through the usual simplifications. That is
because we do not really need to. Only a few of these terms actually contribute
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the renormalization of the masses, it will be easier to only consider the relevant
terms and simplify them later.

Having now all the formulas needed for mass renormalization, we can move
on to the actual renormalization of the masses at one-loop.

3.5 Mass renormalization

We are now finally ready to renormalize the masses of the model. Not all
the masses present in the model are of interest. Recall Table 3.1. For a small
vacuum parameter, the masses separate into essentially two scales. The first one
is a the geometrical scale M? = £2, the second is given by the masses (m_, )2,
(Mg 96)2 along with the massless degrees of freedom. Since these would be the
observable modes comprising the Higgs boson, we will only renormalize those.
The rest will remain at the geometrical scale anyway. In our new notations,
these fields correspond respectively to the components ¢'®, A, #'" and ¢*'. The
gauge symmetry ensures that every component falling into one representation
will have the same renormalized mass, allowing us to limit our study to the
components just mentioned.

Before diving into the study of the renormalization of the masses, we are
going to fix some notation. When computing the various contributions, we will
encounter the usual divergent integrals, such as

J 4 G
((p+)* —mi)(g> —m3)
These integrals have to be regularized in order to extract the finite part which

actually contribute to the mass. The finite part of the regularized integrals will
be denoted in the following way

4 1
Ke [/ da (p+q)2 —m?)(¢% — m%)} (3.104)

where FC stands for finite contribution. We will slightly abuse notation in order
to keep things as clear as possible. We will use the propagators or products of
propagators to mean the finite part of the regularized integral. Explicitly

(3.103)

FC | [ ot s | = @@ (3.105)

Fe V o+ 07 —mi )@ —m%)]

We choose dimensional regularization as our method to extract the finite part.
All the integrals we encounter are standard, and their regularization can be
found in Peskin € Schroeder "An introduction to quantum field theory" for
example. Finally, the renormalization is done in the Feynman gauge (£ = 1).

(@1 (") WP (677)") . (3.106)
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3.5.1 Renormalization of the light field ¢'*

We are interested in the renormalization of the component ¢~>1°‘ We first
fix a root a such that b 75 0, meaning that the vacuum we picked is not
orthogonal to this root. Th~1s component corresponds to the H~ fields of Table
3.1. The terms involving ¢2* are not taken into account since this degree of
freedom is used for the associated broken boson Af.

Scalar potential terms

The relevant terms of the scalar potential for the renormalization of ¢ are

—i0 Tt (o) i@ (7 )" 5
+ Z Naﬁﬂa,Jﬁ,K(aw)g’mqgw(&K(aw))* +c.c.

B
—4 (Oéiajg)quljé']a(q}]a)* _ 041‘05]‘QIJI’J/&H(Z;JJI(ZBIIQ((Z;J/a)*)
—4) " |Nagl?¢" @7 (1) (7). (3.107)
B

where in the last line, the terms involving the tensor R don’t contribute to
the renormalization. Note also that terms with I = J vanish, which can be
seen directly from (3.93). We recall also that the tensors 7 and Q don’t really
depend on the specific algebra under consideration. This dependence is only
through the parameters «, 3, ... which fixes the value of the angles for the sines
and cosines inside P,. Let us start with the first line. The terms are explicitly

O Thaus a5 5 = s cos28) s (5 (31" — (3%)°3)
+ i cos(26) cos(v) ;% <¢3a(¢1a) (Qgga)*fgla)

+ sin(26) sin(v)a; ¢t oL (H1)*

+ sin(260) cos(v)a; * 1 (41*)* (3.108)
where the dependence on the root for the angles 6(b¢) and v(b¢) is not written
explicitly. The first two terms give the following integral when considering their

contribution to the mass. We denote g.r the effective coupling constant of the
vertex and obtain

P2g% . o~ - SN2
;ff ¢17,¢17,i2 <¢3a(¢1a)* o (¢3a)*¢1a) (3109)
ngsz S ~ -
2 GGG (1) (66
Upon contractions we have

2921 (11N (6°)") - (3.110)
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The correlators give the usual two propagator integral. Similarly, the last two
lines give similar integrals

2g2p (1PN (1)) - (3.111)

The second line doesn’t really simplify much in the general case and is better
left in this form, giving a contribution of the form

i [Nagl*[ Tia, 5,542 (@77 (677)") (957 (657)7) . (3.112)
The third line is composed of quartic terms. They are explicitly given by

— idazay (1 —sin()?) ¢*'¢™ (61 (¢'%)")

— tdajay (1 — cos()? cos(v)?) ¢1'61 (¢ (61%)7)

—idoyaj (1= cos(0)? sin(v)?) ¢* > (¢'* (¢'*)*) (3.113)

All those terms are tadpole like integrals with one propagator (taking i = j for
the contractions to be non zero). Finally we have the fourth line which gives
contributions

—id|Nap[*(¢77(¢7%)") . (3.114)
Of course, when computing the mass, we will have to add the constants in front
of the trilinear and quartic terms, which are respectively (2g9M)? and g2/2 (see
the expression for the potential in (3.2)).

