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Abstract 

In a global context of water crisis, soil moisture is considered as a crucial variable for agriculture 
since it heavily relies on water resources. Given its importance in land–atmosphere feedbacks, it is 
recognized as an Essential Climate Variable (ECV) with both its surface and root-zone components. 
Root-zone soil moisture (RZSM) is particularly interesting since plants draw water and nutrients 
from the root zone. Soil moisture can be directly or indirectly measured. Over the three past 
decades, remote sensing techniques have been providing surface soil moisture (SSM) retrievals. 
However, RZSM is currently inaccessible by satellite sensors since their penetration depth is 
limited to few centimeters. Besides in-situ measurements, RZSM can be derived using physically-
based methods, data assimilation techniques or data-driven methods. Data-driven techniques, like 
Artificial Neural Networks (ANN), are especially promising since they do not require explicit 
relationships between the inputs and the target which is an advantage compared to the first two 
options that are very prone to inaccuracies.  

This PhD aims at predicting RZSM at large scales and kilometric resolutions using ANNs. The 
work is structured in three main parts. The first was centered on the prediction of RZSM at different 
locations around the world using an ANN model that relies on only SSM in-situ data provided by 
the International soil Moisture Network (ISMN). A transferability analysis demonstrated that no 
soil moisture network trained alone was able to well reproduce. However, the model was able to 
capture the variabilities of the RZSM when trained on stations from different networks. Overall, the 
predictions were good in areas of alternate wet and dry cycles but less good for instance in regions 
with high evaporation rates. These limitations motivated us to complexify the method such as it 
becomes a physics-aware data-driven approach. To do so, physical process-related variables were 
added to the ANN model. More precisely, soil water index (SWI) which is computed by a recursive 
exponential filter, was considered to depict the infiltration process. An evaporation efficiency, 
whose formulation relies on a remote sensing-retrieved potential evapotranspiration (PET), was also 
considered to represent the evaporation process. A normalized difference vegetation index (NDVI) 
was used to infer vegetation dynamics. Several ANN models were built such that the features 
include SSM and process-related variables. The models were trained on good-quality ISMN stations 
and tested on the rest of the previously considered ISMN stations. Additional tests were conducted 
on stations external to the ISMN database in order to assess the robustness of the method namely 
over Tunisia, Italy and India. Results showed that the ANN model made up of SSM and all process-
related features was the best performing in most cases. The individual impact of each process-
related variable on the prediction quality was also highlighted through an analysis across climate 
classes. For instance, evaporation efficiency was relevant in regions of high evaporation rates and 
NDVI was most beneficial over agricultural fields. The robustness of the approach was validated in 
the case of Tunisia but no significant improvement was recorded in Italy and India.  

The last part of the work consisted in studying the feasibility of mapping RZSM over continental 
Europe at 1km resolution using the previously developed ANN model. It was not calibrated again 
but only applied on unseen test datasets which consisted of remotely-sensed variables. Maps of 
RZSM at 1 km resolution were produced using SSM data from the Copernicus SSM1km product 
which is based on Sentinel-1 measurements. For validation purposes, RZSM maps at 9km and 
36km were also generated using the ERA5-Land reanalysis SSM and the Soil Moisture Active 
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Passive (SMAP) level-3 SSM products, respectively. Validations against ERA5-Land reanalysis 
RZSM product and against in-situ RZSM data were conducted. The C-band SSM information was 
proved unreliable in complex sceneries and highly impacting the quality of the RZSM predictions. 
The L-band SSM information has been shown more reliable but it was hampered by the coarse 
spatial resolution. The ERA5-Land SSM product injected in the ANN model allowed better 
predictions than the previous products and outperformed the RZSM reanalysis product in some 
areas when compared against in-situ data.  

The results obtained in this work highlight the feasibility of global mapping of RZSM at high 
resolution using an ANN model. The use of more qualitative SSM data provided by future missions 
would allow better quantification of RZSM.  

Keywords: root-zone soil moisture, artificial neural networks, process-related variables, sub-
kilometric resolution, sentinel-1, SMAP, ERA5-land, ISMN.  



 
 
 
 

iii 
 

Résumé 

Dans un contexte mondial de crise de l'eau, l'humidité du sol est une variable cruciale pour  
l'agriculture qui dépend fortement des ressources en eau. Vu son rôle dans les interactions terre-
atmosphère, elle est reconnue comme une variable climatique essentielle avec sa composante de 
surface et de zone racinaire. L'humidité du sol de la zone racinaire (RZSM) est particulièrement 
intéressante car les plantes puisent l’eau dans la zone où se développent les racines. L'humidité du 
sol peut être mesurée directement ou indirectement. Au cours des trois dernières décennies, les 
techniques de télédétection ont permis d’observer l'humidité du sol de surface (SSM). Cependant, la 
RZSM est actuellement inaccessible par les capteurs satellitaires dont la profondeur de pénétration 
est limitée. Outre les mesures terrain, la RZSM peut être obtenue via des méthodes basées sur la 
modélisation physique,  techniques d'assimilation de données ou des méthodes basées sur les 
données. Ces dernières sont prometteuse et moins sujettes aux erreurs car ne nécessitent pas 
l’explicitation des relations gouvernant les données en entrée et la cible. Les réseaux de neurones 
artificiels (ANN) en sont un exemple. 

Cette thèse est structurée en trois axes et se focalise sur la prédiction de la RZSM à large échelle et 
à résolution subkilométrique en utilisant les ANNs. La première partie concerne la prédiction de la 
RZSM à différents endroits du monde à l'aide d'un modèle ANN qui repose uniquement sur les 
données in-situ de la SSM fournies par le réseau international de l'humidité du sol (ISMN). Une 
analyse de transférabilité a démontré qu'aucun réseau d'humidité du sol entraîné seul n'était capable 
de bien reproduire la RZSM. Le modèle entraîné sur des stations de différents réseaux était capable 
de suivre les variabilités de la RZSM. Dans l'ensemble, le modèle s'est avéré fiable dans les zones 
où alternent des cycles humides et secs mais moins performant sur les zones à forts taux 
d'évaporation par exemple. Ces limitations nous ont menés à évaluer l'impact de l'ajout de variables 
d'entrée dans le modèle ANN. L'indice d'eau du sol (SWI), basé sur un filtre exponentiel récursif, a 
été considéré pour décrire le processus d'infiltration. Une efficacité d'évaporation, dont la 
formulation repose sur une évapotranspiration potentielle (PET) issue de la télédétection, a 
également été considérée pour représenter le processus d'évaporation. L’indice de végétation par 
différence normalisée (NDVI) a été utilisé pour déduire la dynamique de la végétation. Plusieurs 
modèles ANN ont été construits de manière à ce que les données d’entrée comprennent la SSM et 
une ou plusieurs variables reliées à des processus. Les modèles ont été entraînés sur des stations 
ISMN avec mesures de bonne qualité et testés sur le reste des stations ISMN également considérées 
dans la partie précédente. Des tests supplémentaires ont été effectués sur des stations non incluses 
dans ISMN à savoir sur la Tunisie, l'Italie et l'Inde. Les résultats ont montré que le modèle ANN 
composé des entrées SSM et de toutes les variables liées aux processus, était le plus fiable dans la 
plupart des cas. L'impact individuel de chaque variable sur la qualité des prédictions a été 
également mis en évidence via une analyse climatique.  

Le dernier axe concerne la cartographie de la RZSM à l’échelle de l'Europe continentale et à 
résolution subkilométrique en utilisant le modèle ANN précédemment développé qui n'a pas été 
recalibré mais uniquement appliqué sur de nouvelles données de test issues de la télédétection. Des 
cartes de RZSM à 1km ont été produites en utilisant le modèle ANN telles que SSM était fournie 
par le produit Copernicus SSM1km, basé sur les données Sentinel-1. Pour les valider, des cartes 
RZSM à 9 km et 36 km ont été générées à partir du produit  SSM de réanalyse ERA5-Land et du 
produit SSM de niveau 3 de la mission Soil Moisture Active Passive (SMAP), respectivement. Des 
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comparaisons avec le produit RZSM de réanalyse ERA5-Land et avec des données in-situ ont été 
effectuées. Les données SSM en bande C se sont avérées peu fiables dans les scènes complexes et 
avaient un impact négatif sur la qualité des prédictions RZSM. Les données SSM en bande L ont 
permis de s’affranchir de certaines limitations du produit précédent mais elles sont entravées par 
une résolution spatiale grossière. Le produit de réanalyse SSM ERA5-Land, injecté dans le modèle 
ANN, a généré de meilleures prédictions que les deux produits précédents et aussi par rapport au 
produit de réanalyse RZSM.  

Les résultats obtenus dans ce travail soulignent la faisabilité de la cartographie globale de RZSM à 
haute résolution en utilisant un modèle ANN. L'utilisation de données plus qualitatives de la SSM 
qui seront fournies par de futures missions permettrait une meilleure quantification de la RZSM.  

Mots clés: humidité du sol en zone racinaire, réseaux de neurones artificiels, variables reliées aux 
processus, résolution subkilométrique, Sentinel-1, SMAP, ERA5-land, ISMN.  
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General introduction 
 

This chapter presents the broad context and background to this PhD. The three main research axes 
are also briefly introduced. 

Table of contents 

Societal, Political, Scientific Context 13 
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Societal, Political, Scientific Context 
Nowadays, the term "water" is closely associated with the war and peace terminologies. The ninth 
edition of the World Water Forum, which was held between March 22 and 27, 2022 in Senegal, is 
the best illustration since it was entitled "Water security for peace and sustainable development". In 
a context of climate change, growing world population and increasing urbanization, water is 
becoming scarcer. This shortage can threaten peaceful coexistence between countries sharing cross-
border river basins, as the President of the Republic of Senegal recalled in his welcome message at 
the last World Water Forum, hence the urgency of making this resource a global political priority. 

Water appears in the Sustainable Development Goals (SDGs) presented in the UN 2030 agenda, 
namely through SDG 2 “zero hunger” and SDG 6 “guarantee water for all” (Figure 1). 

 
Figure 1: The 17 SDGs from the United Nations (source: 
https://www.un.org/sustainabledevelopment/news/communications-material/) 

The aggregated SDG indicator 6.4.2 describes water stress. In 2018, the average value of this 
indicator was equal to 18% at the global scale. At the regional scale, the indicator was below 25% 
(equal to 8.3%) for Europe which makes it at that time unexposed to water stress; in Eastern and 
Western Asia water stress was low to medium (indicator between 45% and 70%), However, it was 
high in Central Asia and South Asia with levels above 70% and critical in North Africa (indicator 
above 100%). 

In this context of water crisis, 3.2 billion people living in rural areas are threatened, according to the 
Food and Agriculture Organization (FAO). The latest report of FAO, entitled “The State of the 
World’s Land and Water Resources for Food and Agriculture”, highlights the threats to key 
agrifood systems around the world. In Africa, several countries suffer from the lack of water 
resources and are unable to cultivate and to subsidize the food needs of their people, says FAO 
Director-General Mr. Qu Dongyu during the World Water Forum in Dakar (2022).  

Moreover, different businesses are threatened in several agricultural areas. These include 
smallholders and farmers whose crops are deteriorating due to drought events, as well as pastoral 
breeders whose animals are dying of thirst and fishermen whose fishing grounds are gradually 
shrinking.  

SUSTAINABLE G~"-'¾.ALS 
DEVELOPMENT ._ ,,~::: 
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According to (FAO, 2021), 10% of inland renewable water resources from rivers and aquifers have 
been used. 70% of freshwater withdrawals are for agriculture and constitute a large share of 
withdrawals in North Africa, Central Asia and the Middle East-West Asia region. 

 

Figure 2: Map of water stress due to agriculture, by basin, in 2018 (Source: FAO and UN-Water, 2021, 
modified to be consistent with UN, 2021.) 

Another major factor that increases the threats to water security consists in climate change. 
According to (IPCC, 2022), heavy precipitation events are more frequently occurring in many 
regions compared to the 1950s. This led to more substantial annual maximum one-day precipitation 
in many regions against longer dry spells in other regions, all compared to the 1950s. Besides, the 
global glacier mass loss rate went beyond 0.5 m water equivalent per year during the last two 
decades, according to the same report, which highly affected the cultural uses of water among 
vulnerable high mountain and polar communities. Overall, unprecedented and severe floods and 
droughts are more likely to occur due to human-induced climate change. The report also highlighted 
that 7% of global disasters between 1970 and 2019 were drought-related whereas 31% of all 
economic losses in the same time range were flood-related due to the increasing warming. These 
extreme events affect both the quantity and quality of water. Actually, the availability of water is 
highly impacted by droughts mainly over arid areas like large parts of Africa, the USA, China and 
India. On the other side, floods and heavy rainfall events are likely to affect the quality of water and 
may make it undrinkable. Moreover, the salination of groundwater resources can increase due to 
harsher storms and higher sea levels in small islands and coastal regions for example. 

In order to achieve the objectives inherent to the sustainable management of water (SDG 6), the 
FAO is participating in several projects focusing on water scarcity such as AQUASTAT database, 
the Water Productivity Open-access portal (WaPOR) and The Global Framework on Water Scarcity 
in Agriculture (WASAG). The characterization of surface conditions and more specifically the soil 
hydraulic properties is a major challenge to accomplish the water related sustainable goals. 
Actually, soil moisture is one of the major elements of the surface water budget that characterize 
the level of stress of land surface ecosystems. Although only 1 mg for each kilogram of water on 
Earth is stored as soil moisture (which makes around 0.0001% of earth’s water), this tiny amount of 
water governs different hydrological, agricultural, and meteorological processes ranging from 
boundary layer dynamics to the global water cycle (Islam and Engman, 1996). Since the superficial 
reservoir has a small capacity, the monitoring and the accurate quantification of the spatial and 
temporal variability of soil moisture in deep layers is more important than the surface soil moisture. 
Hence, the prediction of root-zone soil moisture (RZSM) is essential for crop management, 
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irrigation planning, flooding and drought mapping, weather prediction and quantification of carbon 
fluxes within soils. 

Although in-situ measurements provide accurate estimations of RZSM, they are lacking over large 
spatial scales (Dorigo et al., 2011). Alternatively, remote sensing technology provides seamless and 
large-scale soil moisture retrievals but with a limited sensing depth of few centimeters. A common 
approach to produce continuous estimates of this variable consists in observing surface 
meteorological data in physically-based models like land surface models (LSMs) in an uncoupled 
manner (Koster et al., 2009). Nevertheless, the errors in forcing parameters and the deficiencies in 
the representation of land surface processes lead to uncertainties in these estimates. Shallow remote 
sensing soil moisture accounted for the integration of in situ surface data or satellite sensors data 
like passive microwave brightness temperature or radar backscattering coefficients into hydrologic 
models to predict RZSM through data assimilation techniques (Kolassa et al., 2017; Lievens et al., 
2017; De Lannoy et al., 2019). Data-driven techniques, such as Artificial Neural Networks (ANNs), 
have proven efficient in RZSM prediction (Kornelsen and Coulibaly, 2014, Pan et al., 2017; Souissi 
et al, 2020; Souissi et al., 2022). 

All the aforementioned techniques have been applied in several studies in order to estimate RZSM 
at local, regional and continental scales. However, no attempt has been made yet to predict this 
component at large scales and high spatial resolutions concurrently. The interest of the different 
spatial resolutions varies with the field of application. For instance, meteorological applications 
need coarse resolution soil moisture data, hydrological applications are usually centered on the 
watershed scale whereas agricultural applications require high-resolution data (Stefan et al., 2021). 
The resolution at which RZSM is currently being predicted at large scales and the resolution at 
which land processes occur within the soil profile are disparate. This observation motivated this 
work to focus on the prediction of root zone soil moisture at large scale and subkilometric 
resolution. In the literature, ANNs have been used as surrogate models, calibration tools or as 
physics-aware methods. The classic way of tackling soil moisture estimation problems with ANNs 
as a physics-aware method is to start from the analysis of the radiometric observations i.e. remote 
sensing observations. Then, physics which is depicted by different physically-based variables or 
models is injected into the ANN to finally obtain the target, namely soil moisture. In this PhD, we 
used ANNs as a physics-aware method but in a different processing order. Actually, we started 
from multi-location in-situ soil moisture measurements to train and test an ANN model. Process-
related variables were then added as model inputs. After this hybridization of the approach, the 
locally-trained model is tested using remote sensing data in order to produce spatial maps of RZSM 
at large scale and 1 km resolution. 

Research axes 
This work is centered on different research axes namely: 

1/ Assess the robustness, accuracy and transferability with which RZSM can be estimated using 
only surface soil moisture (SSM) in a data-driven method. 2/ Explore how best to include process-
related information along with SSM in ANN models intended to predict RZSM. 3/ Study the 
feasibility of mapping RZSM at large scale and subkilometric resolution using ANN and remote 
sensing-based inputs. 

• Prediction of RZSM based on SSM using ANN 
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In this part, an ANN model was developed to estimate RZSM based on only in-situ SSM 
information. Different experiments were conducted on the model with regard to the temporal 
sampling of the SSM features, the scaling technique and of the split of the training, validation and 
test sets. In-situ SSM measurements were provided by the International Soil Moisture Network 
(ISMN) at different locations around the world such that different climates and soil types were 
considered. This particularity is important to assess the transferability of the approach. The 
accuracy of the method was investigated across the climate classes and soil textures. The 
contribution of each soil moisture network was also assessed and led to a data filtering. This 
approach is detailed in the scientific paper entitled «Accuracy and Transferability of Artificial 
Neural Networks in Predicting in Situ Root-Zone Soil Moisture for Various Regions across the 
Globe» and published in Water journal, and will be presented in chapter 2. 

• Prediction RZSM based on SSM and process-related inputs using ANN  

The findings of the first axis mainly with regard to the performance limitations of the first approach 
over regions where the link between surface and root zone is weak, have led us to further 
complexify the method. Given that different hydrological processes like diffusion processes connect 
RZSM to SSM, we decided to investigate the impact of adding process-related inputs in addition to 
SSM in ANN models and seek the best combination that ensures the more accurate RZSM 
predictions. The soil water index (SWI) was computed with a recursive exponential filter and used 
to account for the infiltration process. The evaporation process was illustrated through an 
evaporation efficiency computed based on a Moderate Resolution Imaging Spectroradiometer 
(MODIS) remote-sensing potential evapotranspiration (PET) dataset and a simplified analytical 
model. Vegetation growth was interpreted through the normalized difference vegetation 
index (NDVI) time series. Several ANN models with different combination of features were 
developed.  

This approach and different results are presented in the scientific paper «Integrating process-related 
information into an artificial neural network for root-zone soil moisture prediction», published in 
Hydrology and Earth System Sciences (HESS) journal, and will be detailed in chapter 3. 

• RZSM spatial maps at large scale and 1 km resolution 

Our starting point in this axis is the most complex ANN model which was developed in the 
previous part and which allowed agreement between RZSM predictions and in-situ information. 
Actually, the assessment of the reliability of the ANN model to yield consistent RZSM predictions 
over a continental scale namely Europe is a decisive step in this study. The feasibility of predicting 
RZSM at large scale using a locally-trained is a demonstration of its generalizability to the global 
scale. Different SSM products specifically radar, passive microwaves and reanalysis datasets were 
employed to compute the three SSM features. A comparison between the different RZSM maps 
produced at different resolutions (1 km, 9 km and 36km) was performed as well as a validation 
against in-situ RZSM collected over four European in-situ soil moisture networks.  

This approach is detailed in a scientific paper entitled «Root-Zone soil moisture over Continental 
Europe using machine learning» and submitted in International Journal of Applied Earth 
Observation and Geoinformation journal and will be detailed in chapter 4. 
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Ce chapitre présente le contexte général de cette thèse. Les trois principaux axes de recherche sont 
également brièvement introduits. 
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Contexte sociétal, politique et scientifique 
De nos jours, le terme "eau" est étroitement lié aux terminologies de guerre et de paix. La neuvième 
édition du Forum mondial de l'eau, qui s'est tenue du 22 au 27 mars 2022 au Sénégal, en est la 
meilleure illustration puisqu'elle était intitulée "La sécurité de l'eau pour la paix et le développement 
durable". Dans un contexte de changement climatique, de croissance de la population mondiale et 
d'urbanisation croissante, l'eau devient de plus en plus rare. Cette pénurie peut menacer la 
coexistence pacifique entre les pays partageant des bassins hydrographiques transfrontaliers, 
comme l'a rappelé le Président de la République du Sénégal dans son message de bienvenue au 
dernier Forum mondial de l'eau, d'où l'urgence de faire de cette ressource une priorité politique 
mondiale. 

L'eau apparaît dans les Objectifs de développement durable (SGD) présentés dans l'agenda 2030 de 
l'ONU, notamment à travers l'SGD 2 « Éliminer la faim, assurer la sécurité alimentaire, améliorer la 
nutrition et promouvoir une agriculture durable » et l'SGD 6 « Garantir l’accès de tous à l’eau et à 
l’assainissement et assurer une gestion durable des ressources en eau » (Figure 1). 

 
Figure 1: Les 17 objectifs de développement durable des Nations Unies (source: 
https://www.un.org/sustainabledevelopment/news/communications-material/) 
 

L'indicateur SDG agrégé 6.4.2 décrit le stress hydrique. En 2018, la valeur moyenne de cet 
indicateur était égale à 18% à l'échelle mondiale. A l'échelle régionale, l'indicateur était inférieur à 
25% (égal à 8,3%) pour l'Europe ce qui la rend non exposée au stress hydrique à l’époque; en Asie 
de l'Est et de l'Ouest le stress hydrique était faible à moyen (indicateur entre 45% et 70%), En 
revanche, il était élevé en Asie centrale et en Asie du Sud avec des niveaux supérieurs à 70% et 
critique en Afrique du Nord (indicateur supérieur à 100%). 

Dans ce contexte de crise de l'eau, 3,2 milliards de personnes vivant en milieu rural sont menacées, 
selon l'Organisation des Nations unies pour l'alimentation et l'agriculture (FAO). Le dernier rapport 
de la FAO, intitulé « L’État des ressources en terres et en eau pour l'alimentation et l'agriculture 
dans le monde », met en évidence les menaces qui pèsent sur les principaux systèmes 
agroalimentaires dans le monde. En Afrique, plusieurs pays souffrent de la pénurie des ressources 
en eau et sont donc incapables de cultiver et de subvenir aux besoins alimentaires de leur population 

SUSTAINABLE G$1l~ALS 
DEVELOPMENT .. ,,i:: 
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soit environ 10% de la population mondiale, indique le Directeur général de la FAO, M. Qu 
Dongyu, lors du Forum mondial de l'eau à Dakar (2022). En outre, différents projets sont menacés 
dans plusieurs zones agricoles. Il s'agit notamment des petits exploitants et des agriculteurs dont les 
cultures se dégradent en raison des épisodes de sécheresse, ainsi que des éleveurs pastoraux dont les 
animaux meurent de soif, mais aussi des pêcheurs dont les zones de pêche se réduisent 
progressivement. 

D'après (FAO, 2021), 10 % des ressources en eau renouvelables continentales provenant des 
rivières et des aquifères ont été utilisées. 70 % des prélèvements d'eau douce sont destinés à 
l'agriculture et constituent une part importante des prélèvements en Afrique du Nord, en Asie 
centrale et dans la région Moyen-Orient-Asie occidentale. 

 

 

Figure 2: Carte du niveau de stress hydrique dû à l’usage agricole, par bassin, en 2018 (Source: FAO and 
UN-Water, 2021, modified to be consistent with UN, 2021.) 

Le changement climatique est un autre facteur majeur qui prolifère les menaces sur la sécurité de 
l'eau. Selon (IPCC, 2022), les événements de fortes précipitations sont plus fréquents dans de 
nombreuses régions par rapport aux années 1950. Cela a conduit à des précipitations maximales 
journalières annuelles plus importantes dans de nombreuses régions et à des périodes de sécheresse 
plus longues dans d'autres régions, le tout par rapport aux années 1950. En outre, le taux de perte de 
masse des glaciers à l'échelle mondiale a dépassé 0,5 m d'équivalent eau par an au cours des deux 
dernières décennies, selon le même rapport, ce qui a fortement affecté l’utilisation en eau pour les 
cultures parmi les communautés vulnérables de hautes montagnes et polaires, par exemple. Par 
ailleurs, des inondations et des sécheresses sévères sont plus susceptibles de se produire en raison 
du changement climatique induit par l'homme. Le rapport souligne également que 7 % des 
catastrophes survenues à l’échelle mondiale entre 1970 et 2019 étaient liées à la sécheresse, tandis 
que 31 % de toutes les pertes économiques sur la même période étaient liées aux inondations, en 
raison du réchauffement croissant. Ces événements extrêmes affectent à la fois la quantité et la 
qualité de l'eau. En effet, la disponibilité de l'eau est fortement affectée par les sécheresses, 
principalement dans les zones arides comme en Afrique, les États-Unis,  la Chine et l'Inde. D'autre 
part, les inondations et les fortes précipitations sont susceptibles d'affecter la qualité de l'eau et de la 
rendre impotable. En outre, la salinisation des ressources en eau souterraine peut augmenter en 
raison de tempêtes plus violentes et de l'élévation du niveau de la mer dans les petites îles et les 
régions côtières, par exemple. Afin d'atteindre les objectifs liés à la gestion durable de l'eau (SDG 
6), la FAO intervient dans plusieurs projets axés sur la pénurie de l'eau, tels que la base de données 
AQUASTAT, le portail de suivi de la productivité de l'eau (WaPOR) et Le Cadre mondial contre la 
pénurie d’eau dans l’agriculture (WASAG). Le suivi des conditions de surface et plus 
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particulièrement des propriétés hydrauliques du sol est un défi majeur pour atteindre les objectifs de 
durabilité liés à l'eau. En effet, l'humidité du sol est l'un des principaux éléments du bilan hydrique 
qui caractérise le niveau de stress des écosystèmes de surface. Bien que seulement 1 mg par 
kilogramme d'eau sur terre soit stocké sous forme d'humidité du sol (ce qui représente environ 
0,0001% de l'eau de la terre), cette petite quantité d'eau régit différents processus hydrologiques, 
agricoles et météorologiques allant de la dynamique de la couche limite jusqu’au cycle global de 
l'eau (Islam et Engman, 1996). Étant donné que le réservoir superficiel a une faible capacité, la 
quantification précise de la variabilité spatiale et temporelle de l'humidité du sol dans les couches 
profondes est essentielle. La prédiction de l'humidité du sol dans la zone racinaire (RZSM) est donc 
importante pour la gestion des cultures, la planification de l'irrigation, la cartographie des 
inondations et des évènements de sécheresse, les prévisions météorologiques et la quantification des 
flux de carbone dans les sols. 

Bien que les mesures terrain fournissent des estimations précises de la RZSM, elles ne sont pas 
capables de fournir des mesures à large échelle (Dorigo et al., 2011). Par ailleurs, les techniques de 
télédétection permettent de fournir des données d'humidité du sol à grande échelle, mais avec une 
profondeur de pénétration dans le sol limitée à quelques centimètres. L’une des approches pour 
générer des estimations continues de cette variable consiste à utiliser les données météorologiques 
de surface observées dans des modèles basés sur la physique, comme les modèles de surface 
terrestre (LSM) (Koster et al., 2009). Cependant, les erreurs des paramètres de forçage et les 
déficiences dans la représentation des processus de surface conduisent à des incertitudes dans ces 
estimations. Les techniques d’assimilation de données peuvent reposer sur l’intégration de données 
de capteurs aéroportés comme les coefficients de rétrodiffusion radar et la  température de brillance 
micro-ondes dans des modèles hydrologiques pour prédire les RZSM (Kolassa  et al., 2017; Lievens  
et al., 2017; De Lannoy et al., 2019). Les méthodes basées sur les données, telles que les réseaux de 
neurones artificiels (ANN), ont été aussi démontrées efficaces pour la prédiction de la RZSM 
(Kornelsen and Coulibaly, 2014, Pan et al., 2017; Souissi et al, 2020; Souissi et al., 2022).. 

Toutes les techniques susmentionnées ont été appliquées dans plusieurs études afin d'estimer la 
RZSM à l'échelle locale, régionale et continentale. Cependant, aucune tentative n'a encore été faite 
pour prédire cette composante à grande échelle et à haute résolution spatiale simultanément. 
L'intérêt des différentes échelles spatiales varie en fonction de l’application. Par exemple, les 
applications météorologiques nécessitent des données d'humidité du sol à résolution grossière, les 
applications hydrologiques sont généralement centrées sur l'échelle du bassin versant alors que les 
applications agricoles nécessitent des données à haute résolution (Stefan et al., 2021). La résolution 
à laquelle le RZSM est actuellement prédite à grande échelle et la résolution à laquelle les processus 
terrestres se produisent dans le profil du sol sont très différentes. Cette observation nous ramène à 
l’objectif de cette thèse à savoir la prédiction de l'humidité du sol de la zone racinaire à grande 
échelle avec une résolution kilométrique. Dans la littérature, les ANN ont été utilisés en tant que 
« surrogate models », outils de calibration ou en tant que méthodes tenant compte de la physique. 
La manière classique d'aborder les problèmes d'estimation de l'humidité du sol avec les ANN en 
tant que méthode tenant compte de la physique, consiste à commencer par l'analyse des 
observations issues de l’observation de la Terre. Ensuite, le réseau ANN est alimenté par des  
variables ou modèles liés aux processus physiques pour enfin, obtenir la cible, à savoir l'humidité 
du sol. Dans cette thèse, nous avons utilisé les ANNs en tant que méthode basée sur la physique 
mais dans un ordre de traitement différent. En fait, nous avons commencé par des mesures in-situ 
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de l'humidité du sol de surface pour entraîner et tester un modèle ANN. Les variables liées aux 
processus ont ensuite été ajoutées comme entrées du modèle. Après cette hybridation de l'approche, 
le modèle localement entraîné est testé en utilisant des données de télédétection pour produire des 
cartes spatiales de la RZSM à grande échelle et à une résolution de 1 km. 

Axes de recherche  
Ce travail est centré sur différents axes de recherche à savoir : 

1/ Évaluation de la robustesse, la précision et la transférabilité avec lesquelles la RZSM peut être 
estimée en utilisant uniquement l'humidité du sol de surface (SSM) à travers une méthode basée sur 
les données. 2/ Investigation de la meilleure approche pour inclure des informations liées aux 
processus physiques avec la SSM dans des modèles ANN conçus pour prédire la RZSM. 3/ Etude 
de la faisabilité de la cartographie de la RZSM à grande échelle et à une résolution subkilométrique 
en utilisant des modèles ANN et des données de télédétection. 

• Prédiction de la RZSM dans un ANN basé uniquement sur la SSM 

Dans cette partie, un modèle ANN a été développé pour estimer la RZSM uniquement à partir de 
données in-situ de SSM. Différentes paramétrisations ont été appliquées sur le modèle en termes de 
paramétrage temporel des entrées SSM, la méthode de scaling et la division des sets d’apprentissage 
et de test. Les données in-situ de SSM ont été fournies par le  réseau international d'humidité de sol 
(ISMN) à différents endroits dans le monde, de sorte que différents climats et types de sol sont 
couverts par les stations considérées. Cette particularité est importante pour évaluer la 
transférabilité de l'approche. La précision de la méthode a été étudiée en se basant sur une analyse 
climatique et de texture de sol.  

Cette approche est détaillée dans l'article scientifique intitulé "Accuracy and Transferability of 
Artificial Neural Networks in Predicting in Situ Root-Zone Soil Moisture for Various Regions 
across the Globe" et publié dans la revue internationale Water. Elle sera présentée dans le chapitre 
2. 

• Prévision de la RZSM dans un ANN en se basant sur la SSM et des variables liées aux 
processus physiques 

Différents processus hydrologiques, comme les processus de diffusion, relient la RZSM à la SSM. 
Par exemple, la RZSM peut être dérivée de l'évaporation de surface via l'extraction des racines ou 
les remontées capillaires. Ceci nous a conduit à évaluer l'impact de l'ajout d'entrées liées aux 
processus physiques, en plus de la SSM, dans des modèles ANN et à trouver la meilleure 
combinaison qui assure les meilleures prédictions de la RZSM. L'indice d'eau du sol (SWI) a été 
calculé avec un filtre exponentiel récursif et utilisé pour représenter le processus d'infiltration. Le 
processus d'évaporation a été illustré par une efficacité d'évaporation calculée sur la base d'un 
modèle analytique simplifié et de données d'évapotranspiration potentielle (PET) issues du 
spectroradiomètre imageur à résolution modérée (MODIS). La dynamique de végétation a été 
déduite des séries temporelles de l'indice de végétation par différence normalisée (NDVI) fournies 
par le satellite MODIS. Plusieurs modèles ANN avec différentes combinaisons de variables 
d’entrée ont été développés.  
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Cette approche et les différents résultats sont présentés dans l'article scientifique "Integrating 
process-related information into an artificial neural network for root-zone soil moisture prediction", 
publié dans le journal Hydrology and Earth System Sciences (HESS). Elle sera détaillée dans le 
chapitre 3. 

• Cartes spatiales de RZSM à grande échelle et à résolution kilométrique 

L'évaluation de la fiabilité du modèle ANN précédemment développé pour produire des prédictions 
RZSM cohérentes à l'échelle continentale, à savoir l'Europe, est une étape décisive de cette étude. 
La faisabilité de l'estimation de la RZSM à grande échelle avec une méthode initialement calibrée et 
testée à l'échelle locale démontre sa généralisabilité à l'échelle globale. Le point de départ de cette 
étape est le modèle ANN présenté dans l’axe précédent. Différentes sources de SSM, notamment 
des données satellite radar, micro-ondes passives et de réanalyse, ont été utilisées pour calculer les 
features de la SSM. Une comparaison entre les différentes cartes de RZSM produites à différentes 
résolutions (1 km, 9 km et 36 km) a été effectuée ainsi qu'une validation avec des données RZSM 
in-situ collectées au niveau de quatre réseaux européens d'humidité du sol.  

Cette approche est détaillée dans un article scientifique intitulé "Root-Zone soil moisture over 
Continental Europe using machine learning" soumis au journal International Journal of Applied 
Earth Observation and Geoinformation. Elle sera détaillée dans le chapitre 4. 
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Chapter 1: State-of-the-art 
 

The following chapter encompasses elementary definitions inherent to soil moisture, the state-of-
the-art of direct and indirect soil moisture retrieval techniques at various spatial and temporal scales 
and a review of the different methods for RZSM estimation. It identifies the limitations of the 
existing solutions and the needs for a better quantification of this component, hence the interest of 
this work. 
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1.1. Soil moisture definition 
The soil moisture also called soil water content is the amount of water held in the soil at a given 
matric potential (Tuller and Or, 2005). Soil moisture can be expressed either as a gravimetric 
quantity θg (g/g) or as volumetric quantity θv (m3/m3). Gravimetric soil moisture represents the ratio 
of the mass of water present in a soil sample and the mass of the dry soil sample. This quantity can 
be obtained by weighing a moist soil sample (mwet), oven drying it at 105°C and then reweighing it 
(mdry). 

 

Volumetric soil moisture (θv) is defined as the volume of water held in a given soil volume may be 
expressed as a function of gravimetric soil moisture (θm) as follows: 

 

Where ρb is the dry bulk density (g/cm3) of the soil, which is the weight of dry soil per the total soil 
sample volume, and ρw is the density of water (g/cm3).  

