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Abstract

Mixture of experts (ME) models are popular in statistics and machine learning and have been

studied for high-dimensional vectorial data and that are centralized. However, in many problems,

we observe time series data and applying the existing ME models directly to these raw data may

limit the performance because they ignore the correlation between variables, an intrinsic nature

of functional data, and therefore do not adequately capture the inherent functional structure of

the data. In many applications the data may also be not available at a centralized mode, and

there is therefore a need to develop adapted distributed strategies allowing for efficient parallel

computations. From the modeling point of view, there is indeed a lack of ME models for functional

data. From the estimation point of view, there is a lack of approaches to estimate ME models in

a distributed fashion. This work addresses both of these problems. This thesis studies mixture of

experts (ME) models in functional data and large-scale problems, in a heterogeneous scenario. The

main objectives are i) to deal with situations in which we are given functional predictors (e.g., time

series) to predict a potentially functional response, and ii) to learn from distributed data. We first

propose in this thesis a new family of ME models, called functional mixture of experts (FME), which

includes scalar-on-function FME, function-on-scalar FME, and function-on-function FME. We

introduce regularized model estimation approaches via appropriate regularizations that encourage

sparse and smooth estimates, while being interpretable. We develop efficient EM algorithms to

maximize the corresponding observed-data log-likelihood functions and conduct extensive experimental

studies to highlight the performance of the proposed models and algorithms. Then, to scale-up the

ME estimation to a potentially distributed data, we develop a distributed learning strategy of ME

models. It performs standard inference on local machines to obtain local estimators, then transmits

them to a central machine where they are aggregated. Based on minimizing a proposed expected

transportation divergence, the local estimators are aggregated to obtain a reduced estimator that

is consistent with the global one, i.e., the estimator that could be possibly constructed upon the

full dataset. Experimental studies demonstrate the performance of our approach.

Mixture of experts (ME) models are popular in statistics and machine learning and have been

studied for high-dimensional vectorial data and that are centralized. However, in many problems,

we observe time series data and applying the existing ME models directly to these raw data may

limit the performance because they ignore the correlation between variables, an intrinsic nature

of functional data, and therefore do not adequately capture the inherent functional structure of

the data. In many applications the data may also be not available at a centralized mode, and

there is therefore a need to develop adapted distributed strategies allowing for efficient parallel

computations. This thesis studies mixture of experts (ME) models in functional data and large-

scale problems, in a heterogeneous scenario. The main objectives are i) to deal with situations
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in which we are given functional predictors (e.g., time series) to predict a potentially functional

response, and ii) to learn from distributed data. We first propose in this thesis a new family of

ME models, called functional mixture of experts (FME), which includes scalar-on-function FME,

function-on-scalar FME, and function-on-function FME.We introduce regularized model estimation

approaches via appropriate regularizations that encourage sparse and smooth estimates, while being

interpretable. We develop efficient EM algorithms to maximize the corresponding observed-data

log-likelihood functions and conduct extensive experimental studies to highlight the performance

of the proposed models and algorithms. Then, to scale-up the ME estimation to a potentially

distributed data, we develop a distributed learning strategy of ME models. It performs standard

inference on local machines to obtain local estimators, then transmits them to a central machine

where they are aggregated. Based on minimizing a proposed expected transportation divergence,

the local estimators are aggregated to obtain a reduced estimator that is consistent with the global

one, i.e., the estimator that could be possibly constructed upon the full dataset. Experimental

studies demonstrate the performance of our approach.

Keywords: Mixture of Experts; Functional Data Analysis; Regularized Estimation; LASSO; EM

algorithm; MM Algorithm; Distributed Learning; Optimal Transport; Prediction; Clustering.

Keywords: Mixture of Experts, Functional Data Analysis, Regularized Estimation, LASSO, EM

algorithm, MM Algorithm, Dantzig Selector, Distributed Learning, Optimal Transport Divergence,

Clustering, Classification, Regression.
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Chapter 1
Introduction

Contents

1.1 Context of study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Contributions and outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1 Context of study

Nowadays, learning from data is becoming more and more popular. For example, in medicine

statistical models have been used to classify patients and detect tumors based on magnetic resonance

imaging. In business, sophisticated machine learning algorithms have been used to make business

decisions in seconds. In image processing, denoising is no longer done by filters as in classical

techniques, but can be automated by machine learning algorithms. And many other applications

in various fields such as speech recognition, natural language processing, product recommendation,

etc. The above applications all have one thing in common: they are all enabled by learning from

data. Moreover, in this big data age, data is cheaper and easier to obtain, which requires more

efficient methods to deal with data in large-scale. Therefore, statistical models that are efficient

and can be learned in parallel fashion are of great interest.

