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Résumé
De nos jours, le cloud est l’environnement d’exécution par excellence des appli-
cations modernes, grâce à son coût très attractif et la simplification des tâches
d’administration qu’elle offre. Les utilisateurs du cloud déploient parfois des hy-
perviseurs dans leurs machines virtuelles (on parle de virtualisation imbriquée) à
des fins de tests de déploiement ou pour exploiter les mécanismes des hyperviseurs.
Cette pratique exacerbe la dégradation induite par la virtualisation, conduisant à des
performances catastrophiques et rendant la virtualisation imbriquée généralement
peu pratique et rarement utilisée.

Afin de pallier la dégradation induite par la virtualisation, les fabricants de
processeurs ont commencé à commercialiser, en 2005/2006, des processeurs dotés
de technologies permettant de prendre en charge la virtualisation au niveau du
matériel et de ce fait, offrir de meilleures performances. Plusieurs fonctionnalités
de virtualisation matérielle ont été proposées telles que Intel PML, SPP, CAT ou
EPT. Ces dernières ne peuvent actuellement être utilisées que par l’hyperviseur,
bien qu’elles pourraient également être bénéfiques aux processus s’exécutant dans
les machines virtuelles, et donc aux applications des utilisateurs dans le cloud.

Cette thèse introduit Out of Hypervisor (OoH), un nouvel axe de recherche
motivé par des besoins semblables à ceux de la virtualisation imbriquée. Au lieu
d’essayer de virtualiser entièrement une machine à l’intérieur d’une machine virtuelle
pour supporter un hyperviseur, OoH propose d’exposer individuellement les fonc-
tionnalités de virtualisation matérielle au système d’exploitation invité afin que ses
processus puissent également en bénéficier, faisant ainsi de OoH une excellente al-
ternative à la virtualisation imbriquée.

Nous montrons la pertinence de OoH, dans cette thèse, avec la protection de la
mémoire et la traque des pages mémoire. La protection de la mémoire en écriture
est l’un des mécanismes clés des techniques de protection contre les débordements
de tampon mémoire. Un débordement de tampon mémoire est un bug informatique
très répandu dont la prévalence a augmenté au fil des ans pour devenir en 2022, le
problème de sécurité le plus important et le plus critique. Quant à la traque des
pages sales, elle est au coeur de diverses tâches essentielles telles que l’estimation
de la quantité de mémoire effectivement utilisée par un processus (qui facilite la
gestion de ressources par le fournsseur de cloud), le checkpoint des processus (qui
facilite la récupération de données après une défaillance) et le ramasse-miettes (qui
favorise une gestion optimale de la mémoire). Pour rendre ces tâches primordiales
plus efficaces pour les utilisateurs du cloud, nous appliquons OoH aux technologies
Intel PML (Page Modification Logging) et Intel SPP (Sub-Page write Permissions).

PML est une fonctionnalité publiée en 2015 qui permet la traque efficace des
pages mémoire modifiées, pour améliorer la migration en live des machines virtuelles.
SPP a été introduit en 2018, et permet de protéger la mémoire à la granularité d’une
sous-page de 128 octets au lieu de 4 Ko.

Mots Clés: Virtualisation, Virtualisation Imbriquée, Out of Hyper-
visor, Intel PML, Intel SPP.





Abstract

Nowadays, virtualized clouds are the de facto execution environment of mod-
ern applications, thanks to their very attractive costs and administration tasks
simplification. Cloud users sometimes adopt nested virtualization by deploy-
ing hypervisors in their virtual machines (for test deployment purposes or to
exploit hypervisor mechanisms), which duplicates the intrinsic costs of virtual-
ization, leading to catastrophic performances and making nested virtualization
generally unpractical and rarely utilized.

In order to alleviate drawbacks induced by virtualization, hardware ven-
dors started releasing, in 2005/2006, processors with technologies to support
virtualization and provide better performance. Several hardware-virtualization
features such as Intel PML, SPP, CAT, and EPT have been proposed, which
currently can only be used by the hypervisor. Nonetheless, these features
could also be beneficial to processes running inside virtual machines and then
to cloud user applications.

This thesis introduces Out of Hypervisor (OoH), a novel research axis
driven by similar needs as nested virtualization. Instead of emulating full vir-
tual hardware inside a virtual machine to support a hypervisor, OoH proposes
to individually expose hypervisor-oriented hardware virtualization features to
the guest OS so that its processes could also benefit from those features, mak-
ing OoH an excellent alternative to nested virtualization.

We prove the relevance of OoH in this thesis with memory write-protection
and dirty page tracking in guest userspace. Memory write-protection is one
of the key mechanisms to buffer overflow mitigation, a widespread memory
safety violation whose prevalence has increased over the years to reach the
top vulnerability reported in 2022. And dirty page tracking is at the heart
of various essential tasks such as working set size estimation, process check-
pointing, and concurrent garbage collection. Working set size estimation is a
critical need for cloud providers as it enables efficient overcommitment, which
allows efficient resource management. Checkpointing facilitates recovery after
failure, and garbage collection promotes efficient memory management and
saving.

To make these primordial tasks more efficient for cloud users, we apply OoH
to Intel SPP (Sub-Page write Permissions) and Intel PML (Page Modification
Logging). SPP was introduced in 2018 and provides fine-grained write-protect
accesses at a 128B sub-page granularity instead of a traditional 4KB page.
And PML is a feature released in 2015 that allows efficient dirty page tracking
for improving virtual machines’ live migration.

Keywords: Virtualization, Nested Virtualization, Out of Hypervi-
sor, Intel PML, Intel SPP.
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Introduction
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1.1 Context and Problem Statement . . . . . . . . . . . . . . . . 1

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Scientific Publications . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Scientific Awards . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.5 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.1 Context and Problem Statement

Virtualization has become the foundation of data centers because it allows
resource mutualization (thus, optimal resource utilization) between several
clients while ensuring isolation. Thanks to this mutualization, virtualization
can offer attractive costs to cloud users. Moreover, virtualization also provides
adequate support for administration, including resource management. In the
1970s, Popek and Goldberg [138] evoked the idea of recursive virtualization,
where a virtual machine runs under itself a copy of a hypervisor. They were
hence the first to formalize the concept of nested virtualization, definable
as the stacking of multiple hypervisors [114, 67, 162, 116, 150, 94, 65], see
Figure 1.1.

Nested virtualization induces substantial overhead than non-nested virtu-
alized systems due to the significant number of VM (virtual machine) traps
(at least ×2 [150]). Figure 1.2 gives an insight into such traps. If the L2
VM, in the Figure, performs a privileged instruction that would have nor-
mally trapped to L1 in a non-virtualized system, the latter instead traps to
L0. When L0 handles the exit and notices that it is not the one concerned,
it returns to L1. L1 then properly treats the exit and should now set the
VM’s data structures accordingly. However, since it does not have privileged
access to the hardware, it must, in turn, trap to L0. Herein will follow a less
or more long communication between L0 and L1 hypervisors in the sort of
questions-answers, where L1 instructs L0 to set the processor registers and
VM’s data structures accordingly to the cause of the exit. And only at the
end of this dialogue the L0 hypervisor finally resumes the VM.
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Hardware

Hypervisor

VM

guest OS
App

Hypervisor

VM2

guest OS
App

VM1

guest OS
App

L0

L1

L2 L2

Figure 1.1: Nested virtualization gen-
eral architecture.

L0
L1
L2

... ...

Figure 1.2: Traps between nested lev-
els.

For example, Vilanova et al. [150] measured 73% degradation in executing
the cpuid instruction in a nested virtualized system. Despite the efforts of
both the industry and academia to reduce this overhead [114, 67, 150, 116],
nested virtualization is recommended, by cloud providers such as Microsoft
Azure [18], only for testing, development, and demo. Even if there is some
niche utilization of nested virtualization (to realize rootkits [83]), its adoption
in production is not currently envisioned by cloud users.

Nested virtualization is usually adopted for two major reasons globally: to
enforce isolation within guest environments and to take advantage of hypervi-
sor properties and functionalities. In the first case, when cloud customers need
more isolation and deployability within VMs, they prefer deploying contain-
ers (e.g., Docker [6]), which provide better performance and a rich ecosystem
(e.g., Kubernetes [16]). In the second case, among the hypervisor tasks often
valued are the working set size estimation (for overcommitment) and the mem-
ory page tracking. Memory page tracking is at the heart of several tasks, such
as checkpoint/restore [163] (for recovery after failure) and live migration [82]
(for maintenance and dynamic packing). When these tasks are performed
by the nested hypervisor, due to traps (see Figure 1.2) between nested levels
and the root hypervisor, even the ideal VM-based nested virtualization so-
lution leads to a higher overhead than container-based nested virtualization
because containers originally outperform VMs. Instead of emulating full vir-
tual hardware inside a VM to support a hypervisor, we propose in this thesis,
to leverage hardware support for virtualization to provide guest operating sys-
tems with the ability to perform the same tasks that were intended by the
nested hypervisors, with much less overhead than native nested virtualization
mechanisms.

Following the trend of virtualization and its adoption by the industry, pro-
cessors manufacturers started releasing, in 2005/2006, hardware with tech-
nology extensions to enhance virtualization and reduce its overhead. These
efforts have been the way to further extensions for nested virtualization, such
as VMCS shadowing (2010 [67]) for x86 architectures and Nested Virtual-
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ization Extensions (NEVE, 2017 [116]) for ARM. These extensions redirect
some guest hypervisor instructions in order to reduce traps and exit multipli-
cation (see Figure 1.2) while preserving isolation (for example, by limiting the
number and type of direct privileged instructions allowed).

A myriad of functionalities have emerged since the advent of hardware
assisted virtualization, with the core objective of improving more and more
the efficiency of hypervisors and then that of virtualization. In this thesis,
we establish the first-ever categorization of these functionalities (especially
Intel ones) into two main groups. (G1) Features that facilitate resource mul-
tiplexing. G1 includes EPT (Extended Page Table) [96], SRIOV (Single Root
I/O Virtualization) [77], APICv (Intel’s Advanced Programmable Interrupt
Controller virtualization) [129], etc. (G2) Features that facilitate and improve
VM management tasks realized by the hypervisor, such as Intel Page Modi-
fication Logging (PML) [34], CAT (Cache Allocation Technology) [42], SPP
(Sub Page write Permissions) [32], etc.

Like a traditional operating system (OS) creates processes and manages
them, the hypervisor also creates several virtual machines, typically one for
each target OS, and manages them likewise. Because of this similarity, fea-
tures from G2’s group have the particularity to be able to provide the same
facilities to a guest OS as to a hypervisor and, therefore, remove the need for
an intermediate hypervisor level to leverage hypervisor properties. For this
reason, this class of features is the one targeted in this work.

The main concern here is that all hardware functionalities are hypervisor-
oriented. That is, they can be activated, accessed, and managed only by the
hypervisor (the L0 hypervisor in Figure 1.1), which is the only component with
sufficient rights to manipulate the hardware without any restrictions securely.

1.2 Contributions

Out of Hypervisor (OoH). This thesis introduces OoH, a new virtualiza-
tion research axis advocating the exposure of individually hypervisor-oriented
hardware virtualization features to the guest OS so that its processes can also
benefit from those features. OoH aims to have processor vendors rethink the
logic of virtualization features and incorporate their categorization and expo-
sure to VMs from their conception and design. For existing features, the OoH
logic is to try exposing them using both software and hardware approaches.

Regarding software methods, OoH designers should leverage hypercalls
and event channel mechanisms to communicate with the hypervisor that re-
mains the root component; provide the guest with libraries to facilitate the
usage of the exposed feature; implement kernel modules to avoid guest OS
modification and preserve the privilege of the kernel on multiplexing the ex-
posed feature. Concerning the hardware approach, OoH designers can take
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advantage of VMCS shadowing, originally included for nested virtualization,
to reduce the hypervisor intervention. Finally, and only when significantly
improving performances, hardware changes can be considered to even more
remove the hypervisor in the guest execution path. With the latter option,
security considerations must be taken into account to keep ensuring isolation
between VMs and vis-à-vis the hypervisor.

OoH can be implemented for both unprivileged and privileged VMs (re-
spectively, dom0 and domU in Xen). This thesis illustrates the soundness
of OoH in both environments by leveraging Intel PML and Intel SPP for
working set size estimation of VMs, checkpoint/restore, garbage collection,
and memory vulnerability prevention applied to buffer overflow mitigation in
guest userspace.

OoH in dom0. Intel page modification logging (PML) is a hardware feature
introduced in 2015 for tracking modified memory pages of virtual machines.
Although initially designed to improve VMs checkpointing and live migration,
we present in this thesis how we can use and extend this virtualization tech-
nology to efficiently estimate the working set size (WSS) of a VM. To this
end, we primarily conduct the first study of PML with the Xen hypervisor
to investigate its performance impact on VMs and the accuracy of a WSS
estimation system that relies on the current version of PML. Our three main
findings are that PML reduces both VM live migration and checkpointing, and
slightly reduces the negative impact of live migration on application perfor-
mance. Furthermore, we also observed that a WSS estimation system based
on the current version of PML provides inaccurate results, and write-intensive
applications are negatively impacted when using PML to estimate the WSS
of a VM that runs these applications. Based on these findings, we introduce
page reference logging (PRL), an extended version of PML that is more suit-
able for WSS estimation. We propose a WSS estimation system that leverages
PRL and shows how it can be used in a data center that practices memory
overcommitment. We implement PRL and the underlying WSS estimation
system under Gem5, a popular open-source computer architecture simulator.
Evaluation results validate the accuracy of the WSS estimation system and
show that PRL does not incur more performance degradation on users’ VMs.

PRL has been published at VEE’2021 [74] and its artifacts are available
on GitHub [73].

OoH in domU. In domU, we focus on dirty page tracking (OoH for PML)
and memory vulnerability prevention (OoH for SPP).

OoH for PML.Dirty page tracking is at the heart of many essential tasks,
including process checkpointing (e.g., CRIU [5]) and concurrent garbage col-
lection (e.g., Boehm GC [9]). We use OoH to expose PML for accelerating
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these tasks in the guest. We present in this work two OoH-based solutions,
namely Shadow PML (SPML) and Extended PML (EPML), that we inte-
grated into CRIU and Boehm GC. SPML follows the OoH software approach
and brings no modification to the hardware. Conversely, EPML makes mini-
mal changes to virtualization extensions in order to overcome SPML overheads
and meet the OoH’s expectations in terms of performance.

OoH for PML has been published at SC’2022 [75], and its source code is
available on GitHub [72].

OoH for SPP.Memory safety violations in C/C++ often lead to a buffer
overflow, reported as the top vulnerability in 2022. Secure memory allocators
are generally used to protect systems against attacks that may exploit buffer
overflows. Existing allocators mainly rely on two types of countermeasures to
prevent or detect overflows: canaries and guard pages, each with its own pros
and cons in terms of detection latency and memory footprint. For virtual-
ized cloud applications, this thesis adopts OoH to introduce GuaNary, a novel
safety guard against overflows allowing synchronous detection at a low mem-
ory footprint cost. To this end, GuaNary leverages Intel SPP, which allows
to write-protect guest memory at the granularity of 128B (namely, sub-page)
instead of 4KB. We implement a software stack, LeanGuard, which promotes
the utilization of SPP, from inside virtual machines, by new secure allocators
that use GuaNary.

OoH for SPP has been submitted and is under review at SIGMETRICS’2023.
Its source code is also available on GitHub [71].

1.3 Scientific Publications

International Conferences.

• S. Bitchebe and A. Tchana, “Out of Hypervisor (OoH): Efficient Dirty
Page Tracking in Userspace Using Hardware Virtualization Features”,
International Conference for High Performance Computing, Networking,
Storage and Analysis, SC22.

• S. Bitchebe, D. Mvondo, L. Réveillère, N. de Palma, and A. Tchana,
“Extending intel pml for hardware-assisted working set size estimation of
vms,” in Proceedings of the 17th ACM SIGPLAN/SIGOPS International
Conference on Virtual Execution Environments. VEE 2021.

International Workshops.

• Stella Bitchebe, Alain Tchana and, Laurent Réveillère, “Study of Intel
PML Effectiveness”, the 13th EuroSys Doctoral Workshop, 2019.
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Other Publications.
These are publications resulting from parallel work that is not part of this

dissertation.

• Tu Dinh Ngoc, Bao Bui, Stella Bitchebe, Alain Tchana, Valerio Schi-
avoni, Pascal Felber, and Daniel Hagimont, “Everything You Should
Know About Intel SGX Performance on Virtualized Systems“, In Pro-
ceedings of the 2019 ACM SIGMETRICS International Conference on
Measurement and Modeling of Computer Science, SIGMETRICS’19.

• K. Nguetchouang, S. Bitchebe, T. Dubuc, C. Mar, C. Hubert, P.
Olivier, and A.Tchana, Virtual Disk Snapshot Management at Scale,
CoRR abs/2205.06842, 2022.

1.4 Scientific Awards

The work presented in this thesis has also received many honorific distinctions
in the research domain, among which the most outstanding are:

• 2022 Google Scholarship for Women in Computer Science

• 2021 Microsoft Research Ph.D. Fellowship

• 2021 L’Oréal-UNESCO For Women in Science Program

• 2021 NEC Lab Ph.D. Research Fellowship

1.5 Outline

The rest of the document is structured as follows. Chapter 2 introduces some
background notions and presents the virtualization features exploited in this
thesis. Chapter 3 details the principles of OoH and characterizes it against
the state-of-the-art. Chapter 4 presents PRL, the OoH application of PML in
dom0 for working set size estimation. Chapter 5 presents SPML and EPML,
the OoH application of PML in domU for checkpoint/restore and garbage
collection. Chapter 6 presents GuaNary, the OoH application of SPP in
domU for buffer overflow mitigation. Chapter 7 discusses the application of
OoH to other types of hypervisors. Finally, Chapter 8 concludes the thesis
and exhibits future work orientations.



Chapter 2

Background

This chapter presents the necessary background on hardware-assisted virtual-
ization and the hardware virtualization features discussed in this thesis, notably
Intel PML and SPP.

Contents
2.1 Hardware-Assisted Virtualization (HAV) . . . . . . . . . . . 7

2.1.1 CPU Virtualization: Intel VT-x . . . . . . . . . . . . . . . . . 8
2.1.2 Virtual Machine Control Structure (VMCS) . . . . . . . . . . 9
2.1.3 MMU Virtualization: Intel EPT (Extended Page Table) . . . 10

2.2 Intel Page Modification Logging (PML) . . . . . . . . . . . . 10
2.2.1 Changes to VT-x . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.2 Functioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Intel Sub-Page write Permissions (SPP) . . . . . . . . . . . . 12
2.3.1 Changes to VT-x . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.2 Functioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1 Hardware-Assisted Virtualization (HAV)

As virtualization has been widely adopted by the industry, processor vendors
have started releasing chips with technologies and extensions to provide ar-
chitectural support for virtualization: these are virtualization technologies or
VT. VT intends to address the main sources of overhead and latencies intro-
duced by virtualization. As an example, in 2005 and 2006, Intel and AMD
produced processors with Intel VT-x and AMD-V extensions, respectively, to
support CPU virtualization and accelerate context switching between the hy-
pervisor and VMs. They later released processors with Extended and Nested
page tables technologies (Intel EPT and AMD NPT, respectively). These
are hardware page tables added in the Memory Management Unit (MMU) to
speed up page table mappings from guest VMs to physical memory. They
also proposed Intel VT-d and AMD-Vi extensions to enable I/O direct access
from VMs.

As part of this work, we are mainly interested in VT from Intel, who will
further propose other virtualization features based on these key extensions,



8 Chapter 2. Background

such as Page Modification Logging (PML) and EPT-based Sub-Page write
Protection (SPP).

2.1.1 CPU Virtualization: Intel VT-x

VT-x is a set of Virtual Machine Extensions (VMX) that enable the virtual-
ization of the processor hardware. This need to virtualize the CPU originates
from the necessity to control and monitor guest instructions when it owns the
CPU. Before the advent of hardware support for virtualization, guest OSes
were modified 1 not to allow a virtual context to execute privileged instruc-
tions directly on the processor. This modification implied demoting guest OS’
privileged level of execution (cpl or ring) from 0 to 1. VT was hence driven
by the need not to change the semantics of legacy OSes.

Following this goal, VT-x introduces two new processor execution modes,
vmx root and vmx non-root, and replicates for each one the original states of
the processor, as depicted in Figure 2.1. When the VM executes, the processor
enters in vmx non-root mode, allowing the guest OS and its processes to
run at the privileged level for which they were originally designed, exactly
as on bare metal. Because it is aware of being virtualized, the CPU knows
which instructions the guest is permitted to perform. If the latter attempts
to execute non-authorized privileged instructions, the CPU exits from the
VM and traps into the hypervisor: this vmx transition is called a VM exit.
Before switching to the hypervisor, the CPU enters vmx root mode. Only the
hypervisor runs in vmx root mode. VT-x comes with several VMX instructions
that act on the Virtual Machine Control Structure (VMCS).

Hypervisor

vm
x 

no
n-

ro
ot

ring 0

ring 0vm
x 

ro
ot

VM

guest OS

App

ring 1
ring 2
ring 3

ring 1
ring 2
ring 3

VMXON VMXOFF

vmexit
VMLAUNCH / VMRESUME

vmentry
VMCALL

Figure 2.1: VMX execution modes and transitions.

1Paravirtualization [155].
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2.1.2 Virtual Machine Control Structure (VMCS)

VMCS is an in-memory data structure that allows the hypervisor to manage
VMX transitions and processor behavior in vmx non-root mode. The hy-
pervisor may maintain several active VMCSs, typically one per virtual CPU
(vCPU) for each running virtual machine. When the hypervisor schedules
a VM on a physical CPU, it loads the address of the corresponding VMCS
(using VMPTRLD) to the VMCS pointer register. This VMCS then becomes the
current one: only one active VMCS can be current on the processor at a given
time. All instructions targetting the VMCS apply to the current one. For ex-
ample, VMREAD and VMWRITE instructions will read and write to the current
VMCS.
The VMCS data is organized in areas among which some relevant are:

• Guest-state and Host-state areas. Context switching often implies
saving the context or state of the processor to be able to resume execution
from the same point. This is what happens when the processor switches
between vmx root and non-root modes. On VM exits, it saves its state
in the guest-state area of the VMCS before leaving vmx non-root mode
and loads it from the host-state area before entering vmx root mode.
On VM entry, it reloads its state from the guest-state area. Related
fields are, for instance, control registers (e.g., cr3), interrupt descriptor
table (idt) register, etc.

• VM-execution control. Fields in this area control the execution of
the processor when in vmx non-root mode and allow determining oper-
ations that may generate VM exits. This area comprises, for example,
flags that govern the handling of interrupts (i.e., which interrupts and
asynchronous events may cause VM exits), I/O operations, etc.

• VM-exit and VM-entry controls. These areas dictate the behavior
of VM exits and VM entries, respectively. Related fields essentially hold
information on MSR registers to be stored or loaded on VM exit and
VM entry.

