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Foreword 
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(CNRS Research Director - France) and Carla Khater (CNRS-L Research Director - Lebanon). The 

work has been financed by Avignon University, CNRS France, and IRD, and was part of the two 
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for the years 2017 to 2019. Also, it was supported by the LIA O-LiFE contribution (number SA 41-
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This manuscript includes a general introductory section that permits situating the work within a 

broader research problem and presents the framework, objectives, questions, and hypotheses 

of the thesis. It consists of an extensive literature review of the ecological difficulties of the 

semiarid Mediterranean environment and the status of quarries in Lebanon. The second section 

encompasses the methodological approach used to perform the research, followed by three-

body chapters, a discussion section, and finally, a bibliography section amassing all cited 

references.   

The first article (chapter 1) has been published in the Lebanese Science Journal (Volume 22, No. 

1, 2021). The second article (chapter 2) is currently in preparation for the journal Ecological 

Engineering, whereas the third article (chapter 3) is in preparation for the journal Applied 

Vegetation Science.  

The form of this manuscript necessitates some minor repetitions, particularly between the 

"General Introduction" section and some sections of the second and third papers. 
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Problem Statement 

The Mediterranean Basin (MB), with numerous, faulted and folded limestone, along with 

calcareous formations has created in diverse locations a variety of habitats ranging from sea 

level to alpine habitats, accumulating around 25,000 plant species (Vogiatzakis et al., 2006), 

half of which are endemic (Quézel, 1985). Modern human colonization of the basin 10,000 

years ago was crucial in both cultural and environmental history. The domestication of plants 

(such as barley and wheat) along with animals (goats, sheep, and cattle) led to a permanent 

modification in the ecosystem (Mannion, 1999). This pressure has not relented since. 

Located at the eastern end of the MB, Lebanon, with around 2600 plant species (of which 

12% are endemic (MoE/UNDP/ECODIT, 2011), scattered at varied topographies, altitudes, 

and diverse ecosystems (MoE/ECODIT, 2002)), is considered a biodiversity hotspot (Myers et 

al., 2000). However, this ecosystem was exploited by humans for millennia leading to habitat 

loss, fragmentation, quarrying, deforestation, pollution, wars, refugee inflow (Ammar et al., 

2016), random urbanization, and climate changes (Faour, 2015; MoE/UNEP/GEF, 2016).    

Of all previously cited ecological concerns, quarries are considered one of those extreme and 

pressing environmental issues facing Lebanon. Approximately 1,300 quarries are scattered 

throughout the country, disturbing the landscape patterns and destroying natural habitats 

(Khater et al., 2003; Khater, 2004). Unfortunately, few quarries have been restored or 

rehabilitated, and few researchers are working on rehabilitation and/ or restoration (khater, 

2004). 

General hypothesis and chapters outline 

The primary objective of the thesis is to evaluate, through a literature review, the limits of one 

current practice, hydroseeding, as a restoration tool utilized in a semiarid Mediterranean 

environment. Accordingly, the second objective is to assess the possibility of replacing costly and 

sometimes inappropriate techniques, such as hydroseeding in semiarid Mediterranean 

environments with practical nature-based solutions. Ultimately, as Dutoit (2014) suggested, to 

restore "nature by nature" i.e. using natural ecological engineers such as nurse plant species. 
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This thesis is structured around three chapters (Figure I. 1.). The first chapter is an extensive 

literature review of both pros and cons of adopting the hydroseeding technique as a restoration 

tool in semiarid Mediterranean environments. The second chapter focused on the potential role 

of a legume native to Lebanon, Trifolium subterraneum L., as a nurse plant to assist the growth 

of various native neighbor plants for restoring degraded areas, such as abandoned quarries. 

Finally, the third chapter of the thesis assessed the effect of neighbor plants on two nurse 

plants, T. subterraneum, and Melica inaequiglumis Boiss., in diverse soil types, varied 

complexities, and different planting dates.  

Therefore, the three main questions and their subsequent analysis each 

comprised a chapter: 

1. Is the Hydroseeding technique suitable for restoring degraded semiarid 

Mediterranean environments? What are the challenges facing its utilization? And 

what are some recommendations for its application in such harsh environments? 

A literature review assessed whether hydroseeding, a current restoration technique, is 

suitable in semiarid Mediterranean Environments (chapter 1). This review spanned the last three 

decades (1990-2020), covering approximately 100 of the most relevant published papers. From 

this analysis, several legitimate inquiries surfaced, such as the most important variables affecting 

hydroseeding in a semiarid Mediterranean environment Are those factors biotic or abiotic? 

Natural or human-influenced? Could any recommendations be proposed to improve the 

technique? 

2. For restoration purposes, can T. subterraneum (a legume native to Lebanon) play 

the role of a nurse plant assisting in establishing different target neighbor plants 

intended to restore degraded environments?  

After reviewing hydroseeding as a technique used in semiarid Mediterranean ecosystems, 

a natural restoration technique was investigated– the nurse plant. The assessment, undertaken 

in an ex-situ setting, analyzed the contribution of a potential nurse plant, T. subterraneum, to soil 

properties and neighbor plants established in soil collected from a quarry, as a degraded 

ecosystem, and a nearby grassland, as a reference ecosystem (chapter 2), with the following 
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subsequent questions formulated: (1) Can it improve properties of degraded soil compared to 

reference soil ?; (2) Being an annual, accordingly, after growing and dying out, with dried matter 

incorporated into the soil, can it further improve soil physical and chemical properties ?; (3) Can 

it benefit neighbor plants present in its vicinity by improving various indicative traits, most 

important of which is the biomass? 

3. Approaching further toward a natural plant community setting with the 

interaction of two nurse plants (separately) with neighbor plants, a new set of 

questions materialized: (1) What is the effect of the neighbor plants on the two 

different nurse plants? (2) At three varied community complexity levels? (3) In two 

different soil types? (4) when altering planting dates between nurse and neighbor 

plants? 

 

Having tested the potential nurse plant T. subterraneum in assisting the growth of nearby 

neighbor plants of four individuals of the same species (chapter 2), the next logical step forward 

would be a “more realistic imitation” of natural plant communities. This notion was performed 

by assessing two plants (a vetch, T. subterraneum, and grass, M. inaequiglumis) as potential 

nurse plants (chapter 3), questioning the effect of other native plants at different densities (low, 

medium, and high plant concentrations) on them, in two varied soil types, a reference, and a 

degraded one, and at different planting intervals, to determinate the existence of any potential 

priority effects. 
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Figure I. 1. Schematic representation of the general organization of the thesis. 
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Thesis outline 

The whole thesis is divided into four sections (Figure I. 2.): 

Section 1 will comprise a general introduction, including a problem statement and an extensive 

literature review encompassing the various research concerning the theory of facilitation vs. 

competition in plant communities. The debatable notion of the facilitation effect with respect to 

the stress gradient hypothesis was highlighted. Also, the types of facilitation mechanisms, 

whether of direct or indirect type, are reviewed. The nurse plant concept, as a theory, will be 

examined with examples. Furthermore, the semiarid Mediterranean habitats, with thousands of 

years of human impact, are explained by emphasizing challenges and highlighting hopes via 

ecological restoration practices. The section concludes with the multi-challenges facing the 

environment in Lebanon and highlights the present status of its quarries. 

In Section 2, methodological approaches used in the experiment were investigated, highlighting 

why the experiments were performed in ex-situ setting and explaining how measurements were 

taken. 

Section 3 is a succession of three chapters (1, 2, and 3). Chapter 1 assesses hydroseeding as a 

restoration tool in the semiarid Mediterranean environment. Chapter 2 evaluates the use of the 

native legume, T. subterraneum, as a potential nurse plant for other native plant species found 

in the grasslands of Lebanon. Chapter 3 assesses the effect of neighbor plants on two native 

plants used as potential nurse plants, investigating their influence at different densities and soil 

types while taking the priority effect concept into account. 

Section 4 concludes the thesis and highlights fundamental and practical perspectives, suggesting 

further possible research steps and ending with a general bibliography. 
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Figure I. 2. Overview of the organization of the different sections and chapters presented in the manuscript. 
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Literature Review 

Restoration ecology, hopes, and limits  

Even back in 2010, almost two-thirds of the globe’s ecosystems were already considered degraded, 

due to failures in investing and reinvesting in their productivity, health, and sustainability (Dutoit, 

2010). In a meta-analysis study, Benayas et al. (2009) evaluated, in a broad range of ecosystems 

throughout the globe, the effectiveness of different restoration actions of 89 restoration projects 

undertaken to enhance both biodiversity and ecosystem services. Results revealed that ecological 

restoration increased the provision of biodiversity and ecosystem services by 44% and 25%, 

respectively. Unfortunately, several unsuccessful restoration projects are due to failure in 

recognizing and addressing uncertainties, paralleled by inappropriate time scales, wherefore, 

ecological restoration tries to achieve in a few years what may need decades or even hundreds of 

years under natural circumstances (Hilderbrand et al., 2005, Walker et al., 2007). Consequently, 

ecological restoration should not focus on restoring to some initial state but instead support a more 

flexible approach of accepting a dynamic ecosystem concept, ultimately focusing on repairing 

degraded systems to a potential extent. Hilderbrand et al. (2005) highlighted five common 

restoration myths to avoid: (1) Carbon copying (the assumption that community assembly is 

predictable with the existence of a single endpoint). (2) The field of dreams (the notion of solely 

focusing on physicochemical conditions, and hereafter the systems will self-organize). (3) Fast 

forward (considering that succession and ecosystem development can be fast-tracked). (4) Cookbook 

(where overused methodologies are not sufficiently validated). (5) Command and control myth (the 

false belief that nature is controllable). Therefore, as Hobbs & Harris (2001) neatly stated, restoration 

ecology, to be successfully practiced as part of humanity’s response to continuous ecosystem 

changes and degradation, needs to scale to the challenges of coordinating science, practice, and 

policy.  

One significant notion that could be of practical use in restoration ecology (and is tested in this 

manuscript) is the “priority effect” concept, defined as the effect created by the arrival order of 

different species to a specific site. The arrival order can have a paramount role in the assembly of a 

community due to the effect of those early arrivals on the performance of later ones (Hess et al., 



16 
 

2019). Since the outcome of the “priority effects” could be different based on the identity of the 

earlier and later arriving species (Dickson et al., 2012; von Gillhaussen et al., 2014; Stuble & Souza, 

2016), consequently, in several cases, failure to account for the “priority effect” concept might lead 

to restoration failures (Young et al., 2001; Temperton et al., 2004; Wilsey et al., 2015). Taking such 

effects into account in restoration projects might be a way to improve restoration success, especially 

when using native species as nurse plants for their abilities to facilitate or increase the installation 

and the growth of other species (Hess et al., 2019). 

 

‘Nurse Plants’ concept as a restoration tool 

Facilitation- a key phase in plant dynamics in harsh environments  

The precept that plants needed to be released from the struggle of competition was the fruit of a 

more than 100-year-old debate between Frederic Clements and his contemporary Henry Gleason, 

both being ecologists from the early 1900s. What they both endeavored to describe, in different 

ways, were the constituents of a plant community and what determines how plants in a community 

grow together and why (Benyus, 2017, as cited in Hawken, 2017). Plant-to-plant interactions concept 

was introduced initially in the early twentieth century by Pearson (1914) after observing better post-

fire regeneration of the conifer Pseudotsuga menziesii among clones of Populus tremuloides due to 

the amelioration, by the latter, of various abiotic conditions such as shade, wind speed, and 

evaporation rates. This concept was, and still is, a major disagreement issue between advocates of 

the “holistic ecology” of Frederic Clements and the “reductionist” or “individualistic ecology” of 

Henry Gleason. Clements saw plants as intertwined communities with facilitation flowing among 

them, such as the nursing of tiny seedlings under a tree by protecting them from the harsh sun and 

wind, also enriching the soil with fallen foliage- a notion he anointed “organismic” (Clements, 1916). 

Whereas Gleason, contrary to what preceded, coined what is known as the “individualistic concept 

of ecology” theory. He saw Clements communities as merely simple coincidence or random bodies 

dispersed and arranged according to their soil, water, and light needs. Gleason saw no mutual aid 

but instead competition dominating among plants (Gleason, 1917, 1926, 1939), stating that a plant 

community is scarcely even a vegetational unit, merely a coincidence (Gleason, 1926), adding, "it 
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seems that the vegetation of a region is not capable of complete segregation into definite 

communities, but that there is a considerable development of vegetational mixtures”. 

Throughout most of the history of ecology, individualism and competition among plants were 

considered the principal interactions shaping plant communities. This belief is apparent since plants 

essentially utilize the same vital but limited resources that get scarcer upon consumption. Hence, the 

competition must be an intense and prevalent interaction among plants (Scott, 2009). Unfortunately, 

for years the facilitation concept between plants was neglected and dropped from mainstream 

ecology in favor of the endorsement of both the individualistic (Gleason, 1926; Whittaker, 1956) and 

the competition theory (Grime, 1974; Tilman, 1982). Almost throughout the twentieth century, 

competition, by far, was the most studied biotic interaction, especially by plant community 

ecologists- a bias reflected by a towering figure of up to 90% of the published papers focusing on the 

subject (Michalet & Pugnaire, 2016). As Bertness & Callaway (1994) so neatly stated, “Fascination 

with competition has focused attention on communities where competition is conspicuous”. 

Favorably, from the mid-nineties of that same century, things slowly started to shift. In a landmark 

study, Simard et al. (1997) used reciprocal isotope labeling to verify a bidirectional allocation 

between the ectomycorrhizal tree species Betula papyrifera and Pseudotsuga menziesii. In an in-situ 

setting, Simard exposed the seedlings P. menziesii to Carbon-14 and B. papyrifera to Carbon-13. The 

results showed that both radioactive Carbons were absorbed by the seedlings, transformed into 

sugars, and later exchanged between the different seedlings (verified by a Geiger counter). Carbon-

13 from the B. papyrifera traveled to the P. menziesii, while Carbon-14 traveled from the P. menziesii 

to the B. papyrifera. This pioneering work proved that plants of different species collaborate - via a 

vast underground fungal network- by exchanging different minerals such as carbon, nitrogen, 

phosphorus, water, and even defense compounds (Benyus, 2017, as cited in Hawken, 2017). Adding 

to what preceded, more and more evidence confirmed that facilitation – alongside competition – 

also had a major role in shaping plant relationships amongst each other and in communities 

(Bertness, 1988, 1991; Bertness & Shumway, 1993; Bertness & Hacker, 1994). Callaway et al. (1991) 

investigated whether randomly scattered oaks in Californian rangelands should be felled, to 

eliminate competition with pasture grasses. Meticulous measurements of various factors such as 

light, temperature, soil nutrients, soil moisture, and fine roots distributions revealed that 
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productivity is twenty to sixty times greater under the oaks than in open grasslands due to facilitation 

via litterfall and throughfall, rendering the term facilitation as a process rather than a purpose 

(Callaway, 2007). In the two decades to follow, the preceded publications, as well as a key paper by 

Bertness & Callaway (1994), ignited further interest in the subject of facilitation, reflected by an 

increase in the average number of studies/ years about facilitation in the plant community from 

barely 1% in 1981 up to 24% in 2015 (Michalet & Pugnaire, 2016). Researchers started raising 

additional inquiries about evidence of facilitation and its interactional processes in plant 

communities, mechanisms of facilitation, and the consequences of facilitation for plant communities. 

(Callaway et al., 2005). The facilitation concept, proposed by Clements (1916) and later by Connell & 

Slatyer (1977), was in the context of facilitation of one successional stage by the preceding stage. In 

other words, such facilitation occurs only during primary successions when early colonizers improve 

harsh physical conditions (Brooker et al., 2008). However, once earlier colonists are established, 

would they halt the incorporation of new individuals by inhibition according to a model of 

succession? (Connell & Slatyer, 1977). With time, especially during the last decade of the twentieth 

century, a developing body of research highlighted the importance of facilitative interactions not 

only during successional changes but also as important plant regulators in their environment and 

community arrangement in stable environments (Bertness & Callaway, 1994; Callaway, 1995, 1997; 

Brooker & Callaghan, 1998). Building on what preceded, hypotheses that if the presence of a species 

is critical for the existence and performance of another species, then the community shaped through 

these interactions does not fit the classical definition of an ‘‘individualistic’’ entity (Choler et al., 

2001). Such legitimate arguments led to the rise of an important question: If assemblies of organisms 

display interdependence, then how interdependent are they? (Callaway, 1997).  

Stress Gradient Hypothesis (SGH)  

This renewed interest in plant-plant facilitation produced more proof that such facilitation not only 

ameliorated the local environment into a more favorable one (Stachowicz, 2001) but also exposed 

an even more critical concept-Facilitation escalates with increased environmental stresses (Figure L. 

1.). south-facing vs. west-facing slopes in rocky plant communities (Callaway et al., 1996), dry vs. 

adjacent mesic sites (Holmgren et al., 2000), higher vs. lower depths of coastal ecosystems (Bertness 

et al., 1999), or high vs. low altitudes in alpine and semiarid environments (Pugnaire & Luque, 2001; 
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Callaway et al., 2002), also salt marshes, deserts, and arctic or alpine tundra habitats (Levitt, 1980), 

all have the severe and stressful environmental conditions as a shared feature affecting plants 

(Bertness 1988, 1991; Bertness & Shumway, 1993; Bertness & Hacker, 1994).  

But what are stressful conditions for plants, and how are they defined? Stressful conditions are 

defined broadly as any external force rendering an individual or population less fit (Wiens, 1976), 

restricting the ability of producers to convert energy to biomass (Grime, 1977). It can be of a 

physiological nature, such as temperature, salinity, or drought conditions, or of a physical nature, 

like direct effects of wind, waves, and currents, or can be of biotic nature, such as competition, 

predation, and disease (Stachowicz, 2001). In situations, plants can alter various stressful conditions 

like micro-environmental surroundings, surface wind, fluvial flow, or improve soil fertility through 

organic matter, consequently enabling natural restoration of the abiotic environment (Davy, 2002; 

Whisenant, 2002). Alteration of a specific environment through the facilitation of already existing 

and established vegetation will effectively assist in the succession of new individuals into a 

community (Connell & Slatyer, 1977), affecting both abiotic and biotic environments (Callaway, 

2007), directly or indirectly, ultimately, affecting the development or reproduction of one or more 

organisms positively (Bertness & Leonard, 1997). The fact that plant facilitation is not restricted to 

specific communities or biomes (Callaway, 1995), but is rather widespread in the natural world 

especially in severe environments, intrigued Bertness & Callaway (1994) to raise several fundamental 

questions: “Do positive interactions affect recruitment? Do these positive species interactions 

influence species distributions? Do positive interactions affect succession? Are positive interactions 

predictable features of natural communities?”. Eventually, proposing a conceptual model in which 

competition shifts to facilitation with increasing environmental severity, a model they anointed the 

Stress Gradient Hypothesis (SGH). They specified that the basic idea of the SGH revolves around 

facilitation, stating that it “should be particularly common in communities developing under high 

physical stress, and in communities with high consumer pressure”, adding, “where the physical 

environment is relatively benign and consumer pressure is less severe, positive interactions should 

be rare; as a result, competitive interactions should be the dominant structuring forces”. The 

hypothesis suggests that net competitive effects are more significant, or at least more intense 

(Brooker et al., 2005), in relatively benign low-stress environments. Whereas on the other hand, 
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facilitative effects are more vital in relatively severe, high-stress environments (Figure L. 1.). Kikvidze 

et al. (2006) clarified this concept as follows: “Under relatively benign abiotic conditions that permit 

rapid resource acquisition, competition may be more important. However, if severe physical 

conditions restrict resource acquisition, amelioration of severe stress by a neighbor may be more 

likely to favor growth than competition with the same neighbor”. The ranges of harsh physical 

conditions that could be ameliorated by plants are low nutrient levels, heat/ desiccation, soil 

moisture, soil oxygen, osmotic stresses, and disturbances (Bertness & Callaway, 1994). 

 

Figure L. 1. Conceptual model of occurrence of positive interactions in natural communities  

(Bertness & Callaway, 1994). 

Several studies attempted to verify the SGH under varied conditions and habitats. Greenlee & 

Callaway (1996) assessed the presence of facilitation or competition on a single target species of the 

rare endemic mustard plant (Lesquerella carinata var. languida- Brassicaceae) by bunchgrasses on 

xeric rocky slopes in Montana, USA. Results revealed the presence of facilitation by the grasses in dry 

and hot years compared to relatively benign years. In southeast Spain, Pugnaire & Luque (2001) 

evaluated SGH along an environmental gradient in a semiarid situation by investigating changes in 

competition and facilitation among Retama sphaerocarpa shrubs with respect to understory plant 

species. Outcomes indicated an alteration in the net balance from positive in the water-stressed and 

in-fertile environment to more neutral, even negative interactions in the more fertile habitat. In the 



21 
 

Mediterranean semiarid grasslands, Maestre et al. (2003) assessed both spatial and temporal 

differences in the positive, negative, and net effects of the perennial grass Stipa tenacissima on the 

evergreen shrub Pistacia lentiscus. The net effects of the former on the latter were continuously 

facilitative, where an increase in the harshness of the environmental conditions amplified the degree 

of facilitation in both space and time. In a four-year experiment, Gómez-Aparicio et al. (2004) tested 

SGH variability in both space and time. Results revealed that facilitation among shrubs and tree 

seedlings was not patchy or limited to a few plant species grouping and environmental conditions. 

Instead, it is a widespread phenomenon, with double the rate of seedling survival and 76% growth 

of seedlings planted under shrubs than in open areas. Whereas previous studies focused on inter-

seasonal variations, Kikvidze et al. (2006) studied the effect of SGH within a single growing season 

with environmental conditions changing from benign to harsh in semi-natural subalpine hay 

meadows in the central Caucasus Mountains. Results revealed that during the benign first half of the 

growing season target plants without neighbors amassed significantly more biomass than individuals 

with neighbors- hence showing competition. As the second half of the growing season approached, 

with more hostile conditions prevailing, there was a shift towards facilitation through expressively 

less biomass accumulation for individuals without neighbors. In a large-scale trial over three years 

on the perennial grasslands in New Zealand, Wardle et al. (1999) removed subsets of functional 

groups or species and examined the reactions of other species. Most responses indicated 

competition; however, in winter, one of the species, Trifolium repens, was strongly affected 

by Lolium perenne removal- signifying competition. Whereas, during the summer season, with dryer 

conditions prevailing, the T. repens was strongly inhibited due to the removal of L. perenne- 

signifying facilitation. While the previously mentioned papers highlighted facilitation in adult plant 

interactions under harsh environments, Lortie & Turkington (2002) tested the facilitative effects 

of Erodium laciniatum, as seeds and seedlings, on germination and later on the community of an 

annual plant seed bank in the Negev desert. Results suggested that both Erodium seeds and seedlings 

acted as facilitators for the plant community by increasing the density and biomass of germinated 

plants and that interactions between seeds and between plants and seeds could influence plant 

community structure. Other studies broadly assessed SGH and the organization of plant communities 

along elevational and topographical gradients. Choler et al. (2001) investigated in the southwestern 

Alps the determining roles of competition and facilitation in the organization of the alpine-plant 
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community along elevation and topographical grades. Their results indicated that at high elevations 

plant community patterns, abundance, and distribution, were enhanced by positive and negative 

interactions among neighbor plants. The SGH concept has also been experimented with among non-

vascular plants and bryophyte communities. Recreating bryophyte communities with naturally co-

occurring mosses and liverworts, Mulder et al. (2001) tested interactions between different species 

in a diverse range and productivity under constant conditions and droughts. Results indicated no 

association between species richness and biomass under constant conditions, but when 

communities were exposed to droughts biomass, the increased, and species richness was detectable. 

SGH was also assessed at large spatial scales for the ability of benefactors to provide stable 

microclimates i.e. the large-scale analyses of whole communities. In the Sonoran Desert, Mexico, 

Tewksbury & Lloyd (2001) studied how Olneya tesota, a long-lived desert tree, could structure plant 

communities by promoting biological diversity. Results revealed that under xeric conditions, O. 

tesota canopies had strong positive effects on both plant biodiversity and abundance, along with 

small but significant positive effects on the size of plants, therefore showing facilitation in extreme 

environments. Whereas in mesic environments, the O. tesota trees had negligible effects on 

perennial plants and a negative effect on ephemeral ones, signifying competition. 

Critics of Stress Gradient Hypothesis  

The concept of facilitation under stressful environmental conditions proposed initially by Bertness & 

Callaway (1994) was not criticism-free. In 2005, Maestre et al. (2005) published a meta-analysis 

review of all relevant studies published between 1970 and 2004, assessing the effects of stress on 

the outcome of plant-plant interactions in arid and semiarid environments. Their data revealed that 

effects were due to the supply of one of three primary resources, water, nutrients, and light, tested 

by creating four separate categories of response variables: survival, density, growth, and fecundity. 

Their results indicated that in none of the examined data, the magnitude of the net effect provided 

by neighbors (whether positive or negative), was higher under high abiotic stress conditions, 

therefore, concluding that facilitation has no role in harsh environments. It is worth noting that Lortie 

& Callaway (2006) analyzed the above meta-analysis, exploring its general synthetic power, exposing 

severe limitations, and highlighting that the included studies were either not done along stress 

gradients, focused on invasive species, or were not peer-reviewed. Also, the stress gradients were 
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not identified nor quantified and also differed among studies. Furthermore, crucial sources of 

variation were not accounted for, either statistically or in the interpretations. The authors ultimately 

rejected the meta-analysis, reconfirming the validity of the SGH. However, more studies criticized 

the SGH validity in diverse situations. Casper (1996) evaluated the consequences of drought on the 

herbaceous perennial Cryptantha flava by analyzing plant density, plant size, and their association 

with shrubs, revealing that even under limited water presence in the soil, there was no evidence of 

any intraspecific competition or facilitation among the investigated plants. Pennings et al. (2003) 

assessed whether positive interactions, established among salt-marsh-plants at fine scales, can be 

extrapolated across broader geographic scales. Their results revealed the difficulty of inferring 

positive interactions from well-understood systems to dissimilar geographic locations or scales, 

concluding that selection effects on individuals and species may change the way populations react 

to varied environmental restraints. Tielbörger & Kadmon (2000) measured the influence of shrubs, 

in both direction and magnitude, on four annual desert plant species throughout four successive 

seasons with different rainfall quantities. Results revealed that their effect shifted from negative to 

neutral or neutral towards positive, with an annual precipitation increase. Another study in arid areas 

by Holzapfel et al. (2006) observed that with an increase in water availability, desert shrubs would 

have steady and consistent alteration from net positive or neutral effects to net negative effects on 

annual species.  By assessing the demographic data from a population of the desert shrub Ambrosia 

dumosa, Miriti (2006) determined that both the direction and magnitude of facilitation may alternate 

during the ontogeny of the interacting species. This size-dependent ontogenetic shift occurs when 

nearby adult plants significantly improve the demographic performance of juveniles but reduce the 

effect of larger already established plants. Kawai & Tokeshi (2007) tested possible differences in the 

strength of the interaction patterns along the stress gradient, revealing that the transitions from 

competition to facilitation might be subject to the nature of the stress gradient involved.  

Discussions and criticisms conforming with those previously mentioned paved the way even further 

forward via new scientific publications offering alternative models to the initially proposed SGH. 

Those new concepts proposed weakening and collapse of facilitation when climate change converse 

to either more benign conditions or under extremely stressful environments (Malkinson & 

Tielbörger, 2010; McCluney et al., 2012). Michalet et al. (2006) presented it as follows “diversity is 
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low in the least productive environments, highest at moderate levels of productivity, and then low 

again at very high levels of productivity” hence, reconfirming the conceptual model for the ‘humped-

back’ pattern that was suggested initially by Grime (1973). Assessing the facilitation impact on 

shaping the community biomass–species richness, Xiao et al. (2009) showed that facilitation 

increased community richness when moving from medium to high environmental severity, but had 

a partial effect on population richness, not only in benign environments (high community biomass) 

but also at the harshest (low community biomass). Accordingly, facilitation decreases community 

richness from low to medium environmental severity. Where limited resources are the only 

fundamental abiotic stress factors, facilitation occurs when neighbors increase the availability of this 

resource (Maestre & Cortina, 2004). Although facilitation extends the range of situations where a 

plant can occur, Holmgren & Scheffer (2010) argued that positive interactions could be more evident 

in improving the performance of the species under moderately stressful environments rather than 

under extreme environments. Le Bagousse-Pinguet et al. (2014) suggested that a high level of 

restrictions caused by co-occurring stress and disturbance will obstruct the effects of plant 

interactions on species diversity, emphasizing their role in diversity regulation, along with the 

maintenance/extinction of plant populations. Michalet et al. (2014) revealed that in water-stressed 

ecosystems, facilitation would collapse or change to competition. A decline in the effect of the nurse 

plant species would collapse facilitation. However, environmental conditions along with the strategy 

of the response of the species would shift from facilitation to competition. This difference in SGH 

would help predict possible results when evaluating biotic interactions along stress gradients or 

during the restoration of a degraded ecosystem by using nurse species and their expected facilitation 

effects. 

The preceded refinements of the initially proposed SGH theory were summarized by Brooker et al. 

