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Vérification et optimisation à la compilation des communications MPI non-bloquantes

Résumé : Les clusters de Calcul Haute Performance (HPC) sont composés de multiples unités de calcul ou
de stockage mémoire, aussi appelés « nœuds », interconnectés par un réseau haut débit et basse latence. Une
telle architecture est qualifiée de « distribuée ». Les calculs sont ainsi distribués sur ces nœuds qui vont chacun
travailler sur une section d’une simulation, ce qui permet de réduire le temps d’exécution de simulations
grâce au parallélisme. Les nœuds doivent toutefois se communiquer leurs résultats afin d’avancer dans les
calculs, ce qui cause des latences. Message Passing Interface (MPI) est la solution la plus utilisée en HPC
pour définir ces échanges entre nœuds de calcul. Elle définit notamment des communications point-à-point et
des communications collectives. Ces communication existent en trois versions : bloquante, non-bloquante,
et persistante. Les communications non-bloquantes permettent une meilleure utilisation des ressources de
calcul en recouvrant les communications par des calculs, ce qui permet de réduire le temps d’obtention
des résultats. Cependant, ces communications non-bloquantes sont plus complexes à l’usage, et offrent
moins de mécanismes de sécurité. Les développeurs sont davantage susceptibles de commettre des erreurs de
programmation pouvant conduire à des blocages du programme ou corrompre les résultats. Cela conduit à une
moindre popularité de ces communications pour dégager du recouvrement, en particulier de la forme collective
introduite lors de la troisième révision majeure de l’interface en 2012. L’objectif de cette étude est de proposer
des méthodes visant à aider les développeurs à utiliser ces communications. Premièrement, nous proposons
une méthode pour associer les appels non-bloquants lors de la compilation d’un programme MPI en utilisant
des informations sur le flot de contrôle et de le flot de données. Dans un deuxième temps, nous proposons
une méthode pour transformer automatiquement les appels bloquants dans leur version non-bloquante. Cette
méthode va ensuite réorganiser le code d’une fonction en déplaçant les dépendances des communications dans
le but de maximiser la taille des intervalles de recouvrement. Cette méthode est également appliquée sur les
appels non-bloquants existants en exploitant les associations trouvées par la méthode de validation. Enfin,
nous exploitons les limitations de la transformation automatique afin de proposer une méthode permettant
d’améliorer le potentiel de recouvrement des programmes MPI en identifiant les bornes de ces intervalles et en
suggérant des modifications de code à appliquer. Les trois méthodes que nous proposons ont été implémentées
via des passes LLVM, et testées sur plusieurs benchmarks, dont des miniapps et des codes CORAL.
Mots-clés : Message Passing Interface, communications non-bloquantes, vérification de code, optimisation
de code, compilation



Compile-time Validation and Optimization of MPI Nonblocking Communications

Abstract: High-Performance Computation (HPC) clusters are made of multiple computing and memory
storage units (or nodes) interconnected with a high performance network. Such architecture is called
”distributed”. Computations are spread over these nodes which each work on a subset of the whole simulation,
leading to increased performance thanks to parallelism. The results then need to be shared between the nodes
to carry out the computations, which is source of latencies. The Message Passing Interface (MPI) is the most
widely used solution in HPC to implement these exchanges. It defines multiple flavors of communications,
including point-to-point and collective communications. These communications exist in three versions:
blocking, nonblocking, and persistent. Nonblocking communications allow the overlapping of communications
by computations, thus leading to a better use of computing resources and lower time to results. Yet this
version of the communications, whose collective forms were added to the interface by its third major version
in 2012, are harder to use because of their composition and offer less security mechanisms. Developers are
more prone to commit programming errors which can lead to deadlocks or data corruption. Consequently,
nonblocking communications, and more specifically the collective forms, are still not widely used to create
overlapping opportunities. The goal of this study is the development of methods to help developers in using
these communications. First, we propose a method to match nonblocking calls at compile-time and to detect
programming errors involving those using information on the control flow and the data flow. Secondly,
we propose a method to automatically transform existing blocking calls into their nonblocking versions.
This method then reorganizes the code of a function by moving the dependencies of communications in
order to maximize the length of the overlapping intervals. It is also applied on existing nonblocking calls
using the matching information found by the verification method. Finally, we build upon the limitations
of the automatic approach to propose a method to improve the overlapping potential of MPI programs by
identifying the boundaries of overlapping intervals and suggesting code modification to developers. These
three methods we proposed have been implemented as LLVM passes, and tested on several benchmarks,
including miniapps and CORAL codes.
Keywords: Message Passing Interface, nonblocking communications, code validation, code optimization,
compilation
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Vérification et optimisation à la
compilation des communications
MPI non-bloquantes

Contexte
Alors que nous approchons des limites physiques des microprocesseurs, il de-

vient de plus en plus difficile de gagner en puissance de calcul en augmentant leur
fréquence de fonctionnement. Depuis le milieu des années 90, les ingénieurs en
calcul haute performance (HPC) ont recours au parallélisme de masse afin d’aug-
menter la capacité d’un système à faire des opérations. Ces systèmes, aussi appelés
clusters, sont de nos jours dotés de plusieurs centaines de milliers de nœuds inter-
connectés par un réseau haut débit et basse latence, sur lesquels les calculs seront
distribués. Afin que le système puisse converger vers le résultat final, ces noeuds
doivent se communiquer leurs résultats. Or, ces communications induisent des la-
tences nous empêchant d’exploiter pleinement la puissance des supercalculateurs.

MPI (Message Passing Interface) est l’interface de programmation la plus uti-
lisée en HPC pour implémenter ces communications entre noeuds de calcul. Cette
interface définit plusieurs formes de communications, dont notamment les commu-
nications non-bloquantes. Sous cette forme, les communications sont scindées en
deux appels distincts : un appel d’initiation, et un appel de complétion, tous deux
reliés par un objet dénommé "requête". Cette forme nous permet de recouvrir les
temps de communication par du calcul. En effet, l’appel d’initiation n’est pas blo-
quant, et rend le contrôle à la fonction appelante, ce qui nous permet d’exécuter
des instructions pendant que la communication est menée, idéalement de façon
concurrentielle. L’appel de complétion se charge d’attendre que les données de la
communication soient à nouveau accessibles. Cette forme de communication nous
permet d’optimiser l’usage des ressources de calcul. Toutefois, elle est bien plus
complexe que la forme bloquante, et est davantage sujette aux erreurs de program-

v



mation. Une mauvaise utilisation des données de la communication ou une erreur
d’association des appels non-bloquants peut fausser les résultats numériques, ou
encore causer un blocage du programme. L’objectif de nos travaux est alors de
proposer des solutions afin d’encourager les développeurs à utiliser cette forme de
communication. À ce titre, nous avons identifié deux pistes : l’une consiste à les
aider au cours du cycle de développement en relevant les erreurs de programmation
qu’ils pourraient commettre, et l’autre consiste à les aider à exprimer le potentiel
de recouvrement dans leurs programmes.

La grande majorité des programmes utilisant MPI sont écrits dans un langage
compilé. Dès lors, il est intéressant d’analyser et de transformer les codes à la
compilation. En effet, cela s’inscrit naturellement dans le cycle de développement,
puisque la compilation du programme en est une étape indispensable, et de nom-
breuses analyses et transformations du code y sont appliquées. Nous pouvons alors
nous baser sur ces "passes" existantes afin de définir la nôtre. De plus, l’analyse
des codes à cette étape est peu coûteuse en ressources matérielles et temporelle :
aucune exécution du programme cible n’est nécessaire, et ces solutions peuvent
passer à l’échelle sur des codes de plusieurs centaines de milliers de lignes. Cer-
tains compilateurs, tels que LLVM, permettent l’extension de leur capacités via
la définition de plugins. Nous nous basons sur ce mécanisme afin de permettre à
LLVM de reconnaître les appels MPI et d’y appliquer un traitement spécifique.

C’est ainsi dans ce contexte que nous proposons les contributions suivantes
afin d’encourager l’usage des communications non-bloquantes. Premièrement, nous
allons définir une méthode de vérification à la compilation des communications
non-bloquantes, qui puisse détecter erreurs d’association et d’accès concurrents aux
données échangées. Deuxièmement, nous proposons une méthode permettant de
créer et d’étendre automatiquement le potentiel de recouvrement d’un programme.
Cette méthode va alors transformer tout appel de communication bloquant en
son équivalent non-bloquant, et va déplacer les appels non-bloquants ainsi que
leurs dépendances de façon à maximiser le potentiel de recouvrement tout en
préservant sa validité. Enfin, nous proposons une méthode d’aide à l’optimisation
par l’émission de suggestions de modifications afin de maximiser le potentiel de
recouvrement d’un programme, et de passer outre les limitations trouvées par
l’approche automatique.

Contributions

Cette Section résume les différentes contributions que nous avons pu faire afin
d’encourager l’utilisation des communications non-bloquantes.
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Vérification des communications non-bloquantes

Les communications non-bloquantes sont plus complexes à l’usage, et sont da-
vantage propices aux erreurs de programmation. L’objectif de cette contribution
est d’aider les développeurs à identifier les erreurs liées à une mauvaise association
des appels d’une communication non-bloquante, ainsi qu’à une mauvaise utilisa-
tion des données de la communication, et à les corriger avant qu’elles n’aient un
impact sur l’exécution du programme. La disponibilité d’un tel outil les rendrait
plus enclins à utiliser la forme non-bloquante, résultant à de meilleures perfor-
mances. La détection de ces erreurs s’effectue en deux temps. Dans un premier
temps, pour chaque appel d’initiation, nous déterminons les appels de complétion
formant l’intervalle de recouvrement de la communication. Pour cela, nous nous
basons sur une étude du flot de contrôle à l’aide de la notion de post-domination,
et sur une étude du flot de données afin de déterminer les chemins d’exécution
possibles. Dans un second temps, pour les communications dont l’intervalle de re-
couvrement a pu être défini à l’étape précédente, nous déterminons s’il existe des
instructions pouvant mettre à mal les données de la communication, y compris
de la requête. Pour cela, nous construisons la liste des instructions définissant ou
utilisant ces données, et vérifions si l’intervalle contient une telle instruction.

Cette méthode a été implémentée sous la forme d’une passe de compilation pour
LLVM, et nous avons pu l’évaluer sur cinq benchmarks. Nous constatons que notre
approche est capable d’associer correcter les appels non-bloquants, mais qu’elle se
révèle imprécise quant à la détection des accès concurrents. Cela est causé par le
manque d’une analyse interprocédurale, qui nous aurait permis de déterminer si
une méthode peut modifier ou accéder à des variables non locales telles que des
variables globales ou des attributs de classe. Enfin, nous proposons une adaptation
de la méthode pour valider l’association des appels de communications persistantes.

Création et extension automatique du potentiel de recouvre-
ment

L’intérêt majeur des communications non-bloquantes est la possibilité de recou-
vrir les temps de communication par du calcul. Or, l’expression du recouvrement
est complexe en raison des dépendances de la communication, de l’algorithmique
du code, et des contraintes des communications non-bloquantes. Ces raisons nous
poussent à développer une méthode permettant de créer automatiquement du po-
tentiel de recouvrement. L’originalité de notre approche repose dans le déplacement
des dépendances. Cela nous permet de maximiser le potentiel de recouvrement
des communications en réorganisant la structure des dépendances du code, tout
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en préservant l’ordre des dépendances. Pour cela, nous transformons tout appel
bloquant en sa forme non-bloquante. Nous analysons ensuite les communications
non-bloquantes (y compris celles qui ont été converties) afin de déterminer leurs
dépendances. Enfin, nous déplaçons appels et dépendances jusqu’à atteindre une
frontière. Celle-ci peut être un autre appel de fonction, appel MPI, les bornes de la
fonction appelante ou de la structure de contrôle dans laquelle la communication
se trouve, ou encore une structure de contrôle possédant une dépendance qui ne
peut être déplacée.

Nous avons implémenté cette approche sous la forme d’une passe LLVM, et
nous l’avons appliquée sur cinq benchmarks. Les résultats prouvent la capacité de
la méthode à créer des intervalles de recouvrement, dont certains ont une taille
équivalente ou supérieure aux intervalles préexistants. Toutefois, la majorité des
intervalles crées sont vides ou très étroits, ce qui ne leur permet pas de recouvrir
la communication. En cause, de nombreuses communications et leurs dépendances
se trouvent dans des branches conditionnelles, ce qui nous empêche d’exposer da-
vantage de recouvrement. De futurs travaux pourront se concentrer sur ces motifs
de code pour créer plus de recouvrement.

Maximisation du potentiel de recouvrement par une approche
semi-automatique

L’approche automatique pour la création du potentiel de recouvrement est li-
mitée par certains motifs de code. Afin d’outrepasser ces frontières, nous proposons
ici une méthode basée sur la génération de suggestions de modifications du code à
partir des analyses du compilateurs. Cette approche s’inscrit dans la continuité de
la passe de transformation automatique. La génération des suggestions se base sur
les résultats de la transformation automatique. Pour chaque type de frontière (un
autre appel MPI, les limites d’une structure de contrôle, ou bien la présence d’une
dépendance dans une structure de contrôle), une suggestion est donnée, accom-
pagnée de la localisation de la frontière, ainsi que des dépendances. Ces éléments
devraient faciliter la prise de décision et l’application de la transformation pour
les développeurs.

S’agissant d’une méthode de transformation manuelle, bien qu’assistée par la
présence des indices, il est impossible pour un développeur de traiter entièrement
des codes qui peuvent avoir plusieurs milliers d’appels MPI. Dès lors, nous propo-
sons également une méthode permettant de réduire le nombre d’appels à considé-
rer. Celle-ci se base sur un profilage préalable du programme afin de déterminer
le temps de communication de chaque opération MPI. En ne retenant que les

viii



échanges dont le rapport du temps de communication sur le temps d’exécution du
programme dépasse 1%, nous pouvons réduire le nombre d’appels à analyser à une
dizaine pour chaque benchmark.

Enfin, nous avons appliqué la génération des suggestions sur certains de ces
appels. Bien que complexe à analyser pour une passe de compilation, un regard hu-
main, aidé par les bonnes indications, peut rapidement déterminer si, par exemple,
une communication peut être sortie d’une boucle et des remplacements à effectuer
pour préserver la validité du code. La taille des intervalles de recouvrement qui
en découlent est supérieure à celle que nous obtenions par la transformation auto-
matique. Toutefois, cette approche n’est plus complètement automatique, et passe
difficilement à l’échelle sur un code entier. C’est la raison pour laquelle nous devons
cibler nos transformations sur celles qui seraient les plus rentables. La détermina-
tion de cette rentabilité nécessite une exécution préalable du programme.

Conclusion

Les communications MPI non-bloquantes sont indispensables pour pleinement
exploiter les capacités de calcul d’un cluster HPC. Toutefois, elles souffrent d’une
popularité moindre, surtout concernant les communications collectives, du fait
notamment de leur complexité. Afin d’encourager les développeurs des codes de
simulation à en faire usage, nous travaillons sur deux axes. Le premier consiste à
les aider à détecter les erreurs de programmation liées à l’utilisation des communi-
cations non-bloquante. Le second axe consiste à aider les développeurs à introduire
du recouvrement dans leur code.

Cela a abouti sur trois contributions majeures. La première est le dévelop-
pement d’une méthode de détection à la compilation des erreurs causées par une
mauvaise association des appels d’une communication non-bloquante et des erreurs
causées par une mauvaise utilisation des ressources d’une communication. Cette
méthode montre de bons résultats en ce qui concerne l’association des appels,
mais se révèle imprécise sur la détection des accès concurrents. Ce point pourrait
être amélioré par l’introduction d’analyses interprocédurales permettant de mieux
discerner les effets d’un appel de fonction sur la mémoire. La seconde contribu-
tion est le développement d’une passe de transformation automatique capable de
maximiser le potentiel de recouvrement d’une application en déplaçant appels et
dépendances. Son application sur plusieurs benchmarks montre qu’elle est capable
de créer du recouvrement dans des programmes qui en étaient dépourvus, mais
qu’elle est limitée par certains motifs de code dont la résolution à la compilation
est complexe. Enfin, la troisième contribution est une méthode permettant d’aider
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les développeurs en générant des suggestions de modifications à partir d’une ana-
lyse et d’une transformation du code à la compilation. Couplé à un profilage du
programme cible, cette méthode permet la création d’intervalles de recouvrement
plus larges et de façon plus ciblée, maximisant l’impact des transformations tout
en limitant l’investissement nécessaire de la part des développeurs.

À l’issue de nos travaux, plusieurs axes d’amélioration sont possibles. En pre-
mier lieu, l’ajout d’une analyse interprocédurale permettra d’affiner les résultats
de la vérification et de la transformation. Les méthodes d’analyse et de transfor-
mation que nous avons proposés dans cette étude peuvent également être éten-
dues à d’autres formes de communication MPI, notamment aux communications
persistantes et partitionnées, mais aussi à d’autres modèles de programmation.
Par exemple, les promesses, introduites dans le standard 17 du C++, ou encore
les opérations asynchrones sur les streams CUDA, adoptent une forme similaire
aux communications non-bloquantes. Enfin, à l’instar des optimisations back-end
spécifiques à certaines architectures de microprocesseurs, permettre aux compila-
teurs d’effectuer des analyses et des optimisations spécifiques à un type de réseau
d’interconnexion ou à une architecture de cluster pourrait être bénéfique pour la
qualité des programmes voués à s’exécuter sur de telles machines. Cela pourrait
par exemple nous permettre d’estimer directement lors de la compilation les appels
qui seraient intéressants à optimiser en priorité.
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Introduction

As we approach the physical limitations of the material, it becomes more and
more difficult to gain computing performance by ever increasing the frequency of
microprocessors. Instead, engineers turned to massive parallelism by increasing the
number of computing units a system can hold, especially in high performance clus-
ters. Communications between each unit become necessary, but they can hinder
the performance of the whole system. This problematic is even more valid on these
clusters which have a distributed memory architecture: distant computing units
have to exchange data through an interconnect. No matter its bandwidth, the
interconnect can be source of performance degradation. While a computing unit
is waiting for the information to be transmitted, it is not harnessing its computing
resources. As a consequence, the system is not exploited to its full potential.

The Message Passing Interface (MPI), one of the most used programming li-
brary in HPC to handle communications between distant computing nodes, pro-
poses a solution to this problem by defining nonblocking operations. They are
composed of two calls. One initiates the communication and gives back control
to its caller, and one blocks the caller until the completion of the communication.
This form allows the insertion of statements between the calls which will hide the
communication time. Indeed, on appropriate systems, these statements can be
executed concurrently on the computing node while another entity independently
progresses the communication. Ultimately, it leads to a better usage of computa-
tion resources, and reduces the execution time of MPI codes. Yet, these calls are
not as popular as the blocking form of MPI communications. More specifically,
the collective form of the nonblocking calls are still not widely in use to allow
overlapping in codes, even ten years after their introduction to the interface. This
is mainly caused by the complexity of the form, which requires the developers to
ensure the correct matching of the nonblocking calls. Furthermore, the safety of
the communication buffers is not guaranteed during the exchange, and it also falls
to the developers to make sure that there are no illegal accesses to them. As a
result, nonblocking communications are more prone to programming errors leading
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to deadlocks or race conditions, which are faults that can be difficult to track.
The goal of this work is to help developers in using MPI nonblocking com-

munications. To this end, we identified two approaches: detecting and reporting
misuses of nonblocking calls, and assist in the creation of overlapping opportuni-
ties in codes. We decided to tackle these approaches at compile-time. The vast
majority of MPI programs are written in compiled languages such as C or Fortran.
It is very convenient to analyse and transform the code at compile-time, and scales
fairly well as the size of the targeted program increases, as opposed to dynamic ap-
proaches. The tools acting at compile-time can accompany the developers through
the whole life cycle of a program.

In our work, we propose three major contributions. The first contribution
is the definition of a method to check, at compile-time, the matching of MPI
nonblocking initiation and completion calls and to detect race conditions caused by
an improper use of the communication arguments. Its implementation successfully
detected several dangerous situations in large scale benchmarking applications.
The second major contribution is the definition of a compiler optimization pass
that automatically creates and extends the overlapping potential of a program. It
transforms all existing blocking communications into their nonblocking form. All
nonblocking calls are matched with the help of the verification method, and their
overlapping interval is extended by reorganizing the structure of the code without
harming the semantics of the program. The pass has been successfully applied on
several benchmarks, and it was able to introduce overlapping potential in existing
code. The third and last major contribution is the definition of a tool-assisted
method to guide the developers of an MPI application to adapt their code in favor
of the length of overlapping intervals. It leverages the results of the optimization
pass to provide suggestions of code modifications to further lengthen the intervals,
leading to greater overlapping potential. Coupled to a profiling of the program,
we were able to determine the most impacting communications to focus our efforts
in maximizing their overlapping potential.

This dissertation is composed of seven Chapters. The first two provide the
key concepts to grasp our work on the High Performance Computing discipline,
the Message Passing Interface, and on optimizing compilers. Chapter 3 presents
the State of the Art on the verification of MPI programs and on the optimiza-
tion of their overlapping potential. Chapter 4 discusses the compile-time analysis
techniques we make use of, and their adequacy for the verification and the opti-
mization of MPI programs. The verification method is the highlight of Chapter 5,
while Chapter 6 focuses on the automatic optimization pass. Before the conclud-
ing part of this thesis, Chapter 7 exposes the compiler-assisted approach to guide
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Chapter 1

High Performance Computing

A scientific simulation is defined as the imitation of a natural phenomenon
by a numerical model on a computer[1]. Since the half of the twentieth century,
scientists have been collaborating with models on computers to study natural
phenomenons. The ENIAC machine, built in the late 40s, is often recognized as
the first general purpose and programmable electronic computer. With its help in
1950, meteorologists were able to provide numerical weather forecasts[2], among
other types of works. Beside enabling tests of a model before setting an experiment
up, simulations that can imitate a real world event with enough precision can help
in avoiding waste of resources (e.g. simulating material deformations in a crash
test), or unethical experiments on live subjects. Nowadays, scientific computing
resources are several orders of magnitude faster and offer much more precision
than ENIAC. In this Chapter, we show how humankind was able to exponentially
increase its computing powers.

1.1 Computing clusters

1.1.1 Evolution of supercomputers

Supercomputers are large machines designed to reach the highest computing
performance possible, in execution speed and precision. They are made to run
large and intensive simulation codes that might last for weeks[3]. Engineers and
researchers have been striving to increase the performance of supercomputers, thus
reducing the execution time of these simulations.

There are two approaches for a computer to lower its time to result. First, have
its central processing unit (CPU) performing more computations in the same time
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unit. Tremendous progress have been made in that regard since the first processors
made by Intel in the 70s. Released in 1971, the Intel 4004 had a clock frequency of
750kHz, compared to the AMD Ryzen 7900X released in 2022, capable of going up
to 5.6GHz. However, the growth in clock speed had not been a constant increase.
Figure 1.1 shows the highest clock frequency found in a CPU released per year,
from 1971 to 2014. While gains have been exponential between the 70s and the
beginning of the millennium, it has been stagnating since 2005.

Figure 1.1 – Highest clock frequency CPU released per year 1

Dennard et al. suggested that, the smaller a transistor is, the better its perfor-
mances are[4]. As the size of a transistors shrinks, the required power to achieve
a given performance level also shrinks. In other words, keeping the same voltage
and current on a smaller transistor should lead to better performance. From sev-
eral micrometers in the 70s, nowadays the dimensions of transistors is measured in
nanometers. Yet, increasing the clock frequency of computing units seems harder
and harder. It indicates that we might be close to electrical and material limita-
tions, before entering the quantum domain[5].

The other approach is parallelization, or having a computing unit performing
more operations in a clock cycle. Hailed as the first supercomputer, the ILLIAC
IV was put in operation in 1975[6]. It was quickly followed by the Cray-1 the next
year[7]. They are among the first parallel computers, and share the similarity of
sporting a vector processor. It allowed them to operate on an array or vector of

1. Data from http://cpudb.stanford.edu
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data, thus multiplying their computing power. Subsequent machines would add
more of those processors, such as the Cray X-MP with four vector processors.
This architecture allowed the handling of multiple instructions, and multiple data
(MIMD)[8].

Parallel to the development of vector processors, microprocessors for personal
home computer saw rapid growth. From the release of the Intel 4004 in 1971 to
the end of the 90s, performance of microprocessors have been almost doubling
each year[9]. Those small, cheap, and power efficient chips became more and more
popular through the years[10]. In the beginning of the millennium, thanks to
the miniaturization of transistors and of components, fitting multiple processing
units within the same chip became possible, leading to the creation of multicore
microprocessors. Widely in use in our computers today, they allow a chip to
perform several tasks at the same time. To achieve massive parallelism, several
microprocessors are linked together, first on the same board forming multiprocessor
computers, then across multiple boards with the help of a dedicated network, thus
forming clusters of computers[11].

During the previous decade, graphics processing units (GPU) became more
and more prominent in high-end computers to satisfy the demands of the general
public for fast video processing and graphics rendering, especially in video games.
GPUs, similarly to vector processors, are specialized cards that excel in handling
arrays of data through massive parallel operations and high speed memory. Their
ability to provide a better performance/power on this kind of workload compared
to regular CPUs make them interesting additions to computing clusters[12][13].
Clusters equipped with GPUs, also labeled "accelerators", are said to have an
heterogeneous architecture.

Today’s most powerful supercomputers are heterogeneous clusters. In their
efforts to reach the symbolic barrier of the exaflop (1018 floating-point operations
per second), engineers and researchers made clusters of thousands of intercon-
nected CPUs and GPUs, consuming altogether several megawatts. Their efforts
are recorded in a ranking which is updated every six months[14]. As of June 2022,
the fastest supercomputer is the american-built Frontier supercomputer, installed
at the Oak Ridge National Laboratory. It is the first machine to enter the exas-
cale era, with a maximum performance of 1.1 exaflop. This feat is made possible
with the help of more than 9 400 CPUs and 37 000 GPUs interconnected with the
Slingshot interconnect[15].
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1.1.2 Hardware architecture of a computing cluster

Today’s scientific computing resources are concentrated on cluster computers.
In this context, a cluster is a set of smaller scale computers, also called computing
nodes, interconnected by a local network[11]. Mathematical models are discretized,
and each computing node independently handles a small subset of the whole sim-
ulation, eventually resulting in shorter execution times thanks to parallelism.

The performance of each computing node is close to a high end home worksta-
tion. They are composed of one or multiple multicore CPUs forming a multipro-
cessor structure, accelerated with multiple GPUs. The computing units within a
node share the same memory pool. Such construction is also called a symmetric
shared memory multiprocessor (SMP). However, as the number of computing cores
increases inside a node, it reduces the amount of memory per core, and challenges
the bandwidth of the memory bus. In an attempt to tackle these issues, another
hierarchy layer is added to restrict the memory space a processor can interact
with, resulting in smaller SMPs, and thus restoring bandwidth for accesses to lo-
cal data[16]. Should a processor access data from the memory space of another, it
must perform a remote query through a bus linking the two memory areas. This
remote access is more time consuming than the local access, hence the name of
this structure: Non-uniform Memory Access (NUMA).

A computing cluster is composed of several computing nodes upon which com-
putations are parallelized, with each node only processing a portion of the whole
picture. These nodes will inevitably have to communicate with each other to carry
on the simulation to its end state. For example, a node might need the tempera-
ture calculated by the neighboring nodes to determine the temperature at the next
time step. Yet, a NUMA node only has access to its local memory spaces. Data
transfers are needed to retrieve other nodes’ results. In a computing cluster, a
local network interconnects these nodes, allowing these data exchanges. This net-
work must be able to achieve high communication speed and throughput to handle
large quantities of data. In 2022, the most used interconnect technologies are In-
finiBand, 10 and 25G Ethernet, Intel’s Omni-Path, Cray’s Aries and Slingshot,
IBM’s BlueGene, or Atos’ BXI[17]. Such architecture is dubbed as "distributed
memory".

1.1.3 Software architecture of a computing cluster

Coding an application for a high performance computing cluster is nothing like
coding for a home desktop station. Data handling is key to an HPC program.
Developers of such programs must take notice of sheer amount of computing units
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to exploit, as well as to the dichotomy between the shared and distributed memory
scopes. This results in specific programming models and interfaces for each scope.

In the shared memory area, interfaces such as OpenMP and the POSIX threads
are widely used. They allow the definition of parallelizable sections in the code,
and will create threads which are executed, ideally in parallel, on the cores of one
node. Data protection is enforced through the expression of the dependencies and
the visibility of variables in OpenMP, or by mutexes in POSIX threads.

In the distributed memory area, message passing is the dominant paradigm.
It consists in defining messages, their content and format, the recipients and the
senders, and conveying the messages on a network. There is one major library
currently in use that implements this parallel programming paradigm : the Mes-
sage Passing Interface (MPI), which will be the star of our study and of the next
Section. Many HPC programs are written using a combination of OpenMP, for
handling data inside a NUMA node, and MPI, for handling data between NUMA
nodes. Such kind of programming model is called "hybrid", or "MPI+X", where
X can be, for example, OpenMP.

Finally, with the advent of heterogeneous clusters, specific programming models
had to be defined to leverage their ability to efficiently handle large arrays of
data. To that end, manufacturers of GPUs have designed coding interfaces helping
developers to use their power. We can mention Nvidia’s CUDA, or the target
directives of OpenMP. The latter allows to define regions of code to execute on a
specific device, such as an accelerator.

1.2 The Message Passing Interface

First released in 1994, the Message Passing Interface is a programming interface
defining multiple flavors of communications between MPI processes, which we will
detail in this Section, ways to organize and manipulate data and to structure
the MPI processes into specific topologies. In this regard, it has become the
most widely used solution in HPC programs to implement communications across
distant memory locations.

The initial release defined point-to-point communications in their blocking,
nonblocking, and persistent versions, blocking collectives, as well as other utility
functions[18]. In 1997, the second major revision of the interface most notably saw
the addition of one-sided communications as "remote memory accesses" (RMA).
The third major revision, released in 2012, added nonblocking collective commu-
nications. Finally, in 2022 for its fourth major release, persistent collectives were
added to the interface, along with partitioned point-to-point communications[19].

11



The interface is currently being maintained by the MPI Forum which regroups
volunteers, mostly HPC researchers and users of the interface, to decide on the
amendments and additions.

