
HAL Id: tel-04075299
https://theses.hal.science/tel-04075299

Submitted on 20 Apr 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Detection of Micro-Architectural Attacks in
Resource-Limited Devices with a Local-Remote Security

Mechanism
Nikolaos Foivos Polychronou

To cite this version:
Nikolaos Foivos Polychronou. Detection of Micro-Architectural Attacks in Resource-Limited Devices
with a Local-Remote Security Mechanism. Micro and nanotechnologies/Microelectronics. Université
Grenoble Alpes [2020-..], 2023. English. �NNT : 2023GRALT003�. �tel-04075299�

https://theses.hal.science/tel-04075299
https://hal.archives-ouvertes.fr

THÈSE
Pour obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ GRENOBLE ALPES

École doctorale : EEATS - Electronique, Electrotechnique, Automatique, Traitement du Signal (EEATS)
Spécialité : NANO ELECTRONIQUE ET NANO TECHNOLOGIES
Unité de recherche : CEA Grenoble (hors LETI et LITEN)

Détection d'Attaques Microarchitecturales dans des Dispositifs à
Ressources Limitées avec un Mécanisme de Sécurité Local-Distant

Detection of Micro-Architectural Attacks in Resource-Limited Devices
with a Local-Remote Security Mechanism

Présentée par :

Nikolaos Foivos POLYCHRONOU
Direction de thèse :

Vincent BEROULLE
Professeur des Universités, Université Grenoble Alpes

Directeur de thèse

Pierre-Henri THEVENON
 CEA

Co-encadrant de thèse

Maxime PUYS
 CEA

Co-encadrant de thèse

Rapporteurs :
Guy GOGNIAT
PROFESSEUR DES UNIVERSITES, University Bretagne Sud
Lilian BOSSUET
PROFESSEUR DES UNIVERSITES, University Jean Monnet

Thèse soutenue publiquement le 16 janvier 2023, devant le jury composé de :
Vincent BEROULLE
PROFESSEUR DES UNIVERSITES, University Grenoble INP-UGA
Guy GOGNIAT
PROFESSEUR DES UNIVERSITES, University Bretagne Sud
Lilian BOSSUET
PROFESSEUR DES UNIVERSITES, University Jean Monnet
Gilles SASSATELLI
DIRECTEUR DE RECHERCHE, CNRS/University of Montpellier
Laure GONNORD
PROFESSEUR DES UNIVERSITES, University Grenoble INP-UGA

Directeur de thèse

Rapporteur

Rapporteur

Président du jury

Examinatrice

Invités :
Pierre-henri THEVENON
INGENIEUR DOCTEUR, CEA Grenoble
Maxime PUYS
INGENIEUR DOCTEUR, CEA Grenoble

ACKNOWLEDGEMENT

I would like to thank my parents for their support
whenever it was necessary.

I would also like to thank my supervisors, for their time,
support, and advises, which allowed me to progress in my
thesis and further develop professionally and personally.

I would like to ask the members of the jury and the reviewers
for their presence and evaluation of my work.

i

ABSTRACT

Internet of Things (IoT) and Industrial Internet of Things (IIoT) have made their way
into our daily lives, and with them the dangers associated with their use. These usu-
ally inexpensive devices often lack security features or security guarantees because of
a desire to reduce development costs. This lack of security comes despite the use of
IoT in many critical applications, such as medical devices, industrial sensors, etc. As
they remain vulnerable, they are increasingly targeted by attackers, increasing the cost
of recovery due to cyberattacks year over year. Traditional security techniques, such as
antivirus software, can successfully identify known threats, but they cannot cope with
the increasing amount of malware and malware obfuscation techniques.

Malware are typically applications that are covertly inserted to compromise the confi-
dentiality, integrity, or availability of systems. Obfuscation is a technique used by mal-
ware authors to modify the behavior and code, but not the actual final goal, of the
malicious application to bypass security mechanisms implemented in the system. One
of the most well-known IoT malware is Mirai [1], which infected many IoT devices to
create a botnet to launch a Distributed Denial-of-Service (DDoS) attack. But due to the
complexity of modern systems, a new class of Software Attacks Targeting Hardware
Vulnerabilities (SATHV) has emerged. This class of attack, which traditionally targets
high-end computers such as desktops, is increasingly being used on IoT devices. This is
because these devices are equipped with more complex systems to meet increasing de-
mands on computing andmemory resources, such as the emergence of edge-computing
and edge-device Machine Learning (ML). This new class of attacks is particularly dan-
gerous because they can extract sensitive information from the system by exploiting
hardware vulnerabilities and also remain undetected by traditional security solutions
such as antivirus or dynamic analysis ofApplication Programming Interface (API) calls
[2], [3].

This is driving security designers to implement more robust security mechanisms. A
hot area of research in recent years has been the use of low-level micro-architectural
events to provide us with information about the operation of various hardware compo-
nents. We are able to measure these micro-architectural events using special registers
called Hardware Performance Counters (HPCs), which are part of the Performance

ii

Monitoring Unit (PMU). Using this low-level information, we can profile the operation
of the components under normal and malicious conditions. Using ML techniques, re-
searchers are trying to train their systems to recognize the behavior of the system under
normal and under attack conditions. But despite the improvements in malware detec-
tion and accuracy that theseML-HPCs techniques have shown, these security solutions
do not fit the context of IoT devices. IoT are characterized by their low computational
and memory resources, and any implementation that imposes significant overhead on
the system will not be adopted by IoT vendors. In addition, IoT devices are connected
to the Internet and exchange data with a data center, so communication bandwidth is
as important as computing resources.

In this thesis,we investigate the ability ofML-HPCs techniques to defend against SATHV
and cyber-attacks at runtime. We use low-level information provided by the HPCs to
build a robust model against malware and obfuscated malware. We pay particular at-
tention to micro-architectural attacks, which have been a major security threat to sys-
tems in recent years due to their ability to leak unprivileged information undetected.
We also propose a novel technique to detect malware in low-resource devices such as
IoT. The proposed idea aims to accurately detect malicious activities on the edge-device
while taking into account all the constraints thatmodern IoTdevices bring, such as over-
heads in performance, memory, and communication bandwidth. We implement and
evaluate the proposed idea and show that it is capable of efficiently detecting malware
in modern low-resource devices.

Keywords– IoT, IIoT, security, attacks, hardware vulnerabilities, side-effects, detection,
detection mechanisms, edge-computing

iii

ABSTRACT FRANCAIS

Les dispositifs de l’internet des objets (IoT) et de l’IoT industriel (IIoT) sont de plus en
plus présents dans le monde, notamment dans applications critiques, telles que les ap-
pareils médicaux ou les systèmes industriels. Pour des raisons de coûts et de temps de
développements optimisés, la mise en place de sécurité dans ces solutions est souvent
mal ou pas prise en compte. Ce manque de sécurité et leur connexion à des réseaux
de grande envergure en font une cible de choix pour des attaquants. Les solutions de
sécurité traditionnelles, telles que les logiciels antivirus, peuvent identifier avec succès
les menaces connues, mais ne peuvent pas faire face au nombre croissant de logiciels
malveillants et à leurs techniques d’obscurcissement. Ces logiciels malveillants sont
généralement des applications qui sont insérées discrètement pour compromettre la
confidentialité, l’intégrité ou la disponibilité d’un système. L’un des malwares IoT les
plus connus est le malware Mirai, qui a infecté de nombreux dispositifs IoT pour créer
un botnet et lancer une attaque par déni de service distribué (DDoS). La complexité
des architectures de processeurs récents a introduit une nouvelle classe d’attaques logi-
cielles ciblant des vulnérabilités matérielles (SATHV). Cette classe d’attaque, qui vise
traditionnellement les ordinateurs haut de gamme comme les ordinateurs de bureau,
peut également être appliquée aux dispositifs IoT. En effet, ces appareils sont équipés
de processeurs plus complexes pour répondre aux demandes croissantes en matière
de ressources de calcul et de mémoire, comme l’émergence de l’edge-computing ou du
Machine Learning (ML). Ces nouvelles attaques sont particulièrement dangereuses car
elles peuvent extraire des informations sensibles du système et ne peuvent être détec-
tées par des solutions de sécurité traditionnelles comme les antivirus ou par l’analyse
dynamique des appels système.

Cette situation pousse les concepteurs de sécurité à mettre en œuvre des mécanismes
de sécurité plus robustes. Ces dernières années, un état de l’art important s’est con-
stitué sur l’utilisation de données provenant des micro-architectures pour fournir des
informations sur le fonctionnement de divers composants matériels afin de détecter
des attaques. Ces événements micro-architecturaux peuvent être récupérés à l’aide de
registres spéciaux appelés compteurs de performances matérielles (HPC), provenant
de l’unité de surveillance des performances (PMU). Grâce à ces informations de bas

iv

niveau, il est possible d’établir un profil de fonctionnement du processeur dans des
conditions normales et malveillantes à l’aide de techniques de machine learning (ML).
Malgré les améliorations enmatière de détection de logiciels malveillants, ces solutions
de sécurité ne sont pas toujours adaptées aux contraintes des solutions IoT qui disposent
de faibles ressources de calcul et de mémoire et une bande passante de communication
restreinte pour la remontée de données.

Dans cette thèse, nous étudions la capacité des techniques ML-HPCs à détecter les at-
taques de type SATHV en temps réel. Nous utilisons les informations de bas niveau
fournies par les HPCs pour construire unmodèle robuste contre cette classe de logiciels
malicieux.Nous accordons une attentionparticulière aux attaquesmicro-architecturales,
qui ont constitué une menace majeure pour la sécurité des systèmes ces dernières an-
nées en raison de leur capacité à faire fuiter des informations sensibles sans être détec-
tées. Nous proposons également une nouvelle technique pour détecter avec précision
ces logiciels malveillants dans des dispositifs embarqués en prenant en compte leurs
limitations en terme de performance, de mémoire et de bande passante. Nous mettons
en œuvre et évaluons l’idée proposée et montrons qu’elle est capable de détecter effi-
cacement les logiciels malveillants dans les dispositifs modernes à faibles ressources.

Keywords– IoT, IIoT, sécurité, attaques, vulnérabilitésmatérielles, side-effets, détection,
mécanismes de détection, edge-computing

v

TABLE OF CONTENTS

1 Introduction 1
1.1 Thesis Context . 2

1.1.1 Introduction to the problem . 4
1.1.2 Threat Model . 6

1.2 Thesis Objectives . 7
1.3 Contributions . 8
1.4 Thesis Outline . 9
1.5 Publication List . 10
1.6 Introduction francais . 11

2 Background and State Of The Art 27
2.1 Malware and Software Attacks Targeting Hardware Vulnerabilities . . . 28

2.1.1 Software Attacks . 29
2.1.2 Hardware Attacks . 30
2.1.3 Software Attacks Targeting Hardware Vulnerabilities 31
2.1.4 Malware Classification . 40

2.2 Malware Detection . 40
2.2.1 Static Analysis . 42
2.2.2 Dynamic Analysis . 43

2.3 HPC-based Malware Detection, State of the Art 47
2.3.1 Machine Learning and Security . 47
2.3.2 State of the Art, SATHV Detection 48
2.3.3 State of the Art, Generic HPC Malware Detection for IoT 52
2.3.4 Summary . 53

2.4 Background on Machine Learning and Feature Extraction 54
2.4.1 Supervised ML . 54
2.4.2 Un-Supervised ML . 61
2.4.3 Supervised vs Unsupervised Machine Learning Models 66
2.4.4 Feature Extraction . 66

2.5 Summary . 69

vi

3 Local Detection of Software Attacks Targeting Hardware Vulnerabilities Us-
ing HPCs and ML 71
3.1 Motivations of the Work . 72
3.2 Theoretical Side-Effects for SATHV Detection 72
3.3 Practical Side-Effect Evaluation . 78

3.3.1 Effectiveness of Proposed Solutions on our PlatformUsing an Ex-
tended Set of SATHV . 79

3.4 Evasive Malware and Monitoring Interval 84
3.5 MaDMAN: Detection of Software Attacks Targeting Hardware Vulnera-

bilities . 91
3.5.1 Methodology . 93
3.5.2 Results . 98

3.6 Summary . 106

4 A Local-Remote Implementation For The Detection of Attacks in Resource
Constrained Systems 109
4.1 Motivations of the Work . 110
4.2 Introduction to the Local-Remote Detection Mechanism 111

4.2.1 Local ML Implementation . 114
4.2.2 Remote ML Implementation . 119

4.3 Local-Remote Parameter Configuration and Evaluation 124
4.3.1 Experimental Platform . 127
4.3.2 HPC Event Selection . 127
4.3.3 Performance Metrics of Different ML Algorithms 128
4.3.4 Local-Remote Implementation Detection Metrics 131
4.3.5 Local-Remote Filtering and Communication Bandwidth 133
4.3.6 False Positives Reduction using an Isolation Forest 137
4.3.7 Isolation Forest Strategy Evaluation 140
4.3.8 Evaluation of the Local MLs Overheads on the Local System . . . 141
4.3.9 Remote ML Latency Evaluation . 143

4.4 State Of the Art Comparison . 145
4.5 Summary . 147

5 AHardware-based Local DetectionMechanism for the Security enhancement
of the Local-Remote approach 149
5.1 Motivations of the work . 150
5.2 Software attacks targeting the local detection mechanism 150
5.3 Local ML hardware implementation . 156

vii

5.4 Hardware Local ML Evaluation . 164
5.4.1 Hardware and Software Logistic Regression Metrics 164
5.4.2 Hardware and Software Sigmoid Evaluation 167

5.5 Conclusion . 172

6 Conclusion and Perspectives 175
6.1 Summary of the contributions . 176
6.2 Limitations and tracks for improvements 178
6.3 Long term perspectives . 180
6.4 Final words . 185

Appendices i

A Appendix A ii
A.1 HPC modification by a user-space application ii
A.2 Hardware Local ML implementation . v

viii

1
Introduction

1.1 Thesis Context . 2

1.2 Thesis Objectives . 7

1.3 Contributions . 8

1.4 Thesis Outline . 9

1.5 Publication List . 10

1.6 Introduction francais . 11

1

1.1 Thesis Context

Internet of Things (IoT) and Industrial Internet of Things (IIoT) devices are growing
in popularity and now account for a significant portion of the computing device mar-
ket. IoT and IIoT range from simple to more complex devices. Their main principle is to
interact with the user or the environment and exchange data mainly through a commu-
nication interface. IoT and IIoT can intervene in the life of individuals or in the industrial
environment. They also handle a large amount of information and data that they either
process, store, or transmit over a network. A high percentage of this information is sen-
sitive to the user or industry. A voice controller, for example, processes user requests
and consequently patterns that correspond to the user’s habits or daily life. A smart
lock can store access passwords to a person’s home. Taking in mind the development
of Cloud and Edge computing, enterprises and common people use these devices to
improve the quality of services and life, make proper decisions based on the collected
data, track and monitor different aspects of a workload, saving money and resources.
Because of their popularity and the amount of sensitive information they can poten-
tially handle, IoT and IIoT are increasingly targeted by attackers. Attackers are taking
advantage of the lack of security features in IoT/IIoT to penetrate the system and carry
out their malicious activities. Attack campaigns such as Stuxnet [4] and Mirai [1] have
demonstrated the high risk of cyberattacks. These campaigns have prompted develop-
ers to place more emphasis on IoT/IIoT security.

Despite the developments on the IoT utilization and the data handling, the security of
these devices is often not taken into account. Security is considered at a second priority,
as IoT vendors try to reduce development costs and time. Taking into account that IoT
are low resources devices, connected to the internet,with the lack of security guarantees
and robust communication protocols, and further the numerous bugs found inmodern
software codes, attracts more frequently the attention of attackers. Further, the use of
low cost devices without resources dedicated to security plus the availability of the
devices for the attacker to apply physical attacks, further increases the attack surface.
Attackers benefit from the lack of security features to penetrate the IoT system, extract
unprivileged information, use the devices on their own benefit, or perform Distributed
Denial-of-Service (DDoS) attacks.

There are two main classes of vulnerabilities in today’s systems: Software (SW) and
Hardware (HW) vulnerabilities. Software vulnerabilities are flaws or defects in soft-
ware code that allow attackers to exploit the Operating System (OS) or applications
in the system to gain certain privileges. In contrast, hardware vulnerabilities are flaws
in the hardware system. The Rowhammer attack [5], for example, exploits flaws that

2

occur in Dynamic RandomAccess Memory (DRAM) by repeatedly accessing the same
memory locations over a short period of time. Hardware vulnerabilities allow attack-
ers to exploit interactions with the system’s electronic components directly, without the
need for a software vulnerability, and regardless of the OS.

Traditionally, hardware attacks are used to extract information through leakages such
as computing time, power consumption, electromagnetic radiation, or injection of faults
into the hardware. Thus, if attackers have physical access to the device, they can employ
methods such as laser injection fault attacks [6], [7], the Joint Test ActionGroup (JTAG)
interface [8], [9], or voltage/clock glitch attacks [10], [11] to attack the system.

Due to the complex architectures ofmodern systems, the attack surface has increased. A
new class of Software Attacks Targeting Hardware Vulnerabilities (SATHV) in the var-
ious units of the system has emerged. Attacked units include the memory (e.g., cache,
DRAM), debugging interfaces, power, and frequency management modules, or solu-
tions used to optimize computation time, such as the out-of-order and speculative ex-
ecution. Unlike the common hardware attacks mentioned earlier that require physical
access, SATHV attacks can be performed remotely. If attackers do not have physical ac-
cess to the target device, they must access it through communication interfaces such as
WiFi or Bluetooth. They can then perform a remote access attack such as clock/voltage
fault attacks [12], [13] or a JavaScript Cache Side-Channel Attacks (CacheSCA) [14],
[15]. CacheSCA [16], Rowhammer [5], Spectre [17], andMeltdown [18] are among the
most serious non-invasive attacks to date that rely on hardware vulnerabilities. SATHV
allow attackers to extract sensitive information and induce faults, breaking memory
isolation and escalating privileges.

In previous years SATHV were more applicable to high-performance systems, such as
desktops and server systems. IoT were mostly low-cost simple devices, equipped with
the basic components to perform a series of simple actions. But migrating to the edge-
computing era, these low-cost devices start being equipped with more complex proces-
sors which allow pre-processing data locally, or allow the implementation of machine
learning for voice or image recognition. Since IoT are used more and more and the ap-
plicability of SATHV is more possible, attackers apply them to these systems as well.
This new class of attacks poses a serious threat to the security of modern devices, and
specific countermeasures must be deployed.

It is common to develop patches to address issues related to software vulnerabilities af-
ter they have been discovered. In contrast, vulnerabilities in hardware are usually less
intensively researched than vulnerabilities in software. This distinction may be justi-
fied by the fact that security researchers have limited access to deployed system archi-

3

tectures. Normally, software tools (e.g., antivirus, firewalls, anti-malware) can ensure
that the system is protected against attacks that inject malicious code by exploiting
software vulnerabilities. Antivirus software compares information received from the
system with known malware information stored in databases. Firewalls can filter in-
formation from the Internet. Antimalware systems work like antiviruses, but use other
methods such as signature checking, heuristics and sandboxing. Even though these se-
curity features are able to detect the software part of an attack, they cannot always detect
hardware-related vulnerabilities [2], [3]. In addition, they are unable to detect attacks
using obfuscation techniques [19] that modify the software code using techniques such
as register reassignment, instruction substitution, etc, to change the signature and by-
pass signature verification. Thus, if the attacker induces a fault in the hardware, these
software tools often do not have access to this information [2].

To protect the system from hardware attacks, various physical protection mechanisms
have been developed. These include active shields to protect against invasive probing
attacks [20], fault-tolerant redundant hardware systems [21] to prevent fault attacks,
dual coils [22], or light sensors [23] to protect against electromagnetic attacks. Based
on the extensive research on physical protection measures, we assume that these are
already implemented in systems that are physically accessible to prevent physical at-
tacks. Based on this assumption, this work does not consider attacks such as electro-
magnetic emission analysis, power consumption analysis, leakage power analysis, fault
attacks such as electromagnetic, clock, voltage and temperature glitches, laser attacks,
cold boot, bus probing, etc.

1.1.1 Introduction to the problem

Unlike physical attacks, it is more challenging to secure the system against SATHV.
This is because they use software code to directly target hardware vulnerabilities with-
out using, for example, abnormal Application Programming Interface (API) calls. To
secure the system against SATHV, two techniques are proposed: mitigation and detec-
tion. Mitigation involves patching the software or hardware to address the vulnerabil-
ities. However, SATHV are difficult to mitigate in software or hardware, either due to
the performance/memory cost of patching/updating the software [24] or the applica-
bility only in future CPU architectures. Therefore, detection solutions are preferred. In
particular, detection implementations using information from Hardware Performance
Counters (HPCs) gain popularity. HPCs are special-core registers that provide infor-
mation about the operation of the different hardware components in the systems, such
as the number of executed instructions,memory accesses, etc. Since SATHV target hard-

4

ware vulnerabilities, they stress the underlying hardware components in an unusual to
the normal operation manner.

However, currently proposed solutions are either proposed for high-performance sys-
tems such as desktops or they do not take into account all IoT constraints, making them
difficult to be deployed.

IoT Limitations IoT and IIoT are usually limited resource systems. This poses some
limitations when considering adding a security solution to protect these devices. We
recognize the following limitations:

• Computing power: IoT are usually systems with limited computing resources.
Thismeans that these devices are typically not equippedwith the high-performance
CPU cores available in desktop and server systems. This limits their ability to
perform complex operations and/or deliver results quickly. Over the years, more
complex CPUs are added, but they are still not comparable to those of desktops.

• Memory: These devices are also equipped with a small amount of memory. Since
these devices mostly perform simple tasks, they are only equipped with the nec-
essary memory, which further reduces the cost.

• Communication bandwidth: IoTdevices communicatewith a control server through
a communication interface. With the development of the network, these devices
aremostly connected via the Internet to send the extracted data to a control server
for further processing and analysis. As the amount of data generated increased,
edge-computing was developed to pre-process data locally to filter out data with-
out significant context and transmit only the necessary ones. But with the ever-
increasing number of IoT devices, network traffic may soon exceed the capacity
of the network. It is important to keep communication bandwidth low through
efficient data pre-processing is essential.

• Energy: Many IoT devices are battery-powered. Therefore, it is even more impor-
tant to conserve as much energy as possible. This requires that the device either
remain idle when not in use or operate in low frequencies. In addition, communi-
cation over the network should also be reduced, as sending large amounts of data
can increase power consumption [25], [26]. Though, minimizing the communi-
cation bandwidth can also increase energy efficiency.

These are some of the limitations IoT devices pose when proposing a security mecha-
nism. If one of these is not considered, it can pose limitations in adopting the security
solution.

5

In the State Of The Art (SOTA)we findmany detection solutions that can efficiently de-
tect SATHV and/or generic malware. In their efforts to reduce the overheads incurred
in the local system, using simple solutions, even if they successfully detect the attacks,
they have an increased False Positive Rate (FPR). But when we consider taking appro-
priate actions in case of system alarms such as reset, returning to a safe state, etc, if
these actions are frequent and not due to the existence of true attacks, it can eventually
increase the system overheads and make the device unusable. Though, it is important
to have high attack coverage and also minimize as possible FPR.

To reduce the FPRwhile keeping a high attack coverage, SOTA proposed solutions that
increase the complexity of the detection models, but this severely increases local over-
heads. To reduce overheads, when IoT are the target system, remote solutions are pro-
posed, in which resources are "unlimited", but this comes at the cost of increased detec-
tion time. This is because the extracted system information to be used for the detection
must be transmitted to the remote while waiting it to make a decision. Further, the local
system is dependent to the control remote server, unable to run detection offline, and
the quantity of data to be transmitted can be big.

Though, considering that IoT pose major limitations, we desire a high attack coverage
while keeping the FPR as low as possible, having a quick detection time, increases the
complexity of the problem.

1.1.2 Threat Model

In our threat model, we make the following assumptions:

• Assumption 1 is that the attackers can not have physical access to the target system
when this is functional. Generally, access to systems in industrial environments is
limited, and consumer IoT devices are located in the user’s home. If IoT devices
can become targets of their own users, we assume there are physical protections
in place. Above we mentioned some of the physical protection measures that can
be used to protect the system from physical attacks.

• Assumption 2 is that the attackers in our threat model have/had access to the
system. During this access, they introduced or implemented amalicious code into
the system. This could be done, for example, by loading a corrupted application,
inserting a bug into the application code, or the OS. Also, network interfaces, e.g.,
WiFi, Bluetooth, Ethernet, can be used to gain access. Considering the limited
security implementations in IoT and IIoT, this assumption is more than plausible.

• Assumption 3 is that devices equippedwith anOS are targeted. Some examples of

6

OS in our threat model are Linux, embedded Linux, and Android. The attackers’
goal is to gain additional privilege levels or extract sensitive information from the
system.

• Assumption 4 is that the attackers may already or may not have privileges. Privi-
lege escalation can be achieved through a OS bug. OS Bugs are frequently discov-
ered and allow attackers to gain access to normally protected system information.
The attacks investigated could be considered malware and are based on software
code that targets a hardware vulnerability in the system microarchitecture.

1.2 Thesis Objectives

In this section, we briefly introduce this thesis objectives, which are the following:

• Study attacks based on SoftwareAttacks TargetingHardwareVulnerabilities (SATHV).

• Study the side-effects of SATHV on the system.

• Propose a new solution for the detection of SATHV.

• Target to secure resource-limited devices from malware.

As mentioned earlier, SATHV are being used by attackers to attack IoT devices as well,
as these systems become more complex. Because SATHV stress the system’s hardware
components in ways that deviate from normal behavior, they leave traces that we can
use to detect them. These traces can be extracted usingHPCs because these components
measure directly information relative to the hardware components. The difference be-
tween the HPC values measured during an attack and during normal operation relates
to the side-effects of the attacks. The side-effects are important for several reasons. By
selecting a good set of side-effects, we can achieve a high detection rate while having a
limited FPR. In addition, selecting an optimal set of side-effects to monitor can enable
the implementation of simpler detection mechanisms, which reduces the overhead in
the local system.

Current implementations for SOTA attack detection, despite their efficiency, do not con-
sider the limitations of IoT devices such as the performance, memory, communication
bandwidth overheads and energy consumption. This can be a problem when applying
these solutions on these devices with limited resources. For this reason, we investigate
a new security solution that takes into account all the limitations while maintaining a
high detection rate and a limited FPR. Finally, since SATHV are only a subset of the
available attacks, we investigate the applicability of the proposed solution when the

7

attack library includes other malware subfamilies.

1.3 Contributions

This thesis focuses on the detection of SATHV in limited resource devices, such as IoT
and IIoT. To achieve the goals highlighted in Section 1.2, several milestoneswere set that
led to the contributions summarized here.

• Examine different implementations of SOTA detection and the side-effects that
these solutions use to detect SATHV. We show that only theoretical information
from other works is not sufficient and that an evaluation should be performed for
each attack. Furthermore, in a paper presented at NEWCAS [27], we show that
an attacker can attack the system with a small differentiation of the attack and
successfully evade implementationswith a limited threat model if a security engi-
neer does not consider all attack variants (flush and eviction-based approaches).
In addition, in a paper presented at DSD [28], we propose an initial approach for
detecting SATHV in an ARMv7 system while considering SATHV using obfusca-
tion techniques.

• Next, we propose a new solution for detecting SATHV in resource-constrained
devices such as IoT and IIoT. The new solution is implemented in software and
based on a local-remote ML implementation that takes into account all the IoT
constraints presented in Section 1.1.1. Since system actions due to false alarms
can cause significant overhead in the local system, we aim for an FPR of near 0%
while targeting a high attack detection rate.

• Finally, we show that software implementations of the local detection mechanism
are vulnerable to software attacks. We demonstrate this using a proof-of-concept
software attack that we developed, which shows four cases that the attacker can
use to bypass the HPC-based detection mechanism. Furthermore, we show that
software detection implementations based onMachine Learning (ML) are vulner-
able to Rowhammer attacks [29]. We simulate the reduction in accuracy of a ML-
based detectionmechanism by inducing a fault in the parameters of themodel. To
increase the security of the local-remote implementation, we implement the local
part in HW. Since the local implementation of SW did not allow us to implement
complex ML locally due to performance and energy overheads, we show that this
is possible in HW. Finally, we evaluate the proposed implementation on a number
of parameters including attack detection rate, FPR, performance, memory, area,
and energy consumption.

8

1.4 Thesis Outline

In addition to this introductory chapter, the rest of this manuscript consists of the fol-
lowing chapters organized as follows:

• Chapter 2: In this chapter, we provide a comprehensive review of the literature on
malware detection and SATHV.We discuss in detail the nature of targeted attacks
and the detection techniques proposed to solve the detection problem, highlight-
ing their relevant gaps. Finally, we present our methodology steps that allow the
reader to become familiar with the terms and techniques used throughout the
paper.

• Chapter 3: In this chapter, we analyze the applicability of the theoretical side-effect
information extracted from SOTA works for SATHV detection, the development
of obfuscated SATHV to circumvent the security mechanism, and the parameters
that a designer can use tomake this task less feasible. Finally, we analyze and eval-
uate a detectionmechanism that targets SATHV and obfuscated SATHVdetection
in ARMv7 systems.

• Chapter 4: In this chapter, we propose a novel technique for detecting SATHV
in resource-constrained devices. Our approach aims at accurate attack detection,
but also takes into account important limitations of modern devices in terms of
memory, performance, and communication bandwidth overhead. The proposed
idea is implemented in SW. An evaluation with the SOTA in terms of different
detection performance metrics and IoT limitations is finally presented.

• Chapter 5: In this chapter, we analyze the security of the SW detection implemen-
tations proposed in Chapter 3 and Chapter 4. We demonstrate two attacks that
target the side-effect extraction from the HPCs and the ML model, and finally we
propose a HW implementation of the local ML to improve security.

• Chapter 6: Finally, in this chapter, we summarize the results of this work and dis-
cuss key findings. In the end, we present the limitation of this work and provide
perspectives and recommendations for further research.

In the beginning of each chapter, we include a motivation section, which guides the
reader behind the problematic driving of our experimentation.

9

1.5 Publication List

Our Publications

[27] Polychronou, Nikolaos Foivos, P.-H. Thevenon, P. Maxime, and V. Beroulle,
“Securing iot/iiot from software attacks targeting hardware vulnerabilities”,
in 2021 19th IEEE International New Circuits and Systems Conference (NEWCAS),
IEEE, 2021, pp. 1–4.

[28] Polychronou,Nikolaos Foivos, P.-H. Thevenon,M. Puys, andV. Beroulle, “Mad-
man: detection of software attacks targeting hardware vulnerabilities”, in 2021
24th Euromicro Conference on Digital System Design (DSD), IEEE, 2021, pp. 355–
362.

[119] Polychronou, Nikolaos-Foivos, P.-H. Thevenon, M. Puys, and V. Beroulle, “Re-
search for a new solution for the detection of malwares in iot/iiot devices”,
Journees C2 2022, 2022, Available: https://jc2-2022.inria.fr/files/2022/
01/JC2-2022_paper_23.pdf.

[120] Polychronou, Nikolaos-Foivos, P.-H. Thevenon, M. Puys, and V. Beroulle, “A
comprehensive survey of attacks without physical access targeting hardware
vulnerabilities in iot/iiot devices, and their detectionmechanisms”,ACMTrans-
actions on Design Automation of Electronic Systems (TODAES), 27, 1, pp. 1–35,
2021.

[131] P. Thevenon, S. Riou, D. Tran, et al., “Imrc: integrated monitoring & recovery
component, a solution to guarantee the security of embedded systems”, J. Inter-
net Serv. Inf. Secur., 12, 2, pp. 70–94, 2022. doi: 10.22667/JISIS.2022.05.31.070.
[Online]. Available: https://doi.org/10.22667/JISIS.2022.05.31.070.

[141] Polychronou, Nikolaos-Foivos, P.-H. Thevenon, M. Puys, and V. Beroulle, “A
system for detecting malwares in a resources constrained device”, 2022, patent
number DD22030 ST.

10

https://jc2-2022.inria.fr/files/2022/01/JC2-2022_paper_23.pdf
https://jc2-2022.inria.fr/files/2022/01/JC2-2022_paper_23.pdf
https://doi.org/10.22667/JISIS.2022.05.31.070
https://doi.org/10.22667/JISIS.2022.05.31.070

1.6 Introduction francais

Contexte de la thèse

Les dispositifs l’internet des objets (IoT) et l’IoT industriel (IIoT) connaissent une pop-
ularité croissante et représentent désormais une part importante du marché des dis-
positifs informatiques. L’IoT et l’IIoT vont de dispositifs simples à des dispositifs plus
complexes. Leur principe principal est d’interagir avec l’utilisateur ou l’environnement
et d’échanger des données principalement via une interface de communication. L’IoT et
l’IIoT peuvent intervenir dans la vie des individus ou dans l’environnement industriel.
Ils traitent également une grande quantité d’informations et de données qu’ils traitent,
stockent ou transmettent sur un réseau. Un pourcentage élevé de ces informations est
sensible pour l’utilisateur ou l’industrie. Un contrôleur vocal, par exemple, traite les
demandes des utilisateurs et, par conséquent, les modèles qui correspondent aux habi-
tudes ou à la vie quotidienne de l’utilisateur. Une serrure intelligente peut stocker les
mots de passe d’accès au domicile d’une personne. Un actionneur ou une machine au-
tomatisée programmée pour produire/concevoir un produit lié à la sécurité. Compte
tenu du développement du cloud computing et de l’Edge computing, les entreprises
et le grand public utilisent ces dispositifs pour améliorer la qualité des services et de
la vie, prendre des décisions appropriées sur la base des données collectées, suivre et
surveiller les différents aspects d’une charge de travail, économiser de l’argent et des
ressources. En raison de leur popularité et de la quantité d’informations sensibles qu’ils
peuvent potentiellement traiter, l’IoT et l’IIoT sont de plus en plus ciblés par les at-
taquants. Les attaquants profitent de l’absence de fonctions de sécurité dans l’IoT/IIoT
pour pénétrer dans le système et mener leurs activités malveillantes. Des campagnes
d’attaque telles que Stuxnet [4] et Mirai [1] ont démontré le risque élevé des cyberat-
taques. Ces campagnes ont incité les développeurs à mettre davantage l’accent sur la
sécurité de l’IoT/IIoT.

Malgré les développements sur l’utilisation des IoT et le traitement des données, la
sécurité de ces appareils n’est souvent pas prise en compte. La sécurité est considérée
comme une deuxième priorité, car les fournisseurs d’IoT essaient de réduire les coûts et
le temps de développement. Si l’on tient compte du fait que les IoT sont des dispositifs à
faibles ressources, connectés à l’Internet, avec le manque de garanties de sécurité et de
protocoles de communication robustes, et en outre les nombreux bogues trouvés dans
les codes logiciels modernes, cela attire plus fréquemment l’attention des attaquants.
De plus, l’utilisation de dispositifs à faible coût sans ressources dédiées à la sécurité,
ainsi que la disponibilité des dispositifs pour que l’attaquant puisse appliquer des at-

11

taques physiques, augmentent encore la surface d’attaque. Les attaquants profitent de
l’absence de fonctions de sécurité pour pénétrer dans le système, extraire des infor-
mations non privilégiées, utiliser les dispositifs à leur propre avantage ou réaliser des
attaques de type déni de service distribué (DDoS).

Il existe deux grandes catégories de vulnérabilités dans les systèmes actuels : les vul-
nérabilités SW et HW. Les vulnérabilités logicielles sont des failles ou des défauts du
code logiciel qui permettent aux attaquants d’exploiter les Système d’Exploitation (OS)
ou les applications du système pour obtenir certains privilèges. En revanche, les vul-
nérabilités matérielles sont des failles dans le système matériel. L’attaque Rowham-
mer [5], par exemple, exploite des failles présentes dans le mémoire dynamique syn-
chrone à accès aléatoire (DRAM) en accédant de manière répétée aux mêmes emplace-
ments mémoire sur une courte période. Les vulnérabilités matérielles permettent aux
attaquants d’exploiter directement les interactions avec les composants électroniques
du système, sans avoir besoin d’une vulnérabilité logicielle, et indépendamment du
système d’exploitation.

Traditionnellement, les attaques matérielles sont utilisées pour extraire des informa-
tions par le biais de fuites telles que le temps de calcul, la consommation d’énergie,
le rayonnement électromagnétique ou l’injection de défauts dans le matériel. Ainsi, si
les attaquants ont un accès physique au dispositif, ils peuvent employer des méthodes
telles que les attaques par injection de fautes de laser [6], [7], l’interface JTAG [8], [9],
ou les attaques par glitch de tension/horloge [10], [11] pour attaquer le système.

En raison des architectures complexes des systèmes modernes, la surface d’attaque a
augmenté.Une nouvelle classe d’attaques logicielles ciblant des vulnérabilitésmatérielles
(SATHV) dans les différentes unités du système est apparue. Les unités attaquées com-
prennent la mémoire (cache e.g., , DRAM), les interfaces de débogage, les modules de
gestion de l’alimentation et de la fréquence, ou les solutions utilisées pour optimiser
le temps de calcul, comme l’exécution hors ordre et spéculative. Contrairement aux
attaques matérielles courantes mentionnées précédemment qui nécessitent un accès
physique, les attaques SATHV peuvent être réalisées à distance. Si les attaquants n’ont
pas d’accès physique au dispositif cible, ils doivent y accéder par le biais d’interfaces
de communication telles que WiFi ou Bluetooth. Ils peuvent alors effectuer une at-
taque d’accès à distance telle que les attaques par défaut d’horloge/de tension [12],
[13] ou une attaque JavaScript attaques de cache par canal auxiliaire (CacheSCA). [14],
[15]. CacheSCA [16], Rowhammer [5], Spectre [17], et Meltdown [18] sont parmi les
attaques non invasives les plus graves à ce jour qui reposent sur des vulnérabilités
matérielles. Les SATHV permettent aux attaquants d’extraire des informations sensi-

12

bles et de provoquer des failles, en rompant l’isolation de la mémoire et en élevant les
privilèges.

Au cours des années précédentes, les SATHV s’appliquaient davantage aux systèmes
à haute performance, tels que les ordinateurs de bureau et les systèmes de serveurs.
Les IoT étaient principalement des appareils simples et peu coûteux, équipés des com-
posants de base pour effectuer une série d’actions simples.Mais enmigrant vers l’ère de
l’edge-computing, ces appareils à bas coût commencent à être équipés de processeurs
plus complexes qui permettent de prétraiter les données localement, ou de mettre en
œuvre l’apprentissage automatique pour la reconnaissance de la voix ou des images.
Comme l’IoT est de plus en plus utilisé et que l’applicabilité des SATHV est plus pos-
sible, les attaquants les appliquent également à ces systèmes. Cette nouvelle classe
d’attaques constitue une menace sérieuse pour la sécurité des appareils modernes, et
des contre-mesures spécifiques doivent être déployées.

Il est courant de développer des correctifs pour résoudre les problèmes liés aux vul-
nérabilités logicielles après leur découverte. En revanche, les vulnérabilités dumatériel
font généralement l’objet de recherches moins intensives que les vulnérabilités du logi-
ciel. Cette distinction peut être justifiée par le fait que les chercheurs en sécurité ont
un accès limité aux architectures des systèmes déployés. Normalement, des outils logi-
ciels (antivirus, pare-feu, anti-malware) peuvent garantir que le système est protégé
contre les attaques qui injectent du code malveillant en exploitant les vulnérabilités
logicielles. Les logiciels antivirus comparent les informations reçues du système avec
celles des logiciels malveillants connus stockées dans des bases de données. Les pare-
feu peuvent filtrer les informations provenant d’Internet. Les systèmes antimalware
fonctionnent comme les antivirus, mais utilisent d’autres méthodes telles que la vérifi-
cation des signatures, l’heuristique et le sandboxing. Bien que ces dispositifs de sécurité
soient capables de détecter la partie logicielle d’une attaque, ils ne peuvent pas toujours
déceler les vulnérabilités liées au matériel [2], [3]. En outre, elles ne peuvent pas dé-
tecter les attaques utilisant des techniques d’obscurcissement [19] quimodifient le code
logiciel en utilisant des techniques telles que la réaffectation de registres, la substitution
d’instructions, etc, pour changer la signature et contourner la vérification de la signa-
ture. Ainsi, si l’attaquant induit un défaut dans le matériel, ces outils logiciels n’ont
souvent pas accès à cette information [2].

Pour protéger le système contre les attaques matérielles, divers mécanismes de protec-
tion physique ont été développés. Il s’agit notamment de boucliers actifs pour se pro-
téger contre les attaques par sondage invasif [20], de systèmes matériels redondants
tolérants aux pannes [21] pour empêcher les attaques par panne, de bobines doubles

13

[22], ou de capteurs de lumière [23] pour se protéger contre les attaques électromagné-
tiques. Sur la base des recherches approfondies sur les mesures de protection physique,
nous supposons que celles-ci sont déjà mises en œuvre dans les systèmes accessibles
physiquement pour prévenir les attaques physiques. Sur la base de cette hypothèse,
ce travail ne prend pas en compte les attaques telles que l’analyse des émissions élec-
tromagnétiques, l’analyse de la consommation d’énergie, l’analyse de la puissance de
fuite, les attaques par défaut telles que les défaillances électromagnétiques, d’horloge,
de tension et de température, les attaques laser, le démarrage à froid, le sondage de bus,
etc.

Introduction au problème

Contrairement aux attaques physiques, il est plus difficile de sécuriser le système contre
les SATHV. En effet, elles utilisent du code logiciel pour cibler directement les vulnéra-
bilités matérielles sans utiliser, par exemple, des appels Interface de Programmation
d’Applications (API) anormaux. Pour sécuriser le système contre les SATHV, deux tech-
niques sont proposées : l’atténuation et la détection. L’atténuation consiste à appliquer
des correctifs au logiciel ou au matériel pour corriger les vulnérabilités. Cependant, les
SATHV sont difficiles à atténuer dans le logiciel ou le matériel, soit en raison du coût
en performance/mémoire des correctifs/mises à jour du logiciel, soit en raison de leur
applicabilité uniquement dans les futures architectures de CPU. Par conséquent, les so-
lutions de détection sont préférables. En particulier, les implémentations de détection
utilisant les informations des compteurs de performance du matériel (HPCs) gagnent
en popularité. LesHPC sont des registres spéciaux qui fournissent des informations sur
le fonctionnement des différents composants matériels des systèmes, comme le nom-
bre d’instructions exécutées, les accès à la mémoire, etc. Comme les SATHV ciblent
les vulnérabilités matérielles, ils sollicitent les composants matériels sous-jacents d’une
manière inhabituelle par rapport à leur fonctionnement normal.

Cependant, les solutions actuellement proposées sont soit destinées aux systèmes à
haute performance tels que les ordinateurs de bureau, soit elles ne prennent pas en
compte toutes les contraintes de l’IoT, ce qui rend leur déploiement difficile.

IoT Limitations L’IoT et l’IIoT sont généralement des systèmes à ressources limitées.
Cela pose certaines limites lorsqu’on envisage d’ajouter une solution de sécurité pour
protéger ces appareils. Nous reconnaissons les limitations suivantes :

• Puissance de calcul : les IoT sont généralement des systèmes aux ressources in-
formatiques limitées. Cela signifie que ces appareils ne sont généralement pas

14

équipés des cœurs d’unité centrale haute performance disponibles dans les sys-
tèmes de bureau et de serveur. Cela limite leur capacité à effectuer des opérations
complexes et/ou à fournir des résultats rapidement. Au fil des années, des pro-
cesseurs plus complexes sont ajoutés, mais ils ne sont toujours pas comparables à
ceux des ordinateurs de bureau.

• Mémoire de l’appareil : Ces appareils sont également équipés d’une petite quan-
tité de mémoire. Étant donné que ces appareils effectuent principalement des
tâches simples, ils ne sont équipés que de la mémoire nécessaire, ce qui réduit
encore le coût.

• Bande passante de communication : les appareils IoT communiquent avec un
serveur de contrôle via une interface de communication. Avec le développement
du réseau, ces appareils sont le plus souvent connectés via Internet pour envoyer
les données extraites à un serveur de contrôle pour un traitement et une analyse
plus poussés. Avec l’augmentation de la quantité de données générées, l’edge-
computing a été développé pour prétraiter les données localement afin de filtrer
les données sans contexte significatif et de transmettre uniquement celles qui sont
nécessaires. Mais avec le nombre toujours croissant de dispositifs IoT, le trafic
réseau peut bientôt dépasser la capacité du réseau. Il est important de maintenir
une faible bande passante de communication grâce à un prétraitement efficace
des données est essentiel.

• L’énergie : De nombreux appareils IoT sont alimentés par des batteries. Il est donc
d’autant plus important de conserver autant d’énergie que possible. Pour cela,
l’appareil doit soit rester inactif lorsqu’il n’est pas utilisé, soit fonctionner en basse
fréquence. En outre, la communication sur le réseau doit également être réduite,
car l’envoi de grandes quantités de données peut augmenter la consommation
d’énergie [25], [26]. Bien que la minimisation de la bande passante de communi-
cation puisse également augmenter l’efficacité énergétique.

Ce sont là quelques-unes des limites que posent les dispositifs IoT lorsqu’on propose
un mécanisme de sécurité. Si l’une d’entre elles n’est pas prise en compte, l’adoption
de la solution de sécurité peut être limitée.

Dans le l’Etat de l’Art (EdA), nous trouvons de nombreuses solutions de détection qui
peuvent détecter efficacement les SATHV et/ou les malwares génériques. Dans leurs
efforts pour réduire les frais généraux encourus dans le système local, en utilisant des
solutions simples, même s’ils réussissent à détecter les attaques, ils ont une taux de faux
positifs (FPR) accrue. Mais si l’on considère la prise de mesures appropriées en cas

15

d’alarmes système telles que la réinitialisation, le retour à un état sûr, etc, si ces actions
sont fréquentes et non dues à l’existence de véritables attaques, cela peut finalement
augmenter les frais généraux du système et rendre le dispositif inutilisable. Cependant,
il est important d’avoir une couverture élevée des attaques et de minimiser autant que
possible le FPR.

Pour réduire le FPR tout en gardant une couverture élevée des attaques, EdA a proposé
des solutions qui augmentent la complexité des modèles de détection, mais cela aug-
mente sévèrement les frais généraux locaux. Pour réduire les frais généraux, lorsque
l’IoT est le système cible, des solutions à distance sont proposées, dans lesquelles les
ressources sont "illimitées", mais cela se fait au prix d’une augmentation du temps de
détection. En effet, les informations extraites du système qui seront utilisées pour la
détection doivent être transmises au système distant en attendant qu’il prenne une dé-
cision. De plus, le système local est dépendant du serveur distant de contrôle, incapable
d’exécuter la détection hors ligne, et la quantité de données à transmettre peut être im-
portante.

Bien que, considérant que l’IoT pose des limitationsmajeures, nous souhaitons une cou-
verture d’attaque élevée tout en gardant le FPR aussi bas que possible, avoir un temps
de détection rapide, augmente la complexité du problème.

Modèle de menace

Dans notre modèle de menace, nous faisons les hypothèses suivantes :

• L’hypothèse 1 est que les attaquants ne peuvent pas avoir un accès physique au
système cible lorsque celui-ci est fonctionnel. En général, l’accès aux systèmes
dans les environnements industriels est limité, et les dispositifs IoT grand pub-
lic sont situés au domicile de l’utilisateur. Si les appareils IoT peuvent devenir des
cibles de leurs propres utilisateurs, nous supposons quedes protections physiques
sont en place. Nous avons mentionné ci-dessus certaines des mesures de protec-
tion physique qui peuvent être utilisées pour protéger le système contre les at-
taques physiques.

• L’hypothèse 2 est que les attaquants de notre modèle de menace ont ou avaient
accès au système. Au cours de cet accès, ils ont introduit ou implémenté un code
malveillant dans le système. Cela peut se faire, par exemple, en chargeant une
application corrompue, en insérant un bogue dans le code de l’application ou
dans le système d’exploitation. Les interfaces réseau (WiFi, Bluetooth, Ethernet,
etc.) peuvent également être utilisées pour obtenir un accès. Compte tenu des

16

implémentations de sécurité limitées dans l’IoT et l’IIoT, cette hypothèse est plus
que plausible.

• L’hypothèse 3 est que les appareils équipés d’un systèmed’exploitation sont ciblés.
Dans notremodèle demenace, Linux, Linux embarqué et Android sont des exem-
ples de systèmes d’exploitation. L’objectif des attaquants est d’obtenir des niveaux
de privilèges supplémentaires ou d’extraire des informations sensibles du sys-
tème.

• L’hypothèse 4 est que les attaquants peuvent déjà ou ne pas avoir de privilèges.
L’escalade des privilèges peut être réalisée par le biais d’un bogue de système
d’exploitation. Les bogues d’OS sont fréquemment découverts et permettent aux
attaquants d’accéder à des informations système normalement protégées. Les at-
taques étudiées peuvent être considérées comme des logiciels malveillants et sont
basées sur un code logiciel qui cible une vulnérabilité matérielle dans la microar-
chitecture du système.

Objectifs de la thèse

Dans cette section, nous présentons brièvement les objectifs de cette thèse, qui sont les
suivants :

• Étudier les attaques basées sur attaques logicielles visant les vulnérabilitésmatérielles
(SATHV).

• Étudier les effets secondaires de SATHV sur le système.

• Proposer une nouvelle solution pour la détection de SATHV.

• Objectif : sécuriser les appareils à ressources limitées contre les logiciels malveil-
lants.

Comme nous l’avons mentionné précédemment, les SATHV sont également utilisés
par les attaquants pour attaquer les appareils IoT, car ces systèmes deviennent plus
complexes. Comme les SATHV sollicitent les composants matériels du système d’une
manière qui s’écarte du comportement normal, ils laissent des traces que nous pou-
vons utiliser pour les détecter. Ces traces peuvent être extraites à l’aide des HPC car ces
composantsmesurent directement les informations relatives aux composantsmatériels.
La différence entre les valeurs HPC mesurées pendant une attaque et pendant le fonc-
tionnement normal concerne les effets secondaires des attaques. Ces effets secondaires
sont importants pour plusieurs raisons. En sélectionnant un bon ensemble d’effets sec-

17

ondaires, nous pouvons obtenir un taux de détection élevé tout en ayant un TFP limité.
En outre, la sélection d’un ensemble optimal d’effets secondaires à surveiller peut per-
mettre lamise enœuvre demécanismes de détection plus simples, ce qui réduit les frais
généraux dans le système local.

Les implémentations actuelles pour la détection des attaques EdA, malgré leur efficac-
ité, ne tiennent pas compte des limites des dispositifs IoT, telles que les performances, la
mémoire, les frais généraux de bande passante de communication et la consommation
d’énergie. Cela peut être un problème lors de l’application de ces solutions sur ces ap-
pareils aux ressources limitées. Pour cette raison, nous étudions une nouvelle solution
de sécurité qui prend en compte toutes les limitations tout en maintenant un taux de
détection élevé et un FPR limité. Enfin, comme les SATHVne sont qu’un sous-ensemble
des attaques disponibles, nous étudions l’applicabilité de la solution proposée lorsque
la bibliothèque d’attaques comprend d’autres sous-familles de logiciels malveillants.

