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Résumé

La fibrillation auriculaire est la maladie du rythme cardiaque la plus courante. En raison d'un manque de compréhension des structures auriculaires sous-jacentes, les traitements actuels ne sont toujours pas satisfaisants. Récemment, avec la popularité de l'apprentissage profond, de nombreuses méthodes de segmentation basées sur l'apprentissage profond ont été proposées pour analyser les structures auriculaires, en particulier à partir de l'imagerie par résonance magnétique renforcée au gadolinium tardif. Cependant, deux problèmes subsistent : 1) les résultats de la segmentation incluent le fond de type atrial ; 2) les limites sont très difficiles à segmenter. La plupart des approches de segmentation conçoivent un réseau spécifique qui se concentre principalement sur les régions, au détriment des frontières.

Par conséquent, dans cette thèse, nous proposons deux méthodes différentes pour segmenter le coeur, une méthode en deux étapes et une méthode entraînable de bout en bout. La méthode en deux étapes peut être décomposée en trois étapes principales : une étape de localisation, une étape d'amélioration du contraste à base de gaussienne et une étape de segmentation. Cette architecture est dotée d'une fonction de perte hybride qui guide le réseau pour étudier la relation de transformation entre l'image d'entrée et l'étiquette correspondante dans une hiérarchie à trois niveaux (pixel-, patch-et carte), ce qui permet d'améliorer la segmentation et la récupération des frontières. Nous démontrons l'efficacité de notre approche sur trois ensembles de données publiques en termes de segmentations régionales et de frontières.

Pour la méthode entraînable de bout en bout, nous proposons un cadre de réseau convolutif complet d'attention basé sur l'architecture ResNet-101, qui se concentre sur les frontières autant que sur les régions. Le module d'attention supplémentaire est ajouté pour que le réseau accorde plus d'attention aux régions et pour réduire l'impact de la similarité trompeuse des tissus voisins. Nous utilisons également une perte hybride composée d'une perte de région et d'une perte de frontière pour traiter les frontières et les régions en même temps. L'efficacité de l'approche proposée est vérifiée sur trois jeux de données publics.

Enfin, pour évaluer le degré de fibrose, nous avons proposé deux méthodes, l'une consistant à combiner l'apprentissage profond avec la morphologie, et l'autre à utiliser directement l'apprentissage profond. Pour la première méthode, nous calculons la paroi auriculaire gauche sur la base des résultats de segmentation du chapitre précédent en dilatant morphologiquement, puis des seuils pour évaluer le degré de fibrose. Pour la seconde méthode, nous fournissons une architecture UNet en cascade et utilisons des informations multi-modalités pour compléter la segmentation du myocarde, de la cicatrice et de l'oedème. Nous démontrons l'efficacité de notre approche sur un jeu de données public.

Introduction

La fibrillation auriculaire (FA) est la maladie du rythme cardiaque la plus courante, correspondant à l'activation d'un substrat électrique au sein du myocarde auriculaire. La FA est déjà une maladie endémique, et sa prévalence est en pleine expansion, en raison de l'augmentation de l'incidence de l'arythmie et de l'augmentation de sa prévalence liée à l'âge. En effet, 1 à 2 % de la population souffre actuellement de FA, et le nombre de personnes touchées devrait doubler ou tripler au cours des deux ou trois prochaines décennies, tant en Europe qu'aux États-Unis [1].

Au cours des dernières années, plusieurs groupes ont testé la capacité du LGE-CMR à détecter une fibrose préexistante. Bien que ces rapports suggèrent que l'étendue de la fibrose peut prédire les récidives après les procédures d'ablation, l'absence de reconstruction automatisée en 3D du LA, le manque de valeurs de référence pour la normalité ont conduit à la publication de plusieurs protocoles d'acquisition et de post-traitement d'images et de seuils pour identifier la fibrose, limitant finalement la validation externe et la reproductibilité de cette technique.En raison de ces limites techniques [2][3][4], l'évaluation de la fibrose du LA n'a pas encore été largement adoptée dans la pratique clinique [5].

Actuellement, avec la popularité de l'apprentissage profond, certaines méthodes basées sur l'apprentissage profond ont été proposées pour segmenter l'oreillette et évaluer la fibrose LA. Par exemple, Bai et al. [6] et Vigneault et al. [7] ont conçu un cadre de réseau basé sur les FCN 2D pour segmenter directement l'oreillette gauche et droite. En outre, les réseaux proposés peuvent également être appliqués pour segmenter les ventricules après la formation sans changer de cadre de réseau. De x même, Xiong et al. [8], Preetha et al. [9], Bian et al. [10] et Chen et al. [11] ont également conçu un cadre de réseau de segmentation basé sur les FCN 2D pour segmenter l'oreillette. Yang et al. [12,13] ont utilisé une méthode basée sur un atlas pour identifier l'oreillette gauche, puis ont utilisé un réseau d'apprentissage profond pour détecter les tissus fibrotiques dans la zone de l'oreillette gauche. En relation avec la méthode de segmentation de bout en bout, Chen et al. [14] ont proposé un réseau neuronal profond pour segmenter à la fois l'oreillette gauche et les cicatrices auriculaires.

Par conséquent, pour aider les médecins à établir un diagnostic et réduire leur charge de travail, nous proposons de nouveaux cadres de réseaux neuronaux pour segmenter l'oreillette et évaluer la fibrose de l'oreillette. Tout d'abord, nous proposons deux méthodes différentes pour segmenter le coeur, une méthode en deux étapes et une méthode entraînable de bout en bout. La méthode en deux étapes peut être décomposée en trois étapes principales : une étape de localisation, une étape de renforcement du contraste à base de gaussienne et une étape de segmentation.

Pour la méthode entraînable de bout en bout, nous proposons un cadre de réseau convolutif complet d'attention basé sur l'architecture ResNet-101, qui se concentre sur les frontières autant que sur les régions. Le module d'attention supplémentaire est ajouté pour que le réseau accorde plus d'attention aux régions et pour réduire l'impact de la similarité trompeuse des tissus voisins. Ensuite, sur la base des résultats de la segmentation cardiaque, nous combinons l'apprentissage profond avec la morphologie pour évaluer la fibrose de l'oreillette gauche. Nous calculons la paroi de l'oreillette gauche à partir des résultats de la segmentation de l'oreillette gauche par dilatation morphologique, puis nous fixons des seuils pour évaluer le degré de fibrose. Enfin, nous démontrons l'efficacité de notre approche sur certains jeux de données publics. La vue d'ensemble de nos réseaux se compose de deux parties (localisation et segmentation) comme le montre la Fig. 1. La première partie (le "réseau de localisation") est utilisée pour localiser approximativement la position de l'objet. La seconde partie est consacrée à la segmentation de l'objet (le "réseau de segmentation"). Réseau de localisation: Tout d'abord, nous nous appuyons sur l'architecture originale du réseau VGG16 [15], pré-entraîné sur des millions d'images naturelles d'ImageNet pour la classification d'images [16]. Nous éliminons ensuite ses couches entièrement connectées pour ne conserver que le sous-réseau composé de cinq "étages" basés sur la convolution (le réseau de base). Chaque étage est composé de deux couches convolutionnelles, d'une fonction d'activation ReLU et d'une couche de max-pooling.

Comme les couches de max-pooling diminuent la résolution de l'image d'entrée, nous obtenons un ensemble de cartes de caractéristiques fines à grossières (avec 5 niveaux de caractéristiques). Inspirés par les travaux de [17][18][19][20], nous avons ajouté des couches convolutionnelles spécialisées (avec un noyau de taille 3×3) avec K (par exemple K = 16) cartes de caractéristiques après les couches convolutionnelles ascendantes placées à la fin de chaque étape. Les sorties des couches spécialisées présentent la même résolution que l'image d'entrée, et sont concaténées ensemble.

Nous ajoutons une couche convolutionnelle 1×1 à la sortie de la couche de concaténation pour combiner linéairement les cartes de caractéristiques fines à grossières.

xii Réseau de segmentation: Par rapport aux travaux sur la localisation nous ajoutons trois couches convolutionnelles avec 256 ou 512 dilatés (dilatation = 2) [21] 3×3 filtres, et une couche de concaténation dans le réseau de segmentation basé sur le réseau de localisation précédent. réseau de localisation précédent.

Perte hybride

Pour obtenir une segmentation régionale de haute qualité, nous définissons R comme une perte de région : R = CCE + SSIM + DC , où CCE , SSIM et DC désignent respectivement la perte d'entropie croisée catégorielle (CCE) [22], la perte de similarité structurelle (SSIM) [23] et la perte de coefficient de dés (DC) [24]. La perte CCE [22] est couramment utilisée pour la classification et la segmentation multi-classes. Elle est définie comme suit:

CCE = -∑ C i=1 ∑ H a=1 ∑ W b=1 y i (a,b) ln y * i (a,b) , (1) 
où C est le nombre de classes de chaque image, H et W sont la hauteur et la largeur de l'image, y i (a,b) ∈ {0, 1} est l'étiquette de vérité du sol à un coup de la classe i à la position (a, b). et y * i (a,b) est la probabilité prédite que (a, b) appartient à la classe i. La perte SSIM peut évaluer la qualité de l'image [23], et peut être utilisée pour capturer l'information structurelle, ce qui diminuera le taux de mauvaise segmentation des tissus similaires environnants. Par conséquent, nous l'avons intégré dans notre perte d'apprentissage pour apprendre les différences entre le domaine segmenté et les tissus similaires autour du domaine segmenté. Si S et G sont respectivement la carte de probabilité prédite et le masque de vérité terrain, la fonction de perte SSIM de S et G est définie comme suit

SSIM = 1 - (2µ S µ G + ε 1 )(2σ SG + ε 2 ) (µ 2 S + µ 2 G + ε 1 )(σ 2 S + σ 2 G + ε 2 ) (2) 
où µ S , µ G et σ S , σ G sont les moyennes et les écarts types de S et G respectivement, σ SG est leur covariance, ε 1 = 0.01 2 et ε 2 = 0.03 2 sont utilisés pour éviter une division par zéro.

La perte DC [24] est utilisée pour mesurer la similarité entre deux ensembles comme défini dans Eq. 2.36. Mais pour la tâche de segmentation multi-classes, Eq. 2.36 ne convient pas en raison du problème de déséquilibre des classes dans de tels cas. Par conséquent, nous étendons la définition de la perte DC à la segmentation multi-classes comme suit:

dice i = ( + 2 ∑ N i n=1 y i n y * i n ) / ( + ∑ N i n=1 (y i n + y * i n )) (3) 
DC = 1 -∑ C i=1 dice i / (N i + ), (4) 
où N i désigne les numéros de la classe i et > 0 est un facteur lisse. Le module d'attention est inspiré de [26]. F ∈ R C×W×H agit comme une carte de caractéristiques d'entrée pour le module d'attention, où C, W, H sont respectivement le canal, la largeur et la hauteur de la carte de caractéristiques. La branche supérieure F est alimentée dans une couche convolutive, une couche de Reshape et ensuite une couche de Transpose, résultant en une carte de caractéristiques F u 0 ∈ R (W×H)×C . Dans la deuxième branche (considérons l'ordre de haut en bas), la carte de caractéristiques d'entrée F suit les mêmes opérations moins la couche Transpose, ce qui donne W×H) . Ensuite, les couches Multiply et Softmax suivent ; elles sont appliquées sur F u 0 et F u 1 pour obtenir la carte d'attention spatiale A u ∈ R (W×H)×(W×H) . L'entrée F est introduite dans une couche convolutive différente dans la troisième branche, puis elle est multipliée par A u introduite dans la couche Transpose, ce qui donne F u 2 . Par conséquent, la sortie F u de la branche supérieure peut être formulée comme suit: Dans la branche inférieure, le module d'attention se concentre principalement sur les canaux les plus importants. La carte d'attention des canaux A l peut être obtenue par différentes combinaisons de convolution. Enfin, la sortie F l de la branche inférieure peut être définie comme suit: [1,..,1]. La carte de caractéristiques F l 2 dénote les résultats du produit de l'entrée F avec A l alimenté dans une convolution passant par le bloc de transposition. Par conséquent, la carte de caractéristiques d'attention F a est définie comme :

F u 1 ∈ R C×(
F u = λ × F u 2 + β × F, , où λ ∈ R C est
F l = λ × F l 2 + β × F, , où λ ∈ R C est ini- tialisé à [0,..,0], et β ∈ R C est initialisé à
F a = Conv (F u ) + Conv F l .
(5)

Perte hybride

La perte hybride se compose de deux parties : la perte de région et la perte de frontière. Elle est définie comme suit : H = R + B , où B la perte de frontière. Elles sont expliquées ci-après.

Les fonctions de perte mentionnées précédemment sont principalement destinées à la segmentation de régions, nous proposons donc une fonction de perte de frontière multi-classe basée sur la distance de Kervadec [27] pour pouvoir affiner les segmentations. Comme le montre la Fig. 3, ∆A désigne la différence entre la frontière G i B de la vérité terrain de la classe i et la frontière S i B de la prédiction de la classe i. Lorsque ∆A tend vers zéro, cela signifie que les résultats de la segmentation deviennent meilleurs autour des frontières. Ainsi, pour une classe i donnée, lorsque la prédiction et la vérité terrain sont suffisamment proches, ce qui est facilement obtenu grâce à notre perte régionale, la minimisation de la différence entre leurs frontières peut être obtenue en minimisant la distance de Kervadec [27]:

i B = ∂G i y ∂S i (p) -p 2 dp (6) 
xv où ∂G i et ∂S i désignent les frontières de G i B et (binarisé) S i B et • désigne la norme L2. Lorsque p est un point dans ∂G i , y ∂S i (p) désigne le point correspondant sur la frontière ∂S i i le long de la direction normale à∂G i (voir Fig. 3). On peut montrer [27] que minimiser i B est équivalent à minimiser l'aire de la surface ∆A i = (G i B \S i B ) (S i B \G i B ) (voir Fig. 3). Ainsi, notre perte de frontière multi-classe s'ensuit naturellement:

B = C ∑ i=1 ∂G i y ∂S i (p) -p 2 dp ( 7 
)
3 Méthodes d'évaluation de la Fibrose Sur la base des méthodes de segmentation précédentes, nous continuons à évaluer la fibrose en utilisant une méthode de morphologie. La Fig. 4 présente le workflow attendu : segmentation du volume cardiaque conduisant à l'identification de la paroi auriculaire gauche, analyse de la radiométrie au sein de la paroi, seuillage pour quantifier le degré de fibrose. La segmentation cardiaque peut être complétée par les méthodes de segmentation précédentes. La partie analyse peut s'appuyer sur une approche de morphologie mathématique.
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Résultats Expérimentaux

Nous évaluons notre méthode sur le MICCAI 2018 Atrial Segmentation Challenge1 (AtriaSeg18). Son objectif est de segmenter l'oreillette gauche. Il contient 100 3D

MRIs annotées provenant de patients souffrant de fibrillation auriculaire. L'espacement des pixels des MR images est de 0.625 × 0.625 × 0.625 mm/pixel. L'ensemble de données comprend deux tailles d'images différentes: 88×576×576 et 88×640×640. Ensuite, la limite endocardique est dilatée morphologiquement (par 4 couches de pixels, 2,5 mm), puis ajustée manuellement pour créer la coquille de la surface épicardique de l'oreillette gauche [28]. Dans une dernière étape, la segmentation de l'endocarde est soustraite de la couche épicardique pour définir la segmentation de la paroi, comme indiqué sur la 
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The sensitivity of the improved FCN framework [19] to noise for different preprocessing methods on the MRbrains2018 dataset . . . . . . .

3.6

The 3D segmentation results based on the improved FCN framework [19] for standardization . . Atrial fibrillation (AF), as shown in Fig. 1.2, is the most common heart rhythm disease, corresponding with the activation of an electrical substrate within the atrial myocardium. AF is already an endemic disease, and its prevalence is soaring, due to both an increasing incidence of the arrhythmia and an age-related increase in its prevalence. Indeed, 1-2% of the population suffer from AF at present, and the number of affected individuals is expected to double or triple within the next two to three decades both in Europe and in the USA [1]. as the number of targets remains unpredictable using clinical criterias. AF CA is still a challenging intervention requiring a perioperative 3D mapping to identify AF substrate to select the best ablation strategy [1].

Medical Context

Exploration of LA substrate has suggested that AF may be a self-perpetuating disease with a voltage or electrogram (EGM) amplitude reduction which is an indicator of the severity of tissue corresponding with collagen deposition in the myocardial interstitial space. Non-invasive assessment of myocardial fibrosis has proved useful as a diagnostic, prognostic, and therapeutic tool. Visualization and quantification of gadolinium in late gadolinium-enhanced cardiac magnetic resonance (LGE-CMR) sequences estimate the extracellular matrix volume and have been used

as a LA fibrosis surrogate [36]. As shown in Fig. 1.3, following administration of a bolus of gadolinium contrast agent, the contrast will reach the various tissue compartments within the myocardium at different rates until a dynamic steady state is reached. Signal intensity time course from administration of bolus through late enhancement illustrating slower wash-in and wash-out of gadolinium contrast into infarcted tissue compared with normal ischemic tissue. Late enhancement imaging is typically performed 10-30 minutes following administration of gadolinium when there is sufficient contrast between normal and infarcted tissue. T1-weighted, T2-weighted and Fluid Attenuated Inversion Recovery (FLAIR) scans are the most common LGE-CMR sequences [37]. T1-weighted images are produced by using short Time to Echo (TE) 3and Repetition Time (TR) 4 times. The contrast and brightness of the image are predominately determined by T1 properties of tissue. Conversely, T2-weighted images are produced by using longer TE and TR times. In these images, the contrast and brightness are predominately determined by the T2 properties of tissue. The FLAIR sequence is similar to a T2-weighted image except that the TE and TR times are very long, and it is very sensitive to pathology.

Over the last years, several groups tested the ability of LGE-CMR to detect preexisting fibrosis. Although these reports suggested that the extent of fibrosis may predict recurrences after ablation procedures, the lack of 3D automated LA reconstruction, the lack of reference values for normality has prompted the publication Because of these technical limits, the assessment of LA fibrosis has not yet been widely adopted in the clinical practice [5]. The aims of this project involving EPITA and the Institut Cardiovasculaire Paris Sud (ICPS) are to provide a normalized, systematic, consistent, reproducible and automatically 3D LA LGE-CMR reconstruction to identify LA fibrotic tissue prior to AF ablation.

Traditional Methods for Left Atrial Fibrosis/Scar Segmentation

Most traditional methods present the expected workflow for left atrial fibrosis or scar segmentation as follows:

(1) Segmentation of the heart volume leading to the identification of the left atrial wall

(2) Analysis of the radiometry within the wall, thresholding to quantify the fibrosis degree.

For the first step, many methods are applied such as level-set [38], region growing [39] and watershed [40] and so on (as shown in Fig. 1.4). In term of the level-set method [38], the whole process was divided into two steps. First, the median filter was used to obtain the velocity image, and then the gradient magnitude filter was used to process the velocity image. Taking segmentation of the atrial wall as an example, first used the median filter to process the atrial images. After obtaining the velocity images, the gradient magnitude filter detected the edge zones with sharp gradients around the epicardial boundary, and then stops at these edge zones.

Finally, the atrial wall is obtained by subtracting the result of the level set method from the endocardium segmentation mask. For the Region growing method [39], it was also often used in medical image segmentation tasks. It achieved segmentation by placing seed points in the segmentation area and choosing different thresholds according to different situations. As shown in the Fig. 1.4, because the threshold depended on different situations, the final segmentation result was not stable, and the method had no independent adjustment ability. For the watershed segmentation [40], in medical image segmentation, mainly used the image as a topographic surface and markers for controlling. The seed points were placed in the target segmentation area and the adjacent area similar to the target structure. For the second step, based on the left atrial wall, many fibrosis or scar detection and segmentation algorithms are proposed. Firstly, we give an overview of the previously published fibrosis or scar detection and segmentation algorithms (as shown in Table . 1.1). It could be concluded from Table . 1.1 that for detecting fibrosis or scars, most researchers chose the SD algorithm [START_REF] Kim | Relationship of mri delayed BIBLIOGRAPHY 119 contrast enhancement to irreversible injury, infarct age, and contractile function[END_REF][START_REF] Kolipaka | Segmentation of non-viable myocardium in delayed enhancement magnetic resonance images[END_REF][START_REF] Schmidt | Infarct tissue heterogeneity by magnetic resonance imaging identifies enhanced cardiac arrhythmia susceptibility in patients with left ventricular dysfunction[END_REF]. But other methods also had certain advantages. For example, FWHM [START_REF] Amado | Accurate and objective infarct sizing by contrast-enhanced magnetic resonance imaging in a canine myocardial infarction model[END_REF] was further used to classify scars as cores or peri-core areas [START_REF] Leistner | Characterization of the peri-infarct zone by contrast-enhanced magnetic resonance imaging and 18f-fdg positron emission tomography and its clinical impact in patients with coronary artery disease[END_REF], and other methods had been proposed to automatically calculate thresholds [START_REF] Kolipaka | Segmentation of non-viable myocardium in delayed enhancement magnetic resonance images[END_REF] such as clustering [START_REF] Positano | A fast and effective method to assess myocardial necrosis by means of contrast magnetic resonance imaging[END_REF][START_REF] Detsky | Reproducible classification of infarct heterogeneity using fuzzy clustering on multicontrast delayed enhancement magnetic resonance images[END_REF], and Graph-cuts [START_REF] Lu | Automated quantification of myocardial infarction using graph cuts on contrast delayed enhanced magnetic resonance images[END_REF]. MIP algorithm was used to visualize the infarcted area [START_REF] Knowles | 3-d visualization of acute rf ablation lesions using mri for the simultaneous determination of the patterns of necrosis and edema[END_REF], which was very useful for visualizing the number of scars on the surface of the atrial. For the detection of fibrosis before ablation, the global threshold of the image could be calculated and adjusted according to the data of each slice to achieve the best detection effect [3].

All the methods in Table . 1.1 except [3] and [START_REF] Knowles | 3-d visualization of acute rf ablation lesions using mri for the simultaneous determination of the patterns of necrosis and edema[END_REF] can be used to detect scars in the myocardium. But facing the task of scar segmentation, many difficulties need to be solved urgently, especially the nearby enhanced structures such as the aortic wall and valves. There are also differences between the atrial myocardium and the ventricular myocardium. For example, the thickness of the atrial myocardium is thinner than that of the ventricle, and it is more difficult to segment. Therefore, only using some fixed models to detect the scar of the atrial myocardium cannot achieve good results. Some researchers have used it, but we still think that it is not suitable for scar segmentation of the ventricular myocardium. The reason is simple:

1.3. State-of-the-art for Left Atrial Fibrosis/Scar Segmentation Reference Model Modality LV/LA Algorithm Oakes et al. [3] Human CMR LA SD Kim et al. [START_REF] Kim | Relationship of mri delayed BIBLIOGRAPHY 119 contrast enhancement to irreversible injury, infarct age, and contractile function[END_REF] Canine CMR LV SD Kolipaka et al. [START_REF] Kolipaka | Segmentation of non-viable myocardium in delayed enhancement magnetic resonance images[END_REF] Human CMR LV SD Schmidt et al.. [START_REF] Schmidt | Infarct tissue heterogeneity by magnetic resonance imaging identifies enhanced cardiac arrhythmia susceptibility in patients with left ventricular dysfunction[END_REF] Human CMR LV SD Amado et al. [START_REF] Amado | Accurate and objective infarct sizing by contrast-enhanced magnetic resonance imaging in a canine myocardial infarction model[END_REF] Animal CMR LV FWHM Yan et al. [START_REF] Leistner | Characterization of the peri-infarct zone by contrast-enhanced magnetic resonance imaging and 18f-fdg positron emission tomography and its clinical impact in patients with coronary artery disease[END_REF] Human CMR LV SD Positano et al. [START_REF] Positano | A fast and effective method to assess myocardial necrosis by means of contrast magnetic resonance imaging[END_REF] Human CMR LV Clustering Detsky et al. [START_REF] Detsky | Reproducible classification of infarct heterogeneity using fuzzy clustering on multicontrast delayed enhancement magnetic resonance images[END_REF] Human CMR LV Clustering Lu et al. [START_REF] Lu | Automated quantification of myocardial infarction using graph cuts on contrast delayed enhanced magnetic resonance images[END_REF] Human CMR LV Graph-cuts Knowles et al. [START_REF] Knowles | 3-d visualization of acute rf ablation lesions using mri for the simultaneous determination of the patterns of necrosis and edema[END_REF] Human CMR LA MIP Hennemuth et al. [START_REF] Hennemuth | A comprehensive approach to the analysis of contrast enhanced cardiac mr images[END_REF] Human CMR LV EM Tao et al. [START_REF] Tao | Automated segmentation of myocardial scar in late enhancement mri using combined intensity and spatial information[END_REF] Human CMR LV Otsu

Note: LV denotes Left ventricle and LA denotes left atrium. Most methods employed simple standard deviation (SD) thresholding from a base healthy tissue intensity value. Others such as full-width-at-half-maximum (FWHM), maximum intensity projection (MIP) and expectation-maximisation (EM) fitting have also been proposed.

using a single fixed model cannot deal with all the different variables encountered randomly. These variables may come from outside (image resolution, noise, image acquisition time, etc.), and it may also come from the inside (the size and shape of the scar, etc.). This fact has been supported in [3] that in order to obtain a suitable segmentation, the threshold must be constantly re-adjusted according to the data on each slice.