The forum only defines the interface, which includes the functions with C and
Fortran bindings, and their expected behavior. They do not provide an implemen-
tation of these procedures. It is left to the open-source community, hardware ven-
dors, and private initiatives. The two most used implementations are MPICH[20]
and OpenMPI[21], which are open-source implementations. We can also note other
open-source implementations such as MPC from the CEA[22], madMPI which is
a component of the NewMadeleine library from the Inria[23], or ExaMPI from
the UTC and the LLNL[24]. Supercomputer vendors also provide their own MPI
implementation, which are often derived from one of the two major open-source
implementation: for example, Intel MPI is derived from MPICH[25].

1.2.1 MPI communications

MPI communications are the core component of the interface. In this Section,
we describe the various kind of communications. We focus on the nonblocking
communications, their benefits and impact on the code and the development of
the program.

Initializing the MPI execution environment

MPI communications involve multiple independent MPI processes, which are
the senders or the recipients (or both at the same time). In an MPI+X context,
one MPI process usually matches with one SMP scope, while the "X" library, for
example OpenMP, handles the data exchanges inside the SMP scope. It is also
possible to have multiple MPI processes within one SMP scope. There are two
ways to initialize these MPI processes: the world model, and the sessions model.

In the world model, the MPI processes are initialized by a call either to the
MPI_Init function, or to the MPI_Init_thread function. These calls allow the ex-
ecution of most MPI operations, such as the communications. The latter function
specifies the rules and the expected behavior to which the MPI implementation
must abide when used with threads, and how these threads are allowed to call
MPI operations. Eventually, each MPI process initialized by this model must call
MPI_Finalize to clean up the initialized objects. All pending operations in which
the MPI process is involved, such as nonblocking communications, must be com-
pleted beforehand. These initializing and finalizing calls define the boundaries of
the MPI environment in a code, and can only be called once during the lifetime of
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a program. Once initialized, the MPI processes can be grouped in communicators,
with the one containing all initialized MPI processes called MPI_COMM_WORLD.

The sessions model allows to bypass the limitation of the world model. During
the lifetime of a program, multiple "sessions" can be initialized, with a call to
MPI_Session_init, and then finalized, with a call to MPI_Session_finalize.
It is then possible to create a group of MPI processes that are initialized in the
session, and generate a communicator from the group.

Beside the initialization and finalization methods, and the definition of the
"global" communicator, MPI communications behave the same for both models.
From now on, we focus on the world model.

Overview of MPI communications

A communication involves multiple MPI processes. Communications can be
categorized in three classes: point-to-point communications which only involve a
sender and a recipient, collectives which involve one to multiple MPI processes,
and one-sided communications which allow an MPI process to directly read or
write to the memory of another MPI process.

A communication can be split in four distinct steps. The first step is the
initialization. At this stage, only the addresses of buffers and other meta arguments
are given to the communication. Then comes the second step, which is the starting
step. Now, the communication is in possession of the contents of the buffers. After
that is the completion stage, which releases the content of those buffers. At this
point, the inbound buffers are correctly filled with the data the communication
was expecting. They can safely be reused. Finally, the freeing step is the release
of the remaining arguments and of the memory locations of the buffers.

Point-to-points are the most basic kind of communication. There is a receiver,
and a sender. The receiver calls the MPI_Recv function, and waits until the ex-
pected data from the designated source arrives and is locally copied, before carrying
on. On the emitting end, four modes of sending primitives exist.

— The buffered mode is possible when the data to send can fit into a dedi-
cated communication buffer. To use this mode, the sender calls MPI_Bsend,
which will copy the content of the message into the buffer. It returns the
control back to the caller function once the copy is done, independently of
the reception status.

— The synchronous mode is generally preferred if the message cannot fit into
the buffer. Upon calling the MPI_Ssend primitive, the sender will wait until
its partnered MPI process is ready to receive the message.
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— The ready mode only allows the sender to call MPI_Rsend if the receiver is
ready to catch the message. The operation results in an error if the receiver
is not ready.

— The behavior of the fourth mode, the standard mode which is used by
MPI_Send, depends on the implementation and on the options set by the
users. It decides to perform either a buffered send, or a synchronous send.

Collective communications, as their name suggests, involve all MPI processes
from a communicator. There are multiple kinds of collective communications.
Some collective operations have a "variable" variant named MPI_*v, e.g. MPI_-
Gatherv. This allows the specification of the number of elements to send or receive
for each MPI process involved in the communicator.

— The synchronization Barrier blocks all involved MPI processes until they
all reach the function.

— The Broadcast function defines one sender, also called the "root", which
propagates data to all MPI processes in the targeted communicator.

— The Gather function defines a receiver with an array of data to fill. All MPI
processes in the communicator send a piece of information into this array.
The Gatherv variant also exists.

— With an Allgather, each MPI process has a piece of data to send, and an
array of data to fill. It can be summarized as performing the gathering call
on all MPI processes. The Allgatherv variant also exists.

— The Scatter function defines a sender with an array filled with data. Each
MPI process in the communicator receives a distinct piece of information
from this array. The Scatterv variant also exists.

— The Reduce function defines a recipient and an operation. All other pro-
cesses from the communicator send an information to the receiver, which will
perform the operation on this data, and store its result. The possible oper-
ations include arithmetic operations such as the sum or the multiplication,
and Boolean operations such as the logical and or or.

— The Allreduce function is similar to the regular reduction, with all MPI
processes in the communicator receiving the result.

— The Reduce-scatter function is a reduction followed by an MPI_Scatterv
operation. The Reduce-scatter-block variant also exists, which is a re-
duction followed by an MPI_Scatter operation.

— The Scan operation performs a reduction into the reception buffer of an
MPI process with the rank i from the MPI processes with a rank in [0; i].
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The exclusive variant Exscan also exists, which performs the reduction for
the MPI processes with a rank in [0; i− 1].

— Finally, in an Alltoall operation, each MPI process has an array of data to
send, and an array of data to receive. An MPI process receives a segment of
data from all other MPI processes, and sends one distinct piece of its data
array to each other MPI process. The Alltoallv variant exists, but also an
Alltoallw variant, which allows the specification of not only the size of the
message for each MPI process, but also of the type of the contained data.

Developers using collective communications in their code must take extra care
to their order to avoid deadlocking their program. Indeed, all processes of a com-
municator must call the collective primitives in the same order. For example, there
is a risk of deadlock in a communicator if the MPI process with the rank 0 per-
forms a barrier followed by a broadcast, but the MPI process with the rank 1 does
the broadcast before the barrier.

All of the previously described communications exist in three versions: block-
ing, nonblocking, and persistent. In the following, we will detail each version, and
introduce the notion of overlapping.

Finally, the interface also defines one-sided communications through RMA. In
this mode, the MPI processes define a window during which RMA operations are
permitted. An MPI process is then able to access the memory of another, without
notifying and without having the remote host being aware of this access. However,
this class of communications does not fall into the scope of the present work.

Blocking communications

This is the most basic form of communication. All the communications we
described in the previous Section are blocking communications. The four steps
of an MPI operation are merged into a single call. Consequently, upon reaching
a blocking call, the contents of the communication buffers are provided to the
communication. The call will not return until the involvement of the MPI process
in the communication has not finished. For example, a synchronous MPI_Send
(i.e. behaving like an MPI_Ssend) will not return until the receiving end is ready
to acquire the data, whereas a buffered MPI_Send (i.e. behaving like an MPI_-
Bsend) is completed and is free to return as soon as the data has been copied to
a buffer.

This form of communication protects against data races. It is impossible to
modify the communication buffer while the exchange is ongoing, since the commu-
nication calls will only return once the buffers are correctly filled, or not needed
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anymore.

Nonblocking communications

Nonblocking communications are split into two procedure calls. One regroups
the initialization and starting phases, and is called the initiation call. The other
regroups the completion and freeing stages, and is commonly called the completion
call. The procedure calls of a nonblocking communication are linked together by
an object called the request (MPI_Request). While the details of its form is left
opaque in the standard, a request must carry the communication metadata such
as the rank of the sender and of the recipients, the type of request, and, more
importantly, the status of the communication.

The initiation call is of the form MPI_I* followed by the desired type of com-
munication primitive (send, bcast, alltoall, ...). The prototype of most non-
blocking initiation calls is strictly similar to their blocking counterpart, with the
addition of the request at the tail of the arguments list. Regrouping the initializa-
tion and the starting phases together, its role is to take ownership of the request,
and prepare for the communication by identifying the address space of the com-
munication buffers and their contents. It returns as soon as these preparations are
done, regardless of the readiness of the recipients or of copying buffers.

Regrouping the completion and freeing phases, the role of the completion calls
is to ensure the communication buffers and the other arguments can be safely
reused. Past them, and supposing the code does not contain any error, buffers can
be accessed and modified again, and inbound buffers are guaranteed to contain
the expected contents. In other words, it allows the reuse of these arguments.
The completion calls can be grouped in two families. The first, the simplest, is
the waiting calls. It waits until the request attached to the communication is
marked as complete, marking the end of the MPI process’ involvement in the
process, and the possibility of using the buffers. The second, the testing calls, only
checks if the request has been marked as "completed". If the request has been
marked as "completed", MPI_Test sets a flag reflecting the completeness of the
request. Consequently, accesses to the communication buffers is only safe if that
flag indicates the completeness of the exchange. Both form exist in four variants.

— The base variant, MPI_Wait and MPI_Test, handles only one request.

— The "all" variant, MPI_Waitall and MPI_Testall, takes an array of requests
as argument, and handles all of them.

— The "any" variant, MPI_Waitany and MPI_Testany takes an array of re-
quests, and handles one of them. The processed request cannot be known in
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advance, it is only determined at the execution of the program.

— The "some" variant, MPI_Waitsome and MPI_Testsome, takes an array of
requests, and handles a variable number of them. Similarly to the any form,
the processed requests are unknown before execution.

The nonblocking form allows the creation of overlapping intervals. It consists
in covering the communication times by computations. This leads to a better use
of computing resources. Indeed with blocking communications, the MPI process
has to wait until its involvement in the exchange is finished. In this configuration,
the MPI process is not performing anything "useful" during the exchange. In
nonblocking communications, since the initiation call returns control to the caller
function as soon as the preparations to start the communication are finished, the
MPI process is free to perform the independent computations that come after. It is
only blocked once it arrives at the completion call. In order to effectively hide the
communication time, the communication must be carried, or progressed, indepen-
dently. For example, in a NUMA node, it is possible to dedicate a computing unit
to progress incoming and outgoing communications. Another solution can come
from specific network interface hardware. Some networking cards, such as those
in use for Atos’ BXI interconnect, are equipped with microprocessors to handle
communications.

However, this form is more prone to coding errors. Each initiated communi-
cation must be completed, and the safety of the communication buffers, and the
request, must be preserved inside the overlapping interval.

Persistent and partitioned communications

While the following Chapters of this work mostly focus on the nonblocking com-
munications, we should also note the persistent and partitioned communications,
which also allow overlapping. They are split in four calls, each one corresponding
to one of the communication phases. Persistent communications are designed to
reduce the overhead caused by the initialization step. In this mode, the argument
list of the communication and the request is initialized once. The request is then
set to active when starting an exchange, and to inactive when completing one.
This is particularly suited for loops of communications and computations. More
details on this mode are provided in Section 5.4.

The partitioned mode, which has been added to the interface in 2022, only
exists for point-to-point communications at the time of writing. They serve a sim-
ilar purpose as persistent communications in avoiding the initialization overhead.
In this mode, the communication data is cut into smaller partitions. It is then
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possible to notify the MPI process about the readiness of a partition so that it
can be sent as soon as possible. In a similar fashion on the receiving end, it is
possible to wait for a partition of the communication buffer to handle it as soon
as it has been received. It allows developers to finely interleave communications
and computations, thus creating overlapping opportunities.
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Chapter 2

Compile-Time Code Analysis and
Transformation

Our computers are designed to manipulate bits: successions of 0s and 1s form-
ing comprehensible data and instructions for the targeted processor. Any order
or information we want to give to a computer must first be put under this form,
also called the machine language. While the pioneers of computer science wrote
their first programs directly in this language, it is extremely hard to decipher for
humans. The role of a higher level language is then to make it easier for developers
to express their intents to the computer. Code files written in high level languages
are easier to read and write by humans, but computers cannot decipher them. A
compiler is one of the solutions to translate a file written in a high level language
to a file containing instructions in machine language that can be processed by a
computer, hence the name "executable". The first human readable programming
languages and their compilers appeared in the 1950s in the form of, most notably,
FORTRAN and Algol, respectively in 1957 and 1958[26].

Compilers can also be regarded as tools to aid developers. They can help in
two ways: detection of programming errors in the source code, and optimization
of the program. The FORTRAN compiler developed in the 50s was able to find
some errors in source code files, such as a missing comma, and perform some
optimizations on the allocation of registers[26]. In 1973, Wulf et al. described
the design of an optimizing compiler to produce machine code adapted that will
efficiently use the capabilities of a computer architecture[27]. It consists in a
succession of phases whose goal is to translate a source code file into a binary
object. Each phase would perform an action on a given representation of the
code in some language, resulting in another representation, potentially in another
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language, which is then processed by another phase. While the Bliss/11 language,
for which this compiler was conceived, has been superseded by the C programming
language since long, today’s compilers are still following this design, such as GCC
and LLVM.

The vast majority of MPI programs are written using one, or a combination of
compiled languages: C, C++, or FORTRAN. Thus, it is possible to analyze the
behavior of such programs, and perform MPI specific optimizations at compile-
time. However, the compilers are not aware of the semantics of MPI operations,
and thus they are unable to, for example, automatically detect MPI specific errors
or to extend the overlapping potential. In this Chapter, we give an overview of the
structure of a modern compiler, and of some analyses and transformation processes
that are useful in handling codes with MPI operations. We illustrate these notions
on LLVM, the compilation framework we used in the present work, and explain
how it can be expanded into an MPI capable optimizing compiler.

2.1 Overview of a modern compiler framework

This Section describes the structure of an optimizing compiler, and several key
concepts useful to the analysis and transformation of code. More specifically, it
describes the middle-end of a compiler, which allows source language independent
analyses and transformations.

2.1.1 Architecture of a modern compiler

The primary goal of a compiler is to act as a translator. It compiles a source
file into a target file. There are compilers that create human readable target files.
They are called "source to source" compilers, or transpilers.

The whole compilation of a source file into a binary file can be split in four
major phases. The first phase is the preprocessing step. It takes the source
file, performs several transformations, and outputs another source file, which is
still human readable. For example, a C preprocessor will expand macros and
headers. The second step is the compilation step itself. From a source file, it
creates an optimized and architecture dependent assembly file. The result can still
be understood by a human, but it is one step closer to machine language. This
machine language is generated during the third step, the assembler. The products
of this step are also called "objects". They are eventually given to the linker,
which is in charge of linking machine code files together to form an executable or
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a library. A library is a binary file which can be linked to other objects, possibly
in different projects, to provide some functionality[28].

The compilation phase itself can be split into three major steps: the frontend,
the middle-end, and the backend. The frontend is in charge of checking the legality
of the source code against the grammar of the language, and eventually applies
corrections when possible and permitted (e.g. casting an operand into the correct
type for an operation). It generates an intermediate representation (IR) of the
program. This IR is independent of the source and target languages, and is passed
to the middle-end. This allows the middle-end to define and apply source language
agnostic analyzes and optimizations as passes. Section 2.1.2 provides an in-depth
look on the IR and the middle-end. This IR is then given to the backend, whose
goal is to apply architecture dependent and machine dependent optimizations,
resulting in the assembly file. From nom on, we will focus on the middle-end.

2.1.2 The intermediate representation

The middle-end is one of the three major steps of the compilation phase. Before
entering this phase, the code must be put under an intermediate representation
(IR) which is generated at the end of the frontend step. This IR is generally
independent of the source code. A compiler framework is constituted of multi-
ple frontends, usually one for each source code language. For example, Clang is
the most famous frontend of LLVM, and supports C, C++, and Ojective-C. It
eventually generates an intermediary file in LLVM IR, the unique intermediate
representation of LLVM.

The IR is the representation upon which the compiler applies multiple analy-
ses and transformation routines, called analysis passes or transformation passes.
Passes are similar to the phases defined by Wulf et al.[27]. Each pass takes as input
an IR file in a given state, and outputs another IR file, potentially with some mod-
ifications compared to the input. A single pass (or routine) can be applied once or
multiple times during the whole middle-end step. A pass can also generate results
or information that can be processed by other passes. Consequently, a pass can
be dependent on such information or transformations, and thus on other passes.

Three addresses code

IRs usually adopt the three addresses form for its instructions. As its name
indicates, there are at most three addresses in a statement. Binary and unary
operators abide to this form: on the right-hand side, there are either two (binary)
or one (unary) addresses, and an operator, with one remaining address being
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the left-hand side if needed. Conditional jumps can also be put under the three
addresses form: two addresses being the operands of a relational operator, and
the third being the location of the jump if the condition is fulfilled. Function calls
can also be put under the three addresses form. While they might have many
arguments, it is possible to translate a call site to this form by first pushing the
arguments into a stack beforehand. The call site statement can now be translated
as a three address statement: one address for the function, a second for the stack,
and potentially a third to retrieve the returning value[28].

The major benefit of this form is the simplification of the code, which makes
writing analyses and optimizations much easier.

Control Flow Graph

Statements in IR are grouped in blocks, called basic blocks. A basic block
can have one or multiple successors, and one or multiple predecessors. Using this
structure, any program can be represented as a flow graph, called the control flow
graph (CFG).

Definition 1 (Basic Block). A basic block is a succession of statements with only
one entry point and one exit point. Once the first statement of the block has been
executed, all other statements from that block must be executed in succession.

Definition 2 (Control Flow Graph). A control flow graph is a flow graph G =
(V,E), where V is the set of basic blocks that make up the program. The edges
E connect basic blocks together, and represent the possible execution paths.

Figure 2.1b shows the CFG of the function main in Listing 2.1a as generated by
LLVM 1. Each basic block corresponds to a sequence of uninterrupted statements.
For example, the entry block contains the allocation of the variables, setting of a,
the comparison and jump statements. This basic block stops at the jump statement
because it creates a divergence in the execution path. The statement writing 4 to
a will be executed depending on the result of the comparison. Therefore, there is
a discontinuity in the succession of statements, and that statement has to be put
in another basic block. There are two outgoing edges from entry, indicating that
the control flow (or execution path) can either go through the if.then block, or
directly to the if.end block. In this context, entry is also called a fork node,
since the control flow splits after it, while if.end is the join node.

1. The source code has been first compiled to LLVM IR by clang with the
-disable-llvm-passes option, then forwarded to opt which built the CFG with the
-dot-cfg-only pass.
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1 #include <stdio.h>
2
3 int main(int argc, char** argv)
4 {
5 int a,b;
6 a = 1;
7 if (argc == 2)
8 a = 4;
9 printf("Hello␣world!\n");

10 for (b = 0; b < a; ++b) {
11 int c = b + a;
12 printf("c=%d\n", c);
13 }
14 return 0;
15 }

(a) main function

entry

T F

if.then

if.end

for.cond

T F

for.body for.end

for.inc

(b) CFG of the function
main

Figure 2.1 – Representation of a function in its CFG form

A similar observation can be made about the blocks for.cond, for.body, and
for.inc, whose subgraph constitutes a strongly connected component, or loop, in
the CFG. It represents the for loop from lines 10 to 13.

The CFG and the three addresses code help in building analyzes and transfor-
mation on the IR. In this Section, we will provide an overview of some techniques
and notions we will be using in this work.

2.1.3 Flow control analysis

The representation of the code of a function as a graph enables the analyzing
of the its control flow. Techniques of graph theory can be applied, such as the
detection of strongly connected component to find loops in the function. The
notion of domination and post-domination is one of the key concepts.
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Domination and Post-domination

Definition 3 (Domination). Let G = (V,E) be a control flow graph, with a single
entry node e ∈ V and a single exit node o ∈ V . A node n ∈ V is said to be
dominated by another node x ∈ V if every path from e to n must contain x. The
relationship is strict when x ̸= n.

Definition 4 (Post-domination). Let G = (V,E) be a control flow graph, with a
single entry node e ∈ V and a single exit node o ∈ V . A node n ∈ V is said to be
post-dominated by another node x ∈ V if every path from n to o must contain x.
The relationship is strict when x ̸= n.

These two concepts are particularly useful in determining which basic blocks are
bottleneck points for another basic block. In other words, for a given basic block,
a dominating basic block is a block that will, in any circumstance, be executed
before. These relationship can be represented in a tree. There is an edge from
vertex x to vertex y in a dominator or post-dominator tree if x is dominates or
post-dominates y. Figure 2.2b is the post-domination tree for the CFG shown in
Figure 2.2a. For example, the edge D → A in Figure 2.2b illustrates the post-
domination of A by D.

The definition of the post-domination requires a single exit CFG. However, any
multiple exit CFG can be made into a single exit one by the addition of a global
virtual sink which becomes the successor of all existing exit nodes. Figure 2.3a is
the CFG of a function with branching paths, one of which containing a returning
instruction, thus leading to an early exiting point. This virtual node does not
match with any concrete source code instruction, and only exists to help us carry
out the analysis. By linking the concrete exiting nodes to this newly inserted one,
we obtain a CFG with only one exit node. The definition 4 can then be applied
on this modified CFG. The resulting post-domination relations are still valid on
the original CFG.

The notions of domination and post-domination can be generalized to cover
dominating and post-dominating sets of some basic block[29]. The definition of a
post-dominating set is as follows:

Definition 5 (Generalized post-domination). Let G = (V,E) be a control flow
graph, with a single entry node e ∈ V and a single exit node o ∈ V . A set of nodes
S ⊂ V post-dominates a node n ∈ V if the following conditions are met:

1. All paths from n to the sink o must contain a node from S.
2. For each node x ∈ S, there is at least one path from n to the sink that

contains x, and that does not contain any other node from S.
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entry

A

true false

B C

D

exit

(a) CFG with an if/else
branching

entry

A B C

D

exit

(b) Associated post-
domination tree

Figure 2.2 – Example of post-domination in a simple CFG

The first criteria from definition 5 is a direct transposition of the single node
post-domination to sets of nodes. Instead of having to flow through one node
specific node, the generalized post-domination states that the flow can be inter-
cepted by any node from a set. The second criteria is novel. It states that a
post-dominating set must be minimal.

The notion of immediate dominance or post-dominance indicates the "closest"
dominator or post-dominator to the considered vertex of a CFG. More formally, a
node x is the immediate dominator of a node n if x is dominated by every other
dominator of n. Every other dominator must be "between" x and the entry of the
CFG. A similar definition can be given for the immediate post-domination. The
notion can be extended to cover the dominating and post-dominating sets. The
multiple-node immediate post-domination is defined as follows:

Definition 6 (Multiple-node immediate post-domination (mipdom)[29]). Let G =
(V,E) be a control flow graph, with a single entry node e ∈ V and a single sink
node o ∈ V . A multiple-node immediate post-dominator set of n ∈ V is defined
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entry

A
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Exit 1 D

Exit 2

(a) CFG with a returning
instruction in a branch

entry

A

True False

B C

Exit 1

D

Exit 2

Virtual exit

(b) Addition of a virtual
sink node

Figure 2.3 – Transforming a multiple exit CFG into a single exit

to be a subset of Succ(n) which post-dominates n.

In a similar fashion to the post-dominator tree, the multiple-node immediate
post-dominators can be represented as a graph, called a post-dominator directed
acyclic graph (PDDAG). It would contain all vertices and edges from the post-
dominator tree, to which we add the sets of mipdom. If we look again at Fig-
ure 2.2b, we would add the node {B,C}, and an edge from it to A, informing us
that this set is the immediate post-dominator of said vertex A. The determination
of the mipdom of a vertex can be made with the help of the DJ-graph[30].

Definition 7 (DJ-graph[30] adapted to post-dominators). Let G = (V,Eg) be
a control flow graph. Its DJ-graph H = (V,Eh) is constructed using the same
set of vertices V , and whose edges are composed of D-edges and J-edges. Let
e = (x→ y) ∈ Eg, and e−1 = (y → x) the corresponding edge in the reverse CFG.
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1. e−1 is a D-edge if y is an immediate post-dominator of x.

2. e−1 is a J-edge if y does not immediately post-dominate x.

From the Definition 7, the DJ-graph for the post-domination relation can be
built from the post-dominator tree. An edge (y → x) in the post-dominator tree
represents the immediate post-domination of x by y, which is, by definition, a
D-edge. The J-edge are added from the CFG. For each edge e = (x → y) of
the CFG, we determine if y immediately post-dominates x. If this condition is
not verified, then its corresponding edge e−1 in the reverse CFG is a J-edge. The
algorithm for the determination of the mipdom of a vertex, and ultimately of all
of its generalized post-dominators, is discussed in Section 4.2.

Dominance and Post-dominance frontier

From the domination and post-domination, the notions of domination and post-
domination frontiers can be built[31]. The DF and PDF can be considered as the
limits of the dominating or post-dominating effect of a node, hence the "frontier".
The nodes beyond the PDF of a node n cannot be post-dominated by n.

Definition 8 (Dominance frontier, DF). Let G = (V,E) be a
CFG with single entry and exit. The dominance frontier of n ∈ V
is the set DF(n) such as ∀x ∈ DF(n), n dominates a predecessor
of x, but does not strictly dominate x.

1

n

Pred(x)

x

Definition 9 (Post-dominance frontier, PDF). Let G = (V,E) be
a CFG with single entry and exit. The post-dominance frontier of
n ∈ V is the set PDF(n) such as ∀x ∈ PDF(n), n post-dominates
a successor of x, but does not strictly post-dominate x.

x

succ(x)

n

4
The concept of iterated frontiers extends the two previous definitions. It can be

seen as the "frontier of the frontier", and its determination consists in recursively
determine the DF or PDF until stability. The definition of the iterated PDF is as
follows:

Definition 10 (Iterated post-dominance frontier, PDF+). Let G = (V,E) be a
CFG with single entry and exit. The iterated post-dominance frontier of n ∈ V ,
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noted PDF+(n) is the limit of the sequence:{
PDF1(n) = PDF(n);
PDFi+1(n) = PDF(n ∪ PDFi(n))

Note that the PDF of a set is the union of the PDF of all vertices in the set.

2.1.4 Single Static Assignment

A code is said to be in the Single Static Assignment form (SSA) if a variable
is only defined once, or only has a single assignment[32]. The translation of a
code, usually from the three addresses form, to the SSA is done by versionning
any variable that might be defined more than once in a program. Figure 2.4 is

1 a = b + c
2 d = a + c
3 a = d + b
4 b = a + d

(a) Three address form

1 a1 = b1 + c
2 d = a1 + c
3 a2 = d + b1
4 b2 = a2 + d

(b) Versionned SSA

Figure 2.4 – Translation into SSA

an example of the transformation of a three addresses code to its SSA form. The
variables a and b are defined twice in this example. As a consequence, there are
two versions for each of these variables, a1 and a2, and b1 and b2. Any use of a
variable after its reassignment uses its newer version, as shown in line 4. This form
helps in avoiding any doubt on the state of the variables at any point in the code.

It is possible that two versions of a variable conflict due to different execution
paths. The code shown in Figure 2.1a is an example, with the variable a getting
different values depending on the result of the comparison at line 7. In the SSA
form, this behavior is modeled by the introduction of a special instruction called the
ϕ function. It is inserted at join nodes where these conflicts can arise. Subsequent
uses of this variable will refer to the result of the ϕ function instead. Cytron et
al. introduced in 1989 a technique to quickly detect join nodes and thus to place
ϕ functions using the dominance frontier[31].

As with the three addresses form, the SSA form is a step further in simplifying
the code for analyses and transformations. With values that are only defined once
in the lifespan of a program, it is much easier to analyze the dependencies. For
example, from an instruction that uses some value as an operand, it is immediately

28



Compile-Time Code Analysis and Transformation

possible to determine the instruction defining the said operand: that is the use-
define (use-def) chain. Inversely, from an instruction defining a value, it is also
possible to immediately know the instructions using the said value as an operand:
that is the definition-use (def-use) chain.

2.2 LLVM

LLVM is a compiler framework in development since 2003[33]. It is designed
to "provide analyses and transformations for arbitrary programs at compile, link,
and run times"[34]. At the time of writing, the fifteenth major version has just
been released.

2.2.1 The compilation framework

LLVM adopts the structure of a modern compiler we described through this
Chapter. It is composed of multiple frontends, with Clang for the C and C++
programming languages being the most notorious. Other third-party frontends
also exist and are compatible with the LLVM framework, such as the Rust and
Julia frontends.

From now on, we will focus on the compilation of a C program. To compile such
code, we will resort to the Clang frontend. The source code is preprocessed and
translated into an abstract syntax tree (AST). It analyzes, and detects any errors
related to an incorrect use of the programming language, such as unrecognized
keywords, mismatching types, and missing semicolons. Correct codes are trans-
lated to framework’s unique intermediate representation, used by the middle-end:
LLVM IR. Its human readable form (as opposed to its bytecode form) is a typed
language in SSA form, and partially in three addresses form[35]. It is also able to
attach metadata to statements. They usually contain debugging information such
as the location of the equivalent instruction in the original source code file. They
are available when the -g option is passed to Clang.

The output of the frontend, either in readable text or in bytecode, can be given
to Opt. Opt handles the application of analysis and transformation passes on the
IR. Users can select and reorder the passes to apply on an LLVM IR input, either
through the predefined optimization levels -O0, -O1, -O2, -O3, or explicitly 2.

The LLVM IR files are eventually sent to llc which optimizes and translates
them to an architecture dependent assembly file or binary object. Finally, the

2. List of available passes: https://www.llvm.org/docs/Passes.html
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linking can be done by any linker, whether the GNU ld or gold, or LLVM’s own
linker lld.

Clang can act as a driver for the whole compilation pipeline. It is able to detect
the input file type, and it determines the compilation phase at which it should pick
up. For example, when given a source code file, it applies the whole compilation
pipeline from the preprocessing to the generation of the object file, or until the
desired phase that was given in the command line. If the input is an LLVM IR
file, then it starts at the assembly code generation instead.