Contributions

Cette thèse se concentre sur la détection de SATHVdans les dispositifs à ressources lim-
itées, tels que l’IoT et l’IIoT. Pour atteindre les objectifs mis en évidence dans Section 1.2,
plusieurs jalons ont été posés qui ont conduit aux contributions résumées ici.

• Examiner différentes implémentations de la détection de EdA et les effets sec-
ondaires que ces solutions utilisent pour détecter SATHV. Nous montrons que
les seules informations théoriques issues d’autres travaux ne sont pas suffisantes
et qu’une évaluation doit être effectuée pour chaque attaque. De plus, dans un
article présenté à NEWCAS [27], nous montrons qu’un attaquant peut attaquer
le système avec une petite différenciation de l’attaque et réussir à échapper aux
implémentations avec un modèle de menace limité si un ingénieur de sécurité
ne considère pas toutes les variantes d’attaque (approches basées sur le flush et
l’éviction). De plus, dans un article présenté à DSD [28], nous proposons une pre-
mière approche pour détecter le SATHV dans un système ARMv7 tout en consid-
érant le SATHV utilisant des techniques d’obfuscation.

• Ensuite, nous proposons une nouvelle solution pour détecter les SATHV dans
les dispositifs à ressources limitées tels que IoT et IIoT. La nouvelle solution est
implémentée en logiciel et basée sur une implémentation ML locale-distante qui
prend en compte toutes les contraintes IoT présentées dans Section 1.1.1. Étant
donné que les actions du système dues aux fausses alarmes peuvent entraîner
une surcharge importante dans le système local, nous visons un FPR proche de

18

0% tout en ciblant un taux élevé de détection des attaques.

• Enfin, nous montrons que les implémentations logicielles du mécanisme de dé-
tection local sont vulnérables aux attaques logicielles. Nous le démontrons à l’aide
d’une preuvede concept d’attaque logicielle que nous avons développée, qui présente
quatre cas que l’attaquant peut utiliser pour contourner le mécanisme de détec-
tion basé sur le HPC. De plus, nous montrons que les implémentations de détec-
tion logicielle basées sur apprentissage automatique (ML) sont vulnérables aux
attaques Rowhammer [29]. Nous simulons la réduction de la précision d’un mé-
canisme de détection basé sur ML en induisant une faute dans les paramètres
du modèle. Pour augmenter la sécurité de l’implémentation locale-distante, nous
implémentons la partie locale dans HW. Comme l’implémentation locale de SW
ne nous permettait pas d’implémenter localement des ML complexes en raison
des surcharges de performance et d’énergie, nous montrons que cela est possible
en HW. Enfin, nous évaluons l’implémentation proposée sur un certain nombre
de paramètres, notamment le taux de détection des attaques, le FPR, les perfor-
mances, la mémoire, la surface et la consommation d’énergie.

Cadre de la thèse

En plus de ce chapitre d’introduction, le reste de cemanuscrit se compose des chapitres
suivants organisés comme suit :

• Chapter 2 : Dans ce chapitre, nous fournissons une revue complète de la littérature
sur la détection des logiciels malveillants et le SATHV. Nous discutons en détail
de la nature des attaques ciblées et des techniques de détection proposées pour
résoudre le problème de la détection, en soulignant leurs lacunes pertinentes. En-
fin, nous présentons les étapes de notre méthodologie qui permettent au lecteur
de se familiariser avec les termes et les techniques utilisés tout au long de l’article.

• Chapter 3 :Dans ce chapitre, nous analysons l’applicabilité des informations théoriques
sur les effets secondaires extraites des travauxdeEdApour la détectiondes SATHV,
le développement de SATHV obfusqués pour contourner le mécanisme de sécu-
rité, et les paramètres qu’un concepteur peut utiliser pour rendre cette tâchemoins
réalisable. Enfin, nous analysons et évaluons unmécanisme de détection qui cible
le SATHV et la détection du SATHV obfusqué dans les systèmes ARMv7.

• Chapter 4 : Dans ce chapitre, nous proposons une nouvelle technique de détection
des SATHV dans les dispositifs à ressources limitées. Notre approche vise une
détection précise des attaques, mais prend également en compte les limitations

19

importantes des dispositifs modernes en termes de mémoire, de performances et
de bande passante de communication. L’idée proposée est mise en œuvre dans
un logiciel. Une évaluation avec le EdA en termes de différentes métriques de
performance de détection et de limitations de l’IoT est finalement présentée.

• Chapter 5 : Dans ce chapitre, nous analysons la sécurité des implémentations de
détection SW proposées dans Chapter 3 et Chapter 4. Nous démontrons deux at-
taques qui ciblent l’extraction d’effets secondaires des HPC et le modèle ML, et
enfin nous proposons une implémentation HW du ML local pour améliorer la
sécurité.

• Chapter 6 : Enfin, dans ce chapitre, nous résumons les résultats de ce travail et
discutons des principales conclusions. Enfin, nous présentons les limites de ce
travail et fournissons des perspectives et des recommandations pour de futures
recherches.

Au début de chaque chapitre, nous incluons une section de motivation, qui guide le
lecteur derrière la problématique de notre expérimentation.

Contexte et état de l’art

Ce chapitre fournit les connaissances de base nécessaires pour comprendre les différentes sous-
familles de logiciels malveillants, la gravité des attaques micro-architecturales et les méthodes
proposées pour sécuriser le système. Tout d’abord, le chapitre définit les logiciels malveillants et
explique les étapes et les objectifs des attaques micro-architecturales. Ensuite, nous analysons les
méthodes proposées dans l’état de l’art pour détecter les malwares. L’apprentissage automatique
étant un outil de plus en plus utilisé dans la sécurité, nous analysons ses avantages et présentons
les différents modèles utilisés dans ce travail. Enfin, le chapitre se termine par une discussion
sur les informations obtenues à partir de l’état de l’art.

Attaques deLogicielsMalveillants et de LogicielsCiblant desVulnéra-
bilités Matérielles

Au cours des dernières décennies, le monde a connu une transition rapide vers l’ère
numérique, où la quasi-totalité de nos données sont stockées et traitées par des sys-
tèmes informatiques. Cette accélération de la transition vers le monde numérique a été
rendue possible par le développement rapide des ordinateurs, des mémoires, des com-
munications, des protocoles de sécurité, etc. L’industrie a fait des progrès en matière
de matériel et de logiciels, développant des systèmes de plus en plus compliqués pour

20

répondre aux demandes croissantes. Cependant, le passage à l’ère numérique a en-
traîné une augmentation des attaques contre les systèmes informatiques. Les attaquants
effectuent des opérations malveillantes qui perturbent le fonctionnement normal des
systèmes informatiques. Nous appelons ces applications malveillantes des malwares.
Il existe de nombreuses définitions du terme "malware", par exemple :

• Programme inséré dans un système, généralement de manière clandestine, dans
le but de compromettre la confidentialité, l’intégrité ou la disponibilité des don-
nées, des applications oudu systèmed’exploitationde la victime, oude l’importuner
ou de la perturber d’une autre manière [30].

• Un logiciel malveillant est un type de programme informatique conçu pour in-
fecter l’ordinateur d’unutilisateur légitime et lui infliger des dommages deplusieurs
manières. Les logiciels malveillants peuvent infecter les ordinateurs et les ap-
pareils de plusieurs façons et se présentent sous différentes formes, dont les virus,
les vers, les chevaux de Troie, les logiciels espions, etc [31].

• Malware est une forme abrégée de "logiciel malveillant". Il s’agit d’un logiciel spé-
cifiquement conçu pour accéder à un ordinateur ou l’endommager, généralement
à l’insu de son propriétaire [32].

Toutes les définitions ci-dessus sont très similaires et comprennent aumoins la malveil-
lance ou la nocivité et la capacité d’effectuer des actions sans la permission ou la con-
science de l’utilisateur. À cette fin, Or-Meir et al. [33] proposent une définition dif-
férente des logicielsmalveillants qui ne se concentre pas sur les intentions de l’attaquant,
car il est impossible de déterminer les intentions derrière un code binaire inconnu.
Cependant, ils proposent la définition suivante :

Un logiciel malveillant est un code exécuté sur un système informatique dont les ad-
ministrateurs du système ignorent la présence ou le comportement ; si les administra-
teurs du système avaient connaissance du code et de son comportement, ils n’en au-
toriseraient pas l’exécution. Les logiciels malveillants compromettent la confidential-
ité, l’intégrité ou la disponibilité du système en exploitant les vulnérabilités existantes
d’un système ou en en créant de nouvelles.

Ladéfinition ci-dessus des logicielsmalveillants fait référence aupoint de vuede l’administrateur
système et aux trois principes de sécurité : confidentialité, intégrité et disponibilité,
qu’un logiciel malveillant tente de compromettre. Nous adoptons la définition susmen-
tionnée d’Or-Meir et al. et nous y ajoutons les éléments suivants :

21

Malware est l’abréviation d’actions malveillantes logicielles ou
matérielles dont les administrateurs système ignorent la présence
ou le comportement ; si les administrateurs système étaient au
courant du code et de son comportement, ils n’en autoriseraient
pas l’exécution. Les logicielsmalveillants compromettent la confi-
dentialité, l’intégrité ou la disponibilité du système en exploitant
les vulnérabilités existantes d’un système ou en en créant de nou-
velles.

Définition étendue des logiciels malveillants

La définition étendue ci-dessus inclut le code malveillant lié au matériel qui tente de
compromettre la confidentialité, l’intégrité ou la disponibilité des systèmes. C’est le cas
des chevaux de Troiematériels, que de nombreux travaux SOTAqualifient demalwares
[34], [35].

Dans les sections suivantes, nous distinguerons les attaques en fonction de leur mode
de réalisation, c’est-à-dire logiciel ou matériel.

Attaques Logicielles

Les attaques visent à exploiter une vulnérabilité pour compromettre la confidential-
ité, l’intégrité ou la disponibilité du système. Une vulnérabilité peut être une faille
ou un bug qui permet aux attaquants d’effectuer leurs actions malveillantes dans le
système cible. À mesure que le code logiciel devient plus complexe, les vulnérabilités
dans le code logiciel se multiplient. Selon le livre Code Complete de Steve McConnell
[36], la moyenne de l’industrie est d’environ 15 à 50 erreurs pour 1000 lignes de code
livrées. L’augmentation des erreurs dans les logiciels accroît la surface d’attaque que
les attaquants peuvent utiliser pour pénétrer dans le système. L’une des vulnérabilités
logicielles les plus visibles est le dépassement de tampon, qui permet aux attaquants
d’écrire plus de données dans un tampon d’entrée que ne le permet ce dernier. Un at-
taquant peut exploiter cette situation pour placer une charge utile malveillante dans
le tampon débordé, qui est ensuite exécutée. Un débordement de tas est un type de
débordement de tampon qui se produit dans la zone de tas, où l’attaque est réalisée en
corrompant les structures de tas telles que les pointeurs de listes liées. Parmi les autres
vulnérabilités logicielles, citons l’injection SQL, les vulnérabilités des bibliothèques et
API tierces, le contrôle d’accès défectueux, l’injection de code, les échecs d’identification
et d’authentification, les échecs d’intégrité des logiciels et des données, etc.

22

Lorsque les attaquants découvrent une vulnérabilité logicielle dans un système cible,
ils effectuent leurs actionsmalveillantes. La vulnérabilité peut être connue du public ou
être une nouvelle vulnérabilité qui n’a jamais été vue auparavant, que nous appelons
vulnérabilité "zero-day". Après avoir exploité une vulnérabilité logicielle, les attaquants
peuvent voler ou manipuler des données sensibles, intégrer le système cible dans un
botnet, installer une porte dérobée ou d’autres types de logiciels malveillants tels qu’un
rootkit. En outre, l’attaquant peut exploiter un hôte vulnérable pour pénétrer d’autres
hôtes sur le même réseau. En revanche, les attaques visant les vulnérabilités logicielles
permettent d’effectuer d’autres actionsmalveillantes après avoir pris le contrôle du sys-
tème ciblé.

Attaques matérielles

Les attaques matérielles exploitent les vulnérabilités des composants matériels eux-
mêmes. Comme les composants matériels sont responsables de l’exécution du code
logiciel, le comportement dumatériel peut révéler des informations sur les informations
traitées. En outre, la modification du comportement du matériel peut également modi-
fier le comportement du logiciel. Les attaquants ont trouvé desmoyens d’exploiter cette
interaction pour extraire des informations sensibles du système, comme des clés cryp-
tographiques, ou modifier le flux de contrôle normal d’un code logiciel. Ces attaques
matérielles sont l’analyse de la puissance différentielle et de la corrélation, l’horloge,
les attaques par défaut de tension et les attaques par défaut de laser. L’analyse dif-
férentielle et par corrélation de la puissance des canaux latéraux extrait les mesures
des canaux latéraux en utilisant des traces de la consommation d’énergie ou du rayon-
nement électromagnétique, et tente de les corréler à une variable sensible traitée par
le système ciblé. Les attaques d’horloge, de tension ou de défaut laser induisent un
défaut pendant l’exécution normale du système ciblé afin d’extraire des informations
en utilisant l’analyse différentielle des défauts, ou de faire alterner l’exécution normale
avec une exécution inattendue. D’autres types d’attaques matérielles incluent les at-
taques utilisant l’interface de débogage JTAG [9]. Les attaques susmentionnées ciblent
les vulnérabilités du matériel et nécessitent un accès physique au dispositif. Cela lim-
ite la capacité de l’attaquant à exploiter les vulnérabilités du système dans les cas où
l’accès physique n’est pas possible. En revanche, les attaques logicielles peuvent être
réalisées à distance, ce qui permet à l’attaquant d’effectuer les actions malveillantes
depuis presque n’importe où.

Les attaques matérielles avec accès physique aux dispositifs ne font pas partie de ce tra-
vail. Nous supposons que les attaquants n’ont pas d’accès physique au système cible.

23

En général, l’accès aux systèmes dans les environnements industriels est limité, et les
dispositifs IoT grand public sont situés au domicile de l’utilisateur. En outre, si les dis-
positifs IoT peuvent devenir les cibles de leurs propres utilisateurs, nous supposons
que des protections physiques sont en place. Des exemples de telles protections inclu-
ent un élément sécurisé intégré ou la détection des tentatives de démantèlement de
l’appareil. Ce sont là quelques-unes des protections physiques qui peuvent être util-
isées pour protéger le système contre les attaques physiques. Nous avons mentionné
les attaques matérielles nécessitant un accès physique car elles nous aident à démon-
trer la gravité d’une nouvelle classe d’attaques que nous présenterons dans la prochaine
Section 2.1.3.

Attaques logicielles visant les vulnérabilités matérielles

En raison des exigences croissantes des systèmes modernes en matière de puissance
de calcul, de mémoire et d’utilitaires, les architectures modernes deviennent plus com-
plexes. De plus en plus de composants dotés de capacités complexes sont mis en œuvre
dans le matériel pour répondre aux demandes croissantes. Cela conduit à une surface
d’attaque plus grande. Les attaquants explorent le matériel pour trouver des vulnéra-
bilités qui leur permettent d’explorer le système. Ainsi, une nouvelle classe de SATHV
dans les différentes unités du système est apparue. Les unités matérielles ciblées com-
prennent la mémoire (par exemple, cache, DRAM), les modules de gestion de l’énergie
et de la fréquence, les interfaces de débogage ou les composants proposés pour opti-
miser le temps de calcul, comme l’exécution hors ordre et spéculative.

Contrairement aux attaquesmatérielles courantesmentionnées dans la Section 2.1.2, où
l’attaquant doit avoir un accès physique au système cible, le SATHV peut être réalisé
à distance. Puisque les attaquants n’ont pas d’accès physique à leurs systèmes cibles,
ils y accèdent par le biais d’une interface de communication telle que Wi-Fi, Bluetooth,
par exemple. Cela leur permet d’effectuer une attaque d’accès à distance telle que les
attaques par défaut d’horloge/tension [12], [13] ou un CacheSCA JavaScript [14], [15].
CacheSCA [16], Rowhammer [37], Spectre [17], et Meltdown [18] comptent parmi les
attaques non invasives les plus graves à ce jour, qui reposent sur des vulnérabilités
matérielles et peuvent être exécutées à distance. Dans les sous-sections suivantes, nous
expliquerons comment ces attaques fonctionnent et quelles vulnérabilités elles ciblent.

Attaques de Cache par Canal Auxiliaire

Architecture des caches Les CacheSCA sont un ensemble d’attaques qui ciblent la
mémoire cache. La mémoire cache est un composant matériel dont le but est de réduire

24

le temps moyen et le coût énergétique de l’accès aux données stockées dans la mémoire
principale. Les caches sont plus petits en taille que la mémoire principale, plus rapides
et situés plus près de l’unité centrale. Leur but est de fournir un accès plus rapide aux
données ou aux instructions qui sont fréquemment utilisées pendant l’exécution du
programme. Cela permet de gagner un temps précieux en accélérant l’exécution. Les
mémoires caches sont souvent organisées selon une hiérarchie allant du plus proche du
CPU au plus proche de la mémoire principale. Plus on est proche de l’unité centrale,
plus les caches sont petits et plus ils sont grands à mesure que l’on se rapproche de la
mémoire principale. Les caches de niveau 1 (L1) sont également divisés en cache de
données L1 (L1D) et cache d’instructions L1 (L1I). Le cache d’instructions est chargé
de stocker les instructions exécutées, tandis que le cache de données stocke les données
à traiter.

En outre, il existe des caches TLB (Translation Look-aside Buffer). Le cache TLB est une
mémoire qui stocke les traductions des adresses virtuelles en adresses physiques. Le
TLB fait partie de l’unité de gestion de la mémoire (MMU), qui est responsable de la
gestion de la mémoire virtuelle. La MMU est un composant matériel qui gère toutes
les opérations de mémoire et de cache associées au CPU, dans le but de séparer et de
protéger efficacement la mémoire utilisée entre les processus. La TLB contient les tra-
ductions les plus fréquemment utilisées des adresses virtuelles aux adresses physiques.
Ainsi, lorsque le CPU demande à accéder à une adresse virtuelle d’instruction ou de
données, la TLB traduit cette demande en une adresse physique que le matériel peut
utiliser pour rechercher les données demandées dans les caches d’instructions ou de
données. Les caches TLB peuvent également être divisés en TLB d’instructions (iTLB)
et TLB de données (dTLB), et il peut également y avoir plus d’un niveau de caches TLB.

25

2
Background and SOTA

This chapter provides the background knowledge necessary to understand the various subfami-
lies of malware, the severity of microarchitectural attacks and the proposed methods for securing
the system. First, the chapter defines malware and explains the steps and objectives of micro-
architectural attacks. Then, we analyze the methods proposed in the state of the art to detect
malware. Since machine learning is a tool that is increasingly used in the security, we analyze
its benefits and present the different models used in this work. Finally, the chapter concludes with
a discussion of the information obtained from the state of the art.

2.1 Malware and Software Attacks Targeting Hardware Vulnerabilities . 28

2.2 Malware Detection . 40

2.3 HPC-based Malware Detection, State of the Art 47

2.4 Background on Machine Learning and Feature Extraction 54

2.5 Summary . 69

27

2.1 Malware and Software Attacks Targeting Hardware
Vulnerabilities

In recent decades, the world has been rapidly transitioning to the digital era, where al-
most all of our data is stored and processed by computer systems. This acceleration of
the transition to the digital world was made possible by the rapid development of com-
puters, memories, communications, security protocols, etc. Industry made advances in
hardware and software, developing increasingly complicated systems to meet grow-
ing demands. However, the transition to the digital age led to an increase in attacks
on computer systems. Attackers perform malicious operations that disrupt the normal
operation of computer systems. We refer to these malicious applications as malwares.
There are many definitions for the term malware, for example:

• A program that is inserted into a system, usually covertly, with the intent of compromising
the confidentiality, integrity, or availability of the victim’s data, applications, or operating
system or of otherwise annoying or disrupting the victim NIST.[30]

• Malware, short for "malicious software," refers to a type of computer program designed to
infect a legitimate user’s computer and inflict harm on it in multiple ways. Malware can
infect computers and devices in several ways and comes in a number of forms, just a few
of which include viruses, worms, Trojans, spyware and more Kaspersky[31].

• Malware is an abbreviated form of “malicious software.” This is software that is specifically
designed to gain access to or damage a computer, usually without the knowledge of the
owner Norton[32].

All of the above definitions are very similar and include at least the maliciousness or
harmfulness and the ability to perform actions without the user’s permission or aware-
ness. To this end, Or-Meir et al. [33] proposes a different definition ofmalware that does
not focus on the intentions of the attacker, as it is impossible to determine the intentions
behind an unknown binary code. Though, they propose the following definition:

Malware is code running on a computer systemwhose presence or behavior the system
administrators are unaware of; were the system administrators aware of the code and
its behavior, they would not permit it to run. Malware compromises the confidential-
ity, integrity or the availability of the system by exploiting existing vulnerabilities in
a system or by creating new ones.

The above definition of malware refers to the system administrator’s point of view and
to the three principles of security: confidentiality, integrity, and availability, which a
malware attempts to compromise. We embrace the aforementioned definition by Or-

28

Meir et al. and we extended adding the following:

Malware is the abbreviation of software or hardware malicious
actionswhose presence or behavior the system administrators are
unaware of;were the systemadministrators aware of the code and
its behavior, they would not permit it to run. Malware compro-
mises the confidentiality, integrity or the availability of the sys-
tem by exploiting existing vulnerabilities in a system or by creat-
ing new ones.

Extended Malware Definition

The above extended definition includes hardware related malicious code that tries to
compromise systems confidentiality, integrity or the availability. Such cases are the case
hardware Trojans, which numerous SOTA works refer to as malwares [34], [35].

In the following sections, we will distinguish attacks according to the means of per-
forming them i.e., software or hardware.

2.1.1 Software Attacks

Attacks aim to exploit a vulnerability to compromise the confidentiality, integrity, or
availability of the system. A vulnerability can be a flaw or bug that allows attackers to
perform their malicious actions in the target system. As software code becomes more
complex, vulnerabilities in the software code multiply. According to Steve McConnell’s
book Code Complete [36], the industry average is about 15-50 errors per 1000 lines of
delivered code. Increasing errors in software increase the attack surface that attackers
can use to penetrate the system. One of the most noticeable software vulnerabilities are
buffer overflows, which allow attackers to write more data to an input buffer than the
buffer allows. An attacker can exploit this to place malicious payload in the overflowed
buffer, which is then executed. A heap overflow is a type of buffer overflow that occurs
in the heap area, where the attack is performed by corrupting the heap structures such
as linked list pointers. Other software vulnerabilities include SQL injection, third-party
library and API vulnerabilities, faulty access control, code injection, identification and
authentication failures, software and data integrity failures, etc.

When attackers discover a software vulnerability in a target system, they perform their
malicious actions. The vulnerabilitymay be publicly known or it may be a new vulnera-
bility that has never been seen beforewhichwe refer to as zero-day vulnerabilities. After

29

attackers exploit a software vulnerability, they can steal or manipulate sensitive data,
join the target system in a botnet, install a backdoor, or install other types of malware
such as a rootkit. In addition, the attacker can exploit a vulnerable host to penetrate
other hosts on the same network. Though, attacks targeting software vulnerabilities
are the means to perform other malicious actions after gaining control of the targeted
system.

2.1.2 Hardware Attacks

Hardware attacks exploit vulnerabilities of the hardware components itself. Since the
hardware components are responsible for executing the software code, the hardware
behavior can reveal information about the information processed. Further, modifying
the behavior of the hardware can also change the software behavior. Attackers found
ways to exploit this interaction to extract sensitive information from the system, such as
cryptographic keys, or change the normal control flow of a software code. Such hard-
ware attacks are differential and correlation power analysis, clock, voltage glitch attacks,
laser-fault attacks. Differential and correlation power side channel analysis extract side
channelmeasurements using traces from the power consumption or electromagnetic ra-
diation, and try to correlate it to a sensitive variable processed by the targeted system.
Clock, voltage glitch, or laser-fault attacks induce a fault during the normal execution of
the targeted system to extract information using differential fault analysis, or alternate
the normal execution to an unexpected. Other types of hardware attacks include attacks
using the JTAG debug interface [9]. The aforementioned attacks target vulnerabilities
in the hardware and require physical access to the device. This limits the ability of the
attacker to exploit system vulnerabilities in cases where physical access is not possible.
In contrast, software attacks can be performed remotely, which allows an attacker to
perform the malicious actions from almost anywhere.

Hardware attacks with physical access to the devices are outside the scope of this work.
We assume that the attackers do not have physical access to the target system. In gen-
eral, access to systems in industrial environments is limited, and consumer IoT devices
are located in the user’s home. Furthermore, if IoT devices can become targets of their
own users, we assume that physical protections are in place. Examples of such protec-
tions include an integrated secure element or detection of attempts to dismantle the
device. These are some of the physical protections that can be used to protect the sys-
tem against physical attacks. Wementioned hardware attacks requiring physical access
because they help us demonstrate the severity of a new class of attacks that we will in-
troduce in the next Section 2.1.3.

30

2.1.3 Software Attacks Targeting Hardware Vulnerabilities

Due to the increasing demands of modern systems on computing power, memory, and
utilities, modern architectures are becoming more complex. More and more compo-
nents with complex capabilities are implemented in hardware to meet the increasing
demands. This leads to a larger attack surface. Attackers are exploring the hardware to
find vulnerabilities that allow them to explore the system. Thus, a new class of SATHV
in the various units of the system has emerged. The targeted hardware units include the
memory (e.g., cache, DRAM), power and frequencymanagement modules, debugging
interfaces, or components proposed to optimize computation time, such as the out-of-
order and speculative execution.

Unlike the common hardware attacks mentioned in Section 2.1.2, where the attacker
must have physical access to the target system, SATHV can be performed remotely.
Since the attackers do not have physical access to their target systems, they access them
through a communication interface such as Wi-Fi, Bluetooth, e.g., . This allows them
to perform a remote access attack such as clock/voltage fault attacks [12], [13] or a
JavaScript CacheSCA [14], [15]. CacheSCA [16], Rowhammer [37], Spectre [17], and
Meltdown [18] are among the most serious non-invasive attacks to date that rely on
hardware vulnerabilities and can be performed remotely. In the following subsections
we will explain how these attacks work and which vulnerabilities they target.

Cache Side Channel Attacks

Cache Architecture CacheSCA are a set of attacks that target cache memory. Cache
memory is a hardware component whose goal is to reduce the average time and energy
cost of accessing data stored in main memory. Caches are smaller in size than main
memory, faster, and located closer to CPU. Their purpose is to provide faster access
to data or instructions that are frequently used during program execution. This saves
valuable time by speeding up execution. Cache memories are often organized in a hier-
archy ranging from closer to CPU to closer to main memory. The closer we are to CPU,
the smaller the caches are and the larger they get as we get closer to main memory. The
Level1 (L1) caches are also divided into L1 Data Cache (L1D) and L1 Instruction Cache
(L1I). The instruction cache is responsible for storing the executed instructions, while
the data cache stores the data to be processed.

In addition, there are the Translation Look-aside Buffer (TLB) caches. The TLB cache
is a memory that stores the translations from virtual to physical addresses. The TLB is
part of the Memory Management Unit (MMU), which is responsible for managing vir-
tual memory. The MMU is a hardware component that handles all memory and cache

31

operations associated with the CPU, with the goal of effectively separating and protect-
ing the memory used between processes. The TLB contains the most frequently used
translations from virtual to physical addresses. Thus, when the CPU demands to access
a virtual instruction or data address, the TLB translates that request into a physical ad-
dress that the hardware can use to look up the requested data in the instruction or data
caches. The TLB caches can also be divided into instruction TLB (iTLB) and data TLB
(dTLB), and there can also be more than one level of TLB caches.

A typical two-level cache memory can be seen in Figure 2.1. Cache memories can also
have more levels, as is typical for systems with high-processing power such as Intel or
ARM CPUs targeting desktop systems.

Figure 2.1: Memory hierarchy in a modern-CPU system.

CacheCSAGoals CacheCSAaims to extract information fromcaches using side-channel
information. The reason for this is that the attackers have no knowledge of a secret pa-
rameter, which they want to extract via the cache as a side channel. The information
extracted via the side channel is the timing for accessing the cache or main memory.
If the requested data is stored in one of the cache levels, the request will be processed
faster than if the data has to be transferred from the main memory.

32

The main vulnerability that attackers exploit with CacheCSA is
the timing of amemory access.When data or address translations
are cached, the request is processed faster than waiting for the
request to be processed from main memory.

Cache Side Channel Attacks targeted Hardware Vulnerability

To exploit this vulnerability, there exist many works in the SOTA that propose method-
ologies to succeed. The differentworks target to exploit the vulnerability in the different
levels of cache available in the system. For example, [38] attack the L1Data Cache, [39]–
[42] attack the L1 Instruction Cache, [43] target the TLB Cache, and [16], [44]–[49] at-
tack the Last Level Cache (LLC), which in our examples in Figure 2.1 is the L2 Cache.
Most, but not all, CacheCSA attack methods target the LLC. The reason for choosing
this level is that the LLC is the cache shared by all CPU cores. This means that attack-
ers can execute the attack in one core while running the victim in a separate core. If
a CacheCSA is not running in the LLC, e.g., the L1D cache, the attacker must execute
both the victim application and attacker code in the same physical core, which might
reduce the attacks’ applicability.

In the following paragraphs, we will explain some of the techniques used to extract
sensitive information using the cache as a side channel. The techniques presented are
not exhaustive, but they better demonstrate, with less complexity, the CacheCSA.

Flush+Reload The Flush+Reload (F+R) CacheCSA was introduced in [47]. The
Flush+Reload in this work targeted the LLC. This attack uses the flush instruction,
which removes the requested address from all levels of the cache. The flush instruc-
tion is available from userspace in Intel and ARMv8 architectures, but not in ARMv7
and RISCV. The attacker must perform several steps to succeed with the attack. In our
example, the attacker and victim share memory addresses, which means that the at-
tacker knows which address the victim will use to process the sensitive information.
In Figure 2.2a we can see an example of Flush+Reload. The attacker first hypothesizes
which virtual address the victim will use and to which physical address it translates
to in the LLC (orange box). Then the attackers flush the address and invalidate it at
all levels of the cache. Then they allow the victims to execute so that they can process
the sensitive data. Finally, the attacker reloads the shared address and measures the
time it takes to complete the request. If the access time is less than a threshold, the at-
tacker can assume that the victim has accessed the hypothesized address. If the access
time is longer than a threshold, the attacker assumes that the requested data is from

33

(a) (b)

(c) (d)

Figure 2.2: (a) Flush+Reload on shared address, (b) Flush+Flush on shared address,
(c) Evict+Reload, (d) Prime+Probe.

main memory and that the victim did not process the sensitive data using the hypoth-
esized address. When performing the attack for multiple hypotheses, the attacker can
associate the sensitive value processed by the victim with the address with the shortest
access time.

Flush+Flush The Flush+Flush (F+F) was introduced in [46]. The Flush+Flush in
thiswork targeted the LLCand also used a sharedmemory between victim and attacker.
This attack is similar to the Flush+Reload presented in Section 2.1.3, but the attackers
nowmeasure not the time taken to access the requested data, but the time taken for the
flush instruction to invalidate the targeted address. This is because the execution time
of the flush instruction depends on whether the requested data is cached or not. If the
requested data is cached, the request will take longer than if it is not. Since the attackers
first flush the targeted address, if the victim has accessed the data bringing them to the
cache, the attackers can thenmeasure the time it takes for the following flush instruction
to complete. If the request takes longer than a certain threshold, it means that the victim
has used the address, otherwise the victim has used a different address to process the
sensitive data. An example of the Flush+Flush an the different steps can be seen in
Figure 2.2b.

Evict+Reload TheEvict+Reload (E+R) attack,whichwewill present,was introduced
in [48]. This attack does not necessarily require the existence of the flush instruction, so

34

it can be used on all architectures. This attack is similar to Flush+Reload presented
in Section 2.1.3, but now the attacker cannot use the flush instruction. This may be the
case if there are restrictions on the use of the instruction from the user space or it is
not implemented in the instruction set. To successfully perform the attack, the attacker
must find a set of addresses that map in the same cache set. If the attacker successfully
fills the set with its own data, it removes all other data from other processes stored in
the same cache set, performing the equivalent of flushing the target address from the
cache. With Flush+Reload, only the target address to be removed needs to be specified,
which is then removed from the cache by the hardware in subsequent clock cycles. On
the other hand using Evict+Reload, the attacker must request multiple data addresses
to be stored in the cache in order to successfully remove the same target address. This in-
creases the time required to execute the attack and increases noise from other processes
using the same cache. The next step is to execute the victim, and as with Flush+Reload,
the access time of the reload performed by the attacker will be faster than a threshold
if the victim has used the target address Figure 2.2c.

Prime+Probe The Prime+Probe (P+P) attackwewill presentwas introduced in [49].
This attack does not necessarily require the existence of the flush instruction, so it can
also be used on all architectures. In this example, the attacker and the victim do not
share the same addresses, so the attacker cannot request the targeted address directly
because the MMU prohibits it. A common step used in many CacheCSA is to find the
virtual to physical mapping of the target address. Since the MMU manages memory,
each process has its own virtual address space that translates differently into physi-
cal addresses. The attackers must figure out which virtual address in their own virtual
space translates to the targeted physical address, which in turn translates to the vic-
tim’s virtual address. After this step, the attackers can carry out the attack using their
different methods. In Prime+Probe, the attacker assumes that the victim will access a
targeted address. After learning what physical address it translates, it tries to find ad-
dresses stored in the same cache set in its virtual space. We can think of the cache set
as a full row in the cache, as seen in Figure 2.2. The attackers try to fill the cache set
with their own data, as seen in Figure 2.2d. Then the victim executes and accesses the
sensitive data. In the third step, the attacker reloads all the data it used to fill the cache
set andmeasures the time it takes to retrieve it. If the request takes longer than a certain
threshold, it means that the victim has accessed the sensitive data in that cache set re-
moving the attacker’s data. Thismeans that when the attacker reloads the data, the data
mapped in the address removed by the victim will need to be brought from memory,
taking more time to finish the request.

35

Cache side-channel attacks require a lot of attention because attackers canperform them
with or without using the flush instruction, andwith or without sharedmemory, just by
observing the timing information of accessing this fast memory compared to the slower
main memory.

Rowhammer

The Rowhmammer attack was first presented by [5]. The vulnerability exploited in this
attack is the side effects of repeated access to the same memory cells in the DRAM. Re-
peated access to a memory cell or pair of memory cells within a short period of time
causes thememory cells to electrically interact with each other by leaking their charges.
This can cause the contents of the memory cells in nearby memory rows that were not
accessed during the original memory access to be altered. The attack is highly depen-
dent on one particular parameter, namely the DRAM refresh interval. At each refresh
interval, the DRAM recharges the memory cells because DRAM is essentially a set of
capacitors whose charge must be refreshed periodically or the stored data will be lost.
Attackerswhowant to successfully causememory faultsmust access the targetedmem-
ory cells as often as possible, increasing electrical interaction. At each refresh interval,
the DRAM recharges the memory cell charges, and the attacker’s efforts are in vain as
the cells are reset to the nominal charge.

(a)

input : row(n) = Address of targeted row
n

/* Address to induce memory errors */

while True do
read address at row(n+1);
read address at row(n-1);
remove from cache address at
row(n+1);

remove from cache address at row(n-1);
memory barrier;

end

(b)

Figure 2.3: (a) Rowhammer, (b) Rowhammer pseudo-code.

Since the DRAM is after the cache memories and frequently used data is stored in the
cache, accessing the same memory address causes the memory contents to be stored in
the cache. A subsequent access will load the data from the cache and not from DRAM.
Since the attackers want to avoid this situation, they flush the cache each time before
requesting the same data address frommemory to ensure that the subsequent memory

36

access brings the data frommainmemory. An example of the attack and its pseudocode
can be seen in Figure 2.3. The authors in [5] have shown that double-sided rowhammer
can be more effective than one-sided rowhammer. When using double-sided rowham-
mer as in Figure 2.3, we use the pseudocode in Figure 2.3b. The attackers need to find
the addresses of the two adjustment rows to the target address they want to induce
faults. After that, they start continuously flushing and accessing i.e., hammering, the
adjustment rows. In the one-sided rowhammer, the attacker only hammers one row ad-
justment to the target row.

Themain vulnerability that attackers exploit with Rowhammer is
the electrical interaction of the DRAMmemory cells. If the mem-
ory cells are accessedmultiple timeswithin a short period of time,
this can cause the contexts of the DRAM memory cells adjacent
to the accessed cells to be altered. This leads to targeted memory
errors caused by the attacker. The electrical interaction between
cells is becoming more significant with the modern high-density
DRAMs.

Rowhammer targeted Hardware Vulnerability

Apart fromusing the flush instruction, [50] has shown that it is possible to inducemem-
ory errors using eviction techniques instead of the flush instruction. Using eviction tech-
niques means that the attack is performed at a lower frequency than when using the
flush instruction, which can affect the success rate in corrupting the memory cell. As ex-
plained earlier in Section 2.1.3, "flushing" the cache address using eviction-based tech-
niques is slower compared to flush-based techniques. This as a result means we create
less interactions between the DRAM cells per attacking period. With Rowhammer, an
attacker can cause memory corruption that can affect the behavior of programs or gain
privileges in the target system. Researchers in [51]–[53] have used Rowhammer to in-
duce errors in a machine learning algorithm with the goal of forcing machine learning
to misclassify the input. In addition, researchers in [54] used rowhammer to escalate
privileges in the system. The authors use a malicious VM that exploits the bitflips trig-
gered by rowhammer to crack the memory isolation enforced by virtualization.

Spectre

Spectre [17], [55] and Meltdown [18], which we will present in Section 2.1.3, are two
of the most recent micro-architectural attacks. The two attacks were made public on
3 January 2018, after the affected hardware vendors had already been made aware of

37

the issue on 1 June 2017 [56]. Spectre is a micro-architectural attack affecting many
CPUs with a branch prediction or other speculation forms, for examples Intel Skylake-
Haswell, ARM-Cortex A72-A9 [57], AMDNaples-Toronto etc, . Spectre has concern the
most the CPU vendors, as it can extract privileged information from userspace/unpriv-
ileged application. Spectre exploits a vulnerability in the branch speculation, which is
a result of the demand for increasing CPU performance. A branch-predictor is a hard-
ware unit that tries to predict the outcome of a branch destination address, when this
address depends on a previous calculation not available yet to the CPU. This allows
the CPU to continue executing subsequent code by speculating the result of a branch
destination address when it is not sure of the real outcome. When the result of the pre-
vious computation is finally ready, the CPUverifies if its predictionwas correct or not. If
not, the CPU restores the execution back to the previous point and continues execution
using the correct result. If the prediction was correct, the CPU can continue executing
normally which effectively means we increase performance as we execute more code
instead of staying idle waiting for a result.

Attackers can use speculation to force the CPU execute an attacker controlled branch
destination address, accessing unprivileged code, before the CPU realize the fault. As
the CPU will eventually realize the fault in the prediction, restoring the execution back
to the correct result, the attackers will loose the unprivileged data accessed just before.
One main idea attackers use to extract the unprivileged data is to use the cache as a
side-channel. The trick is that attackers will force the CPU to speculative execute in
order to access to a memory value at an attacker-chosen address. Then, it will perform
a memory operation that modifies the cache state in a way that exposes this value [55].

The main vulnerability that attackers exploit with Spectre is ac-
cessing arbitrary memory locations during speculative execution
due to the execution of subsequent instructions prior to verifying
the correctness of the branch prediction result. The attacker can
then affect the state of a side channel to extract the sensitive infor-
mation.

Spectre targeted Hardware Vulnerability

Since the original Spectre whitepaper, many variants have appeared, targeting various
forms of speculation.

38

Meltdown

Meltdown [18], is another hardware vulnerability presented together with Spectre.
Meltdown can be used to read privileged memory in a process’s address space that
even the process cannot normally access. In some unprotected OS this can include data
owned by the kernel or other processes. Meltdown affected most of Intel’s CPUs [18],
[58], while other vendors were not so affected. For example some ARM core affected
are ARM Cortex A57, A72, A75 etc.

The main cause of Meltdown is the side effects caused by out-of-order execution. Out-
of-order execution is another strategy introduced to speed up code execution. Instead
of waiting for slow operations to finish and not remaining idle, CPU can execute out-
of-order operations by scheduling subsequent tasks to execute on the idle components.
The vulnerability exploited by attackers is the access to privileged data owned by the
kernel or other processes as a result of the out-of-order execution. This is because when
out-of-order accesses to privileged data are executed, they are temporarily stored in
the system registers. An attacker can then use the value stored in the register to read
an address from an array directly associated with the privileged data, as demonstrated
with spectre. But since an attacker try to access the privileged data, the CPU will check
the access privileges of the requested address when translating from virtual to physical
address in the MMU. Since this operation can take some time, the CPU will access the
illegal memory storing the result in the system register instead of waiting it.

Meltdown exploits the side-effects of out-of-order execution to
leak privileged data. This is succeeded by accessing the privileged
address in the small timing window between the illegal memory
access and the raising of the exception by the CPU.

Meltdown targeted Hardware Vulnerability

Researchers in [18] shown that is is possible to succeed reading rates of privileged data
at 503 KB/s with an error rate as low as 0.02 % when using exception suppression and
with exception handling, they achieved average reading speeds of 123 KB/s with an
error rate of 0.03 %. As the CPU raises an exceptionwhen runningMeltdown due to the
illegal access, the attackers can use in-code exception handling techniques to surpass
the exception. This only requires operating system support to catch segmentation faults
and continue operation afterwards. This demonstrates the high severity of Meltdown,
which breaks the memory isolation barriers between processes enforced by the OS.

In summary, SATHV pose a serious threat to modern systems because they do not re-

39

quire physical access, can target vulnerabilities in the hardware itself, and can damage
the system or extract non-privileged information without being detected by modern
software tools. Because of their severity, a number of solutions have been proposed in
SOTA to secure the system or detect them. In Section 2.3.2, we will present SOTA solu-
tions that deal with SATHV and their relevant gaps.

2.1.4 Malware Classification

To summarize we will present a taxonomy of the different classes of malware in Ta-
ble 2.1. We filled the table with information found from the SOTA [59]–[61], that will
help better illustrate the different malware families and behaviors.

We divide the table into three columns. The first column indicates whether the attack
was from software or hardware. The second column contains the malware class and
the third column describes the goals of the malware. In the upper part of the table,
we list buffer and heap overflows. Often these attacks are used to subsequently install
other forms of malware. We also see that some malware occurs in both hardware and
software, such as rootkits and Trojans. In addition, we list SATHV, which are of most
interest in this work because they are able to extract sensitive information by exploiting
vulnerabilities in the hardware itself. Moreover, patching hardware vulnerabilities is
not as easy as software bugs, since patches can only be applied in new architectures,
which can be costly and time-consuming. Thismakes it necessary to findways to protect
against SATHV. Last, we list hardware attacks, which, as mentioned earlier, are beyond
the scope of this work, as we assume that the IIoT/IoT environment restricts physical
access and/or physical protections exist.

2.2 Malware Detection

When it comes to protecting the system frommalicious applications, we can distinguish
between two approaches: Mitigation and Detection. Mitigation often involves develop-
ing patches to address issues related to software vulnerabilities or redesigning hard-
ware. More complex modifications or redesign can be also necessary for software (for
example if it requires some changes in the communication protocol). Amajor drawback
ofmitigation is thatwe apply security patches after vulnerabilities have beendiscovered
and are likely to be exploited by attackers, and in some cases they cannot be applied
directly to a vulnerable system. This is the casewith attacks targeting hardware vulnera-
bilities, as the required fixes can only be applied to future architectures, which increases
development costs. Another drawback is that the application of a security fix may run

40

SW or HW Malware
Class Description

SW Buffer
Overflow

Attempts to insert more data than possible into a buffer, with the goal of overwriting
system variables and redirecting program execution to execute arbitrary code.

For example, install other types of malware.

SW Heap
Overflow

Attempts to insert more data than possible into the allocated buffer. This could lead to
corruption of heap metadata or other heap objects, which in turn could allow arbitrary

code execution.

SW Virus

Malware that attaches to running applications and spreads through user interactions.
A virus can be evasive using polymorphism, meaning that when it replicates to attach
to a new target, it changes its payload to avoid detection. It can also be metamorphic,

i.e., when it replicates to attach to a new target, it changes both payload and functionality,
plus the means of changing form in the future.

SW Worm Malware that spreads from an infected host to other hosts via exploits in the OS interfaces,
for example using system calls.

SW/HW Trojan Malware that tries to behave as a normal application and acts maliciously after installation,
for example creating backdoors.

SW
Distributed

Denial of Service
(DDoS)

A DDoS attack aims to flood the devices, services, and network of the intended target with
spoofed Internet traffic, rendering them inaccessible or useless to legitimate users.

SW SpyWare Malware that hides and monitors and reports on the user’s computer usage and personal
information.

SW Ransomware Ransomware is a malware that aims to deny legitimate users access to files on
their computer by encrypting them and demanding payment for decryption.

SW Keylogger A keylogger is a form of malware or hardware that records and tracks legitimate
users keystrokes as they type.

SW Botnet Malware that uses a legitimate user’s computer to create a network of infected
computers controlled by a central malicious organization.

SW/HW Rootkit A malware created to provide access to a computer that is otherwise not allowed,
and which usually disguises its existence or the existence of other software.

SW CacheCSA A malware trying to extract sensitive information using the cache and its access timing
as a side channel.

SW Spectre A malware that exploits speculative execution to read sensitive information and
uses the cache as a side channel to extract the sensitive values.

SW Meltdown Same as Spectre, but exploiting the out-of-order execution.

SW Rowhammer
A malware that causes memory errors in a targeted memory cell by continuously
accessing its adjustment cells. The error is a result of the electrical interaction
between memory cells and the increasing cell density in modern DRAMs.

HW
Fault Attacks
(Laser, Clock,
Voltage Glitch)

Hardware attacks aiming to redirect program flow or change the status of system registers

Table 2.1

41

counter to the original intended use of the component. For example, in speculative ex-
ecution not allowing the CPU to execute part of the future branches, it contradicts the
original purpose of the unit. This is to predict whether the branch will execute even if
that case does not occur, in order to speed up execution. In [62], the authors discuss
mitigations for Spectre andMeltdown andmeasure the induced overheads. They show
that the proposed mitigations can increase the energy and performance overhead by
up to 72%.

Based on the above arguments and becausemitigation does not solve the problem,mon-
itoring, detection, and response are a more definitive solution that helps us secure the
system in the short and possibly long term. Detection allows us to findmalicious appli-
cations before they can exploit the system, so we can take security measures. But un-
like mitigation, which attempts to eliminate the vulnerability, detection only informs
the system in the event of an attack, and appropriate action should then be taken to
eliminate the threat. This means that there is a possibility that the attack will affect the
system before it is detected, and that it will succeed in performing some or all of the
malicious actions.

Detection is preferable to mitigation whenmitigation techniques can take time to apply
or require considerable modifications. Also, it depends heavily on the ability of detec-
tion implementations to quickly and effectively detect malware, and though reducing
or minimizing the impact of the attack. In the next sections, we present the SOTA de-
tection approaches that address our problem.

To detect malware, there are two main approaches: Static or Dynamic analysis.

2.2.1 Static Analysis

Static analysis checks parts of the application without actually executing it. A widely
used static analysis technique is signature-based detection, which can detect known
malware families. Antivirus programs use signature-based techniques to compare ap-
plication signatures with known malware signatures stored in a database. A signature
is a unique pattern of the applications executable. Signatures are created by scanning
files for code strings responsible for the malware execution, permission requests, etc,
[63]. The scanning of these information necessary to create the signatures can be ex-
tracted using decompilers, disassemblers, or source code analyzers. This allows exam-
ining with a high code coverage the executable offline. Since the signatures for each
executable are unique, an antivirus can offer high detection rate and quick detection
latency. This allows the antivirus to detect the malicious executable even before this

42

succeeds executing locally. The main drawback of static analysis is the inability to de-
tect new malware classes because a malware signature is added to the database only
after the malware is detected. This means that static analysis detection tools leave the
system vulnerable to the malware until the database is updated with the new signa-
ture. Moreover, malware obfuscation [19] is a technique attackers use to modify the
malware’s signature to evade detection. Since minor changes to the malware file can
result in different signatures, static analysis is not enough to fully protect the system.
Other drawbacks of static analysis include cases where the malware is encrypted and
decrypted only during execution, or cases where there is dynamic code loading or self-
modifying code. In such cases, it is necessary to execute the malware to better under-
stand its true behavior.

2.2.2 Dynamic Analysis

Dynamic analysis is an approach in which the malware is executed in a virtual or phys-
ical machine to extract information during its execution. This allows us to examine the
behavior of the application during runtime, which provides a less abstract perspective
on the application compared to static analysis. By executing the application, we can also
observe the execution paths taken, which are a subset of all possible execution paths,
since the execution path often depends on the application’s inputs. The goal of dynamic
analysis is to reveal the malicious activities performed by the executable while it is run-
ning without compromising the security of the analysis platform [33].

In order to successfully analyze a malware using a testbed during runtime, some prop-
erties must be respected [33]:

1. The extracted data must be trusted. The extracted information must not be com-
promised by the malware.

2. The malware must not detect the presence of the analysis tool. If it does, the mal-
ware could hide its true malicious activities. Also, the malware should not be able
to impact the monitoring tool.

3. The analysis tools should extract as much relevant information about the mal-
ware’s execution as possible, e.g., system calls, networking, modifications in local
files.

4. The local system should be properly installed to allow the malware to execute
as intended. Library dependencies, operating system version, etc. should all be
properly installed to allow the malware to reveal its true functionality.

43

The above properties apply to the analysis of malware in a testbed environment. In a
real system our goal is to restrict the execution of malware or minimize as possible their
impact.

Dynamic analysis is more robust than static analysis when there is obfuscated or en-
crypted malware. This is because the actual malicious behavior does not completely
change even if the malware is obfuscated or encrypted, because malware must perform
a series of actions to achieve its malicious goals. Obfuscation only changes the sequence
of malicious actions, and if the analysis tool is able to extract enough relative informa-
tion during runtime, detection is still feasible.

In the next paragraphs, we describe the most promising techniques used in the litera-
ture for malware detection. Each technique has its advantages and limitations, which
wewill analyze in the context of our current problem ofmalware detection on resource-
constrained devices,wherememory andperformance overheads are critical to adapting
a solution.

Control/Data Flow Integrity Control Flow Integrity (CFI) and Data Flow Integrity
(DFI) are two solutions proposed to protect the system from control-hijacking attacks,
or malicious programs that attempt to subvert a program’s intended data flow by ex-
ploiting memory corruption vulnerabilities. The CFI security policy requires software
execution to follow a predefined path of an offline computed control flow graph (CFG)
[64]. CFI secures the system in cases where the attackers corrupt control data, such as
a function pointer, to redirect control flow. It compares at runtime the target of each
indirect control flow transfer instruction with a set of allowed targets. If there is a mis-
match between the calculated destination and the path taken, it reports this as a control
hijacking attack. CFI protects against the second stage of memory-based attacks. This
means that the attackers have already corrupted control or non-control flow data, al-
lowing them to execute arbitrary code in a second stage. The CFI tries to detect or make
it more difficult to execute this arbitrary code.

