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Abstract

In a global context of water crisis, soil moisture is considered as a crucial variable for agriculture
since it heavily relies on water resources. Given its importance in land—atmosphere feedbacks, it is
recognized as an Essential Climate Variable (ECV) with both its surface and root-zone components.
Root-zone soil moisture (RZSM) is particularly interesting since plants draw water and nutrients
from the root zone. Soil moisture can be directly or indirectly measured. Over the three past
decades, remote sensing techniques have been providing surface soil moisture (SSM) retrievals.
However, RZSM is currently inaccessible by satellite sensors since their penetration depth is
limited to few centimeters. Besides in-situ measurements, RZSM can be derived using physically-
based methods, data assimilation techniques or data-driven methods. Data-driven techniques, like
Artificial Neural Networks (ANN), are especially promising since they do not require explicit
relationships between the inputs and the target which is an advantage compared to the first two
options that are very prone to inaccuracies.

This PhD aims at predicting RZSM at large scales and kilometric resolutions using ANNs. The
work is structured in three main parts. The first was centered on the prediction of RZSM at different
locations around the world using an ANN model that relies on only SSM in-situ data provided by
the International soil Moisture Network (ISMN). A transferability analysis demonstrated that no
soil moisture network trained alone was able to well reproduce. However, the model was able to
capture the variabilities of the RZSM when trained on stations from different networks. Overall, the
predictions were good in areas of alternate wet and dry cycles but less good for instance in regions
with high evaporation rates. These limitations motivated us to complexify the method such as it
becomes a physics-aware data-driven approach. To do so, physical process-related variables were
added to the ANN model. More precisely, soil water index (SWI) which is computed by a recursive
exponential filter, was considered to depict the infiltration process. An evaporation efficiency,
whose formulation relies on a remote sensing-retrieved potential evapotranspiration (PET), was also
considered to represent the evaporation process. A normalized difference vegetation index (NDVI)
was used to infer vegetation dynamics. Several ANN models were built such that the features
include SSM and process-related variables. The models were trained on good-quality ISMN stations
and tested on the rest of the previously considered ISMN stations. Additional tests were conducted
on stations external to the ISMN database in order to assess the robustness of the method namely
over Tunisia, Italy and India. Results showed that the ANN model made up of SSM and all process-
related features was the best performing in most cases. The individual impact of each process-
related variable on the prediction quality was also highlighted through an analysis across climate
classes. For instance, evaporation efficiency was relevant in regions of high evaporation rates and
NDVI was most beneficial over agricultural fields. The robustness of the approach was validated in
the case of Tunisia but no significant improvement was recorded in Italy and India.

The last part of the work consisted in studying the feasibility of mapping RZSM over continental
Europe at 1km resolution using the previously developed ANN model. It was not calibrated again
but only applied on unseen test datasets which consisted of remotely-sensed variables. Maps of
RZSM at 1 km resolution were produced using SSM data from the Copernicus SSM1km product
which is based on Sentinel-1 measurements. For validation purposes, RZSM maps at 9km and
36km were also generated using the ERAS5-Land reanalysis SSM and the Soil Moisture Active



Passive (SMAP) level-3 SSM products, respectively. Validations against ERAS5-Land reanalysis
RZSM product and against in-situ RZSM data were conducted. The C-band SSM information was
proved unreliable in complex sceneries and highly impacting the quality of the RZSM predictions.
The L-band SSM information has been shown more reliable but it was hampered by the coarse
spatial resolution. The ERAS5-Land SSM product injected in the ANN model allowed better
predictions than the previous products and outperformed the RZSM reanalysis product in some
areas when compared against in-situ data.

The results obtained in this work highlight the feasibility of global mapping of RZSM at high
resolution using an ANN model. The use of more qualitative SSM data provided by future missions
would allow better quantification of RZSM.

Keywords: root-zone soil moisture, artificial neural networks, process-related variables, sub-
kilometric resolution, sentinel-1, SMAP, ERA5-land, ISMN.
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Résumé

Dans un contexte mondial de crise de l'eau, I'humidité du sol est une variable cruciale pour
l'agriculture qui dépend fortement des ressources en eau. Vu son role dans les interactions terre-
atmosphere, elle est reconnue comme une variable climatique essentielle avec sa composante de
surface et de zone racinaire. L'humidité du sol de la zone racinaire (RZSM) est particulierement
intéressante car les plantes puisent I’eau dans la zone ou se développent les racines. L'humidité du
sol peut étre mesurée directement ou indirectement. Au cours des trois dernieéres décennies, les
techniques de télédétection ont permis d’observer I'humidité du sol de surface (SSM). Cependant, la
RZSM est actuellement inaccessible par les capteurs satellitaires dont la profondeur de pénétration
est limitée. Outre les mesures terrain, la RZSM peut étre obtenue via des méthodes basées sur la
mod¢lisation physique, techniques d'assimilation de données ou des méthodes basées sur les
données. Ces derni¢res sont prometteuse et moins sujettes aux erreurs car ne nécessitent pas
I’explicitation des relations gouvernant les données en entrée et la cible. Les réseaux de neurones
artificiels (ANN) en sont un exemple.

Cette these est structurée en trois axes et se focalise sur la prédiction de la RZSM a large échelle et
a résolution subkilométrique en utilisant les ANNs. La premiere partie concerne la prédiction de la
RZSM a différents endroits du monde a l'aide d'un modéle ANN qui repose uniquement sur les
données in-situ de la SSM fournies par le réseau international de 1'humidité du sol (ISMN). Une
analyse de transférabilité¢ a démontré qu'aucun réseau d'humidité du sol entrainé seul n'était capable
de bien reproduire la RZSM. Le mode¢le entrainé sur des stations de différents réseaux était capable
de suivre les variabilités de la RZSM. Dans I'ensemble, le modéle s'est avéré fiable dans les zones
ou alternent des cycles humides et secs mais moins performant sur les zones a forts taux
d'évaporation par exemple. Ces limitations nous ont menés a évaluer l'impact de 1'ajout de variables
d'entrée dans le modele ANN. L'indice d'eau du sol (SWI), basé sur un filtre exponentiel récursif, a
¢té considéré pour décrire le processus d'infiltration. Une efficacité d'évaporation, dont la
formulation repose sur une évapotranspiration potentielle (PET) issue de la télédétection, a
¢galement été¢ considérée pour représenter le processus d'évaporation. L’indice de végétation par
différence normalisée (NDVI) a été utilisé pour déduire la dynamique de la végétation. Plusieurs
modeles ANN ont été construits de maniere a ce que les données d’entrée comprennent la SSM et
une ou plusieurs variables reliées a des processus. Les modeles ont été entrainés sur des stations
ISMN avec mesures de bonne qualité et testés sur le reste des stations ISMN également considérées
dans la partie précédente. Des tests supplémentaires ont été effectués sur des stations non incluses
dans ISMN a savoir sur la Tunisie, I'ltalie et I'Inde. Les résultats ont montré que le modele ANN
composé des entrées SSM et de toutes les variables liées aux processus, était le plus fiable dans la
plupart des cas. L'impact individuel de chaque variable sur la qualit¢ des prédictions a été
¢galement mis en €évidence via une analyse climatique.

Le dernier axe concerne la cartographie de la RZSM a I’échelle de I'Europe continentale et a
résolution subkilométrique en utilisant le modele ANN précédemment développé qui n'a pas été
recalibré mais uniquement appliqué sur de nouvelles données de test issues de la télédétection. Des
cartes de RZSM a 1km ont été produites en utilisant le modele ANN telles que SSM était fournie
par le produit Copernicus SSM1km, basé sur les données Sentinel-1. Pour les valider, des cartes
RZSM a 9 km et 36 km ont été générées a partir du produit SSM de réanalyse ERAS5-Land et du
produit SSM de niveau 3 de la mission Soil Moisture Active Passive (SMAP), respectivement. Des
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comparaisons avec le produit RZSM de réanalyse ERAS5-Land et avec des données in-situ ont été
effectuées. Les données SSM en bande C se sont avérées peu fiables dans les scénes complexes et
avaient un impact négatif sur la qualité des prédictions RZSM. Les données SSM en bande L ont
permis de s’affranchir de certaines limitations du produit précédent mais elles sont entravées par
une résolution spatiale grossiere. Le produit de réanalyse SSM ERAS5-Land, injecté dans le modele
ANN, a généré de meilleures prédictions que les deux produits précédents et aussi par rapport au
produit de réanalyse RZSM.

Les résultats obtenus dans ce travail soulignent la faisabilité de la cartographie globale de RZSM a
haute résolution en utilisant un modele ANN. L'utilisation de données plus qualitatives de la SSM
qui seront fournies par de futures missions permettrait une meilleure quantification de la RZSM.

Mots clés: humidité du sol en zone racinaire, réseaux de neurones artificiels, variables reliées aux
processus, résolution subkilométrique, Sentinel-1, SMAP, ERAS-land, ISMN.

v



Acknowledgement

First and foremost, I would like to express my sincere gratitude to my PhD supervisors Mehrez
Zribi and Ahmad Al Bitar for their continuous assistance at every stage of this PhD, their insightful
ideas and their patience and support. I would like to thank them for the precious brainstormings we
had during our weekly meetings and their valuable suggestions to improve the quality of the work.
Their emotional support and understanding during the COVID period was also of great help in such
uncertain time. I could have surrendered to distress if it wasn’t for their follow up and
encouragement.

I would like also to thank the thesis committee members for their valuable comments and
suggestions that inspired me at different steps of the work. I also thank the jury members for the
time and attention they devoted to my work. Moreover, I am grateful to the project partners namely
Chiara Corbari and Marco Mancini for the interest they have been showing to my work and for the
discussions we had through ZOOM meetings. My gratitude extends to the diligent and kind staff at
CESBIO to name but a few Laurence Keppel, Dominique Tarrisse, Delphine Maria and Laura Léal.
Special thanks also to Eric Brune for his kindness and cheerfulness.

I sincerely thank all my colleagues at CESBIO for their welcoming and helpful attitude. I am
delighted and proud of the relationships that I have developed in the lab. I am tremendously grateful
for my co-workers who turned into real friends namely Emna Ayari, Nadia Ouaadi and Nitu Ojha.
They have always been there for me through all my joys and distress. I will be also very nostalgic
of the small moments I spent while sharing the office with David Morin and formerly Hervé
Thevenon, who 1 consider real friends. I thank both of them for their guidance, kindness and
emotional and technical support.

My biggest gratitude goes to my family, my number one supporter. I will be forever thankful to my
mother, late father and brother for their unconditional love and support. I have no words to
acknowledge the sacrifices they made to make my life better. I would like to wholeheartedly
dedicate this thesis to the memory of my beloved father who had always believed in me and
encouraged me to pursue this PhD. I am sorry he cannot see me defend my work but at the same
time glad to know that he witnessed part of the process. Last but not least, I thank my husband
Amine for his priceless love, encouragement and patience. He has been accompanying me at every
step of the way while recognising the emotional demands that research was placing on me. I still
find it difficult to express all my gratitude to him because it is so immeasurable.



TABLE OF CONTENTS

GENERAL INTRODUCTION....cccetttteeeeeeeeeeeeeneeeeeeeneeeseeesesssssesssssssssssees 12
Societal, Political, Scientific Context 13
Research axes 15
INTRODUCTION GENERALE (FRANCALS) uuuctiiiiiiininnnnnenssiicesssssssssssssssscssssssssssssssssssssssssssssss 18
Contexte sociétal, politique et scientifique 19
Axes de recherche 22
CHAPTER 1: STATE-OF-THE-ART .....cuuuuuceerreueceereeneenes 24
1.1. Soil moisture definition 25
1.2 Processess related to soil moisture 26
1.2.1 INfIIEEALION PIOCESS. . eictieitietieteeeteeteittesteesteeteeteereesteeseesseesseassesssessseseesseasseasseassesssesseesseessesssesssesssesseensesssenseenns 27
1.2.2 RAINFAII-RUNOTT ...t e e e e et e e e e e se et e e e e e e e eesaataeeeeeesesssnaaseeeeeessnnnnanees 27
1.2.3 EVAPOITANSPITATION. ...ceteeutieuiteiteetteetteet et et et e ate et et e et e em bt es e eseesbeesbee bt e bt emteeaeeeaeeabeembeenteemseemeeaseenbeeseenseentesneene 28
1.3 Measuring Soil moisture 29
1.3.1 DITECE IMEASUIEIMENLS .....eeeeiiieieeieieeeeeeeeeeeeeeeeeeeeeieateeeeeesesaasststeeeessssssaasteeesesassssseseesssssssssssseessssssssssseeesssssnnsrees 29
1.3.2 INAITECT INEASUIEIMENLS .....ceiiiiiieeieieeeeeeeeiieeeeeeeeeee e teeeeeeeesseaaateeeeeesssssassteeesesassasseseeessssssantssseessssssansssseeessssnsnnnrees 29
1.3.2.1 IN-SItU MEASUTEIMIENIES ......oeeeievvieeiieeeeeeeteeeeeteeeeeesaeeeeeeteeeeesseeeeeeaeeeeenseeesesssseeeessreesensssessanteeesansreesensnneesanseeeeans 30
1.3.2.2 REMOtE SENSING ODSCTVALIONS ....c.vvevieiieiieeteeeresteeteeteeteesaessaesseesseessesssesssesssesseessesssesssesssesssesseesseessesssesssenss 31

1.4 Root-Zone Soil moisture estimation 38
1.4.1 Physically-based MOAELS ........c.cccuiiiiiiiiiiiieii ettt sv e et eae e teebe e seesseessessaesseesseesseensessnenns 39
R B TN v: I Ty 0 0 V1 F: 15 () o RO 40
1.4.3 Data-driven METNOMAS ........ooooiiiiiiiiiei ettt e e e e e e ettt e e e e e se e aaaeeeeeessesaataeeeeeeesssnnaaaeeeeeesannnaarees 42
CHAPTER 2: PREDICTION OF RZSM BASED ON SSM USING ANN ....ceeeeeeeeeeceeeseeessssenses 50
2.1. Introduction 51
2.2 Conclusion 51
2.3 Article 52

CHAPTER 3: PREDICTION OF RZSM BASED ON SSM AND PROCESS-RELATED

INPUTS USING ANN..oirirurnrnecsnensnecssenssncsssesssnssssssssassssessssses 74
3.1 Introduction 75
3.2 Conclusion 75
3.3 Article 76

CHAPTER 4: RZSM SPATIAL MAPS AT LARGE SCALE AND 1KM RESOLUTION...112

vi



4.1 Introduction 113

4.2 Conclusion 113
4.3 Article 114
GENERAL CONCLUSION AND PERSPECTIVES......iiitineennnsenssessecssessssssssssesssenss 146
CONCLUSION GENERALE ET PERSPECTIVES (FRANCALIS) c.ccovernnuersnensnensnnssanssancsanes 150
ACRONYMS cieriinnnensnnnsnesssessssssssnssssssssnsssssssansssssssssssssssssssssssssassssassssssssssssassssassssssssassssssssasssns 155
REFERENCES.......uiinninnnnnnenssnenssensnesssesssnsssaessns 159

vil



LIST OF FIGURES

General introduction

Figure 1: The 17 SDGs from the United Nations (source:

https://www.un.org/sustainabledevelopment/news/communications-material/) ..........c.ccecerereieneneeneneneenn. 13
Figure 2: Map of water stress due to agriculture, by basin, in 2018 (Source: FAO and UN-Water, 2021,
modified to be consistent With UN, 2021.).......ccouiiiiiiiiiieiiie ettt ettt e e v e e etee e ateeenee s 14

Chapter 1: State-of-the-art

Figure 3: Soil water content at saturation, field capacity and permanent wilting point (Datta et al., 2017). .. 25
Figure 4: Diagram of unsaturated soil zone holding the soil moisture components and saturated soil zone. . 26
Figure 5: Hydrologic processes interacting with soil moisture (source: KGS Pub. Inf. Circ. 22, last access: 5

SEPLEMDEL 2022).....eiiuiieiieieeiteeie sttt et et e steesttesttessbeesseesseessaesssessseasseasseessaessaessseasseasseesseeseesssesssensseenseenses 27
Figure 6: Diagram of the land water balance for a given surface soil layer; dS/dt represents the change in

WALET COMEBIIE. ..evviureitiitieititeeit ettt sttt ettt ettt ettt eae et e sheesa e bt eee e st e bt emnesheeae e bt sueemsesbeesne st emeennesheemsebeennenne 29
Figure 7: Some past and current microwave missions for SM retrieval.........ccccocvvienininnininincnieceeeee 35
Figure 8: Venn diagram of the artificial intelligence and some of its integrated technologies. ...................... 42
Figure 9: Machine [earning WOTKIIOW ..........c.covviirieriieiieiie ettt sttt e seaesenessseesseesseesaessnenens 44
Figure 10: Structure 0f @ NEUTOM. .......c..eiiiiiiiiiiiiiieteeete ettt st sb et sttt bbb e 45

Figure 11: Examples of different architectures of artificial neural networks: (a) Single-layer feedforward
network (b) Multilayer feedforward network (c) Recurrent neural network............coccoeieiiiiniiiinceiieeee 46

viii



LIST OF TABLES

Chapter 1: State-of-the-art

Table 1. Overview of remote sensing techniques for soil moisture estimation (after Wang and Qu, 2009;
Babaeian €t @l., 2019). ....ooouiiiiiecie e e e st e e tb e e s be e e tb e e tbeeebaeeatbeeebaeeebeeerees 32

X



Foreword

This PhD was conducted in the Centre des Etudes Spatiales de la BIOsphere (CESBIO) under the
supervision of Mehrez ZRIBI (Research Director at the Centre National de la Recherche
Scientifique (CNRS)) and Ahmad AL BITAR (Research engineer at CNRS).

This PhD was cofunded by the Agence Nationale de Recherche (ANR) and Centre National
d’Etudes Spatiales (CNES) under the grants RET-SIF-ERANETMED—-ANR-17-NMED-0004-01 and
SMARTIES-PRIMA—-ANR-NMED.

During this PhD, two thesis committees took place on October 16, 2020 and January 21, 2022
respectively. Olivier MERLIN (Research Director at CNRS), Philippe MAISONGRANDE (Land
and Hydrology Program Manager at Centre National d’Etudes Spatiales (CNES)) and Thierry
PELLARIN (Research Director at CNRS) are the three members of the committee.



Préface

Cette thése a été réalisée au Centre des Etudes Spatiales de la Biosphére (CESBIO) sous la direction
de Mehrez ZRIBI (directeur de recherche au Centre National de la Recherche Scientifique (CNRS))
et Ahmad AL BITAR (Ingénieur de recherche au CNRS).

Cette these a été cofinancée par I'Agence Nationale de Recherche (ANR) et le Centre National
d'Etudes Spatiales (CNES) sous les bourses RET-SIF-ERANETMED-ANR-17-NMED-0004-01 et
SMARTIES-PRIMA-ANR-NMED.

Au cours de cette these, deux comités de thése ont eu lieu respectivement le 16 octobre 2020 et le
21 janvier 2022. Olivier MERLIN (directeur de recherche au CNRS), Philippe MAISONGRANDE
(Responsable de la thématique Surfaces, biosphére continentales, hydrologie au Centre National
d’Etudes Spatiales (CNES)) et Thierry PELLARIN (directeur de recherche au CNRS) sont les trois
membres du comité.

xi



General introduction

General introduction

This chapter presents the broad context and background to this PhD. The three main research axes
are also briefly introduced.
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General introduction

Societal, Political, Scientific Context

Nowadays, the term "water" is closely associated with the war and peace terminologies. The ninth
edition of the World Water Forum, which was held between March 22 and 27, 2022 in Senegal, is
the best illustration since it was entitled "Water security for peace and sustainable development". In
a context of climate change, growing world population and increasing urbanization, water is
becoming scarcer. This shortage can threaten peaceful coexistence between countries sharing cross-
border river basins, as the President of the Republic of Senegal recalled in his welcome message at
the last World Water Forum, hence the urgency of making this resource a global political priority.

Water appears in the Sustainable Development Goals (SDGs) presented in the UN 2030 agenda,
namely through SDG 2 “zero hunger” and SDG 6 “guarantee water for all” (Figure 1).

Figure 1: The 17 SDGs from the United Nations (source:
https://www.un.org/sustainabledevelopment/news/communications-material/)

The aggregated SDG indicator 6.4.2 describes water stress. In 2018, the average value of this
indicator was equal to 18% at the global scale. At the regional scale, the indicator was below 25%
(equal to 8.3%) for Europe which makes it at that time unexposed to water stress; in Eastern and
Western Asia water stress was low to medium (indicator between 45% and 70%), However, it was
high in Central Asia and South Asia with levels above 70% and critical in North Africa (indicator
above 100%).

In this context of water crisis, 3.2 billion people living in rural areas are threatened, according to the
Food and Agriculture Organization (FAO). The latest report of FAO, entitled “The State of the
World’s Land and Water Resources for Food and Agriculture”, highlights the threats to key
agrifood systems around the world. In Africa, several countries suffer from the lack of water
resources and are unable to cultivate and to subsidize the food needs of their people, says FAO
Director-General Mr. Qu Dongyu during the World Water Forum in Dakar (2022).

Moreover, different businesses are threatened in several agricultural areas. These include
smallholders and farmers whose crops are deteriorating due to drought events, as well as pastoral
breeders whose animals are dying of thirst and fishermen whose fishing grounds are gradually
shrinking.
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General introduction

According to (FAO, 2021), 10% of inland renewable water resources from rivers and aquifers have
been used. 70% of freshwater withdrawals are for agriculture and constitute a large share of
withdrawals in North Africa, Central Asia and the Middle East-West Asia region.

Figure 2: Map of water stress due to agriculture, by basin, in 2018 (Source: FAO and UN-Water, 2021,
modified to be consistent with UN, 2021.)

Another major factor that increases the threats to water security consists in climate change.
According to (IPCC, 2022), heavy precipitation events are more frequently occurring in many
regions compared to the 1950s. This led to more substantial annual maximum one-day precipitation
in many regions against longer dry spells in other regions, all compared to the 1950s. Besides, the
global glacier mass loss rate went beyond 0.5 m water equivalent per year during the last two
decades, according to the same report, which highly affected the cultural uses of water among
vulnerable high mountain and polar communities. Overall, unprecedented and severe floods and
droughts are more likely to occur due to human-induced climate change. The report also highlighted
that 7% of global disasters between 1970 and 2019 were drought-related whereas 31% of all
economic losses in the same time range were flood-related due to the increasing warming. These
extreme events affect both the quantity and quality of water. Actually, the availability of water is
highly impacted by droughts mainly over arid areas like large parts of Africa, the USA, China and
India. On the other side, floods and heavy rainfall events are likely to affect the quality of water and
may make it undrinkable. Moreover, the salination of groundwater resources can increase due to
harsher storms and higher sea levels in small islands and coastal regions for example.

In order to achieve the objectives inherent to the sustainable management of water (SDG 6), the
FAO is participating in several projects focusing on water scarcity such as AQUASTAT database,
the Water Productivity Open-access portal (WaPOR) and The Global Framework on Water Scarcity
in Agriculture (WASAG). The characterization of surface conditions and more specifically the soil
hydraulic properties is a major challenge to accomplish the water related sustainable goals.
Actually, soil moisture is one of the major elements of the surface water budget that characterize
the level of stress of land surface ecosystems. Although only 1 mg for each kilogram of water on
Earth is stored as soil moisture (which makes around 0.0001% of earth’s water), this tiny amount of
water governs different hydrological, agricultural, and meteorological processes ranging from
boundary layer dynamics to the global water cycle (Islam and Engman, 1996). Since the superficial
reservoir has a small capacity, the monitoring and the accurate quantification of the spatial and
temporal variability of soil moisture in deep layers is more important than the surface soil moisture.
Hence, the prediction of root-zone soil moisture (RZSM) is essential for crop management,

14



General introduction

irrigation planning, flooding and drought mapping, weather prediction and quantification of carbon
fluxes within soils.