(2008) in a highly cited publication. The publication, as its title indicates, “Facilitations in plant 

communities: the past, the present, and the future” covered various matters such as facilitation and 

environmental gradients, indirect interactions and facilitation, development of ecological models 

incorporating plant facilitation, relating facilitation to evolution, global changes, and ways of applying 

it in ecosystem restoration. Maestre et al. (2009) attempted to refine the SGH regarding competition 

and facilitation to enable predicting the complexity of possible outcomes when studying biotic 
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relations along stress gradients. The paper deduced two arguments: Facilitation is expected to 

upsurge with the stressfulness of conditions where the abiotic stress gradient is not determined by 

resource restrictions (e.g., temperature) or when the facilitated species is stress-tolerant. The hump‐

shaped model (with negative interactions nullifying facilitation at both ends of the stress gradient) is 

predictable, especially when the stress gradient is compelled by a resource (e.g., water), when both 

benefactor and beneficiary species have similar life histories (Brooker et al., 2008), or require same 

resources (Callaway, 2007).  

Role of facilitation at the entire community level  

Despite the well-documented effects of facilitation at both individual and population levels, 

facilitation at the community level has received much less attention (Cavieres & Badano, 2009). 

Competitive and facilitative mechanisms are not independent players in nature, occurring instead 

within the same plant community producing variable outcomes best comprehended when compared 

along different gradients such as abiotic stress, consumer pressure, sizes, and densities of interacting 

species (Callaway & Walker, 1997). Facilitation in plant communities increases under abiotic stress 

(e.g., temperature or salinity), ameliorating conditions for neighbor plants by influencing growths 

(Bertness & Callaway, 1994) and by increasing species diversity thru improving individual fitness 

(Hacker & Gaines, 1997) against physical stresses, predation, and aiding in nutritional transfer, 

trophic facilitation, and providing refuge from competition (Stachowicz, 2001). Moreover, the net 

outcome could alter during the different plant life stages in a community, for example, positive 

effects of benefactors when recipients are young vs. competition when beneficiaries are mature 

(Kellman & Kading, 1992). Interactions at the community level could also be indirect, occurring when 

a third species (or more species) alters the interaction between two other species (Connell, 1990), 

such as when the parasitic plant Cuscuta salina indirectly facilitates Limonium 

californicum and Frankenia salina by suppressing the competitive dominant plant Salicornia 

virginica (Pennings & Callaway, 1996). As previously mentioned, the humped-back relationship 

(Grime, 1973) reveals low diversity in the least productive environments and at very high productivity 

levels vs. highest diversity at moderate levels of productivity (Michalet et al., 2006). Assessing the 

effect of direct positive interactions on species diversity at the community level, Hacker & Gaines 

(1997) revealed that facilitation could shift the classical humped-back model by creating a 
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"compensatory mortality" zone at the left-hand side of the curve, preventing or ameliorating harsh 

conditions, physical disruptions, predations, among other stress types. These facilitative interactions 

at the community level are visible, for example, in harsh Alpine habitats where actions of cushion 

plants affect species abundance by creating plant groupings different from those found in open 

areas, ultimately increasing species diversity at the community level (Cavieres & Badano 2009). The 

concept of facilitation at community level could also be incorporated into the niche concept. The 

niche concept (Grinnell, 1917) is defined as a set of biotic and abiotic conditions in which a species 

can persist and maintain stable population sizes (Hutchinson, 1957). In a niche, neighboring species 

have negative impacts (or a niche-shrinking effect) on each other, firmly bounding to the competitive 

exclusion notion, where no two species can utilize the same niche (Higashi, 1993). Two types of 

niches exist, the fundamental and the realized niche. The fundamental niche is the abiotic conditions 

in which a species can persist in a range of environmental conditions in the absence of negative 

interactions such as competition, parasitism, and predation. Whereas the realized niche describes 

the conditions in which a species persists given the presence of other species (e.g., competitors and 

predators) (Hutchinson, 1957). Incorporating facilitation into the niche theory can impact it by 

modifying the relationship between the fundamental and realized niche (Bruno et al., 2003), making 

the spatial extent of the realized niche larger than the spatial range predicted by the fundamental 

one (Higashi, 1993; Bruno et al., 2003). Yet, Lucero et al. (2019) assessed ‘the dark side of facilitation’ 

by testing, in an arid ecosystem, whether native or exotic annuals are more facilitated by native 

shrubs. Results showed that facilitation by native shrubs toward exotic annuals was stronger than 

towards native annuals.  

Main facilitation mechanisms 

Ever since Aikman (1926) studied environmental alterations between sub-canopy and exposed 

microhabitats in deciduous forests of eastern Nebraska ecologists have documented several changes 

in microhabitat and multitrophic-level relations caused by plants facilitating the development and 

persistence of other plant species. Plant-plant facilitation could be divided into either direct or 

indirect mechanisms. 
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Direct Mechanisms for Facilitation  

Field experiments demonstrated positive plant facilitation as abiotic stress modifiers (Walker & 

Chapin, 1986), including favorable modification of light, temperature, soil aeration (Callaway, 1995), 

soil nutrients, and soil moisture in semiarid environments (Holzapfel & Mahall, 1999). 

Resource Modification 

Light, shade, and temperature modification  

In desert habitats, existing shades are a remarkable example of facilitative mechanisms within plant 

communities (Callaway, 2007). The shade of large plant canopies can shelter saplings and small 

plants from extreme temperatures by reducing their water loss (Callaway, 1995), thermal stress, and 

transpiration (Domingo et al., 1999; Moro et al., 1997a). Assessing the effect of the leguminous 

shrub Retama sphaerocarpa on the seedlings underneath it, Moro et al. (1997b) reported a drop of 

60% in radiation compared to the exterior, registering a difference in temperature up to 7oC between 

inside and outside. In salty marshes, Bertness & Yeh (1994) observed that seedlings of marsh-elder 

plants (Iva fructescens) flourished best either in areas of high seedling density or where adult plants 

form a canopy. Reduced evaporation rates and increased shade ultimately decreased evaporation 

and soil salinity, shifting interspecific interaction from competition to facilitation (Bertness & 

Shumway, 1993). Nobel (1980b) affirmed facilitation by indicating a temperature drop up to 11 oC 

on the stem surface of Ferocactus acanthodes due to the effect of nurse plant shade. Even in winter, 

with low temperatures in the desert, the facilitative nurse canopies of Cercidium microphyllum 

mitigate cold temperature effects, consequently increasing apical stem temperatures of small 

saguaro cacti (Carnegiea gigantea) (Nobel, 1980a). 

Soil moisture modification  

Several factors play a role in the effect of plants on soil moisture, either positively or negatively, 

depending on various aspects such as specific plant architecture, physiology, or amount of rainfall 

per event (Pugnaire et al., 2011). Holmgren et al. (1997) highlighted contributing factors that lower 

water stress in the shade, consequently assisting seedling establishment in dry environments. Those 

factors are less transpiration, increase in soil moisture due to less evaporation, reduced salinity, 

enhanced water holding capacity, favorable conditions for root growth because of enhanced soil 
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structure and stability, elevated soil moisture, and lower soil temperatures, where the relative 

importance of these factors depending on individual ecosystems. Wied & Galen (1998) examined the 

effect of plants in facilitating conspecific seedlings through the enhancement of moisture conditions 

in alpine environments. Results showed that decaying plant material favored and preserved seedling 

establishment by protecting the underneath soil, establishing microsites with higher soil moisture, 

and lowering evaporation rates. Associating microclimatic conditions of tussock grassland on south-

facing and north-facing slopes, Påhlsson (1974) observed that on both slope aspects, relative 

humidity and temperature were similar within Onomis repens tussocks when compared to the less 

hospitable surrounding open matrix. Such an amelioration in microhabitat enabled certain 

herbaceous species common on the north-facing slopes to thrive on the south-facing slopes when 

associated with O. repens. Another mechanism of soil moisture modification by plant facilitation is 

water-lifting by deep-rooted species via the “Hydraulic lift” strategy (Richards & Caldwell, 1987), 

leading to significant consequences at the community scale. This passive water movement amongst 

plant roots with different water potential gradients lifts water from lower wet soil zones towards the 

upper dry soil surface (Prieto et al., 2012). Retama sphaerocarpa shrubs that hydraulically lift water 

have better water relations and growth rates when compared to those that do not have access to 

this water source (Prieto et al., 2011). Numerous plant-facilitating species such as Artemisia 

tridentata, Larrea tridentata, and Ambrosia dumosa are capable of water translocating from deep 

wet soils upwards toward dry soil surface to be used by other seedlings (Richards & Caldwell, 1987; 

Yoder & Nowak, 1999). Soil moisture and its relationship between water limitation and facilitation 

are one of the controversial debates surrounding the SGH. Butterfield et al. (2016) assessed this 

relationship by testing soil moisture in mediating plant-plant interactions along with climate and soil 

texture by simulating soil moisture dynamics under shrubs and in gaps using data from hundreds of 

sites in the western United States. Results indicated that when average conditions in the long-term 

were considered, the difference between soil moisture under shrubs and in the gaps decreased along 

the aridity gradient- conflicting SGH expectations. However, when considering extreme years, the 

positive effects of the shrub on soil moisture were the greatest at intermediate points along the 

spatial aridity gradient, consistent with the hump-backed model of plant-plant interactions (Michalet 

et al., 2006; Holmgren & Scheffer, 2010).  
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Soil nutrient modification  

Soils beneath perennial species are usually more nutrient abundant when compared to those soils in 

adjacent open spaces with no perennial cover (Cortina & Maestre, 2005). This fact could be due to 

“nutrient pumping” (Richards & Caldwell, 1987), which involves the transfer of the nutrients of deep-

rooted perennials to shallow-rooted species and indirectly depositing them on surface soil through 

litterfall and throughfall (Zinke, 1962). Airborne particles could also be trapped and deposited by the 

canopy of perennial at their base (Pugnaire et al., 1996; Whitford et al., 1997).  

Soil oxygenation 

Several plants species adapted to anoxic soils seem capable of ameliorating conditions for those less 

adapted plants by supplying oxygen which could leak out of underwater roots, oxidizing nutrients 

and toxic substances in the rhizosphere (Armstrong et al., 1992), oxygenating and aerating marsh 

sediments (Howes et al., 1981), ultimately, increasing the performance of coexisting plants (Bertness 

& Hacker, 1994). 

 

Substrate Modification  

Establishment of soil humus  

Some perennial plants create “fertile islands” (Garner & Steinberger, 1989) or “resource islands” 

(Schlesinger et al., 1996) under their canopy. This is due to the accumulation of wind-blown soils and 

debris (Armbrust & Bilbro, 1997), facilitating the creation of suitable habitats for diverse organisms 

(Carrillo‐Garcia et al., 1999), leading to increased decomposition, increase in soil nutrients level 

underneath (Gutiérrez et al., 1993), ultimately resulting in microclimate modification (Valiente-

Banuet & Ezcurra, 1991), and enhancement of water availability (Callaway, 1997). In such islands, 

facilitation is usually the dominant interaction (Moro et al., 1997a). 

Root grafts  

Detected in more than 150 species, root grafts are common naturally among different plant species 

(Bormann, 1966), leading to resource sharing, like photosynthates, nutrients, water (Fraser et al., 

2006), and secondary compounds among trees, challenging the classic competition concept (Begon 

et al., 2006), by increasing survival of suppressed trees (Fraser et al., 2006), lowering death rate of 
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mature trees (Tarroux et al., 2010), and even lowering hurricane damage among grafted trees 

(Basnet et al., 1993). In a root grafting study, Vincent et al. (2009) demonstrated that when root-

grafted trees had their neighbors mechanically thinned resulted in stagnant and deteriorated trees. 

Mycorrhizae and soil microbes  

In severe environments, soil microbes and understory plants can form important positive 

mechanisms (Sylvia & Williams, 1992) that preserve plant biodiversity and ecosystem functioning 

(Rodríguez‐Echeverría et al., 2013). Mycorrhizal fungi can support plant–plant facilitation through 

interconnecting plant individuals from varied species, genera, and even families in a community 

(Newman, 1988), through networks termed ‘wood-wide-webs’ (Simard et al., 1997). Arbuscular 

mycorrhizal (AM) fungi impact growth, expansion, and stability of the plant-soil systems of both roots 

and soil by enriching plant growth through nutrient uptake by soil fungi, leading to more interception 

of wind-borne soil, attached by mycorrhiza, leading to additional nutrients for the plant, and a 

growth substrate for the fungus, hence, closing the cycle (Carrillo‐Garcia et al., 1999). With their 

hyphae, AM interconnects roots of neighboring plants (Allen & Allen, 1990), facilitating positive root 

exchanges between facilitators and facilitated plants, allowing the transfer of nutrients such as 

phosphorus (Smith et al., 2001), nitrogen, and carbon between leguminous and non-leguminous 

plants (Padilla & Pugnaire, 2006). AM can also have significant importance on seedling establishment, 

which through their attachment to the Mycorrhizal networks and Mycorrhizal roots of established 

trees leads to a lower mortality rate (Teste et al., 2009). AM can also improve nutrient absorption by 

the seedling even though its tissue is not fully developed (Kytöviita et al., 2003), permitting the 

establishment of a more fit and consistent plant (Magnusson & Magnusson, 1993). Mycorrhizal fungi 

can also aid in stress resistance, water uptake, and sometimes soil pathogens control (Augé, 2001; 

Sikes et al., 2009).  

Indirect Mechanisms for Facilitation 

Protection from herbivores  

Facilitation by graze-resistant plants, also termed associational resistance (Bakker et al., 2004) or 

associational plant refuges (Pfister & Hay, 1988), is an essential facilitation process protecting plants 

from herbivores. Whereas saplings beneath, or next to, highly palatable shrubs could be more 

susceptible to herbivore grazing (Rousset & Lepart, 2003), beneficiary plants growing next to 
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unpalatable adult plants (Smit et al., 2006) have reduced chances of being eaten or trampled, since 

they could be protected physically or indirectly from herbivores (Baraza et al., 2006, 2007), 

consequently leading to an increase in plant size and reproductive output (Callaway et al., 2005). 

Thorns, unpalatable bushy twigs, or leaves may have a bigger effect than single standard stems 

(Flores & Jurado, 2003). The highly palatable Whitania frutescens is grazed exceedingly when not 

present alongside Maytenus senegalensis shrub-a plant with low palatability and full of 

thorns (Tirado, 2003). In a 10-year study, Olff et al. (1999) revealed that small unpalatable species 

(e.g., toxic, thorny, or of low quality) facilitate taller unpalatable shrubs, which in turn facilitate 

palatable trees, ultimately leading to shading the species that facilitated their recruitment. The study 

concluded that less-palatable tree species would favorably regenerate in open spaces, whereas 

more-palatable species would grow only amongst less-palatable shrubs- ultimately leading to an 

enhancement in community diversity.  

Pollination  

Pollination is crucial for plant reproductive success (Fægri & Van der Pijl, 2013). The term ‘magnet-

species’ was coined by Thomson (1978) as a reference to attractive plant species that participate in 

increasing pollination of other species. Facilitation among plants occurs when a plant species 

facilitate pollination by indirectly increasing the number of pollinators visiting a second plant species, 

thus increasing its pollination rate (Feldman et al., 2004), even among invasive species (Molina-

Montenegro et al., 2008). A yellow-flowered Hietacium florentinum was more pollinated when 

associated with the orange-flowered Hietacium auranticum, ultimately leading to an increase in seed 

output (Laverty, 1992). Pollinator-mediated facilitation exists not only within the same plant species 

but also among different species (Sargent & Ackerly, 2008), benefiting plants in small isolated 

communities the most (Groom, 1998). Hansen et al. (2007) noted that this indirect plant facilitation 

for pollination could alter during the same season and is most efficient during the highest bloom 

period.   

Nurse plants - a promising facilitator? 

What is a nurse plant?  

‘Nurse Plant Syndrome’ is a specific type of facilitation that involves interaction between adult plants 

and seedlings. The nurse plant syndrome, also known as ‘nurse-protégé interaction’ (Cody, 1993), 
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was coined originally by Niering et al. (1963) to describe plants that have positive nursing effects on 

their seedlings under their canopy compared to seedlings found in the gap spaces outside. This effect 

creates a positive spatial association between seedlings of one plant, whether the same or, of 

different species, to a sheltering adult plant (Turner et al., 1966, 1969; Steenberg & Lowe, 1969, 

1977). Nurse Plants may buffer non-optimal environmental situations, which could be essential in 

water-limited environments (Niering et al., 1963) by aiding in the interception of rainfall (Padilla & 

Pugnaire, 2006), improving abiotic stress conditions (Bertness & Callaway, 1994), ameliorating poor 

starting conditions, or sluggish growth due to extreme temperatures (Flores & Jurado, 2003). It can 

also aid through shade creation, consequently dropping thermal temperatures and reducing soil 

water evaporation (Domingo et al., 1999), cutting down radiation, shielding seedlings from the 

harmful effects of extreme temperatures, and lowering air moisture in arid environments (Pugnaire 

et al., 2011). Nurse plants could additionally reduce the frost effect (Padilla & Pugnaire, 2006), act as 

windbreaks (Walker et al., 2007), increase seed arrival and trapping (Giladi et al., 2013), and supply 

nutrients and stock water (Flores & Jurado, 2003). Nurse plants may also shelter seedlings growing 

beneath them against grazing (Padilla & Pugnaire, 2006) due to different morphological structures 

such as thorns, branches, and woody stems (Callaway, 2007). They could also physically protect 

understorey plants from the trampling of grazing animals (Barbosa et al., 2009) via repulsion by 

secondary compounds (Bee et al., 2009) or reducing palatability (Smit et al., 2006). Nurse plants 

could also be highly attractive to pollinators by increasing their visits to the target plants (Padilla & 

Pugnaire, 2006), consequently increasing the pollination rate either to beneficiaries (Laverty, 1992) 

or with protected plants mutually benefiting from visits of shared pollinators (Moeller, 2004). Nurse 

plants can enhance soil fertility with the accumulation of higher litter and sediment quantities 

beneath them when compared to gaps (Rodríguez‐Echeverría et al., 2016), positively modifying soil 

nutrients (Walker et al., 2001), increasing nutrient content (Callaway, 1995), and ultimately 

ameliorating the micro-climate when compared to nearby open areas (Pugnaire et al., 1996). It can 

also indirectly enhance soil chemistry for understory plants through mycorrhizal-colonization 

facilitation (Cuenca & Lovera, 1992) with a correlated upsurge in nutrient availability for such plants 

along with an increase in microbial abundance beneath them, leading to higher mineralization and 

availability of nutrients (Pugnaire et al., 1996; Moro et al., 1997a) for beneficiaries, accordingly, 

leading to facilitation (Rodríguez‐Echeverría et al., 2016). By inhibiting one species, nurse plants may 



33 
 

help release other species from the competition (del Moral & Rozzell, 2005). Finally, a nurse plant 

should not release allelopathic or other harmful compounds to beneficiary ones (Padilla & Pugnaire, 

2006).  

Types and habitats of nurse plants 

A meta-analysis study showed that woody species, predominantly shrubs (46% of total studies) 

(Filazzola & Lortie, 2014), are used as nurse plants in restoration practices (Gómez‐Aparicio, 2009), 

alternating soil characteristics and micro-climate beneath them leading to the establishment of so-

called ‘fertile islands’ (Garner & Steinberger, 1989), or ’resource islands’ (Schlesinger et al., 1996). In 

some specific cases, a nurse plant could have a gender effect. A study on the dioecious 

species Juniperus thurifera trees acting as a nurse plant for saplings of its kind revealed that the 

establishment of most seedlings was under female trees because of perching birds on those female 

trees. The study concluded that the spatial structure of recruitment could be affected by nurse plant 

gender (Montesinos et al., 2007). 

 

Filazzola & Lortie (2014) reviewed 298 articles on nurse-plant interactions based on geographic 

region, facilitation mechanism, ecological hypothesis, and nurse life form. Results showed that the 

Figure L. 2. A theoretical framework for the biotic and abiotic mechanisms of nurse plant effects through 

their life (from Filazzola & Lortie, 2014). 
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majority of the studies of positive plant interactions were most frequent in areas of high abiotic stress 

(11.7% in a Mediterranean climate-18.6 % in the Arctic and Alpine climates-43.6 % in arid and 

Semiarid climates). Accordingly, nurse plants exist in a wide range of habitats ranging from alpines 

(Cavieres et al., 2002; Nuñez et al., 1999), deserts (Franco & Nobel, 1988; Tielbörger & Kadmon, 

2000), wetlands (Egerova et al., 2003), salt marshes (Bertness & Hacker, 1994), grasslands (Greenlee 

& Callaway, 1996), tropical woods (Guevara et al., 1986), savannas (Archer et al., 1988), and 

Mediterranean habitats (Verdú & García-Fayos, 2003).  

Filazzola & Lortie (2014) Illustrated a theoretical framework for the biotic and abiotic mechanisms of 

nurse-plant effects investigated in the literature, noting that nurse mechanisms could affect protégés 

through their life commencing from seed germination until reproduction passing through saplings 

and throughout all other growth stages (figure L. 2). 

 

Semiarid Mediterranean environment habitats 

Challenges and hopes 

Human impacts in the Mediterranean Basin 

The Mediterranean Basin (MB) has a unique character resulting from geographic, historical 

conditions, and social developments (Ruti et al., 2008). Although covering only 2% of the Earth's total 

area, the basin globally ranks third among hotspots in plant diversity and endemism behind the 

Tropical Andes and Sundaland (MoE/UNEP/GEF, 2016). With faulted and folded limestone (creating 

scattered and fragmented hotspots )(Médail & Quézel, 1999), several highly differentiated bio-

geographical patterns at varied elevations ranging from sea level up to alpine (Vogiatzakis et al., 

2006), and various land-use practices in space and time, the MB by itself (Figure L. 3.) offers a variety 

of habitats resulting in a large number of endemic plant and animal species, accordingly, it is 

considered as one of 34 worldwide identified biodiversity hotspots (Médail & Quézel, 1997). Its flora 

comprises up to 25,000 native plant species, of which more than half (13,000 plants) are endemic 

(Myers et al., 2000) and 18.24 % threatened (Calow, 2009), forming about 80% of all European and 

8% of world flora (Valavanidis & Vlachogianni, 2011). Summer drought, air temperature, and winter 

rainfall, typical features of the Mediterranean Basin climate, are critical ecological factors bounding 
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an active growing season between the wet fall and spring period of the year (Blondel & Aronson, 

1999). This diverse region of towering mountains, woods, ancient rivers, deserts, and thousands of 

islets, is the stage where both civilizations, dating back thousands of years, and wild nature coexisted 

to create a mosaic of natural and cultural landscapes (Mannion, 1999; Cuttelod et al., 2009), 

ultimately, generating original ecosystems and landscapes with unique biodiversity (Dutoit, 2010). 

This biodiversity has been shaped and reshaped by humans for almost 10,000 years (Pons & Quézel, 

1985) through the immense impact of the successive rising and falling of civilizations over several 

millennia on biota and ecosystems everywhere in the basin (Blondel, 2006), sequentially, shaping the 

Mediterranean region as unique in world bioclimatic regions (Naveh & Carmel, 2004). Whether this 

human impact has benefited or was damaging to the Mediterranean biodiversity is debatable, 

leading to the development of two opposing theories. The first is the ‘ruined landscape’ or ‘lost Eden’ 

theory promoted by Attenborough & Wright (1987), suggesting that various human actions, such as 

overgrazing and deforestation, lead to progressive and cumulative degradation and desertification 

of the Mediterranean landscapes. Whereas an opposing theory claimed a positive contribution by 

humans in preserving Mediterranean landscapes favoring varied biodiversities by influencing a 

variety of cultural landscapes (Grove & Rackham, 2001; Blondel, 2006). With either of the two 

proposed theories, the fact remains that the MB has had an incredible chain of diversity. Numerous 

civilizations (Mesopotamian, Egyptian, Phoenician, Jew, Greek, Roman, and Arab) have affected 

biodiversity by shaping a variety of cultural landscapes throughout eras of severe pressure through 

practices such as terracing, grazing, cutting, burning, clearing, and cultivating arable areas (Pausas et 

al., 2008), have ultimately contributed to the current landscape (Zavala & Burkey, 

1997). Unfortunately, in the process, significant disruptions were caused by numerous factors such 

as habitat loss, degradation, over-exploitation, pollution, natural disasters, invasive alien species, and 

severe human disturbances (Cuttelod et al., 2009). All have had a direct impact on the basin due to 

its very low resilient capacity in facing such major disruptions (Dutoit, 2010). This influence of 

humans on biological systems in the MB has been so profound and widespread, leading to an 

‘anthropogenic’ structure of plant communities (Naveh & Kutiel, 1990), considerably affecting forest 

structure and composition (Blondel & Aronson, 1995; Grove & Rackham, 2001). Altering 

Mediterranean habitats has accelerated remarkably during the last two centuries rendering them 

severely fragmented or destroyed primarily as a result of urbanization, industrialization, and tourism 
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activities (EEA, 1999). Intense land-use alterations profoundly affected most Mediterranean 

landscapes (Lepart & Debussche, 1992) by impacting biodiversity and other ecosystem services of 

the region due to various human pressures such as climate change, land degradation (Scarascia-

Mugnozza & Matteucci, 2012), air pollution- mainly in the form of nitrogen (N) deposition, 

tropospheric ozone (O3), and particulate matter (Paoletti, 2006; Ferretti et al., 2014). Another major 

affecting factor, in several semiarid Mediterranean areas, is erosion, a problem that is likely to 

increase under swelling land-use changes and flood recurrences (Terrado et al., 2014).   

 

Figure L. 3. Biodiversity hotspots in the Mediterranean Basin (from Medail & Quézel, 1999) 

 

Ecological restoration, history, and practices in the Mediterranean Basin 

Ecological restoration is generally a challenging task under stressful circumstances of the 

Mediterranean drylands (Cortina et al., 2011). Some of those challenges include (1) Defining 

appropriate models of vegetation dynamics to be used as reference (such as natural, historic,…), (2) 

The need for a profound understanding of abiotic and biotic factors affecting ecosystem functioning, 

(3) Promotion of better ecological restoration governance based on wider social participation and 

diffusion networks, and (4) The need for better quality control for the evaluation of scientific projects 

(Mucina et al., 2017). Historically, restoration ecology in the Mediterranean Basin started in the mid- 

nineteenth century, when several countries- extensively France and Spain- carried out afforestation 

programs. These plans, described as simple ecological restoration practices, aimed to protect the 

watershed and headwater areas, regulate stream flow, reduce flash floods, control soil erosion, and 
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provide forest products (Vallejo et al., 2012). Those practices progressed into the twentieth  century 

through several restoration projects conducted across the Mediterranean Basin during its first half. 

Most performed projects had a silvicultural approach, which embraces planting fast-growing tree 

species (Nunes et al., 2016) while addressing a few broad restoration aims, such as soil erosion 

reduction, water runoff, or forest recovery (Vallejo et al., 2012). Unfortunately, and in most cases, 

the projects were monoculture tree stands of low biodiversity. Gradually, those practices were 

pursued later by more suitable ecosystem-based strategies centered on increasing plant species 

diversification and allocating more care for the fauna and soil preservation (Nunes et al., 2016). 

During the last quarter of the twentieth century, socioeconomic changes in southern Europe shifted 

the social demands placed on wildlands. Accordingly, new restoration goals emerged (Bautista et 

al., 2010) with new objectives conducted within the framework of various projects and purposed to 

prevent wildfires, improve silvopastoralism, increase recreational and cultural wildlands use, and 

increase biodiversity - all administered simultaneously besides recovering native woodland 

ecosystems (Vallejo, 2009). Towards the end of the twentieth century and into the twenty-first 

century, to cope with the uncertainty induced by climate change (Stephens et al., 2010) with an 

expected temperature upsurge between 2-4 o C in the Mediterranean basin (Palutikof & Wigley 

1996), ecological restoration efforts steered towards mitigating global warming and climate change, 

through the improvement of ecosystem resistance and resilience as principal universal objectives in 

restoration programs (Bautista et al., 2010). Practically successful restoration techniques in the 

Mediterranean Basin should include procedures adapted to the plant phenology of the region and 

the local Mediterranean climate. Such practices would embrace seeding, transplanting, hay transfer, 

and timely soil transfer (Buisson et al., 2021), to be applied in parallel with proper human-land 

management, including appropriate grazing and pastoral fires (San Miguel, 2008).   

