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Résumé : Les systèmes biologiques sont com-
posés de biomolécules en interaction à différents
niveaux moléculaires. D’un côté, les avancées
technologiques ont facilité l’obtention des don-
nées omiques à ces divers niveaux. De l’autre,
de nombreuses questions se posent, pour don-
ner du sens et élucider les interactions impor-
tantes dans le flux d’informations complexes
porté par cette énorme variété et quantité des
données multi-omiques. Les réponses les plus
satisfaisantes seront celles qui permettront de
dévoiler les mécanismes sous-jacents à la condi-
tion biologique d’intérêt.

On s’attend souvent à ce que l’intégration de
différents types de données omiques permette
de mettre en lumière les changements causaux

potentiels qui conduisent à un phénotype spé-
cifique ou à des traitements ciblés. Avec les
avancées récentes de la science des réseaux, nous
avons choisi de traiter ce problème d’intégration
en représentant les données omiques à travers
les graphes.

Dans cette thèse, nous avons développé trois
modèles à savoir BraneExp, BraneNet et
BraneMF pour l’apprentissage d’intégrations
de nœuds à partir de réseaux biologiques mul-
ticouches générés à partir de données omiques.
Notre objectif est de résoudre divers problèmes
complexes liés à l’intégration de données multi-
omiques, en développant des méthodes expres-
sives et évolutives capables de tirer parti de la
riche sémantique structurelle latente des réseaux
du monde réel.

Title: Multilayer Graph Embeddings for Omics Data Integration in Bioinformatics

Keywords: Multi-omics data, Biological networks, Graph representation learning, Data inte-
gration

Abstract: Biological systems are composed of
interacting bio-molecules at different molecular
levels. With the advent of high-throughput tech-
nologies, omics data at their respective molec-
ular level can be easily obtained. These huge,
complex multi-omics data can be useful to pro-
vide insights into the flow of information at
multiple levels, unraveling the mechanisms un-
derlying the biological condition of interest.

Integration of different omics data types is of-
ten expected to elucidate potential causative
changes that lead to specific phenotypes, or tar-

geted treatments. With the recent advances in
network science, we choose to handle this inte-
gration issue by representing omics data through
networks.

In this thesis, we have developed three models,
namely BraneExp, BraneNet, and BraneMF,
for learning node embeddings from multilayer
biological networks generated with omics data.
We aim to tackle various challenging problems
arising in multi-omics data integration, devel-
oping expressive and scalable methods capable
of leveraging rich structural semantics of real-
world networks.



Résumé

Les systèmes biologiques sont composés de biomolécules en interaction à
différents niveaux moléculaires. Si, d’un côté, l’avancée technologique a facilité
l’obtention des données omiques à ces niveaux-là, de l’autre côté, plusieurs ques-
tions se posent, pour extraire du sens dans le flux complexe d’informations portées
par cette énorme variété et quantité des données multi-omiques. Les réponses qui
les satisferont le mieux seront celles qui dévoileront les mécanismes sous-jacents
à la condition biologique d’intérêt. Ceux-ci peuvent inclure l’inférence de
la régulation des gènes, l’identification des biomarqueurs responsables du
phénotype observé, la connaissance des voies biologiques qui sont affectées dans
différentes conditions expérimentales. Chaque type de données omiques peut, à
lui seul, fournir des informations sur des biomolécules associées au phénotype.
Cependant, l’analyse des données omiques simples est limitée à des corrélations,
reflétant principalement des processus réactifs plutôt que des processus causaux.
On s’attend donc à ce que l’intégration de différents types de données omiques
permette de mieux élucider les changements causaux potentiels qui conduisent à
un phénotype spécifique ou qui permettraient des traitements ciblés.

Avec les avancées récentes de la science des réseaux, nous avons choisi de traiter
ce problème d’intégration en représentant les données omiques au travers de
graphes. Cette approche ouvre un vaste champ d’exploration et d’étude de la
biologie moléculaire du système cellulaire des organismes à l’aide de techniques
d’apprentissage par représentation de graphes (GRL). L’idée-clé derrière les
approches GRL est d’apprendre une cartographie qui intègre des nœuds en tant
que points dans un espace vectoriel de faible dimension. L’objectif est d’optimiser
cette cartographie, de sorte que les relations géométriques dans cet espace appris
reflètent la structure du graphe d’origine. Notre objectif est d’obtenir de telles
représentations, également connues sous le nom de plongements, pour chaque
biomolécule à partir d’un ensemble bien choisi de modalités omiques. Les
plongements sont formés de telle sorte qu’ils englobent au mieux des informations
multi-omiques, afin comprendre plus précisément les variations menant du
génotype au phénotype. Les intégrations apprises peuvent alors être utilisées
comme attributs d’entrée pour des tâches d’apprentissage automatique, en aval
du processus d’interprétation biologique.

Dans cette thèse, nous avons développé trois modèles, à savoir BraneExp,
BraneNet et BraneMF pour l’apprentissage de plongements de nœuds à partir
de graphes biologiques multicouches, générés à partir de données omiques.
Notre objectif est de résoudre divers problèmes complexes liés à l’intégration de
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données multi-omiques, en développant des méthodes expressives et évolutives
capables de tirer parti de la riche sémantique structurelle des graphs du monde
réel. La fonction objective dans ces méthodes est indépendante des tâches en aval
et les intégrations de nœuds sont apprises de manière totalement non supervisée.
BraneExp tire parti des plongements de graphes “de famille exponentielle”, qui
généralisent les méthodes GRL basées sur la marche aléatoire multicouche à une
instance de distribution de probabilité de la famille exponentielle. BraneNet
effectue l’intégration en tirant parti d’une matrice d’informations mutuelles
ponctuelles positives (PPMI) multicouche correctement choisie. Les plongements
sont appris en réalisant une factorisation matricielle, se rapprochant du spectre
de cette matrice PPMI. BraneMF calcule les matrices PPMI pour chaque couche
et apprend les intégrations en utilisant le cadre de décomposition conjointe en
valeurs singulières (SVD). Nous démontrons les applications des plongements
appris pour résoudre d’importantes tâches bioinformatiques en aval, par
exemple, l’inférence du réseau de régulation génique (GRN), le regroupement
de biomolécules biologiquement liées, la prédiction des fonctions protéiques
et les interactions protéine-protéine (PPI). Nous avons effectué une analyse
approfondie en comparant les performances des méthodes développées aux
méthodes d’intégration de référence pour les graphes multicouches.
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Abstract

Biological systems are composed of interacting bio-molecules (e.g., genes,
proteins, metabolites) at different molecular levels. With the advent of high-
throughput technologies, omics data at their respective molecular level can
be easily obtained. These huge complex multi-omics data can be useful to
provide insights into the flow of information at multiple levels, unraveling the
mechanisms underlying the biological condition of interest. These may include
gene regulation inference, identification of bio-markers responsible for observed
phenotype, and knowing the biological pathways that are affected within different
experimental conditions. Individual type of omics data, on its own, provides
information on bio-molecules associated with the phenotype. However, analysis
of single omics data is limited to correlations, mostly reflecting reactive processes
rather than causative ones. Integration of different omics data types is often
expected to elucidate potential causative changes that lead to specific phenotypes,
or targeted treatments.

With the recent advances in network science, we choose to handle this in-
tegration issue by representing omics data through networks. It has opened a
wide area for us to explore and study the molecular biology of the organism’s
cellular system using graph representation learning (GRL) techniques. The key
idea behind GRL approaches is to learn a mapping that embeds nodes as points in
a low-dimensional vector space. The aim is to optimize this mapping such that the
geometric relationships in this learned space reflect the structure of the original
graph. Our goal is to derive representations, also known as embeddings for each
bio-molecule from a well-chosen set of omics modalities. The embeddings are
trained such that they are expected to encompass multi-omics information, so as
to better understand genotype to phenotype variations. The learned embeddings
can be used as feature inputs for downstream machine learning tasks.

In this thesis, we have developed three models namely BraneExp, BraneNet, and
BraneMF for learning node embeddings from multilayer biological networks
generated from omics data. We aim to tackle various challenging problems arising
in multi-omics data integration, developing expressive and scalable methods
capable of leveraging rich structural semantics of real-world networks. The
objective function in these methods is independent of downstream tasks and the
node embeddings are learned in a completely unsupervised manner. BraneExp
takes advantage of exponential family graph embeddings that generalize multi-
layer random walk-based GRL methods to an instance of the exponential family
probability distribution. BraneNet performs integration by leveraging a properly
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chosen multilayer random walk-based Positive Pointwise Mutual Information
(PPMI) matrix. The embeddings are learned by performing matrix factorization,
approximating the spectrum of this PPMI matrix. BraneMF computes PPMI
matrices for each layer and learns embeddings by using a joint singular value
decomposition (SVD) framework. We demonstrate the applications of the learned
embeddings to solve important downstream bioinformatics tasks, for instance,
Gene regulatory network (GRN) inference, clustering of biologically related
bio-molecules, prediction of protein functions, and protein-protein interactions
(PPIs). We have performed extensive analysis by comparing the performance of
developed methods against the state-of-the-art integration methods for multilayer
networks.

iv



List of Publications

The proposed work has yielded the following publications:

• Journal papers:

– Jagtap, S., Çelikkanat, A., Pirayre, A., Bidard, F., Duval, L. and
Malliaros, F.D., BraneMF: Integration of Biological Networks for Func-
tional Analysis of Proteins. Bioinformatics (2022). [Jag+22a]

– Jagtap, S., Pirayre, A., Bidard, F., Duval, L. and Malliaros, F.D.,
BRANEnet: Embedding Multilayer Networks for Omics Data Integra-
tion. BMC Bioinformatics 23, 429 (2022). [Jag+22b]

• International conferences with proceedings:

– Jagtap, S., Çelikkanat, A., Pirayre, A., Bidard, F., Duval, L. and
Malliaros, F.D., Multiomics Data Integration for Gene Regulatory Net-
work Inference with Exponential Family Embeddings. In 29th European
Signal Processing Conference (EUSIPCO), 2021. [Jag+21a]

– Jagtap, S., Pirayre, A., Bidard, F., Duval, L. and Malliaros, F.D., 2021,
November. BRANet: Graph-based Integration of Multi-omics Data
with Biological a priori for Regulatory Network Inference. In 17th
International Conference on Computational Intelligence Methods for
Bioinformatics and Biostatistics (CIBB), 2021. [Jag+21b]

• Poster presentations:

– Jagtap, S., Çelikkanat, A., Pirayre, A., Bidard, F., Duval, L. and
Malliaros, F.D., BraneMF: Random Walk-based Matrix Factorization
of a Multi-layer Network for Protein Function Prediction. European
Conference on Computational Biology (ISMB/ECCB), 2021.

• Publication during the Ph.D. studies that is not included in the dissertation:

– Hocq, R., Jagtap, S., Boutard, M., Tolonen, A.C., Duval, L., Pirayre, A.,
Lopes Ferreira, N. and Wasels, F., Genome-Wide TSS Distribution in
Three Related Clostridia with Normalized Capp-Switch Sequencing.
Microbiology Spectrum, 10(2), pp.e02288-21 (2022). [Hoc+22]

v





Acknowledgment

I would like to thank Prof. Fragkiskos Malliaros, Dr. Aurélie Piyare, Dr. Laurent
Duval and Dr. Frédérique-Michelot Bidard for their excellent supervision and
guidance during my Ph.D. dissertation. Especially Fragkiskos have consistently
encouraged me to stay afloat during my doctorate studies. His enthusiasm,
significant interest in the research topic, and helpful demeanor has really
motivated me. I am very grateful and lucky to perform my Ph.D. dissertation
work under mentorship of all my supervisors.

This thesis was co-funded by IFPEN and Centre de Vision Numérique (CVN),
CentraleSupélec. I would like to thank both organisations for their gen-
erous support. I also want to thank Prof. Jean-Christophe Pesquet, the
thesis director and the director of CVN laboratory (CentraleSuépléc) and Yann
Creff, head of control, signal and system department (IFPEN), for all your support.

I would like to express my sincere gratitude to the rapporteurs, Prof. Thierry
Artieres and Prof. Mehmet Koyutürk, and the examiners, Dr. Macha Nikolski and
Dr. Laurence Calzone, for their incisive judgment and invaluable comments and
feedback.

Further, I would like to thank Jana Dutrey, Anne Batalie, Francoise Pinson-David,
Carole Geunaud and Michel for all the help and support they have provided
during my time at CentraleSupéléc and IFPEN.

Many thanks to Abdulkadir Çelikkanat and Monacer Ericson Da Silva for their
exceptional support and continuous encouragement during my Ph.D. studies.
I have learned a lot from them, which helped me to develop my scientific and
technical skills. Additionally, I would like to thank all my friends and colleagues,
especially Kirti, Sachin, Kavya, Sagar, Pragya, Shalu, Sophia, Julien, Sarah,
William, Mateos, Fufang, Danish to make my life in France joyful, exciting, and
fantastic.

Many thanks Dr. Mickaël Ménager for his support and motivation. I would also
like to thank all my collegues at Institut Imagine especially Francesco Carbone
and Jiyoung Oh.

Lastly, I’m eternally grateful and much obliged to thank to my father, Vasantrao
Jagtap; mother, Swati Jagtap; sister, Vaishnavi Jagtap; and brother, Nakshatra
Jagtap for their endless love, support, and faith in me.

vii



viii



Contents Contents

chapter 1 Introduction Page 3
1.1 Context and Motivation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3
1.2 Thesis Statement and Overview of Contributions . . . . . . . . . . . . 6
1.3 Outline of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

chapter 2 Background Page 9
2.1 Molecular Biology Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Cell — a multiplex molecular machine . . . . . . . . . . . . . . . . . . 9
2.1.2 Multi-omics Paradigm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Network Science Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.1 Biological networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Graph Representation Learning. . . . . . . . . . . . . . . . . . . . . . . . . . . . .18
2.4 Multi-omics Data Integration with GRL. . . . . . . . . . . . . . . . . . . . . 21
2.5 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.6 Data Integration Challenges in Biology . . . . . . . . . . . . . . . . . . . . . 24

chapter 3 Materials and Methods Page 27
3.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1.1 Yeast Multilayer PPI network. . . . . . . . . . . . . . . . . . . . . . . . . . .27
3.1.2 Yeast multi-omics data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.1.3 Functional annotations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.1.4 Bioinformatics resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2 Proposed Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3 BraneExp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3.1 Context sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3.2 Learning embeddings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.4 BraneNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.4.1 Construction of a supra-adjacency matrix . . . . . . . . . . . . . . 37
3.4.2 Representation learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.5 BraneMF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.5.1 PPMI matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.5.2 Joint representation learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.6 Downstream Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.6.1 Gene Regulatory network inference . . . . . . . . . . . . . . . . . . . . 43
3.6.2 Protein function prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.6.3 Clustering of functionally related proteins . . . . . . . . . . . . . 47
3.6.4 Protein Protein Interaction (PPI) prediction . . . . . . . . . . . . 48

ix



3.6.5 Network reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.7 Evaluation Metrics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49

chapter 4 Results and Discussion Page 55
4.1 Parameter Selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55
4.2 Clustering of Biological Related Proteins . . . . . . . . . . . . . . . . . . . .57

4.2.1 Comparison to baseline methods . . . . . . . . . . . . . . . . . . . . . . . 57
4.3 Protein Function Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.3.1 Single layer network vs multilayer network . . . . . . . . . . . . . 60
4.3.2 Integration strategies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60
4.3.3 Comparison to baseline methods . . . . . . . . . . . . . . . . . . . . . . . 63

4.4 Network Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.4.1 Single layer network vs multilayer network . . . . . . . . . . . . . 66
4.4.2 Comparison to baseline methods . . . . . . . . . . . . . . . . . . . . . . . 67

4.5 Gene Regulatory Network (GRN) Inference . . . . . . . . . . . . . . . . . 68
4.5.1 Single layer network vs multilayer network . . . . . . . . . . . . . 69
4.5.2 Comparison to baseline methods . . . . . . . . . . . . . . . . . . . . . . . 69

4.6 Protein-Protein Interaction (PPI) Prediction . . . . . . . . . . . . . . . . 70
4.7 Yeast Multi-omics Data Integration . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.7.1 Data description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.7.2 Differential expression analysis . . . . . . . . . . . . . . . . . . . . . . . . 73
4.7.3 Construction of intra-omics and inter-omics networks . . 74
4.7.4 Downstream tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.7.5 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

chapter 5 Concluding Remarks Page 83
5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.2 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

chapter Appendix I Page 85

chapter Appendix II Page 91

chapter Appendix III Page 93

chapter References Page 95

x



List of Figures

1.1 Thesis statement and overview of contributions . . . . . . . 7

2.1 Central dogma of molecular biology . . . . . . . . . . . . . . 11
2.2 Genotype-phenotype cycle . . . . . . . . . . . . . . . . . . . 12
2.3 Illustration of different graph types . . . . . . . . . . . . . . 14
2.4 Biological networks . . . . . . . . . . . . . . . . . . . . . . . 15
2.5 Illustration of Graph Representation Learning . . . . . . . . 19
2.6 Illustration of GRL using random walks . . . . . . . . . . . 20

3.1 Multilayer PPI network . . . . . . . . . . . . . . . . . . . . . 29
3.2 Illustration of the BraneExp model . . . . . . . . . . . . . . 32
3.3 Illustration of graph exploration strategies . . . . . . . . . . 34
3.4 Illustration of the BraneNet model . . . . . . . . . . . . . . 37
3.5 BraneNet: Representation learning . . . . . . . . . . . . . . 40
3.6 Illustration of the BraneMF model . . . . . . . . . . . . . . . 41
3.7 Downstream tasks . . . . . . . . . . . . . . . . . . . . . . . . 45
3.8 GRN inference . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.9 Protein function prediction . . . . . . . . . . . . . . . . . . 47
3.10 Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.11 PPI prediction . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.12 Network reconstruction . . . . . . . . . . . . . . . . . . . . . 50

4.1 BraneExp: single-layer vs multilayer . . . . . . . . . . . . . . 61
4.2 BraneMF: single-layer vs multilayer . . . . . . . . . . . . . . 62
4.3 Integration strategies . . . . . . . . . . . . . . . . . . . . . . 63
4.4 Network reconstruction (single layer vs multilayer) . . . . . 68
4.5 Network reconstruction (baseline comparision) . . . . . . . 69
4.6 GRN inference (single layer vs multilayer) . . . . . . . . . . 70
4.7 GRN inference (baseline comparision) . . . . . . . . . . . . 71
4.8 Experimental design and BraneNet processing workflow . . 73
4.9 Transcription factor (TF)-target prediction. . . . . . . . . . . 76
4.10 ION visualization. . . . . . . . . . . . . . . . . . . . . . . . . 77
4.11 Network reconstruction . . . . . . . . . . . . . . . . . . . . . 78
4.12 Functional enrichment of modules A and B. . . . . . . . . . 79
4.13 Parameter sensitivity analysis for ION inference. . . . . . . 80
4.14 Added value of integration . . . . . . . . . . . . . . . . . . . 82

1 Effect of parameter d on the classification . . . . . . . . . . 90

xi





List of Tables

1.1 Outline of the thesis. . . . . . . . . . . . . . . . . . . . . . . 8

3.1 Overview of the yeast STRING PPI networks used in the study 28
3.2 Overview of the Gene Ontology (GO) terms . . . . . . . . . 30
3.3 Bioinformatics resources . . . . . . . . . . . . . . . . . . . . 31
3.4 Confusion Matrix for Binary Classification . . . . . . . . . . 51
3.5 Metrics for classification evaluations . . . . . . . . . . . . . 52

4.1 Overview of parameters considered for tuning . . . . . . . . 56
4.2 Model parameters I . . . . . . . . . . . . . . . . . . . . . . . 57
4.3 Clustering: comparison to baselines. . . . . . . . . . . . . . 58
4.4 Protein function prediction (BP) . . . . . . . . . . . . . . . . 65
4.5 Model parameters II . . . . . . . . . . . . . . . . . . . . . . . 67
4.6 PPI prediction performance . . . . . . . . . . . . . . . . . . 72
4.7 ION based identification of potential biomarkers. . . . . . . 81
4.8 Parameter sensitivity analysis for TF-target prediction . . . 82

1 Protein function prediction (MF) . . . . . . . . . . . . . . . 88
2 Protein function prediction (CC) . . . . . . . . . . . . . . . . 89
3 Network reconstruction II . . . . . . . . . . . . . . . . . . . 92
4 GRN inference II . . . . . . . . . . . . . . . . . . . . . . . . . 94

xiii





Abbreviations

ACC Accuracy

AUPR Area Under Precision-Recall Curve

BP Biological Process

BRANE Biologically-Related Apriori Network Estimation

BS-Seq bisulfite sequencing

CC Cellular Component

ChIP-Seq Chromatin Immuno Precipitation sequencing

CNN Convolutional Neural Networks

CV Cross Validation

DNA Deoxyribonucleic acid

GATs Graph Attention Networks

GCN Graph Convolutional Network

GO Gene Ontology

GRL Graph Representation Learning

GRN Gene Regulatory Network

ION Integrated Omics Network Factor

MCC Matthews Correlation Coefficient

MF Molecular Function

mRNA messenger RNA

NLP Natural Language Processing

PPI Protein Protein Interaction

PPMI Positive Pointwise Mutual Information

RBF Radial Basis Function

RNA Ribonucleic acid

xv



RNN recurrent neural networks

SVD singular value decomposition

SVM Support Vector Machine

VGAE Variational Graph Auto-Encoders

WGCNA Weighted Correlation Network Analysis method

xvi



List of Symbols

γ Weighting factor

R Set of real numbers
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1
Introduction

This chapter provides information about the context and motivation of the thesis, an
overview of contributions, and an outline of the thesis. Section 1.1 contains a short
paragraph about the biological question of interest that is addressed in this thesis. It
includes a brief introduction to the approach, challenges, and potential applications.
The thesis statement and overview of the contributions are presented in Section 1.2.
Later, in Section 1.3, the outline of the thesis is provided in tabular format.

−−−F−−−

1.1 Context and Motivation

Over the last decade, omics technologies have advanced tremendously, culmi-
nating in the deciphering of genome, proteome, epigenome, and metabolome
sequences. Their advent has showered us with a large amount of omics data
at different molecular levels. This achievement is a major milestone in the
understanding of a biological system, as omics technologies provide a catalog
of all associated bio-molecules that are required for creating a living organism
[Sub+20]. Yet, it is not sufficient to identify and characterize the molecules
individually. Also, it is necessary to obtain a thorough understanding of the
interactions between molecules and pathways that play a major role in cellular
functioning. Over the past years, mathematical models have allowed us to
investigate how complex regulatory processes are connected and how disruptions
of these processes may contribute to the development of diseases or mutations in
the strains of organisms.

Indeed, various studies have shown that joint analysis of omics datasets yields a
better understanding and clearer picture of the cellular mechanisms and their
regulatory behaviors in the biological system under the study [Sub+20]. For
instance, a joint analysis of transcriptomic and proteomic data can provide useful
insights about gene regulation that may not be deciphered from individual
analysis of mRNA or protein expressions [HP13]. Also, in proteogenomics
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approaches, genome and transcriptome data is used to generate customized
protein sequence databases to help interpret proteomics data [Nes14]. Lately,
multi-omics data integration (or integrative omics) was proposed as a combination
of methods to fuse data obtained from different omic approaches, aiming at
gaining insights into the interconnectedness of different biomolecules (e.g.,
proteins, RNAs, metabolites) and the flow of biological information that occurs
within them. Network approaches have generated substantial interest based on
their potential for integrative omics analysis and are expected to facilitate a new
era of systems biology [Sub+20; Yan+18; Di +20; CBL16].