State-of-the-art for Left Atrial Fibrosis/Scar Segmentation

Forward/inference Backward/learning Firstly, some researchers mainly focus on atrial segmentation, because it can be used as a basis for scar segmentation and atrial fibrosis quantification from LGE images. For example, Bai et al. [6] and Vigneault et al. [7] designed one network framework based on 2D FCNs to directly segment the left and right atrium. In addition, the proposed networks can also be applied to segment ventricles after training without changing in network framework. Similarly, Xiong et al. [8] , Preetha et al. [9], Bian et al. [10], and Chen et al. [11] also designed a segmentation network framework based on 2D FCNs to segment the atrial. Compared with the previously proposed 2D network frameworks, their network structures were optimized, which made the network pay more attention to feature learning. However, in medical image segmentation, most of the data is 3D volume. Therefore, in order to capture 3D global information, some 3D networks [START_REF] Xia | Automatic 3d atrial segmentation from gemris using volumetric fully convolutional networks[END_REF][START_REF] Savioli | V-fcnn: volumetric fully convolution neural network for automatic atrial segmentation[END_REF][START_REF] Jia | Automatically segmenting the left atrium from cardiac images using successive 3d u-nets and a contour loss[END_REF][START_REF] Vesal | Dilated convolutions in neural networks for left atrial segmentation in 3d gadolinium enhanced-mri[END_REF][START_REF] Li | Attention based hierarchical aggregation network for 3d left atrial segmentation[END_REF] and multi-view networks [START_REF] Mortazi | Cardiacnet: Segmentation of left atrium and proximal pulmonary veins from mri using multi-view cnn[END_REF][START_REF] Yang | Multiview sequential learning and dilated residual learning for a fully automatic delineation of the left atrium and pulmonary veins from late gadolinium-enhanced cardiac mri images[END_REF] were constantly proposed. Especially the fully automatic two-stage segmentation framework proposed by Xia et al. [START_REF] Xia | Automatic 3d atrial segmentation from gemris using volumetric fully convolutional networks[END_REF], which mainly includes two steps of localization and segmentation. First, the first 3D UNet was used to roughly locate the center of the target, and then the target region was cropped out, and input the second 3D

UNet performed precise segmentation, and the final segmentation result won the first place in the left atrium segmentation challenge 2018.

As attention mechanisms become more popular, it is increasingly used for the cardiac segmentation. For example, Zhou et al. [START_REF] Zhou | Cross-modal attention-guided convolutional network for multi-modal cardiac segmentation[END_REF] designed a cross-modal attention Then, in order to segment fibrosis or scars, we mainly base on LGE MR images, because it can show scars and fibrosis [START_REF] Kim | Relationship of mri delayed BIBLIOGRAPHY 119 contrast enhancement to irreversible injury, infarct age, and contractile function[END_REF]. Before deep learning was widely used in the field of medical images, traditional segmentation methods, such as intensity threshold-based or clustering methods, were used for scar segmentation. These methods are very sensitive to the local intensity changes of the image [START_REF] Zabihollahy | Myocardial scar segmentation from magnetic resonance images using convolutional neural network[END_REF], and different parameters need to be designed according to different data each time, and they are not suitable for being widely used. At the moment, they need to manually segment the region of interest to reduce the workload [START_REF] Carminati | Comparison of image processing techniques for nonviable tissue quantification in late gadolinium enhancement cardiac magnetic resonance images[END_REF]. Therefore, these semiautomatic methods cannot be widely used in hospitals to reduce the workload on doctors.

Therefore, only using traditional segmentation methods to segment scars is not a development trend. Combining with widely used deep learning methods is the current development trend. For example, Yang et al. [12,13] used one atlas-based method to identify the left atrium, and then used a deep learning network to detect fibrotic tissue in the left atrium area. Related to the end-to-end segmentation method, Chen et al. [14] proposed a deep neural network to segment both the left atrium and atrial scars. In particular, to achieve better segmentation accuracy, they also proposed a multi-view framework with one attention module to integrate different visual information.

Currently, there are still many challenges in fully automatic end-to-end scar segmentation, because the proportion of scars in the entire image is very low, it is easy to cause serious overfitting of the network, and because of the differences of patients, LGE images will also be generated abnormal. To achieve one fast segmentation speed, Fahmy et al. [START_REF] Fahmy | Automated cardiac mr scar quantification in hypertrophic cardiomyopathy using deep convolutional neural networks[END_REF] designed one network based on UNet to segment Chapter 1. Introduction both the myocardium and the scars, but the segmentation results on the scar regions were very low. Subsequently, Zabihollahy et al. [START_REF] Zabihollahy | Myocardial scar segmentation from magnetic resonance images using convolutional neural network[END_REF] and Moccia et al. [START_REF] Moccia | Development and testing of a deep learning-based strategy for scar segmentation on cmr-lge images[END_REF] proposed one semi-automatic method that kept the higher segmentation accuracy on the test sets for the scar segmentation, first by manually segmenting the myocardium, and then applying a 2D network to distinguish between scars and normal myocardium.

Excitingly, an RNN method proposed by Xu et al. [START_REF] Xu | Direct delineation of myocardial infarction without contrast agents using a joint motion feature learning architecture[END_REF] could automatically delineate the myocardial infarction area from the MR image sequence without contrast agent. Compared with the manual annotation on the LGE MR images, their method obtained a higher dice score and provided a new method for infarction assessment.

Public datasets

Among these deep learning methods mentioned above, the most common method is mainly data-driven, and study the transformation relationship between the input image and the corresponding label. So, obtaining the labeled patient data is pivotal for deep learning methods. We make a summary of public datasets on heart segmentation in recent years as shown in Table 1.2. [START_REF] Xiong | A global benchmark of algorithms for segmenting the left atrium from late gadolinium-enhanced cardiac magnetic resonance imaging[END_REF] 150 LGE MRI 608×608×88 0.625×0.625×0.625 LVQuan19 [START_REF] Xue | Full quantification of left ventricle via deep multitask learning network respecting intra-and inter-task relatedness[END_REF][START_REF] Xue | Full left ventricle quantification via deep multitask relationships learning[END_REF] 56 CMR 347×347×20 1.18×1.18×1.18 LAScarQS2022) [29][30][31] 298 LGE MRI 608×608×44 1.32×1.32×2.3

HVSMR16 [START_REF] Pace | Interactive whole-heart segmentation in congenital heart disease[END_REF] (MICCAI Workshop on Whole-Heart and Great Vessel Segmentation from 3D Cardiovascular MRI in Congenital Heart Disease 5 ) is to segment myocardium and blood pool, it contains 10 training cardiovascular magnetic resonance (CMR) scans. For each patient, three kinds of images were provided: the full-volume axial images, the cropped axial images around the heart and thoracic aorta, and the cropped short axis reconstruction. The average voxel size is 0.9×0.9×0.85 mm. The average image sizes: 390×390×165 pixels. [START_REF] Zhuang | Multi-scale patch and multi-modality atlases for whole heart segmentation of MRI[END_REF] (Multi-Modality Whole Heart Segmentation6 ) aims to segment 7 substructures of the whole heart. It contains 60 cardiac MRI and 60 CT images. The average voxel size is 0.94×0.94×1.20 mm. The average sizes: 324×325× 171 pixels. However, due to the long time taken to form MRI images (10-30 minutes) [32], there are some difficulties in implementing heart segmentation tasks and fibrosis assessment tasks using MRI images from the aforementioned public datasets. As shown in Fig. 1.7, there are 1) poor contrast between myocardium and surrounding structures, 2) brightness due to blood flow, 3) non-homogeneous partial volume due to limited MRI resolution, 4) noise due to motion artifacts and heart dynamics, 5) shape and intensity variability due to different patients and pathologies. So, we should take these problems into account when we design segmentation and evaluation methods.
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Main contributions

The main contribution of thesis is to assist doctors in diagnosis by designing neural network frameworks to reduce the workload of doctors. Throughout the design process, we found that there were many difficulties to segment atrial and evaluate fibrosis from cardiac MR images, for example, the presence of poor contrast between the segmented tissue and surrounding structures, the brightness heterogeneities due to blood flow, the shape and intensity variabilities of the structures across patients and pathologies, and so on. Although the fact that most methods continue to improve segmentation accuracy, the problem of low accuracy of boundaries and small objects segmentation still exists, which is due to the fact that they mainly pay attention to region accuracy, more than to the quality of the boundaries and small objects. As shown in Fig. 1.8, boundaries and details segmentation are especially important when the accuracy of region segmentation is about the same. Therefore, we consider two challenging problems applied on cardiac imaging : 1) how to improve the segmentation accuracy on small parts of objects; 2) how to balance the importance of the regions and the boundaries of objects.

Design of Neural Network Framework

Two-stage framework: For segmenting the left atrial, we propose a two-stage architecture, which is consist of a localization network and a segmentation network.

These two networks mainly rely on the original VGG16 network architecture, pretrained on millions of natural images of ImageNet for image classification. We then discard its fully connected layers to keep only the sub-network made of five 1.5. Main contributions convolution-based "stages" (the base network). Each stage is made of two convolutional layers, a ReLU activation function, and a max-pooling layer. Since the maxpooling layers decrease the resolution of the input image, we obtain a set of fine to coarse feature maps (with 5 levels of features). We added specialized convolutional layers (with a 3 × 3 kernel size) with K (e.g. K = 16) feature maps after the up-convolutional layers placed at the end of each stage. The outputs of the specialized layers show the same resolution than the input image, and are concatenated together. We add a 1×1 convolutional layer at the output of the concatenation layer to linearly combine the fine to coarse feature maps.

End-to-end framework: For segmenting the left atrial, we propose a end-to-end architecture, using ResNet-101 pre-trained on ImageNet to compute feature maps.

We discard its average pooling and fully connected layers, and keep only the subnetwork made of one convolution-based and four residual-based "stages". Since the resolution decreases at each stage, we obtain a set of fine to coarse feature maps (with five levels of features). We add specialized convolutional layers (with a 3×3 kernel size) with K (e.g. K =16) feature maps placed at the end of four residual-based "stages". They are concatenated together after up-convolutional layers. These last feature maps are combined with each of the outputs of the specialized layers, and then fed into the attention module to generate the attention features. Finally, we concatenate the attention features and fed them into the softmax layer.

For segmenting the fibrosis/scar, we propose a hybrid network using five U-Net frameworks, which is composed of three U-Net to segment myocardium, left and right ventricle, and whole heart, and the remaining two U-Net to segment edema and scar.

Design of Attention

To decrease the impact of similar tissues on segmentation results, we built on the biological visual system, which concentrates on certain image regions requiring detailed analysis.

Gaussian attention:

In the two-stage framework, between the localization network and the segmentation network, we propose one Gaussian attention method, which is to multiply the positioning target area by the Gaussian weight.

Attention module:

In the end-to-end framework, we design one attention module embedded in the neural framework, which consists of one position attention branch and one channel attention branch. The attention module can make full use of spatial information and information between channels.

Design of Hybrid Loss

We propose the hybrid loss function that guides the network to study the transformation relationship between the input image and the corresponding label. To let the network to balance boundaries, small objects and regions during the process of training, we not only design region loss, but also boundary loss. For the region loss, we combines Categorical Cross Entropy (CCE), Structural Similarity (SSIM) and Dice

Coefficient (DC) to guide the training process at three levels: pixel-level, patch-level, and map-level. For the boundary loss, it is used in calculating the difference between the boundary of the ground truth and the boundary of the prediction.

Manuscript organization

The thesis is divided into three parts.

The first part explains the main concept of work proposed in this thesis. It consists of two chapters.

• Chapter 1: Introduction. This chapter mainly describes the research background of cardiac segmentation and evaluation of fibrosis and some related research methods, and explains the significance and contribution of our research in this field.

• Chapter 2: Theoretical Background. This chapter is a briefly introduction to the relevant background knowledge required. We explain the fundamentals of deep learning, mainly explaining the convolutional layer and pooling layer, as well as how to train the network and evaluate the prediction results. Finally, we focus on explaining the principle of attention.

The second part of this thesis proposes different methods to segment heart and evaluate fibrosis. It consists of three chapters.

• Chapter 3: Heart Data Preparation. Deep learning is mainly based on big data, so it is very important to choose a suitable method to preprocess heart data. This chapter mainly explores how different preprocessing methods affect prediction results of network. We compare centralized and standardized, and find that the standardized makes the network more robust to noise through a large number of experiments.

• Chapter 4: Two-stage Segmentation Method. For cardiac magnetic resonance images, ambiguities often appear near the boundaries of the target domains due to tissue similarities. This chapter, to address this issue, we propose a new architecture, which can be decomposed in three main steps: a localization step, a Gaussian-based contrast enhancement step, and a segmentation step. This architecture is supplied with a hybrid loss function that guides the network to study the transformation relationship between the input image and the 1.6. Manuscript organization corresponding label in a three-level hierarchy (pixel-, patch-and map-level), which is helpful to improve segmentation and recovery of the boundaries. We demonstrate the efficiency of our approach on three public datasets in terms of regional and boundary segmentations.

• 

Convolutional Neural Networks (CNNs)

As shown in Fig. 2.2, a MR image is input into a CNN, and then hierarchical features are learned by convolutions and pooling layers. Some CNN frameworks are now well known such as LeNet [START_REF] Lecun | Gradient-based learning applied to document recognition[END_REF], AlexNet [16], VGG [START_REF] Simonyan | Very deep convolutional networks for largescale image recognition[END_REF], Inception [START_REF] Szegedy | Going deeper with convolutions[END_REF], and

ResNet [START_REF] He | Deep residual learning for image recognition[END_REF] and so on. These frameworks are mainly used in extracting features at different levels for input images, and then use these features to perform different tasks, for example, these feature maps are flattened and reduced into a vector by fully connected layers, and then the vector can be varied for different tasks. It can be The convolutional layer CONV l is the key part of CNN, and its primary parameters are convolution kernels and convolution filters. Fig. 2.3 shows the calculation process of convolutional layer with the convolution kernel 3 × 3. For one convolutional layer, if the convolution filter and convolution kernel are set to n l and k × k, respectively, which means to extract n l feature maps by the k × k convolution kernel. In general, the convolution kernel is set to small such as 3 × 3, which can reduce the number of training parameters of network. However, if using the small convolution kernel, the receptive field (the area of the input image that potentially impacts the activation of a particular convolutional kernel/neuron) is also small. To increase the region of receptive field, the network usually build very deep, which means to increase the number of convolutional layers. In fact, increasing the depth of convolution neural networks (the number of hidden layers) to enlarge the receptive field can lead to improved model performance. If directly using the big convolution kernel such as 7 × 7, compared to three convolution layers with 3 × 3 convolution kernel, the receptive field remains same, but the number of weights is increased by about

twice. An online resource1 is applied to clearly illustrate and visualize the change of receptive field by changing the number of hidden layers and the size of kernels.

Pooling Layers

The pooling layer used in CNN framework is mainly to reduce the redundant information and image size, and retain more important features. The most common type of pooling layers used is Max Pooling; the less common Average Pooling is sometimes seen in very deep neural networks. The pooling layer does not contain any trainable parameters, and its operation mode is similar to the convolution operator by sliding a small matrix of size f × f across the input image with stride s, but unlike convolution, pooling is used in each channel individually. As shown in Fig. 2.4, an example of Max Pooling, the operation involves taking the max value for f = 2 and s = 2 applied on a 4 × 4 matrix of feature map.

Activation Function

According to Fig. 2.1, we only consider one neuron N:

N = ∑ (w i × input i ) + b (2.1)
where w i is weight corresponding to input i , b denotes one bias.

So the neuron is to calculate a weighted sum of its input, and then add a bias (see Fig. 2.3), for the activation function, it is defined as how the weighted sum of the input is transformed into an output. As shown in Eq. 2.1, N ranges from negative infinity to positive infinity, which let neuron do not know the bounds of the value.

Therefore, if we want neurons to make a purposeful choice of input values, there must be certain restrictions by the activation function.

However, for the neural networks, there are three types of layers as shown in It is well known that neural networks are trained by backpropagation using error algorithms, requires the activation function to be differentiable. Until now, many activation functions have been proposed and widely used in neural networks, although perhaps only a small part of the activation functions is actually used in the hidden layer or the output layer.

Activation Function for Hidden Layer:

There are three activation functions for most commonly using in the hidden layer as follows:

• Rectified Linear Activation (ReLU) [START_REF] Hahnloser | Digital selection and analogue amplification coexist in a cortex-inspired silicon circuit[END_REF];

• Logistic (Sigmoid) [START_REF] Fiacco | Neural networks using a logistics sigmoid function: linear classifier bounds and global nonattainability[END_REF];

• Hyperbolic Tangent (Tanh) [START_REF] Anastassiou | Univariate hyperbolic tangent neural network approximation[END_REF].

For the ReLU [START_REF] Hahnloser | Digital selection and analogue amplification coexist in a cortex-inspired silicon circuit[END_REF] activation function, it is defined as:

f (x) = max (0, x) (2.2)
ReLU [START_REF] Hahnloser | Digital selection and analogue amplification coexist in a cortex-inspired silicon circuit[END_REF] activation function (as shown in Fig. 2.5) means from Eq. 2.2 that if the input value (x) is negative, then 0 is returned, otherwise, x is returned. However, it has some potential problems such as non-differentiable at zero, not zero-centered, and unbounded and so on. So, in order to solve its disadvantages, many activation functions were subsequently expanded based on ReLU such as Exponential linear units (ELU) [START_REF] Clevert | Fast and accurate deep network learning by exponential linear units (elus)[END_REF], and Leaky ReLU [START_REF] Maas | Rectifier nonlinearities improve neural network acoustic models[END_REF], The sigmoid activation function is familiar S-shape, and its output value range is from 0 to 1. The larger the input value, the closer the output value is to 1, otherwise, the closer to 0. However, sigmoid has some similar problems with ReLU such as not zero-centered, but it improves the non-differentiable at zero and unbounded

S (x) = 1 1 + e -x (2.3) 
Chapter 2. Theoretical Background problems. If we want to use the sigmoid or ReLU in the hidden layer, the input data should preferably be scaled to the range of 0 to 1.

For the Tanh [START_REF] Anastassiou | Univariate hyperbolic tangent neural network approximation[END_REF] activation function (as shown in Fig. 2.7), it is a scaled sigmoid function and defined as: Activation Function for Output Layer: There are also three activation functions for most commonly using in the output layer as follows:

T (x) = 2 * S (2x) -1 (2.4)
• Linear [START_REF] Sharma | Understanding activation functions in neural networks[END_REF];

• Logistic (Sigmoid);

• Softmax [START_REF] Sharma | Activation functions in neural networks[END_REF].

For the linear [START_REF] Sharma | Understanding activation functions in neural networks[END_REF] activation function, it directly returns the weighted sum of the input and not change the value. The linear activation function in output layer is mainly used for the regression task. Sigmoid is used for the binary classification task.

For the softmax [START_REF] Sharma | Activation functions in neural networks[END_REF] activation function, it outputs a vector of values that sum to 1 that can be interpreted as probabilities of class membership and is defined as:

σ (z) = e z i ∑ k j=1 e z i f or i = 1, • • •, k and z = (z 1 , • • •, z k ) R k (2.5)
It uses the standard exponential function to each element z i of the input vector z and normalizes these values by dividing by the sum of all these exponentials, which ensures that the sum of the components of the output vector σ(z) is 1. The softmax activation can be used not only for binary classification, but also for multi-classification tasks.

Training Neural Networks

For the neural network model to be successfully used, it must be trained for a long time based on big data. Therefore, there are certain requirements for the provided dataset. The dataset must contains paired images and labels for training and validating. Model parameters are updated through a loss function and an optimizer such as adam [START_REF] Kingma | Adam: A method for stochastic optimization[END_REF], RMSprop [START_REF] Tieleman | Divide the gradient by a running average of its recent magnitude. coursera: Neural networks for machine learning[END_REF] and stochastic gradient descent [START_REF] Sutskever | On the importance of initialization and momentum in deep learning[END_REF] and so on. If you want to learn more about optimizers, please refer to the literature [START_REF] Ruder | An overview of gradient descent optimization algorithms[END_REF]. During the process of training, the loss function continuously calculates the error between the prediction and the label in each iteration, then minimizes the error value by providing signals for the optimizer to update the network parameters through backpropagation [START_REF] Rumelhart | Learning representations by back-propagating errors[END_REF].

Loss Functions

Categorical Cross Entropy (CCE) [START_REF] Zhang | Generalized cross entropy loss for training deep neural networks with noisy labels[END_REF] loss is commonly used for multi-class classification and segmentation. It is defined as:

CCE = -∑ C i=1 ∑ H a=1 ∑ W b=1 y i (a,b) ln y * i (a,b) , (2.6) 
where C is the number of classes of each image, H and W are the height and width of image, y i (a,b) ∈ {0, 1} is the ground truth one-hot label of class i in the position (a, b) and y * i (a,b) is the predicted probability of class i. Dice Coefficient (DC) [START_REF] Dice | Measures of the amount of ecologic association between species[END_REF] loss is used to measure the similarity between two sets as defined in Eq. 2.7.

DC = 1 - 2 |A B| |A| + |B| (2.7)
where A and B denote the 2D image matrix of prediction and target, respectively. The loss function mentioned above is the simplest form, and some new loss functions are extended based on them, for example, to solve class imbalance problem, the weighted cross-entropy loss [START_REF] Aurelio | Learning from imbalanced data sets with weighted cross-entropy function[END_REF] and weighted dice loss [START_REF] Sudre | Generalised dice overlap as a deep learning loss function for highly unbalanced segmentations[END_REF] are presented, which is weighted to calculate rare classes or small objects.

Optimizers

During the training process of the network, optimizers are used for changing the parameters (weights) of the network to minimize the loss function. To successfully train the network, choosing the right optimizer is crucial. Therefore, we need to fully understand the pros and cons of various optimizers. Nowadays, the main optimizers are Stochastic Gradient Descent (SGD) [START_REF] Ketkar | Stochastic gradient descent[END_REF], Adaptive gradient algorithm (Adagrad) [START_REF] Duchi | Adaptive subgradient methods for online learning and stochastic optimization[END_REF], Root Mean Square Prop (RMSprop) [START_REF] Tieleman | Divide the gradient by a running average of its recent magnitude. coursera: Neural networks for machine learning[END_REF], and Adaptive Moment Estimation (Adam) [START_REF] Kingma | Adam: A method for stochastic optimization[END_REF], etc. Next we will explain them one by one.