Each VMCS contains, in the guest-state area, a field called the VMCS
link pointer that points to another VMCS. The latter is called a shadow
VMCS, and the former is an ordinary one. A VMCS is exclusively either
ordinary or shadow. The notion of VMCS shadowing was introduced in 2013
by Intel to support nested virtualization (i.e., deploying a hypervisor on top
of another one). This said, a shadow VMCS is intended to be manipulated by
software not running in vmx root mode, which implies restrictions on VMX
instructions. Indeed, a shadow VMCS cannot, for example, be used for VM
entry. Any attempt to execute a VMPTRLD instruction on a shadow VMCS will
cause a VM exit. However, Intel has extended the VMX ISA to authorize
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VMREAD and VMWRITE instructions in vmx non-root mode to allow the guest
hypervisor to read and write to shadow VMCSs.

2.1.3 MMU Virtualization: Intel EPT (Extended Page Table)

In traditional OS, memory is already virtualized to ensure process isolation.
Each process manipulates so-said virtual addresses (VA) that are translated
upon memory accesses into real physical addresses (PA). The OS maintains
VA - PA mappings in data structures called page tables (PT). In guest OSes,
the same principle applies except that VM’s physical addresses (gPA -guest
physical address-) are still virtual from the hypervisor point of view and there-
fore need to be translated once before accessing real RAM memory (hPA -host
physical address-).

Before VT, the hypervisor was maintaining translations between guest
virtual memory (gVA -guest virtual address-) and physical memory in a PT
called shadow page table (SPT). This is because, in this context, the processor
does not know it is virtualized. So, on page fault (#PF), it reads the CR3
register as on bare-metal and walks a unique PT. Here, the CR3 register points
to the SPT. As a consequence, any attempt by the guest OS to update its
PT is captured by the hypervisor to also update the SPT (i.e., gVA - hPA
mappings). This, obliviously, was a heavy source of latency.

The Extended Page Table overcomes this by adding a second translation
level that maintains gPA-hPA translations and a new CR3 register called nested
CR3 (nCR3). With EPT, the processor is aware of virtualization. Therefore,
if a #PF occurs when the CPU is in vmx non-root mode, it knows it has two
PTs to walk: we talk about 2-Dimensional (2D) page walk. The processor
first reads the CR3 register that points to the guest PT, walks the guest PT
to obtain the gPA, and then reads the nCR3 register that points to EPT. It
finally walks the EPT to obtain the RAM entry targetted by the #PF. If the
processor does not find the mapping for a given gPA, the hypervisor simply
updates the EPT independently from the guest. This way, the hypervisor no
longer needs to trap guest PT updates.

Intel has further added access and dirty flags (A/D bits) for EPT, which
are set when a guest page is accessed and modified, respectively. These bits
will open the way to additional EPT-based features such as Page Modification
Logging and Sup-Page write Permissions.

2.2 Intel Page Modification Logging (PML)

PML was introduced in 2015 to extend the capability of a hypervisor, allowing
it to efficiently track or monitor the guest’s physical memory by logging all
pages (guest physical addresses, GPAs) modified by a VM during its execu-
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tion. The hypervisor can take advantage of PML for its administrative tasks,
such as VM live migration or VM checkpointing, which are essential in cloud
environments as they respectively facilitate maintenance and enable recovery
after failure. Instead of using the traditional write-protection technique of
invalidating a page so that the next accesses to it trigger a page fault, the
hypervisor can now simply collect addresses logged by PML. PML relies on
EPT’s A/D bits (§2.1.3) and requires specific changes to the VMCS(§2.1.2).

2.2.1 Changes to VT-x

To support PML, a new 64-bit field is introduced in the VM-execution control
area of the VMCS, named PML address. PML address points to a 4KB
aligned physical memory page called PML buffer. This buffer is organized
into 512 64-bit entries that store the logged GPAs.

A new 16-bit field is added to the guest-state area of the VMCS called
PML index. PML index is the logical index of the next entry in the PML
buffer. Because the buffer includes 512 entries, the PML index has values
ranging from 0 to 511, starting at 511. When PML is enabled, each write
instruction that sets a dirty flag in the EPT during a page walk triggers the
logging of the corresponding GPA (concerned by the dirty flag entry). The
PML index is then decremented by 1. When it goes below 0, the PML buffer
is considered full.

A new VM exit reason is added to the VM-exit information fields with the
name page-modification log full. Whenever the PML buffer is full, the
processor triggers a VM exit, and the hypervisor comes into play. The logging
process restarts after the PML index is reset to 511. The actions taken by the
hypervisor in response to this VM exit depend on its objective and needs.

2.2.2 Functioning

Figure 2.2 illustrates the general workflow of PML when used to improve
a virtualization operation (e.g., live migration). The figure shows, on the
one side, the user’s VM (in green) targeted by the virtualization operation,
and on the other side, the dom0 that runs the system implementing this
virtualization operation. The execution of that system generally begins with
the activation of PML for the target user’s VM J. Then, the CPU of that
VM can start logging GPA ¶. When the PML logging buffer is full, the CPU
triggers a VMExit trapped into the hypervisor ·. The handler of that VMExit
performs a certain task (e.g., copying the content of the PML logging buffer
to a larger buffer that is shared with the dom0 ¸). Then, the PML index
is reset to 511, and the VM resumes (VMEnter). The system implementing
the virtualization operation (in the dom0) operates periodically on the results
generated by the log full handler ¹. This is done as part of the virtualization
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Figure 2.2: General functioning of PML.

operation, e.g., remigrate dirty pages in case of live migration. When the
virtualization operation is complete, PML is disabled º.

2.3 Intel Sub-Page write Permissions (SPP)

SPP was introduced in 2018, and it builds on top of EPT. It refines guest
memory accesses, allowing the hypervisor to write-protect guest pages at a
sub-page (128B) granularity instead of the traditional 4KB.

2.3.1 Changes to VT-x
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Figure 2.3: General functioning of SPP.

Figure 2.3 highlights the main changes introduced by SPP. SPP defines
a new flag in the EPT, called the SPP bit, which controls the use of the
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functionality. If the bit write in the EPT’s last level is unset (i.e., the guest
page is write-protected) and the SPP bit is set, this indicates to the processor
that SPP is enabled on the page concerned.

The bitmap indicating which sub-pages are write-protected on a page is
called an SPP vector or SPP bitmap. SPP bitmaps are maintained using a
new data structure called the SPP table (SPPT). SPPT is a 4-level radix tree
in which leaf tables contain the SPP bitmaps (64 bits) that are configured by
the hypervisor. Only even bits of the bitmap are interpreted by the processor,
leading to 32 sub-pages per 4KB-page.

In the VM-exit information area of the VMCS, new VM exit reasons are
added and called SPP-related events, such as SPPT misconfigurations.

2.3.2 Functioning

If the hypervisor wants to protect sub-pages for a given guest physical address
g, it must first take the following actions: build the desired protection bitmap;
find the EPT entry that maps g to the RAM; set its write flag and the SPP
flag to 0 and 1 respectively and, modify the SPPT entry corresponding to
g according to its needs. For example, the following bitmap 1X0X... tells
that the first sub-page is write-accessible (1) while write-access to the second
sub-page is denied (0). X means that the bit is ignored. In addition, the first
upper bit of the bitmap represents the first lower sub-page on the page.

SPPT extends the traditional page table walk (PTW) process occurring
on TLB miss. At the end of the EPT walk (i.e., on the EPT leaf), if the
processor sees the write flag and the SPP flag set to 0 and 1, respectively, it
also walks the SPPT. If the target sub-page is write-protected, the processor
raises a VM exit; otherwise, the instruction is authorized (see Figure 2.3).
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OoH: Out of Hypervisor

This chapter presents the first categorization of hardware virtualization fea-
tures into exportable ones or not. The chapter further explains the OoH prin-
ciple and distinguishes it from state-of-the-art efforts for nested virtualization.
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3.1 Hardware Features Categorization

Virtualization features can be categorized into two groups: multiplexing and
management.

(G1) Features destinated to the multiplexing of resources are intended to
accelerate and ease the virtualization. G1 includes EPT, SRIOV (Single-Root
I/O Virtualization), APICV (Advanced-Programmable Interrupt Controller
Virtualization), etc. These features are not relevant for exposure to the guest
OS in the spirit of OoH.

(G2) Management features are intended to facilitate and improve VM man-
agement tasks realized by the hypervisor, like migration of VMs, checkpoint-
ing, etc. G2 comprises features such as Intel PML, CAT (Cache Allocation
Technology), SPP (Sub Page write Permission), PT (Processor Tracing), and
so forth. Considering a VM as a process, it makes sense to expose G2’s fea-
tures to the guest, thus allowing it to improve its management tasks that are,
in some manner, similar to that of the hypervisor vis-à-vis virtual machines.

This thesis focuses on illustrating OoH with Intel PML to improve dirty
page tracking in virtualized clouds and Intel SPP to improve secure heap
memory allocators that run from inside VMs.
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3.2 OoH Principles

OoH advocates the exposure of some hardware virtualization features to make
them usable within the guest OS. The goal of this new research axis is to
make CPU providers rethink the logic of virtualization features invention.
Researchers must incorporate categorization (Section 3.1) and exposure, to
guest applications, of new functionalities at the conception and design stages.
For existing features, a key point of the OoH principle is to export them with
minimal changes in the hardware, the hypervisor, and the guest kernel. In
addition, an OoH-based solution must propose a simple utilization interface
to application developers.

OoH argues for software and hardware approaches. Obviously, the latter
should be envisioned only when the former is not efficient. When followed,
the hardware approach should try to re-use as maximum as possible existing
functionalities before thinking of any changes. To expose a given hardware
virtualization feature, the OoH principle is as follows. To facilitate the ex-
ploitation of the exposed feature, OoH designers should provide userspace
applications with a library. The latter should rely on a guest kernel module
that preserves the privilege of the kernel on multiplexing the exposed feature.
OoH designers use hypercalls and event channels as communication mecha-
nisms between the hypervisor and the guest. Hypercalls allow the guest (OoH
kernel module) to instruct the hypervisor (feature initialization for instance)
while event channels allow the hypervisor to send a specific signal to the
guest. VMCS shadowing, invented by Intel for improving nested virtualiza-
tion, can be leveraged to implement OoH. It allows to reduce the hypervisor
involvement, thus improving performance. Finally, and only when unavoid-
ably necessary, some hardware changes can be made such as ISA extension or
VMCS data structure modifications.

3.3 OoH Positionning against Dune

The evocation of virtualization features exploitation in user space often makes
one think first of Dune. Therefore, one may legitimately ask what the differ-
ence is between OoH and Dune [64].

Dune leverages hypervisor-oriented hardware virtualization features (such
as Extended Page Table) to make privileged instructions, usually only ac-
cessible in kernel mode (ring 0), available to processes. The Dune system
architecture, presented in Figure 3.1, clearly differentiates it from OoH in the
following aspects. First, Dune cannot be launched in a VM because it needs
to be in vmx root ring 0 to be able to exploit hypervisor-oriented hardware
virtualization features. Thus, Dune does not relate to nested virtualization.
Second, contrary to OoH, Dune cannot make those virtualization features
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available to the guest userspace since a Dune process executes in vmx non-
root ring 0 and not ring 3. In contrast, Dune processes may instead take
benefit from OoH.

Dune Module Host Kernel 
(VMX root, ring 0)

Normal Process 
(VMX root, ring 3)

LibDune 
(VMX non-root, ring 0)

Dune Process

Untrusted Code 
(VMX non-root, ring 3)

Figure 3.1: Dune system architecture.

3.4 OoH vs. State-of-the-art

Many works have tried to reduce the overhead of virtualization in general, and
nested virtualization in particular. Some works completely moved the hyper-
visor to the hardware, while others proposed solutions close to the OoH spirit.
The OoH’s idea of giving virtual machines a direct access to the hardware is
not new and dates back to 1970s [110, 66].

As Figure 3.2 suggests for nested virtualization, none of the solutions re-
moves the nested hypervisor from their architecture (and therefore still need
a double emulation that will incur a non-negligible overhead). In addition,
these solutions are mainly narrowed to I/O passthrough and do not allow
guest applications to benefit from virtualization features. Conversely, OoH
materializes as a kernel module, which is lighter.

And regarding hardened hypervisors, whose architecture is drawn in Fig-
ure 3.3, they either make resource sharing unpractical or make the hypervisor
rigid, since any update will require to change the hardware. OoH, on the other
hand, does not impact resource overcommitment and updates are simpler as
just recompiling and reloading a kernel module.

3.4.1 Hardened Hypervisors

The two popular systems that have tried hardnening the hypervisor are No-
Hype [104] and AWS Nitro [140].
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Figure 3.2: The position of OoH (d) in the virtualization landscape: (a) non-nested
virtualization, (b) nested virtualization (including DVH [114]) and (c) Dune. Red
arrows materialize VM traps. Its width indicates the intensity of VM traps. NHVF
stands for Non Hardware Virtualization Feature.

Network Storage MMU

Light
Hypervisor /

Manager

VM
App

guest OS

VM
App

guest OS

Hardened
Mgt

Figure 3.3: Hardened hypervisor general architecture.

NoHype [104]. NoHype was introduced in 2010 by Eric Keller et al. NoHype
removes the hypervisor layer from the virtualization architecture and makes
the VMs run directly on the hardware, with the goal of providing near bare-
metal performances. It, however, provides a lighter software management
component responsible, for example, for starting and stopping VMs.

Once a VM is booted in the NoHype architecture, it is never interrupted
(i.e., no more VM exits) and directly accesses the devices. Since the VM’s
scheduling is ensured by the hypervisor, by removing the latter, NoHype elim-
inates the possibility of scheduling VMs among cores. So, it rather dedicates
one CPU core per VM, which implies that cores can no longer be shared
among guests.

NoHype partitions the RAM and assigns a precise and dedicated portion



18 Chapter 3. OoH: Out of Hypervisor

of the memory to each VM. Therefore, the memory allocated to a VM cannot
be modified until the VM stops, which makes overcommitment impossible,
while it is one of the advantages of virtualization. In addition, the hardware
is modified to translate itself, guest physical to host memory (which was the
role of the hypervisor).

Finally, NoHype gives VMs direct access to the network and assigns to
each VM its own physical device with limited and controlled access to the
I/O bus. However, if there are not as many devices as VMs, this is in practice
not possible.

Because NoHype is based on a statical allocation of resources, it precludes
overcommitment and restrcits the number of instances that can be allocated.
Furthermore, it makes impossible any security or management update of the
hypervisor because this will require to completely change the hardware, which
is almost impossible in production. All these reasons intrude on NoHype
adoption.

AWS Nitro [140]. Amazon launched AWS Nitro in 2017 with the aim of
providing bare metal-like performance. The Nitro system has three main com-
ponents.

Nitro cards: Nitro replaces the main emulation functions of the hypervisor
by corresponding cards that provide controllers for networking and storage.
Nitro security chip: since Nitro gives instances direct access to the hardware,
a specific security chip is incorporated into motherboard to provide security
features such as secure boot. Nitro hypervisor: alike NoHype, even if moving
most hypervisor functionalities to the hardware, the Nitro system, however,
keeps a tiny part of the software that is responsible for memory and CPU
allocation and VM management.

Nitro is specific to Amazon and is not open source, and as for NoHype, it
makes the hypervisor rigid and may require complet hardware change in case
of updates.

3.4.2 Nested Virtualization

Recursive Virtual Machine Architectures [110, 66]. H. c. Lauer and D.
Wyeth stated that the need for a central supervisor (i.e., the hypervisor) is
mainly to protect the guest from accessing unauthorized registers or memory
spaces. So, like G. Belpaire and N. Hsu, they proposed an architecture for
nested virtualization in which a stack of registers is reserved for each level of
VM. This way, the processor is able to handle interrupts (and direct them
directly to the controlling level) and access memory for each nested level
without the need to go through the central hypervisor.

In these architectures, any virtual machine is allowed to create a virtual
memory within its own virtual memory, called virtual-virtual memory and
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represented as a segment table. The latter defines how the memory segments
are mapped between the creator and the created processes. The address of the
segment tables is stored in the stack of registers, and to determine the physical
address corresponding to virtual memory at a given level, the processor merely
composes the mappings of each of the segment tables.

The stack of registers proposed by [110] and [66] is comparable to the actual
VMCS shadowing and interrupt redirection is similar to the Intel virtual-IPI
that OoH leverages in its current implementations.

Fluke [91]. B. Ford et al. proposed the Fluke architecture that replaces
the notion of nested VM with that of nested processes and introduces a new
ISA (Instruction Set Architecture) that substitutes the traditional hypervisor
to a microkernel by modifying the software stack at all levels. The Fluke
microkernel then decomposes the OS features into modules to provide the
nested processes with only the functionalities needed and thus lightening the
cost of recursive VMs. Furthermore, the Fluke microkernel does not emulate
the hardware. Instead, Fluke modifies the syscall API to allow all processes
(nested or not) to execute directly on the hardware.

Like Fluke, OoH provides guest VMs with functionalities instead of boot-
ing a complete OS. However, OoH keeps the basic and traditional scheme
of virtualization whereas, Fluke cannot run traditional unmodified operating
systems and hypervisors.

Dichotomy [158] D. williams et al. splitted the hypervisor into two main
components: hyperplexor, that multiplexes the hardware, and featurevisor,
that implements the hypervisor functionalities. Based on this distinction, they
proposed Dichotomy, a new architecture in which the root/L0-hypervisor is
hyperplexor, and featurevisor acts as nested hypervisor. Dichotomy makes the
nested hypervisor (featurevisor) to temporarily transfer the control and man-
agement of nested VMs to hyperplexor. The guest memory is then mapped
and remapped when switching between featurevisor and hyperplexor, which
will still incur non-negligible overhead.

Direct Virtual Hardware (DVH) [114]. DVH, by Lim et al., proposed that
the host hypervisor provides virtual devices directly to nested VMs without
the intervention of intermediate hypervisors. The intermediate hypervisors
only intervene at virtual device initialization time to make it visible and di-
rectly accessible to the nested VM. The authors illustrated DVH with four
devices: virtual IO, virtual timer, virtual IPI, and virtual idle. Although
DVH is promising, its application to all devices that compose full hardware is
unpractical. With OoH, we are advocating for exposing only hardware virtu-
alization features that could help applications, making OoH more tractable.
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SMT-based VirTualization (SVT ) [150]. L. Vilanova et al. have leveraged
resources provided by simultaneous multithreaded (SMT) processors to pro-
pose SVT . The SVT mechanism consists of executing each virtualization level
(i.e., main hypervisor, nested hypervisors, and nested VMs) on different hard-
ware threads of a hardware core. This allows for eliminating the heavy context
switches of VM traps. SVT does so by making some changes to the VMCS and
VMX operations to capture all VM trap and VM resume events and replac-
ing them with cross-context register accesses. SVT , therefore, simply makes
a virtualization context-level accessing the registers of context-level targeted
by the switch.

However, by pinning each layer to a single core, SVT limits resource sharing
and overcommitment and changes the VM traps costs by that of register
context switches. And contrary to OoH, the SVT architecture does not remove
the need for the nested hypervisor.

Nested Virtualization Extensions (NEVE) and VMCS Shadowing [116].
The VMCS shadowing concept was introduced by the Turtles Project [67] in
2010 and first released on Intel processors in 2013. VMCS shadowing was the
first architectural effort for nested virtualization, with the goal of reducing
the inference of the root/L0 hypervisor. With VMCS shadowing, a nested
hypervisor has its own dedicated VMCS that it can manage using some ded-
icated VMX instructions without trapping to L0. However, a shadow VMCS
makes accessible to the guest hypervisor only a few fields, thus still limiting
its autonomy. NEVE is ARM support for nested virtualization introduced by
J.T. Lim et al. in 2017. NEVE is similar to VMCS shadowing. They both
share the same basic idea of redirection to reduce exit multiplication and traps
from guest hypervisors.
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Page Reference Logging (PRL): Efficient
Hardware-Assisted Working Set Size

Estimation of VMs

This chapter presents PRL, an application of OoH for privileged domains
(dom0 in Xen) in virtualized clouds. PRL extends PML to provide the dom0
with an efficient working set size (WSS) estimation system that does not affect
guest applications.
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4.1 Introduction

Memory page tracking is at the heart of several essential tasks in cloud en-
vironments, such as checkpointing [163] for recovery after failure, live migra-
tion [82] for maintenance and dynamic packing, and working set size (WSS)1

estimation [86] for memory overcommitment [44], and fast restore [163].
1The working set refers to the set of memory pages a process/OS/VM is using at a given

time[86].
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WSS estimation is an essential task for data center operators because it
allows, among other things, memory overcommitment [131, 133] (by peri-
odically adapting the memory size of the VM according to its real needs),
fast restore [163] and efficient processor cache partitioning [40]. Regarding
memory overcommitment, for example, its implementation and adoption are
necessary for the following reasons. First, VM owners use to over-estimate
resources [85, 102] for their tasks. Jyothi et al. [102] analyzed the resource
reservation for a 50k-node production data center and found that 75% of jobs
were over-provisioned (even at their peak), with 20% over ten times over-
provisioned. E. Cortez et al. [84] made similar observations in recent traces
of the Microsoft Azure cloud. Second, some cloud-native workloads are fun-
damentally based on the dynamic management of overcommitted VMs. In
particular, this is the case for serverless or function as a service (FaaS) sys-
tems, whose design and pricing model are intrinsically linked to an aggressive
packing of hundreds or thousands of micro-VMs on the same physical ma-
chine [76, 152]. Third, memory is a finite resource whose evolution does not
follow that of other resources (especially the CPU), so researchers talk about
the problem of the memory wall [117, 143].

The most widely used approach for WSS estimation through memory page
tracking relies on present bit invalidation. Such an approach may lead to
severe performance degradation caused by the generated page faults. It is
particularly true when a significant amount of pages have to be tracked, as
in WSS estimation [131, 79, 151, 100, 120, 106]. We assess this issue using
a synthetic application that parses an array. The present bit is invalidated
every second for all memory pages of the virtual machine (VM). We measure
up to 96.22% of performance degradation for a VM with 1GB memory size.

To overcome the limits of this approach, we can take advantage of hardware
virtualization features available for memory page tracking, specifically PML.
As presented in Section 2.2, PML allows the MMU to log in a 4KB page (called
the PML logging buffer) in RAM, all guest physical addresses (GPAs) that
led to the setting of the dirty bit in the EPT during page walks. In this
chapter, we extend PML to make it suitable for WSS estimation. We make
the following contributions.

First. We conduct a comprehensive study to assess the effectiveness of
Intel Page Modification Logging (PML) and its impact on the performance of
user applications. Our main findings are summarized as follows. (1) PML re-
duces by up to 10.18% the time of both VM live migration and checkpointing.
(2) PML slightly reduces the negative impact of live migration and check-
pointing on application performance by up to 0.95%, which is not negligible
for tail latencies [103]. (3) PML can be used for WSS estimation but needs to
be improved to provide an accurate estimation, summarily, because read ac-
cesses are not tracked, and hot pages cannot be identified. In fact, the current
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design of PML focuses on write workloads. It only logs the guest physical
address (GPA) of a page once, even if the page is accessed several times.
Therefore, cold pages are likely to be counted in the working set, overestimat-
ing the latter, which leads to memory waste. In addition, PML would incur
an unacceptable overhead for the VM whose WSS is estimated. Indeed, when
the PML logging buffer is full (after 512 GPAs are logged), the CPUs of the
VM whose WSS is computed trigger a VMExit. The handler of that VMExit
consumes CPU time which is taken from the VM’s CPU quota. We mea-
sure up to 34.9% of performance degradation. This would not be acceptable
for cloud users because they are not the beneficiaries of the WSS estimation,
which is executed for the needs of the data center operator.