2.2.2 Analysis passes in LLVM IR

In this Section, we present some language independent analysis and trans-
formation passes that are implemented in LLVM. They are typically applied on
LLVM IR files with Opt. Besides the passes computing the dominator and post-
dominator trees of a function, the recognition of loops, and the determination of
the use-def and def-use chains, there are many analysis passes helping in deter-
mining instruction dependencies and transformations helping these analyses.

Pointers and alias analysis

A pointer is a special kind of variable storing the address of a memory location.
Rather than the value itself, the value of a pointer is the location of the value.
When an instruction accesses the "pointed" memory location to fetch the stored
value, it is said that the pointer is being dereferenced.

Two pointers are alias if they are pointing to the same memory location. If an
instruction dereferences one of the pointers and modifies the stored value, since
the pointers are aliased, or point to the same place, subsequent dereferencing of
the aliases will return the updated value. Yet, strictly speaking, no modification
were made to these pointers, except the content of the referenced value. Because
of this, pointers are often obstacles to analyses and safe optimizations.

To remedy to this, LLVM has implemented several techniques to detect aliasing
pointers. Each of them gives one of these three possible answers: no-alias, must-
alias, partial-alias, and may-alias. The first indicates that two memory locations
are not aliased, while the second indicates that the two memory locations are
aliased. The third indicates that they have a non empty intersection. The last
answer is returned when the analysis is unsure whether the pointers alias.

However, the documentation on LLVM’s available alias analysis passes is sur-
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prisingly scarce 3. Among the available passes, basic-aa is an alias analysis pass
that is able to distinguish accesses to different fields of a structured type, distinct
global variables and local allocations, or array accesses through statically distinct
subscripts. We can also mention globals-aa and tbaa. The first analysis is fully
dedicated to the disambiguation of global variables and is able to determine if a
function accesses these global variables. The latter analysis stands for "type-based
alias analysis". As its name suggests, it makes use of the type of the dereferenced
pointers to determine if they can alias. For example, it is able to disambiguate to
memory accesses if they are of distinct types[36].

The alias analysis passes implemented in LLVM can be chained, each one re-
fining the results returned by the previous.

Memory SSA

It is possible to track the redefinitions of a variable in the LLVM IR thanks
to the SSA form. However, it does not protect the accesses and modifications
of the memory locations. In LLVM IR, only the value of variables are protected
by the SSA, the actual location of the pointers is not: it is only applied to the
value of the pointer, which is the address it holds. To track modifications of the
memory locations, LLVM provides a virtual IR with an SSA form for these accesses:
MemorySSA (MSSA)[37]. The MSSA form is built using the regular SSA form
and the results of the alias analysis passes. In this form, each memory accessing
instruction is mapped to one of the these three possible operations: MemoryUse,
MemoryDef, and MemoryPhi. MemoryUse will be associated to an instruction which
simply reads into the memory location without modifying it. Typically, they will
be mapped onto load instructions. MemoryDef represents instructions that will
potentially modify memory, such as store. A defining operation will create a new
value in the MSSA. These values represent a state of the memory, and obey to the
same rules as regular SSA values. Finally, the MemoryPhi behave similarly to ϕ-
functions. They are inserted at join nodes where multiple defining operations can
conflict. Using the MSSA form, it is possible to compare if two memory accesses
will refer to the same version of the memory.

Scalar Evolution

The Scalar Evolution (SCEV) is a symbolic analysis centered around the recog-
nition of induction variables and how they evolve[38]. It relies on the computation

3. LLVM’s Alias Analysis documentation page: https://www.llvm.org/docs/AliasAnalysis.html
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of chains of recurrence[39] of induction variables. This mathematical object allows
more efficient computations of the values of a closed form mathematical expression.

More specifically, loop counters and induction variables are closed form expres-
sions. An induction variable is being updated by a fixed amount at each iteration.
The update is an arithmetical operator, but it is generally an addition or a dif-
ference. Consequently, for an induction variable evolving in a linear fashion, the
SCEV analysis is able to compute its boundaries, the operator used for computing
its value at each iteration, and the step value. In a loop, its counter is an induction
variable. Thus, it is available for analysis by the SCEV, and it is able to determine
its properties, such as an upper bound for the number of iteration. Giving a more
precise estimate is difficult since loops can contain early exit points, such as break
instructions.

2.2.3 Transformation passes in LLVM IR

Some of the analyses we presented in the previous Section require the code to
be formatted in a specific shape. SCEV in particular can only be applied to natural
loops, and requires them to be modified in a specific fashion, thus it depends on
the following transformations: sroa, loop-rotate, and loop-simplify.

sroa stands for Scalar Replacement Of Aggregates. It breaks the local memory
allocation instructions of a structured type variable into smaller allocation instruc-
tions of each element of the structure. loop-simplify homogenizes the form of
loops. After application of that transformation pass, all loops have one preheader,
a single backedge (an edge from inside the loop to the header), and every exit block
(a basic block that does not belong to the loop, but has a predecessor in) must be
dominated by the loop header. It simplifies the analysis of the loop, since it will
only have one predecessor (the preheader) and one "looping back" point. Finally,
loop-rotate depends on the previous transformation. As its name suggests, it
"rotates" while and for loops into the do-while form. It also adds a guard block,
protecting entry into the loop if, for example, the condition in the while is not
satisfied, ensuring the preservation of the program’s behavior.

Among the other notable transformation passes which we will use in our work,
instcombine simplifies the IR by, for example, removing redundant instructions.
simplifycfg performs several modifications of the CFG, including the merging of
successive basic blocks that are neither a fork or a join (i.e. the first has only one
successor, and the next has only one predecessor), or the removal on unreachable
basic blocks. lowerinvoke removes any kind of exception handling.
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2.2.4 LLVM plugins

The features of LLVM can be expanded thanks to plugins. They allow the
definition of, for example, a new analysis or transformation pass to be applied on
the IR. These new passes can be inserted at specific points in the pass manager,
which handles the order of the middle-end passes. Plugins allow us to write new
code for the compiler from an independent directory, rather than directly into the
LLVM project directory. It is easier to maintain the project and to share it, for
example as an open-source project.

Since version 14, LLVM has completely switched to a newer pass manager, and
what follows here is based on the legacy pass manager which was deprecated in
that release. Plugins are dynamic libraries that can be loaded by Clang or Opt.
Upon opening the dynamic library by either of these entry points, the passes it
defines are made known to the pass manager. Their name, dependencies, and
impact on the IR and other analysis passes are registered. The new passes can
be inserted in the optimization pipeline at predefined moments, for example when
the middle-end begins the analysis of the module, thus allowing interprocedural
analysis in the scope of a translation unit, or when it analyzes a function. The
passes are then applied as part of an optimization level. When loading the plugin
library and calling the pass with Opt, it is possible to insert the passes with a finer
grain. Opt allows the selection and the ordering of the passes to apply on an IR
file. For example, the command opt -load plugin.so -loop-rotate -my-pass
will call the plugin inserted pass my-pass after the loop rotation pass.

While most of the key concepts described in this Chapter are already part of
LLVM, several notions, such as the DJ-graphs and the post-domination frontier,
are not implemented, or have been deprecated and removed from the framework.
Thanks to the plugin mechanism, it is possible to expand the capabilities of LLVM.
It is possible to introduce new objects, analyses and transformation methods, such
as passes that verifies and optimizes MPI codes during the middle-end.
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Chapter 3

Literature Review and Problem
Statement

In pursuit of better performance and parallelism, the number of NUMA nodes
within a cluster, have been increasing. As a consequence, more and more com-
munications are needed between these nodes. While the evolution of interconnect
solutions leads to better throughput, communications can still have a negative im-
pact on the time to obtain results from a simulation. Causes for the degradation
of performance can include the synchronization of processes before an exchange
can be performed, congestion on the network, for example a bottleneck on some
specific nodes due to an inadequate communication algorithm, or because of the
network distance between nodes. The time a computing unit is spending in wait-
ing for a data to arrive or depart before it can safely access it, is time a computing
unit is not investing in performing computations.

Resorting to asynchronous communications, such as the nonblocking primitives
defined in MPI, helps computing units to fully utilize their computing potential.
These calls enable the overlapping of communication times by computations. By
being "nonblocking", the initiation calls allows the MPI process to prepare for the
communication, and delay the blocking, or waiting, part until later in its execution
flow. Meanwhile, the MPI process is free to work on other computations, and
the communication has the possibility of being progressed by another entity, for
example a dedicated execution thread or on a capable network interface card.

In 2017, a large survey aimed at developers of MPI applications for exascale
class supercomputers was carried to understand their views on the interface and
its critical aspects for performance. It outlined that, while 80% of the surveyed
developers use point-to-point nonblocking primitives to allow overlapping in their
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applications, "only" 59% use nonblocking collectives for that purpose[40]. An-
other study conducted in 2019 on the code itself of 110 MPI programs also no-
ticed that, while point-to-point nonblocking calls are more prominently used than
their blocking and persistent counterparts, only a few applications use nonblocking
collectives[41].

A decade after their introduction to the interface, nonblocking collective prim-
itives are still not as popular as their point-to-point cousins, despite their benefits
on increasing the performance of MPI applications. The reasons for this unpopu-
larity are multiple.

First, they are more complex to handle because of their form. The initiation
call not being a blocking call, it leaves the communication buffers at the mercy
of the overlapping computations, which can cause data races. Splitting the com-
munication in halves also implies the necessity of a matching between the calls,
and the preservation of the linking element (the request). Contrary to blocking
communications, it is of the developers’ responsibility to ensure the absence of
race conditions and of deadlocks, which are the consequences of an improper use
of communications buffers and of a mismatching of nonblocking initiation and
completion calls.

Moreover, the mere existence of an overlapping interval does not guarantee
the actual overlapping of the communication time. There must be a proper pro-
gression mechanism allowing the concurrent handling of the communication, even-
tually leading to a better use of the computing resources. A recent study from
Denis et al. highlighted the struggles of multiple implementations of the interface,
including OpenMPI, MPICH, or MVAPICH, to correctly progress nonblocking
communications[42]. Compared to blocking communications, the use of nonblock-
ing operations, and more specifically of nonblocking collective calls, with the de-
fault configuration of these libraries shows no performance gains in most cases, and
even losses in some cases. Only libraries supporting an explicit progression mecha-
nism are able to expose performance gains by overlapping communications. These
mechanisms are dedicated computing cores[43], or the offloading of the progression
to the networking hardware[44][45].

Combined with their complexity, the lack of guarantees on the performance
gains, and even the risk of degrading the execution times when using an ill-
configured environment, might deter developers from using nonblocking communi-
cations. Yet, this form of communication enables the possibility of a better use of
the computing resources. By not resorting to nonblocking communications, pro-
grams miss an opportunity to fully exploit the capabilities of a cluster, which is
necessary to reach the exascale scope in an environment where the Moore’s Law is
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starting to buckle. As a consequence, the main objective of this study is to develop
solutions to help and encourage developers of MPI programs in using nonblocking
communications. To that end, we have identified two possible leads.

The first would be to check MPI programs to detect programming errors. Hav-
ing a debugging solution helps in producing codes of better quality, and encourages
the adoption of some language feature. It directly addresses the complexity of non-
blocking calls, and relieves the burden put upon the developers. Such a solution
would detect errors and help them in correcting their code. To that end, we pro-
pose in Chapter 5 a compile-time verification tool that focuses on the detection
of misuses of nonblocking communications. The tool we propose is applied at the
level of the IR, and aims at finding and alerting the developers about deadlocks
caused by mismatching initiation and completion calls or mismanagement of the
requests, and race conditions caused mishandling of the communication buffers.

The second lead is the creation and the expansion of the overlapping of non-
blocking communications in MPI programs. In this study, we focus on the "over-
lapping potential". The "potential" part derives from the lack of guarantees for an
"actual overlapping" of a communication, which would only be allowed by the pres-
ence of a concurrent progression mechanism. Rather than operating at the level
of the implementation to allow concurrent progression of communications, we op-
erate at the level of the application to express opportunities for the overlapping.
In fact, these two approaches are complementary, and equally necessary to achieve
actual overlapping. With existing studies on the lower level approach[43][46], our
goal is the maximization of the overlapping potential of an application. This aim
contributes in helping the developers in using nonblocking communications and
in adapting their code to allow overlapping. In order to tackle this approach, we
propose in Chapter 6 a scalable solution to automatically create and expand over-
lapping intervals at compile-time. Chapter 7 proposes a feedback-based approach
to further expand overlapping opportunities by guiding the developers in adapting
their code. The goal of these two propositions is to reorganize the code, while
preserving its correctness, to maximize the overlapping potential.

The following Sections of this Chapter describes how existing studies tackled
both of these approaches. First, Section 3.1 focuses on the verification tools for
MPI nonblocking communications, and Section 3.2 presents solutions to create
overlapping potential. Finally, Section 3.3 concludes this Chapter with a discussion
on the State of the Art of the analysis and of the transformation of nonblocking
primitives, and presents how we address their limitations in our contributions.
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3.1 Verification of MPI communications
Verifying the correctness of a code helps the developers during the development

cycle of a program. With a correct and informative feedback, an error detected by
a verification tool allows the developers to fix their code so that it produces the
expected result without interrupting or damaging its environment which can be
caused by, for example, a memory leak. The methods and tools described in this
Section aim at helping the developers of MPI programs by detecting errors. This
encourages the developers to make use of most of the features of the interface such
as the nonblocking collectives.

3.1.1 Dynamic approaches

One popular solution to check the correctness of codes is to perform a dynamic
analysis. These solutions analyzes the program during or after its execution.

Umpire[47] is an example of a dynamic verification tool. It makes use of the
profiling interface of MPI[19], which allows developers to peek at each MPI call to
fetch information on the communication or perform some action, before executing
the desired MPI operation. It is able to detect deadlocks caused by mismatching
collective communications, but also of modifications to an outbound buffer inside
the overlapping interval of a Send operation, misuses of the derived types, and the
overwriting of an active MPI_Request. However, Umpire has a significant impact
on the performance of the instrumented program, with a slowdown up to 49% in
one of the benchmarks tested by the authors, which appears to be increasing with
the number of MPI calls.

Marmot[48] is another similar tool to Umpire, and exploits the profiling inter-
face of MPI. It detects mishandling of the communication resources: validity of
a communicator and of a group, of derived types and operators, the range of a
desired MPI rank, and the overwriting of requests. Marmot also detects deadlocks
by implementing a time-out mechanism. If an MPI process waits for an operation
for a duration that exceeds the time-out duration, the verification tool emits a
warning message and useful debugging information to the developers. Marmot
faces similar challenges as it introduces overhead to the targeted program.

MUST[49], which stands for "Marmot Umpire Scalable Tool", is built upon the
two previous solutions. It performs deadlock detection by building a wait-for graph
which depicts the scheduling dependencies between MPI processes. This graph
allows MUST to reduce the overhead of instrumenting the MPI calls at execution
time. It is able to detect deadlocks caused by the mismatching of point-to-point,
collective, and nonblocking calls. The authors succeed in decreasing the overhead
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introduced by dynamic tools, the errors are only detected after an execution of the
program.

The Intel Trace Analyzer and Collector (ITAC)[50] is a tool to profile and an-
alyze MPI programs. As it name suggests, it traces the behavior of the program,
thus it requires its execution. While designed to analyze and display performance
information of MPI communications, it is also able to detect deadlocks, race con-
ditions, and misuses of communication resources.

Overall, dynamic verification solution have the best accuracy and coverage of
misuses of MPI nonblocking communications. However, by definition, errors are
only reported once they occurred. Thus, they require a preliminary execution of the
targeted program. Moreover, dynamic tools rely on the injection of code on MPI
calls to analyze their behavior, which can lengthen the execution times of these
programs. Finally, the detection of errors depends on the inputs used during the
verification run. It would potentially require multiple runs with different inputs to
analyze the entire code base. All of these characteristics are undesirable in an HPC
environment, where there might be quota on the usage of computing resources for
each developer, and where programs might require several hours or days to run.

3.1.2 Static and static-dynamic hybrid approaches

This Section discusses verification tools that does not only rely on the execu-
tion of the actual program. Some solutions are composed of a dynamic analysis
component, making them static-dynamic hybrid approaches.

Model checking

In the model checking approach, the analyzed programs are modeled as a state
transition graph. This representation is given to a verification tool, along with
the properties to check, expressed using temporal logic. The verification tool
automatically checks if the model satisfies the property[51]. In our situation, an
example of a property could be "An MPI nonblocking initiation call is always
followed by a completion call", and the model would be based on the code of an
MPI program.

MPI-Spin[52] is a verification tool based on the Spin model checking engine. It
is able to detect deadlocks caused by a misuse of nonblocking communications such
as mismatched calls or mishandling of the requests. Nonetheless, their model has
to make several assumptions which limit its applicability to many MPI programs.
As part of these limitations, it only considers the MPI_COMM_WORLD communicator.

39



Moreover, the developers need to create a model of their program so that MPI-Spin
can analyze it.

SimGrid MC [53] is another model checking tool, based on SimGrid, It relies
on dynamic partial order reduction techniques to reduce the number of states to
explore. It checks for safety, and liveness properties, and it is able to handle unde-
terministic communications such as an MPI_Waitany. Examples of detected errors
are mishandling of requests, or race conditions on the communication buffers[54].
The authors confronted their tool to the MPICH3 test suite, and they observed
a large memory consumption, from several megabytes to more than a dozen of
gigabytes. The analysis time also ranges from a few minutes to several hours.

The model checking approach struggles with large programs, whose models are
complex and large in size, because of the explosion of possible states. Despite
attempts at reducing the number of states to explore with techniques such as
the dynamic partial order reduction, such tools still face long analysis time and
resource consumption.

Symbolic execution

One of the popular solutions to test programs is through symbolic execution.
The program is not actually executed for a specific set of inputs. Instead, it
consists in evaluating a program with symbolic values (for example, a mathematical
variable) to explore the possible control flow paths, and determine the validity of
the program after each path[55].

CIVL [56] and MPI-SV [57, 58] both combine symbolic execution with model
checking. CIVL translates the source code to an intermediary language which is
then sent to a symbolic execution and model checking backend. The translation
phase supports the major parallel programming libraries and codes using a combi-
nation of them: MPI, OpenMP, CUDA, or Pthreads. As far as MPI is concerned,
CIVL is able to check the compatibility of message metadata, the absence of dead-
locks, data races, or the matching of undeterministic communications. However,
CIVL cannot handle nonblocking communications.

MPI-SV, on the other hand, can handle nonblocking calls, and focuses on
the detection of deadlocks and undeterministic communication patterns. The use
of model checking allows them to reduce the number of paths to explore by the
symbolic execution process. The detected misuses of the MPI interface include the
overwriting of requests, and unmatched completion calls, but it does not detect
race conditions on communication buffers.

Ye et al.[59] developed a tool that uses partial symbolic execution to detect
MPI usage anomalies, based on the Klee symbolic execution engine. The source
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code is first compiled to LLVM IR, where several analyses are performed. This
representation is provided to Klee, along with the results from the static analyses,
to help with the symbolic execution of the program. Their solution checks for
the correct matching of message types, race conditions on the message contents,
the overwriting of an active request, an uncompleted nonblocking communication,
and the mismatching of point-to-point communications. Despite the large coverage
they offer, their solution has a high memory footprint and a significant analysis
time on several benchmarks.

The approaches based on symbolic execution suffer from similar limitations to
the model checking approaches, as the number of symbolic values might signifi-
cantly increase with the size and number of paths in a program. This results in
time and memory consuming verification tools.

Compile-time verification

Compile-time solutions are applied during the compilation of the program to
analyze. They do not require any preliminary execution, neither of the actual
code or a modeled version of it. Multiple entry points are possible during the
compilation of a program: during the frontend to directly analyze the source code,
as an IR pass to analyze code regardless of the source language, or at link-time to
have a more complete vision of the program.

MPI-Checker[60] is based on the Clang Static Analyzer. It operates at the
frontend level, and is composed of two analyses. The path-sensitive analysis is
based on symbolic execution techniques to detect the possible paths in a function,
and to determine the conditions for their execution. This analyses allows the
detection of request overwriting, and mismatched nonblocking communications.
The other analysis relies on the AST, the representation under which the code
is analyzed in Clang, to detect mismatched point-to-point communications, and
several misuses of message metadata. MPI-Checker is, however, unable to detect
race conditions. Furthermore, it operates at the front-end. As a consequence, it
cannot be easily interfaced with other analyses passes to benefit from the cached
results, and cannot analyze code written in languages not supported by Clang,
such as Fortran which is still being used in HPC applications.

Hybrid approaches combine a static analysis with a dynamic one. This allows
such solutions to benefit from the low overhead of static analyses with the accu-
racy of dynamic tools. PARCOACH [61, 62] is one of these solutions. It focuses
on the detection of deadlocks caused by mismatching collective operations. PAR-
COACH raises warnings for potential errors with precise debugging information,
such as the location of the fork node leading to different sequences of collective
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communications. The static phase, operating as an IR pass, is completed by an
instrumentation of the potentially faulty communications. The dynamic phase
properly terminates the program and provides useful feedback if the error flagged
at compile-time is actually a true positive. PARCOACH is mainly focused on the
ordering and matching of collectives. In [63], an extension was proposed to incor-
porate a light analysis that checks if each nonblocking initiation can be matched
with a completion call. This check was done by counting the number of initiation
and completion calls on each path of the program and did not consider requests,
rendering it inaccurate.

Compile-time verification methods are the most scalable analysis approaches.
They generally introduce low to moderate overhead to the compilation time, and
they do not usually impact the execution performance of the program, since it is
not modified, and they do not have to rely on a specific set of input data. Compile-
time tools can be directly integrated into the compilation of the program. However,
they lack information that are only available at the execution of the program, such
as the number and the distribution of the MPI processes, or the nature or range
of values of the input data. These weaknesses are source of inaccuracies in the
analysis[64][54].

3.2 Optimizing the overlapping potential of MPI
codes

Besides the detection of misuses of nonblocking communications, transforming
and adapting the code to favorise the overlapping of communications is another
approach to encourage developers to use MPI nonblocking operations. The existing
solutions described in this Section aim at helping the developers to enhance the
performance of their MPI programs by overlapping communication times with
computations. They also aim at minimizing the required effort to adapt the codes.

Enforcing progression inside the overlapping interval

One solution to ensure the progression of a nonblocking communication is to
periodically call MPI functions, for example, MPI_Test. Depending on the imple-
mentations, it might force the MPI runtime to progress the communication, thus
enabling overlapping.

Hoefler et al. proposed an optimization of a conjugate gradient solver using
nonblocking collective calls[65] with LibNBC[66], a library that adds nonblocking
collectives on top of the MPI-1 interface. They made periodic calls to NBC_TEST,
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which is equivalent to an MPI_Test inside the overlapping interval they manually
created to progress the NBC_IALLTOALLV nonblocking communication initiation.
The authors observed an increase in the performance of their solver when using
their custom implementation of nonblocking collectives with the addition of pro-
gression calls. However, they did note a degradation when there are less than
eight MPI processes, which might be caused by the introduction of these progres-
sion calls.

Song et al. proposed a 3D Fast Fourier Transform algorithm using MPI non-
blocking communications. Their algorithm is further improved with the help of an
auto-tuning solution which determines the optimal values for several parameters,
including the number of calls to MPI_Test to force the progression of nonblock-
ing communications. Having too many progression calls might lead to a strong
overhead, while too few would limit the progression.

Enforcing the progression of an MPI communication by calling MPI functions
is a form of weak progress. It is opposed to strong progress where these calls are
not necessary, and the progression of the communication is, for example, concur-
rently performed on a dedicated thread. Weak progression is not desirable. It
introduces function calls that does not have any significance in the algorithms,
and that instead add avoidable overheads[67]. Going forward, strong progression
might become more and more prominent as the research on progression cores and
offloading advances.

Creation and extension of the overlapping potential

Another solution to improve the overlapping of communications by compu-
tations in a code consists in exposing as much potential, as in computations to
hide the communication, as possible, regardless of the presence of a progression
mechanism.

Danalis et al. an MPI-aware compiler that is able to create communication-
computation overlapping possibilities[68]. They propose the transformation of
blocking calls into their nonblocking counterparts, the decomposition of collective
calls into point-to-point ones, the application of code motion, variable cloning,
and loop tiling and fission to increase the overlapping window. However, their
approach has not been implemented, and their method had only been manually
applied to several examples.

ASPhALT implements a subset of those optimizations as a compilation pass
for the open64 source-to-source compiler [69]. It aims at optimizing producer-
consumer loops by performing prepush transformations, meaning that it will try
to send the data as soon as it is generated so that consumer computation can
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be performed while the next chunk of data is being produced. The producer-
consumer loop is partitioned with an arbitrary size to control the amount of data
that is generated, shared and computed. Their solution is only able to handle this
sole communication pattern.

Guo et al. showed how to improve this approach by adding a performance
analytical model of the application [70]. With the help of user-added annotations
and information such as the input data and the number of MPI processes, they
build a model of the program to predict performance. Based on the results of this
model, their tool decides when the transformation of blocking calls into nonblock-
ing ones becomes worthy depending on the amount of independent computations
surrounding it. The transformation itself and the code motion are still manually
done.

Das et al. proposed an approach based on a Wait Graph to sink the completion
call of nonblocking communications [71]. Their goal is to move the completion call
at a later point in the execution. This graph contains information about the control
and data flow, enabling them to sink the wait call to the nearest statement that
uses a communication buffer whilst remaining in the original control flow scope.
They have also proposed an algorithm to go beyond the limits of the encompassing
scope, but it had not been implemented. Only the completion calls are subjected
to the code motion, therefore this approach would most likely miss opportunities
that might exist above the initiation call.

Petal [72] is an interprocedural compiler pass implemented within the ROSE[73]
compiler moving completion calls to the nearest dependency point. Ahmed et al.
used an alias analysis to detect whether a statement uses a communication buffer.
Their method transforms nonblocking communications into persistent communica-
tions when they are nested inside a loop. Lacking the ability of matching nonblock-
ing communication calls together, only the existing blocking communications are
considered and transformed. Eventually, the expansion of the overlapping interval
is only performed by moving the completion call.

The existing and implemented solutions for the creation and expansion of the
overlapping potential of MPI programs consist in identifying the dependencies,
related to both the control and data flow, then in displacing the nonblocking com-
munications. However, they all face different limitations, and they either focus on
a specific communication pattern or only consider one of the nonblocking calls.
Furthermore, they only have the vision on the closest dependency, which they
consider as the insertion point of the nonblocking call. This prevents these ap-
proaches from fully exploiting the overlapping potential that might be available in
a program, and that might exist beyond these dependencies.
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3.3 Problem statement

On the verification side, a compile-time solution is most suited to analyze the
large codes that can be found in an HPC context, despite their inaccuracies. They
require little to no intervention from the developers, and can be easily integrated
into the development cycle of an MPI application. The existing works in this
regard are either unable to catch race conditions in the overlapping interval, or do
not have a reliable solution to match nonblocking communications. We address
these points in Chapter 4 and Chapter 5, by proposing a verification tool that
operates as an IR pass to detect mismatching nonblocking calls as well as race
conditions.

Among the existing compile-time verification tools, MPI-Checker[60] is the
closest solution to ours. They handle many errors caused by nonblocking com-
munications, but their analysis is performed during the front-end. This makes it
impossible to analyze MPI programs written in other languages, such as Fortran,
and to interface with other source independent analyses or optimization passes.
Furthermore, they do not check for race conditions. All of these limitations justify
the proposition of a compile-time verification method on the IR to detect misuses
of nonblocking communications and the race conditions they might cause.

On the optimization side, some of the existing solutions focus on specific com-
munication patterns, and all of the implemented works are limited in their abilities
to transform the code. Their efforts focus on the completion call, and stop at the
closest dependency. Our contributions allow the bypassing of the data dependen-
cies, allowing us to reach the overlapping potential that might reside beyond the
limitations of the existing solutions. Operating as an IR optimization pass, it is
also able to benefit from the results of the verification pass to improve the overlap-
ping potential of existing nonblocking communications. Chapter 6 introduces this
automatic optimization pass, and Chapter 7 describes a feedback-based approach
to further improve the results obtained by the automatic pass.

Petal[72] is the implemented optimization method that shares the most simi-
larities with ours. However, their transformation method faces the aforementioned
limitations. In contrast, our contribution allows the optimization of existing non-
blocking calls, and aims for a complete reorganization of the code to favorise its
overlapping potential. MPI-Aware[68] described several transformations that are
similar to those we implement, especially in identifying the independent statements
in a function to move them into the overlapping interval. Yet, these transforma-
tions were manually performed, and to our knowledge, no other work attempted
to implement those.
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To summarize, our contributions, a compile-time verification pass, a compile-
time code transformation pass, and the provision of suggestions of code modifica-
tions, constitute a cohesive system. The verification pass validates the code and
provides matching information for the transformation pass. In turn, this transfor-
mation pass analyzes the overlapping potential of a function, and automatically
adapts the code. From the results of these analyses, of the performed modifica-
tions, and from the boundaries of the overlapping intervals, suggestions of code
modifications can be generated to let the developers decide whether they should
further adapt their code, which can be then checked by the verification pass. This
ensemble aims at accompanying the developers of MPI programs during the whole
development cycle to help in using nonblocking communications.
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Contributions
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Chapter 4

Static Analysis of Nonblocking
Communications

Chapter 3 presented the various approaches to analyze MPI codes. Dynamic
solutions require the execution of the code. While accurate, it is not ideal for
HPC codes, which are meant for long execution times that ranges in days or
weeks. Moreover, these solutions tend to introduce overhead in the code, further
slowing their execution time, and will most likely not analyze all the code in one
run. Model checking and symbolic execution approaches are more suitable than
dynamic solutions thanks to their ability to cover the entirety of the code. However,
they can be complex and costly to apply.

Analyzing and transforming the code during its compilation presents many
advantages in terms of scalability and ease of use. Such tool naturally fits into
the development cycle of a program that uses a compiled language. Furthermore,
almost all HPC applications are written in a compiled language: C, C++, or For-
tran. Therefore, the verification and optimization methods for MPI nonblocking
communications we propose in the coming Chapters are all compile-time solutions
which can be applied to the majority of existing and future programs.

