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Abstract

This thesis presents an experimental and numerical study focused on the hydrodynamics in fixed
beds of spherical particles that are randomly distributed inside a cylindrical container (e.g. a
reactor), so that border effects are not negligible. Fixed beds are a particular example of a porous
medium, and we are particularly motivated by the use of fixed beds in the context of AA-CAES
technologies as a thermal energy storage unit.

Fixed beds, as porous media in general, present a multi-scale problem: the hydrodynamics at
the smallest scales can be very different from those at the largest scales. In order to bridge this scale
hierarchy upscale techniques are usually used such as volume averaging, that link the small-scale
fluctuations with the large-scale dynamics. These techniques are typically applied at a mesoscale.
However, the equations involved at this scale do not form a closed system, so that a closure model
is needed.

Moreover, the flows that saturate fixed beds can get incredibly complex, as the spheres distri-
bution and the walls produce tortuous paths and local changes in porosity, and there are solid-fluid
interactions that also drive and affect the hydrodynamics. In order to explore how these effects can
affect upscaling techniques, we studied the behavior of an inertial confined flow at all three scales:
the macro, the micro and the meso. We did this by computing numerical simulations and doing
two different experimental campaigns. Both the experimental and numerical methods allowed us to
study hydrodynamical effects of the three non-dimensional parameters involved in the system: the
Reynolds number Re, the porosity ε and the sphere-to-reactor diameter ratio D/d.

The first experimental and numerical campaigns were dedicated to the study of the flow past
fixed beds from the global (macro) point of view. We studied the variability of the pressure field
and pressure gradient and how they are affected by confinement effects.

The second experimental campaign consisted on studying the hydrodynamics at the pore (micro)
scale by using refractive index-matching Particle Tracking Velocimetry. We observed that even
though the flow is globally laminar, its behavior at the microscale is comparable to that of a fully
turbulent flow. We then complemented the experiments with numerical data, which allowed us to
study the local homogeneity and isotropy of the flow.

We finally linked the results obtained at the global and pore scales to the mesoscale using
numerical results, which reflected the multi-scale nature of the system. We explored the different
terms involved in the non-closed volume-averaged equations in order to help find a closure model
that takes into account the wall effects, which include the local solid-fluid interactions and the
Reynolds stress tensor.
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Résumé

Cette thèse présente une étude expérimentale et numérique portant sur l’hydrodynamique dans des
lits fixes de particules sphériques qui sont distribuées aléatoirement à l’intérieur d’un conteneur
cylindrique (par exemple, un réacteur), de sorte que les effets de bord ne sont pas négligeables. Les
lits fixes sont un exemple particulier de milieu poreux, et nous sommes particulièrement motivés
par l’utilisation de lits fixes dans le cadre des technologies AA-CAES en tant qu’unités de stockage
d’énergie termique.

Les lits fixes, comme les milieux poreux en général, présentent un problème multi-échelle :
l’hydrodynamique à la plus petite échelle peut être très différente de celle à la plus grande échelle.
Afin de surmonter cette hiérarchie d’échelle, des méthodes de changement d’échelle sont générale-
ment utilisées, telles que le calcul de la moyenne volumique, qui relie les fluctuations à petite échelle
avec la dynamique à grande échelle. Ces techniques sont généralement appliquées à une méso-
échelle. Cependant, les équations impliquées à cette échelle ne forment pas un système fermé, de
sorte qu’un modèle de fermeture est nécessaire.

De plus, les écoulements qui saturent les lits fixes peuvent devenir incroyablement complexes,
car la distribution des sphères et les parois produisent des chemins tortueux et des changements
locaux dans la porosité, et il existe des interactions solide-fluide qui dirigent et affectent également
l’hydrodynamique. Afin d’explorer comment ces effets peuvent affecter les techniques de changement
d’échelle, nous avons étudié le comportement d’un écoulement inertiel confiné aux trois échelles :
la macro, la micro et la méso. Pour ce faire, nous avons effectué des simulations numériques
et réalisé deux campagnes expérimentales. Les méthodes expérimentales et numériques nous ont
permis d’étudier les effets hydrodynamiques des trois paramètres non dimensionnels impliqués dans
le système : le nombre de Reynolds Re, la porosité ε et le rapport diamètre de la sphère/réacteur
D/d.

Les premières campagnes expérimentales et numériques ont été consacrées à à l’étude de l’écoulement
à travers des lits fixes d’un point de vue global (macro). Nous avons étudié la variabilité du champ
de pression et du gradient de pression et comment ils sont affectés par les effets de confinement.

La deuxième campagne expérimentale a consisté à étudier l’hydrodynamique à l’échelle des
pores (micro) par la vélocimétrie par suivi de particules en adaptation d’indice optique. Nous avons
observé que même si l’écoulement est globalement laminaire, son comportement à la micro-échelle
est comparable à celui d’un écoulement turbulent. Nous avons ensuite complété les expériences
par des données numériques, qui nous ont permis d’étudier l’homogénéité et l’isotropie locales de
l’écoulement.

Nous avons finalement relié les résultats obtenus à l’échelle globale et à l’échelle des pores à la
méso-échelle en utilisant des résultats numériques, qui reflètent la nature multi-échelle du système.
Nous avons exploré les différents termes impliqués dans les équations non fermées moyennées en
volume afin d’aider à trouver un modèle de fermeture qui prend en compte les effets de paroi, qui
incluent les interactions locales solide-fluide et le tenseur des contraintes de Reynolds.
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Chapter 1

Motivation

Due to the energy crisis and environment issues such as global warming enhanced by the
combustion of fossil fuels, the need to change to renewable energy resources becomes more
important and urgent each year. Electrical energy is a commodity used everywhere. Many
developed countries are switching to new and renewable sources of energy in order to shift
towards a more sustainable energy scenario, as CO2 emissions must decrease by 90% by
2050 to limit global warming below 2℃. Wind, solar and other alternative energy sources
are being developed but it is well known that natural sources of energy are intermittent.
For example, both solar and wind power depend on meteorological conditions, with solar
peaking in the middle of the day, and wind energy peaking in the middle of the night (see
figure 1.1). This leads to another major inconvenience: they fluctuate independently from
demand. That is, we can have a high electricity generation during an off-peak hour (low
demand/high supply) and that energy can remain unused, whereas the opposite can happen
as well, where not enough electricity is generated at peak periods.

This intermittency can be addressed by developing energy storage units and techniques.
This can allow us to save over-generation of electricity to be used at times of high demand
(Schoenung et al., 1996; Ibrahim et al., 2008; Barton John P., 2004). In particular, we shall
turn to Compressed Air Energy System (CAES), which is a kind of storage technology.

Figure 1.1 – Wind and solar power are intermittent in nature, as it is usually the case with most of the
renewable energy sources. Figure taken from Lawson (2019).
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Energy storage by compressed air has existed since the 1950s, but its energetic efficiency
is of about 50%. These are systems where energy is stored in the form of high pressure
compressed air and consumed in a different form of energy that has been converted from
the compressed air. CAES technology is based on the principle of traditional gas turbine
plants, consisting of a turbine, a compressor and a combustor. Gas with high temperature
and high pressure, which is formed by the mixing compressed air and fuel in the combustion
chamber, drives the turbine which in turn drives a generator to generate electricity. For a
CAES plant, there are two different stages of operation: compression and expansion. Since
the two stages do not run simultaneously, there is higher system efficiency (48%−54%) than
in traditional gas turbine systems (Wang et al., 2017).

The main problem with these systems is that a large amount of the heat generated
during the compression process is lost, and the fact that a combustion chamber is needed
to heat the air stored in the compression phase, which conducts to a non "green" process.
An alternative solution can be achieved using AA-CAES (Advanced Adiabatic Compressed
Air Energy Storage), where the heat released from the compression stages can be stored in
adiabatic containers and reused during the expansion stages (see figure 1.2 for a schematic
representation of the process). In this case, the efficiency can be driven up to 50 − 75%
(Barbour et al., 2015). These systems can be coupled to work, for example, with wind power
generation, as reported in Cavallo (2007).

Figure 1.2 – A schematic of an AA-CAES system. Figure taken from Mozayeni et al. (2017)

It is in this context that IFPEN proposes a system consisting of existing components
like compressors and turbines, and new components such as thermal energy storage (TES)
systems, where in this case, the TES unit will consist of packed, fixed beds of spherical
particles. These fixed beds will be the main focus of this study. Such a system has been
explored in Barbour et al. (2015); Sciacovelli et al. (2017), although the use of packed bed
as TES unit is still in its infancy. This is why we want to have a thorough understanding
of the hydrodynamics in fixed beds so that they can later be applied to modelling problems
that can be of use for the development of new AA-CAES technologies.
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Chapter 2

Porous media: from the macro- to the
microscale

Fixed beds of spherical solid particles are a particular case of a porous medium where the fluid
saturates the pores between the spheres. This makes them part of a highly multi-disciplinary
and wide object of study, as they are present in a wide range of phenomena, from typical
industrial applications such as packed bed reactors (Wehinger et al., 2015; Sassanis et al.,
2021), nuclear debris beds (Clavier et al., 2015) and solar thermal power generation (Kumar
& Kim, 2017; Gautam & Saini, 2020), to cryogenics engineering applications Soulaine et al.
(2017), medicine (Peyrounette et al., 2018) and biology (Jensen et al., 2016), just to name a
few. So apart from the current motivations for AA-CAES systems, their study can contribute
to a whole range of phenomena.

Porous media are two-phase systems where there is a solid and a fluid phase. This
generates large-scale heterogeneities so that the physics can get incredibly complex. Fluid-
solid interactions need to be accounted for and the heterogeneity can give rise to velocity
fluctuations over different scales. Because of this, it becomes a fundamental problem that is
highly rich: porous media are intrinsically multi-scale, that goes from the smallest scales (the
pore- or micro- scale) where local hydrodynamic effects can be observed and fluctuations can
arise, to the biggest ones where the medium is driven by the pressure drop and is considered
as a continuum. Because of this, modelling porous media requires immense computational
power and resources if one wants to resolve all of the scales. Even if a complete solution
could be generated, it could provide a far more detailed solution than the one needed at the
industrial level.

In order to close this gap between the small and large scales upscaling techniques can
be developed, where the system is described at a mesoscale where both micro and macro
effects appear in the equations of the fluid and solid phases, and the information from this
hierarchy of scales can be propagated (Cushman et al., 2002).

2.1 Object of study

As it has been mentioned, our main object of study will be fixed beds. An example of a
simulated bed and a real-life bed are shown in figure 2.2. They are composed of randomly
distributed spherical particles that constitute the solid phase and will be saturated by the

3



Figure 2.1 – Figure taken from Wood et al. (2020) to show the multi-scale hierarchy present in porous
media. We can start off from the global scale, where averaged quantities dominate the flow behavior (e.g.,
the superficial velocity U and the pressure drop generated by the pressure), to a meso-scale where we can
look at the dynamics in a control volume V, to the smallest scales where only the fluid phase is present.

fluid phase. Moreover, they are confined in a cylindrical container (for example, let it be a
reactor) so that wall effects might not be negligible, and the height of the bed L is much
larger than the sphere diameter so that L/d � 1. Taking all of this into account, there
are three non-dimensional parameters of interest: the first one is the porosity of the bed ε,
defined as the ratio between the fluid volume fraction Vfluid and the total volume Vtotal,

ε =
Vfluid
Vtotal

.

This quantity defines the amount of fluid fraction that makes up the bed, and is typically
around 0.4 for randomly packed beds of spheres. The second parameter of interest is the
ratio between the reactor diameter D and the sphere diameter d,

D/d,

which accounts for the scale separation of the bed and are going to let us quantify when the
border effects are present. When D/d is small, the bed is tightly confined and we would
expect to observe wall effects, whereas when D/d � 1 the bed is not confined and it could
be a priori treated as a tri-periodic bed of particles.

Finally, the last parameter of interest is the Reynolds number Re, which we will define
in terms of the fluid viscosity ν, the sphere diameter and the superficial velocity U , which is
the velocity we would have if the spheres were not present:

Re =
dU

ν
.
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Figure 2.2 – Simulated (left) and real-life (right) fixed beds of randomly-arranged spherical particles.

The different flow regimes present in porous media can be divided into different Reynolds
ranges, and citing Wood et al. (2020) we can identify them as1

• Darcy regime (Re < 10): Flow field well approximated by Stokes flow. The viscous
forces dominate over the inertia forces and only the pore-level geometry influences the
flow.

• Inertial regime (10 < Re < 150): Inertial effects begin to manifest, with pore spaces
dominated by inertial cores; the velocity distribution in the pores differs markedly from
that of the Darcy regime. Steady vortical structures have been observed.

• Unsteady laminar (transitional) regime (150 < Re < 300): Transitional flows which
may be generated by laminar wake instabilities.

• Turbulent regime (300 < Re < 1360): The structure of the flows within the pore space
begins to resemble more conventional turbulent flows.

• Asymptotic regime (Re > 1360): The value of Rep is high enough such that the
turbulence can be approximated as being locally isotropic over most of the pore space.

We are particularly interested in flows in the inertial and transitional regimes. It is worth
noting for example that in the unsteady laminar regime we already have a clue of the scale
hierarchy present: laminar wakes can generate instabilities, which means that globally, we
can have a laminar regime, whereas the behaviour at the pore scale might be dominated by
small-scale fluctuations. Citing Heyman et al. (2021), steady laminar flows through porous
media spontaneously generate Lagrangian chaos at the pore-scale.

1Our definition of the Reynolds number is equivalent to ReD in Wood et al. (2020).
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2.2 Upscaling in porous media

There are several methods that can be used for upscaling in porous media, which include
time-averaging (Ishii & Hibiki, 2010; Antohe & Lage, 1997), volume averaging (Anderson &
Jackson, 1967; Jackson, 1997; Whitaker, 1996) and ensemble averaging (Drew, 1983; Drew
& Segel, 1971; Zhang & Prosperetti, 1997; Pai & Subramaniam, 2009), but despite the
amount of theories and methods that have been developed for multi-phase flows there are
still many open questions that have not been yet answered or explored (Subramaniam, 2020).
In particular, one the most widely used methods for upscaling in porous media is the volume-
averaging approach. This formalism is similar to homogeneization techniques (Davit et al.,
2013) and LES or RANS approaches where the Navier-Stokes equations are expressed in
terms of average quantities (Pope, 2000).

This technique is based in capturing small-scale quantities and to relate them to averaged
and global variables, such as the mean pressure drop in a bed. In order to do this, it
is necessary to have a description of both the fluid and solid phases of the medium and to
account for the fluid-solid interactions. The well-known problem with these kinds of methods
is that the equations are not closed: there are more unknowns than equations in the system.
However, it is possible to manipulate the averaged equations so that the closure problem
is reduced to a small number of well-defined and known quantities that can be explicitly
related to variables describing the detailed motion of both fluid and particles, so that some
microscopic quantities are needed to solve the closure problem (Jackson, 2000).

In Anderson & Jackson (1967); Jackson (1997, 2000) they define an averaging operator
that includes a filtering function g and is applied to the whole system. The average of a
variable q in a system of volume V is defined as

〈q〉(x, t) =

ˆ

V

q(y, t)g(|x− y|)dVy,

which is reminiscent of LES spatial filtering. They average the fluid momentum equation (the
Navier-Stokes equation) and the particle momentum equation. The fluid-particle interactions
are reflected by the solid-fluid force and the first moments of the force, and they are computed
from the particles center of mass. In this case, the averaging is valid if there is a large scale
separations, that is, d� r � L, where d is the sphere diameter, L is the global scale of the
medium and r and intermediate scale.

Another widely used volume-averaging method is the one proposed in Quintard &Whitaker
(1988); Whitaker (1996, 1994, 1999). In this case the averaging is done over a representative
elementary volume (REV) and the averaging operator is defined as

〈q〉(x, t) =
1

V

ˆ

V

q(y, t)dVy,

where V is the volume of the REV. Here the porous medium is assumed to be made up of
periodic REVs and there are also length-scale constraints: the scales associated to the fluid
phase ` have to be much smaller than the one associated to the REV scale L̃: ` � r � L̃.
Moreover, in this formalism local homogeneity is assumed.
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Both of these techniques have a strong legacy in the community, as they have been
revisited and improved. For example, in Capecelatro & Desjardins (2013) they extended
the spatial filtering developed in Anderson & Jackson (1967) to formulate a volume-filtered
Euler-Lagrange method, and in Jamshidi et al. (2019) for the modelling of liquid-particle
suspensions in an Euler-Euler approach. In Soulaine & Quintard (2014) they use the formal-
ism developed in Whitaker (1996) to extend the model in turbulent flows in porous media,
and in Wang et al. (2015) they apply the same formalism for moving porous media.

These formalisms allow for the equations to be closed, such as in Soulaine et al. (2013)
where they close the equations in bi-structure porous media, in Lasseux et al. (2008) they
close the system for two saturating fluids, and in Whitaker (1996) the Darcy-Forchheimer
relation is recovered. However, these kinds of models present a limitation for the present
object of study: we do not know, a priori if the separation of scales is valid in our system.
Additionally, we do not know if, for example, were we to use the volume averaging technique
developed in Whitaker (1999), we could represent the fixed bed in terms of periodic REVs,
as is typically done in tri-periodic beds of spheres (Mehrabadi et al., 2015; Hardy et al.,
2022; Tenneti & Subramaniam, 2013).

These problems arise because of the geometry of our system. Because we are dealing
with confined fixed beds, we expect to have an axial symmetry but radial inhomogeneities
are most likely to arise due to finite wall effects. This breaks down the local homogeneity
hypothesis proposed in Whitaker (1999). Not only that, but because we have finite D/d we
might not be able to satisfy the hypothesis d� r � L in the radial direction.

In order to explore the finite wall effects (or confinement effects) we are going to study
the system at both the global scale and porescale, so as to have a thorough understanding
and build an intuition as to how the system will behave when D/d decreases, and if this
behavior changes wiht the Reynolds number.

2.3 Global border effects

Pressure losses constitute a key parameter governing fluid penetration in packed beds, and
understanding various flow regimes in porous media and the associated pressure drop, is crit-
ical for its applications. For example, flow details directly influence convection heat transfer,
chemical reaction rates, and filtration effectiveness. The pressure drop due to porous-media
presence in the path offlow determines the required pumping power in applications utilizing
porous media. Fluid flow in porous media is complex mainly due to the presence of the
often-random solid structure of the media in the path of the fluid. This structure drasti-
cally changes the flow field: it destroys boundary layers and compels the fluid to travel only
through winding and tortuous open flow passages. Therefore, the pressure drop in porous
media is much higher compared to open-area flows (Bağcı et al., 2014).

In 1952 S. Ergun presented an empirical relation that describes the pressure drop for
fixed beds of spherical particles that depends two empirical parameters A and B that take
into account the porosity and the particle diameter, and has a leading term that goes with
U2 and a second one that goes with U (Ergun, 1952). Even though it has been corrected
and readapted to different particle shapes (Macdonald et al., 1979; Allen et al., 2013), it
captures the right correlation between the pressure drop and the Reynolds number and it is
usually used as a proxy when calculating the pressure drop. Nevertheless, the Ergun equation
applies only for packed beds with negligible wall effects, and deviations occur for finite D/d

7



Figure 2.3 – Predictions of mean porosity values for packed beds with D/d < 30. Figure taken
from Guo et al. (2019). The works referred to in the legend correspond respectively to Sato et al.
(1973); Dixon (1988); Fand & Thinakaran (1990); Foumeny et al. (1996); Zou & Yu (1995); De
Klerk (2003); Benyahia & O’Neill (2005); Ribeiro et al. (2010); Cheng (2011)

(Di Felice & Gibilaro, 2004; Cheng, 2011; Eisfeld & Schnitzlein, 2001; Ribeiro et al., 2010;
Mehta & Hawley, 1969). And the difference is Reynolds-dependent: in the laminar regime,
the Ergun model underestimates the pressure gradient because of the additional reactor wall
friction in the low-Re regime, whereas in the higher-Re case the pressure drop is less than
that of Ergun since the effects of the local porosity near the walls increase ( ε ≈ 1), therefore
acting as a less resistant path for the flow to go through (Eisfeld & Schnitzlein, 2001).

No clear correlation has been yet derived for when there are finite wall effects, as we would
have to add the wall dependence (for example, in the form of a D/d explicit dependence)
into the model (Erdim et al., 2015; Cerantola & Lane, 2022). In Erdim et al. (2015) they
provide a non-exhaustive list of thirty five different models in the literature that propose
different pressure drops for different D/d and Re ranges. To derive such a model is not
trivial, as there are a priori three non-dimensional parameters, D/d, Re and ε, and there is
the additional complication that each arrangement is random in nature, so that there is an
intrinsic variability associated with the geometry presented, which can have effects on for
example the tortuosity of the flow and might affect the pressure drop measurement, and this
does not a priori guarantee the repeatability of the experiments.

In Eisfeld & Schnitzlein (2001), the variability of the coefficients of the Ergun equation
was studied by analysing more than 2300 data points with different border effects. The
authors found no clear correlation between the empirical parameters A and B of the Ergun
correlation and D/d, especially for D/d < 10. Models have been proposed where there is a
distinction between a bulk and a wall zone, that differentiates the flow going near the reactor
walls from the flow in the middle of the bed, where the border effects would be negligible.
Such an example is the model proposed by Di Felice & Gibilaro (2004) where the authors
define a bulk velocity in terms of D/d. In De Klerk (2003) and Zou & Yu (1995) works,
the bulk porosity of the bed has been modelled in terms of D/d as well, by fitting various
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Figure 2.4 – Radial porosity variations for randomly packed beds with different D/d ratios. Figure
taken from Mueller (1992). The works referred to in the legend correspond respectively to Roblee
et al. (1958); Benenati & Brosilow (1962a); Ridgway & Tarbuck (1968); Goodling et al. (1983);
Mueller (1992); Giese et al. (1998)

experimental data.

The wall effects are not only observed in the pressure drop, but also in the global and local
porosity of the bed. In fact, the change in the pressure drop can be considered as a direct
consequence of the change in porosity. The container used to hold a packing of particles
will induce a local area that will make both the micro- and macro-structural properties
of particles near the wall different from those far away from the wall (Zou & Yu, 1995).
That is, when decreasing the tube-to-particle diameter ratio, the wall exerts a significant
influence on the structure in a packed bed: it not only changes the local porosity but also
its mean porosity. Figure 2.3 (taken from Guo et al. (2019)) shows different predictions of
mean porosity values for packed beds with D/d < 30, where it can be seen that predictions
for small tube-to-particle diameter ratios (typically D/d < 10) could vary significantly when
using different empirical corrections, and that the porosity of the bed is higher for lower scale
separations. In Guo et al. (2019) table 1 they also present comprehensive list summarizing
the different models for different D/d ratios represented in the figure.

Not only does the bulk porosity change with D/d, but the wall effects are also evident at a
more local scale in the radial porosity profile. In Mueller (2019, 1992); De Klerk (2003) they
study the variation of ε as a function of the bed radius r, and as shown in figure 2.4 (taken
from Mueller (1992)) for different D/d ratios, the porosity near the walls tends to unity,
meaning that there is more fluid passing through near the walls. Moreover, an oscillatory
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behaviour is observed, which is due to the geometry of the bed imposed by the arrangement
of the spherical particles. This local variation can have an effect on local quantities: for
example, the flow near the walls can be smoother than the one in low-porosity areas, and
velocity fluctuations can be enhanced in those areas. This difference also affect the flow
distribution: because there is less resistance near the walls (as ε = 1), the flow will have a
tendency to flow near them, as opposed to the center of the bed. This leads us to the local
effects in fixed beds, which are presented in the next section.

2.4 Local hydrodynamics

As it has been mentioned, a flow passing through a porous medium can have a very different
behavior at the pore-scale than the one observed at the global scale. In particular, the
interaction of the fluid velocity fluctuations with solid particles, as well as particle-particle
interactions play an important role in the formation of complex flow structures, such as
the ones observed in Patil & Liburdy (2013). By "local" we mean the scales at which the
velocity fluctuations are significant and play a part in the dynamics of the flow, because as it
has been mentioned, they can be smoothed out using volume-averaging or homogeneization
techniques and they might not play a significant role in the global sense (for example, the
Darcy-Forchheimer relation works but it does not include the velocity fluctuations).

Nevertheless, the fluctuations and local velocity fields should not need to be neglected at
the smaller scales, as they are responsible for various phenomena. For example, mixing in
porous media is a clear example of how the velocity fluctuations at the smallest scales can
be propagated to the larger ones (Villermaux, 2012; Dentz et al., 2011), and there have been
numerous experimental studies on the subject (Heyman et al., 2021; Kree & Villermaux,
2017; Le Borgne et al., 2015; Souzy et al., 2017), as it is of interest for transport through
porous media.

Additionally, experimental studies have been done to study the local velocity field, many
at low Reynolds number Re < 1, where we include the experimental works done in Morales
et al. (2017) and Holzner et al. (2015) where they observe via the probability density functions
intermittent dynamics in the local velocity increments and acceleration fields respectively,
and in Holzner et al. (2015) they observe that preferential paths develop where the velocity
is high next to regions where velocities are much lower; this is probably related to local
porosity effects. In Datta et al. (2013) they study the local correlations of the fluctuations of
the velocity in the flow for Re < 10−3, and they show that the flow is correlated at the pore
scale and that the structure of the correlations is determined by the geometry of the pore
space, which also affect the tortuosity of the medium, which might affect the preferential
paths of the flow.

In Finn et al. (2012) they perform direct numerical simulations for confined packed beds
for moderate Reynolds number flows (10 < Re < 200) and they show how different pore
scale vertical structures are formed, and vorteces can already be observed at these Reynolds
numbers, with different dynamics near the wall of the tube, where the local Reynolds num-
ber because of the local increase in porosity. In Patil & Liburdy (2013) they perform an
experimental Particle Image Velocimetry study for packed beds with a big Reynolds number
range, with 228 < Re < 2164, where they observe different structures and fluid patterns at
the pore scale, even for Reynolds numbers close to 200, such as "channel-like", "impinging",
"recirculation" and "jet-like" regions, each describing a different pattern flow. They also
calculate the local velocity correlations, which appear to be once again correlated at the
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pore-scale, for distances lower than 0.4d.

All these previous studies show how the micro-scale dynamics can differ from the global
averaged ones, given that for instance we can have an intermittent behavior even for Re� 1,
reflected by strong acceleration event and high velocities localized in pore throats, whiel ac-
celeration events are weak in pores where there are almost stagnant velocities; the small scales
also affect the global transport of mixtures in porous media, and complex flow structures
appear for non-turbulent flow regimes.