Unlike CFI, DFI attempts to protect the system against the first stage of the attack, i.e.,
the corruption of sensitive data such as control flow data, for example, the return ad-
dresses [65]. If the attackers manage to corrupt this sensitive data, they can hijack the
execution flow. DFI ensures the trustworthiness of the data used at runtime, i.e., DFI
ensures that the data used is not corrupted by an attack targeting a memory corruption
vulnerability.

Both techniques have shown promising results in detecting attacks. However, their
main drawback is the high memory and performance overhead on the local system.

44

The performance overhead is due to the runtime verification of the control or data flow
at each occurrence, while the memory overhead is due to the additional instrumen-
tation that these two techniques require, e.g., storing the statically computed control
and data flow graphs. For example, [66] employs CFI to detect with 100% accuracy,
but introduces a 10% performance overhead, 4% code overhead, and 0.81% memory
overhead. Another approach, [67], uses DFI but also introduces a 7-15% performance
overhead, a 5.42% code overhead, and a 1.9%memory overhead. Another DFI approach
presented in [68] also resulted in a high performance overhead of 10-25% and a code
size overhead of 12.5%. When we consider IoT systems where these resources are valu-
able, the performance and memory overhead caused by these techniques are not neg-
ligible. Backguard is another work in [65] where the authors considered all the IoT
constraints, but their final solution has an average of 5.06% execution time overhead
and requires 9% additional memory. Since these solutions add significant overheads to
already resource-constrained systems, their adoption may be limited.

Another major disadvantage of DFI and CFI is the code instrumentation required. For
example, Backguard [65] is implemented within the Clang/LLVM compiler infrastruc-
ture. This directly implies changes to the software vendor IPs, which in some cases are
not even allowed. In the cases where CFI /DFI are implemented in hardware [69], [70],
this implies direct changes in the CPU core and execution stages, and/or the addition
of new instructions that verify the legitimate control flow.

On the other hand, there are techniques that dynamically monitor the system without
requiring changes to the software. However, they may require the development of a
custom application to extract system information periodically. Another benefit of dy-
namically monitoring the system using a custom application, is that we do not modify
other IPs. Modifying IPs from other vendors can pose restrictions, as vendorsmight not
allow access to their products so we can apply instrumentation.

Dynamic Analysis of API Calls Dynamic analysis can also use the API calls, system
calls, native Windows API calls, file creation, process creation, or registry activities to
model the behavior of normal and malicious applications. The API calls are used by a
program to access system resources. Every application uses APIs to access resources
such as networks, file systems and other software. Malicious applications regularly use
certain APIs, which can be a good indicator of abnormal actions, such as modifying
registry files to allow the malware to run even after the system reboots. The fingerprint
of the executed system calls provides a lot of information that represents the raw in-
teraction between the program and the host system, allowing a good characterization
of the executed application. Dynamic analysis can also detect obfuscated malware, as

45

shown in [71], because despite the obfuscation techniques, the malware must perform
a number of necessary actions to achieve its malicious goals.

Despite the promising accuracy in malware detection, a drawback of dynamic analysis
of API calls is that SATHV do not rely on abnormal API calls to perform their malicious
actions [72]. Moreover, monitoring the system at the system call granularity, provides
us with less information about the underlying activities, which may reduce the detec-
tion rate. Another drawback we identify, is that API calls are extracted from software
sources. Since these software sources are vulnerable to software attacks, we cannot be
completely sure of their legitimacy, as attackers may find ways to compromise these
software sources. This goes against property:1 introduced in the dynamic analysis es-
sential properties.

Hardware Performance Counters Based Malware Detection Since monitoring API
calls is not sufficient to detect SATHV, the researchers proposed the use of HPCs. HPCs
are special-core registers available in most modern architectures such as Intel [73],
ARM [74], RISC-V [75]. HPCs are available as part of the PerformanceMonitoring Unit
(PMU) and allowmonitoring of lower level micro-architectural parameters such as the
total number of instructions executed, branch miss predictions, memory accesses, etc.
This allows us to gain information about how the various hardware components behave
during the execution of an application. Since SATHV and other malware tend to treat
the system differently, this affects the behavior of the hardware components. Demme
et al. [59] were the first to investigate the feasibility of detecting malware using HPCs.
Since then, a number of works have been proposed using HPC information [76]–[80].
Considering that HPCs provide low-level information about hardware component be-
havior and SATHV tend to stress the hardware components to exploit the hardware
vulnerability and extract the sensitive information, this source of information becomes
interesting for detecting all subfamilies of malware i.e., classical malware and SATHV
alltogether. Also, since these counters are implemented as hardware components, it is
more difficult for attackers to manipulate the counted information. This increases their
reliability.

On the downside, HPCs suffer from nondeterminism [59], [81]. Non-deterministic re-
sults mean that between two identical runs of the same application with the same in-
puts and parameters, it is very possible to have different results for the hardware events
counted. [81] showed that HPCs can produce deterministic results in cases where the
test environment is tightly controlled. Contributing to this non-determinism is the hard-
ware itself, as modern systems execute instructions out-of-order, are speculative, or ex-
perience interference due to the OS. In addition, reading the HPCs means stopping the

46

normal execution of the CPU,which involves handling an interrupt and saving the CPU
registers, which adds noise to the extracted values. Finally, since the HPCs are special-
core registers and implementing registers within the CPU is expensive, these registers
are limited. This means that we can only measure a limited number of hardware events
at a time, equal to the number of HPC registers available.

Despite their drawbacks, researchers havewidely usedHPCs for detection. Further, the
combination of HPCs andML has become a standard tool for malware detection. In the
next section Section 2.3, we will analyze the use of HPC-ML solutions that researchers
have proposed in SOTA.

2.3 HPC-based Malware Detection, State of the Art

In this section, we present SOTA HPC-ML solutions proposed for SATHV and mal-
ware detection. Since HPCs provide us with the necessary information to distinguish
betweenmalicious and normal applications, the next step is to define rules that allowus
to detect and categorize the different system behaviors during attack or normal opera-
tion.However, defining rules for the ever-increasing complexity ofmodern applications
requires a high level of expertise and may still not be enough efficient to model most
system behaviors resulting in missing malicious actions or raising false alerts. This is
where machine learning comes in, a tool that can automatically learn rules and speed
up the modeling of systems. In the next Section 2.3.1, we introduce the concept of ML
in the area of security, while more background information can be found later in Sec-
tion 2.4. After introducing the concept of ML and security, we present SOTA proposed
solutions for SATHV and genral malware detection.

2.3.1 Machine Learning and Security

ML is a widely deployed tool for malware and intrusion detection. The increase in com-
puting power and memory have accelerated the development of machine learning and
its use in various fields.

Considering the field of security, a machine learning algorithm try to learn from a set
of information extracted from the system, such as the HPCs or API calls, with the task
to efficiently label normal and malicious applications, or the properly separate the dif-
ferent samples in the different applications.

Machine learning models can help us in many fields, but in the context of security two
of these aremost interesting, classification and anomaly detection. Classification is the task

47

of predicting in which class a given input belongs to. Given a set of input values, for ex-
ample the HPC data, the ML algorithm will decide if this input belongs to the normal
or malicious class. On the other hand, anomaly detection is used to discover anoma-
lies in the dataset. In the general case, anomaly detection algorithms seek the input
samples that differentiate the most among the rest of the samples. Both of these fields
have been deployed in numerous SOTAworks targetingmalware and SATHVdetection
[76], [82]–[88]. The reason why researchers start to increasingly use ML for malware
detection is its ability to learn complex patterns. Malware detection has moved from
rule-based approaches [85], [89] to using ML, as modern applications start to become
more and more complex, and also malware writers find more ways to penetrate the
system and bypass simple rules by obfuscating their code. Since defining and develop-
ing rules is complex and can take time, the automated learning of patterns using ML
help developers accelerate the deployment of new strategies, and quickly redefine the
strategies in the presence of new threats.

In a following Section 2.4 we will provide more information of the ML algorithms used
throughout this work.

2.3.2 State of the Art, SATHV Detection

As mentioned earlier, SATHV is a subclass of malware that is becoming increasingly
popular and poses a growing threat to system security. Because SATHV targets vul-
nerabilities in hardware, mitigation efforts are currently insufficient to protect systems.
This is because hardware mitigations can only be applied in future CPU architectures
when software mitigations cause a large performance overhead [62]. For this reason,
researchers have proposed detection techniques. In addition, since SATHV do not use
abnormal API calls, researchers are investigating the use of HPCs that directly inform
us about the hardware behavior of the system. However, most SOTA works either tar-
get a limited number of SATHV families possible in the system, or the target platforms
are desktops or cloud systems where resources allow the implementation of complex
solutions that can detect most SATHV families.

However, as attackers using SATHV also target IoT devices, proposed detection solu-
tions should consider the limitations of these systems. As the IoT/IIoT become more
complex to meet the increasing demand for computing power and memory, more and
more of these devices are becoming vulnerable to SATHV. This is because vendors are
addingmore features to the systems, especially with the rise of edge-computing, where
data is pre-processed in the edge-device and/orMLs are used locally for image or voice
recognition. According to a survey [90], there were 27.7 IoT connections per 100 inhab-

48

itants in the European Union in 2017, a number that is rapidly increasing every year.
The increasing use of IoT devices in many aspects of the daily life, the limited security
guarantees that come with them, and their increasing complexity should lead to the
proposal of malware detection implementations that take into account their limitations
presented in Section 1.1.1.

In the following we present proposed works for SATHV detection.

Mushtaq et al. Nights-Watch [91] andWHISPER [92] Mushtaq et al. proposed a lo-
cal CacheCSA detector targeting Intel-based systems in [91]. Their CacheCSA attack li-
brary includes Flush+Flush and Flush+Reload. The authors used only hardware events
that provide cache state information, such as cache misses, cache hits, and cache ac-
cesses, etc. The proposed idea was successful in detecting Flush+Reload with 99.51%
accuracy, 0% FPs, and 1.63% overhead using logistic regression in a noiseless environ-
ment. They also tested their solution in a noisy environment with 99.47% accuracy and
7.72% FPs.

A noiseless environment is an execution state in which each application starts execut-
ing only when the previous one finishes. A noisy environment is when two or more
applications share the resources of the local system at the same time. This means that
the OS schedules each application to run before the previous one finishes, giving each
application the "same" execution time. The above is true when all applications have the
same priority. If a task has higher priority, then the OS will give it more resources that
the rest of the applications.

As we can see from the solution of Mushtaq et al. [91], testing in the noisy environ-
ment increased FPs. This can be attributed to the context switch increasing the noise
in the cache. When a new application is scheduled by the OS, we observe increased
cache misses as the new data should be loaded into the cache. Moreover, the proposed
solution detects Flush+Flush with 91.73% accuracy, 0% FPs and 1.103% performance
overhead in the noiseless environment. When the same model is tested in a noisy en-
vironment, the accuracy drops to 63.16% and the FPs increase to 1.86%. The lower ac-
curacy in Flush+Flush can be attributed to the use of cache-relevant hardware events.
The proposed method relies on hardware events that provide information about the
cache state, such as cache hits, cache references, etc, but most importantly cache misses.
This poses a problem when considering SATHV that do not cause many cache misses.
One such case is Flush+Flush as mentioned in Section 2.1.3. In the original whitepaper
[46], the authors refer to it as a stealthy CacheCSA. This is because the proposed de-
tection mechanisms rely on the increased cache misses observed during Flush+Reload

49

and Prime+Probe. However, Flush+Flush does not increase cache misses because the
receiver (attacker) of the covert side-channel does not access shared memory, resulting
in no cache hits or cache misses.

The proposed solution successfully detects both attacks and also has a low FPR. How-
ever, the authors suggest using a specific ML for each malware class. This might not be
a problem in the high resource systems they are targeting, but could cause difficulties
in more limited devices such as the IoT.

In another work, Mushtaq et al. proposed WHISPER [92]. In this work, the authors’
attack library included Prime+Probe, Flush+Flush, Flush+Reload, Spectre, and Melt-
down. Also in this proposal, the authors suggest using a different ML model for each
malware. They also note that each ML model has good attack detection accuracy, but
has a high FPR. To reduce the FPR, they use an ensemble ML, where multiple models
(decision trees, svm, random forest) are used for decision making. The final decision is
made by amajority vote. Again, the proposedmechanism successfully detects malware
while having a low FPR (< 1%), but using multiple MLs in an ensemble technique and
for each malware may increase the implementation cost and be restrictive for devices
with limited resources.

Cho et al. [83] The authors in [83] proposed amechanism for detecting local CacheCSA
in real time in Intel server-based systems. The attack libraries include Flush+Flush,
Flush+Reload, and Prime+Probe. They use five hardware events, three of which pro-
vide information about cache misses in the three cache layers. The authors use a single-
layer NN with a softmax activation function (instead of returning a score for "0" or
"1", this function returns a score for belonging to n classes i.e., normal, Prime+Probe,
Flush+Flush, Flush+Reload),which they also used to detect the subfamily ofCacheCSA
in the system. The authors tested their mechanism in both noiseless and noisy environ-
ments in several server systems. In the noiseless environment, they achieved a max-
imum detection rate of 100% with a performance overhead of 0.6%, but in the noisy
environment, the detection rate dropped to 95.4% and the performance overhead in-
creased to 0.9%.

The proposed solution succeeds in detecting the three CacheCSAs in a noiseless envi-
ronment with high accuracy and also has a low overhead. However, since the target
system is a server, noisy environments are the most likely test case. In this case, the
accuracy of the proposed idea decreases and some attacks are missed.

We observed the same in another model proposed by Tong et al. [93], where the au-
thors use the same attack library and target system as Cho et al. [83], but they use a

50

Support Vector Machine (SVM) that detects attacks with 100% accuracy in a noiseless
environment, but when tested in a noisy environment, the accuracy drops to 97% and
0.03% FPR.

Gulmezoglu et al. Fortuneteller [76] Gulmezoglu et al. presented Fortuneteller [76],
a local SATHV detector targeting Intel server and laptop systems. The Attack library
of this work includes Flush+Flush, Prime+Probe, Flush+Reload, Rowhammer, Spec-
tre, Meltdown, and Zombieload (Intel speculative execution vulnerability only) [94].
The authors used Recurrent Neural Network (RNN) and Long Short-Term Memory
(LSTM)models in an unsupervised manner. They train their models only with normal
applications, making their model sensitive to applications that differ toomuch from the
baseline learned normal behavior.

Their technique is based on anomaly detection because they detect malicious applica-
tions when their model cannot predict them correctly because they behave differently
from the normal applications. They use RNN and LSTM to model the sequential HPC
data (time-series) from three hardware events that they extract every 1ms. The model
is implemented to use one hundred past samples (samplet−100, ..., samplet) to predict
the next sample sample′

t+1. To decide whether an anomaly exists, the model calculates
the Mean Square Error (MSE) of the actual sample at time samplet+1 and the predicted
sample′

t+1. If the prediction error is greater than a threshold τA, an anomaly is detected.
To reduce the number of false alarms, the authors propose a sliding window technique.
During the execution of an application, if the prediction error for the following 50 sam-
ples is greater than τA, an alarm is raised. This means that the model detects an attack
only after 50 ms. They manage to detect malicious behavior with an F-score of 99.7%,
an FPR of 0.125%, inducing a performance overhead of 3.5% in the local system.

Themain drawback of this proposal, even if it succeeds in efficiently distinguishingma-
licious and normal applications, is the overhead incurred in the local system. Themodel
has an overhead of 3.5% on an Intel server system, which cannot be compared to the
most powerful IoT devices in terms of computation and memory resources. However,
the authors show that it is possible to detect SATHV with high accuracy using more
complex systems.

From the above SOTA works, we observe that increasing the SATHV attack libraries,
SOTAworks use more andmore complicatedMLmodels to be able to accurately detect
the attacks, and still have a low FPR. This might not pose a direct problem to high
resource systems, such as desktops and server environments, but it can be restrictive
for lower resource devices such as IoT. Since SATHV start to pose a severe threat to IoT

51

devices, detection solutions should consider their limitations aswell. In the next section
Section 2.3.3, we present generic malware detection solutions, which specially targeting
IoT devices.

2.3.3 State of the Art, Generic HPCMalware Detection for IoT

Aswe have seen in Section 2.3.2, the proposed solutions are implemented locally on the
target system. But despite their good accuracy, they exhibit a high FPR. To reduce the
FPR, more complex MLs models are preferred, such as LSTM, ensemble ML, or a spe-
cific model for each subfamily of SATHV. The increased model complexity potentially
limits their implementation in IoT systems. In this section, we present SOTA works tar-
geting IoT devices for the detection of malware classes included in Table 2.1 and not
limited to only SATHV.

Kadiyala et al. presented a local malware solution targeting IoT devices in [79]. To re-
duce the overhead, they chose "simple" ML models such as random forest, decision
trees, AdaBoost, and k-Nearest Neighbors. They monitor the system at the system call
granularity, i.e., the extract HPC measurements every time a system call occurs. Al-
though their implementations have a detection rate of 98.4%, they have an increased
FPR of 3.1%.

Moreover, in [95], the authors showed that simple MLs are unable to identify attacks
based on zero-day vulnerabilities and have an FPR of more than 2%. For their experi-
ments, attacks based on zero-day vulnerabilities where malware classes not used dur-
ing training. Since simple MLs have lower accuracy and higher FPR, more complex ML
implementations are preferred. When we refer to complex MLs we refer to ML models
with hundred/thousand of parameters more than simpler models. For example, a lo-
gistic regression model using six inputs have only 7 parameters, while an LSTMmight
have more than a thousand. The implementation of a local detection mechanism us-
ing complex MLs is presented in [96]. The authors propose the use of Hidden Markov
Models (HMM) and LSTM algorithms for local malware detection. They succeed in
achieving 95% and 98% accuracy with 0.38% and 0% FPR of the two implementations.
Despite the high accuracy and low FPR of the proposed solutions, the drawback is the
increased performance and memory overhead incurred for the local system. The au-
thors determined that the LSTM requires 68kB of memory and takes 4 ms to make a
decision, which can significantly increase the performance overhead. This restricts their
ability to monitor faster than 4ms the system.

To reduce the overhead incurred in the local system, the SOTA works suggest the use

52

of remote implementations. This approach reduces the performance andmemory over-
head of the local implementation of the detectionmechanism, but significantly increases
the memory and communication overhead. In [88], the authors use LSTM and Con-
ditional Restricted Boltzmann Machine (CRBM) in a remote system. They succeed in
detecting malware with 99.97% accuracy and have an FPR of 0.5%. In [97], the authors
use a one-class SVM and detect malware with 100% accuracy. Both implementations
extract data every 1 ms, which significantly increases the communication overhead due
to the generated data stored and later sent.

On the other hand, Wang et al. [98] proposed a solution for detecting malware in IoT
systems that takes into account the communication overhead of transmitting all ex-
tracted raw HPC data. The authors recognized that more complex techniques cannot
be implemented locally, while the transmission of raw HPC data can increase the com-
munication bandwidth and thus the load on the network considering the hundreds of
IoT installed. To reduce the communication overhead, they propose to compress the raw
HPC data locally and send a reduced representation remotely. The authors found that
increasing the compression rate reduces accuracy. A compression rate of 20% and 30%
showed the best detection rate. This allowed them to detect malware using signature-
based techniques that compared the execution traces of different applications against a
remote database.

Despite their suggestion, the compression succeeded through complexmatrixmultipli-
cations, which the authors noted increase the execution overhead exponentially with
the size of the data being compressed and linearly with the compression rate.

2.3.4 Summary

In Section 2.3.2 and Section 2.3.3, we presented some SOTAworks proposed for SATHV
detection and genericmalware detection.We show thatwe can distinguish between two
implementations, i.e., local and remote.When the detectionmechanism is implemented
locally, the device can benefit from fast detection. However, we show that when simpler
ML algorithms are used, the overhead incurred in the local system is low, but the FPR
increases. If the device sees FPs frequently despite the high attack detection rate, the
final overhead due to system "reset" actions may reduce the benefits of using simple
techniques. On the other hand, using more complex ML models helps reduce FPR, but
at the cost of increased overhead in performance and/or memory.

On the other hand, by using remote detection ML we can implement models without
resource constraints. However, this comes at the cost of slow detection time, since the

53

data must be transmitted to the remote system to finally obtain the decision. Second,
the bandwidth increases due to data transmission,which can overload the networkwith
hundreds of devices sending several Mb of data per minute.

Detection solutions targeting the IoT should consider the limitations of these devices.
If any of their limitations are not taken into account, the security mechanism may not
be adopted, even if it has high efficiency.

2.4 BackgroundonMachine Learning andFeature Extrac-
tion

In this section, we provide background information regarding the use of ML models
for malware detection. We explain how the algorithms works, which will allow us to
better demonstrate the applicability of different models later in the chapters.

As previously mentioned in Section 2.3.1, machine learning is a tool that can automat-
ically learn complex rules from the input dataset to be able to differentiate between
normal andmalicious behaviors. Researchers have extensively used it for dynamicmal-
ware detection, proposing many models with different capabilities. In this section, we
will provide the necessary information to allow us to better illustrate the benefits and
drawbacks of each technique and each machine learning algorithm.

2.4.1 Supervised ML

SupervisedML is a type of ML, where the designer should provide both the inputs and
the targets. In this type of ML algorithms, the designer acts like a teacher, providing the
input data and teaching the algorithm the correct result. When using supervised ML,
we expect the ML algorithm to be able to learn useful patterns during training to be
able to distinguish the inputs between the different targets. Since the designer provides
both the inputs and the outputs to the model, this type tends to be fast and accurate.
However, the model must also be able to generalize, as it may learn to accurately sep-
arate training samples, but not be able to determine how to separate unknown to it
samples. For example, in malware detection, a model may be able to detect knownmal-
ware very accurately, but may not be able to detect new malware families or malware
that is slightly different. This is a limitation that also applies to static analysis techniques
such as antivirus programs.

In the following, we present the supervised ML algorithms used in this work and in
SOTA.

54

Logistic Regression

Logistic regression [99] is one of the simplest classification algorithms. It takes n inputs
and assigns the observations to a discrete set of classes. If only two classes exist, it is
a binary classification. This is the general case in malware detection when there are
only two classes, i.e., normal and malicious. If we want to have more output classes,
for example, if we want to have a normal class and a class for each malware family
(rootkits, SATHV, viruses, etc,), then the problem is a multinomial logistic regression.
We consider malicious samples as belonging to the positive class and normal samples
as belonging to the negative class. The logistic regression attempts to separate the two
classes using a linear hyperplane. When using n inputs, the hyperplane is a hyperplane
of dimension n-1. For example, if we have only two inputs, the hyperplane is simply a
line.

This is a simple algorithm to implement, requires limited resources reducing potentially
overheads, but it can solve effectively only linear problems. In the case of malware anal-
ysis, where the problem is not linear, misclassifications are most probable.

To find the best hyperplane, the algorithm represents the hyperplane by a linear equa-
tion such that the weights are those that minimize the cross entropy loss [100]. The
hyperplane can be expressed by the following equation Equation (2.1):

z = w1 ∗ x1 + w2 ∗ x2 + ... + wn ∗ xn + b (2.1)

In Figure 2.4a we can see how the classification line is changed for each training iter-
ation. For iteration 1, the classification accuracy is low because there are multiple FPs.
After iteration 2, the classification accuracy improves, but there are still multiple FPs. At
iteration 3, the classification accuracy improves slightly, but now there are multiple FNs.
The training is terminated in iteration nwhen the classification accuracy is the best and
has the fewest FNs and FPs.

Finally, to make a classification, the classifier takes the output probability ŷ and com-
pares it to a predefined threshold. Depending on this threshold, which is usually equal
to the 0.5 (50%) probability that the sample is positive, the sample is classified as "1" if
the probability is greater than the threshold, or as "0" if the probability is less. You can
see the logistic regression model in Figure 2.4b.

55

(a) (b)

Figure 2.4: (a) Logistic Regression training iterations, (b) Logistic Regression Visual-
ization with 6 inputs.

Support Vector Machines and Linear Support Vector Classification

Support Vector Machines (SVM) [101] and Linear Support Vector Classification (Lin-
earSVC) [102] are also linear classification algorithms, like logistic regression. Depend-
ing on the method used to train the classifier, it can solve linear and non-linear classi-
fication problems. It also tries to find a hyperplane that best separates the two classes.
However, there are usually one or more hyperplanes that separate the two classes with
the same accuracy. Logistic regression stops training when one of these hyperplanes is
found for the first time. SVM, on the other hand, tries to find the best hyperplane among
the candidates that best generalizes the classification problem. This is accomplished by
finding the hyperplane with the highest margin among the candidate hyperplanes. The
margin is calculated using the support vectors, i.e., the samples closest to the hyper-
planes between the two classes. From Figure 2.5a, we can see all three lines separate the
two classes with the same accuracy, since we have no misclassification for all of them.
However, we can also see that line 1 and line 3 are very close to the samples of the two
classes, which reduces the margin. On the other hand, the optimal line maximizes the
margin since it has the largest distance from the support vectors, as can be seen in Fig-
ure 2.5b. We can say that SVM tries to find the hyperplane (line) that separates the two
classes as much as possible. This increases the generalization, since the classification
line is not close to the train samples, but remains as far away as possible and maintain
the same accuracy.

Nonlinear problems can be solved by SVM by transforming the input data using non-
linear functions and solving the same problem in higher dimensions, e.g., by creating
a new variable equal to x2 + y2. This comes at the cost of added complexity. Another
disadvantage of the nonlinear SVM is the long training time, since it must compare the

56

(a) (b)

Figure 2.5: (a) SVM classification lines and optimal line according to the support vec-
tors, (b) SVM zoom.

distance between each sample points. According to [103], the complexity of the SVM
scales between O(ninputs ∗ n2

samples) and O(ninputs ∗ n3
samples), where (ninputs is the num-

ber of information sources (features) we use for classification e.g., six HPCs. When we
consider that datasets can include millions of samples, with each sample having many
features, the complexity of the problem becomes very high. To reduce the complexity of
training and implementation, in this work we only consider the linear approximation,
which we refer to as LinearSVC. Compared to the nonlinear SVM, LinearSVC only has
a complexity of O(ninputs ∗ nsamples).

AdaBoost

So far we have explained classifiers that use a linear hyperplane to separate classes.
But usually classification problems are not that simple, and a linear hyperplane cannot
separate the two classes efficiently. To increase the accuracy of linear (or non-linear)
classifiers, ensemble learning can be used. Ensemble learning combines the results of
two or more classifiers and uses majority voting to determine the final classification, as
seen in Figure 2.6a.

AdaBoost [104] is an ensemble learning method that attempts to increase the efficiency
of binary classifiers through an iterative approach that learns from themistakes ofweak
binary classifiers to eventually create more efficient ones. The idea behind Adaboost
(Adaptive Boosting) is that a single weak classifier may not be efficient enough to accu-

57

(a) (b)

Figure 2.6: (a) Ensemble Learning, (b) Adaboost training example using three weak
classifiers.

rately predict the class of a sample. However, if we use multiple weak classifiers, each
of which gradually learns from the incorrect decisions of the previous one, this can
eventually lead to a stronger classifier. An example of such a weak classifier might be
a LinearSVC or a Logistic Regression. When we refer to a classifier as weak, we are not
referring to a random classifier (i.e., it makes decisions that are correct with a probabil-
ity of 50%), but to a classifier that has an accuracy of, say, 89%. In Adaboost, a classifier
is first trained on the training samples and evaluated. Then, samples that are misclas-
sified are weighted more heavily so that the second classifier knows that it must try to
predict these samples correctly. Then the second classifier is evaluated and the weight
of the correctly predicted samples decreases while the weight of the misclassified sam-
ples increases. The final strong classifier is the combination of theweak classifiers, and a
decision is made by a weighted voting. A weighted voting means that if a weak learner
makes less errors, it has a higher weight in the final decision.

An example can be seen in Figure 2.6b. The first classifier separates the two classes
with the linear line. As we can see, most normal samples and most malware samples
are classified correctly, but there are some FPs. Next, we assign more weight to these
misclassified samples and less weight to the correctly classified samples, so classifier
2 tries to predict them correctly. Classifier 2 now correctly predicts the misclassified
samples, but we have misclassified some other points. Again, we decrease the weight
of the correctly classified samples and increase the weight of the misclassified samples.
Next, we train classifier 3 with the reweighted samples and obtain a third classification
line. Finally, by combining the decisions of the three classifiers, we obtain the nonlinear
classification line that correctly predicts most samples and increases the accuracy of the

58

weak classifiers.

Decision Trees

Decision trees [105] are a non-linear classifier which has the structure of the tree, i.e.,
it has a root node, intermediate nodes, branches, and leaf nodes. At each node one of
the sample’s features is evaluated and depending on a condition a different branch is
taken. The tree is structured so as an internal nodemakes a test on a feature of the input
samples (i.e., choose one HPC out of six to create a test), then each branch represents
an outcome of the test, and each leaf node (or terminal node) holds the predicted class
label. During training the decision tree is constructed by recursively evaluating differ-
ent features and using at each node the feature that best splits the data between each
class. An example can be seen in Figure 2.7a. Decision trees are easy to implement as
they require no data preprocessing (for example scaling the inputs in the same range of
values), and they can be implemented using simple if-else statements, which greatly re-
duces the implementation cost. A known limitation of decision trees is that they usually
overfit, i.e., they learn to accurately separate the training data but fall short on accurately
predicting new samples. An exmaple of a decision tree can be seen in Figure 2.7a.

To increase the accuracy of decision trees, multiple decision trees can be combined in
an ensemble classifier structure or using a techniques such as Adaboost. Another clas-
sifier that is gaining popularity is XGBoost [106]. XGBoost is an implementation of the
gradient boosted trees algorithm. It attempts to accurately predict the target class by
combining the estimated decisions of a set of weaker trees, similar to Adaboost. In gra-
dient boosting, the model adds a new weak learner with the goal of minimizing the
error over the objective function when the weak learners are combined. The idea be-
hind gradient boosting is to set the target outcome for the next model in a way that
minimizes the prediction error. As in logistic regression, the new model is modified
in the direction of the minimum error using gradient descent algorithm. XGBoost also
introduces regularization penalties to ensure that the model does not overfit.

Neural Networks and Deep Neural Networks

Neural Network (NN) [107] are a subset of machine learning and the foundation of
deep learning models. A NN has an input layer, a hidden layer, and an output layer.
In cases that exist more than one hidden layers we refer to as Deep Neural Network
(DNN) [108]. A layer can be seen as a container of multiple neurons. An example of a
DNN can be seen in Figure 2.7b. The nodes of the network are interconnected so that it
works like a human brain, passing information to the next neurons. Each neuron can be

59

(a) (b)

Figure 2.7: (a) Decision Tree, (b) DNN with 3 hidden layers.

visualized as the basic logistic regression block presented earlier. The neuron takes the
inputs, multiplies themwith the weights, calculates the sum of the multiplications and
a bias and finally produces an output using either the sigmoid or another activation
function. The activation functions are used to introduce non-linearity to the neuron,
and decide if the neuron is activated or not. The output of the neuron is then connected
to the neurons of the next layer. DNNs are more complex ML algorithms, which allow
them to learn more complex patterns. Each layer learns different patterns which then
combine to make the proper decision.

Convolutional Neural Networks

The previously described models are simple models that, depending on the complex-
ity of their implementation, can learn complex patterns in the dataset to make correct
classifications. A limitation of the previously mentioned models is that the classifica-
tion task becomesmore complicated andmanymisclassificationsmay occur if the input
features do not provide a strong distinction between the target classes (e.g., the values
of different classes are in different ranges). Therefore, it is evenmore important to select
the most relevant features for input. This means that designers should have expertise
in this area to suggest relevant features. In this way, these simple models can become
more efficient and reduce the complexity of the implementationwhilemaintaining high
accuracy.

In our problem, the inputs can be considered as time-series data sets. The HPC wave-
forms of the different applications can provide us with information about the different

60

tasks that are performed during execution. This allows us to not only look at the gran-
ularity of the samples to decide if malware is present or not, but also look at a time
window of samples. This can give us more information to make proper decisions, as
we can now look at the sequence of actions rather than just one action. Since malware
needs to perform multiple actions to successfully exploit the system, the above intu-
ition seems most appropriate for our classification problem. However, applying this
method raises the problem of how we can recognize this set of actions that allow us to
distinguish malware from normal applications, as this would require manual analysis
of thousands of malware executions.

Convolutional Neural Networks (CNNs) [109] are DNNmodels that revolutionize the
way we use ML. One of the key advantages of CNNs is their ability to automatically
extract and generate deep features from the input. CNNs were first used in computer
vision and image classification, but slowly they found their way into time-series clas-
sification. In short, a CNN uses various convolutions to extract deep features from the
input dataset. This creates a new feature map that we can then input into a DNN to
determine the class of input samples. A CNN can potentially increase accuracy com-
pared to a simpler MLmodel, but at the cost of added complexity due to the numerous
required complex operations at multiple layers. An example of a CNN for time-series
classification can be seen in Figure 2.8. The network takes the input, performs one or
more convolutions and creates a new feature layer, which then we input to a DNN to
get the output class.

Figure 2.8: CNN for time-series classification [110].

2.4.2 Un-Supervised ML

In unsupervised machine learning, we do not provide the target labels, but instead the
network tries to learn itself useful rules to separate the classes. In this work, we do
not consider this strict case, but instead we consider the case where we only train the
model with non-malicious applications. In such a case, the models try to learn the nor-

61

mal dataset as best as possible, and detect as anomalies any deviation from the normal
behavior. Since the model must learn the normal behavior, be able to generalize, and
detect malwares as strong deviations from the normal behavior, these models tend to
require a lot of resources. The increasing complexity allows them to learn many com-
plex patterns in the dataset, which increases their learning capacity. But, as with the
CNNs, the increasing complexity increases the implementation costs.

Autoencoder

An autoencoder [111] is a special DNN. Autoencoders attempt to learn efficient pat-
terns from training data so that they can be encoded in a compressed version. For ex-
ample, if the network has n inputs, it will try to compress them into a lower dimension
i.e., m < n. Then the autoencoders will try to reconstruct the original input from the
compressed representation as efficiently as possible. An autoencoder representation
can be found in Figure 2.9. In the figure, we see an autoencoder with n=6HPC inputs,
compressing them to a m=2 dimension, and then reconstructing the HPC inputs into a
close approximation HPC’.

Figure 2.9: Autoencoder representation.

The intuition behind using an autoencoder for malware detection is that it can learn
to efficiently reconstruct the normal dataset used in training. Given a normal sample
HPC[0 : n] as input, it reconstructs it as HPC ′[0 : n], where:

|HPC[0 : n] − HPC ′[0 : n]| < δ

This δ can be used as a threshold to detect anomalies in the input data. If a sample
is reconstructed with an error greater than δ, we can conclude that this sample is an
anomaly. Malware are applications that the autoencoder did not see during training
and that also do not conform to normal behavior. We hypothesize that if a malware
sample is inputted to the autoencoder, it is very likely that it will be reconstructed with

62

a high error greater than δ, so we can raise an alert.

Isolation Forest

Isolation Forest [112] is another unsupervised machine learning algorithm based on
the decision tree implementation. It isolates outliers (anomalies) from the dataset based
on a contamination parameter. The contamination parameter is defined during training
to notify the algorithm the percentage of anomalies in the data set. Basically, the con-
tamination parameter is then used to define a threshold for anomalies that is used to
compare the "anomaly score" of the input data to decide if they are anomalies. The al-
gorithm randomly selects features from the training data set and then randomly selects
a split value in the min-max range of that feature. The intuition behind the algorithm
is that randomly partitioning the features results in shorter path distances in the trees
for the anomaly samples, i.e., the anomalies are thus closer to the root of the tree. The
term path distance is the number of edges taken from the root to reach the final leaf
node and defines the anomaly score for this algorithm. In this way, we can distinguish
anomalies as points that are closer to the root of the tree.

An isolation forest may consist of one or more trees in some sort of ensemble machine
leanring. The final decision is made by averaging the distance to classify a sample of all
trees. If the distance is less than a threshold, it is decided that the sample is an anomaly.

The isolation forest, unlike the autoencoder, is not trained only with normal data, but
it requires some real anomalies in the dataset. It is unsupervised because we do not
provide the target labels, but the algorithm tries to detect the anomalous samples by
itself.

Figure 2.10: Isolation forest with two decision trees.

As we can see in Figure 2.10, the true anomaly samples 1 and 2 are closer to the root for
both trees. For example, sample 1 has an average path length of 1.5 and sample 2 has

63

an average path length of 2. Since both samples have a shorter path length than normal
samples setting in this case the anomaly score to 2 can allows us to detect them.

Long Short-TermMemory

LSTM [113] is another unsupervised machine learning algorithm that we use to learn
the normal behavior of the system, as in the autoencoders presented in Section 2.4.2.
Most of the models presented rely on sampling granularity (i.e., a single sample at a
given time t) to decide whether or not a malicious application executes. But as men-
tioned in Section 2.4.1, the execution of different applications on the system is based
on a time-series of events. Instead of looking at a single sample, we can better model
the behavior of normal applications by looking at past actions as well. Also, malicious
applications usually require more than one action to achieve their malicious goals. For
example, in the Spectre attack presented in Section 2.1.3 and [55], the attacker needs to
set the cache memory to a known state, remove the value of array1_size and all array2
from the cache, exploit the branch prediction vulnerability, and finally extract the se-
cret using the cache as a side-channel. Since we can model the normal behavior more
efficiently, and since we can detect the malicious applications based on a set of patterns
with abnormal behavior, the time-series classification can reduce the FPs.

LSTMs can be visualized as a series of cells, with each past cell passing information
to the next cell. The next cell then uses the current sample and information from the
previous cell to process the data. An example can be seen in Figure 2.11, where this
network receives as input n past samples, each sample having six features [0:5], and
tries to predict the futurem sample points. In this example, the features are six different
hardware events.

Figure 2.11: LSTM representation which use the n past samples to predict the m future samples.
HPC[0:5] is because we use 6 HPC events.

LSTMs were introduced by Hochreiter et al. [113] in 1997 and have been improved

64

over the years. LSTMs are capable of learning long and short term dependencies. This
means that there are times when a future task of an application depends on only a few
past actions, but there are also times when a future task depends on a number of past
actions. In simple words, LSTMs are able to decide how much information from the
distant past and howmuch information from the near past should be incorporated into
current sample processing [114].

The basic intuition behind using LSTMs for anomaly detection is that during training,
the network can learn to efficiently predict future normal behavior based onpast normal
behavior. As with autoencoders, the LSTM also learns to predict the future m samples
with a small error δ. In the caseswheremalware is executed, the series of actions that the
malware performs does not allow the LSTM to successfully predict its future actions.
This means that the LSTM will most likely predict the m future samples based on the
unknown malicious behavior with an error greater than δ. If we set the threshold for
anomaly detection greater than δ, any prediction error greater than δ can allow us to
detect malicious actions on the system.

Long Short-Term Memory Autoencoder An LSTM autoencoder [115] is a special
network based on the idea of LSTM, but instead of predicting the m future samples,
the network takes as input the n past samples plus the current sample and tries to re-
construct this behavior as efficiently as possible. The network takes the past samples,
compresses them, and then reconstructs them, as can be seen in Figure 2.12. As we
can see, the network takes as input HPCt−n[0 : 5]...HPCt[0 : 5] and reconstructs it to
HPC ′

t−n[0 : 5]...HPC ′
t[0 : 5].

Figure 2.12: LSTMAutoencoder representationwhich use the npast samplesHPC[0:5] plus the current
sample t, compresses them, and later reconstructs them as HPC’[0:5]. HPC[0:5] is because we use 6 HPC
events.

65

2.4.3 Supervised vs Unsupervised Machine Learning Models

Each technique used to train machine learning has its own advantages and pitfalls for
our classification problem. We summarize them below:

• Using supervised ML can be more efficient and lead to simpler models because
we know the malicious and normal behaviors we want to detect. The network can
learn useful patterns from the data and knowledge of the target labelwe specify. In
our case, the biggest advantage of the supervisedML is the lower implementation
cost as we target resource-limited devices. Also, the cost can be further reduced
by using features that best separate the two classes. However, a drawback is that
while a supervised ML is capable of detecting known attacks and attacks similar
to those already known, it can be not sufficient to detect attacks based on zero-day
vulnerabilities. In such cases, it is necessary to retrain the model.

• UnsupervisedML is powerful because it allows us to build amodel that efficiently
characterizes normal behavior and recognizes any deviation from that normal be-
havior as "malicious." Unsupervised MLs are limited, however, because the more
normal application behaviorwewant tomodel, themore complex themodelmust
be. This is because in order to learnmore behaviors, we need to increase the learn-
ing capacity of the models. For example, if we use an LSTM, we need to increase
the number of cells so that the new cells learn the additional normal behaviors.
This can severely increase the implementation costs.

Depending on our needs, we may prefer one method over the other. As mentioned ear-
lier, the choice of features used as inputs to themachine learningmodel plays an impor-
tant role in the detection accuracy of the model as well as the complexity of the model.
In the following section Section 2.4.4, we present some feature extractionmethods used
to select the most appropriate features for the malware classification problem.

2.4.4 Feature Extraction

When using machine learning, we must be careful about the information we give to the
model. The information we input must provide the model with relevant information
that will allow us to build an efficient model and also reduce its complexity. To find the
most prominent features to be inputted to the system there exist to ways:

• Either to perform an analysis of the SOTA, to see what other works use as inputs
for their detection problem.

• Either apply mathematical methods to identify the most relevant source of infor-

66

mation among a big set of possible inputs. This method can be time-consuming as
the number of features to be tested can be very big, increasing the time required
to test every one of them. Further, proper preprocessing might be needed so the
mathematical methods provides us with appropriate decision.

In this section, we will analyze the mathematical methods used in our work.

To select themost prominent features, designers should run the same set of normal and
malware applications for all possible information sources in the system. In the case of
HPCs, there may be 60-100 different HPCs depending on the target system, and more-
over, they cannot bemeasured simultaneously. Since there are a limited number ofHPC
registers per CPU core, designers should configure the system with a limited subset of
hardware events per run. This limits the designer’s ability to choose feature extraction
algorithms that use the entire set of different features at once to eventually select a lim-
ited subset. One such example is Recursive Feature Elimination (RFE), which is used
in [95]. In RFE, designers extract all HPCs at once and inputs them into the target clas-
sifier. Then, they recursively trains and eliminates HPC features that do not provide
much information for the final classification. In this way, it is finally left with the de-
sired number of hardware events that provide the best classification results. However,
such a method can only be used in cases where all features can be extracted at once, for
example a custom CPU target. Since HPCs can only be extracted in a limited number
and, moreover, each pass of the normal-malware dataset is not deterministic, this task
becomes unrealistic for HPC-based feature extraction.

In other cases, the next step is to calculate the amount of information that anHPC hard-
ware event provides by considering the extracted values and the target label.

Pearson Correlation Pearson’s correlation coefficient is a widely used feature extrac-
tion method in many SOTA works [78], [98], [116]. Pearson’s correlation coefficient
is a technique that compares the linear relationship between the target label and the
extracted measurements and provides a value in the range [-1, 1]. A value of 1 repre-
sents a positive linear correlation and -1 represents a negative linear correlation. A value
close to 0 means that the target value and the measurements are uncorrelated. In sim-
ple words, a positive linear correlation means that when the target value increases/de-
creases, the measurements also increase/decrease, and a negative correlation means
that when one of the labels or measurements increases, the other decrease.

The logic behind using correlation for feature selection is that the most prominent fea-
tures are highly correlated with the target label. It also allows us to check whether the
features are correlated with each other. If two features are correlated, only one of them

67

gives us the same information as both of them. In this way, we can remove one of the
two correlated features and replace it with another, increasing system coverage.

Pearson Correlation Coefficient is computed as follows:

ρ(i) = cov(Xi, Y)
var(Xi)var(Y) (2.2)

Where ρ(i) is the pearson’s correlation coefficient for hardware event i, Xi is the ex-
tracted HPC measurements for hardware event i, and Y is the target label, i.e., "1" for
malicious and "0" for normal. cov(Xi, Y) measures the covariance between the HPC
measurements and the target label, and var(Xi) and var(Y) measure the variance of
both the HPCmeasurements and the target label, respectively. By ranking the returned
pearson’s correlation coefficients for each hardware event, we keep those with the high-
est score. At this point,we also check if two ormore hardware events among the selected
events with the highest ranking are correlated with each other. If this is the case, we re-
move the least prominent event and replace it with the next one in the ranking.

Mutual Information Mutual Information (MI) is not as widely used feature extrac-
tion technique as pearson’s correlation coefficient in SOTA. For malware detection us-
ing HPCs in SOTA, we find a handful of papers that use this technique [80]. Using
pearson’s correlation coefficient, we hypothesize that the two variables (HPCmeasure-
ments for hardware event i and the target label) have a linear relationship. However,
this is not always the case in real-world scenarios, as there may not exist a strong linear
relationship between the target label and the HPC measurements. On the other hand,
MI is a technique that can detect any type of dependency in the dataset i.e., linear and
non-linear [117].

The MI I(X, Y) between two random variables X, Y is defined as the amount of the in-
formation we can learn on one of themwhen observing the other and can be calculated
using the following equation:

I(Xi, Y) = H(Xi) − H(Xi|Y) =
∑

x∈X⟩

∑
y∈Y

pXiY (x, y) log2
pXiY (x, y)

pXi
(x)pY (y) (2.3)

where pXiY is the joint probability distribution function of Xi and Y . H(Xi) represents
the entropy of the variable Xi which can be understood as the average amount of infor-
mation one can get by observing a realization x of Xi.

H(Xi) =
∑

x∈X⟩

pXi
(x)log2(

1
pXi

(x)) ; H(Xi|Y) =
∑
y∈Y

pY (y)H(Xi|Y = y) (2.4)

68

In the context of side-channel leakage assessment the MI I(Z, X) between the sensitive
variable Z and the trace X is computed. In our problem case, we want to compute the
amount of information I(Xi, Y) that we gain to predict the target application label Y

based on the execution trace Xi for the hardware event i. To compute the MI between
the target label and the HPC measurements of k-nearest neighbor, we use the NPEET
library [118].

In our classification problem, extracting features with strong linear relationships can
benefit the simple linear classifiers, but MI can be more general by using nonlinear
models that are able to learn more complex nonlinear relationships from the dataset.
In any case, it is very important to select relevant features. Selecting the most promi-
nent HPC events can result in high detection accuracy and a low false positive rate. In
cases where more complex models are needed that are capable of learning more com-
plex behaviors, relevant HPC events can lead to reducing the complexity of the model
by, for example, reducing the number of hidden layers and neurons. This directly im-
pacts decision latency and implementation costs in terms of performance and memory
overhead.

2.5 Summary

In this chapter,we havepresented the differentmalware families that pose a threat to IoT
devices. We presented the different software and hardware attacks, and we analyzed
a new category of software attacks that target hardware vulnerabilities. Since these at-
tacks directly exploit hardware, software mitigations either incur high overhead and
hardware mitigations can only be deployed in future CPU architectures. This increases
their severity as they can extract sensitive information exploiting side-channels, escalate
privileges, etc. As we target IoT devices and attackers use more and more of these at-
tacks against them, security solutions need to be proposed. In SOTA,we have beenmore
concerned with solutions that attempt to detect the malware, as detection can be ap-
plied directly to the vulnerable systems. We analyzed that static analysis can efficiently
detect malware, but is vulnerable to new malware and techniques such as obfuscation,
where the attacker slightlymodifies themalware code to change its signature. Dynamic
analysis techniques, on the other hand, can monitor the system at runtime and extract
information from various sources, such as API calls or HPCs. But despite the accuracy
of API calls in software attacks, they are insufficient in detecting SATHV because they
do not use abnormal API calls. For this reason, security developers prefer HPCs that al-
low them to detect all malware subfamilies because both SATHV and software attacks
use hardware components in a different way than normal applications.

69

In the SOTA, we find several works that use ML and HPCs for malware detection. Two
implementations are used, either the local implementation of the detection mechanism
on the device or the remote implementation in a remote system. When the detection
mechanism is implemented locally, we can quickly detect the malicious actions. This is
because when a remote system is used, the local system has to transmit the data and
wait for the remote system’s decision, which increases the detection time. On the other
hand, detection solutions that are implemented locally must not be too complex so that
they impose low overhead on the local device. However, we have seen that simplerMLs
algorithms can accurately detect malicious activity, but tend to have a high FPR. This
can result in a large overhead, as the system must take appropriate actions when an
alert is raised. If the FPR is high, these actions may be taken too frequently, increasing
the overhead. On the other hand, using more complex solutions such as LSTM, CNN,
ensemble ML or a different model per attack, can increase the detection rate and de-
crease the FPR. The price is higher implementation costs, which can be limiting in the
case of IoT devices.

Since we do not have the flexibility to implement complex solutions locally, such solu-
tions can be implemented remotely where resources are not an issue. However, apart
from slow detection time, this solution also increases communication bandwidth as
hundreds of IoT devices can send Mb of extracted data flooding the network. A solu-
tion proposed by Wang et al. [98] recognized that complex solutions are not feasible
locally and proposed a method to reduce the data that needs to be sent over the net-
work. The authors proposed a method to compress the data locally and later decom-
press it remotely. However, the authors found that as compression increased, accuracy
decreased and performance overhead increased linearly with the amount of data being
compressed. Thus, they were only able to compress the data by 20-30%.

Since the Internet of Things has significant limitations, detection solutions targeting
these devices must take into account all of these limitations in order to be adopted. In
the next chapters, we analyze how this is feasible.

70

3
Local SATHV Detection Using HPCs and ML

SATHV pose a major threat to systems. Mechanisms for detecting this class of attacks have been
proposed. These mechanisms use information extracted from the system to decide whether mali-
cious applications are present or not. However, the proposed mechanisms often do not study all
attack variants, which may lead to false security guarantees, as the attack variants may exhibit
different behaviors than those studied. This could allow attackers to bypass the system’s protec-
tions. Since studying all SATHVs and all variants can be time consuming, security researchers
will first identify sources of information already used in other SOTA solutions that they can use
to differentiate attack and normal behaviors. In this section, (i) we present and classify sources of
information used by other SOTA works for SATHV detection, (ii) compare it with the practical
information obtained in this work, and (iii) finally propose a solution for detecting eviction-
based SATHV in ARMv7-based systems.

3.1 Motivations of the Work . 72

3.2 Theoretical Side-Effects for SATHV Detection 72

3.3 Practical Side-Effect Evaluation . 78

3.4 Evasive Malware and Monitoring Interval 84

3.5 MaDMAN: Detection of Software Attacks Targeting Hardware Vul-
nerabilities . 91

3.6 Summary . 106

71

3.1 Motivations of the Work

The main motivations and problematics that have driven the research [119] presented
in this chapter are the following:

• Security mechanisms that rely on analyzing system behavior to detect malicious
applications require information extracted from the system. Extracting these in-
formation sources from the SOTA and classifying them according to certain crite-
ria could improve the efficiency of the solution.