In this Chapter, we discuss the adequacy and the adaptation of the notions
presented in Chapter 2 for the analysis of MPI programs. Its goal is not to
(re)demonstrate the veracity of the properties, theorems, and algorithms we base
our work upon, but rather to illustrate how they apply to the analysis of non-
blocking communications. Section 4.1 describes how an analysis of the data flow
can be used to detect completion calls and data dependencies of a nonblocking
communication. Sections 4.2 and 4.3 discuss the static matching of nonblocking
calls with an analysis of the CFG, and of the possible execution paths. Finally,
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Section 4.4 synthesizes these two approaches to the matching of nonblocking calls
by defining the mandatory set, and concludes this Chapter.

4.1 Data flow and nonblocking communications

Analyzing the data-flow of an MPI communication is crucial for its verification
and for the optimization of its overlapping potential. It allows the determination
of the dependencies of the communications: all statements that require a result
from the communication, and all statements that define a value used in the com-
munication. These dependencies not only allows the detection of race conditions,
but also include the request object, which serves as a link between the initiation
and completion calls.

4.1.1 Identification of potential completion points

The calls defining an MPI nonblocking communication are tied together with
an object called the "request". This object is given to nonblocking calls through
their argument list. Knowing their position in this argument list allows us to
identify the request being used by each call. For example, initiation calls always
expect to have a request at the tail of the list. By accessing to this position,
we fetch the request an initiation call will set. Completion calls have a slightly
different behavior, and we have to study two distinct situations.

Single pointer request completion calls

Single request completion calls are easier to handle, since they have a similar
behavior to initiation calls, and will involve only one pointer to a request object.
Single request completions, MPI_Wait and MPI_Test have their request in the first
position of their argument list, thus accessing it is immediate.

If the accessed request is from an array of requests, indexes will have to be
compared in order to confirm that the same object is being used both in the
completion and in the initiation calls. To do so, the dependency graph of the
request is built, using its use-def chains. This graph contains every instruction
defining and using the request.

In LLVM-IR, accesses to an element in an array or structure is done with the
help of a getelementptr instruction (GEP). It performs addresses calculations,
and the result is given to a load instruction, which effectively accesses the memory
zone. Starting from the users of the request, either an initiation or a completion
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1 MPI_Waitall(int count, MPI_Request req_array[], MPI_Status status_array[]);

Figure 4.1 – MPI_Waitall prototype

1 /* ... */
2 MPI_Irecv(&a, 1, MPI_INT, 0, 0, MPI_COMM_WORLD, &req_array[2]);
3 /* ... */
4 MPI_Waitall(count, req_array, status_array);

Figure 4.2 – Undecidable matching with an MPI_Waitall

call, the GEP can be retrieved by iterating over the use-def chains. Consequently,
it is possible to fetch the indexes used to access the request, and compare the used
memory zones to know if a completion is able to catch an initiation.

Completion calls taking an array of requests

The completion calls that accept an array of requests in their arguments list
are more complex to handle. The all, any, and some versions of both the waiting
and testing completions fall in this situation. The length of the array is arbitrary,
and in most cases it is unknown at compile-time.

Listing 4.1 shows the prototype of the Waitall completion call. The count
argument gives the number of requests expected by the completion call. The second
argument, req_array, is the starting address of a continuous array of requests.
This means the Waitall will expect count requests starting at the address given in
req_array. Unless the count value can be statically determined, we cannot know
for sure if a request is going to be completed by these calls. Figure 4.2 showcases
such situation. The nonblocking receive sets the 3rd request, assuming the request
array is of size greater than 3. If the value of count cannot be determined at
compile-time, then there is no information on whether this Waitall call is able to
complete the request that was set by this receive operation. As a consequence this
completion call cannot be associated with the nonblocking receive.

In this study, we focus on single request completion calls, and on some situa-
tions where the number of initiated and expected requests is known, or comparable.
In such situations, it is possible to know, for a given initiation call, if a potential
completion call is able to catch the initiated request.
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4.1.2 Identification of the dependency slice of a communi-
cation

Contrary to blocking communications, nonblocking calls do not offer protection
of the communication buffers, and these are left exposed for the duration of the
exchange. Depending on the nature of the communication, illegal access to those
can result in faults in the results. This justifies the need of the identification of
the communication buffers and their dependencies to verify if no illegal access
have been committed inside the overlapping interval. Furthermore, analyzing the
dependencies of the communication will help in characterizing the overlapping
potential of a function.

The identification of communication dependencies relies on the same principles
as the detection of the requests described in Section 4.1.1. Requests are, in fact,
a specific kind of dependency which allows the association of nonblocking calls.

A dependency graph is constructed too, starting from the arguments of the
communication and iterating over the use-def and def-use chains. This graph con-
tains every instruction that recursively use or define a communication argument.

4.2 Control flow and nonblocking communications

Analyzing the dependency graph of the request of a nonblocking communica-
tion will provide us with a list of all instructions using the said request, including
the potential completion points. In order to define an overlapping interval for this
nonblocking communication, it is necessary to precisely identify which completion
call, or subset of completion calls, are effectively completing the communication.
In a simple linear code without any loop or branching, an initiation call is com-
pleted by the first completion call which comes after it in the execution path,
assuming both refer to the same request.

Real world codes are, unfortunately, not so simple, and contain branches, loops,
and sometimes multiple exit points. By analyzing the CFG, it is possible to deter-
mine which completions is able to complete an initiation. We qualify such analysis
as "flow sensitive", since we are analyzing each potential flow, or path, of execution
in a CFG.

Post-domination by a single node

The post-domination (see Definition 4) helps in determining if a node is on
the way to the exit. Any nonblocking communication must be terminated before
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the call to MPI_Finalize. Assuming the MPI_Finalize is at the exit node of a
program, the concept of post-domination allows us to determine if a nonblocking
communication is safely completed.

1 int f(int arg)
2 {
3 int a = 10;
4 MPI_Request req;
5 MPI_Ibcast(&a, 1, MPI_INT, 0,

MPI_COMM_WORLD, &req);
6 if (arg == 0){
7 printf("Hello!\n");
8 } else {
9 printf("World\n");

10 }
11 MPI_Wait(&req, MPI_STATUS_IGNORE);
12 return a;
13 }

(a) MPI code with branches

CFG for 'f' function

entry

T F

if.then if.else

if.end

(b) CFG of function in
Figure 4.3a

Figure 4.3 – Example of post-domination in a simple CFG

Figure 4.3b shows the CFG of the function f in Figure 4.3a. The MPI_Ibcast
at line 5 in the source code file, and in the basic block "entry" in the CFG, can be
completed by the MPI_Wait at line 11 and in the block if.end. To determine if it
is safely completed, we must determine if there is a possibility for the initiation call
to avoid the completion call. In the example, the entry block is post-dominated
by if.end, since all paths from it to the exit of the CFG must contain if.end.
As a consequence, there is no possibility for the Ibcast to avoid the completion
call, thus ensuring the matching of the nonblocking communication. However, if
the completion call were to be in the if.then block, then there is a path, through
if.else, bypassing the completion call, thus there is no post-domination and the
communication is unsafe.

To sum up, we can directly apply the definition 4 to nonblocking initiations
and completions. Let us consider x a basic block containing a completion call,
and n the initiation call, and assume these calls use the same request. The post-
domination of n by x ensures the completion of the communication. Every path
from the initiation call (n) must contain the completion call (x) before reaching
the sink. Thus the communication is properly terminated. The absence of post-
domination of n by x indicates the existence of a path bypassing the completion
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call, which might prevent a communication from being correctly completed.

Post-domination by multiple nodes

It is possible for a nonblocking initiation to be caught by multiple completion
calls. For example in the Figure 4.4a, the nonblocking broadcast communication is
correctly completed. Regardless of the value of arg, each path contains a comple-
tion call. Figure 4.4b is the CFG of function g. The initiation call is in node entry,
while the completion calls are in if.then and if.end. If the communication is
properly completed, then it must be post-dominated by a completion call. Yet,
none of if.then and if.end is able to post-dominate entry. The set composed of
these two nodes must be considered instead, and we use the concept of generalized
post-domination (Defintion 5).

1 int g(int arg)
2 {
3 int a = 10;
4 MPI_Request req;
5 if (arg == 0){
6 printf("Hello␣World!\n");
7 } else {
8 MPI_Ibcast(&a, 1, MPI_INT, 0,

MPI_COMM_WORLD, &req);
9 if (arg < 0) {

10 MPI_Wait(&req,
MPI_STATUS_IGNORE);

11 } else {
12 MPI_Wait(&req,

MPI_STATUS_IGNORE);
13 }
14 }
15 return a;
16 }

(a) MPI and generalized post-domination

CFG for 'g' function

entry

T F

if.then

if.else

T F

if.end7

if.then3 if.else5

if.end

(b) CFG of function in
Figure 4.3a

Figure 4.4 – Example of generalized post-domination

Using the notations from Definition 5, n would be the initiation call, and S
the set of completion calls. The minimal property also ensures there is only one
"layer" of completion calls in the set, or in other words, that there are no successive
completions.
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For example in Figure 4.4b the second criteria excludes the set composed of
nodes if.then, if.end, and if.else from post-dominating entry. In the case
of node if.end, every path from entry to the sink which contains if.end also
have to contain if.else, thus contradicting the definition. However, the sets
{if.then, if.end}, {if.then, if.else}, and {if.then, if.then3, if.else5} are
all post-dominating sets of entry.

Implementing the generalized post-domination relation

The verification and transformation methods we propose in the coming Chap-
ters have been implemented as LLVM passes. The detail of their implementation
are given in their respective Chapter. LLVM, which is the focus of Section 2.2,
is a production ready compiler framework. It implements many analysis tech-
niques, including the single node post-domination relation. However, the gener-
alized post-domination is not implemented in LLVM. This Section discusses the
implementation of this notion in our analysis and transformation passes.

Sreedhar et al. proposed an algorithm to compute the generalized domination
in polynomial complexity[30]. We have adapted the algorithm for the generalized
post-domination, considering that the post-domination can be seen as the domi-
nation applied to the inverted CFG, which is obtained by inverting the direction
of each edge in the original CFG. The computation of the sets is based on the de-
termination of the multiple node immediate post-dominator sets (see Definition 6.
The determination of these sets is done on the post-dominator DJ-graph of
the CFG (see Definition 7).

Figure 4.5b is the DJ-graph for the CFG shown in Figure 4.4b. It is built
upon its post-dominator tree in Figure 4.5a. The solid edges are the edges from
the post-dominator tree, and thus are the D-edges, while the J-edges are dotted.
As an illustration, let us consider the vertex if.else. It is immediately post-
dominated by if.end, hence the D-edge. Its successors in the CFG are if.then3
and if.else5, but none of those are post-dominating it. As a consequence, the
reverse edges (if.then3→ if.else) and (if.else5→ if.else) are J-edges.

Their algorithm 1 to build the multiple-node immediate post-domination rela-
tion of a vertex is based upon the following observation. Given two nodes x and y
in a CFG, if y belongs to the mipdom of x, then there must be at least one path
from y to the single immediate post-dominator of x (noted sipdom(x)) that does
not contain any successor of x, excluding y. The algorithm consists in checking
the successors of each vertex x in a CFG. For each successor y of x, if there is a

1. Algorithm 3.1 in [30]
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Post dominator tree for 'g' function

if.end8

if.then entry if.end

if.then3 if.else if.else5

(a) Post-dominator tree of CFG in
Figure 4.4b

Post-domination DJ-graph for 'g' function

if.end8

if.then

entry

if.end

if.then3

if.else

if.else5

(b) DJ-graph of CFG in Figure 4.4b

Figure 4.5 – Post-dominator tree and its associated DJ-graph of function g from
Figure 4.4a

path from y to sipdom(x) to it that does not contain any other node from Succ(x),
then y is added to mipdom(x). The DJ-graph helps in finding such a path.

As an illustration of this property, let us take a look at vertex if.else in Fig-
ure 4.4b, and see how this property applies to it. The sipdom of if.else is if.end.
The only path from y = if.then3 to sipdom(x) = if.end is if.then3→ if.end.
It does indeed not contain any node from Succ(x = if.else) \ {if.then3} =
{if.else5}, thus checking the property in this example. The same can be applied
to the vertex if.else5, which the other successor of if.else. By definition, we
know the set {if.then3, if.else5} is post-dominating if.else,

Since the completion calls might not be in the immediate post-dominating set
of a nonblocking call, it is necessary to fetch all post-dominating sets of a node.
To do so, we rely on an algorithm 2 developed by Gupta [29]. As with the concept
of mipdom, what follows is an adaptation for the post-domination relation.

Let Dx be the set of generalized post-dominators of x. In order to build Dx, it
starts by adding all immediate post-dominators of x, both single nodes and sets.
In this algorithm, single nodes post-dominators are viewed as sets of cardinality
1. From this point, the goal of the algorithm is to complete the set of generalized
post-dominators thanks to the transitivity of the relation, and by combining the
post-dominators to create other sets.

For each element w from a given immediate post-dominating set V , it looks at

2. Figure 5 in [29]
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its immediate post-dominator (both single and multiple nodes). For each immedi-
ate post-dominator dw, it checks if dw does not post-dominate any other node of
V . Should this condition be satisfied, it builds a set V ′ which is made of dw \ {w}
(i.e. the strict post-dominators of w). If V ′ is already in Dx, nothing is done and
it goes over to the next immediate post-dominator of w. Otherwise it is added to
Dx, and the method is recursively repeated with V ′ until it converges.

Both of those algorithms have been implemented in our LLVM plugin passes.
Applying this algorithm to the code in Figure 4.4a, it allows us to match the non-
blocking broadcast initiation call with the two completion calls in the branches. In
this example, the initiation call is in the if.else basic block, while the completion
calls are in if.then3 and if.else5.

4.3 Analysis and comparison of paths in a CFG

While the flow sensitive approach is useful for matching nonblocking commu-
nications functions when their execution is not constrained by a condition, it fails
at matching nonblocking calls residing in different branches or loops.

Figure 4.6 is an example of situation where the post-domination returns a false
positive. The MPI_Ibcast at line 7 in Listing 4.6a is in the basic block if.then2 in
Figure 4.6b, while its completion call is in basic block if.then7. When considering
the code, the nonblocking communication is safe: the execution of the initiation
call implies that x and y are equal to 0, and the execution of the completion call
requires both values to be 0. Furthermore, x and y are not modified between the
two conditions. The conditions allowing the execution of the initiation and the
completion calls are the same, ensuring the safe completion of the communication.
Yet, there is no post-domination relation between if.then2 and if.then7.

Figure 4.7 exposes a similar situation with an initiation loop and a completion
loop. Both loops have the same number of iterations, and the access to the request
by the initiation and the completion calls is performed under the same conditions,
without overwriting or without offset in the indexes. This communication is sound.
Yet again, there is no post-domination relation between loop.body where the
initiation call is, and loop.body4 which holds the completion call.

The example above showed that the post-domination method is unable to de-
cide if, once the flow has gone through a sequence of blocks, it is likely to follow
another sequence of blocks. To remedy to this shortcoming, we complement that
analysis with a path sensitive matching, which is the focus of this Section.
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1 int h(int x, int y)
2 {
3 int a = 10;
4 MPI_Request req;
5 if (x == 0)
6 if (y == 0)
7 MPI_Ibcast(&a, 1, MPI_INT, 0,

MPI_COMM_WORLD, &req);
8 if (x == 0)
9 if (y == 0)

10 MPI_Wait(&req, MPI_STATUS_IGNORE);
11 return a;
12 }

(a) Safe communication in nested branches

CFG for 'h' function

entry

T F

if.then

T F

if.end3

T F

if.then2

if.end

if.then5

T F

if.end10

if.then7

if.end9

(b) CFG with
nested branches

Figure 4.6 – Matching of nonblocking communications in branches

4.3.1 Condition dependent communications

In this section, we focus on determining the conditions guarding the nonblock-
ing communication calls. Once these conditions have been identified, it is then
possible to determine if the completion call is likely to be executed after the initi-
ation.

Identification of fork nodes

In order to retrieve the conditions guarding a path, it is necessary to first iden-
tify the basic blocks from which the path originates. For example in Figure 4.6b,
the node A is the forking point which leads to either B or E. Thus, it contains
the instruction that determines which path should be taken depending on some
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1 int k(int x, int y)
2 {
3 int a = 10;
4 MPI_Request req[x];
5 for (int i = 0; i < x; ++i) {
6 MPI_Ibcast(&a, 1, MPI_INT, 0,

MPI_COMM_WORLD, &req[i]);
7 }
8 for (int i = 0; i < x; ++i) {
9 MPI_Wait(&req[i],

MPI_STATUS_IGNORE);
10 }
11 return a;
12 }

(a) Safe communication in loops

CFG for 'k' function

entry

for.cond

T F

for.body for.end

for.inc
for.cond2

T F

for.body4 for.end10

for.inc8

(b) CFG with multiple
loops

Figure 4.7 – Matching of nonblocking communications in loops

condition, which is of interest for our analysis.
The creation of the SSA form of a program involve the placement of ϕ-functions.

Those functions are placed at join nodes with the help of the domination relation.
The same principle can be applied to detect fork nodes in a CFG. Knowing that the
post-domination relation is equivalent to the domination relation on the reverse
CFG, and that the fork nodes become join nodes in the reverse CFG, it is possible
to use the post-domination to determine these fork nodes. Instead of resorting to
the dominance frontier, we will use the post-dominance frontier (see Definition 9)
to find the forks in a CFG.

The PDF can be seen as the limits of the post-domination "power" of a ver-
tex. The nodes beyond this line cannot be post-dominated by that vertex. To
reformulate the formal definition, if a node x belongs to the PDF of a node n,
then:

1. x is not post-dominated by n,
2. One of the successors of x is post-dominated by n.

This means there are multiple paths originating at x. At least one of them is
guaranteed to contain n before reaching the sink of the CFG. On the other hand,
at least one of these paths allows the bypassing of n. Thus, the node x decides
whether n should be visited.
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For example, let us find the PDF of node if.then2 in Figure 4.6b. if.then2
does not post-dominate if.then, but does post-dominate one of the successors of
if.then: if.then2 itself. As a result, PDF(if.then2) = {if.then}. It contains
the instruction deciding the path to take.

However, the decision in if.then is not the only condition allowing the exe-
cution of the initiation call in Figure 4.6b. It is also guarded by the entry basic
block. This situation translates a nested if, and can be resolved with the iterated
post-dominance frontier (see Definition 10). The PDF+ allows us to identify all
forks leading to the node of interest. In Figure 4.6b, the PDF+ of vertex if.then2
would be the set {if.then, entry}. if.then is computed at the first step (sim-
ple PDF of if.then2). entry is the result of PDF(if.then). At this point, the
determination of the iterated post-dominance frontier has converged, since A does
not have any PDF.

Implementing the PDF

While LLVM provides an implementation of the dominance frontier, none is
provided for the post-dominance frontier. Sreedhar et al proposed an algorithm 3

to compute the dominance frontier based on the DJ-graph and in linear complexity
relative to the number of edges in a CFG [30]. In their study, they showed that a
vertex z belongs to the dominance frontier of x if and only if there is, among the
nodes that are dominated by x, a node y which satisfies the following conditions:

1. y → z is a J-edge,
2. x is at equal depth, or deeper than z.
Their algorithm is a direct application of this property, by iterating over all

the outgoing edges of each node dominated by x. The nature of each edge is
checked against the DJ-graph to determine whether it is a J-edge, and the depth
of its destination is compared to the depth of x. We adapted the algorithm for the
post-domination relation. Finally, computing the iterated post-dominance frontier
consists in recursively finding the PDF.

Comparing conditions and execution paths

By identifying the forking nodes, it is possible to know the required conditions
to execute some nodes in a CFG, and in our situation, to know the conditions
leading to the execution of nonblocking MPI calls. At compile-time unfortunately,
it is difficult to predict the execution path because of the lack of information on

3. Algorithm 5.1 in [30].
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the inputs, the effective value of variables, or the behavior of functions. However,
it is possible to compare values and predicates: to what do they refer, do they
represent the same memory zone, have they been modified in the meantime, are
they being used in the same way?

In order to know if an initiation call can be matched with a completion call,
because the execution of the first ensures the execution of the second, we compare
the conditions leading to their execution, and the resulting path. If the conditions
are similar, and the selected path contains both the initiation and completion calls,
then we can assume that, if the initiation is executed, the completion call is likely
to be executed as well.

For example in Listing 4.6a and its corresponding CFG in Figure 4.6b, the
broadcast initiation is only executed if both the conditions in entry and then in
if.then are valued to "true". The completion call, in the if.then7 basic block,
follows a similar pattern, and is only executed if the branching condition in both
if.end3 and then if.then5 are "true". To determine if the execution of the
initiation call leads to the execution of the completion call, and thus the safety of
the communication, we must first determine if the conditions in (entry, if.then)
are equivalent to the conditions in (if.end3, if.then5).

Two Boolean expressions are equivalent if the following criteria are met:

1. The operands of the expression must refer to the same object, which must
not be altered between the two expressions,

2. The operators must be the same.

3. The order of the operands must be the same in both expressions, if the
operator is not commutative,

Using the same operators in both expressions ensures the same decision is being
taken depending on the operands. The order of the operands must also remain the
same. Two exceptions exist to the third and fourth rules. First, if the operator
is commutative, then the order of the operands may not be considered, as for
any commutative operand ⊗, A ⊗ B is equivalent to B ⊗ A. Secondly, if the
other operand is different but happens to be the inverse, then it is possible for
the operands to have their position swapped. For example, A > B and B < A
should be treated as equivalent Boolean expressions. Note that if the expressions
deciding which paths are taken are results of a function call, then both calls must
refer to the same functions and the operands (or arguments) must be used in the
same order.

The first condition ensures the values used in the expressions are the same.
The SSA form, defined in Section 2.1.4 guarantees that once a variable has been
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defined, every further uses of that variable will use the same value. Should the
value be modified, a copy of the variable must be made, and the new value written
into the copy, the previous variable keeping its original value. Therefore, if two
expressions use the same SSA variable, they use the same value. In LLVM-IR
however, it is possible for SSA variables to contain addresses whose memory space
is not protected by this property, typically when their represent pointers. The SSA
form only protects the value of the variable, which is, in the case of pointers, the
address. To correctly handle pointers, we rely on the MemorySSA, described in
Section 2.2.2. It is a virtual SSA built on top of the IR to track the evolution of
the memory state. Thus, we are able to determine if two operands have the same
value, using both the regular SSA and the MemorySSA.

Consequently, the three criteria for asserting the equivalence of two Boolean
expressions are met. Their equivalence ensures that, once a branching decision
has been made in the first expression, the same branching decision will be made
in another equivalent expression. Yet, the equivalence of two expressions does
not guarantee the matching of the nonblocking calls. We must also consider the
result, that is the subsequent path from the decision. For example in Listing 4.6a,
the MPI_Ibcast is only executed if the result from "x == 0" is true, and if the
result from "y == 0" is true. The initiation call is on the path which have both
expressions evaluated to "true". The Boolean expression protecting the completion
calls are equivalent. Yet, if the completion call were to be in the "else" branch of
one of those conditions, the matching would have to fail.

To keep track of the required results to reach some basic block, we defined
a structure composed of: 1. the Boolean expression, and 2. the required result.
As we determine the forking nodes through the PDF+, we build a list composed
of these structures. Each forking node is attributed such a structure, with the
Boolean expression used in the branching instruction and the expected result of
the expression to reach the basic block of interest. This list allows us to compare
the conditions of an execution path. Two execution paths, each represented by a
list of these structures, are equivalent if the two lists have the same elements.

Applied to the Listing and CFG we used thorough this Section, both the path
leading to the initiation call and the one leading to the completion call would be
represented as a list with two elements. The first element being "y == 0" and
"true", while the second element "x == 0" and "true". These two lists have the
same elements, since the Boolean expressions are equivalent, and the subsequent
result of each expression matches, thus ensuring the matching of the nonblocking
communication.

The method we have developed here allows us to compare execution paths and
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determine at compile-time the consequences of the execution of a section of the
CFG. It is primarily based on the post-dominance frontier and an analysis of the
data flow.

Composed Boolean expressions

Composed Boolean expressions are made of several single operand Boolean
expressions linked together by Boolean operators (e.g. and, or). In LLVM, these
expressions will result in different kinds of subgraphs in the CFG.

A succession of Boolean expression linked with and operators, for example
if(A and B and C), will be translated as a succession of forking nodes, where
the scope protected by the if can only be accessed if all conditions are true. The
resulting CFG is illustrated in Figure 4.8a. The node D, containing the scope of
the if instruction, can only be accessed if the branching conditions in both A,
B, and C are true. Otherwise, the flow is being directly sent to E. Identifying
the access conditions in this situation is similar to how nested if are handled, by
building PDF+(D). The handling of this situation is similar to the example shown
in Figure 4.6.

A

true false

B

true false

E

C

true false

D

(a) Succession
of expressions
chained with and

A

true false

B

true false

D

C

true false

E

(b) Succession of expres-
sions chained with or

Figure 4.8 – Representation of composed Boolean expressions in CFG

A succession of or operators, for example if(A or B or C), will result in
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multiple forking nodes, each of those potentially leading into the protected scope.
Figure 4.8b illustrates this situation. The first occasion to go into D occurs when
the condition in A is verified. If not, a second chance occurs in B. The last chance
occurs in C, and eventually goes to E if none of the conditions were met. It is
possible to detect all the possibilities to execute D by calculating its PDF. Indeed,
in this pattern PDF(D) is the set {A,B,C}. D do not strictly post-dominate any
of these vertices, but it does post-dominates one of their successors, which is itself.
In this situation, only one of these three conditions needs to be equivalent.

4.3.2 Communication calls in loops

A looped nonblocking communication will initialize multiple requests, which
must all be caught by a completion call. We assume that, given an array of
requests, each iteration of an initiation call will write its request to a distinct
memory location, without overwriting other requests. Similarly to the compari-
son of branching conditions, we need to verify that the completion calls catch a
sufficient number of requests in the correct range.

To that end, it is necessary to compare the number of calls. Since we are ana-
lyzing the code at compile-time, it is difficult to know this value with precision: it
can depend on factors only decidable at execution, such as the input parameters.
Therefore, as we compared the branching conditions, we can determine if the num-
ber of initiated requests matches with the number of completed requests. Given
two loops, the initiation call inside the body of the first and the completion inside
the second, for example nodes (A,B) and (D,E) in Figure 4.7b. We determine if
B and E are executed the same amount of time.

The Scalar Evolution, described in Section 2.2.2, is analysis with the ability to
track the evolution of induction variables in loops. More specifically, it is able to
track the evolution of the loop counter: its initial and final values, its step, and its
incrementing or decrementing operator.

The request graph we defined allows us to fetch the base address that is being
used as a base for accessing the array. Using this graph, it is possible to determine
which variable is being used as index to access its elements through the recorded
GEP instructions. If the same array is being used by both the initiation and
completion calls, the indexes are given to the SCEV, which will give insights on
their behavior in their respective loops. First we identify the upper bound of the
number of initiated communications, then the upper bound for the number of
completion calls or the number of expected requests in the case of the Waitall
version. The second value must be comparable to the first: it must be possible to
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determine if the two values are the same, either statically, or by using the same
methods to match branching conditions. The lower bound, operator, and step
value are also considered using the same methodology, and their values must be
equal. This ensures there are enough requests being caught. This also ensures
that both calls are using the same section of the array.

Consequently, coupled to the request graph we defined, it is possible to de-
termine if two loops will have a similar number of iterations by using the SCEV,
and thus checking if loops of initiation calls can match with loops of completions.
It also allows the matching of the Waitall version. Instead of checking against
the number of iterations in the completion loop, we compare to the number of
expected requests in the completion call.

In the end, matching the properties of two loops helps us in matching non-
blocking calls. Thanks to it, it is possible to determine that the initiation and
completion loops have the same number of iterations, the same starting conditions,
and that the nonblocking calls access the same elements of the request array. This
ensures that there are enough completion calls in the execution path, and that
each initiated communication will eventually be completed.

4.4 Defining the mandatory set

In Section 4.2, we developed a method to match nonblocking communications
with the notion of post-domination. This concepts determines if a vertex or set of
vertices in a CFG is a bottleneck for a reference vertex. Applied to nonblocking
communications, it determines if the initiation call has the possibility of bypassing
the potential completion calls, rendering the communication unsafe and suscep-
tible of deadlocking. However, in Section 4.3, we identified situations where the
post-domination approach cannot correctly match the nonblocking calls. With an
analysis of the data flow, we are able to compare execution paths and loops to
determine whether the execution of the initiation call leads to the execution of the
completion call, thus ensuring the safety of the communication.

The matching of nonblocking communications relies on these two methods. In
this context, we define the mandatory set of a basic block.

Definition 11 (Mandatory set). Let G = (V,E) a CFG.M(n) ⊂ V is a manda-
tory set of n ∈ V if one of the following criterion are met:

1. M(n) post-dominates n,

2. ∀x ∈M(n), x shares the same execution path as n.
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The setsM(n) from Definition 11 are the basic blocks that are always executed
following an execution of the basic block n, hence the "mandatory" name. The
second criteria comes from the path sensitive analysis we developed in Section 4.3.
By being on the same execution path, the execution of n always lead to the execu-
tion of the nodes of the mandatory set. The first criteria comes from the analysis
of the CFG, developed in Section 4.2. By definition of the post-domination, all
paths from n to the exit of the represented function have to contain a node from
M(n), thus ensuring the execution of at least one basic block from the mandatory
set.

From Definition 11, the following property can be deduced: an MPI nonblock-
ing initiation call is safely completed only if it has a mandatory set where all of
its basic blocks contains a completion call accessing the same request. By being
on all vertices of the mandatory set of the initiation call, the completion calls are
always executed after the initiation call, which ensures the correct completion of
the communication.

Through this Chapter, we showed how compile-time analysis techniques can be
leveraged to analyze MPI nonblocking communications. Section 4.1 focused on the
analyses of the data flow, allowing the detection of completion calls and of data
dependencies. Sections 4.2 and 4.3, which ultimately results in the mandatory
set described in 4.4, described how the CFG and the data flow analyses of the
IR can be used to match nonblocking calls. The point of performing all these
analyses at compile-time is to provide solutions that can be seamlessly integrated
to the development cycle of an MPI program, with an as low as possible impact
on the development time. Using the techniques we described in this Chapter,
we define a verification pass to detect mismatching nonblocking calls and data
races at compile-time, and helps developers in fixing their code. It is the focus of
Chapter 5. These techniques are also employed in Chapter 6, in which we define
an optimization pass to create and extend the overlapping potential of a code.
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Chapter 5

Verification of MPI Nonblocking
Calls at Compile-Time

Debugging tools are great companions to developers and assist them during the
development cycle, from the first prototypes to the production stage of a program.
Automatic detection of errors relieves the burden put on developers when they
are confronted to complex programming interfaces and obscure use cases of some
interface. Debugging tools are also helpful in detecting common errors that could
occur on more mundane code while the programmer’s attention might be shifted
to more demanding tasks. In the end, having a debugger around, provided that it
delivers informative feedback without too many falsely flagged errors, can help in
increasing code quality while reducing development time and cost.

