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Abstract / Résumé

Abstract / Résumé

ABSTRACT: DESIGN, EVALUATION, AND APPLICATION OF A WORKFLOW FOR BIOMECHAN-
ICALLY CONSISTENT MARKERLESS KINEMATICS IN SPORTS

M otion capture is traditionally performed with marker-based systems. However, these so-
lutions are hardly compatible with on-field sports analysis, and markerless alternatives are be-
ing explored. One of the most promising prospects lies at the intersection of machine learning
for 2D pose estimation, computer vision for 3D reconstruction from multiple video sources, and
biomechanics for constraining 3D coordinates to an anatomically consistent model. We released
Pose2Sim, an open-source package striving to answer these needs in a user-friendly way. Open-
Pose 2D keypoint coordinates are robustly triangulated, and serve as input for a full-body Open-
Sim inverse kinematics procedure. Pose2Sim robustness has been evaluated for people entering
and exiting the field of view, degraded image quality, calibration errors, and decreased number
of cameras. Its accuracy has also been assessed and deemed sufficient for walking, running,
and ergometer cycling analysis. In the context of a competition, using lightweight and wire-
less action cameras is convenient. We tested such hardware on boxing sequences and proposed
post-calibration and post-synchronization procedures. Finally, capturing both the athlete and their
equipment can be valuable. We studied the kinematics of both a pilot and his bike in a BMX race
by training a DeepLabCut bike model, triangulated and mapped on a custom-articulated OpenSim
model. This work brings out interesting new perspectives for the analysis of sports movement.

RÉSUMÉ : CONCEPTION, ÉVALUATION, ET APPLICATION D’UNE MÉTHODE BIOMÉCANIQUE-
MENT COHÉRENTE DE CINÉMATIQUE SANS MARQUEUR EN SPORT

L a capture de mouvement est traditionnellement effectuée à l’aide de marqueurs réfléchissants
placés sur la peau. Cependant, ces méthodes ne conviennent pas à l’analyse contextuelle du sport
sur le terrain, et des alternatives sans marqueur sont étudiées. L’une des perspectives les plus
prometteuses à ce sujet se situe à l’intersection de l’apprentissage machine pour l’estimation de
pose 2D, de la vision par ordinateur pour la reconstruction 3D à partir de plusieurs sources vidéo, et
de la biomécanique pour contraindre les coordonnées 3D à un modèle anatomiquement cohérent.
Nous avons proposé Pose2Sim, un package open-source et simple d’utilisation visant à répondre
à ces besoins. Les détections 2D d’OpenPose sont triangulées de manière robuste, et transmises à
OpenSim pour une cinématique inverse corps complet. La robustesse de Pose2Sim a été estimée
face à des personnes "parasites" entrant le champ de vision, à une qualité d’image dégradée, à des
erreurs de calibration, et à un nombre de caméras réduit. Son exactitude a également été évaluée,
et jugée satisfaisante pour l’analyse de la marche, de la course, et du cyclisme. Dans un contexte
de compétition, il peut être utile d’employer des caméras légères et sans fil de type GoPro. Nous
avons testé ce matériel sur des séquences de boxe, et proposé des procédures de post-calibration
et de post-synchronisation. Enfin, capturer à la fois l’athlète et son équipement serait intéressant.
Nous avons calculé la cinématique d’un pilote de BMX avec son vélo, en entraînant un modèle
DeepLabCut pour le vélo, triangulé et appliqué sur un modèle poly-articulé OpenSim. L’ensemble
de ces résultats apporte des perspectives novatrices pour l’analyse du mouvement sportif.

KEYWORDS: Markerless motion capture; Sports performance analysis; Kinematics; Computer
vision; OpenPose; OpenSim; Python package
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Working Environment

This doctoral thesis was undertaken from December 2nd, 2019 to November 30th, 2022, at
the LJK (Laboratoire Jean Kuntzmann for Applied Mathematics and Informatics) in Grenoble,
France. It was funded by the French National Center for Scientific Research (CNRS), through the
program "thèses transverses" of the Mission pour les Initiatives Transverses et Interdisciplinaires
(MITI). It was later incorporated into the PerfAnalytics project, which aims to boost French sports
performance for the 2024 Olympic Games in Paris, with a particular focus on video analysis.

Context

Currently, the analysis of sports performance is still mostly carried out by subjective visual
examination. More objective approaches exist, but they are usually complex and cumbersome to
implement, or inappropriate for in-situ analysis. Hence, coaches rarely find them practical for
daily use. In order to address this issue, other methods are being developed, among which many
focus on video analysis. One of the long-term objectives in this area is to be able to quantify the
full-body kinematics and dynamics of athletes in context, without interfering with their training
or competition, in a clear and timely way, so as for coaches to be able to give them a fast, ac-
curate, objective, and comprehensive feedback on their technique and tactics. New algorithms
are regularly released estimating 3D pose from one single camera, but they are more adapted for
character animation in the entertainment industry than for precise motion analysis. In order to
meet sports accuracy requirement, it appeared to us that the most appropriate method would take
advantage of the video streams provided by a network of calibrated cameras. Each stream would
be processed by some preexisting 2D keypoint detection deep-learning models. These coordinates
would then be triangulated, and finally be constrained to a biomechanically consistent full-body
skeletal model.

The original goal of this thesis shifted along the program, as it was initially intended mostly for
bicycle motocross (BMX) racing performance analysis. BMX racing presented a lot of challenges
which needed to be first addressed, such as the large size of the field of view, the direct sunlight,
the swiftness of the movements, the occlusions of the pilot by the bike, and the lack of facilities
for setting up the capture hardware. As a consequence, we first started with studying walking,
running, and cycling tasks indoors, with a virtual and controlled environment map simulating
an outdoor scene. We then studied boxing key performance indicators (KPIs) with lightweight
consumer-grade hardware, and finally moved outdoors to investigate BMX racing.
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Content

The thesis is organized as follows:

Chapter 1: State of the art of sports motion analysis.
Motion capture is traditionally performed with marker-based systems. However, these solutions
are generally incompatible with on-field sports analysis, as they involve marker placement on the
skin, and a heavy setup. Consequently, markerless approaches are being investigated.

Chapter 2: From computer vision to biomechanics.
One of the most promising prospects for sports motion analysis lies at the intersection of ma-
chine learning for 2D pose estimation, computer vision for 3D reconstruction from multiple video
sources, and biomechanics for constraining coordinates to an anatomically consistent model.

Chapter 3: A practical implementation.
Sports scientists would benefit from having access to a user-friendly integrated workflow for on-
field analysis. Hence, Pose2Sim, an open-source Python package striving to answer these needs,
has been proposed and released. 2D keypoint coordinates obtained with OpenPose or DeepLabCut
are robustly triangulated, and serve as input for a full-body OpenSim inverse kinematics procedure
[Pagnon2022b].

Chapter 4: Robustness assessment.
Pose2Sim robustness has been evaluated for people entering and exiting the field of view, degraded
image quality, calibration errors, and low number of cameras [Pagnon2021].

Chapter 5: Accuracy assessment.
Its accuracy has also been assessed, and deemed sufficient for walking, running, and cycling anal-
ysis [Pagnon2022a].

Chapter 6: Using consumer-grade hardware.
In the context of competition, research-grade hardware is not always workable as it is cumbersome
and complex to set up. We tested the use of GoPro cameras and proposed a method for calibrat-
ing and synchronizing them. The workflow was applied to shadow-boxing, which involves fast,
three-dimensional, full-body movements. The measure of Key Performance Indicators (KPIs) was
concurrently validated with a marker-based protocol, and demonstrated to be remarkably accu-
rate [Pagnon2022c].

Chapter 7: Capturing equipment along with the athlete.
Numerous sports disciplines are practiced with dedicated equipment, whose motion is important
to retrieve. However, this equipment can form a closed loop with the athlete, which makes the
task mathematically challenging to resolve. We analyzed a BMX race starting sequence using
OpenPose for human pose estimation, a custom trained DeepLabCut model for bike detection,
and a custom OpenSim {pilot+bike} model for kinematic analysis. Expected KPI patterns were
successfully measured, but results were inconclusive when constraints were added between the
pilot and their equipment [Pagnon2022d].
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Scientific contributions

This work resulted in the publication of a few scientific contributions as a first author: three
peer-reviewed articles, two conference talks as a first author and one as a secondary author, and
the release of an open-source package. Another peer-reviewed article has been published as a first
author during this period, although it was not related to the program.
[Pagnon2021]: David Pagnon, Mathieu Domalain and Lionel Reveret. Pose2Sim: An End-to-End
Workflow for 3D Markerless Sports Kinematics—Part 1: Robustness. Sensors, vol. 21, no. 19,
2021.
[Pagnon2022a]: David Pagnon, Mathieu Domalain and Lionel Reveret. Pose2Sim: An End-to-

End Workflow for 3D Markerless Sports Kinematics—Part 2: Accuracy. Sensors, vol. 22, no. 7,
2022.
[Pagnon2022b]: David Pagnon, Mathieu Domalain and Lionel Reveret. Pose2Sim: An open-

source Python package for multiview markerless kinematics. Journal of Open Source Software,
vol. 7, no. 77, page 4362, 2022.
[Pagnon2022c]: David Pagnon, Mathieu Domalain, Thomas Robert, Bhrigu-Kumar Lahkar, Issa

Moussa, Guillaume Saulière, Thibault Goyallon and Lionel Reveret. A 3D markerless protocol
with action cameras – Key performance indicators in boxing. In 2022 Congress of the European
College of Sport Science (ECSS), Sevilla (Spain), 2022. Poster.
[Lahkar2022b]: Bhrigu-Kumar Lahkar, Thibault Goyallon, Anaïs Chaumeil, David Pagnon, Issa

Moussa, Andreas Muller, Mathieu Domalain, Lionel Reveret, Raphael Dumas, Thomas Robert.
Assessment of a markerless motion capture system for upper extremity joint kinematics during
boxing. In 17th International Symposium on 3-D Analysis of Human Movement, Tokyo (Japan),
2022. Oral.
[Pagnon2022d]: David Pagnon. Markerless kinematic analysis of a BMX pilot with their equip-

ment. In 2022 Rencontres scientifiques de la haute performance en cyclisme, Paris (France). Oral.
[Pagnon2022e]: David Pagnon, Germain Faity, Galo Maldonado, Yann Daout, Sidney Grosprêtre.
What Makes Parkour Unique? A Narrative Review Across Miscellaneous Academic Fields. Sports
Medicine, vol. 52, page 1029, 2022.

These contributions also led to being requested to serve as a peer-reviewer for an article sub-
mitted to the Journal of Biomechanical Engineering (ASME).
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1
State-of-the-Art in Sports Motion Analysis

Motion capture (MoCap) in sports is traditionally performed with
marker-based (opto-electronic) systems. However, this is generally
incompatible with on-field analysis. As a consequence, alternatives
are being investigated, among which are those offered by Iner-
tial Measurement Units (IMUs) or dept-field (RGB-D) cameras.
Markerless analysis from video sources represents one of the most
promising prospects, which has been possible thanks to progress
in machine learning. From 2D pose estimation to 3D joint angle
determination, this is a new field which opens up new possibilities
for motion analysis in a sports context.

This chapter is an up-to-date and more detailed version of the
introduction of: "Pose2Sim: An End-to-End Workflow for 3D Mark-
erless Sports Kinematics—Part 1: Robustness" [Pagnon2021].
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1.1 Overall Context of Kinematic Analysis in Sports . . . . . . . . . . . . . . . 6

1.1.1 General Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.1.2 Marker-Based Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.1.3 IMU and RGB-D Systems . . . . . . . . . . . . . . . . . . . . . . . . 7
1.1.4 Video-Based Markerless Approaches . . . . . . . . . . . . . . . . . . 8

1.2 2D Markerless Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2.1 2D Pose Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2.2 2D Kinematics from 2D Pose Estimation . . . . . . . . . . . . . . . . 10

1.3 3D Markerless Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3.1 3D Pose Estimation from a Single Video . . . . . . . . . . . . . . . . 11
1.3.2 3D Pose Estimation from Multiple Videos . . . . . . . . . . . . . . . . 11
1.3.3 3D Kinematics from 3D Pose Estimation . . . . . . . . . . . . . . . . 13

1.4 Statement of Need . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
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Chapter 1. State-of-the-Art in Sports Motion Analysis

1.1 Overall Context of Kinematic Analysis in Sports

1.1.1 General Context

Since coaching athletes implies observing and understanding their movements, motion cap-
ture (MoCap) is essential in sports motion analysis. It helps to improve movement effectiveness,
prevent injuries, predict performances, or reveal different motor skills among athletes. For the
last few decades, marker-based systems have been considered the best choice for the analysis of
human movement, when regarding the trade-off between ease of use and accuracy. However, these
methods have proven to be much more challenging in a sports context than in a laboratory setting,
and to be generally inappropriate for such usage [Mündermann2006, Colyer2018]. Consequently,
other methods have been investigated (see Table 1.1 and Table 1.2 at the end of the chapter).

1.1.2 Marker-Based Systems

Marker-based systems use a network of opto-electronic cameras. Each of these cameras are
surrounded by a crown of infrared LEDs, which projects light toward the subject, who is equipped
with reflective markers. Ideally, only the light reflected from these markers is captured by the
cameras. The camera usually pre-processes the image to make it binary, and only outputs the
coordinates of the detected marker (Figure 1.1a).

(a) An opto-electronic camera is traditionnally surrounded by a crown of infrared LEDs, projecting light
toward the subject. The subject wears markers, which reflect light back to the camera. Marker positions
are then known in the camera plane.

(b) Once calibrated, a network of these cameras allows for 3D reconstruction of marker positions. Marker
coordinates are then used to infer the posture of the subject.

Figure 1.1: Principles of marker-based motion capture. (Figure 1.1a) presents the functioning
of an opto-electronic camera. (Figure 1.1b) shows how a network of calibrated motion capture
cameras helps obtaining joint angles.

If calibrated, using a network of these cameras allows for triangulating the 2D coordinates.
Calibration involves knowing the cameras’ intrinsic properties (such as focal length, optical center,
distortion) as well as their extrinsic properties (their position and orientation as regards to the
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1.1. Overall Context of Kinematic Analysis in Sports

global coordinate system.) See Chapter 2.2 on From 2D to 3D Pose Estimation for more details.
The reconstructed 3D marker positions are then used to infer joint kinematics (see Chapter 2.3,
From 3D Pose Estimation to 3D Joint Kinematics for more explanation about direct and inverse
kinematic methods). Most solutions leveraging marker-based analysis are commercial, such as the
Vicon Nexus [Qualisys] or Qualisys Track Manager (QTM) [Vicon] software programs.

Yet reflective marker-based camera systems are complex to set up, time-consuming, and very
expensive. They also require specific lighting conditions and involve cumbersome cabling. More-
over, markers may fall off the body of the participant due to sharp accelerations or sweat. They
can hinder the natural movement of athletes, which is likely to affect their warm-up, focus, and
safety. While the accuracy of landmark location is claimed to be sub-millimetric in marker-based
methods [Topley2020], marker placement is tedious, intrusive, prone to positioning variability
from the operator [Tsushima2003], and subject to skin movement artifacts, especially on soft
tissues. Della Croce et al. found out that inter-operator variations in marker placements range
from 13 to 25 mm, which can propagate up to 10◦ in joint angle prediction [Gorton2009, della
Croce1999]. For example, tissue artifacts account for up to a 2.5 cm marker displacement at
the thigh, which can cause as much as a 3◦ error in knee joint angle tissues [Benoit2015, Cap-
pozzo1995]. Joint positions must be calculated explicitly in marker-based methods, which in-
troduces more variability: these errors range up to 5 cm, which can contribute up to 3◦ of error
in lower limb joint angles [Leboeuf2019a]. As a consequence, marker-based methods cannot be
considered as a "gold standard" for accurately measuring joint kinematics, unlike bone-anchored
pins, Magnetic Resonance Imaging (MRI) [Yahia-Cherif2004], biplanar videoradiography [Mi-
randa2013, Kessler2019], or 3D ultrasound [Peters2010]. Nevertheless, since these methods can-
not be operated on broad and fast movements such as those found in sports, marker-based ap-
proaches are still considered as the reference (or "silver standard") methods, for motion capture
(see Disambiguation).

1.1.3 IMU and RGB-D Systems

Consequently, other approaches based on alternative technologies have been investigated over
the past years. For instance, wearable Inertial Measurement Units (IMUs) can be placed on an
athlete’s limbs. IMUs are generally made of an accelerometer, a gyroscope, and a magnetometer.
The accelerometer measures the linear acceleration, the gyroscope measures the rotational speed,
and the magnetometer measures the orientation of the earth magnetic field. Fusing and integrating
these signals allows for the determination of their 3D orientations. The orientation of the athlete’s
limbs can then be used in combination with a skeletal model to infer their posture (Figure 1.2). The
most renowned IMU-based systems embed both sensors and software, such as APDM [APDM]
and Xsens [Xsens]. However, OpenSense now allows the usage of these sensors within the open-
source OpenSim software [Al Borno2022].

IMUs offer the advantage of getting away from all camera-related issues. They are less ex-
pensive; they do not involve any complex setup and calibration; the field of view is larger; data do
not take much storage space; they are not sensitive to self- and gear-occlusions; they can be op-
erated outside of a controlled environment; and they can work in real-time [Johnston2019, Cham-
bers2015]. However, they are not fully sensorless (see Disambiguation) as they require exter-
nal equipment to wear. They also have the drawbacks of requiring a trained operator and being
sensitive to ferromagnetic disturbances. Above all, they are exposed to drift over time and so
need to be recalibrated every few minutes. Joint angle accuracy is relatively good in the flex-
ion/extension plane, but less so in other rotational planes where errors are greater than 5◦ for most
motions [Zhang2013, Rekant2022]. Moreover, they are not suitable for joint position assessment,
since these are obtained through multiple integrations of the original signal [Ahmad2013].
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Figure 1.2: IMUs are placed on the subject’s limbs. The orientation of the limbs is then used to
infer the posture of the subject.

Another approach involves depth-field cameras (RGB-D), usually with Kinect devices
[Kinect]. These cameras were released for the video game industry, which allowed companies
to greatly lower prices without hampering performance. Kinect also provided a Software Devel-
oper Kit (SDK), which was quickly adopted by the research community. Older models projected
infrared structured light (i.e., a pattern) onto the scene. The relative deformation of the pattern re-
flected from the scene was then used to estimate depth. Newer models project infrared modulated
light onto the scene. The time of flight (ToF) of the light reflected from the scene is then used to
estimate depth. Results are commonly considered to be 2.5D, since only the depth of the front
facing plane of view is measured. Gait analysis results are natively poor, but after optimization
by a neural network, [Guo2022] manage to get root-mean-square errors under 7° for knee flex-
ion/extension angle at the most challenging part of the gait cycle, although 3D joint angle errors
usually stay under 2-3°. However, it may not perform as well on other motions for which the
neural network has not been trained. A network of a few RGB-D cameras can give access to full
3D [Carraro2017, Choppin2013, Colombel2020]. Nevertheless, these cameras barely function in
direct sunlight nor at a distance over 5 meters, and they work at lower frame rates (generally under
30 Hz) [Han2013, Pagliari2015].

Figure 1.3: A depth-field camera (RGB-D) projects infrared modulated light onto the subject’s
body. The time it takes for the light to be reflected to the camera sensor (time of flight) depends on
distance, and gives access to the depth of the scene. Older RGB-D cameras use structured light
rather than time of flight calculations to infer depth.

1.1.4 Video-Based Markerless Approaches

A recent breakthrough has come from computer vision, and the advent of 2D pose estimation
from image sources, which quickly became more efficient and accurate [Mathis2020]. The ex-
plosion of deep-learning based methods from camera videos, for which the research skyrocketed
around 2016 [Wang2021b], is related to the increase in storage capacities and huge improvements
in GPU computing. A search on the ScienceDirect database for “deep learning 3D human pose
estimation” produced fewer than 100 papers per year until 2015, and the number is now reaching
over 1,000, fitting an exponential curve (Figure 1.4).
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1.2. 2D Markerless Analysis

Figure 1.4: The search for “deep learning 3D human pose estimation” (dots) fits an exponential
curve (line). The search produced less than 100 results until 2015, and is now well over a 1,000
per year.

It has rekindled interest from the biomechanics community towards image-based motion anal-
ysis, which is where it all started with the invention of chronophotography in the 19th century by
Marey in France, and Muybridge in the USA [Baker2007]. Currently, two approaches coexist in
human and animal motion analysis: the first one mostly focuses on joint positions, and is led by the
computer vision and the deep-learning communities; the second one is interested in joint angles,
such as the biomechanics community uses to obtain physically coherent kinematics individualized
to each subject. One of the current main challenges is to bridge the gap between these two worlds,
and to take advantage of deep-learning technologies for kinematic analysis [Cronin2021,Seethap-
athi2019].

1.2 2D Markerless Analysis

1.2.1 2D Pose Estimation

The most well-known off-the-shelf 2D human pose estimation solutions are OpenPose [Cao2019]
(Figure 1.5), and to a lesser extent AlphaPose [Fang2017]. To our knowledge, they are also the
only multi-person 2D pose estimation solutions that provide foot keypoints, which are essential
for most sports motion analysis. While both show similar accuracy, AlphaPose is faster when few
people are in the scene, and more accurate when people are small on the image [Hidalgo2019].
However, OpenPose has the advantage of being a bottom-up approach, whose computational cost
does not increase with the number of persons detected [Cao2019]. A bottom-up approach first de-
tects all available joint keypoints, and then associates them to the right persons; while a top-down
approach first detects bounding boxes around each person, and then finds joint keypoints inside
of them. OpenPose is also more widespread (25,000 stars on the GitHub repository, vs. 6,000
for AlphaPose); consequently, it has been evaluated more thoroughly and represents a common
ground for comparing further kinematic research.

Other approaches have shown even better results on evaluation datasets (see review [Chen2020c]),
but they are generally slower and not as widespread. The technology, however, is still maturing
and some light-weight systems such as BlazePose [Bazarevsky2020], UULPN [Wang2022b], or
YOLOv7 [Wang2022a] are being proposed, which can operate in real time on a mobile phone;
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however, they either support single-person detection only, are not accurate enough for quantitative
motion analysis [Mroz2021], or haven’t been embraced by the community yet. Some work has
also been done on temporal consistency across frames with OpenPifPaf, which makes the system
much faster, and helps it perform better on low-resolution regime or with occlusions such as in
crowds [Kreiss2022].

Two other 2D pose estimation toolboxes are DeepLabCut [Mathis2018,Lauer2022] and SLEAP
[Pereira2022], which were initially intended for markerless animal pose estimation. They have the
advantage of being able to be custom trained for the detection of any human or non-human key-
point with a relatively small dataset.

All the tools presented in this section are open-source. See Chapter 2.1.3 on Machine Learning
for 2D Pose Estimation for more technical details on their architecture.

Figure 1.5: 2D pose estimation by OpenPose [Cao2019].

1.2.2 2D Kinematics from 2D Pose Estimation

Some authors bridge 2D pose estimation to more biomechanically inspired variables, such as
in gait kinematics analysis. Kidzinski et al. present Mobile Gaitlab, a toolbox for quantifying
gait pathology parameters, that runs in a Google Colab or in a web application [Kidziński2020].
Stenum et al. evaluate gait kinematics calculated from OpenPose input concurrently with a marker-
based method. Mean absolute error of hip, knee and ankle sagittal angles were 4.0◦, 5.6◦ and
7.4◦ [Stenum2021]. Liao et al. have not released their code, but they use OpenPose outputs
to train a model invariant to view [Liao2020]. Viswakumar et al. perform direct calculation of
the knee angle from an average phone camera processed by OpenPose [Viswakumar2019]. They
show that OpenPose is robust to challenging clothing such as large Indian pants, as well as to
extreme lighting conditions. Other sports activities have been investigated, such as lower body
kinematics of vertical jump [Drazan2021] or underwater running [Cronin2019]. Both works train
their own model with DeepLabCut. Serrancoli et al. fuse OpenPose and force sensors to retrieve
joint dynamics in a pedaling task [Serrancolí2020].

Although it doesn’t specifically use deep-learning approaches, another noteworthy tool for 2D
sports movement analysis is Kinovea [Kinovea,Fernández-González2020]. It allows for manually
labeling keypoints on a frame and tracking them in time in order to obtain point trajectories,
speeds, or angle data. These can then be plotted or exported as .csv files. Other features, such as
the ability to import and export videos, add various annotations, or take into account distortion and
perspective effects, make it a versatile and widespread tool for sports analysis. Dartfish provides
similar features along with other services, but it is not free nor open-source [Dartfish]. However,
noeither of these approaches provide 3D analysis, and they can break down if the tracked points
are not contrasted enough.
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1.3. 3D Markerless Analysis

1.3 3D Markerless Analysis

1.3.1 3D Pose Estimation from a Single Video

There are a lot of different approaches for 3D human pose markerless estimation, and listing
them all is beyond our scope (see review [Wang2021b] and Disambiguation). Some directly lift
3D from a single 2D camera (see review [Liu2022c]). Shape approaches such as SPIN [Kolo-
touros2019] or VIBE [Kocabas2020] fit an SMPL 3D mesh model [Loper2015] to OpenPose 2D
keypoints. Mediapipe GHUM works similarly, although it comes with its own 2D keypoint estima-
tion (BlazePose) and 3D mesh model [Xu2020a]. These approaches are designed by the computer
vision community and are not suited for accurate biomechanics as is: they are mostly applicable
for retargeting human motion to a fictional character. Since they are monocular, the 3D pose is
subject to indeterminates: the model is often leaning forward, and the lower body is not always
facing the same side as the upper body. And since they consist of performing a regression from
just a few 2D keypoints, the corpulence of the mesh is only a function of the segment sizes, and
describes a generic human body. Other approaches such as STRAPS [Sengupta2020] offer a more
accurate body shape by adjusting the SMPL pose and shape parameters from both 2D keypoint
estimations and 2D silhouette segmentations. [Reveret2020] proposes another approach. They
record the 3D shape of a speed climber in a studio equipped with 68 video cameras, and then ani-
mate it to follow 2 calibrated drone views by optimizing its manifold parameters. This allows for
tracking the center of mass and for detecting hand contact with holds, without the use of machine
learning.

Some other methods focus on the estimation of 3D keypoints, rather than of a 3D shape
model. A simple deep feed-forward network lifts surprisingly well 2D keypoints to 3D, as long
as the pose is not too unusual [Martinez2017]. Some authors estimate the positions of a set of
keypoints around the joint, instead of determining only the joint center keypoint. This way, ax-
ial rotation along the limb is solved [Fisch2020]. As for XNect, it primarily focuses on real
time [Mehta2020]. A few approaches even strive to estimate 3D dynamics and contact forces
from a 2D video input [Li2019, Rempe2021, Louis2022]. Some incorporate kinematic priors into
their neural networks in order to take advantage of human knowledge [Xu2020b]. Surprisingly,
this does not seem to be done in multi-view approaches. Rempe et al. solve occlusions from a
2D input [Rempe2020], but this remains a probabilistic guess that may be unsuccessful in case of
unconventional positions or hidden limbs, whereas using more cameras would have given more
trustworthy results. More than a model, MMPose is a toolkit for 2D and 3D pose, as well as shape
estimation, which supports the implementation of different datasets, different architectures, and
different feature extractors [MMPose2020]. The resulting models can be more accurate, but also
much slower than the conventional ones.

1.3.2 3D Pose Estimation from Multiple Videos

The earliest 3D pose estimation approaches addressed the issue from the perspective of shape
reconstruction. They were not based on deep-learning and calculated 3D shapes by visual hull
reconstruction from 2D silhouette detection (see Disambiguation) [Cheung2003, Corazza2006].
However, they required specific lighting, clothing, and background conditions. Nowadays, so-
lutions like Mask R-CNN [He2017] or Detectron2 [Wu2019] can effectively detect human sil-
houettes, without any constraints on the environment or on clothing. This makes it possible to
reconstruct 3D human shapes in a sports context [Chen2019]. Other shape methods such as Easy-
Mocap [EasyMocap2021] triangulate OpenPose 2D keypoint estimations and use a regressor to
fit an SMPL model on it. It solves the issues previously reported in the monocular case, but the
morphology of the SMPL mesh is still only based on segment length and does not account for any
variability in human corpulence. Interestingly, there are currently no approaches that use both key-
point and silhouette information, despite the fact that it could remain accurate with fewer cameras,
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Chapter 1. State-of-the-Art in Sports Motion Analysis

or provide more useful information such as the estimation of body-segment inertial parameters.
These methods, however, would be particularly computationally intensive.

Some research attempts to solve 3D pose estimation from a network of uncalibrated cameras,
i.e., cameras whose extrinsic parameters (translation and rotation with respect to the coordinate
system), intrinsic parameters (focal length, pixel size, etc.), and distortion coefficients are not
known (see section 2.3 in From 2D to 3D Pose Estimation for more details.) It either uses 2D pose
estimations of each view as visual cues to calibrate from [Takahashi2018, Xu2021, Liu2022a], or
an adversarial network that predicts views of other cameras, compares them to real views, and
adjusts its calibration accordingly [Ershadi-Nasab2021]. Dong et al. recover 3D human motion
from unsynchronized and uncalibrated videos of a repeatable movement found on internet videos
(such as a tennis serve performed by a celebrity) [Dong2020]. Using uncalibrated videos is still a
very experimental trend that would require more research before being used in biomechanics.

As a consequence, we focus on methods which infer 3D pose by triangulating 2D pose esti-
mations, from a network of multiple calibrated and synchronized cameras. They require a more
complex setup, but they allow for more accurate 3D reconstruction, based on geometry rather
than on statistics. They are also more reliable than monocular methods in a wider variety of con-
texts, particularly when occlusions are encountered. The classical evaluation metric is the MPJPE
(Mean Per Joint Position Error), which is the average Euclidian distance between the estimated
joint coordinate and its ground truth. DLTdv8 provides a user-friendly GUI written on Matlab
for semi-automatically tracking 2D points, which can be enhanced with a simple deep-learning
approach [Hedrick2008, Hedrick2020]. These points can then be triangulated by Direct Linear
Transform (DLT, see section Triangulation) to obtain 3D coordinates.

However, where human beings are concerned, most 3D pose estimation methods take Open-
Pose as an input for triangulation, and more specifically the body_25 model. Aside from ours,
a number of tools have been made available for triangulating OpenPose, although usually not
peer-reviewed: the experimental OpenPose 3D reconstruction module [Hidalgo], the FreeMo-
Cap Python and Blender toolbox [Matthis2022], the pose3d Matlab toolbox [Sheshadri2020], and
the EasyMocap pipeline [EasyMocap2021]. Labuguen et al. evaluate 3D joint positions of a pop
dancer with a simple Direct Linear Transform triangulation (DLT [Hartley1997,Miller1980]) from
4 cameras [Labuguen2020]. Apart from the upper body for which error goes up to almost 700 mm,
the average joint position error is about 100 mm. Nakano et al. examine three motor tasks (walk-
ing, countermovement jumping, and ball throwing), captured with 5 cameras and triangulated with
the same methods, with a subsequent Butterworth filter [Nakano2019]. 47% of the errors are un-
der 20 mm, 80% under 30 mm, and 10% are above 40 mm. The largest errors are mostly caused
by OpenPose wrongly tracking a joint, for example by swapping the left and the right limb, which
causes large errors up to 700 mm. This may be fixed either by using a better 2D pose estimator,
or by using more cameras to reduce the impact of an error on a camera, or else by considering
the temporal continuity in movement. Needham et al. use 9 cameras and find that ankle MPJPEs
are within the margin of error of marker-based technologies (1–15 mm), whereas knee and hip
MPJPEs are greater (30–50 mm). These errors are systematic and likely due to "ground-truth" im-
ages being mislabeled in the training dataset [Needham2021b] (see Disambiguation). They also
run the comparison with AlphaPose and with DeepLabCut. While AlphaPose’s results are similar
to OpenPose’s; DeepLabCut errors are substantially higher.

Slembrouck et al. go a step further and tackle the issue of limb swapping and of multiple
person detection [Slembrouck2020]. In case of multiple person detection, one needs to make
sure they associate the person detected on one camera to the same person detected on other ones.
Slembrouck et al. manage to associate persons across cameras by examining all the available
triangulations for the neck and mid-hip joints: the persons are the same when the distance between
the triangulated point and the line defined by the detected 2D point and the camera center is
below a certain threshold. They only focus on lower limbs. Their first trial features a person
running while being filmed by seven cameras, whereas their second one involves a person doing
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1.3. 3D Markerless Analysis

stationary movements such as squats while being filmed by three cameras. After filtering, the
average positional error in the first case is about 40 mm, and it is roughly 30 mm in the second
case (less than 20 mm for the ankle joint). Other authors deal with the multiperson issue in a
slightly different way [Bridgeman2019,Chu2021,Dong2019]. On average, if the detected persons
are correctly associated and the limbs don’t swap, the average joint position error for an OpenPose
triangulation is mostly below 40 mm.

Some triangulation methods not based on OpenPose reach even better results on benchmarks,
although it comes at the cost of either requiring heavy computations, or of being out of reach for
non-expert in deep-learning and computer vision. The classic approach reduces the joint detec-
tion heatmap to its maximum probability, then triangulates these scalar 2D positions. Instead of
this, the main state-of-the art methods directly perform a volumetric triangulation of the whole
heatmaps, and only then take the maximum probability as a 3D joint center estimate. By working
this way, they keep all the information available for as long as possible. They manage to lower
their MPJPE to about 20 mm [He2020, Iskakov2019].

1.3.3 3D Kinematics from 3D Pose Estimation

Numerous studies have focused on the accuracy of 3D joint center estimation, but far fewer
have examined joint angles [Zheng2022]. Yet, when it comes to the biomechanical analysis of
human motion, it is often more useful to obtain joint angles. Joint angles allow for better com-
parison among trials and individuals, and they represent the first step for other analyses such as
musculo-skeletal analysis and inverse dynamics. They are also more intuitive to grasp for coaches
and athletes, who would need to learn about the extension of their elbow, rather than about the
respective position of their wrist, elbow and shoulder joint centers.

3D joint estimation was initially tackled with shape approaches by visual-hull reconstruction.
[Ceseracciu2014] reports joint errors generally above 10° for the lower body, using four calibrated
and synchronized cameras. Some commercial solutions have been released such as Simi Shape
[SimiShape] or The Captury [Captury]. No peer-reviewed article has been published for validating
the first one, but results have been shown to bear high variability [Becker2015]. Concerning the
second one, flexion/extension joint angles were not deemed equivalent to marker-based ones, with
errors between 4 and 20° [Harsted2019], although a study conducted by the company seemed to
find results closer to marker-based ones [Fleisig2022].

Most other research is based on the triangulation of 2D keypoints. It started out as kinematic
analysis with spatio-temporal parameters (see Disambiguation). For example, Zago et al. eval-
uate gait parameters computed by triangulating two videos processed by OpenPose, and notice
that straight gait direction, longer distance from subject to camera, and higher resolution make
a big difference in accuracy [Zago2020]. [Kanko2021b] finds that most gait parameters are very
accurately measured by the Theia3D markerless system, used with eight cameras.

D’Antonio et al. perform a simple triangulation of the OpenPose output of two cameras, and
compute direct flexion-extension angles for the lower limb [D’Antonio2021]. They compare their
results to IMU ones, and point out that errors are higher for running than for walking, and are
also rather inconsistent: Range of Motion (ROM) errors can reach up to 14◦, although they can
go down to 2° to 7◦ if the two cameras are set laterally rather than in back of the subject. Wade
et al. calculate planar hip and knee angles, and compare results from OpenPose, AlphaPose, and
DeepLabCut processing the input of nine cameras [Wade2021]. They deem the method accurate
enough for assessing step length and velocity, but not for joint angle analysis. AniPose, a Python
open-source framework, broadens the perspective to the kinematics of any human or animal with
a DeepLabCut input, instead of OpenPose. They offer custom temporal filters, as well as spatial
constraints on limb lengths [Karashchuk2021]. To our knowledge, it has only been concurrently
validated for index finger angles in the sagittal plane, resulting in a root-mean-square error of
7.5◦ [Geelen2021].
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Chapter 1. State-of-the-Art in Sports Motion Analysis

The previous studies calculated single degree of freedom angles between three joint centers.
However, the human skeleton is complex and not only made of pin joints: aside from the flex-
ion/extension rotation axis, the abduction/adduction axis and the internal/external axis are typ-
ically also engaged; some joints also involves translation, such as the shoulder girdle. In this
case, either several markers per segment are needed, or a solid kinematic model with accurate
joint definitions. So far, little work has been done towards obtaining 3D angles from multiple
views [Zheng2022]. Aside from our solution (see Chapter 3 on Pose2Sim), two main others are
worth mentioning. Theia3D is a commercial software application for human gait markerless kine-
matics. It estimates the positions of a set of keypoints around the joint, and then uses a multi-body
optimization approach to solve inverse kinematics. A study conducted by the company notices
an offset in hip and ankle angles between their markerless system and the reference marker-based
one, likely due to different skeletal models. Once this offset is removed, the root-mean-square
error (RMSE) in lower limb ranges roughly between 2° and 8◦ for flexion/extension and abduc-
tion/adduction angles, and up to 11.6◦ for internal/external rotation [Kanko2021a]. [Lahkar2022a]
focuses on the upper-body in boxing, finds good to excellent agreement on segment velocities, and
reports RMSE up to 10° in flexion/extension angles, and up to 23° on internal/external rotations.
Although the GUI of Theia3D is user-friendly and can be integrated in the Vicon or Qualisys
programs, it is neither open-source nor customizable. On the other side, OpenCap [Uhlrich2022]
was released very recently, about two years after our own solution. It offers a user-friendly web
application working with low-cost hardware. It predicts the coordinates of 43 anatomical markers
from 20 triangulated keypoints, and imports them in OpenSim, which is an open-source biome-
chanical 3D analysis software using a multi-body optimization approach to solve inverse kine-
matics [Delp2007, Seth2018]. OpenCap then performs classic inverse kinematics with numerous
inferred markers and a skeletal model. However, OpenCap has not yet been peer-reviewed, it is
limited to single person analysis, it only works natively with Apple products, and the data sent
to the cloud for calculation are not treated in a GDPR compliant way (General Data Protection
Regulation), which makes its use prohibited by research centers in Europe.

Pose estimation from videos can also be fused with the information provided by other sensors,
such as IMUs [Bao2022, Zhang2020]. This enables solving occlusions in videos, and compensa-
tion of the drift consecutive to the integration of accelerations and rotation speeds in IMUs. For
example, [Haralabidis2020] fuse OpenPose results from a single monocular video and two IMU
outputs, and solve kinematics of the upper body in OpenSim in order to examine the effects of
fatigue on boxing. Results are promising, but this cannot be considered fully markerless. Fusing
the depth map of a single RGB-D camera with its image processed by OpenPose has also been
investigated [Liu2022b], although 3D coordinate errors were close to 10 cm.
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1.4 Statement of Need

According to Atha [Atha1984], an ideal motion analysis system involves the collection of ac-
curate information, the elimination of interference with natural movement, and the minimization
of capture and analysis times. Yet, even though a marker-based system gives relatively accurate
results, it requires placing markers on the naked body, which is invasive, time-consuming, and can
hinder focus and natural movement. It is also hard to set up outdoors or in context, strenuous to
analyze, and very costly. In general, technology introduces potential pitfalls in spite of its power:
the information gathered can be unhelpful, inaccurate, not easily interpretable, or simply not im-
plementable in the context of sports [Windt2020]. Moreover, the specificities of biomechanics
differ between the fields of medicine and sports, and thus systems developed for one cannot be
directly applied to the other. As a consequence, in the overwhelming majority of cases, coaches
solely use subjective visual observation to assess an athlete’s movement patterns and to compare
performances.

The emergence of markerless kinematic analysis opens up new possibilities. It does not in-
volve any constraint on the athlete, who can wear their usual clothing, nor on the environment,
which can be complex and subject to unpredictable lighting. Nevertheless, some technological
challenges remain. First, video-based analysis requires a great deal of storage space and relatively
high computational capacities. Second, 2D pose estimation models are only as accurate as the per-
son who labeled them, and they usually provide sparse keypoints. This means that the information
provided can be both inaccurate, and insufficient. They also perform badly on poses they have
not been trained on, which is a problem in sports, where posture is often atypical. Third, sports
motions can be occluded by the environment and by sports equipment. They are also usually three-
dimensional, which means that sole 2D sagittal plane kinematics is not satisfying. Both of these
issues can be solved for the most part by using multiple viewpoints. This involves delicate camera
synchronization and calibration, and accurate 3D reconstruction, which represent whole research
fields in their own right. Forth, in sports, full-body analysis (including the upper limb) of 3D
joint kinematics (including abduction/adduction and internal/external rotation) is usually desired.
Hence, constraining rough 3D markerless coordinates to an individually scaled and biomechani-
cally realistic whole-boy model is important. However, as coaches and athletes usually need mere
feedback rather than a definitive diagnosis, the accuracy does not need to be as thorough as for the
medical field.