Although in-situ measurements provide accurate estimations of RZSM, they are lacking over large
spatial scales (Dorigo et al., 2011). Alternatively, remote sensing technology provides seamless and
large-scale soil moisture retrievals but with a limited sensing depth of few centimeters. A common
approach to produce continuous estimates of this variable consists in observing surface
meteorological data in physically-based models like land surface models (LSMs) in an uncoupled
manner (Koster et al., 2009). Nevertheless, the errors in forcing parameters and the deficiencies in
the representation of land surface processes lead to uncertainties in these estimates. Shallow remote
sensing soil moisture accounted for the integration of in situ surface data or satellite sensors data
like passive microwave brightness temperature or radar backscattering coefficients into hydrologic
models to predict RZSM through data assimilation techniques (Kolassa et al., 2017; Lievens et al.,
2017; De Lannoy et al., 2019). Data-driven techniques, such as Artificial Neural Networks (ANNS5),
have proven efficient in RZSM prediction (Kornelsen and Coulibaly, 2014, Pan et al., 2017; Souissi
et al, 2020; Souissi et al., 2022).

All the aforementioned techniques have been applied in several studies in order to estimate RZSM
at local, regional and continental scales. However, no attempt has been made yet to predict this
component at large scales and high spatial resolutions concurrently. The interest of the different
spatial resolutions varies with the field of application. For instance, meteorological applications
need coarse resolution soil moisture data, hydrological applications are usually centered on the
watershed scale whereas agricultural applications require high-resolution data (Stefan et al., 2021).
The resolution at which RZSM is currently being predicted at large scales and the resolution at
which land processes occur within the soil profile are disparate. This observation motivated this
work to focus on the prediction of root zone soil moisture at large scale and subkilometric
resolution. In the literature, ANNs have been used as surrogate models, calibration tools or as
physics-aware methods. The classic way of tackling soil moisture estimation problems with ANNs
as a physics-aware method is to start from the analysis of the radiometric observations i.e. remote
sensing observations. Then, physics which is depicted by different physically-based variables or
models is injected into the ANN to finally obtain the target, namely soil moisture. In this PhD, we
used ANNs as a physics-aware method but in a different processing order. Actually, we started
from multi-location in-situ soil moisture measurements to train and test an ANN model. Process-
related variables were then added as model inputs. After this hybridization of the approach, the
locally-trained model is tested using remote sensing data in order to produce spatial maps of RZSM
at large scale and 1 km resolution.

Research axes
This work is centered on different research axes namely:

1/ Assess the robustness, accuracy and transferability with which RZSM can be estimated using
only surface soil moisture (SSM) in a data-driven method. 2/ Explore how best to include process-
related information along with SSM in ANN models intended to predict RZSM. 3/ Study the
feasibility of mapping RZSM at large scale and subkilometric resolution using ANN and remote
sensing-based inputs.

e Prediction of RZSM based on SSM using ANN
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In this part, an ANN model was developed to estimate RZSM based on only in-situ SSM
information. Different experiments were conducted on the model with regard to the temporal
sampling of the SSM features, the scaling technique and of the split of the training, validation and
test sets. In-situ SSM measurements were provided by the International Soil Moisture Network
(ISMN) at different locations around the world such that different climates and soil types were
considered. This particularity is important to assess the transferability of the approach. The
accuracy of the method was investigated across the climate classes and soil textures. The
contribution of each soil moisture network was also assessed and led to a data filtering. This
approach is detailed in the scientific paper entitled «Accuracy and Transferability of Artificial
Neural Networks in Predicting in Situ Root-Zone Soil Moisture for Various Regions across the
Globe» and published in Water journal, and will be presented in chapter 2.

e Prediction RZSM based on SSM and process-related inputs using ANN

The findings of the first axis mainly with regard to the performance limitations of the first approach
over regions where the link between surface and root zone is weak, have led us to further
complexify the method. Given that different hydrological processes like diffusion processes connect
RZSM to SSM, we decided to investigate the impact of adding process-related inputs in addition to
SSM in ANN models and seek the best combination that ensures the more accurate RZSM
predictions. The soil water index (SWI) was computed with a recursive exponential filter and used
to account for the infiltration process. The evaporation process was illustrated through an
evaporation efficiency computed based on a Moderate Resolution Imaging Spectroradiometer
(MODIS) remote-sensing potential evapotranspiration (PET) dataset and a simplified analytical
model. Vegetation growth was interpreted through the normalized difference vegetation
index (NDVI) time series. Several ANN models with different combination of features were
developed.

This approach and different results are presented in the scientific paper «Integrating process-related
information into an artificial neural network for root-zone soil moisture prediction», published in
Hydrology and Earth System Sciences (HESS) journal, and will be detailed in chapter 3.

e RZSM spatial maps at large scale and 1 km resolution

Our starting point in this axis is the most complex ANN model which was developed in the
previous part and which allowed agreement between RZSM predictions and in-situ information.
Actually, the assessment of the reliability of the ANN model to yield consistent RZSM predictions
over a continental scale namely Europe is a decisive step in this study. The feasibility of predicting
RZSM at large scale using a locally-trained is a demonstration of its generalizability to the global
scale. Different SSM products specifically radar, passive microwaves and reanalysis datasets were
employed to compute the three SSM features. A comparison between the different RZSM maps
produced at different resolutions (1 km, 9 km and 36km) was performed as well as a validation
against in-situ RZSM collected over four European in-situ soil moisture networks.

This approach is detailed in a scientific paper entitled «Root-Zone soil moisture over Continental
Europe using machine learning» and submitted in [International Journal of Applied Earth
Observation and Geoinformation journal and will be detailed in chapter 4.
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Ce chapitre présente le contexte général de cette theése. Les trois principaux axes de recherche sont
¢galement brievement introduits.
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Contexte sociétal, politique et scientifique

De nos jours, le terme "eau" est étroitement li¢ aux terminologies de guerre et de paix. La neuvieme
édition du Forum mondial de l'eau, qui s'est tenue du 22 au 27 mars 2022 au Sénégal, en est la
meilleure illustration puisqu'elle était intitulée "La sécurité de I'eau pour la paix et le développement
durable". Dans un contexte de changement climatique, de croissance de la population mondiale et
d'urbanisation croissante, l'eau devient de plus en plus rare. Cette pénurie peut menacer la
coexistence pacifique entre les pays partageant des bassins hydrographiques transfrontaliers,
comme l'a rappelé le Président de la République du Sénégal dans son message de bienvenue au
dernier Forum mondial de 1'eau, d'ou l'urgence de faire de cette ressource une priorité politique
mondiale.

L'eau apparait dans les Objectifs de développement durable (SGD) présentés dans 1'agenda 2030 de
'ONU, notamment a travers I'SGD 2 « Eliminer la faim, assurer la sécurité alimentaire, améliorer la
nutrition et promouvoir une agriculture durable » et I'SGD 6 « Garantir I’accés de tous a I’eau et a
I’assainissement et assurer une gestion durable des ressources en eau » (Figure 1).

Figure 1: DLes 17 objectifs de développement durable des Nations Unies (source:
https://www.un.org/sustainabledevelopment/news/communications-material/)

L'indicateur SDG agrégé 6.4.2 décrit le stress hydrique. En 2018, la valeur moyenne de cet
indicateur était égale a 18% a I'échelle mondiale. A I'échelle régionale, l'indicateur était inférieur a
25% (égal a 8,3%) pour 1'Europe ce qui la rend non exposée au stress hydrique a I’époque; en Asie
de 1'Est et de I'Ouest le stress hydrique était faible a moyen (indicateur entre 45% et 70%), En
revanche, il était élevé en Asie centrale et en Asie du Sud avec des niveaux supérieurs a 70% et
critique en Afrique du Nord (indicateur supérieur a 100%).

Dans ce contexte de crise de l'eau, 3,2 milliards de personnes vivant en milieu rural sont menacées,
selon I'Organisation des Nations unies pour 'alimentation et I'agriculture (FAO). Le dernier rapport
de la FAO, intitulé « L’Etat des ressources en terres et en eau pour l'alimentation et l'agriculture
dans le monde », met en évidence les menaces qui pesent sur les principaux systémes
agroalimentaires dans le monde. En Afrique, plusieurs pays souffrent de la pénurie des ressources
en eau et sont donc incapables de cultiver et de subvenir aux besoins alimentaires de leur population
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soit environ 10% de la population mondiale, indique le Directeur général de la FAO, M. Qu
Dongyu, lors du Forum mondial de I'eau a Dakar (2022). En outre, différents projets sont menacés
dans plusieurs zones agricoles. Il s'agit notamment des petits exploitants et des agriculteurs dont les
cultures se dégradent en raison des épisodes de sécheresse, ainsi que des ¢leveurs pastoraux dont les
animaux meurent de soif, mais aussi des pécheurs dont les zones de péche se réduisent
progressivement.

D'aprés (FAO, 2021), 10 % des ressources en eau renouvelables continentales provenant des
rivieres et des aquiféres ont été utilisées. 70 % des prélévements d'eau douce sont destinés a
I'agriculture et constituent une part importante des prélévements en Afrique du Nord, en Asie
centrale et dans la région Moyen-Orient-Asie occidentale.

Figure 2: Carte du niveau de stress hydrique di a ’'usage agricole, par bassin, en 2018 (Source: FAO and
UN-Water, 2021, modified to be consistent with UN, 2021.)

Le changement climatique est un autre facteur majeur qui prolifeére les menaces sur la sécurité de
I'eau. Selon (IPCC, 2022), les événements de fortes précipitations sont plus fréquents dans de
nombreuses régions par rapport aux années 1950. Cela a conduit a des précipitations maximales
journaliéres annuelles plus importantes dans de nombreuses régions et a des périodes de sécheresse
plus longues dans d'autres régions, le tout par rapport aux années 1950. En outre, le taux de perte de
masse des glaciers a I'échelle mondiale a dépassé 0,5 m d'équivalent eau par an au cours des deux
dernieres décennies, selon le méme rapport, ce qui a fortement affecté 1’utilisation en eau pour les
cultures parmi les communautés vulnérables de hautes montagnes et polaires, par exemple. Par
ailleurs, des inondations et des sécheresses sévéres sont plus susceptibles de se produire en raison
du changement climatique induit par I'homme. Le rapport souligne également que 7 % des
catastrophes survenues a 1’échelle mondiale entre 1970 et 2019 étaient liées a la sécheresse, tandis
que 31 % de toutes les pertes économiques sur la méme période étaient liées aux inondations, en
raison du réchauffement croissant. Ces événements extrémes affectent a la fois la quantité et la
qualit¢ de l'eau. En effet, la disponibilité de l'eau est fortement affectée par les sécheresses,
principalement dans les zones arides comme en Afrique, les Etats-Unis, la Chine et I'Inde. D'autre
part, les inondations et les fortes précipitations sont susceptibles d'affecter la qualité de 1'eau et de la
rendre impotable. En outre, la salinisation des ressources en eau souterraine peut augmenter en
raison de tempétes plus violentes et de 1'élévation du niveau de la mer dans les petites iles et les
régions coti¢res, par exemple. Afin d'atteindre les objectifs liés a la gestion durable de 1'eau (SDG
6), la FAO intervient dans plusieurs projets axés sur la pénurie de 1'eau, tels que la base de données
AQUASTAT, le portail de suivi de la productivité de 1'eau (WaPOR) et Le Cadre mondial contre la
pénurie d’eau dans [D’agriculture (WASAG). Le suivi des conditions de surface et plus
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particuliérement des propriétés hydrauliques du sol est un défi majeur pour atteindre les objectifs de
durabilité liés a 1'eau. En effet, 'humidité du sol est I'un des principaux éléments du bilan hydrique
qui caractérise le niveau de stress des écosystémes de surface. Bien que seulement 1 mg par
kilogramme d'eau sur terre soit stocké sous forme d'humidité du sol (ce qui représente environ
0,0001% de I'eau de la terre), cette petite quantité d'eau régit différents processus hydrologiques,
agricoles et météorologiques allant de la dynamique de la couche limite jusqu’au cycle global de
l'eau (Islam et Engman, 1996). Etant donné que le réservoir superficiel a une faible capacité, la
quantification précise de la variabilité spatiale et temporelle de I'humidité du sol dans les couches
profondes est essentielle. La prédiction de 1'humidité du sol dans la zone racinaire (RZSM) est donc
importante pour la gestion des cultures, la planification de l'irrigation, la cartographie des
inondations et des éveénements de sécheresse, les prévisions météorologiques et la quantification des
flux de carbone dans les sols.

Bien que les mesures terrain fournissent des estimations précises de la RZSM, elles ne sont pas
capables de fournir des mesures a large échelle (Dorigo et al., 2011). Par ailleurs, les techniques de
télédétection permettent de fournir des données d'humidité du sol & grande échelle, mais avec une
profondeur de pénétration dans le sol limitée a quelques centimeétres. L’une des approches pour
générer des estimations continues de cette variable consiste a utiliser les données météorologiques
de surface observées dans des modeles basés sur la physique, comme les modeles de surface
terrestre (LSM) (Koster et al., 2009). Cependant, les erreurs des paramétres de forgage et les
déficiences dans la représentation des processus de surface conduisent a des incertitudes dans ces
estimations. Les techniques d’assimilation de données peuvent reposer sur 1’intégration de données
de capteurs aéroportés comme les coefficients de rétrodiffusion radar et la température de brillance
micro-ondes dans des modeles hydrologiques pour prédire les RZSM (Kolassa et al., 2017; Lievens
et al., 2017; De Lannoy et al., 2019). Les méthodes basées sur les données, telles que les réseaux de
neurones artificiels (ANN), ont été aussi démontrées efficaces pour la prédiction de la RZSM
(Kornelsen and Coulibaly, 2014, Pan et al., 2017; Souissi et al, 2020; Souissi et al., 2022)..

Toutes les techniques susmentionnées ont été appliquées dans plusieurs études afin d'estimer la
RZSM a I'échelle locale, régionale et continentale. Cependant, aucune tentative n'a encore été faite
pour prédire cette composante a grande échelle et a haute résolution spatiale simultanément.
L'intérét des différentes échelles spatiales varie en fonction de 1’application. Par exemple, les
applications météorologiques nécessitent des données d'humidité du sol a résolution grossicre, les
applications hydrologiques sont généralement centrées sur 1'échelle du bassin versant alors que les
applications agricoles nécessitent des données a haute résolution (Stefan et al., 2021). La résolution
a laquelle le RZSM est actuellement prédite a grande échelle et la résolution a laquelle les processus
terrestres se produisent dans le profil du sol sont trés différentes. Cette observation nous ramene a
I’objectif de cette thése a savoir la prédiction de I'humidité du sol de la zone racinaire a grande
échelle avec une résolution kilométrique. Dans la littérature, les ANN ont été utilisés en tant que
« surrogate models », outils de calibration ou en tant que méthodes tenant compte de la physique.
La maniére classique d'aborder les problémes d'estimation de I'humidité du sol avec les ANN en
tant que méthode tenant compte de la physique, consiste & commencer par l'analyse des
observations issues de 1’observation de la Terre. Ensuite, le réseau ANN est alimenté par des
variables ou modeles liés aux processus physiques pour enfin, obtenir la cible, a savoir I'humidité
du sol. Dans cette thése, nous avons utilis¢ les ANNs en tant que méthode basée sur la physique
mais dans un ordre de traitement différent. En fait, nous avons commencé par des mesures in-situ
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de I'humidité du sol de surface pour entrainer et tester un modele ANN. Les variables liées aux
processus ont ensuite été ajoutées comme entrées du modele. Apres cette hybridation de 1'approche,
le modéle localement entrainé est testé en utilisant des données de télédétection pour produire des
cartes spatiales de la RZSM a grande échelle et a une résolution de 1 km.

Axes de recherche
Ce travail est centré sur différents axes de recherche a savoir :

1/ Evaluation de la robustesse, la précision et la transférabilité avec lesquelles la RZSM peut étre
estimée en utilisant uniquement I'humidité du sol de surface (SSM) a travers une méthode basée sur
les données. 2/ Investigation de la meilleure approche pour inclure des informations liées aux
processus physiques avec la SSM dans des modeles ANN congus pour prédire la RZSM. 3/ Etude
de la faisabilité¢ de la cartographie de la RZSM a grande échelle et a une résolution subkilométrique
en utilisant des modeles ANN et des données de télédétection.

e Prédiction de la RZSM dans un ANN basé uniquement sur la SSM

Dans cette partie, un modele ANN a été développé pour estimer la RZSM uniquement a partir de
données in-situ de SSM. Différentes paramétrisations ont été appliquées sur le modéle en termes de
paramétrage temporel des entrées SSM, la méthode de scaling et la division des sets d’apprentissage
et de test. Les données in-situ de SSM ont ét¢ fournies par le réseau international d'humidité de sol
(ISMN) a différents endroits dans le monde, de sorte que différents climats et types de sol sont
couverts par les stations considérées. Cette particularit¢é est importante pour ¢évaluer la
transférabilité de l'approche. La précision de la méthode a été étudiée en se basant sur une analyse
climatique et de texture de sol.

Cette approche est détaillée dans I'article scientifique intitulé "Accuracy and Transferability of
Artificial Neural Networks in Predicting in Situ Root-Zone Soil Moisture for Various Regions
across the Globe" et publié dans la revue internationale Water. Elle sera présentée dans le chapitre
2.

e Prévision de la RZSM dans un ANN en se basant sur la SSM et des variables liées aux
processus physiques

Différents processus hydrologiques, comme les processus de diffusion, relient la RZSM a la SSM.
Par exemple, la RZSM peut étre dérivée de 1'évaporation de surface via I'extraction des racines ou
les remontées capillaires. Ceci nous a conduit a évaluer l'impact de I'ajout d'entrées liées aux
processus physiques, en plus de la SSM, dans des modéles ANN et a trouver la meilleure
combinaison qui assure les meilleures prédictions de la RZSM. L'indice d'eau du sol (SWI) a été
calculé avec un filtre exponentiel récursif et utilisé pour représenter le processus d'infiltration. Le
processus d'évaporation a été illustré par une efficacité d'évaporation calculée sur la base d'un
modele analytique simplifié et de données d'évapotranspiration potentielle (PET) issues du
spectroradiométre imageur a résolution modérée (MODIS). La dynamique de végétation a été
déduite des séries temporelles de 1'indice de végétation par différence normalisée (NDVI) fournies
par le satellite MODIS. Plusieurs modéles ANN avec différentes combinaisons de variables
d’entrée ont été développés.
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Cette approche et les différents résultats sont présentés dans l'article scientifique "Integrating
process-related information into an artificial neural network for root-zone soil moisture prediction",
publié dans le journal Hydrology and Earth System Sciences (HESS). Elle sera détaillée dans le
chapitre 3.

e Cartes spatiales de RZSM a grande échelle et a résolution kilométrique

L'évaluation de la fiabilit¢ du modéle ANN précédemment développé pour produire des prédictions
RZSM cohérentes a 1'échelle continentale, a savoir I'Europe, est une étape décisive de cette étude.
La faisabilité de I'estimation de la RZSM a grande échelle avec une méthode initialement calibrée et
testée a I'échelle locale démontre sa généralisabilité a I'échelle globale. Le point de départ de cette
¢tape est le modele ANN présenté dans 1’axe précédent. Différentes sources de SSM, notamment
des données satellite radar, micro-ondes passives et de réanalyse, ont été utilisées pour calculer les
features de la SSM. Une comparaison entre les différentes cartes de RZSM produites a différentes
résolutions (1 km, 9 km et 36 km) a été effectuée ainsi qu'une validation avec des données RZSM
in-situ collectées au niveau de quatre réseaux européens d'humidité du sol.

Cette approche est détaillée dans un article scientifique intitulé "Root-Zone soil moisture over
Continental Europe using machine learning" soumis au journal International Journal of Applied
Earth Observation and Geoinformation. Elle sera détaillée dans le chapitre 4.
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Chapter 1: State-of-the-art

The following chapter encompasses elementary definitions inherent to soil moisture, the state-of-
the-art of direct and indirect soil moisture retrieval techniques at various spatial and temporal scales
and a review of the different methods for RZSM estimation. It identifies the limitations of the
existing solutions and the needs for a better quantification of this component, hence the interest of
this work.
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1.1. Soil moisture definition

The soil moisture also called soil water content is the amount of water held in the soil at a given
matric potential (Tuller and Or, 2005). Soil moisture can be expressed either as a gravimetric
quantity 0g (g/g) or as volumetric quantity 6y (m*/m?). Gravimetric soil moisture represents the ratio
of the mass of water present in a soil sample and the mass of the dry soil sample. This quantity can
be obtained by weighing a moist soil sample (mwet), oven drying it at 105°C and then reweighing it

(Mdry).

0. — Myet — Myry
g=———
mdry

Volumetric soil moisture (0v) is defined as the volume of water held in a given soil volume may be
expressed as a function of gravimetric soil moisture (6m) as follows:

Pb
BV = ema

Where py is the dry bulk density (g/cm?) of the soil, which is the weight of dry soil per the total soil
sample volume, and pw is the density of water (g/cm?).

v is replaced by 6s which represents soil moisture at saturation and is attained when soil pores are
totally filled with water and no air is present. However, a completely saturated soil is not achievable
in practice (can be achievable however in peatlands for instance) due to air entrapment in the soil
pores under wet conditions. Similarly, a completely dry soil is not realistic due to the presence of a
residual moisture content 0r. In agricultural contexts, other soil moisture parameters can be derived
to describe the relations governing water in a soil sample, such as the plant available soil water
content. This quantity is termed Opaw and is defined as the difference between the water content at
field capacity Orc, and the water content at the permanent wilting point, Opwp. Field capacity is
attained once free drainage (gravity forces) is over and is considered ideal for crop growth.

The permanent wilting point Owe (figure 3) indicates the stage below where plants irreversibly wilt
and die because water is so firmly retained in the soil matrix and the roots water uptake is not
enough to cover their need. The water content at field capacity (figure 3) depends on soil texture
and the permanent wilting point depends on the plant type.

Figure 3: Soil water content at saturation, field capacity and permanent wilting point (Datta et al., 2017).
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Soil moisture is often separated into two components namely surface soil moisture that corresponds
to water in the upper soil (generally the top 5 centimeters) and the root-zone soil moisture that is
available to plants (Figure 4) (Seneviratne et al., 2010). Soil moisture content may be termed, where
applicable, surface soil moisture, near-surface soil moisture, root-zone soil moisture or vadose zone
soil moisture. In the context of optical and thermal remote sensing, surface soil moisture also called
skin soil moisture represents the water content held in the uppermost soil layer which thickness
doesn’t exceed Imm. Near-surface soil moisture commonly denotes the average water content
within the top few centimeters of the soil and is generally used in the context of microwave remote
sensing. In this study, we don’t make the distinction between the two terms. Only surface soil
moisture will be used to refer to soil moisture in the first five centimeters of the soil. Root-Zone soil
moisture refers to the water content available in the plant root zone which is available for
transpiration and photosynthesis. Root water uptake by plants is one of the key components of the
terrestrial water balance and a critical process controlling energy exchange between the land surface
and the atmosphere and plant growth (Jarvis, 2011).

The accurate quantification of the depth of soil that roots can access, which contributes significantly to soil
productivity, is quite challenging because of many factors namely the reduced pore volume, the abruptness
of textural change over depth, the depth of soil to bedrock, the extremely acidic and or alkaline pH, and
many other physical and chemical properties (Leenaars et al., 2018). The root profiles are also vegetation-
dependant. Albers et al. (2022) consider a depth of 150 cm ideal to approximate the root zone depth outside
all root-restricting zones. Many models and hypotheses have been proposed to estimate the rooting depth
(Jackson et al., 1996; Musters and Bouten, 1999; Schenk and Jackson, 2002; Zeng, 2001; Leenaars et al.,
2018; Rivieccio et al., 2020). This study is centered on the study of the soil moisture in the zone where roots
develop and not where roots really are. The shallowest RZSM observation point we will consider in this PhD
based on the soil moisture data we will be using, is equal to 30 cm and the deepest one is fixed at 55 cm.

Figure 4: Diagram of unsaturated soil zone holding the soil moisture components and saturated soil zone.