Stochastic Gradient Descent (SGD) [97]:

It is defined as:

θ = θ -η θ J θ; x i , y i (2.8)
where θ is a network's parameters θ R. J ( * ) denotes an objective function (loss function). θ J ( * ) denotes the opposite direction of the gradient of the objective func- tion. η is the learning rate, which denotes the step size of updating gradient. x i and y i denotes the input and label of each training example, respectively. The network's parameters are updated based on each training example by SGD optimizer, which does not perform redundant computations for large datasets, and new training example can be added. However, every iteration is not toward the direction of global optimization, because SGD does not update the network's parameters based on the entire sample. Although the training speed is fast, the accuracy is reduced, which is not the global optimum. SGD updates the parameters frequently, which will cause serious fluctuations for the objective function.
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SGD is easily trapped in the case of ravines. Ravines means that one direction of the surface is steeper than the other. At this time, SGD will oscillate and it will not be close to the minimum value. To solve this problem, momentum is added into Eq. 2.8 that is redefined as:

v t = γv t-1 + η θ J θ; x i , y i (2.9) θ = θ -v t (2.10)
where γ is a fraction and usually set to 0.9. Essentially, we push a small ball down a mountain. There are no obstacles in the whole process of rolling down. The speed of the ball is getting faster and faster, so its momentum is also increasing. The same phenomenon also appears in updating the network parameters:the increase of momentum must be the same as the direction of the gradient, otherwise, it will decrease.

Finally, we gain convergence quickly and reduce the oscillation as shown in Fig. 2.9. 

θ t+1,i = θ t,i - η G t,ii + • g t,i (2.11) 
G t,ii = t ∑ τ=1 (g τ,i ) 2 (2.12)
where g t,i denotes the gradient of θ i at time step t:

g t,i = θ J (θ i ) (2.13)
Therefore, the advantage of Adagrad is that it eliminates the need to manually tune the learning rate and the learning rate is usually set to 0.01, but its disadvantage is also very obvious. Since the denominator in Eq. 2.11 is accumulating the square gradient during training, which causes the learning rate to shrink and eventually Chapter 2. Theoretical Background become infinitely small. At this time, the optimizer can no longer acquire additional knowledge.

Root Mean Square Prop (RMSprop) [89]:

It is to solve the problem of Adagrad's radically diminishing learning rates and is defined as

E g 2 t = γE g 2 t-1 + (1 -γ) g 2 t (2.14)
where E(•) denotes the expectation, therefore, E g 2 t is calculated by the previous average and the current gradient according to Eq. 2.14, and γ is usually set to 0.9.

And then, the update rules are as follows:

θ t+1 = θ t - η E [g 2 ] t + • g t (2.15)
Adaptive Moment Estimation (Adam) [START_REF] Kingma | Adam: A method for stochastic optimization[END_REF]: It is equivalent to RMSprop plus momentum. The decaying averages of past and past squared gradients m t and v t is calculated, respectively, as follows:

m t = β 1 m t-1 + (1 -β 1 ) g t v t = β 2 v t-1 + (1 -β 2 ) g t (2.16)
where m t denotes the estimate of the first moment at time step t. v t denotes the estimate of the second moment at time step t. If m t and v t are initialized as vectors of 0's, they will be biased towards 0, so the bias is corrected as follows:

mt = m t 1 -β t 1 vt = v t 1 -β t 2 (2.17)
Therefore, the Adam optimizer's update rules are as follows:

θ t+1 = θ t - η √ vt + • mt (2.18)
where β 1 =0.9, β 2 = 0.999, =10e-8.

In summary, choosing the right optimizer is very important for training the network. If the training data is sparse data, we should choose the self-applicable optimizer such as Adagrad, RMSprop, Adam, but, in general, Adam is the best choice.

Metrics

Before training the network, we need to set up some observation metrics to know whether the network is moving in our predetermined. We usually use classification accuracy and logarithmic loss as observation metrics during the training process.

For the classification accuracy, it is the ratio of number of correct predictions to the total number of input samples and is defined as follows: 

Accuracy = Number o f correct
loss = -1 N N ∑ i=1 M ∑ J=1 y ij * log p ij (2.20)
where y ij denotes whether the sample i belongs to the class j or not. p ij denotes the probability that the sample i belongs to the class j. It can work well for classification tasks. Generally, the classifier can be provided with higher accuracy by minimizing the logarithmic loss. There are many other observation metrics such as Confusion Matrix [START_REF] Marom | Using the confusion matrix for improving ensemble classifiers[END_REF], Area under Curve [START_REF] Calders | Efficient auc optimization for classification[END_REF], Mean Absolute Error [START_REF] Willmott | Advantages of the mean absolute error (mae) over the root mean square error (rmse) in assessing average model performance[END_REF] and Mean Squared

Error [START_REF] Prasad | The estimation of the mean squared error of small-area estimators[END_REF] and so on. The purpose of backpropagation is mainly to optimize the weights so that the network learn how to correctly transform inputs to outputs. We want the final output o1 and o2 to reach 0.02 and 0.98, respectively. Therefore, we first need to calculate the predicted value of the forward path of the network.

There are two neurons in the hidden layer, called h1 and h2. We use the logistic function as the activation function. So out h1 is calculated by

out h1 = sigmoid(i1 × w1 + i2 × w2 + b1)
= sigmoid(0.04 × 0.12 + 0.2 × 0.24 + 0.36)

= 1 1 + e -0.4128 = 0.6017590759 (2.22)
out h2 is calculated by the same process and out h2 = 0.60587366843. We continue to calculate the final outputs out pre1 and out pre2 : out pre1 = 0.78799802619; out pre2 = 0.80281786099. Then calculating the total error between the final outputs and prediction outputs by squared error function:

E total = 2 ∑ i 1 2 (oi -out prei ) 2 = E o1 + E o2 = 1 2 (0.02 -0.78799802619) 2 + 1 2 (0.98 -0.80281786099) 2 = 0.310607239 (2.23)
We have completed the calculation of the forward path of the network. Then we need to calculate the backward path of the network. During the process of calculating the backward path, its purpose is to minimize the total error by minimizing the error of each neuron, for example, we consider how w5 affects the total error E total , and it is denotes ∂E total ∂w5 . ∂E total ∂w5 denotes the partial derivative of E total with respect to w5. According to the chain rule2 :

∂E total ∂w5 = ∂E total ∂out pre1 × ∂out pre1 ∂w5 (2.24)
Due to

E total = 1 2 (o1 -out pre1 ) 2 + 1 2 (o2 -out pre2 ) 2 , so ∂E total ∂out pre1 = 2 × 1 2 (o1 -out pre1 ) 2-1 × 1 + 0 = -0.767998026 (2.25)
Due to out pre1 = sigmoid(out h1 × w5 + out h2 × w6 + b2), so 

∂out pre1 ∂w5 = out pre1 × (1 -out pre1 ) × 1 × out h1 × w5 1-1 + 0 + 0 = 0.78799802619 × (1 -0.78799802619) × 1 × 0.6017590759 × 1 = 0.
× w1 + i2 × w2 + b1), so ∂out h1 ∂w1 = out h1 × (1 -out h1 ) × i1 = 0.6017590759 × (1 -0.6017590759) × 0.04 = 0.009585804 (2.33) Finally, ∂E total ∂w1 = ∂E total ∂out h1 × ∂out h1 ∂w1 = -0.020558885 × 0.009585804 = -0.000197073 w1 update = w1 -η × ∂E total ∂w1 = 0.12 -0.01 × (-0.000197073) = 0.120001971 (2.34)
w2, w3, and w4 can be updated by the same process. The above calculation process is the update principle of backpropagation for all weights of the network.

Over-fitting

In the field of medical image analysis, due to the small dataset, such as just a few patient data, it often leads to over-fitting problems in training neural networks. In order to alleviate this problem, many new methods have been proposed as follows:

(1) Data augmentation [START_REF] Hussain | Differential data augmentation techniques for medical imaging classification tasks[END_REF] is a method to artificially create new training data from existing training data by using affine transformations such as rotation, scaling, and flipping and so on;

(2) Regularization is a method which makes slight modifications to the learning algorithm such that the model generalizes better. L1 and L2 [START_REF] Moore | L1 and l2 regularization for multiclass hinge loss models[END_REF] regularization are commonly used, which penalize the sum of the absolute weights and the sum of the squared weights, respectively;
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(3) Dropout [START_REF] Srivastava | Dropout: a simple way to prevent neural networks from overfitting[END_REF] is also a regularization technique that randomly drops some units (both hidden and visible) in the neural network during the process of training, which prevents complex co-adaptations on training data;

(4) Transfer learning [START_REF] Chen | Med3d: Transfer learning for 3d medical image analysis[END_REF] is a method where knowledge is transferred from one model to another, which is achieved by loading the weights of a pre-trained model into the current model, and keeps the framework of the pre-trained models unchanged in the different tasks.

Evaluation Metrics

In order to evaluate the performance of medical image segmentation methods, many evaluation metrics are proposed, which are mainly divided into three types: (a) volume-based metrics such as Dice metric [START_REF] Dice | Measures of the amount of ecologic association between species[END_REF] and Jaccard similarity index [START_REF] Niwattanakul | Using of jaccard coefficient for keywords similarity[END_REF]; (b) surface distance-based metrics such as Hausdorff distance [START_REF] Serra | Hausdorff distances and interpolations[END_REF]; (c) clinical performance metrics such as ventricular volume and mass. In this dissertation, we mainly report the accuracy of methods in terms of the Dice metric [START_REF] Dice | Measures of the amount of ecologic association between species[END_REF] and Hausdorff distance [START_REF] Serra | Hausdorff distances and interpolations[END_REF], which already includes the evaluation of regions and boundaries and can fully evaluate methods. Firstly, the Dice metric [START_REF] Dice | Measures of the amount of ecologic association between species[END_REF] is defined in Eq. 2.35. In the evaluation process, the evaluation metrics is based on one patient (3D volume) rather than one image, therefore, A 3D and B 3D of Eq. 2.35 are the 3D image matrix of prediction (as shown in Fig. 2.11) and target, respectively. For the Hausdorff distance [START_REF] Serra | Hausdorff distances and interpolations[END_REF] as defined in Eq. 2.36, it is the longest distance you can be forced to travel by an adversary who chooses a point in one of the two sets, from where you then must travel to the other set. In other words, it is the greatest of all the distances from a point in one set to the closest point in the other set. It is also based on 3D space, which is the same as dice metric.

Dice = 2 |A 3D B 3D | |A 3D | + |B 3D | (2.35)
d H (X, Y) = max sup x X (in f y Y d (x, Y)), sup y Y (in f x X d (X, y)) (2.36)
where X and Y denote two non-empty subsets of a metric space, sup represents the supremum.

Attention Method

In the field of medical imaging, due to the existence of a large amount of redundant information, the over-fitting of the network is aggravated. An important property of the human visual system is to not process a whole scene at once. Instead, humans exploit a sequence of partial glimpses, and selectively focus on salient parts in order to capture the visual structure in a better way [START_REF] Larochelle | Learning to combine foveal glimpses with a third-order boltzmann machine[END_REF][START_REF] Woo | Cbam: Convolutional block attention module[END_REF]. For this reason, attention methods have been developed: they focus on important regions, filter irrelevant information, and make up the limited receptive field of CNNs. They get good performance on segmentation tasks [START_REF] Zhang | Deep gated attention networks for large-scale street-level scene segmentation[END_REF][START_REF] Chen | Attention to scale: Scaleaware semantic image segmentation[END_REF][START_REF] Wang | Deep attentional features for prostate segmentation in ultrasound[END_REF][START_REF] Schlemper | Attention gated networks: Learning to leverage salient regions in medical images[END_REF]. The block diagram of the attention module is shown in Fig. 2.13. The attention module teaches the network to pay attention to important features (e.g., features relevant to anatomy) and ignore redundant features.

Attention mechanism Attention Module (CAM) [START_REF] Tian | Exploration of different attention mechanisms on medical image segmentation[END_REF]. CAM and PAM evolved based on CAB and RAB.

Channel Attention Block (CAB):

Its purpose is to select the more important channel among all input channels, which means that each channel will be given a corresponding weight. The entire realization process is shown in Fig. 2 . C, W and H denote channel, width and height, respectively.

First, CAB will use the global average pooling layer to compress the spatial information, which transforms the shape of the input feature map from

C × W × H to C × 1 × 1. We assume that F = [M 1 , M 2 , M 3 , ..., M C ] (M i R H×W , i [1, C]
) as the input feature maps. After the global average pooling layer, the output g is acquired by
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g i = 1 H × W H ∑ j=1 W ∑ k=1 M i (j, k) (2.37)
where (j, k) denotes the spatial position. Then g goes through two fully connected layers, which squeezes and expands the dimensions of feature maps. Finally, CAB uses one sigmoid layer to score each channel and get attention maps A C . The final output F C after passing CAB can be calculated by RAB focuses on spatial information, first, the number of channel is compressed from C to 1 by one convolutional layer, then using the sigmoid layer to score each pixel of feature maps and get attention maps A R . The final output F R after passing RAB can be calculated by F is fed into a convolutional, a Reshape and then a Transpose layers, resulting in a feature map F u 0 ∈ R (W×H)×C . In the second branch (consider the order from top to bottom), the input feature map F follows the same operations minus the Transpose layer, resulting in F u 1 ∈ R C×(W×H) . Then, the Multiply and the Softmax layers follow; they are applied on F u 0 and F u 1 to obtain the spatial attention map A u ∈ R (W×H)×(W×H) . The input F is fed into a different convolutional layer in the third branch, and is then multiplied by A u fed into the Transpose layer, resulting in

F C = F × A C (2.
F R = F × A R (2.
F u 2 .
Therefore the output F u can be formulated as follows:

F u = λ × F u 2 + F, (2.40) 
where λ ∈ R C is initialized to [0,..,0]. The values λ is used to gradually learn the importance of the spatial attention map.

Channel Attention Module (CAM):

Its purpose is mainly to discover the relationship between the different channels. The entire realization process is shown in Fig. 2.17. The channel attention map A l can be obtained by different combinations of convolutional, Reshape and Transpose layers. Finally, the output F l can be defined as follows:

F l = β × F l 2 + F, (2.41) 
where β ∈ R C is initialized to [0,..,0]. The feature map F l 2 denotes the results of the product of the input F with A l fed into a convolutional passing through the transpose block.

The above attention units belong to soft attention. Soft attention is parameterization, so it is differentiable. Therefore, we can embed it into the network framework and train it together with other layers of the network. The gradient can be back propagated to other parts of the network through the attention unit. Compared with soft attention, there must be hard soft. However, there is relatively little research on hard attention by researchers. For the hard attention, we need to select feature maps of the input by using attention scores, which means one
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problem, because we can choose one function such as argmax to finish the selection, however, as we all know, it is not differentiable. Therefore, we can not embed it into the network for directly training, and need to more complex methods to solve this problem. Fig. 2.18 details the different between soft attention and hard attention. Soft attention can process everything but weights various regions differently.

Hard attention can select only a fraction of the data for processing [START_REF] Papadopoulos | Hard-attention for scalable image classification[END_REF]. Hardattention models address various use-cases, and can be motivated by interpretability [START_REF] Elsayed | Saccader: improving accuracy of hard attention models for vision[END_REF], reduction of high-resolution data acquisition cost [START_REF] Uzkent | Learning when and where to zoom with deep reinforcement learning[END_REF], or computational efficiency [START_REF] Katharopoulos | Processing megapixel images with deep attention-sampling models[END_REF].

Conclusion

In this chapter, we have explained the fundamentals of deep learning and attention method. These basic knowledge will facilitate the understanding of the content of the subsequent chapters.

Part III

Heart Segmentation Methods

Chapter 3

Heart Data Preparation

There are many ways to preprocess medical image data before feeding into the network such as data augmentation, crop, resample, centralization (subtracting mean) and standardization (subtracting mean and then dividing standard deviation) and so on. Although we have used data augmentation cropping and resampling during the process of preprocessing, in this part we mainly explore the impact of centralization and standardization on network output.

Data Preprocessing Exploration

We design a series of experiments, which are mainly based on two network frameworks and two public datasets. These two frameworks are UNet as shown in Fig. 1.6 and an improved FCN framework [19] as shown in Fig. 3.1. These two public datasets are MRBrainS20181 and 2018 atrial segmentation challenge2 . C1, C3, C5, C7 are the repeated application of two 3×3 convolution operation with a rectified linear unit (ReLU), and its number of filters is [32 [START_REF] Tong | RIANet: Recurrent interleaved attention network for cardiac MRI segmentation[END_REF] 128 256 512 256 128 64 32]. C2, C4, C6, C8 are the max pooling operation with stride 2, after passing the max-pooling layer, the number of channels is doubled. For the expansive path, it mainly includes upsampling layers, convolutional layers and concatenate layer.

Architecture of Network

After passing the upsampling layers and convolutional layers, the shape of feature maps doubles as before, but the number of channels is halved. Then concatenating the corresponding to feature maps from the contracting path. Finally, the output of network is obtained by the 1×1 convolutional layer.

Improved FCN framework [19]:

The network architecture is illustrated in Fig. 3.1.

The architecture is based on the 16-layer VGG network [15] pre-trained on millions of natural images of ImageNet for image classification [16], but there is a little difference with VGG16 network that the fully connected layers of VGG16 network is removed, and only keep the four blocks of convolutional parts called "base framework". The base framework consists of convolutional layers: z i = w i × x + b i , Rectified Linear Unit (ReLU) layers for non-linear activation function: f (z i ) = max(0, z i ), and max-pooling layers between two successive blocks, where x is the input of each convolutional layer, w i is the convolution parameter, and b i is the bias term. The three max-pooling layers divide the base network into four blocks of fine to coarse feature maps. Inspired by the work in [17,18], specialized convolutional layers (with a 3 × 3 kernel size) with K (e.g. K = 16) feature maps are added after the convolutional layers at the end of each block. All the specialized layers are then rescaled to the original image size, and concatenated together. A last convolutional layer with kernel size 1 × 1 is added at the end of the network. This last layer combine linearly the fine to coarse feature maps in the concatenated specialized layers, and provide the final segmentation result.

Dataset Description

MRBrainS2018: It3 provides 30 MRI scans, which contains three modalities such as T1-weighted, T1-weighted inversion recovery and T2-FLAIR. Seven of them are released as the training dataset. Another 23 scans are kept unreleased for test dataset.

Its aim is to segment the 8 brain structure such as cortical gray matter, basal ganglia, white matter, white matter lesions, cerebrospinal fluid in the extracerebral space, ventricles, cerebellum and brain stem. The dataset includes same image size: 48× 240×240.

Atrial dataset [START_REF] Xiong | A global benchmark of algorithms for segmenting the left atrium from late gadolinium-enhanced cardiac magnetic resonance imaging[END_REF]: 2018 atrial segmentation challenge released 100 annotated 3D MRIs from patients with atrial fibrillation. Its aim is to segment the left atrium.

The pixel spacing of the MR images is 0.625 x 0.625 x 0.625 mm/pixel. The dataset includes two different image sizes: 88×576×576 and 88×640×640.

Experimental Results

For the 2018 atrial segmentation challenge dataset, based on the UNet framework, we obtain two segmentation results by using different preprocessing method as shown in Table . 3.1, but the difference between the two segmentation results is very small, only 0.59% in term of dice coefficient. Based on the improved FCN framework [19], for using the centralization method to preprocess the training data, the atrial segmentation results can reach 90.96%. If changing preprocessing method to standardization, the segmentation results do not show significant fluctuations. As we all know, noise is everywhere. To evaluate the quality of a network, antinoise is also one of the indicators, so we continue to explore the sensitivity of the network to noise for different preprocessing methods. In order to add different noises to the original image, we use a python library called imgaug 4 , which can help user with augmenting images for machine learning projects. We mainly use functions AdditiveGaussianNoise() and SaltAndPepper() of imgaug library. For the AdditiveGaus-sianNoise(), if user wants to add gaussian noise to an image, it will sample once per pixel from a normal distribution N(0, s), where s is sampled per image and varies between 0 and s * 255 as follows: import imgaug . augmenters as i a a aug = i a a . AdditiveGaussianNoise ( s c a l e = ( 0 , s * 2 5 5 ) )

For the SaltAndPepper(), it means that replaces p such as 10% of all pixels with salt and pepper noise as follows: import imgaug . augmenters as i a a aug = i a a . SaltAndPepper ( p )

For adding the gaussian noise to images, as shown in Fig. 3.2, we change the parameter s of function AdditiveGaussianNoise() from 0.01 to 0.09. As s increases, there is more and more noise in the image. For adding the salt and pepper noise, we test the network based on the parameter p of function SaltAndPepper() in two different orders of magnitude, which is from 0.01 to 0.09 and from 0.001 to 0.009, respectively.

As can be seen in Fig. 3.3, the same phenomenon occurs as when Gaussian noise is added, i.e., as the parameter p increases, the noise becomes stronger. There is one same phenomenon as Fig. 3.6 and Fig. 3.7 when the parameter s is same, which is that using the standardization can get better integrity of left atrial segmentation than the centralization. In Fig. 3.8, the surface of the segmentation results is smoother than the segmentation results of Fig. 3.9, which also explains that the standardization preprocessing method makes the network more robust to noise than the centralization. 

Conclusion

In this chapter, we have explored the impact of different preprocessing methods on the output of network. We have seen that using the standardization preprocessing method makes the network more robust to noise than the centralization method, and different networks have different sensitivity to noise. Therefore, we will choose standardization as our preprocessing method to process the dataset.

Chapter 4

Two-stage Segmentation Method

For medical images, in addition to the object regions, there are a large number of background regions, which affects the segmentation accuracy. Therefore, in this chapter, we first localize roughly the object to reduce the influence of the background, and then crop the object regions to segment.

Methodology

Overview of Network Architecture

The global overview of our A 0 Net consists of two parts (localization and segmentation) as depicted in Fig. 

Localization Network

The localization network (Net.1) is depicted in Fig. 

Segmentation Network

As mentioned above, we replace Block 1 of Net. 

Hybrid Loss

To obtain high quality regional segmentation and nice boundaries, we define as a hybrid loss: = λ 1 CCE + λ 2 SSIM + λ 3 DC , where CCE , SSIM and DC respectively denote CCE loss [22], SSIM loss [23] and DC loss [24] respectively,

λ 1 = λ 2 = λ 3 = 1.
CCE [22] loss is commonly used for multi-class classification and segmentation.

It is defined as:

CCE = -∑ C i=1 ∑ H a=1 ∑ W b=1 y i (a,b) ln y * i (a,b) , (4.1) 
where C is the number of classes of each image, H and W are the height and width of image, y i (a,b) ∈ {0, 1} is the ground truth one-hot label of class i in the position (a, b) and y * i (a,b) is the predicted probability of class i. SSIM loss can assess image quality [23], and can be used to capture the structural information, which will decrease the mis-segmentation rate of surrounding similar tissues. Therefore, we integrated it into our training loss to learn the differences between the segmented domain and similar tissues around the segmented domain. Let S and G be the predicted probability map and the ground truth mask respectively, the SSIM of S and G is defined as:

SSIM = 1 - (2µ S µ G + C 1 )(2σ SG + C 2 ) (µ 2 S + µ 2 G + C 1 )(σ 2 S + σ 2 G + C 2 ) , ( 4.2) 
where µ S , µ G and σ S , σ G are the mean and standard deviations of S and G respectively, σ SG is their covariance, C 1 = 0.01 2 and C 2 = 0.03 2 are used to avoid a division by zero.

DC [24] loss is used to measure the similarity between two sets as defined in Eq. 2.36. But for the multi-class segmentation task, Eq. 4.3 is not suitable due to the class imbalance problem in such cases. Therefore, we extend the definition of the DC loss to multi-class segmentation in the following manner: 

dice i = ( + 2 ∑ N i n=1 y i n y * i n ) / ( + ∑ N i n=1 (y i n + y * i n )) (4.
DC = 1 -∑ C i=1 dice i / (N i + ), (4.4) 
where N i denotes the numbers of class i and is a smooth factor. Even after a localization procedure, these tissues are still present. An idea to decrease their impact on segmentation results is to get inspired by the biological visual system, which concentrates on certain image regions requiring detailed analysis [START_REF] Torralba | Contextual priming for object detection[END_REF]. We define the GA as:

Gaussian-like Attention (GA)

I GA (a, b) = I(a, b)ω GA (a, b)
, where I(a, b) de- notes the image intensity at location (a, b) and ω GA (a, b) is a Gaussian-like weighted function defined by

ω GA (a, b) = α exp -| (a,b)-(a * ,b * ) δ | β (4.5)
where (a * , b * ) denotes the object center, α is a normalization constant, δ is a scale parameter, and β is a shape parameter. As shown in As shown in Fig 4 .5, we use temporal information, therefore, in order to cooperate with the operation of temporal information, we refine the normalization constant α at Eq. 4.12 by Hamming window at Eq. 4.6 and Hanning window at Eq. 4.8.