In addition to these challenges, competition conditions are often fast-paced and congested,
which makes it complicated to use a cumbersome research-grade system. On the other hand,
other capture hardware such as action cameras do not provide any off-the-shelf calibration and
synchronization procedures. Lastly, sports regularly come with the use of specific equipment,
whose motion is equally important and non-trivial to retrieve.

The objective of this thesis is to participate in building a bridge between the fields of com-
puter vision and biomechanics in a sports context, by providing methods for robust, accurate, and
versatile markerless kinematics. Nevertheless, the adoption of markerless analysis by the commu-
nity will also be determined by its ease of use. Consequently, we built a simple and open-source
pipeline connecting the two aforementioned state-of-the-art tools: OpenPose, and OpenSim. Ro-
bustness and accuracy were assessed, and concrete applications were discussed, such as the use of
GoPro cameras for evaluating key performance indicators in boxing, and the kinematic analysis
of both bike and pilot in BMX racing.

15



Chapter 1. State-of-the-Art in Sports Motion Analysis

Sensor type Mono/Multi

camera

2D/3D Pros and Cons

Opto-electronic
(marker-based) Multi 3D

+ Standard

+ Good ease-of-use/accuracy trade-off

+ Numerous commercial solutions

- Not open-source

- Not suitable in sports contexts

IMU N/A 3D

+ Good angle accuracy

- Angle drift & poor position analysis

- Not sensorless, can be cumbersome

RGB-D

Mono 2.5D

+ Markerless

- Generally poor accuracy

- Frame-rate ≤ 30 Hz

- Needs distance ≤ 5 m and no direct sunlight

Multi 3D

+ Full 3D markerless

+ Better accuracy

- Same as above re. frame-rate, distance, and light

RGB video

Mono

2D

+ Very robust in all contexts

+ Cheap and easy to set up

- Only 2D

- Not very accurate

3D

+ Full 3D with one single RGB camera

- Probabilistic guess when occlusions: accuracy↘

- Slow

Multi uncalibrated 3D
+ Removes difficult step of calibration

- Not accurate enough yet

Multi calibrated 3D

+ Solves occlusions

+ Robust

- Systematic offsets due to labelling errors

- Calibration and synchronization are not trivial

Multi calibrated

with kin. constraints
3D

+ Compensates offsets

+ Constrains limb lengths and joint angles

- Inaccuratein some joint angles

Sensor fusion

with RGB video
N/A 3D

• With IMUs: More accurate, but not markerless

• With one RGB-D camera (Depth + OpenPose

on RGB): still inaccurate

Table 1.1: Pros and cons in state-of-the-art approaches for human motion analysis. The multi-
person prospect is not addressed, as it can be available with all approaches, but it is not always.
IMU: Inertial Measurement Unit. N/A: Not Applicable. kin.: kinematic. RGB-D: red-green-blue-
depth.
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Table 1.2: A number of approaches has been proposed in the literature. Fewer of them have
been released, and are available for further kinematic analysis. IMU: Inertial Measurement Unit.
RGB: image sensor (red-green-blue). RGB-D: image and depth sensor.
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2
From Computer Vision to Biomechanics

Obtaining coherent 3D kinematics from a network of calibrated
video cameras involves understanding a certain theoretical frame-
work. First, keypoints must be recognized in images. This is mostly
achieved with machine learning models. Then, all the 2D features
detected for each camera need to be reconstructed in 3D space with
computer vision algorithms. Finally, these coordinates must be con-
strained to an anatomically consistent model to obtain coherent 3D
joint kinematics.
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2.1. Introduction

2.1 Introduction

Sports movements don’t generally lie in the sagittal plane only, and they often cause body part
occlusions. Moreover, although the need is not as strong as for clinical applications, it is important
for results to be as biomechanically coherent as possible. Hence, one of the most promising
prospects for sports movement analysis consists of addressing the problem with several video
sources, and then constraining 3D coordinates to a kinematic model. Such research is at the
intersection of machine learning for 2D pose estimation, computer vision for 3D reconstruction
from a network of calibrated videos, and biomechanics for constraining 3D point coordinates to
an anatomically consistent model, in order to obtain reliable kinematics.

2.2 From Image to 2D Pose Estimation

2.2.1 Why Machine Learning?

As a first step, achieving motion analysis from a network of cameras involves detecting fea-
tures in images. These features can be whole human beings, joint centers, body landmarks, sports
gear such as tennis balls, climbing holds, or much more.

Two broad approaches can be implemented: the first one consists of using dedicated algorithms
for each task. The gist of it is to understand the task well enough to build an appropriate solution:
this is a knowledge-driven approach. Among other techniques, corner and contour detection, color
thresholding, affine transformation, template matching, watershed segmentation, can be used. For
example, if one wants to differentiate two boxers wearing respectively a blue and a red shirt, they
can filter them by color. If one needs to identify on which portion of a speed climbing wall an
athlete is, they can match the template of each holds on the whole image. OpenCV [Bradski2000]
provides convenient tools for this purpose, in C++ and Python languages. This approach is often
fast, but also quite complicated to implement, and neither flexible nor robust. If there are other
red or blue patches in the boxing scene, if the boxer wears green or if the light is poor, this will
not work anymore. Likewise for holds, if the sun casts a large shadow which changes its apparent
shape, or if holds are seen from a different perspective. Likewise, semi-automatic approaches
such as Kinovea [Kinovea], which tracks manually annotated points, do not generalize well to
challenging contexts.

The second approach takes advantage of machine learning algorithms, which constitute an
entirely different paradigm (see Disambiguation). The idea is to show the machine enough exam-
ples for it to "understand" by itself its underlying attributes, so that it manages to detect and label
automatically new images: this is a data-driven approach. It can be used for both aforementioned
tasks, in a much more flexible way: if one wants the system to recognize boxing gloves or holds in
challenging conditions, they simply have to include such examples while training the model. The
machine learning approach is also suitable for other tasks, such as whole-image classification (e.g.,
determining whether this is a boxing or a BMX scene), object detection (e.g., localization of a bike
and of a person with a bounding box), background extraction [Bouwmans2019], semantic and in-
stance segmentation (e.g., extracting the shape of the bike and of the person) [Minaee2021], or
keypoint detection (e.g., localization of human joint centers and keypoints on a bike [Chen2020c])
(Figure 2.1). By 2015, data-driven methods definitely took over knowledge-driven ones in vision
analysis problems, and by extension in sports motion analysis from videos (Figure 1.4).
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Figure 2.1: Mock examples of different types of image analysis. (a) Whole image classification, (b)
Object detection and localization, (c) Instance segmentation and shape extraction, (d) Keypoint
detection.

2.2.2 Machine Learning Timeline and Principles

Machine learning is a subset of artificial intelligence (AI.) As such, one can trace its origin
back to the discovery of the natural neuron at the end of the 19th century, by Nobel Prize Ramón
y Cajal [López-Muñoz2006], followed half a century later by the first model of an artificial neu-
ron [McCulloch1943]. A natural neuron is a simple learning unit, which collects the nervous
influx sent by other neurons to its dendrites, and sends an action potential when the total influx
weighted and summed in the soma overcomes a threshold value. This potential is then transmitted
through the axon to the next neuron as a new influx. Similarly, an artificial neuron receives output
vectors from previous neurons, weighs and sums them with a summation function, and transfers
the resulting output vector to the next neurons if it reaches a certain threshold determined by an
activation function (Figure 2.3a-b).

The perceptron, invented in 1956 [Rosenblatt1958], represents the first practical application
of an artificial neuron. It acts as a binary classifier which predicts class 1 if the neuron is fired, and
class 0 otherwise. It automatically adjusts its weights by learning from previously labeled example
data (see Algorithm 1 and Figure 2.3b). It could be used, for example, to predict whether an athlete
is going to be "good" or not, given his force-velocity results on an ergometer test (see step-by-step
Example 1 and Figure 2.4), and given enough example data. Needing previously labeled data
makes it is a supervised classifier – we will not discuss unsupervised methods here. Of course,
this example is oversimplified. Being good or not at a sports is a complex and multifactorial
outcome, and two variables can’t sum it up. However, the perceptron can take more than two
variables as inputs (for example, force, velocity, and endurance), and it can also be generalized to
multiclass classification with more than two outputs (for example, to differentiate between strong,
explosive, and resistant type of athletes.)

Nevertheless, it often takes a lot of iterations over good quality training data for the perceptron
to converge. Moreover, it does converge if and only if the data are linearly separable, i.e., if they
can be separated with a straight line [Novikoff1963] (see Figure 2.2). Some fundamental problems
such as the XOR gate can’t be solved with a basic single layer Artificial Neural Network (ANN)
[Minsky1969]. This constituted one of the early setbacks for AI. Then, the high computational
cost of these approaches, combined with the complexity of common-sense problems, hampered
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the trust in learning methods. Indeed, vision and language problems require enormous amounts
of data, and can’t be solved with a simple dictionary (for example, "the spirit is willing but the
flesh is weak" becomes "the vodka is good but the meat is rotten" when translated back and forth
from English to Russian.) Overinflated promises and expectations, followed by disappointment in
academia and industries, led to cuts in funding, and eventually loss of skills in the 1970s: this is
referred to as the first AI winter.

The AI field survived by focusing on specific problems, called expert systems. In the early
1980s, a new rise was triggered by massive funding such as the Japanese Fifth Generation Com-
puter project, aiming to build a supercomputer that could solve any problem. Shortly after, multi-
layer neural networks were made possible with the (re)discovery of backpropagation [Rumel-
hart1986], or more rigorously of weight adjustment thanks to the backpropagation of error gradi-
ent, from the last layer to the first one. As it is not the central subject of this thesis, the algorithm
and early references will not be detailed here, but the interested reader can refer to [Goodfel-
low2016]. This allowed for solving non-linearly separable problems, and for tackling real world
issues (Figure 2.3c.). [Cybenko1989] proved that one single intermediate layer is enough to solve
any given classification problem, granted that this layer contains enough neurons (although some-
times too many to make it possible in practice.) On the other hand, kernel tricks were also redis-
covered [Aizerman1964, Hofmann2008], and made non-neural networks such as support vector
machines (SVMs) [Boser1992] able to treat non-linearly separable data with much less training
data, more optimally, and on a clearer mathematical ground (Figure 2.2). However, again, unre-
alistic expectations were confronted with unplanned technical difficulties both on expert systems
and on general intelligence projects. This led to a second AI winter in the 1990s.

Figure 2.2: Single layer artificial neural networks such as the perceptron can only classify lin-
early separable data. (a) is linearly separable. (b) is not linearly separable. However, data are
contained in an ellipse. The equation of an ellipse is of the form a× x2 + b× y2 = 1, so if we
transform the feature variables into X = x2 and Y = y2, the data become linearly separable. (c)
is equivalent to a fundamental XOR gate, and is not linearly separable, which was part of the
reasons for the first AI winter. It can either be solved by combining several layers of artificial
neurons, or by complex kernel tricks which map the data from the original space into a higher
dimensional space where they become linearly separable. (d) is possibly not separable at all. AI:
Artificial Intelligence. XOR: Exclusive OR.
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Figure 2.3: The artificial neuron (b) has been modeled after the natural neuron (a). Inputs and
weights act as the total nervous influx firing the dendrites. The collected values are summed,
and a signal is activated if a threshold is overcome, as the soma does in a natural neuron. The
output signal is conveyed the axon in a natural neuron. (b) In the case of a perceptron, the neuron
adjusts its weights to minimize the error between the predicted and the expected output. It can be
used as a classifier, which outputs class 1 or class 0 depending on the inputs. (c) A dense (fully
connected) neural network with one intermediate layer and backpropagation can solve any non-
linearly separable classification.
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Algorithm 1 Perceptron

Let
−→
X0 be the input vector of a first instance of variables (1,x0

1, · · ·x0
M),
−→
W 0 the corresponding

weights randomly initialized (w0
0,w

0
1, · · ·w0

M) with w0
0 a bias, and y0,pred the output predicted

binary class.
1: The summation function is computed:

−→
W 0 ·
−→
X0 = ∑

m∈[0,M]

w0
mx0

m (2.1)

2: This result is processed by an activation function, which is a threshold in the case of the
perceptron. It determines whether the neuron will be fired or not, i.e., whether one or the
other class will be predicted. y0,pred = 1 corresponds to one class, and y0,pred = 0 to the other.

y0,pred =

{
1 if

−→
W 0 ·
−→
X0 > θ ,

0 otherwise
(2.2)

3: This prediction y0,pred is compared to the actual class y0,expected .

ε
0 = y0,expected− y0,pred (2.3)

4: Then weights are updated: −→
W 1 =

−→
W 0 +η ε

0
−→
X0 (2.4)

with η the learning rate ∈ [0,1]. Note that if the class is correctly predicted, then ε0 = 0 and
weights are not adjusted.

5: The algorithm is repeated with another example
−→
X1, and so on until it has gone through the

whole batch of the training set. If weights still need to be updated, one can go over it again,
for a determined number of epochs or until the average error is under a given value. Then
the perceptron is considered trained, and ready to correctly predict a class y with the retained
weights.

Example 1 Athlete classification with a perceptron

N.B. The code for running this example is available on the thesis repository
https://github.com/davidpagnon/These_David_Pagnon/blob/main/Thesis/
Chap2/perceptron.py.

Let’s consider force-velocity test results as an input−→
X = (1,velocity (m/s), f orce (hN)),
and the classification of an athlete as "skilled" or "unskilled" as an output y = 1 or 0.
A batch of training data, i.e., example data the perceptron will learn from, could be:{
(
−→
X i,yi,expected)

}
i∈[0,4]=

{(
(1,1,5),1

)
,
(
(1,2,3),0

)
,
(
(1,7,1),1

)
,
(
(1,4,1),0

)
,
(
(1,5,4),1

)}
.

Let’s randomly initialize weights at
−→
W 0 = (−9,1,3), take a threshold θ=0.1, and a learning

rate η = 0.3.

The first instance of the training set gives:−→
W 0 ·
−→
X0 = ∑m∈[0,2] w

0
mx0

m =−9×1+1×1+3×5 = 7.

Now
−→
W 0 ·
−→
X0 = 7 > θ = 0.1, so y0,pred = 1.
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y0,expected = 1 = y0,pred , so the prediction is true and weights don’t need to be updated.

As a consequence,
−→
W 1 =

−→
W 0 = (−9,1,3).

The second instance gives
−→
W 1 ·
−→
X1 = (−9,1,3) ·(1,2,3) = 2 > θ = 0.1, so y1,pred = 1.

But y1,expected = 0 ̸= y1,pred = 1, so weights need to be updated.
The error is ε1 = y1,expected− y1,pred = 0−1 =−1.

As a consequence,
−→
W 2 =

−→
W 1 + η ε1

−→
X1 = (−9,1,3) + 0.1 × (−1) × (1,2,3) =

(−9.3,0.4,2.1).

Third instance:
−→
W 2 ·
−→
X2 = (−9.3,0.4,2.1) ·(1,7,1) = 3−4.4 < 0.1, so y2,pred = 0.

y2,expected = 1 ̸= y2,pred = 0, so weights need to be updated.
ε2 = y2,expected− y2,pred = 1.−→
W 3 =

−→
W 2 +η ε2

−→
X2 = (−9.3,0.4,2.1)+0.1×1× (1,7,1) = (−9,2.5,2.4).

Fourth instance:
−→
W 3 ·
−→
X3 = (−9,2.5,2.4) ·(1,4,1) = 3.4 > 0.1, so y3,pred = 1.

y3,expected = 0 ̸= y3,pred = 1, so weights need to be updated.
ε3 = y3,expected− y3,pred =−1.−→
W 4 =

−→
W 3 +η ε3

−→
X3 = (−9,2.5,2.4)+0.1× (−1)× (1,4,1) = (−9.3,1.3,2.1).

Fifth instance:
−→
W 4 ·
−→
X4 = (−9.3,1.3,2.1) ·(1,5,4) = 17.6 > 8, so y4,pred = 1.

y4,expected = 1 = y4,pred = 1, so weights don’t need to be updated.−→
W 5 =

−→
W 4 = (−9.3,1.3,2.1)(Figure 2.4).

Next instances: Once we have gone over the batch of training data, if the average error
is below a given value, we can assume that the perceptron is trained. If not, we can use
the next batch to pursue training. If it still didn’t converge after all batches, we can iterate
over all training data again, for a given number of times. If results are still not satisfying,
either the data are not linearly separable, or the training sample is not large enough or
of good enough quality. In our case, it seems like our example data have allowed us to
correctly separate skilled and unskilled athletes based on their force and velocity test results
(Figure 2.4).

Figure 2.4: Classification of athletes as "skilled" (black dot) or "unskilled" (circle) accord-
ing to their Force-Velocity results. Weights are adjusted (grey lines), until the perceptron
classifies athletes correctly (black line.)
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From the end of the 1990s, there has been no theoretical breakthrough in AI, but larger
databases have become available with the advent of the Internet, and greater computational power
has become accessible, especially thanks to groundbreaking progress in Graphics Processing Units
(GPUs), which made heavy parallel computing available to the wider audience. As a consequence,
more layers could be used in neural networks, which progressively set off the onset of deep learn-
ing. Finally, complex "common-sense" problems, such as natural language processing or image
recognition, could be treated with some success [Baral2018].

One particular type of deep learning algorithms is the convolutional neural network (CNN),
which is particularly suited for image recognition. It was first used for classifying handwritten and
low-resolution digits [LeCun1998], and then applied to more complex images as greater comput-
ing resources became available [Krizhevsky2017]. Nowadays, CNNs have sometimes surpassed
humans at image classification [Cireşan2012, Lu2015]. A convolution layer consists of a series of
filters that slide across the image, each of them outputting a result close to 0 or to 1, depending on
how well it can be overlaid on each image area. In the same way as with a simple artificial neuron,
each of these filters can be seen as a weight vector

−→
W , and each image area as an input vector

−→
X .

The filters of the first convolution layer are simple patterns such as lines, but then they become
circles and corners, until the last layers, when they have developed into complex features corre-
sponding to whole object parts. Once a filter has covered the whole image, it forms a feature map,
which will then be downsampled by a pooling layer in order to save computing resources. All the
feature maps produced by each filter are processed by a determined number of other convolution
layers, and then flattened into a 1D vector. This 1D vector is processed by a few dense layers
(dense layers are fully connected, i.e., all outputs are produced by a weighted sum of each input),
and lastly a softmax layer computes a probability for the image to correspond to each available
class. If the CNN is correctly trained, the class with highest probability corresponds to the correct
one: for example, if the image displays a BMX start, the probability for the bike class will be the
highest (Figure 2.5).

However, results will not be good until a lot of iterations are done on a lot of data. Indeed,
filters at each layer are randomly initialized, and then refined with backpropagation in order to
predict all classes as best as possible. One of the risks is overfitting, i.e., to excessively adapt to
the training data and to fail to generalize to new data. This is dealt with by cross-validation, i.e.,
the separation between training and test data, by regularization methods such as radomization,
batch normalization and dropout, and by data augmentation, e.g., image rotations, crops, color
distortion, noise addition, etc. [Hawkins2004, Chicco2017] (Figure 2.6). An enormous amount of
data is also needed to correctly train the CNN, which makes it complicated when unusual classes
need to be recognized (for example, a climbing hold, a BMX starting gate, a medial malleolus on
the ankle, etc.) Fortunately, one can consider that a CNN trained on a massive dataset, such as
ImageNet and its 14 million annotated images [Deng2009], has learned to recognize most features
that can be found in any image. One can take the learned filters of its convolutional layers as
is, use them as a feature extractor (sometimes called backbone), and just fine-tune the last dense
layers to recognize new classes. It will be much less computationally expensive to train, and will
need much fewer data: about a hundred images, instead of thousands. This is called transfer
learning [Pan2009].

Now, classification of a whole image is not sufficient in sports motion analysis. One needs to
detect where an object or a person is, and ideally to localize more precise features such as joint
centers so as to estimate the person’s pose.
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Figure 2.5: A simplified convolutional neural network (CNN.) A convolutional layer consists of
a series of filters running across the input image, and producing feature maps, which are then
downsampled by pooling. Filters become more and more elaborated along layers, and produce
feature maps which look like whole object parts. Filters and weights are randomly initialized at
first, and then are adjusted by backpropagation. After the convolutional layers, the feature maps
are flattened to produce a 1D vector, which is then processed by dense layers, and finally a softmax
layer computes a probability for the image to correspond to each available class.

Figure 2.6: The amazingly rigourous world of machine learning. XKCD .

2.2.3 Machine Learning for 2D Pose Estimation

Older methods for object detection used to run a sliding and pyramidal window across the
image, and then to apply a non-neural classifier on each window, such as an SVM on carefully
handcrafted histogram of oriented gradients descriptors (HOG) [Dalal2005]. They then had to be
followed by non-maximum suppression, in order to select one bounding box over many overlap-
ping ones. As the classifier is run on each window iteration like if they were independent images,
these methods were very computationally intensive, and in the same time not very robust nor
accurate.
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More modern approaches are based on CNNs, and as such, they involve a preliminary step:
extracting the last layer of a pre-trained neural network such as ImageNet, in order to make it able
to classify the objects of interest. One of the precursors, R-CNN (Regions with CNN features)
[Girshick2014], first looks for a lesser amount of regions of interest (ROIs) by selective search,
instead of with a sliding window. Selective search is an algorithm which segments image based
on pixel intensities, without any learning involved [Uijlings2013]. Then three learning models
are used: one CNN for extracting features from each ROI, an SVM for classifying each ROI, and
a regression model for adjusting bounding boxes. It takes about 45 seconds to process a single
image on benchmarks. Fast R-CNN [Girshick2015] uses one single network for all steps, and
switches the first two: it first extracts features from the whole image, and only then uses selective
search to find ROIs on the resulting feature map, and finally classifies the ROIs and tightens the
bounding boxes. It is much faster and takes about 2 seconds per image. A last incrementation on
this basis is Faster R-CNN [Ren2015], which works similarly to the latter, but finds ROIs with a
neural network instead of with selective search, which is very time-consuming. This allows for
predicting an "objectness" score on each ROI, and for fitting the bounding boxes directly, and
thus on avoiding the last regression step. It is even faster, and takes about 0.2 seconds per image.
YOLO (standing for You Only Look Once) [Redmon2016] proposes another approach, and does
not separate the steps of finding ROIs with classification. It divides the image into regions, and
predicts both classes and bounding boxes for each region. For example, if there is a shoulder in
a region, it will predict a "person" class, and a larger box in which this person is likely to fit.
YOLO takes about 0.02 seconds per image (45 fps), and is thus able to run real time. However,
it is not as accurate as the previous methods, especially on smaller objects. This being said,
new versions are very frequently released (although not by the same authors), and the current
YOLOv7 [Wang2022a] is both faster and more accurate than all previous approaches as it entirely
reviews the whole network architecture to deal with all observed bottlenecks.

But again, in order to perform joint kinematics, one cannot just detect whole objects: pre-
cise keypoints need to be localized. Mask R-CNN [He2017], and the more recent Detectron2
[Wu2019], still predict the bounding boxes and their class like Faster R-CNN does, but they also
add a small overhead in parallel, which predicts the shapes of masks overlaying the object in a
pixel-to-pixel manner. Keypoints can be seen as a very small mask, and Mask R-CNN can also
detect them in order to predict human pose estimation. In the next paragraph, only multi-person
pose estimation models will be considered. Datasets, evaluation metrics, and comparison of results
won’t be detailed: see [Topham2021] for a comprehensive overview.

Two main approaches for multi-person 2D pose estimation coexist. The "top-down" one first
detects bounding boxes around persons, and then finds keypoints inside each box. In the area of
object detection methods, it is analogous to region-proposed methods such as the R-CNN suite,
which proposes ROIs and then finds and classifies objects. Conversely, the "bottom-up" approach
first finds keypoints, and then groups them into persons. It is analogous to the single-shot ob-
ject detection methods such as the YOLO suite, which first finds small details, and then predicts
full-size objects. These approaches are nowadays almost as fast as the top-down ones, and their
inference time does not increase with the number of persons detected.

Mask R-CNN belongs to the top-down kind, as well as AlphaPose [Fang2017], which mostly
differentiates from the latter by using a network predicting higher quality bounding boxes from
inaccurate ones, in order to facilitate the task of the joint regressor. On the opposite, DeepCut and
DeeperCut [Pishchulin2016, Insafutdinov2016], as well as DeepLabCut [Mathis2018,Lauer2022]
upon which it is built, are bottom-up approaches. They find a large number of keypoint candi-
dates, label them as hand, head, etc., and then select the best candidates and separate them into
persons. Since they calculate every possible association between keypoints, this is very slow.
OpenPose [Cao2019] uses a network which jointly predicts keypoint locations, and the connec-
tions between them (i.e., it also predicts limbs, which define a skeleton), and is much faster while
still being accurate. OpenPifPaf [Kreiss2022] adds to it both temporal consistency across frames,
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and an intensity map for each keypoint instead of punctual locations (i.e., a further keypoint will
have a lower intensity). This allows for better accuracy in low-resolution regime and in occluded
images. YOLOv7 supports keypoint detection by integrating YOLO-Pose [Maji2022], and claims
to be faster and more accurate than all other state-of-the-art methods. It brings together top-down
and bottom-up approaches, and uses a single network predicting both bounding boxes and their
corresponding poses. SLEAP [Pereira2022], which is built for training animal pose estimation
models, implements both top-down and bottom-up approaches. In this context, top-down ap-
proaches are slightly more accurate, and considerably faster as long as few animals are in the
scene.

Figure 2.7: The body_25b OpenPose model is more accurate than the default body_25 one. As
an example, the left knee is slightly misplaced on the default model. Keypoint definition and order
also differ between both models.

Like all previously presented methods, OpenPose has been trained on the COCO dataset
[Lin2014]. However, OpenPose body_25 standard model also provides foot keypoints, which
are often primordial in sports motion analysis. To do so, 6 more keypoints have been labeled for
the feet on the COCO dataset before training. OpenPose also supports the single-network whole-
body pose estimation network body_135 [Hidalgo2019], which has been trained in the same time
on COCO+foot, MPII [Andriluka2014], and on Total Capture [Xiang2019] in order to provide
hand, face, feet, and body keypoints in one single network. The body_135 model is slow and
requires high capacity hardware, however a submodel of it is body_25b, which provides body and
foot keypoints as body_25 does, and in addition decreases the number of false positives without
hampering speed. Its keypoint definition differs slightly to the default model’s (Figure 2.7): it adds
the MPII head and neck keypoints, and removes the artificially created neck and middle hip points
of the body_25 model (which are simply the middle point of the shoulders and the hips). In a sim-
ilar way, AlphaPose provides full-body models, either trained on the Halpe dataset [Li2020], or
on the COCO-WholeBody one [Xu2022]. Note that BlazePose [Bazarevsky2020], trained on the
GHUM dataset [Xu2020a], also provides hand and feet keypoints, but since it is a single-person
pose estimation model, the architecture is different and will not be addressed here. Indeed, this is
rarely suitable in sports conditions, where people are usually present in the background.
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2.3 From 2D to 3D Pose Estimation

Once the pose of an athlete is correctly detected, the next step is to obtain their 3D pose. While
some approaches strive to infer 3D pose from a monocular video source, they are generally not
considered sufficiently accurate, especially when body parts are occluded. It is, then, important
to use several cameras, and to fuse their 2D pose estimation results to obtain more reliable 3D
coordinates.

2.3.1 Pinhole Camera Model

2.3.1.1 History

If it passes through a small enough hole, the light emitted from a point can be seen as a fine ray
rather than a large beam. Then, when all the rays from the object go through, they do not overlap,
and actually recreate an inverted image of it, instead of a blurry spot of light. If the hole gives
entrance to a dark enough room, and if a light-colored sheet is positioned close enough to the hole,
one can observe the projection of a dim, but distinct image of the object. This is the principle of the
camera obscura, or pinhole camera, which might have been discovered as early as in the paleolithic
era, as cave paintings seem to suggest. The concept was later used as a drawing aid in the 17th

century by some artists, probably such as Vermeer or Canaletto [Steadman2001] (Figure 2.8). In
order to let more light in and to avoid diffraction issues, they increased the apperture of the hole
and inserted in a convex lens, at the expense of a shorter depth of field and of some image distortion
(Figure 2.9). Then, if instead of a sheet, a light-sensitive film is placed, the image is progressively
printed, after enough light has struck it. This is how photography was invented in the 19th century,
by the French inventors Niépce, and then Daguerre [Marignier1999].

Figure 2.8: A camera obscura used as a drawing aid, which uses a lens rather than a pinhole
(unknown author).
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Chapter 2. From Computer Vision to Biomechanics

Figure 2.9: (a) A pinhole camera does not need to be focused, because in theory, only one single
ray per object point will pass through the apperture–which incidentally makes the image dimmer.
(b) On the contrary, more light rays can pass through a lens, which makes the projected image
clearer–but incidentally, it introduces a finite depth of field, as the image is focused on a different
plane depending on the object distance to the lens.

2.3.1.2 Thin Lens

When an object of size XO (O standing for object) is projected from a distance ZO through a
thin convex lens of focal length f , it is in focus at a specific distance z. In this case, let the image
size be x. Assuming that the lens is thin, and that the object is close to the optical axis(i.e., that
paraxial conditions are satisfied), Thales’ theorem gives (Figure 2.10):{

x
XO

= z
ZO

(dashed triangles),
x

XO
= z− f

f (dotted triangles),
(2.5)

Which leads to the thin lens formula, discovered by Descartes in the 17th century:

1
ZO

=
1
f
− 1

z
(2.6)

Figure 2.10: Thales’ theorem leads to the thin lens equation. XO is the object of size, and ZO its
distance to the lens; x is the image size, and z its distance to the lens; and f is the focal length f .

2.3.1.3 Basic Pinhole Model

According to the thin lens formula, in the specific case where the object is at a distance ZO

much larger than the focal length f , one can approximate that the image is into focus at a distance
z equal to the focal length.

z = f (2.7)

This is generally true in motion capture, for which the camera lens is usually focused to in-
finity, i.e., it looks at objects at least 100 times as far as the focal length. In this case, the Thales
theorem gives the relation:

x =
f ×XO

ZO
(2.8)
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This model is called the basic pinhole camera model [Zhang2000, Hartley2003, Tomasi2017].
This is strictly speaking improper, since a pinhole camera does not have any focal length. For the
sake of simplification and since it does make a difference in practice, the image plane is usually
represented upside-up and on the same side as the object (Figure 2.11).

Figure 2.11: The simplified pinhole camera model.

2.3.1.4 3D Pinhole Model in Camera Coordinate System

In 3 dimensions, the object can be represented in the camera coordinate system (XC,YC,ZC),
with YC pointing downwards, and ZC facing toward the object (Figure 2.12). The relation becomes:{

x = f×XC
ZC

,

y = f×YC
ZC

,
(2.9)

Which can be written as:

ZC×

x

y

=

 f 0

0 f

XC

YC

 (2.10)

Figure 2.12: The pinhole camera model in 3D.

2.3.1.5 3D Pinhole Model in Pixel Image Coordinate System

The origin of the image coordinates is not usually set on the optical axis (i.e., at the center of
the sensor, also called the principal point), but typically at its upper left (Figure 2.13). With cu

and cv the horizontal and vertical coordinates of the principal point, the coordinates in the image
frame of reference can be written as:{

u = x+ cu =
f×XC

ZC
+ cu

v = y+ cv =
f×YC
ZC

+ cv
(2.11)
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The relation is thus:

ZC×


u

v

1

=


f 0 cu

0 f cv

0 0 1




XC

YC

ZC

 (2.12)

Figure 2.13: Image coordinates in pixel vs. sensor coordinates in meters.

Moreover, instead of expressing the image coordinates and the focal length in meters, it can
be convenient to express them in pixels. Let pu, pv be the pixel dimensions, then up = u/pu and
vp = v/pv. The relation becomes:

ZC×


up

vp

1

=


f/pu 0 cu/pu

0 f/pv cv/pv

0 0 1




XC

YC

ZC



=


fpu 0 cpu

0 fpv cpv

0 0 1




XC

YC

ZC


(2.13)

2.3.1.6 3D Pinhole Model in World Coordinate System

When several cameras are used in the same time, for instance for 3D reconstruction, it is
important that they share a common frame of reference. Hence, the camera coordinate system
needs to be expressed in the "world" system accordingly. Assuming that the camera is translated
along a vector T3×1 and rotated according to a matrix R3×3, the coordinates in the camera frame
of reference can be expressed in the world frame of reference as:

XC

YC

ZC

= R3×3×


XW

YW

ZW

+T3×1 (2.14)
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This formalism does not represent a linear system connecting the world and the camera coor-
dinates, which can make calculations complicated. Instead, one can add one more dimension to
the system and use the homogeneous coordinates, introduced by Möbius in 1927 [Möbius1827],
and which constitutes one of the basis of projective geometry.


XC

YC

ZC

=

 R3×3 T3×1




XW

YW

ZW

1

 (2.15)

Finally, the full pinhole model becomes:

ZC×


up

vp

1


3×1

=


fpu 0 cpu

0 fpv cpv

0 0 1


3×3

 R3×3 T3×1


3×4


XW

YW

ZW

1


4×1

(2.16)

Or more concisely, with −→qp the 2D image coordinates,
−→
Qw the 3D world coordinates, K the

intrinsic matrix, H the homogeneous matrix of extrinsic parameters, and P the projection matrix:

ZC
−→qp = K H

−→
Qw

= P
−→
Qw

(2.17)

To sum it up, this system allows for a transformation between the coordinates of an object in
meters in the world reference frame, and its coordinates in pixel on the image. It is a linear system,
and thus has a closed-form solution. The intrinsic matrix K is constant for a given camera, while
the homogeneous (or extrinsic) matrix H depends on the camera position and orientation. The
projection matrix P is the product of the intrinsic and extrinsic matrices. ZC corresponds to the
distance between the camera origin and its sensor, and is considered as an arbitrary scaling factor.

2.3.1.7 Skew Factor and Distortions

Some corrections can be brought to this model. First, the pixel sides may not be perfectly
perpendicular. In this case, a skew parameter γ has to be added to the intrinsic matrix, and the
relation becomes:

ZO×


up

vp

1

=


fpu γ cpu

0 fpv cpv

0 0 1




XO

YO

ZO

 (2.18)

However, this is extremely rare in practice, and in the overwhelming majority of cases, γ can safely
be set to zero [Zhang2000].

Second, the use of a lens instead of a pinhole not only introduce a finite depth of field, but
also distortions. These are mostly radial, caused by the curvature of the lens, especially if it has a
wide angle. Radial distortions are particularly visible when using a wide angle lens, in the form
of a "barrel" effect. Straight lines are then curved near the edges of the image (Figure 2.14). Some
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tangential distortion can also be observed, in case the sensor is not perfectly perpendicular to the
optical axis.

These can be corrected by adding radial and tangential terms to x and y, the image coordinates
as regards to its center [Weng1992]:

x′ = x + x(k1r2 + k2r4 + k3r6)︸ ︷︷ ︸ + 2p1xy+ p2(r2 +2x2)︸ ︷︷ ︸
= x + ∆xradial + ∆xtangential

y′ = y + y(k1r2 + k2r4 + k3r6)︸ ︷︷ ︸ + 2p1xy+ p2(r2 +2y2)︸ ︷︷ ︸
= y + ∆yradial + ∆ytangential

(2.19)

Where k1, k2, k3 are the radial distortion coefficients, and p1 and p2 the tangential distortion ones.
r2 = x2 + y2 is the distance from the center of the sensor. This is called the DR3DT2 model, also
called the Brown-Conrady distortion model [Conrady1919, Brown1966]. Note that it is possible
to introduce more coefficients for an even more accurate model, and that in the case of an ultra
wide-angle or fisheye lens, the Kannala-Brandt model [Kannala2006] is mode appropriate.

Figure 2.14: Lens distortions are mostly radial (left image, with "barrel" effect), and sometimes
tangential (right image). Image from [Ricolfe-Viala2010].

2.3.2 Calibration

2.3.2.1 The Calibration Problem

Camera calibration, also known as resectioning, consists of determining both intrinsic and
extrinsic parameters of the camera. Extrinsic parameters are especially important to obtain for
3D reconstruction, which involves knowing the position of each camera. Intrinsic parameters can
be determined at any time, however extrinsic parameters depend on the camera positions at the
moment of capture, which involves that it is complicated to retrieve them afterwards – although
we proposed a method to address this issue in Chapter 6.

The intrinsic matrix is composed of 4 unknowns fpu, fpv, cpu, and cpv, while the extrinsic
matrix has 3 parameters of translation, and 9 of rotation. However, the given representation of the
rotation matrix is not minimal, and can be reduced to 3 parameters, for example with the Euler-
Rodrigues formula [Gallego2015]. Assuming no skew and no distortion, this amounts for a total
of 10 unknowns. These can be determined by matching a number of points of known position in
the world reference frame, to their corresponding coordinates in the image.
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2.3.2.2 Direct Linear Transform (DLT) of Calibration Equations

Considering P1,P2,P3 the rows of the projection matrix P, the relation between image points
and their 3D coordinates (see Equation 2.16) can be written as [Hartley2003] :

ZC×


up

vp

1


3×1

=

 P


3×4


XW

YW

ZW

1


4×1

=


−→
P1
−→
P2
−→
P3


3×4

−→QW


4×1

(2.20)

Or equivalently: 
ZC up =

−→
P1 ·
−→
QW =

−→
QT

W ·
−→
PT

1

ZC vp =
−→
P2 ·
−→
QW =

−→
QT

W ·
−→
PT

2

ZC =
−→
P3 ·
−→
QW =

−→
QT

W ·
−→
PT

3

(2.21)

We can reduce the system to two equations, and eliminate the scale factor ZC:{ −→
QT

W ·
−→
PT

1 −up
−→
QT

W ·
−→
PT

3 = 0
−→
QT

W ·
−→
PT

2 − vp
−→
QT

W ·
−→
PT

3 = 0
(2.22)

Which can be written as:

−→QT
W

−→
0T −up

−→
QT

W
−→
0T

−→
QT

W −vp
−→
QT

W


2×12


−→
PT

1
−→
PT

2
−→
PT

3


12×1

=

0

0


2×1

(2.23)

This operation, called Direct Linear Transform (DLT) [Sutherland1974], eliminates the ZC

scaling factor, and rewrites the system in a form that allows for a resolution with linear methods.
The system is composed of two equations, for 10 unknowns. Hence, it can be solved analytically
with 5 corresponding image and 3D points, assuming that they are perfectly measured. This is
never the case, and an approximate resolution with more points is preferred. A good rule of thumb
is to measure 5 times as many points as needed, and thus to measure 25 points at least. This is
classically done by using a checkerboard pattern.
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2.3.2.3 Camera Calibration from One Single Image of a Checkerboard

The following approach is called the DLT method. Assuming that the checkerboard is used
to set the origin of the world frame, the ZW coordinates are set to 0, and XW and YW coordinates
of each corner can be inferred from the dimensions of the squares. As a result, 3D coordinates
of corners are known. Their 2D coordinates on the image can also be automatically detected
with a subpixel accuracy, for example with the OpenCV function findChessboardCorners() [Brad-
ski2000], which first detects edges [Canny1986], then straight lines, and then intersects the lines to
obtain corner locations. Hence, 2D corners coordinates are also known. Considering M measures
of matching 3D to image points, the DLT system in Equation 2.23 has now 2M equations, for 10
unknowns still: 

−−→
QT

W1
−→
0 −up1

−−→
QT

W1
−→
0

−−→
QT

W1 −vp1
−−→
QT

W1
...

...
...

−−→
QT

WM
−→
0 −upN

−−→
QT

WM
−→
0

−−→
QT

WM −vpN
−−→
QT

WM


2M×12


−→
PT

1
−→
PT

2
−→
PT

3


12×1

=



0

0
...

0

0


2M×1

(2.24)

This system is now overdetermined. As it can be written in the homogeneous form A−→X =
−→
0 ,

a linear-eigen pseudo-solution can be found [Hartley2003] by using Singular Value Decomposi-
tion (SVD) [Golub1971] (See Algorithm 2). In order to fully determine P, it first needs to be
normalized, then the least-square solution needs to be found, and then it can be denormalized.