2.5 Thesis overview

This thesis consists of both experimental and numerical work. Both of these techniques
enable us to have different outlooks on the problem, as experiments allow us to for instance
validate the simulations, to develop an intuition in the hydrodynamics of the flow and to
explore higher Reynolds numbers than the ones achieved in numerically. Simulations on the
other hand, will allow us to have access to well-resolved quantities and further information
that is not easily measured in the experiments, such as the drag force over the spheres in
different packed beds. The parameter space that we will study is the one presented above:
the Reynolds number Re, the porosity ε and the particle-to-tube ratio D/d.

The thesis is organized as follows: in chapter 3 we will detail the numerical methodology,
including the meshing technique, limitations encountered the validation cases. In chapter
4 the experimental methods are presented. We did two different experimental campaigns,
including the building of the set ups from scratch. The characterization of the instruments
is presented, as well as the error analysis and the post-processing techniques.

Chapter 5 is be presented in the form of a paper that will be submitted in January 2023.
This includes results concerning the global aspect of fixed beds, namely the pressure drop
and how it is affected by the confining walls. This concerns the first experimental campaign
and a first set of simulations. We will use the experiments to study the pressure drop in a
large Reynolds number range (200-1000) and the repeatability of the results. The simulations
allow us to have access to the pressure field, and we use it to study the variability of the
pressure and how it translates to the global pressure drop.

Chapter 6 concerns local scale results, and includes the second experimental campaign,
and a second set of simulations. We will do a thorough experimental study using refractive
index-matched particle tracking velocimetry (PTV) measurements to have an access to the
local velocity field. This allows us to compute the space correlations of the velocity fluctu-
ations and to perform one- and two- point statistics. The aim of this campaign is to study
the local velocity and acceleration fields in a transitional regime (Re ∈ [160, 211]).

Chapter 7 is an exploratory chapter where we find some preliminary results in local
volume-averaging techniques in confined packed beds, and we use results from the previous
chapters to drive the discussion and to analyze these findings. This consists of a third set
of simulations where we explore further effects in porosity. The different closure terms are
explored in this chapter when border effects are evident. The three chapters containing new
results are summarized in figure 2.5, along with the parameters that we varied. Lastly, a
final summary, the conclusions and the perspectives are shown in chapter 8
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Chapter 3

Numerical Methodology

3.1 Governing equations

The system is made up of two phases: a solid and a fluid one. We consider the flow, u, of a
newtonian fluid through a packed bed (figure 2.1) so that

∇ · u = 0. (1a)

The momentum equation is described by the incompressible Navier Stokes (NS) equations
for a fluid with velocity u, pressure p, dynamic viscosity µ and density ρ, which read:

ρ
∂u

∂t
+ ρu ·∇u = −∇p+ µ∇2u, (1b)

The fluid flows around the solid medium, which is made up of random arrangements of
spheres. The spheres are fixed with respect to the fluid and the fluid exerts a hydrodynamic
force on them

Fh =

ˆ
Sp

σ · n̂ dS, (3.1)

where Sp is the surface of the particle and n̂ its outward unit normal. σ is the stress tensor,
which includes the force caused by the pressure, p, and the viscous efforts:

σij = −pδij + µ
(∂ui
∂xj

+
∂uj
∂xi

)
. (3.2)

The first moment M of the force distribution can be expressed as (Guazzelli et al., 2011)

Mij =

ˆ
Sp

σiknkxjdS, (3.3)

which can be decomposed into a symmetric and antisymmetric terms: Mij = Sij +Aij. The
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Figure 3.1 – Overview of OpenFOAM structure, taken from the OpenFOAM user manual (Greenshields,
2011-2015).

symmetric portion S is called the stresslet (Batchelor, 1970) and is given by

Sij =
1

2

ˆ
Sp

(σikxj + σjkxi)nkdS (3.4)

whereas the antisymmetric term A contains the same information as the torque T =
´
Sp

x×
(σ · n̂)dS:

Aij =
1

2

ˆ
Sp

(σijxj − σjkxi)nkdS = −1

2
εijkTk. (3.5)

The torque plays the same role in generating angular momentum as the force does for linear
momentum. The stresslet though, is a less-known quantity that is the result of the resistance
of the rigid sphere to a straining motion. Unlike the hydrodynamic force and torque, it is
not needed in the equations of motion for a particle (Guazzelli et al., 2011).

These equations will be used to simulate the flow and to compute the forces and their
first moment felt on the particles. This will be useful for studying the closure problem, which
includes the coupling between the fluid and the spheres and it is quantified by the forces.
The methodology and workflow is explained in the remaining part of the chapter.

3.2 OpenFOAM

All the simulations are done using the open source CFD software OpenFOAM, which stands
for Open Source Field Operation and Manipulation (Weller et al., 1998; Greenshields, 2011-
2015; Jasak, 2009). It is a C++ library for the development of customized numerical solvers,
including pre- and post-processing utilities, and is mainly used for the solution of continuum
mechanics problems including coupling with multiphysics, such as multiphase flows, chemical
reactions, turbulence, heat and mass transfers, acoustics, solid mechanics (fluid structure
interaction or particulate flows) and electromagnetics (Municchi & Radl, 2017; Soulaine
et al., 2018; Horgue et al., 2015; Petrazzuoli et al., 2021).

The software includes certain applications that fall into two categories: solvers, that are
designed to solve a specific problem, and utilities, which are designed for data manipulation.
As it is an open source library, new solvers and utilities can be easily created by its users with
some prerequisite knowledge of the underlying method, physics and programming techniques
involved. The overall structure of OpenFOAM is shown in figure 3.1.
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We will use OpenFOAM to perform Direct Numerical Simulations (DNS) on periodic fixed
beds of spherical particles, which will be either periodic in one direction (mono-periodic) or
in all three directions (tri-periodic). This means that the fluid equations are solved without
any turbulence model and that all the scales are resolved.

The SIMPLE algorithm

The SIMPLE algorithm will be used for solving the equations governing the fluid motion,
within the context of the simpleFoam steady-state solver, which means that ∂u/∂t = 0 in
the NS equations (Eq. (1b))). SIMPLE is an acronym for Semi-Implicit Method for Pressure
Linked Equations, and as its name implies, it uses the pressure to solve iteratively the steady
state momentum equation. The sequence for each iteration n is as follows (Ferziger et al.,
2002):

1. Advance to the next iteration t = tn+1.

2. Initialize un+1 and pn+1 using the latest available values of un and pn.

3. Construct the momentum equations.

4. Under-relax the momentum matrix. This means that un+1 = un + αuũ, with ũ a
velocity correction.

5. Solve the momentum equation to obtain a prediction for un+1.

6. Construct the pressure equation.

7. Solve the pressure equation for pn+1.

8. Correct the mass flux for φn+1.

9. Under relax pn+1: pn+1 = pn + αp p̃, with p̃ a pressure correction.

10. Correct the velocity for un+1.

11. If not converged, reiterate from step 2.

As evidenced by the algorithm, the solver solves the equations for each variable u and p
sequentially and the solution of the preceding equation is inserted in the subsequent equation.
The non-linearity appearing in the momentum equation is resolved by computing it from the
velocity and pressure values of the preceding iteration. When the momentum equation is
solved, it delivers a velocity field which is generally not divergence-free (therefore, not strictly
incompressible as equation (1a) states). Then, the continuity and momentum equations are
used to construct an equation for the pressure, which, if solved correctly, delivers a divergence
free velocity field when it is inserted into the momentum equation (Hinch, 2020). This is
repeated until the results have converged. I invite the reader to read section 7.3.4 of Ferziger
et al. (2002) for a more detailed explanation of the algorithm.

As it was mentioned in the description of the algorithm, SIMPLE uses an under-relaxation
method. The relaxation factors αu and αp are constants that are multiplying the algebraic
equations corrections at each time step. They are used to alter the path towards convergence,
preventing the solution from diverging, and they determine the rate of convergence for the
simulations. The optimum value of the relaxation factor depends on the mesh and the
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chosen numerical schemes, and is specific to each particular problem. An underrelaxation
factor (less than one) increases the stability of the simulation and an overrelaxation factor
(greater than one) increases the rate of convergence at the risk of unstable or diverging
solutions.

Residual control will be used to quantify the convergence of the simulations. Residuals
show the difference between successive solutions of the equations to be solved. In the case
of steady simulations, residuals should decrease as the run evolves, and reach a minimum
value (ideally zero) once a steady-state solution is found.

As a last note on the subject, it was seen that the convergence of the solution strongly
depends on the number of correctors nCorrectors for the SIMPLE algorithm, which had
to be set greater than 2. This is the number of times the pressure equation is solved in a
time step, and it is set to 3 in our computations. Besides, in order to reduce the influence
of mesh non-orthogonality, the nNonOrthogonalCorrectors are set to 4; the mesh will be
explained in section 3.6.

The PIMPLE algorithm

In the case of unsteady flows, where ∂/∂t 6= 0, the PIMPLE algorithm can be used. The
main difference between the SIMPLE and PIMPLE algorithms is that in the latter there are
more iterations and corrections when calculating the pressure and velocity fields. Because
the problem is time-dependent, the CFL condition has to be established so as to keep a stable
solution, which means that, for example, for a 1-dimensional grid with length intervals ∆x,
a time step ∆t and velocity |u|, the Courant number C must be

C =
|u|∆t
∆x

≤ Cmax,

with Cmax a maximum value, generally chosen to be of the order of or less than 1.

3.3 Numerical schemes

The purpose of any discretization is to transform partial differential equations (such as
equations (1b)) into a corresponding set of algebraic equations. OpenFOAM uses the Finite
Volume Method (FVM) to do this, where the discretization of the solution domain produces
the positions of points, cell faces and volumes in which the solution is sought and the de-
scription of the boundary. The space is divided into control volumes (CV) or cells, and
equation discretization gives an appropriate transformation of terms of governing equations
into algebraic expressions. Control volumes do not overlap and fill the whole computational
domain. Particularly, in OpenFOAM the CV is bounded by a set of flat faces and each face
is shared with only one neighbouring CV. A typical control volume is shown in FIGURE,
which was taken from H. Jasak’s thesis (Jasak, 1996). The cell faces can be divided into two
groups: internal faces, that are the ones between two control volumes, and boundary faces,
that are the ones that coincide with the boundaries of the domain. The face area vector
Sf points outwards from the cell, is normal to the face and had a magnitude equal to the
area of the face. On the other hand, boundary face area vectors point outwards from the
computational domain (Jasak, 1996).
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Figure 3.2 – A typical control volume used for the Finite Volume Method. Figure taken from Jasak
(1996)

The fact that the CV can take any polyhedral shape allows us to create unstructured
meshes, where the CV do not have a constant volume. We can also apply a local grid
refinement, where CV are added in parts of the domain where high resolution is necessary
(for example in a gap between two close spheres, or in regions of strong gradients), without
affecting the rest of the mesh.

Once the mesh is constructed, we can discretize the integral form of the governing equa-
tions over each control volume. The basic quantities (e.g., mass and momentum) are con-
served at the discrete level and the equations are solved in a fixed coordinate system (defined
by the mesh) that does not change in time. For further reading on the finite volume method,
I invite the reader to consult chapter 4 of Ferziger et al. (2002).

Second-order Gaussian integration schemes are used to compute the different terms of the
NS equations. As grids are mainly composed of hexahedral cells, the Gauss linear scheme
is used for the gradient operator, Gauss linear corrected for the Laplacian schemes, and
bounded Gauss linearUpwind is used for the divergence operator (Jasak, 2015). For ex-
ample, the Gauss gradient scheme calculates the gradient by using integrals over faces:

ˆ
VP

∇φ dV =

˛
∂VP

dSφ =
∑

f

Sfφf , (3.6)

where P is the central point of the CV, φ is the fluid flux passing through a face f of the CV
and S is its surface with its corresponding normal. The face value of φ is evaluated at the
centers of cell faces, from the cell centers values. In our case, this is done by using a linear
interpolation scheme, which uses central differencing for the interpolation.

3.4 Boundary conditions

Aside from the fluid equations, we also need to set boundary conditions on the solid objects.
The no-slip condition u = 0 for the velocity and Neumann boundary conditions (∂p/∂n = 0)
for the pressure are both used on the solid spheres and on the non-periodic reactor walls.
Solid walls are so treated by a no-penetration condition, so that the fluid does not pass
through them.
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In all simulations, there is at least one periodic boundary, for which we will pay particular
attention to. This is modeled by simulating an imposed flow rate, which is set by adding
a volumetric source term into the stationary NS equations that compensates the pressure
gradient and thus the global viscous friction forces on solid bodies. The fluid is so acceler-
ated from rest by a constant body force that conducts to a prescribed average velocity (or
equivalently flow rate) in the computational domain. In the particular case of a z-periodic
bed with a period of length H the steady momentum equation reads:

ρ(u ·∇)u = −∇p+ µ∇2u− f ẑ. (3.7)

We can define a modified pressure p̃ as

p̃ = p+ fz, (3.8)

with p̃ periodic (p̃(x, y, z = 0) = p̃(x, y, z = H)). The pressure gradient is then computed as
∇p̃ = ∇p+ f∇z. When averaged over the whole volume this results as

〈∇p̃〉
∣∣∣
V

=
1

V

ˆ
(∇p+ f ẑ)dV.

Because of Stokes’s theorem, this becomes

〈∇p̃〉V =
1

V

‹
∂V

pn̂dS + f ẑ,

and because of periodicity the first term in the right hand side is zero, so then the averaged
pressure gradient becomes

〈∇p〉V = −f ẑ, (3.9)

which is different from zero. With this formulation, the output pressure that is calculated
with the DNS is p̃. This was done in OpenFOAM by setting a pressure jump between the
periodic boundaries ∆p, so that for a spacial period of length H, |∆p|/H = f .

3.5 Bed generation

Because we are interested in studying border effects on packed fixed beds of random ar-
rangements of spheres, the main and largest simulations presented in this work are made up
of randomly placed spheres in a reactor cylindrical geometry. All the random arrangements
of beads in the cylindrical container are built using the Discrete Element Method (DEM)
software Grains3D (Wachs et al., 2012). In general, a DEM method is used as a numerical
model capable of describing the mechanical behavior of, for example, assemblies of spheres,
where each sphere has its own equations of motion. In particular, they follow Newton’s sec-
ond law of motion and they are also described by force displacement laws, such as stiffness
and friction. In this case, the contact forces involved are a Hookean elastic force, a viscous
dynamic force and a tangential friction force for each sphere. Figure 3.3 illustrates these two
principles.
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Figure 3.3 – Illustration of the DEM method for a generic pair of spheres.

The fixed beds arrangements are computed in three steps: first, the particles are dropped
into a non-periodic cylindrical container (which has a bottom solid wall) from an initial
point above and outside the container. The spherical particles are driven by a gravitational
force until they are randomly settled at the bottom of the cylinder. Afterwards, the two
periodic boundaries of the bed are set at the minimum and maximum positions of the settled
particles (these will become the inlet and the outlet of the system), and another simulation
is ran where the spheres are given an initial random velocity so that they can move inside
the now periodic domain and reach a stable configuration. At the same time, their radius
is increased at each time step, so that the porosity of the bed decreases at each temporal
iteration. During expansion, particles experience multiple collisions before they reach their
final diameter that satisfies the maximum solid concentration possible to mesh, and the
simulation is stopped just before the particles come in contact with one another. Lastly,
once we have the maximum possible radius so that there are no particles touching each
other, a third run is done using the particles’ last position as an initial condition so that
the particles re-accommodate into their final position, i.e. towards a low-energy equilibrium
configuration, which will then be the one used for meshing. These steps are illustrated in
figure 3.4. The beds simulated in the present work contain between 72 and 2600 spheres
each, and the porosity varies between [10− 50]%.

The resulting beds are characterized by calculating fluid volume fraction as a function
of r, denoted as ε(r). This is shown in figure 3.5 for three particular cases with D/d =
[5.13, 8.03, 10.15]. The results are compared with those obtained by Mueller (1992); Benenati
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Figure 3.4 – Process of constructing a random periodic arrangement of solid spheres
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Figure 3.5 – Fluid volume fraction (in other words porosity) as a function of the radius of the
bed. The results are compared with those obtained in Mueller (1992), Goodling et al. (1983) and
Benenati & Brosilow (1962b).

& Brosilow (1962b); Goodling et al. (1983), where these authors measured experimentally
the porosity profiles in beds whose sphere-to-reactor diameter aspect ratio are similar to
ours. It is observed that the results match, even though we are not under the exact same
conditions. Once the spheres arrangement is computed and characterized, we have to mesh
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it, as explained in the following subsection.

3.6 Meshing strategy

Figure 3.6 – Workflow of the mesh generation process.

Overview

As already stated, the mesh plays a very important role in the convergence and accuracy of
a simulation. A simulation can indeed diverge or give non-physical results if the mesh is not
of a sufficient quality (e.g., highly skewed faces, high aspect ratio) or too coarse, because of
the poor quality of the solution. Moreover, it is particularly challenging in the case of porous
media as it is necessary to mesh the solid-fluid interface and resolve the small gaps between
solids. We will construct unstructured meshes with OpenFOAM utilities as detailed in the
next section. This means that the control volume have different volumes and that the mesh
is not orthogonal nor Cartesian (hence the need for the nonOrthogonalCorrectors used in
section 3.2). All the simulations will have at least one periodic direction. Non-matching grid
periodicity is used and is handled by the cyclicAMI condition, as detailed in subsection 3.6.

The general workflow of the meshing process is summarized in figure 3.6. It consists
of five steps. First, the blockMesh utility is used to generate a background grid. We then
use snappyHexMesh utility, which generates automatically three-dimensional grids containing
mostly hexahedra (hex) and split-hexahedra (split-hex) from triangulated surface geometries
that in our case will be the spheres. The mesh approximately conforms to the surface
by iteratively refining an initial background grid (in our case, made with blockMesh) and
morphing the resulting split-hex mesh to the surface. The specification of mesh refinement
levels is very flexible and the surface handling is robust with a pre-specified final mesh quality.
The background grid defines the refinement level 0. The level 1 corresponds to a division of
level 0 cells by a factor 2 in all directions, and so on for higher levels. In order to resolve
better the small gaps, we can choose to add refinement levels specifically in these regions.
This will be further detailed in section 3.6

The createPatch utility allows us to generate the periodic conditions. It creates cyclic
patches out of selected boundary faces using the cyclic AMI (Arbitrary Mesh Interface)
method. This method conducts the solvers to interpolate data on coupled periodic bound-
aries, even if the points and faces are non-matching. We can specify in its input dictionary
the cyclic conditions along the translational vector.

The renumberMesh is then used. It renumbers the cell list in order to reduce the linear
solver matrix bandwidth, which will improve simulation stability and speed. And lastly, we
use checkMesh to check the quality of the obtained mesh. This raises warnings or critical
errors when there are problems with the periodic boundaries, if there are highly skewed or
non-convex cells and whatever issues might arise from a bad quality mesh. If this check fails,
the simulations are likely to crash.
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Figure 3.7 – Snapshot of a sphere in the border of a periodic domain in the particular case of a Face-
Centered Cubic unit cell. The domain was repeated three more times, so that the periodic geometry can be
appreciated.

Periodic meshes

As it has been mentioned, we will use the cyclicAMI boundary condition, which couples
a pair of periodic boundaries whose inner points and faces do not exactly match, by inter-
polating the results at each periodic cell within a set tolerance, which we set to be 0.0001.
However, points and faces outer bounds should geometrically match. This makes it highly
mesh-dependent, because the periodic boundaries have to be as similar as possible so as
to generate a reliable periodic solution. This becomes more difficult when there are solid
obstacles (the spheres) near or across the periodic borders. In this case, the spheres need
to be duplicated in each periodic direction, so that the mesh can be generated identically
(or as close to identically) on each side. That is to say that each periodic sphere has to
have its (periodic) counterpart. An example of this is shown in figure 3.7, where the unit
cell is a Face-Centered Cubic cell with periodic spheres on the walls, all with their periodic
homologous counterparts.

Moreover, aside from repeating the spheres and their periodic homologous, explicit edge
capturing is used in the snappyHexMeshDict dictionary by providing eMesh files. These
files represent discretized circles that result from the intersection between a sphere and the
border of the domain, which is then reproduced in the periodic direction. These discretized
circles provide snappyHexMesh the points/segments that the generated mesh is required to
match. Besides, refinement levels are also explicitly specified on those edges. This is done
so that the periodic boundaries can match as close as possible, and so that the interface
between the spheres and the walls can be well resolved. A visualization of a sample eMesh
file is shown on figure 3.8a). The eMesh is shown in solid red, and it can be noted that there
is one more level of refinement along it.

Another thing that has to be taken into account for a good AMI interpolation is to verify
that there are no tangent spheres near the periodic boundaries so as to avoid any strongly
skewed cells that could affect the convergence of the results. We do this by manually setting
the periodic boundaries at a place where the spheres are neither too close nor too far away
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a) b)

Figure 3.8 – a) Snapshot of a sphere in the border of a periodic boundary and its eMesh file, which represents
the circle that results from the intersection of the sphere and the wall of the domain. b) Superposition of
the grid in a border of the domain and its periodic homologous counterpart

from the borders. Finally, in order to check the quality of the interpolation, the AMIWeight
quantity is shown in the checkMesh when the mesh is evaluated. This interpolating weight
quantifies the similarity between a pair of periodic boundaries. It is equal to 1 for a perfect
match and 0 in the opposite case. In all the simulations done in this work, its value is 0.99
in average. Figure 3.8b) shows two superposed periodic grids: one in red and the other in
blue. The lines are not easily distinguishable because the grids match almost perfectly.

Reactors

Cylindrical reactors are meshed with the geometry obtained by Grains3D (section 3.5).
Reactors are periodic in the main flow direction because of two main reasons: the first one
is to avoid any inlet/outlet boundary condition effects, and the second one is to avoid large
meshing and computational times. Grids have typically tens of millions of cells and this
number increases as 2n (n is the level of refinement in the snappyHexMeshDict ) within the
small gaps.

The background mesh is computed with blockMesh using a butterfly O-H topology grid,
as shown in figure 3.9 along with the coordinate system. This is based on creating the H
square-like shape in the middle of the circular section surrounded by O topological blocks
that connect the diamond with the borders of the circular cross section. The main issue
with the butterfly structured mesh topology is that the cell sizes cannot be strictly uniform
everywhere, in particular along the radial and azimuthal directions. This can easily be
observed in the left snapshot in figure 3.9. Nevertheless, it was ensured that the maximal
cell sizes of the background grid were below a specified resolution, so that everything is well
resolved in all parts of the domain.

23



x

y

z

z
r

θ

R

H

plane,  
cartesian coordinates

xy− Radial coordinates Relevant lengths

Figure 3.9 – A generic background mesh generated with the blockMesh utility, composed by an
O-H butterfly topology. Left: the xy plane. The center square H block can be appreciated, along
with the variation in resolution. Center: Radial coordinates. Right: Relevant lengths: the cylinder
radius R and its height H.

a) b)

c) d)

Figure 3.10 – Different mesh snapshots. a) and b) Refinement on the spheres’ surfaces (set to 1)
and at the small gaps (set to 2). c) Periodic spheres on top, with an edge refinement set to 2. d)
A sample transversal cut of the mesh and the bed.

Surface refinements are specified in the snappyHexMeshDict, and are set to be between
levels 1 and 2 on the sphere surfaces, and to 2 on the edges at the intersections of spheres
and periodic boundaries, specified as eMesh files entries. The number of cells between each
refinement level (entry nCellsBetweenLevels in the snappyHexMeshDict dictionary) is set
to 4. The additional refinement level in very small gaps, namely the gapLevelIncrement
keyword in the dictionary, is set to 2. These different refinements can be appreciated in
figure 3.10. 3.10a) and b) show two slices of a standard fixed bed, where we can observe the
level 1 refinement at the spheres’ surfaces and the level 2 in the small gaps between them.
3.10c) shows a snapshot of a periodic boundary, with the reactor cut in half. The edge
refinement is at level 2 as well, and with this taken into account the AMI weights are 0.99 in
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average for all cases. Finally, figure 3.10d) shows a generic transversal cut of the grid, where
the different levels of refinement can be appreciated as well as the packing concentration.
The spheres below the cut are shown for illustrative reasons.

In average, 85% of all the cells are hexahedra, which makes the grid suitable to use
a gaussLinear gradient scheme. There are 0.07% of under determined cells in average,
and 8% of concave cells. The percentage of highly skewed faces is negligible, being only
5.3e − 5% in average. The meshes have between 45 and 90 million cells, and they have a
background grid resolution of at least 30 cells per sphere diameter, varying on the case. The
relevant remaining parameters (number of cells, resolution) will be detailed once the results
are presented.

3.7 Validation

Before going on to more complex simulations, it is necessary to validate the whole workflow,
i.e. meshing and resolution of the Navier-Stokes equations. The different steps in which we
did this are detailed in the following subsections.

Force over a single sphere

As a first test case, we computed the force fD over an ordered array of spheres and compared
it to the results obtained by Hill et al. (2001). The system consists of a Simple Cubic (SC)
ordered array of spheres, with a porosity ε = 0.592. This is done by creating a unit cell
with a sphere in its center. The boundaries are all periodic, so that we used the cyclicAMI
condition for all variables on domain’s limits. A no-slip and Neumann boundary conditions
were imposed on the sphere wall for the velocity and pressure, respectively, and the Reynolds
number explored varies between 0 and 501.

Problem description

The pressure and fluid velocity are governed by the incompressible Navier-Stokes equations,
introduced in section 3.1, with the no-slip boundary condition at the sphere surfaces and
periodic conditions at the bounds of the computational domain.

We recall that the Reynolds number is defined in terms of the sphere diameter d, the
superficial velocity U and the kinematic fluid viscosity ν as

Re =
U d

ν
.

The stram-wise component of the non-dimensional drag force F is defined as

F =
fD

3πµdU
. (3.10)

The denominator on the right-hand side of equation 3.10 is the Stokes drag force on a single
1The Reynolds number in Hill et al. (2001) is defined in terms of the particle radius, whereas we define it in terms

of the particle diameter here.
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sphere in an unbounded fluid, and hence the positive deviations of F from unity indicate
the contribution of hydrodynamic interactions (finite solid volume fraction) and fluid inertia
(finite Reynolds number) to the magnitude of the average drag force. At moderate Re,
the spatial structure of the velocity field depends strongly on the solid volume fraction, the
Reynolds number and, for ordered arrays, the direction of the average pressure gradient
relative to the axes of the arrays (Hill et al., 2001). The results obtained in Hill et al. (2001)
are noted as FH and ours as F .