Considering the dimensionality and heterogeneity of omics data, a critical first
step is data curation, which is the key enabler of initial multi-omics analyses
[Yan+18]. This curation will significantly narrow the search space, giving further
insights to retrieve high-profile biological information, for instance, modeling
specific pathways, network module identification, network inference, and
protein function prediction. In addition to the statistical analysis of integrated
multi-omics data, an informative integrative visualization of high-dimensional
multi-omics networks is another challenging goal that might be helpful to
understand inter/intra-omics interactions that lead to the phenotype [Yue+20].

Graphs are a form of structured data employed extensively in informatics or
computer science-related fields. Social networks, molecular relational structures,
and biological networks can be easily modeled as graphs, which capture
interactions (edges) between individual units (nodes). As a consequence of their
ubiquity, graphs allow relational knowledge about interacting entities to be
efficiently stored, accessed, and visualized [HYL17b]. The key idea behind Graph
Representation Learning (GRL) approaches is to learn a mapping that embeds
nodes as points in a low-dimensional vector space, Rd . The aim is to optimize this
mapping such that the geometric relationships in this learned space reflect the
structure of the original graph. After optimizing the embedding space, the learned
embeddings can be used as feature inputs for downstream machine learning
tasks. The primary input to the representation learning algorithm is a graph
G = (V ,E) with an associated adjacency matrix A. The goal is to use the information
contained in A ∈R|V |×|V | to map each node i ∈ V to a vector, Ωi ∈Rd , where d� |V|.

The recent advances in this field have opened a wide area to explore and study the
molecular biology of an organism’s cellular system using representation learning
techniques [HYL17b; Ham20; Yue+20]. Our goal is to derive representations, also
known as embeddings, for each bio-molecule from a well-chosen set of omics
modalities. The embeddings are trained such that they are expected to encompass
multi-omics information to better understand genotype to phenotype variations.
To that end, we aim to design integrative models for omics data analysis. The
development of such models is of great significance for numerous applications
that involve:

• Gene regulation inference (miRNA - mRNA, TF-target interactions).
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• Protein function prediction (biological process, molecular functions).

• Protein Protein Interaction (PPI) prediction.

• Clustering of functionally related proteins.

Integration of multi-omics dataset to derive a holistic understanding of biological
processes and diseases comes with its share of challenges [Sub+20]. The
underlying heterogeneity in the individual omics data, the large size of data
sets leading to compute-intensive analysis, and the lack of studies that help
in prioritizing the diverse set of tools make multi-omics data integration and
analysis a challenging task. Multi-omics data are generated using a wide range of
platforms, and hence the data storage and formats vary considerably. Most of
the multi-omics integrative analysis tools require data to be in specific formats
(mostly in a “feature × sample” matrix), and therefore the individual omics data
need pre-processing.

The pre-processing step includes data filtering, systematic normalization, removal
of batch effects, and quality checks. It becomes imperative to carefully follow
these pre-processing steps as they have a huge influence on the integrative
analysis. For instance, the data filtering step plays an important role in filtering
the noise and reducing the number of features that go into integrative models—as
most of the integrative methods are computationally intensive, and hence it
is a prerequisite to reduce the size of the input data sets. However, deciding
appropriate criteria for filtering is challenging because of the lack of universal
standards. Perez-Riverol et. al. [Per+17] have developed a workflow that could
guide feature selection from high-dimensional omics datasets. In this regard, the
development of new integrative methods must consider the efficient handling
of large data sets. The primary key to any integrative analysis is the right
choice of method that can address the biological question of interest. There are
several studies that perform benchmarking of integrative tools [Lee+20; Dua+21;
Can+21] but are not comprehensive enough in terms of choice of tools in the
context of biological question of interest.

Most such comprehensive studies are needed to guide the community in a better
understanding of the wide range of tools. Therefore, we consider the following
points of interest to address the above challenges while developing graph-based
multi-omics data integration models:

• Standardize the multi-omics data of different scales/platforms using net-
works. Nodes in these networks represent bio-molecules, and edges repre-
sent the relationship between them.

• Design mathematical models for multi-omics data integration that could
effectively capture the complex interactions and relationships among bio-
molecules towards improving expressiveness and preserving the unique
properties of input data sources.
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• Perform extensive evaluation of the proposed models in the context of bio-
logical questions of interest (downstream tasks).

• Comparison of the performance of proposed models to state-of-the-art net-
work integration techniques.

This dissertation is done in the collaboration with IFP Energies nouvelles (IFPEN).
At IFPEN, biologists work on various micro-organisms in the context of green
chemistry, for example, bio-ethanol production. The production of bio-ethanol
is driven by bio-catalysts (enzymes). Biologists aim to optimize biological mech-
anisms in fungal strains to improve their production of bio-catalysts. For this
purpose, it is crucial to understand enzyme production mechanisms. This can be
achieved by understanding the molecular biology of the organism’s cellular system
that is considered for the study [Sil16]. The advent of high throughput sequencing
technologies generates huge omics data. Thus, whole genome sequencing (DNA-
seq) allows genome assembly; RNA sequencing (RNA-seq) can be used to analyze
the level of transcription of genes; Chromatin Immuno Precipitation sequencing
(ChIP-Seq) and bisulfite sequencing (BS-Seq) can be used to identify epigenetic
changes. Because of their heterogeneity, these datasets are mostly processed in-
dependently but hardly associated to get a full picture of biological mechanisms.
Therefore, to obtain an understanding of biological mechanisms, this kind of
information from multi-omics data can be integrated [Kub13]. For this purpose,
we choose to handle this integration issue by representing omics data through
graphs [BO04; CWZ09; Yu+13]. Over the past few years, Biologically-Related
Apriori Network Estimation (BRANE) methods have been introduced at IFPEN to
develop a suite of bioinformatics tools based on graphs and optimization, dedi-
cated to transcriptomics data: BRANE Cut [Pir+15a], BRANE Clust [Pir+17], and
BRANE Relax [Pir+15b]. With this thesis, we introduce methods for multi-omics
data integration, namely BraneExp[Jag+21a], BraneNet [Jag+22b], and BraneMF
[Jag+22a].

1.2 Thesis Statement and Overview of Contributions

The aim of this thesis is to perform an integrative analysis of biological networks
with Graph Representation Learning approaches. Figure 1.1 gives an overview of
the contributions of this thesis.

Three models, namely BraneExp, BraneNet, and BraneMF have been developed
during this dissertation. The aim is to learn integrated node embeddings from
multilayer biological networks generated from multi-omics data. The objective
function in these methods is independent of the downstream tasks, and the node
embeddings are learned in a completely unsupervised way. BraneExp takes advan-
tage of exponential family graph embeddings that generalize multilayer random
walk-based GRL methods to an instance of the exponential family probability
distribution. BraneNet performs integration by leveraging a properly chosen mul-
tilayer random walk-based Positive Pointwise Mutual Information (PPMI) matrix.
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Input Output

• BraneExp
• BraneNet
• BraneMF

Embeddings

Genes
Proteins
Metabolites

latent space

Downstream tasks
• Gene Regulation Network (GRN) inference
• Protein function prediction 
• Protein-protein interaction (PPI) prediction
• Clustering of functionally related proteins

Proposed models

Figure 1.1: Thesis statement and overview of contributions. We have proposed
three models, namely, BraneExp[Jag+21a], BraneNet[Jag+22b], and BraneMF
[Jag+22a] for multi-omics data integration.Our models learn integrated embed-
dings that can be utilized for several downstream tasks, including GRN inference,
Protein function prediction, PPI prediction, and clustering of proteins.

The embeddings are learned by performing matrix factorization, approximating
the spectrum of this PPMI matrix. BraneMF computes PPMI matrices for each
layer and learns embeddings by using a joint singular value decomposition (SVD)
framework. We demonstrate the applications of the learned embeddings to solve
important downstream bioinformatics tasks, including Gene Regulatory Network
(GRN) inference, clustering of biologically related bio-molecules, prediction of
protein functions, and protein-protein interactions (PPIs). We have performed
extensive analysis by comparing the performance of the developed models against
several state-of-the-art integration methods for multilayer networks.
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1.3 Outline of the Thesis

CHAPTER 2 · · · · · · · · ·•

BACKGROUND
We describe multi-omics data and its
integration. We also summarize the
related work section for the methods
developed for multilayer network
integration.

CHAPTER 3 · · · · · · · · ·•
MATERIALS AND METHODS
We present our models BraneExp,
BraneNet, and BraneMF, for
multi-omics data integration.

CHAPTER 4 · · · · · · · · ·•

RESULTS AND DISCUSSION
We apply the output of integration
models for the downstream prediction
tasks of interest. Additionally, we
conduct an extensive evaluation and
comparison of our models against
state-of-the-art network integration
methods.

CHAPTER 5 · · · · · · · · ·•
CONCLUDING REMARKS
We conclude the dissertation and
propose possible future research
directions.

Table 1.1: Outline of the thesis.
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2
Background

This chapter provides detailed information about the fundamental aspects of molecular
biology, multi-omics, and network science. Firstly, in Section 2.1, basic concepts about
molecular biology are explained, including the flow of information from genotype
(genetic material) to phenotype (observable characteristics. Secondly, in Section 2.1.2,
the basic concepts of multi-omics studies are defined with an introduction to major
omics data types. A concise description of multi-omics data production, pre-processing,
and potential applications are also provided. In Section 2.2, network science basics
are outlined, and, in Section 2.2.1, biological networks are introduced, and their
basic properties are explained. Later, in Section 2.3, the booming field of Graph
Representation Learning (GRL) and its applications in multi-omics data integration
(Section 2.4) are described. In Section 2.5, the details about related works and the
state-of-the-art methods are discussed. Lastly, in Section 2.6, the challenges and the
limitations of data integration in biology are raised.

−−−F−−−

2.1 Molecular Biology Basics

Molecular biology is the scientific field concerned with the study of biomolecules
that participate in the processes of biological phenomena that involve the basic
units of life. It includes studying nucleic acids (e.g., DNA and RNA) and proteins
that are essential to life to understand biomolecular interactions. Therefore to
understand the biological relevance of omics data integration, one should be aware
of the basic concepts of molecular biology.

2.1.1 Cell — a multiplex molecular machine

The molecular system of a living organism is made up of cells, the basic structural,
functional, and biological unit. An organism’s survival depends on the ability
of cells to store, retrieve, and translate the genetic instructions required to
make and maintain a living organism. This hereditary information (genetic
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material) is passed on from a parent cell to its daughter cells at cell division
and from one generation to the next through the organism’s reproductive cells
[Alb+15]. The genetic instructions are stored in the genome that determines
the characteristics of a species as a whole and of the individuals within it. The
genome includes chromosomal Deoxyribonucleic acid (DNA) as well as DNA in
plasmids and (in eukaryotes) organellar DNA, as found in mitochondria and
chloroplasts. Through a complex series of interactions, the DNA sequence directs
the production of all of the Ribonucleic acid (RNA)s and proteins of the organism
at the appropriate time and within the appropriate cells. Proteins serve a diverse
series of roles in the development and functioning of an organism: they can form
part of the structure of the organism; have the capacity to build the structure;
perform the metabolic reactions necessary for life; and participate in regulation as
transcription factors, receptors, key players in signal transduction pathways, and
other molecules [KGK17]. This is the basic cellular machinery that is explained
as central dogma of molecular biology. This theory was proposed by Francis Crick
in 1970 [Cri70]. He described the flow of genetic information, which is stored
in DNA sequences (genome) and transferred to RNA (transcriptome). Further
proteins are synthesized, which leads to the determination of cellular phenotypes.

More precisely, in the genome, a gene is a DNA fragment carrying the instruc-
tions for making a protein. This information is encoded via a specific order of
four nitrogenous bases that are A, T, C, G. It is the coding sequence that will be
transcribed into messenger RNA (mRNA). In addition, a gene is also composed
of a promoter containing an initiation sequence as well as regulatory sequences
(enhancers and silencers). The promoter is located upstream of the coding se-
quence. Finally, at the end of the coding sequence, a terminator is found. When
gene expression is promoted, the coding sequence is transcribed into a mRNA by
an enzyme named RNA polymerase. Except for the nitrogenous base T, which is
replaced by the nitrogenous base U, the mRNA conserves the same sequence of
nucleic bases as the corresponding gene. The mRNA, after a maturation step, is
translated into a polymer of amino acids. The synthesized polymer corresponds to
the protein, and its amino acid sequence is dictated by the sequence of nitrogenous
bases of the mRNA[Cri70].

The growing availability of data describing complex traits has challenged the cen-
tral dogma of molecular biology (Figure 2.1) [Kar09; Alb+15]. A deeper investiga-
tion of biological mechanisms has uncovered complex molecular activities, namely,
reverse transcription, epigenetic (environmental) regulation, post-transcription
modifications, and post-translation modifications. On the basis of these discover-
ies, the flow of information from one level to the other is not unidirectional. Every
element of the genome interacts directly or indirectly with many other genomic
components. It has been seen that feedback cycles among molecular levels not
only exist, but they can affect important biological processes [Alb+15]. Therefore,
understanding the mechanisms in biological systems is extremely challenging. In
order to study a biological system holistically, it is extremely necessary to obtain,
integrate, analyze and interpret omics data of multiple molecular levels, e.g.,
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Figure 2.1: Revised central dogma of molecular biology.

genome, proteome, and transcriptome.

2.1.2 Multi-omics Paradigm

Multi-omics approaches enable us to study omics data holistically at various
molecular levels. The different omic strategies employed during multi-omics
are mainly genome, proteome, transcriptome, epigenome, and microbiome
(Figure 2.2). Nevertheless, each type of omics data, on its own, provides a list
of biomolecules associated with the phenotype. For example, genomics uses a
combination of recombinant DNA, DNA sequencing methods, and bioinformatics
to sequence, assemble, and analyze the structure and function of genomes.
Transcriptomics is the study of complete sets of RNA transcripts that are produced
by the genome, under specific circumstances or in a specific cell known as a
transcriptome. Epigenomics is concerned with epigenetic modifications on the
genetic material of a cell, known as an epigenome. Proteomics is the large-scale
study of sets of proteins produced in an organism, system, or biological context
known as a proteome. Metabolomics is the large-scale study of small molecules,
commonly known as metabolites, within cells, biofluids, tissues, or organisms.
Collectively, these small molecules and their interactions within a biological
system are known as a metabolome [Man+18].

These massive complex multi-omics data can be useful to identify markers re-
sponsible for the observed phenotype and also to give insights into the biological
pathways or the biological processes that are different in “test” (e.g., mutant/dis-
ease) versus “control” (e.g., wildtype/healthy). However, analysis of only one
data type is limited to correlations, mostly reflecting reactive processes rather
than causative ones. Integration of different omics data types is often expected to
elucidate potential causative changes that lead to specific phenotypes or treatment
targets. Such characterization and association studies of multi-omics data are
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Figure 2.2: Genotype-phenotype cycle. The figure shows the cycle that goes
around genotype and phenotype. For example, from a phenotype (could be a
diseased patient), we obtain genetic information in the form of omics data. Then,
we interpret the phenotype by analyzing and integrating these omics data.

often represented as graphs [Hub+07]. For instance, the nodes in these graphs can
be a biomolecule, and the edges represent the relationship between them. These
relationships can exhibit gene regulatory mechanisms, protein-protein interac-
tions, or metabolic networks. The description of such interactions can be resolved
by mathematical abstraction offered by graph theory. The beauty and usefulness
of this abstraction allow us to develop the concepts and the tools to better under-
stand the biological system. Within the field of biology, potential applications of
network analysis [Hub+07] include the identification of biomarkers, predicting
the role of proteins of unknown function, or discovering new regulatory pathways.

2.2 Network Science Basics

A network is a structure made up of a set of interacting nodes. Complex networks
have been studied extensively to describe a wide range of disciplines, such
as biology (e.g., protein interaction networks), information technology (e.g.,
telecommunication networks, internet), and the social sciences (e.g., collaboration,
communication, economics, and political networks). Formally, networks are
modeled as graphs [Wes+01].

Before going into the basics of graph theory, we would like to define the basic
terms of set theory. Let S be a set defined as S = {s1, s2, . . . , sn}. Two sets S1 and
S2 are said to be equal (written as S1 = S2 ) if every element of S1 is a member
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of S2, and every element of S2 is a member of S1. If every member of set S1 is a
member of set S2 (not necessarily vice versa) then the set S1 is a subset of set S2,
written S1 ⊆ S2. Two sets S1 and S2 can be combined into a new set. The union
of the sets S1 ∪ S2 is the set of all objects that are members of either S1 or S2. The
intersection of the sets S1 ∩ S2 is the set of all objects that are members of both S1
and S2. An empty set is denoted by ∅. All sets used in this thesis are the set of
natural numbers, including zero (N0), the set of integers (Z), and the set of real
numbers (R).

Definition 2.2.1 (Graph). A graph G is described as G = (V ,E ,W ), where V =
(v1, . . . , vn) is the set of nodes, while E = {eij ; i, j = 1, . . . ,n} is a set of edges connecting
the nodes in V . Edge eij represents the connection between nodes vi and vj and
weight wij ∈ W can be associated with the edge eij to describe the strength of
interaction (weight) between nodes vi and vj [Wes+01].

This definition describes undirected graphs, that is, graphs where connections
between vertices are without a direction. Undirected graphs are used, for example,
to model protein interaction graphs and correlation graphs. On the other hand,
a directed graph or digraph is a graph G = (V ,E ,W ) where E consists of the
ordered pairs of nodes. These pairs (vi ,vj) and (vj ,vi) do not represent the same
edge. It is also possible to have multiple edges for the same pair of nodes. This
type of graph is called a multigraph. In Figure 2.3, the various types of graphs
are illustrated. Note that the mentioned graphs can be weighted, unweighted,
directed, or undirected [Wes+01].

Definition 2.2.2 (Multilayer graph). A multilayer graph of L-layers is a set G =
{Gl}Ll=1 = {(Vl ,El)}Ll=1 of graphs, where Vl := {v1, . . . , v|V |l } and El := {e1l , . . . , eMl

} are the
nodes and the edges (undirected) respectively. Nl and Ml denote the number of
nodes and edges for each layer.

Definition 2.2.3 (Adjacency matrix). A graph G can be represented by its adja-
cency matrix A that maps the association between the V . If a graph has n number
of nodes, then the adjacency matrix of that graph of dimension n×n. If there is an
edge eij between two nodes i and j, the matrix element aij is 1 or wij (in case of
weighted graphs). For the absence of an edge, aij is 0 [Wes+01].

In undirected graphs, the adjacency matrix is symmetric. In the case of directed
graphs, the matrix is not symmetric, thus differentiating its upper triangular part
from its lower triangular part (aij is not the same as aji) [Wes+01].

Definition 2.2.4 (Subgraph). A subgraph G
′
= (V ′ ,E ′ ) of the graph G = (V ,E) is a

graph where V ′ ⊆ V and E ′ ⊆ E respectively.

Definition 2.2.5 (Node degree). The degree of a node v is the number of connec-
tions that v has to other nodes in the network. In the case of a directed graph, the
out-degree of v refers to the number of directed edges incident from v, whereas
the in-degree of v refers to the number of directed edges incident to v [Wes+01].
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(a) Complete graph (b) Simple graph (c) Directed graph

(d) Multilayer graph (e) Multilayer heterogenous graph

Figure 2.3: Illustration of different graph types. (a) A complete graph is a simple,
undirected graph in which every pair of distinct nodes is connected by a unique
edge. (b) A simple graph is an undirected graph without loops and multiple edges,
whose edge set is a subset of a complete graph. (c) A directed graph, also called
a digraph, is a graph in which the edges have a direction, i.e., they indicate an
orientation. (d) A multilayer graph has different graph layers that share the same
set of nodes but different types of edges. (e) In a multilayer heterogeneous graph,
the graph layers are composed of different types of nodes and edges.

Definition 2.2.6 (Network density). The density of a graph is a measure of how
many edges between nodes exist compared to the possible number of edges. The
density of an undirected graph is calculated as |E|

|V |(|V |−1)/2 , where |V | and |E| is total
number of nodes and edges respectively. In the case of a directed network, there is
no need to divide the numerator by two. As such, the density for directed network
is |E|
|V |(|V |−1) .

Definition 2.2.7 (Walk). A walk is a sequence v1, e12, . . . , vk , of vi nodes and ei
edegs such that for 1 ≤ i ≤ k, the edge ei has endpoints v(i−1) and vi . A walk can
be open (starting and ending nodes are different) or closed (the walk starts and
ends at the same node). If all edges of a walk are distinct, then the walk is called a
path. The length of a walk (w) is given by the number of edges required to reach
vk starting from v1 [Wes+01].

The networks found in the real world are often claimed to be scale-free, meaning
that the fraction of nodes with degree k follows a power law k−α, a pattern
with broad implications for the structure and dynamics of complex systems
(e.g., biological networks)[BA99]. The power law, also called the scaling law,
states that a relative change in one quantity results in a proportional relative
change in another. The most notable characteristic of a scale-free network is the
relative commonness of nodes with a degree that greatly exceeds the average.
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Figure 2.4: Biological networks. (a) Gene co-expression: gene pairs show co-
ordinated expression patterns across a group of samples. (b) Gene regulation
(e.g., by TF): an edge between a TF and its target gene represents transcriptional
regulation. (c) Protein-protein interaction: proteins are connected by an edge if
they physically interact. (d) Metabolic pathway: metabolites are connected when
they belong to the same metabolic pathway.

The highest-degree nodes are often called “hubs”. The emergence of the hubs is
a consequence of a scale-free property of the network. They have a significant
impact on the network topology and can be found in many real networks, such as
biological networks. [Wes+01].

2.2.1 Biological networks

Over a few decades, the in-silico study of biological systems has been done using
networks. For instance, nodes in biological networks can be any biomolecules
(e.g., genes, proteins, or metabolites) and edges represent the relationship between
them [Prž19]. These relationships can exhibit gene regulatory mechanisms and
protein-protein interactions. The description of such interactions can be resolved
by using concepts from graph theory. This allows the development of tools to
better understand biomolecular relationships. Networks represent the molecular-
level patterns of interaction and the mechanisms of control in the biological cell.
Majorly, these networks are gene co-expression networks, genetic regulatory net-
works (GRN), protein-protein interaction (PPI) networks, and metabolic networks
[Prž19]. In Figure 2.4, various types of biological networks are shown with a brief
description.
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Gene Co-expression Networks (GCN)

A gene co-expression network identifies the genes that have a tendency to show
a coordinated expression pattern across a group of samples obtained from
transcriptomics data (Figure 2.4a). The co-expression network can be represented
as a gene-gene similarity matrix whose elements are the co-expression values
defined based on correlation measures or mutual information between each pair
of genes. These relationships describe the similarity between expression patterns
of the gene pair across all the samples [Van+18a]. Alternatively, least absolute
error regression or a Bayesian approach can be used to construct a co-expression
network [Van+18a]. The latter two approaches have an added value since they
can be used to identify causal links [Van+18a].

After the construction of a co-expression network, modules (also known as clus-
ters of co-expressed genes) are identified using one of several available clustering
techniques [Oye+16]. Clustering in co-expression analyses is used to group genes
with similar expression patterns across multiple samples to produce groups of
co-expressed genes rather than only pairs. Modules can subsequently be inter-
preted by functional enrichment analysis, a method to identify and rank enriched
functional categories such as biological process, molecular function, and cell in a
list of genes [Hub+07; Van+18a].

Gene Regulatory Networks (GRNs)

Gene regulatory mechanisms are used by cells to increase or decrease the
production of specific gene products (i.e., proteins). A gene can be regulated at
different levels of omics, i.e., epigenetic regulation, transcriptional regulation, and
post-translation modifications. This could be positive regulation (turning on gene
expression), negative regulation (turning off gene expression), and co-regulation
(turning multiple genes on or off together). Gene regulatory networks (GRNs)
are mathematical models of such regulatory mechanisms. The nodes in a GRN
are genes and regulators that are connected by edges representing regulatory
relationships. The GRNs are difficult to infer and mostly misunderstood [EDH14].