Lebanon, a multi-challenging environment  

Location and importance as a hotspot 

Due to its location, topography, and altitude (MoE/ECODIT, 2002), Lebanon’s highly diverse 

ecosystem is considered a biodiversity hotspot in the MB (Myers et al., 2000). With heterogeneity in 

ecological forces affecting the evolution of its diversity (Dagher-Kharrat et al., 2018), Lebanon has 

approximately 9,116 known species divided into 4,486 species of fauna and around 4,630 species of 
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flora (MoA/UNEP, 1996). One of the most extraordinary characteristics of Lebanon is the presence 

of such biodiversity in a very restricted area of land- as Lebanon covers 0.007% of the world’s land 

surface area and has about 0.8% of the world’s species (MoE/UNEP/GEF, 2016). Relative to its size, 

Lebanon has one of the highest densities of floral diversity in the Mediterranean basin (Médail & 

Quézel, 1997), evident in terms of the very high species-area ratio of 0.25 species/km2 (e.g., Brazil’s 

species-area ratio is 0.0044/km2 and South Africa’s species-area ratio is 0.0081/km2) 

(MoE/UNDP/ECODIT, 2011). Despite centuries of deforestation and dwindling forest cover, floral 

richness is still high, probably due to the soil and bedrock structure, altitudinal variations, and 

difficulty of access (Khater & El-Hajj, 2012). The floristic richness is estimated to be around 2600 plant 

species, of which 12% are endemic (MoE/UNDP/ECODIT, 2011), divided between 221 broad 

endemics and 90 narrow endemics (MoA/UNEP, 1996). This high endemism is due to the isolation 

effects encountered on the high peaks of the Lebanese Western and Eastern Mountain Chains 

(Sattout & Abboud, 2007). However, for millennia, Lebanon’s ecosystems have experienced 

significant changes, such as historic deforestation, widespread replanting, reforestation plans, bench 

terracing, recent civil war (1975–1991), unplanned urbanization (Faour, 2015), the inflow of refugees 

from nearby war-torn Syria (2011–2017) increasing its population by 30% (Ammar et al., 2016), and 

the escalating climate change crisis (Khater & El-Hajj 2012). The main threats to Lebanon’s 

biodiversity could be summed as follows: Habitat loss and fragmentation, unsustainable exploitation 

of natural resources, pollution, invasive species, the introduction of new and improved varieties 

(agrobiodiversity), climate change, and the lack of data (MoE/UNEP/GEF, 2016). In recent times the 

multidimensional poverty rate in Lebanon (doubling from 42% in 2019 to 82% in 2021, dramatically 

increasing from less than 29% a few years earlier), deemed to be a major driving factor for people to 

behave in an unsustainable manner to suffice their survival needs (UNDP, 2018; 

https://www.unescwa.org/publications/multidimensional-poverty-lebanon-2019-2021). As a 

closing note, it is worth mentioning that the cost of environmental degradation linked to land and 

wildlife resources per year is estimated at $100 million, equivalent to 0.6% of Lebanon’s GDP (Sarraf 

et al., 2004). 

https://www.unescwa.org/publications/multidimensional-poverty-lebanon-2019-2021
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Quarries in Lebanon 

Situation  

Lebanon’s quarrying sector is notoriously uncontrolled and disorganized devastating environmental 

resources and landscape via numerous causes, including the rising demand for construction 

aggregates, political disputes, and delays in declaring quarry master plans (MoE/UNDP/ECODIT, 

2011). Although the actual number of quarries on the Lebanese territory is variable (depending on 

the source of information), there are approximately 1,300 quarries dispersed all over Lebanon, 

causing horrendous damage to existing arable lands, accelerating erosion processes, modifying 

ecosystems, destroying natural habitats, interrupting natural successions, and changing landscape 

patterns (Khater et al., 2003; Khater, 2004). Up until 1996, quarries in Lebanon were controlled by 

Decree 235, issued in 1935 during the French mandate period (Leenders, 2012). During post-war 

reconstruction, in the 1990s, the very high demand for building materials (stones, sand, wood, etc.), 

led to the proliferation of quarries throughout Lebanon, with their number almost doubling between 

the years 1996 to 2005, from 711 to 1,278. This upsurge increased excavated land by 84% (from 

2,873 to 5,283 ha), destroying 738 ha of grasslands, 676 ha of arable lands, and 137 ha of forest areas 

(Darwish et al., 2010). The World Bank in 2009 investigated the cost of environmental degradation 

from quarries, estimating it at $34.5 million based on the Lebanese GDP of $34.5 billion (WB, 2010). 

A long-awaited national master plan for quarries was declared in 2002 and later modified twice in 

2006 and 2009 (Decree No. 5616/1996, Decree No. 8803/2002, Decree No. 16456/2006, Decree No. 

1735/2009). 

Previous successes and failures in quarries rehabilitation in Lebanon 

Lebanon has several regulations concerning the quarry sector, with the most-important decrees 

affecting quarrying from 1996 to 2009. Unfortunately, the vast majority of the 1300 quarries are 

unlicensed or with an expired licenses. Few quarries have been undergoing rehabilitation, and fewer 

of which are even documented (Qaraoun state quarry, Sibline) (MOE/UNDP/ECODIT, 2011), and 

others are in process (Holcim Ciment Blanc, Mdoukha, and Aita el Fokhar quarries). 

Maqneh quarry: history, location, site details 

The quarry considered for this study is in the vicinity of the village Maqneh, in the middle of the 

Beqaa Plain, in east Lebanon. The plain, characterized by an approximate 10 km wide depression 
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separating the major two Lebanese mountain chains, the Western Mountain Chain and its Eastern 

Mountain Chain counterpart, is distinguished by a flat terrain that slopes gently at a less than 5 

degrees/ km gradient. The long-abandoned quarry rests at the end of the rocky valley, where a 

seasonal stream (Wadi Nahle) exists with a U-shape cross-section indicating an old stage of maturity 

(Figure L. 4.). 

 

Figure L. 4. Location of the study area- Beqaa plain in Lebanon (modified from Ecomed). 

The quarry itself consists of two main sides facing each other. One side is almost intact, consisting of 

natural cliffs and former old cultivated terraces not damaged by quarrying, embracing an array of 

native vegetation but overgrazed by sheep and goats for decades (Figure L. 5., Figure L. 6.). 
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Figure L. 5. The intact side of the quarry consists of natural cliffs and former old 

cultivated terraces not damaged by quarrying and embracing an array of native 

overgrazed vegetation. (Shaiban, IMBE). 

 

Figure L. 6. Another angle of the intact side of the quarry consists of natural cliffs and 

former old cultivated terraces not damaged by quarrying and embracing an array of 

native overgrazed vegetation. (Shaiban, IMBE). 
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Whereas on the opposite side, the quarry stands up with its working face (Figure L. 7., Figure L. 8.). 

 

Figure L. 7. The quarry side consists of severely degraded areas due to quarrying. 

(Shaiban,IMBE). 

 

Figure L. 8. Another angle of the side of the quarry shows the impact on soils and 

vegetation. (Shaiban, IMBE). 
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From a Lithological perspective (Figure L. 9.), the quarry is characterized by a Cenomanian-Turonian 

Rock Formation (C4-5), of mainly reefal limestone, dolomitic limestone, and some dolomite 

inclusions situated next to another rock formation with marly facies, in which the latter is attributed 

to the Senonian Formation (C6). It is worth noting that a major fault isolates carbonate rocks from 

adjacent marls. 

 

Figure L. 9.: Geologic map of the abandoned quarry locality in Maqneh and 

the surrounding (Maqneh Report- CNRS) 

The site is within the Pre-Steppic Mediterranean Vegetation type ensemble encompassing the 

eastern slopes of the Mount Lebanon chain, the western slopes of the Anti-Lebanon range (both in 

their northern parts), and the plain extending between them (MoA/UNEP, 1996). In Lebanon, the 

vegetation type is categorized into four “vegetation levels”: The Pre-steppic Mediterranean, Pre-

steppic Supramediterranean, Pre-steppic Mountainous Mediterranean, and Pre-steppic 

Oromediterranean. The study site belongs to two vegetation levels the Pre-steppic Mediterranean 

and Pre-steppic Supramediterranean. 

The local flora in the surrounding natural habitats of the quarry can be considered highly rich with 

different plant species. Among them are some endemics (Campanula euclasta, Stachys nivea, Alcea 

damascene, Astragalus roussaeanus) along with species specialized to rocky habitats and slopes 
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(Serratula cerinthifolia, Convolvulus dorycnium ssp. Oxysepalus, Capparis spinosa ssp. Parviflora, 

Parietaria judaica, Alkanna orientalis, Hyoscyamus aureus, Moluccella laevis) that could be 

interesting in ecological restoration for their resilience actions (ecosystem healing and regeneration). 

(Rehabilitation Concept report for the Maqneh Quarry – Beqaa plain- Lebanon- CNRS- Lebanon). The 

vegetation has been (and still is) overgrazed for centuries by uncontrolled itinerant grazing sheep 

and goats, leading to a decrease in species richness, diversity, and alteration in species composition 

of surrounding grasslands. Unfortunately, no data or experiments have previously been done to 

exclude ungulates through fenced areas. 
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Why in an ex-situ mesocosm setting, and what are its 

limitations? 

The composition, structure, and dynamics of plant communities are shaped primarily by interactions 

amongst plants (e.g., Gleason, 1917; Grime, 1998; Grace, 2012; Tilman, 2020). Nonetheless, 

establishing conclusive outcomes of such interactions under field conditions is time-consuming and 

proved to be a difficult task (Connell 1990), and could require enormous time to execute, lacks 

control over various external factors, and has an increased strain on examining effects of different 

components (Kulmatiski & Kardol, 2008). Therefore, in some particular cases, simulated communities 

developed within a greenhouse context are considered a more lenient approach (Gibson et al., 

1999), offering several practical advantages over field-based experiments. Some of those advantages 

are, better control of treatments and extrinsic factors (Gibson et al., 1999), adequate evaluation of 

different factors like soil productiveness, the influence of pathogens, and herbivore effect (Keddy, 

1989), add to this, such studies permit mechanistic analysis, rather than plain phenomenological 

surveillances (Stiling, 1992). Although ex-situ studies are effective tools in studying and conserving 

plants (Antofie, 2011), they might have several disadvantages, such as the tendency to simplify 

ecosystems (Jackson et al., 2005), neglect of the importance of understanding plants' ecological 

conditions, absence of the in-situ requirements of having varied and complex interactions among 

studied plant species (Wangalwa et al., 2021). 

The competition index used, means of calculation, and 

its limitations  

Of the various interactions amongst plants, competition is considered one of the major factors 

shaping and assembling plant communities (e.g., Grime, 2006; Keddy, 1989). Keddy et al. (2002) 

summed up several research questions and paths engaged in assessing competition amongst plants, 

correlating each with a different group of specific inquiries: (1) What is the effect of competition on 

plant distribution along gradients? (2) How does competition influence the coexistence of similar 

species? (3) What is the significance of competitive responses and effects? (4) How to analyze the 
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presence of competitive hierarchies and explore their patterns? (5) What are the means of 

inspections of the various plant traits and their presumable role in defining competitive 

performances? In this study, the research path followed was the fifth pathway, where competition 

is considered through the possible roles of plant traits in determining competitive performance (e.g., 

Tilman 1982; Gaudet & Keddy 1988; Keddy et al. 2002). Gaudet & Keddy (1988), in an original 

experiment using a comparative approach, i.e., “the systematic screening of a large number of 

species under standardized experimental conditions” (Grime & Hunt, 1975), to assess the relative 

competitive performance of wetland plant species by examining whether there was a correlation 

between the competitive performance and various plant traits. Their results revealed a strong 

correlation between the relative competitive performance and above-ground biomass, whereas 

other traits like plant height and canopy area interpreted the residual variation.  

Numerous indices have been utilized to assess the net balance among plant interactions to 

determine whether competition or facilitation prevails in plant-plant interactions. These included 

the relative competition index (RCI) (Wilson & Keddy, 1986), used to measure diffuse competition, 

the relative neighbor effect (RNE) (Markham & Chanway, 1996), and the log response ratio (lnRR) 

(Hedges et al., 1999). Armas et al. (2004) proposed an index with strong mathematical and statistical 

properties that could potentially overcome several problems of other indices- the RII index, 

highlighted as “.... the most suitable index for analysis of plant interactions. RII has defined limits, it 

is symmetrical around zero with identical absolute values for competition and facilitation, its 

sampling properties are known and accurate, and it is safe to use in statistical and mathematical 

operations because it is linear and does not have discontinuities in its range”. RII has been utilized in 

various research areas to study the net balance of plant interactions, such as in arid regions 

(Holzapfel et al., 2006), in testing the severity-interaction relationship (SIR) (Elmendorf & Moore, 

2007; Tirado & Pugnaire, 2005), in testing plant–plant interactions under grazing pressure 

(Howard et al., 2012), and in studying interactions between invasive plants and native species (Gao 

& He, 2014). RII was also used in drylands to assess the role of nurse successional stages on species-

specific facilitation (Fagundes et al., 2018), in valuing Arbuscular Mycorrhizal Fungal intervention 

with respect to Plant-Plant interactions (Zhang et al., 2014), in studying soil origin and its microbes 

(Siefert et al., 2018), evaluating plants interactions interceded by salinity stress (Zhang et al., 2008), 
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assessing competitive effect between invasive and native wetland plant species (Hager, 2004), 

measuring direction and intensity of root interactions and their change with temperature (Luo et al., 

2020), and in quantifying the effect of nutrients on plants such as Phosphorus (Zhang et al.,2016), 

and nitrogen (Matallana et al., 2017). 

Although several reviews positively highlighted results generated by the RII index, some reported a 

few limitations with such a comparative approach. Keddy et al. (2002) noted two principal 

limitations, (1) its liability to only utilize one or a few reference species to rank other species, and (2) 

the fact that one or a few standardized environments are studied simultaneously. Díaz‐Sierra et 

al. (2017) also noted that RII tends to underestimate facilitation with respect to equivalent values of 

competition.  
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Figure M. 1. Location of chapter one in the general organization of the thesis. 
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Abstract 

Hydroseeding is a restoration technique commonly used in varied restoration projects. 

This literature review, encompassing about 100 published research papers from 1990 to 

2020, revealed numerous limitations in a semiarid Mediterranean environment. 

Challenges facing hydroseeding as a restoration tool in semiarid Mediterranean 

environments were evaluated by analyzing different factors affecting ecological and 

technical levels. This issue was approached by sorting variables under either biotic or 

abiotic factors, further subdividing them under either natural-environmental or human-

influenced factors. The review highlighted several constraints when applying 

hydroseeding techniques in a semiarid Mediterranean environment: Slope steepness, 

slope aspect, high water runoff, low presence of water, mixing solutions used, and high 

cost of applying this technique are some of those constraints facing its success. Other 

shortcomings are related to the low success rate of commercial seed mixtures under 

harsh conditions and their tendency to compete with native species. Moreover, the 

review provided recommendations to increase hydroseeding success by using varied 

techniques such as topsoil spreading, utilizing native seeds, mycorrhizal or rhizobium 

inoculation, and the use of nurse plants. Furthermore, an environmental psychology 

approach was suggested as means to convey a better message and increase acceptability 

towards improved innovative suggestions.   

Keywords: Abiotic factors, biotic factors, limitations, success, failures, restoration 

techniques. 
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Introduction 

Vegetation is a cornerstone of natural ecosystems. It is not only an essential habitat for 

different living species but also carries ecosystem services and functions such as nutrient 

cycling, soil protection, water purification, etc. (Hölzel et al., 2012). Numerous factors 

lead to ecosystem degradation and surface modifications with irreversible loss of soils 

via removal of upper soil, sedimentation, salinization, etc. Whenever a certain threshold 

level is crossed, it cannot reverse back without interventional correction to alternate 

what led to that threshold being crossed (Aronson et al., 1993). This fact is especially 

valid for semiarid Mediterranean ecosystems, where natural recovery after the 

disturbance has been recognized to be harder than in other ecosystem types (Blondel et 

al., 2010). In such conditions, ecological restoration techniques are required to initiate, 

assist, and accelerate the recovery of degraded ecosystems with respect to their 

structure, functional properties, and exchanges with surrounding landscapes (SER, 

2004). Restoration is not easy and straightforward because of several factors restricting 

its success, such as abiotic and biotic constraints (Bakker & Berendse, 1999).  

One important restoration technique applied to reintroduce vegetation is manual 

seeding, where seeds are hand spread with no specialized equipment. Such a manual 

method is suitable only for small areas (MacDonald et al., 2015). Drill seeding is another 

practice that involves seed application, utilizing conventional agricultural equipment 

below the soil surface. This practice is limited to relatively flat and well-groomed sites 

(MacDonald et al., 2015). Hydroseeding is another commonly used technique (Figure 1. 

1.), especially on steep slopes and inaccessible regions (Davy, 2002). The process consists 

of mixing cellulose fiber, mulch, seeds, and later adding water into the tank and spraying 

the degraded area (Martin et al., 2002). Although used worldwide (more than 12 million 

km length of road networks in the United States, Europe, Japan, and Australia- Mola et 

al., 2011), hydroseeding has variable outcomes. 
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Figure 1. 1. Utilizing the hydroseeding technique as a restoration tool on a steep road cut slope 

(Martin et al., 2002). 

The Mediterranean region (Figure 1. 2.) covers about 850 million hectares in 22 

countries across Southern Europe, the Middle East, and North Africa (Zdruli, 2014). In 

this vast region, hydroseeding as a restoration tool is increasingly applied (Andrés et al., 

1996; Albaladejo et al., 2000; Matesanz et al., 2006; Tormo et al., 2007). A study from 

around the Mediterranean Basin, spanning over sixteen countries, surveyed 36 

implemented restoration projects revealing that 17% of the total executed restoration 

projects were undertaken through hydroseeding practices and were carried out on 

post-industrial sites (mining), infrastructure development, deforestation, and drought 

sites (Nunes et al., 2016). In several cases, poor results in plant performance have been 

measured (Matesanz et al. 2006). Several direct and indirect variables determine the 

effectiveness of hydroseeding in semiarid Mediterranean environments. This 
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assessment should cover varied factors such as soil conditions, topography, season, 

climate, vegetation types, water availability, vulnerable or sensitive surrounding areas, 

and maintenance requirements. Once identified, those factors could be manipulated to 

improve restoration efforts (Tormo et al., 2008).  

 

 

Successful restoration results from a combination of ecologically sound projects that are 

technically possible, financially feasible, and socially acceptable (Khater, 2015). Hölzel et 

al. (2012) distinguished various factors affecting ecological restoration under three major 

headings: starting conditions, abiotic factors, and biotic factors.  

This paper presents a review of more than 100 research papers published between 1990 

and 2020, reporting the success and failure of hydroseeding as a restoration technique 

for large-scale projects. It analyzes the reported cases in view of biotic and abiotic factors 

Figure 1. 2. The Mediterranean Basin with its 22 bordering countries (Modified from Google Maps) 
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potentially affecting restoration success and differentiates between nature-based and 

human-related variables.  

Methods 

The different variables affecting hydroseeding successes and failures in a semiarid 

Mediterranean environment were assessed by exploiting diverse search engines (Google 

Scholars, Web of Science, summon 2.0), searching in the title, abstract, and keywords of 

papers the following terms: “hydroseeding” plus “semiarid Mediterranean 

environment” plus “cultural practices”, “microclimate”, “nurse plants”, “seed type/ 

competition/ inoculation”, “slope aspect/ steepness”, “soil addition/ mulching”, or 

“mixing solutions”(See Table 1. 1.). 

Results 

Hydroseeding techniques and their limitations 

In semiarid Mediterranean climates, hydroseeding has yielded poor results in plant 

performance (Matesanz et al., 2006). These results could be due to a lack of sufficient 

knowledge about the success of hydroseeded species and the performance of native 

species (Bochet & García-Fayos, 2004). Understanding the response of those established 

species is critical for successful ecosystem restoration and improving seed mixtures 

(González-Alday et al., 2008). 

Several factors affect hydroseeding successes or failures. Those factors can be grouped 

under abiotic factors or biotic factors (Table 1. 2.). Starting conditions are the existing 

conditions ranging from abandoned semi-natural environments to areas intensively used 

as cropland or heavily disturbed places such as quarries and mines (Hölzel et al., 2012). 

Although it is a very important aspect, this topic will not be covered in this review 

because it is out of scope when discussing hydroseeding’s pros and cons.  
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Abiotic factors affecting hydroseeding 

Numerous abiotic factors might affect the hydroseeding end result, those can either be 

natural-environmental factors or human-influenced factors (Table 1. 2.). Those factors 

do not act alone and often interact with one another or with different biotic factors. 

Natural-environmental abiotic factors affecting hydroseeding 

Natural-environmental abiotic factors are factors related to site topography, aspect, 

edaphic characteristics, and water availability. Topography and extreme environments 

can determine the success of a planting and restoration program (Bochet et al., 2009). 

Slope steepness, aspect, and type are all factors to consider in a harsh semiarid 

Mediterranean climate. Because of low penetration and high runoff (Miyazaki et al., 

1993), slopes with steep angles have intense water insufficiency, which leads to very low 

plant cover, accentuating the difficulty of re-vegetating them (Andrés et al., 1996). 

Studies on motorway slopes in Catalonia-Spain concluded that hydroseeding was 

unsuitable for slope stabilization of road cuts near, or above, 45 degrees. The causes of 

failure include the probability of seeds moving downhill, with or without water (Cerdà & 

García‐Fayos, 1997; García‐Fayos & Cerdà, 1997). Even at lower steepness, on slope 

angles greater than 27–32 degrees, seed establishment is hindered by downward 

dragging (Bochet & García-Fayos, 2004). A study conducted in Malaga-Spain assessed 

whether hydroseeding techniques had any significance to contribute to species richness 

and vegetation cover by acting as starters or facilitators in the establishment of plants 

and eventually checking their fate after the ecosystem has been restored. Results 

revealed that hydroseeding did not prove successful and the vegetation establishment 

on embankments was mainly from the local seed bank and dispersal from the 

surrounding area (Bochet et al., 2007b). It concluded that hydroseeding is not needed in 

the presence of favorable conditions such as suitable climate and slope angle 

(Matesanz et al., 2005). To improve hydroseeding success on steep slopes efforts need 

to focus on increasing surface roughness, terracing at regular intervals, or excavating to 
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produce slope angles below 45 degrees (Bochet & García-Fayos, 2004). Another factor 

affecting hydroseeding is the slope aspect. Different slope aspects (N, E, S, or W) have 

various exposures to solar radiation. Bochet et al. (2009) studied the correlation 

between slope angle thresholds and slope aspect with respect to plant colonization of 

highly eroded slopes in a semiarid area. They observed that plant colonization started at 

higher slope angles on north-facing than on south-facing slopes. This difference in the 

colonization capacity is due to water availability which is controlled by the solar radiation 

received. Another study in northwestern Spain evaluated the solar radiation effect on 

short-term herbaceous plant establishment on road cut slopes after hydroseeding. 

Results showed a significant coincident trend of decrease in plant density, biomass, plant 

cover, and seedling development along the SE–SW–S gradient (Cano et al., 2002). 

Additional studies revealed that vegetation establishment was reduced considerably on 

south-facing slopes due to severe conditions (Andrés et al., 1996; Cano et al., 2002). 

Aspect influence on early growth dynamics of hydroseeded species in a coal reclamation 

mine showed that grasses dominated both northern and southern slopes, except during 

the summer on the southern slope, with grass cover always more on north-facing 

compared to south-facing slopes (González-Alday et al., 2008). A contradicting study of 

almost three years involved hydroseeding gypsicolous vegetation on quarry spoil slopes. 

The two tested slopes (10-15% vs. 60-65%) and two contrasting aspects (north vs. south) 

revealed that shallow and southern slopes were more suitable compared to northern 

and steep slopes where non-target species developed readily outcompeting target 

species (Ballesteros et al., 2017).  

A third natural-environmental abiotic factor affecting hydroseeding is the site edaphic 

characteristic. Soil presence or its absence, erosion, and microclimate are all factors 

affecting hydroseeding results. Initial soil conditions are the main factor leading to 

vegetation succession in reclaimed slopes in Mediterranean dry environments (Moreno 

de las Heras et al., 2008). Preservation of removed topsoil from construction sites is a 
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valuable resource for ecological restoration. Removed soil contains high concentrations 

of microorganisms, nutrients (Rivera et al., 2012), native seeds, and organic matter. All 

are factors that could enhance plant establishment, increasing hydroseeding success 

rates (Merlin et al., 1999; Agut, 2002.).   

With the water running over bare and crusted soils leading to seed removal (Mitchley et 

al., 1996), the erosion process in Mediterranean climates is an important factor affecting 

hydroseeding, operating in a catastrophic mode (Wainwright, 1994). A major objective 

of hydroseeding is to generally control water erosion and the mechanical stabilization of 

barren slopes (Bochet et al., 2010a). A study in Spain on bare road embankments under 

construction revealed that the effect of erosion was 30 times more than the vegetated 

ones (Cerdà, 2007).  

As for the microclimate effect, several degraded Mediterranean sites have adverse 

microclimatic conditions. Such inappropriate microsites, along with water stress, will 

affect the seedling establishment and plant growth, leading to poor performance of 

native species in hydroseeding (Tormo et al., 2006). The microclimate established 

between soil particles and adjacent aggregates will allow partial seed burial enabling a 

greater chance for successful seedling establishment. The presence of small rocks will 

also provide shade and shelter, improving the establishment of seedlings 

(Elmarsdottir et al., 2003).  

Water availability is yet another significant natural-environmental abiotic factor 

affecting hydroseeding success. In a Mediterranean semiarid climate, water availability 

is a main ecological driver that shapes vegetation (Bochet et al., 2009). Low and irregular 

distribution of rainfall is a key factor limiting plant growth (Zohary, 1973). Seed arrival to 

road embankments under Mediterranean climate conditions is not enough to ensure 

successful plant colonization (Tormo et al., 2006). A study on regolith slopes in southeast 

Spain concluded that short-lived water availability and high salinity of the regolith seem 
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to be the key factors limiting vegetation colonization (García‐Fayos et al., 2000). 

Furthermore, recurrent droughts cause not only high rates of plant mortality but also the 

inability of some species to expand their populations in dry conditions (Cerdà & García-

Fayos, 1997, García-Fayos & Cerdà, 1997). Moreover, during the seedling establishment 

stage, the differences in water availability could explain the very-low plant colonization 

success and the differential ability of plant species to establish on badland slopes (García-

Fayos et al., 2000).  

Human-influenced abiotic factors affecting hydroseeding 

Human-influenced abiotic factors are factors introduced or modified by direct human 

interferences aiming to influence hydroseeding outcomes. Described under either 

direct-hydroseeding practices, varied cultural practices, cost of application, or social 

factors.  

A factor that could directly affect hydroseeding practices is the type of aqueous solution 

utilized. One study (Merlin et al., 1999) assessed the effectiveness of a group of colloidal 

substances (of natural and synthetic origin) used in hydroseeding spraying with respect 

to adhesion, germination, seed growth, and erosion limitations. Results revealed that 

the desired colloids should have several characteristics: fluidity, adhesion to seeds, 

enable effective seed germination, be free of material hazardous to the environment, 

limit erosion, help in restoration or establishment of biological and ecological functions, 

and is of a low cost.  

Alternation of the slurry component is another factor affecting the hydroseeding 

success. A comparative study (Clemente et al., 2016) using germination tests assessed 

the effects of different slurry components (bacteria-based fertilizing agent, bio-

stimulant, dye, and surfactant) on the performance of a dozen native species used in 

hydroseeding of quarry slopes. The components affected the germination of 4 out of 12 

native species, favoring germination in 2 species (Thymus mastichia and Cistus albibus) 
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but delayed it in 2 other species (Bituminaria bituminosa and Helichrysum stoechas). The 

study concluded that the effect of slurry components on germination is species-specific; 

hence any used hydroseeding components should be adjusted to the sown species 

(Clemente et al., 2016). Another study (Catania et al., 2012) evaluated commercially 

available seeds on a degraded artificial slope in a southern Mediterranean area for the 

effectiveness of four different hydroseeding solutions. The study assessed total 

vegetation cover, hydroseeding vegetation cover, hydroseeding success index, and both 

the natural and hydroseeded vegetation height. In conclusion, the research revealed that 

success is conditioned by the type of the mixture components, with mixtures of equal 

terms earthworm humus and mulch providing the best results in terms of vegetation 

cover (Catania et al., 2012). The intervention season is another human-influenced abiotic 

factor affecting hydroseeding. Under semiarid Mediterranean conditions, hydroseeding 

timing appears to be a critical factor since climatic conditions following hydroseeding 

significantly affect species’ fate. Both climatic conditions and the selection of a suitable 

species capable of establishing under water-stressed conditions should be considered 

since both factors are important in determining species performance in sowing 

(Tormo et al., 2008). If hydroseeding is to be performed out-of-season due to some strict 

schedule, efforts should focus on improving topsoil and microsite quality rather than 

increasing seed availability (Mola et al., 2011).  

Various implemented cultural practices are other human-influenced abiotic factors 

affecting hydroseeding. Supplemental irrigation after hydroseeding is one such practice. 

In a semiarid Mediterranean environment, the application of irrigation after 

hydroseeding is controversial, with some studies supporting it, whereas other studies 

highlight a negative role. Studies supporting supplemental irrigation reveal that water 

stress in a Mediterranean environment highly obstructs plant growth. Therefore, after 

hydroseeding, irrigation must be applied for a few months due to insufficient rain. This 

is especially essential since the brief durability of soil water availability largely 
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determines germination successes (Bochet et al., 2007a; García-Fayos et al., 2000). 

Another study in Sicily showed that not only mulch and humus are needed, but also 

irrigation should be carried out during the dry period (Vallone et al., 2013). Other studies 

recommended the use of drought-tolerant plants along with a careful irrigation plan 

(Josa et al., 2012). However, other studies raised concerns about irrigation which might 

lead to the prevention of long-term vegetation establishment due to competition with 

spontaneous colonizers (García-Palacios et al., 2010). Another study targeting motorway 

slopes in Spain concluded that fast-growing species dominate the community, rendering 

irrigation and fertilization of little effect, indicating that hydroseeding neither had a 

strong impact on vegetation cover nor did it significantly decrease erosion rates of 

degraded sites in semiarid Mediterranean environments (García-Palacios et al., 2010). 