θv is replaced by θs which represents soil moisture at saturation and is attained  when soil pores are 
totally filled with water and no air is present. However, a completely saturated soil is not achievable 
in practice (can be achievable however in peatlands for instance) due to air entrapment in the soil 
pores under wet conditions. Similarly, a completely dry soil is not realistic due to the presence of a 
residual moisture content θr. In agricultural contexts, other soil moisture parameters can be derived 
to describe the relations governing water in a soil sample, such as the plant available soil water 
content. This quantity is termed θPAW and is defined as the difference between the water content at 
field capacity θFC, and the water content at the permanent wilting point, θPWP. Field capacity is 
attained once free drainage (gravity forces) is over and is considered ideal for crop growth. 

The permanent wilting point θWP (figure 3) indicates the stage below where plants irreversibly wilt 
and die because water is so firmly retained in the soil matrix and the roots water uptake is not 
enough to cover their need. The water content at field capacity (figure 3) depends on soil texture 
and the permanent wilting point depends on the plant type. 

 

Figure 3: Soil water content at saturation, field capacity and permanent wilting point (Datta et al., 2017). 

mwet - mdry 
0g=-­

mdry 

8 = 8 Pb 
v mPw 

Saturation Field Capacity Permanent Wilting Point 

Ali pores are filled with water Water in larger pores has drained Plants can no longer extract water 



 
 
 

Chapter 1: State-of-the-art 
 

26 
 

Soil moisture is often separated into two components namely surface soil moisture that corresponds  
to water in the upper soil (generally the top 5 centimeters) and the root-zone soil moisture that is 
available to plants (Figure 4) (Seneviratne et al., 2010). Soil moisture content may be termed, where 
applicable, surface soil moisture, near-surface soil moisture, root-zone soil moisture or vadose zone 
soil moisture. In the context of optical and thermal remote sensing, surface soil moisture also called 
skin soil moisture represents the water content held in the uppermost soil layer which thickness 
doesn’t exceed 1mm. Near-surface soil moisture commonly denotes the average water content 
within the top few centimeters of the soil and is generally used in the context of microwave remote 
sensing. In this study, we don’t make the distinction between the two terms. Only surface soil 
moisture will be used to refer to soil moisture in the first five centimeters of the soil. Root-Zone soil 
moisture refers to the water content available in the plant root zone which is available for 
transpiration and photosynthesis. Root water uptake by plants is one of the key components of the 
terrestrial water balance and a critical process controlling energy exchange between the land surface 
and the atmosphere and plant growth (Jarvis, 2011). 

The accurate quantification of the depth of soil that roots can access, which contributes significantly to soil 
productivity, is quite challenging because of many factors namely the reduced pore volume, the abruptness 
of textural change over depth, the depth of soil to bedrock, the extremely acidic and or alkaline pH, and 
many other physical and chemical properties (Leenaars et al., 2018). The root profiles are also vegetation-
dependant. Albers et al. (2022) consider a depth of 150 cm ideal to approximate the root zone depth outside 
all root-restricting zones. Many models and hypotheses have been proposed to estimate the rooting depth 
(Jackson et al., 1996; Musters and Bouten, 1999; Schenk and Jackson, 2002; Zeng, 2001; Leenaars et al., 
2018; Rivieccio et al., 2020). This study is centered on the study of the soil moisture in the zone where roots 
develop and not where roots really are. The shallowest RZSM observation point we will consider in this PhD 
based on the soil moisture data we will be using, is equal to 30 cm and the deepest one is fixed at 55 cm.  

 

Figure 4: Diagram of unsaturated soil zone holding the soil moisture components and saturated soil zone. 

1.2 Processess related to soil moisture 
Soil moisture variations interact with different processes. For instance, the near-surface soil 
moisture variations interact with precipitation and evapotranspiration. Runoff, percolation and 
infiltration are also linked to the soil moisture variability (figure 3). Hereafter, some processes are 
detailed with respect to their interaction with soil moisture.  
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Figure 5: Hydrologic processes interacting with soil moisture (source: KGS Pub. Inf. Circ. 22, last access: 5 
September 2022) 

1.2.1 Infiltration process 

Infiltration is one of the most important hydrological processes that are related to soil moisture. It 
describes the water movement from the surface into deeper soil. Several factors such as soil texture, 
irrigation or rainfall control this process. 

The modeling of the infiltration process has gained much interest in the literature through several 
infiltration models which yield different levels of accuracy (Feki et al., 2018). These models are 
usually based on Richards’ equation (Richards, 1931). Actually, the Richards' equation describes 
the flow of water in an unsaturated porous medium which is due to gravity and capillarity rise. The 
flow of the non-wetting phase usually air, is neglected (Farthing and Ogden, 2017). Due to its high 
nonlinearity, the numerical solutions which are proposed to resolve the Richards’ equation are time-
consuming especially in the case of large study areas and lead to stability issues under some 
conditions such as the wetting of an initially dry medium (Tinet al., 2015). Different simplifications 
were suggested and implemented by empirical, semi-empirical and physically-based models. 
Mishra et al. (2003) compared the performance of fourteen different infiltration models based on 
the Nash-Sutcliffe efficiency coefficient and 243 sets of in-situ infiltration data collected over India 
and USA such that different soil textures are covered. Feki et al. (2018) assessed the impact of 
modeling the infiltration process on soil moisture simulations accuracy. They included different 
infiltration models within a distributed hydrological model and evaluated their ability to simulate 
soil water content through a comparison against in-situ observations acquired in a maize field in 
northern Italy. Besides, they demonstrated that the Ross solution (Ross, 2003), which is a fast non-
iterative solution for the non-linear 1D Richards’ equation, was able to follow the soil moisture 
variability within the soil profile. In addition to the Ross solution, simpler analytical infiltration 
models allowed a good agreement between in-situ and simulated soil moisture if well calibrated.  

1.2.2 Rainfall-Runoff  

The quantification of stream flow that occurs in a river following a rainfall event is very important 
for different hydrological applications. The study of the rainfall–runoff processes encompasses 
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looking at where water goes when it rains, how long does water reside in a watershed, and what 
pathway does water take to the stream channel (Tarboton, 2003). 

Woods et al. (2001) presented preliminary analysis related to rainfall-runoff response and soil 
moisture behavior over the Mahurangi River catchment in New Zeland and suggested that accurate 
measurement of soil moisture should be useful for runoff prediction. Actually, significant runoff 
was observed to be generated only for moisture contents above about 42%. Woods et al. (2001) 
suggested that at these high average moisture contents, the spatial distribution of soil water was 
critical in the prediction of runoff behavior and therefore should be well predicted. 

Runoff is generated by different mechanisms and processes, which depend on the soil moisture 
status of the soil, referred to as the antecedent conditions. Actually, processes of evaporation, 
transpiration, percolation and drainage allow the definition of the soil moisture antecedent 
conditions (Tarboton, 2003).   

These observations led to the development of different continuous simulation models, such as the 
National Weather Service (NWS) Sacramento soil moisture accounting model which is based on 
well-structured representation of the catchment's soil moisture storage system. This model is based 
on simple approximations of many soil moisture processes. Given that many of the catchment 
characteristics are related to the soil moisture capabilities of the catchment, a good application of 
the model starts with a good understanding of the three basic types of soil moisture which are 
hygroscopic, gravitational and capillary water and which can potentially influence catchment runoff 
conditions as reported in (Burnash, 1995). Hygroscopic water can be defined as soil water that is 
present not only in the pores but also on the surface of the soil particle and which is not available 
for plants. Gravitational water is the water that drains after moving through the soil by the force of 
gravity. Capillary water is the water which is held inside soil pores against gravity.  

1.2.3 Evapotranspiration 

The quantification of evapotranspiration (ET) is crucial for water resources management 
applications. Actually, ET establishes a link between the water, energy and carbon cycles and thus 
is very important for climate and hydrological applications. ET is a physically-based process that 
describes the water transfer from the soil layers and vegetation layer to the atmosphere. Over land, 
ET is made up of evaporation and plant transpiration. Evaporation is a physically-based process that 
describes the water transfer from different sources such as the soil, the surface of canopies, stems, 
or branches to the atmosphere. Transpiration is a bio-physical process that represents the 
evaporation of water in the vascular system of plants through leaf stomata (Verstraeten et al., 2008). 
Evapotranspiration is directly connected to soil moisture content which is subject to evaporation.  
Soil moisture has an impact on evapotranspiration since it has an influence on the partitioning of the 
available energy at the Earth surface into sensible and latent heat fluxes (Hirschi et al., 2020). Both 
land water balance and water balance for a given surface soil layer, without considering lateral 
exchange between adjacent soil volumes can be expressed using this same equation (figure 6): 

 
dS = p - E - Rs - Rg 
dt 
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where dS/dt is either the change of terrestrial water storage or water content within a given soil 
layer, P is precipitation, E is evapotranspiration, Rs is surface runoff, and Rg is groundwater flow in 
the case of land water balance or drainage in the case of a given soil layer water balance. S includes 
moisture stored in the soil, surface water, snow, ice cover and water stored in biomass. 

 
Figure 6: Diagram of the land water balance for a given surface soil layer; dS/dt represents the change in 
water content. 

1.3 Measuring Soil moisture 
Since the soil water balance is strongly affected by RZSM, accurate quantification of this 
component is essential in order to assess whether the available water can answer the plant needs or 
if it exceeds the plant demand and thus percolates below the root zone layer. The variability of 
RZSM can be evaluated using direct and indirect methods (Upadhyaya et al., 2021). 

1.3.1 Direct measurements 

The most common direct method of retrieving soil moisture in general and RZSM in particular is 
the gravimetric method which consists in weighing soil samples before and after over-drying at a 
temperature of 105 °C for 24-48 h. A detailed investigation of this method was described in 
(Reynolds, 1970). This method is simple, inexpensive and important to calibrate indirect 
measurement instruments. However, it is labor-intensive and time-consuming with regard to sample 
collection and drying. But the main disadvantage of this technique is the artificial change it brings 
to the experimental site. Actually, the gravimetric method is destructive because of the repeated 
sampling of a same site. It may damage the plant roots, modify the ground hydrological conditions 
and introduce variable drainage and infiltration characteristics. 

Besides, RZSM can be directly measured using a lysimeter which is a device, typically a tank or a 
container. It defines a specific boundary to contain water in the soil and allows the measurement of 
the soil water balance or the volume of water percolating vertically or its quality. For a weighing 
lysimeter, the change in soil water storage is measured as a change in mass (Howell, 2004). 
However, the lysimeters are subject to many limitations. One main limitation is caused by the 
filling in of the soil into the lysimeter which can lead to a modification of the soil structure and 
might influence the condition of crops and soil life (Makkink, 1959). 

1.3.2 Indirect measurements 
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Given the significant limitations affecting direct measurements, soil moisture is commonly 
observed by indirect measurement techniques or devices. Despite the good accuracy of the existing 
sensors, these techniques are hindered by a limited spatial coverage. Actually, the soil can’t be 
digged at each point of the globe to install the sensors. The remote sensing technology overcomes 
this major limitation. However, the spatial and temporal resolutions can hamper soil moisture 
observation and need to be taken into account.    

1.3.2.1 In-situ measurements 

In-situ measurement techniques can provide both point-scale and larger impact measurements 
(decametric or hectometric scale). This section presents the most used techniques and is not a 
comprehensive review of all measurement techniques. 

Neutron scattering 

This technique was introduced and successfully used to indirectly measure soil moisture in the 
1950s (Belcher et al., 1950; Gardner and Kirkham, 1952). Neutron probes are made up of a probe 
which contains a source of fast neutrons and a gauge that monitors the flux of slow neutrons 
scattered by the soil. In order to get root-zone measurements, the probe is lowered down an access 
tube until the intended depth of measurement. Neutrons with a high energy are scattered into the 
soil and are slowed by elastic collisions with nuclei of atoms. In soils, water is the major source of 
hydrogen atoms that can slow fast neutrons much more effectively than can any other element. 
Slow neutrons returning to the detector per unit time are counted. The density of the resultant cloud 
of slow neutrons is a function of the soil moisture content (Chanasyk and Naeth, 1996). 

Dielectric sensors 

These sensors are based on techniques which derive soil moisture from the dielectric property of the 
soil. These techniques mainly encompass Time Domain Reflectometry (TDR), capacitance 
technique and Frequency Domain Reflectometry (FDR) and are based on the fact that dielectric 
constant of soil is primarily related to its water content (Thomas, 1966; Cihlar and Ulaby, 1974; 
Hoekstra and Delaney, 1974; Topp et al., 1980). The dielectric constant is a measure of the 
response of the soil to an electromagnetic wave and is equal to a few units for dry matter and about 
80 for free liquid water. Different sensors based on electromagnetic measurements of this constant 
have been developed by different companies (Vaz et al., 2013).   

TDR sensors like the TDR 100 Campbell sensor emit an electromagnetic impulse and observe the 
response within an interval of time. Then, they convert the time taken by the wave to travel and to 
get reflected back to the receiver to distance unit, and display the information as a waveform. The 
volumetric soil moisture can be estimated using the dielectric constant of the soil (Abdullah et al., 
2018). Besides, the capacitance technique relies on the fact that capacitance of soil is directly 
related to the dielectric constant and thus to water content in soil. Many capacitance soil moisture 
sensors consist of a probe and a pair of embedded electrodes. The Decagon 10HS and 5TE are two 
widely used capacitance sensors. The capacitance between the probes varies as a function of soil 
moisture (Selig et al., 1975). An oscillator applies a frequency between 50 and 150 MHz to the 
electrodes, which generates a resonant frequency whose magnitude depends on the dielectric 
constant of the soil. Volumetric soil moisture content is then estimated using the frequency and a 
calibration equation. 
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FDR offers an inexpensive measurement of soil water content and is an alternative to TDR. FDR 
sensors consist of short probes which make them geometrically more advantageous than TDR 
sensors. Different soil properties can be measured by selecting different frequencies since FDR 
sensors are sensitive to different physical and chemical soil properties in different frequency ranges 
based on the dielectric spectra of the soil (Xu et al., 2012). 

Gamma attenuation technique 

The gamma ray attenuation is a radioactive technique that can be used to determine soil water 
content. This method assumes that the scattering and absorption of gamma rays are linked to the 
density of matter in their path and that the specific gravity of a soil remains relatively constant as 
the wet density changes with increases or decreases in moisture. The gamma transmission technique 
measures changes in wet density to infer soil moisture (Zazueta and Xin, 1994). Unlike the direct 
method, this is a nondestructive technique with a fast response time (less than 1 min). However, it is 
expensive and difficult to use. 

GNSS 

As aforementioned, point-scale measurements are not relevant for all applications given the high 
temporal and spatial variability of soil moisture. Given that soil moisture data can be required at 
large scales, the Global Navigation Satellite Systems (GNSS) such as the Global Positioning 
System (GPS) receivers are a good alternative for soil moisture estimation through the analysis of 
the power variations of the GNSS signals recorded on the ground. Although GNSS was exclusively 
used to determine position, GPS receivers are sensitive to soil moisture. GPS stations are capable of 
providing a large network of observations with individual spatial scales of 10–40 m (Larson et al., 
2008). The power of the GNSS signal is expressed as signal-to-noise ratio (SNR) which is equal to 
the ratio of the GNSS signal power to the measurement noise. This ratio is commonly used to assess 
the quality of the signal surrounding the GNSS station. The GNSS antenna simultaneously receives 
the direct and reflected signal from the GNSS satellite and land surface, respectively. The received 
signal is subject to an interference pattern which depends on the height difference between the 
GNSS antenna and the reflection point. It depends also on the elevation angle of the satellite and the 
GNSS frequency due to the motion of the satellite. Larson et al. (2008) compared reflection 
amplitudes at a GPS site in Uzbekistan to estimates of soil moisture from a land surface model over 
a 70-day period. Both estimates were consistent with rainfall events.  The soil moisture estimates 
provided by GNSS and the land surface model increased when a rainfall event occurred and 
decreased over a period of around 10 days. This makes GNSS technology promising with 
consideration of the technical issues related to receiver/antenna differences. 

1.3.2.2 Remote sensing observations 

As aforementioned, soil moisture can be measured using direct or indirect in-situ techniques which 
are advantageous given their easy installation, their ability to measure soil moisture at different 
depths and their relative maturity. Despite their high accuracy, they are often costly and labor-
intensive and sometimes destructive (e.g. gravimetric sampling) (Petropoulos et al., 2015). Besides, 
in-situ measurements cannot well represent the spatial distribution of soil moisture and are not 
suitable for continuous spatial and temporal coverage at regional and global scales (Rahimzadeh-
Bajgiran et al., 2013). 
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In the last few decades, many advances in remote sensing (RS) techniques have been made to 
provide seamless soil moisture measurements from space. These techniques differ by the 
relationships governing the remotely-sensed signal and the soil moisture, the wavelength region of 
the electromagnetic spectrum used and the source of the electromagnetic energy (Table 1). 

However, current remote sensing technology only provides SSM and no current satellite sensor is 
able to provide RZSM due to the limited penetration depth into the soil. SSM can be derived at 
different electromagnetic spectra ranging from the optical to the microwave ranges. Research is 
evolving to allow retrieval of RZSM. In this context, P-band sensors which are still under 
investigation are quite promising for soil moisture observation at deeper layers of soil (Shen et al., 
2021). 

Table 1. Overview of remote sensing techniques for soil moisture estimation (after Wang and Qu, 2009; 
Babaeian et al., 2019). 

Spectrum domain Properties observed Advantages Drawbacks 

Optical Soil reflection  

 

- Fine spatial 
resolution and 
broad spatial 
coverage. 

- Potential for real-
time applications 
(e.g., drones). 

 

- Limited surface 
penetration depth 
(in the order of a 
few millimeters). 

- Signal 
contamination by 
clouds and 
vegetation. 

- Low temporal 
resolution. 

Thermal infrared Surface temperature  

 

 

 

- Fine spatial 
resolution and 
broad spatial 
coverage. 

- Potential for real-
time applications 
(e.g., Drone). 

- Strong 
correlation 
between SSM and 
surface land 
temperature. 

 

- Limited surface 
characteristic 
depth (few 
millimeters). 

- Signal perturbed 
by clouds, 
meteorological 
conditions and 
vegetation 
biomass. 

 

 

Microwave Active Backscatter coefficient 

Dielectric properties 

 

- Moderate 
characteristic depth 
(around 5 cm). 

- High spatial 

- Low temporal 
resolution   

- Signals perturbed 
by surface 
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resolution and 
broad spatial 
coverage (global 
scale) 

- Backscatter is 
independent of 
solar illumination, 
clouds and 
atmospheric 
constituents → low 
atmospheric noise  

- Strong 
correlation 
between SM and 
backscattered 
power   

roughness and 
vegetation biomass 

Passive Brightness temperature 

Dielectric properties 

Soil temperature 

 

 

- Moderate 
characteristic depth 
(around 5 cm) 

- High temporal 
resolution 

- Broad spatial 
coverage (global 
scale) 

- Brightness 
temperature not 
perturbed by 
atmospheric 
constituents and 
clouds. 

 

 

- Low spatial 
resolution 

- Signals perturbed 
by surface 
roughness and 
vegetation 
biomass. 

 

I- Satellite data 

Optical RS 

Reflectance-based methods can provide estimates of soil moisture at high spatial resolutions 
compared with other types of sensors such as microwave instruments. Despite the multitude of 
optical sensors that are currently in orbit, a limited body of literature exists on the use of optical 
observations to retrieve SSM (Petropoulos et al., 2015). Different studies have been conducted to 
infer the relationships between spectral reflectance and SSM (Ben‐Dor et Banin, 1995; Chang et al., 



 
 
 

Chapter 1: State-of-the-art 
 

34 
 

2001; Gao et al., 2013). The conclusions of many of those studies show that soil reflectance 
decreases with increasing soil moisture namely in the Short-Wave Infrared (SWIR) range (Moran et 
al., 1994, Weidong et al., 2002, Zhan et al., 2007). 

Empirical and physical approaches have been proposed to estimate soil moisture from measured 
surface reflectance. Most of the empirical methods are based on the rationale of developing 
empirical spectral indices (WISOIL: Bryant et al, 2003; the Shortwave Angle Slope Index (SASI): 
Khanna et al., 2007; Normalized Soil Moisture Index (NSMI): Haubrock et al., 2008). However, 
these indices are very sensitive to the effects of the atmospheric water vapor. Also, empirical 
methods have proved reliable for soil moisture estimation under the conditions they were developed 
for but cannot be universally applied outside those conditions. This is due to the significantly 
varying soil composition that strongly affects spectral reflectance (Liu et al., 2009).  

In addition to empirical approaches, physically-based models have been developed for soil moisture 
estimation (Bach and Mauser, 1994; Philpot, 2010; Bablet et al., 2018). Bach and Mauser (1994) 
describe a spectral extension to the VIS-SWIR of Ångström's model (Ångström, 1925) which 
accounts for light absorption in the water layer. Sadeghi et al (2015) proposed a model based on the 
Kubelka-Munk two-flux radiative transfer model (Kubelka and Munk, 1931) to estimate soil 
moisture while considering the effects of the absorption by soil water and soil particles and the 
scattering caused by the soil particles. Despite the promising results, its field of application is 
restrained since it can only be applied at some wavelengths. Bablet et al. (2018) developed a 
multilayer radiative transfer model of soil reflectance (MARMIT) to estimate soil moisture content. 
Bablet et al. (2020) proposed a laboratory experiment to assess surface and root zone soil moisture 
thanks to a spectrometer, two hyperspectral cameras, and the MARMITforSMC method which is 
based on the MARMIT model and was applied to each reflectance spectrum to produce high spatial 
resolution maps of soil moisture. Vertical profiles of soil moisture content were obtained with 
unprecedented spatial accuracy (~0.287 mm). A main drawback of optical observations is the 
limited surface information caused by clouds, water vapor and aerosols that can easily disturb the 
signals (De Jeu et al., 2008). 

Thermal infrared RS  

Thermal infrared (TIR) remote sensing measures the thermal emission of the Earth with an 
electromagnetic wave band between 3.5 and 14 μm (Curran, 1985). TIR techniques for SSM 
estimation primarily rely on land surface temperature (LST) measurements alone using the thermal 
inertia (T) method (Pratt and Ellyett, 1979; Verstraeten et al., 2006) or combined with vegetation 
indices (Claps and Laguardia, 2004; Carlson, 2007). 

The thermal inertia (TI) method is straightforward and simple and can accomplish high accuracies 
in assessing soil moisture conditions. It relies on the fact that variations in soil moisture have a 
strong influence on the thermal properties of the soil, which is an intrinsic factor of soil surface 
temperature change (Wang and Qu, 2009). Verstraeten et al. (2006) found that thermal inertia i.e. 
resistance to temperature variation proportionally increases when soil water content increases, 
thereby reducing the diurnal temperature fluctuation range. The apparent thermal inertia (ATI) is a 
simple surrogate of TI and can be computed using MODIS albedo and LST products (Van doninck 
et al., 2011). The TIR-based methods have advantages of various spatial resolution satellite images 
available and link soil moisture to thermal inertia. However, the weak relationship between TIR 
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images and soil moisture in the densely vegetated areas impedes the applications of the TIR 
methods (Liu et al., 2020). 

As aforementioned, several studies have applied the Richards’ equation to retrieve root-zone soil 
moisture from surface soil moisture. Given the requirement of a precise definition of the soil 
physical characteristics which is not possible neither at the field scale nor at larger scales, 
simplifications of this approach based on multi-layer models have been proposed (Wagner et al., 
2007). Ottlé and Vidal-Madjar (1994) proposed a two-layer model to indirectly retrieve surface soil 
moisture from TIR data. They showed that the use of a two-layer parameterization of the surface 
and the consideration of the vegetation and its evolution improve the daily simulation of soil 
moisture and of the water flows. Assimilating soil moisture inferred from thermal IR imagery in the 
model was overall the best performing option. 

Microwave RS 

 

Figure 7: Some past and current microwave missions for SM retrieval 

Active and passive microwave remote sensing missions (figure 7) have been extensively studied 
and proven promising for soil moisture monitoring at global and regional scales over the past 
decades (Jackson and Schmugge, 1989; Njoku and Entekhabi, 1996; Wigneron et al., 1998). At 
microwave frequencies, the most striking feature of the emission from the Earth’s surface is the 
large contrast between water and land which is due to the large dielectric constant of water 
compared to most dry minerals (Schmugge et al., 2002). Since microwave sensors are sensitive to 
the dielectric properties of the soil, they are also highly sensitive to soil moisture. 
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• Passive microwave: 

Passive microwave technology was demonstrated interesting for SSM monitoring and mapping over 
land surfaces (Njoku and Kong, 1977; Jackson et al., 1995; Wigneron et al., 2004). Passive 
microwave sensors measure the intensity of microwave emission from the soil, which is 
proportional to the product of the thermodynamic temperature of the soil and the surface emissivity 
called brightness temperature (TB). 

L-band (1-2 GHz) radiometers have been massively studied over the last decades and are 
considered as an excellent tool to map soil moisture at global scale. Missions with spaceborne L-
band radiometers include the European Space Agency (ESA) Soil Moisture and Ocean Salinity 
(SMOS) mission which was launched in 2009 (Kerr et al. 2010) and provides brightness 
temperature measurements at global scale with dual polarization and a broad range of incidence 
angles. Another mission is the Soil Moisture Active Passive (SMAP) which was launched in 2015 
(Entekhabi et al. 2010) by the National Aeronautics and Space Administration (NASA). It had both 
passive and active microwave sensors onboard that provide global measurements of brightness 
temperature and backscatter at an incidence angle of 40°. Aquarius/SAC-D is also a space mission 
using this technology. It is equipped with the Aquarius instrument onboard which is a combined 
active/passive L-band microwave instrument designed to map the sea surface salinity (Le Vine et 
al., 2010). Despite its primary science objective, Aquarius was also used to retrieve SSM (Bindlish 
et al., 2015). 

Jackson et al. (2010) assessed four Advanced Microwave Scanning Radiometer–Earth Observing 
System (AMSR-E) algorithms for soil moisture estimation using a seven-year record period of in-
situ observations from four experimental networks in the U.S which had different climate classes. 
They found that all algorithms had similar correlation values ranging between 0.71 and 0.79 if site-
specific corrections were applied. However, each algorithm had a different performance at each 
site. 

Kerr et al. (2016) performed a global evaluation of different SMOS soil moisture products through 
comparisons against model simulations, other satellites and in situ measurements. Results showed 
that SMOS yielded consistent estimations and behaved very well when compared to other sensors 
and approaches. However, limitations were encountered namely the Radio Frequency Interference 
(RFI) which hindered the detection. A comparison against other satellite products also demonstrated 
the relevance of the SMOS observations over different eco climate regions and throughout the 
seasons. 

Reichle et al. (2017) investigated the SMAP L4 soil moisture product through a validation against 
in-situ measurements from SMAP core validation sites. Unbiased RMSE (ubRMSE) values equal to 
0.038 m3/m3 and 0.035 m3/m3 were recorded at the 9 km and 36 km scales, respectively. These 
performances meet the soil moisture accuracy requirement fixed at 0.04 m3/m3 (ubRMSE). Besides, 
results showed that this product outperformed model-only estimates. Reichle et al. (2017) better 
highlighted these findings through a validation against point-scale in-situ measurements from 
around 400 sparse network sites which cover a wide variety of climate and land cover conditions. 

 

• Active microwave 
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Compared to radiometers, active microwave sensors can provide observations of backscatter at 
higher spatial resolutions. The magnitude of the SAR backscatter coefficient is linked to surface soil 
moisture through the contrast of the dielectric constants of bare soil and water. Active microwave 
sensors which consist of imaging (radars) and non-imaging sensors (altimeters and scatterometers), 
provide their own source of illumination and measure the difference in power between the 
transmitted and received electromagnetic radiation (Barrett et al., 2009). Approaches based on 
Synthetic aperture radars (SAR) are attractive for applications on watershed and field scale since 
SAR can reach a high spatial resolution and since backscatter signal is sensitive to SSM (Van 
Doninck et al., 2011). However, radar data are strongly affected by soil roughness and vegetation 
which makes the accurate inversion of backscatter to soil moisture difficult (Lakshmi, 2013; 
Verhoest et al., 2008).   

The retrieval of surface soil moisture using the X-band SAR techniques was extensively studied 
mainly over bare areas. Baghdadi et al. (2012) assessed the potential of TerraSAR-X data for the 
estimation of soil moisture over bare soils using empirical models.  The inversion of soil moisture 
from one and multi-incidence SAR data was tested. TerraSAR-X was demonstrated a reliable 
remote sensing tool for surface soil moisture estimation with an accuracy of about 3% (RMSE). 
However, this wavelength is constrained by the vegetation cover. Hence, several studies were 
conducted to estimate surface soil moisture at lower frequencies. 

Lievens and Verhoest (2012) worked on the retrieval of surface soil moisture from a time series of 
multi-incidence HH and VV polarized RADARSAT-2 backscatter observations over a number of 
bare soil fields in The Netherlands. Two retrieval techniques were assessed namely the Integral 
Equation Model (IEM) which is a physically-based backscatter model and a change detection 
technique based on the rescaling of the SAR backscatter observations between dry and wet 
reference values over time periods with unchanged surface roughness. Large agreements between in 
situ measurements and radar backscatter were recorded across time and space, mainly over areas 
with medium surface roughness conditions.  

The potential of artificial neural networks to estimate regional soil moisture from Sentinel-1 SAR 
data was investigated in (Paloscia et al., 2013). The model was trained using backscatter 
coefficients simulated from IEM and water cloud model (WCM) for different soil moisture, soil 
roughness and vegetation conditions. The neural network which aimed at predicting soil moisture 
based on SAR data and NDVI yielded soil moisture estimation accuracies between 2 and 5 vol % 
when validated against a database of in-situ measurements, SAR and optical data. 

Wagner et al. (2013) investigated the retrieval of soil moisture using the Advanced Scatterometer 
(ASCAT) which is a C-band active microwave instrument on board of the Meteorological 
Operational (MetOp) satellites. They highlighted the attractivity of ASCAT to observe soil moisture 
given its wavelength, its high radiometric accuracy and its multiple-viewing capabilities. Good 
performances were recorded over some regions in Europe whereas limitations were observed over 
mountainous and some desert areas. 

Tomer et al. (2015) proposed an algorithm based on the Cumulative Density Function (CDF) 
transformation of multi-temporal RADARSAT-2 backscatter coefficient to produce soil moisture 
values. A database of RADARSAT-2 images, SMOS L2 soil moisture products and in-situ soil 
moisture measurements over a semi-arid tropical region in South India was used to assess the 
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approach. The algorithm was proved able to estimate soil moisture with the advantage of not 
requiring any parameter calibrations. RMSE values between 0.02 m3/m3 and 0.06 m3/m3 were 
obtained when estimations were compared against in-situ data. A good agreement was also found 
with SMOS soil moisture data. 

II- Unmanned aerial vehicles data  

Unmanned aerial vehicles (UAV) also referred to as drones, unmanned aerial/aircraft systems 
(UAS) or remotely piloted aircraft systems (RPAS), can be considered as a low-cost alternative to 
conventional remote sensing platforms. These are actually data-gathering and transmitting aircrafts 
which are remotely controlled and are able to realize airborne operations. There are different types 
of UAVs which are commonly differentiated by the size of the vehicle, its altitude and the flight 
endurance. UAV remote sensing techniques have been shown very promising for several 
environmental monitoring applications. Sanchez-Azofeifa et al. (2017) investigated the reliability of 
these platforms for forest studies. They highlighted that UAVs can be well-suited for addressing 
current issues in remote sensing of tropical ecology and conservation since the low-altitude UAVs 
overcome significant constraints of high aerosol interference from water vapor and clouds. Unlike 
satellites which may entail costly solutions, UAVs can provide high-resolution and low-cost 
imagery to monitor active deforestation fronts and quantify ecosystem degradation for instance. 
Besides, UAVs can be reliable for agricultural applications. For instance, UAVs have been 
employed in order to map soil moisture using different sensors. Hassan-Esfahani et al. (2015) have 
used the AggieAir™ platform which provided UAV data that was fed to an artificial neural network 
(ANN) in order to estimate surface soil moisture. Multispectral and thermal images collected over 
an irrigated field at a 15 cm and 60 cm resolution were used as inputs to the ANN. The results 
showed the reliability of the ANN model to spatially estimate surface soil moisture at much finer 
spatial and temporal resolutions compared to conventional remote sensing technologies. A 
correlation coefficient equal to 0.88 was recorded for four dates in 2013 (16 May, 1 June, 9 June, 
and 17 June). 

Besides, Lu et al. (2020) investigated the capability of UAVs to estimate soil moisture in a typical 
steppe namely the Loess Plateau of China. They confirmed that the average pixel brightness value 
of UAV visible images, which is defined by a computer to represent the brightness of images, could 
estimate the 0–10 cm soil moisture. Actually, the determination coefficient (R²) between the in-situ 
and the estimated value of soil moisture was equal to 0.82 and 0.77 when the 0-10 cm soil moisture 
was at a stable value and larger than the stable value, respectively. These findings make UAVs a 
promising tool for soil moisture mapping in arid and semi-arid steppe in particular, and for steppe 
ecological research in general. 

1.4 Root-Zone Soil moisture estimation 
As highlighted in the previous sections, most of RS methods can only monitor skin and near-surface 
soil moisture. Given the importance of RZSM in better understanding of the agricultural and 
environmental processes it controls, close cross-disciplinary collaborations between the RS 
community and soil physicists and hydrologists have been established to link RZSM and remotely 
sensed skin and near-surface data (Babaeian et al., 2019). RZSM can be measured by in-situ sensors 
installed horizontally at a fixed depth or vertically along the soil profile (Walker et al., 2004; 
Francesca et al., 2010; Dobriyal et al., 2012). However, the installation of sensors can be a complex 
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task and might disturb the soil properties. This justifies the common approach of deriving RZSM 
from surface in-situ or RS soil moisture (Carranza et al., 2021). 

1.4.1 Physically-based models 

Land Surface and agronomical Models: 

Land Surface Models (LSMs) are conceived to model surface and root zone soil moisture using 
physical and hydrological laws. These models can be considered as a promising tool for an 
enhanced representation of root-zone soil water dynamics relative to soil moisture proxy products 
(Crow et al., 2012). Actually, LSMs dynamically predict vertically-discretized profile soil moisture 
based on a complex representation of water flow within the soil column. LSMs require different 
forcing data as inputs namely precipitation, air temperature, air pressure, relative humidity, wind 
speed and solar radiation. Vertical soil water processes such as infiltration and drainage, depend on 
soil hydraulic properties which are linked to soil texture through pedo-transfer functions.  

