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Résumé (français) :
L’histopathologie a pour objectif d’analyser des images de tissus biologiques pour
évaluer l’état pathologique d’un organe et établir un diagnostic. L’apparition des
scanners de lames à haute résolution a ouvert la voie à des nouvelles possibilités
d’acquisition de très grandes images (whole slide imaging), de multiplexage de
marquages, d’extraction exhaustive d’informations visuelles et d’annotations mul-
tiples à large échelle. Cette thèse propose un ensemble de méthodes algorithmiques
visant à faciliter et optimiser ces différents aspects. Dans un premier temps, nous
proposons une méthode de recalage multi-échelle d’images histologiques multi-
marquées reposant sur les propriétés des B-splines pour modéliser, de façon con-
tinue, une image discrète. Nous proposons ensuite de nouvelles approches d’analyse
morphologique sur des polygones faiblement simples, généralisés par des graphes à
segments droits. Elles reposent sur le formalisme des squelettes droits (une approx-
imation de squelettes courbes définis par des segments droits), construits à l’aide
de graphes de motocyclettes. Cette structure permet de réaliser des opérations
de morphologie mathématiques sur des polygones avec une complexité réduite.
La précision des opérations sur des polygones bruités est obtenue en raffinant la
construction des squelettes droits par ajout adaptatif de sommets. Nous avons
aussi proposé un algorithme de détection de l’axe médian et montré qu’il est pos-
sible de reconstruire la forme d’origine avec une approximation arbitraire. Enfin,
nous avons exploré les squelettes droits pondérés qui permettent des opérations
morphologiques directionnelles. Ces approches d’analyse morphologique offrent un
support consistant pour améliorer la segmentation des objets grâce à l’information
contextuelle et réaliser des études liées à l’analyse spatiale des interactions entre les
différentes structures d’intérêt au sein du tissu. Tous les algorithmes proposés sont
optimisés pour le traitement d’images gigapixels et garantissent une reproductibil-
ité des analyses, notamment grâce à la création du plugin Icytomine, interface
entre Icy et Cytomine.

Abstract:
Histopathology aims to analyze images of biological tissues to assess the pathologi-
cal condition of an organ and to provide a diagnosis. The advent of high-resolution
slide scanners has opened the door to new possibilities for acquiring very large im-
ages (whole slide imaging), multiplexing stainings, exhaustive extraction of visual
information and large scale annotations. This thesis proposes a set of algorith-
mic methods aimed at facilitating and optimizing these different aspects. First,
we propose a multi-scale registration method of multi-labeled histological images
based on the properties of B-splines to model, in a continuous way, a discrete
image. We then propose new approaches to perform morphological analysis on
weakly simple polygons generalized by straight-line graphs. They are based on the
formalism of straight skeletons (an approximation of curved skeletons defined by
straight segments), built with the help of motorcycle graphs. This structure makes
it possible to perform mathematical morphological operations on polygons. The
precision of operations on noisy polygons is obtained by refining the construction
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of straight skeletons. We also propose an algorithm for computing the medial axis
from straight skeletons, showing it is possible to approximate the original polygonal
shape. Finally, we explore weighted straight skeletons that allow directional mor-
phological operations. These morphological analysis approaches provide consistent
support for improving the segmentation of objects through contextual information
and performing studies related to the spatial analysis of interactions between dif-
ferent structures of interest within the tissue. All the proposed algorithms are
optimized to handle gigapixel images while assuring analysis reproducibility, in
particular thanks to the creation of the Icytomine plugin, an interface between Icy
and Cytomine.

Mots-clés (français) : Pathologie numérique, Traitement de larges images, Re-
calage d’images, Analyse morphologique et spatiale, outils CAD, Géométrie algo-
rithmique, Squelettes droits

Keywords: Digital Pathology, Large image processing, Image registration, Spa-
tial and morphological analysis, Computer Aided Diagnosis tools, Discrete Geom-
etry, Straight skeletons
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Chapter 1

Introduction

In histology, the tissue of the subject (either a plant, animal or human) is inspected
with a microscope for studying the biology of processes such as cancer or embryo-
genesis. Tissue processing has been highly automatized in recent years, reducing
considerably the speed of production of slides available to visualize. Alongside, dig-
itization of slides (acquisition of digital images of histological tissue), also known
as whole-slide imaging (WSI), has allowed to visualize them on computers in-
stead of using traditional microscopes. However, even with these improvements
on histology imaging, there is still a lot of procedures that remain manual, re-
quiring highly trained pathologists and raising costs of histology analyses [1]. As
a consequence, there is a window of opportunity for developing automated meth-
ods that help reduce the time taken for performing these procedures by letting
computers ease these tasks, and even making available other procedures that are
prohibitively time-consuming for humans. In this chapter, we take a quick look
at the procedures involved in histology analysis. I present procedures from tissue
preparation until the different challenges that currently exist on computational
pathology. Alongside this description, I present the specific research subjects in-
volved with this thesis that aim to improve automated histology analysis. Finally,
I describe how subjects in this thesis are organized.

1.1 Histology and Whole slide imaging
The main purpose of histology for pathologists is to examine tissue and provide
an accurate diagnosis that will finally become a therapeutic intervention for the
patient. This intervention can vary from no further action (in the case of unremark-
able diagnosis), to close follow-up, medical treatment, or even surgical intervention
(in the case of malignant diagnosis).

In order to provide a diagnosis practitioners follow several procedures to collect,
treat and store the tissue to be analyzed (see Figure 1.1). Understanding this
process helps to have a better perspective of how digital images are obtained out
of tissue and the different sources of variability of the information during image
acquisition.
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CHAPTER 1. INTRODUCTION

Figure 1.1 – Histology process diagram

1.1.1 Tissue preparation
Sample acquisition

In general a clinical histology begins with the determination of the treating physi-
cian indicating that, in order to continue treatment, the patient has to go through
histological confirmation. Following this, the physician has to obtain enough tis-
sue to be able to provide a diagnosis. To collect enough tissue there are multi-
ple standard protocols including fine-needle aspiration, needle biopsy, excisional
biopsy, and excision of the entire lesion tissue. The sensitivity and specificity of
these procedures increases as the obtained tissue increases, providing pathologists
with more cellular context to provide an accurate diagnosis. After biopsy, the
pathologist measures the tissue and records a detailed description of its color and
characteristics. In the case of large amounts of extracted tissue, it is split into
cassettes (approximately 10 by 10 by 3 millimeters) used for subsequent steps.

The extracted tissue is then processed to stabilize it chemically, as well as
physically, to keep its microscopic morphology. During this step the tissue is
immersed into a fixative solution that stop cell architecture from breaking down
and stop further growth of microorganisms. Next, the tissue is physically stabilized
be either freeze drying, microwave, or chemical stabilization.

The tissue processing is followed by embedding it on a fixated block, where
the tissue gets impregnated with and surrounded by liquid paraffin which gets
hardened as it gets cold. During this step the tissue has to be correctly oriented
in order to obtain correct slices when it gets sectioned in thin slices.

Sectioning is the step in which tissue get cut in thin slices that are then
mounted on microscope slides. This is done by using a microtome that slices the
tissue on the fixated block in sections of 3 to 4 micrometers of thickness. Following
this, slides pass by a floating of cold water in order to disperse wrinkles product
of the sectioning. Then, sections are positioned on glass slides of size 25 by 75 by
1 millimiters.

At this point, tissue slices are so thin that they are now practically invisi-
ble under a light microscope. To make the tissue visible it has to go through a
staining procedure, where immunohistochemical staining (IHS) or chemical dy-
ing is applied to the tissue. These dyes bind to certain components of cells and
extracellular components producing a visual appearance that can be visible using
a microscope. The most widely known stains for diagnostic histology are hema-
toxylin and eosin, which have good properties in terms of contrast between the
background and the different components of the tissue, producing colors at oppo-
site ends of the visual spectrum. Other dyes are also used according to the needs

4



1.2. CHALLENGES AND OPPORTUNITIES IN AUTOMATED
WHOLE-SLIDE IMAGE ANALYSIS

Figure 1.2 – Example of slide scanner (Axio Scan Z1), which is capable of load up
to 100 slides to scan in a single run.

of the pathologists to stain specific types of cells on the tissue sample. Examples
of dyes comprise Clara cell 10 protein (CC10), platelet endothelial cell adhesion
molecule (CD31), prosurfactant protein C (proSPC), among several other (Some
examples in Figure 3.8).

Sample visualization

With the slides already stained, they must be digitized in order to have a digital
version of the sample and to be able to visualize the entire slide on a computer
screen for further analysis. For this, microscope manufacturers provide whole-slide
scanners able to capture high-resolution images at high speeds (See Figure 1.2).
These scanners usually offer resolutions using a 20x or 40x objective reaching 0.23
to 0.25 micrometers per pixel. The image is then stored on the computer hard
drive and can be opened for visualization anytime and as many times as needed
once the slide is digitized. However, virtual slides use considerably more space
than regular pictures as they hold detailed information about the tissue, contrary
to regular pictures that can be compressed with a certain loss in quality. Despite
this price in disk space, it offers an interesting alternative to storing the physical
sample, because hard drives are relatively small and can hold multiple virtual
slides. Additionally, virtual slides do not suffer from sample aging. Nowadays,
despite the increasing usage of slide scanners, physical sample blocks are still kept
for a period of at least 10 years. A full overview of the histology acquisition process
can be seen in Figure 1.3.

1.2 Challenges and opportunities in automated
whole-slide image analysis

In practice, although slide scanners are increasingly being used, many pathologists
still prefer to use classical microscopes because they offer faster panning, faster
focusing and an intangible sense of control of the slide. In addition, histology
diagnosis has three main sources of variability [1]:
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CHAPTER 1. INTRODUCTION

Figure 1.3 – The different steps of an image acquisition in histology. Image adapted
from [2]

• Biological: Associated to the variations experimented among different peo-
ple and the different behaviour of biological processes for each individual.
This effect can generate different results on images of the same tissue of
different patients.

• Technical: When the preparation of the tissue does not follow the same
processing protocol. This can result in different results on the subsequent
analyses. In some, the simple fact of using a different slide scanner of the
same model and the same specification can introduce variations on the ac-
quired images.

• Inter-observer: In this case the assessment by multiple pathologists (at
least 2 and in some cases an odd number of specialists are requested) of
the same sample can yield to different results, introducing an evaluation
subjectivity.

In order to automate the analysis performed on virtual slides the previous sources
of variability have to be dealt with to achieve accurate diagnoses and prognoses.

It is precisely at this point where developers of digital solutions are making
efforts to improve the user experience of visualization software providing user-
friendly tools. Researches are also seeking to help pathologists by providing new
information extracted automatically from acquired images. Some of the research
topics and challenges aiming to perform computational pathology are described in
the following paragraphs (from 1.2.1 to 1.2.8). Most of these elements are taken
from four main reviews in histopathological image analysis, as well as complemen-
tary articles. In [1] authors present a general perspective of all the steps involved
in a histology diagnosis process organized in sample acquisition and tissue visu-
alization. [3] introduces pre-processing, segmentation and feature extraction on

6



1.2. CHALLENGES AND OPPORTUNITIES IN AUTOMATED
WHOLE-SLIDE IMAGE ANALYSIS

Figure 1.4 – A view of the different processes taking place in an automated histol-
ogy analysis. This thesis research work is associated to some of these processes,
which are colored in green.

histological images. The review in [4] concentrates on computation pathology, a
broad term including nucleus detection, cell classification and survival statistics
generation. Finally, [5] deals with acquisition quality control, feature extraction,
region of interest detection and data visualization. A general view of the automated
histology analysis workflow can be seen in Figure 1.4, where several processes take
place in order to provide diagnoses from histology images.

1.2.1 Pre-processing
As with microscopy imaging, histology images present different types of artifacts
and noise, some related to general microscopy and some specific to whole-slide
imaging. Since these artifacts on the image can alter their analysis, they have to
be removed before any image analysis is performed.

Stain normalization

As mentioned before variability on captured images can alter analysis results. One
possible source of variability is the staining variations caused by tissue preparation
or digitization conditions, which may affect the appearance of tissue on virtual
slides. To solve this, the intensities of the pixels must be normalized with respect
to a reference intensity spectrum, which is taken from another reference image. In
general two images are (the reference image and the image to normalize), and the
images are adjusted to fall on the same intensity spectrum of the reference image
(See Figure 1.5). The simplest approach is to use color normalization techniques
usually used in photography (histogram equalization for example), which can be
automatized to handle specific types of staining techniques [6, 7]. This approach
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(a) (b) (c)

Figure 1.5 – Example of stain normalization. These images stained using the same
protocol (hematoxylin and eosin) have been acquired with two different scanners
(Aperio and Hammamatsu), introducing a variability on the intensities of acquired
images. Here, the source image 1.5a is modified in order to adjust its color intensi-
ties with respect to the target image 1.5b, obtaining intensities on the same color
spectrum (1.5c) [13].

has been successfully applied on serial sections that have been stained with the
same dyes [8]. Another way to achieve stain normalization is by performing a
color deconvolution, in which the colors of the dyes in the image are separated,
normalized and finally recombined. This approach is useful when one of the dyes
has a low contrast with respect to the others. Furthermore, color deconvolution
can be performed when a single dye needs to be extracted for further analysis,
to detect cell nuclei for example [9]. One of the main issues with this approach
is that, due to lack of staining protocol standardization, the color profile of the
dyes must be learned before deconvolving the images [10], which works fairly well
on classic staining techniques such as hematoxylin and eosin (H&E). However,
when the color profiles have not been learned, the process is more challenging
because it has to be estimated. For this, non-negative matrix factorization [11] or
expectation-maximization [12] is used to retrieve to stain standard colors to find
clusters in chromaticity space corresponding to each stain color. A lot of research
is currently being done to improve results of these procedures, specially on slides
that have been damaged by slide aging or tissue-folding. This process is crucial
for the rest of analyses done on histology images, specially on registration and
classification methods because they work by linking color intensities on images.

Tile and tissue stitching

Since the objective of the microscope camera has a limited field of view of the tis-
sue, multiple slightly overlapping images are captured (called tiles). Then, these
tiles are put together accordingly to create a high-resolution whole-slide image
(hence the name whole-slide scanner). Approaches like [14] provide a user inter-
face to select corresponding points on the images to be stitched. This is ideal
when the imaged areas are too big or if they are selected manually. However, most
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slide scanners take care of selecting the grid of images to capture and their stitch-
ing, achieving adequate results. As result of this process, images can achieve an
important size in pixel count, and consequently in file size. This becomes an im-
portant issue because images cannot be processed and stored entirely in memory.
Methods had to adapt in order to handle these images, either by down-sampling
images (reducing image quality) or by working by patches (which introduces a loss
of global knowledge). This issue will be covered in this thesis when developing
a integrated framework to analyze whole slide images in Chapter 2. In addition,
handling large images is also presented in Chapter 3 of this thesis when storing
transformed image after computing the transformation model that registers large
histology images.

1.2.2 Registration

When more than one virtual slide is captured from the same tissue (creating a
3D stack of slides), they usually present a misalignment due to the tissue staining
and fixation on the glass. Hence, the need for registering these images in order
to analyze these images as a collection of the same tissue block. In addition,
an important challenge of registering histology images is that they are usually
large once they have been stitched (going up to 500k by 500k pixels in size),
and the file size per image can attain several Gigabytes. Most of the methods
associated to images registration have their beginnings on computer vision systems,
where data collected from different sources has to be aligned on a common space
to create a richer representation of a certain area (e.g. [15, 16]). There exist
multiple ways to register histological images according to the acquisition protocol
used on them. If the contiguous slides are stained using the same dyes, then
classical image registration techniques are applied using either rigid or non-rigid
registration techniques. If, on the other hand, slides are stained using different
dyes or have been acquired using different imaging techniques (e.g. registering
types H&E with SHG - second harmonic generation), multi-modal registration
techniques have to be applied in order to correlate the parts of the tissue across the
two staining protocols/imaging technique. On this subject, Chapter 3 presents a
non-rigid registration technique for multi-stained histology images based on a pre-
segmentation of the tissue in the image and a multi-resolution level deformation
estimation. All this is handled taking into account that these images have an
important size in pixel count and in file size.

One issue that has no known solution to this day on digital histology is tissue
folding. This happens when the tissue is fixated on the glass but some wrinkles
remain on the floated section, when the cover glass is put in place this wrinkle is
flattened creating a fold on the tissue that becomes evident (by intensity satura-
tion) when it is digitized. On the other hand, detection of these areas has been
addressed by analyzing color saturation [17, 5]
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1.2.3 Visualization and annotation

One of the main problems related to whole-slide images is their size, reaching up
to several gigabytes per image. This poses an important limitation in terms of pro-
cessing because most times the image can not be entirely held in RAM memory
and limits the amount of analysis that can be done at once. Additionally, propri-
etary scanner manufacturers have come up with their own image formats adjusted
to their needs, raising further issues in terms of compatibility. In research, solu-
tions like OpenSlide) [18] have adapted readers for most popular formats and have
adopted an open format called DZI (Deep zoom image. Other initiative to provide
cross compatible formats is Bioformats [19], which provides readers for most pro-
prietary formats and uses its OME-TIFF as its open standard format allowing not
only to store large images in a resolution pyramid, but also allows to add any kind
of additional metadata to the images. More recently, some researchers developed
real-time viewers that allow access to images through an Internet connection [20]
(e.g. Cytomine, ImageScope, Sedeen Viewer, etc). Some of the viewers previously
mentioned have also allowed users to add annotations on the images to identify
specific structures on them such as cancerous tissue or cell clusters. This is crucial
on the image analysis workflow since this makes it possible for experts to create
ground truth maps that can help construct classification models. For example,
to detect cancerous versus healthy tissue by creating a collaborative annotation
features.

Taking into account that virtual slides not only hold the scanned tissue, but
also a large background area, it is important to identify and provide only relevant
areas of the image for the pathologist to provide an accurate diagnosis. Some
approaches take a subsampled version of the image and identify regions of interest
(ROIs) based on the colors present on the image [21]. Usually, these regions are
classified using a combination of decomposing the image in small low-resolution
patches and the usage of a support vector machine to classify and filter useful
patches [22]. Another way of creating regions of interest on the images is to search
the image at multiple resolution levels, starting from the lowest resolution and re-
fining ROIs as higher resolution images are used. In this case the regions of interest
can be identified using color clustering, refining the clusters when increasing the
resolution level [23]. The output of this procedure allows pathologist to save time
and concentrate only on useful areas of the image, allowing for faster analyses.

Although several large image visualization tools have surfaced in recent years,
very few tools to analyze these large images have been developed. In Chapter 2
we address this subject and provide tools (Icytomine) to interconnect visualization
tools (Cytomine [20]) with image analysis tools (Icy [24]) to expand possibilities for
analysis automation (Chapter 2). This requirement for an analysis framework is
important because the rest of the challenges and research opportunities presented
in this chapter involve high interaction between pathologists, visualization tools
and analysis software.
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1.2.4 Cell detection

One of the most attractive promises of digital pathology, if not the most attractive,
is the possibility of automated cell identification. This can be a very challenging
task since virtual slides contain an enormous amount of cells, and many times they
do not conserve the same properties across the image (cell shape, size, presence
of nucleus, etc.). Most works in this domain have opted to base the detection
on nuclei detection, which can itself be a complicated task since nuclei can be
tightly clustered and also vary in size (≈ 5µm) and shape depending on their cell
type. Most basic approaches use color clustering (by expectation-maximization for
example) to identify different types of elements in the image and take the cluster
for cell nuclei to identify nuclei areas [25, 26]. After this step, nuclei segmentation
shape can be refined by using active-contours [21, 26] or graph-cut based on color
and intensity difference features [7]. Other methods use heuristics to separate
clustered nuclei, such as curvature-based reasoning [27] or concavity [26]. These
methods offer very accurate results that allow further analysis of cell behavior and
reach accurate diagnosis. The challenge in this area is the validation given that a
large hand annotated datasets are needed to compare these methods and provide
a better insight on their performance.

