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On the links between Global Sensitivity Analysis and Algorithmic Fairness for eXplainable and Fair Machine Learning

S'il n'est que quelques mots, en ce lieu déposés, Auxquels vous devriez prêter attention, Ceux-ci vont pour nombre, j'en suis sûr, s'avérer Parmi les plus pertinents et les plus aimés.

En effet, admirez l'avènement du temps Non de quelque rictus, de je-ne-sais quels chants Mais bien des louanges, autres remerciements qui ne seront pour vous qu'éloges et encens! Alors souffrez là cette tirade anormale! Car oui! Je nourris en mon for intérieur L'espoir que du souvenir de cette clameur, Vous n'aurez pas moins qu'une pensée amicale! Comment commencer autrement de tels propos Que par la famille? Elle a toujours été là: Lorsque tout va bien comme lorsque rien ne va. Peu importe la suite, elle continuera.

Continuons par ceux qui ont choisi de gré De partager leur quotidien à mes côtés Sébastien, Athé, la Bande des Lyonnais Jamais ne pourrais-je assez vous remercier.

On continue, viennent là tous les toulousains, Autres taroteurs, cobureaux, le beau gratin!, Ceux qui ont rendu ma vie dans la Belle Rose Un plaisir, je remercie jusqu'à l'overdose! Enfin, je terminerai ces quelques pensées Par ceux qui m'ont accompagné ces années tierces Merci de m'avoir montré ce qu'est la recherche: Un meilleur sujet, je n'aurai pu espérer.

Quant à celles et ceux dont j'ai pu faire fi N'y voyez pas là le signe d'une infamie Mais simplement un malheureux, facheux oubli. Vous êtes tout de même dans ma vie. <3

Introduction générale

Ce manuscrit est composé de cinq chapitres dont le détail est donné ci-dessous, ainsi que d'annexes contenant les preuves ou certains résultats techniques. Il est fortement recommandé de parcourir dans l'ordre des chapitres présentés.

• Le premier chapitre (en français) a pour but de donner un aperçu général des diverses notions qui seront abordées tout au long de cet écrit. Nous verrons ainsi que ce doctorat s'ancre dans une dynamique sociale récente et de grande ampleur, exhibant le lien existant entre Explicabilité et Équité Algorithmique. Un état de l'art de chacun de ces domaines est donné de manière indépendante, quand bien même la structure laisse deviner le sujet du chapitre suivant.

• Dans le deuxième chapitre (en anglais), nous formalisons un certain nombre de définitions. Puis, nous explicitons le lien qui existe entre l'Équité de Groupe et l'Analyse de Sensibilité Globale. Ce chapitre correspond à l'article [START_REF] Bénesse | Fairness seen as Global Sensitivity Analysis[END_REF], publié dans l'édition spéciale du journal Machine Learning consacrée à l'étude de l'Équité Algorithmique.

• Le troisième chapitre (en anglais) est consacré à l'étude de métriques, définies auparavant, dans le cas d'utilisation de métamodèles. Il étend un certain nombre de résultats précédemment présents dans la littérature et fournit une trame générale pour la résolution d'un type de problèmes récent que sont les audits.

• Le quatrième chapitre (en anglais) regroupe deux résultats indépendants l'un de l'autre. Tout d'abord seront développées les propriétés statistiques d'un nouvel estimateur des indices de Sobol' -brique élémentaire utilisée tout au long de ce manuscrit. Puis, nous évoquerons le sujet de la robustesse distributionnelle dans le cas de l'Analyse de Sensibilité Globale puis de la traduction de cette notion dans un cadre d'Équité Algorithmique

• Enfin, le cinquième chapitre (en français) récapitule le propos des chapitres précédents et fournit des pistes et perspectives pour des travaux futurs.

CONTENTS

Chapter 1

Une histoire d'influences

Motivations historiques, sociales et juridiques

Au cours des dernières années, le déploiement d'algorithmes utilisant du Machine Learning (ML) a explosé. Il est désormais presque impossible de trouver un pan de la société qui n'ait été touché par cette vague, un domaine qui n'ait vu l'arrivée de l'Intelligence Artificielle (IA en français, Artificial Intelligence ou AI en anglais). Que ce soit dans nos objets connectés de la vie courante ou dans les voitures pour les applications civiles, dans les usines ou en phase de conception pour l'industrie ou encore dans le traitement de données et la création de plans d'expérience dans la recherche, ce raz-de-marée technologique a changé nombre de paradigmes en l'espace de deux décennies, amenant par le biais du Big Data ce qui est désormais considéré par beaucoup de spécialistes comme la Quatrième Révolution Industrielle. La promesse est la suivante: les algorithmes automatiseront la plupart des tâches et, pour peu que l'on ait assez de données, feront bien mieux que l'être humain. Ce changement de système, passant d'une prise de décision humaine à une automatisation algorithmique, commence néanmoins à montrer ses limites. L'image de cette technologie en apparence omnipotente et omniprésente commence à s'effriter et à montrer de nombreux problèmes socialement inacceptables. Que ce soit le coût écologique d'une technologie vorace et insatiable ; l'absence de contrôle combiné avec la confiance absolue de l'utilisateur en un système supposé «infaillible» ; ou encore les exemples de plus en plus nombreux de dérives systémiques, ce que l'on pourrait nommer de «contrat algorithmique» montre de manière criante ses faiblesses. Autant de limitations qui ont amené la communauté scientifique et la société civile à passer au crible les algorithmes, délaissant l'idéologie du «accuracy above all», cette course peu précautionneuse aux résultats au prix de plus de données. Désormais, l'incitation est à «remettre l'humain dans la boucle» («put humans back in the loop», en référence à la boucle algorithmique) dans l'espoir de récupérer un certain nombre de caractéristiques faisant cruellement défaut à l'apprentissage statistique moderne. Cette prise de 10 CHAPTER 1. UNE HISTOIRE D'INFLUENCES conscience globale a été le déclencheur de ce qui tend désormais à être englobé par le terme de Cinquième Révolution Industrielle, c'est-à-dire une recherche de propriétés «socialement acceptables et éthiques» pour les algorithmes utilisés.

Il est important de noter qu'au delà de l'objet de recherche, les concepts étudiés ici le sont en ce qu'ils permettent de répondre à un besoin de la société civile. La dissonance conceptuelle de notre société entre la nécessité de compréhension, de contrôle et de maîtrise de ses outils, et le confort d'une technologie «clé en mains» qui n'a besoin pour fonctionner que de données toujours plus massives, n'était tenable qu'en l'absence d'accrocs. Maintenant qu'une prise de conscience des écueils évoqués précédemment s'est opérée, il semble inenvisageable de refermer cette boîte de Pandore. C'est pour cette raison que de nombreuses démarches provenant des sphères politico-juridiques cherchent à encadrer et codifier, à réguler, ce que sera l'Intelligence Artificielle de demain, gageure impossible sans l'expertise de la communauté scientifique et technique. C'est précisément le côté extrêmement adaptable du Machine Learning, ce qui en a fait sa force, qui oblige les différentes communautés à converger l'une vers l'autre. D'un point de vue concret, de nombreux textes pionniers ont été produits récemment par la Commission Européenne qui se veut le point focal de cette régulation. Parmi ceux-ci, nous pouvons noter le «Livre Blanc sur l'Intelligence Artificielle», l'«Artificial Intelligence Act», ainsi que le duo de lois que sont le «Digital Market Act» et le «Digital Service Act». Ce quatuor de textes a pour but de définir le paysage technologique, juridique et social dans lequel se positionnent ces outils afin de proposer une nomenclature sur les Systèmes d'Intelligence Artificielle et les contextes particuliers pouvant nécessiter une attention accrue à l'égard de ces algorithmes data-vores. In fine sont demandés des outils statistiques, des normes techniques et des audits permettant de vérifier que les vertus éthiques et autres caractéristiques mentionnées ont bien été prises en compte.

Mais si la question «Pourquoi l'IA a besoin d'être régulée et encadrée?», ainsi que sa suite logique «Par quel type de moyens l'IA peut-elle être régulée?», sont du ressort de la société, nous allons nous intéresser à la problématique qui sera la clé de voûte de ce manuscrit: «Quelle partie de l'IA voulons-nous encadrer et de quelle manière pouvons-nous le faire?» Parmi la longue liste des défauts potentiels d'une IA «naïve» (e.g. accès aux données privées/privacy ou encore coût écologique), nous allons ici nous préoccuper de deux sujets particuliers que sont la Loyauté ou Équité Algorithmique (Algorithmic Fairness ou tout simplement Fairness en anglais) qui se préoccupe des biais discriminants exhibés par les algorithmes; et l'Explicabilité, au moyen de l'Analyse de Sensibilité (Sensitivity Analysis en anglais) que l'on retrouve dans la littérature sous l'acronyme «XAI» (eXplainable AI ). Une emphase sera notamment mise sur la version distributionnelle de ces notions, c'est-à-dire en se plaçant dans un cadre probabiliste qui sera défini par la suite. Chacune sera développée ci-dessous dans une section qui lui est propre, et elles le seront de manière indépendante l'une de l'autre. La structure sera la même dans les deux cas, commençant par les motivations sous-jacentes propres à ces concepts, puis 1.2. ÉQUITÉ ALGORITHMIQUE une analyse des outils proposés par la communauté scientifique pour répondre à ces problématiques. Bien que chaque section se suffise à elle-même, il devrait être clair à la fin de ce chapitre que les problématiques, sans être deux faces d'une même pièce, sont assez proches pour être profondément connectées.

Équité algorithmique

Une des premières préoccupations dans ce but d'insérer des «valeurs humaines dans l'IA» est l'Équité Algorithmique. Ce sujet est probablement celui qui a été le plus mis en avant par la société ces dernières années et le plus documenté par les médias. Cela vient principalement du fait que les "défauts d'équité", c'est-àdire les situations dans lesquelles un algorithme fait preuve de discriminations, sont particulièrement visibles. Ainsi, que ce soit en analyse de langage naturel automatisée [De-+19; GG19], en reconnaissance faciale [START_REF] Kay | Unequal representation and gender stereotypes in image search results for occupations[END_REF], en assurance [START_REF] Barry | The Fairness of Machine Learning in Insurance: New Rags for an Old Man?[END_REF] ou encore en justice prédictive [START_REF] Flores | False positives, false negatives, and false analyses: A rejoinder to machine bias: There's software used across the country to predict future criminals. and it's biased against blacks[END_REF] (et les exemples ne sont pas restreints aux seuls domaines cités ici), un algorithme dicté uniquement par la recherche de performance maximale peut parfois exhiber des comportements inacceptables.

Notons que la notion d'équité dans la prise de décision sociale n'est pas une idée nouvelle. De nombreux philosophes ont pensé la société au prisme de l'équité. Parmi les plus contemporains d'entre eux, nous pouvons par exemple citer J.Rawls et son ouvrage "Justice as Fairness" [START_REF] Rawls | A theory of justice[END_REF], écrit en 1985, qui affirme que la société et la justice sont une affaire d'équilibre et d'équité entre les plus favorisés et les plus défavorisés. De manière similaire, en restant dans le domaine juridique, la règle dictée aux États-Unis au début des années 1970 du "80%" (cf. le California's Fair Employment and Housing Act) énonce que les ratios d'embauches entre sous-populations défavorisés et favorisées devraient être supérieurs à 80%, sans quoi les recruteurs peuvent être poursuivis pour discrimination. Pourtant, force est de constater que les discriminations peuvent encore survenir. L'automatisation prenant place dans toutes les parts de notre société peut amener autant de potentielles discriminations, avec leurs lots de conséquences désastreuses qui ont été documentées dans un certain nombre de situations (e.g. l'analyse de l'algorithme «COMPAS» développé par l'entreprise Northpointe [START_REF] Washington | How to Argue with an Algorithm: Lessons from the COMPAS ProPublica Debate[END_REF]). Ce simple fait est le moteur principal d'une littérature foisonnante spécialisée dans la prise de décision algorithmique équitable, l' Équité algorithmique.

Il est important de noter qu'il n'est pas pour autant question ici de simple "traduction" de concepts juridiques et sociaux en termes algorithmiques. Des spécialistes ont mis en avant le fait que les discriminations dues à un algorithme inéquitable sont différentes des discriminations faites par un humain, et plus complexes à déceler, à quantifier et à corriger [START_REF] Wachter | Counterfactual explanations without opening the black box: Automated decisions and the GDPR[END_REF][START_REF] Dwork | Abstracting fairness: Oracles, metrics, and interpretability[END_REF]. En effet, la discrimination humaine est le plus souvent une discrimination "directe" au sens où l'on constate une lien quasi-causal entre un attribut sensible (appartenance à un groupe discriminé) et une conséquence (comme une embauche ou l'accès à un prêt par exemple). Au contraire, l'algorithme, de par sa nature et son fonctionnement, CHAPTER 1. UNE HISTOIRE D'INFLUENCES a tendance à prendre en compte un très grand nombre de paramètres dans sa prise de décision. Ainsi, ce n'est peut-être pas directement l'attribut sensible qui pousse le changement de décision mais l'effet de cette appartenance sur un grand nombre d'autres paramètres qui, de manière cumulée, va entraîner la discrimination, d'où le terme de discrimination "indirecte". C'est en particulier ce fait qui explique l'inefficacité de la "fairness through unawereness" [START_REF] Dwork | Fairness Through Awareness[END_REF] qui prônait le fait de simplement supprimer les attributs sensibles des jeux de données. L'idée peut sembler de prime abord efficace mais ne l'est en fin de compte que très peu, un attribut sensible étant le plus souvent corrélé avec d'autres variables et l'algorithme parvenant ainsi à le «deviner». De plus, la notion d'équité peut dépendre du contexte dans lequel on l'applique. Avec des agents humains (e.g. juges), cette adaptation au contexte est appliquée de fait mais ce n'est a priori pas le cas pour une machine [START_REF] Dwork | Abstracting fairness: Oracles, metrics, and interpretability[END_REF].

Nous avons mentionné précédemment qu'une forte demande d'outils à ce sujet provenait de la société civile. Nous allons donc expliciter ici comment la communauté scientifique répond à ce besoin en décrivant un certain nombre de méthodes. La vaste majorité du propos sera ici dévolue aux méthodes dites distributionnelles, bien qu'un aparté sur le point de vue individuel sera présent. Nous mettrons en exergue comment les métriques d'équité utilisées reviennent le plus souvent à la recherche d'une égalité d'indicateurs à travers tous les groupes et toutes les sous-populations existantes. Un grand pan de la littérature concerne donc, dans un ordre croissant de difficulté, la détection, la quantification et la mitigation de ces biais discriminants. Au fur et à mesure, il devrait paraître de plus en plus clair que l'équité algorithmique est avant tout une question de compromis et de choix éclairé. Bien qu'offrant des outils, aucune réponse n'est purement décorrélée du contexte dans lequel elle est apportée, de sorte qu'un dialogue avec les utilisateurs finaux de l'algorithme sera toujours de mise.

Notations et hypothèses courantes

Le cadre utilisé en Équité Algorithmique est le suivant. Les variables d'entrée utilisées par un algorithme sont considérées comme étant des variables aléatoires. Elles sont données en entrée à un algorithme déterministe qui est assimilé à une boîte noire (c'est-à-dire qu'il est impossible de connaître quoi que ce soit sur la structure de cet algorithme) et ne seront connus que les couples (Variables d'entrée -Sortie). Dans ce cadre, les variables d'entrée sont de deux types. Tout d'abord se trouvent les variables non-protégés, que l'on dénote par X = (𝑋 1 , . . . , 𝑋 𝑝 ), qui sont les variables ou caractéristiques que l'on retrouve dans le cadre classique en Machine Learning. Le second type sont les variables dites sensibles ou protégées, que l'on dénote par S = (𝑆 1 , . . . , 𝑆 𝑚 ). Ces dernières représentent des marqueurs sociaux ou biologiques pouvant être source de biais. En général, ces variables sensibles sont binaires et marquent l'appartenance à une partie de la population (e.g origine ethnique, sexe biologique, etc) mais des exemples de variables sensibles continues existent, notamment en biologie et en médecine (e.g. poids, taux de glucose dans le sang, marqueur d'handicap, etc). Enfin, nous avons un algorithme 𝑓 sur lequel aucune hypothèse n'est faite (i.e 𝑓 Symbole mathématique Signification X = (𝑋 1 , . . . , 𝑋 𝑝 )

Liste des variables non-protégés en entrée de l'algorithme x = (𝑥 1 , . . . , 𝑥 𝑝 ) Réalisation de la variable aléatoire X 𝑝 Nombre de variables non-protégés utilisés S = (𝑆 1 , . . . , 𝑆 𝑚 )

Liste des variables sensibles en entrée de l'algorithme s = (𝑠 1 , . . . , 𝑠 𝑚 ) Réalisation de la variable aléatoire S 𝑚 Nombre de variables sensibles utilisés 𝑓 Algorithme utilisé 𝑌 := 𝑓 (X, S)

Variable aléatoire correspondant à la sortie de 𝑓 ℱ(•)

Mesure de Fairness générique appliquée à un modèle.

Table 1.1: Différentes notations utilisées dans le cadre «Fairness» est une boîte noire). Si besoin est, nous dénoterons par une lettre minuscule une réalisation du vecteur aléatoire dénoté par la même lettre en majuscule (e.g x pour une réalisation de X).

Dans la majorité de la littérature, S est supposé unidimensionnelle (i.e. il n'y a qu'une seule variable sensible). Dans ce cas, nous dénotons par 𝑆 cette variable protégée. Le cas multidimensionnel est lié à la notion d'intersectionalité, voir Remarque 1.

Pour compléter le cadre, l'Équité se quantifie à l'aide d'une «mesure de Fairness». Cette quantité a pour but de quantifier à quel point un modèle est équitable en un certain sens. Lorsque nécessaire, nous noterons par ℱ(𝜑) une mesure de Fairness générique qui serait appliquée à l'algorithme 𝜑 (par rapport à la variable 𝑆 qui sera le plus souvent sous-entendue). Des exemples plus précis seront fournis lorsque nous étudierons les différentes définitions d'Équité.

Remarque 1 (Intersectionalité). Bien qu'une part conséquente de la littérature soit composée de l'analyse de biais provoqués par une seule variable protégée, il est possible pour un individu d'être discriminé de manière particulièrement véhémente en raison d'une appartenance à plusieurs minorités en même temps [START_REF] Foulds | An Intersectional Definition of Fairness[END_REF][START_REF] Bénesse | Fairness seen as Global Sensitivity Analysis[END_REF]. Ce fait a par exemple été documenté pour la reconnaissance faciale. Dans ce domaine, les personnes ayant une peau foncée peuvent être moins bien reconnue que celles possédant une peau claire. De manière similaire, les modèles performent parfois moins bien sur les femmes que sur les hommes (en considérant cette variable binaire). Des analyses ont montrée que les performances sur des femmes de couleurs pouvaient parfois être encore plus dégradées qu'un simple cumul des biais «homme-femme» ou ceux dûs à la couleur de peau.

Cette discrimination «majorée» est prise en compte dans ce que l'on appelle l'équité intersectionnelle. Ces biais apparaissent lorsqu'un individu appartient à l'intersection de plusieurs groupes minoritaires, dans un cadre avec plusieurs variables sensibles. Il est possible de quantifier ce biais additionnel de la même manière qu'un biais classique mais l'expérimentateur est alors rapidement confronté à un problème d'échantillonage. Trouver quelqu'un appartenant à diverses minorités est une tache de plus en plus ardue au fur et à mesure que le nombre CHAPTER 1. UNE HISTOIRE D'INFLUENCES de variable augmente. L'estimation de ces biais est donc de plus en plus complexe et sensible au bruit.

Nous verrons dans le prochain chapitre des outils permettant, à défaut d'estimer précisément la force de ces iniquités intersectionnelles, de les majorer sans coût additionnel.

Définitions classiques de métriques de Fairness

Équité de groupe L'idée fondatrice de l'équité de groupe (Group Fairness dans la littérature anglosaxonne) est la suivante: il faut que le modèle ait des comportements similaires au sein de la classe majoritaire et de la classe minoritaire (dans le cas binaire 𝑆 = 0 ou 𝑆 = 1, qui est le plus courant). Si tel est le cas, alors l'algorithme sera considéré comme étant équitable. Dans le cas contraire, l'appartenance à une de ces deux sous-populations est le marqueur d'un changement de décision de la part de l'algorithme et celui-ci présente donc des biais discriminants. Le lecteur intéressé peut trouver plus de détails dans [START_REF] Dwork | Fairness Through Awareness[END_REF][START_REF] Chouldechova | Fair Prediction with Disparate Impact: A Study of Bias in Recidivism Prediction Instruments[END_REF][START_REF] Del Barrio | Review of Mathematical frameworks for Fairness in Machine Learning[END_REF].

Mais qu'entendons-nous par le terme de «comportements similaires»? Nous allons voir que le comportement visé correspond à une métrique de Fairness et encode ici une information en moyenne ou une information distributionnelle sur les deux lois de probabilités que sont P 𝑓 (X,𝑆=0) et P 𝑓 (X,𝑆=1) . Nous présentons ici les métriques les plus classiques mais le fond reste toujours le même: l'équité parfaite correspond à l'égalité de ces métriques à travers toutes les sous-populations.

Métriques en moyenne L'exemple le plus classique d'équité de groupe est probablement le Disparate Impact [START_REF] Besse | A survey of bias in Machine Learning through the prism of Statistical Parity for the Adult Data Set[END_REF]. Si l'on suppose que l'on a un classifieur binaire (𝑓 (X, 𝑆) ∈ {0, 1}) et une variable protégé elle-même binaire (e.g. appartenance à une minorité), alors l'équité est atteinte au sens du Disparate Impact lorsque la probabilité de succès est la même, quel que soit la valeur de l'attribut sensible: P(𝑓 (X, 𝑆) = 1|𝑆 = 0) = P(𝑓 (X, 𝑆) = 1|𝑆 = 1). Néanmoins, cette condition peut être trop restrictive et donc relâchée afin d'obtenir une équité approximative, voir Remarque 3. Nous utiliserons notamment dans la suite la relaxation (P(𝑓 (X, 𝑆) = 1|𝑆 = 0) -P(𝑓 (X, 𝑆) = 1|𝑆 = 1))

2 ≤ 𝜀 avec 𝜀 un seuil limite. Dans la littérature, une autre relaxation est souvent utilisée en prenant le ratio de ces deux quantités. Ainsi, il faut que le Disparate Impact, noté DI et défini par

DI(𝑓 ) := P(𝑓 (X, 𝑆) = 1|𝑆 = 0) P(𝑓 (X, 𝑆) = 1|𝑆 = 1) , (1.1)
soit le plus proche possible de 1. Si le Disparate Impact est égal à 1, alors les deux groupes ont les mêmes chances de succès. Notez que la règle des "80%" évoquée un peu plus tôt correspond au fait que le Disparate Impact soit supérieur à 0, 8.

Remarque 2. Le Disparate Impact a été défini à l'origine dans le cadre d'un seul attribut sensible binaire. Parce que l'on considère la condition 𝑆 = 0 en 1.2. ÉQUITÉ ALGORITHMIQUE numérateur et 𝑆 = 1 au dénominateur, avec l'hypothèse implicite que la probabilité de succès est plus faible pour la sous-population discriminée, le Disparate Impact sera toujours compris entre 0 et 1. Si l'attribut sensible est catégoriel, alors cette quantité peut tout de même être défini en comparant le minimum de la probabilité de succès pour toutes les sous-populations sur le maximum de la probabilité de succès, c'est-à-dire

DI(𝑓 ) := min 𝑠 P(𝑓 (X, 𝑆) = 1|𝑆 = 𝑠) max 𝑠 ′ P(𝑓 (X, 𝑆) = 1|𝑆 = 𝑠 ′ ) . (1.2)
Cette métrique, malgré (et à cause de) sa simplicité, présente un certain nombre de limites. Cela a amené la communauté à développer des variantes, souvent basées sur l'égalité pour tous les sous-groupes d'autres quantités en moyenne relatives au classifieur. C'est par exemple le cas des métriques «Avoiding Disparate Treatment», «Avoiding Disparate Treatment», ou encore «Equality of Odds». Le lecteur trouvera dans la Table 2.2 la définition mathématique de ces métriques.

Métriques distributionnelles Un point commun entre toutes ces techniques est la recherche d'une égalité entre deux distributions, celle des sorties données par l'algorithme pour la sous-population discriminée P 𝑓 (X,0) et celle des sorties données par l'algorithme pour la sous-population non-discriminée P 𝑓 (X,1) . Or, comme nous le verrons dans la section suivante relative à l'explicabilité, il existe diverses distances ou divergences pour également quantifier ce type d'égalités distributionnelles. Ce constat a entraîné son lot de nouveaux indicateurs d'équité. Parmi ceux-ci, nous pouvons par exemple citer 1. l'utilisation du transport optimal [START_REF] Del | Obtaining fairness using optimal transport theory[END_REF], comparant ainsi la distribution des sorties données à la classe majoritaire à la distribution des sorties données à la classe minoritaire ;

2. l'utilisation des HSIC (Hilbert-Schmidt Independence Criterion), critère basé sur la notion de RKHS (Reproducing Kernel Hilbert Space) fréquemment utilisée pour les techniques à noyaux, voir [START_REF] Gretton | Kernel Methods for Measuring Independence[END_REF][START_REF] Li | Kernel Dependence Regularizers and Gaussian Processes with Applications to Algorithmic Fairness[END_REF] ; ou encore Shapley, critère provenant de la théorie des jeux (voir [FRF; HDV20]) ; tous deux explicités dans la prochaine section ;

3. ou encore la corrélation maximale HGR (Hirschfeld-Gebelein-Rényi) qui est une généralisation du coefficient de corrélation de Pearson avec l'utilisation de fonctions test, voir [MCK].

Cette liste est loin d'être exhaustive et nous recommandons au lecteur intéressé de parcourir les références suivantes, toutes développant une nouvelle métrique quantifiant une notion de distance ou de divergence distributionnelle: [GKK18; BGW19; Chi19; ODP19; Ris+21]. Ces dernières années ont vu l'arrivée d'un grand nombre de méthodes quantifiant des marqueurs et couvrant des définitions spécifiques de l'Équité de Groupe, et le chapitre suivant sera un moyen de mettre un cadre unificateur sur ces méthodes.
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Remarque 3 (Équité parfaite ou approximative). L'équité algorithmique est parfaitement atteinte lorsque les quantités d'intérêt mentionnées au-dessus (taux de succès dans le cas le plus simple) sont égales pour toutes les sous-population potentiellement discriminées. Néanmoins, cette égalité s'obtient parfois au prix d'une dégradation des performances, de sorte que le praticien soit confronté à un compromis entre un algorithme informatif et répondant à un objectif potentiellement biaisé, et un algorithme parfaitement équitable. Il est courant que ce compromis soit particulièrement complexe à respecter et que la contrainte d'équité soit trop dure pour être implémentée de manière réaliste. Dans ce cas, il est nécessaire de «relâcher» celle-ci et de demander non pas une parfaite égalité à travers tous les groupes, mais simplement «suffisamment peu de différences». Cette équité approximative nécessite donc un seuil à fixer au préalable, seuil correspondant au niveau de laxisme autorisé au modèle utilisé. Ce niveau dépend du contexte et provient des contraintes conjoncturelles (e.g. normes techniques imposées par un organisme). Comme mentionné plus tôt, ce concept n'a pas été inventé pour répondre aux problématiques modernes de Machine Learning puisque l'on retrouve des équivalents directs dans les lois déjà en vigueur.

Remarque 4 (De la nécessité d'un choix). Nous l'avons évoqué précédemment, le choix d'une métrique de fairness est primordial afin de cibler un type de discrimination précis que l'on veut réduire ou faire disparaître. Mais sommesnous réellement obligés de faire ce choix?

Malheureusement, la réponse est oui. Il est nécessaire de faire un choix, bien que l'idée de forcer un modèle à être équitable selon toutes les définitions d'équité semble intéressante et, in fine, l'idéal. C'est pourtant impossible car ces définitions sont parfois incompatibles entre elles. Alors même que forcer un algorithme à être équitable par rapport à une métrique revient à faire un compromis, en rajouter d'autres peut imposer plus de contraintes et mener l'algorithme à ne plus être informatif. De plus, certaines conceptions de l'équité sont intrinsèquement opposées et incompatibles, de telle sorte qu'il soit impossible de les réaliser en même temps. Ainsi, bien qu'il soit tentant d'éviter le choix d'une équité à respecter, cette démarche n'est pas une solution [START_REF] Kleinberg | Inherent trade-offs in the fair determination of risk scores[END_REF].

Équité locale

Un autre penchant de l'équité algorithmique a été développé non pas au niveau distributionnel («Est-ce que le modèle possède un biais générique contre telle minorité?») mais plutôt au niveau individuel («Est-ce que tel individu en particulier a été victime de discrimination?»). Cette vision, connue sous le nom d'équité locale (Local Fairness), englobe l'ensemble des techniques permettant de répondre à cette dernière question. Un des méthodes les plus courantes consiste en la recherche de ce qui est appelé dans la littérature de Machine Learning des contrefactuels [Kus+18; Lar+21b; WMR17]. Pour un individu donné, appartenant à une minorité, sera créé un alter-ego en tout point semblable mais appartenant à la majorité. Si l'individu de la minorité a moins de chances de succès que son équivalent dans la majorité, alors c'est là la preuve d'une 1.2. ÉQUITÉ ALGORITHMIQUE discrimination. Néanmoins, des travaux récents ont mis en exergue les difficultés que peut engendrer la recherche de ce doppelganger. Pour visualiser le coeur du problème, prenons un exemple simple. Supposons que Bob soit un homme mesure 1m85, ce qui le place aux environs des 10% des hommes les plus grands. Si nous sommes à la recherche d'Alice, un alter ego de Bob de sexe féminin, faut-il que celle-ci mesure 1m85 également? Ou serait-il préférable qu'elle ait la taille qui la placerait au niveau des 10% des femmes les plus grandes (soit aux alentours de 1m70)? La réponse à cette question, une fois de plus, peut dépendre du contexte (e.g. le modèle cherche-t-il une taille absolue à dépasser ou le simple fait d'être parmi les plus grands?). Mais au delà de ce fait, la notion même de quantile, que nous avons utilisé dans ce cas simple univarié, n'est pas bien définie pour plusieurs variables, ce qui rend l'analogie plus complexe en multivarié. Pour cette raison, certains travaux ont été menés afin d'utiliser la notion de transport optimal, permettant de connaître pour tout individu son équivalent dans l'autre sous-population.

Remarque 5 (Graphes causaux). Un moyen de rapidement visualiser les potentielles sources d'iniquités est l'utilisation de graphes causaux [START_REF] Pearl | CAUSALITY, 2nd Edition[END_REF][START_REF] Schölkopf | Causality for Machine Learning[END_REF]. Ces DAGs (Directed Acyclic Graphs) montrent les influences existantes entre toutes les variables d'entrée, et entre ces variables et la sortie du modèle. Par le prisme de cet outil, il est donc possible de cibler une manière spécifique qu'aurait une variable sensible de provoquer des discriminations dans la décision algorithmique en bout de chaîne [START_REF] Benjamin R Baer | Fairness criteria through the lens of directed acyclic graphical models[END_REF][START_REF] Chiappa | Path-Specific Counterfactual Fairness[END_REF]. Il est à noter que chacune de ses manières se traduit directement en Équité globale en terme d'indicateurs vus précédemment. Que ce soit par un lien direct de la variable protégée vers la sortie, par agrégat à travers tous les chemins possibles ou encore par le biais d'un chemin spécifique, il est possible de quantifier exactement le poids de cette iniquité ciblée. Cela se traduit également d'un point de vue local, individuel, ou au niveau du modèle par l'utilisation de contrefactuels, aisément représentés et visualisables sur un graphe causal.

Néanmoins, bien que ces méthodes soient extrêmement pratiques de par leur transversalité, elles ne sont pas toujours utilisables. En effet, au delà de potentiels problèmes d'identifiabilité, leur coût devient souvent prohibitif lorsque le nombre de variables considérées croît, en raison de l'explosion de la combinatoire associée [START_REF] De | Counterfactual Models: The Mass Transportation Viewpoint[END_REF].