Different LSMs exist such as the Surface Externalisée (SURFEX) (Le Moigne et al., 2009), 
ORCHIDEE (Krinner et al., 2005), the Joint UK Land Environment Simulator (JULES) (Best et al., 
2011), etc. However, Noah, the Catchment Land Surface Model (CLSM) and the Community Land 
Model (CLM) are the commonly used models. Noah and CLM are traditional land surface schemes 
that model soil moisture dynamics by solving a layer-based formulation of the standard diffusion 
and gravity drainage equations for unsaturated flow (Kumar et al., 2009). Noah uses four soil layers 
of increasing thicknesses of 10, 30, 60 and 100 cm and CLM uses ten unevenly spaced soil layers 
with thicknesses of 1.75, 2.76, 4.55, 7.5, 12.36, 20.38, 33.60, 55.39, 91.33, and 113.7 cm. An 
integrated RZSM product can be obtained by averaging the top three Noah layers and the top eight 
layers of CLM. CLSM is a non-traditional model since the vertical soil moisture profile is 
determined through deviations from the equilibrium soil moisture profile between the surface and 
the water table. Soil moisture is computed within both a 2-cm surface layer and a 1-m root-zone 
layer (Koster et al., 2000).  

However, these models are constrained by the need for many inputs, the incompatibility between 
the relatively low spatial of surface and hydrological processes and the meteorological forcing 
errors mostly for rainfall that has the highest impact on soil moisture variability (Sabater et al., 
2007). 

Empirical surrogate models: 

Wagner et al. (1999) proposed a simplified two-layer model to estimate the SWI of the root zone 
from European remote sensing (ERS) surface soil moisture data using an exponential filter. In this 
formulation, only one parameter (T) has to be calibrated. This parameter is called the characteristic 
time length and represents the timescale of soil moisture variations in units of time usually days 
(Ceballos et al., 2005). This parameter can be considered as a surrogate parameter for all the 
processes that impact the temporal dynamics of soil moisture such as the thickness of the soil layer, 
soil hydraulic properties, evaporation, run-off and vertical gradient of soil properties (Albergel et 
al., 2008). It is proportional to the ratio of the depth of the reservoir below the surface and a pseudo-
diffusivity coefficient. The discrete formulation of the model can be expressed as follows: 
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Where ms(ti) is scaled surface soil moisture estimated from remote sensing at time ti by 
extrapolating and scaling the observed backscatter between the minimum and maximum values 
observed during the lifetime of the remote sensing instrument (wagner et al., 1999).  

Stroud (1999) introduced a recursive formulation of the exponential filter which allowed an easier 
data manipulation compared to the original formulation. The potential of the exponential filter and 
its recursive formulation for RZSM estimation was highlighted in many studies (Albergel et al., 
2008; Ford et al., 2014; Ceballos et al., 2005). Although SWI has the advantage of being 
independent of all land surface model or meteorological observations, the physical interpretation of 
the time constant T is challenging. Albergel et al. (2008) could not infer any significant relationship 
between this parameter and the main soil properties over France. The recursive formulation of the 
exponential filter can be written as follows: 

 

Where SWI is the soil water index at time tn, ms(tn) is the scaled surface soil moisture at time tn, Kn 
is the gain at time tn, which occurs in [0, 1] and is equal to: 

 

For the initialization of the filter, gain K1=1 and SWIt1=ms(t1) . 

In order to tackle this limitation, Manfreda et al. (2014) developed the Soil Moisture Analytical 
Relationship (SMAR) model to estimate the soil moisture in the root zone based on the SSM. 
SMAR is derived from a simplified soil water balance equation for semiarid environments and 
establishes a relationship between the root zone and the surface soil moisture with a limited number 
of physically consistent parameters. In this model, the soil is assumed to be composed of a surface 
layer with a depth in the order of few centimeters and a layer below which is assumed equivalent to 
the rooting depth of vegetation. Infiltration is considered as the most representative process for the 
most significant water mass exchange between the two layers. Other processes such capillary rise 
are assumed negligible. In contrast to the SWI method, there are clear physical interpretations for 
the SMAR parameters which can be easily determined based on the soil texture and climate of the 
target location (Faridani et al., 2017). 

1.4.2 Data assimilation  

Data assimilation is a tool that combines observation data (from remote sensing or in-situ) and a 
dynamic model that includes the principles governing the system. It aims at providing a better 
estimate of the state of the system than data or model-only estimates (Zhang and Moore, 2015). 

Kn- 1 
K =-------n tn-tn- 1 

Kn- 1 + e- T 
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Data assimilation techniques rely on the relationship between surface and root zone through 
diffusion process, to propagate surface information to deeper soil layers (Entekhabi et al., 1994; 
Walker et al., 2001; Lü et al., 2010). Thus, the subsurface physics used in the LSMs is an important 
factor in determining the strength and validity of the downward propagation of surface information 
(Kumar et al., 2009). The Land Data Assimilation Systems (LDASs) can tackle the limitations of 
LSMs and provide a broader spatio-temporal coverage, a better consistency and accuracy of LSM 
estimates by using both in-situ and remote sensing soil moisture retrievals.  

The RZSM estimates can be enhanced by assimilating remotely-sensed SM observations into a Soil 
Vegetation Atmosphere Transfer (SVAT) model. Reichle and Koster (2005) assimilated SSM 
retrievals at a global scale from the Scanning Multichannel Microwave Radiometer (SMMR) into a 
CLSM. Overall, the assimilation improved the average annual cycle of surface and root-zone soil 
moisture at specific locations. Validation against in-situ data showed that correlations for root-zone 
soil moisture were improved.  

The Kalman filter (KF) and its extensions such as extended Kalman filter (EKF) and ensemble 
Kalman filter (EnKF) are sequential assimilation methods that have been extensively applied for 
soil moisture estimation. Walker et al. (2002) applied the KF data assimilation technique to a 
distributed three-dimensional soil moisture model in order to retrieve of profile soil moisture in a 6 
ha catchment using near-surface soil moisture measurements. The EnKF is a widely-used method 
given its skill in handling non-linear systems and computational efficiency (Reichle et al., 2002; 
Crow and Wood, 2003). De Lannoy and Reichle (2016) assimilated L-band microwave brightness 
temperature observations using a spatially distributed EnKF and demonstrated that data assimilation 
improves both surface and root-zone soil moisture results over the open-loop (no assimilation) 
estimates in areas with limited vegetation and terrain complexity. 

François et al. (2003) used an extended Kalman filter to assimilate soil moisture estimations 
provided by the European Space Agency (ESA) Remote Sensing Satellite (ERS) SAR in a two-
layer hydrological model. The assimilation was conducted in the Orgeval agricultural river basin 
over two years. Results showed that this approach improved the Nash–Sutcliffe efficiency (NSE) 
for streamflow from 70 to 85% and demonstrated a higher sensitivity of the simulated flow to soil 
moisture in case of high soil moisture. The assimilation method was also able to correct for up to 
10% errors in the input data such as potential evapotranspiration. 

Heathman et al. (2003) used the Root Zone Water Quality Model (RZWQM) which is a physically-
based and field-scale agricultural model, to study the feasibility of assimilating SSM for better 
estimation of RZSM. The validation against in situ data showed that the integration of data 
assimilation produced better model simulation results in the top 30cm layers than the model 
simulation without assimilation. Han et al. (2012) proposed an extension to RZWQM (Heathman et 
al., 2003) and applied field measured surface soil moisture to a point scale model. 

Sabater et al. (2007) investigated a simplified one-dimensional variational data assimilation 
(1DVAR) technique to correct the modeled RZSM deficiencies of the ISBA model, using the 
observations of the surface soil moisture of the Surface Monitoring of the Soil Reservoir 
Experiment (SMOSREX). Given its lower computing time, the 1DVAR was considered a good 
alternative to the EnKF for the development of an operational data assimilation system that 
analyzes RZSM from SSM observations. 
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1.4.3 Data-driven methods 

Given the amount of data required to parameterize physically-based models, errors in the models 
physics may propagate even if coupled with data assimilation techniques. Data-driven techniques 
such as Random Forests (RFs), ANNs and Support Vector Machines (SVMs) are increasingly being 
investigated for soil moisture estimation and have been proved reliable in many studies. Machine 
learning (ML) offers different methods capable of developing quantitative models without having 
assumptions on the inputs or on the investigated target.  

ML is a branch of Artificial Intelligence (AI) that systematically applies algorithms to synthesize 
the underlying relationships among data and information (Awad and Khanna, 2015). AI is a field of 
computer science that allows computer to mimic the human behavior. In the context of AI, 
computers or machines in general achieve tasks according to stipulated rules and pre-established 
algorithms. AI is a superset of any computer program that requires human intelligence and 
comprises machine learning and deep learning (DL) (figure 8).  

Machine learning characterizes the ability of a system to learn from problem-specific training data 
to automate the process of analytical model building and solve associated tasks (Janiesch et al., 
2021). ML seeks to automatically learn meaningful relationships and patterns from examples and 
observations (bishop, 2016). ML techniques have been continuously improving through the 
implementation of more sophisticated learning algorithms and pre-processing approaches. Overall, 
the ultimate objective of ML is to predict future events that are unknown to the computer. Mitchell 
(1997) defined learning as follows: “a computer program is said to learn from experience E with 
respect to some class of tasks T and performance measure P, if its performance at tasks in T, as 
measured by P, improves with experience E”. Awad and Khanna (2015) highlighted that learning is 
a fundamental process to generalize a problem by acting on its historical experience. The training 
datasets define the experience and allow for largely accurate results on unseen tasks.  

 

Figure 8: Venn diagram of the artificial intelligence and some of its integrated technologies. 

As far as the terminology related to machine learning is concerned, we can cite supervised and 
unsupervised learning. Supervised learning encompasses learning techniques through which 
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machines predict the output based on labeled training data. Labeling data entails associating input 
data with the correct output. Actually, supervised algorithms deduce the relationship between the 
input data (the observations) and the output which is called target. The generalizability and 
predictive performance of the models which are trained using supervising learning depend among 
others on the size of the training dataset. As for unsupervised learning techniques, the algorithms 
are able to detect hidden patterns. This type of learning is well suited for image recognition or 
exploratory data analysis for instance. To mention but a few, dimensionality reduction and 
clustering algorithms are unsupervised.  

Another interesting term in machine learning is “feature vector”. It is an n-dimensional numerical 
vector of explanatory variables given as an input to the problem. The feature vectors are often 
weighted to construct a predictor function that is used to assess the quality of the prediction (Awad 
and Khanna, 2015).  The different steps of developing a ML algorithm can be summarized in figure 
9. First, all of the relevant data subsets for the problem resolution are collected. Then, raw data is 
pre-processed i.e. converted to a useable format, cleaned by omitting corrupt data or filling gaps for 
instance and sampled such as redundancy is minimized and loss of information is avoided. The 
third step consists in transforming the data based on the considered machine learning algorithm. 
Data transformation encompasses for instance feature scaling which is an important step in 
numerous machine learning tasks mainly if the features have different value ranges (Bollegala, 
2017). Not scaling features is likely to make the feature of the highest value range the dominating 
one. In order to achieve faster converge in many machine learning algorithms, scaling is a 
fundamental step. Normalization and standardization are the most commonly used scaling 
techniques.  Normalization also called MinMax scaling, bounds the features values between an 
interval, usually [0,1] or [-1,1]. Standardization also called standard scaling, makes the data unitless 
by making the mean equal to 0 and the variance equal to 1. The transformed data is then split into 
training and test sets. The training dataset is fed to the algorithm and stored into a model based on a 
mapping between input and output. The performance of the algorithm is then evaluated through a 
test step. The kept-aside testing dataset, which has never been seen by the model in the training 
step, is used to assess the performance of the model based on metrics like accuracy or precision. If 
the model is underperforming, hyperparameters should be tuned until the accuracy is enhanced. 
Actually, hyperparameters are a set of parameters external to the model used in the training process 
and whose values cannot change during the training. Train-test split ratio, the optimization 
algorithm or the cost function are some examples of hyperparameters. On the other hand, 
parameters are internal to the model and are learned from the data during the training process. The 
values of the different parameters are continuously updated using an optimization algorithm during 
training, in contrast to hyperparameters that remain unchangeable. The weights and biased in a 
neural network are an example of parameters. Finally, an actual prediction task is executed by the 
validated model. 
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Figure 9: Machine learning workflow 

Concerning root-zone soil moisture estimation, many machine learning algorithms have been 
shown reliable. For instance, Carranza et al. (2021) tested the random forest learning algorithm to 
extrapolate and interpolate RZSM on a daily timescale over a small agricultural catchment using in-
situ measurements. Random forest is a classification ML algorithm which is made up of a set of 
decision trees that act as an ensemble. Carranza et al. (2021) demonstrated that the RF predictions 
have slightly higher accuracy for interpolation and similar accuracy for extrapolation in comparison 
with RZSM simulated from a process-based model combined with data assimilation. RFs 
outperform process-based models mainly in data-poor regions where soil hydraulic parameters are 
discontinuous or missing, since it is independent of all parameters required to estimate subsurface 
water flow. 

Bordoni et al. (2018) implemented a SVM methodology to estimate soil moisture at different depths 
in a soil profile over a site in northern Italy, using only in-situ meteorological parameters. The 
support vector machine is a supervised learning technique that uses a set of labeled training data to 
produce input-output mapping functions which can be either a classification or a regression function 
(Wang, 2005). Two SVM models were developed in (Bordoni et al., 2018) such that the second 
model also considers parameters related to the antecedent meteorological conditions. The SVM 
model with predictors of meteorological data of a given day and of the antecedent meteorological 
conditions was proved to be particularly effective in estimating the time trends of soil moisture at 
different depths. Yu et al. (2012) used SVMs and the ensemble particle filter (EnPF) to develop a 
multi-layer soil moisture prediction model over a watershed in China and demonstrated that SVMs 
are statistically significant and resilient for both surface and root zone soil moisture prediction. 

Another promising ML technique for nonlinear hydrological processes modeling, as reported by the 
American society of Civil Engineering (ASCE), is artificial neural networks (ASCE Task 
Committee on Application of Artificial Neural Networks in Hydrology, 2000). Artificial neural 
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networks were developed from known models of biological nervous systems of living beings (da 
Silva, 2017). The processing units of an ANN are called neurons since they are simplified models 
of biological neurons (figure 10). They are nonlinear and perform simple functions to produce 
outputs based on activation functions. The implementation of an artificial neuron can be 
summarized in figure 10 that is based on the following equation: 

 

Such that: (x1, x2,.., xn) are a set of values called features or input variables which are presented to 
the neuron. Each input is multiplied by a weight (w1, w2,.., wn) that serves to assess the relevance of 
each input. A bias 𝜃 is substracted from the weighted sum of the inputs. The output (y) is the final 
value given by the neuron after the application of an activation function to the difference between 
the weighted sum of inputs and bias (u) such as: 

𝑦 = 𝑓(𝑢) 

Where: y is the output of a neuron, f is the activation function. 

 The activation function aims at limiting the output within an acceptable range of values.  

 
Figure 10: Structure of a neuron 

An artificial neural network is made up of layers namely an input layer, one or more hidden layers 
and an output layer. The input layer receives the features which are usually scaled before the 
training step for a better precision. The hidden layers consist in hidden neurons responsible for 
inferring and extracting the input-output patterns associated with the considered problem. Finally, 
the output layer yields the final outputs. Depending on the neuron disposition and composition of 
the layers, the main architectures of ANN encompass for instance single-layer feedforward 
network, multilayer feedforward networks (MLP) and recurrent networks (da Silva, 2017) (figure 
11). 
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(a) 

 
(b) 

 
(c) 
Figure 11: Examples of different architectures of artificial neural networks: (a) Single-layer feedforward 
network (b) Multilayer feedforward network (c) Recurrent neural network. 

At a local scale, Al-Mukhtar (2016) evaluated three different types of ANN in order to model 
monthly RZSM in the upper reach of the Spree River catchment area (Germany) by using 
precipitation and antecedent soil moisture as features. Results of this study proved that the Layer 
recurrent network (LRN) and Feedforward (FF) networks are the most performing methods to 
model the nonlinear dynamic relationship such as that between precipitation and soil moisture. 
Moreover, results suggested that this method is a robust soil moisture predictor in this catchment. 
Elshorbagy and Parasuraman (2008) modeled soil moisture contents as a function of precipitation, 
air temperature, net radiation, and ground temperature in northern Alberta, Canada using ANN 
models. They showed that the ANN models outperformed a previously developed conceptual model 
for estimating the depth-averaged soil moisture content. However challenging due to the structure 
of the soil covers, predicting soil moisture using ANN is still achievable. 

At a regional scale, Kornelsen and Coulibaly (2014) trained different ANN models to provide soil 
moisture at depths of 10, 20, and 50 cm using surface soil moisture observations and local 
meteorological information. They found that ANNs could well represent soil moisture as estimated 
by HYDRUS-1D, but performance was reduced compared to in-situ soil moisture observations 
outside the training conditions.  

At a continental scale, Pan et al. (2017) underlined the ability of ANNs to achieve a high degree of 
flexibility providing good RZSM predictions over the U.S where the various climatic patterns and 
soil patterns caused little impact on the model performance in terms of timing and variability at a 
depth of 20 cm. The method was also used to generate RZSM using SMOS surface soil moisture 
data, and achieved a spatial soil moisture pattern comparable to that of Global Land Data 
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Assimilation System (GLDAS) Noah model with comparable performance to the SMOS surface 
soil moisture retrievals.  

However, building a ML system has been requiring careful engineering in order to design a feature 
extractor that transforms raw data into a relevant internal representation or feature vector from 
which the learning subsystem often a classifier, could detect or classify patterns in the input (LeCun 
et al., 2015). Deep Learning (DL) is a sub-type of machine learning that requires deeper learning 
methods which transform the representation at one level, starting with the raw input, into a 
representation at a higher slightly more abstract level (LeCun et al., 2015). LeCun et al (2015) take 
the example of an image to explain DL. Actually, an image is represented by an array of pixel 
values. The first learning layer learns features that typically indicate the presence or not of edges at 
certain positions in the image. The second layer may spot particular arrangements of edges that 
make up motifs. The third layer may compile the motifs previously detected to reach recognizable 
objects. The core of DL algorithms is their ability to learn features from data using a general-
purpose learning procedure (LeCun et al., 2015). Deep learning outperforms conventional 
algorithms of AI in many problems such as image and speech recognition.    

Yu et al. (2021) proposed a hybrid CNN-GRU model to predict root-zone soil moisture with 
consideration of multi-scale spatiotemporal characteristics. Convolutional Neural Networks (CNN) 
were introduced by (LeCun, 1989) and designed at the beginning to address image recognition 
problems. As a deep learning technique, CNN has the advantage of a reduced complexity and a 
good computational efficiency. Soil moisture time series can for instance be transformed into 
meshes for the CNN to consider them as images since it is a technique relevant for image 
processing. Another type of neural networks is recurrent neural networks (RNN) which are suitable 
for work for time series data or sequence data. Unlike feed forward neural networks, RNNs are 
dynamic systems since they can handle temporal dependencies between data points and persist past 
information. This memory or self-feedback of neurons in the hidden layer(s) enables RNNs to save 
the information about previous inputs and use it to produce the next output. However, these 
networks are only efficient with short-term temporal dependencies and are highly impacted by 
gradient problems. The Long Short Term Memory (LSTM) is an enhanced variant of the RNN that 
overcomes this limitation of RNN namely the gradient vanishing/explosion when the sequence 
distance is long. LSTM works according to the same principle as RNN but a gate mechanism is 
introduced in these networks. Gated Recurrent Units (GRU) are another type of RNNs with 
memory cells and whose architecture are similar to LSTM but have a simpler structure and fewer 
internal gates, and thus simpler than LSTM (Shewalkar, 2018).The model developed in (Yu et al., 
2021) was intended to predict RZSM at different depths over five sites in maize production areas in 
China and integrated the strong feature expression ability of CNN and the time series feature 
memory ability of GRU. RZSM prediction results on day 3 showed that the CNN-GRU model 
outperformed both CNN-based and GRU-based individual learners in terms of prediction accuracy 
and convergence rate. Also the predictions were improved with the increase of soil depth due to the 
greater soil moisture variability induced by evapotranspiration. 

Yinglan et al. (2022) developed a convolutional long short-term memory (ConvLSTM) model to 
predict root-zone soil moisture based on remote sensing-based variables. ConvLSTM, a 
combination of a CNN and a LSTM, are suited for spatiotemporal sequence forecasting problems. 
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ConvLSTM are able to predict the future state of a given cell in the grid using the inputs and the 
past states of its local neighbors. ConvLSTM were first introduced by (Shi et al., 2015) as a solution 
for a precipitation nowcasting problem. Shi et al. (2015) extended the fully connected LSTM (FC-
LSTM) to have convolutional structures in both the input-to-state and state-to-state transitions. A 
ConvLSTM layer is a recurrent layer, just like the LSTM, but internal matrix multiplications are 
exchanged with convolution operations. Data flow through the ConvLSTM cells and keep the input 
dimension 3D instead of being only a one-dimensional (1D) vector. Yinglan et al. (2022) used the 
Hydrus-1D model was used to generate large and spatiotemporal vertical soil moisture datasets for 
the ConvLSTM model training and validation. The fitting coefficients (R2) recorded with the 
ConvLSTM model outperformed those achieved by the Global Land Data Assimilation System 
(GLDAS) products namely for deep layers.  

In this study, we chose to focus on machine learning and more precisely on ANNs. Unlike 
physically-based methods, ANNs do not require an explicit definition of all of the physical and 
hydrological laws that govern the different variables involved in the system. They also require a 
one-time calibration to construct a relationship between the given inputs and the process of interest. 
Besides, different studies focused on mapping RZSM using ANNs but few have verified the 
feasibility of predicting RZSM at a large scale and to our knowledge no attempt was made to 
predict this variable at both a large scale and high spatial resolution. This observation advances the 
relevance and novelty of our work. 
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Chapter 2: Prediction of RZSM based on SSM 
using ANN 
 

The following chapter resumes the methodology and results presented in the following paper: 

Souissi, R., Al Bitar, A., and Zribi, M.: Accuracy and Transferability of Artificial Neural Networks 
in Predicting in Situ Root-Zone Soil Moisture for Various Regions across the Globe, Water, 12, 
3109, https://doi.org/10.3390/w12113109, 2020. 

Published in Water journal. 
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2.1. Introduction 
 

This chapter is our starting point towards a large-scale mapping of RZSM at high resolutions. As 
explained in the introduction, we start from only multi-location in-situ observations of SSM to feed 
an ANN model which will be in a later step hybridized through the addition physical process-
related variables as will be detailed in the next chapter.  

Given that RZSM is linked to SSM mainly through diffusion processes and evapotranspiration, an 
ANN model was developed to predict RZSM based on only SSM data in this chapter. Different 
aspects were explored to determine the reliability of this approach. 

Prior to the evaluation of the reliability of the ANN model, different adjustments were applied to 
the model in order to obtain the best architecture. Different temporal sampling options were 
considered for the features construction. Actually, the different processes that govern the 
relationship between RZSM and SSM have variable time scales. Thus, different temporal steps 
namely hourly, daily and backward rolling averages over 10, 30 and 90 days were applied to SSM 
datasets. Besides, the importance of the scaling which was proved profitable before feeding data to 
the ANN in many studies (Priddy and Keller, 2005; Jayalakshmi and Santhakumaran, 2011), is 
highlighted through the different scaling techniques tested in this chapter. Also, different splitting 
strategies were assessed for the training, validation and test sets.  This step helps assess the 
transferability of the method, the impact of the data density and quality. 

Data from different soil moisture networks around the world which were provided by ISMN and 
which consist in a total of 346 soil moisture stations was used in this chapter. Soil moisture data 
were pre-processed by applying the quality flags provided by ISMN. Also, static variables such as 
land cover class, soil texture and climate class were downloaded for each station. 

The disparity of soil textures and climate classes of the selected networks is a significant criterion to 
investigate the transferability of the approach. The contribution of each network is also explored 
through different splitting options of the training, validation and test sets. Transferability and 
contribution were quantified by the means of two indices termed TranINeti-Netj and ContINeti-Netj, 
respectively.  

The impact of the data quality on the predictions quality of fit was also evaluated. This analysis led 
to a statistical filtering approach to remove the underperforming soil moisture stations from training 
and validation. The genericness of the approach was also studied through an analysis of the RZSM 
predictions across climate classes. The interest and the limitations of the method were discussed in 
this study. 

2.2 Conclusion 
The main objective of this study was to study the feasibility of an ANN model to predict RZSM 
using only SSM information as input. Different regions around the world were considered and soil 
moisture data were collected from ISMN.  

An ANN model which consists of three features namely backward rolling averages over 10, 30 and 
90 days of SSM and applies standard scaling (SSCA) to scale features, was retained. Two indices 
namely contribution and transferability indices, were proposed in order to assess the transferability 
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of the approach and the contribution of each soil moisture network, respectively. Results showed 
that the training on stations that belong to a single and same network is not the best option. Some 
networks were revealed not representative of other networks such as networks ‘FR-Aqui’ and 
‘OZNET’. The French network is actually located in a forest unlike the other sites. The Australian 
network ‘OZNET’ lies within a River Catchment and covers different land covers and soil textures 
compared to other sites. 

Besides, low quality data which are mostly observed over the stations of network ‘SCAN’ was 
proved to affect the performances of the model. The elimination of this network, although it is the 
densest network, improved the performances.  Actually, the mean correlation and mean NSE were 
improved by 20.49% and 42.46% after removing ‘SCAN’ from the training and test sets, 
respectively. This result led us to apply a data filtering approach based on ECDF values. New 
training and test operations were conducted on the non eliminated stations after a data filtering at 
ECDF=0.65 which ensured good screening of underperforming stations and good sampling with 
respect to climate classes and soil properties. Data filtering allowed an enhancement of the 
performances such that a median, max, and min correlation of 0.77, 0.96, and 0.65, respectively, 
were recorded. 

An analysis across climate classes confirmed the reliability of the method in regions of alternate wet 
and dry soil moisture cycles namely over stations which belong to the “Aw”, the tropical savanna 
climate class. Also, stations which are characterized by a climate of group “C” group and which are 
distinguished by strong seasonal dynamics yielded good performance. This is the case of networks 
‘SMOSMANIA’ and ‘FR-Aqui’ which hold agricultural areas such as the southwest plains in 
France where the knowledge of RZSM is of interest for sunflower and maize crops. However, it 
showed its limitations over regions where a surface/subsurface decoupling phenomena is observed 
such as regions of high evaporation rates. For instance, the stations characterized by a climate of 
group “B” (“BSk”, “BWh”, “BWk”) and which cover desert areas showed the lowest performances. 
The decoupling phenomena is also linked to the vegetation type and root profile since the presence 
of a root system can redistribute the soil moisture from the lower to the upper layers. These findings 
motivate the next chapter where process-related information will be included in the ANN model to 
enhance the quality of prediction. 

2.3 Article 
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Abstract: This paper explores the accw-acy in using an artificial new-al network (ANN) to estima te 
root-zone soil moisture (RZSM) at multiple worldwide locations using only in situ sw-face soil 
moistw-e (SSM) as a training dataset. The paper also addresses the transferability of the trained ANN 
across di.matie and soil texture conditions. Data hum the International Soil Moisture Network (ISMN) 
were collected for several networks w ith variable soi! texture and climate classes. Severa! scaling, 
feature extraction, and training approaches were tested. An artificial neural nelvvork employing 
rolling averages (ANNRJ.w) of SSM over 10, 30, and 90 days was developed. The results show that 
applying a standard scaling (SSCA) to the ANN input fea tu:res improves the correlation, Nash-Sutclilfe 
effi.ciency (NSE), and root mean square error (RMSE) for 52%, 91 %, and 87%, respectively, of the 
tested stations, compared to MinMax scaling (MMSCA). Different training sets are suggested, namely, 
b·aining on data from ail. networks, data from one network, or data of ail networ ks excluding one. 
Based on these h'ainings, new transfer ability (TranI) and conh'ibution (ContI) indices are defined. 
The results show that one network cannot provide the best prediction accuracy if used alone to h·ain 
the ANN. They also show that the removal of the Jess conh-lbuting networks enhances perfmmanœ. 
For example, e limination of the densest network (SCAN) from the training enhanœs the mean 
correlation by 20.5% and the mean NSE by 42.5'1/o. This motivates the implementation of a data 
filtering technique based on the ANN's performance. A median, max, and min correlation of 0.77, 
0.96, and 0.65, respectively, are obtained by the model after data filte ring. The perfo1mances are 
also analyzed with r espect to the covered climatic regions and soi! texture, providing insights into 
the robustness and limitations of the approach, namely, the need for complementary information in 

highly evapora tive regions. In fact, the ANN using only SSM to predict RZSM has low performance 
when decoupling between the surface and root zones is observed. The application of ANN to obtain 
spatialized RZSM will requi.re integratil1g rernote sensing-based surface soil moisture in the futlue. 

Keywords: soil moisture; root-zone soi! moisture; artificial neural networks; ISMN 

1. Introduction 

Soil moistw-e is considered an important land parameter that stimulates interactions between the 
water and energy cycles, since it controls the partitioning of the mass and energy fluxes between land 
and the abnosphere [1]. Furthermoœ, soil moislure is integrated into several hydrological applications 
relevant to water resow-ce decision-making [2]. Surface soil moisture (SSM) (G-6 cm) and root..zone 
soil moistw·e (RZSM) (30 cm-1 m), the two components of tlùs variable, are both of interest. SSM is 
a key parameter that controls various proœsses in environmenta l systems [3] and is an important 
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driver of water and heat fluxes between land and the abnosphere. However, monitoring and forecast 
applications such as operational agriculture monitoring and crop yield forecasting [4] rel y more on 
RZSM [5 ]. In addition, RZSM is of interest for short- and medium-range meteorological modelling 
and hydrnlogical studies over vegetated areas [6]. Its knowledge is crucial for vegetation restoration, 
runoff and erosion processes [7], as well as climate change [8]. 

Soil moisture information can be retrieved through three main sources, namely, in situ 
measurements [9], model-based estimates, and satellite observations (for instance, the Soil Moisture and 
Ocean Salinity (SMOS) mission [10], the Soil Moisture Active Passive (SMAP) mission (11], the Advanced 
Microwave Scanning Radiometer (AMSR) [12], and the Advanced Scatterometer (ASCAT) [13]). In situ 
measurements are crucial for calibrating and validating the latter two (14,15]. Furthermore, land cover 
change or climate-related trends in the water cycle can be detected through long-term time series of in 
situ soil moisture (SM) observations (2). The International Soi! Moisture Network (ISMN) is one of the 
most exhaustive data hosting facilities, providing in situ soi! moisture measurements coltected from 
ope rational networks around the world [2]. Satellites cannot retrieve RZSM information because of the 
shallow penetration depth of spacebome data, w h.ich is on the order of a few centimeters [lb]. RZSM is 
nonlinearly related to SSM through different hydrological p rocesses, such as diffusion processes [17]. 

Various computational techniques can be used to retrieve RZSM esti.mates based on weather forcing 
and surface infonnation. Land surface models (LSMs) and agronom.ical models are among the most 
wide ly used methods (Surfex (18), ISBA (19), CLM [20), Aquacrop [21), SAFYE (22), e tc.). However, 
the parameter identification and forcing data going into these models may be subject to errors and 
potentially lead to inaccurate h·acking of the long-term evolution of soil moistme. 111-is drawback 
advances the need for data assimilation techniques [23]. Nevertheless, land data assimilation systems 
(LDAS) may also propagate errors. Data-driven methods are suggested to overcome these drawbacks, 
including artilicial neural networks (ANNs). ANNs have been widely used in the field of hydrology 
since the firs t hydrological implementationof ANN-based modelling by French et al. [24], and they have 
been used, among other applications, for soi! moisture estimation [25]. ANNs are, first, not affected by 
the errors induced by a potential misconception of the p hysical relationships, as they do not require 
explicit configuration of these relationships [26). In addition, ANNs require just a one-time calibration 
to be efficient with less heavy computational costs and provide instant estima tions of soil moisture 
once instrument data are loaded [26). The aforementio ned advantages of ANNs, compared to other 
methods, explain several attempts to estimate RZSM based on surface information using ANNs. 
However, few studies have assessed the quality of RZ5M estimations on a global scale [27]. 

TI1e aim of this s tudy is to investigate the ability of an ANN to predict RZSM based solely on in 
situ SSM information. This paper investigates the accuracy of the predicted RZSM over different soi! 
moistw-e networks. A methodology is also suggested to determine the contribution of a given network 
to the global results and the transferability of the predictions across different networks. The different 
steps to reach this objective consist of (1) assessing the impact of the temporal parameh-ization of the 
input SSM, the scaling technique, and the impact of the training/validation/test sets; (2) evaluating 
the transferability and the contribution of a given network in the training process to detem1.ine the 
limitations; and (3) applying a data filtering techniqu e to 1·emove low-quality data. 

2. Materials and Methods 

2.1. [n Situ Sail Moisture Datasets Jrom ISMN 

Several areas of the globe with different soil and climate parameters were considered. 
The measmements of soi! moisture used in this study are provided by eight networks from ISMN. 
Figure 1 illustra tes the location of the selected networks in the study. 
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' 1 

Figure 1. The International Soi! Moisture Network (ISMN) network distribution (adapted from the 

ISMN web data portal, scale 1 cm:HXl0 km). 

The selected datasets (346 stations) are presented in Table 1 and fill the following criteria: 

Soil moisture data lie within the temporal range (January 2013-December 2019) to m aximize 
common temporal coverage. Sorne s tations do not have data that cover the whole temporal 

interval (absence of measurements, gaps generated after quality control) but are still selected as 
long as they fall into that period. The total number of considered records is 10,054,406 hourly 
values. The representativeness and size of the training dataset is an important criterion since 
ANNs are d ata-driven methods [27]. 

A station is selected when soi! moisture data are available at a depth of 5 cm for SSM and depths 
ranging between 30 and 60 cm for RZSM. Stations do not always have the same sensor installation 

and layout. Sorne stations have horizontal sensors (depthrrorn = depth10), whereas, for other 
stations, soil moisture sensors are disposed vertically (depthfrorn <> depth10). In the latter case, 
stations tha t fall into the interval [30, 60 cm] were chosen. 

A sta tion is selected if it has at least 3000 hourly soil moisture values (d. Sections 2.2.2 and 3.2). 

Table 1. Overview of selected ISMN networks. 

N etwork N umber of Selected Stations 
Selected RZSM SM Length of Record 

Country 
Depth (cm) Sensors (Hourly) 

AMMA-CATCH Benin, Njgf'r 5 (3 in Benin +2 in Niger) 40 CS616 191,997 
BI EBRZA-S-1 Poland 3 50 GS-3 11,401 
CTP-SMTMN China 54 40 EC-TM/5TM 7 16,139 

HOBE Denmark 29 55 l)(,cagon-STE 819,591 
FR- Aqui FranCé 5 30,34, 50 ThétaPrubé: M L2X 200,08'7 
OZNET Australia 19 30 Hydra Probè-CS616 519,938 
SCAN USA 209 50 Hydraprobt'-Sdi-1 2/ Ana 6,777;1.22 

SMOSMANIA France 22 30 ThetaProbe Ml2X 818,031 



 
 

 

 
 

Water 2020, 12, 3109 4of20 

Hourly values of SSM and RZSM at different depths (Table 1) along •..vith their quality flags were 
extracted from the 15MN data portal. In addition, static variables such as soit texture, land cover, 
and climate classification were downloaded for each station. 

The selected stations have different soil textures (Figure 2) and different climate classes according 
to the Ké:ippen---Geiger climate classification (Figure 3). The heterogeneity of clay and sand percentages 
as well as climate classes w ill help us infer the potential impact of forgoing this information in the 
training process. 