Mesh convergence
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Figure 3.11 – Force over the sphere for different grid resolutions, measured in terms of cells per particle
diameter (cpd), compared with the force measured by Hill et al. (2001).

Because the mesh plays such an important (if not the most) role in the simulations, it
is imperative that it is resolved well enough so that it is able to capture the physics of the
problem that is being simulated. In this case we will quantify this by studying how much the
results vary for different grid resolutions, which are represented in cells per particle diameter
d (cpd from here on) and the results do not have to depend on the mesh resolution. The
resolution of the simulations were done as detailed in section 3.2. For a uni-dimensional
mesh with length L and N cells, the cpd is calculated as cpd = d×N

L
.

We compare the results for 17 different background grid resolutions with the previous
reference, for the case of the sphere in the middle of the domain and Re ≈ 50 and then
compute the drag force felt by the sphere. The results of the mesh convergence are shown
in figure 3.11, represented by the error between the force calculated by OpenFOAM and the
results obtained by Hill, as a function of the cpd. The results and the error stabilize at ∼ 2%
when the mesh resolution is at least 25 cells per sphere diameter. So it can be concluded that
we have reached a mesh-independent physical result, that the simulations are well resolved,
and the results are accurate and reliable.

It is worth noting though, that the mesh resolution in the reactor simulations will be
higher as it will vary between the resolution set by the background mesh and the one when
all the small gaps are taken into account at different parts of the bed. That is, the cpd will
be between

d×N
L

< cpd <
d×N × 2n

L
,
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where L is a characteristic length of the reactor (it can either be its diameter D or height
H), N the total number of cells in a given direction (r̂, θ̂ or ẑ), and n the refinement level.
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Figure 3.12 – Non-dimensional force on a simple cubic array of ε = 0.592 as a function of Re obtained by
OpenFOAM and compared to the one calculated by Hill et al. (2001). Inset: relative error between both
results.
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Figure 3.13 – a) Different cases of a simple-cubic ordered array. b) Relative error for the non-dimensional
force on a simple cubic array of ε = 0.592 as a function of Re obtained by OpenFOAM, compared to the
one calculated by Hill et al. (2001) for the SC cases shown in a).
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We will now concentrate on the case of a single mesh resolution, with 36 cells per sphere
diameter, and the surface refinement around the sphere is set to 2. The comparison between
our results and those obtained by Hill et al. (2001) are shown in figure 3.12, where it is evident
that there are no significant differences between both results. This is further illustrated by
the relative error, defined in terms of the force calculated using OpenFOAM F and the one
calculated by Hill FH as, Error = |F −FHill|/F . This is shown in the inset, where we obtain
a maximum relative error of 1.8%.

Moreover, in order to assess the behaviour of the cyclicAMI condition, we computed
three different SC arrangements: the one already presented, with the sphere at the middle of
the domain (a), another one with a periodic sphere cut into two in the stream-wise direction
direction (b), and a third one with its periodicity perpendicular to the flow (c). These three
cases are illustrated in figure 3.13a). The relative errors are shown in figure 3.13b). Errors
are never higher that 2%. As expected, the error increases a little bit when the spheres
are in the border, because of the AMI interpolation. It is interesting to note that the case
with the highest error (albeit small) is when the spheres are periodic in the direction that is
perpendicular to the flow.

Poiseuille flow

Another test was done to validate the methodology, this time by calculating the flow with
dynamic viscosity µ through a mono-periodic pipe of radius R and height H with no beads.
We expect to recover the results from the Hagen-Poiseuille equation for the axial component
of the velocity Sutera & Skalak (1993), which reads

uz(r) =
∆p (R2 − r2)

8µH
, (3.11)

where ∆p is the pressure difference between the inlet and the outlet. A no-slip condition
(u = 0) is imposed at the walls, along with Neumann boundary conditions for the pressure.
The velocity at the inlet and outlet of the tube are periodic in the axial (z) direction, and
a constant body force is applied in the z direction. The Reynolds number is varied between
10 and 150, and the length of the tube is 20 times its diameter, so that H = 40R. This is
shown in the left snapshot of figure 3.14.

The velocity profiles obtained are shown in solid lines in figure 3.15 forRe = [10, 50, 100, 150],
and compared with the analytical result, equation (3.11) shown in the red star markers. It
is observed that the results match almost perfectly. The average relative error is 2%. The
radial coordinate is normalized by the pipe’s radius R and the velocity profile uz is normal-
ized by umax = uz(r = 0) so that all the curves collapse. In the right panel of figure 3.14 a
solution for the velocity field can be observed for Re = 10.
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Figure 3.14 – Left: Pipe of radius R and height H = 40 × R. Right: Velocity field for a case with
Re = 10.

0.0 0.2 0.4 0.6 0.8 1.0
r/R

0.5

1.0

u
z
(r

)/
u
m
a
x

Re = 10

Re = 50

Re = 100

Re = 150

Analytical solution

Figure 3.15 – Velocity profiles for a pipe flow with Re = [10, 50, 100, 150], compared with the
analytical solution, which is shown in red star markers. The results match almost perfectly, with
an average relative error of 2%.

Spurious periodic effects

In order to verify that there are no spurious effects generated by the length of the grid
(for example a coupling from the walls), we simulated two reactors with 2H length for
D/d = [5, 8], calculated the pressure drop, and compared the results against a case where
the period is H. Given that the physical problem is the same, there should not be a difference
in the pressure drop between the two cases, as it does not depend on the periodicity of the
system.

The averaged pressure drop is calculated as explained in section 3.4, following equation
(3.9). There are no significant differences between the pressure drop results: for the D/d = 5
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case we have that (∇p2H−∇pH)
∇pH

= 0.23%, whereas for D/d = 8, (∇p2H−∇pH)
∇pH

= 0.20%, with
both cases computed for Re = 60.

SIMPLE vs. PIMPLE for high-Re flows
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Figure 3.16 – Comparison between the pressure drop calculated using the SIMPLE and PIMPLE
algorithms for a fixed bed of D/d = 8 and Re = 200

It is worth noting that even though the SIMPLE algorithm is not usually suitable to
handle problems with high Reynolds numbers because it is a steady state solver, the solutions
once the problem starts becoming transient do not differ that much from their average value
(Finn et al., 2012; Hill & Koch, 2002). We verified whether the non-stationary modes are
weak by comparing results obtained with SIMPLE to those given by the non-stationary solver
PIMPLE, for a particular case with Re = 200 and D/d = 8. The PIMPLE simulations are
computed with a variable time step in such a way that the maximum Courant number is
0.5. The final residuals are 10−8 for both the velocity and pressure, whereas they are of
O(10−5) for the SIMPLE solution. An Euler-implicit time scheme is used to resolve the time
derivative, ∂u/∂t, which is a first order transient scheme.

We compare the pressure gradient obtained at each time step with the one obtained from
the stationary simulation. The time in the simulations is normalized by an integral time
which is defined as the time that the fluid needs in average to travel through the whole
domain of length H: TH = εH/U . As can be observed from figure 3.16 all the results match
down to an error of O(10−4), thus showing that a global quantity such as the pressure drop
is accurately resolved by the SIMPLE algorithm.

So as to compare local quantities, we computed the fluid velocity’s probability density
function (pdf) at different time iterations ti up until 4 integral time units, shown in colors in
figure 3.17, and compared it to the one obtained using SIMPLE, which is shown as a black
solid line. Once again, there are no significant differences between the results. Moreover,
we can also compare the total forces on the spheres calculated by both algorithms. Figure
3.18 (Top) shows the relative error defined as E = |Fpimple − Fsimple|/Fsimple for 13 random
spheres of the bed as a function of time, and Fsimple and Fpimple are the forces computed
by SIMPLE and PIMPLE respectively. It can be seen that the error remains relatively low,
and that there are peaks where it can be up to 7% for some spheres. We tried to compute
the Fourier spectra of the forces but it could not be exploited, as it seems that the signal is
chaotic, or cannot at least be expressed as a convolution of different harmonics. Figure 3.18
(Bottom) shows the time-averaged error for the 13 spheres. Its value is 2.5% at the most,
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indicating that the SIMPLE algorithm provides an accurate enough solution.
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Figure 3.17 – Comparison between the velocity probability density functions of the fluid phase
calculated using PIMPLE and SIMPLE algorithms. The colored curves represent different times
and the black solid curve represents the SIMPLE solution.

Figure 3.18 – Top: Relative error between the force over a single sphere calculated by SIMPLE and
PIMPLE for thirteen random spheres of the bed, each in a different color. Bottom: Time-averaged
relative error for 13 random spheres of the bed.
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Chapter 4

Experimental methodology

In this chapter, the experimental techniques and methodology will be presented. It is divided
in two parts: section 4.1 will be dedicated to the global measurements and section 4.2 to
the local measurements. In both, the experimental setups are presented, along with the
acquisition techniques, characterization of the instruments, signal processing, postprocessing
analysis, and the shortcomings encountered.

4.1 Global measurements: pressure drop in fixed beds

The main objective of this experimental campaign is to measure the pressure gradient in
confined fixed beds of spherical particles. To this aim, we will measure the pressure drop
in the experimental device described in the following section, for different particle sizes and
different Reynolds numbers. Therefore, the parameters that will be varied are the particle
Reynolds number Rep, which we recall to be

Rep =
Ud

ν
,

and the particle-to-reactor ratio

D/d,

with d the particle diameter, D the reactor diameter, U the velocity of the flow as if the
spheres were not present (that is, the superficial velocity), and ν its viscosity. The superficial
velocity is related to the flow rate Q as U = 4Q/(πD2) , and it will be the parameter that
we will vary in the experiment. The variation of the Reynolds number will allow us to study
how the pressure drop depends on Re in transitional regimes, whereas the variation of the
particle size will allow us to see how the effects of the borders and particle distribution come
into play.

In the following, the experimental setup will be introduced and in the following subsec-
tions all the instrumentation that was developed for the characterization of the instruments
used will be presented.
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4.1.1 Experimental Device
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Figure 4.1 – Schematic representation of the experimental setup.

It was necessary to design an experimental apparatus from scratch where we could mea-
sure the pressure drop, which is a global (or macroscopic) quantity. To do this, we designed
a setup as the one schematically shown in figure 4.1. This was constructed by Olivier Raze-
bassia from the Mechanic Shop at the Laboratoire de Physique of ENS Lyon. It consists in
a cylindrical test section made of a clear plexiglass column of diameter D = 0.04m that has
several piezoresistive pressure sensors distributed vertically along its walls, each at a distance
∆h from each other, so that we will be able to measure a pressure gradient ∇p = ∆p/∆h,
with ∆p the pressure difference between two sensors.

The main priority that we had when designing the setup was that it should allow us to be
flexible while carrying out the experiments. That is, we did not know a priori if there were
going to be any nozzle effects such as an undesired acceleration of the fluid (Singh et al.,
2019), how high from the inlet the bed should be located, if we needed to add another porous
medium to laminarize the flow between the inlet and the entrance to the porous medium,
and so on. This was achieved by constructing several sections of the cylinder that could
be screwed and unscrewed, with different heights and several grids that would be useful
for different purposes. Several sections of the experiment are shown in figure 4.2. This also
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makes it easier to change the bed at each realization of the experiments, as it is not necessary
to disassemble the whole setup.

Figure 4.2 – Different sections of the setup. They allow flexibility at the assembling of the experiment

The test section containing the bed is part of a closed upstream-flow water loop that
also includes a pump and a flow meter, and has a height of Lexp = 0.4m and a diameter
D = 0.04m. Filtered water flows upstream through the circuit (the inlet is at the bottom
of the reactor). A thermal bath is used to control the temperature, thus allowing us to
have a fixed and controlled viscosity. Given that each time that the particle distribution
is changed, some air is inserted into the circuit, particular attention must be paid to the
removal of bubbles. This is a typical issue encountered in these kinds of setups when we
have to constantly assemble and disassemble each time that we do a new experiment run.
The bubbles are not only bothersome, but they can also change the physics of the problem,
given that they add a third phase into a two-phase (solid and liquid) system, and could
consequently change the physical results.

To this end, as a first step there is a reservoir on top of the reactor so that the bubbles
can escape the closed water loop when reaching the free surface of the tank. Additionally,
the filtered water is degassed by leaving it in circulation at 55 °C for nearly 12 hours and
then cooled down to 20 °C, the temperature at which the experiments are carried out. This
facilitates the suppression of bubbles and it was corroborated visually before starting each
acquisition. In total, each experiment took about 24 hours each time the bed is modified.

In order to make sure that the flow was laminar before entering the bed and that there
were no nozzle effects, there is a honeycomb before the bed, between two empty tube sections.
The honeycomb is 0.05m high, whereas the two empty sections are 0.2m high, placed before
and after the honeycomb. This was done after observing a jump in the pressure curves at a
certain Reynolds numbers, and we believe that it is because there was an instability coming
from the nozzle. Because the nozzle is 4 times smaller than the cylindrical test section, from
the conservation of mass we have that Unozzle = 16Ucylinder, and so we can have two very
different regimes near the nozzle and near the bed. Once the honeycomb was added, this
jump in pressure disappeared.
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Figure 4.3 – Test section of the reactor with a partially filled bed. Pressure sensors are attached to the
cables, and are a ∆h distance apart from one another.

As already mentioned, this setup is intended to be used to measure global quantities,
such as porosity and pressure profiles. The pressure sensors allow us to have ∆p/∆h, and
the flow meter allows us to have the velocity U = Q/A, with Q the volumetric flow rate
and A = π/4D2 the area of the cross section of the (empty) bed. Figure 4.3 shows the test
section of the setup with a partially filled bed, where the pressure sensors attached to the
cables can be seen. The specifics of the sensors are detailed in section 4.1.2.

Both the pressure sensors and flow meter have an analogue output, and all of the signals
were measured using a National Instruments PXI-1002 card which provides 8 analogic input
channels, has a 23-bit resolution and measures at a frequency of up to 100kHz. The acqui-
sition is done using the LABView software (which is developed by National Instruments),
and the post processing is done both in MATLAB and Python.

The flow meter is connected to two other components. The first one is a signal attenuator,
and the other is a low-pass filter. The attenuator is used because the voltage range that the
analogue output from the flow meter was in a different voltage range than the one accepted
in the acquisition card, and the low-pass filter was used to reduce ambient electromagnetic
noise from the signal. This will be detailed in section 4.1.2.

Stainless steel spherical beads which have a density of 8g/cm3 from Marteau et Lemarie
(France) are used. They were chosen so as not to have any fluidization. This material was
chosen because of its high density, as previous tests were carried out with glass beads and
they all got fluidized at the Re numbers that we are interested in. 1 In addition, a grid on

1This problem will not be addressed in this thesis, but it is highly interesting to observe the frequency modes of
the bed, how the fluidization depends on a critical Re number and on the density of the beads. A few simple tests
were carried out to this end, out of scientific curiosity, and a jump at the pressure drop was observed at the Re at
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Figure 4.4 – Stainless steel particles in different sizes were used.

the top of the configuration is used. In figure 4.4, the different bead sizes are shown, which
are d = [7.938, 4.762, 3.969] mm.

4.1.2 Instrumentation

Flow meter and velocity measurements

Input
signal

10kΩ

Low-pass
filter

2kΩ

NI acquisition 
card

Attenuator

Figure 4.5 – Low-pass filter and a signal attenuator (shown in the gray box) added after the flow meter
output square signal in order to have a clearer signal to analyze.

The flow rate is one of the main control parameters which has been used to tune the
Reynolds number. It is therefore crucial to have an accurate measurement. A magnetic
flow meter was used to measure the volumetric flow rate, model MAG-VIEW MVM-020-QA
from Bronkhorst, which is an electromagnetic inductive flow meter for electrically conducting
liquids with a minimum conductivity of 20µS/cm, such as water. Its operating range is
between 1 and 20 l/min, its response time is smaller than 100 ms, and it has an operating
temperature between −10 to 60℃. It also has an analog output which delivers a square wave
with its main frequency proportional to Q, with a factor F ∗ of 1000 pulses per liters/s.

A raw the signal obtained with the NI−Dacq is shown in figure 4.6 (left). As the signal
is noisy and as was mentioned in the previous section, a commercial low-pass filter Standford
Research (SR640) was applied so that only the first harmonic of the signal is obtained, along
with a signal attenuator. This was done so that the signal was between 0 and 3 Volts. The

which the bed starts getting fluidized. The FFT of the spectre measured by the pressure sensors (which captured
the oscillating behavior of the bed) was also computed to get the principal frequency of the kinetic wave generated
by the movement of the beads.
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circuit that we used (constructed by us) is shown in figure 4.5, and the resulting signal is
shown on the right plot of figure 4.6.
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Figure 4.6 – (Left): Raw signal from the flowmeter. It has overshoots in the extremes of the square signals.
(Right): Flow meter signal after being filtered by a low-pass filter and a signal attenuator.
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Figure 4.7 – Power spectral density (PSD) of the inlet velocity U . Its maximum represents the number of
pulses per second.

The flow rate is then proportional to the signal frequency fmax and is given in cm3/s by

Q = 1000× fmax
F ∗

.

fmax is the amount of pulses per second of the flow meter. This is computed by making
a power spectral density (PSD) estimate of the flow meter signal. The PSD describes how
the power of a signal in time is distributed over frequency. We use a Welch algorithm with
several estimates of PSD in different windows of the signal which are then averaged to reduce
the variability of the spectral estimate. In figure 4.7, the spectrum of the flow meter signal
is shown, which has only one mode due to the usage of the low-pass filter and its maximum
gives fmax. Once the flow rate is computed, it is straightforward to calculate the velocity,
given that
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U = Q/A

(for incompressible flows). A is the cross-sectional area of the (empty) reactor. The resulting
velocity is the so-called superficial velocity (the velocity as if the spheres were not present)
and is the one that is used in the definition of the Reynolds number. For each velocity
measurement, the flow rate was determined from a 60s reading from the flow meter.

The flow rate is fine-tuned by a solenoid control valve Bürkert-Type 2875 which has an
operating pressure range between 0 and 25 bar and a 24V DC operating voltage. It is a
normally-closed valve and its opening is proportional to the voltage. It is controlled by a
Bürkert Type 8605 controller that converts an external standard signal into a pulse-width
modulated signal, which enables delicate adjustments of the opening of the valve.

(Global) Porosity measurements

The porosity of the bed, which is defined as the ratio between the volume occupied by the
solid (the beads) and the fluid in the test section,

ε =
Vsolid
Vfluid

,

is measured by knowing the weight of the bed in air. In this case,

Vair = Vempty reactor = πLexp(D/2)2,

and the weight of the solid bed in air is straightforward because we know the beads’ density,
so

Vsolid = Vbeads = mbeads/ρbeads,

hence
ε =

mbeads

πρbeadsLexp(D/2)2

Pressure sensors and signals
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Figure 4.8 – Calibration curve for one of the pressure sensors.
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We used high-precision piezo-resistive sensors model MS5401-BM from TE Connectivity
to measure the pressure. They have a sensitivity of 150mV/bar with a linear deviation of
0.05% with a 1 bar range.

The sensor includes a silicon membrane where borosilicate glass wafers are vacuum glued
to the back for a reference pressure. All of this is installed in the center of a metal capsule
filled with a silicone gel and directly mounted onto a printed circuit where the acquisition
cables are plugged into. Beause of this coating the sensors break if they come into contact
with the beads, so we had to isolate them from the bed with the use of washers that were
added onto the setup where the captors are installed. The electronic components were
mounted by Frank Ropars from the Electronic Shop at LPENSL in the context of J.Vessaire’s
PhD thesis (Vessaire, 2019).

The advantage of piezo-resistive sensors compared to piezo-capacitive is that they allow
the user to measure both mean pressure and fluctuations. To this end, a voltage amplifier
was used with a gain of G = 10 so it holds now that 1 bar corresponds to 1.5V. The signal
is digitized and acquired by the NI −Dacq.

The calibration of the sensors (allowing to convert the voltage signals into bars) was done
several times for all of the sensors and then those values were averaged. An example of the
calibration of one sensor is shown in figure 4.8. This was done by measuring the hydrostatic
pressure p in a column of water with variable height z, so in general we have that p = ρgz+p0.
In this case, we should have a measured pressure p̃ that goes as p̃ = γρgz+δ, with γ a scaling
factor and δ an offset. We obtained a calibration factor of 1.49e-5V/Pa = 1.49V/bar, which
is consistent with the sensor specifications and the amplifier.

In figure 4.9, a typical pressure signal p is shown (in Volts). The aspect ratio between
its standard deviation σ and its mean µ is σ/µ = 0.03, so there is a variation of about 3%
around the mean value. As to see how well converged the first and second moments of the
signal are, in figure 4.10 the cumulants K of p and p2 are shown respectively, which are by
definition

〈p〉 =

ˆ p

pmin

P (p′)p′dp′ and 〈p2〉 =

ˆ p

pmin

P (p′)p′2dp′,

where P is the probability density function. This is another way of measuring the moments
of the distribution and as the both reach a plateau, it is safe to assume that both the mean
value and standard deviation of the pressure are statistically well converged.
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Figure 4.9 – A typical pressure signal in Volts captured by the sensors.
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Figure 4.10 – Cumulants of the mean value µ and the square of the standard deviation σ respectively.
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Figure 4.11 – p(z) curve measured for a fixed bed of aspect ratio D/d = 10 at Re = 220.

The pressure gradient ∇p is then calculated as the slope of the p(z) curve. Only sensors
placed away from inlet and outlet of the bed are used for the pressure gradient measurement
in order to avoid possible biases from the top and bottom boundaries. An example of such
curve is shown in figure 4.11. The pressure acquisition was done for 120s and time averaged
for each point.

Summary

Having presented the setup and the characterization of each of the instruments, the summary
of a typical run is as follows:

1. Insertion of the spherical beads into the test section. We ended up doing experimental
campaigns for three monodispersed arrangements with three aspect ratios: D/d =
[5, 8, 10]. The beads were poured into the section and we then shook the container.

2. The porosity of the bed is measured by weighting it on a scale.

3. We let the filtered water circulate at 55 °C and then cooled it down to 20 °C so as to
degas the system.

4. We vary Re with the use of the solenoid valve and we measure the velocity with the
flowmeter, which is connected to the NI acquisition card.
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5. The pressure gradient is computed by measuring the pressure with the high-precision
piezo-electric sensors at different heights of the bed, and we only used the sensors that
were far away from the inlet and outlet. Their signal is recored by the NI-Dacq as well.

6. The post-processing of the data is done in MATLAB and Python.

4.2 Local measurements: pore-scale hydrodynamics

The aim of this experimental campaign is to study the local velocity field at the pore-scale.
In order to do this, we used Particle Tracking Velocimetry (PTV) using index-matched
hydrogel beads to make the porous bed and we studied the velocity fluctuations, which we
recall to be defined as

u′ = u− 〈u〉, (4.1)

where u is the velocity of the fluid that saturates the bed.

By looking at the fluctuations, we will have a thorough description of the hydrodynamics at
the local scale, and we will be able to calculate one- and two- point statistics, such as the
velocity’s probability density functions (pdfs), correlations and structure functions.

In the following sections the experimental device will be described, followed by the char-
acterization of hydrogel beads that were used as the solid phase, a first characterization of
the bed, the details of the PTV algorithm and a trivial case that was used to validate the
data acquisition and post processing.

4.2.1 Experimental device

As was the case for the other experimental device, it was also necessary to design and build
a setup from scratch. This was done with the help of Olivier Razebassia from ENS Lyon.
The base of the set up is similar to the one described before: it consists of a cylindrical test
section of diameter D = 0.09m, with an closed upstream-flow water loop, a pump, a solenoid
valve, a flow meter and a reservoir at the top to help to get rid of the bubbles, with the
same instruments that were used for the other setup, and the characterization that was done
previously holds. A schematic representation of this section of the device is shown in figure
4.12.

Because we are going to carry out optical measurements, we have to pay special attention
to the possible reflections and optical index variations. As we have a circular cross section,
any incoming light from a laser sheet will be reflected and refracted by the uneven surface.
In order to solve this, we added a rectangular vessel surrounding the cylinder where the bed
is put so that we can fill with water and drain it independently from the closed loop of the
primary section of the device. This solves the issue of having optical distortions due to the
curvature of the test section, impairing both illumination and visualization.

The illumination system consists of a 5W Quantum Opus 532 laser with a 532nm wave-
length (green). The beam enters through an light-guiding arm (Dantec dynamics) that has
an internal alignment mirror system that maintains the coherence of the laser beam, and can
be moved in several degrees of freedom without affecting the beam. This is highly practical
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Figure 4.12 – Schematic representation of a section of the experimental set up used to do Particle Tracking
Velocimetry.

for PTV measurements because it allows us to choose the place where we want to put the
laser sheet.

At the end of the arm, there is a cylindrical lens so that the beam is expanded and a
vertical laser sheet is generated, illuminating a plane that is parallel to the flow rate. This
sheet, of approximately (5 × 0.4)cm (length×width), illuminates into a test section of the
fixed bed. The lens is attached to a stable, linear translating stage Zaber that has one degree
of freedom that allow us to move the sheet over 75cm perpendicular to the flow rate plane
(depth) in order to scan different zones of the bed.

The water is seeded with micrometric tracer particles whose motion is recorded by two
Phantom v12 high-speed cameras which are connected to an external trigger that syncronizes
them. They are in turn connected to the computer which controls the acquisition sequences
(this will be detailed in the following sections). The cameras can reach up to 6242 fps and
have a 12-bit, 1280× 800px resolution.

A schematic representation is shown in figures 4.13 a) and b).
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Figure 4.13 – Schematic representation of the optical setup viewed from two different angles: a) from the
front and b) from above.

Hydrogeal beads

In order to look inside the bed we need to have “transparent” solid beads. That is, we need
the beads to match the refractive index of the fluid. Refractive index matching consists on
pairing a solid material and its carrier fluid, each with a similar index of refraction, so that
the solid is virtually transparent.