Once the projection matrix P has been found, it needs to be decomposed into intrinsic and
extrinsic parameters, in the form:

P = K H
= K (R T)

=

 K R3×3 KT3×1


(2.25)

K is an upper-triangular matrix, and R is orthogonal by virtue of being a rotation matrix (RT =
R−1). Hence, K and R can be found with an RQ-decomposition (derived from QR-decomposition)
from the first 3× 3 block of P. This is done with Givens rotations in OpenCV, and will not be
detailed here: see [Bradski2000, Hartley2003] for more details. Then, finding

−→
T from the last

column of P is trivial. This decomposition can be done in OpenCV with the decomposeProjec-
tionMatrix(). However, one needs to bear in mind that this decomposition is not unique. Forcing
fpu and fpv to be positive solves this issue, providing that the camera and image axes point in the
same direction.
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Algorithm 2 Linear-eigen pseudo-solution of the homogeneous system A−→X =
−→
0

Let A be a rectangular matrix of size 2M×N, composed of real or complex coefficients, and−→
X be a vector of size N. The objective is to solve:

A−→X =
−→
0 (2.26)

If 2M > N, then the system is overdetermined, but a least-square pseudo-solution−→
X∗ = argmin(A−→X ) can be found.

1: A can be factorized by Singular Value Decomposition (SVD):

A = U S VT (2.27)

with U an orthonormal basis of size 2M×2M, S the rectangular diagonal matrix of A of size
2M×N, filled with its singular values σ1, . . . ,σ2M, and V an orthonormal basis of size N×N.
U, V, and S can be efficiently computed by the Python function numpy.linalg.svd().

2:
−→
X∗ can be expressed as a linear combination of basis vectors:

−→
X∗ = V−→α , (2.28)

with −→α an undetermined vector of size N.
3: A
−→
X∗ is close to zero where its integral 1

2(A
−→
X∗)2 reaches its minimum.

(A
−→
X∗)2 = (A

−→
X∗)T (A

−→
X∗)

= (−→α T VT VSUT )(USVT V−→α )

=−→α T S−→α
= ∑

i∈[1,N]

α
2
i σ

2
i

(2.29)

which is minimum when all α factors are set to zero, except for the factor of the smallest
singular value σ .

4: Assuming that σmin = σN , then (A
−→
X∗)2 is minimum when all αi are null, except for αN .

(A
−→
X∗)2

min = αNσN (2.30)

and from equation 2.28:

−→
X∗ = V−→α =


V11 . . . V1N

...
...

VN1 . . . VNN




0
...

0

αN

= αN


V1N

...

VNN

 (2.31)

5: Hence,
−→
X∗ is solved up to a scale factor αN . The full system can be determined by imposing

one arbitrary constraint, for example ||
−→
X∗||= 1.
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2.3.2.4 Camera Calibration from Several Images of a Checkerboard

In practice, a more accurate method would use more than one single image of a checker-
board. It would also estimate distortion coefficients. A classic approach is the one proposed
by [Zhang2000]. It can be separated into 2 steps: first, initializing calibration parameters with a
DLT method similar to the above-mentioned. Second, refining intrinsic, extrinsic, and distortion
parameters by using several images of the checkerboard taken from various view points. This is
treated as a non-linear optimization problem, solved by the Levenberg-Marquardt algorithm [Mar-
quardt1963,Moré1978] (see next section on inverse kinematics for more details on the algorithm).
The objective function that needs to be minimized is the reprojection error for all M points on each
N checkerboard images, defined as such:

∑
i∈[1,N]

∑
j∈[1,M]

||
−−→
qi j −

−−−−−−−−−−−−−−−−→
q̂i j(K,k1,k2,

−→
Ri ,
−→
Ti ,
−→
Q j) ||2 (2.32)

The reprojection error is the Euclidian distance between the detected 2D point −→qi j, and
−→
q̂i j, the

estimated projection of the 3D point
−→
Q j. Projecting 3D points on the 2D plane will be addressed

in the next section on Triangulation. In any case,
−→
q̂i j is dependent on fixed intrinsic parameters

(K matrix, distortion coefficients such as k1 and k2, as well as others if needed), on extrinsic pa-
rameters depending on the position of the camera when taking each checkerboard image (here, the
rotation is expressed as a Rodrigues vector of size 3 [Gallego2015]), and on each 3D checkerboard
point. This can be done in OpenCV with the function calibrateCamera(), which takes matching 3D
and 2D points as input, and returns extrinsic parameters for each image view, as well as intrinsic
parameters and distortion coefficients.

2.3.2.5 Camera Calibration with a Wand

In biomechanics, numerous cameras are usually needed, in order to obtain accurate 3D recon-
struction in spite of occlusions. Hence, cameras are often placed around the subject. This can be
problematic for the determination of a common frame of reference with a checkerboard, since it
needs to be observed by all cameras simultaneously. When laying flat in the center, the checker-
board is potentially positioned at a long distance from the camera, and oriented at a challenging
angle. This makes it hard for it to be detected accurately, which is consequently susceptible to
deteriorate extrinsic calibration.

On the other hand, spherical markers placed on a wand are more likely to be detected by all
cameras simultaneously, regardless of their position and orientation in space. However, they only
represent either a single point, or a 1D length if they are placed at both extremities of a wand.
A planar object like a checkerboard, on the contrary, is sufficient to determine a 3D coordinate
system. This implies that using a wand does not allow for direct 2D image point to 3D coordinate
correspondences. Hence, 3D positions also need to be optimized, which involves calibrating all
cameras together instead of one by one. This has a few implications: first, cameras need to be
synchronized, and then, more parameters have to be optimized, which tends to make this method
less stable. It should also make the optimization extremely computationally intensive. Luckily,
one can take advantage of the sparsity of the Jacobian of the objective function, which allows for
considerable computation savings. This method, called Sparse Bundle Adjustment (SBA), will
not be described in details, but extensive explanations can be found in [Lourakis2009].
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In short, this calibration problem is solved by using a sparse variant of the Levenberg-Marquardt

algorithm. The estimated
−−−−−−−→
q̂k j(
−→ak ,
−→
b j ) point is dependent on each 3D point parametrized by

−→
b j , and

on each cameras image parametrized by −→ak . The main difference with the objective function used
in the checkerboard approach, is that this one is minimized over all M points of all K images from
all cameras, instead of for each camera independently. In order to save resources, the projection is
only calculated if the point j is actually visible in image k.

∑
k∈[1,K]

∑
j∈[1,M]

νk j ||
−−→
qk j −

−−−−−−−→
q̂k j(
−→ak ,
−→
b j ) ||2, with νk j =

{
1 if point j detected by image k
0 if unseen

(2.33)

2.3.2.6 In Practice

Both checkerboard Zhang and wand SBA methods show similar residual errors, of the order
of a millimeter in a roughly 4× 2× 1.5 m3 capture volume [Pribanić2009, Silvatti2012] (see Ta-
bles 2.1). This is better than the classic DLT approach. Nonetheless, the wand approach does not
estimate distortion coefficients as accurately as the checkerboard method. If a fisheye or a wide
lens is used, the checkerboard method should be favored.

Unlike a checkerboard, wand points are visible from all angles. Moreover, the wand method
has the advantage of estimating the relative position of all cameras together, and then setting the
global coordinate system with another object. This represents an additional step, and it implies
that cameras are synchronized, although it also means that the reference object does not need to
be visible by all cameras. Conversely, with the checkerboard approach, all cameras are calibrated
independently: if the checkerboard representing the global origin cannot be detected in a certain
viewpoint, the corresponding camera cannot be used for 3D reconstruction.

Nevertheless, the wand approach also optimizes over more parameters, which makes it less
stable and involves a careful initialization, e.g., with an additional object of known position and
dimensions, or simply by reducing the number of parameters, e.g., by fixing intrinsic parame-
ters, which would have to be calibrated priorly. Moreover, while a checkerboard has a clearly
recognizable pattern, two points of a wand are more likely to be subject to false positives errors.

In practice, a wand is much less cumbersome and much easier to transport than a checkerboard,
especially for sports motion analysis where capture volumes can be large, and the checkerboard
size needs to be scaled accordingly. In fact, a wand is not even necessary, and it can be replaced
with the automatic detection of body segments by a 2D pose estimation model such as OpenPose
[Takahashi2018, Xu2021, Liu2022a]. This is, however, less accurate. The wand method is widely
used by all commercial software solutions, such as Qualisys [Qualisys], as well as for free GUI
such as EasyWand [Theriault2014] in Matlab, or its Python version, Argus [Argus, Jackson2016].
These are free, but not open-source. However, SBA is not implemented in OpenCV, and there is
actually no widely supported Python version of the algorithm. Lastly, autocalibration procedures
are being developed, which usually consist of automatically tracking features of interest in images,
matching them across camera views, and then estimating intrinsic and extrinsic parameters in a
method similar to SBA [Faugeras1992, Hartley2003]. This approach is promising, but it is still in
its infancy, and will not be described.

Other options, explored in Chapter 6, would be to compute intrinsic and extrinsic parameters
independently. Intrinsic parameters and distortion coefficients can be calculated an any convenient
moment, since they are in theory constant for a given camera. This can be done with a checker-
board, either with OpenCV raw coding, or by using a GUI like Argus [Argus]. On the other hand,
extrinsic parameters depend on the camera positions: they need to be computed upon every new
capture setting. One way to do this consists of performing an extrinsic calibration on the spot
with a wand, with fixed intrinsic parameters. Another option, if wand calibration is not possible,
is to use a method analogous to Zhang’s, with any 3D object of known dimensions, large enough
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Issue Checkerboard calibration [Zhang2000] Wand calibration (SBA) [Lourakis2009]

Accuracy ≈ 1 mm
≈ 1 mm,

unless large distorsions (e.g., fisheye)

Transportation &

manipulation
Large & cumbersome Lightweight & foldable

Availability Open-source (e.g., OpenCV)
Mostly commercial (e.g., Qualisys), or

freeware but not open-source (e.g., Argus)

Detection
Recognizable pattern

but sensitive to orientation

Sensitive to false positives

but not to orientation

GCS estimation
All cameras need to detect the reference

object (which is sensitive to orientation)

Not all cameras need to detect it, since

camera positions known relative to each other

Optimization robustness Robust
Need for careful initialization or

reducing on parameters number

Computational cost A few seconds A few seconds

Table 2.1: Comparison of the main two approaches for accurate camera calibration: with a
checkerboard [Zhang2000], or with a wand [Lourakis2009]. Not that some hybrid approaches
exist, e.g., those which use a checkerboard for intrinsic calibration, and a wand for extrinsic
calibration. SBA: Sparse Bundle Adjustment. GCS: Global Coordinate System.

to cover a substantial field of view for each camera. This would leverage a Perspective-n-Point
approach, which consists of a Levenberg-Marquardt optimization similar to Equation 2.32, but
with fixed intrinsic parameters [Marchand2015]. This can be done with the solvePnP OpenCV
function.
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2.3.3 Triangulation

After 2D points are detected on all cameras, and considering that camera positions, orien-
tations, and intrinsic properties are known, points can be reconstructed in the 3D space. This
procedure is called triangulation, although it is a slightly abusive use of the term in case more than
two cameras are used. In theory, the 3D point should lay at the intersection of all lines going from
the camera centers to the 2D points (referred to as epipolar lines). In practice, the 2D points are
not detected with perfect accuracy, and lines do not intersect (see Figure 2.15). The 3D point is
then approximated as the point that minimizes the distance between all epipolar lines.

Figure 2.15: The 3D reconstructed point can be approximated as the minimal distance between
epipolar lines, which pass by each camera center and 2D detected points.

2.3.3.1 Triangulation with a Linear-Eigen Approach

The most straightforward, and computationally efficient method, is a DLT approach, some-
times called homogeneous or linear-eigen [Hartley1997]. The procedure is slightly different from
the one previously detailed for calibration. Indeed, since 3D coordinates are now the unknown
variables, they are the ones factorized rather than the projection parameters. From Equation 2.20
applied to a point

−→
QW projected on one camera, we have:


ZC up =

−→
P1 ·
−→
QW

ZC vp =
−→
P2 ·
−→
QW

ZC =
−→
P3 ·
−→
QW

(2.34)

Which can be reduced as a system of two equations:

{
(
−→
P1 −up

−→
P3) ·
−→
QW = 0

(
−→
P2 − vp

−→
P3) ·
−→
QW = 0

(2.35)

Or:

−→P1 −up
−→
P3

−→
P2 − vp

−→
P3


2×4


XW

YW

ZW

1


4×1

=

0

0


2×1

(2.36)
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With C cameras, we obtain the following system of 2C equations:

−→
P1

1 −u1
p

−→
P1

3
−→
P1

2 − v1
p

−→
P1

3
...

−→
PC

1 −uC
p

−→
PC

3
−→
PC

2 − vC
p

−→
PC

3


2C×4


XW

YW

ZW

1


4×1

=



0

0
...

0

0


2C×1

(2.37)

This can be written in the form A−→X =
−→
0 , and thus a least-square solution can be found (See

Algorithm 2). Let V be the orthonormal basis of size 4×4 obtained by SVD of A, the algorithm
gives: 

XW

YW

ZW

1


4×1

= α4


V14

V24

V34

V44

 (2.38)

As a consequence, the 3D coordinates of the triangulated point are:

−→
QW =


XW

YW

ZW

1

=


V14/V44

V24/V44

V34/V44

1

 (2.39)

All points can be triangulated in a similar fashion, frame after frame. Since A is relatively
small and the procedure relies on linear algebra, this is very fast. However, it is not robust
to outliers. Other methods have been proposed, such as the Iteratively Reweighted MidPoint
method (IRMP) which looks the smaller distance between all epipolar lines [Yang2019], the L2
method which minimizes the sum of the squared reprojection errors [Marquardt1963,Moré1978],
or the L∞ method which minimizes the maximum reprojection error [Donné2015], or the Q-sweep
method which minimizes the median of the reprojection error, and thus is more robust to out-
liers [Zhang2017]. Among all of these, the linear-eigen is the fastest by at least an order of
magnitude, but the IRMP method may be an other good compromise in terms of speed and ac-
curacy [Chen2020b]. Some approaches also use a fast linear-eigen method, which is then refined
with a (much) slower learning approach [Tome2018].

Note that these approaches do not take distortions into account, and assume either that distor-
tions are negligible (or that the image has previously been undistorted), or that videos have been
priorly undistorted based on the coefficients found during intrinsic calibration [Jackson2016]. Al-
ternatively, some action cameras such as the GoPro 5+ offer a linear mode, which undistorts videos
on the fly upon capture.

Moreover, cameras not only need to share a 3D global reference frame, but also a common
time reference. Otherwise, the same frame risks relating to a different instant in the athlete’s
motion, in which case the 3D reconstruction would not make sense. This is classically done with
a wired hardware trigger, but other approaches use a flash, a sound, or a wireless signal such as
Wi-Fi, Bluetooth or GPS [GoPro]. In Chapter 6, we proposed another approach based on cross-
correlation of 2D feature speeds.
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2.3.3.2 Person Matching

In case of multi-person detection, an additional step needs to be undertaken prior to trian-
gulation: the 2D detected points of each person need to be matched across all views. A com-
mon approach consists of choosing one or two keypoint (e.g., the neck and the hip), and clus-
tering together the persons for whom epipolar lines cross at a small enough distance from each
other [Dong2019,Slembrouck2020,Kadkhodamohammadi2021]. This works well and efficiently,
unless an epipolar line passes through several people, in the case of a crowded scene for exam-
ple. In this case, it is possible to use more keypoints (or different keypoints) to solve ambiguities.
Other methods use a combinatory approach, slower but more robust, which tries out all possible
combinations, and minimizes the reprojection error [Bridgeman2019, Chen2020a, Pagnon2021].
Other procedures use a spatio-temporal neural network, which take advantage of the information
gathered in previous frames instead of working frame-by-frame [Raaj2019]. Lastly, when multiple
persons have been triangulated, they need to be tracked in time in order to avoid them swapping
from one frame to another. This can be done by setting a threshold on 3D keypoint speed, below
which a person is deemed to be correctly associated with the previous frame [Bridgeman2019].

2.3.3.3 Reprojection Error

The reprojection error is the distance between the projection (ûp, v̂p) of a triangulated keypoint
QW on an image, and its actual estimated 2D coordinates (up,vp). It can be used to jointly evaluate
the accuracy of the 2D pose estimation and of the 3D reconstruction. From Equation 2.35, we have:{ −→

P1 ·
−→
QW = ûp

−→
P3 ·
−→
QW

−→
P2 ·
−→
QW = v̂p

−→
P3 ·
−→
QW

(2.40)

Which leads to the coordinates of the reprojected point: ûp =
−→
P1 ·−→QW−→
P3 ·−→QW

v̂p =
−→
P2 ·−→QW−→
P3 ·−→QW

(2.41)

And then, with
−→
q̂p = (ûp, v̂p) and −→qp = (up,vp), the mean reprojection error of this point for all C

cameras can be calculated:

err =
1
C ∑

c∈[0,C]

||
−→
q̂p−−→qp||2 (2.42)

Again, this formulation does not take distortions into account, so it should be taken with
caution if wide lenses are used. Note that this formula is also used to calculate residual errors
from calibration. Instead of reprojecting triangulated keypoints, one reprojects the 3D calibration
points detected from a checkerboard or from a wand.

45



Chapter 2. From Computer Vision to Biomechanics

2.4 From 3D Pose Estimation to 3D Joint Kinematics

2.4.1 The Kinematics Problem

Joint kinematics is a problem which is addressed across multiple fields, including character
animation, robotics, biomechanics, or even chemistry (see Disambiguation). Each of them ap-
proaches the problem with a slightly different spirit. [Robertson2013] points out that joint kinemat-
ics has proven useful across many different sports for determining "optimal movement patterns,
attractor states, movement maturation, and likelihood of movement-related injury". However, re-
constructed 3D keypoint coordinates alone are not enough to provide an insightful understanding
of human motion. Unless some assumptions are made, one single roughly approximated keypoint
per joint can at best describe planar flexion/extension angles. Even if initial 2D keypoints were ac-
curately locating joint centers, this conceals any abduction/adduction or internal/external rotation
angles.

In order for its local coordinate system to be fully determined, a segment needs to be equipped
with at least 3 non-colinear markers (see Disambiguation). These 3 markers determine two base
vectors, the third one being calculated as their cross-product. The orientation of this base coor-
dinate system as regards to a reference one gives 3 Euler angles, commonly representing flex-
ion/extension, abduction/adduction, and internal/external rotation of a segment. Other represen-
tations exist such as quaternions, but they still require a minimum of 3 markers per segment.
Quaternions have the advantage that they are not subject to gimbal lock, however they don’t cor-
respond to any intuitive anatomical axis of rotatio;: hence, they are rarely used in the field of
biomechanics.

Now, a simplified full human body includes at least 14 segments. Consequently, at least
14× 3 = 42 markers should be required for full-body kinematics. And yet, OpenPose and other
pose estimation models only provide 25 keypoints, which are even reduced to 21 if eyes and ears
are excluded. This represents half of the minimum required. For this reason, it is important to find
indirect ways to obtain 3D joint angles, from seemingly incomplete information.

2.4.2 The Single-Body 6DoF Approach

The traditional method for obtaining 3D joint angles in biomechanics consists of computing
positions and orientations of all body segments independently: it is called the 6DoF (6 Degrees
of Freedom) free-body approach. The 6 degrees of freedom of a segment consist of 3 translations
and 3 rotations, which can be determined by a 3D frame of reference, which itself assumes that
there are at least 3 non-colinear markers per segment. This excludes from this paradigm most of
the current pose estimation models. However, as the biomechanics community make theirs the
concepts of learning-based keypoint estimation, other models with more complete labelling may
arise. Therefore, for the sake of completeness, this approach is broached below.

If only 3 markers are used per segment, the problem can be solved analytically and a closed-
form solution exists. The method is then called Direct Kinematics (see Disambiguation) [Lu1999].
The local reference frame of each segment can be calculated, and all inter-segmental rotations and
translations can be found, using trigonometric formulas.

In order for results to be consistent across subjects and across research studies, markers need
to be carefully positioned and to follow certain standards. One of the main standards is given
by the Vicon Plug-in Gait markerset for gait analysis [Davis III1991], or its successor Clinical
Gait Module 2 (CGM2), which has been implemented in Python as pyCGM2 [Leboeuf2019b].
Strong competitors are CAST [Cappozzo1995], or its successor IOR [Leardini2007], which are
implemented by the Visual3D software. For purposes more general than gait analysis, the Inter-
national Society of Biomechanics (ISB) proposes a standard for both lower and upper-body anal-
ysis [Wu2002,Wu2005] (see Figure 2.16). Among other solutions, KineticsToolkit provides some
open-source Python tools to carry out analysis according to the ISB standards [Chénier2021].
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Figure 2.16: A few carefully placed markers are enough to determine the tibia/fibula coordinate
system (XYZ) and the calcaneus coordinate system (xyz). Here, the ankle joint complex in the
neutral position [Wu2002].

If more than 3 markers are placed on the segment, the problem is overdetermined and needs
to be solved numerically. The 6DoF methods is then called Single-body Kinematic Optimization
(SKO), or Segmental Optimization (SO) [Lu1999]. In practice, such a redundancy is advised and
clusters of markers are commonly attached to body segments. It makes the analysis more robust
to Soft Tissue Artifacts (STA), to measurement inaccuracies, and to potential marker loss. Let M
be the number of markers of the considered segment, this segment best matches its target when all
of its initial marker coordinates

−−−−→
Xcurrent

m , rotated by a matrix R and translated of a vector
−→
T , are

close to their measured coordinates
−−−→
X target

m . Once the local reference frame has been determined
with one of the previously cited standards, minimizing the following objective function leads to a
more robust approximation of the rotation and translation of the considered segment:

∑
m∈[1,M]

|| R
−−−−→
Xcurrent

m +
−→
T −
−−−→
X target

m ||2 (2.43)

Each marker can be weighted with its confidence wm:

∑
m∈[1,M]

wm|| R
−−−−→
Xcurrent

m +
−→
T −
−−−→
X target

m ||2 (2.44)

One way to solve it involves SVD [Arun1987, Söderkvist1993] , see [Sorkine-Hornung2017]
for a step-by-step resolution. [Visual3D] provides a commercial interface for SKO, and OpenSim
can boil down to the same approach if 6 degrees of freedom are granted to all joints of the model.
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2.4.3 The Multi-Body Inverse Kinematics Approach

2.4.3.1 Principle

Another approach is inverse kinematics, which involves considering the human body as a
multi-body kinematic chain, referred to as a skeletal model. This chain is composed of segments
of known length, connected with well-defined joints, each allowing a certain amount of degrees
of freedom. Each segment is equipped with one or several markers, positioned at known segment
coordinates. The objective of inverse kinematics is to optimize the posture of a physically con-
sistent skeleton, scaled to each individual subject. More specifically, it aims to find the posture
that minimizes the difference between model markers and measured markers. This is typically
done by iteratively adjusting the joint angles of the model, until the model markers are as close as
possible to the measured markers. Inverse kinematics (IK) is sometimes called Multi-body Kine-
matic Optimization (MKO), or Global Optimization (GO) [Begon2018] (see Disambiguation). It
also represents the privileged approach to further compute joint moments, muscle activations, or
inverse dynamics in general.

Inverse kinematics was first used for robotics, where joints are simple and well-defined. The
typical problem consists of considering a redundant robot, which can reach one target with multi-
ple joint configurations. This makes it an underdetermined problem. The method was then adapted
for 3D animation applications, where visual coherence and fast computation matter more than ac-
curacy. In this case, instead of just looking after the end-effector, all body segments need to be
tracked. Hence, markers are usually even more numerous than the degrees of freedom, which
makes it an overdetermined problem. Both cases are solved by using the same iterative optimiza-
tion methods. The biomechanics community started to consider inverse kinematics as an alterna-
tive to the 6DOF one in the early 2000s, once human models became more thoroughly defined and
trustworthy, and once proper individual scaling procedures were proposed [Hicks2015].

Let the Cartesian coordinates (i.e., the positions) of M markers be
−→
X , and the generalized

coordinates (i.e., the degrees of freedom, see Disambiguation) of N joint angles be−→q . The forward
kinematic problem is expressed as

−→
X = f (−→q ), and the inverse kinematics one as −→q = f−1(

−→
X ).

However, f is not generally invertible in practice since it is calculated as a complicated sine and
cosine combination of −→q , and therefore non-linear. Hence, optimization methods need to be
leveraged.

The objective function to minimize computes the weighted sum of the squared distances be-

tween the target measured markers
−−−→
X target

m and the current model markers
−−−−−−−→
Xcurrent

m (−→q ) [Lu1999].

Each degree of freedom can be subject to angle limits such as −→q ∈ [
−−→
qmin

m ,
−−→
qmax

m ]. Therefore, it can
be expressed as:

∑
m∈[1,M]

||
−−−→
X target

m −
−−−−−−−→
Xcurrent

m (−→q ) ||2 (2.45)

with −→q ∈ [
−−→
qmin

m ,
−−→
qmax

m ]

With can be written in a matrix form:(−−−→
X target −

−−−−−−−→
Xcurrent(−→q )

)T (−−−→
X target −

−−−−−−−→
Xcurrent(−→q )

)
(2.46)

with −→q ∈ [
−−→
qmin

m ,
−−→
qmax

m ]

This problem becomes increasingly hard to compute as the number of degrees of freedom
increases. Consequently, iterative methods have to be employed. 3 main approaches coexist:
Jacobian methods such as the Levenberg-Marquardt algorithm, Quasi-Newton methods such as
the BFGS one, and Kalman filtering methods.
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2.4.3.2 Jacobian Methods and the Levenberg-Marquardt Algorithm

In the fields of robotics and character animation, inverse kinematics is classically solved by
Jacobian methods [Siciliano1990, Buss2004, Aristidou2018]. They consist of linearizing marker
coordinates around an initial guess on joint angles, and solving the resulting linear system.

Let
−→
qinit = (θ init

1 , . . . θ init
N )T be the N initial joint coordinates, and

−−−−→
X(
−→
qinit) =

(
x1(
−→
qinit),y1(

−→
qinit),z1(

−→
qinit)T ,x2(

−→
qinit)T , . . . zM(

−→
qinit)

)
the 3M marker initial coordinates.

A first order Taylor expansion of
−→
X around

−→
qinit yields:

x1(
−−→
qinit +∆

−→q )

y1(
−−→
qinit +∆

−→q )

z1(
−−→
qinit +∆

−→q )
...

zM(
−−→
qinit +∆

−→q )


3M×1

≈



x1(
−→
qinit)

y1(
−→
qinit)

z1(
−→
qinit)
...

zM(
−→
qinit)


3M×1

+



∂

−−−−−→
x1(
−−→
qinit)

∂
−→
θ1

· · · ∂

−−−−−→
x1(
−−→
qinit)

∂
−→
θN

∂

−−−−−→
y1(
−−→
qinit)

∂
−→
θ1

· · · ∂

−−−−−→
y1(
−−→
qinit)

∂
−→
θN

... · · ·
...

∂

−−−−−→
zM(
−−→
qinit)

∂
−→
θ1

· · · ∂

−−−−−→
zM(
−−→
qinit)

∂
−→
θN


3M×N

·


∆θ1

∆θ2
...

∆θN


N×1

(2.47)
Or more formally, with J the Jacobian matrix of the partial derivatives of

−−−→
X(−→q ) :

−−−−−−−−−→
X(
−→
qinit +∆

−→q )≈
−−−−→
X(
−→
qinit)+J ∆

−→q (2.48)

The goal is to find an
−−−−−−−→
Xcurrent(−→q ) =

−−−−−−−−−→
X(
−→
qinit +∆

−→q ) which minimizes the objective function 2.46.
The function can then be expressed as:(−−−→

X target −
−−−−→
X(
−→
qinit)−J ∆

−→q
)T (−−−→

X target −
−−−−→
X(
−→
qinit)−J ∆

−→q
)

(2.49)

Or more simply, with ∆
−→
X =

−−−→
X target −

−−−−→
X(
−→
qinit), as:

(∆
−→
X −J ∆

−→q )T (∆
−→
X −J ∆

−→q ) (2.50)

It is minimum when its gradient is annulled, i.e., when:

−→
0 ≈ ∂

∆
−→q

(
(∆
−→
X −J ∆

−→q )T (∆
−→
X −J ∆

−→q )
)

=−JT (∆
−→
X −J ∆

−→q )+(∆
−→
X −J ∆

−→q )T (−J)

=−2JT (∆
−→
X −J ∆

−→q )

(2.51)

Which is when:
∆
−→
X ≈ J ∆

−→q (2.52)

Each marker can be weighted more or less according to its level of trust. Typically, markers
placed on large muscle or fat tissues (such as thighs)are subject to strong STA, and will therefore
be weighted less than those placed on bony landmarks (such as ankle malleoli). Hence, marker
coordinates will be multiplied by the diagonal matrix of weights W [Meredith2005]:

W ∆
−→
X ≈ J ∆

−→q (2.53)

Now, the change in joint angles needed to reach the target from the current position can be
found by calculating ∆

−→q ≈ J−1W ∆
−→
X . However, J is typically not invertible. Several optimiza-

tion approaches can be used to approximate this inversion. For all of them, the idea is to evaluate
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the marker coordinate error ∆
−→
X , then approximately calculate the corresponding joint angle error

∆
−→q and correct it, then reevaluate the marker coordinate error, etc. until it stays below a satisfying

threshold.

1. Using the Jacobian transpose JT to roughly approximate the trend, with a small relaxation
factor α (which can be optimally calculated [Buss2004]):

∆
−→q ≈ αJT W ∆

−→
X (2.54)

This is analogous to the gradient descent method [Nocedal1999]. JT is quick and easy to
compute, but the algorithm converges slowly, and pose results are sometimes unsatisfying.

2. Using J+, the Moore-Penrose pseudo-inverse of J. Left-multiplying by JT gives:

JT W ∆
−→
X ≈ JT J ∆

−→q (2.55)

JT J has full rank, so it is invertible:

∆
−→q ≈ (JT J)−1JT W ∆

−→
X , i.e.,

∆
−→q ≈ J+ W ∆

−→
X

(2.56)

This is analogous to the Gauss-Newton method [Nocedal1999]. This method converges faster,
but is sensitive to bad initial estimates and unstable near singularities of J+, i.e., when ∆

−→q
becoming unreasonably for a small ∆

−→
X shift. Moreover, the pseudo-inverse can be expensive

to compute. One way to mitigate this drawback consists of calculating it with an SVD. The
Jacobian can be decomposed as J = U S VT (see Algorithm 2). Then:

J+ = (JT J)−1JT

= (V ST
��UT

�U S VT )−1 V ST UT

= (V ST S VT )−1 V ST UT

= V(ST S)−1
��VT

�V ST UT , since V−1 = VT

= V S+UT

(2.57)

And
∆
−→q ≈ V S+UT W ∆

−→
X (2.58)

3. Using the Levenberg-Marquardt (LM) algorithm [Moré1978], also called the Damped Least-
Square (DLS) method, and slightly adjusting Equation 2.56:

∆
−→q ≈ (JT J+λ

2I)−1JT W ∆
−→
X (2.59)

This is an intermediary method, which is stable near singularities and robust to bad initial
estimates like the gradient algorithm when the damping factor λ is large, and converges fast
like the Gauss-Newton algorithm when λ is small. λ has to be chosen carefully, but can also
be adjusted after each iteration. Again, the matrix is costly to invert, but it is possible to use
SVD to decrease the computational complexity. One can demonstrate that:

(JT J+λ 2I)−1JT ≈ V S+(SST +λ
2I)︸ ︷︷ ︸ UT

= V E+ UT
(2.60)

And
∆
−→q ≈ V E+UT W ∆

−→
X (2.61)
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In plain words, the gradient descent method iteratively searches the direction of steepest gra-
dient, until the objective function reaches a minimum where the gradient is null; while the Gauss-
Newton method linearizes the problem, takes advantage of the sum-of-squares formulation of the
objective function, and directly finds where the gradient vanishes; and the Levenberg-Marquardt
method is a compromise between the two.

Jacobian-based methods use the result of the previous frame as an initial guess, which is ar-
guably close to the desired solution. Hence, they are generally fast and can be used in real-time
in 3D animation software applications. However, they can produce oscillation motion with dis-
continuities and jerky movements, especially near singularities, and tend to be less precise than
Quasi-Newton methods [Aristidou2018]. Moreover, joint limits are not straightforward to take
into account, and such constraints tend to slow the convergence rate and to lead to poorer ac-
curacy [Aristidou2018]. The Levenberg-Marquardt method is implemented in the open-source
softwares Pyomeca [Martinez2020] with the Biorbd library [Michaud2021], [Pinocchio, Carpen-
tier2019], CusToM [Muller2019], as well as in Visual3D.

2.4.3.3 Quasi-Newton Methods and the BFGS Algorithm

In the field of biomechanics, inverse kinematics is usually dealt with more general Quasi-
Newton methods. These methods don’t linearize the objective function, and solve it as a more
general non-linear minimization problem, which is not restricted to sum-of-squares objective func-
tions. Let us call h(−→q ) be the objective function 2.46 to minimize. A second order Taylor expan-
sion of h around −→q is:

h(−→q +∆
−→q )≈ h(−→q ) +

−−−−→
∇h(−→q )T

∆
−→q +

1
2

∆
−→q T

∇∇∇
222hhh(((−→q ))) ∆

−→q (2.62)

Where
−−−−→
∇h(−→q ) is the gradient vector of h with respect to−→q , and ∇∇∇

222hhh(((−→q ))) its Hessian matrix. This
functional is minimum when its gradient (with respect to ∆

−→q ) is null.

−→
0 ≈ ∂

∆
−→q

(
h(−→q +∆

−→q )
)

≈ ∇h(−→q )T +∆
−→q T

∇∇∇
222hhh(((−→q )))

(2.63)

So:
∆
−→q =−

(
∇∇∇

222hhh(((−→q )))
)−1

∇h(−→q ) (2.64)

Hence, this method is similar to the Gauss-Newton one, in the sense that it directly searches
for where the gradient vanishes. However, it does not take advantage of the sum-of-squares for-
mulation of the problem, and requires inverting its Hessian matrix of second derivatives, which
is very computationally expensive. In Quasi-Newton methods, the Hessian is approximated by a
matrix B, which is updated after each iteration. One of the most common approximation method is
the BFGS one, found independently by 4 different researchers in the same year, 1970. Its precise
formulation can be found in [Nocedal1999].

More specifically, in the field of inverse kinematics, the L-BFGS-B variant is often used. This
is a limited-memory of the BFGS method, which uses a sparse approximation of the Hessian in-
stead of a dense one, further adapted for handling joint limits by gradient projection [Byrd1995,
Zhao1994]. Since the Jacobian is not inverted, these methods return the smoothest and most accu-
rate results, and stay free from any singularity issues like with the Levenberg-Marquardt method.
However, they are still more computationally costly than Jacobian methods, and are not as straight-
forward to implement [Aristidou2018]. They are used in the open-source software applications
OpenSim, and in Visual3D. Pyomeca [Martinez2020] relies on the OpenSim Python API to pro-
vide such a method, via its library Pyosim. CusToM uses a Sequential Quadratic Programming
method, which is a generalization of constrained Newton ones. It is slower, and arguably not
necessary for simple bound constraints.
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2.4.3.4 Kalman Filtering Methods

Another lesser-known class of inverse kinematic methods is the Kalman filter, which does not
take its roots from the fields of robotics, nor computer animation, nor biomechanics, but from au-
tomation. In fact, it was precisely designed to mitigate the effect of noisy measurement data on the
estimation of variables of interest [Kalman1960]. Kalman filters don’t involve the definition of any
objective function, however they take advantage of prior knowledge of both the evolution of kine-
matic variables along time (namely, the process model), and of the kinematic chain (namely, the
measurement model). The process model concerns the change of state variables from one frame
to another, as well as the magnitude of imprecision on their predicted evolution. State variables
are primarily joint angles, but they can also include their derivatives up to an arbitrary number (al-
though [De Groote2008] showed that little improvement was brought when going above the 2nd
degree), marker coordinates, IMU inputs, etc. The measurement model defines the relationship
between marker positions and state variables, as well as the magnitude of errors (due to STA for
example).

In short, an inverse kinematics Kalman filter will proceed in two steps. It will first predict
the angular joint parameters of the next frame thanks to the process model. Then, it will update
this prediction, by deducing the corresponding marker positions thanks to the process model, and
comparing these to the actual measured marker coordinates. This difference will be weighted by
the Kalman gain, computed at each frame, and added to the initial joint parameter estimate.

Prediction phase:
Let −→q = (θ1, θ̇1, θ̈1,θ2, · · · , θ̈N)

T
1×3N be the joint angle coordinates, velocities, and accelera-

tions, called the state vector. The process model is expressed as:

−−−−−→
q(t +∆t) = f

(−−→
q(t)

)
+
−−→
η(t) , with

−−→
η(t)∼N (0, Qt) (2.65)

−−→
η(t) is the process noise, assumed to be a zero-mean Gaussian distribution with covariance Qt .
Considering that the mean process noise is null, an estimate for

−−−−−→
q(t +∆t) is:

−−−−−→
q̂(t +∆t) = f

(−−→
q(t)

)
(2.66)

As f is a combination of multiple sine and cosine functions, it is not linear. Let n refer to any of
the N joint angles, a second order Taylor expansion can help linearize the problem:

θ̂n(t +∆T )
ˆ̇
θn(t +∆T )
ˆ̈
θn(t +∆T )

≈


1 ∆t ∆t2/2

0 1 ∆t

0 0 1




θn(t)

θ̇n(t)

θ̈n(t)

 (2.67)

Or more succinctly, predicted joint angular parameters are:
−−−−−→
q̂(t +∆t) = F

−−→
q(t) (2.68)

The covariance of prediction P̂t+∆t is also calculated at this stage. As it is lengthy to expose and
slightly convoluted, we won’t detail it here (see [Bonnet2017b] for further details on its determi-
nation).

Update phase:
Let
−→
X = (x1,y1,z1,x2, · · · ,zM)T

1×3M be the measured marker coordinates, called the output
vector. The measurement model is expressed as:

−−−−→
X(
−−→
q(t)) = h

(−−→
q(t)

)
+
−−→
ν(t) , with

−−→
ν(t)∼N (0, Rt) (2.69)
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−−→
ν(t) is the zero-mean measurement noise of covariance Rt . The update phase starts with com-
puting the difference between measured marker positions

−−−→
X target , and those deducted from the

measurement model:
∆
−−−−−−→
X(t +∆t) =

−−−−−−−−−→
X target(t +dt)−h

(−−−−−→
q̂(t +∆t)

)
(2.70)

The covariance of error St+∆t is more complicated to compute: as h is non-linear, it has to be
approximated with a first order Taylor expansion. Both prediction and error covariances P̂t+∆t and
St+∆t are involved in the computation of the Kalman gain Kt+∆t .

Finally, the updated joint parameter estimates are:

∆
−−−−−→
q(t +∆t) =

−−−−−→
q̂(t +∆t)+Kt+∆t ∆

−−−−−−→
X(t +∆t) (2.71)

A low Kalman gain means that the initial estimate can be trusted, and a higher gain places more
weight on marker measurements.

The Kalman filter (KF) deals with linear problems, and joint kinematics is highly non-linear.
Other methods have been derived to broadens its usage to non-linear cases, such as the Extended
Kalman Filter (EKF), which was first introduced for joint kinematic estimation by [Cerveri2003].
The Local Marker Estimation filter (LME) compensates for Soft Tissue Artifacts (STAs) [Cerveri2005,
Bonnet2017b]. The Kalman Smoother (KS) filters both ways, from first to current frame, and from
last to current frame [Rauch1965]. It can also be extended in the non-linear case, and is then called
the Extended Kalman Smoother (EKS). It results in smoother and more accurate estimation of joint
kinematic variables [De Groote2008]. However, this is at the cost making the analysis off-line,
while Kalman filters have the potential of being used in real-time.

Kalman-based methods take advantage of prior knowledge on the expected evolution of joint
variables in time, on the kinematic chain, and they also take noise into account. If fact, it has
been demonstrated that the Levenberg-Marquardt algorithm is a specific case of the extended
Kalman filter, which results under simplifying assumptions [Bell1994, Horvath2016]. Conse-
quently, Kalman-based methods have been shown to be more accurate in general than Jacobian-
based and Quasi-Newton methods [Cerveri2005, De Groote2008, Bonnet2017b], although some
studies found similar results [Fohanno2014]. In any case, they are especially accurate for the es-
timation of velocities and accelerations [Fohanno2014], since they are directly estimated by the
filter, without further differentiation which would introduce additional errors. This is especially
interesting for the study of forces, which can be estimated based on accelerations. They are more
robust to decreased number of markers [Fohanno2010]. With the exception of KS, they can also
work in real time [Fohanno2014].