175 E!I Clay (0- > 30cm) • Clay (30--> 100cm) 

Sand (O··> 30cm) 
120 Sand (30- > 100cm) 

l!?lSO " 
C §100 
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(a) (b) 

Figure 2. Clay/sand perœntages for a1l of the stations. (a) day/sand perœntages for the depth interval 
[0, 30 cm]. (b) Clay/sand percentages for the depth interval [30, 100 cm]. 
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Figure 3. Climate class repartition for the SM stations (the color code is the same as that used in the 
updated world map of the Koppen-Geiger climate classification [281). 

2.2. Methods 

2.2.1. Configuration of the Artificial New·al Network 

ANNs can be single or multilayered. The multilayer perceptron (MLP), which is a multilayer 
feed-forward ANN, is one of the most commonly used ANNs and is considered as the most popular in 
water resources. A multilayer perceptron is a va.riant of the original model proposed by Rosenblatt in 

the 1950s and it has one or more hidden layers between its input and output layers. The neurons are 
organized in la y ers such that neurons of the same layer an~ not interconnected and that the connections 
are d irected from lower to upper layers [29]. Each neuron returns an output based on a weighted 
sum of all inputs and according to a nonl.inear function called the transfer or activation function [30]. 
The input layer, made up of SSM values, is connected to the hidden layet(s), which is made up of 
hidden neurons. TI1e final estima tes of the ANN are given by an activation function associated with 
the final layer cal]ed the output layer, using a sum of the weighted outputs of the hidden neurons. 
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Under the assumption ofanANN with one hidden layer, the whole process can be summarized by the 
following equation: 

L N 

Y= fz(_Li wif1(_LiXiwij+b1) +b2) (1) 
j=l i= l 

where Y is the output of the ANN and f1 and f2 are the activation functions of the hidden layer and 
the output layer, respectively. w;j and wi are the weights given to the neurons in the input layer and 
hidden layer, respectively. b1 and b2 are the biases of the input layer and hidden layer, respectively. 
Land N a re the nurnber of hidden neurons and inputs, respectively. Figure -1, includes a simplified 
diagram of a full y connected ANN with one hidden layer. 

• • 
J 1nput layer : JHldde;'tayer I Output layer 1 

J I~ __ 1n_-s_·1cu_ ss_~_1 _~ 

1 .___ 

Figure 4. Data proœssing scheme. 

ln-slt1J RZSM 

Considering that problems with two hidden Iayers are rarely encountered and even if the 
corresponding ANN configuration can representfunctions regardless of shape [31], we tested a one­
and two-hidden layer ANN architecture. For the number of hidden neurons, a small number leads 
to underfitting, w hich may lead to inaccurate detection of complicated signais w ithin the data [32]. 
In contrast, too many hidden neurons lead not only to overfitting that makes the information contained 
in the training set insufficient to train all of the hidden neurons but also to a longer training time [32]. 

Given this information and based on preliminary analysis of the output performances in terms of 
root mean square e rror (RMSE) not shown in this paper, an ANN architecture of one hidden layer 
with 20 hidden neurons was adopted for the remainder of the paper. A tangent sigmoid function was 
selected as the activation function of the hidden layer due toits anti-symmetry feature, which m ay 
accelerate the leaming process [27]. A linear fonction was associated with the output layer. This can be 
justified by the experiments in [33], where they show that MLPs made up of one input layer, one hidden 
layer w ith a nonlinear transfer function, and one output layer w ith a linear h·ansfer function can 
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approximate any function with a finite number of discontinu.ities. A quadratic cost function is used as 
a loss function, and stochastic grad ient descent (SGD) is used as the optimization algorithm. 

2.2.2. Features and Scaling 

The input and target datasets are preprocessed such that only dates with both SSM and RZSM 
measurements available are kept. Ail other dates not filling this condition are dropped. The observed 
proxy variable (d.ielectricconstant) byin situ instruments is insome casescorrected with soil temperature. 

Since our objective in these exercises is to test the capacity of SSM to predict RZSM, sw·face temperature 
was not considered in the feature construction. Land cover and climate conditions have a high impact 

on the variability of SSM, and RZSM is mainly linked to SSM through diffusion in porous media and 
evapotranspiration. These processes present variable speci:fic tim.e scales based on soil properties. 
Based on that, different temporal configurations were assessed for ANN input featw·es: 

ANNH: A one-feature ANN such as the feature is the how·lyvalues of SSM. 

ANN0 : A one-feature ANN such as the feature is the daily mean values of SSM. 

ANNRAv: A three-feature ANN such as the three featw·es is the SSM backward rolling average 
values over 10, 30, and 90 days. 

The t.arget dataset (i.e., the RZSM dataset) is truncated for each station; for example, the fust 
value fitted in the neural netwo.rk is the 2160th available hourly RZSM value (applying the rolling 
average over 90 days on SSM requires the truncation of input and target data at the 2160th value, 

which corresponds to 90 days of hourly soil moisture retrievals). The target and input data are then 
scaled to fall into the same range of values. Non-scaling training was performed, and two scaling 
methods were tested: 

SSCA (Standard scaling): Standard scaling or Z-score normalization transforms the distribution of 
a dataset such that the mean and standard deviation of the observations are O and 1, respectively, 
using Equation (2): 

X-X 
Znorm = -­

CYx 
(2) 

where Znorm is the normalized data, xis the input, xis the mean, and CYx is the standard deviation of 
the input data [32]. 

MMSCA (MinMax scaling): This scaling scheme constrains the range of each input feature or each 
output of a neural network. This is usually performed by rescaling the features or outputs from 
one range of values to a new range of values. Generally, the features are rescaled to lie wi th.in a 
range of O to 1 or from -1 to 1. The rescaling is often accomplished by using a linear interpolation 
formula such as [34]: 

t ( . . ) [ Xj -IDÎ11vaJue -1 . 
Xi = maXtarget - DUntarget X . . + ll1111target 

maxvaJue - nunvalue 
(3) 

where x; is the scaled data, xi is the input, maXtarget and mintarget are the new maximum and minimwn 
values, respectively, and maxvalue and minvaJue are the original maximum and minimum values of the 
input data, respectively. 

The data are scaled and more precisely standardized before the trau1ing step. The resuJt vector 
leaving the ANN (i.e., the vector of predicted RZSM) is in the standardized format and has to be 

"de-s tandardized" . The same goes for the s tandard.ized in si tu RZSM [32]. Subseq uentl y, performance 

metrics are computed. 
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2.2.3. Training and Test Configuration 

As mentioned above, one of the objectives of this paper is to assess the genericness of the model. 
Another point to investigate, at this level, is the training set and assess the impact of its density and its 
data quality, for instance. For this, different configw·ations were considered and termed as follows: 

ANN-TOT refers to a training/test approach where 70% of the w hole global dataset (70% of the 
stations of all networks) forms the training set, the remaining 30% of the global dataset consists of 
a validation set, and the test set is made up of the w hole dataset. 

ANN-Net; refers to a training/test approach where 70% of the values belonging to the s tations of 
a given network (Net;) form the training set, the remaining 30% of values remaining in Net; serve 
as a validation set, and the test set is made up of the whole data.set. 

ANN-(TOT-Net;) refers to a training/test approach where 70% of the whole global dataset minus 
the values of a given network (Net;) form the training set, the re maining 30% of the global 
dataset minus measmements of Net; serve as a validation set, and the test set is made up of the 
w hole dataset. 

2.2.4. Performance lndicators 

Individual Station Performance Metrics 

The mode! is assessed through. the following performance metrics: bias, Pearson correlahon 
coefficient, Nash-Sutdiffe efficiency (NSE) (Equation (4)), and RMSE. The final step of the processing 
(Figw·e 4) consists of the comparison of the actual values of RZSM with the predicted values and 
outpuUing individ ua I performance metrics of each station. 

I::~(RZSMinsitu - RZSMpredicted)2 
NSE = 1 - --------==-==-==-=----~---_-_--,-_­

L r(RZSM;nsitu -RZSM;nsîtu{ 

where N is the length of the SM data.set of the considered station. 

(4) 

In addition to the individual performance metrics generated for each station, performance metrics 
are also generated for all the stations per network. 

Skill Indices 

Different skill indices are computed to assess the transferabillty and the contribution of a given 
network to the training process. First, the performance differences between ANN-TOT and ANN-Net; 
are assessed tluough a coefficient termed TranlNeti (Transferability Index), which is based on the 
correla tion values yielded by each test network (Netj) (Equation (5)). 

corri\NN- Neti (Netj) - corr ANN- mT(Netj) 
ù·an]_Neh-Netj = 100 X ( ) 

corrANN-TOT Neti 
(5) 

Subseque-ntly, the contribution of a given network can be assessed when the performance 
results yielded by ANN-(TOT-Net;) are compared w ith those yielded by ANN-TOT. Consequently, 
we computed the coefficient ContINeti (Contribution Index) (Equation (6)). 

ContINeti- Netj = 100 X 
corrANN-{TOT-Neti)(Ne~) - corrA.i'JN-TOT(Ne~) 

(6) 

Both indices are based on correlahon values. This choice can be justified by the importance 
of this indicator, which is often used in the assessment of Level agreement between soi! rnoisture 
products [35]. The correlation is sensitive to both the skill of retrievals with regard ta shmt-term soi! 
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moisture anomalies and their ability to capture typical soil moisture seasonal cycling [36]. Moreover, 
selection of the SSCA removes the bias. 

2.2.5. Data Filtering 

A filtering method was developed to detect underperforming s tations and eliminate them from 
the training data.set. The filteri.ng is based on setting 9th quantiles of the correlation values yielded 
by each test sta tion using the ANN-TOT approach. Once the training/test process is over and the 
performance metrics for each station are retrieved, a loop runs through the stations one by one 
and selects those whose correlation is Jess than the qth quantile of correlation. The training/test 
p rocess is thenreconducted such as the training set is made up of 70% of the non-eliminated stations, 
the valida tion set is made up of the remaining 30% of the non-elirninated stations, and the test set is 
formed by both eliminated and non-eliminated stations. This operation is repeated q times. This new 
training/test approach is hereafter referred to as ANN-TOT-Qua.1-Stat ("Quai" represents quality since 
this method aims to improve the quality of results). 

3. Results and Discussion 

Figure 5 illustra.tes the RZSM outputs of the ANN mode! through two selected exarnples over 
French networks. The time series shown below present in situ RZSM in blue, ANN-predicted RZSM 
(with ANN-TOT) in red, and in situ SSM in green over the stations ''Hillan2'' (network "FR-Aqui") 
and "Lezignan-Corbieres'' (network "SMOSMANIA''). We can see that RZSM predictions follow up 
the evolution of in situ RZSM with almost a positive bias during dry events and a negative bias during 
wet events. Sorne fake peaks are sometimes genera ted after an abrupt increase or decrease in SSM. 
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Figure 5. InsituSSM, in situ RZSM, and predicted RZSMtimes series. (a) Station "Hillan2" (''FR-Aqui"). 

(b) Station "Lezignan-Corbieres" ("SMOSMANIA"). 
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3.1. Impact of Scaling 

The three scaling schemes presented in the methods section were tested using the different training 
approaches (cf. Section 2.2.2). Figure 6 displays the statistical distributions as histogram plots yielded 
by the three scaling schemes for the training approach ANN-TOT. 
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Figure 6. Performance metrics for alJ of the stations with the different scaling schemes; blue- MMSCA; 

red-SSCA; green- no scaling (training approach: ANN-TOT). (a) Bias. (b) Correlation. (c) NSE 

(Nash- Sutdiffe efficiency; NSE values Jess than 10 were replaced by - 10 for better readability). 
(d) RMSE. 

The results highlight the importance of scaling to improve the perfo1mance metrics, given the 
poor performance when the data are unscaled (very negative NSE reaching - 285.76, high RMSE 
values with an average value of 0.0872 m3/rn3 ). This confirms the statement that the application of 
preprocessing transformations to the input data is always profitable in practice before p resenting data 
to the neural network [37] and that scaling techniques enhance the reliability of the h·ained network [38]. 
The outputs are likewise post-processed to obtain the required output values. lt is, then, more relevant 
to only compare MMSCA \-\rith SSCA. 

Bias is considerably reduced with the application of SSCA. This is expected, as the SSCA method 
by construction tends to elirninate bias. These values ranged between - 0.002 and 0.002 m3 /m3 for 
SSCA, whereas MMSCA yielded bias values between - 0.105 and 0.196 m3/m3 . 

Correlation values are quite similar for the two scaling methods. An insignificant difference of less 
than 0.001 for correlation values is obtained by MMSCA and SSCA for approximately 60% of the 
stations (206 s tations). Approximately 52% of the s tations (181 s tations) have higher correlation 
values with SSCA, approxunately 6% of the stations (23 stations) have the same correlation values 
for both scaling rnethods, and the rema.ining stations (142 stations) have higher correlation values 
w ith MMSCA. 

RMSE values are also improved with SSCA in comparison with MMSCA mainly due to the 
enhancement of bias correction. Approxima tel y 87% of the s ta tians (302 stations) show lower RMSE 
values with SSCA, approximately 7% of the stations (25 stations) have invariable RMSE values, 
and the rernaining stations (19 stations) have better RMSE values w ith MMSCA. The maximum 
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decrease (and thus, improvem ent) in RMSE is recorded for the "Reynolds H omestead" station 
("SCAN" network)wi.thSSCA such thatthe denease isequal to0.145 m3/m3 . RMSEvalues yielded 
by SSCA and no scaling are consistent with p revious results advanced in [27] for RZSM estima tes 
at a depth of 50 cm in the case of the "SCAN'' network. Actually, the authors in [27] used linear 
rescaling to compare ANN-simulated soil moisture (generated by SM OS data) to the reference 

datasets (GLDAS-1/Noah ou tput). TI1e ANN-sinïUlated RZSM values were bias-corrected to 
match the m ean and s tandard deviation of the reference set. The authors in [27] obtained a mean 
RMSE of 0.054 m3/m3 following bias correction against a mean RMSE of 0.082 m3 /m3 without b ias 
correction. ln our case, for the network "SCAN", SSCA gives a mean RMSE equal to 0.042 m3/m3 

against a mean RMSE of 0.090 m3/m3 without scaling. For SSCA, RMSE is equal to the unbiased 
root mean square error (u bRMSE) since h i.as is eliminated by consh'uction. In fact, the relation 
between these two merrics is as follows: 

RMSE2 = ubRMSE2 + bias2 (7) 

NSE values are d rastically improved w hen the SSCA is applied . Approximately 91 % of the 
s tations (315 stations) have better NSE values. The best improvements are recorded for s tations 
"P rairieView#l " and "GuilarteForest", which belong to the network "SCAN", such as NSE 
differences (SSCA-MMSCA), w hich are equa l to 86.827 and 85.483, respectively. The difference 
in behavior between correlation and NSE can be explained by the fact that N SE is a function of 

RMSE (Equation (8)). Given that RMSE is conside.rably reduced for most stations with SSCA, 
NSE is improved . 

NSE = 1- RMSE2 

05 
(8) 

where the symbol 1'0'1 refers to the observation, i.e., in situ RZSM. 

While the results in terms of correlation are close, the enhancement in bias correction justifies the 
choice of SSCA as the scaling method. For this reason , it is adopted for the rest of the paper. 

3.2. Impact of the Temporal Informntion 

The three-temporal preprocessing approaches for feature extraction, p resented in the methods 
section, y ield close results w ith slightly better results for the backward rolling average (ANNRAv) 
(Figure 7). The m ean correlation is equal to 0.509, 0.511, and 0.561 w ith the hourly, d aily mean, 
and rolling average SSM values, respectively. Similarly, the mean NSE is equal to 0.260, 0.263, and 0.325, 
and themean RMSE isequal to0.0392, 0.0391, and 0.0359 m3/m3 with the houri y, daily mean, and rolling 
average SSM values, respectively. ln light of the results above, the backward rolling average approach 

(ANNRAv) is adopted for the rest of the pape1: 
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-0.75 -0,50 - 0.25 0.00 0.25 o.so 0.75 1.00 
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Figure 7. Correlation and NSE scatter plots (training approach: ANN-TOT); blue cross- ANNH; 

red star- ANNo; green cù:cle- ANNRAv. 
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3.3. Impact of the Training Approach 

To assess the transferability of the trained ANN across nenNorks, we suggested the training 
approach ANN-Neti, which corresponds to training over one network. Table 2 p resents the Tra nlNeti 
values as introduced in Section 2.2.4. Columns in dicate the h·ai.ning approach, and rows specify 
the network on which the test was done. A positive cell value means that ANN-Net1 outperforms 
ANN-TOT and vice versa for negative values. 

Table 2. Transferability index (TranI) for the selected networks. 

Training ANN-AMMA- ANN- ANN-CTP- ANN-FR- ANN- ANN- ANN- ANN-
Test CAT CH BIEBRZA-S-1 SMTMN Aqui HOBE OZ NET SCAN S MOSMANl A 

MIMA-CATCH +1.U'Y. +o.10% +0.61 % +0.&1 % a'/ci 0% - 1.02% +o.51% 
BI EBRZA-5-l -0,66% +3.53% -2.21% -0.55% - 055% - 3.31% -1 .88% +0.99% 
CTP-SMTMN - 0.88% - 3,62% +0.77% - 0.33"~ +o.33% +0.11% - O.W% --0.21% 

FR-Aqui +0.46% - 3.56% - 1,26% +2 . .53% - l,49% - J .1% -2,76% -2.07% 
HOBE -2.40% -1.4(}'};, -1.œ1r .. - 1.83% +0.34% -0.92% -l .2b~i, ---0.34-% 

OZNïET -5.03~~. - 6.42% -1.51 '}~ -5.28",, - 0.50% -+:el.26% -1.89% -J,02'l .. 
SCAN -J .5% - 1.J()'};. -1.IJl~~ - 1.07% - 0.43% - 0.64 % +0.11 % -1.28'~. 

SMOSMANfA +0.57% -1.s~;, +0.U % - 0.57¾ +1.82% -1.25% -3.65·% +3.53% 

The firs t resuJt that can be drawn when comparing ANN-TOT with ANN-Net1 is that the latter 
gives s lightly better results when the test network is Net;, i.e., the mode! works better for a given 
n etwork when the training is solely processed on that network. The positive TralliNetî coefficients 
displayed in the diagonaJ element of Table 2 dem onstrate that. 

Further observations can be d rawn from Table 2. As expected, ANN-Neti perfonns worse 
than ANN-TOT when applied to the networks on which the training has not been performed . 
The training approach ANN-BIEBRZA-S-1 (i.e., tra ining processed on the BIEBRZA-S-1 network) 

displays the maximum performance Joss compared to ANN-TOT (average loss of -1.83%). Actually, 
the "BJEBRZA-S-1" network has only three usable s tations for our study (Le., wh.ich satisfy the 
conditions established in Section 2.1), w hich con tain little data (Table 1 ). The stations of this network 
have high organic carbon content (39.4% ), as provided by ISMN based on the Harmonized World Soil 
Database v1.1 by IlASA, unlike the rest of the stations where organic carbon content <10%. Besicles, 
the grassland site of ''BŒBRZA-S-1" neh-vork is located on an intensively mowed, d rained meadow 
with serni-organic soil (muck-peat soil). There, the surface soil la y ers featured a s trong annuaJ cycle 

wi th a m aximum amplitude of a.round 60 vol. % [39]. These observations may explain the behavior of 
the BIEBRZA-S-1 network. 

The "OZNET" test network delivered the worst performance compared to the other test networks 
when the h·aining was run on the other networks. Figure 8 displays the correlation and NSE values for 
the stations of the "OZNET'' network with different training approaches. The behavior of the "OZNET" 
test network may be explained by the di.mate specificities of this region of the world, whid1 are 

characterized by reversed seasons compared to the Norther n H emisphere. 
Moreover, some networks are not representative of other networks, i .e., ANN-Net; per forms 

worse than ANN-TOT for the Net1 test n etwotk and vice versa (ANN-Neti performs worse than 
ANN-TOT for test network Net;). If we separately consider the ''OZNET'' and "FR-Aqui" test networks, 

we see that ANN-TOT gives better correlation values than ANN-FR-Aqui and ANN-OZNET. Actually; 
the FR-Agui network is situated in southwestem France (Figure 1), and its sites cover ''the Les Landes" 
forest of the Bordeaux-Aquitaine 1egion with one add itional site (Parcmeteo) in Bardeaux city. The soil 

texture in the "Les Landes" forest is m ainJy sand y and characterized by the p resence of dark organic 
matter to a depth of 30 cm. The "OZNET" network lies within the Murrumbidgee River Catchment 
in Australia. The soil texture in the top layer is predominantly silty loam, loamy sand , and san dy 
loam . The study area of network "OZNET" covers farms of flood irrigation and d ryland cropping 
(Coleamball y Irrigation Area (G A)) and pastures of grazing. 
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Figure 8. Performance metrics for the stations of the "OZNET" network with the different training 
approaches. (a) Correlation. (b) NSE. 

ln this paragraph, the Contl indices obtained from the ANN-TOT and ANN-(TOT-Neti) setups 
are presented. The airn of Conti is to help assess the potential influence of a given network Neti. 
Table 3 presents the Conti values as in trod uced in Section 2.:2.A. Co lumns indicate the training a pproach, 
and rows specify the network on which the test was performed. A positive cell value indicates that 
ANN-(TOT-Net;) outperfonns ANN-TOT and vice versa for negative values. The first observation 
that can be. d rawn from Table 3 is the positive impact the extraction of the "SCAN" network from 
the training p rocess would have on all of the test networks except for "OZNET' (loss of -0.13% 
against ANN-TOT) and "SCAN" (loss of - 0.53% against ANN-TOT). This is an interesting case study 
since "SCAN" is the densest network (Table 1). The negative impact induced by the elimination of 
the "SCAN'' network from the training process on the "OZNET" network can be explained by the 
climate classification of the stations of both networks. Actually, 7 stations of the "OZNET" network 
have a common climate dass ("da'') w ith approxirnately 30% of the stations of the "SCAN" netwmk 
(66 stations). The remaining 12 stations of the "OZNEI'' network shaœ the climate class ("Bsk") w ith 
approximately 20% of the stations of the "SCAN" network (41 stations). 

Table 3. Contribution index (Contn for the selected networks. 

Training ANN-(TITT· ANN-(TOT, ANN-(TOT- ANN-(lUT- ANN-(TOT- ANN-(TOT- ANN-(TITT- ANN-(TITT-
Test AMMA-CATCH) BIEBRZA,S-1) CTP-SMTMN) FR-Aqui) HOBE) OZNET) SCAN) SMOSMANIA) 

AMMA-CATCH - 0.20% --0.11)% ---0.31% --0.20% 0•1 .. 0% 0.92% 0% 
BIEORZA-S.1 - 0.4-W~ --0.44% --0.66% -0.22% -0,44% -0.33% -0.33 .. '.i -O.l1% 
Cfl'-SMTl\,fi\' 0% 0% --0.33% O.ll% 0% 0% 0.66% 0.22% 

FR-Aqui - 0.46% --035% --0,46% --0,58% - 0.12% - 0.12<>/o 1.61 % - 0,1 2% 
HO DE - 0.11% --0,11% ---023% --0,11% - 0.23% - 0.111,1,/0 0.34% 0.11 % 

OZ NET O"s, --0.13% -0.3~{. 0% - 0.13% - 0.38% - 0.13% 0.25% 
SCAN 0% 0% 0.11 % O~·ft 0% 0% - o.53% 0% 

SMOSMANlA - 0.12% -023% --0$1% O~·ft 0% 0.12'J/o 2.17% 0.69% 

In addition, the aforementioned observation demonstrates the impact of data quality on 
perfonnance. Although "SCAN" is the densest network, its elimination refines the results (positive 
Conti values). Figure 9 helps assess the data quality of the "SCAN'' network When considering the 
b·aining approach ANN-TOT, negative values of NSE and correlation are yie]ded by approxirnately 

19% (41 stations) and 7% (16 stations) of the stations belonging to "SCAN". NSE and correlation values 
less than 0.5 are obtained for approxima tel y 80% (166 stations) and 40% (87 stations) of the s tations 
in the "SCAN" network. Similarly, w ith the training approach ANN-SCAN, negative values of NSE 
and correlation are recorded for approxirnately 18% (38 stations) and 8% (18 stations) of "SCAN" 
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stations. NSE and correlation values less than 0.5 are given by 85% (179 stations) and 40% (85 stations) 
of its stations. 
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Figure 9. Performance metrics for the "SCAN" test network wîth ANN-TOT, ANN-SCAN, 
and ANN-(TOT-SCAN}. (a) Correlation. (b ) NSE. 

Examining ''SCAN" stations one by one shows that station ''Lye Brook" (2042) gives the lowest 
NSE and correlation values: - 1.037 and - 0.849. A d oser look into the soil moisture time series of this 
station (Figure 10) reveals, on the one hand, data gaps that were well identified in the ISMN quality 
flag and, on the other hand, constantly low SSM values over a long period of t ime. Many phenomena 
may be behind the registration of a constant value over tirne, such as frost periods and longer sensor 
dropouts [40). These cons tant values lead to an inaccurate prediction of RZSM by the ANN that 
automatically predicts constant RZSM values in the period overlapping with constant SSM values. 
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Fig ure 10. ln situ SSM, in situ RZSM, and predicted RZSM of station "LyeBrook" ("SCAN" network). 

From another per spective, the "SCAN'' test network is not influenced by the elimination of the 
other networks from the training dataset (0% loss), except for 1'CTP-SMT!\i1N'' and ''SCAN". This can 
be explained, first, by the density of the "SCAN" network, which represents 67.4% of the whole dataset. 
111is donunant proportionmakes the weight of other networks such as ''BIEBRZA-S-1'' (0.11% of the 
whole dataset) or "AMMA-CATCH'' (1.9% of the whole dataset) not relevant against the density of the 
"SCAN" network in the training approach ANN-TOT. The elimination of the 1'CTP-SMTMN'' network 
(7.12% of the whole dataset), i .e., the application of the training approach ANN-(TOT-CTP-SMIMN), 
leads to worse results compared with ANN-TOT. Actually, the "CTP-SMTMN" network stations are 
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either located in the "ET" (tundra) (83% of the stations, i.e., 45 stations) or ' 'Dwc" (9 s tations) climate 
classes. Both clirnate classes are solely covered by this network. This shows the importance of a good 
sampling of dimate classes to perform accw·ate estima tes. 

As a conclusion from the results above, the "SCAN" network was removed from both the b·aining 
and the test datasets (Figure 11). The mean correlation and mean NSE are improved by 20.49% and 

42.46%, respectively. Correlation values Jess than 0.5 are yielded by 31.21% of the stations (108 out 
of a total of 346 s tations) and 15.33% of the s tations (21 out of a total of 137 s tations} before the 
eli.mination of "SCAN" and after the elimination of "SCAN", respecti.vely. Correlation values greater 
than 0.7 are recorded for 40.75% of the stations (141 out of a total of 346 s tations) and 55.47% of the 
stations (76 out of a total of 137 sta tions) before the elimina tion of "SCAN" and after the elimination of 
"SCAN", respectively. Negative NSE values are obtained by 14.45% of the stations (50 out of a to tal 
of346 stations) and 6.57% of the stations (9 out of a total of 137 sta tions) before the e limina tion of 

"SCAN'' and after the elimination of "SCAN", respectively. NSE values greater than 0.5 are recorded 
for 33.53% of the stations (116 out of a total of 346 stations) and 53.28% of the s tations (73 out of a total 
of 137 s tations) before the elimination of ''SCAN'' and after the elimination of 1'SCAN'', respect:ively. 
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Figure 11. Correlation and NSE scatter plots. Blue circle- before the elirnination of the "SCAN" 

network; red star- after eliminating the "SCAN" netwoi:k. 

3.4. Data Filtering 

As previously described in Section 2.2.5, the developed filteri.ng method is i.ntended to identify the 
underperformi.ng stations and remove them from the training process. TI1e method is a s traightforward 
exclusion using qth quantiles of the correlation vector g i.ven by the test sta tions when ANN-TOT is 
adopted. Table 4 presents the number of eliminated stations (ES) and non-eli.minated stations (NES) in 

accordance with the value of q. 

Table 4. Number ofeliminated stations (ES) and non-eliminated stations (NES) basai on q1h quantiles. 

q Numberof ES Numberof NES 

0.9 308 38 
0.8 275 71 
0.75 254 92 
0.65 224 122 
0.5 170 176 
0.4 141 205 
0.3 105 241 
0.2 71 275 
0.1 38 308 
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After selecting the stations to remove, the h·aining approach ANN-TOT-Qual-Stat is run as 
described in Section 2.2.5, and performance metrics are yielded for aU of the stations based on 

the value of the qtlt quantile. Figure 12 shows that the poorest perfo1mances (negative NSE and 
negative correlation values) are recorded for the stations that were eliminated from the training 
process (regardless of q). Su ch a result is expected. More importantly, for the non-eliminated stations, 

q value 0.1 yields better performance mehics than the rest of q values until the level where the 
correlation is equal to 0.5 and NSE is equal to O. Beyond that level, q values yield quite similar 
performance metrics with a slight enhancement for q = 0.9 (a maximum correlation of 0.963 aga.inst 
0.955 w ith q = 0.9 and q = 0.1, respectively, and a maximw11 NSE of 0.922 agains t 0.809 for q = 0.9 

and q = 0.1, respectively). The maximum correlation value is recorded for the station "Nalohou-Mid" 
(" AMMA-CATCH" network) with both q = 0.9 and q = 0.1. The correlation value yielded for the sa.me 
station before the application of this data filtering technique is equal to 0.856. Similarly, the maximum 

NSE va.lue is obtained by the s tation ''Nalohou-Mid" with both q values, whereas it is equal to 0.593 
before the application of the data filtering method. This station has a tropical sa vanna climate and is 

characterized by sh·ong seasonaJ dynamics that the ANN model manages to capture. 
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Figure 12. Correlation and NSE values after data filtering. 

Table 5 presents the improvement r ate in correlation, NSE, and RMSE for the eliminated and 

non-eliminated stations based on the qth quantile. Of the non-eliminated s tations, 60.98% (q = 0.4) 

to 73.68'1/o (q = 0.9) show better correlation values. A total of 67.85% (q = 0.1) to 100% (q = 0.9) of 
the non-eliminated stations give better NSE values, and 39.94% (q = 0.1) to 100% (q = 0.9) yield 
better RMSE. 

Table 5. Improvement rates in the individual performance met ries for the eliminated stations (ES) and 
non-eliminated stations (NES) based on the qth quantiles. 

Q NumberofES Numbe_rofNES Correlation NSE RMSE 

0.9 308 38 
48.71

;~ of ES 28.57% of ES 34.41% of ES 
73.68% of NES 100% of NES 100% of NES 

U.8 275 71 
44.72%of ES 26.18% of ES 36.72%of ES 

63.38% of NES 97.18% of NES 97.18% of NES 

U,75 254 92 
47,24% ofES 24.8% ofES 17.71%of ES 

70.65% of NES 95.65% of NES 88.04% of NES 

0.65 224 122 
41.07%0/ES 19.19%0/ES 11.16% of ES 

63.93% of NES 8853% of NES 78.69% of NES 

0.5 170 176 
47.06% of ES 14.71% of ES 10.59% üf ES 

66.48% ..,f NES 88.07% of NES 73.86% of NES 

,1.4 141 205 
41.13% of ES 14,18% of ES 7.09%of ES 

60.98% of NES 78.05% NES 63.41% of NES 

0,3 105 241 
39.05% of ES 13.33% 0/ ES 7.62%of ES 

66.39% of NES 78% ofNES 60.17% of NES 

0.2 71 275 
25.35%of ES ll.26% of ES 0% of ES 
60% ofNES 73A5%of NES 50.18% of NES 

0. 1 38 308 
23.68% of ES 13.16% of ES 0%of ES 

63.31% of NES 67 .85% of NES 39 .94% of NES 
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3.5. Impact of Climatc and Soi/ Texture 

To investi.gate the model's gene1icness and transferability, the model's predictions are analyzed 
across climatic regions and soi! texture. For this exercise, data filtering is a pp lied w ith a value of q 
equal to 0.65, ensuring good screening of underperforming stations while providing good coverage of 
the climate classes and soil properties. The new training was run on 70% of the previously detected 
NES (122 stations), 30% of the remaining NES were used for validation, and the test was run on al! of 
the NES. Figure 13a,b present the correlation distribution with respect to the climate classes and the 
percentage of subsurface clay. Oearly, data filtering w ith a threshold of 0.65 Ieads to under-sampling 
in some cases, namely, for climate classes "Af" , "Am", "Bwk", and ''Csb" and for the clay fraction 

interval (30%, 40%), where only one sample was available. Figure 13a provides relevantinsights into 
the impact of climate regions on the results. lt is clear that the stations belonging to "Aw", the tropical 
sa.vanna climate class, yield the best correlation values. This observation can be explained by the 
strong seasonal d ynamics and the presence of wet/dry cycles for the stations of this particula:r class. 
Group " B" ("HSk", ''BWh'', ''BWk'') includes desert areas where the link between SSM and RZSM is 
weaker than elsewhere because of the evaporation rates and sporadic rainfall, which. reduce the link 
between observed SSM and RZSM and thùs, the performances. This result is consistent with [35), 

who worked on the assessment of the Level of agreement between different LSM products. In fact, 
they obtained low corre lations in the deserts that have, by definition, low mean precipitation and a 
correspondingly low p recip itation variance. Refeœnce [35] confirmed that model agreement should be 
largest in regions with large variations in precipitation forcing because a larger precipitation variance 
suggests a larger varîation in the moisture s torage that al! of the models can more easily capture. 
Moreove1~ an equilibrium and a regression approach were applied in [41] to establish a relationship 

between SSM and RZSM. They confirmed that errors in the RZSM estimations are encountered mme 
for the first approach during periods of high surface evaporation or in termittent rainfall and when 
there is significant evapotranspiration. This shows the limitations of predicting the RZSM from 
SSM onJy, and in these specific conditions, it is of interes t to include evapotranspiration-teJated 
observation variables as input features to the ANN model. Evapotranspiration was identified as a 
primai·y variable to predict RZSM in [42]. They showed that an ANN model trained vvith the dataset 
of soil moisture profiles generated by the HYDRUS-1D model using meteorological data from the 

lower Great Lakes region and tes ted on the same region was sensitive to evapotranspiration because 
of its role in exh·acting moistw-e from the soi!. White their results may be dependent on the model's 
physical assumptions and uncertainty in inputs, in ow- results using a statistical mode! with no a priori 
assumptions, we reach the same conclusions. ln Figure 13a, the "C' group, which covers areas of 
good quality data (mainly "SMOSMANIA" and " FR-Aqui") and is d istinguished by dry/wet cycles, 
yields good performance. These regions are of interest because they hold agricultw-al areas in Europe, 
such as the southwest plains in France, where the knowledge of RZSM is of interest for sunflower 

and maize a•ops. Mechanistic or physical modeling of the water movement in the soil in the current 
state of knowledge is governed by the Richards equation. These approaches are very dependent 
on soilhydrodynamic parameters. SeveraJ pa1·sim01lious approaches were utilized to counter these 
drawbacks. Reference [6] used the recursive formulation of the exponential filter [43,44] to retrieve the 
root-zone soil moisture index (SWlm) from the in situ SSM o f the SMOSREX network in France and 
the SIM mode! outputs. The seasonal and interannual variability of SWim were also captw·ed after 
the optimization of the characteristic time length of the filter (Topt). Reference [6] found that over the 

tested s ites, no link could be established between soil texture and the characteristic time length T and 
highlighted that there is a potential climatic effect that may exist but requires further investigation. 
The exponential model can be assimilated in fluid mechanics to apply mass conservation equations to 
an emptying bucket w ith a transfer function. Altematively, the ANN does not require assumptions on 
the mode! structure (non-linearity is addressed by increasing the complexity of the Neural Network), 
and because of this, it can be considered more suitable to study its transferability. On the other hand, 
CDF matching [45] and ANN [27,42] are two s tatistical methods that have been used to derive RZSM 
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from SSM. While CDP matching determines the RZSM from SSM by correcting the SSM probability 
density function to match the observed RZSM, ANNs do not require a priori knowledge of probabilities . 
• ~ such, they provide a more general framework and the trained ANN model can be applied outside 
of the training dataset. However, they have some drawbacks as they require a larger dataset than CDF 
matchlng to determine the network weighting coefficients. If not available, a risk of overfitting can 
exist. ln the current study, this risk is not present considering the large number of available SSM and 
RZSM datasets. Nonetheless, as shovvn in this pape1~ the results cannot be completely generalized in 
areas of high evaporation, for instance. Figure 13a also presents the performance for the "Dfa" class, 
which covers northern areas characterized by harsh cold winters. The presence of frost events may 
explain a weaker link between SSM and RZSM and th.us, weaker correlations. Reference [35] obtained 
low average correlation values between the different LSM products in high northem latitudes and 
explained that by the differences in the parameterization of snow and frozen soil for each product. 
Overall, the performances across climate conditions obtained in our paper are coherent with the results 
over the continental United States in [27]. In fact, the authors in [27] developed several ANN models to 
retrieve RZSM at depths of 20 and 50 cm using data from sites located in the continental United States. 
Each ANN model used a combination of soi! texture, SSM, and cumulative values of air temperature, 
surface soil temperatw·e, rainfall, and snowfall for the il,put features. Reference [27] confirmed that 
the retained soi! moisture sites could not be considered representative of ail soi! and dimate conditions 
at a global scale and showed that the ANNs were effective at reh·ieving RZSM at a depth of 20 cm 
with a c01Telation coefficient above 0.7 in most cases, whereas they were less effective at predictil,g 
RZSM at 50 cm. This can be expJained by surface---subsurface decoupling. Reference [41,46] showed 
that for a given surface zone depth, the deeper the profile is, the less the correlation between surface 
and profile soi! moisture. Reference [47,-lR] also confümed that this surface-subsurface decoupling, 
controlled by the soil's hydraulic properties, may occur in coarse-textured and sh·atified soils as well 
as dry conditions. Reference [6] also showed that soi! depth or thickness is the main factor impacting 
RZSM retrieval. This exposes a second limitation in addition to the impact of evapotranspiration 
mentioned ab ove. Figure L.3b shows that the low da y fractions present a larger dispersion of correlation 
in comparison with percentages greater than 30%. ln our case, the result can be explained by the small 
number oi stations havil,g such clay percentages. In general, no direct relation between soit textw·e 
and model performances can be concluded, whichis in agreement with [6]. 
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Figure 13. Correlation boxplots after the application of the data filtering technique (q = 0.65) with 

respect to di.mate classes (a) and subsurface soil clay percentage (b). 