1.2.5 Cell and structure classification

Knowing the type of cells and specific structures present on tissue samples is
of great value for diagnosis. For example, [28] uses classification to differentiate
centroblasts from normal cells in order to grade cancer. The authors use Fourier-
based textures as classifier. Other works focus on mitotic cell detection as the
challenge in [29]. The best known method as of the writing of this document
is [30], where deep convolutional network AlexNet and UNet architectures on color
normalized images are used in combination with a blue ratio measure to identify
potential mitosis, achieving results with up to 97% in accuracy.

1.2.6 Multi-cellular structure detection

Cells express themselves, in general, as part of organized groups when looking at
histology images (e.g. glands, acini). Detecting and understanding their behaviour
can be of great help. Due to the high-variability of cells across types of multi-
cellular structures these tasks are usually adapter to specific needs. In [31] graphs
are created on top of colon tissue images aided by user annotations. Matching these
graphs to reference ones allows to classify glands as healthy or diseased according
to their structural configuration. Other methods aim to segment multi-cellular
structures by treating them as if they had a nucleus. For example, [32] detects
lymphoid follicles by segmenting groups of lymphoid cells, using active contours
and splitting results based on curvature and further color filtering to remove false
positives.
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1.2.7 Tissue segmentation and morphological analysis
In addition to identify multi-cellular structures, segmenting different tissues in
histological images provides context to subsequent analyses. However, the variety
of tissues and their appearance makes this task very challenging. In [33] local
pixel intensities are used as features to discriminate bone, cartilage and fat tissue
in teratoma tumor images. Furthermore, in [34] local color histograms are used
instead of edge-based features to detect different types of tissue. Some authors
concentrate on object homogeneity to detect cells and crypts, instead of just relying
on pixel homogeneity [35]. Another group achieved cancer region segmentation
by graph-based classification where features were taken from node co-occurrence
frequencies [36]. A recent method focuses on interactive polygonal segmentation of
images from hand-picked square ROIs [37]. Their approach uses recurrent neural
networks to automatically refine segmentation with each interaction with the user.
Another approach is to perform spatial analysis on the different types of tissue
found on the acquired sample. For example, in [38] authors aim to classify tumor
cell, normal cell and lymphocyte regions on histological images based on their
cytological profile. They apply spatial point statistics on cells to retrieve the
profile at different locations in the tissue. Performing profile analysis and providing
spatial statistics can provide improvements on subsequent diagnosis of the tissue.

In this thesis, we take advantage of the way annotations are stored in most
systems (polygonal and vectorial shapes) to make this kind of analysis faster and
as accurate as possible. I dedicate Part II to present tools to work with vectorial
ROIs to provide morphological descriptors and extend the knowledge these ROIs
can provide to image analysis. Examples of these tools are straight medial axis
(Section 9.4), iso-contours through annotation erosion and dilation(Sections 9.1
and 9.2) from which tissue can be assessed.

1.2.8 Assessment
The last challenge in digital histopathology is the assessment (either diagnosis or
prognosis), where an input histology image is classified to describe it as containing
malign or benign tumor tissue. Assessment can be achieved by grading the tissue
on images to evaluate the severity of the disease. Most methods tend to extract
a set of features to classify them afterwards. In [39] authors use Fourier shape
descriptors (nuclei, cytoplasm and unstained) to classify benign or renal tumors
on hand-selected ROIs, distinguishing three different types of renal tumor, by us-
ing SVM classifiers. Authors in [40] use generic features (local binary patterns,
co-occurrence matrix statistics, curvelet coefficient statistics) to classify tissue as
normal, in situ cancer and invasive cancer. They claim to achieve 99% of accuracy
by applying a two stage classification involving a series of SVM classifiers, followed
by a set of neural networks. Their method also has the feature of rejecting ROIs
(with a rate of 1.94%) that result too difficult to classify so that humans can assess
it. Examples of grading can be seen in [21] where breast cancer is graded according
to the size, and texture of the nuclei inside detected ROIs using a Bayesian clas-

12



1.3. ORGANIZATION OF THIS THESIS

sifier. Other approaches such as [41] use morphology to find blobs that are then
classified using different pixel features. In addition, in [42] random forests are used
to classify prostate cancer taking into account color and co-occurrence features.
More recently, this task has benefited of the high advance of deep neural network
approaches, helping to improve the model learning to classify cancer stages [43].

1.3 Organization of this thesis
As seen in the previous section, automatizing digital pathology is a laborious task
and involves research in multiple domains besides simple image processing, such as
graph theory or automatic classification methods, among many other. In this thesis
I aim to provide solutions that allow for large image analysis in histopathology,
bringing all advances on whole slide imaging into the world of image analysis.

Two parts divide this document; First, in Part I, I concentrate my efforts to
develop a base framework that enables automatizing histopathology analysis by
integrating remote large image storage with local image analysis software. First,
in Chapter 2 a large image analysis framework is introduced to provide both fast
access to remote images (stored in Cytomine), and accessibility to powerful image
analysis methods already available on our local software solution (Icy). Here, large
image processing can be achieved at multiple resolution levels and with the pos-
sibility to perform patch processing on images. Second, a pre-processing method
is presented to register large multi-stained histological images in Chapter 3. The
second part starts by remarking that most annotations stored on histology systems
are saved in vectorial format, aiming to save space on disk and to save time on
analysis. However, some of the classic methods to perform morphology on im-
ages become prohibitive in time with large images. For this, an effort was made
to facilitate morphology analysis on large images, taking advantage of the vec-
torial nature of annotations and proposing a set of tools to alleviate this issue.
First, some notions are presented on morphology and skeletonization of shapes
(Chapter 6). Following this subject, in Chapter 8 refined straight skeletons are
introduced in order to approximate continuous skeletons. With these structures
it is then possible to introduce a set of interesting morphology operators that can
be used to perform shape analysis, as well as shape smoothing (Chapter 9). Ad-
ditionally, a simplified version of the straight skeleton is presented in this chapter
with the name of straight medial axis, which keeps the essential morphological
information of shapes using less data. Some applications are presented for each
method presented in this part with their corresponding evaluation. Furthermore,
as an exploratory work, some insights are discussed on weighted straight skeletons,
which allow dilations and erosions to be redirected into specific angles to help im-
prove tissue segmentation (Chapter 11). Finally, in Chapter 12 some conclusions
on the work done during my doctoral studies are presented alongside with some
perspective for future possible developments.
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Part I

An image analysis framework for
large images
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Chapter 2

Large image analysis: When data
size matters

One of the most noticeable features when new optic techniques are developed is the
size of acquired images. In general when a new generation of microscope becomes
public, the size of the images is increased by at least a factor of two. This increase
in size can be reflected in two different ways:

• The spatial resolution: The pixel size becomes smaller. Thus, the pixel
count of the image of the same sample increases exponentially.

• The field of view: The extent of the image acquired covers a larger area.
In this case, the pixel size is not changed, but the image size is larger because
more elements are included in the acquired image.

This is excellent for image analysis as more details become visible on the image,
providing more information in terms of sample context or sample resolution, that
can be used to improve image analysis processes. However, increasing the amount
of information on images comes with some complications:

• Processing images becomes slower as more information has to go through
calculations involved in the method. This can be translated into more delays
to obtain results. Some methods may even become time-prohibitive due to
the amount of processing needed.

• Storage becomes a major constraint for these images as data stores have to
allow for multiple image storage. Transferring these images between different
storage medias can also take a long time due to their size. Furthermore,
processing larger images means that more space is used in RAM memory,
limiting some methods to the maximum amount of data machines can handle
at once.

In addition to handling large images, it is also important for most users to be
able to identify structures on these images, hence the need for annotations. In
histology analysis this is crucial because many of the analyses performed on the
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images are concentrated on specific regions of interest (ROIs). Following the same
rationale of large images, annotations must be treated with special care when
using large images in order to avoid performance issues. It is common to find
the usage of bitmap masks to store annotations on most common image analysis
software (ImageJ [44] or Icy [24] for example). However, in the case of large images
this becomes impractical because bitmap masks end up taking a lot of space in
disk when stored. Using bitmap masks also means that the whole image has to
be traversed at least once to compute any statistic on the images, making this
approach extremely expensive in time. Instead of that, large image processing
systems take advantage of vectorial annotations, where only the border of the
annotations is stored as a set of points, joined by straight lines, creating a light
description of the annotation shape.

In this chapter, I concentrate on providing a framework that deals with the
issues described above by connecting two technologies well known by their capa-
bilities to analyze images and storing large images with their corresponding anno-
tations. Starting with a description of the technologies (Icy and Cytomine [20])
used to develop our solution Icytomine. Then, I introduce our solution that en-
ables image analysis on large histological images. I also present how our solution
allows analysis automation by providing batch processing. In addition, we present
a use case where Icytomine has been used successfully for automating validation of
glomeruli segmentation. Finally, some perspectives are provided with some future
developments for this framework.

2.1 Icy: A software for reproducible image anal-
ysis

Bioimage informatics makes use of the computation and mathematical sciences to
extract comprehensive information from imaging data sets. This can be achieved
by using multiple algorithms and methods developed in interconnected fields such
as computer vision, signal and image processing, computation modeling, optics,
biophysics and computer science. An immediate challenge arises when developing
software coming from diverse fields:
• Multiple groups work on their own side for a common goal, and keeping the

software quality is a challenge as members of each group integrates their
work on an complete solution.

• The methods developed by one team can be useful for different problems
out of the scope of the original solution developers. Making these methods
reachable for other teams is a particular challenge as teams evolve on their
goals and projects.

• Documentation of published methods is vital for understanding and improv-
ing them. Having access to all the related documentation allows to under-
stand the preconditions and possible outcomes when trying to reproduce
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experiments. In addition, this allows for method feedback and detection of
possible performance improvements.

In order to achieve reproducible research, it becomes necessary to have access to
all related information (code, data and parameters) used to produce the original
publication. To answer this need, the bioimage analysis unit at the Institut Pasteur
has developed a framework that allows users not only to publish their software in
the form of plugin, but also it allows users to share the details behind the software
and the means for users to test it the same way developers do when they first
published their solutions. For this, Icy [24] provides means to develop, test and
share research projects. In this section the main features of Icy are presented.

2.1.1 Main features

Although Icy has evolved over the years (it was first published in 2012), it has
kept several core features almost unchanged since they hold together the rest of
contents available for the platform. Some of them are presented here:

Graphical user interface

Icy has been developed to be as easy as possible to use so that final users can
interact with all the parts of the software, including image viewers (2-D and 3-D),
handling regions of interest, access to the image histogram and to the plugin access
platform, which is linked to the online plugin repository (See Figure 2.1).

Protocols

In order to enable reproducible research for large amounts of data, it is necessary
to have an environment that allows to apply repetitively the same procedure to
each input element. For this, Icy provides an easy way to combine multiple plugins
and perform batch procedures. The most common tasks are file batch processing
and sequence batch processing, which take all the selected files or open image
sequences, and apply a given task for each element. This feature can be very useful
when evaluating procedures as it can be automated, allowing for reproducible
testing. For example, when a new method has to be tested with multiple images
to check its robustness, a protocol can be designed to apply the same method
(with the same parameters) to all the images in the test image set. In addition,
protocols can be saved to disk and shared with the community, which make them
very useful to communicate the workflow of a specific method since protocols are
presented as interconnected boxes in the editor provided with Icy (See Figure 2.2).
Hence, reproducible research is achieved not only by allowing to repeat the same
procedure multiple times with stable results, but also by being able to deploy the
same application scenario in multiple locations.
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Figure 2.1 – Icy main user interface. A ribbon on top offers convenient access to
most frequently used plugins. Each open image is presented on the workspace to
the right of Icy. All details relative to the active image are presented on the right
panel, which includes a listing of all the regions of interest (ROIs) associated to
the image.

Figure 2.2 – Protocols allow to graphically program the different steps of an image
analysis procedure. This image shows an example of protocol for registration of
two images loaded from files.
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Error report

Aiming to enhance the experience with Icy, developers have provided the error/bug
reporting system. When users identify an unexpected behavior on the software,
they can send a bug report directly to the plugin developers with a trace of the
problems. This results in a collaborative debugging experience and makes plugins
more robust by expanding the testing power of users.

Online community

One of the main goals of Icy is to make the results of research projects as avail-
able as possible, and for this an online community has been established since its
creation. Developers can share their advances on their projects (a central plugin
repository). And at the same users are giving feedback on available plugins. All
this effort converges on useful plugins, with higher quality, and highly available
for users.

A simple API for developers

In addition to the ability to read mode than 100 file formats, Icy provides a com-
prehensible data structure that allows to handle images with a generic access to
pixels in any format, to direct memory access to linear data buffers. The API is
also conceived to handle parallel processing taking advantage of modern computer
architectures. To accelerate the development process Icy provides a library (called
EzPlug) that assists developers to create the graphical user interfaces of their plu-
gins by automatically generating input fields corresponding to the plugin inputs.
This also allows to expose plugins as protocol blocks, enabling graphical workflow
programming.

2.1.2 Icy limitations
Although Icy provides a large collection of image analysis methods ready to be used
out of the box, it is not capable of handling images that are larger than 232 − 1
pixels of size (approximately an planar image of 46300 by 46300 pixels). With this
limitation, Icy becomes not very suitable for handling whole slide images coming
from modern slide scanners. Later in this chapter Icytomine will be presented as
a solution for this issue, allowing to interact between large image stores and Icy,
providing image analysis on virtual slides while always keeping in mind local data
size limits.

2.2 Cytomine: A software for large image man-
agement

In the field of digital pathology there is a strong need for efficient tools to create at-
lases, diagnose and collaborate on virtual slides. Although there have been several
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Figure 2.3 – Cytomine: A web application for whole slide image collaborative
management

attempts to provide tools for virtual microscopy and tele-pathology [45, 46, 47, 48],
they have not been developed to be fully collaborative or are vendor-dependant.
As a consequence this limits the collaboration potential and the compatibility that
web technologies provide in our days. With these issues in mind our collaborators
from the Université de Liege developed Cytomine, a web application that is able to
handle whole slide image storage, visualization, virtual slide annotation creation
and review [20]. Their solution provides an easy way to organize virtual slides by
projects. They also provide a real-time slide viewer that allows users not only to
see the virtual slide at any desired resolution, but also annotations made by the
image author or any of the project collaborators. Using specific ontologies, struc-
tures identified on the image can be easily annotated and classified, and then they
can be used to compute different statistics about these structures (See Figure 2.3).

In order to organize images stored on the server, Cytomine uses the following
scheme:

• Users: Every user has a user name with a specific role and privileges on the
platform (e.g. basic users and administrators)

• Projects: Every image has to be associated to a project in order to be
accessed by users. A project has an author and a set of administrators that
handle the access to the project data. In addition, images associated to the
same project use the same ontology for their annotations.
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• Images: Each image is identified uniquely but can be associated to multiple
projects. On each associated project, an image associates its own set of both
annotations and allowed users.

• Annotations: Analogous to the regions of interest in Icy, annotations allow
users to highlight an area of the image as a polygonal geometry. Every
annotation is associated to an image and an author user and can have a
particular label associated to it from the project ontology.

• Ontologies: These are the terms that can be associated to the different
structures annotated on images of a given project. Although each project
has a specific ontology associate, two projects can use the same ontology for
their annotations.

In addition, Cytomine makes an effort on securing the access to images since
these can be directly linked to real human patients. Users can only have access to
projects and images that have been previously authorized by the system adminis-
trator or the project manager.

Furthermore, Cytomine conveniently allows users to easily find the content they
are looking for by using search filters on each of the items previously described.

In order to access stored images efficiently at any resolution level, a resolu-
tion pyramid is first created when an image is uploaded. This pyramid is then
stored and can be accessed through the provided REST API of Cytomine. User
annotations also efficiently stored in the form of polygonal sets. This allows to
handle thousands of annotations per image without incurring in great disk space
consumption because only the coordinates of the control points of the polygons
are saved in the repositories. Again, these annotations are available through the
REST API of Cytomine.

2.2.1 Cytomine limitations
Despite being able to share virtual slide projects and allowing users to add anno-
tations on images, Cytomine falls short when images need to be processed mostly
due to the need for creating new image pyramids, which becomes expensive in
terms of needed data space. Furthermore, automatizing annotation creation is not
easy to achieve directly on Cytomine. Limitation which is circumvented with our
solution presented in the next section.

2.3 Icytomine: Integrating Icy and Cytomine
Following the need to interact with large images to perform image processing
tasks, and acknowledging the capabilities of Cytomine for image access and of
Icy for image analysis, an initial implementation to integrate both technologies
in [49]. From this idea and in collaboration with the authors, a new Icy plugin was
developed to connect Cytomine with Icy easing data transfer and access related
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Figure 2.4 – The workflow of Icytomine and the image analysis possibilities, trans-
ferring images, analysis results, and manual annotations between Cytomine servers
and Icy clients.

to large image analysis. Icytomine, our solution, has been developed with the
aim of simplify the data transfer and provide a simple way to view data stored
on Cytomine servers directly into Icy. The sections in this chapter will describe
the software architecture behind Icytomine and show how this plugin helps image
analysts to handle multiple large images and obtain relevant results in less time.
A simplified schema of Icytomine showing the interactions made with Icy and
Cytomine to handle large images and annotations is avaliable in Figure 2.4.

2.3.1 Core manager library
In order to provide means to view large images stored on servers, as well as ana-
lyzing and annotating them, a core library has been developed to handle connec-
tions to Cytomine server instances and allows for optimized image and annotation
transfers in both ways server-to-client and client-to-server. Furthermore, since
Cytomine has been developed to hold sensible information about real human pa-
tients, security is an important issue. Our core library takes care of transmitting
the right user credentials to the servers when they are needed and makes sure to
provide access only to the features authorized by the service administrator. An
image of the general architecture of Icytomine is presented in Figure 2.5.

The core library is divided in the following sub-packages:

• Connection: The code in this package is in charge of keeping connections
and handling authentications on remote Cytomine servers, providing secure
and stable access to server data.
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Figure 2.5 – Icytomine architecture diagram. The different parts of the Icytomine
plugins are presented in this schema.

• Image transfer: Elements in this package handle image data transfer from
remote Cytomine servers into local Icy clients.

• Annotation transfer: Files in this package allow the transfer between
remote servers and Icy clients (both directions) of polygonal data and meta-
data related to annotations associated to the images stored on the server.

• Cache: Since excessive data transfer can deteriorate the performance and
fluidity of the viewer and other analysis on images stored on servers, it is
necessary to have a cache memory that keeps local data that is constantly
requested to avoid redundant server request that could impact the general
plugin performance.

Taking advantage of the API provided by Cytomine, the core manager library
has been implemented to allow other packages to have a fast, reliable and easy
access to the data stored on the server as well as providing the possibility to send
data to the server from Icy clients.

2.3.2 Project explorer and image viewer
With the core manager implemented, it is now possible to take advantage of the
features in Cytomine applied to image analysis on Icy. The first feature in Icy-
tomine is allowing users to explore projects and images available to the user on a
given server. For this, an easy-to-use interface has been implemented: Icytomine
explorer, with three columns enabling users to explore available projects (left), im-
ages(center), and provide users with details and previews of the selected elements
(right). An example of the explorer is available in Figure 2.6. In addition to this
interface, a simple connection interface is provided so that users can choose which
credentials and which server they want to access.

Having enabled users to select projects and images, the second feature to be
implemented is the possibility to visualize selected large images at different res-
olution levels without major delays (making strong usage of cache memory). In
addition to presenting images to the user, the viewer is also able to show the an-
notations associated to the image being presented (also using cache memory to
optimize server requests). Developing this viewer provides users with an interest-
ing tool to search on the images for locations of interest and focus their analyses.
A preview of the viewer can be seen on Figure 2.7.
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Figure 2.6 – The Icytomine explorer enables users to glance at the different projects
and images available on a given Cytomine server directly from Icy.

Figure 2.7 – The Icytomine viewer allows users to spot regions of interest or an-
notated areas on the image to perform further analysis.
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Image Width (px) Height (px) Number of
annotations

first load time/
reload time (msecs)

ima1 111,145 99,589 0 161 / <1
ima2 50,603 29,326 35 177 / 1
ima3 134,182 84,480 424 262 / 1
ima4 27,635 34,757 1,925 615 / 1
ima5 110,973 108,387 11,964 2,761 / 3

Table 2.1 – Time to open an image for the first and re-load time (in parentheses).
Server was located at a distance of 300 km. When images are reloaded, cached
images and annotations greatly reduces loading time.