One of the common challenges of modern statistical models is the increasing occurrence of high-

dimensional data and, more recently, functional data. High-dimensional data have been considered

for many models. The common approach is to impose a penalization, usually the ℓ1-norm of

the parameter vector, when performing model estimation. However, for functional data, classical

multivariate models are not appropriate because they ignore the underlying intrinsic nature and

structure of the data. Functional data analysis (FDA) (Ramsay and Silverman, 2005; Ferraty and

Vieu, 2006) in which the individual data units are assumed to be functions, rather than vectors,

offers an adapted framework for dealing with continuously observed data. FDA has been shown to

be efficient and flexible in many applications, including regression, classification, and clustering.

For the analysis of heterogeneous data, mixture models (Titterington et al., 1985; McLachlan

and Peel., 2000) have become a standard and have shown numerous applications in various fields
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CHAPTER 1 INTRODUCTION

including signal processing, medicine, bioinformatics, among many others. Mixtures-of-experts

(ME), introduced by (Jacobs et al., 1991), as an extension of mixture models, is a successful and

flexible supervised learning architecture for efficiently representing complex nonlinear relationships

in observed pairs of heterogeneous data. Since its first introduction 30 years ago, it is still one of the

models researchers are most interested in, and has been used in numerous regression, clustering,

as well as classification applications in finance, recognition, healthcare, surveillance, etc. Some

successful applications of ME architecture may be mentioned here include ME for time series

prediction (Zeevi et al., 1996; Yümlü et al., 2003), segmentation (Chamroukhi et al., 2013, 2009),

ME for social network data (Gormley and Murphy, 2010), for classification of gender and pose of

human faces (Gutta et al., 2000), among many others.

Given the success of ME in various domains and the increasing appearance of functional data in

real-world applications, the first direction of this thesis is then to develop ME models for functional

data. Attention will also be given to the problem regularization and interpretation in models, which

is less common than the well-known problem of variable-selection in multivariate models.

However, there is another challenge that limits the application of the ME model. That is the

ability to learn from data that are not stored on a single machine. This can be due to the nature of

the data, communication issues (such as data in meteorology where they are collected at different

stations), or privacy restriction (such as data in finance and medicine). Even when a complete data

set is available, it often requires a huge processing resource for handling and running statistical

inference methods, this may be evenly more expensive. Such challenges impose new analysis

strategies to the modern statistical models. The common approach is use the divide-and-conquer

to parallelize the model estimation. There have been many successful attempts in parallelizing the

existing learning algorithms and statistical methods. These include the parallelization of stochastic

gradient descent(Zinkevich et al., 2010), parallelization of multiple linear regression(Mingxian

et al., 1991), of logistic regression (Shofiyah and Sofro, 2018), for penalized regressions (Chen and

ge Xie, 2014) parallel K-Means clustering based on MapReduce (Zhao et al., 2009), distributed

learning for heterogeneous data via modelintegration (Merugu and Ghosh, 2005), more recently,

distributed learning for finite Gaussian mixtures (Zhang and Chen, 2021), among others. Although

distributed versions of the EM algorithm have been developed (Nowak, 2003; chen Chen et al.,

2013), these approaches have not been considered for ME models, and require the communication

of summary statistics and the coordination across local machines at each iteration, leading to high

communication cost. So ME models, however, is still outside of this trend. Therefore, the second

direction of this thesis is to develop an efficient strategy to estimate ME models in a distributed

way.
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1.2 Contributions and outline of the thesis

The manuscript is organized as follows. Chapter 2 is dedicated to the state of the art. Chapter 3

presents our first contribution to the modeling of mixtures-of-experts for data with functional

predictor and continuous scalar response. Chapter 4 is the second contribution which extends the

proposed models to the case of classification and to the cases of functional response. There are

three new models proposed in this chapter. Chapter 5 presents our last contribution, in which

a distributed learning approach for mixture-of-experts models is proposed. Finally, Chapter 6

is for conclusions and discussions of future work. Technical details related to the mathematical

developments of our contributions are provided in Appendices A, B and C.