Mitigation des biais

Après avoir détecté un biais discriminant dans une décision algorithmique et quantifié l'ampleur de ce défaut, encore faut-il être capable de le corriger! Pour cela, il existe trois familles de procédés permettant d'opérer, connues sous le nom de «pré-processing», «in-processing» et «post-processing». Face à ce constat, la communauté statistique apporte tout un panel d'outils qui sont inclus sous la dénomination de Quantification d'incertitudes pour obtenir de l'explicabilité et de la compréhension dans le fonctionnement interne de ces algorithmes. Nous mettrons tout particulièrement l'emphase sur ce qui est appelé l'Analyse de Sensibilité [Da 15; Da +21]. L'objectif principal de cette littérature est de répondre à la question suivante: Parmi toutes mes variables d'entrées, laquelle ou lesquelles sont les plus influentes sur la sortie donnée par l'algorithme que j'ai à ma disposition? Nous allons voir que, de manière similaire à l'équité, des points de vue locaux et globaux peuvent être adoptés afin de comprendre au mieux le fonctionnement d'une boîte noire, c'est-à-dire un algorithme pour lequel il est impossible de connaître la structure interne. Comme précédemment, nous porterons tout particulièrement notre attention sur le point de vue distributionnel. Pour cela, nous serons amenés à définir un certain nombre d'indices qui seront des indicateurs de ces influences. Par la suite, nous mentionnerons des travaux portant sur l'estimation de ces indices, observant l'apparition de nouvelles techniques et schémas d'estimation. Enfin, nous aborderons ce qu'il se passe lorsque l'on change la distribution des entrées; ou encore lorsque l'on utilise non pas l'algorithme directement mais plutôt un méta-modèle, c'est-à-dire une approximation de celui-ci. Une hypothèse classique de cette littérature est l'indépendance des variables d'entrées. Cela se traduit par l'égalité P X = P 𝑋1 × • • • × P 𝑋𝑝 . Cette hypothèse vient des origines historiques du domaine puisque souvent réalisées dans le cas de codes expérimentaux, dans lequel les variables génératrices sont souvent uniformes entre deux valeurs nominales, et indépendantes les unes des autres. Néanmoins, elle est très peu réaliste dans le cas d'applications réelles, ce qui a mené l'émergence de travaux visant à relâcher cette condition. Nous les évoquerons plus en détail lorsque nous parlerons des indices de Sobol'.

Notations et hypothèses courantes

Une question de distances

En réalité, lorsque l'on s'intéresse à l'influence d'une variable aléatoire sur une autre, ou sur une sortie d'algorithme, nous sommes en fin de compte en train de nous intéresser à la notion intuitive de "quasi-indépendance". Même si ce terme n'a, a priori, pas de définition claire d'un point de vue mathématique, il semble intuitif de dire que moins la variable aléatoire 𝑋 ne va avoir d'influence sur la variable aléatoire 𝑌 , plus ces deux variables sembleront indépendantes l'une de l'autre.

En À l'interface entre ces méthodes distributionnelles et celles développées autour de la variance que nous verrons après se trouvent les HSIC (Hilbert-Schmidt Independence Criterion) [Gre+]. Basés sur une approche de type noyaux, l'idée est de généraliser la notion de covariance, par la notion d'opérateur de covariance croisée. Cet opérateur quantifie les corrélations aux différents ordres arrivant lorsque l'on regarde les données au prisme d'un noyau (ou kernel ) choisi. L'avantage de cette technique est de proposer un cadre commun dans lequel l'estimation de ces indices est aisée et dans lequel le praticien peut «mettre sa patte» par le choix du noyau. En revanche, afin d'être réellement indicatif, il est nécessaire que les noyaux soient caractéristiques. Dans ce cas, et uniquement si les noyaux sont caractéristiques, la nullité de l'indice HSIC traduit réellement une indépendance des variables et non pas simplement une absence de corrélation. De plus, en l'absence de normalisation et de bornes sur les valeurs possibles, l'analyse peut être délicate, à moins d'utiliser de récents résultats au prix d'une contrainte de plus. Le cumul de ces deux contraintes sont le moteur du développement des indices basés sur la décomposition de la variance.

Indices basés sur la décomposition de variance

Les indices les plus utilisés sont les indices de Sobol' [START_REF] Sobol | On sensitivity estimation for nonlinear mathematical models[END_REF][START_REF] Saltelli | Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index[END_REF]. Basés sur la décomposition d'Hoeffding, équivalent de l'ANOVA fonctionnelle que l'on applique à la sortie de l'algorithme, chaque indice est associé à une variable ou à un groupement de variable et permet de quantifier l'influence sur la sortie, par le biais d'un pourcentage de variabilité expliquée. Parmi les avantages présentés par cette méthode, ce «pourcentage de variabilité expliquée» permet de traquer les influences et leurs origines, et donc de répondre aisément à des questions telles que «Quelle est la variable la plus déterminante dans le résultat? » (i.e. quelle est la variable avec l'indice de Sobol' le plus élevé?) ou encore «Peut-on mettre cette variable à une valeur nominale, voire la supprimer, sans que cela n'ait de conséquence sur le résultat? » (i.e. cette variable a-t-elle un indice de Sobol' suffisamment faible). C'est par exemple un élément de décision possible dans un cas de screening ou de réduction de dimensions [AC21 [START_REF] Il Idrissi | Developments and applications of Shapley effects to reliability-oriented sensitivity analysis with correlated inputs[END_REF]. En revanche, une attention particulière reste de mise dans leur analyse afin de ne pas leur faire dire plus qu'ils ne disent réellement.

Les indices de Cramér-von-Mises, quant à eux, répondent à une autre limitation: une décomposition de la variance ne traduit a priori qu'une «information L 2 », c'est-à-dire une information de second moment sur la distribution de la sortie. Pour répondre à ce problème, les indices de Cramér-von-Mises [START_REF] Gamboa | Sensitivity analysis based on Cramér von Mises distance[END_REF] ont vu le jour, pouvant être vus de manière équivalente comme l'utilisation de la distance de Cramér-von-Mises plutôt que la variance ; ou alors comme l'application de la décomposition d'Hoeffding aux différentes lignes de niveaux de la fonction de répartition de la loi de sortie, qui correspond à une information distributionnelle. Pour des considérations pratiques, ces valeurs obtenus sur les différentes lignes de 

Estimation de ces indices

Bien que l'objectif soit de trouver le bon indicateur permettant de répondre à la question posée, il est tout aussi important, en pratique et confronté aux données, d'être capable d'obtenir une bonne estimation de cet objet théorique. Dans cette sous-section, le but est d'explorer les différentes stratégies d'estimation existantes en GSA, ainsi que de fournir les garanties théoriques que l'on peut trouver dans la littérature pour ces estimateurs. Nous mettrons également en exergue la taille des échantillons de données nécessaires pour l'obtention pour l'estimation, montrant que tous les schémas ne sont pas équivalent. La première stratégie, probablement la plus naïve, consiste à utiliser des méthodes de type Monte-Carlo. Cette estimation n'est pas l'apanage seul des indices basés sur la variance puisqu'on les retrouve notamment, en restant dans un cadre d'Analyse de Sensibilité, lors de l'utilisation des HSIC par exemple [Gre+]. Les indices de Sobol' étant en essence un ratio entre une variance conditionnelle et une variance, il suffit d'estimer chacune de ces quantités par un «plug-in» direct par les techniques classiques de Monte-Carlo. Les résultats de convergence dans ce registre sont similaires aux résultats classiques à cette littérature. On retrouve par exemple la convergence, ainsi que la normalité asymptotique de ces estimateurs. Dans certains contextes, par exemple pour l'analyse de sorties particulières (e.g. pour des indices «target-oriented» [DBM22]), il peut être intéressant de pondérer les distributions étudiées en utilisant de l'échantillonage préférentiel. Se faisant, il est possible d'obtenir plus efficacement l'information souhaitée sur les quantités d'intérêt, au prix d'une connaissance accrue sur les distributions sous-jacentes qui n'est pas toujours accessible. Cette méthode a été utilisée en combinaison avec des indices HSIC pour mener à la GSA de second niveau dont nous parlerons plus en détail dans un chapitre ultérieur, voir
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Chapitre 4 et [START_REF] Meynaoui | New statistical methodology for second level global sensitivity analysis[END_REF].

Le second type de schéma d'estimation que l'on peut rencontrer en GSA est appelé le «Pick and Freeze» [START_REF] Gamboa | Statistical inference for Sobol pick-freeze Monte Carlo method[END_REF]. Il part du constat suivant: en permutant les lignes d'un tableau de données contenant mes entrées, sauf pour la colonne correspondant spécifiquement à la variable dont nous voulons connaître l'influence, il est possible de mettre en exergue la dépendance entre cette variable et la sortie que nous avions. Si uniquement cette variable est pertinente pour la sortie, la réponse du modèle à ce nouveau dataset sera exactement la même que précédemment. Dans le cas contraire (aucune influence de la variable sur la sortie), le réponse du modèle à ce nouveau dataset sera une permutation des sorties observées avant. Dans le cadre classique d'indices de Sobol', il suffit donc de s'intéresser à la covariance entre les sorties fournies par le dataset nonmodifié et par les sorties fournies par le dataset modifié avec la variable d'intérêt choisie («Pick») et gelée, non-permutée («Freeze»). Cette technique est d'un grand intérêt car elle ne nécessite que de permuter des lignes d'entrées, sans considération de dimension pour l'estimation d'un indice particulier, utilisant pour se faire 2𝑛 données, où 𝑛 est le nombre d'individus dans le tableau de données. En revanche, la contrepartie de cette estimation à faible coût est la nécessité d'être capable de (re-)générer la sortie du modèle pour un nouveau vecteur d'entrées, et donc d'avoir accès à ce simulateur. Ce n'est pas toujours le cas et ce sera le principal désavantage de cette méthode face à l'estimation «givendata» présentée par la suite Dans ce schéma d'estimation, des performances similaires sont notées (convergence, normalité asymptotique) avec le coût réduit de 2𝑛 que nous avons mentionné, ce qui a poussé cette estimateur à être largement utilisé. On obtient la totalité des indices de Sobol' quantifiant l'influence directe de chaque variable pour un coût de 2𝑛 × 𝑝 appels au modèle. Enfin, l'estimation pour un groupe de variable se fait de la même manière en gelant toutes les variables incluses dans le groupe et en permutant les autres.

Plus récemment, une nouvelle stratégie d'estimation a vu le jour, toujours basée sur cette réécriture de la variance conditionnelle encodant l'influence comme un covariance. Proposée par Chatterjee [START_REF] Chatterjee | A New Coefficient of Correlation[END_REF] comme un nouveau coefficient de corrélation, cette méthode permet une estimation en utilisant uniquement des comparaisons de rangs entre plus proches voisins, voir [Cha20; Gam+20] et Chapitre 4. Pour obtenir cette estimation, il n'est donc pas nécessaire de faire de nouveau appel au modèle, ce qui a mené la communauté à nommer cette estimation comme «given data». Cet estimateur est convergent et asymptotiquement normal, pour un coût impossible à battre (𝑛 appels). En revanche, si ce schéma fonctionne bien pour l'influence directe d'une variable particulière, des biais inévitables et difficilement corrigibles apparaissent en plus haute dimension, lorsque l'on cherche à quantifier l'influence d'un groupe de variables. C'est le principal défaut qu'à cette méthode face au «Pick and Freeze».

Remarque 11 (Estimation spectrale). Un dernier type d'approche pour l'estimation des indices basés sur la décomposition de la variance est l'approche spectrale [Da +21]. Le but est de décomposer le modèle 𝑓 dans une base orthonormée dans laquelle les indices recherchés ont une forme close. L'exemple naturel est l'utilisation de la base de Fourier qui, combinée avec l'égalité de Parseval, offre une forme close et aisément estimable des indices voulus. Néanmoins, afin d'avoir une convergence rapide dans cette situation, il convient que les coefficients de Fourier associés aux hautes fréquences soient les plus faibles possibles, ce qui implique une régularité du modèle parfois irréaliste.

Chapter 2

Fairness seen as Global Sensitivity Analysis

Introduction

Quantifying the influence of a variable on the outcome of an algorithm is an issue of high importance in order to explain and understand decisions taken by machine learning models. In particular, it enables to detect unwanted biases in the decisions that lead to unfair predictions. This problem has received a growing attention over the last few years in the literature on fair learning for Artificial Intelligence. One of the main difficulty lies in the definition of what is (un)fair and the choices to quantify it. Numerous measures have been designed to assess algorithmic fairness, detecting whether a model depends on variables, called sensitive variables, that convey an information that is irrelevant for the model, from a legal or a moral point of view. We refer for instance to [Dwo+11; Cho17; ] and [START_REF] Del Barrio | Review of Mathematical frameworks for Fairness in Machine Learning[END_REF] and references therein for a presentation of different fairness criteria. Most of these definitions stem back to ensuring the independence between a function of an algorithm output and some sensitive feature that may lead to biased treatment. Hence, understanding and measuring the relationships between a sensitive feature 𝑆, which is typically included in X or highly correlated to it, and the output of the algorithm 𝑓 using those features to predict a target 𝑌 , enables to detect unfair algorithmic treatments. Note that it is not enough to simply remove the sensitive feature from the data -"fairness through unawereness", [Bar+18] -as the algorithm can still "guess" the sensitive feature through its entanglement with the other inputs X. Then, ensuring that predictors are fair is achieved by controlling previous measures, as done in [MCK; WM19; Gra+19; Bar+18; BGL20; Chi+20]. If this notion has been extensively studied for classification, recent work tackle the regression case as in [Gra+19; MCK; Chz+20] or [START_REF] Le Gouic | Projection to Fairness in Statistical Learning[END_REF].

Global Sensitivity Analysis (GSA) is used in numerous contexts for quantifying the influence of a set of features on the outcome of a black-box algorithm.

Various indicators, usually taking the form of indices between 0 and 1, allow the understanding of how much a feature is important. Multiple set of indices have been proposed over the years such as Sobol' indices, Cramér-von-Mises indices, HSIC -see [JLD06; Da 15; IL15; Gra15; Gam+20] and references therein. The flexibility in the choice allows for deep understanding in the relationship between a feature and the outcome of an algorithm. While the usual assumption in this field is to suppose the inputs to be independent, some works [JLD06; MT12; Gra15] remove this assumption to go further in the understanding of the possible ways for a feature to be influential. Hence, GSA appears to provide a natural framework to understand the impact of sensitive features. This point of view has been considered when using Shapley values in the context of fairness [FRF] and thus provide local fairness by explainability. Hereafter we provide a full probabilistic framework to use GSA for fairness quantification in machine learning.

Our contribution is two-fold. First, while GSA is usually concerned with independent inputs, we recall extensions of Sobol' indices to non-independent inputs introduced in [MT12] that offer ways to account for joint contribution and correlations between variables while quantifying the influence of a feature. We propose an extension of Cramér-von-Mises indices based on similar ideas. We also prove the asymptotic normality for these extended Sobol' indices to estimate them with a confidence interval, a novelty as far as we know. Then, we provide a consistent probabilistic framework to apply GSA's indices to quantify fairness. We illustrate the strength of this approach by showing that it can model classical fairness criteria, causal-based fairness and new notions such as intersectionality and provide insight for mitigating biases. This provides new conceptual and practical perspectives to fairness in Machine Learning.

The paper is organized as follows. We begin by reviewing existing works on Global Sensitivity Analysis (Section 2.2). We give estimates for the extended Sobol' and Cramér-von-Mises indices, along with a theorem proving asymptotic normality (Theorem 2.2.1). Then, we present a probabilistic framework for Fairness in which we draw the link between fairness measures and GSA indices, along with applications to causal fairness and intersectional fairness (Section 2.3).

Global Sensitivity Analysis

The use of complex computer models for the analysis of applications from science or real-life experiments is by now the routine. The models are often expensive to run and it is important to know with as few runs as possible the global influence of one or several inputs on the outcome of the system under study. When the inputs or features are regarded as random elements, and the algorithm or computer code is seen as a black-box, this problem is referred to as Global Sensitivity Analysis (GSA). Note that since we consider the algorithm to be a black-box, we only need the association of an input and its output. This make it easy to derive the influence of a feature for an algorithm for which we do not have access to new runs. We refer the interested reader to [Da 15] or [START_REF] Iooss | A Review on Global Sensitivity Analysis Methods[END_REF] and references therein for a more complete overview of GSA.

The main objective of GSA is to monitor the influence of variables 𝑋 1 , • • • , 𝑋 𝑝 on an output variable, or variable of interest, 𝑓 (𝑋). For this, we compare, for a feature 𝑋 𝑖 and the output 𝑓 (𝑋), the probability distribution P 𝑋𝑖,𝑓 (𝑋) and the product probability distribution P 𝑋𝑖 P 𝑓 (𝑋) by using a measure of dissimilarity. If these two probabilities are equal, the feature 𝑋 𝑖 has no influence on the output of the algorithm. Otherwise, the influence should be quantifiable. For this, we have access to a wide range of indices, generally tailored to be valued in [0, 1] and sharing a similar property: the greater the index, the greater the influence of the feature over the outcome. Historically, a variance-decomposition -or Hoeffding decomposition -is used of the output of the black-box algorithm to have access to a second-order moment metric in the so-called Sobol' method. However, these methods were originally developed for independent features. For obvious reasons, this framework is not adapted and has limitations in real-life cases. Additionally, Sobol' methods are intrinsically restrained by the variance-decomposition and others methods have been proposed. We will present two alternatives for Sobol' indices. The first one solves the issue of non-independent features. The second one circumvents the limitations of working with variance-decomposition. We finish this section by merging these two alternatives, inspired by the works of [AC21; Gam+20; Cha20].

Note that the use of other metrics is common in the GSA literature. Each metric has its own intrinsic advantages and disadvantages which have been extensively studied. Moreover, independence tests based on these GSA metrics exist, as shown in [START_REF] Meynaoui | Adaptive test of independence based on HSIC measures[END_REF][START_REF] Gamboa | Global Sensitivity Analysis: a new generation of mighty estimators based on rank statistics[END_REF] and techniques such as bootstrap or Monte-Carlo estimates can be used to obtain confidence intervals for such tests. We restrain ourselves to the Sobol' and Cramér-von-Mises indices because they are historically the basis of GSA literature, computationally tractable and allow for better understanding of usual fairness proxies, as we will show in Section 2.3. We also prove asymptotic normality for extended Sobol' indices, which is a first to the best of our knowledge.

Sobol' indices

A popular and useful tool to quantify the influence of a feature on the output of an algorithm are the Sobol' indices. Initially introduced in [Sob], these indices compare, thanks to the Hoeffding decomposition [START_REF] Van Der | Asymptotic Statistics. Cambridge Series in Statistical and Probabilistic Mathematics[END_REF], the conditional variance of the output knowing some of the input variables with respect to the overall total variance of the output. Such indices have been extensively studied for computer code experiments.

Suppose that we have the relation

𝑓 (X) = 𝑓 (𝑋 1 , • • • , 𝑋 𝑝 )
where 𝑓 is a squareintegrable algorithm considered as a black-box and 𝑋 1 , • • • , 𝑋 𝑝 inputs, with 𝑝 the number of features. We denote by 𝑝 X the distribution of X. For now, we suppose the different inputs to be independent, meaning that 𝑝 X = ⊗ 𝑝 𝑖=1 𝑝 𝑋 𝑘 . Then, we can use the Hoeffding decomposition [START_REF] Van Der | Asymptotic Statistics. Cambridge Series in Statistical and Probabilistic Mathematics[END_REF] on 𝑓 (X) -sometimes also called ANOVA-decomposition -so that we may write

𝑓 (X) = ∑︁ 𝑠⊆ 1,𝑝 𝑓 𝑠 (𝑋 𝑠 ), (2.1) 
where 𝑓 𝑠 are square-integrable functions and 𝑋 𝑠 the set {𝑋 𝑖 , 𝑖 ∈ 𝑠}. We can either assume that 𝑓 is centered or that 𝑠 can be the null set in this sum: it does not change anything since we are interested in the variance afterwards. We will consider 𝑉 := Var(𝑓 (X)) and 𝑉 𝑠 := Var(𝑓 𝑠 (X 𝑠 )). Note that the elements of the previous sum are orthogonal in the 𝐿 2 (𝑝 X ) sense. So, to compute the variance, we can compute it term by term, and obtain

𝑉 = 𝑝 ∑︁ 𝑘=1 𝑉 𝑘 + 𝑝 ∑︁ 𝑘2>𝑘1 𝑉 𝑘1,𝑘2 + • • • + 𝑉 1,••• ,𝑝 . (2.2)
This equation means that the total variance of the output, which is denoted by 𝑉 , can be split into various components that can be readily interpreted. For instance, 𝑉 1 represents the variance of the output 𝑓 (X) that is only due to the variable 𝑋 1 -that is, how much 𝑓 (X) will change if we take different values for 𝑋 1 . Similarly, 𝑉 1,2 represents the variance of the output 𝑌 that is only due to the combined effect of the variables 𝑋 1 and 𝑋 2 once the main effects of each variable has been removed -that is, how much 𝑓 (X) will change if we take different values simultaneously for 𝑋 1 and 𝑋 2 and remove the changes due to main effects from 𝑋 1 only or 𝑋 2 only. By dividing the 𝑉 (𝑚) by 𝑉 , with (𝑚) ⊂ 1, 𝑝 , we obtain:

𝑆 (𝑚) := 𝑉 (𝑚) 𝑉 , (2.3)
which is the expression of the so-called Sobol' sensitivity indices. When (𝑚) is equal to a singleton 𝑘, the Sobol' index 𝑆 𝑘 quantifies the proportion of the output's variance caused by the input 𝑋 𝑘 on its own. The sum of all indices 𝑆 (𝑚) , 𝑘 ∈ (𝑚) quantifies the proportion of the output's variance caused by the input 𝑋 𝑘 conjointly with other inputs, and is usually called the Total Sobol' index of 𝑋 𝑘 and denoted 𝑆𝑇 𝑘 . Note that the law of total variance can be written for the random variable 𝑓 (X) as

Var(𝑓 (X)) = 𝑉 𝑎𝑟(E[𝑓 (X)|𝑋 ∼𝑘 ]) + E[𝑉 𝑎𝑟(𝑓 (X)|𝑋 ∼𝑘 )].
(2.4)

In this equation, the left-hand side is the total variance, while the right-hand side is decomposed as two terms: the variance explained by all the variables different of 𝑋 𝑘 , and all the rest which include any part of variance explained by 𝑋 𝑘 . After normalization, we have

1 = 𝑆 ∼𝑘 + 𝑆𝑇 𝑘 .
(2.5)

The alternate definition

𝑆𝑇 𝑘 = E[𝑉 𝑎𝑟(𝑓 (X)|𝑋 ∼𝑘 )] 𝑉 𝑎𝑟(𝑓 (X))
is of interest for two reasons. First, we will see in the next section that this formulation can come back in various contexts, including in Fairness. Additionally, for estimation, this formula is quite interesting since it allows estimation of the importance of a variable without using it directly, which may be in practice unfeasible for various reasons.

Sobol' indices for non-independent inputs

In the classic Sobol' analysis, for an input 𝑓 (X), two indices, namely the first order and total indices, quantify the influence of the considered feature on the output of the algorithm. When the inputs are not independent, we need to duplicate each index in order to distinguish whether influences caused by correlations between inputs are taken into account or not. Introduced in this framework by [START_REF] Thierry | Variance-based sensitivity indices for models with dependent inputs[END_REF], we use the Lévy-Rosemblatt theorem to create two mappings of interest. We denote by ∼ 𝑖 every index other than 𝑖. We create 2𝑝 mappings between 𝑝 independent uniform random variables 𝑈 and the variables X either by mapping 𝑝 𝑈1 𝑝 𝑈∼1 to 𝑝 𝑋𝑖 𝑝 𝑋∼𝑖|𝑋𝑖 -in this case 𝑈 1 is denoted by 𝑈 𝑖 1 -or by mapping 𝑝 𝑈∼𝑝 𝑝 𝑈𝑝 to 𝑝 𝑋∼𝑖 𝑝 𝑋𝑖|𝑋∼𝑖 -in this case, 𝑈 ∼𝑝 is denoted 𝑈 𝑖+1 ∼𝑝 . In the Appendix A.1, more in-depth details are given. In the analysis of the influence of an input 𝑋 𝑖 , the first mapping captures the intrinsic influence of other inputs while the second mapping excludes these influences and shows the variations induced by 𝑋 𝑖 on its own. Each of these two mappings leads to two indices corresponding to classical Sobol' and Total Sobol' indices. The influence of every input 𝑋 𝑖 is therefore represented by four indices, see Table 2.1.

Hence, the four Sobol' indices for each variable 𝑋 𝑖 , 𝑖 ∈ 1, 𝑝 are defined as followed:

𝑆𝑜𝑏 𝑋𝑖 := Var[E[𝑓 (X)|𝑋 𝑖 ]] Var[𝑓 (X)]
(2.6)

𝑆𝑜𝑏𝑇 𝑋𝑖 := E[Var[𝑓 (X)|𝑍 𝑖 ]] Var[𝑓 (X)]
(2.7)

𝑆𝑜𝑏 𝑖𝑛𝑑 𝑋𝑖 := Var[E[𝑓 (X)|𝑍 𝑖 ]] Var[𝑓 (X)] (2.8) 𝑆𝑜𝑏𝑇 𝑖𝑛𝑑 𝑋𝑖 := E[Var[𝑓 (X)|𝑋 ∼𝑖 ]] Var[𝑓 (X)] , (2.9) 
where the random variable 𝑍 𝑖 has the distribution 𝑝 𝑋𝑖|𝑋∼𝑖 and is equal to 𝐹 -1 𝑋𝑖|𝑋∼𝑖 (𝑈 𝑖+1 𝑝 ). Note that we denote the Sobol' indices for 𝑋 𝑖 by the quantities 𝑆 𝑖 and 𝑆𝑇 𝑖 under the assumption of independence, and by the quantities 𝑆𝑜𝑏 𝑋𝑖 , 𝑆𝑜𝑏𝑇 𝑋𝑖 , 𝑆𝑜𝑏 𝑖𝑛𝑑 𝑋𝑖 , 𝑆𝑜𝑏𝑇 𝑖𝑛𝑑 𝑋𝑖 when this assumption is not fulfilled, for more clarity.

Note that these definitions can be extended to multidimensional variables and thus enabling to consider groups of inputs by replacing the subset {𝑖} by a subset 𝑠 ⊂ {1, • • • , 𝑝} in the formulas. More insight on the transformations that allow these definitions can be found in Annex A.1 or in [START_REF] Thierry | Variance-based sensitivity indices for models with dependent inputs[END_REF][START_REF] Thierry | Nonparametric methods for global sensitivity analysis of model output with dependent inputs[END_REF].

Remark 1. If the features are independent, then for all 𝑖 ∈ 1, • • • , 𝑝 , 𝑆𝑜𝑏 𝑖𝑛𝑑 𝑋𝑖 = 𝑆𝑜𝑏 𝑋𝑖 and 𝑆𝑜𝑏𝑇 𝑖𝑛𝑑 𝑋𝑖 = 𝑆𝑜𝑏𝑇 𝑋𝑖 . The proof comes from the fact that in the independent case, we have 𝑈 𝑖 1 = 𝑈 𝑖+1 𝑝 .

Remark 2. All previous indices satisfy the following bounds. For all 𝑖 ∈ {1, • • • , 𝑝},

0 ≤ 𝑆𝑜𝑏 𝑖𝑛𝑑 𝑋𝑖 ≤ 𝑆𝑜𝑏 𝑋𝑖 ≤ 𝑆𝑜𝑏𝑇 𝑋𝑖 ≤ 1 and 0 ≤ 𝑆𝑜𝑏 𝑖𝑛𝑑 𝑋𝑖 ≤ 𝑆𝑜𝑏𝑇 𝑖𝑛𝑑 𝑋𝑖 ≤ 𝑆𝑜𝑏𝑇 𝑋𝑖 ≤ 1.
We refer to [START_REF] Thierry | Variance-based sensitivity indices for models with dependent inputs[END_REF] and to the law of total variance for the proof. Note that, in general, there are no inequalities between 𝑆𝑜𝑏 𝑋𝑖 and 𝑆𝑜𝑏𝑇 𝑖𝑛𝑑 𝑋𝑖 . Sobol indices enable to quantify three typical ways for a feature to modify the output of an algorithm.

1. Direct contribution. Firstly, a variable can be of interest, all by itself, without any correlation or joint contribution with the other variables.

Consider for example the case where 𝑓 (x) = 𝑥 1 + 𝑥 2 and 𝑥 1 independent to the rest of the variables. In this example, we would have 𝑆𝑜𝑏 𝑋1 = 𝑆𝑜𝑏𝑇 𝑋1 = 𝑆𝑜𝑏 𝑖𝑛𝑑 𝑋1 = 𝑆𝑜𝑏𝑇 𝑖𝑛𝑑 𝑋1 = 0.5, which means that 50% of the variability of the algorithm is caused by the first variable. In this case, the first variable has a non-null impact on its own on the outcome of the algorithm 𝑓 .

Bouncing contribution. A variable can interact with other variables and

influence the output only by its impact on the law of the other variables. For example, consider (𝑥 1 , 𝑥 2 ) where 𝑥 2 = 𝛼𝑥 1 + 𝜀 -where 𝜀 is a centered white noise of variance 𝜎 2 -and 𝑓 (x) = 𝑥 2 . Then we get 𝑆𝑜𝑏 𝑋1 = 𝑆𝑜𝑏𝑇 𝑋1 = (𝛼 2 𝑉 (𝑥 1 ))/(𝛼 2 𝑉 (𝑥 1 ) + 𝜎 2 ) while 𝑆𝑜𝑏 𝑖𝑛𝑑 𝑋1 = 𝑆𝑜𝑏𝑇 𝑖𝑛𝑑 𝑋1 = 0. The first variable can be highly influent on the outcome of the algorithm 𝑓 , even if it is not directly responsible for these variations. We call this type of interaction a "bouncing effect" since the variable will need to use another input to reach the outcome of the algorithm.

3. Joint contribution. Lastly, a variable can contribute to an output jointly with other variables. Take for instance the case where (𝑥 1 , 𝑥 2 ) are independent and 𝑓 (x) = 𝑥 1 × 𝑥 2 . In this case,

𝑆𝑜𝑏 𝑋1 = 𝑆𝑜𝑏 𝑖𝑛𝑑 𝑋1 = 0 = 𝑆𝑜𝑏 𝑋2 = 𝑆𝑜𝑏 𝑖𝑛𝑑 𝑋2 while 𝑆𝑜𝑏𝑇 𝑋1 = 𝑆𝑜𝑏𝑇 𝑖𝑛𝑑 𝑋1 = 1 = 𝑆𝑜𝑏𝑇 𝑋2 = 𝑆𝑜𝑏𝑇 𝑖𝑛𝑑 𝑋2
This effect is different of the previous one as the distributions of the input variables are independent but their impact is intertwined. In such a case, the effect is visible and measurable by a variation between first-order and total indices. These main differences point out why we need four indices in order to assess the sensitivity of a system to a feature. 

✓ ✗ 𝑆𝑜𝑏𝑇 𝑋𝑖 ✓ ✓ 𝑆𝑜𝑏 𝑖𝑛𝑑 𝑋𝑖 ✗ ✗ 𝑆𝑜𝑏𝑇 𝑖𝑛𝑑 𝑋𝑖 ✗ ✓
𝑆𝑜𝑏𝑇 𝑖𝑛𝑑 𝑋𝑖 and 𝑆𝑜𝑏𝑇 𝑋𝑖 is big, a large part of the influence of the feature 𝑋 𝑖 will be through its intrinsic influence on other features.

Monte-Carlo estimation of the extended Sobol' indices can be computed by using this definitions. These estimators are consistent and converge to the quantities defined as the Sobol' and independent Sobol' indices earlier.

Additionally, if we write each of these estimates as 𝐴 𝑛 /𝐵 𝑛 , we can use the Delta-method theorem to prove a central limit theorem.

Theorem 2.2.1. Each index 𝒮 in the equations (2.6) to (2.9) can be estimated by its empirical counterpart 𝒮 𝑛 such that:

(i) 𝒮 𝑛 𝑎.𝑠 --→ 𝒮. (ii) √ 𝑛(𝒮 𝑛 -𝒮)
𝐷 -→ 𝒩 (0, 𝜎 2 ), with 𝜎 2 depending on which index we study, see Appendix A.2.

Cramér-von-Mises indices

Sobol' indices are based on a decomposition of the variance, and therefore only quantify influence of the inputs on the second-order moment of the outcome. Many other criteria to compare the conditional distribution of the output knowing some of the inputs to the distribution of the output have been proposed -by means of divergences, or measures of dissimilarity between distributions for example. We recall here the definition of Cramér-von-Mises indices [START_REF] Gamboa | Global Sensitivity Analysis: a new generation of mighty estimators based on rank statistics[END_REF], an answer to this lack of distributional information that will be of use later in a fairness framework -see Section 2.3.

Classical Cramér-von-Mises indices

The Cramér-von-Mises indices are based on the whole distribution of 𝑓 (X). They are defined (see [START_REF] Gamboa | Global Sensitivity Analysis: a new generation of mighty estimators based on rank statistics[END_REF]), for every input 𝑖, as follows:

𝐶𝑉 𝑀 𝑖 := ∫︀ R E [︀ (𝜇(𝑡) -𝜇 𝑖 (𝑡)) 2 ]︀ 𝑑𝜇(𝑡) ∫︀ R 𝜇(𝑡)(1 -𝜇(𝑡))𝑑𝜇(𝑡) (2.10) where 𝜇(𝑡) := E [︀ 1 𝑓 (X)≤𝑡 ]︀ is the cumulative distribution function of 𝑌 and 𝜇 𝑖 its conditional version 𝜇 𝑖 (𝑡) := E [︀ 1 𝑓 (X)≤𝑡 |𝑋 𝑖 ]︀
. This equation can be rewritten as

𝐶𝑉 𝑀 𝑖 = ∫︀ Var(E [︀ 1 𝑓 (X)≤𝑡 |𝑋 𝑖 ]︀ )𝑑𝜇(𝑡) ∫︀ Var(1 𝑓 (X)≤𝑡 )𝑑𝜇(𝑡) . (2.11)
As before, these indices extend to the multivariate case. Simple estimators have been proposed [Cha20; Gam+20], and are based on permutations and rankings.