Second. We introduce Page Reference Logging (PRL), an extended ver-
sion of PML to track both read and write working sets without impacting
VM performances. PRL can be used in two exclusive modes: PRLPML and
PRLPAML. PRLPML is similar to the current PML functioning, making PRL
effective for live migration and checkpointing. In contrast, PRLPAML focuses
on working set size (WSS) estimation. In PRLPAML mode, read accesses are
taken into account, and several recordings of the same page are also possible,
allowing hot page tracking. In addition, PRLPAML avoids performance over-
head on user VMs for the following reason. VMExits related to PRLPAML are
redirected to the dom0 2 CPUs. Dom0 is responsible for running VM admin-
istration services. Therefore, it makes sense to use it to host WSS estimation
computations since the data center operator is the main beneficiary of this
task. Technically, when the PRLPAML logging buffer is full, the actual CPU
(which is running the user’s VM whose WSS is computed) sends an inter-
processor interrupt (IPI) to one of the dom0 ’s CPU, thus raising a VMExit
on it. By redirecting VMExits related to PRLPAML to the dom0, the user
VM can continue its execution while handling these VMExits (unlike in the
current PML design), thus avoiding the negative impact on user VMs. The
handler of this IPI identifies hot pages and makes them available to a WSS
estimation system. We describe an implementation of PRL in Gem5 [70], a
popular computer architecture simulator.

Third. We present a prototype implementation of a WSS estimation
system that uses PRL in the context of the Xen hypervisor. Using both
real (HPL Linpack [39], BigDataBench [38]) and synthetic applications, we
evaluate and compare our solution with an implementation of a software-based
solution, precisely VMware’s WSS estimation solution described in [151]3,
following the same evaluation methodology as the work of Nitu et al. in

2dom0 is the privileged VM (noted pVM) in Xen [61]. In fact most virtualization systems
rely on a pVM, host OS in KVM [15], parent partition in Hyper-V [13] and Service Console in
VMware [36, 35].

3To the best of our knowledge, [151] is the only publication made by VMware concerning their
WSS estimation.
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SIGEMETRICS 2018 [131]. The evaluation results confirm that: (1) our
solution is accurate, (2) our solution has no impact on user VMs, (3) our
solution is not intrusive (no modification of the guest OS is required), unlike
most state-of-the-art solutions [131, 79, 151, 100, 120, 106].

4.2 PML Study

To better understand PML, we conduct a study to investigate both its ef-
fectiveness and its performance impact on user applications. We target live
migration and WSS estimation operations. We do not elaborate on check-
pointing because live checkpointing, which could benefit from PML, is not
implemented in current hypervisors. We carried out the experiments on a
laptop with the following characteristics: Single socket Intel(R) core (TM) i7-
3768, 16GB memory, 500GB SSD, 4-way 64 TLB entries. We used Xen 4.7 as
the hypervisor and Linux 4.15.0 for the guest kernel. For the applications that
run inside the virtual machine, we used HPL Linpack [39], BigDataBench [38]
(read, write and sort applications, 10GB data set size), and a synthetic ap-
plication for which the code structure is shown in Listing 4.1. The synthetic
application consists in parsing an array several times during a period. Each
array entry points to a 4KB data structure (the size of a memory page). The
type of operation (read or write) performed on an array entry is decided ac-
cording to a write intensity parameter (wi) which represents the proportion of
write operations. Unless otherwise indicated, the array uses 400MB of memory,
and the VM has one vCPU and 1GB of memory for the synthetic application
and four vCPUs and 12GB of memory for the macro benchmarks.
1 /* Main variables description
2 * wi: proportion of write operations
3 * tab: array to be processed
4 * PERIOD: duration of each iteration
5 * SIZE: number of tab memory pages
6 * nbOps: # of read and write operations computed
7 * throughput: mean number of operations per nanoseconds
8 * ns: duration in milliseconds
9 */

10 #define PERIOD ...
11 #define SIZE ...//SIZE*size_page=size_tab
12 struct page{
13 unsigned long entry[512];
14 };
15 void synthetic_workload(int wi){ //write intensity
16 /*
17 * declare & initialise variables
18 * nbOps, throughput, ns, ...
19 */
20 void *tab;
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21 struct page *temp;
22 struct timespec start, end;
23 clock_gettime(..., &start);
24 do{
25 posix_memalign(&tab, ...);
26 for(i = 0; i < SIZE; i++){
27 temp = (tab + size_of_page*i);
28 op = rand() % 100;
29 if(op < wi)
30 temp->entry[...] = ...;//write operation
31 else
32 read = temp->entry[...];//read operation
33 nbOps++;
34 }
35 clock_gettime(..., &end);
36 //convert duration (from start to end)
37 //in nanoseconds
38 ns = ...;
39 throughput = (nbOps-nbOps_prev)/(ns-ns_prev);
40 ns_prev = ns;
41 nbOps_prev = nbOps;
42 }while(ns < PERIOD);
43 free(tab);
44 }

Listing 4.1: Synthetic application skeleton. Its performance metric is the number
of operations per nanosecond.

4.2.1 PML-based VM migration

In Xen, the heart of live migration is mainly implemented through the func-
tion int save()4. The use of PML is thus limited to this memory-saving
phase. We compare the use of PML with the classical memory page tracking
approach, which consists of write-protecting memory pages so that the follow-
ing write operations lead to page faults. We use the synthetic application as
a baseline for this evaluation because its behavior is predictable compared to
the macro-benchmark.

We consider two metrics: performance, the performance of the user ap-
plication during migration, and duration, the duration of the save() method
execution. performance checks whether PML reduces or increases the neg-
ative impact of these operations on the application, while duration indicates
whether PML accelerates migration or not. Two successive live migration op-
erations are performed while running the application during a certain period,
with different proportions of write operations.

4In file tools/libxc/xc_sr_save.c
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Figure 4.1 and Table 4.1 present the results for performance. We observe
that live migration, no matter which technique, negatively impacts the per-
formance of the application, as illustrated by the two descending peaks in all
curves. However, PML slightly minimizes this impact by 0.06% to 0.95%. The
magnitude of the reduction depends on the write intensity of the workload.
Indeed, although using PML for a read-intensive workload slightly reduces
the application’s performance, its advantages are more important for write-
intensive workloads.
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Figure 4.1: Operations per nanosecond while two live migrations are performed. We
run this experiment with different write intensity values (for the synthetic applica-
tion): 0%, 50%, 80%, and 100%.

Write intensity (%) 0 50 80 100

Improvement (%) 6× 10−2 0.14 0.39 0.95

Table 4.1: PML benefits during live migration. We compare the performance degra-
dation of the running application during live migration, with and withouth PML.

Figure 4.2 presents the results for duration. We observe that PML re-
duces the execution time of method save() during live migration by 0.98% to
10.18%. In particular, read-intensive applications migrate much faster when
PML is used. This is due to two main reasons. First, when using PML, if a
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page has not been logged (the GPA of the page is not present in the PML log-
ging buffer), it has not been modified and can immediately be migrated. The
hypervisor no longer needs to invalidate it upstream. Second, as the work-
load performs fewer write operations, there are fewer logged GPAs, thus less
logging buffer walk operations by the hypervisor and then a faster migration.
Note that it is very important to speed up live migration because it allows
you to quickly free a machine for maintenance, quarantine a corrupted VM,
etc.
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Figure 4.2: Execution time improvement of the method save() using PML, com-
pared to the version without PML.

4.2.2 PML-based WSS estimation

A WSS estimation system based on PML would work as follows. Once PML is
enabled for the VM, the system collects GPAs until no new GPAs are visible
in the logging buffer. The estimated WSS would then be the total number
of different GPAs collected. We implemented this system in the Xen hyper-
visor. However, such a system fails to provide an accurate WSS estimation
for the following reasons. First, PML only tracks write WSS (hence the name
page modification logging). Second, PML does not track hot pages (even
the dirty ones). A page is said to be hot if it is referenced several times over
a short period. According to the current PML design, an accessed page is
logged only once. Using this design for WSS estimation, it is not possible
to distinguish between hot and cold pages, which leads to an overestimation
of the actual memory requirements of the virtual machine. To evaluate this
limitation, we modified the synthetic application by adding a for loop at the
beginning, which modifies all the entries in the array (xMB). The remaining
application code works on a small portion of the array (noted y, with y < x).
Although the correct value of the WSS estimation is y, the system reports
x, thus wasting memory. Third, PML degrades the performance of the VM
whose WSS is estimated. In fact, the handling of PML logging buffer full
events should not be done by the CPU of the VM whose WSS is estimated.
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Indeed, depriving the user’s VM of its CPU quota is unfair because the WSS
estimation is only beneficial for the data center operator. One could legit-
imately say that this limitation is also true for live migration. However, it
has been proven [132] that a slight reduction in CPU time used by the mi-
grated VM accelerates live migration (as we previously observed in figure 4.2).
We measured the overhead of the current PML design to estimate the WSS
of applications from BigDataBench [38] (read, write and sort applications)
and HPL Linpack [39]5. For BigDataBench applications, the input dataset
is 10GB. We run each application with and without PML and calculate the
overhead, as shown in Figure 4.3. Read-intensive applications are not affected
by the use of PML because it only tracks page modifications. However, other
workloads, such as HPL Linpack, are significantly impacted by the use of
PML, with a performance degradation of up to 34.9%.
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Figure 4.3: Impact of PML when used for WSS estimation. We plot the overhead
for applications in terms of FLOps (FLoating point Operations per second).

We summarize the main conclusions of this study on PML as follows. (1)
PML reduces VM live migration time. (2) PML slightly reduces the appli-
cation performance overhead during live migration. (1)we cannot use PML
with its current design for efficient WSS estimation because a WSS estimation
system based on it will fail to accurately estimate the whole working set of a
VM.

4.3 Page Reference Logging

We introduce Page Reference Logging, an extended version of PML, to facil-
itate efficient WSS estimation.

5HPL is a High-Performance benchmark implementation whose code solves a uniformly random
system of linear equations
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Figure 4.4: Overview of PRL functioning.

4.3.1 PRL functioning

Figure 4.4 illustrates the general functioning of PRL. Let us consider a user’s
VM (VM1 in green), which is the target of the WSS estimation operation,
and the dom0, which runs the WSS estimation system. The execution of that
system generally begins with the activation of PRL for the target user’s VM
J so that the CPU of that VM can start logging GPAs ¶. When the PRL
log buffer is full, the VM’s CPU sends an IPI to a dedicated dom0 ’s CPU
(which will be responsible for computing the working set of the VM) ·. Then
the hypervisor copies the content of the PRL log buffer to a larger buffer
that is shared with the dom0 ¸ (while the VM continues its execution with
no interruption), and the PRL index is reset to 511. After that, the logging
process restarts, ¹ and in the meantime, the WSS estimation system operates
on the results generated by the log full handler º.

4.3.2 PRL architectural design

A processor supporting PRL can be used in two exclusive modes: PRLPML

and PRLPAML. The first mode mimics the current PML functioning (§2.2.2),
making PRL effective for live migration and checkpointing, as it is for PML.
In contrast, PRLPAML focuses on WSS estimation.

As for PML, specific changes are needed in VMX to support PRL. To
activate PRLPAML, the system software must set a new bit of the Secondary
Processor-Based VM-Execution Controls (see §2.1.2) called PRL enable (sim-
ilarly to setting bit 17 of the Secondary Processor-Based VM-Execution Con-
trols for PML activation). A new 16-bit host-state field called log full handler
CPU indicates the index of the CPU to which an interrupt is sent when
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the PRL log buffer is full. A new 8-bit host-state field called log full vec-
tor indicates the interrupt vector that will be executed by the target CPU
upon reception of a log full interrupt. This destination CPU must belong to
the dom0, which serves as the execution room of the WSS estimation system
(Fig. 4.4, · - º). In this way, PRLPAML avoids scheduling out the VM whose
WSS is estimated. Remember that the dom0 belongs to the data center op-
erator, so using it for WSS estimation makes sense. For each GPA which is
the input of the PRL process (which begins at EPT walk on TLB miss), the
following algorithm takes place:

1. PRL index is initialized to 511.

2. If the PRL index value is 0, this means that the PRL log buffer has been
detected as full. In such a case, the PRL index is decremented, and an
interrupt is sent to the processor of the dom0, which is responsible for
handling log full events. The PRL process ends without interrupting the
VM whose WSS is estimated. The processor restarts the logging when
the PRL index is reset by the system software.

3. If the PRL index is negative, it means the log full event handler is run-
ning. The GPA is, therefore, not logged, and the PRL process ends.
Some may argue that the PRL process will miss some GPAs when pro-
cessing the event handler. However, it does not affect the WSS estima-
tion because if a missed GPA belongs to the working set, it is likely to
be seen in the near future (after reactivation of the PRL mechanism) as
it is hot. Otherwise, the GPA is cold, and its loss does not change the
WSS estimation. The results of the evaluation described in Section 4.4
support our claim.

4. Otherwise, the PRL index is positive (and less than 511) and is decre-
mented, and the GPA is logged. This is done regardless of the value of
the dirty flag (in contrast to the current PML, where the GPA is logged
only if the dirty bit is set). In this way, PRLPAML can log both accessed
and modified pages. Besides, PRLPAML can log the same page access
several times.

4.3.3 PRL log full event handling

When the PRL log buffer is full, the processor sends (through its LAPIC6)
an IPI to the CPU of the dom0 that was designated at VMCS configuration
time. The LAPIC is configured with the identifier of the target CPU. We have
introduced a new interrupt vector that points to the log full event handler.
This mechanism is similar to Lightweight inter-core notifications introduced

6Local APIC (Advanced Programmable Interrupt Controller)
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by Jeffrey C. Mogul et al. [125]. Since the log full event handler must run in
the VMX root mode because it processes VMCS data structures, the target
processor must trigger a VMExit upon receipt of the IPI. This behavior is en-
forced by setting bit 0 of the Pin-Based VM-Execution Controls of all dom0’s
vCPUs. Using this configuration, any external interrupt sent to any CPU of
a dom0 triggers a VMExit.

When called, the handler first masks the interrupt related to the log full
event. Then, it copies the contents of all the PRL log buffers, which are full
(for all VMs that have sent an interrupt), to larger buffers. Note that a large
buffer (also called a cumulative buffer) is allocated to each VM by the system
software and that this buffer is unique per VM, even for a multi-vCPU VM.
During the copy phase, the handler accumulates the number of occurrences of
each GPA in the PRL log buffer. In this way, the WSS estimation system can
identify hot pages. Once the copy of PRL log buffers ends, the handler resets
the PRL index of all VMCSs detected as full to its initial value (511). Note
that modifying a PRL index only affects its VMCS memory region, not the
internal registers of the corresponding processor. Indeed, the synchronization
of the VMCS memory region and the processor registers is not automatic.
To enforce this, we introduce a new instruction that updates the internal
VMCS state of a specific processor using its corresponding VMCS memory
region. The execution of the handler ends with the unmasking of the log
full interrupt. This algorithm handles several log full events using a single
generated interrupt. It is inspired by the New API (NAPI) implemented in
modern Linux kernels to handle network packet reception [146].

4.3.4 PRL-based WSS estimation system

We implemented a WSS estimation system that leverages PRL. Our system
launches as many WSS estimation processes as the number of tenant VMs.
Each process calculates WSS using the equation:

WSS = hotPages× pageSize+ ε (4.1)

where hotPages is the number of computed hot pages, pageSize is the size
of a memory page and ε is the size of the guest kernel footprint (the minimal
amount of memory needed by the kernel).

Hot pages. The number of hot pages is based on the GPAs that PRL logs.
Its computation takes three parameters as input:

τ : the minimal number of times a page’s GPA must be logged for this page
to be considered hot;

ω: the stability duration used to determine if the VM has already covered
its working set;
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Figure 4.5: Estimation of the number of hot pages.

µ: the observation interval.

The values of these parameters are defined by the external entity which
launches the WSS estimation system. Different approaches exist to deter-
mine these values [165].

Let Cbuff be the cumulative PRL buffer of the VM whose WSS is calcu-
lated. The estimation of the number of hot pages works iteratively, as follows.
For each iteration i, the number of distinct GPAs present in Cbuff that have
been logged more than τ times is computed and stored in an array dist[ti]
(where ti is the iteration time). The loop ends when dist[ti]−dist[ti−ω] = 0,
which means that the VM has touched/referenced all memory pages belong-
ing to its current working set. Otherwise, the process goes to sleep for µ
seconds before continuing the iteration. Figure 4.5 illustrates how this algo-
rithm works. We can see the evolution of dist[ti] over time which corresponds
to an increasing monotonic function.

Guest kernel footprint. The value of the guest kernel footprint ε depends
on the guest kernel binary. It is estimated once by the data center operator
for each kernel binary. The following algorithm can be used:

1. Starts a 2GB VM from the kernel binary;

2. Initialize ε and currentMem (an auxiliary variable) to 2GB;

3. Set currentMem to 95%× ε;

4. Change the VM memory size to currentMem;

5. If the VM crashes then:

• stop the algorithm and return ε;
• else set ε to currentMem and go to step 3.

These steps can be automated for a machine virtualized with the Xen
hypervisor.
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4.4 PRL Evaluation

Our evaluation of PRL mainly focuses on WSS estimation. We do not evaluate
PRL for live migration as the PRLPAML mode is strictly similar to the current
PML design (see Section 4.2.1 for in-depth PML live migration evaluations).

Our assessment of the WSS estimation system based on PRL covers ac-
curacy and overhead. Accuracy is the capability to estimate the WSS of a
VM accurately. Overhead is the impact on the VM whose WSS is estimated
and the number of resources consumed by the WSS estimation system inside
the dom0. We used empirical values for the parameters of the WSS estima-
tion algorithm (let us recall that these inputs are decided and defined by the
external entity which launches the WSS estimation system and that different
approaches exist to determine them [165]). We set τ to 50, meaning that a
page’s GPA needs to be logged at least 50 times for this page to be considered
hot7. We set µ to 30s, i.e., the algorithm iterates every 30s. We used this
value following the VMWare technique. We set ω to 120s, corresponding to
the observation period.

4.4.1 Experimental environment

We use the same experimental environment as the one presented in Section 4.2
to assess PRL. In addition, we use the hardware simulator Gem5 [70] to em-
ulate a machine that implements PRL. We chose Gem5 because it is a very
popular hardware simulator (specifically adapted for research), which was used
by 90+ research papers at the time of writing [37]. Although Gem5 allows the
execution of a complete Linux distribution, we have extended it to simulate a
virtualized system. This improvement consists of adding the Extended Page
Table (EPT) support, the extension of the hardware page table walker to per-
form a 2D page walk through the EPT, and the implementation of PRL/PML
logging mechanisms.

1 /*
2 * Main variables description
3 * tab: array to be processed
4 * PERIOD: application duration
5 * SIZE: number of tab memory pages
6 * time: total time in seconds
7 */
8 #define PERIOD ...
9 #define SIZE ... //SIZE * 4096 = size_of_tab

10

11 void synthetic_app()

7We use a small value to evaluate a worst-case scenario because a small τ value increases the
buffer’s log filling rate, thus, more log full events.
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12 {
13 do{
14 for(int j=0;j<SIZE;j++)
15 /* Operate on tab (read/write) */
16 operation(tab[j]);
17 /* Compute the time */
18 time = ...;
19 }while(time < PERIOD);
20 free(tab);
21 }

Listing 4.2: Second synthetic application skeleton.

The emulation methodology is as follows. We run the application under
Gem5 and we collect the logged GPAs including timestamps. The collected
traces are then replayed inside the dom0 of a real virtualized environment that
runs the WSS estimation system. A dom0’s CPU (noted CPU0) is dedicated
to the latter. The other dom0’s CPUs run processes that replay the traces,
thus mimicking the functioning of a real machine equipped with PRL. Each
process replaying the traces sends an IPI to CPU0 each time it plays N traces,
N being the size of the log buffer. This emulation is similar to the actual
operation of a PRL-compatible machine, as shown in Figure 4.4. To be fair,
we also assessed the accuracy of PML and VMware solution using the same
methodology. As a reminder, the VMware WSS estimation solution consists
in periodically selecting (every 30 seconds) a sample of 100 memory pages
whose present bits are invalidated. The proportion of pages, among these
selected 100 pages, which will cause a page fault represents the WSS of the
VM.

The skeleton of the synthetic application we use for our experiments is
shown in Listing 4.2. The parameter SIZE controls the WSS: SIZE × 4KB.
4KB is the size of tab[j], which is also the size of a memory page (in our
architecture). The parameter PERIOD represents the duration of the ap-
plication, and operation(tab[j]) is the operation performed on the array
entry. We consider three types of workload: every read is followed by a write
(RWRW ), a set of reads followed by a set of writes (RRWW ), and a set of
writes followed by a set of reads (WWRR). We choose an application with
well-known read and write phases instead of random operations, as in Sec-
tion 4.2, because we want to clearly show how PRL performs facing each
operation type.

4.4.2 Accuracy of the simulator

We validate the accuracy of our EPT and PML simulation by running each
workload type of the synthetic application atop our simulator, then on a real
machine supporting EPT and PML. We compare the content of the PML



4.4. PRL Evaluation 37

buffer in both cases. Since, in the real environment, the application runs
inside a VM (which includes a guest OS), several GPAs that do not belong to
the synthetic application’s address space can be logged into the PML buffer.
These GPAs are part of other components inside the VM which perform write
operations. Once eliminating these GPAs, we observe that the content of the
PML buffer in both environments is the same, validating the accuracy of our
simulator. From now, we can study the efficiency of PRL in the task of WSS
estimation.

4.4.3 PRL efficiency

We evaluate the accuracy of the WSS estimation of an application running in
a VM. We consider the synthetic application described in Section 4.4.1 and the
HPL Linpack described in Section 4.2. The WSS of the synthetic application
is fixed to 400 MB by setting SIZE accordingly (i.e., 102400 pages). We do
not use BigDataBench applications because their execution never completes
under Gem5 in our experimental environment. We compare our results against
PML and VMWare sampling-based WSS estimation techniques. We confront
the VMWare WSS estimation technique mainly due to its popularity, albeit
its skewed results due to hard sampling period configuration. Additionally,
other WSS estimation techniques benefit from extensive evaluation in different
research works, such as[131].

The results of our experiments are shown in Figure 4.6. We observe that
the WSS estimation based on PRL has a margin of error of less than 1MB for
all workloads, i.e., a precision greater than 99.75%8. In contrast, the VMware
solution provides inaccurate results, which is in line with previous research ob-
servations [133]. The accuracy of the WSS estimation based on PML mainly
depends on the number of write operations. In the RWRW and WWRR work-
loads, all the array entries are updated, allowing PML to correctly estimate
the WSS. In contrast, the RRWW workload highlights the incapacity of PML
to identify hot pages when only read operations are performed.

Regarding the HPL Linpack application, we observe that both PRL and
PML provide similar WSS estimations, while the solution based on VMware
still diverges a lot. Because the real WSS is not known in advance, we estimate
its value as follows. We dynamically set the memory size of the VM to the
WSS estimated using the PRL-based system. Since we do not observe any VM
crash and no performance degradation, the PRL-based WSS value is either
overestimated or accurate. We decrease the memory size of the VM by 100MB
and observe a crash of the VM, which confirms that the previously estimated
WSS was accurate.

