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Title: Contribution to on-line diagnosis, fault classification and prognosis for PEMFC
Keywords: proton exchange membrane fuel cell (PEMFC), Prognostic Health Management (PHM),
diagnosis, electrochemical impedance spectroscopy(EIS), equivalent circuit model (ECM)
Abstract: The proton exchange membrane fuel
cell (PEMFC) is a promising energy source that of-
fers several advantages such as no pollution, high
efficiency, and low operating temperature. How-
ever, durability and reliability remain barriers to its
large-scale commercialization. The development
of tools for on-line diagnosis, fault classification and
prognosis of PEMFC is a very important research
topic to lift these barriers. The main objective
of this thesis is to contribute to the development
of these tools. Thus, we have proposed three
diagnostic algorithms and one prognostic algorithm
to address these challenges. First, a voltage
fluctuation-based diagnostic method is proposed,
and the faults resulting from different operating
temperatures, stoichiometry and relative humidity
are studied. The voltage fluctuation model
is extracted by the autoregressive model (AR
model), and the coefficients of the model are
directly applied as diagnostic features. Four fault
classification algorithms are proposed, applied,
and compared under both single-fault and multiple-
fault conditions. In the second stage, two
electrochemical impedance spectroscopy (EIS)-
based diagnostic methods are proposed and
validated in real time, which can distinguish
between flooding, drying-out and mass transport

faults. The first method is based on an equivalent
circuit model (ECM), in which the parameters of
electrical elements can be identified and applied
as diagnostic features. In addition, the adaptive
neuro-fuzzy inference system (ANFIS) is proposed
to perform the diagnosis, and the whole diagnosis
process is implemented and validated in real time
on a digital signal processor (DSP) system. The
third proposed diagnostic method is based on
zero-phase impedance and turning phase of EIS
characterization. Experiments have shown that the
two proposed features can represent the health
status of the PEMFC in a practical way; therefore,
they can be applied as features to perform fast
and efficient diagnosis. The K-nearest neighbours
(KNN) algorithm is applied to classify the different
fault conditions, and the whole diagnostic method
is also implemented on a DSP system, which
validates its real-time applicability. Finally, a
frequency domain Kalman filter (FDKF) based
prognostic method is proposed. This method
allows the prediction of the voltage evolution with
different prediction horizons as well as a fast
and accurate estimation of the remaining lifetime
(RUL). This method is an advantageous alternative
in terms of computation time compared to temporal
approaches based on the same technique.

Titre: Contribution au diagnostic en ligne, à la classification des défauts et au pronostic des piles à
combustible PEMFC
Mots clés: Pile à Combustible à Membrane Echangeuse de Proton (PEMFC), pronostic et gestion de la
santé (PHM), diagnostic, spectroscopie d’impédance électrochimique (EIS), modèle de circuit équivalent
(ECM)

Résumé: La pile à combustible à membrane
échangeuse de protons (PEMFC) est une source
d’énergie prometteuse qui présente plusieurs
avantages tels que l’absence de pollution, un
rendement élevé et une faible température de fonc-
tionnement. Cependant, la durabilité et la fiabilité
restent des obstacles à sa commercialisation à
grande échelle. Le développement d’outils de
diagnostic en ligne, de classification des défauts
et de pronostic de la PEMFC sont des sujets de
recherche très importants afin de soulever ces
barrières. L’objectif principal de cette thèse est
de contribuer au développement de ces outils.
Ainsi, nous avons proposé trois algorithmes de
diagnostic et un algorithme de pronostic pour
relever ces défis. Tout d’abord, une méthode de
diagnostic basée sur la fluctuation de tension est
proposée, et les défauts résultant de différentes
températures de fonctionnement, stoechiométries
et humidités relatives sont étudiés. Le modèle
de fluctuation de tension est extrait par le modèle
autorégressif (modèle AR), et les coefficients
du modèle sont directement appliqués comme
caractéristiques de diagnostic. Quatre algorithmes
de classification de défauts sont proposés, ap-
pliqués et comparés dans des conditions de défaut
unique et de défaut multiple. Dans un second
temps, deux méthodes de diagnostic basées sur la
spectroscopie d’impédance électrochimique (EIS)
sont proposées et validées en temps réel, et
elles peuvent distinguer les défauts de noyage,
d’assèchement et de transport de masse. La

première est basée sur un modèle de circuit
électrique équivalent (ECM), dans lequel les
paramètres des éléments électriques peuvent être
identifiés et appliqués comme caractéristiques de
diagnostic. En outre, le système d’inférence neuro-
flou adaptatif (ANFIS) est proposé pour réaliser
le diagnostic, et l’ensemble du processus de
diagnostic est mis en œuvre et validé en temps
réel sur un processeur DSP dédié à l’embarqué.
La troisième méthode de diagnostic proposée est
basée sur les impédances à phase nulle et à
inversion du sens de la phase caractérisant l’EIS.
Les expérimentations ont montré que les deux
caractéristiques proposées peuvent représenter
l’état de santé de la PEMFC de manière pra-
tique; elles peuvent donc être appliquées comme
caractéristiques pour réaliser un diagnostic rapide
et efficace. L’algorithme des K-voisins les plus
proches (KNN) est appliqué à la classification des
différentes conditions de défaut, et l’ensemble de
la méthode de diagnostic est également mis en
œuvre sur un système DSP, ce qui valide son
applicabilité en temps réel. Enfin, une méthode
de pronostic basée sur le filtre de Kalman dans le
domaine fréquentiel (FDKF) est proposée. Cette
méthode permet de prédire l’évolution de la tension
avec différents horizons de prédiction ainsi qu’une
estimation rapide et précise de la durée de vie
utile restante (RUL). Cette méthode constitue une
alternative avantageuse en termes de temps de
calcul vis-vis des approches temporelles basées
sur la même technique.
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Introduction Générale

Les combustibles fossiles n’étant pas durables, et défavorables à l’environnement,

l’utilisation des énergies renouvelables est considérée comme un élément important

pour les futurs systèmes énergétiques [1]. L’hydrogène étant facilement accessible,

stockable et propre, il s’agit d’un type d’énergie présentant un grand potentiel parmi

les diverses énergies renouvelables. En outre, comme l’hydrogène n’émet pas de

carbone lors de son utilisation, il est particulièrement important dans le contexte de

la décarbonisation dans le monde entier. Par conséquent, la recherche scientifique sur

l’hydrogène est de plus en plus importante.

La Pile à combustible à membrane échangeuse de protons (PEMFC) est l’une des plus

importantes technologies permettant d’utiliser l’hydrogène, c’est-à-dire de convertir

l’énergie de l’hydrogène en électricité. Elle a fait l’objet d’une grande attention et

de nombreuses applications ont été développées sur la base de la PEMFC, comme

les centrales électriques distribuées, les véhicules PEMFC et d’autres applications

d’approvisionnement en énergie [2]. Cependant, comme là les performances de ces

systèmes sont instables et se dégradent trop rapidement pendant le fonctionnement,

la durée de vie de la PEMFC est toujours inférieure aux attentes. Par conséquent,

la durabilité et la fiabilité sont toujours des obstacles critiques sur la voie de sa

commercialisation à grande échelle [3].

Pour améliorer la durabilité et la fiabilité de la PEMFC, la gestion de sa santé est

un sujet très important [4]. Il comprend toutes les actions qui peuvent maintenir un

bon état de santé du système. Ainsi, il est important d’élaborer des méthodes pour

évaluer l’état de santé des dispositifs PEMFC selon les informations collectées par

toutes sortes de capteurs, afin de trouver les facteurs négatifs qui peuvent causer

un défaut de fonctionnement ou une dégradation à long terme. Le diagnostic et le
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pronostic sont des méthodes importantes pour la gestion de la santé. Le diagnostic

permet de détecter les défauts pendant le fonctionnement de la PEMFC et de faire

des suggestions sur l’élimination de ces défauts. En même temps, le pronostic permet

d’avoir une prédiction sur le développement de l’état de santé à long terme. En outre, la

dégradation à long terme peut être identifiée et les mesures correspondantes peuvent

être prises pour réduire la dégradation et améliorer la durée de vie.

Plusieurs méthodes de diagnostic et de pronostic ont été proposées et appliquées dans

la littérature pour les systèmes PEMFC. Cependant, la durée de vie ciblée n’est pas

encore atteinte, en particulier pour les applications réelles (hors laboratoires), telles

que les vibrations, les températures extrêmement élevées ou basses, la pollution par

la poussière, etc. Par conséquent, il n’est pas facile de maintenir un fonctionnement

normal et d’améliorer la durée de vie. Des stratégies de diagnostic et de pronostic plus

pratiques sont nécessaires. Comme les défauts de la PEMFC peuvent se produire

et évoluer très rapidement sans prévenir dans des conditions de fonctionnement

complexes, la capacité de diagnostic en temps réel est une exigence critique pour

la préservation du système. Ainsi, le défaut peut être détecté assez rapidement, afin

de réagir immédiatement pour réduire les dommages. De plus, le coût du diagnostic et

du pronostic doit être réduit, afin de pouvoir l’appliquer largement dans les applications

commerciales.

Pour faire face à ces problèmes, le diagnostic en temps réel et le pronostic en ligne

du système PEMFC sont étudiés dans cette thèse. L’objectif est de trouver des

méthodes de diagnostic et de pronostic plus pratiques et rapides afin de contribuer

au développement et à l’extension des applications PEMFC.

Plus précisément, trois algorithmes de diagnostic différents et une méthode de pronos-

tic sont proposés. La première méthode de diagnostic est basée sur la fluctuation

de tension et le modèle autorégressif. Ainsi, les défauts liés aux différentes stœ-

chiométries, à la température du circuit de refroidissement et aux niveaux d’humidité

relative peuvent être classés avec précision avec cette méthode. Les deuxième et

troisième méthodes de diagnostic sont toutes basées sur la spectroscopie d’impédance

électrochimique (SIE), et elles sont toutes validées en ligne sur un système de

processeur de signaux numériques (DSP). L’une d’entre elles est réalisée à l’aide d’un

modèle de circuit électrique équivalent (ECM) et d’un système d’inférence neuro-flou
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adaptatif (ANFIS), tandis que l’autre est proposée en fonction des caractéristiques de

détection rapide de l’EIS. Les deux méthodes peuvent reconnaı̂tre les défauts liés à

l’inondation, au séchage et au transport de masse dans la PEMFC. Une méthode de

pronostic est également proposée sur la base du filtre de Kalman dans le domaine

fréquentiel (FDKF) qui, comparé à son équivalent dans le domaine temporel, offre la

simplicité de mise en œuvre et une bien meilleure performance de calcul.

Toutes les méthodes proposées ont été validées en utilisant les résultats expérimentaux

d’un banc d’essai dédié au diagnostic des PEMFC. Ce banc offre différentes conditions

de fonctionnement et de test avec un accès aux mesures des principales variables

du système. La pile à combustible considérée est une PEMFC à 12 cellules

fonctionnant dans différentes conditions de stœchiométrie, de température du circuit

de refroidissement et de taux d’humidité relative.

Le manuscrit de thèse est structuré comme suit :

• Dans le chapitre 1, nous fournissons un tour d’horizon sur les principes de la

PEMFC et passons en revue les principales technologies de diagnostic. Tout

d’abord, les principes de la PEMFC, les défauts courants de la PEMFC et le

concept de diagnostic et de pronostic de la PEMFC sont présentés en détail.

Ensuite, un état de l’art détaillé des méthodologies de diagnostic est donné,

et les méthodes de diagnostic sont classifiées en deux groupes, à savoir les

méthodes basées sur les modèles et les méthodes basées sur les données. En

outre, en fonction des travaux de recherche précédents, les défis et les solutions

du diagnostic des piles PEMFC en temps réel sont analysés, et les principaux

objectifs et méthodes de la thèse sont présentés.

• Le chapitre 2 porte sur le diagnostic basé sur les données de fluctuation de

tension à haute fréquence et un modèle autorégressif (modèle AR). Une nouvelle

approche de diagnostic pour classer les différentes conditions de fonctionnement

défectueuses du système PEMFC est proposée sur la base des modèles de

fluctuation de tension de la pile, qui sont identifiés par le modèle autorégressif

(modèle AR). Plutôt que d’utiliser les tensions de chaque cellule dans une pile

pour le diagnostic, la méthode proposée se concentre sur la fluctuation de la

tension de la pile dans le temps. Étant donné que seule la tension de la pile, et
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non de chaque cellule, doit être collectée, cette méthode est moins complexe et

plus pratique. Pour la première fois, le modèle AR est appliqué pour extraire les

caractéristiques de fluctuation de la tension de la pile PEMFC, puis les conditions

de défaut sont classées par plusieurs classificateurs. L’efficacité de la méthode

de diagnostic proposée est démontrée expérimentalement dans 9 conditions

de défaut unique et 8 conditions de défaut multiple. Ces défauts sont liés à

la stœchiométrie de la cathode, la stœchiométrie de l’anode, la température

du circuit de refroidissement et le niveau d’humidité relative. La précision du

diagnostic est de 99% pour les conditions de défaut unique et de 93% pour les

conditions de défaut multiple, ce qui permet de gagner du temps par rapport au

diagnostic basé sur la méthode d’analyse des singularités. En outre, les effets de

la fréquence d’échantillonnage et de la longueur de la fenêtre d’échantillonnage

sur l’efficacité du diagnostic sont étudiés et discutés pour la première fois.

• Le chapitre 3 se concentre sur deux méthodes de diagnostic basées sur le EIS.

La première est basée sur le modèle de circuit électrique équivalent (ECM) et

le système d’inférence flou neuronal adaptatif (ANFIS), et une autre méthode de

diagnostic est basée sur deux caractéristiques EIS facilement disponibles. Ces

deux méthodes sont validées en temps réel sur un système embarqué de type

industriel (DSP).

Tout d’abord, une nouvelle méthode de diagnostic basée sur l’ECM et ANFIS

est proposée. Une nouvelle méthode d’identification des paramètres com-

binant l’algorithme génétique (GA) et l’algorithme Levenberg-Marquardt (LM)

est proposée pour identifier l’ECM d’ordre fractionnel, dans lequel l’impédance

anodique, l’impédance cathodique et le transfert de masse sont tous considérés.

Cette nouvelle méthode permet une meilleure exploitation des diagrammes EIS,

et les relations internes entre les conditions de défaut et les paramètres ECM

sont analysées en détail. Ensuite, sur la base des relations obtenues, un

nouvel algorithme de diagnostic basé sur le clustering k-means et ANFIS est

conçu pour identifier précisément plusieurs défauts qui peuvent se produire

dans la PEMFC, tels que l’inondation de la membrane, le séchage et le défaut

de transfert de masse. Enfin, l’efficacité de cette méthode est démontrée

expérimentalement par l’exploitation des données EIS sous différents défauts

et conditions de fonctionnement de la PEMFC. De plus, l’implémentation du
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diagnostic en temps réel sur le système PEMFC est réalisée sur un processeur de

signaux numériques (DSP) de type industriel basé sur l’algorithme de diagnostic

proposé. Le cadre permettant de relier la mesure en ligne du EIS, le diagnostic

et le contrôle de la PEMFC sont proposés, et la mise en œuvre du diagnostic

en temps réel est mise en évidence. Dans le DSP, les paramètres ECM sont

identifiés par une méthode d’optimisation efficace en termes de calcul et adaptée

aux processeurs industriels, à savoir l’algorithme de Powell. Dans la deuxième

phase, le système ANFIS à réglage adaptatif est appliqué au diagnostic des

défauts. La démonstration expérimentale en temps réel prouve que la méthode

de diagnostic est précise et réactive.

Ensuite, une méthode de diagnostic rapide basée sur le SIE est proposée et

validée. Comme le diagnostic EIS traditionnel avec des mesures sur une large

gamme de fréquences prend beaucoup de temps, une nouvelle méthode de

diagnostic est proposée sur la base de deux caractéristiques SIE faciles à obtenir,

à savoir l’impédance de phase zéro et la phase de rotation. L’impédance de

phase zéro est la moyenne des points SIE avec un petit angle de phase dans

la zone de haute fréquence, et elle peut représenter l’état de l’eau dans la

membrane. La phase de retournement est la phase d’impédance qui relie deux

demi-cercles dans la courbe EIS, et elle peut représenter la condition de flux de

gaz dans la couche de diffusion de gaz (GDL). Il est démontré expérimentalement

que les caractéristiques proposées peuvent représenter l’état de santé de la

PEMFC. L’espace des caractéristiques peut être divisé en 7 zones de défaut par

la classification KNN (K-nearest neighbours) et tous les cas sont assignés aux

bonnes classes. Ces deux caractéristiques peuvent être extraites uniquement du

SIE par quelques mesures, et l’algorithme de diagnostic est validé en temps réel

sur un système DSP. Le temps total de diagnostic n’est que de 2,506 secondes,

ce qui prouve que la méthode de diagnostic est rapide et réactive.

• Le chapitre 4 est consacré au développement d’une méthode de pronostic

basée sur le filtre de Kalman dans le domaine fréquentiel (FDKF). Comme

la dégradation affecte sérieusement la durabilité et le coût de la PEMFC,

une nouvelle méthode basée sur le FDKF et un modèle de dégradation de

la tension est proposée pour prédire la dégradation de la PEMFC dans le

domaine fréquentiel. L’avantage de la méthode FDKF proposée est qu’elle peut
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traiter les données par groupes, ce qui permet de réduire considérablement le

temps de calcul avec une grande précision. Deux expériences de dégradation

sous des courants constants et dynamiques ont été utilisées pour démontrer

les performances de pronostic avec différentes conditions et différents temps

d’apprentissage. Par rapport à la méthode traditionnelle du filtre de Kalman

étendu (dans le domaine temporel), il a été démontré que la méthode proposée

est plus précise et nécessite un temps de calcul beaucoup plus court.

• Enfin, une conclusion générale est donnée en fonction des études de cette

thèse, et les améliorations possibles et les perspectives de travaux futurs sont

proposées.

Les résultats de ce travail de thèse ont été publiés dans plusieurs revues internationales

à comité de lecture et dans une conférence nationale.
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General Introduction

As fossil fuels are unsustainable and unfavourable for the environment, the utilization

of renewable energy is considered an important part of the future energy system [1].

As hydrogen is readily accessible, storable, and clean, it is a kind of energy with

great potential among various renewable energy. Also, as there is no carbon get

involved during the utilization of hydrogen, it is especially important in the context of

decarbonization all over the world. Therefore, the scientific research around hydrogen

is more and more important.

The proton exchange membrane fuel cell (PEMFC) is one of the most important

methods that can make use of hydrogen, i.e. convert hydrogen energy into electricity. It

has received a lot of attention, and a lot of applications have been developed based on

PEMFC, such as distributed power stations, PEMFC vehicles, and other energy supply

applications [2]. However, as the performance is unstable and degrades too quickly

during the operation, the PEMFC lifetime is still under expectation. Therefore, durability

and reliability are still critical barriers on the road to large-scale commercialization of

PEMFC [3].

To improve PEMFC durability and reliability, health management is a very important

solution [4]. Health management includes all the actions that can maintain the health

state of the system, and one major task is to check the health state of PEMFC according

to the information collected by all kinds of sensors, so that to find out the negative factor

that may cause operating fault or long-term degradation. Diagnosis and prognosis are

important methods for health management. Diagnosis can find out the faults during

the PEMFC operation and give suggestions about fault removal, as it can identify the

different fault types and isolate the fault location. At the same time, prognosis means

to give a prediction about the health state development in the long term; thus the whole

xxi
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system can be arranged in advance. Also, the long-term degradation can be identified

and the corresponding measures can be taken to reduce the degradation and improve

the lifespan.

Several diagnosis and prognosis methods have been proposed and applied to maintain

the PEMFC health, and the lifetime of PEMFC has increased during the last years.

However, the targeted lifetime is not yet achieved, especially for real applications

under complex conditions, such as vibrations, extremely high or low temperatures,

dust pollution, etc. Therefore, it is not an easy task to maintain normal operations and

improve the lifetime. More practical diagnostic and prognostic strategies are needed.

Because PEMFC faults can occur and evolve very quickly without warning under

complex operating conditions, real-time diagnostic capability is a critical requirement

for system preservation. Therefore, the fault can be detected quickly enough, so that to

react immediately to reduce the damage. Also, the cost of the diagnosis and prognosis

should be reduced, so that to widely apply it in commercial applications.

To face those problems, the diagnosis and prognosis of the PEMFC system are

researched in this thesis. The objective is to find more practical and quick diagnosis

and prognosis methods to contribute to the development and extension of PEMFC

applications.

More precisely, three different diagnostic algorithms and one prognostic method are

proposed. The first diagnostic method is based on the voltage fluctuation and

autoregressive model, and the faults related to different stoichiometry, cooling circuit

temperature, and relative humidity levels can be classified accurately. The second and

third diagnostic methods are all based on electrochemical impedance spectroscopy

(EIS), and they are all on-line validated on a industrial level digital signal processor

(DSP) system. One of them is achieved by an equivalent circuit model (ECM) and

adaptive neuro-fuzzy inference system (ANFIS), while the other is proposed according

to the quick detective EIS features. Both methods can recognize the fault related to

flooding, drying-out, and mass transport in the PEMFC. A prognostic method is also

proposed based on the frequency domain Kalman filter (FDKF) which compared to its

equivalent in the time domain offers the simplicity of implementation and a much better

computational performance.
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All the proposed methods have been validated using experimental results from a test

bench dedicated to PEMFC diagnostics. This bench offers different operating and test

conditions with access to measurements of the main variables of the system. The

fuel cell under consideration is a 12-cell PEMFC operated under different operating

conditions of stoichiometry, cooling circuit temperatures and relative humidity levels.

The structure of the thesis is as follows:

• In Chapter 1, we provide the background knowledge of the PEMFC principles

and reviewed the main diagnostic technologies. Firstly, the PEMFC principles,

common PEMFC faults, and the concept of PEMFC diagnosis and prognosis are

presented in detail. Then the literature research about diagnosis methodologies is

given, and the diagnostic methods are divided into two groups, i.e. model-based

and data-based methods. Further, according to the former research works, the

challenges and solutions of real-time PEMFC diagnosis are analysed, and the

main objectives and methods of the thesis are introduced.

• Chapter 2 is about the diagnosis based on high-frequency voltage fluctuation

data and an autoregressive model (AR model). A novel diagnosis approach to

classifying different fault operating conditions of the PEMFC system is proposed

based on the stack voltage fluctuation patterns, which are identified by the

autoregressive model (AR model). Rather than using the voltages of each cell in a

stack for diagnosis, the proposed method focuses on the stack voltage fluctuation

over time. As only the voltage of the stack rather than each cell needs to be

collected, this method is less complex and more practical. For the first time,

the AR model is applied to extract fluctuation features from the PEMFC stack

voltage, and then the fault conditions are classified by several widely applied

classifiers. The effectiveness of the proposed diagnosis method is demonstrated

experimentally under 9 single-fault conditions and 8 multi-fault conditions. Those

faults are related to the cathode stoichiometry, anode stoichiometry, cooling circuit

temperature, and the relative humidity level. The diagnostic accuracy is 99%

for single-fault conditions and 93% for multi-fault conditions, and it is more time-

saving compared with the diagnosis based on the singularity analysis method.

Moreover, the effects of sampling frequency and sample window length on the

diagnosis effectiveness are first time studied and discussed.
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• Chapter 3 focuses on two diagnosis methods based on EIS. The first of them is

based on the equivalent circuit model (ECM) and adaptive neural fuzzy inference

system (ANFIS), and another diagnostic method is based on two easily available

EIS features. Both of them are validated on an industrial-level embedded system

in real time.

Firstly, a new diagnostic method based on ECM and ANFIS is proposed. A

new parameter identification method that combines genetic algorithm (GA) and

Levenberg–Marquardt (LM) algorithm is proposed to identify the fractional-order

ECM, in which the anode impedance, cathode impedance, and mass transfer

are all considered. This new method allows better exploitation of the EIS

diagrams, and the internal relationships between the fault conditions and the

ECM parameters are thoroughly analysed according to it. Then, based on these

relationships, a new diagnostic algorithm based on k-means clustering and ANFIS

is designed to precisely identify several faults that can occur in the PEMFC, such

as membrane flooding, drying, and mass transfer fault. Finally, the effectiveness

of this method is demonstrated experimentally through the exploitation of EIS

data under different faults and operating conditions of the PEMFC. Also, the

implementation of real-time PEMFC diagnosis is achieved on an industrial-level

digital signal processor (DSP) based on the proposed diagnostic algorithm.

The framework for linking on-line EIS measurement, diagnosis, and control of

PEMFC is proposed, and the implementation of real-time diagnosis is highlighted.

In the DSP, the ECM parameters are identified by a computationally efficient

optimization method that is suitable for industrial processors, namely, Powell’s

algorithm. In the second phase, the adaptively tunable ANFIS is applied to

fault diagnosis. It is experimentally demonstrated in real time, proving that the

diagnosis method is accurate and practical.

Secondly, a quick diagnosis method based on EIS is proposed and validated.

As the traditional EIS diagnosis with wide frequency range measurement is time-

consuming, a new diagnostic method is proposed based on two easily obtain

EIS features, i.e. the zero-phase impedance and the turning phase. The zero-

phase impedance is the average of EIS points with a small phase angle in the

high-frequency zone, and it can represent the water condition in the membrane.

The turning phase is the impedance phase that connects two semicircles in
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the EIS curve, and it can represent the gas flow condition in the gas diffusion

layer (GDL). It is experimentally demonstrated that the proposed features can

represent the health state of the PEMFC. The feature space can be divided into

7 fault zones by K-nearest neighbours (KNN) classification and all the cases are

assigned to the right classes. Both two features can be extracted from EIS only by

several measurements, and the diagnostic algorithm is validated in real time on

an industrial-level DSP system. The total diagnostic time is only 2.506 seconds,

proving that the diagnosis method is quick and practical.

• Chapter 4 is devoted to developing a prognostic method based on the frequency

domain Kalman filter (FDKF). As the degradation seriously affects the durability

and cost of the PEMFC, a novel model-driven method based on the FDKF and

voltage degradation model is proposed to predict the degradation of PEMFC in the

frequency domain. The advantage of the proposed FDKF method is that it can

process the data in groups; thus the computation time can be greatly reduced

with high accuracy. Two degradation experiments under constant and dynamic

currents have been used to demonstrate its prognosis performances under

different conditions and different training times. Compared with the traditional time

domain extended Kalman filter method and literature, it has been demonstrated

that the proposed one has higher accuracy and requires much less calculation

time.

• Finally, a general conclusion is given according to the studies of this thesis, and

the possible improvement and perspectives for future work are given.

The results of this thesis work have been published in several international peer-

reviewed journals and in a national conference.
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Chapter 1

Review of PEMFC diagnosis and

prognosis methods

1.1 Introduction

During the last 20 years, the world energy system has greatly changed and a lot of

traditional fossil fuels have been replaced by renewable energy. Hydrogen is readily

accessible, storable, carbon-free, and clean, so it is getting more and more attention [1].

To make use of hydrogen, fuel cell technology is one of the most important solutions.

The fuel cell is a kind of technology that can convert chemical energy (often from

hydrogen and oxygen) into electricity by electrochemical reactions. When hydrogen

is applied as the fuel, the only by-products are only water and heat, so it is very clean

[5].

There are various types of fuel cells. The most important difference between those

technologies is the type of electrolyte used to separate the anode and cathode.

Namely, the mainstream fuel cells can be grouped as alkaline fuel cells (AFC), polymer

electrolyte membrane or proton exchange membrane fuel cells (PEMFC), phosphoric

acid fuel cells (PAFC), molten carbonate fuel cells (MCFC), and solid oxide fuel cells

(SOFC) [6] [5]. The comparison of different kinds of fuel cells are given in table 1.1.

As can be seen from the table, both PAFC, MCFC, and SOFC should operate

under relatively high temperatures, so they need a large subsystem to maintain the

1
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TABLE 1.1: Comparison of different kinds of fuel cells

Types Moving
ions

Operating
temperature

efficiency Main characters Applications

AFC OH− 65-220 ◦C 45-60% intolerant to CO2; high effi-
ciency; low cost for catalyst;
high cost for gas purifica-
tion

has been used in
the space program

PEMFCH+ 60-80 ◦C 45-50% high power density; can
operate under low temper-
ature; high catalyst cost

has been applied
to mobile vehicles
or stationary
power station

PAFC H+ 205 ◦C 40% low power density; high gas
pollution resistance;can be
supplied by various fuels

more suitable for
stationary and
CHP applications

MCFC CO2−
3 650 ◦C 45-55% low catalyst cost; can sup-

ply various fuels; carbon-
ate ions should be supple-
mented; pollution of carbon
dioxide

suitable for large-
scale stationary
power plant and
CHP application

SOFC O2− 600-1000
◦C

45-60% low catalyst cost; various
fuel supply; high efficiency;
long start-up time; low
degradation; High tempera-
ture compatibility issues of
the components

stationary and
CHP applications

temperature. As a result, they all have big sizes and it will be uneconomic to have a

small application based on them. At the same time, as the AFC is intolerant to CO2, it

is not easy to be applied in harsh conditions. All in all, PEMFC is now the most popular

fuel cell technology among them, and it has already been applied to both mobile and

stationary applications.

1.2 Basis of PEMFC diagnosis and prognosis

1.2.1 PEMFC structure and mechanism

PEMFC structure is like a sandwich. The components and basic mechanism of PEMFC

can be shown in figure 1.1 [7].
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FIGURE 1.1: Basic structure and mechanism of PEMFC [7]

First, reactants enter the fuel cells through the channels of the bipolar plates (BP).

The bipolar plates have three functions. First, they contain flow channels, which help

organize the gas path. One of the most important objectives of gas flow channel design

is to make the gas concentration more even over the whole reaction surface. Thus, the

current distribution over the surface will be even, and the efficiency and performance of

PEMFC can be improved. Also, the BPs are also the electricity collectors and heat

conductors, therefore they should be good conductor for both electricity and heat.

Finally, the BPs should be solid enough, so that to support and protect all the stack

components as well as bear the pressure for the sealing [5].

Secondly, the hydrogen and air spread through the gas diffusion layers (GDLs) to reach

the reaction positions. Usually this layer is made of porous material, so that to distribute

the gas to the reaction site and take out the products (water). They must also conduct

electricity and heat produced.

Then there are reactions in the catalyst layers (CLs). The basic reactions in PEMFC

can be shown as:
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H2 = 2H+ + 2e−, Anode

1

2
O2 + 2H+ + 2e− = H2O, Cathode

H2 +
1

2
O2 = H2O −∆H + electricity, Overall reaction

(1.1)

The reactions should be catalysed by the catalyst layer. The hydrogen loses electrons

at the anode, and the electrons and protons reach the cathode by the outer circuit

and membrane respective. Therefore, the load on the outer circuit can be driven by

the current. CLs are typically constructed by adhering catalyst particles to the porous

support. The most widely applied catalyst in PEMFC is made from expensive metal,

such as Pt, while the support is usually carbon-based porous material. Therefore, one

of the most important tasks for catalyst research is to improve the catalyst efficiency,

but also to reduce the utilization of expensive metals, so that to reduce the cost [5].

The electrolyte in PEMFC is the membrane between the two catalyst layers. It is

specially designed to only let protons pass the membrane from the anode to the

cathode. Therefore, the electron can move in one direction, so that to provide electricity.

It is usually made of perfluorosulfonic acid (PFSA). The membrane, catalyst layers, and

GDLs are usually attached together by seal products, and they are called membrane

electrode assembly (MEA). MEA is the core of a fuel cell, and it is usually very thin [5].

For each cell, the provided voltage can be calculated by the reaction energy. The plot of

voltage under different static currents is called polarization curve [8]. A representative

polarization curve of fuel cells can be shown in figure 1.2 [5].

Generally, the output voltage can be represented by the theoretical potential and

different voltage losses, i.e. activation losses, ohmic losses, and concentration losses

[9].

The theoretical potential can be obtained according to the reaction energy of reaction

1.1, which can be calculated by equation 1.2.

Er =
−∆G

nF
(1.2)

Where

∆G = ∆H − T∆S (1.3)
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FIGURE 1.2: A typical polarization curve and voltage losses in PEMFC [5]

Where the ∆H is the change of enthalpy of the reaction; Er is the equilibrium potential;

∆G is the Gibbs free energy; n is the number of electron transport of the reaction; F

is the Faraday constant, which is 96485; T is the reaction temperature in Kelvin; ∆S is

the change of entropy of the reaction.

According to the Gibbs free energy under normal conditions (25◦C, atmospheric

pressure, the produced water is liquid), the theoretical potential is 1.23 V. However,

the equilibrium potential is slightly lower under actual temperature and pressure [9].

The voltage losses are divided into three parts. The activation losses represent the

loss caused by the electrode kinetics. There are activation losses at both anode and

cathode, but the losses at the anode are usually much smaller than that of the cathode

because the reaction in the anode is much easier. Therefore, the activation losses at

the anode are usually omitted and the activation losses of a fuel cell can be calculated

by equation 1.4 [5].