Cellular differences are determined by the expression of different sets of genes.
For instance, a cancer cell acts differently from a normal cell since it expresses
different genes. Interestingly, in eukaryotes, the default state of gene expression is
OFF rather than ON, as in prokaryotes [Hoo08]. Why is this the case? The secret
lies in chromatin. It is made up of DNA and histone proteins located in the cell
nucleus. Histones are among the most evolutionarily conserved proteins, vital
to the well-being of eukaryotes and tolerating little change. If a certain gene is
closely linked to histones, this gene is “turned off”. But how do eukaryotic genes
manage to escape this “silencing”? This is where the histone code comes into play.
This code involves modifications of the positively charged amino acids of histones
to create some areas where the DNA is more open and others where it is very
tightly bound. DNA methylation is a mechanism that appears to be coordinated
with histone modifications, particularly those that lead to the repression of gene
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expression. Small non-coding RNAs such as RNAi may also be involved in the
regulatory processes that form “silent” chromatin. When the tails of histone
molecules are acetylated at certain sites, these molecules have less interaction
with DNA, making it more open [Hoo08; EDH14].

The area surrounding a potential transcription zone, also known as the promoter
region, must be unraveled before transcription can begin. This is a difficult pro-
cess that requires the coordination of histone modifications, transcription factor
binding, and other chromatin remodeling processes. Specific DNA sequences are
then accessible for specific proteins to bind once the DNA has been opened. Many
of these proteins are activators, while others are repressors; all of these proteins
are referred to as transcription factors in eukaryotes (TFs). Each TF has a DNA
binding domain and an effector domain that recognizes a 6−10 base-pair motif in
the DNA. If a TF binds to its matching pattern in a fragment of DNA, investigators
can identify its footprint (Figure 2.4b).

Protein-Protein Interaction (PPI) networks

The primary mode of protein-protein interaction is physical. The complicated
interlocking folded shapes of proteins create so-called protein complexes but
without the exchange of particles that define chemical reactions [Hub+07]. In a
protein-protein interaction network, two nodes (i.e., two proteins) are connected
by an undirected edge if the corresponding proteins form a complex structure
(Figure 2.4c). The interactions that involve three or more proteins are represented
by multiple edges. [Van+18a].

Metabolic networks

Metabolism is the chemical process by which cells break down food and nutrients
into usable building blocks and then reassemble those building blocks to form
biomolecules. Typically, this breakdown and reassembly involve chains or
pathways, sets of successive chemical reactions that convert initial inputs into
useful end products through a series of reaction steps. The complete set of
all reactions in all pathways forms the metabolic network. The nodes in a
metabolic network are chemical compounds produced and/or consumed by the
reactions, also known as metabolites. They are small molecules like carbohydrates,
lipids, as well as amino acids and nucleotides. The metabolites consumed
are called the substrates of the reaction, while those produced are called the
products [Hub+07; Van+18a]. The edge between two nodes represents the partic-
ipation of both metabolites in the same reaction, either as substrates or as products.

After constructing such biological networks, as mentioned above, from omics
data, network analysis is performed. The potential applications of such network
analysis include the identification of biomarkers, determining the role of proteins
of unknown function, the discovery of new regulatory pathways and sample
classification (e.g., disease or healthy) [Hub+07; Prž19].
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2.3 Graph Representation Learning

High-dimensional graph data often comes in irregular forms. They are more
difficult to analyze than image/video/audio data defined on regular lattices
[Che+20]. Various graph embedding techniques have been developed to convert
the raw graph data into a low-dimensional vector representation while preserving
the intrinsic graph properties. Graph representation learning methods [HYL17b;
Che+20; Yue+20] aim to generate vector representations for various types of
graph elements such that the learned representations, i.e., embeddings, capture
the structure and semantics of a rich, graph-structured or networked dataset.

The main challenge in machine learning on networks is finding a way to
extract information about interactions between nodes (e.g., node similarity)
and incorporate that information into a machine learning model. To extract
this information from networks, classical machine learning approaches rely on
summary statistics (e.g., degrees or clustering coefficients) or carefully engineered
features to measure local neighborhood structures (e.g., network motifs). In
contrast to classical approaches, representation learning approaches encodes
network structure into low-dimensional representations, using transformation
techniques based on deep learning and nonlinear dimensionality reduction
[HYL17b].

Figure 2.5 shows the illustration of GRL on multilayer graphs. GRL methods
take a graph as the input, where the graph can be homogeneous, heterogeneous,
single/multilayer, with/without auxiliary information. The output of a graph
embedding method is a set of vectors representing the input graph. It could be
node embeddings, edge embeddings, or the embeddings of the whole graph. The
preferred output form is application-oriented and task-driven. GRL encompasses
a wide range of methods, including graph theoretic techniques rooted in classic
network science, manifold learning, topological data analysis, graph neural
networks, and generative graph models.

Classical methods are categorized into linear and nonlinear. The linear methods
include Principal Component Analysis (PCA) [AW10], Linear Discriminant
Analysis (LDA) [Ize13], and Multidimensional Scaling (MDS)[Sae+18]. These
methods are referred to as “subspace learning” [Yan+06] under the linear
assumption. However, linear methods might fail if the underlying data are highly
non-linear [Sau+06]. Then, non-linear dimensionality reduction (NLDR) [DC92]
can be used for manifold learning. The objective is to learn the nonlinear topology
automatically. The NLDR methods include Isometric Feature Mapping (Isomap)
[SMR06], Locally Linear Embedding (LLE) [RS00], and Kernel Methods [Har+11].

Random walk-based methods are popular methods to perform GRL [PAS14;
GL16]. They sample a graph with a large number of paths by generating a set
of random walks starting from each node in the graph [HSS21]. This path is a
Markov chain over the set of nodes V . Random walks indicate the context of
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Figure 2.5: Illustration of Graph Representation Learning. A multilayer graph
(G) is given as input to a GRL model, and d-dimensional embeddings (Ωd) are
learned in such a way that similar nodes are close in the embedding space.

connected vertices. The randomness of walks gives the ability to perform locally
as well as global explorations by walking through neighboring vertices. After
that, the probability models [Mik+13; Rud+16] can be applied on these randomly
sampled paths to learn the node representations. Figure 2.6 shows the standard
workflow of learning node embeddings using random walk-based GRL models.
The transition probability for a node to traverse to another node is computed
through a path given by a walker jumping to node v from u and is characterized
by the adjacency matrix A.

Let the vector pt ∈RV denotes the probability distribution at time t. pt(u) indicates
the value of pt at node u—that is the probability of being at node u at time t. A
probability vector p is a vector such that p(u) ≥ 0, for all u ∈ V , and

∑
p(u) = 1.

Our initial probability distribution, p0, will typically be concentrated on one node.
That is, there will be some node u for which p0(u) = 1. In this case, we say that the
random walk starts at u. Thus, p(t+1)(u) is given as:

p(t+1)(u) =
∑

v:(u,v∈V )

Auv

deg(v)
pt(v), (2.1)

where deg(v) is the degree of node v. The transition probabilities between all
pairs of nodes are represented by a transition matrix P ∈ Rn: P = D−1A, where
D is the diagonal degree matrix. Standard random walks provide a natural way
to capture node neighborhoods in undirected connected graphs. One can also
design biased random walks to explore different notions of neighborhood [GL16;
NM18]. For directed graphs, a PageRank process [Pag+99] is often applied in
lieu of standard random walks to guarantee ergodicity. Few examples of popular
random-walk-based methods include DeepWalk [PAS14], node2vec [GL16], and
exponential family graph embeddings (EFGE) [CM20a].
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Fig. 5 Pipeline for random walk–based graph embedding methods. In order to learn node em-
beddings for the original graph G = (V,E) consisting of two types of nodes marked in di↵erent
colors, we apply random walk methods to first generate a set of node context (Wvi) for every
node (vi 2 V ); the sampled node contexts (i.e., random walks) are of the same fixed walk
length t. Second, based on the generated node contexts, a language embedding model plays
the role of an encoder such that every node is represented as a low-dimensional, continuous
vector in the latent space. The distance (e.g., dot product, cosine similarity, or Euclidean
distance) between vectors (or “node embeddings”) in the latent vector space approximates
the similarity in the original graph. Additionally, the learned vectors can be simply mapped
to 2D space as points using dimension reduction techniques (e.g., t-SNE, MDS, PCA). The
learned node embedding features (� 2 R|V |⇥L) for all nodes can be readily and e�ciently used
for di↵erent downstream tasks, such as link prediction, node classification, and community
detection.

walks. In this way, it can e↵ectively encode the structure and topological information
from the original graph into the latent space. However, DeepWalk [39] can capture
only the local structure information by using the truncated random walks, and the
global structure information is missing. To address this problem, node2vec [18] em-
ploys an improved biased random walk method to sample node context by considering
both local and global structure information from the original graph. Figure 6 shows
a detailed schematic of node neighbor expansion using the biased random walk ap-
proach (or “second-order random walk”), which incorporates both BFS (breadth-first
search) and DFS (depth-first search) searching strategies with two ratio parameters
(p and q). In general, nodes in a random walk are generated by using the formula
defined in (2.4); however, in the “biased random walk,” the unnormalized transition
probability ⇡vx in (2.4) is modified using a search bias (↵) in conjunction with edge
weight kvx (kvx = 1 if binary graphs) to guide node neighbor searching. Specifically,
assume a random walk has just traversed nodes t, v and resides at v; then the unnor-
malized transition probability (⇡vx) between the node v and the next walk node x

can be computed as follows:

(3.1) ⇡vx = ↵pq(t, x) · kvx, where ↵pq(t, x) =

8
><

>:

1/p if dtx = 0,

1 if dtx = 1,

1/q if dtx = 2,

where the search bias (↵pq) is defined by a return rate parameter (p) and an “in-
out” exploration rate parameter (q); dtx represents the shortest distance between the
previous visited node t and the next visiting nodes x; and p and q control how fast the
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Fig. 5 Pipeline for random walk–based graph embedding methods. In order to learn node em-
beddings for the original graph G = (V,E) consisting of two types of nodes marked in di↵erent
colors, we apply random walk methods to first generate a set of node context (Wvi) for every
node (vi 2 V ); the sampled node contexts (i.e., random walks) are of the same fixed walk
length t. Second, based on the generated node contexts, a language embedding model plays
the role of an encoder such that every node is represented as a low-dimensional, continuous
vector in the latent space. The distance (e.g., dot product, cosine similarity, or Euclidean
distance) between vectors (or “node embeddings”) in the latent vector space approximates
the similarity in the original graph. Additionally, the learned vectors can be simply mapped
to 2D space as points using dimension reduction techniques (e.g., t-SNE, MDS, PCA). The
learned node embedding features (� 2 R|V |⇥L) for all nodes can be readily and e�ciently used
for di↵erent downstream tasks, such as link prediction, node classification, and community
detection.

walks. In this way, it can e↵ectively encode the structure and topological information
from the original graph into the latent space. However, DeepWalk [39] can capture
only the local structure information by using the truncated random walks, and the
global structure information is missing. To address this problem, node2vec [18] em-
ploys an improved biased random walk method to sample node context by considering
both local and global structure information from the original graph. Figure 6 shows
a detailed schematic of node neighbor expansion using the biased random walk ap-
proach (or “second-order random walk”), which incorporates both BFS (breadth-first
search) and DFS (depth-first search) searching strategies with two ratio parameters
(p and q). In general, nodes in a random walk are generated by using the formula
defined in (2.4); however, in the “biased random walk,” the unnormalized transition
probability ⇡vx in (2.4) is modified using a search bias (↵) in conjunction with edge
weight kvx (kvx = 1 if binary graphs) to guide node neighbor searching. Specifically,
assume a random walk has just traversed nodes t, v and resides at v; then the unnor-
malized transition probability (⇡vx) between the node v and the next walk node x

can be computed as follows:

(3.1) ⇡vx = ↵pq(t, x) · kvx, where ↵pq(t, x) =
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Figure 2.6: Illustration of graph representation learning using random walks.
From graph G, n random walks are sampled of length w. In window size t, for
each center node, the context is defined by its neighboring nodes. The embeddings
are learned by maximizing the likelihood of the random walk co-occurrences. The
encoder is then trained to learn Ωd embeddings.

Matrix factorization-based methods are popular approaches for computing node
embeddings. One of the first such approaches was Graph Factorization (GF)
[Ahm+13]. Several variations have been introduced in the literature. GraRep
[CLX15] defines different loss functions for capturing the different k-step local
relational information. It then optimizes each model with matrix factorization
techniques and constructs the global representations for each node by combining
different representations learned from different models. HOPE [Ou+16] is an
efficient model to preserve higher-order proximities of large-scale graphs, capable
of capturing asymmetric transitivity. Finally, NetMF [Qiu+18] unifies LINE,
DeepWalk, and node2vec in the framework of matrix factorization, where the
factorized matrices have closed forms.

Neural network models have recently become popular. Being inspired by the
success of recurrent neural networks (RNN) and Convolutional Neural Networks
(CNN), researchers attempt to generalize and apply them to graphs. Natural
Language Processing (NLP) models often use RNNs to find a vector representation
for words. The Word2Vec [Mik+13] model aims to learn the continuous feature
representation of words by optimizing a neighborhood-preserving likelihood
function. Another family of neural network-based embedding methods adopts
CNN models. The input is either a set of paths sampled from a graph or the
whole graph itself [Zho+20]. Some apply the original CNN model designed
for the Euclidean domain and reformat the input graph to fit it [Zho+20].
Other approaches generalize deep neural models to graphs. Popular neural
network-based methods for graph embeddings include Graph Convolutional
Network (GCN) [KW16], Graph Attention Networks (GATs) [Vel+17], Variational
Graph Auto-Encoders (VGAE) [KW13], GraphSAGE [HYL17a] and Structural
Deep Network Embedding (SDNE) [WCZ16].
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2.4 Multi-omics Data Integration with GRL

Multi-omics data enable us to gain more accurate insights into the biological
data and can be useful to make effective predictions of the unknown biological
mechanisms (Section 2.1.2). Although a single omic study can identify molecules
and biomarkers of the main pathologies or experimental conditions, it can provide
only partial information. To unravel the hidden information, one shall effectively
integrate multi-omics data [Sub+20].

Multi-omics data integration was proposed as a combination of methods to
fuse data obtained from different omic approaches, aiming at gaining insights
on the interconnectedness of the different biomolecules (e.g., proteins, RNAs,
metabolites) and the flow of biological information that occurs within them.
Network approaches have generated substantial interest based on their potential
for integrative omics analysis and are expected to facilitate a new era of systems
biology [Sub+20].

The greater availability of data has allowed many multi-omics studies and fostered
the expansion and construction of public databases to ensemble the greatest
amount of data in standardized file formats and user-friendly interfaces. The
Ensemble Genome Project and the Human Proteome Project aimed at collecting
the major genes and proteins underlying the main biological processes in the cell
[Leg+11; Hub+02]. In such repositories, the main multi-omics data are RNA-Seq,
DNA-Seq, miRNA-Seq, SNV, CNV, DNA methylation, proteomics, whole genome
sequencing, and the genomic variations data (somatic and germ- line mutation).
The major omics data types are defined in Section 2.1.2.

In the last decade, the availability of such an amount of data and information has
led to various methodologies and algorithms for their analysis [DBB09; Jud+16;
Pic+21]. Concerning single omic dataset processing, the two most common types
of analysis are:

• Extraction of the most relevant features for the detection of new biological
signatures or pathways.

• Classification and clustering of samples to create predictive models for
pathology or to discover new molecular subtypes.

In a multi-omics scenario, these two approaches are still valid, but the algorithms
used to integrate and analyze the data need to be properly modified and optimized.
Several articles have reviewed the state-of-the-art for multi-omics integration
[Sub+20; Pic+21; Lov+22; Can+21], focusing on the sample clustering problem
(e.g., clustering of patients and healthy controls). Below, the various multi-omics
methods are grouped into four main categories [Lov+22]:
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• Graph-based: Description of samples in the form of graphs or similarity
matrices.

• Dimensionality reduction-based: The integration is given by the joint re-
duction of the dimensionality among the various omics.

• Statistics-based: The prevailing approach for the integration is based on
Bayesian models.

• Neural Networks-based: Techniques based on the creation of artificial neu-
ral networks and deep learning methods to integrate multi-omics data for
building predictive models to understand the pathology and discover new
molecular subtypes/signatures.

Biological networks reveal different types of information based on the input data,
mathematical model, and the type of relationship we want to study. For example,
Bayesian networks allow the use of prior information to capture conditional
dependencies between probabilistic events [Pee05]. These probabilities are thus
used to define relationships between nodes. Another approach is text mining,
where networks are built based on scientific publications, on the assumption
that molecules likely to interact share contextual information [Haa+09]. Finally,
gene correlation networks, such as those generated by the Weighted Correlation
Network Analysis method (WGCNA) [LH08], are based on the correlation
between gene pairs over a large number of samples. Several approaches have
been proposed to learn node representation for multilayer graphs which are
briefly discussed in Section 2.5. Nevertheless, most of these multi-omics data
integration methods are complicated and computationally expensive on real
multi-omics data. We are interested in developing less complex frameworks to
learn integrated embeddings from multi-omics data targeting several applications
in bioinformatics.

2.5 Related Works

A plethora of GRL approaches are based on random walks [PAS14; GL16; NM18;
ÇM20], matrix factorization [LG14; Qiu+18], or neural networks [HYL17b;
Yue+20]. Inspired by Word2Vec-based single-layer network embedding
techniques [Mik+13; PAS14; GL16], a few GRL methods have been proposed for
multilayer networks.

Principled Multilayer Network Embedding (PMNE) [Liu+17] is an extension of a
single-layer graph embedding to a multilayer network. It proposes approaches for
multilayer graph mining techniques that can be applied to any graph embedding
method developed for single-layer graphs. Multiplex Network Embedding (MNE)
[Zha+18] is a multilayer network embedding method that generates random
walks for each layer and then applies the Skip-Gram model [Mik+13] to learn
joint embeddings for each node. The final node embedding is composed of three
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parts: common embeddings, relation-based embedding, and transformation
matrix. Multi-Net [BK18] uses random walks, namely classical, diffusive and
physical, to obtain node sequences [Sol+16; Guo+16]. Then, it merges the node’s
neighborhood (context) and learns a d-dimensional feature vector for each node
by maximizing the likelihood of the occurrence of node neighbors across all
layers. Multi-node2vec (Multi-n2v) [Wil+18] extends node2vec to multilayer
networks. The model collects a bag-of-words from each layer by performing
a vertex neighborhood search. Then, the optimization procedure computes
the features by using the Skip-Gram neural network model on the identified
neighborhoods. Recently, MultiVERSE [Pio+21] computes a similarity matrix
using random walk with restart (RWR). Then, it applies an optimized version of
VERSE [Tsi+18], a vertex-to-vertex similarity-oriented embedding method, to
compute the representations. FAME [Liu+20] decomposes the heterogeneous
multiplex network into homogeneous and bipartite sub-networks. Then, it
uses a spectral transformation module to automatically aggregate and decouple
sub-networks with the exploration of their multi-relational topological signals.
For biological networks, Similarity Network Fusion (SNF) [Wan+14] constructs
a similarity network for each data type and then iteratively integrates these
networks using a network fusion methodology. Mashup [CBP16] is a network
integration framework based on matrix factorization that builds compact
low-dimensional vector representations of proteins. It takes as input a collection
of PPI networks and generates embeddings that best explain their wiring patterns
across all networks. OhmNet [ZL17] is an unsupervised feature learning approach
for multilayer networks with a predefined hierarchy describing relationships
between the layers. deepNF [GBB18] is a network fusion method relying on
multimodal deep autoencoders (MDA). It takes as input a collection of PPI
networks and applies a neural network, an autoencoder (AE), that is composed of
two sections. First, it is the encoder part, in which the input data is transformed to
low-dimensional features; second, the decoder, where features are mapped back to
the input data [Vin+10]. To capture the structural properties of networks, deepNF
and Mashup are based on Random Walks with Restarts (RWR). The vectors
learned from both methods are then fed into a support vector machine (SVM)
classifier to predict functional classes of proteins. More recently, deepMNE-CNN
[Pen+21] has been introduced, a multi-network embedding approach that applies
a semi-autoencoder-based model to learn protein features. MOSS [Gon+22]
performs a sparse singular value decomposition (sSVD) to learn embeddings.
Graph2GO [FGZ20] extends variational graph autoencoders (VGAE) to multilayer
networks. It establishes to integrate networks derived from heterogeneous
information, including sequence similarity, protein-protein interaction, and
protein features, amino acid sequence, sub-cellular location, and protein domains.

Most of these network integration frameworks are engrossed towards Gene
Ontology (GO) prediction. The GOs are developed to systematically describe
the functional properties of proteins to facilitate the computational prediction
of their functions [Con04]. They serve as the gold standard and main source in
functional proteogenomics. If two proteins have a similar function, apart from
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their direct relationship in the network, they can have many further characteristics
in common, such as biological processes, molecular function, cellular location,
regulated by the same transcription factor, have the same epigenetic mark or
belong to the same metabolic pathway. In order to determine such similarities
between a priori unlinked proteins, it is necessary to obtain an informative
representation of proteins and their proximity that is not fully captured by
handcrafted features directly extracted from the PPI network. GRL-driven
models are candidates for the above tasks. Given a multilayer network, GRL
algorithms can embed it into a new compact vector space in such a way that
both the original network structure and other latent features are captured.
Indeed, existing methods are challenged when applied to biological datasets
that demand comprehensive handling of data heterogeneity. Also, existing
GRL methods for multilayer networks depend on numerous parameters—thus
being computationally intensive in finding optimal parameter settings. Besides,
biologists generally dispose of low levels of ground truth. To efficiently search
for appropriate ground truth when biological information is not fully known
becomes a difficult and time consuming task. Hence, there is a huge scope to
develop new methods that can address these challenges. In this study, we derive
embeddings purely via a data-driven fashion such that the probability of the
context of a protein is maximized.

From the above-mentioned methods, we have selected eight multilayer network
integration methods as our baseline models, namely SNF [Wan+14], Mashup
[CBP16], deepNF [GBB18], MultiNet [BK18], Multi-node2vec [Wil+18], OhmNet
[ZL17], MultiVERSE [Pio+21], and Graph2GO [FGZ20].

2.6 Data Integration Challenges in Biology

Data integration in the life sciences is a persistent task that has just recently
emerged as a significant difficulty, in part due to technological advancements
providing more data of all kinds and in larger quantities. Despite the fact that
publicly available and well-maintained data repositories adequately support the
availability of genomics data (with the pertinent exception of clinical data), there
is a need for improved (and novel) annotation standards and requirements in data
repositories to facilitate better integration and reuse of publicly available data
[Zit+19]. The data exploitation aspect of data integration is probably the one that
requires the most attention, as it involves:

• Use of prior knowledge—and its efficient storage.

• Development of statistical methods to analyze heterogeneous data sets.

• Creation of data exploration tools that incorporate both useful summary
statistics and new visualization capabilities.

It has been observed that this field demands user-friendly tools targeting the
integration of heterogeneous datasets and the relevance of integrative omic
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studies. Moreover, efficient data integration in life sciences may require specific
skills. This could be challenging when the significance of multi-omics data
in a particular cellular system is hazy. Another aspect of data integration
challenges is the impact of big data analytics in the life sciences. The term big
data intuitively describes a situation present in many research fields: the amount
of data generated by instruments is exploding and in many cases doubling over
short periods of time. Biology is not an exception: “since 2008, genomics data
is outpacing Moore’s Law by a factor of 4” [ODS13]. This situation results in
the requirement for developing scalable infrastructures able to manage these
quantities of data while making it available for efficient access and indexing.