As illustrated in Table 4.2, we observe that the number of GPAs missed

8Notice that due to the workload nature (array scan), the working set is mostly constant.



38
Chapter 4. Page Reference Logging (PRL): Efficient

Hardware-Assisted Working Set Size Estimation of VMs

Figure 4.6: Efficiency of PRL compared with PML and VMware. Expected is the
baseline. It corresponds to the WSS of the application (400MB).

when handling full log events in PRL is negligible. Indeed, it is very likely
that a GPA that is part of the working set is seen very often. Missing one
GPA, thus, does not compromise the accuracy of the WSS estimation.

Buffer size RRWW HPL
(MB) # full log # missed GPAs mean of missed GPAs # full log # missed GPAs mean of missed GPAs

events per full log event events per full log event
512 17094 0 0 20701 741 0.04
1024 8543 213 0.02 10510 116 0.01

Table 4.2: Number of missed GPAs during the treatment of full log events. Note
that results for WWRR and RWRW are almost the same as for RRWW, thus we
decide not to present them.

To confirm our findings, we extend our evaluations by including the ap-
plications of PARSEC [46], a benchmark suite composed of multithreaded
programs. We used PARSEC because it is widely used by the research com-
munity, and the WSS of some applications in the suite are known from the
technical report of PARSEC in 2008 [81]. Our results are presented in Fig-
ure 4.7. Apart from freqmine, all the values estimated by PRL match the
initial technical report9. We observe that the PML-based solution is accurate

9Regarding freqmine, the latter’s dataset evolved since the [81] report, which explains the
discrepancy between the [81] results and ours.
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Figure 4.7: WSS estimation of PARSEC applications using PRL.

for six applications (streamcluster, vips, fluidaminate, blacksholes, bodytrack,
dedup) while the VMware-based solution fails to provide correct values. By
making the implementation of PRL under Gem5 publicly available, researchers
can use it for estimating the WSS of other benchmarks.

4.4.4 PRL overhead

We evaluate both the impact induced by PRL on the VM whose WSS is
estimated and the number of resources consumed by the WSS estimation
system inside the dom0.

The overhead on the VM whose WSS is estimated is the total number
of CPU cycles used by the PRL internal circuitry. Because a PRL-capable
machine does not exist yet and Gem5 does not measure internal CPU circuitry
costs, we assume that this number of CPU cycles should be roughly equivalent
to that of PML since the two modes are very similar. Therefore, to assess
PRL overhead, we use a PML-capable machine on which the VM runs an
application that performs only read operations. This scenario avoids having
VMExits that can not occur with a PRL-based machine for which VMExits are
executed on a different processor. Remember that both PML and PRL logging
take place during page table walk on each TLB miss. Thus, we repeated this
experiment by varying the number of tenant VMs to increase the pressure on
the TLB. We hardly measure any difference in performance (around 0.001%),
which means that PRL will likely not experience any performance degradation
on the VM whose WSS is computed.

We use the emulated environment to evaluate the CPU consumption of
the WSS estimation system inside the dom0, which is pinned to a specific
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core. We use a single VM and a write-only workload (WWRR in which RR is
null) as the worse case. Figure 4.8a presents the percentage of CPU consumed
by the WSS estimation process in the dom0 for a VM with a single vCPU.
For readability, only a representative portion of the results is presented. The
CPU consumed during the treatment of the full log event increases (with
the size of the cumulative buffer) until the WSS is discovered. However, we
can observe that the CPU is most of the time, idle, waiting for a PRL log
full event. On average, the total CPU time consumed by the WSS estimation
process for a VM with a single vCPU is less than 1.5%. We repeated the same
experiment by varying the number of VMs. As illustrated in Figure 4.8b, the
average percentage of CPU consumed by the WSS estimation system increases
linearly.
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Figure 4.8: CPU consumption for the WSS estimation process on VMs with a single
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4.5 Related work

Hardware assisted virtualization (HAV) Contrary to A. Baumann’s con-
clusion in his HotOS’17 paper [63], we believe that virtualization is the Sys-
tem’s sub-domain which mainly influences hardware architecture research.
In fact, HAV contributions have evolved at the rhythm of the limitations
of software solutions. Notably, the Extended/Nested Pages Table [68] were
introduced to address the tremendous number of context switches caused
by shadow paging [151]. In summary, several hardware features (e.g., Intel
VT [41], VMFUNC [48], Intel CAT [42], APICv [129]) have been integrated
inside CPU, memory subsystems, I/O devices and many other motherboard
components by hardware manufacturers these recent years for achieving basic
virtualization functionalities. An extreme application of the HAV approach
has been proposed by E. Keller with NoHype [105], which is a hardware-
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only hypervisor. In 2017, Amazon anounced its new hypervisor called Ni-
tro [113], which can be seen as a concretization of the NoHype vision. In
academia, a lot of efforts have been made on the topic of memory virtualiza-
tion [62, 160, 55, 154, 59, 93, 92, 115] to minimize the overhead of the 2D page
walk imposed by EPT.

Page tracking Page tracking is, in essence, the core of working set esti-
mation techniques. The most popular approach for page tracking consists in
denying access to memory pages, which need to be monitored so that the next
accesses trap inside the system software (hypervisor or OS). This approach
is used by the majority of checkpointing, live migration, and WSS estima-
tion solutions. Very few research works have investigated hardware features
for page access tracking. Pin Zhou et al. [166] proposed a Miss Ratio Curve
(MRC) monitoring hardware feature, which can be used as an alternative to
page access tracking in the task of WSS estimation [165]. [166] proposed a so-
lution consisting in snooping the address bus and requires collaboration with
the OS page fault handler. As with PML/PRL, [166] showed that tracking
page accesses at the hardware level is possible. However, [166] is dedicated to
native systems and needs to collaborate with the OS, unlike PML/PRL.

Live migration [123, 147] presented surveys that the reader could refer to.
We would like to highlight among them [54, 130] who studied live migration
of the VM storage along with its memory. Very few research work has investi-
gated VM storage live migration because it increases VM downtime. Migrat-
ing the VM storage is necessary when dealing with data-intensive applications
because they generally use local storage instead of classical network storage.
The utilization of PRL/PML is also beneficial for this use case because disk
accesses go through the buffer cache, which resides in RAM. [164] addressed
another important aspect of live migration, which is the prediction of the right
migration instant. In fact, live migration could fail due to a lack of resources
or sudden VM behavior changes. The authors use the VM WSS to track such
behavior changes. Thus PRL is likely to improve [164]’s contribution.

WSS estimation Committed_AS, a Linux kernel statistic, is generally used
(e.g., by Xen) to estimate the VM WSS. This statistic corresponds to the total
number of anonymous memory pages allocated by all processes but not nec-
essarily backed by physical pages. Therefore, Committed_AS overestimates
the WSS. Another limitation of this approach is the fact that it requires a col-
laboration between the hypervisor and the guest OS. Zballoond [80] relies on
the following observation: when a VM’s memory size is larger than or equal
to its WSS, the number of swap-in and re-fault (occurs when a previously
evicted page is later accessed) events is close to zero. The basic idea behind
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Zballoond consists in gradually decreasing the VM’s memory size until these
counters start to increase. The VM’s WSS is the smallest memory size which
leads the VM to zero swap-in and re-fault events. Like Committed_AS, Zbal-
loond requests collaboration with the guest kernel. Furthermore, Zballoond is
very active in the sense that it performs memory pressure on the VM, which
could degrade the VM performance. Geiger [101] monitors the evictions and
subsequent reloads from the guest OS buffer cache from/to the swap device.
It relies on a ghost buffer [137] which represents an imaginary memory buffer
that extends the VM’s physical memory (noted mcur). The size of this buffer
(noted mghost) represents the amount of extra memory which would prevent
the VM from swapping out. Knowing the ghost buffer size, the VM’s WSS can
be computed using the following formula: WSS = mcur+mghost if mghost > 0.
Unlike the two previous solutions, Geiger is transparent from the VM’s point
of view. However, Geiger has an important drawback which derives from its
non-intrusiveness. It is able to estimate the WSS only when the size of the
ghost buffer is greater than zero (the VM is in a swapping state). Geiger is
inefficient if the VM’s WSS is smaller than the current memory allocation.
Hypervisor Exclusive Cache [121] is fairly similar to Geiger. Badis [131] com-
bined VMware and Geiger in order to take advantage of their non-intrusivity
on the VM’s codebase. Badis suffers from VMware and Geiger’s drawbacks
presented above. [165] computes the WSS of an application based on its miss-
ratio curve (MRC). The latter shows the fraction of the cache misses that
would turn into cache hits if the VM’s allocated memory increases. [165]
presents a set of methods to determine the values of the input parameters
of our WSS estimation system (τ , ω, and µ). [112] presents an application-
assisted WSS estimation solution in virtualized systems. In contrast to our
solution, which considers the VM as a black box, [112] relied on the application
inside the VM to estimate the WSS, which is very intrusive.

4.6 Summary

In this chapter, we analyzed Page Modification Logging (PML), a memory
page tracking technology introduced by Intel and VMware as a key virtu-
alization functionality. We showed that the current design of PML makes it
effective for VM live migration but not for WSS estimation. Based on this ob-
servation, we proposed Page Reference Logging (PRL), an extension to PML
which makes it also effective for WSS estimation. We implemented PRL in
Gem5, a popular hardware simulator. We further described a WSS estima-
tion system that takes advantage of PRL. We evaluated our solution using
real and synthetic applications and compared it with existing solutions. Our
results demonstrate that our solution is both accurate and does not impact
user VMs.



Part II

OoH in Unprivileged VMs
(Xen-domU)





Chapter 5

OoH for PML: Efficient Dirty Page
Tracking In Virtualized Clouds

This chapter demonstrates the application of OoH with PML for cloud user
applications. Because dirty page tracking is at the heart of many essential
tasks, including process checkpointing (e.g., CRIU) and concurrent garbage
collection (e.g., Boehm GC), OoH exposes PML to accelerate these tasks in
the guest. We present two OoH solutions, namely Shadow PML (SPML) and
Extended PML (EPML), that we integrated into CRIU and Boehm GC.
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Clouds

5.1 Introduction

In this context of cloud computing, dirty page tracking is an important need
for both the guest kernel and its userspace processes. The former tracks dirty
pages to know if a file-backed memory page should be copied to disk when
swapped out. In userspace, dirty page tracking is used by several applications
such as garbage collectors (GC) [9], container or process checkpoint/restore
systems [149, 90], use-after-free vulnerability mitigation systems [56], etc. For
illustration, dirty page tracking is used by concurrent GCs like Boehm [9] to
reduce application pause time during the construction of reachable objects.
Existing dirty page tracking solutions rely on userfaultfd (hereafter ufd) or
/proc/<PID>/pagemap (hereafter /proc), two interfaces offered by Linux.
As assessed in Section 5.2, these two interfaces are extremely expensive since
they are based on page write protection, which induces a lot of page faults and
world transitioning (kernel space to userspace and vice versa). We measured
an overhead of up to 15× with ufd and 4× with /proc.

Intel PML tracks dirty pages at the scale of a whole VM by the hypervisor
to accelerate VM live migration [74]. In this chapter, we study how PML can
be diverted to be used by an unprivileged guest kernel and its applications
to accelerate their execution. We identify three main challenges to achieving
that. (C1) PML can be exploited uniquely by the hypervisor. In other words,
only software (the hypervisor) running in VMX root ring 0 CPU mode can use
PML. Yet, the guest kernel and its applications run in CPU VMX non-root
ring ≥ 0. (C2) PML operates in coarse-grained that is, it concerns the entire
VM. We want to use PML at the granularity of a process within the VM
while allowing the hypervisor to continue using it at the scale of the VM. (C3)
PML only logs guest physical addresses (GPAs), while userspace processes
need guest virtual addresses (GVAs).

In this chapter, we describe two solutions of OoH for PML and present
two systems that can use them. These systems are Boehm (a GC) and CRIU
(a process checkpoint/restore system). The first OoH solution, called Shadow
PML (noted SPML), requires no hardware modification. In contrast, the sec-
ond OoH, solution called Extended PML (noted EPML), slightly extends the
hardware implementation of PML to avoid the limitations of SPML. We inves-
tigated SPML to point out the need for a hardware extension of PML. SPML
relies on hypercalls (VM → hypervisor) and virtual interrupts (hypervisor
→ VM) to respectively enable/disable PML and to periodically copy GPAs
(logged by the CPU to a PML buffer in the hypervisor) to a ring buffer shared
between the hypervisor and the guest OS. It is then up to the guest OS to
perform GPA to GVA reverse mapping. EPML, on its side, hijacks two hard-
ware virtualization features (VMCS shadowing [1] and posted-interrupt [30])
and slightly extends PML to avoid the intervention of the hypervisor on the
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critical path. EPML is able to log the address of a dirty page into two buffers
simultaneously. The first buffer is exclusively managed by the guest OS, while
the second buffer is managed by the hypervisor. Finally, EPML logs GVA to
the guest level buffer and logs GPA to the hypervisor level one.

To facilitate the utilization of OoH, we provide a generic library that we
implemented following the UIO driver principle [27]. The library has two
parts: a kernel module and a userspace template code. The former does not
need to be managed by the application developers, who simply need to inte-
grate the template code into their applications. We prototyped and evaluated
SPML on a DELL Intel Core i7-8565U processor machine that supports PML
using the Xen hypervisor (a popular hypervisor used by Amazon). Regarding
EPML, we rely on BOCHS, the only emulator (to the best of our knowl-
edge) that implements PML. In both designs, the guest OS is Linux. We use
both micro- and macro-benchmarks for evaluations. For the latter, we use all
five in-memory database engines from tkrzw [25] and six applications from
Phoenix [139] (a MapReduce application set). To evaluate our prototypes,
we set up a rigorous methodology, especially for EPML, which extends the
hardware. To this end, we build a mathematical formula that accurately ap-
proximates the overhead or improvement of each solution. We systematically
compare SPML and EPML with /proc and ufd. We are interested in the
impact of each solution on the tracked application (e.g., Phoenix) and the
tracking system (e.g., CRIU). The solutions are classified as follows, in de-
creasing order of the overhead they induce: SPML, ufd, /proc, and EPML.
/proc, which is the default solution implemented in both CRIU and Boehm,
incurs an overhead of up to 102% with CRIU on the Phoenix pca application
and up to 232% with Boehm on the Phoenix string-match application. The
overhead of SPML is up to 114% with CRIU and 273% with Boehm on the
same applications. EPML leads to the lowest overhead, which is about 7%
with CRIU on pca and 24% with Boehm on string-match. Hence, EPML
can improve existing systems by up to 62%. Concerning the tracking system
and compared to /proc, SPML induces up to 5× slowdown on CRIU and 3×
slowdown on Boehm GC. EPML brings up to 4× speedup compared to /proc
and 13× speedup compared to SPML for CRIU. Finally, for Boehm, EPML
brings up to 2× speedup compared to /proc and up to 6× speedup compared
to SPML.

In summary, this chapter makes the following contributions:

• (Empirical contribution) We finely quantify the impact of page fault-
based dirty page tracking.

• (Conceptual contribution) We present OoH and two solutions, namely
SPML and EPML.
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• (Technical contribution) We prototype SPML and EPML in real and
emulated environments (BOCHS) using popular system software (Xen
hypervisor and Linux guest OS).

• (Technical contribution) We integrate PML into two popular tracker
systems, namely CRIU and Boehm GC.

• (Empirical contribution) We rigorously evaluate our designs using micro-
and macro-benchmarks.

5.2 Motivations

Init Monitoring Collection Usage
Tracker
Kernel

Tracked #PF #PF #PF

(a) /proc-based tracking

Init Monitoring & Collection Usage

#PF #PF #PF

(b) userfaultfd-based tracking

Tracker
Kernel

Tracked

Tracker
Kernel

Tracked

Init Monitoring & Collection Usage

PML buffer full PML buffer full

(c) OoH-PML based tracking

Figure 5.1: Impact of /proc, ufd, and OoH-PML methods on Tracked and Tracker.
The two former methods lead to several suspensions (red dashed lines) of Tracked,
due to #PF -Page Faults- and context switches. ufd induces the longest suspen-
sion time (#PF are handled in userspace). However, dirty page address collection
takes much more time with /proc (due to the parsing of /proc/PID/pagemap), thus
impacting Tracker. OoH has the benefits of both worlds and does not require the
suspension of Tracked.

Dirty page tracking, thus PML, is not only essential for hypervisors. A
thread running inside a VM may also need to monitor dirty pages for garbage
collection or checkpointing. We call Tracker the monitoring thread and Tracked
the thread whose memory is monitored. The traditional approach used by
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Tracker is the invalidation of dirty and present bits from Tracked’s page table
entries (PTE). Linux offers two interfaces that Tracker can leverage. These are
ufd and /proc. Fig. 5.1 summarizes their functioning compared to an OoH-
PML-based solution. ufd and /proc are introduced in this section, while
OoH-PML is presented in Section 5.3. The activity of Tracker can generally
be organized into four main phases: the initialization of the tracking method,
the monitoring, the collection of dirty page addresses, and the exploitation of
the latter (e.g., for checkpointing).

We consider in this section that the fourth phase is empty as its duration
is agnostic to the tracking method in comparison with the three other phases.
We launch Tracker and Tracked at the same time, but the latter is suspended
during the initialization phase. The ideal execution time of Tracked is when
it runs without being tracked. The ideal execution time of Tracker is the ideal
execution time of Tracked. As one can deduce from Fig. 5.1, the choice of
the tracking method can impact both Tracker and Tracked. We can see that
OoH is the only method that theoretically leads both systems to their ideal
execution time.

5.2.1 The cost of ufd

Fig. 5.1.b summarizes the functioning of a ufd-based dirty page monitoring
solution. To use ufd, Tracker first registers the memory region it wants to
monitor. After the registration, it will be notified by the kernel each time a
page fault concerning the registered region occurs. ufd supports two moni-
toring modes: miss and write_protect. For miss, a notification is sent to
Tracker when Tracked accesses a monitored page for the first time. Concern-
ing write_protect, a notification is sent when Tracked attempts to modify
a monitored page. In both modes, Tracked is suspended until the fault is
resolved. In the case of write_protect, the Tracker should write-unprotect
the faulted page in order to unpause Tracked. One can see that, with ufd, the
collection of dirty page addresses can be done during the monitoring phase.

We assess the overhead of ufd using as Tracked, a synthetic program (pre-
sented in Section 5.5) that just parses and writes to an array of buffers. The
size of each buffer is 4KB, allocated at page boundaries. We are interested in
monitoring the entire array. Table 5.1 second and fifth rows show the overhead
of ufd while we vary the array size. We can see that the overhead linearly
increases with the array size. We measured an overhead of up to 15× and 14×
for 1GB on Tracked and Tracker respectively. We break down the page fault
handling time into two components: the time spent inside the kernel (about
33.6ms for 1GB) and the time spent in Tracker (about 3,3383ms for 1GB).
The total suspension time of Tracked represents, on average, about 93% of its
execution time.
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On Tracked 1MB 10MB 50MB 100MB 250MB 500MB 1GB
ufd 195 272 583 1,050 1,266 1,462 1,463
/proc 104 55 114 208 302 307 335

On Tracker 1MB 10MB 50MB 100MB 250MB 500MB 1GB
ufd 93 169 477 940 1,269 1,153 1,349
/proc 47 43 58 148 151 143 147

Table 5.1: Overhead (in %) of ufd- and /proc-based dirty page tracking methods.

5.2.2 The cost of /proc

Fig. 5.1.a summarizes the functioning of a /proc-based dirty page monitoring
solution. Tracker first instructs the kernel to clear soft-dirty bits of Tracked’s
PTEs. This is done by writing 4 to /proc/PID/clear_refs file, where PID
is the process identifier of Tracked. This operation is dominated by the time
taken by the kernel to parse Tracked’s PTEs and to flush the TLB (about
2.234ms when the monitored memory is 1GB). All of this lengthens the ini-
tialization step compared to ufd. After this, once Tracked tries to modify a
monitored page, a fault occurs. The handler of that fault sets in Tracked’s
PTE the soft-dirty bit of the faulted page (this operation costs about 33.5µs).
At the end of the monitoring period, Tracker reads the soft-dirty bits (bit 55)
from /proc/PID/pagemap to determine all dirty page addresses (this costs
about 594.187ms when the monitored memory is 1GB). The total suspension
time represents about 73% of the total execution time of Tracked. As shown
in Table 5.1 top, the impact of /proc on Tracked varies with the memory
size. We measured an overhead of more than 4× for 1GB of memory. This
overhead is lower than the one induced by /ufd, as shown above. Concerning
Tracker, see Table 5.1 bottom, the overhead is up to 2× (147%). When com-
pared to /ufd, although /proc increases the address collection phase, its cost
is compensated by the smaller suspension it induces during the monitoring
phase.

5.2.3 Alternative

A way to use PML for a process is to dedicate a VM to the latter, thus
exploiting PML as is only by the hypervisor. This approach works for some
use cases, such as checkpointing. In fact, to checkpoint the process, the user
would checkpoint the corresponding VM.

However, this approach would not be effective for use cases where PML is
required at runtime. It is the case for garbage collectors that we study in this
chapter. The GC runs inside the guest, so it needs to access PML from there.
It is not possible, at the hypervisor level, to perform garbage collection for
processes running inside a guest (which is a black box for the hypervisor).
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Another important drawback of this approach is that it is contrary to the
current trends of colocating tasks within VMs to save resources (thus money)
and reduce Inter-Process Communication costs (to which HPC applications
are very sensitive). This practice is common in FaaS platforms, where func-
tions of the same client are co-located within the same VM [153]. Besides,
several HPC FaaS platforms are initiatives developing [8, 122].

5.3 Design

The goal of OoH is to make some hardware virtualization features usable
from inside the guest OS. We do this with as minimal changes as possible
in the hardware, the hypervisor, and the guest kernel. In addition, we want
to propose a simple utilization interface for application developers. §5.5.2
presents the methodology that OoH designers can follow when applying this
principle to a hardware virtualization feature. Then §5.3.1-5.3.4 illustrate that
methodology to the exposure of Intel PML.

5.3.1 Overview
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Figure 5.2: OoH: SPML and EPML architectures. Sofware/Hardware changes are
highlighted in red.

We present two solutions of OoH for PML, namely Shadow PML (noted
SPML) and Extended PML (noted EPML). SPML requires no hardware mod-
ification, while EPML slightly extends the hardware for better performance.
Fig. 5.2 presents the architecture of the two solutions (detailed in §5.3.2 and
§5.3.3). In the guest, we provide OoH as a userspace I/O (UIO) driver com-
posed of a kernel module (OoH Module) and a userspace library (OoH Lib).
At load time, the former does a set of initialization operations, including ring
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buffer allocation that is shared with userspace (and the hypervisor in SMPL
only). Tracker uses OoH Lib to register the PID of Tracked with OoH Mod-
ule. From there on, the processor can log dirty pages’ addresses to a 512KB
PML buffer, which is copied to the ring buffer once full. Relying on OoH Lib,
Tracker can periodically fetch the collected addresses to achieve its goal (e.g.,
checkpointing).
EPML differs from SPML in two ways: (1) With EPML, the processor also
logs GVAs, thus avoiding costly reverse mapping in OoH Lib; (2) With EPML,
the guest kernel can directly deal with the processor, thus avoiding costly
hypercalls.