Gauge coupling terms

The terms coupling ¢'® to the gauge that are relevant to the renormalization
are

200Ny (P1) 1 (P11 A7 (8,87677 — 620,677 + cc.

+ cyclic permutations

+2igC(P) 1 A=) (8,676" — 370, 0™)

+ 2igCar; AM9, ¢! () gl (3.115)

The last two terms can be computed in all generality. We start with the third
line

2igC(PL)! oAM= (8,‘(51,%5” - él’aauqs“) t(a——a)= (3.116)
2igC cos(8) cos(v)a; AH=) (aunglaqﬁli - q@laauq’)”) +c.c.
(3.117)
— 2igC cos() sin(v)oy; AH(—) (6‘u¢~)1a¢)2i - ngaaMz)?i) +c.c.
(3.118)
+ 2igC(—i sin(8))a; AR (auqzéla&i - ¢;1Q8M¢3i> tee
(3.119)
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The contributions will be similar. Let us treat the first term explicitly. We first
write the term in momentum space :

ige 1 (A7) (8,816 = 310,01 ) = igeys (im — i) (A" (K)) "6 ()6 (a)
(3.120)
The contribution takes the form
28 LL20,mys (iv} — ial) (iph — igf)
X (A (k1)) A% (k2) 0" (1) (0 (p2)) " 0" (1) (@) (3.121)

Upon taking contractions and using conservation of momentum at each vertex
we obtain the integral

dg" (P —0)"(p— Dy
27T)4 ((p + q)2 - mgauge) (q2 - m7,2)
(3.122)

ggffzz(pz;mgaugevmi) = ggff FC |:/ (

The fourth line is similar, only with one type of scalar
2ga;Ci A (aﬂ(])’ (—)gla _ gl <*a>a#¢3’a) (3.123)
The contribution in momentum space is

9 i i i i
—%(29)20204?22'2142(%1)Ai(kz)ip’f(cﬁm(pl))*fbm(Q1)(¢I“(QQ))*ip5¢I°‘(pz)

=i%(29)°C*ajip}ips AL, (k1) AL (k2) (6" (p1))* 6" (01) (6 (g2))* 6" (p2) (3.124)

There are two possible contractions

i*(29)°C2aiipliph (A7, (k1) A} (k2)) (6" (1)) 6" (p2)) (3.125)
and

i*(29)C2aiplipy (A], (k1) A} (k2)){(6'* (42))" 0" (a1)) (3.126)

which can be written as one integral after a change of variable:

dg* Pub" + 4uq"

Il(p; mi gau eamla) =FC / 2 E
s (27T)4 ((p + q)2 - mg,gauge) (q2 - m%a)

(3.127)

The final terms to consider are the quartic couplings with the gauge. The ones
relevant to us are

792677'U‘V|N(¥6|2A5(A5)*$Ia(q51a)*
PO QA AL G (3.125)

which form tadpole-like integrals. B
We have now all the ingredients to renormalize the mass of ¢'®. We shall
end this part by giving the final expression.
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Correction to the mass of QNSM

Finally the expression for the correction to the mass of ¢ is

L omi, =M (Vo) (T s P67 GV GG (.120)
0s(26) sin(v))2 (Y G1) (3% (43%)*)

c0s(26) cos(1))2 (% 2V (3% (¢5*)*)

sin(26) sin(v))2 (¢Y G (1 (H1)*)

cos(1))* (6% ™) (6" (6'*)")

AN (679))
g s
+ Lt (1 - sin(0)?) (36%)

g2

+ 34%2 (1 — cos(6)? cos(v)?) (YoM
+ %40[? (1- cos(#)? Sin(l/)2) ($% %)