Remark 3. As mentioned earlier, Sobol' indices quantify correlations and secondorder moments but do not take into account information about the distribution of the outcome. However, note the similarity between the definition of the Cramérvon-Mises index and the classical Sobol' index, especially if we rewrite Equation (2.11) as:

𝐶𝑉 𝑀 𝑖 = ∫︁ 𝑆𝑜𝑏 𝑋𝑖 (1 𝑓 (X)≤𝑡 ) Var(1 𝑓 (X)≤𝑡 ) ∫︀ Var(1 𝑓 (X)≤𝑡 )𝑑𝜇(𝑡) 𝑑𝜇(𝑡).
(2.12)

Cramér-von-Mises can be seen as an adaptive Sobol' index that emphasizes the regions where the cumulative distribution of the outcome is highly changing, as more information can be obtained in these areas. This enables to capture information about the distribution of the outcome instead of moment-related information.

Extension of the Cramér-von-Mises indices

Classical Cramér-von-Mises indices suffer from the same limitation as Sobol' indices as they are tailored for independent inputs. A natural extension is to create new indices to handle the case of dependent inputs. We propose an extension of the Cramér-von-Mises indices, inspired by the ideas of the extended Sobol' indices and by the works of [START_REF] Azadkia | A simple measure of conditional dependence[END_REF]. This new set of indices will capture the influence of a feature independently of the rest of the features.

Definition 2.2.1. For every input 𝑖, we define the independent Cramér-von-Mises indices as:

𝐶𝑉 𝑀 𝑖𝑛𝑑 𝑖 := ∫︀ E(Var(1 𝑓 (X)≤𝑡 |𝑋 ∼𝑖 ))𝑑𝜇(𝑡) ∫︀ Var(1 𝑓 (X)≤𝑡 )𝑑𝜇(𝑡) (2.13)
This extension enables to compare the influence of a feature on the output of an algorithm without its dependencies with other features.

Remark 4. This independent Cramér-von-Mises index can be seen as an extension of the 𝑆𝑜𝑏𝑇 𝑖𝑛𝑑 index.

This remark is similar to Remark 3. From the independent Total Sobol index shown in (2.9), by changing the output function as a threshold of the real algorithm and taking the mean along all the possible thresholds, we obtain the independent Cramér-von-Mises index. This index can also be seen as an adaptive form of the 𝑆𝑜𝑏𝑇 𝑖𝑛𝑑 index.

Estimation of these indices is given in Appendix A.4 by the mean of estimates 𝐶𝑉 𝑀 𝑖 . Similarly to Theorem 2.2.1, we have the following theorem.

Theorem 2.2.2. If we denote by 𝑁 the number of observations used to compute 𝐶𝑉 𝑀 𝑖 , then the sequence

√ 𝑁 (︁ 𝐶𝑉 𝑀 𝑖 -𝐶𝑉 𝑀 𝑖 )︁ converges towards the centered
Gaussian law with a limiting variance 𝜉 2 whose explicit expression can be found in the proof.

The proof of this theorem can be found in [START_REF] Gamboa | Sensitivity analysis based on Cramér von Mises distance[END_REF]. Note that new estimation procedures can be efficient with little data, as mentioned in [START_REF] Gamboa | Global Sensitivity Analysis: a new generation of mighty estimators based on rank statistics[END_REF], which will be helpful for measuring intersectional fairness in the following Section.

Fairness

Sensitivity Indices as Fairness measures

In this section, we provide a probabilistic framework to unify various definitions of Fairness for Group of individual as Global Sensitivity Indices. Fairness amounts to quantify the dependencies between a sensitive feature 𝑆 and functions of the outcome 𝑓 (𝑋) and of the values of the variable of interest 𝑌 . Several measures of fairness corresponding to different definitions of fairness have been proposed in the machine learning literature. However, all these definitions boil back to a quantification of the mathematical propositions "𝑓 (𝑋) ⊥ ⊥ 𝑆" or "𝑓 (𝑋) ⊥ ⊥ 𝑆|𝑌 ".

For instance, the main common definitions of fairness are the following

• Statistical Parity, see for instance in [START_REF] Dwork | Fairness Through Awareness[END_REF], requires that the algorithm 𝑓 , predicting a target 𝑌 , has similar outputs for all the values of 𝑆 in the sense that the distribution of the output is independent of the sensitive variable 𝑆, namely 𝑓 (X) ⊥ ⊥ 𝑆. In the binary classification case, it is defined as P(𝑓 (X) = 1|𝑆) = P(𝑓 (X) = 1) for general 𝑆, continuous or discrete.

• Equality of odds looks for the independence between the error of the algorithm and the protected variable, i.e implying here conditional independence, i.e 𝑓 (X) ⊥ ⊥ 𝑆|𝑌 . This condition is equivalent in the binary case to P(𝑓 (X) = 1|𝑌 = 𝑖, 𝑆) = P(𝑓 (X) = 1|𝑌 = 𝑖), for 𝑖 = 0, 1.

• Avoiding Disparate Treatment correspond to the fact that similar individuals should have similar outputs. This condition, in the binary case, is written as P(𝑓 (X) = 1|X = x, 𝑆 = 0) = P(𝑓 (X) = 1|X = x, 𝑆 = 1). Various refinements of this metric appears, including for instance the situation when similar individuals may not be sharing the same attributes X = x, e.g [START_REF] De | Transport-based Counterfactual Models[END_REF].

• Finaly, Avoiding Disparate Mistreatment correspond to the equality of misclassification rates across subpopulations. This condition, in the binary case, is written as

P(𝑓 (X) ̸ = 𝑌 |𝑆 = 0) = P(𝑓 (X) ̸ = 𝑌 |𝑆 = 1).
Previous notions of fairness are quantified using a Fairness measure Λ and a function Φ(𝑌, X) such that Λ(Φ(𝑌, X), 𝑆) = 0 in the case of perfect fairness while the constraint is relaxed into Λ(Φ(𝑌, X), 𝑆) ≤ 𝜀, for a small 𝜀, leading to the notion of approximate fairness. The following definition provides a general framework to define fairness measures. GSA measures as defined in 2.2 or described in [Da 15;[START_REF] Iooss | A Review on Global Sensitivity Analysis Methods[END_REF] are suitable indicators to quantify fairness as follows and these definitions can be extended to continuous predictors and continuous 𝑌 .

Definition 2.3.1. Let Φ be a function of the features X and of 𝑌 . We define a GSA measure for a function Φ and a random variable 𝑍 as a Γ(., .) such that Γ(Φ(𝑌, X), 𝑍) is equal to 0 if Φ(𝑌, X) is independent of 𝑍 and is equal to 1 if Φ(𝑌, X) is a function of 𝑍. Then, Γ induces a GSA-Fairness measure defined as Λ(Φ(𝑌, X), 𝑆) = Γ(Φ(𝑌, X), 𝑆).

The following examples provide a GSA formulation for most of classical fairness definitions using Sobol' and Cramér-von-Mises indices.

Example 1 (Statistical Parity). The so-called Statistical Parity fairness is achieved by taking Λ(Φ(𝑌, X), 𝑆)) = Var(E[𝑓 (X)|𝑆]). This corresponds to the GSA measure 𝑆𝑜𝑏 𝑆 (𝑓 (X)). If 𝑓 is a classifier with value in {0, 1}, we recover for a binary 𝑆 the classical definition of Disparate Impact,P(𝑓 (𝑋) = 1|𝑆 = 1) = P(𝑓 (𝑋) = 1|𝑆 = 0), see [START_REF] Del | Obtaining fairness using optimal transport theory[END_REF].

Example 2 (Avoiding Disparate Treatment). The so-called Avoiding Disparate Treatment fairness is achieved by taking Λ(Φ(𝑌, X), 𝑆)) = E[Var(𝑓 (X)|𝑋)]. This corresponds to the GSA measure 𝑆𝑜𝑏𝑇 𝑆 (𝑓 (X)). Note that it is normal for the algorithm not to be conditioned by the sensitive attribute for this GSA measure, cf Equation 2.4 Similarly, for a binary classifier, we recover the classical definition.

Example 3 (Equality of Odds). The so-called Equality of Odds fairness is achieved by taking Λ(Φ(𝑌, X), 𝑆)

) = E[Var(E[𝑓 (X)|𝑆, 𝑌 ]|𝑌 )]
. This corresponds to the GSA measure 𝐶𝑉 𝑀 𝑖𝑛𝑑 (𝑓 (X), 𝑆|𝑌 ). Similarly, for a binary classifier, we recover the classical definition.

Example 4 (Avoiding Disparate Mistreatment). The so-called Avoiding Disparate Mistreatment fairness is achieved by taking Λ(Φ(𝑌, X), 𝑆)) = Var(E[ℓ(𝑓 (X), 𝑌 )|𝑆]) with ℓ a loss function. This corresponds to the GSA measure 𝑆𝑜𝑏 𝑆 (ℓ(𝑓 (X), 𝑌 )). Similarly, for a binary classifier, we recover the classical definition.

Among well known fairness measures, we point out that we immediately recover two main fairness measures used in the fair learning literature -namely Statistical Parity and Equality of Odds. GSA measures can be computed for different function Φ and highlight either the behaviour of the algorithm, Φ(𝑌, X) = 𝑓 (X), or its performance, Φ(𝑌, X) = ℓ(𝑌, 𝑓 (X)) for a given loss ℓ. This can lead to 2.3. FAIRNESS 39 different GSA-Fairness definitions from a same GSA measure, see Examples 1 and 4.

Example 5. Recent work in Fairness literature exposed various definitions and measures to quantify influence of a sensitive feature, beyond classical notions. For instance, [FRF] uses Shapley values, [START_REF] Li | Kernel Dependence Regularizers and Gaussian Processes with Applications to Algorithmic Fairness[END_REF] uses HSIC measures, [START_REF] Ghassami | Fairness in Supervised Learning: An Information Theoretic Approach[END_REF] uses Mutual Information, so on and so forth. All these measures have been extensively studied in GSA literature, as mentioned in previous Section, and these frameworks are included in ours.

For an additional example, consider the Hirschfeld-Gebelein-Rényi Maximum Correlation Coefficient [Rén59] -denoted HGR -which is defined for two random variables 𝑈 and 𝑉 as

𝐻𝐺𝑅(𝑈, 𝑉 ) = sup 𝑓 ∈L 2 (P 𝑈 ),𝑔∈L 2 (P 𝑉 )
Corr(𝑓 (𝑈 ), 𝑔(𝑉 )).

(2.14

)
This index is used in [MCK] to quantify fairness and is linked to the Sobol' indices presented earlier as the alternate definition of this quantity given in [START_REF] Rényi | On measures of dependence[END_REF] can be written with Sobol' indices:

𝐻𝐺𝑅(𝑈, 𝑉 ) = sup 𝑔∈L 2 (P 𝑉 ),E[𝑔]=0,E[𝑔 2 ]=1 E[𝑔(𝑉 )|𝑈 ], (2.15) 
and therefore,

𝐻𝐺𝑅(𝑋 𝑖 , 𝑓 (X)) = sup 𝑔∈L 2 (P 𝑓 (X) )
𝑆𝑜𝑏 𝑋𝑖 (𝑔(𝑓 (X))).

(2.16)

However, we restrain our study here to Sobol' indices mainly for two reasons. First, Sobol' indices are directly equivalent to very classical Fairness metrics, as we will see in the next Section. As such, using HGR is a valid choice as a proxy for Fairness but being fair with respect to HGR will be more difficult to obtain as a result that being fair with respect to Sobol'. Secondly, to compute the HGR index, it is necessary to compute a supremum of Sobol' indices over all the squareintegrable functions. This additional operation leads to harder computation. A classical work-around is to approximate this quantity by restraining ourselves to some class by using Reproducing Kernel Hilbert spaces. The interested reader can find more information in [MCK].

In Table 2.2, we summarize the different indices associated to classical studied fairness definitions shown in previous Examples. By considering these fairness definitions as GSA measures, we can explain fairness in terms of simple effects presented in previous section, along with limitations of those definitions. For instance, Statistical Parity corresponds to the classical Sobol' index. The nullity of this index implies no direct influence of sensitive variables on the outcome, but can be limited as sensitive variables may have joint effects with other variables not captured by this metric. Therefore, Statistical Parity will lack in this regard. On the contrary, since Avoiding Disparate Treatment corresponds to Total Sobol' indices, this definition of fairness captures every possible influence of the sensitive feature on the outcome. Remark 5. Note that many fairness measures are defined using discrete or binary sensitive variable. The GSA framework enables to handle continuous variables without additional difficulties. Moreover using kernel methods, GSA indices can be defined for a larger and more "exotic" variety of variables such as graphs or trees, for instance. In particular HSIC (see in [Da 15; BT04; Gre+; Smo+; Mey+]) is a kernel-based GSA measure that has been used in fairness.

Consequences of seeing Fairness with Global Sensitivity Analysis optics

In this subsection, we enumerate various consequences of studying Fairness with this probabilistic framework coming from the GSA literature.

(i) Modularity of fairness indicators Numerous metrics have been proposed in GSA literature to quantify the influence of a feature on the outcome of an algorithm. We already mentioned several of them so far. This diversity enables choices in the quantified fairness since every choice of GSA measure induces a Fairness definition. We presented in previous subsection a concrete example with Sobol' indices, namely between Disparate Impact and Avoiding Disparate Treatment. Another example would be the use of kernels in HSIC-based indices, as exposed for instance in [START_REF] Li | Kernel Dependence Regularizers and Gaussian Processes with Applications to Algorithmic Fairness[END_REF]. By selecting various kernels, specific characteristics associated with fairness can be targeted.

(ii) Perfect and Approximate fairness GSA has been especially created to quantify quasi independence between variables. Merging GSA and Fairness gives a formal framework to the notion of approximate fairness and computationally justify the use of GSA codes to measure and quantify fairness. Additionally, as mentioned in previous section, GSA literature includes statistical tests for independence between input variables and outcomes, along with confidence intervals. Therefore, it is possible to compute them in order to test whether perfect fairness or approximate fairness is obtained. Moreover, this enables the possibility of auditing algorithms.

(iii) Choice of the target The framework presented earlier works for quantifying the influence of a sensitive feature on the outcome of a predictor but also any function of the predictor and of the input variables. This includes the loss of a predictor against a target. The ambivalence of this framework allows links to be made between various fairness definitions. For example, Disparate Impact and Avoiding Disparate Mistreatment are the same fairness but applied either to the predictor or to the loss of the predictor against a real target. In the first case, we want the algorithm to be independent of the sensitive feature; while in the second case, we want the errors of the predictor to be independent of the sensitive feature. Moreover, it allows for extension of fairness definitions to cases where an algorithm can be biased, as long as it does not make a mistake.

(iv) Second-level Global Sensitivity Analysis Recent works in GSA take into account the uncertainty of the distribution of the inputs of an algorithm, see [Mey+]. These tools can help in a fairness framework, especially when the distribution of sensitive features is unknown and unreachable. This will be more deeply studied in future papers.

Applications to Causal Models

Quantifying fairness using measures is a first step to understand bias in Machine Learning. Yet, causality enables to understand the true reasons of discrimination, as it is often related to the causal effect of a variable. The relations between variables describing causality are often modeled using a Directed Acyclic Graph (DAG). We refer to [START_REF] Pearl | CAUSALITY, 2nd Edition[END_REF][START_REF] Bongers | Foundations of Structural Causal Models with Cycles and Latent Variables[END_REF].

In this subsection, we show how to address causal notions of fairness using the GSA framework, illustrated by a synthetic and a social example. We show that information gained thanks to Sobol' indices allow to learn some characteristic about the causal model.
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We tackle the problem of predicting 𝑌 by Ŷ knowing (𝑋, 𝑆) while the nonsensitive variables are influenced by a non-observed exogeneous variable 𝑈 . This is modeled by the following equations:

𝑋 = 𝜑(𝑈, 𝑆) Ŷ = 𝜓(𝑋, 𝑆),
where 𝜑 and 𝜓 are some unknown functions. These equations are a consequence of the unique solvability of acyclic models [START_REF] Bongers | Foundations of Structural Causal Models with Cycles and Latent Variables[END_REF] and are illustrated in the various DAGs of Figure 2.1.

In many practical cases, the causal graph is unknown and we need indices to quantify causality. In the following, we are not interested in the complete knowledge of the graph -which is a NP-hard problem -but only in the existence of paths from 𝑆 to 𝑌 .

Actually, GSA can quantify causal influence following DAG structure, and different GSA indices will correspond to different paths from 𝑆 to 𝑌 . Different type of relationships can be measured in particular with the Total Sobol and the Total Independent Sobol indices to quantify either the presence of a path from 𝑆 directly to 𝑌 or a path from 𝑆 to another variable 𝑋 that influences itself the predictor 𝑌 . We call this latter effect a "bouncing effect" since 𝑌 is influential only through a mediator.

The following proposition explains how specific Sobol indices can be used to detect the presence of causal links between the sensitive variable and the outcome of the algorithm.

Proposition 1 (Quantifying Causality with Sobol Index).

• The condition 𝑆𝑜𝑏𝑇 𝑆 = 0 implies that every path from 𝑆 to 𝑌 is nonexistent, that is 𝑆 and 𝑌 belong to two different connected component of the causal graph.

• The condition 𝑆𝑜𝑏𝑇 𝑖𝑛𝑑 𝑆 = 0 implies that the direct path from 𝑆 to 𝑌 is non-existent, that is the absence of direct edge between 𝑆 and 𝑌 in the causal graph.

Hence, using GSA, we can infer the absence of causal link between sensitive features and outcomes of algorithm without knowing the structure of the DAG. Note that, while Sobol' indices are correlation-based, this is not an issue in quantifying causality for fairness, as the sensitive features are usually supposed to be roots of the DAG [Bon+21; Lar+21a].

Example 6 (Causal graphs [START_REF] Rothenhäusler | Anchor regression: heterogeneous data meets causality[END_REF]). In this example, we specify three causal models and illustrate the previous proposition.

In Graph 2.1a, 𝑆 is directly influent on the outcome Ŷ . There is no interaction between 𝑆 and 𝑋. This happens when 𝑆 and 𝑋 are independent for instance. In such a case, Sobol' indices and independent Sobol' indices are the same, as mentioned in Remark 1. The equality 𝑆𝑜𝑏𝑇 𝑆 = 𝑆𝑜𝑏𝑇 𝑖𝑛𝑑 𝑆 ensures the absence of "bouncing effect" for the sensitive variable 𝑆.

FAIRNESS

In Graph 2.1b, we have no information about the influence of 𝑆 on the outcome.

In Graph 2.1c, 𝑆 has no direct influence on the outcome, therefore 𝑆𝑜𝑏𝑇 𝑖𝑛𝑑 𝑆 = 0. This variable can still be influent on the outcome since it may modify other variables of interest. In this case, 𝑋 is a mediator variable through which the sensitive feature will influence the outcome with a "bouncing effect". A model describing this kind of DAG in a fairness framework is the "College admissions" case, explained below.

Example 7 (College admissions). This example focus on college admissions process. Consider 𝑆 to be the gender, 𝑋 the choice of department, 𝑈 the test score and Ŷ the admission decision. The gender should not directly influence any admission decision Ŷ , but different genders may apply to departments represented by the variable 𝑋 at different rates, and some departments may be more competitive than others. Gender may influence the admission outcome through the choice of department but not directly. In a fair world, the causal model for the admission can be modeled by a DAG without direct edge from 𝑆 to Ŷ . Conversely, in an unfair world, decisions can be influenced directly by the sensitive feature 𝑆 -hence the existence of a direct edge between 𝑆 and Ŷ . This issue on unresolved discrimination is tackled in [START_REF] Kilbertus | Avoiding Discrimination through Causal Reasoning[END_REF][START_REF] Frye | Asymmetric Shapley values: incorporating causal knowledge into model-agnostic explainability[END_REF].

It has been remarked in the literature that it is not easy to calculate causalbased fairness, especially when the joint distribution of mixed input conditional on continuous variables is hard to calculate from the observed data. When access to this joint distribution is not possible, recent works in GSA have proposed new estimation procedures [START_REF] Gamboa | Global Sensitivity Analysis: a new generation of mighty estimators based on rank statistics[END_REF] based on works by Chatterjee [START_REF] Chatterjee | A New Coefficient of Correlation[END_REF]. These procedures makes no assumption on the distribution and provide a normally asymptotic estimation of GSA indices (and therefore associated Fairness metrics) at a low cost since it only require sorting of the data, along with the capacity to find closest neighbor of a data point.

Quantifying intersectional (un)fairness with GSA index

Most of fairness results are stated in the case where there is only one sensitive variable. Yet in many cases, the bias and the resulting possible discrimination are the result of multiple sensitive variables. This situation is known as intersectionality, when the level of discrimination of an intersection of several minority groups is worse than the discrimination present in each group as presented in [Cre]. Some recent works provide extensions of fairness measures to take into account the bias amplification due to intersectionality. We refer for instance to [START_REF] Morina | Auditing and Achieving Intersectional Fairness in Classification Problems[END_REF] or [START_REF] Foulds | An Intersectional Definition of Fairness[END_REF]. However, quantifying this worst case scenario cannot be achieved using standard fairness measures. The GSA framework allows for controlling the influence of a set of variables and as such can naturally address intersectional notions of fairness.

Intersectional fairness is obtained when multiple sensitive variables (for instance 𝑆 1 and 𝑆 2 in the most simple case) do not have any joint influence on the output of the algorithm. We propose a definition of intersectional fairness using GSA indices.

Definition 2.3.2. Let 𝑆 1 , 𝑆 2 , • • • , 𝑆 𝑚 be sensitive features. It is said that an algorithm output is intersectionaly fair if Γ(Φ(𝑋, 𝑆 1 , • • • , 𝑆 𝑚 ); (𝑆 1 , • • • , 𝑆 𝑚 )) = 0. This constraint can be relaxed to Γ(Φ(𝑋, 𝑆 1 , • • • , 𝑆 𝑚 ); (𝑆 1 , • • • , 𝑆 𝑚 ))
≤ 𝜀 with 𝜀 small for approximate intersectionality fairness.

Consider two independent protected features 𝑆 1 and 𝑆 2 (i.e gender and ethnicity). Depending on the chosen definition of fairness, there are situation where fairness is obtained with respect to 𝑆 1 , with respect to 𝑆 2 but where the combined effect of (𝑆 1 , 𝑆 2 ) is not taken into account. For instance, let 𝑌 = 𝑆 1 × 𝑆 2 . In this toy-case, the Disparate Impact of 𝑆 1 , as well as the Disparate Impact of 𝑆 2 , is equal to 1 while the Disparate Impact of (𝑆 1 , 𝑆 2 ) is equal to 0. This can be readily seen thanks to the link between fairness and GSA as the Sobol' indices for 𝑆 1 and for 𝑆 2 are null while the Sobol' index for the couple (𝑆 1 , 𝑆 2 ) is maximal.

Proposition 2. Let (𝑆 1 , 𝑆 2 , • • • , 𝑆 𝑚 ) be sensitive features. To be fair in the sense of Disparate Impact for 𝑆 1 and to be fair in the sense of Disparate Impact for 𝑆 2 does not quantify any intersectional fairness in the sense of the Disparate Impact.

However, if we take again the same toy-case but look at the Total Sobol' indices, we see that 𝑆𝑜𝑏𝑇 𝑆1 = 0 implies that 𝑆𝑜𝑏𝑇 (𝑆1,𝑆2) = 0. Proposition 3. Let (𝑆 1 , 𝑆 2 , • • • , 𝑆 𝑚 ) be sensitive features. To be fair in the sense of Avoiding Disparate Treatment for 𝑆 1 implies intersectional fairness for any intersection where 𝑆 1 appears. Remark 6. Intersectional fairness is different than classical fairness. Classical fairness only pays attention to the influence of a single sensitive feature on the outcome while intersectional fairness is quantifying only the influence due to interactions between sensitive features. In applications, the goal is usually to have both classical and intersectional fairness. A single fairness definition that covers these two characteristics can be hard to find or too restrictive to readily use. For instance, among Sobol' indices, only the Total Sobol' index induces both a classical and intersectional fairness.

Experiments

Synthetic experiments

In this subsection, we focus on the computation of complete Sobol' indices in a synthetic framework. We design three experiments, modeled after the causal generative models shown in Figure 2.1. For simplicity, we consider a Gaussian model. In each experiment 𝑗, 𝑗 ∈ {1, 2, 3}, (𝑋, 𝑆, 𝑈 ) are random variables drawn from a Gaussian distribution with covariance matrix 𝐶 𝑗 , where

𝐶 1 = 𝐶 2 = ⎛ ⎝ 1 0.5 0.5 0.5 1 0 0.5 0 1 ⎞ ⎠ , 𝐶 3 = ⎛ ⎝ 1 0 0.5 0 1 0 0.5 0 1 ⎞ ⎠ .
The random variable 𝑈 is unobserved in this case and therefore does not have Sobol' indices. Its purpose is to simulate exogenous variables that modify the features in 𝑋. The target 𝑌 𝑗 , described in the Table 2.3 for each of the experiments, is equal to

𝑌 1 =2 × 𝑋, 𝑌 2 = 𝑌 3 =0.7 × 𝑋 + 0.3 × 𝑆.
The first experiment shows the difference between independent and non-independent Sobol' indices. The outcome is entirely determined by a single variable 𝑋 and therefore, 𝑆𝑜𝑏 𝑋 = 1. However, 𝑋 is intrinsically linked with a sensitive feature because of the covariance matrix, so that 𝑆𝑜𝑏 𝑖𝑛𝑑 𝑋 ̸ = 0. This is a concrete example where Statistical parity is not obtained for 𝑆 but unresolved discrimination mentioned in Example 7 is obtained, since 𝑆 is influential only through 𝑋.

The second experiment adds a direct path from the variable 𝑆 to the outcome 𝑌 . Since 𝑌 can be factorized as an effect from 𝑋 and an effect of 𝑆, we still have 𝑆𝑜𝑏 𝑋 = 𝑆𝑜𝑏𝑇 𝑋 and 𝑆𝑜𝑏 𝑖𝑛𝑑 𝑋 = 𝑆𝑜𝑏𝑇 𝑖𝑛𝑑 𝑋 . However, in this case, 𝑋 is no longer enough to fully explain the outcome, so that 𝑆𝑜𝑏 𝑋 ̸ = 1. 𝑆𝑜𝑏 𝑖𝑛𝑑 𝑆 quantify the influence of this direct path from 𝑆 to 𝑌 . Note that the difference between 𝑆𝑜𝑏 𝑆 and 𝑆𝑜𝑏 𝑖𝑛𝑑 𝑆 quantify the influence of the path from 𝑆 to 𝑌 through the intermediary variable 𝑋.

In the third experiment, 𝑆 and 𝑋 are independent and 𝑆 can only influence the outcome directly. This is the framework of classical Global Sensitivity Analysis. In this case, non-independent and independent Sobol' indices are equal, as mentioned in Remark 1 Note that for these synthetic examples, we have complete access to the joint law of the input variables. In such a case, we can apply the estimation schemes described in Appendix A.2 directly. The code can be found in the following repository GIT.

Real data sets

In this section, we focus on the implementation of Cramér-von-Mises indices on two real-life datasets: the Adult dataset [START_REF] Dua | UCI Machine Learning Repository[END_REF] and the COMPAS dataset.

For real data sets, we first need to preprocess our data. For the Adult dataset, we applied to the data the same preprocessing as the one described in [START_REF] Besse | A survey of bias in Machine Learning through the prism of Statistical Parity for the Adult Data Set[END_REF]. As for the Compas dataset, we used the same preprocessing as [START_REF] Bilal | Fairness Beyond Disparate Treatment & Disparate Impact: Learning Classification without Disparate Mistreatment[END_REF]. Additionally, since access to the joint law of the distribution is not accessible, we added noise to the binary data to make them continuous and used a Gaussian approximation for the copula, as described in [START_REF] Thierry | Nonparametric methods for global sensitivity analysis of model output with dependent inputs[END_REF], in order to have tractable estimates.

Adult dataset

The Adult dataset consists in 14 attributes for 48,842 individuals. The class label corresponds to the annual income (below/above 50.000 𝑘$). We study the effect of different attributes. The results for a classifier obtained for an algorithm built using an Extreme Gradient Boosting Procedure are shown in Figure 2.2. We used the same pre-process as [START_REF] Besse | A survey of bias in Machine Learning through the prism of Statistical Parity for the Adult Data Set[END_REF] for the choice of variables. If we look at the independent Cramér-von-Mises, we quantify the direct influence of a variable . We recover the influent indicators -"capital gain", "educationnumber", "age", "occupation"... -given by other studies [START_REF] Frye | Asymmetric Shapley values: incorporating causal knowledge into model-agnostic explainability[END_REF][START_REF] Besse | A survey of bias in Machine Learning through the prism of Statistical Parity for the Adult Data Set[END_REF]. The joint influences on the outcome of other variables is also measured using GSA indices. Variables for which independent and classical Cramér-von-Mises indices are the same have no "bouncing" influence. Otherwise, the gap between these two indices quantify this specific effect. For example, the variable "age" correlates with most of the other variables such as "education-number" or "marital-status" for instance. Because of this, most of its influence is through "bouncing effects" and the gap between its two indices (i.e "𝐶𝑉 𝑀 " and "𝐶𝑉 𝑀 𝑖 𝑛𝑑𝑒𝑝") is larger than for any other feature. The variable "sex" also plays an important role through its "bouncing" effect. We can see this through the difference between the classical and the independent index associated with this feature. This explains why removing the variable "sex" is not enough to obtain a fair predictor since it influences other variables that affect the prediction. We recover the results obtained by several studies that point out the bias created by the "sex" variable. Note that race may have led to unbalanced decisions as well. Yet, the Cramérvon-Mises index is lower than the one for the "sex" variable, which explains why the discrimination is lower than the one created by the sex, as emphasized by the study of the Disparate Impact which is in a 95% confidence interval of [0.34, 0.37] for sex and [0.54, 0.63] for ethnic origin in [START_REF] Besse | A survey of bias in Machine Learning through the prism of Statistical Parity for the Adult Data Set[END_REF].

COMPAS dataset

The so-called COMPAS dataset, gathered by ProPublica described for instance in in [START_REF] Washington | How to Argue with an Algorithm: Lessons from the COMPAS ProPublica Debate[END_REF] , contains information about the recidivism risk predicted by the COMPAS tool, as well as the ground truth recidivism rates, for 7214 defendants. The COMPAS risk score, between 1 and 10 (1 being a low chance of recidivism and 10 a high chance of recidivism), is obtained by an algorithm using all other variables used to compute it, and is used to forecast whether the defendant will reoffend or not. We analysed this dataset with Cramér-von-Mises indices in order to quantify fairness exhibited by the COMPAS algorithm. The preprocessing we used is the same as the one described by [START_REF] Bilal | Fairness Beyond Disparate Treatment & Disparate Impact: Learning Classification without Disparate Mistreatment[END_REF]. The results are shown in Figure 2.3. First, every independent index is null, which means that the COMPAS algorithm does not rely on a single variable to predict recidivism. Also, gender and ethnicity are virtually not used by the algorithm, opposed to the variables "age" or "𝑝𝑟𝑖𝑜𝑟𝑠_𝑐𝑜𝑢𝑛𝑡" (the number of previous crimes). Hence as expected, the algorithm appears to be fair. However, when comparing the accuracy of the predictions of the algorithm with real-life two-year recidivism, the "race" variable is found to be influential. Hence we show that the indices we propose recover the bias denounced by Propublica with an algorithm that, despite fair predictions, shows a behavior that favors a part of the population based on the race variable.
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Conclusion

We recalled classical notions both for the Global Sensitivity Analysis and the Fairness literature. We presented new Global Sensitivity Analysis tools by the mean of extended Cramér-von-Mises indices, as well as proved asymptotic normality for the extended Sobol' indices. These sets of indices allow for uncertainty analysis for non-independent inputs, which is a classical situation in real-life data but not often studied in the literature. Concurrently, we link Global Sensitivity Analysis to Fairness in an unified probabilistic framework in which a choice of fairness is equivalent to a choice of GSA measure. We showed that GSA measures are natural tools for both the definition and comprehension of Fairness. Such a link between these two fields offers practitioners customized techniques for solving a wide array of fairness modeling problems. 𝑆𝑜𝑏𝑇 𝑖𝑛𝑑 𝑌 = 2 × 𝑋 X 1.00 (0.99 -1.00 -1.00) 1.00 (0.99 -1.00 -1.00) 0.75 (0.74 -0.75 -0.76) 0.75 (0.74 -0.75 -0.76) S 0.24 (0.24 -0.25 -0.26) 0.25 (0.24 -0.25 -0.26) 0.00 (0.00 -0.00 -0.01) 0.00 (0.00 -0.00 -0.01) S 0.13 (0.12 -0.16 -0.17) 0.17 (0.15 -0.16 -0.18) 0.14 (0.12 -0.16 -0.17) 0.15 (0.13 -0.16 -0.18)

𝑌 = 0.7 × 𝑋 + 0.3 × 𝑆 X 0.
Legend: Values format is "experimental value (lower bound of 95% confidence intervaltheoretical value -upper bound of 95% confidence interval)".