Multi-omics data integration to produce a comprehensive understanding of
biological processes and pathologies does have its share of challenges. Efficient
integration, analysis, and interpretation is a difficult undertaking due to the
underlying variability in individual omics data, massive data sets requiring
computationally expensive analysis, and a lack of research that aid in prioritizing
the varied collection of tools [Sub+20]. Since multi-omics data are produced on
so many different platforms, the formats and storage of the data vary greatly.
Individual omics data must be pre-processed because the majority of multi-omics
integrative analysis tools require data to be in specified formats (most commonly
in a “features × samples” matrix). Data filtering, systematic normalization, batch
effect elimination, and quality checks are all part of the pre-processing stage.
Due to their significant impact on the integrative analysis, these pre-processing
procedures must be used cautiously. Most of the integrative approaches are
computationally intensive. It is, therefore, necessary to limit the size of the
input data sets by filtering the noise and lowering the number of features that go
into integrative models. However, choosing adequate filtering criteria might be
difficult because there are not any global standards [Sub+20].

The effective processing of big data sets must be taken into consideration while
developing new integrative approaches and tools. The appropriate selection
of techniques that can address the relevant biological topic is the cornerstone
of any integrative study. There are studies that benchmark integrative tools
[RS18; Tin+19; Cha+20], but they fall short in terms of the selection of tools
in the context of the relevant biological inquiry. To help the community better
comprehend the vast range of tools, further in-depth research is required. Another
dimension that could add value to multi-omics data interpretation is clinical
information. Currently, there are no robust methods to integrate omics data with
non-omics data, such as clinical metadata. The recent advances in this field are
progressing primarily with efforts to reduce the challenges. Further developments
in integrative analysis of multi-omics data must aim to ease the interoperability
of multiple data sets and to develop a framework that can help in the seamless
analysis of multi-omics data.
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3
Materials and Methods

This chapter provides detailed information about the datasets, proposed models, and
downstream tasks. Firstly, in Section 3.1, information about data acquisition and an
overview of the datasets employed in this thesis are provided. Secondly, in Section 3.2,
all three proposed models, viz. BraneExp, BraneMF, and BraneNet are explained with
their mathematical formulation. Lastly, in Sections, 3.6 and 3.7, all the downstream
tasks and metrics utilized to evaluate the performance of models are provided.

−−−F−−−

3.1 Datasets

Yeast has been a popular model organism for basic biological research. It is one
of the simplest eukaryotic organisms, but many essential cellular processes are
the same in yeast and humans [Nie19]. At IFP energies nouvelles, biologists work
on various fungi and micro-organisms in the context of green chemistry, such as
bioethanol production. For this purpose, we choose the datasets of a well-studied
yeast model organism, i.e., Saccharomyces cerevisiae. We test the proposed models
(BraneExp, BraneMF, and BraneNet) on yeast multi-omics datasets.

3.1.1 Multilayer Protein-Protein Interaction (PPI) network

Protein–protein interaction (PPI) networks are an important ingredient for the
system-level understanding of cellular processes. Such networks can be used for
filtering and assessing functional genomics data and for providing an intuitive
platform for structural, functional, and evolutionary annotations of proteins.
Exploring the PPI networks can suggest new directions for future experimental
research [Sch+09; Szk+20]. The STRING database (https://string-db.org/) is a
public repository of PPIs that contains information from numerous omics data
sources, including experimental, co-expression, conserved neighborhood, fusion,
and databases. It is freely accessible and regularly updated.
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For this study, we obtain six PPI networks for yeast from STRING database
[Szk+20], namely Neighborhood, Fusion, Co-occurrence, Co-expression, Experimental,
and Database. The PPI networks are built for 6,691 proteins. The overview of the
yeast STRING PPI networks used in our study is given in Table 3.1. From these six
networks, we construct a multilayer PPI network G where each layer of G contains
a PPI network obtained from a different data source (Figure 3.1). More formally, a
multilayer network of L-layers is a set of G = {Gl}Ll=1 = {(Vl ,El)}Ll=1 graphs, where Vl
:= {v1l , . . . , v|V |l } and El := {e1l , . . . , eMl

} are the vertex and the edge sets, respectively.
|V |l and Ml denote the number of nodes and edges for each layer.

Throughout the thesis, we assume that the layers share the same set of nodes,
so Vl = Vj = V for every 1 ≤ l < j ≤ L. However, in practical case the existed PPI
networks are of different node sizes. In such case, we build the per layer adjacency
matrix by taking union of nodes in all layers (|V |1 ∪ |V |2 ∪ . . .∪ |V |L). Nevertheless,
the integrated embeddings are learned only for the nodes shared in all the layers
(|V |1 ∩ |V |2 ∩ . . .∩ |V |L). All edges are weighted and undirected. Note that nodes
that do not share an edge remain isolated in the graph. We use A(l) to denote the
adjacency matrix of the associated layer Gl .

Network Nodes Edges Density Evidence

Neighborhood 1,324 7,656 0.008741 Gene order and
sequence homology

Fusion 500 492 0.003943 Orthology and fusion
Cooccurrence 799 1,231 0.003861 Orthology
Coexpression 4,069 54,317 0.006562 Gene expression data
Experimental 4,149 48,190 0.005600 Biochemical, biophysical

genetic experiments
Database 3,136 29,231 0.005946 Human curation

Table 3.1: Overview of the yeast STRING PPI networks used in the study. The
above table shows the number of nodes and edges in the respective PPI networks
with their density and the sources of each network.

3.1.2 Yeast multi-omics data

Apart from PPI networks, we have used multi-omics datasets to test our models.
These datasets were obtained from various bioinformatics data sources.

Genome sequence

The genome sequence of Saccharomyces cerevisiae was obtained from the SGD
genome database [Che+98]. The genome is approximately 12 Mb, organized in 16

28



Neighborhood

Fusion

Co-occurence

Co-expression
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Database

Figure 3.1: Illustration of the multilayer PPI network built from STRING
database. All the layers share the same nodes. These nodes are connected by
inter-layer dotted lines.

chromosomes and approximately 7,000 protein coding genes.

Transcription factor binding sites (TFBSs)

The set of TFBS profiles was obtained from the JASPAR database [For+20]. A total
of 194 TFBS profiles were found in this database.

Transcriptomics

Transcriptomics data for Saccharomyces cerevisiae for 61 experimental studies was
obtained from NCBI-GEO database [Bar+12].

Yeast heat shock multi-omics data

From a recently published data descriptor, we have obtained multi-omics datasets
[Nuñ+20]. These datasets present three basic layers of the transcriptional circuit,
including one type of epigenetic modification (H4K12ac mark for identification
of active promoters obtained from ChIP-Seq), gene expression (RNA-seq), and
targeted metabolomics (NMR). The dataset is comprised of 7,126 genes, 1,970
H4K12ac peaks, and 37 metabolites.

3.1.3 Functional annotations

Omics technologies have made it clear that a large fraction of the gene/proteins
specifying the core biological functions are shared. Gene ontologies (GO) serve
the knowledge of the biological role shared among such genes/proteins. They
are developed to systematically describe the functional properties of proteins to
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facilitate the computational prediction of their functions [Con04]. They are repre-
sented as a gold standard and the main source in protein functional annotations.
There are three major types of gene ontologies that are specific to the functional
domain and are divided into three different categories.

• Biological process (BP): A biological process refers to a biological objective
to which the gene or gene product contributes. A process is accomplished by
one or more ordered assemblies of molecular functions. BPs often involve a
chemical or physical transformation. For instance, an example of a higher
level of BP can be cell growth and maintenance or signal transduction. More-
over, lower-level BP terms are translation, pyrimidine metabolism, or cAMP
biosynthesis [Con04].

• Molecular function (MF): A molecular function is defined as the biochemi-
cal activity of proteins, including specific binding to ligands or structures.
MF describes only what is done without specifying where or when the event
actually occurs. For example, broad MF terms are enzyme, transporter, or
ligand. Moreover, lower level MF terms are adenylate cyclase or Toll receptor
ligand [Con04].

• Cellular component (CC): A cellular component refers to the place in the
cell where a protein is active. The cellular component includes such terms
as ribosome or proteasome, specifying where multiple gene products would
be found. It also includes terms such as nuclear membrane or Golgi apparatus
[Con04].

The functional annotations are downloaded from Gene Ontology [Con04] database.
Each category of GO is represented in levels (i.e., levels I, II, and III). A lower
level (i.e., level I) represents more specific terms, whereas a higher (i.e., level III)
represents more general terms. Table 3.2 shows the number of terms per category.

Terms Level I Level II Level III

Biological Process (BP) 855 535 244
Molecular Function (MF) 216 126 53
Cellular Component (CC) 181 113 54

Table 3.2: Overview of the Gene Ontology (GO) terms used in the study. Level
I: 10 < proteins per term < 30; Level II: 30 < proteins per term < 100; and Level
III: 100 < proteins per term < 300.

3.1.4 Bioinformatics resources

All the databases and computational tools used in this dissertation are shown in
Table 3.3.
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Database Source Citation

SGD https://www.yeastgenome.org/ [Che+98]
NCBI-GEO https://www.ncbi.nlm.nih.gov/geo/ [Bar+12]
JASPAR https://jaspar.genereg.net/analysis [For+20]
GO consortium http://geneontology.org/ [Con04]
STRING https://string-db.org/ [Szk+20]
RSAT http://rsat.sb-roscoff.fr/ [Ngu+18]
YEASTRACT http://www.yeastract.com/ [Mon+20]
YeastEnrichr https://maayanlab.cloud/YeastEnrichr/ [Kul+16]

Table 3.3: Sources of the databases utilized in this study.

3.2 Proposed Models

Graph Representation Learning (GRL) algorithms allow us to encode graph
structure into compact embedding vectors [HYL17b]. We formally define the task
as a multilayer network embedding problem. Given a multilayer network, we aim
to learn low-dimensional latent node representations (i.e., embeddings) so that
the structure of the input network layers is properly integrated and preserved
in the new space. We propose three models in this dissertation, viz. BraneExp,
BraneNet and BraneMF. The models are presented in detail in the below sections.
Besides, we define the objective function of proposed models in a way that is
independent of downstream machine learning tasks, and the embeddings are
learned in a purely unsupervised way. We employ these embeddings for different
downstream prediction tasks dedicated to the functional analysis of proteins. All
these tasks are mentioned in Section 3.6.

A multilayer graph of L-layers is a set of G = {Gl}Ll=1 = {(Vl ,El)}Ll=1 graphs,
where Vl := {v1, . . . , v|V |l } and El := {e1l , . . . , eMl

} are the vertex and the edge sets,
respectively. |V |l and Ml denote the number of nodes and edges for each
layer. Throughout the dissertation, we assume that the layers share the same
set of nodes, so Vl = Vj = V for every 1 ≤ l < j ≤ L; edges are weighted and
undirected. We use A(l) to denote the adjacency matrix of the associated layer Gl .
Our goal is to learn a low-dimensional feature representation for all |V | nodes.
This integrated d-dimensional representation ofG is given by Ωd ∈R|V |×d (d� |V|).
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3.3 BraneExp: A Random Walk-based Network Inte-
gration Framework with Exponential Family Em-
beddings

Inspired by the aforementioned GRL methods and their limitations (Sections 2.4
and 2.5), in this work, we have considered expressive conditional probability
models to relate nodes within random walk sequences, towards extracting
informative latent node representations. We capitalize on exponential family
distributions to capture interactions between nodes in random walks that
traverse nodes within and across input network layers. More precisely, we
introduce BraneExp, a network integration framework with the concept of
exponential family graph embeddings [CM20a], that generalizes multilayer
random walk-based GRL methods to an instance of exponential family conditional
distribution.

We first describe how relevant node pairs are sampled with random walks—a key
step towards multi-omics data integration. Then, we explain the methodology
employed to learn node representations by modeling the underlying interactions
among nodes with exponential family distributions. A general overview of the
proposed methodology is depicted in Figure 3.2.

latent space

Multilayer network EmbeddingsContext sampling

Local exploration
Global exploration

Multilayer 
biased 

random walks

Learning 
embeddings 
(Exponential 

family 
distributions)

Objective  
function

Figure 3.2: Illustration of the BraneExp model. Firstly, given a multilayer net-
work, the model performs context sampling that is adapted to explore local and
global structures of the network. Secondly, embeddings are learned by optimizing
the objective function generalizing multilayer random walk-based GRL methods
to an instance of exponential family conditional distribution.
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3.3.1 Context sampling using multilayer biased random walks

The simulation of random walks plays a significant role in our approach since
we use them to model the interactions among nodes and also to facilitate data
integration. Due to the multilayer network structure, each layer can possess a
completely different inner structure, and each node in the graph layers might
play a different role. Therefore, our task becomes more challenging than the
classical network representation learning problems [Che+20] as we target
to circumvent it by simulating random walks. From a multilayer network
and simulated random walks, our goal is to learn node representations in a
lower-dimensional space so that their embeddings reflect the underlying patterns
commonly shared by these network layers. To do this, we leverage random walks
to sample nodes sharing similar characteristics across different omics layers.
Although random walks have been utilized before in representation learning
[Che+20], here we introduce a flexible approach for multilayer network structures.

To extract the node’s context in a multilayer graph, we propose a random
walk-based sampling procedure that can explore local and global structures in
the graph. Figure 3.3 illustrates local and global exploration in a graph. Local
exploration helps in discovering the clustering structure around the node of
interest, whereas global exploration contributes to capturing global associations
within nodes in the graph [NM18]. More precisely, local exploration is an
algorithm that efficiently visits and marks all the key nodes in a graph in an
accurate breadth-wise fashion. This algorithm selects a single node (initial or
source point) in a graph and then visits all the nodes adjacent to the selected
node. Once the algorithm visits and marks the starting node, then it moves
toward the nearest unvisited nodes and analyses them. Once visited, all nodes
are marked. These iterations continue until all the nodes of the graph have been
successfully visited and marked. And global exploration is an algorithm for
finding or traversing graphs in a depth-ward direction. The execution of the
algorithm begins at the root node and explores each branch before backtracking.
It uses a stack data structure to remember, get the subsequent node, and start
a search, whenever a dead-end appears in any iteration. To capture such local
and global associations, we propose a biased version of random walks adapted to
multilayer graphs [NM18]. It combines both types of exploration (i.e., local and
global) with a decay parameter α to control the importance of nodes with respect
to their distance from the node of interest.

More formally, for each node vi ∈ V , a proximity score τvi is computed to estimate
how far the candidate node vi is from the source node. When the i-th node in the
walk is discovered, the proximity score of every node adjacent to that is increased
by αi−1 and ᾱi−1, for nodes in the same and different layer respectively, where
α, ᾱ ∈ [0,1]. Then, the probability distribution of selecting the next node for the
current walk is computed based on the proximity scores of the neighborhood
nodes of the most recently visited node. For local explorations, the probability of
a node being the next one in the random walk sequence should be proportional to
its proximity score, i.e.,
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Fig. 5 Pipeline for random walk–based graph embedding methods. In order to learn node em-
beddings for the original graph G = (V,E) consisting of two types of nodes marked in di↵erent
colors, we apply random walk methods to first generate a set of node context (Wvi) for every
node (vi 2 V ); the sampled node contexts (i.e., random walks) are of the same fixed walk
length t. Second, based on the generated node contexts, a language embedding model plays
the role of an encoder such that every node is represented as a low-dimensional, continuous
vector in the latent space. The distance (e.g., dot product, cosine similarity, or Euclidean
distance) between vectors (or “node embeddings”) in the latent vector space approximates
the similarity in the original graph. Additionally, the learned vectors can be simply mapped
to 2D space as points using dimension reduction techniques (e.g., t-SNE, MDS, PCA). The
learned node embedding features (� 2 R|V |⇥L) for all nodes can be readily and e�ciently used
for di↵erent downstream tasks, such as link prediction, node classification, and community
detection.

walks. In this way, it can e↵ectively encode the structure and topological information
from the original graph into the latent space. However, DeepWalk [39] can capture
only the local structure information by using the truncated random walks, and the
global structure information is missing. To address this problem, node2vec [18] em-
ploys an improved biased random walk method to sample node context by considering
both local and global structure information from the original graph. Figure 6 shows
a detailed schematic of node neighbor expansion using the biased random walk ap-
proach (or “second-order random walk”), which incorporates both BFS (breadth-first
search) and DFS (depth-first search) searching strategies with two ratio parameters
(p and q). In general, nodes in a random walk are generated by using the formula
defined in (2.4); however, in the “biased random walk,” the unnormalized transition
probability ⇡vx in (2.4) is modified using a search bias (↵) in conjunction with edge
weight kvx (kvx = 1 if binary graphs) to guide node neighbor searching. Specifically,
assume a random walk has just traversed nodes t, v and resides at v; then the unnor-
malized transition probability (⇡vx) between the node v and the next walk node x

can be computed as follows:

(3.1) ⇡vx = ↵pq(t, x) · kvx, where ↵pq(t, x) =

8
><

>:

1/p if dtx = 0,

1 if dtx = 1,

1/q if dtx = 2,

where the search bias (↵pq) is defined by a return rate parameter (p) and an “in-
out” exploration rate parameter (q); dtx represents the shortest distance between the
previous visited node t and the next visiting nodes x; and p and q control how fast the
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Figure 3.3: Illustration of graph exploration strategies. Above figure shows the
illustration of local and global exploration strategies. Firstly local exploration,
also called Breadth First Search (BFS), explores neighboring nodes by following
the “go wide, bird’s eye-view” philosophy. Secondly, in global exploration, also
called Depth First Search (DFS), from an initial node, the algorithm searches for
nodes going down one path until it reaches the end. It follows the “go deep, head
first” philosophy.

pvi =
τvi∑

w∈V(u)
τw
. (3.1)

In the case of global exploration, the probability is set to be inversely proportional
to that score, i.e.,

pvi =
1/τvi∑

w∈V(u)
1/τw

, (3.2)

where u is the most recently visited node, and V (u) defines the set of neighbors
of u. Thus, given the desired exploration strategy, the context set for each node
w(n,i) ∈ V is given by

Ct(w(n,i)) := {w(n,j) ∈ V : −max{1, i − t} ≤ j , i ≤min{i + t, l}}, (3.3)

where w(n,j) indicates the node appearing at the j-th position of the n-th random
walk, and t is the window size. We call each element of Ct(w(n,i)) as the context of
a center node w(n,i).

3.3.2 Learning embeddings with exponential family distribu-
tions

Random walk-based methods generate node sequences and learn node represen-
tations by maximizing the co-occurrence probability of nodes within a certain
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distance [PAS14; GL16; NM18]. Similarly, we define our objective function as
follows:

O
(
α,β

)
:= argmax

Ω=(α,β)

N∑
n=1

l∑
i=1

∑
u∈V

logp(xun,i ;Ω), (3.4)

where xun,i is the observed variable indicating the relationship between the pair
of nodes (w(n,i),u) ∈ V2, and Ω = (α,β) are the parameters of the model, which
correspond to the node embedding vectors. Note that we obtain two different
representations for each node. Here, α[v] indicates the embedding of node v if it
is considered as context, and β[v] denotes its representation if it is interpreted as
center node. Although the conventional choice for modeling node relationships
is the softmax function [PAS14], it limits capturing possible intricate patterns in
node interactions across the layers of the network structure. Therefore, here we
extend it with a general framework based on exponential families, which is a set of
parametric probability distributions satisfying the following form:

p(x) = h(x)exp
(
ηT (x)−A(η)

)
, (3.5)

where h(x) is the base measure, T (x) is the sufficient statistic, and A(η) is the
log-normalizer function. Note that many widely utilized distributions, such as
the ones of Bernoulli, Dirichlet, and Normal, are actually exponential families.
The main benefit of this generic formulation is that it provides an elegant and
flexible way to model the complex interactions between center and context nodes
in random walk sequences [CM20a; Rud+16]. By plugging the exponential form
into the objective function provided in Equation (3.4), we obtain the following:

argmax
Ω=(α,β)

N∑
n=1

l∑
i=1

∑
u∈V

logh
(
xun,i

)
+ ηuw(n,i)

T
(
xun,i

)
−A

(
ηuw(n,i)

)
. (3.6)

Here, we define the natural parameter ηuw(n,i)
as the product of embeddings,

α[u]> · β[w(n,i)].

In our approach, we employ the Bernoulli distribution to model node co-
occurrences by setting h(x) = 1, T (x) = x and A(η) = log(1 + eη). Let xun,i be a
Bernoulli random variable indicating the occurrence of u in the context of node
w(n,i). Note that this is equal to 1 if node u appears at any position index i + j, for
−t ≤ j , 0 ≤ t. Then, we can rewrite our objective function as follows:

argmax
Ω=(α,β)

N∑
n=1

l∑
i=1

∑
|j |

 logp
(
y

w(n,i+j)

n,i+j

)
︸          ︷︷          ︸
positive instances

+
∑

u∈V\{w(n,l+j)}
logp

(
yun,i+j

)
︸        ︷︷        ︸

negative instances

, (3.7)
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Algorithm 1 BraneExp

Input: Multilayer graph G = (V ,E)Ll=1
Number of walks n
Walk length w
Window size t
Embedding dimension d
Output: d-dimension protein features, Ωd

1. Perform n random walks of length w for node v ∈ Vl
within layer l and across layers from l to L.

2. Learn d-dimensional node representations by opti-
mizing the objective function in Equation 3.4.

return Ωd

where yun,i+j indicates the occurrence of node u at the (i + j)-th position of the n-th
walk. However, the optimization step is very costly due to the size of the negative
instances. Therefore, we approximate it by leveraging the negative sampling
approach [Mik+13]:

argmax
Ω=(α,β)

N∑
n=1

l∑
i=1

∑
|j |

 logp
(
y

w(n,i+j)

n,i+j

)
+ k E

u∼p−

[
logp

(
yun,i+j

)], (3.8)

where k indicates the number of negative instances sampled from the noise
distribution p−. We employ the strategy described in [Mik+13], and negative
instances are sampled from the whole vertex set with respect to their number
of occurrences in the generated walks raised to the power of 0.75. In the
experimental evaluation, we generate k = 5 negative samples for each positive
instance. The BraneExp algorithm is given in Alg. 1.

BraneExp has the following conceptual advantages:

• It preserves both the intra-layer and inter-layer interactions, thereby learning
rich features;

• It is a scalable method as it uses the optimization procedure, which leverages
negative sampling.

More recently, a theoretical connection between Skip-Gram-based network embed-
ding algorithms and matrix factorization is shown in [Qiu+18]. It has presented
an approximation algorithm for computing network embedding for single-layer
networks. Next, in BraneNet, we extend this idea towards multilayer networks by
factorizing its supra-adjacency random walk matrix.
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3.4 BraneNet: Multilayer Network Embedding as
Matrix Factorization

We propose BraneNet, a novel multi-omics integration framework for multilayer
networks. BraneNet leverages random walk information within a matrix factor-
ization framework. Our goal is to efficiently integrate multi-omics data to study
different regulatory aspects of multilayered processes that occur in organisms.
Our method also considers inter- and intra- omics relationships that could be
supported with a priori knowledge. In Figure 3.4, an illustration of BraneNet is
presented. The model takes as input a multilayer network. It first builds a supra-
adjacency of size |V | × |V |, where N is a set of nodes shared by all layers. matrix.
Then, we compute a random walk-based PPMI matrix M for Ā via a closed-form
solution. The matrix M|V |×|V | is then factorized using Singular Value Decomposi-
tion (SVD) and the d-dimensional embedding vectors Ωd ∈ R|V |×d (d � |V|) are
given by Ud

√
Σd .

latent space

Multilayer 
network

Supra-adjacency
matrix

Random walk
PPMI matrix

Embeddings

SVD 

Matrix
factorization

Intra-layer adjacency
(e.g., apriori knowledge)

Inter-layer
adjacency

!