κ(p) = a 0 -(1 -a 0 ) • cos 2π • p H -1 , 0 ≤ p ≤ H -1 (4.6) 
where a 0 = 0.53836 because of Hamming windows. H denotes height.

A(p) = κ(0), • • • , κ(p), • • • , κ(H -1) H×1 (4.7) ν(q) = 0.5 • cos 2π • q W -1 , 0 ≤ q ≤ W -1 (4.8)
where W denotes width.

B(q) =          ν(0) . . . ν(q) . . . ν(W -1)          1×W (4.9) Θ(a, b) = exp -| (a,b)-(a * ,b * ) δ | β (4.10) C(a, b) =     Θ(1, 1) • • • Θ(1, W) . . . • • • . . . Θ(H, 1) • • • Θ(H, W)     H×W (4.11) α = A(p)B(q) ∑ H a=1 ∑ W b=1 A(p)B(q) C(a, b) (4.12) 
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δ = H + W 2 (4.13)
Because the cropped image size constantly changes after locating, δ is used for decreasing the impact of image size.

If I GA (a, b) is directly applied on each original image, the object of interest would probably be missed. Therefore, we first must find the region of interest; and then use I GA (a, b) to focus on the object. This procedure is depicted in Fig. 4.3(e), where similar tissues are clearly less important compared to Fig. 4.3(c).

Experimental Results

Dataset Description

We evaluated our method on four datasets: LVQuan19, the MICCAI Workshop on 

Preprocessings

Since the VGG-16 network's input is an RGB image, we propose to take advantage of the temporal information by stacking 3 successive 2D frames: to segment the n th slice, we use the n th slice of the MR volume, and its neighboring (n -1) th and (n + 1) th slices, as green, red and blue channels, respectively. This new image, named "temporal-like" image, enhances the area of motions, here the heart, as shown in Fig. 4.5.

Let us remind what we call Gauss normalization: for each (2D + t)-image I corresponding to a given patient, we compute I := (Iµ)/σ where µ is the mean of I and σ its standard deviation (σ is assumed not to be equal to zero). There are then two different pre-processing steps as depicted in Fig. 4.1.

1) The first pre-processing (see Prepro.1 in Fig. 4.1) begins with a Gauss normalization. Then, for each n, we created the width×height×3 pseudo-color ("temporallike") image where R, G, B correspond respectively to the n -1, n, n + 1 frames and we concatenate them.

2) The second pre-processing (Prepro.2 in Fig. 4.1) follows five steps: (1) data augmentation using rotations and flips for the LVQuan19 dataset (only for the training phase), but it is not used on the HVSMR16, MM-WHS2017 and AtriaSeg18 dataset, (2) resizing with a fixed pixel-spacing (0.65mm), (3) GA, (4) Gauss normalization, and (5) pseudo-color concatenated image like above. Such a use of a pseudo-color image in the context of 3D medical imaging has been proven effective in [START_REF] Wang | Benchmark on automatic 6month-old infant brain segmentation algorithms: The iSeg-2017 challenge[END_REF] to segment brain structures and in [START_REF] Kuijf | Standardized assessment of automatic segmentation of white matter hyperintensities: Results of the WMH segmentation challenge[END_REF] to extract white matter hyperintensities in brain volumes.

Postprocessing

Let us assume that we crop an initial volume of T frames of size T ×W × H into an image of size T×w×h (where the crop is due to the localization procedure, and W and H are the initial width and height of a slice). After Prepro.2 we obtain a T ×w×h×3 image. Then we filter the ouput of the segmentation network, of size T ×w×h, by keeping only the greatest connected component, in order to get back the initial pixel-spacing. Finally, we add a padding of zeros to get back a T×W ×H image.

Implementation and Experimental Setup

We implemented our experiments on Keras/TensorFlow using a NVidia Quadro P6000 GPU. For the localization network, we used the multinomial logistic loss function for a one-of-many classification task, passing real-valued predictions through a softmax to get a probability distribution over classes. We used an Adam optimizer (batchsize = 1, β 1 = 0.9, β 2 = 0.999, ε = 0.001, lr = 0.002) and we did not use learning rate decay. We trained the network during 10 epochs. For this step, we merged all the classes into the object class to obtain a binary segmentation. For the segmentation network, we used the same optimizer and parameters detailed previously.

We used the hybrid loss as loss function. For this task, we considered three different classes (background, myocardium, cavity) for LVQuan19, three different classes (background, myocardium, blood pool) for HVSMR2016 and eight different classes (background, myocardium, left atrium, left ventricle, right atrium, right ventricle, ascending aorta and pulmonary artery) for MM-WHS2017.

Evaluation Methods

Three measures are used to evaluate our method: DC given in Eq. 2.36, 95% in the Hausdorff distance (95HD) [START_REF] Huttenlocher | Comparing images using the hausdorff distance[END_REF] and Boundary of Dice Coefficient (BDC) to quantitatively evaluate the boundaries. As many diseases appear in the myocardium wall, we chose to quantitatively evaluate the precision of the segmentation on boundaries.

Fig. 4.6 shows the illustration of BDC procedure. For the BDC evaluation method, given a segmentation map M, we first convert the class i to a binary mask, M i bm . Then, we obtain the mask of class i of its one pixel wide boundary by conducting an XOR(M i bm , M i erd ) operation where M i erd is the eroded binary mask of M i bm . The same method is used to get the GT mask boundaries, M i g . Then the DC is calculated on the boundaries of the GT and segmentation masks to obtain the BDC. To demonstrate the effects of our A 0 Net, we compared the results of our method with other related frameworks. We took a network used in our previous works [START_REF] Xu | From neonatal to adult brain MR image segmentation in a few seconds using 3D-like fully convolutional network and transfer learning[END_REF][START_REF] Puybareau | Left atrial segmentation in a few seconds using fully convolutional network and transfer learning[END_REF] as baseline network (Net.1). First, we added a localization module (as shown in Fig. 4.1) based on the baseline; with this module, we obtained a mean improvement of 1.89% in terms of DC, 0.9772 on 95HD, which meant that reducing the proportion of the background in the image is beneficial to improve segmentation accuracy. This architecture was the one we presented for the Challenge LVQUAN19 [20]. Further, we added the Block 2 module, so Net.1 was changed to Net.2 (Baseline+Block2) as shown in Fig. 4.2. We learned from our comparison results that, when using dilated convolution and capturing the global information in the feature maps of high level, we could refine the segmentation results, which meant further improvement of 1.70% in terms of DC, 0.1893 on 95HD. Loss ablation: To prove the effects of our hybrid loss, we conducted comparative experiments over different losses based on our method. The results in Tbl. 4.1 illustrate that the proposed hybrid loss helps to improve the performance, and, compared with other combinations, that loss function based on three-level hierarchy (pixel-, patch-and map-level) can fully guide the network to study the transformation relationship between the input image and the corresponding label. GA ablation: As shown in Fig. 4.7, without GA, the surrounding similar tissues are mis-segmented, meaning that the segmentation results are disturbed by these similar tissues, and mis-segmented parts are connected to the ground truth, which is very difficult to remove. Therefore, by using our GA module, we decrease the impact of the surrounding similar tissues, and the segmentation results are better.

Ablation Study

λ ablation To explore the influence of the proportionality coefficient λ of the hybrid loss on the segmentation results, we continued to conduct the λ ablation study, and its results were shown in Tbl. 4.2. As shown in the Tbl. 4.2, if the proportionality coefficient λ 1 = λ 2 = λ 3 = 1, the segmentation results will be best. Compared with the Tbl. 4.1, no matter what the proportionality coefficient is, the 95HD is still around 1.85, which verifies that the proposed hybrid loss can preserve more boundary details than a single loss. If added a higher weight to any one of the three loss functions of the hybrid loss, or added a higher weight to any two of the three loss functions, the 95HD is lower than unweighted hybrid loss, which meant that in different level hierarchy, it is best not to bias against a certain level hierarchy.

Statistical analysis Fig. 4.8 shows the box plots of the evaluation on different framework configurations for dice scores. Compared with others configurations, the segmentation results obtained by our method (configuration:i) have a small standard deviation, which shows that our method is more stable on region segmentation. Fig. 4.9 shows the box plots of the evaluation for 95HD. Compared with others configurations, based on the median quantile of box plots and the average of 56 patients, 
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Method

Conclusion

In this chapter, we propose a new single-minded attention network framework, A 0 Net, and present a new hybrid loss for boundary-aware segmentation. A 0 Net is able to prevent the interferences of surrounding similar tissues, while the hybrid loss guides it at several levels. Both generate a better capture not only of large-scale information but also of fine structures to produce segmentations with nice boundaries.

The computation time of the entire pipeline is less than 2 seconds on Quadro P6000

GPU for an entire 3D volume and the proposed model size is about 122 MB, making it usable for clinical practice. However, the proposed two-stage segmentation method is not one end-to-end segmentation method, we need to train the localization network and the segmentation network separately. Otherwise, the localization Chapter 5

End-to-end Segmentation Method

In the chapter 4, we have proposed two-stage method to segment heart, but it is not end-to-end segmentation method. In this chapter, we want to replace the localization of the chapter 4 with an attention module, in order to achieve end-to-end trainable segmentation method to obtain higher segmentation accuracy. 

Methodology

Architecture of Network

Attention Module

As mentioned before, in a traditional segmentation model, the usual issue is that receptive fields are too small, which leads to poor contextual representations. Furthermore, the relationship between the different channels should be explored since each channel map represents one feature-specific response. Therefore, improving the dependencies among channel maps can lead to richer features. To solve these issues, we use an attention module inspired by [26]. As shown in Fig. 5.2, F ∈ R C×W×H acts as an input feature map for the attention module, where C, W, H are the channel, the width and the height of the feature map respectively. The upper branch F is fed into a convolutional, a Reshape and then a Transpose layers, resulting in a feature map F u 0 ∈ R (W×H)×C . In the second branch (consider the order from top to bottom), the input feature map F follows the same operations minus the Transpose layer, re- W×H) . Then, the Multiply and the Softmax layers follow; they are applied on F u 0 and F u 1 to obtain the spatial attention map A u ∈ R (W×H)×(W×H) . The input F is fed into a different convolutional layer in the third branch, and is then multiplied by A u fed into the Transpose layer, resulting in F u 2 . Therefore the output F u of the upper branch can be formulated as follows: Finally, the output F l of the lowest branch can be defined as follows: [1,..,1]. The feature map F l 2 denotes the results of the product of the input F with A l fed into a convolutional passing through the transpose block. Therefore, the attention feature map F a is defined as:

sulting in F u 1 ∈ R C×(
F u = λ × F u 2 + β × F, where λ ∈ R C is initialized to [0,..,
F l = λ × F l 2 + β × F, where λ ∈ R C is initialized to [0,..,0], and β ∈ R C is initialized to
F a = Conv (F u ) + Conv F l .
(5.1)

Compared with [26], our proposed attention module is different with it. Firstly,the final outputs of Position Attention Module (PAM) and Channel Attention Module (CAM) are differently defined. In our method, as shown in Fig. 5.2, the final output of PAM is defined as: [1,..,1]. The values λ and β are used to gradually learn a weight during the training process, therefore F u 2 and F both are assigned more weight for important feature maps, which highlights more important features. However, in [26], the final output of PAM is only defined as:

F u = λ × F u 2 + β × F, where λ ∈ R C is initialized to [0,..,0], and β ∈ R C is initialized to
F u = λ × F u 2 + F,
where λ is initialized to [0,..,0], if only considering to assign more weight to F u 2 , ignoring the effect of F and assigning same weight to F, the redundant information of F will be transfered directly the output of PAM, which will have an diminished effect on attention. CAM is also like PAM that the final output is differently defined. Therefore, the improved attention module (our attention module) pays more attention to the important feature. Secondly, for the CAM in [26], employing convolution layers before the input of CAM, which leads to that the relationship between different channel maps has been destroyed in advance, but we do not employ convolution layers to embed features before computing relationships of two channels in our CAM module, which can maintain relationship between different channel maps. Finally, [26] only is used in the output of network, not adopted cascading operation because the feature map of huge shape (H×W)×(H×W) in the PAM needs to huge GPU memory. However, the higher-level feature maps as the input of attention module will lose more detailed information of targets. Therefore, our network applies the improved attention module to different cascades, which not only reduces the redundant use of information, but also makes full use of different levels feature maps.

Hybrid Loss

The hybrid loss consists of two parts: region loss and boundary one. It is defined as: H = R + B , where R denotes the region loss and B denotes the boundary loss. The region loss is same with the hybrid loss in section 4.1.4 of chapter 4. Based on Chapter 5. End-to-end Segmentation Method the region loss, we add the boundary loss into the hybrid loss, which can optimize the segmentation result. They are explained hereafter.

Region Loss

To obtain high quality regional segmentation, we define R as a region loss: R = CCE + SSIM + DC , where CCE , SSIM and DC denote Categorical Cross Entropy (CCE) loss [22], Structural Similarity (SSIM) loss [23] and Dice Coefficient (DC) loss [24] respectively. CCE [22] loss is commonly used for multi-class classification and segmentation.

It is defined as

CCE = -∑ C i=1 ∑ H a=1 ∑ W b=1 y i (a,b) ln y * i (a,b) , (5.2)
where C is the number of classes of each image, H and W are the height and width of image, y i (a,b) ∈ {0, 1} is the ground truth one-hot label of class i at position (a, b) and y * i (a,b) is the predicted probability that (a, b) belongs to class i. SSIM loss can assess image quality [23], and can be used to capture the structural information, which will decrease the mis-segmentation rate of surrounding similar tissues. Therefore, we integrated it into our training loss to learn the differences between the segmented domain and similar tissues around the segmented domain. Let S and G be the predicted probability map and the ground truth mask respectively, the SSIM loss function of S and G is defined as

SSIM = 1 - (2µ S µ G + ε 1 )(2σ SG + ε 2 ) (µ 2 S + µ 2 G + ε 1 )(σ 2 S + σ 2 G + ε 2 ) (5.3)
where µ S , µ G and σ S , σ G are the means and standard deviations of S and G respectively, σ SG is their covariance, ε 1 = 0.01 2 and ε 2 = 0.03 2 are used to avoid a division by zero.

DC [24] loss is used to measure the similarity between two sets as defined in Eq. 2.36. But for the multi-class segmentation task, Eq. 2.36 is not suitable due to the class imbalance problem in such cases. Therefore, we extend the definition of the DC loss to multiclass segmentation in the following manner:

dice i = ( + 2 ∑ N i n=1 y i n y * i n ) / ( + ∑ N i n=1 (y i n + y * i n )) (5.4) DC = 1 -∑ C i=1 dice i / (N i + ), (5.5) 
where N i denotes the numbers of class i and > 0 is a smooth factor.

Boundary Loss

The loss functions mentioned before are mainly for region segmentation, so we propose a multi-class boundary loss function based on Kervadec's distance [27] to be able to refine the segmentations. As shown in Fig. are becoming better around the boundaries. Therefore, for a given class i, when the prediction and the ground truth are close enough, which is easily obtained thanks to our regional loss, minimizing the difference between their boundaries can be obtained by minimizing Kervadec's distance [27]:

i B = ∂G i y ∂S i (p) -p 2 dp (5.6)
where ∂G i and ∂S i denotes the boundaries of G i B and (binarized) S i B and • denotes the L2 norm. When p is a point in ∂G i , y ∂S i (p) denotes the corresponding point on boundary ∂S i along the direction normal to ∂G i (see Fig. 5.3). It can be shown [27] that minimizing i B is equivalent to minimize the area of the surface When SSIM loss is used as the loss function of networks, a 7 × 7 sliding window is used on the image and its corresponding ground truth, and then the 7 × 7 image patch is taken out to calculate the SSIM loss, so the SSIM loss is computed based on the patch-level. The SSIM loss makes up for the lack of CCE loss and fully considers the surrounding information of each pixel. The SSIM loss assigns higher weights to the pixels in the transition area between each class, so even if the prediction probability of each class is the same at the boundary, the loss around the boundary will be higher. However, if the 7 × 7 image patch belongs to the background region, the µ G , σ G and σ SG will be equal to zero, Eq. 5.3 is simplified as

∆A i = (G i B \S i B ) (S i B \G i B ) (see
background SSIM = 1 - ε 1 ε 2 (µ 2 S + ε 1 )(σ 2 S + ε 2 ) (5.8)
When the predicted probability map S is very close to the ground truth (background), background SSIM will be dropped sharply from 1 to 0, and then it does not contribute to the training, so the network can neglect the background accuracy in the beginning phase of the training process, which is very important for medical images with a large number of background areas. As shown in Fig. 4.7(d), there is also one problem if using the SSIM loss as the loss function of network, the network incorrectly predicts a small part of the segmentation results belonging to the background region, but this part is not connected to the ground truth. This phenomenon can be well explained, because during the training process, the SIMM loss of each class continues to decrease until its fluctuation range is minimal. At this time, the background loss that is ignored from the beginning of the training becomes the dominant, therefore, the network is easy to predict the wrong segmentation belonging to the background region.

The calculation method of DC is different between the training phase and the evaluation phase. For the evaluation phase, it is calculated based on 3D volume.

However, in the training phase, its calculation is slice-by-slice for medical images.

Because y i n is ground truth one-hot label of class i and y * i n is corresponding predicted probability map. y i n y * i n denotes their difference map, which means calculating the difference from a global perspective, so the DC loss is computed based on the maplevel. But it can be seen from Eq. 5.4 that the class that occupies a large area plays a leading role for the loss, which is not good for medical images with a lot of background. Therefore, Eq. 5.5 is used to redistribute the weight of the loss of each class, and finally make the segmentation result of each class more uniform.

The three loss functions mentioned above are all region-based. But the boundary loss function is defined at Eq. 5.7, which takes the form of a distance metric on the space of contours, not regions. For the problem of class imbalance, we can reduce the problems related to region loss through boundary loss. As shown from Eq. 5.7, the boundary loss mainly uses the integral on the difference area between ground truth and the prediction, which also supplements the information for the region loss.

Experimental Results
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Therefore, we use the respective advantages of the above four loss functions and combine them to propose a new hybrid loss function. CCE loss pays attention to the reasonable classification of all pixels. SSIM loss compensates for the ambiguity of CCE loss at the boundary and gives the boundary a larger loss value. DC stands in the overall perspective to guide the correctness of the general direction. As shown in Fig. 4.7(h), through this region loss function, the wrong segmentation part is no longer connected to the ground truth. Finally, the boundary loss refines details.

Experimental Results

Dataset Description

We evaluate our method on the MICCAI 2018 Atrial Segmentation Challenge 1 (Atri-aSeg18). Its aim is to segment the left atrium. It contains 100 annotated 3D MRIs from patients with atrial fibrillation. The pixel spacing of the MR images is 0.625 × 0.625 × 0.625 mm/pixel. The dataset includes two different image sizes: 88×576× 576 and 88×640×640. RGB image, we propose to take advantage of the 3D information by stacking 3 successive 2D frames: to segment the n th slice, we use the n th slice of the MR volume, and its neighboring (n -1) th and (n + 1) th slices, as green, red and blue channels, respectively. This new image, named "3D-Like" image, enhances the boundaries of objects, as shown in Fig. 5.4.

Preprocessing

Postprocessing

We crop the initial volume of size 88×W ×H into an image of size 88×w×h (where W and H are the initial width and height of a slice). We keep only the greatest connected component of the output segmentation and pad with zeros to get back a T×W×H image.
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Chapter 5. End-to-end Segmentation Method

Implementation and Experimental Setup

We implemented our experiments on Keras/TensorFlow using a NVidia Quadro P6000 GPU. We used the hybrid loss function, softmax to get a probability distribution over classes, Adam optimizer (batchsize = 3, β 1 = 0.9, β 2 = 0.999, ε = 0.001, lr = 0.01) and did not use learning rate decay. We trained the network during 30 epochs.

Evaluation Methods

Three metrics are used to evaluate our method: dice to evaluate the regions, and 95%

Hausdorff distance (95HD) and Average Hausdorff distance (AHD) to quantitatively evaluate the boundaries. The experimental results obtained by several state-of-the-art segmentation networks are reported in Table 5.1. Compared to other networks proposed in the context of medical image segmentation ,i.e., U-Net [START_REF] Ronneberger | U-net: Convolutional networks for biomedical image segmentation[END_REF], DANet [26] and Deeplabv3+ [START_REF] Chen | Encoder-decoder with atrous separable convolution for semantic image segmentation[END_REF],

Ground truth Without hybrid loss With hybrid loss FIGURE 5.9: The 3D view of segmentation results based on HVSMR16 dataset; red color denotes blood pool, green color denotes myocardium

Chapter 5. End-to-end Segmentation Method Fig. 5.9 shows the 3D view of segmentation results based on HVSMR16 dataset.

We do not use post-precessing for the segmentation results, which is to give intuitive comparison. Compared without hybrid loss, the segmentation results that is obtained by using hybrid loss are more complete for blood pool part. Compared with the myocardium segmentation results of A 0 Net in Table . 4.3 of chapter 4, the myocardium segmentation results decrease 4% by using the attention network framework. The main reason is that the large model is applied to the too small dataset (HVSMR16 only provides 10 patients), leading to severe overfitting.

The trainable parameters of the attention network framework exceed those of A 0 Net by more than ten times.

Conclusion

In this chapter, we propose a novel attention network architecture, and a new hybrid loss. By using the attention module, the proposed network framework is able to prevent the interferences between the surrounding similar tissues and to capture large-scale and thiner structures. We propose a hybrid loss function that fairly treats regions and boundaries of objects, optimizes the convergence to the boundaries, while maintaining the segmentation precision of the regions. Compared to the state-of-the-arts methods on the AtriaSeg18 challenge dataset, our segmentation results overcome the best one by an average of 2.179% in terms of DC and 1.3 mm on 95HD. After that, we continue to experiment on multi-class task based on HVSMR16 dataset, and then the performance of hybrid loss still remain good. therefore, our method with attention module and hybrid loss is more robust. The computation time of our pipeline is less than 4 seconds for an entire 3D volume of a heart.

Chapter 6

Evaluation of Fibrosis

This chapter mainly describes two parts: 1) Based on the heart segmentation results of chapter 4 and chapter 5, the fibrosis results are obtained by using one morphology method. 2) One end-to-end deep learning approach is used in segmenting the fibrosis. The use of the threshold value for all patients is no feasible because the contrast between normal and fibrotic myocardium in LGE-MRI of the left atrium depends on multiple factors: patient heart rate and rhythm during MRI study, type and dosage of contrast agent, time between contrast administration and LGE-MRI scan, patientspecific contrast clearance rate, choice of TI value for LGE scan, strength of the main field of MRI scanner, patient body mass index (BMI), blood hematocrit, and oxygenation level [28]. Therefore, we continue to consider other methods. Next, we will try deep learning method.

Combine the deep learning and morphology method

Deep learning method 6.2.1 Methodology

Overview of Network Architecture

We propose a hybrid network (see Fig. 6.4) using UNet [START_REF] Ronneberger | U-net: Convolutional networks for biomedical image segmentation[END_REF] to the myocardial pathology segmentation, which is consisted by five UNet frameworks. The main difference between UNet1 and UNet2 is the filter number as shown in Table. 

Training

Step. First, we kept weight of UNet2 unchanged, which means UNet2 was not trained at the beginning, then we trained UNet1. After finished the train of UNet1, we kept weight of UNet1 unchanged, then trained UNet2.

Evaluation Methods. One metric is used to evaluate our method: dice coefficient (DC) to evaluate the regions of myocardial pathology.

Segmentation Results

As shown in Table . 6.3, we evaluate the proposed method with 5-fold-cross-validation.

We obtain a mean DC of 92.3% on WH, 84.9% on LV+RV, and 84.7% on Myo by UNet1. Without using data augmentation, based on the original dataset, we obtain a higher segmentation accuracy, which lays the foundation for the subsequent segmentation of myocardial pathology. Finally, we obtain a mean DC of 20.6% on edema, 51% on scar by UNet2. We used the trained network to predict the testset (20 cases) and received the evaluation of our prediction results from the MyoPS2020 organizer: the mean DC of 58.6% on scar and the mean DC of 63.9% on scar and edema.