∆Vact =
RT

αF
ln(

i

i0
) (1.4)

Where ∆Vact is the activation losses; R is the ideal gas constant; α is the transfer

coefficient; i is the current density; i0 is the exchange current density.
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The Ohmic loss is the voltage loss caused by the resistance of the flow of ions in the

electrolyte and the flow of electrons through the conductive components. The losses

can be calculated according to Ohm’s law as equation 1.5.

∆VOhm = iRi (1.5)

Where the ∆VOhm is the Ohmic losses; Ri is the internal electrical resistance of the fuel

cell.

The concentration losses are caused by the quick consummation of reactants at the

electrodes. When the current is close to the limit current, the concentration gradients

are established rapidly, thus causing voltage losses. It can be represented by the

equation 1.6.

∆Vconc =
RT

nF
ln(

iL
iL − i

) (1.6)

Where the ∆Vconc is the concentration losses; iL is the limit current density. This loss

is only noteworthy when the current density is high.

Therefore, the actual voltage output of the fuel cell can be calculated by the theoretical

potential and the losses as equation 1.7. More details about the output voltage and

voltage losses can be found in the references [9].

V = Er −∆Vact −∆VOhm −∆Vconc (1.7)

The PEMFC stack is made up of several cells and the BPs are shared between two

inner cells, so as to have a bigger power capacity by superposing the voltage of all

the cells.In a stack, there are more design issues than in a single cell, because the

distribution of gases along the cells as well as the heat must be better managed [10].

1.2.2 PEMFC faults

As both fluid flow, chemical reactions, heat transfer, and electrical processes are

involved in PEMFC, it is a complex task to manage all the processes. If the operating
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FIGURE 1.3: A diagram of the water transport in PEMFC [12]

parameters are not set correctly or the components degrade, the fault may happen and

harm PEMFC durability and reliability. Fault means that the system is not operating

under the ideal conditions or state. The faults of PEMFC can happen in all aspects,

including gas leakage, heat management fault, water management fault, mechanical

force damage, electrochemical reaction fault, etc [11].

1.2.2.1 Water faults

One of the most important problems in PEMFC is the water management fault. Different

from other types of fuel cells, the electrolyte in PEMFC is the membrane, and it is solid-

state. Therefore, to let the proton pass through the membrane, the membrane should

be moist. The water transport in PEMFC can be shown in figure 1.3 [12]. During the

operation, the water is produced in the cathode, and it should be taken out by the gas

flow. At the same time, the water can pass the membrane from the cathode to the

anode by diffusion. Proton will take water molecules from the anode to the cathode by

drag effect, so that to pass the membrane with the help of the water molecules.

If too much water is produced or the water produced is not removed in time by the

airflow, the accumulated water blocks the flow path. In addition, because the catalyst is

covered with liquid water, the reaction zone is reduced. Also, as the catalyst is covered
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by liquid water, the reaction area will reduce. Therefore, the performance of PEMFC will

be greatly reduced. On the contrary, when the humidity in the PEMFC is insufficient, the

heat conductibility of the membrane will greatly decrease; thus the performance will be

reduced. Even worse, the membrane has the risk of breaking when it is extremely dry;

thus the structure may be damaged permanently. Therefore, flooding and drying-out

are the most important water defects in the PEMFC [13].

1.2.2.2 Temperature faults

Except for water management, temperature management is also important for the

normal operation of PEMFC. All the components need to work at their optimal

temperature to prevent degradation and guarantee overall performance. For example,

the water saturate pressure is decided by local temperature, and the relative humidity

will greatly change if the temperature is unstable or uneven. If the temperature is

too low, the liquid water will appear in the GDL and cause a flooding fault, which is

very harmful to the gas transfer and will cause the voltage to decrease and fluctuate

[14]. On the contrary, if the temperature is too high, the membrane and catalyst layer

will dehydrate; thus the drying out fault may appear. What’s more, there may exist

some hot spots in extreme conditions [15], which can cause damage to the component

structure. Those damages are irreparable, and even the security of the system cannot

be guaranteed.

To be aware of the temperature situation in the PEMFC, temperature mapping tools

can be applied to obtain the temperature distribution inside the PEMFC. A typical

temperature mapping result is shown in figure 1.4 [16]. The thermal unevenness,

location of extreme hot points and the dynamic change of temperature field during the

operation researchers have been studied [16].

1.2.2.3 Other faults

Several other defects can occur when operating conditions are not good or when there

is degradation. In particular the following:
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FIGURE 1.4: A typical temperature mapping result [16]

1. Poisoning. As the membrane and catalyst may react with some impurity species

in the gas supply, the membrane and catalyst will be poisoned and damaged,

sometimes even under very slight concentrations. For example, the SO2 can

cause dysfunction of catalyst layer [17]. Therefore, it is also a major fault source

in PEMFC.

2. Mechanical damage. Normally the stack is well installed and protected, however,

as the real operating conditions are complex, it is possible that the inner

structure is mechanically damaged. Also, as the MEA is very thin, especially

the membrane, the unbalanced gas pressure in the anode and cathode may also

cause damage to the components.

Also, there are other faults that are related to the degradation of the components. The

importance of different components can be listed as table 1.2 [11]. It can be seen that

the health state of the membrane is the most important, followed by the electrode. It is

therefore particularly important to reduce defects in these components.
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TABLE 1.2: Criteria for components importance ranking [11]

Criteria Bipolar
plates

GDL Electrodes Membrane Sealing
gaskets

Does the component has a role in
producing the output energy?

Yes(+) Yes(+) Yes(+) Yes(+) No(-)

Does a failure leading to a loss of
power exist?

Yes(+) Yes(+) Yes(+) Yes(+) Yes(+)

What is the importance of this
power loss?

Weak(+) Weak(+) Strong(++) Strong(++) Weak(+)

Is there a failure that prevents the
components from partially or fully
performing their functions?

No(-) No(-) No(-) Yes(+) Yes(+)

Does a failure leading to stack
death exist?

No(-) No(-) No(-) Yes(+) No(-)

Does the degradation vary with
the current profile required?

Yes(+) Yes(+) Yes(+) Yes(+) Unknown

Total 2 2 3 7 1
Component ranking 3 4 2 1 5

1.2.3 PEMFC diagnosis and prognosis

1.2.3.1 PEMFC application situation

As is addressed above, the different fuel cells have their advantage and disadvantage,

and the main application of fuel cells nowadays are based on PEMFC. They have

been applied to different situations, including portable, auto-mobile, and stationary

applications [2]. However, it is the auto-mobile field that has the most passion, and

a bright future is expected.

For commercialization, one of the most important factors is the cost, and the cost is

affected by the production quantity in turn. An estimation of the relationship between

the production and cost for fuel cell system is given in figure 1.5 [18].

According to the economic, society, and technology analysis, several major communi-

ties have proposed their targets for the production quantity of light-duty vehicles. The

detailed target of the US department of energy (DoE), the EU fuel cells and hydrogen

joint undertaking (FCHJU), and the strategy council road maps from China and Japan

can be summarized in table 1.3.

Also, to compete with other technologies, the cost for each power unit is quite important.

According to the estimation of technology development and production quantity, the

estimation of cost per power unit is given in table 1.4. It is clear that the different



Chapter 1. Review of PEMFC diagnosis and prognosis methods 11

FIGURE 1.5: Estimation of fuel cell system cost relative to production volume [18]

TABLE 1.3: Assumptions for fuel cell system production for light-duty automotive

Target-setting
entity

2020 2025 2030 2040

U.S. DOE 500000
systems per

year

500000
systems per

year

500000
systems per

year

not given

EU FCHJU 100000
systems per

year

100000
systems per

year

100000
systems per

year

not given

China 1000 systems
per year

10000
systems per

year

100000
systems per

year

not given

Japan 40000 FCVs 200000 FCVs 800000 FCVs 3-6 millions
FCVs

entities give a significantly different target for the short-term estimation, while they all

give an optimist estimation of the long-term development. Maybe it is because the

current situation is quite different for each entity, or also because they are estimated

by different methods. No matter how much the cost is, it is believed that the fuel cell

system can be an affordable and competitive technology after 20 years [18].

The average durability target can be shown in table 1.5. The target of heavy-duty

vehicles is much longer than the light-duty because the light-duty vehicles usually face

more complex working conditions. However, for both light-duty and heavy-duty vehicles,

the lifetime should almost double until 2035 compared to 2020; therefore it is quite a

challenging task.
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TABLE 1.4: Assumptions for fuel cell system production for light-duty automotive

Target-setting
entity

2020 2025 2030 2040

U.S. DOE 40$/kW 30$/kW not given 25$/kW
EU FCHJU 66$/kW 55$/kW 44$/kW not given

China 225$/kW 120$/kW 30$/kW not given
Japan 72$/kW 45$/kW 36$/kW 18$/kW

TABLE 1.5: Durability target for light-duty vehicles and heavy-duty vehicles

Vehicles 2020 2025 2035

light duty 5000 hours 6000 hours 8000 hours
heavy duty 15000 hours 22000 hours 30000 hours

To have a lower cost and achieve successful commercialization, the main challenges

and obstacles that should be dealt with are listed in figure 1.6 [18]. As can be seen

from the figure, durability is very important and it can be improved in different aspects,

including the component level, cell level, and stack level. To increase the stack lifetime,

the diagnosis is an important part of the control system, as emphasized by the red box.

The on-board diagnosis is just put forward, and it should be a mature technology before

2040.



C
hapter1.

R
eview

ofP
E

M
FC

diagnosis
and

prognosis
m

ethods
13

FIGURE 1.6: The main challenges and tasks for fuel cell development [18]
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FIGURE 1.7: The position of diagnosis and prognosis in PEMFC health management
[4]

1.2.3.2 Position of diagnosis and prognosis in health management

As is addressed above, the diagnosis and prognosis are important for the PEMFC

system. The diagnosis and prognosis take the core places in the whole PEMFC health

management field [4], and it was concluded as figure 1.7. The whole process can be

divided into observation, analysis, and action, and both diagnosis and prognosis belong

to analysis. They are based on the data from sensors and provide support for decisions.

According to the reference [19], diagnosis is the identification of the nature and cause

of a certain phenomenon. Diagnosis is used in many different disciplines, to determine

”cause and effect”. In systems engineering, it is typically used to determine the causes,

mitigation, and solutions of symptoms.

The diagnosis can be carried out at different levels, to improve the performance and

detect the potential degradation. However, the diagnosis of this thesis should be

distinguished from the diagnosis used in component-level research. For example, in

the development of a catalyst layer with good performance, the catalyst may be tested

under different unfavourable conditions, and to find what causes the performance to

decrease and why [17]. Then according to the diagnosis result, new technology may be

applied to build the catalyst. However, for the diagnosis of the PEMFC system, the main
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task of the diagnostic tools is to maintain the operating performance, i.e. monitoring the

health state of the whole system and giving notice to the controller if it is off the pre-set

routine.

Further, the prognosis is another important concept in health state management.

Different from diagnosis, the prognosis is applied to predict the long-term development

of the PEMFC performance, and give suggestions to prolong the lifetime or arrange the

power system [20].

1.3 Review of experimental tools for PEMFC system diagno-

sis

Different faults can be detected by diagnosis, so that to provide information for

maintaining the normal operation of PEMFC and help increase the reliability and

durability of PEMFC. There are two phases for the diagnosis of PEMFC. The first

phase is the data acquisition by experiment tools, and the second phase is the

algorithm design to analyse the data and obtain the diagnostic decisions [3]. The two

phases react with each other. Usually, the mechanisms of the experiment can decide

and inspire the data processing method and diagnostic algorithm design; thus some

particular methods can be applied to particular experiment data [21]. At the same time,

the methods to apply the data in practice should be analysed and considered at the

beginning, to design better experiments to improve the data’s practicality [22].

The main PEMFC diagnosis tools and methodologies are summarized in figure 1.8.

The existing diagnostic tools and methodologies are reviewed in the following sections,

respectively.

According to the experiment mechanisms and the types of obtained data, the diagnostic

tools can be divided into two categories, i.e. electrochemical tools and physical/chem-

ical tools [21]. The electrochemical tools are based on electrochemical reactions, and

the electrical response such as potential and current can be measured as diagnostic

data. According to the response, the inner processes can be inferred, so that to indicate

the inner health state. Different kinds of stimulation can be used for diagnosis, and they

can give information on different aspects. The widely used electrochemical tools include
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FIGURE 1.8: Synthesis of tools and methods for the diagnosis of PEMFCs

polarization curve, current interruption (CI), electrochemical impedance spectroscopy

(EIS), cyclic voltammetry (CV), and linear sweep voltammetry (LSV), etc. [22].

Except for the electrochemical tools, there are also other experimental tools based on

the physical/chemical processes in PEMFC [22]. Physical and chemical processes also

play an important role during the operation, such as gas transportation, water balance,

temperature maintenance, etc. The fault mechanisms of these processes should be

understood by physical and chemical parameters, and the main physical/chemical

diagnostic tools include gas chromatography, neutron imaging, magnetic resonance

imaging, optically transparent fuel cells, temperature mapping, current mapping, etc.

However, the physical and chemical information used in the above methods can only
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be obtained under specific ex situ conditions and they are not suitable for on-line

diagnosis of the PEMFC system. Therefore, only electrochemical tools are presented

and discussed in this thesis.

1.3.1 Polarization curve

For an electrochemical system like PEMFC, the plot of the output voltage to the output

current is called the polarization curve. The polarization curve can be measured by

setting several static currents (or voltage), and it can be used to represent the static

performance of a PEMFC [8]. The typical polarization curve is given in figure 1.2.

As the polarization curve can give valuable information about the voltage of fuel cells

under different currents, it is usually applied as an important indicator of the health

state of the fuel cell [23] [24]. D. Bezmalinovic et al.[25] researched the degradation of

PEMFC by the measurement of CV, EIS, and polarization curve. The analysis showed

that the polarization curve can give similar conclusions about the degradation compared

to CV and EIS. M. Mohsin et al.[26] used the polarization curve as a characterization

tool and studied the performance of PEMFC after several voltage cycling tests under

different relative humidity.

However, the voltage losses usually cover each other, and it is difficult to distinguish

the contributions of different processes, so the polarization curves can only give

qualitative conclusions. N. Fouquet et al.[27] carried out experiments and measured the

polarization curve under both drying out and flooding fault conditions. Even though the

polarization curves under both fault conditions are different from the normal condition,

the polarization curves under drying out condition and flooding condition are very similar

to each other, so it is impossible to distinguish the root causes of the fault.

Therefore, the polarization curve is an important health state indicator, but it is not

suitable to distinguish the root fault causes only based on it. Also, as the measurement

of the polarization curve needs to set the current at different levels, which will interfere

with normal operation, it is impossible to detect it during the operation.
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FIGURE 1.9: A typical Nyquist plot of EIS

1.3.2 Electrochemical impedance spectroscopy

EIS is another widely applied tool in the PEMFC diagnosis [28]. To carry out EIS, a

small sine signal is superposed to the current (voltage) of PEMFC, and the voltage

(current) response can be recorded. The magnitude and phase difference between the

voltage and current can be obtained, and it is called electrochemical impedance. By

adjusting the frequency of the sine signal, impedance spectroscopy can be obtained.

The typical representation methods of EIS result are Nyquist plot and Bode plot, which

are shown in figure 1.9 and 1.10, respectively.

The Bode plot gives the modulus and phases under different frequencies, respectively.

The Bode plot can give the frequency information, but it separates the impedance into

two parts, which makes it less intuitive. Compared to the Bode plot, the Nyquist plot

is more frequently applied. The Nyquist plot uses the real part of the impedance as

the x-axis, while the imaginary part is the y-axis. Even though the exact frequency
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FIGURE 1.10: A typical Bode plot of EIS

information is not provided in the Nyquist plot, the transfer of the impedance from high

frequency to low frequency is more intuitive than the Bode plot [29].

The impedance in different frequency ranges can represent different processes in the

PEMFC. As can be seen in figure 1.9, normally there are three arcs that represent the

impedance of the anode, cathode, and mass transfer process, respectively.

In the high-frequency zone, there is a small arc that represents the impedance of the

anode, and it even disappears in some PEMFC. The anode arc is small because the

oxidization of hydrogen is very easy to proceed with compared to the cathode. At the

same time, the storage of electrons on the double electrode layers can be regarded

as an electrical capacity, so the high-frequency arc can be represented by a parallel

connection of resistance and a capacitor [30]. When the frequency decreases to

the middle area, the dominant impedance can be represented by another arc, and it

represents the cathode process. As the reduction of oxygen is much more difficult

compared to the anode, the impedance arc is much bigger than the anode arc.

At very low frequency, the mass diffusion process in the gas diffusion layer (GDL) is

dominant compared to anode and cathode impedances. The GDL is usually composed

of porous material, and there are both resistance and storage effects for the reactants

to reach reaction positions, so it will affect the reaction intensity. It is noteworthy that the

impedance at low frequency is quite different for different PEMFCs, and it is supposed



Chapter 1. Review of PEMFC diagnosis and prognosis methods 20

to be affected by the structures of PEMFCs, such as the different shapes of the flow

channel or structure of GDL [31].

There is always a curve shift of the real part at the high-frequency area, and it is

observed almost in all PEMFC. This offset can represent the electrical resistance in

the PEMFC, such as the resistance for ions to pass the electrolyte and for electrons to

pass electrodes.

An important method to analyse the EIS data is to build equivalent circuit models (ECM)

[32]. As shown in figure 1.9, the main idea of ECM is to match the EIS behaviour by

electrical elements, such as electrical resistance, electrical capacitor, inductors, etc.

The complex PEMFC system can be represented by an electrical circuit, so the inner

state of the PEMFC can be represented by the elements of the circuit.

However, the ideal electrical capacitor cannot match the experiment results in most

cases, so the constant phase element (CPE) was proposed and widely applied. The

difference between CPE and an ideal electrical capacitor is that the CPE can be

regarded as a capacity whose interface is rough, and the impedance of a CPE can be

expressed as the parallel connection of numerous capacitors [33]. The CPE character

of EIS is caused by the heterogeneity in the PEMFC, and the impedance of a CPE can

be given as equation 3.1.

ZCPE =
1

Qsα
(1.8)

Where the ZCPE is the impedance of CPE; Q is the nominal capacitance of CPE; s

is the complex variable; α is the coefficient. When α is 1, the impedance of CPE is

equivalent to a capacitor.

Another element is usually introduced to represent the mass diffusion impedance, i.e.

the Warburg element. This kind of element is deduced from the semi-infinite diffusion

phenomenon, and its impedance can be shown as equation 1.9.

Zw = A
tanh(

√
sτ)√

sτ
(1.9)
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EIS is an important characterization tool for performance verification, such as the

contamination effects of SO2 [17], the effects of the micro-porous layer [34], etc. E.

Balogun et al.[35] studied the PEMFC performance and durability with two different

binders, and the EIS, polarization curve, and other characterization methods were

applied to show the performance of different technologies. R. Pan et al.[36] used an

ECM to fit the EIS data during a degradation experiment. The fitted ECM parameters

show a good correlation with the degradation time; thus they are applied as indicators

to predict the future degradation.

In conclusion, the EIS is a very important tool for PEMFC diagnosis. Compared to

the polarization curve, it can distinguish the impedances of different components and

different processes, so that to give more information about fault detection and fault

isolation. What’s more, as the measurement of EIS is based on adding small AC

waves on a big DC, it has the potential to be applied in on-line diagnosis [37] [38].

Even though the accurate detection of EIS relies on special cumbersome equipment,

nowadays more and more researchers tried to integrate the EIS measurement with

existing control devices such as DC-DC converter [39] [40] [41] [42]. Therefore, EIS is

quite a promising tool for both laboratory and practical utilization.

1.3.3 Current interruption

Another useful alternating current (AC) tool is the CI method. The basic idea of CI is to

suddenly cut off the circuit, and record the change of voltage with the time immediately

[43]. A typical result of CI can be shown in figure 1.11 [44].

The voltage response of CI can be divided into two parts: the immediate voltage

increase, and the slow rise part. As has been analysed above, the inner resistance

of PEMFC can be divided into a pure resistance part and another part with storage

effects, so the immediate voltage increase can represent the voltage loss caused by

pure resistance. For the slow rise part, it is usually taken as the activation loss. L.

Carina et al.[45] applied the CI to the research of porous electrodes, and the over-

voltage change in the whole process was analysed . M.A. Rubio et al.[46] carefully

deduced the mathematical equations of the voltage response during CI, and the ECM

was applied. The ECM parameters identification method was also proposed, and it was

applied to the diagnosis of cathode flooding.
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FIGURE 1.11: A typical result of current interruption for PEMFC [44]

In summary, CI is also a useful tool to know the inner electrical state of PEMFC. It is

easier to perform than the EIS and also saves time, but it reveals less information than

the EIS. There are also some variants based on the traditional CI, such as suddenly

changing the current magnitude but not necessarily to zero; thus it may be applied to

more conditions. Except for the electrical condition, no other conditions need to be

modified during the diagnosis, so it is possible to have a wider application.

1.3.4 Cyclic voltammetry

Compared with other methods, CV is featured by its ability to provide information about

the catalyst [47] [48]. CV has been widely used as an important tool to characterize the

electrochemical active surface area (ECSA) [49]. The basic idea of CV is to impose a

zigzag wave and record the current response, and the typical voltage imposed on the

system as shown in figure 1.12(a) [50]. During the experiment, the anode is usually

filled with hydrogen to provide a reference electrode, while the inert gas is supplied

to the cathode and the corresponding CV result as shown in figure 1.12(b) [50]. The

voltage increase process corresponds to the oxidation process of the catalyst, while

the voltage decrease process corresponds to the reduction process. The relationship

between the current and voltage is non-linear, and there is a hysteresis phenomenon

[51].

As the CV is sensitive to the catalyst state and especially to the ECSA, it is widely

applied as a characterization tool for the health state and performance assessment of
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(a) (b)

FIGURE 1.12: (1) A typical voltage applied for CV measurement and (2) corresponding
CV result [50]

catalyst [52]. C. Roth et al.[53] synthesized a new Pt-Ru fuel cell catalyst, and it was

compared with a commercial catalyst by CV. F.A. Bruijn et al.[54] studied the influence

of carbon dioxide on PEMFC anode by experiment, and CV was applied to analyse the

poison effect of CO2 with different concentrations.

However, CV is not suitable for in situ applications because the experimental conditions

are too strict. A special environment and gases are required during diagnosis, and the

method is only suitable for simple electrochemical devices, but not for complex PEMFC

systems. However, the attractive point of this method is that special information about

the catalyst surface can be provided, which is unavailable for other methods. Therefore,

this method can be used in the laboratory to research the degradation mechanisms or

ex situ diagnosis applications.

1.3.5 Linear sweep voltammetry

LSV is similar to CV, but only the voltage increase part is applied. The anode is

filled with hydrogen, while the cathode is filled with inert gases [55]. As the voltage

increases with time linearly, the current response will change according to the inner

state and processes. As is widely known, the membrane is not perfectly impassable for

hydrogen; thus there is crossover current and it causes voltage losses. The detected

current is composed of crossover current and short-circuit current, so it is a useful tool
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FIGURE 1.13: A typical LSV result [56]

to characterize the crossover current of the membrane. A typical LSV result is shown

in figure 1.13 [56].

As LSV can give information about the crossover current and indicate the health state of

the membrane, it is widely applied to characterization and diagnosis. J. Kang et al.[57]

studied the degradation of a PEMFC after wet and dry gas cycles. The CV and LSV

were applied and the crossover current increased with the degradation process.

Similar to CV, both the gas and other conditions cannot be satisfied when the PEMFC

is operating, so the LSV is not suitable for on-line applications because of the

special experimental requirement. Therefore, the method is only useful for laboratory

experiments and ex situ diagnosis.

1.3.6 Electrochemical noise

During the operation of PEMFC, usually the current is controlled, so the voltage output

is an important indicator of the performance assessment because it will directly decide

the output power. However, it is found that not only the voltage magnitude is important,

but the voltage fluctuations, i.e. the electrochemical noise (EN), is also a useful indicator

of the inner health state, so it may be used as a diagnosis tool.
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EN method has been applied as a diagnostic tool for a long time, but mainly in the field

of electrochemical corrosion and coating process. EN is determined by electrochemical

processes, but it is also affected by related processes such as mass transfer, gas

evolution transfers, electrode corrosion, water transport and temperature distribution

[58]. Therefore, it is still quite an open but also difficult area to analyse the basic

mechanisms behind the phenomenon. However, even though there is no model to

deal with the mechanisms, some experiments have been carried out to discuss the

potential to use this phenomenon as a diagnosis tool.

B. Legros et al.[59] evaluated the possibility to apply EN as a diagnosis tool. They

analysed the EN in the frequency domain by fast Fourier transformation. Power

spectrum density (PSD) was calculated and it was sensitive to the change of operation

condition. A typical PSD result is shown in figure 1.14 [60]. M.A. Rubio et al.[61]

analysed the EN data by wavelet analysis, and the magnitudes under different

frequencies were compared and discussed. R. Malizia et al.[60] created the term

”internal intermittence”, i.e. the statistical features in the time domain including standard

deviation, skewness, and flatness in small-time windows. They found that the internal

intermittence was sensitive to water management, and they dramatically increase under

both flooding and drying out conditions. E.A. Astafew et al.[62] [63] published several

research papers about using EN as a diagnosis tool in PEMFC. They analysed the

spectral power density and frequency dependency relationship and connected the

equivalent circuit with the noise, which is very inspiring. They also proposed the

hypothesis of the EN formation mechanisms according to the experiment data, and

some other statistic features were also researched [64][65].

EN is a natural part of the output voltage, and normally the voltage output of PEMFC

applications can be easily recorded without extra costs. Therefore, a great advantage

of EN is the on-line property, because the diagnosis can be done during operation

without any intervention. So far, the EN has been analysed for different PEMFC

systems by some frequency domain transformation tools, but no conclusion has been

widely confirmed. Essentially, this is caused by the lack of understanding of EN

generating mechanisms, and the critical experiment parameters may have changed

between different experiments. For example, the EN caused by unstable gas supply

and the EN caused by water management fault cannot be distinguished yet. Therefore,
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FIGURE 1.14: A typical power spectrum density analysis of electrochemical noise
result [60]

it is quite an interesting field to find out the basic mechanisms. Meanwhile, as the

implementation is very easy, it is also significant to develop some other algorithms.

1.4 Diagnosis algorithms review

As the diagnostic data are collected, the diagnostic algorithms can be applied to give

diagnostic results. According to whether using a model, the diagnostic methodologies

can be divided into two categories: model-based methods and data-based methods

[66]. Model-based methods are based on the models that simulate the processes

inside PEMFC; thus the model output can be compared with real output to generate

residuals, which can be employed to decide the health state of the PEMFC system.

On the contrary, data-based methods are completely based on data processing or

classification algorithms, and no model is needed. These methods are widely applied

as it is still difficult to build precise physical models for the complex PEMFC system, and

also because of the flourishing development of artificial intelligent methods (AI) [67].

1.4.1 Model-based Diagnosis

For the model-based methods, the basic idea is to calculate the supposed output based

on a model and compare the results with the real output, and the fault can be declared
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FIGURE 1.15: Typical structure of model-based Diagnosis methods [68]

if the result residuals are beyond the threshold. Therefore, the model-based diagnosis

is also called residual-based diagnosis. The process to decide the correspondence

between residuals and faults is called residual evaluation. A typical diagram of model-

based methods can be shown in figure 1.15 [68].

According to how much the model is related to physical mechanisms, they can be

divided into three types, i.e. white-box model, grey-box model, and black-box model.

The white-box model is totally deduced by physical knowledge, and all the relationships

and coefficients can be expressed explicitly. In these models, the physical mechanisms

can be fully described by ordinary or partial differential equations or other mathematical

forms [66]. For example, the Nernst-Planck equation, Butler–Volmer equation, and

Fick’s laws are widely used to describe the electron transfer process. However, as

the PEMFC is a very complex system that is related to mass diffusion, heat transfer,

electrochemical reactions, and chemical reactions, it is still impossible to build an

accurate and universal white-box model for the PEMFC system.

To apply the observed physical and chemical rules in the PEMFC model, a more

practical method is to build grey-box models [66]. Unlike white-box models, the

relationship in a grey-box model is partly based on physical mechanisms, and partly

based on experimental induction. Therefore, a lot of empirical formulas are applied in

grey models, and the coefficients are usually fitted according to the experiment data.

As the behaviours of PEMFC systems are quite complex and non-linear, a lot of

unknown variables and processes can affect the performance of PEMFC. Therefore,
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FIGURE 1.16: Typical Diagnosis process based on parameters identification [68]

models based on analytical equations are often difficult to design. Thus, black box

models are proposed and applied to modelling. In black-box models, no physical

relationships and mechanisms are needed, and the model can be obtained by training

based on the experiment data; as a result they are widely used nowadays [66].

1.4.1.1 Diagnosis based on grey-box models

As has been addressed above, accurate and universal white-box models are hard to

build; thus most diagnosis research is based on grey-box models. Those methods can

be divided into three categories, i.e. parameter identification-based methods, observer-

based methods, and parity space methods.

(1) Parameter identification-based methods

The diagnosis of a PEMFC system can be achieved by identifying the model parame-

ters. A typical diagnosis process based on parameters identification is shown in figure

1.16 [68]. The model parameters can be identified according to the system input and

output, so the obtained model parameters under the real condition can be compared

with the parameters under normal conditions. Several parameter identification methods

were applied, including the least square method, genetic algorithm (GA), etc.

One of the most widely applied diagnosis models is the polarization curve model. S.

Wu et al.[24] applied the polarization curve data to analyse the ohmic and activation

loss gradient, and they were employed as residuals to distinguish the fault conditions of

normal conditions.

The system time constant was also applied to the diagnosis of PEMFC [69]. As

obtaining EIS is too complex in measurement time and equipment, the voltage
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FIGURE 1.17: Typical structure of observer-based diagnosis [70]

response to current steps was applied as a diagnosis tool, i.e. CI data. The evolution of

the time constant during the flooding process can be identified, and the time constant

can be an indicator of flooding fault.

(2) Observer-based methods

Another important model-based diagnosis method is the observer-based method.

Different from parameter identification methods, the main idea of observer-based

methods is to design all kinds of observers to obtain the inner state variables or to

reconstruct the undetected inputs, thus generating residuals and indicating the health

state. A typical diagram of observer-based diagnosis method is shown in figure 1.17

[70].

(3) Parity space methods

Parity space method is another method to design the residual generator. The system

model can be linearised in a discrete subspace, and the residual can be built by parity

relations. Therefore, it is represented by linear algebraic equations, which is more

convenient for computation. The diagram of parity space diagnosis method can be

shown in figure 1.18 [71].

Q. Yang et al.[72] focused on the residual generation by parity space method for the

PEMFC air supply subsystem. The state equation model was reduced to 3 orders,

and the non-linear analytical redundancy relations were applied to design the residual

generator. The simulation showed that all three faults can be detected by the residuals.

The parity space method was also extended to the whole PEMFC system, thus the
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FIGURE 1.18: Parity space Diagnosis method [71]

system faults were detected, such as flooding and drying out [73]. Z. Li et al.[74] also

connected the parity space strategy with data-driven methods, and the sophisticated

modelling process can be omitted. Their method was also proved by experiment result.