4. Conclusions 

Throughout this study; we developed anANN mode! to estimate RZSM based only on in situ 
SSM information in several regions across the globe. The main conclusion of the study is that an ANN 
of 1 hidden layer and 20 hidden neurons can provide accurate predictions of RZSM, provided that a 
specific ANN configuration is considered. For instance, testing two scaling approaches, we found that 
SSCA provided the best results, as it minimizes the bias by construction and improves the correlation, 
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Nash- Sutcliffe, and RMSE when compared with MMSCA. Moreover, a neural network of three features 
employing rolling averages of SSM over 10, 30, and 90 days is recommended over a single SSM 
estima te. We assessed the transferability of the trained ANN across observation networks and the 
contribution of each nel:work to the m ode! learning skills by developing two n ew indices (Tranl and 
Contl). As expected, the results show that training with data hum a single network cannot provide the 
best p redic ti.ons. More interestingly, our experirnent showed the impact o f moderate to low-quality 
data on the perf01manœ of the mode! through the example of the network "SCAN", which, while being 
the denses!: (67.4% of the whole globaldataset), deteriorated the performance of the mode!. Based on 
this, we applied a statistical filtering method to eliminate underperforming stations. We analyzed 
the model performances across climate classes and soil textures. The results showed that the model 
perfo1ms best in regions with altemating wet and dry conditions, while perf01mances were lower over 
very dry areas withhigh evaporati.on rates and sporadicrainfall. This has been depicted by several 
studies, and the œsults suggest that to enhance the accuracy over these regions, input features related 
to the evapotranspiration process need to be added. We did not futd relevant results about the impact 
of soil textu re on the model performa11ce, but this should be further investigated w ith spatial data. 
We also identified that decoupling between the surface and subsurface deteriorated the predictions of 
RZSM over 50 cm in depth. In the future, SSM from Earth Obsenration (EO) will be tested with the 
current approach to provide spatially distributed RZSM over different di mate regions. 
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Chapter 3: Prediction of RZSM based on SSM 
and process-related inputs using ANN 
 
The following chapter resumes the methodology and results presented in the following paper: 

Souissi, R., Zribi, M., Corbari, C., Mancini, M., Muddu, S., Tomer, S. K., Upadhyaya, D. B., and 
Al Bitar, A.: Integrating process-related information into an artificial neural network for root-zone 
soil moisture prediction, Hydrol. Earth Syst. Sci., 26, 3263–3297, https://doi.org/10.5194/hess-26-
3263-2022, 2022. 

Published in Hydrology and Earth System Sciences( HESS) journal. 
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3.1 Introduction 
 

RZSM is linked to SSM through a nonlinear relationship controlled by different hydrological 
processes like infiltration and evapotranspiration. According to the previous chapter, the approach 
based on the prediction of RZSM based on only SSM information has limitations. In order to 
complexify the method and eventually enhance the quality of predictions, we considered the option 
of developing another type of ANN namely a Convolutional Neural Network (CNN). The 
developed CNN model takes 60-day sequences of SSM as input and predicts RZSM. Different 
hyperparameters and parameters were tested and the compared. However, the CNN model was not 
conclusive when compared against the performances yielded by the MLP model. This 
complexification option was discarded. Instead, the approach was hybridized by adding physical 
process-related features into the ANN. 

In this chapter, different ANN models were developed such that the ANN features include SSM and 
one process-related variable. An ANN model which includes SSM and a combination of process-
related features was also developed.  

The infiltration process was considered in this chapter by including a SWI that was computed using 
a recursive exponential filter. Soil evaporation was also taken into account in order to better 
estimate RZSM namely in areas of high evaporation rates. This process was modeled by the means 
of an evaporation efficiency variable whose computation was based on a remote-sensing potential 
evapotranspiration. The impact of the addition of LST in the model which is linked to evaporation, 
was also explored. Vegetation dynamics were also considered. They were not modeled in this study 
but only inferred from remote-sensing NDVI. 

All of the ANN models were trained on the stations provided by ISMN and which were identified 
of good quality data after the data filtering step in the previous chapter. In a first time, the different 
ANN models were tested on the rest of the ISMN stations that were considered in the last chapter. 
Additional tests were conducted on stations external to the ISMN database namely on stations over 
Tunisia, Italy and India. This step helped assess the robustness of the ANN models.  

The individual impact of each process-related feature on the RZSM prediction accuracy was 
assessed through a climatic analysis. The impact of the joint use of the process-related features in 
the most complex ANN model was also studied. 

3.2 Conclusion 
This chapter investigated the impact of the addition of process-related variables in ANN models on 
the quality of RZSM predictions. Different ANN models which are made up of different features 
were developed and intercompared. A global analysis was conducted for the climate regions 
covered by the considered stations around the globe. A global map with the most relevant process-
related variables for each climate class was produced. The objective of this step was to identify the 
most relevant variable that has to be added with SSM in the ANN model in order to obtain the best 
estimations of RZSM. 

Overall, the process-related variable when included in the ANN model helped improve the accuracy 
of the predictions but over some areas their use was not beneficial. Results suggested that the most 
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relevant feature for arid areas with high evaporation rates such as bare areas of Africa, the Middle 
East and Australia was evaporation efficiency. NDVI was proved to be the most informative 
variable over agricultural regions namely over the internal part of continental Europe and near the 
Mediterranean basin and in the Great Plains region in the USA and over transition zones. The 
classification was not as reliable over all climate regions due to the generalization of the climatic 
analysis results to areas not considered in this study. Over regions with climate class ‘Dfc’ (cold dry 
without a dry season, cold summer climate), the evaporation efficiency was found the most relevant 
instead of temperature. Overall, the ANN model which included SSM, NDVI, SWI and evaporation 
efficiency was the most performing. Actually, the correlation value obtained with this model 
increased for 84.06 %, 61.29 % and 62.07 % of the training, validation and test stations when 
compared to the reference model of the first axis (ANN_SSM), respectively. In addition, RMSE 
was minimized for 62.32 %, 54.84 % and 54.02 % of the training, validation and test stations with 
this model compared to reference model (ANN_SSM), respectively. 

The study was also focused on the evaluation of the robustness of the approach through additional 
tests over external sites in central Tunisia, India and Italy. The same finding regarding the positive 
impact of the process-related features was observed over Tunisia. The mean correlation across the 
Tunisian stations significantly increased from 0.44 when only SSM was considered to 0.8 when all 
process-related features were combined with SSM. In fact, the Tunisian site is characterized by a 
semiarid environment with sporadic rainfall events and high evaporation rates. This finding 
corroborated the reliability of our hybrid approach based on an association of a data-driven method 
with process-related variables. However, the change in correlation after the addition of process-
related features in India and Italy namely NDVI, was nonsignificant and could be linked to the 
cloudy conditions and thus the noisy MODIS products.  

3.3 Article 
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Abstract. Quantification of root-zone soi) moisture (RZSM) 
is crucial for ag1icultural applications and the soil sciences. 
RZSM impacts processes such as vegetalion tran~piration 
and water percolation. Surface soil moisture (SSM) can 
be assessed througl1 active and passive microwave remote­
sensing methods, but no current sensor enables direct RZSM 
retrieval. Spatial maps of RZSM can be retrieved via proxy 
observations (vegetation stress. water storage change and 
surface soil moistt.11-e) or via land surface mode] predictions. 
ln this study, we investigatecl the combination of surface soil 
moisture infonnation with process-relatecl infetTed features 
involving artificial neural networks (ANNs). We considerecl 
the infiJtration process through the soi) w.ater index (SWI) 
computed with a recursive exponential füter and the evapo­
ration process th rough the evaporation efficiency computed 
basecl on a Moderate Resolution lmaging Spectroradiometer 
(MODfS) remote-sensing dataset and a simplified analytical 
model, while vegetation growth was uot modeled and was 
only inferred through normalized difference vegetation in­
dex <NDVT) time serie&. Severa) ANN models with different 
sets of features were developed. Training was conducted con­
sidering in situ stations dist:ributed in several areas worldwide 
characterized by different soil and climate patterns of the In­
ternat ion al Soil Moisture Network (ISMN). and tesling was 
applied to stations of the same data-hosting facility. The re­
sults inclicate that ù1e integration of process-related fealures 
into ANN models increased the overall pe1formance over the 
reference model level in which only SSM features were con-

siderecl.1n arid and semiarid areas, for instance, performance 
enhancement was observed when the evaporalion efficiency 
was integrated into the ANN models. To assess the robust­
ness of the approach, the trained models were applied to ob­
servation sites in Tunisia, Jtaly and southern lndia that are 
not pmt of the ISMN. The results reveal that joint use of 
surface soil moisture. evaporation efficiency, NDVl and re­
cursive exponential filter represented the best alternative for 
more accurate predictions in the case of Tunisia, where tlle 
mean correlation of the predicted RZSM based on SSM only 
sharply increasecl from 0.443 to 0.80 1 when process-related 
features were integrated into the ANN moclels in addition 
to SSM. However, process-related feature5 have no to little 
added value in temperate to tropical conditions. 

1 Introduction 

Soi] moisture is a major land parameter integrated into sev­
eral agricultural, hyclrological and meteorological applica­
lions (Koster et al., 2004: Paris A11guela et al., 2008). This 
essential climate variable (ECV) consists of two components. 
namely, surface soU moîsture (SSM) (0-5 cm) and root-zone 
soil moisture (RZSM). RZSM corresponds to the soil mois­
ture in the region in which the main vegetalion rooting net­
work is developing. lts definition varies clepe.nding on veg­
etation type and pedoclimatic conditions. The importance 
of RZSM is mainly highlighted in agricultural applications 

Published b)' Copernicus Publications on behalf of the European Geosciences Union. 



 
 

 
 

3264 R. Souissi et al.: Integrating process-related information into an ANN for root-zone soit moisture prediction 

through vegetation stress and water needs and in carbon and 
nitrogen cycles, as RZSM influences biogeochemical activ­
ities in soil (Martfnez-Espinosa et al., 2021 ). RZSM is non­
linearly related to SSM through different hydrological pro­
cesses, such as diffusion processes. RZSM may be extracted 
by evaporation at the surface through root extraction or by 
capiUary rises (Calvet et Noilhan, 2000). SSM quantifica­
tion is achieved through three main sources: in situ mea­
surements, mode! estimates and remote-sensing-based prod­
ucts. Microwave remote-sensing technologies involving sen­
sors such as Soi l Moisture and Ocean Salinity (SMOS) (Kerr 
et al., 2010), Soi] Moisture Active Passive (SMAP) (En­
tekhabi et al., 2010), Advanced Microwave Scanning Ra­
diometer (AMSR) (Owe et al., 2008) and Advanced Scat­
terometer (ASCA1) (Wagner et al., 2013) have been em­
ployed to retrieve SSM at coarse resolutions. Current satellite 
sensors can only prov ide surface soil moisture information 
because of the shallow penetration depth of spaceborne data 
(on the order of a few centimeters) (Wagner et al., 2007). 
Fine-spatial-resolution synthetic aperture radar (SAR) data 
can also be applied in synergy with optical data to retrieve 
soil moisture (Zribi et al., 2011; Hajj et al., 2014; Dorigo et 
al., 2011), but again for surface soi] moisture. The Interna­
tional Soi l Moisture Network (ISMN) is an exhaustive data­
hosting facility focused on soil moisture data and associated 
anciUary information. The ISMN provides in situ soil mois­
ture measurements collected from operational soil moisture 
networks worldwide (Dorigo et al., 2011). Various models 
can be adopted to estimate RZSM, such as land surface mod­
els (Surfex) (Masson et al., 2013), Interaction Sol-Biosphère­
Atmosphère (ISBA) (Noilhan and Mahfouf, 1996), the Com­
munity Land Madel (CLM; Oleson et al., 2010) or the Joint 
UK Land Environment Simulator (JULES) (Best et al., 20 11) 
or dedicated crop models such as Aquacrop (Raes et al., 
2009) or Simple Algorithm For Yield Estimate (SAFYE) 
(Battude et al., 2017). While these models provide the ad­
vantage of physical process-based estimates, these estimates 
depend on the availability and accuracy of anci llary informa­
tion. Mode! predictions are otten enhanced by the implemen­
tation of data assimilation techniques, such as the land data 
assimilation system (LDAS) (Sabater et al., 2007; Entekhabi 
et al., 2020). 

Data-driven methods such as artific ial neural net­
works (ANNs) have also been commonly applied in hydrol­
ogy as detailed, for instance, by the ASCE Task Commit­
tee on Application of Artificial Neural Networks in Hydrol­
ogy (2020) and in Tanty et al. (2015). One of their advantages 
is that these models do not require an explicit mode] structure 
to accurately represent the involved hydrological processes 
but instead constnict a relationship between the given inputs 
and the process of interest. Therefore, ANNs are regarded 
as dynamic input-output mapping models heavily relying on 
the provided training data relevant to target values (Pan et al., 
2017). Moreover, ANNs only require a one-time calibration 
to provide soil moisture estimations once instrument data are 
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loaded and thus generate relatively low computational costs 
(Kolassa et al., 2018). These advantages ex plain the approach 
to estimate RZSM based on surface information with ANNs 
in various methodologies (Pan et al., 2017; Grillakis et al., 
202 l; Souissi et al., 2020). In tlùs paper, we do not address 
ANN applications as a mode! twin where the ANN mode! 
is trained on the targe! for mimicking purposes and subse­
quently generates predictions while requiring a short com­
putation time or fewer input simplifications. Here, we are 
instead interested in the adoption of ANNs as independent 
models trained on in situ observations. Within this context, 
Pan et al. (2017) successfuUy applied an ANN as a model 
for shallow 20 cm root-zone soil moisture prediction with a 
global correlation coefficient of 0.7. Grillakis et al. (2021) 
proposed employing an ANN as a means of calibrating and 
regionalizing the time constant of a recursive exponential fil. 
ter, which was thereafter applied at the regional scale. A com­
bined implementation of a Bayesian probabilistic approach 
and an ANN to infer RZSM at different depths from optical 
unmanned aerial veh icle (UAV) acquisitions via local train­
ing was also applied (Hassan-Esfahani et al., 2017). Multi­
temporal averaged features to predict RZSM based on only 
SSM and to investigate the transferability of a trained ANN 
across different climatic conditions globally were proposed 
in Souissi et al. (2020). Temporal information can be con­
sidered in ANNs through recurrent neural networks (RNNs), 
long short-term memory (LSTM) architectures (Liu et al., 
202 1 ), 1 D convolutional neural networks (CNNs), or multi­
temporal averaging. ln Souissi et al. (2020), median, max­
imum and minimum correlation values of 0.77, 0.96 and 
0.65 were, respectively, reported across training, validation 
and test datasets. The use of climatic variables such as pre­
cipitation and surface temperature and intrinsic surface prop­
erties such as soi] texture and land cover has also been con­
sidered in ANNs (Liu et al., 2021 ). The choice of vatiables 
depends not only on the data availability, but also on the ob­
jectives. FinaUy, ANN-based approaches pertain to the more 
general term of machine leaming approaches, and within this 
framework, the random Forest approach has been applied to 
root-zone soil moisture prediction (Carranza et al., 2021 ). 
The aforementioned studies have investigated the applica­
tion of multiple information sources to predict root-zone soil 
moisture. The input features are commonly curated for qual­
ity, and correlation analysis is conducted to determine the 
useful inputs, while physical processes are not considered. 
ln this paper, we introduce process-related features based 
on simplified analytical models representing the major pro­
cesses contributing to root-zone soil rnoisture dynan1ics. Jn 
this work, RZSM refers to a point observation of water con­
tent at a depth ranging between 30 and 55 cm. We investigate 
the impact of the application of different process-related vari­
ables on the precision of RZSM predictions as weU as the 
robustness of our approach. (1) We start from a previously 
developed ANN model (Souissi et al., 2020), and we extend 
the feature list to include NOVI tirne series, surface soil tern-
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Figure 1. Overview of the processing coafiguration showing lhe components of the mode!: the tested models are variations of this ANN with 
a different combination of inputs (see Table 1). îhe scaling and descaling are applied to each dataset separately. 

pemture and process-related variables, namely, the soil wa­
ter index given by a recursive exponential fiHer and remote­
sensing-based evaporation efficiency. (2) The robustness of 
the approach is assessed tlu·ough addfüonal tests involving 
stations not included in the ISMN database in Tunisia, ltaly 
and southern lndia. (3) Climat.ic analysis is conductecl to infer 
the most indicative process-relared features for each climate 
pattern. 

2 Materials and methods 

The proposed methodology entails the constniction of sev­
eral ANN models with both direct (SSM, surface temperature 
and NDVJ) and intermediate sets of features (soil water index 
and evapcration efficiency) computed based on simplified an­
alytical models. An overview of the processing configuration 
is shown in Fig. 1. Standard scaling is appLied to each dataset 
separately so that the different inputs fait into the same range 
of values. Then the ANN outputs are desca lecl lo make the 
comparison with actual values of RZSM possible. 

This approach results in a combination of ANN moclels 
(Table 1 ). Each mode! has one or more process-related fea­
tures in addition to three SSM features which correspond to 
backwarcl rolling averages of in situ SSM computecl over 10, 
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30 and 90 d. Ail the ANN mode! hyperparameters remain the 
same except the number of input features. 

The mode! with the simplest starting point is ANN_SSM 
based on Souissi et al. (2020). The most complex mode] in­
clucles the fuJ I set of inputs. lntercomparison of the mode! 
performance provides information on the aclded value of each 
input. Ail input features are scalecl, and training is performed 
on each of the se features basecl on scalecl in situ RZSM data 
retrieved from the lSMN. The RZSM moclel predictions are 
validatecl against an indepenclent set of observations. 

2.1 Datasets 

2.1.1 ISMN soi! moistm-e data 

The first training and test operations were conducted on 
eight ISMN networks previously considered in Souissi et 
al. (2020). Figure 2 shows the distribution of the consicl­
ered soil moisture networks with different soil textures and 
climatic parameters (see Appenclix B). For each station, the 
RZSM observation point is locatecl between 30 and 55 cm 
(Table 2). For each soil moisture hourly acquisition, the 
ISMN provides quality flags. Quality flags can be marked as 
''C" (exceeding the plausible geophysical range). "D" (ques­
tionable/clubious), "M" (missing), or "G" (goocl) (Dorigo et 
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Table J. ANN model configurations with the respective input variables; a: roll ing averages of SSM over I 0d; b: rolling averages of SSM 
over 30d; c: rolling averages of SSM over 90 d; d: number of parameters of the ANN mode!. 

Model 
features 

SSM_IOd_RAVa SSM_30d_RAVb SSM_90d_RAVc SST NOVI SWJ EVAP Nbd 

ANN_SSM X X 
ANN_SSM_TEMP X X 
ANN_SSM_NDVJ X X 
ANN_SSM_EXP-FILT-T5 X X 
ANN_SSM_EVAP-EFF-860 X X 
ANN_SSM_NDVI_EVAP-EFF-B60_EXP-FILT-T5 X X 
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Figure 2. International Soil Moisture Network (ISMN) network distribution (adapted frnm the [SMN web data portal: https://www.geo. 
tuwien.ac.at/insitu/data_ viewer/, last access: 7 April 2022; scale: 1 cm= 1000 km). 

al., 2011). Category "D" has subset flags, namely, "DOi" for 
which in situ sojl temperature < 0 °C, "D02" that llags points 
at whlch in situ air temperature < 0 °C, as well as ''0 03" that 
also flags areas where the Global Land Data Assimilation 
System (GLDAS) soil temperature < 0 °C. ln our study, only 
soit moisture data whose quality fl ag is marked "G" were re­
tained. 

2.1.2 External soil moish1re data 

The external networks are considered to assess the transfer­
ability and robustness of the approach. The trained models 
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are run for predictions only over these sites. They have been 
selected to cover semjarid, moderate and tropical semiarid 
clirnates. 

- Tu11isian site: the Merguellil site is located in central 
Tunisia (!'.1°541 E, 35°351 N). This site is characterized 
by a semiarid climate with highly variable rainfall pat­
terns (average eqaal to 300 mm yr- 1 ), very dry summer 
seasons, and wet winters. The Merguellil site represents 
an agricultural region where croplands, namely, olive 
groves and cereal fields, prevail (Zribi et aL 2021). At 
this study site, a network of cont.inuous ThetaProbe sta-
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Table 2. Overview of the considered lSMN and external networks. 

Network Country Number of selected Selected SM 
stations RZSM sensors 

depth 
(cm) 

AM MA-CATCH Benin, Niger 5 (3 in Benin and 2 in Niger) 40 CS616 
B IEBRZA-S- 1 Poland 3 
CTP-SMTMN China 54 
HOBE Denmark 29 
FR-Aqui France 5 
OZNEf Australia 19 
SCAN USA 209 
SMOSMANIA France 22 

tions installed at bare soi! locations provided moisture 
measurements at depths of 5 and 40 cm. Ali measure­
ments were calibrated against gravimetric estimations. 
Data were obtained from the Système d' information 
Environmental (SlE) web application catalog (SIE, 
2021). 

- ltalian site: the Landriano site is located in northern 
ftaly (Pavia Province, Lombardy Region). This station 
is located in a maize field, which was monitored in 2006 
and from 2010 to 201 1 (Masseroni et al., 2014 ). The av­
erage rainfall in Pavia Province is 650-700 mm, the cli­
mate is class ified as Cfa (see Appendix A) and the field 
is irrigated by the border method with an average irri­
gation amount of approximately 100 to 200mm per ap­
plication with one to two applications per season due to 
the presence of a shallow groundwater table. Soi! mois­
ture measurements were perforrned with time domain 
reflectometer (TOR) soi! moist.ure sensors. Five TOR 
soi! moisture sensors were installed along a profile at 
depths of 5, 20, 35, 50 and 70 cm. 

- lndian site: the Berambadi watershed is located in Gun­
dalpet Taluk, Chamarajanagara district, in the south­
ern part of Karnataka state in lndia and covers an area 
of approximately 84km2. The average rainfall is equal 
to 800 mm yr- 1, and the climate is classified as Aw 
(see Appendix A). Hydrological variables have been in­
tensively monitored since 2009 in the Berambadi water­
shed by the Environmental Research Observatory ORE 
BVET and AMBHAS Obse1vatory. The soi! moisture 
levels at the surface (5 cm) and root zone (50 cm) are 
monitored with a HydraProbe sensor at different agri­
cultural sites across the watershed, and in the current 
study, four stations were chosen. 

2.1.3 Surface soil temperature 

ln addition to in situ soi! moisture, the ISMN optionally in­
cludes meteorological and soi! variables that are available 
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50 GS-3 
40 EC-TM/5TM 
55 Decagon-5TE 

30,34, 50 ThetaProbe ML2X 
30 Hydra Probe-CS616 
50 Hydraprobe-Sdi-12/ Ana 
30 ThetaProbe ML2X 

over specific time periods. Values of the in situ surface soi! 
temperature among these variables can be employed as a use­
fui indicator of the soi! moisture data quality. The soi! tem­
perature was prov ided in degrees Celsius, and the plausible 
values range from - 60 to 60 °C. Regarding soi! moisture 
data, surface soi! temperature data were also provided with 
qua lit y flags (Dorigo et al., 2011 ). However, the drawback is 
that this variable is not available in ail networks, which is the 
case with the AMMA-CATCH network. 

2.1.4 Normalized diff'erence vegetation index 

We considered the remote-sensing-based normalized differ­
ence vegetation index (NOVI) to infer vegetation dynamics. 
We extracted this index from the Moderate Resolution lmag­
ing Spectroradiometer (MODIS) Vegetation Indices product 
(MOD13Ql version 6). MODIS Vegetation Indices data are 
generated at 16d intervals and a 250111 spatial resolution as 
a level-3 product. This product provides two primary vege­
tation layers. The first vegetation layer is the NOVI, which 
is referred to as the continuity index of the existing Na­
tional Oceanic and Atmospheric Aclministration-Advanced 
Very High Resolution Radiometer (NOAA-AVHRR)-derived 
NOVI. The algorithm chooses the best available pixel value 
from ail the acquisitions over the 16 d period. The criteria 
considered are low cloud coverage, low viewing angle, and 
the highest NOVI value (Huete et al., 1999). To obtain daily 
NOVl values, we conducted linear interpolation of the 16 d 
product. 

2.1.5 Potential evapotranspiration 

Similarly, we assessed the impact of considering a remote­
sensing-based evaporation efficiency, which is initially de­
fined as the ratio of actual to potential soi! evaporation, on 
RZSM prediction. The computation details of this variable 
will be given later (see Sect. 2.2.2). We employed the remote­
sensing-based potential evapotranspiration (PET) to compute 
the evaporation efficiency. We extracted the PET from the 
MOD l 6A2 Evapotranspiration/Latent Heat Flux version 6 
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product, which is an 8 d composite dataset produced at a 
500 m pixel resolution. The algorithm used for this prod­
uct collection is based on the logic of the Penman- Monteith 
equation, which employs inputs of daily meteorological re­
analysis data along with MODIS remote-sensing data prod­
ucts such as vegetation property dynamics, albedo and land 
cover. The MOD16A2 product provides layers for the com­
posite evapotranspiration (ET), latent heat flux (LE), poten­
tial ET (PET) and potential LE (PLE). The pixel values for 
the PET layer include the sum of ail 8 d within the composite 
period (Running et al., 20fl7). To obtain daily PET values, 
we performed a linear interpolation over the 8 d product, and 
then we divided the interpolated value by 8. 

2.2 Methods 

2.2.1 Recursive exponential filter 

Two ANN models presented in Table I contained extra 
knowledge on infiltration process information based on the 
outputs of the recursive exponential filter (Stroud, 1999) as 
a feature. The recursive exponential filter was first intro­
duced by Wagner et al. ( 1999) to estimate the soi! water in­
dex (SWI) from surface soi l moisture. SWI is computed as 
follows: 

SWI,
11 
= SWI,

11
_ 1 + Kn (ms (t11) - SWI,

11
_ 1 ) , ( 1) 

where SWI,
11 

is the soil water index at time 111 , ms(t11 ) is the 
scaled surface soi! moisture at time 111 (scaled between maxi­
mum and minimum values), K11 is the gain at time 111 , which 
occurs in [O, 1] and is given by 

Kn- t 
K11= -----­

(111-fi-1), 
K 11-I + e-

(2) 

and T is a time constant and is the only required tuning pa­
rameter to compute the recursive exponential fi lter. 

For the initialization of the fil ter, gain K , = 1 and 
SWl(r t) = ms(r1 ). 

Regarding T values, we considered an empirical list ([ 1, 
3, 5, 7, 10, 13, 15, 20, 40, 60]), which was partly inspired 
by Paulik et al. (2014) (T E [l, 5, 10, 15, 20, 40, 60, 100]). 
Given the list of T values, recursive exponential filter out­
puts were computed for ail of the stations (346 stations) given 
each T value. Based on the correlation values between the in 
situ RZSM values and the recursive exponential fi lter-based 
RZSM pre-estimates, we established the optimal time vari­
able T, hereafter referred to as Tbest, for each station. 

2.2.2 Evaporation efficiency 

An ANN mode] with evaporation efficiency input was also 
developed. This variable, which is defined as the ratio of the 
actual to potential soi] evaporation, was first introduced in 
Noilhan and Planton (1989), Jacquemin and Noilhan (1990) 
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and Lee and Pielke ( 1992) and thereafter readapted in Merlin 
et al. (2010) to include the soi! thickness. ln our work, we 
use a modified evaporation efficiency fonm1lation based on 
the third mode! developed in Merlin et al. (2010), which can 
be expressed as follows (see Appendix C): 

[ 
1 1 ] p• 

fJ = 2 - 2 COS (rr0 /0max) , (3) 

where fJ is evaporation efficiency and 0 is the water content 
in the soil layer of thickness L . 0111ax is the maximum soil 
moisture at each station. P* is a parameter computed as fol­
lows: 

P* = PET_ 
2B 

(4) 

P*, a proxy of parameter P (see Appendix C), represents an 
equilibrium state controlled by retention forces in the soi!, 
which increase with the thickness L of considered soil and 
by evaporative demands at the soil surface. PET is the poten­
tial evapotranspiration extracted from the MODIS 500 m 8 d 
product (MODl6A2). 

The soi! evaporation efficiency computed by mode! 3, de­
veloped in Merlin et al. (2010), decreases when PET in­
creases. Retention force and evaporative demand make the 
term P increase (replaced by P*), as if an increase in po­
tential evaporation L Ep (here replaced by PET) at the soi! 
surface would make the retention force in the soi! greater. 

Merlin et al. (2010) tested this approach at two sites in 
southwestern France using in situ measurements of actual 
evaporation, potential evaporation, and soi) moisture at five 
di fferent depths collected in summer. Mode) 3 was able to 
represent the soi) evaporation process with a similar accu­
racy to the classical resistance-based approach for various 
soi! thicknesses up to 100 cm. Merlin et al. (2010) affirm 
that the parameterization of P as a function of LEp (here 
PET) indicates that fJ cannot be considered a function of soil 
moisture alone since it also depends on potential evaporation. 
Moreover, the effect of potential evaporation on fJ appears to 
be equivalent to that of soi) thickness on {J. This equivalence 
is physically interpreted as an increase in retention forces in 
the soi) in reaction to an increase in potential evaporation. 

2.2.3 Artificial neural network implementation 

The multilayer perceptron (MLP), which is a multilayer feed­
forward ANN, is one of the most widely applied ANNs, 
mainly in the field of water resources (Abrahart and See, 
2007). The multilayer perceptron contains one or more hid­
den layers between its input and output layers. Neurons are 
organized in layers such that the neurons of the same layer 
are not interconnected and that any connections are directed 
from the lower to upper layers (Ramchoun et al., 2016). 
Each neuron returns an output based on the weighted sum 
of ail inputs and according to a nonlinear function referred to 
as the transfer or activation function (Oyebode and Stretch, 
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Table 3. Proportion of the stations whose performance enhances using the ANN models enriched with process-related features compared to 
mode! ANN_SSM e: % of stations at which the correlation improves over the mode! ANN_SSM Ievel; b: % of stations at which RMSE 
improves over the mode! ANN_SSM level). 

Model Training s1a1ions Validation stalions Tesl stations 

% of stations % of stations % of starions % of stations % of stations % of stations 
(corr t l (RMSE l)b (corr tin (RMSE l)b (corr tf (RMSE l)b 

ANN_SSM_NDVJ 6S.82 
ANN_SSM_ TEMP 49.4 
ANN_SSM_EXP-FILT-TS 64.S6 
ANN_SSM_EVAP-EFF-860 S4.SS 
ANN_SSM_NDYI_EYAP-EFF-B60_EXP-FILT-TS 84.06 

20 19). The input layer, consisting of SSM values and/or other 
process-related variables, is connected to the hidden layer(s), 
which comprises hidden neurons. The final ANN-derived es­
timates of the ANN are given by an activation function asso­
ciated with the final layer clenoted as the output layer, based 
on the sum of the weighted outputs of the hidden neurons. 