• Then we questioned if the theoretical information listed previously would allow
us to accurately detect SATHV in our targeted platform and if practical experi-
mentation would confirm these choices.

• The next problematic was the limited threat model of the SOTA solutions. Con-
sidering a limited subset of feasible SATHV in a targeted platform, SOTA detec-
tion mechanisms allow the attacker to damage the system or bypass the security
mechanism.

• Our final motivation is the ability of attackers to create more malicious applica-
tions that can bypass security mechanisms based on evasive techniques. This ex-
perimentation will allow us to propose a more robust detection mechanism that
takes this possibility into account.

3.2 Theoretical Side-Effects for SATHV Detection

As we mentioned in Section 3.1, security solutions based on malware detection need
information they can extract from the system to predict whether the current application
is malicious or normal. We refer to this information as side-effects.

The term side-effects, used throughout our work, includes all sig-
nals, configurations, and modifications of the system or a combi-
nation of the aforementioned that change their nominal value or
range of values due to the execution of attacks alongside legiti-
mate software [120].

Side-effects definition

72

That is, if a signal_1 during an attack has a value A greater than the nominal value B, we
may be able to detect the attack. However, there will be cases where an increased value
of a signal is not sufficient to distinguish between nominal and malicious behaviors.
In such cases, a second signal_2 during an attack could have a value C greater or less
than the nominal value D, which in combination with signal_1 provides information to
successfully detect an attack.

The selection of side-effects is critical to maximize the detection performance of a de-
tection mechanism. For example, if a side-effect does not show a significant difference
between normal and malicious applications, it is very likely that it is not a good indica-
tor.

As security researchers who aim to propose a detection mechanism, we first look for
solutions in SOTA that already cover part of our problem. Security researchers are likely
to use side-effects from SOTA solutions first for three reasons:

• Using side-effects already presented or tested in the SOTA can reduce the neces-
sary development costs because a security engineerwill spend less time searching
for the most appropriate side-effects since they already know the benefits/detec-
tion capabilities associated with those side-effects.

• Second, security engineers may not have the appropriate background knowledge
of targeted attack vectors andmay not be able to interpret whether the side-effects
they observe are good or bad indicators of an attack. On the other hand, SOTA
solutions can provide the necessary information and justification.

• From the available pool of HPC events, designers will seek to select the most ap-
propriate ones to minimize the design cost of the resource-constrained system.
Increasing the side-effects inputted to the detection mechanism increases the im-
plementation cost and system overhead.

It is in our main interest to explore what side-effects other researchers have used in im-
plementing their mechanisms and how we can use them to design ours. To this end,
we conducted a survey listing and classifying the various theoretical side-effects [120].
The goal of the survey was to introduce SATHV and their side-effects on the targeted
system, so that researchers can refer to it and identify if any of the side-effects are ap-
propriate for their problem.

In Table 3.1 we list the most relevant side-effects found in SOTA detection mechanisms
and attacks [5], [82]–[85], [121]–[130]. We have also tried to list and categorize the
side-effects depending on the relevant components (software or hardware). For exam-

73

ple, a side-effect due to a hardware component refers to the abnormal behavior of the
hardware component during the attack and can be extracted using HPCs, such as the
number of branch mispredictions. A side effect due to a software component, on the
other hand, means that we cannot extract it from the hardware, but must instead use
software tools such as the Linux perf library, or the side-effect is due to software, such
as the Signal Segmentation Violation (SIGSEGV) triggered by the OS. For example, we
list the most relevant Cache memory, OS, Memory controller side-effects etc.

In addition to listing all side-effects, we have classified side-effects in [120] using a list
of criteria that we have defined. This classification can help researchers referring to our
work to narrow down the list of side-effects to use. The defined criteria are as follows:

• Hardware or Software side-effect: This criterion informs us of the nature of the side-
effect. If it is a software side-effect, it might not be available for a hardware im-
plementation, such as the Page Fault Miss Ratio. On the other hand, a hardware
side-effect may be inaccessible by a software mechanism because the software
lacks privileges or access to the hardware itself. However, the nature of the side-
effect is critical to the implementation of a detection mechanism.

• Source: This criterion defines the source of the side-effect, which in our case is
a register, interface, or file. The side-effect could be a value stored in a register
whose value we need to check to determine if it is nominal or abnormal, or an in-
terface event such as a triggered interrupt that causes a change in the system. The
observability of the side-effect in the register or interface is debatable. Some reg-
isters or interfaces are easily observed with a debugger, while others are hidden
from unauthorized users.

• Used in an existing detection mechanism: This criterion as mentioned earlier, could
benefit researchers indicate whether the side-effect is already used by an existing
SOTA detection mechanism. For example, if a side-effect is used in several detec-
tion mechanisms, it could be because it is easy to acquire or strongly correlates
with attacks. On the other hand, a side-effect may not have been used because
it is difficult to obtain, for example, because a software implementation does not
have the necessary mechanisms to extract information from the hardware. Al-
ternatively, the side-effect may correlate weakly with the attacks, making other
side-effects more appropriate. It should be noted that the PMU can only be used
to count a certain number of HPC events, even though the options of events to
count are numerous. This is because the CPU core restricts the number of HPC
registers used at the same time. The Instruction Set Architecture (ISA) can spec-
ify numerous HPC events, but the cost of implementing special-core registers to

74

count these events is high. For this reason, vendors of CPUs are limiting their im-
plementation. For example, ARM cores such as ARMCortex-A9, A72, A53 used in
multiple IoT devices implement only six HPC registers per CPU core. In addition,
if a researcher uses Artificial NNs, the complexity of the system increases with the
number of inputs used. These are some reasons why side effects must be chosen
carefully to simplify the complexity of the ML algorithms used by designers.

• Other: Availability refers to the moment when the side-effect becomes available.
The side-effect can occur during the execution of the attack or after the attack is
completed. If we can explore the side-effect during the attack, we may be able
to prevent the attack from succeeding with its malicious actions. On the other
hand, if the side-effect is not available until after the attack is completed, we may
be able to detect the attack, but our system is compromised. The final criterion
is the effectiveness of a side-effect in detecting an attack. A side-effect alone may
not provide us with sufficient information to detect an attack, and we might need
more sources to make an accurate decision.

Table 3.1 summarizes the SOTA side-effects, and we believe it can help a security re-
searcher to identify some side-effects that can serve as a starting point for their exper-
imentation. To illustrate the importance of this, we present the following example re-
lated to the development of one of our projects [131]. In the iMRC [131] project, we used
a VexRISCV processor to implement an Integrated Monitoring and Recovery Compo-
nent for embedded systems security that uses information from the HPCs sent to a
remote server to assess and detect malicious applications. The RISCV ISA specifies the
HPCs, but only a few of the available RISCV cores implement them in hardware. Since
VexRISCV does not implement anyHPCs events and implementing all necessary HPCs
events in hardware can be a time-consuming and costly process, we referred to Table 3.1
to implement HPCs events already used in SOTA for SATHV and malware detection.

Table 3.2 presents a summary of the side-effects alreadyused by SOTAdetectionmecha-
nisms andmentioned in Table 3.1. The taxonomy table classifies these side-effects based
on the criteria defined above. Researchers and designers can thus compare the side-
effects, find out where they are employed, what attacks cause them, and finally select
those that best fit their detection problem. The side-effects are listed in the second col-
umn and the defined criteria in columns 3-6. Using this representation, we can make
some interesting observations. The side-effects can be SW or HW. Depending on the
nature of side-effect, as mentioned earlier, a detection mechanism may not have access
to it. SIGSEGV, for example, is difficult to obtain from a HW implementation. Further-
more, because SIGSEGV is a side-effect that only becomes visible after the attack, it is

75

Attacks

Memory Transient
execution

Power,
Frequency

Ro
w
-

ha
m
m
er

C
ac
he

C
SA

D
RA

M
A

D
M
A

M
el
td
ow

n

Sp
ec
tr
e

C
lk
sc
re
w

Vo
ltj
oc
ke

y

Side-effects

PM
U
s

Cache

Cache misses X X X X X X
Cache hits X X X X

Cache accesses X X X X X
LLC Loads X X

Cache Miss Ratio X X X X X X X

CPU stats Number of executed
instructions

X X

Number of clk cycles X X

Branch controller
Return Branch taken X X X
Speculative Return

Branch Taken
X X

Branch Mis Predictions X X
Bus stats BUS STATS X X X

TLB DTLB Miss Ratio X X
Use of Cycle Counter X X X X X

OS SIGSEGV X
Low page fault miss rate X X

Virtual to physical
mapping translation
or reverse engineering

Access
proc/PID/pagemap, use
of transparent huge pages

X X X X

Interrupts Interrupt disable X X X X

re
-o
rd
er

CPU instruction
re-ordering disable

X X X X

Memory Controller Memory controller access
re-order

X X

Num_Mem_ADDR1 X X
Synchronization Time Stamp Counter

(TSC) for
synchronization

X

1 Number of total Memory Accesses to the same memory cells in a time window chosen by the designer as
a threshold for attack detection.

Table 3.1: List of side-effects induced by different attacks

76

Criteria
Side-effects HW/SW Source Detection

Mechanism
Other Attacks

C
ac
he

Cache misses HW Reg [82] (L3 misses),
[83] (L3-L2-L1
misses), [126]
(LLC misses)

Availability1 Rowhammer, CacheCSA,
Meltdown, Spectre, DRAMA

Cache hits HW Reg [82] (L2 hits) Availability1 Rowhammer, CacheCSA,
DRAMA

Cache accesses HW Reg [82] (L3 accesses),
[126] (LLC
references)

Availability1 Rowhammer, CacheCSA,
Spectre, DRAMA

Cache Loads HW Reg No Available only in
some Intel
platforms

Spectre, Meltdown

Cache Miss
Ratio

HW Reg [85], [132] Available as
complex event3

CacheCSA, Rowhammer,
Spectre, DRAMA, Meltdown

TLB DTLB Miss
Ratio

HW Reg [132] Available as
complex event4

CacheCSA,
Rowhammer

In
st
ru

ct
io
ns Number of

Executed
Instructions

HW Reg [82] Availability1 CacheCSA

Instructions Per
Cycle (IPC)

HW Reg [83] Availability1 CacheCSA

Br
an

ch
C
on

tr
ol
le
r Speculative

Return Branch
Taken

HW Reg [83] Availability1 CacheCSA, Spectre

Return Branch
Taken

HW Reg [126] Availability1 Spectre, Rowhammer

Branch Mis
Predictions

HW Reg [126] Availability1 Spectre, Rowhammer

O
S

SIGSEGV SW Kernel
Interface

[121] Available after the
fault

Meltdown

Page Fault Miss
Ratio

SW Kernel
Interface

[85] Availability1 CacheSCA, Rowhammer

Bu
s

Num_Mem
ADDR

HW Interface [123], [125], [129],
[5]

Efficient to detect
DRAM attacks

Rowhammer, DMA,
DRAMA

BUS_TRANS HW Reg [130] Efficient to detect
DRAM attacks

DMA, CacheSCA,
Rowhammer, DRAMA

U
ni
ts

SPM_PMIC HW/SW Reg No Availability2 Clkscrew, Voltjockey
Phase-Locked
Loop (PLL)

HW Reg No Availability2 Clkscrew, Voltjockey

Operating
Performance
Points (OPP)

SW DVFS OS
-file

No Available
immediately OS

file

Clkscrew, Voltjockey

Digital Thermal
Sensors (DTS)

HW/SW Reg
Interface

No Availability2 Thermal monitor SCA

Interrupt
disable

HW Reg No Availability2 Rowhammer, CacheCSA,
DRAMA, Spectre, Meltdown,

Clkscrew, Voltjockey
1 Available to export only if selected.
2 Depends on frequency with which the nominal register value is checked.
3 Can be computed as Cache misses (div) Cache Accesses.
4 Can be computed as DTLB miss (div) DTLB Accesses.

Table 3.2: Classification of side effects

77

not an ideal candidate for monitoring. In contrast, side-effects that can be accessed via
registers can be accessed more quickly directly via the HW than via SW. The table lists
some detection mechanisms based on side-effects that researchers can refer to in order
to investigate how they are already being used.

All side-effects presented in Table 3.1 and Table 3.2 are explained in detail in [120]. It
analyzes why each attack causes the side-effects, which can help researchers go deep
into the exploited vulnerability and the means to exploit the system.

3.3 Practical Side-Effect Evaluation

In Section 3.2, we have presented a list of side-effects that security researchers can refer
to when faced with a SATHV detection problem. We have also presented a taxonomy
of these side-effects that may be beneficial for researchers. Since we experimented with
the same detection problem as two of the works included in our survey [85], [132], we
referred to the list of side-effects used by these two detection mechanisms as a starting
point and present our experimental results. Our SATHV libraries include CacheCSA
and Rowhammer as [85], [132].

The platform we use for our experiments is a ZYBO Z7, a Zynq-7000 ARM Field Pro-
grammableGateArray (FPGA) SystemonChip (SOC)development board. It is equipped
with a 667MHz dual-core Cortex-A9 processor with 1GB of DDR3L memory. The sys-
tem is equippedwith a Debian GNU/Linux 10. The instruction set is based on ARMV7.
However, in order to perform CacheCSA and Rowhammer on our experimental plat-
form, we need to use eviction-based attack vectors rather than flush-based attack vec-
tors. This choice is necessary because the flush instruction is not available in user-space,
as it is in ARMv8 and Intel architectures. As CacheCSAwe use Evict+Reload [133] and
eviction-based Rowhammer [50]. We were also interested in studying eviction-based
SATHV attack vectors instead of flush-based, since they are applicable on all architec-
tures. This is because they do not require the existence of the flush instruction in the
ISA. Further, as some systems restrict the use of the flush instruction to user-space as
a countermeasure to CacheSCA, eviction-based attack vectors are an alternative that
an attacker could use and that researchers should always consider in their threat mod-
els. Finally, our normal application libraries consist of the MiBench [134] and PARSEC
[135] libraries. We chose theMiBench suite because it is intended to represent the spec-
trum of embedded applications used in industry. On the other hand, PARSEC focuses
on the application areas of finance, computer vision, physical modeling, future media,
content-based search, and deduplication. Since we focus on resource-constrained sys-

78

tems rather than desktop environments, these two suites contain applications that are
more representative of our target devices.

The main motivations behind this experimentation [27] are the following:

• How scalable is a detection mechanism proposed for a specific CPU architecture?
Could we reuse the same side-effects regardless of architecture?

• If we do not consider all possible attack variants in the threat model, does this
pose a major security threat to a system in which a detection mechanism is in
place?

• Do eviction-based attack vectors cause different side-effects than flush-based at-
tack vectors and why?

3.3.1 Effectiveness of Proposed Solutions on our Platform Using an
Extended Set of SATHV

Eviction techniques attempt to remove the targeted address from the cache without
the aid of cache maintenance instructions such as the flush instruction. When an at-
tack vector uses the flush instruction to remove a target address, this task is simplified
because the attacker only needs to specify the target address and the flush instruction
will directly remove it from all cache levels. On the other hand, eviction-based attack
vectors need to find a specific set of addresses that will map in the same cache line as
the target address. If two addresses are mapped to the same cache line, then there is
a probability that both will be placed in the same cache cell, resulting in the CPU re-
moving one address to place the other. The attacker’s goal is to create a eviction set that
removes the target address with the highest probability. The way addresses mapped to
the same cache line are stored is defined by the cache replacement policy. ARM uses a
random-replacement policy, meaning that it randomly selects an item from the cache
and replaces it with the new element. Due to the random replacement policy in ARM
caches, more addresses than the size of the cache line are needed to construct an evic-
tion set because of the probability that two addresses in our eviction set will be placed
in the same cache cell. Therefore, eviction takes more time than simply "flushing" an
address. For example, in Raspberry Pi3 Model B+ flushing an address from the cache
takes around 4.28ns, and in contrast the quickest eviction strategy using the libflush
[136] library requires 350ns to remove the targeted address. In the following, we will
show that this difference greatly modifies the expected side-effects.

Attackers can be more versatile in using different eviction strategies. Figure 3.1 illus-

79

trates this. We can observe that the L2 Miss Rate and the number of L2 Misses do not
increase in attacks compared to normal applications, as suggested in [85], [132]. In
HexPADS [85], the attacks studied were the Flush+Reload [47], Prime+Probe [38],
and Rowhammer [50]. The side-effects monitored by this mechanism are the number
of instructions executed, LLC accesses and LLC misses. In addition, HexPADS exports
from the kernel the status information of each process, e.g., the number of minor page
faults, the number of major page faults, and the execution time. HexPADS uses the fol-
lowing detection logic to detect CacheCSA and Rowhammer: If the Cache Miss Ratio
is greater than 70%, the cache misses are greater than 100 thousand, and the page fault
miss ratio is less than 0.01%, an attack is detected. In our experiments, we did not focus
on the thresholds used, but more on the detection logic and side-effect selection. We
use boxplots to illustrate our results. Boxplots allow us to visualize the median of the
extracted values (horizontal line inside the boxes in Figure 3.1) and with the boxes we
visualize the Interquartile Range (IQR), which represents the range in which 50% of
the extracted values lie.

As we can see from Figure 3.1a, the median of the extracted values for CacheCSA and
normal applications are at the same level. Rowhammer, on the other hand, has a higher
Miss Ratio, on average. Moreover, in our experiments with Cache Miss Ratio, we ob-
served that most normal applications present high values during context switches,
which can increase FPs. This is because during the context switch, we either need to
load the data into the cache for the first time or reload the data removed from the pre-
vious processes resulting in an increased CacheMiss Ratio. The Cache misses (labelled
as Coherent linefill misses in ARMCortexA9) decreased for both attacks in Figure 3.1b.
To explain, when attackers use eviction techniques, they will observe many Cache hits.
Since the attackers perform the attack in a loop to reduce noise and check the different
key hypotheses, they have already used the eviction set in the previous attack loop to
remove the target address. Since they reload the eviction set in the current loop, many
of the addresses are already present in the cache due to the previous loop, resulting in
multiple Cache hits. As there aremultiple hits due to the use of eviction-based variants,
the Cache Miss Ratio decreases and so does the number of Cache misses.

On the other hand, Peng et al. [132] observed that normal applications exhibit also a
highCacheMiss Ratio. To reduce the False Positives (FPs), they observed thatCacheCSA
and Rowhammer cause a low Data Translation Look-aside Buffer (DTLB) Miss Rate.
Figure 3.1c presents the DTLB misses and Figure 3.1d presents the DTLB Miss Ratio.
The DTLBMiss Ratio is calculated as DTLBMisses divided by the total DTLB Accesses.
From Figure 3.1d and Figure 3.1c, we can observe that the median values of the ex-
tractedHPCs for the two attacks are indeed lower than themedian values of the normal

80

(a) (b)

(c) (d)

Figure 3.1: (a) L2 Miss Ratio (100% * L2 Misses / L2 Accesses), (b) L2 misses labelled
as Coherent linefill miss, (c) Data Micro TLB misses, (d) DTLB Miss Ratio.

81

applications. However, we can also notice that normal applications have a wide distri-
bution, which could lead to FPs. If we also consider Figure 3.2, we can see that during
Rowhammer the DTLB Miss Ratio increases in some points. The main reason for this
increase is that during eviction-based attacks, when the attackers try to find congruent
addresses to evict the target, they request unused data addresses, which leads to an
increased DTLB Miss Ratio since the translation from virtual-to-physical addresses is
not cached in the TLB. In our experimental platform, we have observed manyMiBench
applications exhibiting low DTLB Miss Ratio and a high Cache Miss Ratio. We show-
case an FP in Figure 3.3 from MiBench’s CRC32 application using the methodology
proposed in [132]. As we can see from Figure 3.3, for this application both conditions
(higher than a CacheMiss Ratio threshold and lower than the DTLBMiss Ratio thresh-
old) are met for this application, so this application is falsely detected as malicious.

Figure 3.2: 10 round Rowhammer DTLB Miss ratio.

As security researchers facing a SATHV detection problem, we first look at the SOTA
work to see if we can use the proposedmethodologies. We experimented with two pro-
posed solutions [85], [132], using the same threat model but different experimental
platforms. We observed that eviction-based attack vectors can exhibit different behav-
iors than flush-based attack vectors, for example the cache miss ratio does not signifi-
cantly increases compared to normal applications as proposed in [85]. Before starting
our experiments, we set some questions that motivated our work, and in this section
we will try to answer them based on our results.

The first question we set was, "How scalable is a detection mechanism proposed for a spe-
cific CPU architecture? Could we reuse the same side-effects regardless of architecture?" This
question cannot be fully answered because it depends on whether the previous works
included all the "sub-attack" variants in the threat model. For example, if we include
CacheCSASATHV in our threatmodel, but only use a subset of the variants to build and
test our model, then the side-effects may not be trustworthy. As we explained earlier,
eviction-based attack variants exhibit different behavior than flush-based attack vari-

82

Figure 3.3: CRC32 False Positive using the methodology proposed by Peng et al. .

ants. Since eviction-based variants can be used against all architectures (for example,
RISCV and ARMv7 do not implement a flush instruction in user-space), not consider-
ing these variants when building the detection mechanism may lead to false security
guarantees.

The second question we set was If we do not consider all possible attack variants in the threat
model, does this pose a major security threat to a system in which a detection mechanism is in
place?Asmentioned earlier, a securitymechanism configured for only some attack vari-
ants may provide false security guarantees. For example, an attacker may use eviction-
based attack variants to try to bypass a detection mechanism that has been designed
and tested only for flush-based attacks. This can be a potential security vulnerability.

The third and last question we set was the following: Do eviction-based attack vectors
cause different side-effects than flush-based attack vectors and why? The answer is yes. Since
flush-based attack vectors use the built-in flush instruction to perform the attack, the
attacker only needs to request the removal of the target addresses and the hardware
will automatically remove the requested address. This will cause the target address to
be removed in the next few clock cycles, allow the victim to execute the sensitive code,
and reload the target address to observe if the victim has used it. If the victim used the
address, we will observe a hit, and if not, we have a miss. Since we are testing the same

83

input for different key possibilities, the misses will be more than the hits, resulting in
an increased Cache Miss Ratio. For eviction-based CacheSCA, if the attackers load the
addresses with the intention of removing the target address, they will observe multiple
hits, resulting in a reduced Cache Miss Ratio, which for our platform is on average less
than the normal applications Figure 3.1a.

To summarize Section 3.3, when using SOTA solutions as a starting point for their work,
security researchers need to be careful about the information they extract, as this could
lead them to not detect some attacks. From the results presented, it appears that the se-
lection of side-effects plays an important role in the accuracy of a detection mechanism.
In order to find awider application on different platforms, we need to select side-effects
with stable behavior on different platforms and between different attack variants. In the
experiments conducted, we found that eviction-based attacks exhibit different behav-
iors than expected from the proposed detection mechanisms, so they could potentially
go undetected on our platform. In order to detect them, we need to take a closer look at
their malicious behavior. We propose to search for solutions that cover all different pos-
sibilities of an attack vector,whichwould allow them to gain valuable development time
and still reduce development costs, as wementioned at the beginning of Section 3.2. It is
also necessary to extend the attack vectors as much as possible to recognize all possible
SATHV behaviors, as we will present in the following Section 3.4.

3.4 Evasive Malware and Monitoring Interval

Even when security solutions are in place, attackers seek ways to circumvent them.
One way to do this is to use code obfuscation techniques [19], [137], which lead the
malicious applications to be harder to analyze or detect. There are several techniques
that a malware author can use to obfuscate the code of a malicious application, such as
re-ordering the code, replacing the code, reassigning registers, etc.

The attacker’s goal is to change the malware’s behavior to be closer to normal behav-
ior. Figure 3.4 presents two attempts by the attacker to create evasive malware. In Fig-
ure 3.4a, the detection line separating the two classes has a limited distance from the
samples, which means that the attacker has to put less effort to create evasive malware
using less obfuscation techniques. On the other hand, in Figure 3.4b the detection line
farthest away from the two classes, which means that the attacker must expend more
effort to successfully evade detection, otherwise the malware can still be detected. As
we will show later, attackers can only use a limited number of obfuscation techniques,
as adding additional code can lead to unsuccessful attacks or reduce the success rate.

84

Wewill also demonstrate the defenders’ ability to create such clear separations, tomake
the attackers’ job more difficult.

(a) Successful Evasive Malware. (b) Unsuccessful Evasive Malware.

Figure 3.4: Normal, Malware, and Evasive Malware and detection line.

In [138], the authors propose obfuscation strategies regarding Spectre. They identify
the tasks necessary for the attack to exploit the targeted vulnerability. They also found
that disrupting these necessary tasks reduces the success rate of the attack. To this end,
they propose the following strategies to create evasive SATHV:

• Inserting instructions between tasks or after all tasks in an attack loop have com-
pleted.

• Put the application to sleep between tasks or after completing all tasks in an attack
loop.

During Spectre, Meltdown, or CacheCSA, we need to run the attack inmultiple loops to
successfully extract the sensitive information due to the noise of the system and other
applications running in parallel in the system. For example, during Spectre, when we
try to read a byte from the restricted memory, we have to read the same byte several
times and choose the extracted secretwith the highest frequency at the end. The attacker
can identify these loops in the original SATHVcode and insert the proposed techniques.

We adopted their methodology and adjusted it to all SATHV libraries in our testbench.
As shown in [138], inserting obfuscation strategies reduces the success rate of the attack
because they insert noise into the execution of the attack. This places a limit on the
amount of obfuscation techniques an attacker can add before the attack start to fail. Our
evasive SATHV was created by adding NOP instructions, normal applications (piece
of codes from the normal application libraries), and sleep(). We push to the limit the
inserted obfuscation code until our libraries begin to fail. The goal of the evasive SATHV

85

is to bypass the detectionmechanism bymodifying the values extracted from the HPCs
to be in a range closer to the values extracted during normal application execution, or
in an intermediate range between the malicious and normal values.

To give an example of howwe can create evasive SATHV, wewill describe Rowhammer
and Spectre. Rowhammer continuously hammers a set of DRAMrows to succeed a fault
before the DRAM refresh interval, which is 64ms. If security implementation extracts
HPC values every 100ms, an attacker can perform the attack in a loop for 64ms and
then put the application to sleep for 36ms. Spectre on the other hand takes 650µs to
read a byte from memory on our platform. The attacker can be evasive by performing
ten attack loops of 650µs ∗ 10 = 65ms and sleep also for 35ms reducing the induced
side-effects. This leads to a reduction in observed side-effects that could influence the
decisions of a ML classifier. Using Figure 3.5, we can observe a scatter-plot of the Data
Cache Misses versus Instruction TLB allocations for normal applications, Spectre, and
evasive Spectre. As normal applications we use the suites MiBench [134] and PARSEC
[135]. As we can see in Figure 3.5, the evasive Spectre values (red squares) are shifted
compared to Spectre values (blue triangles). The evasive Spectre values are shifted in
a region where only normal values exist, which can confuse a ML classifier.

Figure 3.5: Data cache miss versus Instruction TLB allocation for Evasive Spectre.

Monitoring Interval and Evasive Attacks

As we mentioned earlier, the attacker’s ability to insert obfuscated techniques depends
first on the time required to complete a sensitive task or an attack loop, and second on
the time available after the end of the sensitive task and until we extract the HPC val-
ues i.e., the monitoring interval. Though, the monitoring interval plays an important

86

(a) Spectre.

(b) Evasive Spectre.

Figure 3.6: Waveforms and decisions of an MLP classifier using a monitor interval of
1ms.

87

role in the time an attacker has to add obfuscation techniques. Higher frequency mon-
itoring gives the attackers less time to obfuscate the code and reduces their ability to
successfully evade detection.

To better illustrate the idea, we present some examples. The following exampleswe con-
sider as SATHV attack vectors Spectre and Rowhammer and for normal applications
the suites MiBench and PARSEC. We present the two examples with a monitoring in-
terval of 1ms and 100ms. The monitoring interval of 100ms was chosen because several
SOTA detection mechanisms [84], [86], [87] that use information fromHPCs specify it
in their configurations. The monitoring interval of 100ms is also the minimum interval
at which the utility Linux perf allows us to extract the values of HPCs. In Figure 3.6
and Figure 3.7, we show the waveform of Spectre for the HPC event Data Cache Misses
(blue line), the MLP classifier decisions (red triangle line), and the probabilities that
the samples are malware (green x marked line). In Figure 3.6b and Figure 3.7b we also
add a zoom at the start of the execution of the attack.

Figure 3.6 shows the figures of the attacks when the monitoring interval is 1ms. The
figure shows in red the decisions of the classifier for the current sample, in green the
probability that the sample is malware, and in blue the scaled HPC value. As we can
see in Figure 3.6a, theMLP classifier correctly predicts the entire execution of Spectre as
malicious. On the other hand, we can see in Figure 3.6b that the MLP classifier fails to
predict the entire execution of the malicious application as an attack when evaluating
the evasive Spectre. From Figure 3.6b, we observe that after the sample point 3500 the
classifier outputs negative i.e., ’0’ decisions (red waveform), as the probability (green
waveform) of the samples being malware is close to zero i.e., less than the detection
threshold 0.5. Nevertheless, the classifier correctly predicts the beginning of the eva-
sive Spectre as malicious (samples 0 to 3500 have positive decisions as the probabilities
of being malware are greater than the detection threshold 0.5), so we can detect the
attack. It is worth noting that the beginning of the Spectre waveform is dedicated to the
construction of the eviction sets (execution from sample point 0 to sample point 3500 in
Figure 3.6a). Since this part of the attack has several sensitive tasks, it is more difficult
to insert enough obfuscation techniques between the 1ms monitoring interval to alter
the execution and trick the classifier. On the other hand, this is not the case when we
use a 100ms monitoring interval. In Figure 3.7a we see that the classifier correctly pre-
dicts most of the execution trace of Spectre as malicious, but completely fails to predict
evasive Spectre as malicious in Figure 3.7b. This is because Spectre takes 650µs to read
a byte from memory on our platform. This leaves us with about 340µs to input obfus-
cation techniques if the monitoring interval is 1ms (we read the HPCs every 1ms, but
the monitor takes about 10µs to read the values from the HPCs and make a decision

88

(a) Spectre.

(b) Evasive Spectre.

Figure 3.7: Waveforms and decisions of an MLP classifier using a monitor interval of
100ms.

89

based on the extracted values). On the other hand, if we use a monitoring interval of
100ms, the available time for entering obfuscation techniques increases, which gives
the attacker the opportunity to modify the behavior of the attack. We also note from
Figure 3.6b and Figure 3.7b that the execution time of an evasive SATHV increases sig-
nificantly compared to Figure 3.6a and Figure 3.7a .

Monitoring interval and system overhead Monitoring the system at high frequency
allows security designers to strengthen the system against the evasion techniques pre-
sented earlier. This comes with the cost of an extra performance andmemory overhead,
as we need to interrupt normal execution more frequently to read and store HPC val-
ues locally when we need to send them to a detection mechanism implemented in a
remote system [88], [97]. Since the monitoring interval plays an important role in cre-
ating an accurate and effective detection mechanism, we experimented with different
monitoring intervals to determine the performance overhead for the system. We ex-
tract measurements by running the normal application with and without the monitor
running in parallel (Section 3.5.1), and calculate the overhead as an increase in total
execution time.

monitoring interval overhead
100us 21.08%
300us 10.2%
500us 5.48%
1ms 1.27%
4ms 1%
8ms 0.5%
10ms 0.24%
100ms 0.13%

Table 3.3: Monitoring interval sys-
tem overheads

From Table 3.3, we can observe that monitoring
intervals of less than 1ms cause an overhead of
more than 5% in the local system.We consider that
monitoring intervals less or equal than 1ms intro-
duce an acceptable overhead in the local system.
But the performance overhead is not the only fac-
tor we consider important when choosing the in-
terval. If wemonitor the system at a low frequency,
we could allow the attacker to damage the sys-
tem even before we detect him. For example, if we
monitor the system at a frequency of 100ms, an at-
tacker running Rowhammer could inject a fault in
DRAM and potentially act undetected. Also, the lower the frequency we monitor the
system, the more time an attacker has to use evasion techniques. We also identified a
parameter that allows an attacker to hide any malicious activity in multi-processing
systems. In multi-processing systems, the OS schedules each process to run on the sys-
tem and share resources with other applications. When an application is scheduled to
run, the other applications wait in a queue. Each application that is scheduled runs
for a minimum time defined by an OS parameter called sysctl_sched_min_granularity in
Linux, which defaults to 4ms in our platform. The OS scheduler schedules applications

90

for this minimum time only if there are multiple applications in the queue. This is usu-
ally the case whenmore than 5 applications are using the resources of CPU. An attacker
can use this to mix the execution of the attack with normal applications by stressing the
OS scheduler. If we monitor the system with a monitoring interval of more than 4ms,
we could extract measurements that contain side-effects of the attack and normal ap-
plications i.e., shifting the extracted values closer to nominal. This could be a serious
problem for solutions that use RNNs [76] (which use previous execution traces to pre-
dict future ones), as there is a possibility that themalicious applications hiding between
the execution of other normal applications will not be detected. Also, we observed that
using monitoring intervals of less than 1ms increases the inconsistency between suc-
cessive measurements, causing noise. This is because we use the nanosleep command
to create the monitoring interval by sleeping and letting the application execute before
receiving an interrupt to read the HPCs after the specified period. Since our monitor
relies on interrupts served by the OS, the time it takes OS to serve the interrupt and
schedule the execution of our monitor application introduces noise.

Since 1ms introduces an acceptable performance overhead and
allows us to closely monitor applications running at the mini-
mum granularity of sysctl_sched_min_granularity, we configured
our monitor with the monitoring rate of 1ms.

3.5 MaDMAN: Detection of Software Attacks Targeting
Hardware Vulnerabilities

There aremany solutions in the literature that useHPCs andML to detect SATHV. Since
the number of side-effects a designer can use to build its detection mechanism is lim-
ited to the number of available HPCs in the target system, the proposed solutions only
protect the microprocessor from a limited number of SATHV. For example, [85], [132]
target only Rowhammer and CacheCSA, [84] is limited to Spectre, [82] targets only
CacheCSA, [121] is limited to Meltdown, [122] targets only Meltdown and Spectre,
e.g., . In contrast, [76] aims to detect CacheCSA, Spectre, Rowhammer, and Meltdown
using LSTM and RNN networks, and manages to detect these SATHV with an F-score
of 99.70%. However, since [76] aims to detect SATHV in Server and Desktop environ-
ments, it can afford to use complex ML networks such as LSTM and RNN. As LSTM
and RNN require multiple processing resources, these solutions may not be the best

91

solution considering the induced overheads for micro-processors such as ARM cores
used in IoT devices.

The motivations for this work [28] are the following:

• Proposed SOTA detection mechanisms are specific to some SATHV and cannot
detect all possible SATHV applicable in the system. As the number of available
attack vectors increases, attackers can circumvent the detection mechanisms by
using attack variants that are not considered by the detection model. Such exam-
ples include SATHV that use eviction strategies, as we presented in Section 3.3.

• In SOTA works, evasive SATHV are not considered. We include evasive SATHV
presented in Section 3.4 in our threat model. It is important to consider attackers
that try to hide their malicious activities.

• Since we are targeting IoT and IIoT systems where resources are limited and we
want to respond to attacks as quickly as possible, implementing a local detec-
tion mechanism is necessary. Since we cannot use complex ML as in [76] in these
resource-limited devices, we need to rely on simplerML networks. As simplerML
can learn less information compared to more complex MLs, such as an LSTM or
RNN, which means side-effect selection and filtering of FPs are crucial.

• SOTA implementations usually consider noiseless environments. We refer to a
noiseless environment as running one application at a time. This allows them
to use aggressive FPs filtering, such as in [77], which decides whether a FP is
present based on the last 16 decision points. On the other hand, if we consider
noisy systems, such as multi-processing systems, applications share resources, as
explained in Section 3.4. This leads to noise in our measurements due to context
switching. In addition, we cannot use aggressive FP filtering because we are not
sure if a malware was executed between normal applications, which could lead
to filtering the attacks.

For these reasons, we propose MaDMAN (Malware Detector - Monitor, Act, Notify), a
SATHV malware detector that collects information from HPCs to detect a large set of
SATHV on an ARMv7 platform. MaDMAN uses a Logistic Regression classifier. In our
threat model, CacheCSA, Rowhammer, and Spectre SATHVs are included. Our detec-
tion mechanism detects these attacks with an accuracy of 98.96%, an F-score of 96.3%,
and an FPR of 0%. In addition, MaDMAN works in noisy environments and can suc-
cessfully detect evasive malware.

92

3.5.1 Methodology

HPC event selection

From previous works, it is possible to detect SATHV using HPCs.We use HPCs to mea-
sure the stress that malicious applications induce on microprocessor hardware compo-
nents. Since we can only afford to implement a simple ML locally to reduce the perfor-
mance overhead, we need to carefully select the side-effects as mentioned in our mo-
tivations. The selection of side-effects is crucial for a simple ML algorithm, as we may
not be able to make accurate decisions due to ML’s inability to learn useful informa-
tion. Moreover, the number of HPCs we can monitor simultaneously is limited, which
increases the need to choose them carefully. For example, in ARM architectures, only
six HPCs can be configured and monitored simultaneously plus the cycle counter that
it is a dedicated register.

To select the most appropriate side-effects for configuring and building our ML, and
since we can not rely on the side-effects listed in Section 3.2, we use the feature extrac-
tion methods proposed in the SOTA [78]–[80]. In these works, the following feature
extractionmethods are used to find the optimal set of side-effects: Pearson’s Correlation
Coefficient, Analysis Of Variance (ANOVA), and Mutual Information. These methods
use the extracted HPC values and the targeted label i.e., normal or attack sample and
return us a score. The higher the score, the more "information" the side-effect can pro-
vide us. The downside of this method is that we need to run the experiment for all the
available HPCs, which increases the development time significantly. Using the above
methodology, we made the following observations and adjust it for our needs:

• The aforementioned feature extraction algorithms look at the extracted HPC val-
ues of a side-effect and the targeted label and return us a score. Since there are
side-effects that could give us the same information, we need to remove the un-
necessary ones. For example, on ARM Cortex-A72 there are the following HPC
events: L2D_CACHE _LD, L2D_CACHE _ST, and L2D_CACHE. In our experi-
ments, we observed that the feature extraction algorithms for these HPC events
will return a similar score. This is because they provide us with information from
the sameHW component. If this is the case, we keep theHPC event with the high-
est score and remove the others since they do not provide us with any additional
information.

• Since there exist multiple available HPC events, and each HW component may
have multiple HPC events that provide information for each operation, these fea-
ture extraction methods may return HPC events that target the same HW compo-

93

nent but do not belong to the bullet point above. For example, a feature extraction
algorithmmay return the following five HPC events: L2D_CACHE, L2D_CACHE
_REFILL, L2D_CACHE_WB_VICTIM, L2D_CACHE_WB_CLEAN,L2D_CACHE
_INVAL. In this case, all five previous HPC events do not fall under the case men-
tioned in the first bullet point, but all of them provide us with information for the
L2 Cache. In this case, if we train our ML classifier with this set of HPC events, it
could accurately detect a current set of attacks, but it might not be able to detect
SATHV based on zero-day vulnerabilities that do not target the L2 Cache. It could
also be the case that attackers try tomodify the behavior of the attack on this com-
ponent to bypass detection. In this case, their task might be more plausible than
in the case where the attacker should craft an evasive code to modify more than
one HW components. In such a case, we also remove a set of these HPC events as
we want more diversity in the choice of SATHV.

• It is in our interest tomonitor the operation of several HW components. This gives
us amore comprehensive view of the functionality of the system. However, it may
be the case that a component does not provide us with much information to dis-
tinguish normal execution from that of an attack. In this case, we take the ranking
of HPC events scores after feature extraction and select the best HPC event from
the different components, and only if the HPC event provides more information
than the threshold we set i.e., higher than a score.

After selecting the most appropriate HPC events, we can configure our monitoring sys-
tem and train our ML.

Monitoring algorithm

MaDMAN is implemented in SW, runs in parallel with applications, and extracts HPC
values using assembly code.MaDMANmonitors the systemwith amonitoring interval
of 1ms, as explained in Section 3.4. To reduce noise induced by our monitoring appli-
cation, we disable HPC counters when our monitor reads HPC values and then make
a decision using ML. Once the decision is made, we re-enable the HPC counters and
let the applications continue their execution. The monitoring and detection algorithm
used is listed in Algorithm 1.

Machine Learning algorithm

There exist multiple normal applications, and each of them triggers different behavior
in the system. Ideally, we would prefer that normal applications have a similar HPC
side-effect distribution with low variance, and that attacks have distributions that we

94

Algorithm 1:Monitoring algorithm plus detection using ML
Configure HPCs with selected events;
while True do

reset HPCs;
nanosleep(monitoring interval);
// Stop HPC counters from measuring component activity due to our monitoring

module.
disable HPCs;
read HPCs and take decision using ML;
if malware detected then

Act (Reset OR Restore to safe State) AND Notify system;
end
re-enable HPCs;

end

can easily separate from the normal ones. Since this is not the case, we use ML algo-
rithms to learn how to separate the two classes. In our case, we have two classes or
labels, i.e., malicious or normal. In our case, we use supervised ML, as we provide the
inputs and the target values. We use a 70%-30% split of training and testing applica-
tions. That is, we use 70% of normal and 70% of malicious applications to train our
ML and keep the rest for testing. Since the applications vary in execution length and
we want to have a balanced length between each application, we use data augmenta-
tion techniques [139] to increase the length and undersampling techniques to decrease
the length of an application. For our detection mechanism, we chose to use a Logistic
Regression classifier because of its simplicity. We can think of Logistic Regression as a
single-layer neural network Figure 3.8a. The model receives as input the HPC extracted
values (xi) and outputs a probability that the current sample is malicious (y). If the
probability is greater than a threshold we set (0.5), then we output a positive decision
’1’, otherwise, we output a negative decision ’0’.

(a) (b)

Figure 3.8: (a) Logistic Regression and (b) Sliding Window Visualizations.

95

False Positive Filtering Using Exponentially Weighted Moving Average

Logistic Regression is a linear classifier, that is, it attempts to separate the two classes
based on a linear hyperplane. Since it may not be possible to separate our classes ex-
actly linearly, we will have FPs and FNs. Ideally, we would like our classifier to have as
few FPs and FNs as possible. Since our goal is to detect the attacks, a small percentage
of FN samples is acceptable if we can still detect all attacks. The attack code does not
perform only malicious actions throughout its duration, but also performs normal op-
erations such as array initialization. Since we classify the entire execution of an attack
as malicious, it would be normal to have some FNs considering such normal operations
inside the malicious code. On the other hand, it is not acceptable to identify a normal
application as malicious and raise a False alarm.We give the following reasons why we
try to avoid this:

• Whenwe identify a sample as malicious, we notify the system to take appropriate
actions. This could be resetting the system or restoring it to a previous safe state.
These actions might be too costly if a FP occurs with high to moderate frequency,
such as every 30 seconds to 1 minute.

• The normal application is critical, for example, an IoT insulin pump. In this case,
setting the device out of service for a few seconds might be life-critical for the
patient.

Tofilter the FPs,weuse a similar technique as in [77], [84] calledExponentiallyWeighted
Moving Average (EWMA). EWMA is an algorithm that allows us to compute a "type"
of average in a sliding window Figure 3.8b. From Figure 3.8b, we observe the visual-
ization of the sliding window. The red windows is the time frame where we average
the decisions. For example, the new decision at the top window will be 0.5 and to the
bottomwindow 0.25. The advantage of EWMA is that we can compute the average dur-
ing runtime when new decisions arrive, which means low computational and memory
overhead. Further, the weight of a new decision added to the average decreases expo-
nentially over time, biasing the average towards more recent data. This means that the
most recent decisions in the window are more important than the older ones. To com-
pute the average in a sliding window of size N as in Figure 3.8b, EWMA requires a
decay factor α. The larger the decay factor α, the more the average is skewed towards
more recent decisions. To calculate EWMA, we use the Equation (3.1).

St =

Y1, t = 1

αYt + (1 − α) · St−1, t >1
(3.1)

96

where Yt is the decision at time t and St−1 is the value of EWMA in time t-1. The final
decision is positive (’1’) if St is greater than a threshold, otherwise it is negative (’0’).
The size of the sliding window is crucial for the detection accuracy of our local detec-
tion mechanism. A small window could lead to high FPs and a large window could
lead to high FNs, as it is more likely to miss the malicious behavior in a larger window.
To further reduce the noise of our measurements, we also apply EWMA to the HPCs
measurements to reduce the high-frequency noise. We will refer to the size of the win-
dow for filtering the decisions of the ML as decision window and the size of the window
for filtering the HPC measurements to reduce noise as measurement window.

Evaluation of the Detection Performance

When evaluating our ML detection mechanism we use the following metrics:

• Accuracymeasures the number of correct predictions divided by the total number
of predictions.

• Precisionmeasures the proportion of positive observations that truly are positive.

• Sensitivity or True Positive Rate (TPR) measures how well we identify TPs.

• F-score measures the global trade-off between precision and sensitivity.

• FPR, refers to the percentage of FPs compared to all positive predictions.

• Receiver Operating Characteristic (ROC) curve is a visualization of the classifier’s
performance. The ROC curve visualizes the TPR and FPR for different classifica-
tion thresholds. ROC shows the tradeoff between the TPR and FPR. The Area Un-
der Curve (AUC) is a measure of the accuracy of the model. Amodel with a ROC
closer to the diagonal line (Figure 3.13b the No Skill blue line) is less accurate and
a model with 100% accuracy has an AUC of 1 [140]. AUC 1 is a ROC curve with a
point (0, 1) indicating 0% FPR and 100% TPR. Another interesting feature we can
extract from the ROC curve is the optimal threshold. To find the optimal thresh-
old, we look for the threshold that gives the ROC point with the highest Gmean.
Gmean is a metric that searches the balance between the TPR and the FPR.

Accuracy, Precision, Sensitivity, F-score, FPR, and Gmean are calculated using the fol-
lowing equations:

Accuracy = TP + TN

TP + TN + FN + FP

(3.2) FPR = FP

FP + TN

(3.3)

97

precision = TP

TP + FP

(3.4) sensitivity = TP

TP + FN

(3.5)

Fscore = 2 ∗ (precision ∗ sensitivity)
precision + sensitivity

(3.6) Gmean =
√

specificity ∗ sensitivity (3.7)

True Positive (TP) is the observation corresponding to the actual attack predicted as
attack. TrueNegative (TN) is the observation corresponding to normal application pre-
dicted as normal. False Positive (FP) or False Alarm is the observation corresponding
to a normal application predicted to be an attack. False Negative (FN) is the observa-
tion corresponding to an actual attack predicted to be a normal application. Figure 3.9
presents the ROC andAUC. To create the ROC,we extract the TPR and FPR for different
classification thresholds, starting with a threshold of 0 and continuing to a threshold of
1. A threshold of 0 results in a point at (1,1), which means 100% FPR and 100% TPR,
since we detect all normal applications as malicious and all malicious applications are
also correctly classified. On the other hand, a threshold of 1 yields a point at (0,0),
which means 0% FPR and 0% TPR, i.e., we have no FP, since we correctly predict all
normal applications as normal, but also classify all malicious samples as normal. As
mentioned earlier, the perfect classifier yields a point at (0,1). Also shown in the fig-
ure is the red dashed line indicating a random classifier i.e., we have 50% probability of
correctly classifying a sample. Classifiers with a ROC curve below the random classifier
are worse and above it are better. Of the three ROC curves presented (blue, green, and
brown curves), the blue ROC curve is the best among them. The optimal threshold for
the classifier with this ROC curve is the point with the maximum Gmean, which we can
also see in the figure. Finally, the subfigure at the bottom right in Figure 3.9 shows the
AUC.

3.5.2 Results

In the following section, we present our experimental platform, HPC event selection,
and MaDMAN. Finally, we evaluate the detection performance of MaDMAN.

Experimental Platform

Our experimental platform is based on the Zybo Z7-20 evaluation board, which con-
tains a dual-core ARM Cortex-A9 processor running at 667MHz. It is equipped with
1GB of DDR3L memory and a Debian GNU /Linux 10. The ARM Cortex-A9 processor
is a 32-bit processor core that implements the ARMv7-A architecture. Since in ARMv7
cache maintenance operations can only be executed in privileged modes, we use evic-
tion techniques when needed. Our attack libraries include CacheCSA, Spectre, and

98

Figure 3.9: ROC Curve and AUC explained.

Rowhammer attacks. CacheCSA includes Evict+Time, Prime+Probe, andEvict+Reload,
which target the implementation of AES T-Table. Our attack library includes both one-
sided and two-sided Rowhammer attacks. Our libraries for normal applications in-
cludes the MiBench and PARSEC test suites.

HPC Event Selection

TheARMCortex-A9 core implements 55 events, but only allows simultaneous counting
of 6 events. Aswe have already seen, we cannot rely on theoretical side-effects proposed
in SOTA for detecting eviction-based attack vectors. On the other hand, we have gained
valuable information about the HW components that are most stressed during SATHV
execution.

To find the optimal set of hardware events to monitor, we use the feature extraction
techniques mentioned in Section 3.5.1. After analysis, the 6 hardware events we select
for monitoring are L2 misses, Instruction cache misses, Data cache misses, ITLB miss, ITLB
allocation, and DTLB allocation. We also calculate two percentages i.e., the percentage of
TLB allocations due to a DTLB request divided by the number of L2 misses and the percentage
of TLB allocations due to an ITLB request divided by the ITLBmisses. To further illustrate and
validate the results of the selected HPC events, we present their boxplots. The boxplots
can provide us a first indication of the feasibility of detection based on the targetedHPC
events using a linear hyperplane.

99

(a) (b)

(c) (d)

Figure 3.10: (a) percentage of TLB allocations due to a DTLB request by L2 misses, (b)
percentage of TLB allocations due to an ITLB request by ITLB misses, (c) ITLB misses,
(d) TLB allocations due to an ITLB request.

100

In Figure 3.10a, we can observe that the median of the percentage of TLB allocation due
to a DTLB request by L2 misses is very low for all attack vectors compared to normal
applications. Moreover, the boxplots of normal and malicious applications do not over-
lap. This is explained by the fact that the attacks target specific address ranges and they
do not need to bring a new translation to the TLB frequently. When the attack vectors
get a miss in all levels of the cache, they observe the miss at data addresses for which
the translations exist in the TLBs and are frequently used. Normal applications, on the
other hand, are more versatile, and if a miss occurs in all levels of the cache, it is more
likely to be a data address that has never been used. The TLB must then allocate the
missing translation information. This event can replace the L2 Miss Ratio used in pre-
vious works [82], [84], [132] as it shows that malicious code is missing from all levels
of the cache and accessing frequently used data addresses.

We also observe in Figure 3.10b that for Rowhammer and CacheCSA attacks, the me-
dian of the percentage of ITLB allocations by the ITLB misses decreases. In contrast, it
increases for Spectre attacks. For Rowhammer and CacheCSA attacks, this is due to the
attacks using a small attack code in a loop. In Spectre, it increases despite the small code
because in Spectre we evict all data from the cache, which also removes instructions. If
the translation is evicted from the TLB due to the replacement algorithm,whenwe need
to use the instructions of the loop, we need to bring the translation information into the
TLB again. This side-effect can inform us how small the instruction code is when we
replace the Branch Miss Ratio used in [84].