(29)2|Nﬁ7(7)l) I’('Pjy) J’| I2(m1avm5 gauge; T J’~ )
+ (2 )2|N’ya(7)gz) I’(Pﬁ) J’| IQ(mla;m’y,gaugeamJ’ﬁ)
+ Oé )2 (m%ommz gauge;mla)

29 COb(Q) COS ( ))ZIQ(mlavma,gaugmmlz)
2gcos(9)s n(v )) Ig(mla,ma’gauge,mgl)

29 s1n(0))212 (mla, Ma,gauges m3’t)

/\/—\/\/\

+g%Cn"” | Nag| (AL (AD)")
+926n,uu 2<Az A2>

where we recall the expression for the integrals

dg* pup" + qug”
. Z;moc e :/ i M 3.130
1(p gauge> "'01 ) (2m)* ((p +q)? — m.’%auge) (¢* - m%a) ( :
dg* (r—a9)"(—q)
IQ(pQ;maau e7mIO‘) :/ , .
gaug @D (0 + )~ MBuge) (@ — m)

A few words are in order about this result. First, notice that this result is in
fact independent of the angle v. That is because ¢1; and ¢9; are both massless.
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For example, if we take the second and third line

+ (2gM)% a3 (cos(26) sin(1))* (1 $1) (6% (6°*)") (3.131)

+ (2gM)*ai (cos(20) cos(v))* (57 0%) (7 (7))
we see that the correlators are the same in both line, leading to the simplifica-
tion of the cos(v) and sin(v). This happens in the same way everywhere the v
angle appears. Therefore the mass correction is independent of the angle. Next,
tadpole terms involving a massless degree of freedom vanish when explicitly
computed, leading to additional simplifications. Lastly, terms involving only
roots are the more intricate. It is not really enlightening to develop them more
since they mix sines and cosines with different angles, leading to very few sim-
plifications in general. We will see that for the breaking SU(3) — SU(2) xU(1),
they simplify greatly. Bigger gauge groups would give rise to complex combina-
torics between the different roots. It would be of course possible to automatize
the computation for any gauge group since the only data that depends on the
algebra is though the roots « ...and the coefficients N,3. Given this data, the
computation can be readily automated.

3.5.2 Renormalization of ¢! and ¢*

The renormalization of these terms is actually even easier than the previous
case. We start by writing the relevant terms from the potential

_29MZio‘iITIa,J(fa),Kia)Ia((Z;Ja)*d;Ki

at

2
_% <Z4O‘iaj¢ji¢1j¢‘]o‘(¢‘]o‘)* _ 405ianIJI’J’¢H¢Jj¢I a(¢J a)*>

+27;gC(,P;)II/OéiAH(_a) (aué[/ad)li _ &I,aaud)“)
+g° 0" iy ¢ AT AYGu iy 0 (3.132)

Next we are going to select the terms involving ¢'%.

*QQMZiaiﬂa,J(—a),1iQ~51a(QNSJQ)*QBM

2
3 (Z o1~ Qnm'>¢“¢“’¢f’a(¢’/a>*>

+2ig(P]) poi A (9,676 — 67 0,0")
+g° 0 gt gt AL (AS)* (3.133)
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The case of ¢ is exactly the same. Already we can give the expression for the
masses.

1 oy JTa*\ / 1Jor TJa\*
@M@n =(29M)*0} | Tras(~a)1il* (&7 (7)) (7 (67%))
2
+g§4043(1 — Quirr)(o" (")) (3.134)
+(2g)2a12(7)l)11'12(m12;m_zo;augevml’a)
+gPn ol (A7 (AD)7)

3.5.3 Renormalization of the broken boson Ag

The relevant terms are

29CNor (P11 (P!, A (aﬁ”%“ - ¢I/ﬁa,t¢><”7) Yee  (3.13))

i
+ QiQC(Pl)II/aiAH(_a) <8H(;I'a¢fi _ é[’aaud)fi) +c.c.
along with the quartic terms
+ & [Nag ™ 0" (617) AL (AD)”
+ gt al T AR (AD)" (3.136)
We start with the contribution from the first term. We can recycle the com-
putation done for the renormalization of ¢* in (3.121) when considering the

coupling to the gauge boson. We then apply the appropriate delta functions
coming from the contractions of the scalars to find

dq* (p+29)"(p +29), .
20" (0407 = m3 ) (a2~ m2)

GepsTs(P*sma,my) = 624y / ( (3.137)

Here gess refers to 2gCNM(Pg,)Ip(P,DIJ,. The following line give the same
integral with the appropriate masses. The quartic terms give the usual tadpole
we already encountered. Putting all this together, we obtain the contribution
to the mass of the gauge boson:

(0mGyge)® =(20)*1™ [Naw (P 1 (PI) 11 PLs(p?s s, 10504
+(29)*0" | Nan (P) 1 Z3(p% mpra mi) |2
+ P [Nag > ("7 (6"7)7)
+ Pl (91N

(3.138)

We are finally done computing the corrections to the masses at one-loop.
In the following and final chapter, we will discuss specific examples, trying to
understand general features of this type of models, and their limitations.
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Chapter 4

Discussion

In this final chapter, we are going to use the machinery developed in
the previous chapters to study the renormalization of a gauged SU(3) model.
We will see how the mass hierarchy organizes and what can be said for future
work for this class of model. We will then discuss qualitative properties of other
gauge groups, and how we can restrict the choice of the group in which we
embed SU(2) x U(1) to reproduce a scalar field similar to the Higgs field before
electroweak symmetry breaking.

4.1 SU(3) — SU(2) x U(1), masses at one-loop

In order to compute the correction to the masses for a given gauge group,

all we need to do is specify the gauge by setting the values for the roots «,

and the N, coefficients. We are interested in the gauge group SU(3), as it

provides the simplest non-trivial example with SU(2) x U(1) embedded, along

with a fundamental representation of SU(2) x U(1) to act as a Higgs field. We
start by giving the roots for SU(3):

a=(-1/2,3/2) (4.1)
B = (170) 4.2
v =(1/2,V3/2) (4.3)

along with their opposites. We also have the relation o+ = y. The coefficients
Nqg are all the same and given by

Noy = — (4.4)

afB \/5 . .

There is a real advantage of working in the Cartan-Weyl basis like we did,
we can easily understand the breaking of the gauge through the use of root
diagrams (at least for groups of rank two or three, for larger groups we can use
Dynkins diagrams, but it may not be as intuitive). Consider the diagram in
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(a) SU(3) = U(1) x U(1) (b) SU(3) — SU(2) x U(1)

Figure 4.1: (a) No root is orthogonal to the vacuum, the gauge after breaking
is generated by H; and Hy; which commute with one another, resulting in the
U(1)xU(1) gauge. (b) The horizontal root (in red) is orthogonal to the vacuum.
Those two roots along with H; form an su(2) subalgebra, Hy generates the U(1)
part. The other roots (in green) form a fundamental representation of SU(2)
and charged under the U(1) generated by Ho.

Figure 4.1. Since our vacuum belongs to the Cartan subalgebra, we can think
of it as a direction in root space. As we saw, the various masses for a given
direction E, in the algebra depend on the parameter b = g/M a;¢b, that is,
on the scalar product of the root o with the vacuum. This interpretation makes
breaking patterns evident when looking at the root diagram. Of course, since
our vacuum belongs to the Cartan subalgebra, the generators of this subalgebra
cannot be broken by this mechanism since they all commute with each others.

The electroweak symmetry breaking takes an SU(2) x U(1) gauge and breaks
it to U(1). Here, we cannot reproduce this breaking pattern because we have
no way of breaking a U(1) factor (seen as a direction in the Cartan subalgebra).
Let us study the breaking pattern SU(3) — SU(2) x U(1) in more detail, we
will discuss possible solutions to break residual U(1) factors later on. To this
end, we take the vacuum perpendicular to the root 8 (the horizontal root). The
field content after the breaking is given in Table 3.1 with exactly one H ™, one
H™" and one broken boson X, which are all in the fundamental representation
of SU(2) and charged under U(1). Let us give the Lagrangian explicitly for
clarity. In the eigenmass basis, the dynamical terms read

1
Lagn = =5 Tr(Fu F") = D,X} D'X" + M%X?

+ D, (HE) - DFHE — (my)?(HE).HE

+ Tr(Dyu¢i D ¢;) + Tr(D,upD* p) — M2 Tr(p*) (4.5)

where ¢ = 1,2; F),, is the field strength tensor for the SU(2) x U(1) gauge; X, is
the broken boson (gauge-fixed so the dynamical term is no longer antisymmetric
in u, v); the H’s, the ¢;’s and p are scalars. We recall that the masses take the
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following form,

My=Mf_(z) M= Mf(x) (4.6)
M,=M  Mx= Mz, (4.7)
where,
2 2
x = 7”)12“)2 , (4.8)

and we define the function fi(x) as,

folz) = \/(1 Fa2 /17 222). (4.9)