We started with the ANN mode] developed in Souissi et 
al. (2020), whose architecture consists of one hidden layer of 
20 hidden neurons, a tangent sigmoid function as the activa­
tion function of the hidden layer, a quadratic cost function as 
the Joss function and the stochastic gradient descent (SGD) 
technique as the optimization algorithm. This mode! was de­
veloped to estimate RZSM based on only in situ SSM in­
formation. SSM was not applied as a feature of hourly va l­
ues but was employed in the form of three features, namely, 
SSM rolling averages over lO, 30 and 90d. Additional ANN 
models were developed to study, through each mode!, the im­
pact of the application of the NDVl, SWl, evaporation ef­
ficiency and surface soi! temperature as features. A mode! 
combining surface soi! moisture, NOVI, evaporation effi­
ciency and the recursive exponential fi lter was further con­
siclered. These ANN moclels were trained and vaLidated on 
the 122 ISMN stations consiclerecl to be of good quality after 
a data-filtering step as detailed in Souissi et al. (2020). Train­
ing of the above ANN models was conducted considering 
70 % of these 122 stations. Thirty percent was reserved for 
validation, and testing was conducted at the rest of the sta­
tions. So, in summary, 122 stations were considered for the 
training/validation of the ANN models and 224 stations if ail 
input data available were used for testing. ln a second step, 
tests were conducted on data externat to the ISMN database, 
namely, on sites ofTunisia, ltaly and lndia. The trained mod­
els over the JSMN are used only in prediction mode over 
these sites. The data for SSM in addition to the other features 
are used as inputs, and RZSM is predicted in outputs. 
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44.3 4S.71 40.0 SS.22 40.3 
2S.3 SS.S6 38.89 S9.3S 42.99 

36.71 60.61 42.42 63.68 S0.2S 
28.S7 S2.94 41.18 S2.33 48.19 
62.32 61.29 54.84 62.07 S4.02 

3 Results 

3.1 Exponential filter characteristic time length 

A large proportion of the stations attained an optimal time 
constant (T best) value equal to 60 d, which suggests an ab­
normally long infi ltration time. These stations belong to the 
SCAN network and exhibit an RZSM acquisition depth of 
50cm, in contrast to other networks such as SMOSMA­
NIA, for instance, where RZSM is retrieved at 30 cm. The 
high values correspond to correlation with seasonal clynam­
ics rather than infi ltration processes. This depth cou Id explain 
the anomalously long infiltration time. l11is is consistent with 
Paulik et al. (20 14), in which the average T value with the 
highest correlation (Tbcst) increased with increasing clepth of 
the in situ observations. 

For comparison purposes, Paulik et al. (2014) found that 
23.98 % of the stations achieved Tbest = 5 d, while 21.58 % 
of the stations achieved Tbesr ~ 60 d (60 or 100 d). 

Alberge! et al. (2008) considered an average Tbest value 
of 6d for the SMOSMANTA network. This value repre­
sented the average Tœst va lue for ail stations belonging to the 
SMOSMANlA network. ln our case, the average Tbesr value 
for ail stations of the SMOSMANIA network reached 9 d. 
In this study, an average Tœst value could be established for 
each station or each network. However, this is not relevant to 
our work because we aim to evaluate maps of remote-sensing 
data in the next steps, and thus we did not c,ompute Tbesi at 
each location. We fixed the value of T to 5d as a med ian 
infil tration ti me. 

3.2 lntercomparison of the ANN mO<lels 

The distribution histograms for training, validation and test 
stations (Fig. 3) show that the integration of the considered 
process-related features improved the predict ion accuracy in 
certain cases compared to the reference. Ti me series of good 
and Jess good quality of fit were provided in Appendix E 
for training, validation and test stations using the reference 
mode! ANN_SSM and the most complex ANN mode!. 

In terms of the NDVI, 65.82 %, 45. 71 % and 55.22 % 
of the stations attained better correlation values with 
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Figure 3. Correlation bistograms of ail tested ANN models cornpared to ANN_SSM (a) on u·aining stations (b), on validation stations (c) 
and on test stations (see Appendix D for RMSE histograms). 
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ANN_SSM_NDYI than those obtained with ANN_SSM for 
the training, val idation and test stations, respectively. Root 
mean square error (RMSE) decreased for 44.3 %, 40.0 % and 
40.3 % of the stations with ANN_SSM_NDYI compared to 
model ANN_SSM for the training, validation and test sta­
tions, respectively (Table 3). 

ln regard to the ANN_SSM_ TEMP mode) that inte­
grates the soil surface ternperature, 49.4 %, 55.56% and 
59.35 % of the training, validation and test stations ex­
hibited higher correlation values than those obtained with 
the ANN_SSM mode), respectively. RMSE decreased with 
ANN_SSM_TEMP compared to model ANN_SSM for 
25.3 %, 38.89 % and 42.99% of the training, validation and 
test stations, respectively. 

64.56 %, 60.61% and 63.68% of the training, valida­
tion and test stations attained better correlations than those 
obtained with mode) ANN_SSM, respectively. ln addition, 
RMSE decreased for 36.71 %, 42.42 % and 50.25 % of the 
training, validation and test stations with ANN_SSM_EXP­
RLT-T5 compared to mode) ANN_SSM, respectively. 

Regarding the evaporation efficiency, we considered dif­
ferent values of the fitting parameter B (Eq. 4) such that B re­
mained within the (50, 60] interval. This parameter can be 
fitted using different variables, such as the wind speecl or rel­
ative humidity. Comparisons based on the correlation values 
provided by the different models for each B value indicated 
that the performance was insensitive to the B value. Thus, 
we fixecl the B value to 60 Wm- 2. Comparison of models 
ANN_SSM and ANN_SSM_EVAP-EFF-B60 revealed that 
54.55 %, 52.94 % and 52.33 % of the training, validation and 
test stations attained higher correlation values with the lat­
ter model, respectively. RMSE was reduced for 28.57 %, 
4l.l8 % and 48.19% of the training, validation and test sta­
t.ions with ANN_SSM_EVAP-EFF-B60 compared to model 
ANN_SSM, respectively. 

Finally, we investigated the impact of the joint ap­
plication of the NDYT, recursive exponential filter (T::: 
5 cl) and evaporation efficiency (B,;,, 60 W m-2) in the 
ANN_SSM_NDYl_EVAP-EFF-B60_EXP-FlLT-T5 model. 
The surface soil temperature was not included, as its ef­
fect is included in the evaporation process. At 84.06 %, 
61.29 % and 62.07 % of the training, validation and test sta­
tions, the correlation value obtained with this mode) was 
higher than that obtained with the ANN_SSM mode), re­
spectively. In addition, RMSE was minimized for 62.32 %, 
54.84 % and 54.02 % of the training, validation and test sta­
tions with ANN_SSM_NDYI_EVAP-EFF-B60_EXP-FILT­
T5 compared to model ANN_SSM, respectively. 

Considering mode) ANN_SSM_NDYl_EYAP-EFF-
B60_EXP-FILT-T5, only one training station had a decrease 
in correlation by more than 0.1 , namely, station "Lind#I" 
(network "SCAN") compared to the reference model 
ANN_SSM. Ali inputs were not available at the same 
dates, which implied a significant reduction in data points 
(see Appendix F). The decrease in correlation and increase 
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in RMSE did not exceed 0. 1 and 0.01 m3 m- 3, respectively, 
for the rest of the stations of lower performance metrics with 
the most complex ANN (Table 4). 

Similarly for validation stations, only one station had a de­
crease in correlation above 0.1, namely, station "PineNut" 
(network SCAN), with model ANN_SSM_NDYI_EVAP­
EFF-B60_EXP-FlLT-T5. This decrease can be also ex­
plained because of data shortage (see Appendix F). The de­
crease in correlation and increase in RMSE did not exceed 
0.1 and 0.01 m3 m- 3, respectively, for the rest of the stations 
of lower performance metrics with the most complex ANN 
(Table4). 

Regarding the test stations, correlation decreased by 
more than 0.1 and RMSE increased by more than 
0.01 m3 m- 3 with model ANN_SSM_NDYI_EYAP-EFF­
B60_EXP-FILT-T5 compared to model ANN_SSM, detected 
for only two stations. Both stations, namely, stations "S­
Coleambally" and "Widgiewa", which belong to network 
"OZNET", significantly lose in data volume when process­
related variables are integrated into ANN and more precisely 
because of NOVI data availability (see Appenclix F). For the 
rest of the test stations, coffelation decreased and RMSE in­
creased simultaneously by less than 0.1 and 0.01 m3 m- 3, 

respectively, with model ANN_SSM_NDVI_EVAP-EFF­
B60_EXP-FILT-T5 (Table 4). 

Always in terms of the general performance of 
model ANN_SSM_NDYI_EYAP-EFF-B60_EXP-FILT-T5, 
about 75 % of the stations have an RMSE of less 
than 0.05 m3 m- 3, and around half of the stations have 
an RMSE of less than 0.04m3m- 3. This accuracy is 
consistent, for instance, with the target va lue in the 
SMAP (Entekhabi et al., 2010) and SMOS (Kerr et al., 
2010) missions, which is equal to 0.04 m3 m- 3, and also 
with the average sensor accuracy adopted by Dorigo et 
al. (2013), which is equal to 0.05 m3 m-3. Overall, the most 
complex model ANN_SSM_NDYl_EYAP-EFF-B60_EXP­
FILT-T5 can successfully characterize the soil moisture dy­
namics in the root zone since half of the stations have a cor­
relation value of greaterthan 0.7. Pan et al. (2017) developed 
different ANN models to estimate RZSM at depths of 20 and 
50 cm over the continental USA using surface information. 
TI1ey found that half of the stations have an RMSE of Jess 
than 0.06 m3 m- 3 and that more than 70 % of stations have a 
correlation above0.7 when preclicting RZSM at 20 cm. How­
ever, the developed ANN was less effective in RZSM predic­
tion at 50 cm, which is also in accordance with Kornelsen 
and Coulibaly (2014). In our study, the denses! soit mois­
ture network is SCAN, located in the USA. Soil moisture 
was predicted at a depth of 50 cm over this network. Around 
half of the stations have a correlation value of above 0.6 and 
an RMSE of less than 0.04 m3 m-3 after the integration of 
process-related inputs. Pan et al. (2017) suggest that the use 
of only time-clependent variables may not be sufficient for 
the ANN models to accurately predict RZSM and suggest 
adding soil texture data. 
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3.3 Robustness of the approach 

To further assess the robustness of our approach, which in­
volves RZSM prediction using the different ANN models 
with different features, we predicted RZSM at sites not pre­
viously considered in previous parts of the study. The se­
lected stations are Jocated in the Kairouan Plain, a semiarid 
region in centra l Tunisia, the Landriano site located in the 
north of Italy, and the Berambadi watershed located in Gun­
dalpet Taluk, southern lndia. ln the case of Tunisia, model 
ANN_SSM yielded moderate to low-precision predictions, 
as highlighted by the performance metrics listed in Table 5. 
The time series (see Appendix G) show that the RZSM pre­
dictions followed the SSM seasonality, wh ich was reflected 
by the false peaks generated in the RZSM predictions when­
ever a sharp increase or decrease occurred in the SSM val­
ues. This observation was also found in Souissi et al. (2020). 
ActuaJ ly, the Kairouan Plain is characterized by a semiarid 
env ironment where rainfall events infrequently occur and the 
level of evaporation is high. TI1e reference mode) ANN_SSM 
shows its limitations in accurately predicting RZSM in areas 
with no alternate wet and dry cycles. 

However, the consideration ofadditional features, namely, 
the NDYl, evaporatfon efficiency and SWJ in the ANN 
models, resulted in good agreement between the in situ 
and predicted RZSM values (Fig. 4). The correlation 
values were improved by 60.04 %, 169.5 %, 112.02 %, 
80.23 % and 53. 7 % at stations Barrouta-1 60, Hmi­
date_ 163, Barrage_! 62, Bouhajla_ l 64 and Pl 2, respectively, 
with the ANN_SSM_NDYI_EVAP-EFF-B60_EXP-FlLT-T5 
model over ANN_SSM model values. Similarly, RMSE val­
ues were reduced (Table 5). As shown in Fig. 4, the most 
complex ANN mode) is able to capture the variations of 
RZSM. This finding highlights the added value of our hy­
brid approach based on an association of a machine learn­
ing method with process-related variables. lnstead of inject­
ing uncertain information into physical models, such as soil 
properties, we used a nonparametric method related to phys­
ical processes without using forcing data that may be subject 
to errors and potentially lead to inaccurate tracking of the 
long-term evolution of soil moisture. 

A second comparison can be conducted between the qual­
ity of fit of these independent datasets and training datasets. 
Actually, the climate class of the Tunisian stations is Bsh 
(see Appendix A). At the training stage, no station falls into 
climate class Bsh (see Appendix A). However, some train­
ing stations fall under a similar climate class, which is Bsk 
(see Appendix B). Table 5 presents correlation and RMSE 
values for these training stations and Tunisian sites with 
both models ANN_SSM and ANN_SSM_NDYI_EVAP­
EFF-B60_EXP-FILT-T5. For ail training stations, perfor­
mance metrics are slightly enhanced, with the most complex 
ANN mode) compared to the reference mode) ANN_SSM, 
except for stations GrouseCreek, Harmsway and Lind#I, 
whose performance decreases. Overall, the range of correla-
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Table 5. Performance metrics of models ANN_SSM and ANN_SSM_NDVI_EVAP-EFF-B60_EXP-FILT-T5 at lraining stations of climate 
"Bsk" and Tunisian stations of climate "l3sh". 
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Figure 4. In situ SSM. in situ RZSM, m1d predicted RZSM series al the stations in the Kairouan Plain (Tunisia) wiU1 mode] 
ANN_SSM_NDVI_EVAP-EFF-B60_EXP-RLT-T5 (see Appendix G for a larger figure format). 
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tion values is similar for training and external validation sta­
tions with model ANN_SSM_NDVI_EVAP-EFF-B60_EXP­
FILT-T5, and RMSE is greatly reduced for the Tunisian sta­
tions compared to the training stations. Given the results on 
unseen datasets, namely, on Tunisia, the performance of the 
most complex ANN model is good as it is able to generalize 
the patterns present in the training dataset. 

At the southern lndian stations, the ANN_SSM model 
yielded good agreement even without the integration of 
process-related features (Table 6). These features added lit­
tle to nonsignificant improvement. The same observation was 
made at the ltalian site. The application of multiple features 
performed the best under arid conditions, e.g., in Tunisia. ln 
the tropical and temperate climate regions, this was not the 
case. The presenceof clouds in theMODlS NOVI and poten­
tial evapotranspiration products could explain tllis observa­
tion at sites of southern lndia and northern ltaly. ln southern 
lndia, for instance, the maximum variability in soil moisture 
occurred during the monsoon season, which is characterized 
by a large amount of clouds. Moreover, the coarse resolu­
tion of the MODIS NOVI product makes it sometimes not 
adapted to the considered site. Chen et al. (2016) investi­
gated the impact of sample impurity and landscape hetero­
geneity on crop classification using coarse-spatial-resolution 
MO DIS imagery. They showed that the sample impurity such 
as mixed crop types in a specific sample, compositional land­
scape heterogeneity, which is the richness and evenness of 
land cover types in a landscape, and configurational hetero­
geneity, which is the complexity of the spatial structure of 
land cover types in a specific landscape, are sources of un­
certainty affecting crop area mapping when using coarse­
spatial-resolution imagery. High-resolution NOVl from sen­
sors like Sentinel-2 could have been used in this exercise to 
mitigate the spatial resolution issue; however, MODTS data 
were privileged in order to provide NOVI and PET from the 
same sensor. 

4 Discussion 

Climate analysis of the results yielded by the different mod­
els indicated that, among ail the models, the climate class 
with the highest mean correlation change rate (Fig. 5) was 
class BWk (see Appendix A), which regroups desert ar­
eas where the link between SSM and RZSM is weak due 
to high evaporative rates. Class Dfa (see Appendix A), 
which includes areas experiencing harsh and cold win­
ters, also yielded a high mean correlation change rate 
(> 100 % ). Similarly, at stations of this climate type, the 
link between the surface and root zone is poor. ln re­
gard to class Cfa (see Appendix A), in which more than 
80 % of the total stations belong to the SCAN network, 
the high mean correlation change rate could be explained 
by the surface-subsurface decoupling phenomena detected 
within this network, as previously reported in Souissi et 
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al. (2020). The model with the largest number of sta­
tions with improved predictions over the ANN_SSM mode! 
predictions was ANN_SSM_NDVI_EVAP-EFF-B60_EXP­
FILT-T5. Actually, the coupled use of process-related fea­
tures in the ANN models exerted a greater impact on the pre­
diction accuracy than that exerted by the one-at-a-time appli­
cation ofthese features. ln mode! ANN_SSM_NOVI_EVAP­
EFF-B60_EXP-FILT-T5, the three process-based features 
jointly employed seemed to countemalance the weight of the 
three SSM features. In this model, the process-related fea­
tures were equally represented versus the SSM information 
depicted by three features. The redundancy of the consid­
ered SSM information could explain the limited impact of 
the one-at-a-time addition of process-related features. 

ln addition, Karthikeyan and Mishra (2021) demonstrated 
that, at root depths beyond 20 cm, the importance of SSM 
was notably lower than that at the 20 cm depth, signifying 
decorrelation between surface and deeper SM values, which 
is in accordance with the findings in Souissi et al. (2020), 
and it was further revealed that vegetation exhibits a higher 
importance than that of the meteorological predictors and 
precipitation. Kornelsen and Coulibaly (2014) indicated that 
evapotranspiration is the most important meteorological in­
put for the prediction of soi! moisture in the root zone with 
the MLP, which reflects the importance of the water vapor 
flux in soi! moisture state determination. 

mean_corr_change_rate = mean 

(
COITANN SSM X - corrANN SSM ) - - - · 100 

corrANN_SSM 
(5) 

where X denotes a process-related variable (XE ["NDVl", 
"EXP-FILT-T5", "EVAP-EFF-B60'', ''TEMP"]). 

The world map illustrated in Fig. 6 shows the best­
performing ANN models based on the mean correlation 
change rate (Eq. 5). We assumed that the results in a given 
area of a specific climate class could be extended to other ar­
eas of the same climate class even if we did not consider the 
data for these areas. The climate classes without at least one 
station were marked in black and labeled with "NO DATA". 

fn arid areas such as the eastern and western sides of 
the USA with high evaporation rates, ANN_SSM_EVAP­
EFF-B60 was the best-performing model. Similarly, in bare 
areas of Africa, the Middle East and Australia where the 
Bwh climate class prevailed (arid desert hot climate; see Ap­
pendix A), the evaporation efficiency was the best informa­
tive variable. 

ln the internai part. of continental Europe and near the 
Mediterranean basin, the NOVI was the most relevant indi­
cator for RZSM estimation, where agricultural fields dom­
inated. Similarly, the Great Plains region in the USA was 
deeply alfected by the NOVl, as this region is a cultivated 
area. fn Nordic areas characterized by the ET climate class 
(Polar Tundra climate, see Appendix A) and mainly covered 
by grassland and shrubland areas according to ESA CCI land 
cover maps. 
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Figure 5. Climate classitication of the stations perfmming better with models (a) ANN_SSM_NDVl, (b) ANN_SSM_EXP-FCLT-TS, 
(c) ANN_SSM_EVAP-EFF-B60, (d) ANN_SSM_TEMP and te) ANN_SSM_NDVI_EVAP-EFF-B60_EXP-FCLT-T5 compared to model 
ANN_SSM (dark green corresponds to stations whose con-elation improved with complexified models, light green corresponds to total 
stat"ions and rate ln blue corresponds to the mean correlat"ion change rate per climate class). 

Table 6. Perfocmance met ries of models ANN_SSM, A>lN_SSM_NDVl and ANN_SSM_NDV1_EVAP-EFF-B60_EXP-FILT-TS al the sites 
in southern lndia and northern ltaly. 

Model ANN_SSM_NDVI_EVAP-
station ANN_SSM ANN_SSM_NDVI EFF _B60_EXP-FCLT-TS 

Correlalion RMSE Con-elation RMSE Correlation RMSE 

India 

Madyanahundi 0.813 0,04 
13beemanbidu 0.76 0.046 
Beechaoalli2 0.825 0.038 
Beechanalli 1 0.713 0.024 

Italy 

Landriano 0.861 0.038 

ln Nordic areas characterized by the ET cli mate class, the 
soil temperature was the most important root-zone soil mois­
ture indicator, mai ni y because of the freeze-thaw events en­
countered in these regions. ln tropical savannah wet areas 

https://doi.or'IJl0.5194/hess-26-3263-2022 

0.78 0.042 0,744 0.044 
0.784 0.044 0.763 0.046 
0.787 0.04 0.743 0.044 
0.713 0.024 0.633 0.025 

0.827 0.041 0.841 0.038 

(class Aw; see Appendix A), the ANN_SSM_TEMP model 
was the best-performing mode!. 

This classification definitely suffered from limitations 
maiuly provoked by the generalization of the climatic analy­
sis results to areas not considered in this study. For instance, 

Hydrol. Earth Syst. Sei., 26, 3263-3297, 2022 



 
 

 
 

3276 R. Souissi et al.: lnlegrating process-related information into an ANN for root-zone soil moisture predictlon 

_._,~ ..... 

- Al - Csb 
- Am - Dfa 

Aw 
- Dfb 

- BSn - Oie BSk - D.sa 
DWh - Dsb 

,. i 
BWK Dsc 

- cfo C)\IIÇ 

- CIi> ET 
C,a - NODATA 

-1//h EVAP ,'\.'\.~ EXP ·:::·:::: NDVI == TEMP 

Fib'llfC 6. World map of the best-performing ANN models per climate class based on the mean correlation change rate; colors correspond 
to climate classes (see Appendix A), and hatches correspond to the most contributive input to the predictions, namely, EVAP (evaporalion 
efficiency), EXP (exponential ti.lter SWI), NOVI, and 1EMP (surface soil temperature). 

in regions of climate class Ote (cold dry without a dry sea­
son, cold summer climate; see Appenclix A), we expect the 
temperature to serve as the most relevant indicator instead of 
the evaporation efficiency. 

5 Conclusion 

In thls study. we developed several ANN moclels to estimate 
RZSM based either solely on in situ SSM Jnformation or 
on a group of process-related features in addition to SSM, 
namely, the soi! water index computed with a recursive ex­
ponential filter, evaporation efficiency, NDVT and surface soi! 
temperature. Oifferent regions across the globe with distinct 
land cover and climate patterns were considered. The main 
conclusion of this study was that the consideration of more 
features in addition to SSM information could enhance the 
accuracy of RZSM predictions mai11ly in regions where the 
link between SSM and RZSM is weak. 

ln arid areas with high evaporation rates, the most infor­
mative feature was the evaporation efficiency. In regions with 
agricu ltural fields, the NOVI was, for example, the most rele­
vant inclicator to predict RZSM. Overall , the best-performlng 
moclel inclucled the surface soil moisture. NDVr, SWI and 
evaporation efficiency as features. The robustness of the ap­
proach was further assessed through additlonal tests con­
sidering external sites in central Toolsia, lndia and Italy. 
Similarly, the process-related features exerted a positive im-

Hydrol. Earth Sys t, Sei., 26, 3263- 3297, 2022 

pact on the predlction accurncy when comb111ed with sur­
face soi) moislure in the case of 1\misia. The mean cor­
relation across the five 1\1nisian stations sharply increased 
from 0.44 when on ly SSM was considered to 0.8 when ail 
process-related features were combinecl with SSM. ln lndia 
and ltaly, tbe correlations were already high with the ref­
erence mode! ANN_SSM. The change in correlation afler 
the addition of process-related features, namely, NDVT. is 
about - 0.04. which is nonsignificant and is potentially be­
cause of the cloudy conditions in lndla and the noisy MODlS 
proclucts. Also, the crop beterogeneity and sa:mple impurity 
make MODIS NOVI proclucts not aclaptecl to a]J sites. 

As a research perspective, datasets can be separated into 
clusters corresponding to major climate classes and/or soil 
types. More analysis can be conducted in this direction to 
eventually make connections between the different inputs 
and cUmate/soil configurations. 

Future work wiU exarn.ine the ability of the de­
veloped moclel to estimate RZSM across larger areas 
based on remote-sensing globa l soil moisrnre products. 
The use of remote-sensing-derived soil moisture products 
may yielcl lower correlations with the reference mode) 
ANN_SSM, which potentiaUy implies further improvement 
when process-related features are addecl. 
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Appendix A: Climate classes (Koppen classification) 

Af Tropical rainforest 
Am Tropical monsoon 
As Tropical savanna dry 
Aw Tropical savanna wet 
BWk Ariel desert cold 
BWh Arid desert hot 
BWn Ariel desert with frequent fog 
BSk Arid steppe cold 
BSh Arid steppe hot 
BSn Ariel steppe with frequent fog 
Csa Temperate dry hot summer 
Csb Temperate dry wann summer 
Csc Temperate dry colcl summer 
Cwa Temperate dry winter, hot summer 
Cwb Temperate dry winter, warm summer 
Cwc Temperate dry winter, cold summer 
Cfa Temperate without a dry season, hot summer 
Cfb Temperate without a dry season, warm summer 
Cfc Temperate without a dry season, cold summer 
Osa Cold dry summer, hot summer 
Dsb Cold dry summer, warm summer 
Ose Cold dry summer, cold summer 
Dsd Cold dry summer, very cold winter 
Owa Cold dry winter, hot summer 
Dwb Cold dry winter, warm summer 
Owc Cold dry winter, cold summer 
Owd Cold dry winter, very cold winter 
Dfa Cold dry without a dry season, hot summer 
Ofb Cold dry without a dry season, warm summer 
Ofc Cold dry without a dry season, cold summer 
Dfd Cold dry without a dry season, very cold winter 
ET Polar tundra 
EF Polar eternal winter 
W Water 
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Appenclix B: Climate and soli texture properties of the 
soit moisture stations 
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Figure Bl. Climate and soil texture for (a) training stations. (b) validation stations and (c) test stations. 

Appenclix C: Evaporation efficiency 

Evaporation efficiency (Sect. 2.2.2): the standard equarions 
to compute evaporation efficiency (/33) in Merlin er al. (20 10) 
are as follows: 

/33 = [~ - icos(n0t./0max)] P for0t. :-:;0max, 

fh = 1 for 0t. > 0max, 

Hydrol. Earth Syst. Sei., 26, 3263-3297, 2022 

(C l) 

where 0t. is the water content in the soit layer of thickness L. 
P is a parameter computecl as follows: 

(C2) 

0max is the soil moisture at saturation. LEp is the potential 
evaporaUon. L1 is the thinnest represented soil layer, and 
A3 (unitless) and 83 (W m- 2) are the two best-fit parameters 
a priori clepending on the soil texture and structure, respec­
tively. 
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Appendix D: Intercomparison of ANN models based on 
RMSE 
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Figure Dl. RMSE histogrm11s of all tested ANN moclels compm·ed to ANN_SSM (a) on training stations, (b) on validation stations and 
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https://clol.org/10.5194/hess-26-3263-2022 Hydrol. Earth Syst. Sei., 26, 326~3297, 2022 



 
 

 
 

3280 R. Souissi et al.: Integrating process-related information into an ANN for root-zone soit moisture prediction 

Appendix E: Time series of good and less good quality 
offlts 
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Figure El. ln situ SSM, in situ RZSM, and predicted RZSM series at station Beloufoungou Mid (AMMA-CATCH) with mode! ANN_SSM. 

-I"'\ 
0.4 

E 
;;:;-- 0.3 
E 

~ 
30.2 
V) 

0 
E 
·00.1 
V1 t '~ ~ ; ~ 

ln·S1tu RZSM , \ \ 
Predkted RZSM ~ 
IMiltu SSM 

\ 
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ANN_SSM_NDV1_EVAP-EFF-B60_EXP-FILT-T5. 
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Appenclix F: Worst-performing examples of moclel 
ANN_SSM_NDVI_EVAP-EFF-B60_EXP-FILT-T5 
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Figure FI. ln situ SSM, in situ RZSM, and predicted RZSM series at station Lind#l with mode! ANN_SSM. 
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Appendix G: Soi! moisture timeseries over Tunisia 
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Code availabiliry. The code is not publicly accessible because this 
is in the requirements of some projects. 

Dara availabiliry. ln situ soi! moisture data and in situ 
surface temperature data can be publicly accessed from 
the [nternational Sail moisi ure data. hosting facili ty 
(Dorigo et al.,2021). MODIS NDV! data are available at 
https://doi.org/ l 0.5067/MODIS/MOD I 3QI .006 (Di dan, 2015) 
and MODIS potential evapotranspiration data are avaiJable at 
https://doi.org/10.5067/MODIS/MODl 6A3.006 (Running et al., 
20 17). 
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and 1km resolution 
 

This chapter is the final step of this PhD and encompasses the work presented in the following 
paper: 

Souissi, R., Al Bitar, A., Corbari, C., Mancini, M., and Zribi, M.: Root-Zone soil moisture 
over Continental Europe using machine learning, Submitted to International Journal of 
Applied Earth Observation and Geoinformation, 2022. 

 

  



Chapter 4: RZSM spatial maps at large scale and 1km resolution 
 

 

113 
 

4.1 Introduction 
 

RZSM has been extensively studied at local or regional scales. However, few attempts were 
made to map RZSM at large scales.  The approaches which are currently suggested to answer 
the need of large-scale RZSM are hindered by the coarse spatial resolution at which RZSM is 
predicted. In order to address the needs of some applications namely agriculture, a high 
spatial resolution of at least 1 km is required for reliable estimates of RZSM. This chapter sets 
out a methodology to map RZSM at 1 km spatial resolution over Continental Europe which is 
a large area with disparate climate and soil patterns. The work is based on the model 
developed in the previous chapter which includes SSM, NDVI, SWI and evaporation 
efficiency. No training was done in this step; the model was run only in prediction mode. The 
objective is to assess the feasibility of spatially generalizing a locally-trained ANN model.  

As a first step, high resolution RZSM maps were produced using for the SSM features the 
Copernicus product SSM1km which is based on C-band Sentinel-1 data to generate the three 
SSM features required by the ANN model. The produced maps were validated against the 
ERA5-Land reanalysis RZSM product and against in-situ measurements which are provided 
by ISMN over four European soil moisture networks.  In order to further assess the quality of 
the produced maps, additional RZSM maps were derived from other SSM products of coarser 
spatial resolutions. Daily RZSM maps were generated at 36 km spatial resolution using the 
SMAP level 3 SSM product (SMAP_L3_SM_P). Similarly, these maps underwent a large-
scale and local validations against the ERA5-Land RZSM product and in-situ data, 
respectively. Finally, daily RZSM maps were also generated by our ANN model at 9 km 
spatial resolution using the ERA5-Land reanalysis SSM product and validated like the 
previous maps.  

4.2 Conclusion 
 

One major result of this work consists in the major impact of the quality and the temporal 
resolution of the used SSM inputs has on the quality of the RZSM predictions. Maps at high, 
intermediate and coarse spatial resolutions were produced using the ANN model developed in 
the previous chapter. This model encompasses SSM, NDVI, SWI and evaporation efficiency 
features. A large-scale validation was conducted against the reanalysis RZSM product 
provided by ERA5-Land. A local comparison was also done against in-situ RZSM data 
provided by ISMN over four European soil moisture networks. The produced RZSM maps at 
1 km resolution were consistent with validation data over many areas. This was illustrated in 
the seasonal correlation maps comparing the predictions to the ERA5-land reanalysis product 
and also by correlation and RMSE boxplots which compare the predictions to in-situ data.  
However, the C-band SSM information which is represented by the SSM1km product, was 
proved inadequate over complex sceneries such as forests, irrigated areas, areas with 
freeze/thaw events, etc. This finding is in accordance with previous studies which investigated 
the quality of this product and found the same limitations. Despite the drawbacks, this product 
has the advantage of a high spatial resolution which is necessary of agricultural applications.  



Chapter 4: RZSM spatial maps at large scale and 1km resolution 
 

 

114 
 

When it comes to coarse spatial resolutions, The SSM product provided by the SMAP 
mission (SMAP_L3_SM_P) yielded slightly more accurate predictions. The seasonal 
correlation maps were enhanced mainly over agricultural areas. However, RZSM prediction 
maps produced at both 1 km and 36 km spatial resolutions were less accurate then the ERA5-
Land reanalysis RZSM product when compared against in-situ data. This finding has led us to 
test the ANN model with the ERA5-land reanalysis SSM product at 9 km spatial resolution. 
Overall, the predictions improved compared to the previous ANN model outputs. This can be 
seen through the enhanced correlation and RMSE values. Most interestingly, the prediction 
accuracy of the maps at 9 km spatial resolution was better than that of the ERA5-land RZSM 
product namely over network SMOSMANIA in France. Despite the limitations detected with 
the high resolution RZSM predictions and the coarse resolution hampering the rest of the 
maps, the results confirm that a data-driven approach like ANN can be very reliable for 
RZSM estimation. The use of better quality SSM source products is a promising option for 
enhanced RZSM estimates.  

4.3 Article 
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Abstract 

Root zone soil moisture (RZSM) is a land variable of great imp011ance for different applications. No cunent 

remote sensing technique can directly retrieve the root zone component but many eff011s were deployed to 

map RZSM at large scales. However, the available products provide RZSM at coarse spatial resolutions and 

tlms are not adapted for agricultural applications which require at least sub-kilomehic resolutions. The main 

objective ofthis study is to produce spatial RZSM maps at 1km resolution over continental Europe using an 

a11ificial neural network (ANN) model which is based on surface soil moisture (SSM) and process-related 

variables. Daily RZSM maps were produced at subkilometric spatial resolution such that the SSM features 

were computed using the Copernicus Surface Soil Moisture 1km Version 1 product (SSMlkm). Besides, 

evaporation efficiency was included in the model in order to account for the evaporation process. Soil water 

index (SWI) was computed by a recursive exponential filter using SSM info1mation to quantify infiltration. 

Remote sensing Nomialized difference vegetation index (NDVI) was used to characteiize the plant growth. 

The ANN model is mn only in prediction mode, i.e. with no prior calibrations. The training has been already 

conducted in a previous study such that the training dataset included in-situ SSM information provided by 

the International soil Moisture Network (ISMN) and remote sensing-based features over different areas of 

the world. The quality of the produced RZSM maps at 1km (RZSMANN_ssM1km) was assessed at large scale 

through a comparison against the ERA5-land reanalysis RZSM product (RZSMERAS) and at a local scale 

through a compaiison against in-situ measurements provided by ISMN. The perf01mance of the model was 

acceptable over many areas but was hindered by complex contexts heavily impact the C-band SSM product. 

The same ANN model was also used to map RZSM at coarser resolutions. Additional RZSM maps at 36km 

(RZSMANN_SMAP36km) and 9km (RZSMANN_ERA5_9km) spatial resolutions were generated using the 

SMAP_L3_SM_P product provided by The Soil Moisture Active Passive (SMAP) mission and the ERA5-

Land reanalysis SSM product, respectively. Seasonal coITelation maps between RZSMANN_SMAP36km and 

RZSMERAS clearly show an enhancement compared to those between RZSMANN_ssM1km and RZSMERAS­

Besides, the RZSMANN_ERAs_9km product outperfonned RZSMERAS over some areas mainly over network 

SMOSMANIA in France. The added value and limitations of the model were discussed with regards to the 

different challenges of the temporal availability of the SSMlkm product, the land cover, the freeze/thaw 

conditions, etc. Better SSM inputs could improve the predictions and thus allow global mapping of RZSM. 

Keywords: Root-zone soil moisture, Altificial Neural Networks, Subkilometric resolution, Sentinel-1, 
SMAP, ERA5-land, ISMN. 



 

 

41 1 Introduction 

42 Large-scale soil moisture mapping is necessary to better manage the water resources allocated for hydrology, 
43 meteorology and agriculture mainly in the cmrent drought and climate change contexts (Berg and Sheffield, 
44 2018). To mention but a few, soil moisture retrieval improves the assessment ofavailable plant water and 
45 minimizes the risks of environmentally damaging human activities. Moreover, skillful quantification of root-
46 zone soil moisture (RZSM) not only helps detect plant water stress and tlms drought events, but also 
4 7 improves weather forecasting and climate projections through enhanced latent heat fluxes (Dinneyer 
48 et al. , 2006). 