As shown in Fig. 6.6, for the segmentation results of whole heart, left and right ventricle, and myocardium, as the number of positive samples continues to decrease, the segmentation accuracy is also decreasing, and false segmentation is mainly concentrated at the boundary, which is mainly because ambiguities often appear near the boundaries of the target domains due to tissue similarities. For the segmentation results of edema and scar, the poorly segmentation result is not only on the boundary, but also in regions. In the original dataset, edem does not exist in many slices, which further leads to a reduction in the effective dataset for edema, therefore, the segmentation network is very difficult to segment edema.

Conclusion

In this chapter, we propose a way of reverse thinking, not to segment the myocardial pathology directly, but to learn a relationship between the surrounding normal tissue and it by designing one stacked and parallel UNets with multi-output framework. We evaluate the proposed method with 5-fold-cross-validation on the 

Conclusion and Perspectives

According to the World Health Organization (WHO), cardiovascular diseases (CVDs) are the leading cause of death globally. Medical imaging becomes increasingly important for the diagnosis and treatments of CVDs. Medical imaging contains many modalities such as computed tomography (CT), positron emission tomography (PET), ultrasound (US) and magnetic resonance imaging (MRI) and so on. Comparing with the others modalities, MRI has one great contrast between soft tissues and relatively high spatial resolutions (this is why we choose the MRI dataset.). But there are some difficulties for using MRI images to segment:

• there is a poor contrast between myocardium and surrounding structures;

• brightness due to blood flow;

• non-homogeneous partial volume due to limited MRI resolution;

• noise due to motion artifacts and heart dynamics;

• shape and intensity variability due to different patients and pathologies.

Therefore, based on the above difficulties, our research significance is derived.

In this thesis, we mainly use deep learning methods to solve related problems in cardiac segmentation and evaluation of fibrosis.

Main results

Firstly, we explore the sensitivity of networks to noise for different preprocessing methods in chapter 3, Through comparative experiments, it is concluded that the standardization preprocessing method is the best for the output of the network.

Therefore, we choose this preprocessing method for the subsequent processing of the dataset.

Secondly, we design novel network frameworks to segment heart in chapter 4

and chapter 5. The first proposed framework is one two-stage architecture, which includes two parts that are one localization network and one segmentation network.

The localization network is used in localizing roughly the object position, which can reduce the useless information (negative sample). The segmentation network is devoted to accurately segment the object. Due to the fact that many methods mainly

Chapter 7. Conclusion and Perspectives

focus on the region accuracy of the heart, more than to the quality of the boundaries, we prensent one novel hybrid loss that combines Categorical Cross Entropy (CCE), Structural Similarity (SSIM) and Dice Coefficient (DC) to study the transformation relationship between the input image and the corresponding label in a three level hierarchy (pixel-, patch-and map-level), which is helpful to improve segmentation and recovery of the boundaries. We demonstrate the efficiency of our approach on three public datasets in terms of regional and boundary segmentations. The second proposed framework is one end-to-end architecture, which is an attention full convolutional network framework based on the ResNet-101 architecture and focuses on boundaries as much as on regions. The additional attention module is added to have the network pay more attention on regions and then to reduce the impact of the misleading similarity of neighboring tissues. We also use a hybrid loss composed of a region loss and a boundary loss to treat boundaries and regions at the same time.

We demonstrate the efficiency of the proposed approach on three public datasets.

Finally, in chapter 6, two different methods are used in evaluation of fibrosis. The first method is that we combine the deep learning method with morphology. The left atrial wall is obtained based on the segmentation results of chapter 5 by morphologically dilating, and then thresholds to quantify the fibrosis degree. The second method is that we provide one cascaded UNet framework and uses three different 

Future work

The work described in this PhD thesis provides many ways for further research.

Multi-modality and multi-task

Multi-modality:. The problem of overfitting is common in medical image segmentation, because the dataset of medical images is small, maybe only contains a few patients. However, it contains many modalities, and each modality contains different information. Therefore, trying to utilize multi-modality information to segment the heart is necessary as showed in fig. 7.1. 

Hybrid loss

In the training phase, the loss function is an essential part, which guides the network to learn the transformation relationship between the input image and the corresponding label. Therefore, it is very important to design a loss function that meets the requirements of the task. However, only using one loss function in the network For the brain structures with a small proportion (see the red circle), the hybrid loss strongly helps to produce detailed segmentations; we say that the networks learn to see more clearly in the input images.

is not enough, so designing one hybrid loss that combines different loss function is required.

We have tested the proposed hybrid loss on other non-cardiac datasets, for example, Grand Challenge on MR Brain Segmentation at MICCAI 20181 (MRBrainS2018). For the MRBrainS2018 dataset, we use z-score normalization as preprocessing. 

Attention method

In the training phase, too much redundant information is reused. Therefore, it is necessary to add attention modules to the network to reduce the utilization of redundant information. Designing dedicated attention modules for different tasks is worth exploring.

Part VI

Appendices

I. INTRODUCTION

In order to accurately segment the myocardium in cardiac magnetic resonance (MR) images, numerous methods have been developed by world-wide researchers. Among these methods, the most common method is atlas-based, which offers good accuracy for myocardium segmentation, but often looses efficiency due to heavy calculations with the registration algorithm. Recently, methods based on deep learning are replacing the conventional methods in the field of myocardium segmentation. For example, Zabihollahy et al. [1] proposed a novel method to segment myocardium using a U-Net convolutional neural network (CNN)-based model, and the algorithm-generated results demonstrated its usefulness for myocardium segmentation. Do et al. [2] proposed a network architecture of Monte Carlo dropout (MCD) UNet for myocardium segmentation, and the MCD was mainly applied to measure a global score of model uncertainty without using the reference segmentation, which was valuable for automatic quality control at production. Dangi et al. [3] proposed a multi-task learning (MTL)-based regularization of a CNN, and used the rich information available in the distance map of the segmentation mask as an auxiliary task for the myocardium segmentation network. Since each pixel in the distance map represented its distance from the closest object boundary, which was more redundant and robust than the per-pixel image label directly used for segmentation. Furthermore, the distance map contained the shape and boundary information of the object. Therefore, predicting the distance map, as an additional task, was beneficial to enforce shape and boundary constraints during the process of training.

However, there are many difficulties to segment myocardium from cardiac MR images, for example, the presence of poor contrast between the segmented tissue and surrounding structures, the brightness heterogeneities due to blood flow, the shape and intensity variabilities of the structures across patients and pathologies, and so on [4]. To decrease the effect of blood flow and accurately segment the blood pool and myocardium from cardiac MR, Qi et al. [5] proposed a multiscale feature fusion (MSFF) CNN with a new weighted dice index loss function to segment myocardium, using MSFF modules to obtain feature maps of different scale, and then concatenating them through short and long skip connections in the encoder and decoder path to capture more complete context information and geometry structure for better segmentation. To capture the valuable dynamics of heart motion, Zhang et al. [6] proposed a method based on recurrent neural network (RNN), in order to take the motion of the heart into consideration, and extract myocardium-related image features at both the lowand high resolution levels in consecutive frames of a cardiac cycle. Faced with variability in contrast, appearance, orien- tation, and placement of the heart between patients, clinical views, scanners, and protocols, Davis et al. [7] proposed a fully automatic semantic segmentation method: Omega-Net that included three steps to segment, first, roughly located the object on the input image; second, learned the features based on the obtained object during the first step, which is used to predict the parameters needed to transform the input image into a canonical orientation; and third, the transformed image from the second step is used to finally segment. Despite the fact that these methods continue to improve segmentation accuracy, a large number of mis-segmentations still exist, which is due to the fact that they mainly pay attention to region accuracy, more than to the quality of the boundaries. However, issues often occur at indistinguishable boundaries. The global overview of our FOANet consists of two parts (localization and segmentation) as depicted in Fig. 1, and the architecture of our networks in Fig. 2. The first part (the "localization network") is used to localize roughly the object position. The second part is devoted to segment the object (the "segmentation network").

B. Localization Network

The localization network (Net.1) is depicted in Fig. 2. The black dotted box Part 1 is dedicated to the localization network, it can be replaced by Part 2 to become the segmentation network (Net.2). For Net.1 and Net.2, the difference concerns only Part 1 and Part 2 as shown in Fig. 2, while the other components of the architecture are the same. Part 1 consists of one convolutional layers with 256 or 512. First, we rely on the original VGG16 [8] network architecture, pre-trained on millions of natural images of ImageNet for image classification [9]. We then discard its fully connected layers to keep only the sub-network made of five convolutionbased "stages" (the base network). Each stage is made of two convolutional layers, a ReLU activation function, and a max-pooling layer. Since the max-pooling layers decrease the resolution of the input image, we obtain a set of fine to coarse feature maps (with 5 levels of features). Inspired by the works in [10,11,12,13], we added specialized convolutional layers (with a 3 × 3 kernel size) with K (e.g. K = 16) feature maps after the up-convolutional layers placed at the end of each stage. The outputs of the specialized layers show the same resolution than the input image, and are concatenated together. We add a 1×1 convolutional layer at the output of the concatenation layer to linearly combine the fine to coarse feature maps 1 . 

C. Segmentation Network

D. Hybrid Loss

To obtain high quality regional segmentation and nice boundaries, we define ℓ as a hybrid loss: ℓ = ℓ CCE +ℓ SSIM +ℓ DC , where ℓ CCE , ℓ SSIM and ℓ DC respectively denote CCE loss [15], SSIM loss [16] and DC loss [17] respectively. CCE [15] loss is commonly used for multi-class classification and segmentation. It is defined as:

ℓ CCE = - C i=1 H a=1 W b=1 y i (a,b) ln y * i (a,b) , (1) 
where C is the number of classes of each image, H and W are the height and width of image, y i is the predicted probability of class i.

SSIM loss can assess image quality [16], and can be used to capture the structural information, which will decrease the missegmentation rate of surrounding similar tissues. Therefore, we integrated it into our training loss to learn the differences between the segmented domain and similar tissues around the segmented domain. Let S and G be the predicted probability map and the ground truth mask respectively, the SSIM of S and G is defined as:

ℓ SSIM = 1 - (2µ S µ G + C 1 )(2σ SG + C 2 ) (µ 2 S + µ 2 G + C 1 )(σ 2 S + σ 2 G + C 2 ) , (2) 
where µ S , µ G and σ S , σ G are the mean and standard deviations of S and G respectively, σ SG is their covariance, C 1 = 0.012 and C 2 = 0.03 2 are used to avoid a division by zero. DC [17] loss is used to measure the similarity between two sets as defined in Eq. 3. But for the multi-class segmentation task, Eq. 3 is not suitable due to the class imbalance problem in such cases. Therefore, we extend the definition of the DC loss to multiclass segmentation in the following manner:

dice i = (ǫ + 2 Ni n=1 y i n y * i n ) / (ǫ + Ni n=1 (y i n + y * i n )) (3) ℓ DC = 1 - C i=1 dice i / (N i + ǫ), (4) 
1 Note that we designed our network's architecture to work with any input shape. where N i denotes the numbers of class i and ǫ is a smooth factor.

E. Focus of Attention

The image of Fig. 3a is from the MICCAI 2019 left ventricle (LV) Full Quantification Challenge dataset 2 (LVQuan19) [18,19]. The red box denotes the object domain, here the LV. There are a large number of similar tissues around it, highlighted by the blue ellipses. Even after a localization procedure, these tissues are still present. To decrease the impact of similar tissues on segmentation results, we built on the biological visual system, which concentrates on certain image regions requiring detailed analysis [20]. We define the FOA as: 

where (a * , b * ) denotes the object center, α is a normalization constant, δ is a scale parameter.

If we used I FOA (a, b) on each original image, we would probably miss the object of interest. Therefore, we must first localize the domain of interest; then we use I FOA (a, b) to focus on the object. This methodology is depicted in Fig. 3e, where similar tissues are less visible when compared to Fig. 3c.

III. EXPERIMENTAL RESULTS

A. Dataset Description

We evaluated our method on two datasets: LVQuan19 and Multi-Modality Whole Heart Segmentation3 (MM-WHS2017). The aim of LVQuan19 is to segment the myocardium of the left ventricle and estimate a set of clinical significant LV indices such as regional wall thicknesses, cavity dimensions, and cardiac phase and so on. It contains the processed SAX MR sequences of 56 patients. For each patient, 20 temporal frames are given and cover a whole cardiac cycle.

All ground truth (GT) values of the LV indices are provided for every single frame. The pixel spacings of the MR images range from 0.6836 mm/pixel to 1.5625 mm/pixel, with mean values of 1.1809 mm/pixel. The LV dataset includes two different image sizes: 256×256 or 512×512 pixels. MM-WHS2017 [21] aims to segment 7 substructures of the whole heart. Although it contains 20 cardiac MRI and 20 CT images, we only use the MRI modality. The slice spacings of MRI volume range from 0.899 mm/pixel to 1.60 mm/pixel, while in-plane resolution ranged from 0.78 mm/pixel to 1.2 mm/pixel. The average sizes: 324×325×171 pixels.

B. Preprocessings

Since the VGG-16 network's input is an RGB image, we propose to take advantage of the temporal information by stacking 3 successive 2D frames: to segment the n th slice, we use the n th slice of the MR volume, and its neighboring (n-1) th and (n+1) th slices, as green, red and blue channels, respectively. This new image, named "temporal-like" image, enhances the area of motions, here the heart, as shown in Fig. 4.

Let us remind what we call Gauss normalization: for each (2D+t)-image I corresponding to a given patient, we compute I := (Iµ)/σ where µ is the mean of I and σ its standard deviation (σ is assumed not to be equal to zero). There are then two different pre-processing steps as depicted in Fig. 1.

1) The first pre-processing (see Prepro.1 in Fig. 1) begins with a Gauss normalization. Then, for each n, we created the width×height×3 pseudo-color ("temporal-like") image where R, G, B correspond respectively to the n -1, n, n + 1 frames and we concatenate them (we do not detail the cases n = 1 and n = n end , the first and last slice of the volume, because of lack of space).

2) The second pre-processing (Prepro.2 in Fig. 1) follows five steps: (1) data augmentation using rotations and flips for the LVQuan19 dataset (only for the training phase), but it is not used on the MM-WHS2017 dataset, (2) resizing with a fixed pixel-spacing (0.65mm), (3) FOA, (4) Gauss normalization, and (5) pseudo-color concatenated image like above. Such a use of a pseudo-color image in the context of 3D medical imaging has been proven effective in [22] to segment brain structures and in [23] to extract white matter hyperintensities in brain volumes.

C. Postprocessing

Let us assume that we crop an initial volume of T frames of size T × W × H into an image of size T × w × h (where the crop is due to the localization procedure, and W and H are the initial width and height of a slice). After Prepro.2 we obtain a T ×w×h×3 image. Then we filter the ouput of the segmentation network, of size T ×w×h, by keeping only the greatest connected component, in order to get back the initial pixel-spacing. Finally, we add a padding of zeros to get back a T ×W ×H image. 

D. Implementation and Experimental Setup

We implemented our experiments on Keras/TensorFlow using a NVidia Quadro P6000 GPU. For the localization network, we used the multinomial logistic loss function for a one-of-many classification task, passing real-valued predictions through a softmax to get a probability distribution over classes. We used an Adam optimizer (batchsize = 1, β 1 = 0.9, β 2 = 0.999, ε = 0.001, lr = 0.002) and we did not use learning rate decay. We trained the network during 10 epochs. For this step, we merged all the classes into the object class to obtain a binary segmentation. For the segmentation network, we used the same optimizer and parameters detailed previously. We used the hybrid loss as loss function. For this task, we considered three different classes (background, myocardium, cavity) for LVQuan19 and eight different classes (background, myocardium, left atrium, left ventricle, right atrium, right ventricle, ascending aorta and pulmonary artery) for MM-WHS2017.

E. Evaluation Methods

Three measures are used to evaluate our method: DC given in Eq. 3, 95% in the Hausdorff distance (95HD) [24] and Boundary of Dice Coefficient (BDC) to quantitatively evaluate the boundaries. As many diseases appear in the myocardium wall, we chose to quantitatively evaluate the precision of the segmentation on boundaries.

For the BDC evaluation method, given a segmentation map M , we first convert the class i to a binary mask, M i bm . Then, we obtain the mask of class i of its one pixel wide boundary by conducting an XOR(M i bm , M i erd ) operation where M i erd is the eroded binary mask of M i bm . The same method is used to get the GT mask boundaries, M i g . Then the DC is calculated on the boundaries of the GT and segmentation masks to obtain the BDC. 

F. Ablation Study

To validate the influence of each component used in our method, we conducted the ablation study that includes three parts (architecture, loss and FOA) on the LVQuan19 dataset with 5-fold cross-validation. Results are shown in Tbl. I. Architecture ablation: To demonstrate the effects of our FOANet, we compared the results of our method with other related frameworks. We took a network used in our previous works [26,27] as baseline network (Net.1). First, we added a localization module (as shown in Fig. 1) based on the baseline; with this module, we obtained a mean improvement of 1.89% in terms of DC, 0.9772 on 95HD, which meant that reducing the proportion of the background in the image is beneficial to improve segmentation accuracy. This architecture was the one we presented for the Challenge LVQUAN19 [13]. Further, we added the Part 2 module, so Net.1 was changed to Net.2 (Baseline+Part2) as shown in Fig. 2. We learned from our comparison results that, when using dilated convolution and capturing the global information in the feature maps of high level, we could refine the segmentation results, which meant further improvement of 1.70% in terms of DC, 0.1893 on 95HD. Loss ablation: To prove the effects of our hybrid loss, we conducted comparative experiments over different losses based on our method. The results in Tbl. I illustrate that the proposed hybrid loss helps to improve the performance, and, compared with other combinations, that loss function based on three-level hierarchy (pixel-, patch-and map-level) can fully guide the network to study the transformation relationship between the input image and the corresponding label. FOA ablation: As shown in Fig. 5, without FOA, the surrounding similar tissues are mis-segmented, meaning that the segmentation results are disturbed by these similar tissues, and mis- segmented parts are connected to the ground truth, which is very difficult to remove. Therefore, by using our FOA module, we decrease the impact of the surrounding similar tissues, and the segmentation results are better. Statistical analysis Fig. 6 shows the box plots of the evaluation on different framework configurations for dice scores. Compared with others configurations, the segmentation results obtained by our method (configuration:i) have a small standard deviation, which shows that our method is more stable on region segmentation. Fig. 7 shows the box plots of the evaluation for 95HD. Compared with others configurations, based on the median quantile of box plots and the average of 56 patients, most of the values of our method are low, which shows that our method optimizes the boundary quality.

Fig. 8 shows several localization and segmentation results of our FOANet on LVQuan19. Fig. 8a indicates that we started with finding the smallest rectangular box for each slice of the patient's heart, ensuring that each box contained the segmentation object. Then we found the biggest rectangular box on the basis of these smallest rectangular boxes; and based on its shape, we cropped a new 3D volume from the original 3D volume as shown in the segmentation module of Fig. 1. Thanks to the localization results of Fig. 8a, we knew that the object was contained in/by the box, which greatly increased the proportion of objects in the image and reduced class imbalance. Fig. 8b compares ground truth and prediction, and we can see that the differences mainly are near the boundaries.

G. Comparison with State-of-the-Art Methods

We continued to test our method on the MM-WHS2017 challenge with 5-fold cross-validation and we obtained segmentation results for each class. As we focus in this article on the myocardium segmentation, we will only present our results for this structure. For the comparison with state-of-theart methods, we choose to compare our results with the results of the first and second prizes of the challenge, who respectively get dices of 0.87 and 0.863 in average for all classes. We reported their results on the training and on the testing sets. We also add a comparison with a late submission on the testing set only (scores on the training set are not available), having the best actual score of the challenge [30,31]. As shown in Tbl. II, compared with the first and second prizes of the MM-WHS2017 challenge, without using data augmentation, our method outperformed them for the segmentation of the myocardium of the left ventricle. Furthermore, our method needs less time to compute the prediction, which further validates the results in LVQuan19. We are still waiting for the quantitative results on the testing dataset to be able to compare our method fairly with [30]. Fig. 9 shows some localization and segmentation results. Concerning the whole heart segmentation, the class imbalance causes a lot of damage without the localization module, because the seven structures of the heart do not always appear at the same time in a slice of the same 3D volume of a same patient. Without the FOA module and Part 2, the network can confuse one class with another: the RA can be confused with the RV, the LV can be confused with the LA, and so on. Accordingly, a good segmentation requires to capture the global information by 

IV. CONCLUSION

In this paper, we propose a new focus of attention network framework, FOANet, and present a new hybrid loss for boundary-aware segmentation. FOANet is able to prevent the interferences of surrounding similar tissues, while the hybrid loss guides it at several levels. Both generate a better capture not only of large-scale information but also of fine structures to produce segmentations with nice boundaries. The computation time of the entire pipeline is less than 2 seconds for an entire 3D volume, making it usable for clinical practice. In our future work, we will continue to study the impact of the hybrid loss by weighting differently the segmentation loss and the boundary loss. Furthermore, we will add constraints on shapes in the network.

I. INTRODUCTION

Segmentation of left atrium in 3D late gadolinium-enhanced magnetic resonance (LGE-MR) images with high precision is a key step for atrial fibrillation (AF) ablation. Although a lot of research has been made on the automation of this task, manual annotations are still commonly used in the medical community, which is highly time-consuming and is subject to inter-and intra-observer variabilities [1]. With the recent development of convolutional neural networks (CNNs), remarkable progress has been made in matter of automatic segmentation [2]. However, the heterogeneity of the features corresponding to a same label may introduce intra-class inconsistencies and affect the accuracy of the segmentation [3]. Although the full convolutional network (FCN) [4] or U-Net [5] architectures can make up for the spatial resolution loss to a certain extent, it performs poorly on small parts of objects. The main issues are then the lack of precision regarding the boundaries of the segmented objects and the loss of small objects and small parts of objects. Therefore, in this paper, we consider two challenging problems applyied on cardiac imaging: 1) how to enlarge the receptive field of a CNN and improve the segmentation accuracy on small parts of objects; 2) how to balance the importance of the regions and the boundaries of objects. Many challenging problems are linked with cardiac imaging: poor contrast between the segmented domain and surrounding structures, heterogeneities in matter of brightness due to the blood flow, non-homogeneous partial volume effects due to limited cardiac magnetic resonance (CMR) resolution (1.5T, 3.0T, etc.), and so on [6]. Most of the proposed network frameworks are based on FCN or on U-Net. They use upsampling layers and combine the feature maps from lower to higher resolutions. Many extensions to these networks have been proposed already: Chen [7] proposes a shape-aware multiview autoencoder (thanks to some modifications to the original U-Net) to achieve high segmentation performance on cardiac magnetic resonance (MR) image segmentation; Khened [8] proposes DenseNet, based on FCNs, for cardiac segmentation and tries to overcome the feature map explosion, but still fails at the boundaries. In fact, the most used loss functions for segmentation network such as dice or cross-entropy (CE) are based on regional integrals, which are convenient for training deep neural networks [9]. However, the CE has well-known drawbacks in the context of highly unbalanced problems, and dice losses may undergo diffculties when dealing with very small structures, and are both region-based. Some methods incorporated boundary information into the loss function. Shen [10] proposes a multi-task FCN architecture where the boundary information is directly incorporated into the loss function, improving its results of segmentation. Kervadec [9] designs one novel boundary loss, and combines it with the standard regional losses, improving the boundary accuracy without losing the region one. Su [11] and Qin [12] propose a novel boundary-aware network, using the hybrid loss to help the network focus on region segmentation without neglecting boundaries. These kind of losses improve the boundary quality but not the differenciation between similar objects or small objects segmentation.