The addition of soil and/or amendments can also be another factor affecting 

hydroseeding outcomes. Topsoil spreading can improve soil texture, upsurges nutrient 

soil retention, decreases nutrient loss, reduces sediment runoff, and facilitates quick 

development of dense vegetation cover (Jimenez et al., 2013). Topsoil addition prior to 

hydroseeding could be an important technique in roadfill revegetation in Mediterranean 

environments. This could be achieved by improving soil’s physical and chemical 

properties and also by providing a seed bank to assist spontaneous regeneration 

(Tormo et al., 2007). A study showed that topsoiling followed by hydroseeding of a 

selected native seed mixture was the most effective treatment to control erosion on 

roadfills in terms of cost and benefit (Bochet et al., 2010b). Another study assessing 

quarry restoration evaluated the contribution of a 30 cm topsoil layer above marble 

sludge (a material with high water retaining capacity) before hydroseeding. The results 

indicated an increase in slope water storing capacity, significantly increasing biomass 

(Simón-Torres et al., 2014). Added topsoil low in organic matter, Fe and Mn, will limit 

vegetation establishment and development (Bochet & García-Fayos, 2004), therefore, 
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mixing compost with the soil could improve the germination of native seeds (Hallock et 

al., 2006).  

Mulching is another implemented cultural practice. Mulches and organic amendments 

can promote seed burial, germination, and establishment, especially if dry soil conditions 

prevailed (Roberts & Bradshaw, 1985). A study conducted in the Giona Mountain-Greece 

examined the effectiveness of hydroseeding combined with varied materials. Results 

showed that hydroseeding alone leads to poor results, but when combined with tilling 

and mulching, it created satisfactory vegetation cover from the first year after 

application (Brofas et al., 2007). Mulching could also improve the odds of hydroseeding 

steep slopes. One study in Cordoba-Spain tested the effectiveness of different mulches 

(vegetal mulch, humic acids, vegetal mulch with humic acids, and control) on steep 

slopes. Hydroseeding with the combination of plant mulch and humic acids significantly 

reduced soil runoff by up to 98.5 percent. This result may be attributed to the combined 

effect of the protection against raindrop impact and improvement of soil structure 

brought by organic amendments (Albaladejo et al., 2000). Even in some cases, the total 

replacement of hydroseeding by spreading a thick compost blanket (pellet form) could 

enormously benefit seeds germination because of the matting effect, enabling them to 

withstand harsher and more intensive rainfalls compared to hydroseeding (Tyler, 2003). 

Gomez et al. (2014) evaluated the effect of three different mats paralleled with 

hydroseeding for controlling erosion under Mediterranean conditions. The mats used 

were: Organic mats (made of coconut or esparto grass fiber), synthetic net mats, and 

synthetic 3D-net mats. Significant erosion control was achieved using different erosion 

mats combined with hydroseeding, versus control, but showed no clear differences 

among the diverse matting materials during one year (Gomez et al., 2014).  

Cost is yet another factor affecting the decision regarding whether to implement 

hydroseeding or not. A study compared the cost of different kinds of applications 
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(broadcasting, drill, and hydroseeding). Results revealed that broadcasting costs ranged 

from US$25 to US$75 /hectare, drilling native seed costs ranged from US$60 to US$135 

/hectare, and hydroseeding cost was $1,358 /hectare (Pawelek et al., 2015). A probable 

reason for the high cost of hydroseeding could be the market price of native seeds. 

Another study revealed that the prices of selected seed mixtures were 30 times more 

than that of commercial species, although the cost of relevant ecological advantages 

provided by the use of native species was only twice that of the commercial species 

based on cost-effectiveness assessment (Bochet et al., 2010b). Martin et al. (2002) 

compared the prices (in USD/kg) among different kinds of seeds used for hydroseeding 

in the semiarid Mediterranean environment. Results revealed a vast range in price range. 

With prices varying from as low as 2-3.5 USD/ kg for industrially produced species, to 80-

120 USD/ Kg for native species (hand-harvested and collected near restoration area), 6-

25 USD/ kg for common cultivated wild species, and between 50-850 USD/ kg for the 

difficult to collect and grow wild species. More demand for native species in restoration 

projects will probably encourage investing in native seed and plant production, 

ultimately leading to their abundance at more competitive prices (Bochet et al., 2010b).  

Biotic factors affecting hydroseeding  

Biotic factors could play a positive or negative role in the outcome of hydroseeding by 

affecting separately or collectively hydroseeding outcomes (Table 1. 2.). Also, both biotic 

and abiotic factors might interact, altering the end result. 

Human-influenced biotic factors affecting hydroseeding  

Through the influence of the soil seed bank, seeds are considered one of the most 

important actors in the first stages of the restoration process, playing a fundamental role 

in the composition of future vegetation (Peco et al., 1998). Therefore, the choice of 

species in seed mixtures is vital when planning a restoration project. Possible guidelines 

for seed selection could be, the ability of seeds to disperse, produce sufficient viable 
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seeds, be competitive under local conditions, be of perennial nature, and have a high 

root/ shoot ratio (Khater et al., 2003). Three groups of seed species are used for 

hydroseeding: Commercial species, native seed species collected near the intervention 

area, and native seeds obtained from cultivated wild species (Martin et al., 2002). 

Commercial species are those plant seed species produced in vast amounts following 

international norms. Although the use of commercial grasses and legume seeds is 

probably the most prevalent hydroseeding roadside re-vegetation method (Steinfeld et 

al., 2007), they frequently give poor results from the very beginning (Andrés & Jorba, 

2000; Martínez-Ruiz. et al., 2007). Extremely competitive forage grasses and legumes 

(ex: Lolium multiflorum, Vicia villosa, Festuca arundinacea, Medicago sativa, Onobrychis 

sativa, Agropyron cristatum, Melilotus officinalis) (Bochet et al., 2010b) are in most 

locations non-native seeds used for agriculture practices or lawn establishment. 

Choosing seeds that are not adapted to harsh climatic constraints, like those prevailing 

in semiarid Mediterranean environments, will lead to failure (Martin et al., 2002), 

especially with long periods of drought and erosive rains (Bochet & García-Fayos, 2004). 

A study in west-central Spain evaluated the influence of using commercial seed mixtures 

in hydroseeding to restore uranium mine wastes under a semiarid Mediterranean 

climate. Results confirmed the non-suitability of commercial species mixture, suggesting 

instead the use of local seeds (Martínez-Ruiz et al., 2007). Commercial seed mixtures also 

give poor results regarding species richness and overall biomass. Since the dominance of 

certain used species eventually takes over other spreading or native spontaneous ones 

(Tormo et al., 2008). Therefore, careful assessment of the competitive interactions 

among commercial and native species is imperative when both seed types are intended 

for use in a mixture, else it can dramatically affect the outcome of hydroseeding 

(Matesanz & Valladares, 2007). Using inappropriate species might potentially hinder the 

establishment of autochthonous species, lead to low diversity in communities, and can 

even become an integral part of the seed bank causing long-term problems (González-
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Alday et al., 2009). The importance of using native species is becoming widely 

acknowledged, and restoration projects are gradually considering native species for 

hydroseeding mixtures (Matesanz & Valladares., 2007). Unfortunately, several problems 

hinder the use of native seeds for hydroseeding in a Mediterranean environment. 

Concerns such as the scarce availability of information about proper seed collection 

methods, handling, storage, germination requirements, and seedling culture (Clewell & 

Rieger, 1997) lead to the narrowing down of choices of seeds used mainly to three main 

criteria: ecological needs, agro-ecological constraints, and economic feasibility (Khater & 

Martin, 2007). Odds could be enhanced through species selection, seed pre-treatment, 

hydroseeding scheduling, and/or manipulation of seeding density and relative species 

proportion (Oliveira et al., 2012).  

Interspecific seed competition is yet another human-influenced biotic factor affecting 

hydroseeding practices. The kind and percentage of different seeds in a mixture, 

proportions of native seed densities, varied morphological features, or growth rates are 

all factors that could affect the end result. Hence, co-seeded species that display more 

competitive growth traits should be added at a lower proportion (Oliveira et al., 2013). 

Native species cannot simply be included in re-vegetation ‘recipes’, since success 

depends on the density and seedling characteristics of the other co-seeded species. 

Therefore, their early performances and morphology must be taken into account in the 

choice of seed mixtures used in restoration actions (Oliveira et al., 2014). Another factor 

highlighted in literature affecting hydroseeding is the “nurse plant syndrome”, defined 

as the positive influence of adult plants on seedlings (Niering et al., 1963). The harsher 

the ecological circumstances, the stronger the facilitative effect of nurse plants (Padilla 

& Pugnaire, 2006). Fast-growing annual species acting as nurse plants may be included 

with seed mixes of perennial grasses and forbs, providing protection for slower-

establishing perennial species by creating shade for a few months after seeds are applied 

(Skousen & Zipper, 2010). In the semiarid Mediterranean environment, nurse plants will 
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ultimately decline fast since they can hardly survive such harsh climatic conditions 

(Zelnik et al., 2010), their residues decomposed by soil microorganisms and nutrients are 

released back to be used by perennial plant species (Skousen & Zipper, 2010). By rapidly 

re-establishing vegetation cover, nurse plants can also control erosion, consequently 

suppressing annual weeds (Mitchley et al., 1996). Zelnik et al. (2010) observed that seed 

mixtures with nurse species accelerate succession on slopes during the initial years but 

delay the establishment of late-successional species from the adjacent target vegetation. 

Hence, recommended that the proportion of nurse species in seed mixtures not exceed 

20%.  

Mycorrhizal inoculation is another human-influenced biotic factor affecting 

hydroseeding. Its use, among other inoculants, in restoration actions was recommended 

for the positive effect on plant establishment, nutrient cycling, ecosystem sustainability 

(Miller & Jastrow, 1992), improvement of root enhancement (Miller, & Jastrow, 2000), 

and root branching density- a desirable quality in degraded soils (Stokes et al., 2009). 

They could also help to stabilize the soil surface and create the assortment needed to 

increase plant production (Maestre et al., 2011). One of the few studies using inoculum 

for hydroseeding in a semiarid Mediterranean climate had the objective of selecting an 

adequate fungus combination (Arbuscular Mycorrhizal Fungi - AMF inoculum), along 

with legumes and grasses native to the Mediterranean region. The experiment evaluated 

the implications on severely disturbed areas as well under controlled conditions 

(greenhouse trial). Results revealed that the establishment of a symbiotic relationship 

improves aboveground plant growth and increases the legumes/grasses ratio (both in 

the greenhouse and the field) (Estaun et al., 2007). Another study by Brown et al. (1983) 

measured rhizobium viability in hydroseeding slurries by testing variations in the pH due 

to fertilizer addition. They concluded that phosphorus fertilizer as triple-superphosphate 

significantly reduced the pH leading to the loss of rhizobium viability. The study 

concluded that phosphorus addition should be in the form of diammonium phosphate 
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rather than triple superphosphate, ensuring Rhizobial survival, and inoculation of legume 

seeds (Brown et al., 1983).  

Natural-influenced biotic factors affecting hydroseeding  

Several perils could impact the fate of the hydroseeded seeds in their intended location, 

such as weed competition and seed predation. Weed competition was highlighted 

through a study in a limestone quarry in northeastern Italy evaluating the effect of 

technical reclamation on the plant community (Boscutti et al., 2017). It concluded that 

different practices favoring native perennial species (e.g., appropriate seed mixtures, 

mowing, tree, and shrub planting) could limit weed-control efforts and limit invasive 

species spread (Boscutti et al., 2017). Another study measuring the basal area of 

herbaceous Mediterranean species revealed that plants with a large basal area were 

least suppressed by competition, concluding that a plant’s basal area could be used to 

predict the competitive ability of species performance (Navas & Moreau-Richard, 2005). 

Seed predation is another natural-influenced biotic factor affecting hydroseeding, 

through grazing by animals such as birds, mammals, ants (Chambers & MacMahon, 

1994), or even pathogens (Hulme, 1998). A study that analyzed different types of seeds 

actively collected as food items by ants showed that more than 50% of the experimental 

seeds that were glued to the ground with their own mucilage survived, compared to only 

0–20 % of the control seed survival after the same exposure time (Engelbrecht & García-

Fayos, 2012).  

Whereas most studies in the literature addressed technical issues as barriers to hindering 

hydroseeding processes, very few articles (Fenianos et al., 2017; 2018) highlighted social 

factors as issues affecting it. To successfully implement adapted environmental 

solutions, especially in ecological restoration projects, Fenianos et al. (2017, 2018) 

investigated possible contributions of cognitive resistance and the need to work on 

increasing acceptability for adopting new or non-traditional techniques. Using cognitive 
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flexibility as a mixed approach with awareness-raising sessions positively increased the 

perception of test groups towards less traditional and more ecological rehabilitation 

concepts on quarries. 

Discussion 

Initially developed for ski slopes and side road embankments in northern European 

countries, hydroseeding as a restoration tool has shown considerable limitations in 

Mediterranean ecosystems. This review from the semiarid Mediterranean context 

concludes that the practice of hydroseeding is faced with limited success. A review of the 

main biotic and abiotic factors as either natural or human-induced that might be 

affecting it revealed several limiting factors. Some of those factors are site topography 

and its properties (slope angle, aspect, and microclimate availability), edaphic factors 

and water availability, cultural practices, the types of seeds used and the interaction 

among them, and the different perils facing them. Better results can be achieved by 

incorporating various techniques, such as using nurse plants, ameliorating the soil and 

its microclimates, supplemental irrigation, the proper choice of seeds, regulating 

spraying medium, and seed inoculation. Environmental socio-cognitive psychology 

approaches might help to better convey and increase acceptability towards modified 

applications of Hydroseeding.  

As a consequence, the limits of using hydroseeding as a restoration technique in a 

semiarid Mediterranean environment call for additional research efforts to sufficiently 

comprehend its pros and cons.  
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Supplementary material 
 

Table 1. 1. Primary and secondary keywords used to filter and select the papers used in the methodology. 

Primary Search 

Keywords 

Secondary 

Search 

Keywords 

Author(s) Title 
Year of 

Publication 

         Hydroseeding 

Semiarid 

Mediterranean 

environment 

History/procedures 

Albaladejo Montoro, J. Alvarez Rogel, 

J. Querejeta, J 

Three hydro‐seeding revegetation techniques for soil erosion 

control on anthropic steep slopes. 
2000 

Andres, P. Zapater, V. Pamplona, M. 
Stabilization of motorway slopes with herbaceous cover, 

Catalonia, Spain. Restoration Ecology 4:51- 60 
1996 

Hölzel, N. Buisson, E. Dutoit, T. Species introduction–a major topic in vegetation restoration. 2012 

Khater, C. 
L’écologie appliquée : une responsabilité scientifique au 

carrefour de l’interdisciplinarité. 
2015 

Matesanz, S. Valladares F. Tena D. 

Costa‐Tenorio M. Bote D. 

Early dynamics of plant communities on revegetated motorway 

slopes from Southern Spain: is hydroseeding always needed? 
2006 

Mola, I. Jiménez, MD. López‐Jiménez, 

N. Casado, MA. Balaguer, L. 

Roadside reclamation outside the revegetation season: 

management options under schedule pressure. 
2011 

Nunes, A. Oliveira, G. Mexia, T. 

Valdecantos, A. Zucca, C. Costantini, 

EA. Abraham, EM. Kyriazopoulos, AP. 

Salah, A. Prasse, R. Correia, O. 

Ecological restoration across the Mediterranean Basin as viewed 

by practitioners. 
2016 

Tormo, J. García-Fayos, P. Bochet, E. 

Relative importance of plant traits and ecological filters in road 

embankment revegetation under semiarid Mediterranean 

conditions. 

2008 
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Zdruli, P. 
Land resources of the Mediterranean: status, pressures, trends, 

and impacts on future regional development. 
2014 

Aftercare measures 

Andres, P. Zapater, V. Pamplona, M. 
Stabilization of motorway slopes with herbaceous cover, 

Catalonia, Spain. 
1996 

Blondel, J., Aronson, J., Bodiou, J.Y. 

and Boeuf, G. 
The Mediterranean region: biological diversity in space and time. 2010 

Nurse plants 

Padilla, FM. and Pugnaire, FI. 
The role of nurse plants in the restoration of degraded 

environments. 
2006 

Skousen, JG. Zipper, CE. 
Reclamation Guidelines for Surface-Mined Land: Revegetation 

Species and Practices. 
2010 

Zelnik, I. Šilc, U. Čarni, A.  Košir, P. Revegetation of motorway slopes using different seed mixtures. 2010 

Water 

Bochet, E. and García-Fayos, P. 
Factors controlling vegetation establishment and water erosion 

on motorway slopes in Valencia. Spain. 
2004 

Bochet, E. García-Fayos, P. Alborch, 

B. Tormo, J. 

Soil water availability effects on seed germination account for 

species segregation in semiarid roadslopes. 
2007a 

Bochet, E. García‐Fayos, P. Poesen, J. 
Topographic thresholds for plant colonization on semi‐arid 

eroded slopes. 
2009 

Bochet, E. García-Fayos, P. Tormo, J. 

How can we control erosion of roadslopes in semiarid 

mediterranean areas? Soil improvement and native plant 

establishment. 

2010a 

Cerdà, A. Soil water erosion on road embankments in Eastern Spain. 2007 

Cerdà, A. and García-Fayos, P. 
The influence of slope angle on sediment, water and seed losses 

on badland landscapes. 
1997 



74 
 

García‐Fayos, P. García‐Ventoso, B. 

Cerdà, A. 

Limitations to plant establishment on eroded slopes in 

Southeastern Spain. 
2000 

García-Palacios, P. Soliveres, S. 

Maestre, FT. Escudero, A. Castillo-

Monroy, AP. Valladares, F. 

Dominant plant species modulate responses to hydroseeding, 
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Table 1. 2. Main factors extracted from the literature review that might be affecting the success or failure 

of the hydroseeding procedure in a semiarid Mediterranean environment. 

ABIOTIC FACTORS BIOTIC FACTORS OTHER FACTORS 

Natural Environmental Human-Induced Natural Environmental Human-Induced 

Site Topography and 

Properties:      

- Steepness & angle 
- Aspect 

 

Direct Hydroseeding 

Practices:           

- Aqueous 
Hydroseeding type 
and properties   

- Intervention 
season 

Perils Affecting Seeds:   

- Weed competition        
- Seed predation 

Seeds Used:         

- Type        
- Availability &   

germination 
difficulties    

Starting Conditions 

- Initial Status 
of 
Intervention 
Area 

 

Soil Physical 

Characteristics: 

- Soil present/ 
absent 

- Microenvironment 
effect 

Varied Cultural Practices: 

- Supplemental 
irrigation 

- Soil addition & 
amending 

- Mulching 

 

Seed Interaction:         

- Interspecific 
seed 
competition         

- Nurse plants      
- Mycorrhizal 

inoculation      

Cost 

Social Factor 

Water Effect: 

- Water availability 
- Erosion 
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Table 1. 3. Factors affecting hydroseeding result in a semiarid Mediterranean environment (NA - Natural Abiotic 
factors affecting hydroseeding; HA - Human-induced Abiotic factors affecting hydroseeding; HB - Human-induced 
Biotic factors affecting hydroseeding) 

Variables  Successes Failures 

Slope Steepness 

Slight to mild slope steepness - less than 45 

degrees (NA) 

Terracing slopes above 45 degrees (HA) 

Unmanaged steep slopes above 45 

degrees (NA) 

Aspect / Solar 

radiation  
north facing - Low levels of solar radiation (NA) 

south facing - High levels of solar 

radiation (NA) 

Soil 

Presence of topsoil (conservation of 

microorganisms, seeds, and nutrients) (NA/HA) 

Presence of microenvironment: increased soil 

surface roughness (small rocks, aggregates) 

(NA/HA) 

Addition of topsoil or amendments (HA) 

Mulching (synthetic or organic) (HA) 

Mycorrhizal soil inoculation (HB) 

Absence of topsoil (loss of 

microorganisms, seeds, and nutrients) 

(NA/HA) 

Water  

Water abundancy conditions: regular rainfall (NA) 

or supplemental irrigation (HA) at 

germination/seedling phase 

Water-stressed conditions: absence / 

irregular rainfall (NA) or lack of 

irrigation (HA) at germination/seedling 

stage  

Weeds 
Reduction of weed competition through 

appropriate selection of native seeds mixture (HB) 
  

Seed choice 

Native (NB), competitive ability (NB), colonizing 

ability (NB), vegetative regeneration ability (NB), 

market availability (HB), easy to germinate (NB) 

Commercial seeds (HB), non-native 

seeds (HB/NB), seed predation (NB), 

inappropriate species (HB), lack of 

native seeds management: collection, 

handling, storage, etc. (HB)  

"Nurse plant" 

seeds  

Recommended for improving hydroseeding 

successes in harsh ecological circumstances: 

control erosion, suppress annual weeds, 

ultimately residues turned into nutrients (HA) 

High percentages in seeds mixtures 

(HA) 

Aqueous solution 

Adhesive, fluid, free of hazardous material, 

enabling effective seed germination, limiting 

erosion (HA) 

Might be species-specific (HA) 

Cost-effectiveness    
High cost per square meter compared 

to other methods (HA) 

Social factors  Increased community awareness and acceptance 
Cognitive residence to non-traditional 

techniques 
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TRANSITION TO SECOND PAPER 

 
In the preceding section, hydroseeding, an ecological restoration tool, was assessed as a practice 

in a semiarid Mediterranean environment, reasoning it an unsuccessful technique in several 

cases. Numerous variables, either of biotic or abiotic nature, hindered its success. Those were 

further dissected into natural-environmental or human-influenced factors. With several 

restrictions related to slope aspect and steepness, water problems (high runoff and availability), 

mixing solutions used, and high implementation costs. Such and other similar surfacing dilemmas 

materialized a legitimate question: Can ecological restoration in a semiarid Mediterranean 

environment employ some other appropriate nature-based solutions with fewer problems, have 

less environmental impact, and is ultimately cheaper? Questions reflecting a vision defined by 

IUCN as the “Actions to protect, sustainably manage and restore natural or modified ecosystems 

that address societal challenges effectively and adaptively, simultaneously providing human well-

being and biodiversity benefits” (www.IUCN.org). Such methods should be cheaper to apply, 

have fewer complications, and requires fewer technical skills. One possible nature-based solution 

is the use of ‘Nurse Plants’ as a tool in ecological restoration. The term ‘Nurse Plant’, coined by 

Niering et al. (1963), describes plants having positive ‘nursing’ effects on their own or other 

species under their canopy or in their vicinity (Turner et al., 1966; Steenberg & Lowe, 1969). The 

impact could be of physical nature (protection from various harsh physical environmental factors 

like wind, frost, and heat) or biological in nature (protection against predators and herbivores) or 

even supplying nutrients or moisture.   

The next chapter will focus on the potential use of the legume Trifolium subterraneum - 

Fabaceae (Subterranean clover) as a potential nurse plant in supporting newly germinated 

saplings, initially collected as seeds from the vicinity of an old quarry intended for restoration. 
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Figure M. 2. Location of chapter two in the general organization of the thesis. 
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CHAPTER TWO 

 

Is Trifolium subterraneum L. a potential 

nurse plant for restoring soil and degraded 

Mediterranean grasslands on former 

quarries in Lebanon? 

Results from a 2-year semi-controlled interspecific 

interaction experiment. 
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Abstract 

Aim 

The radical destruction of Mediterranean herbaceous communities from quarry exploitations 

leads to changes in species composition, richness, and structure of pre-existing vegetation. In 

Lebanon, up to 1300 documented quarries destroyed more than 5000 ha of natural and 

agricultural ecosystems. Such severe degradation necessitates the urgent need for sustainable 

habitat restoration, preferably through the employment of nature-based solutions. By 

facilitating the growth and development of other plant species, a nurse plant is a potential 

natural tool to speed up such regenerative processes. Nevertheless, differences in soil 

properties and co-existing species may alter plant interactions from facilitation to competition. 

This study evaluates the interactions of Trifolium subterraneum L. (Fabaceae) as a potential 

nurse species with four co-existing herbaceous plants proposed as target species for restoring a 

degraded quarry. The experiment utilizes an overgrazed Mediterranean dry grassland 

surrounding the quarry, identified as the reference ecosystem, for seed and soil supplies, along 

with utilizing soil collected from the quarry itself, identified as the degraded ecosystem. We 

evaluated the contribution of the nurse plant towards restoring soil fertility and above-ground 

plant biomass. 

Methods 

In a 2-year mesocosm experiment, the interactions between T. subterraneum and four co-

existing species (Aegilops triuncialis, Echinops viscosus, Eryngium creticum, and Hyoscyamus 

aureus), present in the Mediterranean grasslands of Lebanon, were evaluated. During the first 

year, T. subterraneum (as a potential nurse plant) was grown along with four individuals of each 

target species in pots filled with soil collected from an abandoned quarry or a nearby dry 

grassland. The experiment was repeated the second year after mixing the dried T. 

subterraneum biomass into the soil, mimicking the natural incorporation of organic material by 

trampling ungulates.  

Soil analyses were performed from both the reference and degraded soil at the experiment set-

up in 2017, after one year of T. subterraneum growth before its incorporation in the soil, i.e., 

without improvement in 2018, and finally after incorporating T. subterraneum dry biomass in the 
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soil, i.e., with soil improvement and the second year of T. subterraneum growth in 2019. Indices 

of Relative Interaction Intensity (RII) were calculated before and after soil improvement on 

above-ground plant biomass enabling the determination of the plant’s competitive ability among 

the different soil types for the two steps of the experiment.   

Important Findings  

The soils collected from the reference and degraded ecosystems in 2017 were significantly 

different in physical and chemical properties. These differences persisted during the second year, 

despite months of cultivating T. subterraneum and target species in pots. After incorporating T. 

subterraneum dry biomass in the soil and growing T. subterraneum in the second year, these 

differences were partially compensated, with a significant increase in dry biomass, C, N, P2O5, 

CEC, and C: N ratio. Still, the improvement of the degraded soil was not enough to reach the 

levels of the reference soil. Before soil improvement, no soil effect was found in the RII figures 

with competition dominating the interactions between T. subterraneum and target species. 

Facilitation was only apparent in the biomass of T. subterraneum when utilized both as a nurse 

and target plant in degraded and reference soil. After soil improvement in both soils, a significant 

outcome was evident in both soil types and among species, with T. subterraneum still 

maintaining a facilitation effect on T. subterraneum target biomass only. Likewise, competition 

remained the dominating interaction with all other target plants, especially in degraded soil.   

Conclusion 

When cultivated alone as a pure stand (without any other species) and later incorporated as dry 

biomass into the soil, T. subterraneum exhibited facilitative effects on biomass, hence could be 

recommended as a nature-based solution for increasing soil fertility of degraded quarries. 

Nevertheless, since T. subterraneum showed more competitive interactions than facilitation with 

co-existing species, we recommend sowing it as a pure mixture the first year, incorporating its 

dry biomass into the soil to increase fertility, and later seeding target species without reseeding T. 

subterraneum.  

Keywords: Trifolium subterraneum, nurse plant, facilitation, competition, soil properties, target 

plants. 
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Introduction 

Assembly rules is an important research topic in plant community ecology that benefits not only 

in understanding and predicting community trajectories after a disturbance but also aids in 

determining principal filters that could be manipulated to increase ecosystem restoration success 

(Palmer et al., 1997; Temperton et al., 2004; Cortina et al., 2006). Interactions between plant 

species, ranging from competition to neutral uninvolved interactions to facilitation, are 

significant driving forces in plant community restoration (Brooker et al., 2008). In this context, 

some plant species are qualified as “nurse plants” and defined as plants that facilitate the growth 

and development of other plants through positive interaction (Bruno et al., 2003; Padilla & 

Pugnaire, 2006). Proper selection of a nurse plant can determine the success of a sustainable 

ecological restoration project since such plants can play an essential role in recovering structures 

and functions in ecosystems, acting as a driving succession force in some degraded environments 

(Ren & Liu, 2008).  

In severely degraded environments, such as those generated after quarry exploitation, some 

native plant species could be suitable nurse plants offering microhabitats for target plant 

recruitment, establishment, and growth (Padilla & Pugnaire, 2006). However, species 

interactions and the resulting balance between competitive or facilitative interactions depend 

on disturbances or abiotic constraints (Callaway & Walker, 1997; Olofsson et al., 1999; Laughlin 

& Abella, 2007; Rajaniemi & Allison, 2009), that develop according to the species involved and 

the presence of various abiotic filters, such as soil properties or other resources (Callaway et 

al., 2002; Corcket et al., 2003; Liancourt et al., 2005; Liancourt & Tielbörger, 2009). To assess such 

processes, mesocosm experiments involving interspecific interactions are appropriate methods, 

as suggested by Fraser and Keddy (1997) and Hager (2004). However, few works have proposed 

splitting plant facilitative and/or competitive effects and responses simultaneously. This initial 

step might enable the identification of potential nurse plants in semi-controlled ex-situ 

interspecific interaction experiments. Ultimately, utilizing this concept to assist later in restoring 

soil fertility of degraded areas in-situ. 

Although Mediterranean ecosystems represent less than 5% of world terrestrial ecosystems, they 

exhibit high local biodiversity (Vilà & Sardans, 1999). This study involves the Mediterranean dry 
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grasslands of Lebanon, which are part of about 4.5 million s.q.m. of land in the Near East region, 

classified as permanent pastures (Harris, 2000) within the Pre-Steppic Mediterranean Ensemble 

(MoA/UNEP, 1996). Most of these grasslands are distributed on poor soils in semiarid and arid 

areas with non-uniformity in the amount and distribution of rainfall and centuries of grazing 

practices (Darwish & Faour, 2008). Such factors would render ecosystems with low levels of 

resilience, especially when faced with exogenous perturbations, such as quarry exploitation. In 

Lebanon, damage from quarry exploitation has grown exponentially due to years of unregulated 

and chaotic quarrying activities. Between 1996 and 2005, quarries increased by 55.6% (from 711 

to 1278 quarries), subsequently increasing quarried land area by 54.4% (from 2875 to 5283 ha). 