1.2 Processess related to soil moisture

Soil moisture variations interact with different processes. For instance, the near-surface soil
moisture variations interact with precipitation and evapotranspiration. Runoff, percolation and
infiltration are also linked to the soil moisture variability (figure 3). Hereafter, some processes are
detailed with respect to their interaction with soil moisture.
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Figure 5: Hydrologic processes interacting with soil moisture (source: KGS Pub. Inf. Circ. 22, last access: 5
September 2022)

1.2.1 Infiltration process

Infiltration is one of the most important hydrological processes that are related to soil moisture. It
describes the water movement from the surface into deeper soil. Several factors such as soil texture,
irrigation or rainfall control this process.

The modeling of the infiltration process has gained much interest in the literature through several
infiltration models which yield different levels of accuracy (Feki et al., 2018). These models are
usually based on Richards’ equation (Richards, 1931). Actually, the Richards' equation describes
the flow of water in an unsaturated porous medium which is due to gravity and capillarity rise. The
flow of the non-wetting phase usually air, is neglected (Farthing and Ogden, 2017). Due to its high
nonlinearity, the numerical solutions which are proposed to resolve the Richards’ equation are time-
consuming especially in the case of large study areas and lead to stability issues under some
conditions such as the wetting of an initially dry medium (Tinet al., 2015). Different simplifications
were suggested and implemented by empirical, semi-empirical and physically-based models.
Mishra et al. (2003) compared the performance of fourteen different infiltration models based on
the Nash-Sutcliffe efficiency coefficient and 243 sets of in-situ infiltration data collected over India
and USA such that different soil textures are covered. Feki et al. (2018) assessed the impact of
modeling the infiltration process on soil moisture simulations accuracy. They included different
infiltration models within a distributed hydrological model and evaluated their ability to simulate
soil water content through a comparison against in-situ observations acquired in a maize field in
northern Italy. Besides, they demonstrated that the Ross solution (Ross, 2003), which is a fast non-
iterative solution for the non-linear 1D Richards’ equation, was able to follow the soil moisture
variability within the soil profile. In addition to the Ross solution, simpler analytical infiltration
models allowed a good agreement between in-situ and simulated soil moisture if well calibrated.

1.2.2 Rainfall-Runoff

The quantification of stream flow that occurs in a river following a rainfall event is very important
for different hydrological applications. The study of the rainfall-runoff processes encompasses
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looking at where water goes when it rains, how long does water reside in a watershed, and what
pathway does water take to the stream channel (Tarboton, 2003).

Woods et al. (2001) presented preliminary analysis related to rainfall-runoff response and soil
moisture behavior over the Mahurangi River catchment in New Zeland and suggested that accurate
measurement of soil moisture should be useful for runoff prediction. Actually, significant runoff
was observed to be generated only for moisture contents above about 42%. Woods et al. (2001)
suggested that at these high average moisture contents, the spatial distribution of soil water was
critical in the prediction of runoff behavior and therefore should be well predicted.

Runoff is generated by different mechanisms and processes, which depend on the soil moisture
status of the soil, referred to as the antecedent conditions. Actually, processes of evaporation,
transpiration, percolation and drainage allow the definition of the soil moisture antecedent
conditions (Tarboton, 2003).

These observations led to the development of different continuous simulation models, such as the
National Weather Service (NWS) Sacramento soil moisture accounting model which is based on
well-structured representation of the catchment's soil moisture storage system. This model is based
on simple approximations of many soil moisture processes. Given that many of the catchment
characteristics are related to the soil moisture capabilities of the catchment, a good application of
the model starts with a good understanding of the three basic types of soil moisture which are
hygroscopic, gravitational and capillary water and which can potentially influence catchment runoff
conditions as reported in (Burnash, 1995). Hygroscopic water can be defined as soil water that is
present not only in the pores but also on the surface of the soil particle and which is not available
for plants. Gravitational water is the water that drains after moving through the soil by the force of
gravity. Capillary water is the water which is held inside soil pores against gravity.

1.2.3 Evapotranspiration

The quantification of evapotranspiration (ET) is crucial for water resources management
applications. Actually, ET establishes a link between the water, energy and carbon cycles and thus
is very important for climate and hydrological applications. ET is a physically-based process that
describes the water transfer from the soil layers and vegetation layer to the atmosphere. Over land,
ET is made up of evaporation and plant transpiration. Evaporation is a physically-based process that
describes the water transfer from different sources such as the soil, the surface of canopies, stems,
or branches to the atmosphere. Transpiration is a bio-physical process that represents the
evaporation of water in the vascular system of plants through leaf stomata (Verstraeten et al., 2008).
Evapotranspiration is directly connected to soil moisture content which is subject to evaporation.
Soil moisture has an impact on evapotranspiration since it has an influence on the partitioning of the
available energy at the Earth surface into sensible and latent heat fluxes (Hirschi et al., 2020). Both
land water balance and water balance for a given surface soil layer, without considering lateral
exchange between adjacent soil volumes can be expressed using this same equation (figure 6):
ds

- =P—E-R;—R,
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where dS/dt is either the change of terrestrial water storage or water content within a given soil
layer, P is precipitation, E is evapotranspiration, Rs is surface runoff, and Rg is groundwater flow in
the case of land water balance or drainage in the case of a given soil layer water balance. S includes
moisture stored in the soil, surface water, snow, ice cover and water stored in biomass.

Figure 6: Diagram of the land water balance for a given surface soil layer; dS/dt represents the change in
water content.

1.3 Measuring Soil moisture

Since the soil water balance is strongly affected by RZSM, accurate quantification of this
component is essential in order to assess whether the available water can answer the plant needs or
if it exceeds the plant demand and thus percolates below the root zone layer. The variability of
RZSM can be evaluated using direct and indirect methods (Upadhyaya et al., 2021).

1.3.1 Direct measurements

The most common direct method of retrieving soil moisture in general and RZSM in particular is
the gravimetric method which consists in weighing soil samples before and after over-drying at a
temperature of 105 °C for 24-48 h. A detailed investigation of this method was described in
(Reynolds, 1970). This method is simple, inexpensive and important to calibrate indirect
measurement instruments. However, it is labor-intensive and time-consuming with regard to sample
collection and drying. But the main disadvantage of this technique is the artificial change it brings
to the experimental site. Actually, the gravimetric method is destructive because of the repeated
sampling of a same site. It may damage the plant roots, modify the ground hydrological conditions
and introduce variable drainage and infiltration characteristics.

Besides, RZSM can be directly measured using a lysimeter which is a device, typically a tank or a
container. It defines a specific boundary to contain water in the soil and allows the measurement of
the soil water balance or the volume of water percolating vertically or its quality. For a weighing
lysimeter, the change in soil water storage is measured as a change in mass (Howell, 2004).
However, the lysimeters are subject to many limitations. One main limitation is caused by the
filling in of the soil into the lysimeter which can lead to a modification of the soil structure and
might influence the condition of crops and soil life (Makkink, 1959).

1.3.2 Indirect measurements
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Given the significant limitations affecting direct measurements, soil moisture is commonly
observed by indirect measurement techniques or devices. Despite the good accuracy of the existing
sensors, these techniques are hindered by a limited spatial coverage. Actually, the soil can’t be
digged at each point of the globe to install the sensors. The remote sensing technology overcomes
this major limitation. However, the spatial and temporal resolutions can hamper soil moisture
observation and need to be taken into account.

1.3.2.1 In-situ measurements

In-situ measurement techniques can provide both point-scale and larger impact measurements
(decametric or hectometric scale). This section presents the most used techniques and is not a
comprehensive review of all measurement techniques.

Neutron scattering

This technique was introduced and successfully used to indirectly measure soil moisture in the
1950s (Belcher et al., 1950; Gardner and Kirkham, 1952). Neutron probes are made up of a probe
which contains a source of fast neutrons and a gauge that monitors the flux of slow neutrons
scattered by the soil. In order to get root-zone measurements, the probe is lowered down an access
tube until the intended depth of measurement. Neutrons with a high energy are scattered into the
soil and are slowed by elastic collisions with nuclei of atoms. In soils, water is the major source of
hydrogen atoms that can slow fast neutrons much more effectively than can any other element.
Slow neutrons returning to the detector per unit time are counted. The density of the resultant cloud
of slow neutrons is a function of the soil moisture content (Chanasyk and Naeth, 1996).

Dielectric sensors

These sensors are based on techniques which derive soil moisture from the dielectric property of the
soil. These techniques mainly encompass Time Domain Reflectometry (TDR), capacitance
technique and Frequency Domain Reflectometry (FDR) and are based on the fact that dielectric
constant of soil is primarily related to its water content (Thomas, 1966; Cihlar and Ulaby, 1974;
Hoekstra and Delaney, 1974; Topp et al., 1980). The dielectric constant is a measure of the
response of the soil to an electromagnetic wave and is equal to a few units for dry matter and about
80 for free liquid water. Different sensors based on electromagnetic measurements of this constant
have been developed by different companies (Vaz et al., 2013).

TDR sensors like the TDR 100 Campbell sensor emit an electromagnetic impulse and observe the
response within an interval of time. Then, they convert the time taken by the wave to travel and to
get reflected back to the receiver to distance unit, and display the information as a waveform. The
volumetric soil moisture can be estimated using the dielectric constant of the soil (Abdullah et al.,
2018). Besides, the capacitance technique relies on the fact that capacitance of soil is directly
related to the dielectric constant and thus to water content in soil. Many capacitance soil moisture
sensors consist of a probe and a pair of embedded electrodes. The Decagon 10HS and 5TE are two
widely used capacitance sensors. The capacitance between the probes varies as a function of soil
moisture (Selig et al., 1975). An oscillator applies a frequency between 50 and 150 MHz to the
electrodes, which generates a resonant frequency whose magnitude depends on the dielectric
constant of the soil. Volumetric soil moisture content is then estimated using the frequency and a
calibration equation.
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FDR offers an inexpensive measurement of soil water content and is an alternative to TDR. FDR
sensors consist of short probes which make them geometrically more advantageous than TDR
sensors. Different soil properties can be measured by selecting different frequencies since FDR
sensors are sensitive to different physical and chemical soil properties in different frequency ranges
based on the dielectric spectra of the soil (Xu et al., 2012).

Gamma attenuation technique

The gamma ray attenuation is a radioactive technique that can be used to determine soil water
content. This method assumes that the scattering and absorption of gamma rays are linked to the
density of matter in their path and that the specific gravity of a soil remains relatively constant as
the wet density changes with increases or decreases in moisture. The gamma transmission technique
measures changes in wet density to infer soil moisture (Zazueta and Xin, 1994). Unlike the direct
method, this is a nondestructive technique with a fast response time (less than 1 min). However, it is
expensive and difficult to use.

GNSS

As aforementioned, point-scale measurements are not relevant for all applications given the high
temporal and spatial variability of soil moisture. Given that soil moisture data can be required at
large scales, the Global Navigation Satellite Systems (GNSS) such as the Global Positioning
System (GPS) receivers are a good alternative for soil moisture estimation through the analysis of
the power variations of the GNSS signals recorded on the ground. Although GNSS was exclusively
used to determine position, GPS receivers are sensitive to soil moisture. GPS stations are capable of
providing a large network of observations with individual spatial scales of 10-40 m (Larson et al.,
2008). The power of the GNSS signal is expressed as signal-to-noise ratio (SNR) which is equal to
the ratio of the GNSS signal power to the measurement noise. This ratio is commonly used to assess
the quality of the signal surrounding the GNSS station. The GNSS antenna simultaneously receives
the direct and reflected signal from the GNSS satellite and land surface, respectively. The received
signal is subject to an interference pattern which depends on the height difference between the
GNSS antenna and the reflection point. It depends also on the elevation angle of the satellite and the
GNSS frequency due to the motion of the satellite. Larson et al. (2008) compared reflection
amplitudes at a GPS site in Uzbekistan to estimates of soil moisture from a land surface model over
a 70-day period. Both estimates were consistent with rainfall events. The soil moisture estimates
provided by GNSS and the land surface model increased when a rainfall event occurred and
decreased over a period of around 10 days. This makes GNSS technology promising with
consideration of the technical issues related to receiver/antenna differences.

1.3.2.2 Remote sensing observations

As aforementioned, soil moisture can be measured using direct or indirect in-situ techniques which
are advantageous given their easy installation, their ability to measure soil moisture at different
depths and their relative maturity. Despite their high accuracy, they are often costly and labor-
intensive and sometimes destructive (e.g. gravimetric sampling) (Petropoulos et al., 2015). Besides,
in-situ measurements cannot well represent the spatial distribution of soil moisture and are not
suitable for continuous spatial and temporal coverage at regional and global scales (Rahimzadeh-
Bajgiran et al., 2013).
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In the last few decades, many advances in remote sensing (RS) techniques have been made to

provide seamless soil moisture measurements from space. These techniques differ by the

relationships governing the remotely-sensed signal and the soil moisture, the wavelength region of

the electromagnetic spectrum used and the source of the electromagnetic energy (Table 1).

However, current remote sensing technology only provides SSM and no current satellite sensor is
able to provide RZSM due to the limited penetration depth into the soil. SSM can be derived at
different electromagnetic spectra ranging from the optical to the microwave ranges. Research is
evolving to allow retrieval of RZSM. In this context, P-band sensors which are still under

investigation are quite promising for soil moisture observation at deeper layers of soil (Shen et al.,

2021).

Table 1. Overview of remote sensing techniques for soil moisture estimation (after Wang and Qu,
Babaeian et al., 2019).

Spectrum domain Properties observed Advantages Drawbacks

Optical Soil reflection - Fine spatial | - Limited surface
resolution and | penetration depth
broad spatial | (in the order of a
coverage. few millimeters).

- Potential for real-
time applications
(e.g., drones).

Thermal infrared

Surface temperature

- Fine spatial
resolution and
broad spatial
coverage.

- Potential for real-
time applications

(e.g., Drone).

- Strong
correlation

between SSM and
surface land

temperature.

- Signal
contamination by
clouds and
vegetation.

- Low temporal
resolution.

- Limited surface
characteristic
depth (few
millimeters).

- Signal perturbed
by clouds,
meteorological
conditions and
vegetation
biomass.

Microwave

Active

Backscatter coefficient

Dielectric properties

- Moderate
characteristic depth
(around 5 cm).

- High spatial

- Low temporal

resolution

- Signals perturbed
by surface

2009;
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resolution and | roughness and
broad spatial | vegetation biomass
coverage (global

scale)

- Backscatter is

independent of
solar illumination,
clouds and
atmospheric

constituents 2 low
atmospheric noise

- Strong
correlation
between SM and
backscattered
power

Passive | Brightness temperature - Moderate | - Low  spatial
characteristic depth | resolution

Dielectric properties (around 5 cm)

- Signals perturbed
Soil temperature

- High temporal | by surface
resolution roughness and
vegetation

- Broad spatial | ..o

coverage (global

scale)

- Brightness
temperature not
perturbed by
atmospheric

constituents  and
clouds.

I- Satellite data

Optical RS

Reflectance-based methods can provide estimates of soil moisture at high spatial resolutions
compared with other types of sensors such as microwave instruments. Despite the multitude of
optical sensors that are currently in orbit, a limited body of literature exists on the use of optical
observations to retrieve SSM (Petropoulos et al., 2015). Different studies have been conducted to
infer the relationships between spectral reflectance and SSM (Ben-Dor et Banin, 1995; Chang et al.,
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2001; Gao et al., 2013). The conclusions of many of those studies show that soil reflectance
decreases with increasing soil moisture namely in the Short-Wave Infrared (SWIR) range (Moran et
al., 1994, Weidong et al., 2002, Zhan et al., 2007).

Empirical and physical approaches have been proposed to estimate soil moisture from measured
surface reflectance. Most of the empirical methods are based on the rationale of developing
empirical spectral indices (WISOIL: Bryant et al, 2003; the Shortwave Angle Slope Index (SASI):
Khanna et al., 2007; Normalized Soil Moisture Index (NSMI): Haubrock et al., 2008). However,
these indices are very sensitive to the effects of the atmospheric water vapor. Also, empirical
methods have proved reliable for soil moisture estimation under the conditions they were developed
for but cannot be universally applied outside those conditions. This is due to the significantly
varying soil composition that strongly affects spectral reflectance (Liu et al., 2009).

In addition to empirical approaches, physically-based models have been developed for soil moisture
estimation (Bach and Mauser, 1994; Philpot, 2010; Bablet et al., 2018). Bach and Mauser (1994)
describe a spectral extension to the VIS-SWIR of Angstrém's model (Angstrom, 1925) which
accounts for light absorption in the water layer. Sadeghi et al (2015) proposed a model based on the
Kubelka-Munk two-flux radiative transfer model (Kubelka and Munk, 1931) to estimate soil
moisture while considering the effects of the absorption by soil water and soil particles and the
scattering caused by the soil particles. Despite the promising results, its field of application is
restrained since it can only be applied at some wavelengths. Bablet et al. (2018) developed a
multilayer radiative transfer model of soil reflectance (MARMIT) to estimate soil moisture content.
Bablet et al. (2020) proposed a laboratory experiment to assess surface and root zone soil moisture
thanks to a spectrometer, two hyperspectral cameras, and the MARMITforSMC method which is
based on the MARMIT model and was applied to each reflectance spectrum to produce high spatial
resolution maps of soil moisture. Vertical profiles of soil moisture content were obtained with
unprecedented spatial accuracy (~0.287 mm). A main drawback of optical observations is the
limited surface information caused by clouds, water vapor and aerosols that can easily disturb the
signals (De Jeu et al., 2008).

Thermal infrared RS

Thermal infrared (TIR) remote sensing measures the thermal emission of the Earth with an
electromagnetic wave band between 3.5 and 14 pum (Curran, 1985). TIR techniques for SSM
estimation primarily rely on land surface temperature (LST) measurements alone using the thermal
inertia (T) method (Pratt and Ellyett, 1979; Verstraeten et al., 2006) or combined with vegetation
indices (Claps and Laguardia, 2004; Carlson, 2007).

The thermal inertia (T1) method is straightforward and simple and can accomplish high accuracies
in assessing soil moisture conditions. It relies on the fact that variations in soil moisture have a
strong influence on the thermal properties of the soil, which is an intrinsic factor of soil surface
temperature change (Wang and Qu, 2009). Verstraeten et al. (2006) found that thermal inertia i.e.
resistance to temperature variation proportionally increases when soil water content increases,
thereby reducing the diurnal temperature fluctuation range. The apparent thermal inertia (ATI) is a
simple surrogate of TI and can be computed using MODIS albedo and LST products (Van doninck
et al., 2011). The TIR-based methods have advantages of various spatial resolution satellite images
available and link soil moisture to thermal inertia. However, the weak relationship between TIR
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images and soil moisture in the densely vegetated areas impedes the applications of the TIR
methods (Liu et al., 2020).

As aforementioned, several studies have applied the Richards’ equation to retrieve root-zone soil
moisture from surface soil moisture. Given the requirement of a precise definition of the soil
physical characteristics which is not possible neither at the field scale nor at larger scales,
simplifications of this approach based on multi-layer models have been proposed (Wagner et al.,
2007). Ottlé and Vidal-Madjar (1994) proposed a two-layer model to indirectly retrieve surface soil
moisture from TIR data. They showed that the use of a two-layer parameterization of the surface
and the consideration of the vegetation and its evolution improve the daily simulation of soil
moisture and of the water flows. Assimilating soil moisture inferred from thermal IR imagery in the
model was overall the best performing option.

Microwave RS

Figure 7: Some past and current microwave missions for SM retrieval

Active and passive microwave remote sensing missions (figure 7) have been extensively studied
and proven promising for soil moisture monitoring at global and regional scales over the past
decades (Jackson and Schmugge, 1989; Njoku and Entekhabi, 1996; Wigneron et al., 1998). At
microwave frequencies, the most striking feature of the emission from the Earth’s surface is the
large contrast between water and land which is due to the large dielectric constant of water
compared to most dry minerals (Schmugge et al., 2002). Since microwave sensors are sensitive to
the dielectric properties of the soil, they are also highly sensitive to soil moisture.
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o Passive microwave:

Passive microwave technology was demonstrated interesting for SSM monitoring and mapping over
land surfaces (Njoku and Kong, 1977; Jackson et al., 1995; Wigneron et al., 2004). Passive
microwave sensors measure the intensity of microwave emission from the soil, which is
proportional to the product of the thermodynamic temperature of the soil and the surface emissivity
called brightness temperature (TB).

L-band (1-2 GHz) radiometers have been massively studied over the last decades and are
considered as an excellent tool to map soil moisture at global scale. Missions with spaceborne L-
band radiometers include the European Space Agency (ESA) Soil Moisture and Ocean Salinity
(SMOS) mission which was launched in 2009 (Kerr et al. 2010) and provides brightness
temperature measurements at global scale with dual polarization and a broad range of incidence
angles. Another mission is the Soil Moisture Active Passive (SMAP) which was launched in 2015
(Entekhabi et al. 2010) by the National Aeronautics and Space Administration (NASA). It had both
passive and active microwave sensors onboard that provide global measurements of brightness
temperature and backscatter at an incidence angle of 40°. Aquarius/SAC-D is also a space mission
using this technology. It is equipped with the Aquarius instrument onboard which is a combined
active/passive L-band microwave instrument designed to map the sea surface salinity (Le Vine et
al., 2010). Despite its primary science objective, Aquarius was also used to retrieve SSM (Bindlish
et al., 2015).

Jackson et al. (2010) assessed four Advanced Microwave Scanning Radiometer—Earth Observing
System (AMSR-E) algorithms for soil moisture estimation using a seven-year record period of in-
situ observations from four experimental networks in the U.S which had different climate classes.
They found that all algorithms had similar correlation values ranging between 0.71 and 0.79 if site-
specific corrections were applied. However, each algorithm had a different performance at each
site.

Kerr et al. (2016) performed a global evaluation of different SMOS soil moisture products through
comparisons against model simulations, other satellites and in situ measurements. Results showed
that SMOS vyielded consistent estimations and behaved very well when compared to other sensors
and approaches. However, limitations were encountered namely the Radio Frequency Interference
(RFI) which hindered the detection. A comparison against other satellite products also demonstrated
the relevance of the SMOS observations over different eco climate regions and throughout the
seasons.

Reichle et al. (2017) investigated the SMAP L4 soil moisture product through a validation against
in-situ measurements from SMAP core validation sites. Unbiased RMSE (ubRMSE) values equal to
0.038 m*/m?® and 0.035 m*/m’ were recorded at the 9 km and 36 km scales, respectively. These
performances meet the soil moisture accuracy requirement fixed at 0.04 m*/m* (ubRMSE). Besides,
results showed that this product outperformed model-only estimates. Reichle et al. (2017) better
highlighted these findings through a validation against point-scale in-situ measurements from
around 400 sparse network sites which cover a wide variety of climate and land cover conditions.

e Active microwave
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Compared to radiometers, active microwave sensors can provide observations of backscatter at
higher spatial resolutions. The magnitude of the SAR backscatter coefficient is linked to surface soil
moisture through the contrast of the dielectric constants of bare soil and water. Active microwave
sensors which consist of imaging (radars) and non-imaging sensors (altimeters and scatterometers),
provide their own source of illumination and measure the difference in power between the
transmitted and received electromagnetic radiation (Barrett et al., 2009). Approaches based on
Synthetic aperture radars (SAR) are attractive for applications on watershed and field scale since
SAR can reach a high spatial resolution and since backscatter signal is sensitive to SSM (Van
Doninck et al., 2011). However, radar data are strongly affected by soil roughness and vegetation
which makes the accurate inversion of backscatter to soil moisture difficult (Lakshmi, 2013;
Verhoest et al., 2008).

The retrieval of surface soil moisture using the X-band SAR techniques was extensively studied
mainly over bare areas. Baghdadi et al. (2012) assessed the potential of TerraSAR-X data for the
estimation of soil moisture over bare soils using empirical models. The inversion of soil moisture
from one and multi-incidence SAR data was tested. TerraSAR-X was demonstrated a reliable
remote sensing tool for surface soil moisture estimation with an accuracy of about 3% (RMSE).
However, this wavelength is constrained by the vegetation cover. Hence, several studies were
conducted to estimate surface soil moisture at lower frequencies.