However, since joint kinematic variables are estimated from the previous frame, a Kalman
filter requires an initial guess on joint angular coordinates, velocities, accelerations, and covari-
ances. Initial velocities and accelerations are usually assumed to be zero, but this is not always the
case, especially when capturing sports movements. Moreover, the setup of the covariance factors
is still an open issue. According to [Cerveri2005], those associated to the measurement (marker
coordinates) need to be at least 2 orders of magnitude lesser than the ones of the process (joint
parameters). As a reference, Biorbd [Michaud2021], a library used by Pyomeca [Martinez2020],
uses a process factor σ2

p = 10−10 and a measurement factor σ2
m = 10−5, while a fork of Open-

Sim [De Groote2008] takes default standard deviations of σp = 15 and σm = 0.03.
Similarly to Jacobian methods, and unlike with Quasi-Newton ones, most types of constraints

are not straightforward to implement. Constraints on the number of degrees of freedom are natu-
rally introduced with the definition of the measurement model [Halvorsen2008]. Hard joint limit
constraints can be implemented by saturating the Kalman gain if the first joint estimate is not
within limits, and then by recomputing the estimation [Bonnet2017a]. Soft closed-loop constraints
can be handled by introducing penalties near joint limits [Fohanno2014].
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An Extended Kalman Filter is implemented in Pyomeca with its Biorbd library [Michaud2021],
and a Kalman Smoother has been proposed in a fork of OpenSim [De Groote2008].

2.4.3.5 Other Inverse Kinematic Methods

Other methods have been proposed, which can be divided into the heuristic and the learned
ones. Heuristic methods consist of trying to reach targets by considering only one joint at a
time, instead of minimizing an objective function on marker coordinates or filtering joint angle
evolution.

Cyclic Coordinate Descent (CCD) consists of minimizing the distance between the end-effector
and the target, by freeing one degree of freedom after another [Wang1991]. It is very fast and
simple to implement, including with joint limits [Welman1993]. However, it results in abrupt
movements, and the last joints can be unnaturally twisted. It is not really applicable beyond a few
joints, nor if numerous markers are used, instead of just an end-effector. CCD is not usually con-
sidered suitable for biomechanical analysis, and currently remains primarily limited to the field of
computer animation [Kulpa2005].

Forward And Backward Reaching IK (FABRIK) starts by moving the end-effector directly on
the target, and adjusts the positions of other joints so that they respect segment dimensions, and
remain close to their previous position. The same maneuver is then reproduced, starting from the
first joint, and repeated until success [Aristidou2011]. It is fast, robust, supports joint limits, and
can be used with multiple end-effectors. However, each joint is treated independently and the
algorithm does not have a global overview of the system, which can lead to a deadlock situation
in some cases. This has been partly solved by introducing random pertudbations [Aristidou2016].
Overall, heuristic methods are very fast, but can be bear unacceptable limitations, especially with
complex models and when accuracy is the main concern.

Learned approaches are data-driven rather than knowledge-driven. Instead of striving to search
for the posture which matches marker positions and constraints the best, they leverage neural
networks, using the numerous available databases gathered along time. Among them, deep-
learning methods have lately been integrated for human pose reconstruction. Many approaches
exist, most of them specifically estimating angle outputs from a target coordinate input [Mor-
datch2015, Du2015]. However, these methods usually require prior training, are computationally
intensive to use, and can only work properly if they are used on data which are sufficiently close
to the training dataset. They are still in their infancy and to our knowledge, have not been tested
for biomechanical applications yet.

2.4.4 6DoF vs. Inverse Kinematics

Ultimately, the main difference between the free-body 6DoF approach and the multibody in-
verse kinematic one boils down to the idea that in order to conduct a 6DoF analysis, one needs
to trust markers, while for IK one needs to trust the model (see Table 2.2). [Moniz-Pereira2014]
found that for the elderly, RMSD between both approaches remained under 5° for all lower-body
joints, except for hip and ankle internal/external rotation, respectively 12° and 7°. For children
with cerebral palsy, results were similar, and as long as segments bore the same anatomical frames
of reference, the RMSD stayed under 4°, aside from hip and ankle internal/external rotation which
still remained under 6°. For the knee analysis of American football players, [Robinson2013] found
up to 11° RMSD for the abduction/adduction angle, and 7° for internal/external rotation. How-
ever, both approaches classified the same athletes as being at risk injury. Hence, in a lot of cases,
results are comparable. Note that due to the dearth of available gold-standard data, it is difficult to
compare the accuracy of both approaches aside from computer simulated experiments.

If the 6DoF approach is used, one single trained operator needs to position markers, very
accurately and consistently. At least 3 markers need to be tracked on each segment. The effect of
Soft Tissue Artifacts is noticeable, even when their local frame coordinates are optimized by using
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more than 3 markers per segment. However, this approach is not computationally intensive and can
be run in real-time. It does not require any joint center calculation, individual scaling procedure,
nor any geometric assumption. In fact, it is not based on a model, which is an advantage when
studying a population that is pathological or outside the norms. The 6DoF approach can also
render joint dislocations, which is desirable if joint laxity is a parameter that is specifically of
interest. On the other hand, this comes with the drawback that segments can interpenetrate each
other, or even change length.

If the inverse kinematic method is used, a model first needs to be designed. Although we just
glanced over this aspect, it is not trivial. It involves correctly modeling joints, with the appropriate
degrees of freedom or coupling relationships, and requires scaling the model to each individual
person. This is usually done by adjusting segments dimensions according to distances between
joints, and thus joint center coordinates need to be estimated. Joint centers are often defined as the
midpoint between anatomical markers for ankles, knees, elbows, and wrists, but these methods are
not always accurate, and sometimes not workable at all, for instance in the cases of the hip or the
shoulder joint. In these cases, functional methods such as SCoRE for ball joints [Ehrig2006] or
SARA for hinge joints [Ehrig2007] are leveraged. These methods require the subject to perform a
set of predefined movements prior to the actual capture, which is time-consuming. Moreover, the
mere concept of joint centers is also not always pertinent, especially for the shoulder girdle or for
the knee, which allow for both rotations and translation motions [Seth2010].

The IK approach assumes that all human beings have similar joint mechanics, based on a priori
constraints inferred from non-exhaustilve observations. Hence, it can be difficult to implement for
pathological populations nor on unusual body structures: for instance, joint laxity cannot be qual-
ified. Hence, the model must be carefully designed before granting trust to results [Hicks2015].

On the other hand, inverse kinematics has been reported to be more accurate than 6DoF, as it is
less sensitive to STAs as it addresses them globally, and as it does not suffer from interpenetration
or length changes. It reduces the number of degrees of freedom to solve, and thus of markers
needed [Slater2018]. Note that inverse kinematics is equivalent to 6DoF if all joint degrees of
freedom are released. Using a model can also be the starting point for further analysis, such as
muscle activation for example [Robinson2013, Kainz2016].

This approach is generally computationally intensive, and can only be run in real-time if the
model is simple. This issue is not as critical nowadays as it used to, as computing capabilities are
growing exponentially with time, according to Moore’s law [Moore1965], and as algorithms have
been improved to decrease their computational complexity.

[Aristidou2018] states that the 6DoF approach should be favored if the model is simple, with
little risk of STA, or if looking at pathological individuals. A standard model may not fit well to
these persons, and some clinically relevant movements such as joint dislocations could be missed.
These approaches are also much faster to compute, and can be conducted in real-time. On the
other hand, the IK approach should be favored with a more general population, especially if their
body fat or muscles are considerable enough to cause large STA.

The most exact IK methods are the Kalman methods, and they are also fast. However, they
are difficult to initialize, and can diverge if the initial estimates are not accurate enough. In par-
ticular, there is no consensus on the values of covariances. Jacobian methods such as Levenberg-
Marquardt are also fast, generally robust on most joint configurations, but they are also subject to
divergence around singularities. Consequently, in the field of biomechanics, the most used meth-
ods are the Quasi-Newton ones, such as L-BFGS-B which is implemented in OpenSim. They are
slower, but also more accurate, more robust to bad initial estimates, and they additionally better
handle joint limits.
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Single-body 6DoF

Involves trusting marker coordinates

In most cases, results comparable to IK

Pros and Cons + Simplest to implement

+ Fastest to compute

+ More appropriate with population outside the norm

+ No need for any model

- Not always accurate

- 3 markers per segment at least

- Sensitive to STAs

- Segments can change dimensions and interpenetrate

Solutions OpenSim [Delp2007]

KineticsToolkit [Chénier2021]

[Visual3D]1

Multi-body IK

Involves trusting the model

In most cases, results comparable to 6DoF

Pros and Cons + Fewer markers needed

+ Less sensitive to STAs

+ No segment change of dimensions or interpenetration

- Requires careful model design

- Requires scaling procedure

- Often requires additional trials for joint center determination

- Require initialization

- Slower to compute

Levenberg-Marquardt

(Jacobian)

L-BFGS-B

(Quasi-Newton)

Extended Kalman

Filter or Smoother

Pros and Cons + Fast - Slower + Fast*

+ Usually accurate + Very accurate + Most accurate

- Existence of singularities + No singularity issues - Existence of singularities

+ Relatively robust to initialization + Robust to initialization - Very delicate initialization

- Joint limits hard to implement + Joint limits simple to implement - Joint limits hard to implement

Solutions —

Pyomeca [Martinez2020]

[Pinocchio]

CusToM [Muller2019]2

Visual3D1

OpenSim

Pyomeca3

—

CusToM2

Visual3D1

OpenSim5

Pyomeca4

—

—

—

Table 2.2: Comparison of the main kinematic approaches and software solutions for biomechan-
ics. *Due to its forward-backwards nature, and despite its low computational cost, a Kalman
smoother cannot be used in real-time. Conversely, a Kalman filter can. 1Visual3D is a pro-
prietary software, and 2Custom is open-source but coded on Matlab, which is proprietary. Its
Quasi-Newton method is sensibly slower than L-BFGS-B. 3Pyomeca relies on the OpenSim API
with Pyosim for Quasi-Newton IK resolution, and 4on Biorbd for IK with Kalman filters. 5A fork
of OpenSim provides a Kalman smoother. 6DoF: 6 Degrees of Freedom. IK: Inverse Kinemat-
ics. STA: Soft Tissue Artifacts. L-BFGS-B: Limited-memory Broyden-Fletcher-Goldfarb-Shanno
algorithm with boundary limits.
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2.5 Conclusion

This long chapter presented a rather comprehensive view of state-of-the-art methods for all
potential steps required for markerless 3D kinematic analysis. It moved from machine learning
methods for 2D keypoint detection on images, to computer vision theory for camera calibration
and 3D reconstruction, to biomechanics and optimization techniques for 3D joint kinematic anal-
ysis. The main advantages and drawbacks of each method were discussed, and the most relevant
software solutions were presented.

Currently, only a few ready-to-use methods exist which assemble all these steps together:
the proprietary software Theia3D [Kanko2021a], the open-source OpenCap [Uhlrich2022], and
Pose2Sim [Pagnon2022b]. [Captury] and [SimiShape] also propose 3D markerless solutions, but
they have not yet been rigorously tested (see section "3D Kinematics" in Table 1.2). The next
chapter is dedicated to an in-depth presentation of the open-source Python package Pose2Sim,
which was developed and released during this thesis.
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3
A Practical Implementation: The Pose2Sim Python

Package

Sports scientists would benefit from having access to a user-friendly
integrated workflow for on-field analysis. We propose the Pose2Sim
open-source Python package, as an alternative to the more usual
marker-based motion capture methods. Pose2Sim stands for "Open-
Pose to OpenSim," as it uses OpenPose inputs (2D keypoint coordi-
nates obtained from multiple videos) and leads to an OpenSim result
(physically consistent full-body 3D joint angles). Code is available
at https: // github. com/ perfanalytics/ pose2sim .

This chapter is adapted from the article published in the Jour-
nal of Open Source Software: "Pose2Sim: An Open-source Python
Package for multiview markerless kinematics" [Pagnon2022b]. See
Figure 3.1 for a visual abstract.
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Figure 3.1: Visual abstract for the Pose2Sim workflow [Pagnon2022b].
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3.1 Introduction to the Workflow

After having inspected the state of the art, and according to the Statement of Need, it became
apparent that on the one hand, there was a need for motion capture solutions compatible with on-
field analysis, and on the other hand, opportunities had been brought into existence by the recent
advances in machine learning and computer vision (Figure 1.4). Markerless pose estimation had
become increasingly fast and accurate, while being non-invasive and robust to clothing and back-
ground conditions. However, it did not yet offer a satisfying level of accuracy for biomechanics
usage, and was not accessible to non computer-science experts.

Therefore, one of the main goals of this thesis was to contribute in building a bridge between
the communities of computer vision and of biomechanics, and to propose a simple way to obtain
reliable joint kinematics without markers. We proposed a package written in Python, which is
entirely open-source, easy to install and use, and offers a fine level of control to the user. Instead
of training a whole new 2D pose estimation model, and of writing a whole kinematic algorithm
from scratch, this package takes advantage of two of the most powerful and widespread tools in
their respective fields: OpenPose and OpenSim. It involves several cameras, without any hardware
restrictions, although they have to be synchronized and calibrated. This way, fewer assumptions
have to be made for 3D reconstruction of the 2D pose estimations. It constrains 3D coordinates
to an individually scaled, biomechanically coherent 3D model, in order to provide reliable and
usable kinematic data in a sports context.

Our package, Pose2Sim [Pagnon2022b], is an alternative to the more usual marker-based mo-
tion capture methods. Pose2Sim stands for "OpenPose to OpenSim", as it uses OpenPose inputs
(2D coordinates obtained from multiple videos) [Cao2019] and leads to an OpenSim result (full-
body 3D joint angles) [Delp2007, Seth2018]. Pose2Sim is accessible at https://github.com/
perfanalytics/pose2sim.

Figure 3.2: Pose2Sim full pipeline: (1) 2D keypoint detection; (2.1) Camera calibration;
(2.1-2.4) Tracking of the person of interest, Triangulating of keypoint coordinates; and Filtering;
(3) Constraining the 3D coordinates to an individually scaled, physically consistent OpenSim
skeletal model.
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The repository presents a framework which consists of (see Figures 3.2 and 3.3):
1. Preliminary 2D joint coordinate detections from multiple videos, e.g. with OpenPose.

2. Pose2Sim core, including 4 customizable steps:
2.1. Camera calibration.
2.2. 2D tracking of the person of interest.
2.3. 3D keypoint triangulation.
2.4. 3D coordinate filtering.

3. Scaling a full-body skeleton to each individual subject, and computing inverse kinematics via
OpenSim so as to obtain 3D joint angles.

Although there is no Graphical User Interface (GUI) yet, Pose2Sim requires only moder-
ate Python skills, and each task is as fully and easily configurable as possible. By editing the
User/Config.toml file, and the user can specify the project path and folder names, the video
frame rate, the range of analyzed frames; as well as the 2D pose estimation model used, and
calibration, tracking, and triangulation parameters.

The whole workflow runs from any video cameras, on any computer, equipped with any oper-
ating system (although OpenSim has to be compiled from source on Linux). It requires no marker
placement, and the scaling and inverse kinematic steps are simpler than they are with markers-
based methods. Overall, human intervention is scarce, which makes it more robust to human
error. Pose2Sim has already been used and tested in a number of situations (walking, running,
cycling, dancing, balancing, swimming, boxing, BMX racing), and published in peer-reviewed
scientific publications assessing the quality of its code [Pagnon2022c], its robustness (see Chapter
4 on Robustness Assessment) [Pagnon2021] and its accuracy (see Chapter 5 on Accuracy Assess-
ment) [Pagnon2022a]. Its results for inverse kinematics were deemed good when compared to
marker-based ones, with errors generally below 4.0° across several activities, on both lower and
on upper limbs. The combination of its ease of use, customizable parameters, and high robustness
and accuracy makes it promising, especially for "in-the-wild" sports movement analysis.

Figure 3.3: The Pose2Sim workflow, along with some optional utilities provided in the package.
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3.2 Method Details

3.2.1 2D Keypoint Detection

2D pose detection can be performed with any deep-learning pose estimation network and
model. We recommend using the OpenPose body_25B model, as it provides foot keypoints, is as
fast as the standard body_25 one, and as we have extensively tested it [Pagnon2022a]. However, it
requires manual installation [Hidalgo]. Note that only 21 of the 25 detected keypoints are tracked,
since eye and ear keypoints would be redundant in the determination of the head orientation.

The choice of pose estimation model will affect how keypoint indices will be mapped to model
markers in OpenSim, corresponding to anatomical landmarks or joint centers. The OpenPose
body_25, body_25B, body_135, COCO, and MPII models are fully supported. The AlphaPose
COCO, COCO-WholeBody, and full-body HALPE models are also supported, as well as the full-
body but single-person detection BlazePose model. COCO and MPII model are the ones generally
used by other networks such as OpenPifPaf [Kreiss2022], YOLO-pose [Maji2022, Wang2022a],
and others, which means that they are also supported. It is also possible to build custom skele-
tons in the skeleton.py file, trained for example with DeepLabCut [Mathis2018, Lauer2022]
or SLEAP [Pereira2022]. They will be triangulated, but the user will need to build an Open-
Sim skeletal model and set the keypoints in the right place before being able to perform inverse
kinematics.

Two optional standalone scripts are also provided if the user desires a visual display of the
2D pose estimation, as well as a tool for converting DeepLabCut data to OpenPose formalism
(Figure 3.3).

3.2.2 Camera Calibration

The user can indicate whether cameras are going to be calibrated with a checkerboard, or if a
preexisting calibration file (such as one provided by a Qualisys system) will simply be converted.

If checkerboard calibration is chosen, the number of corners and the size of the squares have
to be specified. In this case, the operator needs to take about 20 pictures or one video of the
checkerboard per camera. Corners are then detected and refined with OpenCV [Bradski2000].
Detected corners can optionally be displayed for verification. Each camera is finally calibrated
using OpenCV based on an algorithm proposed by [Zhang2000]. For intrinsic parameters’ de-
termination, the checkerboard needs to be taken from different angles, as close as possible to the
camera, however without being cropped. For extrinsic parameters, only one frame is used. The
checkerboard is classically laid flat on the ground, in a place visible by all cameras. The user can
choose the index of the image which they want to be used as a reference for calculating extrinsic
parameters. Residual calibration errors are given, and stored in a log file.

3.2.3 Tracking the Person of Interest

One needs to differentiate the people in the background from the actual subject. The tracking
step examines all possible triangulations of a chosen keypoint among all detected persons, and
reprojects them on the image planes. The triangulation with the smallest reprojection error is
considered to be the one associated with the right person on all cameras. If the reprojection error
is above a predefined threshold, the process is repeated after taking off one, or several cameras.
This happens, for example, if the person of interest has exited the field of a camera, while another
person is still in the background.

We recommend choosing the neck point or one of the hip points. In most cases they are the
least likely to move out of the camera views.
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3.2.4 Weighted Triangulation

Pose2Sim triangulation is robust, largely because instead of using classic Direct Linear Trans-
formation (DLT) (see previous chapter on Triangulation) like other approaches do [Hidalgo,Matthis2022,
Sheshadri2020, EasyMocap2021], we propose a weighted DLT, i.e., a triangulation procedure
where each OpenPose keypoint coordinate is weighted with its confidence score [Pagnon2021].
This is a good compromise between losing all confidence information, and triangulating the whole
heatmap in a volumetric way [Iskakov2019], which is very slow. The weighted DLT has been in-
dependently introduced by [Barone2020], in the context of camera calibration. See Algorithm 3
for the proposed solution.

Algorithm 3 Weighted DLT
Our weighted DLT simply consists of weighing Equation 2.35 with the confidence c given by
OpenPose for each camera. The rest of the procedure remains unchanged.{

c× (
−→
P1 −up

−→
P3) ·
−→
QW = 0

c× (
−→
P2 − vp

−→
P3) ·
−→
QW = 0

(3.1)

Other parameters can be specified, such as:
• The minimum likelihood con fmin below which a 2D point will not be taken into account for

triangulation. Each detected keypoint is attributed a confidence score by OpenPose.

• The maximum in reprojection error errormax above which triangulation results will not be ac-
cepted. This can happen if OpenPose provides a bad 2D keypoint estimate, or if the person
of interest leaves the camera field. Triangulation will then be tried again on all subsets of all
cameras minus one. If the best of the resulting reprojection errors is below the threshold, it is
retained. If it is still above the threshold, one more camera is excluded.

• The minimum number of "good" cameras, ncamsmin (i.e., cameras remaining after the last two
steps) required for triangulating a keypoint. If there are not enough cameras left, the 3D keypoint
is dropped for this frame.

See Algorithm 4 for the full algorithm of triangulation of a keypoint. Once all frames are tri-
angulated, the ones with missing keypoint coordinates are interpolated. The interpolation method
can also be chosen from among linear, slinear, quadratic, and cubic. The mean reprojection error
over all frames is given for each point and saved to a log file, as well as the number of cameras
excluded to reach the demanded thresholds. The resulting 3D coordinates are formatted as a .trc
file, which is a tabulation-separated text format used by OpenSim.

If needed, other standalone tools are provided to further work on the .trc 3D coordinate files
(Figure 3.3). Among others, it is possible to undersample a file from a higher to a lower framerate,
or to convert a file from Z-up to Y-up axis convention. The resulting 3D coordinates can be plotted
for verification. Additionally, a tool is provided to detect gait events from point coordinates,
according to the equations given by [Zeni2008].

3.2.5 Filtering and Other Operations

Different filters can be chosen, and their parameters can be adjusted. The user can choose a
zero-phase low-pass Butterworth filter [Butterworth1930] that they can apply either on keypoint
positions or on their speeds, a LOESS filter [Cleveland1981], a Gaussian filter, or a median filter.
We recommend choosing the first option, as it is the most customary method used in biomechanic
sciences. Waveforms before and after filtering can be displayed and compared.

64



3.2. Method Details

Algorithm 4 Pose2Sim weighted triangulation of a keypoint
Let errormax be the maximum allowed reprojection error, ncamsmin the minimum number of
cameras demanded for triangulation (among ncamstot available cameras), and con fmin the min-
imum confidence accepted for a keypoint to be used.
while error > errormax AND ncams > camsmin do

for all combinations
(ncamstot

ncams

)
do

for all cameras do
if con f > con fmin then

weighted_DLT ← add_keypoint
end if

end for
Q← solve_weighted_DLT
error← calculate_repro jection_error

end for
if min(error)< errormax then

return Q[min(error)],min(error)
else

ncams← ncams−1
end if

end while

3.2.6 OpenSim Scaling and Inverse Kinematics

OpenSim [Delp2007, Seth2018] is a widespread open-source software which helps compute
consistent 3D joint angles, usually from marker coordinates. It lets scientists define a detailed
musculoskeletal model, scale it to individual subjects, and perform inverse kinematics. Results are
accurate and robust since biomechanical constraints can be adjusted and weighted, bones are set
to a constant length, and joints limited to coherent angle limits. OpenSim provides other features
such as net calculation of joint moments or resolution of individual muscle forces, although this is
beyond the scope of our contribution.

The main contribution of Pose2Sim is to build a bridge between OpenPose and OpenSim. The
OpenSim model needs to be carefully crafted. Indeed, inverse kinematics is an under-constrained
problem, that can be guided with carefully chosen joint constraints. Pose2Sim provides a full-
body model, adapted from the human gait full-body model [Rajagopal2016] and the lifting full-
body model [Beaucage-Gauvreau2019]. The first one has a better definition of the knee joint,
with a coupling relationship between knee flexion and abduction/adduction and internal/external
rotation. These joint constraints allow for reducing the 3D knee kinematics to a problem with only
one degree of freedom, assuming that the observed individual does not bear any strong anatomical
divergence to the norm. In the same way, the latter model has a better definition of the spine: each
lumbar vertebra is constrained to the next one, which makes it possible for the spine to bend in
a coherent way with only a few tracked keypoints, without having to make it a rigid single bone.
Combining those two models allows for ours to be as versatile as possible. Hand movements are
locked, because the standard OpenPose models don’t provide any hand detection. A ball joint
was added between head and torso so that the rotation of the head could be roughly rendered. Of
course, the user can also build their own OpenSim model, and use the markerset of their choice.

The placement of markers on the model is also of paramount importance, especially with so
little of them (see Disambiguation). OpenPose keypoints do not necessarily coincide with joint
centers, probably because of systematic labelling errors in the training dataset [Needham2021b].
Moreover, they may be located in a different anatomical position when limbs are fully extended
in comparison to when they are fully flexed. However, once model markers are positioned in
accordance with those of the triangulated 2D pose estimations, the scaling step is very fast and
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straightforward since the marker placement will not change from one session, subject, or operator
to another. Our model takes these labelling errors into account, and offsets model markers as
regards true joint centers accordingly (Figure 3.4).

Figure 3.4: Triangulated anatomical markers and clusters (dark green), calculated joint centers
(light green), and OpenPose body_25B keypoints (pink) on a textured mesh. OpenPose’s eyes and
ears keypoints were excluded. Mesh opacity was set to 0.5 in order to make all points visible. This
view made it possible to precisely place OpenPose triangulated keypoints on the OpenSim model.

Scaling in OpenSim can be broken down into two parts: first, the proper scaling of the model,
which adjusts bone dimensions and inertial properties according to the distances between the joint
markers; second, the adjustment of the other markers on the model, especially anatomical and
cluster markers. Joint centers are not trivial to obtain in marker-based approaches, since they must
be calculated from the position of skin markers or from clusters: this is not an issue for OpenPose
triangulated keypoints, which already represent joint centers in the first place. Moreover, if the
model is defined properly, there is no need for further marker adjustment, since markers will not
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be subject to placement variation due to human error or to skin movement artifacts. Hence, only
the first step of scaling must be undergone, and it is simpler than in marker-based approaches.
Each body is scaled according to a factor computed as a ratio of distances, defined by the dis-
tance between pairs of model markers over distance between corresponding pairs of experimental
markers. The markers used for scaling are chosen as follows:

• Arm: distance between shoulder and elbow markers;

• Forearm: distance between elbow and wrist;

• Thigh: distance between hip and knee;

• Shank: distance between knee and ankle;

• Foot: distance between heel and big toe;

• Pelvis: distance between left and right hip;

• Torso: distance between neck and hip;

• Head: distance between head and nose;

All weights of joint coordinates are set to 1, apart from those of the nose and the head, which are
set to 0.2, and from those of the other head markers, which are set to 0. We recommend scaling
on a standing pose, which is easy to keep for a second, usually not too far from sports poses, and
accurately estimated by 2D pose detection models. Moreover, if this condition is satisfied, we can
add as a scaling assumption that ankle flexion should be fixed at a neutral 0° angle.

The inverse kinematic tool is used with the same marker weights as in the scaling step. Unlike
in marker-based capture, keypoints detection hardly depends on the operator, the subject, nor the
context. For this reason, the scaling and the inverse kinematic steps are straightforward, and the
provided setup files require little to no adjusting.

3.2.7 Other Features

Optional tools are also provided for extending its usage (Figures 3.3). Among others, DeepLab-
Cut 2D files can be converted to the OpenPose formalism, and calibration files from other plat-
forms can also be converted to the AniPose [Karashchuk2021] formalism we use. 2D keypoint
files can be displayed and stored as a video. Gait events can be detected from kinematic data thanks
to [Zeni2008] algorithm. Some other scripts allow for further processing of 3D coordinates. More
practical information can be found on the GitHub repository.

3.3 Limits and Perspectives

3.3.1 2D Keypoint Detection

Pose2Sim is currently primarily used with OpenPose as a 2D pose detection network. Despite
it is very robust, it suffers from issues when used for full-body kinematic analysis. First, keypoint
localization suffers from systematic offsets when compared to actual joint center positions [Need-
ham2021b]. Constraining these coordinates to a skeletal model largely reduces the detrimental
impact of low-quality 2D joint center estimations. Nevertheless, these offsets have been taken into
account in the provided OpenSim model, by shifting OpenPose keypoint placements with regard
to marker-based calculated joint centers. This was done manually, but precisely, thanks to our
overlayed view (Figure 3.4). However, OpenPose’s offset may not be the same when a limb is
extended as when it is bent, which may influence kinematic results on extreme poses, such as ob-
served in some sports disciplines. Hence, using a 2D pose estimation model free from systematic
biases on all ranges of motion would certainly improve kinematic accuracy. The body_25B model
is more accurate than the default body_25 one, but it is still biased.
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Furthermore, both models only detect 25 keypoints. This makes inverse kinematics an under-
constrained problem, which has to be guided with carefully chosen joint constraints, and with
precise placement of markers on the model. Currently, all pelvis, lumbar, and thoracic angles are
solely determined by the detection of the hip keypoints on the lower part, and of the shoulder and
neck keypoints on the upper part. As a consequence, even if joint centers were perfectly esti-
mated, the optimization procedure would admit two solutions for the spine curvature, both math-
ematically and kinematically correct: one with a lordotic posture, and the other with a kyphotic
posture. Additionally, there is no marker for the hand, which does not allow for capture of any
pronation/supination movement, let alone of any hand or finger movement. The shoulder is also
defined as a ball joint, whereas the pectoral girdle is much more complex. Internal/external rota-
tions are solved with difficulties despite the use of kinematic constraints. Using the experimental
body_135 OpenPose model would solve the hand issue, but it would also greatly increase the
computational cost and would leave the shoulder and spine problem unaddressed. As a conse-
quence, and provided that they are reliably labeled, OpenPose needs more keypoints to solve these
indeterminations, and potentially several per joints, in the same way as markersets are designed
in marker-based methods. Pose2Sim could operate with such a model, although new keypoints
should then be placed afresh on the unscaled OpenSim model.

Moreover, OpenPose struggles to accurately detect pose when the person taking an unusual
pose. One way to solve this is by enhancing the OpenPose dataset, by augmenting it with larger
image rotations so that upside-down poses are recognized, or by training it on specific sports
poses. One risk of this approach is that the model may perform better on specific extreme poses,
but worse on standard ones [Kitamura2022]. As a consequence, it could be interesting to build a
new dataset, with more accurate labelling, more keypoints, trained on specific sports poses.

On a different note, in a sports context, not only the human pose is of interest: sports gear can
also be considerably important to detect, such as a ball [Ghasemzadeh2021], skis [Ludwig2020],
or bike parts in the context of cycling (see Chapter 7 on Capturing equipment along with the
athlete). This can help to analyze game dynamics, and to quantify posture cues related to a spe-
cific sports discipline. This can be done, for example, by separately process human pose with
OpenPose, and equipment pose with a custom-trained DeepLabCut model. Resulting .trc coor-
dinate files can be merged, and used in OpenSim. However, the DeeLabCut keypoints must be
referenced on an OpenSim model, which will need to be crafted from scratch.

3.3.2 User-friendly Calibration and Triangulation Options

Calibration remains a challenging task in broad daylight, at a distance, and with non research-
grade cameras. It could be useful to make it more robust, either by implementing the Aniposelib
library [Karashchuk2020], by importing calibration files from an Argus wand calibration [Ar-
gus], or by automatically calibrating on people’s limb length [Liu2022a]. Overall, numerous other
calibration and triangulation approaches have been proposed in the literature and could be imple-
mented (see Chapter 2). Along with synchronization of light-weight cameras, a practical issue
and its resolution is detailed in Chapter 6 on Key Performance Indicator assessment with action
cameras [Pagnon2022c].

3.3.3 Multi-Person Analysis

Despite it is not altered by people entering the field of view, Pose2Sim can currently only
analyze the movement of one single person. For races, team sports, and combat sports, it would
be useful to be able to analyze the movement of several athletes at the same time. This could be
achieved in two steps: first, by triangulating all the persons whose reprojection error is below a
certain threshold, instead of taking only the one with minimum error, in a similar way as carried
out by [Slembrouck2020]; then, by tracking the triangulated persons in time, e.g., by limiting the
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displacement speed of each person’s neck keypoint from one frame to the next one (see Triangu-
lation in previous chapter for more insight on available methods).

3.3.4 Real-Time Analysis

Currently, Pose2Sim does not work in real time. This is a drawback for coaches and athletes,
who need feedback in a timely manner. However, a timely analysis of athletes’ movements di-
rectly on the sports field appears to be achievable. Indeed, OpenPose is faster than most of its
competitors [Chen2020c], and the rest of the process is not computationally costly. Moreover, the
pose detection, the triangulation, and the OpenSim inverse kinematic optimization work frame by
frame. As a consequence, it is conceivable to calibrate and scale the model first, and then to feed
the GUI frame by frame. This would allow the workflow to operate with only a few seconds of
delay.

3.3.5 Visualization Tools

Pose2Sim does not provide a GUI yet. This can make it complicated for coaches to adopt the
tool. However, the code has been adopted by other entities. The 3D animation "CEB" studio built a
Blender [Blender1998] extension using Pose2Sim for realistic 3D markerless animation. However,
it is not free nor open-source [Barreto2022] (Figure 3.5). In addition, the CAMERA laboratory
of the University of Bath is currently developing a GUI around Pose2Sim, which would make the
tool more accessible.

Figure 3.5: CEB Studio built the MPP2SOS Blender add-on, which uses Pose2Sim for realistic
3D markerless animation.
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(a) The Maya-Mocap add-on is displayed as an additional toolbar in Maya.

(b) Maya-Mocap can import several file types, e.g., a .trc motion file (bright green) or a textured animated
3D mesh. It can also load cameras from a calibration file, film with them, and display the filmed image
sequences. In addition, it can reproject a selected point onto the camera plane (black lines), to make sure
that it has been correctly triangulated. The 3D trajectory of a point can also be highlighted (red and blue
lines).

Figure 3.6: The Maya-Mocap add-on

I also developed a toolbox for Maya [Maya1998] called Maya Mocap [Pagnon2020]. First, it
can import and display various types of motion files. Then, it can load cameras from a calibration
file, film with them, and import the filmed image sequences. It can also help to make sure that
triangulated points are well reprojected on the camera plane, by tracing a line from the point to
the camera center. In addition, it can display the 3D trajectory of a point (see Figure 3.6). Next
objectives would be to make it able to import an OpenSim model and its motion files, and to
present it as a cleaner package, ready to be released. Since all the tools used in Pose2Sim are
open-source, it would also be more consistent to translate it into Blender instead of Maya, in order
to offer an entirely operational and open-source tool.

3.3.6 Other Perspectives

Other minor adjustments could be made in order to improve the workflow or to give it more
options. Other calibration, triangulation, or filtering methods could be implemented. Opting for an
Extended Kalman Filter (EKF) instead of the classic Quasi-Gaussian approach [Rauch1965,Need-
ham2021a] may reduce errors, especially in large outliers (see Chapter 2.4). A fork of OpenSim
offers the possibility of performing inverse kinematics with a Kalman smoother, but unlike the
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3.3. Limits and Perspectives

EKF, it works on all frames of a signal, which would make real-time analysis impossible. Instead
of constraining 3D pose estimation results with a physically consistent skeletal model, it would
be interesting to develop a physics-informed 2D pose estimation model [Raissi2019, Xu2020b],
which would offer the opportunity of embedding the kinematics priors as early as possible in the
learning process, or conversely as a refinement step upon triangulation [Hua2022]. Adding mus-
cles which were stripped from the skeleton in the OpenSim model could allow for joint kinetics
prediction (see Disambiguation). Neural networks could be trained to estimate ground reaction
forces from kinematics on specific tasks, without the use of a force platform [Oh2013, John-
son2018, Mundt2019]. Performing pose estimation, robust triangulation, and inverse kinematics
on the cloud rather than on a local computer could allow athletes and coaches to use the soft-
ware in a web application. Nevertheless, local regulations such as the European GDPR should be
respected.
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4
Robustness Assessment

A markerless motion capture method is satisfying if it is accurate,
fast, and robust. Robustness is deemed good when results are
unchanged after adding constraints on the subject or on the en-
vironment. We challenge our workflow on walking, running, and
cycling tasks by adding people in the background, and by simulating
challenging conditions: (Im) alters image quality (11-pixel Gaus-
sian blur and 0.5 gamma compression); (4c) uses fewer cameras
(4 vs. 8) which leads to unsolved occlusions; and (Cal) introduces
calibration errors (1 cm vs. perfect calibration).

When averaged over all joint angles, stride-to-stride standard
deviations lay between 1.7° and 3.2° for all conditions and tasks,
and mean absolute errors (compared to the reference condi-
tion—Ref) ranged between 0.35° and 1.6°. For walking, errors in
the sagittal plane were: 1.5°, 0.90°, 0.19° for (Im), (4c), and (Cal),
respectively. Consequently, Pose2Sim is robust enough for 3D joint
angle analysis of walking, running, and cycling on an ergometer,
under challenging conditions.

This chapter is adapted from the article published in Sensors:
"Pose2Sim: An End-to-End Workflow for 3D Markerless Sports
Kinematics—Part 1: Robustness" [Pagnon2021]. See Figure 4.1 for
a visual abstract.
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4.1. Introduction

4.1 Introduction

4.1.1 Robustness Definition

According to the review of [Desmarais2021], the performance of a method can be ranked
regarding its accuracy, speed, or robustness. Accuracy is mostly assessed with MPJPE (Mean
Per Joint Position Error); speed is evaluated either regarding computing complexity, or framerate
when possible; and robustness is gauged through differences in the results while changing the
system parameters only. [Desmarais2021] points out that authors usually only consider accuracy,
sometimes speed, but rarely robustness. However, robustness is of paramount importance in the
context of sports, especially "in the wild". This chapter will focus on robustness, the next one
on Accuracy Assessment, and we will not focus on speed in this thesis (although chapter 3.4.5
broaches Real time considerations).

[Moeslund2001] proposed to express robustness as the number of constraints on the subject or
on the environment required for a motion capture system to be operational. Some of the assump-
tions they proposed have already been universally overcome by deep-learning-based methods. For
example, no markers are involved anymore, the subject can wear their usual clothes (including
loose pants or dresses [Viswakumar2019]), and the background does not need to be static or uni-
form. Some other items remain an open problem.

For instance, most 3D methods assume that only one person lies in the camera field of view.
This is a strong assumption, especially outdoors where people and athletes pass by and an operator
is often present. Although it is starting to be addressed, standard solutions are yet to be determined
[Slembrouck2020, Bridgeman2019, Chu2021, Dong2019].

Other open questions lie in the environment, much less controlled in a sports context than in
a lab, which can result in poor image qualities. [Viswakumar2019] experienced that OpenPose is
very robust to extreme lighting conditions. However, research has shown that pose estimations
models are more robust to noise or brightness changes, while less robust to motion or to defocus
blur [Wang2021a]. And yet, in sports, the movement is not usually slow, continuous, nor limited
to the sagittal plane.

Occlusions are, for the most part, solved by using a network of calibrated cameras. Since
triangulation is computed using a least square method, a large amount of cameras will also blunt
imprecision on the 2D joint estimations. [Bala2020] showed that once correctly trained for 3D
macaque pose estimation, eight cameras were enough to correctly infer 80% of the 13 consid-
ered keypoints, while four cameras decreased the performance to about 50%. However, a correct
estimation of extremities such as feet and hands required more than eight cameras.

Camera calibration can be challenging outside, due to large volume spaces, bright light, and
contrasting shades. As a consequence, it is close to impossible with the classic approach using a
wand equipped with retro-reflective markers. Moreover, simple calibration with a checkerboard
may cause errors on intrinsic and extrinsic camera parameters estimation [Sun2005]. A calibration
is generally considered acceptable if the average residuals of each camera (i.e., the root mean
square error of the reprojection of the 3D reconstructed coordinates on the 2D image plane) is
below 1 pixel. In metric terms, the markers-based Qualisys Track Manager software recommends
redoing a calibration when the average residuals exceed 3 millimeters [Qualisys2018]. The pinhole
camera model gives an equivalence between pixel values on the image plane, and metric values on
the object plane at the center of the scene, as demonstrated by Figure 4.2 and Equation 4.1. See
Chapter 2.2.1 on Pinhole Camera Model or [Dawson-Howe1994] for in-depth explanations.

ErrImg =
f ×ErrOb j

ZC
(4.1)
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Figure 4.2: The pinhole camera model permits a correspondence between image coordinates and
object coordinates. f : focal distance, ZC: object to camera distance, ErrImg: error on image
plane, ErrOb j: error on object plane. f and ErrImg are usually expressed in pixels, while ZC and
ErrOb j are expressed in meters.