Almost 75 % of these quarries are present in sparse grasslands or bare rocky lands, significantly 

affecting their sustainable management (Darwish et al., 2011). 

This 2-year semi-controlled interspecific interaction experiment aims to comprehend the 

interactions between a potential native nurse plant (Trifolium subterraneum) and itself, as well 

as four naturally co-existing species (Aegilops triuncialis L., Echinops viscosus L., Eryngium 

creticum Lam., Hyoscyamus aureus L.) all found in the Mediterranean grasslands of Lebanon. It 

also aims at determining any possible influence of soil physico-chemical characteristics on these 

interactions. Thus, the effect of two soil types was assessed, the first was taken from an exploited 

quarry, considered a degraded soil type, and the other was taken from a nearby reference 

ecosystem and considered a non-degraded soil type. Finally, both soil types were considered for 

possible improvement by incorporating the dry biomass of T. subterraneum grown in pots and 

repeating the experiment.  

Materials and Methods  

Study site  

The interaction between a potential nurse plant and four target species was evaluated regarding 

soil properties, in an ex-situ mesocosm experiment performed from 2017 to 2019. Soils were 

taken from the quarry (degraded soil) and the reference ecosystem (non-degraded soil), an 

overgrazed Mediterranean dry grassland surrounding the quarry.  
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The experiment took place in an ex-situ setting due to the following reasons: (1) The possibility 

to have precise and better control when assessing interspecific-relationship amongst the same 

group of plants comprising four target plants (of the same species) against one specific potential 

nurse plant with controlled environment factors (pot volume, soil moisture, soil fertility, and soil 

granulometry). (2) The facility of applying the intended procedure considering that the work has 

been conducted on five different plant species. (3) The presence of several overpowering 

external variables at in-situ location associated with uncontrolled grazing, unrestricted 

pedestrian traffic, complexity and roughness of the working site, and the difficulty in getting 

clearance to access the location classified as a security-zone area. 

Potential nurse plant  

Trifolium subterraneum L.  

 

Figure 2. 1. Trifolium subterraneum tested as a potential nurse plant. (Shaiban, IMBE). 

 

Trifolium subterraneum as a potential nurse plant in restoration 

Nurse plants are potential restoration tools in disturbed lands (Zhao et al., 2007; Gómez-Aparicio, 

2009) and extreme environments, with native species being one of the most appropriate choices 

as nurse plants intended to improve environmental circumstances for sapling establishment 
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(Padilla & Pugnaire, 2006), enhancing soil moisture, organic material, and trap seeds offering 

physical shelters (Bertness & Callaway, 1994). In arid (Arriaga et al., 1993), and semiarid regions, 

almost a third of nurse plants are leguminous plants capable of fixing nitrogen through a 

symbiotic relationship with root-nodulating bacteria (Flores & Jurado, 2003), leading to an 

enhancement in soil nitrogen availability (Barnes & Archer, 1996), hence, an improvement in soil 

nutrient content (den Hollander & Bastiaans, 2007). This characteristic is very important in 

Mediterranean soils, where nitrogen is a chronically scarce nutrient (Alpert & Mooney, 1996), 

leguminous species can be good candidates as potential nurse species for Mediterranean soil and 

herbaceous plant community restoration. 

T. subterraneum has been considered a theoretical foundation species capable of restoring 

nitrogen-depleted fields, with a crucial role in community structuring, regulating plant diversities, 

or modifying ecosystem development (Bruno et al., 2003; Ellison et al., 2005). T. 

subterraneum (Figure 2. 1.) is native to the Mediterranean Basin, west Asia, and the Atlantic coast 

of western Europe (Zohary & Heller, 1984; San Miguel, 1994), growing on dry soils of open plains 

and mountains, ranging from sea level up to an altitude of 1800 m (Ecocrop, 2017), also native 

to Lebanon (one of 49 Trifolium sp. found naturally in Lebanon) (Tohmé & Tohmé, 2014).  The 

species, part of the Fabaceae family (Zohary & Heller, 1984), is a multi-stemmed therophytic 

species (Raunkiaer, 1934), flowering from March-April, and setting fruits in April-May (Vasileva et 

al., 2016). Several calyces of the upper-most sterile flowers form a drilling apparatus allowing 

formed heads to penetrate the soil (geocarpy) (Falistocco et al., 1987), transforming into a buried 

pod. T. subterraneum has high ecological flexibility, with its habitats ranging from sparse oak 

forests to pastures. Because of its soil covering properties and nitrification attributes (Vasileva et 

al., 2016), It is considered a versatile plant used for weed suppression (Due to size & low spread), 

green manure (producing 112 to 224 kg N/ha), mulching substance (dry mulch in late spring & 

green mulch in fall), grazing (being very palatable), nitrogen fixing (Clark, 2007), and erosion 

control (Howieson et al., 2000). Other desirable qualities include an annual life cycle coinciding 

with abundant rainfall (from autumn to spring), tolerance of regular and close grazing (due to 

prostrate growth habit), and natural regeneration and seed burying (reducing the need for re-

seeding), consequently, protecting its seeds from being eaten by stock (Nichols et al., 1994). As 

a legume species, T. subterraneum is a nitrogen-fixing plant (Ferreira & Castro, 2005) co-existing 
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with vesicular-arbuscular mycorrhizas (VAM) or with Rhizobium leguminosarum biovar trifolii 

bacteria species, allowing it to fix about 50 to 188 kg/ha of nitrogen per year (Sanford et al., 1994; 

Bolger et al., 1995). Coiffait‐Gombault et al. (2012), experimenting in the Crau semiarid steppe in 

southern France, revealed an improvement in soil nitrogen content two years after sowing T. 

subterraneum, leading to an increase in the productivity of other foundation species such 

as Brachypodium retusum and Thymus vulgaris. As a feed source, T. subterraneum is considered 

worldwide as the greatest contributor amongst all annual clovers to livestock feed production 

and soil improvement (McGuire, 1985; Kirilov & Vasileva, 2016). As a nurse plant, T. 

subterraneum has been selected previously for restoring soil fertility and regeneration of some 

Mediterranean dry grassland species. Results revealed improvement in the survival and growth 

of target species in Mediterranean semiarid ecosystems due to increased soil nitrogen content 

(Padilla & Pugnaire, 2006). In southern France, T. subterraneum sown directly into a semiarid 

natural plant community resulted in a forage quality improvement, a significant increase in plant 

productivity, and a gain in sheep weight gain (Molénat et al., 1998). T. subterraneum is also 

considered a classic example of how a species from one world region has proved to be of 

immense value when introduced to other regions (Frame & Laidlaw, 2005). In Australia alone 

(where it was introduced), T. subterraneum is considered the most widely seeded annual pasture 

legume species, with over eight million hectares sown in Western Australia and an estimated 29 

million hectares seeded in Southern Australia (Hill & Donald, 1998). 

  

Target species for restoration  

The experiment aims to provide evidence of positive interactions, under contrasted soil 

characteristics, between the legume species T. subterraneum and itself and also on four target 

species: Aegilops triuncialis L., Echinops viscosus L., Eryngium creticum Lam., and Hyoscyamus 

aureus L. (Figure 2. 2.), chosen for the experiment because of: (1) Abundance in the reference 

ecosystem (and in Lebanon's dry Mediterranean grasslands). (2) Suitability as target plants for 

restoring Mediterranean grasslands in Lebanon following any degradation (such as quarry 

exploitation). (3) Their seeds exhibit high germination rates under a controlled environment.  
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Figure 2. 2. The various target species used in the study, all are abundant in the Mediterranean 
grasslands of Lebanon (Shaiban, IMBE- Google images- Google images- Shaiban, IMBE). 

 

 

 

a. Aegilops triuncialis b. Echinops viscosus 

c. Eryngium creticum d. Hyoscyamus aureus 
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Aegilops triuncialis L. 

The genus Aegilops L. belongs to the tribe Triticeae, within the Pooideae subfamily, in the 

Poaceae family. Aegilops triuncialis (Figure 2. 2a) (Common English name: barb goatgrass- 

Common Arabic name: دوسر طويل- dawsar taweel), a cleistogamous with a selfing rate estimated 

at 97% (Pajkovic et al., 2014), is the most widely distributed species within the genus (Maxted et 

al., 2008), spreading throughout southern Europe, the Mediterranean Basin, and Asia. The 

species is generally abundant in dry and partially disturbed habitats, dry-rocky slopes, edges of 

and within cultivated fields, matorrals, grasslands, shrubs, woodlands, and open forests. It is also 

found in steppes up to desert margins, river terraces, and even at the seaside, predominantly 

growing on limestone and basalt. The species grows on various soil textures, but mainly on clay 

and sandy loam. It grows under a wide range of annual rainfall, ranging from 125 mm to 1,400 

mm, from sea level to 2,700 m (van Slageren, 1994).  

Echinops viscosus L. 

The genus Echinops L. (Asteraceae, Cardueae) contains around 120 species distributed all over 

the world, particularly in the Northern Hemisphere (Garnatje et al., 2004a), with most species 

number occurring in the Caucasus and the Middle East (Jäger, 1987). It is predominantly a 

perennial genus, with very few annual species (Garnatje et al., 2004b). The 

species Echinops viscosus - synonyms including E. spinosissimus subsp. macrolepis (Boiss.) 

Greuter, E. viscosus subsp. macrolepis (Boiss.) Feinbrun, E. viscosus DC. var macrolepis Boiss., E. 

syriacus Boiss - Common English name: Viscous globe thistle. Common Arabic name: شوك الجمل -

Shawk el–Jamal). It is characterized by uni-flowered capitula aggregated into second-order 

spherical or oval heads, this syncephalia being a unique feature within the tribe (Petit, 1997). E. 

viscosus is a spiny perennial forb, 80-100 cm tall flowering May-August (Figure 2. 2b). In Lebanon, 

it is present in numerous locations, such as dry and rocky slopes, scrublands, roadsides, fields, 

grasslands, and abandoned lands in sunny stretches (Arnold et al., 2015).   

Eryngium creticum Lam. 

The genus Eryngium, which comprises about 250 species in the family Apiaceae, is considered 

the largest and arguably the most taxonomically complex in its family and is distributed in the 

temperate regions of every continent (Calvino et al., 2008). The genus is distinguished from other 
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Apiaceae members by a capitate inflorescence and the presence of a single bract per flower 

(Calvino et al., 2008). The species Eryngium creticum Lam. (Common English name: Field Eryngo 

‒ Common Arabic name: قرص عنة- Kors Anne) is a spiny perennial, sometimes a biennial or an 

annual, glaucous and glabrous herb, reaching up to 50 cm in height with an erect and branched 

stem. The stem leaves are sessile and palmately divided into 3–8 prickly lobes, flowering from 

May to August (Kikowska et al., 2016) (Figure 2. 2c). Its habitat is dry or damp sites, growing in 

several soil types, on hillsides, cultivated or abandoned lands, and cliff crevices (Arnold et al., 

2015). Found in the eastern Mediterranean region at low altitudes in sunny locations, frequently 

in Lebanon, Palestine, Jordan, and Syria (Kikowska et al., 2016).  

Hyoscyamus aureus L. 

The Hyoscyamus genus is medicinally important within the nightshade family, Solanaceae. A 

small herbaceous genus of 20 species occupying Europe, northern to north-eastern Africa, and 

the phytogeographical Sino-Japanese region, (Nasir, 1985). Hyoscyamus aureus (Common 

English name: Golden Henbane- Common Arabic name:    بنج زهب- Banj zehabee) is a glandular-

villous perennial species with a golden yellow corolla and purple throat, found in several eastern 

Mediterranean countries such as Turkey, Cyprus, Iraq, Syria, Lebanon, Israel, Jordan, and Egypt 

(Brandes, 2002) (Figure 2. 2d). Along with pollens of other species, H. aureus pollen was also 

identified in the famed Shroud of Turin, and the plant still grows on the old citadel walls of 

Jerusalem (Frei, 1983). 

Experimental design 

Soil and seed collection 

Soil collection  

Soil samples needed for the experiment were extracted from a quarry (degraded site) located in 

the vicinity of the small village of Maqneh (34.0787° N, 36.2095° E) in the eastern Beqaa plain- 

Lebanon (Figure 2. 3.). This quarry is part of the Cenomanian-Turonian Rock Formation (C4-5), 

composed of dolomitic limestone with a few dolomite inclusions (Figure 2. 4.). The reference soil 

samples were extracted from the nearby Mediterranean dry grassland (reference ecosystem) 

(Figure 2. 5.). A total soil volume of 14m3 (from both reference ecosystem and degraded quarry) 
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was collected from the top 10 cm layer and transported by truck (Figure 2. 6.) to the intended 

experimental site located in the small village of Zahrieh (33.884790° N, 35.706560° E), in Mount 

Lebanon- Lebanon. 

 

Figure 2. 3. General location of the quarry site where the soil was extracted- Maqneh, Beqaa plain, Lebanon. 
(Modified from Ecomed, 2016). 
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Figure 2. 4. Quarry, the degraded ecosystem. (Shaiban, IMBE) 

 

 

Figure 2. 5. Reference overgrazed old grassland ecosystem in formerly cultivated terraces located 
next to the quarry. (Shaiban, IMBE). 
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Figure 2. 6. Transporting collected soil from the quarry and nearby reference ecosystem to the 
experimental site. (Shaiban, IMBE). 

Seed collection  

The local flora in the reference ecosystem surrounding the quarry is very diverse and is of 

botanical importance due to the presence of rare and endemic species (Campanula euclasta, 

Stachys niveaa, Alcea damascena, and Astragalus roussaeanus) and steppe species (Serratula 

cerinthifolia, Convolvulus dorycnium ssp. oxysepalus, Capparis spinosa ssp. parviflora, Parietaria 

judaica, Alkanna orientalis, and Moluccella laevis), as well as frequent and abundant species (like 

those selected for the experiment). This richness in diversity combined with plant endemism 

ultimately renders restoration of the intended quarry in Maqneh of importance. The seeds of the 

four-target species (A. triuncialis, E. viscosus, Er. creticum, and H. aureus) were all hand-

harvested towards the end of the flowering season from the vicinity of the quarry in a radius of 

0.5 Km (September - 2017). All collected seeds were air-dried in the shade for one month, 

threshed, cleaned, and placed in tightly closed plastic boxes with ball-shaped fumigant 

insecticide, Naphthalene (C10H8) added to eliminate any possible existing larvae or adult 
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insects (Romano, 1966). The seeds of T. subterraneum were obtained from Fertiprado Company 

(France) since the needed quantity for the experiment was not sufficient. In parallel, seed 

samples (100 seeds of the five species) were tested for germination in Petri dishes at the Institute 

of Mediterranean Biology and Ecology (IMBE) laboratory in Avignon, France. All the seeds were 

placed in a growth chamber (temperature 15/20ºC, 08/16h - night/day) and watered regularly. 

Coleoptile emergence, used as a proxy of germination, was recorded every 2-3 days for eight 

weeks. The results obtained from the laboratory, with more than 60% germination rate, ensured 

reliable germination of all seeds needed for the intended research (Table 2. 1.).   

Mesocosm experimental site 

The research took place in a tunnel-greenhouse dedicated to this experiment (Figure 2. 7.) (a 

south-facing, closed structure sheathed with a 200-micron plastic sheet) reclined at an altitude 

of 700 m.a.s.l. in the small village of Zahrieh (33.8920° N, 35.6758° E)- Mount Lebanon- Lebanon.  

 

Figure 2. 7. The general setting of the site location of the experiment, along with the tunnel 
greenhouse. Zahrieh village, Mount-Lebanon, Lebanon. (Shaiban, IMBE). 

 

Design and procedure  

Although the experiment is a whole continuous study, it could be divided into three phases, 

spanning from 2017 to 2019.  
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These phases encompass: 

- A preparation phase (2017), where required seeds and soils were collected (for testing 

and analysis at set-up time and for the experimental set-up in the greenhouse). The soil 

result analysis performed at this phase will be referred to in the manuscript as "at set-up 

time". 

- An experiment to evaluate the effect of T. subterraneum on target species on both the 

degraded and the reference soils without soil improvement (2018). The measurements 

and analyses performed on these data will be referred to in the manuscript as "without 

improvement". 

- An experiment to evaluate the effect of T. subterraneum on target species on both the 

degraded and the reference soils after soil improvement. To achieve this T. subterraneum 

was grown independently for one year in pots of both degraded and reference soils. Once 

dead, its dry biomass was incorporated into both soil types before running a one-year 

experiment evaluating the effect of T. subterraneum on target species (2019). The 

measurements and analyses performed on these data will be referred to in the 

manuscript as "with improvement". 

Soil preparation and analyses 

The soil used in the experiment was immediately sieved through a 2-mm sieve mesh, mixed with 

perlite (an inert material used to ventilate, loosen, and increase soil drainage) at a ratio of 10:1, 

and filled in 22.5 cm diameter pots (5-liter pots). A 3 cm layer of pebbles (size 0.5-1 cm), was 

placed at the bottom of each pot before adding soil for drainage. A 2mm-thick geotextile fabric 

separated the bottom pebble layer from the soil, preventing soil loss and permitting appropriate 

water drainage. 

To test soil at set-up time, ten soil samples, each weighing 100g, were randomly selected from 

both sites (five from each the reference and degraded ecosystem), dried and sieved through a 2-

mm mesh sieve, and were tested for various physical (Table 2. 2.) and chemical properties (Table 

2. 3.) at Teyssier Laboratory (Bordeaux - France). Soil analyses were also run on degraded soils 

from the pots without soil improvement after one year of T. subterraneum grown with its targets, 

and on degraded soils from pots with soil improvement, after one year of T. subterraneum being 
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grown alone and incorporated into the soil and the second year of T. subterraneum grown with 

its targets. The performed soil analysis covered the following parameters: pH water ratio 1:5 

(Thomas, 1996), CaCO3 using a Bernard Calcimeter (Sparks et al., 1996), organic C (Allison, 1965), 

Total N by dry combustion (Bremner, 1996; Dumas, 1831), C: N ratio, Cation Exchange Capacity 

(CEC), exchangeable K+ (Metson et al., 1956; Ciesielski et al., 1997), plant-available P (Olsen et 

al., 1954), and the particle-size distribution in 5 fractions without prior decarbonization (clay- less 

than 0.002 mm, fine silt- between 0.002-0.02 mm, coarse silt- between 0.2-2 mm, fine sand- 

between 0.05-0.2 mm, and coarse sand- between 0.2-2 mm) (Robinson & Friedman, 2003). 

Performed experiments 

At the initiation of the experiment, all seeds were germinated in plastic trays to avoid any initial 

failures during the early seedling growth phase and to reduce weed competition in the pots from 

the soil seed bank of the original soil (Figure 2. 8.). The germination took place within a 

germination chamber at a 22/24 ºC, 08/16h - night/day, using a germination medium that 

consisted of a 2:1 ratio mixture (two parts soil from either reference or degraded ecosystem to 

one-part regular seed-germination medium). Once the seedlings developed beyond the 

cotyledon phase into the first set of true leaves, they were all transferred to the designated 

greenhouse. In the greenhouse, seedlings were placed under a 50% shade net for three days, 

allowing them to harden and acclimatize to fluctuating day and night temperatures, and to 

gradually adapt to direct sunlight under greenhouse conditions. Finally, they were all 

transplanted into intended pots.  
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Figure 2. 8. Seed germination in trays. (Shaiban, IMBE). 

In total, 220 pots were divided equally into 110 pots filled with soil from the reference ecosystem 

and 110 pots from the degraded ecosystem. All the pots (110 pots of both soil types), were 

further separated into 55 pots for the first-year experiment and 55 pots for the second-year 

experiment (Figure 2. 9.).  
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Pots, spaced at inter / intra-row distance of 20 cm, were placed on a concrete floor to eliminate 

any emerging voluntary weeds. A drip-irrigation system, with individual online drippers, was 

assigned to each pot (adjustable 0 to 40 lit/ hr. - Rain Bird Corporation, attached by a 2mm 

Figure 2. 9. Schematic representation of the procedure for the 3 years experiment. 
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spaghetti tube rising from a 16mm polyethylene irrigation pipe- Elysee Irrigation Ltd). 

Throughout the experiment, water purposed for irrigation was pumped up from an artesian well 

and stored in a 1000-liter plastic tank, allowing any undesirable particles to precipitate before 

irrigation. Initially, after soil filling but before planting, all pots were thoroughly watered for two 

weeks enabling any germinated voluntary weeds to be pinched out with minimal soil disturbance. 

Moreover, throughout the experiment, all weed seedlings that germinated were regularly 

uprooted. 

The experiment followed the competition protocol suggested by Gaudet and Keddy (1988, 1995), 

with four seedlings of the same species transplanted equidistantly in each pot, plus one T. 

subterraneum seedling planted in the middle, as the potential nurse plant (5 plants in total) 

(Illustration 2. 1b). In another group (Illustration 2. 1c), T. subterraneum was omitted. In yet a 

third group (Illustration 2. 1a), the potential nurse plant T. subterraneum was planted alone in 

the middle. Finally, in the last group of pots, the potential nurse plant T. subterraneum planted 

in the middle along, with four seedlings of T. subterraneum transplanted equidistantly 

(Illustration 2. 1d). All pots were watered only when the soil surface dried out at a depth of about 

1 cm. All of the above treatments were replicated five times. 

The second group of pots (110 pots) was filled equally with soil from the reference and degraded 

ecosystems and were all planted with only one seedling of T. subterraneum in the middle (Figure 

2. 9.) and left to grow for its whole lifecycle (seedlings stage, vegetative growth and spreading, 

inflorescences, seed set, and finally dying). After seven months, the dried T. subterraneum plant 

material was harvested, chopped into 2-3 cm fragments, re-incorporated in the soil, and kept 

aside (five months-period) until the next growing season. At the beginning of the following 

growing season, the exact procedure implemented during the first season was precisely re-

applied to those set-aside pots repeating all planting combinations and replicating five times. 

During the experiment, minor pest attacks were observed, with snails being the most obvious. 

Miniature snails hid beneath the rim of the pots during the day to munch on the foliage at night. 

A bi-weekly inspection under pot rims was sufficient to put the problem under control. It is worth 

noting that after transplanting, a few of the initially planted T. subterraneum (about 5%) did not 

develop, flourish, or establish properly. This issue could be due to the failure to establish a 
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symbiotic relationship with any Mycorrhizal fungi (Chambers et al., 1980; van der Heijden & 

Sanders, 2003). 

Plant measurements 

Performance of both T. subterraneum and target species was assessed in early summer, 

corresponding to the phenological stage of fructification of the target species, and prior to 

completion of the life cycle of annual species in late summer. The functional trait measured was 

the total above-ground biomass of the vegetative parts (Gaudet & Keddy, 1988; Rösch et al., 

1997; Navas & Moreau-Richard, 2005). Measuring the above-ground biomass of all plants 

necessitated cutting their vegetative parts at the soil level, storing them in separate coded paper 

bags, and oven-drying at 50ºC for 48 hours. Finally, all bagged plant samples were weighed 

(digital balance with a precision of ± 0.01 grams). Despite measuring the biomass, surface area, 

and height of all plants, the only data considered to be the precise and reliable trait is the 

biomass, eliminating some unreliable disparities and inaccuracies (for example, some shade that 

might affect total height or any crowding of mature plants from adjacent pots affecting the 

surface area....). 

Data collected from the interaction between T. subterraneum and target plants was assessed by 

applying the Relative Interaction Intensity Index (RII) to plant biomass. RII was the tool chosen to 

evaluate the interaction because of the following mathematical and statistical properties: (1) It 

is symmetrical in relation to zero, with identical absolute values for competition and facilitation 

(from -1 to 0 indicates competition and from 0 to +1 indicates facilitation), (2) It is linear, and (3) 

It has no discontinuity within its range (Howard & Goldberg, 2001; Armas et al., 2004; 

Liancourt et al., 2009).  

RIIs were calculated according to the following equation: 

 

RIIeffect =
(BiomassNwithTrifolium – BiomassNwithoutTrifolium)

(BiomassNwithTrifolium + BiomassNwithoutTrifolium)
 

 

Where biomass is measured on N= the average biomass of four targets of one species (A. 

triuncialis, E. viscosus, Er. creticum, H. aureus, or T. subterraneum), biomass was measured in the 
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presence or absence of the potential nurse plant T. subterraneum. As there were four individuals 

of each target species/pot, their average biomass was considered.  

Statistical analyses 

Soil statistical analyses 

All analyses were performed with R-3.6.0 (R Core Team 2020). Prior to applying statistical analysis 

to soil physico-chemical variables, all data distributions were examined using the Shapiro–Wilk 

test of normality. GLMs with Gaussian distribution were calculated to investigate the effects on 

soil physico-chemical variables when data were normally distributed. GLMs with gamma 

distribution were applied for data that violated the assumption of a normal distribution. Models 

were followed by Tukey HSD post-hoc tests using the glht function with P < 0.05 from the 

"multcomp" package (Hothorn et al., 2016). 

Plant statistical analyses 

To assess the competitive effect of T. subterraneum (ability to reduce the performance of target 

species), two-way ANOVAs or two-way ART ANOVAs (Aligned Ranks Transformation ANOVAs) 

were performed on the RIIeffect respectively, without soil improvement and with soil 

improvement. The interaction of two explanatory variables was tested for (1) the type of soil 

(reference vs. degraded) and (2) the identity of the target species. ANOVAs were applied when 

data responded to the hypotheses of normality and homogeneity of variance. ART ANOVAs were 

performed when otherwise (Mangiafico, 2016). All were followed by pairwise contrast 

comparisons with a Tukey adjustment when significant. In order to find out if each RII was 

significant from zero, thus indicating competition or facilitation, a Wilcoxon test was performed 

on each level of explanatory variables. 

To study the effect of T. subterraneum as a nurse plant a GLM test was performed on target 

species biomass grown only on degraded soils. The interaction of two explanatory variables was 

tested (1) in the presence of T. subterraneum as a nurse plant and (2) whether degraded soil 

was improved or not. All models were fitted with a Gamma error distribution followed by 

pairwise contrast comparisons with a Tukey adjustment when significant.   
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Results 

To make things more comprehensible during the flow of this document the following terms will 

be used: Any test results from both degraded and reference soils at the initiation of the 

experiment will be referred to as at the time of set-up (“set-up” in figures captions), whereas 

results after planting but prior to incorporating dried biomass into soils as without soil 

improvement  (“w/o imprv” in figures captions) and finally results after incorporating dried 

biomass into soils as with soil improvement (“w imprv” in figures captions). 

Soil results 

Degraded soil at the time of set-up vs. Reference soil at the time of set-up. 

In 2017, before initiating the experiment, soil samples extracted from the degraded quarry and 

nearby reference site were tested. The obtained results revealed significant differences in both 

physical and chemical properties between the collected samples from the degraded ecosystem 

(abandoned quarry) and nearby reference ecosystem (surrounding grassland).  

Soil physical properties 

Soil collected from the degraded ecosystem was significantly higher in clay (251.2 ± 14.6b g/kg) 

compared to the reference ecosystem (209.6 ± 9.8a g/kg). Furthermore, in the degraded soil, 

both fine and coarse sand results were significantly lower when compared to reference soil. Fine 

sand in degraded soil was 101.0 ± 5.2b g/kg soil vs. 145.0 ± 5.5a g/kg reference soil, and coarse 

sand was 143.2 ± 17.4b g/kg in degraded soil vs. 203.8 ± 7.7a g/kg in reference soil. Whereas in 

both degraded and reference soils, fine and coarse silt were not significantly different (Table 2. 

2.).  

Soil chemical properties 

The significantly higher clay value in degraded soil correlated to significantly higher CEC in 

degraded soil (14.7 ± 0.5a meq/ 100g soil) at the time of set-up vs. reference soil (12.16 ± 0.2b 

meq/ 100g soil) at time of set-up. Degraded soil also showed a significantly higher water-pH in 

degraded (8.6 ± 0.03a) than in the reference (8.4 ± 0.02d). Also, a significant difference in pH-KCL 

between degraded (7.8 ± 0.02a) and reference (7.74 ± 0.02b) was observed (Table 2. 3.). A 

significant difference was also present between the Total dry biomass, which was significantly 
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lower in the degraded soil (0.8 ± 0.02b meq/100g soil) than in the reference soil (1.63 ± 0.03b 

meq/100g soil) (Figure 2. 10.). Total nitrogen in degraded (560 ± 4a mg/kg soil) was also 

significantly lower than in the reference soil (1068.2 ± 27.7d mg/kg soil) (Figure 2. 11.). The 

measured carbon content was also significantly lower in degraded soil (4.6 ± 0.1b mg/kg soil) 

than in the reference soil (9.5 ± 0.2b mg/kg soil) (Figure 2. 12.). Significant differences were also 

found for phosphorus, being significantly lower in degraded soil (34.8 ± 0.4a mg/Kg soil) than in 

the reference soil (58.6 ± 0.4d mg/Kg soil) (Figure 2. 13.). Total Ca, K, CaO, and C:N ratio were all 

not significantly different between soil types (Table 2. 3.). 

Figure 2. 10. Dry Biomass contents measured in-situ degraded soils and reference soils at set-up, with 

the different treatments applied in the pots to the degraded soil at the time of set-up, without soil 

improvement, and later with soil improvement (F=20.5, P<0.001). TS is Trifolium subterraneum- TR is 

Target plants- “set-up” is at the time of set-up- “w/o imprv” is without soil improvement- “w imprv” is 

with soil improvement. 
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Figure 2. 11. Total Nitrogen contents measured in-situ degraded soil at the time of set-up and with 
the different treatments applied in the pots to the degraded soil without soil improvement and with 
soil improvement (F= 52.5, P<0.001). TS is Trifolium subterraneum- TR is Target plants- “set-up” is 
at the time of set-up- “w/o imprv” is without soil improvement- “w imprv” is with soil improvement. 