As already mentioned, all fields of this model transform in either of two SU(2) x
U(1) representations: the adjoint (¢;, p) and the fundamental (H*, X,,). The
adjoint representation is to be understood as the span of (?]I, 5%, % ). The

coupling constants are,

g V3
gsu) =5 and gy = 59 (4.10)

The cubic terms of the scalar potential around the selected vacuum are given
by,

~2gMiTr([61,02]05) = ~29M ( — 2 cos(26) cos(v)lm (H] - g - Hy)
— 2cos(20) sin(v)Im (H] - ¢; - Hy)
+ sin(26) cos(zz)HT o - Hy
+ sin(20) sin(v)H - ¢y - Hy
— sin(26) cos(v) H, T - - Hy
— sin(26) sin(v)HJ - ¢y - Hy + 2iTr (¢ - [p, ¢1])) ;o (411)

as well as the cubic terms coupling the broken boson X, to the scalars,

— 2gsin(0)Re (6MH1T p- XM —H| 0,p- X“)

+2g cos(0)Im (X*1 - p-9,Ho — X" - 0,p - H>)

+2g cos(0) cos(v)Im (X - ¢y - 9, Hy — X*1 - 0,01 - Hy)

— 2gsin(0) cos(v)Re (8MH2T b1 X, — HY - 0,01 - XN)

+2g cos(0) sin(v)Im (X" - ¢y - 9, Hy — X" - 0,¢1 - Hy)

— 2¢sin(f) sin(v)Re (8#H§ o Xy — H - Oudr - Xu) . (4.12)
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In addition there is a large number of quartic terms listed below:

g*Tr([61, ) + g Tr([62, p]*) + g°(1 — sin®(6) cos () HS - 67 - Hy
¢2(1 — sin(0)? sin®(v))HJ - ¢2 - H,
( 2(6) cos® (v)) H{ - ¢ - Hy
+ ¢>(1 — cos®(0) sin®(v))H] - ¢3 - H;
+ g2 cos?(0)H{ - p? - Hy
+ ¢?sin®(0)H] - p? - H,
+X] 0P X+ g ((HzT - Hy)(X]|

_|_
2
+ g°(1 — cos

1 X,) — (HS 03 Ho)(X] - 03 -XM)>

0> (] H)(X] - X,) = (H 05 H)(X] 03+ X,.))
+o? ((H] - H)(H] - Ha) = (H] - 03+ H)(H] - 03+ H) ) . (4.13)

The masses after renormalization are given in figure 4.2. All the scalars
become massive under renormalization. The massless scalars (denoted by ¢ in
figure 4.2) acquire a mass of the same order of magnitude as H~. Another
important point is that the fields qblU,(Ql) do not couple to the gauge at all. These
are the fields corresponding to the Hs direction of figure 4.1, meaning that
they commute with all the generators of the new gauge. This model does not
include fermions. If we were to couple fermions to the scalars, fermionic loops
would lower the masses, making this mass hierarchy possibly different in a more
realistic model.

The SU(3) model offers an interesting setup for Gauge-Higgs unification as
it allows for three mass scales given by the low mass scalars, the geometrical
mass scale £2 and the Kaluza-Klein modes whose masses go like one over the
radii. The model has few free parameters, namely the geometrical mass M (or
twist), the Yang-Mills coupling constant g, and the vacuum parameters. One
would expect the vacuum parameters to be fixed to some value that depends
on the geometrical parameters of the model g and £ if we were to proceed with
a complete renormalization of the potential. But this is outside of the scope of
the present thesis. We can wonder if there are other interesting choices for the
gauge group. Let us turn our attention to this question.

4.2 Rank-2 semi-simple Lie algebras

We are interested in gauge groups that contain SU(2) x U(1) as a sub-
group. Because we cannot break the Cartan subalgebra, we are considering
essentially rank 2 algebras, as they are the only ones capable of giving exactly
a gauge SU(2) x U(1) in the present set-up. Using the classification of semi-
simple algebras, they are four possibilities for rank 2 algebras: As, Bs, Do
and Gy (Cs is not counted here since it is isomorphic to Bs). Their root dia-
grams are listed in Figure 4.3. A5 corresponds to SU(3), so we already explored
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Figure 4.2: One-loop renormalized mass spectrum of the theory as a function
of the dimensionless vacuum parameter b = b¢ = b5. The masses are in units
of M, the geometrical mass. The value of g sets the renormalization scale. This
plot was computed for a coupling constant g = 10~!, a UV cutoff 4 = M and
the angle v = w/4. The impact of the angle v is simply to separate the masses
of the states ¢ and ¢ by changing the value of some couplings. The massless
scalars are of the same order of magnitude as the Higgs-like field, but couplings
to fermions could change the mass hierarchy.