Figure 2.8 – The Icytomine viewer allows users to download the current viewport
and select the download resolution.

Table 2.1 presents the time it takes to open images and the time it take to re-
load them once they are stored in cache. This evaluations were performed loading
virtual slides of different sizes from a remote server located at a distance of 300
kilometers from the requesting machine under average request load conditions.
As the table shows, times are much lower when images are cached. This is one
of the factor keys to ensure a fluid visualization of the image and the associated
annotations.

In addition to allow viewing the image at different resolutions, Icytomine al-
lows users to download the current viewer viewport as a local sequence. This not
only creates a sequence which users can work with on Icy, but also annotations
are downloaded and included on the local sequence so that users can locally access
and interact with annotations visible on the viewer. Moreover, users have the pos-
sibility to choose the download resolution of the image presented on the viewport.
This really helps the speed of the analysis workflow since users can use the viewer
to efficiently spot areas of interest on the image and then they can download them
with more detail than the image presented on the viewer for further processing. A
preview of the download dialog is presented on Figure 2.8

While allowing users to see annotations on images is a useful feature, it can
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Figure 2.9 – Annotations made on Icy (result of some analysis) can be sent to the
server using the Icytomine viewer.

be improved by allowing users to filter them according certain criteria. This is
precisely one of the features that our viewer comes with. Users choose which
annotations should be visible according to their associated label (term) or to their
owner, and then download the image to Icy (See right panel on Figure 2.7). From
this same panel users can also change annotation labels and delete annotations
from the server, which comes in handy on heavy annotation transfers.

Moreover, after downloaded images are processed on Icy, the result is generally
a set of regions of interest (ROI). Icytomine also offers the feature of sending these
ROIs back to the server (Figure 2.9), with the possibility to associate them with
a given label. This is particularly helpful when segmentation is performed on the
images by allowing to store results remotely.

All of these features were implemented as a single interactive plugin known
as Icytomine Explorer and is currently available as a downloadable plugin for Icy.
Although these features are very practical for exploring and analyzing large images,
it is meant to be used with one image at a time per plugin instance. This limits
the productivity when handling automatically more than one image. For this,
and following the protocol philosophy present on Icy, I created batch protocols to
enable large image batch analysis. In the next section this feature is presented in
more detail.

2.3.3 Automatizing image analysis
With the means to import remote large images at multiple resolution levels along
with their respective annotations as ROIs, it is now possible to seek for automa-
tizing these tasks and add automatic image analysis capabilities with Icytomine.
Icy comes with a development tool set to create processing blocks that can be in-
terconnected to form more complex analysis workflows, known as protocols. With
protocols, developers can create workflows that make use not only of blocks de-
veloped by themselves, but also the blocks that Icy’s large community has made
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available to other users. With Icytomine I try to provide means to allow for cre-
ating protocols that provide access to data on large images (images as well as
annotations), and enable automated analsyis on these images. For this end, I have
developed a set of protocols that expose the features of the core manager and al-
low to for batch processing of large images stored on Cytomine servers. Developed
protocols can be classified into two categories. First, the functional protocols, pro-
viding a single result. And second, the batch protocols, which allow to loop over
elements stored on the server.

The functional protocols developed for Icytomine to provide single results are
the following:

Create Cytomine connection: Allows to
specify the credentials to access to a target
Cytomine server

Get project: Retrieves the information of
a project by its identifier

Get image: Retrieves the information of an
image by its identifier

Get annotation: Retrieves the information
related to an annotation by its identifier

Remove annotation: Removes an image
annotation from the server given its identifier

Send annotations: Registers an image an-
notation on the server given its geometry and
associated term
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The batch protocols developed for Icytomine to provide loop functionalities on
elements on servers are the following:

Project loop: Given a project, this block
iterates through all the images of the project
one at a time

Image loop: Given an image, this block it-
erates through either the entire image or a
specific sub region by patches downloading
one at a time. If no patch size is given, the
entire requested scope is retrieved at once

Annotation loop: This block behaves like
the image loop, but instead of iterating
through patches, it iterates through the an-
notations of a given image. A set of terms
can be used as filter of the loop block, retriev-
ing only images from annotations associated
with the given terms

Annotation tiler: This block takes an an-
notation and iterates the image by patches
retrieving those which intersect with the an-
notation. This is practical to avoid patches
without useful content
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2.4 Case of use: Using Icytomine to automatize
glomeruli detection validation

As an example application making use of Icytomine, we presented a method where
Icytomine helps in the process of glomeruli detection on kidney histological images
by automating classification validation [50]. Glomerulus is a network of capillaries
essential to the blood filtration by kidney. Accurate detection of glomeruli is the
first important step in many tasks such as diagnostic, prognostic, or assessment of
the kidney quality graft. Due to biological, tissue sample preparation and set-up
acquisition variability, the glomerulus appearance could vary in terms of color, size
and texture, making automatic recognition of glomeruli challenging as shown in
Figure 2.10.

(a) glomeruli (b) non-glomeruli

Figure 2.10 – Examples of the two classes stained in Masson’s Trichrome

2.4.1 Previous works
Many studies define specific features, such as color, texture, histogram of oriented
gradient (HOG) descriptors to characterize the glomerulus. However, the perfor-
mance of feature-based patch-wise classification was not sufficient for a reliable
classification or segmentation of glomeruli. Recently, many authors have explored
the Deep Learning approach. Gadermayr [51, 52] proposed two different CNN
cascades for segmentation applications with sparse objects. The authors in [53]
described the development of a deep learning model that identifies and classifies
non-sclerosed and sclerosed glomeruli in WSI of kidney frozen section biopsies.
This model extends a convolutional neural network (CNN) pre-trained on a large
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database of digital images. For more information, a comprehensive review can be
found in [53].

2.4.2 Automatic glomerulus candidate generation
Our dataset contains 100 slides stained by Masson’s trichrome from 7 research cen-
ters and digitized with 20X objective by using a Nanozoomer scanner at 0.452µm
pixel resolution, either Aperio scanner at 0.504µm pixel resolution or Zeiss Ax-
ioScan with 0.44µm pixel resolution.

Icy can provide glomeruli candidate patches as training set: 5857 glomeruli,
7047 non-glomeruli; test set: 595 glomeruli, 792 non-glomeruli.

As the shape is the solely invariance feature of the glomerulus appearance, its
extraction is based on the ellipse fitting [54] of two kinds of feature regions: i)
lumen extraction (when lumen is visible): extracted by a simple threshold that
separate tissue from the background, ii) color texture segmentation (for other
cases): the graph based region merging algorithm presented by Felzenszwalb and
Huttenlocher [55] generating superpixels. However, this step generates also non-
glomerular regions that should be removed from the final detection and could
be done with a classification step. CNN appears as a good solution for its high
versatility and efficiency.

2.4.3 Glomerulus CNN classification
Based on previous works, we chose the classical approach of fine-tuning the state-
of-the-art architectures InceptionV3 [56], Resnet50 [57], as well as VGG16 [58].
VGG is characterized by its straightforward construction, with consecutive convo-
lution and spatial reduction blocks which sum up to a large number of parameters
i.e. 140M, making it computationally costly. Both ResNet and Inception are based
on micro-modules which introduce different pathways in the propagation of infor-
mation, with the benefit of having dramatically less parameters, ≈24M each, while
also bringing improved performance.

All architectures were pre-trained on ImageNet and a fully-connected layer
of 1024 neurons was added on top as a classifier along with one last neuron as
output for binary classification. Fine-tuning was performed by minimizing the
cross-entropy loss using stochastic gradient descent on mini-batches of 64 patches
with a learning rate of 0.001 and momentum of 0.9. An average of 110 epochs
(learning passes on the full training set) was sufficient to reach a stable result for
all the architectures.

The architectures were fed with patches of their respective expected input, i.e.
299x299 pixels for InceptionV3 and 244x244 for ResNet50 and VGG16.

Validating classification

This framework uses image processing to create candidate patches and need a
weak interaction from the user to validate these patches as glomerulus or not.
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This can be done either with the Cytomine web proofreading tool or the Icytomine
viewer, to re-classify manually candidates. Figure 2.11 shows the Icy protocol that
eases the batch processing task. The best results are obtained with the Inception
network (See Table 2.2). In addition, some classification examples are presented
in Figure 2.12.

Figure 2.11 – Batch processing with Icytomine. An image can be processed by tiles
that are configured before the batch processing. Extraction of glomeruli within an
image of a project.

Method Accuracy
VGG [58] 0.94375

ResNet50 [57] 0.97188
InceptionV3 [56] 0.975

Table 2.2 – Classification accuracy
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(a) True positive (b) True negative (c) False positive (d) False negative

Figure 2.12 – Examples of glomerulus CNN classification results.

2.4.4 Glomerulus segmentation by Mask R-CNN

To go further, we tested Mask R-CNN [59], which is as state-of-the-art instance
segmentation architecture, able to achieve pixel accuracy. For the presented work
we used the Keras & Tensorflow implementation by [60], with a ResNet50 back-
bone, also pre-trained on ImageNet.

After fine-tuning the network, we obtained a score of 78% of the mean average
precision (mAP). However, the more interesting observations emerged from the
visual assessment of the predicted segmentation. We notice that this approach is
able to produce a more precise segmentation of the glomeruli borders, while also
being robust to the outliers (erroneous ground truth) in the automatic annotation.
Studying the cases with null intersection over union (IoU) between the ground
truth and prediction, we noticed that Mask R-CNN was able to discover non-
annotated positives (both in train and validation set, which is a good indicator
for the lack of over-fitting). We also observed that this approach is adapted for
separating adjacent glomeruli (See Figure 2.13).

From these results we deduce that our automatic training set generation method
is well suited also for segmentation and what is more, Mask R-CNN can be applied
as a last step in refining the annotations.
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(a) (b) (c)

(d) (e) (f)

Figure 2.13 – Examples of Mask R-CNN segmentation results (ground truth in
green, prediction in red): glomeruli detection on sample borders in (a)(b)(c), separation
of adjacent glomeruli in (d)(e)(f)

2.5 Conclusion
Handling whole slide images can be a complex task in terms of performing image
analysis while traversing the image. Icytomine assesses this problem by provid-
ing an effective solution to the needs of Icy users looking to have access to large
planar images stored remotely. It allows users to explore and view images stored
on remote servers with a minimized latency, giving as a result a high performance
tool for image exploration and annotation. In addition, the protocols developed
for automatization enable users to create their own image analysis workflows in-
cluding access to high resolution virtual slides without much effort. It is important
to mention that Icytomine development was performed using high use of unitary
tests to allow a stable incremental development. Although developing with uni-
tary tests can take time, it allows to prevent side effects on existing features when
new ones were added. In perspective, the Icytomine viewer could be integrated to
the Icy core as a solution to access remote images. Furthermore, a side project
should be created to extend Icytomine with plugins that provide general prede-
fined image analysis features using Icytomine, helping to further improve analysts
productivity. Since Icytomine is actually a proxy layer between Icy and remote
image servers, it could provide extended access not only to Cytomine servers, but
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also to other large image servers that hold a similar system data organization (i.e.
users, projects, images and annotations). Finally, as a consequence of Icytomine
strong and effective usage of memory caching, Icy has been developing lately its
own caching system for the classic 2D and 3D viewer which will provide an even
faster access to the already efficient sequence viewer.
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Chapter 3

Large image registration

In histopathology it is necessary to use several dyes and sometimes several imaging
modalities for the observation of tissue samples on serial sections, in order to reveal
different structures of the organ under study. However, the number of chemical or
immunohistochemical dyes is limited (up to 12) on a single section [61]. Addition-
ally, the more dyes present in the image the more complex the stain separation
gets, making color decomposition not suitable for these cases. Despite the pos-
sibilities offered by this technique, integrating information coming from different
slides of the same tissue becomes a challenge. Indeed, the preparation of the tis-
sue (fixation, embedding, cutting and staining), and digitization of the sample can
generate variations on the images of the tissue for each section at the same loca-
tions. This change becomes an important limitation when automatically analyzing
these images. A popular technique for handling this limitation is performing an
image registration, a transformation applied to each digitized section of the tissue
sample, that aligns each section from the sample with respect to a given target
section. This type of treatment is very popular and is commonly applied when
the information in the images to be registered show similar information. Unfor-
tunately, this is not the case when the dyes used for staining vary from section
to section. Conventional registration algorithms seek to register images by asso-
ciating the intensities of the source image with the same intensities on the target
image, which is not the case in images with different stains (see Figure 3.1).

In this chapter a method for registration of multi-staining histological images
is presented. More precisely, the work presented focuses on registering contiguous
pairs of slides marked differently (labeling immune cells on one slide and cancerous
tissue on the other), which does not allow a direct relation on the intensities on
both images. These images take a considerable size up to 90000 by 90000 pixels
per image, making registration on these images prohibitive in time if handled as
classic methods do (i.e. by performing registration of the image at full resolution).
First, a quick state of the art on existing registration techniques is presented. Sec-
ond, the method proposed for registration is presented highlighting in particular
two main issues: i) registering images with weak common information, and ii)
handling transformations on large histological images. The images used for this
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(a) Biopsy labeling immune cells (in
brown)

(b) Biopsy labeling cancerous tissue
(in brown)

(c) Detail of labeled immune cells (d) Detail of labeled cancerous tissue

Figure 3.1 – Images with multiple stains are particularly challenging to register
due to the variation of position, shape and intensities of structures present in the
tissue of the scanned slide series.
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work come from non-small cell lung cancer biopsies (adenocarcinoma and squa-
mous cell-carcinoma), taken from patients diagnosed with this type of cancer at
different stages. These images were acquired by the tumor immunology group at
the Oslo University Hospital in Norway. Half the acquired images were marked
using Cytokeratin to label normal and malignant tumor cells, while the other half
were marked with CD3 to label T cells.

3.1 Registration principles
Image registration is the mapping of a source image so that it is as similar as possi-
ble to a target image, using the information in the images or external information
that can help to find the optimal transformation. It is also possible to register mul-
tiple target images using the same target image. Image registration is a subject
that has been extensively studied in image processing because these methods can
be used in many context such as medical imaging [62], pattern recognition [63],
biological imaging [64], shape tracking on videos [65], etc. [15]. These methods
are often used to track objects on image sequences, to align multiple images, or to
find the correlation between multiple viewpoints of the same scenario.

In general, the main steps of the registration process are as follows.

• Feature detection on images: characteristic elements of the images are
detected so that they can then guide the registration. For this step, there are
methods that use Harris salient features [66, 67], scale invariant features [16,
68, 69], and edge detection features (Canny [70], Marr-Hildreth [71]). This
step is very important because the quality of the result is strongly dependent
on the quality of the features extracted from the images [72]. There are
methods that do not detect features present in the images, called iconic
registration methods.

• Feature mapping: features found in the previous step are linked between
the source and the target image. These links are created from feature de-
scriptors or with similarity criteria of the features. Methods using spatial
relation are usually used for this [72], as well as the consistent feature la-
beling [72] and the classification of invariant feature descriptors [68, 69].
Furthermore, similarity criteria such as cross-correlation [73, 74] or mutual
information [75] can be used for this step.

• Transformation model estimation: with the paired features a transfor-
mation model is constructed to transform the source image and maximize
the similarity with the target image. The model created in this step can
be described using rigid transformations [76] (scaling, translation, rotation),
affine transformations [77] (rigid and shear), or elastic transformations [78]
(a different transformation at each point of the space). Another way of un-
derstanding these types of transformation is by looking at how they relate to
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the transformed image. In rigid and affine transformations the transforma-
tion is homogeneously applied to the whole image (global transformation),
while elastic transformations have a specific transformation applied at each
position in the image (local transformation).

• Resampling and transformation of images: once the transformation
model is built, it is applied to the target image to obtain the registered image
as result. Different interpolation techniques are used in this step to handle
pixel coordinates and intensities with non-integer values resulting from the
transformation model [79, 80]. In addition, writing the image to disk is
performed during this step. For this, both serial and parallel read/write
techniques can be applied to optimize the creation of the resulting image
file [19].

In addition, registration methods can be classified into two main types. Some
of the references presented in the methods classification below can be repeated here
to give an glimpse of the relation between the steps and the types of registration
used by existing methods.

• Feature methods (geometric registration): methods in this category
are based on the characteristics identified during the first stage of the reg-
istration to calculate the transformation model. In this type of registra-
tion, popular methods can be mentioned here such as scale invariant fea-
ture transform (SIFT [68], SURF [69]), edge detection registration(Harris-
Laplace [67]), or line detection registration (Marr-Hildreth [71], Canny [70]).

• Local area-based methods (iconic registration): these methods use
the pixel neighborhood information (gradient, texture, color similarity, etc.),
to correlate the images to be registered. these methods typically use a pyra-
mid approach to analyze images at different resolution levels and take into
account the coarse and fine detail to align images. This category includes
cross-correlation registration [73], mutual information [75, 81] and B-splines
regularization [82].

3.2 Registering multi-stained large images: Big-
BUnwarp

Histological images acquired with different instruments (multiple modalities), or
using multiple dyes (multi-staining), present an additional challenge to that of
conventional image registration. Intensities on source and target images are not
linearly correlated, which prevents a reliable extraction of redundant features in
the images. For that we propose to go through a pre-processing step which puts
the two images in the same space of intensities thus allowing to correctly register
the images with multiple dyes or modalities. Given the elastic nature of the tissues
present on histological images, existing registration methods for this type of image
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make use of elastic deformable transformation models, which make it possible to
model local deformations of the tissue [83]. For the method presented in this
chapter, the registration is carried out using B-Spline-regularized transformations,
they allow to approximate the elastic nature of the tissue while at the same time
modeling the transformation necessary to register the images [82]. In addition, this
type of model makes large image processing simpler. The steps involved in the
registration are presented and explained in more detail in the following sections.

3.2.1 Image pre-processing: Common information extrac-
tion

Despite having the same tissue sample on both images to be registered, the inten-
sities are too different to attempt a registration directly on the original images.
Indeed, the common information on this type of images is restricted to the delin-
eation of the tissue of the image background. This information can be extracted
by segmenting the tissue present in the image.

In the case of this project, we have applied a threshold segmentation of the
histogram of the converted gray-scale image, this thresholding is done with a k-
means partitioning of the histogram [84] (See Figure 3.3). Because the dyes used
to label specific structures on the images are different, each image type uses a
different amount of classes to separate the background from the tissue. Several
configurations were tested giving the best results as follows. For the image con-
taining the immune cells, its histogram is empirically separated in 3 classes. And
for the image containing the cancerous tissue, the histogram is split in 5 classes,
also empirically. These classes are fused to define a binary image separating the
pixels of the tissue from the pixels representing the background. These parameters
were set by testing 8 pairs of corresponding images (8 images marking the immune
cells and 8 images marking the cancerous tissue). Other binarization methods
such as watersheds and graph-cuts among others have been tested without giving
satisfactory results (See Figure 3.2). It is important to note that these parameter
do not apply for other type of images (with other stains) as the thresholds are
specifically adapted to the intensities of the dyes used on these images. Different
thresholds or even different methods might be needed to extract the tissue contour
on images using different staining techniques (also called image matting).

3.2.2 Image registration method: Building the transfor-
mation model

In order to create a transformation model it is necessary to specify how it is stored.
For this a strong use of B-Spline functions is done, which act as link between the
discrete features of digital images and the continuity of intensities present on the
pixels of the images [79].