5.3.2 Shadow PML (SPML)

The basic idea behind SPML is to make the hypervisor emulate PML for
guests’ processes. Indeed, in this solution, the hypervisor is the only com-
ponent able to perform PML’s instructions to the processor. Fig. 5.2 left
summarizes SPML functioning with three main features.
(1) To ensure that the processor only logs GPAs for tracked processes, we
introduce two new hypercalls: disable_logging and enable_logging. The
former is called by OoH Module every time a tracked process is scheduled-
out. This hypercall copies the content of the PML buffer to the ring buffer
and instructs the processor to stop logging. enable_logging is the inverse
operation invoked by OoH Module when a tracked process is scheduled-in.
(2) In SPML, the processor logs GPAs while Tracker needs GVAs. To fill this
gap, OoH Lib reverse maps GPA to GVA by parsing the page table of Tracked
using the /proc interface.
(3) Recall that the hypervisor can also use PML for its own purposes (e.g.,
VM live migration). To coordinate the two levels, we introduce two flags
(enabled_by_guest and enable_by_hyp) that indicate which level has en-
abled PML. When the PML buffer is full, the hypervisor does not fill the ring
buffer unless enabled_by_guest is set. And similarly, if enabled_by_hyp is
not set, the hypervisor bypasses the operations corresponding to its use of
PML, thus avoiding unnecessary additional CPU time consumption. If the
hypervisor wants to deactivate PML, it first checks that enabled_by_guest
is not set and vice versa.

The main limitation of SPML lies in its performance overhead caused by
the high number of hypercalls and reverse mapping operations that it gener-
ates, justifying EPML.

5.3.3 Extended PML (EPML)

Fig. 5.2 right summarizes EPML. The basic idea behind it is to provide a
second level of PML directly controlled by the guest OS (OoH Module). Every
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tracked process is associated with a guest-level PML buffer by OoH Module,
exactly as the hypervisor manages a PML buffer per vCPU.

To minimize hardware changes, EPML leverages the existing VMCS shad-
owing (see §2.1.2) feature, which allows a guest to perform vmread and vmwrite
instructions without vmexit to the hypervisor. At load time, OoH Mod-
ule calls the hypervisor to enable and configure VMCS shadowing. This is
the only hypercall performed in EPML. Therefore, when a tracked process is
scheduled-in or out, OoH Module accordingly enables or disables address log-
ging using vmwrite instruction. Contrary to SPML, EPML does not interfere
with the hypervisor’s needs.

From a hardware point of view, EPML makes the following small changes.
We introduce in the VMCS a new field (called Guest PML Address) that
represents the address of the guest-level PML buffer. Because the guest (OoH
Module here) only sees GPA, the value that it sets to the Guest PML Address
should be translated to a host physical address (HPA) so that the processor
can log to the right location in RAM. To tackle this challenge, we extend the
VMX ISA so that if a vmwrite instruction to the Guest PML Address field is
performed when the processor is in guest mode, it first translates the address
to a HPA (using EPT) before writing it to the shadow VMCS.

Another improvement brought by EPML is the capability to log GVAs,
thus avoiding reverse mapping by OoH Lib. We modify the page walk circuit
to make the processor log the GVA to the guest-level PML buffer and the
GPA to the hypervisor-level PML buffer.

The last hardware extension is to handle guest-level PML buffer full events.
We modify the hardware so that when the guest-level PML buffer is full, the
processor raises a virtual self-IPI (Inter-Processor Interrupt) which is handled
in the guest by OoH Module. Notice that this is a very small modification that
leverages an existing feature called Posted-Interrupts. With the latter, the
processor is able to directly deliver interrupts to the guest OS when running
in the guest mode without vmexits.

5.3.4 Implementation

We implemented OoH in Xen 4.10.0 hypervisor, Linux 4.15.0 guest OS, and
BOCHS 2.6.11 Intel x86 emulator (only for EPML, which extends the hard-
ware). We use CRIU and Boehm GC as Trackers.

Xen. It is a popular hypervisor used by Amazon EC2. The main changes we
made concern the introduction of the two hypercalls, disable_logging and
enable_logging, and the copy of the content of the PML buffer to RB.

Linux Core. We essentially modified the interrupt table to handle the virtual
self-IPI raised by the processor when the guest-level PML buffer is full in
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EPML. Notice that OoH Module is a kernel module, thus it is not part of the
Linux core.

BOCHS. It is a very popular Intel machine emulator, which yet implements
PML. We modified it to implement EPML, mainly by extending: the vmwrite
instruction, the page table walk circuit to log GVAs, and the PML logging
process to raise self-IPI on buffer full.

CRIU. It is a popular checkpoint/restore tool integrated into many well-
known projects, such as OpenVZ [20], Podman [23], or Docker [6]. CRIU relies
on /proc. To integrate OoH with it, we mainly patched two steps: (1) Ini-
tialization: OoH avoids pausing (echo 4 > /proc/PID/clear_refs) Tracked
at the initialization phase because the activation of PML is immediate and
does not interfere with the execution of Tracked, as illustrated in Fig. 5.1.c.
(2) Address collection: OoH avoids parsing the /proc/<PID>/pagemap file to
retrieve dirty pages’ addresses. The ring buffer is read instead.

Boehm GC. Boehm GC [9] is a popular C and C++ garbage collector that
is included in many well-known projects, such as Mozilla [17], GNU Java
compiler [12], or Inkscape [14]. Boehm GC provides incremental and gener-
ational collection based on dirty page tracking. In its current implementa-
tion, Boehm relies on /proc. To integrate OoH, we mainly patched the mark
phase, corresponding to where the GC checks for modified pages. As with
CRIU, OoH avoids reading from /proc/PID/pagemap and resetting dirty bits
via /proc/PID/clear_refs.

5.4 Security and Isolation

OoH empowers the guest processes by sharing some hypervisor-oriented hard-
ware virtualization features (PML in this chapter) with guest OSes. One may
legitimately see this as a source of potential threats. In this section, we show
that neither SPML nor EPML increases the vulnerability of the hypervisor
(against guest OSes), the guest OS (against others), and processes (against
others within the same guest VM). Our trust model is the same as that of
/proc and ufd that is, the hypervisor does not trust guest OSes, which in
turn do not trust their processes. We elaborate below on the security of the
hypervisor, VMs, and processes.

Concerning the hypervisor, (1) only SPML requires its modification, which
represents only 194 LOC. The latter is negligible compared to the hypervisor
code size (about 900K+ LOC for Xen). Accordingly, we are pretty confident
that our added code is at least as safe as existing hypercalls. (2) In both
SPML and EPML, the guest OS does not see hardware physical addresses
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(HPA). Remember that SPML logs GPA and EPML logs GVA, both being
virtual addresses. These address types are traditionally seen and managed by
the guest OS, including when /proc and ufd are used. In OoH, the hypervisor
remains the sole layer that sees and manages HPA. (3) The ring buffer that the
hypervisor shares with each guest OS is allocated within the guest’s address
space and not that of the hypervisor. Thus, a guest can not leverage it to
corrupt the hypervisor.

Concerning guest OSes, neither SPML nor EPML reduces their isolation
level. In SPML, a dedicated ring buffer is used per guest. Therefore, a guest
can only see logged addresses that belong to its address space.

In the previous version of our prototype, all tracked processes of the same
guest could see the same SPML/EPML logging buffer. That implementation
could potentially lead to side-channel attacks as a tracked process could learn
the memory access pattern of tenant-tracked processes. (Thanks to reviewer
feedback, we have (easily) updated that implementation to dedicate a per-
process ring buffer and restrict its access to tracker processes only. This was
an implementation detail.)

5.5 Evaluations

This section presents the evaluation results. We want to answer the following
questions: (1) what is the potential overhead or improvement of SPML and
EPML compared to existing solutions (/proc and ufd)? (2) what is the
scalability of SPML and EPML? (3) to what extent SPML and EPML are
able to efficiently capture all dirty pages?

5.5.1 Experimental environment

Machines and Systems. We carried out the experiments on a machine with
8 Intel Core i7-8565U and 16 GB of RAM. Especially to evaluate ufd, we
use Linux 5.11 because version 4.15.0 does not support the write_protect
mode. To emulate EPML, we used BOCHS. In the emulated environment,
the VM has 1 vCPU and 1GB of memory (due to BOCHS constraints). In all
experiments on the real machine, the VM has 1 dedicated CPU (to meet the
emulated setup) with 5GB of memory.

Benchmarks. We used both micro- and macro-benchmarks. The former is
composed of two applications: an array parser (shown in Listing 6.1) and
GCBench [10], a popular micro-benchmark to evaluate GCs. For macro-
benchmarks, we used two benchmark suites: tkrzw [25], a suite of key-value
data processing engines, and Phoenix [139], a shared-memory implementa-
tion of Google’s MapReduce data processing model. Concerning tkrzw, we
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focused on the five in-memory engines and we injected set requests. For each
of the macro-benchmarks, we consider three configuration sizes, namely Small,
Medium, and Large. Table 5.2 presents the per-application memory size for
each configuration. All results presented in this section are mean of 5 runs.

1 ...
2 #define PAGE_SIZE sysconf(_SC_PAGE_SIZE)
3 #define num_pg xx //memory size=xx*PAGE_SIZE
4

5 void main(void)
6 {
7 unsigned long *region=malloc(num_pg*PAGE_SIZE);
8 /*
9 * Pin all the pages in-memory to be sure that

10 * they are not swapped out
11 */
12 mlockall(MCL_CURRENT|MCL_FUTURE|MCL_ONFAULT);
13 for( ; ; )
14 for(unsigned long i=0;i<num_pg;i++)
15 region[(i*PAGE_SIZE)/sizeof(unsigned long)]=i;
16 }

Listing 5.1: Micro-benchmark code.

5.5.2 Methodology

Since we do not have a real machine equipped with EPML, we build a formula
to estimate its impact compared to other techniques. We first present a generic
formula that captures the functioning of all techniques. Then we specialize
the formula for each technique. Finally, we demonstrate the accuracy of each
formula using metric values collected during real experiments. For ease of
understanding, we consider in the rest of this section that Tracked is a single-
threaded application. Let us recall that Tracker executes in the same thread as
Tracked, so each time Tracker runs, it disrupts the execution flow of Tracked.

Let x be a tracking technique. x is either /proc, ufd, SPML, EPML,
or oracle. The latter represents a hypothetical technique able to provide all
dirty pages with no additional cost. The Tracker’s code (noted Ctker) can be
organized into two parts: the tracking technique (noted Cx) and the tracking
routine (noted Cp). The latter is the part of Tracker that implements the
tracking goal, e.g., writing to disk during checkpointing. In the Tracker’s
execution flow, Cx and Cp alternate. We note Ctked the original code of Tracked
(i.e., without being monitored by any Tracker). We are interested in the
overhead of the tracking technique x on the execution time of Tracker and
Tracked.



5.5. Evaluations 57

Configuration Small

Application GCbench hist kmeans matrix-m pca string-m word-c
Config. 500K 16 18 0.1GB -d 500 -c 500 -p 500 -p 100 500 500 -r 1K -c 1K -s 200 50MB 50MB
Memory 15.07MB 102.27MB 4.26MB 5.56MB 8.12MB 56.40MB 100.65MB

Configuration Medium

Application GCbench hist kmeans matrix-m pca string-m word-c
Config. 650K 18 20 0.5GB -d 1K -c 1K -p 1K -s 100 1K 1K -r 5K -c 5K -s 200 100MB 100MB
Memory 67.76MB 441.28MB 16.41MB 16.21MB 97.85MB 106.14MB 143.99MB

Configuration Large

Application GCbench hist kmeans matrix-m pca string-m word-c
Config. 750K 20 22 1.5GB -d 5K -c 5K -p 5K -s 100 2K 2K -r 10K -c 10K -s 200 200MB 200MB
Memory 223.41MB 1.49GB 195.64MB 47.33MB 195.50MB 212.09MB 205.88MB

(a) Phoenix & GCBench

Configuration Small
Application baby cache stdhash stdtree tiny
Config. –iter 3M –th 3 –iter 3M –cap_rec 3M –th 5 –iter 3M –buck 100K –rec zlib –th 2 –iter 3M –th 2 –iter 5M –buck 30M –th 3
Memory 253.64MB 218.21MB 358.64MB 415.12MB 681.35MB

Configuration Medium
Application baby cache stdhash stdtree tiny
Config. –iter 5M –th 3 –iter 5M –cap_rec 5M –th 5 –iter 5M –buck 100K –comp zlib –th 2 –iter 5M –th 2 –iter 5M –buck 30M –th 5
Memory 421.48MB 361.91MB 595.80MB 694.07MB 977.66MB

Configuration Large
Application baby cache stdhash stdtree tiny
Config. –iter 10M –th 3 –iter 10M –cap_rec 10M –th 5 –iter 10M –buck 100K –comp zlib –th 2 –iter 10M –th 2 –iter 5M –buck 30M –th 7
Memory 848.56MB 721.46MB 1.18GB 1.38GB 1.27GB

(b) tkrzw

Table 5.2: Configuration setup and memory consumption for each tkrzw 5.2b,
Phoenix and GCbench 5.2a applications. For GCBench, the parameters are the
array size, the lived tree depth and, the stretch tree. histogram, string-match,
and word-count use datafile as input parameter.

Overhead of x on Tracker. The execution time of Tracker when it imple-
ments x can be computed using Formula 5.1:

E(Ctker) = E(Cx) + E(Cp) + I(Cx, Cp) (5.1)

where E(C) is the execution time of code C (with E(Coracle) = 0), and
I(C1, C2) is the impact of C1 on C2. This impact mainly consists of cache
pollution. We experimentally observed that I(Cx, Cp) is negligible. There-
fore, the overhead of x on Tracker is reduced to E(Cx). Formula 5.1 can be
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developed for each technique as follows:

E(C/proc) = E(Cecho 4 > /proc/PID/clear_refs)

+ E(Cpage table walk in userspace)

E(CUFD) = E(Cioctl write_protect)

+ E(Cioctl register)

+ E(Cioctl write_unprotect)

E(CSPML) = E(Cring buffer copy)

+ E(Creverse mapping)

+ E(Cenable/disable PML)

E(CEPML) = E(Cring buffer copy)

+ E(Cenable/disable PML)

(5.2)

Table 5.4a and Table 5.4b present the measured costs for all events involved
in Formula 5.2.

Overhead of x on Tracked. The execution time of Tracked when it is mon-
itored by a tracker using the technique x can be expressed by Formula 5.3:

E(Ctked_tker) = E(Ctked) + E(Ctker) + I(Cx, Ctked) (5.3)

where I(Cx, Ctked) consists of page faults, vmexits, etc., which are not negligi-
ble. Thus, the overhead of x on Tracked is E(Ctker)+I(Cx, Ctked). Formula 5.4
develops I(Cx, Ctked) for each technique:

I(C/proc, Ctked) = E(CPFH in kernelspace)

+ E(Ccontext switch)

I(CUFD, Ctked) = E(CPFH in userspace)

+ E(Ccontext switch)

I(CSPML, Ctked) = E(Cvmexits)

+N × E(Cvmread/vmwrite)

I(CEPML, Ctked) = N × E(Cvmread/vmwrite)

(5.4)

where N is the number of context switches during PML execution, and PFH
stands for Page Fault Handling.

Validation of the formulas. To validate our formulas, we executed Tracker
and Tracked for each technique, and we collected the following metrics: the ex-
ecution time and the number of occurrences of each event related to the track-
ing technique. Using these values, we compute E(Ctker) and E(Ctked_tker).
Then, we compare the obtained results with real measurements, except for
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EPML. Notice that by validating /proc, ufd, and SPML formulas, we are
also validating, by construction, the formula for EPML. For illustration, Ta-
ble 5.3a and Table 5.3b present results respectively for SPML and /proc when
Tracker is CRIU and Tracked is baby (from the tkrzw benchmark suite). We
can see that Formula 5.2 and Formula 5.4 estimate E(Ctker) and E(Ctked_tker)
with an average accuracy of 96.34% and 99%, respectively. We can then
consider that the formula that estimates the impact of EPML is relevant.

About the estimation of I(CEPML, Ctked), we rely on SPML to obtain N,
the number of context switches required to compute I(CEPML, Ctked). Indeed,
by construction, this number is the same in both SPML and EPML. We
validated this by repeating the previous experiments with EPML and SPML
techniques in the emulated environment provided by BOCHS. We collected N
with a percentage difference of 2%.

Metric Time (ms)
E(Ctker)

measured
5503.79

E(Ctked_tker)

measured
135255.35

E(Cp) 251.35
E(Ccopy_rb) 0.49
E(Cdisable pml) 2.06
E(Crev. mapping) 5419
E(Ctker)

estimated
5672.9

E(Cvmexits) 18000
N 39
E(Cvmread,vmwrite) 1.73× 10−3

E(Ctked_tker)

estimated
136919.85

(a) SPML

Metric Time (ms)
E(Ctker)

measured
1097.99

E(Ctked_tker)

measured
115283.98

E(Cp) 251.35
E(Cclear_refs) 1.409
E(CPTwalk) 0.89
E(Ctker)

estimated
1116.09

E(CPFHkernel) 0.27
E(Ctked_tker)

estimated
114418.58

(b) /proc

Table 5.3: Metrics collected to estimate E(Ctker) and E(Ctked_tker) for techniques
SPML and /proc using Formulas 5.1, 5.2, 5.3, and 5.4.

5.5.3 Basic costs

We present in this section the cost of all internal metrics that allow us to
understand the higher-level performance metrics. The values of these metrics
also tell us about the scalability of each tracking technique. The first column
of Table 5.4a lists the metrics, organized into nine categories. For each metric,
we indicate whether or not its value depends on Tracked memory size (second
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column of Table 5.4a). For metrics that are agnostic to the size of Tracked
memory, their basic costs are presented in the third column of Table 5.4a. For
the other metrics, we report their basic costs in Table 5.4b while varying the
Tracked memory size. We also indicate in column four of Table 5.4a which
tracking methods the metric is associated with.
Table 5.5 summarizes our analysis of the values reported in Table 5.4a and
Table 5.4b:

• /proc: it involves 4 metrics, among which 3 depend on Tracked memory
size. The most costly metric is page table walk in userspace (M16) which
can take up to 594ms. Page fault handling in kernel space (M5) is
the second most costly metric. It can take up to 33ms, which is quite
significant since it may be involved frequently during the monitoring
phase. This is why it dramatically impacts /proc scalability (from both
Tracked and Tracker perspectives).

• ufd: it involves 3 metrics, among which 2 depend on Tracked memory
size. The most costly metric is page fault handling in userspace (M6),
which costs up to 3, 483ms when Tracked memory size is 1GB. This
metric is further involved during the monitoring phase, thus impacting
the scalability of ufd (from both Tracked and Tracker perspectives).

• SPML: it involves 10 metrics, among which 4 depend on Tracked memory
size. The most costly metric is reverse mapping (M17) which takes up
to 15s for 1GB Tracked memory size. This metric will only impact the
scalability of Tracker because it is not involved in the monitoring phase.
Figure 5.3 presents the proportion of time taken by each step of the
collection phase in SPML. We can observe that reverse mapping is the
bottleneck of SPML and represents, on average, more than 68% of the
total collection time.

• EPML: it involves 8 metrics, among which only one depends on Tracked
memory size. The most costly metric is PML initialization (M10) which
also includes VMCS shadowing initialization. It costs about 5, 878ms.
Because this metric does not depend on Tracked memory, it does not
impact the scalability of Tracker. The metrics that impact the scalability
of Tracked are vmread (M7) and vmwrite (M8), whose costs are very low
(less than 1µs). This makes EPML scalable.
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Metric
Depend

Cost (µs) Technique
on mem.

M1. context switch
No 0.315 All

(from user to kernel space)
ioctl syscalls
M2. write_protect Yes - ufd
M3. init. PML No 5, 651 SPML & EPML
M4. deactivate PML No 2, 816 SPML & EPML
page fault handling
M5. in kernel space Yes - /proc, ufd
M6. in userspace Yes - ufd
vmx operations
M7. vmread No 0.936 EPML
M8. vmwrite No 0.801 EPML
hypercalls
M9. init. PML No 5, 495 SPML
M10. + init. VMCS shadowing No 5, 878 EPML
M11. PML deact. No 2, 060 SPML
M12. + VMCS shadowing deact. No 2, 755 EPML
M13. enable PML logging No 0.3 SPML
M14. disable PML logging Yes - SPML
M15. clear_refs Yes - /proc
M16. page table walk

Yes
-

/proc
&

SPML
(in userspace)
M17. reverse mapping Yes - SPML
M18. ring buffer copy Yes - EPML & SPML

(a) Metrics that are agnostic to Tracked memory size. clear_refs is the shortcut for echo
4 > /proc/PID/clear_refs.

1MB 10MB 50MB 100MB 250MB 500MB 1GB
M15 0.032 0.0912 0.174 0.288 0.613 1.153 2.234
M16 1.912 14.479 41.832 82.289 161.973 307.109 594.187
M5 0.003 0.3 1.68 3.34 8.39 16.79 33.58
M6 2.5 27.3 152.3 347.1 882.8 1,585 3,483
M14 0.042 0.047 0.138 0.156 0.189 0.203 0.208
M18 0.003 0.01 0.03 0.048 0.109 0.383 0.671
M17 6.183 24.653 85.117 255.437 1,211 4,123 15,738

(b) Metrics that depend on Tracked memory size. Times are given in milliseconds (ms).

Table 5.4: Cost of internal metrics.
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/proc ufd SPML EPML

associated metrics M1, M5, M15, M16 M1, M2, M5, M6
M1, M3, M4, M9, M11, M1, M3, M4, M7,

M13, M14, M16, M17, M18 M8, M10, M12, M18

metrics depending on Tracked mem. size 3 (M5, M15, M16) 3 (M2, M5, M6) 4 (M14, M16, M17, M18) 1 (M18)
metrics involved in the monitoring phase 1 (M5) 2 (M5, M6) 2 (M13, M14) 2 (M7, M8)
the two most costly metrics M5, M16 M5, M6 M16, M17 M10, M12

metrics which impact scalability
3 (M5, M15, M16) 3 (M2, M5, M6) 4 (M14, M16, M17, M18) 1 (M18)from Tracker point of view

metrics which impact scalability
3 (M5, M15, M16) 2 (M5, M6) 2 (M13, M14) 2 (M7, M8)from Tracked point of view

Table 5.5: Influence of /proc, ufd, SPML and EPML on internal metrics. {Mi} are
defined in Table 5.4a.