this possibility. Next we have By which has a fundamental representation of
SU(2) x U(1), similarly to As. Bs also has an extra complex scalar field upon
breaking to SU(2) x U(1) which would add unobserved scalar content to the
model. This is not a problem as such, but it doesn’t really add anything to our
model. The Weinberg angle for By is w/4. D5 is isomorphic to SU(2) x SU(2),
and upon breaking, would only generate a complex scalar field charged under
U(1), and therefore does not contain the appropriate representation for the
Higgs field. The last candidate is G2. G5 can be seen roughly speaking as two
copies of SU(3) coupled in a certain way. If we consider the breaking pattern
G2 — SU(2) x U(1), we would obtain two fundamental representation of SU(2)
with different hypercharges, along with a charged complex scalar field, singlet
of SU(2) (along with the adjoint scalar fields like in the SU(3) model). The
additional scalar content would also raise the masses of the scalars. The only
advantage of working with G5 might be the value of the Weinberg angle. When
SU(2) xU(1) is embedded in this algebra, one of the two fundamental represen-
tation would have a (tree level) Weinberg angle of 7/6, close to the measured
value of ~ 29°. By contrast, the SU(3) model has a tree-level Weinberg angle
of 7/3, which is significantly larger than the observed value. Of course, one
would have to study the running of the angle under renormalization to make
any precise statement. Depending on the details of the model, the value could
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A; B>

B
B
2m/3
3n/4
a 08
(a) Az root system (i.e. SU(3)). (b) Bz root system. Isomorphic to Cs.
G;
2
B a B
5m/6
o4
(¢) D2 root system. Isomorphic to A1 X A;. (d) G2 root system.

Figure 4.3: The four rank 2 semi-simple Lie algebras. The arrows represent the
roots of the algebra. Cs is isomorphic to Bs since its diagram is a 7/2 rotation
of By’s diagram. Ds is isomorphic to A; X A;, whose diagram is also a 7/2
rotation of Ds’s diagram.

be significantly modified at one-loop.

4.3 Orbifolding and U(1) factors

A limiting aspect of this model is its inability to have a breaking pattern
changing the rank of the algebra. As we saw, the Cartan subalgebra of the gauge
will always remain unbroken, leaving a product of U(1) factors as residual gauge,
one for each direction in the Cartan subalgebra. By contrast, the current model
for electroweak symmetry breaking uses SU(2) x U(1) and breaks the gauge to
U(1), lowering the rank by one. A possibility to circumvent this issue would be
the use of orbifolds on the geometry of the extra dimensions. In the presence
of orbifolds, another mechanism is possible to break the gauge, independent
of the scalar potential. This mechanism is known as the Hosotani mechanism
or Wilson loop mechanism [25]. The idea is that Wilson lines around a non-
contractible loop become physical degrees of freedom. On an orbifold, not all the
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Wilson lines survive the orbifolding procedure. Once we have fixed the boundary
conditions, so we have fixed the holonomy of the gauge. The phase they acquire
going around those loops cannot be gauged away once the boundary conditions
are fixed. At the classical level, the field strength is zero, and so this looks
like a degeneracy in the vacuum of the theory. But at the quantum level, the
effective potential for the Wilson lines develop a non trivial potential whose true
vacuum minimizes this potential. If the vacuum is at a non-trivial configuration,
the non zero expectation value for the Wilson line gives a mass to some of the
4 dimensional gauge bosons. Possible orbifolds in the case of the Heisenberg
manifold were worked out in [37]. In this paper, two possible orbifolds are
identified. The first takes place only on the base torus, while the second one
takes place only on the fiber. Denoting by y the coordinates on the manifold,
these are defined by

T:yb? - —yb2 3 5 ydand P:yh? = b2 ¢3 % — Nyly? . (4.14)

Let us focus on the first transformation since the mechanism can be directly
applied in this case. In the case of the T orbifold, we must impose a = b = 0,
the rest of the parameters are not constrained. The resulting orbifold is 72 /Z,,
which is a square. The space is parametrized by y2 € [0,1/2]. There are four
fixed fiber circles stemming from the points (0,0), (1/2,0), (0,1/2), (1/2,1/2).
We can organize the modes in eigenstates of the orbifold involution. We have
first the linear combinations of the modes on the base torus