Chapter 3

Of the use of metamodels in GSA and Fairness

Introduction

As mentioned in Chapter 1 and Chapter 2, GSA indices are a way to quantify how much influence a given input has on an outcome when no particular information is available about the architecture of the used algorithm. The last decade has seen numerous breakthrough in this field. While, at first, only Sobol' indices were available [Sob; Sal+10], various additions have been proposed such as, but not limited to, HSIC indices through the use of kernels [Gre+; Da 21], Cramér-von-Mises indices [START_REF] Gamboa | Sensitivity analysis based on Cramér von Mises distance[END_REF] or even Shapley indices [START_REF] Art | On Shapley value for measuring importance of dependent inputs[END_REF], leveraging results from the game theory community. Conjointly, Group Fairness metrics [Dwo+11; MCK; BGL20] are used in order to assess whether a model presents discriminatory biases towards parts of the population, by quantifying the influence of sensitive variables. We showed that it is possible to quantify Group Fairness through the choice of a fairness metric ; and that several of these metrics are in fact deeply linked to tools used in the Global Sensitivity Analysis literature. However, both in the Explainability and the Fairness framework, computation of GSA indices and fairness metrics are done using direct access to the model. Indeed, for estimation of these indicators, we need to be able to sample using the algorithm 𝑓 .

In practice, models are often too costly to run intensively due to the use of expensive techniques, or outright impossible to directly access. In this case, we must be able to infer properties exhibited by the model (e.g. fairness, explainability) without additional calls to the algorithm. In order to do this, we use metamodels [START_REF] Janon | Uncertainties assessment in global sensitivity indices estimation from metamodels[END_REF]. Metamodels are more and more used by the scientific community as these objects aim at depicting a truthful representation or approximation of a true algorithm, at a lower cost. Usually, the metamodel is the result of an optimization, minimizing an empirical loss involving data coming from the true algorithm. While various architectures exist for this problem -for 52CHAPTER
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instance based on wavelets [START_REF] Dai | A wavelet support vector machinebased neural network metamodel for structural reliability assessment[END_REF], Gaussian Processes [LMS17; Bac13; BBG19] ... -it is important to quantify how truthful this metamodel is. This is usually done by the quantification of the mean square error made by the metamodel, that is the quantification of the L 2 norm of the difference between true and approximating algorithms. The statistical community have been interested in this subject for a long time and results can be found in the literature, see [START_REF] Baraud | Model selection for regression on a random design[END_REF][START_REF] Wang | Convergence of Gaussian process regression: Optimality, robustness, and relationship with kernel ridge regression[END_REF].

In these premises, the natural question we aim at answering by the end of this chapter is the following: "Can we infer properties related to an inaccessible model only by looking at a corresponding metamodel?" We provide hints and results in this direction both for the Explainability and the Fairness frameworks.

To the best of our knowledge, only a handful of papers merge these subjects to try and answer the question above. In a context of GSA, [START_REF] Janon | Uncertainties assessment in global sensitivity indices estimation from metamodels[END_REF] provides an answer for Sobol' indices in the classical GSA framework, that is to say when inputs are considered independent. The authors prove a Central Limit Theorem for estimators of these indices, under very mild conditions. More recently, [START_REF] Panin | Risk of estimators for Sobol' sensitivity indices based on metamodels[END_REF] proves a tight bound in the same framework, linking the differences of Sobol' indices to the mean square error previously mentioned. We build upon these two works to provide a similar bound for multiple variants of Sobol' indices in a non-independent framework, and derive asymptotic rates for wavelet-based metamodels [START_REF] Dai | A wavelet support vector machinebased neural network metamodel for structural reliability assessment[END_REF] and Gaussian Process metamodels [LMS17; Bac13; BBG19].

Finally, when translating this question in a Fairness framework, we are able to assess whether a model is fair with respect to a chosen metric, without having access to this algorithm. This problematic is known as audit and is now a prevalent issue in the Algorithmic Fairness literature, partly because of recent judicial advances, see [START_REF] Laux | Taming the few: Platform regulation, independent audits, and the risks of capture created by the DMA and DSA[END_REF]. Using the results of this chapter, we are able to offer a road-map to audit fairness on a model, only through information gained by using a metamodel. This proves to be useful for auditors that need to certify the fairness of an auditee's model, and alleviate potential trust issues and reluctance from the auditee to provide direct access to a potentially proprietary model. This is done however at a higher cost, due to the intrinsic loss of information incurred while auditing an algorithm through a proxy.

Usual Sobol'-based GSA indices

The main goal here is to introduce the GSA indices we use after: the Sobol'-based indices. In this nomenclature, we include Sobol' indices, Extended Sobol' indices, Extended Cramér-von-Mises indices and Shapley indices. The first two set of indicators, Sobol' and Extended Sobol' indices, have been defined in Section 2.2, along with useful properties and insights. However, Extended Cramér-von-Mises indices were only partially defined because of the link with some fairness metrics. Moreover, Shapley indices were not defined and its link with Sobol' indices was not made explicit. Therefore, in this section, we provide the definitions and some properties for these missing quantities that will be useful later.
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Definition of Extended Cramér-von-Mises indices

Sobol' indices are variance-based. This proves to be a limitation and has been the main motivation behind the creation of Cramér-von-Mises indices [START_REF] Gamboa | Sensitivity analysis based on Cramér von Mises distance[END_REF]. However, as far as the authors know, extensions of the Sobol' indices have not yet been transposed for Cramér-von-Mises indices. Further generalisations to generic metric spaces, along the lines of [START_REF] Gamboa | Sensitivity analysis in general metric spaces[END_REF], are possible but will be investigated in a later work. Definition 3.2.1. Classical Cramér-von-Mises indices are defined as Remark 7. Cramér-von-Mises indices can be seen as an adaptive mean of the Sobol' indices on level-lines of the cumulative distribution of 𝑓 (𝑋), or "failure domains" defined by 1 𝑓 (𝑋)≤𝑡 . The use of cumulative distributions allows to capture information on the complete distribution of the output and not simply a second-moment information. This average can be understood as following. When 𝑉 𝑎𝑟(1 𝑓 (𝑋)≤𝑡 ) is high, then this area is highly informative and the influence of all the inputs should be monitored with attention. Conversely, when 𝑉 𝑎𝑟(1 𝑓 (𝑋)≤𝑡 ) is low, the algorithm response is almost constant. Influence from a feature in this area will not be as informative and as effective and therefore count less.

𝐶𝑣𝑀 𝑖 (𝑓 ) = ∫︀ E [︀ (E[1 𝑓 (X)≤𝑡 ] -E[1 𝑓 (X)≤𝑡 |𝑋 𝑖 ]) 2 ]︀ 𝑑𝑡 ∫︀ Var(1 𝑓 (X)≤𝑡 )𝑑𝑡 . ( 3 

54CHAPTER 3. OF THE USE OF METAMODELS IN GSA AND FAIRNESS

While the definitions of these indices are straightforward when the link between Cramér-von-Mises and Sobol' is exposed, this is, to the best of our knowledge, the first time they are formalized. The use of the classical Cramérvon-Mises indices is by now common practice but use of the three other indices are yet to be found, with an exception for 𝐶𝑣𝑀 𝑖𝑛𝑑 in a special variant in the fairness framework, see [START_REF] Bénesse | Fairness seen as Global Sensitivity Analysis[END_REF].

Definition of Shapley indices

Shapley indices, introduced in Global Sensitivity Analysis by [Owe14; OP17], are a widely used mean to quantify influence with non-independent inputs, especially for industrial cases. This notion comes from the Game Theory and proposes to compute the contribution of an input variable in various "coalitions". When the inputs are independent, its signification is well-understood as it is a weighting of Sobol' indices based on the number of elements in the coalition.

In order to define the Shapley indices, we first need to introduce the closed Sobol' indices. In the literature [Da +21; IL15], Sobol' indices are sometimes defined, for a general set 𝐴 of inputs as

𝑆 𝑐𝑙𝑜𝑠 𝐴 = Var(E[𝑓 (X)|𝑋 𝐴 ]) Var(𝑓 (X)) . (3.7) 
In fact, this definition 𝑆 𝑐𝑙𝑜𝑠 𝐴 coincides with 𝑆 𝐴 for singletons but differ for groups of inputs. To reconcile these two notions, we need to make use of the inclusion-exclusion principle, a special case of the Möbius inversion formula, to obtain

𝑆 𝐴 = ∑︁ 𝐵⊂𝐴 (-1) |𝐴|-|𝐵| 𝑆 𝑐𝑙𝑜𝑠 𝐵 (3.8) 𝑆 𝑐𝑙𝑜𝑠 𝐴 = ∑︁ 𝐵⊂𝐴 𝑆 𝐵 (3.9)
In general, Sobol' indices used in the literature correspond to 𝑆 𝐴 and 𝑆 𝑐𝑙𝑜𝑠 𝐴 is used for the definition of Shapley indices, as we will see later.

Definition 3.2.3. Let X = (𝑋 1 , . . . , 𝑋 𝑝 ) be inputs and 𝑓 be a square-integrable function. We define the Shapley index as This equality has been one of the main motivation for the use of Shapley indices as an extension of Sobol' indices in the case of dependent inputs.

𝑆ℎ 𝑖 (𝑓 ) = 1 𝑝 ∑︁ 𝐴⊂∼𝑖 (︂ |𝐴| 𝑝 -1 )︂ -1 (︁ 𝑆 𝑐𝑙𝑜𝑠 𝐴∪{𝑗} -𝑆 𝑐𝑙𝑜𝑠 𝐴 )︁ . ( 3 
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While previous definition is the most used, we introduce an equivalent definition [START_REF] Dehez | On Harsanyi Dividends and Asymmetric Values[END_REF] that will allow for easier proofs of later results. Definition 3.2.4. Let Π 𝑝 be the set of all permutations of {1, . . . , 𝑝}. For 𝜋 = (𝑖 1 , . . . , 𝑖 𝑝 ) ∈ Π 𝑝 , we define 𝜋 𝑖 as (𝑖 1 , . . . , 𝑖 𝑘 = 𝑖). We can then define the Shapley index as

𝑆ℎ 𝑖 (𝑓 ) = 1 𝑛! ∑︁ 𝜋∈Π𝑝 (︁ 𝑆 𝑐𝑙𝑜𝑠 𝜋 𝑖 -𝑆 𝑐𝑙𝑜𝑠 𝜋 𝑖 ∖{𝑖} )︁ . (3.12)
This definition provides with an other understanding of Shapley values: the Shapley index of the variable 𝑋 𝑖 is the mean additional influence of a coalition coming from the input 𝑋 𝑖 when taking the uniform distribution among all manners of choosing a coalition. However, as mentionned earlier, Shapley alone cannot give the full picture and while its estimation has been well documented, its use should be complemented by other GSA indices [Da +21; FRF; ICI21].

Upper-bounds for GSA indices between two models

The use of metamodels -or surrogate models -are by now the routine when computer codes are too expensive or inaccessible. They allow to have an approximate result, trading accuracy for a lower computational cost. Often, it is also easier to compute GSA indices on these metamodels than it is on the original function or algorithm 𝑓 , as access to new runs can be virtually free. However, a natural question is the following: "If f is an approximation of 𝑓 , how close are the GSA indices of f to the GSA indices of 𝑓 ?" This question has partially been answered in the special case of Sobol' indices for independent inputs in [START_REF] Janon | Uncertainties assessment in global sensitivity indices estimation from metamodels[END_REF] with asymptotic results and in [START_REF] Panin | Risk of estimators for Sobol' sensitivity indices based on metamodels[END_REF], with this theorem that will be the cornerstone of our extensions and proofs: [START_REF] Panin | Risk of estimators for Sobol' sensitivity indices based on metamodels[END_REF]). Let 𝑓 and f be two square-integrable functions. Then, for any subset 𝐴 ⊂ {1, • • • , 𝑑},

Theorem 3.3.1 ([
|𝑆 𝐴 (𝑓 ) -𝑆 𝐴 ( f )| ≤ (︂ √︁ 𝑆 𝐴 (𝑓 )(1 -𝑆 𝐴 ( f )) + √︁ (1 -𝑆 𝐴 (𝑓 ))𝑆 𝐴 ( f ) )︂ ‖𝑓 -f ‖ 2,X Var P X (𝑓 ) 1/2 . (3.13)
We extend these results to the wider class of GSA indices that we call "Sobol'-based indices" and that we have defined in previous section. Besides generalisation to other types of indices, our results allow to circumvent the restrictive assumption of independence between inputs.

First, we prove results for fixed functions 𝑓 and f . Then, we complete this answer with the case of metamodels chosen from a random design, or simply put, when we use data to choose a f𝑛 . The main take-away message from these results is that the key component of the upper-bounds is either the L 2 (P X )-norm of 𝑓 -f in the deterministic framework or the approximation risk for the random design.
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Upper-bounds when working with deterministic models

In this subsection, we provide extensions of Theorem 3.3.1 for all indices defined in the previous section. While we suppose for now 𝑓 and f to be given, we make no assumptions on the input distribution. We show that the gap between the GSA indices of two models is upper-bounded by a term involving the L 2 (P X )-norm of 𝑓 -f . We format these results in Table 3.1 for the sake of clarity.

Theorem 3.3.2. Let 𝑓 and f be two functions of L 2 (P X ). Let 𝑋 𝑖 be an input and let 𝐺𝑆𝐴 𝑖 (𝑓 ) be one of the extended Sobol' index for the input variable 𝑋 𝑖 , that is

𝐺𝑆𝐴 𝑖 (𝑓 ) ∈ {𝑆𝑜𝑏 𝑖 (𝑓 ), 𝑆𝑜𝑏 𝑖𝑛𝑑 𝑖 (𝑓 ), 𝑆𝑜𝑏𝑇 𝑖 (𝑓 ), 𝑆𝑜𝑏𝑇 𝑖𝑛𝑑 𝑖 (𝑓 )}. Then |𝐺𝑆𝐴 𝑖 (𝑓 ) -𝐺𝑆𝐴 𝑖 ( f )| ≤ ‖𝑓 -f ‖ 2,X Var P X (𝑓 ) 1/2 . (3.14)
Remark 9. While in practice, we use Equation 3.14, we can in fact obtain a tighter bound. Indeed, we have the following inequality:

|𝐺𝑆𝐴 𝑖 (𝑓 ) -𝐺𝑆𝐴 𝑖 ( f )| ≤ (︂ √︁ 𝐺𝑆𝐴 𝐴 (𝑓 )(1 -𝐺𝑆𝐴 𝐴 ( f )) + √︁ (1 -𝐺𝑆𝐴 𝐴 (𝑓 ))𝐺𝑆𝐴 𝐴 ( f ) )︂ ‖𝑓 -f ‖ 2,X Var P X (𝑓 ) 1/2 . (3.15)
However, this additional multiplicative constant is always upper-bounded by 1 and involves the term 𝐺𝑆𝐴(𝑓 ), precisely what we aim to approach by using 𝐺𝑆𝐴( f ).

This theorem proves that we can bound the error made when comparing the Sobol' indices of the real algorithm and the Sobol' indices of a metamodel by the approximation error of the metamodel. As mentioned in previous section, this can allow some new strategies for estimating Extended Sobol' indices of 𝑓 , if these indices can be easily and analytically computed for some approximation f of 𝑓 .

Corollary 1. Let 𝑓 and f be two continuous functions of L 2 (P X ). Let 𝑋 𝑖 be an input and let 𝐺𝑆𝐴 𝑖 (𝑓 ) be one of the extended Cramér-von-Mises index for the input variable 𝑋 𝑖 , that is

𝐺𝑆𝐴 𝑖 (𝑓 ) ∈ {𝐶𝑣𝑀 𝑖 (𝑓 ), 𝐶𝑣𝑀 𝑖𝑛𝑑 𝑖 (𝑓 ), 𝐶𝑣𝑀 𝑇 𝑖 (𝑓 ), 𝐶𝑣𝑀 𝑇 𝑖𝑛𝑑 𝑖 (𝑓 )}. Then |𝐺𝑆𝐴 𝑖 (𝑓 ) -𝐺𝑆𝐴 𝑖 ( f )| ≤ ‖𝑓 -f ‖ 1/2 2,X . (3.16)
This theorem proves a similar result for the Cramér-von-Mises indices.

Corollary 2. Let 𝑓 and f be two functions of L 2 (P X ). Let 𝑋 𝑖 be an input and let 𝐺𝑆𝐴 𝑖 (𝑓 ) be equal to the Shapley index for the input variable 𝑋 𝑖 , 𝐺𝑆𝐴 𝑖 (𝑓 ) = 𝑆ℎ 𝑖 (𝑓 ). Then

|𝐺𝑆𝐴 𝑖 (𝑓 ) -𝐺𝑆𝐴 𝑖 ( f )| ≤ 2 ‖𝑓 -f ‖ 2,X Var 1/2 P X (𝑓 )
.

(3.17) 
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‖𝑓 -f ‖ 2,X Var 1/2 (𝑓 ) E‖𝑓 -f ‖ 2 Var(𝑓 ) Extended Cramér- von- Mises indices ‖𝑓 -f ‖ 1/2 2,X E‖𝑓 -f ‖ Shapley indices 2 × ‖𝑓 -f ‖ 2,X Var 1/2 (𝑓 ) 2 × E‖𝑓 -f ‖ 2 Var(𝑓 )
One may remark that the bound obtained for the Cramér-von-Mises indices are not of the same order than the other bounds. This occurs because of the use of the cumulative distributions of 𝑓 (X) and f (X) instead of directly working with the functions. While this is a good thing for the definition of Cramér-von-Mises indices, it leads to a degradation of this upper-bound. We are not sure yet that a better bound is achievable.

Risk bounds for a metamodel chosen from a random design.

So far, we worked with deterministic functions. However, in practice, it is common to choose the approximation f of the true model 𝑓 according to some rules. The most classical framework would be to choose f as the minimizer of some empirical quadratic loss, possibly penalised. We show here that we keep upper-bounds on the quadratic risk for the GSA indices defined earlier when working with metamodels, in a very general framework. The main take-away from these theorems is that the main component of the risk bounds is the quadratic approximation loss. We now suppose that we have a random design 𝒟, along with noisy output 𝑌 = 𝑓 (𝒟) + 𝜀 from which we build a function f to estimate the true function 𝑓 . Let 𝒟 = {x 𝑖 } 𝑖=1,...,𝑛 be an i.i.d. sample from the distribution P X and ℒ be a deterministic learning procedure ℒ : (𝒟, 𝑌 = 𝑓 (𝒟) + 𝜀) ↦ → f that build from data a metamodel approximating 𝑓 . Common choices can be a projection method or ordinary least square for instance, but such metamodels can also come from the minimisation of a penalized loss on a more complicated collection of functions, as we will see in next section. However, we show here that we can still bound the risk by the risk of approximation or quadratic loss.
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Theorem 3.3.3. Let 𝑓 be a function of L 2 (P X ). Let f be the approximation of 𝑓 obtained through a learning procedure ℒ.

1. If 𝐺𝑆𝐴 𝑖 (𝑓 ) ∈ {𝑆𝑜𝑏 𝑖 (𝑓 ), 𝑆𝑜𝑏 𝑖𝑛𝑑 𝑖 (𝑓 ), 𝑆𝑜𝑏𝑇 𝑖 (𝑓 ), 𝑆𝑜𝑏𝑇 𝑖𝑛𝑑 𝑖 (𝑓 )}, then E(𝐺𝑆𝐴(𝑓 ) -𝐺𝑆𝐴( f )) 2 ≤ E‖𝑓 -f ‖ 2 Var(𝑓 ) . (3.18) 2. If 𝐺𝑆𝐴 𝑖 (𝑓 ) ∈ {𝐶𝑣𝑀 𝑖 (𝑓 ), 𝐶𝑣𝑀 𝑖𝑛𝑑 𝑖 (𝑓 ), 𝐶𝑣𝑀 𝑇 𝑖 (𝑓 ), 𝐶𝑣𝑀 𝑇 𝑖𝑛𝑑 𝑖 (𝑓 )}, then E(𝐺𝑆𝐴(𝑓 ) -𝐺𝑆𝐴( f )) 2 ≤ E‖𝑓 -f ‖. (3.19) 3. If 𝐺𝑆𝐴 𝑖 (𝑓 ) = 𝑆ℎ 𝑖 (𝑓 ), then E(𝐺𝑆𝐴(𝑓 ) -𝐺𝑆𝐴( f )) 2 ≤ 2 × E‖𝑓 -f ‖ 2 Var(𝑓 ) . (3.20)
We sum up this result in the Table 3.1 for the sake of clarity. Therefore, to quantify the asymptotic rate of these risk bounds, we must analyze the asymptotics of the risk of approximation E‖𝑓 -f ‖ 2 . In the next section, we derive some rates of convergence for specific learning procedures.

Rates of convergence of theoretical indices for metamodels from model selection

The results shown in previous section allow to upper-bound the error made by using a metamodel instead of the true model when computing GSA indices. The key element of this bound is the quadratic norm between both models. Therefore, the aim is to quantify how good the metamodel is at approximating 𝑓 . The goal is classical in the regression literature and different rates of convergence can be found depending on the architecture chosen for metamodeling. We recall here some results and directly apply them to our framework in order to obtain rates of convergence for the quantity 𝐺𝑆𝐴( f ) toward the quantity 𝐺𝑆𝐴(𝑓 ). This convergence is with respect to the size of the sample used for the construction of the metamodel. We focus the results on two main families of metamodel: wavelet-based metamodels and Gaussian Proccesses.

Wavelet-based metamodeling:

For wavelet-based metamodeling, we need to assume the true model to be in a Besov space. Besov space have been widely used in recent years as for particular choice of parameters, these sets contain Sobolev and Hölder balls, among others spaces commonly found for instance in the partial differential equation literature [START_REF] Devore | Interpolation of Besov Spaces[END_REF][START_REF] Chesneau | On the adaptive wavelet deconvolution of a density for strong mixing sequences[END_REF]. This has led to recent studies of universal estimators and their possible rates of convergence toward a given model. For the analysis in this
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subsection, we suppose without loss of generality the inputs to follow the uniform distribution in the unit cube of R 𝑑 , X ∼ 𝒰([0, 1] 𝑑 ). We consider here the case where the true model 𝑓 is in the Besov space ℬ 𝑠 𝑝,𝑞 , for 𝑝/𝑑 < 𝑠 < ∞ and 𝑝, 𝑞 ∈ [1, ∞).

In [START_REF] Chesneau | Nonparametric estimation in a regression model with additive and multiplicative noise[END_REF], the authors describe how to approximate any function of the Besov space ℬ 𝑠 𝑝,𝑞 by using its decomposition on wavelet bases, with explicit formulas. We refer the interested reader to this work, along with [START_REF] Härdle | Wavelets, approximation, and statistical applications[END_REF][START_REF] Daubechies | Ten Lectures on Wavelets[END_REF] for complementary information on this decomposition. This allows us to leverage their results on approximation risk of such metamodels in order to state the following result for GSA indices. While the original result is wider than our application, it requires only one more additional assumption to be used: the noise must have a finite moment of order 4. Suppose that we have f𝑛 a wavelet-based metamodel approximating 𝑓 . We then have the following theorem.

Theorem 3.4.1. Suppose that 𝑓 ∈ ℬ 𝑠 𝑝,𝑞 and that the noise 𝜀 has a finite moment of order 4. Suppose that we have f𝑛 is learned through the procedure explained in [START_REF] Chesneau | Nonparametric estimation in a regression model with additive and multiplicative noise[END_REF]. Then, for 𝐺𝑆𝐴 ∈ {𝑆𝑜𝑏, 𝑆𝑜𝑏 𝑖𝑛𝑑 , 𝑆𝑜𝑏𝑇, 𝑆𝑜𝑏𝑇 𝑖𝑛𝑑 , 𝑆ℎ}

E[(𝐺𝑆𝐴(𝑓 ) -𝐺𝑆𝐴( f𝑛 )) 2 ] ≤ 𝐶(𝑠, 𝑝) log(𝑛)𝑛 -2𝑠/(𝑑+2𝑠) .
(3.21)

If 𝐺𝑆𝐴 ∈ {𝐶𝑣𝑀, 𝐶𝑣𝑀 𝑖𝑛𝑑 , 𝐶𝑣𝑀 𝑇, 𝐶𝑣𝑀 𝑇 𝑖𝑛𝑑 }, then, E[(𝐺𝑆𝐴(𝑓 ) -𝐺𝑆𝐴( f𝑛 )) 2 ] ≤ 𝐶(𝑠, 𝑝) log(𝑛)𝑛 -𝑠/(𝑑+2𝑠) . (3.22)
However, a drawback of this rate is the presence of the term log(𝑛), as optimal rates of convergence in these spaces seems to be of order 𝑛 -2𝑠/(𝑑+2𝑠) , see [START_REF] Härdle | Wavelets, approximation, and statistical applications[END_REF]. In [START_REF] Chesneau | Nonparametric estimation in a regression model with additive and multiplicative noise[END_REF], such a rate is obtained for a linear wavelet estimator. Hence, if we know that the model is linear -and therefore, in our case, that Total Sobol' indices and Sobol' indices are equal -it is possible to leverage this information in order to obtain faster rates. Note that the linear case is also studied in [START_REF] Baraud | Model selection for regression on a random design[END_REF] in order to obtain similar rates in ℬ 𝑠 2,∞ . Nonetheless, this assumption is usually too unrealistic to be safely made in practice.

Using Gaussian Processes for metamodeling

The principle of GP metamodeling is to assume that the model 𝑓 is a realisation of a Gaussian Process (GP), usually with null mean function. Then, by using data from evaluations of the model, we can create another Gaussian Process from which realizations will be approximations of the true model. This is widely used since Gaussian Process is adaptable and numerous theorems can be used to gain information on the structure of the process (e.g. Mercer theorem or Karhunen-Loève theorem). We first recall the definition of a Gaussian Process and then state the assumptions needed and the rates of convergence we have here.

Definition 3.4.1. Let 𝑍 = {𝑍(𝑥), 𝑥 ∈ R 𝑑 } be a collection of random variables. Then 𝑍 is a Gaussian Process if for any 𝑛 ∈ N, (𝑥 1 , • • • , 𝑥 𝑛 ) ∈ R 𝑑×𝑛 , the random vector (𝑍(𝑥 1 ), • • • , 𝑍(𝑥 𝑛 )) 𝑇 is multivariate normal.
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Alternatively, a Gaussian Process is a stochastic process that can be entirely characterized by its mean function 𝜇(𝑥) = E[𝑍(𝑥)] and its covariance function 𝑘(𝑥, 𝑥 ′ ) = Cov(𝑍(𝑥), 𝑍(𝑥 ′ )) for all 𝑥, 𝑥 ′ ∈ R 𝑑 . We denote 𝑍 ∼ 𝐺𝑃 (𝜇, 𝑘). For simplicity, we assume the underlying space is R 𝑑 but extensions for other spaces can be found in the literature. Additionally, we assume that the covariance function is radial, that is of the form 𝑘(𝑥, 𝑥 ′ ) = k(𝑥 -𝑥 ′ ).

For GP metamodeling, we usually suppose that 𝑓 is a realization of a centered GP 𝑍 ∼ 𝐺𝑃 (0, 𝑘). We then use the kriging mean and kriging covariance formulas

𝜇 𝑛 (𝑥) =𝜇(𝑥) -𝑘(𝑥, 𝒟)[𝑘(𝒟, 𝒟) + 𝜎 2 𝐼 𝑛 ] -1 𝑌 (3.23) 𝑘 𝑛 (𝑥, 𝑦) =𝑘(𝑥, 𝑦) -𝑘(𝑥, 𝒟)[𝑘(𝒟, 𝒟) + 𝜎 2 𝐼 𝑛 ] -1 𝑘(𝒟, 𝑦) (3.24) (3.25)
to create 𝑍 𝑛 ∼ 𝐺𝑃 (𝜇 𝑛 , 𝑘 𝑛 ) an approximation of 𝑍. As 𝑛 increases, realisations of 𝑍 𝑛 tends to the true model 𝑓 .

In our context, we need only one assumption on the decay of the correlation function. We suppose that there exists positive constants 𝑐 1 and 𝑐 2 , and 𝑚 > 𝑑/2 such that

𝑐 1 (1 + ‖𝜔‖ 2 2 ) -𝑚 ≤ ℱ( k)(𝜔) ≤ 𝑐 2 (1 + ‖𝜔‖ 2 2 ) -𝑚 . (3.26)
Usual covariance functions such as Matérn kernels satisfy such an assumption. We can then state the theorem from [WJ21] that will be of interest later.

Theorem 3.4.2. Suppose the assumption stated above to hold, and suppose 𝑚 < ∞. Then for all 𝑡 ≥ 𝐶 0 and 𝑛, with probability at least 1 -exp -𝑡, we have

‖𝑍 𝑛 -f ‖ 2 = 𝐶(1 + 𝑡)𝑛 -2𝑚-𝑑 2𝑚 , (3.27)
where 𝐶 0 and 𝐶 are constants not depending on 𝑛 and 𝑡.

Remark 10. For now, we supposed that the covariance function 𝑘 was known and that 𝑍 𝑛 is a GP with same covariance function as 𝑍. However, this might not always be true. Nonetheless, in the misspecified case (i.e. when another covariance function is used for 𝑍 𝑛 ), similar results hold -albeit with change in the rate of convergence. We refer to [START_REF] Wang | Convergence of Gaussian process regression: Optimality, robustness, and relationship with kernel ridge regression[END_REF] for more details.

If we use this result in our framework, then we have the following corollary.

Corollary 3. Let 𝑓 𝑛 be a realisation of 𝑍 𝑛 . Then for all 𝑡 ≥ 𝐶 0 and 𝑛, with probability at least 1 -exp -𝑡, we have,

E [︀ (𝐺𝑆𝐴(𝑓 ) -𝐺𝑆𝐴(𝑓 𝑛 )) 2 ]︀ ≤ 𝐶 0 (1 + 𝑡)𝑛 -(𝑚+𝑑/2)/2𝑚 .
(3.28)

Auditing Algorithmic Fairness

Thanks to the results from the previous sections, we can provide a road-map for auditing algorithms when access to the algorithm 𝑓 is not possible. For this, we
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compute fairness metrics on a metamodel as an alternative to direct computation on the audited algorithm, and various bounds enable us to assess whether the true but inaccessible model is fair with respect to the chosen metric, or not.

While auditing fairness, the goal is to assert whether the quantity ℱ (𝑓 ) is above or below a given threshold 𝜀, with ℱ being a fairness metric provided by a legislator and 𝑓 an audited model provided by an auditee. Classical (un)fairness metrics include for instance Disparate Impact, Equality of Odds or Shapley values and we refer the reader to the previous chapters for more insights on these metrics. It has been proven [Bén+21; GBM22] that these group fairness metric are equivalent to indices coming from the Global Sensitivity Analysis literature and defined in Section 3.2. However, the true model might not be accessible, with only access to an approximating metamodel f𝑛 previously obtained using a sample of size 𝑛. This means we cannot have additional runs of 𝑓 (.) and therefore cannot have convergent estimations of the fairness metric. But we can easily use f𝑛 , and therefore can use a large sample of size 𝑁 on the metamodel to estimate the fairness metric. Typically, 𝑛 is small and used only to create the metamodel, while 𝑁 can be much larger. In such a case, there is a need for bounds allowing to assess whether 𝑓 is fair using only information from f𝑛 .

In order to do this, we use the following inequality:

ℱ(𝑓 ) ≤ ̂︂ ℱ 𝑁 (︁ f𝑛 )︁ + ⃒ ⃒ ⃒ ̂︂ ℱ 𝑁 (︁ f𝑛 )︁ -ℱ (︁ f𝑛 )︁ ⃒ ⃒ ⃒ ⏟ ⏞ 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛 𝑟𝑖𝑠𝑘 + ⃒ ⃒ ⃒ℱ (︁ f𝑛 )︁ -ℱ(𝑓 ) ⃒ ⃒ ⃒ ⏟ ⏞ 𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 𝑟𝑖𝑠𝑘 , (3.29) 
where the quantity ̂︂ ℱ 𝑁 (.) is the estimator of the fairness metric ℱ. If the righthand side of this inequality is less than the threshold 𝜀, then so is the left-hand side and the audited algorithm is fair. However, this is a harder condition to fulfill. We will see later in this section that the additional cost for this type of audit can be reduced if we make further assumptions. However, in general, this gap is the price to pay in order to certify fairness on an inaccessible model.

We stress that, in this inequality, there are two different sample size, 𝑁 and 𝑛. The quantity 𝑁 is the size of the sample used for estimation of the fairness metric, and can be typically as large as desired since it involves only calls to the metamodel, which is supposed readily available and cheap. The quantity 𝑛 is the size of the sample used for creating the metamodel, and is representative of how good f𝑛 can approximate 𝑓 . This number may not be as large as 𝑁 and can be the limiting factor since it is the number of calls to the true but expensive model needed.