In our study, we focus on static debugging methods. Relying on static analysis,
they can operate without executing the program, intervening in the most early
phases of a software’s life cycle. This allows for a very early detection of errors,
and not having to execute the actual program is a substantial benefit in terms of
development time. Indeed, it removes the lengthy back and forth cycle in correcting
the source code, compiling, and running the program until it reaches the ill point.
These methods will usually stop this feedback loop at the compilation step or
even during the initial coding phase, to warn developers of potential faulty lines
of code. Furthermore, analyzing the code during or after its execution restrains
the detection scope of debugging tools only to the executed portions of code.
Static debugging tools allow the detection of errors regardless of the conditions of
execution, and are able to cover the program as a whole.

The strengths of static detection of errors are especially suited for MPI pro-
grams which are expected for extended duration on multiple computing nodes.
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Their parallel nature makes it hard for serial debugger to analyze their behavior
at execution, and specialized tools must be used. Dynamic detection can provide
accurate results, but requires the execution of the MPI code. Given the particular-
ities of an HPC environment with limited access and quota to computing resource
and time allocation, such approach is not desirable.

In this chapter, we propose a method to statically detect matching and data-
race errors in the usage of nonblocking MPI communications. It relies upon some
of the notions we introduced in Chapter 4. This method focuses on the detection
of three kinds of errors:

1. Uncompleted communication;

2. Illegal access to communication buffers;

3. Request overwriting.

The first kind is the subject of Section 5.1 while the last two remaining are treated
in Section 5.2. Most of the contributions of this Chapter have been published at
the Correctness workshop in 2020 [74].

5.1 Detection of mismatched nonblocking calls

Because of their split form, MPI nonblocking communications are sensitive
to mismatching errors. Every initiated communication must be completed. If
this condition is not fulfilled deadlock errors can happen, preventing the program
from progressing further. In this Section, we focus on asserting if all nonblocking
communications in a code comply to this rule. Using the same method, it is also
possible to determine if a completion call will catch an empty request. In other
words, the completion call completes a request that has not been initialized, thus
it does not complete any nonblocking communication. In such situations, the MPI
specification allows the completion call to ignore the request, and to safely return
control to its caller. Yet, it would still be interesting to highlight such completion
calls, since they can help in correcting an unmatched initiation call, or contribute
to improving coding practices.

The matching of nonblocking calls is performed in three steps. First we identify
the potential completion calls, then the capable completion calls, and finally the
matching completion calls. We define these concepts as follows:

Definition 12 (Potential set). For a given nonblocking initiation call, a set C of
completion points is a potential set of completion call if, ∀w ∈ C, w uses the same
request as the initiation call.
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Definition 13 (Capable set). For a given nonblocking initiation call, let C be its
set of potential completion points. C ⊂ P is a capable set if it is a mandatory set
of the initiation call (see Definition 11.

Definition 14 (Matching set). For a given nonblocking initiation call, the match-
ing set of completion points is the capable set that will effectively catch and handle
the request.

5.1.1 Identification of capable sets of completion calls

The initiation-completion matching operates on each nonblocking initiation in
a function, and tries to determine such sets. Algorithm 1 is the top level algorithm
for our matching method. It operates on each function defined in a translation
unit. For each of these functions, the list of nonblocking initiations it calls is
established. Its PDDAG and its MSSA representation are computed.

Matching nonblocking calls firstly relies on the successful identification of pos-
sible associations of initiation and completion calls. As we have detailed in Sec-
tion 4.1.1, the MPI_Request objects indicate possible associations of initiation and
completion calls. Using the request graph we defined, our approach determines
all completion calls that use the same request, or base address in case of an ar-
ray. This is performed inside the function getWait in Algorithm 1. Those are the
potential completion calls for our communication, since we have no knowledge on
their ability to catch request, either as a single call or as a set of calls.

Algorithm 1 Matching MPI initiations and completion calls
Require: mpi_i: list of MPI nonblocking initiation calls in f, mpi_w: list of MPI

nonblocking completion calls, PDDAG: graph of generalized post-dominators of
f

Ensure: Each MPI nonblocking call is properly matched
procedure matchMpiNonblocking(function f)

for all mpi_i ∈ f do
potentialWaits ← getWait(mpi_i.req)
capableWaits ← determineCapableWaits(mpi_i, PDDAG, AA, poten-

tialWaits)
matchedWaits ← determineMatchedWaits(mpi_i, capableWaits)

Having determined which completion calls are likely to catch an initiation,
the matching method now needs to determine if they can catch it before the
execution flow reaches the end of the program. Indeed, a completion call using
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the same request as the initiation call is not enough since it does not guarantee
it will be executed after the initiation call. To that end, both the flow sensitive
and the path sensitive analyses are used. These two methods complement each
other and they are both needed. The flow sensitive approach only analyzes the
CFG on a wider scale, and determines if there is a path bypassing some set of
completion calls. It will not consider the conditions that defines a path for the
execution flow. As a consequence, if our method only relied on this analysis, it
would report a false positive when a nonblocking communication is split in two
separate branches sharing the same condition, as explained in Section 4.3. On the
other hand, the path sensitive approach will consider the conditions under which a
path will be taken. It also considers looped calls and the number of iteration, thus
checking if a completion call is able to catch all initiated communications. This
step is performed inside the determineCapableWaits function in Algorithm 1,
and is further detailed in Algorithm 2. It relies on two functions. One checks
situations where the initiation call is looped, ensuring all initiated requests are
getting caught. The other one manages the general case, and checks the control
flow and the possible paths after the initiation call.

General case

The core of the matching relies on determining if, once the control flow has gone
through an initiation call, it will go through a potential completion call before
reaching the end of the program. These steps are performed in the checkPath
function of Algorithm 2.

The matching begins by applying the flow sensitive analysis. Its goal is to find
all sets of completion calls that can intercept the execution flow from the initiation
call. Each of these sets, containing one or multiple basic blocks with a completion
call, post-dominates the initiation call. By definition, there is no way to bypass
them, thus ensuring that the communication request will be correctly terminated
once initiated.

In a second time, the path sensitive analysis is applied on all completion calls.
Its goal is to determine which completion calls share the same execution conditions
as the initiation call. If they do, then executing the initiation call would mean the
completion call will also be executed. At this point, it checks if the deepest control
structure encompassing the initiation call is a loop. Such situations are handled
differently, and will be the focus of the next Section. For each remaining initia-
tion call, we build the list described in Section 4.3.1, which tracks the conditions
allowing the execution of these calls. The same list is then built for each potential
completion call.
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The determination of the capable completion calls relies on the comparison of
those lists. Two lists are equals if both are of the same size and if their elements

Algorithm 2 Determination of completion calls capable of intercepting the com-
munication

procedure determineCapableWaits(mpi_i, PDDAG, AA, potentialWaits)
capableWaits ← ∅
if mpi_i.isLooped then

for all wait ∈ potentialWaits do
if wait.loop ̸= mpi_i.loop then

checkIteration(mpi_i, wait, AA, capableWaits)
else

checkPath(mpi_i, wait, PPDAG, AA, capableWaits)
else

checkPath(mpi_i, potentialWaits, PPDAG, AA, capableWaits)
return capableWaits

procedure checkIteration(mpi_i, wait, AA, capableWaits)
Lowi, Upi, Stepi ← mpi_i.loop iterator lower and upper bounds, and step
if wait is an MPI_Wait or MPI_Waitany then

Loww, Upw, Stepw ← wait.loop iterator lower and upper bounds, and
step

if Lowi = Loww and Upi = Upw and Stepi = Stepw then
capableWaits.add(wait)

else if wait is an MPI_Waitall then
l ← Waitall request array length
p ← Waitall request array starting index
if Lowi = p and Upi = (l − p) and Stepi = 1 then

capableWaits.add(wait)
procedure checkPath(mpi_i, potentialWaits, PDDAG, AA, capableWaits)

pdomWaits ← getPostDominatingSets(mpi_i, potentialWaits, PDDAG)
capableWaits.append(pdomWaits)
conditions_init ← buildAccessPath(mpi_i)
for all wait ∈ potentialWaits do

conditions_wait ← buildAccessPath(wait)
if conditions_init = conditions_wait then

capableWaits.add(wait)
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are equal at each level. For both the initiation and completion calls, this would
mean they need to go through the same number of checks, each sequence of check
contains the same conditions put in the same order, and the resulting path must
be the same. Thus, if the initiation call is executed, the completion call will also
be executed, thus making it capable of terminating the communication.

Nonblocking communications in loops

Let us consider looped initiation calls separately. These communications re-
quire specific treatment because they initiate several requests, which all need to
be caught be the capable completion calls. One "simple" enough situation arises
when the potential completion point is inside the same loop as the initiation. In
this case to ensure all requests are getting terminated, the completion should come
after the initiation in the same iteration. This is verified by performing both the
path sensitive and flow sensitive analyses inside the loop, as described in the gen-
eral case. All single or set of completion points which satisfy these conditions are
capable of properly catching the requests.

Completion calls residing outside the initiation’s loop or in a distinct loop
require more work from the matching method to assess their ability. These calls, if
in a Waitall form, need to expect enough requests, and the same that were taken
by the initiation call. If of the Wait or Waitany form, then they must belong
to a loop distinct from the loop with the initiation call. Furthermore both loops
must share the same properties (bounds, step, loop counter operator). Finally, to
ensure both calls use the same section of the request array, they must access to its
elements by using the loop counter without performing any further arithmetical
operation. Indeed we know both calls share the same request array, and by knowing
how the loop counter evolves throughout the iterations and its boundaries, we
know if both the initiation and completion calls are accessing the same section
of the request array. All Wait calls agreeing to these conditions are capable of
completing the communication. Function checkIteration in Algorithm 2 is in
charge of performing these checks.

Before considering the remaining forms of completion calls, let us note Upi the
upper bound of the initiation loop counter.

Waitall calls require specific considerations. These completion calls accept an
array of requests and the size of the array. It waits and completes all requests from
this array. To catch the initiated requests of such completion call, we must ensure
the number of expected requests (i.e. the length of the array of requests), is at least
greater than Upi, and accesses the same section of the array than the initiation
call. The completion call must be given the base address of the array with an
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offset which is equal to the starting value of the loop counter. For simplicity, our
implementation of the matching pass only considers loops whose counter starts at
0, and Waitall calls whose expected number of requests is equal to Upi and whose
request array is given by its base address without arithmetical operation. In this
situation, the completion call would wait for all requests at indexes between 0 and
Upi− 1, which matches with the indexes of initiated requests. Thus, the Waitall
call becomes capable of terminating the nonblocking communications.

Waitany calls follow a slightly different procedure, albeit having a similar pro-
totype to the all form. Contrary to the two previous forms, its behavior is unde-
cidable at compile-time. This kind of completion call is given an array of requests,
and each execution of it will complete one element of the array, whose position is
unknown beforehand and only given after its execution. Consequently, it is im-
possible to know in advance which request will be completed. To circumvent this
limitation, we require Waitany calls to be treated in the same way as Wait calls.
They must belong to loops which share the same properties as the initiation loop.
This constraint guarantees the completion of all initiated requests. Waitany com-
pletion calls that satisfy this condition, and use the same requests as the initiation
calls, are capable of properly completing the communication.

Waitsome calls have a similar behavior to Waitany calls regarding the com-
pletion of its requests. They can catch several requests, but the position of the
requests in the array is not known until after its execution. Similarly to the pre-
vious form of completion calls, it is possible to bypass this issue by adding the
same constraint. All Waitsomes must be in loops sharing the same properties as
the initiation loop, thus ensuring all requests will be completed. This last form
has, however, not been implemented in our matching pass.

5.1.2 Identification of the matching set of completion call

The flow and path sensitive methods return sets of capable completion calls.
Their existence is already a good omen for the correctness of the code and the well
being of the MPI communication. Their absence, however, indicates an initiated
nonblocking communication that will never be completed, at least in the scope
of its caller function. The analysis pass should then emit a message warning the
developers of this fault.

Yet the existence of these sets is not enough to perform analyses on the overlap-
ping of nonblocking communications. Indeed, having multiple sets of completion
calls is not enough to determine the overlapping interval of a nonblocking communi-
cation. Only one of these sets will actually complete the communication and mark
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the lower bound of the overlapping interval, while the others might be assigned
to other communications which reuse the same request, or might be completing
empty requests.

In order to identify this interval, it is necessary to identify the most "immedi-
ate" capable set of completion calls coming after the initiation call. "Immediate"
here is akin to the "immediate" multiple vertex post-domination[29], however the
immediate multiple vertex post-dominating set of the initiation call does not nec-
essarily contain the completion calls, neither must the completion calls be post-
dominators of the initiation call as we emphasized on through the path sensitive
analysis. By being the first capable set of completion calls coming after the initi-
ation, they are guaranteed to catch and handle the emitted request, thus defining
the overlapping interval. Such completion calls will be referred to as the "match-
ing" calls. The identification of matching completion calls is performed by the
function determineMatchedWaits, detailed in Algorithm 3.

The determination of this set relies on a traversal of the CFG using a breadth
first search-like traversal. The simplest situation occurs when the basic block
containing the initiation call also happens to contain capable completion calls.
In this situation, the matching call is determined by simply iterating over the
instruction list of the basic block, starting from the initiation call, until the first
completion call.

Otherwise, the BFS-like traversal starts from the basic block containing the
nonblocking call. It visits all succeeding basic blocks until a block containing a
capable completion is found. It then checks how the completion call was deemed
capable: by the path sensitive or by the flow sensitive analysis. In the first case,
the matching call has been found, and the search stops. Being found by the path
sensitive analysis means the completion call will be executed once the initiation
call has been executed. On the other hand, if the call has been found by the flow
sensitive analysis, it is marked as belonging to the matching set, and the search
only stops in this branch. It resumes with the remaining nodes to visit. The search
is guaranteed to end with the complete matching set. Indeed, having found one of
the calls belonging to a post-dominator set of the initiation call, the BFS traversal
has no way of finding an escape route, and will eventually meet the other matching
calls in the remaining branches.

This determines the basic blocks containing the matching calls. Nonetheless it
is possible for these basic blocks to have multiple capable completion calls in them.
In this situation, only the first capable call in the instruction list of the basic block
is saved and marked as matching. Thus is the matching set of completion calls
found and the overlapping interval defined.
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5.1.3 Reporting uncompleted communications

During the matching of nonblocking communications, we have determined the
three sets of potential, capable, and finally the matching completion calls. The
finding of a capable set inevitably leads to the determination of matching set, as
there is bound to be a most immediate set. However, finding a potential set does
not guarantee the presence of a capable set. Furthermore, it is possible that a code
has an initiation call, but no completion call. In these two cases, a warning should

Algorithm 3 Determining the matching completion calls
procedure determineMatchedWaits(mpi_i, capableWaits)

matchingWaits ← ∅
visitedBB, toVisitBB ← ∅
BB ← mpi_i.getBB()
if ∃ wait ∈ BB, with wait ∈ capableWaits then

wait ← first capable wait in BB after mpi_i
matchedWaits.add(wait)
return matchedWaits

visitedBB.add(BB)
for all succ ∈ BB.getSuccessors() do

if succ /∈ visitedBB then
toVisitBB.append(succ)

while toVisit ̸= ∅ do
BB ← toVisitBB.pop()
visitedBB.add(BB)
if ∃ wait ∈ BB, with wait ∈ capableWaits then

wait ← first capable wait in BB
if wait belongs to a post-dominating set then

matchedWaits.add(wait)
continue

else
matchedWaits ← wait
return matchedWaits

for all succ ∈ BB.getSuccessors() do
if succ /∈ visitedBB then

toVisitBB.append(succ)
returnmatchedWaits
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be emitted to the developers to alert them on a potential misuse. There are three
kinds of warning reports.

The first one is the absence of completion call in a function containing an ini-
tiation call. This indicates that a communication has been initiated in a function,
yet no completion point can catch it in this function. This warning can be a
false positive in an interprocedural context, where another function would be in
charge of the completion of the communication. This can be detected by an initial
scanning of the function body to find the nonblocking calls it possesses.

The second is the absence of potential completion calls. In this situation, there
are completion calls in the same calling function as the initiation point, however,
none of those use the same request. As a consequence, the communication cannot
be completed. The warning message should inform the developers to check if the
nonblocking calls are using the correct requests. This message should be raised
when the potential set is empty.

Finally the last kind of warning is the absence of capable completion calls. Here,
potential calls have been found, but no subset of those is a mandatory set to the
initiation call. In other words, for each potential call, there is a way to bypass it.
The warning should invite developers to check if there is indeed a completion call
on each possible path starting from the initiation call, and check the conditions of
executing both the initiation and the completions. It is delivered when the capable
set is empty.

5.2 Detection of communication buffers misuses

The successful matching of a nonblocking initiation with its completions (one
or multiple) defines the overlapping interval of the communication. This interval
represents the overlapping of the communication by other computing instructions,
and is one of the reasons motivating the use of nonblocking communications. How-
ever, due to their nonblocking nature, the communication buffers are not protected
inside this interval. There is no certitude on the state of an inbound buffer until
the completion point, which eventually ensures the expected value has been saved.
Likewise, there is no certitude on whether an outbound buffer has actually been
sent. Only the completion call will provide these safeties, allowing their unim-
peded usage by other instructions. Inside the interval however, any attempt at
modifying or reading the concerned memory zones can result in errors.
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5.2.1 Unsafe access of communication buffers

The detection of unsafe accesses to communication buffers is performed once
the matching is done, and only for nonblocking communications whose overlapping
interval has been defined. Performing such analysis on an uncompleted communi-
cation would be senseless, since their boundaries are unknown.

The detection of race conditions begins with the construction of the dependency
slice of a nonblocking communication using the methods described in Section 4.1.2.
It creates the list of instructions that either define or need an argument of the
communication. The MPI specification mentions the behavior of each argument,
whether they are accessed in read-only mode (outbound value), or as a read and
write (inbound value). Using this information, and by knowing how an instruction
from the dependency slice is related to an argument of the communication, it is
possible to mark each of these statements. This marking conveys the link between
the said instruction and the communication, that is the read or write nature of
the argument using or needed by it. For example, if an instruction is using an
outbound argument, which is an argument that is being sent or only read in the
communication, then it is marked as read-safe.

Once the dependency slice has been determined and all of its elements marked
with a read or write sensitivity, it is possible to look for potential race conditions
inside the overlapping interval. To this end, every instruction between the initia-
tion call and its completion calls is checked. This is done by performing the same
BFS-like traversal of the CFG that was needed to determine the matching com-
pletion calls. Only this time, each instruction has to be considered, and tagged if
it belongs to the dependency slice.

If one of the instructions of the overlapping interval belongs to the dependency
slice, its read or write sensitivity is taken into account. Let us suppose, for example,
the instruction is accessing a value that is only read in the communication. Then,
we would need to look at the action it performs on the communication argument.
If it only reads the argument, the dependency between the communication and
this instruction is a "read after read", which is safe. On the other hand, if the
argument is written over, the dependency becomes a "write after read", which is
erroneous and the analysis pass should emit a message to inform developers about
this issue. Finally, if the argument is inbound, the dependency becomes either
"read after write" or "write after write", which are not safe. The same applies
for inbound arguments. In this situation the dependency becomes either a "read
after write" or "write after write", and neither are safe, thus a warning message
must be emitted. Call sites must be considered separately from the other kinds
of instructions. Without an interprocedural analysis it is impossible to determine
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how an argument is used. As a consequence, our intra-procedural analysis has to
assume all arguments are being written inside the function body. This will lead to
a higher rate of false positive results, but ensures the safety of a program.

To sum up, the detection of race conditions is based on the identification of the
dependency slices of the nonblocking communication. Based on the MPI specifi-
cation and the operation performed in an instruction, it is possible to tell if there
is an unsafe dependency. Such situations are reported to the developers to help
them in fixing their code.

5.2.2 Request overwriting

MPI_Request objects carry important information about the nonblocking com-
munication they were assigned to. As a consequence, this request must not be
modified inside the overlapping interval, before reaching the completion call. Only
the matching completion calls are allowed to access the request to identify which
communication should be terminated. Any other modification of the request can
result in a loss of information, preventing the proper completion of the communi-
cation, and eventually leading to deadlocks.

The detection of requests overwriting errors is a specific case of the detection
of race conditions. Indeed, requests also appear in the argument list of MPI
nonblocking calls. Furthermore, the dependency slice of the request has already
been computed since it was needed for the identification of potential completion
calls. It contained not only the completion calls, but all instructions accessing the
request. Using this list, the method for detecting regular data races is applied,
and all instruction accessing the request is flagged. These must be reported to the
developers with an informative message, indicating a source of deadlock errors.

5.3 Experimental results

5.3.1 Implementation

The verification method we devised in Sections 5.1 and 5.2 have been imple-
mented as an LLVM 12 pass plugin. It operates on each function of a translation
unit, and its analysis scope is limited to the body of the function. As a pass for
LLVM, it operates on the IR. Since all of the benchmarks used in this study are
written in C or C++, we use Clang to generate the IR. We chose to disable most
LLVM internal passes in order to operate on a mostly unchanged code, closer in
structure to the original source code. The analysis pass we build still needs the
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application of a few transformation passes which format the IR, most notably
for the SCEV analysis. The needed transformation passes are: instcombine,
lowerinvoke, simplifycfg, sroa, loop-rotate, and loop-simplify.

The most notable of those is the lowerinvoke pass. It removes all exception
handling from C++ codes. While this is a major infringement of the semantic of the
program, it is necessary to allow the analysis of the IR. Without this pass, LLVM
considers each function capable of emitting an exception. As a consequence, each
call site would generate a fork node with one path leading to a landing pad handling
the exception. Since LLVM does not know what kind of exception the function
can emit, it ultimately leads to the abortion of the program. Statically this is
an issue, as each call site have a path going straight to the end of the program,
preventing any post-domination. It is also problematic for the comparison of
branching conditions. The other transformation passes have no impact on the
behavior of the program, and help in formatting the IR, easing the verification
pass. The other passes are more thoroughly described in Section 2.2.3. sroa,
loop-rotate, loop-simplify, format loops and their induction variables so they
can be analyzed by the SCEV. The remaining transformation passes simplify the
IR by removing code rendered inaccessible or useless by the lowerinvoke pass.

The verification pass also requires several other passes to determine pointer
aliases. Those passes are: basic-aa, globals-aa, and tbaa.

Being an intra-procedural verification method, the analysis scope of our pass is
limited to the body of the examined function. Consequently, it might struggle to
determine the behavior of function calls regarding their accesses to the memory,
their calls to MPI operations, or handling of global variables. This includes class
attributes, since these are defined at the level of the structure rather than in the
scope of the method. As a safety measure, the alias analysis assumes a function
call touches all regions of the memory.

In LLVM, it is possible to reach a higher accuracy by telling the analysis that
a function has a restricted reach on the memory. This is done by adding the
argmemonly attribute to a function. It tells the alias analysis that the afore-
mentioned function can only access memory locations which are given to it in its
argument list. To add this attribute, we run a preliminary pass on the code to
mark functions with this attribute. Since we know MPI calls only read or write
the memory locations made known to them through the argument list, it is safe to
add this attribute on them. It is probable they modify some variables internal to
their implementation, but these are usually not accessible and usable in the source
code. This is, however, not so obvious for other function calls. The resolution of
their dependencies might require extensive interprocedural, and cross-module or
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Table 5.1 – Matching statistics

MCB Pennant Lammps miniFE miniMD

Number of initiation calls 6 4 114 5 7

True negatives 0 0 105 4 7

False positives 6 4 9 1 0

link-time analyses. In the end, only MPI functions are marked.

5.3.2 Results

The experiments have been carried on five benchmarks: miniMD, miniFE,
Lammps, Pennant, and MCB. The first two are mini-apps from the Mantevo
project[75]. They are scaled down versions of larger benchmarks, and focuses on
a specific pattern of computation. The three remaining benchmarks are CORAL
codes. They are significantly larger in scale, and aim at imitating production grade
programs, with their computation and communication patterns. Full details on
these codes are provided in Appendix A.

Matching of nonblocking calls

We first determine if our approach is able to correctly match nonblocking calls
together. The Table 5.1 exposes the results obtained with our implementation
of the matching pass. The "true negative" refers to nonblocking communications
which we verified their correct matching with a manual analysis of the code, the
dependencies, and the context of the function call. The "false positive" refers to the
nonblocking communications our verification pass deemed as incorrectly matched,
yet the communication can be safely matched through a manual verification of
the code. We have not found any "true positive" or "false negative" as we did
not identify any faulty nonblocking communication in these codes, and we did not
introduce mutations.

Our implementation is able to match all of the nonblocking calls present in min-
iMD, and most of those in miniFE and Lammps. However, of all of the nonblocking
communications found in MCB and Pennant, none could have been matched.

The reason of these false positives comes either from the failure of determining
if two nonblocking communication calls refer to the same section of a request
array, or from the intra-procedural nature of our method. Listing 5.1a contains
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an example of a failed matching of an initiation call to its completion call, from
Pennant, Mesh.cc. Our matching method is unable to associate the MPI_Irecv
at line 620 to the MPI_Waitall at line 642. The initiation call is looped, and only
relying on the checkPath function is not enough. The range of the used requests
in the array must be determined with the help of the checkIteration function.
The request array is being accessed with the slvpe variable, which happens to
be the loop counter. The loop starts at 0 and ends at numslvpe with a step of
1, without any early exit or early back-edge. As a consequence, the MPI_Irecv
initiates requests from indexes 0 to numslvpe − 1, which matches with the range
of read requests by the MPI_Waitall at line 642. The matching should be correct.

However, numslvpe is a global variable in the scope of this function, and LLVM
struggles to determine if both uses of this variable will access the same value. This
is highlighted in the SSA-form of the IR of function parallelGather, partially
shown in Listing 5.2. It is the IR of the for.cond.cleanup29 basic block contain-
ing the Waitall call. We can observe the computation of the address of numslvpe
being performed in the GEP at line 118 from the class. This address is then used
in line 120 to load the value into %17, which is then used in line 122. This com-
putation is then performed once more at line 123 to be loaded in 125 and used in
the MPI_Waitall line 127. Instead of using the previously loaded value, it loads
another one. This might indicate that the alias analysis thinks the call at line 122
can modify the value of numslvpe, either because it is passed as an argument to
it, or as a side effect, since numslvpe is a global variable. Moreover, instead of
reusing an older load for the use in line 122, it recomputes the address and reloads
the variable. This indicates that LLVM thinks it was modified between an older
load, for example to compare the first loop counter, and line 118. To sum up,
LLVM is unable to determine if the two loads of this variable would yield the same
value. This makes our pass believe that the accessed requests are not within the
same range, thus incorrectly flagging this nonblocking communication as unsafe.

Detection of race conditions

The detection of race conditions, including the detection of request overwriting,
is performed only for nonblocking communications which have been successfully
matched. Thus, we will only consider results from Lammps, miniFE, and miniMD.
The results are given in Table 5.2. Our implementation of the detection of race
conditions display a very low accuracy. As mentioned in the matching of nonblock-
ing calls, this inaccuracy can be caused by the lack of an interprocedural analysis
to safely determine the aliasing of two pointers. The alias analysis chain we use
might also not be able to correctly handle arrays, and considers that each access to
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Figure 5.1 – Penannt, Mesh.cc, matching failure

601 template <typename T>
602 void Mesh::parallelGather(
603 const T* pvar,
604 T* prxvar) {
605 #ifdef USE_MPI
606 // This routine gathers slave values for which MYPE owns the

masters.
607 const int tagmpi = 100;
608 const int type_size = sizeof(T);
609 // std::vector<T> slvvar(numslv);
610 T* slvvar = Memory::alloc<T>(numslv);
611
612 // Post receives for incoming messages from slaves.
613 // Store results in proxy buffer.
614 // vector<MPI_Request> request(numslvpe);
615 MPI_Request* request = Memory::alloc<MPI_Request>(numslvpe);
616 for (int slvpe = 0; slvpe < numslvpe; ++slvpe) {
617 int pe = mapslvpepe[slvpe];
618 int nprx = slvpenumprx[slvpe];
619 int prx1 = mapslvpeprx1[slvpe];
620 MPI_Irecv(&prxvar[prx1], nprx * type_size, MPI_BYTE,
621 pe, tagmpi, MPI_COMM_WORLD, &request[slvpe]);
622 }
623
624 // Load slave data buffer from points.
625 for (int slv = 0; slv < numslv; ++slv) {
626 int p = mapslvp[slv];
627 slvvar[slv] = pvar[p];
628 }
629
630 // Send slave data to master PEs.
631 for (int mstrpe = 0; mstrpe < nummstrpe; ++mstrpe) {
632 int pe = mapmstrpepe[mstrpe];
633 int nslv = mstrpenumslv[mstrpe];
634 int slv1 = mapmstrpeslv1[mstrpe];
635 MPI_Send(&slvvar[slv1], nslv * type_size, MPI_BYTE,
636 pe, tagmpi, MPI_COMM_WORLD);
637 }
638
639 // Wait for all receives to complete.
640 // vector<MPI_Status> status(numslvpe);
641 MPI_Status* status = Memory::alloc<MPI_Status>(numslvpe);
642 int ierr = MPI_Waitall(numslvpe, &request[0], &status[0]);
643 if (ierr != 0) {
644 cerr << "Error:␣parallelGather␣MPI␣error␣" << ierr <<
645 "␣on␣PE␣" << Parallel::mype << endl;
646 cerr << "Exiting..." << endl;
647 exit(1);
648 }
649
650 Memory::free(slvvar);
651 Memory::free(request);
652 Memory::free(status);
653 #endif
654 }

(a) parallelGather function
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116 for.cond.cleanup29: ; preds = %for.cond27.for.cond.cleanup29_crit_edge, %for.cond.cleanup16
117 ; 20 = MemoryPhi({for.cond.cleanup16,22},{for.cond27.for.cond.cleanup29_crit_edge,7})
118 %numslvpe45 = getelementptr inbounds %class.Mesh, %class.Mesh* %this, i64 0, i32 22
119 ; MemoryUse(20) MayAlias
120 %17 = load i32, i32* %numslvpe45, align 4, !tbaa !11
121 ; 5 = MemoryDef(20)
122 %call46 = call %struct.ompi_status_public_t* @_ZN6Memory5allocI20ompi_status_public_tEEPT_i(i32

%17)
123 %numslvpe47 = getelementptr inbounds %class.Mesh, %class.Mesh* %this, i64 0, i32 22
124 ; MemoryUse(5) MayAlias
125 %18 = load i32, i32* %numslvpe47, align 4, !tbaa !11
126 ; 6 = MemoryDef(5)
127 %call50 = call i32 @MPI_Waitall(i32 %18, %struct.ompi_request_t** %call2, %

struct.ompi_status_public_t* %call46)
128 %cmp51.not = icmp eq i32 %call50, 0
129 br i1 %cmp51.not, label %if.end, label %if.then

Figure 5.2 – Pennant, Mesh.cc, excerpt of IR generated from the original source
code

Table 5.2 – Data race detection statistics

Lammps miniFE miniMD

Number of matched nonblocking communications 105 4 7

True positives 3 6 0

False positives 388 40 6

Total 391 46 6

a single element as an access to the whole array. It results in an overly conservative
dependency analysis, flagging too many memory accesses as a potential threat to
the safety of the communication.