B-Splines can be expressed with the equation C(t) = ∑n
i=0 PiNi,p(t), where the

value of the curve or function can be found by interpolating the set of points P and
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(a) K-Means Thresholding
(highest of 5-classes) [84]

(b) Otsu Thresholding [85]

(c) Huang Thresholding [86] (d) Shanbhag Threshold-
ing [87]

Figure 3.2 – Tissue segmentation methods comparison example. Several methods
were tested to extract the tissue out of virtual slide images. However, adapted
K-Means segmentation gave the most suitable results from our tests.
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(a) Tissue segmentation on biopsy la-
beling immune cells

(b) Tissue segmentation on biopsy la-
beling cancerous tissue

(c) Detail of segmentation of Fig-
ure 3.3a

(d) Detail of segmentation of Fig-
ure 3.3b

Figure 3.3 – Segmented images by applying K-means thresholding on their gray-
level histogram.
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a B-spline basis function Np of degree p. For this project we chose cubic B-Spline
functions (of degree 3) because they offer a good trade-off between performance
and interpolation precision [88]

With B-splines described as above it is now possible to express a two-dimensional
image in terms of a B-Spline function in two dimensions:

I(x, y;h) =
∑
k,l∈Z2

ck,lβ
3
(
x

h
− k

)
β3
(
y

h
− l
)

(3.1)

where β3(x) is the cubic B-Spline function and the coefficients ck,l are the con-
trol points at position (k, l). h = 20, 21, 22, ... is a parameter that controls the
detail of the representation (smaller values give a more detailed representation),
which allows for image processing at multiple resolution levels, hence a pyramidal
approach.

In addition, to express elastic deformations a transformation model is used,
obtained from the linear combination of B-Splines

g(x) = g(x, y)
= (g1(x, y), g2(x, y))
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where sx and sy are scalars controlling the level of detail of the deformation field
representation.

As described by Sorzano [89], the transformation model is described as an en-
ergy minimization function composed of three terms: A similarity measure Eimg
between the images to register, an optional constraint Eµ of corresponding points
on the images, and two regulation terms Erot and Ediv to restrict undesired defor-
mations. The energy equation using these three terms is as follows:

E = wimgEimg + wµEµ + (wdEdiv + wrErot) (3.3)

Here wx is a weight coefficient for each energy term. The higher the value of wx
is, the more penalized the term x is going to get.

The terms of the energy function are described below:

• Eimg: The difference between the source image and the target image, de-
scribed by:

Eimg = 1
#Ω

∑
x∈Ω

(It(x)− Is(g(x)))2 (3.4)

where Ω = {x ∈ Ωt∩Z2 : g(x) ∈ Ωs∩Z2} is a mask common to both source
an target images, and #Ω is the size of this mask in pixels.

• Eµ: The difference between the corresponding points in the source(µs) and
target(µt) images. These point can be found using salient feature extraction
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methods such as SIFT or SURF. These points can improve the registration
results by giving a hint of the transformation at specific positions of the
image. This term is described by:

Eµ = 1
N

N∑
n=1
‖µ(n)

t − g(µ(n)
s )‖2 (3.5)

• Ediv and Erot: The regulation terms based on the second derivative of the
transformation model that allows for an estimation of point-wise(Ediv) and
radial(Erot) image tearing at each position on the result image. These terms
are described by:

Erough =wdEdiv + wrErot

=wd
∫
R2
‖∇divg‖2 dx dy

+ wr

∫
R2
‖∇rotg‖2 dx dy

(3.6)

where divg = ∂xg1 + ∂yg2 represents the divergence of the vector field g,
rotg = −∂yg1 + ∂xg2 is the measure of the rotational of g, and ∇f =
(∂xf, ∂yf) is the gradient of the scalar function f . The divergence of a vector
field is linked to the existence of source/sink type of deformations, and the
rotational is related to the rotation of the image around a specific point on
the image (see Figure 3.4).

Figure 3.4 – Examples of deformation vector field of divergent (left) and rotational
(right) types.

With these terms defined, the energy minimization function can be solved
using an non-linear regression optimization algorithm. In this case we chose to use
the Levenberg-Marquardt method [90], which behaves as a quasi-Newton gradient
descent. The coefficients c = (c1, c2) of the transformation model are updated by
iterating c(k+1) = c(k) + ∆c(k), where ∆c represents the solution of the equation
system H̃∆c(k) = ∇E(c(k)). Here, ∇E(c(k)) is the gradient of the energy with
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respect to the deformation evaluated at c(k), and H̃ is a modified version of the
hessian H defined as [H̃]ij = (1 + λδij)[H̃]ij, where δij = 1 − |sign(i − j)| is the
Krönecker function. When 0 < λ ≤ 1 is close to 1, the step of the iteration behaves
like a gradient descent, limiting the step size. On the contrary, for values of λ close
to 0, the step behaves like a Newton method with fast convergence.

When the energy function E converges, the result transformation model g(x) is
used to reconstruct the final registered image. Since the registration is done on the
gray-level version of the original images, to create the final registered image the
transformation model is applied on each of the channels of the original color image.
This way the resulting image is on the same color space of the input image. To
compute the color intensity values at each pixel of the result image it is necessary
to use interpolation on the intensities at positions (x, y)|x, y ∈ R of the input
image. For this, B-Spline functions are also used to perform interpolations.

One way to show the images before and after the registration is by superposing
the segmented images with ∆s0t(x) = xs0 − xt and ∆s1t(x) = xs1 − xt for the
comparisons before and after registration, respectively (See Figure 3.5). The whole
registration workflow can be summarized on Figure 3.6.

Figure 3.5 – Comparison between segmented images before and after registration.
White/black areas represent registration errors, and gray areas represent correctly
registered areas. The parameters used for this examples were wimg = 1, wµ = 0,
wd = 0.01, wr = 0.01, which provide precise (taking image intensities into account)
and smooth (by relaxing the energy equation with small values for wd and wr)
results.

3.2.3 Image post-processing
Although the registration process described above is carried as a pyramidal process
at different resolution levels, it is necessary that the image be fully loaded in RAM
memory to perform the processing. Given that images processed for this project are
large, loading entirely a single image becomes difficult; and it is even more difficult
to register these large images because the calculation time becomes prohibitive and
it is necessary to duplicate the images several times when processing the images.
Then, to handle this constraint and taking advantage of the fact that most of the
deformations needed to register these images are found at low resolution levels,
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BIGBUNWARP

Figure 3.6 – Image registration process summary. Tissue on input images is seg-
mented to identify common information areas and put them on the same intensity
space. Next, target image is registered by computing the transformation model on
the segmented images. Finally, the model is applied on the input color image to
obtain the resulting registered image.

Figure 3.7 – Applying the transformation model to large input images. The trans-
formation is applied by tiles, processing multiple tiles concurrently to take full
advantage of the machine CPU cores.

the registration is performed on a reduced version of the original images. This
makes it possible to quickly calculate the transformation model without exceeding
the memory limits imposed by currently used machines.

To create the resulting image with the original size, the transformation
model is then scaled by G(Xs) = kg(xs) where k = output image width /
low res transformed image width is the scaling constant of the images com-
puted. With G we build the resulting image by traversing the image by tiles
and calculating concurrently a small number of tiles at a time by G(Xs) =
{G1(Xs1),G2(Xs2), ...,Gn(Xsn)} where Gi is the transformation associated with
the tile Xsi (See Figure 3.7). Creating the result image this way, allows the mem-
ory constraints of the machine to be always respected. In addition, since all the
processors are used simultaneously, it takes full advantage of the computing power
of the machine.
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3.3 Method evaluation

Although there exist several registration methods, the lack of a standard evaluation
method has made this task a challenge. Some approaches point in the direction of
using the pixel intensities to evaluate the registration success [82]. However, this
approach does not give an accurate evaluation when source and target images are
not exactly the same image, differing just by a geometric transformation, which is
the case in multi-stained image registration. Other methods propose the use of cor-
responding points on source and target images to measure how much the positions
of the points differ from one image to the other once they are transformed [81].
The problem with this approach is that, for once, it does not take into account
the whole image but just a set of positions in the image, ignoring the rest of the
transformed image space. In addition, this type of evaluation requires a qualified
person to spot corresponding key points on both source and target images, which
can be a complex task when using a large datasets for evaluation. Furthermore,
other evaluations can be performed to quantify the performance of the registra-
tion such as registration time, registration robustness, etc. [91] which are more
like additional benchmarks than real accuracy metrics. In order to get a mean-
ingful comparable evaluation, we based our evaluation on the recently published
challenge for automatic non-rigid histological image registration (ANHIR) [92]. In
this challenge authors propose an evaluation of a large set of corresponding points
on almost 50 histological image sets. Different dying techniques are used on each of
the cuts of the same tissue that is acquired. These images vary in size from 15000
by 15000 pixels up to 50000 by 50000 pixels. More specifically the stains used in
these images are Clara cell 10 protein (Cc10), prosurfactant protein C (proSPC),
hematoxylin and eosin (H&E), antigen KI-67 (Ki67), platelet endothelial cell adhe-
sion molecule (PECAM-1, also known as CD31), human epidermal growth factor
receptor 2 (c-erbB-2/HER-2-neu), estrogen receptor (ER), progesterone receptor
(PR), cytokeratin, podocin (See examples in Figure 3.8).

3.3.1 Error evaluation method

According to the scoring method [91, 92], the relative Target Registration Error
(rTRE) metric is used to evaluate the accuracy of registered images. Let TRE =
de(xTl , xWl ), where xT and xW are the landmark coordinates in the target and
warped image and de is the Euclidean distance between a pair of corresponding
landmarks. From this, the relative target registration error is defined as rTRE =
TRE√
w2+h2 , where w and h are the image width and height respectively. On each

image the rTRE is evaluated for all corresponding points in the images and then
the median rTRE value is taken for each image so that slight inaccuracies are
not penalized when the rest of landmarks are correctly aligned. From the median
rTRE computed on all images, a average registration error can be computed from
these values as Average median rTRE = ad(mi(rTRE)) where ad is the mean
average and mi is the median value.
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(a) H&E staining
on breast tissue

(b) Her2-neu staining on
breast tissue

(c) es-
trogen
receptor
stain-
ing on
mammary
gland
tissue

(d) pro-
gesterone
stain-
ing on
mammary
gland
tissue

(e) CC10 stain-
ing on lung can-
cer tissue

(f) Ki67 staining
on lung cancer
tissue

(g) proSPC stain-
ing on lung can-
cer tissue

(h) CD31 staining on
mouse kidney tissue

Figure 3.8 – Different staining techniques were used for the ANHIR challenge.
Here some examples are presented to show the heterogeneity of these techniques.
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(a) Colon adenocarcinoma (b) Tissue segmentation (c) Mouse lung
lobes

(d) Segmenta-
tion

Figure 3.9 – Successful segmentation examples of tissue on virtual slides from
ANHIR registration challenge.

3.3.2 Preparing the dataset
For this dataset we set the pre-processing segmentation as a 5 class K-means his-
togram classification on the image converted gray levels and taking the highest
threshold to differentiate tissue from background. This proved to be a good ap-
proach in most cases where the background was uniform and the tissue made
enough contrast with the background to differentiate both(see Figure 3.9). Some
few images had a very complex background that made the segmentation step
fail (see Figure 3.10). As for the registration the best parameters were found at
wimg = 1, wd = 0.1 and wr = 0.1, which allowed to register according to the
segmentation pixel intensities while keeping the transformation away from strong
rotational and divergent deformations. Although the majority of the images got to
be correctly registered and provided accurate results (see Figure 3.11), our method
failed to perform a correct registration when the tissue had a strong misalignment
between source and target images (see Figure 3.12). This had a much greater
impact on the score of our evaluation since some of the image sets presented this
kind of transformation which our method could not handle correctly.

3.3.3 Scoring our method
Evaluating our solution (see Figure 3.13), we obtained an average median rTRE =
0.03027, and an average registration time = 0.90592 minutes which places our
method right in front of the original BUnwarpJ method with a score of 0.03409,
a comparison that confirms the method precision, since it is based on BUnwarpJ.
However, in this challenge BUnwarpJ was placed at the 8th position, mostly
because it does not use either mutual information or normalized gradient fields
(NGF [93]) as the registration criterion (which were used by winner methods) and
fails to match correlated pixel intensity sets. In our case, we improved BUnwarpJ
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(a) Mammary gland (b) Segmentation

(c) Mouse kidney (d) Segmentation

Figure 3.10 – Unsuccessful segmentation of tissue on virtual slides from ANHIR
registration challenge.

(a) Colon adenocarcinoma (CD4 to
CD68) registration

(b) Mammary glang (progesterone re-
ceptor to Her2-neu) registration

Figure 3.11 – Successful registration examples on virtual slides from ANHIR reg-
istration challenge.
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(a) Target (b) Source (c) Registered source

(d) Target (e) Source (f) Registered Source

Figure 3.12 – Unsuccessful registration examples on virtual slides from ANHIR
registration challenge. (top) Breast tissue (H&E to Her2-neu). (bottom) Gastric
adenocarcinoma tissue (CD4 to CD68). Color dots are used to make evident the
registration error
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Figure 3.13 – Histogram of the Median-rTRE measured on the training data
(Npairs = 230) before and after our registration process is applied.

by choosing the data that should be registered through a pre-processing step which
simplified the subsequent registration.

In addition to evaluating our solution with large histological images, we also
tried our method using different imaging techniques such as Masson’s trichrome
and Second Harmonic Generation on kidney tissue with successful subjective re-
sults, which shows the extent of application of our solution. (See Figure 3.14)

3.4 Conclusion and perspective
In this chapter we presented a method that allows to register large histological
images having multiple staining techniques with competitive results. We also ex-
plained the method to process large images in the case of image registration by
holding the transformation model when creating the output image by tiles. Taking
advantage of the tissue contour we managed to find the appropriate transformation
to register pairs of images. And we extended our work to not only multiple staining
techniques, but also multiple acquisition methods. This work has been published
in the IEEE International Symposium on Biomedical Imaging in 2017 [94]. Al-
though our method is competitive with other modern registration methods, this
task is still challenging because of the variability of positioning of the tissue during
tissue preparation and image acquisition. This task is even harder when slides are
damaged or get deteriorated over time. A possible solution could be the use of
mutual information to associate sets of pixel intensities on source and target im-
ages. However, this implies a pre-alignment step that, again is difficult due to the
variability of the images. Taking a look at the challenge winner method [93], the
pre-alignment using normalized gradient fields (NGF) distances looks promising as
it takes into account morphological structures rather than their intensities. Which
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(a) Target

(b) Source

(c) Registered source

Figure 3.14 – Successful registration example (bottom) on Masson’s trichrome
(top) and Second Harmonic Generation (middle) on kidney tissue.

is very well adapted to our problem (needing a pre-alignment anyways). Finally,
a further step is the 3-D slide stack generation, which introduces a new challenge
since not only slides have to be registered one to one, but also the general shape
of structures must be sustained along the Z axis. This means that the registration
would need to be constrained to both the shape of structures with respect to ad-
jacent slides, and the whole stack to prevent spherical structures from becoming
cylinders (an example of this effect can be seen in [95]).
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Chapter 4

Conclusions of Part I

All along this first part we have made strong emphasis on creating an integrated
framework that allows for handling large images including but not limited to those
acquired for histology. We first started by presenting two technologies that inte-
grated can provide a powerful tool for transferring remote large images, as well as
perform analysis locally and store results remotely. I presented the architecture of
the solution and the building blocks of Icytomine, alongside the means to perform
automated large image analysis. In addition, I presented an image registration
solution targeting whole-slide images acquired with slide scanners. In this subject
I presented the means to obtain the contours of the tissue to register, as well as
the principles to perform the registration an the subsequent transformation, taking
special care to respect memory limits when dealing with images of large size.

It is clear at this point that a lot of work was put into making this tools
that aimed to improve the productivity of image analysts. However, there is still
a lot of space for improvement. First, the registration procedure presented has
yet to be integrated into Icytomine to provide a seamless experience for users.
Additionally, more extending blocks need to be developed for Icytomine to further
improve analysts productivity. For example, tools to identify from remote images
(possibly interactively) the target areas to explore or perform analysis. Concerning
image registration, a volume reconstruction by stacking registered slides is yet
to be developed and further research needs to be done on this field to preserve
geometric features of the tissue [96, 95]. Furthermore, newer distance measures
(mutual information or normalized gradient fields [93]) could be integrated to our
solution to improve the image registration precision.

Now we change our focus to provide tools to improve analysis of annotations.
We take advantage of their vectorial nature to develop methods for morphology
analysis using only straight lines, which are convenient and efficient for spatial
analysis and storage of big data.
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Part II

Vectorial shape morphology
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Chapter 5

Introduction: Describing shapes
as vectorial data

In image analysis one of the fundamental tasks is shape description (morphology),
which is one of the steps involved in shape recognition and classification methods.
Most applications of morphology are found in GIS solutions (Geographic Informa-
tion Systems) and OCR (Optical Character Recognition) systems. Some examples
for GIS solutions are urban morphology to analyze population concentration based
on shape analysis [97], or in [98], where authors assess ecological conditions of eu-
ropean rivers (e.g. amount of gravel and sand bars, free flowing sections), based
on the morphology of their boundaries. Examples of OCR solutions can be found
in [99] where line reconstruction techniques are applied to detect tables on scanned
images of degraded documents.

Morphology has also been successfully used in biology to detect and quantify
different structures in cells and tissue. For example, in [100] authors use the medial
axis transform of segmented filopodia to quantify the filament characteristics of
the cells (quantity, length and direction). In addition, morphology can make part
of other analyses such as spatial analysis. For example, in [21] authors use bitmap
based morphological operators to perform segmentation of stained cells from nuclei
dilations on patches of virtual slides. In spatial analysis it is usual for analysts
to use point pattern spatial statistics, in which point clustering is described using
functions derived from that of Ripley’s K function, proposed in [101]. More re-
cently, Lagache et al. in [102] have developed SODA (Statistical Object Distance
Analysis) to perform analysis of aggregated molecules in micro- or nanoscopy im-
ages to understand protein organization. However, to this day this principle can
only be applied to perform point-to-point statistics, very few studies have been
performed to apply shape-to-point or shape-to-shape statistics. Few works have
tried to address shape to shape spatial relationship analysis, in [103] spatial re-
lation descriptors are developed and presented using entwining and interlacing
histograms.

As seen in the previous part, annotations in large image analysis systems are
stored as polygonal structures in order to economize disk space and loading times
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Figure 5.1 – Comparison between raster-based and vector-based annotations. A
considerable reduction in file size is achieved when using vectorial annotations.

when storing and manipulating them. In fact, classic approaches for applying
morphological operations on shapes is not well adapted for large images (where
the size of the image goes beyond 100K by 100K pixels). In this part we focus
on presenting methods to perform these operations directly on polygonal data,
avoiding any raster-based operation to improve the performance of calculations
(See difference between raster-based and vector-based annotations in Figure 5.1).
This chapter introduces the basic concepts of morphology and the existing meth-
ods related to morphology which are in their great majority raster-based. These
concepts allow to understand the rest of this part which is dedicated to vectorial
annotations morphology.

One of the most common ways for describing a shape is the morphological
skeleton. In its most basic interpretation it is the inner-most part of a given shape
allowing to understand its geometrical structure. This descriptor has been proved
really useful for several applications since its introduction in the 1960s. Among
its applications we find shape matching [104, 105], shape decomposition [106, 107,
108, 109, 110, 111], data compression [112, 113], handwriting recognition [114,
115, 116], tracking and analyzing blood vessels [117], pulmonary airways volume
estimation [118], among many others.

To understand better what a skeleton is and what is not, let us formally define
it.

Definition 5.0.1. Morphological skeleton [119] The reduction of a 2-D geo-
metrical object to a set of 1-D curves, and the reduction of a 3-D object to either
a set of 2-D surfaces and 1-D curves or a set of only curves, can be considered a
skeleton if it has the following properties:

1. It should have the same topology as the input object, i.e., the same number
of components and holes (tunnels in 3-D);

2. It should be thin;

3. It should be centered within the object;
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4. It should preserve the geometric features of the object, usually meaning that
the skeleton should have components corresponding to the various parts of
the object;

5. It should allow complete recovery of the original object.

From this definition, one can also define a closely related concept known as
medial axis, whose set of points complies with all except the last property (recov-
ery).

A 2-D skeleton consists on a set of points divided in three types:
• End-points: With only one neighbor;

• Normal points: With two neighbors;

• Branch-points: With more than two neighbors.
A 3-D skeleton is more complex as it can contain surfaces, thus points can

be classified into many more types. Most existing algorithms store and conceive
skeletons as a set of skeletal points in the form of pixels (2-D) and voxels(3-D).