Our particles of choice were hydrogel beads, which are superabsorbent materials that
are expanded 200 times their initial weight by absorbing water, and are thus made up of
∼ 99% water, so their refractive indices are almost the same, with studies reporting a 0.1%
difference with water (Byron & Variano, 2013; Dijksman et al., 2012; Harshani et al., 2017).
This can be observed qualitatively in figure 4.14, where the“Université de Lyon" badge is
perfectly readable when the hydrogel beads are submerged in water. This choice of hydrogel
beads was mainly motivated by the fact that there is no need to change the fluid (in our
case, water) to index match the particles. If we were to use other materials they would
be very sensitive to the mixtures of the fluid needed to index match the solid, and these
can change their optical properties with time (e.g., due to changes in temperature) and this
would add an additional experimental constraint (Wiederseiner et al., 2011). Most of all,
other choices are either with viscous fluids (e.g. PMMA and glycerol) or not so simple to
handle (ammonium thiocyanate which is corrosive or DMSO). Hydrogel beads have been
used in previous Particle Imaging Velocimetry (PIV) studies, which further encouraged us
to use commercially available hydrogels (Harshani et al., 2017; Weitzman et al., 2014; Byron
& Variano, 2013; Kree & Villermaux, 2017).

A drawback of hydrogel beads however is that they are fragile and easily deformable when
a mechanical force is applied to them, so before each experimental run we checked that they
maintained their their spherical shape and that they were not broken, this can be seen in
figures 4.17, 4.19 and 4.20. This visual appreciation is good enough because the shape of the
spheres is not of the outmost importance in these experiments, but the pores are. The beads
used have a mean diameter d = 14mm after being submerged in water for at least 36h.

Moreover, the removal of the bubbles was not done with the same protocol as in the
previous setup (i.e., heating the water to 55℃), but by letting the water flow through the
circuit for as long as it took without changing its temperature (usually about 16h). This was
done so as not to change the properties of both the water (e.g., its viscosity) and the beads.
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Figure 4.14 – Top: empty container filled with air. Middle: the container is filled with hydrogel beads.
Bottom: the container with hydrogel beads is filled with water. The beads index-match the water, as the
badge can be clearly read even when they are submerged in water.

The water flowed at the lowest flow rate so as not to deform the beads. After letting the
water circulate, we visually corroborated that there were no bubbles in the system, which is
easy because the bed is transparent.

PTV Calibration

Because we are going to work with data obtained by digital cameras, the positions obtained
by them is represented in pixels. It is then very important to have a very neat and correct
calibration so that we can have the right transformation from digital units into physical ones
(px→mm). Not only that, but we also need a transformation that allows us to transform the
2D images into the 3D space. This is done with the method developed in Machicoane et al.
(2019), where the calibration is done in at least two different 2D planes at different distances
from the cameras. Each camera only requires two (or more) plane-to-plane transformations
to be determined between the sensor pixel plane and two (or more) planes in the real world,
by linear or cubic transformations. The target shown in figure 4.15 is used to calibrate
the system. It has two different planes in depth, each consisting of 72 equidistant points
separated by 5mm.
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Figure 4.15 – Target used for the calibration. Pictures taken by A. Ponomarenko.
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Figure 4.16 – Coordinate system set for the calibration target. This is later converted into physical units
by finding and using a transformation px→ mm.

The calibration is done at different distances from the cameras, so that we have enough
points to do the ray crossing in the PTV (this will be detailed in the next section). For each
picture of the planes taken, we identify the square (marked in red in fig. 4.15) and the circles
in the target. Using the square as reference, we define a coordinate system that starts at
(0, 0) for each plane, and each circle is then labelled at each plane. This is shown in figure
4.16. Because we know the physical units (5mm between each point), we can compute the
transformation necessary to convert the pixels into meters. The transformation is then used
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on the PTV data.

4.2.2 Particle Tracking Velocimetry

Particle Tracking Velocimetry (PTV) consists in an optical lagrangian technique where tracer
particles are tracked with fast cameras, and once their trajectories are acquired their instan-
taneous velocity fields and other hydrodynamic magnitudes of interest can be computed.

The tracer particles have to be small enough so that the smallest scales of the system
can be resolved and they have to be neutrally buoyant so as to be treated as fluid elements.
Their three-dimensional position can be measured by two -or more- fast cameras that record
the region of interest frame by frame.

The algorithm for tracking the particles was developed in MATLAB and adapted from
previous codes used in the Turbulence group at ENS Lyon (Dumont, 2021; Laplace, 2022),
and was done with the help of Alexandre Ponomarenko, a postdoc candidate at the laboratory
at the time. The PTV is done in four different steps which will be detailed below.

1. Center finding

[px
] [px
]

Centers Detected

y y

[px] [px]x x

Figure 4.17 – Post-processed images taken by the two cameras of a generic experiment, the frames are all
superposed.

This step consists of removing the background noise by setting a threshold value and by
identifying the tracer particles from their intensity and size. As a first guess possible particle
candidates at pixels of higher intensities. Once those point-like particles are identified,
their sub-pixel position is estimated by a two-dimensional gaussian, with its center (its
maximum) representing the particles’ positions (Ouellette et al., 2006a). From this, the
position in each frame is saved and we will be working these hereafter. Figure 4.17a) shows
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Figure 4.18 – Scheme of the Center to Rays process. Red circles show the particles that are seen in the
pictures. This step allows us to draw lines between the cameras and the observed particles on each frame.
Figure adapted from Dumont (2021)

two raw time-superposed images taken with both cameras in a generic experiment, where
the centers/particles are identified as specified before.

2. Tracking

Once the centers are found, the particle trajectories are reconstructed for each of the cameras.
This is achieved using a predictive tracking algorithm similar to the 4-frames best-estimate
algorithm in Ouellette et al. (2006a).

3. Matching

In a first step, trajectories in pixels are projected onto the “real world” (RW) coordinates, i.e.,
physical coordinates, by using the calibration transformations previously described in section
4.2.1, momentarily neglecting the 3D nature of the actual tracks. This preliminary step
allows us to match corresponding trajectories seen by both cameras. Once the trajectories
for each camera are both in the same coordinate system (in mm) we identify the ones that
were measured simultaneously by both cameras independently. That is, we have to match the
trajectories. Because each camera measures a slightly different region, the same trajectory is
going to be measured at a slightly different relative position that varies, so in order to match
two trajectories it is necessary to specify the maximum distance δ that there can be between
the same trajectory measured by both cameras. That is to say that the trajectories X1 for
camera 1 and X2 for camera 2 have to be the same, and we impose that ||X1 −X2|| < δ ∀t.
The last thing that we set is that both trajectories last for the same number of frames (i.e.,
the same time).

4. Ray crossing

Lastly to retrieve the actual 3D trajectories, the “rays” are crossed. By “rays” we mean that
every pixel of the camera sensor can be associated to an imaginary ray so that any particle
along that line will be imaged on the same pixel. This line can be obtained by projecting
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each pixel coordinates for each particle detected on each frame of each camera to the two
calibration planes. The intersection of the lines corresponding to matched trajectories then
allows to retrieve the 3D tracks in the real world, as schematized in figure 4.18. We then
have to cross the rays from each camera and their intersection is going to provide us with the
3D positions of the particles. This is done by using the data obtained from the calibration,
that transforms px→mm.

First visualization
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Figure 4.19 – Hydrogel beads were bathed in colorant to as to have an estimate of the size of the pores.

In order to choose the tracer particles and to choose our region of interest, a first visual-
ization of the bed was done by bathing the hydrogel beads in a fluorescent dye (figure 4.19).
We then illuminated the bed with the laser and took a picture. It is worth noting though
that this was not a packed bed, as there was no grid on top. This was done to have a rough
estimate of the size of the pores, which is of the order of 1-3.5mm, and we expect this value
to decrease when the bed is fully contracted.

The measured size of the pores leads us to use fluorescent polyethylene particles as tracers,
which have diameters ranging between 27 to 35µm (∼ 100× smaller than the pores). They
have a 0.996g/cc density, so they can be treated as neutrally buoyant. Because of this, they
can be treated as elements of the fluid.
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Acquisition

The cameras are piloted by National Instruments’ software LabVIEW, where we can set the
cameras parameters (acquisition frequency, exposure time, spacial resolution, etc), and we
can control the translating stage. Several things have to be kept in mind before starting
each experiment.

On the pictures acquired by the camera, each tracer particle has to be at least 3px in
diameter to be properly detected by the sub-pixel gaussian fit center finding algorithm. If
they were less than 3px we would have a pixel-locking (or peak-locking) effect, which is the
tendency for the measured location of a particle image to be biased towards integer values
(Michaelis et al., 2016). They also have to have an intensity high enough to be detected
by the code, and all values below a certain intensity will be ignored and not treated as
tracer particles. One of the main aspects that needs to be taken care of is the sampling
frequency, or the frames per second fps, that needs to be set, and it is determined by the
spatial resolution of the cameras and the tracers velocity.

Videos need to be recorded in such a way that we can be sure that we are tracking the
same particle over two successive frames. For example, if we have two nearby particles in
a frame, and in the following one they moved 10px each, a priori there is no way to know
which particle is which. On the other hand, if for example there are 1 or 2 pixels per particle
between two successive frames, it is easier to determine which particle is which at the next
frame.

With that being said, we can roughly estimate the number of fps needed. To choose it,
we need to estimate the maximum velocity that we would expect in our setup, which in our
case would be a the velocity in the pores, up. We can estimate this by saying up ∼ U/ε, with
U the superficial velocity and ε ≈ 0.4.

Next, we will need the spatial resolution of the cameras a, which has units of L/px.
Noting f ≡ 1/dt the framerate, we can compute the particle displacement Disp between two
successive frames as Disp = updt/a, where dt is the time between frames. Replacing this
into the framerate, we get

f = 1/dt =
up

a/Dist

With all of this taken into account, the fps was set at 2200Hz, with a space resolution of
896 × 800px, and we recorded 3 seconds (a total of 6600 frames) for each acquisition. This
was done several times for several planes of the bed, and for several Re.

The coordinate system is defined as (x, y) on the plane of acquisition, with y the flow
direction, and z the other direction perpendicular to the flow rate, which is the depth of the
bed. This is shown in figures 4.20 and 4.13.

Measurements are done in the course of hours (between 3 to 6 hours for each run) at
night when there is less light pollution. The laser sheet is moved in the z-direction so that we
have measurements in different depths of the bed, and at different times. We then compute
the the velocity fields for all the data collected. This is possible because the system we are
studying is stationary, so it does not change with time. This was verified by looking at the
trajectories (there are certain ones that easy to identify, such as the ones on recirculation
points), and by verifying that the dynamics do not change with time.
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Once the measurements are taken, the data is saved. Each measurement for each camera
takes up to 6Go of space, and we can save up to 1To of data for each experiment. The raw
data is then processed by the PTV algorithm and is then analyzed as detailed below.

U

x

y

z

Figure 4.20 – Coordinate system used in these experiments. The xy plane is the one recorded by the
cameras and the flow is in the y direction. The depth is in the z− coordinate, and it is perpendicular to the
flow, along with x.

PTV Errors

As illustrated in figure 4.21a), whenever the cameras’ rays are crossed, there is an error com-
mitted between the point found by their intersection and the real point in the physical space.
As a matter of fact, rays never exactly cross, both because of uncertainties in centerfinding
precision and calibration accuracy. These uncertainties are more pronounced here than in
classical PTV in homogeneous fluids due to slightly imperfections of the index-matching. We
define the error as the minimal distance between the two matching rays, ||rray 1 − rray 2||.
Its probability density function (estimated over all the detected and matched particles) is
shown in figure 4.21b) for an arbitrary experiment. Its mean value, which we take to be the
mean error is 0.1mm for all of the experiments, which is approximately 20 times smaller than
the typical pore size (see figure 4.19 for reference). This determines the raw 3D resolution
of our PTV data and the level of noise.
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a) b)

Figure 4.21 – a) Comparison between a real point (◦) and the point found by the PTV algorithm (�). b)
Histogram of the error, defined as the distance between the two rays in the intersecting points.

Postprocessing

In order to smooth the trajectories and compare the signal-to-noise ratio on velocity esti-
mates, the trajectories obtained from the PTV algorithm are fitted by polynomials of order
3, which as can be observed in figure 4.22a), it is a good approximation, as trajectories
are short. The mean difference between the “real” trajectories and the fitted polynomial
d =

√
(Xreal −Xfit)2 depends on each coordinate, and is

dx =
√

(xreal − xfit)2 = 8e-3mm,

dy =
√

(yreal − yfit)2 = 9e-3mm, and

dz =
√

(zreal − zfit)2 = 6e-2mm

The error in the z-direction is higher because it is highly sensitive to the calibration in the
z-direction, which has a larger associated error. Indeed, considering the optical arrangement
of the cameras, the x and y coordinates are highly redundant from each 2D view, while z is
fully retrived by . The probability density function of the errors in the trajectories is shown
in figure 4.22b), and we choose to work with the trajectories that have an error di < 20µm
in the x and y directions. From the fitted trajectories we can then compute the velocity
and acceleration fields by differentiating the positions. As a result of the added temporal
coherence along trajectories, the error from fitting the trajectories is about 10 times smaller
than the error committed from individual ray crossing.

Validation

Before passing onto the “real” experiments and in order to validate global workflow of the
code, we carried out an experiment with no hydrogels, and injected tracer particles into the
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a) b)

Figure 4.22 – a) Generic trajectories fitted by an order 3 polynomial. The dots represent the real data and
the solid lines are the fits. b) Probability density functions (pdf) of the error between the real trajectories
and the fitted ones, d =

√
(Xreal −Xfit)2

flowing water at different Re. We expect the tracer particles to follow trajectories parallel
to the flow and to have the same velocity as the one measured by the flowmeter because
as there is no porosity u = U . The difference between the velocity measured with the
PTV algorithm and the one measured with the flowmeter was of 0.1%, thus validating the
workflow described above.

4.3 Experiments meet simulations

The experiments allow us to study the system at a macro and a micro scale. From the first
set of experiments we measure the pressure and porosity of the bed, both global quantities,
to compute the presure drop and see how it variates with Re and D/d. From the second we
measure the velocity field and acceleration fields, and as it will be detailed in chapter 6, we
will compute correlations and structure functions.

The experiments will not only be used for the “calibration” of the numerical simulations,
but in fact the experiments and the simulations will complement each other. Whereas the
experiments will provide us the real-life physics, the simulations will allow us to go even
further. For example, in the simulations we will have access to the local pressure field, which
is not available experimentally with the current setups. They also allow us to study the
forces involved in the system, which we can not measure experimentally.

With this interplay between experiments and simulations we will have a thorough de-
scription of the beds in different scales, which can be extrapolated to other kinds of porous
media.
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Chapter 5

Global confinement effects

This chapter is presented in the form of a paper that is going to be submitted between
January and February 2023. This study is oriented towards macro-scale hydrodynamics in
fixed beds, and it presents both numerical and experimental results (the experiments were
conducted in the first set-up presented in chapter 4). In order to quantify the border effects,
we explore three different configurations with D/d = [5, 8, 10], fixed porosity and we explore
a Renynolds-numer range that varies between 200 and 1000 in the experiments and 60 and
300 in the simulations/

As it has been mentioned in the introduction, there have been plenty of studies that
evidence how the confinement effects of packed bed is reflected in, for example, the mean
porosity of the medium, but we are taking a different approach than the ones found in
the literature. The study is mainly divided into two sections: the first one is dedicated
to the variability of the pressure field and pressure gradient, and how they depend on the
random arrangement of the particles. In the second part we explore the physical mechanisms
responsible for how the pressure drop changes with D/d.

We first want to explore the wall effects from a different perspective: how the variability
of the results is affected by the presence of the walls. This is a valid question, given the
fact that the arrangement of particles is random and there must by an intrinsic variability
linked to that. We study this experimentally by computing the pressure drop for 9 different
configurations (the only variable that changed was the distribution of the spheres) and
calculate how much the results vary from their mean (i.e., their standard deviation). We
observe both a variability in the pressure curves and the pressure drop obtained for each
configuration.

The other question that we want to answer is if the measurement depends on the place-
ment of the captors at the walls of the bed: is it the same if we measure at θ1 or θ2 (two
generic angles)? We explore this numerically by obtaining the pressure along a vertical line
at different angles of the bed, and in order to be as close as possible to the experimental
measurement, we do this at the wall of the reactor. Effectively, what we observe is that the
pressure varies with the placements of the “sensors” (our numerical probing lines) and that
in fact this variability can be associated to the one observed for different ensembles: it seems
that measuring at, say, 9 different angles of the bed is comparable to measuring 9 different
ensembles with the same D/d, ε and Re. This is an interesting result, given that we could
do a sort of ensemble averaging by using a single numerical bed and measuring at different
angles. Moreover, this variability increases with D/d, making the wall effects more evident.
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The last question we ask ourselves in this first part is whether it is the same to measure the
pressure drop in the walls (as it is usually done in experiments) to calculating the averaged
pressure gradient over the whole volume. This is of interest because while experiments are
usually done in such a way that the sensors are placed at the walls of the reactor, the
theoretical developments are usually done by averaging over the fluid volume.

In the second part of the article we present how the pressure gradient varies with D/d
and Re both experimentally and numerically, and we recover results that are consistent with
previous studies. We then try to quantify the influence of the walls in the pressure drop with
the aid of the simulations. We do this by calculating the total particle-fluid force of all of
the spheres and the wall. We observe that in fact, the pressure drop is not affected by the
walls per se, but by how the walls affect the particle distribution.

56



To be submitted in Jan-Feb 2023 1

Revisiting the influence of confining wall on
the pressure drop in fixed beds

Florencia Falkinhoff12, Jean-Lou Pierson1, Lionel Gamet1, Mickael
Bourgoin2 and Romain Volk2

1IFP Energies Nouvelles, 69360, Solaize, France
2Ens de Lyon, CNRS, Laboratoire de physique, F-69342 Lyon, France

(Received xx; revised xx; accepted xx)

Using experiments and numerical simulations, this study examines the intrinsic variability
in confined fixed beds of randomly arranged spherical particles, specifically in relation
to the pressure field and pressure gradient within the bed when there are wall effects.
We observe that as the sphere-to-reactor diameter ratio decreases, the pressure gradient
presents a stronger variability, particularly in relation to where measurements are taken
within the reactor. The study also quantifies the difference between measuring the
pressure drop at the wall of the reactor versus averaging over the entire volume, finding a
small difference of 2.5% at most. We examine how the mean pressure gradient is affected
by the walls of the reactor, finding that the pressure drop follows a consistent 1/Re
scaling regardless of the confinement due to changes in the mean porosity of the bed. We
also find that the vast majority of the pressure gradient is due to the distribution of the
solid spheres within the bed, rather than the walls themselves.

1. Introduction
Fixed beds of particles are widely used in the chemical and process industries in a

variety of reactors, like heat exchangers, separators, catalytic beds, and many other
applications Barbour et al. (2015); Elouali et al. (2019); Barker (1965). In these cases,
the beds are in confined geometries, and the presence of finite reactor walls conducts to
additional complexity in modelling such systems, due to supplementary effects caused
by wall friction and local porosity variation near the reactor wall Mueller (2019); Guo
et al. (2019). These effects have been widely studied by measuring the global pressure
drop in several regimes, spanning from laminar to turbulent ones, both experimentally
Erdim et al. (2015); Foumeny et al. (1993); Clavier et al. (2015); Bağcı et al. (2014) and
numerically Magnico (2003); Reddy & Joshi (2010); Dixon (2021). Nevertheless, there is
not yet a clear agreement on a universal model that thoroughly describes all the regimes
and possible configurations, especially when border effects become significant.

For a fixed bed of spherical particles the parameters involved are the Reynolds number
Re = Ud/ν based on the superficial velocity (i.e., the velocity as if the spheres were
not present), the bead diameter d and the fluid kinematic viscosity ν; the porosity ε of
the bed, defined as the ratio between the volume occupied by the spheres and the total
volume of the reactor, ε = Vfluid/Vtotal; and D/d, which is the ratio between the particle
and reactor diameter, d and D respectively. When border effects are negligible, i.e. when
D/d → ∞, the pressure drop depends only on Re and ε. In this case, the Ergun model
Ergun (1952) is generally used to describe the pressure drop of random arrangements
of spherical fixed particles. Nevertheless, this model is not suitable for cases where the
border effects are evident, particularly when D/d < 10 Eisfeld & Schnitzlein (2001);
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Erdim et al. (2015); Hill et al. (2001); Clavier et al. (2015); Foumeny et al. (1993). It
has also been reported that, in the laminar regime, the Ergun model underestimates the
pressure gradient because of the additional reactor wall friction in the low-Re regime,
whereas in the higher-Re case the pressure drop is less than that of Ergun since the
effects of the local porosity near the walls increase ( ε ≈ 1), therefore acting as a less
resistant path for the flow to go through Eisfeld & Schnitzlein (2001).

In Eisfeld and Schnitzlein Eisfeld & Schnitzlein (2001), the variability of the coefficients
of equation (5.3) was studied by analysing more than 2300 data points with different
border effects. The authors found no clear correlation between the empirical parameters
of the Ergun correlation and D/d, especially for D/d < 10. Models have been proposed
where there is a distinction between a bulk and a wall zone, that differentiates the flow
going near the reactor walls from the flow in the middle of the bed, where the border
effects would be negligible. Such an example is the model proposed by Di Felice & Gibilaro
(2004) where the authors define a bulk velocity in terms of D/d. In De Klerk De Klerk
(2003) and Zou et al. Zou & Yu (1995) works, the bulk porosity of the bed has been
modelled in terms of D/d as well, by fitting various experimental data.

Most of the experiments are done by measuring the pressure drop via pressure sensors
installed at the wall of the reactor, and it is worth asking if there is not a bias in the
measurement that comes from measuring at some particular locations along the bed,
where there can be more or less pressure variations. Not only that, but by measuring
the pressure at the wall of the reactor, we are measuring a quantity over a specific part
of the experiment, but not a quantity that is averaged over the whole volume of the
experiment. Are we indeed measuring the same quantity when we measure at the walls
and over the whole volume of the reactor? How do the variations of porosity, pressure
and velocity affect the different ways of measuring? There is also an intrinsic variability
associated with the randomness of the arrangements of spheres in fixed beds so that
the pressure drop will undoubtedly change for each repetition of the same experiment,
where the only modified parameter is the bed random packing. Even though there have
been many models and studies done (see for example, table 1 of Erdim et al. Erdim et al.
(2015)), few have been oriented towards the sources of discrepancies between the different
ways of measuring the pressure drops and if an Ergun-type correlation can be considered
still valid. It is not trivial that this law would hold when there are finite border effects,
given that there can be a reactor boundary layer that adds up an additional term in the
momentum equation.

The questions that we want to address in this work are: Do the Ergun scaling laws
are valid when D/d < 10? If so, what are the physical mechanisms involved? Does the
randomness of the arrangements affect the results? In order to answer all these questions,
pressure drops in fixed beds are studied both experimentally and numerically, for three
different configurations in the inertial regime. The simulations will allow us to go further
into details and quantify data that can not be easily measured in experiments, such as
the difference between averaging the pressure gradient over the whole fluid volume versus
calculating it like it is typically done in the experiments.
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Figure 1. The fluid volume fraction (i.e., the porosity) as a function of the radius of the bed.
The results are compared with those obtained in Mueller (1992) and Benenati & Brosilow (1962).

2. Computational approach
The same problem is addressed numerically in a vertical cylindrical domain (for

D/d = 5 and D/d = 8, 10 respectively), and periodic boundary conditions at the
top and bottom. The random arrangements of beads in the cylindrical container are
built using the Discrete Element Method software Grains3D Wachs et al. (2012). The
fixed beds are done in three successive steps: first, the particles are dropped into a non-
periodic cylindrical container with a fixed bottom. During this first step, the spheres are
driven by gravitational and contact forces until they form a packed bed with a random
arrangement. Afterwards, the two periodic ends of the bed are set at the minimum and
maximum positions of the settled particles (these will be the inlet and the outlet of the
system), and they are given an initial random velocity so that they can move inside the
now periodic domain. At the same time, their radius is increased at each time iteration.
During expansion, particles experience multiple collisions before they reach the final
diameter that satisfies the maximum solid concentration possible, and the simulation is
stopped just before the particles are in contact with one another. Lastly, once we have
the maximum possible radius so that there are almost no particles touching each other,
a third simulation is done so that the particles re-accommodate into their final position,
which will be the one that we will use to mesh the bed.

The resulting beds are characterized by calculating fluid volume fraction, εf , as a func-
tion of the radial coordinate r for the three cases considered here D/d = [5.13, 8.03, 10.15].
This is shown in figure 1, where the results are consistent with those obtained by Mueller
(1992); Benenati & Brosilow (1962); Goodling et al. (1983) who considered similar
configurations.

Once the bed is characterized, direct numerical simulations (DNS) are performed with
the finite-volume solver simpleFoam of the OpenFOAM library Weller et al. (1998). For
each bed, the flow domain in between the particles is meshed with the OpenFOAM
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unstructured mesh utility snappyHexMesh, using a standard meshing workflow in three
steps. Firstly, the blockMesh utility is used to generate a fully hexahedral butterfly O-H
topology background grid including the complete geometry, and defining refinement level
0. The castellatedMesh step of snappyHexMesh is then used to remove the background
grid cells outside the fluid region and to refine cells on sphere surfaces (at levels 1 to 2),
on intersections of spheres with the periodic boundaries (at level 2) and inside the gap
regions between the spheres (with an increment of level 2). The level 1 corresponds to a
division of level 0 cells by a factor 2 in all directions, and so on for higher levels. Finally,
the snap step of snappyHexMesh is used to project the remaining refined cell faces on
the sphere surfaces. This last step generates polyhedral cells near the walls. No boundary
grid layer is used in the present study, as the fluid regime is laminar.

The meshing method presents a limitation for the maximum achievable porosity, given
that there is a trade-off between resolving all the small gaps between the spheres, the
number of cells necessary for the resolution of the equations and the porosity. If a higher
solid fraction is required, it becomes more difficult to mesh the bed, since when the
particles are in contact with one another they automatically mesh as a single object.
This is an additional difficulty when analyzing the data, as it becomes impossible to
differentiate the two spheres, for example on quantities like the force on the spheres.
With this limitation in mind, the maximum porosity that was achieved was approximately
50% for all cases, as shown in table 2. Such a bed could be obtained experimentally by
a gradual defluidization of a fluidized bed or obtained by sedimentation Delaney et al.
(2011); De Klerk (2003).

Moreover, the system was made periodic along the main flow direction (z−direction),
so as to avoid any inlet/outlet boundary conditions effects and to compare it to the
experimental measurements. The number of cells ranges between 45 to 70 millions,
depending on the case, the axial periodicity being imposed by interpolating the periodic
patches using the cyclicAMI boundary condition on all variables. In order to optimize
the interpolation algorithm, we verified that no sphere was tangent to the top and bottom
so as to avoid any strongly skewed cells or non-matching grids which would make the
cyclicAMI interpolation more difficult. We also refined the edges of the intersection
between the spheres and the periodic boundaries so that the borders match as best as
possible. With all of this taken into account the interpolating weight, which is a quantity
that is equal to 1 for a perfect match between the periodic walls and 0 for the opposite
case, is on average 0.99 for all meshes.