The research works about PEMFC diagnosis based on grey-box models can be sum-

marized in table 1.6. All the methods focused on the design of the residual generator,

and the residual evaluation and signature rules are also important. Sensitivity analysis

of the residuals to different faults is a useful tool for the fault signature, and advanced

classification tools can also be applied to decide the fault.
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TABLE 1.6: PEMFC diagnosis based on grey-box models

Methods Models Characteristics Advantages

Parameter

identification

polarization curve model [24]; Gradients of different phases from polarization curves were

applied; results were compared with wavelet packet transform;

It can be applied to on-line diagnosis;

equivalent circuit model for mass

transportation [75];

the flow rate of oxygen, hydrogen and water in the PEMFC was

analogized to the equivalent circuit;

the saturated conditions were considered by including

liquid phase in the diffusion layers;

equivalent electrical circuit model

for current interruption [69];

voltage response of CI was used to fit the circuit, and parameters

were compared with normal condition to generate residuals;

the time-constant spectrum and the dynamic flooding

process for 10 minutes was demonstrated;

Observer-

based

PEMFC operating model [76]; four residuals were generated and relative sensitivity was applied

to isolate the faulty conditions;

faulty conditions can be separated by sensitivity even

though all residuals are affected in the same direction;

PEMFC linear parameter varying

(LPV) model [77] [78];

the fault conditions can be isolated by relative sensitivity, and

adaptive threshold was applied;

both the operating condition fault and sensor fault can

be identified;

First-order differential-algebraic

PEMFC model [79];

residuals were created by high-index sub-models; sub-models can be chosen by the structural analysis

and causal computation;

PEMFC model simplified by linear

canonical variety analysis [80];

Both the inverse model method and Kalman filter method were

applied to generate residuals;

non-linear PEMFC model can be approximated by

linear state-space model with small order;

PEMFC model simplified by con-

sistency relations design [81];

The sub-models can be chosen by consistency relations design,

and a residual can be designed for each fault;

each fault can be indicated by one individual residual,

no need of residual evaluation;

PEMFC air supply model [82]; a modified super-twisting (ST) sliding mode observer was

designed to generate residuals;

the fault signal can be reconstructed and the state can

be estimated during load change;

PEMFC thermal model [83]; four residuals were generated according to the thermal model; the fault of pumps, thermocouples, and heat exchang-

ers can be isolated;

Continued
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Continued

Methods Models Characteristics Advantages

Parity space

method

air supply subsystem model [72]

and PEMFC model [73] ;

the PEMFC system model was linearised, residuals were

generated based on parity space method;

both sensor, actuator and PEMFC water management

fault can be detected and isolated;

parity vectors identified by orthog-

onal projection approach [74];

the residuals were generated based on the parity space, and SVM

was used for residual evaluation;

no need of sophisticated modelling, the parity space

can be identified directly by data processing
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1.4.1.2 Diagnosis based on black-box models

PEMFC is a complex system including a lot of processes that cannot be described by

accurate mathematical models. Therefore, a more convenient method is to build the

black-box models. Only the inputs and outputs data are needed to build the black-box

model, so the complex physical mechanisms can be ignored, which is very practical.

As the residuals are created by the model results, the method to build a black-box

model is critical for the diagnosis. Normally the models can be built based on artificial

intelligent tools, and they can be divided into several types, i.e. neural network methods

(NN), fuzzy logic methods, and adaptive neuro-fuzzy inference system (ANFIS) [66].

(1) Neural network models

The most widely used black-box models are all kinds of neural network methods. An

artificial neural network (ANN) is a very good tool to build models for non-linear systems

because it can represent different kinds of non-linear behaviours [84]. The nods in an

ANN are called neurons, and their organizational structures can represent different

topologies. According to the number of layers, they can be categorized as single-layer

and multi-layer networks. According to the data transmission method, they can be

divided into feed-forward, back propagation, and recurrent neural networks. They all

have different characters and can be applied to particular cases. A typical structure of

ANN can be shown in figure 1.19.

S. Jemei et al.[85] created an ANN model for an embedded fuel cell, and both static

and dynamic models were considered. N. Y. Steiner et al.[86] moved one step forward

towards the diagnosis based on the ANN model. Not only were the outputs of the

PEMFC system predicted, but they were also compared to the experimental outputs

to generate residuals for flooding and drying fault diagnosis. Rather than building a

model to calculate the voltage output, S. Laribi et al.[87] [88] applied the ANN to model

the EIS data. J. Park et al.[89] focused on the thermal management system, and an

ANN model was built to simulate the relationship between the signals and faults. The

current distribution was also predicted by the ANN model according to the given current

density, temperature, pressure, stoichiometric ratio, and relative humidity [90].

(2) Fuzzy logic models
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FIGURE 1.19: A typical structure of ANN

FIGURE 1.20: The typical structure of fuzzy logic Diagnosis [91]

Another widely used method is fuzzy logic models. The typical diagram of fuzzy logic

diagnosis can be found in figure 1.20 [91]. Those methods are developed by imitating

the human decision process, i.e. replacing the continuous input with the qualitative

description, and finding the relationship based on the fuzzified inputs and output.

Therefore, the fuzzy logic methods can be represented by some if-then relationships

and their logical combination.

A. Escobet et al.[91] applied the fuzzy logic model to calculate the output, and the

pattern recognition technique was applied to evaluate the residuals. B. Davies et al.[92]
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developed the decision rules according to expert knowledge and experiment findings.

M. Pei et al.[93] used the EIS experimental data as input to the fuzzy logic method, and

they extracted the features of EIS data by fitting the equivalent circuit, rather than just

choosing some points. G. Rubio et al.[94] applied the features of the current interruption

experiment to decide the fault cases.

(3) ANFIS models

ANFIS method is another tool to build models for diagnosis purposes. It is the

connection of neural networks and fuzzy logic; thus it combines their advantages.

Different from the fuzzy logic method, the membership functions and decision rules

are decided by training, rather than defined manually according to expert knowledge.

Therefore, no particular rules are needed, which reduces the intervention of the

researchers. What’s more, compared with ANN methods, the data needed to train

the model is also reduced because of the use of fuzzy logic [95].

K. Hustesen et al.[96] applied the ANFIS model to simulate the behaviours of PEMFC.

The fuel cell temperature, current density, and carbon monoxide concentration of anode

supply gas were set as inputs, and the voltage was the aim output of the model. K.

Mammar et al.[97] also applied the ANFIS to PEMFC modelling, but they focused on the

relationship between EIS data and humidity. The water situation was researched under

different conditions, and it was compared with the output observation. T. Wilberforce

et al.[98] also used the ANFIS method to predict the PEMFC performance, and the

polarization curve can be predicted accurately.

The existing research based on the black-box model can be summarized in table 1.7.

The applied methods, inputs, output, and characters of the study are presented.



C
hapter1.

R
eview

ofP
E

M
FC

diagnosis
and

prognosis
m

ethods
36

TABLE 1.7: PEMFC diagnosis methods based on black-box models

Models methods inputs outputs Characteristics

Neural

network

feed-forward NN and re-

current NN [85];

current, hydrogen and oxygen flow rates,

temperature, air humidity level;

voltage; the polarization curves can be predicted, and it

corresponded well with experiments;

Elman neural network

[86];

current, air inlet flow rate, stack temperature,

dew point temperature;

voltage output and pressure

drop;

predicted outputs were compared with the real

outputs to generate residuals for diagnosis of

flooding and drying out;

ANN [87] [88]; operating time and relative humidity; ECM parameters; the ECM parameters can be predicted and applied to

diagnosis;

ANN [89]; current, voltage, stack inlet and outlet temper-

ature, radiator outlet temperature, pump outlet

pressure and the fan control signal;

fault conditions; 6 ANN sub-models were built to reveal different

faults;

ANN [90]; current density, temperature, pressure, stoichio-

metric ratio, and relative humidity;

current density on 25 parts

of the current collector;

the current distribution can be predicted by ANN, and

it corresponded well with the experiment;

Fuzzy

logic

Fuzzy inductive reasoning

model and pattern recog-

nition [91];

stack current and compressor voltage; oxygen excess ratio, stack

voltage, compressor current,

compressor speed;

the predicted outputs were compared with the

experiment data, and the method was effective even

with 20 dB noise;

Fuzzy logic and expert

knowledge [92];

voltage, cycle number, anode stoichiometry,

and humidity change, stack temperature;

dehydration certainty expert knowledge was applied to decide the fuzzy

logic rules;

Fuzzy logic model and

ECM [93];

ECM parameters identified according to EIS

data;

water content the fuzzy logic rules were directly decided by faulty

mechanisms;

Fuzzy decision tree [94]; voltage slope change, pressure change, and

voltage oscillation;

water content the current interruption experiment result and other

features were employed as inputs;

Continued
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Continued

Models methods inputs outputs Characteristics

ANFIS ANFIS model [96]; fuel cell temperature, current density, CO

concentration in anode supply gas;

voltage; the voltage of high-temperature PEMFC was verified

under different temperatures, current density and CO

concentration;

ANFIS model based on

EIS [97];

EIS curve; relative humidity; water activity can be estimated based on EIS and

ANFIS;

Multiple regression anal-

ysis (MRA) and ANFIS

model [98];

oxygen and hydrogen flow rate, oxygen pres-

sure, hydrogen pressure;

current and voltage; the performance of PEMFC was predicted based on

the parameter selection by MRA;
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1.4.2 Data-based Diagnosis algorithms

Different from the model-based methods, the data-based diagnosis methods need no

models for the PEMFC system, and the diagnosis decisions can be directly obtained

based on the diagnostic data [67]. Therefore, the inputs of data-based methods are

features, and the output is the fault category. Classification or cluster methods are

applied to decide the fault categories by features, including different kinds of NN, fuzzy

logic, support vector machine (SVM), Bayesian network (BN), etc.

The choice and processing of features are quite important for data-based diagnosis.

The features can be any useful information about the operation processes and health

state of PEMFC [99]. The polarization curve data, the EIS data, current interruption

data, and other operating parameters like the pressure, the temperature, the current,

and the voltage are all useful. To obtain the most useful information with fewer

calculation burdens, the feature selection and feature reduction methods were widely

used. The purpose of feature selection methods is to select the most representative

data in a group of data, and the selection can be based on the analysis of information

amount. The feature reduction methods are used for reducing the dimension of

the inputs, and the most important features can be obtained by the transformation

of coordinates or other methods. Principal component analysis (PCA), discriminant

function analysis (DFA), kernel principal component analysis (KPCA), and kernel

discriminant function analysis (KDFA) are the most used feature reduction tools [100].

If the features are not explicit, some feature extraction tools are needed to obtain

the most important information from the original data. The most widely applied

feature extraction methods include the Fourier transform (FT), wavelet transform (WT),

etc. Therefore, feature extraction, feature reduction, and fault classification are three

important processes for PEMFC diagnosis. The typical data-based diagnosis methods

and tools can be summarized in figure 1.21 [101].

The objectives are different for the feature extraction tools, feature reduction tools,

and fault classification algorithms [67]. Generally, a fault classification algorithm is

indispensable, because it is used to build the relationship between the feature data and

the fault types. Secondly, the feature reduction tools are usually applied to reduce the

computational burden, when there are too many samples to deal with and the feature
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FIGURE 1.21: Typical processes of data-based Diagnosis methods [101]

dimension is too big. On the contrary, the feature extraction tools are only used in some

particular problems where the data show some characters in the frequency domain

or other aspects. Therefore, these methods are summarized below in order of their

necessity.

1.4.2.1 Feature extraction methods

Actually, feature extraction from the original data set is quite a particular task for different

kinds of data and different problems. Therefore, a lot of different methods have been

applied based on the physical characteristics of the measurement process [102]. For

time-series data such as voltage and pressure, some frequency domain information

or other information can be extracted from the original data by domain conversion

tools, including Fourier transform, wavelet transform methods, and empirical mode

decomposition.

(1) Fourier transform

Fourier transform of a time-series signal can transform the signal from the time

domain to the frequency domain, and some frequency domain information will appear.

Therefore, the Fourier transform is widely used [14]. In real applications, the signals are

always discrete, thus discrete Fourier transform (DFT) is applied, and FFT is a simple

implementation method of DFT.
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FIGURE 1.22: A typical FFT result of PEMFC voltage [103]

The signal frequency-domain behaviour can be different for faulty conditions and normal

conditions. Usually, the gas pressure and voltage output data can be transformed to the

frequency domain, because the fluctuation mode contains some health state characters

of the fuel cell stack. A typical diagram of the voltage frequency domain spectrum can

be shown in figure 1.22 [103]. It can be seen that the amplitude is totally different for

different conditions.

J. Chen et al.[102] observed the oscillation of the voltage at the high air stoichiometry,

and the FFT was performed for the pressure drop. M.A. Rubio et al.[61] carried out the

FFT and wavelet transformation for the voltage data, and the result was compared with

the EIS data. A.H. Detti et al.[103] and N.J. Steffy et al.[104] applied the FFT to the

voltage data under drying out and flooding conditions, and the total harmonic distortion

of the frequency spectrum was applied to the diagnosis. R. Maizia et al.[60] applied

the FFT to analyse the electrochemical noise, and the power spectral density under

different frequencies was obtained and compared under different situations.

(2) Wavelet transform
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FIGURE 1.23: A typical wavelet transform result of PEMFC pressure drop [105]

A great limitation of FFT is the loss of time information, i.e. the frequency spectrum can

represent the signal frequency behaviour during the whole process, but the transient

behaviours cannot be represented. However, the transient state change is quite normal

in the PEMFC system, and FFT cannot be applied to dynamic conditions. To show

the transient behaviour, a novel method is proposed by using slide windows to carry

out FFT, i.e. STFT, but it is difficult to decide the window length. If the window is too

small, the signal cannot represent some low-frequency behaviour, and the frequency

resolution is poor. On the contrary, the time resolution will be insufficient when the

window is too wide. Therefore, it is not very convenient to deal with the dynamic signal

with FFT [103].

Compared to the Fourier transform, the wavelet transform can give information in the

frequency and time domain. The basic idea of this method is to extract the signals from

wavelets of different lengths, which allows representing the behaviour of low and high

frequencies with an appropriate resolution. A diagram of the wavelet transform process

can be shown in figure 1.23 [105].

For the diagnosis of PEMFC, a lot of research dealt with the time series operating data

by wavelet transformation. N.Y. Steiner et al.[106] proposed a non-intrusive diagnosis

algorithm by wavelet transform of voltage data. Further, D. Benouioua et al.[107] [108]

applied the wavelet transform to a multi-fractal formalism, and the singularity of the

multi-fractal spectra was employed as a signature of the faulty operating conditions.
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J. Kim et al.[109] analysed the discrimination ability based on wavelet decomposition,

and the statistical quantities were applied to represent the state of health of the PEMFC

stack. M. Ibrahim et al.[110] compared the discrete wavelet transformation (DWT) with

continuous wavelet transformation, and they found that the DWT was advantaged in the

localization and execution time.

The electrochemical noise was also analysed by the wavelet transformation, and it

was compared with the FFT method and proved more effective [61]. E. Pahon et

al.[111] [105] not only applied the wavelet transformation to deal with voltage data but

also pressure drop data. The WT was also used to diagnose the water content fault

according to the energy intensity of reconstructed vibrating voltage [112].

(3) Empirical mode decomposition

Some other methods were also applied to extract features from time-series data, such

as empirical mode decomposition (EMD) [113]. EMD can be used to decompose the

original signal into several signals based on the mode function of the original signal, so

no extra basis functions are needed. But it is not widely used yet.

1.4.2.2 Feature selection and dimension reduction methods

One of the objectives of the PEMFC diagnosis algorithm design is high computational

efficiency so that it can be used for on-line applications. However, as various kinds

of data can help with the diagnosis, the feature dimension is usually too big and

the diagnosis time is too long. To obtain enough information with fewer features,

several feature selection methods and feature dimension reduction methods have been

proposed and applied in the PEMFC diagnosis [100]. Although the goals of the feature

selection method and the feature dimension reduction methods are both to reduce

feature dimensions, the internal logic is not the same. For feature selection methods,

the objective is to find and drop the useless features according to some analysis and

statistical criteria, while the other important features will not change. On the contrary,

for feature dimension reduction methods, the new features are created according to the

original features data, and it extracts useful information from all the features.

The feature selection methods and feature dimension reduction methods are applied

for different purposes. Feature selection is used when the dimension is redundant and
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certain features are useless, while features dimension reduction methods are employed

when all the features carry some information for the diagnosis.

(1) Feature selection methods

There are three feature selection methods used in the PEMFC diagnosis, i.e. the

variance analysis method, coefficient correlation method, and information gain-based

feature selection method [100]. The variance analysis method is applied to characterize

the degree of dispersion within a feature, as a large degree of dispersion means that

the difference between samples is big enough to distinguish them. Usually, a threshold

is set and the features with variance smaller than the threshold will be abandoned. The

basic idea of the coefficient of correlation method is to find the correlation between the

input features and the output fault categories. The bigger the correlation coefficient is,

the feature is more useful to the classification. Another feature selection method is the

information gain-based method, also known as the information entropy-based method.

This kind of method is based on the information entropy theory, and the amount of

information can be defined and quantitatively calculated. Therefore, the aim of feature

selection is to find the features of the biggest information gain.

Z. Zheng et al.[114] [115] applied both the variance analysis method and coefficient

correlation method to select the most useful features from presupposed features. L.

Huang et al.[116] proposed a diagnosis algorithm based on the decision tree, and

the detailed calculation method of information gain was introduced. With the rank

of information gain for all features, the stack voltage, inlet stack air pressure, inlet

hydrogen temperature, and total power were chosen as features to carry out the

diagnosis.

(2) Feature dimension reduction methods

Although the feature dimensions can be directly cut down by feature selection methods,

it is usually risky because some useful information for the diagnosis may be thrown.

To decrease the feature dimensions while making full use of the information of all

the features, feature dimension reduction methods are proposed. The widely applied

dimension reduction methods include PCA, KPCA, FDA, and KFDA.

1. PCA: It is the most used dimension reduction method in both the PEMFC diagnosis

field and other fields. The basic idea is to map the features into a new orthogonal
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FIGURE 1.24: The principle of PCA method

feature space, where the new orthogonal axis is chosen according to the biggest

variance direction [100]. A typical diagram of the principle of the PCA method is

shown in figure 2.8. According to this method, the new features are ranked according

to variance. Therefore, the new features in the last places can be dropped because

they carry almost no information about the classification, and the dimensions can

be reduced. It is a kind of unsupervised dimension reduction method because no

classification labels are needed. There are two methods to decompose the matrix

and obtain the new features, i.e. eigenvalue decomposition and singular value

decomposition (SVD).

2. KPCA: The KPCA is quite similar to PCA, and the only difference is that a non-linear

kernel function is applied to transform the data into a higher dimension linear space. In

this space, the PCA method can be carried out to find the principal directions, and the

useless features can be dropped.

3. FDA: FDA is a supervised dimension reduction method, so the labels are also applied

to reduce the dimension of the data set. It is also known as linear discriminant analysis

(LDA) [117]. The basic idea of the FDA is to map the features in new directions,

and the objective is to ensure the variance within a class is the smallest while the

variance between the classes is the biggest. The variance within a class can be

represented by a within-class divergence matrix, while the variance between classes

can be represented by an interclass divergence matrix. The optimization objective is

to make the generalized Rayleigh quotient of the matrix the smallest. A diagram of the

principle of the FDA is shown in figure 1.25. As the FDA is a supervised method, the

dimension after reduction has to be smaller than the class number.



Chapter 1. Review of PEMFC diagnosis and prognosis methods 45

FIGURE 1.25: The principle of FDA

4. KFDA: Similar to the relationship between the PCA and KPCA method, the KFDA

is also the combination of kernel function and FDA. By adding a kernel function, the

non-linear data can be mapped to linear space, and the FDA can be applied. However,

the calculation burden is much heavier than the normal FDA.

As all those methods have their own characteristics, they are suitable for different

situations. They are usually tried and compared in the PEMFC diagnosis research.

1.4.2.3 Fault classification methods

The basic idea of fault classification methods is to find the relationship between the fault

types and the features. To build this kind of relationship, some tools are widely used,

including neural networks (NN), Bayesian networks, support vector machine (SVM),

and k-nearest neighbour (KNN). Some other methods are also summarized.

However, those classification methods only dealt with the supervised classification

problem, in which the fault samples have already been labelled by the fault types.

To deal with non-supervised classification problems, cluster tools are widely applied.

As the non-supervised diagnosis problem is not very common in the research of

PEMFC, only the k-means clustering method and fuzzy cluster method are explained

and summarized.

(1) Neural networks methods

The most widely used data-based diagnosis methods for PEMFC are all kinds of NN.

As has been addressed above, the classification method is a kind of model where the
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FIGURE 1.26: Typical structure of Bayesian network for PEMFC Diagnosis [124]

inputs are the features and the output is the fault type. NN is very suitable for modelling

this kind of system, especially when the relationship between the inputs and output is

complex.

J. Kim et al.[118] applied the hamming neural network to the output voltage pattern

recognition, and the voltage pattern can represent the health state of PEMFC. S.

Morando et al.[119] [120] proposed an ANN with reservoir computing optimization

structure, and the air stoichiometry fault, cooling water fault, CO poisoning, and natural

degradation was considered. C. Jeppesen et al.[121] also focused on the diagnosis

of flooding and drying out in a PEMFC, but the EIS data was employed. M. Shao et

al.[122] applied 4 back propagation neural networks (BPNN) sub-models to detect the

health state of the subsystems, and the diagnosis of the whole system was achieved.

X. Gu et al.[123] used a long short-term memory (LSTM) network model for PEMFC

diagnosis, and the flooding fault was detected.

(2) Bayesian network

Another widely used diagnostic tool is the Bayesian network. It is developed based

on Bayesian theory, which is a statistical tool to analyse the probability between

events. A Bayesian network is a directed acyclic graph, where the nodes represent the

random variables, and the directed lines between the nodes represent the conditional

probability. The structure of a typical Bayesian network can be shown in figure 1.26

[124].
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FIGURE 1.27: The basic mechanism of SVM

L. Riascos et al.[125] [124] constructed a Bayesian network structure by Bayesian-

Score and Markov Chain Monte-Carlo algorithm, and they were combined to represent

the final probability. S. Wasterlain et al.[126] used the EIS data to decide the water

condition in a PEMFC. The real and imaginary parts of 6 points detected under

particular frequencies were set as inputs to a naive Bayes classifier. L. Mao et al.[127]

also applied the Bayesian network to the PEMFC fault diagnosis. The failure modes

and the fault of the sensor were analysed, and the details of the Bayesian network

were given.

(3) SVM classification

A widely used classification method is SVM. In SVM, the hinge loss is employed to

calculate the empirical risk and the structural risk, so it is a robust classifier [128].

Normally, SVM belongs to the generalized linear classifier, but the kernel method can

also be added to the SVM method to deal with non-linear classification. The basic idea

of SVM is to find the hyperplane with the maximum margin. The mechanism of SVM is

shown in figure 1.27.

As the SVM method is very accurate and the dimensions of features will not greatly

affect the computational efficiency, it is widely applied to classify different fault types in

PEMFC. Z. Li et al.[129] [130] employed the voltages of individual cells in a stack as

features to indicate the fault types, and the SVM was used as a classifier. Also, they
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developed the spherical-shaped multiple-class support vector machine (SSM-SVM),

which can also detect the potential novel failure mode [131] [132].They also tried to

diagnose based on magnetic measurement. The magnetic field can be measured

by non-intrusive tools, and used for the current density distribution estimation [133].

Further, they developed a highly compacted embedded system-in-package hardware,

to monitor the cell voltages and carry out the proposed diagnosis method [134]. J. Yu et

al.[128] developed the traditional SVM method by employing the cuckoo search method

for the optimization of the SVM model, rather than grid research in a traditional method.

L. Mao et al.[135] focused on the feature selection for diagnosis, and the SVM was

applied to compare the effect of different combinations of features. At the same time,

I. Lim et al.[136] developed a diagnosis method for the thermal management system

under various current density.

(4) KNN classification

Another widely applied classification method in PEMFC diagnosis is the KNN algorithm.

It is one of the most simple algorithms for classification, and the basic idea is to

represent the category of a sample by the majority categories of several nearest

neighbours Although the algorithm is simple, the computation burden is relatively heavy

because the distance between every two samples should be calculated.

R. Onanena et al.[137] carried out a diagnosis according to the EIS data and KNN. The

confusion matrices were obtained, and both two classification methods can obtain high

accuracy. D. Benouioua et al.[107] applied the KNN method to the fault classification

based on voltage singularity measurement. The classification tools included both SVM

and KNN. Z. Li et al.[129] also used the individual cell voltages as features to compare

4 different feature reduction methods and 3 classification methods.

(5) Clustering tools

The clustering algorithms are put forward to deal with the unsupervised classification

problems, i.e. find similar samples and distinguish them from other groups when no

labels for the samples. The most widely applied clustering tools in PEMFC diagnosis

include the k-means clustering method and fuzzy cluster methods.

K-means clustering algorithm is a very simple algorithm for unsupervised learning.

The basic idea is to find the centres that can minimize the total distance from cluster
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members to the centres [138]. Firstly, the centres are given randomly, then the

distances from sample points to the centres are calculated and compared, and the

centres will be updated according to the samples until the minimum is reached.

J. Liu et al.[138] focused on the diagnosis of a PEMFC used for the tramway. Six faults

were researched, and the discrete hidden Markov model fault diagnosis strategy based

on the K-means method was proposed for the first time. W. Pan et al.[139] used the

k-means clustering method to compare the effects of various features for the PEMFC

diagnosis. Z. Liu et al.[140] proposed a novel method to extract features from voltage

data. The FDA was used as the feature reduction tool and the k-means clustering

method was applied for classification.

Another important clustering algorithm is the fuzzy clustering method. The fuzzy

clustering method gives a degree of membership for each sample, rather than the

binary partition rule in the k-means clustering algorithm. Therefore, the possibility of

a sample belonging to a cluster is not 1 or 0, but a possibility between 1 to 0. With this

fuzzy process, the fuzzy clustering algorithm is more suitable for problems where the

boundaries between the clusters are not so clear.

M. Buchholz et al.[141] used the polarization curve as diagnosis data, and the fuzzy

clustering algorithm was applied to divide the samples with different faults. D. Hissel et

al.[142] proposed a method to diagnose the operation state of PEMFC for transportation

applications. With the fuzzy clustering algorithm, three clusters can be identified.

Z. Zheng et al.[143] applied the EIS data under different currents and different air

stoichiometry to the diagnosis of a purge fuel cell. The fuzzy c-means clustering

method was applied to classification, and the conditions were divided into oxygen

starvation/flooding conditions and normal status. They also applied the same method

to the experiments of another fuel cell [114]. Further, they developed another online

diagnosis method called double-fuzzy methodology. The double-fuzzy method was

composed of a fuzzy clustering algorithm and a fuzzy logic algorithm [115]. R. Petrone

et al.[144] also applied the fuzzy clustering to another fuel cell, and 6 clusters with

different water content states were obtained. F. Han et al.[145] developed another

diagnosis method by connecting the fuzzy clustering, artificial bee colony algorithm,

and SVM. The fuzzy clustering algorithm was employed to optimize the original dataset,

while the SVM was used to diagnose the faults.
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(6) Other diagnosis methods

Except for the widely used diagnosis methods listed above, several other methods were

also tried in the PEMFC diagnosis field. The Gaussian mixture model is based on the

Gaussian distribution function, and it can divide the samples according to the possible

distribution. It was applied to the diagnosis classification and compared with the KNN

and SVM methods [129].

J. Liu et al.[146] applied the decision-making tree classifier to diagnose membrane

drying out and hydrogen leakage failure based on the operating parameters. The

decision-making tree classifier is very similar to the human decision process, and a lot

of if-else relationships are put forward to obtain the final decision; thus it is relatively

simple. Also, a relevance vector machine (RVM) was applied to the diagnosis in

reference [13]. RVM is quite a new algorithm which is put forward in the year 2000.

It is similar to SVM but it is trained according to automatic relevance determination,

and the RVM is more computationally efficient than SVM. R. Lin et al.[147] applied

the random forest (RF) algorithm to PEMFC diagnosis. It was based on the decision-

making tree classifier, and several trees were included in the RF to make decisions.

As the decisions of different trees may be different, the final decision was voted by all

decisions.

N. Zhou et al.[148] introduced the extreme gradient boosting (XGBoost) algorithm to

the fault classification field. The classification accuracy and precision of the XGBoost

algorithm were better than convolutional neural network (CNN), LSTM, CNN-SVM,

CNN-LSTM, and the calculation time was much shorter. H. Dong et al.[149] also applied

the XGBoost algorithm, and it had higher diagnostic accuracy than SVM and KNN. An

extreme learning machine (ELM) was also applied to the diagnosis of PEMFC. J. Liu et

al.[150] applied both the kernel ELM algorithm based on cell voltages and the on-line

sequential ELM algorithm based on operating non-electrical parameters.

The existing research about data-based diagnosis methods is summarized as table

1.8. A lot of research only used the operating parameters as features and no feature

extraction or feature reduction methods were applied. On the contrary, for some

diagnosis tools such as polarization curve, EIS, and current interruption, usually special

feature extraction tools were applied. The most popular classifiers include ANN, SVM,

and KNN, as they are relatively simple. Also, the different classification methods
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and feature reduction methods were compared in a lot of research. However, there

is no diagnosis method that is absolutely good for all problems or for all features.

Therefore, different classifiers and different feature reduction methods are usually tried

and compared to find the best solution.
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TABLE 1.8: PEMFC diagnosis researches by data-based methods

Methods features feature extraction feature selection/ re-

duction

diagnosed faults remarks

ANN voltage response for cur-

rent interruption [118];

physical analysis; none; degradation degree; voltage loss can be an indicator of

degradation degree;

stack current and voltage

data [119] [120];

FFT and STFT; none; fault of air stoichiometry, cooling water

fault, CO poisoning, and natural degrada-

tion;

ANN with reservoir computing (RC) struc-

ture was used, and the algorithm can be

applied on-line;

two angles under high

frequency and low fre-

quency of EIS data[121];

physical analysis; none; low and high cathode stoichiometry, high

CO concentration in anode gas, high

anode methanol vapour concentrations,

and low anode stoichiometry;

the other fault conditions can be detected

accurately except for high methanol

vapour concentration fault;

voltage, current, temper-

ature, flow rate, the pres-

sure of air and hydrogen

[122];

none; none; stack cooling system fault, increase of

fuel crossover fault, air delivery system

fault, and hydrogen delivery system fault;

4 NN sub-model was applied to each fault

diagnosis;

operating parameters of

the whole system [123];

none; none; flooding fault; LSTM network was applied to deal with

time-series data, and the fault can be pre-

diagnosed;

Bayesian

network

power, current, voltage,

temperature, pressure

[125] [124];

none; none; fault in the air fan, refrigeration system,

growth of current crossover, and low H2

pressure;

diagnosis decision can be made at the

early stage to avoid permanent damage;

Continued



C
hapter1.

R
eview

ofP
E

M
FC

diagnosis
and

prognosis
m

ethods
53

Continued

Methods features feature extraction feature selection/ re-

duction

diagnosed faults remarks

6 points of EIS data

[126];

none; none; water management faults ; classification accuracy is 91% ;

8 operating parameters

[127];

none; none; flooding, incorrect bipolar plate torque

excess heat, contamination from impurity,

Pt loss, migration, and agglomeration;

the probability of fault causes can be

ranked;

SVM voltages of individual

cells in a stack [129]

[130] [131];

none; PCA, FDA, KPCA,

and KFDA;

low pressure and high-pressure fault,

flooding and drying out fault, low air

stoichiometry fault;

the diagnosis results by different features

reducing methods and classifiers were

compared, and the FDA with SVM

method was the best;

16 operating parameters

[128];

none; none; leakage of hydrogen, low pressure of

pumps, temperature, voltage over-range,

low pressure of input air;

the cuckoo search algorithm was added

to a traditional SVM method, and it was

proved better;

individual cell voltage in a

stack [132];

Shapelet transform; none; low and high-pressure fault, drying out

fault, low air stoichiometry fault;

sphere-shaped multi-class (SSM) SVM

was applied to detect new faults;

magnetic fields data

[133];

none; FDA; low and high air stoichiometry fault,

drying out and flooding fault, low and

high-pressure fault, low hydrogen stoi-

chiometry fault;

the diagnosis based on magnitude field

was better than that based on individual

cell voltage;

Continued
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Continued

Methods features feature extraction feature selection/ re-

duction

diagnosed faults remarks

statistical features of

stack voltage [135];

wavelet

transformation

and wavelet packet

transformation;

KPCA; drying out and flooding fault; the diagnosis by different features were

compared;

temperature, pressure,

and fan control signals

[136];

none; none; pump degradation, radiator fouling, tube

clogging, fan disabled, pump disabled

faults;

thermal management faults under differ-

ent current densities were detected;

KNN real and imaginary parts

of 6 points of EIS [137];

physical analysis; correlation-based

feature selection;

flooding and drying out; the FDA was applied as a classifier and

compared with KNN;

voltage singularity [107]; wavelet transforma-

tion;

mutual information

difference (MID) and

mutual information

quotient (MIQ);

cathode stoichiometry, anode stoichiom-

etry, pressure, temperature, CO impurity

faults;

SVM was compared with KNN, and the

combination of MIQ and KNN was the

best;

voltage frequency

domain features [103];

Fourier transform

(FFT) and total

harmonic distortion

(THD);

none; drying out and flooding faults; K-means method and KNN were com-

pared;

K-means

clustering

operating parameters

[138];

none; none; inlet temperature, low pump pressure,

outlet temperature, voltage over-range,

low air pressure and hydrogen leakage;

the KNN was used to identify the

unqualified points;

Continued
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Continued

Methods features feature extraction feature selection/ re-

duction

diagnosed faults remarks

statistical features of volt-

age [139];

statistical analysis; none; flooding and drying out; the dynamic fault formation process can

be indicated;

2D features of voltage

[140];

image features ex-

traction tools;

FDA; flooding and drying out; the diagnosis based on 2D features is

better than 1D features;

fuzzy

clustering

polarization curve [141]; physical analysis; none; high and low pressure, high and low stoi-

chiometry, high and low relative humidity,

temperature fault;

4 faults can be isolated and other 3 faults

can be detected;

two features of EIS data

[142];

none none; flooding and drying out fault; FC stack behaviour was under evolution;

features of EIS data [143]

[114] [115] [144];

physical analysis variance and correla-

tive coefficient analy-

sis;

flooding and drying out fault; fuzzy clustering and fuzzy logic methods

were combined to obtain the diagnosis

rule;

decision-

making

tree

20 operating parameters

[146];

none; none; membrane drying and hydrogen leakage; the accuracy was 98.5% ;

RVM individual cell voltages

[13];

none; FDA; flooding; the algorithm was on-line adaptive;

RF 20 operating parameters

[147];

none; PCA; faulty and normal cases; RF algorithm was compared with Ad-

aboost, KNN, and ANN methods;

Continued
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Continued

Methods features feature extraction feature selection/ re-

duction

diagnosed faults remarks

XGBoost operating parameters

[149];

none; PCA; membrane drying, hydrogen leakage and

unknown fault;

it was compared with SVM and KNN;

operating parameters of

vehicle [148];

none; none; 3 fault levels; it was compared with CNN, LSTM, CNN-

SVM, CNN-LSTM;

ELM cell voltages and operat-

ing parameters [150];

none; none; 4 degrees of high air stoichiometry fault; two different ELM model were applied

simultaneously and combined, and it was

compared with SVM and BPNN;
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Also, there exist some research work where both model-based algorithms and data-

based algorithms are combined together. For example, L. Mao et al.[151] proposed

a sensor selection method based on an ANFIS model to calculate the voltage output

with different combinations of sensors. With this model, the SVM was carried out to

compare the diagnostic accuracy of selected sensors and all sensors. As model-based

and data-based methods have different advantages, it is worth trying to connect them

to have better diagnosis performance.