5.5.4 Micro-benchmark Results

This section evaluates the impact of each dirty page tracking technique on
a micro-benchmark application. We vary the memory size of Tracked, and
we measure its execution time with and without the tracking technique. Fig-
ure 5.4 plots the slowdown incurred by each technique. We can observe that,
except EPML, the overhead on Tracked increases with its memory size. For
almost all memory sizes, SPML incurs the greatest slowdown, up to 66×. This
high overhead is due to reverse mapping that can take up to 15s for 1GB of
memory (see Figure 5.3). Figure 5.4 reveals that ufd also highly increases
the execution time of Tracked (by up to 15×). When the memory size is less
than 250MB, ufd appears to be the worst technique. This is explained by
the fact that page fault handling in userspace, which is the bottleneck of ufd
technique (see Table 5.4b), is more costly than reverse mapping for a working
set of less than 250MB. The overhead of EPML is negligible regardless of the
memory size of Tracked, confirming its scalability. With a maximum overhead
of about 0.6%, EPML appears to be the best technique.
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5.5.5 Boehm Results

In this section, we evaluate the impact of /proc, SPML, and EPML on Boehm
GC using GCBench and Phoenix macro-benchmarks. We do not evaluate
Boehm using the tkrzw benchmark because the former only works properly
for C applications [2]. We implemented SPML and EPML in Boehm. We
evaluate both the impact on Tracker and Tracked.
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Figure 5.5: Execution time of Boehm GC when implemented with /proc, SPML,
and EPML. The figure highlights the first garbage collection cycle during which
Boehm performs the reverse mapping with SPML, the reason why its execution
time is higher for SPML compared to the two other techniques.

Impact on Tracker (Boehm GC). Figure 5.5 presents the impact of each
technique on Boehm GC. Due to page limitations, we do not present the re-
sults for all applications. Boehm GC can perform from 2 (e.g., for histogram
config. Small) to 23 (e.g., for GCBench config. Large) cycles of garbage collec-
tion depending on the allocation intensity of the workload. Figure 5.5 plots
the garbage collection time during the execution of each application. We
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emphasize the first cycle as it highlights the overhead of SPML on Boehm,
which performs the reverse mapping during this cycle 1. We can observe in
Figure 5.5 that if we ignore the first cycle, SPML outperforms /proc. This
explains why EPML is the best solution, as it avoids reverse mapping (see
Figure 5.3). Nonetheless, SPML outperforms /proc by up to 36% for applica-
tions histogram (configuration Large), word-count (configuration Medium),
and GCBench (configurations Large and Medium). EPML outperforms both
/proc and SPML, respectively, by up to 58% and 47% (with GCBench config.
Medium).

Impact on Tracked. The execution time of applications (Tracked) that use
Boehm GC will be impacted at least by the duration of the GC (see Fig-
ure 5.5). Figure 5.6 assesses the level of this impact according to the technique
that Boehm uses. We can see that compared to /proc, SPML increases the
overhead of Boehm GC on most applications. But for GCBench configuration
Medium, SPML reduces the overhead of Boehm compared to /proc by about
1.7%. About matrix-multiply that runs in 51ms, SPML increases by about
63% the overhead of Boehm compared to /proc . This increase is only 2% for
GCBench configuration Medium, which runs in 6s, and 0.5% for histogram
configuration Large, which runs in 7.3s. EPML significantly reduces the over-
head of Boehm compared to /proc and SPML for all applications by about
62% with the string-match application.
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Figure 5.6: Impact of Boehm GC on Tracked execution time when using /proc,
SPML and EPML techniques. The baseline is the ideal execution time of the appli-
cation, i.e. when not tracked.

5.5.6 CRIU Results

In this section, we evaluate the impact of /proc, SPML, and EPML on CRIU
using macro-benchmarks. For Phoenix applications, we use the Large config-
uration, and we increase the number of map-reduce tasks to make the appli-
cations have long execution times for checkpointing.

1During the following cycles, Boehm just reuses the addresses collected during the first cycle.
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Figure 5.7: Memory write time during CRIU checkpointing.
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Figure 5.8: Execution time of CRIU when implemented with /proc, SPML, and
EPML. The figure MD phase during which CRIU performs the reverse mapping
with SPML.

Impact on Tracker (CRIU). We evaluated each stage of the CRIU check-
pointing algorithm, which includes, among others, the memory write (MW)
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phase and the memory dump (MD) phase. CRIU collects the dirty pages to
be dumped during the MD phase and writes them to the disk during the MW
phase. Depending on the tracking technique implemented by CRIU, these two
phases can be done sequentially or simultaneously. When CRIU implements
the /proc technique, it walks the process page table to get dirty pages and
writes them to the disk as it finds them. While with SPML and EPML, it first
collects all dirty pages from the ring buffer and then writes them to the disk.
This is the reason why SPML and EPML significantly improve the MW phase
compared to /proc, as shown in Figure 5.7. We measured an improvement of
up to 26× with the tiny application, configuration Large. In addition, MW
time is almost constant with SPML and EPML, while with /proc it can take
up to 5.7s.
Figure 5.8 presents the complete checkpointing time, highlighting the MD
phase. When using SPML, CRIU performs reverse mapping during the MD
phase, which drastically increases the checkpointing time. This leads to a
non-negligible overhead, as we can see in Figure 5.8. Indeed, complete check-
pointing is up to 5× slower with SPML compared to /proc for both tkrzw-
baby (configuration Large) and Phoenix-kmeans (configuration Large). Since
reverse mapping represents, on average, more than 66% of MD time with
SPML, avoiding it may lead to better performance compared to /proc. This
is why EPML allows CRIU to execute faster compared to /proc and SPML.
Indeed, EPML brings up to 4× speedup to CRIU checkpointing compared to
/proc and up to 13× speedup compared to SPML, respectively, with tiny
and baby configuration Large (in Figure 5.8).
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Impact on Tracked. Applications are paused during checkpointing. There-
fore, CRIU increases the execution time of the checkpointed application. Fig-
ure 5.9 presents the overhead of CRIU. The default implementation of CRIU
(that uses /proc) can significantly impact the checkpointed application, by
up to ∼102% for the pca application. Concerning SPML, it incurs a higher
overhead on the application execution time compared to /proc. Figure 5.9
shows that this overhead can vary from ∼1% (with kmeans) to ∼114% (with
pca). EPML leads to the best results. Its overhead does not exceed 14%, with
an average of only 3%.

5.5.7 Scalability

In Sections 5.5.5 and 5.5.6, we evaluated the scalability of SPML and EPML
with different working set sizes. In the present section, we vary the number
of tenant VMs from one up to 5. The evaluation scenario is the same as in
the previous sections. We use Boehm and the Phoenix-histogram application
(Config. Large). Results are presented in Fig. 5.10 and 5.11. We can observe
that the performance impact of both SPML and EPML on Tracker (Fig. 5.10)
and Tracked (Fig. 5.11) is the same as what we obtained with one VM (Fig. 5.5
and Fig. 5.6 config. Large). In addition, this performance remains quite
constant when the number of VMs increases.
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5.6 Related work

Nested virtualization. The main source of performance degradation in vir-
tualized environments is VM traps. The latter lead to VM execution sus-
pension and also to cache pollution [109] due to context switches. The num-
ber of VM traps increases at least by a factor of two in nested virtualized
environments [150]. The reduction of VM traps is a hot topic in both non-
nested [95, 78, 109] and nested virtualized systems [114, 150, 116]. Device
passthrough is a simple approach for improving I/O performance in nested
and non-nested virtualized environments by providing direct access to the
VM. However, it dedicates the entire device to a single VM, resulting in sub-
optimal resource utilization. In addition, device passthrough does not permit
VM live migration, which is an important operation for cloud providers as
it is used for maintenance. VMCS shadowing [1], that EPML leverages, has
been introduced by Intel to reduce traps when a nested hypervisor accesses
some VMCS fields. SVT , by Vilanova et al. [150], exploited simultaneous mul-
tithreading (SMT) processors to minimize VM traps. SVT runs every nested
virtualization level on a separate SMT thread, and it replaces VM trap and
VM resume to avoid context switches between nested hypervisors and the host
hypervisor (the one that directly runs atop the hardware). In SVT , only one
SMT thread can run at a given time leading to core waste.

DVH, by Lim et al. [114], proposed that the host hypervisor provides
virtual devices directly to nested VMs without the intervention of intermediate
hypervisors. The intermediate hypervisors only intervene at virtual device
initialization time to make it visible and directly accessible to the nested VM.
The authors illustrated DVH with four devices: virtual IO, virtual timer,
virtual IPI, and virtual idle. Although DVH is promising, its application to
all devices that compose full hardware is unpractical. With OoH, we are
advocating for exposing only hardware virtualization features that could help
applications, which is tractable.

Dirty page tracking. This activity is necessary for both hypervisors and
processes. The hypervisor relies on it to perform pre-copy-based live migration
and also checkpointing. Dirty page monitoring is at the heart of concurrent
garbage collectors and other userspace processes such as CRIU for container
and processes checkpointing or Redis for dumping the database. So far, the
main approach used for monitoring dirty pages is two steps: invalidation of
PTE dirty bit and present bit, and page faults interception. To minimize the
overhead of this approach, some alternatives have been proposed. For the
hypervisor, Intel introduced PML, the hardware feature that we study in the
present chapter. Bitchebe et al. [74] showed that PML could decrease both VM
live migration and checkpointing duration. The authors also extended PML
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to log read pages in order to efficiently estimate VM working set size. In non-
virtualized environments, Lu et al. [119] built a memory allocator which maps
several objects to the same physical page, thus reducing the number of tracked
pages. Nevertheless, this solution does not avoid frequent interruptions of the
tracked process due to page faults.

5.7 Summary

In this chapter, we illustrated the application of OoH with PML for guest
applications. We prototyped OoH for PML following two solutions, namely
Shadow (SPML) and Extended PML (EPML). The former requires no hard-
ware changes but incurs significant performance overhead. It is not the case
of EPML that extends the original PML to avoid SPML limitations. We eval-
uated and compared SPML and EPML with two popular dirty page tracking
techniques, namely /proc and ufd. We implemented OoH for PML using the
Xen hypervisor, Linux OS, and the Bochs emulator. We considered CRIU
and Boehm GC as the use cases, where the target applications are Phoenix
(a shared-memory data processing model) and tkrzw (a key value data pro-
cessing model). The evaluation results showed that the different techniques
could be classified as follows, from the most to the least costly: SPML, ufd,
/proc, and EPML. Indeed, EPML brings up to 13× speedup to systems using
the other techniques, while reducing their overhead on applications by up to
16×.





Chapter 6

OoH for SPP: Efficient Buffer Overflow
Mitigation In Virtualized Clouds

This chapter illustrates OoH with SPP by introducing GuaNary, a novel
security feature to efficiently mitigate write buffer overflows in cloud user ap-
plications. Based on this novel feature, we propose a seure memory allocator
that offers better security guarantees and memory consumption than the state-
of-the-art.
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6.1 Introduction

For decades, the widespread usage of memory-unsafe languages like C and
C++ raised the threat of security-related memory corruption errors [148].
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These are still ongoing issues today: Google developers recently revealed that
70% of Google Chrome’s bugs are related to memory management [50]. Mi-
crosoft also made a similar observation [47]. Memory errors such as buffer
overflows may represent vulnerabilities that attackers can exploit to execute
malicious code, tamper with, and/or leak critical data. This chapter focuses
on buffer overflow, ranked the top vulnerability in 2022 by SANS Institute [51]
(see § 6.2.1).

Over the last few years, the occurrence of heap-related vulnerabilities has
drastically increased [144, 145, 118]. In response, secure heap memory allo-
cators [144, 118, 145, 134, 124, 89, 161, 57] have been proposed to protect
against such vulnerabilities. Allocators targetting buffer overflow mitigation
need to answer an important question: How to detect and prevent an overflow?
Two common techniques have been studied to answer this question: canaries
and guard pages [124] (we call them guardians hereafter). Canaries are small
1-byte magic values, located after a buffer and checked to detect overflow.
They have a modest memory overhead but can only detect overflows asyn-
chronously, i.e., when the value is checked. Guard pages are unmapped pages
in the virtual address space, located after a buffer. Overflowing the buffer will
trigger a fault if the page is hit. Guard pages offer better security guarantees
vs. canaries, as they prevent overflows through synchronous detection but at
the cost of significant memory consumption. We measured up to 80× mem-
ory overhead for the PARSEC-freqmine application (see § 6.2.3) with guard
pages.

Only a few allocators (or even improvements of existing allocators) have
been developed with the primary goal of reducing the memory overhead
while preserving other important properties such as security and performance.
Some allocators, such as OpenBSD [124], Cling [57], and DieHarder [134], at-
tempted to reduce the memory footprint of linked list-based metadata by
using bitmaps. However, they lead to significant performance degradation
when the allocator performs randomization, which is a popular security guar-
antee technique. Hardware solutions have also been introduced to address
buffer overflow. We can underline CHERI [159], which doubles pointer size to
include the bounds to the pointed buffer. This way, the hardware can check
bounds violations. Such hardware solutions overcome buffer overflow. How-
ever, they include several limitations that we detailed in § 6.6, mainly related
to performance degradation and unpredictability, and the need to rewrite ap-
plications (which limits their adoption). Intel MPX [135] suffers from the
same limitations that have led to their obsolescence.

In this chapter, we introduce GuaNary, a novel type of guardian for virtu-
alized cloud-based applications. Nowadays, virtualized clouds are the de facto
execution environment of modern applications, thanks to their very attractive
costs and administration tasks simplification. GuaNary provides the same
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security guarantee as guard pages against write overflows while drastically
reducing memory overhead and with negligible performance overhead. Gua-
Nary leverages a recent Intel hardware virtualization feature called Sub-Page
Write Permission [32] (hereafter SPP). SPP reduces write-protection granu-
larity to 128B (called a sub-page) instead of 4KB. Intel SPP was initially
introduced to help hypervisors accelerate virtual machine’s (VM) live migra-
tion/checkpointing. In this chapter, we repurpose SPP for security and make
it exploitable by unprivileged VMs without breaking isolation between them.

The design of GuaNary is not as straightforward as it might seem and
raises two conceptual and two technical challenges that we present in § 6.3.1:
(C1, Conceptual) Costly hypercalls: for isolation purposes, SPP is only con-
figured by the hypervisor whereas for our work it is requested by the guest
operating system (OS). (C2, Technical) Page heterogeneity: the guest kernel
should now be able to manage non-SPP and SPP pages. (C3, Technical) SPP
bitmap heterogeneity: SPP pages need to offer different protection layouts
and densities to cope with allocation requests of various sizes. (C4, Concep-
tual) Coexistence with the hypervisor’s needs: a system using SPP should
make sure not to interfere with the original needs of the hypervisor. We ad-
dress these challenges in LeanGuard, a system that leverages GuaNary
to provide the user with a memory-efficient secure heap allocation. We build
LeanGuard by modestly extending the Xen [61] hypervisor, the Linux ker-
nel, and the SlimGuard [118] secure allocator. We thoroughly evaluated
LeanGuard using both micro- and macro-benchmarks (PARSEC applica-
tions [69]). The results show that GuaNary (via LeanGuard), with the
same memory consumption, can protect 25× more buffers compared to Slim-
Guard. Inversely, to protect the same amount of buffer as SlimGuard,
GuaNary requires about 8.3× less memory.
In summary, in this chapter, we make the following contributions:

• We introduce GuaNary, a novel guardian type that repurposes Intel
SPP for buffer overflow detection on the heap.

• We design LeanGuard, a system that exemplifies GuaNary in popu-
lar system software stacks.

• We evaluate LeanGuard using micro- and macro-benchmarks, demon-
strating its benefits.

6.2 Background and Motivations

This section provides the necessary background and the motivations of Gua-
Nary.
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6.2.1 Buffer Overflow Importance

According to SANS Institute’s report [51], buffer overflow is the top vul-
nerability in 2022. A buffer overflow occurs when a program reads/writes
over/under the boundaries of a buffer. This programming error is common in
unsafe languages such as C/C++. It makes the application vulnerable to sev-
eral issues, such as crashes, information leakage, denial-of-service, malicious
code injection, privilege escalation, etc. This vulnerability concerns all appli-
cation types, including popular ones. For instance, in January 2021, a severe
heap-related buffer overflow vulnerability (CVE-2021-31561) was discovered in
sudo (versions before 1.9.5p2), a very popular Linux tool for managing root
privileges. That bug, introduced in 2011, could be exploited to elevate root
privileges even for users who are not listed in the sudoers file.

An overflow can happen in the stack as well as the heap. Liu et al. [118]
reported that the number of heap-related vulnerabilities has tripled from 2010
to 2018 to more than 600. Our own analysis found that more than 63% of
2021’s overflow vulnerabilities were heap-related. GuaNary focuses on write
overflow in the heap because it is the most dangerous. Contrary to a read
overflow, an attacker can exploit a write overflow vulnerability to inject arbi-
trary code into a system (by writing to the memory adjacent to the vulnerable
buffer).

6.2.2 Secure Allocators

Fundamentally, a heap allocator implements memory allocation functions such
as malloc and free and is linked with the application at compilation or run
time. At application boot time, the heap allocator initializes its own data
structures and one or several virtual memory segments using brk/sbrk or
mmap syscalls. When the process calls malloc, the allocator selects a free
area from a heap segment, adapts its metadata accordingly, and returns the
address of the chosen area to the process. The first access, by the process,
to the virtual page containing that area, will generate a page fault that will
trap inside the kernel. The page fault handler will allocate and associate a
physical page with that virtual faulting page. When the process frees the
area by calling free, the allocator updates its metadata accordingly. If the
allocator ends up with too many free segments, it can consider releasing some
of them to the kernel.

A secure allocator (hereafter allocator) interposes in this flow by trying to
answer three main questions: How to organize objects (freed, available, and
metadata)? How to increase security? How to detect overflows when they
occur?

1https://nvd.nist.gov/vuln/detail/CVE-2021-3156
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Objects Organization. Although seeking greater security guarantees, allo-
cators strive to be efficient in terms of memory overhead and allocation latency.
BIBOP-style (Big Bag of Pages) has proven to meet these requirements thanks
to its massive adoption in recent secure allocators such as OpenBSD [19],
DieHarder [134], FreeGuard [144], Guarder [145], and Slimguard [118]. It in-
cludes the following object management features.

Allocated and freed objects: BIBOP-style allocators group objects ac-
cording to their sizes. Objects of the same size class are allocated within
the same virtual memory segment (corresponding to a VMA in the kernel),
treated as "bags". This organization not only accelerates heap object allo-
cations but also reduces internal memory fragmentation. Freed objects are
maintained separately, using either lists or bitmaps.

Meta-data: BIBOP allocators store metadata (e.g., location and avail-
ability information, size, etc.) of allocated objects in a separate area. Isolating
such information from the objects enhances security as it prevents metadata-
based attacks such as FastBin [7], Unlink [26], and Chunk Overlap [3].

Security Increase. To further strengthen security, allocators employ mech-
anisms to confuse intruders who might like to infer allocations to carry out
attacks.

Randomization: It provides unpredictability of allocated objects’ loca-
tions to protect against use-after-free and related vulnerabilities. By offering
the memory allocator a non-deterministic workflow, randomization can pre-
vent malicious codes from foreseeing a heap address to settle and launch a
subsequent attack.

Over-provisioning: It consists of allocating memory slots so that some
heap objects will never be used. This increases randomization.

Overflow Detection. Existing allocators mainly use two types of guardians
that they place at the boundary of buffers to detect an overflow, as drawn in
Fig. 6.1.

Guard Page 
(unmapped)

Guard Page 
(unmapped) C

GN

C C

GN GN

Canary

Buffer

Waste Guanary 
(sub-page)

Figure 6.1: Canary, Guard pages, and GuaNary illustration. For the two latter,
buffers are aligned with the lower boundary of the (sub)page.
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Canaries: A canary is a known value (e.g., one-byte size) placed at the
boundary of an allocated buffer. Its value is generally randomly generated by
the allocator. A simple check on buffer free allows the allocator to detect if an
overflow happened. As one can see, canary-based detection can only detect
an overflow asynchronously, leaving the attacker time to perform an exploit.
However, its advantage is its low memory footprint overhead.

Guard pages: A guard page is an unmapped or read- and write-protected
memory page placed at the boundary of the buffer. This way, an overflow will
synchronously trigger a page fault (#PF). However, guard pages lead to sig-
nificant internal memory fragmentation as the residual memory of the page
which holds the allocated buffer is wasted. In fact, all buffers should be placed
at the boundary of a guard page in order to be protected.

Hardware Capabilities: R. Watson et al. [159] released CHERI (Capa-
bility Hardware Enhanced RISC Instructions), an extension of conventional
hardware Instruction-Set Architectures (ISAs) with capabilities. In CHERI,
each pointer includes the pointed buffer’s memory bounds. Its dereference
is controlled by the hardware, which can synchronously detect an overflow.
Recently, the authors of CHERI have prototyped complete software stacks by
adapting Clang/LLVM and FreeBSD. CHERI allows synchronous detection
with low memory consumption (depending on the number of manipulated
buffers). However, to be compatible with CHERI, applications need to be
re-written, with respect to their idiomatic use of C (see Section 4 of [156]).
For example, the CHERI team made a lot of effort to port the popular SPEC
benchmark suite with moderate success: "Even though some of the bench-
marks could be compiled, it required extensive build system modifications to
use the CHERI clang compiler. Unfortunately, the CHERI clang compiler
cannot compile the C++ benchmarks." in [98]. A second limitation of CHERI
is its significant performance overhead for applications that heavily manipu-
late pointers [98]. We present other limitations in § 6.6.

In the present chapter, we focus on guard page and canary, the two
guardian types that work with legacy applications (an important property
for quick adoption) and incur acceptable performance overhead.

6.2.3 Synchronous Detection vs Memory Overhead: The Dilemma

An overflow vulnerability is exploitable only if a guardian cannot synchronously
detect it. Guard pages are, so far, the guardian type providing synchronous
detection. Let us consider buf a vulnerable buffer. We define the security dis-
tance of buf as the number of bytes that separate it from a guard page. A zero
security distance allows to immediately catch overflow attempts. The protec-
tion of all application buffers with a zero security distance is not practical for
most existing allocators, as it would result in considerable memory overhead.
Let us imagine that we want to protect all buffers allocated by an application,
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i.e., using a guard page for every buffer returned by malloc. Fig. 6.2 shows
for PARSEC applications [69] what would be the memory overhead induced
by such a policy when SlimGuard [118] is used as the allocator. The over-
head is normalized to the application’s actual amount of memory effectively
consumed by the buffers. For example, to protect all blackscholes’ buffers
with a security distance of zero, SlimGuard would consume about 75.8×
memory.
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To cope with this problem, allocator designers use to combine guard pages
with canaries and allow users to configure the security distance they desire
(implicitly the memory waste they accept) according to their performance or
memory budget. A protection frequency N places a guard page for every N
allocated buffers in each class, and canaries are used between buffers that
are not at the boundary of a guard page. Fig. 6.3 presents, for different
protection frequency values, the memory overhead, and the security distance
for the PARSEC-blackscholes application. As one might have imagined, the
lower the frequency, the more memory waste and better the protection.

This situation is a real conundrum for users who thereby have to sacrifice
security for better memory utilization or vice versa. The objective of Gua-
Nary is to reduce this pressure. Given a memory budget, GuaNary provides
more security than existing solutions. To this end, GuaNary leverages Intel
Sub-Page write Permission (SPP), a hardware virtualization feature. Conse-
quently, the scope of GuaNary is virtualized clouds, which is the de facto
execution environment nowadays according to its attractive costs.

6.3 GuaNary

We introduce GuaNary, a novel type of safety guard that is midway between
Guard page and caNary (see Fig. 6.1), thus including the advantages of both
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solutions: synchronous buffer overflow detection and low memory consump-
tion. GuaNary is comparable to guard pages as it uses a sub-page as a
guardian to detect overflows synchronously. It is similar to a canary in that
it resides in the RAM and the memory space it occupies can hold allocated
buffers, thus GuaNary consumes physical memory. However, its value does
not matter, unlike canary.