 

a a 

b 
ab 

c 

Total Nitrogen contents in degraded & reference soils 

at the time of set-up, without & with soil improvement 
To

ta
l N

 m
g

/K
g 

0
 

2
0
0

 
4
0
0

 
6
0
0

 
8

0
0

 
1
0
0
0

 
1
2
0
0

 

Treatments 

Degraded 

Soil 

 (set-up) 

Degraded Soil  

+TS 

 (w/o imprv) 

Degraded Soil 

+TS 

 (w imprv) 

Degraded Soil 

+TS+TR 

 (w imprv) 

Reference 

Soil 

 (set-up) 



111 
 

 

Figure 2. 12. Soil Carbon analyses performed for in-situ degraded soil and reference soil at the time of 

set-up and with the different treatments applied in the pots to the degraded soil without soil 

improvement and with soil improvement (F= 20.5, P<0.001). TS is Trifolium subterraneum- TR is Target 

plants- “set-up” is at the time of set-up- “w/o imprv” is without soil improvement- “w imprv” is with 

soil improvement. 
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time and in degraded soil without improvement (300.2 mg/kg vs. 192.2 mg/kg 

respectively) (Figure 2. 14.).   

 

Figure 2. 13. Available Phosphorus contents measured in-situ degraded soil and reference soil at 

the time of set-up and with the different treatments applied in the pots to the degraded soil 

without soil improvement and with soil improvement (F= 83.9, P<0.001). TS is Trifolium 

subterraneum- TR is Target plants- “set-up” is at the time of set-up- “w/o imprv” is without soil 

improvement- “w imprv” is with soil improvement. 
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Figure 2. 14. Potassium contents measured in-situ degraded soil and reference soil at the time of set-

up, and the different treatments applied in the pots to the degraded soil without soil improvement 

and later after soil improvement (F= 28.3, P<0.001). TS is Trifolium subterraneum- TR is Target plants. 
- “set-up” is at the time of set-up- “w/o imprv” is without soil improvement- “w imprv” is with soil 

improvement. 

Degraded soil at set-up time vs. degraded soil after improvement 

A significant decrease in CEC (Table 2. 3.) was noticeable in improved soils compared with the 

degraded soil at set-up time (11.5 ± 0.4b meq/ 100gr and 14.7 ± 0.5a meq/ 100g, respectively). 

Although no significant increase in dried biomass was present between soil at set-up time and 

degraded soil without improvement, significant changes appeared following soil improvement, 

reflected as an increment from 0.8 ± 0.02 meq/100g in degraded soil at set-up time up to 1.39 ± 

0.1 meq/100g soil in degraded soil after improvement, with T. subterraneum growing alone, and 

a bit less but still significant with T. subterraneum growing with target plants (1.2 ± 0.1 meq/100g 

soil)  (Figure 2. 10.). Carbon also increased significantly with soil improvement (Figure 2. 12.). 

However, it is worth noting that after improvement both Total dried biomass and C amounts 

were still below those in the reference soil (OM in reference soil 1.63 ± 0.03 meq/100g soil, C in 
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the reference soil 9.5 ± 0.2 mg/Kg) (Figure 2. 10. & Figure 2. 12.). Total soil nitrogen was 

significantly higher in degraded soil with improvement than in degraded soil at set-up time 

when T. subterraneum was grown alone (692 ± 36.9 mg/kg vs. 560 ± 4 mg/kg respectively), and 

marginally significant when T. subterraneum and target plants were grown together (659.4 ± 26.4 

mg/kg soil). Still, it is worth noting that the nitrogen level was significantly higher in the reference 

soil (1068.2 ± 27.7 mg/kg) (Figure 2. 11.). 

Phosphorus significantly increased between degraded soil at set-up time (34.8 ± 0.4a mg/kg) and 

all degraded soils with a treatment (soil without improvement: 42.8 ± 1.4a mg/kg; soil with 

improvement and on which T. subterraneum was grown alone: 50.2 ± 1.5c mg/kg; soil with 

improvement and on which T. subterraneum + target plants were grown: 45.6 ± 0.2b mg/kg). 

Nevertheless, it is worth mentioning that the phosphorus level on degraded soils did not attain 

the phosphorus level of the reference soil (58.6 ± 0.4d mg/kg soil) (Figure 2. 13.).  

A common concern that appeared in both the degraded soil without improvement and with soil 

improvement, as opposed to the time of set-up, is an increase in sodium contents (Table 2. 3.). 

The test results showed a spike in sodium level in degraded (at the time of set-up: 21.8 mg/kg 

soil against 90.4 mg/kg soil without soil improvement & 231.6 mg/kg soil with soil improvement).  

Effect of both Trifolium subterraneum and soil improvement 

There was no significant positive effect of the improvement of degraded soil on target biomass 

(i.e., biomass after soil improvement was not significantly higher than before soil improvement). 

On the other hand, A. triuncialis and H. aureus had higher biomass without soil improvement, 

and E. viscosus had higher biomass without soil improvement when grown with T. subterraneum. 

Furthermore, T. subterraneum reduced the biomass of Er. creticum but increased that of T. 

subterraneum grown as target plants, confirming RIIeffect results below (Figure 2. 15.). 
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Figure 2. 15. Effect of Trifolium subterraneum as a nurse plant, and soil improvement on target T. 

subterraneum biomass grown on degraded soils (X²=0.30, p<0.001, n = 5). Bars sharing a letter were not 

significantly different from each other (p<0.05). “set-up” is at the time of set-up- “w/o imprv” is without 

soil improvement- “w imprv” is with soil improvement. Without T. subterraneum = Without T. 

subterraneum as a nurse plant; With T. subterraneum = With T. subterraneum as a nurse plant 

RII results 

Effect of Trifolium subterraneum on target plant biomass (RIIeffect) 

No significant soil effect was apparent on the RII indices without soil improvement on target. 

Alternately competition dominated the interactions between T. subterraneum and the four-

target species in both soil types (reference and degraded). This effect was slightly competitive to 

neutral on three target species but only significant on Eryngium sp. Noticeably, T. 

subterraneum as a potential nurse plant had a significant facilitative effect on T. subterraneum 

targets, reflected through greater biomass as a target plant when grown with T. subterraneum in 

the center of the pot (F=2.89, p=0.034*; Figure 2. 16.). 
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Figure 2. 16. Effect of Trifolium subterraneum on neighbor species biomass depending on neighbor 
species identity without soil improvement (F=2.89, p=0.034*): mean RIIeffect per replicate pot (n = 5). 
The horizontal line marks RII = 0, above which positive RII values indicate facilitation and below which 
negative values indicate competition. Species sharing a letter were not significantly different from 
each other (p<0.05). Box-plots colored light blue show RII significantly different from 0 (tested by 
Wilcoxon test). 

Nevertheless, after soil improvement in both reference and degraded soils, a few significant 

results appeared. However, the most important was the persistence of facilitation of T. 

subterraneum on T. subterraneum target biomass, whatever the soil type (F=12.65, p<0.001***; 

Figure 2. 17.). The competitive effect of T. subterraneum was significant on degraded soil (F=8.30, 

p=0.006**, V = 60, Figure 2. 18.). 
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Figure 2. 17. Effect of Trifolium subterraneum on target species biomass depending on target species 

identity after soil improvement (F=12.65, p<0.001***). Mean RII effect per replicate pot (n = 5). The 

horizontal line marks RII = 0, above which the positive RII values indicate facilitation and below which 

the negative RII values indicate competition. Species sharing a letter were not significantly different 

from each other (p<0.05). Box-plots colored light blue show RII significantly different from 0 (Tested 

by Wilcoxon test). 
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Figure 2. 18. Effect of T. subterraneum on target species biomass depending on soil type after soil 

improvement (F=8.30, p=0.006**). Mean RII effect per replicate pot (n = 5). The horizontal line 

marks RII = 0, above which positive RII values indicate facilitation and below which negative 

values indicate competition. Soil types sharing a different letter were significantly different from 

each other (p<0.05). Box-plots colored light blue show RII significantly different from 0 (tested by 

Wilcoxon test) 
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slopes surrounding the quarry). Degraded soil had a significantly higher clay proportion than 

reference soil, leading to a significantly higher CEC. Also, the degraded soil had significantly 

higher pH (water-pH and pH-KCL), contrary to a lower pH that would generally lead to a reduction 

in CEC as in the case of reference soil. After soil improvement, the soil analyses showed a 

significant decrease in CEC compared to the degraded soil at set-up time. This decrease might be 

due to cations absorption by the growing plants, with no possible replacement, specifically since 

the experiment was conducted in pots without any fertilizer addition.  

At the initiation of the experiment, dried biomass was significantly lower in the degraded soil 

when compared to the reference soil with its higher availability of vegetation cover. There was 

also no significant change in dried biomass quantity between degraded soil at set-up time and 

afterward, prior to soil improvement phase. Eventually, the dried biomass significantly increased 

after the soil improvement phase with T. subterraneum grown alone or with target plants 

(though a bit less), leading to a significant increase in total carbon and total nitrogen at post-soil 

improvement vs. at the time of set-up. Adversely, from a restoration perspective, and even after 

soil improvement through incorporating T. subterraneum into the degraded soil, total OM, 

carbon, and nitrogen levels- although improved- remained lower than the levels of OM, carbon, 

and nitrogen in the reference soil. Therefore, to restore the biomass to a level significantly close 

to that of reference soil, and since solely depending on cultivating T. subterraneum and 

incorporating it in soil was not sufficient, an additional source of biomass must be considered. 

Accordingly, the grazing and trampling of flocks in quarries intended for restoration could be 

regarded to encourage microbial growth and activity, ultimately increasing both soil fertility and 

quality (Garris et al., 2016; Luna et al., 2016).   

Significant differences were also evident in phosphorous concentration between the reference 

and degraded soil collected from the quarry, with an elevated amount in the latter. This 

difference might be present since phosphorus does not readily leach out of the root zone and is 

potentially lost only by erosion and runoff. A significant increase in available phosphorus was 

shown later in the soil without improvement, possibly due to the degradation of total phosphorus 

into available phosphorus from the soil minerals under root actions and the emission of weak 

acids (Noack et al., 2012; Vet et al., 2014). An increase in dried biomass is also a relevant factor 
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in controlling phosphorus availability, since the addition of dried biomass (via dry material 

incorporation) leads to organic phosphorus mineralization through the exudation of organic acids 

or phosphatase enzymes by plant roots or mycorrhiza (Jones & Darrah, 1994). This mineralization 

of dried biomass provides a significant portion of the phosphorus needed for the plants 

(California Fertilizer Association, 1995). A significant increase in phosphorous was also evident 

within the degraded soils at set-up time and with soil improvement, in T. subterraneum alone 

and with T. subterraneum and target plants. Still, it is worth highlighting that the phosphorus 

level in degraded soil did not attain the phosphorus level in reference soil.   

A significant reduction was also noted in potassium levels when comparing the amount in 

degraded soil collected at set-up time, without soil improvement, and after soil improvement. 

This issue may be due to the high tendency of T. subterraneum to absorb potassium from the soil 

(Rossiter, 1955; Barrow, 1966), a fact that is amplified further in pots, where the lost potassium 

is not compensated easily in the same manner observed in nature. 

Also, the sodium level increased significantly between both soils taken at set-up time (degraded 

and reference) and soil with or without improvement. In abundance, sodium can degrade soil 

structure, slow infiltration rates, and interfere with Ca, Mg, and K uptake (Hodges, 2010). This 

increase in sodium level could be a bias attributed to salt accumulations which gradually increase 

in the irrigation water after being pumped from the artesian well. This bias was diminished 

considerably during the progression of the experiment due to the initial storing of the water 

pulled from the artesian well in a separate tank, leaving it to settle before using it for irrigation 

and utilizing new hoses.  

RII results  

Gaudet and Keddy (1988) revealed that measurements (such as total aboveground biomass, 

surface area, etc.) are prime indicators of either facilitation or competition amongst tested 

species. The results in this experiment confirmed that T. subterraneum had a competitive effect- 

which in some situations is a major driving factor structuring plant communities (Kimball et al., 

2013)- rather than a facilitative effect on the four tested target plants (Rösch et al., 1997; Howard 

& Goldberg, 2001; Navas & Moreau-Richard, 2005). The obtained results revealed a significant 
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reduction in total aboveground biomass for almost all target species in both the reference and 

degraded soil, whether improved or not. 

Previous studies in the literature highlighted nurse plants as facilitators under harsh 

environmental conditions (Franco & Nobel, 1988; Bertness & Hacker, 1994; Tielbörger & 

Kadmon, 2000; Cavieres et al., 2002; Verdú & García-Fayos, 2003), with almost a third of such 

plants in arid (Arriaga et al., 1993) and semiarid regions being leguminous (Flores & Jurado, 2003). 

Notably, T. subterraneum enhances nitrogen content in the soil, improving the survival and 

growth of target species (Padilla & Pugnaire, 2006, Coiffait‐Gombault et al., 2012). The contrary 

was apparent in this study, with results aligned with previous studies in Mediterranean 

ecosystems (e.g., Vilà & Sardans, 1999; Liancourt et al., 2009; Prévosto et al., 2012), where 

competition, not facilitation, was the dominating outcome of plant interactions, with or without 

improvement in soil fertility resulting from the incorporation of T. subterraneum dried biomass 

into the soils. Nevertheless, results clearly show that in the degraded soils, even at low nutrient 

levels (particularly for N, P2O5, C, and OM), T. subterraneum - like almost all nitrogen-fixing 

plants- flourished utilizing efficiently available elements (especially N). This aspect is reflected 

through better vegetative growth, more biomass accumulation, and size increase when 

compared to the target plants with no nitrogen-fixing capabilities, gradually weakening the target 

plants via competition. When cultivated as a pure stand, T. subterraneum exhibited facilitation 

effects on biomass, ultimately incorporated as dry dried biomass into the soil for improvement. 

Consequently, from a restoration perspective, T. subterraneum could be endorsed as a species 

assisting in soil fertility re-establishment in a degraded quarry. Nevertheless, it should be 

introduced independently during the first growing season as a pure stand foundation 

species (Coiffait‐Gombault et al., 2012)- since facilitation was evident between T. 

subterraneum as a nurse plant and T. subterraneum as a target plant. With its ground-hugging 

nature, T. subterraneum will spread on the soil surface, restraining ruderal weeds present in the 

soil seed bank (Enache & Ilnicki, 1990; Walker et al., 2004) and reducing soil erosion (Gristina et 

al., 2009; Novara et al., 2011). Ultimately, being an annual, it will set seeds, die, and dry out at 

the end of the growing season, exerting no competition with any germinating target plant 

seedlings the following year. The resulting dry plant biomass of T. subterraneum should be 
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incorporated later into the soil to improve desired properties, such as soil texture, structure, OM, 

carbon, nitrogen, etc. Practically the dried biomass could be incorporated into the soil by 

trampling via small domestic ungulates (goats or sheep). Such a grazing pattern would perform a 

dual purpose: (1) Trampling encourages light incorporation of T. subterraneum dry biomass (as a 

source of OM) into the top 10 cm soil layer, and (2) Increase various forms of nitrogen in the soil 

by the defecation and urination of animals, permitting even more soil N-enrichment (Semmartin 

et al., 2010)- being a chronically deficient element in quarry soils. At the initiation of the second 

growing season, the seed mixture intended for restoration could ultimately be introduced. It is 

worth commenting that during the second growing season, any germinated T. 

subterraneum seeds would naturally subside in the presence of perennials and annual grass that 

would compete with the clover for water (Dear & Cocks, 1997). 

Finally, it is worth highlighting that although T. subterraneum, as a geocarpic plant (Falistocco et 

al., 1987), can self-plant its own seeds, no concerns of invasiveness are expected since it is a 

native plant. One drawback arising from using T. subterraneum as a pure stand is the temporal 

creation of a region with low biodiversity due to the growth of an individual plant species over 

the whole growing season in the restored area. 

Conclusion and perspectives 

This study, performed under ex-situ conditions, could help formulate better comprehension of 

plant-plant associations. Such interactions can not only assist in the observation of plant 

communities in semiarid Mediterranean grasslands but might also shed light on the use of native 

plants (from that same habitat) as nurse plants to facilitate the rehabilitation of degraded 

systems. The outcomes showed that competition, rather than facilitation, dominated the 

interaction amongst the studied plant species, resulting in heterogeneous responses amongst 

different species based on various measured traits. Nevertheless, it is possible to conclude that 

such manipulations could be another meaningful advancement in fundamental and experimental 

research. When it comes to conservation and restoration processes, such results are also 

interesting since they could provide diverse ways for detecting potential nurse plant species 

capable of increasing the successional dynamics of a plant community. Finally, it is worth noting 

that although ex-situ studies cannot substitute in-situ experimentations, studies of this kind can 
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be the initial steps towards selecting different designs, management methods, and species to 

utilize in any ecological restoration procedure, with lower costs than in-situ settings. 
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Illustrations - Tables  

Illustrations 
 

 

 

 

Pot D. 33 cm 

a. Trifolium subterraneum alone 

b. Trifolium subterraneum + 4 Target plants of same type  

(Aegilops triuncialis OR Echinops viscosus OR Eryngium creticum OR Hyoscyamus aureus) 

c. 4 target plants of same type alone 

(Aegilops triuncialis OR Echinops viscosus OR Eryngium creticum OR Hyoscyamus aureus) 

 

 

d. Trifolium subterraneum + 4 target plants of Trifolium subterraneum 

Illustration 2. 1. Experimental design, plant arrangements in pots. 
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Tables 

 

Soil Type df F P-value 
Reference soil at 

time of set-up 

Reference soil 

without soil 

improvement - TS 

Degraded soil at 

time of set-up 

Degraded soil 

without soil 

improvement - TS  

 Clay (g/Kg soil) 3 36.44 < 0.001 209.6 ± 9.8 a 246.6 ± 8.2 b 251.2 ± 14.6 b 330.6 ± 3.0 c 

 Fine Silt (g/Kg soil) 3 1.18 0.35 324.4 ± 5.0 a 364.8 ± 4.0 a 388.2 ± 12.7 a 305.6 ± 67.1 a 
 Coarse Silt  
 (g/Kg soil) 

3 40.39 < 0.001 117.4 ± 2.7 a 81.4 ± 3.8 b 116.7 ± 4.9 a 66.5 ± 2.7 b 
 Fine Sand  
 (g/Kg soil) 

3 52.80 < 0.001 145.0 ± 5.5 a 121.6 ± 5.1 b 101.0 ± 5.2 c 81.4 ± 0.8 c 
 Coarse Sand  
 (g/Kg soil) 

3 39.10 < 0.001 203.8 ± 7.7 a 185.6 ± 6.5 a 143.2 ± 17.4 b 149.4 ± 3.7 c 
Table 2. 2. Results of physical soil analyses performed for in-situ degraded soils and in-situ reference soils at 

time of set-up, and with the different treatments applied in the pots to the degraded soil without soil 
improvement. TS is Trifolium subterraneum. 

 

Soil Tests 

Performed 
df F P-value 

Degraded 

soil at time 

of set-up 

Degraded 

Soil without 

soil 

improvemen

t +TS 

Degraded Soil 
with soil 

improvement 

+ TS 

Degraded Soil 
with soil 

improvement 

+TS + TR 

Reference 

soil at time 

of set-up 

CEC 

(meq/100gsoil) 
4 19.8 <0.001 14.7 ± 0.5 a 13.8 ± 0.3 a 11.5 ± 0.4 b 11.5 ± 0.5 b 12.16 ± 0.2 b 

pH Water 4 51.6 <0.001 8.6 ± 0.03 a 8.3 ± 0.05 b 8 ± 0.03 c 8.1 ± 0.03 c 8.4 ± 0.02 b 

pH KCl 4 4.4 0.01 7.8 ± 0.02 a 7.8 ± 0.02 a 7.8 ± 0 ab 7.8 ± 0 ab 7.74 ± 0.02 b 

Total 

Carbonates 
4 11 <0.001 68.2 ± 0.4 a 72.2 ± 0.5 a 51.4 ± 4.7 b 69.4 ± 0.7 a 71.4 ± 0.4 a 

Plant Species Seed Tested #  

Aegilops triuncialis 130 

Echinops viscosus 130 

Eryngium creticum 130 

Hyoscyamus aureus 130 

Trifolium subterraneum 130 

125 

118 

126 96.62 

Germinated Seeds #  Germination % 

118 

80  

90.77 

61.54 

96.15 

90.77 

Table 2. 1. Seed germination percentages based on coleoptile emergence as a proxy of germination under 

controlled laboratory conditions during an 8 weeks period. 
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Table 2. 3. Results of chemical soil analyses performed for in-situ degraded soils and in-situ reference soils at time of 

set-up, with the different treatments applied in the pots to the degraded soil without soil improvement, and after 

soil improvement. TS is Trifolium subterraneum- TR is Target plants. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Total Dried 

Biomass 
4 20.5 <0.001 0.8 ± 0.02 a 0.85 ± 0.02 a 1.39 ± 0.1 bc 1.2 ± 0.1 b 1.63 ± 0.03 c 

P2O5 Olsen 

(mg/Kg Soil) 
4 83.9 <0.001 34.8 ± 0.4 a 42.8 ± 1.4 b 50.2 ± 1.5 c 45.6 ± 0.2 b 58.6 ± 0.4 d 

K2O 

(mg/Kg Soil) 
4 28.3 <0.001 300.2 ± 4.6 a 

192.2±20.8 

bc 
221.4 ± 5.7 c 166.8 ± 1.4 b 313.6 ± 7.7 a 

MgO 

(mg/Kg Soil) 
4 99.8 <0.001 461.6±9.1ab 440.8 ± 8.8 a 468.2 ± 5.3 b 448.8±1.4 ab 325 ± 4.1 c 

CaO 

(mg/Kg Soil) 
4 15.4 <0.001 11140±80.5a 

9991.2±216.

1b 

10999.8±56.3

a 
10828 ± 26 a 10962±79.1a 

Na2O 

(mg/Kg Soil) 
4 

198.

3 
<0.001 21.8 ± 0.4 a 90.4 ± 14.4 b 231.6 ± 9.2 c 192.4 ± 3.2 c 18 ± 0.8 a 

N total 

(mg/Kg Soil) 
4 52.5 <0.001 560 ± 4 a 

559.6 ± 36.8 

a 
692 ± 36.9 b 659.4±26.4ab 

1068.2±27.7

c 

Carbon 

(mg/Kg Soil) 
4 20.5 <0.001 4.6 ± 0.1 a 5.0 ± 0.09 a 8 ± 0.7 bc 7 ± 0.8 b 9.5 ± 0.2 c 

C:N ratio 4 4.7 0.008 8.3 ± 0.2 a 9.1 ± 0.7 ab 11.6 ± 0.8 b 10.5 ± 0.8 ab 8.9 ± 0.4 a 
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INTERMEDIATE SECTION  

Plant species used in the experiments described in Chapters 2 & 3. 
 

 

Potential nurse plants used in the experiments     

Trifolium subterraneum L.  

Fabaceae  

Subterranean clover 

[Picture: Shaiban, IMBE] 

 

 

 

 

 

 

 

Melica inaequiglumis Boiss & Bl.  

Poaceae 

Unequal- glumed melica  

[Picture: Shaiban, IMBE] 
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Neighbor Plants     

 

Aegilops triuncialis L. 

Poaceae  

Barbed goat-grass  

[Picture: Shaiban, IMBE] 

 

 

 

 

Echinops viscosus (Boiss.) Feinbr 

Asteraceae 

Viscous globe- thistle 

[Picture: Google Images] 
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Eryngium creticum Lam. 

Apiaceae  

Cretan eryngo 

[Picture: Google Images] 

 

 

 

 

 

 

  

Hyoscyamus aureus L. 

Solanaceae 

Golden henbane 

[Picture: Shaiban, IMBE] 
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TRANSITION TO THIRD PAPER 
 

The previous chapter highlighted the employment of a native species (T. subterraneum) as a 

potential nurse plant to assist in restoring a Mediterranean grassland in a former quarry. 

Nevertheless, results of a 2-year experiment (implemented in a semi-controlled interspecific 

interaction setting) revealed that competition, rather than facilitation, was the net outcome 

amongst the experimented plants. However, planting in two consecutive seasons while 

incorporating dried plant debris into the soil after the first season could render T. 

subterraneum useful in practical restoration- ultimately reducing competition against target 

species. 

Taking what preceded one step further would automatically give rise to some legitimate 

questions concerning the complexity, or considering the prior situation, the simplicity of such 

systems, especially when compared to natural existing plant habitats. In natural habitats, plant 

interactions are usually more complex and dynamic in nature, with several different plant species 

of various plant populations interrelating and are ameliorated or mitigated by diverse 

environmental factors such as soil type, water availability, light quality, and temperature 

fluctuations. All those factors act on a plant along with other plants present in their vicinity- 

whether of the same or different species. In the coming section, and to replicate the complex 

plant-natural habitats more satisfactorily, plant species in the experimental design were varied, 

increased, and differed in planting periods and soil type. Sequentially, shifting from a mono-plant 

design into three- scenarios of low, medium, and high complexities. Where low complexity is one 

different plant species in the vicinity interacting with the nurse plant, medium complexity would 

be three species, and high complexity four species in the nurse plant vicinity. Furthermore, 

planting at two different time intervals and in two different soil types, a degraded and a 

reference. 
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Figure M. 3. Location of chapter three in the general organization of the thesis. 
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 Abstract 

Aim  

The potential restoration of an abandoned quarry in the Beqaa plain- Lebanon, into a more 

sustainable habitat centered on nature-based solutions were evaluated. The experiment 

assessed whether facilitation or competition was the dominating end result of two potential 

native nurse plants, a legume (Trifolium subterraneum -Fabaceae) and a grass (Melica 

inaequiglumis -Poaceae), with respect to four native co-existing herbaceous plants, from the 

degraded ecosystem, used as neighbor species in an ex-situ setting. The assessment was 

performed by evaluating the contribution of nurse plants on plant growth measured by the shift 

in the above-ground biomass of vegetative parts at four neighboring community levels.   

Method  

In a 1-year mesocosm experimental setting, the interactions between two potential nurse plants 

(T. subterraneum and M. inaequiglumis) and four co-existing species (Aegilops triuncialis, 

Echinops viscosus, Eryngium creticum, and Hyoscyamus aureus) present in the Mediterranean 

grasslands of Lebanon were separately measured. The planting scheme carried out in soils 

collected from a former quarry and a nearby reference dry-grassland, had two paths. Under the 

first path, the initial planting of one potential nurse plant, either T. subterraneum or M. 

inaequiglumis, succeeded forty-five days later by planting 1, 3, or 4 individuals of different target 

species around the nurse plant-indicating varied plant community complexities. In a second 

scheme, the same nurse plants (also planted independently) were simultaneously planted beside 

target plants. Additionally, an extra factor considered was replicating the same experiment on 

two different soil types (from reference or degraded soil). 

In both experiments, target plants were planted at different plant community complexity levels: 

(1) a community composed of only one individual of a single species tested against both nurse 

plants (separately), (2) a community composed of one individual of three different neighbor 

species, planted with one of the two potential nurse plants, (3) a community composed of one 

individual of four different neighbor species, planted with one of the two presumed nurse plants 

(T. subterraneum or M. inaequiglumis), (4) a community composed of four individuals of the 

same type like the nurse plant.    
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The indices of Relative Interaction Intensity (RII), were calculated for above-ground biomass, 

total height, and surface area of the vegetative parts. These measurements enabled measuring 

the plants' competitive ability among different types of soils for the two temporal variations in 

the experiment (when planting nurse plants 45 days before or at the same time with neighbor 

plants). 

Important Findings 

Investigating the effect of neighbor plants on T. subterraneum revealed significant competition, 

evident through negative biomass results, especially in the reference soil. Furthermore, the effect 

of neighbor plants, regarding planting time and the soil type on T. subterraneum biomass also 

revealed a negative impact on biomass, standing highest when both nurse plant and neighbor 

were planted together in reference soil at day 0. As for the nurse plant M. inaequiglumis, when 

neighbor plants were introduced at two different dates (0 & 45 days), they revealed moderate 

facilitation towards the grass M. inaequiglumis when given 45 days head-start on neighbor plants 

in degraded soil.   

Conclusion 

Both tested nurse plants T. subterraneum and M. inaequiglumis could aid in restoration practices 

when introduced in suitable soil type and when priority effect is considered with respect to the 

other plant species planned for restoration. 

Keywords: Trifolium subterraneum, Melica inaequiglumis, nurse plant, facilitation, 

competition, soil properties, target plants. 
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Introduction 

Plant interactions are considered key factors that intensely affect the composition and structure 

of plant communities (Roughgarden & Diamond, 1986). The comprehension of the dynamic 

nature of complex plant communities has long attracted ecologists for their potential in shaping 

distribution patterns and traits of involved plant species (Tansley, 1917; Clements et al., 1929; 

Raffl et al., 2006; Suter et al., 2007). Dynamic assembling could shape plant communities along 

different trajectories based on plant type, identity (Bakker & Wilson, 2001), quantity, and relative 

abundance (Grime 1998; Chapin et al., 2002; Grime, 2006), as well as based on varied abiotic 

conditions (Inouye & Tilman, 1988; Tilman, 2020), such as light, temperature, wind, water, pH, 

etc. (Wilson & Agnew, 1992). Numerous contradicting scientific literature highlighted either 

competition (Silvertown & Dale, 1991; Goldberg & Barton, 1992; Goldberg, 1996; Connolly, 1997; 

Aerts, 1999) or facilitation, governing plant communities (Callaway, 1995; Callaway & Walker, 

1997). 