For the rest of the selected HPC events seen in Figure 3.10 and Figure 3.11, we note
that the distributions differ slightly from the distribution of normal applications. The
boxplots can only give us a first insight into whether our classification task is feasible
with a linear classifier, but they could also lead to a misinterpretation of the feasibility
of the task. This is because we need to look at the combination of side-effects and not
each one individually.

MaDMAN Implementation

Since we want to keep the implementation simple so as not to impose a large perfor-
mance overhead on an already limited system like IoT, we chose Logistic Regression as
our classifier.We implemented our solution in SWwith amonitoring interval of 1ms, as
explained in Section 3.4, to account for evasive malware. We test our implementation
in noiseless and noisy environments. In the noisy environment, we stress the system
with five applications that simultaneously consume the CPU resources. In this case, OS
schedules the execution of each application with a minimum granularity of 4 ms.

101

(a) (b)

(c)

Figure 3.11: (a) Data TLB allocations, (b) Instruction Cache Misses, (c) L2 misses.

102

Due to the simplicity of the chosen classifier, we use EWMA to filter the FPs. As men-
tioned in Section 3.5.1, EWMA averages the decisions in a sliding window that gives
more weight to the most recent decisions. To choose the decision window, we experi-
mented with different sizes and made the following observations:

• When using small decision windows, we observe a high FPR when testing in a
noisy environment. We can observe this in Figure 3.12a, the FPR (blue line) is 7%
for a window size of 2. For small window sizes, we assign more weight to current
decisions, which means that current False decisions have more significance in the
final average. When testing in a noiseless environment, we can see in Figure 3.12b
that we have an FPR of 0% because we have less noise due to context-switches,
which translates to less mis-classifications due to the added noise in the measure-
ments.

• On the contrary, increasing the decision window, the FPR decreases to less than
1%. Increasing the size of the windowmeans that the current measurements have
less weight, and to calculate the final decision we use more the past decisions.
However, increasing the size of the decision window also affects the False Nega-
tive Rate (FNR), as we can see from the red line in Figure 3.12a and Figure 3.12b.
This is because it is more likely to miss malicious behavior if we consider multi-
ple previous decisions to compute the current decision. The sliding window aver-
age except malicious decisions will include normal decisions, shifting the average
closer to a negative than a positive decision. We also note that in the noiseless
environment seen in Figure 3.12b, the window size at which the FNR starts to
increase is 7, while in the noisy environment it is 5. This is because in the noisy
environment, when the window size is 5, decisions are averaged with an execu-
tion time of 5 ms, while our monitoring interval is 1 ms. Essentially, the decisions
of the current application and at least one decision of the previous application
are averaged. EWMA is successful in removing FPs because we observed that FPs
are adjacent to normal decisions. On the other hand, TPs are adjacent with other
TPs i.e., an attack performs continuously malicious operations in contrast to a FP
which happens between normal operations.

• Finally, we can see from both Figure 3.12a and Figure 3.12b that metrics change
more easily in the multiprocessing system than in a noiseless environment. For
example, we can see that the classifier in the noisy environment has an F-score
of 80% for a decision window of 2, while the same classifier in a noiseless envi-
ronment has an F-score of 96%. For both classifiers, the F-score increases as the
size of the decision window increases, as we successfully filter FPs. However, at

103

a certain point, the F-score of both classifiers starts to decrease as we increase the
window size, since wemiss themalicious behavior whenwe increase the window
size used for filtering FPs. However, the classifier in the noisy environment expe-
riences a steeper change in the F-score than in the noiseless environment. This is
because increasing the window size in a noisy environment increases the likeli-
hood that normal decisions due to a previously executed normal application are
included, as opposed to sequential execution where it is highly likely that previ-
ous decisions belong to the currently executed application. This observation illus-
trates why it is important to consider multiprocessing systems when designing a
detection mechanism, since failing to account for noise due to context switching
and performing aggressive filtering can lead to false security guarantees in real
execution environments.

We chose the window size that balances the FPR and FNR in the noisy environment,
which in our case is a sliding window of size 4. Figure 3.13a shows the F-score for
different sizes of decision windows and measurement windows. We mentioned earlier
that we also apply EMWA to the extracted HPC values to reduce the high-frequency
noise. Smoothing too much the extracted values could lead to a loss of information. In
the figure, we observe the two points highlighted in red that give us the maximum F-
score. We choose a decision window of 4 and a measurement window of 9 to configure
our detection mechanism. From Figure 3.12 and Figure 3.13a we observe that the best
F-score lies in the boundary of the minimum granularity, which in this case is 4ms.

(a) Multi-processing (Noisy environment). (b) Sequential execution (Noiseless environment).

Figure 3.12: ClassificationMetrics for different window sizes used in EWMA to remove
False Positives in the Multiprocessing and Sequential systems.

104

(a) (b)

Figure 3.13: (a) F-score depending on the measurement window and decision win-
dow. The two red circles highlight the window sizes (decision_window= 4, measure-
ment_window = 9) and (decision_window = 16, measurement_window = 9), (b) The
receiver operating characteristic curve obtained for our classifier.

Evaluation of the detection performance of MaDMAN

We evaluate the performance of our local detection mechanism in both noiseless and
noisy environments using the configurations described in Section 3.5.2. We also evalu-
ated the local detection mechanism using evasive SATHV according to the approaches
mentioned in Section 3.4. It is worth mentioning that we train the classifier with the
fastest possible eviction strategy on our platform. Next, we created some attack vari-
ants with slower eviction strategies and some based on inserting NOP instructions and
random sleep() functions during code execution which we only use for evaluation. The
insertion of NOP instructions and sleep() functions was carefully placed during atomic
tasks, so the attacks were still successful. In Figure 3.13b we observe the ROC curve of
our classifier in a noiseless environment. The mechanism has an AUC of 0.983 and an
F-score of 98.72%. The ROC curve was generated with different classification thresh-
olds and without applying EWMA for FP filtering. With the classification threshold of
0.5 and the application of EWMA, we obtain the following results:

• For the noiseless environment, the classifier has an accuracy of 98.96% and an
F-score of 96.3% with an FPR of 0%.

• For the noisy environment, the classifier has an accuracy and F-score of 100%.
The classifier performs better in a noisy environment because the side-effects are
sensitive to context-switching and we choose a sliding window size to maximize
performance in noisy environments. For example, from Figure 3.12, the classifier
achieves a maximum F-score of 100% in a noisy environment with a sliding win-

105

dow size of 6.

Regarding evasive SATHV our classifier was capable to detect all evasive SATHVwith-
out any FNs. In contrast, the detection mechanism of Li et al. [126], [138], detects with
0.23% FNs for Rowhammer and 3.83% FN for Spectre, also using Logistic Regression.
When they tested their detection mechanism with an evasive Spectre attack, their de-
tection accuracy dropped to less than 90%. The difference between our mechanism and
that in [126], apart from the selection of side-effects, is the monitoring interval. Li et
al. used perf tools to extract the hardware features, which only allow them to monitor
at a minimum granularity of 100ms. Because we monitor 100 times faster, we are more
likely to detect malicious activity in the presence of evasive techniques because we can
monitor application behaviormore closely and there is less time for an attacker to create
evasive yet successful applications.

Last but not least, we measure the total performance overhead caused by the detection
mechanism in the local system. This is a major concern as the detection mechanism
runs in parallel with the other applications, which affects their execution. To measure
the performance overhead, we ran the same set of applications with and without the
monitor using the time command in Linux. The calculated performance overhead was
1.3%, which we consider acceptable.

Detection
mechanism

Machine
Learning Attacks Evaluation

metric Evasive Evasive
accuracy

Performance
overhead

Monitoring
Interval

Real
Time

Payer
et al. [85]

No,
conditions

flush-based
CacheSCA,
Rowhammer

100%
Accuracy

not
considered N/A

0.91%
Intel Core
i7-3770

1s yes

Li et al.
[126]

polynomial
SVM

flush-based
Spectre,

Rowhammer

100%
AUC yes less than

95% Accuracy

N/A
Intel Core
i3-3217U

100ms yes

Chiappetta
et al. [82]

Neural
Network

flush-based
CacheSCA

86%
(averaged)

not
considered N/A

2.30%
Intel Xeon
W3670

1µs yes

Gulmezoglu
et al. [76] LSTM

flush-based
CacheSCA,
Rowhammer,
Meltdown,
Spectre

99.70%
F-score

not
considered N/A

3.5%
Intel Xeon
E5-2640v3

1ms yes

Ours Logistic
Regression

eviction-based
CacheSCA,
Rowhammer,

Spectre

100%
F-score yes 100%

F-score

1.3%
ARM

Cortex A9
1ms yes

Table 3.4: SATHV local detection mechanism comparison

3.6 Summary

In this section, we presented our experiments on attack detection using information
from HPCs. SATHV is becoming increasingly popular and researchers are proposing

106

mechanisms to either secure the system or detect the attacks and make appropriate
decisions. We mainly focus on detection mechanisms since we can use them directly,
as opposed to solutions that try to secure the system and could only be applied in fu-
ture architectures. In this work, we collected the most interesting side-effects used in
proposed detection mechanisms, and created a taxonomy. Our goal is to help security
researchers interested in implementing detection solutions against SATHV. The list of
side-effects could aid them choose which side effects to use in order to reduce devel-
opment time and cost. We also investigated whether we could reuse the theoretical
side-effects when we have the same threat model but target different architectures. We
showed that attack variants of the same targeted vulnerability can potentially bypass
detection mechanisms, leading to false security guarantees. For example, most SOTA
works use flush-based attack vectors due to their simplicity, low latency, and high suc-
cess ratio. However, eviction-based attack vectors can be applied from the user-space in
most architectures, leading to various side effects in the system that could allow them
to evade detection as they exhibit different behavior than flush-based attacks. Finally,
we proposed a local detection mechanism that aims to detect eviction-based SATHV
in an ARMv7 system. To reduce the performance overhead induced by our solution
in the local system, we proposed the use of a classifier with Logistic Regression. Since
Logistic Regression is a linear classifier, proper selection of side-effects and filtering of
FP have a major impact on the final evaluation. We evaluated our solution in noiseless
and noisy execution environments to account for multi-processing systems. Our solu-
tion successfully detects all SATHV and evasive SATHV with an FPR of 0%. Finally,
Table 3.4 presents a taxonomy of our mechanism and other mechanisms proposed in
the SOTA.

However, our solution is limited to ARMv7 systems, since cache maintenance instruc-
tions such as the flush instruction are not available in the user-space. As we mentioned
earlier, eviction-based attack vectors cause different side-effects than flush-based attack
vectors. On a platform where we can test both approaches, as well as the complexity
and different behavior ofmodern normal applications, there is a possibility that a linear
classifier will not be able to correctly distinguish normal from malicious applications
due to the limited amount of information it can learn. More complex solutions could be
used, but at the cost of higher performance and memory requirements. As we aim to
protect IoT devices, the already limited computational resources may pose difficulties
in implementation.

107

4
A Local-Remote Security Mechanism for the

Detection of Attacks in IoT

With the increasing number of resource-constrained systems such as IoT and IIoT devices, we are
observing an increase in the cyber-security attacks on these devices. Malware detection solutions
exist in the literature, but despite their accuracy, they are generally not suitable for resource-
constrained systems. In such systems, performance, memory, energy consumption, and commu-
nication bandwidth, as well as decision-making latency, play an important role in adopting a
security solution for attack detection. In this chapter, we propose an edge computing attack de-
tection security solution that uses a hybrid Local-Remote Machine Learning implementation to
strike a balance between accurate and fast malware detection while addressing the constraints of
resource-constrained systems in terms of memory, performance, and communication bandwidth.
We also evaluate different implementations in terms of their detection accuracy and overheads
on the target system using Software Attacks Targeting Hardware Vulnerabilities.

4.1 Motivations of the Work . 110

4.2 Introduction to the Local-Remote Detection Mechanism 111

4.3 Local-Remote Parameter Configuration and Evaluation 124

4.4 State Of the Art Comparison . 145

4.5 Summary . 147

109

4.1 Motivations of the Work

We first present the motivations and problematics of this chapter. More details can be
found in [141].

• Modern applications are becoming increasingly complex, resulting in awide range
of different behaviors on the local system. Moreover, attack vectors exhibit differ-
ent behaviors even among variants of the same attack family, as we saw with the
eviction-based and flush-based attacks in Chapter 3. In the previous Chapter 3,
we showed that only flush-based detection methods may not be sufficient when
eviction-based attack vectors are used. Porting eviction-based and flush-based at-
tack vectors into the evaluation platform, such as an ARMv8 system, may reveal
the need for additional security implementations. Simple ML mechanisms may
not be able to learn to distinguish between normal and malicious applications,
resulting in many false positives. Complex ML solutions, on the other hand, are
able to learn the various features to accurately distinguish between normal and
malicious applications.

• IoTposemany limitations. IoT and IIoTdevices are generally resource constrained.
Performance, memory, energy consumption, and communication bandwidth are
some of the key parameters that need to be considered when designing a mecha-
nism for these devices. Proposed solutions that do not adhere to these parameters
may not be adopted by the market. Our goal is to evaluate different trade-offs to
help product designers optimize their detection mechanism depending on the
context of their applications.

• Remote detection alone is not sufficient. Since simple ML mechanisms may not
be sufficient, and since complex ML mechanisms can be, but we may not be able
to implement them locally, remote implementations are instead used. This estab-
lishes a connection between the devices and a remote control center, which may
leave the devices unprotected in the event of a connection failure. One such case
is a network outage. In such a case, the device should be also autonomous, which
means we need to implement a data processing locally. A detection implementa-
tion based on the idea of edge-computing could be more efficient.

110

4.2 Introduction to the Local-Remote Detection Mecha-
nism

We looked at Chapter 2 to basic concepts of implementing a detection mechanism. Se-
curity designers suggest either an implementation in the local system or a remote im-
plementation on a Server. The main reasons for these two options are the following:

• A local implementation processes the extracted samples on the fly, makes deci-
sions and takes appropriate actions once malicious behavior is detected. This al-
lows the device to be autonomous.

• In a local implementation, it is not necessary to store the extracted samples to send
them later to a remote security mechanism.

• A remote system allows the implementation of a complex ML mechanism that
might be locally constrained.

The above reasons lead security system designers to decidewhich implementation they
prefer, taking into account their system and security parameters. A remote security
mechanism obeys the concept of Cloud Computing. Cloud computing is drastically
changing the way we collect and process data, accelerating the development and use of
IoT and IIoT devices. IoT devices collect data on-site and send it to a remote server for
processing. But as the number of IoT devices deployed increases, the Internet is flooded
with data, much of which may be of limited value. This brings us to the post-Cloud era,
where IoT devices produce data that is stored, processed and analyzed, and perform
actions closer to the edge of the network. This will take pressure off cloud centers, as
the amount of data generated by users can exceed the global IP traffic of data centers
[142]. We call this post-Cloud era Edge-Computing.

In SOTA, there are three interesting approaches that use edge-computing to preprocess
and minimize the data extracted and transmitted to the Cloud. The first is adaptive
sampling, proposed by [143]. The authors propose to dynamically adjust the sampling
based on the risk level of a vital sign according to the changing health status of the
patient to reduce the extracted data. This approach works by examining the level of
variance between the data collected over a period of time and dynamically adjusting
the frequency of sampling. Adaptive sampling approaches work well in applications
where the time series being collected are stationary. For rapidly changing data, such
as the data extracted by HPCs, these approaches perform poorly. Since this technique
observes past data and reduces the sampling rate when the risk is below a certain level,
an attacker in our case could use evasive techniques to reduce the probability of in-

111

creasing the risk level and still keep the sampling rate low. Low frequency monitoring,
as described in Section 3.4, could then allow the attacker to more easily bypass the
system’s protections. The next approach, described in [144], uses a DNN to compress
the data before sending it to the Cloud for further processing. Since they use a DNN,
they do not implement it in the device, but in the edge node, where the DNN receives
data from the device every minute, compresses it, and sends it to the Cloud for further
analysis. In our case, since we perform attack detection, we would like the detection
mechanism to be implemented in the device in case of connectivity failures. As well,
if the edge node is attacked, the data processed in the edge node cannot be trusted.
Finally, since we monitor the system with high frequency, the generated data needs to
be stored locally before sending it to the edge node, which increases the memory over-
head. The third approach was presented in [145]. The motivation of the authors was
to clean the "big data" extracted from the edge-devices, with the goal of increasing the
accuracy on the analysis of the data in the edge-node or in the Cloud. The authors use
anomaly detection algorithms locally to identify anomalous data, which they then filter
out. They demonstrated that this technique can improve the judgment and feedback of
the Cloud analysis on the extracted data.

On the other hand, we use the idea proposed in [145] but to perform the inverse. In
our case study, we try to detect anomalous data due to attack execution, and filter
normal data. To this end, we also propose a Local (edge-device) - Remote (Cloud, re-
mote Server) solution for the detection of malicious applications. The proposed Local-
Remote solution uses the concept of edge-computing to enhance the security and detec-
tion performance of the proposed SOTA solutions with respect to the constraints of an
IoT system. Our implementation takes into account the following IoT constraints which
we summarize:

• Security implementations in the local system must not cause significant perfor-
mance and memory overheads. In contrast, in a remote system, there is no limit
to the resources available.

• The local system must be able to identify malware in order to be independent
of the remote system to some degree. This is useful when the network is down.
Though, a local security implementation is required.

• There is a need to accurately detect malware. We cannot allow malware to con-
tinue to perform its malicious activities. Also, we cannot afford to misclassify nor-
mal samples as malicious, as this can result in a large system overhead due to the
actions we need to take when identifying malware. For example, the recovery of
the system in case of a false alarm will impact severely the system with the resets

112

overhead. Since there are multiple malware families and each family has differ-
ent behaviors, it is more challenging to correctly classify all malware samples as
malicious using simple techniques. Moreover, the different behaviors of normal
applications make our task evenmore difficult. Nevertheless, further analysis of a
ML implementation based on complexML algorithms is necessary. Asmentioned
in related work, complex ML implementations can detect malware with higher
accuracy than simple ML implementations. ML Implementations that can learn
complex relationships between captured data and the target variable, i.e., normal
or malicious behavior, will be able to better distinguish malicious and normal be-
havior.

• Since the simple ML cannot accurately distinguish between malware and normal
applications, we use a similar technique as in [146] to increase the accuracy. The
local ML only triggers an alert for samples with high probability. If a sample has
intermediate probability but it is not a high probability sample, the local ML clas-
sifies it as suspicious and forwards it to the remote system for further evaluation.
Using the technique described above, the edge device can preprocess and filter the
extracted data HPC data. This reduces the storage space required to store HPC
data and further minimizes the communication interface, energy consumption,
and network overheads. In addition, successful filtering of most normal sensitive
HPC data reduces the risk of data interception.

We base our detection solution on the idea of edge computing. It allows us to move
parts of the storage and processing resources away from the remote center and closer
to the local device. This idea overcomes many of the limitations of traditional cloud
computing such as latency, service delays, network outages, and reliability.

The main novelty of this chapter can be summarized in the following:

• Weuse edge-computing solutions, targeting tominimize the communication band-
width, but in the context of IoT security.

• We propose the use of a low-cost ML algorithm locally, to successfully filter nor-
mal data, and quickly detect malicious behaviors.

• We propose the use of a more complex solutions in a remote system, to further
analyze accurately the received data.

• We focus on minimizing the FPR, but still keeping our ability to recognize mali-
cious behaviors high.

• We evaluate the filtering succeeded, and we propose the analysis of certain pa-

113

rameters that will further allow us to quickly detect malicious behavior, even if
we use a remote ML.

Figure 4.1: Local-Remote Edge-Computing approaches and the different network layers.

Finally, Figure 4.1 shows the different network layers and where our approach and the
approaches of [143]–[145] are implemented. At the lowest layer are the edge-devices,
above that are the edge-nodes, and then the Cloud layer. There may be other layers
between the cloud and the edge-nodes, but they are not necessary for the purpose of
this work. On the left side of the figure, we see the edge device and the different steps
to process the extracted data using the approaches presented in [143], [144]. The edge-
device extracts the data from the sensors, stores them locally, and then transmits them
to the edge-node after a predefined period of time. The edge node then processes them
and sends the processed data to the Cloud for further analysis. On the other hand, our
approach and that of [145] can be seen in the right side of the figure. In this case, we
extract the data from the edge-device, pre-process it before storing it locally, and finally
transmit it to the remote system (Cloud) after a predefined period of time.

4.2.1 Local ML Implementation

The localML can be a supervised, semi-supervised, or unsupervisedMLalgorithm. The
local ML reads the samples from the HPCs and outputs a probability between 0% and
100% for each sample to bemalware. The above implementation, as shown in Figure 4.2,
allows us to trust samples with a low probability of being malware, send samples with
an intermediate probability to a remote ML for further evaluation, and raise an alert if
there are samples with a high probability. This is achieved by setting two thresholds:

• The first threshold (alert threshold) serves as a trigger for detecting samples that

114

Figure 4.2: Two-level detection threshold implementation.

have a high probability of being malware. We choose the alert threshold based on
the maximum probability obtained using the local ML for only normal training
samples, plus an additional offset. This offset serves as an extra uncertainty level
and was set to 10% for the purposes of this experiment. By using only the proba-
bilities of the normal training data to calculate the alert threshold, we minimize the
possibilities of having FPs. This is because during the evaluation, it is less likely
that there will be a normal sample whose probability of being malware is greater
than the maximum probability of the normal training data. Adding also an offset
further decreases the probability of observing FPs, which we would like to avoid,
as mentioned earlier.

• The second threshold (suspicious threshold) is set to store the samples that our lo-
cal ML cannot identify with high confidence and send them to the remote ML for
further processing. Since MLs from related work use the probability that a sam-
ple is malware at 50% to classify samples as malicious or normal, the suspicious
threshold is set to 40%. By subtracting an offset of 10%, the localML can flag suspi-
cious, malicious samples with behavior closer to normal and future attacks based
on zero-day vulnerabilities.

The 10% offset used by the two levels, and as it can be seen in Figure 4.2, was chosen
only for the purpose of this experiment and to demonstrate our idea.More advanced al-
gorithms can be used to define themproperly. The algorithms thatwe use are presented
in Algorithm 2 and Algorithm 3.

Suspicious threshold With Algorithm 2 we define the suspicious threshold. As men-
tioned earlier, we only use the training dataset to define the two thresholds. After filter-

115

Algorithm 2: Algorithm to choose suspicious threshold
input : Probabilities of a training samples being malware
input : EWMA window size
input : offset ; // to be used as uncertainty
output : Suspicious threshold
filter probabilities using EMWA;
threshold := threshold where Gmean is maximum ; // As defined in Equation (3.7), balance

between the TPR and the FPR.

if threshold > 0.5 then
Suspicious threshold := 0.5; // If the threshold is greater than 0.5, we reduce our

ability to detect malicious samples with behavior close to normal samples,
with such a case being attacks based on zero-day vulnerabilities.

else
Suspicious threshold := threshold;

end
return Suspicious threshold - offset;

ing the probabilities of the training samples being malware, we choose the threshold
that yields the highest Gmean Equation (3.7), i.e., we seek for a balance of FPR and TPR.
In other words, we look for a threshold that balances the maximum TPs to be stored lo-
cally among all positively labeled samples for further evaluation in the remote, and the
maximum TNs to be filtered from all samples labelled as "0". If the threshold is greater
than 0.5, we set it to 0.5. We chose this value because a suspicious threshold greater than
0.5 could filter out malicious samples with behavior close to the normal samples, with
such as case being attacks based on zero-day vulnerabilities.

To further explain the reasoning behind certain parameters, two examples are presented
in Figure 4.3 and Figure 4.4 where the threshold returned after computing Gmean is
less than or greater than 0.5. In the general case, Algorithm 2 reduces the classification
threshold to less than 0.5 only if the current classifier cannot effectively distinguish be-
tweenmalicious and normal samples, i.e., there exist manymalicious samples with less
than 50% probability of being malware. An example of this case is shown in Figure 4.3.
As can be seen from the confusion matrix using 0.5 as the detection threshold (Fig-
ure 4.3b), there are a greater number of FNs than FPs for the same number of samples
from the two classes. Since the number of FNs is greater than the number of FPs, Gmean,
which seeks a balance between TPR and FPR, must decrease the classification thresh-
old to less than 0.5 until there is a "balance" between the two factors. For this example,
using Gmean, we obtained the threshold of 0.4599, which as we can see from the confu-
sion matrix in Figure 4.3c, almost balances the FPs and FNs i.e., now FPs=55, FNs=58
when before we obtained FPs=51, FNs=67. From the distribution of probabilities that
a sample is malware in Figure 4.3a, we can see that there is a small spike in malware

116

probabilities at 50%. Bymoving the detection threshold down,we effectively reduce the
FNs and on the other hand increase the FPs, though balancing FNR and TPR. In such
a case, we accept the reduction of the detection threshold because we want to evaluate
as many malicious samples as possible in the remote system.

(a)

(b)

(c)

Figure 4.3: Distribution of the probability a sample is malware for a classifier that Gmean

returns a threshold less than 0.5 (a), the confusion matrices with a detection threshold
0f 0.5 (b) and the modified suspicious threshold (c).

On the other hand, if Gmean yields a threshold greater than 0.5, it means that there exist
many normal samples with probability greater than 50% i.e., FPs. We can see this in the
confusion matrix in Figure 4.4b, the number of FPs is greater than the number of FNs
i.e., FPs=59, FNs=44. Though Gmean returns a threshold greater than 0.5 to balance
the two, which in this example is 0.6545. From the confusion matrix using the new
threshold in Figure 4.4c, we can now see that there is a balance between FPs and FNs as
now we have FPs=49, FNs=50 compared to previously having FPs=59, FNs=44. Also,
in Figure 4.4a, which shows the distribution of probabilities, we can observe a small
spike in the probabilities of normal samples around 60%. By increasing the classification
threshold from 0.5 to 0.6545, we correctly classify these normal samples. This decreases
the FPs, but we increase the FNs, so we successfully balance TPR and FPR. Since we
can afford not to filter some normal samples, and since there may be new or evasive
attacks with behaviors closer to normal, a threshold higher than 0.5 only decreases our

117

ability to detect thesemalicious behaviors by potentially filtering the incoming samples.
Therefore, we set the threshold back to 0.5 if Algorithm 2 returns a threshold value
greater than 0.5. Finally, an offset could be used to add an extra uncertainty level so
that more samples could pass the filtering and be evaluated in the remote considering
that our network maps most of the normal samples to probabilities around the 0%.

(a)

(b)

(c)

Figure 4.4: Distribution of the probability a sample is malware for a classifier that Gmean

returns a threshold greater than 0.5 (a), the confusionmatrices with a detection thresh-
old 0f 0.5 (b) and the modified suspicious threshold (c).

Alert threshold To select the alert thresholdwe use the Algorithm 3. Here we also filter
the probabilities of the training samples being malware to reduce noise. We initialize
the threshold with the maximum probability of being malicious among only the nor-
mal samples. Then we decide if the sample is malicious ("1" or positive) or normal
("0" or negative) based on whether the probability of the sample is above or below
the threshold. Next, we apply EWMA to the decisions to filter FPs as described in Sec-
tion 3.5.2. We then obtain the number of FPs from the confusion matrix. If there are
FPs, we increase the threshold by one step and add an offset, as in suspicious threshold. If
there are no FPs, we decrease the threshold by one step and repeat the process. We do
this because there might be some normal samples that have a high probability of being
malware, but are successfully removed by EWMA filtering. If we do not check this, the
threshold might be too high to successfully alert the system in case of malicious sam-

118

ples. Again, the offset is used as uncertainty because novel normal applications could
exhibit behavior similar to malicious programs, and we want to avoid detecting them
as attacks and triggering a False alarm.

Algorithm 3: Algorithm to choose alert threshold
!htbp
input : Probabilities of a training samples being malware
input : EWMA window size
input : offset ; // to be used as uncertainty
output : Alert threshold
filter probabilities using EMWA;
threshold := maximum probability of normal samples;
while True do

decisions := 1 if probability > threshold else 0;
filter decisions using EWMA window size;
extract confusion matrix;
get number of FPs;
if FPs then

threshold := threshold + 0.001 ; // Use previous threshold
break;

end
// We decrease the threshold because there might be some probabilities of

normal samples that are above the threshold, but EWMA can filter these out.
threshold := threshold - 0.001;

end
Alert threshold := threshold
return Alert threshold + offset;

4.2.2 Remote ML Implementation

Suspicious samples are stored locally and then sent to a remote ML implementation
for further analysis. The local system sends suspicious samples to the remote system
each ∆s which specifies the period of time that the local ML stores suspicious samples
in a local storage and the frequency with which these samples are sent to the remote
system via a communication interface. The remote system is based on a complex ML,
which is capable of learning complicated behaviors. It can be either a supervised, semi-
supervised or unsupervised ML implementation. An unsupervised ML implementa-
tion, e.g., an LSTM, learns only normal behavior and detects as malware any behavior
that deviates significantly from the patterns our ML mechanism is trained on. The re-
mote system checks suspicious samples received from the local system for deviations
from normal behavior, and if there are deviations, they are flagged as abnormal. The
purpose of the remote system is to flag as abnormal any malware application that the
simple local system cannot identify, and also to recognize zero-day attacks. Examples of

119

such complex MLs are Autoencoders, one-class SVM, LSTM and CNN networks. After
receiving the suspicious samples and processing the data, it notifies the local ML about
the presence of a malware sample according to a third detection threshold.

In Figure 4.5 we present a global view of the proposed idea. As we can see from the
figure, each device is equipped with a local detection mechanism. The local detection
mechanism extracts information from the HPCs, which then inputs to the local ML. Af-
ter the local ML outputs the probability that the current sample is malware, the system
performs a probability check. Depending on the probability, the sample is classified as
either trusted, suspicious, or malicious. If the sample is classified as malicious, an alert
is triggered. If the sample is classified as suspicious, it is stored in local storage to be
later evaluated in the remoteML. At each ∆s, the local system sends the samples stored
in local storage to the remote system, which receives and processes the remote ML. If a
sample in the remote ML is determined to be malicious, the remote system notifies the
local system so that it can take appropriate action.

Figure 4.5: Global view of the Local-Remote ML implementation.

120

Saving the Necessary HPC Samples Depending on the Remote ML Configuration

Depending on the remote ML, the local system is configured differently to save suspi-
cious samples. If the remote ML uses only one sample as input to predict whether it is
malicious or normal, the local ML stores only the suspicious samples in local storage.
This is the case, for example, when we use an Autoencoder or a one-class SVM. An Au-
toencoder is a network that takes an input, compresses it, and then tries to reconstruct
it as explained in Section 2.4.2. Since the Autoencoder is trained to reconstruct only nor-
mal samples, if the input is a malicious sample, it will have difficulty reconstructing it,
resulting in a large reconstruction error. Since the Autoencoder does not perfectly re-
construct normal samples, we choose the quantile (99.85%) of the distribution of the
mean square of the reconstruction errors of the normal training dataset as the detec-
tion threshold during training. If the reconstruction error is larger than the detection
threshold, the Autoencoder alerts the local system. In this case, the Autoencoder takes
the suspicious sample as input and decides whether it is normal or malicious depend-
ing on the reconstruction error.

But since an Autoencoder only looks at one sample to decide for the presence or not
of an attack, this might decrease its ability to efficiently distinguish between normal
and malicious samples. Looking also at the past behavior might allow us to take more
appropriate decisions by looking at a sequence of actions. As we will show later in
Table 4.1, the remote models that use also the past information have better capacity to
identify malicious from normal applications.

When such networks are deployed remotely, some modifications must be considered.
An LSTM is one such network. The reason is that the LSTM needs information from
the past to predict the present or the future samples. In Figure 2.11 in Section 2.4.2,
we saw a representation of an LSTM network that has as input the past n samples and
tries to predict the current plus m future samples. In such a case, to predict the label
of the suspicious sample, the remote ML also needs the past samples. However, in the
previously proposed local filtering approach, the past samples could be filtered by the
local ML and there is no guarantee that suspiciously labeled samples are continuous in
time. To account for this, each time the local ML flags a sample as suspicious, we also
store the necessary past and future samples in the local storage. Thus, when an LSTM
remote ML is used, the additional information about the past and future HPC samples
increases the data stored and sent to the remote.

A control-flow diagram illustrating the steps we need to take to properly store all the
required information can be found in Figure 4.6. For this example, we chose to imple-
ment a remote ML that requires n = 3 past samples to predict n = 0 future samples,

121

i.e., we only predict the samples at time t. The component that helps us accomplish the
efficient storage of the past 3 samples in the local storage is a First In First Out (FIFO)
with a maximum size of the number of past samples plus the number of samples to be
predicted, which in this case is 4. The FIFO has the main advantages:

• If a sample is neither suspicious, nor a high probability sample, then it is filtered
through the localML using the previousmethodologywhen the remoteML is not
an LSTM or another complexML requiring information from the past samples. In
the current case that the remoteML is an LSTM, a samplewith probability of being
malicious less than the suspicious threshold is pushed to the FIFO. If the local ML
continuously filters samples, which means that we continuously push the filtered
samples into the FIFO, then the FIFO stores only the necessary m past samples
and discards the unnecessary ones. This is because, if the FIFO is full and a new
sample is pushed, the FIFO will pop the sample added first to add the one added
last i.e., now.

• In case of an LSTM, to predict the label of a suspicious sample in the remote ML,
we need the n past samples. However, if there are multiple continuous suspicious
samples, then the required past samples are already stored in the FIFO or local
storage.The FIFO helps us avoid storing unnecessary information. If we pop the
FIFO samples to store them in the local storage, then the FIFO will be empty. If
the next sample is also suspicious, it will be the only one saved in the local stor-
age. However, we are sure that the previous samples are already saved and avoid
saving the same samples again.

• The FIFO help us maintain consistency over time, as the samples saved earlier at
FIFO are also saved first in the local storage.

The algorithm in Figure 4.6 is explained as follows: when we start monitoring, we push
the first n=3 samples to the FIFO. Then we check if the local storage is full. If it is, we
immediately send the samples saved in the local storage to the remote ML. This could
help us identify malicious samples faster than ∆s, as we will see in the next sections.
Thenwe check if the acquisition time∆s is over. If it is, we also send the saved data to the
remote ML. If not, we continue extracting samples and decision making. If the sample
has a probability greater than alert threshold, we raise an alarm, otherwise we check if
the sample has a probability greater than suspicious sample. If so, we add an extra bit ’1’
to flag it as suspicious and push it to the FIFO. This allows us to identify in the remote
ML which samples we need to predict their label, since we only want to decide if a
suspiciously flagged sample locally is really malware using the more complex remote
ML. Then we pop all the elements from the FIFO and saved them in the local storage.

122

Figure 4.6: Control-flow graph of the steps necessary to store previous samples when the remote ML requires it. In this
example, we require n = 3 past samples and we predict the current plus m = 0 future samples.

123

If the sample has a lower probability than suspicious sample, we mark it as ’0’ and push
it to the FIFO. Then we continue the loop.

To better explain the concept, we present an example in Figure 4.7 and Figure 4.8. In
Figure 4.7a we see the first step of the control-flow graph pushing the first 3 samples in
the FIFO. In Figure 4.7b the newly extracted sample is labelled as "0" and is also pushed
to the FIFO. As we can see, the FIFO contains the current sample and the necessary past
samples. As in Figure 4.7c, the new sample is also labelled as "0", and when pushed
into the FIFO, this causes the FIFO to discard the latest added sample, which effectively
filters it. In Figure 4.7d, the new sample is flagged as suspicious and pushed into the
FIFO, which now stores the suspicious sample plus the n=3 last samples needed for
prediction in the remote ML. Then all the samples stored in the FIFO are popped and
saved in the local storage. The timestamp is only for the purpose of this example and is
not actually saved. The remoteML looks only for the sampleswith the positive label and
uses the necessary previous samples to make a prediction. In Figure 4.8c we have the
case where the previous sample is suspicious and the current sample is also suspicious.
In this case, the current sample is pushed to the FIFO and popped to be saved in the
local storage. The samples needed to predict the current sample are already in local
storage because of the previous suspicious sample. Finally, in Figure 4.8d we see that
the samples labelled as "0" are filtered by the local system at times t+7, t+8, t+9.

The local filtering allows us to reduce the memory required to store the extracted sam-
ples locally and thoughminimizing the communication and network overhead of trans-
mitting them to the remote system each ∆s. In the following sections, we evaluate dif-
ferent Local-Remote implementations and present their overheads and detection capa-
bilities.

4.3 Local-Remote ParameterConfiguration andEvaluation

In the following subsections, we present our experimental platform in Section 4.3.1,
HPC event selection in Section 4.3.2, and detection metrics for various simple and com-
plex MLs in Section 4.3.3. Next, in Section 4.3.4, we evaluate the Local-Remote system.
We present the detection metrics and also evaluate the communication overhead per
∆s and the percentage of filtering succeeded by the proposed approach. Finally, in Sec-
tion 4.3.8, we evaluate the performance-memory overheads of the local detectionmech-
anisms and the latency to make a decision for the different local MLs.

124

(a) (b)

(c) (d)

Figure 4.7: FIFO and Local Memory snapshots for sample storing from t-2 until t+3.

125

(a) (b)

(c) (d)

Figure 4.8: FIFO and Local Memory snapshots for sample storing from t+4 until t+13.

126

4.3.1 Experimental Platform

Our experimental platform is based on a Raspberry Pi4 Model B. It is a widely used de-
vice for IoT devices with high resource requirements. It integrates a high-performance
64-bit quad-core processor based on the ARMCortex-A72 processor (ARMv8) running
at 1.5GHz. It is equippedwith 4 GB LPDDR4 RAMmemory and an Ubuntu 20.04.2 LTS
system. This platform enables the extraction of HPC measurements from six registers
per core simultaneously.

To demonstrate our idea, we use several Software Attacks TargetingHardware Vulnera-
bilities (SATHV) and evasive SATHV as test vectors. These include Cache Side-Channel
Attacks (CSCA) variants, Spectre variants, Meltdown, and Rowhammer. More specifi-
cally we use CacheCSA attacks on the AES, RSA using the Flush+Flush, Evict+Reload,
Flush+Reload, and Prime+Probe. For Spectre we use Spectre v1, v2, v4 using flush-
based and eviction-based techniques. To test Meltdown we use Meltdown (v3) and
finally for Rowhammer we use single and double-sided hammering using also flush-
based and eviction-based techniques. Finally, evasive SATHV were created using the
techniques presented in Section 3.4. The total attack library dataset has in total 31 at-
tacks executables. This platform also allows us to test eviction-based and flush-based
attack vectors as in ARMv8 the flush instruction is available from userspace in contrast
to the ZyboZ7 (ARMv7) board used in the Chapter 3.

For our normal applications library, we include MiBench [134] and PARSEC [135].
These are industry-standard benchmarks for embedded systems and include a wide
variety of applications as explained previously. The total number of normal executa-
bles from these two libraries is 77.

Finally, we extract measurements from the HPC registers each 1ms as explained in Sec-
tion 3.4, and for the purposes of this experiment, we send the suspicious samples to the
remote every ∆s = 1 minute.

4.3.2 HPC Event Selection

In a previous Chapter 3 we have presented a first version of our methodology and HPC
event selection. The six bestHPCswe considered for detectingmalware in the context of
IoT are the following: ISB SPEC, L1D TLB REFILL, BR IMMED SPEC, L2D CACHE RE-
FILL, BR MIS PRED, and MEM ACCESS LD. This was based on a complete evaluation
of all available HPCs from the ARM ISA [147] according to the experimental setup de-
scribed in Section 4.3.1. The HPC events were chosen based on the Mutual Information
between the HPC values and the target label.

127

As we can see, the selection of HPC events that give us the most information to dis-
tinguish between normal and malicious applications is not the same as the one in Sec-
tion 3.5.2. In the previous section we selected the L2 misses, Instruction cache misses, Data
cache misses, ITLB miss, ITLB allocation, and DTLB allocation. This is due to the fact that
both eviction and flush-based attack vectors are included in this dataset in contrast to
the previous chapter.

4.3.3 Performance Metrics of Different ML Algorithms

The first step in our experiments is to identify how each ML algorithm performs on
our classification problem. Our motivation for evaluating the performance of each ML
classifier is to demonstrate that simple local MLs are capable of identifying malicious
samples but have a high FPR. This allows us to demonstrate the need for using complex
MLs with a low FPR and finally the advantages of a hybrid Local-Remote ML.

We selected six local ML classifiers to test: Logistic Regression, Linear SVC, XGBoost,
Neural Network, and AdaBoost. We also selected three remote ML classifiers: Autoen-
coder, LSTM, and LSTM Autoencoder. To keep the implementation simple, we chose
a Neural Network implementation with 4-2 hidden layers (refer to as NN_4_2) and
an AdaBoost implementation with 5 Logistic Regression estimators (refer to as Ad-
aBoost[LogReg]). In addition we use two configurations for the LSTM, the first using
the seven past samples to predict the current one (LSTM7), and the second using eleven
past samples (LSTM11).We use the same configurations to test the LSTMAutoencoder.
The goal is to investigate whether the accuracy of the remoteML requires an increase in
communication overhead by sending more samples. That is, if we use more past sam-
ples to predict the current sample, does the accuracy of the model increase?

To evaluate how the following MLs perform individually on this classification prob-
lem, we use the metrics presented in Section 3.5.1. Further, as these simple MLs will be
used as localMLs in the following,wewillmention their benefits andpitfallswhenused
as local detection mechanisms. We pay close attention to FPR, as low FPR is as impor-
tant as high recall for resource-constrained and critical devices. In Table 4.1 we display
the results according to the different classification metrics for each of the classifiers.
These results for the simple MLs are obtained by using as the classification threshold
the probability 50%of a sample beingmalware. For the complexMLs,weuse as the clas-
sification threshold the quantile (99.85%) of the distribution of the mean square of the
reconstruction errors of the normal training dataset as in [148]. The quantile (99.85%)
is equivalent to the point of the mean plus three sigmas in a normal distribution. We
evaluate all MLs using all samples.

128

Classifier F-score Recall Precision FPR Accuracy

Si
m
pl
e
M

Ls

LinearSVC 96.06% 99.75% 92.64% 1.63% 99.39%
Logistic

Regression 96.45% 99.74% 93.73% 1.46% 98.75%

XGBoost 91.09% 85.78% 97.09% 0.53% 97.14%
AdaBoost
[LogReg] 98.22% 99.70% 96.79% 0.68% 99.39%

NN (4,2) 90.37% 84.76% 96.77% 0.58% 96.92%

C
om

pl
ex

M
Ls

Autoencoder 2.63% 1.33% 100% 0% 50.67%
LSTM7 84.32% 72.99% 99.82% 0.03% 95.37%
LSTM11 84.20% 72.87% 99.70% 0.04% 95.33%
LSTM

Autoencoder7 94.98% 92.41% 97.69% 0.45% 98.33%

LSTM
Autoencoder11 90.20% 84.11% 97.24% 0.49% 96.88%

Table 4.1: Classification metrics for the different ML algorithms.

Simple MLs used to Implement the Local Detection Mechanism

As we can see from the Table 4.1, the simple MLs have an F-score greater than 90.37%.
AdaBoost[LogReg] delivers the highest F-score among the other simpleML implemen-
tations, LinearSVC has the highest recall, and XGBoost has the highest precision. Since
the localMLs are responsible for filtering normal behavior and allowingmalicious sam-
ples to be stored for further evaluation, recall and precision are the most interesting
metrics. Recall indicates howwell we allowmalicious samples to pass our filtering and
send them for further evaluation. Precision gives us an estimate of the FPs in the data
to be sent for further evaluation and howwell we manage to filter out normal behavior.
Since the F-score measures the global tradeoff between precision and recall, the classi-
fier with the higher F-score is best suited for our problem. Finally, as we do not want
to trigger false alarms, the FPR informs us of the number of normal samples the local
ML detected as malicious among all normal samples. The smaller the FPR, the better.
In the Table 4.1 we observe that AdaBoost[LogReg] has the highest F-score and a very
low FPR.

Complex MLs used to Implement the Remote Detection Mechanism

Moreover, in Table 4.1 we can observe the classificationmetrics of the complexML clas-
sifiers. Sincewe use these complexMLs in the remote system,wewill alsomention their
benefits and pitfalls, when used as remote ML detection mechanisms. We can observe
that the remote MLs have lower F-score than some of the local MLs, but all of them
have higher precision and lower FPR. This is because the remote MLs are trained only

129

with normal data, which helps the remote ML model to recognize most of the normal
samples, i.e., to have high precision and low FPR.

For the localML, themost importantmetrics are F-Score and FPR.
F-Score because it measures the tradeoff between labelling suspi-
cious malicious samples and filtering normal samples. And also
the FPR because we cannot afford to trigger false alarms in the
local system, as the overhead to reset the system may be undesir-
able.

Local ML most important metrics

Asbefore, the detection threshold for the remoteMLs is the quantile (99.85%) of the dis-
tribution of themean square of the reconstruction errors of the normal training dataset.
Since the detection threshold for the remote ML is close to the maximum reconstruc-
tion error of the normal training data, the remote ML succeeds in detecting the normal
behavior. However, since malware does not perform malicious actions throughout its
execution, but also performs operations similar to normal behavior, the remoteMLwill
flag this part of the malware execution as normal, which subsequently decreases the F-
score of the remoteML. Aswe observe in Table 4.1, the LSTM7 has an F-score of 84.32%,
while the AdaBoost[LogReg] has 98.22%. On the other hand, LSTM7 has a precision of
99.82% and an FPR of 0.03%, while AdaBoost[LogReg] has a precision of 96.79% and
an FPR of 0.68%. This decrease in the F-score is acceptable for our problem because we
only require a few samples to flag an application as malicious, not the entire malware
execution. For the remote ML, it is more important to have a precision very close to
100% and an FPR close to 0%.

For the remote ML, the most important metrics are Precision and
FPR. Precision and FPR because we need to accurately label the
normal behavior as normal to avoid false alarms. Recall is also
important as we need to identify as many malicious samples as
possible. However, since we need a few samples to flag an appli-
cation asmalicious, Recall is not as important as it is for localMLs.

Remote ML most important metrics

Another interesting observation from Table 4.1 is that the Autoencoder has poorer clas-
sification metrics compared to the LSTM7. This is also expected since the LSTM uses
information from the past samples to make a prediction for the current samples, while

130

the Autoencoder only uses information from the current sample. The increased F-score
of the LSTM7 compared to the Autoencoder comes at the cost of an increase in the
communication overhead, since more samples must be sent. From Table 4.3, we note
that the additional communication overhead is 0.22% for the LSTM7 and 0.35% for the
LSTM11 when the local ML is based on an AdaBoost[LogReg]. The low communica-
tion overhead, despite the need to send the past samples in case of an LSTM, is due to
the observation that the samples labeled suspicious by the local ML are close to each
other. This allows us to filter storing past samples that are already saved in the local
storage due to a previous suspicious sample and only save the necessary samples as we
have seen in Section 4.2.2 and Figure 4.8c. In any case, despite its high precision, the
Autoencoder, it is not suitable as a remote ML for the current classification problem be-
cause it has a lower ability to recognize abnormal behavior. An Autoencoder might be
better suited for simpler problems, such as when the IoT is running a limited number
of applications.

Meanwhile, using Table 4.1, we can see that both LSTM11 and LSTM Autoencoder11
have lower precision than using the last seven samples. If we increase the information
from the past samples, i.e., we use 11 instead of 7 past samples, the network can use
more information to correctly reconstruct the normal samples. However, increasing the
capacity of the network also leads to over-fitting, i.e., the network becomes too good
at reconstructing samples that are very similar to the training samples, which means it
cannot generalize. This results in malicious samples that have close behavior to normal
samples being predictedwith good accuracy and noisy normal samples being predicted
poorly, increasing FPR and decreasing recall. As we can see from the Table 4.1, the FPR
of both LSTM11 and LSTMAutoencoder11 is higher than that of LSTM7 and LSTMAu-
toencoder7. In addition, the recall is lower for both LSTM11 and LSTM Autoencoder11
compared to LSTM7 and LSTMAutoencoder7. Since there is no performance improve-
ment whenmore information is used and since the communication overhead increases,
the implementations with the seven past samples are preferred.

4.3.4 Local-Remote Implementation Detection Metrics

After experimenting with the various ML algorithms, we evaluate the Local-Remote
ML implementation. As mentioned in Section 4.2, the local ML should not trigger false
alarms and should only raise an alarm for sampleswith highprobability. This is achieved
with the two-level thresholding scheme. Samples flagged as malicious in the local ML
are labeled as "1". Samples filtered as normal are labeled as "0". Next, the remote ML
evaluates the suspicious samples and informs the local ML of their labels. The final

131

metrics for the Local-Remote ML are the joined results presented in Table 4.2.

Local+Remote F-score Recall Precision FPR Accuracy
Logistic

Regression
+ LSTM7

84.40% 73.09% 99.87% 0.02% 95.39%

XGBoost
+ LSTM7 84.41% 73.07% 99.91% 0.01% 95.39%

AdaBoost
[LogReg]
+ LSTM7

84.41% 73.09% 99.88% 0.02% 95.39%

NN_4_2
+ LSTM7 84.40% 73.04% 99.94% 0.01% 95.39%

LinearSVC
+ LSTM7 84.40% 73.09% 99.89% 0.02% 95.39%

LinearSVC
+ LSTM11 84.32% 72.95% 99.88% 0.02% 95.37%

LinearSVC
+ LSTM

Autoencoder7
95.86% 92.66% 99.29% 0.14% 98.64%

LinearSVC
+ LSTM

Autoencoder11
91.25% 84.36% 99.36% 0.11% 97.24%

Table 4.2: Classification metrics for the different Local-Remote ML configurations.

Aswe observe fromTable 4.2, the Local-Remote implementation increases the precision
of the local ML to that of the remote ML. We also note that the FPR drops to less than
0.02%. We can see that the combination of Local-Remote significantly reduces the FPR
of the local ML. For example, in Table 4.1 we see that the Logistic Regression has an
FPR of 1.46%, but combining it with an LSTM7 reduces the FPR to 0.02%. Even though
combining the two does not reduce the FPR to 0%, the improvement is noticeable and
we can consider FPs to be rare events at this point.

Using Table 4.1 and Table 4.2, we can observe that the LSTM7 is the remote ML that
improves precision the most. We find that combining LinearSVC as the local ML with
the remote MLs gives a precision of 99.89% when LSTM7 is used as the remote ML.
Further, in Table 4.2 we can see that the metrics for Local-Remote combinations using
the same remote do not differ. This is because the remote ML is the one that charac-
terizes the final solution. This is explained by the fact that these metrics are relevant
to the ability of the combination to recognize abnormal samples. Since the remote ML
characterizes the final solution and detects the sent samples as malware, these metrics
are relevant to the ability of the remote MLs to detect the malware sample as malicious.