Figure 3.4: Schematic representation of BraneNet. A multilayer network Ā is
composed of intra- and inter-omics relationships. For Ā, the random walk-based
PPMI matrix M is computed. To obtain embeddings, M is factorized, and the final
embeddings Ωd are obtained.

3.4.1 Construction of a supra-adjacency matrix

X is a set of x intra-omics networks represented as X(1)
n1×n1

,X(2)
n2×n2

, . . . ,X(x)
nx×nx ,

while Y is a set of y = x(x−1)
2 inter-omics networks represented as

Y(1)
n1×n2 ,Y

(2)
n1×n3 , . . . ,Y

(y)
nx−1×nx . A multilayer network G of |V | nodes (biomolecules)

and |E| edges (interactions) is built using sets X and Y . The network is represented
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by its supra-adjacency matrix Ā|V |×|V | that is defined as:

Ā =
⊕
x

A(x) + C, (3.9)

where
⊕

xA(x) is the intra-omics adjacency matrices and C is a block matrix with
zero diagonal blocks that stores inter-omics connections obtained from elements
in Y . The final output of Ā has intra-omics networks represented as blocks in the
main diagonal and inter-omics networks represented as off-diagonal matrices.

3.4.2 Representation learning

To embed nodes from different omics modalities into a common latent space
towards integrating inter- and intra-omics relationships, we construct a random
walk matrix M for the multilayer graph G. M is defined by the random walk
transition probabilities to traverse nodes within and across layers. The flexibility
of random walks to traverse within and across layers allows us to capture inter-
and intra-layer node neighbourhood information. This is an important and
useful property to consider while performing data integration from multilayer
networks [Jag+21a; BK18]. For instance, starting from node v in G, a random walk
traverses the multilayer graph, moving across neighborhood nodes of v chosen uni-
formly at random. This process repeats for a predefined number of walks per node.

Nevertheless, for large networks, simulating random walks is computationally
expensive, and therefore it is not a recommended approach. To address this limi-
tation, we leverage the relationship between random walk-based GRL algorithms
that rely on the Skip-Gram model (for instance, emphDeepWalk [PAS14]) and
matrix factorization [Qiu+18]. Focusing on a specific instance of such approaches,
the DeepWalk method first generates a corpusW by performing random walks on
a graph [PAS14]. A corpus W is a bag of multisets that counts the multiplicity
of nodes v and their context c. DeepWalk then trains a Skip-Gram model on W .
To be formal, it assumes a corpus of node sequences represented as v1,v2, . . . , vw,
where w is the length of the random walk. The context of node vi is given as the
surrounding nodes in a 2t-sized window {vi−t, . . . , vi−1,vi+1, . . . , vi+t}, t > l. Follow-
ing [LG14] and [Qiu+18], the closed form expression of the DeepWalk matrix for
any graph G is given by:

log
(

#(v,C)|W|
#(v).#(C)

)
− logb︸                       ︷︷                       ︸

Skip-Gram

= log

vol(G)
bt

1
t

t∑
r=1

Pr
D−1

︸                             ︷︷                             ︸
DeepWalk matrix

. (3.10)

On the left-hand side, #(v,C),#(v), and #(C) denote the number of times node-
context pair (v,C), node v and context C appear inW , while b is the number of
negative samples. The right-hand side is represented by D as the degree matrix of
graphG, and the power matrix P defined as D−1A. Here, vol(G) is the volume (size)
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Algorithm 2 BraneNet

Input: Multilayer graph G = (V ,E)Ll=1
Parameters: window size: T and embedding dimension:
d
Output: d-dimension protein features, Ωd

1. Build a supra-adjacency matrix Ā using each graph
layer Gl (Equation 3.9).

2. Obtain its degree matrix D and adjacency matrix A

3. Compute power matrix P where P = D−1A.

4. Compute PPMI matrix M for Ā as given in Equation
3.11.

5. Compute protein features Ωd = Ud

√
Σ̄d .

return Ωd

of G. In particular, a multilayer random walk matrix M is defined by computing
the closed form of a properly normalized PPMI-based random walk transition
matrix. This PPMI matrix is the well-studied pointwise mutual information (PMI)
matrix that represents node similarities shifted by a global constant. It has been
shown that normalized PPMI is better at optimizing Skip-Gram’s objective and
shows better performance than emphword2vec derived models [PAS14; GL16] in
Natural Language Processing (NLP tasks) [LG14; Qiu+18]. For any graph G, M is
given by:

M = log

vol(G)
bt

1
t

t∑
r=1

Pr
D−1

 , (3.11)

where P = D−1Ā. Matrices Ā and D are, respectively, the adjacency and diagonal
degree matrices of the graph G and vol(G) is the sum of the node degrees of
G. t corresponds to the window size and b is number of negative samples
[Qiu+18]. In order to obtain node embeddings from matrix M, we perform
spectral decomposition using SVD [Bis20], given by M = UΣV>. Since M is a real
and symmetric matrix, U and V correspond to singular vector matrices, and Σ is
the singular value matrix. The integrated embedding matrix Ωd of dimension
|V | × d is given by the first d eigenvectors of M, appropriately weighted by the
square root of Σd as, Ωd = Ud

√
Σd . The BraneNet algorithm is given in Alg. 2.

Here, we integrate multilayer heterogeneous biological networks using apriori
knowledge. In the case of commonly studied multilayer homogeneous networks,
BraneNet learns embeddings for nodes in each layer. However, to obtain a joint
embedding vector across layers could be possible by performing operations on the
learned embeddings for each layer. For instance, taking average or finding mean
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embedding by applying optimization techniques. To clarify, the illustration of
learning BraneNet embeddings for both homogeneous and heterogeneous multi-
layer networks is shown in Figure 3.5b and Figure 3.5a, respectively. Nevertheless,
this post-processing of embeddings is a shallow approach with the possibility
of losing important features. The ideal instance would be to learn embeddings
jointly across multiple layers.• Heterogenous multilayer networks

Representation Learning (1/2)

Random walk
PPMI matrix

SVD 

Matrix
factorization

𝐔|𝒱| × $

𝐕⊺$ × 𝒱

𝚺$ × $

Shape: bio-molecule type
Color: clusters

Embeddings (Ω!) 

𝐔$(𝚺$)&

Multilayer Graph Embeddings for Omics Data Integration in Bioinformatics 1

(a) Embedding a multilayer heterogeneous network

Representation Learning (2/2)

• Homogenous multilayer networks

Random walk
PPMI matrix

SVD 

Matrix
factorization

𝐔( 𝒱 × $)× &

𝐕⊺&×( 𝒱 × $)

𝚺&
Embeddings (Ω!) 

𝐔 &(𝚺&)(

Multilayer Graph Embeddings for Omics Data Integration in Bioinformatics 2

(b) Embedding a multilayer homogeneous network

Figure 3.5: Embedding multilayer heterogeneous and homogeneous networks
using BraneNet. (a) Heterogeneous networks. The PPMI matrix M is decomposed
into U,Σ and V matrices using Singular Value Decomposition (SVD). U and V are
the singular vector matrices and Σ is the singular value matrix. The embeddings
are computed by taking the product of d columns of U and the top d values of the
diagonal matrix, where d is the size of the embedding. We use weighted Σ values
whose weights are given by parameter γ . (b) Homogeneous networks. The PPMI
matrix M is factorized using SVD, where the singular vector matrices U and V are
obtained of size |V | ×L. That is, the embeddings are learned for each node in each
layer. To obtain a joint embedding, post-operations on the embeddings learned
per layer are performed (e.g., taking a point-wise average).

3.5 BraneMF: Multilayer Network Embedding by
Jointly Decomposing Random Walk Matrices

With the concept of joint matrix factorization that generalizes random walk-based
network embedding models, we introduce BraneMF. BraneMF is an integration
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framework to learn protein features from multiple PPI networks. A schematic
representation is given in Fig. 3.6. Firstly, we compute a random walk-based
multilayered PPMI matrix that captures node proximity. Secondly, we learn pro-
tein features by jointly factorizing the layers of this matrix using SVD. Lastly, we
utilize the learned protein features for various prediction tasks. More precisely,
BraneMF brings the best of two worlds: expressiveness of well-celebrated ran-
dom walk-based embedding models (e.g., DeepWalk, node2vec) and the solid
formulation of matrix factorization—going further by extending them to integrate
multiple sources.
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Ωd = Ud

(
Σ̄d

)γ
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1
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i=l
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Figure 3.6: Schematic representation of BraneMF. The framework takes as input
a set of PPI networks represented by their adjacency matrices A(l), l ∈ {1,2, . . . ,L}.
For each PPI network, the random walk matrix M(l) is computed. For integrative
analysis, we learn protein features by jointly decomposing these random walk
matrices M(l) into UΣ(l)V>. The protein features Ωd are given by Ud(Σ̄d)γ , where
d is the embedding dimension, and t is a factor that scales the magnitude of the
singular values.

3.5.1 Computation of random walk-based PPMI matrices

Network properties, particularly topological ones, can unravel important
information about the graph structure. While handling multiple heterogeneous
networks that correspond to diverse characteristics, it is essential to extract
relevant information concealed in their topology. We aim to extract such
information from a multilayer graph G, constructing a set of PPMI matrices that
can delineate node similarity via random walks. Random walks, defined as node
paths that consist of a series of random steps on the graph, have been utilized as a
similarity measure for a variety of problems in graph theory.
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The PPMI matrix M(l) for graph layer l, can be computed using the closed form of
the DeepWalk matrix M(l) as shown in Eq. (3.10) and Eq. (3.11). The set of PPMI
matrices M = {M(l)}Ll=1 for a multilayer graph G is given by:

M =

log

vol(Gl)
bt

1
t

t∑
r=1

(
P(l)

)r(D(l)
)−1



L

l=1

. (3.12)

Each matrix M(l) corresponds to the DeepWalk matrix of Gl when the length of
random walks goes to infinity. In this regard, M(l) is different from the PPMI
matrices computed in previous approaches. As discussed in Sec. 2.5, the PPMI
matrix for deepNF and Mashup is computed using Random Walks with Restart
(RWR), considering an additional parameter that controls the restart probability
of the random walk. Despite both capturing node proximity, the DeepWalk matrix
significantly differs from RWR; the formulation ensures that its latent factors will
derive embeddings that capture node co-occurrences in random walks.

3.5.2 Joint representation learning for multilayer networks

The set of matrices M computed as above captures node proximity that still
represents high-dimension protein features. As a consequence of the curse of di-
mensionality, these features are not compatible with downstream prediction tasks.
Therefore, we want to obtain low-dimension integrated protein features that could
be easily fed to any downstream machine learning tasks of interest. Nevertheless,
our integration framework is developed on the construction of random walk-based
PPMI matrices, Equation (3.12), on which joint matrix factorization is eventually
performed. In order to learn the spectrum of one layer in graph G, the singular
values and singular vectors of its PPMI matrix M̄ can be obtained using SVD,
as M̄ = UΣV>, where U and V correspond to the left and right singular vector
matrices, and Σ is the diagonal singular value matrix. In the case of a multilayer
graph G composed of L layers, we have L symmetric PPMI matrices. As a natural
extension, we propose to approximate each PPMI matrix M(l) by a set of jointly
decomposed singular vector and singular value matrices shared by all layers, given
by: M(l) ≈ UΣ(l)V>, l ∈ {1, . . . ,L}. The same correspondence keeps, where U and
V> are orthogonal matrices containing the joint singular vectors and Σ(l) ∈R|V |×|V |
contains the corresponding singular values per layer. The minimization of the
following objective function O yields U and V:

argmin
U,V∈R|V |×|V |

O =
1
2

L∑
l=1

‖M(l) −UΣ(l)V>‖2F +
α
2

(‖U‖2F + ‖V‖2F) +
β

2
‖UV> − I‖2F , (3.13)

U and V> represent the joint orthonormal matrices, I is the |V |×|V | identity matrix,
and ‖ · ‖F denotes the Frobenius norm. The first term of the objective function O
measures the overall approximation error when all layers are decomposed over U.
The second term, the norms of U and V>, is added to improve numerical stability
for the solutions; and the last term is a constraint to ensure that V> is close to the
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inverse of U (M(l) is a symmetric matrix, thus its SVD can be given by UΣU−1).

We solve the problem in Equation (3.13) to get U and V>. Since Equation (3.13)
is not jointly convex on U and V>, we adopt an alternating scheme to find a
local minimum for O by fixing V> first and optimizing on U, and vice versa
[Don+12]. As a consequence, a good initialization is important. In practice, we
suggest to compute the SVD of the mean for all matrices M(l), and initialize U,
Σ, and V> with the resulting matrices. The stopping condition is defined by the
convergence behavior of the cost function—the difference between its values for
two consecutive iterations. Notice that, the objective function O is differentiable
with respect to matrices U and V>, whose derivation is given as:

∂O
∂U

= −

 L∑
l=1

(M(l) −UΣ(l)V>)

VΣ(l) +αU + β(UV> − I)V>,

∂O
∂V>

= Σ(l)U>
 L∑
i=1

(M(l) −UΣ(l)V>)

+αV> + βU>(UV> − I).

(3.14)

We minimize O over U and V>. U is the set of joint singular vectors, namely a joint
spectrum shared by all layers in G; Σ̄ is the joint singular value matrix computed
by taking the average of Σ(l) matrices. The integrated embeddings Ωd are obtained
by multiplying the first d columns of U scaled by the γ-th power of the singular
value magnitudes:

Ωd = Ud(Σ̄d)γ . (3.15)

This optimization process is similar to [Don+12], that uses an eigendecomposition
to find low-rank eigenvector matrices that are shared by all graph layers. However,
these matrices were not random walk-based and the joint decomposition is per-
formed differently. The joint SVD process described above is essentially based on
integrating information from multiple graph layers. It tends to treat each graph
equitably, building a solution that smoothens out the specificities of each layer.
The BraneMF algorithm is given in Alg. 3.

3.6 Downstream Tasks

We demonstrate the applicability of learned features from the proposed models
for essential multi-omics inference tasks. The overview of downstream tasks is
shown in Figure 3.7. Each downstream task is detailed below.

3.6.1 Gene Regulatory network inference

Gene regulatory networks (GRN) impart how signals propagate through
biomolecules and result in transcriptomic modifications. These regulatory
networks are computational modules of a biological system that carry out
decision-making processes. They enable us to determine the ultimate response
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Algorithm 3 BraneMF
Input: Multilayer graph Gl , l = 1, . . . ,L;
Parameters: window size: T , embedding dimension: d, and weighting
factor: γ
Output: d-dimension protein features, Ωd

1. For each Gl , obtain its degree matrix D(l) and adjacency matrix A(l)

2. Compute power matrix P
(1)
, . . . ,P

(T )
for each l in Gl (where P = D−1A)

3. Compute PPMI matrix M(l) for G as given in Equation 3.12

4. Solve the optimization problem in Equation 3.13 to obtain U and Σ̄

5. Compute protein features Ωd = Ud(Σ̄d)γ

return Ωd

of an organism to a stimulus. Although there has been an intense research
effort on GRN inference using gene expression for more than a decade, and
much progress has been made, it remains a challenging problem [Pir+15a; Pir+17].

Even the most sophisticated inference techniques are far from perfect. Mainly by
leveraging gene co-expression networks with the relationships between regulators,
such as transcription factors (TFs) and the target genes they control, one can
achieve a better understanding of regulatory interactions, providing us the
access points to modulate such responses [Kso+21; Van+18b]. However, it is a
challenging task to effectively combine this information in such a way that the
rich and relevant features from the input datasets are preserved. Indeed, recent
breakthroughs in graph representation learning have inspired us to solve the
GRN inference task by modeling heterogeneous datasets as multilayer graphs
and encoding latent representations for them. Here, we propose to integrate
co-expression and TF-target networks.

First, we build a gene co-expression network from 61 microarray experiments
deposited in NCBI-GEO database [Bar+12]. To define co-expression, the Pearson
correlation for each gene pair was computed. Two genes are connected by an
edge if the correlation between them is greater than 0.9 [Du+19]. Then, we infer
TF-target relationships by using TFBS deposited in JASPAR database [For+20]
and promoter sequences of genes [Eng+14]. We scan the TFBS in the promoters
using the matrix-scan tool in RSAT [Ngu+18], and we infer the edges based on the
presence of binding sites in the promoter of the gene. For the same set of nodes, a
multilayer network is constructed from the co-expression and TF-target networks.
We learn node embeddings using the proposed models described in Section 3.2.
To infer regulatory interactions from the learned embeddings, we define the
similarity between the embedding vectors by computing the cosine similarity
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Figure 3.7: Illustration of the downstream tasks. After learning embeddings
with the proposed models, we evaluate their performance using above mentioned
downstream tasks and compare them with the baseline methods.

for each TF-gene interaction. Let u and v be the TF and gene, respectively. The
embedding vectors for two nodes u and v is given by Ω[u] and Ω[v]. Their cosine
similarity can be derived by using the Euclidean dot product formula:

Ω[u] ·Ω[v] = ‖Ω[u] ‖ ‖Ω[v] ‖ cosθ. (3.16)

Given two vectors of attributes, Ω[u] and Ω[v], the cosine similarity, cos(θ), is
represented using a dot product and magnitude as:

SC(Ω[u],Ω[v]) := cos(θ) =
Ω[u] ·Ω[v]
‖Ω[u]‖ ‖Ω[v]‖

=

n∑
i=1

Ω[u]iΩ[v]i√
n∑
i=1

Ω[u]2
i

√
n∑
i=1

Ω[v]2
i

, (3.17)

where Ω[u]i and Ω[v]i are components of vector Ω[u] and Ω[v] respectively. The
resulting similarity ranges from 1, meaning exactly opposite, to 1, meaning exactly
the same, with 0 indicating orthogonality or decorrelation, while in-between
values indicate intermediate similarity or dissimilarity. The illustration of the
GRN inference is shown in Figure 3.8.
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Figure 3.8: Illustration of the GRN inference task. Embeddings are computed
by integrating the gene co-expression network and TF-target network. TF-target
interactions are then inferred using the similarity score defined by computing the
scalar product for each TF-gene interaction. The inferred GRN is compared with
the reference GRN of yeast obtained from the YEASTRACT database.

3.6.2 Protein function prediction

Protein function prediction is a crucial part of genome annotation. It is generally
accomplished through manual or computational annotation [Coz+13]. The former
approach is the gold standard because it is implemented by expert annotators
and yields high-quality curated results [SW10]. Nonetheless, this approach
is expensive and laborious, and thus, it is difficult to scale. Therefore, due to
the availability of omics data, computational annotation methods have been
developed to improve the accuracy of the protein function prediction [SW10].
Gene Ontology (GO) [Con04] is the most comprehensive resource. It has all the
desirable properties of a functional classification system, including a controlled
vocabulary describing the functional properties of biomolecules (e.g., genes,
proteins, and RNA). Each ontology belongs to one of three categories: Molecular
Function (MF), Cellular Component (CC), and Biological Process (BP).

We model the problem of protein function prediction as a multi-label node classi-
fication task. We use the learned features, Ωd , to train a Support Vector Machine
(SVM) classifier and predict probability scores for each protein. We use the SVM
implementation provided in the LIBSVM package [CL11]. To measure the perfor-
mance of the SVM on the embedding vectors, we adopt a 5-fold Cross Validation
(CV) process [CBP16; GBB18]. We split all the annotated proteins into a training
set, comprising 80%, and a test set, comprising the remaining 20% ones. We train
the SVM on the training set and predict the function of the test proteins. We use
the standard Radial Basis Function (RBF) for SVM and perform a nested 5-fold
cross-validation within the training set to select the optimal hyperparameters of
the SVM via grid search (i.e., δ in the RBF kernel and the weight regularization
parameter C). All performance results are averaged over 10 different CV trials.
The evaluation metrics micro- Area Under Precision-Recall Curve (AUPR), Macro
(M)-AUPR , Accuracy (ACC), and F1 utilized for protein function prediction are
mentioned in Section 3.7. The illustration of the protein function prediction task
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is shown in Figure 3.9.
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Figure 3.9: Illustration of the protein function prediction task. For each protein,
a d-dimension embedding vector is computed from STRING PPI networks using
the proposed models. These features, along with known GO terms (labels), are
given as input to the SVM model. 5-fold cross-validation (CV) is performed over
10 trials.

3.6.3 Clustering of functionally related proteins

Proteins interacting in PPI networks are seen to be physically or functionally
related [Saf+14]. After performing integration, we would like to investigate the
clustering of related proteins in the embedding space. We expect the embeddings
to preserve/enhance this relatedness among proteins. First, we utilize k-means
clustering [AV07] and then evaluate the obtained clusters using the YeastEnrichr
tool [Kul+16; Sub+05]. The illustration of the clustering task is shown in Figure
3.10.

Neighborhood

Fusion

Co-occurence

Co-expression

Experimental

Database
latent space

Multilayer 
Network

Embeddings

• BraneExp
• BraneMF
• BraneNet

k=1, 2, 3…..,K

K-means
Clustering

GO 
Enrichment

YeastEnrichr
database

Figure 3.10: Illustration of the clustering task. For each protein, a d-dimension
embedding vector is computed from STRING PPI networks using the proposed
models. These features are utilized to perform clustering with the k-means algo-
rithm. The functional analysis of the obtained clusters is performed using the
YeastEnrichr tool.
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3.6.4 Protein Protein Interaction (PPI) prediction

This task is very similar to the link prediction task usually performed to evaluate
graph representation learning methods in social network analysis domain [Per+17;
GL16; ÇM20]. We estimate the probability of interactions between proteins in
a multilayer PPI network. Nevertheless, it is well known that PPI networks are
incomplete. Therefore, to predict the unseen interactions, we train a model on a
part of PPIs. We divide the PPI interaction in a given multilayer network G into
two parts to form training and test sets by randomly removing 50% of the edges
(PPIs). We keep the network connected during the process by selecting the largest
connected component. Additionally, we obtain the same number of edges that do
not exist in G. With the PPI prediction task, we aim to predict missing or new
edges. The proposed models learn node embeddings, but for this task, we are
interested in having edge embeddings. Therefore, we obtain edge embeddings
using the node features that are computed using the proposed models. The node
embedding vectors E[u] and E[v] of nodes u and v are converted into edge feature
vectors by applying the coordinate-wise operations as given below:

Consider nodes u and v. To compute features for a candidate edge between node u
and v, we first extract node features Ω[u] and Ω[v] respectively. Then, we perform
coordinate-wise operations (Hadamard product, cosine distance) as follows:

1. Hadamard product:
Ω[u]i ×Ω[v]i (3.18)

2. Cosine distance:

1− Ω[u]i .Ω[v]i
‖Ω[u]i‖ ‖Ω[v]i‖

,

where Ω[u]i is the ith index the embedding vector Ω[u] of node u. We train the
Logistic Regression (LR) model with L2 regularization. We report the Area Under
Curve (AUC) score of the operators showing the best performance for each method.
The illustration of PPI prediction is shown in Figure 3.11.

3.6.5 Network reconstruction

A key challenge in biology is to understand complex molecular interactions
among genes and proteins. Despite of the large available omics datasets, the
complete interactome of the cellular processes is still understudied. We aim to
reconstruct the interactome using heterogeneous omics data sources. Network
reconstruction is a process that involves inferring a network by performing
integration on a multilayer network. The inferred network is expected to reflect
the edges in all layers of the input network. In this study, we aim to reconstruct a
protein-protein interaction network using the trained embeddings.