Lievens and Verhoest (2012) worked on the retrieval of surface soil moisture from a time series of
multi-incidence HH and V'V polarized RADARSAT-2 backscatter observations over a number of
bare soil fields in The Netherlands. Two retrieval techniques were assessed namely the Integral
Equation Model (IEM) which is a physically-based backscatter model and a change detection
technique based on the rescaling of the SAR backscatter observations between dry and wet
reference values over time periods with unchanged surface roughness. Large agreements between in
situ measurements and radar backscatter were recorded across time and space, mainly over areas
with medium surface roughness conditions.

The potential of artificial neural networks to estimate regional soil moisture from Sentinel-1 SAR
data was investigated in (Paloscia et al., 2013). The model was trained using backscatter
coefficients simulated from [EM and water cloud model (WCM) for different soil moisture, soil
roughness and vegetation conditions. The neural network which aimed at predicting soil moisture
based on SAR data and NDVI yielded soil moisture estimation accuracies between 2 and 5 vol %
when validated against a database of in-situ measurements, SAR and optical data.

Wagner et al. (2013) investigated the retrieval of soil moisture using the Advanced Scatterometer
(ASCAT) which is a C-band active microwave instrument on board of the Meteorological
Operational (MetOp) satellites. They highlighted the attractivity of ASCAT to observe soil moisture
given its wavelength, its high radiometric accuracy and its multiple-viewing capabilities. Good
performances were recorded over some regions in Europe whereas limitations were observed over
mountainous and some desert areas.

Tomer et al. (2015) proposed an algorithm based on the Cumulative Density Function (CDF)
transformation of multi-temporal RADARSAT-2 backscatter coefficient to produce soil moisture
values. A database of RADARSAT-2 images, SMOS L2 soil moisture products and in-situ soil
moisture measurements over a semi-arid tropical region in South India was used to assess the
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approach. The algorithm was proved able to estimate soil moisture with the advantage of not
requiring any parameter calibrations. RMSE values between 0.02 m*/m® and 0.06 m*/m’® were
obtained when estimations were compared against in-situ data. A good agreement was also found
with SMOS soil moisture data.

II- Unmanned aerial vehicles data

Unmanned aerial vehicles (UAV) also referred to as drones, unmanned aerial/aircraft systems
(UAS) or remotely piloted aircraft systems (RPAS), can be considered as a low-cost alternative to
conventional remote sensing platforms. These are actually data-gathering and transmitting aircrafts
which are remotely controlled and are able to realize airborne operations. There are different types
of UAVs which are commonly differentiated by the size of the vehicle, its altitude and the flight
endurance. UAV remote sensing techniques have been shown very promising for several
environmental monitoring applications. Sanchez-Azofeifa et al. (2017) investigated the reliability of
these platforms for forest studies. They highlighted that UAVs can be well-suited for addressing
current issues in remote sensing of tropical ecology and conservation since the low-altitude UAVs
overcome significant constraints of high aerosol interference from water vapor and clouds. Unlike
satellites which may entail costly solutions, UAVs can provide high-resolution and low-cost
imagery to monitor active deforestation fronts and quantify ecosystem degradation for instance.
Besides, UAVs can be reliable for agricultural applications. For instance, UAVs have been
employed in order to map soil moisture using different sensors. Hassan-Esfahani et al. (2015) have
used the AggieAir™ platform which provided UAV data that was fed to an artificial neural network
(ANN) in order to estimate surface soil moisture. Multispectral and thermal images collected over
an irrigated field at a 15 cm and 60 cm resolution were used as inputs to the ANN. The results
showed the reliability of the ANN model to spatially estimate surface soil moisture at much finer
spatial and temporal resolutions compared to conventional remote sensing technologies. A
correlation coefficient equal to 0.88 was recorded for four dates in 2013 (16 May, 1 June, 9 June,
and 17 June).

Besides, Lu et al. (2020) investigated the capability of UAVs to estimate soil moisture in a typical
steppe namely the Loess Plateau of China. They confirmed that the average pixel brightness value
of UAV visible images, which is defined by a computer to represent the brightness of images, could
estimate the 0—10 cm soil moisture. Actually, the determination coefficient (R?) between the in-situ
and the estimated value of soil moisture was equal to 0.82 and 0.77 when the 0-10 cm soil moisture
was at a stable value and larger than the stable value, respectively. These findings make UAVs a
promising tool for soil moisture mapping in arid and semi-arid steppe in particular, and for steppe
ecological research in general.

1.4 Root-Zone Soil moisture estimation

As highlighted in the previous sections, most of RS methods can only monitor skin and near-surface
soil moisture. Given the importance of RZSM in better understanding of the agricultural and
environmental processes it controls, close cross-disciplinary collaborations between the RS
community and soil physicists and hydrologists have been established to link RZSM and remotely
sensed skin and near-surface data (Babaeian et al., 2019). RZSM can be measured by in-situ sensors
installed horizontally at a fixed depth or vertically along the soil profile (Walker et al., 2004;
Francesca et al., 2010; Dobriyal et al., 2012). However, the installation of sensors can be a complex
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task and might disturb the soil properties. This justifies the common approach of deriving RZSM
from surface in-situ or RS soil moisture (Carranza et al., 2021).

1.4.1 Physically-based models

Land Surface and agronomical Models:

Land Surface Models (LSMs) are conceived to model surface and root zone soil moisture using
physical and hydrological laws. These models can be considered as a promising tool for an
enhanced representation of root-zone soil water dynamics relative to soil moisture proxy products
(Crow et al., 2012). Actually, LSMs dynamically predict vertically-discretized profile soil moisture
based on a complex representation of water flow within the soil column. LSMs require different
forcing data as inputs namely precipitation, air temperature, air pressure, relative humidity, wind
speed and solar radiation. Vertical soil water processes such as infiltration and drainage, depend on
soil hydraulic properties which are linked to soil texture through pedo-transfer functions.

Different LSMs exist such as the Surface Externalisée (SURFEX) (Le Moigne et al., 2009),
ORCHIDEE (Krinner et al., 2005), the Joint UK Land Environment Simulator (JULES) (Best et al.,
2011), etc. However, Noah, the Catchment Land Surface Model (CLSM) and the Community Land
Model (CLM) are the commonly used models. Noah and CLLM are traditional land surface schemes
that model soil moisture dynamics by solving a layer-based formulation of the standard diffusion
and gravity drainage equations for unsaturated flow (Kumar et al., 2009). Noah uses four soil layers
of increasing thicknesses of 10, 30, 60 and 100 cm and CLM uses ten unevenly spaced soil layers
with thicknesses of 1.75, 2.76, 4.55, 7.5, 12.36, 20.38, 33.60, 55.39, 91.33, and 113.7 cm. An
integrated RZSM product can be obtained by averaging the top three Noah layers and the top eight
layers of CLM. CLSM is a non-traditional model since the vertical soil moisture profile is
determined through deviations from the equilibrium soil moisture profile between the surface and
the water table. Soil moisture is computed within both a 2-cm surface layer and a 1-m root-zone
layer (Koster et al., 2000).

However, these models are constrained by the need for many inputs, the incompatibility between
the relatively low spatial of surface and hydrological processes and the meteorological forcing
errors mostly for rainfall that has the highest impact on soil moisture variability (Sabater et al.,
2007).

Empirical surrogate models:

Wagner et al. (1999) proposed a simplified two-layer model to estimate the SWI of the root zone
from European remote sensing (ERS) surface soil moisture data using an exponential filter. In this
formulation, only one parameter (T) has to be calibrated. This parameter is called the characteristic
time length and represents the timescale of soil moisture variations in units of time usually days
(Ceballos et al., 2005). This parameter can be considered as a surrogate parameter for all the
processes that impact the temporal dynamics of soil moisture such as the thickness of the soil layer,
soil hydraulic properties, evaporation, run-off and vertical gradient of soil properties (Albergel et
al., 2008). It is proportional to the ratio of the depth of the reservoir below the surface and a pseudo-
diffusivity coefficient. The discrete formulation of the model can be expressed as follows:
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Where ms(ti) is scaled surface soil moisture estimated from remote sensing at time ti by
extrapolating and scaling the observed backscatter between the minimum and maximum values
observed during the lifetime of the remote sensing instrument (wagner et al., 1999).

Stroud (1999) introduced a recursive formulation of the exponential filter which allowed an easier
data manipulation compared to the original formulation. The potential of the exponential filter and
its recursive formulation for RZSM estimation was highlighted in many studies (Albergel et al.,
2008; Ford et al., 2014; Ceballos et al., 2005). Although SWI has the advantage of being
independent of all land surface model or meteorological observations, the physical interpretation of
the time constant T is challenging. Albergel et al. (2008) could not infer any significant relationship
between this parameter and the main soil properties over France. The recursive formulation of the
exponential filter can be written as follows:

SWi, _SWI,  + K,(ms(t,) —SWI; )

Where SWI is the soil water index at time #», ms(#x) 1s the scaled surface soil moisture at time #:, K»
is the gain at time #»,, which occurs in [0, 1] and is equal to:
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For the initialization of the filter, gain Ki=1 and SWI1=ms(¢1)

In order to tackle this limitation, Manfreda et al. (2014) developed the Soil Moisture Analytical
Relationship (SMAR) model to estimate the soil moisture in the root zone based on the SSM.
SMAR is derived from a simplified soil water balance equation for semiarid environments and
establishes a relationship between the root zone and the surface soil moisture with a limited number
of physically consistent parameters. In this model, the soil is assumed to be composed of a surface
layer with a depth in the order of few centimeters and a layer below which is assumed equivalent to
the rooting depth of vegetation. Infiltration is considered as the most representative process for the
most significant water mass exchange between the two layers. Other processes such capillary rise
are assumed negligible. In contrast to the SWI method, there are clear physical interpretations for
the SMAR parameters which can be easily determined based on the soil texture and climate of the
target location (Faridani et al., 2017).

1.4.2 Data assimilation

Data assimilation is a tool that combines observation data (from remote sensing or in-situ) and a
dynamic model that includes the principles governing the system. It aims at providing a better
estimate of the state of the system than data or model-only estimates (Zhang and Moore, 2015).
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Data assimilation techniques rely on the relationship between surface and root zone through
diffusion process, to propagate surface information to deeper soil layers (Entekhabi et al., 1994;
Walker et al., 2001; Lii et al., 2010). Thus, the subsurface physics used in the LSMs is an important
factor in determining the strength and validity of the downward propagation of surface information
(Kumar et al., 2009). The Land Data Assimilation Systems (LDASs) can tackle the limitations of
LSMs and provide a broader spatio-temporal coverage, a better consistency and accuracy of LSM
estimates by using both in-situ and remote sensing soil moisture retrievals.

The RZSM estimates can be enhanced by assimilating remotely-sensed SM observations into a Soil
Vegetation Atmosphere Transfer (SVAT) model. Reichle and Koster (2005) assimilated SSM
retrievals at a global scale from the Scanning Multichannel Microwave Radiometer (SMMR) into a
CLSM. Overall, the assimilation improved the average annual cycle of surface and root-zone soil
moisture at specific locations. Validation against in-situ data showed that correlations for root-zone
soil moisture were improved.

The Kalman filter (KF) and its extensions such as extended Kalman filter (EKF) and ensemble
Kalman filter (EnKF) are sequential assimilation methods that have been extensively applied for
soil moisture estimation. Walker et al. (2002) applied the KF data assimilation technique to a
distributed three-dimensional soil moisture model in order to retrieve of profile soil moisture in a 6
ha catchment using near-surface soil moisture measurements. The EnKF is a widely-used method
given its skill in handling non-linear systems and computational efficiency (Reichle et al., 2002;
Crow and Wood, 2003). De Lannoy and Reichle (2016) assimilated L-band microwave brightness
temperature observations using a spatially distributed EnKF and demonstrated that data assimilation
improves both surface and root-zone soil moisture results over the open-loop (no assimilation)
estimates in areas with limited vegetation and terrain complexity.

Francois et al. (2003) used an extended Kalman filter to assimilate soil moisture estimations
provided by the European Space Agency (ESA) Remote Sensing Satellite (ERS) SAR in a two-
layer hydrological model. The assimilation was conducted in the Orgeval agricultural river basin
over two years. Results showed that this approach improved the Nash—Sutcliffe efficiency (NSE)
for streamflow from 70 to 85% and demonstrated a higher sensitivity of the simulated flow to soil
moisture in case of high soil moisture. The assimilation method was also able to correct for up to
10% errors in the input data such as potential evapotranspiration.

Heathman et al. (2003) used the Root Zone Water Quality Model (RZWQM) which is a physically-
based and field-scale agricultural model, to study the feasibility of assimilating SSM for better
estimation of RZSM. The validation against in situ data showed that the integration of data
assimilation produced better model simulation results in the top 30cm layers than the model
simulation without assimilation. Han et al. (2012) proposed an extension to RZWQM (Heathman et
al., 2003) and applied field measured surface soil moisture to a point scale model.

Sabater et al. (2007) investigated a simplified one-dimensional variational data assimilation
(IDVAR) technique to correct the modeled RZSM deficiencies of the ISBA model, using the
observations of the surface soil moisture of the Surface Monitoring of the Soil Reservoir
Experiment (SMOSREX). Given its lower computing time, the IDVAR was considered a good
alternative to the EnKF for the development of an operational data assimilation system that
analyzes RZSM from SSM observations.
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1.4.3 Data-driven methods

Given the amount of data required to parameterize physically-based models, errors in the models
physics may propagate even if coupled with data assimilation techniques. Data-driven techniques
such as Random Forests (RFs), ANNs and Support Vector Machines (SVMs) are increasingly being
investigated for soil moisture estimation and have been proved reliable in many studies. Machine
learning (ML) offers different methods capable of developing quantitative models without having
assumptions on the inputs or on the investigated target.

ML is a branch of Artificial Intelligence (Al) that systematically applies algorithms to synthesize
the underlying relationships among data and information (Awad and Khanna, 2015). Al is a field of
computer science that allows computer to mimic the human behavior. In the context of Al,
computers or machines in general achieve tasks according to stipulated rules and pre-established
algorithms. Al is a superset of any computer program that requires human intelligence and
comprises machine learning and deep learning (DL) (figure 8).

Machine learning characterizes the ability of a system to learn from problem-specific training data
to automate the process of analytical model building and solve associated tasks (Janiesch et al.,
2021). ML seeks to automatically learn meaningful relationships and patterns from examples and
observations (bishop, 2016). ML techniques have been continuously improving through the
implementation of more sophisticated learning algorithms and pre-processing approaches. Overall,
the ultimate objective of ML is to predict future events that are unknown to the computer. Mitchell
(1997) defined learning as follows: “a computer program is said to learn from experience E with
respect to some class of tasks T and performance measure P, if its performance at tasks in T, as
measured by P, improves with experience E”. Awad and Khanna (2015) highlighted that learning is
a fundamental process to generalize a problem by acting on its historical experience. The training
datasets define the experience and allow for largely accurate results on unseen tasks.

Figure 8: Venn diagram of the artificial intelligence and some of its integrated technologies.

As far as the terminology related to machine learning is concerned, we can cite supervised and
unsupervised learning. Supervised learning encompasses learning techniques through which
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machines predict the output based on labeled training data. Labeling data entails associating input
data with the correct output. Actually, supervised algorithms deduce the relationship between the
input data (the observations) and the output which is called target. The generalizability and
predictive performance of the models which are trained using supervising learning depend among
others on the size of the training dataset. As for unsupervised learning techniques, the algorithms
are able to detect hidden patterns. This type of learning is well suited for image recognition or
exploratory data analysis for instance. To mention but a few, dimensionality reduction and
clustering algorithms are unsupervised.

Another interesting term in machine learning is “feature vector”. It is an n-dimensional numerical
vector of explanatory variables given as an input to the problem. The feature vectors are often
weighted to construct a predictor function that is used to assess the quality of the prediction (Awad
and Khanna, 2015). The different steps of developing a ML algorithm can be summarized in figure
9. First, all of the relevant data subsets for the problem resolution are collected. Then, raw data is
pre-processed i.e. converted to a useable format, cleaned by omitting corrupt data or filling gaps for
instance and sampled such as redundancy is minimized and loss of information is avoided. The
third step consists in transforming the data based on the considered machine learning algorithm.
Data transformation encompasses for instance feature scaling which is an important step in
numerous machine learning tasks mainly if the features have different value ranges (Bollegala,
2017). Not scaling features is likely to make the feature of the highest value range the dominating
one. In order to achieve faster converge in many machine learning algorithms, scaling is a
fundamental step. Normalization and standardization are the most commonly used scaling
techniques. Normalization also called MinMax scaling, bounds the features values between an
interval, usually [0,1] or [-1,1]. Standardization also called standard scaling, makes the data unitless
by making the mean equal to 0 and the variance equal to 1. The transformed data is then split into
training and test sets. The training dataset is fed to the algorithm and stored into a model based on a
mapping between input and output. The performance of the algorithm is then evaluated through a
test step. The kept-aside testing dataset, which has never been seen by the model in the training
step, is used to assess the performance of the model based on metrics like accuracy or precision. If
the model is underperforming, hyperparameters should be tuned until the accuracy is enhanced.
Actually, hyperparameters are a set of parameters external to the model used in the training process
and whose values cannot change during the training. Train-test split ratio, the optimization
algorithm or the cost function are some examples of hyperparameters. On the other hand,
parameters are internal to the model and are learned from the data during the training process. The
values of the different parameters are continuously updated using an optimization algorithm during
training, in contrast to hyperparameters that remain unchangeable. The weights and biased in a
neural network are an example of parameters. Finally, an actual prediction task is executed by the
validated model.
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Figure 9: Machine learning workflow

Concerning root-zone soil moisture estimation, many machine learning algorithms have been
shown reliable. For instance, Carranza et al. (2021) tested the random forest learning algorithm to
extrapolate and interpolate RZSM on a daily timescale over a small agricultural catchment using in-
situ measurements. Random forest is a classification ML algorithm which is made up of a set of
decision trees that act as an ensemble. Carranza et al. (2021) demonstrated that the RF predictions
have slightly higher accuracy for interpolation and similar accuracy for extrapolation in comparison
with RZSM simulated from a process-based model combined with data assimilation. RFs
outperform process-based models mainly in data-poor regions where soil hydraulic parameters are
discontinuous or missing, since it is independent of all parameters required to estimate subsurface
water flow.

Bordoni et al. (2018) implemented a SVM methodology to estimate soil moisture at different depths
in a soil profile over a site in northern Italy, using only in-situ meteorological parameters. The
support vector machine is a supervised learning technique that uses a set of labeled training data to
produce input-output mapping functions which can be either a classification or a regression function
(Wang, 2005). Two SVM models were developed in (Bordoni et al., 2018) such that the second
model also considers parameters related to the antecedent meteorological conditions. The SVM
model with predictors of meteorological data of a given day and of the antecedent meteorological
conditions was proved to be particularly effective in estimating the time trends of soil moisture at
different depths. Yu et al. (2012) used SVMs and the ensemble particle filter (EnPF) to develop a
multi-layer soil moisture prediction model over a watershed in China and demonstrated that SVMs
are statistically significant and resilient for both surface and root zone soil moisture prediction.

Another promising ML technique for nonlinear hydrological processes modeling, as reported by the
American society of Civil Engineering (ASCE), is artificial neural networks (ASCE Task
Committee on Application of Artificial Neural Networks in Hydrology, 2000). Artificial neural
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networks were developed from known models of biological nervous systems of living beings (da
Silva, 2017). The processing units of an ANN are called neurons since they are simplified models
of biological neurons (figure 10). They are nonlinear and perform simple functions to produce
outputs based on activation functions. The implementation of an artificial neuron can be
summarized in figure 10 that is based on the following equation:

n
u= E w;.x;— 0
i=1

Such that: (x1, x2,.., Xn) are a set of values called features or input variables which are presented to
the neuron. Each input is multiplied by a weight (w1, wz,.., wn) that serves to assess the relevance of
each input. A bias 8 is substracted from the weighted sum of the inputs. The output (y) is the final
value given by the neuron after the application of an activation function to the difference between
the weighted sum of inputs and bias (u) such as:

y=fw
Where: y is the output of a neuron, f is the activation function.
The activation function aims at limiting the output within an acceptable range of values.
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Figure 10: Structure of a neuron

An artificial neural network is made up of layers namely an input layer, one or more hidden layers
and an output layer. The input layer receives the features which are usually scaled before the
training step for a better precision. The hidden layers consist in hidden neurons responsible for
inferring and extracting the input-output patterns associated with the considered problem. Finally,
the output layer yields the final outputs. Depending on the neuron disposition and composition of
the layers, the main architectures of ANN encompass for instance single-layer feedforward
network, multilayer feedforward networks (MLP) and recurrent networks (da Silva, 2017) (figure
11).

45



Chapter 1: State-of-the-art

e
b AL R
e ek N \

A 1) »¥1
X2e— ‘% 2 KON
N S e NG waw K
o N » \\)7\7‘( 2/’)7 V2
KX . INX =
. SN 7 R, i
. < N LA pYAR
s N\ A~ L (m f——ym
Xp oL \ . >‘// 2
L = ) L )
C— L _
Input layer Hidden layer Output layer
(a) (b)
(c)

Figure 11: Examples of different architectures of artificial neural networks: (a) Single-layer feedforward
network (b) Multilayer feedforward network (c) Recurrent neural network.

At a local scale, Al-Mukhtar (2016) evaluated three different types of ANN in order to model
monthly RZSM in the upper reach of the Spree River catchment area (Germany) by using
precipitation and antecedent soil moisture as features. Results of this study proved that the Layer
recurrent network (LRN) and Feedforward (FF) networks are the most performing methods to
model the nonlinear dynamic relationship such as that between precipitation and soil moisture.
Moreover, results suggested that this method is a robust soil moisture predictor in this catchment.
Elshorbagy and Parasuraman (2008) modeled soil moisture contents as a function of precipitation,
air temperature, net radiation, and ground temperature in northern Alberta, Canada using ANN
models. They showed that the ANN models outperformed a previously developed conceptual model
for estimating the depth-averaged soil moisture content. However challenging due to the structure
of the soil covers, predicting soil moisture using ANN is still achievable.

At a regional scale, Kornelsen and Coulibaly (2014) trained different ANN models to provide soil
moisture at depths of 10, 20, and 50 cm using surface soil moisture observations and local
meteorological information. They found that ANNs could well represent soil moisture as estimated
by HYDRUS-1D, but performance was reduced compared to in-situ soil moisture observations
outside the training conditions.

At a continental scale, Pan et al. (2017) underlined the ability of ANNSs to achieve a high degree of
flexibility providing good RZSM predictions over the U.S where the various climatic patterns and
soil patterns caused little impact on the model performance in terms of timing and variability at a
depth of 20 cm. The method was also used to generate RZSM using SMOS surface soil moisture
data, and achieved a spatial soil moisture pattern comparable to that of Global Land Data
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Assimilation System (GLDAS) Noah model with comparable performance to the SMOS surface
soil moisture retrievals.

However, building a ML system has been requiring careful engineering in order to design a feature
extractor that transforms raw data into a relevant internal representation or feature vector from
which the learning subsystem often a classifier, could detect or classify patterns in the input (LeCun
et al., 2015). Deep Learning (DL) is a sub-type of machine learning that requires deeper learning
methods which transform the representation at one level, starting with the raw input, into a
representation at a higher slightly more abstract level (LeCun et al., 2015). LeCun et al (2015) take
the example of an image to explain DL. Actually, an image is represented by an array of pixel
values. The first learning layer learns features that typically indicate the presence or not of edges at
certain positions in the image. The second layer may spot particular arrangements of edges that
make up motifs. The third layer may compile the motifs previously detected to reach recognizable
objects. The core of DL algorithms is their ability to learn features from data using a general-
purpose learning procedure (LeCun et al., 2015). Deep learning outperforms conventional
algorithms of Al in many problems such as image and speech recognition.