5.1 Background
Blum first introduced the skeletonization as the medial loci of an object in Rn that
forms its skeleton. More precisely, he introduced the medial axis as a grass-fire
propagation process (also called wavefront propagation), in which a fire is simul-
taneously lit on the borders of the shape. This fire then propagates at constant
speed at every point of the the fire-front and directing it to the interior of the
shape until the whole shape is consumed by the fire. The skeleton is formed at
quench points where two non-contiguous fire-fronts collide with each other, which
conveniently are the loci of the centers of maximally inscribed balls (MIBs) [120].
Although Blum was the first to describe the morphological skeleton, there are
other ways of defining them. For example, Brady and Asada [121] proposed an
approach consisting of considering the loci of a cord, each making an equal angle
on the tangents at the two points where the cord meets the object boundary. Sim-
ilarly, Leyton [122] proposed the loci of the centers of the shortest geodesic paths,
each connecting two points where a bi-tangent sphere meets the object boundary.

Since its introduction, several authors have proposed different ways to compute
the skeletal points of an object: (a) quench points at meeting opposite fire-fronts;
(b) the loci of centers of MIBs; and (c) the centers of the enclosed balls touching
the object boundary at two (or more) disjoint locations. These three interpreta-
tions yield to the same results for objects in R2 and R3 (if their boundaries are
Jordan curves). However, this is not the case for digital objects. Results usually
vary when these three methods are applied on the same digital object. Therefore,
classifying these skeletonization algorithms is important to understand their ad-
vantages and their purpose. To this end, three categories are established based on
their computational strategy to solve the problem.
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1. Geometric approaches: The object boundary is represented by discrete
sets of points in continuous space (either point clouds or polygonal rep-
resentations). Algorithms in this category often use continuous geometric
approaches such as Voronoï diagrams. Voronoï edges are used by these algo-
rithms to locate the symmetry structures or the skeleton of a given object.

Methods widely focus on symmetry and other geometric properties of Blum’s
medial axis to compute the skeleton of an object. One of the most com-
mon approaches in this category is based on the principle of the Voronoï
diagram [123, 124, 125, 126, 127]. From a sample of points on the object
boundary the Voronoï skeleton is computed by finding the boundaries of
the closest areas for each input point. With these intersections only those
straight segments that are inside the object are taken into account and are
considered as the skeleton of the object.

One of the main challenges for this approach is filtering the large amount of
branches that are created on the resulting skeleton. Some approaches try to
look at the sensibility of each branch to changes on the shape following the
principle that main branches should not be deeply affected by small changes
on the object [125].

Schmitt [128] demonstrated that, as the amount of input boundary points
augments, the Voronoï skeleton yields to the continuous medial locus, with
the exception of the edges generated by neighboring pairs of boundary points.

Voronoï skeletons where also generalized for 3-D polyhedral solids [123, 128,
129, 130, 131]. Amenta et al. [123] characterized inner and outer Voronoï
balls for a set of boundary sample points to reconstruct an approximation of
a polyhedral boundary and to compute its Voronoï skeleton. GPU efficient
algorithms were developed by Jalba et al. [132] for extracting surface and
curve skeletons from large meshes. Bucksch et al. [133] presented a graph-
based approach to extract the skeletal tree from point clouds using collapsing
and merging procedures in octree-graphs.

2. Curve propagation approaches: Object boundaries are represented as
continuous curves or digital approximations of them. Algorithms are based
on the principle of continuous curve evolution of the object boundary, where
the symmetry structures or the skeleton are formed at singularity locations,
specifically at collision points of evolving curves. In this case, and in contrast
with digital approaches, curve evolution is computed using partial differen-
tial equations [120]. An example of this is the usage of active contours by
Leymarie and Levine [134], detecting skeletal branching at curvature feature
singularities. In other method [135], Hamiltonian formulated curve evolu-
tions are presented, computing outward flux of the underlying vector field
of the system. Skeletons are located on the flux field singularities. Other
methods ( [136, 137]) rely on general fields for front propagation to smooth
resulting skeletons at the expense of topology correctnes as they may have
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breaks not corresponding to object breaks. On the same line, force vector
fields are used for curve skeletonization in [111] and gradient vector flow is
used in [138]

3. Digital approaches: Objects are represented by a set of pixels/voxels in
a digital space Zn. Digital morphological operators (erosions and dilations)
are used to find singularities on a digital distance transform field to locate
skeletal structures. Such algorithms use explicit criteria for topology preser-
vation. Since this is the most popular and straightforward approach since the
early 1990s, a lot of literature is available on this topic. For example, fully
predicate-kernel-based iterative algorithms are available in [139, 140, 141].
Furthermore, boundary peeling methods with topological and geometrical
constraints are presented in [142, 143, 144]. Finally, methods using distance
transforms to guide the propagation can be found in [145, 146, 147]

4. Other approaches: Although many of the existing methods are covered by
these categories, there are some works that do not fit into any of these cate-
gories. For example, zoom-invariant cores [148], where medial cores are pro-
duced at multiple resolution levels and only the most representative branches
are kept. In addition, in [149] pixels grid are represented in hexagonal format
for 2-D images and their corresponding skeletonization is presented in [150].
Another example are fuzzy skeletons, which are created from fuzzy images
instead of binary images. Pal and Ronsenfeld [151] introduced the basis for
this field by using the concept of fuzzy disk and created fuzzy distance maps
to detect centers of fuzzy maximal distances in [152].

The method that is going to be presented in the following chapters can be
considered as a hybrid approach. It can be a geometric approach, taking into
account a point discretization of a continuous input shape and computing the
skeleton from these points. But it can also be viewed as a curve propagation
approach, because the skeleton is built by performing a front propagation and
locating singularities at collisions of the evolving front. The result of this method
is what is known as a straight skeleton, which is a version of the morphological
skeleton made entirely from straight line segments. The definition of this structure
and its construction is described in the Chapter 6.
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Chapter 6

Introduction to straight skeletons

Although there are several methods that can compute morphological skeletons
from shapes using different approaches, most of them are limited or separated
from other tools such as the application of morphological operators. In this chapter
straight skeletons are presented as an integrated tool to compute morphological
skeletons and morphological operations from polygonal data. Some insights about
dealing with degenerate simple polygons will be then introduced in Chapter 7.
This kind of skeletons will be further used as base for our main contribution, the
refined straight skeleton (Chapter 8).

6.1 Notation
This and the following chapters describe several geometrical concepts using the
notation described in this section. Please refer to this list for any clarification
needed on the notation.

• Rn: The n-dimensional euclidean space.

• Zn: The discrete n-dimensional euclidean space. Mostly used for describing
digital images.

• G: A planar straight line graph that accepts straight segments described by
a set of points and a set of edges connecting them.

• P : A Polygon composed of an ordered set of vertices joined by straight
segments. In contrast with a planar straight line graph, a polygon is a closed
set of straight segments. Hence, polygons are generalized by planar straight
line graphs.

• WG(t): The wavefront propagating from G at instant t.

• S(G): The straight skeleton of the polygon G.

• M(P ): The motorcycle graph induced by a non-degenerate polygon P .
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• W∗G(t): The wavefront propagation WG(t) extended withM(G).

• ei: The i-th edge of a given planar graph.

• vi: The i-th vertex describing a given planar graph.

• mi: The i-th motorcycle inM(P ) moving at constant speed and direction,
starting at a specific position.

• f(e): The skeleton face adjacent to the wavefront edge e.

• e(t): The wavefront edge at instant t.

• e(t): The supporting line of e(t).

• eSi : The i-th edge of the straight skeleton S.

• eAi : The i-th edge of the straight medial axis A.

• δB(G): The morphological dilation of the graph G using the structuring
element B. In the text only circumferences are used as structuring elements.

• εB(G): The morphological erosion of the graph G using the structuring ele-
ment B.

• γB(G): The morphological opening of the graph G using B as structuring
element.

• φB(G): The morphological closing of the graph G using B as structuring
element.

6.2 From continuous to discrete skeletons
One of the main issues when using curve propagation and digital approaches for
computing the morphological skeletons is the representation of the propagating
front. The classic way of representing them is to use a bit-mask that annotates
pixels (positions) that have been already visited during the propagation process.
This way of representing propagation fronts becomes inefficient as images grow in
size. To address this issue Aichholzer et al. [153] first presented a different type
of skeleton created from shapes represented as polygons. He called this structure
the straight skeleton, a skeleton that is made exclusively out of straight segments.
Using polygons as the representation of propagation fronts allows to keep a sum-
marized information of the propagation (using control points of the front and their
propagation directions) instead of holding a large matrix at every step of the prop-
agation which can be limiting in terms of memory and performance. The formal
definition of a straight skeleton is as follows.
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Figure 6.1 – Split and edge events on a straight-line front propagation starting
from a simple polygon.

Definition 6.2.1. Straight skeleton A straight skeleton is defined by a front
propagation process. Consider a simple polygon P . Every edge of P sends out a
parallel wavefront edge that moves with unit speed to the interior of P . The wave-
front edges of two adjacent polygons edges e1, e2 are joined by a wavefront vertex
that moves along the angular bisector of e1 and e2. We interpret the wavefront at
any time t as a 2-regular graph that is denoted byWP (t). During the propagation,
topological changes occur in the wavefront, which are classified into two types of
events (See example in Figure 6.1):

• An edge event occurs when a wavefront edge shrinks to length zero and
vanishes.

• A split event occurs when a reflex wavefront vertex meets a wavefront edge
and causes a split of the wavefront into parts. A waterfront vertex is called
reflex if the angle of the incident wavefront edges on the propagation side is
larger than π.
If multiple split events occur at the same time and location (i.e. when mul-
tiple reflex wavefront vertices meet) then we call this a multi-split event.
Multi-split events play a prominent role in the theory of straight skeletons.

The straight skeleton S(P ) of P is defined as the set of loci that are traced out
by the wavefront vertices.

Aichholzer generalized this definition to a planar straight line graph G. First,
the wavefront propagation is extended to the entire plane as every edge e of G
sends out a wavefront copy on both sides of the edge. Second, at terminal vertices
v of G the wavefront forms a rectangular cap since an additional wavefront edge is
sent out perpendicular to the single incident edge of v. Third, if multiple edges of
G meet in a vertex v then only the wavefront edges of neighboring edges of G in the
cyclic incidence order of v are joined by a wavefront vertex. The straight skeleton
S(G) is again defined as the set of loci traced out by wavefront vertices of WG(t).
When S(G) is laid over G, R2 is divided into polygonal faces. Each face f(e) is
swept out by a single wavefront edge e. During the propagation of wavefront e(t)
is considered the set of straight-line segments covered by the wavefront edge e at
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time t. Furthermore, the supporting line of e(t) is denoted as e(t). Each edge of
S(G) called arc lies on the boundary of two faces, say f(e) and f(e′), and therefore
also on the bisector of supporting lines e(t) and e′(t). Thus, the straight skeleton
S(G) is made entirely by straight line segments of linear size with respect to the
amount of vertices in G as it comprises 2n − t + 2 vertices, where t denotes the
number terminal vertices in G.

6.3 Existing methods for building straight skele-
tons

As an initial "brute-force" approach one could take the chronological order of all
edge and split events. While edge events are rather simple to handle (all edge
events are stored in a priority queue with collapse time as priority criteria), split
events require significantly more effort. In order to find the next split event one
would have to test every reflex wavefront vertex against every wavefront edge for
a potential hit. This would require O(n3 log n) time in total, with n the number
of vertices representing the initial polygons.

Aichholzer et al. [153] proposed a method to handle all split events in
O(n2 log n) on simple polygons. Since then straight skeleton time complexities
started using r to express the amount of reflex vertices on the input polygon. Thus
Aichholzer’s method would be expressed now as O(nr log n), with r the number
of reflex vertices in the initial polygon.

Aichholzer and Aurenhammer [154] presented a method based on kinetic tri-
angulations. The method presented a simulation of the propagation of the initial
edges by computing a triangulation of edges that have not yet collapsed at a given
time t. Then, during the propagation, there could be flip events that would require
re-triangulating part of the graph in order to keep an optimal structure. Unfortu-
nately just handling these flip events could take up to O(n2r) and for the complete
skeleton calculation it would take O(n2r log n) in time.

Eppstein And Erickson [155] were the first algorithm proposing a sub-quadratic
solution, computing the skeleton using a hierarchical-style algorithm on closest
pairs of points in the wavefront, achieving a complexity in time of O(n8/11+εr9/11+ε).
Unfortunately the algorithm turns out to be too complex to be appropriately
implemented.

Cheng and Vigneron [156] presented a method improving in computation time
and accepting holes on input polygons. They based their algorithm on the usage of
on randomized motorcycle graphs, achieving a performance in time of O(n log2 n+
r
√
r log r). A complication of this method is the computation of motorcycle graphs

using 1/
√
r-cuttings which made it so hard to implement that there is no known

implementation of their algorithm.
Felkel and Obdržálek [157] proposed an simple algorithm to compute straight

skeletons that would run in O(nr+n log n) time. However, their algorithm turned
out to be flawed. Cacciola [158] then published an algorithm for the CGAL library

68



6.3. EXISTING METHODS FOR BUILDING STRAIGHT SKELETONS

based on Felkel’s algorithm modified in order to run correctly. Unfortunately, no
details of the algorithm implementation have been published other than its worst-
case runtime complexity which is O(n2 log n).

Huber et al. [159] presented a method to compute the straight skeleton of a
simple polygon based on its motorcycle graph. Their method has a complexity of
O(nlogn) in time and O(n) in space. We base our work on the same principles
as Huber’s method, approximating the continuous skeleton by refining the motor-
cycle graph on reflex vertices. The next chapter presents Huber’s method as an
introduction for the refinement proposed in Chapter 7.
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Chapter 7

Straight skeletons based on
motorcycle graphs

As Huber and Held [159] explained, using polygons triangulations could seem
a good idea as the sub-divisions of the polygon become convex and thus their
skeleton can be computed fast. However the computing flip events (when a vertex
of the wavefront changes of triangle during the propagation) takes O(n3 log n) on
its worst-case, making it a disadvantage to use triangulations. They also noted
that even if there are no flip events the worst-case scenario would take O(n log n).

Nonetheless, there is an interest of finding optimal convex sub-divisions of input
polygons to compute their skeleton as the subsequent calculation of the straight
skeleton becomes faster. More precisely, dividing input polygons from their reflex
vertices is ideal because all split events can only happen on reflex vertices when
propagating the front (see Figure 7.1).

In order to compute these subdivisions Huber and Held used the principle of a
motorcycle graph introduced by Eppstein and Erickson [155]. The main advantage
of using this approach is the time it takes to be computed. This type of graph
can be obtained theoretically in time O(r2 log n), but in practice most data-sets
are computed on average in O(r log n), given that the vertices of the polygon are
uniformly distributed. This type of graph and its calculation is introduced in the
following section.

7.1 Generalization of motorcycle graphs
Definition 7.1.1. Motorcycle graph A motorcycle moves at a constant speed
along a straight line, starting at a specific position. Given nmotorcyclesm1, ...,mn,
each starting at position posi and moving with constant velocity veli, with 1 ≤
i ≤ n. Each motorcycle moves leaving a trace of its displacement until either of
the following things happen, in which case it is called “crashed”:

• It crashes with another motorcycle at the same time and position.

• It crashes with the trace left by another motorcycle.
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Figure 7.1 – When the wavefront propagates, split events only happen on the
trajectory of reflex vertices. These trajectories can be computed on a motorcycle
graph

.

A motorcycle is called “escaped” if it never stops. The motorcycle graph
M(m1, ...,mn) is defined as the set of traces left by motorcycles m1, ...,mn after
infinite time. From this, the track of mi is an infinite ray defined as posi + t ∗ veli,
for any time t ≥ 0.

Cheng and Vigneron [156] found an interesting geometric relationship between
non-degenerate polygons and their motorcycle graphs, which actually is the key
for building straight skeletons from non-degenerate polygons. But first let us
introduce the motorcycle graph induced by a non-degenerate simple polygon.

Definition 7.1.2. Motorcycle graph induced by a non-degenerate simple
polygon

Consider the motorcycle graph resulting from launching a motorcycle from
every reflex vertex v of a non-degenerate simple polygon P with a velocity equal
to the wavefront vertex originated from v. In addition, let’s consider the edges of P
as solid walls which motorcycles can crash against. This motorcycle graph denoted
byM(P ), obtained after processing all crash events is defined as the motorcycle
graph induced by the polygon P .

From this definition it becomes possible to see that for any non-degenerate
simple polygon P , the arcs of S(P ) that are incident to a reflex vertex of P are
covered byM(P ) (a visual example is available in Figure 7.2a).

Although this definition looks good for the construction of straight skeletons,
it is not suitable when dealing with degenerate simple polygons or planar straight
line graphs where edges can have particular configurations such as terminal edges
(see Figure 7.2b), thus introducing a problem when computing S(P ) fromM(P )
becauseM(P ) does not cover the initial reflex vertices of S(P ).

To solve this issue, Huber et al. [159] proposed to add two reflex vertices when
this scenario occurs. In Chapter 8 we propose a different approach to obtain
refined straight skeletons that are closer to the continuous morphological skeleton
of a shape.
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(a) The motorcycle graph of a polygon
(dashed lines) covers incident reflex ver-
tices of its straight skeleton (gray lines).

(b) The motorcycle graph of a degen-
erate polygon with a terminal vertex
(dashed lines) and the resulting skele-
ton(gray lines). In this case the skele-
ton is formed from two edges leaving the
terminal vertex.

Figure 7.2 – Examples of motorcycle graph on simple non-convex polygons. It is
possible to obtain a motorcycle graph from degenerate simple polygons, where two
or more edges intersect on the same line they are defined (7.2b).

Another consideration to be handled when creating motorcycle graphs as means
for the construction of straight skeletons are simultaneous motorcycle crashes. In
these cases, and with the goal of creating convex sub-regions on the polygon, new
motorcycles are launched. For this purpose we state the case of a motorcycle m
with a movement defined by wavefront edges e and e′, such that the position of m
at time t is the intersection e(t)∩ e′(t). When m hits one or multiple motorcycles
at the same time t′ and position p′ we consider the local disk D around p′. D is
tessellated into slices by motorcycle traces established up to the simulation time
t′. If one of the slices forms a reflex angle then new motorcycles are launched in
the following way.

Let’s denote m1, ...,mk the motorcycles that crash at p′ such that their traces
appear counter-clockwise around p′, and traces of m1 and mk form a reflex angle
on disk D. We distinguish two cases:

• The left defining edge of m1 and the right defining edge of mk span a con-
vex angle. In this case a motorcycle m is launched following the bisector
angle of the left defining edge of m1 and the right defining edge of mk (see
Figure 7.3a).

• The left defining edge e1l
of m1 and the right defining ekr edge of mk span

a reflex angle. Then a new motorcycle is launched in the direction of the
bisector using e1l

and ekr as defining edges (see Figure 7.3b).
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Figure 7.3 – Simultaneous motorcycle crash handling. (a) Convex motorcycle
collisions create a single motorcycle on the bisector angle of the motorcycle defining
edges at the collision position. (b) Reflex motorcycle collisions can create multiple
motorcycles depending on the defining wavefront edges at the collision position
and the maximum amount of motorcycles launched at a reflex vertex.

7.2 Wavefront propagation using
motorcycle graphs

Huber and Held demonstrated that it was possible to perform flip-event-free
Steiner triangulations when using motorcycle traces as edges on the triangula-
tion [159] in order to obtain a straight skeleton. In fact, they showed that no
triangulation was necessary to create the straight skeleton, only the motorcycle
graph is needed. To do this they introduced the concept of an extended wavefront
graph W∗G. This wavefront provides the straight skeleton as a result of simulating
its propagation.

Definition 7.2.1. Extended wavefront The extended wavefront W∗G(t) is de-
fined by the overlay of WG(t) andM(G) ∩ ⋃t′≥tWG(t′).

This means that only the part of M(G) that has not been already swept by
WG(t) is overlaid on top of WG(t).