Firstly, expecting to capture the interaction patterns for each protein from all
layers in the input network. Secondly, we expect to reconstruct the reference
network to evaluate if the embeddings can recover the known interactions. Lastly,
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Figure 3.11: Illustration of protein-protein interaction (PPI) prediction. 50%
of PPI interactions from STRING multilayer PPI network are removed to form
the training and test datasets. Embeddings are learned for each protein using the
training data as input. From the learned embeddings, edge features are computed
for PPI present in the input graph (label = 1) and the edges that do not exist in the
input graph (label = 0). A Logistic Regression (LR) model is trained, and the PPI
existence probability is calculated. The prediction is performed on the test data,
and the performance is evaluated by computing AUC.

we are also interested in investigating newly inferred edges. We consider that
if embedding vectors for a gene pair are close in embedding space, they are
likely to share some hidden information. So, to identify such pairs, we compute
euclidean distance or dot product from embedding vectors for each gene-gene
pair. Then, based on the distribution of distances, we apply a threshold to select
the interactions with the least distance. We assume that if the embedding vectors
for a protein pair are close in the embedding space, they are likely to be related
and share some hidden information. To identify such pairs, we compute the
scalar product from embedding vectors for each protein-protein pair. Further, we
evaluate the reconstruction by comparing the inferred PPIs with the reference
integrated network from the STRING database. The illustration of the network
reconstruction task is shown in Figure 3.12.

3.7 Evaluation Metrics

Evaluation metrics play an important role in achieving the prediction model dur-
ing the learning phase. Hence, the selection of appropriate evaluation metrics is
crucial for discriminating and obtaining the optimal classifiers [HS15]. Evaluation
metrics have been employed in two stages, which are the training stage (i.e., the
learning process of the model) and the testing stage (i.e., prediction evaluation)
[HS15]. In the binary classification problem, the evaluation of the prediction
performance can be defined based on the confusion matrix, as shown in Table 3.4.

• tp: True positive

• tn: True negative
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Figure 3.12: Illustration of the network reconstruction task. The Protein em-
beddings are computed by integrating the multilayer STRING PPI network. The
PPI network is reconstructed using the similarity score defined by computing the
cosine similarity for each protein-protein interaction. The inferred PPI network is
compared with the reference PPI of yeast obtained from the STRING database.

• f p: False positive

• f n: False negative

tp and tn denote the number of positive and negative instances that are correctly
classified. Meanwhile, f p and f n denote the number of misclassified negative
and positive instances, respectively. From Table 3.4, several commonly utilized
metrics can be generated as shown in Table 3.5 to evaluate the performance of
the classifier focusing on different aspects of the evaluation. Due to multiclass
classification problems, a few of the metrics listed in Table 3.5 have been extended
for multi-class classification evaluations (see the last four metrics) [HS15].

The Area Under the Precision-Recall curve (AUPR) and the Area Under the
Receiver Operating Curve (AUROC) are the popular ranking type metrics that
are utilized to construct an optimized learning model and also for comparing
learning algorithms.

The AUPR curve is calculated as the area under the Precision and Recall (PR)
curve. A PR curve shows the trade-off between Precision and Recall across
different thresholds. The x-axis of a PR curve is the recall, and the y-axis is the
precision. A PR curve starts at the upper left corner, i.e., the point (recall = 0,
precision = 1), which corresponds to a threshold of 1. Whereas a PR curve ends
at the lower right, where recall = 1 and precision is low. This corresponds to a
threshold of 0. The points that create the PR curve are obtained by calculating the
precision and recall for different thresholds between 1 and 0.

The area under the receiver operating characteristic (AUROC) is a performance
metric that you can use to evaluate classification models. AUROC is thus a
performance metric for “discrimination": it tells you about the model’s ability to
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discriminate between different classes. The AUROC is calculated as the area under
the ROC curve. A ROC curve shows the trade-off between true positive rate (TPR)
and false positive rate (FPR) across different decision thresholds. A ROC curve
always starts at the lower left-hand corner, i.e., the point (FPR = 0, TPR = 0) which
corresponds to a threshold of 1. A ROC curve always ends at the upper right-hand
corner, i.e., the point (FPR = 1, TPR = 1) which corresponds to a threshold of 0.
The points in between, which create the curve, are obtained by calculating the
TPR and FPR for different thresholds between 1 and 0.

Actual Positive Class Actual Negative Class

Predicted Positive Class True positive (tp) False negative (f n)
Predicted Negative Class False positive (f p) True negative (tn)

Table 3.4: Confusion Matrix for Binary Classification.

Matthews Correlation Coefficient (MCC): MCC is another way to evaluate per-
formance. It measures the differences between the actual values and the pre-
dicted ones. The advantages of MCC over Precision-based metrics are shown
in recent articles [CJ20]. For the edges with similarity score δi,j higher than a
threshold(θ ∈ {0.1,0.2, . . . ,0.9}), we compute MCC,

True Negative (TN)×TP−False Negative (FN)×FP√
(TP + FP)(TP + FN)(TN + FP)(TN + FN))

. (3.19)
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Metrics Formula Definition

Accuracy (acc) tp+tn
tp+tn+f p+f n measures the ratio of correct pre-

dictions over the total number of
instances evaluated

Sensitivity (sn) tp
tp+f n measures the fraction of positive

patterns that are correctly classi-
fied; True Positive Rate (TPR)

Specificity (sp) tn
tn+f p measures the fraction of negative

patterns that are correctly classi-
fied; True Negative Rate (TNR)

Precision (p) tp
tp+f p measures the positive patterns

that are correctly predicted from
the total predicted patterns in a
positive class

Recall (r) tp
tp+tn measures the fraction of positive

patterns that are correctly classi-
fied

F-1 score (f 1) 2×p×r
p+r represents the harmonic mean

between recall and precision val-
ues

Averaged Accuracy
(ACC)

∑y
i=1

tpi+tni
tpi+tni+f pi+f ni

y average effectiveness of all y
classes

Averaged Precision
(P )

∑y
i=1

tpi
tpi+f pi
y average of per-class precision

Averaged Recall (R)
∑y
i=1

tpi
tpi+tni
y average of per-class recall

Averaged F-1 (F1)
score

∑y
i=1

2×pM×rM
pM+rM
y average of per-class f-1 score

Table 3.5: Metrics for classification evaluations. Each class i ∈ Y ; tpi - true
positive for Yi ; ; f pi - false positive for Yi ; f ni – false negative for Yi ; tpi - true
negative for Yi ; and M macro-averaging
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Next, we define the metric utilized for the evaluation of the performance in
clustering task 3.6.3 using the Enrichment Score (ES).

Enrichment Score (ES)

Consider a gene set Gk, where k = 1, . . . ,K . Gk consists of a list of nk genes (gkj),
i.e., Gk = {gkj : j = 1, . . . ,nk}. Each gene in the set is represented in the ranked list
L. The set of genes outside of Gk is defined as as Ḡk = {ḡkj : 1, . . . ,n − nk}. The
Enrichment Score (ES) for a given gene set Gk is given as:

ES = sup
1≤i≤n

(
F
Gk
i −F

Ḡk
i

)
,

where sup(·) is the supremum, i represents the position in L, and

F
Gk
i =

∑i
t=1 |st |α.1genet∈Gk∑n
t=1 |st |α.1genet∈Gk

,

F
Ḡk
i =

∑i
t=1 |st |α.1genet∈Ḡk

n−nk
,

where 1 is the indicator function for the membership in a given gene set. st is
given by correlation of gkj and weighted by α [Sub+05; Iri+09].
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4
Results and Discussion

This chapter is dedicated to the results of downstream tasks that are explained in the
previous chapter. First, we provide the parameter selection strategy adopted for the
proposed models as well as baseline models for each downstream task. Secondly, we test
the performance of the proposed models for each downstream task, comparing them to
the baseline models.

−−−F−−−

4.1 Parameter Selection

All multilayer network integration methods that are based on machine learning
and mathematical models require tuning a certain set of parameters to learn
protein features. From the model description given by each method in their
respective research article, we highlight parameters that could be tuned to improve
the model performance. The remaining parameters that have little impact on
performance have been set to default values. In Table 4.1, we provide the required
parameters that are tuned for each method. Note that the representation in Table
4.1 is simplified to show the dependency of baseline methods on the different
parameters. For some methods, a direct comparison of parameters is not possible
since they may share different parameter spaces. We adopt this approach to
simplify the parameter selection strategy.

1. Embedding size (d): the size of the protein feature vector. Its dimensionality
is typically much lower than that of the ambient space. We chose d ∈
{128,256,512,1024}.

2. Walk length (w): it is a parameter to select the length of a node set one
would like to obtain while performing random walks on a graph. For in-
stance, a walk of length 5 is defined as “proteinA proteinB proteinC proteinD
proteinX". We chose w ∈ {15,20}.

3. Window size (t): the number of nodes (proteins) that will be used to deter-
mine the context of each node (protein). For instance, in a walk of length

55



Method d t w n σ e γ pr r b

BraneMF 3 3 7 7 7 7 3 7 7 7

BraneNet 3 3 7 7 7 7 3 7 7 7

BraneExp 3 3 3 3 7 7 7 7 7 7

Graph2GO 3 7 7 7 3 3 7 7 7 7

MultiVERSE 3 3 7 7 3 7 7 3 3 7

OhmNet 3 3 3 3 7 7 7 7 7 7

Multi-n2v 3 3 3 3 7 7 7 7 7 7

MultiNet 3 3 3 3 7 7 7 7 7 7

DeepNF 3 7 7 7 7 3 7 3 3 3

Mashup 3 7 7 7 7 7 7 3 7 7

SNF 3 3 7 7 7 7 7 7 3 7

Table 4.1: Overview of parameters considered for tuning. Green-coloured ticks
indicate that the method depends on the respective parameters. Red crosses show
that the method does not depend on a particular parameter.

3, such as, “proteinA proteinB proteinC”, a window size of 2 would mean
your samples are like (proteinA proteinB) or (proteinB proteinC). We chose
t ∈ {2,4,6,8,10}.

4. Number of walks (n): this parameter allows the selection of the number of
random walks that will be sampled per node (protein). We chose n ∈ {10,20}.

5. Learning rate (σ ): it is a hyper-parameter that controls how much we are
adjusting the weights in the learning process with respect to the gradient of
the loss function. A lower σ represents a smaller step along the downward
slope. We chose σ ∈ {0.1,0.01,0.001,0.0001}.

6. Number of epochs (e): an epoch is one learning cycle where the learner
sees the whole training data set and calculates the error rate. We chose
e ∈ {60,80}.

7. Restart probability (pr): this parameter is used in models that rely on
Random Walks with Restart (RWR). While performing random walks, at
each iteration, the walker can also restart by jumping to any randomly
selected node in the graph with a defined restart probability. We chose
pr ∈ {0.8,0.85,0.9,0.95}.

8. Gamma (γ): it is a weighting factor used by our BraneMF model. It rep-
resents the power to be applied on the singular values (Σ̄) used for the
computation of the embeddings (please see line 5 of Alg. 3). We chose
γ ∈ {0,0.25,0.50,0.75,1}.

9. Number of samples (r): it is the parameter to choose the number of times
we would like to perform Random Walk with Restart (RWR). We chose
r ∈ {2,3,4,6}.
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Method Parameters

SNF r = 6; t = 10
Mashup pr = 0.8
deepNF b = 64; r = 4;pr = 0.95;e = 80
MultiNet w = 20;n = 20; t = 10
Multi-n2v w = 20;n = 20; t = 10
OhmNet t = 10;w = 20;n = 10
MultiVERSE t = 10; r = 4;pr = 0.95,σ = 0.01
Graph2GO e = 80;σ = 0.01
BraneExp w = 20;n = 10; t = 10
BraneMF t = 10;γ = 1
BraneNet t = 10;γ = 0.5

Table 4.2: Model parameters. The above table shows the parameters selected for
the clustering and protein function prediction tasks.

10. Batch size (b): it is the number of samples that will be used for training at
one time. We chose b ∈ {32,64,128}.

4.2 Clustering of Biological Related Proteins

As mentioned in Section 3.6.3, we perform clustering of node embeddings to
obtain groups of similar nodes. Moreover, we are interested in identifying if
the obtained clusters share a biological similarity. Therefore, we examine the
ability of the learned features to cluster functionally related proteins. We have
performed an unsupervised clustering of proteins with the learned embeddings,
Ωd , using the k-means++ clustering algorithm [AV07] for k ∈ {20,40,60,80,100}.
We execute the clustering algorithm 20 times to take into account the randomness
in the process. For each of the obtained clusters, we perform Gene Set Enrichment
Analysis (GSEA) [Sub+05] using the “GO_Biological_Process_2018” library of
the YeastEnrichr database [Kul+16] consisting of 1,649 GO terms. A cluster is
considered to be enriched if at least one GO term in a cluster is significantly
enriched (adjusted P-value < 0.05). For all significantly enriched clusters, the
performance is measured by the enrichment score (ES). For the selected parameters
(Section 4.1), we report the best performance for each method (Table 4.2).

4.2.1 Comparison to baseline methods

We have compared the performance of clustering to eight baseline methods
which have been introduced in Section 2.5. Table 4.3 shows the clustering results
measured by the average enrichment score (ES). We have reported the standard
deviation across 20 simulations. The definition of the ES metric is provided in
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Method K = 40 K = 60 K = 80 K = 100

SNF 7.2± 10.2 23.1± 6.6 15.2± 2.4 43.1± 4.1
Mashup 21.5± 0.6 30.1± 3.0 38.8± 0.4 41.9± 0.4
deepNF 25.7± 1.7 22.7± 1.2 26.3± 1.0 26.2± 1.1

MultiNet 20.4± 2.2 22.5± 0.5 45.4± 0.0 45.4± 0.0
Multi-n2v 16.6± 2.4 24.7± 0.9 46.6± 0.1 46.6± 0.1

OhmNet 15.1± 7.2 35.1± 0.2 45.1± 0.3 45.1± 0.4
MultiVERSE 16.4± 10.4 13.7± 0.9 20.1± 0.0 20.4± 0.0

BraneExp 21.0± 6.7 41.9± 1.4 45.4± 0.0 45.4± 0.0
Graph2GO 21.3± 1.7 22.5± 11.9 25.5± 11.9 30.4± 7.7

BraneNet 20.1± 4.02 37.5± 3.3 42.4± 5.2 45.6± 2.04
BraneMF 24.05± 9.3 46.2± 5.5 48.9± 4.28 49.5± 3.38

Table 4.3: Clustering: comparison to baselines. Performance of the proposed
models compared to the baselines, measured by ES standard deviation computed
for all 20 runs of k-means++ clustering algorithm. The numbers in bold indicate
the best performance and underlined numbers indicate the second-best perfor-
mance.

Section 3.7. The Enrichr algorithm [Kul+16] first ranks the genes based on a
measure of correlation with a continuous phenotype. Then, the entire ranked list
is used to assess how the genes of each gene set are distributed across the ranked
list. To do this, the algorithm walks down the ranked list of genes, increasing
a running-sum statistic when a gene belongs to the set and decreasing it when
the gene does not. The enrichment score is the maximum deviation from zero
encountered during that walk. The ES reflects the degree to which the genes in
a gene set are over-represented at the top or bottom of the entire ranked list of
genes. A set that is not enriched will have its genes spread more or less uniformly
through the ranked list. An enriched set, on the other hand, will have a larger
portion of its genes at one or the other end of the ranked list. A higher value of ES
shows that clusters are enriched with a high number of over-represented terms
[Kul+16].

In Table 4.3, it is observed that for K = 60,80, and 100 the mean ES score
of BraneMF is the highest, and the mean ES of BraneExp and BraneNet are
the second highest. For K = 40, deepNF is the best-performing method, and
BraneMF shows the second-best performance. Comparing BraneMF to the
other proposed models, BraneMF’s mean ES score exceeds three and four
units BraneExp and BraneMF, respectively. However, overall from all the
results, it was observed that for each K all the methods have at least one
significantly enriched cluster. Nevertheless, this is our preliminary analysis to
show the ability of the learned embeddings to cluster functionally related proteins.
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From the above results, we ask our second biological question. Can the learned
embeddings be used as features to predict protein functions? To answer this, in the
next section, we apply the learned embeddings in the protein function prediction
task.

4.3 Protein Function Prediction

We now investigate the ability of learned features to predict protein functions.
Our multilayer-based integration approach allows us to obtain low-dimensional
combined protein features from different PPI networks that can be used for
function prediction. In the previous section, we have shown the efficacy of the
learned embeddings to capture rich features that are biologically relevant and
represent their interaction patterns and protein similarities. Hence, we would
like to investigate the reliability of these features to predict protein functions.
We model the problem of protein function prediction as a multi-label node
classification task. We use the learned features, Ωd , to train an SVM classifier
and predict the probability scores for the functional annotations of each protein.
The functional annotation groups (level I, II, and III) of BP, MF, and CC are
used as class labels to train the SVM classifier (see Section 3.2). We use the SVM
implementation provided in the LIBSVM package [CL11].

To measure the performance of the SVM on the embedding vectors, we adopt a
5-fold cross-validation (CV) process [CBP16; GBB18]. We split all the annotated
proteins into a training set, comprising 80%, and a test set, comprising the
remaining 20% ones. We train the SVM on the training set and predict the
function of the test proteins. We use the standard radial basis kernel (RBF) for
SVM and perform a nested 5-fold cross-validation within the training set to select
the optimal hyperparameters (i.e., c and g) of the SVM via grid search. The g
parameter defines how far the influence of a single training example reaches,
with low values meaning ‘far’ and high values meaning ‘close’. The g parameters
can be seen as the inverse of the radius of influence of samples selected by the
model as support vectors. The c parameter trades off the correct classification of
training examples against the maximization of the decision function’s margin. For
larger values of c, a smaller margin will be accepted if the decision function is
better at classifying all training points correctly. A lower c will encourage a larger
margin, therefore, a simpler decision function at the cost of training accuracy. In
other words, c behaves as a regularization parameter in the SVM. The grid val-
ues for g and c are given as g ∈ 0.001,0.01,0.1,1 and c ∈ 0.1,1,10,100, respectively.

The standard metrics to evaluate multi-class classification performance are the F1
score, Precision, Recall, and Accuracy. Their definitions are provided in Section
3.7. For each CV trial, we compute m-AUPR, M-AUPR, ACC, and F1 scores. The
final results are given by averaging over 10 different CV trials. In the next section,
we investigate the added value of integration for protein function prediction.
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4.3.1 Single layer network vs multilayer network

We investigate the added value of integration for protein function prediction.
We measure the performance for each level of the respective functional category
independently. Accordingly, we show the results for nine datasets in total,
namely levels I, II, and III of BP, MF, and CC. We evaluate the performance of
the proposed models BraneExp and BraneMF. Note that, BraneNet is an early
instance of BraneMF’s integration for homogeneous multilayer networks. We
compare BraneMF, BraneNet (early integration), and late integration (Section
4.3.2). First, we learn protein features for each network layer using the respective
proposed method and then compare the performance of the features learned from
individual input networks to the integrated ones. The evaluation of results is done
by computing the F1 score (see Section 4.3). The performance of BraneExp and
BraneMF in the protein function prediction task using single network embeddings
and integrated embeddings is shown in Figures 4.1 and 4.2, respectively.

We observe that for both methods, integration outperforms individual network
embeddings in the protein function prediction task. Looking at the performance,
it is observed that CC has overall higher F1 scores compared to the BP and
MF levels. There could be two possibilities. First, the biological significance
behind this could be that cellular compartments inform us of the cellular location,
which is more specific, e.g., nucleus, cytoplasm, and mitochondria. Nevertheless,
biological processes and molecular functions are broader and more overlapping.
Second, computationally, the number of classes in CC is lower than in BP. For
instance, level I CC has 181 classes, while BP has 855 classes. Also, when we
look at the individual network layers, it is observed that the ‘Experimental’,
‘Co-expression’, and ‘Database’ networks demonstrate good performance in
all three levels, whereas the ‘Fusion’ network gives the lowest score. This
indicates the importance of the first three networks in the function predic-
tion task, compared to the ‘Neighborhood’, ‘Fusion’, and ‘Co-occurrence’ networks.

From the above experiment, we conclude that the integrated embeddings outper-
form single-layer embeddings in the classification. In the following subsection,
we explore early and late integration strategies and compare their performance to
BraneMF.

4.3.2 Integration strategies

Multilayer network integration strategies can be classified as early, intermediate,
or late integration [LWN18; GP15]. In early integration methods, datasets are
combined into a single dataset on which the model is built and the features are
learned. In the late network integration strategy, a model for each network is
built individually, and these individual network features are then combined. In
intermediate integration, the data is combined through a joint model inference.
Indeed, there is great value in developing efficient intermediate-level integration
approaches [ZLX20], capable of handling heterogeneous data and providing
insights into the functional categories of proteins (e.g., representation of
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Figure 4.1: BraneExp: single-layer vs multilayer. Performance of BraneExp ap-
plied on individual yeast STRING networks, measured by the F1 score. Parameters:
γ = 1, t = 10,d = 128. Error bars show the standard deviation across 10 CV trials.

system-level inter-relationships within biomolecules).

Early integration is performed before the modeling process, for example, merging
all networks into one. On the contrary, late integration is done after the modeling
process is applied to each network, and then it concatenates the obtained
features. BraneMF is an intermediate integration model where integration is
performed in the learning process of embedding computation. To show the
effectiveness of the intermediate level of integration, we have compared BraneMF
with BraneMF-early and BraneMF-late. In BraneMF-early, the PPMI matrix is
computed from the adjacency matrix of the network obtained by taking the union
of all six network layers. Then, d-dimensional protein features are learned. In
BraneMF-late, the protein features are learned independently for each layer,
and the final features are obtained by taking their average. The performance is
evaluated by computing the F1 score and Accuracy metrics. As we can observe
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Figure 4.2: BraneMF: single-layer vs multilayer. We compare the cross-
validation performance of BraneMF on individual yeast STRING networks, mea-
sured by F1 score. Parameters: γ = 1, t = 10,d = 128. The error bars show the
standard deviation across 10 CV trials. Error bars show the standard deviation
across 10 CV trials.

in Figure 4.3, BraneMF outperforms early and late integration strategies for all
three levels of BP, MF, and CC. There is an increase of 2% in the accuracy of BP
I when compared to BraneMF-early and an increase of 10% compared to the
BraneMF-late integration model. Also, the performance of BraneMF for MF and
CC is significantly higher than BraneMF-early and BraneMF-late under F1 and
ACC scoring schemes. Hence, BraneMF’s improvement can be partially attributed
to the fact that separately computing the random walk matrices of each individual
layer uncovers compressed topological patterns that are difficult to identify in the
combined network (BraneMF-early) model where different edge types are not
distinguished. Moreover, BraneMF has the advantage over late integration to
benefit from capturing inter-layer correlation of modalities at the feature level
which is challenging for late integration.
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Figure 4.3: Integration strategies: early, late and intermediate. Performance
of BraneMF compared to early and late integration, measured by the F1 score.
Parameters: γ = 1, t = 10,d = 128. The error bars show the standard deviation
across 10 CV trials. Error bars show the standard deviation across 10 CV trials.

4.3.3 Comparison to baseline methods

We compare the performance of the proposed models in the protein function
prediction task to eight baseline methods which are introduced in Section 2.5.
The results for BP, MF, and CC for levels I, II, and III are shown in Tables 4.4, 1,
and 2 respectively 1. The performance is measured by m-AUPR, M-AUPR, F1, and
ACC scores. The definitions of the evaluation metrics are described in Section 3.7.
We have reported the average scores with standard deviation across 5 CV trials.

For levels I, II, and III of the BP dataset, BraneMF shows comparable performance
to the baseline methods. Regarding the F1 scores, BraneMF outperforms by

1Tables 1 and 2 are given in Appendix I.
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4%, 2%, and 1% points Graph2GO and Multi-n2v, the second-best performing
models. Similarly, BraneMF achieves higher performance for m-AUPR, M-AUPR,
and ACC scores. Similarly, for MF and CC datasets, BraneMF retains its best
performance. For MF, BraneExp is the second best-performing model for
all three levels, while in CC datasets, Graph2GO and BraneExp show good
performance. Overall, we observe that protein function prediction based on
BraneMF substantially outperforms other integration methods in assigning
a previously unseen protein to its known functional categories in a CV experiment.