Yu et al. (2021) proposed a hybrid CNN-GRU model to predict root-zone soil moisture with
consideration of multi-scale spatiotemporal characteristics. Convolutional Neural Networks (CNN)
were introduced by (LeCun, 1989) and designed at the beginning to address image recognition
problems. As a deep learning technique, CNN has the advantage of a reduced complexity and a
good computational efficiency. Soil moisture time series can for instance be transformed into
meshes for the CNN to consider them as images since it is a technique relevant for image
processing. Another type of neural networks is recurrent neural networks (RNN) which are suitable
for work for time series data or sequence data. Unlike feed forward neural networks, RNNs are
dynamic systems since they can handle temporal dependencies between data points and persist past
information. This memory or self-feedback of neurons in the hidden layer(s) enables RNNs to save
the information about previous inputs and use it to produce the next output. However, these
networks are only efficient with short-term temporal dependencies and are highly impacted by
gradient problems. The Long Short Term Memory (LSTM) is an enhanced variant of the RNN that
overcomes this limitation of RNN namely the gradient vanishing/explosion when the sequence
distance is long. LSTM works according to the same principle as RNN but a gate mechanism is
introduced in these networks. Gated Recurrent Units (GRU) are another type of RNNs with
memory cells and whose architecture are similar to LSTM but have a simpler structure and fewer
internal gates, and thus simpler than LSTM (Shewalkar, 2018).The model developed in (Yu et al.,
2021) was intended to predict RZSM at different depths over five sites in maize production areas in
China and integrated the strong feature expression ability of CNN and the time series feature
memory ability of GRU. RZSM prediction results on day 3 showed that the CNN-GRU model
outperformed both CNN-based and GRU-based individual learners in terms of prediction accuracy
and convergence rate. Also the predictions were improved with the increase of soil depth due to the
greater soil moisture variability induced by evapotranspiration.

Yinglan et al. (2022) developed a convolutional long short-term memory (ConvLSTM) model to
predict root-zone soil moisture based on remote sensing-based variables. ConvLSTM, a
combination of a CNN and a LSTM, are suited for spatiotemporal sequence forecasting problems.

47



Chapter 1: State-of-the-art

ConvLSTM are able to predict the future state of a given cell in the grid using the inputs and the
past states of its local neighbors. ConvLSTM were first introduced by (Shi et al., 2015) as a solution
for a precipitation nowcasting problem. Shi et al. (2015) extended the fully connected LSTM (FC-
LSTM) to have convolutional structures in both the input-to-state and state-to-state transitions. A
ConvLSTM layer is a recurrent layer, just like the LSTM, but internal matrix multiplications are
exchanged with convolution operations. Data flow through the ConvLSTM cells and keep the input
dimension 3D instead of being only a one-dimensional (1D) vector. Yinglan et al. (2022) used the
Hydrus-1D model was used to generate large and spatiotemporal vertical soil moisture datasets for
the ConvLSTM model training and validation. The fitting coefficients (R?) recorded with the
ConvLSTM model outperformed those achieved by the Global Land Data Assimilation System
(GLDAS) products namely for deep layers.

In this study, we chose to focus on machine learning and more precisely on ANNs. Unlike
physically-based methods, ANNs do not require an explicit definition of all of the physical and
hydrological laws that govern the different variables involved in the system. They also require a
one-time calibration to construct a relationship between the given inputs and the process of interest.
Besides, different studies focused on mapping RZSM using ANNs but few have verified the
feasibility of predicting RZSM at a large scale and to our knowledge no attempt was made to
predict this variable at both a large scale and high spatial resolution. This observation advances the
relevance and novelty of our work.
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Chapter 2: Prediction of RZSM based on SSM
using ANN

The following chapter resumes the methodology and results presented in the following paper:

Souissi, R., Al Bitar, A., and Zribi, M.: Accuracy and Transferability of Artificial Neural Networks
in Predicting in Situ Root-Zone Soil Moisture for Various Regions across the Globe, Water, 12,
3109, https://doi.org/10.3390/w12113109, 2020.

Published in Water journal.
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2.1. Introduction

This chapter is our starting point towards a large-scale mapping of RZSM at high resolutions. As
explained in the introduction, we start from only multi-location in-situ observations of SSM to feed
an ANN model which will be in a later step hybridized through the addition physical process-
related variables as will be detailed in the next chapter.

Given that RZSM is linked to SSM mainly through diffusion processes and evapotranspiration, an
ANN model was developed to predict RZSM based on only SSM data in this chapter. Different
aspects were explored to determine the reliability of this approach.

Prior to the evaluation of the reliability of the ANN model, different adjustments were applied to
the model in order to obtain the best architecture. Different temporal sampling options were
considered for the features construction. Actually, the different processes that govern the
relationship between RZSM and SSM have variable time scales. Thus, different temporal steps
namely hourly, daily and backward rolling averages over 10, 30 and 90 days were applied to SSM
datasets. Besides, the importance of the scaling which was proved profitable before feeding data to
the ANN in many studies (Priddy and Keller, 2005; Jayalakshmi and Santhakumaran, 2011), is
highlighted through the different scaling techniques tested in this chapter. Also, different splitting
strategies were assessed for the training, validation and test sets. This step helps assess the
transferability of the method, the impact of the data density and quality.

Data from different soil moisture networks around the world which were provided by ISMN and
which consist in a total of 346 soil moisture stations was used in this chapter. Soil moisture data
were pre-processed by applying the quality flags provided by ISMN. Also, static variables such as
land cover class, soil texture and climate class were downloaded for each station.

The disparity of soil textures and climate classes of the selected networks is a significant criterion to
investigate the transferability of the approach. The contribution of each network is also explored
through different splitting options of the training, validation and test sets. Transferability and
contribution were quantified by the means of two indices termed TranInetiNetj and ContlNeti-Netj,
respectively.

The impact of the data quality on the predictions quality of fit was also evaluated. This analysis led
to a statistical filtering approach to remove the underperforming soil moisture stations from training
and validation. The genericness of the approach was also studied through an analysis of the RZSM
predictions across climate classes. The interest and the limitations of the method were discussed in
this study.

2.2 Conclusion

The main objective of this study was to study the feasibility of an ANN model to predict RZSM
using only SSM information as input. Different regions around the world were considered and soil
moisture data were collected from ISMN.

An ANN model which consists of three features namely backward rolling averages over 10, 30 and
90 days of SSM and applies standard scaling (SSCA) to scale features, was retained. Two indices
namely contribution and transferability indices, were proposed in order to assess the transferability
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of the approach and the contribution of each soil moisture network, respectively. Results showed
that the training on stations that belong to a single and same network is not the best option. Some
networks were revealed not representative of other networks such as networks ‘FR-Aqui’ and
‘OZNET’. The French network is actually located in a forest unlike the other sites. The Australian
network ‘OZNET’ lies within a River Catchment and covers different land covers and soil textures
compared to other sites.

Besides, low quality data which are mostly observed over the stations of network ‘SCAN’ was
proved to affect the performances of the model. The elimination of this network, although it is the
densest network, improved the performances. Actually, the mean correlation and mean NSE were
improved by 20.49% and 42.46% after removing ‘SCAN’ from the training and test sets,
respectively. This result led us to apply a data filtering approach based on ECDF values. New
training and test operations were conducted on the non eliminated stations after a data filtering at
ECDF=0.65 which ensured good screening of underperforming stations and good sampling with
respect to climate classes and soil properties. Data filtering allowed an enhancement of the
performances such that a median, max, and min correlation of 0.77, 0.96, and 0.65, respectively,
were recorded.

An analysis across climate classes confirmed the reliability of the method in regions of alternate wet
and dry soil moisture cycles namely over stations which belong to the “Aw”, the tropical savanna
climate class. Also, stations which are characterized by a climate of group “C” group and which are
distinguished by strong seasonal dynamics yielded good performance. This is the case of networks
‘SMOSMANIA’ and ‘FR-Aqui’ which hold agricultural areas such as the southwest plains in
France where the knowledge of RZSM is of interest for sunflower and maize crops. However, it
showed its limitations over regions where a surface/subsurface decoupling phenomena is observed
such as regions of high evaporation rates. For instance, the stations characterized by a climate of
group “B” (“BSk”, “BWh”, “BWk”) and which cover desert areas showed the lowest performances.
The decoupling phenomena is also linked to the vegetation type and root profile since the presence
of a root system can redistribute the soil moisture from the lower to the upper layers. These findings
motivate the next chapter where process-related information will be included in the ANN model to
enhance the quality of prediction.

2.3 Article
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Chapter 3: Prediction of RZSM based on SSM
and process-related inputs using ANN

The following chapter resumes the methodology and results presented in the following paper:

Souissi, R., Zribi, M., Corbari, C., Mancini, M., Muddu, S., Tomer, S. K., Upadhyaya, D. B., and
Al Bitar, A.: Integrating process-related information into an artificial neural network for root-zone
soil moisture prediction, Hydrol. Earth Syst. Sci., 26, 32633297, https://doi.org/10.5194/hess-26-
3263-2022, 2022.

Published in Hydrology and Earth System Sciences( HESS) journal.
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3.1 Introduction

RZSM is linked to SSM through a nonlinear relationship controlled by different hydrological
processes like infiltration and evapotranspiration. According to the previous chapter, the approach
based on the prediction of RZSM based on only SSM information has limitations. In order to
complexify the method and eventually enhance the quality of predictions, we considered the option
of developing another type of ANN namely a Convolutional Neural Network (CNN). The
developed CNN model takes 60-day sequences of SSM as input and predicts RZSM. Different
hyperparameters and parameters were tested and the compared. However, the CNN model was not
conclusive when compared against the performances yielded by the MLP model. This
complexification option was discarded. Instead, the approach was hybridized by adding physical
process-related features into the ANN.

In this chapter, different ANN models were developed such that the ANN features include SSM and
one process-related variable. An ANN model which includes SSM and a combination of process-
related features was also developed.

The infiltration process was considered in this chapter by including a SWI that was computed using
a recursive exponential filter. Soil evaporation was also taken into account in order to better
estimate RZSM namely in areas of high evaporation rates. This process was modeled by the means
of an evaporation efficiency variable whose computation was based on a remote-sensing potential
evapotranspiration. The impact of the addition of LST in the model which is linked to evaporation,
was also explored. Vegetation dynamics were also considered. They were not modeled in this study
but only inferred from remote-sensing NDVI.

All of the ANN models were trained on the stations provided by ISMN and which were identified
of good quality data after the data filtering step in the previous chapter. In a first time, the different
ANN models were tested on the rest of the ISMN stations that were considered in the last chapter.
Additional tests were conducted on stations external to the ISMN database namely on stations over
Tunisia, Italy and India. This step helped assess the robustness of the ANN models.

The individual impact of each process-related feature on the RZSM prediction accuracy was
assessed through a climatic analysis. The impact of the joint use of the process-related features in
the most complex ANN model was also studied.

3.2 Conclusion

This chapter investigated the impact of the addition of process-related variables in ANN models on
the quality of RZSM predictions. Different ANN models which are made up of different features
were developed and intercompared. A global analysis was conducted for the climate regions
covered by the considered stations around the globe. A global map with the most relevant process-
related variables for each climate class was produced. The objective of this step was to identify the
most relevant variable that has to be added with SSM in the ANN model in order to obtain the best
estimations of RZSM.

Overall, the process-related variable when included in the ANN model helped improve the accuracy
of the predictions but over some areas their use was not beneficial. Results suggested that the most
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relevant feature for arid areas with high evaporation rates such as bare areas of Africa, the Middle
East and Australia was evaporation efficiency. NDVI was proved to be the most informative
variable over agricultural regions namely over the internal part of continental Europe and near the
Mediterranean basin and in the Great Plains region in the USA and over transition zones. The
classification was not as reliable over all climate regions due to the generalization of the climatic
analysis results to areas not considered in this study. Over regions with climate class ‘Dfc’ (cold dry
without a dry season, cold summer climate), the evaporation efficiency was found the most relevant
instead of temperature. Overall, the ANN model which included SSM, NDVI, SWI and evaporation
efficiency was the most performing. Actually, the correlation value obtained with this model
increased for 84.06 %, 61.29 % and 62.07 % of the training, validation and test stations when
compared to the reference model of the first axis (ANN_SSM), respectively. In addition, RMSE
was minimized for 62.32 %, 54.84 % and 54.02 % of the training, validation and test stations with
this model compared to reference model (ANN SSM), respectively.

The study was also focused on the evaluation of the robustness of the approach through additional
tests over external sites in central Tunisia, India and Italy. The same finding regarding the positive
impact of the process-related features was observed over Tunisia. The mean correlation across the
Tunisian stations significantly increased from 0.44 when only SSM was considered to 0.8 when all
process-related features were combined with SSM. In fact, the Tunisian site is characterized by a
semiarid environment with sporadic rainfall events and high evaporation rates. This finding
corroborated the reliability of our hybrid approach based on an association of a data-driven method
with process-related variables. However, the change in correlation after the addition of process-
related features in India and Italy namely NDVI, was nonsignificant and could be linked to the
cloudy conditions and thus the noisy MODIS products.

3.3 Article
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through vegetation stress and water needs and in carbon and
nitrogen cycles, as RZSM influences biogeochemical activ-
ities in soil (Martinez-Espinosa et al., 2021). RZSM is non-
linearly related to SSM through different hydrological pro-
cesses, such as diffusion processes. RZSM may be extracted
by evaporation at the surface through root extraction or by
capillary rises (Calvet et Noilhan, 2000). SSM quantifica-
tion is achieved through three main sources: in situ mea-
surements, model estimates and remote-sensing-based prod-
ucts. Microwave remote-sensing technologies involving sen-
sors such as Soil Moisture and Ocean Salinity (SMOS) (Kerr
et al., 2010), Soil Moisture Active Passive (SMAP) (En-
tekhabi et al., 2010), Advanced Microwave Scanning Ra-
diometer (AMSR) (Owe et al., 2008) and Advanced Scat-
terometer (ASCAT) (Wagner et al., 2013) have been em-
ployed to retrieve SSM at coarse resolutions. Current satellite
sensors can only provide surface soil moisture information
because of the shallow penetration depth of spaceborne data
(on the order of a few centimeters) (Wagner et al., 2007).
Fine-spatial-resolution synthetic aperture radar (SAR) data
can also be applied in synergy with optical data to retrieve
soil moisture (Zribi et al., 2011; Hajj et al., 2014; Dorigo et
al., 2011), but again for surface soil moisture. The Interna-
tional Soil Moisture Network (ISMN) is an exhaustive data-
hosting facility focused on soil moisture data and associated
ancillary information. The ISMN provides in situ soil mois-
ture measurements collected from operational soil moisture
networks worldwide (Dorigo et al., 2011). Various models
can be adopted to estimate RZSM, such as land surface mod-
els (Surfex) (Masson et al., 2013), Interaction Sol-Biosphere-
Atmosphere (ISBA) (Noilhan and Mahfouf, 1996), the Com-
munity Land Model (CLM; Oleson et al., 2010) or the Joint
UK Land Environment Simulator (JULES) (Best et al., 2011)
or dedicated crop models such as Aquacrop (Raes et al.,
2009) or Simple Algorithm For Yield Estimate (SAFYE)
(Battude et al., 2017). While these models provide the ad-
vantage of physical process-based estimates, these estimates
depend on the availability and accuracy of ancillary informa-
tion. Model predictions are often enhanced by the implemen-
tation of data assimilation techniques, such as the land data
assimilation system (LDAS) (Sabater et al., 2007; Entekhabi
et al., 2020).

Data-driven methods such as artificial neural net-
works (ANNSs) have also been commonly applied in hydrol-
ogy as detailed, for instance, by the ASCE Task Commit-
tee on Application of Artificial Neural Networks in Hydrol-
ogy (2020) and in Tanty et al. (2015). One of their advantages
is that these models do not require an explicit model structure
to accurately represent the involved hydrological processes
but instead construct a relationship between the given inputs
and the process of interest. Therefore, ANNs are regarded
as dynamic input—output mapping models heavily relying on
the provided training data relevant to target values (Panetal.,
2017). Moreover, ANNs only require a one-time calibration
to provide soil moisture estimations once instrument data are
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loaded and thus generate relatively low computational costs
(Kolassa et al., 2018). These advantages explain the approach
to estimate RZSM based on surface information with ANNs
in various methodologies (Pan et al., 2017; Grillakis et al.,
2021; Souissi et al., 2020). In this paper, we do not address
ANN applications as a model twin where the ANN model
is trained on the target for mimicking purposes and subse-
quently generates predictions while requiring a short com-
putation time or fewer input simplifications. Here, we are
instead interested in the adoption of ANNs as independent
models trained on in situ observations. Within this context,
Pan et al. (2017) successfully applied an ANN as a model
for shallow 20 cm root-zone soil moisture prediction with a
global correlation coefficient of 0.7. Grillakis et al. (2021)
proposed employing an ANN as a means of calibrating and
regionalizing the time constant of a recursive exponential fil-
ter, which was thereafter applied at the regional scale. A com-
bined implementation of a Bayesian probabilistic approach
and an ANN to infer RZSM at different depths from optical
unmanned aerial vehicle (UAV) acquisitions via local train-
ing was also applied (Hassan-Esfahani et al., 2017). Multi-
temporal averaged features to predict RZSM based on only
SSM and to investigate the transferability of a trained ANN
across different climatic conditions globally were proposed
in Souissi et al. (2020). Temporal information can be con-
sidered in ANNSs through recurrent neural networks (RNN),
long short-term memory (LSTM) architectures (Liu et al.,
2021), 1D convolutional neural networks (CNNs), or multi-
temporal averaging. In Souissi et al. (2020), median, max-
imum and minimum correlation values of 0.77, 0.96 and
0.65 were, respectively, reported across training, validation
and test datasets. The use of climatic variables such as pre-
cipitation and surface temperature and intrinsic surface prop-
erties such as soil texture and land cover has also been con-
sidered in ANNSs (Liu et al., 2021). The choice of variables
depends not only on the data availability, but also on the ob-
jectives. Finally, ANN-based approaches pertain to the more
general term of machine leaming approaches, and within this
framework, the random forest approach has been applied to
root-zone soil moisture prediction (Carranza et al., 2021).
The aforementioned studies have investigated the applica-
tion of multiple information sources to predict root-zone soil
moisture. The input features are commonly curated for qual-
ity, and correlation analysis is conducted to determine the
useful inputs, while physical processes are not considered.
In this paper, we introduce process-related features based
on simplified analytical models representing the major pro-
cesses contributing to root-zone soil moisture dynamics. In
this work, RZSM refers to a point observation of water con-
tent at a depth ranging between 30 and 55 cm. We investigate
the impact of the application of different process-related vari-
ables on the precision of RZSM predictions as well as the
robustness of our approach. (1) We start from a previously
developed ANN model (Souissi et al., 2020), and we extend
the feature list to include NDVI time series, surface soil tem-
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Table 2. Overview of the considered ISMN and external networks.
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Network Country Number of selected Selected SM
stations RZSM  sensors
depth
(cm)
AMMA-CATCH Benin, Niger 5 (3 in Benin and 2 in Niger) 40 CSeél6
BIEBRZA-S-1 Poland 3 50 GS-3
CTP-SMTMN China 54 40 EC-TM/5STM
HOBE Denmark 29 55 Decagon-5TE
FR-Aqui France 5 30,34,50 ThetaProbe ML2X
OZNET Australia 19 30  Hydra Probe-CS616
SCAN USA 209 50  Hydraprobe-Sdi-12/Ana
SMOSMANIA  France 22 30  ThetaProbe ML2X

tions installed at bare soil locations provided moisture
measurements at depths of 5 and 40 cm. All measure-
ments were calibrated against gravimetric estimations.
Data were obtained from the Systéme d’Information
Environmental (SIE) web application catalog (SIE,
2021).

— Italian site: the Landriano site is located in northern
Italy (Pavia Province, Lombardy Region). This station
is located in a maize field, which was monitored in 2006
and from 2010 to 2011 (Masseroni et al., 2014). The av-
erage rainfall in Pavia Province is 650-700 mm, the cli-
mate is classified as Cfa (see Appendix A) and the field
is irrigated by the border method with an average irri-
gation amount of approximately 100 to 200 mm per ap-
plication with one to two applications per season due to
the presence of a shallow groundwater table. Soil mois-
ture measurements were performed with time domain
reflectometer (TDR) soil moisture sensors. Five TDR
soil moisture sensors were installed along a profile at
depths of 5, 20, 35, 50 and 70 cm.

— Indian site: the Berambadi watershed is located in Gun-
dalpet Taluk, Chamarajanagara district, in the south-
ern part of Karnataka state in India and covers an area
of approximately 84 km?. The average rainfall is equal
to 800 mm yr_l, and the climate is classified as Aw
(see Appendix A). Hydrological variables have been in-
tensively monitored since 2009 in the Berambadi water-
shed by the Environmental Research Observatory ORE
BVET and AMBHAS Observatory. The soil moisture
levels at the surface (5cm) and root zone (50 cm) are
monitored with a HydraProbe sensor at different agri-
cultural sites across the watershed, and in the current
study, four stations were chosen.

2.1.3 Surface soil temperature

In addition to in situ soil moisture, the ISMN optionally in-
cludes meteorological and soil variables that are available
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over specific time periods. Values of the in situ surface soil
temperature among these variables can be employed as a use-
ful indicator of the soil moisture data quality. The soil tem-
perature was provided in degrees Celsius, and the plausible
values range from —60 to 60°C. Regarding soil moisture
data, surface soil temperature data were also provided with
quality flags (Dorigo et al., 2011). However, the drawback is
that this variable is not available in all networks, which is the
case with the AMMA-CATCH network.

2.14 Normalized difference vegetation index

We considered the remote-sensing-based normalized differ-
ence vegetation index (NDVI) to infer vegetation dynamics.
We extracted this index from the Moderate Resolution Imag-
ing Spectroradiometer (MODIS) Vegetation Indices product
(MOD13Q!I version 6). MODIS Vegetation Indices data are
generated at 16d intervals and a 250 m spatial resolution as
a level-3 product. This product provides two primary vege-
tation layers. The first vegetation layer is the NDVI, which
is referred to as the continuity index of the existing Na-
tional Oceanic and Atmospheric Administration-Advanced
Very High Resolution Radiometer (NOAA-AVHRR)-derived
NDVI. The algorithm chooses the best available pixel value
from all the acquisitions over the 16d period. The criteria
considered are low cloud coverage, low viewing angle, and
the highest NDVI value (Huete et al., 1999). To obtain daily
NDVI values, we conducted linear interpolation of the 16d
product.

2.1.5 Potential evapotranspiration

Similarly, we assessed the impact of considering a remote-
sensing-based evaporation efficiency, which is initially de-
fined as the ratio of actual to potential soil evaporation, on
RZSM prediction. The computation details of this variable
will be given later (see Sect. 2.2.2). We employed the remote-
sensing-based potential evapotranspiration (PET) to compute
the evaporation efficiency. We extracted the PET from the
MOD16A2 Evapotranspiration/Latent Heat Flux version 6
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product, which is an 8d composite dataset produced at a
500m pixel resolution. The algorithm used for this prod-
uct collection is based on the logic of the Penman-Monteith
equation, which employs inputs of daily meteorological re-
analysis data along with MODIS remote-sensing data prod-
ucts such as vegetation property dynamics, albedo and land
cover. The MOD16A2 product provides layers for the com-
posite evapotranspiration (ET), latent heat flux (L E), poten-
tial ET (PET) and potential LE (PLE). The pixel values for
the PET layer include the sum of all 8 d within the composite
period (Running et al., 2017). To obtain daily PET values,
we performed a linear interpolation over the 8 d product, and
then we divided the interpolated value by 8.

2.2 Methods
2.2.1 Recursive exponential filter

Two ANN models presented in Table 1 contained extra
knowledge on infiltration process information based on the
outputs of the recursive exponential filter (Stroud, 1999) as
a feature. The recursive exponential filter was first intro-
duced by Wagner et al. (1999) to estimate the soil water in-
dex (SWI) from surface soil moisture. SWI is computed as
follows:

SWI," = SWI’,p] + KII (rns (tn) = SWI!”»I ) ) (l)

where SWI,, is the soil water index at time #,, ms(t,) is the
scaled surface soil moisture at time #, (scaled between maxi-
mum and minimum values), K, is the gain at time #,, which
occurs in [0, 1] and is given by

Kn—l

_(ntay)’

Ky-1+e T

Ky, = (2)

and T is a time constant and is the only required tuning pa-
rameter to compute the recursive exponential filter.