In the end, the whole system is composed of a z-periodic inlet at z = zinlet and
a periodic outlet at z = zoutlet, the individual spheres that make up the bed, and the
lateral walls of the reactor. The mesh is non-structured and the system can be described in
cylindrical coordinates (r, θ, z), with r ∈ [0, R], θ ∈ [0, 2π] and z ∈ [0, H]. The geometrical
parameters of the simulations are shown in table 1. In order to verify that the volume
meshed is representative and that there are no periodic spurious effects, we computed
simulations with double its period 2H. We verified that there was no significant difference
between the results of the simulations with period H and 2H.

Once the mesh is complete, we solve the steady-state Navier-Stokes equations for the
velocity field u and pressure field p̃

∇ · u = 0, (2.1)

ρu · ∇u = −∇p̃+ µ∇2u, (2.2)

where ρ is the fluid density and µ the dynamic viscosity. We make use of the steady-state
solver simpleFoam, without any turbulent model as the flow remains laminar in the range
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D/d H/d ε Number of cells ρ U ν Re
10.15 6.35 0.485 68.8M 1 0.53- 7.89 1e-4 20 - 300
8.03 5.02 0.490 58.9M 1 0.42 - 6.20 1e-4 20 - 300
5.13 3.85 0.518 45.3M 1 0.26- 3.83 1e-4 20 - 300

Table 1. Parameters of the simulations. ε = Vfluid/Vtotal: fluid volume fraction. Re = Ud/ν
Reynolds number based on the superficial velocity U , the diameter of the particles d and the
kinematic viscosity ν.

of parameters considered here. This solver relies on the SIMPLE algorithm Ferziger et al.
(2002), which solves the pressure-velocity coupling in the incompressible Navier-Stokes
equations (see equation (2.2)) of the fluid by using an iterative method for the pressure
p and the velocity field u.

We use second-order Gaussian finite volume integration schemes to compute the differ-
ent terms of equations (2.2). The gaussLinear scheme is used for the gradient operator,
gaussLinear corrected for the laplacian schemes, and bounded Gauss linearUpwind
is used for the divergence operator. The interpolation between the cell centres and cell
faces was done through a linear interpolation scheme, which uses central differencing for
the interpolation.

In order to impose a mean flow with periodic boundary conditions, a forcing term is
added to the incompressible momentum equation such as

ρu · ∇u = −∇p̃+ µ∇2u− f ẑ, (2.3)

where f is the forcing term imposed in ẑ direction. Under this framework, p̃ is a z-periodic
pressure field satisfying p̃(zinlet) = p̃(zoutlet) and is related to the total pressure p by the
simple relation

p = p̃+ fz, (2.4)

The equations are then solved in the entire flow domain with periodic boundary condi-
tions in z for u and p̃ at the top and bottom, with no-slip boundary conditions on rigid
boundaries (reactor walls and beads) for the velocity, and Neumann boundary conditions
with zero normal gradient (∇p̃ · n = 0) for the fluctuating pressure on solid boundaries.
Finally, the full pressure gradient is then computed as ∇p = ∇p̃ + f which averages to
⟨∇p⟩V = f when summed over the entire flow domain.

We also used a residual control, down to 10−6 for both the velocity and pressure fields.
A similar condition was also used in Magnico (2003). Convergence was reached within
5000 iterations, with final residuals ranging between 10−8 and 10−6. Given these criteria,
it was possible to run the DNS with a range of Reynolds number Re ∈ [20 − 300],
which is lower than what is achieved in the experiments, and the higher Reynolds values
(Re ∼ 200) of the DNS are the lower ones from the experiments. Parameters are given
in table 1.

The numerical methodology was validated using the computations performed by Hill
et al. (2001) with a Lattice Boltzmann method as a benchmark case. Ordered arrange-
ments of spheres are computed by placing a sphere in the middle of the three-periodic unit
cell (i.e., a single-cubic cell), with a fixed solid volume fraction of 0.408, or equivalently a
porosity of ε = 0.592. The non-dimensional drag force exerted by the fluid on the sphere
is defined as

F ∗ =
F

6πµRU
,
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Figure 2. The non-dimensional drag force on a three-periodic simple cubic array of ε = 0.592
as a function of Re. The results are compared with the work of Hill et. al Hill et al. (2001).
Inset: the relative error shown as a percentage.

where F is the module of the total force felt by the sphere. As shown in figure 2, this
quantity was calculated and compared to the one obtained by Hill et al. (2001). The
relative error, defined in terms of the force calculated using OpenFOAM FOF and the
one calculated by Hill FH , Error = |FOF −FHill|/FHill is shown in the inset. We obtain
a maximum relative error of 1.8%. In order to test the cyclicAMI condition, the sphere in
the unit cell was also placed at the border of the domain and separated into two periodic
parts, so as to assess that we get the same results. In that case, the error was not larger
than 2%.

It is worth noting that even though the SIMPLE algorithm is not usually suitable
to handle problems with high Reynolds numbers because it is a stationary solver, the
effects of the non-stationary modes are weak. This is verified by comparing the pressure
drop results on a fixed bed with Re = 200 and D/d = 10, obtained with SIMPLE to
those given by the non-stationary solver PIMPLE. We compared the pressure gradient
obtained at each time step with the one obtained from the stationary simulations. The
SIMPLE results match down to a relative error of O(10−4), thus validating the suitability
of the SIMPLE algorithm.

3. Experimental set up
The pressure drop measurements are conducted in the experimental device shown

schematically in figure 3. It is made of a closed upstream-flow water loop that is mainly
composed of a centrifugal pump, a solenoid valve to regulate the flow, a cylindrical test
section and a flow meter.

The set-up is made of a clear plexiglas column with a diameter D = 0.04m, and
different sections of different heights that allow flexibility in the placement of the bed,
so as to avoid any nozzle effects. In particular, the test section of the bed is Lexp = 0.4
cm high. Two additional 0.2 m empty sections are added so as to separate the bed from
the nozzle and a 0.05 m high honeycomb is placed so as to suppress velocity fluctuation
in the incoming flow.

The test section is first filled to its full height with monodispersed stainless steel
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Figure 3. Experimental set up.

spherical beads with diameter d = [7.938, 4.762, 3.969] mm and density 8 g cm−3 from
Marteau and Lemarié (France). In addition, grids are placed at the bottom and top of
the bed so as to keep it fixed whatever the flow conditions.

The setup is then filled with filtered water with temperature control using a thermal
bath. Special attention is paid to the removal of trapped bubbles in the loop because
the accumulation of bubbles within the pores can lead to wrong pressure measurements.
To this end, a degassing tank was added on top of the upstream water loop so that
the bubbles can escape the closed water loop when reaching the free surface of the tank.
Additionally, the water is degassed by heating it up to 55◦ C, letting it circulate for nearly
12 hours, and then cooled down to 20◦ C, the temperature at which the experiments are
carried out. This facilitates suppression of the bubbles, which was corroborated visually
before starting each acquisition. In total, each experiment takes about 24 hours each time
the bed is modified.

A constant speed centrifugal pump is used to drive the water, controlling the flow
rate with a solenoid valve. The flow rate Q, which can be varied in the range Q ∈
[35, 165]cm3/s, is measured by a flowmeter MAG-VIEW MVM-020-QA from Bronkhorst
(Netherlands). This provides a direct measurement of the mean velocity U = 4Q/(πD2)
that is used to define the Reynolds number Re = Ud/ν of the flow, where ν = 10−6

m2.s−1 is the kinematic viscosity of water. Given the diameter of the spheres and the
height of the bed, the Reynolds number can be varied in the range Re ∈ [220, 1100] so
that the flow remains laminar/inertial for all flow conditions, which was confirmed by
the absence of fluctuations in pressure measurements.

Pressure along the bed can be measured using an array of ten pressure sensors, flush-
mounted along the column, and equidistantly distributed from each other at positions
zi, where z = 0 corresponds to the bottom of the bed. The pressure probes are high-
precision piezo-resistive sensors with a sensibility of 150 mV/bar and a linear deviation
of 0.05%/bar. In order to increase the signal-to-noise ratio, the signal is amplified
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Figure 4. Example of the pressure obtained at different heights zi at a fixed angular position
in the reactor for D/d = 10 and Re = 220. The pressure gradient is calculated by computing
the slope of a linear fit shown with the red dashed line.

by a homemade voltage amplifier with a gain G = 10 and digitized using a high
precision data acquisition system (NI Dacq 4472: 8 channels, 21 bits, 100 kHz from
National Instruments). As a consequence, signals from the flow meter and seven pressure
sensors are recorded at a time with a 20 kHz sampling frequency, so that eventual
pressure fluctuations due to fluidization or turbulence can be detected. Before the first
experimental campaign with flowing water, the sensitivity of the sensors was checked and
calibrated for their offsets by in situ measurements of the static pressure when increasing
the water level in the setup. When operating with a flow, the mean pressure pi measured
at altitude zi contains both contributions from a possible offset, the static pressure, and
the flow when U ̸= 0. As all contributions are additive, the mean pressure due to the flow,
further noted p(z) for simplicity, is simply obtained by subtracting the mean pressure at
U = 0 (which contains the offset and the gravitational contribution) from the current
measurement. The mean pressure gradient dp

dz , is then calculated by computing the slope
of the p(z) curve as shown in figure 4 for a particular case of D/d = 10 and Re = 220 as
an example. As can be noted, only sensors placed away from inlet and outlet of the bed
are used for the pressure gradient measurement in order to avoid possible biases from
the top and bottom boundaries.
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Figure 5. Normalized pressure p/ρU2 as a function of z/d measured experimentally along the
tube for nine different random arrangements of spheres with D/d = 10 and a Reynolds number
Re = 276.

4. On the variability of pressure measurements in packed beds
When measuring the pressure gradient in experiments, sensors are usually mounted on

lateral walls at known positions along the bed, while both surface and volume averages
are possible in numerical simulations. We address this question of whether surface and
volume averages of the pressure gradient are compatible and how the average pressure
gradient varies when changing the particle arrangement. Indeed, as the spheres are
randomly packed with a relatively weak scale separation between the particle size d
and the domain width D, D/d ⩽ 10, variability in the particle arrangement may lead to
a strong variability in pressure measurements.

Such variability can be observed in figure 5 which displays the normalized pressure,
p(z)/ρU2, measured experimentally at the surface along the tube for 9 independent
realizations of the bed, for D/d = 10 and a Reynolds number Re ∼ 276. As can be
observed, p(z) decreases almost linearly along the bed but all curves are different for the
different realizations of the bed. Not only there are variations of the pressure at a fixed
position but the variations are randomly distributed along z with a variability about the
ensemble average estimated as δp/ρU2 ∼ O(10).

Investigation of the local pressure field is impossible in the experiments, so we shall
turn to the DNS results with similar scale separation d/D = 10 and Reynolds number
Re = 200 to get a more detailed picture. As there is a strong pressure gradient along the
bed, we define the pressure fluctuation field by subtracting the local average pressure in
each plane z = cte. It reads:

p′(r, θ, z) = p− 2/R2

∫ R

0

p(r, θ, z)rdr = p(r, θ, z)− ⟨p⟩r,θ(z), (4.1)

where ⟨•⟩r,θ denotes a spatial average over variables r and θ while ⟨•⟩θ is an average
over θ only and ⟨•⟩V an average over the whole volume. Figure 6 shows the pressure
fluctuations field p′/ρU2, at two planes at two different heights of the bed. As observed
in the experiment, pressure fluctuates with typical amplitude a fraction of ρU2 although
the fluid volume fraction in the DNS is about 25% larger as compared to the experiment
(table 2). We find that pressure not only fluctuates strongly in the bulk but also along the
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Figure 6. Pressure field at two different height of the bed, for D/d = 10, ε = 0.518 and
Re = 200. Results from Direct Numerical Simulations.

Experiments Simulations

ε D/d Re ε D/d Re
0.386 10.08 222 - 535 0.485 10.15 20 - 300
0.396 8.40 300 - 630 0.490 8.03 20 - 300
0.425 5.04 240 - 1100 0.518 5.13 20 - 300

Table 2. Range of parameters studied experimentally and numerically.

lateral boundary due to local porosity effects and solid-fluid interactions, which depend
on the particle distribution in the bed. The fluctuation field strongly depends on the
vertical position z, which may impact measurements of the pressure gradient due to the
geometry of the bed. Moreover this pressure fluctuations field will change each time the
packing is changed, adding a certain variability to the results.

To illustrate how variations in the bed impact the measurements of the pressure
gradient, we first turn to the set of independent experiments done with D/d = 10 for
which we displayed the results in figure 5 for Re = 276. For each realization of the bed,
we perform a series of measurements of p(z) at different Reynolds number (table 2) from
which we estimate the mean pressure gradient, dp/dz, at a given Reynolds number by
a linear fit of p(z) along the bed. As it is usually done, we define a non dimensional
pressure gradient

Gp =
1

ρU2

dp

dz

that we can plot against 1/Re.
The results are displayed in figure 7 in which we note that all the measurements follow

the same trend. The normalized gradient Gp is nearly linear as a function of 1/Re, each
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Figure 7. Pressure drop measured experimentally for nine different random arrangements of
spheres with D/d = 10. The red solid line is the average linear fit Gp = β + α/Re obtained by
averaging the linear fits Gp = β + α/Re of the different realizations.

curve converging toward a constant at high Re which corresponds to the inertial regime
beyond the purely viscous (Darcy) regime.

As can be seen in figure 7, the precise values of the Reynolds number are not exactly
the same for each realization so that estimating the variability is not straightforward.
We therefore compute a linear fit of Gp = β + α/Re for each realization from which we
get the ensemble average evolution Gp = β + α/Re, where α, β are averages of different
values of α and β, drawn as a solid line in figure 7. We then obtain the standard deviation
from the ensemble average,

σGp
=

( (
Gp

(
1

Re

)
−Gp

(
1

Re

))2
) 1

2

,

and find that the standard deviation averaged over all the values of the Reynolds number
is σGp

= 0.43 with a quite small mean relative error σGp
/Gp = 2.58%.

As mentioned earlier, the pressure field not only changes for each different arrangement,
but pressure exhibits spatial fluctuations within the bed (figure 6). We now explore how
the estimated pressure gradient will depend on location by using the results from Direct
Numerical Simulations. As measurements are usually performed on a vertical line along
the bed, we first study how pressure varies along z, at the wall of the reactor, for different
values of the angle θ. The pressure lines at four different angles are shown in figure 8a)
for a particular case of D/d = 10 at Re = 200. Each point is calculated by averaging
the pressure over θ± dθ at different z, which is analogous to having finite-sized pressure
sensors at the wall (i.e. they span an angular length at the wall of the reactor θ ± dθ)
at different heights: ⟨p(r = R, θ, z)⟩θ(z). The pressure lines show that the pressure as a
function of the height of the bed varies depending on the angle. The pressure gradient
for different angles ⟨Gp(r = R, θ + dθ, z)⟩ is shown in figure 8b) for 4 different values
of the Reynolds numbers. This was calculated for different θ ± dθ by a linear fit of the
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Figure 8. a) Pressure versus z/d at the wall of the reactor (r = R = D/2) at different angles
θi, for a fixed bed with D/d = 10, Re = 200. b) Pressure gradient at the wall of the reactor
versus θ, normalized by the perimeter of the bed, for the same random arrangement as in a).
Results from DNSs.

curves as is done experimentally. This quantity is normalized by the pressure gradient
averaged over the whole volume, ⟨Gp⟩V , which is equal to the forcing term in the DNS,
⟨Gp⟩V = f . In the present case, it is striking that the different curves nearly collapse onto
the same curve for all Reynolds numbers, which is due to the fact that the 4 simulations
were performed using the same bed, so that the spatial organisation of the pressure field
does not change much when changing Re as it is strongly correlated to the structure of
the bed.

The relative variations of the pressure gradient at the walls for D/d = 5, 8 and 10
are shown in figure 9. This was calculated by computing the standard deviation of the
superficial pressure drop described above and its mean value. The value of the standard
deviation for D/d = 10 is 0.38, which is comparable to the experimental repeatability
result which we recall to be 0.42. It is worth noting that the experimental repeatability
result was averaged over a higher Re range. This means that a direct analogy between
measuring at different angles of the bed and changing the bed several times can be made,
with an overestimation of the variability by using the former.

Furthermore, the relative deviations increase for the smaller scale separations:
σGp(r=R,θ,z)/⟨Gp(r = R, θ, z)⟩θ is on average 4%, 7% and 10% for D/d = 10, 8 and 5
respectively. Assuming that the tendency is right, this means that the relative variability
can be of O(10) for D/d < 5.

Finally, let us now compare the mean pressure gradient measured at the walls ⟨Gp(r =
R, θ, z)⟩θ with the volumetric average ⟨Gp⟩V as a function of Re. This is of interest
because the pressure drop is typically measured at the walls in experiments, whereas
macroscopic laws are usually derived by volume averages over the whole domain. Figure
10 displays how the ratio ⟨Gp(r = R, θ, z)⟩θ/⟨Gp⟩V changes with Re for the different scale
separations investigated. It can be observed that the value does not change significantly
with Re. It does not stray that much from unity, although there is a clear effect that
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Figure 9. Standard deviations of ⟨Gp(r = R)⟩(θ) compared to its mean over all angles,
⟨Gp(r = R)⟩θ.
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Figure 10. Pressure gradient calculated at the walls averaged over all θ ⟨Gp⟩θ compared to
the pressure gradient averaged over the whole volume ⟨Gp⟩V

depends on D/d, with an overestimation of the pressure gradient at the walls when
the scale separations are smaller D/d = 5, and an underestimation for larger D/d.
Nevertheless, this variation is found of the order of 1%, which is less than the error that
one commits when measuring different beds or at a particular angle.

We shall therefore conclude that the error made by computing the pressure gradient at
the wall instead of using a volumetric average is by far smaller than the typical variability
one gets in the pressure gradient measurement when using only one realization of the
bed which can reach up to 10% when scale separation is too small.

5. Mean pressure gradient
We now turn to the interpretation of the results obtained experimentally and numer-

ically for the pressure gradient as a function of Re for the three different beds with
D/d = 5, 8 and 10 (table 2).

5.1. Dimensional analysis
In order to show a robust relation between the pressure gradient in the bed, which is

proportional to the total pressure loss ∆p along the bed, we turn to dimensional analysis.
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The pressure loss is a function of 7 physical parameters so that 8 dimensional quantities
are involved:

∆p, ρ, U, µ, d,D,L, Vs,

where L is the relevant length in the tube (L = H in the simulation while L is the
maximal distance between the sensors in the experiment so that the pressure gradient is
dp/dz = ∆p/L in all cases), and Vs is the volume occupied by all the spheres. As there
are 3 physical dimensions involved (mass, time and length) and 8 dimensional quantities,
the functional relation between the pressure loss and the other quantities can be reduced
to a relation between 5 independent non-dimensional numbers that we choose to be

Gp ≡ d∆p/L

ρU2
, Re, ε,D/d, L/D,

that can be written as:

Gp = f(Re, ε,D/d, L/D). (5.1)

One may wonder if L/D is really involved in this relation. The answer comes from an
analysis of the system. If L is long enough so that pressure fluctuations decorrelate along
the bed, then inlet-outlet condition do not matter and the bed can be considered as
infinite. In such condition, L/D can be dropped in the above expression to get:

Gp = f(Re, ε,D/d). (5.2)

Note that the condition H/D ≫ 1 is easily satisfied in the experiment as we have
L/D ∼ 10 with a linear pressure loss along the bed (figure 5). We verified that L = H
was not involved as well in the DNS by checking that Gp remains the same when doubling
the height of the bed.

The functional form of equation 5.2 may be complex but it takes a simple form in limit
cases. Let us for instance consider a pipe flow, for which ε and D/d are not involved. In
such case, the pressure loss is 1/Re in the Poiseuille regime Idelchik (1987). Back to the
porous medium in this regime of vanishingly small Re, the loads are still linearly related
to the mean velocity so that Gp must be proportional to 1/Re so that we write

Gp = α(D/d, ε)
1

Re
(Re ≪ 1),

where α(D/d, ε) is an unknown function. On the other hand, in the high Reynolds number
regime, the loads are proportional to U2 so that Gp will remain constant Idelchik (1987),
which allows us to write

Gp = β(D/d, ε) (Re ≫ 1).

Guessing about the evolution Gp as a function of Re in the intermediate regime, which
does not correspond to the viscous nor the inertial regime, is more difficult. However, one
may guess that some inertial contribution may first appear as a correction of the viscous
term when increasing Re so we choose to explore how Gp varies as a function of 1/Re
and write Gp = α/Re+ β.
There is no a priori reason for which α and β should not depend on the Reynolds number
in the inertial regime Re = O(100) when the scale separations is small, as there could be
boundary layer or transitional effects. In the particular case where D/d → ∞, the Ergun
equation is used to describe the pressure drop on non-confined fixed beds of spherical
particles Ergun (1952), which reads:
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Figure 11. Non-dimensional pressure gradients Gp = (∆p/L)/(ρU2/d) as a function of 1/Re.
Left: Experimental results, ε ≈ 0.4. Right: Numerical results, with ε ≈ 0.5. The error bars for
both results correspond to the variability at the walls measured numerically, which increase with
the confinement effects.

Gp =
(1− ε)

ε3

(
A
1− ε

Re
+B

)
. (5.3)

The equation depends on ε and Re, and A and B are empirical constants that do not
depend on Re and are reported to be 150 and 1.75 respectively Ergun (1952). This
equation has been observed to be valid for D/d > 20 Erdim et al. (2015), and it will now
serve as a basis to interpret the present results which have been obtained with weaker
scale separations D/d < 10.

5.2. Results
Figure 11 displays the evolution of the normalized pressure gradient Gp =

(∆p/L)/(ρU2/d) as a function of 1/Re both from experiments and numerical simulations
(see table 2 for the range of Reynolds number for each run). The pressure gradient
measured experimentally corresponds to the one measured on the wall of the reactor,
at a fixed angle θ0: GpR, θ0, and the numerical one is presented as the gradient
averaged over the wall surface, that is, the average of the gradient shown in figure 8b),
⟨Gp(r = R, θ, z)⟩θ,z. The error bars for both results correspond to the variability at the
walls measured numerically, which increase with the confinement effects.

All cases follow a linear evolution of Gp with 1/Re: Gp = α/Re + β which is not a
trivial result as there is no reason why the result obtained at moderate Reynolds number
should be a superposition of the limit cases Re ∼ 0 and Re → ∞. It is visible in this
figure that, both in the experiment and the DNS, the non dimensional pressure gradient
is a decreasing function of D/d in the range of parameters investigated which is a clear
signature of the presence of the wall. This is probably due to the fact that as D/d lowers
the porosity of the bed increases De Klerk (2003), so then the bed offers less resistance
to the flow, and thus generates a lower pressure gradient for lower scale separations.

The slope and intercept of the linear fits are shown in table 3, multiplied by a factor
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D/d AErgun
ε3

(1−ε)
αexp

ε3

(1−ε)
αdns BErgun

ε3

(1−ε)
βexp

ε3

(1−ε)
βdns

5 150 141 139 1.75 1.05 1.21
8 150 178 125 1.75 1.11 1.15
10 150 219 130 1.75 1.00 1.11

Table 3. Experimental and numerical values of the slope and intersection of the Gp(1/Re)
linear fits, α and β respectively.
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Figure 12. Pressure drop for cases with D/d = [4.25, 5, 5.04], compared with the Ergun model
for (D/d → ∞).

depending on the porosity so as to have a direct comparison with A and B from equation
(5.3), noted as Aergun and Bergun in the table.

Both the numerical and experimental values are within the values reported in Eisfeld
& Schnitzlein (2001). The overall trend is that the value of A increases with decreasing
D/d, and they report that B shows a "slight opposite trend", although there is not a
clear correlation in the results. It is worth noting that in all the experiments studied, the
contributions of ε and D/d were not separated, and the porosities of the experiments are
not specified. In fact, as it has been modelled in previous works De Klerk (2003); Zou & Yu
(1995) both variables depend on the other, so their contributions might not be separable.
That is to say, that one might not be able to do, e.g. α(ε,D/d) = αε(ε) × αD/d(D/d).
Moreover, there are no error bars reported in the results, which we have proved to be
important due to the variability, especially for lower D/d.

We now compare in figure 12 our experimental results for D/d = 5, which correspond
to the smallest scale separation investigated, to those from other works Foumeny et al.
(1993); Erdim et al. (2015) and with the Ergun model (equation (5.3)) valid in the limit
D/d → ∞. As can be observed, all curves follow the same type of linear relation Gp as
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Figure 13. a) Force contributions on the pressure drop for D/d = 5, where most of it comes
from the spheres. Inset: The force at the walls is enlarged for clarification. b) Total force of the
system and total force over the sphere for D/d = 5, 8 and 10.

a function of 1/Re, with good agreement between the present data and those of Erdim
et al. Erdim et al. (2015). Besides, all experimental sets show a clear deviation from
the Ergun relation (red dashed line), which overestimates by a factor 3 the pressure loss
along the bed. This is expected because of the presence the wall Foumeny et al. (1993);
Erdim et al. (2015); Mehta & Hawley (1969); Eisfeld & Schnitzlein (2001); Di Felice &
Gibilaro (2004). Whether this due to some friction at the outer boundary or because of a
more global effect on the particle distribution due to the confinement is an open question.
In order to answer this question, we will turn to numerical results to get a more local
analysis, which is that of the forces involved in the spheres. This will allow us to separate
the contribution from the walls and from the spheres. It is presented in the following
section.

5.3. Force contributions
The DNS data allow for the direct computation of the forces exerted on the spheres

by numerical integration of the loads F =
∫
S
σ · n dS where σ is the stress tensor and S

is the surface of the particle. We calculated the forces for all the spheres as the sum of
all individual forces, and the forces over the walls of the reactor. Because of conservation
of momentum, it is straightforward that

⟨∇p⟩V =
1

V

(∑
FSpheres + FWalls

)
. (5.4)

This means that the pressure gradient is a result of the different contributions of the forces
of the system, and we can separate those two contributions in order to see which one is
more influential. Equation (5.4) was verified, down to a 1% difference for all simulations.