49 Remote sensing techniques have been proved efficient in retTieving smface soil moisture at high spatial and 
50 temporal resolutions. Several satellite missions provide smface soil moisture (SSM) estimations at different 
51 spatial resolutions. For instance, active and passive microwave sensors provide this information at regional 
52 to global scales (Paloscia et al. 2001). Coarse resolution (25- 50 km) soil moisture estimates are useful in 
53 suppo1t ofnumerical weather prediction, climate monitoring and flood forecasting (Lopez et al. 2020). They 
54 can be retrieved by the Soil Moisture Active Passive (SMAP) mission (Entekhabi et al., 2010) at 36km 
55 resolution (level 3) and 9 lan (level 3 enhanced). Besicles, the Soil Moisture and Ocean Salinity (SMOS) 
56 mission (Ken et al., 2001) provides level 3 SSM estimates at 25km spatial resolution (Al Bitar et al., 2017). 
57 Synthetic Aperture Radar (SAR) instmments, such as the C-band in Sentinel-1, provide SSM at high spatial 
58 and temporal resolutions (Zribi et al., 2011 ). In this context, different algorithms based on machine learning 
59 or change detection techniques have been developed to allow soil moisture mapping at field scale or 1 km 
60 spatial resolution (Tomer et al. 2015, Tomer et al. 2016, El-Hajj et al., 2017, Bauer-Marschallinger et al., 
61 2019, Nativel et al. , 2022). 
62 
63 However, no cunent remote sensing technique can directly retrieve RZSM since the soil representative depth 
64 impacting satellite instmments does not go beyond a few centimeters except for d1y sandy soils. Actually, 
65 the soil moisture rettieval depth is approximately equal to 5cm at L-band. However, P-band may provide 
66 RZSM in the future since a widely-held view is that this moisture retrieval depth increases with wavelength. 
67 Accordingly, P-band (- 40-cm wavelength/0.75 GHz) is under investigation for soil moisture observation 
68 over deeper layers of soil (Shen et al., 2021). RZSM can be also estimated through proxy information 
69 namely vegetation water stress. Vegetation canopy temperature and evaporative fraction (EF) have been 

70 used to estimate soil moisture (Hain et al., 2009) but these methods require surface flux data in addition to 
71 micrometeorological data, where accurate surface flux data is not explicitly available (Akuraju et al., 2021). 
72 

73 RZSM information can be directly collected from in-situ sensors that are installed either ve1iically or 
74 horizontally in tlle soil (Dobliyal et al., 2012). The International Soil Moisture Network (ISMN) 
75 encompasses comprehensive surface and root-zone soil moisture databases provided by operational soil 
76 moisture networks worldwide (Dorigo et al., 2011). Since direct in-situ measurements are not always 
77 available, different analytical methods can be applied to estimate RZSM measurements. These methods are 
78 based on theoretical or empilical relations between environmental variables controlling RZSM state 
79 (Cananza et al., 2021). Land smface models (LSM) such as Interaction Sol-Biosphère-Atmosphère (ISBA) 
80 (Noilhan and Mahfouf, 1996) and the Community Land Model (CLM; Oleson et al., 2010) are also used for 
81 estimating root zone soil moisture. Other methodologies include water budgets in crop models such as 
82 Aquacrop (Raes et al., 2009) that was successfully used to estimate RZSM. Such models are often coupled 
83 with data assimilation techniques (Kumar et al., 2009, Lievens et al. 2016, Reichle et al., 2019) since these 
84 models are affected by the accuracy of ancilla1y information. 

85 Data-driven methods that include Machine Leaming (ML) techniques have been widely used in soil 
86 hydrology in the last couple of decades and more pa1ticularly in de1iving RZSM from surface infonnation. 
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87 The different ML algorithms build mathematical models based on training sets and covariates to extract 

88 infonnation from data. Fmthe1more, they are tuned to handle diverse and large volmnes of datasets, which 

89 may be relevant for large scale studies or for operational water management (Carranza et al., 2021) . For 
90 instance, artificial neural networks have been applied to predict RZSM (Komelsen and Coulibaly, 2014; Pan 
91 et al. , 2017; Souissi et al., 2020; Souissi et al., 2022). Sorne studies have demonstrated that ANNs can 
92 achieve good RZSM estimates at local scales using surface measurements (Elshorbagy et al., 2010). While 

93 analytical solutions entail some assumptions to the physical model, data-d.riven approaches tend to constmct 
94 a relation between inputs and outputs. Komelsen and Coulibaly (2014) trained different surrogate ANN 
95 models with the data of different soil moisture profiles generated by HYDRUS-l D model over the lower 

96 Great Lakes region. They found that the ANNs were able to well represent the soil moisture dynamics of the 
97 independent testing sites from the same region, when the HYDRUS- lD estimates were close to the 
98 observations. The ability of ANN models to accurately predict RZSM over large areas and at fine resolutions 

99 is still understudied. Pan et al. (2017) used ANN models to generate RZSM in N 01th America using SMOS 
100 level 3 soil moisture data (nominal resolution of 43 km, which co1rnspond to 86% of the signal (Al Bitar et 
101 al., 2012)), and achieved a spatial soil moisture pattern comparable to that of Global Land Data Assimilation 

102 System Noah model with comparable performance to the SMOS surface soil moisture rehievals. Souissi et 

103 al. (2022) developed several ANN models to estimate RZSM based either solely on in situ SSM information 
104 or on a group ofprocess-related features in addition to SSM namely the soil water index cornputed with a 

105 recursive exponential fil ter, evaporation efficiency and NDVI. Different regions across the globe with 
106 distinct land cover and climate patterns were considered. Overall, good agreement between in-situ RZSM 
107 and predictions was recorded. 

108 The main objective ofthis study is to assess the utility of spatially generalizing a locally-trained ANN 
109 model. It aims at assessing the feasibility ofproducing spatially-coherent RZSM maps based on local 
110 training datasets. To do so, we propose a method to map RZSM at 1 kilometer resolution over a large area 

111 such as Continental Europe u sing an ANN model whose feah1res are SSM backward rolling averages over 
112 10, 30 and 90 days computed using the Copemicus Surface Soil Moisture 1km Version 1 product 

113 (SSMlkm), remote sensing-based evaporation efficiency, SWI computed using a recursive exponential filter 
114 and NDVI datasets from MODIS. This ANN model was previously developed and trained using in-sih1 SSM 
115 info1mation from ISMN and remote sensing-based features over different areas of the world in (Souissi et 
116 al., 2022). (1) We produced RZSM maps at 1km resolution, hereafter called RZSMANN_ssM1km, that we 

117 validated at the European scale through a comparison against ERA5-land RZSM reanalysis datasets 
118 (RZSMERAS), and locally through a comparison against in-situ measurements provided by ISMN over four 
119 European soil moisture networks. (2) We assessed the impact ofusing multi-source input SSM infonnation 
120 (radar, microwave and reanalysis) on the quality of the predictions. RZSM maps at different spatial 

121 resolutions, depending on the SSM source, were produced to highlight the advantages and limitations of 
122 each source. 

123 2 Materials and Methods 
124 2.1 Datasets 
125 2.1.1 Kilomett-ic resolution SSM data 

126 The Copemicus Smface Soil Moisture 1km Version 1 product (SSMlkm) was used to compute the SSM 
127 features of the ANN model in order to generate spatial maps ofRZSM at 1km spatial resolution. The 
128 SSM lkm product is obtained from Sentinel-1 radar backscatter images (level-1 data), acquired in 

129 Interferomehic Wade Swath (IW) mode and VV-polarization and jointly provided by the European Spa ce 

130 Agency (ESA) and the European Commission (EC). Daily in1ages at 1km ofrelative surface soil moisture 

131 (in percent saturation) were created from this raw satellite data (figure l(a)). 
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132 The SSMlkm retrieval algorithm is based on the TU Wien Change Detection Model (Bauer-Marschallinger 

133 et al. , 2017) which detives SSM from the backscatter coefficient cr0
. This model interprets changes in 

134 backscatter as changes in soil moisture. Other surface prope1ties such as the soil roughness and the 
135 vegetation structure are considered as static parameters. To estinrnte SSM, the actual backscatter value o0 (8, 
136 t) at time t and observation angle 8 is normalized to a reference angle 0 and linearly scaled between dry and 
13 7 wet reference values con-esponding to minimum and maximum backscattering coefficients, yielding relative 

138 surface soil water saturation SSM(t) (Bauer-Marschallinger et al., 2019). 

139 Copemicus SSMlkm is available for the Emopean continent eve1y 2-4 days, with the inclusion the: Sentinel-
140 1B data sta1ting in October 2016, depending on the individual location in relation to the non-unifonn 
141 coverage pattern, depending on the individual location (Bauer-Marschallinger et al., 2017). However, the 

142 Sentinell-B satellite sensor is unavailable since 23 December 202 1 which has led to a significant 
143 degradation ( of about 50%) to the daily observational coverage. The SSM data are available in the 

144 Copemicus Global Land Service (CGLS) data portal. The CGLS provides a large number ofhannonized and 
145 co-fom1atted bio-geophysical products in Near-Real-Time (NRT) at global scale (Bauer-Marschallinger et 
146 al., 2017). 

14 7 Pixel-wise backward rolling averages, over 10, 30 and 90 days of the SSMlkm datasets were computed and 
148 transfo1med into spatial 111aps, since the ANN model requires three SSM features conesponding to these 
149 rolling averages. For a given date and pixel, the SSM _RAVI 0d is equal to the mean of the availablle SSM 
150 values over the last 10 days (no-data values are ignored). The same goes for SSM_RA V30d and 

151 SSM_RAV90d (figure 1). 
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152 Figure l: Maps on 2020-04-05 of (a) SSMlkmdaily composite image (b) SSM rolling average over 10 days (c) SSM 
153 rolling average over 30 days (d) SSM rolling average over 90 days (plots are projected onto Plate Canée andl ail soi! 
154 moisture is in relative units (%) , pale yellow areas are not covered). 
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157 2.1.2 Coarse resolution SSM data 
158 The Soil Moistme Active Passive (SMAP) mission was launched by the National Aeronautitcs and Space 

159 Administration (NASA) in 2014 to study the surface soil water. SMAP bas an active instrument (radar) and a 
160 passive one (a radiometer) on board. The SMAP observations are acquired at a fixed angle (40°) in dual 
161 polarization with a 39 km x 47 km nominal resolution. While the radiometer provides "passive" estimates 
162 with its coarse spatial resolution, the radar analyzes the "active" backscatter obtained from a Synthetic 

163 Aperture Radar (SAR) technology at 3 km spatial resolution. The SAR stopped operations 3 months after 
164 launch due to failure. The combination of the two datasets creates the final product,joining the penetrating 
165 capacity of the "passive" technology with the high spatial resolution of the "active" one. SMAP level3 soil 

166 moisture data from passive sensor at 36km (SMAP _L3_SM_P) were downloaded from the NASA Eaithdata 
167 portal. Daily composite SSM maps were derived from the AM (descending) and PM (ascending) overpass 
168 of SMAP L3 SM P. 

169 

170 2.1.3 ERAS-land data 

171 ERA5 is the fifth generation ECMWF reanalysis for the global climate and weather for the past 4 to 7 

172 decades. ERA5 provides hourly estimates for a large number of atmospheric, ocean-wave and land-smface 
173 vai·iables. Four main subsets exist, nan1ely hourly and monthly products, on pressure levels as well as on 
17 4 single levels ( atmospheric, ocean-wave and land smface quantities ). ERA5-Land is a replay of the land 
175 component of the ERA5 climate reanalysis which is forced by meteorological fields from ERA5 (table 1). 

176 The outputs are provided on an hourly frequency and the fields ai·e masked over oceans. Daily means of 
177 volumetric RZSM, volumetric SSM and 24-hour accumulated precipitation values were downloaded from 

178 the «Daily statistics calculated from ERA5 data » application that allows users to compute and download 

179 daily statistics of different variables from a number of hourly ERA5-land datasets (Muftoz-Sabater et al., 
180 2021). As far as soil moisture information is considered, the ECMWF Integrated Forecasting System (IFS) 

181 bas a four-layer representation of soil: Layer 1: 0 - 7cm, Layer 2: 7 - 28cm, Layer 3: 28 - 100cm, Layer 4: 
182 100 - 289cm. The first layer (0 - 7cm) was selected to extract SSM information that will be used further to 
183 compare the different RZSM predictions. As for RZSM, the third layer (28-100 cm) was selected since we 

184 are interested in the root zone ranging between 30 and 55cm (Souissi et al., 2022). 

185 The ERA5-land datais subset to the selected rectangular spatial region of interest and sampled at the 

186 selected frequency. For our study, the selected region of interest is continental Europe (-11 °E,35°S, 

187 50°W,72°N). The datais then aggregated to a daily frequency using the selected statistic and returned to the 
188 user in a single netCDF file. 

189 Table 1: Data description of dataset "ERA5-Land hourly data from 1950 to present'' (Copemicus Climate Change 
190 Se1vice, 2019) 

Data type Gridded 
Proiection Regular latitude-longitude grid 
Horizontal coverage Global 
Horizontal resolution 0.1 ° x 0.1 °; Native resolution is 9 km 

Temporal coverage January 1950 to present 
Temporal resolution H0tu-ly 

191 Precipitation data were used in the discussion part (see section 4) to highlight one of the limitations of SAR 
192 based SSM. Precipitation maps over Continental Europe were generated from the precipitation data of the 
193 ERA5-Land hourly dataset. We extracted the Total precipitation (tp) variable which is equivalent to the 
194 accumulated liquid and frozen water that falls to the Ea1th's smface. It is the sum of large-scale precipitation 

195 and convective precipitation. The units of this parameter are depth in meters of water equivalent. Total 
196 precipitation data were download for each day at 00:00 UTC. Actually, the total precipitation for a given day 
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197 'd' is equal to the total precipitation at day 'd+ l ' at 00:00 UTC since it represents the accumulated flux over 
198 the previous 24 hours (equation 1). 
199 

200 tpd = tp(d+l) 00:00UTC (1) 
201 where d is the day for which the average flux is being computed. 
202 
203 2.1.4 In-situ soil moisture data 
204 The International Soil Moisture Network (ISMN) is an exhaustive centralized data hosting faci lity which 
205 provides global soil moisture data (D01igo et al., 2011). ISMN aims p1ima1ily at collecting grnund soil 
206 moisture measurements from different data organizations and making them available in a hannonized f01mat 
207 through a centralized free and open web p011al (https://ismn.eai1h/en/, last access: 21 July 2022). In addition 
208 to this main objective, ISMN also integrates advanced quality control methods (Dorigo et al., 2013), 
209 provides additional metadata and ancillaiy va1iables as well as software code to users. Moreover, the ISMN 
210 bas substantially grown in ternis of networks, stations, and datasets (Dorigo et al., 2021). In-situ SSM 
211 infonnation from eight ISMN networks of different clinlates and soil types were used to train the ANN 

212 model used in this study (Souissi et al., 2022). Moreover, RZSM data from four ISMN networks over 
213 Europe (figure 2(a)) were used in this paper to validate the RZSM predictions. TI1e data used in the 
214 validation step were not seen or used during the training step. 

(a) (b) 

0.0 

(c) (d) 

215 Figure 2: (a) In-situ soi! moisture ISMN networks used for the validation ofRZSM maps (b) 1 km resolutiom ESA CCI 
216 land cover map over Etu·ope for year 2020 (see appendix B for land cover classes) (c) Clay fraction map of tihe top 5cm 
217 of the soil at 1km resolution created from the Soi!Grid250m database (d) Sand fraction of the top 5cm of the soil at 1km 
218 resolution created from the Soi!Grid250m database 
219 

220 2.1.5 Moderate Resolution Imaging Spectroradiometer (l\'IODIS) data 

221 Vegetation dynamics were considered in the architecture of the ANN model through a remote sensing-based 
222 nonnalized difference vegetation index (NDVI) feature. The model also takes account of the evaporation 
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223 process through the use ofan evaporation efficiency based on potential evapotranspiration (PET). NDVI and 
224 PET are provided by Moderate Resolution Imaging Spectroradiometer (MODIS) products with a spatial 
225 resolution of 250 m and 500 m, respectively. NDVI and PET were extracted from the MOD13Ql version 6 
226 product with a revisit frequency of 16 days and the MOD16A2 version 6 each 8 days, respectively. 
227 According to the crite1ia set out by Huete et al. (1999), the NDVI value yielded by the MODIS product 
228 cotTesponds to the best pixel value of all acquisitions over the 16-day time range where the cloud coverage 
229 and view angle are low. Besides, the considered potential evapotranspiration value is equal to the sum of 
230 PET values encompassed by the 8-day window, as mentioned in Running et al. (2017). 

23 1 In order to produce daily maps of NDVI and PET, linear inte1polation was performed on the 16-day and 8-
232 day products, respectively. The maps were downscaled to the spatial resolution of 1km such that it matches 
233 the SSMlkm product resolution using the GDAL nearest neighbor resampler. 

234 PET was then used to compute evaporation efficiency as desciibed in the third model developed by (Merlin 
235 et al. , 2010). In our work, a modified formulation (equation 2) was used and is fmther detailed in (Souissi et 
236 al., 2022). Evaporation efficiency can be expressed as follows: 

237 (2) 

238 where: - pis evaporation efficiency 

239 - 0 is the water content in the soil layer of a given thickness (here the surface layer is considered). 

240 - Bmax is equal the maximum soil moisture value for each site. 

241 - p• is a parameter that can be computed as follows: 

242 p• = PET (3) 
2B 

243 -PET is the potential evapotranspiration provided by the MOD16A2 product. 

244 2.1.6 Ancillary data 
245 In order to rescale RZSM outputs, sand and clay fractions were used to compute the soil moisture at 

246 saturation and the wilting point (see section 2.2). Clay and sand maps (figure 2(c ), (d)) over continental 

247 Europe are available at a 250m resolution from SoilGrids version 2.0 product (Poggio et al., 2021). 
248 SoilGrids is a system for global digital soil mapping that uses state-of-the-art machine leaming methods to 
249 map the spatial distribution of soil properties across the globe. The outputs of SoilGrids are global soil 
250 property maps at six standard depth intervals at a spatial resolution of 250 meters. All SoilGrids maps can be 

251 acquired through the Web Coverage Service (WCS) which is the most convenient way of obtaining spatial 
252 subsets of the varions quantities. WCS is a standard issued by the Open Geospatial Cons01tii.um (OGC) 

253 which is designed to remotely accede to raster maps. WCS functions over the HTTP protocol and is 
254 supported by Python that ensures access to WCS through the OWSLib libnuy. 
255 The CCI land cover (LC) maps were used to evaluate the quality ofRZSM predictions based on the land 

256 cover class. We generated the LC map over continental Europe for the year 2020 at a 1km spatial resolution 
257 (figure 2(b )). 
258 

259 2.2 Methods 

260 The proposed methodology consists in predicting RZSM over continental Europe (figure 3) using the most 
261 complex ANN model in terrns of number of features, which was developed in (Souissi et al., 2022). The 
262 features used in this model are SSM and process-related features. The model was trained and validated using 
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263 in-situ SSM information from ISMN, SWI which was computed using a recursive exponential filter and 

264 based on in-situ SSM as well as remote sensing-based va1iables namely NDVI and evaporation efficiency. 

265 Training was conducted on stations of eight soil moisture networks such that different climate œgions and 
266 soil textures are encompassed. The detailed methodology and results can be found in (Souissi et al., 2022). 
267 In this paper, the block 'ANN model test' (figure 3) is implemented in order to achieve the RZSM maps 
268 block (figure 3). The only difference between the sub-blocks of the 'ANN model test' block is the SSM 

269 information source and thus the spatial resolution (SSMlkm, SMAP_L3_SM_P. ERAS-Land) . Each sub-
270 block consists of the test datasets that are injected into the ANN model to produce a RZSM map which 

271 spatial resolution depends on the selected SSM product. 

272 
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274 
275 In this paper, the used ANN model is a feed-fotward neural network commonly known as multilayer 
276 perceptrnn (MLP). MLP is considered as a machine learning technique which has been shown reliable 
277 several applications such as hydrology (Taver et al., 2015, Abraha1t and See, 2007). It is a1rnnged as a stack 
278 of layers namely an input layer, at least one hidden layer and an output layer. All layers are composed of 
279 neurons such that those of the first layer are called features and c01Tespond to the input variables of the 
280 model. A weighted sum of the inputs and a bias are injected to each neuron of the hidden layer through the 
281 activation fonction. In order to minimize the enor function called loss fonction, the model intemally adjusts 
282 the weights between the neurons. 
283 The architecture of our model consists of an input layer of SSM and process-related features, one hidden 
284 layer of 20 hidden neurons and an output layer. The activation function of the hidden layer is a tangent 
285 sigmoid function, the loss function is a quadratic cost function and the optimization algorithm is a stochastic 
286 gradient descent as already implemented in (Souissi et al., 2022). 

287 Three SSM features are considered in this model, namely backward moving average of SSM using three 
288 temporal windows of 10, 30 and 90 days. Three process-related features are also used, namely evaporation 

289 efficiency (EV AP), SWI and NDVI. The model has been already trained using data from different areas of 
290 the world with different climatic and soil characteristics as detailed in (Souissi et al., 2022). In this study, the 
291 model is used only in prediction mode i.e. with no p1ior calibration. 

292 ANN_SSMlkmrefers to the ANN model that uses the SSMlkmproduct to compute the SSM features. 
293 ANN_SMAP36km refers to the ANN model that uses the SMAP _L3_SM_P product to compute the SSM 
294 features and ANN _ ERA5-9km is the ANN model that uses the ERA5-land SSM reanalysis product to 
295 compute the SSM features (table 2). 

296 Table 2: ANN mode! configurations with the respective input variables; •: rolling averages of SSM over l 0 days; 
297 b: rolling averages ofSSM over 30 days; c: rolling averages ofSSM over 90 days; · : the SSM source product 

Mode! SSMlkm* SMAP L3 SM p * ERA5-9km' - - -

. 
~ ~ 

. 
~ ~ ~ ~ ~ :> :> NDVI SWI EVAP 

~ I ~ I 1 1 1 1 1 1 1 
'Cl 'Cl ~ 'Cl 'Cl 'Cl 'Cl ~ 'Cl 
0 0 0 0 0 0 0 

Features 
; 1 

"'1 °' ; 1 "' °' ; 1 "' °' :El 1 :El 1 :El 
~ ~ ::'E 

[/] [/] [/] [/] [/] [/] [/] 
[/] [/] [/] [/] [/] [/] [/] [/] [/] 

ANN SSMlkm X X X X X X 

ANN SMAP36 X X X X X X 

km 

ANN ERA5- X X X X X X 

9km 

298 

299 The time series of the different features were timestamp-matched such that only valid data for all inputs are 
300 kept. The RZSM predictions are scaled by the soil moisture at saturation and permanent wilting point. 

301 The soil moisture at saturation is computed as in (Cosby et al., 1984): 
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326 

0sat = 0.489 - 0 .126 * fsand (4) 

Where fsaru1is equal to the sand fraction (value between 0 and 1). 

The Pennanent wilting point (PWP) , defined as the minimum soil moisture at which a plant w ilts :and can no 

longer recover its turgidity, can be computed based on (Saxton et aL, 1986) as follows: 
1 

PWP = 158 
(5) 

A 

Where: A = exp(-4.396 - 0.0 715 (% clay) - 4.880 * 10- 4 * (%sand)2 - 4.285 * 10- 5 * (%sanct)2 * 
(%clay)) (3.1) 

B = - 3.140 - 0.00222 * (%clay)2 
- 3.484 * 10- 5 * (%sand)2 * (%clay) (3.2) 

% sand, %clay are the percentages of sand and clay, respectively 

3. Results 
3.1 Illustration for RZSM predictions 

In this pait, the impact of the considered SSM product on the quality of the RZSM maps is investigated. 

More statistically-representative results can be found in the next pai-agraph. Two dates were chosen to 

compare RZSM maps yielded by SSM 1km wi th those given by SMAP _ L 3 _SM_ P. The first considered date 

occurs in spring, a season in which quantification of RZSM is necessa1y while the second occurs in the 

autumn. In a first tune, 10-day averaged SSM maps provided by both products can be compai·ed (figure 4). 

The raw SSM maps as provided by both products are not shown here, given the presence of gaps mainly for 

the S l product. The SMAP _L3_SM_P map is gapped overNorthern Europe in spring due to the freeze-thaw 

mask, included in this product, in contrast to SSMlkm which does not have a similar mask. In April (figure 

4(a), (b)), SSMl km overestiinates SSM over South Spain compai·ed to SMAP and underestimates it over the 

UK. The discrepancy between both products is more 8111plified in autumn (figure 4(c), (d)). SSM1lm1 

overestimates SSM mainly over N orthem Spain, France, North Italy and a big proportion of central Europe. 
100 
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(a) (b) 
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Figure 4: 10-day rolling averaged SSM maps of (a) the SSMlkm product on 2020-04-04 (b) the SMAP _L3_ SM_P 
product on 2020-04-04 (c) the SSMlkmproduct on 2020-09-28 (d) the SMAP_L3_SM_P product on 2020-09-28 
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327 As for the predictions, the RZSM maps at 1km tend to mistakenly identify regions as wet whereas they 

328 should be dry (figure S(a)) and vice versa (figure S(c)). The same ANN model was used to predict in a first 

329 time RZSM at a 1km resolution using the SSMlkm product, and at a second time RZSM at 36km resolution 

330 using the SMAP _ L3 _SM_ P. Since RZSM predictions are highly impacted by SSM, they also show different 

331 patterns. In spring (figure 5(a), (b)), RZSMANN_ssM11cmis overestimated mainly over western Spain and 

332 underestimated over France and Central Europe, compared to RZSMANN_SMAP36km- In autumn (figure 5( c), 

333 (d)), RZSMANN_ssM11cmis mostly overestimated over 1101them Spain and underestimated over the UK, 

334 compared to RZSMANN_SMAP36km- These observations led us to inspect the quality of the SSM remo1te sensing 

335 products. 

336 
337 
338 
339 

340 
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343 

344 

345 
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(a) (b) 

0.4 0 .4 

0 .3 0 .3 

0.2 ... 
0.2 

0.1 
0.1 

0.0 
(c) 0.0 

(d) 
Figtu·e 5: RZSM prediction when the SSM source is (a) the SSMllan product on2020-04-04 (b) the SMAP __ L3_SM_P 
product on 2020-04-04 (c) the SSMlkm product on 2020-09-28 (d) the SMAP _L3 _SM_P product on 2020-09-28. 

3.2 Correlation maps between RZSM products 

In order to assess the quality ofRZSMANN_ssM1km, we produced seasonal c01rnlation maps between 

RZSMERAS and RZSMAL'IN_ssM1km (figure 6). C01Telation values were computed pixel-wise for each season. 

RZSMERAS was oversampled to the 1km g1id using the GOAL library nearest neighbor resampler. Nordic 

areas show the lowest coffelation values due to the challenging landscape (forest covers) and fi:eeze-thaw 
events. Over agricultural areas in Eastern Europe, the lowest co1Telations are recorded in sp1ing and summer 

which conespond to the growing seasons of most crops. 
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346 
34 7 Figure 6: Seasonal correlation maps ofRZSMANN_SSMlkm and RZSMERAs 
348 
349 Besides, the perfonnance of the model based on land cover was assessed through seasonal conelation maps 
350 for the two main land cover classes namely: Forest (CCI LC classes: 50-100, 160, 170) and Agriculture 
351 (CCILC classes: 10-40). 
352 Table 3 shows negative to low conelation values over the maj ority of forested are as. This is in accordance 
353 with the findings of (Bazzi et al., 2019) who assessed the SSMlkm product over network SMOSMANIA for 
354 the year 2017. In forested are as, the product tended to overestimate SSM. Actually. the backscattered signal 
355 in C-band over forests is highly affected by the forest canopy because the penetration of the SAR signal to 
356 the ground surface is ve1y low. High backscattering coefficients that are obseived in the forest coulld induce 
357 high soil moisture estimations in SSMlkm and thus an overestiniation ofSSM. Bauer-Marschallinger et al. 
358 (2019) also showed that the SSM 1km product is not capable of estimating SSM over dense vegetation like 
359 forests. 
360 Figure 7(b) and table 3 show, as aforementioned, that the best conelation values are recorded outside of the 

361 crops growing season. Actually, Bauer et al. (2018) showed that S-1 and ASCAT SSM retrievals are ve1y 
362 akin, but one major difference is the absence ofa dynanùcal vegetation conection in the Sentinel-1 
363 algorithm. A compa1ison against SSM datasets observed by the Advanced Scatterometer (ASCAT) 
364 instrument fiuther indicated an interference ofvegetation dynamics with the SSM signal during the growing 
365 season. They also suggested that implementing a vegetation conection in the SSMlkm alg01ithm would 
366 potentially improve the overall signal quality over vegetated areas. 

Seasonal correlation maps 
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Seasonal correlation maps 
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367 Figure 7: Seasonal conelation maps over (a) Forests (b) Agricultmal areas 
368 
369 Table 3: Perfo1mance of forest/agriculture pixels based on seasonal conelation values (RZSMA.t'lN_SSMlkm vs. RZSMERAs) 

Season % pixels %pixels % pixels 

con<O O<con<0.5 con>=0.5 
Forest 

04-05 72.07 13.68 14.25 
06-07-08 47.82 32.54 19.63 

09-10-11 61.94 22.51 15.55 

Agriculture 
04-05 45.77 21.53 32.7 

06-07-08 42.02 33.72 24.26 
09-10-11 24.19 30.95 44.86 

370 

371 Additional correlation maps were produced in order to compare RZSMANN_SMAP36km w ith RZSMERAS (figure 

372 8).Table 4 shows that RZSMANN_SMAP36km is more accurate than RZSMANN_ssM1km. The use of the 

373 SMAP_L3_SM_P product gives better conelation values compared to SSMlkm (Table 4). Ayres et al. 

374 (2021) compared more than twelve thousand SMAP soil moisture measurements to in-situ soit moitsture 

375 measurements throughout the US, half ofwhich are forested. For the forested sites, SMAP achieved a 

376 reasonable level of accuracy (unbiased RMSD: 0.06 m 3/m 3 or 0.053 m 3/m3 after accounting for random 

377 representativeness enors) indicating SMAP is sensitive to changes in soil moisture in forest ecosys:tems. 

378 Also, RZSMA..'m_SMAP36kmis more accurate for the vegetation land cover compared to RZSMA..'IN_ssM1km. 

(04-05/2020) (09-10-11/2020 

• 
Sea§0111tl corrcladon ma 
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380 Fig1u·e 8: Seasonal conelation maps ofRZSMANN_SMAP361<mand RZSMERAs 

381 
382 Table 4: Perfo1mance offorest/agriculture pixels based on seasonal conelation values (RZSMA.t'lN_SMAP36km vs. 
383 RZSMERAS) 
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Season %pixels %pixels %pi..'i:els 

con<0 0<con<0.5 con>:::.0.5 
Forest 

04-05 34.43 15.21 50.36 

06-07-08 28.18 24.66 47.16 
09-10-11 29.69 19.69 50.62 

Agriculture 
04-05 19.46 19.94 60.59 

06-07-08 28.61 22.76 48.63 
09-10-11 16.58 17.37 66.05 

384 

385 3.3 Comparison between RZSi"1 product and in-situ data 
386 
387 Four in-situ soil moisture networks were selected to validate RZSMpredictions. In-situ RZSM data over 
388 those networks are provided by ISMN which is a data-hosting facility of soil moistme data all over the world 

389 (Dorigo et al., 2011). RZSM data were downloaded over the year 2020 (stations with no data over 2020 are 
390 exc-luded). ActualLy, in-1;ih1 measurements are relevant to characterize the soil moisture dynamics at a point 

391 or field scale. Spatial representativeness must be considered when comparing in-situ data which co,nespond 

392 to point measurements and remote sensing data which cover a wider area detemtined by the satellilte 
393 footprint. Compaiisons of the remotely sensed SM data, here 1km data, to point-like ground data are often 
394 somewhat troulblesome due to the scale mismatch (Bauer-Mai·schallinger et aL 2019). This leads to a non 

395 negligible representativeness enor. 

396 The RZSM tÎllle series of the satellite pixels overlapping the in-situ stations have been statistically compared 
397 to RZSM ground measurements. Performance me!Iics, nainely Pearson coffelation and RMSE, we:re 
398 computed over the stations of the 4 soil moisture networks considering the different RZSM estima tes nainely 

399 RZSMERAS, RZSMANN_ssMtkm, RZSMA."!N_SMAP36km and RZSMANN_ERAS-9km (figure 9). RZSMA."IN_ERAS-9km 
400 con-esponds to the RZSM predictions nsing the ANN model that computes SSM features nsing ERA5-land 

401 reanalysis SSM product. 

402 
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Figure 9: Comparison of RZSM predictions using different SSM infonnation sources and the RZSMERAs aga inst in-sint 
measurements (a) Person conelaîion (b) RMSE 

408 

Table 4: Overnll summaiy of statistics from time series analysis of different RZSM estimates versus in-situ 
RZSM. Cells show the mean Pearson c01relatio11 and RMSE values per nenvork. 

17-
Conelation RMSE 

ANN SS ANN SMA ANN ERA5 ERA ANN SS ANN SMAP ANN ER.A 
Mlkrn P36km -9krn 5 Mlkm 36km 5-9krn 1 

FR-Aqui 0.515 0.599 0.531 0.654 0.18 0.130 0.088 

HOAL 0.013 0.129 0.091 0.388 0.163 0.120 0.091 

SMOSMA 0.41 0.484 0.651 0.533 0.147 0.081 0.078 
NIA 

TERENO -0 .533 0.402 -0.108 0.904 0.1 1 0.046 0.04 

ERA 
5 

0.114 

0.010 

0 

0.087 

0.01 

409 Figure 9 shows that the RZSM predictions that are based on SSMlkm data are the least accu.rate. However, 

410 the same ANN model yields more accurate RZSM predictions when SMAP _ L3 _ SM _P data are used to 

411 compute the SSM features. The model ANN _ ERA5-9km is even more accurate and :its predictions 

412 RZSMA..'m_ERA5-9km OUtperform RZSMERAS in the case ofnetwork SMOSMANIA for instance. 

4 13 

414 When it cornes to net.work SMOSMANIA, the SSMlkm data were previously compared against in-situ data 

415 in literature (Bauer-Marschallinger et al., 2018; Bauer-Marschallinger et al.. 2021). Dming sp1ing and 

416 summer, the average soil moisture levels have been shown mismatching compared to in-situ SSM. The 

417 SSMlkm product tended to underestimate the in-situ data in spring and to overestimate it in summer. Bauer-

418 Marschallinger et al. (2021) recorded a mean Speannan rho and RMSD values equal to 0.37 and 0.07 m3/m3 

419 from tune seiies analyses of SSM 1km versus in-situ measurements over stations of network SMOSMANIA. 