For the initialization of the filter, gain K;=1 and
SWI;1) = ms(ty).

Regarding T values, we considered an empirical list ([1,
3,5, 7, 10, 13, 15, 20, 40, 60]), which was partly inspired
by Paulik et al. (2014) (T €1, 5, 10, 15, 20, 40, 60, 100]).
Given the list of T values, recursive exponential filter out-
puts were computed for all of the stations (346 stations) given
each T value. Based on the correlation values between the in
situ RZSM values and the recursive exponential filter-based
RZSM pre-estimates, we established the optimal time vari-
able T, hereafter referred to as Ties, for each station.

2.2.2 Evaporation efficiency

An ANN model with evaporation efficiency input was also
developed. This variable, which is defined as the ratio of the
actual to potential soil evaporation, was first introduced in
Noilhan and Planton (1989), Jacquemin and Noilhan (1990)
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and Lee and Pielke (1992) and thereafter readapted in Merlin
et al. (2010) to include the soil thickness. In our work, we
use a modified evaporation efficiency formulation based on
the third model developed in Merlin et al. (2010), which can
be expressed as follows (see Appendix C):

Y [ 0/6 d 3
B= E_ECOS(” [Omax) | 3)

where f is evaporation efficiency and 6 is the water content
in the soil layer of thickness L. Oy is the maximum soil
moisture at each station. P* is a parameter computed as fol-
lows:
_PET
T
P*, aproxy of parameter P (see Appendix C), represents an
equilibrium state controlled by retention forces in the soil,
which increase with the thickness L of considered soil and
by evaporative demands at the soil surface. PET is the poten-
tial evapotranspiration extracted from the MODIS 500 m 8 d
product (MOD16A2).

The soil evaporation efficiency computed by model 3, de-
veloped in Merlin et al. (2010), decreases when PET in-
creases. Retention force and evaporative demand make the
term P increase (replaced by P*), as if an increase in po-
tential evaporation L E, (here replaced by PET) at the soil
surface would make the retention force in the soil greater.

Merlin et al. (2010) tested this approach at two sites in
southwestern France using in situ measurements of actual
evaporation, potential evaporation, and soil moisture at five
different depths collected in summer. Model 3 was able to
represent the soil evaporation process with a similar accu-
racy to the classical resistance-based approach for various
soil thicknesses up to 100cm. Merlin et al. (2010) affirm
that the parameterization of P as a function of LE, (here
PET) indicates that § cannot be considered a function of soil
moisture alone since it also depends on potential evaporation.
Moreover, the effect of potential evaporation on  appears to
be equivalent to that of soil thickness on . This equivalence
is physically interpreted as an increase in retention forces in
the soil in reaction to an increase in potential evaporation.

Pt 4)

2.2.3 Artificial neural network implementation

The multilayer perceptron (MLP), which is a multilayer feed-
forward ANN, is one of the most widely applied ANNS,
mainly in the field of water resources (Abrahart and See,
2007). The multilayer perceptron contains one or more hid-
den layers between its input and output layers. Neurons are
organized in layers such that the neurons of the same layer
are not interconnected and that any connections are directed
from the lower to upper layers (Ramchoun et al., 2016).
Each neuron returns an output based on the weighted sum
of all inputs and according to a nonlinear function referred to
as the transfer or activation function (Oyebode and Stretch,
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Table 3. Proportion of the stations whose performance enhances using the ANN models enriched with process-related features compared to
model ANN_SSM (%: % of stations at which the correlation improves over the model ANN_SSM level; b. g of stations at which RMSE

improves over the model ANN_SSM level).

Model Training stations Validation stations Test stations
% of stations % of stations % of stations % of stations % of stations % of stations
(corr 1)*  (RMSE })P (com1)®  (RMSE })? (comr 1)  (RMSE )P
ANN_SSM_NDVI 65.82 43 4571 40.0 55.22 403
ANN_SSM_TEMP 494 253 55.56 38.89 59.35 4299
ANN_SSM_EXP-FILT-T5 64.56 36.71 60.61 4242 63.68 50.25
ANN_SSM_EVAP-EFE-B60 54.55 28.57 52.94 41.18 52.33 48.19
ANN_SSM_NDVI_EVAP-EFF-B60_EXP-FILT-TS 84.06 62.32 61.29 54.84 62.07 54.02

2019). The input layer, consisting of SSM values and/or other 3 Results

process-related variables, is connected to the hidden layer(s),
which comprises hidden neurons. The final ANN-derived es-
timates of the ANN are given by an activation function asso-
ciated with the final layer denoted as the output layer, based
on the sum of the weighted outputs of the hidden neurons.

We started with the ANN model developed in Souissi et
al. (2020), whose architecture consists of one hidden layer of
20 hidden neurons, a tangent sigmoid function as the activa-
tion function of the hidden layer, a quadratic cost function as
the loss function and the stochastic gradient descent (SGD)
technique as the optimization algorithm. This model was de-
veloped to estimate RZSM based on only in situ SSM in-
formation. SSM was not applied as a feature of hourly val-
ues but was employed in the form of three features, namely,
SSM rolling averages over 10, 30 and 90d. Additional ANN
models were developed to study, through each model, the im-
pact of the application of the NDVI, SWI, evaporation ef-
ficiency and surface soil temperature as features. A model
combining surface soil moisture, NDVI, evaporation effi-
ciency and the recursive exponential filter was further con-
sidered. These ANN models were trained and validated on
the 122 ISMN stations considered to be of good quality after
a data-filtering step as detailed in Souissi et al. (2020). Train-
ing of the above ANN models was conducted considering
70 % of these 122 stations. Thirty percent was reserved for
validation, and testing was conducted at the rest of the sta-
tions. So, in summary, 122 stations were considered for the
training/validation of the ANN models and 224 stations if all
input data available were used for testing. In a second step,
tests were conducted on data external to the ISMN database,
namely, on sites of Tunisia, Italy and India. The trained mod-
els over the ISMN are used only in prediction mode over
these sites. The data for SSM in addition to the other features
are used as inputs, and RZSM is predicted in outputs.
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3.1 Exponential filter characteristic time length

A large proportion of the stations attained an optimal time
constant (Tjes) value equal to 60d, which suggests an ab-
normally long infiltration time. These stations belong to the
SCAN network and exhibit an RZSM acquisition depth of
50cm, in contrast to other networks such as SMOSMA-
NIA, for instance, where RZSM is retrieved at 30 cm. The
high values correspond to correlation with seasonal dynam-
ics rather than infiltration processes. This depth could explain
the anomalously long infiltration time. This is consistent with
Paulik et al. (2014), in which the average T value with the
highest correlation (7pest) increased with increasing depth of
the in situ observations.

For comparison purposes, Paulik et al. (2014) found that
23.98 % of the stations achieved Tpeq = 5d, while 21.58 %
of the stations achieved Thest > 60 d (60 or 100 d).

Albergel et al. (2008) considered an average Tpest value
of 6d for the SMOSMANIA network. This value repre-
sented the average Tiest value for all stations belonging to the
SMOSMANIA network. In our case, the average Tpest Value
for all stations of the SMOSMANIA network reached 9d.
In this study, an average Test value could be established for
each station or each network. However, this is not relevant to
our work because we aim to evaluate maps of remote-sensing
data in the next steps, and thus we did not compute Ty at
each location. We fixed the value of T to 5d as a median
infiltration time.

3.2 Intercomparison of the ANN models

The distribution histograms for training, validation and test
stations (Fig. 3) show that the integration of the considered
process-related features improved the prediction accuracy in
certain cases compared to the reference. Time series of good
and less good quality of fit were provided in Appendix E
for training, validation and test stations using the reference
model ANN_SSM and the most complex ANN model.

In terms of the NDVI, 65.82 %, 45.71 % and 55.22 %
of the stations attained better correlation values with

Hydrol. Earth Syst. Sci., 26, 3263-3297, 2022






R. Souissi et al.: Integrating process-related information into an ANN for root-zone soil moisture prediction 3271

ANN_SSM_NDVI than those obtained with ANN_SSM for
the training, validation and test stations, respectively. Root
mean square error (RMSE) decreased for 44.3 %, 40.0 % and
40.3 % of the stations with ANN_SSM_NDVI compared to
model ANN_SSM for the training, validation and test sta-
tions, respectively (Table 3).

In regard to the ANN_SSM_TEMP model that inte-
grates the soil surface temperature, 49.4 %, 55.56% and
59.35% of the training, validation and test stations ex-
hibited higher correlation values than those obtained with
the ANN_SSM model, respectively. RMSE decreased with
ANN_SSM_TEMP compared to model ANN_SSM for
25.3 %, 38.89 % and 42.99 % of the training, validation and
test stations, respectively.

64.56 %, 60.61 % and 63.68 % of the training, valida-
tion and test stations attained better correlations than those
obtained with model ANN_SSM, respectively. In addition,
RMSE decreased for 36.71 %, 42.42 % and 50.25% of the
training, validation and test stations with ANN_SSM_EXP-
FILT-TS compared to model ANN_SSM, respectively.

Regarding the evaporation efficiency, we considered dif-
ferent values of the fitting parameter B (Eq. 4) such that B re-
mained within the [50, 60] interval. This parameter can be
fitted using different variables, such as the wind speed or rel-
ative humidity. Comparisons based on the correlation values
provided by the different models for each B value indicated
that the performance was insensitive to the B value. Thus,
we fixed the B value to 60 W m™2. Comparison of models
ANN_SSM and ANN_SSM_EVAP-EFF-B60 revealed that
54.55 %, 52.94 % and 52.33 % of the training, validation and
test stations attained higher correlation values with the lat-
ter model, respectively. RMSE was reduced for 28.57 %,
41.18 % and 48.19 % of the training, validation and test sta-
tions with ANN_SSM_EVAP-EFF-B60 compared to model
ANN_SSM, respectively.

Finally, we investigated the impact of the joint ap-
plication of the NDVI, recursive exponential filter (T =
5d) and evaporation efficiency (B = 60Wm~2) in the
ANN_SSM_NDVI_EVAP-EFF-B60_EXP-FILT-TS model.
The surface soil temperature was not included, as its ef-
fect is included in the evaporation process. At 84.06 %,
61.29 % and 62.07 % of the training, validation and test sta-
tions, the correlation value obtained with this model was
higher than that obtained with the ANN_SSM model, re-
spectively. In addition, RMSE was minimized for 62.32 %,
54.84 % and 54.02 % of the training, validation and test sta-
tions with ANN_SSM_NDVI_EVAP-EFF-B60_EXP-FILT-
T5 compared to model ANN_SSM, respectively.

Considering model ~ANN_SSM_NDVI_EVAP-EFF-
B60_EXP-FILT-TS5, only one training station had a decrease
in correlation by more than 0.1, namely, station “Lind#1”
(network “SCAN") compared to the reference model
ANN_SSM. All inputs were not available at the same
dates, which implied a significant reduction in data points
(see Appendix F). The decrease in correlation and increase
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in RMSE did not exceed 0.1 and 0.01 m3 m=3, respectively,
for the rest of the stations of lower performance metrics with
the most complex ANN (Table 4).

Similarly for validation stations, only one station had a de-
crease in correlation above 0.1, namely, station “PineNut”
(network SCAN), with model ANN_SSM_NDVI_EVAP-
EFF-B60_EXP-FILT-T5. This decrease can be also ex-
plained because of data shortage (see Appendix F). The de-
crease in correlation and increase in RMSE did not exceed
0.1 and 0.01 m? m™3, respectively, for the rest of the stations
of lower performance metrics with the most complex ANN
(Table 4).

Regarding the test stations, correlation decreased by
more than 0.1 and RMSE increased by more than
001m*m™ with model ANN_SSM_NDVI_EVAP-EFF-
B60_EXP-FILT-TS compared to model ANN_SSM, detected
for only two stations. Both stations, namely, stations “S-
Coleambally” and “Widgiewa”, which belong to network
“OZNET?”, significantly lose in data volume when process-
related variables are integrated into ANN and more precisely
because of NDVI data availability (see Appendix F). For the
rest of the test stations, correlation decreased and RMSE in-
creased simultaneously by less than 0.1 and 0.01 m*m~3,
respectively, with model ANN_SSM_NDVI_EVAP-EFF-
B60_EXP-FILT-TS (Table 4).

Always in terms of the general performance of
model ANN_SSM_NDVI_EVAP-EFF-B60_EXP-FILT-TS5,
about 75% of the stations have an RMSE of less
than 0.05m> m'3, and around half of the stations have
an RMSE of less than 0.04m*m™. This accuracy is
consistent, for instance, with the target value in the
SMAP (Entekhabi et al., 2010) and SMOS (Kerr et al.,
2010) missions, which is equal to 0.04m*m™, and also
with the average sensor accuracy adopted by Dorigo et
al. (2013), which is equal to 0.05m* m™3. Overall, the most
complex model ANN_SSM_NDVI_EVAP-EFF-B60_EXP-
FILT-T5 can successfully characterize the soil moisture dy-
namics in the root zone since half of the stations have a cor-
relation value of greater than 0.7. Pan et al. (2017) developed
different ANN models to estimate RZSM at depths of 20 and
50 cm over the continental USA using surface information.
They found that half of the stations have an RMSE of less
than 0.06 m* m=3 and that more than 70 % of stations have a
correlation above 0.7 when predicting RZSM at 20 cm. How-
ever, the developed ANN was less effective in RZSM predic-
tion at 50 cm, which is also in accordance with Kornelsen
and Coulibaly (2014). In our study, the densest soil mois-
ture network is SCAN, located in the USA. Soil moisture
was predicted at a depth of 50 cm over this network. Around
half of the stations have a correlation value of above 0.6 and
an RMSE of less than 0.04m> m™ after the integration of
process-related inputs. Pan et al. (2017) suggest that the use
of only time-dependent variables may not be sufficient for
the ANN models to accurately predict RZSM and suggest
adding soil texture data.
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3.3 Robustness of the approach

To further assess the robustness of our approach, which in-
volves RZSM prediction using the different ANN models
with different features, we predicted RZSM at sites not pre-
viously considered in previous parts of the study. The se-
lected stations are located in the Kairouan Plain, a semiarid
region in central Tunisia, the Landriano site located in the
north of Italy, and the Berambadi watershed located in Gun-
dalpet Taluk, southern India. In the case of Tunisia, model
ANN_SSM yielded moderate to low-precision predictions,
as highlighted by the performance metrics listed in Table 5.
The time series (see Appendix G) show that the RZSM pre-
dictions followed the SSM seasonality, which was reflected
by the false peaks generated in the RZSM predictions when-
ever a sharp increase or decrease occurred in the SSM val-
ues. This observation was also found in Souissi et al. (2020).
Actually, the Kairouan Plain is characterized by a semiarid
environment where rainfall events infrequently occur and the
level of evaporation is high. The reference model ANN_SSM
shows its limitations in accurately predicting RZSM in areas
with no alternate wet and dry cycles.

However, the consideration of additional features, namely,
the NDVI, evaporation efficiency and SWI in the ANN
models, resulted in good agreement between the in situ
and predicted RZSM values (Fig. 4). The correlation
values were improved by 60.04 %, 169.5%, 112.02%,
80.23% and 53.7% at stations Barrouta-160, Hmi-
date_163, Barrage_162, Bouhajla_164 and P12, respectively,
with the ANN_SSM_NDVI_EVAP-EFF-B60_EXP-FILT-T5
model over ANN_SSM model values. Similarly, RMSE val-
ues were reduced (Table 5). As shown in Fig. 4, the most
complex ANN model is able to capture the variations of
RZSM. This finding highlights the added value of our hy-
brid approach based on an association of a machine learn-
ing method with process-related variables. Instead of inject-
ing uncertain information into physical models, such as soil
properties, we used a nonparametric method related to phys-
ical processes without using forcing data that may be subject
to errors and potentially lead to inaccurate tracking of the
long-term evolution of soil moisture.

A second comparison can be conducted between the qual-
ity of fit of these independent datasets and training datasets.
Actually, the climate class of the Tunisian stations is Bsh
(see Appendix A). At the training stage, no station falls into
climate class Bsh (see Appendix A). However, some train-
ing stations fall under a similar climate class, which is Bsk
(see Appendix B). Table 5 presents correlation and RMSE
values for these training stations and Tunisian sites with
both models ANN_SSM and ANN_SSM_NDVI_EVAP-
EFF-B60_EXP-FILT-TS. For all training stations, perfor-
mance metrics are slightly enhanced, with the most complex
ANN model compared to the reference model ANN_SSM,
except for stations GrouseCreek, Harmsway and Lind#1,
whose performance decreases. Overall, the range of correla-
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tion values is similar for training and external validation sta-
tions with model ANN_SSM_NDVI_EVAP-EFF-B60_EXP-
FILT-T5, and RMSE is greatly reduced for the Tunisian sta-
tions compared to the training stations. Given the results on
unseen datasets, namely, on Tunisia, the performance of the
most complex ANN model is good as it is able to generalize
the patterns present in the training dataset.

At the southern Indian stations, the ANN_SSM model
yielded good agreement even without the integration of
process-related features (Table 6). These features added lit-
tle to nonsignificant improvement. The same observation was
made at the Italian site. The application of multiple features
performed the best under arid conditions, e.g., in Tunisia. In
the tropical and temperate climate regions, this was not the
case. The presence of clouds in the MODIS NDVI and poten-
tial evapotranspiration products could explain this observa-
tion at sites of southern India and northern Italy. In southern
India, for instance, the maximum variability in soil moisture
occurred during the monsoon season, which is characterized
by a large amount of clouds. Moreover, the coarse resolu-
tion of the MODIS NDVI product makes it sometimes not
adapted to the considered site. Chen et al. (2016) investi-
gated the impact of sample impurity and landscape hetero-
geneity on crop classification using coarse-spatial-resolution
MODIS imagery. They showed that the sample impurity such
as mixed crop types in a specific sample, compositional land-
scape heterogeneity, which is the richness and evenness of
land cover types in a landscape, and configurational hetero-
geneity, which is the complexity of the spatial structure of
land cover types in a specific landscape, are sources of un-
certainty affecting crop area mapping when using coarse-
spatial-resolution imagery. High-resolution NDVI from sen-
sors like Sentinel-2 could have been used in this exercise to
mitigate the spatial resolution issue; however, MODIS data
were privileged in order to provide NDVI and PET from the
same sensor.

4 Discussion

Climate analysis of the results yielded by the different mod-
els indicated that, among all the models, the climate class
with the highest mean correlation change rate (Fig. 5) was
class BWk (see Appendix A), which regroups desert ar-
eas where the link between SSM and RZSM is weak due
to high evaporative rates. Class Dfa (see Appendix A),
which includes areas experiencing harsh and cold win-
ters, also yielded a high mean correlation change rate
(> 100 %). Similarly, at stations of this climate type, the
link between the surface and root zone is poor. In re-
gard to class Cfa (see Appendix A), in which more than
80 % of the total stations belong to the SCAN network,
the high mean correlation change rate could be explained
by the surface-subsurface decoupling phenomena detected
within this network, as previously reported in Souissi et
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al. (2020). The model with the largest number of sta-
tions with improved predictions over the ANN_SSM model
predictions was ANN_SSM_NDVI_EVAP-EFF-B60_EXP-
FILT-T5. Actually, the coupled use of process-related fea-
tures in the ANN models exerted a greater impact on the pre-
diction accuracy than that exerted by the one-at-a-time appli-
cation of these features. In model ANN_SSM_NDVI_EVAP-
EFF-B60_EXP-FILT-T5, the three process-based features
jointly employed seemed to counterbalance the weight of the
three SSM features. In this model, the process-related fea-
tures were equally represented versus the SSM information
depicted by three features. The redundancy of the consid-
ered SSM information could explain the limited impact of
the one-at-a-time addition of process-related features.

In addition, Karthikeyan and Mishra (2021) demonstrated
that, at root depths beyond 20 cm, the importance of SSM
was notably lower than that at the 20 cm depth, signifying
decorrelation between surface and deeper SM values, which
is in accordance with the findings in Souissi et al. (2020),
and it was further revealed that vegetation exhibits a higher
importance than that of the meteorological predictors and
precipitation. Kornelsen and Coulibaly (2014) indicated that
evapotranspiration is the most important meteorological in-
put for the prediction of soil moisture in the root zone with
the MLP, which reflects the importance of the water vapor
flux in soil moisture state determination.

mean_corr_change_rate = mean

(COITANN_SSM_X — COITANN_SSM 100) (5)

COITANN_SSM

where X denotes a process-related variable (X € [“NDVI”,
“EXP-FILT-T5”, “EVAP-EFF-B60”, “TEMP”)).

The world map illustrated in Fig. 6 shows the best-
performing ANN models based on the mean correlation
change rate (Eq. 5). We assumed that the results in a given
area of a specific climate class could be extended to other ar-
eas of the same climate class even if we did not consider the
data for these areas. The climate classes without at least one
station were marked in black and labeled with “NO DATA”.

In arid areas such as the eastern and western sides of
the USA with high evaporation rates, ANN_SSM_EVAP-
EFF-B60 was the best-performing model. Similarly, in bare
areas of Africa, the Middle East and Australia where the
Bwh climate class prevailed (arid desert hot climate; see Ap-
pendix A), the evaporation efficiency was the best informa-
tive variable.

In the intemal part of continental Europe and near the
Mediterranean basin, the NDVI was the most relevant indi-
cator for RZSM estimation, where agricultural fields dom-
inated. Similarly, the Great Plains region in the USA was
deeply affected by the NDVI, as this region is a cultivated
area. In Nordic areas characterized by the ET climate class
(Polar Tundra climate, see Appendix A) and mainly covered
by grassland and shrubland areas according to ESA CCI land
cover maps.
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Appendix A: Climate classes (Koppen classification)

Af
Am
As
Aw
BWk
BWh
BWn
BSk
BSh
BSn
Csa
Csb
Csc
Cwa
Cwb
Cwc
Cfa
Cfb
Cfc
Dsa
Dsb
Dsc
Dsd
Dwa
Dwb
Dwc
Dwd
Dfa
Dfb
Dfc
Dfd
ET
EF

Tropical rainforest

Tropical monsoon

Tropical savanna dry

Tropical savanna wet

Arid desert cold

Arid desert hot

Arid desert with frequent fog

Arid steppe cold

Arid steppe hot

Arid steppe with frequent fog

Temperate dry hot summer

Temperate dry warm summer

Temperate dry cold summer

Temperate dry winter, hot summer
Temperate dry winter, warm summer
Temperate dry winter, cold summer
Temperate without a dry season, hot summer
Temperate without a dry season, warm summer
Temperate without a dry season, cold summer
Cold dry summer, hot summer

Cold dry summer, warm summer

Cold dry summer, cold summer

Cold dry summer, very cold winter

Cold dry winter, hot summer

Cold dry winter, warm summer

Cold dry winter, cold summer

Cold dry winter, very cold winter

Cold dry without a dry season, hot summer
Cold dry without a dry season, warm summer
Cold dry without a dry season, cold summer
Cold dry without a dry season, very cold winter
Polar tundra

Polar eternal winter

Water
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and 1km resolution

This chapter is the final step of this PhD and encompasses the work presented in the following
paper:

Souissi, R., Al Bitar, A., Corbari, C., Mancini, M., and Zribi, M.: Root-Zone soil moisture
over Continental Europe using machine learning, Submitted to International Journal of
Applied Earth Observation and Geoinformation, 2022.
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4.1 Introduction

RZSM has been extensively studied at local or regional scales. However, few attempts were
made to map RZSM at large scales. The approaches which are currently suggested to answer
the need of large-scale RZSM are hindered by the coarse spatial resolution at which RZSM is
predicted. In order to address the needs of some applications namely agriculture, a high
spatial resolution of at least 1 km is required for reliable estimates of RZSM. This chapter sets
out a methodology to map RZSM at 1 km spatial resolution over Continental Europe which is
a large area with disparate climate and soil patterns. The work is based on the model
developed in the previous chapter which includes SSM, NDVI, SWI and evaporation
efficiency. No training was done in this step; the model was run only in prediction mode. The
objective is to assess the feasibility of spatially generalizing a locally-trained ANN model.