More particularly, in Chapter 2, we attempt to give a comprehensive overview of the current

state of the art of models and estimation methods on the research topics of this thesis. First, we

present an overview of the mixture-of-experts models, focusing on the modeling of the expert and

gating networks, as well as the inference of the models using maximum likelihood estimation. We

then introduce some important concepts of functional data analysis, including the mathematical

framework, basis expansions, functional principal component analysis, etc. We also provide a

review for the models for regression, clustering, as well as classification of functional data. We opt

to present in details the estimation methods for the function-on-function and function-on-scalar

regression models since they will be used later in our proposed model as extensions.

In Chapter 3, we propose a new family of mixtures-of-experts models, called functional mixtures

of experts (FME), to relate a functional predictor to a scalar response. A dedicated EM algorithm

for the maximum likelihood parameter estimation is developed for FME model. To deal with

potential high-dimensional setting of the proposed FME model, we also consider a Lasso-regularized

approach, which consists of a penalized MLE estimation via a hybrid EM-Lasso algorithm. Finally,

to obtain a sparse and highly-interpretable regularization of the functional expert and gating

parameters, interpretable FME (iFME) model is proposed, which is constructed upon the coefficients

of the derivatives of the functional parameters. The resulting model is fitted by regularized MLE

via an dedicated EM-iFME algorithm. Extensive experimental studies are then constructed to

compare the proposed approaches to the main competitive state of art methods for the subject. The

model selection via modified BIC and the implementation details are also discussed. On simulated

data, our models outperforms its competitive in both prediction and clustering tasks. The models

are then applied to two real-world datasets, on which they also outperforms its competitive on

prediction. Specially, the iFME model provides very promising results as it not only produces

highly interpretable fits but also high prediction performance. This chapter has leads to the a

submission to Journal of Statistics and Computing (Chamroukhi et al., 2022) (under revision).

Then, in Chapter 4, we extend the FME model proposed in Chapter 3 to classification problem,

and to the case of functional responses. In particular, in the FME model for classification, the

experts will be modeled by the functional multinomial regression model. In the same spirit with

Chapter 3, an interpretable model will also be developed.

To deal with functional responses, we propose in Chapter 4 two ME models: function-on-scalar
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FME (FS-FME), and function-on-function FME (FF-FME). These models are established based

on the framework proposed in previous chapter, adapted for functional responses. Specially, FS-

FME and FF-FME are estimated with a roughness penalization on the functional parameters. This

results in smoother fits as shown in the numerical experiments on both simulated and real-world

data.

In Chapter 5, relying on the divide and conquer principle, we propose a distributed learning

approach for ME models. In particular, the proposed approach consists of two steps: a local

inference step, where MLE is performed on subsets of data available at local machines, and a

aggregation step where the local estimators are aggregated. We focus on developing the aggregation

strategy based on minimizing an expected transportation divergence between two ME models. The

MM algorithm is used to solve the resulting optimization problem. Numerical experiments on

simulated and real-world data are constructed to illustrate the efficiency of the proposed approach.

This chapter leads to a paper to be submitted to a journal.
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2.1 Introduction

The goal of this chapter is to provide an overview of the topics of mixture of experts (ME) models

and functional data analysis (FDA). The following sections are selective and carefully arranged to

introduce the main related concepts of the research topics in this thesis. First, in Section 2.2, the

general notions, the modelings and approximation capacity of ME models are presented to provide

a first introduction to the research topic. Then, in Section 2.3, we present the estimation of ME

models via Expectation-Maximization (EM) algorithm (Dempster et al., 1977), and review some

applications of ME models.

In Section 2.4, we present the most basis and important tools of FDA, including the mathematical

framework, the basis expansion, data pre-processing methods, and notably the regression models

concerning functional data which we will use oftenly through the thesis. In this section, we also

review the clustering and classification models for functional data with some illustrative examples.

Finally, in preparation for the study in Chapter 5, we present in Section 2.9 some preliminaries on

divergence and distance on the space of probability measures.