1.5 Challenges and solutions for PEMFC health manage-

ment

1.5.1 Challenges of PEMFC diagnosis and prognosis

According to the analysis above, the diagnostic electrochemical tools include polariza-

tion curve, EIS, CI, CV, LSV, and EN. Among them, CV and LSV can give information

about the catalyst and membrane flow current respectively, but they are only suitable

for laboratory applications because the particular conditions required for the gases

cannot be met in practice. Polarization curve, EIS, CI, and EN can be applied to in situ

diagnosis. The polarization curve and EIS are the most widely used now. CI method

is another easier tool for the dynamic feature assessment than EIS, but it is not widely

applied yet [152]. The EN is also applied and is getting more and more attention.

For the diagnosis methodologies, both model-based and data-based diagnostic meth-

ods have been applied. However, according to the review above, several challenges

remaining to be solved in PEMFC health management can be concluded as follows.

1. As it is difficult to describe the PEMFC in a universal mathematical form, a major

trend of PEMFC diagnosis is to build black-box models or directly obtain the

fault types of classification algorithms, i.e. by data-based methods. However,

even though the relationship between the signal and fault can be related to data-

based diagnostic methods, the inner physical mechanisms are ambiguous, so the

generality is questionable.
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2. For the data used in the diagnosis, a great restriction is that they should be able

to be obtained when the PEMFC is operating or can be easily obtained ex situ.

However, former research did not emphasize the real-time ability of the diagnostic

data.

3. More feature extraction methods should be discovered, and it is especially

important to connect the feature extraction methods with the data measurement

system. To make sure that the feature really represents the fault characters, they

should be related to the basic physical mechanisms from the beginning.

4. For the classification methods of data-driven diagnosis, according to the ’no free

lunch rule’, there is no method that is suitable for all diagnostic problems with all

kinds of data. Therefore, finding the proper algorithm for different data is another

challenge.

5. As the application of PEMFC diagnosis is critical, one important direction is the

on-line diagnosis implementation. Even though a lot of researchers declare that

their algorithm can be applied on-line, the methods are not tried on industry-level

systems yet.

1.5.2 Study objectives and methods

According to the analysis above, the diagnosis technology of PEMFC is still an open

area. The main challenges include the generality of the algorithm, real time obtaining

data, interpretability of features, the matchup between problem and methods, industrial

practicability, etc.

Therefore, to contribute to the PEMFC health management and focus on the practicabil-

ity challenge, several diagnostic and prognostic algorithms are proposed and validated

in this thesis.

First of all, the real time obtaining ability of diagnostic data is considered. Two types of

data are used in the study, i.e. the stack voltage data and EIS data. As was analysed

above, both of them are electrical signals, so they can be detected in situ without

interrupting the normal operation of the PEMFC power system. It is quite important

as the signals basically decide the practicability of the method [3].
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Secondly, to overcome the problem of generality for data-based diagnostic methods,

hybrid methods are applied to build the relationship between the fault and signals. In the

first phase, the models are built based on physical mechanisms to extract the diagnostic

features. Therefore, the features are interpretable and they can be generalized to

other cases. Also, the data-driven methods are also applied in this thesis. As artificial

intelligence methods are quickly developing, advanced classification methods are used

to distinguish the different fault conditions. By combining the feature extraction based

on the model and the classification algorithms, this thesis uses the hybrid method to

deal with the generality and feature interpretability problems.

Thirdly, practicability is emphasized in this thesis. As the real-time application is quite

important, a DSP system is applied to validate the algorithms based on EIS. Therefore,

it is possible to apply the proposed algorithms in a wide range of industrial applications.

Further, not only the diagnosis should be carried out quickly, but also a quick prognosis

is important to save decision time and resolve sources [20]. Therefore, a quick and

accurate prognosis method is proposed based on FDKF, and the method is validated

under both static and dynamic conditions.

1.6 Conclusions

In this chapter, the basic knowledge about PEMFC diagnosis and prognosis are

introduced, so that to give a background of the thesis. First of all, the PEMFC structure,

PEMFC faults, application situation, and the concept of diagnosis and prognosis are

explained. Also, the existing experimental diagnostic tools and algorithms are clearly

reviewed. Only several electrical tools have the potential to be applied to the PEMFC

system in real time. The diagnosis algorithms can be divided into model-based and

data-based diagnosis, and both of them have their advantages.

Based on the literature research and analysis, the challenges for real-time diagnosis

are proposed. Also, the solutions to face those challenges are explained. The

main challenges include the generality and industrial practicability of the diagnosis

and prognosis methods, and this thesis focused on the implementation and practical

application of the methods. Therefore, the whole background and the problems to be

solved are given in this chapter.
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In the rest of the thesis, the proposed novel diagnosis and prognosis methods are

presented one by one, including three diagnosis methods and one prognosis research.

In the next chapter, a diagnostic method based on the stack voltage fluctuation and

the autoregressive model is presented, in which the electrical noise fluctuation mode is

described by autoregressive model coefficients.



Chapter 2

Diagnosis based on voltage

fluctuation

2.1 Introduction

To achieve a real-time diagnosis, more and more researchers try to apply the variables

that can be easily obtained during operation, including the voltage, gas pressure, etc.

[153] [151]. The output voltage was applied as a diagnostic tool in several studies.

Z. Li et al.[131] applied the voltages of each cell as features, and the spatial

inhomogeneity in a PEMFC cell can be represented. SVM was applied to classify

the different fault conditions in their search. More and more new classification tools

have also been applied to decide the faults at the cell voltages, and the result has

been compared with other widely used classifiers [154]. However, the features are

also important for diagnosis. Therefore, in addition to proposing new classification

methods, finding efficient feature extraction methods is another important task for

PEMFC diagnosis [155].

In these studies [118] [150], the applied features are the voltages of each cell, i.e.

{Vcell1 , Vcell2 , ...Vcelln}. From these features, the spatial distribution characteristic of

voltage can be revealed because the positions of the cells will greatly affect the voltage

output of an individual cell. However, all the cell voltages should be monitored in those

61
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methods, which is both costly and inconvenient when there are hundreds of cells in

industrial applications.

On the contrary, except for the voltage spatial distribution, another interesting and

important information is the stack voltage fluctuations over time, which is also called

electrochemical noise [63]. To apply the voltage fluctuation as a diagnosis tool, only

the stack voltage need to be considered, and the time dependency is emphasized.

Therefore, the data applied in the diagnosis is the stack voltage at different moments,

i.e. {Vt1 , Vt2 , ...Vtk}. For these time-series data, the voltage data sampled under high

frequency can be separated into voltage profiles by windows that contain certain data,

so the diagnosis can be carried out for each profile within a certain period.

The most common fluctuation observed in electrochemical devices is the ”1/f noise”,

because the noise intensity is inversely proportional to frequency. The PEMFC voltage

fluctuation can be caused by mixed complex mechanisms, such as the water content

fluctuation, resistance impurity, electron transmission pulse, etc [156]. It is still an open

area to find out the dominant mechanisms of voltage fluctuations in PEMFC system,

and several researchers have discussed it [59].

Even though the mechanism of the fluctuation is not totally clear yet, it is sure that

diagnostic information exists in the fluctuations, and the interrelation between operating

fault and fluctuation pattern was proved by both time domain and frequency domain

methods. The voltage fluctuation has been analysed by different methods, such as

wavelet transformation [157], statistical features [58], power spectral density [59], and

high-order moments [158], etc.

To achieve quantitative diagnosis based on voltage time series data, D. Benouioua

et al.[107] [159] employed the singularity analysis of the voltage time-series data

as features to distinguish the operating conditions. The singularity spectrum is the

multi-fractal spectrum calculated by wavelet transform-based multi fractal formalism,

and the KNN was applied to identify the fault conditions using features extracted

from the spectra. Also, the high-frequency and low-frequency parts of the voltage

singularity spectrum were compared with EIS, which explored the possibility to link

EIS and singularity spectra [157]. However, it needs about 4.5 minutes to obtain a

voltage profile. The mathematical complexity of the method is relatively high, and the

accuracy of the fault classification can still be improved. Rather than implementing
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singularity analysis, we propose to look for other effective features that can be more

easily identified, and in a shorter time. According to the reference [160] [161], as the

autoregressive model (AR model) can represent the recurrence interval of fluctuations,

it is a useful tool to describe the fluctuation patterns.

In this chapter, a novel data-driven method is proposed to achieve a quick and accurate

diagnosis based on the stack voltage fluctuation. In the proposed method, the voltage

fluctuation pattern is extracted by the AR model, then the AR model coefficients can

be applied as features to classify the different fault conditions. The main advantage of

this method is that only stack voltage data are needed, and the voltage profile can be

obtained every 1 second, so it is quicker and more practical. The diagnostic method

is experimentally demonstrated under extensive fault operating conditions. Nine single

fault conditions and 8 multi-fault conditions are researched, and those conditions relate

to the fault of the cathode stoichiometry (FSC), anode stoichiometry (FSA), cooling

circuit temperature (T), and the relative humidity level (RH). The diagnosis is then

carried out by several classifiers (ANN, ELM, KNN, and SVM) under different hyper-

parameters, and both the accuracy and computational times are compared. For the

first time, the quantitative effect of voltage sampling frequency and sample window

length on the diagnosis accuracy is studied. It proves that a higher sampling frequency

or longer data profile is beneficial to diagnosis accuracy.

This chapter is organized as follows: in Section 2.2, the diagnosis method based on the

AR model and classification is addressed. In Section 2.3, the experiment conditions

and related data are explained. Then the diagnostic result is obtained and analysed

in Section 2.4, and it is also compared with other research works. Some discussions

about the effects of sampling frequency and window length are given in Section 2.5.

Finally, the main conclusions are summarized in Section 2.6.

2.2 Diagnosis based on AR model

2.2.1 PEMFC diagnosis process based on AR model

The overall PEMFC diagnosis process based on output voltage data and AR model can

be concluded in figure 2.1. The diagnosis process can be divided into the offline period
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(training) and online period (testing), and it can be described as follows.

1. Collect experiment data from different PEMFC conditions for training. In this

research, the voltage data are measured under 3000 Hz frequency on a PEMFC

stack, and both single-fault and multi-fault conditions are researched.

2. For the collected voltage data, intercept voltage profiles by windows. There are

140 profiles (70% of total profiles) for each condition and 3000 data in each profile.

3. The coefficients of the AR model can be calculated for each profile and the

features of the diagnosis can be obtained. The exact feature extraction method is

explained in algorithm 2.1.

4. The classifiers can be trained based on the features. Different classifiers (ANN,

ELM, KNN, SVM) are compared, and the hyper-parameters of the classifiers are

also researched.

5. For the on-line period, firstly the detected stack voltage data can be intercepted

as profiles by the window, then the features can be obtained and applied to the

trained classifiers. By comparing the diagnosis results with the real conditions,

the diagnosis accuracy of different methods can be evaluated and compared.

2.2.2 Feature extraction by AR model

2.2.2.1 AR model principle

The relationship between data fluctuation pattern and AR model coefficients has been

analysed and confirmed [160] [161]. The AR model can describe the development

of time series data [162], and it was applied to system identification, future trend

forecasting [163], system control [164] [165], etc. It was also applied to modelling and

predicting PEMFC voltage [163], but never to PEMFC diagnosis.

In an AR model, the output data at time instant n can be represented by the linear

combination of p previous data, which is shown as equation 2.1. The biggest advantage

of the AR model is that no external inputs are needed, thus the model can be built only
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FIGURE 2.1: The diagnosis processes based on voltage data and AR model

based on the time-series data itself.

yn =

p∑
i=1

yn−i × ψi + en (2.1)

Where y is the time-series data, i.e. PEMFC voltage in this study; n is the time index; p

is the order of the AR model, which should be artificially specified; ψi is the coefficient

for ith lag data. en is a white noise whose mean is 0.

Coefficients means the degree that the current output is decided by former data. As

the different fluctuating patterns can lead to an AR model with different coefficients, the

coefficients can be directly applied as features for pattern identification, i.e. diagnosis

in our case.

2.2.2.2 Determination of model order

To have an accurate AR model, the model order should correspond to the characteristic

of the data, therefore the determination of AR model order is one of the most important

tasks. Some features may not be caught if the model order is too small, while there is
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a risk of over-fitting if the model order is too high. To handle this problem, the Akaike

information criterion (AIC) and Bayesian information criterion (BIC) have been proposed

to search for a balance between the accuracy and model complexity [166]. The AIC and

BIC can be calculated by equations 2.2 and 2.3, respectively.

AIC = 2k − 2 ln(L) (2.2)

BIC = k ln(m)− 2 ln(L) (2.3)

Where k is the number of model parameters, i.e. the order of the AR model in this

research; L is the likelihood function, which can reflect the accuracy of the fitting; m is

the number of the sample data.

The difference between AIC and BIC is that the BIC also considers the effect of a

data number, and it tends to give a model with fewer parameters. In both criteria, the

complexity term and the accuracy term have opposite signs, so we can decide the order

by choosing the model with the smallest AIC or BIC. Both AIC and BIC are calculated

in this research, and they will be analysed in Section 2.4.

2.2.2.3 Calculation of model coefficients

When the order of the model is determined, the coefficients of every lag in the AR

model can be obtained by solving the Yule-Walker equation, as shown by equation 2.4.
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γk = E((yi − µ)(yi−k − µ)) (2.5)
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Where the γk is the expectation of the auto-covariance for k order lags; µ is the

expectation of the series data. There are a lot of methods to solve the Yule-Walker

equation, such as the least square method, covariance method, and Burg method [167].

In this research, the Burg method is applied, as it needs no assumption about the out-

of-range data.

2.2.2.4 Feature vector

By the identification of the AR model, the coefficients of every lag in equation 2.1 can

be set as the feature vector of the voltage profile. The feature vector of the ith profile

can be noted as Fi with dimension p, which can be given as equation 2.6.

Fi = [ψ1 ψ2 ψ3 ...... ψp] (2.6)

The total process to extract features from voltage fluctuation data can be summarized

as algorithm 2.1. Therefore, the AR model coefficients can be calculated and set as

diagnostic features.

Algorithm 2.1: feature extraction by AR model

Load time-series voltage data V;
intercept voltage profiles by windows with certain length;
for AR order =1 to 100 do

for profile index=1 to total profile number do
calculate AR model coefficients according to equation 2.4;
calculate AIC and BIC according to the equation 2.2 and 2.3;

end for
compute average AIC and BIC;

end for
select AR order by comparing AIC and BIC of different AR orders;
take the AR model coefficients of selected order as features in equation 2.6;

2.2.3 Classification methods

With the characteristics identified, the objective of the diagnosis is to find the correspon-

dence between the characteristics and the operating conditions. A lot of classification

methods have been used in the diagnosis of PEMFC. Four widely used methods are

applied and compared in this research work: KNN, ANN, ELM and SVM.
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2.2.3.1 K-nearest neighbors method

KNN is one of the simplest methods for classification [168]. The principle of KNN is to

find the closest points of the aim point and then classify it to the class that appears most

times around it. The most important parameter that affects the classification accuracy

is the number of points that are considered effective for the classification. If the number

of points is too small, there is a risk of over-fitting, because the noise can greatly affect

the result. But if the number of points is too big, there is also the risk of under-fitting,

because some unimportant points will affect the classification. Therefore, the effect of

different numbers of points are studied in this research, and they are compared with

other methods. The detailed process of KNN is given as algorithm 2.2.

Algorithm 2.2: KNN classification

Load train samples, train sample classes, test samples, hyper-parameter k;
for test sample index=1 to total test sample number do

for train sample index =1 to total train sample number do
calculate distance between the train sample and test sample;

end for
rank the training samples by distance from smallest to largest;
take k nearest samples, rank the number of each class;
return the class that appears most;

end for

2.2.3.2 Artificial neural network

The second method applied in this research is the ANN method [84]. In the ANN, there

is an input layer, an output layer, and several hidden layers. In each layer, there are

several nodes, which are called neurons. The input of a neuron is the linear combination

of all the inputs, as shown by equation 2.7. And the input is transferred by a certain

function, such as the sigmoid function shown by equation 2.8. The parameters of the

network are adjusted according to the training data, so that the output of this network

is as close as possible to the real output.

zi = w1,i · x1 + w2,i · x2 + ...wk,i · xk (2.7)
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ai = g(zi) =
1

1 + e−zi
(2.8)

The ANN method can approximate any continuous system in theory, as long as the

number of layers is high enough. However, there is a risk of over-fitting if the structure

is too complex, and the calculation will also be enormous. Therefore, the number of

hidden layers is one of the most important hyper-parameters for the ANN structure.

The ANN with different layer numbers is analysed and compared later. The process of

ANN is given as algorithm 2.3.

Algorithm 2.3: ANN classification

Load train samples, train sample classes, test samples;
load hyper-parameter hidden layer number;
build ANN structure;
initialization ANN: randomly assign parameter values;
set precision and maximum learning times;
for learning time index =1 to maximum learning times do

for train sample index =1 in total train sample number do
choose one training sample and correspond class;
calculate the input and output of every neuron;
calculate the partial derivations of output layer neurons according to output error;
update the connection weights of hidden layer neurons;
update the connection weights of input layer neurons;

end for
calculate the sum of output errors;
if error < set precision or learning times > maximum learning times

break;
end for
for test sample index= 1 to total test sample number do

calculate output according to trained model;
end for

2.2.3.3 Extreme learning machine

Another widely used classification method is the ELM method. ELM is a particular

training method that can be applied to a single hidden layer neural network [150].

Compared with the traditional ANN training method, ELM can give accurate results

with fewer calculations. In traditional training methods, the gradient descent methods

are widely applied. However, a big disadvantage of this kind of method is the low

efficiency. On the contrary, the ELM method can set the parameters in a random way,
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so it can give results with fewer calculations. As there is only one hidden layer in the

ELM method, the number of neurons in the hidden layer is a critical parameter that

affects the classification accuracy, and the effects of neuron numbers are researched

and compared. The process of ELM is given as algorithm 2.4.

Algorithm 2.4: ELM classification

Load train samples, train sample classes, test samples;
load hyper-parameter hidden neuron number;
build ELM structure;
initialize ELM hidden layer weights randomly;
calculate hide layer response matrix;
calculate output layer weight;
for test sample index= 1 to total test sample number do

calculate output according to trained model;
end for

2.2.3.4 Support vector machine

The SVM is also a widely used classifier as it can give accurate results quickly [134].

The SVM method can give the maximum-margin hyperplane of the samples, and

classify the new samples based on it. The aim of SVM is to find the optimal hyperplane

with the maximum distance from the nearest samples. To solve linearly inseparable

problems by SVM, the kernel functions can be applied to transfer them into linear

separable cases. More details about the SVM method can be found in the reference

[134]. As polynomial functions are widely used as kernel functions, the polynomial

functions with different orders are applied and compared in this research. The process

of SVM is given as algorithm 2.5.

Algorithm 2.5: SVM classification

Load train samples, train sample classes, test sample;
load hyper-parameter kernel function order;
calculate correlation value of the feature vectors according to kernel function;
calculate covariance matrix space;
calculate characteristic coefficients;
scale covariance matrix by characteristic coefficients;
calculate model parameters;
for test sample index= 1 to total test sample number do

calculate output according to trained model;
end for
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2.3 Experiment data for PEMFC diagnosis

2.3.1 Experiments

To develop diagnosis strategies for a new PEMFC application, the experiments have

been carried out using a test bench developed in FCLAB (Belfort, France). The

experiments are a part of the “Decentralized energy production” project, directed by

EFFICACITY, the French R&D Institute for urban energy transition. The experimental

test bench is shown in figure 2.2(a). The monitoring and controls of the test bench

parameters are done through National Instruments materials and dedicated software

developed with LabviewTM, and the control interface can be given in figure 2.2(b). More

details about the test bench can be found in the reference [159].

The investigated stack is with 12 cells, as shown in figure 2.3. The characteristics and

nominal operating parameters of the stack are given in table 2.1. Air is supplied at the

cathode, while a mixed fuel (75% of H2 and 25% of CO2) is supplied to the anode. The

mixed fuel is set at this ratio to mimic a reformat because the PEMFC is designed with

the ability to operate with a gas reforming system.

TABLE 2.1: Parameters of the investigated PEMFC stack and reference operating
conditions

Parameter Value

Number of cells 12
Electrode active surface 196 cm2

Gas distributor plates graphite
Fuel used during experiment 75% H2+25% CO2

Coolant flow (deionized water) 3 l/min
Anode stoichiometry (H2 and CO2 mix) 1.3

Cathode stoichiometry (air) 2
Anode inlet pressure 111 kPa

Air inlet pressure 106 kPa
Max. anode - cathode pressure gap 20 kPa

Temperature of the cooling circuit 70 ◦C
Anode relative humidity 50%

Cathode relative humidity 50%
Nominal current 80 A
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(a)

(b)

FIGURE 2.2: (a) The test bench in FCLAB and (b) the human-machine interface of the
bench
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FIGURE 2.3: The investigated PEMFC stack

2.3.2 Available data

During the experiments, several operating parameters can be monitored and recorded.

The available data from the experiments can be shown in figure 2.4. First of

all, the system operating parameters are all monitored, including the gas pressure,

gas flow rate, temperature of different components and materials, etc. Secondly,

characterization tools are applied in the experiments, so that to indicate the health

state of the PEMFC system. Both EIS and polarization curve are measured for each

operating condition. In particular, the voltage data is recorded with high frequency, to

study the fluctuation features of the stack voltage.

2.3.3 Single-fault conditions

To study the fault conditions of the PEMFC system in the experiments, different fault

conditions have been reproduced by the adjustment of four operation parameters, i.e.

cathode stoichiometry (SC), anode stoichiometry (SA), cooling circuit temperature (T),
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FIGURE 2.4: Available data of the experiments

and the relative humidity level (RH) (by controlling the temperature of the humidifier).

Both single-fault conditions and multi-fault conditions have been tested.

Eight experiments under single fault conditions were carried out by setting the 4

parameters to higher or lower values than those corresponding to the reference

conditions. The detailed operation parameters under different conditions are shown

in table 2.2.

During the experiment, the current, the voltage of the stack and cells, the pressure of

the gas inlet and outlet, the flow rates of gas and cooling water, the relative humidity

rate, and temperature at different positions are measured. Because voltage fluctuations

can reflect the state of the PEMFC, high-frequency voltage sensing can provide more

information that is not available through low-frequency sensing.
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TABLE 2.2: The operation parameters applied to single-fault conditions

Parameters Ref DFSCH DFSCL DFSAH DFSAL DTH DTL DRHH DRHL

SC 2 2.6 1.6 2 2 2 2 2 2
SA 1.3 1.3 1.3 1.5 1.2 1.3 1.3 1.3 1.3

T (◦C) 70 70 70 70 70 72 65 70 70
RH(%) 50 50 50 50 50 50 50 54 46

Ref: Reference/normal condition;
DFSCH: cathode flow fault, higher than normal;
DFSCL: cathode flow fault, lower than normal;
DFSAH: anode flow fault, higher than normal;
DFSAL: anode flow fault, lower than normal;
DTH: stack temperature fault, higher than normal;
DTL: stack temperature fault, lower than normal;
DRHH: relative humidity fault, higher than normal;
DRHL: relative humidity fault, lower than normal.

In this research, sliding windows are applied to obtain voltage profiles, and the length

of the window is set to 3000 points so that one voltage profile can be obtained every

second. Examples of the voltage profiles under different conditions are shown in figure

2.5. The different faults are related to the inner health state of PEMFC, such as the

water content in the cell and/or different mass transport conditions. The voltage data

are quite fluctuant, and the voltage levels are quite similar for different fault conditions.

Therefore, it is practically impossible to assess the faults only by the voltage level, while

analysing the fluctuation patterns of the time-series data is a promising method.

FIGURE 2.5: Examples of voltage samples under reference and different fault
operating conditions
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2.3.4 Multi-fault conditions

In addition to the single-fault conditions, some multi-fault conditions are also studied.

The multi-fault conditions are obtained by changing the same operation parameters as

for single-fault conditions, i.e. the SC, SA, T, and RH. However, two different faults are

included in each multi-fault condition. 8 multi-fault conditions are considered and the

detailed operation parameters are shown in table 2.3.

TABLE 2.3: The operating parameters under multi-fault conditions

Parameters Ref DFSC DFSA DT DRH DT+DFSC DT+DFSA DT+DRH

SC 2
2.6

1.6
2 2 2

2.6

1.6
2 2

SA 1.3 1.3
1.5

1.2
1.3 1.3 1.3

1.5

1.2
1.3

T (◦C) 70 70 70
72

65
70 65 65 65

RH(%) 50 50 50 50
54

46
50 50 54

Ref: reference/normal condition;
DFSC: cathode flow fault, higher or lower than normal;
DFSA: anode flow fault, higher or lower than normal;
DT: stack temperature fault, higher or lower than normal;
DRH: relative humidity fault, higher or lower than normal;
DT+DFSC: cathode flow fault with lower temperature fault;
DT+DFSA: anode flow fault with lower temperature fault;
DT+DRH: relative humidity fault with lower temperature fault;

2.4 Results and analysis

In this section, the results obtained by the proposed diagnosis methods are presented,

and different classifiers are compared and analysed. Both single-fault conditions and

multi-fault conditions are researched, and 200 voltage profiles are applied for each

condition. 70% of the data are applied as training data and 30% data are used to test

the accuracy of the diagnosis.
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2.4.1 Model order and coefficients distribution

The AR model order can be decided by the AIC and BIC. The AIC and BIC under

different orders are plotted in figure 2.6(a) and 2.6(b), respectively. The AIC does not

reach the minimum until 100 orders, and the BIC has the smallest value when the order

is 9. As a small model order will accelerate the diagnosis process, the AR model order

can be chosen as 9 according to BIC in this study.

The coefficients of the model can be calculated by the Burg method. To see the

distribution of the coefficients under different conditions, the box plot for the first-order

and second-order coefficients under different conditions are shown in figure 2.7. Here,

the condition numbers 1 through 9 mean the 9 single fault conditions given in Table 2.2.

The box plot gives the median, quartiles, and upper and lower bounds. There are also

some points that are out of bounds, which means they are abnormal. The distributions

of the coefficients have different ranges under different conditions; as a result they are

related to the fault conditions. Each coefficient can provide a part of information about

the operating condition of the PEMFC; thus the conditions can be classified by the

combination of the coefficients.

To show the spatial distribution of features visually, principal component analysis

(PCA) is applied to find the most representative features, and the 2 dimensions and

3 dimensions representations of the main features of samples can be given in figure

2.8(a) and 2.8(b), respectively. The samples under different conditions are represented

by different colours. There are some overlaps between different conditions when only

2 features are applied, but most of them can be separated when the third feature is

applied. Therefore, the AR model coefficients are effective features that can represent

different operating conditions.

2.4.2 Diagnostic accuracy for single-fault conditions

70% of the samples are set as train data, and both the SVM, KNN, ANN, and ELM

methods with different hyper-parameters are researched and compared. As the hyper-

parameters can decide the structure of the classification methods, they should be

artificially set rather than tuned automatically. 30% data is set as a test subset, i.e.

60 voltage profiles are tested for each operating condition.
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(a)

(b)

FIGURE 2.6: (a) The AIC and (b) the BIC for different AR model orders
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(a)

(b)

FIGURE 2.7: The box plot of (a) first-order coefficient and (b) second-order coefficient
of AR model under different fault operating conditions
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(a)

(b)

FIGURE 2.8: (a) The cluster based on 2 main features and (b) cluster based on 3 main
features
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The classification results by SVM is given as the confusion matrix in table 2.4. There

are only 1 misclassified sample for the DTH condition, 2 misclassified samples for the

DHH condition, and no misclassified samples for other conditions.

TABLE 2.4: The classification result based on AR model and SVM for single-fault
conditions

Real conditions
Classified conditions C1 C2 C3 C4 C5 C6 C7 C8 C9

Ref 60 0 0 0 0 0 0 0 0
DFSCH 0 60 0 0 0 0 0 0 0
DFSCL 0 0 60 0 0 0 0 0 0
DFSAH 0 0 0 60 0 0 0 0 0
DFSAL 0 0 0 0 60 0 0 0 0
DTH 0 0 0 0 0 59 0 1 0
DTL 0 0 0 0 0 0 60 0 0
DHH 0 0 0 0 0 1 0 58 1
DHL 0 0 0 0 0 0 0 0 60

To quantitatively evaluate the diagnosis accuracy, the recall rate, precision rate and F1

accuracy are introduced. The recall rate is the ratio of the detected samples and all the

existing samples of the real condition, which can be calculated by equation 2.9. The

precision rate is the ratio of the right detected samples and all detected samples for a

certain condition, and it can be calculated by equation 2.10. To balance the recall rate

and precision rate, the F1 accuracy is the harmonic average of recall rate and precision

rate, which can be calculated by equation 2.11.

Recall =
TP

TP + FN
(2.9)

Precision =
TP

TP + FP
(2.10)

F1 =
2× Precision×Recall
Precision+Recall

(2.11)

Where the TP is the right detected samples, which is the number on the diagonal line

of the confusion matrix; the FN is the undetected samples for a real condition, i.e. the

sum of the numbers of each row except the diagonal line number; FP is the wrongly

detected samples, i.e. the sum of each column except the diagonal number. The recall

rate, precision rate, and F1 accuracy of each condition are given in table 2.5. The
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mean F1 accuracy is 99.44%, which proves that the proposed diagnosis method is

very accurate.

TABLE 2.5: The classification recall rate, precision rate and F1 accuracy for single-fault
conditions

Conditions Recall rate / % precision rate / % F1 / %

Ref 100 100 100
DFSCH 100 100 100
DFSCL 100 100 100
DFSAH 100 100 100
DFSAL 100 100 100
DTH 98.33 98.33 98.33
DTL 100 100 100
DHH 96.67 98.31 97.48
DHL 100 98.36 99.17
Average 99.44 99.44 99.44

The diagnosis is carried out by different classifiers in this research, i.e. KNN, ANN,

ELM as explained in Section 3.2. The key hyper-parameters of those methods are

researched, so that to find the parameters that can obtain the best classification result.

The effect of the number of nearest points for KNN accuracy is plotted in figure 2.9(a);

the effect of hidden layer number for ANN is shown in figure 2.9(b); the effect of neuron

numbers for ELM is plotted in figure 2.9(c); and the effect of polynomial function order

for SVM is shown in figure 2.9(d). For all four methods, the best F1 accuracy of different

methods are given in table 3.1.

The SVM method can give the best result than other methods, and the accuracy of the

ANN method is almost the same as SVM. In this study, the ELM method is worse than

SVM and ANN, it may be because there is only one hidden layer in ELM and it is not

sufficient to describe the actual relationship. Actually, the main advantage of ELM is

the calculation speed compared with other methods, according to its design [150]. The

good accuracy of SVM may come from its particular classification logic. However, all

four classification methods can give accuracy of more than 92%, which also proves that

the features extracted by the AR model from voltage fluctuation data can represent the

operating conditions, and it is very effective for the PEMFC diagnosis.

Also the computational burden is another important index for PEMFC diagnosis

because it will decide whether the algorithm can be applied in a real application. In

this research, the different algorithms all run on a computer with a processor AMD A8-

4500M 1.90 GHz, and the computational time is also listed in table 3.1. It can be seen
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that the SVM is not the most time-saving, while the ELM method is the fastest. However,

the computational time of all four methods are of the same magnitude, and they are very

short compared to the measurement time which is in second magnitude. Therefore, the

computational time is of little importance compared to diagnosis accuracy, and the SVM

and ANN methods are the most suitable for the PEMFC diagnosis algorithm.