As a first step, high resolution RZSM maps were produced using for the SSM features the
Copernicus product SSM1km which is based on C-band Sentinel-1 data to generate the three
SSM features required by the ANN model. The produced maps were validated against the
ERAS-Land reanalysis RZSM product and against in-situ measurements which are provided
by ISMN over four European soil moisture networks. In order to further assess the quality of
the produced maps, additional RZSM maps were derived from other SSM products of coarser
spatial resolutions. Daily RZSM maps were generated at 36 km spatial resolution using the
SMAP level 3 SSM product (SMAP_L3 SM P). Similarly, these maps underwent a large-
scale and local validations against the ERAS-Land RZSM product and in-situ data,
respectively. Finally, daily RZSM maps were also generated by our ANN model at 9 km
spatial resolution using the ERAS5-Land reanalysis SSM product and validated like the
previous maps.

4.2 Conclusion

One major result of this work consists in the major impact of the quality and the temporal
resolution of the used SSM inputs has on the quality of the RZSM predictions. Maps at high,
intermediate and coarse spatial resolutions were produced using the ANN model developed in
the previous chapter. This model encompasses SSM, NDVI, SWI and evaporation efficiency
features. A large-scale validation was conducted against the reanalysis RZSM product
provided by ERAS5-Land. A local comparison was also done against in-situ RZSM data
provided by ISMN over four European soil moisture networks. The produced RZSM maps at
1 km resolution were consistent with validation data over many areas. This was illustrated in
the seasonal correlation maps comparing the predictions to the ERAS5-land reanalysis product
and also by correlation and RMSE boxplots which compare the predictions to in-situ data.
However, the C-band SSM information which is represented by the SSM1km product, was
proved inadequate over complex sceneries such as forests, irrigated areas, areas with
freeze/thaw events, etc. This finding is in accordance with previous studies which investigated
the quality of this product and found the same limitations. Despite the drawbacks, this product
has the advantage of a high spatial resolution which is necessary of agricultural applications.
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When it comes to coarse spatial resolutions, The SSM product provided by the SMAP
mission (SMAP L3 SM P) yielded slightly more accurate predictions. The seasonal
correlation maps were enhanced mainly over agricultural areas. However, RZSM prediction
maps produced at both 1 km and 36 km spatial resolutions were less accurate then the ERAS-
Land reanalysis RZSM product when compared against in-situ data. This finding has led us to
test the ANN model with the ERAS-land reanalysis SSM product at 9 km spatial resolution.
Overall, the predictions improved compared to the previous ANN model outputs. This can be
seen through the enhanced correlation and RMSE values. Most interestingly, the prediction
accuracy of the maps at 9 km spatial resolution was better than that of the ERA5-land RZSM
product namely over network SMOSMANIA in France. Despite the limitations detected with
the high resolution RZSM predictions and the coarse resolution hampering the rest of the
maps, the results confirm that a data-driven approach like ANN can be very reliable for
RZSM estimation. The use of better quality SSM source products is a promising option for
enhanced RZSM estimates.

4.3 Article
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Abstract

Root zone soil moisture (RZSM) is a land variable of great importance for different applications. No current
remote sensing technique can directly retrieve the root zone component but many efforts were deployed to
map RZSM at large scales. However, the available products provide RZSM at coarse spatial resolutions and
thus are not adapted for agricultural applications which require at least sub-kilometric resolutions. The main
objective of this study is to produce spatial RZSM maps at 1km resolution over continental Europe using an
artificial neural network (ANN) model which is based on surface soil moisture (SSM) and process-related
variables. Daily RZSM maps were produced at subkilometric spatial resolution such that the SSM features
were computed using the Copernicus Surface Soil Moisture 1km Version 1 product (SSM1km). Besides,
evaporation efficiency was included in the model in order to account for the evaporation process. Soil water
index (SWI) was computed by a recursive exponential filter using SSM information to quantify infiltration.
Remote sensing Normalized difference vegetation index (NDVI) was used to characterize the plant growth.
The ANN model is run only in prediction mode, i.e. with no prior calibrations. The training has been already
conducted in a previous study such that the training dataset included in-situ SSM information provided by
the International soil Moisture Network (ISMN) and remote sensing-based features over different areas of
the world. The quality of the produced RZSM maps at 1km (RZSMaxx ssmim) Was assessed at large scale
through a comparison against the ERAS5-land reanalysis RZSM product (RZSMEeras) and at a local scale
through a comparison against in-situ measurements provided by ISMN. The performance of the model was
acceptable over many areas but was hindered by complex contexts heavily impact the C-band SSM product.
The same ANN model was also used to map RZSM at coarser resolutions. Additional RZSM maps at 36km
(RZSMann smapsekm) and 9km  (RZSMany Eras okm) Spatial resolutions were generated using the
SMAP L3 SM P product provided by The Soil Moisture Active Passive (SMAP) mission and the ERAS-
Land reanalysis SSM product, respectively. Seasonal correlation maps between RZSMann smapsskm and
RZSMEras clearly show an enhancement compared to those between RZSMann ssmikm and RZSMeras.
Besides, the RZSManx rras oskm product outperformed RZSMEeras over some areas mainly over network
SMOSMANIA in France. The added value and limitations of the model were discussed with regards to the
different challenges of the temporal availability of the SSM1km product, the land cover, the freeze/thaw
conditions, etc. Better SSM inputs could improve the predictions and thus allow global mapping of RZSM.

Keywords: Root-zone soil moisture, Artificial Neural Networks, Subkilometric resolution, Sentinel-1,
SMAP, ERAS5-land, ISMN.
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1 Introduction

Large-scale soil moisture mapping is necessary to better manage the water resources allocated for hydrology,
meteorology and agriculture mainly in the current drought and climate change contexts (Berg and Sheffield,
2018). To mention but a few, soil moisture retrieval improves the assessment of available plant water and
minimizes the risks of environmentally damaging human activities. Moreover, skillful quantification of root-
zone soil moisture (RZSM) not only helps detect plant water stress and thus drought events, but also
improves weather forecasting and climate projections through enhanced latent heat fluxes (Dirmeyer

et al., 2006).

Remote sensing techniques have been proved efficient in retrieving surface soil moisture at high spatial and
temporal resolutions. Several satellite missions provide surface soil moisture (SSM) estimations at different
spatial resolutions. For instance, active and passive microwave sensors provide this information at regional
to global scales (Paloscia et al. 2001). Coarse resolution (25-50 km) soil moisture estimates are useful in
support of numerical weather prediction, climate monitoring and flood forecasting (Lopez et al. 2020). They
can be retrieved by the Soil Moisture Active Passive (SMAP) mission (Entekhabi et al., 2010) at 36km
resolution (level 3) and 9 km (level 3 enhanced). Besides, the Soil Moisture and Ocean Salinity (SMOS)
mission (Kerr et al., 2001) provides level 3 SSM estimates at 25km spatial resolution (Al Bitar et al., 2017).
Synthetic Aperture Radar (SAR) instruments, such as the C-band in Sentinel-1, provide SSM at high spatial
and temporal resolutions (Zribi et al., 2011). In this context, different algorithms based on machine learning
or change detection techniques have been developed to allow soil moisture mapping at field scale or 1 km
spatial resolution (Tomer et al. 2015, Tomer et al. 2016, El-Hajj et al., 2017, Bauer-Marschallinger et al.,
2019, Nativel et al., 2022).

However, no current remote sensing technique can directly retrieve RZSM since the soil representative depth
impacting satellite instruments does not go beyond a few centimeters except for dry sandy soils. Actually,
the soil moisture retrieval depth is approximately equal to Scm at L-band. However, P-band may provide
RZSM in the future since a widely-held view is that this moisture retrieval depth increases with wavelength.
Accordingly, P-band (~40-cm wavelength/0.75 GHz) is under investigation for soil moisture observation
over deeper layers of soil (Shen et al., 2021). RZSM can be also estimated through proxy information
namely vegetation water stress. Vegetation canopy temperature and evaporative fraction (EF) have been
used to estimate soil moisture (Hain et al., 2009) but these methods require surface flux data in addition to
micrometeorological data, where accurate surface flux data is not explicitly available (Akuraju et al., 2021).

RZSM information can be directly collected from in-situ sensors that are installed either vertically or
horizontally in the soil (Dobriyal et al., 2012). The International Soil Moisture Network (ISMN)
encompasses comprehensive surface and root-zone soil moisture databases provided by operational soil
moisture networks worldwide (Dorigo et al., 2011). Since direct in-situ measurements are not always
available, different analytical methods can be applied to estimate RZSM measurements. These methods are
based on theoretical or empirical relations between environmental variables controlling RZSM state
(Carranza et al., 2021). Land surface models (LSM) such as Interaction Sol-Biosphére-Atmosphere (ISBA)
(Noilhan and Mahfouf, 1996) and the Community Land Model (CLM; Oleson et al., 2010) are also used for
estimating root zone soil moisture. Other methodologies include water budgets in crop models such as
Aquacrop (Raes et al., 2009) that was successfully used to estimate RZSM. Such models are often coupled
with data assimilation techniques (Kumar et al., 2009, Lievens et al. 2016, Reichle et al., 2019) since these
models are affected by the accuracy of ancillary information.

Data-driven methods that include Machine Learning (ML) techniques have been widely used in soil
hydrology in the last couple of decades and more particularly in deriving RZSM from surface information.
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The different ML algorithms build mathematical models based on training sets and covariates to extract
information from data. Furthermore, they are tuned to handle diverse and large volumes of datasets, which
may be relevant for large scale studies or for operational water management (Carranza et al., 2021). For
instance, artificial neural networks have been applied to predict RZSM (Kornelsen and Coulibaly, 2014; Pan
etal., 2017; Souissi et al., 2020; Souissi et al., 2022). Some studies have demonstrated that ANNs can
achieve good RZSM estimates at local scales using surface measurements (Elshorbagy et al., 2010). While
analytical solutions entail some assumptions to the physical model, data-driven approaches tend to construct
a relation between inputs and outputs. Kornelsen and Coulibaly (2014) trained different surrogate ANN
models with the data of different soil moisture profiles generated by HYDRUS-1D model over the lower
Great Lakes region. They found that the ANNs were able to well represent the soil moisture dynamics of the
independent testing sites from the same region, when the HYDRUS-1D estimates were close to the
observations. The ability of ANN models to accurately predict RZSM over large areas and at fine resolutions
is still understudied. Pan et al. (2017) used ANN models to generate RZSM in North America using SMOS
level 3 soil moisture data (nominal resolution of 43 km, which correspond to 86% of the signal (Al Bitar et
al., 2012)), and achieved a spatial soil moisture pattern comparable to that of Global Land Data Assimilation
System Noah model with comparable performance to the SMOS surface soil moisture retrievals. Souissi et
al. (2022) developed several ANN models to estimate RZSM based either solely on in situ SSM information
or on a group of process-related features in addition to SSM namely the soil water index computed with a
recursive exponential filter, evaporation efficiency and NDVI. Different regions across the globe with
distinct land cover and climate patterns were considered. Overall, good agreement between in-situ RZSM
and predictions was recorded.

The main objective of this study is to assess the utility of spatially generalizing a locally-trained ANN
model. It aims at assessing the feasibility of producing spatially-coherent RZSM maps based on local
training datasets. To do so, we propose a method to map RZSM at 1 kilometer resolution over a large area
such as Continental Europe using an ANN model whose features are SSM backward rolling averages over
10, 30 and 90 days computed using the Copernicus Surface Soil Moisture 1km Version 1 product
(SSM1km), remote sensing-based evaporation efficiency, SWI computed using a recursive exponential filter
and NDVI datasets from MODIS. This ANN model was previously developed and trained using in-situ SSM
information from ISMN and remote sensing-based features over different areas of the world in (Souissi et
al.,, 2022). (1) We produced RZSM maps at 1km resolution, hereafter called RZSMaxn_ssmikm, that we
validated at the European scale through a comparison against ERA5-land RZSM reanalysis datasets
(RZSMEras), and locally through a comparison against in-situ measurements provided by ISMN over four
European soil moisture networks. (2) We assessed the impact of using multi-source input SSM information
(radar, microwave and reanalysis) on the quality of the predictions. RZSM maps at different spatial
resolutions, depending on the SSM source, were produced to highlight the advantages and limitations of
each source.

2 Materials and Methods
2.1 Datasets
2.1.1 Kilometric resolution SSM data

The Copemicus Surface Soil Moisture 1km Version 1 product (SSM1km) was used to compute the SSM
features of the ANN model in order to generate spatial maps of RZSM at 1km spatial resolution. The
SSM1km product is obtained from Sentinel-1 radar backscatter images (level-1 data), acquired in
Interferometric Wade Swath (IW) mode and VV-polarization and jointly provided by the European Space
Agency (ESA) and the European Commission (EC). Daily images at 1km of relative surface soil moisture
(in percent saturation) were created from this raw satellite data (figure 1(a)).
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2.1.2 Coarse resolution SSM data

The Soil Moisture Active Passive (SMAP) mission was launched by the National Aeronautics and Space
Administration (NASA) in 2014 to study the surface soil water. SMAP has an active instrument (radar) and a
passive one (a radiometer) on board. The SMAP observations are acquired at a fixed angle (40°) in dual
polarization with a 39 km x 47 km nominal resolution. While the radiometer provides “passive” estimates
with its coarse spatial resolution, the radar analyzes the “active” backscatter obtained from a Synthetic
Aperture Radar (SAR) technology at 3 km spatial resolution. The SAR stopped operations 3 months after
launch due to failure. The combination of the two datasets creates the final product, joining the penetrating
capacity of the “passive” technology with the high spatial resolution of the “active” one. SMAP level3 soil
moisture data from passive sensor at 36km (SMAP 1.3 SM_P) were downloaded from the NASA Earthdata
portal. Daily composite SSM maps were derived from the AM (descending) and PM (ascending) overpass
of SMAP L3 SM P.

2.1.3 ERAS5-land data

ERAS is the fifth generation ECMWF reanalysis for the global climate and weather for the past 4 to 7
decades. ERAS provides hourly estimates for a large number of atmospheric, ocean-wave and land-surface
variables. Four main subsets exist, namely hourly and monthly products, on pressure levels as well as on
single levels (atmospheric, ocean-wave and land surface quantities). ERAS-Land is a replay of the land
component of the ERAS climate reanalysis which is forced by meteorological fields from ERAS (table 1).
The outputs are provided on an hourly frequency and the fields are masked over oceans. Daily means of
volumetric RZSM, volumetric SSM and 24-hour accumulated precipitation values were downloaded from
the «Daily statistics calculated from ERAS data » application that allows users to compute and download
daily statistics of different variables from a number of hourly ERAS5-land datasets (Muioz-Sabater et al.,
2021). As far as soil moisture information is considered, the ECMWF Integrated Forecasting System (IFS)
has a four-layer representation of soil: Layer 1: 0 - 7cm, Layer 2: 7 - 28cm, Layer 3: 28 - 100cm, Layer 4:
100 - 289cm. The first layer (0 - 7cm) was selected to extract SSM information that will be used further to
compare the different RZSM predictions. As for RZSM, the third layer (28-100 cm) was selected since we
are interested in the root zone ranging between 30 and 55cm (Souissi et al., 2022).

The ERAS5-land data is subset to the selected rectangular spatial region of interest and sampled at the
selected frequency. For our study, the selected region of interest is continental Europe (-11°E,35°S,
50°W,72°N). The data is then aggregated to a daily frequency using the selected statistic and returned to the
user in a single netCDF file.

Table 1: Data description of dataset “ERAS5-Land hourly data from 1950 to present” (Copernicus Climate Change
Service, 2019)

Data type Gridded

Projection Regular latitude-longitude grid
Horizontal coverage Global

Horizontal resolution 0.1° x 0.1°; Native resolution is 9 km
Temporal coverage January 1950 to present

Temporal resolution Hourly

Precipitation data were used in the discussion part (see section 4) to highlight one of the limitations of SAR
based SSM. Precipitation maps over Continental Europe were generated from the precipitation data of the
ERAS-Land hourly dataset. We extracted the Total precipitation (tp) variable which is equivalent to the
accumulated liquid and frozen water that falls to the Earth's surface. It is the sum of large-scale precipitation
and convective precipitation. The units of this parameter are depth in meters of water equivalent. Total
precipitation data were download for each day at 00:00 UTC. Actually, the total precipitation for a given day
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process through the use of an evaporation efficiency based on potential evapotranspiration (PET). NDVI and
PET are provided by Moderate Resolution Imaging Spectroradiometer (MODIS) products with a spatial
resolution of 250 m and 500 m, respectively. NDVI and PET were extracted from the MOD13Q1 version 6
product with a revisit frequency of 16 days and the MODI16A2 version 6 each 8 days, respectively.
According to the criteria set out by Huete et al. (1999), the NDVI value yielded by the MODIS product
corresponds to the best pixel value of all acquisitions over the 16-day time range where the cloud coverage
and view angle are low. Besides, the considered potential evapotranspiration value is equal to the sum of
PET values encompassed by the 8-day window, as mentioned in Running et al. (2017).

In order to produce daily maps of NDVI and PET, linear interpolation was performed on the 16-day and 8-
day products, respectively. The maps were downscaled to the spatial resolution of 1km such that it matches
the SSM 1km product resolution using the GDAL nearest neighbor resampler.

PET was then used to compute evaporation efficiency as described in the third model developed by (Merlin
et al., 2010). In our work, a modified formulation (equation 2) was used and is further detailed in (Souissi et
al., 2022). Evaporation efficiency can be expressed as follows:

B =[—3005(0/0ma)l” (@)

where: - [ is evaporation efficiency
- 6 is the water content in the soil layer of a given thickness (here the surface layer is considered).
- B1nax 18 equal the maximum soil moisture value for each site.

- P" is a parameter that can be computed as follows:

-PET is the potential evapotranspiration provided by the MOD16A2 product.

2.1.6 Ancillary data

In order to rescale RZSM outputs, sand and clay fractions were used to compute the soil moisture at
saturation and the wilting point (see section 2.2). Clay and sand maps (figure 2(c), (d)) over continental
Europe are available at a 250m resolution from SoilGrids version 2.0 product (Poggio et al., 2021).
SoilGrids is a system for global digital soil mapping that uses state-of-the-art machine learning methods to
map the spatial distribution of soil properties across the globe. The outputs of SoilGrids are global soil
property maps at six standard depth intervals at a spatial resolution of 250 meters. All SoilGrids maps can be
acquired through the Web Coverage Service (WCS) which is the most convenient way of obtaining spatial
subsets of the various quantities. WCS is a standard issued by the Open Geospatial Consortium (OGC)
which is designed to remotely accede to raster maps. WCS functions over the HTTP protocol and is
supported by Python that ensures access to WCS through the OWSLIib library.

The CCI land cover (LC) maps were used to evaluate the quality of RZSM predictions based on the land
cover class. We generated the LC map over continental Europe for the year 2020 at a 1km spatial resolution

(figure 2(b)).
2.2 Methods

The proposed methodology consists in predicting RZSM over continental Europe (figure 3) using the most
complex ANN model in terms of number of features, which was developed in (Souissi et al., 2022). The
features used in this model are SSM and process-related features. The model was trained and validated using
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In this paper, the used ANN model is a feed-forward neural network commonly known as multilayer
perceptron (MLP). MLP is considered as a machine learning technique which has been shown reliable
several applications such as hydrology (Taver et al., 2015, Abrahart and See, 2007). It is arranged as a stack
of layers namely an input layer, at least one hidden layer and an output layer. All layers are composed of
neurons such that those of the first layer are called features and correspond to the input variables of the
model. A weighted sum of the inputs and a bias are injected to each neuron of the hidden layer through the
activation function. In order to minimize the error function called loss function, the model internally adjusts
the weights between the neurons.

The architecture of our model consists of an input layer of SSM and process-related features, one hidden
layer of 20 hidden neurons and an output layer. The activation function of the hidden layer is a tangent
sigmoid function, the loss function is a quadratic cost function and the optimization algorithm is a stochastic
gradient descent as already implemented in (Souissi et al., 2022).

Three SSM features are considered in this model, namely backward moving average of SSM using three
temporal windows of 10, 30 and 90 days. Three process-related features are also used, namely evaporation
efficiency (EVAP), SWI and NDVI. The model has been already trained using data from different areas of
the world with different climatic and soil characteristics as detailed in (Souissi et al., 2022). In this study, the
model is used only in prediction mode i.e. with no prior calibration.

ANN_SSM1km refers to the ANN model that uses the SSM1km product to compute the SSM features.
ANN_SMAP36km refers to the ANN model that uses the SMAP 1.3 SM P product to compute the SSM
features and ANN ERAS-9km is the ANN model that uses the ERA5-land SSM reanalysis product to
compute the SSM features (table 2).

Table 2: ANN model configurations with the respective input variables; *: rolling averages of SSM over 10 days;
®: rolling averages of SSM over 30 days; < rolling averages of SSM over 90 days; ": the SSM source product

Model SSM1km’ SMAP L3 SM P’ ERA5-9km”
b L 4 il € <4 b 2 P
03 (3|3 |5 |5 |5 (5|5 | ™| o=
g | |8 |8 |8 |8 |8 |8 |8
Features | —| | ™ | | il | Z “ |
s | 2 2 2 b > > 2 >
0 2] %2} w 1] 7] 0 [ 1]
0 72} n 2] wn [79] 7] wn 175]
ANN_SSMlkm | X X X X X X
ANN_SMAP36 X X X X X X
km
ANN_ERAS- X X X X X X
9km

The time series of the different features were timestamp-matched such that only valid data for all inputs are
kept. The RZSM predictions are scaled by the soil moisture at saturation and permanent wilting point.

The soil moisture at saturation is computed as in (Cosby et al., 1984):
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During dry months, the SSM1km product showed a high overestimation of SSM in Carraixet which has a
semi-arid climate (climate class ‘BSk”). The poor statistics recorded with the SSM1km product were
attributed to two main factors. In temperate regions where the vegetation cover has a leaf area index larger
than 0.6, the sensitivity of C-band backscatter to soil moisture was likely to be reduced. For dry surfaces
with low topography and comparable electromagnetic properties, the soil roughness was the most
dominating surface properties effect on the measured radar backscatter coefficients. The signal can be
considered as a measure of the surface roughness at a scale comparable to the sensor wavelength
(Marticorena et al., 2006).

Figure 11 shows the difference between monthly RZSMaxn ssmikm and RZSMEeras maps and similarly
between monthly RZSM . an smapsskm and RZSMEeras maps. Only absolute difference values which are
greater than 0.1 m*/m? are shown. When compared to reference RZSMgras, RZSM overestimations,
underestimations and non-significant differences are mapped in green, red and yellow, respectively (not
covered areas are mapped with grey). The significant differences are more recurrent in the case of
RZSMann_ssmikm compared t0 RZSMaxn syap3skm

The eastern part of the Iberian Peninsula which is characterized by a semi-arid climate is subject to
permanent overestimations of RZSM (see appendix C). Wagner et al. (2022) have shown a subsurface
scattering, over this region, which could be important in dry season and is neglected in proposed change
detection algorithm.

Model ANN SMAP36km doesn’t yield an overestimation over that area. This can be explained by the fact
that Sentinel-1 carries a C-band SAR which is more sensitive to vegetation and surface roughness than the
L-band SMAP radiometer (Calvet et al., 2011). Bauer-Marschallinger et al. (2018) detected signal patterns
indicating irrigation activities in SSM1km time series over network RHEMEDUS, which is located in Spain
and showed that is likely to be completely missed by satellite data when the irrigation is applied to a small
area. Paciolla et al. (2020) also found irrigation impact patterns in Northern and southern Italy. However,
this remains a weak argument to explain the very large overestimation patterns in Spain that cover 100 of
kilometers even though irrigation signals are detected in the SSM1km from S1.

Furthermore, model ANN_ SSMI1km tends to overestimate RZSM over Nordic regions as already highlighted
in the results section due to the highly dynamic freeze/thaw processes and complex land cover. These
regions are flagged more effectively with SMAP 1.3 SM_P whereas SSM1km is not trustworthy because no
specific mask or flag exists for such conditions.