% ('Ul,n i’U_l,_n) (4.15)

which are even, odd respectively. For the modes propagating on the fiber, we
have the combinations

1
—= (ki £ (1) g | —1,—n) (4.16)

V2
that are even, odd respectively. The modes v and u are defined in section
1.3.1. Following the derivation in [48] for the orbifold S'/Zs, we will sketch the
Hosotani mechanism for this case. First, when a gauge field is going around a
non-contractible loop, the field has to go back to its original value only up to a
global gauge transformation. So here in our case, it means

A2,y 9%) = Un A,y + 1,97 U] (4.17)

Am(@,y",y?) = UsAp (2, 9",y + DUS (4.18)
For simplicity, we will consider Us = I, so only loops around the first circle are
non-periodic.

Assume we turn on a Wilson line around this first circle such that (A,,) =
éAm with constant A,,. We can undo the Wilson line with a local gauge trans-

formation V;,, = exp(iy*A,,). We then have
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with éVmayl VI = (A,,). The boundary conditions are modified such that

An(y' +1) = Am(y') 5 (4.20)
Ayt +1) = V(' + DAYV +1) = (An) (4.21)
Using the expression for V', we find
V(y' +1) =exp (i(y' A+ A)) =V (y') . (4.22)
And so we have
A;n(y1 +1)= eiAAlm(yl)e_iA . (4.23)

So the situation with Wilson line and periodic boundary conditions is equivalent

to the situation without Wilson lines but with non-periodic boundary conditions.

This breaks the gauge symmetry to the subgroup that commutes with A,,.
We now impose the orbifold conditions from [25]

A#(l’, 7y17y2) = PAu(xaylayz)PT ; Am(xafylva) = 7PAm(xaylay2)PT .
(4.24)

The first condition is trivial since those fields do not acquire a vacuum expecta-
tion values (VEV). In our model, the vacuum solution was of the form ¢ = 0
and [¢', ¢?] = 0. This resulted in ¢! and ¢? acquiring a VEV. If we take the
example of SU(3), we can set

. 1
P=¢% and (A) = §¢0A3 : (4.25)

where )\, is the Gell-Mann basis of SU(3). The condition takes the form
P\g)PT = 1),
) 1
=3 +i0[A1, A3] + 5[)\1, A1, As]] + ...

=\3 +i0(—2i)\a + %(ia)z(fm)mg +...
=c0s(20) A3 + sin(20) Az . (4.26)

If we set 6 = 7/2 the condition is fulfilled. This corresponds to the case where
the vacuum is aligned with a root. In that case the gauge symmetry is first
broken by the VEV to U(1) x U(1) with the masses for the other roots being
all the same. The orbifold breaks the U(1) factor along A3 and preserves the
factor along As, reducing further the gauge symmetry to U(1).

Another advantage of the orbifolding method is that it allows for chiral
fermions. The fixed points of the orbifold, which are really in this case fixed
circles because of the fiber at each point, can be used to localize fermions.
Fermions at different fixed points can be coupled as we wish, so long as the
theory remains anomaly free.
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4.4 Higher dimensional nilmanifolds

In this thesis we have focused our attention on the simplest nilmanifold.
One could wonder what would be different if we had considered a higher di-
mensional nilmanifold. Of course, a complete study would require solving the
Laplacian on the nilmanifold, which is not a simple task in general. Here we will
just try to justify why we would expect the first modes to be dependent only on
the structure constants of the tangent algebra. To see this, take an orthonormal
frame e, and its associated co-frame 6<, define the coefficients of the connec-
tion as w5 = (Ve es,0%). The torsion-less condition is we g —w s, =,
where fo‘w are the structure constants of the nilpotent algebra. The Maurer-
Cartan equations take the form

1
do™ + 5fawm NP =0 (4.27)

Now, consider the action of the Laplacian on a one-form of the co-frame. By
direct computation, we find

« « 1 « n 1 (&3 €
AG* = A0 = =2 f7 (=1 dw (07N 07)) = 5% 0 s B 0
B
(4.28)

The matrix ZW f”‘w fe 45 18 real, constant and symmetric, so we know the
constant eigen-one-forms will be some linear combination of the co-frame. The
eigenvalues will be constant linear combination of the structure constants. It
is reasonable to assume that modes with non constant coefficients will have
eigenvalues with the typical 1/(r%)? dependence, where r¢ is the radii of the
circles of the torus. So the model will be composed at tree level of massive
and massless scalar fields in the adjoint representation. Since these low-lying
scalars are given by the constant one-forms, the total number of scalar degrees
of freedom will be equal to the dimension of the nilmanifold (i.e. the number
different 6¢). The potential will have trilinear and quartic couplings, with the
various couplings between the scalars given by the structure constants in the
appropriate basis. The main consequence would be the addition of several mass
scales given by the eigenvalues of the constant modes. The vacuum condition
would most likely be more complex. This could also be applied to more general
compact group manifolds.