(a) KNN (b) ANN

(c) ELM (d) SVM

FIGURE 2.9: The effect of hyper-parameters for the diagnosis accuracy of different
methods: (a) KNN (b) ANN (c) ELM (d) SVM.

TABLE 2.6: The F1 accuracy and computational time of different classification methods

method accuracy / % computational time (s)

KNN 96.86 0.0425
ANN 99.26 0.0893
ELM 92.1 0.0327
SVM 99.44 0.0756
literature [159] 95.5

The same problem was also studied by another method in literature [159], in which

the singularity of the voltage fluctuation data was applied as features. The singularity
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is an important feature for time-series data calculated by wavelet analysis, and the

fault operating conditions are classified by the KNN method. In the research, the

diagnosis accuracy is 95.5%, thus the accuracy of the proposed method is higher than

the literature, meaning that the AR model coefficients are very effective features.

2.4.3 Diagnostic accuracy for multi-fault conditions

The same method is also applied to multi-fault conditions. The accuracy and

computational time of the 4 methods are listed in table 2.7. Similar to single fault

conditions, the ANN and SVM can give the most accurate result. However, the ANN

method is a little more accurate than SVM in this case, and the performance of the

KNN and ELM methods is poor. As has been addressed above, the accuracy of the

classifier will be affected by the features and problems, so the ANN and SVM methods

are more suitable in the diagnosis based on the AR model. The computational time has

little difference for the 4 methods, so the accuracy is the emphasis for the choice of the

classifier.

TABLE 2.7: The best F1 accuracy and correspond computational time by different
classification methods for multi-fault condition

method accuracy / % computational time (s)

KNN 85.75 0.0748
ANN 93.18 0.0385
ELM 80.8 0.0590
SVM 91.77 0.0756
literature [159] 90

The confusion matrix of the classification by ANN for multi-fault conditions is shown as

table 2.8, and the recall rate and precision and F1 accuracy are shown in table 2.9. For

multi-fault conditions, the different fault operating conditions may result in similar health

problems in PEMFC and affect each other, and the situation is more complex and the

voltage fluctuation is less regular. Therefore, the accuracy of the multi-fault conditions

is a little lower than single-fault conditions. However, the accuracy of the proposed

method is 93.18%, and it is superior compared to the diagnosis accuracy of literature

[159], which is 90%. Therefore, the proposed method can provide better diagnostic

accuracy for both single-fault conditions and multi-fault conditions.
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TABLE 2.8: The classification result based on AR model and ANN for multi-fault
conditions

Real conditions
Classified conditions C1 C2 C3 C4 C5 C6 C7 C8

Ref 96 0 5 0 0 0 13 6
DFSC 0 113 1 3 1 0 0 2
DFSA 8 3 109 0 0 0 0 0
DT 0 0 0 117 3 0 0 0
DH 0 0 0 6 114 0 0 0
DT+DFSC 0 1 0 0 0 119 0 0
DT+DFSA 3 3 0 0 0 1 112 1
DT+DH 5 0 0 0 0 0 0 115

TABLE 2.9: The classification recall rate, precision rate and F1 accuracy for multi-fault
conditions

Conditions Recall rate / % precision rate / % F1 / %

Ref 85.71 80.00 82.76
DFSC 94.17 94.17 94.17
DFSA 94.78 90.83 92.77
DTH 92.86 97.50 95.12
DH 96.61 95.00 95.80
DT+DFSC 99.17 99.17 99.17
DT+DFSA 89.60 93.33 91.43
DT+DH 92.74 95.83 94.26
Average 93.20 93.23 93.18

2.5 Discussions

As has been addressed above, the voltage fluctuation data can reveal important

features of the PEMFC system, but the quantitative research about the effect of

sampling frequency and window length on the diagnosis accuracy has not been studied

yet. Therefore, the diagnosis based on data of different sampling frequencies and

different window lengths is compared and analysed here.

As the voltage data was detected at 3000 Hz, we can obtain the down-sampled data

with lower frequencies, and the data window can also be set as different lengths. By

applying the voltage data with different frequencies and different window lengths in

the proposed diagnosis algorithm, the diagnosis accuracy can be obtained in figure

2.10. According to the figure, the longer is the window length and the higher is the

sampling frequency, the higher is the diagnosis accuracy. For example, to obtain

a diagnosis accuracy higher than 98.69%, 0.8 s data is needed under the sampling

frequency of 3000 Hz, while 2 s is needed under the frequency of 2000 Hz. Therefore,
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with a higher sampling rate, the signal contains more information, which significantly

reduces the diagnostic time. It also proves that high-frequency sampling is meaningful

for PEMFC diagnosis. What’s more, with the current measurement technique, the

sampling frequency can be set to 3000 Hz without extra costs, so it is feasible to make

use of fluctuation patterns by measurement with relatively high frequency.

FIGURE 2.10: The diagnosis accuracy under different sampling frequencies and
different window lengths

Several studies have focused on the explanation of the source and characteristics of

the voltage fluctuation, by considering both electrochemical reaction aspects (effects

of electric double layers, reduction–oxidation mechanisms in the electrodes, reactant

diffusion in the GDLs), and more global thermal/fluid issues in the PEMFC [63] [158]

[156]. However, it is still complex to describe precisely the physical phenomena

involved in PEMFCs, especially to propose models capable of faithfully reproducing

the evolution of the cell voltage morphology under different operating conditions and

over a wide range of frequencies. The models based on current knowledge of PEMFC

are therefore still relatively unsuitable for diagnostic applications. Nevertheless, the

phenomenological approaches could also be useful in the development of data-driven
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diagnostic strategies, for example, providing signatures and relevant descriptors for

fault patterns.

2.6 Conclusions

In this chapter, a novel PEMFC diagnosis method is proposed based on the voltage

fluctuation data, where the features are extracted from the AR model. The AR

model coefficients are first time applied as features to classify the PEMFC operating

conditions. The distribution of coefficients is related to the different fault conditions;

as a result the AR model can well describe the voltage time-series data and provide

information for voltage fluctuation patterns. With the proposed diagnosis method, nine

single faults operating conditions and 8 multi-fault conditions of the PEMFC system can

be classified accurately, and the data acquirement time is only 1 second, which is very

important for early fault detection. The accuracy of the proposed method is 99.44%

for the single-fault condition and 93.18% for the multi-fault conditions. Compared to

other methods described in the literature, the diagnostic approach proposed in this

article has two main advantages, i.e. the high accuracy of the classification results

and the reduced time required to generate and exploit the fault patterns. Four different

classification methods were applied and compared in this research work, which showed

that the SVM and ANN methods are more suitable than the KNN and ELM methods.

A higher detection frequency and a wider sample window can increase diagnostic

accuracy. Therefore, increasing the sampling frequency can help to obtain enough

data for accurate diagnosis within a shorter measure time, which is beneficial for timely

diagnosis and treatment.

Except for the voltage fluctuation pattern being a useful diagnosis feature, the EIS

technology is another experimental tool with great potential for PEMFC diagnosis.

Therefore, in the next chapter diagnostic methods based on EIS are presented.
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3.1 Introduction

Different kinds of data can be used for PEMFC diagnosis, such as polarization curve

data, operating parameters, EIS data, and other physical parameters [21]. The

polarization curve is a useful diagnostic tool because only electrical data need to

be collected. However, the faults of different causes cannot be distinguished by the

polarization curve because the voltage losses cover each other [169]. On the contrary,

EIS is an important diagnostic tool that can reflect the inner conditions of various

components [29].

As has been addressed in chapter 1, EIS is a diagnostic tool that has been widely

applied to electrochemical devices such as fuel cells and Li-ion batteries [170]. The

basic idea of EIS is to detect the electrical response under small fluctuation excitation

with a certain frequency, and the frequency domain behaviour can reflect the inner

state of PEMFC. M. Zhiani et al.[171] applied the EIS to characterize a PEMFC under

different thermal and pressure stresses. The EIS at different operation times was

analysed and it corresponded well with theoretical supposition. R. Pan et al.[36] found

that the electrical resistance of EIS was almost proportional to the voltage during the

89
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long-term operation, thus it could also be applied to the prognosis and predict the

degradation. However, it is still an open question to make use of it in diagnosis.

Therefore, two diagnostic methods are proposed based on the EIS technology in this

chapter. In the first part, the diagnosis method based on an equivalent circuit model

(ECM) and adaptive neural fuzzy inference system (ANFIS) is addressed in section 3.2.

The second method is presented in section 3.3, and it is based on two quick detective

EIS features.

3.2 Diagnosis by equivalent circuit model and adaptive neuro-

fuzzy inference system

3.2.1 Introduction

ECM is an important tool to analyse EIS data [172]. In ECM, the PEMFC components

can be represented by electrical elements; hence the PEMFC behaviours can be

analysed like circuits. Different kinds of ECM have been proposed for different

applications, as well as for PEMFC. The most used electrical elements for PEMFC

include resistance, capacitor, inductance, etc. However, the classical electrical

elements cannot describe the total characters of the PEMFC because there are some

particular processes that affect the PEMFC electrical characters. Some other non-

linear elements are used, including the CPE and Warburg element, etc. Those

elements are also called non-integer order elements or fractional-order elements

because they introduce the fractional-order differential operation into the circuit.

Fractional-order ECM has been applied to electrochemical devices a long time ago

[173]. Q. Zhu et al.[174] applied the fractional-order ECM to the lithium-ion battery, and

the state of charge can be estimated. M. Iftikhar et al.[175] built a fractional-order ECM

of PEMFC and proved that the fractional-order model can give more accurate results

than the integer-order model. S. Mohammad et al.[176] applied the process modelling

method to analyse the full set of processes in the PEMFC, and a very comprehensive

ECM was provided.

The ECM parameters can give important information about the inner state of PEMFC,

so they can be applied to diagnosis. N. Fouquet et al.[27] used Randle’s model with
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CPE to describe the EIS data, and 5 ECM parameters were applied to indicate the water

condition in PEMFC. However, this model was not accurate enough because the anode

impedance was omitted. Also, only membrane water content faults were researched

qualitatively in this research, and no quantitative diagnosis method was given. Few

studies focused on the quantitative diagnosis based on EIS. S. Wasterlain et al.[177]

tried to achieve diagnosis by Bayesian networks, and the position coordinates of six

points of EIS data were applied as features to distinguish different faults. However,

as the real part and imaginary part of EIS points are directly applied as features, the

physical mechanism and behaviour pattern behind the EIS curve were not analysed and

extracted. Also, the diagnostic accuracy was only 91% in their research. Therefore,

there is still a gap to real applications, and more accurate diagnostic methods are

necessary.

In this section, a new diagnostic methodology based on an ANFIS is proposed to

fill the gap between laboratory research and application. A fractional-order ECM

is applied to describe the PEMFC EIS behaviours, and the impedances of both

membrane, anode, cathode, and gas diffusion layers are included. A new parameter

identification method that combines genetic algorithm (GA) and Levenberg–Marquardt

(LM) algorithm is proposed to identify the ECM. 10 ECM parameters can be obtained

by the proposed identification method with both a wide range and good accuracy.

The proposed method is validated by the experiments under different fault conditions,

thus the relationships between the ECM parameters and fault causes are thoroughly

analysed and understood, which can provide reference to the fault diagnosis. Then a

novel diagnosis algorithm based on ANFIS is proposed according to the relationship

between ECM parameters and fault causes. For the first time, the ECM parameters

are applied to quantitative diagnosis. This method can detect the conditions with the

same fault by clustering, and then classify the new samples into the right fault groups

by ANFIS. The proposed diagnosis method is validated by the experiments, and all the

fault causes can be distinguished accurately, including the membrane flooding, drying

out, and mass transfer fault. Also, the proposed method is compared to another EIS

diagnostic method and proved to be superior.

Also, a framework is proposed to connect the EIS on-line measurement, real-time

diagnosis, and fault-tolerant control, thus trying to achieve a closed-loop strategy to

improve the PEMFC durability and reliability. Based on the framework, the proposed
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diagnosis strategy is further developed on an industrial-level digital signal processor

(DSP). A computationally efficient ECM parameter identification method, i.e. Powell’s

algorithm, is applied to extract diagnostic features from EIS data, which is suitable

for the computational-resource-limited system as DSP. Then the fault classes can be

directly predicted by ANFIS on DSP. The ANFIS can be adaptively tuned on-line in the

DSP, so it is suitable for long-term application. The diagnosis method is experimentally

demonstrated on DSP in real time, and the full diagnosis process can be achieved

within 250 seconds, thus it is practical for real applications.

In part 3.2.2 the proposed PEMFC ECM is addressed. In part 3.2.3, the EIS result is

analysed according to the ECM and verified by the experiment. Then the diagnosis

algorithm is explained and validated in part 3.2.4. The implementation method on DSP

is presented in section 3.2.5, then the implementation result is addressed in section

3.2.6. Finally, the main conclusions of this section are summarized in section 3.2.7.

3.2.2 Diagnostic methods based on equivalent circuit model

3.2.2.1 Fractional-order equivalent circuit model

The PEMFC EIS can be analysed by ECM. Different ECM can be applied to different

devices. Randle’s model [178] [179] is one of the most basic models that include one

capacitor, as shown in figure 3.1(a). Here the capacitor Cdl is used to describe the

storage of electrons in the double layer of the electrode; the resistance Rc is used for

the resistance of the oxygen reduction reaction, and the parallel connection of Cdl and

Rc represent the charge transfer process; Rm is the resistance of the proton to pass

the membrane and the electrons to flow through the wire. The biggest advantage of

Randle’s model is the simplicity because there are only 3 elements, thus it is widely

applied. However, even though the impedance of the anode is usually smaller than

the cathode, neglecting them will introduce noteworthy errors, so Randle’s model is not

suitable for our PEMFC system.

Compared to Randle’s model, the 2-capacitor model is more accurate for PEMFC

because both the impedance of the anode and cathode are included [29] [180],

which is shown in figure 3.1(b). In this model, the anode is also represented by the

parallel connection of a capacitor and resistance, so the electron storage and reaction
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FIGURE 3.1: The equivalent circuit models of PEMFC: (a) Randle’s model (b) model
with 2 capacitors (c) model with 3 constant phase elements

resistance of the anode are also considered. However, research shows that there is

also additional mass diffusion resistance under certain conditions [181], which cannot

be represented by this model. The mass diffusion impedance represents the resistance

when the gas passes the GDL, especially on the cathode side.

A more accurate ECM [30] applied in this research is shown in figure 3.1(c). In this

model, the PEMFC impedance can be represented by four parts, i.e. membrane

resistance, anode impedance, cathode impedance, and mass diffusion impedance.

The anode impedance, cathode impedance, and mass diffusion impedance are all

represented by the parallel connection of resistance and CPE. The impedance of a

CPE can be given as equation 3.1, and it is the same as a capacitor when the order

is 1. The CPE is caused by the unevenness of the plates or the heterogeneity of the

dielectric, and it can be represented by the connection of a lot of RC circuits. A more

detailed deduction of the impedance of CPE can be found in the reference [182]. The

Rd in mass diffusion impedance is caused by the flow resistance when the air and
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hydrogen diffuse through the GDL, and the CPEd represents the storage of gas in the

porous materials.

ZCPE(s) =
1

Csα
(3.1)

Where the ZCPE is the impedance of CPE; s is the complex variable in Laplace space;

C is the effective capacitance of the CPE; α is the order of the CPE, which is between

0 and 1.

By connecting all the impedance, the total impedance of the circuit can be represented

as:

Ztotal(s) =
Ra

1 +RaCasαa
+Rm +

Rc
1 +RcCcsαc

+
Rd

1 +RdCdsαd
(3.2)

Where the Ztotal is the total impedance of the circuit; the subscript a, c and d represent

the parameters of the anode impedance, cathode impedance, and mass diffusion

impedance, respectively.

3.2.2.2 Parameters identification of ECM model

The aim of parameter identification is to find the values of the unknown parameters

of the ECM so that the identified model is the closest to the experimental EIS data.

Essentially this is an optimization process, so we can use the GA to search for the

rough global optimal parameters, and then use the LM algorithm to get the precise

solution.

The mean squared error (MSE) is applied as the fitting criterion, which is shown as

equation 4.13. In the equation, Re(Z)i and Im(Z)i is the real part and imaginary

part of the experiment data, respectively, and R̂e(Z)i and ˆIm(Z)i are the real and

imaginary parts of the impedance calculated by the model according to the equation

3.2, respectively. i is the sequence number of measurements, and the EIS frequency

applied in our experiment is from 0.1 Hz to 10000 Hz. N is the number of measured

points, and fifty-one points can be obtained for each EIS curve. The LM method is a

stable method for non-linear optimization problems, as it combines the advantages and
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avoids the disadvantages of the Gauss-Newton algorithm and gradient descent method

[183].

L = min(

∑
[(Re(Z)i − R̂e(Z)i)

2 + (Im(Z)i − ˆIm(Z)i)
2]

N
) (3.3)

The LM algorithm is based on Gauss-Newton method, the optimization function is

defined as f(x), where x is the vector of tunable parameters, the quadratic Taylor

expansion can be given as:

f(xk + s) ≈ q(k)(s) = f(xk) +∇f(xk)
T s+

1

2
sT∇2f(xk)s (3.4)

Where s = x− xk, to make q(k)(s) the minimum, get:

xk+1 = xk − [∇2f(xk)]
−1∇f(xk) = xk −G−1

k gk (3.5)

Where the Gk is the Hessian matrix, and gk = ∇f(xk). However, the calculation of

the Hessian matrix is complex, also the positive definiteness of the matrix cannot be

ensured, so the Hessian matrix can be approximated as:

G ≈ JTJ (3.6)

Where the J is the Jacobian matrix, and,

xk+1 = xk − (JTJ)−1gk (3.7)

This is the basic idea of the Gauss-Newton algorithm. However, the reversibility of

matrix JTJ is not sure. To increase the stability and convergence of the algorithm, the

LM method uses JTJ + µI to replace the Hessian matrix, where I is the identity matrix

and µ is a scaler, so:

xk+1 = xk − (JTJ + µI)−1gk (3.8)

The value of µ can be modified to adapt to the algorithm and decide the search rate.

When µ is big, the LM method is close to the gradient descent method, and it is close

to the Gauss-Newton method when the µ is small. Therefore, it is a combination of the
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two methods so that to obtain the best compromise between the search rate and the

algorithm stability. The LM algorithm can be given as algorithm 3.1.

Algorithm 3.1: LM algorithm

give initial point x0, u0;
for k = 1 to kmax do

calculate gk, J and Gk;
if |gk| < ε

end;
if Gk + µkI is non-positive definite
µk = 4µk, until Gk + µkI is positive definite;

solve equation (Gk + µkI)sk = −gk, obtain sk;
calculate f(xk + sk), q(k)(sk), and rk = ∆fk

∆q(k)
;

if rk < 0.25
µk+1 = 4µk;

else if rk > 0.75
µk+1 = µk

2 ;
else µk+1 = µk;
if rk ≤ 0
xk+1 = xk;

else xk+1 = xk + sk;
end for
end

However, this method may obtain a local minimum solution around the initial value,

therefore the initial value is very important for the LM method. To overcome the initial

value setting problem, GA optimal method can be used to search the global minimum

firstly, and it needs no initial values. GA is a parallel stochastic search optimization

method, which simulates natural genetics and biological evolution. However, as it

searches for the global optimal solution in a large interval, the precision is relatively

low. Therefore the GA and LM methods can be combined together to identify the model

parameters in this research so that to take the advantages of both of them.

The parameter identification method proposed in this research is shown in figure 3.2.

As we can see, when the optimization problem is given, a lot of populations are created

to represent different possible solutions in the GA method. Then the bad solutions are

abandoned according to the evaluation environment. If the solution is not yet good

enough, i.e. the fitness value smaller than the criterion Fs, GA operators will work.

There reproduction, crossover, and mutation are carried out, then those solutions will

be checked again until the solution is qualified. By this GA method, the rough globally

optimal solution is obtained, which will be set as the initial solution for the LM algorithm,
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thus the LM algorithm can search for more precise results. The LM method will run

over and over again until the difference of the MSE between the two steps is smaller

than the setting precision. By the combination of the GA and LM methods, the globally

optimal solution can be found with high precision.

Population

Evaluation

Fitness<Fs?

Fitness value
Reproduction

Crossover

Evaluation environment

GA  
algorithm GA Operators

∆J<∆Jlim?

LM algorithm

Mutation

No

Yes

No

Yes

End

Optimization 
problem

FIGURE 3.2: The parameter identification process by a combination of GA and LM
method

To evaluate the effect of the proposed parameter identification method, the proposed

method is compared with two other widely applied optimization methods, i.e. the

particle swarm optimization (PSO) and simulated annealing algorithm (SAA). PSO is a

kind of evolutionary computation, which is inspired by the predation behavior in flocks of
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birds. The basic idea is to find the optimal solution through cooperation and information

sharing among individuals in the group [184]. SAA is a stochastic optimization algorithm

based on the Monte-Carlo iterative solution strategy, which is based on the similarity

between the annealing process of solid matter in physics and general combinatorial

optimization problems [185]. Using the EIS data from experiment No. 1, the identified

results and the squared errors by PSO, SAA, and GA-LM algorithm are compared in

table 3.1. It can be seen that the proposed GA-LM algorithm has the smallest error

compared to PSO and SAA methods. Also, the parameters show great variation for

different optimization methods, which indicates that the optimization problem is highly

non-linear. Therefore, an accurate parameter identification method is necessary.

TABLE 3.1: The comparison of identified ECM parameters and errors of different
methods

Methods Ra Ca αa Rm Rc Cc αc Rd Cd αd error

PSO 0.0107 1.8600 0.7594 0.0058 0.0111 4.7683 0.7202 0.0144 7.5882 1.0000 4.228× 10−5

SAA 0.0049 4.6886 0.8013 0.0052 0.0095 6.1178 0.5961 0.0240 5.7614 0.6628 1.384× 10−4

GA-LM 0.0038 0.9095 0.7223 0.0053 0.0129 0.5766 1.0000 0.0196 4.9494 1.0000 2.664× 10−5

3.2.3 EIS results and ECM validation

3.2.3.1 EIS experiment conditions

The EIS data was collected from the same experiments as explained in section 2.3.

The detailed operating conditions for all the EIS detection experiments are given as

table 3.2.

3.2.3.2 EIS under different currents

During the operation of PEMFC, the current usually changes at different levels to fit

the load change. The PEMFC behaviours are quite different under different current

levels, so it is meaningful to study the effects of the current level. In our experiments,

the current is set as 20A, 40 A, 60 A, 80 A, 100 A, 120 A, respectively, and the EIS

under different currents are shown in figure 3.3. The proposed parameters identification

method is applied, and identified parameters are given in table 3.3.
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(a) (b)

(c) (d)

(e) (f)

FIGURE 3.3: The EIS of experiments and model under different currents: (a) 20 A (b)
40 A (c) 60 A (d) 80 A (e) 100 A (f) 120 A
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TABLE 3.2: Operating parameters of each experiment

No. T(◦C) SC SA RH(%) current(A) No. T(◦C) SC SA RH(%) current(A)

1 65 2 1.3 50 80 27 65 1.6 1.5 50 80
2 65 2 1.3 50 80 28 65 2.6 1.5 50 80
3 65 2 1.3 50 120 29 65 2.6 1.3 50 80
4 65 2 1.3 50 100 30 70 2.6 1.3 50 80
5 65 2 1.3 50 80 31 70 2 1.3 50 80
6 65 2 1.3 50 60 32 70 2 1.3 50 80
7 65 2 1.3 50 40 33 70 2 1.3 50 80
8 65 2 1.3 50 20 34 70 2 1.3 50 120
9 65 2 1.3 50 80 35 70 2 1.3 50 120
10 65 2 1.3 50 80 36 70 2 1.3 50 100
11 65 2 1.3 50 80 37 70 2 1.3 50 80
12 65 2 1.3 50 80 38 70 2 1.3 50 60
13 65 2 1.3 50 80 39 70 2 1.3 50 40
14 65 2 1.3 50 80 40 70 2.3 1.3 50 120
15 65 2 1.3 50 80 41 70 2.3 1.3 50 120
16 65 2 1.3 50 80 42 70 2.6 1.3 50 120
17 65 2 1.3 50 80 43 70 2.6 1.3 50 80
18 65 2 1.5 50 80 44 70 1.6 1.3 50 80
19 70 2 1.3 50 80 45 70 2 1.5 50 80
20 70 2 1.3 50 80 46 70 2 1.2 50 80
21 62 2 1.3 50 80 47 70 2 1.3 50 80
22 62 2 1.3 50 80 48 70 1.6 1.5 50 80
23 65 2 1.3 46 80 49 70 2.6 1.5 50 80
24 65 1.6 1.3 46 80 50 70 2 1.3 50 80
25 65 2.6 1.3 46 80 51 72 2 1.3 50 80
26 65 2.6 1.3 46 80 52 70 2 1.3 54 80

TABLE 3.3: The identified ECM parameters under different currents

Parameters Ra Ca αa Rm Rc Cc αc Rd Cd αd

20 A 0.0057 1.4449 0.6282 0.0072 0.0340 0.4712 0.9573 0.0085 10.719 1.0000
40 A 0.0033 0.4989 0.7775 0.0062 0.0214 0.4824 0.9672 0.0158 8.9344 1.0000
60 A 0.0027 0.5888 0.7682 0.0054 0.0164 0.5919 0.9537 0.0208 6.0515 0.9772
80 A 0.0030 0.6433 0.7634 0.0049 0.0135 0.6198 0.9765 0.0216 4.4173 1.0000
100 A 0.0026 0.4247 0.8232 0.0048 0.0115 0.7325 0.9692 0.0258 3.5383 0.9640
120 A 0.0025 0.4146 0.8325 0.0046 0.0077 0.7785 1.0000 0.0350 3.1134 0.8713

As can be seen from the figures, the impedance calculated by the ECM model is very

close to the experiments. When the frequency is high, i.e. the left part where the

imaginary part is close to 0, there is a small arc that represents the impedance of

the anode. The arc is very small, and it means that the impedance is small in the

anode. This is consistent with other studies because the hydrogen oxidation reaction

in an anode catalyst is much easier than the reaction in the cathode. Then, when the

frequency is middling, there is an obvious arc that represents the impedance of cathode

charge transfer. Thirdly, when the frequency is small, i.e. the right part of the EIS plot,

there is a third arc that represents the impedance of mass diffusion.

Comparing the EIS under different currents in figure 3.3, it can be found that the cathode
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arc is smaller and smaller when the current increases, while the mass diffusion arc is

higher and higher. As the current increases, more oxygen is consumed and the charge

transfer resistance will decrease. However, more water is produced in the stack, so

the diffusion of gas to catalyst is blocked, and the arc of the anode does not change

obviously.

This phenomenon can also be seen by the table 3.3. As the current increases, the

Ra, Rm, Rc and Cd decrease, while the Cc and Rd increase. As has been addressed

above, more water is produced with the increase of the current, and the humidity in

the whole stack will increase. With the increase of humidity, the resistance of the

membrane decrease because the water content is helpful for the proton to traverse the

membrane. At the same time, the resistance in the anode and cathode will decrease

because the catalytic reactions also benefit from the humidity. However, as the humidity

increases, the resistance for reactant gas to enter the reaction point increases because

the passages in porous material are blocked by the water. As for the capacitance, the

storage of gas in the GDL will decrease as more porous places are taken by water, so

the capacitance Cd that represents the gas storage ability decreases. What’s more, the

increase of cathode capacitance Cc may be related to the dielectric coefficient of the

catalyst double layer, which can be caused by the increase of water in the double layer.

For the other parameters, i.e. Ca, αa, αc, and αd, there are no significant changes for

them, which means that they are not sensitive to the stack current.

The internal state of the PEMFC will be affected by the water generated when the

current density is high, and the high level of water content may cause noise in the EIS

measurement. The generated water will cause high water content in the membrane,

catalyst layer, and gas diffusion layer, thus affecting the PEMFC behaviours as well as

EIS measurement noise. It is especially crucial that the measured EIS curve should

be relatively smooth, as the experiments in this research work, so that proving that the

inner condition is stable under the current stimulation under different frequencies. To

guarantee that the noise is relatively small and negligible, one of the most important

things is to keep the operating conditions within the design limitations. Otherwise, the

behavior pattern of PEMFC may be quite unstable; thus the noise may take dominating

place and fail the EIS measurement.
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3.2.3.3 EIS under different fault conditions

As has been explained in Section 2.3, the EIS under different operating conditions are

recorded and they can be analysed by the proposed model. The experiments with the

fault of SC, SA, temperature, and RH are researched.

(1) EIS under different SC

The EIS under higher and lower SC fault conditions (FSCH and FSCL, respectively) are

shown in figure 3.4. It can be seen that the results of the model match the experiments

well, and the regularity is obvious. As the SC increases, the total impedance decreases.

The cathode arc and diffusion arc change in different magnitudes, i.e. the cathode arc

increases slower than the mass diffusion arc when the SC decreases.

FIGURE 3.4: The EIS of experiment and model under SC fault conditions

The same conclusion can also be drawn according to the identified parameters as

shown in table 3.4. As the SC decreases, the resistance of cathode charge transfer

increases because the oxygen concentration at the catalyst is limited. The mass

diffusion impedance is the most affected in those cases. The mass diffusion resistance

increases when the SC decreases, while the capacitance decreases. This is caused

by the shortage of oxygen in the cathode. As the oxygen is insufficient, the mass

diffusion process is the main restriction, so the diffusion resistance increases. Also, the

capacitance decreases because the air storage in the cathode is insufficient.
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TABLE 3.4: The identified ECM parameters under different fault conditions

Parameters Ra Ca αa Rm Rc Cc αc Rd Cd αd

Normal 0.0049 0.8076 0.7242 0.0058 0.0119 0.4638 1.0000 0.0128 6.4416 1.0000
FSCH 0.0052 1.0031 0.6921 0.0059 0.0098 0.5210 1.0000 0.0095 11.412 0.8468
FSCL 0.0045 1.1765 0.6897 0.0055 0.0136 0.5266 1.0000 0.0273 4.6193 1.0000
FSAH 0.0038 0.5252 0.7688 0.0058 0.0122 0.4325 1.0000 0.0125 5.9386 1.0000
FSAL 0.0017 0.3565 0.8647 0.0056 0.0082 0.5526 1.0000 0.0394 13.8461 0.5000
FTH 0.0048 0.5956 0.7450 0.0063 0.0104 0.4134 1.0000 0.0169 9.0078 0.8005
FTL 0.0029 1.2408 0.7053 0.0050 0.0132 0.6097 0.9771 0.0184 5.0479 1.0000
FRHH 0.0023 0.3316 0.8299 0.0053 0.0149 0.6334 0.9120 0.0175 5.1134 0.9946
FRHL 0.0030 1.0328 0.7172 0.0051 0.0141 0.7087 0.9365 0.0196 4.8441 1.0000

(2) EIS under different SA

The EIS result under higher and lower SA conditions (FSAH and FSAL, respectively)

can be seen in figure 3.5. Different from the SC fault conditions, the EIS of SA fault

conditions have little difference for the anode and cathode impedance, but they are

quite different for mass diffusion impedance. The mass diffusion arc is very big for the

low SA condition. According to the table 3.4, both the mass diffusion resistance and

the capacitance increase a lot when the SA decreases. This can be explained by the

shortage of hydrogen at the anode and the surplus of oxygen in the cathode. As the

supply of hydrogen is insufficient, the mass diffusion resistance increases. At the same

time, the oxygen in the cathode is not all consumed, so the air storage increases, and

the capacitance increases.

FIGURE 3.5: The EIS of experiments and model under SA fault conditions
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FIGURE 3.6: The EIS of experiments and model under temperature fault conditions

(3) EIS under different temperatures

The effects of stack temperature are studied, too. The EIS under higher and lower

temperature fault conditions (FTH and FTL, respectively) is shown in figure 3.6. It can

be seen that the cathode arc increases when the temperature decreases and the mass

diffusion arc at low frequency is big in both lower and higher temperature cases. When

temperature changes, the most important feature is the resistance of the membrane,

i.e. the resistance at high frequency when the imaginary part is 0. There is a great

change of membrane resistance which is not observed in other cases. According to

the table 3.4, the membrane resistance decreases with the decrease of temperature,

and this should be related to the water content and other physical properties of the

membrane because high temperature means low humidity in the membrane. As the

stack temperature affects almost all the processes in the stack, the impedances caused

by oxidation-reduction reactions, water transport between the cathode and anode, and

the mass transfer in the GDL all change under different operating temperatures. The

gas diffusion resistance under both higher and lower temperature cases are bigger than

the normal case, which shows that the temperature under the normal case is favourable

for the gas to pass the GDL.