Figure 13a) shows the total force per unit of volume exerted on the bed and the wall
FTotal (labelled as Total), the sum of the forces over all the spheres only, labelled as
Spheres, and the forces at the walls, labelled as Walls, all normalized by ρU2/d, which
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is the same normalization factor used in Gp. As was mentioned, the total forces by unit
volume are the pressure drop, and by separating the contributions we can see which is
more important. It is evident that most of the contribution comes from the spheres and
not from the walls. In particular, for D/d = 5 and Re = 200, FSpheres = 22 × FWalls,
and FTotal = 1.05 × FSpheres. Not only that, but both FWalls and FSpheres follow the
same 1/Re scaling, which validates the robustness of the scaling (the walls contribution
was replotted in the inset for clarity), and that there is not an additional term due to
the walls in the ranges of parameters studied, thereby revalidating that α and β only
depend on ε and D/d.

Figure 13b) shows FTotal and FSpheres for D/d = 10, 8 and 5. All of them follow the
same scaling and once again most of the contribution for the pressure gradient comes
from the spheres, not the walls. It is worth noting though that the wall contribution
increases with D/d. That is, there is a dependency with the confinement, however small
(as it was said, for D/d = 5 the spheres account for 95% of the contribution).

All of this leads to the conclusion that the differences observed between the pressure
drops measured in confined beds with D/d < 10 and non-confined beds (i.e., those that
follow the Ergun equation) are not a result from the walls themselves, but from how the
spheres are arranged because of the presence of the walls. That is, the change in geometry
imposed into the system by a reactor with D/d < 10 is what causes a difference in the
forces felt by the spheres which is by itself generated by the differences in the mean
porosity of the bed generated by the walls.

6. Conclusions
Fixed beds of randomly arranged particles present an intrinsic variability that is linked

to the arrangements themselves, and this variability is reflected in the pressure field inside
the bed and thus the pressure gradient might vary as well. We have studied this with the
aid of numerical simulations and experiments, where we have observed that as the scale
separations get weaker (i.e., D/d decreases) the pressure gradient presents a stronger
variability depending on where we measure at the wall of the reactor. Moreover, we were
able to quantify the difference between measuring the pressure drop at the wall of the
reactor and the one averaged over the whole volume. This is of particular interest because
the theoretical developments are usually derived for bulk-averaged averaged quantities.
We observed that there is a small difference between measuring at the wall of the reactor
and averaging over the whole volume, of 2.5% at the most.

Our study showed that the variability has an intrinsic error that can reach 10% when
the scale separations are smaller, and this can be of interest for models regarding the
pressure drop in confined beds, as there can be two separate models that account for a
10% difference that might be inevitable, as it is intrinsically related to the wall effects
on the packing.

On the other hand, we studied how the mean pressure gradient is affected when
the walls play an important role. As a first observation, all pressure drops follow the
same 1/Re scaling, which is consistent with the one proposed by the celebrated Ergun
correlation. It is also noted that they decrease with D/d, given that the average porosity
of the bed changes with D/d, and thus the pressure drop is affected. We quantified
the contribution of the walls and the solid spheres by doing a simple force balance of
the system, which satisfies that the pressure drop of the system is almost equal to the
sum of the fluid-wall and fluid-spheres forces. We find that most of the contribution
(between 95 and 98%) comes from the spheres, whereas the walls have a small effect on
the pressure gradient. This means that the difference documented between the pressure
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drop in confined beds and the infinite case described by the Ergun equation comes from
how the spheres are rearranged and distributed at the presence of the walls rather than
the presence of the walls themselves, whose force contributes to the pressure gradient a
small percentage that is within the variability error of the measurement.
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Chapter 6

Micro-scale hydrodynamics: a turbulent
perspective

Figure 6.1 – Time-lapse of a generic experiment at a generic plane of the bed. Even though we
will be dealing with flows that are in the inertial or transitional regime, the Lagrangian dynamics
is not trivial: we can observe different behaviors in different pores, including vortices in some pores
and more ordered flows in other pores. This behavior is certainly caused by the randomness of the
arrangement.
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6.1 Experimental results

We will study the local multi-scale hydrodynamics of a fixed bed made up of hydrogel beads
of diameter Dh = 14mm with a particle to bed diameter ratio D/Dh ≈ 6.43, by using index-
matching PTV as detailed in chapter 4. Its porosity is estimated to be ε ≈ 0.4 (De Klerk,
2003). As it has been explained in previous chapters, the confinement of the bed generated
by the walls can have an effect on global quantities such as pressure. Here, we will explore
whether the wall effects and the geometry are significant at the pore-scale.

As explained in chapter 4, we measure at a fixed z−plane of 4mm width, x being the
other transversal direction and y the direction of the flow. We study the flow at four different
Reynolds numbers based on the hydrogel beads’ mean diameter and the superficial velocity
UQ: Re = [124, 169, 203, 211], which is a regime that ranges between the inertial and the
unsteady laminar (transitional) regime (Wood et al., 2020). Figure 6.1 shows a time-lapse
image of a generic experiment in this regime, with the tracer particles that behave as elements
of fluid shown in white. It can be qualitatively observed that the Lagrangian dynamics are
not trivial: there are some re-circulation zones and the random arrangement generates pores
where there can be different behaviors such as recirculation and stagnation points, channel-
like pores and so on (see, for example Patil & Liburdy (2013)). The flow shows a clear
spatial complexity, with shear zones and strain, and rotation dominated structures, which
recall the characteristic multi-scale structures of a turbulent flow. However, one should keep
in mind that these structures are steady and stable in time. One of the goals of this chapter
is to explore to which extent the spatial complexity of this steady laminar flow does resemble
to turbulence. This will be done by deploying the same arsenal of statistical diagnoses to
characterize the spatial fluctuations of velocity and their correlations as used for the study
of turbulence.

Figure 6.2 – Velocity map of an experiment with the Reynolds number based on the superficial
velocity Re(UQ) = 211. The local velocity uy though can however become much higher in some
pores.
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Figure 6.2 shows the average velocity map for a particular experiment with Re = 211.
It can be seen that the Reynolds number based on the measured local fluid velocity uy
can be several times higher than the "macroscopic" Reynolds number Re(UQ) based on
the superficial velocity UQ. This evidences the fact that not only there are very high local
values of velocity, but this also probably generates high values of local acceleration as well,
corresponding to more complex hydrodynamics at the pore-scale compared to the global
scale of the bed.

With all of this taken into account, we carried out a statistical analysis of the velocity
and acceleration fields: one-point statistics including probability density functions and two-
point statistics including two-point correlations and structure functions. This will all be
detailed in the following sections. Because of the symmetry of the system, we assume that
the two perpendicular components x and z are equivalent. The system can thus be described
by studying only one of the components. This will be further explored with the numerical
results.

6.1.1 One-point statistics

Figure 6.3 – Probability density function (pdf) of the transversal and stream-wise components of
the velocity, respectively. They are expressed in such a way so that they can be compared to a
Gaussian distribution of mean zero and standard deviation equal to one, which is typically observed
in turbulent flows.

As it has been mentioned, the velocity varies quite significantly within the bed. In order to
quantify this variability, we first calculate the velocity component (transversal ux and stream-
wise uy) probability density function (pdf), shown in figure 6.3. Gaussian distributions are
plotted in red-dashed lines for comparison, as they are typically observed in fully-developed
turbulent flows (Ouellette et al., 2006b).

The ux distribution is symmetrical around its mean value. It is quite remarkable that
it is not that far off from a Gaussian, even though it has been established that these are
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not actual turbulent flows. On the other hand, the stream-wise pdf is asymmetrical around
its mean value, with lower values of probability for negative velocities when compared to
the Gaussian distribution. This is consistent with the fact that there is a fixed direction
of the velocity, which is driven by the pressure drop that has been thoroughly studied in
the previous chapter. The difference between both distributions shows that the flow is not
perfectly isotropic in the x and y directions, at least at the scales that are set by the PTV
measurement window, which approximately spans about (4 × 4)Dh. This will be further
explored later with the numerical results.

The acceleration pdfs are shown next in figure 6.4, and compared once again to a Gaussian
distribution. The first observation is that they are remarkably similar to the pdfs observed
in fully turbulent flows (La Porta et al., 2001; Voth et al., 2001), where extreme values of
acceleration can be reached, as it is evidenced by the comparison with the Gaussian pdf and
its stretched tails. This might point towards a kind of turbulent "signature" that is present in
the system, which would be consistent with the fact that the tortuosity of the flow generates
regions of relatively high and low porosity values and therefore the local velocity values
change as well, generating extreme values of local acceleration. We have already stated that
our flow is steady and is not actually turbulent. Our observation and that in Holzner et al.
(2015) at lower Re show that a turbulent-like pdf of acceleration can be retrieved without a
complex temporal dynamics of the global flow, but just with a rich Lagrangian dynamics in
a complex steady flow.

Figure 6.4 – Probability density function (pdf) of the transversal and stream-wise components of
the acceleration, respectively. They are expressed in such a way so that they can be compared to a
Gaussian distribution of mean zero and standard deviation equal to one. Both distributions present
exponential tails, which are observed in turbulent flows where extreme values of acceleration are
probable.
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Overall, the one-point statistics show a similarity between the velocity and acceleration
probability density functions and those found in turbulent flows. The qualitative observations
also show the presence of recirculation points and changes in local velocities. At this point,
it is therefore tempting to push forward the comparison and explore two-point statistics
seeking for possible multi-scale correlations, which are one of the most emblematic signatures
of turbulence. Is it possible that the spatial structures of the flow present some turbulent
signature in its correlations? In order to answer this question, we pass on to a multi-scale
analysis, borrowing tools from the turbulence formalism, such as structure function analysis
to identify the presence of an inertial range, an energy cascade and the formalism developed
by Kolmogorov in 1941 (K41 theory). See, for example chapter 6 of reference Pope (2000)
or reference Davidson (2013) chapter 9 for the multi-scale statistics in turbulence.

6.1.2 Two-points statistics

In the following sections we will be working with the velocity fluctuations, defined as u′i =
ui−〈ui〉, as we are interested in the small-scale hydrodynamics and the role of the fluctuations
at this scale.

Correlation functions and large scales

Figure 6.5 – Left: Two-point auto-correlations for u′x and u′y. The velocity fields are correlated at the
smallest distances before becoming null. Afterwards, they tend towards an oscillating pattern, which
reflects the geometry of the bed. Right: Crossed auto-correlation function. The two components of
the velocity are never fully correlated (that is, they never reach a value of 1).

In order to observe how two elements of fluid are correlated, we calculated the auto-
correlation function of the x- and y-components of the velocity fluctuations u′i = ui − 〈ui〉:

Cij(dr) = 〈u′i(r + dr)u′j(r)〉 i = x, y, (6.1)

with dr the relative distance between two elements of fluid (i.e., two tracer particles) in
an r−sphere: dr =

√
∆x2 + ∆y2 + ∆z2, and the mean is done for all the separations or
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increments1. The averaging 〈·〉 is done over an ensemble of pairs of points with a given
separation dr, and evenly sampling the entire flow. The results of Cii(dr) are presented in
figure 6.5 (Left). It is observed that they both lose correlation at dr ' 0.2Dh, and then
continue to oscillate around zero for higher separations, which is due to the presence of the
hydrogel beads. Considering that a typical pore size ranges between 1 and 5 millimeters2,
this reveals the presence of correlation which develop typically at the pore-scale of the bed,
and it shows that the velocity fluctuations are strongly correlated at this scale. On the other
hand, the crossed-correlation Cxy oscillates around zero for all separations, but it reaches a
value of approximately 0.3 at the smallest scales. This is evidence of the non-gaussianity of
the velocity distributions (see for example Ex.3.19 of Pope (2000)); this is shown in figure
6.5(Right)

a)

b) c)

Figure 6.6 – Top: The area under the curve of the auto-correlation function as a function of dr.
The correlation length is calculated when this quantity reaches a plateau. Bottom: Correlation
lengths for the transversal and axial components. They vary with the Reynolds number and seem
to converge towards a constant value so as to reach a certain level of isotropy.

1It is worth noting that even though we are measuring at a fixed z-plane the width of the laser sheet is 4mm,
which is comparable to the typical size of the pores, which ranges between 1 and 5mm. We are thus computing the
3D trajectories within the sheet, which has a width that is adequate to resolve the pore-scale.

2Following an approximation done in Andreotti et al. (2013), the characteristic pore size s can be calculated by the
following relation: φ/φmax = 1/(1+s/Dh)

3, where φmax is the maximum solid fraction. Using this, the characteristic
pore size is approximately 16mm in our case.
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In order to see if there is a characteristic correlation length involved, we calculate the
area under the curve of equation (6.1):

Li =

drˆ

0

Cii(dr̃)

σui
dr̃ i = x, y, (6.2)

which typically reaches a plateau, defining what is known in turbulence as the correlation
or integral length L (Pope (2000),section 6.3). The results are shown in figure 6.6 (a, where
the curve oscillate around a constant value, which is due to the geometry of the bed. The
correlation lengths are calculated at their maxima (which are where Cii = 0) and are shown
in figure 6.6 (b). It is interesting to note that Ly increases monotonously with Re whereas it
is the opposite for Lx. Moreover, their ratio tends to one (figure 6.6 (c)). This points toward
the isotropy of the system: whereas for lower Re there seems to be a higher correlation length
in the transversal (x) direction, it is the opposite for the higher-Re case, where they both
tend towards the same value. This means that as the Re number increases the large-scale
fluctuations of the flow become more isotropic. This is consistent with the asymptotic regime
for highly turbulent flows in porous media as explained in Wood et al. (2020), although it
is remarkable that this isotropy already appears at a lower Re at the pore-scale, which is
reflected by the fact that Lx/Ly ≈ 1.

Inertial range of scales

In order to zoom-in into the multi-scale pore-scale hydrodynamics, we calculate the second-
order structure function S2, which contains the same information as the auto-correlation
function with a focus on the smaller scales. We first calculate it in the r−sphere for the x−
and y− components of the velocity, so that S2 is defined as

S2i(dr) = 〈δu2i 〉(dr), (6.3)

with δui = u′i(r + dr)− u′i(r) and dr = r2 − r1 = (x2 − x1, y2 − y1, z2 − z1) for two different
points r1 and r2.. This S2 tends to 2σ2

ui
when the velocity field is no longer correlated. We

will also focus on the longitudinal second-order structure function, defined as

S
‖
2 =

〈
(δu · δr)2

|dr|2

〉
. (6.4)

The second-order structure function is of particular interest in turbulence because in ho-
mogeneous and isotropic turbulence (HIT) it carries one of the most celebrated signatures
of the multi-scale nature of turbulence and exhibits the following scaling (Pope (2000), eq.
6.30):

S
‖
2(dr) = C2(ε dr)

2/3, (6.5)

in the inertial regime, where the scales are much larger than the Kolmogorov length scale η
(which corresponds to scales below which the dynamics is dissipated by molecular viscosity
ν such that η = (ν/ε)3/2) and much smaller than the integral length scale L. ε is the
energy injection rate and C2 is a universal constant, generally referred to as the Kolmogorov
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constant3. In HIT C2 ≈ 2 (Pope, 2000; Sreenivasan, 1995). The component-wise second-
order structure functions also follow the same two-thirds scaling, although with different
constants. Not only that, but it comes from the self-similar K41 theory that the structure
function of order p follows:

Sp(dr) = Cp(ε dr)
p/3. (6.6)

a)

b)

Figure 6.7 – a): Second-order structure functions for each velocity component as a function of the
relative distance in a r-sphere, which depends on all three spatial coordinates. A two-thirds scaling
is evident at the small scales dr < 0.2Dh, which points towards the presence of an inertial range. b)
Second-order longitudinal structure function, claculated with all three components of the velocity
and of the relative distances. It shows once again an inertial range at the smaller scales.

3C2 is usually defined in terms of the Fourier transform of the second-order structure function, which is the energy
spectrum E(k) = Ckε

2/3k−5/3, and C2 and Ck are analytically related Sreenivasan (1995), thus C2 is also called the
Kolmogorov constant.
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It is known that K41 fails at predicting actual scalings for high-order structure functions
(p ≥ 4) (Frisch, 1995). This reveals the intermittency phenomena and the fact that tur-
bulence is not scale invariant - in particular small-scale energy dissipation is unevenly dis-
tributed in space. The dataset of the present work does not allow to reach the statistical con-
vergence required to explore such high order statistics. We will therefore focus on low-order
statistics (p . 3) seeking for possible scalings in the present system, possibly reminiscent
of K41 dynamics. If these scaling are maintained, we would have strong evidence that the
spatial organization of these laminar flows shares similarities with a turbulent flow. Given
its temporally steady nature, it would then be a practical example of actual "frozen turbu-
lence", which is a classical approximation when analyzing wind tunnel experiments using
the so-called Taylor hypothesis (Pope, 2000).

Up until now we cannot fully link the previous results to a turbulent-like formalism,
because we still have to identify an inertial regime, which would appear in the second-order
structure functions. Figure 6.7a) shows S2x and S2y respectively. It shows a clear 2/3
spectrum that continues on until dr ≈ 0.2Dh for all the Reynolds numbers studied. This
points to the presence of an inertial range at scales dr < 0.2Dh. The oscillating pattern for
dr > 0.2Dh is the long-scale correlation which oscillates because of the presence of the beads,
and is in average 2σ2

ui
as expected. We can then verify that the uncorrelated plateau for S2

where the inertial range ends, is reached at approximately L ≈ 0.2Dh. Figure 6.7b) shows S
‖
2 ,

which once again supports the presence of an inertial range at dr < 0.2Dh and the large-scale
decorrelation. We can eventually calculate the analogous of the Kolmogorov constant of the
system, but we first need to determine the equivalent of ε, the turbulent energy dissipation
rate. It is worth noting that at smaller scales (smaller than η) there should be a ballistic
regime (that goes as dr2) characteristic of the smooth dissipative dynamics of small scales
and this should provide us the energy-dissipation rate, but we do not recover that result
here. This might be because we do not fully resolve the finest length scales of the flow (the
seeding density of tracer particles does not give access to statistically relevant information
for separations below dr ∼ 10−2Dh), and also because the measurements become noisier at
the smaller scales, given that it becomes difficult to match the particles within PTV errors
(primarily related to imperfect index-matching effects).

Energy cascade

The presence of an inertial range does not suffice alone to have a full turbulent-like descrip-
tion, which is incomplete without calculating the energy cascade, if there is one. In order to
do this, let us now turn to the third-order longitudinal structure function S‖3 defined as

S
‖
3 =

〈
(δu · δr)3

|dr|3

〉
,

which satisfies within the inertial range

S
‖
3 = −4

5
ε dr (6.7)

for a direct cascade. Contrary to S2, these inertial-scaling laws can be derived from the
Navier-Stokes equations (Lindborg, 1996). From the physical point of view, while S2 reflects
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the scale by scale kinetic energy distribution of the system, S3 carries the information on
how energy flows across scales. The fact that in 3D HIT S3 < 0 reflects the direct nature
of the energy cascade: energy is injected at large scales (∼ L) and flows through inertial
scales down to the small scales (∼ η) where it is dissipated by viscosity. Some systems (such
as 2D turbulence) are known to exhibit a range of scales with the opposite trend, energy
flowing from the smaller scales to the bigger ones, and then S3 > 0. The third-order structure
function is then directly linked to the inertial-range energy cascade present in turbulent flows
by its dr relation and sign. Unfortunately S3 needs third-order velocity statistics which need
more data to converge, so it was not possible to calculate it accurately. However, this can
be overcome by considering a derived second order relation.

Indeed, for a locally homogeneous and isotropic flow (Mann et al., 1999; Ott & Mann,
2000; Hill, 2006)

〈δa · δu〉 = −2ε, (6.8)

with the sign depending on whether there is a direct (< 0) or inverse (> 0) energy cascade.
This quantity yields information about the energy cascade by having a constant value across
scales in the inertial range and its sign, and does not involve any empirical unknown constant
so it allows to estimate ε directly (as with S3). It has a better convergence rate as it requires
second-order statistics, although at the cost of a high-order derivative order, as it requires
acceleration to be known besides of the velocity. The lagrangian framework of our diagnosis
is particularly suited to accessing this acceleration. We calculated this quantity by only
using the y and x components, because the z component is much noisier than the other two.
Moreover, because of the symmetry of the system, the z component should behave as ux and
ax, so we define 〈δa · δu〉 = (2δaxδux + δayδuy). Figure 6.8 shows the results, where it is
first observed that it remains relatively constant for the range of scales dr, where the inertial
range is observed for S2. Not only that, but it remains negative in that range, especially in
the higher-Re flows, which indicates the presence of a (local) direct energy cascade at the
inertial range.

Figure 6.8 – The acceleration-velocity structure function, which is supposed to remain constant in
a homogeneous and isotropic turbulent flow, and its negative sign indicates the direction of the
energy cascade. In this case it remains negative for almost all distances at where the inertial range
has been identified.
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We can then calculate the value of the energy injection rate by averaging over dr < 0.2Dh:

ε =
|〈δa · δu〉|

2
. (6.9)

The values are shown in table 6.1 and vary between [2× 10−3 − 2.7× 10−2]m2/s3.

The calculated energy dissipation rate reflects the energy transfer across the inertial
scales, and it should be equal to the energy injection rate at the larger scales. Dimensionally
in turbulence, the energy injection rate is related to the velocity standard deviation σu by

ε =
Cεσ

3
u

L
, (6.10)

where Cε is a constant and L is the correlation length. Not that in turbulence Cε is known
not to be a universal constant and highly dependent on the geometrical properties and the
forcing of the turbulence, in particular in the vicinity of production regions of turbulence
(such as wakes) (Vassilicos, 2015). Figure 6.9 shows |〈δa · δu〉| as defined in the previous
subsection, which in the framework of the present analogy with turbulence equates to 2ε vs.
σ3
u. It shows reasonable agreement with a linear fit, with Cε ≈ 0.14, hence validating the

scaling law (6.10).

Figure 6.9 – The energy dissipation rate (minus a factor of 2) as a function of σ3u. Is is observed
that they follow a linear relation.
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Re ε [m2/s3] η [µ m] τη [s] C2

124 (1.90± 0.50)e-03 151± 97 (2.29± 0.068)e-02 (1.20± 0.27)e-03
169 (6.70± 1.00)e-03 110± 33 (1.22± 0.015)e-02 (1.00 ± 0.13)e-03
203 (2.77± 0.14)e-02 77.5± 0.98 (6.00± 0.018)e-03 (5.92± 0.25)e-04
211 (2.71± 0.13)e-02 77.9± 9.34 (6.07± 0.17)e-03 (7.13± 0.27)e-04

Table 6.1 – Turbulent parameters calculated from the results obtained by calculating 〈δa · δu〉 =
∓2ε, including the energy dissipation rate, the Kolmogorov length- and time-scales, and the Kol-
mogorov constant.

Full characterization of the turbulent-like dynamics

In order to have a full turbulent-like characterization, we can also calculate other turbulent
parameters, such as the Kolmogorov length- and time- scales η and τη respectively, defined
as

η =
(ν3
ε

)1/4
and τη =

(ν
ε

)1/2
. (6.11)

The values are shown in table 6.1. η ranges between 150 and 78µm4, and it decreases
with Re, which indicates that the inertial range increases with increasing Re: compared to
L = 2.8mm, we have that L

η
= [18.6 - 36] from the lower to the higher Re cases. τη on the

other hand ranges between [2.3e-2 - 6e-3]s and decreases with increasing Re, which if we
make the analogy with a turbulent flow, it would be the eddy-turnovertime at η.

We can also calculate C2 from equation (6.5). As shown in table 6.1, the values range
between 10−3 to 10−4, which not only it is not constant, but it is significantly lower than
the value found in HIT, which is close to 2. This is evidence of the small "signature" that is
present in the system.

With all these quantities at hand we can calculate several Reynolds numbers based on
different scales, and they are shown in table 6.2. We first define a "turbulent" Reynolds
number that depends on the velocity standard deviation and the correlation length scale
L = 0.2Dh:

ReL =
σuyL

ν
. (6.12)

Because of equation (6.10), we can also write

R̃eL = C−1/3ε

(L
η

)4/3
, (6.13)

which involves both the dissipation and correlation scales. We can also define a Reynolds
number based on the Taylor microscale λ (see Pope (2000), ch. 6), that by making use of
equations (6.12), (6.10) and the definition of λ is:

Rλ = C−1/2ε

√
15ReL. (6.14)

4It is worth noting that these scales validate our choice of tracer particles, which should typically be smaller than
the Kolmogorov scale in order to be treated as tracer particles, and their diameter is 30µm. This also explains why
we do not see the dr2 regime in figure 6.7: the smallest scales that we study are higher than η.
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Re ReL = σuL/ν R̃eL = C
−1/3
ε (L/η)4/3 Rλ = C

−1/2
ε
√

15ReL
124 135 87 120
169 182 144 140
203 219 229 153
211 239 228 159

Table 6.2 – Different Reynolds numbers based on different scales. We pay special attention to Rλ,
which is based on the inertial range as its characteristic scale.

This Rλ is found to range between 120 and 160 (see table 6.2). It is interesting to note that
this is comparable to the turbulent Reynolds number of actual turbulent studies as performed
in grid-turbulence wind tunnels (Obligado et al., 2014; Mora et al., 2019; Bourgoin et al.,
2011). Even though we are dealing with a system that is not macroscopically or globally
turbulent and more notably is a steady laminar flow (though spatially complex), at the
pore-scale there is a global multi-scale dynamics that is not that spatially different from
that found in turbulent wind tunnel experiments for example. This once again reflects the
multi-scale nature of the system: even though at the global scale of the bed the flow is not
turbulent, we find that the combined pore-scale hydrodynamics are compared to those of a
turbulent flow, at least at the spatial sense.
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6.2 Comparison with numerical results: porosity effects

Figure 6.10 – Velocity map obtained from the simulations for D/Dh = 6.45 for a Reynolds number
based on the superficial velocity Re(UQ) = 160. As seen in the experiments, local values of the
velocity can get much higher than UQ.

Simulations were computed for a bed with D/Dh = 6.45 and height H/d = 4.84; both
parameters are similar to those from the experiments. The grid is made up of 50.4 × 106

cells, and its resolution varies from 19 cells per bead diameter (based on the background
grid) to 75 when the refinement is taken into account. For the sake of comparison we will
define the y coordinate as the stream-wise direction and we will note the particle diameter
as Dh.