Since theWG(t) is motivated by Steiner triangulations, vertices of the extended
wavefront that are not present in WG(t) are referred to as Steiner vertices as they
are additional points on the wavefront graph from the motorcycle graph collisions.
More specifically, Steiner vertices forming part of the intersection of WG(t) and
M(G) are called moving Steiner vertices, those vertices that have not been reached
by WG(t) are called resting Steiner vertices. In addition, a resting Steiner vertex
that corresponds to a simultaneous crash of multiple motorcycles inM(G) is called
a multi Steiner vertex (See Figure 7.4a).
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(a) Extended wavefront vertices

edge

event

switch

event

start

event

multi-split

event
split

event

(b) Extended wavefront events

Figure 7.4 – Representation of the extended wavefront W ∗
G(t) of the polygon in

blue. (a) presents the different types of vertices. Convex vertices are represented
in black, reflex vertices in gray, moving Steiner vertices in green, resting Steiner
vertices in orange, multi-Steiner vertices in red, and multi-convex vertices in cyan.
In (b) topological events on the wavefront are depicted. In black edge events, in
cyan split events, in red multi-split events, in orange start events, and in green
switch events.

The useful property presented by this extended wavefront is that during the
propagation of W∗G(t) only adjacent vertices can meet. In fact, this is the central
part of this algorithm to compute straight skeletons as it ensures its efficiency.

Aichholzer et al stated that the main problem efficient-wise of their algorithm
was finding the next split event in the wavefront. Using the extended wavefront,
a split event is simply indicated by the collapse of an edge of W∗G(t) when a reflex
wavefront vertex meets a moving Steiner vertex. Thus, this avoid the costly search
for the next split event.

The extended wavefront is used in the following section by inspecting edges
collapse points on the propagation of W∗G(t), which is used in turn to build the
straight skeleton of G.
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7.3 Straight skeletons from wavefront propaga-
tions

The algorithm to build the straight skeleton from a polygon is as follows.
Result: S(G)
W∗G ← initializeExtendedWavefront(G,MG);
SG ← initalizeStraightSkeleton(W∗G);
Fill event priority queue Q with initial events;
while Q is not empty do

e← Q.poll();
if isEventStillValid(e) then

newPossibleEvents← processEvent(e);
// This will update W∗G and S(G))
Q.addAll(newPossibleEvents);

else
continue;

end
end

Algorithm 1: Event handling on the wavefront propagation when building the
straight skeleton S(G).
Following the algorithm, initial events are first added to the queue from every

edge on W∗G(0) with the collapse time as priority, if it is finite and positive. Then,
events are handled by applying the topological changes described below to W∗G(t)
and adding to the queue new future events that might happen after modifying
W∗G. Events are handled only if the event edge is still present on the graph at the
time the event is supposed to happen. Otherwise the event is considered stale and
consequently ignored.

7.3.1 Topological events on the front propagation
The topological changes can be classified as follows and are shown in Figure 7.4b:

• Edge event: Two convex vertices u and v meet each other. In this case a
skeleton vertex is added at meeting position and it is connected by an edge
to skeleton vertices of u and v. Then, u and v are merged to create a new
convex vertex w. A special case has to be accounted for when the angle of
the incident edges of w span a null angle and both incident edges have the
same end vertex w′ (i.e. 2 fronts collapsed). In this case, a skeleton edge
is added to connect skeleton vertices of w and w′ and the wavefront edge
linking w and w′ is then removed.

• Split event: A reflex vertex u meets a moving Steiner vertex v and they
are moving towards each other.
For this event a skeleton vertex is added at meeting point and an edge is
added to connect the skeleton vertex of u.
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Then, the left side of the wavefront edge e = (u, v) is considered. If this
side collapsed, a skeleton edge is added from the created skeleton vertex and
the skeleton vertex of the collapsing edge opposite vertex. Otherwise a new
wavefront vertex is added connecting edges incident to u and v and left of e.
The same procedure is applied for the right side of e.

• Multi-split event: Multiple reflex vertices u1, ...uk arrive simultaneously
at a multi-Steiner vertex u. Although this event is conceptually similar to
the single-split event, a multi-split event handles multiple splits around the
same vertex.
First, a skeleton vertex is added at u and it is connected to the skeleton
vertices associated to front vertices u1, ..., uk.
Second, taking u1, ..., uk organized clockwise around u, consider all consecu-
tive pairs (ui, u1+i mod k) with 1 ≤ i ≤ k. With ei denoting the edge (u, ui)
and ei+1 denoting the edge (u, u1+i mod k), the wavefront is patched at each
sector (ei, ei+1) as follows.
A new vertex v is created patching the counter clockwise edge el of ei at
ui and the clockwise edge er of ei+1 at u1+i mod k together. Additional care
should has to be taken when an additional edge e incident to u between ei
and ei+1. If e is exactly on the trajectory of v, then e becomes incident to
v. For the rest of cases, e splits el, respectively er by an additional moving
Steiner vertex, depending on whether e lies left or right to the trajectory of
v.

• Switch event: A convex vertex u meets a reflex or moving Steiner vertex
v. Here the convex vertex u is changing of convex face to make part of a
neighboring one by jumping over v. For this event, if v is a reflex vertex
it becomes moving Steiner and the corresponding skeleton edges are added.
Otherwise, if v is a moving Steiner vertex, no skeleton edges are added.

• Start event: A reflex or moving Steiner vertex u meets a resting Steiner
vertex v. In this case v starts to make part of the moving front. For this
v becomes moving Steiner and one of the incident edges of u (not (u, v)) is
split by v.

• Multi-start event: A moving Steiner vertex u meets a multi-Steiner vertex
v. In this case the multi-Steiner vertex becomes part of the moving front.
For this, the event is treated similarly to a multi-split event but with k = 1
and u1 is not a reflex vertex (it is u). In addition, no skeleton vertex or
edge is added for u. Actually, this event is handled simultaneously with the
multi-split event.

• Other possible events: When two moving Steiner vertices meet they are
just removed with their corresponding edges. Other event should not occur
given the convexity of the faces of the extended wavefront W∗G(t)
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7.4 Performance analysis

In order to obtain a full view of the complexity of the straight skeleton method
proposed by Huber and Held it is necessary to analyze the complexities of creating
the motorcycle graph and the wavefront propagation.

The motorcycle graph presented before in this chapter only launches motorcy-
cles on reflex vertices on the input polygon, so the complexity of motorcycle graph
is expressed in terms of r as the amount of reflex vertices in the polygon P . Huber
and Held claim that on average the runtime of the motorcycle graph calculation
is Ω(r log r) in average, and this complexity is kept for most "real-world" exam-
ples [160]. It is also worth noting that for convex polygons the motorcycle graph
calculation takes O(1) since no reflex vertices are present on the graph.

For the straight skeleton we start by creating the extended wavefront W∗P(′).
Creating this structure can take as much as O(n log n) since we need to add both
the input polygon and the motorcycles which can be at most O(n log n).

Since the number of edge events is O(n) and the number of start and split events
is O(r) ⊆ O(n), and that for each event the events changed in the priority queue
Q is in O(1), the time to process all edges, start and split events take O(n log n).
Additionally, each multi-split event changes O(i) entries in Q, where i is the degree
of the multi-Steiner vertex involved in the event, making the processing of these
events take O(n log n) in time. For the case of switch events, they are bound by
O(nr) as a convex vertex may meet the same moving Steiner or reflex vertex at
most once.

Now this means that the actual worst case scenario would take O(nr log rn) :
r � n =⇒ O(nr log n) + ε in time; however, this case may rarely arrive. In fact,
only O(n) of the O(nr) switch cases can actually happen because every time a
switch event happens an edge is removed, reducing possible future switch events.
With this clarification on the complexity, it becomes clear that the complexity of
computing the straight skeleton (including the time of computing the motorcycle
graph) is generally O(n log n).

In addition to the algorithm complexity presented above, Table 7.1 also presents
a comparison between some classic bitmap skeletonization methods and our imple-
mentation of straight skeletons. In this table it is evident the gain in computation
time of straight skeletons with respect to classic bitmap methods.
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Image size
W x H (px)

Points in
polygon

Time Vincent
(msecs)

Time Guo
(msecs)

Time Zhang
(msecs)

Time Straight
skeletons (msecs)

250 x 194 52 13 137.239 110.254 10.90
300 x 233 57 17 145.683 143.966 11.43
350 x 272 67 33 155.221 145.637 12.30
400 x 311 74 42 172.495 158.056 17.17
450 x 350 83 63 187.624 172.375 15.57
500 x 389 87 89 202.811 182.217 19.45
550 x 428 95 121 224.427 187.787 18.33
600 x 467 98 143 245.708 190.950 21.64
650 x 506 101 183 274.336 199.867 22.63
700 x 545 108 297 299.136 228.684 23.07
750 x 584 118 463 321.907 248.115 24.40
800 x 623 120 646 386.240 289.133 22.05
850 x 662 127 756 423.903 352.170 24.20
900 x 701 169 971 457.716 361.060 38.89
1000 x 779 166 1452 664.056 431.305 38.17
1500 x 1169 169 5394 1625.040 1102.850 34.33
2000 x 1559 172 10407 3528.130 2361.700 39.84
2500 x 1949 174 17504 6714.950 4563.720 39.52
3000 x 2339 181 28505 11456.600 7525.110 44.73

Table 7.1 – Skeletonization methods computation time comparison. This compar-
ison was made using an binary image at multiple resolution levels, extracting a
polygon from the contour of the shape at each resolution level. Tested methods
were Vincent [161], Guo [162], Zhang [163], and our implementation of straight
skeletons.

7.5 Straight skeleton precision limits
Even though straight skeleton of a set of straight segments can keep the morpho-
logical data, they have one particular disadvantage, when reflex angles on vertices
come close to 2π, the wavefront propagation speed becomes noticeably faster than
the rest of the front. This means that the values of distance from the input shape
stored on the skeleton vertices are not really centered with respect to the shape.
An example of this can be seen on Figure 8.1. Keeping this in mind and the fact
that a reconstruction of a shape from this version of straight skeletons would not
allow for a proper reconstruction of the shape, the next section presents an alter-
native that allows straight skeletons to refine the propagating front to approximate
an accurate distance to the shape at every step of the propagation.
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Chapter 8

Refined straight skeletons

Although straight skeletons can provide interesting results concerning the morphol-
ogy of shapes as well as respecting the homotopy with the original shape, when
applied to noisy polygons the underlying skeletons become considerably less precise
when compared to other methods for skeletonization. More important, in many
cases, noisy polygons are the output of the segmentation of tissues on biological
images (See Figure 8.1c). This effect happens due to the discretization performed
on reflex angles as explained in the following sections. An opportunity arises here
to improve the skeleton precision without compromising too much computational
time. This chapter presents our method based the straight skeleton proposed by
Huber and Held and refined by augmenting the amount of reflex vertices on the
wavefront when the propagation is performed, allowing for better precision of the
wavefront and a more accurate approximation of the center line of a shape [164].
Additionally, a runtime analysis and an evaluation is shown. Finally, we provide
some conclusions, as well as some possible future developments on this subject.

8.1 Refining motorcycle graphs
The amount of motorcycles at reflex vertices is vital to establish the precision of
the resulting straight skeleton. As shown in Figure 8.2, the more motorcycles are
launched at a terminal vertex, the closer the straight line wavefront will be to
the continuous wavefront in orange. In the figure, green vertices (5 motorcycles)
evolve the wavefront slower than cyan vertices (2 motorcycles), hence decreasing
the error on the final skeleton due to possible early front collisions.

In order to define the amount of motorcycles launched at reflex angles of a
polygon, including the cases where angle spanned by the clockwise and counter-
clockwise edges is 2π, we propose to establish an adaptive motorcycle definition
given a maximum number of motorcycles in the terminal edge case maxMcs.
According to the spanned angle of incident edges θv, the amount of launched
motorcycles numMcs is adjusted by numMcs = θv/maxMcs. This allows to
estimate the maximum error on the straight line wavefront (see Table 8.1) which
is computed by Equation 8.1.
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(a) Concave ridges (b) Straight skeleton (c) Skeleton superposition

Figure 8.1 – Straight skeleton (in red) on a noisy polygon. In these cases the
straight skeleton does not reflect the center line of the input polygon(in dotted
green).

π/5

π/4

π/3

π/2

5 mc's :

4 mc's :

3 mc's :

2 mc's :

Figure 8.2 – Approximating a straight line wavefront to a continuous one. The
amount of motorcycles launched from a reflex vertex has a huge impact on the
precision of the wavefront propagation. The lines with the numbers show the
length of the rays at unit time of the propagation from the reflex vertex. The more
motorcycles launched at reflex vertices, the closer to the continuous wavefront (in
orange).
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Num mc’s Num divisions Inter-mc angle Mc speed Speed error
2 3 π/2 1.414 0.414
3 4 π/3 1.154 0.154
4 5 π/4 1.082 0.082
5 6 π/5 1.051 0.051
6 7 π/6 1.035 0.035
7 8 π/7 1.025 0.025
8 9 π/8 1.019 0.019
9 10 π/9 1.015 0.015
10 11 π/10 1.012 0.012
11 12 π/11 1.010 0.010
12 13 π/12 1.008 0.008
13 14 π/13 1.007 0.007
14 15 π/14 1.006 0.006
15 16 π/15 1.005 0.005

Table 8.1 – Error of the continuous wavefront approximation by straight lines at a
terminal vertex. As more motorcycles are launched from the terminal vertex, the
approximation error converges to zero.

speedError = sec
(

π

2 ∗ numMcs

)
− 1 (8.1)

Let’s take for example the terminal edge on Figure 7.2b and having at most
maxMcs = 2 motorcycles on terminal edges. Since the edge is terminal the angle
spanned by the inwards normals of the incident edges is π > π/maxMcs, hence two
motorcycles are launched from the terminal vertex in the polygon. Now let’s take
Figure 7.2a at any of the reflex vertices with the same maxMcs. Since the angle
spanned by the inwards normals of the incident edges is less than π/maxMcs,
there is only one motorcycle launched from the vertex.

Now, in order to determine the direction of each of the vertices launched at a
given vertex two parameters are needed. First, the amount of motorcycles that
can be launched at the vertex numMcs. And second, the angle θv spanned by the
normals of the clockwise and counter-clockwise edges. Algorithm 2 explains the
procedure. As reference for the reader, in Figure 8.2 directing lines are presented
as dotted lines and discrete wavefront lines as dashed lines; Thin lines represent
launched motorcycles.

Another example of motorcycle creation at reflex vertices is available on Fig-
ure 8.3.
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input : v, numMcs, θv, θcw
output: Directions for motorcycles at vertex v
θd ← θv/numMcs;
for i← 0 to numMcs+ 1 do

directingLines[i]←
Segment(vertex = v, angle = θcw + (i ∗ θd), length = 1);
unitWavefrontLines[i]←
Line(position = directingLines[i], direction =
directingLines[i].cw().direction());

end
for i← 0 to numMcs do

mcV elocity[i]← LineIntersection(unitWavefrontLines[i],
unitWavefrontLines[i+ 1]);

end
return mcV elocity;

Algorithm 2: Finding motorcycle directions at a reflex vertex.

0 π/4 π/2 3�/4 7�/9

Figure 8.3 – Motorcycle creation on reflex vertices at different angles with a max-
imum amount of motorcycles set to 4. Motorcycles are represented in green, the
wavefront at unit time in orange, defining normals as dotted blue arrows and mid-
dle normals as dotted black arrows. Notice that no motorcycle is launched when
the angle of the defining edges is π.
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8.2 Wavefront propagation using refined motor-
cycle graphs

In a similar manner that original straight skeletons are obtained, refined straight
skeletons are computed by a front propagation process where an extended wave-
front is created using the input shape vertices and edges, as well as using the
motorcycle graph applying the approach presented in the previous section. The
rest of this section presents the steps to compute the wavefront and its propagation
that are particularly different from the original method proposed by Huber and
Held.

8.2.1 Extending the wavefront with the refined motorcycle
graph

In order to take into account the result of the refined motorcycle graph when
propagating the wavefront it is necessary to include additional vertices where mul-
tiple motorcycles are launched from the same position taking careful attention
when connecting them in order to keep the topology coherent when vertices start
moving on the front. To do this they are sorted by the angle of the motorcycle
trajectory.

8.3 Implementation considerations
The implementation for this method and the underlying performance is highly
dependent on the amount of initial reflex wavefront vertices launched at every
reflex vertex of the input shape. A comparative table of computation time versus
number of vertices on reflex vertices is presented as an indicative of the impact
on performance on Table 8.2. The values for this comparison were acquired by
computing the refined straight skeleton on a noisy polygon with 320 vertices. A
graphic of the comparison is available in Figure 8.4. It is important to remember
that the amount of initial wavefront vertices is adjusted not only to the maximum
amount set for the skeleton, but also the angle at each reflex vertex. This allows
for an optimal performance over detail ratio. This also means that a polygon
with a high count of acute reflex angles will take more time when computing its
straight skeleton compared with a smoother version of it, because more vertices
will be generated when creating the extended wavefront.

8.3.1 Runtime analysis
To define the algorithm computation complexity of refined straight skeletons we
base our analysis on the classic straight skeletons. We start by analyzing the
motorcycle graph complexity, launching O(kr) motorcycles in the graph where k
is the maximal amount of vertices launched at a single reflex vertex and r the
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Num. reflex
vertices 1 2 3 4 5 6 7 8 9 10 Average

(msecs)
2 29 24 25 25 24 31 15 32 31 32 26.8
3 30 31 34 20 31 31 32 33 33 38 31.3
4 47 56 40 39 40 40 47 47 40 47 44.3
5 54 52 50 47 74 55 49 45 51 49 52.6
6 63 56 72 57 65 58 67 62 57 59 61.6
7 63 71 62 74 82 57 70 65 62 63 66.9
8 83 78 83 83 79 79 74 89 77 82 80.7
9 87 90 89 102 91 105 96 95 92 93 94.0
10 109 104 109 131 149 111 112 112 109 108 115.4
11 135 123 129 154 120 125 123 121 117 117 126.4
12 141 132 130 132 126 125 139 138 134 161 135.8
13 176 175 162 170 182 140 144 143 155 143 159.0
14 153 163 169 169 241 169 169 153 162 163 171.1
15 172 187 172 191 191 204 184 171 187 179 183.8
16 202 204 203 269 188 187 203 203 187 198 204.4
17 235 219 219 203 235 218 221 210 213 312 228.5
18 229 233 225 238 237 250 235 235 234 234 235.0
19 253 251 266 359 268 266 250 250 265 250 267.8
20 295 274 283 297 284 328 282 281 297 312 293.3
21 397 324 335 359 325 372 338 320 330 345 344.5
22 328 337 328 334 328 332 362 338 343 329 335.9
23 377 359 375 359 376 387 375 368 426 375 377.7
24 409 374 375 401 412 423 391 395 391 399 397.0
25 408 419 408 407 409 416 437 409 391 417 412.1

Table 8.2 – Comparative performance over maximum number of initial wavefront
vertices (skeleton detail) on reflex input vertices.
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Figure 8.4 – Comparison of refined skeleton detail against computation time.

amount of reflex vertices on the input polygon, the complexity of computing the
motorcycle graph isΩ(kr log kr) taking the same principle as Huber and Held [160].
Of course, on convex polygons this complexity comes to O(1) because there are
no reflex vertices. Next, the wavefront extension takes O(kn log kn) for n vertices
on the input polygon, since the the maximal amount of reflex vertices becomes
important when it takes large values. This means that all edge, start and split
events take the same time (O(kn log kn)). And for the case of switch events the
complexity becomes O(nkr) as convex vertices only meet the same moving Steiner
vertex at most once. This leaves us with a worst case scenario of O(nkr log nkr) :
r � n =⇒ O(nkr log nk), which is logical since now the complexity is highly
related to the maximal amount of vertices launched from reflex vertices. Despite
the worst case scenario including r in its definition, in most general cases the
complexity yields to O(nk log nk) because the amount of reflex vertices remains
low with respect to n (See Figure 8.5).