Nonetheless, upon closer inspection, the verification pass revealed several po-
tentially dangerous situations in miniFE and Lammps. Note that it operates on
the IR. This implies that one line in the source code can translate to multiple
instructions in the IR, thus increasing the number of detected race conditions.

Our implementation of our verification method successfully outlined a race
condition in miniFE. Figure 5.3 shows the relevant nonblocking communication,
which is the nonblocking point to point reception at line 259. It is matched with
the completion call at line 276, since both are in distinct loops and use the same
section of the request vector, from index 0 to num_send_neighbors excluded. As
a consequence, its overlapping interval starts after line 260, and ends before line
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Figure 5.3 – miniFE, make_local_matrix.hpp, race condition on the reception
buffer

257 std::vector<MPI_Request> request(num_send_neighbors);
258 for(int i=0; i<num_send_neighbors; ++i) {
259 MPI_Irecv(&tmp_buffer[i], 1, mpi_dtype, MPI_ANY_SOURCE, MPI_MY_TAG,
260 MPI_COMM_WORLD, &request[i]);
261 }
262
263 // send messages
264
265 for(int i=0; i<num_recv_neighbors; ++i) {
266 MPI_Send(&tmp_buffer[i], 1, mpi_dtype, recv_list[i], MPI_MY_TAG,
267 MPI_COMM_WORLD);
268 }
269
270 ///
271 // Receive message from each send neighbor to construct ’send_list’.
272 ///
273
274 MPI_Status status;
275 for(int i=0; i<num_send_neighbors; ++i) {
276 if (MPI_Wait(&request[i], &status) != MPI_SUCCESS) {
277 std::cerr << "MPI_Wait␣error\n"<<std::endl;
278 MPI_Abort(MPI_COMM_WORLD, -1);
279 }
280 send_list[i] = status.MPI_SOURCE;
281 }
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Figure 5.4 – Lammps, fix_neb_spin.cpp, request overwriting

701 if (ireplica > 0) {
702 MPI_Irecv(xprev[0],3*nlocal,MPI_DOUBLE,procprev,0,uworld,&request);
703 MPI_Irecv(spprev[0],3*nlocal,MPI_DOUBLE,procprev,0,uworld,&request);
704 }
705 if (ireplica < nreplica-1) {
706 MPI_Send(x[0],3*nlocal,MPI_DOUBLE,procnext,0,uworld);
707 MPI_Send(sp[0],3*nlocal,MPI_DOUBLE,procnext,0,uworld);
708 }
709 if (ireplica > 0) MPI_Wait(&request,MPI_STATUS_IGNORE);

276. Inside this interval, the communication buffer, here tmp_buffer must not
be accessed, since it is an inbound value. Yet the MPI_Send at line 266 reads at
least a part of this array. Indeed, we noticed both loops start at 0, and thus the
first few elements of the array are potentially going to be read while their value
is still unknown. In the end, it is not known if the MPI_Send will send the value
that has been received, or the value as it was defined before line 259. There are
multiple solutions to fix this code. One is to move the sending operation out of the
overlapping interval, before or after depending on what value of tmp_buffer must
be sent. This will however end up in the shrinking of the overlapping interval of
the MPI_Irecv, which is not desirable performance wise. The other solution would
be to use a different buffer to receive data in. This results in a higher memory
consumption, but preserves the length of the overlapping interval.

Figure 5.4 displays a dangerous usage of a request, including its overwriting,
found by our verification pass. In this code, both MPI_Irecv are matched with
the MPI_Wait at line 709. We can observe that both initiations are being called
if ireplica is positive, and the completion call is also protected by the same
condition. Furthermore, all values from the comparison are and remain the same,
they are not being modified by any instruction between lines 701 and 709, thus
ensuring the execution of the completion call after the initiations, and ultimately
their matching. However, while the second Irecv is perfectly safe, the first has its
request overtaken by the second. As a consequence, information about the non-
blocking initiation at line 702 is potentially lost, preventing its completion, which
can result in a deadlock. In order to fix this situation, the second communication
must use a different request. Then it is possible to add another completion call
for this new request, or replace the existing MPI_Wait by a Waitall call to catch
both requests.
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Figure 5.5 – Possible state transitions for a persistent MPI communication

5.4 Towards the correction of persistent communi-
cations

Persistent communication also adopted a split form, alike but more complex
than their nonblocking counterparts. Instead of having only an initiation call and a
completion call, persistent communications are split in four distinct functions: the
initialization, the starting, the completion, and the freeing calls. The Figure 5.5
illustrates the possible transitions between persistent MPI calls. The main interest
of this form of communication is the ability of initializing the request only once
for multiple communications. That is the role of the initialization call: it attaches
the communication buffers to the request. The communication is only performed
upon reaching the starting call. The completion call, which is also of the form
Wait and their all, any, and some versions, certifies the completion of the com-
munication. They deactivate the persistent request. Test and its versions also
apply to persistent communications. The difference lies in the ability to rerun the
communication, with potentially different values as contents of the communication
buffers. Eventually, once the sequence of exchanges is done, the persistent request
must be deallocated. This operation is performed by the freeing call. This form of
communication is particularly useful in loops of communications: the request and
the communication buffers are initialized before the loop and each iteration starts
and completes an exchange, possibly with different data each time. Finally, the
request is only freed after the loop.

The verification of persistent communications can be performed using the same
techniques which were laid out during this Chapter. Instead of matching an ini-
tiation with multiple completion calls, the matching must follow the pairings il-
lustrated by Figure 5.5. Beginning with the initialization call, the analysis would
need to find a matching call that is either a starting or a freeing call. To match
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these calls, it is also possible to use the request object by identifying it with the
methods described in Section 5.1. Once the potential candidates have been deter-
mined, both the path and flow sensitive approaches can be applied to determine
the capable starting and freeing calls. Finally, the matching calls can be found by
performing the same BFS-like traversal of the CFG, thus ensuring the initialization
call is followed by either a starting call or a freeing call.

At this point, contrary to nonblocking communications, the matching method
for the whole persistent communication is not yet complete. The correct follow-up
for the starting and completion calls have not been checked yet. This is done by
repeating the same matching procedure. The starting call must be followed by a
completion call. The completion call must be followed by either a starting call, or
a freeing call which indicates the end of the persistent communication window.

Communication buffers and requests corruptions can also cause errors in per-
sistent communications. Their detection relies on the same principles as those de-
scribed in Section 5.2, only the intervals to check change. The overlapping interval,
which is the code portion during which the exchanging part of a communication
can be executed in the background, is bounded by the starting and completion
calls. Data races must be avoided in this interval, and the methods we proposed
earlier can be applied between these two calls. The treatment of requests slightly
differs. The communication is "alive" not only during its "exchange" section, but
also between the initialization and the freeing calls. During this whole duration
the request must remain protected, and only be accessed by the calls from the
persistent communication, which are the starting and completion calls.

To sum up, the method we propose for the static verification of nonblock-
ing communications can be adapted for persistent communications with minimal
changes. The differences can be found in the matching it needs to perform, and the
intervals in which the detection of race conditions must be performed. Contrary
to the verification of MPI nonblocking communications, the propositions of this
section have not been implemented.

5.5 Discussion and limitations

During this Chapter, we have proposed a method to verify the correctness of
nonblocking communications in a program using information and analyses avail-
able at compile-time. This method is able to verify the matching of initiation and
completion calls, and it is able to find potential race conditions in the overlapping
intervals of nonblocking communications. We have implemented this method as a
pass in LLVM. It has successfully detected several concrete situations where race
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conditions are possible. However, it has a poor accuracy in the detection of race
conditions, and suffers several limitations in the matching.

The fact that our pass is an intra-procedural pass is one of its main shortcom-
ings. It prevents us from matching nonblocking communications across function
boundaries, and it also hinders us in correctly determining the safety of a matching
or a memory access inside an overlapping interval. Indeed, the impacts of a func-
tion call on the memory is unknown in the intra-procedural scope. The resolution
of these dependencies might require extensive interprocedural, and cross-module
or link-time analyses. Yet, there are function calls for which their behavior are
known at compile-time in an intra-procedural context. MPI operations are an
example of such functions. It is possible to tell LLVM that these functions only
access memory locations that are passed as an argument thanks to the argmemonly
attribute.

Despite the addition of this attribute to MPI calls, the alias analysis still strug-
gles with global variables. It considers all global variables can be modified by any
function call. Listing 5.1a, which we described in the previous Section, is a prime
example. LLVM is unable to determine if numslvpe, a global variable, has been
modified between the access at line 616 to serve as the upper bound of the initi-
ation loop, and the access at line 642 in the MPI_Waitall. Yet, no call site nor
instruction have a dependency relationship with this variable.

In order to pinpoint the cause leading to the missed matching, we have slightly
modified the source code, and regenerated the IR. The modifications we introduced
consists in copying numslvpe into a temporary int local variable between lines 614
and 615 in Listing 5.1a. Then, all subsequent uses of numslvpe are replaced with
this temporary local variable. The resulting IR is shown in Listing 5.6a. We
observe that this local variable is now only loaded once, at line 11 in the new IR.
All subsequent uses refer to it by using %1, as partially shown in lines 13, 14, 114,
and 116 which is the Waitall. By virtue of the SSA form, all these uses refer to the
same value of numslvpe, allowing us to match the nonblocking communications.
This lead us to think that LLVM believes the function calls in this code might
have a side effect on numslvpe.

While the suspicion of a side effect on global variables in function calls is a
reasonable assumption to make in the lack of an interprocedural analysis, in this
situation it triggers a false positive. Looking at the code, the static alloc function
from the Memory, defined in Memory.hh, only allocates memory location without
modifying any variable. Similarly, MPI communications are not likely to have any
side effect on global variables. One solution would be to limit the use of global
variables, and copy their values into local buffers to mitigate risks and facilitate
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static analyses.
One of the other limitations of this approach is the availability of the debugging

and high level information of the source code. In LLVM IR, the source code
location is not kept unless it was compiled with the -g option. The name of
variables is also lost. All of this complexifies the process of informing developers
about issues in their code. A better solution would be to work at the front-end level,
where information about the source code is still complete and available. However,
this would render the matching of nonblocking communications unavailable to
other IR analysis and transformation passes.

Figure 5.6 – Pennant, Mesh.cc, IR of function parallelGather

3 entry:
4 %numslv = getelementptr inbounds %class.Mesh, %class.Mesh* %this, i64 0, i32 24
5 ; MemoryUse(liveOnEntry) MayAlias
6 %0 = load i32, i32* %numslv, align 4, !tbaa !2
7 ; 1 = MemoryDef(liveOnEntry)
8 %call = call double* @_ZN6Memory5allocIdEEPT_i(i32 %0)
9 %numslvpe = getelementptr inbounds %class.Mesh, %class.Mesh* %this, i64 0, i32 22

10 ; MemoryUse(1) MayAlias
11 %1 = load i32, i32* %numslvpe, align 4, !tbaa !11
12 ; 2 = MemoryDef(1)
13 %call2 = call %struct.ompi_request_t** @_ZN6Memory5allocIP14ompi_request_tEEPT_i(i32 %1)
14 %cmp33 = icmp slt i32 0, %1
15 br i1 %cmp33, label %for.body.lr.ph, label %for.cond.cleanup

111 for.cond.cleanup28: ; preds = %for.cond26.for.cond.cleanup28_crit_edge, %for.cond.cleanup15
112 ; 20 = MemoryPhi({for.cond.cleanup15,22},{for.cond26.for.cond.cleanup28_crit_edge,7})
113 ; 5 = MemoryDef(20)
114 %call44 = call %struct.ompi_status_public_t* @_ZN6Memory5allocI20ompi_status_public_tEEPT_i(i32

%1)
115 ; 6 = MemoryDef(5)
116 %call47 = call i32 @MPI_Waitall(i32 %1, %struct.ompi_request_t** %call2, %

struct.ompi_status_public_t* %call44)
117 %cmp48.not = icmp eq i32 %call47, 0
118 br i1 %cmp48.not, label %if.end, label %if.then

(a) Generated from the modified source code
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Chapter 6

Automatic Exposition of
Overlapping Potential

One of the main strengths of nonblocking communications is their ability to
allow overlapping of communications with other operations, for example compu-
tations. This results in a better use of computing resources, which in turn leads to
lower execution times of MPI programs. However, the use of this type of commu-
nications is still marginal. Codes still prefer blocking communications, and some
only use nonblocking point-to-point communications to avoid deadlocks caused
by disordered sends and receives. Not only the nonblocking operations are more
complex to use since they are split between an initiation call and one or multiple
completion calls, they are also more sensitive to programming errors which can
lead to deadlocks and data corruption. These drawbacks are as many additional
points the developers will have to watch for during the development of a program.

In order to completely relieve these burdens from the developers, we propose
in this Chapter a method to automatically create and increase the overlapping
potential of MPI communications in a function. First, we detect all blocking com-
munication calls in a code, and transform them into their nonblocking version.
This implies the insertion of a completion call and the creation of a request object
that will tie the initiation with the newly inserted completion. Secondly, we rear-
range the structure of the code in order to maximise the length of the overlapping
intervals. The reorganization of the code is performed by moving the dependencies
of the communication along with the initiation and completion calls. This step is
also performed on existing nonblocking calls with the help of the matching method
defined in Chapter 5.

Section 6.1 covers the boundaries of the overlapping intervals we create. In
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Section 6.2, we describe our transformation method and its inner working. In
Section 6.3 we introduce our approach to measure the effects of the automatic
transformation method, which is then applied on several benchmarks.

The contributions of this Chapter have been published in an article at the
Compiler-assisted Correctness Checking and Performance Optimization for HPC
workshop (C3PO) in 2020[76].

6.1 Defining the boundaries of overlapping inter-
vals

The goal of this study is to create and extend overlapping possibilities in a
program with MPI communications. The method we propose in this Chapter is
based on a reorganization of the code, more precisely we will move instructions of a
function so that the communications are overlapped by independent computations.
While Section 6.2 will focus on the movement of statements, this Section gives
details on how the boundaries of overlapping intervals are defined in this study.

Existing transformation methods to create overlapping intervals in MPI codes
are limited to the nearest dependent statement[72]. The solution we propose does
not consider those statements as boundaries for overlapping intervals. Instead,
these statements will be moved along with the nonblocking calls. This allows us to
reach independent statements that might be beyond the dependencies. Thus the
code is reorganized by gathering the independent statements inside the overlapping
interval, while the dependencies are gathered outside the overlapping interval.
While data dependencies are no longer limitations for the overlapping potential in
our approach, there are still several obstacles related to the control flow. In the
coming paragraphs, we detail each kind of boundary our transformation method
faces.

Limits of the calling function

The application of the method we propose in this Chapter is limited to the
body of the function calling the nonblocking communication. Considering the in-
terprocedural context would require additional analyses which were not the focus
of this study, including an interprocedural alias analysis to determine the depen-
dent statements, and the handling of recurrent function calls. Unless the function
has been inlined by a previous optimization pass, it is not possible to extend the
overlapping interval across the boundaries of the calling function.

92



Automatic Exposition of Overlapping Potential

As a consequence, if no other limitation obstruct the movement of the nonblock-
ing calls, the initiation call would need to be inserted above the first statement of
the function, and the completion call right above the relevant procedure exiting
call.

Other MPI communication calls

There are situations where an MPI nonblocking call cannot be moved beyond
another MPI function call. Such situations are the displacement of an initiation
call beyond another initiation call regardless of their dependency relationship, the
displacement of a completion call beyond another completion call regardless of
their dependency relationship, the displacement of dependent MPI calls and of
several functions such as MPI_Init, MPI_Finalize, or MPI_Barrier. The first
two functions define the MPI environment, which is the scope inside which com-
munication calls are allowed. As for the Barrier, since it does not have any
dependency, the transformation method is unable to determine a correct insertion
position, and is unaware of the reason why a synchronization would be needed.
Consequently, these calls should not be moved nor overlapped.

The remaining constraints, which are dependent MPI calls, other initiation
calls when displacing an initiation call, and other completion calls when displacing
a completion call, exist for two reasons. First is the order of collective communica-
tions. All MPI processes in a communicator must initiate the collective primitives
in the same order, regardless of their blocking or nonblocking nature. In order to
abide to this rule and avoid breaking the order of collective calls, the movement
of initiation calls has to be limited. The second reason is to avoid the destruction
of other overlapping intervals.

1 MPI_Ibcast(&A, ..., &req);
2 MPI_Bcast(B, ...);
3 B = ...;
4 MPI_Wait(&req, ...);

Figure 6.1 – Example of a stopped analysis because of an MPI communication call

Listing 6.1 shows a situation where the optimization of one communication
can harm another. Indeed, the automatic optimization method cannot determine
which communication should prevail. As a consequence, it handles MPI commu-
nications from a function in the order in which they appear in the IR and thus,
as a default, prioritizes the first MPI communications. In this example, let us
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suppose it just transformed the broadcasting call on variable A, resulting in the
shown snippet of code, and is about to analyze the broadcasting call on variable B.
Theoretically nothing prevents us from overlapping the newly inserted MPI_Wait
since it is matched with the first broadcasting call, which is independent of the
second broadcast. However, in doing so, it will have to move line 3 out of the
overlapping interval of the first broadcast, rendering it empty, thus undoing the
previous transformation.

To summarize, when moving the initiation call, it is only allowed to pass
through independent completion calls. When moving the completion call, it is
allowed to pass through other independent initiation calls (both blocking and non-
blocking). The encompassing of a communication is permitted, resulting in total
or partial overlapping of intervals. However, an inner communication cannot break
out of the interval of another.

Other call sites

As a whole, the other call sites are also boundaries for the overlapping interval,
partly because of the lack of interprocedural analyses.

The first reason is because of the side-effects a function call can have on the
dependencies of the communication. Even if the dependency is not explicitly given
as an argument to the call site, it is possible for the called function to access or
modify it through memory operation or if it is a global variable or a class member.
It is possible to embark the call site along with the other dependencies. However,
since the effect of the function on other values is unknown, it would require us to
embark every further statement, thus nullifying the point of overlapping.

The second reason is the potential presence of collective MPI communications.
As explained above, overlapping the call site can break the order of collective calls.

The last reason has more to do with the semantics of the program, and behav-
iors that cannot be determined at compile-time. Let us consider a function whose
goal is to provide a timestamp that will be used to compute the execution time
of a portion of code. These functions usually do not have any argument, and the
compiler would fail to detect its dependencies. Yet, moving communication depen-
dencies and other computations beyond these timing functions would break the
measurements, and thus the overall behavior and expected output of the program.

Dependencies in control flow structures

Those are the dependencies which are in a control flow scope whose nesting
level is deeper than that of the relevant nonblocking call. This is the case when a

94



Automatic Exposition of Overlapping Potential

dependency is found in a conditional branch or a loop, as shown in Figure 6.2a.
In these situations, our approach would try to overlap the control flow structure.
In this Figure, it would try to overlap the basic block B. However, if B contains a
dependency, then overlapping it would lead to a race condition. Yet, this depen-
dency cannot be moved either, since it is only executed if the control flow follows
a path that includes the B.

A

B

MPI_Irecv

(a) Overlapping conditional
branches

A

MPI_Irecv

C

(b) Limitation by a fork node

Figure 6.2 – Examples of MPI operations and control flow scopes

In these situations, the overlapping boundary is limited at the latest statement
before entering this scope. In the example, the MPI_Irecv would need to be
inserted right above the first instruction of its basic block, while remaining inside
the block.

Hoisting out of a control flow structure

Inversely, if the communication to overlap is inside a control flow structure
such as a loop or a conditional branch, then it cannot be hoisted to the outer
scope. This is illustrated by Figure 6.2b. The MPI_Irecv is only executed if
the branching condition in node A allows it. Hoisting the call up in that basic
block would allow its execution in every circumstance, regardless of the branching
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condition. A similar problem exists when communications are inside loops. They
cannot be hoisted out of the loop since this transformation would change their
execution count. In these situations, the nonblocking calls have to remain in their
control flow scope.

6.2 Increasing overlapping potential through auto-
matic reordering of instructions

Using nonblocking communications puts an additional burden upon the de-
velopers of MPI applications because of their complexity and because they offer
less security guarantees. The goal of this contribution is to define a method to
automatically add overlapping potential to an existing code, with minimal human
intervention to reduce the workload for the developers. This is first done by trans-
forming every existing blocking calls into their nonblocking version. Then, for all
nonblocking calls found in a function, whether they were newly inserted or preex-
isting, the method we describe reorganizes the code in a way that would maximize
the length of overlapping intervals. This step is done by moving dependencies
along with the initiation and completion calls.

6.2.1 Enabling overlapping potential

Let us begin by considering the blocking calls from a function. Their overlap-
ping potential is, by definition, null. In order to allow overlapping of the commu-
nication, we need to transform the blocking call into its nonblocking version. The
conversion to the nonblocking form requires the insertion of three elements: the
request, the initiation call, and the completion call.

First, the request is inserted right above the existing blocking call. This is
performed by creating an instruction which will allocate memory on the stack for
this request. Once the request has been inserted in the basic block containing the
communication, the initiation and completion calls can be inserted. In MPI, the
prototype of nonblocking initiation functions share many similarities with their
blocking version. The argument list is the same, with the addition of a pointer
to the request in the nonblocking version. Thus, a new call instruction is created.
The called function is the nonblocking form of the targeted blocking call. The
argument list is copied over, and is appended with a pointer to the newly inserted
request. The old call site is then swapped with it. Finally, an MPI_Wait is inserted.
This is done by creating a call site right below the previously inserted initiation. Its
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argument list is made of a pointer to the same request, and a MPI_STATUS_IGNORE
as the status.

There is an exception when replacing an MPI_Recv. The point-to-point re-
ception has a distinctive characteristic of accepting an MPI_Status* as its last
argument. However, its nonblocking form, MPI_Irecv delegates the handling of
the status to the matched completion calls. Consequently, we first need to remove
the pointer to the status from the original argument list before appending the
request in. It is given to the completion call instead, which will use it rather than
the MPI_STATUS_IGNORE default keyword, thus preserving the subsequent uses of
the status.

6.2.2 Creating and increasing overlapping potential

The transformation of blocking calls leaves no blocking communications behind
in the code of a function. However, those are still devoid of overlapping potential,
since the completion call immediately follows the initiation call. There are no
computations to hide the communication. Henceforth, the goal of this Section is
to effectively create and extend overlapping potential, for both newly inserted and
existing nonblocking communications.

The creation and extension of overlapping potential is done by increasing the
length of the overlapping interval. This is done by moving both the initiation and
completion calls so that computation ends up inside this interval. This method
must preserve the dependencies and the semantics of the program.

First, the dependency slice of the communication must be built. As described
in Section 4.1.2, we build a dependency graph. It contains all instructions that
read or write to one of the arguments of the communication, be it a communication
buffer or the metadata such as the root identifier, size of the message, or even the
type of the data. Every variable required by the communication must be identified.
The dependency slice is iteratively built, which means that it will also cover the
dependencies of those variables, and so on.

With the identification of the communication dependencies, it is possible to
move the nonblocking calls while preserving them and putting independent state-
ments inside the overlapping interval. Algorithm 4 describes the moving of the
initiation call and its dependencies. To that end, the notion of immediate dom-
inance is extended from basic blocks to statements. A statement s1 dominates
another statement s2 if s1 belongs to a basic block dominating the basic block
containing s2 or, when s1 and s2 are in the same basic block, if s1 precedes s2.
The post-dominance is also extended in a similar fashion.
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Algorithm 4 Finding an insertion point for the initialization call
procedure insert_mpi_init_call(function)

for all mpi_call ∈ function do
list_stmt_init ← ∅
V ← getDependencySlice(mpi_call)
stmt ← mpi_call.get_stmt()
while stmtImmovableInit(stmt, mpi_call.get_stmt(), V ) = false do

stmt ← immediate dominator(stmt)
if stmt ∈ V then

list_stmt_init ← list_stmt_init ∪ {stmt}
insert_init ← stmt
Move statements from list_stmt_init to the point of the code where stmt

is the immediate dominator, and insert the init call
procedure stmtImmovableInit(stmt, call_stmt, V)

if stmt is the first statement of the function then return true
for all tstmt between stmt and its immediate dominator do

if tstmt ∈ V then return true
if call_stmt is between stmt and its immediate post-dominator then return

true
if stmt is a call site then

if not IsSafeMPI_up(stmt) then return true
return false

Algorithm 4 consists in visiting every statement, going from immediate domina-
tor to immediate dominator until one of the stopping points defined in Section 6.1 is
found. The function stmtImmovableInit determines if the transformation method
has reached such a point. The checks performed in that function correspond to
one of those boundaries.

The first, which checks if the relevant statement is the first of the function,
determines if we have reached the top of the function calling the communication.

The second checks if there is a dependency between the statement and its
immediate dominator. It is the situations illustrated in Figure 6.2a. Assuming
the insertion method has reached the top of the basic block containing the MPI_-
Irecv, its immediate dominator would be node A. Thus, to determine if the
communication can be moved to that basic block, the safety of B must be ensured.

The next step determines if the insertion method is trying to go to the outer
control scope. The insertion point must be control equivalent to the original call
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site location. If the processed statement is not post-dominated by the initiation
call, then the equivalence is broken and the statement is in another control scope,
making the insertion site unsafe. As shown in Figure 6.2b, if the insertion method
reached the bottom of the basic block A, then its immediate post-dominator would
be C, and not the communication anymore. The previous two checks are also
applicable on loops.

Finally, it checks if the statement is a call site. If so, and if the statement is not
one of the "overlappable" functions by the initiation call, then the upper bound
for the interval must be set below that statement. Dependencies and nonblocking
calls should then be inserted there.

Data dependencies, which are put into the list V , are not boundaries. Instead,
each time the method encounters an element of that list, it is appended to list_-
stmt_init, which is the queue of statements that need to be moved along with
the initiation call. It also contains the newly inserted request. Once the boundary
has been found, the initiation call is moved below it. Then, starting from the head
of the queue, dependencies are inserted above the initiation call, and then above
each other. This preserves the order of the dependencies.

The same method is applied on the completion call, with the post-domination
replacing the domination, and vice-versa. The called function to check the "over-
lappability" of a call site invoking an MPI function (IsSafeMPI_up in Algorithm 4
for the initiation call) should also reflect the limitations set in Section 6.1.

The transformation method we described in this Section preserves the execution
context of the communications, their dependencies and their execution order, and
is conservative in regards of other MPI communication calls and of other function
calls that might contain side-effects on dependencies or MPI communications, all
the while reorganizing the code to favorise the overlapping intervals. Indeed, all
independent statements, i.e. statements that were not in V , remain untouched,
thus ending up between the initiation call and the completion call.

Processing of existing nonblocking calls

The matching of the newly inserted nonblocking calls is straightforward since
the completion is right below the initiation call. The matching of existing nonblock-
ing communications is less obvious, and the method proposed in Chapter 5 enables
this. However, we only consider nonblocking communications whose matching is
"simple", which are communications where an initiation call site is matched to
one and only one completion call site. Inversely, the said completion call must
complete that one initiation alone.

It is possible for nonblocking communications to be completed by multiple

99



distinct static completion points, as long as they post-dominate the initiation
as a set. It is also possible for a completion call, for example MPI_Waitall, to
terminate multiple distinct communications. As a consequence, we would need
to consider the dependencies of all of those initiation calls, and move those calls
accordingly. Since the "simply" matched nonblocking communications behave the
most similarly to the converted ones, we decided to focus on those in this study.

The handling of the "simply" matched nonblocking communications is similar
on almost all points to the handling of the newly inserted blocking communica-
tions. Only the creation step is skipped (creation of the request, initiation, and
completion calls). The content of the existing overlapping interval is assumed to be
safe. This can be ensured by executing the verification pass defined in Chapter 5
beforehand.

6.3 Applying automatic increase of overlapping po-
tential on benchmarks

Very similarly to the verification pass described in Section 5.3.1, the transfor-
mation method we propose in this Chapter has been implemented as an LLVM 12
plugin pass. It operates on the IR of each function in a translation unit. The IR
is also generated using Clang. This implementation uses the same pass pipeline to
adapt the code to facilitate its handling, and the same alias analyses to build the
dependencies. The transformation pass is then applied on this prepped IR with
opt. This results in a modified version of the IR where all communications are
transformed into their nonblocking version, and where overlapping intervals have
been automatically extended according to the method we previously described.
Finally, this IR is given to Clang, which detects the file type to carry on the
compilation chain, resulting in a binary object, ready to be executed or linked.