For a lengthy period, competition, as an ecological concept, has been regarded as the principal 

driver of plant community assembling, especially since plant species exploit the same essential 

limited assets that will ultimately get scanter (Scott, 2009). Facilitation, as a concept, was 

neglected and dropped from mainstream ecology for years, endorsing the competition theory 

(Grime, 1974; Tilman, 1982). Notably, from the late twentieth century onwards, the facilitation 

concept regained momentum as a plausible interaction shaping plant communities.  

In herbaceous plant communities, the role of grasses as nurse plants facilitating other plant 

species is controversial in the literature. Some studies highlighted facilitation, especially for 

grasses with shallow roots (Jordan & Nobel, 1979; Franco & Nobel, 1988). Furthermore, 

facilitation by grass was also documented in degraded semiarid steppes, where the grass Stipa 

tenacissima had a positive role in shrub establishment (Maestre et al., 2001). Facilitation was also 

demonstrated in mildly-degraded grassland ecosystems (Ren & Liu, 2008), where Neyraudia 

montana, a pioneer grass, ameliorated the microhabitats for neighbor plants. Whereas on the 

contrary, other research documented competition as the net outcome in the vicinity of grasses, 

especially among those with dense fibrous roots in the upper soil profile. Also, grasses with a 

large root-to-shoot ratio permit them to compete efficiently for different soil resources (Caldwell 
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& Richards, 1986), successfully competing against woody-plant seedlings (Scholes & Archer, 

1997). Various studies also noted (e.g., Goldberg et al., 2001; Pywell et al., 2003) that grasses, 

among diverse herb groups, have more negative significant effects and are stronger competitors 

than forbs. 

Whereas the role of grasses in facilitation is controversial, that of legumes is more apparent, 

inclining towards facilitation. In arid (Arriaga et al., 1993) and semiarid regions, almost one-third 

of all nurse plants are from the legume family, with nitrogen-fixing capabilities thru a symbiotic 

relationship with root-nodulating bacteria (Flores & Jurado, 2003), leading to an enhancement in 

soil nitrogen availability (Barnes & Archer, 1996) and an improvement in soil nutrient content 

(den Hollander & Bastiaans, 2007). This characteristic is crucial in Mediterranean soils, which are 

chronically scarce in nitrogen (Alpert & Mooney, 1996). Consequently, one way to mitigate this 

mounting situation on plants could be by utilizing self-sowing legume species that can grow and 

persist (Carneiro, 1999), acting as nurse plants to improve the survival and growth of other 

species (Padilla & Pugnaire, 2006).  

The semiarid Mediterranean ecosystem is characterized by distinct annual climatic sequences, a 

humid (cool to cold) period lasting 5-10 months (from fall through winter), with mean annual 

precipitation of more than 300 mm/year (Deitch et al., 2017), pursued by a mild spring, followed 

by a dry-hot summer (Specht & Moll, 1983). Harsh environmental conditions, scarce water 

availability, and limited nutrients (mainly nitrogen) are principal abiotic forces responsible for 

shaping plant communities in such ecosystems (Noy-Meir, 1973; Seligman & van Keulen, 1989; 

Vilà & Sardans, 1999). Consequently, any stress-mitigating factor, such as natural patchy 

vegetation distribution (Noy-Meir, 1973; Maestre & Cortina, 2005) - a typical characteristic in a 

semiarid Mediterranean environment - could enhance plant performance. Shrub and grass 

species, naturally distributed and developed in such patches, could constitute what is known as 

‘fertility islands’ (Garner & Steinberger, 1989) or ‘resource islands’ (Reynolds et al., 1999). If 

assuming that facilitation occurs when benefits exceed competition effects (Holmgren et al., 

1997), plants in such islands might induce this facilitation in their microenvironments by 

enhancing environmental conditions and generating favorable microhabitats (Cortina et al., 

2011). This is accomplished by creating those “hot spots” while serving as key elements in 
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community structures and dynamics for species diversity (Pugnaire & Lázaro, 2000). Positive 

interactions among different species might be between guilds (such as a nurse tree and its 

understory species) or within guilds (amongst understory species) (Callaway et al., 1991; 

Callaway, 1995; Weedon & Facelli, 2008).    

More than a third of the world’s ecosystems have been modified for subsistence uses by humans, 

such as cities and agricultural lands. Furthermore, at least another third is already seriously 

degraded through fragmentation, unsustainable harvest, exotic species invasions, or pollution 

(Reid, 2005). The United Nations Environment Program has highlighted that restoration of 

degraded ecosystems is a major global priority, declaring the decade 2021–2030 as the decade 

of ecosystem restoration (United Nations General Assembly, 2019), emphasizing that ecosystem 

restoration is among the most profitable public investments for economic growth (Nellemann & 

Corcoran, 2010). Ecological restoration is promptly becoming an acknowledged complementary 

conservation action (Young, 2000), aiming toward natural resources in aquatic and terrestrial 

environments (Reid, 2005). 

One nature-based solution used as a tool for ecological restoration involves using specific plants 

to support other plants or seedlings in what is known as ‘Nurse Plant Syndrome’. The concept, 

investigated at first by Niering et al. (1963), describes plants with positive ‘nursing’ effects on 

seedlings beneath their canopy compared to those existing in adjacent areas. Therefore, a nurse 

plant can buffer non-optimal environmental conditions such as water-limited environments 

(Niering et al., 1963), intercept rainfall (Padilla & Pugnaire, 2006), improve stressful abiotic 

conditions (Bertness & Callaway, 1994), reduce radiations, ameliorate extreme temperatures 

(Flores & Jurado, 2003), create shade alleviating thermal effect, reduce soil water evaporation 

(Domingo et al., 1999; Pugnaire et al., 2011), act as windbreakers (Walker et al., 2007), mitigate 

frost effects (Padilla & Pugnaire, 2006), increase seed arrival and trapping (Giladi et al., 2013), 

supply nutrients and stock water (Holzapfel & Mahall 1999; Flores & Jurado, 2003), protect 

against grazing (Padilla & Pugnaire, 2006), enhance soil chemistry by symbiotic interactions with 

soil mycorrhiza (Cuenca & Lovera, 1992), lure pollinators, protect from herbivores, or improve 

soil quality under their canopy (Callaway, 1995).  
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In the previous chapter, the experiment - performed under ex-situ conditions - established that 

competition, rather than facilitation, dominated interactions amongst T. subterraneum, as a 

potential nurse plant, and various neighbor plant species (particularly Eryngium creticum, 

Echinops viscosus, Hyoscyamus aureus, and Aegilops triuncialis). However, T. subterraneum, like 

almost all nitrogen-fixing plants, flourished in degraded soils (even at low nutrient levels), 

competing with neighbor plants. Nevertheless, when cultivated as a pure stand to be later 

incorporated as dry organic matter into the soil, T. subterraneum improved soil chemical 

properties by ameliorating total soil organic matter, nitrogen, and phosphorous, consequently 

exhibiting moderate facilitative impact on other plant species. Accordingly, from a practical 

restoration perspective, T. subterraneum could be endorsed for re-establishing soil fertility in 

degraded quarries. Though, it should be seeded initially as a pure stand the first year. Later, in 

the second year, its dried biomass (produced at the end of the growing season) could be 

incorporated into the soil by small domestic ungulates trampling before seeding the mixture 

intended for restoration (Shaiban et al.- in preparation, chapter 2 of this document).     

Nevertheless, under in-situ conditions, interactions amongst plants in communities, whether 

competition or facilitation, is way more complex. Such interactions are not simply between 

populations of two different plant species but involve several plant species at varying complexity 

levels (species composition, population densities, spatial and temporal separation, phenology, 

etc.). This paper aims to evaluate the possible use of two potential nurse plants type (an annual 

legume - Trifolium subterraneum – Fabaceae, and a perennial grass - Melica inaequiglumis 

- Poaceae) in an ex-situ setting with respect to different soil types (degraded versus reference 

soil), different categories of micro- plant communities complexity levels (composition, species 

richness, family diversity, and spatial distribution), and finally, with differences based on planting 

time effect (to test potential priority effect- check the subsequent paragraph). Ultimately, to 

support the restoration of soil and vegetation of a longstanding degraded and abandoned quarry 

present in the Mediterranean dry grassland in comparison with non-degraded soil by former 

quarry exploitation (reference soil). 
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Priority effects 

Priority effects are those results induced by the order in which species reach a particular site 

exercising a significant role in community assembly. Consequently, early arriving colonizers alter 

the performance of later ones (Hess et al., 2019) by affecting the establishment, survival, 

development, or proliferation of later-arriving species (Helsen et al., 2016). This impact could be 

a negative one, through the reduction of available resources such as space, light, and nutrients 

(Vance, 1984), or have a positive impact, especially in harsh environments with extreme solar 

radiation, severe temperatures, or unstable substratum. Accordingly, any absence of such earlier 

colonizers might lead to lower success chances for late-arriving native plants (D’Antonio & 

Meyerson, 2002). In literature, numerous publications documented that allowing native species 

a head-start (one to several weeks) was adequate to substantially reduce invasiveness in 

grassland (Grman & Suding, 2010; Vaughn & Young, 2015; Young et al., 2016), with success up to 

85% in some cases (Suding, 2011). 

Materials and Methods 

The number of neighbor species comprised different neighbor community complexity levels, 

ranging from, (1) a neighbor community composed of only one individual of a single species 

(Echinops viscosus) planted with one of the two tested nurse plants (T. subterraneum or M. 

inaequiglumis) or (2) a neighbor community composed of one individual of three different 

neighbor species (Aegilops triuncialis, Echinops viscosus, Hyoscyamus aureus), also planted with 

one of the two potential nurse plants (T. subterraneum or M. inaequiglumis), or (3) a neighbor 

community composed of one individual of four neighbor species (Aegilops triuncialis, Eryngium 

creticum, Echinops viscosus, Hyoscyamus aureus), planted with one of the two presumed nurse 

plants (T. subterraneum or M. inaequiglumis), (4) a neighbor community composed of four 

individuals of the same type as the nurse plant, and finally, (5) the nurse plants established each 

alone in the pot (Illustration 3. 1.). The purpose was to test the effect of neighbor plants on the 

biomass of both potential nurse plants T. subterraneum and M. inaequiglumis for assessing the 

effects of plant community complexity on the potential facilitation or competitive effects of the 

two potential nurse species tested in complement of experiment one which was only performed 

for one specific level with four individuals of each neighbor species. 
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Nurse plant species used 

The perceived nurse plants assessed wereTrifolium subterraneum - Fabaceae (an annual legume 

plant species) and Melica inaequiglumis - Poaceae (a perennial grass plant species), both native 

to the Mediterranean plant community and have a significant functional role. 

Trifolium subterraneum (Fabaceae) 

T. subterraneum (Fabaceae- Subterranean clover); tribe Trifolieae (Zohary & Heller, 1984) is a 

self-sowing legume native to the Mediterranean. A multi-stemmed annual plant (Figure 3. 1a), 

ranging in length from 5-45 cm and growing on dry soils in open plains and mountains, from sea 

level up to 1800 m.a.s.l. (Ecocrop, 2017), germinating and establishing during the cool and wet 

season (Buddenhagen, 1990), flowering in March-April, and setting fruits -in the form of pods- in 

April-May (Vasileva et al., 2016). The self-sowing process is possible through a well-known 

mechanism termed 'active geocarpy' (Zohary, 1962), permitting plants to actively bury their 

seeds (Barker, 2005), resulting in seed dispersal within a short distance from the mother plant. 

This process occurs when a newly created flower head penetrates the soil (Falistocco et al., 1987) 

and transforms into a completely-buried 10–15mm elliptical one-seeded skin-like pod. A classic 

example of geocarpy is present in the peanut plant Arachis hypogaea L. (Kaul et al., 2000). 

Subterranean clover is a species with high ecological flexibility, evident in its presence in a vast 

habitat that ranges from sparse oak forests to pastures of varied slopes (Vasileva et al., 2016). It 

is also a versatile plant used for weed suppression, green manure, mulching substance, grazing 

(Clark, 2007), and erosion control (Howieson et al., 2000). It also has N-fixing capabilities (Ferreira 

& Castro, 2005) due to its symbiotic relationship with Rhizobium 

leguminosarum biovar. trifolii bacterial species, or with vesicular-arbuscular mycorrhizas 

enabling the fixation of around 50 to 188 kg/ha of nitrogen/year (Sanford et al., 1994; Bolger et 

al., 1995). 
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Figure 3. 1. Potential nurse plants used in the experiment. 

        (a) Trifolium subterraneum. (Shaiban, IMBE)                (b) Melica inaequiglumis. (Shaiban, IMBE) 

 

Melica inaequiglumis (Poaceae) syn. Melica persica ssp. inaequiglumis 

With a distribution range covering almost all of the planet except the tropical regions and 

Australia, the genus Melica L. comprises about 80 perennial sp. of rhizomatous grasses (Clayton 

& Renovize, 1986). The species M. inaequiglumis (Figure 3. 1b), found in central Asia, India, and 

China (Hadi et al., 2019), is also native to Lebanon (Tohmé & Tohmé, 2014). It is a caespitose 

rhizomatous, deciduous perennial grass that forms dense clumps and flowers from late spring 

into late summer (Clayton et al., 2012). M. inaequiglumis thrive in full sun, dry locations, grassy 

hillsides, steep slopes, and rocky areas from 1500-4900 m.a.s.l. (Hadi et al., 2019). A deep well-

spread root system with abundant root hair enables the wide adaptation of this pioneer species 

to rocky, volcanic, and limestone soils under extreme climatic variations, such as prolonged 

drought and severely cold temperatures. All those qualities make M. inaequiglumis noteworthy 

as a plant species for soil and moisture conservation (Kumari & Saggoo, 2016). 

Neighbor species  

Neighbor plant species used in the study were Aegilops triuncialis, Echinops viscosus, Eryngium 

creticum, and Hyoscyamus aureus. All are abundant species often present in degraded areas 

during early succession stages (Khater et al., 2004), and accordingly could be regarded as 

representative species of reference ecosystems suitable for reintroduction in degraded areas, 
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such as abandoned quarries. Furthermore, the seeds of these species are easy to collect, store 

well, and are unfussy and reliable in germination.   

Aegilops triuncialis L. 

The Aegilops genus belongs to the Triticeae tribe, within the Pooideae subfamily, in the Poaceae 

family. The Aegilops triuncialis species (Figure 3. 2d) has the widest distribution inside the genus 

(Maxted et al., 2008), extending from Asia into the Mediterranean Basin and throughout 

southern Europe. The species, predominantly found in limestone and basalt, is abundant in 

different habitats ranging from dry and partially disturbed to dry-rocky slopes, cultivated fields 

and surrounding edges, matorrals, grasslands, shrublands, woodlands, and open forests. A. 

triuncialis is also present in steppes, desert margins, river terraces, and seasides. It grows from 

sea level up to 2,700 m.a.s.l., under a wide range of annual rainfall, from 125 mm to 1,400 mm 

(van Slageren, 1994).  

Echinops viscosus L. 

With approximately 120 species distributed all over the world (primarily in the Northern 

Hemisphere), the genus Echinops L. (Asteraceae, Cardueae) (Garnatje et al., 2004a) is 

predominantly a perennial, with very few annual species (Garnatje et al., 2004b). The 

species Echinops viscosus, synonyms including E. spinosissimus subsp. macrolepis (Boiss.) 

Greuter, E. viscosus subsp. macrolepis (Boiss.) Feinbrun, E. viscosus DC. var macrolepis Boiss., E. 

syriacus Boiss (common English name: Viscous Globe Thistle), is categorized by uni-flowered 

capitula aggregated into second-order spherical or oval heads, this syncephalia being a unique 

feature within the tribe (Petit, 1997). E. viscosus is a spiny perennial herb, 80-100 cm tall plant 

flowering from May till August (Figure 3. 2c). In Lebanon, it is present in sunny plots in several 

locations ranging from fields, roadsides, abandoned lands, dry and rocky slopes, and scrublands 

(Arnold et al., 2015). 

Eryngium creticum Lam. 

With nearly 250 species, the genus Eryngium is regarded as the largest and the most 

taxonomically complex in the Apiaceae family. Distributed in the temperate regions of every 

continent (Calvino et al., 2008), it is differentiated from other Apiaceae members by the presence 

of a single bract per flower and a capitate inflorescence (Calvino et al., 2008). The 
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species Eryngium creticum Lam. (Common English name: Field Eryngo) is a spiny perennial, 

occasionally a biennial or an annual, glaucous and glabrous herb, with an erect and branched 

stem reaching up to 50 cm in height. The plant has sessile and palmately divided 3–8 prickly lobed 

leaves, flowering from May till August (Kikowska et al., 2016) (Figure 3. 2b). It is present in various 

types of dry and damp soils on hillsides, cultivated or abandoned lands, and cliff crevices (Arnold 

et al., 2015). In the eastern Mediterranean regions, it is frequently found in sunny locations at 

low altitudes throughout Lebanon, Palestine, Jordan, and Syria (Kikowska et al., 2016). 

Hyoscyamus aureus L. 

A small herbaceous, uni-regional genus, the Hyoscyamus includes 20 species, occupying Europe, 

northern to north-eastern Africa, and the phytogeographical Sino-Japanese region (Nasir, 1985). 

The Hyoscyamus aureus (Golden Henbane) (Figure 3. 2a) is a glandular-villous perennial plant 

species with a golden yellow corolla having a purple throat. The species is present in several 

eastern Mediterranean countries such as Turkey, Cyprus, Lebanon, Iraq, Syria, Israel, Jordan, and 

Egypt (Brandes, 2002). H. aureus plants still grow on the old citadel walls of Jerusalem, where its 

pollen, along with pollen of other plant species, has been identified within the famed Shroud of 

Turin (Frei, 1983). 

  Figure 3. 2. Neighbor plants used in the experiment. (Shaiban, IMBE).  

   (a) Hyoscyamus aureus         (b) Eryngium creticum          (c) Echinops viscosus             (d) Aegilops triuncialis 
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Experimental design 

The experiment aimed to achieve the following: (1) test the effect of neighbor plants on two 

potential nurse plants – T. subterraneum (Fabaceae) and M. inaequiglumis (Poaceae); (2) test the 

contribution of soil properties (degraded ecosystem vs. reference Mediterranean dry grassland) 

on plant interactions; (3) test whether there are any significant priority effects between nurse 

plants and neighbors by either growing them together (at the same time- day 0) or separately 

(nurse plant planted 45 days earlier then neighbor plants); (4) test the effect of four different 

plant communities: one individual of one neighbor species; one individual of three neighbor 

species; one individual of four neighbor species; four individuals of one species similar to nurse 

plant species (Illustration 3. 1.). 

Soil collection  

The required soil for the mesocosm experiment, collected from a quarry (composed of reefal and 

dolomitic limestone), was considered the degraded ecosystem (Figure 3. 3a) existing near the 

small village of Maqneh in eastern Beqaa plain- Lebanon (Figure 2. 3.). The non-degraded soil, 

considered the reference ecosystem, was taken from the adjacent grazed Mediterranean dry 

grassland (Figure 3. 3b). This grassland, which lies within the Pre-Steppic Mediterranean 

Ensemble (MoA/UNEP, 1996), is characterized by the presence of some rare and endemic species 

(Campanula euclasta, Stachys nivea, Alcea damascena, and Astragalus roussaeanus), also 

specialized steppic species (Serratula cerinthifolia, Convolvulus 

dorycnium ssp. oxysepalus, Capparis spinosa ssp. Parviflora, Parietaria judaica, Alkanna 

orientalis, Hyoscyamus aureus, and Moluccella laevis). A bulk volume of 10 cubic meters was 

removed from both degraded and reference sites and conveyed by truck to the intended 

experiment location. 
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 Figure 3. 3 The two sites where seeds and soil were collected: 

          (a) The quarry, considered the degraded site.         (b) Nearby grassland as a reference site.                                            
…    …(Shaiban, IMBE)………………………                   …………... (Shaiban, IMBE) 

Seed collection  

As documented in scientific literature, local seed populations are superior to non-local ones 

(Kleinschmit et al., 2004), therefore required seeds for the experiment were collected from the 

nearest source populations to match the habitat as closely as possible (Vander Mijnsbrugge et 

al., 2010). The neighbor seed species Aegilops triuncialis, Echinops viscosus, Eryngium 

creticum, and Hyoscyamus aureus were collected by hand, after seed set (Sept. 2018), from the 

vicinity of the quarry within a radius of 0.2 Km. The collected seeds were conserved in a shady 

location to dry for one month by natural airflow. Subsequently, they were all placed into 

properly-closed plastic boxes, and a capsulated volatile insecticide, Naphthalene (C10H8), was 

applied to eradicate any insects alive, whether in the larval or adult stage (Romano, 1966). As for 

the required seeds of both nurse plants, those of M. inaequiglumis were collected following the 

same procedure as the target plants and in the same locality, whereas T. subterraneum seeds 

were imported from Fertiprado-France (5kg sealed bag) because no abundant quantity was 

locally available. A hundred seeds of each species were sampled for germination percentage in a 

growth chamber (temperature 15/20 ºC, 08/16h-night/day) at the Institute of Mediterranean 

Biology and Ecology Laboratory in Avignon, France. Coleoptile emergence, used as a proxy of 

germination, was recorded every 2-3 days for eight weeks (Table 3. 3.). 
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Mesocosm experimental site 

The experiment took place in a south-facing tunnel greenhouse (Figure 3. 4.) in the small village 

of Zahrieh, in Mount Lebanon, Lebanon (Latitude 33°88′47.9″, Longitude 35°70′65.6″), and at an 

altitude of 700 m.a.s.l.  

Figure 3. 4. The general setup of the mesocosm experiment in a tunnel- greenhouse.  
 (Shaiban, IMBE) 

Soil preparation and analyses 

Collected soil, shoveled from the top 5-10 cm layer of both degraded quarry and adjacent 

reference grassland (Figure 3. 5a, b), was moved to the intended experimental location, sieved 

through a 2-mm sieve mesh (Figure 3. 5c), mixed with perlite (ratio of 10:1) (Figure 3. 6a), and 

filled in 15 liters pots (33 cm diameter - 30 cm height). A 3 cm layer of pebbles (size 0.5-1cm) 

initially added at the bottom was separated from the soil by a Geotextile fabric layer purposed 

to prevent soil loss while permitting proper water drainage (Figure 3. 6b).  
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Figure 3. 5. Extraction, transportation, and preparation of soil from reference and degraded sites. (Shaiban, IMBE). 

  (a) Soil collection at 10 cm depth   (b) Soil removal from the site        (c) Soil sieving and preparation 

 

Figure 3. 6. Soil preparation, filling, and irrigation installation. (Shaiban, IMBE) 

  (a) Mixing perlite at a 10:1 ratio      (b) Barrier amid pebbles & soil     (c) Adding an irrigation system 

Ten soil samples, each weighing 100g, were randomly collected from the two sites, the reference 

ecosystem and the degraded ecosystem (five from each). The collected samples were dried and 

sieved through a 2-mm mesh to be tested later for physical and chemical characteristics at 

Teyssier Laboratory (Bordeaux-France). Both reference and degraded soils were analyzed for the 

following parameters (Table 3. 1.): particle-size distribution in 5 fractions without prior 

decarbonization (clay less than 0.002 mm, fine silt between 0.002-0.02 mm, coarse silt between 

0.2-2 mm, fine sand between 0.05-0.2 mm, and coarse sand between 0.2-2 mm) (Robinson & 

Friedman, 2003). Furthermore, soil chemical analysis were computed (Table 3. 2.): organic C 

(Allison, 1965), C: N ratio, total N by dry combustion (Bremner, 1996; Dumas, 1831), plant-

available P (Olsen et al., 1954), exchangeable K+ (Metson et al., 1956; Ciesielski et al., 1997), 

CaCO3- using a Bernard Calcimeter (Sparks et al., 1996), Cation Exchange Capacity (CEC), and pH 

water ratio 1:5 (Thomas, 1996).   
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Experimental procedure 

To evade potential setbacks during the early seedlings’ development phase and minimize weed 

competition, from seeds present in the soil seed bank of the original soil, all seeds utilized in the 

experiment were sprouted in germination trays (Figure 3. 7a) in a germination chamber at a 

temperature of 22/24 ºC, 08/16h-night/day. The germination mixture included two parts soil 

(from either reference or degraded environment) to one-part standard germination medium. 

After seed germination and growth of the first set of true leaves, all trays were moved to a 

greenhouse below a 50 % shade net. For three days, they were hardened and acclimatized to 

fluctuating day and night temperatures while gradually adapting to direct sunlight under 

greenhouse conditions (Figure 3. 7b). Finally, the seedlings were all transplanted to the 

designated pots (Diameter 32cm - Height 27cm) situated in full sun (Figure 3. 7c). 

Figure 3. 7. Seedling germinating, hardening, and planting. (Shaiban, IMBE)  

           (a) Germinating seed in trays         (b) Hardening seedlings                   (c) Transplanting seedlings to pots 

The 232 pots were sub-divided into two equal groups containing 116-pots each. The first group 

of the 116 pots was further subdivided equally into 58 pots filled with soil from the quarry 

(degraded ecosystem) and 58 pots filled from the nearby grassland (reference ecosystem). The 

germinated seedlings of either T. subterraneum or M. inaequiglumis were transplanted into the 

pots, along with (1) only one individual plant of E. viscosus, (2) three other species (A. triuncialis, 

E. viscosus, H. aureus), (3) four other species (A. triuncialis, E. viscosus, Er. creticum, H. aureus) 

(Illustration 3. 1.). The second set of 116 pots (of the initial 232 pots) was also equally divided 

into 58 pots filled with soil from the degraded ecosystem (quarry), and the remaining 58 pots 

were all filled from the reference ecosystem (nearby grassland). This set of 116 pots was planted 

equally with either an individual T. subterraneum or M. inaequiglumis seedling and set aside for 
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45 days allowing a head-start for the planted seedlings prior to replicating the formerly 

mentioned procedure (Illustration 3. 2.). 

All pots were arranged in a South-facing tunnel-greenhouse on a concrete surface (to eliminate 

undesired weeds) and spaced at an intra-and inter-raw distance of 20 cm. Pots were watered 

when soil surfaces dried to a depth of 1 cm. The irrigation was through a drip-irrigation system, 

with one online dripper (adjustable range from 0 to 40 lit/hour) attached by a 2mm spaghetti 

tube extended from a 16mm Polyethylene irrigation pipe (Figure 3. 6c). The irrigation water, 

supplied through a pump from an artesian well, was kept in a plastic tank to allow the settling of 

any soil particles before use. For two weeks before planting, pots were thoroughly watered, 

permitting the germination of voluntary weeds (from the filled natural soil) to be later removed 

with minimal soil disturbance. Moreover, throughout the experiment, all undesirable seedlings 

that germinated were removed.   

The experiment followed the competition protocol suggested by Gaudet and Keddy (1988, 1995), 

hence introducing a various number of seedlings/ pot (1 or 3, or 4 diverse seedlings) of different 

species (A. triuncialis, E. viscosus, Er. creticum, and H. aureus (Illustration 3. 1b, c, d) transplanted 

equidistantly into either reference or degraded soil type, with half planted at the exact planting 

date with one of the two tested nurse plant, and the second half at 45 days later (testing priority 

effect). For statistical significance, all combinations were replicated four times. 

Plant measurements 

The effect of neighbor plants on the two nurse plants (T. subterraneum and M. inaequiglumis) 

was evaluated at the end of the spring season. The timing coincided with the fruit-setting stage 

before the end of their annual cycle. The indicative functional trait calculated was the above-

ground biomass (Gaudet & Keddy, 1988; Rösch et al., 1997; Navas & Moreau-Richard, 2005) 

achieved by cutting all plants at the soil level, oven-drying at 50ºC for 48 hours, and finally 

weighing them on a digital balance (precision of ± 0.01 grams).  
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Analyses 

Protocol used  

The effect of neighbor plants on the phytometers T. subterraneum and M. inaequiglumis was 

calculated separately using the Relative Interaction Intensity Index (RII) to compute the plant 

biomass of the designated phytometers. All measurements taken were with respect to the 

existence and effect of neighbor plants in different communities, with only one neighbor plant, 

three plants, and four plants. The RII is the selected tool to calculate those interactions 

considering it possesses the following statistical and mathematical properties: (1) it is 

symmetrical with respect to zero, having identical absolute values for competition and 

facilitation. With a range from 0 to +1 designating ‘Facilitation’ whereas the range from -1 to 0 

designates ‘Competition’, (2) is linear, and (3) it has no discontinuity within its range (Howard & 

Goldberg, 2001; Armas et al., 2004; Liancourt et al., 2009). 

The RII was calculated according to the following equation: 

 

RIIresponse =
(Pwith n – Pwithout n)

(Pwith n + Pwithout n)
 

 

Where the RII response was that of the neighbor plant(s) (n) on the Phytometer (P). The 

phytometers measured were T. subterraneum and M. inaequiglumis. Whereas the neighbor 

plants were A. triuncialis, E. viscosus, Er. creticum, and H. aureus (Illustration 3. 1b, c, d). Also, the 

measurement of the RII response of neighbor plants of the same type as the nurse plant was 

considered only for T. subterraneum (Illustration 3. 1e). 