8.3.2 Evaluation
Since there is no ground truth to compare the skeletons produced by the straight
skeleton method, it is not possible to evaluate the precision of the shape of the
skeleton. However, it is possible to evaluate how the straight skeleton performs
in comparison to a continuous version of the Voronoï diagram on segments and
arcs [165]. A method proposed by Held et al. which computes curved skeletons.
Their implementation computes curved lines that define a precise continuous skele-
ton, with a computational complexity of O(n2) in time with respect to the input
number of vertices. Our implementation produces skeletons that should approxi-
mate this curved skeleton using just straight segments. To evaluate our method,
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Figure 8.5 – Comparison of refined skeleton number of input vertices against com-
putation time.

we computed the continuous Voronoï diagram of a set of shapes [166] and we then
compute a distance map (of size 1300 by 1300 pixels) of the skeleton edges and
compute the distance of the edges from our solution to the continuous skeleton
using the distance map. The evaluation results are presented in Table 8.3 showing
a fast improvement on the precision of straight skeletons within the first added
vertices. However, the more vertices are added to reflex angles, the lower is the
gain achieved in approximating continuous skeleton.

8.3.3 Conclusions
Having implemented a refined version of straight skeletons allows us to achieve an
accurate and efficient discrete approximation of the continuous skeleton of shapes.
Using straight skeletons we achieve independence of scale, rotation, translation and
symmetry since the method works from the control points of the polygonal input
shape. In the following chapters we will concentrate on the operations possible
with refined straight skeleton and the opportunities of application on large planar
images. As perspective, with the same principle for computing the wavefront
propagation on reflex angles of shapes, it could be possible to extend it to single
points. In this case a circle would be approximated by a set of straight segments
(at least 4 to form a square or more for better approximation) and could provide
further shape analysis opportunities, because shape and point skeletons would
be processed at once and would provide a complete perspective of the spatial
organization. We continue now with the creation of morphological operations and
work with them to provide means for shape smoothing and point grouping by
creating rings from shape isocontours.

88



8.3. IMPLEMENTATION CONSIDERATIONS

Max Vertices
on Reflex Vertices

Mean Distance
(pixels)

Max Distance
(pixels)

Distance
Standard Deviation

1 0.66285 26.0 1.959
2 0.30619 7.0 0.669
3 0.26288 5.7 0.544
4 0.22347 3.0 0.430
5 0.21773 2.0 0.421
6 0.21475 2.0 0.417
7 0.20158 1.4 0.401
8 0.20326 1.0 0.402
9 0.19975 1.0 0.400
10 0.19784 1.0 0.398
11 0.19804 1.0 0.399
12 0.20361 1.0 0.403
20 0.19561 1.0 0.397

Table 8.3 – Evaluating the refined straight skeleton at different values of maximum
reflex vertices. This evaluation was performed creating a distance map of the edges
in the Voronoï diagram of the shapes on images of size 1294 by 1269 pixels. As
visible, from 8 vertices, the maximum distance is fixed to 1 because the resolution
of the distance map does not allow to capture more precision. However, the mean
distance and standard deviation keep improving.
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Chapter 9

Morphological operations on
straight skeletons

A popular approach to study the set of elements composing a shape is the applica-
tion of morphological operators on the shape. These operators are normally used
for shape smoothing, structure simplification, among other applications [167]. In
this chapter we present the application of morphological operators using out solu-
tion for straight skeletons as the base for these operations [168]. The base notion
when working with mathematical morphology is presented as follows.

Definition 9.0.1. Morphological operation Let E be a set in Rd with d > 0
usually equal to 2 or 3. In addition, let B be a subset of E called structuring
element. If x is an element of E then we denote Bx the set B translated by x.

Bx = {b+ x|b ∈ B}
The structuring element can be translated to any point of E and act as a local

probe. If the test on Bx is positive, then x is considered part of the result set
fB(E).

Following this definition, sections below describe the different morphological
operators and the underlying application with straight skeletons.

9.1 Shape dilation
Let’s first introduce the dilation operator:

Definition 9.1.1. Dilation[H] Let X be a subset of E. A dilation on X with the
structuring element B is defined as a Minkowski sum:

δB(X) = X
⊕
B = {x+ b|b ∈ B, x ∈ X} = ⋃

x∈X Bx

A dilation is non-invertible in general. The operation that imitates, at some
extent, the inverse of a dilation is the erosion, explained in Section 9.2.

Now, in order to apply the same principle to straight skeletons it is easy to
think about using the wavefront that is used to create the straight skeleton. For
this, let’s set the structuring element B as a circle with radius r. Then a dilation
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on a given input shape P is defined as the wavefront WP (r) with the wavefront
moving outwards w.r.t. P (see Figure 9.1).

P

S(P)

WP(20)

WP(60)

Figure 9.1 – Shape Dilation using straight skeleton. Input polygon in blue, refined
straight skeleton in dotted gray with maximal reflex vertices set to 3, dilations at
t = 20 and t = 60 in black (t being the radius of the structuring element).

The algorithm to compute the dilation of a polygonal shape given its straight
skeleton is described as follows.

input : Sout(P ), r
output: Dilation δP (r)
edgesToV isit← Sout(P ).edges;
while !edgesToV isit.isEmpty() do

e← edgesToV isit.next();
edgesToV isit.remove(e);
if Sout(P ).vertexT ime(e.start) ≤ r AND
r < Sout(P ).vertexT ime(e.end) then

previousV ertex = δP (r).addV ertex(e.getPositionAtT ime(r));
currentEdge = e;
flag = true while flag do

currentEdge = getLNext();
edgesToV isit.remove(currentEdge);
if currentEdge == e then

flag = false;
else

currentV ertex =
δP (r).addV ertex(currentEdge.getPositionAtT ime(r));
δP (r).addEdge(previousEdge, currentEdge);
previousV ertex = currentV ertex;

end
end

end
end
return δP (r);

Algorithm 3: Dilation calculation from a straight skeleton.

92



9.2. SHAPE EROSION

Figure 9.2 – Example application of dilations on histology. In this image of small-
cell lung cancer, cancerous tissue stained in yellow is segmented(yellow lines on the
right) and then dilated to identify distance intervals from initial shapes. Detected
cell (as white dots on the right) can be assigned to a specific distance interval
and allow for identifying cell clusters in function of the distance to the cancerous
tissue.

An application using dilations in histology is the density analysis at different
distances from segmented tissue. On Figure 9.2 segmentations of lung cancer are
dilated at intervals of constant length. The different cells around this tissue are
detected and can be assigned to a specific distance interval. From this a spatial
analysis can be performed to compute cell clustering at certain distances from the
cancerous tissue and possibly detect behavioral patterns on the cells.

9.2 Shape erosion

Similar to a dilation, erosions follow the same principle of offset calculation using
the straight skeleton. The erosion operator is defined as follows:

Definition 9.2.1. Erosion[H] Let X be a subset of E. An erosion on X with the
structuring element B is defined as a Minkowski sum (actually a difference):

εB(X) = X 	B = {x|Bx ⊂ X}
Similar to dilations, erosions are non-invertible in general.
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P

S(P)

WP(20)

WP(50)

Figure 9.3 – Shape erosion using straight skeletons. Input polygon in blue, refined
straight skeleton in dotted gray with maximal reflex vertices set to 3, erosions at
t = 20 and t = 50 in black (t being the radius of the structuring element).

The algorithm to compute the erosion of a polygonal shape given its straight
skeleton is described as follows.

input : Sin(P ), r
output: Erosion εP (r)
edgesToV isit← Sin(P ).edges;
while !edgesToV isit.isEmpty() do

e← edgesToV isit.next();
edgesToV isit.remove(e);
if Sin(P ).vertexT ime(e.start) ≤ r AND r < Sin(P ).vertexT ime(e.end)
then

previousV ertex = εP (r).addV ertex(e.getPositionAtT ime(r));
currentEdge = e;
flag = true while flag do

currentEdge = getLNext();
edgesToV isit.remove(currentEdge);
if currentEdge == e then

flag = false;
else

currentV ertex =
εP (r).addV ertex(currentEdge.getPositionAtT ime(r));
εP (r).addEdge(previousEdge, currentEdge);
previousV ertex = currentV ertex;

end
end

end
end
return εP (r);

Algorithm 4: Erosion calculation from a straight skeleton.

An example of application of erosions can be seen on Figure 9.4, where the
tissue contour is eroded in order to identify the damaged area of the tissue due to
bad sample aging.
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(a) Damaged tissue (b) In red eroded contour indicating
healthy tissue boundary

Figure 9.4 – Using straight skeleton morphological operations it is possible to
define regions of a kidney tissue that should be ignored on further processing as
they have been affected by tissue aging.

(a) Input shape (b) Opening (c) Closing

Figure 9.5 – Example of shape openings and closings. These operations require
two morphological steps (in red and green). The result (in green) is a smoothed
version of the input shape.

9.3 Shape openings and closings
Following the same principle of dilations and erosions it is possible to perform
openings and closings on the input shape by reusing the dilation and erosion oper-
ations described below. An example of these operations can be seen in Figure 9.5.
In addition, smoothing can be applied to shapes to remove acute angles on the
input shape (see Figure 9.6).

9.3.1 Shape opening
An opening is the result of applying a dilation of an erosion of the input shape.

γB(X) = δB(εB(X))

This means that the input polygon is first eroded by B. Then, this result is dilated
by B to obtain the opening result. The effect on the resulting shape is that small
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outward variations (reflex input vertices) on the shape boundary disappear or are
smoothed. For an example see Figure 9.5b.

9.3.2 Shape closing
A closing is the opposite operation of an opening. It is the result of applying an
erosion of a dilation of the input shape.

φB(X) = εB(δB(X))

In this case the input polygon is first dilated by B, and followed by a dilation by B
on this result to obtain the closing result. The effect on the resulting shape is that
small inward variations (convex input vertices) on the shape boundary disappear
or are smoothed. For an example see Figure 9.5c.

9.3.3 Shape smoothing
With the morphological operators presented up to this point it is possible to per-
form smoothing of polygons to remove sharp edges on the contours. To perform
this a procedure similar to a closing or opening is performed in the following ways.

Smoothing1(X) = εB′′(δB′′(δB′(εB′(X))))
Smoothing2(X) = δB′(εB′(εB′′(δB′′(X))))

These two operations can seem pointless at first sight as B′′ and B′ are both
used to perform both one dilation and one erosion. However, this operation allows
to remove sharp interior reflex angles (with B′′) and sharp exterior reflex angles
(with B′). The structuring elements B′ and B′′ can be adjusted to the detail level
needed on the resulting shape where B′ handles internal sharp angles and B′′ takes
care of external ones. An example of this procedure can be seen in Figure 9.6. It
is important to notice that, although Smoothing1 and Smoothing2 have both two
erosions and two dilations, results on these operations differ because the smoothing
of internal and external details is done in a different order.

9.4 Straight Medial Axis
One of the main issues with straight skeletons is the amount of branches that they
hold. This obfuscates the general structure of the shape that can be obtained when
some of the most locally descriptive branches are removed. When these branches
are removed the resulting graph is generally known as the medial axis.

As mentioned in Definition 5.0.1, a medial axis is almost the same as a morpho-
logical skeleton except that the original shape might not be completely recovered
from the medial axis. The reasoning for this property is that medial axes aim to
describe the general features of the target shape. An example of application of
this structures can be seen in Figure 9.7 where the anomalies on the thickness of
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C

Figure 9.6 – Example of polygon smoothing by applying a sequence of erosion,
double dilation, and erosion on the initial shape. This allows to remove internal
and external sharp angles on the input shape. In this example the input shape
(A) is affected with an erosion (B) followed by a double dilation (C) and a final
erosion to obtain the smoothed shape (D).

a uterus is estimated through the calculation of the mean distance to the uterus
contour of the medial axis as well as its variance. We can assess the tissue by
comparing the variance of these distances and compare between wild-type with
knock-out samples.

Several studies have been used to prune skeletons. For any significance crite-
rion used, it should establish a strict relation between skeleton branches and the
relevance of the shape parts that they represent. In the case of two dimensions,
some criteria involving propagation velocity, maximal thickness radius function,
axis arc length and the boundary/axis length ratio can be found in [169]. Other
pruning methods use contour partitioning via discrete curve evolution [170] and
with bending potential ratio [171], where the decision on whether pruning a branch
is based on the context of the contour segment corresponding to that branch. A
more recent pruning criterion takes a group-wise medial axis transform that yields
a fuzzy significance measure for each branch [172]. In [173] the author recurred
to branch level features that are evaluated to select the best describing branches
of the skeleton. This last method resulted an interesting method for us and eas-
ily applicable to straight skeletons. In this section we describe the principles for
extracting the medial axis of a vectorial shape from its refined straight skeleton
based on the features of the branches at different depth levels.
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(a) Original (b) Medial Axis

Figure 9.7 – Medial axis applied on the contour of a uterus to assess its behaviour
with respect to the thickness of the sample. Mean and variance of the thickness
can be used to characterize samples as wild-type or knock-out.

(a) Refined straight skeleton (b) Branch levels (c) Concatenations

Figure 9.8 – Example of medial axis computation. (9.8a) Refined straight skeleton
with maximum reflex vertices set to 3. (9.8b) Levels of the skeleton, level 1 in green,
level 2 in magenta and level 3 in orange. (9.8c) Three possible concatenations on
the skeleton.

9.4.1 Detecting branch levels
I order to prune a straight skeleton from the branch levels of the skeleton it is
necessary first to describe the way to compute the level of each branch segment.
The method described here takes a level as the minimal amount of pruning steps
needed in order to have a branch as a terminal branch. Let’s take the Figure 9.8 as
an example. Branch segments in green are branches that are already terminal and
are labeled as being level 1 branches. Next, if those green branches are removed,
branches that become terminal (in magenta) are labeled as level 2 branches. This
process continues until all the skeleton edges have been labeled with a specific level
(see Figure 9.8b).

Once the labels are assigned it is possible to define branch concatenations up
to a given level. A concatenation Ch is a set of connected edges that start at a
leaf node h of the skeleton and follow a path that is always increasing in level.
The concatenation continues until no more increasing paths are available or until
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there is more than one increasing path, this level is known as the maximum level
n that a concatenation can achieve. As an example, in Figure 9.8c there are three
possible concatenations, an example for each of the three possible levels. As the
figure shows, the level 3 concatenation (dotted line) stops when it cannot find
an edge of higher level. In the case of the level 2 (full line) and 1 (dashed line)
concatenations, they stop when they find more than one neighboring edge of higher
level. In addition to full concatenations, sub-concatenations up to specific levels
can be considered (i.e. The sub-concatenation Ci

h starting at leaf h and going up
to level i, 1 ≤ i ≤ n).

The interest of using concatenations is that they can provide incremental in-
formation about each branch of the skeleton going up to the center of the shape,
thus becoming a useful tool to decide when to cut the skeleton.

9.4.2 Defining branch features
Once all skeleton edges have been associated with a specific level and with con-
catenations defined, it is possible to use concatenations to take measurements and
decide where to prune the skeleton. First of all, a vertex on the skeleton is rele-
vant if it describes a feature of the shape (the circle it covers) more than any other
vertex in the skeleton (and any other point in the shape). Second, a vertex is not
relevant if it is too close to another vertex with a similar covering radius. Third
and last, the larger a concatenation gets, the more relevant it becomes because it
holds features of the shape at more resolution levels.

From this rationale three criteria have been used to define the relevance of a
skeleton branch:

• δih: The difference of the radii of the covering circles of vertices at the leaf
node i and the other end of Ci

h.

• λih = δih − d(p, q): The distance covered by the circle at end point vertex p
that is not covered by the circle of the vertex q on the other end of Ci

h. Here,
d(p, q) is the euclidean distance between p and q.

• Lih: The length of the sub-concatenation Ci
h.

9.4.3 Pruning strategy
Since the medial axis describes the central axis of concave features on the shape, the
first step is to filter the branches that are concave enough. In the case of straight
skeletons this can be achieved by visiting the vertices of the initial polygon and
filtering out branches that start from non-concave vertices (∠(vi) > θ1|0 < θ1 < π
). This allows to obtain meaningful medial axes without losing the quality of the
skeleton (and the reconstruction). Any branch with its leaf vertex having an angle
greater than θ1 this is considered to be removed.

From the criteria presented in the last subsection, these values need a threshold
to identify a branch that is candidate to be pruned. Based on the same principle
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than [173] and adapting it to our purposes the following operation identifies a
pruning candidate branch if its evaluation is true:

δih < 0 AND λih < θ2 AND Lih < θ3

The values for θ-values must be set according to the needs for the resulting medial
axis. For this work we found as best values the following.

• θ1: As explained before, this criterion simplifies the skeleton to prune be-
fore its gets actually pruned. The best results were found by setting this
parameter to 2π/3.

• θ2: Since this threshold is closely related to the size of the input shape, we
took as threshold a percentage of the length sidemin of the shortest side of
the bounding box covering the input shape. We found the best results using
θ2 = 5% sidemin.

• θ3: As this criterion is not directly related to the size of the shape but to the
length of the branches at different levels of depth we use the mean length
of concatenations at a given level i for all concatenations of the skeleton
attaining that level. Based on our experiments we found that θ3 = 3 ∗ L̄i,
where L̄i is the mean length of all sub-concatenations Ci

h at level i.

Now, in order to find the pruning level for all concatenations, each one is eval-
uated from its deepest sub-concatenation and descending in level until finding a
positive candidate. When a sub-concatenation meets the criteria described above,
all edges associated to that sub-concatenation become pruning candidates. The
rest of possible sub-concatenations are not considered once the first positive can-
didate is found as they are less general than the first positive candidate.

Once the pruning candidates are identified, they are removed taking care of
respecting the original skeleton connectivity. This is done because some candi-
date edges belonging to one concatenation can be non-candidate edges of other
concatenations (An example is available in Figure 9.9).

It is worth noting that, since a medial axis is based on the information coming
from concavities in the input shape, the skeleton has to be pre-pruned, removing
all reflex vertices and their incident edges. In addition, a maximum angle is defined
on the edges incident to a vertex of the shape, to make sure that only relevant
concavities are taken into account for the medial axis. In our experiments we have
set this angle to 7π/9, terminal edges coming from vertices with more than this
angle are removed before the actual pruning takes place. An analysis of the three
parameters of the medial axis can be seen on Section 10.3 where different values
are assigned to these parameters to explore the impact they have on the resulting
medial axis and the reconstruction of the initial shape obtained from it.

100



9.5. EVALUATION

Figure 9.9 – Example of resulting medial axis on shape taken from [174]

9.5 Evaluation
Since the medial axis is meant to summarize the skeleton of a given shape, we
decided to evaluate the medial axis comparing the reconstruction obtained from it
against the original shape. In order to do this it is necessary to have a reconstruc-
tion of the shape starting from the medial axis. For this, we describe in the next
chapter the reconstruction method we used. Following this, we provide the medial
axis evaluation, as well as some understanding of the parameters for calculating
the medial axis.
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Chapter 10

Shape reconstruction from
Straight Medial Axes

Evaluating skeletons can be a challenging task due to the lack of a ground truth
skeleton to compare existing methods with. However, there are several ways to
assess the robustness of a skeletonization method [175]. More precisely, skeletons
can be evaluated on their structural properties which are homotopy [176], geom-
etry preservation [177, 178, 179, 176] and skeleton robustness to distortions like
noise [180, 181, 178] or rotation [181].

In the case of single and refined straight skeletons all the input information
(all polygon points) is taken into account to build the skeleton. This guarantees
the homotopy of the skeleton to be respected as single shape skeletons remain
connected and also every hole is taken into account for the skeleton construction.
Taking all the vertices of the input shape also allows for full shape reconstruction
from the skeleton, even the small concavities have a branch to describe them. It is
precisely this criterion (reconstruction robustness) the one we use in this chapter to
evaluate the robustness of the straight medial axis and to analyze its parameters.
The reconstruction of the shape from the medial axis is compared to the original
shape to obtain an error rate relative to the shape dimension.

10.1 Reconstructing a shape from a medial axis
In order to reconstruct a shape out of a medial axis two things are needed:

• The medial axis S(P ): This structure holds the distribution of the object on
the space.

• The minimum distance dSi from each point vSi in the medial axis to the shape
boundary: This holds the information of the thickness of each branch on the
medial axis allowing to obtain the desired reconstruction.