Remark 11. This decomposition is the best we can do under the assumption of metamodel usage. As such, this inequality is tight. To reduce this additional cost, it is necessary to either suppose the metamodel to be in fact equal to the model (to remove the approximation risk) or that the metamodel allow for perfect computation of the fairness metric (to remove the estimation risk).
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(Un)fairness computed for the metamodel

The first quantity of interest in this decomposition is the estimate of the (un)fairness metric, computed for the metamodel. This is usually a straightforward and widely studied subject since it is the direct estimation of the metric when using a dataset. Nonetheless, different scheme of estimation may exist for a given metric. For instance, fairness metric can usually be estimated using Monte-Carlo techniques, or Importance Sampling if necessary. However, for various metrics linked with Sensitivity Analysis for instance, specific schemes can be used such as "Pick and Freeze", Chatterjee-based estimates or even spectral approaches such as FAST. These methods allow for faster, cheaper and/or easier estimations by leveraging additional information on the used metric. More information on these estimation procedures are included in Chapter 1

Estimation risk

The estimation risk

⃒ ⃒ ⃒ℱ (︁ f𝑛 )︁ - F (︁ f𝑛 )︁⃒ ⃒ ⃒
is the error made by estimation a fairness metric using data and not having direct access to the theoretical value. There are several tools that allow practitioners to upper-bound this error:

• Well-chosen metamodel: If f𝑛 is of a certain form, it may be possible to directly compute the quantity ℱ (︁ f𝑛 )︁ . In such a case, the estimation

risk ⃒ ⃒ ⃒ℱ (︁ f𝑛 )︁ - F (︁ f𝑛 )︁⃒ ⃒ ⃒ is null.
Note however that this is usually not the case as this property is a combination of using the right metamodel and the right metric. An example of such a situation is obtained when using linear models conjointly with metrics based on a variance decomposition (i.e. any fairness metric linked to Sobol' indices). This is also the case when using Causal theory, under the condition of knowing all the causal equations contained in the DAG.

• Asymptotics: The asymptotics of the estimation risk can be studied as well. Usually, F (︁ f𝑛 )︁ is chosen so as to be a convergent estimator of ℱ (︁ f𝑛 )︁ . In this case, tools such as asymptotic normality or rates of convergence allow to infer the behaviour of the estimation risk as the number of calls to the metamodel increases. Note that using asymptotics may appear as sub-optimal compared to fixed-size bounds. However, this estimation risk is computed using only calls to the metamodel. This algorithm is supposed to be both accessible and cheaper to evaluate. As such, it is not unrealistic to suppose additional calls possible in order to obtain tighter bounds. An example for these results are for instance Central Limit Theorems that can be found in the literature for various estimators of Sobol' indices.

• Fixed-sample bounds: If the estimation risk needs to be studied but a large sample size is not obtainable, then it is necessary to study the behaviour of

⃒ ⃒ ⃒ℱ (︁ f𝑛 )︁ - F (︁ f𝑛
)︁⃒ ⃒ ⃒ at fixed sample size. Tools for this are typically concentration inequalities. It is not possible to describe exactly these bounds without information as they highly depend on the form of the estimator. Nonetheless, typical tools found for instance when considering Sobol' indices and therefore fairness metrics derived from them are Bennett inequalities, decay of Fourier coefficient when using FAST estimators. Test of independence can also be of use when considering HSIC-based metrics.

As an example, we show here the various bounds one may obtain for the estimation risk when considering a specific fairness metric: Disparate Impact. For a binary classifier 𝜙 taking as inputs X and a binary sensitive variable 𝑆, the Disparate Impact is defined as follow:

𝐷𝐼(𝜙, X, 𝑆) = P (𝜙(X, 𝑆) = 1|𝑆 = 0) P (𝜙(X, 𝑆) = 1|𝑆 = 1)
.

(3.30)

The natural estimator of the Disparate Impact is to plug-in Monte-Carlo estimates for the probabilities in Equation 3.30. This leads to the formula

︁ 𝐷𝐼(𝜙, X (𝑛) , 𝑆 (𝑛) ) = 𝑛 -1 1 𝜙(X (𝑛) ,𝑆 (𝑛) )=1|𝑆=0 𝑛 -1 1 𝜙(X (𝑛) ,𝑆 (𝑛) )=1|𝑆=1 . (3.31) 
As for asymptotics, we have the following Central Limit Theorem.

Theorem 3.5.1. Let 𝐷𝐼 and ̂︁ 𝐷𝐼 be the Disparate Impact and its estimator.

Then √ 𝑛 (︁ ̂︁ 𝐷𝐼(𝜙, X (𝑛) , 𝑆 (𝑛) ) -𝐷𝐼(𝜙, X, 𝑆) )︁ → 𝒩 (0, 𝜎 2 ), (3.32) 
where 𝜎 2 is equal to P(𝜙(X,𝑆)=1|𝑆=0) P(𝜙(X,𝑆)=1|𝑆=1) 2 × (1 + P(𝜙(X,𝑆)=1|𝑆=0) P(𝜙(X,𝑆)=1|𝑆=1) ).

Lastly, if we are interested in a concentration inequality, one can use the following theorem.

Theorem 3.5.2. Let 𝐴 𝑖 , 𝐵 𝑖 , 𝑖 ∈ 1, 𝑛 be independent random variables almost surely bounded by 𝐶, and let 𝑎, 𝑏 be the mean of respectively 𝐴 1 and 𝐵 1 . Then, we have the following concentration inequality:

P (︂⃒ ⃒ ⃒ ⃒ 𝑛 -1 ∑︀ 𝑛 𝑖=1 𝐴 𝑖 𝑛 -1 ∑︀ 𝑛 𝑖=1 𝐵 𝑖 - 𝑎 𝑏 ⃒ ⃒ ⃒ ⃒ > 𝑡 )︂ < 2 exp (︂ -𝑛𝑡 2 𝑏 2 2𝐶 2 )︂ (3.33)
Its corollary is a direct application to the Disparate Impact estimator.

Corollary 4. Let ̂︁ 𝐷𝐼(𝜙, X (𝑛) , 𝑆 𝑛 ) be the estimator of the Disparate Impact 𝐷𝐼. Then the following concentration inequality holds

P (︁⃒ ⃒ ⃒ ̂︁ 𝐷𝐼(𝜙, X (𝑛) , 𝑆 (𝑛) ) -𝐷𝐼(𝜙, X, 𝑆) ⃒ ⃒ ⃒ > 𝑡 )︁ < 2 exp (︂ -𝑛𝑡 2 2 )︂ . (3.34) 64CHAPTER 3.
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Approximation risk

The approximation risk

⃒ ⃒ ⃒ℱ (𝑓 ) -ℱ (︁ f𝑛 )︁⃒ ⃒ ⃒
is the error made by considering and auditing a metamodel instead of the inaccessible true model. This is the additional cost paid by the auditee for choosing not to provide the auditor with the true model. As for the previous item -the estimation risk -several tools are available to derive upper-bounds for this quantity:

• No metamodeling: If no metamodel is used -that is to say, if the model is in fact accessible and 𝑓 = f𝑛 -then the approximation risk disappear.

While the goal of this work is to provide with a general framework for auditing through the use of metamodels, it is important to note that this same framework holds when audit is made easier and auditors have access to the true algorithm.

If this is not the case -if a metamodel is truly needed -then the main goal is to be able to compare the approximation risk ‖ℱ (𝑓 )-ℱ (︁ f𝑛 )︁ ‖ 2 and the distance between the unaccessible model and its approximating metamodel ‖𝑓 -f𝑛 ‖ 2 . Such comparisons depend on the form of the fairness metric. Immediate results may be found by using Lipschitz metrics or by computation of the continuity modulus of the metric. Other results comparing this risk and the distance between model and metamodel can be found for Sobol'-based indices in [START_REF] Janon | Uncertainties assessment in global sensitivity indices estimation from metamodels[END_REF], [START_REF] Panin | Risk of estimators for Sobol' sensitivity indices based on metamodels[END_REF] or results from the previous section.

• Asymptotics: As soon as the approximation risk is bounded by the distance between a model and its metamodel, it remains to study the behaviour of ‖𝑓 -f𝑛 ‖ 2 . This is usually done in the regression literature. As such, rates of convergences can be found in previous section for waveletbased metamodeling, Gaussian Process metamodeling, etc. However, note that a limitation of such asymptotics is that a large number of calls to the true but inaccessible model are needed, in opposition to asymptotics for the estimation risk. For this reason, asymptotics can be costly or outright impossible to obtain. Depending on the possible budget and accessibility of the model, it might be easier to choose a metamodel so that ‖𝑓 -f𝑛 ‖ 2 is easier to compute, even if it deteriorates the estimation of the fairness metric, since additional calls to the metamodel are more readily available.

• Fixed-sample bounds: Because of the point raised above, it might be necessary to consider bounds for the quantity ‖𝑓 -f𝑛 ‖ 2 , at fixed sample size. Note that, in this case, the size considered is the size of the sample needed to obtain a metamodel, and not linked with the estimation of the fairness metric. As before, these bounds are usually obtained through use of concentration inequalities.

Remark 12. It is not unusual for analysis of the metamodel to be more complicated than other parts of the audit. This is mainly due to the lack of access to the true model. As such, if the metamodel is provided to the auditors directly by the auditee, there is a shift of trust from considerations related to the fairness measure ("How fair is the algorithm?") to considerations on the approximation level of the metamodel ("Is this metamodel really as close or as well-approximating as the auditee is claiming?"). This can be an issue to keep in mind, especially if the metamodel is chosen for "fairwashing" [START_REF] Aïvodji | Fairwashing: the risk of rationalization[END_REF], that is to say voluntarily chosen so as to minimize

⃒ ⃒ ⃒ℱ (︁ f𝑛 )︁ - F (︁ f𝑛 )︁⃒ ⃒ ⃒ + F (︁ f𝑛 )︁ . 66CHAPTER 3.
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Chapter 4

Further developments at the interface of GSA & Fairness

In this chapter, we study complementary results of interest at the interface between explainability and algorithmic fairness. These results answer specific questions or provide additional insights into these two frameworks and their current limitations. Firstly, we study the Chatterjee-based estimation of Sobol' indices in Section 4.1. This recent scheme of estimation is important for several practical reasons. It does not require additional calls to the model -with a given-data assumption -and involves only rankings and permutations, leading to a fast numerical estimation. We provide a concentration inequality for this estimator, complementary to the central limit theorem already found in the literature. Additionally, we extend aforementioned theorems by proving a multivariate version that can be of particular interest when working with more than one input.

Secondly, we tackle an other subject which is known in the literature as second-level GSA. The premise of this topic is that input distributions may not be perfectly known in practice. This uncertainty can have repercussions on the value of GSA indices, as influence of a variable may come from its underlying distribution. While the impact of distributional perturbations is not a new topic, recent works adopt a "meta" point of view by applying GSA indices to GSA indices. This allows to quantify how impactful the distribution of an input variable is on its influence on the outcome of an algorithm. These ideas can find direct application in algorithmic fairness as they allow the practitioner to assess fairness distributional robustness.

Around Chatterjee estimation

This estimation scheme comes from recent works from Chatterjee & al [START_REF] Chatterjee | A New Coefficient of Correlation[END_REF]. The most expensive part of estimation of Sobol' indices is the computation of 68CHAPTER 4. FURTHER DEVELOPMENTS AT THE INTERFACE OF GSA & FAIRNESS the numerator of the index, that is the variance of the conditional expectation. Indeed, this is where the dependency between the outcome and a specific variable, say for instance the first coordinate 𝑋 1 , is. However, due to the conditioning, naive estimation schemes can quickly become expensive. In [Cha20; AC21], the authors propose a new way to quantify this conditional expectation and its variance, through the use of ranks and nearest neighbors. In essence, the idea behind this method is the following. If 𝑋 1 is independent of 𝑌 , two points whose values along the coordinate 𝑋 1 are close have no reason to have close outputs, since the information on the first coordinate is worthless for the outcome. Therefore, if these points are close to each other with respect to the first coordinate, the ranking of their outputs has no reason to exhibit particular structure. On the contrary, if 𝑋 1 is the main driver of the outcome of the model, input vectors with similar values for the feature 𝑋 1 should have similar outputs, and therefore the ranks of their outputs should be close one to another.

We mentioned earlier that this estimation is quite interesting, especially for industrial applications, because it does not need additional calls to the model. The conditional variance, which usually requires evaluations in specific points (see for instance the "Pick-and-Freeze" method) can be estimated directly with the data at hand, making use of sortings and rankings. This fact has led this estimator to be coined as a given-data estimator.

In this section, we provide several new results such as concentration inequalities, a multivariate central theorem and hints for Berry-Esseen type results.

For this chapter, we denote when needed with a superindex the coordinate along -X = (𝑋 1 , • • • , 𝑋 𝑑 ) and with a subindex the element in a sample. We can, without loss of generality, assume that we are interested in the Sobol' index of the first variable 𝑋 1 , and that 𝑓 is bounded. We assume for simplicity that there cannot be ties in the values taken by the first coordinate 𝑋 1 nor in the values of 𝑓 (X) -that is implicitly to assume that the density of the distributions P 𝑋 1 and P 𝑓 (X) are continuous. Then, we denote by 𝜎 𝑛 (𝑖) the permutation that sorts the inputs (𝑋 1 𝑖 ) 𝑖∈ 1,𝑛 , so that

𝑋 1 𝜎𝑛(1) < 𝑋 1 𝜎𝑛(2) < • • • < 𝑋 1 𝜎𝑛(𝑛) ,
with the convention 𝑋 1 𝜎𝑛(𝑛+1) = 𝑋 1 𝜎𝑛(1) . Chatterjee-based estimator for Sobol' indices is then defined as following:

𝜉 𝑛 (X 1 , • • • , X 𝑛 ) = 𝑛 -1 ∑︀ 𝑛 𝑖=1 𝑓 (X 𝜎𝑛(𝑖) )𝑓 (X (𝜎𝑛(𝑖+1)) ) - (︀ 𝑛 -1 ∑︀ 𝑛 𝑖=1 𝑓 (X (𝑖) ) )︀ 2 𝑛 -1 ∑︀ 𝑛 𝑖=1 𝑓 (X (𝑖) ) 2 - (︀ 𝑛 -1 ∑︀ 𝑛 𝑖=1 𝑓 (X (𝑖) )
)︀ 2 .

(4.1)

Remark 13. While the assumption of continuous random variables might seem too restrictive as it forbids the use of Chatterjee-based estimation when in presence of categorical inputs -as it is often the case in Fairness -this assumption is done for simplicity. Indeed, the estimation is possible -albeit a bit more technicalwhen ties are possible, by simply choosing at random the nearest neighbor among the tied points. However, for the results shown later, we restrict ourselves to the case of continuous random variables.
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Remark 14. Note that the only difference between Chatterjee-based estimation and Pick-and-Freeze estimation is the first term of the numerator, that is to say the term 𝑛 -1 ∑︀ 𝑓 (X 𝜎𝑛(𝑖) )𝑓 (X 𝜎𝑛(𝑖+1) ). This term -and its equivalent in other methods -is the core of the Sobol' estimation since it is quantifying the impact of 𝑋 1 on the outcome. The other terms are regular plug-in estimators of the quantities E[𝑌 2 ] and E[𝑌 ] 2 . Remark 15. A similar formula involving the ranks of the sequence (𝑓 (X 𝜎𝑛(𝑖) )) instead of the numerical values can be found in the literature. This alternate formula is an estimator of Cramér-von-Mises indices. We focus here on the Sobol' estimator but similar results can be derived from this analysis.

This quantity converges as 𝑛 increases towards the Sobol' index of the input variable 𝑋 1 , by construction of the permutation𝜎, see [START_REF] Chatterjee | A New Coefficient of Correlation[END_REF]. For quantification of Sobol' indices of higher order, we refer to [Cha20; Gam+20] where a formula is given, using a permutation chosen so as to solve a traveling salesman problem.

If the outcome of the model is multidimensional -that is if f = (𝑓 1 (X), • • • , 𝑓 𝑙 (X)) 𝑇 and for all 𝑘 ∈ 1, 𝑙 , 𝑓 𝑘 (X) is square integrable -we can define an extension of Sobol' indices -see [START_REF] Gamboa | Sensitivity analysis for multidimensional and functional outputs[END_REF] -as

S𝑢 (f ) = S𝑢 ((𝑓 1 (X), • • • , 𝑓 𝑙 (X)) 𝑇 ) = ∑︀ 𝑙 𝑘=1 Var E[𝑓 𝑘 (X)|𝑋 𝑢 ] ∑︀ 𝑙 𝑘=1 Var 𝑓 𝑘 (X) . (4.2)
Note that this index is the only extension to benefit from several "good" properties such as lack of dependency on the model or invariance to left-composition of f by any isometry.

Because of the expression of Equation 4.2, the equivalent Chatterjee-based estimator of this quantity is

ξ𝑛 (f , X 1 , • • • , X 𝑛 ) = ∑︀ 𝑙 𝑘=1 (︁ 𝑛 -1 ∑︀ 𝑛 𝑖=1 𝑓 𝑘 (X 𝜎𝑛(𝑖) )𝑓 𝑘 (X 𝜎𝑛(𝑖+1) ) - (︀ 𝑛 -1 ∑︀ 𝑛 𝑖=1 𝑓 𝑘 (X (𝑖) ) )︀ 2 )︁ ∑︀ 𝑙 𝑘=1 (︁ 𝑛 -1 ∑︀ 𝑛 𝑖=1 𝑓 𝑘 (X (𝑖) ) 2 - (︀ 𝑛 -1 ∑︀ 𝑛 𝑖=1 𝑓 𝑘 (X (𝑖) )
)︀ 2 )︁ .

(4.3) Note that the permutation is the same for all the functions 𝑓 𝑘 , 𝑘 ∈ 1, 𝑘 .

In the literature, one can find -see [Gam+20] -a Central Limit Theorem for the estimator 𝜉 𝑛 -i.e. for unidimensional output -under some technical assumptions. In the following, we complete this result with concentration inequalities for both 𝜉 𝑛 and ξ𝑛 -tackling the framework of multidimensional outputs. We also extend the existing result by proving a Central Limit Theorem for ξ𝑛 -multidimensional output -and by weakening the needed assumption on 𝑋. In order to complete the statistical analysis of this estimator, we then provide hints for a Berry-Esseen type result.

Concentration inequality

We provide here a concentration inequality for the estimator 𝜉 𝑛 . While new, this inequality is similar to what can be derived for Pick-and-Freeze estimators, see 70CHAPTER 4. FURTHER DEVELOPMENTS AT THE INTERFACE OF GSA & FAIRNESS [START_REF] Gamboa | Statistical inference for Sobol pick-freeze Monte Carlo method[END_REF]. In order to obtain this result, we need to assume that the outcome of the model is bounded. We recall here the Mc-Diarmid's inequality that will be used later in the proof.

Theorem 4.1.1 (Mc-Diarmid's inequality). We denote by 𝐸 X the set in which X takes value. Let 𝜙 : 𝐸 𝑛 X → R be a function such that there are constants 𝑐 1 , • • • , 𝑐 𝑛 for which for all 𝑖 ∈ 1, 𝑛 and all

(x 1 , • • • , x 𝑛 ) ∈ 𝐸 𝑛 X , sup x ′ 𝑖 ∈𝐸 X |𝜙(x 1 , • • • , x ′ 𝑖 , • • • x 𝑛 ) -𝜙(x 1 , • • • , x 𝑛 )| ≤ 𝑐 𝑖 . (4.4) Consider independent random variables X 1 , • • • , X 𝑛 where X 𝑖 ∈ 𝐸 X for all 𝑖.
Then for all 𝑡 > 0,

P (|𝜙(X 1 , • • • , X 𝑛 ) -E[𝜙(X 1 , • • • , X 𝑛 )]| ≥ 𝑡) ≤ 2 exp (︂ - 2𝑡 2 ∑︀ 𝑛 𝑖=1 𝑐 2 𝑖 )︂ . (4.5)
We can now state the theorem.

Theorem 4.1.2. Let 𝑏 > 0 and 𝑡 > 0. Assume that the random variable 𝑓 (X) belongs to [-𝑏/2, 𝑏/2]. Then, if 𝑆 is the Sobol' index of 𝑓 with respect to 𝑋 1 , we have

P (|𝜉 𝑛 (X 1 , • • • , X 𝑛 ) -𝑆(𝑓 )| ≥ 𝑡) ≤ 2 exp (︂ - 2𝑡 2 𝑛 𝑏 4 (3(𝑆 + 𝑡) -1 + (𝑆 + 𝑡 -1)/𝑛) 2 )︂ . (4.6)
Proof. This proof combines two part. The first part aims at rewriting the ratio of sums as only one sum, so that classical results can be used. This idea has been used for obtaining concentration inequalities for the Pick-and-Freeze estimator, see [START_REF] Gamboa | Sensitivity analysis for multidimensional and functional outputs[END_REF]. The second part is to circumvent the issue of the random permutation, by using the Mc-Diarmid inequality. Note that this was used by [START_REF] Chatterjee | A New Coefficient of Correlation[END_REF], albeit for ranks. We recall that since Sobol' indices are invariant by homothety, we can assume that 𝑓 (X) is centered. We need to compute a quantity of the form

P (︂ 𝑎 𝑛 -𝑏 2 𝑛 𝑐 𝑛 -𝑑 2 𝑛 - 𝑎 𝑐 > 𝑡 )︂ (4.7)
where 𝑎 𝑛 , 𝑏 𝑛 , 𝑐 𝑛 and 𝑑 𝑛 are statistical series of mean respectively 𝑎, 𝑏 = 0, 𝑐 and 𝑑 = 0. However, because of the ratio, we cannot use classical results from the literature that are stated for sums of random variables. For this reason, we need to change this expression.

One can show that this is in fact equivalent to the quantification of the probability

P (︁ 𝑎 𝑛 -𝑏 2 𝑛 - (︁ 𝑎 𝑐 + 𝑡 )︁ (𝑐 𝑛 -𝑑 2 𝑛 ) -E [︁ 𝑎 𝑛 -𝑏 2 𝑛 - (︁ 𝑎 𝑐 + 𝑡 )︁ (𝑐 𝑛 -𝑑 2 𝑛 ) ]︁ > 𝑡𝑐 )︁ (4.8)
since we have the equality E[𝑎 𝑛 -𝑏 2 𝑛 -( 𝑎 𝑐 + 𝑡)(𝑐 𝑛 -𝑑 2 𝑛 )] = 𝑡𝑐. In our case, we have

𝑎 𝑛 = 1 𝑁 ∑︁ 𝑓 (X 𝜎𝑛(𝑖) )𝑓 (X (𝜎𝑛(𝑖+1)) ) (4.9) 𝑏 2 𝑛 = 𝑑 2 𝑛 = (︂ 1 𝑁 ∑︁ 𝑓 (X (𝑖) )
)︂ 2 (4.10)

𝑐 𝑛 = 1 𝑁 ∑︁ 𝑓 (X (𝑖) ) 2 (4.11) 𝑆 = 𝑎 𝑐 (4.12) (4.13)
We can then define a function that maps the inputs (X 1 , • • • , X 𝑛 ) to the quantity of interest in the probability. Let 𝐺 be the real-valued function so that

𝐺(X 1 , • • • , X 𝑛 ) = 1 𝑛 𝑛 ∑︁ 𝑖=1 𝑓 (X 𝜎𝑛(𝑖) )𝑓 (X 𝜎𝑛(𝑖+1) )+(𝑆 + 𝑡 -1) (︃ 1 𝑛 𝑛 ∑︁ 𝑖=1 𝑓 (X 𝜎𝑛(𝑖) ) )︃ 2 -(𝑆 + 𝑡) (︃ 1 𝑛 𝑛 ∑︁ 𝑖=1 𝑓 (X 𝜎𝑛(𝑖) ) 2 )︃ . (4.14)
In order to use the Mc-Diarmid's inequality, we need to control the following quantity: sup

x ′ 𝑖 ∈𝐸 X |𝐺(𝑥 1 , • • • , 𝑥 ′ 𝑖 , • • • 𝑥 𝑛 ) -𝐺(𝑥 1 , • • • , 𝑥 𝑛 )| . (4.15)
One can insert the expression of 𝐺 to obtain

sup x ′ 𝑖 ∈𝐸 X |𝐺(x 1 , • • • , x ′ 𝑖 , • • • x 𝑛 ) -𝐺(x 1 , • • • , x 𝑛 )| ≤ ⃒ ⃒ ⃒ ⃒ 1 𝑛 (𝑓 (x ′ 𝑖 ) -𝑓 (x 𝑖 )) (︁ 𝑓 (x 𝜎𝑛(𝑖) ) + 𝑓 (x 𝜎 -1 𝑛 (𝑖) ) )︁ + (𝑆 + 𝑡 -1) 𝑛 2 (𝑓 (x ′ 𝑖 ) -𝑓 (x 𝑖 )) ⎛ ⎝ 𝑓 (x 𝑖 ) + 𝑓 (x ′ 𝑖 ) + ∑︁ 𝑘̸ =𝑖 𝑓 (x 𝑘 ) ⎞ ⎠ - (𝑆 + 𝑡) 𝑛 (𝑓 (x ′ 𝑖 ) -𝑓 (x 𝑖 )) (𝑓 (x 𝑖 ) + 𝑓 (x ′ 𝑖 )) ⃒ ⃒ ⃒ ⃒ .
Using the fact that 𝑓 is bounded by a constant 𝑏, we therefore obtain

sup x ′ 𝑖 ∈𝐸 X |𝐺(x 1 , • • • , x ′ 𝑖 , • • • x 𝑛 ) -𝐺(x 1 , • • • , x 𝑛 )| ≤ 𝑏 2 𝑛 (︂ 1 + 3(𝑆 + 𝑡) + 1 𝑁 (𝑆 + 𝑡 -1)
)︂ .

Note that this bound is the same for all coordinates. )︀ . This allows us to conclude that

P (|𝜉 𝑛 (X 1 , • • • , X 𝑛 ) -𝑆(𝑓 )| ≥ 𝑡) ≤ 2 exp (︂ - 2𝑡 2 𝑛 𝑏 4 (3(𝑆 + 𝑡) -1 + (𝑆 + 𝑡 -1)/𝑛) 2
)︂ , which concludes.

We can now state the concentration inequality for the estimator ξ𝑛 , which is a direct corollary from Theorem 4.1.2.

Corollary 5. Let 𝑏 𝑘 > 0 for every 𝑘 ∈ 1, 𝑙 and 𝑡 > 0. Assume that the random variable 𝑓 𝑘 (X) belongs to [-𝑏 𝑘 /2, 𝑏 𝑘 /2], and let 𝐵 2 = ∑︀ 𝑙 𝑘=1 𝑏 2 𝑘 Then, if S is the Sobol' index of f with respect to 𝑋 1 , we have

P (︀ ξ𝑛 -S > 𝑡 )︀ ≤≤ 2 exp (︂ - 2𝑡 2 𝑛 𝐵 4 (3( S + 𝑡) -1 + ( S + 𝑡 -1)/𝑛) 2 )︂ . (4.16)
Proof. The proof is a direct adaptation of the previous one. We define the function

𝐹 (X 1 , • • • , X 𝑛 ) = 𝑙 ∑︁ 𝑘=1 𝐺 𝑘 (X 1 • • • , X 𝑛 ), (4.17) 
where 𝐺 𝑘 is the real-valued function

𝐺 𝑘 (X 1 , • • • , X 𝑛 ) = 1 𝑛 𝑛 ∑︁ 𝑖=1
𝑓 𝑘 (X 𝜎𝑛(𝑖) )𝑓 𝑘 (X 𝜎𝑛(𝑖+1) )+(𝑆 + 𝑡 -1)

(︃ 1 𝑛 𝑛 ∑︁ 𝑖=1 𝑓 𝑘 (X 𝜎𝑛(𝑖) ) )︃ 2 -(𝑆 + 𝑡) (︃ 1 𝑛 𝑛 ∑︁ 𝑖=1 𝑓 𝑘 (X 𝜎𝑛(𝑖) ) 2 )︃ . (4.18)
and use the results shown in the univariate proof to derive the result using straight-forward manipulations.

Remark 16 (A negative result). In the literature, one can find a similar concentration inequality for the Pick-and-Freeze estimator, see [START_REF] Gamboa | Sensitivity analysis for multidimensional and functional outputs[END_REF]. However, instead of using the Mc-Diarmid's inequality in order to conclude the proof, the authors leverage a result stated for Lipschitz functionals found in the works of Ledoux ([Led01], Corollary 1.17), stated as follows.

Corollary 6 (Ledoux).

Let 𝑃 = 𝜇 1 ⊗ • • • ⊗ 𝜇 𝑛 be a product probability measure on the cartesian product 𝑋 = 𝑋 1 × • • • × 𝑋 𝑛 of metric spaces (𝑋 𝑖 , 𝑑 𝑖 ) with finite diameters 𝐷 𝑖 , 𝑖 = 1, • • • , 𝑛, endowed with the 𝑙 1 metric 𝑑 = ∑︀ 𝑑 𝑖 .
Let 𝐹 be a 1-Lipschitz function on (𝑋, 𝑑). Then, for every 𝑟 ≥ 0,

𝑃 (𝐹 -E 𝑃 [𝐹 ] ≥ 𝑟) ≤ exp (︂ - 𝑟 2 2𝐷 2 )︂ , (4.19) 
where 𝐷 2 = ∑︀ 𝐷 2 𝑖 .

While this result seems promising at first, it does not apply in our case. Indeed, the Pick-and-Freeze estimator takes two samples of outputs (𝑓 (X 1 ),

• • • , 𝑓 (X 𝑛 )) and (︀ 𝑓 (𝑋 1 ′ 1 , 𝑋 ∼1 1 ), • • • , 𝑓 (𝑋 1 ′ 𝑛 , 𝑋 ∼1 𝑛 ) )︀
and then apply a similar functional to the function 𝐺 in our proof, which can be proven to be Lipschitz by considering the partial derivatives, to obtain their results.

In our case, we need first to apply a random perturbation and therefore start directly with the inputs (X 1 , • • • , X 𝑛 ). In the end, we consider the functional 𝜙 ∘ 𝑓 ⊗𝑛 ∘ σ where

𝜙(𝑦 1 , • • • , 𝑦 𝑛 ) = 1 𝑛 ∑︁ 𝑦 𝑖 𝑦 𝑖+1 + (𝑆 + 𝑡 -1) (︂ 1 𝑛 𝑦 𝑖 )︂ 2 -(𝑆 + 𝑡) 1 𝑛 ∑︁ 𝑦 2 𝑖 𝑓 ⊗𝑛 (x 1 , • • • , x 𝑛 ) = (𝑓 (𝑥 1 ), • • • , 𝑓 (x 𝑛 )) σ(x 1 , • • • , x 𝑛 ) = (x 𝜎(1) , • • • , x 𝜎𝑛 ).
It is straightforward to verify that 𝜙 is Lipschitz. However, even if we assume 𝑓 (and therefore 𝑓 ⊗𝑛 ) to be Lipschitz, it would remain to prove that σ is Lipschitz, which is false... To be precise, σ is Lipschitz only in the coordinate along which the sort is applied -the first for simplicity. Indeed, one can write

𝑋 1 𝜎(𝑖) = max 𝑢⊂ 1,𝑛 ,|𝑢|=𝑛+1-𝑖 min 𝑗∈𝑢 (𝑋 𝑗 )
and as the max and the min functions are 1-Lipschitz, so is the sort operation. However, as soon as we add one coordinate, this is no longer the case: take for instance the two vectors ((0, 0), (1, 1)) and ((1, 0), (0, 1)) as a minimal counterexample.

Remark 17 (A second negative result). Another idea for this inequality would be to take advantage of the literature on concentration for randomly permuted sums, see [START_REF] Albert | Concentration inequalities for randomly permuted sums[END_REF][START_REF] Adamczak | Circular law for random matrices with exchangeable entries[END_REF]. Indeed, since the X 𝑖 are i.i.d., the permutation 𝜎 is chosen randomly and uniformly along the set 𝒮 𝑛 of all permutations of the set 1, 𝑛 . Using this fact, one can be tempted to use the theorem found in [START_REF] Adamczak | Circular law for random matrices with exchangeable entries[END_REF]. This result is an equivalent of Theorem 6 stated in the remark above for a randomly permuted vector, with the only additional assumption that 𝐹 is both Lipschitz and convex. However, in our case, while 𝜙 is Lipschitz, it is not convex and the result cannot be applied.

Central Limit Theorem

For unidimensional output, the Central Limit Theorem for the estimator 𝜉 𝑛 is given in [START_REF] Gamboa | Global Sensitivity Analysis: a new generation of mighty estimators based on rank statistics[END_REF]. We can therefore state our extension for the estimator ξ𝑛 .

Theorem 4.1.3. Assume that 𝑋 1 is a random variable defined on a interval of R whose distribution has a continuous and below-bounded density. Let f be a square integrable model with multidimensional output. Let ξ𝑛 be the estimator of the Sobol' index S1 (𝑓 ), both defined earlier. Then

√ 𝑛 (︀ ξ𝑛 -S1 (f ) )︀ → 𝒩 (0, 𝑠 2 ), (4.20) 
where 𝑠 2 has an explicit formula.
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The proof is given in Appendix A.5.5.

Remark 18. For technical reasons, 𝑋 1 is assumed in the original proof to be distributed with uniform law between 0 and 1. The reason is the need of asymptotic concentration of order statistics around precise, fixed points. This is easily done when 𝑋 1 is a standard uniform random variable, as its order statistics follow a Beta distribution. However, we can obtain a similar result for any random variable 𝑋 1 which have a below-bounded density 𝑓 𝑋 1 (𝑥) ≥ 𝑀 > 0 for all 𝑥 on which 𝑋 1 is defined. This is done by doing a Taylor expansion of the quantile function around well-chosen points. This allows us to weaken the needed assumptions of this theorem.