Statistical analyses 

All analyses were performed with R-3.6.0 (R Core Team 2020). To assess the competitive effect 

of T. subterraneum (ability to reduce the performance by neighbors), two-way ANOVAs or two-

way ART ANOVAs (Aligned Ranks Transformation ANOVAs) were performed on the RIIresponse. The 

interaction of three explanatory variables was tested for (1) the type of soil 

(reference vs. degraded), (2) the planting time (day0: P and n planted together vs. day45: P 

planted 45 days before n), (3) the identity of the neighbor species. ANOVAs were applied when 



154 
 

data responded to the hypotheses of normality and homogeneity of variance (RII calculated on 

Trifolium biomass). ART ANOVAs were performed when otherwise (RII calculated on Melica 

biomass) (Mangiafico, 2016). All were followed by pairwise contrast comparisons with a Tukey 

adjustment when significant. In order to find out if each RII was significant from zero, thus 

indicating competition or facilitation, a Wilcoxon test was performed on each level of explanatory 

variables. 

Results 

Effect of neighbor plants on Trifolium subterraneum biomass (RIIresponse) 

The result of the evaluation of the plant biomass parameter with respect to soil type (reference 

or degraded) and planting dates (simultaneously planted or 45 days apart) revealed that T. 

subterraneum biomass was affected (F=9.03, p=0.005**) in a negative manner due to the 

presence of neighbor plants (Figure 3. 8.), with a significant difference primarily in reference soil, 

when T. subterraneum was planted simultaneously with neighbor plants. 
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Figure 3. 8. Response of Trifolium subterraneum biomass to neighbors affected by the type of soil and 

planting date (F=9.03, p=0.005**) (n=4). The horizontal line marks RII=0, above which positive RII value 

indicates facilitation and below which negative values indicate competition. Bars sharing a letter were 

not significantly different from each other (p<0.05). Boxplots colored in blue show RII significantly 

different from 0 (tested by Wilcoxon test). 

 

Effect of neighbor plants on Melica inaequiglumis biomass (RIIresponse). 

The effect of neighbor plants on the RII biomass results for M. inaequiglumis showed a negative 

effect (F=7.04, p=0.014*), that was significantly evident on reference soil regardless of sowing 

patterns and on the degraded soil when the nurse plant and neighbor plants were planted at the 

same date (Figure 3. 9.) 
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Figure 3. 9. Response of Melica inaequiglumis biomass to neighbors affected by the type of soil and 

planting date (F=7.04, p=0.014*) (n=4). The horizontal line marks RII=0, above which positive RII value 

indicates facilitation and below which negative values indicate competition. Bars sharing a letter were 

not significantly different from each other (p<0.05). Boxplots colored in blue show RII significantly 

different from 0 (tested by Wilcoxon test).  

Discussion 

Although numerous studies in the literature support the positive role of nurse plants in 

facilitating other plants (Arriaga et al., 1993; Bertness & Callaway, 1994; Bertness & Hacker, 1994; 

Brooker et al., 2008; Pugnaire et al., 2011), our results fall under the stream of research 

considering competition, rather than facilitation, as the dominant factor governing interactions 

amongst different plant species (Ricklefs, 1977; Wilson, 1988; Goldberg & Barton, 1992; Casper 

& Jackson, 1997; Grace, 2012; Wright et al., 2014).   

Effect of neighbor plants on Trifolium subterraneum biomass 

In the previous chapter, competition (rather than facilitation) was the dominant effect 

amongst T. subterraneum, as a nurse plant, and various neighbor plant species. Nevertheless, 

when planted in a pure stand in degraded soils (even at low nutrient levels), T. 

Effect of Neighbor Species Planting Time and Soil 

Type on Melica inaequiglumis Biomass 
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subterraneum flourished. The results of this chapter support previous results, although through 

a different path - if not from an opposite angle.  

Investigating the effect of neighbor plants on T. subterraneum revealed competition translated 

through negative biomass RII values, especially in the reference soil (Figure 3. 8.). Analyzing initial 

soil test results taken from both reference and degraded soils (Table 3. 2.), permitted a better 

grasp of the outcome. These soil results showed a higher level of several essential elements in 

the reference soil when compared to the degraded one. For example, total organic matter was 

higher in reference (1.63 ±0.03 meq/100g soil) than in degraded soils (0.8 ±0.02 meq/100g soil). 

Phosphorus was higher in reference soil (58.6 ±0.4 mg/Kg) than in degraded soils (34.8 ±0.4 

mg/Kg), and so was total nitrogen (1068.2 ±27.7 mg/Kg in reference soil vs. 560 ±4 mg/Kg in 

degraded soil). This nutrient abundance in reference soil generated better growth of neighbor 

plants, exerting more competition towards the nurse plant T. subterraneum, ultimately reducing 

its biomass (Figure 3. 8.). This same fact was apparent, though less, in degraded soil, with lesser 

but still existing competition, by neighbors on T. subterraneum. One possible explanation for this 

would be the lower nutrients in degraded soil for similar plant growth, resulting in weaker 

competition towards the nurse plant. Furthermore, being vetch, T. subterraneum can perform 

better in poor soil due to the symbiotic relationships it can establish.  

Likewise, the simultaneous effect regarding planting time and the soil type on T. 

subterraneum biomass confirms the above deduction. Where the highest significant negative 

impact on biomass was evident when both nurse plant and neighbor were planted together in 

reference soil at day 0 (Figure 3. 9.). Considering the same treatment, still in reference soil, but 

with a 45 days window between planting T. subterraneum and neighbor plants, revealed a much 

less, though persistent negative effect from neighbors on T. subterraneum biomass. Moreover, 

when compared to those planted in degraded soil at day 0, the biomass results revealed a 

significant difference. Comparing the impact of neighbor plants on T. subterraneum in degraded 

soil with respect to planting time and soil type at day 0 and day 45 showed a negative effect. 

Furthermore, these results complement earlier discussions, primarily with neighbor plants 

growing in poor degraded soil resulting in poor plant growth, unable to affect nurse plant biomass 

negatively. Finally, there was no effect of neighbor communities on T. subterraneum biomass.  
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Effect of neighbor plants on Melica inaequiglumis biomass  

A significant effect was evident from the neighbor plants on M. inaequiglumis biomass in 

reference soils when planted together on Day 0 vs. neighbors planted 45 days later (Illustration 

3. 2.). The fact that the RII biomass value of M. inaequiglumis, planted 45 days earlier, was 

significantly better (though still negative) reinforces the priority effect concept. Regarding 

planting in degraded soil, neighbor plants grown 45 days behind the nurse plant exhibited an RII 

not different from zero (no facilitation nor competition) of neighbors on M. inaequiglumis grass 

(figure 3. 9.). This result highlights the importance of a head-start interval for the M. 

inaequiglumis grass as a nurse plant, especially in poor degraded soils. On the contrary, and yet 

in degraded soil, M. inaequiglumis biomass negative results suggested severe competition when 

planted the same day as neighbors. This competition could be due to the better efficiency of 

neighbor plants in utilizing the scarce nutrients available in such soils. Regarding competition for 

moisture (with perennials developing at a slower rate than annuals), it was not of critical effect 

in this case simply because (1) all plats were initiated as seedlings, and (2) when required, water 

was supplied regularly (via direct irrigation), therefore water was not a limiting factor. Finally, 

and similar to the results of T. subterraneum, there was no effect of neighbor communities on M. 

inaequiglumis biomass. 

Conclusion and perspectives 

Potentials of using Trifolium subterraneum as a nurse plant. 

Soil is essentially the basis for any intended quarry-restoration endeavor. Therefore, the initial 

reintroduction of soil as a surface layer is a crucial recovery step in any quarry planned for 

restoration (Zhang et al., 2018). Soil type, structure, thickness, physical and chemical properties, 

fertility, and water holding capacity (Oldeman, 1992; Ferreira et al., 2022) matter. Unfortunately, 

rarely can such characteristics be selected for or are easily manipulated in reintroduced topsoil 

layers intended for quarry restoration. Evidently, this renders soil tests a much-needed tool for 

deciding on various restoration strategies. Based on test results (texture, nutrient quantities, 

availability), a specifically suited restoration strategy could be adopted. One intriguing 

restoration decision could be the utilization of nurse plants. However, could such tests assist in 
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narrowing down on a specific type of nurse plant to be used? The research performed in Chapter 

2, also reconfirmed in this chapter (from a different perspective), envisages such possibilities.   

In restoration practices, while bearing in mind the previous overview, it is credible to state that T. 

subterraneum, as a nurse plant, could be a more suitable choice for restoring nutrient-deficient 

or poor reintroduced topsoil in degraded quarry sites rather than a rich reintroduced soil.  This 

consideration could be due to the following, (1) Considering the fact that T. 

subterraneum flourishes in poor soils, by capitalizing on nitrogen-fixing capabilities, along with 

results indicating that it might fail to thrive well in nutrient-rich soils amongst other native plants 

(Figure 3. 8.). Hence, it is imperative to test the soil before utilizing it as a nurse plant for 

restoration purposes. (2) To ensure it can perform its role as an appropriate nurse plant in 

restoring soils, the effect of neighbor plants should be delayed (Figure 3. 8.) if considering the 

priority effect concept- accordingly, separating its planting date from that of its neighbors. This 

fact overlaps with the results of Chapter 2, revealing that it is more promising to plant it initially 

alone and later reintroduce the intended seeds for restoration. 

Potentials of using Melica inaequiglumis as a nurse plant. 

As for M. inaequiglumis, it could to utilized as a nurse plant (taking into consideration results of 

the priority effect) by introducing into degraded soil and allowing it to establish solely, preferably 

for one growing season (since a 45-days-interval provided slight facilitation in degraded soil- 

Figure 3. 9.), before sowing other seed species purposed for restoration. Established M. 

inaequiglumis plants will conceivably facilitate newly seedlings through the following: (1) As a 

deciduous perennial grass, Melica will go dormant and dry up in mid-summer (Ketabi et al., 

2004), leaving behind abundant organic material suitable for degraded soil enrichment along 

with enhancement of its water holding capacity - Two essential components for newly 

established seedlings. (2) With an extensive fibrous root system, M. inaequiglumis (Poaceae) 

forms a thick well-spread mat stabilizing and reducing soil erosion (Kumari & Saggoo, 2016), 

preserving it to the benefit of delicate germinating seedlings. (3) When a new growing season 

picks up, dormant Melica plants (being a caespitose rhizomatous deciduous perennial grass 

(Clayton et al., 2012)) will re-emerge, develop, and clump, ultimately aiding in protecting and 
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nourishing any seeds or fragile seedlings in their vicinity (Maestre et al., 2001) through 

microclimate amelioration (mitigating cold weather, harsh summer sun, dry wind…).     
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Tables – Illustrations 

Tables 
 

Soil Type Df F P-value 
Reference soil 

2018 
Degraded soil 

2018 

Clay (g/Kg soil) 3 36.44 < 0.001 209.6 ± 9.8 a 251.2 ± 14.6 b 
Fine Silt (g/Kg soil) 3 1.18 0.35 324.4 ± 5.0 a 388.2 ± 12.7 a 
Coarse Silt 
(g/Kg soil) 

3 40.39 < 0.001 117.4 ± 2.7 a 116.7 ± 4.9 a 
Fine Sand 
(g/Kg soil) 

3 52.8 < 0.001 145.0 ± 5.5 a 101.0 ± 5.2 c 
Coarse Sand 
(g/Kg soil) 

3 39.1 < 0.001 203.8 ± 7.7 a 143.2 ± 17.4 b 
          Table 3. 1. Results of physical soil analyses performed for in-situ degraded soils and 

in-situ reference soils in 2018. 

 

Soil Tests 
Performed 

Df F P-value 
Degraded 
Soil 2018 

Reference 
Soil 2018 

CEC 
(meq/100gsoil) 

4 19.8 <0.001 14.7 ± 0.5 a 12.16 ± 0.2 b 

pH Water 4 51.6 <0.001 8.6 ± 0.03 a 8.4 ± 0.02 b 

pH KCl 4 4.4 0.01 7.8 ± 0.02 a 7.74 ± 0.02 b 

Total Carbonates 4 11 <0.001 68.2 ± 0.4 a 71.4 ± 0.4 a 

Total OM 4 20.5 <0.001 0.8 ± 0.02 a 1.63 ± 0.03 c 

P2O5 Olsen 
(mg/Kg Soil) 

4 83.9 <0.001 34.8 ± 0.4 a 58.6 ± 0.4 d 

K2O 
(mg/Kg Soil) 

4 28.3 <0.001 300.2 ± 4.6 a 313.6 ± 7.7 a 

MgO 
(mg/Kg Soil) 

4 99.8 <0.001 461.6±9.1ab 325 ± 4.1 c 

CaO 
(mg/Kg Soil) 

4 15.4 <0.001 11140±80.5a 10962±79.1a 
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Table 3. 2. Results of chemical soil analyses performed for in-situ degraded soils 

and in-situ reference soils in 2018. 

 

 

Table 3. 3. Seed germination percentages based on coleoptile emergence as a proxy of germination 

under controlled laboratory conditions during an 8 weeks period. 

 

 

 

 

 

 

 

 

 

 

Na2O 
(mg/Kg Soil) 

4 198.3 <0.001 21.8 ± 0.4 a 18 ± 0.8 a 

N total 
(mg/Kg Soil) 

4 52.5 <0.001 560 ± 4 a 1068.2±27.7c 

Carbon 
(mg/Kg Soil) 

4 20.5 <0.001 4.6 ± 0.1 a 9.5 ± 0.2 c 

C:N ratio 4 4.7 0.008 8.3 ± 0.2 a 8.9 ± 0.4 a 
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Illustrations 
 

 

Illustration 3. 1. Plant arrangements in pots. 
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Illustration 3. 2. Schematic design for the experiment. Where T. sub is Trifolium subterraneum- M. ina is Melica 

inaequiglumis- NC is Neighboring Community with 1, 3, or 4 plants of different species/ pot. 
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The first objective of the thesis was to perform an extensive literature review regarding the 

different factors influencing the successes and failures of hydroseeding as a technique in the 

restoration of degraded semiarid Mediterranean environments (chapter 1). In view of this 

bibliographical review, we then considered an option of utilizing a cheaper and more natural 

based solution to aid in the restoration of such degraded environments, particularly the soil and 

herbaceous vegetation of degraded quarries- the use of ‘Nurse Plants’ (chapter 2). Those native 

plant species can potentially assist the establishment of introduced native plant species intended 

for quarry restoration. Finally, building on previous results, the effect of neighbors on two nurse 

plants was evaluated at varied plant complexities in different soil types (degraded quarry and 

surrounding reference ecosystem) and assessed when planted on the same or at separate dates 

(chapter 3). 

Contribution toward a better understanding of quarrying status in Lebanon 

Considered an important biodiversity hotspot, the Mediterranean Basin (Médail & Quézel, 1997) 

has been influenced by humans in some very intensive and extensive manner throughout the last 

10,000 years, leading to ‘anthropogenic’ plant communities (Naveh & Kutiel, 1990), and resulting 

in extensively degraded areas (developed in the General Introduction section). Being located at 

the eastern end of the Mediterranean Basin, Lebanon, shares the same ecological woes; habitat 

fragmentations and losses, unsustainable exploitation of natural resources, pollution, invasive 

species, and climate change (MoE/UNEP/GEF, 2016) are all significant environmental stresses 

affecting the country (Section 1- Semiarid Mediterranean Environment Habitats). Unfortunately, 

from all previously cited ecological dire facing Lebanon, quarries are one of the most severe and 

pressing environmental issues (Section 1- Lebanon- a multi-challenging environment). With 

approximately 1,300 quarries causing extensive damage, destroying natural habitats, and 

changing landscape patterns (Khater et al., 2003). Regrettably, only a few quarries have 

undergone rehabilitation (MoE/UNDP/ECODIT, 2011). One such neglected quarry, located in the 

vicinity of Maqneh (a small village in the Beqaa plain near the Syrian border- refer to section 1, 

Quarries in Lebanon), was the one whose degraded soil and that of the surrounding reference 

grasslands soil, were used in the ex-situ experiments. 
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Contribution of the thesis to practical ecological restoration practices 

Harsh dry summers followed by wet winters dictate a short growing season between the fall and 

spring periods of the year (Blondel & Aronson, 1999), rendering ecological restoration a 

challenging task in Mediterranean drylands (Cortina et al., 2011) (General Introduction- semiarid 

Mediterranean Environment Habitats). The work in this thesis revised the challenges facing 

hydroseeding practice in restoring semiarid Mediterranean environments, also assessing two 

plant species, a legume (T. subterraneum – Fabaceae) and a grass (M. inaequiglumis- Poaceae), 

as potential nurse plants to aid in restoring degraded quarries in a semiarid Mediterranean 

environment (chapters 1, 2, & 3).  

Challenges facing hydroseeding practice in restoring semiarid Mediterranean 

environments 

Using Hydroseeding as a restoration tool in a degraded Mediterranean environment 

(chapter 1) necessitates an in-depth understanding of several essential variables enabling one to 

overcome numerous obstacles. Those variable restrictions could be (I) biotic or (II) abiotic factors, 

further sub-categorized into (a) natural or (b) human-induced. In summary, (I-a) biotic natural-

influenced factors such as weed competition and seed predation (grazing or pathogenic attacks); 

(I-b) biotic human-influenced factors involving the species in seed mixtures: Different types, 

percentage of various seeds, presence of native seeds, their morphological features, individual 

growth rates, and mycorrhizal inoculation. The abiotic factors were also further sub-divided into 

(II-a) abiotic natural-environmental factors related to site topography, aspect, edaphic 

characteristics, and water availability; and (II-b) abiotic human-influenced factors associated with 

the kind of aqueous solution utilized, the slurry component used, intervention season, watering, 

soil addition, and mulching. 

Native species as potential ‘Nurse Plants’ used in restoring degraded quarries 

This thesis permitted the assessment of two plant species, a legume (T. subterraneum– 

Fabaceae) and a grass (M. inaequiglumis – Poaceae), as potential nurse plants aiding in restoring 

a degraded quarry (chapters 2 & 3).  

The studies, performed under ex-situ conditions, promoted more comprehension of 

plant-plant collaborations. Such interactions are associated with plant communities in semiarid 
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Mediterranean grasslands, with the possible use of native plants (from that same habitat) as 

nurse plants to aid in the rehabilitation of degraded systems. The outcome from this semi-

controlled interspecific interaction experiment indicated that with both nurse plants, 

competition rather than facilitation dominated the interactions amongst the studied plant 

species, deducted thru measurements of different indicative traits. Nevertheless, it is possible to 

reason that such manipulations could yet be another step in the advancement of both 

fundamental and experimental research. When it comes to practical conservation and 

restoration processes, such results are also intriguing since they could provide diverse ways and 

means that might aid in detecting potential nurse plant species or structuring species capable of 

increasing the successional dynamics of a plant community. Although ex-situ studies cannot 

substitute in-situ experimentations (Forero et al., 2019), they could be the first step in selecting 

different designs, management methods, and various species needed to utilize in any ecological 

restoration procedure with less costly in-situ settings. 

In-depth discussion of facilitation among plants, and the role of nurse plants. 

Since the introduction of the plant-to-plant interaction concept in the early twentieth 

century, competition rather than facilitation, unfortunately, has been assumed to govern the 

interactions among plants in communities (chapter 2). This kind of interaction seems an obvious 

postulate since plants use those same limited and essential resources - that get even more 

restricted upon depletion. For decades, facilitation, as a concept, was mainly ignored and 

discarded from mainstream ecology until the last decade of the twentieth century, when its 

importance gradually increased. This new interest revealed numerous proofs that facilitation 

ameliorates the surrounding environments of other plants into more favorable ones. It also 

highlighted the momentous concept that facilitation escalates, in correlation, with increasing 

environmental stress, defined as any external factor or several factors that cause an individual or 

population to be less fit, diminishing its ability to regenerate biomass from energy. Those strains 

can be physical (direct effects of wind, waves, currents, etc.), physiological (droughts, 

temperatures, salinity, etc.), or even biotic in nature (predation, competition, disease, etc.). In 

literature, several microhabitat changes have been attributed to plants facilitating other plant 

species, either through direct positive mechanisms or indirect mechanisms. Direct mechanisms 
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involve modifications in soil, moisture, light, temperature, etc. Whereas indirect ones would 

entail incidental pollination, protection from herbivores, etc. 

Facilitation, as a mechanism, has been noted to shift roles with competition amidst a shift 

in environmental stress. This alteration- termed Stress Gradient Hypothesis (General 

Introduction – ‘Nurse Plant’ concept as a restoration tool- Stress Gradient Hypothesis) - revolves 

around facilitation being prevalent in communities under high-stress factors, and on the contrary, 

it is less dominant in relatively benign conditions with less pressure thus, competitive interactions 

dominate. The SGH theory has been assessed under different factors, conditions, and habitats, 

amidst conflicting results, with some scientists applauding its validity while others criticized it 

(General Introduction – ‘Nurse Plant’ concept as a restoration tool- Stress Gradient Hypothesis- 

Critics of Stress Gradient Analysis).   

A particular type of facilitation involving interactions between plants and various 

seedlings is the ‘Nurse Plant’ (General Introduction – ‘Nurse Plant’ concept as a restoration tool). 

It is the situation where mature plants have positive ‘nursing’ effects on seedlings, of the same 

or different species, under their canopy, compared to seedlings present outside their shelter. 

Theoretically, nursing mechanisms can affect varied stages of the beneficiary plants’ life, 

buffering and ameliorating non-optimal environmental situations (Bertness & Callaway, 1994). 

Its assistance can cross-thru seed trapping, seed sprouting, the sapling stage, moving through the 

different growth phases, and finally ending at reproduction. The literature cites tens of roles a 

nurse plant could achieve: rainfall capturing (Maestre et al., 2009), shade creation (thus 

decreasing soil water evaporation and dropping temperatures), frost-effect reduction, 

windbreaks (Lortie & Callaway, 2006), increasing seed trapping rates (Giladi et al., 2013), soil 

fertility enhancing (via litter accumulation) (Walker et al., 2001), predator protection (guarding 

seedlings against grazing, trampling, or reducing palatability) (Barbosa et al., 2009), and indirectly 

enhancing soil chemistry through mycorrhizal-colonization assistance.  

How can the two tested nurse plants be employed in practical restoration practices? 

Although results attained from the study, by calculating the RII, showed the prevalence 

of competition rather than facilitation among most plants. The initial results, especially with 

Trifolium forming compact swards (Gosling, 2005), revealing competition towards neighbor 
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plants, consequently, an inhibitory effect. The following year's results showed that incorporating 

the debris of T. subterraneum (chapter 2) into the soil will lead to a notable increase in organic 

matter (Gosling, 2005) significantly increasing total soil carbon and nitrogen. An increase in such 

essential elements will sequentially aid the re-establishment of soil fertility in degraded quarries. 

Another result worth highlighting is the facilitation of T. subterraneum as a nurse 

plant towards T. subterraneum as a neighbor plant, i.e., a pure stand of T. subterraneum. The 

outcome of such a combination can be profited from, as a soil restoring strategy, by establishing 

it the first year in a pure stand form as a foundation species (Coiffait‐Gombault et al., 2012). This 

practice is highly desirable due to its several diverse and desirable qualities (dense, low 

spreading, annual plant, also being a legume). Later on, its dried biomass is mixed into the topsoil 

by small ungulates (goats or sheep) trampling. As a final step, during the next growing season, 

the seed mixture intended for restoration could be introduced.  

As for the other tested nurse plant, M. inaequiglumis, the obtained results also revealed 

competition, from neighbor plants, rather than facilitation as a net outcome (chapter 3). Yet, a 

possible way to benefit from those results could be via capitalizing on the priority effect concept. 

Consequently, establishing M. inaequiglumis, unaccompanied, in degraded soils for a whole 

season, before introducing any seeds of species intended for restoration or any grazing strategy. 

Accordingly, capitalizing on its qualities being a perennial deciduous grass (thus, supplying the 

soil with ample OM in a short period), with an extensive hair-like root system (thus, knitting soil 

and reducing erosion), and ultimately regenerating the second season (accordingly, have the 

possibility of creating a favorable microclimate for newly germinating seedlings present in its 

vicinity), especially with an appropriate grazing regime. 

Research perspectives 

The fact that the obtained results of both nurse plants exhibited, in most situations, competition 

(at times in both directions) rather than facilitation towards neighbor plants does not reduce 

existing potentials in those two nurse plants as a natural restoration tool. Despite the protocol 

suggested by Gaudet and Keddy (1988, 1995) that aided in assessing whether facilitation or 

competition was present in an ex-situ setting (tested by the RII) is a simple yet very efficient and 

precise tool to evaluate the type of interaction present (Howard & Goldberg, 2001; Armas et al., 
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2004; Liancourt et al., 2009). Some pioneers in the plant-facilitation field criticized the 

performance of such interactions in a greenhouse setting, claiming that studies of plant 

interactions in a greenhouse will almost always illustrate competition rather than facilitation. In 

a published book 'Positive Interactions and Interdependence in Plant Communities' Callaway 

(2007) debated that “cramming several plants into a restricted area reduces their niche options, 

because conditions in greenhouses tend to be so benign that neighbors can have no real effects 

on the harsh conditions that exist in the real world”. He backs up his arguments by stating 

examples like steady water supply, protection from winds as buffers, high atmospheric humidity, 

and high moisture effects in the vicinity of leaves. All those factors present in a greenhouse 

setting might lead to stress reduction, conclusively rendering facilitation less likely. Callaway 

concluded that without the presence of real-life stress situations, any performed study is notably 

less possible to deliver facilitation (Callaway, 2007). 

 

  

Repetition of the same experiments in an in-situ setting- the quarry 

To verify whether the preceding arguments are credible similar experiments could be 

implemented, but in a quarry setting instead (in-situ). Initially, several of the overpowering 

variables mentioned in Chapter 2 (grazing, pedestrian circulation, site securing, and permits…) 

must be addressed. In theory, the experiment could be repeated in the same manner (chapter 2 

- Material and Methods) but with some minor technical modifications suitable for an in-situ 

setting. Those modifications could consider the following: (1) Replacing tray-seed sowing and 

transplanting with direct on-site seeding at proper timing, in a fenced protected location, at the 

degraded quarry site, (2) Initiation of the experiment towards November, to rely on rain-fed 

watering, rather than the supplied irrigation water in the greenhouse, (3) Prior to the initiation 

of the second phase of the experiment, some ungulates to be shortly introduced to graze and 

trample the area.  
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Implementing the results of the ex-situ experiments in an in-situ setting 

To capitalize on the results of the experiments, summarized as follows: T. 

subterraneum could be planted in an in-situ setting as a pure stand in the first year, followed in 

the second year by the seed mixture intended for restoration. The following experiments with 

different objectives could be undertaken, in an in-situ setting (quarry), (1) Assess total OM, 

nitrogen, & C levels pre-and post-application. (2) Testing the efficiency of T. subterraneum, as a 

nurse plant, in providing control, for example, towards erosion (due to its dense ground-hugging 

nature), shade, wind, or cold protection. (3) Testing quantity, density, and influence of voluntarily 

emerging T. subterraneum saplings in the second year (being a geocarpic plant) as potential 

nurse plants. (4) Testing best grazing practices regarding T. subterraneum with respect to time, 

intensity, and type. 

As for M. inaequiglumis, the experimenting with it within an in-situ setting, by capitalizing 

on the fact of being a perennial grass. Consequently, its use as a nurse plant for restoration 

practices can be further investigated in an in-situ setting based on the following qualities: (1) 

being a perennial hence, examination of its nursing effect on saplings in the vicinity. Additionally, 

being a caespitose rhizomatous, with dense clump characteristics qualifies it as a nurse plant with 

capabilities of trapping wind or water drifted seeds, amassing water, creating shade, ... (2) The 

evaluation of M. inaequiglumis potentials (with its deep, extensive, and well-spread fibrous root 

system) for erosion control, especially in newly degraded areas. (3) Assessing the aspect of having 

a growing season commencing in fall, benefiting from natural rainfall and early growth and 

establishment initiation, with its effect on spring germinating seedlings.  

Effect of inoculation of Trifolium subterraneum seeds with Rhizobium sp. 

In the course of both experiments, and especially during the early establishment phase, some T. 

subterraneum seedlings (about 5-7% of the total number) failed to develop and grow, retaining 

weak yellow postures. Being a legume with nitrogen-fixing capabilities (Ferreira & Castro, 

2005), T. subterraneum could form a symbiotic relationship with the bacteria Rhizobium 

leguminosarum var trifolii (Sanford et al., 1994). Unfortunately, visual roots examination of the 

lagging saplings exposed a lack of Rhizobial nodules. Thus, a possible follow-up on the issue in a 

future experiment could include an experimental design with inoculation (or without) of T. 
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subterraneum (as nurse plants designated for restoration) with Rhizobium sp. Hypothetically, 

those inoculated plants should establish faster, set added vegetative growth, enrich the soil with 

nitrogen, and ultimately benefit the intended target plants.  

Testing the priority effect principal  

 In the course of the second experiment, the concept of priority effect was tested by 

spacing the planting date between the nurse and the neighbor plants by a 45 days interval. 

Results (Refer to the Discussion section in Chapter 3) indicated the presence (though weak) of a 

priority effect. This concept could be experimented upon further through different scenarios: (1) 

Creating various planting times between the tested nurse and neighbor plants to experiment 

priority effect concept. (2) Testing this concept within an in-situ setting (directly in the quarry), 

where the tested nurse plant could be introduced earlier, and later introduce intended target 

plants. 
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