Most skeletonization and medial axis methods provide both needed items to
reconstruct the original shape. From them, a circle with a radius equal to the
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(a) Medial axis and theoret-
ical reconstruction

(b) Circle-to-circle tangents
calculation

(c) Polygonal shape recon-
struction

Figure 10.1 – Single edge medial axis shape reconstruction. A single edge medial
axis (in black) can be reconstructed by the union of boundary circles(in gray) and
their common outer tangents (in blue).

described distance can be drawn at each point of the skeleton, finally obtaining
the reconstruction from the skeleton as the union of all the drawn circles. However,
in practice this method can be inefficient as neighbor points in the skeletons tend
to overlap a lot their corresponding circles, which becomes a lot of wasted effort by
superposing the majority of created circles. However this is different when using
straight skeletons as it is possible to use circle tangents to reconstruct the original
shape.

As straight skeletons are made out of straight line segments and a distance to
the object boundary is given at each end of these segments, one can rebuild the
original shape by making the union of the reconstructed sub-segments of the shape
(See Figure 10.1). This is achieved by computing the line tangents to both circles
of the ends of each medial axis segment.

Given a medial axis segment eA and its end points vA1 and vA2 , each at a dis-
tance d1 and d2 to the shape boundary (respectively). It is possible to create a
reconstruction of the shape by a polygonal reconstruction of the circles c1 and c2
with radius d1 and d2, centered at vA1 and vA2 , respectively (dashed black lines in
Figure 10.1b). Alongside the reconstructed circles (which are approximated by
a fixed amount of points), their common outer tangents can be used to join the
circles [182]. This is done by computing the tangents of a point p and a circle
of radius r = max(d1, d2) −min(d1, d2) (dashed blue lines in Figure 10.1b), and
then translating them in perpendicular direction to the tangents by a distance of
min(d1, d2). From this, one can obtain the original shape approximation (blue line
in Figure 10.1c).

This same principle of reconstruction can be used for medial axes with multiple
edges. In this scenario, all circle tangents are computed first and then they are
joined by partial circles joining neighboring tangents (see Figure 10.2).

The reconstruction obtained by the method just described opens the possibil-
ity of measuring the error of the reconstruction. This is achieved by using the
Hausdorff distance (Equation 10.1) between the input shape and the reconstruc-
tion from its medial axis [183], computing the distances between control points of
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(a) Input shape and skeleton (b) Polygonal shape reconstruction

Figure 10.2 – Multi-edge medial axis shape reconstruction. Multiple medial axis
edges (gray lines) can be used to approximate the original input shape (green
lines) by concatenating circle-to-circle tangents and segments approximating circles
(cyan lines).

both the input shape and its medial axis reconstruction.

dH(X, Y ) = max
(

sup
x∈X

inf
y∈Y

d(x, y), sup
y∈Y

inf
x∈X

d(x, y)
)

(10.1)

In this case, the distance is defined by the largest minimal distance from the
original shape edges to its reconstruction, and the largest minimal distance from
the reconstruction edges to the original shape. The largest distance from these
two is the actual Hausdorff distance. This measure is relevant for this particular
case in the sense that it is measuring how close is the reconstruction to the original
shape.

10.2 Straight medial axis evaluation by recon-
struction

To test our medial axis method we used the database used in [184] used to exem-
plify symmetry-based indexing, containing 90 different shapes as binary images.
These shapes were then vectorized using the method described in [174] where
curvature is used to detect dominant points on the border of input shapes. To
compute the medial axis of these shapes we used our medial straight skeleton with
the following parameters:

• θ1 (terminal vertex angle)= 2π/3
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Figure 10.3 – Normalized Hausdorff distance of the medial axis reconstruction
against the original shape. The value is normalized against the larges side of the
bounding box of the shape.

• θ2 (difference between circles on neighboring node)= 5

• θ3 (minimum concatenation length at each level relative to the mean length
at each level)= 3L̄i

In addition, in order to compare distances from polygons of different sizes, the
distances are normalized by the maximum value between the width and height of
the polygon bounding box, this brings distances to the same scale so that they can
be compared against each other. These are expressed as percentages with respect
to the maximum value presented above.

From these configurations the following evaluation was obtained. The mean
distance is 2.723% (using percentages due to normalization), with a standard de-
viation of 1.528%. A maximum distance of 9.084% and a minimum distance of
0.53% (See Figure 10.3).

10.3 Understanding parameters of the straight
medial axis

Another analysis that can be performed on the straight medial axis is the impact
of each of the pruning parameters by comparing the reconstruction of the resulting
medial axis. For this an example shape (see Figure 10.4) will be used to find its
medial axis, varying the parameters to present the consequences of these changes
to the reconstructed shape. In the following figures green will be used to describe
the input shape, black lines will represent the medial axis, and magenta will
describe the shape reconstruction from the medial axis.
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Figure 10.4 – Example shape used to explore and understand medial axis param-
eters.

• Changing θ1: This parameter is associated to the pre-prunning step, where
vertices that are not highly convex are removed. On Figure 10.5 this parame-
ter is set to π, 2π/3 and π/2 from left to right to show that higher values will
include vertices on flat angles in the medial axis. Decreasing this value will
only keep those input vertices which are actually located on pronounced con-
cavities of the shape. Furthermore, it is important to notice that although
the reconstruction is better when values of θ1 approach π, it also causes to
have a more complex skeleton. In contrast, having values approaching 0
gives a simpler skeleton, but will have an impact on concavities of the input
shape when the reconstruction is performed.

(a) θ1 = π/2 (b) θ1 = 2π/3 (c) θ1 = π

Figure 10.5 – Varying θ1 parameter on the medial axis

• Changing θ2: This parameter is in charge of keeping meaningful details
of the straight skeleton in the medial axis and excluding edges that do not
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provide much detail information. This is done comparing the length of the
concatenation at branch concatenation vertices and the minimum distance to
the original shape at that position. If the difference between these two values
is greater than a percentage (the parameter value) of the shape minimum
side length, then the concatenation is kept as it is considered a detail worth
keeping in the axis. In Figure 10.6 this value is changed to show that low
values will allow to keep more details of the shape at the cost of having a
more complex medial axis. On the contrary, a simpler medial axis is achieved
for high values but impacting the reconstruction of the input shape.

(a) θ2 = 0.01 (b) θ2 = 0.05 (c) θ2 = 0.1

Figure 10.6 – Varying θ2 parameter on the medial axis

• Changing θ3: This parameter deals with the length of concatenation at
each level of the medial axis. Here, a low value will filter out skeleton edges
that are very small compared to the mean length at each level of the con-
catenations. When setting a high for this parameter, larger edges will also
be left out of the medial axis. And if the parameter is set to really high level,
it will prune all edges except the last one left (See Figure 10.7).

(a) θ3 = 1 (b) θ3 = 3 (c) θ3 = 5

Figure 10.7 – Varying θ3 parameter on the medial axis

As a perspective of this description, one could imagine an algorithm that ad-
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justs θ1, θ2, θ3 to search for an "optimal" medial axis using the reconstruction error
as the minimized value.
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Chapter 11

Exploration on weighted straight
skeletons

During the straight skeleton research we became aware of some possible new fea-
tures on the mathematical morphology methods using straight skeletons. Straight
skeleton are an interesting tools here because they only depend on the amount of
control points on the input shape, so even objects in large images can efficiently
computed to obtain their skeletons. With this in mind, we thought about an ir-
regular front propagation when constructing the straight skeleton. More precisely,
build the skeleton from the propagation of edges that associate each a differ-
ent weight, causing edges to propagate at different speeds and obtain a weighted
straight skeleton. For example, if we are interested on a positive horizontal prop-
agation (0◦), then an edge propagating at an angle of 45◦ would move faster than
an edge propagating at 90◦, and it will be slower than an edge propagating at 10◦.
We explore in this chapter weighted straight skeletons and present a method that
takes the classic straight skeleton and adapts it to work with weights. We show
the considerations when constructing the solution as well as the challenges that
still exist in the current state of development.

11.1 Introduction and State of the art
Weighted straight skeletons differ from unweighted straight skeletons only in the
speed σ(e) ∈ R \ {0} at which each edge e moves on the wavefront. In this case
σ denotes the weight function and σ(e) the weight of e. Edges move in such way
that e(t) = ē + t · σ(e) · n(e), where ē is the supporting line of e, and n(e) is the
inwards unit normal vector of e. In the case that σ(e) < 0 the edge moves outwards
with speed |σ(e)|. In this case, split events happen when the wavefront becomes
non-simple because a wavefront vertex v meets a part of the wavefront. With
this change, vertex v no longer needs to be reflex. Additionally, split events do
not necessarily split the wavefront into multiple parts. And to make the problem
even more complex, different possibilities may exist to keep the wavefront as a
planar collection of simple polygons between events. One of the main issues with
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Polygon with holes σ = 1 σ > 0 σ arbitrary
S(P ) is connected Y Y N
S(P ) has no crossings Y Y N
Edge face f(e) is monotone w.r.t. e Y N N
Edge boundary f(e) is a simple polygon Y N N
Roof model T (P, σ) is z-monotone Y Y N
S(P ) has n+ v − 1 + h arcs Y Y N
S(P ) is a tree N N N

Table 11.1 – Comparison of properties in weighted and unweighted straight skele-
ton.

weighted straight skeletons arrive with negative weights, which can cause wavefront
components to be unbounded on their propagation and making impossible to create
an appropriate skeleton.

To understand better how weights affect straight skeletons Biedl et al. [185]
provides a table (Table 11.1) with a comparison of the properties of unweighted
and weighted straight skeletons.

Research on weighted straight skeletons started in 1998 when Eppstein and
Erickson introduced the term [155]. They proposed a method for computing non-
weighted straight skeletons in time O(n8/5+ε) that could be extended to compute
weighted skeletons without major modifications to the code. This subject remained
mostly unknown until 2009 when Kelly published a new algorithm to compute the
weighted straight skeleton accepting non-zero weights in time O(n2 log n), for poly-
gons with n vertices [186]. Biedl et al. [185] presented on their research work the
challenges of adding weights on edges when computing weighted straight skele-
tons. More specifically, they presented the ambiguities that arrive when prop-
agating front edges collapse with each other. On a publication later the same
year [187], the same authors presented an algorithm to compute straight skeletons
with weights in time O(n log n), where they take some assumptions when handling
edge collapses by analyzing superior and inferior coverings of the propagation front
separately and then fusioning the results afterwards. Finally, in a recent publica-
tion, Eder [188] proposed an algorithm to compute weighted straight skeletons in
time O(n2).

11.2 Ambiguities and implementation consider-
ations

When creating a weighted straight skeleton, front propagation edges move at dif-
ferent speeds, which makes a great deal of difference with respect to non-weighted
straight skeletons because wave front vertices don’t follow the same path. In fact,
there are some considerations that have to be taken into account to obtain a valid
straight skeleton [185].
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(a) Both edges continue ex-
isting

(b) Fastest edge continues
propagating

(c) Slowest edge continues
propagating

Figure 11.1 – When an edge collapses and its incident edges are colinear, an ambi-
guity arrives if the weights of the incident edges are not the same. In these cases
a decision must be taken, and each possibility has its own compromises.

First, given a vertex v with two incident edges e1 and e2 that are supposedly
not colinear. Forming an angle α1 with counter-clockwise edge e1 and α2 with
clockwise edge e2. The vertex speed σ(v) of v is defined as

||σ(v)|| =


|σ(ei)|
sinαi

for αi < π
|σ(ei)|

sinαi−π for αi > π
(11.1)

Here, it is impossible to determine the speed of σv when |αi| = π/2 because
incident edges become colinear, and if edges e1 and e2 have different weights it is
not possible to define the new vertex speed. In this cases there are three possible
outcomes:

• Two vertices are created each with a different speed. When an edge collapses
and incident edges are colinear, both edges continue moving at their initial
speed generating a discontinuity on the wavefront. Supposing that we re-
move this discontinuity with an edge joining both vertices, this will cause a
degeneracy of the wavefront. Hence, taking this option is not recommended
(See Figure 11.1a).

• Terminate the propagation of the edge with the minimum speed. In this case
angle α1 is set to zero if σ(e1) < σ(e2), or else α1 is set to zero. This will cause
the edge with minimum weight to collapse instantly and only one joint edge
will continue the propagation with the maximum weight (See Figure 11.1b).

• Terminate the propagation of the edge with the maximum speed. This case is
the opposite to the previous one, the angle of the vertex is set to zero on the
side of the edge with maximum weight, which will then instantly collapse
and a single joint edge will continue the propagation at mimimal speed(See
Figure 11.1c).
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Figure 11.2 – Ambiguity when defining vertex direction from colinear incident
edges differently weighted.

Second, given the following equality

σ(e1)
sinα1

= σ(e2)
sinα2

(11.2)

and denoting γ = α1 +α2 the angle spanned from e1 to e2 at v we can reformulate
the previous equation as

sinα1

σ(e1) = sin γ − α1

σ(e2) = sin γ cosα1 − cos γ sinα1

σ(e2) (11.3)

inferring then

cotα1 =
cos γ + σ(e2)

σ(e1)

sin γ (11.4)

With the previous equation it is possible to see that the angle α1 is indeterminate
in the case that sin γ = 0. And to make things worse, analyzing the limit of α1 as
γ approaches monotonically to π we obtain different results

lim
γ↗π

α1 = 0, lim
γ↘π

α1 = π (11.5)

Here the direction of propagation of the vertex v becomes uncertain because it
can take two values. This ambiguity actually comes to the same solution as the
previous one, one of the weights of the incident edges has to end up taking the
lead on the propagation and thus defining the vertex direction (see Figure 11.2).

And last but not least, when multiple split events happen simultaneously at
the same position in the plane there exist an ambiguity when reconnecting edges
that continue the propagation avoiding self-crossings on the wavefront. Let’s take
the case where e1, ..., e2k are the edges that meet simultaneously at the same point
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(a) Before collision (b) During collision (c) After collision

Figure 11.3 – Before, during and after a multiple split event on the wavefront.
During a multiple split event edges can collapse into the event position which
leaves the challenge of deciding the correct edge pairing that avoids crossing on the
propagating front. In this example an edge edge collapses at point p and the edge
pairs (e1, e2), (e3, e4), (e5, e6) are re-paired to (e2, e3), (e4, e5), (e6, e1), maintaining
the front crossing-free when the propagation continues.

p. Here we note that ei and ej are paired edges that should continue on the wave-
front after handling possible collapsed edges. It is necessary that this pairing is
done correctly to keep the wavefront crossing-free. To do this and to avoid the
ambiguity of determining the edge pairings, all concerned clockwise edge pairs
(e1, e2), (e3, e4), ..., (e2k−1, e2k) are rearranged as (e2, e3), (e4, e5), ..., (e2k, e1). This
way we make the propagation of the wavefront keeps a correct topology. To under-
stand this change we can simply interpret the operation as a switch of association
on the colliding edges (See Figure 11.3).

11.3 Current development status
Considering the previous ambiguities, and to avoid the propagation front to fold
onto itself due to the use of negative weights, our implementation only allows
positive weights on edges and at the time of writing the current document the
implementation only takes convex polygons (See example in Figure 11.4). However
it is expected to be able to take weak simple polygons, possibly with holes in it.

11.4 Application opportunities on histological
images

When performing segmentation on histological images it happens often that re-
sulting components are incomplete or not connected because of how the tissue is
manipulated and its particular state at fixation. For example, when trying to per-
form a segmentation of the glomerulus on Figure 11.5a the result is two connected
component that actually belong to the same glomerulus(Figure 11.5b). In this

115



CHAPTER 11. EXPLORATION ON WEIGHTED STRAIGHT
SKELETONS

(a) θ = 160◦ (b) θ = 240◦

Figure 11.4 – Example of a weighted skeletons computed with our solution, which
sets edge weights according to their orientation. Both straight skeleton in gray
and offsets (in green for erosions and red for dilations) are presented for the same
shape (in blue) oriented to two different angles.

case one could perform a dilation on both of these objects until finding that these
two objects overlap (Figure 11.5c). However this could end up with an erroneous
overlapping with other objects. Instead, the dilation could be performed orienting
the edges to move faster on a specific direction, hence using the weighted straight
skeletons to dilate the initial segmentation (Figure 11.5d). Taking the convex hull
of the union of the initial objects that overlapped will give us the segmentation
that is expected from the glomerulus (Figure 11.5e).

11.5 Conclusion
In this chapter a method for calculating weighted straight skeletons has been dis-
cussed, along with some existing ambiguities on their definition, and including
some application options for histology images. Although the method is still in
development, the opportunities for improving and applying this methods are not
limited to biology. As seen in previous chapters, straight skeletons have differ-
ent applications in multiple domains like spatial analysis, movement planning for
mechanical tools, etc [189]. An interesting possible development could be the ex-
tension to three-dimensional weighted skeletons where weights would be applied
on faces instead of edges, and skeletons would be composed of not only straight
segments, but constrained planes as well.
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(a) Glomerulus image (b) Initial Segmentation (c) Unweighted dilation

(d) Weighted dilation on
convex components

(e) reconstruction of inter-
sected objects

Figure 11.5 – Applying weighted dilations to match directed complementing ob-
jects.
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Chapter 12

Conclusions on vectorial shape
morphology

In this second part, theory and application of straight skeletons has been pre-
sented, providing spatial information about the structures found on virtual slides.
Straight skeleton is an interesting and efficient tool to use on vectorial data with
multiple purposes for shape and spatial analysis. By refining the classical straight
skeleton to achieve precision, and approximating the continuous Voronoï diagram
of segments by using just straight segments, refined straight skeletons provide an
ideal trade-off between performance and precision. In addition, multiple morpho-
logical operations have been implemented to give context information on shapes
by computing their offsets. Additionally, using refined straight skeletons can com-
plement very well discrete curve detection methods such as [174], providing not
only vector-based contours out of images, but also a tool set to analyze them
with high precision. All these features allow to not only have contextual data
that can help analyzing structures on histological tissue, but also can be the input
for other methods such as adapted active contours based on morphological oper-
ations [190]. These methods can be re-purposed to provide further information
about shapes in a plane. In the context of immunopathology, multiple tools have
been presented to improve quantification of biological structures by refining their
segmentation. Additionally, using the presented morphology methods it will be
possible to apply spatial analysis on fully segmented structures (shapes) rather
than just their mass center (points), altogether without worrying about the size
of acquired images. From here, new tools can be developed to identify behavioral
patterns on immune cells around cancerous tissue and better orient prognoses, not
only to avoid hazardous cell behaviours, but also to favor those that improve pa-
tient’s life. As perspective, more efforts need to be put into developing solutions
for 3-D volume skeletons [191]. Weighted straight skeletons can also be further
improved, by applying the sample principle of reflex vertex refining applied in
refined straight skeletons, achieving a better approximation of a continuous wave-
front propagation. As a final thought, generation of 3-D volume weighted straight
skeletons could provide an even more complete tool in the context of geometrical
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morphology.

120



Conclusions

In this thesis several solutions are presented to improve histology image analyst
productivity by easing the interaction between large image storage solutions and
image analysis software; providing registration methods for these images; and
proposing multiple morphology analysis tools optimized for handling vectorial an-
notations and to provide useful shape descriptors. This work has been entirely
done aiming to provide a good basis tool-set to take existing digital pathology and
converge into a richer discipline, namely computational pathology, where repro-
ducible analysis is encouraged for the benefit of the research community. These
tools have been tested in real scenarios and have been evaluated to demonstrate
their performance with histology images. Of course, a lot of possible improve-
ments and new developments are still possible. For Icytomine, the creation of
helper plugins to simplify analysis by detecting target areas on images is possible.
It is also possible to extend Icytomine to enable interaction with other large image
storage solutions. Concerning large image registration, the method presented can
be improved in order to use more competitive distance measure techniques better
adapted to histological images. With the late virtual reality advances, it is not
surprising to think on virtual 3-D slide stack visualization and analysis tools being
developed in the coming years, integrating registration techniques to create vir-
tual slide stacks aware of the general tissue shape, not only between neighboring
slides. Furthermore, vectorial morphology can be improved by further optimizing
internal operations and performing them in parallel on fast GPUs. In addition,
further spatial analysis can be performed on vectorized shapes to help the proce-
dure of point clustering detection around specific shapes by using morphological
operations to identify distances and areas at given distances from shape bound-
aries. Further research must be performed to achieve straight skeletons on 3-D
volumes given that, as of this day only voxel skeletonization has been achieved.
Weighted straight skeletons also must be further studied to solve currently existing
ambiguities and provide faster and more accurate solutions.
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