6.3.1 Measuring the overlapping of a nonblocking commu-
nication

In order to evaluate the capacity of our transformation method to create over-
lap, we need to be able to measure the amount of overlap it introduces in a function.
One solution would be to measure its execution time before and after performing
the transformation. Indeed, an increase of the overlapping potential of MPI com-
munications should lead to lower execution times thanks to the more efficient
use of computing resources. However, studies on the ability of existing MPI imple-
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mentations to progress nonblocking communications showed difficulties to improve
performances[42]. Some implementations need to be specifically configured to en-
able asynchronous progression. Even with the correct setup, most situations show
no performance improvement, and in several cases the use of nonblocking commu-
nications worsen the results compared to the use of their blocking version. The
reason can be multiple: lack of a proper progression mechanism, or competition
between computations and progression for resources.

Instead of measuring the execution time, we decide to evaluate the performance
of our transformation method by using a static metric. We settled on the number
of IR instructions between the initiation and the completion call. This corresponds
to the length of the overlapping interval. Since multiple paths might exist in these
intervals, we compute the length of the shortest path.

For example, when the interval contains conditional branches, it is, in most
cases, impossible to determine which branch should be preferred since the branch-
ing condition might depend on the inputs of the program, and these branches
might not have the same number of IR instructions. Similarly, if there is a path
from the header of a loop to its exit node, which indicates the possibility of not
executing the loop, then the length of the overlapping interval will not include any
of the iterated instructions.

Consequently, when a communication has an overlapping interval of length n,
then there is at least n IR instructions between its initiation and completion calls.

6.3.2 Results

We applied the transformation pass on the five benchmarks used in this study:
miniMD, miniFE, Lammps, Pennant, and MCB. We first measure the length of
existing overlapping intervals with a modified version of the verification pass we
defined in Chapter 5. Since it tries to match all nonblocking communications, it
is able to know which initiation is caught by which completion, and compute the
shortest path between them. It is modified to output these distances in a table.
The transformation pass is then applied. The intervals are measured again once
each communication in a function has been transformed, and outputted in another
table. We also collect statistics on the limitations of overlapping intervals.

The correctness of the transformations is ensured by executing the benchmarks
before, and after the transformation pass. The results of both executions are
compared, and for all five tested benchmarks, no discrepancies were found.

Table 6.1 and Table 6.2 respectively contain statistics on the length of over-
lapping intervals before and after the application of the transformation pass. It
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succeed in significantly increasing the number of nonblocking communications,
from a fourfold increase in Pennant to nearly thirty times more in Lammps. Note
that while there was six nonblocking communications in MCB and four in Pen-
nant, we could not compute their overlapping potential because of the initiation
calls couldn’t be matched together with their completion calls. However, with the
addition on the transformed blocking communication and their overlapping inter-
val, the median length of the intervals has been lowered. In each benchmark, the
majority of those are at most one IR instruction long.

Table 6.3 shows statistics on the reasons why overlapping intervals are limited
in these benchmarks. Each nonblocking communication has two stopping reasons:
one for the upper bound of the overlapping interval (on the side of the initiation
call), and one for the lower bound (on the side of the completion call).

The second to last row shows that our transformation pass encounter a sub-
stantive number of errors when analyzing the code. These errors prevent the
transformation pass from further extending the overlapping interval. However,
the placement of the initiation and completion calls, and their dependencies, is
still valid, and will not cause critical errors when executing the program. These
errors can come from failures to identify branches or loops, potentially because of
a pattern in the control flow that our pass does not support, from unmatched and
existing nonblocking communications, or from more complex matches that this
pass does not yet handle.

6.4 Discussion

6.4.1 Measuring the overlap at compile-time

The method described in Section 6.3.1 to estimate the overlapping potential
at compile-time has one major flaw. The measure we propose does not take the

Table 6.1 – Original overlapping interval length (in number of IR instructions)

Lammps Pennant MiniMD MCB MiniFE

Nb. initiation calls 114 4 7 6 5

Total length 1916 0 88 0 44

Max length 65 0 15 0 13

Median length 12 0 14 0 11
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Table 6.2 – Transformed overlapping interval length (in number of IR instructions

Lammps Pennant MiniMD MCB MiniFE

Nb. initiation calls 3018 16 55 47 29

Total length 5413 15 188 44 84

Max length 84 4 17 3 13

Median length 1 1 1 1 1

Table 6.3 – Overlapping interval boundaries statistics

Lammps Pennant MiniMD MCB MiniFE TOTAL

Function Limits 271 0 4 3 4 282

Other MPI 2477 0 40 3 6 2527

Other call sites 5 2 2 2 16 31

Loop Dependency 46 0 0 0 0 46

Branch Dependency 935 0 19 8 16 978

Loop limits 160 12 3 1 6 182

Branch limits 852 14 16 61 2 944

Analysis errors 1290 4 26 16 8 1340

TOTAL 6036 32 110 94 58 6330
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execution time of an IR instruction into account. Furthermore, the various kinds
of IR instructions might not have an uniform execution time. For example, an
alloca, a store, or a load might not take the same number of cycles to be
processed. It might depend on the data types involved in the instruction, how it
is translated to machine code, and the hardware capabilities to compute and store
instructions and registers.

Ultimately, this prevent us from obtaining an estimate on the subsequent re-
duction of the execution time. Indeed, given the limitations of this measurement
method, we are unable to estimate the execution time of an interval of n IR in-
structions. Moreover, it is also not possible to affirm that an interval of length
n+m will be better than an interval of length n in another snippet of code. It is
possible that the instructions in the second interval weight more than the those in
the first, resulting in more communication time being hidden.

Nonetheless, this method is still able to compare the gains in overlapping po-
tential on each call site. An interval of length n + m, with m being a positive
integer, on a call site will be better than an interval of length n for the same
communication. The transformation method extends the intervals by moving the
initiation and completion calls further away from each other. As a consequence,
the first interval necessarily includes the first.

6.4.2 Automatic creation of overlapping intervals

As shown in Table 6.1 and Table 6.2, the transformation pass was able to ex-
pose overlapping potential in the tested benchmarks. It succeed in both extending
the existing overlapping intervals, and creating new possibilities for overlapping
previously blocking communications. Moreover, Table 6.3 contains hints to sit-
uations where the transformation pass can be improved. Almost a third of the
reasons that prevent our approach from further expanding an overlapping inter-
val is linked to conditional branches. Improving the handling of these situations
with more complex transformations might conduct to more overlapping potential.
The other noticeable obstacle is the presence of other MPI communications. It
is caused by successions of communications whose interval obstruct each other.
Other interesting trails for further improving the transformation method are an
interprocedural analysis, and a better handling of loops. Although they represent
a small amount of limiting factors, they can multiply the length of intervals. An
interprocedural analysis can help, especially when MPI wrappers are involved.

However, the increase in the number of nonblocking communications does not
translate to a similar increase in the overlapping potential of these benchmarks.
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While it was able to introduce overlapping in places where there was no asyn-
chronicity, the vast majority of the created intervals do not allow any possibility of
hiding communication times. This is visible in the median length of these intervals.
More than half of those are, at most, one IR instruction long. Furthermore, that
instruction cannot be a call, because of the lack of an interprocedural analysis to
determine its safety. Consequently, a one instruction long interval will most likely
not be enough to hide the communication, resulting in a partial overlap at best.

Additionally, we do not have, at compile-time, an estimation of the duration
of a communication. Yet, in order to have efficient overlapping, there must be
enough computation to hide the communication. Thus, the length, or execution
time, of the overlapping interval will not matter if the communication times are
too short in comparison.
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Chapter 7

Maximization of Overlapping
Potential through Compiler-Assisted
Code Transformation

In Chapter 6, we have proposed a method to automatically create and extend
existing overlapping potential for both existing blocking and nonblocking MPI
communications at compile-time. While it succeeds in exposing new overlapping
possibilities in several benchmarks, and thus room for performance improvement,
most of the created overlapping intervals offer very little opportunities. They often
do not contain any instruction, other than the initiation and the completion calls,
which means they are equivalent to a blocking communication. Nonetheless, the
results from the automatic creation of overlapping intervals can give developers of
MPI applications some insights to improve the asynchronicity of codes.

In this Chapter, we propose a method to further improve and maximize the
overlapping potential gains achieved with the automatic transformation pass we
defined in Chapter 6. It consists in providing feedback and suggestions of code
transformations to the developers. It relies on information that can be retrieved by
a static analysis tool to propose code modifications to create overlapping intervals.
Since this approach is no longer a fully automatic transformation of the code, and
given the size of HPC simulation codes, it is necessary to target the transformations
to perform. This is why we also propose a method to select MPI communications
whose overlapping interval will be optimized.
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7.1 Providing code insights with compiler gener-
ated feedback

The provision of feedback, and more specifically of suggestions of code modi-
fications, to the developers is another solution to the developers to help them in
improving their code. The goal of the feedback and suggestions we define in this
Section is to guide the developers in carrying on with the optimizations, and fur-
ther improve the overlapping potential created and extended by the transformation
pass described in Chapter 6.

7.1.1 Towards a tool assisted optimization method

The results of the automatic creation and extension of overlapping potential
method we proposed in Chapter 6 reveals mixed results. Despite the benefits of
an automatic approach in reducing the developer’s burden and in being scalable
in regards to the size of the code, the overlapping intervals it created are under-
whelming. The results in Section 6.3.2 exhibit that, for most existing blocking
communications, the created overlapping interval contained no other instruction
than the initiation and completion calls, rendering it useless when compared to
their blocking forms. The same effect is observed on existing nonblocking commu-
nications: the size of their overlapping interval did not increase with the application
of the optimization pass.

In order to obtain larger overlapping intervals, we propose a method to provide
information back to the developers, so that a human can intervene and overcome
the limitations of the transformation pass detailed in Section 6.4.

One of the limitations that can be overcame by human intervention are the
function calls. Our approach being intra-procedural, it is oblivious of the depen-
dencies and effects a function call can have on a buffer. Having a human stepping in
helps in disambiguating the dependencies and the behavior of the function. Given
the necessary information, such as the dependencies, and with the knowledge on
the semantics of the code, a developer should be able to rapidly determine if a
function can safely be overlapped.

Looped communications and communications residing in conditional branches
are also complex to handle in the intermediate representation. This would involve
moving a communication and its dependencies out of a control structure, or require
the cloning of the whole control structure to displace in order to gain overlapping
potential. Because of this complexity, our method does not cover these situations.
The developer intervenes directly on the source code, with the knowledge on which
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branch or loop is limiting the overlapping interval, can result in a higher code
quality with regards to its asynchronicity potential.

All these situations are complex and time consuming to automatically handle
at compile-time. It would require extensive development time, notably due to the
diversity of coding patterns that it would have to manage. Without prospect of
improvements through an automatic transformation of codes, a tool-assisted ap-
proach is necessary. Retrieving feedback on the overlapping potential of a code can
not only help developers of MPI applications in improving their code, but also help
developers of static analyses and transformation tools in pinpointing communica-
tion and computation patterns where an optimization becomes worthwhile. Such
approach would be more efficient in maximizing overlapping and asynchronous
performance in an MPI program.

7.1.2 From automatic optimization to feedback generation

The approach we propose in this Chapter consists in building a feedback pro-
viding tool based on information that can be fetched by a compile-time analysis.
The idea is that developers should be able to use this tool to learn more about
their code potential and opportunities for improvement. Whereas the automatic
transformation operates like a black box, this method involves the developers in
the optimization method.

Such a tool can be built upon the automatic transformation pass we described
in Chapter 6. Indeed, it holds all the information needed to provide feedback that
will help developers improving their code. As explained in the previous Chapter,
it is able to determine the dependencies of a communication. As a consequence,
it is able to build a list of instructions that it would move in order to create and
maximize the overlapping interval. This allows us to add the dependencies to the
feedback message to inform the developers on the obstacles and the instructions
they need to be aware of when manually modifying the code. Moreover, it is
possible to base the feedback upon the boundaries identified by the automatic
transformation pass, allowing the developers to intervene, decide the viability of
further modifications, eventually leading to more overlapping potential.

All in all, this amounts to the feedback loop shown in Figure 7.1 which helps
and incites developers to use nonblocking communications in their code. First, a
source code file containing MPI communications, both blocking and nonblocking,
is sent to the verification pass. This first step detects any misuse of the com-
munication and their buffers. Once the code has been cleared of any potential
mistakes, it is sent to the transformation pass which will create and extend over-
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Original Source Code Verfication of
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Optimized Object Code

Information and
Modification Suggestions

Modified Source Code

Figure 7.1 – Feedback loop to improve the overlapping potential of an MPI code

lapping possibilities. This results in an object file with all the transformations the
automatic pass performed, and a list of suggestions. These suggestions should help
the developers to manually modify their code to transform blocking communica-
tions into their nonblocking counterparts and achieve higher overlapping potential
by overcoming boundaries that the automatic pass could not. It is then possible
to validate these modifications by giving the modified source file to the verification
pass once again.

Ultimately, the developers can either rely on the code created by the automatic
optimization pass, or apply the suggestions given to them to manually improve
the asynchronicity of their code. This method will incite them to use nonblocking
communications thanks to the provision of feedback to correct and adapt MPI
codes, which will also help in raising awareness on overlapping opportunities.

7.1.3 Emitting suggestions from limitations

Besides the analysis failures, several of the limiting factors identified by the
automatic transformation method for the overlapping intervals can be leveraged
to generate feedback and suggestions of code modification. As introduced in the
previous Chapter, the transformation pass relies on an analysis of the CFG and of
the dependency slices of the communication. Using this information, it transforms
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and structures the IR to favor asynchronicity by displacing the nonblocking calls
and their dependencies. The transformation of a communication stops when one
of the limiting factors is found.

Before moving on to the next transformation, the transformation pass provides
a justification why it decided to insert the nonblocking calls and the dependen-
cies at a specific location in the IR. From each type of boundary found by the
optimization method, along with the information on its location and cause, it is
possible to infer suggestions of modifications and provide them to the developers.
In this study, we focus on the following stopping reasons: other MPI communica-
tion calls, loop boundaries, branch boundaries, dependency in a branch or a loop,
and dependency on a branching condition.

Other MPI communication calls

As explained in Section 6.1, there are several situations where the automatic
transformation approach is unable to move nonblocking calls beyond other MPI
communications. It lacks information on the worth of a communication, and de-
faults to a "first come, first serve" in the IR priority system. Having the developers
intervene can help in improving the code, since they should have knowledge on
which communication should get the priority for overlapping intervals.

Here, the feedback should contain the location of communication call prevent-
ing the analysis from further transforming the code. We would then suggest devel-
opers to decide if it is worth to manually overlap the said communication. Applied
to Figure 6.1 for the second receive operation, the returned information should con-
tain the location of the first initiation call. The suggestion given to the developers
would be to look at the duration of the communications to determine which should
overlap the other. If the second is more worthy, then the developer would have
to manually transform it into its nonblocking form, and move the newly inserted
MPI_Irecv and its dependency on the statement at line 2 above the first reception.

Branch or loop boundaries

Nonblocking calls whose overlapping interval is limited by the boundaries of
branches are calls that are inside conditional branches. The automatic transforma-
tion pass cannot simply move the nonblocking calls out of the branch it is residing
in without having to perform complex transformations on the CFG. Instead, a
human eye can inspect the issue, determine the possibility of the transformation,
its worth, and decide to apply the transformation directly on the source code.
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Figure 7.2 – Splitting and moving a conditional communication
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The information returned to the developers should contain the location of the
incriminated conditional branch and the dependencies of the communication. From
this feedback, we suggest developers to split the branching containing the MPI
communication, as shown in Figure 7.2b. Manually performing this split is pos-
sible on the source code with the help of the information given by the feedback.
This helps in increasing the overlap of the communication originally in node B.
Vertices A1 and C2 would contain all dependent statements that were in vertices
A and C respectively. A2, B′, and C1 contain instructions independent of the
communication, thus forming the overlapping interval. The nodes with the non-
blocking calls contain dependencies that need to be executed under the condition.
Obviously, the conditions leading to the execution of the initiation and completion
calls must be the same as the condition leading to the execution of the MPI_Recv
at the end of node A in Figure 7.2a. With the split form, it is possible to move
the nonblocking calls and their dependencies while preserving the condition for
executing the call.

Similarly to conditional branches, the automatic transformation pass does not
move MPI communications in loops to the outer scope. The feedback for these
communications must contain the location of the loop, its boundaries, and the
dependencies of the communication, so that it helps developers in determining a
course of action to increase the overlapping potential. The suggestion to resolve
this issue is also similar. In this situation, the developer should fission the loop
in multiple parts, one containing the independent statements that will end up in
the overlapping interval, and the two remaining with the initiation, completion,
and their dependencies. These two parts can then be moved, thus overlapping
instructions that were originally in the outer scope, comparably to how the vertices
with MPI_Irecv and MPI_Wait are moved in Figure 7.2b.

Loop or branch dependency

While our transformation method is able to recognize and move the dependen-
cies along with the nonblocking calls, it cannot move those that are inside control
flow structures, or loops and branches. This situation also requires extensive trans-
formation of the CFG in order to move these dependencies without breaking the
correctness of the program. For communications which are hindered by these de-
pendencies, we also defined feedback and provide suggestions to overcome them.
The feedback must contain the incriminated dependencies, as well as the location
of the control flow structure containing these statements. The suggestion we give
developers is to fission the loop or the branch in two parts.

Figure 7.3 illustrates the solution that is suggested to developers. Vertex B,
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Figure 7.3 – Splitting and moving a conditional dependency

which originally contained the statement that modifies the reception buffer, is
split, with one part containing the instructions independent of the communication,
noted B′ in Figure 7.3b, while the other contains the dependencies, and thus
the statement modifying x. The developer can then move the second part along
with the completion call and the other dependencies from the outer scope. All
subsequent modification or reading of x must also be displaced and the order of
these operations preserved. The same kind of suggestion can be provided when x
is in a loop.

There is one exception when the dependency is on the branching or looping
condition. In other words, when the decision to go inside a conditional branch, or
the number of iterations in a loop, is dependent on an MPI communication. In this
situation, the fission of the control flow structure is impossible. Indeed, the whole
structure, from the fork to the join nodes, is dependent on the communication. In
these situations, it is necessary to move the whole loop or branch along with the
nonblocking calls, and with all of their dependencies.
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7.2 Determination of a metric to identify impactful
transformations

In Chapter 6, we proposed a solution to automatically transform all existing
blocking communications into their nonblocking forms in an MPI code, and to re-
organize the code to favorise overlapping intervals. It was a very scalable approach
since the automatic approach requires little involvement from the developers, and
can be applied on large codes with minimal impact on the development times,
since the transformations are performed at compile-time.

Contrary to that approach, what we propose in this Chapter requires human
intervention. Yet, the size of HPC codes range from a few thousand to several
hundred thousands lines of code, with dozens to thousand of static calls to MPI
communication functions. For example, as illustrated in Table 6.2, the automatic
transformation pass analyzed and modified more than three thousands MPI com-
munications in Lammps. A developer cannot, in a reasonable time frame, analyze
and transform all of the MPI communications in an HPC application. This is why
it is necessary to help developers in picking a subset of communications on which
they can focus on and analyze.

In this study, we reduce the number of MPI communications to address by
sorting them by their communication time. For each static MPI call site, we de-
termine the total time spent to perform the communication. The calls which have
the biggest impact on the global execution time of the program will be considered.

This metric serves a dual purpose. First, it helps in determining if a com-
munication is worth optimizing. The calls having a very low impact on the ex-
ecution time of the application are not worth investigating. Should we succeed
in fully overlapping the communication, the overall gain on the execution time of
the application would still be very small, and barely noticeable. We would need
to optimize the overlapping interval of several of such communications and fully
overlap them in order to observe an effect on the execution time. On the opposite
side, successfully overlapping one significant communication potentially leads to
noticeable gains on the execution time. It is much more time efficient to analyze
and optimize one communication which can take eight to ten percent of the execu-
tion time of an application, than analyzing and optimizing several communications
with an impact of a few tenths of a percent each.

Secondly, when multiple MPI communications are competing for their over-
lapping interval, knowing the communication time, and thus the impact of each
communication helps in prioritizing one over another. The more time consuming a
communication is, the more overlapped it should be. For example in Figure 6.1, let
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us suppose the broadcasting operation of buffer B has more impact on the perfor-
mance of the code than the other broadcasting call. The reasons to this difference
can be multiple (size of the expected message, or distance from the sender) and
they cannot always be exploited at compile-time to determine the priority. In this
situation, knowing that it is the more impacting communication, the developers
can prioritize its overlapping interval, thus increasing the actual overlap.

7.3 Experimental results

In this Section, we first assess the ability of the filtering method described
in Section 7.2 to reduce the number of MPI communications to consider and its
impact on the optimization of the overlapping potential. In a second time, we
evaluate the effects of the generation of feedback and their application on the five
benchmarks considered for this study.

7.3.1 Determining the subset of communications to address

We first determine the subset of communications that are worth investigating
in each benchmark by profiling them. To that end, we use mpiP [77] (version
3.4.1), which is a profiling library for MPI programs. It can be linked to the
executable of the targeted application, and instruments the behavior of MPI calls
so they can output runtime statistics related to each communications call site per
MPI processes. The returned data contain the number of times a call was executed,
the mean (over its execution count) execution time for one call site, or the size of
the message. The data also contain the ratio of execution time for a call site to
the execution time of the whole program (App%), which is the metric we use to
measure the impact of a communication.

We successfully instrumented the five benchmarks we considered for this study.
They were run on a cluster composed of NUMA nodes with two AMD Epyc Rome
processors, each one supporting 64 physical cores and 2 threads per physical core.
Each core has access to 1875 megaoctets of memory. The NUMA nodes of this
cluster are interconnected with BXI. Lammps, MCB, and Pennant have been run
with 512 MPI processes, distributed over 4 NUMA nodes, each MPI process hav-
ing access to one logical core. MiniMD and miniFE are run using half of these
resources.

Table 7.1 displays the results of the profiling of MCB, Pennant, miniFE, and
miniMD. Lammps is composed of multiple modules and several input data sets are
available. Using different data sets leads to the execution of different sections of
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Table 7.1 – Weight of MPI communication calls

MCB Pennant miniFE miniMD

Num. MPI comm. calls 37 18 30 56

Total App% 14.12 13.98 9.71 12.52

Num. MPI comm. calls ≥ 1 App% 5 2 2 6

Filtered Total App% 11.85 10.47 8.34 8.68

Table 7.2 – Weight of MPI communication calls (Lammps)

1 SiH4 Si2H6 Li.bohr Li.ang 2

Num. MPI comm. calls 108 111 111 89 94 97
Total App% 54.38 43.22 53.73 51.46 34.56 16.09

Num. comm. ≥ 1 App% 14 6 10 9 6 5
Filtered Total App% 40.99 29.81 40.55 42.33 28.99 8.18

1 comb.Cu2O.elastic
2 h2bulk.nve.ang

the benchmark, some being common while others being exclusive to a given input
set. Thus, we decided on profiling Lammps using several data sets, whose name is
in the first row of Table 7.2. MiniFE has been executed using a cube of dimensions
1024. MiniMD has been run with the default in.eam.miniMD input file. We used
the leblancx4.pnt input file for Pennant, and MCB has been executed with 20000
Monte-Carlo particles per core.

First, we measure the weight of all communications for each benchmarks. This
is done by averaging the App% of each call site for all MPI processes that execute
it. This mean is then summed, thus resulting in the "Total App%" value. We
decide on a threshold of 1% for the App% which will determine the call sites that
are worth optimizing. The "Filtered Total App%" corresponds to the summed
average App% of those calls.

7.3.2 Application of the feedback-based approach on bench-
marks

The approach we propose in Section 7.1 has been implemented by adapting
the automatic transformation pass we designed in Section 6.3. Operating as an
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LLVM pass, it analyzes the IR of a function. The feedback providing part of
the pass intervenes on each detected overlapping interval, including those that
have been created by the transformation of blocking calls into their nonblocking
form. For each interval, it analyzes the reason why the initiation and completion
calls cannot be moved further. It matches this reason against a set of predefined
suggestion messages according to the possibilities defined in Section 7.1.3. Each
of those messages are then augmented with the location of the obstacle. However,
the implementation we propose is not yet able to provide the list of dependencies.
Working at the level of the IR, the dependent statements cannot be easily mapped
back to their source code equivalent.

We applied this method on the five benchmarks that we successfully profiled
with mpiP: miniMD, miniFE, Lammps, Pennant, and MCB. While we did not
apply every suggestion returned by our implementation of the method, we looked
for a diversity of feedback kinds to illustrate how each suggestion can be applied.
The correctness of the code after manually transforming the code with the help of
the suggestions is checked in two steps. First we run the verification pass defined
in Chapter 5 in order to check if the newly inserted nonblocking calls can be
matched together. Secondly, the modified benchmarks are compiled and run, and
we compare the output against a base version to check if the numerical results of
the tested problem are still valid and within the error margins. Since this study
focuses on the creation of static overlapping, the run-time performance of the
benchmarks was not measured, as detailed in Section 6.3.1.

MiniMD

The results from the automatic transformation pass applied on miniMD gave
us an example of a communication whose overlapping interval is hindered by the
limits of the branch it is residing in. Figure 7.4 is an extract from comm.cpp at line
311, the MPI_Irecv cannot be moved further up because it is in a branch. It has
been successfully matched with the completion call at line 317, and it measured
an interval of 17 IR instructions after applying the automatic transformation. The
reception has a total impact of 1.26% on the execution time of the benchmark
(1.01 from the completion call, and 0.25 from the initiation). We noticed in this
code that instructions from line 289 to 295 are all independent from the reception,
thus can be overlapped. A human analysis of the call to the function at line 295
shows it does not have any side effect on the reception buffer.

The suggestion given back by our method when a call is being blocked by the
boundaries of a branch is to fission the control structure. Such transformation is
possible here, and can lead to substantial and immediate gains. Indeed, having
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Figure 7.4 – MiniMD, comm.cpp original code, boundaries of a conditional branch

289 pbc_flags[0] = pbc_any[iswap];
290 pbc_flags[1] = pbc_flagx[iswap];
291 pbc_flags[2] = pbc_flagy[iswap];
292 pbc_flags[3] = pbc_flagz[iswap];
293
294 //#pragma omp barrier
295 atom.pack_comm(sendnum[iswap], sendlist[iswap], buf_send, pbc_flags);
296
297 //#pragma omp barrier
298
299 /* exchange with another proc
300 if self, set recv buffer to send buffer */
301
302 if(sendproc[iswap] != me) {
303 #pragma omp master
304 {
305 if(sizeof(MMD_float) == 4) {
306 MPI_Irecv(buf_recv, comm_recv_size[iswap], MPI_FLOAT,
307 recvproc[iswap], 0, MPI_COMM_WORLD, &request);
308 MPI_Send(buf_send, comm_send_size[iswap], MPI_FLOAT,
309 sendproc[iswap], 0, MPI_COMM_WORLD);
310 } else {
311 MPI_Irecv(buf_recv, comm_recv_size[iswap], MPI_DOUBLE,
312 recvproc[iswap], 0, MPI_COMM_WORLD, &request);
313 MPI_Send(buf_send, comm_send_size[iswap], MPI_DOUBLE,
314 sendproc[iswap], 0, MPI_COMM_WORLD);
315 }
316
317 MPI_Wait(&request, &status);
318 }
319 buf = buf_recv;
320 } else buf = buf_send;

Table 7.3 – Overlapping interval length of MPI_Irecv from comm.cpp at line 311,
miniMD

Original code After modification

Interval length 17 67
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Figure 7.5 – MiniMD, comm.cpp modified code

286 if (sendproc[iswap] != me) {
287 #pragma omp master
288 {
289 if (sizeof(MMD_float) == 4) {
290 MPI_Irecv(buf_recv, comm_recv_size[iswap], MPI_FLOAT,
291 recvproc[iswap], 0, MPI_COMM_WORLD, &request);
292 } else {
293 MPI_Irecv(buf_recv, comm_recv_size[iswap], MPI_DOUBLE,
294 recvproc[iswap], 0, MPI_COMM_WORLD, &request);
295 }
296 }
297 }
298
299 /* pack buffer */
300
301 pbc_flags[0] = pbc_any[iswap];
302 pbc_flags[1] = pbc_flagx[iswap];
303 pbc_flags[2] = pbc_flagy[iswap];
304 pbc_flags[3] = pbc_flagz[iswap];
305
306 //#pragma omp barrier
307 atom.pack_comm(sendnum[iswap], sendlist[iswap], buf_send, pbc_flags);
308
309 //#pragma omp barrier
310
311 /* exchange with another proc
312 if self, set recv buffer to send buffer */
313
314 if(sendproc[iswap] != me) {
315 #pragma omp master
316 {
317 if(sizeof(MMD_float) == 4) {
318 MPI_Send(buf_send, comm_send_size[iswap], MPI_FLOAT,
319 sendproc[iswap], 0, MPI_COMM_WORLD);
320 } else {
321 MPI_Send(buf_send, comm_send_size[iswap], MPI_DOUBLE,
322 sendproc[iswap], 0, MPI_COMM_WORLD);
323 }
324
325 MPI_Wait(&request, &status);
326 }
327 buf = buf_recv;
328 } else buf = buf_send;
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Table 7.4 – Overlapping interval length of MPI_Reduce from main.cpp at line 169,
miniFE

Original code After modification

Interval length 3 9

noticed that the lines 289 to 295 are independent from the communication, the
idea would be to split the reception from the sending parts, and have the reception
parts overlap the identified portion of code. Figure 7.5 shows the result of such
modification. The whole conditional structure containing the nonblocking recep-
tion call is split, and moved above the lines relating to the creation of the sending
buffer, putting them inside the overlapping interval. Its length is of 67 IR instruc-
tions after applying this transformation. Note that the OpenMP pragma causes
issues for the matching, since it introduces an additional branching condition to
check if the current thread is the master thread. However, the comparison involves
a global structure related to OpenMP, preventing the our passes from matching
back the nonblocking calls. As a consequence, we had to comment out the pragma
to measure the length of the overlapping interval.

MiniFE

Figure 7.6a shows a snippet from miniFE, main.cpp, where our method re-
ported that a communication was being hindered by a dependency in a control
flow structure. Both MPI_Reduce at lines 167 and 169 are affected. Both read
from the same buffer, and writes to buffers that are going to be used in the branch
starting at line 171. The second reduction operation is also being hindered by the
first one, since the automatic transformation pass lacks awareness about the order
of communications.