(4) EIS under different RH
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To directly research the effect of RH, the RH of the input gas is adjusted. The EIS under

higher and lower RH fault conditions (FRHH and FRHL, respectively) is given in figure

3.7. It is clear that the impedance under normal condition is the smallest compared to

the high and low humidity cases. Both the cathode arc and mass diffusion arc increase

when the humidity deviates from the normal value, and the change of mass diffusion

impedance is more obvious than the cathode impedance. Also, the impedance under

low RH case is bigger than under high RH case. According to the parameters shown in

table 3.4, both resistance of the cathode and mass diffusion increase under higher and

lower RH fault conditions, which indicates that both the reactions at the cathode and

the mass diffusion in GDL rely on the appropriate humidity level.

FIGURE 3.7: The EIS of experiment and model under relative humidity fault conditions

The different operating parameters can also affect each other. As addressed in

the reference [10], the thermal effect in PEMFC becomes more critical at higher

current density and/or lower gas diffusion layer thermal conductivity, and the thermal

management and stack cooling are a significant engineering challenge. Joule heating

and water generation are two main effects that affect the inner state of the PEMFC when

current changes, and it will affect the water content in the membrane, gas diffusion layer,

and the reaction resistance in catalyst layers. Actually, almost all parameters affect the

PEMFC condition by affecting the water conditions in the different parts of PEMFC.

Of course, the temperature in different parts is also important, but the temperature
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change can be regarded as a kind of water content fault to some extent, because

the temperature will affect the water saturation and the relative humidity. Therefore,

monitoring the water content in different components is one of the most important tasks

for PEMFC diagnosis. The operating parameters affect each other in a complex way.

For example, the change of stoichiometry will not only change the mass concentration

in the reaction position, the rest gas will take out water from the gas diffusion layer, and

finally affect the water content in different components. It is possible that the change

of different operating parameters will lead to similar fault symptoms. However, this

situation exists in almost all diagnosis problems, because it is impossible to collect the

information of all aspects. To carry out a diagnosis with good resolution and fineness,

as much as possible useful features of the fault should be collected, so that they can be

compared in different aspects. However, there is a compromise between the diagnosis

accuracy and diagnosis cost.

3.2.4 Diagnosis result based on ANFIS

3.2.4.1 Classification by k-means clustering

According to the analysis above, it is obvious that the proposed ECM can represent

the EIS behavior, and the parameters can represent the different fault causes. The

most sensitive ECM parameters include the Rm, Rc, Cc, Rd and Cd. According to

the parameters of all 52 samples, the k-means clustering algorithm is applied here to

classify the experiments into different fault groups.

K-means clustering is widely applied to unsupervised classification problems. The

basic idea of k-means is to find the smallest sum of the distance between the cluster

members and the cluster centres where several distance representation methods can

be chosen [138]. In this research, the squared Euclidean distance is applied. The

number of groups is set according to the silhouette values, which can indicate the

similarity degree of a sample to the group.

To maintain the interpretability, no feature extraction methods are applied to change

the original dataset here. As there are five possible parameters to represent the

fault conditions, the features applied to the classification are selected by the method

of exhaustion. The different combinations of features are applied to the k-means
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clustering method, and it is found that the Rm and Cd can be applied to classify the

experimental samples into four groups with good precision. The classification result is

given in figure 3.8.

FIGURE 3.8: Classification of experiments by k-means clustering algorithm

The first feature is Rm, i.e. the membrane resistance of PEMFC, and it can represent

the total water content condition of the membrane. The second feature is the mass

transfer capacitance Cd, and it can represent the gas diffusion condition in the GDL.

Even though the water content in the membrane and the water content in GDL will

affect each other, they represent different fault causes, and the mitigation measures are

different. Combining the classification result with the experimental conditions given in

table 3.2, we can conclude that class 1 is the mass transfer fault conditions because the

membrane resistance is small but the capacitance is big; class 2 is the slight flooding

fault conditions because the membrane resistance and capacitance are both small;

class 3 is normal conditions because the membrane resistance and capacitance are

both in middle; class 4 is slightly drying out conditions as both membrane resistance

and capacitance are big.

3.2.4.2 Diagnosis by ANFIS

According to the analysis above, the experiments can be classified into 4 groups, and

the task of diagnosis is to find out the right fault class of the operating state. The most
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used diagnostic methods include model-based and data-based methods, and the data-

based method is applied in this research because no PEMFC model is needed; thus it

is more convenient to carry out.

Many data-based methods can be applied to PEMFC diagnosis, such as various neural

networks. However, the neural networks based methods usually need a lot of data to

tune the massive parameters, so it is not suitable for our case. To find the diagnostic

regularity from a limited database, fuzzy logic is usually applied. Fuzzy logic is a

kind of method to make decisions according to the qualitative description. Different

from the boolean operation, the fuzzy logic method uses the membership degree to

represent the state rather than yes or no; thus it is similar to the human decision

process. However, the membership function and the decision rules of fuzzy logic should

be provided by researchers according to the expert knowledge of the system, which is

quite tricky because the inner process of PEMFC is not well understood yet.

To take advantage of both neural network methods and fuzzy logic algorithm, the

ANFIS is proposed [97]. The fuzzy logic is applied to make decisions in ANFIS, but

the parameters of the fuzzy system are tuned automatically by the adaptive neural

network method, and no presupposed rules are needed. Therefore, it is quite suitable

for PEMFC diagnosis here. A typical ANFIS system can be represented in figure 3.9.

FIGURE 3.9: The typical structure of ANFIS

There are 6 layers in ANFIS. Firstly, the input layer gives the input features. Then the

membership function is used to give the degree that the input feature belongs to this

class. The widely used membership functions include the triangle function, Gaussian
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function, and trapezoidal membership function. For example, the Gaussian function

can give the membership as equation 3.9:

P (x) = e−(x−a
σ

)
2

(3.9)

Where P is the membership; x is the feature; a and σ are the parameters that decide

the position and shape of the membership function.

The third layer is the fuzzification layer, there fuzzification rules are applied to decide

the degree of truth of a possible case. For example, the rule can be ”if feature 1 is big

and feature 2 is big, then the output is big ”. To show the rule mathematically, it gives

the degree of truth for the output to be ”big” as:

W1 = P11 × P21 (3.10)

Where W is the degree of truth of a possible case.

Then the normalization layer is applied to make the degrees of truth comparable with

each other, calculated as:

W̄1 =
W1

W1 +W2...+Wn
(3.11)

Where W̄1 is the normalized degree of truth.

Fifthly, the output of this case is calculated by defuzzification function. It is usually

decided by the input features, and a widely used function is the linear function, such as:

f(x1, x2...) = b0 + b1 × x1 + b2 × x2...+ bn × xn (3.12)

Where f is the output of a case; b0, b1...bn are the parameters. Finally, the case outputs

are summed to give the final output as equation 3.13.

Output = W̄1 × f1 + W̄2 × f2...+ W̄n × fn (3.13)



Chapter 3. Diagnosis based on electrochemical impedance spectroscopy 110

FIGURE 3.10: The diagnostic results by ANFIS

Therefore, the membrane resistance Rm and the GDL capacitance Cd can be applied

as inputs to the ANFIS, and the output is the groups that the experiment samples belong

to. The database is divided into the train part and test part randomly, and 20% of the

data is set as test samples. The diagnostic result can be shown in figure 3.10.

The four fault groups are labelled as 1,2,3,4, respectively, and the experiment result

and the predictions of ANFIS are represented as asterisks and circles, respectively.

Also, the training samples and test samples are partitioned by different colours. As the

ANFIS is a kind of continuous method, the predictions of ANFIS are also continuous.

Therefore, there are some small deviations between the predicted output and the real

group label. However, with the threshold given by the green lines between every two

groups, all the samples can be assigned to the right groups, and both train and test

predictions correspond well with the real conditions. Therefore, the proposed diagnosis

method based on EIS and ANFIS is very accurate and effective.

A former research [177] also achieved PEMFC diagnosis based on EIS data. Six points

under certain frequencies in the EIS data were chosen, and the position coordination

of those points were applied as diagnostic features. The Bayesian network was applied

to classify the faults according to the chosen features, and the flooding and drying-out

faults were researched. The diagnostic accuracy is 91% in their research, so obviously

the proposed method is superior to their method. The main advantage of the proposed

method is that the ECM is applied to extract features from all the EIS data, rather than
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only depending on several special points. In this way, the noises and stochastic errors

of EIS measurement under different frequencies can be counteracted, and more useful

information can be revealed compared to their method.

FIGURE 3.11: The diagnostic methodology by using EIS, ECM, k-means clustering,
and ANFIS method

To summarize the diagnosis methodology, the overall processes are given in figure

3.11. It is clear that the method is full-fledged with all the processes of EIS

measurement, ECM parameter identification, and diagnosis. As more and more

researchers have put forward the methods to measure the EIS data on-line [38], the

proposed diagnostic method is possible to be applied to on-line diagnosis by connecting

with on-line EIS measurement.

Even though only discrete experimental conditions are studied in this research, it is also

applicable to other conditions which are not too far from the studied cases. The biggest

character of the proposed method is that the diagnostic features are extracted from EIS

data by ECM, and the ECM parameters have physical meanings. Therefore, compared

with those features without physical meaning or with unclear meanings, the change
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of proposed ECM features is continuous with the change of operating parameters.

Therefore, it can be interpolated and appropriately extrapolated. However, there is

a limit for extrapolation, and it is not researched in this research. For the out-of-range

cases, the most important thing is that the operating parameters should not exceed

the design limitation of the PEMFC; otherwise the severe fault will totally change the

behavior pattern of PEMFC. In this case, it is possible that the proposed method will

lose efficacy. Even when the operating parameters are close to the design limitations,

the proposed method should be tested first before being applied.

The applicable conditions of the method should be noticed. The proposed method is

useful under stable conditions, as the information of all components can be detected

by EIS and extracted by ECM. Also, the proposed method is robust to a certain level of

noise, because the parameters are extracted using all measurement points rather than

using a few points as in the reference [177], so the measurement noise and stochastic

error can be counteracted by this method. As the noise of EIS measurement will disturb

the health state information extraction, the diagnostic method may fail under severe

noise. In terms of noise problems during EIS measurement, it is especially crucial that

the measured EIS curve should be relatively smooth, proving that the inner state is

stable under the current stimulation of different frequencies. To guarantee the noise is

relatively small and negligible, one of the most important things is to keep the operating

conditions within the design limitations. Otherwise, the behavior pattern of PEMFC

may be quite unstable; thus the noise may take the dominating place and fail the EIS

measurement.

3.2.5 Implementation methods on DSP system

3.2.5.1 Real-time implementation task for diagnosis

The proposed method is valid under laboratory conditions on a test bench. To apply

it in real applications, an on-line EIS measurement-diagnosis-control framework can

be proposed based on the research above. The procedures and objectives of the

framework can be shown in figure 3.12. There are three stages. The first stage is

on-line EIS measurement by integrating it with the power converter controller, which
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has been achieved in previous work [38]. Therefore, the EIS can be measured on-

board without extra cumbersome and expensive impedance measurement devices.

The diagnosis works focus on stage 2, i.e. on-line diagnosis strategy implementation in

industrial-level processors based on EIS data. With this implementation, the diagnostic

decisions can be obtained on board quickly enough. Further, stage 3 should be

achieved to control the PEMFC actuators based on the diagnostic decisions. As

a result, the PEMFC can be adjusted in time when there are faults, and it can be

operated with better performance. To connect the on-line EIS measurement and

practical diagnosis-based control strategy, the proposed diagnosis strategy is further

developed on an industrial-level DSP.

FIGURE 3.12: The framework to achieve on-line EIS measurement, diagnosis, and
control
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3.2.5.2 Overall processes for implementation

To achieve real-time diagnosis on DSP system, the main processes can be shown in

figure 3.13. It can be described as follows:

1. As the emphasis is to implement the diagnosis algorithms, the EIS data is

collected in advance and saved in the computer to facilitate it. To simulate the EIS

measurement in a real situation [38], the PC can act as an emulator to provide

EIS data in real time for diagnosis. The EIS data is transported to the DSP system

in real time with a specific transport protocol using the DSP serial communication

interface (SCI).

2. The diagnosis processes are all carried out in a DSP. For the first phase, the ECM

parameters can be identified according to the EIS data. As the computational

resource and memory are limited in the DSP system, Powell’s algorithm is applied

as it is simpler and more practical.

3. For the second phase, the diagnosis is implemented based on ANFIS by taking

ECM parameters as features, and there are two periods, i.e. the adaptive training

period and the test period. Both of them are achieved on-line in DSP, and the

predicted results are compared with the real classes to evaluate the accuracy.

3.2.5.3 EIS Data measurement and transmission

To carry out EIS measurement, a small magnitude sinusoidal current is superimposed

on the PEMFC system, and the voltage response is recorded to calculate the

impedance. The impedance can be obtained as equation 3.14 [38].

ZFC(f) =
Vz(f)

Iz(f)
(3.14)

Where the ZFC(f) is the PEMFC impedance at frequency f ; VZ(f) is the AC

components of voltage response to the frequency f ; IZ(f) is the AC components of the

current at frequency f . However, as it is difficult to measure the high frequency current

and voltage with high precision, most of the EIS are measured by a cumbersome
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FIGURE 3.13: The overall diagnostic processes on DSP system

equipment, i.e. impedance spectrometer. As the equipment is too heavy and too big,

and also because it is too expensive, it is impossible to measure EIS on board for

vehicular applications.

However, the on-line measurement of EIS has been researched in former work [38].

The superimposed current signal and voltage detection can be achieved by a power

converter so that no other extra equipment is needed. As shown in figure 3.12, the

EIS measurement signal can be performed in parallel with the PEMFC power control,

thus multi-targets can be achieved at the same time on a single DSP board. As we

focus on the implementation of diagnosis in this research, the measurement process is

simulated by a PC and not repeated. More details about the on-line detection of EIS

data by the power converter can be found in former research.

The impedance can be represented by a complex number for each frequency, i.e. a

real part and an imaginary part. In this research, 51 points of different frequencies are

measured for each condition, and the frequency ranges from 9996 Hz to 0.0978 Hz.

It should be noticed that our experiment data is not measured by the same system as

former research [38], and the frequency range is wider.
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The DSP system is the TI (Texas Instruments) Peripheral Explorer kit with TMS320F28335

FPU (Floating-Point Unit), and the structure can be shown in figure 3.14. The maximum

clock frequency of the DSP is 150 MHz, and the memory is 256k for 16 bits flash

and 32k for 16 bits single-access RAM. The SCI pins are applied to receive EIS data,

combined with a specific interrupt service routine.

FIGURE 3.14: Structure of applied DSP board

The impedance data is transported from the computer to the DSP system by RS232

protocol in this research, and the transmission is carried out once for each group of

impedance data (51 points), including the frequencies, real parts, and imaginary parts.

The transmission time is very short compared to the sampling time, and the reception of

data in the DSP system is carried out by continuous scanning during a certain waiting

time, thus avoiding data leaks. The method to acquire data is given as algorithm 3.2.

Algorithm 3.2: EIS data transmission

Computer side (Sending): DSP side (Receiving):
for each operation condition do for each operation condition do

collect impedance of different frequencies; wait and count time;
if all frequencies have been detected; do if preset waiting time is up; do

send data to serial port; scan serial port to receive data;
end for end for

3.2.5.4 Fractional-order equivalent circuit model for DSP

The ECM applied in the DSP is also the 3-arc model as shown in figure 3.1(c). The

calculation of the complex impedance on the DSP board should be separated into real

parts and imaginary parts. Taking the cathode impedance as an example, the real part
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and imaginary part can be calculated by equation 3.15 and 3.16, respectively. The

details of the derivation can be found in Appendix A.

Zc−Re(f) =
Rc +R2

cCc(2πf)αc cos παc2

(1 +RcCc(2πf)αc cos παc2 )2 + (RcCc(2πf)αc sin παc
2 )2

(3.15)

Zc−Im(f) =
−R2

cCc(2πf)αc sin παc
2

(1 +RcCc(2πf)αc cos παc2 )2 + (RcCc(2πf)αc sin παc
2 )2

(3.16)

Therefore, the total impedance of PEMFC can be separately given as real part and

imaginary part as:

ZFC−Re(f) =Rm+
Ra +R2

aCa(2πf)αa cos παa2

(1 +RaCa(2πf)αa cos παa2 )2 + (RaCa(2πf)αa sin παa
2 )2

+
Rc +R2

cCc(2πf)αc cos παc2

(1 +RcCc(2πf)αc cos παc2 )2 + (RcCc(2πf)αc sin παc
2 )2

+
Rd +R2

dCd(2πf)αd cos παd2

(1 +RdCd(2πf)αd cos παd2 )2 + (RdCd(2πf)αd sin παd
2 )2

(3.17)

and

ZFC−Im(f) =−
R2
aCa(2πf)αa sin παa

2

(1 +RaCa(2πf)αa cos παa2 )2 + (RaCa(2πf)αa sin παa
2 )2

−
R2
cCc(2πf)αc sin παc

2

(1 +RcCc(2πf)αc cos παc2 )2 + (RcCc(2πf)αc sin παc
2 )2

−
R2
dCd(2πf)αd sin παd

2

(1 +RdCd(2πf)αd cos παd2 )2 + (RdCd(2πf)αd sin παd
2 )2

(3.18)

3.2.5.5 ECM parameters identification on DSP board

A lot of optimization methods are based on the idea of gradient descent method, such

as the Levenberg–Marquardt algorithm in former research. However, as shown in the

equation 3.17 and 3.18, the objective function is very complicated in our research,

and the gradient calculation will be too computationally intensive and time-consuming,

especially for a DSP system with limited computation resources. To overcome this

problem, Powell’s algorithm has been implemented in the DSP system [186]. However,

the initial value is also important for Powell’s method as for all other local search

methods, so the GA is applied first to obtain the rough global solution. Since the EIS is
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similar under different conditions for the same PEMFC, the initial solution only needs to

be provided once, so the GA solution can be found off-line before diagnosis.

Powell’s method is a kind of direct search method, where the conjugate direction is

applied to accelerate the search speed. First of all, for an optimization problem with n

parameters, n linearly independent search directions can be given as {d0,d1...,dn−1}.

Give an initial solution as x0 and learn rate λ, take y0 = x0, then search for the solution

of minimum objective function for each direction. i.e.

f(yj−1 + λdj−1) = min(f(yj−1 + λdj−1)), for j = 1, 2, ..., n (3.19)

yj = yj−1 + λdj−1 (3.20)

For each one-direction search, the golden-section search method is applied. The basic

idea is to cut the searching region into three segments according to the golden ratio,

and abandon one of the segments by comparing the objective function value of the

cutting points. The searching region is shortened until the permissible error is reached;

thus obtaining the solution with the smallest objective function.

Secondly, the acceleration search can be achieved by changing the search direction.

Taking

dn = yn − y0 (3.21)

If dn < Err, where Err is the permissible error of the solution, then this is a feasible

solution and the algorithm ends. Otherwise, find the new learning rate by looking for

the best solution in the direction dn from yn, so that

f(yn + λdn) = min(f(yn + λdn)), for λ = λ, 2λ, 3λ... (3.22)

Then the new start point can be set as

xk+1 = yn + λdn (3.23)
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Where the k is the iteration index. And the new search directions can be obtained by

abandoning the first direction and adding the new direction, i.e.

dj = dj+1, for j = 0, 1, ..., n− 1 (3.24)

With the new start point and new search directions, the solution moves toward the

minimum without calculating the gradient. However, the search directions should keep

linearly independent. The linear independence may be broken because of degradation

or ill condition during the search; thus the solution cannot converge as it only searches

in lower dimension space.

To solve the defect of the original method, a correcting algorithm is added to check the

linear independence and correct it when the linear independence is not satisfied. The

direction which has the biggest contribution to the objective function can be given as:

∆m = max{f(x(j)
k )− f(x(j+1)

k )}, for j = 0, 1, ..., n− 1

= f(x(m)
k )− f(x(m+1)

k )
(3.25)

And the linear independence can be ensured if

f3 < f1, and

(f1 − 2f2 + f3)(f1 − f2 −∆m)2 < 0.5∆m(f1 − f3)2
(3.26)

Where

f1 = f(x(0)
k )

f2 = f(x(n)
k )

f3 = f(x(n)
k + λdn)

(3.27)

If equation 3.26 is true, then the direction dm can be abandoned and add dn to the

research direction, i.e.

dj = dj+1, for j = m,m+ 1, ..., n− 1 (3.28)
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Otherwise, if the equation 3.26 is not held, the search direction will stay the same as

the last iteration until the permissible error is reached. The total Powell’s algorithm can

be summarized in figure 3.15.

FIGURE 3.15: Powell method for parameter identification
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3.2.5.6 Diagnosis by ANFIS on DSP

As proved above, the identified ECM parameters can be applied as diagnostic features

in ANFIS. ANFIS needs to be adaptively updated on the DSP during operation, so the

tuning process needs to be explained in more detail.

Tuning is necessary to find the proper parameters of ANFIS, and the back-propagation

algorithm is applied in this research. The basic idea is to calculate the error of the result,

then propagate the error from the output layer to the input layer by the chain rule. The

parameters can be adjusted according to the derivative to minimize the output error.

For example, the error of output is:

e = (ŷ − y)2 (3.29)

Then the derivative is:

δŷ =
∂e

∂ŷ
= 2(ŷ − y) (3.30)

And the error can be passed to the previous layer as:

δfn =
∂e

∂f̂n
=
∂e

∂ŷ

∂ŷ

fn
= δŷW̄n (3.31)

and

δW̄n =
∂e

∂W̄n
=
∂e

∂ŷ

∂ŷ

W̄n
= δŷfn (3.32)

Once again, the partial derivative of parameters b0, b1, b2, ...bn can be calculated as:

δb0 =
∂e

∂b̄0
=

∂e

∂fn

∂fn
b0

= δfn × 1 (3.33)

δbn =
∂e

∂b̄n
=

∂e

∂fn

∂fn
bn

= δfnxn (3.34)
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The partial derivative of other parameters can also be calculated by the chain rule. And

the parameters can be tuned by:

pk+1 = pk + λδp (3.35)

Where p represents the tunable parameters, i.e. the a, b, c in equation 3.9 and the

b0, b1, ..., bn in equation 3.12. k is the iteration index, and λ is the learn rate.

Therefore, in each tuning iteration there is one forward-propagating process to calculate

the variables and output, and one back-propagation process to calculate the partial

derivative of each parameter. The tuning process continues until the output error

reaches the set precision or when the set time is up, as given in algorithm 3.3.

Algorithm 3.3: ANFIS training algorithm

give ANFIS structure;
do

calculate each variable and ANFIS output by forward propagation;
calculate the partial derivatives of each variable by back propagation;
update each tunable parameter according to the partial derivative;

Until output error < setting precision or training time > setting time
End

3.2.6 Implementation results on DSP

3.2.6.1 Parameter identification result

The ECM parameters are identified according to the proposed GA-Powell’s method.

The MSE can be applied as the accuracy judgement for the parameter identification

process, and the convergence process for experiment No. 1 can be shown in figure

3.16. It can be seen that the MSE reaches 3.232 × 10−5 at 18.79 seconds, and it is

3.147 × 10−5 at 69.59 seconds. Therefore, the identification precision improves with

time, but the magnitude of improvement is smaller and smaller after a certain time.

Actually, the ideal solution can be found within 19 seconds as the identification result

has no big difference after 19 seconds. There are plateau as a better solution is not

found during the period.
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FIGURE 3.16: The convergence process of parameter identification by Powell’s
method

As shown in table 3.5, the MSE of the proposed method is compared with other

methods above [187], including particle swarm optimization (PSO), simulated annealing

algorithm (SAA), and the combination of GA and Levenberg–Marquardt algorithm (GA-

LM). According to the MSE, the proposed method is more precise than PSO and

SAA methods, but the MSE of the proposed method is slightly bigger than the GA-

LM method. However, it is acceptable as the difference between them is minor. On

the contrary, the LM method is based on the gradient, and the computational burden

is too heavy for our DSP system. The LM method is also tried in the DSP system,

but no acceptable results can be given within a limited time. Therefore, the proposed

GA-Powell’s method is accurate and suitable for parameter identification on the DSP.

TABLE 3.5: The comparison of errors between different parameter identification
methods

Methods error

PSO 4.228× 10−5

SAA 1.384× 10−4

GA-LM 2.664× 10−5

GA-Powell 3.147× 10−5
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3.2.6.2 Diagnosis results on DSP

As was proved in our former research, the identified membrane resistance Rm and the

GDL capacitance Cd can be applied as features to the ANFIS, and the output is the

fault classes that the experiment samples belong to. The experimental samples can be

divided into two parts: training part and the test part. The first 50% of the data is set as

training samples, while the last 50% of the samples are set as tests. For training part,

the ECM parameters and the fault classes are all provided to the ANFIS, so that the

ANFIS can be tuned. In the test part, only the ECM parameters are inputs and the fault

classes are predicted.

The ANFIS is adaptively tuned, i.e. after each prediction, the real fault result is used as

a training reference to adjust the ANFIS parameters. Therefore, the ANFIS model can

be on-line tuned by more samples and adapt to the inner state change in the long term.

The ANFIS convergence process can be shown in figure 3.17. With the new training

sample, the MSE of the ANFIS prediction result can drop to 8×10−5 with 15 seconds of

tuning. Therefore, the ANFIS can converge to an acceptable level within a short time.

FIGURE 3.17: The MSE convergence during ANFIS tuning process on DSP

The fault classes of testing experiment samples are predicted by the ANFIS, and the

comparison between the predicted fault class and the real fault class can be shown

in figure 3.18. The experiment results are represented by asterisks, while the model

predictions are represented by circles. It can be seen that all the predictions are close
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to the experiment result. With the threshold given by the green lines between every two

groups, all the samples can be assigned to the right classes.

FIGURE 3.18: The ANFIS diagnosis results by DSP board

Compared to research above [187], a great improvement is that the ANFIS can

be adaptively tuned in DSP; thus it can adapt to the EIS data when the inner

state of PEMFC has changed. For example, if the PEMFC degrades after a long-

term operation, the range of ECM parameters may transform even when operating

parameters are the same. Therefore, the original ANFIS cannot predict the right fault

classes in this situation, while the ANFIS on DSP can still work if the ANFIS parameters

can be tuned according to the recent fault data.

3.2.6.3 Real-time ability

The most important advantage of the proposed method is the real-time ability. As all the

diagnosis processes are achieved in real time on a DSP board, the proposed method

can be applied to industrial applications. The EIS obtain process is simplified by the

pre-saved experimental data on the computer, but the time for real EIS measurement

is respected in the research. According to the previous research [38], the total

measurement time for each EIS curve can be calculated according to equation 3.36.
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T =

Np∑
i=1

Nc

fi
(3.36)

Where the T is the total time cost for each curve; Np is the number of measurement

points for each EIS curve, and it is 51 in our research; Nc is the number of sine periods

for each frequency, and it is set 5 according to reference [38]; fi is the frequency of the

ith point. Therefore, taking the parameters into the equation, the measurement time for

each curve is 250 seconds.

The time cost for each process is shown in figure 3.19. All the diagnostic algorithms

are carried out on the DSP board. After the EIS measurement, the data transportation

to the DSP board only needs 0.01 seconds, which is very short and negligible. During

the EIS measurement, the diagnosis on the DSP board works simultaneously. The

diagnosis time can be cut into 3 segments during the EIS measurement process.

One hundred and twenty seconds is reserved for Powell’s method to identify the ECM

parameters, and another 120 seconds is reserved to tune the ANFIS parameters and

give the fault type prediction. There is also some waiting time to guarantee that the

DSP is ready to receive the data when the measurement is done and the data is sent,

which is flexible because some other minor programs and computations in DSP also

take some time. All the clocks are controlled by the DSP interruption program.

FIGURE 3.19: The time cost for every process in real-time diagnosis

As was discussed in reference [188], the EIS data collection time is much shorter

compared to the polarization curve method, so the proposed diagnosis methodology

can be a more practical tool than polarization-based diagnosis. Indeed, the diagnostic

time based on EIS is relatively longer than the diagnosis based on single-point time

signals such as voltage or pressure magnitude signals. However, as EIS is based on

physical mechanisms and is more interpretable, there is more useful inner health state
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information in EIS data. Also, as the development of drying out and flooding faults

usually takes several minutes, the diagnosis delay by our method is acceptable.

The main limit is the measurement, not the diagnostic algorithm. More and more new

EIS measurement technology are also proposed, such as using the pseudo-random

binary sequence (PRBS) as a perturbation signal to detect EIS information [189]

rather than the traditional sinusoidal signal. With the development of measurement

technology, if the measurement noise is small enough, it is also possible that the

number of sine periods in equation 3.40 can be reduced. In addition, the time

measurement can be significantly reduced if less frequency points are measured for

each EIS curve. For example, only 18 seconds is required when 28 frequency points

are measured in reference [38]. If the frequencies are well selected, the ECM features

can still be extracted by our method when the measurement points are reduced. Within

the proposed framework, the diagnosis performance can be improved with both the

development of EIS detection technology and diagnostic algorithm.

3.2.7 Conclusions

In this section, a fractional-order ECM model is applied to analyse the EIS result of

the PEMFC system, and a novel diagnostic method based on ANFIS is put forward.

Further, the proposed diagnostic method is implemented and validated in real time on

a DSP system. The applied ECM considers the impedance of the anode, cathode,

membrane resistance, and mass diffusion, and it corresponds well with experiment

EIS. The EIS behaviours can be well understood in the physical aspect. Also, the

proposed parameter identification method is very effective. As the current increases,

the impedances of the anode, cathode, and mass diffusion resistance are quite

different. At the same time, the properties of different parts will change under fault

conditions, and they can be used as indicators to alarm the fault development. The fault

caused by membrane flooding, drying-out, and mass diffusion problem can be revealed

by EIS. Based on the inner relationship between the fault causes and ECM parameters,

the proposed diagnosis method based on ANFIS is very accurate to identify the fault

causes of different experimental conditions. Also, compared to the former research

[177], this method is more accurate. By using the ECM and Powell’s algorithm, the

EIS features can be extracted in real time on the DSP system conveniently. Powell’s
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algorithm is very effective to identify the ECM parameters, and it is very suitable for

systems with limited computing resources. The proposed diagnosis method can be

successfully implemented in the DSP system in real time. The whole process can be

achieved within 250 seconds. It is a meaningful step from laboratory research toward

real applications for EIS-based diagnosis technology.

3.3 Real-time diagnosis based on quick detective EIS fea-

tures

3.3.1 Introduction

In former research, as the EIS measurement should be carried out under a wide

frequency range, it takes too much time for obtaining a full spectroscope curve. For

example, a typical EIS curve covers the frequency range from 0.1 mHz to 100 kHz

[190]. If 5 periods are measured for each frequency [38], the measurement process will

take more than 10 minutes for a full curve [190], which limits its application. During

the measurement, the PEMFC inner state may have changed, and the uncertainty

increases compared to other quick detection parameters. Also, even though the inner

state can be kept static during each measurement, the measurement is too time-

consuming to obtain a lot of data for quantitative diagnosis. Only one research [177]

achieved a quantitative diagnosis for PEMFC based on EIS. Six points were chosen

equidistantly from the full EIS curve, and the coordinates of the points were applied as

features. However, the diagnostic significance of the chosen points is not clear, and

the diagnosis accuracy is only 91%. Our former research also applied the equivalent

circuit model (ECM) to extract features from the whole EIS curve, and the diagnostic

accuracy is high. However, it still takes a considerable time for the diagnosis, which

limits its application. Therefore, to apply EIS technology to real diagnostic applications,

an accurate but also quick quantitative diagnosis methodology is necessary.

To achieve a quick diagnosis based on EIS, two novel features are proposed, which can

be quickly measured and applied to a quantitative diagnosis. The features include the

zero-phase impedance and the turning phase. The zero-phase impedance comes from

high-frequency resistance (HFR), which represents the magnitude of the impedance at
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high frequency when the impedance phase is 0, i.e. the left cross point of the EIS curve

and real axis in the Nyquist plot [31]. A lot of research works have proved that it is an

effective indicator of the inner membrane humidity; consequently it can be applied to

the diagnosis of flooding and drying out. However, it is difficult to detect the exact HFR

whose phase is zero, because the corresponding frequency is not certain in different

conditions. Therefore the concept of zero-phase impedance is raised to calculate the

HFR by an average of impedances in the range of small phase zone.

Another feature is the turning phase. In former research, the maximum absolute

phase has been applied to indicate the PEMFC health state [115] [142]. However,

the frequency corresponding to the maximum absolute phase is not constant under

different conditions, so it is not easy to find it quickly. As an alternative, the turning

phase can be detected under a certain frequency. Therefore, there is no need to

measure and compare a lot of EIS points to obtain the maximum phase.