Overestimations of RZSM compared to ERAS5-land reanalysis RZSM datasets are also recorded around the
Provence vineyards area (France) potentially because of the overestimations affecting SSM 1km data.
Similarly, RZSM overestimations can be detected around Bordeaux as well as Languedoc Roussillon
vineyards (figure 11). In this context, Bazzi et al. (2019) found that over cells with predominant vineyards,
SSM1km tends to overestimate SSM because of the high backscattering signal reflected from metals that are
usually present in vineyards. Baghdadi et al. (2006) also showed that the vineyard parcels with metal stakes
within the study site (a Mediterranean vineyard site near Bordeaux in southwestern France) have a stronger
radar signal than parcels with wooden stakes.

Figure 11 also highlights a significant underestimation of RZSM over UK all over the year (see appendix C).

This underestimation is less remarkable in the case of RZSM.an smapsskm. Actually, the change detection
algorithm of the SSM1km product is not very efficient in contexts of soil moisture high variability.
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from Sentinel-1 SSM data, this product should greatly improve with the launches of the other satellites of the
Sentinel-1 constellation or through the fusion with data from other constellations such as Radarsat.
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Classical representations of the water cycle leave out the anthropogenic effects. Actually, only
15% of the water cycle diagrams depict human interaction with water (Abbott et al., 2019).
Crop use of soil moisture is one form of human impact on the water cycle. In the context of
agriculture, soil moisture is a key variable in crop health monitoring and yields prediction for
instance. The second component of this variable, i.e. root-zone soil moisture is of
considerable interest since plants draw water from the soil profile.

This PhD was mainly centered on the prediction of RZSM at large scales and subkilometric
resolution. A first step consisted in predicting RZSM while linking it to surface moisture
based on a large database from the global database ISMN. This reasoning relies on the fact
that both soil moisture components are interconnected through diffusion processes for
instance. At this stage, an ANN model was developed and trained on in-situ SSM information
provided by the ISMN over soil moisture stations of different characteristics. Different
experiments were conducted to determine the best ANN architecture. The accuracy and
transferability of the approach were assessed as well as the contribution of each soil moisture
network. Results demonstrated the reliability of the method since a median, maximum and
minimum correlation values equal to 0.77, 0.96 and 0.65 were recorded after applying a
statistical filtering that aimed at eliminating low-quality stations from training and validation.
In some other contexts and more specifically in areas where a surface/subsurface decoupling
phenomenon occurs such as in arid regions, the approach was proved lacking. In an effort to
better capture these specific conditions and better account for more complex conditions, we
considered the option of enriching the model with process-related variables. Based on the
previous results, different ANN models were developed such that their features include SSM
and a process-related variable. The most complex ANN model was fed with SSM features and
a combination of process-related variables. The considered variables are SWI which was
computed using a recursive exponential filter, evaporation efficiency and NDVI. The different
models were trained on the stations identified of good-quality in the first axis which cover
broad contexts in terms of types of soil and climate. Each model was tested on an ensemble of
ISMN stations not seen in the training and validation steps. Analysis across climate classes
showed that the using more features besides SSM could boost the performance of the
approach. More specifically, the consideration of evaporation efficiency in areas of high
evaporation rates was proved beneficial. Over agricultural fields and transition zones like the
Sahel zone or the Australian transition zone, NDVI was revealed the most relevant variable
for RZSM prediction. The most reliable model was the most complex model in which RZSM
is predicted based on three SSM features and three process-related variables namely NDVI,
evaporation efficiency and SWI. The robustness of the methodology was also evaluated
through additional tests applied on stations which are not covered by the ISMN database
namely stations over central Tunisia, India and Italy. The quality of predictions increased
significantly in the case of Tunisia when the most complex ANN model was used. However,
performance slightly changed over India and Italy potentially due to the presence of clouds
and the crop heterogeneity that affect the MODIS products.

Since local-scale RZSM predictions are not relevant with regards to agricultural applications,
we extended the application at a large scale. The most complex ANN model which was
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developed in the second axis, was used in prediction mode in order to produce large scale
maps of RZSM at 1 km spatial resolution. The model was tested over continental Europe
using remote sensing features. Different SSM remote sensing products were employed to
compute the three SSM features required by the model. Maps of RZSM at 1 km spatial
resolution were generated using C-band Sentinel-1 SSM product with 1 km spatial resolution
and temporal repetitiveness of 2-4 days, depending on location, since the launch of Sentinel-
1B in October 2016 and until its shutdown in December 2021 (SSM1km). The locally-trained
neural network model was able to track RZSM variations with a reasonable accuracy over
several areas of Europe. The predictions were validated through a comparison against the
ERAS5-Land reanalysis RZSM product and a comparison against in-situ data. Moreover, the
use of rolling averages of SSM as inputs to the model helped us overcome the input data gaps
problem and produce daily RZSM maps.

Nevertheless, the SSM1km product exhibited some limitations that impacted the accuracy of
RZSM predictions. Additional RZSM maps were produced by the ANN model at different
spatial resolutions based on the considered SSM information source. Although most of the
limitations raised by the use of the SSM1km product were satisfactorily addressed with the L-
band SMAP product which is provided with a 36km spatial resolution and 3-day temporal
resolution, the predictions were not as accurate when compared with in-situ RZSM
information. The model was also applied using ERAS5-land reanalysis SSM datasets and
outperformed the ANN models based on remotely sensed SSM datasets. It also improved on
the accuracy of the ERAS5-land reanalysis RZSM datasets which has an hourly native
temporal resolution.

Throughout this PhD, we demonstrated the feasibility of mapping RZSM at large scales and
subkilometric resolutions using a locally-trained ANN model. This step provides the
foundation for the feasibility of RZSM prediction at global scale and subkilometric resolution.
In the following, we present perspectives for improvement of the approach. The perspectives
can be related to the choice of the method, data, etc. In this PhD, we chose to work with a
machine learning method and more precisely artificial neural networks because of their
reliability and promising capabilities, compared to physical methods or data assimilation as
described in the state of the art chapter. Moreover, the innovation of this work as previously
explained, resides among others in the logic and the chronology adopted to solve the problem,
i.e. to locally train a method based on data, to enrich it by physics and to complement it by a
spatial component in order to solve a physical problem. From a model improvement
perspective, other model tuning options can be explored such as using a custom cost function
to optimize the model. A specific cost function can be elaborated to take into account the
specifics of soil moisture time series such as moisture peaks that sometimes could not be
identified with a standard cost function. In some cases, comparison of the in-situ RZSM time
series with the predicted RZSM time series showed that the model missed peaks or on the
contrary, generated false peaks. A physics-guided cost function can also be interesting if it
assigns a specific weight for dry and wet cycles for instance.

Another avenue of improvement can be explored with respect to the choice of the process-
related variables that were included in the model. The impact of adding additional temporal
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information, such as precipitation or irrigation events, can be investigated in future studies.
Spatial information, namely soil texture information, can be considered as well. However, the
inaccuracies affecting these variables make them a source of bias for the model. In this
context, machine learning or deep learning methods can be used as calibration tools for low
precision data or as gap filling tools for missing data. The choice of the type of ANN can be
also questioned in order to include these static variables in addition to temporal dynamic
variables. Actually, MLPs are not suitable for a joint use of static and dynamic variables since
all temporal interdependencies may be lost. Hybrid ANNs which combine an MLP for static
variables and Long Short Term Memory (LSTM) for dynamic variables can be a promising
alternative.

Another perspective as far this second axis is concerned, consists in the separation of the data
into clusters of the same climate class. Specific trainings can be done based on the climate
type. This aims at potentially clarifying the relations governing the variables used and the
climate class.

When it comes to the last research axis, higher quality remote sensing SSM products can be
used to further emphasize the impact of input information on RZSM predictions. The launch
of additional satellites in the Sentinel-1 constellation is promising. The unavailability of
Sentinel-1B due to a technical anomaly since December 2021 makes the launch of the new
Sentinel-1C satellite a highly anticipated event. Actually, Sentinel-1C is the third satellite of
the Sentinel-1 radar constellation and will be launched in 2023. It is equipped with C-band
radar and will ensure global data continuity as part of the Copernicus program.

The launch of other L-band missions is also promising. Radar Observing System for Europe L
(ROSE-L) is a future mission developed under the European Union's Copernicus program.
The improved penetration capability of the L-band SAR flown on board of this satellite will
improve the capability of soil moisture retrieval. This mission will contribute to the continuity
of Copernicus observations on a global scale, for example by improving their accuracy,
product quality, temporal and spatial resolution of the collected data. Also, the NASA ISRO
Synthetic Aperture Radar (NISAR) mission that will be launched in 2023 is quite promising
for high resolution soil moisture observations. This mission will provide data on the dynamics
of the Earth's surface on a global scale. These data are essential for various Earth science
disciplines such as carbon and water cycle observations. One of the objectives of this mission
is to provide global soil moisture products with a spatial resolution of 200m and a temporal
repetitiveness of 6 days.

Always in the context of remote sensing, the future potential of extracting RZSM via P-band
sensors, such as the BIOMASS mission scheduled for launch in 2024, could provide a better
understanding and quantification of soil moisture in deep layers.
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Les représentations classiques du cycle de 1’eau font généralement table rase des effets
anthropiques. En effet, seuls 15 % des diagrammes du cycle de I'eau décrivent l'interaction
humaine avec I'eau (Abbott et al., 2019). L'utilisation de 1'humidité du sol pour les cultures est
I’une des formes de l'impact humain sur le cycle de l'eau. Dans un contexte agricole,
I'humidité du sol est une variable clé pour suivre la santé des cultures et la prédire les
rendements par exemple. La composante de la zone racinaire présente un grand intérét
puisque les plantes puisent l'eau dans le profil du sol.

Cette theése est principalement centrée sur la prédiction de la RZSM a grande échelle et a
résolution kilométrique. Une premiere étape a consisté a prédire la RZSM tout en la reliant a
I’humidité de surface aux RZSM en se basant sur une importante base de données provenant
du réseau mondial ISMN. . Ce raisonnement repose sur le fait que les deux composantes de
I'humidité du sol sont interconnectées par des processus de diffusion par exemple. A ce stade,
un modele ANN a été développé et entrainé sur les données in-situ de la SSM fournies par
I'ISMN sur des stations d'humidit¢ du sol de différentes caractéristiques. Différentes
configurations ont ét¢ appliquées pour obtenir le modele ANN le plus performant. La
précision et la transférabilité de l'approche ont été évaluées, ainsi que la contribution de
chaque réseau d'humidité du sol. Les résultats ont démontré une forte fiabilité de la méthode
sous certaines conditions. Des valeurs médiane, maximale et minimale de corrélation égales a
0.77, 0.96 et 0.65 ont été enregistrées apres avoir appliqué une méthode de filtrage de données
qui visait a éliminer les stations de mauvaise qualité des opérations d’apprentissage et de test.
Dans d'autres contextes, plus spécifiquement 13 ou il y a des phénomenes de découplage entre
surface et zone racinaire tel qu’en zones arides, l'approche s'est avérée insuffisante. Dans
I’optique de mieux cerner ces cas particuliers et d’'une meilleure prise en compte des cas plus
complexes, nous avons considéré 1’option d’enrichir le modéle avec des variables
supplémentaires représentant les processus physiques ayant un fort impact sur 'humidité du
sol améliorerait les prédictions RZSM, 1a ou le mode¢le échoue.

En se basant sur les résultats précédents, différents modeles ANN ont été développés de telle
sorte que leurs variables d’entrée incluent la SSM et une variable liée & un processus
physique. Le modéle ANN le plus complexe est formé de données SSM et une combinaison
de variables liées aux processus. Les variables considérées sont le SWI calculé a 1'aide d'un
filtre exponentiel récursif, I'efficacité d’évaporation calculée a l'aide d'un produit PET issu de
la télédétection et de données de NDVI. Les différents modéles ont été entrainés sur les
stations identifiées de bonne qualité dans la partie précédente. De méme, ces stations couvrent
des contextes treés larges en termes de caractéristiques de sol et de type de climat. Chaque
modele a été testé sur un ensemble de stations ISMN non utilisées lors du processus
d'apprentissage du modele. L'analyse par classe climatique a montré que 1'utilisation d'autres
variables en plus de la SSM pouvait améliorer les performances de la méthode. Plus
précisément, la prise en compte de l'efficacité de 1'évaporation dans les zones a fort taux
d'évaporation s'est avérée bénéfique. Sur les champs agricoles, le NDVI s'est révélé étre la
variable liée aux processus la plus pertinente pour la prédiction de la RZSM. Le modéle le
plus fiable s'est avéré étre le modele le plus complexe dans lequel la RZSM est prédite en se
basant sur la SSM et les trois variables liées aux processus a savoir le NDVI, I’efficacité
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d’évaporation et le SWI. La robustesse de la méthodologie a été également évaluée a travers
des tests supplémentaires appliqués sur stations externes a la base de données ISMN. Des
stations situées au centre de la Tunisie, en Inde et en Italie ont été considérées. La qualité des
prédictions a augmenté de manicre significative dans le cas de la Tunisie lorsque le modéle
ANN le plus complexe a été utilisé. Cependant, les performances ont légérement évolué en
Inde et en Italie, potenticllement a cause de la présence de nuages et de I'hétérogénéité des
cultures qui affectent les produits MODIS.

Les prévisions RZSM a 1'échelle locale n'étant pas pertinentes pour des applications agricoles,
nous avons ¢étendu l'application a large échelle. Le modele ANN le plus complexe,
précédemment décrit, a été utilisé en mode prédiction afin de produire des cartes a grande
échelle de RZSM a une résolution spatiale de 1 km. Le modele a été testé sur 1'Europe
continentale en utilisant en entrée des variables issues de la télédétection. Différents produits
SSM issus de la télédétection ont été considérés. Des cartes de RZSM a une résolution
spatiale de 1 km ont été produites a l'aide d'un produit SSM en bande C (Sentinel-1) de 1 km
de résolution spatiale et d’une répétitivité temporelle de 2 a 4 jours, selon la localisation,
depuis le lancement de Sentinel-1B en Octobre 2016 et jusqu’a son arrét en décembre 2021
(SSM1km). Ceci constitue I'objectif ultime de ce travail. Le modé¢le de réseaux de neurones
localement entrainer a pu suivre les variations de 1I’humidité en zone racinaire avec des
statistiques raisonnables sur plusieurs zones de I’Europe. Les prédictions ont été validées suite
a une comparaison avec le produit de réanalyse de ERAS5-Land et avec une comparaison par
rapport aux données in-situ. De plus, le choix d’utiliser des moyennes glissantes d’humidité
de surface en entrée du modéle nous a permis de s’affranchir du probléme des trous de
données du produit en entrée et de produire un des cartes journalieres d’humidité de zone
racinaire.

Néanmoins, le produit SSM1km a présenté certaines limitations qui ont eu des répercussions
sur la précision des prédictions RZSM et nous a donc conduit a explorer d'autres produits
SSM. Ainsi, des cartes RZSM supplémentaires ont été produites par le modele ANN a des
résolutions spatiales qui dépendent de la source de SSM. Bien que la plupart des limitations
soulevées par l'utilisation du produit SSM1km aient été traitées de maniére satisfaisante avec
le produit SMAP en bande L de résolution spatiale égale a 36km et de résolution temporelle
¢gale a 3 jours, les prédictions n'étaient pas aussi précises lorsqu'elles étaient comparées aux
données RZSM in-situ. Le modéle a également été appliqué sur des jeux de données SSM de
réanalyse ERAS-Land et a marché mieux que les modeles ANN basés sur les jeux de données
SSM issus de la télédétection. Sa précision a été €galement supérieure a celle du produit
RZSM de réanalyse ERAS5-Land de résolution temporelle native horaire et dont les moyennes
journalieres ont été utilisées dans cette étude.

Tout au long de cette thése, nous avons démontré la faisabilit¢ d'un modele ANN pour
cartographier la RZSM a grande échelle et a une résolution kilométrique lorsque certaines
considérations sont prises en compte. Cette étape constitue une base pour confirmer la
faisabilité de la prédiction du RZSM a 1'échelle globale et a une résolution kilométrique a
l'aide d'un modéle ANN.
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Dans la suite, nous présentons des pistes d’amélioration de 1’approche. Les perspectives
peuvent viser le choix de la méthode, le traitement de données, les produits utilisés, etc.
Durant cette thése, on a fait le choix de travailler avec une méthode de machine learning et
plus particulierement les réseaux de neurones artificiels vu leur fiabilit¢ par rapport aux
méthodes physiques et d’assimilation de données comme décrit dans le chapitre état de 1’art.
De plus, I’innovation de ce travail, comme précédemment expliqué, réside entre autres dans la
logique et la chronologie adoptées pour résoudre le probléme a savoir entrainer localement
une méthode basée sur les données, 1’enrichir par la physique et la complémenter par une
composante spatiale pour enfin résoudre un probléme physique. Dans une optique
d’amélioration de modele, on peut explorer d’autres options de réglage du modele comme par
exemple [’utilisation d’une fonction de colit personnalisée pour optimiser le modele en
fonction des spécificités des séries temporelles d'humidité du sol comme les pics d’humidité
qui n’ont pas pu parfois étre identifiés avec une fonction de coit standard. Dans certains cas,
la comparaison entre les séries RZSM in-situ et les séries prédites de RZSM par le mode¢le
ANN basé¢ uniquement sur la SSM, a montré que le modele a loupé des pics ou, au contraire, a
généré des faux pics. Une fonction de colt guidée par la physique peut également étre
intéressante si elle attribue un poids spécifique aux cycles secs et humides par exemple.

Une autre piste de recherche peut étre explorée par rapport au choix des variables reliées aux
processus physiques qui ont été incluses pour enrichir le modéle. L’impact de I’ajout
d’informations temporelles supplémentaires, comme la précipitation ou les événements
d'irrigation, peut étre investigué¢ dans des études futures. Des informations spatiales, a savoir
des informations sur la texture du sol, peuvent étre considérées aussi. Cependant, les
contraintes de précision affectant ces variables en font une source de biais pour le modéle.
Dans ce contexte, des méthodes de machine learning ou de deep learning peuvent étre utilisés
comme outils de calibration des données peu précises ou des outils de « gap filling » pour les
données manquantes ou discontinues. Le choix du type d'ANN peut également étre remis en
question afin d'inclure ces variables statiques en plus des variables dynamiques temporelles.
En fait, les MLPs ne conviennent pas a une utilisation conjointe de variables statiques et
dynamiques, car toutes les interdépendances temporelles peuvent étre perdues. Les ANN
hybrides qui combinent un MLP pour les variables statiques et une mémoire a long terme
(LSTM) pour les variables dynamiques peuvent €tre une alternative prometteuse.

Une autre perspective par rapport a ce deuxiéme axe est la séparation des différents ensembles
de données en clusters d'une méme classe climatique. Des entralnements spécifiques peuvent
étre effectués par type de climat pour clarifier potentiellement les relations régissant les
variables utilisées et la classe climatique.

En ce qui concerne le dernier axe de recherche, des produits SSM issus de la télédétection de
meilleure qualité peuvent étre utilisés pour souligner davantage I'impact de la qualité¢ des
informations d'entrée sur les prédictions RZSM. Le lancement d'autres satellites de la
constellation Sentinel-1 est également prometteur. L’indisponibilité de Sentinel-1B suite a une
anomalie technique depuis décembre 2021 fait que le lancement et la mise en orbite du
nouveau satellite Sentinel-1C est un événement trés attendu. Sentinel-1C est le troisiéme
satellite de la constellation radar Sentinel-1 et sera lancé en 2023. Il est équipé d’un radar en
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bande C et assurera la continuité des données a 1’échelle globale dans le cadre du programme
Copernicus.

Le lancement d’autres missions en bande L est aussi prometteur. Radar Observing System for
Europe L (ROSE-L) est une future mission développée dans le cadre du programme
Copernicus de I'Union Européenne. Le satellite disposera d'un SAR en bande L. La meilleure
capacité de pénétration de la bande L améliorera la capacité d’acquisition de I’humidité de
sol. Cette mission contribuera a la continuité des observations Copernicus a 1’échelle globale,
par exemple en améliorant leur précision, la qualité des produits, la résolution temporelle et
spatiale des données collectées. Aussi, la mission NASA ISRO Synthetic Aperture Radar
(NISAR) qui sera lancée en 2023 est prometteuse en mati¢re d’observation d’humidité du sol
a haute résolution. Cette mission fournira des données sur la dynamique de la surface terrestre
a I’échelle globale. Ces données sont essentielles pour différentes disciplines des sciences de
la Terre telles que les observations des cycles du carbone et de I'eau. Un des objectifs de cette
mission est de fournir des produits globaux d’humidité de sol a une résolution spatiale de
200m et une répétitivité temporelle de 6 jours.

Toujours dans un contexte de télédétection, le potentiel futur d'extraction de la RZSM via des
capteurs en bande P, telle que la mission BIOMASS dont le lancement est prévu 2024,
pourrait assurer une meilleure compréhension et quantification de I'humidité du sol dans les
couches profondes.
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Acronyms

Al Atrtificial Intelligence

AMSR-E: Advanced Microwave Scanning Radiometer—Earth Observing System
ANN: Artificial Neural Network

ANR: Agence Nationale de la Recherche

ASCAT: Advanced Scatterometer

ASCE: American Society of Civil Engineers

ATI: Apparent Thermal Inertia

CDF: Cumulative Density Function

CESBIO: Centre d’Etudes Spatiales de la BIOsphére
CLM: Community Land Model

CNES: Centre National d’Etudes Spatiales

CNN: Convolutional Neural Network

CNRS: Centre National de la Recherche Scientifique
CLSM: Catchment Land Surface Model

DL: Deep Learning

ECV: Essential Climate Variable

EKF: Extended Kalman Filter

EnKF: Ensemble Kalman Filter

EnPF: Ensemble Particle filter

ERS: European Remote-Sensing

ESA: European Space Agency

ET: EvapoTranspiration

FAO: Food and Agriculture Organization

FDR: Frequency Domain Reflectometry

FF: FeedForward

GLDAS: Global Land Data Assimilation System
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Acronyms

GNSS: Global Navigation Satellite Systems

GPS: Global Positioning System

GRU: Gated Recurrent Unit

HESS: Hydrology and Earth System Sciences

IEM: Integral Equation Model

ISBA: Interaction Sol-Biosphére-Atmosphére

ISMN: International Soil Moisture Network

JULES: Joint UK Land Environment Simulator

KF: Kalman Filter

LDAS: Land Data Assimilation System

LRN: Local Response Normalization

LSM: Land Surface Model

LST: Land Surface Temperature

LSTM: Long Short-Term Memory

MARMIT: MultilAyer Radiative transfer Model of soll reflectance
MetOp: Meteorological operational satellite

ML: Machine Learning

MMSCA: MinMax SCAling

MODIS: Moderate-Resolution Imaging Spectroradiometer
NASA: National Aeronautics and Space Administration
NDVI: Normalized Difference Vegetation Index
NSMI: Normalized Soil Moisture Index

PET: Potential EvapoTranspiration

RF: Random Forest

RMSE: Root Mean Square Error

RNN: Recurrent Neural Network

RS: Remote Sensing

RZSM: Root-Zone Soil Moisture

RZWQM: Root Zone Water Quality Model
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Acronyms

S1: Sentinel-1

SAR: Synthetic Aperture Radar

SASI: Shortwave Angle Slope Index

SDG: Sustainable Development Goal

SM: Soil moisture

SMAP: Soil Moisture Active Passive

SMAR: Soil Moisture Analytical Relationship
SMOS: Soil Moisture and Ocean Salinity
SMOSREX: Surface Monitoring Of the Soil Reservoir Experiment
SNR: Signal-to-noise ratio

SSCA: Standard SCAling

SSM: Surface Soil Moisture

SURFEX: SURface Externalisée

SVAT: Soil-Vegetation—Atmosphere Transfer
SVM: Support Vector Machine

SWI: Soil Water Index

SWIR: Short-Wave Infrared

TB: Brightness Temperature

TDR: Time Domain Reflectometry

TI: Thermal Inertia

TIR: Thermal Infrared

UbRMSE: Unbiased Root Mean Square Error
WASAG: Global Framework on Water Scarcity in Agriculture

WCM: Water Cloud Model
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