To enlarge the receptive field to segment small objects, Yu [13] proposes what he calls dilated convolutions. By combining them with deep residual networks [14], he introduces dilated residual networks [15]. Wang [16] proposes a multi-path dilated residual network based on Mask-RCNN model [17], and solves the problem of information loss of small objects in deep neural networks. Liu [18] proposes a context embedding object detection network capturing both details and context information to boost the performance on small object detection. However, dilated convolutions often lead to gridding artifacts [13]. Attention plays an important role in human perception [19,20,21]. An important property of the human visual system is to not process a whole scene at once. Instead, humans exploit a sequence of partial glimpses F u 1 ∈ R C×(W ×H) . Then, the Multiply and the Softmax layers follow; they are applied on F u 0 and F u 1 to obtain the spatial attention map A u ∈ R (W ×H)×(W ×H) . The input F is fed into a different convolutional layer in the third branch, and is then multiplied by A u fed into the Transpose layer, resulting in F u 2 . Therefore the output F u of the upper branch can be formulated as follows:

F u = λ × F u 2 + β × F, (1) 
where λ ∈ R C is initialized to [0,..,0], and β ∈ R C is initialized to [1,..,1]. The values λ and β are used to gradually learn the importance of the spatial attention map.

In the lower branch, the attention module mainly focuses on the most important channels. The channel attention map A l can be obtained by different combinations of convolutional, Reshape and Transpose layers as shown at the bottom of Fig. 2. Finally, the output F l of the lowest branch can be defined as follows:

F l = λ ′ ×F l 2 +β ′ ×F, where λ ′ ∈ R C is initialized to [0,..,0], and β ′ ∈ R C is initialized to [1,..,1]. The feature map F l
2 denotes the results of the product of the input F with A l fed into a convolutional passing through the transpose block. Therefore, the attention feature map F a is defined as:

F a = Conv (F u ) + Conv F l . (2) 
Compared to [3], we make learnable the coefficient beta multiplying F in the channel and position attention modules (Eq. 1) so that the improved attention modules focus more on important features. Furthermore, we do not use a convolution layer before the channel attention module like in [3], so we do not destroy the relationships between channel maps. Finally, we apply one attention module for each scale explaining that we have four attention modules, contrary to [3] where the attention modules are only used at the output of the network.

B. Hybrid Loss

Most of medical segmentation methods directly use Categorical Cross Entropy [35] (CCE) or Dice Coefficient [36] (DC) losses. Models trained with CCE loss usually have low confidence in differentiating boundary pixels, leading to blurry boundaries. DC were proposed for biased training sets but are not specifically designed for capturing fine structures.

In our framework, we combine four losses: the dice loss, the cross-entropy (CE) loss, the structure similarity (SSIM) loss [37], and our self-made boundary loss. When used alone, the dice and CE losses have respectively shown issues in capturing fine structures and in segmenting correctly boundary pixels. Combined together with in addition the SSIM loss (used to reduce the impact of the misleading similarities of neighboring tissues), we obtain an efficient region loss. By adding to it our own boundary loss, we are then able to refine the segmentation which converges to the boundaries.

Our hybrid loss consists of two parts: region loss and boundary one. It is defined as: ℓ H = ℓ R + ℓ B , where ℓ R denotes the region loss and ℓ B denotes the boundary loss. They are explained hereafter.

Region Loss.

To obtain high quality regional segmentation, we define ℓ R as a region loss: ℓ R = ℓ CCE + ℓ SSIM + ℓ DC , where ℓ CCE , SSIM [37] loss can assess image quality [37], and can be used to capture the structural information, which will decrease the mis-segmentation rate of surrounding similar tissues. Therefore, we integrated it into our training loss to learn the differences between the segmented domain and similar tissues around the segmented domain. Let S and G be the predicted probability map and the ground truth mask respectively, the SSIM loss function of S and G is defined as

ℓ SSIM = 1 -((2µ S µ G +ε 1 )(2σ SG +ε 2 )) / ((µ 2 S +µ 2 G +ε 1 )(σ 2 S + σ 2 G +ε 2 ))
, where µ S , µ G and σ S , σ G are the means and standard deviations of S and G respectively, σ SG is their covariance, ε 1 = 0.01 2 and ε 2 = 0.03 2 are used to avoid a division by zero.

DC [36] loss is used to measure the similarity between two sets as defined in Eq. 2. But for the multi-class segmentation task, Eq. 2 is not suitable due to the class imbalance problem in such cases. Therefore, we extend the definition of the DC loss to multiclass segmentation in the following manner:

dice i = (ǫ + 2 Ni n=1 y i n y * i n ) / (ǫ + Ni n=1 (y i n + y * i n )) (3) ℓ DC = 1 - C i=1 dice i / (N i + ǫ), (4) 
where N i denotes the numbers of class i and ǫ > 0 is a smooth Fig. 4: Illustration of calculating boundary loss.

factor.

Boundary Loss.

The loss functions mentioned before are mainly for region segmentation, so we propose a boundary loss function to optimize the segmentation result. As shown in Fig. 4, ∆A denotes the difference between the boundary G i B of the ground truth of class i and the boundary S i B of the prediction of class i. When ∆A tends to zero, it means that the segmentation results are becoming better around the boundaries. Therefore the boundary loss is defined as

ℓ B = C i G i B S i B (a ′ , b ′ ) -G i B (a, b) 2 d (a, b), (5) 
where

G i B (a, b) is a point on boundary G i B and S i B (a ′ , b ′ ) denotes the corresponding point on boundary S i B , along the direction normal to G i B , i.e., S i B (a ′ , b ′ ) is the intersection of S i
B and the line that is normal to G i B at position (a ′ , b ′ ) (see Fig. 4 for an illustration), • denotes the L2 norm.

III. EXPERIMENTAL RESULTS

Dataset Description. We evaluate our method on the MIC-CAI 2018 Atrial Segmentation Challenge 1 (AtriaSeg18). Its aim is to segment the left atrium. It contains 100 annotated 3D MRIs from patients with atrial fibrillation. The pixel spacing of the MR images is 0.625 x 0.625 x 0.625 mm/pixel. The dataset includes two different image sizes: 88×576×576 and 88×640×640.

Preprocessing. We cropped each slice to 346×346 pixels as shown in Fig. 3a. The pre-processing begins with a Gaussian normalization. Because ResNet-101 network's input is an RGB image, we propose to take advantage of the 3D information by stacking 3 successive 2D frames, as presented in our previous works [38,39]: to segment the n th slice, we use the n th slice of the MR volume, and its neighboring (n-1) th and (n+1) th slices, as green, red and blue channels, respectively. This new image, named "3D-Like" image, enhances the boundaries of objects, as shown in Fig. 3.

Postprocessing. We crop the initial volume of size 88×W×H into an image of size 88 × w × h (where W and H are the initial width and height of a slice). We keep only the greatest connected component of the output segmentation and pad with zeros to get back a T ×W ×H image.

Implementation and Experimental Setup. We implemented our experiments on Keras/TensorFlow using a NVidia Quadro P6000 GPU. We used the hybrid loss function, softmax to get a probability distribution over classes, Adam optimizer (batchsize = 3, β 1 = 0.9, β 2 = 0.999, ε = 0.001, lr = 0.01) and did not use learning rate decay. We trained the network during 30 epochs.

Evaluation Methods. Three metrics are used to evaluate our method: dice to evaluate the regions, and 95% Hausdorff distance (95HD) and Average Hausdorff distance (AHD) to quantitatively evaluate the boundaries.

Comparison with State-of-the-arts Methods. The experimental results obtained by several state-of-the-art segmentation networks are reported in Table I. Compared to other networks proposed in the context of medical image segmentation ,i.e., U-Net [5], DANet [3] and Deeplabv3+ [40], our network achieves a mean improvement of 3.236%, 7.563% and 6.348% (in terms of DC), 1.579 mm, 3.277 mm and 3.004 mm (on 95HD) and 0.082 mm, 0.384 mm and 0.374 mm (on AHD), respectively. The attention module increases segmentation performance by 0.552% (DC), 0.215 mm (95HD), and 0.015 mm (AHD), respectively as shown in Table I.

Ablation Study. To explain the advantages of the proposed hybrid loss, we conduct an ablation study. We compare the segmentation results with and without hybrid loss (see Table I). Segmentation performance increases for DC, 95HD and AHD for the 4 architectures, proving the benefits of the proposed hybrid loss.

IV. CONCLUSION

In this paper, we propose a novel attention network architecture, and a new hybrid loss. Unlike a traditional FCN, we first add multi-layer features to keep as much details as possible, then we concatenate them with level features, and input them in the attention modules to obtain the attentional features. By using the attention module, the proposed network framework is able to prevent the interferences between the surrounding similar tissues and to capture large-scale and thiner structures. We propose a hybrid loss function that fairly treats regions and boundaries of objects, optimizes the convergence to the boundaries, while maintaining the segmentation precision of the regions. Compared to the state-of-the-arts methods on the AtriaSeg18 challenge dataset, our segmentation results overcome the best one by an average of 2.179% in terms of DC and 1.3 mm on 95HD. Taking into account regions as well as boundaries in our loss permits to have a segmentation more precise, especially at the boundaries. Moreover, our method with attention module and hybrid loss is more robust. The (c) DANet [3] (d) Deeplabv3+ [40] Fig. 5: Comparison of the proposed method and other stateof-the-art architectures. The white pixels are the differences between the prediction and the GT.

computation time of our pipeline is less than 4 seconds for an entire 3D volume of a heart. As future works, we plan to continue to study the impact of the hybrid loss when the region of interest and the background are imbalanced. We plan also to add shape constraints to the predicted boundary of the LA in the attention module. The final aim is to be able to accurately segment LA wall to diagnose fibrosis. 1 Introduction

The assessment of myocardial viability is essential for diagnosis and follow-up of patients suffering from myocardial infarction (MI) [17,16]. However, many different images modalities in the field of medical imaging are available and are complementary. Late gadolinium enhancement (LGE) cardiac magnetic resonance (CMR) sequence which visualizes MI, T2-weighted CMR (imaging the acute injury and ischemic regions) and balanced-Steady State Free Precession (bSSFP) cine sequence (which captures cardiac motions and presents clear boundaries) are examples of such imaging modalities. Therefore, making a better use of the information in these different modalities has become a research focus. In recent years, many semi-automated and automated methods have been proposed for multi-modal medical image segmentation using deep learning-based methods, such as convolutional neural networks (CNNs) [8] and fully convolutional networks (FCNs) [9] especially the U-Net architecture [11]. For example, Guo [3,4] proposed a conceptual image fusion architecture for supervised biomedical image analysis. They designed and implemented an image segmentation system based on deep CNNs to contour the lesions of soft tissue sarcomas using multimodal images by fusing the information derived from different modalities. Although we can use multi-modal information to improve the myocardial pathology segmentation, class imbalance remains a problem to tackle. Network overfitting is common in the field of medical imagingbecause of the relatively small size of handled datasets. Data augmentation is classically used in the preprocessing stage to overcome this limitation, and weighted loss functions are designed. For example, Zhao et al. [15,10] used data augmentation by rotating and flipping the heart segmentations to reduce the impact of overfitting. Zhao et al. [14] proposed an automated data augmentation method for synthesizing labeled medical images, which provided significant improvements over state-ofthe-art methods for one-shot biomedical image segmentation. Sudre et al. [13] proposed the generalized dice to solve the problem of highly unbalanced segmentations. Abraham et al. [1] proposed a generalized focal loss function based on the Tversky index to address the issue of data imbalance in medical image segmentation. Examples of data augmentation methods to overcome this issue can be found in [2,12,6,5,7]. However, datasets obtained through data augmentation are strongly correlated with the original datasets, Therefore, the proportion of negative samples remains significantly larger than the proportion of positive samples after data augmentation. Thus, data augmentation does not reduces the risk of overfitting. For the proposed improved loss function can effectively reduce the issues of class imbalance, it does not fundamentally address the problems caused by the lack of datasets.

Therefore, in this paper, in order to segment myocardial pathology (see Fig. 1), we begin with a segmentation of the anatomical tissue (left ventricle (LV), right ventricle (RV), whole heart (WH), myocardium (myo)) around it, and then let the network learn a relationship between these segmentation results to obtain the myocardial pathology. Compared with direct segmentation of myocardial pathology, the effect of class imbalance can be reduced by the segmentation of surrounding anatomical tissues, because it helps the network to focus on the small lesions regarding to the surrounding tissues.

Methodology

Overview of Network Architecture

We propose a hybrid network (see Fig. 2) using 5 UNet [11] to segment myocardial pathology. Our network is composed of three UNet named UNet1 and two named UNet2. The main difference between UNet1 and UNet2 is number of Preprocessing and Postprocessing. We cropped each slice to 240 × 240 pixels and we do not use data augmentation. The pre-processing begins with a Gaussian normalization. For post-processing, we pad with zeros to get back a initial width and height of a slice.

Implementation and Experimental Setup. We implemented our experiments on Keras/TensorFlow using a NVidia Quadro P6000 GPU. We used five different loss functions for training the network and used sigmoid to get a probability distribution of the left and right ventricle, myocardium, whole heart, scar and edema, and scar, respectively (as shown in Fig. 2). Adam optimizer (batchsize = 1, β 1 = 0.9, β 2 = 0.999, ε = 0.001, lr = 0.0001) and did not use learning rate decay. We trained the network during 300 epochs.

Training

Step. First, we kept weight of UNet2 unchanged, which means UNet2 was not trained at the beginning, then we trained UNet1. After finished the train of UNet1, we kept weight of UNet1 unchanged, then trained UNet2. Evaluation Methods. One metric is used to evaluate our method: dice coefficient (DC) to evaluate the regions of myocardial pathology.

Segmentation Results

As shown in Table . 2, we evaluate the proposed method with 5-fold-cross-validation. We obtain a mean DC of 92.3% on WH, 84.9% on LV+RV, and 84.7% on Myo by UNet1. Without using data augmentation, based on the original dataset, we obtain a higher segmentation accuracy, which lays the foundation for the subsequent segmentation of myocardial pathology. Finally, we obtain a mean DC of 20.6% on edema, 51% on scar by UNet2. We used the trained network to predict the testset (20 cases) and received the evaluation of our prediction results from the MyoPS2020 organizer: the mean DC of 58.6% on scar and the mean DC of 63.9% on scar and edema. As shown in Fig. 4, for the segmentation results of whole heart, left and right ventricle, and myocardium, as the number of positive samples continues to decrease, the segmentation accuracy is also decreasing, and false segmentation is mainly concentrated at the boundary, which is mainly because ambiguities often appear near the boundaries of the target domains due to tissue similarities. For the segmentation results of edema and scar, the poorly segmentation result is not only on the boundary, but also in regions. In the original dataset, edema does not exist in many slices, which further leads to a reduction in the effective dataset for edema, therefore, the segmentation network is very difficult to segment edema.

Conclusion

In this paper, we propose a way of reverse thinking, not to segment the myocardial pathology directly, but to learn a relationship between the surrounding normal tissue and it by designing one stacked and parallel UNets with multi-output framework. We evaluate the proposed method with 5-fold-cross-validation on the MICCAI 2020 myocardial pathology segmentation combining multi-sequence CMR Challenge dataset (MyoPS 2020) and achieve a mean DC of 20.6%, 51% on edema and scar,respectively. The computation time of the entire pipeline is less than 3 seconds for an entire 3D volume, making it usable for clinical practice. However, the segmentation accuracy of myocardial pathology is affected by the segmentation accuracy of surrounding normal tissues. Therefore, in our future work, we will continue to study the relationship between the surrounding normal tissue and myocardial pathology and improve the segmentation accuracy of surrounding normal tissues.

Introduction

Left ventricle (LV) full quantification is critical to evaluate cardiac functionality and diagnose cardiac diseases. Full quantification aims to simultaneously quantify all LV indices, including the two areas of the LV (the area of its cavity and the area of its myocardium), six RWT's (along different directions and at different positions), three LV dimensions (along different directions), and the cardiac phase (diastole or systole) [1,2], as shown in Fig. 1. However, the LV full quantification is challenging: LV samples are variable, not only because the samples can be obtained from different hospital, but also because some of them are not concerned by cardiac diseases. It is also challenging because there are complex correlations between the LV indices. For example, the cavity area has a direct influence on the three LV dimensions and the cardiac phase.

The MICCAI 2019 Challenge on Left Ventricle Full Quantification 1 (LVQuan19) is an extension of the one of 2018 2 with the difference that now the original data is given without preprocessing for training and testing phases, to be closer to clinical reality.

We propose then in this paper a two-stage temporal-like FCN framework that segments and estimates the parameters of interest in 2D+t sequences of the MR image of a LV. First, in each temporal frame, we localize the greatest connected component detected by the localization network, we dilate it using a size equal to 10 pixels, and we compute the corresponding bounding box. This results in a sequence of cropped LV's (that we will abusively call cropped volume). Second, we use these cropped volumes to train the LV segmentation network. The procedure is depicted in Fig. 2. Finally, the segmentation results are used for the LV full quantification.

The pipeline is based on our previous works [3,4] but with a new step: we added one localization network before the segmentation network. Compared with [5], our localization precision is higher, because we localize the entire LV region (the filled-in epicardium) instead of the center of the bounding box containing the LV structure. Compared with [6], our method is quicker and do not have memory limit problems. To take advantages of time information, we use 3 successive 2D frames (n -1, n, n + 1) at time n as inputs in the localization and in the segmentation networks, yielding to better results than the traditional approach which used only the information at time n for the n th slice.

We evaluated the proposed method using the dataset provided by LVQuan19 with 5-fold-cross-validation. Experiments with (very) limited training data have shown that our model has a stable performance. We added pre-processing and post-processing steps to enhance and refine our results. The plan is the following: we detail our methodology in Section 2, we detail our experiments in Section 3, and then Section 4 concludes. 

Preprocessings

Let us recall what we call Gauss normalization: for the (2D+t)-image I corresponding to a given patient, we compute I := I-µ σ where µ is the mean of I and σ its standard deviation (σ is assumed not to be equal to zero). There are then two different preprocessing steps as depicted in Fig. 2.

-The first pre-processing (see preprocessing1 in Fig. 2) begins with a Gauss normalization. When we treat training data, we crop the initial slices into a 256 × 256 image to optimize the dice of the network (we do not do this for test datasets). Then we concatenate them for each n into a 256 × 256 × 3 pseudo-color image where R, G, B correspond respectively to n-1, n, n+1 (we do not detail the cases n = 1 and n = 20 because of a lack of space). -The second pre-processing (preprocessing2 in Fig. 2) is in four steps: (1) data augmentation using rotations and flips, (2) resizing with a fixed inter-pixel spacing (0.65mm), (3) Gauss normalization, and (4) we concatenate into a pseudo-color image like above.

task, passing real-valued predictions through a softmax to get a probability distribution over classes. For the localization network, we used an Adam optimizer (batchsize=4, β1=0.9, β2=0.999, epsilon=0.001, lr = 0.002) and we did not use learning rate decay. We trained the network during 10 epochs. We recall that we used the filled-in epicardium connected component given in the GT as the "ones" of the output of our network. For the segmentation network, we used the same optimizer and the same parameters but we changed the batchsize to 1. Also, we considered three different classes 4 in the given GT: the background (0), the myocardum (1), the cavity (2) (we merge then 0 and 2 after the segmentation). This way, we obtained better results than using only the wall of the LV.

Results

We tested our method with 3-and 5-fold-cross-validations on the challenge dataset. An example of bounding box is depicted in red (we did not do any dilation here) in Fig. 5.

We obtain an average dice index of 0.8953 on validation set. In practice, we extend next the box by a size equal to 10 pixels to ensure that the whole LV is included into the bounding box. For the segmentation, we compared ResNet50 with VGG16 as feature extraction on 3-fold-cross-validation (18,19,19) (see Fig. 6). VGG16 is then more efficient to detect boundaries than ResNet50 in our application. Table 1 presents the average results for the two compared methods. The 11 indices of LV full quantification and dice using the VGG16-FCN are better than when we use 4 From a technical point of view, we proceeded to a classification more than to a segmentation. the ResNet50-FCN. For these reasons, we used the VGG16-FCN for the segmentation of the LV.

To verify the stability of our algorithm, we evaluated the proposed method with 5-fold-cross-validation (11,11,11,11,12). In Table 2, the average results are showed. Compared with 3-fold-cross-validation, the average areas error is improved from 122.93 mm 2 to 114.77 mm 2 , the average dims error is improved from 0.9978 mm to 0.9220 mm, the average RWT error is improved from 0.9518 mm to 0.9185 mm, the average phase error is improved from 8.0311% to 7.6364% and the dice is improved from 86.04% to 86.64%. In Table 2, we also reported the results on test dataset given by the organizers of LVQuan19. The test dataset was composed of processed SAX MR sequences of 30 patients. For each patient, only the SAX image sequences of 20 frames were provided (no GT). In Fig. 7, the segmentation results on fifth patient of test dataset are showed, the yellow ring denotes the segmentation results.

Conclusion

In this paper, we propose to use a modified VGG16 to proceed to pixelwise image segmentation, in particular to segment the wall of the heart LV in temporal MR images. The proposed method provides promising results at the same time in matter of localization and segmentation, and leads to realistic physical measures of clinical values relative to the human heart. Our perspective is to try to better segment the boundary of the wall of the LV, either by increasing the weights relative to the boundary regions in the loss function, or by separating the boundary and the interior of the wall into two classes during the classification procedure.
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 1 FIGURE 1: Architecture des réseaux à deux étages.
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 2 FIGURE 2: Architecture des réseaux de bout en bout.
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 3 FIGURE 3: Illustration du calcul de la perte aux frontières

  (a) MRI d'entrée (b) Contours myocardiques (c) Paroi auriculaire gauche (d) Histogramme (e) 3SD seuil (f) Détection
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 4 FIGURE 4: Schéma du processus proposé.

FIGURE 5 :

 5 FIGURE 5: Segmentation de la paroi de l'oreillette gauche

  Fig 5.xvii Après avoir obtenu la segmentation de la paroi, nous supposons que l'image ne comprend que l'oreillette gauche A est défini comme A = ES × I, où ES désigne le résultat de la segmentation endocardique (image binaire) et I désigne l'image grise du coeur. Ensuite, nous calculons la valeur moyenne M et écart-type SD de A > 0, et le seuil est fixé à M + 3SD. Enfin, la fibrose est ob Enfin, la fibrose est détectée par W > (M + 3SD) (W indique que l'image ne comprend que la paroi de l'oreillette gauche), comme le montre la Fig 6.
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 11 FIGURE 1.1: The anatomy of the heart 1
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 12 FIGURE 1.2: Atrial fibrillation 2
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 13 FIGURE 1.3: The principle of late gadolinium-enhanced cardiac magnetic resonance (LGE-CMR) [32]
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 2 Traditional Methods for Left Atrial Fibrosis/Scar Segmentation 7 of several image acquisition and post-processing protocols and thresholds to identify fibrosis, eventually limiting the external validation and reproducibility of this technique [2-4].

FIGURE 1 . 4 :

 14 FIGURE 1.4: From the MRI image database. Each row represents a separate case. Each column represents (from left to right): original MRI, segmentation for ground truth, level-set method, regiongrowing and watershed segmentation. Abbreviations: LA -left atrium, AO -aorta, LV -left ventricle, RV -right ventricle, LAAleft atrial appendage [33]
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 15 FIGURE 1.5: Fully convolutional networks
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 16 FIGURE 1.6: U-net architecture

AtriaSeg18 [ 73 ]

 73 (MICCAI 2018 Atrial Segmentation Challenge 7 ) aims to segment the left atrium and contains 150 annotated 3D MRIs from patients with atrial fibrillation. The voxel size of the MR images is 0.625 × 0.625 × 0.625 mm. The dataset includes two different image sizes: 88×576×576 pixel and 88×640×640 pixel.
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 413 [START_REF] Xue | Full quantification of left ventricle via deep multitask learning network respecting intra-and inter-task relatedness[END_REF][START_REF] Xue | Full left ventricle quantification via deep multitask relationships learning[END_REF] (MICCAI 2019 left ventricle (LV) Full Quantification Challenge dataset8 ) is to segment the myocardium of the left ventricle and estimate a set of clinical significant LV indices such as regional wall thicknesses, cavity dimensions, and cardiac phase and so on. It contains the processed SAX MR sequences of 56 patients. For each patient, 20 temporal frames are given and cover a whole cardiac cycle. All ground truth (GT) values of the LV indices are provided for every single frame. The pixel spacings of the MR images range from 0.6836 mm/pixel to 1.5625 mm/pixel, with mean values of 1.1809 mm/pixel. The LV dataset includes two different image sizes: 256×256 or 512×512 pixels. LAScarQS2022 [29-31] (Left Atrial and Scar Quantification & Segmentation Challenge 9 ) aims to segment the left atrium and evaluates the scar. It includes two tasks (Task 1 and Task 2) and Task 1 contains the scar data. Task 1 contains 60 annotated 3D MRIs from patients with atrial fibrillation for training and validating. The voxel size of the MR images is different: 1.25 × 1.25 × 2.5 mm, 1.4 × 1.4 × 1.4 mm, and 1.3 × 1.3 × 4.0 mm. The dataset includes two different image sizes: 44×576×576 pixels and 44×640×640 pixels.
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 1714 FIGURE 1.7: MRI images. RV: right ventricle blood cavity; Myo: myocardium of the left ventricle; LV: left ventricle blood cavity; LA: left atrium blood cavity; AO: ascending aorta; PA: pulmonary artery.
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 18 FIGURE 1.8: Detail segmentation at the left atrial
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 56721 FIGURE 2.1: Neural networks; gray circle denotes neuron
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 222 FIGURE 2.2: Convolutional Neural Networks (CNNs)
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 23 FIGURE 2.3: The calculation process of convolutional layer with the convolution kernel 3 × 3
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 24 FIGURE 2.4: Max Pooling
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 21 Fig. 2.1. Each of the multiple hidden layers commonly uses the same activation function, but the activation function of the output layer will constantly change according to different tasks.
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 25 FIGURE 2.5: ReLU activation function
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 26 FIGURE 2.6: Sigmoid activation function
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 27 FIGURE 2.7: Tanh activation function
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 28 FIGURE 2.8: An example of dice coefficient calculation process

  (a) with momentum (b) without momentum
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 29 FIGURE 2.9: SGD with or without momentum

FIGURE 2 .