As a result, the most important health state information can be indicated by only

measuring the impedance under a few frequencies. Therefore, the measuring time can

be greatly reduced and on-line diagnosis is possible. In this section, a quick quantitative

diagnosis is achieved and validated based on the two EIS features proposed above.

The novel EIS features are explained and proved effective. The dependence of zero-

phase impedance and turning phase on the PEMFC health state is proved. The method

to detect them is also given, so that the EIS features can be quickly obtained and

applied to diagnosis. The whole methodology is experimentally demonstrated. The

effects of different operating conditions are considered in extensive experiments. A

novel PEMFC diagnosis method is proposed, which is based on the proposed quick

detective EIS features and KNN. The feature space can be separated into different fault

zones, and the diagnosis is very accurate. The proposed method is also proved to

be superior to the former method. Further, the procedure to generalize this method to

other PEMFCs is also given, and the diagnostic algorithm is validated in real time on

a DSP system. The diagnostic result is accurate and the diagnostic time is short, thus

proving that the proposed method is practical.

The methods applied in this research are explained in section 3.3.2, including features

analysis, diagnostic methods, and the implementation method on the DSP system.



Chapter 3. Diagnosis based on electrochemical impedance spectroscopy 130

Then the diagnostic results are given in section 3.3.3. Finally, the conclusions about

the proposed method are given in section 3.3.4.

3.3.2 Methodology

The overall diagnostic process is explained in this section. The methodology includes

two main parts. The first part deals with EIS features extraction, which is composed

of the zero-phase impedance and the turning phase. The relationship between

the features and operating conditions is also analysed and validated. The second

part deals with the KNN diagnosis method based on the proposed features, where

the details of the method are explained. Also, the overall processes and the DSP

implementation method are presented.

3.3.2.1 Zero-phase impedance

The concept of zero-phase impedance is firstly raised in reference [31], and it is an

expansion and actualization of the widely used high-frequency resistance (HFR), i.e.

the cross point of the EIS curve and the real axis in Nyquist plot [87]. At this point,

the impedance has a zero phase, and the PEMFC acts like a pure resistance, thus the

magnitude of the resistance is called HFR. It is wildly recognized that the HFR is a good

indicator of membrane water content because it can represent membrane resistance.

The HFR is high when the membrane is dry and it is lower under flooding fault, so

it can be applied to the diagnosis of drying out and flooding fault [191]. However,

it is not an easy task to accurately detect the HFR whose phase is exactly zero,

because the frequency that corresponds to the HFR always changes under different

operating conditions. Therefore, the zero-phase impedance is proposed to solve the

measurement problem, which is more practical.

The basic idea is to take the average of the impedances in the zero-phase zone (±3◦)

as zero-phase impedance. The zero-phase zone can be shown in figure 3.20. The

scatter points represent the impedance measurements under different currents, i.e.

experiments No. 3 to No. 8 in table 3.2. The model result is based on an ECM in our

former research [187], which is employed to fit the measurement points and smooth



Chapter 3. Diagnosis based on electrochemical impedance spectroscopy 131

the curve. The frequency increases from the right side to the left side. At the high-

frequency zone, the curve crosses the real axis, and the impedance magnitude of the

cross point is called HFR. However, the measurement points are scattered, and they still

have imaginary parts, so none of them correspond exactly to the real axis. Therefore,

it can be seen that a zero-phase zone is marked, where the impedance phase is within

−3◦ and +3◦. In this zone, the impedance measurement points are close to the real

axis, and their average can be applied to replace HFR, i.e. zero-phase impedance.

FIGURE 3.20: The zero-phase impedance and turning phase in Nyquist plot under
different currents

The impedance magnitude and phase can be better shown in the Bode plot, as their

development with frequency can be clearly given respectively. The magnitude of zero-

phase samples can be shown in figure 3.21. In general, the impedances of zero-phase

samples increase when the current decrease, which is related to the water content

in the PEMFC. As the current decreases, the produced water also decreases, and the

membrane is drier. As the proton conductivity of the membrane decreases, the PEMFC

resistance increases.

The zero-phase impedance can be obtained by the average of the samples in the zero-

phase zone, as equation 3.37.
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FIGURE 3.21: The zero-phase impedance samples in Bode plot under different
currents

Zzp =
1

n

n∑
i=1

Zi (3.37)

Where the Zzp is the zero-phase impedance; n is the sample number in the zero-phase

zone; i is the index of the sample; Zi is the impedance of the sample. In this way, the

zero-phase impedance can be obtained quickly, also the random error of measurement

can be reduced by the average.

According to equation 3.37, the calculated zero-phase impedance under different

currents can be shown in figure 3.22. It is clear that the zero-phase impedance

increases when the current decrease, and it changes monotonously. The zero-phase

impedance changes rapidly with the drying process compared to the flooding process,

showing that the zero-phase impedance is more sensitive to the drying process.

Therefore, the experiments prove that the zero-phase impedance can be applied as

an indicator of the membrane water situation.
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FIGURE 3.22: The zero-phase impedance under different current conditions

3.3.2.2 Turning phase

The second EIS feature is the turning phase. This impedance phase is an analogy

and development of the maximum absolute phase proposed by reference [142]. The

maximum absolute phase is an important factor that can represent the angle of

the biggest semicircle, thus it can indicate the health state of the process that the

semicircle represents. In most cases, this maximum phase appears at the peak of the

cathode impedance semicircle, which represents the reaction resistance in the cathode.

However, a similar problem as HFR also exists for the maximum absolute phase, i.e. the

frequency that corresponds to the maximum phase changes under different conditions.

Therefore, the whole EIS curve should be measured to find the maximum phase. To

overcome this problem, the turning phase is proposed.

As shown in figure 3.20, the turning phase is the impedance phase that the curve turns

from one main semicircle to another semicircle, and it can be better demonstrated

by Bode plot in figure 3.23. This is a pivotal moment where the impedance phase

enters a plateau in most cases at this frequency. A simple method of marking this

frequency is to focus on the normal condition. The second peak phase point is exactly

the turning phase, so the phase under this turning frequency can be identified as the

turning phase for all cases. Compared with the maximum phase, the turning phase is
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generally the second peak. It can be measured with a certain frequency; therefore it

can be a convenient indicator. It locates at a lower frequency where the frequency is

2.496 Hz, which connects the cathode semicircle and mass diffusion semicircle.

FIGURE 3.23: The turning phase in Bode plot under different currents conditions

Similar to the zero-phase impedance, the turning phase decreases when the PEMFC

is under lower current, and it increases when the PEMFC is under high currents. The

turning phase under different currents can also be clearly revealed by the figure 3.24.

The relationship between the turning phase and the current is also monotonic, so it

can be applied in diagnosis. On the contrary, the relationship between the maximum

phase and current is disordered, which may be caused by the interaction between the

processes of different components.

It is explainable because more water will be generated when the current increases and

the water affect not only the membrane resistance. The produced water has been

flushed out by the gas, and it affects the mass transfer in the GDL, so the impedance

phase of the turning point will increase. Therefore, this feature is another useful

indicator for PEMFC diagnosis, and it is complementary to the zero-phase impedance.

Also, the turning phase is almost proportional to current magnitude, and it is more

sensitive to the decrease of the current.
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FIGURE 3.24: The turning phase under different currents

To fully understand the physical meaning of the proposed features, the zero-phase

impedance and the turning phase of all the experiments are plotted in figure 3.25 and

3.26, respectively. Considering both the two features with the reference of experiment

conditions in table 3.2, the features can be well explained and understood. For example,

there are two extremely high points for the zero-phase impedance, i.e. experiments No.

8 and No. 39. It can be found that those two experiments are both carried out under

extremely low current, that is, 20 A for No. 8 and 40 A for No. 39. Under the extremely

low current, the generated water is very little; hence it is extremely dry in the PEMFC

and the membrane resistance is enormous. Also, the drying-out fault of No. 39 is

more severe than No. 8 while the current of No. 39 is higher, which is counter-intuitive.

However, this is because they are tested under different temperatures. Number 8 is

tested under 65 ◦C, while No. 39 is tested under 70 ◦C, thus the drying-out is intensified

by the higher temperature. The other experiments can also be compared and explained

in the same way, proving that it is a reasonable diagnostic feature.

It is the same case for the turning phase. Actually, the transformation of the turning

phase is more complicated than zero-phase impedance, as the behavior of low-

frequency semicircle is not yet fully understood and no consensus was reached.

However, it is well recognized that it should be related to the mass transfer process

in the GDL [142]. The turning phase can represent the magnitude of a low-frequency
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FIGURE 3.25: The zero-phase impedance of all experiment samples

FIGURE 3.26: The turning phase of all experiment samples
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semicircle, and it corresponds well with the gas supply conditions according to the

experiments. For example, the three experiment samples with extremely high turning

phases are experiments No. 3, No. 24, and No. 27. Number 3 is caused by the

extremely high current, and No. 24 and No. 27 are caused by the low cathode

stoichiometry. Although they are not under the same operating conditions, they can

both be explained by the obstructed mass supply. In case No. 3, the water blocked the

mass transfer passage, while in the other two cases the air is not sufficiently supplied

in the inlet. On the contrary, all the extremely low turning phase appears when the

cathode stoichiometry is much higher than the normal value, such as No. 30, No. 42,

and No. 49. Therefore, we can draw the conclusion that the turning phase is a useful

diagnostic feature that reveals the mass transfer goodness degree.

3.3.2.3 Fault labelling by k-means clustering

As the inner health state is affected by all the operating parameters, the fault classes

cannot be directly given according to the operating parameters. The experiment

samples can be labelled as different fault causes groups according to the two proposed

EIS features by k-means clustering.

The k-means clustering is a widely applied unsupervised classification method to

divide the samples into different groups according to the similarity between them. The

algorithm of k-means clustering can be given in algorithm 3.4. First of all, k initial

centres can be set. Then for each sample, the distance between the sample and

different centres can be calculated. The city-block distance is applied in this research,

and it gives the same weights to all features as equation 3.38.

dij =
n∑
l=1

|xil − xjl| (3.38)

Where the dij is the distance between the point i and point j; the xil and xjl is the lth

coordinate of point i and point j, respectively; and n is the dimensions of the features,

which is 2 in our case.

According to the distance between the sample and centres, the sample can be assigned

to the group of the closest centre As all samples have been assigned to different groups,
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Algorithm 3.4 : k-means clustering algorithm

give number of cluster k, samples, initial centres;
do

calculate distance to centres for each sample;
grouping each sample based on minimum distance;
move centres to the centroids;

Until centres do not move
End

the group centres can be moved according to the positions of group members, i.e. the

centroid calculated by equation 3.39.

xgl =
1

G

G∑
i=1

xil (3.39)

Where the xgl is the lth coordinate of centre of group g, G is the total number of group

g, xil is the lth coordinate of ith sample in group g.

As the group centres move, the distances between the samples and the centre also

change. Repeat the distance calculation, group assignment, and centre adaptation

over and over again until the centres do not move any more, then the centres and

group members can be determined.

3.3.2.4 Fault classification by K-nearest neighbours method

KNN is one of the simplest methods for classification [168]. The principle of KNN is

to find the closest points of the aim point and then classify it to the class that appears

most times around it. The detailed process of KNN is given as algorithm 2.2.

3.3.2.5 Implementation processes on DSP system

The standard procedures for the real application are combed so that the proposed

method can be generalized for any new PEMFC. Also, to validate the method, the

industrial-level DSP system is applied to achieve the diagnosis in real time. The DSP

system is the same as the one used in ECM-based diagnosis, as can be shown in figure

3.14. All feature detection, feature calculation, and adaptive KNN train, KNN prediction



Chapter 3. Diagnosis based on electrochemical impedance spectroscopy 139

are carried out on the DSP. The diagnostic processes are arranged by setting time, and

the clock of the DSP is applied.

The first task is the obtaining of the two features in the real application. To obtain the

zero-phase impedance, the main idea is to change the frequency to detect the samples

within the zero-phase zone (±3◦) according to feedback. The frequency should be

increased if the phase angle is smaller than −3◦ and it can be decreased if the angle

phase is bigger than +3◦ [31]. To measure the zero-phase impedance, two parameters

should be decided, i.e. the basic frequency for the first measurement point and the

frequency interval for each adjustment step. The basic frequency fb can be decided

according to the approximation of the frequency corresponding to HFR. This frequency

is different for different PEMFCs, so it should be set according to the experiment.

However, as the PEMFCs of the same batch are similar, the basic frequency needs

only to be initialized once. Another parameter is the frequency interval ∆f when each

time the frequency is adjusted. If it is too small, too many samples will be measured

and that wastes time. If it is too big, the samples of the zero-phase zone will be too few,

and the random error will increase. A good way to decide the interval is to calculate it

according to the sample number that we want, and it is recommended to be between

3 to 10. The total process for measurement of zero-phase impedance can be given in

figure 3.27.

FIGURE 3.27: The zero-phase impedance measurement process
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For the turning phase, it is also easy to be obtained. As has been addressed above, the

turning phase is the second peak in the phase plot under nominal conditions. Therefore,

the frequency that corresponds to the second peak phase can be found by experiment

around this frequency, and the turning phase under the turning frequency ft can be

obtained immediately.

After the obtaining of two features, the diagnosis can be achieved with KNN. The

experiments can be carried out on one PEMFC and applied to a batch. The total

diagnosis procedure can be given in figure 3.28. The off-line period must be performed

prior to the application, and the on-line portion can be performed while the PEMFC is

in operation.

FIGURE 3.28: The overall diagnosis process

The total diagnosis time can be calculated for each diagnosis process. For the

measurement time of zero-phase impedance and turning phase, it can be calculated

according to the equation 3.40.

t =
n∑
i=1

Np

fi
(3.40)

Where t is the total time for measurement; i is the index of EIS measure points; n is

the number of total measurement points, i.e. the number of zero-phase samples plus

one turning phase sample; Np is the number of sinusoidal periods for each frequency

stimulation; fi is the frequency of the samples. In our case, n is 5 because 4 zero

phase samples and 1 turning phase sample are detected; the Np can be set as 5 as
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reference [38]; fi is 9996 Hz, 7939 Hz,6306 Hz,5010 Hz, and 2.496 Hz for i = 1 to 5,

respectively. Therefore, the total measurement time is 2.006 seconds.

3.3.3 Diagnostic results on DSP system

3.3.3.1 Fault labelling result by k-means clustering

According to the analysis above, the proposed two features can represent the different

fault causes. The k-means clustering algorithm is applied to label the experiments as

different fault groups, and the clustering result is given in figure 3.29.

FIGURE 3.29: The fault groups labelled by k-means clustering

The first feature is the normalized zero-phase impedance, and the second phase is

the normalized turning phase. Seven classes can be clustered according to the two

feature coordination. The clustering result can be analysed by referring to the operating

conditions shown in table 3.2. Class 1 is the fault group with big zero-phase impedance

and small turning phase. Two samples belong to this class, and those two samples are

of the extremely low current condition. As the current is low, the water content in the

membrane is very little, so class 1 is the drying out fault condition. On the contrary,

class 2 and class 3 are of middle zero-phase impedance, so the water condition in

the membrane is good in those experiments. However, class 2 has a smaller turning

phase compared to class 3, which is caused by the higher gas input stoichiometry of

class 2. Therefore, class 2 is under oversupply condition while class 3 is the normal
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condition. Class 4, 5, 6, and 7 are all with small zero-phase impedance, so all of

those classes are kind of flooding. However, as different operating parameters are

applied for the experiments, the flooding degree and cause reason are quite different,

as a result they can be divided into different classes according to the turning phase.

Class 4 is the samples with small zero-phase impedance and small turning phase,

and they have high water content but also high gas supply flow. Therefore, class 4 is

the flooding&oversupply case. Class 5 is only with flooding fault as the gas supply is

normal. Class 6 is the case with both flooding and slight gas short supply fault, while

class 7 is an extreme flooding and short-supply fault case. It can be noticed that some

samples are not short-supplied by the inlet gas stoichiometry, but the turning phase is

still high, and this is caused by the extremely high water content in the PEMFC. As the

water will not only affect the membrane conductivity, the high water content in the GDL

will also increase the air supply resistance, thus affecting the gas supply condition.

It can also be seen that some samples are close but they belong to different classes.

It is because the health state is continuous in the PEMFC. As the parameters of the

operating condition are close between experiment samples, the inner state is similar

too. However, similar cases can be clustered according to the distance and the

boundary between the classes are clear.

Also, the clustering results according to the proposed features are also compared with

the result of ECM above. The results correspond well with former research, and the

difference is that the experimental cases can be gathered in 7 groups rather than 4

groups as in former research. The mass transfer fault conditions of former research

are divided into two groups with different water content, while the flooding fault cases of

former research can be divided into 3 different groups with different causes. Therefore,

the proposed features can give more details about the PEMFC inner health condition,

and they can be applied to better distinguish the fault causes and also degrees.

3.3.3.2 Real-time diagnosis result on DSP system

As the experiments are labelled, the KNN can be applied to diagnosis. The database

of proposed two features can be divided into the training part and the testing part. The

80% of the data is randomly set as training samples, while the rest 20% of the samples



Chapter 3. Diagnosis based on electrochemical impedance spectroscopy 143

are set as tests. Both the features and labels of the training part are applied to the KNN

classifier, then the classes of test part are predicted by only the test features.

The diagnostic results by the DSP system can be shown in figure 3.30. The experiment

samples are represented by crosses, while the model predictions are represented by

circles. The green lines are the boundary between two groups. It can be seen that all

the predictions correspond well with the experiment result, and the diagnosis result is

very accurate. The KNN classification process is very quick, the time to diagnose one

case is 0.5 seconds on the DSP system. Therefore, altogether the time cost for one full

diagnosis is 2.506 seconds. It is very short compared with the fault development time,

so it is quick and practical.

FIGURE 3.30: The diagnosis results by KNN in DSP system

Another former research also achieved quantitative diagnosis based on EIS [177]. 6

EIS points are chosen to replace the total EIS, and the diagnosis accuracy was only

91%. Therefore, the proposed method is more accurate than the former method.

3.3.4 Conclusions

In this research, a novel diagnosis method is achieved based on two EIS features

that can be quickly detected. The proposed two features are effective health state

indicators. The experiments prove that the zero-phase impedance is a good indicator

of membrane water content situation, while the turning phase is a good indicator of
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the mass diffusion condition in the GDL. Both gas supply problems and water blockage

problems can lead to an increase in the turning phase; therefore it can reflect the health

state in GDL. The KNN classification method can assign all the samples to the right fault

causes classes. The procedures to generalize the proposed diagnostic method to any

PEMFC are discussed and the detailed steps are provided. What’s more, the algorithm

is validated in real time on a DSP system, and the total diagnostic time is only 2.506

seconds. The proposed diagnosis method based on the proposed features and KNN is

accurate and practical.

3.4 Conclusions

The EIS technology has great potential to be applied to on-board diagnosis, as it is

rich in diagnostic information and it can be carried out with a minimal disruption of

normal operation. In this chapter, two diagnostic methods based on EIS data are

proposed. The first one is based on ECM and ANFIS, while the second method

is based on two quick detective EIS features and KNN. Both of them are quite

accurate, and they are all validated in real time by implementing them on the DSP

system. Therefore, the proposed methods are practical, and they have the potential

to be applied in real applications. In addition to diagnosis to find malfunctions,

long-term health management is also important for PEMFCs. The following chapter

proposes a prognostic method based on long-term voltage data and the Kalman filter

in the frequency domain that offers a computational advantage over its time-domain

counterpart.



Chapter 4

Prognosis by frequency domain

Kalman filter

4.1 Introduction

During the operation, the performance of PEMFC declines irreversibly, which is called

degradation [192]. It includes the degradation of different components such as bipolar,

catalyst, membrane, and electrode, thus it is a complex multi-physics, multi-units,

and interactive process [193]. A lot of research works have been carried out by

experiments or theoretical analysis, and some degradation mechanisms have been

proposed. However, it is still a tricky task to fully understand and model it.

To handle the problem of a short lifetime, prognostics and health management (PHM)

are proposed to predict the degradation process and get the estimation of the remaining

useful life (RUL) of PEMFC [4]. The existing prognosis methods can be divided into

three categories: model-driven methods, data-driven methods, and hybrid methods.

The model-driven methods learn and predict the PEMFC degradation trend based

on specific PEMFC degradation models. The degradation models can be divided

into three categories, i.e. physical models, empirical models, and semi-empirical

models [193] [194]. M. Bressel et al.[195] [196] predicted the degradation and

RUL of PEMFC based on the extended Kalman filter (EKF) and a new empirical

model, and the uncertainty of the prediction was quantified. At the same time, a

145



Chapter 4. Prognosis by frequency domain Kalman filter 146

particle filter and a voltage degradation model were applied by M. Jouin et al.[197],

and the degradation and RUL were predicted. Also, a model that considered the

characterization disturbances and voltage recovery was researched by them [20].

Meanwhile, K. Chen et al.[198] researched the voltage degradation by unscented

Kalman filter, and three different models were tried. The result was validated by

three PEMFCs in different fuel cell electric vehicle (FCEV) with real load mission.

Model-driven methods can give explicit expressions of degradation. However, as the

degradation is highly non-linear, it is not easy to find a suitable model that can be widely

used for different fuel cells [192].

The data-driven methods use the historic operation data to learn the inner relationship

between them and then predict the degradation. Those methods need no specific

models, and they are realized by artificial intelligence [199] [200]. In Ref. [201], the

echo state network (ESN) was used to forecast the aging process, and the most

influential parameters of ESN were analysed by analysis of variance method. M. Rui et

al.[99] studied 8 experiments on 3 different PEMFCs by grid long short-term memory

recurrent neural network, and the result corresponded well with experiments. At the

same time, in Ref. [202], the degradation of the real mission FCEV was predicted by a

combined method based on the wavelet analysis, ELM, and GA. Generally, the data-

driven methods need more data, and there are more parameters to be tuned than

model-driven methods. Also, those parameters have no physical meaning; therefore it

is difficult to identify the causality based on the data-driven methods [193].

The hybrid methods are the combination of model-driven methods and data-driven

methods. In Ref. [203], a hybrid prognostic method was proposed, which was based

on SVM and regularized particle filter. Meanwhile, Z. Daming et al.[204] combined a

non-linear autoregressive neural network (NANN) and particle filter (PF), as NANN was

good at local fluctuation prediction while PF could give long-term degradation trends.

The hybrid methods can combine the advantages of both model-driven and data-driven

methods, but as more than two methods are connected, the complexity of the hybrid

methods is usually higher than a single model-driven or data-driven method [205].

By the analysis above, it can be seen that the methods have their advantages and

disadvantages. Usually, the model-driven methods can give the long-term trend with

less computation, and the explicit relationship can help with decision-making. However,
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the existing model-driven methods are still time-consuming when there is a lot of data

to process, thus any reduction in the computation complexity is advantageous [206].

Therefore, a novel method based on FDKF is proposed in this chapter, which can

achieve accurate prediction and is faster than traditional methods.

In this chapter, we contribute to PEMFC prognosis by introducing a new model-driven

method based on the frequency domain Kalman filter (FDKF), which can achieve

voltage degradation prediction quickly and accurately. FDKF is initially used on acoustic

echo cancellation (AEC) problem [207] [208], and it is adapted to the PEMFC prognosis

field for the first time. The prognosis process is achieved in the frequency domain. Four

different voltage degradation models are researched by the proposed method, and the

results are compared with each other. Different training times are also researched,

which proves that the method is robust for both short-term and long-term predictions.

The method is validated by two groups of experimental data, which were obtained

under constant and dynamic current conditions respectively. The advantage of the

proposed FDKF method is that it can process data in groups, so the computation

time can be greatly reduced. The linear model, quadratic model, logarithmic model,

and exponential model are employed and compared under the framework of the FDKF

method. The degradation of PEMFC under different conditions can be predicted by the

proposed method, which proves that the method is robust. The proposed FDKF method

is compared with the EKF method. It was demonstrated that the proposed method is

more time-saving and more accurate than the EKF method.

This chapter is organized as follows: in Section 4.2, the model-driven prognosis method

based on FDKF is addressed. The framework of the method is given, as well as a

detailed explanation of FDKF. Four voltage degradation models are also chosen here.

In Section 4.3, the experiments and the data used in this research are explained in

detail. The result is obtained and analysed in Section 4.4. Two case studies are applied

to verify the method, and different models and training times are researched. The result

of EKF is also compared with the FDKF method here. At the same time, the prediction

horizon (PH) is calculated and proved more accurate than the literature. Finally, the

main conclusions are summarized in Section 4.5.

To prevent confusion, rules of notations are as follows. The variables are taken in italic

letters. The lower-case means that it is in the time domain, while upper-case means
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frequency domain. Meanwhile, a bold variable means vector and matrix, while the

normal letter means that it is a scalar.

4.2 Prognosis method based on FDKF

In this part, the model-driven prognosis method based on FDKF is presented. First of

all, the framework of the model-driven method is discussed in Section 4.2.1. Then, the

supposed voltage degradation models are given in Section 4.2.2. Thirdly, the FDKF is

explained in detail in Section 4.2.3. Finally, the method to apply FDKF in the prognosis

problem is addressed in Section 4.2.4.

4.2.1 Model-driven prognosis method based on FDKF

Model-driven prognosis methods are based on models that describe the degradation

phenomenon in PEMFC. The overall framework of the model-driven prognosis method

based on FDKF is shown in figure 4.1. Firstly, the operation data of two experiments

are used. During the experiment, the temperature, pressure, current, and voltage data

are all recorded. Then the characterization of the data can decide which kinds of

data will be used in the prognosis. In the PEMFC prognosis problem, stack voltage

is usually easy to obtain and it can represent the degradation of PEMFC, so it is taken

as an indicator of the state of health of PEMFC. Thirdly, as has been discussed in

the introduction, model-driven methods rely on degradation models, so four empirical

models are chosen in this research. Then the experimental data can be used to get

the estimation of the state variables and output voltage by the proposed FDKF method.

Furthermore, the degradation can be predicted by the FDKF method based on the state

variables during the training period, thus the prognosis can be achieved.

4.2.2 PEMFC voltage degradation models

The degradation of PEMFC has been researched by experiments as well as theoretical

analysis. However, as the degradation is a non-linear and multi-physics process, it is

difficult to get an exact model that perfectly corresponds to reality. In most research,
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FIGURE 4.1: Model-driven prognosis method based on FDKF for PEMFC

it is given as a function of time with some undetermined parameters. Based on the

Ref. [198] [209] [210], four different voltage degradation models are applied in this

research. Namely, linear model, quadratic model, logarithmic model and exponential

model, which are shown as equations 4.1, 4.2, 4.3 and 4.4, respectively.

Linear model : xi+1 = xi − α (4.1)

Quadratic model : xi+1 = xi − α− β · i (4.2)

Logarithmic model : xi+1 = xi − α− β · ln(
i+ 1

i
) (4.3)

Exponential model : xi+1 = xi − α− β · (eγ·i − eγ·i−γ) (4.4)

Where x is the PEMFC voltage; i is the time index; α, β, γ are undetermined

parameters. The α is related to the voltage degradation rate under constant operating

condition, and β, γ are the parameters related to voltage degradation under dynamic

operating conditions, such as load current change. The degradation of PEMFC is in a

near-linear trend under constant load and constant operating condition [210]. When the

load changes, the PEMFC will have some transient processes, such as gas diffusion

and water accumulation. During the transient process, the degradation is usually

accelerated due to the worse environment for the components such as a catalyst, and

it is usually in a logarithmic or exponential modes [200].

The linear model is widely used to describe the voltage degradation under normal
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condition in a lot of references [198]. However, when the operating condition changes,

this model is not enough to describe the degradation, therefore, other terms are

introduced to amend it. So the quadratic term, logarithmic term, and exponential

term are added in other models, respectively, so that to capture the behaviours under

transient operating conditions [209].

4.2.3 Frequency domain Kalman filter

Originally, FDKF is widely used in AEC problem [211] [212]. In this part, we adapt the

fuel cell prognosis problem into the form that can be solved by FDKF, which is shown in

figure 4.2.

Model input
 x(i)

Impulse 
response

w(i)

Output 
voltage

y(i)

noise
s(i)

d(i)

FIGURE 4.2: Fuel cell prognosis problem in time domain

Here i is the time index. x(i) is the voltage signal from model. w(i) is the impulse

response path, which is unknown parameter decided by the fuel cell and the operating

condition. The convolution of x(i) and w(i) forms d(i). s(i) is a white noise, and it forms

the output signal y(i) together with d(i).

In this problem, the most important task is to find the path w(i), so that to get rid of the

noise and obtain d(i). The relationship between x(i), w(i) and d(i) can be shown as:

d(i) = x(i) ∗ w(i) (4.5)

Here the ∗ is the convolution operator. So for y(i), we have:

y(i) = d(i) + s(i)

= x(i) ∗ w(i) + s(i)
(4.6)



Chapter 4. Prognosis by frequency domain Kalman filter 151

To solve this problem, we can change the equations from the time domain to the

frequency domain, so discrete Fourier transfer (DFT) operation is applied to a series of

data. To achieve DFT, a window of data at length M is taken, and the window moves

forward at a speed of R data each step. In this research we take M = 256 and R = 128.

For step k, take a vector to represent the latest M data of x(i):

x(k) = [x((k − 1)R+ 1), x((k − 1)R+ 2), ..., x((k − 1)R+M)]H (4.7)

Where the superscript H means the Hermitian transposition. So we get frequency

domain input X(k) as:

X(k) = diag{Fx(k)} (4.8)

Where diag{} creates a new matrix that takes the vector as the main diagonal items of

it. F is the Fourier matrix which can achieve the effect of Fourier transfer of a vector,

so that to change the vector from the time domain to the frequency domain.

Fx(k) = [X(1, k), X(2, k), ..., X(M,k)]H (4.9)

For w(k), only the first M − R order response is used, which is obtained from the last

step, and we suppose that it can cover all the span of the impulse response. For the

part where we ignore, add 0 to make it a M data vector.

w(k) = [w(1, k), w(2, k), ..., w(M −R, k), 0, ..., 0]T ; (4.10)

Also, in the frequency domain, we can get the complex frequency domain impulse

response path as:

W (k) = Fw(k)

= [W (1, k),W (2, k), ...,W (M,k)]T
(4.11)
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For y(i) and s(i), take the latest R data as a vector, it can be represented as:

y(k) = [y((k − 2)R+M + 1), y((k − 2)R+M + 2), ..., y((k − 1)R+M)]T (4.12)

s(k) = [s((k − 2)R+M + 1), s((k − 2)R+M + 2), ..., s((k − 1)R+M)]T (4.13)

Take QH = [0R×(M−R) IR×R], which is a R row M column matrix. It can take only

the last R items from a vector of length M . According to the nature of convolution,

the convolution of the time domain signal can be transferred to multiplication in the

frequency domain, so we have:

d(k) = QHF−1X(k)W (k) (4.14)

The equation 4.6 can be written as:

y(k) = d(k) + s(k)

= QHF−1X(k)W (k) + s(k)
(4.15)

Change it into the frequency domain and we can get:

Y (k) = FQQHF−1X(k)W (k) + FQs(k) (4.16)

Here theQ is used to add 0 in the first M −R data of a vector, to make a vector change

from length R to length M . Then, by taking:

C(k) = FQQHF−1X(k) (4.17)

S(k) = FQs(k) (4.18)

We can get:
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Y (k) = C(k)W (k) + S(k) (4.19)

We can see that this equation gives the relationship between the frequency domain

input signal X(k), frequency domain impulse response W (k), and the frequency

domain output signal Y (k).

By taking W (k) as state variable, C(k) as measurement matrix, Y (k) as output and

S(k) as noise, supposing the frequency domain response W (k) only change slowly

between two steps, we can get the system equations as:


W (k + 1) = AW (k) + ∆W (k)

Y (k) = C(k)W (k) + S(k)
(4.20)

Where A is a constant close to 1. Take ∆W (k) as white noise, then, in the frequency

domain, the system can be represented as:

C(k) Y(k)

S(k)

Z -1
W(k)

A

∆W(k)

FIGURE 4.3: System of fuel cell prognosis problem in frequency domain

For the problems like figure 4.3, we can use Kalman filter to obtain W (k). Suppose

that S(k) and ∆W (k) are uncorrelated Gaussian noise, with the covariance matrix as

ΦSS and Φ∆∆, respectively. We can get the solution in Kalman filter form:

W+(k) = AW (k − 1) (4.21)

P+(k) = AP (k − 1)A′ + Φ∆∆ (4.22)

K(k) = P+(k)CH(k)[C(k)P+(k)CH(k) + ΦSS ]−1 (4.23)

W (k) = W+(k) +K(k)[Y (k)−C(k)W (k)] (4.24)
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P (k) = (I −K(k)C(k))P+(k) (4.25)

Where the P (k) is the estimation error covariance, W+(k) and P+(k) means the one

step ahead estimation of W (k) and P (k). K(k) is the Kalman gain in the frequency

domain. By this method, we can update W (k) step by step, then use it to predict the

voltage output. The stability and convergence of the proposed FDKF method is given

in the Appendix B.