This is the last ingredient we needed for the framework developped in this
thesis. We now have everything needed for realistic model building,.
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Chapter 5

Conclusion

In this thesis, we discussed a new mechanism for spontaneous symmetry
breaking based on nilmanifolds. We started with a pure Yang-Mills theory in
seven dimensions, the three extra dimensions being the lowest dimensional ex-
ample of a compact nilmanifold. This space can be understood as a 2-torus with
a twisted circle fiber. By studying the spectrum of the Laplace and Dirac oper-
ators, we found a infinite discrete basis on which we could expand any form or
spinor with periodic boundary conditions. This allowed us to rewrite the seven-
dimensional Lagrangian as an effective four dimensional theory by integrating
the degrees of freedom on the nilmanifold. We then truncated the Lagrangian,
keeping only the lightest modes according to their masses. Unlike the usual
case of the torus, we found that the "zero" modes for the one forms contain
a non-zero eigenvalue given by the square of the twist £ of the geometry. The
Kaluza-Klein tower retained its typical 1/r? behavior, where r is the typical
radius of the circles. The effective theory was composed of three scalar fields
in the adjoint representation of the gauge group, one of them being massive,
the other two being massless. The scalars are coupled together via a potential
present at tree level. We used this potential to induce spontaneous symmetry
breaking of the gauge by finding a class of vacua, i.e. minimums, of the theory
and developing the scalars around that point. We found a general way to com-
pute the masses of the scalars around any minimum of the class for any gauge
group, this allowed us to compute explicitly the potential. With the explicit
form of the potential, we were able to renormalize the masses at one-loop. We
graphed the renormalized mass spectrum of a model with SU(3) gauge symme-
try and computed the model explicitly for the case where the gauge is broken to
SU(2)xU(1). We discussed bigger gauge groups qualitatively and did not found
sensible alternatives for the model, at least if taken as it is. We also discussed
the use of higher-dimensional nilmanifolds. The constant structures of the nil-
manifold are responsible for the masses of the "zero" modes. The separation of
the scale of the Kaluza-Klein modes and the zero modes is still possible in this
case.

The model should be thought of as another tool for gauge-Higgs unification.
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It offers a rich framework for model building of the scalar sector. The pure Yang-
Mills theory is rigid, with few free parameters, yet offers a range of possible
breaking patterns and mass hierarchies. The model typically predicts three
mass scales. The first one is given by the Kaluza-Klein tower and is of order
m% - ~ 1/r%. Tt is at this scale that the geometry becomes apparent. At an
arbitrary lower scale sits the scale of the twist of the geometry at m?, .., ~ £2.
The final scale is the renormalization scale, the masses are roughly of order
m?2 ~ N(£g/4m)? where N is the typical number of heavy contributions. We can
approximate the number of contributions as N ~ d? where d is the dimension
of the Lie algebra. We can compare this estimation with what we found for
the case of SU(3). The graph was plotted for g = 1071, taking d* ~ 10? and
(47)? ~ 102, we find m2 ~ 1072M?, which is in the ballpark of what we found.

The Hosotani mechanism in conjunction with the use of orbifolds could pro-
vide additional flexibility to the model. As we have already discussed, topolo-
gies with non-contractible loops can have dynamical Wilson loop phases. These
phases along with the orbifold condition can generate a spontaneous symme-
try breaking. Orbifolds also offer a way to have chiral fermions located at the
different fix points (fix circles in our case) of the orbifold.

With all these tools at hand, we have all the ingredients needed for realistic
model building, which should be the focus of future work. A more complete
study of the breaking patterns compatible with the orbifold is also a necessity.
The possible breaking patterns by the orbifold are constrained by our vacuum
solution as the vacuum is given by a direction in the Cartan subalgebra of the
gauge algebra. A better understanding of the possibilities in this context would
be a key point to reproduce the electroweak symmetry breaking.
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