 2 FIGURE 2.10: A simple example of backpropagation
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 211 FIGURE 2.11: An example of 3D image matrix of prediction
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 212 FIGURE 2.12: Hausdorff distance 3
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 213 FIGURE 2.13: Block diagram of the attention module
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 39 Position Attention Module (PAM):It is used in obtaining the similarity of pixels at different locations. Therefore, the corresponding weight of each pixel depends on the degree of similarity. The entire realization process is shown in Fig.2.16.
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 216 FIGURE 2.16: Position Attention Module (PAM)
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 217 FIGURE 2.17: Channel Attention Module (CAM)
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 218 FIGURE 2.18: Soft vs Hard Attention[34] 
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 3233333334 FIGURE 3.2: Adding gauss noise to the original image
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 3533 FIGURE 3.5: The sensitivity of the improved FCN framework [19] to noise for different preprocessing methods on the MRbrains2018 dataset
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 3638 FIGURE 3.6: The 3D segmentation results based on the improved FCN framework [19] for standardization
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 4141 FIGURE 4.1: Global overview of the proposed method (A 0 Net).

FIGURE 4 . 2 :

 42 FIGURE 4.2: Architecture of our networks. Block 1 and Block 2 correspond to the components of Net.1 and Net.2 of Fig. 4.1, respectively. Because the role of Net.1 is only to roughly locate the target, using Block 1 instead of Block 2 can both reduce model parameters and improve the speed of model prediction. N denotes the number of feature map.
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 42 The black dotted box Block 1 is dedicated to the localization network, it can be replaced by Block 2 to become the segmentation network (Net.2). For Net.1 and Net.2, the difference concerns only Block 1 and Block 2 as shown in Fig. 4.2, while the other components of the architecture are the same. Block 1 consists of one convolutional layers with 256 or 512.First, we rely on the original VGG16[15] network architecture, pre-trained on millions of natural images of ImageNet for image classification[16]. We then discard its fully connected layers to keep only the sub-network made of five convolution-based "stages" (the base network). Each stage is made of two convolutional layers, a ReLU activation function, and a max-pooling layer. Since the max-pooling layers decrease the resolution of the input image, we obtain a set of fine to coarse feature maps (with 5 levels of features). Inspired by the works in[17][18][19][20], we added specialized convolutional layers (with a 3×3 kernel size) with K (e.g. K = 16) feature maps after the up-convolutional layers placed at the end of each stage. The outputs of the specialized layers show the same resolution than the input image, and are concatenated 4.1. Methodology 59 together. We add a 1×1 convolutional layer at the output of the concatenation layer to linearly combine the fine to coarse feature maps 1 .
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 43 FIGURE 4.3: Gaussian-like attention (GA). (a) Original image. Red rectangle denotes segmented object, and yellow ellipse denotes similar tissues. (b) Gaussian-like attention image of (a) by using Eq. 4.5. (c) The cropped image after locating the segmented object (red rectangle). (d) The image of the Gaussian-like weighted function (ω GA ). (e) The image after blending (c) and (d).

Fig. 4 .

 4 Fig. 4.3(a) is an example from the MICCAI 2019 left ventricle (LV) Full Quantification Challenge dataset 2 (LVQuan19) [74, 75]. The red box denotes the object domain, here the left ventricle. A large number of similar tissues are around it, highlighted by the yellow ellipses. As shown in Fig. 4.7, the similar tissues can lead to missegmentation. Even after a localization procedure, these tissues are still present. An

  Fig 4.4, when we keep the (a) β=0.5 (b) β=1 (c) β=2
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 44 FIGURE 4.4: Different β. rest of the parameters unchanged, the change in β leads to a change in the range of attention.

  Whole-Heart and Great Vessel Segmentation from 3D Cardiovascular MRI in Congenital Heart Disease 3 (HVSMR16), Multi-Modality Whole Heart Segmentation4 (MM-WHS2017) and MICCAI 2018 Atrial Segmentation Challenge 5 (AtriaSeg18).The aim of LVQuan19 is to segment the myocardium of the left ventricle and estimate a set of clinical significant LV indices such as regional wall thicknesses, cavity dimensions, and cardiac phase and so on. It contains the processed SAX MR sequences of 56 patients. For each patient, 20 temporal frames are given and cover a whole cardiac cycle. All ground truth (GT) values of the LV indices are provided for every single frame. The pixel spacings of the MR images range from 0.6836 mm/pixel to 1.5625 mm/pixel, with mean values of 1.1809 mm/pixel. The LV dataset includes two different image sizes: 256×256 or 512×512 pixels. The aim of HVSMR16 [71] is to segment myocardium and blood pool, it contains 10 training cardiovascular magnetic resonance (CMR) scans. For each patient, three kinds of images were provided: the full-volume axial images, the cropped axial images around the heart and thoracic aorta, and the cropped short axis reconstruction. In the current work, we only use the full-volume axial images. The slice spacings of the full-volume axial images range from 0.65 mm/pixel to 1.15 mm/pixel, while inplane resolution ranged from 0.73 mm/pixel to 1.15 mm/pixel. The average sizes: 387×387×165 pixels. MM-WHS2017 [72] aims to segment 7 substructures of the whole heart. Although it contains 20 cardiac MRI and 20 CT images, we only use the MRI modality. The slice spacings of MRI volume range from 0.899 mm/pixel to 1.60 mm/pixel, while in-plane resolution ranged from 0.78 mm/pixel to 1.2 mm/pixel. The average sizes: 324×325×171 pixels. AtriaSeg18 aims to segment the left atrium and contains 100 annotated 3D MRIs from patients with atrial fibrillation. The voxel 4.2. Experimental Results 63 size of the MR images is 0.625 × 0.625 × 0.625 mm. The dataset includes two different image sizes: 88×576×576 pixel and 88×640×640 pixel.

  (a) Slice n -1. (b) Slice n. (c) Slice n + 1. (d) RGB concatenation at n.
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 45 FIGURE 4.5: Illustration of our "temporal-like" procedure.
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 46 FIGURE 4.6: Illustration of BDC procedure.
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 47 FIGURE 4.7: The comparative results trained with our A 0 Net on different losses.
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 4814914 FIGURE 4.8: Box plots of dice scores for the 56 patients. The red dotted line represents the average value, and a, b, c, etc. on the abscissa correspond to the methods of Tbl. 4.1

Fig. 4 .

 4 Fig. 4.10 shows several localization and segmentation results of our A 0 Net on LVQuan19. Fig. 4.10a indicates that we started with finding the smallest rectangular box for each slice of the patient's heart, ensuring that each box contained the segmentation object. Then we found the biggest rectangular box on the basis of these smallest rectangular boxes; and based on its shape, we cropped a new 3D volume from the original 3D volume as shown in the segmentation module of Fig. 4.1.Thanks to the localization results of Fig.4.10a, we knew that the object was contained in/by the box, which greatly increased the proportion of objects in the image and reduced class imbalance. Fig.4.10b compares ground truth and prediction, and we can see that the differences mainly are near the boundaries.

FIGURE 4 . 10 :

 410 FIGURE 4.10: Localization and segmentation of our A 0 Net on LVQuan19.

  We compare the proposed method with other challengers on HVSMR16 training dataset with 10-fold-cross-validation. The best and second-best methods of HVSMR16 challenge both use only the cropped axial or cropped short axis reconstruction images rather than full-volume axial images as in the training dataset. The cropped axial images are equivalent to our localization results. To ensure that the whole segmented domain is included in our localization result, we enlarged the crop area by taking 10 supplementary pixels. Our segmentation results are obtained based on the full-volume axial images without data augmentation unlike the two first methods.As shown in Tbl. 4.3, our segmentation results on myocardium are better than the best method of the HVSMR16 challenge. For an entire 3D volume, our computational time for the entire pipeline is clearly less than other methods. Chapter 4. Two-stage Segmentation Method (c) Some segmentation results in one scan corresponding to (a).
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 411 FIGURE 4.11: Localization and segmentation of our A 0 Net on HVSMR16. Green denotes the segmentation results of myocardium.

  (a) Some localization results in one patient. (b) Seven structures of the whole heart. Myo: myocardium, LA: left atrium, LV: left ventricle, RA: right atrium, RV: right ventricle, AO: ascending aorta, PA: pulmonary artery.
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 412 FIGURE 4.12: Localization and segmentation of our A 0 Net on MM-WHS2017.
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 413 FIGURE 4.13: Localization and segmentation of our A 0 Net on Atri-aSeg18.
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 413 FIGURE 4.13: Localization and segmentation of our A 0 Net on Atri-aSeg18.
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 3 Conclusion79accuracy would affect the segmentation accuracy. Therefore, one end-to-end segmentation is required.
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 35152 FIGURE 5.1: Architecture of our networks.

  0], and β ∈ R C is initialized to[1,..,1]. The values λ and β are used to gradually learn the importance of the spatial attention map.In the lower branch, the attention module mainly focuses on the most important channels. The channel attention map A l can be obtained by different combinations of convolutional, Reshape and Transpose layers as shown at the bottom of Fig.5.2.
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 5353 FIGURE 5.3: Illustration of calculating boundary loss
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 54 Fig. 4.7 shows the prediction results with different loss functions. Fig. 4.7(image) and Fig. 4.7(GT) are the input image and its corresponding ground truth. Fortunately, after several iterations of the network, segmentation results can be obtained based on a single loss function such as CCE, SSIM and DC loss. However, their segmentation results all have wrong segmentation connected to the region of ground truth as shown in Fig. 4.7(c), 4.7(d), 4.7(e), which can not be removed in post-processing.According to Eq. 5.2, the CCE loss is calculated on a pixel-by-pixel basis (pixelwise level), therefore, it does not consider using the information of surrounding pixels. Although this helps to ensure the convergence of all pixels and obtain a relatively good local optimum, the loss function will choose to give one neutral prediction probability such as 0.5 at boundaries of the target in order to avoid large losses, which often leads to ambiguities in the boundary. As shown in Fig. 4.7(c), compared with Fig. 4.7(d) and Fig. 4.7(e), the segmentation results are fine structures, which

Fig. 5 .

 5 Fig. 5.5(a) shows the histograms of the original volumes have various shapes, according to their histograms, after cropping each slice to 346×346 pixels as shown in Fig. 5.4(c), we map the gray-level range to [0,255] by histogram equalization.

Fig. 5 .

 5 Fig. 5.5(b) shows the gray-level scale of each volume after histogram equalization based on the 1/4 of the pixels in red region as shown in Fig. 5.4(a). The pre-processing begins with a Gaussian normalization. Because ResNet-101 network's input is an
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 54 FIGURE 5.4: Illustration of our "3D-Like" procedure. The red box depicts the boundary of the cropped input image. Three successive cropped slices (b-d) are used to build a "3D-Like" image (e).
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 55 FIGURE 5.5: (a): The histograms of the original volumes have various shapes; (b): to normalize the gray-level scale of each volume, we consider the histogram of their central sub-volume (in orange; see also Fig. 5.4(a)), which has the same dynamic than the oneof the left atrial region given by the ground-truth (in green).
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 56 FIGURE 5.6: Evolution of the loss and accuracy with the number of epochs.

Fig. 5 .

 5 Fig. 5.6 shows the evolution of the loss and accuracy with the number of epochs. For the model accuracy, when the epoch reaches the fifth epoch, the training accuracy of network have arrived 99%. For medical images, there is a lot of redundant information in the image, so the accuracy can be higher in a short time. For the model loss, the loss is drop sharply before fifth epoch, and there is little fluctuation around 0.025 after that.
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 8758 FIGURE 5.7: Ablation study for our method; red color denotes highest weight
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 61 FIGURE 6.1: Scheme of the proposed process. 1. Input MRI. 2. Myocardial contours. 3. LA wall. 4. Histogram. 5. 3SD threshold. 6. Detection
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 62 FIGURE 6.2: Left atrial wall segmentation
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 63 FIGURE 6.3: 3D view of fibrosis and left atrial wall; red color denotes fibrosis and green color denotes left atrial wall

FIGURE 6 . 4 :

 64 FIGURE 6.4: Global overview of the proposed method.
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 621046 the filter number of UNet1 is[64 128 256 512 256128 64] and the filter number of UNet2 is [8 16 32 64 3216 8], but their framework is same, which consists of two parts as shown in Fig.6.5: a down-sampling part and an up-sampling part and fuses high-level features and low-level features by a shortcut connection between the two parts. UNet1 is used to segment the normal tissue around myocardial pathology and obtain three segmentation results on LV+RV, Myo, and WH, respectively. UNet2 is used to segment myocardial pathology by learning the relationship between the surrounding normal tissue and myocardial pathology. Since the number of myocardial pathology samples is much smaller than the number of normal tissues around it, compared with UNet1, we reduce the filter number UNet2 in order to reduce the impact of overfitting. Evaluation of Fibrosis

6. 2 .FIGURE 6 . 6 :

 266 FIGURE 6.6: Segmentation results. Red color denotes false positive and green color denotes false negative.

  modalities (the late gadolinium enhancement (LGE) CMR sequence,the balanced-Steady State Free Precession (bSSFP) cine sequence and the T2-weighted CMR) to complete the segmentation of the myocardium, scar and edema in the context of the MICCAI 2020 myocardial pathology segmentation combining multi-sequence CMR Challenge dataset (MyoPS 2020). We evaluate the proposed method with 5-foldcross-validation on the MyoPS 2020 dataset.

FIGURE 7 . 1 :

 71 FIGURE 7.1: Multi-modality information. A single modality contains only limited information, but the information of several modalities can complement each other.

FIGURE 7 . 2 :

 72 FIGURE 7.2: Multi-task.

FIGURE 7 . 3 :

 73 FIGURE 7.3: Partial segmentation results based on the MRBrains18 dataset: in this dataset, there exists a serious imbalance between the eight brain structures (different proportions).For the brain structures with a small proportion (see the red circle), the hybrid loss strongly helps to produce detailed segmentations; we say that the networks learn to see more clearly in the input images.

The aim of

  MRBrainS2018 is to segment the 8 brain structure such as cortical gray matter, basal ganglia, white matter, white matter lesions, cerebrospinal fluid in the extracerebral space, ventricles, cerebellum and brain stem. It contains 30 MRI scans, which provides contains three modalities such as T1-weighted, T1-weighted inversion recovery and T2-FLAIR. Seven of them are released as the training dataset. Another 23 scans are kept unreleased for test dataset. The dataset includes same image size: 48×240×240.

Fig. 1 :

 1 Fig. 1: Global overview of the proposed method (FOANet).

Fig. 2 :

 2 Fig. 2: Architecture of our networks. Part 1 and Part 2 correspond to the components of Net.1 and Net.2 of Fig. 1, respectively. Because the role of Net.1 is only to roughly locate the target, using Part 1 instead of Part 2 can both reduce model parameters and improve the speed of model prediction. N denotes the number of feature map

  As mentioned above, we replace Part 1 of Net.1 with Part 2, which becomes the segmentation network (Net.2). Because the role of Net.2 is mainly to obtain accurate segmentation results, we use Part 2 that is more complicated than Part 1 in Fig. 2. It can capture the global information and decrease the effect of surrounding similar tissues. Part 2 consists of three convolutional layers with 256 or 512 dilated (dilation = 2) [14] 3×3 filters, and one layer of concatenation.

  (a,b) ∈ {0, 1} is the ground truth one-hot label of class i in the position (a, b) and y * i (a,b)

Fig. 3 :

 3 Fig. 3: Focus of attention (FOA).

  I FOA (a, b) = I(a, b)ω FOA (a, b), where I(a, b) denotes the image intensity at location (a, b) and ω FOA (a, b) is a Gaussian weighted function defined by ω FOA (a, b) = α exp( -|(a, b) -(a * , b * )| 2 / δ 2 ),

  (a) Slice n -1. (b) Slice n. (c) Slice n + 1.(d) RGB concatenation at n.

Fig. 4 :

 4 Fig.4: Illustration of our "temporal-like" procedure.

Fig. 5 :

 5 Fig. 5: The comparative results trained with our FOANet on different losses.

Fig. 6 :Fig. 7 :

 67 Fig. 6: Box plots of dice scores for the 56 patients. The red dotted line represents the average value, and a, b, c, etc. on the abscissa correspond to the methods of Tbl. I

  (a) Some localizations of the LV (in blue) of the 9 th patient. The red dotted box denotes that we extend next to the box by a size equal to 10 pixels to ensure that the whole LV is included into the bounding box. (b) Different comparisions between ground truth and prediction corresponding to (a); yellow denotes the difference.

Fig. 8 :

 8 Fig. 8: Localization and segmentation of our FOANet on LVQuan19.

  (a) Some localization results in one patient. (b) Seven structures of the whole heart. Myo: myocardium, LA: left atrium, LV: left ventricle, RA: right atrium, RV: right ventricle, AO: ascending aorta, PA: pulmonary artery. (c) Some segmentation results in one patient corresponding to (a).

Fig. 9 :

 9 Fig. 9: Localization and segmentation of our FOANet on MM-WHS2017.

Fig. 2 :

 2 Fig. 2: Attention Module. λ, λ ′ , β and β ′ as hyperparameters, which is trained like the convolutional kernel. They decrease the weight of the unimportant feature maps.

Fig. 3 :

 3 Fig. 3: Illustration of our "3D-Like" procedure. The red box depicts the boundary of the cropped input image. Three successive cropped slices (b-d) are used to build a "3D-Like" image (e).

Fig. 1 :

 1 Fig. 1: Myocardial pathology, the picture is from MyoPS2020 challenge 1 .

Fig. 3 :

 3 Fig. 3: Architecture of networks.

Fig. 1 .

 1 Fig. 1. Illustration of LV indices, including (a) the cavity area and the myocardium area, (b) three LV dimensions, (c) six regional wall thicknesses and (d) the cardiac phase (diastole or systole).

Fig. 2 .

 2 Fig. 2. Global overview of the proposed method.

  description LV dataset used for this work was provided by the LVQuan19 challenge. It contains 56 patients processed SAX MR sequences. For each patient, 20 temporal frames are given and correspond to a whole cardiac cycle. All ground truth (GT) values of the LV indices are provided for every single frame. The pixel spacings of the MR images range from 0.6836 mm/pixel to 1.5625 mm/pixel, with mean values of 1.1809 mm/pixel. LV dataset includes two different image sizes: 256 × 256 or 512 × 512 pixels.

Fig. 5 .

 5 Fig. 5. Some localizations (in red) of the LV (in blue) of the 9 th patient.

Fig. 6 .

 6 Fig. 6. Segmentation results (ResNet50-FCN on the left side vs. VGG16-FCN on the right side) for one same patient. The yellow color shows the false negatives.

Fig. 7 .

 7 Fig. 7. Some segmentation results on the 5 th patient of test dataset.
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  Chapter 1. IntroductionThe diagnosis and treatment of heart rhythm disorders depend increasingly on medical imaging from various scanners. For example, 1) Calcium deposits in plaque are discovered via a computerized tomography (CT) scan, commonly known as a calcium-score screening heart scan, in patients with heart disease. They are the

	most effective way to detect atherosclerosis before symptoms appear. Atheroscle-
	rosis of the coronaries increases with coronary calcium levels. 2) A magnetic reso-
	nance imaging (MRI) scan is a non-invasive procedure that employs radio and mag-
	netic waves produced by an MRI scanner to provide precise images of the interior
	of your heart. It is used to detect congenital heart disease, cardiomyopathy, heart
	valve disease, and other conditions. 3) A heart positron emission tomography (PET)
	scan is a noninvasive nuclear imaging test. It creates images of your heart by us-
	ing radioactive tracers (called radionuclides). Cardiovascular PET scans are used

by doctors to diagnose coronary artery disease and heart attack damage. PET scans can distinguish between healthy and damaged heart muscle. PET scans can also help determine whether you will benefit from a percutaneous coronary intervention, such as angioplasty and stenting, coronary artery bypass surgery, or another procedure. 4) A noninvasive nuclear imaging test is a single-photon emission computerized tomography (SPECT) scan of the heart. It creates images of your heart by injecting radioactive tracers into your blood. SPECT is used by doctors to diagnose coronary artery disease and determine whether or not a heart attack has occurred.

SPECT imaging can reveal how well blood flows to the heart and how well the heart functions. 5) Echocardiogram, cardiac echo, and transthoracic echo are all terms for ultrasound (TTE). It creates a moving image of the heart by using ultrasonic waves that bounce off it. It allows doctors to see the heart in motion, including the heartbeat. It is most effective for detecting heart structure and function abnormalities such as dilated cardiomyopathy or restrictive cardiomyopathy. It also aids in the detection of cardiac chamber enlargement, irregular heart rhythms, and heart valve disease.

TABLE 1 .

 1 

	1: Overview of previously published scar detection and seg-
	mentation methods [35]

TABLE 1 .

 1 

		2: Summary of public datasets on heart segmentation
	Source	Data	Image size/pixels	Voxel size/mm
	HVSMR16 [71]	10 3D CMR	390×390×165	0.9×0.9×0.85
	MM-WHS2017 [72]	60 CT, 60 bSSFP MRI	324×325×171	0.94×0.94×1.20
	AtriaSeg18			

  According to the Eq. 2.30, ∂E total ∂out h1 needs to take into consideration its effect on the both output out pre1 and out pre2 . Based on Eq. 2.26, ∂E o1 ∂out h1 can be simply calculated by

						Chapter 2. Theoretical Background
	∂E o1 ∂out h1	= -0.767998026 × 0.78799802619 × (1 -0.78799802619) × 0.5	(2.31)
		= -0.064149776	
	Following the same process for ∂E o2 ∂out h1 , we can get ∂E o2 ∂out h1 = 0.043590891.
	Therefore,			
		∂E total ∂out h1	= 0.043590891 -0.064149776	(2.32)
					= -0.020558885
	Due to out h1 = sigmoid(i1	
						(2.26)
		100528148			
	Therefore,				
		∂E total ∂w5	=	∂E total ∂out pre1	×	∂out pre1 ∂w5
			= -0.077205419 = -0.767998026 × 0.100528148	(2.27)
	We can update w5 by			
		w5 update = w5 -η ×	∂E total ∂w5	(2.28)
	where η denotes the learning rate, if η is equal to 0.01:
		w5 update = 0.5 -0.01 × (-0.077205419) = 0.500772054	(2.29)
	w6, w7, and w8 can be updated by the same process. Next, we will continue to
	calculate the w1, w2, w3 and w4, for example, we consider how w1 affects the total
	error E total by				
		∂E total ∂w1	= = ( ∂E total ∂out h1 ∂E o1 ∂out h1 × + ∂out h1 ∂w1 ∂E o2 ∂out h1	) ×	∂w1 ∂out h1	(2.30)

TABLE 3 .

 3 1: Segmentation results on the 2018 atrial segmentation challenge.