In this research, the parameters A, ΦSS , and Φ∆∆ are tuning parameters, and they

are chosen according to the criterion that the estimated voltage is the closest to the

experimental data. So A = 0.9999, ΦSS = 10−2IM×M , and Φ∆∆ = 10−4IM×M are

applied.

4.2.4 Prognosis by FDKF

In this part, we summarize the method to solve the prognosis problem with FDKF,

and the diagram of the method is shown in figure 4.4. The prognosis process can

be divided into two parts, i.e. the learning period and the prediction period. In the

learning period, by the models given in Section 3.2, the x(i) can be obtained. Group

x(i) in a block of M data, and at each step the DFT of it can give the frequency domain

input X(k). By frequency domain impulse response W (k), the estimated frequency

domain output Ŷ (k) can be obtained. At the same time, the real output data y(i) is

also transferred into the frequency domain, which is Y (k). Then the frequency domain

error E(k) can be obtained by the subtraction of real frequency domain output Y (k)

and the estimated output Ŷ (i). It will be used to update W (k), according to the

equations 4.21 to 4.25. Finally, the Inverse Discrete Fourier Transform (IDFT) can

change the estimated frequency domain output Ŷ (k) into the time domain. By this

method, the impulse response updates and the output voltage can be estimated.

When the learning period is over, the process moves to the prediction period. During

the prediction period, the W (k) of the learning period is used in the prediction. By

the same process as the learning period, the x(i) can be transferred to the frequency

domain, and the predicted Ŷ (k) can be obtained by X(k) and W (k) according to

equation 4.20. At last, the predicted voltage ŷ(i) can be calculated by IDFT, thus the

prediction of voltage degradation is achieved.



Chapter 4. Prognosis by frequency domain Kalman filter 155

FIGURE 4.4: PEMFC prognosis by FDKF

4.3 Experiments and data

4.3.1 Experiments

Two experiments were carried out in the Federation for Fuel Cell Research (FCLAB)

for prognosis, where two PEMFC stacks degraded under different operating condi-

tions [213]. The experiment platform is shown in figure 4.5. In the first experiment,

a PEMFC stack with 5 fuel cells operated under a constant current of 70A, and it

lasted for more than 1100 h. It is called PEMFC1 in short. The main operating

parameters of the experiment are shown in table 4.1. The second experiment was

carried out on another 5-cells stack, but under the dynamic current, i.e., 70 A with 7

A high-frequency ripples, and it is called PEMFC2. The main operating parameters of



Chapter 4. Prognosis by frequency domain Kalman filter 156

PEMFC2 are shown in table 4.2. The information of the stacks was recorded during

the experiments, including the temperature, pressure, current, and voltage, etc. There

were characterization experiments about every week during both of the degradation

experiments, including the polarization curve and EIS measurement. The voltage has

an obvious recovery after the characterization experiments, which enhances the non-

linear property of voltage. More details about the experiments can be found in the

reference [213].

PEMFC

Gas supply 

system

Electronic load

Sensors and 

related devices

Measurement and 

control system

FIGURE 4.5: PEMFC degradation experiment platform in FCLAB [213]

TABLE 4.1: Experiment parameters of PEMFC1

Parameter Value

Number of cells 5
Active area 100cm2

Stack rated current 70A
Temperature 54 ◦C

Hydrogen pressure 1.3 bar
Relative humidity 50%

4.3.2 Data processing

The voltage data has to be processed before it is applied to the prognosis because

there are random errors and violent fluctuations during the experiment. Gaussian kernel

smooth method [214] is applied to process the voltage data in this research. It gives
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TABLE 4.2: Experiment parameters of PEMFC2

Parameter Value

Number of cells 5
Active area 100cm2

Stack rated current 70A with 7A vibration
Temperature 54 ◦C

Hydrogen pressure 1.3 bar
Relative humidity 51.8%

a weight to every data according to Gaussian distribution and then gets the weighted

average as the new value. However, it should be noticed that the future data should not

be used to smooth the data in prognosis, so that to prevent data leakage. Therefore,

only the left half of the Gaussian distribution is applied, while the right half is set as 0.

For a time series data d(ti), where i is the index of the data, ti is the corresponding

time, the processed data p(ti) can be obtained as:

p(ti) =

∑ti
tj=ti−∆tK(tj) · d(tj)∑ti

tj=ti−∆tK(tj)
(4.26)

Where ∆t is the smoothing interval, which is set 10 h in this case. The K(tj) is the

Gaussian kernel function as:

K(tj) =
1√
2π
e

−(tj−ti)
2

2h2 (4.27)

Where the h is the bandwidth, which is set as 500. The raw data and processed data of

voltages are shown in figure 4.6(a) and 4.6(b) for PEMFC1 and PEMFC2, respectively.

The corresponding operation currents of PEMFC1 and PEMFC2 are also shown in the

figures. It can be seen that the processed data is smoother, but it can also represent

the trend of original data. Afterwards, only the processed data is used.

4.4 Result and validation

In this section, the prediction of PEMFC voltage is obtained according to the proposed

method. Two case studies are carried out, where the experimental data of PEMFC1 is
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(a)

(b)

FIGURE 4.6: Voltage raw data and processed data for (a) PEMFC1 and (b) PEMFC2
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used in Section 4.4.1 while PEMFC2 is used in Section 4.4.2. At the same time, the

EKF method is compared with the proposed FDKF method in Section 4.4.3.

In each case study, four different models are studied respectively, and predictions are

carried out under different training length so that to achieve both short-term and long-

term prediction. The models are trained under 50%, 60%, 70%, 80%, 90% of the total

time respectively, and the rest part of the experimental data is used as verification.

Mean relative error (MRE) and root mean square error (RMSE) are taken as the

judgements of its performance, which can be calculated by equation 4.28 and 4.29,

respectively.

MRE =
1

N

N∑
i=1

∣∣∣∣∣ V̂ (i)− V (i)

V (i)

∣∣∣∣∣ (4.28)

RMSE =

√∑N
i=1 (V̂ (i)− V (i))2

N
(4.29)

N is the number of data; V̂ (i) is the predicted voltage; V (i) is the real voltage output.

The MRE is the mean relative errors, while RMSE is more sensitive to the big errors.

By those two methods, the performance of a prediction can be measured.

4.4.1 Case study 1: voltage degradation prediction for PEMFC1

In this part, based on the PEMFC1 data, four voltage degradation models are

researched under different training time. The predicted voltage and relative error

are analysed. They are given in the following order: linear model, quadratic model,

logarithmic model, and exponential model.

4.4.1.1 Linear model for PEMFC1

The training and prediction voltage and corresponding relative error under linear model

for PEMFC1 are shown in figure 4.7(a) and 4.7(b), respectively. It can be seen

that the training result follows the experimental data well, and the predicted voltage

is close to the real output voltage. As there are characterization experiments during the
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degradation experiment at some chosen points, the voltage sharply fluctuates and it is

quite non-linear. The predicted voltage is affected by the training length, and the result

is more accurate with longer training time.

The relative error of the training period is smaller than 0.4%, so it follows the training

data well. For the prediction period, the error arises when the experimental voltage

abruptly changes, but the prediction error is always smaller than 1.8%, and the

averaged RMSE is 0.0327 V. The experiment voltage suddenly rises at about 1000

hours, which is not recognized by the long-term prediction, so the error is relatively

big. However, the predicted voltage under 90% training time corresponds well with the

experiment. In summary, as some non-linear behaviours of PEMFC in the future are

not considered, the long-term prediction is less accurate than short-term prediction.

4.4.1.2 Quadratic model for PEMFC1

The quadratic model is the combination of a linear term and a quadratic term. Different

training time is researched in this case, and the predicted voltage and relative error are

shown in figure 4.8(a) and 4.8(b), respectively. As shown in figure 4.8(a), the predicted

voltage can follow the actual voltage degradation trend for PEMFC1. As shown in

figure 4.8(b), the relative error of this model is always smaller than 1.4%, while the

maximum error of the linear model is 1.8%. The reason for the high accuracy of the

quadratic model is that the quadratic term effectively considers the voltage recovery

phenomenon of PEMFC1 caused by the characteristic experiment.

4.4.1.3 Logarithmic model for PEMFC1

The logarithmic model is the combination of a linear term and a logarithmic term. The

training and prediction result and corresponding relative error under logarithmic model

for PEMFC1 are shown in figure 4.9(a) and 4.9(b), respectively. It can be seen that the

result of the logarithmic model is quite similar to the linear model, and it is more accurate

than the linear model, which is shown by the average MRE in table 4.3. The reason

for the high accuracy of the logarithmic model is that the logarithmic term effectively

considers the voltage recovery phenomenon of PEMFC1 caused by the characteristic

experiment. It is notable that the result is quite accurate before the sudden jump of
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(a)

(b)

FIGURE 4.7: (a) The voltage prediction result based on FDKF under linear model and
(b) the relative error under linear model for PEMFC1
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(a)

(b)

FIGURE 4.8: (a) The voltage prediction result based on FDKF under quadratic model
and (b) the relative error under quadratic model for PEMFC1



Chapter 4. Prognosis by frequency domain Kalman filter 163

(a)

(b)

FIGURE 4.9: (a) The voltage prediction result based on FDKF under logarithmic model
and (b) the relative error under logarithmic model for PEMFC1
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(a)

(b)

FIGURE 4.10: (a) The voltage prediction result based on FDKF under exponential
model and (b) the relative error under exponential model for PEMFC1
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voltage at 1000h, where the relative error is less than 1%. Therefore, for some research

that declares the end-of-life (EOL) of the stack at 800h [197], the prediction can be more

accurate because the voltage degradation after EOL isn’t concerned.

4.4.1.4 Exponential model for PEMFC1

For the exponential model, the voltage result and corresponding relative error for

PEMFC1 are shown in figure 4.10(a) and 4.10(b), respectively. It can be seen that the

result under 70% and 80% training time is accurate compared with experiment voltage,

while the relative error under other training time is huge. The predicted voltage goes up

dramatically because of the existence of an exponential term, which is far from reality.

This proves that the exponential model is not robust for different training time, and it is

not proper to be used in the method.

4.4.1.5 Comparison of different models

To compare those four models, the MRE and RMSE of predictions under different

models and different training time are listed in table 4.3 and table 4.4, respectively.

It can be seen that the average MRE of the quadratic model is the smallest, which is

0.4419%, and the average MRE of the linear model and logarithmic model are very

close to that of the quadratic model, which are 0.6131% and 0.5999%, respectively. All

those three models can give an acceptable result. They are also applied to PEMFC2

in the next section, to verify if they are effective under the dynamic current condition.

The RMSE of the predictions give the same conclusions as MRE. As we can see, the

RMSE of the exponential model is much higher than the linear model, quadratic model,

and logarithmic model, and the exponential model is unacceptable.

TABLE 4.3: MRE (%) of prediction under different model and different training time for
PEMFC1

model 50% 60% 70% 80% 90% average

linear model 0.6825 0.5302 1.0096 0.6698 0.1736 0.6131
quadratic model 0.5449 0.3423 0.5276 0.4087 0.3861 0.4419
logarithmic model 0.6593 0.5142 0.9808 0.6438 0.2014 0.5999
exponential model 4.6888 0.5811 0.3844 0.3523 1.7269 1.5466
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TABLE 4.4: RMSE (V) of prediction under different model and different training time
for PEMFC1

model 50% 60% 70% 80% 90% average

linear model 0.0477 0.0357 0.0466 0.0273 0.0060 0.0327
quadratic model 0.0306 0.0115 0.0202 0.0146 0.0135 0.0181
logarithmic model 0.0467 0.0347 0.0456 0.0263 0.0070 0.0320
exponential model 0.4127 0.0321 0.0124 0.0119 0.0662 0.1071

4.4.2 Case study 2: voltage degradation prediction for PEMFC2

The experiment PEMFC2 is carried out under a dynamic current of 70A with 7A high-

frequency ripples, whose operation conditions and voltage output can be found in

Section II. The degradation pattern of PEMFC2 is different from PEMFC1, as PEMFC1

is obtained under constant current. To verify the FDKF prognosis method under the

dynamic current case, it is also applied to PEMFC2. The FDKF method is also trained

under 50%, 60%, 70%, 80%, 90% of the total time respectively, and the rest part of the

experimental data is used as verification. In this section, the quadratic model, linear

model, and logarithmic model are calculated, as the exponential model has already

been proved unsuitable to be used in this method by the research above.

4.4.2.1 Quadratic model for PEMFC2

As the quadratic model has the smallest relative error in the PEMFC1 case, it is

applied to PEMFC2 firstly. The training and prediction result and corresponding relative

error under quadratic model for PEMFC2 are shown in figure 4.11(a) and 4.11(b),

respectively. The result is very different under different training time. The model results

under 60 % and 70 % training time corresponds badly with the voltage of PEMFC2,

which could be caused by the non-linear feature of PEMFC2. Compared with the result

of PEMFC1 based on the quadratic model, the quadratic term cannot accurately model

the voltage recovery phenomenon of PEMFC2. Therefore, this model is unsuitable to

be used in this case, especially for long-term prediction. As the result of the linear

model and logarithmic model are acceptable in PEMFC1, both of them are calculated

for PEMFC2 by the proposed FDKF method.
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(a)

(b)

FIGURE 4.11: (a) The voltage prediction result based on FDKF under quadratic model
and (b) the relative error under quadratic model for PEMFC2
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4.4.2.2 Linear model for PEMFC2

The voltage result and corresponding relative error under linear model for PEMFC2

is shown in figure 4.12(a) and 4.12(b), respectively. It can be seen that although the

relative error arises when the voltage fluctuates, it is always smaller than 2.5%, thus the

result of the linear model is more accurate than the quadratic model. As can be seen in

table 4.5, the average MRE of the linear model is 0.5300%, which is much smaller than

the quadratic model. The MRE of PEMFC2 is also smaller than the result of the linear

model for PEMFC1. Thus, the linear model can be used in the FDKF method for both

cases.

4.4.2.3 Logarithmic model for PEMFC2

For the logarithmic model, the training and prediction result and corresponding relative

error for PEMFC2 are presented in figure 4.13(a) and 4.13(b), respectively. Again, the

result is similar to that of the linear model. The predicted voltage is close to the actual

degraded voltage, and the maximum relative error is less than 2.5%. The average MRE

of this model is 0.5291%, which is slightly smaller than 0.5300% of the linear model,

and it is also smaller than the MRE of the logarithmic model for PEMFC1. Compared

with the result of PEMFC1 based on the logarithmic model, the logarithmic term can

also accurately model the voltage recovery phenomenon of PEMFC2. Recall that the

logarithmic model is also a little more accurate than the linear model for PEMFC1, we

can conclude that the logarithmic model is the most suitable model when considering

both PEMFC1 and PEMFC2. This agrees with the conclusion of the particle filter

method [197].

The MRE and RMSE of different models under different training time for PEMFC2 are

shown in table 4.5 and 4.6, respectively. It can be seen that although the MRE of the

quadratic model is smaller than the linear model and logarithmic model under 50%

training time, the error is high with longer training time. Therefore, the quadratic model

is unsuitable for this case. The errors of the linear and logarithmic model are both small

enough under all training time, which proves that they can achieve both short-term

and long-term prediction, and they are robust for both two cases. The RMSE of the

predictions shows the same tendency as MRE, i.e., the RMSE of linear and logarithmic
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(a)

(b)

FIGURE 4.12: (a) The voltage prediction result based on FDKF under linear model
and (b) the relative error under linear model for PEMFC2
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(a)

(b)

FIGURE 4.13: (a) The voltage prediction result based on FDKF under logarithmic
model and (b) the relative error under logarithmic model for PEMFC2
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models are much smaller than the quadratic model, thus both linear and logarithmic

model are accurate. Both MRE and RMSE of the linear model and logarithmic models

are very close, so both MRE and RMSE can be used to evaluate the performance of

prediction.

TABLE 4.5: MRE (%) of prediction under different model and different training time for
PEMFC2

model 50% 60% 70% 80% 90% average

quadratic model 0.7013 2.4230 1.7366 0.9723 0.7074 1.3081
linear model 0.8867 0.3784 0.4506 0.5611 0.3729 0.5300
logarithmic model 0.8545 0.3664 0.4595 0.5610 0.4041 0.5291

TABLE 4.6: RMSE (V) of prediction under different model and different training time
for PEMFC2

model 50% 60% 70% 80% 90% average

quadratic model 0.0653 0.1668 0.1110 0.0442 0.0237 0.0822
linear model 0.0335 0.0086 0.0185 0.0131 0.0138 0.0175
logarithmic model 0.0325 0.0090 0.0195 0.0139 0.0147 0.0179

4.4.3 Comparison with extended Kalman filter

Kalman filter can also be applied to degradation prediction in the time domain. However,

a normal Kalman filter cannot solve non-linear problems. As an adaptation of the

Kalman filter, EKF takes the Jacobi matrix of the nonlinear equation, so that it can be

applied to a slightly non-linear problem. The EKF method has been applied to the fuel

cell prognosis and proved advanced [195] [215] [174], thus it is applied to the PEMFC

prognosis problem here, and it is carried out with three models for both PEMFC1 and

PEMFC2 experiments. The computation time as well as the relative error of prediction

are obtained and compared with the FDKF method.

The total number of data used in this research is 1120000 and 1040000 for PEMFC1

and PEMFC2, respectively. Therefore, the sampling frequency is 0.278 Hz. For

both FDKF method and EKF method, the calculations are all carried out under the

same test conditions, i.e. a personal computer with processor Intel(R)Xeon(R)W-

2123CPU@3.60GHz; memory RAM 32Go; operation system Window 10 education

and Matlab R2018a. For the linear model, quadratic model, and logarithmic model, the
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voltage degradation is predicted for both PEMFC1 and PEMFC2 by FDKF and EKF,

respectively. The computation time is shown in table 4.7. It can be seen that the FDKF

method uses much less time than EKF for both experiments under all three models.

The FDKF method can give results in several seconds, while the EKF method needs

thousands of seconds. As has been addressed, the FDKF method is more efficient

because it can process the data in groups, and it moves forward with R data at each

step, which is the advantage of FDKF.

TABLE 4.7: Computation time (s) under different degradation models for EKF and
FDKF

Method linear model quadratic model logarithmic model average

FDKF for PEMFC1 5.269 4.879 13.60 7.915
EKF for PEMFC1 1506 2456 2452 2138
FDKF for PEMFC2 4.319 4.422 11.20 6.647
EKF for PEMFC2 1507 1932 1895 1628

Compared with the EKF method, the FDKF method also has better performance in

terms of accuracy. The MRE and RMSE under 50%, 60%, 70%, 80%, and 90%

training time are averaged to represent the performance of the method, and they are

shown in table 4.8 and 4.9, respectively. As we can see, the relative error of the

EKF method under the quadratic model is very big, while that of the FDKF method

is acceptable. Thus FDKF method can be used under more models. Furthermore, the

error of the FDKF method is smaller than the EKF method under all three models, and

the RMSE can give the same conclusion, which proves that the proposed method is

advantageous. This is due to the different characteristics of FDKF and EKF method.

The FDKF method deals with the data in the frequency domain, and it finds the basic

structure of the data in the frequency domain so that to find the invariance of the

data. For EKF, it uses the Taylor expansion to replace the non-linear function, then

only the first-order term is reserved and the terms of higher order are neglected. In

this way, a linear system can be obtained and the Kalman filter can be applied to the

linearised system. The performance of EKF is worse than FDKF in our case because

the real system is highly non-linear, and the linearisation process of the EKF method

will introduce more error because of the neglected high-order terms. Therefore, the

prediction error of the EKF method is bigger.



Chapter 4. Prognosis by frequency domain Kalman filter 173

TABLE 4.8: Averaged MRE (%) under different degradation models for EKF and FDKF

Method linear model quadratic model logarithmic model average

FDKF for PEMFC1 0.6131 0.4419 0.5999 0.5516
EKF for PEMFC1 0.7718 4.2740 0.7717 1.9392
FDKF for PEMFC2 0.5300 1.3081 0.5291 0.7891
EKF for PEMFC2 1.0775 6.1435 1.0755 2.7655

TABLE 4.9: Averaged RMSE (V) under different degradation models for EKF and FDKF

Method linear model quadratic model logarithmic model average

FDKF for PEMFC1 0.0327 0.0181 0.0320 0.0276
EKF for PEMFC1 0.0345 0.1637 0.0345 0.0776
FDKF for PEMFC2 0.0175 0.0822 0.0179 0.0392
EKF for PEMFC2 0.0412 0.2344 0.0412 0.1056

4.4.4 Prediction horizon

According to the references [216], the prediction horizon (PH) is an important index

for prognosis, thus the PH is calculated and compared with the references here. The

PH is a measurement of the accuracy of the remaining useful life (RUL). At different

prediction time, the real RUL and predicted RUL can be plotted to see the performance

of the prediction. Usually, an acceptable error is set, which is α percent of the end

of life (EOL). After a certain prediction time, the predicted RULs will all be within

the acceptable error range; consequently, we can indicate how long the acceptable

prediction can be obtained and guaranteed. In this work α is set as 10% according

to most research. The EOL can be declared when the performance of the PEMFC is

smaller than a critical line. In this work the critical line is set as 95% of the initial voltage,

and the EOL is 936 hours. According to the proposed method, the RUL prediction and

PH of PEMFC2 can be given in figure 4.14. The predicted RUL is within the acceptable

region after 529 hours, and the PH can be obtained as 407 hours.

In the reference [217], the particle filter was applied and the voltage recovery

phenomenon was considered in the PEMFC prognosis. In their research, the PH

without consideration of recovery is 310 hours, and the PH calculated by the model

with recovery is 380 hours. Therefore, the PH of the proposed method is longer, which

means that the proposed method can give accurate prediction earlier, thus it is more

accurate.
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FIGURE 4.14: The prediction horizon for PEMFC2 by logarithmic model

4.5 Conclusions

In this chapter, we proposed a novel model-driven method for the PEMFC prognosis

problem, which is based on FDKF and voltage degradation model. The advantage

of this method is that it can process data in groups; therefore it is more efficient.

The proposed method is verified by two case studies, and the voltage degradation is

predicted both in the short-term and long-term under 4 degradation models. The result

of the FDKF method is also compared with EKF and literature. With the proposed

FDKF method, the quadratic model is only effective for PEMFC1, while both the linear

and logarithmic models give acceptable results for both PEMFC1 and PEMFC2. In

our research, the relative error of voltage degradation prediction is always smaller than

1.8% for PEMFC1, and it is smaller than 3% for PEMFC2. It proves that the proposed

method is accurate and robust for both constant and dynamic current cases. The

performance of the proposed FDKF method outweighs the EKF method both in terms

of efficiency and accuracy. The proposed method can give results in several seconds,

which is much more efficient than the EKF method. More importantly, the result of the

FDKF method is also more accurate than the EKF method. The PH is also calculated

and compared with other research, which proves that the proposed method is more

accurate.



General Conclusion

In this thesis, we focus on PEMFC health management, more specifically, the diagnosis

methods to distinguish operating faults and the prognosis algorithms to predict the

long-term performance. As PEMFC is one of the most important technologies that

can reduce the carbon dependence of energy systems, the diagnosis and prognosis

methods are critical for increasing PEMFC durability and reliability. Three diagnostic

methods and one prognostic method are proposed. The first diagnosis is based on the

voltage fluctuation data. Two other diagnostic methods are based on EIS data, and they

are validated in real time on an embedded system. The prognosis algorithm is based

on voltage data and FDKF.

The main contributions and conclusions of the thesis can be listed as follows.

1. First of all, after reading massive relevant research works, we provide a basic

introduction to the PEMFC diagnosis and prognosis. The basic knowledge

is presented, including the PEMFC structure and mechanism, PEMFC faults,

PEMFC application situation, and the position of diagnosis and prognosis in

whole PEMFC health management. Further, the existing research works about

experimental diagnostic tools and diagnostic algorithms are reviewed. Based on

the analysis of former studies, the main challenges of PEMFC diagnosis and

prognosis are summarized. Also, to face the challenges, the main objectives and

possible solutions are presented in this thesis.

2. A diagnosis method is proposed based on the voltage fluctuation data and AR

model. The voltage fluctuation patterns can be extracted by AR model, and

the AR model coefficients can be applied directly as diagnostic features. The

experiment set up in this research is introduced, and the available variables

175
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measured under various operating conditions data are explained in detail. Based

on the AR model coefficients, several fault classification methods are applied to

distinguish the fault class, including the faults relevant to different temperature,

relative humidity, and stoichiometry. The diagnostic result is very accurate for both

single-fault and multi-fault conditions, and it is superior to the singularity analysis

method of former research based on the same data.

3. Two diagnosis methods based on EIS data are proposed and validated in real

time on an industrial level embedded system. As it is wildly acknowledged, EIS

is a good diagnostic technology as it can reflect the health state of different

processes in the PEMFC. The focus of the proposed diagnosis methods is to

extract important diagnostic features from the original EIS data. The first feature

extraction method is based on ECM. A novel fractional-order ECM is proposed,

and the resistance of the membrane, anode, cathode, and gas diffusion are

all considered in this model. The parameter fitting process based on GA-LM

is proposed and validated, and the EIS features can be extracted accurately.

Further, the diagnosis based on ANFIS is proposed to distinguish different inner

faults, including flooding, drying-out, and mass transport fault. As ANFIS is a

classification method with little complicity, it is suitable for the diagnosis of a

computational resource-limited system. Also, the diagnosis based on ECM and

ANFIS is validated by implementation on an industrial-level DSP system in real

time. The detailed implementation processes and materials are explained, and

the real-time ability of the method is clearly presented. Therefore, it is a practical

method that can be applied in real applications.

4. Another diagnosis method based on two quick detective EIS features is also

proposed, i.e. zero-phase impedance that reflects membrane resistance, and

turning phase that reflects gas transport condition. The two features are explained

and analysed with the experimental data under different operating conditions,

proving that they can reflect the health state in the PEMFC. Also, a diagnostic

method based on KNN is proposed by using the two features, and the fault

of different degree flooding and gas blockage can be distinguished. Since the

proposed features require only a few frequencies of EIS detection, the entire

diagnostic method offers an important computational advantage. This has been

proved through its implementation on a real-time DSP system.
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5. To predict the long-term development of PEMFC performance, a prognostic

method is proposed. The method is based on voltage data and FDKF, which

is a novel prediction algorithm. The main advantage of this method is that it can

proceed to the data by groups in the frequency domain, so it is quicker and more

accurate, and it can save the computation resources. Two experiment cases

have been researched, including static case and dynamic case. The result of

different prediction times are also compared and discussed. Also, the results are

compared with another prognosis method, proving that the proposed prognosis

method is superior.

All in all, this thesis is a contribution to real-time diagnosis, fault classification, and

prognosis of PEMFC. The proposed methods have the potential to be applied in real

applications. However, there are still some limitations and more research should be

devoted to the PEMFC diagnosis and prognosis. Here are some interesting research

directions and perspectives.

1. First of all, even though the voltage fluctuation pattern can be extracted by

autoregressive model in our work, the physical mechanism behind the pattern

is not clear yet. More research should be carried out about the electrochemical

noise of the PEMFC system. As a lot of existing studies have proved, the

basic mechanism of EN method is related to the electrochemical reactions in

the system; thus it can reflect on the characteristics of the system. Not only

the phenomenon research but also mechanism research should be developed.

Also, more feature extraction methods should be proposed to obtain the basic

diagnostic information, and more practical diagnosis methods can be developed

based on it.

2. For diagnosis based on EIS, the proposed algorithms can be implemented on

industrial level embedded system in real time. However, the accurate real-time

detection of EIS data with light and cheap equipment is still a challenge, which

also limits its application. Therefore, designing appropriate circuits and carrying

out more experiments to achieve convenient integrated EIS on-board detection

technology is important and interesting.
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3. For prognosis, the voltage is applied to represent the PEMFC health state in this

research and most of other research. However, except for the stack variables

such as stack voltage or output power, more inner state parameters may be

detected as indicators, so that the health state development can be predicted by

physical mechanisms of the inner process. As the PEMFC system is a complex

system, the output parameters may be affected by some unknown process, and

the degradation of components should be researched from physical aspects so

that to give more convincing predictions.

4. Further, only diagnosis and prognosis are researched in this thesis. Developing

diagnosis and prognosis methods that can be combined with a control algorithm

is also important and interesting. As was presented above, the diagnosis and

prognosis are a part of health management strategies, and they can provide

information basis for the following decision process. Therefore, combining the

diagnosis and prognosis with a decision-making algorithm, i.e. the control

algorithm, is a promising direction. By combining these two steps together,

there is no need for human beings to get involved in the whole diagnosis and

control process, which will be a great step toward automatic self-learning control

technology.
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Appendix A. Derivation of real and

imaginary parts of EIS

To calculate the real part and imaginary part of cathode impedance under different

frequencies, take s = iω into equation 3.2, we have:

Zc(w) =
Rc

1 +RcCc(iω)αc
(A.1)

According to Euler’s formula:

eix = cosx+ i sinx (A.2)

Take x = π
2 , we have:

ei
π
2 = i (A.3)

Take equation A.3 and ω = 2πf into equation A.1:

Zc(f) =
Rc

1 +RcCc(2πfe
iπ
2 )αc

(A.4)

Reorganize the equation, we have:

Zc(f) =
Rc

1 +RcCc(2πf)αcei
παc
2

(A.5)

Again use Euler’s formula A.2, and take x = παc
2 , we have:
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Zc(f) =
Rc

1 +RcCc(2πf)αc(cos παc2 + i sin παc
2 )

(A.6)

To get rid of the i in the denominator, times both the denominator and nominator by

1 +RcCc(2πf)αc(cos παc2 − i sin παc
2 ), we can obtain:

Zc(f) =
Rc +R2

cCc(2πf)αc cos παc2 − iR
2
cCc(2πf)αc sin παc

2

(1 +RcCc(2πf)αc cos παc2 )2 + (RcCc(2πf)αc sin παc
2 )2

(A.7)

Therefore, the real part and imaginary part can be given as equation 3.15 and 3.16,

respectively.



Appendix B. Proof of stability and

convergence of FDKF method

The FDKF can be considered as a variable step-size frequency domain adaptive filter

[211] [207], thus the solution can also be given as:

W (k + 1) = A[W (k) +Qµ(k)Λ−1(k)CH(k)E(k)] (B.1)

Where

E(k) = Y (k)−C(k)W (k) (B.2)

Λ(k) = CH(k)C(k) (B.3)

µ(k) = C(k)P (k)CH(k)[C(k)P (k)CH(k) + ΦSS ]−1

= diag{[µ0(k), µ1(k), ..., µM (k)]T } (B.4)

Where the µ(k) is called the variable step-size matrix. Take equation 4.24 and 4.25 into

equation B.1, we can get:

P (k + 1) = A2[I − 1

2
µ(k)]P (k) + Φ∆∆(k) (B.5)

As all the matrices are diagonal, every diagonal item in P (k) can be given as:
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Pi(k + 1) = A2

[
1− 1

2

Pi(k)

Pi(k) + ΦSS,i(k)/|Ci(k)|2

]
× Pi(k) + Φ∆∆,i(k) (B.6)

It can be seen that the coefficient A2
[
1− 1

2
Pi(k)

Pi(k)+ΦSS,i(k)/|Ci(k)|2

]
< 1 is always satisfied,

thus the Pi(k) can achieve an equilibrium after iterations. To find the steady state

Pi(∞), we suppose that the far-end signal and noise signal are stationary, so that the

ΦSS,i(k)/|Ci(k)|2 can be replaced as ηi. And the Φ∆∆,i(k) can be replaced by (1 −

A2)ΦWW,i(k). Therefore, the steady state is:

Pi(∞) = A2

(
1− 1

2

Pi(∞)

Pi(∞) + ηi

)
Pi(∞) + (1−A2)ΦWW,i (B.7)

Then this equation can be solved and the positive solution is:

Pi(∞) =
1−A2

2−A2

(
ΦWW,i − ηi +

√
Φ2
WW,i + η2

i +
2ηiΦWW,i

1−A2

)
(B.8)

The solution can be normalized by dividing both sides with ΦWW,i, thus the normalized

prediction distance P̄i(∞) = Pi(∞)/ΦWW,i, and take δi = ΦWW,i/ηi, and the solution

can be given as:

P̄i(∞) =
1−A2

2−A2

(
1− 1

δi
+

√
1 +

1

δ2
i

+
2

(1−A2)δi

)
(B.9)

Take the solution into equation B.4, the steady state step size can be given as:

µi(∞) =
δiP̄i(∞)

δiP̄i(∞) + 1
(B.10)

Therefore for all 0 < A ≤ 1, the FDKF is stable and can converge to a finite constant,

and the converge rate can be decided by A and δi.
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M. Becherif, and N. Yousfi-Steiner. A review on model-based diagnosis
methodologies for pemfcs. International Journal of Hydrogen Energy, 38(17):
7077–7091, 2013.



Bibliography 194
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