132

If the local ML has a high recall, i.e., , is able to correctly identify malicious behavior, it
is after the ability of the remote ML to identify it as malicious as well. We observed that
the samples that the local ML alerts on are also the samples that the remote ML alone
flags them malicious. However, now that the local ML does not trigger an alert on in-
termediate probability samples, but rather sends them to the remote, it is in the remote
ML ability to detect them as malicious. Since the remote ML, as seen in Table 4.1, has
lower accuracy, the accuracy of the combination also decreases.

4.3.5 Local-Remote Filtering and Communication Bandwidth

To continue our experiments, we evaluate in Table 4.3 the filtering performed by the
local system. As mentioned earlier, we monitor the system every 1ms. We monitor 4
cores and extract 4 bytes of information for each of the 6 available HPCs per core. We
also send data from the localML to the remoteML every 1minute. The total size of data
extracted per 1 minute is 5760kb. We divide the metrics into two categories. The first
category is when only normal applications are executing in the system. The second cat-
egory is when only malware is executing in the system. The data send per minute column
is the average size of extracted HPC data labelled as suspicious per minute of execution
by the local ML. For the results shown in Table 4.3, the local alert is disabled and the
local system filters only extracted HPC data. This choice was made because in a real
scenario, when an attack is detected due to an high probability sample, the local sys-
tem automatically stops the execution of the current application and takes appropriate
action. Activating the local alert does not allow us to demonstrate our idea. The goal of
Table 4.3 is to show the ability of the localML, not to filtermalicious samples, in contrast
with its ability to filter normal incoming samples, and to better compare the percentage
of filtering. In a following Table 4.5 a more realistic example will be presented.

From the Table 4.3, we can observe that most local MLs manage to filter most of the
extracted normal HPC data and label most of the extracted malicious HPC data as sus-
picious. For example, AdaBoost[LogReg] filters 99.32% of normal HPC data in normal
operation and only filters 0.9% of the malicious data under attack. This means that on
average a local ML configured with AdaBoost[LogReg] will only send 39kb out of the
5760kb extracted HPC data under normal operation. We consider sending 39kb of data
per minute in a remote system is an acceptable size of data, considering that SOTA so-
lutions [88], [97] must send all the extracted data even under normal operation. This
shows that the local ML is able to successfully reduce the bandwidth in cases when the
system is not under attack and only requires high communication bandwidth during
an attack.

133

Local ML
(filtering only)

only normal
apps execute

only attack
apps execute

LSTM extra data overhead
(percentage of data increase)

Data send
per minute

filtering
percentage

Data send
per minute

filtering
percentage LSTM7 LSTM11

AdaBoost
[LogReg] 39kb 99.32% 5707kb 0.90% 0.22% 0.35%

LinearSVC 95kb 98.34% 5710kb 0.85% 0.72% 1.05%
Logistic

Regression 86kb 98.50% 5709kb 0.87% 0.75% 1.11%

XGBoost 31kb 99.46% 4909kb 14.77% 0.32% 0.49%
NN_4_2 34kb 99.41% 4852kb 15.76% 0.24% 0.37%

Table 4.3: Data send per minute for each category of applications running in the CPU
and percentage of filtering when 5760kb of HPC data are extracted per minute. The
LSTM extra data overhead refers to the increase in the amount of data to be transmitted
to the remote due to the need to sent past HPC samples.

Figure 4.9, Figure 4.10, and Figure 4.11 also demonstrate the ability of the local ML to
filter most normal samples and send most malicious ones to the remote. The dotted
line indicates the total size of data stored in the local memory at a given time. In the
figures, the dotted line is updated every 1 second. Every ∆s 1 minute, the local system
transmits the saved data to the remote system for further analysis, and the local storage
is emptied. The total size of data sent to the remote system per ∆s is represented by the
triangles. Finally, the asterisk line indicates the time period during which the malware
was executed. When the asterisk line is high, the malware is executed on the local sys-
tem. Figure 4.9 shows a fifteen-minute execution of normal and malicious applications
on the local system. As we can observe from the figure, the amount of suspicious data
saved in local storage increases when the system is under attack. The rate of increase in
the amount of data saved locally is higher when the system is under attack than when
the system is running under normal conditions.

In addition, Figure 4.11 presents the data saved in local storage and the data transferred
in the remote system when the system is under normal operation. From the figure we
can observe that when the system is under normal operation, the total size of data to be
transferred per ∆s is less than 50kb when we have to consider the total size of extracted
data is 5760kb. This effectively means that the local ML filters at the worst case 99.13%
percent of the extracted normal samples. This clearly demonstrates the ability of the
local system to successfully filter the normal extracted HPC samples and minimize the
required communication bandwidth. Comparing with the solution of Wang et al. [98],
which succeeded reducing the communication overhead by 20-30% while keeping a
high accuracy, our work succeeds in reducing the communication overhead by more
that 90%. Further, in contrast to [98], we are also able to detect high probability samples

134

Figure 4.9: Data stored to the local memory per second (red dotted line) and sent to the
remoteML for further evaluation each∆s 1minute (purple triangles). The blue asterisk
line is highwhen amalware executes. LocalML→NN_4_2, monitoring interval→ 1ms

Figure 4.10: Zoom of the execution presented in Figure 4.9 for the minutes 10 to 11.

135

locally, reducing the detection time, and keeping the local overheads low.

Figure 4.11: Data stored to the local memory per second (red dotted line) and sent to
the remote ML for further evaluation each ∆s 1 minute (purple triangles) when only
normal applications execute on the system. Local ML → NN_4_2, monitoring interval
→ 1ms.

As can be observed from Figure 4.11, the local system stores less than 50kb of data
per ∆s 1 minute during normal operation. Using our normal training dataset, we can
calculate the maximum size of data that the system must save in local storage per ∆s
in the worst case when the system is running in normal mode. If we set the size of our
local storage to the calculated maximum, then the local storage will overflow before ∆s
whenmalware programs are executed. This is true in most cases, except in cases where
the malware has a very short execution time (malware in Figure 4.10) or is difficult
to classify as suspicious. This overflow before ∆s time could be an additional factor
for malware detection as we will need to transmit the stored suspicious data remotely
before the expected time. In addition, we can put the system in caution mode when
memory overflow occurs. In the previous example, the time span of ∆s 1 minute was
set only for the purpose of the example.

In conclusion, we have seen that the local ML has the ability to successfully filter the
normal samples and reduce the communication bandwidth during normal operation.
On the other hand, it successfully saves suspicious samples for further preprocessing in
the remote system without a significant loss of information. Finally, we observed that
during normal operation, the samples saved in local storage do not exceed a certain
amount. This has the advantage of using a limited amount of memory, effectively re-
ducing the area overhead, and allows us to have an additional indicator of an attack, as
malware tends to overfill local storage with data before the specified ∆s.

136

4.3.6 False Positives Reduction using an Isolation Forest

As we explained in Table 4.2, the Local-Remote implementation increases the precision
of the securitymechanism anddecreases the FPR. For example, AdaBoost[LogReg] had
a precision of 96.79% and an FPR of 0.68%. Combining it with an LSTM7 increased the
precision to 99.88% and decreased the FPR by 0.02%. But this is not enough, because
we still have a small number of FPs and need to define a strategy to discard them. As
mentioned earlier, the potential overhead due to the system resets after a false alarm
can be significant, and given the critical applications IoT is being used, frequent system
resets may not be permissible.

One strategy we developed exploits the fact that the local ML sends less data than a
certain amount to the remote under normal operation. This hypothesis allows us to
further reduce the FPs due to misclassifications of the remote ML. For our hypothesis,
as mentioned earlier, we calculate the maximum size of data sent to the remote system
by normal applications. The calculated maximum values as a function of the local ML
are listed in Table 4.6. A small offset can also be added to the maximum. This allow us
to set the size of the local storage to this maximum value as it is most likely that under
normal operation we will not need to store more samples than this in a period of ∆s. If
an overflown occurs, it is possible that it happened due to a malware execution, which
as we have seen increases the rate of data stored locally for further evaluation.

Our hypothesis is the following:

• If the local ML sends the data before the specified ∆s, then the decisions of the
remote ML are correct. In this case, it is most likely an attack executed locally that
flooded the local storage before ∆s, and any remotely positive labelled samples
are most likely TPs.

• If the local send data to the remote every ∆s, then we need to pay attention to FPs,
since most likely a normal application was running on the system.

To remove the FPs in this case, we use the idea proposed in [149].

The authors use two Isolation Forests after an Autoencoder, one to remove FPs and an-
other to remove FNs. An Isolation Forest is an unsupervised ML, based on decision
trees as explained in Section 2.4.2. The only parameter we need to define is the con-
tamination, i.e., the percentage of outliers in the dataset. In their implementation, the
authors use the Autoencoder for anomaly detection looking at the network traffic (data
packets). Their anomaly detectionmechanism targets IoT devices, but it is implemented
in the fog layer, which is between the edge-devices and the cloud. The authorsmake the

137

hypothesis that the Autoencoder is accurate enough to predict most of the normal data
packets as normal and most attack packets as malicious. With this in mind, any FP is
outlier among all positive decisions, and any FN is outlier among all negative decisions.
This allows them to use the Isolation forest to find these outliers (FN or FP) among the
negative or positive Autoencoder decisions.

In our case, the outliers are the FPs among the rest of the correct predictions, in the
case where the remote received the data after the expected time ∆s. As previouslymen-
tioned, when the remote receives data at the expected time ∆s, it is most likely normal
applications were executing. In this case, the remote will predict most of the samples
correctly, but there might exist some FPs. For our hypothesis, we need to pay attention
to the following:

• If there is malware with a fast execution time in a period ∆s, then the size of the
data transmitted to the remote system may be close to the maximum. This is the
case of execution between 10-11 minutes in Figure 4.10. In this case, we must not
consider the true positives as FPs.

• Since we do not know the contamination parameter for the remote ML positive
decisions in this ∆s, we cannot train an Isolation Forest on the fly as in [149].

To solve this difficulty, we train an Isolation Forest offlinewith the normal HPC training
data used to train the remote ML. Moreover, we contaminate this normal dataset with
10% randomly selected malicious samples used to train the local ML. After training the
Isolation Forest, we deploy it after the remote ML as follows. The remote ML receives
the suspicious data from the local ML. At this point, the remote ML processes the data
and outputs its decisions. It also checks if the received data were transmitted at the
expected ∆s or earlier. If the remote received the data earlier than ∆s, the decisions of
the remote ML remain unchanged, since as we hypothesized before the local storage
overflows only due to a malware execution. Otherwise if the remote received the data
at the expected ∆s, we keep the HPC data labeled as "1" from the remote ML and feed
it into the Isolation Forest to remove potential FPs. If the Isolation Forest predicts the
sample to be normal, we reset the label "1" to zero. On the other hand, if the Isolation
Forest also predicts the sample as an outlier, we keep the label "1" and inform the local
system about the existence of malware.

138

The Isolation Forest is an extra level of security and its goal is
to further reduce the FPR closer to 0%. It is only deployed if the
data are sent by the local to the remote system at the expected
∆s. If this is the case, we assume that it is most probable normal
applicationswere executing. The remoteMLmakes the decisions,
and if positive decisions exist, we input the HPC values of these
positive decisions to the Isolation Forest. The Isolation Forest was
trained to recognize anomalies i.e., malicious data as samples that
can easily separate from the rest. If the Isolation Forest predicts a
sample as malicious, then an alert is raised. If the Isolation Forest
recognizes the sample as normal, we conclude it is a FP.

Isolation Forest

Local+Remote
+ Isolation Forest F-score Recall Precision FPR Accuracy

XGBoost
+ LSTM7 84.44% 73.07% 100% 0.0% 95.40%

Logistic
Regression
+ LSTM7

84.45% 73.09% 100% 0.0% 95.41%

AdaBoost
[LogReg] +
LSTM7

84.45% 73.09% 100% 0.0% 95.41%

NN_4_2 +
LSTM7 84.42% 73.04% 100% 0.0% 95.40%

LinearSVC +
LSTM7 84.45% 73.09% 100% 0.0% 95.41%

LinearSVC +
LSTM11 84.36% 72.95% 100% 0.0% 95.39%

LinearSVC +
LSTM

Autoencoder7
96.19% 92.66% 100% 0.0% 98.75%

LinearSVC +
LSTM

Autoencoder11
91.52% 84.36% 100% 0.0% 97.33%

Only using
Isolation Forest 77.48% 87.88% 69.28% 8.02% 91.28%

Table 4.4: Classification metrics for the different Local-Remote ML configurations plus
Isolation Forest for FP reduction.

139

4.3.7 Isolation Forest Strategy Evaluation

Table 4.4 presents the final classification metrics of the Local-Remote ML configuration
after using the Isolation Forest technique presented above to reduce FPs. As we can
see from Table 4.4, the presented strategy successfully reduces FPs to zero without any
significant reduction in recall, whichwouldmean that wemisclassify TPs. For example,
the combination of AdaBoost[LogReg] + LSTM7 has a recall of 73.09% and the FPRs
are equal to 0.02%. On the other hand, AdaBoost[LogReg] + LSTM7 + Isolation Forest
still has a recall of 73.09% and the FPR is 0%. Furthermore, we see that combining a local
ML (LinearSVC in the Table) with any of the selected remote MLs plus the Isolation
Forest strategy yields 100% precision and 0% FPR.

We have already mentioned that the best combination of Local-Remote ML is the one
that has the highest F-score local ML and the highest precision remote ML, since we
want to avoid false alarms. However, since the Isolation Forest strategy now filters the
FPs, the precision of the remote ML is no longer the most important metric. Since pre-
cision for all the Local-Remote combinations is now 100%, we now need to consider the
ability of the Remote ML to detect malicious samples i.e., its recall or F-score. Using
Table 4.1, we can verify that the LSTMAutoencoder7 has the highest F-score among all
remote MLs, but also has a high FPR. Using Table 4.2, we can also see that LSTM Au-
toencoder7 is the remote ML that provides the best F-score of 95.85% when combined
with LinearSVC, but also has the highest FPR of 0.14% compared to all others. Since,
as mentioned earlier, we want to avoid false alarms, this combination was not previ-
ously considered due to its high FPR. However, now that the Isolation Forest reduces
the FPR to zero, this combination performs best in this classification problem. Using
Table 4.4, we can see that the combination of LinearSVC plus LSTM Autoencoder7 has
the highest F-score. Though, when using the Isolation Forest, the remote ML with the
highest F-score is the one that gives the best results, as it allows us to capture the most
malicious activity.

Finally, we can say that the combination of the localMLwith the highest F-score and the
remote ML with the highest F-score combined with the Isolation Forest performs best
in our classification problem. To justify this, Table 4.5 shows the metrics for two Local-
Remote configurations. The table summarizes the metrics from Table 4.4 and also adds
two more columns showing the percentage of TPs detected locally and remotely. For
both configurations, the local ML is AdaBoost[LogReg] (the highest F-score local ML)
and the remote MLs are LSTM7 and LSTMAutoencoder7 plus the Isolation Forest. The
Isolation Forest manages to set the FPs to zero, so both implementations have an FPR
of zero. But the LSTM Autoencoder7 performs better on the other metrics, being the

140

remote ML with the highest F-score. Also, from the column indicating the percentage
of positive samples detected remotely, we can see that the LSTM Autoencoder7 detects
19.58% more positive samples than the LSTM7 which is due to its ability to recognize
more malicious samples. Finally, we see in Table 4.4 that using only the Isolation Forest
is not successful in our classification problem. But the combination of Local+Remote
ML together with the Isolation Forest works best in the context of the proposed imple-
mentation.

Local + Remote
+ Isolation

Forest
F-score Sensitivity

(recall) Precision FPR Accuracy

% of
Positives
detected
locally

% of
Positives
detected
remotely

AdaBoost[LogReg]
+ LSTM7 84.45% 73.09% 100% 0.0% 95.41% 67.29 5.80

AdaBoost[LogReg]
+ LSTM

Autoencoder7
96.19% 92.66% 100% 0.0% 98.75% 67.29 25.37

Table 4.5: Classification metrics for the Local + Remote ML + Isolation Forest when
local detection is activated.

From the above results we can conclude that the ideal combination of Local+Remote
ML is the local ML and the remote ML with the highest F-score. This way, we can send
most of the captured malicious activity for further evaluation while reducing the com-
munication overhead by successfully filtering the normal extracted data. The highest
F-score remote ML will correctly detect most malicious samples, and the Isolation For-
est will decrease the FPs.

4.3.8 Evaluation of the Local MLs Overheads on the Local System

As mentioned in our motivations and explanation of the Local-Remote idea, the lo-
cal ML should not cause significant overheads on the local system. The reason is that
IoT devices are resource-constrained in terms of computing and memory resources.
While there are detection solutions that operate with high accuracy, their implementa-
tion on such systems can be restrictive. The memory overhead is due to local storage of
extracted HPC samples when remote ML solutions are proposed. The computational
overhead is due to the sharing of resources between the monitor and the applications
being run. Since the monitor is responsible for extracting the HPC values and making
the corresponding decisions, the time spent on these tasks (HPC extraction time plus
decision latency) defines the final performance overhead incurred in the local system.
AnML, which includes numerous arithmetic operations for decisionmaking, increases

141

the decision latency and thus the performance overhead. Though, when proposing a
solution for IoT, these parameters should be of utmost interest.

Since we are most concerned with the time it takes to deliver a decision (latency), as
well as performance and memory overhead, in Table 4.6 we present these metrics for
each local ML used in this experiment. To measure decision latency, we measure the
time that elapses from themoment the HPCmeasurements are available as input to the
ML to the moment we obtain the final classification. To measure the performance and
memory overhead, we run the same set of applications with and without the detection
mechanism. For the performance overhead, we use the same methodology as in [150],
which uses the linux time command to measure the time that elapses between each run.
The linux time command informs us about the time elapsed between the start point and
the end point of the execution of the test. To measure the memory overhead, we use the
samemethodology as in [151], which uses the linux free command tomeasure themem-
ory used by the system every 0.01 seconds. The linux free command informs us about
the memory usage of the system at that particular moment. By measuring the memory
usage every 0.01 seconds, we can measure the dynamic memory usage and calculate
the average memory usage during the execution of the test. At each ∆s, the memory
is filled with suspicious data, for which we show in the last column of Table 4.6 the
calculated maximum size of the local memory needed to store the suspicious samples,
as explained earlier. Every ∆s the system is under the worst-case scenario for memory
requirements due to the local ML detector (requiring system memory to execute) and
the suspicious data ready to be sent (HPC data saved in the local storage). We add this
size to the total memory used by the applications and the local ML detector, and then
calculate the overhead. Before each run, we clean the memory. To reduce the noise, we
conduct each experiment 1000 times and after we average.

From Table 4.6 we observe that the performance overhead of all selected local MLs is
less than 1%.Also, thememory overhead of the detectionmechanism is less than 0.36%.
This is because of the targeted use of simple MLs locally, which involve only a few cal-
culations to make the appropriate decisions. Though, we consider as acceptable the
induced overheads for the targeted resource-constrained devices. Another interesting
observation is that as the complexity increases, the latency also increases. XGBoost has
the lowest decision time, which is to be expected since the decision algorithm contains
only if-else statements and does not involve complex operations. LinearSVC and Logis-
tic Regression also have low latency because they can be considered single-layer neural
networks. The highest latency is observed for the Neural Networks, which is expected
due to the amount of more complex operations they must perform per neuron. The
larger the Neural Network, the higher the latency.

142

Algorithm 4: Algorithm to calculate performance overhead
input : repeats ; // How many times to run the same experiment in order to reduce

noise
output : performance overhead
time no monitor = 0 ; // store time elapsed when the monitor is deactivated
time monitor = 0 ; // store time elapsed when the monitor is activated i.e., runs in

parallel with the applications

for i := 0 to repeats do
time = $(time ./random-execution –monitor-deactivated);
time no monitor = time no monitor + time;

end
time no monitor = time no monitor / repeats ; // calculate average between runs

for i := 0 to repeats do
time = $(time ./random-execution –monitor-activated);
time monitor = time monitor + time;

end
time monitor = time monitor / repeats ; // calculate average between runs

performance overhead = 100%*(time monitor - time no monitor) / time no monitor;
return performance overhead;

4.3.9 Remote ML Latency Evaluation

In this last section, we experimented and present in Table 4.7 the latency of the remote
ML, to get the final prediction for the received data. Table 4.7 has four columns. The
first column shows the latency when the remote ML receives the maximum size that a
normal application sends to the remote when the local ML is AdaBoost[LogReg]. This
is the worst-case scenario when the device is in normal operation. As mentioned be-
fore, we consider that at most time the device runs normally i.e., not being attacked.
In such a case, most normal samples are filtered and only a certain amount is saved in
the local storage for further evaluation. In Table 4.6, we calculated this maximum and
set the size of the local storage. This is the worst case scenario as on average the device
under normal operation sends less data that this size. The second column shows the
latency, but in this case 10k devices send the maximum data size to the remote ML.
The third and fourth columns show the latency for the case when the local ML sends
all the extracted HPC data (i.e., 4*60000 samples assuming that ∆s is 1 minute and the
monitoring interval is 1ms) for one and 10k devices. The remote ML is implemented
using the Tensorflow-GPU package and a Graphics Processing Unit (GPU) NVIDIA
Tesla V100 PCIe 16 GB. We find that all remote MLs can make a prediction in less than
25.66 seconds in the case of normal operation and receiving data from 10k devices. On
the other hand, we see that if we need to send all extracted samples for 10k devices, the
latency of the remote MLs is almost 1 minute and even higher for the LSTM Autoen-
coder.

143

Algorithm 5: Algorithm to calculate memory overhead
input : repeats ; // How many times to run the same experiment in order to reduce

noise
input : repeats_per_second ; // How many times to measure memory usage per second
input : Local storage size
output : memory overhead
repeats_per_second = 1/repeats_per_second ; // convert to time i.e., 1/1000 is 1ms
counter = 0;
memory no monitor = 0 ; // stored memory used when the monitor is deactivated
memory monitor = 0 ; // stored memory used when the monitor is activated i.e., runs

in parallel with the applications

for i := 0 to repeats do
exec(./random-execution –monitor-deactivated) &);
while app_still_executes do

memory used = $(free | grep Mem | awk ’print $2 + $4 + $5’) ; // 2nd arguments is the
memory used, 4th argument is the shared memory, 5th argument is the
buffer/cached memory

memory no monitor = memory no monitor + memory used;
sleep(repeats_per_second);
counter++;

end
clear memory;

end
memory no monitor = memory no monitor / counter ; // calculate average memory usage

between runs

counter=0;
for i := 0 to repeats do

exec(./random-execution –monitor-activated) &);
while app_still_executes do

memory used = $(free | grep Mem | awk ’print $2 + $4 + $5’);
memory monitor = memory monitor + memory used;
sleep(repeats_per_second);
counter++;

end
clear memory;

end
memory monitor = memory monitor / counter ; // calculate average memory usage between

runs
memory monitor = memory monitor + Local storage size ; // add the Local storage size to

reference the worst case scenario

performance overhead = 100%*(memory monitor - memory no monitor) / memory no monitor;
return memory overhead;

144

Classifier latency Performance
Overhead

Memory
overhead
(each ∆s)

Local
memory
size

XGBoost 0.52us 0.677% 0.09% 57kb
LinearSVC 1.17us 0.573% 0.04% 171kb
Logistic

Regression 1.17us 0.573% 0.04% 152kb

AdaBoost
[LogReg] 4.4us 0.796% 0.36% 54kb

NN_4_2 4.73us 0.727% 0.16% 45kb

Table 4.6: Evaluation of different important metrics for a limited resources system. The
last column showcases the size of the local memory to be used for storing suspicious
samples. It is calculated as the maximum size of data the system stores per ∆s under
normal operation during training. If the local memory is overflowed, then we send the
suspicious data to the remote before ∆s.

This shows that local filtering of the extracted data also affects the resources needed in
the remote ML, although we considered there is no limit. It shows that a single GPU
is sufficient to reduce the cost of the implementation. On the other hand, extracting
and sending the maximum data, either during the attack when we do not set the local
memory limit as proposed in Section 4.2.2, or as proposed in the SOTA works, could
result in the remoteML not being able to process the amount of data to make a decision
before ∆s and increase the cost, requiring more resources.

Remote ML
max normal

samples (54kb)
for 1 device

max normal
samples 10k

devices

max extracted
samples (5760kb)

for 1 device

max extracted
samples 10k

devices
LSTM_7
(512,512) 0.62 sec 14.73 sec 8.96 sec 59.34 sec

LSTM_7
(256,256) 0.64 sec 15.75 sec 9.11 sec 47.21 sec

LSTM_11
(512,512) 1.06 sec 19.39 sec 12.59 sec 48.23 sec

LSTM
AutoEncoder_7 1.02 sec 25.66 sec 20.48 sec 397.26 sec

Table 4.7: Latency of the different remote ML classifiers when the local ML is the Ad-
aBoost[LogReg].

4.4 State Of the Art Comparison

In this last section, we compare our implementation with the methods proposed in
SOTA for detecting microarchitectural attacks. In Table 4.8 we can see the attacks used

145

Detection
Mechanism Attacks Accuracy F-score FPR or

Precision Overhead System
Local
or

Remote
Mushtaq et al. [91]
Logistic Regression

(No Load)
Flush+Reload 99.51% 0.48%

FPR 0.94% Intel Local

Mushtaq et al. [91]
SVM (No Load) Flush+Reload 98.82% 0.397%

FPR 1.29% Intel Local

Mushtaq et al. [91]
Logistic Regression

(No Load)
Flush+Flush 91.73% 0%

FPR 1.10% Intel Local

Mushtaq et al. [91]
SVM (No Load) Flush+Flush 97.42% 0%

FPR 0.79% Intel Local

WHISPER [92]
Ensemble Learning

One model per malware
(DT, RF and SVM)

(No Load)

CacheCSA,
(F+F, F+R, P+P),

Spectre,
Meltdown

>97.05% <8% Intel Local

FortuneTeller
[76] LSTM

Spectre
CacheCSA,

(F+F, F+R, P+P),
Meltdown,
Rowhammer

99.70% 0.125%
FPR 3.50% Intel Local

Depoix et al. [152]
DNN

Spectre
CacheCSA,
(F+R, P+P),
Meltdown

99% 97.16% 0.33%
FPR

Wei et al. [153]
OC-SVM

Prime + Probe,
Spectre,

Rowhammer,
Evasive

<98.63% <0.5%
FPR ARM

Wei et al. [153]
LSTM

Prime + Probe,
Spectre,

Rowhammer,
Evasive

<99.06% <0.5%
FPR ARM

Kuruvila et al. [154]
Random Forest

Flush + Flush,
Spectre,

Meltdown,
Rowhammer
BashLite,
PNScan

89.90% 89.91% 89.25%
Precision <1.22% MIPS Local

Wang et al. [155]
MPL

CacheCSA,
(F+F, F+R, P+P),

Spectre?
<98.9% <97% 5.3%

FPR <3.2% Intel,
ARM

Wang et al. [155]
Logistic Regression

CacheCSA,
(F+F, F+R, P+P),

Spectre?
<98,9% 91.90% 14.9%

FPR <3.23% Intel,
ARM

Ours
AdaBoost +

LSTM AutoEncoder7

Spectre
CacheCSA

(F+F, F+R, E+R, P+P),
Meltdown,

Rowhammer,
Evasive

98.75% 96.19% 0%
FPR 0.80% ARM Local

Remote

Table 4.8: Comparison of our Local-Remote implementation to the SOTA.

146

in eachwork, the accuracy, the F-score, the FPR or precision, the performance overhead,
the target system, and finally the implementation in a local or remote system. From the
table, it can be seen that the complexity of the algorithm used increases as more attack
libraries are used in the evaluation of the proposed detection mechanism. For example,
Mushtaq et al. in [91] used simpleMLs such as a logistic regression and SVM, but aimed
to detect only one attack library. As attack libraries increased in their work, Mushtaq
et al. in WHISPER [92] used an ensemble algorithm with decision trees, random for-
est, and SVM. The final decision was made using majority voting. The authors found
that each algorithm by itself had good accuracy but high FPR, while combining the al-
gorithms reduced the FPR. Using more than one classifier results in a larger overhead
for the system, which in this case is ∼8%. Similarly, Wei et al. [153] uses an LSTM to
detect a wide range of SATHV, including evasive malware, and shows an accuracy of
∼99.06%, but an FPR of ∼0.5%. The authors do not mention the overhead incurred in
the local system for using such aML locally, but based on FortuneTeller [76], we can see
that their method is successful with a high F-score of 99.70%, but they cause 3.5% per-
formance overhead in the local system. Considering that they test their solution on an
Intel desktop, we expect this overhead to be more significant on resource-constrained
devices. All the works referenced in Table 4.8 aims to detect attacks with high accu-
racy. However, as mentioned earlier, this is not the only factor, as FPR should also be
considered. This is because even an FPR of close to 0% could lead to frequent system
resets and consquently large overheads. On the other hand, we propose a Local-Remote
mechanism that targets near 0% FPR and a high F-score. As we can see from the table,
we obtain a score that is close to or exceeds that of most works since we have one of the
largest sets of attack libraries in our dataset.

4.5 Summary

In this chapter, we proposed a solution for SATHV detection in low-resource devices
such as IoT/IIoT. We proposed a Local-Remote implementation that attempts to mini-
mize the performance, memory, and communication overheads in the local resource-
constrained system. The proposed solution quickly alerts the systemwhen high proba-
bility samples are detected, filters low probability samples, and stores suspicious sam-
ples for further analysis. Then, the local system communicates with a remote system on
which a complex ML solution is implemented. The complex ML is able to learn more
complex behaviors and better distinguish normal from malicious actions and make a
decision with higher confidence than the local ML.

We also present the methodology used in our experiments and evaluate the proposed

147

Local-Remote idea in terms of several metrics. We show that the Local-Remote imple-
mentation increases the precision compared to only a local ML implementation. More-
over, we have shown that a simple local ML can filter normal extracted HPC data with
a filtering percentage of ∼99%, effectively reducing the required bandwidth in normal
operation and increasing it only in the presence of malware.

In addition, we propose a strategy to achieve a near zero FPs detection. The proposed
strategy uses an Isolation Forest based on the hypothesis that the local ML sends data
each ∆s under normal conditions and only sends data before the expected time under
attack. As we have presented, the local storage is overflown by data before ∆s only
during an attack,which signals the local system to send the data immediately. If the data
are received by the remote ML at the expected ∆s, we check that the positive detections
after the remote ML are also predicted to be outliers from the Isolation Forest. Table 4.4
confirmed the hypothesis in the context of the proposed solution.

We also find out that the combination of the highest F-score local and highest F-score
remote ML performs the best in our classification problem. This is because having the
highest F-score local allow us to filter most of the normal samples, while it allow us to
successfully label suspicious or raise an alert for malicious samples. Then the highest
F-score remote has the ability to recognize most of the malicious samples, while having
minimal FPR. Then, the Isolation Forest strategy applied in the context of this solution,
can successfully detect the FPs, reducing the FPR to near 0% in our test case.

The proposed solution of the Local-Remote ML tries to minimize the overheads of the
local system and still succeeds in detecting malware with high accuracy. As the current
implementation is implemented in software, the local detection mechanism and the
applications executing in the local system share resources. Even if the simple ML in the
local system introduces low overheads regarding performance and memory according
to Table 4.6, this can still be a problem for low resources devices. Currently, we evaluate
the proposed idea using a Raspberry Pi4 which has more memory and computational
resources.

Further, as the implementation is in software, it is still in danger of being targeted by
malware. Today’s OS are vulnerable to multiple vulnerabilities and the thousands of
lines of code make the verification problemmore difficult. Low resource devices might
use a less complicated OS, but still, vulnerabilities exist which can endanger the detec-
tion module. To address this, a hardware implementation should be more appropriate
as we will see in the next chapter.

148

5
A Hardware-based Local Detection Mechanism

for the Security enhancement of the
Local-Remote approach

The Local-Remote implementation of the detection mechanism allows us to filter extracted HPC
samples, make fast decisions locally in the case of high probability samples, and finally further
evaluate suspicious samples in a remote complex ML. However, our local detection mechanism
is implemented in software, which makes it vulnerable to software attacks. This could allow at-
tackers to directly attack the local detection mechanism and compromise its functionality. On
the other hand, a hardware implementation limits the ability of attackers to interfere with the de-
tection task, since the attacker have limited access rights from software to the system hardware.
In this section, we analyze the security risks of a software implementation and propose a hard-
ware implementation that further allows us to take advantage of hardware acceleration to limit
the overhead and/or use complex ML locally. Finally we evaluate and compare its performance
metrics and overheads compared with the software version.

5.1 Motivations of the work . 150

5.2 Software attacks targeting the local detection mechanism 150

5.3 Local ML hardware implementation . 156

5.4 Hardware Local ML Evaluation . 164

5.5 Conclusion . 172

149

5.1 Motivations of the work

Themain motivations and problematics that have driven our research presented in this
chapter are the following:

• A software implementation of a security mechanism is vulnerable to software at-
tacks. A security designer should be careful when implementing the code to avoid
creating bugs/breaches that can be exploited by attackers. In addition, SATHV
such as Rowhammer could directly target the ML algorithm to change its imple-
mentation [51]–[53], e.g., by changing the weights, which could affect the accu-
racy.

• A software implementation of a security mechanism runs in parallel with the
other user applications, sharing resources. Since we chose to monitor the system
with high frequency, the context switching between the monitor and applications
introduces overhead in addition to the time required by the ML to make a de-
cision. Thus, we could only use simple MLs to keep the local system overheads
low. Implementing themechanism in hardware allows us to reduce the overheads
since the monitor will not interfere the normal operations by sharing resources.
Further, hardware acceleration could allowus to use locally complexMLs (such as
DNNs) without imposing additional performance overhead on the local system.

• Finally, interrupting the CPU to run the monitor and make decisions introduces
noise into the measurements because the monitoring interval is not equal to the
specified frequency, but instead fluctuates around it with some noise. This adds
additional noise to our data, complicating our detection problem. On the other
hand, a hardware monitor minimizes this noise because it reads the registers di-
rectly at the specified time interval without interfering with the OS.

5.2 Software attacks targeting the local detection mecha-
nism

We have already introduced in Section 4.5 that a software implementation of the local
detection mechanism is vulnerable to software attacks and SATHV. This is because the
detection mechanism and attack applications share resources e.g., the DRAM. In this
section, we present some attacks that target the ML algorithms, as well as an attack
we developed to disrupt/interfere the extraction of HPCs. Further, we list some attacks
that could potentially be modified to target the local mechanism. This demonstrates
the need to enhance the security of the local detection mechanism through a hardware

150

implementation.

Rowhammer targeting ML models

Recently, many related works study the robustness of ML models against adversarial
attacks, including white [29] and black [156] boxes. Most of these works look for ways
to interfere with the classification of the ML model’s inputs to misclassify the sample.
This includes inducing specially crafted noise into the inputs that activates certain pa-
rameters in the model, with the goal of confusing the network. In our case, adding
noise to the HPC measurements means modifying the attack code to change the be-
havior triggered in the system. In this case, this task is not as straightforward as, for
example, image classification. In the case of image classification attacks, the attackers
add the specially crafted noise and thus have control over the image. In the case of a
software application, the attackers have to add the noise using obfuscation techniques
(i.e., specially crafted instructions that will modify the code execution) and still suc-
ceed performing their malicious activities. However, they do not have direct control
over the hardware and the time available to add the required noise i.e., the monitoring
interval, making this task more difficult.

Attackers could also use other techniques to circumvent detection of the attack, e.g., by
tampering with model parameters such as weights, activation functions, biases, thresh-
olds, etc. Recently, SOTA works [51]–[53] have explored the use of Rowhammer to al-
ter model parameters. This is accomplished by bit-flipping targeted bits in the DRAM,
where the model parameters are stored. [51] has shown that 10 targeted bit-flips can
reduce the accuracy of a model to less than 10%. This becomes more serious in our
case, as the simple models we used in the previous Chapter 4 have fewer parameters
than more complex ML algorithms, making the proposed idea more vulnerable to this
type of attack, as changing one parameter greatly changes the detection capability of
the local ML.

In the following, we present a simple neural network example trained with MiBench,
PARSEC, Spectre, and Rowhammer. The neural network can be seen in Figure 5.1. It
receives as inputs the six HPC events and has three hidden layers. In the figure, we
can see the original weights of the last layer W1 and W2. W2 is the targeted weight for
this example, and we can also see the binary representation using the IEEE-754 floating
point representation. The ML model has an accuracy of 99.71% and a confusion matrix
that we can see in Figure 5.2a. If an attacker succeeds in bit-flipping the 2nd bit of the
exponent of the second weight of the last layer of the network, then the classifier clas-
sifies all attack samples as FN, as can be seen in Figure 5.2b. On the other hand, if the

151

attacker only succeeds in bit-flipping the 1st bit of the exponent of the second weight
of the last layer, the accuracy is 99.20% and the network has an accuracy matrix as seen
in Figure 5.2c. This simple example shows that small changes to the weights of a sim-
ple ML can significantly alter its detection capabilities but also shows that the induced
false must be precise. This is because, unlike more complex ML, which can store/learn
more information in different neurons, the simpleMLwe presented learns only limited
information, and each neuron plays an important role in the final decision.

Figure 5.1: Neural Network Visualization before and after bit-flipping last layer weight value. In the
figure we can see how the weight W2 changes and the original.

(a) Original Confusion Ma-
trix.

(b) Confusion Matrix after
bit-flipping the 2nd expo-
nent bit in the last layer
weight.

(c) Confusion Matrix after
bit-flipping the 1st exponent
bit in the last layer weight.

Figure 5.2: Confusion Matrices of a Neural Network before and after bit-flipping a
weight in the last layer as shown in Figure 5.1.

This is serious security pitfall, considering Rowhammer can be performed from soft-
ware and remotely without requiring physical access. Since Rowhammer is included
in our threat model, detecting the attack in time we could avoid this the case where
the attacker successfully faults the parameters. Further, using Error Correcting Codes

152

(ECC) before deploying the model could be used to verify their integrity, detecting po-
tential tampering. But this might add some extra overhead, since we would need to do
that every time the new HPC samples are extracted. Still, it showcases that software
implementation can be vulnerable to software attacks and SATHV.

Software attack targeting the HPC extraction from user-space

Since our detection implementation relies in the extraction of the HPC values from the
performance monitoring unit, we explored ways to interfere with this task. Under nor-
mal operation, accessing HPC counters is restricted and a kernel-module should be
loaded to allow reading/modification using the internal CP15 interface [157] or the
Linux perf-tool. During the development of the detection module, we discovered in
the reference manual of ARM that HPCs can also be accessed using memory-mapped
I/O [157, p. 161]. Since user-space application can also map in their memory space the
memory-mapped I/O region (which also includes accessing peripherals), this poses a
potential risk. As we will showcase, this is even a greater threat as a designer could
falsely believe the detection mechanism is safe, by restricting access to the HPC coun-
ters from user-space, but an attacker could bypass this restriction by using thememory-
mapped interface. In the followingwewill showcase four cases of how an attacker could
interfere with the HPC extraction. The test cases presented require a script to be exe-
cuted fromuser-space, without requiring the use of a kernel-module.More information
could be found for all test cases in the Section A.1.

(a) Test Case 1. (b) Test Case 2.

Figure 5.3: PMU interference, test cases 1 and 2.

Case1: Read PMU registers fromuser-spacewithout using a kernel-module to enable
access The first test case is the activation of HPC counters without a kernel module.

153

Attackers with access to the HPC register values can observe the registers and success-
fully figure out the monitoring interval by analysing when the value of HPC registers
is reset (Algorithm 1 in Section 3.5.1). Since many of the SATHVs require access to the
cycle counter to find timing differences, an attacker could read the cycle counter even
if access to the PMU is originally disabled. Finally, [158] used information from the
PMUs (L2 cache misses) to create a covert channel between TrustZone and userspace
applications. This allowed them to find out how many cache lines have been updated,
i.e., which addresses the TrustZone application used. An example of this test case can
be found in Figure 5.3a. In the figure, we also see the necessary steps and register con-
figurations that allow us to enable the HPCs via the memory-mapped interface.

Considering that an attacker can have access to the PMUs and fully know the under-
lying ML algorithm used by the local ML as well as the monitored HPC events, in the
following we present three test case scenarios that pose a major threat to our security.

Case2: Change the HPC events monitored by the detection mechanism In this sec-
ond test case, attackers could use the script to modify the monitored HPC events and
configure them to their own choice as we can observe in Figure 5.3b. This is succeeded
by reconfiguring the HPC registers with the configuration of their own. This could al-
low attackers to manipulate the inputs of the detection mechanism. For example, an
attack that increases an HPC event to a range outside the normal applications distri-
bution could be modified by the attacker with another that provides values within the
range of normal values. In this way, the attacker can bypass detection and then recon-
figure the monitor with the original configuration to cover the tracks of the tampering.

(a) Test Case 3. (b) Test Case 4.

Figure 5.4: PMU interference, test case 3 and 4.

Case3: Reset PMU counters In this scenario, the attacker resets the HPC values to
zero, as you can see Figure 5.4a. If an HPC event increases in a range of values outside

154

the normal application distribution, an attacker could reset it during the attack to re-
duce the final values extracted by the detection mechanism, allowing the attacker to
bypass detection. This test case can be more difficult to perform but it shows us the
potential tools an attacker can use trick our system.

Case4: Disable HPC counters In this last scenario, the attackers can disable the HPCs
by freezing the hardware event count. This could also allow them to freeze the values
of an HPC event that increases significantly during the attack so that it remains in the
range of the values of normal applications. Another case is when the detection mecha-
nism uses event sampling. In this case, the monitor extracts measurements when one of
the HPC events reaches a certain value, as in [79], which extracts HPC values after ev-
ery syscall, and [159], which extracts HPC values every 100k instructions. In this case,
an attacker who resets the HPC values of the monitored event could cause the monitor
to never extract HPC values because the specified value is never reached. For example,
the attacker disables the counter at value zero for the syscalls and less than 100k for the
instructions. An example can be found in Figure 5.4b. As we can see from the figure,
the extracted HPC values remain the same after 3 seconds of execution.

Hardware attacks against ML models

Hardware attacks against ML models are out of the scope of this work as explained in
our threat model. As previously mentioned in Chapter 1, the industrial environment
provides limited access to systems, and consumer IoT devices are located in the user’s
home. Furthermore, if IoT devices can become targets of their own users, we consider
physical protection measures exist. Examples of such protections include an integrated
secure element or detection of attempts to dismantle the device. This limits physical ac-
cess to the device, which allow us to not consider hardware attacks in our threat model.
Such hardware attacks include, but are not limited to, fault attacks on the parameters
of the ML algorithm such as the weights, activation functions, etc., using laser [160]–
[162], clock glitch [163], and voltage glitch attacks [164].

In summary, we show some techniques that attackers could use to disrupt HPC extrac-
tion or modify ML model parameters when the local detection mechanism is imple-
mented in software. We believe that this shows that a hardware implementation of the
local detection mechanism should increase security against software attacks and fault
attacks such as rowhammer. In the following sections, we will provide further reason-
ing for the necessity of a hardware implementation selection.

155

5.3 Local ML hardware implementation

As mentioned in the previous section, a software implementation of the local ML may
be vulnerable to software attacks. On the other hand, a hardware implementation of
the mechanism reduces the attack surface since the attacker is restricted from access-
ing the hardware mechanism from software. A dedicated hardware component with
high privileges in the system allows us to limit the ability of an attacker to disrupt our
detection solution. Furthermore, a dedicated hardware component relieves CPU from
the performance overhead of running applications and the detection module in paral-
lel. However, the hardware implementation comes at the price of requiring additional
area, as an additional component must be integrated into the system. This additional
area, though, poses a constraint on our design since it requires an Application-Specific
Integrated Circuit (ASIC) or programmable logic to be in place.

As mentioned earlier, selecting the most prominent HPC events to distinguish between
normal and malicious applications is an important step in developing an effective de-
tection mechanism. In Chapter 3, we looked at the theoretical side-effects proposed in
SOTA, and we also used some feature extraction methods to finally select the six high-
est scoring events to propose our local mechanism. Selecting the most prominent HPC
events could also help us to implement less complicated ML systems locally. However,
the proposed HPC events better work with the set of applications used (normal and
attack applications) and are also successful in detecting evasive attacks. However, the
HPC events selected by the feature extraction methods focus on specific components of
theCPU, i.e., theHPC eventsmore affected by the SATHVexecution. Though, this could
make them vulnerable to new attack vectors that do not affect the proposed HPCs.

Since using a local-remote allows the local monitor to be less accurate, while the re-
motemonitor helps to increase the detection rate, we investigate twoways to select HPC
events that can better scale our detection solution. First, we could also use HPC events
that can give us a global view of the system i.e., usingHPCs fromdifferent components.
Second, we can use for scalability HPC events implemented in different architectures,
though the detection mechanism could be in some sense independent of the underly-
ing CPU architecture. This has led us to create a list of HPC events implemented for
the following CPU cores: RISC-V [CVA6, Rocketchip, BOOM], ARM Cortex [A9, A53,
A57, A72, M55, M85, R4, R5, R7, R8, R52], Intel [Atom, Pentium], and the latest 12th
generation Intel cores for IoT devices. Table 5.1 lists the HPC events selected using the
feature extraction method MI Section 2.4.4, the HPC events that can provide a global
overview of Zybo, and also lists the HPC events common to all the above CPU cores.
The common HPC events we found are eight, so Table 5.1 presents eight HPCs for each

156

selection method.
Method HPC1 HPC2 HPC3 HPC4 HPC5 HPC6 HPC7 HPC8
Mutual

Information
Instruction
cache miss

L1
ITLB Miss

L1 Data
Cache miss

Last Level
Cache miss

ITLB
allocation

DTLB
allocation

Exception
taken ISB

Global view
of the system
(Zybo Z7-20)

Instruction
cache miss

L1 Data
Cache miss

or
Last Level
Cache miss

Data TLB
allocation

Exception
taken

Branch
mispredicted

Instructions
executed

L1 Data
Cache access

or
Last Level

Cache access

LS/ST
instructions

Events
implemented
in multiple
architectures

Instruction
cache miss

L1 Data
Cache miss

or
Last Level
Cache miss

Predictable
branches

Exception
taken

Branch
mispredicted

Instructions
executed

L1 Data
Cache access

or
Last Level

Cache access

Exception
return

Table 5.1: HPC event selection.

As we can see from Table 5.1, HPC events that give us a global view of the behavior of
the different hardware components of the CPU and HPC events implemented in differ-
ent CPUs share HPCs. In addition, the listed HPC events have been used in previous
SOTA work, as we presented in Table 3.1. Since a partial list of these HPC events pro-
vides a global overview of system behavior and they are implemented in several CPUs
available on the market, and has already been used to detect attacks, we selected them
for the implementation of the local mechanism. This allows us to propose a mecha-
nism adapted to more CPUs but less accurate. This is because, these HPC events are
not among the most prominent as determined by feature extraction methods, the local
MLmight be less accurate than using the best HPCs. However, the remote ML can help
detect abnormal behavior by extracting the complex features from this HPC subset as
well. Table 5.1 verifies that the HPC events selected by the feature extraction methods
focus on specific components of the CPU.

Finally, the hardware implementation could reduce the energy consumption of the local
detectionmechanism because the dedicated hardware is more efficient than the general
purpose CPU as discussed in [165]. In the following, we present the details of the hard-
ware implementation.

Hardware Implementation

To implement the Local-Remote detection mechanism based on a hardware implemen-
tation of the local detection mechanism, we use the Zybo Z7-20 evaluation board. Zybo
Z7-20 is an embedded software and digital circuit development board based on the
Xilinx Zynq-7000 family. It contains a dual-core ARM Cortex-A9 processor running
at 667MHz. The ARM Cortex-A9 processor is a 32-bit processor core that implements
the ARMv7-A architecture. Zybo Z7-20 have a Processing System (PS)-Programmable
Logic (PL) interface that allows us to implement the hardware monitor in PL and run

157

the applications in the PS. In addition, the ARM Coresight PMU component can be
accessed via an AXI bus from the PL. In Figure 5.5, we introduce the Zybo architec-
ture and the AXI bus that we can use to extract the HPC measurements. The red arrow
shows the interface we can use to access the PMU from the programmable logic. The
access can be done from the ARMDebug Access Port (DAP), and using an AXI master
port from the PL to specify the address of the HPC registers to read.

Figure 5.5: Zybo-Z7-20 architecture and the AXI bus allowing us to extract HPC values to the PL.

Monitoring Interval and Noise Reduction

As we explained earlier, monitor and applications share resources. The monitor runs
with higher privileges than the other applications, which means that after the idle pe-
riod (Algorithm 1 in Section 3.5.1) finishes (sleep(monitoring interval)), an interrupt is
triggered and the OS schedules the monitor to run. Since this depends on the interrupt
service, the OS saves the execution state of the previous application, etc, the time we let
an application execute to collect HPC events varies. For example, if we use a monitor-
ing interval of 2 ms, we get the following distribution, shown in red in Figure 5.6. As
we can see from the figure, the monitoring interval is not exactly 2 ms, but has a mean
value of 2.1 ms. The mean value of the monitoring interval is larger than 2 ms. This is
because CPU needs some time to properly set up the execution of the monitor after the
specified monitoring interval has passed. This extra time introduces additional noise
in our measurements due to context switching. On the other hand, we see in the blue
distribution that the hardware implementation extracts measurements without the un-

158

certainty shown in the software version. Nevertheless, we observe a small increase over
the specified monitoring interval (5-10 clock cycles), but this is due to the AXI bus re-
quests. The improvement achieved by the hardware implementation results from the
fact that the hardware version waits from the specified clock periods of the FPGA and
then immediately extracts the HPC measurements. This reduction in the noise of the
HPC measurements can further improve the extracted data and help us better distin-
guish between attacks and normal operation.

Figure 5.6: Monitor interval distribution of the SW and HW implementation of the detection module.

With the hardware implementation described above, we can minimize the shared re-
sources between the applications and the monitor. We must mention that in this exper-
imentation we use a 2ms monitoring interval instead of the 1ms used in Chapter 3, as
this is a limitation of the current evaluation platform. Since this is a limitation of the
current test platform, we do not consider the vulnerabilities we tried to reduce due to
evasive malware by using a monitoring interval of 1ms. As explained in Section 3.4, re-
ducing the monitoring interval to 1ms allowed us to decrease the time attackers have to
add obfuscation techniques, and consequently their ability to bypass our monitoring.
We make the hypothesis that in the final implementation, this design limitation should
be considered.

HW implementation of the local detection mechanism

In the next paragraphswewill explain the basic blocks of the hardware implementation
i.e., the ML algorithm, false positive filtering, and the FIFO, to store the necessary past
samples in case we need them to further evaluate a suspicious sample remotely.

Machine Learningmodel TheML is implemented using a fixed-point representation
of the model parameters. The HPC values are extracted as 32-bit registers from the

159

PMU of the ARM core, scaled, and also converted to a fixed-point representation. The
implementation of ML was designed to maximize resource reuse and reduce energy
consumption. The ML model is implemented with a pipeline that uses an adder and a
multiplier. From Figure 5.7 we can see the block diagram of the ML model.

Figure 5.7: Block diagram of the HW implementation of the ML algorithm.