The next step in statistical analysis of this Chatterjee estimator is to prove a Berry-Esseen theorem. A natural idea in this direction is to follow the proof of the Berry-Esseen theorem for the Pick-and-Freeze estimator, see [START_REF] Gamboa | Statistical inference for Sobol pick-freeze Monte Carlo method[END_REF]. This proof is based on Pinelis' theorem [START_REF] Pinelis | Berry-Esséen bounds for general nonlinear statistics, with applications to Pearson's and non-central Student's and Hotelling's[END_REF], which states: Theorem 4.1.4 (Pinelis). Let (𝑉 𝑖 ) 𝑖≥1 be a sequence of i.i.d. centered random variables in R 𝑑 for some 𝑑 ∈ N ⋆ . Let 𝜙 : R 𝑑 → R be some measurable function with 𝑓 (0) = 0 such that

∃𝜀 > 0, ∃𝑀 𝜀 > 0, s.t.|𝜙(𝑥) -𝐷𝜙(0)(𝑥)| ≤ 𝑀 𝜀 2 ‖𝑥‖ 2 , (4.21) 
where 𝐷𝜙(0) is the Fréchet derivative of 𝜙 at point 0. Take any 𝑝 ∈ (2, 3] and assume 𝜎 = (︀ E[(𝐷𝜙(0)(𝑉 )) 2 ] )︀ 1/2 > 0 and (E‖𝑉 ‖ 𝑝 ) 1/𝑝 < ∞. Then for all 𝑧 ∈ R,

⃒ ⃒ ⃒ ⃒ P (︂ 𝜙( V𝑛 ) 𝜎/ √ 𝑛 ≤ 𝑧 )︂ -Φ(𝑧) ⃒ ⃒ ⃒ ⃒ ≤ 𝜅 𝑛 𝑝/2-1 (4.22)
where Φ is the cumulative distribution function of a standard gaussian and 𝜅 is a generic constant that depends only upon 𝑝.

By applying this theorem to the sequence of random variables (𝑉 𝑖 ) = (𝑓 (X 𝜎𝑛(𝑖) )𝑓 (X (𝜎𝑛(𝑖+1)) )-Var(E[𝑓 (X)|𝑋 1 ]), 𝑓 (X (𝑖) ), (𝑓 (X (𝑖) )) 2 -Var(𝑓 (X))) (4.23) -we assume that 𝑓 (X) is centered for convenience -and with

𝜙(𝑥, 𝑦, 𝑧) = 𝑥 -𝑦 2 -Var(E[𝑓 (X)|𝑋 1 ]) 𝑧 -𝑦 2 + Var(𝑓 (X)) -𝑆, (4.24) 
we would obtain by direct application of the theorem the wanted result. However, this is not possible because of the lack of independency between the random variables 𝑉 𝑖 . Indeed, the permutation 𝜎(.) is introducing dependency and the assumptions are no longer verified. In fact, the Chatterjee estimator is based on a ratio of U-statistics. By using a similar decomposition to the one used for concentration inequalities above, we would obtain a sum of U-statistics, which remains a U-statistic. For this type of estimator, one can find in the literature various results providing Berry-Esseen bounds at different rates, see for instance [START_REF] Callaert | The Berry-Esseen theorem for U-statistics[END_REF]. However, we will not provide the detail here as this result is left for future works, including its extension for estimators of Sobol' indices for multivariate output.

Second-Level GSA & Fairness robustness

Second-level GSA

Second-level Global Sensitivity Analysis is a recent preoccupation in Uncertainty Quantification. While the indices defined in the rest of this manuscript are useful tools to quantify the influence of inputs on the outcome of a modeland by extension provide some explainability -they are usually starting from the assumption that the input distribution is perfectly known. However, while this can be true in controlled environments such as experimentation plans or computer codes, this assumption does not always hold. In such a case, this uncertainty in the input distribution can tarnish the information provided by sensitivity indices and should be taken into account. In clear terms, we are interested in the following question: "If the input distribution changes, what happens to the GSA indices?"

Distributional perturbations

A first approach to answer this question is through local distributional modifications. In [START_REF] Hart | Robustness of the Sobol'indices to distributional uncertainty[END_REF], the authors propose to study the operator which takes into input the probability distribution of the random vector P 𝑋 and returns a Sobol' index of interest. By computing the Fréchet derivative of this operator at the presumed original distribution, they manage to analyze the robustness of this operator and therefore of the Sobol' index to local distributional perturbations. By extending this point of view to any GSA measure, this provides a simple tool to assert local robustness to distributional changes. Assume we have a distribution P 𝑋 generating the inputs for which we compute a GSA metric 𝐺𝑆𝐴. We can define a distributional perturbation as a 𝜈 X such that P 𝑋 + 𝜈 X still is a distribution. Technical details and constraints imposed on the perturbation are given in [START_REF] Hart | Robustness of the Sobol'indices to distributional uncertainty[END_REF].

We can then reformulate our earlier question as the quantification, for small perturbations 𝜈 X , of 𝐺𝑆𝐴 P 𝑋 (𝑓 ) -𝐺𝑆𝐴 P 𝑋 +𝜈 X (𝑓 ).

(4.25)

This quantity provides information on how much of a change in the influence of a feature one can expect if the distribution is changed from a nominal one to a perturbed one. In the case of Sobol' indices, this gap is explicitly computed as we have the following theorem: In addition of explicit computation of this quantity, an important element of this theorem that can be used in other contexts than Sobol' indices is the use of the Fréchet derivative of the GSA measure -here Sobol' indices -in order to upper-bound the gap defined in Equation 4.25. This proves to be a prospective element for local robustness, including in a Fairness framework. We explore this in next subsection 4.2.2. However, while this result provides an almost complete understanding of the behavior of Sobol' indices in the neighborhood of a specific distribution, and hints for extensions to any GSA or Fairness measure, one may be interested in more global results.

Second-level GSA, HSIC2 & Importance Sampling

The second way to obtain a global form of distributional robustness takes its roots in [START_REF] Meynaoui | New statistical methodology for second level global sensitivity analysis[END_REF]. In this work, the authors' interest is in the HSIC methodology. Indeed, the HSIC indices are a mean to quantify the impact of a random variable on the output of a model, through the lens of a kernel. As such, what happens if one chooses the random variable to be an uncertain distribution -using a kernel on distributions -and the output of interest to be the HSIC index itself?

In clear terms, the authors, if we denote by 𝐻𝑆𝐼𝐶(𝑓, 𝑍) the HSIC index of the random variable 𝑍 applied to the model 𝑓 , propose to study the quantity 𝐻𝑆𝐼𝐶2(𝑓, 𝑍, P 𝑍 ) = 𝐻𝑆𝐼𝐶(𝐻𝑆𝐼𝐶(𝑓, 𝑍), P 𝑍 ) (4.26)

where P 𝑍 is seen itself as a random variable -e.g. in a parametric framework, the generative parameters are random. This quantity is an indicator of how much the distributional uncertainty impacts the computed importance of an input 𝑍 on the outcome of 𝑓 . Intuitively, if the value is small, the impact of 𝑍 on 𝑓 would stay the same under any change of distribution. On the contrary, if the value is high, then special care must be given to the generative distribution since even a small change can have huge consequences on the sensitivity analysis conducted so far.

While interesting and popular, usage of HSIC indices can sometimes be complicated due to the intrinsic choice of kernel, and its analysis can be more obscure than for others GSA indices, as mentioned in previous chapters. As such, for second-level GSA, we want in fact not to restrict ourselves to HSIC indices and therefore compute the quantity

𝐺𝑆𝐴2 𝑖 (𝑓 ) = 𝐺𝑆𝐴 𝜃𝑖 (𝐺𝑆𝐴 𝑋𝑖 (𝑓 )) , (4.27) 
where 𝐺𝑆𝐴 𝑍 (𝑓 ) is a generic GSA index applied at algorithm 𝑓 and random variable 𝑍 (e.g. Sobol' indices). We can estimate this quantity by plugging-in estimators 𝐺𝑆𝐴(.) to obtain the following expression: However, the main issue with this direct plug-in of estimators into the formula of GSA is the cost associated with such a scheme. Indeed, for each estimation of the inner-loop -that is to say, as soon as we have a target distribution parameterized by 𝜃 , in order to compute (︁ 𝐺𝑆𝐴 𝑋 𝑖 (𝑓 ) )︁ -we need a sample of realizations of X of size at least 𝑛 if we use a given-data scheme or 2𝑛 if we use a classical Pick-and-Freeze scheme. But in order to estimate the outer-loop -that is to say the 𝐺𝑆𝐴 𝜃𝑖 (.) part of the estimator -we need to choose a new 𝜃, redraw realizations of X along this new distribution and repeat the estimation of the inner-loop, at least 𝑁 times. This "rinse and repeat" scheme is quite inefficient as this require in total up to 𝑁 × 𝑛 calls to the model, at the minimum.

𝐺𝑆𝐴2 𝑖 (𝑓 ) = 𝐺𝑆𝐴 𝜃𝑖 (︁ 𝐺𝑆𝐴 𝑋𝑖 (𝑓 ) )︁ . ( 4 
Note that this issue was already raised in [START_REF] Meynaoui | New statistical methodology for second level global sensitivity analysis[END_REF] for the use of secondlevel HSIC. In the work, the authors propose a single-loop scheme, leveraging additional information on the distributions in order to circumvent such a high cost. This technique, akin to Importance Sampling, works especially well for HSIC since it only involves expectations, which are quite straightforward to combine with change of distributions. On a similar note, recent works by [START_REF] Demange-Chryst | Shapley effect estimation in reliability-oriented sensitivity analysis with correlated inputs by importance sampling[END_REF] provide similar results for Shapley values in the various estimation schemes. We complete their results in a straightforward fashion for Sobol' indices.

We want to use Importance Sampling in order to derive formulas that allow the estimation of Sobol' indices for a given distribution -denoted for simplicity by its parameter 𝜃 -using data sampled from an other distribution tℎ𝑒𝑡𝑎. In other words, once we have one sample (X 1 , • • • , X 𝑛 ) with a well-chosen distribution, we want to be able to compute Sobol' indices for any other distribution. We refer to [MML19; DBM22] for more details on what makes a distribution "well-chosen".

For Sobol' indices, we are interested in a ratio of the form

E 𝜃 [︁ E 𝜃 [𝑓 (X)|𝑋 1 ] 2 ]︁ -𝐸 𝜃 [𝑓 (X)] 2 𝐸 𝜃 [𝑓 (X) 2 ] -𝐸 𝜃 [𝑓 (X)] 2 . (4.29)
We can rewrite this using expectations with respect to the distribution of reference with parameter θ as

Eθ [︂ Eθ [︁ 𝑓 (X)𝑔 𝜃 θ(X ∼1 ) |𝑋 1 ]︁ 2 𝑔 𝜃 θ (𝑋 1 ) ]︂ -𝐸θ [︀ 𝑓 (X)𝑔 𝜃 θ (X) ]︀ 2 𝐸θ [︀ 𝑓 (X) 2 𝑔 𝜃 θ (X) ]︀ -𝐸θ [︀ 𝑓 (X)𝑔 𝜃 θ (X) ]︀ 2 , (4.30)
which involves ratio of densities respectively 𝑔 𝜃 θ (𝑋 1 ), 𝑔 𝜃 θ (X ∼1 ) and 𝑔 𝜃 θ (X) -the ratio of the densities 𝑑P 𝜃,𝑋 1 /𝑑Pθ ,𝑋 1 , 𝑑P 𝜃,X ∼1 /𝑑Pθ ,X ∼1 and 𝑑P 𝜃,X /𝑑Pθ ,X -and expectations under the distribution θ, that we suppose perfectly known and under which is drawn our sample, since this is our distribution of reference. Note that for this, we need the Radon-Nikodym derivative of P 𝜃,X against Pθ ,X to be non-null and finite for every 𝜃. Therefore, we can derive the Pick-and-Freeze 

Ŝ = 1 𝑁 ∑︀ 𝑁 𝑖=1 𝑓 (𝑋 1 𝑖 , X ∼1 𝑖 )𝑓 (𝑋 1 𝑖 , X ′,∼1 𝑖 )𝑔 𝜃 θ (𝑋 1 𝑖 )𝑔 𝜃 θ (X ∼1 )𝑔 𝜃 θ (X ′,∼1 ) - (︁ 1 𝑁 ∑︀ 𝑁 𝑖=1 𝑓 (X 𝑖 )𝑔 𝜃 θ (X 𝑖 ) )︁ 2 1 𝑁 ∑︀ 𝑁 𝑖=1 𝑓 (X 𝑖 ) 2 𝑔 𝜃 θ (X 𝑖 ) - (︁ 1 𝑁 ∑︀ 𝑁 𝑖=1 𝑓 (X 𝑖 )𝑔 𝜃 θ (X 𝑖 ) )︁ 2 .
(4.31) Thanks to Slutsky lemma we know that this estimator converges towards the theoretical quantity which is the Sobol' index under distribution 𝜃. This can be done in a similar fashion to obtain the Chatterjee-based Importance Sampling estimator, by using the replacing the first product by a product of sorted outputs as was done in previous section.

In order to obtain a GSA2 estimator, we can compose our estimator as follow. First, we sample X under the distribution θ in order to obtain the realizations (X 1 , • • • , X 𝑛 ), which is done at the cost of 𝑛 calls to the model. Then, dealing with the parameters 𝜃, we draw a sample (𝜃 1 , • • • , 𝜃 𝑁 ). For each one of these parameters, we compute 𝑆𝑜𝑏 𝜃𝑖 (𝑓 ) using Importance-Sampling, which is done without any additional calls to the model. Then, we use Chatterjeebased estimation in order to compute the outer GSA index, by sorting the sample (𝜃 1 , • • • , 𝜃 𝑁 ) and ranking the associated vector (𝑆𝑜𝑏 𝜃1 (𝑓 ), • • • , 𝑆𝑜𝑏 𝜃 𝑁 (𝑓 )). Therefore, instead of paying 𝑁 × 𝑛, we only require 𝑛 calls to the function, albeit at the cost of higher knowledge of the distributions at stake since this requires knowledge of the Radon-Nikodym derivatives.

Fairness robustness

In previous subsection, we explored how second-level GSA can be used to leverage more information about the influence of input parameters -or their generative distributions -on an output. Translated into Algorithmic Fairness, these techniques allow deep scrutiny of sensitive variables in order to determine not only if an algorithm is unfair but also if its generative distribution has any impact on this unfairness characteristic. This can be assimilated to robustness. To the best of our knowledge, this approach is yet to be presented in the Fairness literature. The closest related work we found is [START_REF] Ferry | Improving fairness generalization through a sample-robust optimization method[END_REF]. In this work, the authors are interested in changes of fairness properties under dataset modification. The approach of this work is from the data to the wanted property -that is fairness -while ours is the other way around, from intrinsic properties of the model to (un)fairness detection and robustness. As such, these works are complementary.

If we recall the methods mentioned above, we described two types of distributional robustness in GSA2, that we can convert to Fairness robustness.

Local robustness

The first way to ensure a form of robustness is robustness under local distributional perturbations. Let ℱ(𝑓, P 𝜃 ) be a Fairness measure on the model 𝑓 and with P 𝜃 the distribution of the inputs (X, 𝑆) -we recall that in a Fairness framework, we have two types of inputs, non-sensitive inputs denoted by X and a sensitive feature denoted by 𝑆. We denote in the following by 𝜈 a small perturbation with respect to a distributional distance 𝑑(., .) -i.e. the Total Variation distance, a Wasserstein distance... -so that P 𝜃+𝜈 still is a distribution and 𝑑(P 𝜃 , P 𝜃+𝜈 ) is smaller that a given 𝜀. Proposition 5. Let 𝐷𝐼(𝑓, P 𝜃 ) be the variant of the Disparate-Impact measure defined as 𝐷𝐼(𝑓, P 𝜃 ) = P 𝜃 (𝑓 (X, 𝑆) = 1|𝑆 = 0) -P 𝜃 (𝑓 (X, 𝑆) = 1|𝑆 = 1) .

(4.33)

Then we have |ℱ(𝑓, P 𝜃 ) -ℱ(𝑓, P 𝜃+𝜈 )| ≤ 𝑑 𝑇 𝑉 (P 𝜃 , P 𝜃+𝜈 ),

where 𝑑 𝑇 𝑉 (P, Q) is the Total Variation distance between the distribution P and the distribution Q.

Proof is a direct consequence of the definition of the Total Variation distance and the linearity of this fairness measure. However, in order to derive sharper bounds, an idea would be to use Fréchet derivatives. Indeed, if we denote by 𝐷ℱ(𝑓, 𝜃)(.) the Fréchet derivative of the fairness measure applied at point (𝑓, P 𝜃 ), then we obtain ℱ(𝑓, P 𝜃 ) -ℱ(𝑓, P 𝜃+𝜈 ) = 𝐷ℱ(𝑓, 𝜃)(P 𝜃 -P 𝜃+𝜈 ) + 𝜏 (‖P 𝜃 -P 𝜃+𝜈 ‖),

where we use the metric on the distribution space. As long as the Fréchet derivative is bounded at the point (𝑓, P 𝜃 ), then we can obtain the wanted result for a neighborhood of the distribution P 𝜃 . Similar computations have been done previously for Sobol' indices -see [START_REF] Hart | Robustness of the Sobol'indices to distributional uncertainty[END_REF].

Remark 19. Note that having an explicit formula for the Fréchet derivative of the fairness measure is an important step towards fair learning. Indeed, one way to obtain fair learning is to add the fairness metric as a penalization in the loss function. By doing so, this ensures that the algorithm chosen by the learning procedure exhibits a Fairness property, see for instance [START_REF] Risser | Tackling Algorithmic Bias in Neural-Network Classifiers using Wasserstein-2 Regularization[END_REF]. However, in order to do so for instance with neural networks, it is necessary to know both the derivative of the constraint with respect to the weights in the network (forward pass) and the Fréchet derivative with respect to perturbations of the law (backward The complete framework around fair learning and complete results for classical fairness metrics are left for future works.

Global robustness

In sensitivity analysis, additional information on the model is obtained on a global scale through second-level GSA. As such, it seems straightforward to deploy the same tools in a Fairness framework to assert global impact of generative parameters on the Fairness property.

Note that, in Algorithmic Fairness, it is usual to consider binary variables. This may seem contradictory with the GSA framework which often consider inputs to be real-valued and continuous. Moreover, it has led the Fairness literature to develop tools that easily leverage this dichotomy "𝑆 = 0 vs. 𝑆 = 1", as mentioned in previous chapters. However, it is common for the generative distribution of these binary inputs to be parameterized by continuous parameters -e.g. the proportion of a minority in a given population, the mean and variance of a given physical characteristic that can be above a threshold, so on and so forth. As such, the GSA2 framework proposed in the previous section is a good way to work with these parameters, as it uses natural extensions of classical Fairness tools.

Nonetheless, when considering classical fairness metrics such as Disparate Impact, Equality of Odds, etc -namely, indicators based on the confusion matrix of the classifier 𝑓 -one can see that these metrics are already robust in the sense that they do not depend on parameters of the inputs distribution. Indeed, in the definition of these metrics appear a conditioning on the sensitive categorical feature in which information from the generative parameters is lost.

However, over the years, other metrics have been proposed, and we refer the reader to Chapter 2 on this subject. Additionally, sensitive features can be continuous. In both of these premises, second-level analysis can be done and will yield additional information, as it does in the GSA framework. 

Conclusions et perspectives

Au long de ce manuscrit, nous avons étudié les aspects distributionnels de l'Analyse de Sensibilité et de l'Équité Algorithmique. Le but de cet étude est d'obtenir, in fine, des méthodes utilisables sur des algorithmes d'Intelligence Artifitielle permettant à la fois de gagner en interprétabilité pour des modèles de type «boîte noire» mais aussi de détecter d'éventuels comportements discriminants exhibés par ces modèles.

Nous avons vu que l'Analyse de Sensibilité, dans une optique d'explicabilité, est un moyen de récupérer une information globale sur un modèle a priori inaccessible par le biais d'indicateurs quantifiants l'importance de chaque variable d'entrée sur la sortie. Plusieurs méthodes existent, chacune étant plus ou moins adaptée pour répondre à une question précise. Ainsi, l'étude du modèle par le biais de plusieurs de ces indices permet une compréhension fine du comportement global de l'algorithme.

De manière similaire, un aspect de l'Équité Algorithmique est de déterminer si des variables sensibles sont influentes sur la sortie d'un modèle, ou sur diverses caractéristiques similaires ( e.g. accuracy dans le cas d'un classifieur). Ceci se fait par le biais de métriques ou d'indicateurs qui permettent la détection d'un comportement discriminant, et le cas échéant par la quantification de la force de ce biais discriminant.

Ainsi, ces deux domaines, bien que possédant chacun ses spécificités, se rejoignent et des techniques de l'un sont adaptables pour obtenir des outils pertinents dans l'autre. La description de ces différentes techniques est le sujet du Chapitre 1 et les points communs qui les rejoignent dans le cadre distributionnel le sujet du Chapitre 2. Pour aller plus loin, il serait possible de regarder si ce type d'analogie entre Explicabilité et Équité tient également dans un cadre local, c'est-à-dire pour des méthodes apportant de l'information autour d'un individu donné.

Par la suite (Chapitre 3), nous nous sommes intéressés aux difficultés qui peuvent survenir lors de l'utilisation d'un métamodèle (une approximation d'un vrai modèle qui reste inaccessible). En effet, en étudiant un métamodèle, les indicateurs mentionnés au-dessus (que ce soit en Analyse de Sensibilité ou en 84 CHAPTER 5. CONCLUSIONS ET PERSPECTIVES Équité Algorithmique) peuvent prendre des valeurs différentes que celles pour le vrai modèles. Nous avons vu que cette différence se quantifie et peut se contrôler par le biais de bornes exactes ou probabilistes suivant le type d'approximation choisie. Bien que se faisant au prix de données additionnelles et d'un cadre un peu plus lourd, ces résultats ouvrent la piste de l'audit. À terme, il serait possible de quantifier la force d'un potentiel biais discriminant d'un algorithme sans même avoir accès à celui-ci mais en utilisant seulement une approximation, avec un coût additionnel. Néanmoins, un certain nombre de problématiques demeurent, notamment le choix de la métrique ou encore la question de la confiance en l'approximation fournie lors de l'audit. Ces questions sont autant mathématiques que juridiques et sociales puisque, et nous l'avons mentionné au début de ce manuscrit, ces sujets sont autant techniques qu'éthiques.

Enfin, dans le Chapitre 4, nous avons considéré deux problèmes différents. Tout d'abord, nous avons considéré un nouvel estimateur d'indices classiques paru récemment dans la littérature. Cet estimateur, par le biais d'une approche novatrice basées sur des rankings, permet de considérablement réduire le coût d'estimation. De plus, elle ne nécessite pas de nouveaux points ni de schéma d'estimation particulier, ce qui en fait un outil crucial pour l'industrie. Nous avons prouvé des propriétés statistiques (inégalités de concentration, normalité asymptotique pour sortie multivariée) et donné des indices et résultats négatifs pour d'autres propriétés de cet estimateur. Une perspective serait de mener à terme ces travaux en prouvant le reste des résultats, notamment des théorèmes de type Berry-Esseen afin d'avoir à disposition une analyse complète de cet outil. Ensuite, nous avons considéré le problème de la robustesse distributionnelle, en rappelant des résultats existants dans la littérature et en expliquant la signification de tels résultats dans le cadre de l'Équité Algorithmique. Une perspective, encore une fois, serait de mener à bien cette analyse afin de fournir des outils permettant de quantifier de manière globale les changements qu'implique une incertitude distributionnelle et de potentiellement corriger ces changements.

Pour terminer, cette thèse se positionnent à l'interface entre deux domaines qui sont le résultat de besoins éthiques et sociaux autant que scientifiques face à une technologie naissante et hautement ancrée dans un formalisme mathématique et informatique. Une perspective future peut être de continuer à répondre à ces besoins et de favoriser les échanges entre ces différents domaines. À l'instar du parallèle tiré ici entre Explicabilité et Équité, il est tout à fait possible que d'autres «vertues» cherchées pour le Machine Learning soient liées de manière similaire (e.g. les problématiques de confidentialité).

A.5.5 Proof of the Central Limit Theorem for the Chatterjee estimator of Sobol' on multivariate outputs

For convenience, we denote 𝑌 = 𝑓 (X) = (𝑓 1 (X), • • • , 𝑓 𝑙 (X)) 𝑇 as 𝑓 (𝑋, 𝑊 ), with 𝑋 = 𝑋 1 and 𝑊 = 𝑋 ∼1 . We assume that 𝑓 is bounded, along with its first two derivatives. In order to prove a Central Limit Theorem for the estimator ξ𝑛 (𝑋, 𝑌 ), given in 4.3, we follow the univariate proof given in [START_REF] Gamboa | Global Sensitivity Analysis: a new generation of mighty estimators based on rank statistics[END_REF], albeit with two modifications. Firstly, we assume that f is valued in a compact set of R 𝑑 . Secondly, instead of assuming the random variable 𝑋 to be uniform between 0 and 1, we only assume that its density is below-bounded and continuous on an interval [𝑎, 𝑏]. We also denote by 𝑞 𝑗,𝑛 the 𝑗/(𝑛 + 1)-th quantile of 𝑋, so that 𝑞 𝑗,𝑛 = 𝐹 -1 𝑋 ( 𝑗 𝑛+1 ). The random variables 𝑋 and 𝑊 are defined on a product space Ω = Ω 𝑋 ×Ω 𝑊 ; so that for any 𝜔 ∈ Ω, there exists 𝜔 𝑋 ∈ Ω 𝑋 and 𝜔 𝑊 ∈ Ω 𝑊 and we have (𝑋, 𝑊 )(𝜔) = (𝑋(𝜔 𝑋 ), 𝑊 (𝜔 𝑊 )). Further, we consider 𝜋 𝑊 the projection on Ω 𝑊 and the product measure P = P 𝑋 ⊗P 𝑊 = ℒ 𝑋 ⊗ℒ 𝑊 , where ℒ 𝑋 is the distribution of 𝑋 and ℒ 𝑊 is the distribution of 𝑊 . Naturally, P 𝑊 = P ∘ 𝜋 -1 𝑊 . We aim to prove a CLT for the estimator x 𝑖 𝑛 (f , (𝑋, 𝑊 )) of the classical first-order Sobol' index with respect to 𝑋 given by (4.2), the estimator of which defined in (4. )︁ 2 )︂ .

where 𝜎 𝑛 is defined at the beginning of the section4.1.

Proof of Theorem 4.1.3

The proof will proceed as follows. First, we prove a CLT for 

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 1 𝑛 ∑︀ 𝑛-
𝑚 𝐵 = (︀ E[𝑌 1 𝑌 ′ 1 ], E[𝑌 1 ], E[𝑌 2 1 ], • • • , E[𝑌 𝑙 𝑌 ′ 𝑙 ], E[𝑌 𝑙 ], E[𝑌 2 𝑙 ] )︀ ⊤ , (A.31)
and for each 𝑘, 𝑌 ′ 𝑘 = 𝑓 𝑘 (𝑋, 𝑊 ′ ), 𝑊 ′ is an independent copy of 𝑊 , and Σ 𝐵 has an explicit expression given in Appendix A.5.5.

Remark that 𝑌 ′

𝑘 is the so-called Pick-Freeze version of 𝑌 𝑘 with respect to 𝑋. Secondly, we establish a conditional CLT for the empirical mean of the 𝐶 𝑛,𝑗 's defined in (A.30). The reader is referred to Appendix A.5.5 for the proof of this result.

Lemma 2. There exists a measurable set Π ∈ Ω 𝑊 having P 𝑊 -probability one such that, for any 𝜔 𝑊 ∈ Π, we have √ 𝑛𝐶 𝑛 (•, 𝜔 𝑊 )

ℒ 𝑋 -→ 𝑛→∞ 𝒩 3𝑙 (0, Σ 𝐶 ).
Moreover, Σ 𝐶 does not depend on 𝜔 𝑊 and has an explicit expression given Appendix A.5.5.

Let 𝜓 be a bounded measurable real function on [𝑎, 𝑏] × 𝑈 . We assume that the set of discontinuity points of 𝜓 has null 𝑄-probability. Then, where the explicit expressions of 𝑚 𝐵 , Σ 𝐵 and Σ 𝐶 are given in (A.31) of Lemma 1, Appendices A.5.5 and A.5.5 respectively. Applying the so-called delta method [Van00, Theorem 3.1] to the linear function 𝑓 (𝑥, 𝑦) = 𝑥 + 𝑦, we conclude that 

𝑀
𝑔 = ∇Ψ(𝑚 𝐵 ) = 1 Var(f (X)) ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 1 2E[𝑓 1 (X)]( S1 (f ) -1) -S1 (f ) . . . 1 2E[𝑓 𝑙 (X)]( S1 (f ) -1) -S1 (f ) ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠
.

Hence the asymptotic variance 𝜎 2 in Theorem 4.1.3 is finally given by 𝜎 2 = 𝑔 ⊤ (Σ 𝐵 + Σ 𝐶 ) 𝑔 where Σ 𝐵 and Σ 𝐶 have been defined in Appendices A.5.5 and A.5.5 respectively. This concludes the proof.
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 2 Figure 2.1: Examples of representation of causal models with directed acyclic graphs.
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 2 Figure 2.2: Cramér-von-Mises and independent Cramér-von-Mises indices for the Adult dataset.

  (a) Cramér-von-Mises indices computed for the COMPAS decile score. (b) Cramér-von-Mises indices computed on the loss between COMPAS output and real case of recidivism after two years.
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 2 Figure 2.3: Cramér-von-Mises indices for the COMPAS dataset.
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 10 Remark 8. If the inputs are independent, then we have the equality 𝑆ℎ 𝑖 (𝑓 ) = ∑︁ 𝑗∈𝐴 𝑆 𝐴 (𝑓 ) |𝐴| . (3.11)
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  3) is given byξ𝑛 (f , X 𝑛 ) = ∑︀ 𝑙 𝑘=1 (︂ 𝑛 -1 ∑︀ 𝑛 𝑗=1 𝑓 𝑘 (X 𝜎𝑛(𝑗) )𝑓 𝑘 (X (𝜎𝑛(𝑗+1)) ) -(︁ 𝑛 -1 ∑︀ 𝑛 𝑗=1 𝑓 𝑘 (X 𝜎𝑛(𝑗) ) 𝑛 𝑗=1 𝑓 𝑘 (X 𝜎𝑛(𝑗) ) 2 -(︁ 𝑛 -1 ∑︀ 𝑛 𝑗=1 𝑓 𝑘 (X 𝜎𝑛(𝑗) )

(

  𝐸 𝑖 -1) -𝑗 (𝑛 + 1) 2 𝑛+1 ∑︁ 𝑖=1 (𝐸 𝑖 -1) )︃ , with 𝐷 𝑗 a random variable in the interval [𝑈 𝜎𝑛(𝑗) , 𝑗 𝑛+1 ],so that 𝑗 𝜒 𝑗 ) 1 𝑓 𝑋 (𝐹 -1 𝑋 (𝐷 𝑗 )) 𝑗 , 𝜒 𝑗 ) 1 𝑓 𝑋 (𝐹 -1 𝑋 (𝐷 𝑗 )) 𝑗 𝑛 + 1 → 𝐼 = ∫︁ 𝑈 ×[0,1] 𝑢𝜓(𝐹 -1 𝑋 (𝑢), 𝜒) 1 𝑓 𝑋 (𝐹 -1 𝑋 (𝑢)) 𝑑𝑄(𝐹 -1 (𝑢), 𝜒) ∫︁ 𝑈 ×[𝑎,𝑏]𝑥𝜓(𝑥, 𝜒)𝐹 𝑋 (𝑥)𝑑𝑄(𝑥, 𝜒)By the weak law of large numbers, the quantity (1/(𝑛 + 1)) ∑︀ 𝑛+1 𝑖=1 𝐸 𝑖 converges in probability to E[𝐸 1 ] = 1. Hence, by Slutsky's lemma, we are led to consider the random vector 𝜓 (𝑞 𝑗 , 𝜒 𝑗 )1 𝑓 𝑋 (𝐹 -1 𝑋 (𝐷𝑗 )) ∑︀ 𝑗 𝑖=1 (𝐸 𝑖 -1) ∑︀ 𝑛+1 𝑖=1 (𝐸 𝑖 -1) 𝜓 (𝑞 𝑗 , 𝜒 𝑗 ) 1 𝑓 𝑋 (𝐹 -1 𝑋 (𝐷𝑗 )) 1 𝑖⩽𝑗 )︁ (𝐸 𝑖 -1) ∑︀ 𝑛+1 𝑖=1 (𝐸 𝑖 -1) )︃Notice that the first coordinate of 𝑉 𝑛 can be rewritten as (up to the normalizing factor 𝑛 -1/2 ) 𝑗 , 𝑗/𝑛) ⊥ ⊥ 𝑖⩽𝑗 ⎞ ⎠ (𝐸 𝑖 -1).