The Reynolds numbers based on the superficial velocity are Re = 160 and 211, and the
porosity is ε = 0.49, which is the most different parameter from those of the experiments5.
We will use this to our advantage to study how the local hydrodynamics varies when the
porosity changes. A snapshot of the velocity field of a simulation for Re = 160 is shown in
figure 6.10, where the colorbar shows the Reynolds number based on the module of the local
velocity |u|. As with the experiments, there are regions with very high local velocities when
compared to the superficial one.

6.2.1 One-point statistics

The velocity probability density functions are shown in figure 6.11. The results are separated
into the different components, as the simulations allow us to study the z-component of
the velocity field without any measurement error. We can further compute the velocity
pdf of the radial velocity, ur =

√
u2x + u2z in order to study the transversal isotropy. As

a first observation, unlike in the experiments, all the distributions have significant spikes
5The difficulties of achieving meshes with lower porosities have already been discussed in chapter 3.
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Figure 6.11 – Left: Probability density function (pdf) of the transversal components of the velocity
ux and uz, and its radial component ur =

√
u2x + u2z, for two different Reynolds numbers, and they

are all compared to a gaussian distribution. Right: Pdf of the stream-wise component of the velocity
for two different Reynolds numbers.

near zero. This is very likely due to the fact that the simulations resolve all the scales, in
particular the thin boundary layers near the beads, which are out of reach of the present
experimental PTV (aiming at a multi-pore characterization of the flow) and which have a
no-slip boundary condition. Regarding the transverse (x, z) and radial (r) components, they
all share the same distribution and the same symmetry found with the experimental results.
This validates our assumption that the the two transversal components are analogous, and
it is further evidenced by the ur distribution. Moreover 〈ux〉 = 〈uy〉 = 〈ur〉 = 0 for both of
the Reynolds numbers explores. This distribution differs further from a normal distribution
than the experimental results, which is expected due to the marked peak around zero already
discussed, which comes with a relative reduction of fluctuations resulting in sub-gaussian
fluctuations in the ±2.5σu range. As for the stream-wise component, the same skewness as
in the experiments is observed, where negative values have once again a lower probability,
and it is even lower than the one calculated on the experiments. This can be interpreted as
a possible role of porosity effects: as the medium is less porous, recirculation points might
become more rare, thus generating a mainly upwards flow.

The acceleration is calculated by the material derivative, because ∂/∂t = 0 in the sta-
tionary simulations:

a =
Du

Dt
= (u ·∇)u, (6.15)

and the corresponding probability density functions are shown in figure 6.12. They share the
same shape as the ones obtained experimentally, and extreme events are once again found to
be orders of magnitude more probable than in a system that follows a gaussian distribution
(above ±5σa). It is worth noting that all the components share (almost) the exact same
distribution, evidencing a clear isotropy of acceleration fluctuations.
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Figure 6.12 – Probability density functions for all components of the acceleration field for two
different Reynolds numbers, compared to a gaussian distribution. They all have exponential tails,
indicating that extreme values of accelerations are more probable.

Figure 6.13 – The same velocity field shown in figure 6.10 interpolated into a cartesian grid.

6.2.2 Two-point statistics

The two-point statistics are calculated in a cartesian interpolated mesh generated using
MATLAB in order to reduce computational costs. This is done by first generating a cartesian
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mesh, finding the nearest values in the OpenFOAM non-cartesian mesh and then averaging
the fields into the closest cartesian grid point. A snapshot of the interpolated velocity field
in an arbitrary x plane is shown in figure 6.13, which can be compared to the one shown
in figure 6.10 in the original grid. In order to further corroborate that we get the same
results, the mean values of the velocity and acceleration are compared to those obtained
with OpenFOAM and there is only a 2% difference between both values.

The second-order structure functions are calculated with the increments along cartesian
directions only. That is, we calculate

S2ij = 〈[u′i(j + dj)− u′i(j)]2〉 i, j = x, y, z, (6.16)

This is done so that we can discriminate the contribution coming from each component and
to further study the (an-)isotropy of the flow. Note that this does also allows us to separate
longitudinal structure functions S‖2i = S2ii and S⊥2ij = S2ij , with i 6= j. Let us first study the
different contributions for a particular Re and then compare the different Re cases.

We first consider structure functions (longitudinal and transverse) for the stream-wise
components of the velocity (uy). Figure 6.14 shows S‖2y(dy) (Right) and S ⊥2y (dx) and
S2y(dz) (Left) for Re = 160, that is the second-order structure function for the stream-wise
velocity with relative separations in the stream-wise direction and the two transversal ones.
As a first observation, all the curves tend towards 2σ2

ui
, which is the asymptotic limit in

(6.16) for large separation, when the velocity fluctuations are no longer correlated. Second,
there is no clear two-thirds scaling in S‖2y(dy), while a small inertial range appears for the
transverse structure functions when the relative separations are in the x and z directions.
This shows that the separations in the transversal components play a higher role than the
stream-wise ones for building the inertial range. We also note that in S⊥2y(dz) and S ⊥2y (dx)
the fields become uncorrelated at dx ≈ dz ≈ 0.2Dh, which is consistent with what was found
experimentally, and is once again at the pore-scale. The correlation length in the stream-
wise direction seems larger and of the order of Dh. This could again be related to the higher
porosity of the bed.

Figure 6.14 – Second-order structure function of u′y compared to the −2/3 spectrum (red dashed
line), with increments in the transversal and axial directions. A small inertial can be appreciated
when the increments are in the plane perpendicular to the flow.
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Figure 6.15 – Second-order structure functions for the transversal components of the velocity, shown
for all increments. The isotropy of the components is evident by comparing the relevant curves.
The inertial range is more significant in these cases.

To further explore the difference between the dependencies at all directions, figure 6.15
shows the longitudinal and transverse structure functions for ux and uz. In these cases we
do observe an inertial range, although it is over a range of scales significantly smaller than
in the experimental case. This can be explained by the the high porosity, resulting in a "less
turbulent" system, where fluctuations are less probable and influential. It is worth noting
that S‖2x(dx) is almost equal to S‖2z(dz), and S⊥2z(dx) to S⊥2x(dz), validating once again the
isotropy in the xz plane, and the equivalence between the perpendicular directions Moreover,
even though it was not present in S‖2y(dy), there appears to be an inertial range for S⊥2x(dy)

and S⊥2z(dy), which points towards the fact that most of the "turbulent" contribution comes
from increments and velocity components in the directions perpendicular to the flow. Figure
6.16 shows some of the previous curves for Re = 160 and 211. As with the experimental
results, curves collapse at different Reynolds numbers with the right normalization, and the
transversal contributions to the emergence of an inertial range are once again evidenced in
the plot.

The fact that the inertial range is not as significantly large as in the experiments is a pos-
sible indication on how it highly depends on the porosity of the bed. This opens perspectives
in order to perform further experiments and/or simulations of different porosities. Simula-
tions are currently being run at higher porosity in order to get a deeper and more conclusive
insight on this point. This makes sense: a lower porosity means that there are smaller regions
for the flow to pass through, thus having higher local velocities and accelerations promoting
locally the emergence of recirculations and shear and globally a spacially more complex and
rough velocity field likely to exhibit turbulent-like statistics. The present numerical study
allows a partial turbulent-like description, as only multi-scale statistics involving transverse
dynamics show some analogy with turbulence.
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Figure 6.16 – Second-order structure functions for two different Reynolds numbers. The inertial-
range is (almost) non-existent for S2y(dy), whereas it appears fro the other component.

Nevertheless, since an inertial range is still detectable then we can compute 〈δa · δu〉
for its different components and different contributions6 Figure 6.17 shows the y and x
components and relative separations (the z components is not shown as the equivalence
between the x and z components has already been established). Even though 〈δai · δui〉 is
not constant as observed in turbulence where an inertial range in scales exists, the difference
in sign is quite impressive. Besides a clear qualitative difference can be seen between the
stream-wise longitudinal velocity-acceleration structure function 〈δuy(dy)δay(dy) and the
other contributions.

6It is worth noting though that we are not expecting to get the same results as before, first of all because of the
previous discussion and secondly because equation (6.8) is derived for an r−sphere (Hill, 2006), while in this case we
are looking at the different components
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Figure 6.17 – Velocity-acceleration structure function for different components of velocity and ac-
celeration as a function of increments in the axial and perpendicular components. It is negative at
the small scales on all cases except for 〈δayδuy〉, where it is ≥ 0.

Let us recall that as it has been explained, the sign in this quantity is very important
in turbulence, as it dictates the direction of the energy cascade (if it is negative the energy
transfer is form the larger to the smaller structures and vice-versa). As seen in figure 6.17
when the relative separation is in the x direction, the transverse and longitudinal velocity-
acceleration structure-functions are entirely negative at the smaller scales (dx . 0.3) before
oscillating at the larger scales, which is due do the macro-scale geometry. 〈δaxδux〉(dy)
is negative as well, although not as much as the two curves on the right. On the other
hand, when both the correlation and the relative distances are in the stream-wise direction,
the value is either zero or positive. These observations corroborate the previous hints that
the turbulent-like contribution comes mostly from the dynamics perpendicular to the mean
stream, which are isotropic and homogeneous.

Figure 6.18 shows the total acceleration-velocity structure function (that is, when all
three components of velocity and acceleration are taken into account) as a function of the dx
and dy increments. In the case where the relative distances are in ŷ, there is a small range
where 〈δa · δu(dy) is negative, which is consistent with the previous results. On the other
hand, when we calculate it as a function of the increments in x̂, the structure functions is
entirely negative for the smaller scales dx < 0.2Dh.
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Figure 6.18 – Total velocity-acceleration structure function (all three components of the velocity and
acceleration are taken into account) as a function of two different increments: one at the stream-wise
direction and the other at the transversal one. It is evident that most of the negative contribution
comes from the perpendicular component.

This along with the results obtained with the second-order structure functions shows
that the HIT "turbulent signature" comes mostly from the strucutres of the flow in the
perpendicular plane, and not from the stream-wise direction. A possible explanation for
those differences between stream-wise and perpendicular dynamics could be related to the
hypothesis of local homogeneity generally considered in turbulence and which may better
apply to the perpendicular than the stream-wise dynamics in the present case. As discussed
in Hill (2006) section 4.2, inhomogeneity corrections (in particular regarding crossed velocity-
acceleration structure functions) come mostly from the pressure gradient term in the NS
equations. In the present case, the stream-wise motion is entirely driven by the pressure
gradient ∇p, and consequently the pressure plays a major role in this direction, possibly
leading to deviations with respect to the simple prediction 〈δa · δu〉 = −2ε for HIT.
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6.3 Summary and final discussion

This chapter is divided in two sections: experimental and numerical results. We used the
refractive index-matching particle tracking velocimetry technique to measure the local ve-
locity field in the experiments. This was done in a system where the porosity is estimated
to be ε ≈ 0.4. These experiments show that there is a "turbulent signature", where we re-
cover results from homogeneous and isotropic turbulence, including an inertial range and the
presence of a direct energy cascade at dr < 0.2Dh, which appears from a multi-scale/multi-
pore analysis, and all the different structures and contributions of the pores that, combined,
lead to a "frozen turbulence" analogy, where all the turbulent-like quantities can be defined
and estimated. First, based on velocity-acceleration structure functions we can extract and
equivalent of the turbulent energy dissipation rate, which is the mean parameter to estimate
all the "turbulent-like" quantities. We can for instance calculate the Kolmogorov length-
and time-scales and a Reynolds based on the Taylor microscale, Rλ, which shows that the
flow at the pore-scale is comparable to other flows that are considered to be turbulent. This
is a result that reflects the multi-scale nature of porous media: even though the system
is globally in a transitional (or inertial) regime that is neither laminar nor turbulent, the
hydrodynamics at the pore-scale resembles that of a developed turbulent flow.

The simulations on the other hand allow us to study complementary aspects: the porosity
effects and the local isotropy and homogeneity by discriminating the different contributions
of a and u. We verified that the dynamics in the plane that is perpendicular to the flow is
isotropic and homogeneous. It has been argued that the porosity plays a significant role as
the inertial range found is not as large as the one calculated in the experiments, and we note
that most of the contribution for the inertial range comes from the transversal components.
The inertial range is more significant when it is calculated with the transversal components
of the velocity, evidencing that most of the "turbulent signature" comes from the xz plane.
Most of the negative contribution, which accounts for a direct energy cascade, comes once
again from the perpendicular directions, whereas it is positive when it is calculated parallel
to the flow. This last result can be related to the inhomogeneity caused by the pressure that
drives the whole stream-flow.

These are all interesting results for the volume averaging theory, which is discussed in the
following chapter, where we can safely assume that the system is isotropic and homogeneous
in the direction perpendicular to the flow. It also shows the limits of the V.A.T, given that
we could be filtering out these pore-scale effects when averaging, although this will not affect
the macroscopic results given that, for example, the Darcy and Darcy-Forchheimer laws can
be derived using this formalism (Whitaker, 1996).
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Chapter 7

Some results on the closure problem in
the averaged equations

In the following chapter we are going to explore some aspects of the closure of the volume-
averaged equations in porous media by studying the non-closed terms and how they are
affected by the finite wall effects.

7.1 Averaged equations

As it has been investigated in the two previous chapters, the hydrodynamics at small scale
is very different than at global scale in fixed beds. In particular, we have seen that, though
stationary, the velocity fluctuations present a turbulent-like behavior at the smaller scales,
even though the flow is laminar. We wonder then whether the impact of the small scale
turbulent-like behavior might be present in the large-scale dynamics. Can a sub-grid ho-
mogenized description of this complex motion be derived to model the large scale dynamics?
Indeed, when modeling porous media at an engineering scale (i.e., global) we need a frame-
work to average the equations of motion so as to avoid solving all the smallest scale of the
process since the time required to run the simulations might be impractical, or because the
physical processes occurring at small scales are not of technical relevance when constructing
a reactor for instance.

We thus need a mathematical tool that can include both the micro- and macro- scale
aspects of the equations of motion in porous media, where the system is intrinsically multi-
scale. Volume-averaged techniques are usually used in these kinds of problems, where we
relate both the fluid and solid phase contributions. This averaging technique generates more
unknown than equations and requires closure models in order to have a full description of
the problem. We provide an overview of the method proposed in Jackson (1997) and Jackson
(2000), where the reader will find further details if needed.

The averaging is developed in terms of locally spaced averages that are defined in terms
of a weighting function (or a filter function) g in a way that the overall average value at
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position x for any point function q is defined as1:

〈q〉f (x) =

ˆ

Vf

q(y)g(|x− y|)dVy,

where the integration is done over the whole fluid volume Vf . It is worth noting that in
other works, notably in Whitaker (1996), a representative elementary volume (R.E.V) is
chosen and the averaging is done over that control volume. This is a particular case of the
formalism proposed by Jackson, given that g can be for example a heavyside step function
that defines the R.E.V. This filter approach in contrast is similar to that used in subgrid
L.E.S models (M. Kuerten, 2016). In order to make the averaging process independent of
the specific filtering function g, the following scale separation needs to be verified:

d� r � L,

where d is the particle diameter, L the macroscopic length scale and r the filtering length
scale. If we average the mass conservation and stationary Navier-Stokes equations for the
(incompressible) fluid phase with this operator we obtain the following expressions (Jackson,
1997)

∂ε

∂t
+∇ · (ε〈u〉f ) = 0, and (7.1)

ρε∇ · (〈uu〉f ) = ∇ · (ε〈σ〉f )−
∑

p

ˆ

Sp

σ(y) · n̂ g(|x− y|)dSy, (7.2)

where ρ is the fluid density, ε its porosity and σ the fluid stress tensor2. The last term on the
right hand side in equation (7.2) is integrated over a particle surface Sp, and it is summed
over all particles indexed by p.

Up until here the formalism is equivalent to the one proposed in Whitaker (1996) for
homogeneous R.E.Vs, and consecutive developments for specific cases such as in turbulent
flows in porous media (Soulaine & Quintard, 2014) and in moving porous media (Wang
et al., 2015). The issue with this expression is that this term cannot be directly interpreted
like a "lagrangian" force (Jackson, 1997). That is, we want the force to be described from
the spheres’ “point of view”. In order to do this, it is necessary to describe the force at the
position of the particles’ mass center, xp. If we do the following expansion

g(|x− y|) = g(|x− xp|)− (y − xp) ·∇g(|x− xp|) + ...

we have that

1We will not take into account the time-variable t because we are dealing with steady-state flows. The time-
dependency in the equation is trivial by considering the function q(y, t)

2The notation presented here is such that 〈uu〉f = 〈u ⊗ u〉f is a tensorial product, and thus ∇ · 〈uu〉f = is a
vector
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∑

p

ˆ

Sp

σ(y) · n̂ g(|x− y|)dSy =
∑

p

g(|x− xp|)
ˆ

Sp

σ(y) · n̂dSy

−∇ ·
(
g(|x− xp|)

ˆ

Sp

[σ(y) · (y − xp)]n̂dSy

)
+ ...

(7.3)

This series can be truncated with acceptably small error (Jackson, 1997). The first term
in the right hand side of equation (7.3) can now be interpreted as a force term that represents
the force exerted on the particles by the fluid, as felt by the spheres at their center of mass.
We express the first term in the RHS as n〈F〉p, where the average is done over the particles
and n = N/V is the density of particles per volume (N is the total number of spheres in the
volume V). On the other hand, the second term in equation (7.3) involves the first moment
of the loads on the particle, namely the torque (anti-symmetric component) and the stresslet
(symmetric component) (Guazzelli et al., 2011). We will express this term as 〈M〉p, where
M represents the first-order moments of the loads and the average is once again done over
all the solid particles. It is worth noting that this term does not explicitly appear in the
development proposed in Whitaker (1996), where there is only a force term. This is because
so far we have not done any stronger assumptions than the separation of scales, whereas in
Whitaker (1996) we also need local homogeneity. It is not evident whether the forces alone
suffice to close the equations in the case where there are wall effects present, and where
there might be inhomogeneities in radial direction. We decompose the velocity product as
〈uiuk〉f = 〈ui〉f〈uk〉f + 〈u′iu′k〉f , where u′i = ui − 〈ui〉f are the velocity fluctuations.

Finally, using equation (7.3), equation (7.2) can be then rewritten as:

ρε∇ · (〈u〉f〈u〉f ) = ∇ ·Σ− n〈F〉p, (7.4)

where Σ is an effective stress tensor defined as

Σ = ε〈σ〉f − 〈u′u′〉f + 〈M〉p. (7.5)

We can observe from equations (7.4) and (7.5) the solid-fluid interactions due to the force
and the first moment, that is also averaged over the particle phase. It is also worth noting
that we have a Reynolds tensor-like term that involves the velocity fluctuations one-point
correlations. These equations can get closed by studying ∇ ·Σ and 〈F〉p as a function of the
different parameters involved in the system.

Because of the geometry that we are working in (axisymmetric), we are particularly
interested in studying the z-component of equation (7.4). In cylindrical coordinates it reads:

ρε〈ur〉f
∂〈uz〉f
∂r

=
∂Σzz

∂z
+

1

r

∂(rΣzr)

∂r
− n〈Fz〉p (7.6)

If we neglect the variation of the averaged quantity with the radial direction one gets the
same balance as presented in Chapter 4. Once again, there are three control parameters:
the porosity ε, the Reynolds number Re and the separation of scales, quantified by D/d. We
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D/d H/d ε Re # of ensembles Total # of particles
10.15 6.35 0.90 200 9 900
10.15 6.35 0.485 {20;60;100;150;200} 3 1500
5.13 3.85 0.518 200 5 360

Table 7.1 – Simulations carried out in this chapter. The number of ensembles corresponds to the
different arrangements studied for identical D/d, H/d and Re conditions, and the Total number of
particles corresponds to the sum of all the spherical beads in all the ensembles.

will explore the effects on the different terms of equation (7.4) by using several ensembles.
This is done so as to have better statistics on the averaging in the particle phase, as more
than 1000 particles is necessary. Simulations are still ongoing at this point so as to achieve
better statistical convergence3

This set of simulations will allow us to study the porosity effects by varying ε between
0.9 and 0.5; the Reynolds effects by setting Re = 100 and 200, and finally the border effects
by comparing D/d = 10 and 5 while keeping all the other parameters fixed4. We will also
be reanalyze some other aspects of the simulations presented in chapter 5.

7.2 Bulk averages

In this section, we investigate the average of several quantities over the whole control volume.

Forces
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Figure 7.1 – Force probability density function for D/d = 10, ε = 0.5, Re = 100 and 200 (Left),
and ε = 0.5, D/d = 5 and Re = 200 (Right).

3As it has been mentioned in chapter 3 meshing the arrangements is not trivial and the time that it takes to
generate a particular mesh can take weeks.

4We could further explore the border effects by studying for instance D/d = 20 or a tri-periodic arrangement of
spheres where no border effects are present.
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One of the main results from chapter 4 is that

dp

dz
=

1

V

(∑

p

F spheres
z + Fwall

z

)
, (7.7)

where the sum is done over all the solid spheres and Fwall is the force at the lateral wall of the
bed. This result can be proved using equation 7.6, neglecting the variation of the averaged
quantity in the radial direction, and it is valid when averaging over the computational
domain.

Additionally, we can calculate the force probability density function in the bulk, and even
though the results might not have fully converged, they still give us some clues of the overall
force distribution of the system. Figure 7.1(Left) shows these results for the force calculated
for 1000 spheres normalized by their mean value for D/d = 10 and ε = 0.5 and two different
Reynolds numbers Re = 200 and 100. There is a peak at Fz/〈Fz〉 ≈ 1.35, which means
that there is a good amount of spheres that have a solid-fluid force 20% higher than the
average. This is different from the force distribution presented in Hardy et al. (2022) for
tri-periodic beds. This difference of the force distribution when compared to its mean force
can consequently be attributed to finite wall effects.

To further explore the wall effects, figure 7.1(Right) shows the same results for Re = 200
and D/d = 10 and 5 for comparison. The average of the latter case was done for 360
particles. We can see that the peak remains almost at the same place, so there are still a
significant amount of spheres that feel a force higher than the average, and there is a higher
probability of finding spheres with a higher Fz/〈Fz〉 when compared to D/d = 10.

Moreover, in order to study porosity effects using an extreme case, we calculated the force
distribution for 9 different fixed beds (with a total of 900 spherical particles) with D/d = 10
and porosity ε = 0.9. The pdf is shown in figure 7.2 for Re = 200 and the ε = 0.5 case is
shown for comparison. The difference between the pdfs is remarkable, as apart from a small
peak, there is no main peak for ε = 0.9 when compared to the less porous case. This can be
explained by a local almost-homogeneity, as will be explored in the next section, so that the
force is (almost) evenly distributed among the spheres. It is worth noting however that the
peak is at Fz/〈Fz〉 ≈ 2.8.
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Figure 7.2 – Force probability density function for D/d = 10, Re = 200 and ε = 0.5 and 0.9.
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First-order moment of the forces

Direct computations using DNS results show that the contribution of the first moment on
the other hand is negligible in this system, with 〈M〉f

ρU2/d
= O(10−8) and do not show any

distinct behaviour as a function of Re or ε.

Reynolds Stress tensor
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Figure 7.3 – Diagonal components of the Reynolds stress tensor as a function of the Reynolds
number for D/d = 5 and 10.

As a first step, we calculated the different components of the Reynolds stress tensor. All
the crossed components are near zero

〈u′xu′y〉f ≈ 〈u′xu′z〉f ≈ 〈u′yu′z〉f ≈ 0,

when compared to the other components, so we are interested in the diagonal components
of the stress tensor. Moreover, we verified that

〈u′xu′x〉f ≈ 〈u′yu′y〉f ≈ 〈u′ru′r〉f ≈ 〈u′θu′θ〉f ,

which is consistent with what was found in the previous chapter at the pore-scale, where
we observed that the transversal components are comparable. Figure 7.3 shows 〈u′ru′r〉f and
〈u′zu′z〉f normalized by the square of the averaged streamwise velocity in the fluid phase,
(〈uz〉f )2 for two confined cases with scale separations D/d = 5 and 10.

As a first observation, 〈u′ru′r〉f increases with the Reynolds number whereas the oppo-
site is true for 〈u′zu′z〉f , and the latter is dominant over the contribution of the transversal
component, which points to the fact that the Reynolds tensor is axisymmetric (Pope, 2000).
Moreover, there is an anisotropy between the r and z components, and these results agree
with what has been observed in Mehrabadi et al. (2015) for tri-periodic arrangements and
in Uhlmann (2008) in particulate channel flows. This anisotropic behaviour is also consis-
tent with what was found in previous chapters at micro-scale: as was concluded using the
numerical results, the main contribution to the inertial range observed in the smaller scales
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in the second-order structure function (the 2/3 scaling) seems to come from the transversal
components of the velocity for high Reynolds numbers. Indeed, what we observe here is that
as the Reynolds number increases the radial component has a tendency to become more
significant, whereas the opposite is true for the axial one, leading towards a more isotropic
state where both contributions become more and more comparable. We also quantified this
by computing the ratio between the longitudinal and transversal components of the integral
lengths, which tends towards unity with increasing the Reynolds number.

We observe that the Reynolds stress tensor is more significant (when compared to the
averaged velocity) when the D/d increases. In average5,

〈u′ru′r〉f
∣∣∣
D/d=10

= 5.7〈u′ru′r〉f
∣∣∣
D/d=5

and 〈u′zu′z〉f
∣∣∣
D/d=10

= 4.4〈u′zu′z〉f
∣∣∣
D/d=5

This might be due to the fact that for higher D/d the average porosity is lower (so there
is less fluid volume) (De Klerk, 2003). Because the pores are smaller, more fluctuations
can be generated and consequently have a higher contribution. If we think qualitatively of
the different passages of the fluid flowing through the medium, we can expect to have less
velocity fluctuations where the paths are less tortuous and there is a high local porosity (such
a region could be for intance near the reactor wall), whereas at places of low porosity we
might have more extreme events, such as the ones presented in chapter 6, where we observe
that high values of acceleration are probable (also reported in Holzner et al. (2015)). All of
this could be interpreted as a porosity effect, but in this case, the porosity itself is due to
the confinement6.
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Figure 7.4 – Diagonal components of the Reynolds stress tensor as a function of the Reynolds
number for two beds with scale separation D/d = 10 and porosities ε = 0.5 and 0.9.