420 In our case, a mean Pearson conelation and RMSE values of 0.41 and 0.147 m3/m3 were recorded when 

421 compaiing RZSMA."IN_SSMlkm agaisnt in-situ measurements, respectively (table 4), which happen to be the 

422 worst perfomiance statistics. RZSMANN_ERAS-9km is the most a cc m ate product sin ce it recorded the highest 

423 mean conelation (0.651) and least RMSE (0.078 m3/m3
) . More specifically, TERENO network is located in 

424 Western Gennany and is characterized by a wet context. Bauer-Marschallinger et al. (2021) record.ed a mean 

425 Spea1manrho and RMSD values eqna l to 0.53 and 0.08 m 3/m3 from time series analyses of SSMllo:n versus 
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426 in-situ rneasnrements over stations ofnetwork TERENO. Besides, networkFR-Aqui is situated in 

427 soutbwestem France and most of its sites cover "Les Landes" forest of the Bordeaux-Aquitaine region. The 
428 fmest land cover may explain the least accurate RZSMANN__,'>sM1kmcompared to RZSMANN_SMAP36km~md 
429 RZSMERAS- Bauer-Marschallinger et al. (2021) highlighted that complex scattering mechanisms reliated to 
430 phenological processes such as leaf emergence occur over deciduous broadleaf forest and complicate the soil 
431 moisture estimation. This effect was observed for the FR-Aqui station parcmeteo. 

432 

433 4. Discussion 

434 In this paper, RZSM maps at different spatial resolutions were generated over continental Europe using au 
435 ANN mode! with different features and SSM information sources. Although the main aim was to g:enerate 

436 maps at 1km spatial resolution, coarser maps were also generated (at 9km and 36km) to highlight the impact 

43 7 of the quality of the input data. 

438 As shown in the results section, the mode! RZSM predictions greatly depend on the considered SSM 

439 datasets, which is expected from a data-chiven approach in which SSM is the cenb:al infonnation. The C-
440 band information given by the SSMlkm product is prone toto vatious limitations. For instance, its relatively 

441 limited revisit time makes it miss rainfall events and thus soil moisture peaks (Bauer-Marschallinger et al., 

442 2021). Figure 10 shows the 24-hour accumulated precipitatiou on 2020-06-05 as well as the SSMlkm data 
443 on the same date (see Appendix A). The overpasses ofSentinel-1 don' t cover the areas where strong rainfall 
444 events occmTed. Table 5 presents the different SSM values given by the diffetent SSM products over a pixel 

445 where an important rainfall event occurred. Values ofrolling averages of SSMlkm over 10, 30. 90 days are 
446 provided in relative values since the SS Ml km prodnct is in relative nuits. Tho se values were scaled using the 
447 minimum and maximum values of SSM datasets from the SMAP_L3_SM_P product. This latter d assifies 

448 the pixel as a wet pixel, which is in accordance with the rainfall event. whereas SSMlkm product classifies it 
449 as chy. 

100 
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Figure 10: Maps on 2020-06-05 of the ERA.5-land 24-liour accumulated precipitation and SSMlkm 
450 
451 
452 
453 T bl 5 C a e omoanson b etween 1e V ues o t e 1 erent tl SSM al f h d"ffi oro ucts over t 1e same oixe a er a ram SSM d . 1 ft . fall event. 

Row Colunm tp (mm) SMAP_L3_SM_P SSMl0d SSMlm SSM3m 
(m3/m3) 

779 741 93 .51 0.537 % m3/m3 % m3/m3 % 1113/1113 

30 0.215 36 0.257 37 0.264 

454 

455 Gomis-Cebolla et al. (2022) assessed the quality of the SSMlkm product as well as different SMAP and 
456 SMOS products over three case sh1dies in the Meditetrnnean Bio-geographical region of the Iberian 
457 Peninsula (Hozgarganta (southem Spain), Ceira (western Portugal) and Carraixet (eastem Spain)). A relative 

458 temporal agreement was found for ail products except SSMlkm which had different temporal dynamics. 
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459 During dry months, the SSMlkm product showed a high overestimation of SSM in Carraixet which has a 
460 semi-arid climate (climate class ' BSk'). The poor statistics recorded with the SSMlkm product were 
461 attributed to two main factors. In temperate regions where the vegetation cover has a leaf area index larger 
462 than 0.6, the sensitivity of C-band backscatter to soil moisture was likely to be reduced. For dry surfaces 
463 with low topography and comparable electromagnetic prope1ties, the soil roughness was the most 
464 dominating smface properties effect on the measured radar backscatter coefficients. The signal can be 
465 considered as a measure of the su1face roughness at a scale comparable to the sensor wavelength 
466 (Marticorena et al. , 2006). 
467 
468 Figure 11 shows the difference between monthly RZSMANN_ssM1km and RZSMERAS maps and similarly 
469 between monthly RZSMANN_SMAP36km and RZSMERAs maps. Only absolute difference values which are 
470 greater than 0.1 m3/m3 are shown. When compared to reference RZSMERAs, RZSM overestimations, 
471 underestimations and non-significant differences are mapped in green, red and yellow, respectively (not 
472 covered areas are mapped with grey). The significant differences are more recmrent in the case of 

473 RZSMANN_ssM1km compared to RZSMANN_SMAP36km 

474 The eastem pait of the Iberian Peninsula which is characte1ized by a semi-aiid climate is subject to 
475 pe1manent overestimations ofRZSM (see appendix C). Wagner et al. (2022) have shown a subsurface 
476 scattering, over this region, which could be impmtant in dry season and is neglected in proposed change 
477 detection algorithm. 

478 Model ANN _SMAP36km doesn't yield an overestimation over that area. This can be explained by the fact 
479 that Sentinel-1 catTies a C-band SAR which is more sensitive to vegetation and surface roughness than the 
480 L-band SMAP radiometer (Calvet et al., 2011). Bauer-Marschallinger et al. (2018) detected signal patterns 
481 indicating itTigation activities in SSMlkm time series over network RHEMEDUS, which is located in Spain 
482 and showed that is likely to be completely missed by satellite data when the inigation is applied to a small 
483 area. Paciolla et al. (2020) also found ÜTigation impact patterns in Nmthern and southern Italy. However, 
484 this remains a weak argument to explain the ve1y large overestimation patterns in Spain that cover 100 of 
485 kilometers even though itTigation signais are detected in the SSMlkm from Sl. 
486 Fmthe1more, model ANN _ SSMlkm tends to overestitnate RZSM over Nordic regions as already highlighted 
487 in the results section due to the highly dynamic freeze/thaw processes and complex land cover. These 
488 regions are flagged more effectively with SMAP _L3_SM_P whereas SSMlkm is not trnstwmthy becauseno 
489 specific mask or flag exists for such conditions. 
490 
491 Overestimations ofRZSM compared to ERA5-land reanalysis RZSM datasets are also recorded around the 
492 Provence vineyards area (France) potentially because of the overestimations affecting SSMlkm data. 
493 Similai·ly, RZSM overestimations can be detected around Bordeaux as well as Languedoc Roussillon 
494 vineyards (figure 11). In this context, Bazzi et al. (2019) found that over cells with predominant vineyards, 
495 SSMlkm tends to overestimate SSM because of the high backscattering signal reflected from metals that are 
496 usually present in vineyards. Baghdadi et al. (2006) also showed that the vineyard parcels with metal stakes 
497 within the study site (a Meditenanean vineyard site near Bordeaux in southwestem France) have a stronger 
498 radar signal than parcels with wooden stakes. 
499 
500 Figure 11 also highlights a significant underestimation of RZSM over UK all over the year ( see appendix C). 
501 This underestimation is less remarkable in the case ofRZSMANN_SMAP36km-Actually, the change detection 
502 algorithm of the SSMlkm product is not ve1y efficient in contexts of soil moisture high varitability. 
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(a) (b) 

503 Figure 11: RZSM monthly difference map (July 2020) ofRZSMERAs and (a) RZSMANN_SsMn.-m(b) RZSMANN_SMAP361cn,.; 
504 green: product (a) or (b) overestimates RZSMERAS, red: product (a) or (b) underestimates RZSMERAS; yellow: the 
505 coITelation difference is not ve1y significant (<0.1); gray: uncovered areas 

506 Based on these findings, microwave-based SSM information seemed to conect some issues arising; from the 

507 use SSMlkm. However, RZSM maps at coarse resolutions are not in accordance with the needs of 

508 agiiculh1ral applications. In this context, the use of fusion products would be of interest (El Hajj elt al.. 2014: 

509 Tomer et al., 2016; El Hajj et al.. 2017). The results also showed that data-dtiven approaches and more 

510 specifically ANN are still reliable for RZSM estimation. This has been highlighted through the cornpatison 

511 between RZSMERAS and RZSMANN_ERASe9km which suggested a prediction quality enhancement with the latter, 

512 mainly over SMOSMANIA network:. 

513 5 Conclusion 

514 In this study, we assessed the ability of an ANN model to map RZSM at 1km spatial resolution over 

515 continental Europe. The considered ANN model has been previously trained over different regions across 

516 the globe with distinct land cover and climate classes. In this paper, the model is only used in test mode to 

517 predict RZSM based on remote sensing-retrieved SSM inf01mation and process-related va1iables namely 

518 SWI, evaporation efficiency and NDVI. RZSM maps at 1km spatial resolution were produced using the 

519 SSMlkm product as a source to compute the three SSM fearures required by the mode!. One main finding 

520 was that the quality of the SSM input info1mation and its temporal repetitiveness play a major role in the 

521 accuracy of the predictions which was assessed at the map scale using the ERA5-land reanalysis RZSM 

522 product and locally usiug in-situ RZSM measmements. The linütations ofC-band based SSM i.e. SSMlkm 

523 product were highlighted over complex scene1ies like forested areas, areas with freeze/thaw events, dming 

524 the gi·owiug season of crops, with inigation, etc. This result was futiher investigated by produciug RZSM 

525 maps at coai·se resolution. The SMAP _ L3 _SM_ P product was used to compute the SSM fearnres o,f the 

526 ANN model and map RZSM at a spatial resolution of 36km. The accuracy of the predictions was fi.uther 

527 enhanced compared to model ANN_SSMlkm but the estimations ai·ehampered by the coai·se spatial 

528 resolution. However, bothANN configurations yielded less accurate RZSM predictions than the ERA5-land 

529 RZSM reanalysis datasets. This has led us to produce RZSM maps at 9km resolution using the ERA.5-land 

530 reanalysis SSM product as a source to compute the SSM feahu-es of the ANN model. OveralL the quality of 

531 the predictions was improved compared to the ANN models based on the previous SSM source products. 

532 The quality enhancement was more obvious when model ANN _ ERA.5-9km was used, since it outperfom1ed 

533 the ERA5-land RZSM reanalysis product. 

534 As a research perspective, the impact of the use ofbetter quality remote sensing SSM products can be 

535 assessed. Disaggregation approaches and fusion techniques can also be considered in order to provide more 

536 precise SSM information to the ANN model. Despite the relative limitations of the RZSM product infeffed 
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537 from Sentinel-1 SSM data, this product should greatly improve with the launches of the other satellites of the 

538 Sentinel-1 constellation or through the fusion with data from other constellations such as Radarsat. 
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Appendix A: Limitations of product SSMlkm (rainfall events) 
100 

80 

~ 60 

E 
:>t ... 
~ 
l/l 
l/l 40 

20 

0 

836 Figure Al: Data on 2020-05-10 ofERA5-land precipitation and SSMlkm 

100 

80 

l 60 

E 
.:,/. ... 
~ 
l/l 
l/l 40 

20 

837 0 

838 Figure A2: Data on 2020-06-04 ofERA5-land precipitation and SSMlkm 
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840 Figure A3: Data on 2020-06-12 ofERA5-land precipitation and SSMlkm 

841 APPENDIX B: CCI Land cover classes (screenshot from CCI-LC_Maps_Legend document available at: 

842 http://maps.elie.ucl.ac.be/CCI/viewer/, last access: 07 July 2022) 
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Classical representations of the water cycle leave out the anthropogenic effects. Actually, only 
15% of the water cycle diagrams depict human interaction with water (Abbott et al., 2019). 
Crop use of soil moisture is one form of human impact on the water cycle. In the context of 
agriculture, soil moisture is a key variable in crop health monitoring and yields prediction for 
instance. The second component of this variable, i.e. root-zone soil moisture is of 
considerable interest since plants draw water from the soil profile. 

This PhD was mainly centered on the prediction of RZSM at large scales and subkilometric 
resolution. A first step consisted in predicting RZSM while linking it to surface moisture 
based on a large database from the global database ISMN. This reasoning relies on the fact 
that both soil moisture components are interconnected through diffusion processes for 
instance. At this stage, an ANN model was developed and trained on in-situ SSM information 
provided by the ISMN over soil moisture stations of different characteristics. Different 
experiments were conducted to determine the best ANN architecture. The accuracy and 
transferability of the approach were assessed as well as the contribution of each soil moisture 
network. Results demonstrated the reliability of the method since a median, maximum and 
minimum correlation values equal to 0.77, 0.96 and 0.65 were recorded after applying a 
statistical filtering that aimed at eliminating low-quality stations from training and validation. 
In some other contexts and more specifically in areas where a surface/subsurface decoupling 
phenomenon occurs such as in arid regions, the approach was proved lacking. In an effort to 
better capture these specific conditions and better account for more complex conditions, we 
considered the option of enriching the model with process-related variables. Based on the 
previous results, different ANN models were developed such that their features include SSM 
and a process-related variable. The most complex ANN model was fed with SSM features and 
a combination of process-related variables. The considered variables are SWI which was 
computed using a recursive exponential filter, evaporation efficiency and NDVI. The different 
models were trained on the stations identified of good-quality in the first axis which cover 
broad contexts in terms of types of soil and climate. Each model was tested on an ensemble of 
ISMN stations not seen in the training and validation steps. Analysis across climate classes 
showed that the using more features besides SSM could boost the performance of the 
approach. More specifically, the consideration of evaporation efficiency in areas of high 
evaporation rates was proved beneficial. Over agricultural fields and transition zones like the 
Sahel zone or the Australian transition zone, NDVI was revealed the most relevant variable 
for RZSM prediction. The most reliable model was the most complex model in which RZSM 
is predicted based on three SSM features and three process-related variables namely NDVI, 
evaporation efficiency and SWI. The robustness of the methodology was also evaluated 
through additional tests applied on stations which are not covered by the ISMN database 
namely stations over central Tunisia, India and Italy. The quality of predictions increased 
significantly in the case of Tunisia when the most complex ANN model was used. However, 
performance slightly changed over India and Italy potentially due to the presence of clouds 
and the crop heterogeneity that affect the MODIS products. 

Since local-scale RZSM predictions are not relevant with regards to agricultural applications, 
we extended the application at a large scale. The most complex ANN model which was 
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developed in the second axis, was used in prediction mode in order to produce large scale 
maps of RZSM at 1 km spatial resolution.  The model was tested over continental Europe 
using remote sensing features. Different SSM remote sensing products were employed to 
compute the three SSM features required by the model. Maps of RZSM at 1 km spatial 
resolution were generated using C-band Sentinel-1 SSM product with 1 km spatial resolution 
and temporal repetitiveness of 2-4 days, depending on location, since the launch of Sentinel-
1B in October 2016 and until its shutdown in December 2021 (SSM1km). The locally-trained 
neural network model was able to track RZSM variations with a reasonable accuracy over 
several areas of Europe. The predictions were validated through a comparison against the 
ERA5-Land reanalysis RZSM product and a comparison against in-situ data. Moreover, the 
use of rolling averages of SSM as inputs to the model helped us overcome the input data gaps 
problem and produce daily RZSM maps. 

Nevertheless, the SSM1km product exhibited some limitations that impacted the accuracy of 
RZSM predictions. Additional RZSM maps were produced by the ANN model at different 
spatial resolutions based on the considered SSM information source. Although most of the 
limitations raised by the use of the SSM1km product were satisfactorily addressed with the L-
band SMAP product which is provided with a 36km spatial resolution and 3-day temporal 
resolution, the predictions were not as accurate when compared with in-situ RZSM 
information. The model was also applied using ERA5-land reanalysis SSM datasets and 
outperformed the ANN models based on remotely sensed SSM datasets. It also improved on 
the accuracy of the ERA5-land reanalysis RZSM datasets which has an hourly native 
temporal resolution. 

Throughout this PhD, we demonstrated the feasibility of mapping RZSM at large scales and 
subkilometric resolutions using a locally-trained ANN model. This step provides the 
foundation for the feasibility of RZSM prediction at global scale and subkilometric resolution. 
In the following, we present perspectives for improvement of the approach. The perspectives 
can be related to the choice of the method, data, etc. In this PhD, we chose to work with a 
machine learning method and more precisely artificial neural networks because of their 
reliability and promising capabilities, compared to physical methods or data assimilation as 
described in the state of the art chapter. Moreover, the innovation of this work as previously 
explained, resides among others in the logic and the chronology adopted to solve the problem, 
i.e. to locally train a method based on data, to enrich it by physics and to complement it by a 
spatial component in order to solve a physical problem. From a model improvement 
perspective, other model tuning options can be explored such as using a custom cost function 
to optimize the model. A specific cost function can be elaborated to take into account the 
specifics of soil moisture time series such as moisture peaks that sometimes could not be 
identified with a standard cost function. In some cases, comparison of the in-situ RZSM time 
series with the predicted RZSM time series showed that the model missed peaks or on the 
contrary, generated false peaks. A physics-guided cost function can also be interesting if it 
assigns a specific weight for dry and wet cycles for instance.  

Another avenue of improvement can be explored with respect to the choice of the process-
related variables that were included in the model. The impact of adding additional temporal 
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information, such as precipitation or irrigation events, can be investigated in future studies. 
Spatial information, namely soil texture information, can be considered as well. However, the 
inaccuracies affecting these variables make them a source of bias for the model. In this 
context, machine learning or deep learning methods can be used as calibration tools for low 
precision data or as gap filling tools for missing data.  The choice of the type of ANN can be 
also questioned in order to include these static variables in addition to temporal dynamic 
variables. Actually, MLPs are not suitable for a joint use of static and dynamic variables since 
all temporal interdependencies may be lost. Hybrid ANNs which combine an MLP for static 
variables and Long Short Term Memory (LSTM) for dynamic variables can be a promising 
alternative.  

Another perspective as far this second axis is concerned, consists in the separation of the data 
into clusters of the same climate class. Specific trainings can be done based on the climate 
type. This aims at potentially clarifying the relations governing the variables used and the 
climate class.   

When it comes to the last research axis, higher quality remote sensing SSM products can be 
used to further emphasize the impact of input information on RZSM predictions. The launch 
of additional satellites in the Sentinel-1 constellation is promising. The unavailability of 
Sentinel-1B due to a technical anomaly since December 2021 makes the launch of the new 
Sentinel-1C satellite a highly anticipated event. Actually, Sentinel-1C is the third satellite of 
the Sentinel-1 radar constellation and will be launched in 2023. It is equipped with C-band 
radar and will ensure global data continuity as part of the Copernicus program. 

The launch of other L-band missions is also promising. Radar Observing System for Europe L 
(ROSE-L) is a future mission developed under the European Union's Copernicus program. 
The improved penetration capability of the L-band SAR flown on board of this satellite will 
improve the capability of soil moisture retrieval. This mission will contribute to the continuity 
of Copernicus observations on a global scale, for example by improving their accuracy, 
product quality, temporal and spatial resolution of the collected data. Also, the NASA ISRO 
Synthetic Aperture Radar (NISAR) mission that will be launched in 2023 is quite promising 
for high resolution soil moisture observations. This mission will provide data on the dynamics 
of the Earth's surface on a global scale. These data are essential for various Earth science 
disciplines such as carbon and water cycle observations. One of the objectives of this mission 
is to provide global soil moisture products with a spatial resolution of 200m and a temporal 
repetitiveness of 6 days.  

Always in the context of remote sensing, the future potential of extracting RZSM via P-band 
sensors, such as the BIOMASS mission scheduled for launch in 2024, could provide a better 
understanding and quantification of soil moisture in deep layers. 
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Les représentations classiques du cycle de l’eau font généralement table rase des effets 
anthropiques. En effet, seuls 15 % des diagrammes du cycle de l'eau décrivent l'interaction 
humaine avec l'eau (Abbott et al., 2019). L'utilisation de l'humidité du sol pour les cultures est 
l’une des formes de l'impact humain sur le cycle de l'eau. Dans un contexte agricole, 
l'humidité du sol est une variable clé pour suivre la santé des cultures et la prédire les 
rendements par exemple. La composante de la zone racinaire présente un grand intérêt 
puisque les plantes puisent l'eau dans le profil du sol. 

Cette thèse est principalement centrée sur la prédiction de la RZSM à grande échelle et à 
résolution kilométrique. Une première étape a consisté à prédire la RZSM tout en la reliant à 
l’humidité de surface aux RZSM en se basant sur une importante base de données provenant 
du réseau mondial ISMN. . Ce raisonnement repose sur le fait que les deux composantes de 
l'humidité du sol sont interconnectées par des processus de diffusion par exemple. À ce stade, 
un modèle ANN a été développé et entraîné sur les données in-situ de la SSM fournies par 
l'ISMN sur des stations d'humidité du sol de différentes caractéristiques. Différentes 
configurations ont été appliquées pour obtenir le modèle ANN le plus performant. La 
précision et la transférabilité de l'approche ont été évaluées, ainsi que la contribution de 
chaque réseau d'humidité du sol. Les résultats ont démontré une forte fiabilité de la méthode 
sous certaines conditions. Des valeurs médiane, maximale et minimale de corrélation égales à 
0.77, 0.96 et 0.65 ont été enregistrées après avoir appliqué une méthode de filtrage de données 
qui visait à éliminer les stations de mauvaise qualité des opérations d’apprentissage et de test. 
Dans d'autres contextes, plus spécifiquement là où il y a des phénomènes de découplage entre 
surface et zone racinaire tel qu’en zones arides, l'approche s'est avérée insuffisante. Dans 
l’optique de mieux cerner ces cas particuliers et d’une meilleure prise en compte des cas plus 
complexes, nous avons considéré l’option d’enrichir le modèle avec des variables 
supplémentaires représentant les processus physiques ayant un fort impact sur l'humidité du 
sol améliorerait les prédictions RZSM, là où le modèle échoue.   

En se basant sur les résultats précédents, différents modèles ANN ont été développés de telle 
sorte que leurs variables d’entrée incluent la SSM et une variable liée à un processus 
physique. Le modèle ANN le plus complexe est formé de données SSM et une combinaison 
de variables liées aux processus. Les variables considérées sont le SWI calculé à l'aide d'un 
filtre exponentiel récursif, l'efficacité d’évaporation calculée à l'aide d'un produit PET issu de 
la télédétection et de données de NDVI. Les différents modèles ont été entraînés sur les 
stations identifiées de bonne qualité dans la partie précédente. De même, ces stations couvrent 
des contextes très larges en termes de caractéristiques de sol et de type de climat. Chaque 
modèle a été testé sur un ensemble de stations ISMN non utilisées lors du processus 
d'apprentissage du modèle. L'analyse par classe climatique a montré que l'utilisation d'autres 
variables en plus de la SSM pouvait améliorer les performances de la méthode. Plus 
précisément, la prise en compte de l'efficacité de l'évaporation dans les zones à fort taux 
d'évaporation s'est avérée bénéfique. Sur les champs agricoles, le NDVI s'est révélé être la 
variable liée aux processus la plus pertinente pour la prédiction de la RZSM. Le modèle le 
plus fiable s'est avéré être le modèle le plus complexe dans lequel la RZSM est prédite en se 
basant sur la SSM et les trois variables liées aux processus à savoir le NDVI, l’efficacité 
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d’évaporation et le SWI. La robustesse de la méthodologie a été également évaluée à travers 
des tests supplémentaires appliqués sur stations externes à la base de données ISMN. Des 
stations situées au centre de la Tunisie, en Inde et en Italie ont été considérées. La qualité des 
prédictions a augmenté de manière significative dans le cas de la Tunisie lorsque le modèle 
ANN le plus complexe a été utilisé. Cependant, les performances ont légèrement évolué en 
Inde et en Italie, potentiellement à cause de la présence de nuages et de l'hétérogénéité des 
cultures qui affectent les produits MODIS. 

Les prévisions RZSM à l'échelle locale n'étant pas pertinentes pour des applications agricoles, 
nous avons étendu l'application à large échelle. Le modèle ANN le plus complexe, 
précédemment décrit, a été utilisé en mode prédiction afin de produire des cartes à grande 
échelle de RZSM à une résolution spatiale de 1 km. Le modèle a été testé sur l'Europe 
continentale en utilisant en entrée des variables issues de la télédétection. Différents produits 
SSM issus de la télédétection ont été considérés. Des cartes de RZSM à une résolution 
spatiale de 1 km ont été produites à l'aide d'un produit SSM en bande C (Sentinel-1) de 1 km 
de résolution spatiale et d’une répétitivité temporelle de 2 à 4 jours, selon la localisation, 
depuis le lancement  de Sentinel-1B en Octobre 2016 et jusqu’à son arrêt en décembre 2021 
(SSM1km). Ceci constitue l'objectif ultime de ce travail. Le modèle de réseaux de neurones 
localement entraîner a pu suivre les variations de l’humidité en zone racinaire avec des 
statistiques raisonnables sur plusieurs zones de l’Europe. Les prédictions ont été validées suite 
à une comparaison avec le produit de réanalyse de ERA5-Land et avec une comparaison par 
rapport aux données in-situ. De plus, le choix d’utiliser des moyennes glissantes d’humidité 
de surface en entrée du modèle nous a permis de s’affranchir du problème des trous de 
données du produit en entrée et de produire un des cartes journalières d’humidité de zone 
racinaire.  

Néanmoins, le produit SSM1km a présenté certaines limitations qui ont eu des répercussions 
sur la précision des prédictions RZSM et nous a donc conduit à explorer d'autres produits 
SSM. Ainsi, des cartes RZSM supplémentaires ont été produites par le modèle ANN à des 
résolutions spatiales qui dépendent de la source de SSM. Bien que la plupart des limitations 
soulevées par l'utilisation du produit SSM1km aient été traitées de manière satisfaisante avec 
le produit SMAP en bande L de résolution spatiale égale à 36km et de résolution temporelle 
égale à 3 jours, les prédictions n'étaient pas aussi précises lorsqu'elles étaient comparées aux 
données RZSM in-situ. Le modèle a également été appliqué sur des jeux de données SSM de 
réanalyse ERA5-Land et a marché mieux que les modèles ANN basés sur les jeux de données 
SSM issus de la télédétection. Sa précision a été également supérieure à celle du produit 
RZSM de réanalyse ERA5-Land de résolution temporelle native horaire et dont les moyennes 
journalières ont été utilisées dans cette étude. 

Tout au long de cette thèse, nous avons démontré la faisabilité d'un modèle ANN pour 
cartographier la RZSM à grande échelle et à une résolution kilométrique lorsque certaines 
considérations sont prises en compte. Cette étape constitue une base pour confirmer la 
faisabilité de la prédiction du RZSM à l'échelle globale et à une résolution kilométrique à 
l'aide d'un modèle ANN.  



Conclusion générale et perspectives (français) 
 

153 
 

Dans la suite, nous présentons des pistes d’amélioration de l’approche. Les perspectives 
peuvent viser le choix de la méthode, le traitement de données, les produits utilisés, etc. 
Durant cette thèse, on a fait le choix de travailler avec une méthode de machine learning et 
plus particulièrement les réseaux de neurones artificiels vu leur fiabilité par rapport aux 
méthodes physiques et d’assimilation de données comme décrit dans le chapitre état de l’art. 
De plus, l’innovation de ce travail, comme précédemment expliqué, réside entre autres dans la 
logique et la chronologie adoptées pour résoudre le problème à savoir entraîner localement 
une méthode basée sur les données, l’enrichir par la physique et la complémenter par une 
composante spatiale pour enfin résoudre un problème physique. Dans une optique 
d’amélioration de modèle, on peut explorer d’autres options de réglage du modèle comme par 
exemple l’utilisation d’une fonction de coût personnalisée pour optimiser le modèle en 
fonction des spécificités des séries temporelles d'humidité du sol comme les pics d’humidité 
qui n’ont pas pu parfois être identifiés avec une fonction de coût standard. Dans certains cas, 
la comparaison entre les séries RZSM in-situ et les séries prédites de RZSM par le modèle 
ANN basé uniquement sur la SSM, a montré que le modèle a loupé des pics ou, au contraire, a 
généré des faux pics. Une fonction de coût guidée par la physique peut également être 
intéressante si elle attribue un poids spécifique aux cycles secs et humides par exemple. 

Une autre piste de recherche peut être explorée par rapport au choix des variables reliées aux 
processus physiques qui ont été incluses pour enrichir le modèle. L’impact de l’ajout 
d’informations temporelles supplémentaires, comme la précipitation ou les événements 
d'irrigation, peut être investigué dans des études futures. Des informations spatiales, à savoir 
des informations sur la texture du sol, peuvent être considérées aussi.  Cependant, les 
contraintes de précision affectant ces variables en font une source de biais pour le modèle. 
Dans ce contexte, des méthodes de machine learning ou de deep learning peuvent être utilisés 
comme outils de calibration des données peu précises ou des outils de « gap filling » pour les 
données manquantes ou discontinues. Le choix du type d'ANN peut également être remis en 
question afin d'inclure ces variables statiques en plus des variables dynamiques temporelles. 
En fait, les MLPs ne conviennent pas à une utilisation conjointe de variables statiques et 
dynamiques, car toutes les interdépendances temporelles peuvent être perdues. Les ANN 
hybrides qui combinent un MLP pour les variables statiques et une mémoire à long terme 
(LSTM) pour les variables dynamiques peuvent être une alternative prometteuse.  

Une autre perspective par rapport à ce deuxième axe est la séparation des différents ensembles 
de données en clusters d'une même classe climatique. Des entraînements spécifiques peuvent 
être effectués par type de climat pour clarifier potentiellement les relations régissant les 
variables utilisées et la classe climatique.    

En ce qui concerne le dernier axe de recherche, des produits SSM  issus de la télédétection de 
meilleure qualité peuvent être utilisés pour souligner davantage l'impact de la qualité des 
informations d'entrée sur les prédictions RZSM. Le lancement d'autres satellites de la 
constellation Sentinel-1 est également prometteur. L’indisponibilité de Sentinel-1B suite à une 
anomalie technique depuis décembre 2021 fait que le lancement et la mise en orbite du 
nouveau satellite Sentinel-1C est un évènement très attendu. Sentinel-1C est le troisième 
satellite de la constellation radar Sentinel-1 et sera lancé en 2023. Il est équipé d’un radar en 
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bande C et assurera la continuité des données à l’échelle globale dans le cadre du programme 
Copernicus. 

Le lancement d’autres missions en bande L est aussi prometteur. Radar Observing System for 
Europe L (ROSE-L) est une future mission développée dans le cadre du programme 
Copernicus de l'Union Européenne. Le satellite disposera d'un SAR en bande L. La meilleure 
capacité de pénétration de la bande L améliorera la capacité d’acquisition de l’humidité de 
sol. Cette mission contribuera à la continuité des observations Copernicus à l’échelle globale, 
par exemple en améliorant leur précision, la qualité des produits, la résolution temporelle et 
spatiale des données collectées. Aussi, la mission NASA ISRO Synthetic Aperture Radar 
(NISAR) qui sera lancée en 2023 est prometteuse en matière d’observation d’humidité du sol 
à haute résolution. Cette mission fournira des données sur la dynamique de la surface terrestre 
à l’échelle globale. Ces données sont essentielles pour différentes disciplines des sciences de 
la Terre telles que les observations des cycles du carbone et de l'eau. Un des objectifs de cette 
mission est de fournir des produits globaux d’humidité de sol à une résolution spatiale de 
200m et une répétitivité temporelle de 6 jours.  

Toujours dans un contexte de télédétection, le potentiel futur d'extraction de la RZSM via des 
capteurs en bande P, telle que la mission BIOMASS dont le lancement est prévu 2024, 
pourrait assurer une meilleure compréhension et quantification de l'humidité du sol dans les 
couches profondes. 
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Acronyms 
 

AI: Artificial Intelligence 

AMSR-E: Advanced Microwave Scanning Radiometer–Earth Observing System 

ANN: Artificial Neural Network 

ANR: Agence Nationale de la Recherche 

ASCAT: Advanced Scatterometer 

ASCE: American Society of Civil Engineers 

ATI: Apparent Thermal Inertia 

CDF: Cumulative Density Function 

CESBIO: Centre d’Etudes Spatiales de la BIOsphère 

CLM: Community Land Model 

CNES: Centre National d’Etudes Spatiales 

CNN: Convolutional Neural Network 

CNRS: Centre National de la Recherche Scientifique 

CLSM: Catchment Land Surface Model 

DL: Deep Learning 

ECV: Essential Climate Variable 

EKF: Extended Kalman Filter 

EnKF: Ensemble Kalman Filter 

EnPF: Ensemble Particle filter 

ERS: European Remote-Sensing 

ESA: European Space Agency 

ET: EvapoTranspiration 

FAO: Food and Agriculture Organization 

FDR: Frequency Domain Reflectometry 

FF: FeedForward 

GLDAS: Global Land Data Assimilation System 
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GNSS: Global Navigation Satellite Systems 

GPS: Global Positioning System 

GRU: Gated Recurrent Unit 

HESS: Hydrology and Earth System Sciences 

IEM: Integral Equation Model 

ISBA: Interaction Sol-Biosphère-Atmosphère 

ISMN: International Soil Moisture Network 

JULES: Joint UK Land Environment Simulator 

KF: Kalman Filter 

LDAS: Land Data Assimilation System  

LRN: Local Response Normalization 

LSM: Land Surface Model 

LST: Land Surface Temperature 

LSTM: Long Short-Term Memory 

MARMIT: MultilAyer Radiative transfer Model of soIl reflectance 

MetOp: Meteorological operational satellite 

ML: Machine Learning 

MMSCA: MinMax SCAling 

MODIS: Moderate-Resolution Imaging Spectroradiometer  

NASA: National Aeronautics and Space Administration 

NDVI: Normalized Difference Vegetation Index 

NSMI: Normalized Soil Moisture Index 

PET: Potential EvapoTranspiration 

RF: Random Forest 

RMSE: Root Mean Square Error 

RNN: Recurrent Neural Network 

RS: Remote Sensing 

RZSM: Root-Zone Soil Moisture 

RZWQM: Root Zone Water Quality Model 
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S1: Sentinel-1 

SAR: Synthetic Aperture Radar 

SASI: Shortwave Angle Slope Index 

SDG: Sustainable Development Goal 

SM: Soil moisture 

SMAP: Soil Moisture Active Passive 

SMAR: Soil Moisture Analytical Relationship 

SMOS: Soil Moisture and Ocean Salinity 

SMOSREX: Surface Monitoring Of the Soil Reservoir Experiment 

SNR: Signal-to-noise ratio 

SSCA: Standard SCAling 

SSM: Surface Soil Moisture 

SURFEX: SURface Externalisée 

SVAT: Soil–Vegetation–Atmosphere Transfer 

SVM: Support Vector Machine 

SWI: Soil Water Index 

SWIR: Short-Wave Infrared 

TB: Brightness Temperature 

TDR: Time Domain Reflectometry  

TI: Thermal Inertia 

TIR: Thermal Infrared 

UbRMSE: Unbiased Root Mean Square Error 

WASAG: Global Framework on Water Scarcity in Agriculture 

WCM: Water Cloud Model 
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