  

  1. Le pré-processing consiste à travailler sur les données fournies en amont au modèle. L'idée est de donner à l'algorithme non pas les données réelles mais une version modifiée ou transformée de telle manière que l'algorithme renvoie des réponses «fair» à la fin. Un avantage direct de ce type de CHAPTER 1. UNE HISTOIRE D'INFLUENCES méthode est qu'aucune opération n'est faite directement sur le modèle. Il n'y a pas besoin d'un nouvel apprentissage, ni d'aucune modification sur la structure ou les paramètres de l'algorithme. Cela en fait une technique efficace lorsque ce dernier est fixé une bonne fois pour toute sans retouche possible, pour des raisons d'accès, de coûts, etc. En revanche, la transformation à faire en amont sur les données pour garantir un modèle équitable n'est a priori pas générique et dépend du modèle. Elle peut également être difficile à calculer et devra en permanence être utilisée, à la manière d'une surcouche sans laquelle la garantie d'équité tomberait. 2. Le in-processing, deuxième moyen de mitiger les biais discriminants, opère directement lors de la phase d'apprentissage de l'algorithme.

	1.3. QUANTIFICATION D'INCERTITUDES
	1.3 Quantification d'incertitudes
	L'explicabilité des décisions algorithmiques est également au coeur des préoc-
	cupations, et son absence peut être un défaut majeur rencontré. Les meilleurs
	performances sont souvent atteintes pour des architectures de type "réseaux de
	neurones". Pour ces structures, les résultats théoriques sont encore peu nombreux
	-malgré une accélération impressionnante de la quantité de travaux à ce sujet.
	De plus, il est extrêmement délicat, dans ces situations, de comprendre une
	fois les phases d'entraînement terminées, quelles sont les variables responsables
	des décisions ou réponses proposées par un algorithme [Sam+21]. Néanmoins,
	ce problème n'est pas l'apanage seul des techniques modernes d'apprentissage
	statistique En effet, cet écueil peut également survenir dans le cas de codes
	expérimentaux, par exemple lorsque les codes utilisés sont la concaténation
	de nombreuses recherches, menant à une impossibilité de connaître en détail
	l'ensemble des opérations prenant place dans le code utilisé [FKL21]. Ainsi, pour
	diverses raisons, il arrive qu'il soit extrêmement difficile et onéreux, voire tout
	simplement impossible, de comprendre la totalité de ce qu'il se passe à l'intérieur
	de ces codes ou algorithmes.

L'idée est de rajouter à l'objectif que le modèle essaie d'atteindre au mieux possible un terme de pénalisation correspondant aux potentielles iniquités. Il est à noter que ce sont des techniques courantes en apprentissage et que de telles pénalisations sont des outils classiques pour forcer un modèle à respecter une contrainte voulue par l'expérimentateur. L'in-processing est en général la méthode privilégié et de nombreux outils (différentiation automatique, pertes adaptatives, choix automatique et par validation des hyperparamètres) ont été développés dans ce but. En revanche, et c'est là le défaut principal de cette méthode, il est nécessaire de ré-entraîner le modèle, ce qui engendre des coûts supplémentaires et n'est pas toujours faisable lorsque le modèle est déjà fixé. 3. Le post-processing, agissant en fin de chaîne, est très proche conceptuellement du pré-processing. Au lieu de modifier les données avec lesquelles on nourrit notre algorithme, l'idée est ici d'en changer les réponses. D'une certaine manière, le post-processing consiste à passer derrière le modèle en étant conscient de ses biais et de ses spécificités, et d'agir tel un correcteur en aval («Le robot a dit X mais en réalité, ce qu'il voulait dire est plutôt...»). De la même manière que pour le pré-processing, on retrouve des avantages et inconvénients similaires. Aucune modification ou retouche du modèle n'est nécessaire. En revanche, chaque algorithme ayant ses spécificités, il incombe au praticien la totalité de la charge: trouver le bon filtre correspondant à la métrique de fairness voulue, savoir de quelle manière le faire agir et s'assurer qu'il est toujours appliqué aux réponses algorithmiques. Pour résumer chacune de ces techniques, il est possible de faire une analogie entre un modèle que l'on veut rendre équitable, et quelqu'un à qui l'on veut apprendre à ne pas jouer avec un couteau. Le pré-processing, c'est s'assurer qu'il n'y ait aucun couteau dans la pièce et qu'il n'y en aura jamais. L'in-processing, c'est apprendre à la personne qu'un couteau peut être dangereux et de lui demander de faire attention. Le post-processing, c'est potentiellement laisser des couteaux accessibles, et passer derrière les éventuels blessures pour les panser avant qu'elles n'affectent quelqu'un. La première et la troisième méthode ne nécessitent aucun apprentissage mais impose une vigilance accrue. La seconde en est l'opposé.

  Table1.2: Différentes notations utilisées dans le cadre GSA en Analyse de Sensibilité. Nous avons donc en notre possession un vecteur de variables aléatoires en entrée X = (𝑋 1 , . . . , 𝑋 𝑝 ), le plus souvent à valeurs réelles. Est également donné, un algorithme déterministe 𝑓 que l'on considère de carré intégrable, c'est-à-dire pour lequel la quantité Var X (𝑓 ) est finie. Si besoin est, nous dénoterons par x une réalisation du vecteur aléatoire X.
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	Symbole mathématique	Signification
	X = (𝑋 1 , . . . , 𝑋 𝑝 )	Liste des variables en entrée de l'algorithme
	x = (𝑥 1 , . . . , 𝑥 𝑝 )	Réalisation de la variable aléatoire X
	𝑝	Nombre de variables utilisées
	𝑓	Algorithme utilisé
	𝑌 := 𝑓 (X)	Variable aléatoire correspondant à la sortie de 𝑓
	𝐺𝑆𝐴 𝑍 (𝑓 )	Indice d'Analyse de Sensibilité Globale générique,
		appliqué pour un algorithme 𝑓 et
	par rapport à une variable aléatoire 𝑍.	
	De manière similaire à la situation précédente, en Analyse de Sensibilité, les
	variables d'entrée sont considérées comme étant des variables aléatoires. Elles
	sont données en entrée à un algorithme déterministe qui est une boîte noire
	(c'est-à-dire qu'il est impossible de connaître quoi que ce soit sur la structure de
	cet algorithme) et ne seront connus que les couples (Variables d'entrée -Sortie).
	En revanche, contrairement au cadre "Équité", il n'y a pas de variable sensible

  se souvenant de la définition d'indépendance, c'est-à-dire le fait que 𝑋 et 𝑌 sont indépendantes si et seulement si les lois P 𝑋,𝑌 et P 𝑋 × P 𝑌 sont égales, une généralisation de cette définition à la quasi-indépendance semble immédiate en terme de distances. Ainsi, il semble naturel de dire qu'une variable aléatoire 𝑋 1 a moins d'influence sur 𝑌 que 𝑋 2 si la distance entre les distributions P 𝑋1,𝑌 et P 𝑋1 × P 𝑌 est plus petite que la distance entre P 𝑋2,𝑌 et P 𝑋2 × P 𝑌 . Dans la littérature, il est possible de parfois rencontrer la distance entre P 𝑌 et P 𝑌 |𝑋 plutôt que les deux distributions mentionnées au dessus. L'idée reste la même. En effet, il suffit d'écrire P (𝑋,𝑌 ) sous la forme P 𝑋 P 𝑌 |𝑋 pour se rendre compte que l'on regarde dans un cas 𝑑(P 𝑋 P 𝑌 |𝑋 , P 𝑋 × P 𝑌 ) et dans l'autre simplement 𝑑(P 𝑌 |𝑋 , P 𝑌 ).
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	En regardant cette distance 𝑑(P (𝑋𝑖,𝑌 ) , P 𝑋𝑖 × P 𝑌 ) pour l'ensemble des variables Remarque 7.	
	d'entrée 𝑋 𝑖 , on obtient ainsi une idée de la variable ayant le plus d'influence	
	(celle pour laquelle la distance est la plus élevée), la deuxième la plus influente,	
	etc, jusqu'à celle enfin qui est le moins informative sur la sortie du modèle. Pour	
	cette dernière, si la distance calculée entre la loi jointe et la loi produit est nulle,	
	il est possible de la supprimer des données sans aucune répercution sur l'efficacité	
	de l'algorithme [AC21; Cha20; Big+21]. Cela fournit donc un premier ensemble	
	d'indices permettant d'expliquer certaines caractéristiques du modèle.	
	Remarque 6 (Analyse de sensibilité locale). Bien que la vaste majorité des	
	méthodes présentées ici rentre dans le cadre de l'Analyse de Sensibilité Globale,	
	un pan de la littérature d'intéresse, de manière similaire à l'Équité, au point de	
	vue local ou individuel [GSW96; RSG16]. L'idée est de fournir des indicateurs	
	répondant à la question «Pour tel individu donné, quelle est la variable pour	
	laquelle un petit changement serait le plus à même de faire varier la sortie	
	algorithmique?» La méthode naïve pour apporter une réponse à ce type de ques-	
	tion consiste à faire un développement de Taylor du modèle autour du point	
	correspondant à l'individu, et donc à calculer les dérivées partielles du modèle.	
	En contrepartie, cela nécessite des hypothèses supplémentaires sur la régularité,	
	hypothèses parfois non vérifiées. Nous verrons néanmoins que cette idée a inspiré	
	la création d'indices d'explicabilité globale: ce sont les indices basés sur la dérivée	
	[Rou+14; Lüt+21].	
	Alors que le concept semble clair, un certain nombre de problèmes arrivent	
	néanmoins lorsque l'on essaye de le mettre en pratique, et notamment le choix	
	de la distance. Il existe une infinité de distances ou de mesures de dissimilarités	
	définies entre distributions. Parmi les plus connues et les plus utilisées par la	
	communauté statistique, nous pouvons, par exemple, mentionner	
	1. la dissimilarité de Kullback-Liebler, trouvant ses fondements dans la théorie	
	de l'information;	
	2. la distance en variation totale, utilisée principalement en Probabilités;	
	3. la distance de Wasserstein, remise au goût du jour ces dernières années de	
	par les récents développements computationnels et son adéquation avec	
	certains algorithmes de Machine Learning;	
	4. ou encore les 𝜙-divergences, introduites par [Csi67], offrant tout une	
	gamme de pseudo-distances possibles.	
	Bien que des liens puissent être tirés entre ces distances et divergences, elles ne	
	sont pas équivalentes, ayant chacune ses spécificités. Cela rend le choix de l'une	
	plutôt que l'autre subjectif et assez complexe au néophyte ou non-expert.	
	Et quand bien même une distance particulière serait privilégiée, les quantités	En prenant
	le cas extrême de l'égalité, nous retombons sur la propriété d'indépendance: la d'intérêt évoquées sont coûteuses et complexes à calculer . Bien qu'étant les
	variable aléatoire 𝑋 1 pourrait être supprimée ou mise à une valeur nominale objets qui, in fine, nous intéressent, ce cumul de désavantages a poussé la
	sans aucune répercussion sur 𝑌 ; elle est donc non-influente. communauté à délaisser les distances entre distributions pour se tourner vers	
	C'est cette idée générale qui guide l'Analyse de Sensibilité Globale [Da 15]. des quantités ou des outils moins intrinsèques mais plus aisément accessible.

et la contribution devient la part d'influence. Ces indices sont extrêmement intéressants et ont rapidement trouvé leurs lettres d'or dans une utilisation industrielles de par leur simplicité d'estimation et leur caractère in- formatif en tant qu'information agrégée rendant compte des différentes sources d'influences possibles pour une variable

  

	de ramener le cas non-indépendant au cadre classique. Pour cela, on peut
	utiliser ou bien des décompositions hiérarchiques alternatives à celle d'Hoeffding
	[Gra15; CGP11] ou alors passer par des transformations isoprobabilistes [MTA15]
	comme la transformation de Lévy-Rosenblatt [Lév55; Ros52] (d'une distribution
	multivariée quelconque vers des distributions uniformes indépendantes) ou la
	transformée de Nataf (d'une distribution multivariée quelconque vers une copule
	gaussienne). Ces derniers travaux, menant à la définition des indices de Sobol'
	étendus, permettent alors de prendre en compte un troisième type d'influence
	(les deux premiers étant l'effet direct et l'effet joint avec d'autres variables) qui
	n'apparaît pas dans un cadre indépendant: l'effet rebond. Dans cette situation,
	une variable est influente sur la sortie par l'effet qu'elle a sur une variable
	intermédiaire qui, à son tour, agira sur la sortie. Ces différents types d'influence
	sont représentées de manière plus visuelles sous forme de graphe causal, voir
	Figure 2.1.
	Cependant, la famille des indices de GSA basés sur une décomposition de la
	variance est loin de se limiter aux seuls indices de Sobol'. En effet, cette dernière
	décennie a vu apparaître d'autres ensembles d'indices, tous liés à cette brique
	élémentaire décrite dans le paragraphe précédent ; chacun répondant à une
	limitation présentée par les indices de Sobol'. Parmi ceux-ci, nous mentionnons
	ici les indices de Shapley [Owe14; OP17; IP17], les indices de Cramér-von-Mises
	[GKL18] et les plus récentes généralisations qui en découlent pour des espaces
	métriques quelconques [FKL21].
	Les indices de Shapley ont été proposé comme une première technique
	s'affranchissant de l'hypothèse d'indépendance des variables. Provenant de
	la théorie des jeux, ils quantifient originellement la contribution d'un joueur à
	la complétion d'un objectif complexe, en prenant en compte les contributions
	individuelles et coalitionnelles de ce joueur avec d'autres groupements de joueurs
	[Sha16; Deh17]. En transférant cet outil dans un cadre GSA, les joueurs devien-
	nent des variables d'entrée, l'objectif complexe devient la sortie d'un algorithme
	«boîte-noire»
	; Big+21]. De plus,
	par le biais de comparaison entre l'indice de Sobol' d'une variable et ceux des
	regroupements de variables dans lesquels elle apparaît, il est possible d'inférer si
	une entrée est influente par elle-même ou de manière jointe avec d'autres, ce qui
	peut-être une information précieuse. Néanmoins, malgré tous ces avantages, la
	pierre angulaire de cette technique est cette décomposition d'Hoeffding, qui n'est
	valable que lorsque les différents entrées sont indépendantes les unes des autres.
	Il va de soi que cette hypothèse n'est pas toujours réalisée. Afin de contourner
	cette limitation, de nombreux travaux ont vu le jour, principalement proposant

  niveaux sont moyennées afin d'obtenir in fine des indices De manière similaire au cadre «Équité Algorithmique», nous avons vu que le vivier d'indices accessibles pour obtenir de l'information est assez conséquent [IL15; Da +21]. Chaque ensemble d'indices permet de répondre à des questions particulières. Il serait donc naïf, dans une finalité d'application ou dans un but normatif (cf Section «Motivations historiques et juridiques») de penser qu'il suffit d'étudier un type d'indice unique pour régler une bonne fois pour toute la question de l'explicabilité, notamment lorsque l'on constate qu'un indice agrégé unique ne permet pas de rendre compte de la totalité d'une
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	intelligibles prenant leurs valeurs entre 0 et 1. Il est à noter que ces indices que cette famille particulière de noyaux soit suffisamment large et englobe suff-
	de Cramér-von-Mises utilisent implicitement les indices de Sobol' -même si isamment de noyaux classiques pour que cette technique remplace celles utilisés
	appliqués à un autre objet que dans le cadre classique -et peuvent donc bénéficier actuellement.
	de certaines extensions mentionnées précédemment, au prix d'une analyse plus
	complexe et moins directe. Ce sont également la porte d'entrée vers la définition Remarque 10.
	de généralisations pour des espaces métriques quelconque [Gam+20], étendant
	encore le champ d'application possible de ces indices.
	Remarque 8. Les quelques indices présentés ici forment la base des indices
	basés sur la décomposition de variance, mais pas la totalité des outils que le
	lecteur intéressé peut rencontrer dans cette littérature. Ainsi, nous pouvons par
	exemple mentionner ici quelques autres indices développés au cours des années
	pour répondre à des besoins spécifiques tels que:
	1. les «indices basés sur la dérivée» [Rou+14; Lüt+21], faisant le lien entre
	l'Analyse de Sensibilité locale utilisant les informations contenues dans les
	dérivées directionnelles du modèle, et les indices de Sobol'.

situation. De la même manière que pour une métrique d'équité, il est de mise d'être vigilant aux outils utilisés et aux réponses qu'ils apportent. De plus, nous avons vu et nous verrons dans le chapitre suivant que ces indices peuvent être appliqués à différents objets (e.g. sortie de l'algorithme, fonction de répartition de cette sortie, erreur entre la sortie et une valeur de référence...), menant à des nuances dans les réponses qu'ils apportent au praticien.

  Table 2.1 sums up which index takes correlations or joint contributions into account. The difference between these different indices can be very informative. For example, if the gap between 𝑆𝑜𝑏 𝑋𝑖 and 𝑆𝑜𝑏𝑇 𝑋𝑖 or between 𝑆𝑜𝑏 𝑖𝑛𝑑 𝑋𝑖 and 𝑆𝑜𝑏𝑇 𝑖𝑛𝑑 𝑋𝑖 is big, then the feature 𝑋 𝑖 is mainly influential because of its joint contributions with the other features on the output. Conversely, if the gap between 𝑆𝑜𝑏 𝑖𝑛𝑑 𝑋𝑖 and 𝑆𝑜𝑏 𝑋𝑖 or between Table 2.1: Sobol' indices: what is taken into account and what is not.

	Sobol' indices	
	Correlation between	Joint
	variables	contributions
	𝑆𝑜𝑏 𝑋𝑖	

Table 2 .

 2 2: Common fairness definitions and associated GSA measures

	Fairness definition	GSA measure associated
	Statistical Parity	Var(E[𝑓 (X)|𝑆]) → 𝑆𝑜𝑏 𝑆 (𝑓 (X))
	Avoiding Disparate Treatment	E[Var(𝑓 (X)|𝑋)] → 𝑆𝑜𝑏𝑇 𝑆 (𝑓 (X))
	Equality of odds	E[Var(E[𝑓 (X)|𝑆, 𝑌 ]|𝑌 )] → 𝐶𝑉 𝑀 𝑖𝑛𝑑 (𝑓 (X), 𝑆|𝑌 )
	Avoiding Disparate Mistreatment	Var(E[ℓ(𝑓 (X), 𝑌 )|𝑆]) → 𝑆𝑜𝑏 𝑆 (ℓ(𝑓 (X), 𝑌 ))

Table 2 .

 2 3: Synthetic experiments based on causal DAGs -Figure 2.1 .

	𝑆𝑜𝑏 𝑖𝑛𝑑
	𝑆𝑜𝑏𝑇
	𝑆𝑜𝑏

Table 3 .

 3 1: Upper-bounds for the various used GSA indices.

	𝐺𝑆𝐴	Associated upper-	Associated upper-
	index	bound	bound
		(Deterministic)	(Data-conditioned)
	Extended		
	Sobol'		
	indices		

  Theorem 4.2.1 (Theorem 3.1 of[START_REF] Hart | Robustness of the Sobol'indices to distributional uncertainty[END_REF]). Let 𝒮 𝑢 be the operator that associates to a distribution P 𝑋 a Sobol' index 𝑆 𝑋 𝑢 (𝑓 ) for an input variable 𝑋 𝑢 and model76CHAPTER 4. FURTHER DEVELOPMENTS AT THE INTERFACE OF GSA & FAIRNESS𝑓 . Then the operator 𝒮 𝑢 is Fréchet differentiable at P 𝑋 with Fréchet derivative the bounded linear operator 𝐷𝒮 𝑢 whose expression is given explicitly in[START_REF] Hart | Robustness of the Sobol'indices to distributional uncertainty[END_REF].

  .28) Proposition 4. If 𝐺𝑆𝐴 is consistent estimator of 𝐺𝑆𝐴 and if 𝐺𝑆𝐴(.) is continuous, then the estimator 𝐺𝑆𝐴2 is a consistent estimator of 𝐺𝑆𝐴2.

  With such notations, we are interested in the quantity |ℱ(𝑓, P 𝜃 ) -ℱ(𝑓, P 𝜃+𝜈 )|. (4.32) Indeed, if this quantity is smaller in a neighborhood of P 𝜃 that a given threshold, we can guarantee that local changes of distribution will not impact our Fairness property by much. In clear words, if we certified a model as fair for a given distribution, the model can keep this certificate as long as the new distribution does not differ too greatly. We have several options to bound this quantity. A first direct result can be given for the Disparate Impact, see the following theorem.

  80CHAPTER 4. FURTHER DEVELOPMENTS AT THE INTERFACE OF GSA & FAIRNESS pass). While the results above provide tools to tackle this backward propagation, we provide for Sobol' indices a result concerning the forward propagation.If we suppose that 𝑓 is parametric, chosen according to a parameter 𝑤 -for instance if 𝑓 is a neural network, then we can derive the following result:𝜕𝑓 𝜕𝑤 |𝑋 𝑖 ], E[𝑓 𝑤 (𝑋)|𝑋 𝑖 ])𝑉 𝑎𝑟(𝑓 𝑤 (𝑋)) -𝑉 𝑎𝑟(E[𝑓 𝑤 (𝑋)|𝑋 𝑖 ]) × 2𝐶𝑜𝑣( 𝜕𝑓 𝜕𝑤 , 𝑓 𝑤 (𝑋)) 𝑉 𝑎𝑟(𝑓 𝑤 (𝑋)) 2 .It remains then to compute 𝜕 𝜕𝑤 𝑉 𝑎𝑟E[𝑓 𝑤 (𝑋)|𝑋 𝑖 ] and 𝜕 𝜕𝑤 𝑉 𝑎𝑟(𝑓 𝑤 (𝑋)). For both of these quantities, we use the fact that the variance is the dot product of the L 2 space. We have, for 𝑔 and ℎ in L 2 (P 𝑋 ),

	𝜕𝑆𝑜𝑏(𝑓 𝑤 ) 𝜕𝑤	=	2𝐶𝑜𝑣(E[ (4.36)
	Proof. We start with the functional equality:
			𝜕 𝐹 𝐺 𝜕𝑤	(𝑥, 𝑤) =	𝜕𝐹 𝜕𝑤 (𝑥, 𝑤)𝐺(𝑥, 𝑤) -𝐹 (𝑥, 𝑤) 𝜕𝐺 𝜕𝑤 (𝑥, 𝑤) (𝐺(𝑥, 𝑤)) 2	.	(4.37)
	𝜕				

𝜕𝑤 ⟨𝑔(𝑋, 𝑤), ℎ(𝑋, 𝑤)⟩ = ⟨ 𝜕𝑔 𝜕𝑤 (𝑋, 𝑤), ℎ(𝑋, 𝑤) + ⟨𝑔(𝑋, 𝑤), 𝜕ℎ 𝜕𝑤 (𝑋, 𝑤)⟩. Then, we infer that 𝜕 𝜕𝑤 𝑉 𝑎𝑟E[𝑓 𝑤 (𝑋)|𝑋 𝑖 ] = 2𝐶𝑜𝑣(E[ 𝜕𝑓 𝜕𝑤 |𝑋 𝑖 ], E[𝑓 𝑤 (𝑋)|𝑋 𝑖 ]) and that 𝜕 𝜕𝑤 𝑉 𝑎𝑟𝑓 𝑤 (𝑋) = 2𝐶𝑜𝑣( 𝜕𝑓 𝜕𝑤 , 𝑓 𝑤 (𝑋)). By plugging these results in the previous equality, we obtain Equation 4.36

  1 𝑗=1 𝑓 1 (𝑋 𝜎𝑛(𝑗) , 𝑊 𝜎𝑛(𝑗) )𝑓 1 (𝑋 𝜎𝑛(𝑗+1) , 𝑊 𝜎𝑛(𝑗+1) ) (𝑋 𝜎𝑛(𝑗) , 𝑊 𝜎𝑛(𝑗) ) (𝑋 𝜎𝑛(𝑗) , 𝑊 𝜎𝑛(𝑗) ) 2 . . . 𝑓 𝑙 (𝑋 𝜎𝑛(𝑗) , 𝑊 𝜎𝑛(𝑗) )𝑓 𝑙 (𝑋 𝜎𝑛(𝑗+1) , 𝑊 𝜎𝑛(𝑗+1) ) 𝑓 𝑙 (𝑋 𝜎𝑛(𝑗) , 𝑊 𝜎𝑛(𝑗) ) 𝑓 𝑙 (𝑋 𝜎𝑛(𝑗) , 𝑊 𝜎𝑛(𝑗) ) 2 (𝑋 𝜎𝑛(𝑗) , 𝑊 𝜎𝑛(𝑗) )𝑓 1 (𝑋 𝜎𝑛(𝑗+1) , 𝑊 𝜎𝑛(𝑗+1) ) (𝑋 𝜎𝑛(𝑗) , 𝑊 𝜎𝑛(𝑗) ) (𝑋 𝜎𝑛(𝑗) , 𝑊 𝜎𝑛(𝑗) ) 2 . . . 𝑓 𝑙 (𝑋 𝜎𝑛(𝑗) , 𝑊 𝜎𝑛(𝑗) )𝑓 𝑙 (𝑋 𝜎𝑛(𝑗+1) , 𝑊 𝜎𝑛(𝑗+1) ) 𝑓 𝑙 (𝑋 𝜎𝑛(𝑗) , 𝑊 𝜎𝑛(𝑗) ) 𝑓 𝑙 (𝑋 𝜎𝑛(𝑗) , 𝑊 𝜎𝑛(𝑗) ) 2 𝑇 since 𝑓 is bounded. Secondly, we use the so-called delta method [Van00, Theorem 3.1] to conclude to Theorem 4.1.3. It is worth noticing that the permutation on the 𝑊 's do not affect the result as seen in the sequel. For 𝑗 = 1, . . . 𝑛 -1, 𝑘 ∈ 1, 𝑙 and denoting by 𝑞 𝑗,𝑛 the 𝑗/(𝑛 + 1)-th quantile of 𝑋, the introduction of ∆ 𝑛,𝑗,𝑘 = 𝑓 𝑘 (︀ 𝑋 𝜎𝑛(𝑗) , 𝑊 𝑗 )︀ -𝑓 𝑘 (𝑞 𝑗,𝑛 , 𝑊 𝑗 ) , 𝑊 𝑛,𝑗 = (︀ 𝑞 𝑗,𝑛 , 𝑊 𝑗 𝑛,𝑗,𝑘 + 𝑓 𝑘 (𝑊 𝑛,𝑗 )) and 𝑓 𝑘 (𝑊 𝑛,𝑗 ) + ∆ 𝑛,𝑗,𝑘 )︁(︁ 𝑓 𝑘 (𝑊 𝑛,𝑗+1 ) + ∆ 𝑛,𝑗+1,𝑘 )︁ = 𝑓 𝑘 (𝑊 𝑛,𝑗 ) 𝑓 𝑘 (𝑊 𝑛,𝑗+1 ) + ∆ 𝑛,𝑗,𝑘 𝑓 𝑘 (𝑊 𝑛,𝑗+1 )+ ∆ 𝑛,𝑗+1,𝑘 𝑓 𝑘 (𝑊 𝑛,𝑗 ) + ∆ 𝑛,𝑗,𝑘 ∆ 𝑛,𝑗+1,𝑘 . 𝑓 1 (𝑊 𝑛,𝑗 )𝑓 1 (𝑊 𝑛,𝑗+1 ) + ∆ 𝑛,𝑗,1 𝑓 1 (𝑊 𝑛,𝑗+1 ) + ∆ 𝑛,𝑗+1,1 𝑓 1 (𝑊 𝑛,𝑗 ) + ∆ 𝑛,𝑗,1 ∆ 𝑛,𝑗+1,1 𝑓 1 (𝑊 𝑛,𝑗 ) + ∆ 𝑛,𝑗,1 (︀ 𝑓 1 (𝑊 𝑛,𝑗 ) + ∆ 𝑛,𝑗,1 )︀ 2 . . . 𝑓 𝑙 (𝑊 𝑛,𝑗 )𝑓 𝑙 (𝑊 𝑛,𝑗+1 ) + ∆ 𝑛,𝑗,𝑙 𝑓 𝑙 (𝑊 𝑛,𝑗+1 ) + ∆ 𝑛,𝑗+1,𝑙 𝑓 𝑙 (𝑊 𝑛,𝑗 ) + ∆ 𝑛,𝑗,𝑙 ∆ 𝑛,𝑗+1,𝑙 𝑓 𝑙 (𝑊 𝑛,𝑗 ) + ∆ 𝑛,𝑗,𝑙 (︀ 𝑓 𝑙 (𝑊 𝑛,𝑗 ) + ∆ 𝑛,𝑗,𝑙 )︀ 2Let us discard the negligible terms in the CLT for 𝑍 𝑛 . For this we need to establish that 𝑋 𝜎𝑛(𝑗) -𝑞 𝑗,𝑛 = 𝑂 P To obtain this result, we first prove it for 𝑈 ∼ 𝒰([0, 1]). Classical results for order statistics allow us to assert that, if we denote 𝑈 (𝑗) for the 𝑗-th element in the sorted sequence (𝑈 1 , . . . , 𝑈 𝑛 ), then 𝑈 (𝑗) ∼ Beta(𝑗, 𝑛 + 1 -𝑗). Taylor expansion of the quantile function of 𝑋 around the point 𝑗/(𝑛 + 1), we obtain𝑋 𝜎𝑛(𝑗) -𝐹 -1 𝜙 𝑋 (𝐹 -1 𝑋 (𝐷 𝑗 )) -1 , (A.26)where 𝐷 𝑗 is a random variable belonging to the segment [𝑈 (𝑗) , 𝑗/(𝑛 + 1)] and 𝜙 𝑋 is the density of the distribution of 𝑋. Since, by assumption, the density of 𝑋 is below-bounded, the asymptotic comportment of 𝑋 𝜎𝑛(𝑗) -𝑞 𝑗,𝑛 is the same one as 𝑈 (𝑗) -𝑗/(𝑛 + 1), hence the result. As explained below, (A.24) will imply that for every 𝑘 ∈ 1, 𝑙 𝑛,𝑗,𝑘 ∆ 𝑛,𝑗+1,𝑘 = 𝑂 P First of all, we expand ∆ 𝑛,𝑗,𝑘 (resp. ∆ 𝑛,𝑗+1,𝑘 ) using the Taylor-Lagrange formula, for any 𝑗 = 1, . . . 𝑛 -1 and 𝑘 = 1, . . . , 𝑙 and we obtain 𝛿 𝑛,𝑗,𝑘 (resp. 𝛿 𝑛,𝑗+1,𝑘 ) lies in the unordered segment (𝑋 𝜎𝑛(𝑗) , 𝑞 𝑗,𝑛 ) (resp. (𝑋 𝜎𝑛(𝑗+1) , 𝑞 𝑗+1,𝑛 )) and where 𝑓 𝑘,𝑥 and 𝑓 𝑘,𝑥𝑥 are the first and second derivatives of 𝑓 𝑘 with respect to the first coordinate. This leads to expansions for ∆ 2 𝑛,𝑗,𝑘 and ∆ 𝑛,𝑗,𝑘 ∆ 𝑛,𝑗+1,𝑘 : Finally, using the boundedness of 𝑓 𝑘 , 𝑓 𝑘,𝑥 , and 𝑓 𝑘,𝑥𝑥 , together with (A.24), (A.27) follows.Remark that the proof of (A.27) yields also from which it is clear that this term will contribute in the CLT on 𝑍 𝑛 . Then (A.27) entails that the asymptotic study reduces to that of the empirical mean of 𝑍 𝑛,𝑗 = 𝐵 𝑛,𝑗 + 𝐶 𝑛,𝑗 where 𝑓 1 (𝑊 𝑛,𝑗 ) 𝑓 1 (𝑊 𝑛,𝑗+1 ) 𝑓 1 (𝑊 𝑛,𝑗 ) 𝑓 1 (𝑊 𝑛,𝑗 ) 2 . . . 𝑓 𝑙 (𝑊 𝑛,𝑗 ) 𝑓 𝑙 (𝑊 𝑛,𝑗+1 ) 𝑓 𝑙 (𝑊 𝑛,𝑗 ) 𝑓 𝑙 (𝑊 𝑛,𝑗 ) 2 𝑛,𝑗,1 𝑓 1 (𝑊 𝑛,𝑗+1 ) + ∆ 𝑛,𝑗+1,1 𝑓 1 (𝑊 𝑛,𝑗 ) ∆ 𝑛,𝑗,1 2∆ 𝑛,𝑗,1 𝑓 1 (𝑊 𝑛,𝑗 ) . . . ∆ 𝑛,𝑗,𝑙 𝑓 𝑙 (𝑊 𝑛,𝑗+1 ) + ∆ 𝑛,𝑗+1,𝑙 𝑓 𝑙 (𝑊 𝑛,𝑗 ) ∆ 𝑛,𝑗,𝑙 2∆ 𝑛,𝑗,𝑙 𝑓 𝑙 (𝑊 𝑛,𝑗 )First, we consider 𝐵 𝑛,𝑗 in (A.30) and we establish the following result, the proof of which has been postponed to Appendix A.5.5.Lemma 1. As 𝑛 → ∞, the random vector 𝐵 𝑛 given by 1
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					that amounts to prove a CLT for				
	⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 𝑈 (𝑗) -1 𝑛 ∑︀ 𝑛-1 𝑗=1 𝑓 1 1 𝑛 𝑗=1 𝑓 1 1 ∑︀ 𝑛-1 𝑛 ∑︀ 𝑛-1 𝑗=1 𝑓 1 1 𝑛 ∑︀ 𝑛-1 𝑗=1 1 𝑛 ∑︀ 𝑛-1 𝑗=1 1 𝑛 ∑︀ 𝑛-1 𝑗=1 ⎞ Therefore, we ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ )︀ 𝑗 𝑛 + 1 = 𝑂 P (︂ 1 √ 𝑛 )︂ . ⎞ ⎛ ∆ ⎞ (A.22) (A.25) 𝑛 + 1 ⎛ (︂ 𝑗 )︂ = (︂ 𝑈 (𝑗) -𝑗 𝑛 + 1 )︂ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ and 𝐶 𝑛,𝑗 = ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ (A.30) × 1 have that By using a 𝑋 𝐵 𝑛,𝑗 = 𝑛 𝑛-1 ∑︁ 𝑗=1 ∆ 2 𝑛,𝑗,𝑘 = 𝑂 P (︂ 1 𝑛 )︂ and 1 𝑛 𝑛-1 ∑︁ (︂ 𝑛 . (A.27) 1 )︂ 𝑛 ∑︀ 𝑛-1 𝑗=1 𝐵 𝑛,𝑗 satisfies a CLT. More precisely, √ 𝑛 (︀ 𝐵 𝑛 -𝑚 𝐵 )︀ ℒ -→	.
	∆ 𝑛,𝑗,𝑘 =	(︀	leads to 𝑓 𝑘 = (∆ 𝑓 𝑘 (︀ 𝑋 𝜎𝑛(𝑗) , 𝑊 𝜎𝑛(𝑗) )︀ ℒ = 𝑓 (︀ 𝑋 𝜎𝑛(𝑗) , 𝑊 𝑗 )︀ (︀ 𝑋 𝜎𝑛(𝑗) , 𝑊 𝜎𝑛(𝑗) )︀ 𝑓 𝑘 (︀ )︀ 𝑋 𝜎𝑛(𝑗+1) , 𝑊 𝜎𝑛(𝑗+1) ℒ = 𝑓 𝑘 (︀ 𝑋 𝜎𝑛(𝑗) , 𝑊 𝑗 = (︁ 𝑋 𝜎𝑛(𝑗) -𝑞 𝑗,𝑛 )︀ 𝑓 𝑘,𝑥 (𝑊 𝑛,𝑗 ) + 1 (︀ 𝑋 𝜎𝑛(𝑗) -𝑞 𝑗,𝑛 )︀ 2 𝑓 𝑘,𝑥𝑥 (︀ 𝛿 𝑛,𝑗,𝑘 , 𝑊 𝜎𝑛(𝑗) )︀ 𝑓 𝑘 2 (A.28) (︀ 𝑋 𝜎𝑛(𝑗+1) , 𝑊 𝑗+1 )︀ ,	)︀
	where ∆ 2 𝑛,𝑗,𝑘 =	(︁	Thus we are led to establish a CLT for ⎛ 𝑋 𝜎𝑛(𝑗) -𝑞 𝑗,𝑛 )︁ 2 (︁ 𝑓 𝑘,𝑥 (𝑊 𝑛,𝑗 ) + 1 2 (︀ 𝑋 𝜎𝑛(𝑗) -𝑞 𝑗,𝑛	)︀	𝑓 𝑘,𝑥𝑥	(︀	𝛿 𝑛,𝑗,𝑘 , 𝑊 𝜎𝑛(𝑗)	)︀ )︁ 2	⎞
	1 𝑛 𝑗=1 𝑓 1 1 ∑︀ 𝑛 𝑛 ∑︀ 𝑛 𝑗=1 𝑓 1 1 𝑛 ∑︀ 𝑛-1 𝑗=1 1 𝑛 ∑︀ 𝑛 𝑗=1 1 𝑛 ∑︀ 𝑛 𝑍 𝑛 = 1 𝑛 𝑛-1 ∑︁ 𝑗=1 ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ ∆ 𝑛,𝑗,𝑘 ∆ 𝑛,𝑗+1,𝑘 = (︀ 𝑋 𝜎𝑛(𝑗) -𝑞 𝑗,𝑛 )︀ (︀ 𝑋 𝜎𝑛(𝑗+1) -𝑞 𝑗+1,𝑛 × (︁ 𝑓 𝑘,𝑥 (𝑊 𝑛,𝑗 ) + 1 (︀ 𝑋 𝜎𝑛(𝑗) -𝑞 𝑗,𝑛 )︀ 𝑓 𝑘,𝑥𝑥 (︀ 𝛿 𝑛,𝑗,𝑘 , 𝑊 𝜎𝑛(𝑗) )︀ 2 × (︁ 𝑓 𝑘,𝑥 (𝑊 𝑛,𝑗+1 ) + 1 2 (︀ 𝑋 𝜎𝑛(𝑗+1) -𝑞 𝑗+1,𝑛 )︀ 𝑓 𝑘,𝑥𝑥 (︀ 𝛿 𝑛,𝑗+1,𝑘 , 𝑊 𝜎𝑛(𝑗+1) 𝑇 )︀ )︁ 𝑗=1 ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ (︂ 1 √ 𝑛 )︂ . 1 𝑛 𝑛-1 ∑︁ 𝑗=1 ∆ 𝑛,𝑗,𝑘 = 𝑂 P (︂ )︂ 1 √ 𝑛 ,	)︀ )︁ (A.29) .	(A.23) (A.24)	⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠	.