	Method	Preprocessing Dice/%
	UNet [53]	centralization standardization	89.86 90.45
	Improved FCN framework [19]	centralization standardization	90.96 90.03

We continue to experiment on the MRBrainS2018 dataset, which is different from the previous experiment because it is a multi-classification task rather than a binary classification task. The experimental results are shown in Table

.

3.2. Based on the improved FCN framework

[19]

, the segmentation results of 8 brain structures are obtained, although the segmentation results of white matter lesions and brain stem exist certain fluctuations for different preprocessing method, the segmentation results of another 6 structures remain stable. Therefore, these experiments does not indicate which preprocessing method is better. So we conducted another supplementary experiment.

TABLE 3 .

 3 2: Segmentation results using the improved FCN framework[19] on the MRBrainS2018.

	Segment labels	Dice/% centralization standardization
	Cortical gray matter	85.30	84.96
	Basal ganglia	79.02	80.92
	White matter	84.68	84.43
	White matter lesions	61.3	58.66
	Cerebrospinal fluid in the extracerebral space	84.1	84.81
	Ventricles	93.89	94.55
	Cerebellum	91.84	91.63
	Brain stem	86.11	83.97

  1 with Block 2, which becomes the segmentation network (Net.2). Because the role of Net.2 is mainly to obtain accurate segmentation results, we use Block 2 that is more complicated than Block 1 in Fig. 4.2. It can capture the global information and decrease the effect of surrounding similar tissues. Block 2 consists of three convolutional layers with 256 or 512 dilated (dilation = 2) [21] 3×3 filters, and one layer of concatenation.

TABLE 4 .

 4 

	Ablation	Configurations	DC/% 95HD BDC
		a: B. + CCE	84.15	3.186 0.269
	Architecture	b: B. + L. + CCE [20] 86.68	2.209 0.281
		c: BLP + CCE	87.74	2.019 0.303
		d: BLP + SSIM	87.30	2.094 0.297
		e: BLP + DC	87.11	2.193 0.295
	Loss	f: BLP + CD	87.53	2.071 0.300
		g: BLP + CS	87.77	2.043 0.303
		h: BLP + CSD	87.87	1.912 0.305
	A 0 Net (our method) i: BLP + GA + CSD	87.93	1.826 0.306
	UNet [53]	-	86.20	3.976 0.291
	"B." means "baseline" (Net.1) [125, 126]; "L." means "localization"; "P." means "Block 2"(Net.2);
	"BLP" means "baseline + localization + P".		

1: Ablation study; Dice values are for the myocardium. Note: CD = CCE + DC ; CS = CCE + SSIM ; CSD = CCE + SSIM + DC . image (c) CCE (d) SSIM (e) DC (f) CD (g) CS (h) CSD (i) A 0 Net GT

TABLE 4 .

 4 

	2: Ablation study on the proportionality coefficient λ of the
				hybrid loss	
	λ 1 λ 2 λ 3 DC/% 95HD BDC
	1	1	1	87.93	1.826 0.306
	1	1	2	87.34	1.839 0.290
	2	1	1	87.18	1.912 0.291
	1	2	1	87.32	1.848 0.294
	Average	87.28	1.866 0.292
	1	2	2	87.20	1.876 0.285
	2	1	2	87.13	1.879 0.287
	2	2	1	87.04	1.891 0.288
	Average	87.12	1.882 0.287
	1	2	3	87.25	1.898 0.289
	1	3	2	87.24	1.892 0.292
	2	1	3	87.28	2.064 0.294
	2	3	1	87.16	1.889 0.293
	3	1	2	87.09	1.928 0.289
	3	2	1	87.20	1.851 0.289
	Average	87.20	1.920 0.291

most of the values of our method are low, which shows that our method optimizes the boundary quality.

TABLE 4 .

 4 

	Method	DC (train) DC (test) Computation time Data augmentation
	Our (best)	0.851	-	< 2s	No
	Best [134]	0.796	0.781	< 2min & > 2s	No
	Second-best [135]	0.752	0.778	-	Yes
	UB2 [136]	-	0.811	-	Yes
	3D U-Net [137]	0.720	0.791	-	Yes

4: Comparison of our method and other challengers on the MM-WHS2017 MRI training dataset for segmenting the myocardium.

TABLE 5 .

 5 1: Comparison of our method and other state-of-the-art architectures using a 5 fold cross-validation.

	Method	Att. Module Hyb. Loss	DC/%	95HD/mm	AHD/mm
	U-Net [53]	88.556(±2.586) 4.447(±0.996) 0.212(±0.077) " 89.613(±2.257) 4.169(±0.960) 0.210(±0.118)
	DANet [26]	84.229(±3.774) 6.145(±2.341) 0.514(±0.477) " 87.584(±2.765) 4.903(±1.448) 0.280(±0.179)
	Deeplabv3+ [139]		85.444(±3.079) 5.872(±2.345) 0.504(±0.614)

TABLE 5 .

 5 

	2: Segmentation results using a 5 fold cross-validation on
		HVSMR16 dataset
	Hybrid loss	DC/% Myocardium Blood pool
	"	75.15(±4.99) 82.33(±12.38) 78.36(±4.44) 85.07(±10.49)

TABLE 6 .

 6 

	1: Ablation study of SD on LAScarQS2022 dataset using a 5
	fold cross-validation.
	Different SD	DC of scar
	SD	0.328±0.035
	2SD	0.305±0.067
	3SD	0.062±0.038

TABLE 6 .

 6 3: Evaluation results on 5-fold-cross-validation.

	Patient 101-

105 106-110 111-115 116-120 121-125 Average Test datasets

  = 0.001, lr = 0.0001) and did not use learning rate decay. We trained the network during 300 epochs.

	Edema Scar	0.284 0.473	0.153 0.496	0.189 0.515	0.122 0.464	0.280 0.602	0.206 0.510	-0.586
	Myo LV+RV WH	0.844 0.818 0.925	0.852 0.854 0.937	0.811 0.812 0.876	0.859 0.897 0.918	0.869 0.864 0.959	0.847 0.849 0.923	---
	0.999, ε							

Table 7 .

 7 1 shows the segmentation results using a 7 fold cross-validation on MR-BrainS2018 dataset. If adding the hybrid loss into the network, the segmentation results of each brain structure are both improved. Corresponding to Fig. 7.3, The partial segmentation results of brain are shown for with or without hybrid loss. Using hybrid loss in the network, more details are segmented by the network.

TABLE 7 .

 7 

	1: Segmentation results using a 7 fold cross-validation on
		MRBrainS2018 dataset	
	Brain structure	Dice/% Without hybrid loss With hybrid loss
	Cortical gray matter	84.89	85.44
	Basal ganglia	81.37	82.64
	White matter	85.36	86.07
	White matter lesions	31.08	40.20
	CSF	81.98	82.35
	Ventricles	91.89	92.86
	Cerebellum	89.74	90.65
	Brain stem	71.83	74.44
	CSF denotes cerebrospinal fluid in the extracerebral space.	

TABLE I :

 I Ablation study; Dice values are for the myocardium. B. + ℓ CCE 0.842 3.186 0.269 b: B. + L. + ℓ CCE [13] 0.867 2.209 0.281 c: BLP + ℓ CCE 0.877 2.019 0.303

	Ablation Architecture a: Loss Configurations d: BLP + ℓ SSIM e: BLP + ℓ DC FOA (our) i: BLP + FOA + ℓ CSD 0.879 1.826 0.306 DC 95HD BDC 0.873 2.094 0.297 0.871 2.193 0.295 UNet [25] -0.862 3.976 0.291
	"B.

TABLE II :

 II Comparison of our method and other challengers on the MM-WHS2017 MRI training dataset for segmenting the myocardium.

	Method Our (best) Best [28] Second-best [29] UB2 [30]	DC (train) DC (test) 0.851 ? 0.796 0.781 0.752 0.778 ? 0.811	Computation time < 2s < 2min -?	Data augmentation No No Yes Yes

TABLE I :

 I Comparison of our method and other state-of-the-art architectures using a 5 fold cross-validation.Stacked and Parallel U-Nets with Multi-Output for Myocardial Pathology SegmentationZhou Zhao * , Nicolas Boutry [0000-0001-6278-4638] , and Élodie Puybareau[0000-0002-2748-6624] 

	Method	Att. Module Hyb. Loss	DC/%	95HD/mm	AHD/mm
	U-Net [5]		88.556 (±2.586) 89.613 (±2.257)	4.447 (±0.996) 4.169 (±0.960)	0.212 (±0.077) 0.210 (±0.118)
	DANet [3]		84.229 (±3.774) 87.584 (±2.765)	6.145 (±2.341) 4.903 (±1.448)	0.514 (±0.477) 0.280 (±0.179)
	Deeplabv3+ [40]		85.444 (±3.079) 87.556 (±1.155)	5.872 (±2.345) 5.210 (±1.087)	0.504 (±0.614) 0.273 (±0.074)
	Our Method		90.774 (±1.568) 91.326 (±1.174)	3.312 (±1.277) 3.097 (±0.810)	0.158 (±0.092) 0.143 (±0.055)
			91.792 (±1.065)	2.868 (±0.667)	0.130 (±0.042)

Table 2 :

 2 Evaluation results on 5-fold-cross-validation. Patient 101-105 106-110 111-115 116-120 121-125 Average Test datasets

	Edema 0.284 Scar 0.473	0.153 0.496	0.189 0.515	0.122 0.464	0.280 0.602	0.206 0.510	-0.586
	Myo LV+RV 0.818 0.844 WH 0.925	0.852 0.854 0.937	0.811 0.812 0.876	0.859 0.897 0.918	0.869 0.864 0.959	0.847 0.849 0.923	---

Table 1 .

 1 Average results of compared methods on 3-fold-cross-validation. Values are shown as mean absolute error.

	Dataset	Method	Cavity Areas(mm 2 )	Myocardium Areas(mm 2 )	Dims(mm) dim1 dim2 dim3 average IS	I	IL	RWT(mm) AL	A	AS average	Phase Error(%)	Dice (%)
	Validating data	ResNet50-FCN 279.32 VGG16-FCN (our method) 88.84	284.84 1.8359 1.6320 1.7767 1.7482 1.2106 1.3059 1.7157 1.6225 1.3303 1.2437 1.4048 15.1267 79.20 157.01 0.9799 1.0691 0.9443 0.9978 0.8320 0.9173 1.1190 1.1124 0.8895 0.8408 0.9518 8.0311 86.04

Table 2 .

 2 Average results on 5-fold-cross-validation. Values are shown as mean absolute error. .9067 0.9792 0.8801 0.9220 0.8362 0.9147 1.0798 1.0560 0.8270 0.7973 0.9185 7.6364 86.64 Testing data 226.80 577.50 6.4934 3.8814 3.9835 4.7861 4.2693 1.8585 2.0570 1.9129 1.6441 3.6039 2.5576 9.83 -

	Dataset	Cavity Areas(mm 2 )	Myocardium Areas(mm 2 ))	Dims(mm) dim1 dim2 dim3 average IS	I	IL	RWT(mm) AL	A	AS average	Phase Error(%)	Dice (%)
	Validating data	94.31	135.23 0							
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Note that we designed our network's architecture to work with any input shape.
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(a) Some localizations of the LV (in blue) of the 9 th patient. The red dotted box denotes that we extend next to the box by a size equal to 10 pixels to ensure that the whole LV is included into the bounding box.

(b) Different comparisions between ground truth and prediction corresponding to (a); yellow denotes the difference.FIGURE 4.10: Localization and segmentation of our A 0 Net on LVQuan19.

(a) Some localization results in one scan. (b) 3D visualization of the segmentation results in one scan. Left: ground truth, Right: prediction.FIGURE 4.11: Localization and segmentation of our A 0 Net on HVSMR16. Green denotes the segmentation results of myocardium.

(a) Our Method (b) U-Net [53](c) DANet[26] (d) Deeplabv3+[START_REF] Chen | Encoder-decoder with atrous separable convolution for semantic image segmentation[END_REF] 

http://segchd.csail.mit.edu/index.html

https://atriaseg2018.cardiacatlas.org/

https://zmiclab.github.io/projects/lascarqs22/

http://www.sdspeople.fudan.edu.cn/zhuangxiahai/0/MyoPS20/index.html

https://mrbrains18.isi.uu.nl/

https://lvquan19.github.io

http://www.sdspeople.fudan.edu.cn/zhuangxiahai/0/mmwhs17/index.html

http://www.sdspeople.fudan.edu.cn/zhuangxiahai/0/MyoPS20/index.html

https://lvquan19.github.io

https://lvquan18.github.io

Note that we designed our network's architecture to work with any input shape.
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We continued to test our method on the MM-WHS2017 challenge with 5-fold cross-validation and we obtained segmentation results for each class. As we focus on the myocardium segmentation, we will only present our results for this structure.

For the comparison with state-of-the-art methods, we choose to compare our results

with the results of the first and second prizes of the challenge, who respectively get dices of 0.87 and 0.863 in average for all classes. We reported their results on the training and on the testing sets. We also add a comparison with a late submission on the testing set only (scores on the training dataset are not available), having the best actual score of the challenge [START_REF] Shi | Bayesian voxdrn: A probabilistic deep voxelwise dilated residual network for whole heart segmentation from 3d mr images[END_REF][START_REF] Zhuang | Evaluation of algorithms for multimodality whole heart segmentation: an open-access grand challenge[END_REF]. As shown in Tbl. 4.4, compared with the first and second prizes of the MM-WHS2017 challenge, without using data augmentation, our method outperformed them for the segmentation of the myocardium of the left ventricle. Furthermore, our method needs less time to compute the prediction, which further validates the results in LVQuan19. Fig. 4.12 shows some localization Chapter 5. End-to-end Segmentation Method our network achieves a mean improvement of 3.236%, 7.563% and 6.348% (in terms of DC), 1.579 mm, 3.277 mm and 3.004 mm (on 95HD) and 0.082 mm, 0.384 mm and 0.374 mm (on AHD), respectively. For the proposed method, the improved performance could be explained by the fact that the attention module and hybrid loss. Fig. 5.7 shows the ablation study for our method. Compared Fig. 5.7(a) with 

Ablation Study

To explain the advantages of the proposed hybrid loss, we conduct an ablation study.

We compare the segmentation results with and without hybrid loss (see Table 5.1).

Segmentation performance increases for DC, 95HD and AHD for the 4 architectures, proving the benefits of the proposed hybrid loss.

We continue to test the hybrid loss on other datasets, and choose one multiclass segmentation task such as the MICCAI Workshop on Whole-Heart and Great

Vessel Segmentation from 3D Cardiovascular MRI in Congenital Heart Disease 2 (HVSMR16). The aim of HVSMR16 [START_REF] Pace | Interactive whole-heart segmentation in congenital heart disease[END_REF] is to segment myocardium and blood pool, it provides 10 training cardiovascular magnetic resonance (CMR) scans. For each patient, three kinds of images were provided: the full-volume axial images, the cropped axial images around the heart and thoracic aorta, and the cropped short axis reconstruction. In the current work, we only use the full-volume axial images.

The slice spacings of the full-volume axial images range from 0.65 mm/pixel to 1.15 mm/pixel, while in-plane resolution ranged from 0.73 mm/pixel to 1.15 mm/pixel.

The average sizes: 387×387×165 pixels.

For the HVSMR16 dataset, we resize with a fixed pixel-spacing (0.65mm) and then crop to 250×384×384, finally, use z-score normalization before inputting the network. We choose a previously proposed framework [19] as shown in Fig. 3.1 to complete experiments. Table 5.2 shows the segmentation results using a 5 fold crossvalidation on HVSMR16 dataset. Compared without hybrid loss, adding the hybrid loss improves the segmentation accuracy of myocardium and blood pool from 75.15% to 78.36% and from 82.33% to 85.07% in term of dice, respectively. 

Part IV Evaluation Methods of Fibrosis

Experimental Results

Dataset Description. We evaluate our method on the myocardial pathology segmentation combining multi-sequence CMR 3 
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Some of the materials presented in this manuscript have been published in peerreviewed conferences. and selectively focus on salient parts in order to capture the visual structure in a better way [22,23]. For this reason, attention modules have been developed: they focus on important regions, filter irrelevant information, and make up the limited receptive field of CNNs. They get good performance on segmentation tasks [24,25,26,27]. For example, Zhang [24] proposes an efficient multi-scale feature interaction mechanism with attention, paying more attention to the important regions of objects, capturing more detail information, and so improving segmentation accuracy on small objects. Attention modules are also used for cardiac segmentation. Zhou [28] designed a cross-modal attention module between the encoder and the decoder, which leverages the correlated information between modalities to benefit the cross-modal cardiac segmentation.

Based on 3D U-Net [29], Li [30] designed an attention module based on hierarchical aggregation to force the network to focus on the left atrium. Zhang [31] designed three types of attention modules (spatial, channel, and region) achieving good segmentation results on ventricles. Tong [32] presents an interleaved attention mechanism, improving the performance of cardiac MRI segmentation when applied to recurrent FCNs. Wei [33] proposes a spatial constrained channel attention module to pay more attention to the left ventricle and to decrease the impact of surrounding similar tissues. This approach leads to an effective segmentation of multiply connected domains but do not take the boundaries into account.

Facing these difficulties, we propose a novel attention FCN framework that focuses on the region of interest and is regionand boundary-aware. The main contributions of our work are: 1) a novel attention network framework based on the pretrained Resnet-101 with attention module, which can improve the segmentation accuracy on small parts of objects; 2) a novel hybrid loss that considers regions and boundaries of objects equally by combining region loss with boundary loss.

II. METHODOLOGY

A. Overview of Network Architecture

We propose a new attention network (see Fig. 1) using ResNet-101 pretrained on ImageNet [34] to compute feature maps. We discard its average pooling and fully connected layers, and keep only the sub-network made of one convolutionbased and four residual-based "stages". Since the resolution decreases at each stage, we obtain a set of fine to coarse feature maps (with five levels of features).We add specialized convolutional layers (with a 3 × 3 kernel size) with K (e.g. K = 16) feature maps placed at the end of four residualbased "stages". They are concatenated together after upconvolutional layers. These last feature maps are combined with each of the outputs of the specialized layers, and then fed into the attention module to generate the attention features. Finally, we concatenate the attention features with the outputs of Conv1 and we fed them into the softmax layer.

Attention Module. As mentioned before, in a traditional segmentation model, the usual issue is that receptive fields are too small, which leads to poor contextual representations. Furthermore, the relationship between the different channels should be explored since each channel map represents one feature-specific response. Therefore, improving the dependencies among channel maps can lead to richer features. To solve these issues, we use an attention module inspired by [3]. As shown in Fig. 2, F ∈ R C×W ×H acts as an input feature map for the attention module, where C, W, H are the channel, the width and the height of the feature map respectively. The upper branch F is fed into a convolutional, a Reshape and then a Transpose layers, resulting in a feature map F u 0 ∈ R (W ×H)×C . In the second branch (consider the order from top to bottom), the input feature map F follows the same operations minus the Transpose layer, resulting in 3: a down-sampling part and an up-sampling part, and shortcut connections between the two parts to fuse high-level features and low-level features.

UNet1 is used to segment the anatomical tissue around myocardial pathology and obtain three segmentation results: LV+RV, Myo, and WH. UNet2 is used to segment myocardial pathology by learning the relationships between the surrounding anatomical tissue and the pathological ones. Since the lesions are very small and unbalanced, we reduce the number of filters of UNet2 in order to reduce the impact of overfitting.

Experimental Results

Dataset Description. We evaluate our method on the myocardial pathology segmentation combining multi-sequence CMR 2 dataset (MyoPS 2020). Its aim is to segment myocardial pathology, especially scar (infarcted) and edema regions. Abstract. Automatic segmentation of the left ventricle (LV) of a living human heart in a magnetic resonance (MR) image (2D+t) allows to measure some clinical significant indices like the regional wall thicknesses (RWT), cavity dimensions, cavity and myocardium areas, and cardiac phase. Here, we propose a novel framework made of a sequence of two fully convolutional networks (FCN). The first is a modified temporal-like VGG16 (the "localization network") and is used to localize roughly the LV (filled-in) epicardium position in each MR volume. The second FCN is a modified temporal-like VGG16 too, but devoted to segment the LV myocardium and cavity (the "segmentation network"). We evaluate the proposed method with 5-fold-cross-validation on the MICCAI 2019 LV Full Quantification Challenge dataset. For the network used to localize the epicardium, we obtain an average dice index of 0.8953 on validation set. For the segmentation network, we obtain an average dice index of 0.8664 on validation set (there, data augmentation is used). The mean absolute error (MAE) of average cavity and myocardium areas, dimensions, RWT are 114.77 mm 2 ; 0.9220 mm; 0.9185 mm respectively. The computation time of the pipeline is less than 2 seconds for an entire 3D volume. The error rate of phase classification is 7.6364%, which indicates that the proposed approach has a promising performance to estimate all these parameters. Because the VGG-16 network's input is an RGB image, we propose to take advantage of the temporal information by stacking 3 successive 2D frames: to segment the n th slice, we use the n th slice of the MR volume, and its neighboring (n -1) th and (n + 1) th slices, as green, red and blue channels, respectively. This new image, named "temporallike" image, enhances the area of motions, here the heart, as shown in Fig. 3. The localization and the segmentation networks have the same architecture (see Fig. 4). First we downloaded the pre-trained original VGG16 [7] network architecture. We recall that this network has been pre-trained on millions of natural images of Im-ageNet for image classification [8]. Second, we discard its fully connected layers and this way we keep only the sub-network made of five convolution-based "stages" (the base network). Each stage is made of two convolutional layers, a ReLU activation function, and a max-pooling layer. Since the max-pooling layers decrease the resolution of the input image, we obtain a set of fine to coarse feature maps (with 5 levels of features). Inspired by the work in [9,10], we added specialized convolutional layers (with a 3 × 3 kernel size) with K (e.g. K = 16) feature maps after the up-convolutional layers placed at the end of each stage. The outputs of the specialized layers have then the same resolution as the input image, and are then concatenated together. We add a 1 × 1 convolutional layer at the output of the concatenation layer to linearly combine the fine to coarse feature maps. This complete network provides the final segmentation result. 3 

Network architecture

Postprocessing

Let us assume that we input the 20 cropped temporal slices of a patient into an image of size 20 × width × height (where the crop is due to the localization procedure) in preprocessing2 to obtain a 20 × width × height × 3 image. We filter then the ouput of size 20 × width × height by keeping only the greatest connected component in the segmented (2D + t)-image, and we compute the inverse interpolation on the x and y axes to get back the initial inter-pixel spacing. Finally, we add a zero-valued border to get back a 20 × 256 × 256 or a 20 × 512 × 512 image (depending on the shape of the input).

Evaluation Methods

The LV quantification as defined in LVquan19 relies on 11 parameters: the areas of the LV cavity and the myocardium, 3 dimensions of the cavity and 6 measurements of the wall thickness. We measure the areas (see Fig. 1 (a)) by computing the number of pixels in the segmented regions corresponding to the LV cavity and the myocardium. To measure the three cavity dimension values (dim1, dim2, dim3) (see Fig. 1 (b)), we proceed this way: because our final segmentation results is the LV myocardium, we first extracted the LV cavity from the segmentation results. We then compute the boundary of the LV cavity and calculate the distances between the points of the boundary and the centroid of the LV cavity along the integral angles θ ∈ [-30, 30[ (in degrees). Finally, we average these distances. We do this for the six separated regions of the wall. Finally, we compute the mean dimensions for each pair of opposite regions and we obtain (dim1, dim2, dim3). To measure the RWT's values, we first find the boundaries of epicardium and endocardium respectively, and we compute the distances between the points on the boundary of epicardium and the points on the boundary of endocardium along the same integral angles as before where zero corresponds to the normal. Finally, we compute the mean among 60 distance values for each region. To classify the phase as systolic or diastolic, we use a simple method: we detect the time n max when the cavity is maximal, and n min when the cavity is minimal. Assuming that we have the case n min > n max , then for each time n ∈ [n max , n min ], we label the image as systolic phase, and otherwise it is a diastolic phase. We do the converse when we have n max < n min .

Experiments

We implemented our experiments on Keras/TensorFlow using a NVidia Quadro P6000 GPU. We used the multinomial logistic loss function for a one-of-many classification