Note that, the embedding size (d) for all the methods is empirically selected as
128. We further investigate the effect of d on protein function prediction for the
proposed models and the baselines. The respective results are shown in Figure 12.
The performance is measured by the F1 score. For BraneMF, we see no significant
change in performance with respect to d. However, for Mashup, SNF, deepNF, and
MultiVERSE, the classification performance is increased with d.

2Figure 1 is shown in Appendix I
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Method m-AUPR M-AUPR F1 ACC

BP I
SNF 0.176± 0.01 0.224± 0.01 0.199± 0.01 0.150± 0.00

Mashup 0.362± 0.02 0.240± 0.01 0.277± 0.00 0.161± 0.01
deepNF 0.427± 0.02 0.260± 0.01 0.341± 0.01 0.211± 0.02

MultiNet 0.415± 0.02 0.257± 0.01 0.335± 0.01 0.212± 0.03
Multi-n2v 0.417± 0.02 0.250± 0.01 0.331± 0.01 0.201± 0.02

OhmNet 0.361± 0.02 0.255± 0.01 0.321± 0.01 0.063± 0.01
MultiVERSE 0.353± 0.02 0.223± 0.02 0.312± 0.01 0.117± 0.01

BraneExp 0.454± 0.02 0.280± 0.01 0.352± 0.01 0.220± 0.08
Graph2GO 0.458± 0.02 0.279± 0.01 0.340± 0.01 0.249± 0.02

BraneMF 0.504± 0.02 0.303± 0.01 0.382± 0.01 0.260± 0.02
BP II

SNF 0.220± 0.01 0.260± 0.01 0.220± 0.01 0.140± 0.01
Mashup 0.385± 0.02 0.337± 0.01 0.260± 0.01 0.130± 0.01
deepNF 0.464± 0.01 0.381± 0.01 0.309± 0.01 0.154± 0.01

MultiNet 0.458± 0.02 0.378± 0.01 0.323± 0.01 0.178± 0.01
Multi-n2v 0.494± 0.01 0.406± 0.01 0.329± 0.01 0.171± 0.01

OhmNet 0.382± 0.01 0.325± 0.01 0.285± 0.01 0.027± 0.01
MultiVERSE 0.387± 0.02 0.329± 0.01 0.293± 0.01 0.093± 0.01

BraneExp 0.474± 0.02 0.391± 0.01 0.322± 0.01 0.204± 0.03
Graph2GO 0.487± 0.02 0.398± 0.02 0.317± 0.01 0.185± 0.03

BraneMF 0.524± 0.02 0.424± 0.02 0.349± 0.01 0.219± 0.02
BP III

SNF 0.167± 0.00 0.224± 0.01 0.153± 0.01 0.052± 0.01
Mashup 0.484± 0.02 0.450± 0.01 0.289± 0.01 0.144± 0.01
deepNF 0.535± 0.01 0.478± 0.01 0.318± 0.01 0.157± 0.01

MultiNet 0.555± 0.01 0.496± 0.01 0.343± 0.01 0.189± 0.01
Multi-n2v 0.560± 0.02 0.504± 0.01 0.341± 0.01 0.185± 0.02

OhmNet 0.439± 0.01 0.411± 0.01 0.300± 0.01 0.010± 0.00
MultiVERSE 0.455± 0.02 0.422± 0.01 0.315± 0.01 0.079± 0.01

BraneExp 0.537± 0.01 0.495± 0.01 0.330± 0.01 0.183± 0.02
Graph2GO 0.568± 0.01 0.509± 0.01 0.329± 0.01 0.162± 0.01

BraneMF 0.585± 0.01 0.526± 0.01 0.350± 0.01 0.208± 0.01

Table 4.4: Protein function prediction (BP). The above table shows the results of
PPI prediction for d = 128.
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4.4 Network Reconstruction

We perform network reconstruction using the methodology described in Section
3.12. The performance of network reconstruction is evaluated using the reference
PPI network from the STRING database [Szk+20]. This integrated STRING
PPI network is weighted using a combined score [Szk+20]. We select the
edges with a combined score greater than 900, and the reference network is
obtained for 4,900 proteins and 63,309 PPIs. In practice, biological networks
show small-world properties, where nodes are linked by a short chain of
acquaintances. These properties could be extracted by focusing on important
edges in the graph. In our context of binary inference, the Precision metric
computes the accuracy of retrieving correctly inferred edges. Therefore, to
evaluate the performance of graph inference and to retrieve such relevant
information, we measure the Precision at top k inferred edges (Precision@k),
that corresponds to the number of correctly inferred edges among the top k
ones. For all the selected parameter settings, we calculate Precision@k for all
the proposed and baseline models. The selected parameters are shown in Table 4.5.

Moreover, we remove the biased of considering only top edges by measuring the
Area Under the Receiver Operating Characteristic (AUROC) curve and the Area
under the Precision-Recall (AUPR) curve. The AUROC curve summarizes the
trade-off between the true positive rate and the false positive rate for a predictive
model using different probability thresholds. It is a plot of the false positive rate
(x-axis) versus the true positive rate (y-axis) for a number of different candidate
threshold values between 0.0 and 1.0. The true positive rate (sensitivity) describes
how good the model is at predicting the positive class when the actual outcome
is positive. The false positive rate (1-specificity) is the false-alarm ratio that
calculates actual negatives that, the model has predicted incorrectly (Section 3.7).

The AUPR curve summarizes the trade-off between the true positive rate and
the positive predictive value for a predictive model using different probability
thresholds. Reviewing both Precision and Recall is useful in case of an imbalance
in the observations between the two classes (Section 3.7). Typically, the number of
negative classes is large as compared to the positive ones and, we are less interested
to calculate the performance of the model to predict the negative class correctly.
Precision and Recall metrics are only concerned with the correct prediction of the
positive class. A Precision-Recall curve is a plot of the Precision (y-axis) and the
Recall (x-axis) for different thresholds. A good Precision-Recall curve has higher
values of AUPR.

4.4.1 Single layer network vs multilayer network

Similar to Section 4.3.1, we first investigate the added value of integration. We
reconstruct the reference network using embeddings obtained from each layer
and compare the performance of network reconstruction with the integrated
embeddings. The respective results are shown in Figure 4.4. We observe
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Method Parameters

SNF r = 6; t = 10
Mashup pr = 0.95
deepNF b = 64; r = 4;pr = 0.95;e = 80
MultiNet w = 20;n = 20; t = 10
Multi-n2v w = 10;n = 20; t = 2
OhmNet t = 2;w = 15;n = 10
MultiVERSE t = 2;r = 2;pr = 0.8,σ = 0.01
Graph2GO e = 80;σ = 0.01
BraneExp w = 15;n = 20; t = 10
BraneMF t = 2;γ = 0.5
BraneNet t = 2;γ = 0.5

Table 4.5: Model parameters. The table shows the best-performing parameters
for all models.

that integration outperforms network reconstruction when compared with
single-layer embeddings. It could also be seen that embeddings learned from
the ‘Co-expression’ and ‘Experimental’ networks could reconstruct the reference
network more accurately than other input networks. This indicates the importance
of the ‘Co-expression’, ‘Experimental’ networks in the network reconstruction
task, compared to the ‘Neighborhood’, ‘Fusion’, ‘Database’, and ‘Co-occurrence’
networks.

4.4.2 Comparison to baseline methods

We perform network reconstruction for the proposed models and for the baseline
methods using the parameters described in Section 4.5. We learn embeddings
for all the eight baseline methods (Section 2.5) for d ∈ {128,256,512,1024}. The
results for Precision@k are shown in Figure 4.5. It is observed that all models
nearly achieve 100% of Precision up to the top 1,000 edges. For d = 128,256 and
512, BraneMF is the best-performing method, and Multi-node2vec (Multi-n2v) is
the second best-performing method.

We compute the AUPR and AUROC for the proposed models and compare the
performance with the baseline methods. The respective results are shown in Table
3 3. It is observed that the performance of various methods, namely SNF, Mashup,
deepNF, Graph2GO, BraneMF, and BraneNet, increases with the embedding di-
mension. Whereas the methods MultiNet, Multi-n2v, OhmNet, and BraneExp
achieve the best performance at lower dimensions. BraneExp has 5% higher AUPR

3Table 3 is given in Appendix III.
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Figure 4.4: Network reconstruction. The figure shows the added value of integra-
tion for reconstructing the STRING PPI network. The performance is measured
by AUPR and AUROC. The parameters for computing embeddings for each layer
were kept the same as the integrated ones (Table 4.5) and d = 128.

score than BraneMF and Multi-n2v, and 6% higher AUROC score than BraneMF.

4.5 Gene Regulatory Network (GRN) Inference

To evaluate the performance of GRN inference, the reference Gene Regulatory
Network (GRN for yeast was obtained from YEASTRACT database [Mon+20]. The
reference GRN has 10,257 TF-target interactions for 114 TFs and 3,813 target
genes. Integrated embeddings were learned from the co-expression network and
TF-target network. The construction of input networks and the description of the
task is provided in Section 3.8. Moreover, the GRN inference task is similar to
the network reconstruction task, where we infer the network using the computed
embeddings and evaluate its performance by reconstructing the reference network
using these embeddings. We chose the same metrics of the network reconstruction
task to evaluate GRN inference, i.e., Precision@k, AUROC, and AUPR. We learn the
embeddings for the proposed and baseline methods for d ∈ {128,256,512,1024}
using the same parameters as mentioned in Table 4.5.
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Figure 4.5: Network reconstruction. The figure shows the performance of the
proposed and baseline models for reconstructing the STRING reference network.
The performance is measured by computing the Precision@k. The x-axis repre-
sents the number of top k scoring edges inferred by the methods and the y-axis
shows the Precision at these top k edges. All the methods are compared for
d ∈ {128,256,512,1024}.

4.5.1 Single layer network vs multilayer network

Similar to the network reconstruction task, we have investigated the GRN infer-
ence using single-layer embeddings versus integrated ones. The respective results
are shown in Figure 4.6. It is observed that integrated embeddings outperform
gene regulatory network inference. In both sub-figures, the embeddings learned
from the co-expression network (transcriptomics) could infer GRN edges more
accurately than the TF target network (genomics). However, when integrated,
these embeddings could infer the top 1,000 edges accurately with the respective
dataset using both BraneMF and BraneExp.

4.5.2 Comparison to baseline methods

We perform GRN inference for the proposed models and the baseline methods
using the parameters described in Table 4.5. We learn embeddings for all the
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Figure 4.6: GRN inference. The figure shows the added value of the integration
of the gene co-expression network and TF-target network. The performance is
measured by the AUPR and AUROC curves. The parameters for computing em-
beddings for each layer were kept the same as for the case of network integration
(Table 4.5) and d = 128.

eight baseline methods (Section 2.5) for d ∈ {128,256,512,1024}. The results
for Precision@k are shown in Figure 4.7. It is observed that all models except
OhmNet, SNF, Mashup, and BraneNet achieve 100% of Precision up to the top
1,000 edges. The AUPR and AUROC curves are shown in Table 44. SNF, Mashup,
deepNF, Graph2GO, BraneMF, and BraneNet all exhibit improved performance
with respect to dimension size. On the other hand, MultiNet, Multi-n2v, OhmNet,
and BraneExp work well at smaller dimensions. Overall, BraneExp achieves the
best performance for AUPR and AUROC metrics. It has a 5% higher AUPR score
than BraneMF and Multi-n2v and a 6% higher AUROC score than BraneMF.

4.6 Protein-Protein Interaction (PPI) Prediction

The details for Protein-Protein Interaction (PPI) Prediction task are described in
Section 3.6.4. In this task, our goal is to predict the missing (unseen) PPIs (edges)
between proteins (nodes) using the learned features. We use PPIs from the 2015
and 2021 STRING networks to form training and test sets, respectively. We form
the positive training set from PPIs that did not change from 2015 to 2021, and the
positive test set from the PPIs that did not exist in 2015 but gained existence in
2021. The same number of PPIs that do not exist in both networks are sampled to
generate negative instances for each training and test sets, respectively. We first
learn embedding using proposed models and baseline methods for 2015 dataset.
We use these embeddings to predict the new edges in 2021 PPI networks. The
learned embeddings of protein u and v, given as Ωd[u] and Ωd[v], are converted

4Table 4 is shown in Appendix III.
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Figure 4.7: GRN inference I. The figure shows the performance of the proposed
models and baseline models for reconstructing the yeast gene regulatory net-
work. The performance is measured by computing Precision@k. The x-axis
represents the number of top k scoring edges inferred by methods, and the y-
axis shows the Precision at these top k edges. All the methods are compared for
d ∈ {128,256,512,1024}.

into edge feature vectors by applying the coordinate-wise Hadamard product or
cosine similarity operations [GL16]. Definitions of these operations are given in
Section 3.6.4. We perform the prediction task using logistic regression classifier
with L2 regularization. The performance of PPI prediction is evaluated based on
the AUROC and AUPR metrics. The results are shown in Table 4.6. We observe
that BraneMF has competitive and consistent behavior across almost all evaluation
metrics for the PPI prediction, achieving 1.5% higher performance (AUPR-H) than
BraneExp, which is the second-best performing model. deepNF and Mashup also
perform well under specific evaluation metrics.

4.7 Yeast Multi-omics Data Integration

As a case study, we selected the multi-omics data from yeast that contains tran-
scriptomics, epigenetics, and metabolomics data. We learn integrated embeddings
using BraneNet and BraneExp for wild-type yeast strains during a heat-shock time
course of 0, 20, and 120 minutes. Note that BraneMF is exclusive to embed multi-
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Method AUPR-H AUROC-H AUPR-C AUROC-C

SNF 0.637 0.628 0.575 0.559
Mashup 0.757 0.743 0.712 0.707
deepNF 0.764 0.747 0.490 0.480

Multi-Net 0.735 0.724 0.490 0.480
Multi-n2v 0.526 0.528 0.511 0.509

OhmNet 0.513 0.514 0.516 0.516
MultiVERSE 0.500 0.501 0.501 0.501

BraneExp 0.777 0.760 0.683 0.680
Graph2GO 0.721 0.757 0.502 0.498

BraneMF 0.783 0.747 0.725 0.682

Table 4.6: PPI prediction performance. Performance of BraneMF, compared to
the baseline methods, measured by the AUROC and AUPR for the edge features
computed by coordinate-wise operations given by Hadamard product (-H) and
cosine similarity (-C). Bold: best score, underlined: second best score.

layer networks that share the same type of nodes. To learn embeddings, BraneNet
could be an instance of BraneMF for heterogeneous multilayer networks. Here,
BraneNet and BraneExp learn features for differentially expressed biomolecules
showing heat stress response. We demonstrate the applicability of the learned
features for targeted omics inference tasks: transcription factor (TF)-target predic-
tion, Integrated Omics Network Factor (ION) inference, and module identification.
The performance of BraneNet and BraneExp is compared with existing network
integration methods. For this experiment, BraneNet is used as the base model,
whereas BraneExp is used in the evaluation with other baselines, namely, MOSS
[Gon+22], deepNF [GBB18], MultiNet [BK18], and OhmNet [ZL17].

4.7.1 Data description

Yeast multi-omics datasets are obtained by the same yeast sample presenting three
basic layers of the transcriptional circuit, including one type of epigenetic modifi-
cation (H4K12ac mark for identification of active promoters obtained from ChIP-
Seq), gene expression (RNA-seq), and targeted metabolomics (NMR) [Nuñ+20].
The dataset is comprised of 7,126 genes, 1,970 H4K12ac peaks, and 37 metabolites.
To obtain this data, the yeast culture flask was grown at 30◦C until the exponential
phase. This culture was split into three different flasks. One flask was maintained
at 30◦C and labeled as 0 minute (t0). The other two flasks were incubated at 39◦C
for 20 minutes (t20) and 120 minutes (t120), respectively. Aliquots from all three
flasks (t0, t20, and t120) were collected for ChIP-seq (epigenomics), RNA-seq
(transcriptomics), and NMR (metabolomics). This process was repeated four times
to generate four biological replicates. The datasets were pre-processed using
various bioinformatics tools [Nuñ+20]. These consistent datasets, dedicated to the
study of the heat stress response, appear as a good candidate to test and evaluate
our proposed omics data integration methodology. We recall the experimental
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setup and summarize the workflow in Figure 4.8.
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Figure 4.8: Experimental design and BraneNet processing workflow. The setup
of wet-lab experiments (steps 1, 2, and 3) are taken from the data descriptor
article [Nuñ+20]. Steps 4, 5, and 6 perform dataset collection and prepossessing
before integration. (7) Learn embeddings using BraneNet. (8-10) Downstream
bioinformatics tasks.

4.7.2 Differential expression analysis

Genes, metabolites, TFs are hereafter referred to as biomolecules. More generally,
genes are regulated by TFs. Therefore, we separate TFs (genes coding for TFs)
and non-TFs (genes not coding for TFs) from transcriptomics data. Now, to obtain
differentially expressed biomolecules, we first take the average of control samples
in the four biological replicates. Then, we compute the log2 of Fold Change
(log2FC) for each bio-molecule in eight test samples (four in t20 and four in t120)
by taking its ratio against the average of four control samples (t0). For each test
sample, we select non-TFs if log2FC is higher than 2 (over-expressed) or lower
than −2 (under-expressed). However, it is well known that expression TFs do
not vary considerably as compared to non-TFs [Dal+12]. Therefore, we lower the
threshold of log2FC for genes encoding for TFs (TFs). TFs were considered as
differentially expressed if log2FC is higher than 1 (over-expressed) or lower than
−1 (under-expressed). For metabolites and H4K12ac peaks, we choose the log2FC
threshold similar to TFs. If a log2FC value is meaningful with respect to the above
thresholds in at least one biological replicate, we consider the corresponding
bio-molecule as differentially expressed.
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4.7.3 Construction of intra-omics and inter-omics networks

Intra-omics networks are constructed using the same type of biomolecules, for
example, gene-gene co-expression or metabolite-metabolite correlation networks.
These networks are built on data obtained from multi-omics experiments, for
instance, genomics, epigenetics, transcriptomics, proteomics, and metabolomics.
We obtain differentially co-expressed biomolecules by computing the Pairwise
Pearson correlation coefficient (ρ) [ZH05] of log2FC profiles described above,
i.e., log2FC for the eight samples (four in t20 and four in t120). Two intra-omic
elements were said to be correlated if the absolute value of ρ is higher than
0.8. These intra-omic correlation networks are represented as a set of adjacency
matrices.

Inter-omics networks link biomolecules of different types. They are constructed
using biological a priori information showing the presence of TF binding sites or
H4K12ac epigenetic marks in the promoter of the gene, biochemical reactions
within genes, and metabolites. This information can be acquired from various
bioinformatics databases such as SGD [Che+98], YEASTRACT (Yeast Search for
Transcriptional Regulators And Consensus Tracking) [Tei+18]), YeastPathways
[Che+98], and BioCyc [Kar+19]. This a priori knowledge bridges the gap to relate
two different omics types, for instance, gene-metabolite, TF-target, and gene-
epigenetic mark. For each differentially expressed bio-molecule of one type (e.g.,
gene), we obtained its relationship with a bio-molecule of another type (e.g., TF
and metabolite).

4.7.4 Downstream tasks

The embeddings learned from BraneNet and BraneExp can be used for various
downstream tasks, for instance, TF-target prediction, ION inference, identification
of biomarkers (e.g., heat stress-responsive genes/TFs), identification of biologically
related clusters, and visualization. Their details are shown below.

TF-target prediction

To predict TF-targets, we adapt the traditional link prediction task [LK07] to
TF-target networks. We use the largest connected component of the TF-target
network. Then, we split the targets of each TF into two parts to form positive
training and test sets by randomly removing 50% of them. The same number
of TF-target pairs that do not exist are sampled to generate negative instances
for each training and test sets. The learned embeddings Ωd are used to compute
edge features. In particular, the embeddings of node i and j of size d, given
by Ωd[i] and Ωd[j] respectively, are converted into edge feature vectors using
element-wise operations [GL16; ÇM20] (i) average: (Ωd[i] +Ωd[j])/2; (ii) weighted
L2: |(Ωd[i]−Ωd[j])|2. Now, for each positive and negative test and training dataset
generated above, edge features are computed. Then, we perform prediction using
the logistic regression classifier with L2 regularization [Ped+11]. The performance
is measured using the area under the Precision-Recall curve (AUPR) [FK15]. The
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performance of BraneNet and BraneExp for TF-target prediction is compared with
baseline methods.

ION inference

To infer an ION from the learned embeddings, the pairwise similarity score for
nodes i and j is defined as:

θi,j = Ωd[i] · Ωd[j] =
d∑
i=1

Ωd[i]Ωd[j]. (4.1)

To validate this network, we compare it with the gold-standard (GS) network
of yeast that is built by combining networks from multiple databases, such as
BIOGRID [Oug+21], STRING [Szk+20], and YEASTRACT [Mon+20]. The per-
formance of ION inference is measured by computing the Matthews Correlation
Coefficient (MCC) and the Precision@k (Section 3.7).

Module detection

Interestingly in biological networks, the clustering or community structure prop-
erty is present, under which the graph topology is organized into modules com-
monly called communities or clusters. To obtain these modules, we first select
the top-scoring edges (θ = 0.7). Then we find clusters using a greedy modularity
maximization algorithm [CNM04b]. We select the obtained modules having more
than 10 nodes. To validate the obtained clusters, we investigated their biolog-
ical meaningfulness by performing functional annotation enrichment analysis
[Den+03; Bin+09].

Comparison to baseline methods

We compare the performance of link prediction and ION inference using the
embeddings learned by BraneNet and BraneExp with existing multilayer network
embedding methods. We choose OhmNet [ZL17], MultiNet [BK18], deepNF
[GBB18] and MOSS [Gon+22] as our baseline methods. These network integration
methods are not specifically developed for multi-omics integration considering
biological a priori knowledge to learn node embeddings. Therefore, we adapt
the existing methods for learning embeddings and performing downstream tasks
by keeping the same empirical parameter settings as of BraneNet. Apart from
deepNF, all baseline models mainly depend on the window size (t) and embedding
dimension (d). For deepNF, we choose to keep the default model architecture
configuration proposed by the authors [GBB18].

4.7.5 Results and discussion

We present the results of BraneNet applied to the yeast multi-omics dataset
[Nuñ+20]. We have identified differentially expressed (DE) biomolecules as men-
tioned in Section 4.7.2. We have obtained 333 DE genes (non-TF) out of which
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Figure 4.9: Transcription factor (TF)-target prediction. The figure shows the
performance of BraneNet for TF-target prediction compared to baseline methods.
The performance is measured by computing the AUPR score for both average
and weighted L2 coordinate-wise operations. The error bars show the standard
deviation of the AUPR score for 10 runs.

310 are upregulated and 23 are downregulated, 55 DE TFs (50: over-expressed; 5:
under-expressed), 30 DE metabolites (28: increased concentration; 2: decreased
concentration). For the epigenetics data, we have observed that no H4K12ac peaks
were differentially expressed. Therefore, we discard ChIP-Seq data and use only
variable genes, TFs, and metabolites for the study of heat shock response. We then
compute intra- and inter-omics networks as described in Section 4.7.3. To con-
struct inter-omics relationships, we obtain known TF-target interactions from the
YEASTRACT database [Tei+18]. Gene-metabolite and TF-metabolite associations
were given by the participation of genes or TFs in the production and consumption
of metabolites in biochemical reactions. This information was acquired from the
YeastPathways database [Che+98]. Embeddings are then learned for each node, as
discussed in Section 3.4. We use these embeddings to study different aspects of
multi-omics data integration, namely, TF-target Prediction, ION inference, and
module detection.