Because an SPP sub-page is 128 bytes, one can guess GuaNary con-
sumes more physical memory than a canary. Nonetheless, as we can observe
in Fig. 6.4, this is not the case (note that we are talking here about the
consumption of the guardian itself and not the memory overhead induced by
the latter). To plot Fig. 6.4, we run the PARSEC-blackscholes application
and track the number of distinct SPP pages used by the kernel allocator (see
§6.3.4 below) for different protection frequencies F. Using the SPP bitmap of
these pages, we compute the memory size of the protected sub-pages. The
protection frequency in Fig. 6.4 concerns only GuaNary because when the
allocator uses canaries, it necessarily places them for each buffer (i.e., the
protection frequency with canaries is always 1). Unlike canaries for which the
memory usage remains constant, the memory usage of GuaNaries decreases
inversely with F. This is because, as §6.3.5 explains, the kernel allocator can
re-use the same SPP page for different allocations.
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Figure 6.4: Physical memory consumption of GuaNary compared to canary for
PARSEC-blackscholes.

Our second contribution in this chapter is LeanGuard, a complete soft-
ware stack that uses GuaNary to mitigate buffer overflows in virtualized
clouds. LeanGuard includes the hypervisor (Xen), the guest kernel (Linux),
and the memory allocator (SlimGuard). The following section exposes the
challenges related to the design of LeanGuard.

6.3.1 Challenges

We identify four main challenges, two of which are conceptual and the other
two technical.
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(C1, Conceptual) Costly hypercalls. Conceptually, Intel SPP can only
be controlled by the hypervisor, whereas the heap allocator runs inside the
guest VM in the userspace. A naive implementation invoking the hypervisor
(using hypercalls) untimely each time an SPP page is requested (on page fault,
hereafter #PF) will dramatically degrade application performance as hyper-
calls are very costly. The cost of an empty hypercall is about 587 nanoseconds,
while the cost of an empty syscall is about 392 nanoseconds on average. The
challenge is to use GuaNary with almost the same performance level as
existing secure heap allocators. SlimGuard vanilla is our baseline.

To address this challenge, LeanGuard implements two optimizations.
First, it groups pages into pools to issue a single SPP configuration hypercall
per pool. We call an SPP page a page configured to be tracked by the pro-
cessor using Intel SPP. Second, we manage to provide the guest kernel ahead
with a pool of pre-configured SPP pages.

(C2, Technical) Page heterogeneity. A kernel that uses GuaNary
must deal with two kinds of memory pages: SPP pages and non-SPP pages
(hereafter, normal pages). Technically, this heterogeneity complexifies two
kernel subsystems: the memory allocator (e.g., buddy allocator in Linux) and
the memory reclaimer (e.g., kswapd in Linux). Regarding the former, an SPP
page can only be allocated to a process that uses our secure allocator, and
the allocator should provide other processes with normal pages. In addition,
allocations to secure processes should not delay or overlap with allocations
to other processes. Concerning the memory reclaim subsystem, reclaiming
an SPP page is much more complex than reclaiming a normal page. So,
while integrating GuaNary, we must build an efficient algorithm to optimize
performance.

We address this challenge by organizing the kernel’s memory allocation
subsystem into two cooperative components: one managing normal pages and
the other dedicated to SPP pages.

(C3, Technical) SPP bitmap heterogeneity. If the user configures the
protection frequency to be F = 1, for example, he expects all the buffers of
its application to be placed at the boundary of a guardian. Let us consider
buffers with sizes s < 128B (i.e., they can fit in an SPP sub-page). For such
buffers, the SPP bitmap used for allocation looks like this: 1010...1010... (we
only show even bits that the processor interprets), and the corresponding SPP
pages in their VMA all have the same bitmap as in Fig. 6.5.

If, on the other hand, 128B < s < 256B (i.e., the allocator needs at
least two SPP sub-pages for each buffer), the bitmap of the first page in the
corresponding VMA looks instead like this: 110110...110110.... Contrary
to the previous case, if two #PFs are triggered on two consecutive pages in
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guanaryallocated buffer

2 4 32

PG1 PG2

2 4 32

Figure 6.5: Bitmaps of SPP pages for a protection frequency F = 1 and classes
whose size is < 128B. 1 sub-page out of 2 is protected: all pages (PGi) have the
same bitmap in the VMA.

this VMA, the allocator cannot use the same page’s configuration to handle
them. Otherwise, the VMA will look like this: 110110...011110110...011.
If we observe the bits in red, we remark that this bitmap no longer suits the
protection frequency F defined by the user since there are two consecutive
buffers that are not protected (remind that a buffer size requires two sub-
pages). A VMA that respects the frequency asked by the user in this scenario
would rather look like in Fig. 6.6: here then arises the problem of SPP bitmap
heterogeneity inside a VMA.

guanaryallocated buffer

3 6 30 1 4 31

PG1 PG2

Figure 6.6: Bitmaps of SPP pages for a protection frequency F = 1 and classes
whose size is > 128B and < 256. 1 sub-page out of 3 is protected: pages (PGi)
have different bitmaps along the VMA.

Why is this considered a technical challenge? For the simple reason that it
complexifies both #PF handling and memory reclaim for SPP pages. Indeed,
in such cases, the allocator cannot merely apply the same bitmap to all the
pages of the VMA, nor can it allocate/configure pages for each bitmap while
serving each #PF. Because this will obviously drastically affects performance.
Moreover, unlike unused normal pages that the kernel’s buddy allocator can
return to serve a #PF regardless of how they were previously allocated, an
SPP page can only serve faulted pages following the same pattern. We address
this challenge by implementing an O(1) algorithm (presented in §6.3.5) that
allows the kernel allocator to quickly determine for any faulted virtual address
what is the corresponding SPP bitmap.

(C4, Conceptual) Coexistence with the hypervisor’s needs. As stated
in the introduction, SPP can be used by the hypervisor for accelerating VM
management tasks such as live migration and checkpointing. By allowing the
guest OS to manipulate SPP, GuaNary may interfere with the hypervisor’s
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needs. Furthermore, the hypervisor conceptually works at the granularity of
the whole VM, while LeanGuard only monitors some pages of the guest.
Finally, the hypervisor is the first level called on SPP violation. According to
these constraints, the challenge arises upon SPP violation: how does the hy-
pervisor’s handler efficiently determine which level is concerned by the fault?

To answer this question, we propose to reuse some reserved bits in the
architecture and make a plausible assumption about fault handling.

6.3.2 Overview

LEGACY APPLICATION

Class X, GP Class Y, GN
LEANGUARD-sha

F

VMA VMA SPP 
            F,Y

Native-buddy LEANGUARD-buddy

20 2n P1 Pm

kswapd

LRU-inact
LRU-activ

LEANGUARD-Clean

LRU-Pi
LRU-used

Hypervisor

EPT SPPT

PF PF

2 4

1

6.a

mem_release

SPP enable

6.b

SPP  
disable

6.c

3 5

0

Figure 6.7: Architecture of LeanGuard.

Fig. 6.7 depicts the architecture of LeanGuard. The user links its legacy
application (e.g., LD_PRELOAD) with our secure heap allocator (noted Lean-
Guard-sha) that uses GuaNaries and guard pages. At class initialization
time 0 , LeanGuard-sha tags the allocated VMAs as SPP (§ 6.3.3 details
LeanGuard-sha). We extend the guest kernel with an SPP-aware buddy
allocator (LeanGuard-buddy). On page fault 1 , LeanGuard-buddy is in
charge of handling 5 #PFs which involves SPP-tagged VMAs. To avoid SPP
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configuration (due to hypercalls 4 ) in the critical path, LeanGuard-buddy
maintains a pool of pre-configured SPP pages acquired 2 - 3 from the native
kernel allocator (noted Native-buddy). § 6.3.4 details LeanGuard-buddy.

The pages held by LeanGuard-buddy are not inserted into the Native-
buddy’s active/inactive LRU lists, thus preventing SPP pages from being
reclaimed by the traditional kernel’s reclaimer sub-component (kswapd in
Linux). Instead, we build a custom SPP page reclaim 6 component called
LeanGuard-cleaner (presented in § 6.3.5).

We optimize the SPP configuration algorithm in the hypervisor by reducing
the number of EPT and SPP page table walks (see 6.3.6 for details).

6.3.3 Secure Heap Allocator (LeanGuard-sha)

LeanGuard-sha aims to propose a compromise between security and mem-
ory consumption. Its allocation policy includes two parameters: G, the type of
guardian, and F, the protection frequency. G is defined by LeanGuard-sha
that optimally sets G = guard page for classes whose size is a multiple of
4KB (a page size) and G = GuaNary for the others. F is defined by the
user and configured at LeanGuard-sha compilation time. Contrary to G,
an optimal value of F depends on the application and is empirically obtained
by a calibration campaign (see Section 6.5.2). The latter consists of vary-
ing F, e.g., from 1 to 50, measuring the induced memory consumption and
the security distance, and plotting for the application the memory overhead
and the security distance as a function of F . The intersection between the
memory and the security curves in the latter plot gives the optimal frequency
for the given application. For example, in Fig. 6.3, the optimal frequency for
PARSEC-blackscholes will be 16. We perform this calibration campaign
and provide optimal F for all PARSEC applications in Section 6.5.2.

We introduce two new flags for the mmap and madvice syscalls that the al-
locator uses to tag a VMA as SPP. When malloc involves a class for the very
first time, LeanGuard-sha performs mmap(SPP,...) to allocate a large vir-
tual memory for that class, leading to the creation of a VMA (by the kernel).
Note that this is the standard functioning of a heap allocator. We merely
modify the mmap call. The SPP flag indicates to the kernel not to merge the
newly allocated VMA with other ones that use normal pages. After this,
LeanGuard-sha configures the VMA using madvice by indicating its fre-
quency F to the kernel. LeanGuard-buddy will further use this information
to compute the SPP bitmap that addresses the #PF (see below).

6.3.4 SPP Page Allocator (LeanGuard-buddy)

LeanGuard-buddy maintains a distinct pool Pm of free and pre-configured
SPP pages for each SPP bitmap m. As explained earlier in challenge C3, m is
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the bitmap indicating which sub-page is write-protected. Our prototype has
a total of 202 pools (Pmi

)i={1..202}. Let us recall that depending on F , pages
of a VMA may have different patterns (Fig. 6.6).

We note Nmax, the maximum size of each pool. We empirically observed
that 512 is a good value for Nmax (see § 6.5.3). Each pool is populated during
the very first #PF, and every time its size goes under a pre-defined threshold
(see below). The pooling mechanism allows LeanGuard-buddy to directly
serve configured SPP pages on the following #PFs, thus, avoiding performing
multiple hypercalls that would drastically slow down this critical path.

Upon a #PF in an SPP VMA, the challenge for LeanGuard-buddy is to
decide which pool to draw the page from, i.e., which SPP protection pattern
mi should be used to serve that fault. The correct pattern for the faulting
virtual page depends on the protection frequency F and the class’ size (both
defined by LeanGuard-sha at VMA initialization using madvice -see §6.3.3-
), and the position/offset of the page within its VMA. LeanGuard-buddy
determines mi using a three-steps algorithm. Firstly, LeanGuard-buddy
calculates the total number of distinct patterns associated with the VMA
using the following formula 6.1:

#patterns_vma =
least_common_multiple(32, F )

32
(6.1)

where 32 is the maximum number of sub-pages in an SPP page. Secondly,
LeanGuard-buddy determines the index/position of the faulting virtual
page within the VMA. If va_fault is the faulting address and va_start the
start address of the VMA, this index is determined as follows:

index =
(va_fault− va_start)

4KB
(6.2)

with 4KB being the page size. Finally, LeanGuard-buddy can determine
the appropriate mi for va_fault using this formula 6.3:

mi = index % #patterns_vma (6.3)

LeanGuard-buddy can then handle the #PF by returning a free SPP page
from pool Pmi

.
At the same time, if LeanGuard-buddy notices that the target pool

size is below a pre-defined threshold Nmin (the default value is 100 in our
prototype), LeanGuard-buddy fills it back to Nmax by requesting new pages
from Native-buddy.

LeanGuard-buddy maintains a list of LRU pools which it updates at the
end of each SPP page allocation request. This list is used by LeanGuard-
cleaner when it needs to reclaim SPP pages at the request of kswapd (e.g., in
case of memory pressure).
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6.3.5 SPP Page Release And Reclaim (LeanGuard-cleaner)

LeanGuard-cleaner has two responsibilities: handling SPP page release on
process termination and returning SPP pages to Native-buddy on memory
pressure.

SPP page release. When a process ends, LeanGuard-cleaner reinserts its
SPP pages into the corresponding pools. When the pool size goes up to
a configurable threshold Nlimit (1024 is the default value in our prototype),
LeanGuard-cleaner returns the surplus (Nlimit − Nmax) to Native-buddy.
At the same time, for all other pools, it also returns (Ncur − Nmax) pages
to Native-buddy, where Ncur is the number of pages currently held by the
pool. Notice that LeanGuard-cleaner disables SPP on released pages before
returning them to Native-buddy. This is done by batching hypercalls for
optimal performance.

SPP page reclaim. LeanGuard-cleaner does not replace the native ker-
nel’s memory reclaim sub-component (e.g., kswapd in Linux). If necessary,
the latter may instead request more pages from LeanGuard-cleaner on mem-
ory pressure. In this case, LeanGuard-cleaner would first return free pages
from the SPP pools regarding the pools’ LRU list it maintains. If the number
of requested pages is still not satisfied, LeanGuard-cleaner reclaims SPP
pages in use from LeanGuard-sha (the application level), relying on a sec-
ond LRU list maintained by LeanGuard-buddy for in-use SPP pages. We
consider in our prototype that all SPP pages in use are active. Thus, we leave
the implementation of effective active/inactive LRU SPP page lists for future
work.

LeanGuard-cleaner must swap out SPP pages in use before returning
them to Native-buddy, which does not require special precautions. In con-
trast, unlike the classical swap-in implementation that needs a single memory
copy operation, the swap-in of an SPP page requires copying data from the
swap space to the SPP page at the rate of sub-pages, since some portions of the
physical page may be write-protected (according to its SPP bitmap). There-
fore, the swap-in of an SPP page is much more costly than a normal page, and
the kernel’s memory reclaimer should prioritize swapping out normal pages
when possible.

6.3.6 Hypervisor Extension

LeanGuard extends the hypervisor for two purposes: SPP page configura-
tion and SPP table violation handling and coexistence with the hypervisor.
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SPP page configuration optimization. LeanGuard extends the hypervi-
sor for two purposes: SPP page configuration, SPP table violation handling,
and coexistence with the hypervisor.

SPP page configuration optimization We extend the hypervisor to opti-
mally configure SPP for a group of contiguous pages. This optimization con-
cerns SPP activation and deactivation. First, we introduce a new hypercall
type for each operation. These hypercalls take as input a range of memory
pages and their protection bitmaps (for the activation operation). This avoids
performing a per-page hypercall. Second, we reduce the number of EPT and
SPP table (SPPT) walks performed by the hypervisor during the SPP bitmap
configuration. Originally, the hypervisor realizes this operation at the rate of
one page. Thus, it performs (2×N) EPT+SPPT walks to configure N pages.
Given that LeanGuard-buddy requests a contiguous range of pages from
Native-buddy, we instead implement a single EPT+SPPT walk per group of
pages that share the same EPT leaf, considerably reducing the configuration
time (see §6.5.3).

SPP table violation handling and coexistence with the hypervisor We
propose a two-phase solution. When the hypervisor wants to use SPP for
a VM, it sets a flag in the VM control structure (VMCS). When the VM,
via LeanGuard, requests an SPP page configuration, we set the 2nd odd
bit of its SPP bitmap (odd bits are currently unused by the hardware, see
Section 2.3) to indicate that the VM is interested in monitoring this page.
When an SPP violation occurs, there is a VMExit, and the handler provided
by the hypervisor takes over. We assume the processor places the SPP bitmap
at the origin of the fault in a register or the VMCS. The handler checks the
SPP activation flag in the VMCS. If the latter is set, the hypervisor uses the
faulted address for its own needs. Before resuming the VM, the handler also
checks the 2nd odd bit in the SPP bitmap. If set (meaning that the process
running inside the VM is trying to overflow), the hypervisor injects the fault
into the guest, and a handler in the guest OS kills the faulted process. Other
more elaborate actions can be considered.

6.4 Implementation

We implemented our prototype in Xen 4.10 (the hypervisor, 660LOC addi-
tion), Linux 5.11.14 (the guest OS, 750LOC addition), and SlimGuard (the
baseline secure heap allocator, 100LOC addition). We use the latter to pro-
vide LeanGuard-sha for four main reasons: (1) It is the up-to-date secure
heap allocator, published in 2019. (2) Its authors experimentally compared
it to other state-of-the-art secure allocators, such as Guarder and FreeGuard,
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and have proven more efficient (in terms of memory consumption and security
guarantees) than those allocators. (3) It implements both guard pages and
canaries. (4) Last, but not least, its code is available and functional.

To provide LeanGuard-sha, we extend SlimGuard in two ways. First,
we changed the interpretation of the protection frequency that guides guard
page placement within classes (VMAs). In its original version, SlimGuard’s
protection frequency answers this question: After how many allocatable pages
should we place a guard page? This can also be interpreted as the proportion
P of guard pages in the VMA. We updated this policy to answer the following
question: After how many buffer allocation requests F, within the class, should
we place a (sub)guard page? The latter question is more comprehensive to
the user because it tells the proportion of allocated buffers that will precisely
reside at the boundary of a guardian (i.e., security distance equals 0B). In
fact, with the first question, the user is supposed to be VMA-friendly, which
is not always true.

Fig. 6.8 displays the CDF of the security distances for the two policies while
varying P and F. Fig. 6.8 right confirms that our policy efficiently expresses
the proportion of protected buffers (1/F ). For illustration, with F=2 at least
50% of allocated buffers have a security distance of 0B. On the other hand,
from Fig. 6.8 left, we can see that for P=50% no buffer has a security distance
of 0B, demonstrating the weak expressiveness of this parameter from the user
perspective. In the remaining, we only apply our custom policy.
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Figure 6.8: CDF of the security distances when the placement policy of guard pages
is related to the number of allocatable pages (left) or malloc() calls (right).

6.5 Evaluations

Our experiments hinge on three main axes: Memory consumption and Secu-
rity (6.5.2) and Performance (including scalability) (6.5.3). We only compare
LeanGuard with SlimGuard because it has already proven more efficient
than recent state-of-the-art secure allocators. All reported results in this sec-
tion are a mean of 5 runs.
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6.5.1 Experimental Environment

Setup For our experiments, we use virtual machines (VM) running Ubuntu
18.04 LTS under an Intel 8-Core i7-8565U CPU at 1.80GHz with 15GB RAM.
Otherwise indicated, each VM is configured with 8GB of memory and four
vCPUs pinned to four dedicated cores to avoid interference.

Benchmarks We use both micro- and macro-benchmarks. The former con-
sists of two applications: one with a 1GB working set size that randomly
allocates buffers from all SlimGuard classes and the other that deliberately
generates overflows. In addition to this micro-bench, we write a simple pro-
gram that addresses the entire VM memory at boot time to force EPT con-
struction so that this cost does not affect performance evaluation results.
Macro-benchmarks are composed of PARSEC [69] applications. Because of
build or compilation errors with some applications (due to either the GCC or
the kernel version), we use 9 out of 13 applications from the PARSEC suite:
blackscholes, bodytrack, dedup, fluidanimate, freqmine, raytrace,
streamcluster, swaptions, and x264. These applications are the same ones
used by SlimGuard’s authors.

6.5.2 Memory Consumption

Methodology Intel initially announced, in 2019, the release of SPP with
Ice-lake Xeon processors. Due to the COVID’19 pandemic, Intel delayed the
release to the second semester of 2020 [49, 33]. Yet, till today and to the
best of our knowledge, there is still no SPP-capable processor. Therefore,
we use two emulation environments to test and evaluate our prototype. The
first one is BOCHS, which version 2.6.11 emulates Intel SPP. We implement
the second one inside the hypervisor by leveraging the Intel CPU’s single-step
feature present on existing processors. This second emulation environment
aims to make the hypervisor mimic the functioning of the processor when
SPP is supported.

On our non-SPP-capable machine, if the processor tries executing a write-
instruction upon a #PF for an SPP page, because the bit write is unset
(see Section 2.3), it will trigger a VMEXIT even if the bit SPP is set since it
does not know how to interpret the latter. It is then up to the hypervisor to
handle the exit and execute our algorithm, which is as follows. The hypervisor
walks the EPT to check if it is an SPP fault (i.e., bit SPP in the EPT leaf is
set) and calls the SPP violation handler if applicable. This handler further
walks the SPPT to check wether the write-access is granted (using the bitmap
in the SPPT leaf) for the sub-page targetted by the #PF. If the sub-page
is not write-accessible, the hypervisor injects a general protection exception
into the guest: this is interpreted as a buffer overflow by the guest kernel
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that simply terminates the faulted process. Else, if the sub-page is write-
accessible, the hypervisor performs four actions: (1) sets the write flag of
the EPT entry to authorize the faulted instruction, (2) sets the Trap Flag
(TF) in the EFLAGS register to put the CPU in single-step mode, (3) flushes
the TLB, (4) and resumes the VM. When the VM resumes, the processor will
successfully execute the faulted memory store instruction (since the hypervisor
has reset the write flag). Because the processor is in single-stepping mode, it
will immediately trap into the guest kernel at the end of the instruction. The
handler of that fault (in the guest kernel) will perform a hypercall instructing
the hypervisor to write-protect back the page (so that next accesses to this
SPP page can be trapped) and disable single-stepping.

As one might guess, these emulation environments will negatively affect
performance. They are therefore used only for LeanGuard assessment and
memory consumption evaluation. §6.5.3 presents the methodology for perfor-
mance overhead evaluation.

To validate the effectiveness of hypervisor emulation, we write a micro-
benchmark that intentionally performs a buffer overflow and run it under
LeanGuard with a protection frequency F=1 so that all allocated buffers are
placed at the boundary of a sub-page. The simplified code of this microbench,
shown in Listing 6.1, only allocates buffers with sizes that are not multiple of
4KB to impose the use of GuaNary exclusively. After some iterations, the
application tries overflowing the last allocated buffer by one byte, and for each
run, this resulted in a segfault that immediately terminated the application,
validating the effectiveness of our emulation.
1 ...
2 #define ITER //number of allocations before overflowing
3

4 unsigned int slimguard_classes[n];
5 void init_slim_cls(void)
6 {
7 //fill in the slimguard_classes array with all the Slimguard classes that are not 4KB−multiple
8 ...
9 }

10

11 unsigned int _random_func(void) {...}
12

13 void main(void)
14 {
15 unsigned long ∗tmp, size, length;
16 unsigned short random;
17 int flag = 0;
18

19 init_slim_cls();
20 /∗while we have not allocated ITER buffers∗/
21 do
22 {
23 /∗pick a random class∗/
24 random = _random_func() % n;
25 /∗retrieve the size of the class∗/
26 size = slim_cls[random];
27 tmp = malloc(size);
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28 if(tmp)
29 ∗tmp = size; //force physical allocation
30 }while( ++flag <= ITER );
31 /∗try overflowing∗/
32 length = size / sizeof(unsigned long);
33 ∗(tmp + length) = size; //try 1−byte overflow
34 }

Listing 6.1: Simplified code of the microbenchmark used to validate SPP emula-
tion in the hypervisor.