4.1.2 Assessing Robustness

Because [Needham2021a] showed that the quality of markerless results were task specific, we
will examine walking, running, and cycling. Before assessing the robustness of the workflow,
the relevance of the computed 3D full-body angles needs to be estimated. This will be done by
comparing our angle results to those of a normative walking database. Further concurrent valida-
tion of the accuracy will be determined in the next chapter on Accuracy Assessment. Assuming
that the gait of a young and healthy person is repeatable, we assume that most of the variability
between cycles should be caused by a lack of repeatability of the system. Thus, repeatability will
be evaluated by comparing the kinematics of between cycles, within each task and each capture
condition.

Robustness itself will be assessed through all three types of movements, in accordance with
the open problems previously described. In addition to the person of interest, some people will
be present in the background in all examined conditions. We will compare results more in depth
when:

1. Image quality is altered, by simulating a dark scene captured with defocused cameras ob-
jectives.

2. Self- and bike-occlusions are becoming more challenging, as we decrease the number of
cameras.

3. Calibration errors are introduced, by corrupting the calibration files.
The underlying idea presented in this article is to verify whether modifying external environ-

ment parameters significantly impacts variability in joint angle estimation.

4.2 Methods

See video here for a visual description of the protocol.

4.2.1 Experimental Setup

To guarantee a tight control of the environment parameters, we captured our data in a dedi-
cated studio platform called Kinovis [Tsiminaki2014], from which we were able to create realistic
virtual views similar to outdoor video. This platform is a 10m×10m×5.6m green room equipped
with 68 video cameras recording at 30 fps in 4 Mpixels resolution, for a practical acquisition
space of about 5m× 5m× 3m. The system computes 3D textured meshes by convex visual hull
reconstruction [Laurentini1994]. The meshes were inserted in a virtual environment composed
of an environment texture map captured from a BMX racetrack, and a custom-made virtual floor.
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4.2. Methods

It should be noted that three people were present in the background, which introduced a realistic
artifact of multiple subjects.

We developed a script for Autodesk Maya [Maya1998] (see Visualization Tools) that allows
us to render the textured mesh files, as well as to virtually set any cameras with specific properties
(position, orientation, resolution, focal length, distortion, pixel size, binning factor). Views seen
through virtual cameras can be saved as video files and visualized into a global 3D environment
(Figure 4.3). The generated video files were used as input to the 3D kinematics pipeline.

Figure 4.3: The Kinovis room allows for the capture of 3D textured meshes. These meshes are
placed in a virtual environment, and then filmed from virtual cameras.

For the purpose of this study, we created 8 virtual video cameras. Resolution was set to
1280×768 pixels, focal length to 9 mm, pixel size to 5.54 µm, and no distortion nor binning was
introduced. Binning refers to the process of grouping pixels in order to increase sensitivity to light,
at the expense of decreasing resolution. Cameras were regularly distributed 8 m away from the
center of the captured volume, at a height of 1 m, so that the whole body could be detected for a
maximum of movement cycles. We then rendered the scene as video files from our virtual cameras
and saved the exact calibration parameters. We applied a 3×3 pixel Gaussian blur afterwards to
reduce sharp edges of the virtual scene compositing (Figure 4.4). This resulting image quality was
considered as “standard”.
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Figure 4.4: To smooth out sharp edges due to compositing, we applied a 3×3 pixel Gaussian blur
to the videos filmed from our virtual scene.

4.2.2 Participant and Protocol

One healthy adult male subject (1.89 m, 69 kg) participated in the study. He provided his
informed written consent prior to participating. The study was conducted in accordance with the
Declaration of Helsinki [Holm2013]. No requirement was given to him regarding his outfit. He
was asked to perform three basic sports tasks: walking, running, and cycling. For all three tasks,
the subject was given a moment beforehand to warm up and find a comfortable and regular pace,
which he could then follow owing to the sound of a metronome:

• Walking: The subject walked in a straight line back and forth over the 10 m diagonal of the
room. His body mesh could be fully reconstructed only in the central 5 m of the acquisition
space, i.e., only roughly 2 gait cycles were acquired per walking line. His comfortable stride
pace was 100 BPM (Beats per Minute). The stride length was not monitored.

• Running: The subject jogged in a straight line back and forth along the 10m diagonal of the
room. His comfortable stride pace was 150 BPM (Beats per Minute). The stride length was not
monitored.

• Cycling: The subject cycled on a road bike placed on a home trainer. He himself adjusted the
resistance and the height of the saddle prior to the capture. His comfortable cadence was 60
BPM.
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As obtaining the textured meshes of the subject in the green Kinovis room involved filming si-
multaneously with 68 4 Mpixels cameras that generated a flow of over 8 gigabytes per second, the
capture design limited the acquisition time to 45 s.

4.2.3 Challenging Robustness

We challenged robustness with 3 challenging conditions, compared to a reference one.

• Reference Condition (Ref): The reference condition under which our 3D markerless kinematic
system had to operate took advantage of the standard image quality, 8 available virtual cameras,
and a perfect calibration. The standard quality corresponded to the unaltered images of the 3D
scene filmed from our virtual cameras. The reference condition involved 8 virtual cameras, as
a good compromise of what is feasible in real outdoor conditions. As a comparison, a study on
macaques in a similar context showed that 8 cameras were enough to correctly infer 80% of the
13 considered keypoints [Bala2020]. Since the virtual cameras were explicitly specified in the
virtual environment, calibration could be considered perfect.

• Poor Image Quality (Im): Video quality was made blurrier and darker: a Gaussian blur (11×
11px) was applied, as well as a 0.5 gamma compression (Figure 4.5). This simulated a dark
scene captured with defocused camera objectives. These parameters were chosen empirically.

• Less Cameras (4c): The 2D joint coordinates were triangulated with only 4 cameras, instead of
8 in the reference condition: one on each side, one in the front, and one in the back, set 90° apart
from each other.

• Calibration Errors (Cal): Calibration residuals are classically supposed to be under 1 px on the
image plane or under 3 mm on the object plane. Using Equation 4.1 demonstrates that in our
case 3 mm corresponds to 0.61 px. We chose to simulate a calibration error of 2 px, which
corresponds to about 1 cm (Equation 4.2).

ErrOb j =
ErrImg×D

f
=

2×8
9×10−3

5.54×10−6

= 9.8×10−3m (4.2)

The calibration error was simulated by translating the extrinsic parameters of each camera in a
random direction. The norm was randomly picked in a normal distribution of mean 2 px and a
standard deviation of 1 px. The mean of these 8 translations was ensured to be equal to 210−3

px.

4.2.4 Markerless Kinematics

Then, we used Pose2Sim to robustly triangulate OpenPose outputs and feed the resulting 3D
joint coordinates to OpenSim. The exact same parameters were used for all 4 conditions and all 3
movement tasks, in order to make sure the process did not induce any supplementary deviation to
the compared results.

4.2.4.1 2D Pose Estimation

We applied OpenPose (version 1.6) on all the captured videos. We used the experimental
body_25B model (see Figure2.7) with highest accuracy parameters, which is more accurate than
the default body_25 one and reduces the number of false positives [Hidalgo2019].

4.2.4.2 Tracking, Triangulation, and Filtering

We used the Tracking function of Pose2Sim to try out every possible triangulation of the neck
keypoint of all detected persons. The person with the smallest reprojection error was deemed to
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Figure 4.5: The image under poor image quality (Im) conditions. A Gaussian blur (11× 11px)
was applied, and a 0.5 gamma compression made the image darker.

be the one to be tracked. If the reprojection error was above 10 pixels, one camera was removed
and the process was repeated. See Tracking the Person of Interest Chapter 3 for more details.

The weighted DLT provided by the Triangulation function of Pose2Sim was employed. Some
keypoints were sometimes occluded to some cameras, either by the subject himself, by his cycling
gear, or simply because the subject left the camera field of view. In such a case, OpenPose usually
gave a low (or zero) confidence to the estimated point, which was dealt with by setting a confi-
dence threshold above which the camera in question was not used for the triangulation. However,
OpenPose occasionally wrongly detected the occluded keypoint with a relatively high confidence.
Under such circumstances, the point was erroneously triangulated. This issue was spotted and
solved by reprojecting the 3D point on the camera planes. If the reprojection error between the
reprojected points and the OpenPose detection was higher than a predefined threshold, the process
was repeated after removing one, or several, cameras. If less than 3 cameras remained, the frame
was dropped for this point, and missing frames were later interpolated with a cubic spline. 3D
joints positions were then exported as an OpenSim compatible .trc file. We chose a confidence
threshold of 0.3 and a reprojection error threshold of 10 px.

3D coordinates were finally filtered with a Butterworth filter [Butterworth1930]. We chose a
zero-lag fourth order low-pass Butterworth filter, with a 6 Hz cutoff frequency.

4.2.4.3 Gait Events Determination

Cycles were determined using one of the methods given by [Zeni2008] for the determination
of gait events using kinematic data. Zeni et al. suggested defining heel strike as the time of
maximum distance between the heel and the sacrum. Here, the sacrum marker was assimilated to
the ipsilateral hip joint coordinate. Although there is no heel strike in cycling, we used the same
definition as a reference for the start of a cycle. An implementation of the algorithm is provided
by Pose2Sim in Utilities/trc_gaitevents.py. A cycle was defined as starting from heel strike, with
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a duration tcycle:

tcycle =
2

cadence/60
seconds (4.3)

The duration of a cycle tcycle was 1.2 s for walking, 0.8 s for running, and 1.0 s for cycling.
The reduced area of acquisition and the limit of 45 s of capture restricted the analysis to 8, 9, and
15 cycles for walking, running, and cycling, respectively.

4.2.4.4 Kinematic Analysis

The full-body musculo-skeletal model proposed by [Rajagopal2016] was adjusted to our needs.
OpenPose model markers were carefully placed on the body, as closely as possible to their aver-
age triangulated 3D coordinates. Muscles were removed since they were not considered at that
stage. A ball joint was added between head and torso so that the rotation of the head could be
roughly rendered. Pelvis translation and subtalar angle rotation were unlocked. Lumbar extension
and lumbar bending were clamped between -15° and 15°, and constraints on hip flexion/extension
ranges of motion were released since they were too strict for our cycling task. This model uses a
coupling relationship between knee flexion and the other planes of movement, which allows for
3D knee kinematics with only one degree of freedom. Note that the model was later improved
when assessing the accuracy of the workflow.

See previous chapter on A Practical Implementation: The Pose2Sim Python Package for more
details on the scaling and inverse kinematics procedures. We visually verified at the end of the
inverse kinematic step that model markers approximately overlaid experimental markers (Fig-
ure 4.6), and we batched inverse kinematics for all gait cycles with the command line utilities. We
then concatenated all results in a .csv file analyzed them using Python.

Figure 4.6: OpenSim inverse kinematics on cycling (C). Model markers are pink; experimental
markers are blue.
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4.2.5 Statistical Analysis

As similar results were expected for both sides, as more strides were captured on the left
one, and for the sake of clarity, the analysis was performed on the left side only. Descriptive
statistics were calculated at the triangulation stage, for each (Ref), (Im), (4c), and (Cal) condition.
We calculated mean, standard deviation (std), and maximum (max) number of cameras excluded
for performing triangulation. Triangulation was deemed acceptable in Pose2Sim when OpenPose
confidence was above 0.3, and when reprojection error was below 10 pixels. We also calculated
mean, std, and max reprojection errors. Descriptive statistics of the OpenSim scaling and inverse
kinematics steps were also rendered: we retrieved mean, std, and max root-mean-square error
(RMSE) of the experimental and model markers.

Next, we investigated the relevance of our results. The angles of the Ref condition on the
walking task were compared to those of a normative walking gait database [Fukuchi2018], from
which we took a subset of 14 young and healthy males walking at a "comfortable" speed (Norm).
Pearson’s correlations (r) and mean absolute error (MAE) were calculated. As the angle definition
was different from that in the OpenSim model [Trinler2019], only the flexion/extension angles
were compared.

Repeatability was estimated by computing stride-to-stride standard deviations within (Ref),
(Im), (4c), and (Cal) conditions. These stride-to-stride variability results were then compared
to [Kang2008], obtained with a marker-based approach and averaged over 18 young adults. The
robustness of the workflow was assessed by calculating the standard deviation ratio between each
degraded condition and the Ref one, as well as the r coefficient and the MAE. Statistical para-
metric analysis (SPM-1D) was lastly performed between Ref and degraded conditions to convey
statistical differences along time (See [Warmenhoven2018]).

4.3 Results

4.3.1 Data Collection and 2D Pose Estimation

Each trial took several hours to process on a cluster of high-end computation units. Then,
filming the resulting 3D meshes in a virtual scene with virtual cameras also took a few hours per
sequence, as well as about 50 Go of storage space. Although all of this allowed us to perfectly
control the parameters of the capture, this step would not be carried out in the wild, where capture
would simply be carried out by filming with calibrated cameras.

Apart from the capture design, which is very particular to this study, the OpenPose 2D pose
estimation was the most computationally costly step. On a standard computer with an Nvidia
GeForce GTX 1080 graphic card (8 Go memory), the detection for each camera ran at a little over
0.5 fps (i.e., 0.07 fps for 8 cameras).

4.3.2 Pose2Sim Tracking, Triangulation, and Filtering

On our standard computer, tracking was performed at an average of 5 fps depending on the
number of undesired persons present in the background; triangulation was at about 10 fps; and
filtering was almost instantaneous in comparison.

Depending on the considered frame, the reprojection error of a joint coordinate sometimes
exceeded the prescribed threshold. In this case, the triangulation process was executed another
time after excluding the 2D joint coordinates estimated from one, or several, cameras. Over all
frames, an average of approximately 0.5 cameras were excluded in walking and in running and 1.6
in cycling (Table 4.1). The mean of the reprojection error was about 3.5 px (≈1.6 cm) in walking
and running and 6 px (≈3 cm) in cycling. More cameras had to be excluded for the nose and for
the extremities such as wrists and toes, and the reprojection error was mostly large on hips, head,
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and extremities.

Task Conditions

Mean number of
excluded cameras

Mean absolute
reprojection error

mean std max mean std max

Walking

Ref 0.47 0.57 2.0 (Nose) 3.3 px (1.6 cm) 1.1 px (0.54 cm) 5.3 px (2.6 cm, LHip)

Im 0.91 0.8 2.4 (LWrist) 3.7 px (1.8 cm) 1.0 px (0.52 cm) 5.2 px (2.6 cm, LSmallToe)

4c 0.27 0.34 1.0 (Nose) 2.9 px (1.4 cm) 0.93 px (0.47 cm) 4.5 px (2.2 cm, LSmallToe)

Cal 0.47 0.57 2.0 (Nose) 5.1 px (2.5 cm) 0.91 px (0.45 cm) 6.9 px (3.4 cm, LHip)

Running

Ref 0.48 0.64 2.2 (LWrist) 3.5 px (1.7 cm) 1.2 px (0.57 cm) 5.6 px (2.8 cm, LWrist)

Im 0.94 1.2 4.5 (LWrist) 4.0 px (2.0 cm) 1.4 px (0.69 cm) 7.2 px (3.6 cm, RWrist)

4c 0.22 0.31 1.0 (LWrist) 3.3 px (1.6 cm) 0.97 px (0.48 cm) 4.7 px (2.3 cm, LWrist)

Cal 0.47 0.65 2.2 (LWrist) 5.4 px (2.7 cm) 1.0 px (0.52 cm) 7.2 px (3.6 cm, LWrist)

Cycling

Ref 1.62 1.4 4.2 (RBigToe) 6.1 px (3.0 cm) 1.2 px (0.58 cm) 8.5 px (4.2 cm, Head)

Im 2.41 1.9 5.7 (RBigToe) 6.3 px (3.1 cm) 1.3 px (0.60 cm) 8.5 px (4.2 cm, Head)

4c 0.76 0.67 2.1 (RBigToe) 5.3 px (2.6 cm) 1.6 px (0.82 cm) 8.4 px (4.2 cm, LElbow)

Cal 1.68 1.4 4.24 (RBigToe) 6.9 px (3.4 cm) 1.0 px (0.51 cm) 8.9 px (4.4 cm, Head)

Table 4.1: Descriptive statistics on the triangulation step performed by Pose2Sim from OpenPose
body_25B model. Mean absolute reprojection error and mean number of excluded cameras were
calculated over time. Mean (mean), standard deviation (std), and maximum (max) in each of
these variables are displayed. Walking, running, and cycling tasks were investigated in each four
conditions: reference (Ref), poor image quality (Im), four cameras instead of eight (4c), and
calibration errors (Cal).

Within each task, almost twice as many cameras had to be excluded in the (Im) condition as
in the (Ref) condition, with nearly one camera excluded in walking and running, and nearly 2.5 in
cycling. However, the reprojection error was increased by only about 10%. About twice as few
cameras had to be excluded in the (4c) condition as in (Ref) condition, and the reprojection error
was decreased by about 10%. The (Cal) condition did not involve more excluded cameras; indeed,
calibration errors had no effect on the OpenPose confidence, and reprojection error stayed within
the threshold of 10 px. However, a 2 px average error in calibration logically resulted in about a 2
px (≈1 cm) larger reprojection error than in the Ref condition.

4.3.3 OpenSim Scaling and Inverse Kinematics

Scaling took a few hours, which is in line with the usual expectations in marker-based meth-
ods. However, markers would be positioned in the same place by the pose estimation algorithm
regardless of the subject and of the operator: as a consequence, in the future, only bones would
have to be scaled, and markers will not have to be further adjusted. Due to the small number of
markers whose positions had to be optimized, Opensim’s inverse kinematics ran at more than 0.5
fps.

OpenSim recommends the RMS of experimental vs. model marker errors to be below 1 cm for
scaling. Our best average RMS error was 1.9 cm. During inverse kinematics, it is recommended
for it to stay below 2–4 cm. The average RMS error was typically below 4 cm, but it could reach
much more for some markers at certain phases of the cycle, especially in the cycling task. Within
each task, changing conditions made very little difference in RMS marker errors, including in
mean, standard deviation (std), or maximum error (Table 4.2).

Note that one should not compare the values of the reprojection errors in the triangulation
step, and of the marker errors in the inverse kinematics one. Primarily, the first one is calculated
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Task Condition
RMS marker error

mean std max

Walking

Ref 2.8 cm 0.13 cm 3.2 cm (Mid stance)

Im 2.8 cm 0.11 cm 3.1 cm (Mid stance)

4c 2.8 cm 0.12 cm 3.2 cm (Mid stance)

Cal 2.9 cm 0.13 cm 3.2 cm (Mid stance)

Running

Ref 2.2 cm 0.22 cm 2.6 cm (Mid stance)

Im 2.4 cm 0.21 cm 2.8 cm (Mid stance)

4c 2.5 cm 0.30 cm 2.4 cm (Mid stance)

Cal 2.2 cm 0.21 cm 2.6 cm (Mid stance)

Cycling

Ref 3.4 cm 0.11 cm 3.6 cm (Dead center)

Im 3.8 cm 0.18 cm 4.2 cm (Dead center)

4c 3.9 cm 0.60 cm 5.9 cm (Dead center)

Cal 3.4 cm 0.11 cm 3.6 cm (Dead center)

Table 4.2: Descriptive statistics on the inverse kinematics step performed by OpenSim with a full
body model adapted from Rajagopal’s. Root mean square (RMS) errors between experimental and
model markers were calculated over all markers. Mean, standard deviation (std), and maximum
(max) are displayed. Dead center refers to the phase where the crank is near the vertical position.

over time, while the second one is calculated over markers. Additionally, the first one is a mean
absolute error (MAE), while the second one is a root mean square error (RMSE). RMSE squares
the errors, which always makes it larger than the MAE. It penalizes large errors more, which has
some implications that are not addressed here but are documented in [Chai2014]. These errors
should only be used to compare conditions within each step.

4.3.4 Relevance, Repeatability and Robustness of Angle Results

Flexion/extension lower-limb angles were compared to a normative walking gait database
[Trinler2019] (Figure 4.7). Ankle movement differed noticeably (r = 0.35, MAE = 5.4°), espe-
cially between 40% and 70% of the gait cycle. There was a good agreement for the knee (r = 0.93,
MAE = 5.7°) and hip angles (r = 0.97, MAE = 9.0°) despite some notable offset in hip angle. A
similar shift occurred in the pelvis ante/retroversion angle (not further analyzed).
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Figure 4.7: Comparison between our markerless results (black line: mean stride-to-stride results
for our subject) and the normative marker-based database (green line and area: mean and stan-
dard deviation across 14 young, healthy, male subjects). Mean absolute error (MAE) and Pearson
correlation coefficient (r) are represented.

When averaged over all joint angles, the stride-to-stride standard deviations lay between 1.7°
and 3.2° for all conditions and tasks (Table 4.3). The walking task was the most variable, while the
cycling one was the least variable; however, in the latter the upper body was static and artificially
drew the mean down, which was revealed after removing it from the statistics (Table 4.3). In
the walking task, the stride-to-stride standard deviation of our individual lower body angles was
higher than [Kang2008], who used a marker-based approach (Table 4.4).

There was a good agreement between the Ref condition and the degraded ones, at the same
time across all tasks, movement planes, and joints. Mean absolute errors (MAE) averaged over
all joint angles (compared to the reference condition—Ref) ranged between 0.35° and 1.7° for all
conditions and tasks (Table 4.3). Individual angle MAE lay between 0.07° and 5.2° (Figure 4.8
for the walking task, and Figure B.1 and Figure B.2 in the Appendix for the running and cycling
tasks). However, the cycling task was more challenging: ankle joint angles were especially less
robust regarding all considered dependent variables.

Angle results were particularly little affected by the 1 cm calibration error (Cal condition).
The standard deviation between cycles (std) virtually did not increase, the average Pearson’s r
correlation coefficient was 1.00 in all tasks but the cycling one (r = 0.98), and the mean absolute
angle error stayed below 0.5° (Table 4.3).

The standard deviation in Im and 4c conditions increased by about 10 to 30% as compared to
Ref condition, apart from the cycling 4c condition where it increased by 100%. The Pearson’s r
correlation coefficient was about 0.98 in all tasks but the cycling one. Mean absolute angle errors
across all joints lay between 0.9 and 1.8° (Table 4.3).
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Task Condition std (°) std/stdref r MAE (°)

Walking

Ref 2.56 - - -

Im 3.03 1.19 0.97 1.55

4c 3.24 1.27 0.97 1.50

Cal 2.60 1.02 1.00 0.35

Running

Ref 2.59 - - -

Im 2.76 1.07 0.99 0.92

4c 2.79 1.10 0.97 1.60

Cal 2.54 0.98 1.00 0.47

Cycling

Ref 1.78 - - -

Im 1.89 1.08 0.88 1.72

4c 3.04 1.93 0.81 1.54

Cal 1.80 1.02 0.99 0.50

Cycling
(lower-body only)

Ref 2.09 - - -

Im 2.41 1.22 0.94 1.69

4c 3.82 2.31 0.90 1.84

Cal 2.13 1.03 0.99 0.51

Table 4.3: Summary of angles statistics, averaged for all joints. Each condition is represented: ref-
erence condition (Ref), degraded image quality (Im), four cameras instead of eight (4c), degraded
calibration (Cal). Comparisons between each Im, 4c, Cal conditions, and Ref are accounted for
with standard deviation (std), the standard deviation ratio (std/stdref), the Pearson’s correlation
coefficient (r), and the mean absolute error (MAE).

Joint Method Flexion/Extension Abduction/Adduction* Internal/External rotation

Ankle
[Kang2008] 2 2.5 -

Ours 2.07 4.84 -

Knee
[Kang2008] 0.7 - -

Ours 4.85 - -

Hip
[Kang2008] 1.2 1.8 1.1

Ours 2.61 1.5 3.72

Table 4.4: Stride-to-stride standard deviations of lower-body angles. Comparison between our
markerless approach, and a marker-based one (averaged over 18 young subjects). * Ankle subta-
lar angle is assimilated to an abduction/adduction angle.
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Figure 4.8: Joint angle means (solid line) and standard deviations (shaded area) from the eight
captured cycles of walking. Reference condition (Ref) is black; degraded image quality (Im) is
blue; four cameras instead of eight (4c) is purple; degraded calibration (Cal) is yellow. Pear-
son’s correlation coefficient (r) and mean absolute error (MAE) between Ref and Im, 4c, Cal are
reported. Paired t-tests along time were computed by SPM-1D and are represented as bar plots
above the curves: a color rectangle means that there was a cluster of statistically significant differ-
ences (α = 0.05) at that moment. Running and cycling figures can be found in the Supplementary
Material.
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Kinematics were more robust in the flexion/extension plane (Table 4.5), where std generally
did not increase by more than 10% as compared to the Ref condition, and r was mostly equal to
1.00. The difference in robustness was not as obvious in the MAE variable since the range of
motion was much smaller in other planes.

Task Cond.
Flex./Ext. Abd./Add.* Int./Ext. rot.

std/stdref r MAE (°) std/stdref r MAE (°) std/stdref r MAE (°)

Walking

Im 1.11 1.00 1.48 1.28 0.98 1.05 1.23 0.89 2.47

4c 1.15 1.00 0.90 1.29 0.93 1.28 1.54 0.94 3.35

Cal 1.01 1.00 0.19 1.04 0.99 0.50 1.04 0.99 0.54

Running

Im 1.03 1.00 0.98 1.08 0.98 0.48 1.13 0.98 1.41

4c 1.03 1.00 0.98 1.18 0.93 1.00 1.14 0.97 4.06

Cal 1.00 1.00 0.30 0.99 0.99 0.53 0.92 1.00 0.80

Cycling

Im 0.99 0.97 1.89 1.27 0.66 1.45 0.99 0.97 1.71

4c 1.31 0.96 1.43 3.10 0.46 1.76 1.71 0.97 1.47

Cal 1.00 1.00 0.39 1.06 0.96 0.36 1.02 1.00 1.00

Table 4.5: Summary of angles statistics in the three rotation planes, averaged over all joints (n =
5, 3, 2 for Flexion/Extension, Abduction/Adduction, and Internal/External Rotation, respectively.).
All conditions are represented: degraded image quality (Im), four cameras instead of eight (4c),
and degraded calibration (Cal). These conditions were compared to the reference one (Ref) by cal-
culating the ratio of standard deviation (std/stdref), the Pearson’s correlation coefficient (r), and
the mean absolute error (MAE). *Ankle subtalar angle is assimilated to an abduction/adduction
angle.

The SPM showed some statistical differences along time between the reference condition and
the degraded ones; however, they did not happen at any particular moment during the gait or ped-
aling cycle (Figure 4.8 for the walking task, and Figure B.1 and Figure B.2 in the Appendix for
the running and cycling tasks).

4.4 Discussion

4.4.1 Relevance, Repeatability and Robustness

Results of joint angles in the walking condition seemed to be realistic when compared to
the normative database. The noticeable discrepancies may be due to a difference between the
angle definition of both models, especially in the ankle: the normative database calculated 6
degrees-of-freedom free-body angles between limb segments, while our OpenSim model took
bone geometries into consideration. The shift in the hip angle was related to an excessive pelvis
anteversion, which may have been induced by the model being underconstrained due to Open-
Pose dearth of keypoints. This lack of marker constraints could be partly compensated by adding
joint constraints, especially around the spine (See next chapter on Accuracy Assessment, com-
bining the [Rajagopal2016] and the [Beaucage-Gauvreau2019] models). In any case, the angle
results seem to be relevant, but accuracy needs to be further investigated by comparing Pose2Sim
markerless method to a reference marker-based one exploiting a similar model definition.
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Repeatability was simply assessed by the standard deviation of angle time series across gait
cycles, although it also includes the participant’s intrinsic variability. However, the subject being
young and healthy, his gait and cycling patterns were thought to be consistent. Hence, the results
were repeatable as the standard deviation of angles across all strides within all tasks and conditions
mostly stayed below 3°. Nevertheless, this standard deviation was still higher than the one previ-
ously reported by [Kang2008] for a young and healthy participant using a marker-based approach.
It may be partly caused by our lack of a force plate and our low sampling rate, which did not let us
measure a very accurate heel strike event, and thus could have induced some additional variability.
In addition, our videos were sampled at 30 Hz instead of hundreds of Hertz as is usual in motion
analysis. It is to be noted that high-speed video cameras can sample at a such speed and solve at
least a part of this issue. Depending on the sports task investigated, a 3° standard deviation can be
more or less of an issue.

Robustness was investigated based on the criteria exposed by [Moeslund2001]. First, people
could be in the background. Then, several movement tasks have been investigated. Last, the
workflow was confronted to three degraded conditions regarding image quality, camera number,
and calibration. The results were also robust, since degraded conditions still gave consistent joint
angles. A further SPM study showed occasional statistical differences along time, but did not
reveal any part of the movement cycle to be more problematic than another. There was no apparent
outlier in the 3D angle results, even in the degraded conditions. This was in spite of the presence
of other people in the field of view and in spite of the subject walking out of it.

All stages of the workflow contributed to its robustness. First, we never had to deal with limb
swapping, unlike other studies [Nakano2019, Slembrouck2020]. This may be due to our use of
the experimental Body_25B OpenPose model, which is claimed to decrease the number of false
positives [Hidalgo2019]. Then, we used Pose2Sim to robustly sort the detected people and to
triangulate 2D coordinates. These coordinates were the least precise in the Im condition where the
image was strongly blurred and darkened, but Pose2Sim partly solved it by taking the OpenPose
likelihood into account and by excluding the most inaccurate cameras: twice as many cameras
were excluded as compared to the reference condition, which resulted in a reprojection error only
10% higher.

Finally, we used OpenSim to take advantage of a physically consistent full-body model and of
an inverse kinematics optimization algorithm, which allowed us to refine our 3D data coordinates
and to obtain 3D joint angles. The Cal condition simulated calibration errors, which bypassed
the Pose2Sim safeguards since the OpenPose likelihood was unaffected, and the reprojection error
stayed below the threshold. Despite it producing the largest reprojection error, virtually no differ-
ence with the reference condition was observed after the OpenSim pass. A 2 px calibration error
(≈1 cm) is much worse than the maximum 1 px, or 3 mm usually recommended, but the mean
absolute error it induced for us stayed below 0.5°.

Using four cameras rather than eight still gave relevant angle results, but the individual errors
of each camera cannot be blunted by the multiplicity of views, especially when faced with occlu-
sion issues such as in the cycling task. The ankle joint angles were especially less robust regarding
all considered dependent variables because the feet were more easily occluded by the cycling gear.

Ultimately, all conditions challenged the workflow at different stages, but the results remained
stable and very close to those of the reference condition, with an average mean absolute error
mostly lower than 1.5°, a correlation coefficient largely above 0.95, and a standard deviation usu-
ally increased by less than 20%. This demonstrates the robustness of the presented method in con-
ditions that would have probably caused marker-based approaches to fail. Moreover, our reported
angle deviations seem quite reasonable compared to errors in marker-based approaches, which
can propagate up to 10° because of inter-operator differences [della Croce1999, Gorton2009], to
3° because of tissue artifacts [Benoit2015, Cappozzo1995], or to 3° depending on the joint center
calculation method [Leboeuf2019a]. Essentially, the findings presented here seem to indicate that
the slight decline in repeatability is an acceptable compromise when put into perspective with the
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increase in robustness, in ease of use, and in new opportunities for analysis of sports performed
"in-the-wild".

Nonetheless, it would be interesting to check for even more challenging conditions. We have
investigated global Gaussian blur, but not movement blur, such as when the camera shutter speed
is not high enough. It would also be interesting to investigate the effect of even larger calibra-
tion errors, even less cameras used, different camera placements, different camera types (such as
GoPros with strong fisheye distortions), or different framerates or image definitions.

4.4.2 Limits and Perspectives

Our use of a virtual scene helped us perfectly control all parameters of the capture. Although
this scene is synthetically crafted, it looks similar to a real one. This is not thought to hinder
the performance of 2D pose detection since deep-learning models are occasionally trained on
synthetic datasets that look empirically less real and still successfully transfer to real-world data
(see [Nikolenko2021,Patel2021,Wood2021,Bolaños2021,Varol2017]). However, an image with a
better definition and with a framerate over 30 fps may improve results. Furthermore, the 68 video
camera capture design uses up very large storage space, and the restricted space offered by the
Kinovis room constrained us to capture only a few cycles per capture. This limited us to a low
amount of data, with only one subject and about 10 cycles analyzed per task.

We noticed that the cycling task was particularly challenging, probably because of self-occlusions
and gear occlusions. Setting some cameras closer to the ankles and in a lower position would have
slightly improved this issue. Unlike [D’Antonio2021], we did not find running to be more chal-
lenging for our system than walking. In the context of sports sciences, it would be useful to test
other tasks, such as boxing (a typical 3D movement, explored in chapter 6 on Using Consumer-
Grade Hardware - Application to Boxing [Pagnon2022c]), flipping (the 2D pose estimator may
have trouble with upside-down people), swimming (in an environment with a different refractive
index, with splashes around limb extremities), or a sports discipline with unusual outfits and large
occlusions (such as motorbiking or fencing.)

Moreover, the [Rajagopal2016] model used as a basis does not appear to be well suited for
road cycling since the spine is designed as a single rigid bone that cannot bend. This results in
sharp shifts in hip abduction/adduction and internal/external rotation angles, which are not biome-
chanically coherent (see Figure B.2). However, the same issue would prevail even with marker-
based methods and would only be solved by changing the spine definition in the OpenSim model.
The full-body model with a fully articulated spine and ribcage developed by [Bruno2015] has
far too many degrees of freedom for our small amount of detected keypoints; however, the lift-
ing full-body (LFB) model validated by [Beaucage-Gauvreau2019] solved the spine challenge by
constraining vertebra movements to each other, without adding any degrees of freedom. Pose2Sim
now provides a combination of these two models (see Pose2Sim package) in order to benefit from
the most realistic options (assuming a healthy subject), both in the knee and in the spine. This is
the one used in the next section on Accuracy Assessment.

For further use in a sports context, it would also be useful to support multi-person analysis,
to have a more accurate and extensive 2D pose estimator, to work in real time, and to provide a
GUI. All these considerations are discussed in the Limits and Perspectives section of the previous
chapter on the Pose2Sim Package.

[Desmarais2021] proposed a taxonomy of 3D pose estimation algorithms based on accuracy,
speed, and robustness. Although more modalities could be tested, our workflow was robust in
the range of our tested conditions. Speed was unaddressed, but although real-time analysis seems
out of reach, a timely analysis of athletes’ movements directly on the sports field appears to be
achievable. Yet, ultimately, the accuracy of the workflow must be concurrently validated with a
reference marker-based method. This is the topic of the next chapter.
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5
Accuracy Assessment

Besides robustness, accuracy needs to be addressed. Two-
dimensional deep-learning pose estimation algorithms can suffer
from biases in joint pose localizations, which are reflected in
triangulated coordinates, and then in 3D joint angle estimation.
Pose2Sim, our robust markerless kinematics workflow, comes with
a physically consistent OpenSim skeletal model, meant to mitigate
these errors.

Its accuracy was concurrently validated against a reference
marker-based method. Lower-limb joint angles were estimated
over three tasks (walking, running, and cycling) performed multiple
times by one participant. When averaged over all joint angles, the
coefficient of multiple correlation (CMC) remained above 0.9 in the
sagittal plane, except for the hip in running, which suffered from a
systematic 15° offset (CMC = 0.65), and for the ankle in cycling,
which was partially occluded (CMC = 0.75). When averaged over
all joint angles and all degrees of freedom, mean errors were 3.0°,
4.1°, and 4.0°, in walking, running, and cycling, respectively; range
of motion errors were 2.7°, 2.3°, and 4.3°, respectively. Given the
magnitude of error traditionally reported in joint angles computed
from a marker-based optoelectronic system, Pose2Sim is deemed
accurate enough for the analysis of lower-body kinematics in
walking, cycling, and running.

This chapter is adapted from the article published in the Sen-
sors: "Pose2Sim: An End-to-End Workflow for 3D Markerless
Sports Kinematics—Part 2: Accuracy" [Pagnon2022a]. See Fig-
ure 5.1 for a visual abstract.

92



Contents
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.2.1 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.2.2 Markerless Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.2.3 Marker-Based Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.2.4 Statistical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.3.1 Concurrent Validation . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.3.2 Comparison with Other Systems . . . . . . . . . . . . . . . . . . . . . 101

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.4.1 Strengths of Pose2Sim and of Markerless Kinematic . . . . . . . . . . 101
5.4.2 Limits and Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . 102

Figure 5.1: Visual abstract for Pose2Sim accuracy assessment [Pagnon2022a].

93



Chapter 5. Accuracy Assessment

5.1 Introduction

Several markerless technologies are currently being developed for sports motion analysis.
We showed that they could be particularly robust (see previous chapter on Robustness Assess-
ment [Pagnon2021]). However, their accuracy has not fully been assessed yet, especially when
constrained to a skeletal model. Despite marker-based solutions are not usually adapted to sports
analysis in context, they are very accurate and are often considered as a silver-standard, if not the
gold-standard in motion analysis. Hence, they can be a good tool to evaluate markerless systems.

A large part of studies investigating 3D joint center estimation choose to triangulate the output
of OpenPose [Cao2019]. Their Mean Per Joint Position Error (MPJPE) usually lies between 30
and 40 mm [Nakano2019, Slembrouck2020, Labuguen2020]. Ankle MPJPEs are within the mar-
gin of error of marker-based technologies (1–15 mm), whereas knee and hip MPJPEs are greater
(30–50 mm). These errors are systematic and likely due to "ground-truth" images being mislabeled
in the training dataset [Needham2021b]. Triangulation from other 2D deep-learning algorithms
(such as AlphaPose [Fang2017] and DeepLabCut [Mathis2018]) have also been compared [Need-
ham2021b]. AlphaPose results are similar to OpenPose’s; however, DeepLabCut errors are sub-
stantially higher.

Numerous studies have focused on the accuracy of 3D joint center estimation, but far fewer
have examined 3D joint angle estimation. D’Antonio et al. computed direct flexion-extension
angles for the lower limb from two cameras processed with OpenPose [D’Antonio2021]. Range
of Motion (ROM) errors lay between 2.8° and 14.1°. Wade et al. calculated frontal and sagittal
knee and hip angles with OpenPose, AlphaPose, and DeepLabCut [Wade2021]. They deemed the
method accurate enough for assessing step length and velocity, but not for joint angle analysis.
AniPose offers a toolkit for triangulating 2D poses from DeepLabCut [Karashchuk2021]. To our
knowledge, it has only been concurrently validated for index finger angles in the sagittal plane,
resulting in a root-mean-square error of 7.5 degrees [Geelen2021]. Theia, a commercially avail-
able software package for markerless analysis, uses its own patent-protected 2D pose estimator
and triangulation procedure, and runs a skeletal model to constrain the results to physically con-
sistent poses and movements [Kanko2021a]. Their root-mean-square error (RMSE) compared to
a marker-based method ranged between 2.6° and 13.2°.

Pose2Sim (see A Practical Implementation: The Pose2Sim Python Package [Pagnon2022b])
robustly triangulates OpenPose results [Cao2019], and computes 3D joint angles using Open-
Sim scaling and inverse kinematics [Delp2007, Seth2018]. We showed that Pose2Sim was robust
people in the background, to different sorts of mouvements (walking, running, and cycling), to
dark and blurry images (0.5 gamma compression and 5.5 cm Gaussian blur), to 1 cm random
calibration errors, and to using as few as four cameras (see previous chapter on Robustness As-
sessment [Pagnon2021]). Now, the objective of this present study is to concurrently evaluate
Pose2Sim’s lower-limb 3D accuracy, with a marker-based method, and on the same tasks.

5.2 Methods

5.2.1 Data Collection

The same adult male participant as in the previous chapter on Robustness Assessment (1.89
m, 69 kg) was equipped with 83 reflective markers inspired from the CAST marker set [Cap-
pozzo1995], composed of 35 anatomical markers, and 12 clusters of 4 markers (Figure 3.4). He
was asked to perform three tasks: walking, running, and cycling, at a regular pace, back and
forth across the capture space, following a regular pulsing sound (see previous chapter for further
details). He provided his written consent prior to participating.

All tasks were performed in a room equipped with a green background for optimal segmenta-
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tion of the subject with respect to the background, and 3D animated mesh extraction using a visual
hull approach at each video frame [Laurentini1994]. Twenty opto-electronic cameras captured the
3D coordinates of the markers, and 68 video cameras allowed retrieval of 3D textured meshes of
the participant, which we subsequently placed in a virtual environment and filmed from 8 virtual
cameras (Figure 4.3). This gave us the opportunity to overlay our reflective markers, calculated
joint centers, and OpenPose keypoints to the extracted mesh. This was particularly useful to cor-
rectly place OpenPose keypoints on the OpenSim model, i.e., with a systematic offset as regards
true joint centers (section 3.2). The acquisition was restricted in terms of 3D volume covered
by both systems and data storage, resulting in the analysis of 8, 13, and 13 cycles of walking,
running, and cycling, respectively. Once 3D point coordinates were retrieved, both systems un-
derwent processes that were as close to each other as possible: coordinates were sampled at 30
Hz, then they were filtered with a 4th-order 6 Hz low-pass Butterworth filter (which efficiently
filtered out noise without underestimating peak values, including in extremities); heel strikes were
detected in both cases with the method proposed by [Zeni2008]; stride duration was determined as
the inverse of the frequency of the metronome followed by the participant; and inverse kinematics
were optimized with the same OpenSim skeletal model.