TF-target prediction

To perform TF-target prediction we compute node embeddings using BraneNet
(t = 3, b = 1, and d = 128) and BraneExp (w = 10, n = 20, t = 3 and d = 128). For the
same value of d, we learn node embeddings using each baseline method. The edge
features are computed using the operators mentioned in Section 4.7.4. TF-target
prediction is then performed using logistic regression, and its performance is
measured using the AUPR score. Since we randomly remove 50% of targets for
each TF, we repeat this process 10 times and report the average AUPR scores with
standard deviation computed across 10 runs. The results for proposed models
compared to the baseline models are summarized in Figure 4.9. The average AUPR
of BraneNet is 10% improved compared to average (87%) to weighted L2 (97.9%)
operators. For the empirical parameter settings, the performance of BraneNet is
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Figure 4.10: ION visualization. The figure shows the ION for yeast during time-
dependent heat stress inferred using BraneNet. Node color, node shape, and edge
color represent the information shown in legends. Since this network is the result
of 250 simulations, the edge width is proportional to the number of times the edge
occurred during each simulation. The label size of each node is proportional to its
degree in the above network.

higher in both operators as compared to the baseline methods. Weighted L2 score
of BraneNet’s is 20% higher than BraneExp, the second best performing model.
Whereas BraneNet’s average score is 10% higher than MultiNet, the second best
performing model for average. The standard deviation of BraneNet for 10 runs is
notably lower (except MultiNet with average) than all the other methods. Overall
from Figure 4.9, we observe that BraneNet outperforms the baseline methods for
both operators (i.e., average and weighted L2).

Integrated Omics Network (ION) inference

We infer an ION using the embeddings learned by BraneNet. To validate the
performance of ION inference, we reconstruct the gold-standard (GS) using the
learned embeddings. The performance is measured by computing Precision@k
and MCC (Mathews Correlation Coefficient). We choose to study the top 500
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Figure 4.11: Network reconstruction. (a) Precision@k for top 500 edges com-
pared to baseline methods. The x-axis and y-axis represent the top k edges and the
Precision@k edges, respectively. (b) MCC@threshold compared to baseline meth-
ods. The x-axis and y-axis represent the threshold of θ and the MCC@threshold,
respectively.

edges of the inferred ION. We compare the performance of our model to the
performance of the baseline methods used. The results are shown in Figure
4.11. The results of Precision@k show that BraneNet scores, up to top 320 edges,
are higher than deepNF. BraneNet outperforms MOSS, OhmNet, MultiNet,
deepNF, and BraneExp (Figure 4.11a). The results of MCC@threshold shows
that BraneNet’s performance for different thresholds (θ) is higher than OhmNet,
MultiNet, deepNF, MOSS and BraneExp. As shown in Figure 4.11b, the MCC
of BraneNet was gradually improved with increasing threshold and began
to drop quite sharply at 0.6. For Precision@k metrics, deepNF is the second
best performing model, whereas, for MCC@threshold MOSS is the second best
performing method.

The network inferred by BraneNet with θ = 0.7 is shown in Figure 4.10. Node
color represents over- (pink) and under- (blue) expressed biomolecules. Node
shape and label color represent gene (circle, black), TF (triangle, purple), and
metabolites (square, orange). Edges existing in GS are given in red, whereas newly
inferred edges are given in green. Edge width is represented by the similarity
scores, while the node label size is proportional to its degree.

Using the inferred ION, we narrow down the search space from all differen-
tially expressed biomolecules and identify potential biomarkers in heat stress
response. We rank nodes based on their degree. Table 4.7 shows the obtained 21
biomolecules that could be potential biomarkers in heat stress response. We have
investigated the participation of these genes during the heat-shock response in
published literature. Using the BraneNet integrated tool, we are able to recover
information from 11 different heat shock response studies. The references of these
articles are given in Table 4.7. We have also validated our results by comparing
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Figure 4.12: Functional enrichment of modules A and B. The y-axis represents
the list of significantly enriched terms, while the x-axis show their significance
value (−log10 (p-value)). Different colors of circles indicate types of functional
annotations. Biological process (BP) is given in pink, molecular function (MF)
is given in blue, and KEGG pathways are shown in green. The size of the circle
represents the number of differentially expressed genes/TFs.

them to another study of heat shock response [Cas+11]. We could find the poten-
tial biomarkers (Table 4.7) in the heat stress-responsive gene clusters that were
identified in this study.

Biologically meaningful modules

To identify modules from the inferred ION, we perform community detection
using the Clauset-Newman-Moore greedy modularity maximization algorithm
[CNM04a]. We select modules with sizes of more than 10 nodes. We have obtained
6 modules. To know if the obtained modules are biologically meaningful, we
perform functional enrichment analysis on the two largest modules. We select
the terms with p-value lower than 0.05. Their enrichment results are shown in
Figure 4.12. We can clearly see that module A is enriched with catabolic processes,
including HSP90 and chaperone binding activity-related terms, while module
B is enriched with transport and sporulation. The terms enriched in both these
clusters have been discussed over the years in yeast heat-shock response studies
[Cas+11; MGM12; Ver+12].

Parameter sensitivity analysis

To examine the added value of integration, we have learned node embeddings
by considering only one layer of information, i.e., transcriptomics. First, we
consider only gene expression data and learn node embeddings. Secondly, we add
the a priori knowledge to the transcriptomics data and learn node features. We
compare the ION performance of using only one layer of information with the
integrated embeddings acquired from multiple layers. Figure 4.14 shows that
ION reconstruction is improved with the integration. We then investigated the
robustness in the performance of BraneNet with learned integrated embeddings.
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Figure 4.13: Parameter sensitivity analysis for ION inference. Node embed-
dings are computed using t ∈ {1,2,3,4,5} and d ∈ {32,64,128,256}. The perfor-
mance is measured by computing MCC for different values of θ. The x-axis
represents the MCC score at the threshold (θ) given in the y-axis.

We used grid-search to assess the uncertainty in the model outputs that is
attributed to different values of the window size t and dimension d. We choose
t ∈ {1,2,3,4,5}, d ∈ {32,64,128,256}, and perform TF-target prediction and ION
inference. The results for TF-target prediction are shown in Table 4.8. The
mean AUPR in the given table for average and weighted L2 is 83.8% and 96.1%,
respectively, with a standard deviation of 2 percent.

On the other hand, the results for ION inference are shown in Figure 4.13. The
performance is measured by MCC at different thresholds. From Figure 4.13, the
optimal threshold for θ is between 0.6 and 0.8. We also see that the performance of
MCC is increased concerning d and slightly decreased with t. From the parameter
sensitivity analysis for both tasks, we see that our model has lower variance in
the results with respect to different parameter settings. Therefore for the new
datasets, we recommend users to consider the default parameter settings (t = 3
and d = 128).
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Name ↑ / ↓ D Function Modules (see Figure 4.10)

STI1 ↑ 40 Hsp90 cochaperone A
SSA4 ↑ 39 Heat shock protein A
TFS1 ↑ 46 Inhibitor of carboxy-

peptidase Y , Ras GAP A
YMR090W ↑ 50 Unknown function A
SSE2 ↑ 36 Hsp110 family member A
IDH2 ↑ 37 Oxidative decarboxy-

lation of isocitrate A
SSA1 ↑ 40 ATPase A
STE2 ↓ 36 Receptor for α-factor

pheromone A
HSP104 ↑ 33 Disaggregase A
STI1 ↑ 41 Hsp90 cochaperone A
MET6 ↓ 31 Cobalamin-independent

methionine synthase A
STR3 ↑ 30 Peroxisomal cysta-

thionine beta-lyase A
RTC3 ↑ 28 Unknown function A
MSC1 ↑ 27 Unknown function A
PNC1 ↑ 27 Nicotinamidase acid A
GSP2 ↑ 30 GTP binding protein A
GRE3 ↑ 31 Aldose reductase A
YLR030W ↑ 31 Unknown function B
SOL4 ↑ 32 6-phospho-

gluconolactonase A
HSP12 ↑ 28 Heat shock protein A
IDH1 ↑ 25 Oxidative decarboxy-

lation of isocitrate A

Table 4.7: ION-based identification of potential biomarkers. The table provides
the names, over- (↑) or under- (↓) expressed, node degree in ION (D), function,
and BraneNet module information comparison with external studies of potential
biomarkers during heat stress response in yeast.
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Figure 4.14: Added value of integration.(a)Precision@k for top 500 edges.
The x-axis represents top k edges and y-axis represents Precision@k respec-
tively. (b) MCC@threshold. The x-axis and y-axis represent threshold of θ and
MCC@threshold, respectively.

Average

d

t 32 64 128 256

1 0.700 0.880 0.880 0.870
2 0.790 0.820 0.850 0.860
3 0.830 0.850 0.870 0.870
4 0.780 0.810 0.850 0.860
5 0.820 0.840 0.860 0.870

Weighted L2

d

t 32 64 128 256

1 0.980 0.982 0.983 0.983
2 0.916 0.945 0.966 0.968
3 0.956 0.967 0.979 0.979
4 0.852 0.938 0.966 0.968
5 0.952 0.968 0.981 0.981

Table 4.8: Parameter sensitivity analysis for TF-target prediction. Node embed-
dings are computed using t ∈ {1,2,3,4,5} and d ∈ {32,64,128,256}. The perfor-
mance is measured by computing the AUPR score for average and weighted L2
coordinate-wise operations.
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5
Concluding Remarks

5.1 Summary

Understanding the bio-molecular interactions represented by tightly controlled
molecular networks is necessary for a thorough explanation of biological systems
in an organism [Sub+20]. Huge amounts of diverse omics data have been
introduced into the picture by the development of high-throughput technologies,
and concurrently, promising paths have been opened up for their analysis
and interpretation[Yue+20]. The value of multi-omics integration over single
omics analysis has been demonstrated in numerous research. Such methods
can shed light on the relationships between various biomolecules (proteins,
RNAs, and metabolites), as well as the exchange of biological knowledge among
them[Sub+20]. In the past years, network approaches have offered potential for
integrative omics analysis, facilitating a new era of systems biology [Sub+20;
Yan+18; Di +20]. Nevertheless, it is necessary to obtain informative representa-
tions (e.g., embeddings) for the nodes in the network (bio-molecules) and their
proximity. Potentially, this would be possible by modeling biological data as a
multilayer network and learning integrated embeddings that could effectively cap-
ture richer features and preserve biological information from each individual layer.

In this dissertation, we took inspiration from Graph Representation Learning
(GRL) algorithms to encode graph structure into compact embedding vectors
[HYL17b]. Our motivation is further extended towards leveraging closed
forms of GRL methods that perform implicit matrix factorization, favouring
intrinsic connection and interpretability of graph topology [LG14; Qiu+18]. We
proposed three models for multilayer network embedding, namely, BraneExp,
BraneNet, and BraneMF. Firstly in BraneExp, we took inspiration from expressive
conditional probability models that relate nodes within random walk sequences.
Hereby, we capitalize on exponential family distributions to capture interactions
between nodes in random walks that traverse nodes within and across input
network layers. More precisely, we introduced network integration with the
concept of exponential family graph embeddings, which generalizes multilayer
random walk-based GRL methods to an instance of exponential family conditional
distribution.

83



Secondly, in BraneNet and BraneMF, we aimed to perform integration by
leveraging a properly chosen multilayer random walk-based Positive Pointwise
Mutual Information (PPMI) matrix. In the case of BraneNet, the model builds a
supra-PPMI matrix that contains the normalized transition probability of node
traversing in and across the network layers. The flexibility of random walks to
traverse within and across layers allows us to capture inter- and intra-layer node
neighbourhood information. The embeddings are learned by factorizing this
supra-PPMI matrix. BraneMF builds PPMI matrices for each layer. These matrices
are then efficiently integrated using joint matrix factorization. Both BraneMF and
BraneNet learn embeddings by factorizing random walk-based PPMI matrices.
However, the way integration is being done is different. BraneNet could be an
early instance of BraneMF’s integration strategy. Conceptually, BraneMF performs
integration in a more effective manner, as it incorporates the concept of joint
matrix factorization. More precisely, BraneMF brings the best of two worlds:
expressiveness of well-celebrated random walk-based embedding models (e.g.,
DeepWalk, node2vec) and the solid formulation of matrix factorization—going
further by extending them to integrate multiple input data sources.

Moreover, for all the proposed methods, we define the objective function in
a way that is independent of downstream machine learning tasks, and the
embeddings are learned in a purely unsupervised way. We have demonstrated the
wide applicability of the proposed methods in exploiting functional analysis of
proteins in PPI networks by studying the quality of clusteredness of functionally
related proteins, the accuracy of predicting protein functions, and the inference
of interactions in the reconstruction of the yeast interactome. Besides, while
comparing against several baseline models, our methods have shown competitive
performance in all downstream assessments. Nevertheless, our methods are not
limited to the downstream tasks explored in this dissertation. They could be
leveraged across a wide variety of omics integration tasks.

Lastly, we conclude that our models are simpler, depend on fewer parameters,
and produce results comparable, if not better, to more complex methods. Al-
though our formulation is expressive enough to capture these representations, its
multiscale properties have certain limitations. For instance, BraneExp needs ex-
tensive simulation of random walks, which could be difficult while handling large
networks. We rectified this limitation in BraneNet and BraneMF. Yet, BraneNet
and BraneMF lack to capture long-range node dependencies (i.e., higher values
of w), which could be interesting to study [CM20b]. Overall our three proposed
models learn one global representation that coalesces all possible scales of network
relationships. Hence, different scales of the representation are not independently
accessible.
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5.2 Perspectives

As future work, the current models could be improved concerning the limitations
discussed in the above section. Moreover, we intend to conflate additional protein
associations, such as post-transcriptional and post-translation regulation informa-
tion, that may impact the functional relationships of proteins in the real world.
Besides, it is also possible to take into account protein (node) features such as
biochemical properties and protein sequences in the learning process [Zho+20].
These data types can provide insights towards more accurate predictions for func-
tional analysis of proteins. The functionality and applicability of the proposed
models are beyond embedding proteins, thus not limited to biological networks.
Our proposed models are versatile in nature and can provide an effective, unified,
and scalable network integration framework with diverse applications.
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Method m-AUPR M-AUPR F1 ACC

MF I
SNF 0.192± 0.01 0.120± 0.01 104± 0.00 0.142± 0.01

Mashup 0.255± 0.02 0.192± 0.01 0.263± 0.02 0.183± 0.04
deepNF 0.388± 0.03 0.235± 0.02 0.342± 0.02 0.273± 0.02

MultiNet 0.376± 0.02 0.249± 0.02 0.353± 0.02 0.306± 0.01
Multi-n2v 0.398± 0.03 0.203± 0.01 0.323± 0.01 0.262± 0.02

OhmNet 0.293± 0.02 0.211± 0.01 0.300± 0.01 0.020± 0.02
MultiVERSE 0.294± 0.03 0.192± 0.01 0.294± 0.01 0.145± 0.01

BraneExp 0.410± 0.02 0.256± 0.01 0.368± 0.01 0.303± 0.11
Graph2GO 0.404± 0.02 0.243± 0.02 0.355± 0.01 0.287± 0.11

BraneMF 0.457± 0.04 0.278± 0.02 0.392± 0.02 0.350± 0.03
MF II

SNF 0.185± 0.01 0.214± 0.01 0.126± 0.01 0.123± 0.00
Mashup 0.362± 0.02 0.310± 0.01 0.345± 0.02 0.228± 0.01
deepNF 0.428± 0.02 0.335± 0.01 0.396± 0.01 0.233± 0.01

MultiNet 0.440± 0.03 0.350± 0.02 0.416± 0.02 0.267± 0.04
Multi-n2v 0.447± 0.05 0.350± 0.03 0.398± 0.03 0.224± 0.06

OhmNet 0.342± 0.02 0.285± 0.01 0.334± 0.01 0.038± 0.01
MultiVERSE 0.363± 0.03 0.303± 0.02 0.348± 0.02 0.116± 0.01

BraneExp 0.463± 0.03 0.368± 0.02 0.436± 0.02 0.294± 0.10
Graph2GO 0.455± 0.02 0.359± 0.01 0.420± 0.01 0.292± 0.04

BraneMF 0.518± 0.02 0.404± 0.02 0.460± 0.02 0.328± 0.02
MF III

SNF 0.155± 0.01 0.147± 0.01 0.165± 0.01 0.037± 0.00
Mashup 0.393± 0.02 0.347± 0.02 0.333± 0.01 0.221± 0.02
deepNF 0.442± 0.03 0.389± 0.02 0.367± 0.01 0.236± 0.02

MultiNet 0.481± 0.03 0.419± 0.02 0.397± 0.02 0.309± 0.01
Multi-n2v 0.457± 0.03 0.406± 0.02 0.333± 0.02 0.150± 0.05

OhmNet 0.365± 0.02 0.343± 0.02 0.323± 0.01 0.014± 0.00
MultiVERSE 0.364± 0.02 0.337± 0.02 0.329± 0.01 0.131± 0.01

BraneExp 0.517± 0.03 0.454± 0.02 0.417± 0.02 0.345± 0.02
Graph2GO 0.501± 0.02 0.448± 0.02 0.396± 0.01 0.338± 0.02

BraneMF 0.541± 0.03 0.473± 0.02 0.427± 0.01 0.342± 0.02

Table 1: Protein function prediction (MF) The above table shows the results of
PPI prediction for d = 128.
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Method m-AUPR M-AUPR F1 ACC

CC I
SNF 0.178± 0.03 0.234± 0.02 0.206± 0.01 0.048± 0.01

Mashup 0.681± 0.02 0.414± 0.02 0.520± 0.02 0.432± 0.04
deepNF 0.715± 0.02 0.423± 0.02 0.564± 0.02 0.461± 0.02

MultiNet 0.662± 0.03 0.394± 0.02 0.532± 0.02 0.431± 0.06
Multi-n2v 0.663± 0.02 0.378± 0.03 0.511± 0.01 0.411± 0.02

OhmNet 0.590± 0.02 0.380± 0.02 0.512± 0.01 0.020± 0.03
MultiVERSE 0.586± 0.04 0.365± 0.02 0.502± 0.02 0.249± 0.08

BraneExp 0.694± 0.05 0.418± 0.03 0.548± 0.03 0.472± 0.03
Graph2GO 0.732± 0.03 0.438± 0.03 0.564± 0.02 0.490± 0.03

BraneMF 0.812± 0.02 0.470± 0.03 0.615± 0.02 0.570± 0.03
CC II

SNF 0.258± 0.02 0.323± 0.02 0.258± 0.02 0.040± 0.00
Mashup 0.681± 0.08 0.604± 0.02 0.505± 0.03 0.414± 0.03
deepNF 0.733± 0.01 0.617± 0.01 0.550± 0.01 0.431± 0.01

MultiNet 0.724± 0.02 0.610± 0.02 0.555± 0.01 0.453± 0.02
Multi-n2v 0.723± 0.01 0.592± 0.01 0.523± 0.01 0.458± 0.02

OhmNet 0.640± 0.02 0.544± 0.02 0.513± 0.01 0.093± 0.03
MultiVERSE 0.628± 0.02 0.529± 0.02 0.504± 0.01 0.249± 0.01

BraneExp 0.749± 0.02 0.630± 0.02 0.559± 0.01 0.462± 0.04
Graph2GO 0.749± 0.01 0.631± 0.01 0.549± 0.01 0.481± 0.04

BraneMF 0.806± 0.02 0.666± 0.02 0.597± 0.01 0.553± 0.02
CC III

SNF 0.364± 0.02 0.374± 0.02 0.342± 0.01 0.041± 0.01
Mashup 0.620± 0.01 0.555± 0.01 0.471± 0.01 0.345± 0.01
deepNF 0.655± 0.01 0.564± 0.01 0.508± 0.01 0.357± 0.02

MultiNet 0.688± 0.02 0.603± 0.03 0.546± 0.01 0.400± 0.02
Multi-n2v 0.660± 0.02 0.595± 0.02 0.491± 0.01 0.286± 0.05

OhmNet 0.588± 0.02 0.523± 0.03 0.493± 0.02 0.091± 0.01
MultiVERSE 0.598± 0.01 0.535± 0.02 0.496± 0.01 0.224± 0.01

BraneExp 0.706± 0.01 0.634± 0.01 0.559± 0.01 0.378± 0.02
Graph2GO 0.701± 0.02 0.623± 0.02 0.544± 0.01 0.387± 0.02

BraneMF 0.734± 0.01 0.646± 0.02 0.568± 0.01 0.428± 0.03

Table 2: Protein function prediction (CC) The above table shows the results of
PPI prediction for d = 128.
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Figure 1: Effect of parameter d on the classification. The figure shows the effect
of parameter d on the classification performance compared with the baseline
methods. The x-axis represents the dimension of the protein features. The y-axis
shows the F1 score of classification performed for respective datasets.
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Method d = 128 d = 256 d = 512 d = 1024

AUPR

SNF 0.427 0.479 0.543 0.524
Mashup 0.444 0.449 0.365 0.465
deepNF 0.602 0.607 0.603 0.608

MultiNet 0.542 0.461 0.444 0.438
Multi-n2v 0.690 0.676 0.674 0.670

OhmNet 0.532 0.525 0.520 0.520
MultiVERSE 0.257 0.257 0.256 0.256

Graph2GO 0.587 0.587 0.587 0.591
BraneExp 0.744 0.741 0.739 0.738
BraneMF 0.690 0.651 0.652 0.680
BraneNet 0.683 0.682 0.683 0.686

AUROC

SNF 0.967 0.977 0.964 0.937
Mashup 0.853 0.873 0.869 0.854
deepNF 0.941 0.947 0.943 0.942

MultiNet 0.990 0.986 0.985 0.984
Multi-n2v 0.993 0.993 0.993 0.993

OhmNet 0.995 0.995 0.994 0.994
MultiVERSE 0.526 0.527 0.525 0.528

Graph2GO 0.752 0.752 0.752 0.756
BraneExp 0.997 0.997 0.993 0.993
BraneMF 0.942 0.948 0.954 0.955
BraneNet 0.971 0.970 0.962 0.987

Table 3: Network reconstruction II. The figure shows the performance of the
proposed models and baseline models for reconstructing the STRING reference
network. The performance is measured by computing AUPR and AUROC. All the
methods are compared for d ∈ {128,256,512,1024}.
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Method d = 128 d = 256 d = 512 d = 1024

AUPR

SNF 0.157 0.159 0.160 0.160
Mashup 0.161 0.161 0.139 0.158
deepNF 0.233 0.233 0.233 0.233

MultiNet 0.201 0.201 0.201 0.201
Multi-n2v 0.214 0.214 0.214 0.215

OhmNet 0.238 0.198 0.227 0.229
MultiVERSE 0.157 0.157 0.156 0.156

Graph2GO 0.170 0.170 0.169 0.169
BraneExp 0.300 0.299 0.299 0.299
BraneMF 0.246 0.246 0.245 0.245
BraneNet 0.238 0.238 0.237 0.236

AUROC

SNF 0.591 0.568 0.544 0.549
Mashup 0.611 0.589 0.514 0.505
deepNF 0.561 0.576 0.584 0.590

MultiNet 0.599 0.598 0.619 0.592
Multi-n2v 0.577 0.548 0.611 0.584

OhmNet 0.592 0.509 0.548 0.539
MultiVERSE 0.526 0.527 0.525 0.528

Graph2GO 0.489 0.636 0.535 0.595
BraneExp 0.625 0.617 0.621 0.621
BraneMF 0.593 0.609 0.595 0.629
BraneNet 0.592 0.609 0.578 0.589

Table 4: GRN inference II. The figure shows the performance of proposed models
and baseline models for reconstructing the yeast gene regulatory network. The
performance is measured by computing AUPR and AUROC. All the methods are
compared for d ∈ {128,256,512,1024}.
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