We focus on the second reduction. In this example, the automatic method re-
turns two suggestions, one for the completion call, and the other for the initiation
call. The first is about splitting the control flow structures to separate the depen-
dent and independent parts. The second, on the initiation call, is to look at the
impact of both calls to determine which should get the priority. Here, both MPI_-
Reduce have a very low impact on the execution time of miniFE, with an App%
value that is less than 0.01. Yet, swapping the communications here can lead to a
greater overlapping opportunity for the reduction on global_rss. Furthermore,
there are no risk of mismatching the order of collectives in this examples, since
there is only one possible execution flow.
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(a) Original code, dependency in a branch

167 MPI_Reduce(&rank_rss, &global_rss, 1,
168 MPI_LONG_LONG, MPI_SUM, 0, MPI_COMM_WORLD);
169 MPI_Reduce(&rank_rss, &max_rss, 1,
170 MPI_LONG_LONG, MPI_MAX, 0, MPI_COMM_WORLD);
171 if (myproc == 0) {
172 doc.add("Global␣All-RSS␣(kB)", global_rss);
173 doc.add("Global␣Max-RSS␣(kB)", max_rss);
174 }

(b) Modified code

167 MPI_Request req;
168 MPI_Ireduce(&rank_rss, &max_rss, 1,
169 MPI_LONG_LONG, MPI_MAX, 0, MPI_COMM_WORLD, &req);
170 MPI_Reduce(&rank_rss, &global_rss, 1,
171 MPI_LONG_LONG, MPI_SUM, 0, MPI_COMM_WORLD);
172 if (myproc == 0) {
173 doc.add("Global␣All-RSS␣(kB)", global_rss);
174 }
175 MPI_Wait(&req, MPI_STATUS_IGNORE);
176 if (myproc == 0) {
177 doc.add("Global␣Max-RSS␣(kB)", max_rss);
178 }

Figure 7.6 – MiniFE, main.cpp
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Table 7.5 – Overlapping interval length of MPI_Send from Mesh.cc at line 635,
Pennant

Original code After modification

Interval length 1 3

Figure 7.6b exhibits the modifications that can be applied thanks to the feed-
back. The communications are swapped, and the conditional branch is split, and
the completion call inserted before the dependency. The resulting length of the
overlapping interval is 9 IR instructions.

Pennant

Figure 7.7a contains an example of a communication whose overlapping inter-
val is obstructed by the boundaries of a loop. The complete body of the function
containing this excerpt of code can be found in Figure 5.1a. The automatic trans-
formation pass successfully determined that the MPI_Send at line 635 actually
suffers from being trapped inside the loop starting at line 631. Indeed, once trans-
formed into its nonblocking version, both its initiation and completion calls cannot
be moved out of the current iteration by the automatic transformation pass, to
preserve the execution count of the communication. This communication has an
impact of 1.19% on the execution time of the benchmark.

Following the method we defined in Section 7.1.3, the suggestion that is re-
turned to the developers is to fission the loop containing the communication to
separate dependencies and the initiation from the completion. In this example,
there are no dependencies across the iterations of the loop, and there are no write
operations that could corrupt the outbound array slvvar. Consequently, it is pos-
sible to have each iteration of the communication overlap the others by separating
the completion calls into another loop with the same properties. The resulting
code is shown in Figure 7.7b. The completion loop is replaced by a call to MPI_-
Waitall. This allows an increase in the length of the overlapping interval, as seen
in Table 7.5.

The computation of the length does not account for the number of iterations,
and only considers the shortest path between the initiation and the completion,
resulting in a low number of IR instructions. However, multiple iterations are
actually being overlapped. Also note that the matching of the newly inserted
nonblocking send and the Waitall calls suffers from the same limitations as those
mentioned in Section 5.5 because of global variables. The measurement of the

123



(a) Original code, boundaries of a loop

631 for (int mstrpe = 0; mstrpe < nummstrpe; ++mstrpe) {
632 int pe = mapmstrpepe[mstrpe];
633 int nslv = mstrpenumslv[mstrpe];
634 int slv1 = mapmstrpeslv1[mstrpe];
635 MPI_Send(&slvvar[slv1], nslv * type_size, MPI_BYTE,
636 pe, tagmpi, MPI_COMM_WORLD);
637 }

(b) Modified code

631 MPI_Request req[nummstrpe];
632 for (int mstrpe = 0; mstrpe < nummstrpe; ++mstrpe) {
633 int pe = mapmstrpepe[mstrpe];
634 int nslv = mstrpenumslv[mstrpe];
635 int slv1 = mapmstrpeslv1[mstrpe];
636 MPI_Isend(&slvvar[slv1], nslv * type_size, MPI_BYTE,
637 pe, tagmpi, MPI_COMM_WORLD, &req[mstrpe]);
638 }
639 MPI_Waitall(nummstrpe, req, MPI_STATUSES_IGNORE);

Figure 7.7 – Pennant, Mesh.cc
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length of the interval was done by copying nummstrpe into a local temporary
variable, and by replacing all its uses by this local variable.

MCB

The MPI_Allreduce at line 140 in sumOverDomains.cc from MCB is another
example where our automatic transformation pass is limited by the boundaries of
a conditional branch. The code excerpt containing this communication is shown
in Figure 7.8. It represents 2.01% of the execution time of the benchmark. The
Allreduce operation is only executed if the condition at line 137 is verified. We
have noticed the instructions following this branch are independent from the com-
munication, and can be safely overlapped. The function calls at lines 148, 156,
and 158 do not have any side effect, neither on the outbound buffer inputValue
or the inbound summedValue.

Using the suggestions returned by the approach we defined in this Chapter,
the developers can amend their code to favorise overlapping. Figure 7.9 shows
the results of such modifications. First the conditional branch is split, with the
section containing the initiation call staying in place. The section containing the
completion can be moved to overlap the independent instructions at lines 148 and
152 in the orignal code. We notice that the condition at line 156 is equivalent to
the one guarding the communication. Therefore, the completion call can simply be
moved inside the ”true” branch and overlap line 158, resulting in the code shown
in Figure 7.9. The ASSERT function call cannot be overlapped, since it contains
an exit call, prematurely ending the execution. Improperly quitting the MPI
runtime with pending communications might result in memory leaks.

While we could measure the interval length before applying the modifications
(1 IR instruction), we could not match the inserted nonblocking calls together.
Therefore, we are unable to give a size for the overlapping interval post modifica-
tion.

Lammps

We will focus on one example in Lammps, at line 369 in compute_reduce.cpp,
with a loop of MPI_Allreduce Figure 7.10a contains the relevant snippet of code.
The weight of this communication on the execution time of the benchmarks varies
depending on the input data, as shown in Table 7.6. The communication rep-
resents at most 1.49% of the execution time, and it goes as low as 0.14 when
using the h2bulk.nve.ang data set. The automatic transformation pass correctly
determined that this communication had its overlapping interval hindered by the
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Figure 7.8 – MCB, sumOverDomains.cc original code, dependency in a branch

137 if( Mesh.isDomainMaster() )
138 {
139 const MPI_Comm &domainMastersComm = Mesh.

getDomainMastersCommunicator();
140 MPI_Allreduce( &inputValue, &summedValue,
141 1,
142 mpiType.get_MPI_type(),
143 mpiType.get_MPI_SUM(),
144 domainMastersComm );
145
146 }
147
148 const MPI_Comm &domainGroupComm = Mesh.getDomainGroupCommunicator();
149
150 // get rank of master proc of this domain
151 // 0 is always the local ID of the master in the domain group
152 int domainGroupMasterRank = 0;
153
154 // This code just checks convention that group master rank in domain
155 // group comm is 0
156 if( Mesh.isDomainMaster() )
157 {
158 MPI_Comm_rank( domainGroupComm, &domainGroupMasterRank );
159 ASSERT( domainGroupMasterRank == 0 );
160 }
161 else
162 {
163 int domainGroupRank;
164 MPI_Comm_rank( domainGroupComm, &domainGroupRank );
165 ASSERT( domainGroupRank != 0 );
166 }
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Figure 7.9 – MCB, sumOverDomains.cc modified code

137 MPI_Request req;
138 if( Mesh.isDomainMaster() )
139 {
140 const MPI_Comm &domainMastersComm = Mesh.

getDomainMastersCommunicator();
141 MPI_Iallreduce( &inputValue, &summedValue,
142 1,
143 mpiType.get_MPI_type(),
144 mpiType.get_MPI_SUM(),
145 domainMastersComm, &req );
146
147 }
148
149 const MPI_Comm &domainGroupComm = Mesh.getDomainGroupCommunicator();
150
151 // get rank of master proc of this domain
152 // 0 is always the local ID of the master in the domain group
153 int domainGroupMasterRank = 0;
154
155 // This code just checks convention that group master rank in domain
156 // group comm is 0
157 if( Mesh.isDomainMaster() )
158 {
159 MPI_Comm_rank( domainGroupComm, &domainGroupMasterRank );
160 MPI_Wait(&req, MPI_STATUS_IGNORE);
161 ASSERT( domainGroupMasterRank == 0 );
162 }
163 else
164 {
165 int domainGroupRank;
166 MPI_Comm_rank( domainGroupComm, &domainGroupRank );
167 ASSERT( domainGroupRank != 0 );
168 }
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Table 7.6 – Weight of MPI_Allreduce, compute_reduce.cpp, line 369, Lammps

1 SiH4 Si2H6 Li.bohr Li.ang 2

App% 1.49 1.29 1.39 0.62 0.19 0.14

1 comb.Cu2O.elastic
2 h2bulk.nve.ang

Table 7.7 – Overlapping interval length of MPI_Allreduce from compute_-
reduce.cpp at line 369, Lammps

Original code After modification

Interval length 1 3

boundaries of the loop it is residing in. The loop only contains the communication,
and there are no dependencies between iterations.

The suggestion to separate the dependencies and the initiation from the com-
pletion also applies in this example. The result of the suggested manual transfor-
mation is shown in Figure 7.10b. Separating the completions from the initiations
results in a loop of MPI_Wait calls with no dependencies. Such structure is equiv-
alent to an MPI_Waitall, thus the code in Figure 7.10b. The subsequent interval
length, shown in Table 7.7 shows a little increase in overlapping potential, but it
does not reflect the overlapping of multiple communications at a time.

7.4 Discussion

In this Chapter, we leverage the limitations of the automatic transformation
pass we defined in Chapter 6 to build a tool-assisted optimization method. Based
on the boundaries of the overlapping intervals, it provides insights to the devel-
opers to guide them in improving their code for asynchronicity: location of the
boundaries, data dependencies, and a suggestion on the required amendments.
Since we strayed away from a fully automatic approach, the feedback needs to
be analyzed by the developer, and the transformation manually applied accord-
ingly. This is not a suitable approach for very large codes. In order to reduce
the workload, we propose in Section 7.2 a method to filter the communications to
optimize. It is based on a profiling of the program to determine the weight of each
communication on the total execution time of the simulation.
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(a) Original code, boundaries of a loop

368 if (mode == SUM || mode == SUMSQ) {
369 for (int m = 0; m < nvalues; m++)
370 MPI_Allreduce(&onevec[m],&vector[m],1,MPI_DOUBLE,MPI_SUM,world);
371
372 } else if (mode == MINN) {

(b) Modified code

368 if (mode == SUM || mode == SUMSQ) {
369 MPI_Request req[nvalues];
370 for (int m = 0; m < nvalues; m++)
371 MPI_Iallreduce(&onevec[m],&vector[m],1,MPI_DOUBLE,MPI_SUM,world, &req[m]);
372 MPI_Waitall(nvalues, req, MPI_STATUSES_IGNORE);
373
374 } else if (mode == MINN) {

Figure 7.10 – Lammps, compute_reduce.cpp

7.4.1 Reducing the number of calls to analyze

By profiling the benchmarks, we were able to determine the impact of each
communication call on the overall execution time of the program. Table 7.1 shows
that, at least for the four benchmarks upon which we performed this measurement,
only a few MPI communications has a significant impact. As an example in MCB,
if we only keep the communications whose impact is greater than one percent of the
execution time, only five would remain. Those five MPI calls have a total impact of
more than eleven percent, as compared with the fourteen percent when considering
every call. This would mean that the thrity-two remaining ”only” have a total
impact of three percent. It also means that the developer only needs to analyze
and transform those five calls to have a significant reduction in the execution time
of the application, especially if those communications can be fully overlapped.
The same result can be observed on the other benchmarks we analyzed. The
amount of weight filtered by the threshold of one percent varies, and can reach
half of the total weight of communication calls when using the h2bulk.nve.ang
data set for Lammps, as shown in Table 7.2. However, the actual value is still
significant enough, with more than eight percent for five calls, while the other half
is distributed over ninety-two calls. The threshold value can then be adjusted to
have more or less calls to analyze.

Nonetheless, this approach requires a preliminary execution of the targeted
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program, which defeats the advantages of having a compile-time method. As il-
lustrated with Lammps, the number of calls and the amount of preserved weight
highly depends on the picked entry data set. Furthermore, Table 7.6 shows the
impact of one specific static call site also depends on the entry data, which com-
plexifies the compile-time determination of the communications to prioritize. Pre-
liminary studies to achieve such feat should focus on identifying the factors con-
tributing to the impact of a communication. These factors might include the
number of calls, the size of the message, the number of communicants, and their
relative distance. Knowing these factors, it should be possible to determine an
order of magnitude for the weight of each MPI call, and thus making it possible
to estimate their weight at compile-time.

7.4.2 Pertinence of a tool-aided optimization for MPI calls

The proof of concept we described in Section 7.1.3 to provide suggestions of
code modifications to improve the overlapping potential of MPI programs has been
successfully applied on several benchmarks. We observed a threefold increase in the
length of the overlapping interval compared to what the automatic transformation
created, most notably in miniMD (see Table 7.3). On other occasions, it was able
to suggest us to overlap loop iterations, even though the result was not reflected
in the measurements of the intervals. This is due to the computation of this
metric: it is based on the shortest path between the initiation and the completion.
Indeed, at compile-time, the number of iterations is unknown, and there could be
only one iteration before exiting the loop and reaching the completion call. These
improvements are possible thanks to human intervention in the optimization pass
to lift several limitations. For example the ordering of MPI calls to prioritize
communications with more impact, or ensuring that more in-depth transformations
were possible and to perform them, such as the fission of loops and of conditional
branches.

Despite the positive results compared to those we found with the automatic
approach, the way we measure these results face the same limitations as those
described in Section 6.4, and more specifically on the weight of each instruction in
the interval. As a consequence, a threefold increase of the overlapping potential in
a section of the code does not necessarily leads to an equivalent reduction in the
execution time of that section. Moreover, even with the help of a static solution to
fetch the weight of each communication, the application of a suggestion ultimately
requires human intervention, even though the workload is reduced.

Beyond these limitations, providing feedback to improve the asynchronicity of
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a code is profitable for both the developers of MPI programs and developers of
optimization solutions. For developers of HPC applications, it is about obtaining
useful tips to write and adapt their code, especially during the early prototyping
phases of the development cycle. On the other side, for developers of optimiza-
tion solutions, it is about fetching statistics and information on communication
and coding patterns. In the end, this should help them in a better allocation
of development time for communication and coding patterns that are impacting
and where overlapping can be achieved, such splitting control flow structures to
separate dependencies. Finally, as the verification pass can be adapted to handle
persistent communications, it is possible to analyze the code to detect situations
where using persistent calls should be profitable, and suggest these modifications
to developers.
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Conclusion

In their quest for an exascale supercomputer, engineers have been resorting
to massive parallelism by ever increasing the number of computing units within
a system. As a consequence, handling the communications between these units
is more than ever of the utmost importance. Yet, these communications can be
source of performance degradation, especially in distributed memory architectures
where they need to go through an interconnect. They can prevent the computing
nodes from performing at their full potential because of communication delays, for
example: latency and necessary synchronizations.

Nonblocking MPI calls is one of the solutions to this problem, by enabling
overlapping of communication times by computations. In practice, it consists
in defining an overlapping interval for each nonblocking communication, and in
inserting instructions in this interval to hide the communication times. Ideally,
these instructions should be concurrently executed to the progression of the data
transfer. However, the nonblocking form is more complex to use than the "basic"
blocking form. As they do not provide any safety measure against race conditions
and are more prone to cause deadlocks, they require more attention from the
developers. As a consequence, despite being introduced for more than a decade,
the nonblocking collective calls are still not as popular as their blocking version.

We have developed two approaches to encourage developers to use nonblocking
calls to fully exploit the computing potential of their hardware. The first is to iden-
tify the programming errors they could add when using nonblocking operations.
The second is to assist in the creation and the maximization of the overlapping po-
tential of such communications. The existing solutions to tackle these approaches
are either not conveniently usable, not very well suited for the HPC environment,
or incomplete in their coverage.

In this context, we proposed a new compile-time verification method to detect
mismatching nonblocking calls and race conditions, an optimization pass that reor-
ganizes the dependencies in a code to create and extend the overlapping potential
of an MPI program, and a feedback-based method to maximize the overlapping
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gains. The analyzing of an HPC code at compile-time is preferable despite the
lower accuracy compared to dynamic or model checking approaches. Analyzing a
code during its compilation results in a better integration into the development
cycle of a program. Furthermore, it is much more scalable than model checking
and symbolic execution.

Static verification of nonblocking communications

Based on an analysis of the control and data flow, we propose a method to
determine at compile-time if a nonblocking communication can cause a deadlock
or a race condition which eventually results in incorrect results.

For each completion call, it first identifies the completion calls using the same
request object. In a second step, the sets of completion calls that are capable of
catching the request are determined. To that end, our method resorts to an analysis
of the control flow graph using the notion of post-dominance. It is coupled with an
analysis of the data flow to determine the execution conditions of the nonblocking
calls, and to retrieve the property of the loops they belong to. The matching
completion calls of an initiation call are then determined by identifying the most
immediate capable set of completion calls.

This matching allows the definition of an overlapping interval for each valid
nonblocking communication. The identification of such an interval enables their
analysis, and most notably, the detection of an eventual race condition. This
detection is performed by visiting each instruction of the interval with an alias
analysis and the dependency slice of the communication.

Implemented as an LLVM pass, this method is tested on several large scale
benchmarks. While the matching pass was mostly successful, the detection of
data races raised many false positives.

Automatic exposition of overlapping potential

The second major contribution of this work is a method to automatically create
and extend the overlapping potential of an MPI code. It transforms the interme-
diate representation of a function to reorganize the order of statements in favor of
larger overlapping intervals, while preserving the original behavior of the program.

First, we must identify all that might be a boundary of an overlapping interval.
The identified reasons for limiting an interval are: boundaries of the caller function,
some other MPI calls, other call sites, dependencies in a control flow structure,
and the limits of the encompassing control flow structure. Contrary to existing
works, our method do not consider data dependencies as boundaries.
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All existing blocking communications are then transformed into their nonblock-
ing version, with the insertion of a completion call, the allocation of a request, and
the replacement of the blocking primitive by its nonblocking form. Existing non-
blocking calls are matched using the methods developed for the verification pass.
The optimization method consists in moving the completion and the initiation calls
as far as possible from each other in the intermediate representation. To preserve
the order of dependencies, which are not boundaries for the overlapping interval,
they must be moved along with the nonblocking calls. As a consequence, only
the independent statements remain untouched, and end up inside the overlapping
interval and increasing its length.

The transformation pass is evaluated by measuring the static size of the over-
lapping intervals. It was able to create overlap in some programs that did not
expose any. All benchmarks witnessed an increase of their overlapping potential.
Despite the creation of some windows whose size is similar to that of the exist-
ing intervals in the code, the pass could not expose any interval in the majority
of cases. The main reasons preventing it from further expanding an interval are
related to the presence of another MPI communication call, to the presence of a
dependency inside a conditional branch, or because a communication cannot be
moved out of a branch.

Maximizing the overlapping potential through compiler assisted trans-
formations

The third contribution of this work addresses the shortcomings of the transfor-
mation pass. It consists in providing feedback to the developers of MPI programs
to help them in modifying their code to favorise the overlapping of communica-
tions.

This feedback should inform the developers on the limiting factors for the
creation or the expansion of overlapping potential. Based on this, it suggests a
transformation to apply to circumvent the obstacle, thus enabling longer overlap-
ping intervals. The feedback exploits the statistics gathered by the transformation
pass. It relies on the boundaries of the overlapping intervals to provide suggestions
of modifications to the developers, along with information on the current limiting
factor of the overlapping interval. With the help of these elements, they should
be able to modify their code, and have their new transformations validated by the
verification pass.

This method being manual and relying on an intervention from the developer,
it is necessary to reduce the number of MPI calls to analyze and optimize. Large
codes such as Lammps or MCB contain hundreds or thousands of MPI operations.
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The reduction of the number of MPI calls is performed with the help of a profiling
tool. It determines the time spent in each communication, and the calls with the
most impact are prioritized.

By only considering the operations whose communication time exceeds 1% of
the execution time of the application, we cut down the number of communications
to examine in each benchmark to a dozen while preserving most of the impact of
the communications. The successful overlapping of those communications should
result in an observable impact on the performance of application. With the help of
the suggestions, we applied several transformations which resulted in an increase of
the static length of the intervals, compared to the automatically created intervals.

Perspectives

Our work and contributions are nonetheless challenged by many limitations.
Addressing them provides interesting opportunities for future engineering and re-
search projects. We identified three major axes of improvement which we develop
in this Section. The first is on the direct improvements for our contributions,
which should help in analyzing nonblocking codes. The second axis is related to
the possible extensions to our contributions to support other MPI operations or
programming interfaces. Finally, we conclude with perspectives on the application
of our methods, and on the analysis of HPC codes at compile-time.

Improving the detection of race conditions

As noted in Section 5.5, the implementation of our verification pass struggles
with the detection of race conditions. It has a poor accuracy with a high rate
of false positive reports. In other words, it flags too many memory accesses as
a potential race condition. This is the most immediate limitation to address, as
it severely limits the verification pass. The causes for this flaw are most likely
the alias analysis incorrectly or conservatively determines a dependency between a
statement and a communication buffer, the lack of an interprocedural alias analysis
to determine the impact of a call site, or an overlooked coding error in the pass
itself. The addition of a more capable alias analysis to the middle-end pass pipeline
is one of the planned solutions to address this issue. SVF[78] is an example of an
interprocedural alias analysis with the ability to analyze the whole program at link-
time. However, it is limited to the intermediate representation generated from C
codes, barring it from analyzing most large scale benchmarks.
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Interprocedural analysis

The lack of an interprocedural analysis is one of the major limitations of our
methods. As mentioned above, it can be one of the causes for the low accuracy
of the detection of data races. It is also limiting the effectiveness of the match-
ing and the optimization methods, notably when global variables are involved.
Without an interprocedural analysis of the dependencies, LLVM assumes, rightly
so to provide a conservative result, that any function call can have a side effect,
modifying the global variable. Moreover, in Section 6.3.2, we have noticed 200
nonblocking operations could not be moved further because it reached the end or
the beginning of the caller function. As a consequence, adding an interprocedural
analysis to both our verification and optimization passes should help in increasing
their performance.

In a complex code, MPI operations might be spread over multiple code mod-
ules or classes that are not necessarily defined in the same translation unit. The
interprocedural analysis should have the vision on the entire program, allowing
the analysis of functions from other translation units. Ideally, the verification and
transformation passes have to be performed at link time.

Verification and optimization of persistent and partitioned communica-
tions

With their introduction in the fourth major revision of the MPI specifications,
persistent collective and partitioned point-to-point communications are expected
to gain in popularity. In Section 5.4, we introduced an extension to our verifi-
cation pass to detect mismatching persistent communications. Future efforts can
encompass partitioned communications, and the actual implementation of these
techniques as a compilation pass.

Extension to other programming interfaces

During our work, we focused on the verification and optimization of MPI non-
blocking calls at compile-time. We did so by first matching the calls together
through an analysis of the control flow and of the data flow. In a second time,
we identified the dependencies of the communication, and reorganized the code to
favorise longer overlapping intervals. The semantics of MPI nonblocking calls are
not unique, there are other programming interfaces with a similar form.

The mechanism of futures and promises allows concurrent execution in some
programming languages. A future can be defined as the future value of some
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variable, while a promise provides the value of the future. This mechanism has
been implemented in the C++11 standard. Figure 7.11 is an example of how the
futures and promises can be used. The promise is first created, and a future is
attached to it. The instruction at line 9 calculates the actual value of the future.
Ideally, it should be executed on another thread or computing unit to fully benefit
from the concurrency. Finally, the get method waits for the computation of the
future, and stores it. In this example, everything is serialized.

Figure 7.11 – Example of a future and a promise in C++

1 #include <future>
2 #include <iostream>
3
4 int main()
5 {
6 std::promise<int> promise;
7 std::future<int> future = promise.get_future();
8
9 promise.set_value(10);

10
11 int result = future.get();
12 std::cout << result << "\n"; // 10
13
14 return 0;
15 }

The verification and optimization methods we proposed in this work can be
adapted to this kind of semantic. In the code presented in Figure 7.11, the match-
ing would no longer be performed on a request, but using the addresses of the
future and promise objects. The detection of race condition can then be applied
to determine misuses of the future. The optimization method would fetch the de-
pendencies required to evaluate the promise, and try to put as many independent
computations as possible between the creation of the future and its first use.

CUDA exposes a similar semantic with its asynchronous operations and streams.
For example, we could check that the memory locations being used in a cudaMemcpy-
Async is not facing a race condition before a "completion" call on the stream, such
as cudaStreamSynchronize.

In addition, our work can also be extended to communication libraries acting
as a wrapper above MPI. It is possible that a program relies such pre-compiled
libraries to call MPI functions. In this situation, the link time analysis of the
program we suggested earlier would not suffice. Provided that the semantics of
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the functions defined in the library resemble those of the MPI nonblocking calls,
and that these functions are sane (which can be asserted by applying the verifica-
tion pass on the library itself), the verification and transformation passes can be
extended to support the library.

Integrating the verification and optimization passes to ongoing devel-
opment cycles

We evaluated our verification and optimization passes on existing benchmarks
that have been in development and fine-tuned for years to achieve performance.
While we did identify several errors and opportunities to increase the overlapping
potential, all lead us to believe that these codes have already been proof-read for
the most part, and fairly well optimized.

The methods we propose are not only aimed at analyzing and transforming
existing codes, and most notably at creating overlapping potential in a quick fash-
ion, they are also meant to guide developers during the whole lifetime of their
program, from its prototyping phase to its deployment on production clusters.
Consequently, it would be interesting to apply our methods on codes that are still
in the early phases of their development cycle. This would allow us to assess our
methods on environments that are less controlled: errors are more likely to be
committed, and codes are not yet fully optimized.

Furthermore, since our methods are implemented as LLVM passes, they are
easily deployable and usable, even by novice users. Students in high performance
computing and aspiring developers can benefit from our contributions. In an aca-
demic context for example, the verification pass and the feedback-based optimiza-
tion passes can help students to better understand their errors and how they can
improve their code.

Communication performance prediction at compile-time

The feedback-based method we propose in this work has to rely on a preliminary
execution of the code. It allows the fetching of performance data, especially on
communication times, to determine the impact of a communication. The more
impact, the more the communication should be prioritized for the optimization of
its overlapping interval, for example, over another MPI communication as long as
their dependencies allows the overlapping. Establishing this priority at compile-
time is complex, and depends on factors unknown to compilers. The size of a
message or the number of MPI processes involved in a collective operation are
most likely one of the influential parameters. They might be estimated through a
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thorough analysis of the dependencies, at least symbolically thus resulting in an
order of magnitude for each parameter. However, MPI communications usually
involve the cluster interconnect. Parameters about the network, and above all
the configuration of the cluster and of the runtime are unknown to the compiler.
Examples of these parameters are the number of MPI processes, the bandwidth,
or the distance between two communicating nodes.

The interconnect plays a major role in the performance of an HPC application.
As backends for each existing CPU architecture exist, providing specific informa-
tion about the interconnect or the cluster in use to the compiler might help it in
optimizing HPC codes. The information such "backend" might provide could in-
clude some of the elements we enumerated above to help the compiler in estimating
the communication performances.
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Appendix A

Benchmarks

The methods we propose and their implementation are tested and evaluated on
five large scale HPC benchmarks. It includes two mini-apps, and three CORAL
benchmarks. Mini-apps[75] are lighter programs with few library dependencies.
Their objective is to allow developers to rapidly test various hardware and pa-
rameters configurations on small and fast codes, that still provide an accurate
depiction of, for example, a numerical model that would be used in production
codes. On the other hand, CORAL benchmarks[79][80] are larger in scale, and
closely approximate production scale simulation codes. The codes originate from
a collaboration of multiple American HPC research faculties, and the patterns of
coding, of communication and of computations, are designed to be as close as
possible to production programs.

MiniFE[81] is one of the mini-apps that approximates the computations of im-
plicit finite elements problems. It is written in about 1500 lines of C++ codes[75].
We used version 2.2.0 released on 2017-11-23, which corresponds to the commit
a322da6.

MiniMD[82] is the second mini-app we used. It is a scaled down version of
Lammps[83], and both are simulations of molecular dynamics. Unlike Lammps,
miniMD offers much less input parameters, and is written with less than 3000 lines
of C++ code. The version we used in this study is from the commit 7cb2dd8,
released on 2020-02-29.

Lammps[83][84] is a CORAL-2 benchmark simulating molecular dynamics. Its
code is modular, as in it is composed of several packages which an user can select
to install when compiling the code. The implementations of our methods are
tested on the commit 6fd8b2b, which corresponds to the release tagged stable_-
29Sep2021_update3. The installed packages are: asphere, body, class2, colloid,
coreshell, dipole, eff, extra-fix, extra-pair, granular, kspace, manybody, mc, misc,
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molecule, mpiio, opt, peri, qeq, replica, rigid, shock, spin, and srd. Those were
necessary to run most of the test cases distributed with the release we picked.
Lammps is written in hundred of thousands of lines of C++ code. The exact
number depends on the number of installed packages.

Pennant[85][86] is a CORAL-2 code benchmarking computations on unstruc-
tured meshes. The code we used is from the commit 8c8fec0, release in February
2016. This benchmark is also written in 3300 lines of C++ code.

MCB[87][88] is a CORAL-1 benchmark simulating the wastes of a nuclear fis-
sion reaction using Monte Carlo techniques. It is written in roughly 13000 lines of
C code. The version we used is from the commit 0d4535f released on 2014-10-24.
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