5.2.2 Markerless Analysis

All videos from our virtual cameras were processed by OpenPose (version 1.6), which deliv-
ered 2D joint coordinates for each view. We used the OpenPose experimental body_25B model
(Figure 2.7) with the highest accuracy parameters [Hidalgo]. The Pose2Sim workflow was then
used to track the person of interest, robustly triangulate the OpenPose 2D joint coordinates, and
filter the resulting 3D coordinates. Then this output was fed to our OpenSim setup to constrain the
results to physically consistent kinematics (more details in previous chapter).

Pose2Sim comes with a generic OpenSim skeletal model, that has been slightly improved
as regard to the previous chapter. It was adapted from the human gait full-body model [Ra-
jagopal2016] and the lifting full-body model [Beaucage-Gauvreau2019]. While the spine of the
gait model is represented as a single rigid bone, it is articulated in the lifting model, and each lum-
bar vertebra is constrained to the next one. This is more accurate for activities for which the spine
is bent, such as cycling. However, the knee joint is more accurately defined in the gait model:
abduction/adduction and internal/external rotation angles are constrained to the flexion/extension
angle, whereas they are simply ignored in the lifting one. This also improves the estimation of
knee flexion. All else being equal, as we want our model to be as versatile as possible, we used
the spine definition of the lifting model, and the knee definition of the gait model. Since we did
not investigate muscle-related issues, they were removed to decrease computation time. Since
no keypoint would have accounted for it, wrist flexion and deviation were locked at 0°, and arm
pronation/supination was locked at 90°. Conversely, the translation of the pelvis was unlocked, in
addition to the subtalar angle; and hip flexion was limited to 150° instead of 120° (which was not
enough for the pedaling task). With regards to the previous chapter, marker placement was also
improved in the OpenSim model. The average systematic offset between OpenPose-triangulated
keypoints and MoCap-calculated joint centers was measured on our 3D overlay view (Figure 3.4),
and was taken into account when manually placing OpenPose keypoints onto the OpenSim un-
scaled model.

OpenSim (version 4.2) was used to scale the model to the participant on a T-pose, and then
inverse kinematics was performed. Scale factors were computed with measurement-based scaling,
i.e., by computing the ratio of distances between keypoints on the model, and experimental key-
points provided by the coordinates file of triangulated OpenPose data. Static pose weights were
all set to 1, apart from Nose and Head keypoints which were set to 0.1, and Shoulder and Hip
keypoints were set to 2. The participant was standing upright with feet flat during his T-pose, so
we set a weight of 1 for a zero angle in pelvis list, pelvis tilt, L5-S1 flexion, and ankle angles. The
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offset in machine-learning-based joint center estimations has been shown to be systematic and not
dependent on the subject [Needham2021b] (nor on the operator); hence, once this bias has been
taken into account in the generic model, the markers’ adjustment step is unnecessary. Keypoint
weight markers for inverse kinematics were the same as for scaling.

5.2.3 Marker-Based Analysis

The captured markers were automatically identified with an AIM procedure within the Qual-
isys Track Manager software (version 2019.1). Joint centers were then calculated. The centers of
ankles, knees, wrists, and elbows were defined as the midpoints between the malleoli/epicondyles/
styloids since it has been shown that when executed on a lean participant, functional methods do
not improve the reliability of the kinematics of running [Pohl2010]. Hip joint center was defined
with a functional method [Halvorsen2003]. The OpenSim model used for marker-based scaling
and inverse kinematics was the same as the Pose2Sim model. Scale factors were computed simi-
larly, but with marker data rather than with OpenPose keypoints. Weights proposed by the inverse
kinematics solver of OpenSim were set to 5 for joint centers, to 1 for cluster markers, and to 2 for
other anatomical markers. Inverse kinematics was processed with the same marker weights.

5.2.4 Statistical Analysis

Since the participant did not report any locomotion impairment and the captured movements
were mostly symmetrical, we only analyzed the right side. Our study focuses on the lower limb,
but results for upper limb and sacro-lumbar joints are detailed in the Appendix B for information
(Figure C.5 and Figure C.6 for walking, Figure C.7 and Figure C.8 for running, and Figure C.9 and
Figure C.10 for cycling). The analyzed angles were ankle flexion/extension, subtalar angle, knee
flexion/extension, and hip flexion/extension, abduction/adduction, and internal/external rotation
provided by the OpenSim inverse kinematics procedure.

First, Pose2Sim scale factors were compared to marker-based ones, and RMS errors were
reported and compared to OpenSim’s best practice rules. Then, the overall similarity of paired
angle waveforms was assessed with a special formulation of the coefficient of multiple correla-
tion (CMC), specifically designed to compare different protocols or measurement systems [Fer-
rari2010]. The CMC gives a single result taking into account differences in correlation, gain, and
offset. It reaches 1 if the curves are perfectly overlapped, and drops to zero if the curves are very
dissimilar, or even to complex values (reported as "nan" hereafter). This is, for example, the case
if the mean inter-protocol offset (averaged over time and trials) exceeds the grand mean ROM,
which results in taking the square root of a negative number. CMC values are deemed good if
between 0.75 and 0.84, very good if between 0.85 and 0.94, and excellent if above 0.95 [Fer-
rari2010]. The CMC results were then broken down to take an in-depth look into correlation, gain,
and offset, separately. The strength of the linear relationship between kinematic analysis systems
was assessed with the Pearson’s r correlation coefficient. Gain was evaluated by computing the
paired ROM differences. Once normality of the ROM errors was checked with a Shapiro–Wilk
test [Shapiro1965], we computed paired t-tests to verify whether the error was significant [Stu-
dent1908]. Mean inter-protocol offset angle, hereafter called mean error, was one of the outputs
of the subsequent Bland–Altman analysis [Bland1986, Atkinson1998]. Once normality of the
paired means of the angle differences was verified, we determined if the mean markerless angles
were significantly different to the mean marker-based ones.

The Bland–Altman analysis gives some more information about the agreement between the
considered markerless and marker-based systems [Bland1986, Atkinson1998]. It consists of plot-
ting the difference between the values given by both systems against their mean, for all angular
points at all time instances. Limits of agreement were defined as the interval within which 95%
of data will be found, i.e., between mean difference ±1.96 standard deviation, provided that the
differences follow a normal distribution. Bland–Altman plots also help to identify the potential
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presence of heteroscedasticity, i.e., the fact that the spread of the error may depend on the angle
magnitude [Atkinson1998].

Finally, root-mean-square errors (RMSE), mean errors (Meanerr), and ROM errors (ROMerr)
were computed for the walking task to enable comparison with previously published metrics ob-
tained using Theia3D, a commercial markerless solution [Kanko2021a], and Xsens [Zhang2013],
a commercial system based on IMUs. Theia3D’s ROM results were approximated from reported
graphics along the flexion/extension degree of freedom.

5.3 Results

5.3.1 Concurrent Validation

Inverse kinematics is successful when OpenSim’s global optimizer keeps the model markers
close to experimental markers, i.e., when RMSE is less than 2–4 cm according to OpenSim’s best
practices. This was the case for both systems (Table 5.1). However, RMSE was particularly higher
in cycling than in walking or running.

Task
Marker-based
RMSE (cm)

Markerless
RMSE (cm)

Walking 1.1—1.2 1.4—1.9

Running 1.5—1.7 1.5—2.1

Cycling ≈ 3.5 3.0—3.6

Table 5.1: RMSE between experimental and theoretical markers during OpenSim inverse kinemat-
ics, for both marker-based and Pose2Sim models.

CMC assesses waveform similarities between Pose2Sim and the marker-based reference method,
by jointly evaluating correlation, gain, and offset. It was mostly very good (CMC > 0.85) to excel-
lent (CMC > 0.95) in all tasks, all degrees of freedom, and all lower-body joints (Table 5.2, Fig-
ure 5.2, Figure C.1, and Figure C.3). This was especially the case along the flexion/extension de-
gree of freedom, except for angles of the hip in running and of the ankle in cycling, for which CMC
results suffered from an offset compared to the marker-based method. Hip abduction/adduction
and internal/external rotation waveforms were not in good agreement (CMC < 0.75), except for
the hip internal/external rotation angles in running. In cycling, all non-sagittal angles had complex
CMCs, which means that no agreement was found at all.
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Figure 5.2: Pose2Sim (cyan) and marker-based (black) lower-body joint angles for the walking
task. Coefficient of multiple correlation (CMC) is indicated, and broken down into, respectively,
Pearson’s coefficient (r) for correlation assessment, range of motion errors (ROMerr) for gain, and
overall mean errors (Meanerr) for offset. Mean error and standard deviations are also represented
at the bottom of the graphics. See Appendix B for running and cycling results, and for sacro-
lumbar and upper-body results.
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Task Joint
Flex./Ext. Abd./Add.1 Int./Ext. rot.

CMC r ROMerr Meanerr CMC r ROMerr Meanerr CMC r ROMerr Meanerr

Walking

Ankle 0.90 0.89 -1.22 -2.79* 0.86 0.85 6.48* 2.56* — — — —

Knee 0.98 0.96 -0.30 -1.92* — — — — — — — —

Hip 0.96 0.96 -1.70 -3.04* 0.74 0.81 -1.81* -2.6* 0.34 0.54 4.68* -5.27*

Running

Ankle 0.99 0.99 -2.9* -0.71* 0.97 0.96 2.20 0.96 — — — —

Knee 1.00 1.00 0.04 -0.65* — — — — — — — —

Hip 0.65 0.95 4.01* 15.18* 0.37 0.65 -3.94* -3.76* 0.93 0.95 1.25 -3.49*

Cycling

Ankle 0.75 0.85 1.93* -6.73 nan -0.32 10.27* 1.59* — — — —

Knee 1.00 1.00 -2.94* 2.12* — — — — — — — —

Hip 0.92 0.97 -5.91* 6.12* nan 0.14 1.72* -5.62* nan -0.07 3.07* 2.11*

Table 5.2: Summary of comparisons between Pose2Sim and marker-based angle waveforms. A
specific formulation of the Coefficient of Multiple Correlation (CMC) was used, specifically de-
signed to compare different protocols or measurement systems. CMC jointly evaluates correlation,
gain, and offset, which were respectively assessed with r-Pearson’s coefficient, range of motion er-
rors (ROMerr), and mean errors (Meanerr). *Significant at 5% level. 1Despite ankle subtalar
angle combines abduction/adduction and internal/external rotation, it is thereafter reported in the
abduction/adduction column.

Pearson’s r correlation coefficient results were close to the CMC ones, albeit they became very
good to excellent in the two angles that were affected by an offset. When averaged over all joint
angles, errors in the range of motion (ROMerr) were 2.7° (sd = 2.1°), 2.3° (sd = 1.1°), and 4.3°
(sd = 2.5°) in walking, running, and cycling, respectively. Along the flexion/extension degree of
freedom, they were below 2°, 4°, and 6°, in walking, running, and cycling, respectively. Along
the internal/external rotation degree of freedom, they stayed below 5°; however, they reached up
to 10° along the abduction/adduction degree of freedom. Average mean angle errors (Meanerr)
were 3.0° (sd = 1.0°), 4.1° (sd = 1.6°), and 4.0° (sd = 0.59°), in walking, running, and cycling,
respectively. In walking and running, mean errors remained under 5.3° in all degrees of freedom,
apart from the hip flexion/extension angle in running, which was offset by 15°. Although they
were noticeably larger, mean errors were always under 7° in cycling (Table 5.2 and Table 5.3,
Figure 5.2, Figure C.1, and Figure C.3)

Task Joint
Flex./Ext. Abd./Add.* Int./Ext. rot.

Meanerr (°) 95% LoA (°) Meanerr (°) 95% LoA (°) Meanerr (°) 95% LoA (°)

Walking

Ankle -2.79 [-9.4,3.8] 2.56 [-6.9,12] — —

Knee -1.92 [-12,8.4] — — — —

Hip -3.04 [-11,5.2] -2.6 [-6.9,1.7] -5.27 [-14,3.5]

Running

Ankle -0.71 [-4.5,3.0] 0.96 [-5.3,7.2] — —

Knee -0.65 [-2.9,1.6] — — — —

Hip 15.18 [5.5,25] -3.76 [-9.2,1.6] -3.49 [-9.3,2.4]

Cycling

Ankle -6.73 [-16,2.1] 1.59 [-9.8,13] — —

Knee 2.12 [-1.1,5.3] — — — —

Hip 6.12 [-1.7,14] -5.62 [-10,-1.1] 2.11 [-4.5,8.7]

Table 5.3: Bland–Altman analysis results of 3D angle errors between Pose2Sim analysis and
the reference marker-based one. Mean errors (Meanerr) and 95% limits of agreement (LoA) are
represented. *Although ankle subtalar angle combines abduction/adduction and internal/external
rotation, it is hereafter reported in the abduction/adduction column.
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Limits of Agreement (LoA) values were relatively evenly and randomly distributed among all
tasks, degrees of freedom, and joints, averaging to an interval of 15° within which 95% of the
errors would lie (Table 5.3, Figure 5.3, Figure C.2, and Figure C.4). Due to the limited range of
motion of sacro-lumbar and upper-body angles, limits of agreement were smaller in these joint
angles (Figure C.6, Figure C.8, and Figure C.10). Angle magnitude did not have an influence
on the spread of errors (hence the data are homoscedastic), except for the cycling task for ankle
angles and flexion/extension hip angles.

Figure 5.3: Bland–Altman analysis of lower-body joint angle errors for the walking task. Mean
bias is represented as a horizontal solid, bold line, and 95% limits of agreement are represented
as dotted lines. See Appendix B for running and cycling results, and for sacro-lumbar and upper-
body results.
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5.4. Discussion

5.3.2 Comparison with Other Systems

The RMSE reported by Theia3D [Kanko2021a] was, on average, 1.5° higher than that of
Pose2Sim, and its ROM errors were consistently higher, at least along the flexion/extension degree
of freedom. However, the study using Xsens [Zhang2013] reported mean errors 0.3° lower on
average, and ROM errors 1.0° lower on average (Table 5.4).

Error
metric Joint

Flex./Ext. Abd./Add. Int./Ext. rot.

Ours Theia Xsens Ours Theia Xsens Ours Theia Xsens

RMSE (°)

Ankle 4 6.7 — 5.1 8 — — — —

Knee 5.1 3.3 — — — — — — —

Hip 5.6 11 — 3.1 2.6 — 6.6 6.9 —

Meanerr (°)

Ankle 2.79 — 2.15 2.56 — 1.81 — — —

Knee 1.92 — 1.87 — — — — — —

Hip 3.04 — 2.47 2.6 — 4.83 5.27 — 3.02

ROMerr (°)

Ankle -1.22 ≈ -10 0.4 6.48 — 1.38 — — —

Knee -0.3 ≈ -1 0.8 — — — — — —

Hip -1.7 ≈ -10 2.42 -1.81 — 5.37 4.68 — 0.04

Table 5.4: Pose2Sim results compared to Theia3D [Kanko2021a] and to Xsens [Zhang2013] in
the walking task. Root-mean-square error (RMSE), mean error (Meanerr), and range of motion
(ROM) are examined. Theia3D’s ROM results were approximated from reported graphics along
the flexion/extension degree of freedom. Both studies to which we compared our results involved
a different setup (participants, cameras, protocol, etc.), therefore the differences cannot be to-
tally attributed to the different technologies (markerless or IMU) nor to the different algorithm
(Pose2Sim or Theia3D). * Although ankle subtalar angle combines abduction/adduction and in-
ternal/external rotation, it is hereafter reported in the abduction/adduction column.

5.4 Discussion

5.4.1 Strengths of Pose2Sim and of Markerless Kinematic

Pose2Sim offers a way to perform a markerless kinematic analysis from multiple calibrated
views, taking OpenPose results as inputs, and giving biomechanically oriented results via Open-
Sim. Both OpenPose and OpenSim are open-source and among the most widespread and renowned
tools in their respective fields. We compared Pose2Sim lower-body results to those of a reference
marker-based method, over three tasks performed by one participant: walking, running, and cy-
cling. Both protocols were as similar as possible, and used the same constrained skeletal model in
order to ensure that there was no discrepancy in results caused by different definitions of anatomi-
cal frames [della Croce1999]. Pose2Sim kinematic waveforms were very similar to marker-based
ones, especially in the sagittal plane. One exception to this observation was the hip angle in
running, which suffered from a 15° offset due to the dearth of keypoints in this area. This led
the optimization procedure to admit two solutions for the spine curvature, both mathematically
and kinematically correct: one with a lordotic posture, and the other with a kyphotic posture.
There was also less agreement for ankle angles in cycling, most likely because for both Pose2Sim
and marker-based kinematics, keypoint/marker detections suffered from occlusions from the bike.
This is corroborated by the higher RMSE between experimental and theoretical markers observed
in cycling (Table 5.1). The similarity of waveforms among both protocols was assessed with the
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coefficient of multiple correlation (CMC) [Ferrari2010], which takes into account the concurrent
effects of correlation, gain, and offset. When averaged over all lower-limb joints and all degrees
of freedom, mean errors amounted to 3.0°, 4.1°, and 4.1° in walking, running, and cycling, respec-
tively, and range of motion errors were equal to 2°, 2.3°, and 4.3°. It should be noted that, unlike
ours, Theia3D [Kanko2021a] and Xsens [Zhang2013] studies to which we compared our results
involved several subjects (30 and 10, respectively.) Our study recorded with eight virtual cameras,
1 MP definition, 30 Hz framerate, and perfect calibration, whereas the Theia system recorded with
eight cameras, 3 MP definition, 85 Hz, with a marker-based calibration. Hence, the comparison
between accuracies of Theia3D, Xsens and Pose2Sim are given for an overview of their order of
magnitude, not as a claim for exact comparison. This study focused on lower-body kinematics,
however we also reported upper-body and sacro-lumbar kinematics in Appendix B for reference.
It may be noted that differences between the two approaches were larger than for the lower body,
and especially for the sacro-lumbar flexion.

This shows that a carefully designed skeletal model, when correctly scaled and constrained,
can lead to accurate results from a markerless approach, despite poorly labeled joint centers [Need-
ham2021b,Wade2021], and despite a low number of detected keypoints. Indeed, it has been shown
that the triangulation of deep-learning-based pose estimation methods produces systematic errors
up to 50 mm in 3D knee and hip joint center coordinates [Needham2021b]. Without the use of a
skeletal model, flexion/extension lower-body angle errors in cycling have been demonstrated to be
as large as 3–12° [Bini2021]. Moreover, Pose2Sim still gave relevant results when using the co-
ordinates of only 21 triangulated keypoints coordinates (after exclusion of eye and ear keypoints).
This is in line with conclusions that were previously made for marker-based approaches, implying
that constrained kinematic models are resilient to marker placement and quantity [Slater2018].

The setup of Pose2Sim can be installed anywhere, i.e., directly on-site rather than in a labora-
tory setting. No particular attention has to be devoted to the background color, to the participant’s
clothing, nor to the luminance of the recording area. No apparatus interferes with the athlete’s
movement, who can fully concentrate on their performance. This is of crucial importance in the
context of sports analysis. Results are not operator or subject dependent, which makes labeling,
scaling, and inverse kinematics both easy and robust. It is to be noted, however, that it does not
leave room for adjustment if it is needed to better monitor a specific body part. However, the
operator or scientist has access to fine control on most parameters at each step of the analysis: the
deep-learning 2D pose estimation model can be changed; tracking, triangulation, and filtering pa-
rameters can be adjusted; and the OpenSim model, scaling, and inverse kinematics can be entirely
controlled.

5.4.2 Limits and Perspectives

Our study still has potential limitations, starting with those stated in the previous chapter on
Robustness Assessment: we used a virtual scene, and captured a limited amount of data (only
8–13 cycles per task were captured, performed by one participant).

Moreover, both systems were neither cross-calibrated nor synchronized by hardware. Con-
cerning calibration,we were only looking for relative joint angles, thus sharing common coordi-
nates was not important. Concerning the second issue, we visually synchronized the data to the
frame on a sharp movement. However, our framerate was only 30 fps, which means that there
could be up to a half frame (1/15 seconds) of delay. Moreover, gait events were calculated with a
kinematic approach [Zeni2008] rather than detected with a force plate. And yet, all of these limits
would have likely deteriorated our results rather than artificially improved them.

On the other hand, movements were captured at 30 Hz. Given the relatively slow and steady
movements we analyzed, we believe that this framerate did not impact our results, although both
marker-based and markerless kinematics would beneficiate from a higher sample frequency on
more demanding activities. Note that Pose2Sim can operate at any framerate, and this limitation
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is only due to the settings of the video acquisition system. Although results cannot be overly
generalized to other sports movements, we assume that conclusions would hold for other healthy
subjects, first because the OpenPose training was done on numerous participants having differ-
ent gender, race, body shape, and outfit [Andriluka2014, Lin2014, Xiang2019]; second, because
deep-learning-based pose estimation algorithms are not subject to inter-operator errors nor to soft-
tissue artifacts; and, third, because the OpenSim kinematic model is scaled to the participant’s
anthropometry. Nonetheless, it would be worth assessing its accuracy on more challenging sports
and with multiple subjects. Moreover, we used perfect virtual cameras instead of real ones. Real
cameras could have induced errors due to motion blur, large distortions, or calibration errors. Our
previous study, however, showed that the system was very robust to these issues, including with
as little as four cameras, at least with movements such as walking, running, and cycling on an
ergometer (see previous chapter on Robustness Assessment [Pagnon2021]). It may be interesting
to try Pose2Sim with light and versatile action cameras such as GoPros, calibrated with a checker-
board. The accuracy of these cameras has already been explored on marker-based data. Although
the maximum point coordinate error was about 10 times as large as that with a motion capture
system (2.47 versus 0.21 mm), knee joint angles were highly correlated (joint coordinates error
below 2.5°) [Dalla Bernardina2019]. This is the topic of the next chapter, about GoPros used for
boxing analysis.

OpenPose keypoint localization suffers from systematic offsets when compared to actual joint
center positions [Needham2021b]. This has been taken into account on a static pose in the Open-
Sim unscaled model, by shifting OpenPose keypoint placements with regard to marker-based joint
centers. This was done manually, but precisely, thanks to our overlayed view (Figure 3.4). The
OpenSim model was then scaled to the participant’s anatomy without the use of any MoCap proce-
dure. However, OpenPose’s offset may not be the same when a limb is extended as when it is bent,
which may influence kinematic results on extreme poses. Hence, using a pose estimation model
free from systematic biases on all ranges of motion would improve kinematic accuracy, even if ap-
plying a constrained skeletal model already largely reduces the detrimental impact of low-quality
2D joint center estimations. See Chapter 3 on Pose2Sim for more details on perspectives.

[Desmarais2021] proposed a taxonomy of 3D pose estimation algorithms based on accuracy,
robustness, and speed. Accuracy was assessed in this chapter, and robustness was investigated
in the previous one; however, speed has not yet been tested. Yet, a timely feedback is crucial for
coaches and athletes to be able to use a motion analysis software. The bottleneck for computational
costs, here, is by far the pose estimation system, but some neural networks are tackling this issue
[Bazarevsky2020, Wang2022b].

Deep-learning-based human pose estimation is making considerable and consistent progress.
It is becoming more accurate, more robust, faster, and simpler to use, approaching Atha’s 1984
definition of an ideal motion analysis system [Atha1984]. Pose2Sim takes advantage of these
advances, and mitigates the remaining errors by constraining these outputs to obtain physically
consistent kinematics.
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6
Using Consumer-Grade Hardware - Application to

Boxing

In the context of competition, research-grade hardware is not always
workable as it is cumbersome and complex to set up. We tested the
use of GoPro cameras, which are lightweight and wireless, but not
straight-forward to calibrate or synchronize. We post-calibrated
them on geometric cues, and post-synchronized them by correlation
of keypoint speeds. The workflow was applied to shadow-boxing,
which involves fast, three-dimensional, full-body movements.

The objective of the study was to verify whether it is possible
to accurately measure Key Performance Indicators (KPIs) in boxing,
with a markerless protocol using consumer-grade action cameras.
This was concurrently validated with a marker-based protocol. A
secondary goal was to compare the impact of post-calibration and
post-synchronization, to the impact of choosing a more standard,
less refined 2D pose estimation model. We conclude that KPIs are
remarkably well evaluated in all conditions. Using a different 2D
pose estimation model had a similar, but mild impact, on results, but
combining both factors led to more imprecision.

This chapter is a more detailed version of the poster presented
at the congress of the European College of Sport Science (ECSS):
"A 3D markerless protocol with action cameras – Key performance
indicators in boxing" [Pagnon2022c]. See Figure 6.1 for a visual
abstract.
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6.1 Introduction

6.1.1 Limits of Research-Grade Systems in Competitions

When fine kinematic analysis is needed, the de facto approach is marker-based motion capture.
However, we have seen that it is not appropriate in sports, and markerless methods are favored.

Moreover, competition conditions are often fast-paced and congested, and thus the capture
system needs to be discrete and installed swiftly. As a consequence, research grade video sys-
tems may not be appropriate: they involve setting up large cameras and tripods, with fragile and
cumbersome power and synchronization cables, which are obstructing and which prevent cameras
from being spread too far apart. These systems require at least two trained operators to set them
up and to adjust their parameters. They are also very expensive, while their image resolution is
limited at high framerates.

On the other end, consumer-grade action cameras such as GoPros are very small, don’t neces-
sitate any cabling, and the operator has nothing to do but pressing the recording button. They are
also cheap, and offer remarkably high framerate, resolution, and image quality. However, there is
no centralized visual feedback upon recording, their battery does not last more than an hour, they
don’t come with calibration, and until recently, no simple synchronization solution existed. In any
case, their use has been investigated lately. [Jackson2016] tracked bees after calibrating with a
wand and synchronizing on a sound signal, while [Dalla Bernardina2019] equipped cameras with
an illumination ring and a subject with markers, and evaluated knee flexion after calibrating with
a wand and synchronizing on a flashlight.

When outdoors, in direct sunlight and with large capture volumes, calibration of video cam-
eras becomes delicate, too: markers on a calibration wand are inconstantly detected. No re-
liable solution currently exists, including with active LED markers. Checkerboard calibration
is almost equally problematic, as corners are not always well detected unless the board is too
large to conveniently carry around. Other solutions exist, such as calibrating intrinsic parame-
ters with a checkerboard [Zhang2000], and extrinsic parameters with manually clicked and semi-
automatically tracked points on a wand [Argus, Jackson2016]. Alternatively, it is possible to cal-
ibrate extrinsics on any object of known dimensions [Dawson-Howe1994], be it a human be-
ing [Liu2022a].

Synchronization can also be a problem. Using a trigger signal is the most accurate approach,
but again, it generally involves using wired cameras. Other methods rely on using a flash, or an au-
dio clap [Jackson2016], but they are not possible in the context of a competition. Moreover, as the
sound does not travel instantaneously, the synchronization will not be very accurate on a large cap-
ture space if the distance from camera to sound source is not taken into account [Hasler2009]. For
example, a 20 meters difference would lead to a 60 ms shift, which represents 7 frames at 120 fps.
Identifying the instant of a sharp movement is sometimes used as a time reference, but it is gen-
erally not accurate enough for a synchronization to the frame, especially if the framerate is high.
Other procedures can be explored, such as WiFi synchronization [Romanov2019] or Bluetooth
synchronization [Asgarian2022], but they usually require using external devices. GPS synchro-
nization is compatible with GoPro 9 and plus, but signal may not be available everywhere, typi-
cally in some sports halls [GoPro]. Another way to synchronize data streams is to cross-correlate
them, and to infer the delay between them from the time of maximum correlation [Plotz2012].

6.1.2 Key Performance Indicators in Boxing

Key Performance Indicators (KPIs) are a set of variables which need to be measured in prior-
ity, in order to assess performance, or to evaluate main areas where work is needed. Although they
are more known in the fields of management or of the industry, identifying them is also important
in sports [Hughes2002,Butterworth2013]: they allow coaches to assess performance, and to tailor
training to each athlete’s specificities. Determining them would typically be done through discus-
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sions with coaches, who usually have a subjective, but nevertheless very fine and comprehensive
understanding of their sports.

KPIs must be meaningful and specific to each sports discipline, and it should be possible
to capture them in a context as close as possible to the competition one. Boxing is one of
the disciplines involved in the PerfAnalytics project, and it covers a wide range of movements,
which makes its study relevant. KPIs in boxing can be separated into several categories: ac-
tion annotations (such as scored points, number of recorded jabs punches or dodges by lean-
ing backwards [Thomson2013]), anthropometric KPIs (such as arm length and muscle percent-
age [Chaabène2015]), physiological (such as velocity at maximal oxygen uptake and anaerobic
power [Chaabène2015]), or biomechanical (such as ground reaction force of the rear leg before
execution of a cross punch, activation of the latissiums dorsi during the hook punch, or extension
of the elbow at the end of the execution of the jab [Lenetsky2020]).

Among all these KPIs, we focus on a subset of the biomechanic ones, namely kinematics.
Ultimately, a decisive aspect in a punch is its speed. First, a fast punch is difficult for the opponent
to dodge. Then, speed multiplied by force is equal to punch power. In addition, punch force
is also correlated to hand velocity [Mack2010]. However, speed is not generated the same way
in jabs as in hooks, since one is a mostly translational movement whereas the other is mostly
rotational. [Lenetsky2020] broke down the phases of both techniques. Among other body motions,
the jab first involves translating the lead foot toward the target, then the pelvis and the torso, while
the lead arm flexes at the elbow to store elastic energy prior to throwing the punch. Finally, the
elbow extends, until the fist is brought into contact with the target. Regarding the rear hook,
it starts with flexing the rear knee, while the pelvis and torso rotate horizontally away from the
target. Then the motion is reversed, as the knee extends and the pelvis and torso rotate toward the
target. Lastly, the attacking arm abducts at the shoulder until the fist reaches the target.

As a consequence, it appears that lead foot translation, pelvis translation, lead elbow extension,
and lead fist velocity would consist of good KPI variables for the jab. Similarly, rear knee flexion,
pelvis rotation, rear shoulder extension, and rear fist velocity would be valuable to characterize the
rear hook.

6.1.3 Objectives

Evaluating kinematic KPIs in boxing is inconvenient with marker-based techniques, and chal-
lenging with markerless ones. Indeed, boxing movements are fast, 3 dimensional, and involve
the whole body. Moreover, addressing motion capture in an ecologically valid context involves
dealing with constraints on the protocol, and requires carefully thinking about the hardware, the
calibration method, and the synchronization procedure. These three elements determine 3D re-
construction. However, before this stage comes the 2D pose estimation.

Numerous solutions exist in this regard. AlphaPose [Fang2017] and OpenPose [Cao2019] are
both the most common and the most accurate [Needham2021b, Mroz2021]. OpenPose is even
more widely used than AlphaPose, hence this is the one we choose to focus on. Its standard
model is body_25, however the body_25B subset of the single-network whole-body pose estima-
tion [Hidalgo2019] also provides 25 points, is as fast as the standard one, and is claimed to be
more accurate and to reduce false positives [Hidalgo2019, Pagnon2021]. However, no practical
comparison between the standard body_25 model and the experimental body_25B one has been
done yet.

The objective of this study is to evaluate how accurately KPIs can be retrieved in real-life sports
conditions, concurrently with a marker-based analysis. Results will be evaluated for a research-
grade markerless system, for a consumer-grade markerless one with post-calibration and post-
synchronization, as well as with a slightly less accurate pose estimation model in both previous
conditions. A subsidiary question is whether the 3D reconstruction procedure has more or less
impact on accuracy than the choice of a 2D pose estimation model.
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6.2 Methods

6.2.1 Participants and Protocol

3 adult elite boxers were selected, from different weight categories and with different mor-
phologies: one right-handed female, one right-handed male, and one left-handed male. Details are
provided in Table 6.1. They all provided informed written consent. Participants were equipped
with 44 reflective markers, placed by one single operator, following the recommendations of the
International Society of Biomechanics (ISB) [Wu2002, Wu2005]. Marker set and marker place-
ment are detailed Figure 6.2.

A professional coach instructed the athletes to perform a sequence of shadow-boxing 6 times,
consisting in a jab, a high rear hook, and a low rear hook. They executed these movements in their
usual training center, on a competition boxing ring.

Participant Gender Handedness Age (years) Height (m) Weight (kg)

1 Male Right-handed 20 1.72 54

2 Female Right-handed 19 1.63 59

3 Male Left-handed 18 1.90 78

Table 6.1: Demographic details on the participants.

Figure 6.2: Marker location on the body [Lahkar2022a].

The boxing sequences were recorded by 12 opto-electronic Qualisys cameras (7 Miqus M3,
resolution 2 MP, framerate 300 fps; and 5 Arqus A5, resolution 5 MP, framerate 300 fps), 8 video
Qualisys cameras (Miqus videos, resolution 2 MP, framerate 60 fps), and 8 GoPros (4 GoPro 7
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and 4 GoPro 8, 2 MP, 120 fps, linear field of view). GoPro videos were down-sampled to 60 fps
before pursuing further analysis, for a better comparizon with the Qualisys system. Marker-based
and markerless Qualisys cameras were placed next to each other as pairs, except for the 2 sur-
plus optoelectronic cameras. Aperture, focus, shutter speed, and other parameters were carefully
adjusted by hand. Both data streams were recorded within the Qualsys QTM software, which al-
lowed for calibration and synchronization, and for a common frame of reference. GoPro cameras
did not need any adjustment prior to recording. However, calibration and synchronization were
performed after the capture, following the methods proposed in the next two sections.

Marker-based 3D coordinates were calculated with the Qualisys QTM software. These marker
data were augmented with joint center coordinates: shoulder centers were defined based on the re-
gression equations adopted from [Dumas2018], and elbow, wrist, knee, and ankle joints were
defined as the midpoints between epicondyle markers [Pohl2010]. Markerless videos from Go-
Pro and Qualisys cameras were processed by OpenPose v1.6 [Cao2019], both with body_25
and body_25B models. Once calibration and camera synchronization were solved (see next two
sections), tracking, triangulation, and filtering were done with Pose2Sim [Pagnon2022b]. Both
marker-based and markerless 3D coordinates were processed by a 10 Hz, 4th order low-pass
Butterworth filter [Butterworth1930], which was deemed appropriate to filter out noise with-
out missing peak values. Inverse kinematics of both were processed with the same OpenSim
model [Pagnon2022b], in order to not interfere with the other protocol variations which were
actually investigated.

6.2.2 Post-Calibration on Ring Dimensions

Unlike with Qualisys optoelectronic and video cameras, there is no live calibration procedure
for GoPros. Intrinsic parameters were computed priorly by filming a checkerboard of known
dimensions from different distances and orientations. Corners were found, and their locations were
refined with OpenCV [Bradski2000]. This allowed for focal length, optical center, and distortion
parameters to be calculated [Zhang2000]. See Table 6.2 for a summary of the GoPro 7 and 8
intrinsic parameters.

Model Field of view Resolution (px) Focal length (px) Distortion coefficients

GoPro 7 Linear 1920x1080 1029 [-0.004, 0.004, 0.0]

GoPro 8 Linear 1920x1080 915 [-0.01, 0.004, -0.0015]

Table 6.2: Intrinsic parameters of the GoPro 7 and GoPro 8 cameras. The optical center was
assumed to be at the center of the image. Focal length was supposed to be identical in both
directions, the pixel to be square and not skewed, and 6th order radial and 2nd order tangential
distortion coefficient to be null.
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Extrinsic parameters can then be solved by pairing global 3D coordinates of an object to its
corresponding 2D coordinates on the image. This is classically done with a frame or a checker-
board laid on the floor (where it can be seen by all cameras), but when cameras are too low or
too far from the center of the scene, image coordinates can be imprecise and lead to inaccurate
extrinsic calibration. In this case, any object of known dimensions on the scene can be used: in our
case, we measured the ring dimensions, and retrieved the corresponding 2D coordinates on each
camera view. We then used the Perspective-n-Point (PnP) algorithm using non-linear Levenberg-
Marquardt minimization scheme [Moré1978] to solve extrinsic parameters [Marchand2015] (see
Figure 6.3). Dimensions of the ring were measured approximately, thus we iteratively adjusted its
coordinates in order to minimize the grand average error for all cameras between 2D coordinates
and projected 3D coordinates, until all camera errors stayed under 3 cm.

Figure 6.3: Extrinsic calibration on ring dimensions. Green crosses represent the 2D points of the
ring clicked by the user, and red dots its 3D coordinates projected on the image plane.

6.2.3 Post-Synchronization on 2D Movement Speeds

GoPro videos were roughly cut to select the approximate same sequence from all cameras.
OpenPose 2D keypoint trajectories were differentiated, in order to obtain 2D keypoint speeds. We
assumed that two nearby cameras were synchronized when 2D speeds were maximally correlated.
This is the approach adopted independently explored by OpenCap [Uhlrich2022].

Hence, we used time-lagged cross-correlation to determine this offset (Figure 6.4). This can
be done for one specific point, or for all of them at once with attributing a different weight to each
keypoint. Typically, larger weights could be attributed to fists or to other fast moving keypoints.
In practice, all weights were set to 1, since it made results more robust without causing them to be
less accurate.
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Figure 6.4: Top: 2D keypoint speed comparison between two cameras. Bottom: The offset frame
with maximum correlation corresponds to the synchronization offset.

6.2.4 GoPro to Qualisys Spatio-Temporal Coordinate System

In order to be able to compare GoPro results to Qualisys ones, they need to share a common
spatio-temporal base. We synchronized both 3D coordinates outputs in the same way as previously
described, however with 3D instead of 2D speeds. Then, we transformed GoPro 3D coordinate
results to the Qualisys’ coordinate system. The rotation and translation needed were found by
minimizing the difference between GoPro and Qualisys 3D coordinates.

6.2.5 Statistical Analysis

Calibration accuracy was assessed by comparing residual reprojection errors with the GoPro
protocol to those with the Qualisys one. There is no objective metric for assessing synchronization
accuracy, however we estimated it indirectly. Once GoPro cameras were synchronized two by
two, we retrieved the resulting Pearson correlation coefficient between 2D speeds, and averaged
it across all cameras. Similarly, we calculated the same coefficient for the perfectly synchronized
Qualisys system. Assuming that GoPro cameras are approximately spread out in the same way
as Qualisys ones, and that the 2D pose estimation performed similarly well in both cases, any
correlation difference would probably be due to the non-perfect post-synchronization of GoPro
cameras. A correlation is generally considered to be weak if r<0.5, moderate if 0.5<r<0.7, and
strong if r>0.7.

We examined time series for lead foot translation, pelvis translation, lead elbow extension,
and lead fist velocity for the jab; and rear knee flexion, pelvis rotation, rear shoulder extension,
and rear fist velocity for the rear hook. Waveform similarity between the reference marker-based
method and all other markerless ones was assessed with the inter-protocol coefficient of multiple
correlation (CMC) [Ferrari2010], which quantifies in one single value the concurrent effects of
differences in correlation, gain, and offset (see Statistical Analysis Chapter 5). We compared the
Root Mean Square Error (RMSE) with marker-based results to the findings of two previous studies
done with the commercial markerless software Theia3D [Kanko2021a].
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We also retrieved certain quantifiable indicators on the aforementioned recorded variables.
Ranges of motion and onset times were examined for translations, and peak values and times for
angles and speeds. We computed mean differences and standard deviation (std) between marker-
based results and all other protocol results. The impact of the camera type, and of the 2D pose
estimation model, were similarly explored.

Normality of the distribution of differences was verified with a Shapiro-Wilk test [Shapiro1965].
If this condition was satisfied, we used paired t-tests to test the null hypothesis that there was no
statistical difference between protocols [Student1908]. If not, we used the Wilcoxon signed-rank
test [Wilcoxon1945]. When some paired differences were equal to zero, the normal approximation
was used. When less than 10 of the paired differences were non-zero, we could not reject the null
hypothesis that mean paired results were equal. We used a significance level of 0.05.

6.3 Results

6.3.1 Calibration and Synchronization Accuracies

Calibrating GoPro cameras on ring dimensions led to an average of 2.59 px reprojection error,
which corresponds to 1.93 cm of error at the center of the scene. Conversely, Qualisys average
residuals for calibration stayed under 1 mm, which is approximately 20 times better. After syn-
chronization, Pearson correlation coefficient between 2D speeds was 0.69 in average (moderate
correlation) with the GoPro system, while it was 0.73 in average (strong correlation) with the
Qualisys one, which denotes a non-perfect synchronization of the GoPro cameras.