The ML is waiting for the HPC extraction module to signal that the measurements are
valid i.e., HPC_VALID. The next step is to configure the ML with the neuron weights
and bias. Asmentioned in Section 2.4.1, the logistic regressionmodel can be viewed as a
single-layer neural network with one neuron. Since the neuron is the basic module for
implementing more complex deep neural networks, instead of instantiating multiple
neurons, we reuse the same neuron, which effectively reduces resources but increases
the latency. The outputs of the neurons are stored in a buffer until they are needed as
inputs for the next layer. Since each neuron has different parameters, the model pa-
rameter matrix stores the individual parameters and configures the neuron with the
appropriate parameters as needed.

The activation functions are the nonlinear part of the model. For the ML model, the
sigmoid is the function that converts the output of the neuron into a probability. The
sigmoid is indeed one of the most important functions in our design. But due to the
complexity of the sigmoid representation, special attention should be paid when im-
plementing it in hardware. For example, the sigmoid function as represented in Equa-
tion (5.1) requires the computation of an exponent and a division. These functions re-
quire many resources to be implemented in hardware, and therefore many researchers
propose a hardware implementation to approximate it. For our implementation, we
reused the proposed sigmoids from [166], [167]. We denote the Equation (5.2) as sig-
moid1, Equation (5.3) as sigmoid2, and Equation (5.4) as sigmoid3.

160

ŷ = 1
1 + e−(wT ∗x+b) (5.1) f(x) =



1, 5 ≤ x

0.03125x + 0.84375, 2.375 ≤ x < 5

0.125x + 0.625, 1 ≤ x < 2.375

0.25x + 0.5, 0 ≤ x < 1

1 − f(−x), x <0
(5.2)

f(x) =


1, 4 ≤ x

−0.03577x2 + 0.25908x + 0.5038, 0 < x < 4

1 − f(−x), x <0
(5.3)

f(x) =



0, x ≤ 1

0.00247x + 0.01843, -8 ≤ x < -4.5

0.02415x + 0.1159, -4.5 ≤ x < -3

0.0639x + 0.23525, -3 ≤ x < -2.5

0.0831x + 0.28325, -2.5 ≤ x < -2

0.12891x + 0.37487, -2 ≤ x < -1.5

0.16351x + 0.42677, -1.5 ≤ x < -1

0.23674x + 0.5, -1 ≤ x < 1

0.16351x + 0.57323, 1 ≤ x < 1.5

0.12891x + 0.62513, 1.5 ≤ x < 2

0.0831x + 0.71675, 2 ≤ x < 2.5

0.0639x + 0.76475, 2.5 ≤ x < 3

0.02415x + 0.88401, 3 ≤ x < 4.5

0.00247x + 0.98157, 4.5 ≤ x < 8

1, 8 ≤ x
(5.4)

All of the above sigmoid functions attempt to approximate the sigmoid by segmen-
tation. As the sigmoid is approximated, there is an error between the hardware and
software versions, which is added to the loss of precision due to the fixed-point rep-
resentation. Figure 5.8 shows the errors of the three selected sigmoid functions. As we
can see from the figure, the error of sigmoid3 is less than 0.006 (0.6%), while sigmoid1
and sigmoid2 have an error of 0.018 (1.8%). As we can see from the figure, the errors
have some peaks whose positionwill affect the final implementation, as wewill present
in Section 5.4.

Decision making and FP filtering The next step is decision making and FP filtering,
as you can see in Figure 5.9. After we get the probability from the ML model (final
proba), we compare the probability with the two thresholds, i.e., suspicious and alert,
andwe output two decisions. Since wemight have some FPs, as explained in Chapter 3,
the FP filtering is applied. The FP filtering algorithm (EWMA) is applied to both the

161

Figure 5.8: Errors introduced due to the implementation of the sigmoid function in hardware.

Figure 5.9: Decision making and FP filtering block diagram.

162

alert and the suspicious decisions. If an alert sample is detected, an Interrupt Request
(IRQ) is sent to the secure processor for appropriate action (ALERT IRQ). Otherwise,
if the sample is classified as normal, the sample is pushed in the FIFO. In Figure 5.9 we
can see that before pushing the sample to the FIFO,we compact the sampleswith the ID
of the core we extracted the sample and the label. The core ID and the label are added
at the highest bits of the HPC_0 register. This is because we push the original 32 bit
extracted values, and since at 1ms none of the HPCs reach a close to maximum values,
the higher bits are always zero so we could use them to reduce the require space.

If the sample is classified as suspicious, a request to empty the FIFO is sent. The output
from FIFO is sent to local storage where the samples are stored until the secure core
sends them to the remote. When the FIFO is empty, the current suspicious sample is
also pushed to the local storage.

When the local storage reaches its maximum capacity, a MEM_FULL IRQ is sent to the
secure core to immediately read the stored samples and send them to the remote. Recall
that the size of the local storage is fixed at the maximum number of samples we need
to store during a ∆s period in normal operation. This means that during normal oper-
ation we store less data in local storage than the maximum capacity. The local storage
will only emit a MEM_FULL signal when malware is executed, because as we show in
Section 4.2.2, the malware overflow the local storage before the expected ∆s.

Figure 5.10: Data transmission and/or action by the secure core

163

Data transmission and/or action Then a secure core reads the data stored in local
storage and sends it to the remote system for further analysis. This happens either ev-
ery ∆s, or when an interrupt is received due to the MEM_FULL IRQ. In the event of
an ALERT IRQ, appropriate action may be taken, such as rolling back to a safe state,
restricting the execution of sensitive information, or resetting the system. This can be
viewed in Figure 5.10. The severity of the action can be determined, for example, by
the frequency of alert interruptions. The protocol to be used for data transmission is
MQTT. MQTT is an OASIS standard messaging protocol for the IoT, and is designed as
a lightweight publish/subscribemessaging transport that is ideal for connecting remote
devices with a small code footprint and minimal network bandwidth [168]. The secure
core can be either an isolated physical CPU core, or a secure element as proposed in the
iMRC project [131].

Figure 5.11 shows the whole block diagram of the local-remote in hardware. From the
figure we can see how all of the components are connected with each other.

5.4 Hardware Local ML Evaluation

In this section, we evaluate the hardware implementation of the ML model. As men-
tioned earlier, the switch to hardware is accompanied by errors due to the lower preci-
sion of the number representation and the approximation of various functions. These
errors can affect the accuracy of our model and its expected behavior. Furthermore,
since the sigmoid functions convert the final output of the neurons into probabilities,
we investigate how their errors affect the decision making for suspicious and alert sam-
ples.

5.4.1 Hardware and Software Logistic Regression Metrics

The first step is to see how each of the software and hardware versions of logistic regres-
sion performs on this classification problem. We trained the model ML offline, which
gives us the model parameters and the thresholds for configuring the implementation
of HW. The suspicious thresholdwas set to 0.4 (40%) and the alert threshold to 0.9 (90%).
We must mention here that we try to train the model using quantized parameters i.e.,
representing the parameters during trainingwith the fixed-point representation instead
of floating-point. The training was done using QKeras [169]. QKeras is a library to
train ML models using quantized representation of the model parameters, in contrast
to Keras which only allows the training using floating-point numbers. During our ex-
perimentation for the current problemwe observed that using the model trained using

164

Figure 5.11: Block diagramof theHW implementation of a Logistic Regression in a local-remote design.

165

floating points and after converting the parameters as fixed-points gave us better re-
sults than directly using the quantized model. In this test we use a logistic regression
with limited parameters, but for models with more parameters the quantized model
using the fixed-point representation might provide better results that converting the
floating-point parameters to fixed-point.

Also, due to the time complexity of evaluating the model directly in hardware, we sim-
ulate its behavior in software using Python and the same fixed-point number represen-
tation and model implementation i.e., the neuron pipeline and the hardware approxi-
mation of the sigmoids. Each step of the software simulation follows the design guide-
lines of the hardware. To verify the correctness of the software simulation, we verify the
Python results and the results obtained by the Vivado simulator are the same. For the
fixed-point representation of the inputs and model parameters, we use the Fxpmath li-
brary [170]. With Fxpmath we can represent a real number as Fxp(number, sign=True,
total number of bits, fraction number of bits).

(a) Confusion Matrix for suspicious data (SW
LR). (b) Confusion Matrix for alert data (SW LR).

(c) ConfusionMatrix for suspicious data (HW
LR). (d) Confusion Matrix for alert data (HW LR).

Figure 5.12: Confusion Matrices for the alert and suspicious data of the SW and HW
version of the Logistic Regression model implemented locally.

In Figure 5.12 we see the confusion matrices for the suspicious and alert data of the
HW and SW implementation. Out of the total 889251 samples, we can see that the HW
implementation differs from the SW version in 2000 samples i.e., 57 suspicious labelled

166

samples and 1943 alert samples. Of greatest importance is any discrepancy in the alert
data, as these are the samples for which the local ML takes direct action and which
can lead to potential false alarms. Using the confusion matrices of Figure 5.12b and
Figure 5.12d, it can be seen that the local system does not produce false positives in
either case. This means that the 1943 samples that differ are samples that have a high
probability in the SW version, but the HW local ML stores them for further evaluation
instead of flagging them as alert samples. Since this classification does not result in FPs
and we can still evaluate them remotely, we only lose in detection time.

On the other hand, we can see in Figure 5.12a and Figure 5.12c that the 57 samples that
differ in the SW and HW implementation lead to better results for the HW implemen-
tation. This is because the HW implementation correctly flags 48more positive samples
as suspicious and 9 more normal samples as negative. This means that the HW imple-
mentation allows us to evaluate correctlymore samples to the remotewhile successfully
filtering more normal samples.

5.4.2 Hardware and Software Sigmoid Evaluation

After the previous example, it is of utmost interest to further investigate how the errors
of HWmay affect the behavior of local MLs. Using the equations Equation (5.2), Equa-
tion (5.3), andEquation (5.4),we can see that researchers are trying to split the software
function into several linear parts or a second order equation. In selecting the sigmoids,
we considered the area overhead in addition to the sw-hw error. Sigmoid1 and sigmoid3
have the same built-in feature of approximating the software sigmoid with multiple
linear segments. Sigmoid3 splits the function into more segments, reducing the error
as we saw in Figure 5.8 to less than 0.005 (0.5%) compared to sigmoid1, which has an
error of less than 0.018 (1.8%). This is accompanied by an increased resource overhead.
Using our Vivado implementation, we can see that sigmoid3 consumes 24% more re-
sources than sigmoid1. Since area overhead is an important factor when implementing
a hardware mechanism, both area and error are considered.

The local-remote proposal is sensitive around the chosen thresholds i.e., suspicious and
alert. Using Figure 5.8, we can see that each sigmoid has higher errors in different seg-
ments of its input. For example, sigmoid1 has peaks around [-4.5, -2.7], [-1.5, -0.5], [2.7,
4.5], and [0.5, 1.5], while it has low error in the other input segments. Sigmoid2 has a
small error between [-3.8, 3.8], but exceeds 0.01(1%) outside this range. Therefore, we
investigate whether and how these peaks affect the classification results. For example,
if a threshold is near the high error peaks, this could lead to multiple misclassifications
compared to the software part. However, if a threshold is near a segment with low er-

167

rors, the sigmoid errors might not affect at all the hardware implementation at all.

In the next examples, we demonstrate how the sigmoid can hypothetically affect our
classification results. In Figure 5.13, we can observe the hypothetical case where our al-
gorithm returns as thresholds 0.4 for suspicious and 0.99 for alert. The red shaded area
represents the range of input values for the sigmoid that are misclassified in hardware
compared to software. This means that if our classification threshold is 0.99, for exam-
ple, and an input is assigned a probability of 0.991 in software, it could be assigned
0.989 in hardware, resulting in a FP. Though, the red shaded areas represent the sig-
moid input range that are prone to misclassification due to the hardware error. As we
can see from the figure, the susceptible area for the suspicious threshold is very small,
unlike the area around the 0.99 threshold. As we can see, the neuron outputs in the
range [3.9, 5.4] can be misclassified compared to the software. For malicious samples,
the undesirable effect is that samples with a higher probability than 0.9 in the software
but map to less than the threshold in the hardware, effectively missing the malicious
behavior. For normal samples, the undesirable effect is that samples that have a prob-
ability of less than 0.99 in software but are mapped higher due to the hardware error,
resulting in potential false alarms.

Figure 5.13: Sigmoid2 error and hypothetical area ofmisclassifications if alert thresholdwas 0.99(99%).

To test the above hypothetical reasoning in practice, we perform the classification for
the software and hardware models using the alert threshold of 0.99(99%). Figure 5.14
shows the software and hardware version confusion matrices for the alert data. In this
case, we have 129426 samples out of a total of 889251 samples that differ between the
software ML and the hardware ML. But as we can see from the confusion matrix in
Figure 5.14b, these misclassifications resulted in 129426 TPs, i.e., samples that were not
correctly identified by the software version. In addition, we do not observe FP. The

168

above example shows that when the error of the hardware is high compared to the
software version, differences in the decisions of the MLmodel in SW and HW apply. In
the present case, the hardware performs better, but in other cases we might risk mul-
tiple false alarms. Special care should be taken when considering both the alert and
suspicious thresholds, as our model may not behave as expected.

(a) Confusion Matrix for alert data (SW LR). (b) Confusion Matrix for alert data (HW LR).

Figure 5.14: Confusion Matrices for the alert data of the SW and HW version of the
Logistic Regression model implemented locally when the alert threshold is 0.99(99%).

Which activation function is most proper for the local-remote Since, as we find in
our experiments, the errors of the neurons are minimal, the major source of error is
in the sigmoid activation functions. For the local-remote, we should generally use the
sigmoid that has the lowest errors around the two thresholds suspicious and alert. This
will allow us to be more certain that the expected software and the implemented hard-
waremechanism are close.We also need to consider the distribution of the training data
as inputs to the sigmoid. That is, when more data are mapped around the high error
points of the sigmoid, the probability of misclassification is the highest.

Figure 5.15 represents the errors distribution of sigmoid3 and the distribution of normal
and malware training data as inputs to the sigmoid. In an earlier example presented in
Figure 5.12, we show that for the alert threshold of 0.9, we have 1943 differences between
the hardware and software implementations, with most of the differences resulting in
the alert data being classified as suspicious in hardware. Although sigmoid3 has a min-
imum error of less than 0.001(0.1%) around the 0.9 threshold, from Figure 5.15, we can
see from the distribution of samples (red shaded area) that many samples are assigned
around the threshold. This increases the probability that the samples are misclassified.
On the other hand, in the figure we see the red bullet point at input 3.7, which corre-
sponds to a probability of 0.9761. At this point, the error of the sigmoid is higher than
at 0.9, but there are fewer samples around this point, resulting in only 1383 differences
between software and hardware. The above it shows that despite the high errors of the

169

Figure 5.15: Sigmoid3 error and distribution of normal and malware data inputs to the sigmoid.

sigmoids, it is important to consider the errors only in the areas that interest us i.e.,
around the alert and suspicious thresholds. Further, we also need to verify that our al-
gorithm does not map the input samples to probabilities around high peak errors us
this might increase the misclassified samples.

Considering the area overhead, the errors caused by the hardware, and the current
thresholds,we chose sigmoid2 for our implementation.Using sigmoid2,we observe 1119
differences compared to the software version ML, while 1075 alert decisions are clas-
sified as suspicious data by the hardware ML and 44 normal samples are classified as
suspicious by the software versions, while they are marked as normal by the hardware.

Classification metrics for the local-remote We implement the ML model using sig-
moid2 and evaluated the performance of the overall design. As mentioned earlier, due
to the sigmoid implementation in hardware, some alert samples were not detected lo-
cally but were classified as suspicious to be further evaluated in the remote ML. The
remote ML in this case is a LSTM, which was trained with normal data only. The re-
mote ML uses the seven past samples to predict the current sample, as explained in
Chapter 4. The classification metrics for this implementation are as follows in Table 5.2:

In the Table 5.2 we can see the classification metrics for using only the local ML and
for the local-remote implementation. In this case, when only the local ML is used, we
chose a classification threshold of 0.5 (50%), and for the local-remote implementation,
the suspicious and alert thresholds were 0.4 (40%) and 0.9 (90%). The most important

170

Local + Remote F-score Sensitivity Precision FPR Accuracy

% of
Positives
detected
locally

% of
Positives
detected
remotely

Logistic
Regression

((only local))
[threshold 50%]

96.22% 92.76%
(16/16) 99.95% 0.98%

(15/20) 93.04% 92.80% N/A

Logistic
Regression

[thresholds 40%, 90%]
+ LSTM

98.96% 97.94%
(16/16) 99.99% 0.13%

(1/20) 98.02% 59.45%
(12/16)

38.49%
(4/16)

Table 5.2: Classification metrics for the only Local (HW) and Local (HW) + Remote
ML when local detection is activated and when not.

metrics to observe is the sensitivity and FPR. Both columns, except for the score, indicate
how many attacks were correctly detected and how many normal applications were
classified as false alarms. Using only the local ML we see that we can detect 16 out of
16 attack vectors, but on the other hand, we trigger false alarms in 15 out of 20 normal
applications. This again demonstrates our argument that simple ML might be able to
effectively identify malicious behavior, but at the cost of multiple FPs. On the other
hand, using a local-remote implementation, we can see that we detect all 16 attacks,
while raising a false alarm on only one application. The table also shows that the local-
remote system triggered a quick alarm for 12 attacks, while it required the verdict of
the remote system for the remaining 4 attacks. These results show that the proposed
idea can help to effectively detect attack vectors while minimizing FPR.

Hardware Overhead We have implemented the above local-remote design in Vivado
and give the estimated resources used by the implementation as well as the energy
consumption.

IP BRAM_18K DSP48E FF LUT Energy overhead
Custom
Logistic

Regression
+ FP filtering

+ Local Storage

20 (14.28%) 10 (4.54%) 1381 (1.3%) 1140 (2.14%) 5%

Table 5.3: Resources used by the custom Logistic Regression IP, FP filtering and local
storage.

We consider only the local ML model, FP filtering and the local storage, since these
are the components we added. The AXI bus is a component that must be instantiated
by other solutions to connect the PS and the PL. Table 5.3 presents the hardware re-

171

sources used by the design. The design consumes 2.14% of the available LUTs, 1.3%
of the available Flip-Flops (FF), 14.28% of the available block RAM, and 4.54% of the
available DSPs. While most resources remain below 5%, which we consider acceptable
for this platform, the memory overhead of the block RAM is 14.28%. This is due to the
local-storage that has a size of 59kb. Nevertheless, we consider this a significant im-
provement considering that in other cases we need to store 1406kb of data since we
monitor two cores and extract measurements every 2ms. This is the case when we need
to send all the extracted data in a period of ∆s to the remote system for making a deci-
sion as in [88], [97]. This means that with the proposed solutionwe only need to store a
maximum of 4.2% of the extracted data. Further, a software implementation of the local
ML also requires the samememory to store the samples before transmitting them to the
remote. Last, we observed that the estimated energy consumed by the whole board is
1.836W, while the FPGA consumes 11% of this amount. From this 11%, 6% is the clock
generator, which means the the estimated energy overhead of the AXI interface and the
hardware ML is 5% of the estimated consumed energy. We must note that the energy
comparison between software and hardware was not evaluated.

More information about the resources used and the design can be found in Section A.2.

5.5 Conclusion

In this section, we presented how the local-remote implementation could be imple-
mented in hardware. This section also analyzed the reasons that led us to consider such
an implementation. Apart from the reasons for the performance overhead on the local
CPU due to the shared resources between the local ML mechanism and the rest of the
applications, we presented how the noise in the measurements can be improved if the
HPCs are extracted from the hardware. Due to the OS interrupt service routine, the ex-
traction does not occur exactly in the specified time interval, but exhibits noise. On the
other hand, the hardware directly accesses the PMU to extract the HPCs, resulting in
an almost precise monitoring interval.

The main reason that made us do this is that a software implementation is also vulner-
able to software attacks. Apart from OS and its numerous discovered bugs, we have
shown how Rowhammer can corrupt some model parameters to make our classifier
ineffective. We also developed a simple malware that can disrupt HPCs and presented
four attack scenarios. Since these reasons could allow attackers to bypass our mecha-
nism, we proposed an implementation in hardware. Accessing the hardware is more
difficult for an attacker, which increases the level of security.

172

Lastly, we presented the implementation and the errors due to the migration to hard-
ware. We analyzed and evaluated how they can affect the local-remote implementation
and its classification metrics. In the end, we find that the hardware overhead for most
resources remains below 5%, but our design has a 14% overhead in block RAMs due to
local storage of samples for further evaluation.We argue that thememory overhead also
exist in the software version of the localML, and this overhead is one of themain limita-
tions of the proposed solution. Nevertheless, the proposed idea manages at least 95.2%
data filtering in normal operation, which significantly reduces the data to be stored and
eventually transferred.

173

6
Conclusion and Perspectives

In this chapter, we conclude this manuscript, the purpose of which was to describe our research
on securing IoT devices frommicroarchitectural using low-level information. We provide a sum-
mary of our work and contributions. Below, we outline some limitations of the current work and
some perspectives that can improve the presented work by the research community.

6.1 Summary of the contributions . 176

6.2 Limitations and tracks for improvements 178

6.3 Long term perspectives . 180

6.4 Final words . 185

175

6.1 Summary of the contributions

The research contributions presented in this manuscript are the result of the growing
interest in the security of systems. One of themost interesting research areas is the secu-
rity of resource-constraineddevices such as IoT and IIoT.Apart from the limited security
measures implemented in these devices, their increasing complexity to meet the need
formore resources has increased the attack surface. Attackers can now leverage another
group of attacks in addition to traditional malware, which we refer to in this work as
Software Attacks Targeting Hardware Vulnerabilities (SATHV). This group of attacks
is particularly interesting because they can use side channels to extract system informa-
tion and/or damage the system by inducing errors. In the State of the Art (SOTA), we
find many solutions to protect against SATHV using information from Hardware Per-
formance Counters (HPCs), but they consider server and desktop systems.While these
solutions show promising results, they cannot be directly applied to systems with lim-
ited resources. These systems have many constraints that include computational and
memory resources, communication bandwidth, and energy consumption. This drove
our research on how the proposed solution can be applied in the context of IoT and IIoT.

Implementing efficient security solutions that have a high detection rate and a mini-
mal False Positive Rate (FPR) while keeping implementation costs low is a challenge.
Machine learning tools can be used to learn how to distinguish between malicious and
normal operations, but their ability to efficiently learn how to distinguish depends di-
rectly on the input information. In this work, the input data is the extracted HPCs, and
the number of inputs is limited due to the system specifications. Though, it is necessary
to select themost relevant information sources to be used as inputs from a large number
of available HPCs. Since the available HPCs are numerous, selecting the best one can
be time consuming or require some expertise. In Chapter 3, we showed that theoreti-
cal information alone is not sufficient and an evaluation should be performed for each
attack vector. The theoretical information is composed of HPCs already used in SOTA,
but as we saw in Chapter 3, it depends on the targeted class of attacks. If the attack
vectors considered are limited, the HPCs used are restricted to some hardware compo-
nents, which can be an outfall if other attacks do not stress the monitored components.
We have also shown that eviction-based attack vectors exhibit different behavior than
flush-based vectors. Since SATHV can be performed using either technique, consider-
ing only flush-based vectors could allow attackers to bypass the system with eviction.
This was demonstrated in Section 3.3 and a work published in NEWCAS 2021 [27].

We also discussed how attackers can circumvent the system using evasion techniques
and how monitoring frequency can allow us to reduce the attacker’s ability to success-

176

fully bypass our protections and still succeed. In addition, many works do not take into
account execution environments where multiple processes are running in parallel. This
could allow attackers to hide malicious activity among legitimate executions, poten-
tially avoiding detection due to FP filtering. In addition, context switching introduces
noise to traditional HPCs selected for SATHV detection, such as the cache miss ratio,
since during context switching this side-effect increases due to the need to load the new
application. This could lead to many FPs. Considering the possibility that attackers can
bypass detection using evasive techniques, hide between legitimate applications, or use
eviction techniques instead of flush-based vectors, and considering a noisy environ-
ment where multiple applications share resources, we propose a security mechanism
for SATHVdetection inARMv7 systems in Section 3.5. Thisworkwas published inDSD
2021 [28].

Given this, and the fact that eviction and flush based SATHV attack vectors may have
different behaviors, aswell as the different behaviors and increasing complexity ofmod-
ern applications, we propose a detection mechanism in Chapter 4 that takes into ac-
count the limitations of the IoT. As mentioned earlier, the computational and memory
resources of the IoT are limited, as is the communication bandwidth. We observed, that
our simple linear ML classifier proposed in Chapter 3 and SOTA is unable to effectively
detect all attacks while minimizing the FPR. FPR is as important as detection rate in IoT
devices. This is because actions taken due to false alarms can lead to increased overhead
costs or, in the worst case, render the device unusable. Though simple ML systems can-
not efficiently secure the system. SOTA works [76], [92] recognize this limitation of
simpler ML systems and propose more complex ML models that increase their detec-
tion rate while keeping FPR low. But these solutions come at the price of adding system
overheads. Though, the SOTA works [88], [98] propose detection in a remote system
where the resources are "unlimited", so that the devices only need to transmit the ex-
tracted data. We also chose to monitor the system at a high frequency (1ms monitoring
interval), which increases the data extracted from the system. Considering the amount
of extracted data and the hundreds of IoT devices connected to the Internet, this so-
lution may pose a problem for the networks’ ability to handle all the traffic. For this
reason, we have proposed a solution that uses many edge computing techniques in the
context of security. Our main idea is to filter the extracted data and transmit only the
malicious patterns. Also, by setting two confidence levels (alert and suspicious), we
can detect malicious operations locally when we are confident that an attack is being
carried out. When the mechanism is less confident, the extracted samples are stored for
later transmission to a remote complex mechanism for further evaluation. In this way,
wewere able to reduce the communication overhead by filtering 99.32% of the extracted

177

data in normal operation, successfully detecting the attacks, and minimizing the FPR
to near zero percent.

Finally, we argue in Chapter 5 that the software implementation of Chapter 4 is not se-
cure against software attacks. We demonstrated four test case scenarios that an attacker
could use to disrupt the extractedmeasurements, effectively bypassing themechanism.
We also simulated a Rowhammer error on a parameter of the last neuron of a neural
network, rendering our mechanism inefficient. These test cases, as well as the numer-
ous software bugs in the code of OS, can compromise a software-implemented mecha-
nism. This led us to implement our local-remote idea in hardware, where access rights
are limited and we can also reduce system overhead since applications and monitor
do not share resources. We also evaluated the hardware implementation and outlined
howmigrating from software to hardware can affect our work due to errors in number
representation and function approximations.

6.2 Limitations and tracks for improvements

In this section, we discuss the limitations we found in our work and we give some per-
spectives for improvement.

Evasive strategies In Chapter 3 we presented some methods on how to implement
evasive malware. The techniques used were originally proposed in [138] for Spectre
attacks, which we use to implement evasive SATHV for each class such as CacheCSA,
Meltdown, and Spectre. These techniques include inserting NOP instructions, sleep(),
or normal operations at specific times within the malware’s execution, with the goal of
modifying each behavior closer to normal. We have found that monitoring the system
with high frequency decreases the success rate of developing successful and evasive
SATHV. This is because the inserted code introduces noise into the malware. When
these techniques are used more frequently, the malware fails to extract the secret or
cause an error. For example, a potential cause for this in CacheCSA is that when putting
the attack for sleep(), the OSwill most probably schedule another application to execute
which can affect the cache state.

In this work, we chose a monitoring interval of 1 ms. The monitoring interval of 1 ms
was chosen because it allows us to monitor the system quickly, reducing the time an at-
tacker has to create evasive malware and limiting the overhead caused by monitoring.
However, as more systems are equipped with higher-frequency CPU cores, the more
time the attackers have to create evasive malware because the faster CPU cores can

178

perform the sensitive tasks faster, giving them more time to create evasive malware.
This could be avoided by monitoring the system at a higher granularity (i.e., 500us).
However, this impacts performance overhead due to more frequent context switches
between the monitor-ML and applications, and further the extracted data increases lin-
early. Though attackers could exploit this limitation to successfully bypass the security
solution in systems with higher operating frequency.

Another evasion technique that could be used by the attackers is the use of a compiler.
Modern compilers are very complex and can produce code with many specifications.
Moreover, our model is based on machine learning techniques that take input and out-
put their decisions. If attackers have knowledge about the system, it is possible that
they can be bypassed by specially crafted inputs [171], [172]. Moreover, in this work
we have only considered simple ML models that have a limited number of parame-
ters. While more complex MLmodels can learn more information, the simplicity of the
models used in this work allows only limited learning capacity. This means that attack-
ers need to expend less effort to specify a set of inputs that they can use to bypass the
protection mechanisms. It is then possible for a compiler to be developed that takes
these specifications into account to produce code that successfully evades the detection
while successfully performing its malicious activities. SATHV-sensitive tasks rely on
assembler code defined by the attacker, which complicates the above hypothesis, but
the capabilities of modern compilers can still enable success of this strategy.

Data transmission In thisworkwe consider the localmechanism responsible for send-
ing the data to the remote system using a secure element, such the one proposed in
[131]. This secure element reads the locally stored data and transmits it to the remote
while receiving the alert interrupt to perform appropriate actions. This establishes a
kind of secure connection between the edge device and the server, However, if attackers
successfully perform aDDoS attack and the network becomes unavailable, it is solely in
the ability of the local ML, to detect possible threats. In our experiments, we observed
that as the number of normal andmalware applications used increases, it becomesmore
challenging to find an alert threshold that does not trigger false alarms. This applies that
the device only filters normal data while storing suspicious data for further analysis.
In the case of a DDoS attack, a missing alert threshold could compromise the device.
However, in real-world scenarios, a certain number of FPs is allowed depending on the
criticality of the application. In such a case, we could use a threshold that allows some
FPs.

179

Threat model In chapter 5, we also identify a number of software attacks that can
compromise the system, while we do not consider hardware attacks that require phys-
ical access. For this reason, we propose the use of a hardware implementation in an
FPGA. FPGAs are increasingly used to implement ML because of the hardware accel-
eration they provide [173]. They can be easily reprogrammed so that we can update
our local ML to keep up with new attack vectors. But an FPGA is less energy efficient
than an Application-Specific Integrated Circuit (ASIC) [174]. Energy is an important
factor when proposing an implementation for IoT devices since most of them are bat-
tery powered, but energy consumption has not been evaluated in this work. On the
other hand, an ASIC is application specific, so it is more difficult to upgrade it’s local
ML configuration. Considering this, we proposed the implementation in an FPGA.

However, to program the FPGA, a bitstream file must be transferred to the target de-
vice. This can be a vulnerability, however, as the bitstream could be tampered with and
hardware rootkits could be implemented in the FPGA. In [175], the authors outlined a
number of scenarios to tamper with the AXI bus in a SoC FPGA implementation. Such
a rootkit could also be used to corrupt the extracted HPC data since we also use the
AXI. Though, to avoid this vulnerability, a secure connection and verification should
be used.

These are some limitations of the hardware implementations known to the research and
industrial community. Further, IoT are known to not receive the appropriate updates.
Though, how to configure the hardware implementation securely was not researched
in this work.

Summary In the previous paragraphs we listed some of the limitations we identified
during our work and could potentially allow attackers to compromise the security of
the device. Improving or considering them could allow the implementation of a more
robust mechanism.

6.3 Long term perspectives

In this section we list some intuitions that can lead the research community to improve
this work.

Transmission frequency, ∆s A first intuition is the ∆s, which was used to define the
time interval in which the local system sends data to the remote system. In this workwe
have set it to oneminute, but further evaluation needs to be done that takes into account

180

communication overhead, detection latency, memory overhead, and energy consump-
tion. As we saw in Chapter 5, the IP that consumes the most resources in the FPGA is
local storage. Faster transmission of data can reduce the overhead of local memory, but
could also increase energy consumption due to frequent transmission. Less frequent
transfer of data can increase both the local memory overhead as more data is stored
and the decision latency that could allow the attackers to successfully perform their
malicious activities in time. A balance between all factors should be explored to choose
the best parameter.

Actions on a received alert A second intuition is the actions to take when an alert in-
terruption is signaled. In thiswork,we havemainly considered a system reset. However,
we have identified a number of actions that may be of greatest interest. The basic pa-
rameter to be studied is the frequency of alarms. If the frequency of alarms is very low,
the system could avoid running sensitive content or move the suspicious application to
an isolated environment. If an alarm occurs with a medium frequency, a rollback to a
safe state could be performed. In addition, we could verify the integrity of the firmware
to identify if new applications, services, kernel-modules have been installed. Finally, if
the system receives alarms with a high frequency, only then a system reset might be re-
quired. The set of actions and how to apply them depending on the frequency of alerts
and/or suspicious data being stored for further evaluation is of the most interest.

From SATHV to Malware Detection Until now, we have assumed that our attack li-
brary includes only SATHV. But IoT devices, as mentioned in Section 2.1, are vulnerable
to other malware families. This poses a limitation of our current threat model.

Further increasing the threat model to include generic malware poses a great challenge
for the current implementation. Since our current solution, which uses simpleML algo-
rithms locally, may not be sufficient to detect attacks locally without raising many false
alarms but may only be used for filtering, more complex ML solutions could be used
that can recognizemore behaviors. These complexML solutions used locally can still be
considered less complex and resource demanding than the more complex remote ML
solution. Considering that hardware parallelization can help us efficiently implement
these solutions in hardware, and the performance overhead on CPU is significantly re-
duced while resources are reduced through pipelining and reuse of resources.

In addition, since there are many malware families that all have different behaviors, we
propose to use a local anomaly detection algorithm. The local ML algorithm is trained
using only normal training data. This allows it to detect most normal behaviors as nor-
mal and classify deviations as suspicious. The local ML in this case is a CNN trained to

181

use seven past samples to predict the current sample. If the prediction (reconstruction)
error is below an initial threshold (suspicious), the sample is classified as trustworthy.
If the prediction error is higher than a second threshold (alert), an alarm is triggered.
If the prediction error of the sample is between the threshold for suspicious and the
threshold for alert, further analysis should be performed remotely.

To evaluate the proposed idea, we use MiBench benchmark as our normal applications
and also an application that regularly communicates with a server. This combination
could emulate better the real-world IoT behavior were a limited number of applications
are executed and a Internet connection is established to exchange data. For our attack
libraries, we use SATHV and a set of malware developed as part of the iMRC [131]
project. The set of malware developed for iMRC includes DoS attacks, modification
of application responses, data-logger using memory dump, data-logger to send data
to a malicious website, Man-in-the-Middle injection, reverse shell, and Cryptolocker.
The total number of malware applications is 37, out of which 25 are SATHV and 12
belong to generic malware families, while the total number of normal applications is
29. The platform used in this experimentation is a Raspberry Pi3. To train and test our
implementationwe use a 70-30% split of the normal applications, while all malware are
used for testing.

The classification metrics can be viewed in Table 6.1.

Local + Remote F-score Sensitivity Precision FPR Accuracy

% of
Positives
detected
locally

% of
Positives
detected
remotely

CNN
[thresholds 75%, 99.85%]

+ LSTM20
22.07%

12.40%
(22/25 SATHV)

&
(11/12 generic malware)

∼100% ∼0.0%
(1/9) 30.13% 1.76%

(11/37)
10.64%
(22/37)

Table 6.1: Classification metrics for the Local CNN (HW) + Remote ML when consid-
ering generic malware.

As we can see from Table 6.1 we are able to detect 22 out of 25 SATHV and 11 out of 12
genericmalware. Although the table shows 0%FPR, there are 2 FP samples that result in
1 normal application beingdetected asmalware. Considering the previouslymentioned
actions and since the frequency of these FPs is low, restricting the execution of sensitive
content to the target device may not result in a high overhead. The low statistics despite
the high detection rate is due to the fact that we perform anomaly detection on both the
local and remote system,which leads us to keep only samples that deviate strongly from
normal behavior. Moreover, in classification where we specify the target label, the ML
algorithm can better learn to distinguish between normal andmalicious behavior, while

182

in anomaly detection it only learns the normal behavior. In addition, anomaly detection
allows us to build a model that can detect zero-day vulnerability attacks with greater
success since the behavior of the attacks will most probably differ from the normal
execution. But all of the above intuitions depend heavily on the model’s ability to learn
normal behavior. Last, under normal operation we only send 8.82kB and under attack
871.62kB of data per minute when the total size of data extracted is 5760kB. The above
shows that the proposed idea has the potential to be used in generic malware detection
as well.

To implement the local complex ML (CNN) in hardware, we use a library developed
by the Conseil Européen pour la Recherche Nucléaire (CERN) that allows Python code
to be implemented directly in hardware via their IP. The library is called hls4ml and
is available at [176]. With this library, we can translate Python code into a Hardware
DescriptionLanguage (HDL) and also applymany optimizations depending on latency
or area requirements. This library can give us a first intuition of the implementation. In
our case, we set the maximum reuse of resources to reduce the required area, since the
ML should provide us with a decision every 1 ms, i.e., before the new sample arrives
for evaluation. The resource usage can be seen in Figure 6.1, while the comparison with
our custom IP can be seen in Table 6.2.

Figure 6.1: Vivado resource usage of the local ML (CNN) for SATHV and generic malware detection
after synthesis.

183

IP BRAM_18K DSP48E FF LUT
Custom
Logistic

Regression
0 10 (4.54%) 1316 (1.23%) 1051 (1.97%)

CNN (keras-hls4ml)
(8 Conv1d, 4 Conv1d,
20 Dense, 6 Dense)

2 (0.45%) 1 (0.35%) 9846 (9%) 13407 (25%)

Table 6.2: Resource comparison between our custom Logistic Regression IP and the
hardware model produced using a keras-hls4ml CNN.

As we can see from Table 6.2, the local ML used for anomaly detection increases the
resources used in the hardware considering the Flip-Flops (FF) and Look-Up Tables
(LUTs) while it used less Digital Signal Processing (DSPs) elements. Our custom IP
was based in logistic regression, which can be considered a one-layer NN. For this task
we used a CNN, which can be described as a DNN, which increases the hidden layers
and the resources used. Though, increasing the complexity of the detection problem,
increases the complexity of the models to be used, and consequently the overheads, in
this case the hardware resources. To decrease the resources used, there exist strategies
such as model pruning i.e., cutting off connections that do not contribute too much in
the final result, and/or quantization. Bu these come at the cost of a loss in precision. As
the local ML does not to be as precise as the remoteML, these drawbacks can be further
studied and evaluated.

CombiningHPCs andother sources of information Further,HPCshave shownpromis-
ing results in detecting SATHV and generic malware. In a number of works, they have
been used to propose detection mechanisms [59], [61], [78], [177]. However, despite
the promising results, there are a number of reasons thatmay reduce their effectiveness.
First, their counts are not deterministic, i.e., in different runs of the same application,
the extracted values are not the same. [81] showed that HPCs can provide deterministic
results in cases where the test environment is tightly controlled. But such a control en-
vironment can be difficult to set up in real case scenarios. This indeterminacy can lead
to many misclassifications in cases where malware and normal applications have very
similar behavior. Machine learning algorithms can learn to separate the two, but due
to the noise between runs, this can lead to samples incorrectly crossing the "detection
line". Other works have used API calls for malware detection [71], [72]. API calls can
provide us with higher level information about how the malware works, such as cre-
ating and opening files, listening on a port, changing permissions, etc. Combining the
two sources of information and/or other can lead to better results. The challenge is to
combine the high-frequency extracted HPC data with the less frequent API calls while

184

reducing the dimensionality, e.g., using Linear Discriminant Analysis (LDA) to create
simpler ML models. We believe this area could be interesting for malware analysis.

Past and future samples used for prediction Finally, in most of this work we have
used ML models that use the previous samples to predict the current one. We have ex-
plained how a LIFO can act as a buffer for past samples before storing them in a local
storage in case of a suspicious sample. But, it might bemore interesting to predict future
m samples instead of just the current sample. This could allow an anomaly detection
mechanism trained only on normal data to learn more information about the execution
of normal applications, thus reducing FPs. In a general case, an application performs
a series of actions to prepare execution for a future series of actions. Learning past be-
havior and trying to predict the m future patterns, rather than just the current one, can
reduce FPs because we are not just deciding the legitimacy of one step, but rather mul-
tiple future steps. However, predicting m future samples would require transferring
more samples from the local system to the remote system. In the solution proposed in
this work, we observed that the samples labeled as suspicious in the local system are
close to each other, which reduces the memory overhead since the required samples
from the past were often already stored due to a sample previously labeled as suspi-
cious. Thus, it would be interesting to test this hypothesis and implement the logic of
transferring only the necessary samples.

6.4 Final words

In this research, we have investigated and evaluated different approaches and finally
proposed a solution that can be useful for SATHV and malware detection on resource-
constrained devices.We hope that thisworkwill help the community better understand
the limitations of IoT devices in the context of malware detection.We also hope that this
work can be inspiring and that the community will continue to look for ways to better
apply detection techniques to the IoT and further improve our work.

185

Appendices

i

A
Appendix A

A.1 HPC modification by a user-space application

Case1: Read PMU registers fromuser-spacewithout using a kernel-module to enable
access As mentioned earlier, access to the PMU registers is restricted by default for
applications in user space. Access could be enabled by a kernel module. If the attacker
cannot load a malicious kernel module to enable access, this could be accomplished by
writing a user-space script that must carefully change the values of certain registers.

The first step is to find out the value of the DBGDRAR register, which defines the phys-
ical base address of a 4KB-aligned memory-mapped debug component usually a ROM
table that locates and describes the memory-mapped debug components in the system.
This tells us where the debug components are mapped in memory. Then we need to
read the DBGDSAR register that defines the offset from the base address defined by
DBGDRAR of the physical base address of the debug registers for the processor. The
physical address of the debugging logic CPU is then DBGDRAR + DBGDSAR. With
this address as the base address of the PMU registers, we can access them by writing
to the corresponding offset.

Then they must write the value "0xC5ACCE55" into the EDLAR resister, which allows
or disallows access to the external debug registers through amemorymapped interface.
As described in the documentation [157], this register sets the optional software lock
that provides a lock to prevent access to the debug registers via the memory mapped
interface. Using this lock mechanism reduces the risk of accidentally corrupting the
contents of the debug registers. However, it cannot prevent all accidental or malicious
corruption. Also, we need to write any value except "0xC5ACCE55" to the OSLAR reg-
ister, that provides a lock for the debug registers, to unlock them. In the next step, we

ii

need to write to the PMLAR register, which is the PMU Lock Access Register. This reg-
ister also provides a software lock for writes to the PMU registers through the mem-
ory mapped interface. If we write "0xC5ACCE55", we can write to the PMU registers
through thememory-mapped interface. These are the basic steps to enablemodification
of the PMU registers through the memory mapped interface.

After we have enabled access through the memory mapped interface, all we need to
do is write a "1" to PMUSERENR. PMUSERENR enables or disables user mode access
to the PMU. This now allows us to access the PMUs directly with assembly code from
user space via the registers of the system control coprocessor (CP15).

Figure A.1: PMU interference, test case 1.

Case2: Change the HPC events monitored by the detection mechanism In this test
case, in order to modify the hardware events monitored by our local detection system,
an attacker must enable memory-mapped access to the PMU, as explained previously,
and also do the following:

The attackers must modify the PMXEVTYPERi register that determines which event
increments event counter i. By writing the hexadecimal value of a different HPC event
configuration to this register, they effectively change the monitored behavior.

Case3: Reset PMU counters In this test case, after enabling memory access to the
PMUs discussed earlier, the attacker must make the following changes:

iii

Figure A.2: PMU interference, test case 2.

The attacker must modify the configuration of the PMCR register, which provides de-
tails about the PMU implementation, including the number of counters implemented,
and configures and controls the counters. To reset all counters, we need to write a "1"
in bit [1] and bit [2]. This will reset the cycle counter and any other HPC event counter
to zero.

Figure A.3: PMU interference, test case 3.

Case4: Disable HPC counters For this final test case, the attacker must make the fol-
lowing changes to disable counting of events by the HPC registers:

iv

The attacker must modify the configuration of register PMCNTENCLR, which disables
the cycle count register PMCCNTR and all implemented event countersHPCi. Reading
this register indicates which counters are enabled. To disable the HPC counters, the
attacker must write the value "0x00000000" to the 32-bit register. Bit [31] disables the
cycle counter, while bit[5:0] disables the six HPC event counters.

As a final step, to hide their manipulation, the attackers must perform the following
steps:

The attackers must write "0x00000000" in PMUSERENR to disable access to the PMU
from user space. Then, they must write "0x00" in PMLAR and also EDLAR to disable
access to the PMUs from the memory-mapped interface.

Figure A.4: PMU interference, test case 4.

A.2 Hardware Local ML implementation

We implemented the hardware version of our local-remote in Vivado. In the following
we provide more details about the implementation.

Figure A.5 presents the block diagram of the hardware design. The IP is clocked at
the 100MHzAXI clock. The ip_supervisor_0module implements the IP_HARDWARE_
IA and the local storage presented in Figure 5.7. The module processing_system7_0
is the instantiate of the ARM Cortex A9 CPU available in the Zybo Z7-20 evaluation
platform. The remaining modules implement the connection to the AXI bus and the
clock generator.

v

Figure A.5: Vivado block diagram of the proposed design.

In Figure A.6 we represent the hardware resources consumed by the design. We con-
sider only the hardware_ia_top_module and the ip_fifo_inst (highlighted in yellow and
green in the figure), since these are the components we added. In the figure we can ob-
serve the resources used by all the different components of the design.

Figure A.6: Estimated resource utilization of the hardware design.

Finally, Figure A.7 shows the results for the energy consumption as extracted by the
Vivado estimator.

vi

Figure A.7: Estimated energy consumption of the hardware design.

LIST OF FIGURES

2.1 Memory hierarchy in a modern-CPU system. 32
2.2 Visualization of the necessary operation to perform a Cache Side Chan-

nel Attack . 34
2.3 (a) Rowhammer, (b) Rowhammer pseudo-code. 36
2.4 Logistic Regression training iterations, Logistic Regression Visualization

with 6 inputs. 56
2.5 SVM classification lines and optimal line according to the support vec-

tors, SVM zoom. 57
2.6 Ensemble Learning, Adaboost training example. 58
2.7 Decision Tree, Deep Neural Network . 60
2.8 CNN for time-series classification [110]. 61
2.9 Autoencoder representation. 62
2.10 Isolation forest. 63
2.11 LSTM representation. 64
2.12 LSTM Autoencoder representation. 65

3.1 L2Miss Ratio, L2misses,DTLBmisses, andDTLBMissRatio forCacheCSA
and Rowhammer . 81

3.2 10 round Rowhammer DTLB Miss ratio. 82
3.3 CRC32 False Positive using the methodology proposed by Peng et al. . . 83
3.4 Normal, Malware, and Evasive Malware and detection line. 85
3.5 Scatter plot including Evasive SATHV. 86
3.6 Waveforms and decisions of an MLP classifier using a monitor interval

of 1ms. 87
3.7 Waveforms and decisions of an MLP classifier using a monitor interval

of 100ms. 89
3.8 Logistic Regression and Sliding Window Visualization 95
3.9 Receiver Operating Characteristic (ROC) Curve and Area Under Curve

(AUC) explained. 99

ix

3.10 MaDMAN:Percentage of TLB allocations due to aData TLB request (DTLB)
by L2 misses, percentage of TLB allocations due to an Instruction TLB
request (ITLB) by Instruction TLB misses, Instruction TLB misses, TLB
allocations due to an Instruction TLB request. 100

3.11 MaDMAN: Data TLB allocations, Instruction Cache Misses, L2 misses. . 102

3.12 Classification Metrics for different window sizes used in EWMA to re-
move False Positives in a Multiprocessing and Sequential systems. 104

3.13 MaDMAN: F-score depending on the measurement window and deci-
sionwindow, and receiver operating characteristic curve obtained for our
classifier. 105

4.1 Local-Remote Edge-Computing approaches and the different network
layers. 114

4.2 Two-level detection threshold implementation of the Local-Remote im-
plementation. 115

4.3 Distribution of the probability a sample is malware for a classifier that
Gmean returns a threshold less than 0.5 (a), the confusion matrices with
a detection threshold 0f 0.5 (b) and the modified suspicious threshold (c).117

4.4 Distribution of the probability a sample is malware for a classifier that
Gmean returns a threshold greater than 0.5 (a), the confusion matrices
with a detection threshold 0f 0.5 (b) and themodified suspicious thresh-
old (c). 118

4.5 Global view of the Local-Remote ML implementation. 120

4.6 Control-flowgraph of the steps necessary to store previous sampleswhen
the remote ML requires it. 123

4.7 FIFO and Local Memory snapshots for sample storing 125

4.8 FIFO and Local Memory snapshots for sample storing 126

4.9 Data stored to the local memory per second (red dotted line) and sent
to the remote ML for further evaluation each ∆s 1 minute (purple trian-
gles). The blue asterisk line is high when a malware executes. Local ML
→ NN_4_2, monitoring interval → 1ms 135

4.10 Zoom of the execution presented in Figure 4.9 for the minutes 10 to 11. . 135

4.11 Data stored to the local memory per second (red dotted line) and sent
to the remote ML for further evaluation each ∆s 1 minute (purple trian-
gles) when only normal applications execute on the system. Local ML →
NN_4_2, monitoring interval → 1ms. 136

x

5.1 NeuralNetworkVisualization before and after bit-flipping last layerweight
value. 152

5.2 Confusion Matrices of a Neural Network before and after bit-flipping a
weight in the last layer. 152

5.3 PMU interference, test case 1 and 2. 153
5.4 PMU interference, test case 3 and 4. 154
5.5 Zybo-Z7-20 architecture and the AXI bus allowing us to extract HPC val-

ues to the PL. 158
5.6 Monitor interval distribution of the SW and HW implementation of the

detection module. 159
5.7 Block diagram of the HW implementation of the ML algorithm. 160
5.8 Errors introduced due to the implementation of the sigmoid function in

hardware. 162
5.9 Decision making and FP filtering block diagram. 162
5.10 Data transmission and/or action by the secure core. 163
5.11 Block diagram of the HW implementation of a Logistic Regression in a

local-remote design. 165
5.12 Confusion Matrices for the alert and suspicious data of the SW and HW

version of the Logistic Regression model implemented locally. 166
5.13 Sigmoid2 error and hypothetical area of misclassifications if alert thresh-

old was 0.99(99%). 168
5.14 Confusion Matrices for the alert data of the SW and HW version of the

Logistic Regression model implemented locally when the alert threshold
is 0.99(99%). 169

5.15 Sigmoid3 error and distribution of normal and malware data inputs to
the sigmoid. 170

6.1 Vivado resource usage of the local ML (CNN) for SATHV and generic
malware detection after synthesis. 183

A.1 PMU interference, test case 1. iii
A.2 PMU interference, test case 2. iv
A.3 PMU interference, test case 3. iv
A.4 PMU interference, test case 4. v
A.5 Vivado block diagram of the proposed design vi
A.6 Estimated resource utilization of the hardware design. vi
A.7 Estimated energy consumption of the hardware design. vii

xi

LIST OF TABLES

2.1 . 41

3.1 List of side-effects per SATHV . 76
3.2 Classification of side effects . 77
3.3 Monitoring interval system overheads . 90
3.4 SATHV local detection mechanism comparison 106

4.1 Classification metrics for the different ML algorithms. 129
4.2 Classification metrics for the different Local-Remote ML configurations. 132
4.3 Data send per minute for each category of applications running in the

CPU and percentage of filtering when 5760kb of HPC data are extracted
per minute. The LSTM extra data overhead refers to the increase in the
amount of data to be transmitted to the remote due to the need to sent
past HPC samples. 134

4.4 Classification metrics for the different Local-Remote ML configurations
plus Isolation Forest for FP reduction. 139

4.5 Classificationmetrics for the Local +RemoteML+ Isolation Forestwhen
local detection is activated. 141

4.6 Evaluation of different important metrics for a limited resources system.
The last column showcases the size of the local memory to be used for
storing suspicious samples. It is calculated as the maximum size of data
the system stores per ∆s under normal operation during training. If the
local memory is overflowed, then we send the suspicious data to the re-
mote before ∆s. 145

4.7 Latency of the different remote ML classifiers when the local ML is the
AdaBoost[LogReg]. 145

4.8 Comparison of our Local-Remote implementation to the SOTA. 146

5.1 HPC event selection. 157
5.2 Classification metrics for the only Local (HW) and Local (HW) + Re-

mote ML when local detection is activated and when not. 171

xii

5.3 Resources used by the custom Logistic Regression IP, FP filtering and
local storage. 171

6.1 Classificationmetrics for the Local CNN (HW)+RemoteMLwhen con-
sidering generic malware. 182

6.2 Resource comparison between our customLogistic Regression IP and the
hardware model produced using a keras-hls4ml CNN. 184

xiii

ABBREVIATIONS

API . Interface de Programmation d’Applications

API . Application Programming Interface

ASIC Application-Specific Integrated Circuit

AUC Area Under Curve

CacheSCA attaques de cache par canal auxiliaire

CacheSCA Cache Side-Channel Attacks

CFI . Control Flow Integrity

CNNs Convolutional Neural Networks

DDoS déni de service distribué

DDoS Distributed Denial-of-Service

DFI . Data Flow Integrity

DNN Deep Neural Network

DRAM mémoire dynamique synchrone à accès aléatoire

DRAM Dynamic Random Access Memory

DTLB Data Translation Look-aside Buffer

ECC . Error Correcting Codes

EdA . l’Etat de l’Art

EWMA Exponentially Weighted Moving Average

FF . Flip-Flops

FIFO First In First Out

FN . False Negative

xv

FNR . False Negative Rate

FP . False Positive

FPGA Field Programmable Gate Array

FPR . taux de faux positifs

FPR . False Positive Rate

GPU Graphics Processing Unit

HPCs compteurs de performance du matériel

HPCs Hardware Performance Counters

HW . Hardware

IIoT . l’IoT industriel

IIoT . Industrial Internet of Things

IoT . l’internet des objets

IoT . Internet of Things

IQR . Interquartile Range

IRQ . Interrupt Request

ISA . Instruction Set Architecture

JTAG Joint Test Action Group

LLC . Last Level Cache

LSTM Long Short-Term Memory

MI . Mutual Information

ML . apprentissage automatique

ML . Machine Learning

MSE Mean Square Error

NN . Neural Network

xvi

OS . Système d’Exploitation

OS . Operating System

PL . Programmable Logic

PMU Performance Monitoring Unit

PS . Processing System

RFE . Recursive Feature Elimination

RNN Recurrent Neural Network

ROC Receiver Operating Characteristic

SATHV attaques logicielles visant les vulnérabilitésmatérielles

SATHV Software Attacks Targeting Hardware Vulnera-
bilities

SIGSEGV Signal Segmentation Violation

SOC . System on Chip

SOTA State Of The Art

SVM Support Vector Machine

SW . Software

TLB . Translation Look-aside Buffer

TN . True Negative

TP . True Positive

TPR . True Positive Rate

xvii

BIBLIOGRAPHY

[1] C. Kolias, G. Kambourakis, A. Stavrou, and J. Voas, “Ddos in the iot: mirai and
other botnets”, Computer, 50, 7, pp. 80–84, 2017.