Memory Evaluation Results. The main goal of LeanGuard is minimiz-
ing memory overhead while allowing synchronous buffer overflow detection,
and validating this goal is the purpose of this section. To this end, we com-
pare LeanGuard with different configurations of SlimGuard: SlimGuard
with only canaries (SlimG+Canary), SlimGuard with only guard pages
(SlimG+GP), and SlimGuard with only GuaNary (SlimG+GuaNary).
SlimG+Canary is theoretically the lower bound regarding memory over-
head, but it does not allow synchronous detection. So, from the perspective
of memory overhead, the closer to SlimG+Canary, the better.

We run the PARSEC applications under each configuration while varying
the protection frequency F. As we can see in Fig. 6.9 presenting the results,
(1) SlimG+Canary is indeed the lower bound in terms of memory over-
head, and (2) LeanGuard leads almost to the same memory consumption
as SlimG+Canary for these specific applications. The highest gap we mea-
sured between these two configurations is only 23%, observed on application
raytrace when F=2. (3) Our new safety guard GuaNary effectively leads to
memory consumption reduction, as SlimG+GuaNary results suggest. The
slight improvement that LeanGuard brings to SlimG+GuaNary (26%
swaptions, 25% on raytrace, and 18% blacksholes, when F=2) is explained
by the fact that, unlike SlimG+GuaNary that exclusively uses GuaNary,
LeanGuard can use 4KB guard pages when necessary. This validates the
necessity to combine the two guardian types. (4) We can also observe that to
protect a given proportion of buffers (i.e., synchronously detecting an overflow
on these buffers), SlimG+GP incurs a significant memory overhead compared
to LeanGuard. For example, to protect 50% of the allocated buffers (F=2),
LeanGuard, on average, uses 60% less memory than SlimG+GP. Using
the same amount of memory as SlimG+GP, LeanGuard allows protecting
25× more buffers than SlimG+GP.

For the remaining experiments, we only compare LeanGuard with
SlimG+GP as it is the default configuration of SlimGuard for synchronous
overflow detection.

We also notice from Fig. 6.9 that the optimal (memory consumption and
security trade-off) protection frequency for LeanGuard is F = 2. However,
to fairly compare the two systems, we must apply the same values of F to
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Figure 6.9: Memory consumption of each allocator configuration for PARSEC ap-
plications while varying the protection frequency.

each. This is why we draw, in Fig. 6.10, the trade-off curves of SlimG+GP
for PARSEC applications. We can see that the optimal F is 2 for dedup and
freqmine (since their memory overhead remains constant while varying F),
and 15 on average for the others.
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Figure 6.10: Trade-off between memory consumption and security for PARSEC
applications under Slim+GP.

6.5.3 Performance Overhead

This section evaluates the overhead of LeanGuard. We first describe the
evaluation methodology we used, as there is not an SPP-capable machine on
the market.

Methodology. We carefully build a formula (equation 6.4) to accurately
estimate the execution time of an application App when it runs under Lean-
Guard. The idea behind our methodology is as follows. We can run App
under LeanGuard atop a machine that is not equipped with SPP (noted
MachinenoSPP ). We need, for this, to disable the hypervisor’s portion of code
that sets the SPP control bits. This execution configuration captures almost
all LeanGuard overhead, including cache pressure. The only overhead this
configuration will miss is the one generated by the SPP table (SPPT) walks



6.5. Evaluations 91

on TLB misses. Remember that for any write-protected page for which the
SPP flag is set, the processor will walk the SPPT in addition to the traditional
2-dimensional guest page table and EPT walking. We note TnoSPP the exe-
cution time of App on MachinenoSPP . The overhead of SPP can be obtained
by multiplying the number of SPP-based TLB misses (noted TLBspp) by the
time to walk the SPPT. The latter can, in turn, be obtained by multiplying
the memory latency (noted Tmem_latency) by 4 (because the SPPT is a 4-level
radix tree). In summary, we can estimate the execution time of App when
it runs under LeanGuard atop a hypothetical SPP-capable machine using
this formula:

Test = TnoSPP + TLBspp × 4× Tmem_latency (6.4)

According to [88], we empirically estimate Tmem_latency, which is 111 ns for
our testbed.

To estimate TLBspp, we use the following method. We run App, and we
collect two metrics: the proportion of SPP pages in the App’s working set
(noted k and collected by instrumenting LeanGuard-buddy and Native-
buddy); and the total number of Data TLB misses (noted TLBtot, using the
Linux perf tool). Finally, we compute TLBspp using the following formula 6.5:

TLBspp = k × TLBtot (6.5)

Low level metrics. Low-level metrics provide a better understanding of
higher-level metrics and include the functions and events that LeanGuard
and SlimGuard integrate: malloc(), mmap(), madvise(), mprotect(), and
hypercalls to configure SPP. We are interested in their execution time. Among
these metrics, only malloc() will be impacted by the protection frequency.
Except for mprotect() (with SlimGuard), the others are involved only once
during class initialization, corresponding to the first malloc() call. We use the
micro-benchmark for these experiments. Table 6.1 and Fig. 6.11 summarize
the results.

mmap madvise mprotect enable SPP disable SPP

SlimGuard 1291 - 2349 - -

LeanGuard 1332 727 - 7872 4194

Table 6.1: Cost, in nanoseconds, of some basic metrics.

From Table 6.1, we can notice that the introduction of our new SPP flag
adds only 41ns to the execution time of the mmap syscall. The syscall madvise
to configure a VMA as SPP takes 727ns. Even if SPP activation and de-
activation hypercalls are more costly (7.8ns and 4.1ns, respectively) than
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mprotect (2.3ns), unlike the latter, they are used only once by LeanGuard.
Indeed, both allocators will progressively mprotect pages in the VMA as more
buffers are allocated during the application’s execution. And because Slim-
Guard uses only guard pages, it will likely perform more calls to mprotect
than LeanGuard. This will compensate the cost of other metrics involved
in LeanGuard and explains that LeanGuard and SlimGuard take about
the same amount of time to perform malloc() (as we can see in Fig. 6.11):
about 1346µs− 1448µs for the first call and 0.57µs for the following ones.
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Figure 6.11: Average execution time of malloc(). On top is the time of the first
call to malloc. On the bottom, the following calls after the class was initialized.

SPP Table Walk Optimization. This section evaluates to what extent our
optimizations (§6.3.6) reduce the time to execute the SPP activation hyper-
calls for a group of pages. Recall that these hypercalls are performed only dur-
ing some #PFs when the lower page threshold is reached for a pool (§6.3.4).
While they may certainly slow some #PFs, they will allow for avoiding fre-
quent slowdowns during this critical path, as we can see in Table 6.2. From
the latter, we can see that worse cases are less than 3% of total #PFs for pools
of 512 pages. When the pool has only one page (column two in Table 6.2),
i.e., all #PFs should trigger a configuration hypercall, we might expect the
number of worse cases to be the same as the total number of #PFs. However,
the slight difference observed is explained by the fact that some pages can be
reinserted in their corresponding pools by LeanGuard-cleaner (see §6.3.5).

While varying the size of pools from 1 to 512 pages, we measure, for
the microbench, the time taken by LeanGuard-buddy to service the #PF
in both the best and worse cases. Boxplots in Fig. 6.12 assess that when
pools are filled, LeanGuard-buddy similarly handles PF regardless of the
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Pool size order (n) 0 1 3 5 7 9

Worse case #PFs 7835 8312 1266 701 427 358

Total #PFs 7995 8472 9093 12979 12749 12626

Table 6.2: Number of #PFs triggering a configuration hypercall compared to the
total number of #PFs. The size of pool is 2n.

optimizations, with a time between 0.7µs (25th percentile) and 2.2µs (95th
percentile), with a mean of 0.9µs.

 0
 1000
 2000
 3000
 4000
 5000

0 1 3 5 7 9

Ti
m

e 
(n

s)

Pool Size Order (n) - Size = 2n

Without Optimization
With Optimization

Figure 6.12: Distribution of best-case-
#PF handling time. This corresponds
to normal #PF handling when the
buddy allocator does not have any hy-
percall to perform before servicing the
#PF.

 0

 20

 40

 60

 80

0 1 3 5 7 9

Ti
m

e 
(µ

s)

Pool Size Order (n) - Size = 2n

With Optimization
Without Optimization
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Fig. 6.13 presents the average execution time of the #PF in the worse case,
i.e. when configuration hypercalls are performed. As we can see, our opti-
mizations efficiently improve the #PF time, over non-optimized hypercalls,
by up to 3.8× for a pool size of 512 (29). Notice that the latter is the max-
imum array size that the hypervisor allows in a hypercall parameter (in our
testbed). Furthermore, these optimizations ensure that the page fault time
no longer grows exponentially as it does without optimization. From 1 to 512
pages, we have only 1.9× slowdown with optimizations versus 7.8× without.

Based on this observation, we realize all the following experiments using
pools of 512 SPP pages.

Performance Overhead and Scalability. To evaluate the performance over-
head of GuaNary, we run PARSEC applications under MachinenoSPP (see
methodology in §6.5.3) with SlimGuard and LeanGuard. Execution times
are physically measured for SlimGuard and estimated for LeanGuard us-
ing Formulas 6.4 and 6.5. Fig. 6.14 plots the results. We observe that the
drop between SlimGuard and LeanGuard is essentially the SPPT walk
(dark blue portion on LeanGuard bars). The execution time is almost the
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same for most applications, and when it is not the case, LeanGuard incurs
only ∼ 7.7% overhead on average. This overhead can be acceptable to a user
whose priority is memory security. Remember that the main problem here
is the dilemma between security and memory overhead. Therefore, given the
significant trade-off that GuaNary provides (§6.5.2), this overhead counter-
party can be tolerable.

We also remark that the time of hypercalls is almost not visible, and this
is because hypercall cost is negligible compared to the execution time of ap-
plications. Indeed, hypercalls cost less than 3ms for all applications, which is
one to five orders of magnitude lower than execution times.
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Figure 6.14: Performance overhead of SlimGuard and LeanGuard on PARSEC
application.

We also evaluate how LeanGuard-buddy scales when many applications
run simultaneously. Fig. 6.15 plots the mean #PF handling time when we vary
the number of concurrent applications from 2 to 9 (the number of PARSEC
applications used in our experiments). We observe that this time increases
with the number of concurrent applications, which is explained by the fact
LeanGuard-buddy uses a lock mechanism on pools. However, this is not an
exponential increase which we claim can be accepted for two main reasons.
First, #PF handling is not the main source of overhead, as we saw in Fig. 6.14.
Second, LeanGuard-buddy can further be optimized by implementing a
distributed version, each instance managing a distinct set of physical pages.
We leave this optimization for future work.

6.6 Related work

This section completes the related work that we started in § 6.2.2.

Secure Allocators. Several research works have studied secure heap alloca-
tors to fight against memory vulnerabilities. Some of them focus on a single
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Figure 6.15: Overhead on page fault handling when the number of concurrent ap-
plications varies.

vulnerability like ffmalloc [157] and MarkUs [56], which try to prevent use-
after-free. The remaining secure allocators are more generic. This is the case
for DieHarder [134], FreeGuard [144], Guarder [145], hardened_malloc [11],
isoalloc [43], mimalloc-secure [45], Scudo [24], and SlimGuard [118]. Yun et
al. [161] did an exhaustive study of the design space of existing secure al-
locators. The authors compared qualitatively and quantitatively almost all
existing secure allocators from the perspective of the security features they
implement. The authors recognize that by being specialized, ffmalloc [157]
and MarkUs [56] meet their security goals, which is not the case for other
generic allocators. This reinforces our choice of focusing on a specific class of
vulnerabilities based on buffer write overflow.

Yun et al. [161] introduced HardsHeap [161], a flexible tool to automatically
evaluate secure allocators. In the present chapter, we reduce memory overhead
in secure allocators without significantly impacting performance. Although
performance and memory overhead are two important constraints that secure
allocators should meet to favor their adoption, they have not been studied
by Yun et al. [161]. We could have extended HardsHeap to use it in our
experiments. We leave this for future work.

Very few works tried to reduce the memory overhead of page guards while
preserving synchronous overflow detection. There have been works to reduce
the memory overhead of metadata and free list management. Some alloca-
tors, such as DieHarder [134], rely on a bitmap, but it incurs a performance
overhead, especially when the allocator does randomization, which is the case
for several secure allocators.

Software Protection against Spatial Safety Violations. Many past works
have attempted to enhance safety guarantees in C/C++ by proposing software
solutions to protect pointers and/or buffers against spatial safety violations.
Some early works [60, 97, 127] suffered from high-performance overheads and a
low degree of compatibility, as they generally required code changes. The issue
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of backward compatibility was the focus of other early works [99, 141]. Perfor-
mance impact and compatibility are still the main concerns of recent works.
SoftBound [126] relies on code transformations to encode disjoint metadata,
including bounds information for every pointer. Memory access operations
corresponding to pointer dereferencing can then be checked against this meta-
data. Other solutions, such as Baggy Bounds [58], Low-Fat Pointers [108], or
Delta Pointers [107], rely on pointer tagging, i.e., they leverage unused bits in
the pointer itself to encode bounds or pointer validity metadata. Finally, sys-
tems like Valgrind [128] or Address Sanitizer [142] use compiler and runtime
memory allocator instrumentation to protect memory objects with so-called
red zones (guard pages and canaries). They have a heavy impact on perfor-
mance and memory consumption; hence, they are used only for debug/test
and not in production.

Hardware Protection against Spatial Safety Violations CHERI rejuve-
nated the concept of capabilities invented in the 60s [87]. Under a CHERI-
capable machine, buffer overflows are synchronously detected by the hard-
ware, as with GuaNary. The main source of CHERI’s memory waste is that
it doubles pointer size to keep permissions and buffer boundaries directly into
the pointer. Therefore, the memory overhead of CHERI (and, in general,
capability-based solutions) is related to the number of pointers manipulated
by the application. With GuaNary, the memory overhead is related to the
number of allocated buffers, leading to a more predictable memory overhead.

CHERI has two important limitations compared to GuaNary. First,
CHERI requires application rewrite (see §4 of [156]), which limits its uti-
lization for legacy applications. Second, CHERI significantly degrades per-
formance, especially for heavy pointer manipulation applications (e.g., those
from Olden benchmark suite [53]) due to cache miss increase, TLB miss in-
crease, DRAM traffic increase, execution path increase (e.g., the compiler
needs to wrap several functions such as memcpy), etc. For illustration, Joan-
nou et al. [98] measured a cache miss overhead of up to 250% with respect to
MIPS. The need to track pointers propagation to maintain accurate point-to
relationships between pointers and buffers would also introduce severe perfor-
mance degradation. In fact, pointer propagation is very costly (e.g., 80% in
DANGNULL [111]). GuaNary does not include all these limitations: it is
transparent for applications and does not need to track pointer propagation.
GuaNary is a guardian placed at the buffer border. Therefore, it catches any
use of a pointer that tries to overflow the buffer. Its efficiency is not linked
with pointers.

MPX [135] is the hardware solution from Intel, similar in that it provides
support for checking pointer references. It is now deprecated [135, 52] for
several reasons [136], including those listed above. In addition, it does not
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support multithreading. GuaNary does not include these limitations.

6.7 Summary

This paper focused on write buffer overflow vulnerabilities in virtualized envi-
ronments. We were interested in the problem of memory overhead generated
by existing safety guards, namely, canaries and guard pages. We experimen-
tally showed the limitation of these guardians using SlimGuard, an up-to-
date state-of-the-art secure allocator. To address this problem, we presented
two contributions: GuaNary, a new guardian type, and LeanGuard, a
software stack that integrates GuaNary in secure allocators (including Slim-
Guard) relying on the safety guards mechanism. GuaNary repurposes Intel
SPP, a hardware virtualization feature initially introduced to accelerate VM
management tasks such as checkpointing. We thoroughly evaluated Lean-
Guard using micro- and macro-benchmarks. The results showed that Lean-
Guard effectively reduces memory overhead by up to 8.3× compared to guard
pages. The results also showed that LeanGuard incurs negligible overhead
and maintains the security level enforced by the secure allocator.





Chapter 7

Discussion

This section presents how we can apply the OoH implementations exposed in
this dissertation to other types of hypervisors.
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7.1 Hypervisor Typology

Depending on the privileged level at which the hypervisor runs, it can be of
different types: Type 1 or Type 2.
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Figure 7.1: General architecture of Type-1 and Type-2 hypervisors.

Figure 7.1 illustrates the architecture’s layers stack for each type of hy-
pervisor. A Type-1 hypervisor (Figure 7.1a) runs on bare-metal, that is,
immediately atop the physical hardware. Therefore, it can directly manage
the physical resources (CPU, memory, I/O devices) for virtualization. Some
salient type-1 hypervisors are Xen [61], Microsoft Hyper-V [13], and VMWare
ESXi [28]. Contrary to type-1, type-2 hypervisors do not run on bare-metal
and are instead embedded with the host OS (e.g., as a kernel module). This is
the origin of the two main drawbacks of this hypervisor category. First, to ob-
tain physical resources for virtualization tasks, a type-2 hypervisor must pass
through the extra layer of the host OS, thus increasing the latency compared to
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type-1 hypervisors. Second, any failure that affects the base OS can also affect
the hypervisor and, therefore, the guest OS and the virtual machine, making
type-2 hypervisors less secure than their counterpart. Some prominent type-2
hypervisors are KVM [15], Virtualbox [22], or VMWare Workstation [29].

7.2 Type-1 Hypervisors

As part of this work, we have principally used the Xen hypervisor, which is
the only type-1 hypervisor available as an open source [31]. It is therefore
used as the basis of many other commercial server virtualization products,
such as Citrix Hypervisor [4] or Oracle VM for X86 [21]. However, all the
OoH implementations can similarly be applied to other type-1 hypervisors as
they share a common base architecture. Indeed, as we can see in Figure 7.2
and Figure 7.3, VMWare and Hyper-v both have a privileged component
comparable to the Xen’s dom0: primary/parent partition for Hyper-v and
service console for VMWare. These privileged components provide (along with
the hypervisor) the same services as dom0, which are VM management tasks
(creation, destruction, etc.), I/O drivers management, and tools management
(storage, network, etc.). Therefore, OoH will simply need modifications at
the same level as with the Xen architecture, that is, in the hypervisor and the
guest OS.
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Figure 7.2: VMWare ESX architec-
ture.
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Figure 7.3: Hyper-v architecture.

7.3 Type-2 Hypervisors

Type-2 hypervisors can be part of the host kernel, like with QEMU-KVM in
Figure 7.4. This does not matter, as the OoH modifications only concern the
hypervisor itself, not the host kernel.

Let us consider, for example, implementing OoH for PML (Chapter 5)
with KVM. OoH for PML required adding two hypercalls to Xen for PML
activation and deactivation by the guest. Since the integration of PML to
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KVM did not need modifying the Linux kernel because only the hypervisor
manages the EPT and the PML mechanism, adding these new hypercalls will
also only modify KVM and not the kernel. As for Xen, the handler code of
the hypercalls will be added to KVM.

OoH for PML also required establishing a shared memory between the hy-
pervisor and the guests, in the form of ring buffers, to copy addresses (GPA
with SPML and GVA with EPML) from the hypervisor or the guest kernel
to the guest userspace. With KVM, this can be done using virtio, which
provides guest-to-hypervisor communication. Because the virtio API in the
host is managed by QEMU, in addition to modifying KVM, the OoH imple-
mentation may also necessitate modifying QEMU. In any case, QEMU-KVM
could be modified following the same logic as for Xen without involving the
host kernel.
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Applications

KVM 
(Kernel Module) Host OS

Figure 7.4: KVM hypervisor architecture.
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Conclusion et Future Work
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8.1 Conclusion

This thesis has introduced Out of Hypervisor (OoH), an alternative to nested
virtualization. OoH is a novel research axis that argues for the exposure of
current hypervisor-oriented hardware virtualization features to the guest OS
so that its processes could also benefit from those features. We have shown
that the OoH principle can be applied to both privileged and unprivileged
domains in virtualized clouds.

This dissertation has illustrated the practicality of OoH with Intel PML
(allowing guest memory tracking by the processor) and Intel SPP (allowing
guest memory protection at a granularity of 128 bytes) features, applied re-
spectively to dirty page tracking and memory protection in guest userspace.
For privileged domains, we proposed PRL (Page Reference Logging), an exten-
sion of PML for efficient working set size estimation of VMs. We also showed
how PRL could be used by presenting a working set estimation system that
leverages it.

For unprivileged domains, contributions are twice. First, we proposed OoH
for PML, which provides an efficient solution for dirty page tracking in guest
userspace. We presented two implementations of OoH for PML. A software-
only solution called Shadow PML (SPML), that requires no hardware changes
but incurs significant overheads. And Extended PML (EPML), that addresses
the drawbacks of SPML by making some modest changes to the hardware.
We proved the efficiency of EPML by introducing it into two well-regarded
systems that are CRIU, the Linux Checkpoint/Restore In Userspace tool and
the Boehm Garbage Collector.

Second, we proposed OoH for SPP, which allows for improving buffer over-
flow mitigation in guest userspace. We introduced GuaNary, a novel de-
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fense against overflows that provides synchronous detection at a low memory
footprint cost compared to the state-of-the-art. We further presented Lean-
Guard, a complete software toolstack that demonstrates the usability and
integrability of GuaNary with existing secure memory allocators. For this
purpose, we took as a use case SlimGuard, a recent (2019) secure allocator
that has already proven to be more efficient than recent state-of-the-art secure
allocators.

8.2 Furture Work

8.2.1 Improvement of Current Contributions

Because any work is always perfectible, it would be worth bringing some
amelioration to the current implementation of some contributions presented
in this thesis.

The current integration of LeanGuard is done by modifying the guest
kernel, which can limit its adoption because users are often reluctant to make
changes to legacy applications and, moreover, when it concerns the operating
system. Furthermore, in-core kernel modifications are generally not suitable
for fast updates as they require recompilation and reinstallation. For this
reason, it would be more convenient to release the kernel part of LeanGuard
as a kernel module, thus following OoH principle and methodology. We first
proceeded this way because we wanted to show and prove the efficiency of
GuaNary, and porting the code to a kernel module is simply an engineering
matter and will not require additional research work.

8.2.2 Future Directions

OoH is a research axis and, therefore, opens the way to further directions.

OoH in Bare-metal. The first orientation that could be derived from this
thesis is applying the OoH principle to non-virtualized environments. Indeed,
as stated in Section 3.3, works like Dune can take advantage of OoH to make
host userspace applications take advantage of hardware virtualization func-
tionalities without the need for a hypervisor. One of our ongoing works is
then to revisit and extend Dune to make it OoH-compatible if possible or
propose another system from scratch.

OoH for Other Processors and Architectures. Akin to any principle, OoH
is generic and can be applied to processors other than Intel. Although this
thesis has focused on the latter, similar virtualization extensions can be found
for AMD, for example, and can be exploited following the same methodology.
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Beyond x86-64, OoH can also find applicability to AArch64 architectures.
Indeed, NEVE, the ARM’s virtualization extension, which is similar to Intel
VMCS shadowing, can just as well be exploited to leverage ARM virtualization
extensions when implemented.
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