6.3.2 Waveform Comparison

Waveforms were very dissimilar across participants, especially for the hook technique. For
example, no apparent peak could be found on hook trials for subject 2 on rear knee flexion nor
on rear shoulder abduction (Figure 6.5). On the opposite, differences were almost imperceptible
across protocols (Figure 6.6). Results of the research-grade markerless setup, with specialized
cameras, marker-based calibration, and hardware synchronization, were almost identical to those
of the marker-based analysis (CMC > 0.99). Results from GoPro cameras with calibration on ring
dimensions and synchronization on 2D keypoint speeds were also in excellent agreement
(CMC > 0.95). The same was true with Qualisys cameras used with the default body_25 model
(CMC > 0.95). However, the combined use of GoPro cameras and of the default body_25 Open-
Pose model led to a slight decrease in accuracy, even if results were still in very good agreement
(CMC > 0.85). Velocities and shoulder rotation were the least in agreement, although CMC stayed
over 0.90 (Table 6.3).

More precisely, in the most favorable conditions, the RMSEs amounted to 0.85 cm for lead
foot translation (which can be compared to 2.4 cm for ankle translation during gait for Theia3D
[Kanko2021a]), 0.79 cm for pelvis translation (vs. 3.6 cm for hip translation), 4.1° for lead elbow
extension (vs. 7.4° for Theia3D in the same boxing settings [Lahkar2022a]), 0.3 m/s for lead
and rear fist velocities (vs. 0.1° and 0.2 m/s [Lahkar2022a]), 3.2° for knee flexion (vs. 3.3°
[Kanko2021a]), 6.5° for pelvis rotation (vs. 8.5° [Kanko2021a]), 6.5° for shoulder abduction (vs.
6.3° [Lahkar2022a]). Results were slightly degraded when using GoPro cameras or the standard
body_25 model, but they still remained comparable to the Theia3D results. When using both
GoPro cameras and the body_25 model, they became more clearly worse, except for translations
for which errors remained comparable (Table 6.3).
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Figure 6.5: Mean (solid line) and standard deviation (shaded area) of all trials by each of the
3 boxers. Note that the inter-participant waveform difference is substantial, especially for hook
punches.
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Figure 6.6: A representative trial by one of the athletes. Comparison of selected variables for a
sequence of jab, high hook, and low hook in boxing. Waveforms look very similar across all pro-
tocols, even though the use of the standard OpenPose body_25 model instead of the experimental
body_25B one seems to cause more discrepancy when compared to the reference marker-based
analysis.
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Marker-based vs. →
Markerless

with Qualisys
Markerless

with GoPros
Markerless with

Qualisys & body_25
Markerless with

GoPros & body_25

CMC Jab punch

Lead foot translation 1.00 1.00 1.00 1.00

Pelvis translation 1.00 1.00 1.00 1.00

Lead elbow extension 1.00 0.98 0.99 0.95

Lead fist velocity 0.99 0.97 0.98 0.91

Hook punches

Rear knee flexion 0.99 0.99 0.99 0.99

Pelvis rotation 0.99 0.99 0.99 0.98

Rear shoulder rot. 0.99 0.99 0.99 0.95

Rear fist velocity 0.99 0.97 0.98 0.90

RMSE Jab punch

Lead foot translation (cm) 0.85 2.05 0.95 3.46

Pelvis translation (cm) 0.79 0.83 0.83 1.56

Lead elbow extension (°) 4.1 10.3 6.2 17.4

Lead fist velocity (m/s) 0.3 0.5 0.5 0.9

Hook punches

Rear knee flexion (°) 3.2 4.1 3.2 3.9

Pelvis rotation (°) 6.9 8.6 8.1 11.4

Rear shoulder rotation (°) 6.5 8.0 7.3 14.2

Rear fist velocity (m/s) 0.3 0.5 0.4 0.9

Table 6.3: The Coefficient of Multiple Correlation (CMC) was used to assess the waveform simi-
larity of the variables of interest. Agreement is deemed excellent if CMC>0.95, and very good if
CMC>0.85 [Ferrari2010]. Root Mean Square Errors (RMSEs) were also reported.

6.3.3 KPI Accuracy Assessment

As KPI differences across protocols were never normally distributed, paired t-tests could not be
rigorously performed. As a consequence, we only used Wilcoxon signed-rank tests. Nonetheless,
in many cases, especially for time results, most paired differences were equal to zero. In these
instances, we could not reject the null hypothesis that results were identical in average. It should
be noted that for rear knee flexion and for rear shoulder abduction in hook punches, KPI means
and standard deviations did not take participant 2 into account, since her movement patterns did
not present any peak in these variables.

Range of motion errors usually remained under 1 cm, as compared to the marker-based proto-
col. Mean errors were even lesser with body_25 model, but with more variation around the mean,
which did not lead to any significant differences. Elbow extension, knee extension (calculated as
180° − knee flexion), shoulder abduction, and pelvis rotation peak angles were generally underes-
timated, by 2.9° to 5.4° with the Qualisys cameras and body_25B model, by 2.7° to 10.2° when
using GoPro cameras or body_25 model, and by more than 11.8° to 17.2° when using the most
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suboptimal protocol with both GoPro cameras and body_25 model. Peak fist velocity errors did
not broadly depend on the choice of protocol. However, they were underestimated by up to 0.4
m/s (1.4 km/h) for both hands (Table 6.4).

Peak times were usually estimated too early with GoPro cameras, by about 10 to 40 ms,
i.e., 0.6 to 2.4 frames at 60 fps. Most other onset and peak time errors were not statistically
significant, especially for Qualisys cameras when used with the experimental Body_25B pose
estimation model. Rear shoulder abduction demonstrated the largest peak time error, up to about
50 ms (3 frames) (Table 6.4).

Meanerr (±std) of
Marker-based vs. →

Markerless
with Qualisys

Markerless
with GoPros

Markerless with
Qualisys & body_25

Markerless with
GoPros & body_25

ROM1 or Peak value Jab punch

Lead foot translation1 (cm) -1.06 (±0.67) * -1.00 (±0.74) * -0.11 (±0.98) 0.49 (±1.20)

Pelvis translation1 (cm) -0.69 (±0.60) * 0.43 (±0.53) * -0.41 (±0.74) 1.12 (±0.95) *

Lead elbow extension (°) -2.9 (±2.0) -8.6 (±3.5) * -10.2 (±4.3) * -17.2 (±6.1) *

Lead fist velocity (m/s) -0.4 (±0.1) * -0.2 (±0.2) * -0.4 (±0.2) * -0.4 (±0.2) *

Hook punches

Rear knee flexion2 (°) 5.4 (±1.9) * 4.0 (±2.1) * -0.5 (±1.9) 1.7 (±2.8)

Pelvis rotation (°) -3.9 (±4.8) * -7.9 (±2.7) * -6.9 (±4.1) * 11.8 (±5.7) *

Rear shoulder abduction2 (°) -4.1 (±2.2) * -2.7 (±2.9) -3.4 (±2.7) * -0.9 (±6.2)

Rear fist velocity (m/s) -0.1 (±0.1) * -0.4 (±0.2) -0.3 (±0.1) * -0.4 (±0.6)

Onset time1 or Peak time Jab punch

Lead foot translation1 (ms) -0.9 (±2.3) -14.8 (±11.4) * -1.9 (±5.3) -34.3 (±18.2) *

Pelvis translation1 (ms) 6.5 (±8.7) -7.4 (±13.8) 7.4 (±5.3) * -14.8 (±18.2) *

Lead elbow extension (ms) -3.7 (±5.3) -2.8 (±11.9) -3.7 (±6.4) -19.4 (±19.8) *

Lead fist velocity (ms) -8.3 (±8.8) -13.0 (±9.8) * -10.2 (±10.4) * -20.4 (±15.1) *

Hook punches

Rear knee flexion2 (ms) 15.3 (±27.0) 9.7 (±31.2) -19.4 (±34.5) -19.4 (±48.2)

Pelvis rotation (ms) 18.5 (±41.8) 28.5 (±49.5) 31.5 (±58.0) * 32.4 (±38.2) *

Rear shoulder abduction2 (ms) -58.3 (±52.1) -40.3 (±45.0) * -56.4 (±59.6) -15.3 (±55.5)

Rear fist velocity (ms) 0.9 (±2.3) -7.4 (±19.4) * -2.8 (±9.0) -14.8 (±28.0) *

Table 6.4: Mean and standard deviation (±std) errors of the boxing KPIs captured through each
protocol, as compared to marker-based reference results. 1ROMs and onset times were observed
for translations, and peak values and times for rotations and speeds. 2Participant 2 was not taken
into account in rear knee flexion nor on rear shoulder abduction results, since her movement pat-
terns did not lead to any peak in these variables. ROM: Range Of Motion. *indicates statistically
significant differences (p<0.05).

Using GoPros instead of Qualisys cameras had a comparable impact as switching back to the
standard body_25 OpenPose model on ranges of motion (up to 1.3 cm difference), peak angles
(up to 7°), and peak velocities (0.1 m/s). However, using GoPro cameras lead to larger delays than
choosing the body_25 model: about 20 ms vs. 10 ms (1.2 vs; 0.6 frames) for translations, and 10
ms vs. 5 ms (0.6 vs. 0.3 frames) for velocities. No general conclusion could be drawn for time
differences in joint angles, as peaks were more challenging to accurately detect, especially when
using the body_25 model which led to noisier waveforms (Table 6.5).
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Qualisys vs. GoPros Body_25B vs. Body_25

Meanerr (±std) ROM1 or Peak value
(cm, °, or m/s)

Onset1 or Peak time
(ms)

ROM1 or Peak value
(cm, °, or m/s)

Onset1 or Peak time
(ms)

Jab

Lead foot translation1 0.33 (±0.89) * -23.1 (±18.9) * 1.22 (±1.09) * -10.2 (±16.1) *

Pelvis translation1 1.33 (±1.04) * -18.1 (±18.4) * 0.48 (±0.82) * -3.2 (±15.8)

Lead elbow extension -6.5 (±10.8) * -7.4 (±16.6) * -7.8 (±9.5) * -8.3 (±17.1) *

Lead fist velocity 0.1 (±0.2) * -7.4 (±15.7) -0.1 (±0.2) * -4.6 (±11.0) *

Hook

Rear knee flexion2 0.5 (±3.2) -2.8 (±29.8) -4.1 (±2.6) * -31.9 (±58.8) *

Pelvis rotation -4.4 (±6.9) * 5.5 (±59.8) * -3.5 (±5.2) 8.4 (±50.7)

Rear shoulder abduction2 2.0 (±5.2) * 29.9 (±80.6) 1.2 (±4.6) 13.2 (±68.9)

Rear fist velocity -0.1 (±0.7) -10.2 (±30.1) * -0.1 (±0.5) -5.6 (±21.8)

Table 6.5: Mean and standard deviation (std) errors of the boxing KPIs, compared between cam-
era types, and 2D pose estimation models. Qualisys cameras are research-grade, while Go-
Pro cameras are consumer-grade and involve different calibration and synchronization proce-
dures. OpenPose Body_25B model is claimed to be more accurate than the standard body_25
model.1Peak values and times were observed for rotations and speeds, and ROMs and onset times
for translations. 2Participant 2 was not taken into account in rear knee flexion nor on rear shoul-
der abduction results, since her movement patterns did not lead to any peak in these variables.
ROM: Range Of Motion. *indicates statistically significant differences (p<0.05).

6.4 Discussion

6.4.1 Accuracy Assessment

The boxing capture session was operated in close to ecologically valid conditions, with min-
imal interferences both with the athlete and the environment, on a regular competition ring. The
movements we investigated were challenging, as they were performed at high speeds, were 3 di-
mensional, and involved the whole body. We examined a broad range of variable types, such as
translations, rotations, joint angles, and velocities. Moreover, aside from the foot and pelvis ranges
of motions, the chosen KPIs evaluated spatio-temporal parameters at specific instants, rather than
their average over a whole movement cycle. Thus, onset and peak times were determined rather
than durations, peak angles rather their ROMs, peak speeds rather than their average. This made
the study more sensitive to noise and to small errors in variable measurements.

And yet, it performed remarkably well in all conditions. The difference in waveforms was
hardly noticeable, except in the last condition, under the combined effects of using consumer-grade
cameras with a less accurate 2D pose estimation model. Even in these conditions, results were in
very good agreement for velocities, excellent agreement for joint angles, and perfect agreement
for translations. RMSE results were slighlty better than those previously reported for Theia3D in
the most favorable conditions, and comparable under either the use of GoPro cameras, or of the
standard OpenPose model. They were more noticeably degraded when being confronted with both
challenging conditions, although they remained well within the same order of magnitude.
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However, more significant imprecision was observed when looking at specific instants, i.e.,
when examining our chosen KPIs. Still, results were coherent. Indeed, peak velocities in jabs and
hooks were fully in accordance with values previously reported by [Whiting1988,Piorkowski2011].
The magnitude of the difference with marker-based results were moderate. Translation errors re-
mained sub-centimetric, peak joint angle errors were mostly lesser than 5°, and peak velocity
errors stayed under 0.4 m/s. Peak and onset time errors were usually sub-frame (under 17 ms),
aside from the pelvis rotation and the shoulder abduction, whose error could go up to 3.5 frames.
This was probably due to the dearth of keypoints in the pelvic and trunk region, and to the fact
that the shoulder girdle is much more complicated than a ball joint, as it has been defined in our
OpenSim model.

Using a less accurate 2D pose estimation model had a similar impact as using consumer-grade
cameras. This impact, however, was very mild, and only became more obvious once both factors
were combined, which led to more noisy and unstable waveforms. This shows that a research team
should choose their 2D pose estimation algorithms with as much care as their hardware. Some
other models provided by OpenPose or other contributors are less accurate [Needham2021b], and
may consequently lead to divergent results. This also involves that the triangulated keypoints
must be carefully placed on the OpenSim skeletal model. Indeed, we noticed that elbow and knee
extension angles were systematically underestimated, which may imply that the corresponding
keypoints were mispositioned. This discrepancy could be explained if these keypoints were not
positioned deep enough inside the joint, so that even when keypoints are aligned, these joints were
still slightly flexed.

Finally, we can infer from our study that a research-grade system is not necessarily needed for
the determination of sports KPIs. Consumer-grade cameras may be sufficient, despite they imply
greater calibration errors (centimetric rather than sub-millimetric), and approximate synchroniza-
tion (based on the participant’s 2D keypoint speeds rather than fixed by a hardware trigger). This
is in line with our previous findings that 1 cm calibration errors hardly made any difference to
kinematics results [Pagnon2021] (Chapter 4). This is especially interesting, since calibrating with
a wand equipped with retro-reflective markers is rarely successful in broad daylight, and since
laying cables in the scene for hardware synchronization potentially interferes with natural sports
movements.

Moreover, action cameras such as GoPros are lightweight, easy to set up, and wireless. They
also procure a wider field of view, often with higher frame rate and image definition, at consider-
ably lower prices. In general, they are much more appropriate in a sports setting. Yet, like most
consumer-grade cameras, they use a rolling shutter instead of a global shutter. This is known
to cause some irreparable image distortion, commonly called "jello effects". However, unless
lighting is particularly low, the rolling frequency for GoPro cameras appears to be approximately
identical to the acquisition frequency. Considering that these cameras can film at frequencies as
high as 240 fps in full-HD, it is not likely to cause any issues, including in fast sports disciplines.
Results being virtually the same as with research-grade cameras, practical considerations remain:
they do not allow for any live feedback, they require careful planning for sparing battery life,
and they potentially involve more complicated post-processing procedures in terms of calibration
and synchronization. However, calibration and synchronization present the potential to be at least
partly automatized (Table 6.6).

All things considered, it is interesting to notice that regardless of the protocol, all results were
very close to the marker-based ones. With the help of both IMUs and videos together, it has been
shown that with fatigue, boxers tend to release their guard, lift their elbow, and increase their
shoulder abduction [Haralabidis2020]. Based on the outcomes of our study, it should be possible
to monitor this without the use of any markers, IMUs, or any apparatus other than non-invasive
and consumer-grade video cameras. This opens the way to sports kinematic analysis and to KPI
determination in context, when marker-based analysis is not possible.
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Issue Research-grade system Action camera system

Transportation Fits in a large car Fits in a backpack

Set up
Long and cumbersome set up procedure

Frequent firmware issues

Fast and easy set up

Frequent remote control issues

Cabling

Camera-to-camera distance constraint

Need for power and data gauging

Fragile

Wireless

Calibration
Almost perfect when it works, but fails

in broad daylight if cameras are far away

Post-capture calibration

More robust, but larger residual errors

Synchronization Hardware, perfect
Post-capture synchronization

Less robust, 1-2 frames error

Live feedback Available Not available

Image resolution
Generally low-resolution

(Miqus video: up to 2MP at 85fps)

Generally high resolution

(GoPro 11: up to 5.3K=16MP at 60 fps)

Framerate

Very high framerate but low resolution

(Miqus video: up to 550 fps at 0.3MP)

Global shutter

High framerate even at high resolution

(GoPro 11: up to 240 fps at 2.7K=4.1MP)

Rolling shutter

Pricing ≈ 50,000 - 100,000 C ≈ 4,000 - 8,000C

Table 6.6: Pros and cons of using a research-grade system, or a consumer-grade one using action
cameras.

6.4.2 Limits and Perspectives

Kinematic analysis from video cameras involves 3 main stages: 2D pose estimation, 3D recon-
struction, and kinematic optimization. The last one has not been evaluated, and yet, it is of crucial
importance. Choosing a good skeletal model with consistent joint constraints and accurate bone
definition will determine whether the results can be trusted, or not. In particular, in this study the
shoulder was defined as a ball joint, both on the marker-based and on the markerless analysis. Yet,
the scapulothoracic girdle is a very complex multi-articulated joint, which allows for 3 rotations
and 3 translations [Seth2016]. Considering the small amount of keypoints tracked by standard 2D
pose estimation models, it is impossible to use a more complex model. Consequently, our shoul-
der abduction results can probably not be entirely trusted, neither for our markerless nor for our
marker-based protocol (see Limits and Perspectives in Chapter 3).

In addition, GoPro 60 fps mode actually samples at 59.94 fps. This is a multiple of 29.97 fps,
which is a holdout from the introduction of color on television in North America in the 1950s.
This is also true for phone cameras and for most recording devices. It leads to a 3.6 frames delay
per minute (0.06 s) when compared to the true 60 fps of Qualisys cameras. This temporal drift
artificially hampered our results on peak time comparisons, which would otherwise be even better.
However, this is not a problem in practice, as long as all cameras involved in the capture shoot at
the same frame rate.
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Currently, Pose2Sim does not handle multi-person kinematic analysis, which is highly prob-
lematic for any team or opposition sports. This is planned to be implemented shortly. Our cali-
bration and synchronization procedures are also projected to be added in the public release. Auto-
calibration on people limb dimensions could also be proposed, even if all sizes would only be true
up to a factor [Liu2022a]. In the future, it would also be interesting to support joint kinetics pre-
diction, by adding muscles which were stripped from the skeleton in the OpenSim model, as well
as inverse dynamics, by training neural networks to estimate ground reaction forces on specific
tasks [Oh2013, Johnson2018, Mundt2019, Uhlrich2022].

Lastly, despite the fact that boxing activities involve challenging constraints, kinematic anal-
ysis may not be as successful for other sports. For example, gymnastics involves athletes being
often upside-down, which OpenPose does not handle well at all. In this case, other models can be
used, or even custom-trained by users; however, as demonstrated, a lack of precision may lead to
inaccuracies in results. A similar lack of precision will also occur if a large field is captured, such
as in track and field or in team sports. To a certain extent, the body_25B model generalizes better to
small people detection [Hidalgo2019], although top-down method such as AlphaPose [Fang2017]
usually perform better at smaller scales [Cao2019, Bridgeman2019]. If the sports involves using
additional equipment such as a bike, more occlusions may occur, which could also hamper re-
sults. We previously showed that Pose2Sim was robust to a decrease from 8 to 4 cameras, unless
the detection of the person suffered from occlusions by equipment such as a bike [Pagnon2021].
Extracting body shape could provide enough additional information to allow for a decrease in the
number of cameras with less repercussion on the quality of results. Another less costly approach
could consist of detecting keypoints on the equipment parts causing occlusions, which would also
allow for the analysis of a full {athlete+equipment} system.
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7
Capturing Equipment Along with the Athlete -

Application to BMX Racing

Numerous sports disciplines are practiced with dedicated equip-
ment, so it is important to retrieve the related data. However, this
equipment can form a closed loop with the athlete, which makes the
task mathematically challenging to resolve.

We analyzed a BMX start sequence, by using OpenPose for
2D human pose estimation, and a custom trained DeepLabCut
model for bike detection. We ran Pose2Sim on the joint {pilot+bike}
2D estimations and performed 3D inverse kinematics on a custom
OpenSim {pilot+bike} model. Expected KPI patterns were success-
fully measured; however, results were inconclusive when constraints
were added between the pilot and their equipment. This shows that
a 3D markerless analysis of both the athlete and their equipment
is possible, which provides additional perspectives for markerless
sports motion analysis.

This content was presented at the "Rencontres scientifiques de
la haute performance en cyclisme" [Pagnon2022d]. See Figure 7.1
for a visual abstract.
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7.1 Introduction

7.1.1 The Importance of Equipment

Numerous sports disciplines involve equipment; and sometimes, the motion of this equipment
and of the athlete are of equal importance. Tracking a ball in soccer can help understand an-
ticipated actions and game dynamics [Ghasemzadeh2021], documenting the motion of a tennis
racket [Martin2013], a hockey stick [Kays2017] or oars of a rowing boat [Ruffaldi2015] gives
insight on the interactions between the athlete and their gear, and retrieving information about
skis [Ludwig2020] or bike parts [Rosenhahn2008] can help quantify specific posture cues.

However, this is challenging on several levels. First, the equipment needs to be tracked. This
is straightforward with marker-based or IMU based technologies: one can simply equip the ob-
ject with an additional marker, or sensor. However, this is more complicated with a marker-
less approach based on deep-learning, as it involves labelling each point or object of interest
on numerous images, and training a specific model. Second, in case the equipment is multi-
segmented, its own kinematics needs to be calculated, and a specific model needs to be crafted,
with accurate joint specifications and segment dimensions. Third, when the athlete is in con-
tact with their equipment, it can be interesting to solve the combined kinematics of the whole
{athlete+ equipment} system. The problem remains simple if the kinematic chain remains open
like in a tennis serve [Martin2013], however when the equipment makes it a closed loop, this can
become rapidly much more complex, and unsolvable. The privileged solution consists of "break-
ing" the kinematic chain to treat it as an open loop. The broken joints can then optionally be
reassembled using constraints, which has been reported to significantly improve accuracy [Rosen-
hahn2008, Fohanno2014]. Moreover, if constraints are correctly set, this allows for using fewer
markers [Begon2009], or in our case, to determine additional information such as hand prona-
tion/supination with few keypoints.

BMX race represents such a problem. Coaches are interested in the motion of the bike as
regards to the athlete. As a consequence, the bike needs to be tracked, modeled, and then its
kinematics needs to be computed. This is especially difficult, because both feet and both hands
are in contact with the bike, which makes it a particularly constrained closed chain, hence very
difficult to solve.

7.1.2 The Start in BMX Racing

BMX race differs from other cycling disciplines in several ways, one of them being the short
duration and of the effort. At the elite level, each race lasts about 30 to 40 seconds [Cowell2012].
Hence, the winner is the one who has not only averaged the greatest speed, but also taken the
shortest trajectory. In order to be able to choose the best one without being obstructed by other
riders, one has to take a good start. [Rylands2014] analyzed the statistics of 348 elite racers in UCI
(Union cyclist international) competitions, and found a strong correlation between early placing
and final placing. Most authors actually study the start, rather than any other part of the race
[Zabala2009, Gianikellis2011, Chiementin2012, Kalichová2013, Rylands2014].

Moreover, riders never sit on their saddle. When cycling off the saddle in road cycling, arms
have been shown to be more involved since they push and pull the handlebar [Stone1993], as
the body is brought upward and forward over the axis of crank rotation. Hence, this discipline
requires conducting whole body analysis. [Gianikellis2011] suggest that for a faster start, the
Range Of Motion (ROM) of the knee needs to be smaller than that of the trunk. [Kalichová2013]
finds a clear asymmetry in upper-body motion, both in terms of elbow and shoulder joint angles.
However, as these two are case studies, it is hard to give much trust to these measurements in terms
of performance. More specifically, the first movement initiated during a BMX start is the so-called
"slingshot" maneuver. It consists of moving the body down and forward, while the bike goes in
the opposite direction, the front wheel lifting noticeably. This plyometric countermovement occurs
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before the first pedal stroke, and before the gate has entirely dropped. According to [Gross2017],
this technique is highly effective. It involves a stretch-shortening cycle of the front knee, and the
counter-movement is more pronounced and initiated earlier in better riders. This confirms that the
complex motion of the bike as regards to the pilot at start is of crucial importance (see Figure 7.2).

[Grigg2017] concludes her literature review by underlying that research associating kinematic
characteristics and gate start performance would be useful for coaches. She also adds that both
equipment and rider analysis are of critical importance. Finally, she points out that research should
be done on-field, rather than in lab conditions which would introduce bias. As a consequence, we
captured the start in BMX race, in ecologically valid conditions, tracking both the pilot and the bike
movement in 3 dimensions, with and without closed-loop constraints, with a markerless protocol.
The goal was to propose a method for such an objective, and verify whether some kinematic
variables could be measured.

Figure 7.2: The early slingshot maneuver in BMX race.

7.2 Methods

7.2.1 Material and Protocol

As this was a preliminary experiment, we conducted this study on one single pilot, and ex-
amined one single start. For practical considerations as well as for saving storage space, only
6 Qualisys Miqus cameras were used, and the resolution was only of 1 megapixel, although the
framerate was of 120 fps. Synchronization was achieved with a hardware trigger, but calibration
was not successful with the standard method using a wand equipped with markers. In broad day-
light, markers were either missing, or confused with artifact reflections. Hence, we calibrated on
the grid dimensions, in the same way as described in previous chapter (see Post-Calibration on
Ring Dimensions).

The amateur pilot involved in this study signed a form of informed consent. He was first
captured standing on a T-pose for scaling the skeletal OpenSim model accordingly, and then per-
formed 3 starts in conditions similar to those of a competition. He was accustomed to the BMX
track and the 5 meters starting hill, as well as with the standard gate and sound signal used for
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setting off the start. He wore his usual equipment, and confirmed that his movement and concen-
tration were not hindered by the capture. Among the 3 starts the pilot executed, only one of them
was studied.

7.2.2 Pilot Inverse Kinematics

The pilot was detected, triangulated, scaled on a T-pose, and his kinematics was computed
with the default Pose2Sim parameters [Pagnon2022b].

7.2.3 Bike Inverse Kinematics

OpenPose models only detect human beings, and up to our knowledge, there is no existing
deep-learning based model for tracking a BMX bike. Several options were available: segmenting
the bike in 2D, and reconstructing its shape, but it would have been difficult to rendered its handle,
crank, pedals, and wheels movements. Hand labelling videos with [Kinovea], and tracking these
points on the rest of the video is one common approach [Grigg2018], but the tracking tends to be
lost when occlusions happen, and this is not scalable: the initial labelling has to be done again
for each new video and each new point of view. Another option is to train our own deep-learning
model.

DeepLabCut [Mathis2018, Lauer2022] is a toolbox originally made to train custom models
for animal keypoint recognition, which leverages transfer learning to achieve good results with
minimal training data. We used it to label 9 keypoints on a BMX bike, enough to be able to
correctly scale the model and to render its internal motion (see Figure 7.3). We labeled 210 images
extracted from our videos and from videos found on YouTube, with varying perspectives, image
qualities, and number of bikes on the frame. We trained DeepLabut in multiAnimal mode, which
has been reported to be more complex to use and to take a longer training time, but to produce more
accurate results in case of frequent occlusions. Network architecture and augmentation methods
were left to default. Loss reached a plateau after 110,000 iterations, at which point we stopped the
training procedure. The error on the test dataset was 13.1 px, which would correspond to 5.2 cm
after triangulation. We dropped all estimated point with confidence lower than 0.6, which lowered
the estimation error to 6.9 px (2.7 cm). Default Pose2Sim parameters were used for tracking,
weighted triangulation, and filtering of the bike coordinates.

Figure 7.3: The articulated bike model, and the labels DeepLabCut was trained to recognize.

An articulated BMX bike model was designed on SolidWorks, and although we don’t need
for kinematics, its inertial properties were validated against a real bike. Pin joints modeled the
articulations between the fork and the frame, the frame and each wheel, the frame and the crankset,
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and the crankset and each pedal (see Figure 7.3). The frame, the handlebar, and the crankset were
each scaled according to 3D keypoint pairs, uniformly along the 3 space dimensions. Marker
weights were all set to 1 for inverse kinematics.

7.2.4 Combined Inverse Kinematics of Pilot and Bike

The pilot and the bike form a kinematic chain which is closed in multiple places, due to con-
tacts between feet and pedals, and hands and handlebar. Such a chain is not solvable, hence it
needs to be "broken". There are several ways to do it: the most obvious one consists of model-
ing contact not with joints, but with constraints. OpenSim available constraints Weld, Point, or
coordinate coupler. Weld constraints are not appropriate, since in reality, both hands and feet can
rotate around pedals and handlebar. Point constraints are not appropriate either, since the pilot can
translate their hands along the handlebar. Moreover, pedals may not be detected perfectly, so it is
important that feet have more latitude. Coordinate coupler implies that there is a relation between
coordinates, e.g., between the rotation of hands and the rotation of the handlebar. This is not the
case. Moreover, soft constraints are not embedded in OpenSim.

As constraints cannot be too tight, we took a slightly different approach. We duplicated hands
and feet, one version attached to the pilot, and the other to the bike. The two versions were welded
together. However, the one connected to the bike could be articulated with any kind of joint, with
as many degrees of freedom as needed, and with joint limits as loose or as tight as needed (See
Figure 7.4).

Figure 7.4: The trick used to break the kinematic chain, and constrain it while keeping more
degrees of freedom than OpenSim allows. Any custom joint could be used (e.g., a cylindrical
joint), and joint limits could be adjusted.

We scaled both pilot and bike independently, by disabling constraints. We then conducted
inverse kinematic analysis of both pilot and bike, in two conditions: first, without enabling con-
straints. Then, with enabling them and comparing the effects of several kinds of joints between
hands and handlebar, and feet and pedals: ball joints (all rotations allowed), cylindrical joints
(rotation and translation permitted along the handlebar axis), free joints (all rotations and trans-
lations allowed). Joint translations were limited to 20 cm. Weights were taken identical to those
previously reported, both for scaling and inverse kinematics.

7.2.5 Performance Indicators Assessment

We investigated a wide variety of the key performance indicators reported in the literature. On
the pilot, the flexion of the front knee, which should show a plyometric action, and the flexion of
both shoulders, which should be asymmetric. On the bike, the elevation of the front wheel, and
the angle of the handlebar. On pilot and bike together, we investigated the forward speed of the
center of motion (COM) of the bike, and of the pilot, which should point in different directions
during the slingshot maneuver. We also reported the rotational excursion of the right foot and right
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pedal around the center of the crankset, which should be similar since in reality, they are attached
together.

7.3 Results

7.3.1 Inverse Kinematics With and Without Constraints

Calibration was not as accurate as it would have been with a gold-standard method, but it
remains in the centimetric order of magnitude. Synchronization was triggered by hardware, and
thus perfect. However, low number of cameras, poor camera placement, low image resolution,
low contrast, and strong occlusions by the pilot, the bike and the gate, lead to 2D pose estimations
of relatively poor quality, both for the pilot detected with OpenPose, and for the bike detected with
DeepLabCut (up to 10 px error between estimations and labels for the latter, which corresponds to
about 3.5 cm). This was especially true in the foot region, which was subjected to jittering. Results
were not much improved by changing OpenPose model, modifying Pose2Sim triangulation and
filtering parameters, and adjusting OpenSim scaling and inverse kinematics weights, neither for
the pilot nor for the bike. Consequently, we used default parameters.

Constraining both pilot and bike OpenSim models together was proven unsuccessful for the
most part, regardless of the type of custom joint used, even with all degrees of freedom allowed
(with joint limits). Using point constraints instead of weld ones between both sets of hands and of
feet did not make a difference. Increasing assembly error tolerance was also proven unsuccessful.
The only way OpenSim inverse kinematics could converge with constraints was if only feet were
constrained, and hands were free. However, no comparative analysis has been done to assess
whether results were better than when disabling all constraints.

We had previously captured similar BMX start data, with a higher quality marker-based ap-
proach. Conducting the same analysis on these data was mostly unsuccessful too. We tried using
only joint markers, or the full set, with similar outcome.
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Figure 7.5: OpenSim inverse kinematics was successful when no constraints were applied between
the BMX pilot and bike. Triangulated coordinates are blue, and marker model are pink. Note that
the feet and hands are jittering due to the low number of cameras and to occlusions, which could
be improved if constraints were applied between feet and pedals, and hands and handle. See
animated version here.

7.3.2 Key Performance Indicators

Concerning the pilot, one can notice a flexion, then extension of the (left) front knee, which
indicates a plyometric movement during the slingshot phase. Shoulder flexion of both arms present
relatively similar waveforms, although the right one is slightly more flexed all along the maneuver,
which is consistent with the fact that the body needs to pivot to the right in order to push to the
maximum on the left pedal. The elevation of the front wheel is very noticeable. However, the
handlebar rotation is not very coherent: in fact, due to bad estimations, the handlebar does a
complete spin before recovering a consistent angle. The forward speed of the COM of the pilot is
noisy, but it shows a linear increase along the slingshot phase. Conversely, the speed of the bike
first points backward before pointing quickly forward, until it balances out with the pilot speed.
The rotational excursion of the right foot is similar to the one of the pedal, but it is more noisy.
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Figure 7.6: Some key performance indicators of the BMX slingshot phase captured with a mark-
erless protocol.
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7.4 Discussion

7.4.1 Kinematic Analysis of the Athlete with their Equipment

The objective of this preliminary study was to verify whether an athlete could be detected
with their equipment with a 3D markerless protocol, in ecologically valid conditions. BMX race
involves such a problem, where detecting both a pilot and their bike can bring out important
information. Performing the kinematic analysis of a BMX bike involves training a deep-learning
model with DeepLabCut to detect 2D bike keypoint, and then creating an OpenSim "skeletal" bike
model, with coherent geometry and joints between parts. This is especially challenging to carry
out, because a bike is multi-articulated, and it forms several closed loops with the pilot. Hence,
one needs to find a way to break the kinematic chain in 4 different places, and then to constrain it
together in a coherent and computable way.

As it is decisive in a race, the slingshot phase of the start was analyzed, and a wide variety
of pertinent key performance indicators was investigated, targeting pilot, bike, and pilot and bike
together. Since only one trial was analyzed, no accuracy assessment was possible. However,
we could verify whether expected patterns were observed. When no constraints were imposed
between the pilot and the bike, the plyometric movement of the front knee was detectable, and the
difference between left and right shoulder flexion, too. The elevation of the front wheel was clearly
visible, however an implausible spin of the handlebar was reported. The "slingshot" movement
of the bike could also be detected, and we noticed that on the opposite, the pilot COM speed
increased linearly. The foot motion was in accordance with the rotation of the pedal, however it
was more noisy. Overall, performing 3D markerless inverse kinematics of both a BMX pilot and
their bike, and a fortiori, of an athlete and their equipment, seems possible.

7.4.2 Inverse Kinematics with Closed Loops

One can assume that if the handledbar were constrained to correctly detected hands, it would
not suffer from this abnormal spin; and that if feet were constrained to the pedals, their excursion
would be less noisy. However, inverse kinematics did not converge when implementing con-
straints. This can be attributed to two main reasons: first, the poor quality of our detections, and
second, the overly constrained kinematic chain.

Gold-standard calibration was unsuccessful, and we resorted to a less accurate post-calibration
procedure, whose extrinsic parameters were determined by the dimensions of the starting grid. In
order to reach high framerate, we lowered the resolution of the videos, which made the detection
less precise. Finally, using only 6 cameras was not sufficient considering such a low contrast, and
such strong occlusions from the pilot, their bike, and the gate start. This was especially obvious
for the feet and the front wheel, hidden before before the gate dropped. However, despite the use
of few training data, the DeepLabCut bike model did not seem to perform more poorly than the
OpenPose human one. Better data, with higher resolution, higher number of cameras, and better
calibration, is the first element to improve, which is probably necessary but not sufficient. In fact,
conducting a similar study with high quality marker-based data was not successful either, which
suggests that the quality of our markerless data is not the only parameter at fault.

Ultimately, the model is most likely overconstrained. Solutions regarding this issue remain
unclear. Pilot and bike are both composed of rigid bodies, and constraining them together may
have lead to some geometric incompatibilities, even after scaling. For instance, the angle between
the fork and the bike frame might be different between the bike model and the one used by the
pilot. Liberating some degrees of freedom did not seem to make any difference, however disabling
some of the constraints (e.g., hand constraints) allowed inverse kinematics to work. Since the
handlebar is constrained to the hands, its weights don’t need to be as high; similarly, the weights
of pedal markers could be lowered in order not to impose any incompatible conditions for the
inverse kinematics solver. Alternatively, one could look into other inverse kinematic algorithms.
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An extended Kalman filter, for example, gives the possibility of implementing soft closed-loop
constraints, instead of hard ones [Fohanno2014].

7.4.3 Conclusion

These results show that a 3D markerless analysis of both the athlete and their equipment is
possible, which provides additional perspectives for markerless sports motion analysis. However,
this was only a preliminary experiment, and several elements should be improved before draw-
ing any definitive conclusion. First, more cameras with better definition should be used. This is
especially important if a larger field of view has to be captured, e.g., if a longer portion of the
track would need to be investigated, such as a turn or a double hill. Action cameras meet such
requirements, and they offer the additional advantages of being light and wireless. However, they
need post calibration and post-synchronization, but this has been proven feasible (See Chapter 6).
Second, adding closed-loop constraints between the bike and the pilot failed to improve the resolu-
tion of inverse kinematics, and results are not conclusive yet. Hence, more work needs to be done
to understand how connections between the equipment and the athlete can be taken into account,
without preventing inverse kinematics to converge.

Such a protocol can be applied to any individual sports discipline. When some equipment
needs to be detected, two additional steps have to be completed. First, the training of a deep-
learning model, which can be done relatively seamlessly and with little image labelling, thanks
to transfer learning leveraged by DeepLabCut. Second, if only inverse kinematics is desired,
designing an OpenSim model is also relatively easy, as only a few segment dimensions and joint
properties are needed, without any consideration for inertial properties. Both steps are scalable,
and need to be performed only once for all individuals, environments, and camera properties and
positioning.
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General conclusion

Outcomes

Aside from the athletes themselves (their natural skills, life circumstances, and personal drive),
coaching expertise is one of the most significant parameters in sports performance enhancement.
This expertise comes both from subjective intuition and experience, and from the various scientific
resources to which the coaches have access.

However, the constraints of science often make the research setting and parameters very differ-
ent from the reality in the field. Research reduces problems to only a few variables for the sake of
rigor, while coaching is more holistic and practical, though not always evidence-based. Research
is a long-term and complicated process, while coaches need quasi real-time feedback which is
easily accessible. Some research findings can be lost in the translation to layman’s terms, while on
the other hand, research may employ very convoluted methods to "state the obvious," or focus on
areas that are not pertinent. There is a trade-off between scientific rigor and practical relevance,
and between accuracy and ease-of-use. Consequently, there is a need to for better understanding
of both research and coaching needs and constraints, in order to make the first more applicable
and less reductive, and to mitigate the application of unfounded beliefs in the second.

New research tools can shed unbiased light on movement analysis and offer new perspectives
to coaches. In this regard, recent advances in markerless kinematics offer a promising perspective.
Until recently, sports motion analysis had to be performed either in the lab with intrusive and
complex marker-based solutions, or in the field with rough and inaccurate markerless techniques.
Thankfully, the last few years have been prolific in the development of markerless technology. It
is now possible to go without markers and still obtain coherent, although imperfect, 3D full-body
joint kinematics. These methods are usually more robust than marker-based ones, and they are
rapidly becoming more and more accurate.