𝑗=1

∆ 𝑛→∞ 𝒩 3𝑙 (0, Σ 𝐵 ), where

  where the asymptotic variance 𝑠 2 𝜓 is given in Equation (A.33). Proof of Lemma 5. Recall that the sequence (𝐸 𝑖 ) has been defined in Lemma 4. We have, using the mean value theorem for the first equality 𝑋 𝜎𝑛(𝑗) -𝑞 𝑗

		𝑛 =	1 √ 𝑛	𝑛-1 ∑︁ 𝑗=1	𝜓 (𝑞 𝑗 , 𝜒 𝑗 )	(︀	𝑋 𝜎𝑛(𝑗) -𝑞 𝑗	)︀ ℒ -→ 𝑛→∞	𝒩	(︀	0, 𝑠 2 𝜓	)︀	,
	ℒ =	(︂	𝑈 𝜎𝑛(𝑗) -	𝑗 𝑛 + 1	)︂	×	1 𝑓 𝑋 (𝐹 -1 𝑋 (𝐷 𝑗 ))		
	=	(︃	∑︀ 𝑗 𝑖=1 𝐸 𝑖 ∑︀ 𝑛+1 𝑖=1 𝐸 𝑖	-	𝑗 𝑛 + 1	)︃	×	1 𝑓 𝑋 (𝐹 -1 𝑋 (𝐷 𝑗 ))	=	1 𝑓 𝑋 (𝐹 -1 𝑋 (𝐷 𝑗 ))	1 𝑛+1	1 ∑︀ 𝑛+1 𝑖=1 𝐸 𝑖	(︃	1 𝑛 + 1	𝑗 ∑︁ 𝑖=1	𝐸 𝑖 -	𝑗 (𝑛 + 1) 2	𝑛+1 𝑖=1 ∑︁	𝐸 𝑖
	=	1 𝑓 𝑋 (𝐹 -1 𝑋 (𝐷 𝑗 ))	1 𝑛+1	1 ∑︀ 𝑛+1 𝑖=1 𝐸 𝑖			

√

  𝑛(𝑍 𝑛 -𝑚 𝐵 ) 𝑍 𝑛 ) with Ψ(𝑥 1 , 𝑦 1 , 𝑧 1 , • • • , 𝑥 𝑙 , 𝑦 𝑙 , 𝑧 𝑙 ) = ∑︀ (𝑥 𝑖 -𝑦 2 𝑖 )/( ∑︀ 𝑧 𝑖 -𝑦 2 𝑖 ). The so-called delta method [Van00, Theorem 3.𝜎 2 )where S1 (f ) is the first-order multivariate Sobol' index with respect to 𝑋 and 𝜎 2 = 𝑔 ⊤ (Σ 𝐵 + Σ 𝐶 )𝑔 with 𝑔 = ∇Ψ(𝑚 𝐵 ). By assumption Var(𝑌 ) ̸ = 0, Ψ is differentiable at 𝑚 𝐵 and we will see in the sequel that 𝑔 ⊤ (Σ 𝐵 + Σ 𝐶 )𝑔 ̸ = 0, so that the application of the delta method is justified. By differentiation, we get that, for any 𝑥, 𝑦, and 𝑧 so that 𝑧 ̸ = 𝑦 2 :

							ℒ -→ 𝑛→∞	𝒩 3𝑙 (0, Σ 𝐵 + Σ 𝐶 )	(A.38)
	Further, we notice that ξ𝑛 (𝑓, X (𝑛) )
							1] then
	gives	√	𝑁	(︁	ξ𝑛 (f , X (𝑛) ) -S1 (f ) )︁ 𝒩 1 (0, 𝜕𝜓 ℒ -→ 𝑛→∞ 𝜕𝑥 𝑖 = 1 ∑︀ 𝑖 𝑧 𝑖 -𝑦 2	(A.39)
					𝜕𝜓 𝜕𝑦 𝑖	=	-2𝑦 𝑖 ( ( ∑︀ 𝑧 𝑖 -𝑦 2 ∑︀ 𝑧 𝑖 -𝑥 𝑖 ) 𝑖 ) 2	(A.40)
					𝜕𝜓 𝜕𝑧 𝑖	=	-( ∑︀ ∑︀ 𝑧 𝑖 -𝑦 2 𝑥 𝑖 -𝑦 2 𝑖 𝑖 ) 2	(A.41)
							(A.42)
	so that					

ℒ = Ψ(

les indices «orientés sur une cible» [RM18; DBM22], que l'on peut positionner à l'interface entre les indices de Sobol' et les indices de Cramér-von-Mises. Nous avons vu que les indices de Sobol' sont une décomposition de la variance du modèle 𝑓 ; et que les indices de Cramér-von-Mises sont une décomposition de la variance de la fonction de répartition de la sortie. Les indices orientés sur une cible sont un entre-deux puisqu'ils correspondent à la décomposition de la variance d'une ligne de niveau spécifique de la fonction de répartition. Cette ligne de niveau correspond à une «zone de défaillance» en général, c'est-à-dire une région dans laquelle l'algorithme prédit une valeur supérieur à un seuil fixé (e.g. une probabilité de faille d'un système qui ne doit pas excéder un certain pourcentage). Ces indices permettent de répondre à la question «Quelle est la variable qui contribue le plus à ce dépassement de seuil de mon système?».

3. Les indices à base de contraste[START_REF] Fort | New sensitivity analysis subordinated to a contrast[END_REF], qui sont basés non pas sur une décomposition de la variance (c'est-à-dire de la distance L 2 ) mais d'une autre fonctionnelle à choisir au préalable afin de quantifier par exemple la sensibilité par rapport à un quantile, à une densité, etc. Remarque 9. De récents travaux concilient l'aspect extrêmement informatif des indices de Sobol' et les indices HSIC [Da 21]. Grâce à la décomposition d'Hoeffding et le fait que l'on puisse voir un indice de Sobol' comme un pourcentage de variance expliquée, ces indicateurs sont explicites et compréhensible de tous, y compris des non-experts. D'un autre côté, l'utilisation d'un «RKHS» (espace reproduisant) offre une grande liberté et adaptabilité aux utilisateurs des indices HSIC, et la possibilité d'insérer des connaissances a priori dans l'analyse par le choix d'un noyau particulier. Il a été montré que certains noyaux permettent de retrouver une décomposition d'Hoeffding et donc de combiner les avantages des deux classes d'indices. En revanche, il n'est pas encore clair
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The aim of the Lévy-Rosenblatt transform is to find a transport map between the correlated X and independent uniform variables U ∈ R 𝑝 . From now, we assume the distribution of X to be absolutely continuous.

Theorem A.1.1 (Lévy-Rosemblatt theorem, [START_REF] Lévy | Théorie de l'Addition de Variables Aléatoires[END_REF][START_REF] Rosenblatt | Remarks on a Multivariate Transformation[END_REF]). : there is a bijection (denoted "RT" for Rosemblatt transform) between 𝑝(X) and 𝑝 independent uniform random variables Example 8. In the following, we will always be interested in two groups of variables: the sensitive variable 𝑋 𝑖 and the rest of the variables 𝑋 ∼𝑖 . Therefore, it may help to understand the special case where X = (𝑋 1 , 𝑋 2 ) since it encapsulates all the difficulty. In this case, we have two different ways to decompose 𝑝 X .

(i) If we decompose 𝑝 X as 𝑝 𝑋1 × 𝑝 𝑋2|𝑋1 , then we can map this to (𝑈 1 1 , 𝑈 1 2 ). With this mapping, we can draw random variables with distributions 𝑝 𝑋1 and 𝑝 𝑋2|𝑋1 . For this, we need only to have access to independent uniform random variables and use the inverse Rosenblatt transform. We denote as 𝐹 𝑇 the cumulative distribution function of the random variable 𝑇 . The inverse Rosenblatt transform is then given by

We first draw a random variable 𝑍 1 with distribution 𝑝 𝑋1 from an uniform random variable by quantile inversion. Now that we have this realisation 𝑧 1 , we have the second distribution 𝑝 𝑋2|𝑋1=𝑧1 . We then draw a random variable 𝑍 2 that follows the distribution 𝑝 𝑋2|𝑋1=𝑧1 and such that the couple (𝑍 1 , 𝑍 2 ) has the same distribution as (𝑋 1 , 𝑋 2 ). This random variable is similar to 𝑋 2 but does not contain its correlation with 𝑋 1 .

(ii) Similarly, if we decompose 𝑝 X as 𝑝 𝑋2 × 𝑝 𝑋1|𝑋2 , then we can map this to (𝑈 2 1 , 𝑈 2 2 ).

Note that the only case where these two mappings are similar is when 𝑋 1 and 𝑋 2 are independent. In that case, 𝑝 𝑋1 = 𝑝 𝑋1|𝑋2 and 𝑝 𝑋2 = 𝑝 𝑋2|𝑋1 .

Several things need to be said about this transform.

Remark 20. It enables to transform a set of possibly dependent random variables into a set of random variables without any dependencies. Moreover, for one such set of independent variables U 𝑖 , there exists a function 𝑔 𝑖 square integrable such that 𝑓 (X) = 𝑔 𝑖 (U 𝑖 ). One way to compute Sobol' indices for the output 𝑓 (X) is therefore to use the Hoeffding decomposition of 𝑔 𝑖 (U 𝑖 ).

Remark 21. In terms of information, 𝑈 𝑖 1 carries as much information as 𝑋 𝑖 since 𝑈 𝑖 1 = 𝐹 𝑋𝑖 (𝑋 𝑖 ). Note that this include the eventual dependency with other variables. This means that the Sobol' indices of 𝑈 𝑖 1 will correspond to the Sobol' indices of 𝑋 𝑖 as defined in the previous section. Meanwhile, the law of 𝑈 𝑖 𝑛 is associated with the law of 𝑋 𝑖-1 |𝑋 ∼(𝑖-1) . This conditional distribution aim to capture all the remaining randomness in 𝑋 𝑖-1 when the intrinsic effects of the others inputs on it has been removed. Therefore, it has all the remaining information in the law of 𝑋 𝑖-1 when the contribution of the other variables are discarded.

Remark 22. The previous point is the reason why we do not need to consider all 𝑛! possible Rosenblatt Transforms of X. Since we are only interested in the information carried by a variable -with (𝑋 𝑖 ) -and by the law of this same variable without its dependencies in the other variables -with (𝑋 𝑖 |𝑋 ∼𝑖 ), we are only interested in 𝑈 𝑖 1 and 𝑈 𝑖 𝑛 , for all 𝑖. Therefore, we can without loss of generality, consider a cyclic permutation. That being said, if, for numerical reasons, other Rosenblatt transforms are easier to work with, there is no theoretical reasons not to use them.

In the classic Sobol' analysis, for an input 𝑌 , we have two indices that quantify the influence of the considered feature on the output of the algorithm, namely the first order and total indices. Now, thanks to the Lévy-Rosemblatt, we have two different mappings of interest: the mapping from 𝑈 𝑖 1 to 𝑋 𝑖 that includes the intrinsic influence of other inputs over this particular input and the mapping from 𝑈 𝑖+1 𝑝 to 𝑋 𝑖 |𝑋 ∼𝑖 that excludes these influences and shows the variation induced by this input on its own. These two different mappings will each lead to two indices (the Sobol' and Total Sobol' indices of 𝑈 𝑖 1 , and the ones of 𝑈 𝑖+1 𝑝 ) so every input 𝑋 𝑖 will be represented by four indices.
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A.2 Estimates of extended Sobol' indices

We recall that in the independent Sobol' framework, for every input 𝑋 𝑘 , we have two different mappings: the mapping from 𝑈 𝑘 1 to 𝑋 𝑘 that includes the intrinsic influence of other inputs over this particular input and the mapping from 𝑈 𝑘+1 𝑝 to 𝑋 𝑘 |𝑋 ∼𝑘 that excludes these influences and shows the variation of this input on its own. These two different mappings will each lead to two indices (the Sobol indices of 𝑈 𝑘 1 and the ones of 𝑈 𝑘+1

𝑝

) so every input 𝑋 𝑘 will be represented by four indices, explained in the following subsection.

As seen previously, the four Sobol' indices for each variable 𝑋 𝑖 , 𝑖 ∈ 1, 𝑛 are defined as followed:

We recall that these indices use the Rosemblatt transform, a bijection between independent uniforms and the distribution of the features. This bijection can be inverted to generate samples from uniforms. We denote the inverse of the Rosemblatt transform as IRT -Inverse Rosemblatt Transform. Thanks to the IRT, we can generate four samples:

Once we obtain, for each 𝑖 ∈ {1, • • • , 𝑝}, the four samples defined above, we can compute the estimators of the Sobol' and independent Sobol' indices as follows:

) is the 𝑘-th Monte-Carlo trial in the sample x * , 𝑘 ∈ {1, 𝑛} and V is the total variance estimate that can be computed as the average of the total variances computed with each sample x * .

A.3 Central Limit Theorem for Sobol' indices

We recall the theorem 2.2.1 we presented in Section 2.2.

Theorem A.3.1. Each index 𝒮 in the equations (2.6) to (2.9) can be written as 𝐴/𝐵 and the corresponding estimate 𝒮 𝑛 can be written as 𝐴 𝑛 /𝐵 𝑛 . For each of these indices, we have a central limit theorem:

with 𝜎 2 depending on which index we study.

We propose to study the central limit theorem for the estimator of the index 𝑆𝑜𝑏 𝑋𝑖 proposed in Appendix A.2. Note that the result is the same for other estimators of the Sobol' indices proposed in the same section.

If we denote

Applying the delta-method [START_REF] Aad | Asymptotic statistics[END_REF], we obtain the convergence of ℎ(𝑍 𝑛 ) to

→ 𝒩 (0, ∇ℎ(𝛽)Σ∇ℎ(𝛽) 𝑇 ), (A.12)
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)︂ 𝑇 and the correlation matrix Σ for the variable 𝑍 𝑛 which is

where the values 𝜎 2 𝑖𝑗 = 𝐶𝑜𝑣(𝑍 𝑖 , 𝑍 𝑗 ) are given as

A.4 Estimation of Cramér-von-Mises indices

We propose two ways of estimating the extended Cramér-von-Mises indices that we denote by 𝑈 (𝑌, 𝑋 𝑖 |𝑋 ∼𝑖 ) defined in (2.13).

The first one is to use the fact that

We need to estimate 𝑇 (𝑌, 𝑋 𝑖 |𝑋 ∼𝑖 ) and 𝑇 (𝑌, 𝑋 ∼𝑖 ). Estimates for both theses quantities are taken from [START_REF] Azadkia | A simple measure of conditional dependence[END_REF]. Consider a triple of random variables (𝑋, 𝑍, 𝑌 ) and an i.i.d sample (𝑋 𝑖 , 𝑍 𝑖 , 𝑌 𝑖 ) 1≤𝑖≤𝑛 . For simplicity, we still suppose the random variables to be diffuse (that is without ties). The random variable 𝑍 is used for the conditioning.

For each 𝑖, let 𝑁 (𝑖) be the index 𝑗 such that 𝑍 𝑗 is the nearest neighbor of 𝑍 𝑖 with respect to the Euclidean distance and let 𝑀 (𝑖) be the index 𝑗 such that (𝑋 𝑗 , 𝑍 𝑗 ) is the nearest neighbor of (𝑋 𝑖 , 𝑍 𝑖 ). Let 𝑅 𝑖 be the rank of 𝑌 𝑖 , that is the number of 𝑗 such that 𝑌 𝑗 ≤ 𝑌 𝑖 .

APPENDIX A. APPENDIX

The correlation coefficient defined in [START_REF] Azadkia | A simple measure of conditional dependence[END_REF] is defined as:

The authors of [START_REF] Azadkia | A simple measure of conditional dependence[END_REF] prove that this estimator converges almost surely to a deterministic limit 𝑇 (𝑌, 𝑋|𝑍) which is equal to the quantity we defined in the first section. In order to estimate the extended Cramér-von-Mises sensitivity index 𝐶𝑉 𝑀 𝑖𝑛𝑑 𝑋 , we propose the estimator

The convergence of the estimator 𝑈 𝑛 (𝑌, 𝑋 𝑖 |𝑋 ∼𝑖 ) to the quantity of interest 𝑈 (𝑌, 𝑋 𝑖 |𝑋 ∼𝑖 ) is immediate.

We propose an alternative method for the estimation of this index. We take advantage of the estimates given in [START_REF] Azadkia | A simple measure of conditional dependence[END_REF] and [START_REF] Chatterjee | A New Coefficient of Correlation[END_REF]. We have the two following convergences almost surely:

where 𝐿 𝑗 is the number of 𝑘 such that 𝑌 𝑘 ≥ 𝑌 𝑗 .

Proposition 6 (Estimator of the extended Cramér-von-Mises indices). The quantity defined as Ũ𝑛 (𝑌, 𝑋|𝑍) = 𝑄 𝑛 (𝑌, 𝑋|𝑍)/𝑆 𝑛 (𝑌 ) is a consistent estimator of 𝑈 (𝑌, 𝑋 𝑖 |𝑋 ∼𝑖 ).

The proof is obtained directly using classical probability tools.

A.5 Proofs

A.5.1 Proof of Theorem A.1.1

Proof. Indeed, we can always write

Since we are back to a product of marginals, we have a hierarchical independence. We choose the cyclical hierarchy ( 𝑋 𝑖 , followed by 𝑋 𝑖+1 |𝑋 𝑖 , then 𝑋 𝑖+2 |𝑋 𝑖 , 𝑋 𝑖+1 , and so on and so forth till 𝑋 𝑖-1 |𝑋 ∼(𝑖-1) ) as we are in fact only interested in the first and the last elements of this hierarchy ( 𝑋 𝑖 and 𝑋 𝑖-1 |𝑋 ∼(𝑖-1) ). We can always map univariate random variables to uniform distributions by matching the quantiles by using the cumulative distribution function -one can view this operation as hierarchical Optimal Transport, see [START_REF] Carlier | From Knothe's Transport to Brenier's Map and a Continuation Method for Optimal Transport[END_REF] -and by doing so for A.5. PROOFS 105 each variable defined above, we have the so-called Levy-Rosenblatt transform, denoted here as RT, that is:

A.5.2 Proof of Examples following 2.3.1

Proof. We will show here how each definition of fairness and GSA measure presented in Table 2.2 match for binary classification with 𝑆 binary.

(i) The definition of Statistical Parity is given by |P(𝑓 (X) = 1|𝑆 = 1) -P(𝑓 (X) = 1|𝑆 = 0)|. For simplicity, we consider Var(𝑓 (X)) = 1. If we compute the Sobol' index of the predictor 𝑓 (X) for the protected variable 𝑆, we obtain:

We see that the quantity of interest in Statistical Parity is the same as the Sobol' index, up to a constant depending on the proportion in each class of the protected variable. For the second part of the proposition, we apply the same reasoning by factorizing P 𝑌 as P 𝑌 |𝑋,𝑆 P 𝑆|𝑋 P 𝑋 . We can write 

A.5.4 Proof of Proposition 2 and Proposition 3

Proof. Without loss of generality, we can consider only two sensitive features 𝑆 1 and 𝑆 2 . Because of the various bounds on Sobol' indices explained in previous Section, we know that 𝑆𝑜𝑏𝑇 𝑆1,𝑆2 ≤ 𝑆𝑜𝑏𝑇 𝑆1 . 𝑆𝑜𝑏𝑇 𝑆1 is the GSA measure associated with Avoiding Disparate Treatment. This means that to be fair in the sense of Avoiding Disparate Treatment implies the nullity of 𝑆𝑜𝑏𝑇 𝑆1 and therefore the nullity of 𝑆𝑜𝑏𝑇 𝑆1,𝑆2 . The second result is a direct consequence of the absence of bounds between 𝑆𝑜𝑏 𝑆1 and Sobol' indices for (𝑆 1 , 𝑆 2 ) and an example has been given in the previous toy-case in introduction of the Subsection. We can find cases where 𝑆𝑜𝑏 𝑆1 is arbitrary high and 𝑆𝑜𝑏 𝑆1,𝑆2 is null, such as 𝑓 (𝑋) = 𝑆 1 ; and cases where 𝑆𝑜𝑏 𝑆1 is null and 𝑆𝑜𝑏 𝑆1,𝑆2 is arbitrary high, such as

Considering the characteristic function of the vector 

111 converges in distribution to (𝐵 𝑠 , exp{-𝑡 ⊤ Σ 𝐶 𝑡/2}). We consider the application ℎ : (𝑢, 𝑣) ∈ R × 𝐷(0, 1) ↦ → 𝑒 𝑖𝑢 𝑣 ∈ C where 𝐷(0, 1) is the unit disc in C. The continuity and the boundedness of ℎ lead to the convergence in distribution of

]︁ and we conclude to the asymptotic normality of √ 𝑛(𝐵 𝑛 -E[𝐵 𝑛 ], 𝐶 𝑛 ) to a Gaussian random vector of dimension 6𝑙 with zero mean and variance-covariance matrix

. It remains to apply the so-called delta method [Van00, Theorem 3.1] and Slutsky's lemma to get the required result. The details of the computation of the asymptotic variance 𝜎 2 can be found in Appendix A.5.5.

Proof of Lemma 1

The proof of Lemma 1 is the same as its equivalent in [START_REF] Gamboa | Global Sensitivity Analysis: a new generation of mighty estimators based on rank statistics[END_REF], with minimal changes for the asymptotic covariance matrix. Indeed, we obtain a 3𝑙 × 3𝑙 covariance matrix (Σ 𝐵 ) 𝑖,𝑗 as follows.

• If 𝑖 = 3(𝑘 -1) + 1, 𝑗 = 3(𝑘 ′ -1) + 1, (𝑘, 𝑘 ′ ) ∈ 1, 𝑙 2 , then we obtain

where with 𝑊 ′ and 𝑊 ′′ are two independent copies of 𝑊 .

• If 𝑖 = 3(𝑘 -1) + 2, 𝑗 = 3(𝑘 ′ -1) + 2, (𝑘, 𝑘 ′ ) ∈ 1, 𝑙 2 , then we obtain

• If 𝑖 = 3(𝑘 -1) + 3, 𝑗 = 3(𝑘 ′ -1) + 3, (𝑘, 𝑘 ′ ) ∈ 1, 𝑙 2 , then we obtain

• If 𝑖 = 3(𝑘 -1) + 2, 𝑗 = 3(𝑘 ′ -1) + 3, (𝑘, 𝑘 ′ ) ∈ 1, 𝑙 2 , then we obtain

Proof of Lemma 2

In order to prove the Central Limit Theorem of the random variable 𝐶 𝑛 , we need the following lemmas.

Lemma 3. Let 𝑘 and 𝑙 ∈ 0, 𝑛 . There exists a measurable set Π ⊂ Ω 𝑊 with P 𝑊 -probability one such that for any 𝜔 𝑊 ∈ Π,

as 𝑛 → ∞ where 𝑋 has a continuous distribution on the interval [𝑎, 𝑏] with strictly positive density and ⇒ stands for the weak convergence of measures.

Here, ℒ (𝑋,••• ,𝑋) stands for the joint distribution of the random vector (𝑋,

The proof of this lemma is the same as in the supplementary material of [START_REF] Gamboa | Global Sensitivity Analysis: a new generation of mighty estimators based on rank statistics[END_REF].

Lemma 4. Let (𝐸 𝑖 ) 𝑖⩾1 be a sequence of i.i.d. random variables with standard exponential distribution and let 𝜓 be a bounded measurable function on [𝑎, 𝑏]. We denote by 𝑞 𝑗 the 𝑗/(𝑛 + 1)-th quantile of 𝑋, that is 𝑞 𝑗 = 𝐹 -1 𝑋 (𝑗/(𝑛 + 1)). We assume that the set of discontinuity points of 𝜓 has null Lebesgue measure. Then, the sequence

converges in distribution to a centered Gaussian law with asymptotic variance:

. The proof of this lemma is done by straightforward computation of the cumulant of the exponential random variable 𝐸 𝑖 . The detailed proof can be found in [START_REF] Gamboa | Global Sensitivity Analysis: a new generation of mighty estimators based on rank statistics[END_REF] as well, albeit with 𝑋 supposed to be uniform in [0, 1] Remark 23. The previous lemma extends to the case of a continuous function Ψ = (𝜓 𝑖 ) valued in R 𝑑 (𝑑 ⩾ 1). In this case, the asymptotic covariance matrix

. Indeed, the previous lemma holds for any linear combination of such random vector sequence. A direct computation of the asymptotic variance leads to the quadratic form built on Σ Ψ .

Finally, the lemma of interest is the following.

Lemma 5. Let (𝑈, B(𝑈 )) be a Polish space where B(𝑈 ) denotes the Borel 𝜎 algebra of 𝑈 . We consider a sequence (𝜒 𝑗 ) 1⩽𝑗⩽𝑛, 𝑛∈N * valued in 𝑈 and 𝑄 a probability measure on [𝑎, 𝑏] × 𝑈 . We assume that the sequence of empirical measures (︁

)︁ 𝑛∈N * converges in distribution to 𝑄.

A.5. PROOFS

For 𝑡 ∈ [0, 1], let 𝜑(𝑡) = ∫︀ 𝑈 ×[𝑡,𝑏] 𝜓(𝑥, 𝜒)𝑑𝑄(𝑥, 𝜒). We can show that

using Dini's theorem to the positive and negative part of 𝜓(𝑞 𝑗 , 𝜒) Then, in our study, we may replace 𝑉 𝑛 by We can now prove the Lemma 2. Let 𝜔 𝑊 ∈ Π as defined above. The aim is to establish a CLT for √ 𝑛𝐶 𝑛,𝑗 (•, 𝜔 𝑊 ). To ease the reading, we omit the notation (•, 𝜔 𝑊 ) as classically done in probability. First, dealing with the first coordinate of 𝐶 𝑛,𝑗 defined in (A.30), one has

using the expansion of ∆ 𝑛,𝑗,1 given in (A.28). By A.24 and using the boundedness of 𝑓 1 and 𝑓 1,𝑥𝑥 , we get that

A.5. PROOFS 115 is 𝑂 P (1/𝑛). The same asymptotic behavior is observed for the telescopic sum

So that, using also the expansion of the ∆ 𝑛,𝑗,𝑘 given in (A.28), A.24, and the boundedness of 𝑓 𝑘 and 𝑓 𝑘,𝑥𝑥 for any 𝑘, the study of 𝐶 𝑛 reduces to that of the random vector noticing that, as 𝑛 → ∞, (1/𝑛) ∑︀ 𝑛-1 𝑗=1 𝛿 𝜉𝑗 ,𝑗/(𝑛+1),(𝑗+1)/(𝑛+1) converges in distribution to 𝑄 = 𝜈 = ℒ (𝑋,𝑋) ⊗ ℒ 𝑊 ⊗ ℒ 𝑊 . Thus we deduce that the empirical mean in (A.36) converges in distribution for any 3l-uplet (𝑢, 𝑣, 𝑤). Since any linear combination of the components of the random vector defined in (A.35) satisfies a CLT, so does the random vector itself. The proof of Lemma 2 is now complete, up to the computation of the asymptotic variance-covariance matrix Σ 𝐶 done in the paragraph that follows.

Computation of the asymptotic covariance matrix Σ 𝐶

We use the explicit expression (4) in the proof of the lemma proved above of the asymptotic variance 𝜎 2 𝜓 with 𝑄 = 𝜈 = ℒ (𝑋,𝑋) ⊗ ℒ 𝑊 ⊗ ℒ 𝑊 and with 𝜓 given by (A.37). Then taking the values (1, 0, 0, • • • ), (0, 1, 0, • • • ) and (0, 0, 1, • • • ) -so on APPENDIX A. APPENDIX and so forth -leads to the diagonal terms of the asymptotic variance-covariance matrix Σ 𝐶 while solving a three-dimensional system of equations provides the remaining terms.

The terms of the covariance matrix are as follow:

• If 𝑖 = 3(𝑘 -1) + 1, 𝑗 = 3(𝑘 ′ -1) + 1, (𝑘, 𝑘 ′ ) ∈ 1, 𝑙 2 , we have