[2] N. Latto,What aremeltdown and spectre?, AvastAcademy - Security -Other threats,
Accessed 7December 2020, Sep. 2020. [Online]. Available: https://www.avast.
com/c-meltdown-spectre.

[3] G. U. of Technology,Meltdown and spectre vulnerabilities in modern computers leak
passwords and sensitive data, website page, Found in Questions and Answers -
Can my antivirus detect or block this attack, 2018. [Online]. Available: https:
//meltdownattack.com/.

[4] R. Langner, “Stuxnet: dissecting a cyberwarfare weapon”, IEEE Security & Pri-
vacy, 9, 3, pp. 49–51, 2011.

[5] Y. Kim, R. Daly, J. Kim, et al., “Flipping bits in memory without accessing them:
an experimental study of dram disturbance errors”, ACM SIGARCH Computer
Architecture News, 42, 3, pp. 361–372, 2014.

[6] G. Canivet, P. Maistri, R. Leveugle, J. Clédière, F. Valette, and M. Renaudin,
“Glitch and laser fault attacks onto a secure aes implementation on a sram-based
fpga”, Journal of cryptology, 24, 2, pp. 247–268, 2011.

[7] S. Tajik, H. Lohrke, F. Ganji, J.-P. Seifert, and C. Boit, “Laser fault attack on phys-
ically unclonable functions”, in 2015 workshop on fault diagnosis and tolerance in
cryptography (FDTC), IEEE, 2015, pp. 85–96.

[8] F. Majéric, B. Gonzalvo, and L. Bossuet, “Jtag fault injection attack”, IEEE Em-
bedded Systems Letters, 10, 3, pp. 65–68, 2017.

[9] K. Rosenfeld and R. Karri, “Attacks and defenses for jtag”, IEEE Design & Test
of Computers, 27, 1, pp. 36–47, 2010.

[10] N. Beringuier-Boher, K.Gomina,D.Hely, et al., “Voltage glitch attacks onmixed-
signal systems”, in 2014 17th Euromicro Conference onDigital SystemDesign, IEEE,
2014, pp. 379–386.

[11] T. Korak, M. Hutter, B. Ege, and L. Batina, “Clock glitch attacks in the presence
of heating”, in 2014 Workshop on Fault Diagnosis and Tolerance in Cryptography,
IEEE, 2014, pp. 104–114.

xviii

https://www.avast.com/c-meltdown-spectre
https://www.avast.com/c-meltdown-spectre
https://meltdownattack.com/
https://meltdownattack.com/

[12] P.Qiu,D.Wang, Y. Lyu, andG.Qu, “Voltjockey: breaching trustzone by software-
controlled voltage manipulation over multi-core frequencies”, in Proceedings of
the 2019 ACMSIGSACConference on Computer and Communications Security, 2019,
pp. 195–209.

[13] A. Tang, S. Sethumadhavan, and S. Stolfo, “Clkscrew: exposing the perils of
security-oblivious energy management”, in 26th USENIX Security Symposium
(USENIX Security 17), 2017, pp. 1057–1074.

[14] D. Gruss, D. Bidner, and S. Mangard, “Practical memory deduplication attacks
in sandboxed javascript”, in European Symposium on Research in Computer Secu-
rity, Springer, 2015, pp. 108–122.

[15] Y. Oren, V. P. Kemerlis, S. Sethumadhavan, and A. D. Keromytis, “The spy in
the sandbox: practical cache attacks in javascript and their implications”, in Pro-
ceedings of the 22nd ACM SIGSAC Conference on Computer and Communications
Security, 2015, pp. 1406–1418.

[16] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee, “Last-level cache side-channel
attacks are practical”, in 2015 IEEE symposium on security and privacy, IEEE, 2015,
pp. 605–622.

[17] P. Kocher, J. Horn, A. Fogh, et al., “Spectre attacks: exploiting speculative exe-
cution”, in 2019 IEEE Symposium on Security and Privacy (SP), IEEE, 2019, pp. 1–
19.

[18] M. Lipp, M. Schwarz, D. Gruss, et al., “Meltdown: reading kernel memory from
user space”, in 27th USENIX Security Symposium (USENIX Security 18), 2018,
pp. 973–990.

[19] I. You and K. Yim, “Malware obfuscation techniques: a brief survey”, in 2010
International conference on broadband, wireless computing, communication and appli-
cations, IEEE, 2010, pp. 297–300.

[20] J.-M.Cioranesco, J.-L.Danger, T.Graba, et al., “Cryptographically secure shields”,
in 2014 IEEE International Symposium on Hardware-Oriented Security and Trust
(HOST), IEEE, 2014, pp. 25–31.

[21] H. Bar-El, H. Choukri, D. Naccache, M. Tunstall, and C.Whelan, “The sorcerer’s
apprentice guide to fault attacks”, Proceedings of the IEEE, 94, 2, pp. 370–382,
2006.

[22] N. Homma, Y.-i. Hayashi, N. Miura, et al., “Em attack is non-invasive?-design
methodology andvalidity verification of emattack sensor”, in InternationalWork-
shop on Cryptographic Hardware and Embedded Systems, Springer, 2014, pp. 1–16.

xix

[23] V. Beroulle, P. Candelier, S. D. Castro, et al., “Laser-induced fault effects in security-
dedicated circuits”, in IFIP/IEEE international conference on very large scale integration-
system on a chip, Springer, 2014, pp. 220–240.

[24] H. Sayadi, Y. Gao, H. Mohammadi Makrani, et al., “Towards accurate run-time
hardware-assisted stealthy malware detection: a lightweight, yet effective time
series cnn-based approach”, Cryptography, 5, 4, p. 28, 2021.

[25] M. S. Mahmoud and A. A. Mohamad, “A study of efficient power consumption
wireless communication techniques/modules for internet of things (iot) appli-
cations”, 2016.

[26] I. Sourmey, The impact of the communication technology protocol on your iot appli-
cation’s power consumption, Saftbatteries - Energizing IoT, Accessed 16 Septem-
ber 2022, Jan. 2020. [Online]. Available: https://www.saftbatteries.com/
energizing-iot/impact-communication-technology-protocol-your-iot-
application%E2%80%99s-power-consumption.

[27] Polychronou, Nikolaos Foivos, P.-H. Thevenon, P. Maxime, and V. Beroulle,
“Securing iot/iiot from software attacks targeting hardware vulnerabilities”,
in 2021 19th IEEE International New Circuits and Systems Conference (NEWCAS),
IEEE, 2021, pp. 1–4.

[28] Polychronou,Nikolaos Foivos, P.-H. Thevenon,M. Puys, andV. Beroulle, “Mad-
man: detection of software attacks targeting hardware vulnerabilities”, in 2021
24th Euromicro Conference on Digital System Design (DSD), IEEE, 2021, pp. 355–
362.

[29] F. Tramer, N. Carlini, W. Brendel, and A. Madry, “On adaptive attacks to adver-
sarial example defenses”, Advances in Neural Information Processing Systems, 33,
pp. 1633–1645, 2020.

[30] K. L. Dempsey, L. A. Johnson, M. A. Scholl, et al., “Information security con-
tinuous monitoring (iscm) for federal information systems and organizations”,
2011.

[31] Learn about malware and how to protect all your devices against it, https://www.
kaspersky.com/resource-center/preemptive-safety/what-is-malware-
and-how-to-protect-against-it, Accessed: 2022-08-23.

[32] What is malware + how to prevent malware attacks in 2022, https://us.norton.
com/internetsecurity-emerging-threats-malware.html, Accessed: 2022-08-
23.

[33] O. Or-Meir, N. Nissim, Y. Elovici, and L. Rokach, “Dynamic malware analysis
in the modern era—a state of the art survey”, ACM Computing Surveys (CSUR),
52, 5, pp. 1–48, 2019.

xx

https://www.saftbatteries.com/energizing-iot/impact-communication-technology-protocol-your-iot-application%E2%80%99s-power-consumption
https://www.saftbatteries.com/energizing-iot/impact-communication-technology-protocol-your-iot-application%E2%80%99s-power-consumption
https://www.saftbatteries.com/energizing-iot/impact-communication-technology-protocol-your-iot-application%E2%80%99s-power-consumption
https://www.kaspersky.com/resource-center/preemptive-safety/what-is-malware-and-how-to-protect-against-it
https://www.kaspersky.com/resource-center/preemptive-safety/what-is-malware-and-how-to-protect-against-it
https://www.kaspersky.com/resource-center/preemptive-safety/what-is-malware-and-how-to-protect-against-it
https://us.norton.com/internetsecurity-emerging-threats-malware.html
https://us.norton.com/internetsecurity-emerging-threats-malware.html

[34] K. Hu, A. N. Nowroz, S. Reda, and F. Koushanfar, “High-sensitivity hardware
trojan detection usingmultimodal characterization”, in 2013 Design, Automation
& Test in Europe Conference & Exhibition (DATE), IEEE, 2013, pp. 1271–1276.

[35] M. Potkonjak,A.Nahapetian,M.Nelson, andT.Massey, “Hardware trojan horse
detection using gate-level characterization”, in 2009 46th ACM/IEEE Design Au-
tomation Conference, IEEE, 2009, pp. 688–693.

[36] S. McConnell, Code complete. Pearson Education, 2004.
[37] V. Van Der Veen, Y. Fratantonio, M. Lindorfer, et al., “Drammer: determinis-

tic rowhammer attacks on mobile platforms”, in Proceedings of the 2016 ACM
SIGSAC conference on computer and communications security, 2016, pp. 1675–1689.

[38] E. Tromer, D. A. Osvik, andA. Shamir, “Efficient cache attacks on aes, and coun-
termeasures”, Journal of Cryptology, 23, 1, pp. 37–71, 2010.

[39] O. Acıiçmez, B. B. Brumley, and P. Grabher, “New results on instruction cache
attacks”, in International Workshop on Cryptographic Hardware and Embedded Sys-
tems, Springer, 2010, pp. 110–124.

[40] C. Percival, Cache missing for fun and profit, 2005.
[41] O. Acıiçmez and W. Schindler, “A vulnerability in rsa implementations due to

instruction cache analysis and its demonstration on openssl”, in Cryptographers’
Track at the RSA Conference, Springer, Berlin, Heidelberg, 2008, pp. 256–273.

[42] O. Aciiçmez, “Yet another microarchitectural attack: exploiting i-cache”, in Pro-
ceedings of the 2007 ACM workshop on Computer security architecture, 2007, pp. 11–
18.

[43] B. Gras, K. Razavi, H. Bos, and C. Giuffrida, “Translation leak-aside buffer: de-
feating cache side-channel protections with {tlb} attacks”, in 27th {USENIX}
Security Symposium ({USENIX} Security 18), 2018, pp. 955–972.

[44] G. Didier and C. Maurice, “Calibration done right: noiseless flush+ flush at-
tacks”, in International Conference on Detection of Intrusions and Malware, and Vul-
nerability Assessment, Springer, 2021, pp. 278–298.

[45] D.Wang, Z.Qian,N.Abu-Ghazaleh, and S. V.Krishnamurthy, “Papp: prefetcher-
aware prime and probe side-channel attack”, in Proceedings of the 56th Annual
Design Automation Conference 2019, 2019, pp. 1–6.

[46] D. Gruss, C. Maurice, K. Wagner, and S. Mangard, “Flush+ flush: a fast and
stealthy cache attack”, in International Conference on Detection of Intrusions and
Malware, and Vulnerability Assessment, Springer, 2016, pp. 279–299.

[47] Y. Yarom and K. Falkner, “{Flush+ reload}: a high resolution, low noise, l3
cache {side-channel} attack”, in 23rd USENIX security symposium (USENIX se-
curity 14), 2014, pp. 719–732.

xxi

[48] M. Lipp, D. Gruss, R. Spreitzer, C. Maurice, and S. Mangard, “{Armageddon}:
cache attacks onmobile devices”, in 25th USENIX Security Symposium (USENIX
Security 16), 2016, pp. 549–564.

[49] G. Irazoqui, T. Eisenbarth, and B. Sunar, “A shared cache attack that works
across cores and defies vm sandboxing–and its application to aes”, in 2015 IEEE
Symposium on Security and Privacy, IEEE, 2015, pp. 591–604.

[50] D. Gruss, C. Maurice, and S. Mangard, “Rowhammer. js: a remote software-
induced fault attack in javascript”, in International conference on detection of intru-
sions and malware, and vulnerability assessment, Springer, 2016, pp. 300–321.

[51] F. Yao, A. S. Rakin, andD. Fan, “Deephammer: depleting the intelligence of deep
neural networks through targeted chain of bit flips”, in 29th USENIX Security
Symposium, USENIX Security 2020, August 12-14, 2020, S. Capkun and F. Roes-
ner, Eds., USENIXAssociation, 2020, pp. 1463–1480. [Online]. Available: https:
//www.usenix.org/conference/usenixsecurity20/presentation/yao.

[52] S. Hong, P. Frigo, Y. Kaya, C. Giuffrida, and T. Dumitras, , “Terminal brain dam-
age: exposing the graceless degradation in deep neural networks under hard-
ware fault attacks”, in 28th USENIX Security Symposium (USENIX Security 19),
2019, pp. 497–514.

[53] A. S. Rakin, Z. He, and D. Fan, “Bit-flip attack: crushing neural network with
progressive bit search”, in Proceedings of the IEEE/CVF International Conference
on Computer Vision, 2019, pp. 1211–1220.

[54] Y. Xiao, X. Zhang, Y. Zhang, andR. Teodorescu, “One bit flips, one cloudflops:{cross-
vm} row hammer attacks and privilege escalation”, in 25th USENIX security
symposium (USENIX Security 16), 2016, pp. 19–35.

[55] P. Kocher, J. Horn, A. Fogh, et al., “Spectre attacks: exploiting speculative exe-
cution”, Communications of the ACM, 63, 7, pp. 93–101, 2020.

[56] S. Gibbs, Meltdown and spectre: "worst ever" cpu bugs affect virtually all computers,
Data and computer security, Accessed 28 September 2022, Jan. 2018. [Online].
Available: https://web.archive.org/web/20180106114401/https://www.
theguardian.com/technology/2018/jan/04/meltdown-spectre-worst-cpu-
bugs-ever-found-affect-computers-intel-processors-security-flaw.

[57] ARM, Speculative processor vulnerability, ArmSecurityCenter, Accessed 28 Septem-
ber 2022. [Online].Available: https://developer.arm.com/Arm%5C%20Security%
5C%20Center/Speculative%5C%20Processor%5C%20Vulnerability.

[58] Intel, Affected processors: transient execution attacks & related security issues by cpu,
Software Security Guidance, Accessed 28 September 2022. [Online]. Available:
https://www.intel.com/content/www/us/en/developer/topic-technology/

xxii

https://www.usenix.org/conference/usenixsecurity20/presentation/yao
https://www.usenix.org/conference/usenixsecurity20/presentation/yao
https://web.archive.org/web/20180106114401/https://www.theguardian.com/technology/2018/jan/04/meltdown-spectre-worst-cpu-bugs-ever-found-affect-computers-intel-processors-security-flaw
https://web.archive.org/web/20180106114401/https://www.theguardian.com/technology/2018/jan/04/meltdown-spectre-worst-cpu-bugs-ever-found-affect-computers-intel-processors-security-flaw
https://web.archive.org/web/20180106114401/https://www.theguardian.com/technology/2018/jan/04/meltdown-spectre-worst-cpu-bugs-ever-found-affect-computers-intel-processors-security-flaw
https://developer.arm.com/Arm%5C%20Security%5C%20Center/Speculative%5C%20Processor%5C%20Vulnerability
https://developer.arm.com/Arm%5C%20Security%5C%20Center/Speculative%5C%20Processor%5C%20Vulnerability
https://www.intel.com/content/www/us/en/developer/topic-technology/software-security-guidance/processors-affected-consolidated-product-cpu-model.html
https://www.intel.com/content/www/us/en/developer/topic-technology/software-security-guidance/processors-affected-consolidated-product-cpu-model.html
https://www.intel.com/content/www/us/en/developer/topic-technology/software-security-guidance/processors-affected-consolidated-product-cpu-model.html

software-security-guidance/processors-affected-consolidated-product-
cpu-model.html.

[59] J. Demme, M. Maycock, J. Schmitz, et al., “On the feasibility of online malware
detection with performance counters”, ACM SIGARCH Computer Architecture
News, 41, 3, pp. 559–570, 2013.

[60] M. Risks, Malware risks and mitigation report. bits-the financial services roundtable
(2011), https : / / www . nist . gov / system / files / documents / itl / BITS -
Malware-Report-Jun2011.pdf, 2011.

[61] A. Gupta, “Assessing hardware performance counters for malware detection”,
Ph.D. dissertation, Boston University, 2017.

[62] B. Herzog, S. Reif, J. Preis, W. Schröder-Preikschat, and T. Hönig, “The price
of meltdown and spectre: energy overhead of mitigations at operating system
level”, in Proceedings of the 14th European Workshop on Systems Security, 2021,
pp. 8–14.

[63] A. Naway and Y. Li, “A review on the use of deep learning in android malware
detection”, arXiv preprint arXiv:1812.10360, 2018.

[64] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, “Control-flow integrity prin-
ciples, implementations, and applications”,ACMTransactions on Information and
System Security (TISSEC), 13, 1, pp. 1–40, 2009.

[65] C. Bresch, “Approches, stratégies, et implémentations de protections mémoire
dans les systèmes embarqués critiques et contraints”, Ph.D. dissertation, Uni-
versité Grenoble Alpes, 2020.

[66] H. Hu, C. Qian, C. Yagemann, et al., “Enforcing unique code target property
for control-flow integrity”, in Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, 2018, pp. 1470–1486.

[67] C. Song, B. Lee, K. Lu,W. Harris, T. Kim, andW. Lee, “Enforcing kernel security
invariants with data flow integrity.”, in NDSS, 2016.

[68] P. Akritidis, C. Cadar, C. Raiciu, M. Costa, and M. Castro, “Preventing mem-
ory error exploits with wit”, in 2008 IEEE Symposium on Security and Privacy (sp
2008), IEEE, 2008, pp. 263–277.

[69] C. Bresch, D. Hély, R. Lysecky, S. Chollet, and I. Parissis, “Trustflow-x: a practi-
cal framework for fine-grained control-flow integrity in critical systems”, ACM
Transactions on Embedded Computing Systems (TECS), 19, 5, pp. 1–26, 2020.

[70] N.Christoulakis, G. Christou, E.Athanasopoulos, and S. Ioannidis, “Hcfi: hardware-
enforced control-flow integrity”, in Proceedings of the Sixth ACM Conference on
Data and Application Security and Privacy, 2016, pp. 38–49.

xxiii

https://www.intel.com/content/www/us/en/developer/topic-technology/software-security-guidance/processors-affected-consolidated-product-cpu-model.html
https://www.intel.com/content/www/us/en/developer/topic-technology/software-security-guidance/processors-affected-consolidated-product-cpu-model.html
https://www.intel.com/content/www/us/en/developer/topic-technology/software-security-guidance/processors-affected-consolidated-product-cpu-model.html
https://www.intel.com/content/www/us/en/developer/topic-technology/software-security-guidance/processors-affected-consolidated-product-cpu-model.html
https://www.intel.com/content/www/us/en/developer/topic-technology/software-security-guidance/processors-affected-consolidated-product-cpu-model.html
https://www.nist.gov/system/files/documents/itl/BITS-Malware-Report-Jun2011.pdf
https://www.nist.gov/system/files/documents/itl/BITS-Malware-Report-Jun2011.pdf

[71] G. Liang, J. Pang, and C. Dai, “A behavior-based malware variant classifica-
tion technique”, International Journal of Information and Education Technology, 6,
4, p. 291, 2016.

[72] M. Schwarz, S. Weiser, D. Gruss, C. Maurice, and S. Mangard, “Malware guard
extension: using sgx to conceal cache attacks”, in International Conference on De-
tection of Intrusions and Malware, and Vulnerability Assessment, Springer, 2017,
pp. 3–24.

[73] T. Willhalm and R. Dementiev, Intel performance counter monitor - a better way to
measure cpu utilization, [Online].Available: https://www.intel.com/content/www/us/en/developer/articles/technical/performance-
counter-monitor.html Accessed on 7.9.2022, 2017.

[74] A. Developer,Cortex-a9 technical reference manual r4p1, about the performance moni-
toring unit, [Online].Available: https://developer.arm.com/documentation/ddi0388/i/performance-
monitoring-unit/about-the-performance-monitoring-unitAccessed on 7.9.2022.

[75] F. EmbedDev,Risc-v instruction set manual, volume i: risc-v user-level isa , 20191214
- december 2019, hardware performance counters, [Online]. Available: https://five-
embeddev.com/riscv-isa-manual/latest/counters.html#hardware-performance-
counters Accessed on 7.9.2022.

[76] B. Gulmezoglu, A. Moghimi, T. Eisenbarth, and B. Sunar, “Fortuneteller: pre-
dictingmicroarchitectural attacks via unsuperviseddeep learning”, arXiv preprint
arXiv:1907.03651, 2019.

[77] M. Ozsoy, K. N. Khasawneh, C. Donovick, I. Gorelik, N. Abu-Ghazaleh, and D.
Ponomarev, “Hardware-based malware detection using low-level architectural
features”, IEEE Transactions on Computers, 65, 11, pp. 3332–3344, 2016.

[78] N. Patel, A. Sasan, and H. Homayoun, “Analyzing hardware based malware
detectors”, in 2017 54th ACM/EDAC/IEEE Design Automation Conference (DAC),
IEEE, 2017, pp. 1–6.

[79] S. P. Kadiyala, P. Jadhav, S.-K. Lam, and T. Srikanthan, “Hardware performance
counter-based fine-grained malware detection”, ACM Transactions on Embedded
Computing Systems (TECS), 19, 5, pp. 1–17, 2020.

[80] Z.He,A. Rezaei,H.Homayoun, andH. Sayadi, “Deepneural network and trans-
fer learning for accurate hardware-based zero-day malware detection”, in Pro-
ceedings of the Great Lakes Symposium on VLSI 2022, 2022, pp. 27–32.

[81] V. Weaver and J. Dongarra, “Can hardware performance counters produce ex-
pected, deterministic results”, in Proceedings of Third Workshop on Functionality of
Hardware Performance Monitoring, 2010.

xxiv

[82] M. Chiappetta, E. Savas, and C. Yilmaz, “Real time detection of cache-based
side-channel attacks using hardware performance counters”, Applied Soft Com-
puting, 49, pp. 1162–1174, 2016.

[83] J. Cho, T. Kim, S. Kim,M. Im, T. Kim, and Y. Shin, “Real-time detection for cache
side channel attack using performance counter monitor”,Applied Sciences, 10, 3,
p. 984, 2020.

[84] C. Li and J.-L.Gaudiot, “Online detection of spectre attacks usingmicroarchitectural
traces fromperformance counters”, in 2018 30th International Symposium onCom-
puterArchitecture andHigh Performance Computing (SBAC-PAD), IEEE, 2018, pp. 25–
28.

[85] M. Payer, “Hexpads: a platform to detect “stealth” attacks”, in International Sym-
posium on Engineering Secure Software and Systems, Springer, 2016, pp. 138–154.

[86] B. A. Ahmad, “Real time detection of spectre and meltdown attacks using ma-
chine learning”, arXiv preprint arXiv:2006.01442, 2020.

[87] A. Garcia-Serrano, “Anomaly detection for malware identification using hard-
ware performance counters”, arXiv preprint arXiv:1508.07482, 2015.

[88] Z. He, A. Raghavan, G. Hu, S. Chai, and R. Lee, “Power-grid controller anomaly
detection with enhanced temporal deep learning”, in 2019 18th IEEE Interna-
tional Conference On Trust, Security And Privacy In Computing And Communica-
tions/13th IEEE International ConferenceOnBigData ScienceAndEngineering (Trust-
Com/BigDataSE), IEEE, 2019, pp. 160–167.

[89] J. J. Blount, D. R. Tauritz, and S. A. Mulder, “Adaptive rule-based malware
detection employing learning classifier systems: a proof of concept”, in 2011
IEEE 35th Annual Computer Software and Applications Conference Workshops, 2011,
pp. 110–115. doi: 10.1109/COMPSACW.2011.28.

[90] H. Edquist, P. Goodridge, and J. Haskel, “The internet of things and economic
growth in a panel of countries”, Economics of Innovation and New Technology, 30,
3, pp. 262–283, 2021.

[91] M.Mushtaq, A. Akram,M. K. Bhatti, M. Chaudhry, V. Lapotre, and G. Gogniat,
“Nights-watch: a cache-based side-channel intrusion detector using hardware
performance counters”, in Proceedings of the 7th International Workshop on Hard-
ware and Architectural Support for Security and Privacy, 2018, pp. 1–8.

[92] M. Mushtaq, J. Bricq, M. K. Bhatti, et al., “Whisper: a tool for run-time detection
of side-channel attacks”, IEEE Access, 8, pp. 83 871–83 900, 2020.

[93] Z. Tong, Z. Zhu, Z. Wang, L. Wang, Y. Zhang, and Y. Liu, “Cache side-channel
attacks detection based on machine learning”, in 2020 IEEE 19th International

xxv

https://doi.org/10.1109/COMPSACW.2011.28

Conference on Trust, Security and Privacy in Computing and Communications (Trust-
Com), IEEE, 2020, pp. 919–926.

[94] M. Schwarz,M. Lipp,D.Moghimi, et al., “Zombieload: cross-privilege-boundary
data sampling”, in Proceedings of the 2019 ACM SIGSAC Conference on Computer
and Communications Security, 2019, pp. 753–768.

[95] Z. He, T. Miari, H. M. Makrani, M. Aliasgari, H. Homayoun, and H. Sayadi,
“When machine learning meets hardware cybersecurity: delving into accurate
zero-day malware detection”, in 2021 22nd International Symposium on Quality
Electronic Design (ISQED), IEEE, 2021, pp. 85–90.

[96] K. Ott and R. Mahapatra, “Hardware performance counters for embedded soft-
ware anomaly detection”, in 2018 IEEE 16th Intl Conf on Dependable, Autonomic
and Secure Computing, 16th Intl Conf on Pervasive Intelligence and Computing, 4th
Intl Conf on Big Data Intelligence and Computing and Cyber Science and Technol-
ogy Congress(DASC/PiCom/DataCom/CyberSciTech), 2018, pp. 528–535. doi: 10.
1109/DASC/PiCom/DataCom/CyberSciTec.2018.00101.

[97] P. Krishnamurthy, R. Karri, and F. Khorrami, “Anomaly detection in real-time
multi-threaded processes using hardware performance counters”, IEEE Trans-
actions on Information Forensics and Security, 15, pp. 666–680, 2019.

[98] X. Wang, S. Chai, M. Isnardi, S. Lim, and R. Karri, “Hardware performance
counter-based malware identification and detection with adaptive compressive
sensing”, ACM Transactions on Architecture and Code Optimization (TACO), 13, 1,
pp. 1–23, 2016.

[99] D. G. Kleinbaum, K. Dietz, M. Gail, M. Klein, and M. Klein, Logistic regression.
Springer, 2002.

[100] T.G.Nick andK.M.Campbell, “Logistic regression”,Topics in biostatistics, pp. 273–
301, 2007.

[101] M. A. Hearst, S. T. Dumais, E. Osuna, J. Platt, and B. Scholkopf, “Support vector
machines”, IEEE Intelligent Systems and their applications, 13, 4, pp. 18–28, 1998.

[102] C.-W. Hsu, C.-C. Chang, C.-J. Lin, et al., A practical guide to support vector classifi-
cation, 2003.

[103] scikit learn, Support vectormachines - complexity, [Online].Available: https://scikit-
learn.org/stable/modules/svm.html#complexity Accessed on 8.9.2022.

[104] Y. Freund and R. E. Schapire, “Experiments with a new boosting algorithm”, in
ICML, 1996.

[105] S. B. Kotsiantis, “Decision trees: a recent overview”,Artificial Intelligence Review,
39, 4, pp. 261–283, 2013.

xxvi

https://doi.org/10.1109/DASC/PiCom/DataCom/CyberSciTec.2018.00101
https://doi.org/10.1109/DASC/PiCom/DataCom/CyberSciTec.2018.00101

[106] T. Chen and C. Guestrin, “Xgboost: a scalable tree boosting system”, in Proceed-
ings of the 22nd acm sigkdd international conference on knowledge discovery and data
mining, 2016, pp. 785–794.

[107] C. M. Bishop, “Neural networks and their applications”, Review of scientific in-
struments, 65, 6, pp. 1803–1832, 1994.

[108] R. Miikkulainen, J. Liang, E. Meyerson, et al., “Evolving deep neural networks”,
in Artificial intelligence in the age of neural networks and brain computing, Elsevier,
2019, pp. 293–312.

[109] S. Albawi, T. A. Mohammed, and S. Al-Zawi, “Understanding of a convolu-
tional neural network”, in 2017 international conference on engineering and tech-
nology (ICET), Ieee, 2017, pp. 1–6.

[110] B. Zhao, H. Lu, S. Chen, J. Liu, and D. Wu, “Convolutional neural networks for
time series classification”, Journal of Systems Engineering and Electronics, 28, 1,
pp. 162–169, 2017.

[111] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by
back-propagating errors”, nature, 323, 6088, pp. 533–536, 1986.

[112] F. T. Liu, K. M. Ting, and Z.-H. Zhou, “Isolation forest”, in 2008 eighth ieee inter-
national conference on data mining, IEEE, 2008, pp. 413–422.

[113] S. Hochreiter and J. Schmidhuber, “Long short-term memory”, Neural computa-
tion, 9, 8, pp. 1735–1780, 1997.

[114] A. Sherstinsky, “Fundamentals of recurrent neural network (rnn) and long short-
term memory (lstm) network”, Physica D: Nonlinear Phenomena, 404, p. 132 306,
2020.

[115] P. Malhotra, A. Ramakrishnan, G. Anand, L. Vig, P. Agarwal, and G. Shroff,
“Lstm-based encoder-decoder for multi-sensor anomaly detection”, Jul. 2016.

[116] B. Zhou, A. Gupta, R. Jahanshahi, M. Egele, and A. Joshi, “Hardware perfor-
mance counters can detect malware: myth or fact?”, in Proceedings of the 2018 on
Asia conference on computer and communications security, 2018, pp. 457–468.

[117] L. Batina, B.Gierlichs, E. Prouff,M.Rivain, F.-X. Standaert, andN.Veyrat-Charvillon,
“Mutual information analysis: a comprehensive study”, Journal of Cryptology, 24,
2, pp. 269–291, 2011.

[118] G. Ver Steeg, Non-parametric entropy estimation toolbox, https://github.com/
gregversteeg/NPEET, 2019.

[119] Polychronou, Nikolaos-Foivos, P.-H. Thevenon, M. Puys, and V. Beroulle, “Re-
search for a new solution for the detection of malwares in iot/iiot devices”,
Journees C2 2022, 2022, Available: https://jc2-2022.inria.fr/files/2022/
01/JC2-2022_paper_23.pdf.

xxvii

https://github.com/gregversteeg/NPEET
https://github.com/gregversteeg/NPEET
https://jc2-2022.inria.fr/files/2022/01/JC2-2022_paper_23.pdf
https://jc2-2022.inria.fr/files/2022/01/JC2-2022_paper_23.pdf

[120] Polychronou, Nikolaos-Foivos, P.-H. Thevenon, M. Puys, and V. Beroulle, “A
comprehensive survey of attacks without physical access targeting hardware
vulnerabilities in iot/iiot devices, and their detectionmechanisms”,ACMTrans-
actions on Design Automation of Electronic Systems (TODAES), 27, 1, pp. 1–35,
2021.

[121] T. A. Akyildiz, C. B. Guzgeren, C. Yilmaz, and E. Savas, “Meltdowndetector: a
runtime approach for detecting meltdown attacks”, Future Generation Computer
Systems, 112, pp. 136–147, 2020.

[122] T. Micro, “Detecting attacks that exploit meltdown and spectre with perfor-
mance counters”, Retrieved August, 15, p. 2018, 2018.

[123] M. Ghasempour, M. Lujan, and J. Garside, Armor: a run-time memory hot-row de-
tector.(2015), [Online].Available: http://apt.cs.manchester.ac.uk/projects/ARMOR/RowHammer/
Accessed on 26.6.2020, 2015.

[124] D. Gruss, M. Lipp, M. Schwarz, et al., “Another flip in the wall of rowham-
mer defenses”, in 2018 IEEE Symposium on Security and Privacy (SP), IEEE, 2018,
pp. 245–261.

[125] E. Lee, I. Kang, S. Lee,G. E. Suh, and J.H.Ahn, “Twice: preventing row-hammering
by exploiting timewindow counters”, in Proceedings of the 46th International Sym-
posium on Computer Architecture, 2019, pp. 385–396.

[126] C. Li and J.-L. Gaudiot, “Detecting malicious attacks exploiting hardware vul-
nerabilities using performance counters”, in 2019 IEEE 43rd Annual Computer
Software and Applications Conference (COMPSAC), IEEE, vol. 1, 2019, pp. 588–
597.

[127] C. Canella, J. Van Bulck,M. Schwarz, et al., “A systematic evaluation of transient
execution attacks and defenses”, in 28th USENIX Security Symposium (USENIX
Security 19), 2019, pp. 249–266.

[128] P. Pessl, D. Gruss, C. Maurice, M. Schwarz, and S. Mangard, “{Drama}: exploit-
ing {dram} addressing for {cross-cpu} attacks”, in 25th USENIX security sym-
posium (USENIX security 16), 2016, pp. 565–581.

[129] S. M. Seyedzadeh, A. K. Jones, and R. Melhem, “Counter-based tree structure
for row hammering mitigation in dram”, IEEE Computer Architecture Letters, 16,
1, pp. 18–21, 2016.

[130] P. Stewin, “A primitive for revealing stealthy peripheral-based attacks on the
computing platform’s main memory”, in International Workshop on Recent Ad-
vances in Intrusion Detection, Springer, 2013, pp. 1–20.

[131] P. Thevenon, S. Riou, D. Tran, et al., “Imrc: integrated monitoring & recovery
component, a solution to guarantee the security of embedded systems”, J. Inter-

xxviii

net Serv. Inf. Secur., 12, 2, pp. 70–94, 2022. doi: 10.22667/JISIS.2022.05.31.070.
[Online]. Available: https://doi.org/10.22667/JISIS.2022.05.31.070.

[132] S. Peng, Q. Zhou, and J. Zhao, “Detection of cache-based side channel attack
based onperformance counters”, in Proc. 3rd Int. Conf. Artif. Intell. Ind. Eng.(AIIE),
2017, pp. 377–381.

[133] D. Gruss, R. Spreitzer, and S. Mangard, “Cache template attacks: automating
attacks on inclusive {last-level} caches”, in 24th USENIX Security Symposium
(USENIX Security 15), 2015, pp. 897–912.

[134] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and R. B.
Brown, “Mibench: a free, commercially representative embedded benchmark
suite”, in Proceedings of the fourth annual IEEE international workshop on workload
characterization. WWC-4 (Cat. No. 01EX538), IEEE, 2001, pp. 3–14.

[135] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The parsec benchmark suite: charac-
terization and architectural implications”, in Proceedings of the 17th international
conference on Parallel architectures and compilation techniques, 2008, pp. 72–81.

[136] M. Lipp, “Libflush, 2016”,URL https://github. com/IAIK/armageddon.(cited on p.
29),

[137] J. Singh and J. Singh, “Challenge of malware analysis: malware obfuscation
techniques”, International Journal of Information Security Science, 7, 3, pp. 100–
110, 2018.

[138] C. Li and J.-L. Gaudiot, “Challenges in detecting an “evasive spectre””, IEEE
Computer Architecture Letters, 19, 1, pp. 18–21, 2020.

[139] B. K. Iwana and S. Uchida, “An empirical survey of data augmentation for time
series classification with neural networks”, Plos one, 16, 7, e0254841, 2021.

[140] S.Narkhede, “Understanding auc-roc curve”,TowardsData Science, 26, 1, pp. 220–
227, 2018.

[141] Polychronou, Nikolaos-Foivos, P.-H. Thevenon, M. Puys, and V. Beroulle, “A
system for detecting malwares in a resources constrained device”, 2022, patent
number DD22030 ST.

[142] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: vision and chal-
lenges”, IEEE internet of things journal, 3, 5, pp. 637–646, 2016.

[143] C. Habib, A. Makhoul, R. Darazi, and R. Couturier, “Real-time sampling rate
adaptation based on continuous risk level evaluation in wireless body sensor
networks”, in 2017 IEEE 13th International Conference onWireless andMobile Com-
puting, Networking and Communications (WiMob), IEEE, 2017, pp. 1–8.

xxix

https://doi.org/10.22667/JISIS.2022.05.31.070
https://doi.org/10.22667/JISIS.2022.05.31.070

[144] J. Azar, A. Makhoul, M. Barhamgi, and R. Couturier, “An energy efficient iot
data compression approach for edge machine learning”, Future Generation Com-
puter Systems, 96, pp. 168–175, 2019.

[145] T. Wang, H. Ke, X. Zheng, K. Wang, A. K. Sangaiah, and A. Liu, “Big data clean-
ing based on mobile edge computing in industrial sensor-cloud”, IEEE Transac-
tions on Industrial Informatics, 16, 2, pp. 1321–1329, 2019.

[146] Y. J. Kim, C.-H. Park, and M. Yoon, “Film: filtering and machine learning for
malware detection in edge computing”, Sensors, 22, 6, p. 2150, 2022.

[147] C. ARM, “Arm cortex-a72 technical reference manual”, ARM, Dec, 2008. [On-
line]. Available: https://developer.arm.com/documentation/100095/0003.

[148] O. I. Provotar, Y. M. Linder, and M. M. Veres, “Unsupervised anomaly detec-
tion in time series using lstm-based autoencoders”, in 2019 IEEE International
Conference on Advanced Trends in Information Theory (ATIT), IEEE, 2019, pp. 513–
517.

[149] K. Sadaf and J. Sultana, “Intrusion detection based on autoencoder and isolation
forest in fog computing”, IEEE Access, 8, pp. 167 059–167 068, 2020.

[150] Y. Mao, X. Chen, and Y. Luo, “Hvsm: an in-out-vm security monitoring archi-
tecture in iaas cloud”, pp. 185–192, 2014. doi: 10.1049/cp.2014.1285.

[151] Y. Gao, M. Kim, S. Abuadbba, et al., “End-to-end evaluation of federated learn-
ing and split learning for internet of things”, arXiv preprint arXiv:2003.13376,
2020.

[152] J. Depoix and P. Altmeyer, “Detecting spectre attacks by identifying cache side-
channel attacks using machine learning”, Advanced Microkernel Operating Sys-
tems, 75, 2018.

[153] S. Wei, A. Aysu, M. Orshansky, A. Gerstlauer, and M. Tiwari, “Using power-
anomalies to counter evasivemicro-architectural attacks in embedded systems”,
in 2019 IEEE International Symposium on Hardware Oriented Security and Trust
(HOST), IEEE, 2019, pp. 111–120.

[154] A. P. Kuruvila, X. Meng, S. Kundu, G. Pandey, and K. Basu, “Explainable ma-
chine learning for intrusiondetection via hardware performance counters”, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2022.

[155] H. Wang, H. Sayadi, S. M. P. Dinakarrao, A. Sasan, S. Rafatirad, and H. Homay-
oun, “Enablingmicro ai for securing edge devices at hardware level”, IEEE Jour-
nal on Emerging and Selected Topics in Circuits and Systems, 11, 4, pp. 803–815, 2021.

[156] Y. Wang, Y.-a. Tan, W. Zhang, Y. Zhao, and X. Kuang, “An adversarial attack on
dnn-based black-box object detectors”, Journal of Network and Computer Applica-
tions, 161, p. 102 634, 2020.

xxx

https://developer.arm.com/documentation/100095/0003
https://doi.org/10.1049/cp.2014.1285

[157] C. ARM, “A9 mpcore technical reference manual”, Revision: r4p1, 2010.
[158] H. Cho, P. Zhang, D. Kim, et al., “Prime+ count: novel cross-world covert chan-

nels on arm trustzone”, in Proceedings of the 34th Annual Computer Security Ap-
plications Conference, 2018, pp. 441–452.

[159] M. B. Bahador,M. Abadi, andA. Tajoddin, “Hpcmalhunter: behavioralmalware
detection using hardware performance counters and singular value decomposi-
tion”, in 2014 4th International Conference on Computer and Knowledge Engineering
(ICCKE), IEEE, 2014, pp. 703–708.

[160] Y. Liu, L. Wei, B. Luo, and Q. Xu, “Fault injection attack on deep neural net-
work”, in 2017 IEEE/ACM International Conference on Computer-Aided Design (IC-
CAD), IEEE, 2017, pp. 131–138.

[161] J. Breier, X. Hou, D. Jap, L. Ma, S. Bhasin, and Y. Liu, “Practical fault attack on
deep neural networks”, in Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, 2018, pp. 2204–2206.

[162] D. Jap, Y.-S. Won, and S. Bhasin, “Fault injection attacks on softmax function in
deep neural networks”, in Proceedings of the 18th ACM International Conference on
Computing Frontiers, 2021, pp. 238–240.

[163] W. Liu, C.-H. Chang, F. Zhang, and X. Lou, “Imperceptible misclassification at-
tack on deep learning accelerator by glitch injection”, in 2020 57th ACM/IEEE
Design Automation Conference (DAC), IEEE, 2020, pp. 1–6.

[164] A. S. Rakin, Y. Luo, X. Xu, and D. Fan, “Deep-dup: an adversarial weight dupli-
cation attack framework to crush deep neural network in multi-tenant FPGA”,
in 30th USENIX Security Symposium, USENIX Security 2021, August 11-13, 2021,
M. Bailey and R. Greenstadt, Eds., USENIX Association, 2021, pp. 1919–1936.
[Online].Available: https://www.usenix.org/conference/usenixsecurity21/
presentation/rakin.

[165] M. Vestias and H. Neto, “Trends of cpu, gpu and fpga for high-performance
computing”, in 2014 24th International Conference on Field Programmable Logic and
Applications (FPL), IEEE, 2014, pp. 1–6.

[166] I. Tsmots, O. Skorokhoda, andV. Rabyk, “Hardware implementation of sigmoid
activation functions using fpga”, in 2019 IEEE 15th International Conference on the
Experience of Designing and Application of CAD Systems (CADSM), IEEE, 2019,
pp. 34–38.

[167] Z. Li, Y. Zhang, B. Sui, Z. Xing, and Q.Wang, “Fpga implementation for the sig-
moid with piecewise linear fitting method based on curvature analysis”, Elec-
tronics, 11, 9, p. 1365, 2022.

xxxi

https://www.usenix.org/conference/usenixsecurity21/presentation/rakin
https://www.usenix.org/conference/usenixsecurity21/presentation/rakin

[168] MQTT, Mqtt: the standard for iot messaging, MQTT, Accessed 25 October 2022,
2022. [Online]. Available: https://mqtt.org/.

[169] Google, Qkeras, https://github.com/google/qkeras, 2022.
[170] F. Alcaraz, Fxpmath, https://github.com/francof2a/fxpmath, 2022.
[171] B. Biggio, I. Corona, D. Maiorca, et al., “Evasion attacks against machine learn-

ing at test time”, in Joint European conference on machine learning and knowledge
discovery in databases, Springer, 2013, pp. 387–402.

[172] B. Biggio, B. Nelson, and P. Laskov, “Poisoning attacks against support vector
machines”, arXiv preprint arXiv:1206.6389, 2012.

[173] A. Itagi, S. Krishvadana, K. P. Bharath, and M. Rajesh Kumar, “Fpga architec-
ture to enhance hardware acceleration for machine learning applications”, in
2021 5th International Conference on Computing Methodologies and Communication
(ICCMC), 2021, pp. 1716–1722. doi: 10.1109/ICCMC51019.2021.9418015.

[174] S. Gandhare and B. Karthikeyan, “Survey on fpga architecture and recent ap-
plications”, in 2019 International Conference on Vision Towards Emerging Trends in
Communication and Networking (ViTECoN), IEEE, 2019, pp. 1–4.

[175] E. Benhani, L. Bossuet, and A. Aubert, “The security of arm trustzone in a fpga-
based soc”, IEEE Transactions on Computers, 68, 8, pp. 1238–1248, 2019.

[176] L. L. Fast Machine, Hls4ml, https : / / github . com / fastmachinelearning /
hls4ml, 2022.

[177] D. Kumar, “Hardware-assisted online defense against malware and exploits”,
Nanyang Technological University, 2016.

xxxii

https://mqtt.org/
https://github.com/google/qkeras
https://github.com/francof2a/fxpmath
https://doi.org/10.1109/ICCMC51019.2021.9418015
https://github.com/fastmachinelearning/hls4ml
https://github.com/fastmachinelearning/hls4ml

	Introduction
	Thesis Context
	Introduction to the problem
	Threat Model

	Thesis Objectives
	Contributions
	Thesis Outline
	Publication List
	Introduction francais

	Background and State Of The Art
	Malware and Software Attacks Targeting Hardware Vulnerabilities
	Software Attacks
	Hardware Attacks
	Software Attacks Targeting Hardware Vulnerabilities
	Malware Classification

	Malware Detection
	Static Analysis
	Dynamic Analysis

	HPC-based Malware Detection, State of the Art
	Machine Learning and Security
	State of the Art, SATHV Detection
	State of the Art, Generic HPC Malware Detection for IoT
	Summary

	Background on Machine Learning and Feature Extraction
	Supervised ML
	Un-Supervised ML
	Supervised vs Unsupervised Machine Learning Models
	Feature Extraction

	Summary

	Local Detection of Software Attacks Targeting Hardware Vulnerabilities Using HPCs and ML
	Motivations of the Work
	Theoretical Side-Effects for SATHV Detection
	Practical Side-Effect Evaluation
	Effectiveness of Proposed Solutions on our Platform Using an Extended Set of SATHV

	Evasive Malware and Monitoring Interval
	MaDMAN: Detection of Software Attacks Targeting Hardware Vulnerabilities
	Methodology
	Results

	Summary

	A Local-Remote Implementation For The Detection of Attacks in Resource Constrained Systems
	Motivations of the Work
	Introduction to the Local-Remote Detection Mechanism
	Local ML Implementation
	Remote ML Implementation

	Local-Remote Parameter Configuration and Evaluation
	Experimental Platform
	HPC Event Selection
	Performance Metrics of Different ML Algorithms
	Local-Remote Implementation Detection Metrics
	Local-Remote Filtering and Communication Bandwidth
	False Positives Reduction using an Isolation Forest
	Isolation Forest Strategy Evaluation
	Evaluation of the Local MLs Overheads on the Local System
	Remote ML Latency Evaluation

	State Of the Art Comparison
	Summary

	A Hardware-based Local Detection Mechanism for the Security enhancement of the Local-Remote approach
	Motivations of the work
	Software attacks targeting the local detection mechanism
	Local ML hardware implementation
	Hardware Local ML Evaluation
	Hardware and Software Logistic Regression Metrics
	Hardware and Software Sigmoid Evaluation

	Conclusion

	Conclusion and Perspectives
	Summary of the contributions
	Limitations and tracks for improvements
	Long term perspectives
	Final words

	Appendices
	Appendix A
	HPC modification by a user-space application
	Hardware Local ML implementation