Our decision to craft a robust triangulation procedure, and to constrain rough 3D coordinates
to a biomechanically consistent skeletal model, makes results almost as accurate as marker-based
ones, at least for walking, running, ergometer cycling, and boxing. Such an approach has also
been proven to work in the field, under constraints which would make it difficult to set up a
whole research-grade system. It is also possible to use lightweight, wireless, consumer-grade
cameras, despite they are not straightforward to calibrate and synchronize. Sports equipment can
be detected along with the athlete, with the caveat that, much like with marker-based techniques,
inverse kinematics is still an open challenge when closed-loop constraints are enforced. Both in
boxing and in BMX racing, key performance indicators are satisfactorily retrieved.

The Pose2Sim workflow we proposed uses two renowned tools of their respective fields:
OpenPose for 2D pose estimation, and OpenSim for 3D joint kinematics. This workflow is open-
source, versatile, and accessible for sports scientists who are the target audience, rather than com-
puter vision specialists. Pose2Sim was made to be useful and usable, and hence it is also being
used: the University of Bath is creating a GUI around it, a (non-free) Blender add-on integrat-
ing it has been released [Barreto2022], and our GitHub repository is active. Pose2Sim has also
been quoted by the University of Stanford, which later developed their own 3D markerless solu-
tion [Uhlrich2022].
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Limits and Perspectives

Some challenges remain, which could determine the adoption of markerless kinematic tools
by the community of sports sciences. According to many of the issues reported on the GitHub
repository, the main stumbling block for users is calibration. Hence, there is a definite need for
an easier procedure, such as the one proposed by [Argus]. It would even be worth testing an
auto-calibration method, based on the knowledge of the size of a limb, tracked across multiple
views. As we have demonstrated, an imperfect calibration does not degrade results much once 3D
reconstruction has been constrained to a skeletal model.

Moreover, the feedback given to athletes and coaches should be provided quickly enough for
them to integrate it, so that they can adjust their motion patterns before their next trial sequence.
Quasi-real-time can be achieved with research-grade cameras, as videos are directly downloaded
after each sequence on the master computer, which can run Pose2Sim in the background. For wire-
less consumer-grade cameras, it is more complicated, although downloading media can sometimes
be done remotely, without risking impairment of the camera calibration.

Additionally, by their nature, team sports are practiced in groups, and thus performing multi-
person inverse kinematics can be important. Although we have not yet implemented it, we have
described possible methods to achieve such a task. [EasyMocap2021] deals with this problem, and
its approach could be integrated as a submodule in Pose2Sim. Another open issue is the imple-
mentation of constraints in case of multiple closed kinematic loops such as in cycling. Solving
this could give more accurate results even when large occlusions occur.

Finally, sports scientists are usually more at ease with graphical user interfaces than with com-
mand line, and coaches prefer intuitive visual feedback rather than charts of joint angle waveforms.
A visualization tool for Maya has been developed, but it is not yet ready for release. As all the
tools used and proposed here are open-source, it would make more sense to propose it as a free
standalone software application, or as a Blender add-on. See Figure 7.7 for planned features, and
Figure 3.6 for those already developed on the Maya-MoCap toolbox. The work presented in this
thesis has given rise to a projected collaboration with the University of Bath, which is currently
developing a GUI for Pose2Sim, and with whom we plan to build a new sports dataset for more
accurate markerless kinematics.

Future Prospects

Current datasets for 2D pose estimation are not accurately labelled, they suffer from a dearth of
keypoints, and they are not trained to recognize either sports poses or to detect sports equipment.
Building a whole new dataset could solve these issues. The dataset should be large and diverse,
represent a wide variety of body types and of sports movements [Seethapathi2019], and include
images with motion blur such as found in sports videos. The images in this dataset should not
include any markers, since these could be interpreted as visual cues, which are not available in
real sports situations. Finally, they should be labelled accurately. One way to do this is to build a
synthetic dataset.

For example, a mass of .c3d motion files could be gathered from various sports and be used to
fit an SMPL+H mesh [Pavlakos2019], for example with the AMASS algorithm [Mahmood2019].
These data could be augmented with already existing datasets for daily life activities, such as
Agora [Patel2021]. Multiple persons should be present in the scene, and they should occasionally
be using sports equipment. Then, random clothing, background, and light could be added (see
[Wood2021,Bolaños2021] for a detailed workflow). Body types could also be modified simply by
altering SMPL shape parameters. Numerous virtual cameras could then be placed in the scene, in
order to gather a large and diverse number of perspective points.

Labelling human beings could theoretically be done on one single SMPL mesh, since the

136



General conclusion

SMPL topology is constant. Consequently, one could assume that the positions of the annotated
keypoints on the mesh would be consistently propagated to other frames, other poses, and other
body shapes. This labelling technique could be termed "virtual palpation". As many virtual mark-
ers as needed could be used, for a precise evaluation of any movement and pose. However, only
an expert should perform this task, and make sure that markers are correctly positioned: crowd-
sourcing this task, as is done for more basic image classification and segmentation such as with
ImageNet [Deng2009], has been proved to lead to systematic offset errors [Needham2021b]. Fi-
nally, 3D virtual markers could be automatically projected on the 2D camera planes. This would
result in an extensive sports dataset, created with minimal labelling work, on a potentially infinite
number of views.

Nevertheless, before training the network, one should make sure that the generated data are
as diverse as the real world, by using one of the metrics proposed by [Borji2019, Borji2022].
Additionally, keypoint positions need to be precise enough: SMPL shape vertices can sometimes
be more than 5 cm apart, which could cause imprecision errors similar to soft tissue artifacts.

More generally, it would be useful to obtain precise joint kinematics with fewer cameras. On
the one hand, thanks to the use of a constrained biomechanical model, coherent full-body 3D
kinematics can be obtained from inaccurate coordinates of very few keypoints. On the other hand,
with the proposed procedure, some information is lost at every stage of the workflow. Only a few
keypoints are used to characterize a complex scene, the detection of these keypoints is reduced to
their maximum likelihood instead of taking advantage of the whole heatmap, and when equipment
is used, closed-loop constraints are not used for constraining the kinematic analysis yet.

Further information could be inferred by detecting not only keypoints, but also shape, which
would arguably provide additional visual clues. The dataset described above could allow this.
Moreover, information could be extracted not only from space, but also from time. Hence, inverse
kinematics using Kalman filters is a potential area of interest, especially since they can be used
evaluate not only joint angles, but also velocities, accelerations, forces, and other kinetic variables.
However, more research is needed to address singularity issues of Kalman filters and to provide
working standards for the initialization of covariances.

Finally, deep-learning based kinematics is still at its infancy, and many perspectives are still
to be explored. The three main steps of our workflow could be improved, namely deep-learning
of pose keypoints, computer vision for calibration and 3D reconstruction, and joint kinematics.
Alternatively, they could be merged to form one single step taking implicitly into account all the
above, without any loss of information between each of them. Some models could directly be
trained to estimate joint angles from calibrated or uncalibrated videos, without the need for 2D
pose estimation, triangulation, and inverse kinematic steps. In particular, physics-informed neural
networks should be prospected.

"Research is to see what everybody has seen, and think what nobody has thought."
Albert Szent-Gyorgyi
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Figure 7.7: Planned features of the future Blender add-on. See Figure 3.6 for reference to the
already developed Maya-Mocap add-on.

138





Bibliography

[Ahmad2013] Norhafizan Ahmad, Raja Ariffin Raja Ghazilla, Nazirah M. Khairi
and Vijayabaskar Kasi. Reviews on Various Inertial Measurement
Unit (IMU) Sensor Applications. International Journal of Signal
Processing Systems, pages 256–262, 2013.

[Aizerman1964] Mark A Aizerman. Theoretical foundations of the potential func-
tion method in pattern recognition learning. Automation and re-
mote control, vol. 25, pages 821–837, 1964.

[Al Borno2022] Mazen Al Borno, Johanna O’Day, Vanessa Ibarra, James Dunne,
Ajay Seth, Ayman Habib, Carmichael Ong, Jennifer Hicks, Scott
Uhlrich and Scott Delp. OpenSense: An open-source toolbox for
inertial-measurement-unit-based measurement of lower extremity
kinematics over long durations. Journal of neuroengineering and
rehabilitation, vol. 19, no. 1, pages 1–11, 2022.

[Andriluka2014] Mykhaylo Andriluka, Leonid Pishchulin, Peter Gehler and Bernt
Schiele. 2D Human Pose Estimation: New Benchmark and State
of the Art Analysis. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), June 2014.

[APDM] APDM. APDM - Research-grade wearable sensors. https://
apdm.com/wearable-sensors/.

[Argus] Argus. Argus - 3D for the people. https://argus.web.unc.
edu/.

[Aristidou2011] Andreas Aristidou and Joan Lasenby. FABRIK: A fast, iterative
solver for the Inverse Kinematics problem. Graphical Models,
vol. 73, no. 5, pages 243–260, 2011.

[Aristidou2016] Andreas Aristidou, Yiorgos Chrysanthou and Joan Lasenby. Ex-
tending FABRIK with model constraints. Computer Animation and
Virtual Worlds, vol. 27, no. 1, pages 35–57, 2016.

[Aristidou2018] Andreas Aristidou, Joan Lasenby, Yiorgos Chrysanthou and Ariel
Shamir. Inverse kinematics techniques in computer graphics: A
survey. In Computer graphics forum, volume 37, pages 35–58.
Wiley Online Library, 2018.

[Arun1987] K Somani Arun, Thomas S Huang and Steven D Blostein. Least-
squares fitting of two 3-D point sets. IEEE Transactions on pattern
analysis and machine intelligence, no. 5, pages 698–700, 1987.

[Asgarian2022] Farzad Asgarian and Khalil Najafi. BlueSync: Time Synchroniza-
tion in Bluetooth Low Energy With Energy-Efficient Calculations.

I

https://apdm.com/wearable-sensors/
https://apdm.com/wearable-sensors/
https://argus.web.unc.edu/
https://argus.web.unc.edu/


Bibliography

IEEE Internet of Things Journal, vol. 9, no. 11, pages 8633–8645,
2022.

[Atha1984] J Atha. Current techniques for measuring motion. Applied er-
gonomics, vol. 15, no. 4, pages 245–257, 1984.

[Atkinson1998] Greg Atkinson and Alan M Nevill. Statistical methods for assess-
ing measurement error (reliability) in variables relevant to sports
medicine. Sports medicine, vol. 26, no. 4, pages 217–238, 1998.

[Baker2007] Richard Baker. The history of gait analysis before the advent of
modern computers. Gait and Posture, vol. 26, no. 3, pages 331–
342, 9 2007.

[Bala2020] Praneet C. Bala, Benjamin R. Eisenreich, Seng Bum Michael Yoo,
Benjamin Y. Hayden, Hyun Soo Park and Jan Zimmermann. Auto-
mated markerless pose estimation in freely moving macaques with
OpenMonkeyStudio. Nature Communications, vol. 11, no. 1, page
4560, 9 2020.

[Bao2022] Yiming Bao, Xu Zhao and Dahong Qian. FusePose: IMU-Vision
Sensor Fusion in Kinematic Space for Parametric Human Pose Es-
timation. arXiv preprint arXiv:2208.11960, 2022.

[Baral2018] Chitta Baral, Olac Fuentes and Vladik Kreinovich. Why deep neu-
ral networks: a possible theoretical explanation. In Constraint pro-
gramming and decision making: Theory and applications, pages
1–5. Springer, 2018.

[Barone2020] Francesco Barone, Marco Marrazzo and Claudio J Oton. Cam-
era calibration with weighted direct linear transformation and
anisotropic uncertainties of image control points. Sensors, vol. 20,
no. 4, page 1175, 2020.

[Barreto2022] Carlos Barreto. Mocap MPP2SOS. https://blendermarket.
com/products/mocap-mpp2soss, 2022.

[Bazarevsky2020] Valentin Bazarevsky, Ivan Grishchenko, Karthik Raveendran, Tyler
Zhu, Fan Zhang and Matthias Grundmann. Blazepose: On-device
real-time body pose tracking. arXiv preprint arXiv:2006.10204,
2020.

[Beaucage-Gauvreau2019] Erica Beaucage-Gauvreau, William S. P. Robertson, Scott C. E.
Brandon, Robert Fraser, Brian J. C. Freeman, Ryan B. Graham,
Dominic Thewlis and Claire F. Jones. Validation of an OpenSim
full-body model with detailed lumbar spine for estimating lower
lumbar spine loads during symmetric and asymmetric lifting tasks.
Computer Methods in Biomechanics and Biomedical Engineering,
vol. 22, no. 5, pages 451–464, 4 2019.

[Becker2015] Linda Becker and Ph Russ. Evaluation of joint angle accuracy
using markerless silhouette based tracking and hybrid tracking
against traditional marker tracking. 2015.

II

https://blendermarket.com/products/mocap-mpp2soss
https://blendermarket.com/products/mocap-mpp2soss


Bibliography

[Begon2009] Mickaël Begon, Vincent Fohanno and Floren Colloud. Kinemat-
ics estimation using a global optimization with closed-loop con-
straints. In Proc. of the Annual ASB Congress, Penn State, PA,
2009.

[Begon2018] Mickaël Begon, Michael Skipper Andersen and Raphaël Dumas.
Multibody kinematics optimization for the estimation of upper and
lower limb human joint kinematics: a systematized methodological
review. Journal of biomechanical engineering, vol. 140, no. 3, page
030801, 2018.

[Bell1994] Bradley M Bell. The iterated Kalman smoother as a Gauss–Newton
method. SIAM Journal on Optimization, vol. 4, no. 3, pages 626–
636, 1994.

[Benoit2015] D. L. Benoit, M. Damsgaard and M. S. Andersen. Surface marker
cluster translation, rotation, scaling and deformation: Their con-
tribution to soft tissue artefact and impact on knee joint kinematics.
Journal of Biomechanics, vol. 48, no. 10, pages 2124–2129, 7 2015.

[Bini2021] Rodrigo Bini, Gil Serrancoli, Paulo Santiago and Felipe Moura. As-
sessment of a markerless motion tracking method to determine body
position on the bicycle. In ISB, editeur, International Conference
of Biomechanics in Sports 2021, 2021.

[Bland1986] J Martin Bland and DouglasG Altman. Statistical methods for as-
sessing agreement between two methods of clinical measurement.
The lancet, vol. 327, no. 8476, pages 307–310, 1986.

[Blender1998] Blender. Blender. https://www.blender.org, 1998.

[Bolaños2021] Luis A Bolaños, Dongsheng Xiao, Nancy L Ford, Jeff M LeDue,
Pankaj K Gupta, Carlos Doebeli, Hao Hu, Helge Rhodin and Tim-
othy H Murphy. A three-dimensional virtual mouse generates
synthetic training data for behavioral analysis. Nature methods,
vol. 18, no. 4, pages 378–381, 2021.

[Bonnet2017a] Vincent Bonnet, Raphaël Dumas, Aurelio Cappozzo, Vladimir
Joukov, Gautier Daune, Dana Kulić, Philippe Fraisse, Sébastien
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Appendix A: Installation and Demonstration of

Pose2Sim

Installation and demonstration of Pose2Sim, a Python package
bridging 2D pose estimation to consistent 3D kinematics. Methods,
limits, and perspectives of this solution have been described in Chap-
ter 3 about A Practical Implementation: The Pose2Sim Python Pack-
age.
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A.1. Installation

A.1 Installation

1. Install OpenPose (instructions here).
Windows portable demo is enough.

2. Install OpenSim 4.x from there.
Tested up to v4.4-beta on Windows. Has to be compiled from source on Linux (see there.

3. Optional: Install Anaconda or Miniconda.
Open an Anaconda terminal and create a virtual environment by typing:

conda create -n Pose2Sim python=3.7
conda activate Pose2Sim

4. Install Pose2Sim
If you don’t use Anaconda, type python -V in terminal to make sure python>=3.6 is installed.

• OPTION 1: Quick install. Type in terminal:

pip install pose2sim

• OPTION 2: Build from source and test the last changes. Open a terminal in the directory
of your choice and clone the Pose2Sim repository:

git clone https://github.com/perfanalytics/pose2sim.git
cd pose2sim
pip install .

XLIII

https://github.com/CMU-Perceptual-Computing-Lab/openpose/blob/master/doc/installation/0_index.md
https://simtk.org/frs/index.php?group_id=91
https://simtk-confluence.stanford.edu:8443/display/OpenSim/Linux+Support
https://docs.conda.io/en/latest/miniconda.html


Appendix A. Appendix A: Installation and Demonstration of Pose2Sim

A.2 Demonstration Part-1: Build 3D TRC file on Python

This demonstration provides an example experiment of a person balancing on a beam, filmed
with 4 calibrated cameras processed with OpenPose.

Open a terminal and check package location with pip show pose2sim | grep Location.
Copy this path and go to the Demo folder with cd <path>\pose2sim\Demo`.
Type python, and test the following code (Figures A.3):

from Pose2Sim import Pose2Sim
Pose2Sim.calibrateCams()
Pose2Sim.track2D()
Pose2Sim.triangulate3D()
Pose2Sim.filter3D()

You should obtain a plot of all the 3D coordinates trajectories (Figures A.1). You can check
the logs in Demo\Users\logs.txt. Results are stored as .trc files in the Demo\pose-3d directory
(Figures A.2). Note that when the functions are called without any argument, the Config file is
searched in the default Users\Config.toml location. These parameters can be edited by the user.

Figure A.1: Filtered results. Each keypoint trajectory is displayed in a different tab.

Figure A.2: An example .trc file of triangulated keypoint coordinates, directly usable in OpenSim.
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A.2. Demonstration Part-1: Build 3D TRC file on Python

(a) Calibration can either be done from a checkerboard, or by simply converting a Qualisys calibration file.
Calibration errors are computed and provided.

(b) If several persons are detected in the scene, a tracking step can be carried out in order to make sure that
the right person from each camera will be triangulated.

(c) The triangulation is weighted by the OpenPose likelihood, and constrained by some thresholds defined
in the Config.toml file. If these constraints are not met, e.g., if the reprojection error is too large or if the
likelihood of a keypoint is too low, one or several cameras are excluded. The mean reprojection error and
the number of cameras that have been excluded to meet the constraints is printed, for each keypoints.

(d) Triangulated data can be filtered, either with a low-pass Butterworth filter or with other types, and
parameters can be adjusted.

Figure A.3: First steps of Pose2Sim pipeline in Python. Calibration can either be done from a
checkerboard, or by simply converting a Qualisys calibration file. Note that the functions can be
used without any arguments if the Config.toml file is left in the default location.

XLV



Appendix A. Appendix A: Installation and Demonstration of Pose2Sim

A.3 Demonstration Part-2: Obtain 3D joint angles with OpenSim

In the same vein as we would do with marker-based kinematics, the model first needs to be
scaled to each individual, and then inverse kinematics can be performed (Figures A.4).

Scaling:
1. Open OpenSim.

2. Open the provided Model_Pose2Sim_Body25b.osim model from pose2sim/Demo/opensim.
(File 7→ Open Model)

3. Load the provided Scaling_Setup_Pose2Sim_Body25b.xml scaling file from
pose2sim/Demo/opensim. (Tools 7→ Scale model 7→ Load)

4. Run. You should see your skeletal model take the static pose.
Inverse kinematics

1. Load the provided IK_Setup_Pose2Sim_Body25b.xml scaling file from pose2sim/Demo/opensim.
(Tools 7→ Inverse kinematics 7→ Load)

2. Run. You should see your skeletal model move in the Vizualizer window.

Figure A.4: At the end of the demonstration, you should have a skeleton balancing on a beam in
OpenSim.
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A.3. Demonstration Part-2: Obtain 3D joint angles with OpenSim

Alternatively, OpenSim can be run in command-line:
1. Open an Anaconda terminal in your OpenSim/bin directory, typically

C:\OpenSim <Version>\bin on Windows.
You will need to adjust the time_range, output_motion_file, and enter the full paths to the input
and output .osim, .trc, and .mot files in your setup file.

opensim-cmd run-tool <PATH TO YOUR SCALING OR IK SETUP FILE>.xml

2. You can also run OpenSim directly in Python:

import subprocess
subprocess.call(["opensim-cmd", "run-tool",

"<PATH TO YOUR SCALING OR IK SETUP FILE>.xml"])

3. Or take advantage of the full the OpenSim Python API. See there for installation instructions.
Note that it is easier to install on Python 3.7 and with OpenSim 4.2.
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B
Appendix B: Robustness assessment

Supplementary figures for Chapter 4 on Robustness Assessment, for
the running and cycling tasks.

All details on methods and results are provided in the fore-
mentioned chapter.

Contents
B.1 Robustness: Running task results . . . . . . . . . . . . . . . . . . . . . . . XLIX
B.2 Robustness: Cycling task results . . . . . . . . . . . . . . . . . . . . . . . . L
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B.1. Robustness: Running task results

B.1 Robustness: Running task results

Figure B.1: Joint angle means (solid line) and standard deviations (shaded area) from the nine
captured cycles of running. Reference condition (Ref) is black; degraded image quality (Im) is
blue; four cameras instead of eight (4c) is purple; degraded calibration (Cal) is yellow. Pearson’s
correlation coefficient (r) and mean absolute error (MAE) between Ref and Im, 4c, Cal were
calculated. Paired t-tests along time were computed by SPM-1D and are represented as bar plots
above the curves: a color rectangle means that there was a cluster of statistically significant
differences (α = 0.05) at that moment.
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Appendix B. Appendix B: Robustness assessment

B.2 Robustness: Cycling task results

Figure B.2: Joint angle means (solid line) and standard deviations (shaded area) from the 15
captured cycles of cycling. Reference condition (Ref) is black; degraded image quality (Im) is
blue; four cameras instead of eight (4c) is purple; degraded calibration (Cal) is yellow. Pearson’s
correlation coefficient (r) and mean absolute error (MAE) between Ref and Im, 4c, Cal were
calculated. Paired t-tests along time were computed by SPM-1D and are represented as bar plots
above the curves: a color rectangle means that there was a cluster of statistically significant
differences (α = 0.05) at that moment.
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C
Appendix C: Accuracy assessment

Supplementary figures for Chapter 5 on Accuracy Assessment, for
the lower-body analysis of the running and cycling tasks, and for
the upper-body analysis of all three tasks.

All details on methods and results on the lower-body are pro-
vided in the forementioned chapter. Results and discussion on the
upper-body are debated section C.2.
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Appendix C. Appendix C: Accuracy assessment

C.1 Lower-body results for the running and cycling tasks

Lower-body graphs are provided on Figure C.1 and on Figure C.2 for the running task, and on
Figure C.3 and on Figure C.4. However, all results are discussed in the main body of the article
on Accuracy Assessment.

C.1.1 Accuracy: Running task results

Figure C.1: Pose2Sim (cyan) and marker-based (black) lower-body joint angles for the running
task. Coefficient of multiple correlation (CMC) is indicated, and broken down into, respectively,
Pearson’s coefficient (r) for correlation assessment, range of motion errors (ROMerr) for gain, and
overall mean errors (Meanerr) for offset. Mean error and standard deviations are also represented
at the bottom of the graphics.
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C.1. Lower-body results for the running and cycling tasks

Figure C.2: Bland–Altman analysis of lower-body joint angle errors for the running task. Mean
bias is represented as a horizontal solid, bold line, and 95% limits of agreement are represented
as dotted lines.
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Appendix C. Appendix C: Accuracy assessment

C.1.2 Accuracy: Cycling task results

Figure C.3: Pose2Sim (cyan) and marker-based (black) lower-body joint angles for the cycling
task. Coefficient of multiple correlation (CMC) is indicated, and broken down into, respectively,
Pearson’s coefficient (r) for correlation assessment, range of motion errors (ROMerr) for gain, and
overall mean errors (Meanerr) for offset. Mean error and standard deviations are also represented
at the bottom of the graphics.
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C.1. Lower-body results for the running and cycling tasks

Figure C.4: Bland–Altman analysis of lower-body joint angle errors for the cycling task. Mean
bias is represented as a horizontal solid, bold line, and 95% limits of agreement are represented
as dotted lines.
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Appendix C. Appendix C: Accuracy assessment

C.2 Sacro-lumbar and upper-body results for all tasks

Although the article focused on lower limb kinematics, we ran the same analysis on sacro-
lumbar, elbow, and shoulder joints for all three tasks (Figure C.5 and Figure C.6 for walking,
Figure C.7 and Figure C.8 for running, and Figure C.9 and Figure C.10 for cycling). The OpenPose
model we used does not allow for the capture of wrist deviation or pronation/supination, or of any
hand or finger movement.

Results were generally less good than in the lower body, especially on sacro-lumbar flex-
ion/extension, for which all CMC values were complex. This can be attributed both to the lack of
OpenPose keypoints in this area, and to the simplicity of the OpenSim model in the upper-body
part. Indeed, currently all pelvis, lumbar, and thoracic angles are solely determined by the detec-
tion of the hip keypoints on the lower part, and of the shoulder and neck keypoints on the upper
part. Moreover, the skeletal model did not allow for any scapulo-thoracic degree of freedom. In
addition to the sacro-lumbar joint, upper-body Pearson’s correlation coefficients were mostly very
good (>0.85) in most planes in walking and running. The range of motion error remained below
1° for shoulder and elbow angles in walking, while it reached almost 5° in the shoulder and 2°
in the elbow in running. The mean error in the sagittal plane was below 1° in the shoulder angle
in walking, but it reached 10° in the elbow; conversely, in running it reached 9° in the shoulder
but remained under 1° in the elbow. In cycling, upper-body Pose2Sim angles were mostly not
correlated to marker-based ones, and ROM errors and mean errors were much worse than in other
tasks. Moreover, the Bland–Altman analysis showed that the data is heteroscedastic: the spread
and magnitude of the errors varied as the joint angle evolved.

In conclusion, Pose2Sim does not evaluate some anatomical joint angles in the upper body,
and is generally less accurate than for the lower body. This is mostly due to the lack of key-
points OpenPose detects. To date, OpenPose offers hand and face models but no detailed model of
the upper limb exists. Pose2Sim could be used with other pose estimation algorithms, including
custom ones leveraging DeepLabCut [Mathis2018,Lauer2022], for example, although it would in-
volve manually labeling a large training dataset. This would enable the use of a more anatomically
realistic kinematic model, such as the one proposed by [Seth2016] for the shoulder girdle.
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C.2. Sacro-lumbar and upper-body results for all tasks

C.2.1 Accuracy: Upper-body results for the walking task

Figure C.5: Pose2Sim (cyan) and marker-based (black) sacro-lumbar and upper-body joint angles
for the walking task. Coefficient of multiple correlation (CMC) is indicated, and broken down into,
respectively, Pearson’s coefficient (r) for correlation assessment, range of motion errors (ROMerr)
for gain, and overall mean error (Meanerr) for offset. Mean error and standard deviations are
also represented at the bottom of the graphics.
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Appendix C. Appendix C: Accuracy assessment

Figure C.6: Bland–Altman analysis of sacro-lumbar and upper-body joint angle errors for the
walking task. Mean bias is represented as a horizontal solid, bold line, and 95% limits of agree-
ment are represented as dotted lines.
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C.2. Sacro-lumbar and upper-body results for all tasks

C.2.2 Accuracy: Upper-body results for the running task

Figure C.7: Pose2Sim (cyan) and marker-based (black) sacro-lumbar and upper-body joint angles
for the running task. Coefficient of multiple correlation (CMC) is indicated, and broken down into,
respectively, Pearson’s coefficient (r) for correlation assessment, range of motion errors (ROMerr)
for gain, and overall mean error (Meanerr) for offset. Mean error and standard deviations are
also represented at the bottom of the graphics.
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Appendix C. Appendix C: Accuracy assessment

Figure C.8: Bland–Altman analysis of sacro-lumbar and upper-body joint angle errors for the
running task. Mean bias is represented as a horizontal solid, bold line, and 95% limits of agree-
ment are represented as dotted lines.
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C.2. Sacro-lumbar and upper-body results for all tasks

C.2.3 Accuracy: Upper-body results for the cycling task

Figure C.9: Pose2Sim (cyan) and marker-based (black) sacro-lumbar and upper-body joint angles
for the cycling task. Coefficient of multiple correlation (CMC) is indicated, and broken down into,
respectively, Pearson’s coefficient (r) for correlation assessment, range of motion errors (ROMerr)
for gain, and overall mean errors (Meanerr) for offset. Mean error and standard deviations are
also represented at the bottom of the graphics.
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Figure C.10: Bland–Altman analysis of sacro-lumbar and upper-body joint angle errors for the
cycling task. Mean bias is represented as a horizontal solid, bold line, and 95% limits of agreement
are represented as dotted lines.



Confusing concepts - Disambiguation

Confusing concepts - Disambiguation

S ome terms used along this thesis may lead to confusion to an uninitiated person, as they
are closely related, but describe slightly different concepts. Some others have whole different
meanings, depending on the field which employs them. This glossary compares and clarifies
them.

Marker vs. Keypoint:
Markers are objects attached to the body of the user, often small and round. They are used

to indirectly track the posture of a user. Markers can sometimes be active and emit light, instead
of passive and reflect light. They can also be anchored to the bone, for a more precise analysis
exempt from Soft Tissue Artifact (STA). A marker-based analysis commonly refers to the use of
passive markers, glued to the skin of the user.

Keypoints are points of interest detected by a machine learning model, either in 2D or in 3D
space. They can estimate the location of a human joint, or of a body part, or else of any point of
interest of any object.

Once triangulated, keypoints can be treated as virtual markers, for example while running
inverse kinematic (IK) analysis. Calculated markers are another kind of virtual markers, which
can for example represent joint centers, or markers which have fallen off the body during capture.
End-effectors are the equivalent of markers in the field of robotics.

Markerless vs. Sensorless:
Markerless systems don’t use any markers, but they can use other sensors, such as Inertial

Measurement Units (IMUs).
In contrast, sensorless systems don’t involve any wearable markers nor any sensors. This

also goes for sensorless dynamic analysis, which does not use any force sensors, or for muscle
activation analysis, which does not use any Electromyography (EMG) sensor.

Note that approaches only using video (RGB), or depth-field video (RGB-D) sensors are usu-
ally considered sensorless, as they do not involve any body instrumentation, and thus do not imply
any particular alteration to the environment or behavior of the user.

Gold standard vs. Silver standard:
A gold-standard method refers to the most accurate of the currently available methods, which

can be used as a reference to assess the performance of other methods. Bone-anchored pins,
Magnetic Resonance Imaging (MRI), biplanar videoradiography, or 3D ultrasounds are usually
considered as gold-standard techniques for posture analysis. In contrast, marker-based methods
cannot be rigorously considered as such, since they are sensitive to Soft Tissue Artifact (STA)
and to positioning variability from the operator. Hence, they are referred to as silver-standard
methods.

However, the previously listed methods are not available for most sports activities, and thus
cannot be considered as standards at all. Hence, in this case, marker-based approaches are some-
times referred to as gold-standard, as opposed to IMU or markerless systems, which are then
considered as silver-standard.

Silhouette vs. Shape:
A silhouette is the 2D cutout of a human being on an image. Silhouette segmentation is a

specific case of object segmentation.
A shape is the equivalent of a silhouette in 3D space. A human shape can be used to charac-

terize pose, like 3D keypoints do, but also morphology. A mesh is the geometric representation of
a shape, divided into smaller 2D cells (Figure C.11).
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Confusing concepts - Disambiguation

Figure C.11: The SMPL mesh model characterizes a 3D human shape. Image from [Wu2020].

Machine learning vs. Deep learning:
Machine learning and Deep Learning, as well as Artificial Intelligence, Artificial Neural Net-

works, or Convolutional Neural Networks, are sometimes used interchangeably. However, they do
not exactly refer to the same concepts (Figure C.12).

Artificial Intelligence (AI) concerns the general concept of machines being able to perform
tasks that would seem to require human intelligence, or even to sense, reason, and act accordingly.

Machine learning (ML) is a subset of AI, and refers to the concept of machines being able
to learn and improve as they are exposed to data. It is a data-driven approach, as opposed to
knowledge-driven ones.
Artificial Neural Networks (ANN) are a specific way of performing ML, by using a network of
units inspired from the natural neuron, and thus mimicking the brain.

Deep Learning (DL) refers to an ANN with more than 3 layers of neurons.
Convolutional Neural Networks (CNN) are a type of ANN which is particularly suited for

image processing.

Figure C.12: Inclusion diagram for the concepts of Artificial intelligence, Machine learning, Ar-
tificial neural networks, Deep learning, and Convolutional neural networks.

Dataset vs. Labels:
A dataset is a collection of data used to train a machine learning model. These data need to

be labelled prior to training. Labels and annotations can generally be considered as synonyms.
Certain datasets come with several kinds of annotations: keypoints, instance segmentation, or
image classification for example. Note that a same dataset can be annotated with several keypoint
instances, e.g., one focusing on hands, and the other one on the full body.

Once labeled, a dataset can be fed to a deep learning architecture, or algorithm, upon which
is appended a feature extractor, or backbone, specific to the chosen labelling convention. A
model results from this training, which can then be used to predict the labels of new data. Hand-
labeled dataset can be used as benchmarks for assessing the model accuracy or speed.
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In the everyday use, datasets, labeling or annotation, architecture, and models, tend to be used
in a confusing way. For instance, the standard OpenPose model has been trained on the COCO
and MPII dataset, annotated with COCO, MPII, and additional foot keypoints, on the OpenPose
architecture. This results in the OpenPose body_25 model.

Single-view vs. Multi-view:
A multi-view (or multiview) system uses several cameras, while a single-view, or monocular

one, uses only one. While multi-view systems are always used to infer 3D information, monocular
ones can either focus on 2D or 3D information retrieval.

Single-image, or single-frame approaches, specifically analyze one single image from a sin-
gle view. In practice, video approaches often perform their analysis image by image.

Kinematics vs. Kinetics:
Kinematics describes the motion of points (e.g., heel marker), bodies (e.g., foot segment), or

systems of bodies (e.g., human whole body). This can involve studying positions or angles, as
well as linear and angular velocities or accelerations. However, kinematics studies motion only in
a geometric way, without considering its causes. It deals with the equations of motion.

On the other hand, kinetics deals with the causes of motion. According to Newton’s second
law of motion, the forces that induce the motion of a body are obtained by multiplying its acceler-
ation by its mass. Hence, unlike kinematics, kinetics takes masses into account (or more generally,
inertial properties). It involves considering external forces (e.g., gravity or ground reaction forces),
internal forces (e.g., joint moments or individual muscle forces), or energy or power (e.g., kinetic
energy). More generally, kinetics deals with the laws of motion.

Dynamics includes both kinematics and kinetics. However, note that in practice, kinetics and
dynamics are often used as synonyms. Statics is a special case of dynamics where the sum of
forces is zero, and consequently, so is the acceleration. Thus, either the velocity of the object is
constant, or it is not moving at all.

Spatio-temporal parameters vs Joint kinematics:
Spatio-temporal parameters are handcrafted indicators used for the kinematic analysis of a

specific task. Among other, they can include step length or cadence for gait analysis, or the reach
of the jab or the excursion of the center of motion for boxing analysis.

Joint kinematics is the study of joint motion, such as joint angle or joint laxity, or joint
velocities and accelerations.

Technically, both spatio-temporal parameters and joint kinematics fall under the umbrella of
kinematic data; however, in the customary usage, kinematics describes joint kinematics.

Forward kinematics vs. Inverse kinematics (and global vs. local optimization):
In the multi-body analysis of human motion, forward kinematics generally involves finding

the positions of M markers −→X from N joint angles −→q . Markers are more formally called end-
targets, and joint angles degrees of freedom. In other words, forward kinematics aims to solve the
equation

−→
X = f (−→q ). Marker positions can usually be solved analytically, with a combination of

trigonometric formulas. However, this assumes that segment dimensions and marker placement
on each segment are known, and that soft tissue artifacts and measurement inaccuracies can be
neglected.

Conversely, inverse kinematics deals with finding joint angles from marker positions, and
thus with solving the equation −→q = f−1(

−→
X ). Instead of prescribing the movement joint by joint,

the idea is to provide one or several known marker positions, that will be reached with unknown
joint angles. However, in practice f is not generally invertible, and there is either an infinite
amount of ways to reach targets, or none at all targets are out of reach. Consequently, optimization
methods need to be leveraged. Inverse kinematics involves defining a kinematic chain, with seg-
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ment dimensions and joint properties. It is sometimes called Multi-body Kinematic Optimization
(MKO), or Global Optimization (GO). Note that this latter term should not be favored, since these
methods do not pretend to look for a global minimum. They are only global in the sense that they
consider all joints at once.

Another approach for finding joint angles is the 6DoF (6 Degrees of Freedom) one, sometimes
called Single-body Kinematic Optimization (SKO). The idea is to compute each segment position
and orientation independently, and then deduces inter-segmental angles. It does not assume any
prior knowledge on segment dimensions nor joint properties, but it involves having at least 3
markers per segment.

Direct kinematics is usually considered to be a synonym of forward kinematics. However,
when there are exactly as many joint angles as marker coordinates, both of them can be equally
solved. Hence, the term direct kinematics is sometimes also employed to describe the analytical
calculation of M joint angles from the position of M markers.

Generalized coordinates vs. Cartesian coordinates:
In the field of biomechanics, generalized coordinates are an extension of Cartesian coordi-

nates, used to describe joint configurations, whether they be linear or angular. Similarly, general-
ized velocities can be angular velocities, generalized forces moments, etc. Plücker coordinates
are sometimes used to consider both sets of coordinates in a single 6D system (3D positions + 3D
orientations).
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"Design and evaluation of a biomechan-
ically consistent method for markerless
kinematic analysis of sports motion"

"Conception et évaluation d’une méthode biomé-
caniquement cohérente d’analyse cinématique du geste
sportif sans marqueur"

Résumé

La capture de mouvement est traditionnellement effectuée à l’aide de marqueurs
réfléchissants placés sur la peau. Cependant, ces méthodes ne conviennent pas
à l’analyse contextuelle du sport sur le terrain, et des alternatives sans marqueur
sont étudiées. L’une des perspectives les plus prometteuses à ce sujet se situe à
l’intersection de l’apprentissage machine pour l’estimation de pose 2D, de la vision
par ordinateur pour la reconstruction 3D à partir de plusieurs sources vidéo, et de
la biomécanique pour contraindre les coordonnées 3D à un modèle anatomique-
ment cohérent. Nous avons proposé Pose2Sim, un package open-source et simple
d’utilisation visant à répondre à ces besoins. Les détections 2D d’OpenPose sont
triangulées de manière robuste, et transmises à OpenSim pour une cinématique
inverse corps complet. La robustesse de Pose2Sim a été estimée face à des per-
sonnes "parasites" entrant le champ de vision, à une qualité d’image dégradée,
à des erreurs de calibration, et à un nombre de caméras réduit. Son exactitude
a également été évaluée, et jugée satisfaisante pour l’analyse de la marche, de la
course, et du cyclisme. Dans un contexte de compétition, il peut être utile d’employer
des caméras légères et sans fil de type GoPro. Nous avons testé ce matériel sur
des séquences de boxe, et proposé des procédures de post-calibration et de post-
synchronisation. Enfin, capturer à la fois l’athlète et son équipement serait intéres-
sant. Nous avons calculé la cinématique d’un pilote de BMX avec son vélo, en
entraînant un modèle DeepLabCut pour le vélo, triangulé et appliqué sur un mod-
èle poly-articulé OpenSim. L’ensemble de ces résultats apporte des perspectives
novatrices pour l’analyse du mouvement sportif.

Abstract

Motion capture is traditionally performed with marker-based systems. However,
these solutions are hardly compatible with on-field sports analysis, and marker-
less alternatives are being explored. One of the most promising prospects lies at
the intersection of machine learning for 2D pose estimation, computer vision for
3D reconstruction from multiple video sources, and biomechanics for constraining
3D coordinates to an anatomically consistent model. We released Pose2Sim, an
open-source package striving to answer these needs in a user-friendly way. Open-
Pose 2D keypoint coordinates are robustly triangulated, and serve as input for a
full-body OpenSim inverse kinematics procedure. Pose2Sim robustness has been
evaluated for people entering and exiting the field of view, degraded image quality,
calibration errors, and decreased number of cameras. Its accuracy has also been
assessed and deemed sufficient for walking, running, and ergometer cycling analy-
sis. In the context of a competition, using lightweight and wireless action cameras
is convenient. We tested such hardware on boxing sequences and proposed post-
calibration and post-synchronization procedures. Finally, capturing both the athlete
and their equipment can be valuable. We studied the kinematics of both a pilot
and his bike in a BMX race by training a DeepLabCut bike model, triangulated and
mapped on a custom-articulated OpenSim model. This work brings out interesting
new perspectives for the analysis of sports movement.

Keywords : Markerless motion capture; Sports performance analysis; Kine-
matics; Computer vision; OpenPose; OpenSim; Python package
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