5Although are studying it, the term 〈u′ru′r〉f does not appear in equation (7.6)
6Here we have labelled the "fixed" porosity at ε = 0.5, but in fact it slightly varies with D/d, as it is expected

from the confinement effects (see table 7.1).
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We will now consider a fixed bed with D/d = 10 and porosity ε = 0.9. Figure 7.4
shows the longitudinal and transversal components of the Reynolds tensor for both beds
with D/d = 10 and porosity ε = 0.5 and 0.9 for comparison. As it can be observed, they
decrease with increasing fluid volume fraction, as expected from the previous discussion. In
this case, the change in porosity is not caused by the walls but by the imposed loose packing.
The variation with Re of the Reynolds tensor is less evident when ε = 0.9, and the results
do not seem to tend to isotropy as in the case with ε = 0.5, or at least not as "fast" as in
that case. In fact, the slope in the curve for ε = 0.9 is slightly smaller than the ε = 0.5 case
(also observed in Mehrabadi et al. (2015)). This means that the symmetry is already well
defined: there are less variations in the radial direction with the Reynolds number and the
same happens for the stream-wise direction. If we say that the flow is almost Poiseuille-like,
the axial symmetry is well defined. The difference in mean value (lower for ε = 0.9) is
consistent with what is observed in Mehrabadi et al. (2015) and Reddy et al. (2013): the
increase of the solid volume fraction leads to a decrease in anisotropy, as lower porosities do
not allow the formation of distinct wake structures.

7.3 Radial inhomogeneities

Let us now go into a smaller set of scales, say meso-scales, which are in between the pore scale
and the global scale. That is, we are going to take into account the local inhomogeneities
and study the different closure terms filtered at different scales.

Given the fact that the ∂r operator is present in equation (7.4), we are interested in the
radial inhomogeneities. We explore this by averaging different quantities over cylindrical
shells ∆ri = [ri, ri + δri], where ri is the considered position of the filtered quantity when
plotting the results.

The average is done over the other two components z and θ as well. For instance, the
radial profile for a variable k is

〈k〉fr (r) =
1

Vi

ri+δriˆ

ri

2πˆ

0

Ĥ

0

k(r, θ, z) dr dz dθ, (7.8)

where Vi is the fluid volume made up by the two concentrinc rings delimiting the integrational
domain. Even though we are doing a radial average, for the sake of clarity we will leave out
the 〈·〉fr operator when talking about locally averaged quantities.

First glance: velocity and porosity profiles

Before going onto studying the different terms of equation (7.4), we shall first calculate the
radial profile of the velocity uz(r). Figure 7.5a) shows the velocity profile normalized by the
superficial velocity U for a particular case of D/d = 10 and Re = 20, 100 and 200. All the
curves collapse, indicating that the velocity profile does not depend on its mean superficial
velocity. This is not the case with the Reynolds stress, as evidenced in figure 7.3 where
they are normalized by the average velocity in the fluid phase, which marks one difference
between the behavior of the mean flow and its fluctuating component.
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Figure 7.5 – Stream-wise velocity (a) and porosity (b) radial profiles.

The oscillating pattern is due to the geometry of the bed and shows a period of approxi-
mately one particle diameter d, and higher velocity values are observed near the walls. This
can be explained by looking at the porosity profile shown in figure 7.5 b)7: the presence of
the walls generates a higher fluid fraction near them, thus offering a less-resistant path for
the fluid to flow through, thus generating higher values of local velocity. The same type of
behaviour is observed for D/d = 5 (not shown here). These velocity profiles show that the
term involving ∂r〈uz〉f is not zero when we calculate it at these scales, as its local average
varies with r as opposed to the global average.
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Figure 7.6 – Porosity and velocity profiles for two different mean porosities ε = 0.9 and 0.5.

7This curve has already been shown in chapter 4 we repeat it here for the sake of discussion.
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In contrast, if the porosity of the medium is changed and there is a higher fluid volume
fraction both the velocity and porosity profiles change significantly, as shown in figures 7.6
a) and b), where the curves for ε = 0.5 are shown for comparison in a lighter shade. The
porosity profiles are normalized by the mean porosity ε for visualization purposes, and no
clear oscillating pattern is observed, which is due to the small number of solid spheres which
are randomly inserted inside the cylindrical domain. The velocity profile in constrast, shows
oscillations with lower amplitudes, with a higher value near the center instead of near the
walls (unlike in the ε = 0.5 case). This may be reminiscent of the beginnings of a Poiseuille
profile, shown in chapter 3, which reaches a maximum value near r = 0.

Reynolds stress tensor
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Figure 7.7 – The stream-wise component of the Reynolds stress tensor u′zu′z calculated as a function
of r for fixed D/d = 10 and two different Reynolds numbers (a)), and for fixed Reynolds number
(Re = 200) and D/d = 10 and 5 (b)).

We will calculate u′zu′z(r) by computing its mean over concentric rings between two radii,
∆ri = [ri, ri + d/2], with varying ri. This choice of averaging is done so that we cover
half a period of the mean velocity profile. Figure 7.7 shows the stream-wise component of
the Reynolds stress tensor over three different ensembles with scale separation D/d = 10
and porosity ε = 0.5 for Re = 100 and 200 averaged for different concentric cylinders with
intervals d/10, u′zu′z(r).

As expected from figure 7.3, its mean value decreases with the Reynolds number. The
border effects are evidenced by the increase in value near the wall, which is 33% larger than
the bulk-averaged value 〈u′zu′z〉f . This might be due to the fact that near the walls not only
the fluid volume fraction is larger, but there are also fluid-spheres and fluid-walls interactions
which might enhance velocity fluctuations (instead of just having spheres-fluid interactions
at the center). It does not show the same defined oscillatory pattern found in the velocity
radial profile, but there are still inhomogeneities present in the radial direction, so that the
∂r〈u′zu′z〉 term in equation (7.6) might be different than zero at these scales.

Figure 7.8a) shows the same quantity but averaged for concentric cylinders in d/2 inter-
vals, and the overall behavior is captured by averaging using this resolution.
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Figure 7.8 – The stream-wise component of the Reynolds stress tensor u′zu′z calculated as a function
of r for fixed D/d = 10 and two different Reynolds numbers (a)), and for fixed Reynolds number
(Re = 200) and D/d = 10 and 5 (b)).

In order to consider the wall effects, we now compare the same terms with two different
scale separationsD/d = 10 and 5, and fixed porosity ε = 0.5 and Reynolds number Re = 200.
The average for the beds with D/d = 5 is done over 5 different ensembles of particles and
the results are shown in figure 7.9b), this time normalized by the reactor radius R so that
they can be easily visualized. The border effects are once again evidenced by the increase
of the streamwise velocity fluctuations, with once again a 33% increase near the walls when
compared to the bulk average and showing the inhomogeneities when the there is a higher
fluid volume fraction.

Lastly, we study the porosity effects for fixed scale separation D/d = 10 and Reynolds
number Re = 200, and two different porosities ε = 0.5 and 0.9. The profile for ε = 0.9 was
averaged over 9 different configurations. As shown in figure 7.9, the profile decreases with
increasing porosity, which is expected from the bulk-averaged values presented in figure 7.4.
There are less inhomogeneities when ε = 0.9, which is in agreement with what was observed
in the velocity profile shown in figure 7.6. There are also less solid-fluid interactions and
low-porosity regions for fluctuations to develop, and thus the system is more homogeneous,
and we do not observe the same increase near the walls.
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Figure 7.9 – The stream-wise component of the Reynolds stress tensor u′zu′z calculated as a function
of r for fixed D/d = 10 and Renolds number (Re = 200) for two different porosities ε = 0.5 and
ε = 0.9.

Force distribution

The other remaining closure term is the one that accounts for the sphere-fluid inter-phase
force (we have already seen that the first moments of the forces do not affect the dynamics).
Even though the statistics might not be fully converged (especially the case with D/d = 5),
we can get some clues for the force distribution.
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Figure 7.10 – Forces radial distribution for packed beds with D/d = 10, ε = 0.5 and two different
Reynolds numbers Re = 100 and 200 (Left), and for two different cases with D/d = 5 and 10 with
fixed porosity ε = 0.5 and Re = 200.
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Figure 7.10 shows the averaged z-component of the forces in the radial direction Fz(r),
once again calculated using d/2 bins for all of the cases studied, normalized by the bulk
average 〈Fz〉. Let us first analyze the case with D/d = 10 and two different Reynolds
numbers, Re = 100 and 200. As reflected by the force profile, there is an almost oscillatory
behaviour and the force seems to be evenly distributed on the spheres. Moreover, the
mean radial force decreases as the spheres approach the walls. This might be explained
qualitatively using the following arguments: the force is affected by the velocity gradient,
and even though the porosity near the walls is higher and the velocity as well, the flow could
be smoother there and the velocity gradient is weaker. On the other hand, in regions of
smaller porosity velocity (near the center of the bed, at r = 0) gradients are higher and have
a higher effect on the particle-fluid force.

We also observe that the radial profile of the forces does not change with the Reynolds
number under this normalization, which follows the same trend observed in the velocity
profile, where all curves collapse when normalized by the superficial velocity.

Figure 7.10 shows the same profile for a fixed Reynolds number (Re = 200) and porosity
ε = 0.5 and two different particle-to-tube ratios D/d = 10 and 5, this time normalized by
the tube radius R for visualization and comparison purposes. In the D/d = 5 case the forces
seem to fluctuate less, and they decrease less when the spheres are approaching the walls.
This might be due to the fact that there is not enough place for the forces to "relax" towards
a lower value: there is a large effect from the sphere diameter d so that oscillations with
D/d = 5 have a bigger period.

Finally, we study a third case at fixed Reynolds number Re = 200 and D/d = 10 and
different porosities ε = 0.5 and 0.9, shown in figure 7.11. In this case the ε = 0.9 profile is
higher than the one for ε = 0.5, which is in agreement with the peak found in the bulk pdfs
(see figure 7.2). This seems to show that in fact the force might not be affected so much by
the velocity fluctuations (which are higher for ε = 0.5), but by the local mean velocity: in
the case of ε = 0.9 the local dynamics are not driven by the velocity fluctuations with the
same intensity as for ε = 0.5.
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Figure 7.11 – Forces radial distribution for different porosities ε = 0.9 and 0.5 at fixed D/d = 10
and Re = 200.
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7.4 Summary

The wall effects are all evident in the packed beds with ε = 0.5 and are reflected in the
velocity and porosity profiles and in a lesser extent in the Reynolds tensor. This might lead
to the fact that it is necessary to account for the wall-fluid interactions when there is a high
solid concentration, which add inhomogeneities in the radial direction at the meso-scale.
We also noted that the force is evenly distributed among the spheres, even when they are
confined, and this can be qualitatively explained by considering the behavior of the local
velocity field.

In contrast, even though they are confined, these effects are not seen when the fluid
volume fraction is higher, in particular for ε = 0.9, which might point towards the fact that
there is a critial porosity at where the border effects are no longer evident, although further
studies need to be done to reach this conclusion, for example by studying a loose bed with
D/d < 5.
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Chapter 8

Summary and conclusions

Porous media are present in a wide range of phenomena, from industrial applications such
as packed bed reactors to the medicine field. We are particularly motivated by the use of
fixed beds in the context of AA-CAES technologies as a thermal energy storage unit, and
our objective was to study the hydrodynamics in fixed beds of spherical particles that are
randomly distributed inside a cylindrical container (e.g. a reactor), so that border effects
are not negligible in this case.

Aside from our current motivation, fixed beds, as porous media, are a multi-scale system.
That means that the hydrodynamics at the smallest scales of the system can be very different
from that at the largest scales. In order to bridge this scale hierarchy upscale techniques
are usually used such as volume averaging, that link the small-scale fluctuations with the
large-scale dynamics. These techniques are typically done at a mesoscale, which should in
principle be much larger than the pore scale and much smaller than the global scale.

The spheres distribution along with the wall presence produce tortuous paths and local
changes in porosity, making the flows that saturate fixed beds incredibly complex, even if the
flow is laminar. Moreover, there are fluid-solid interactions that can also affect the dynamics
of the flow. Because of the complexity of the flows and the need to have all the information
possible on the hydrodynamics, we studied the behavior of the confined flow at all three
scales: the macro, the micro and the meso.

We did this by computing numerical simulations and doing two different experimental
campaigns. Both the experimental and numerical methods allowed us to study hydrodynam-
ical effects of the three non-dimensional parameters involved in the system: the Reynolds
number Re, the porosity ε and the sphere-to-reactor diameter ratio D/d. In order to do this
we had to design and construct two different experimental setups from scratch, to charac-
terize the instruments used and we developed a Particle Tracking Velocimetry (PTV) code
adapted for refractive index-matching PTV.

The simulations were all done using the open-source CFD software OpenFOAM. The
packed beds were generated using the discrete element method software Grains3D, that
allowed us to reach porosities down to 50%. After validating the OpenFOAM methodology
we computed periodic arrangements of spherical particles with meshes that have between
40 to 90 million cells so that we could resolve all the small gaps. In total 18 different
configurations with different D/d and ε where used to obtain physical results, and for each
bed we studied the flow for different Reynolds numbers.
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Macroscale

Chapter 5 explored the global border effects in packed beds where the sphere-to-reactor di-
ameter ratio is lower than ten (D/d < 10). We did this both experimentally and numerically,
and both results complemented each other, as they allow us to study different aspects of the
same problem.

The first aspect we studied is the variability of the pressure field and pressure gradient,
and how it is affected by D/d and the Reynolds number. This variability is associated to the
random arrangement of the spheres and in order to quantify it we measured experimentally
the pressure drop for nine different packed beds with D/d = 10 under the same conditions.
The standard deviation of the results (compared to the ensemble average) was found to be
approximately 4%.

We further related this variability of the different configurations with the one found
within a single packed bed, but by measuring at different angles of the reactor wall. This is
of interest because typically pressure sensors are placed along the walls at a certain angle, but
there is a source of error that is linked to the local arrangement of the spheres, and how this
measurement would vary if we measured at a different angle. We explored this numerically
and we found that the standard deviation for D/d = 10 is close to 4%, which point towards
the conclusion that there could be an equivalence between doing several different realisations
of the experiment and placing the sensors at different places of a particular packed bed.

We also observed that this variability increases with decreasing D/d, which is due to wall
effects on the pressure drop. If the observed trend is correct, this variability could go up to
10% for D/d < 5 and could have an effect on the several models proposed in the literature.
As it has been said, there is no general agreement upon a correlation that describes the
pressure drop in terms of ε, Re and D/d. However, if there are two models that are within
the, say, 5% errorbar, they should be equivalent, given that the variability should be taken
into account.

The second global aspect that we studied was how the pressure gradient is affected with
D/d. We found that it follows an Ergun-like relation for all Reynolds numbers for both
the experiments and simulations, and that it decreases with decreasing D/d. This can be
explained by the fact that when D/d decreases the porosity increases: this means that there
is less hydrodynamic resistance for the flow to pass through the bed so that the pressure
drop is weaker when the porosity is higher.

Using conservation arguments we found that the pressure drop is proportional to the
sum of the spheres and wall forces when we consider the whole computational domain. This
allowed us to quantify the contribution from the spheres and the walls. We observed that for
D/d = 10, 98% of the pressure gradient comes from the contribution of the spheres, whereas
it is 95% for D/d = 5. Because of this we conlude that the change in the pressure drop
when compared to the Ergun relation for non-confined beds is due to how the particles are
arranged and how their average porosity changes with D/d, rather than by the presence of
the walls themselves.

Microscale

The first part of chapter 6 was dedicated to the experimental study of the local hydrodynam-
ics of the flow with Reynolds number ranging between 120 and 210 passing through a fixed
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bed with D/d ≈ 6. We observed qualitatively that the Lagrangian dynamics of the tracer
particles is not trivial at all: although stationary, the flow shows a clear spatial complex-
ity, with shear zones and rotation-dominated structures, with recirculation and stagnation
points.

This complex behavior motivated us to compute one- and two-point statistics of the
fluid velocity and acceleration fields. We found that high values acceleration are probable,
as already observed in other studies, and that the acceleration probability density function
presents exponential tails similar to the ones observed in fully turbulent flows. We then
computed the two-point eulerian correlation function and we found that two elemens of fluid
are spatially correlated at lengths smaller than approximately d/5.

We also computed the streamwise and transversal correlation (pore-scale) lengths as a
function of the Reynolds number, and their ratio tends towards unity as Re increases. This
seems to point towards local isotropy: as the Reynolds number increases both correlation
lengths become more and more comparable, so that there is less of a difference between the
two directions of the flow.

The spatial complexity of the flow, the acceleration pdfs and the small-scale correlations
inspired us to use the tools typically used to study and characterize turbulent flows. We
first computed the second-order structure function, where an inertial range is observed in
homogeneous isotropic turbulence (HIT) by its two-thirds scaling. Surprisingly, we observe
this turbulent(-like) scaling at scales smaller than the correlation length.

If there are scales that are similar to the inertial range observed in HIT, there has to
exist an energy cascade at these scales. This is quantified by the correlation of velocity-
acceleration spatial increments, which is directly linked to the energy dissipation rate ε and
is constant at the inertial range. Effectively, we observed that 〈δu · δa〉 remains relatively
constant at this range of scales, and that it has a negative value. Following turbulent-like
arguments, we thus say that there is a direct energy cascade at these scales, where the energy
goes from the larger scales to the smaller ones.

These results show that at the smallest scales we have a stationary turbulent-like system,
even though the flow is laminar. We then computed and estimate of the energy dissipation ε
vs. σ3

u, and found that they follow are reasonably linear relation, which is what is observed
in fully developed HIT.

In order to have a full turbulent-like description we used ε to calculate the Kolmogorov
length and time scales, which we used to calculate the Reynolds number associated to the
taylor microscale in turbulence, Rλ. We found that it is highly comparable to the ones
found in wind tunnel experiments where fully turbulent flows are studied. This validates
once again the argument that there is a “real” turbulent-like behavior at the smallest scales
of the medium.

In the second part of the chapter we presented the results for simulations computed at
two of the Reynolds numbers studied experimentally, similar D/d and with a relatively lower
porosity. This allowed us to study the influence of the porosity on the local hydrodynam-
ics. As a first result, the velocity pdfs differ slightly from the experimental results, and we
attribute the difference to the resolution of the simulations, as for instance we cannot exper-
imentally resolve the scale near the beads. We also observed that the plane perpendicular to
the flow is isotropic, as the pdfs of the two transversal components are almost equals. The
acceleration pdfs share the same exponential tails as the ones observed experimentally.
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We took advantage of the additional data provided by the simulations and we decom-
posed the experimental analysis by computing magnitudes relative to the transversal and
streamwise components. We computed the transversal and longitudinal (cartesian) second-
order structure functions, and we found a smaller “inertial range” (that is, the range of
distances that it spans is significantly smaller). This might be qualitatively explained using
the following argument: as the porosity is larger and the pore-scale larger, there are less
velocity fluctuations and/or extreme events (such as extreme acceleration values) that can
be responsible for a turbulent-like behavior, which is driven by velocity fluctuations.

Moreover, there was almost no inertial range present in the streamwise longitudinal struc-
ture function, S‖yy(dy) (y is the direction of the flow). On the other hand, when either one of
the transversal components are involved, there is a small two-thirds scaling. This seems to
indicate that in fact the turbulent “signature” comes from the planes that are perpendicular
to the direction of the flow (that is, the r − θ or x− z plane).

We then computed the velocity-acceleration structure function for the different compo-
nents. We did not observe a constant value, but this can be explained using two different
arguments. The first one is that we are not calculating exactly the same quantity that we
calculate in the experiments, as in the experiments the increments (or relative distances) are
calculated in spherical coordinates, wheareas here we compute it in only one cartesian direc-
tion. The other argument is that it might also be a porosity effect. As it has been specutaled
with the second-order structure function, the turbulent-like behavior is less significant when
the porosity is higher.

Nevertheless, we were able to extract information from these quantities. As we observed
in experiments, 〈δu · δa〉 is a negative quantity at small scales. In fact, what we observed
in the simulations is that once again, the negative contribution comes from the trasnversal
components, which validates our point that most of the turbulent signature comes from the
structures of the flow in transversal planes. The streamwise velocity-acceleration longitudinal
structure function remains positive or is equal to zero at all scales.

The derivation of the 〈δu · δa〉 - ε relation was done for homogeneous flows. In fact, what
our data seems to show is that the transversal components are homogenous, whereas the
streamwise direction is not, which is consistent with the fact that most of the inhomogeneity
corrections come from the pressure gradient term in the NS equations, which is what drives
the entire system in the streamwise direction.

Mesoscale

Finally, in chapter 7 we presented some preliminary/exploratory results on the closure prob-
lem in the averaged equations. We studied the different terms involved in the non-closed
equations by quantifying how they vary with D/d, Re and ε.

We found that when bulk averaged the only non-zero components of the Reynolds stress
tensor are the ones in its diagonal, and we paid attention to the streamwise and radial
components. We observed that as the Reynolds number increases velocity fluctuations tend
to become isotropic, reflected by the fact that 〈u′zu′z〉 decreases withRe while 〈u′ru′r〉 increases.
This is in agreement with what was found at the pore-scale in chapter 6 with the longitudinal
and trasnversal correlation lengths. We found these results for beds with ε = 0.5 andD/d = 5
and 10.
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Moreover, confinement effects are observed in the mean value of the components of the
Reynolds stresses, as its streamwise component can be up to 4 times larger in a bed with
D/d = 10 when compared to one with D/d = 5. This might be explained by the fact
that due to the presence of the wall, the porosity increases so that there are less velocity
fluctuations. It is thus a porosity effect (as was also speculated and explored in chapter 6),
but the porosity itself changes because of the presence of the walls (as was observed with
the pressure drop in chapter 5).

In order to study porosity effects for a case where the other parameters remain unchanged,
we studied how the Reynolds stresses vary for D/d = 10, Re = 200 and porosities equal to
0.5 and 0.9. We recovered the previous results, where the averaged Reynolds stresses are
lower for the loose bed when compared to the packed one.

As for the forces, we observed that the force balance found in the global effects chapter
(Ch. 5) could be interpreted as a particular case of the bulk-averaged equations. It is
interesting to note that the walls account for 2% to 5% of the balance, while the fluid-wall
forces do not appear in the volume-averaged equations.

We then studied the local radial inhomogeneities. We observed the wall effects in the
porosity and velocity radial profiles: ε(r) tends to unity near the walls, which offers a less
resistant path for the flow to pass through and consequently there are higher velocities
near the walls as well. This was observed for ε = 0.5. On the other hand, the profiles
remain almost constant for high porosities (ε = 0.9), which means that the wall effects
are significantly stronger at lower porosities. The inhomogeneity generated by the wall
presence is also observed in the Reynolds tensor, which increases near the wall for ε = 0.5
and D/d = 10 and 5. In contrast, it does not significantly change when ε = 0.9. These
results show that radial inhomogeneities should be taken into account when doing averaging
procedures at the meso-scale, in particular for beds with low porosity.

We finally studied the forces radial distribution. For D/d = 10 and ε = 0.5 we observe a
slight decrease in the sphere-fluid forces as the spheres approach the wall, but there are no
border effects as siginficant as the ones observed in the velocity profiles or in the Reynolds
tensor, as they are almost evenly distributed. This might be explained qualitatively using
the following arguments: the force is affected by the velocity gradient, and even though
the porosity near the walls is higher and the velocity as well, the flow could be smoother
there and the velocity gradient is weaker. On the other hand, in regions of smaller porosity
velocity (near the center of the bed) gradients are higher and have a higher effect on the
particle-fluid force.

In contrast, when we consider a loose bed ε = 0.9 the forces are once again evenly
distributed and the curve is not as different as the one for ε = 0.5. In particular, the ε = 0.9
force profile is higher (in average) than the one for ε = 0.5, which is in agreement with the
peak found in the bulk pdfs. This seems to show that in fact the force might not be affected
so much by the velocity fluctuations, but by the local mean velocity.

All of these results give clues as to how the wall effects are present and reflected in
the radial inhomogeneities at the mesoscale. In particular, the wall forces have not been
accounted for in the volume-averaged model and they should be, given the fact that they
change the mesoscale hydrodynamics. In this chapter we were able to validate, corroborate
and use results that were obtained both in the global and micro scale flows, which reflects
the multi-scale nature of the problem.
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Chapter 9

Perspectives

The results obtained during this thesis open many perspectives for future studies. We will
candidly point out a few of the questions that arised and remained open during this three-
year work, and aspects that we would like to continue studying and exploring.

At the global scales

Measuring the pressure drop on fixed beds can be seen as a relatively simple and straightfor-
ward experiment and it has been widely studied for the last seventy years or so, mainly due
to its numerous applications, but despite its apparent simplicity a full model that describes
the pressure drop when border effects are significant has not yet been found. Nevertheless,
in light of the results obtained regarding the variability of the pressure drop (and how it
increases with decreasing D/d) we consider that the variability should be taken into account
when proposing new models, and when measuring the pressure drop.

New experiments could be done with D/d < 5 to verify the trend that we found for the
variability. This could also be repeated for beds made up of different particle shapes, and
used as a proxy or guide for the error estimation.

At the pore scale

There are several aspects that could be explored to further study the turbulent-like behavior
at the pore-scale:

• A conditioned statistical study could be done on the two-point statistics by conditioning
the computation on pores with similar flow patterns. Would be obtain the same scalings
if we only took into account pores where the flow is channel-like? What about the pores
where we only observe circulation points? This would help to quantify the interplay
between the different kinds of local behaviors.

• In K41 theory intermittency appears when Sp 6= Cp(ε dr)
p/3, which is at p = 4. This

itermittency could be studied at the pore-scale by computing more statistics on the
tracers trajectories, either by doing more experiments or filming more time (seeding
more tracers into the setup would present further experimental complications, especially
with tracking algorithms).
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• It would be interesting to observe at which Reynolds number this behavior starts. Is
it valid for all flow regimes?

• Another interesting experiment using refractive-index matching PTV would be the
injection of a colorant into the flow and to observe the overall dissipation and transport,
especially when the confinement is strong. We would expect to be able to observe the
preferential sampling of the flow, and how it is affected by the wall presence. This
could be then compared to simulations by the injection of a passive scalar.

The closure problem

The need for the consideration of the wall effects has been evidenced at the meso-scale.
In fact, it would be interesting to develop a formalism that takes into account the walls
themselves (a priori, this term would appear in the fluid-solid forces term).

More computations would be needed to have more statistics, and we would like to explore
a wider parameter range. We could further explore the tendency towards isotropy and its
relation to porosity, the particle-to-tube diameter ratio and Reynolds number.
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“Creo que la verdad está bien en las matemáticas, en la química, en la filosofía. No en la
vida. En la vida es más importante la ilusión, la imaginación, el deseo, la esperanza.”

Ernesto Sábato
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