2.2 Mixture of experts models

In this section, we give a general introduction to a class of probabilistic models known as Mixtures-

of-experts (ME). By the end of this section, the reader will have an overview of this research topic,

and will be familiarized with the notations regarding ME models that we will use throughout this

thesis.

2.2.1 General notions of ME models

Introduced by Jacobs et al. (1991), ME is a successful and flexible supervised learning architecture

for efficiently representing complex nonlinear relationships in observed pairs of heterogeneous

data. The ME model is based on the principle of divide and conquer, so that the response y

is obtained from the soft-association of multiple expert responses, each targeting a homogeneous

sub-population of the heterogeneous population, given the input covariates (predictors or features).

From the statistical modeling point of view, a ME model is an extension of the finite mixture model

(McLachlan and Peel., 2000) which explores the unconditional (mixture) distribution of a given set

of features.

Let x and y be the generic notations for the input and output, respectively, we wish to relate

together via ME models. In the most general notion, a ME model can be written as

ME(y|x) =
K∑

k=1

Gatek(x) Expertk(y|x), (2.1)
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2.2 MIXTURE OF EXPERTS MODELS

in which ME(y|x), the distribution of output y given the input x, is modeled as a mixture

distribution with input-dependent mixing proportions Gatek(x) and conditional mixture components

Expertk(y|x). ME is therefore a fully conditional mixture model that allows the mixing proportions

to be functions of the input. In ME model terminology, Gatek(x) is referred to as gating function,

and Expertk(y|x) is referred to as expert function, while K is the number of experts.

The general notion (2.1) will be referred many times throughout this thesis as a starting point for

developing any specific ME model. Note that the generic variables x and y in (2.1), also commonly

referred to as covariate (or predictor) and response, respectively, can be of any data type (such

as continuous scalars, vectors, binary, categorical, functions, multivariate functions, etc) and of

arbitrary dimension, leading to many different settings and issues for studies and applications

regarding ME models. At the end of this chapter, we will try to provide a list of ME models that

have been studied so far, as well as point out the open important questions in this research area.

In the notion of probability theory, a ME model can be explained as follows. Let (X,Y ) ∈ X×Y
be a pair random variables which follows some probability model, where X ∈ X is the input, and

Y ∈ Y is the output. The X × Y is a subset of some probability space, e.g., Rp × Rq for some

p, q ∈ N∗. Then, a ME model can be written as the following decomposition of the output variable

Y and the input variable X

P(Y |X) =
∑

Z

P(Z|X)P(Y |X,Z), (2.2)

in which, Z is a hidden variable that represents the missing data, takes values in the finite set

{1, . . . ,K}, and indicates which expert was responsible for generating the data point.

The decomposition (2.2) suggests that the data generating process of a ME model is assumed

to be as follows: there is a hidden process that specifies the state of Z given X, then the output

Y is generated conditional on the values of Z and X. From this decomposition point of view, the

functions Gatek(x) and Expertk(y|x) in (2.1) are thus the ways we model the probabilities P(Z|X)

and P(Y |X,Z), i.e., how the mixing proportions vary and how the outputs were generated. Because

of that, any modeling for the gating function must satisfy the constraint
∑K

k=1Gatek(x) = 1.

Thus, depending on the specific parametric forms of the gating function Gatek(x) and the expert

functions Expertk(y|x), we have different specifications for ME models. From the application

point of view, the main task for us is to select suitable models for the functions Gatek(x) and

Expertk(y|x), which depends on the problem and the nature of the data, and to develop efficient

algorithms for parameter estimations. From theoretical point of view, researchers focus on studying

the approximation capacities, convergence rates of the models, as well as addressing many issues

regarding model complexity.

Note that while it is possible to have K different forms for the K expert functions Expertk(y|x),
they are usually modeled by a same parametric family, e.g., Gaussian, t-Student, multinomial

distribution, etc. Thus, if K is assumed to be known, estimating a ME model consists of estimating

the parameters of the gating and expert functions. Figure 2.1 describes the schematic diagram of

a K-component ME model.

ME models thus allow one to better capture more complex relationships between y and x in
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Expert 1 Expert k Expert K

Gate

x x x

x

y

g1

gk
gK

· · · · · ·

Figure 2.1: Visualization of the architecture of a ME model. Here, the gating network and each
of K expert receive x as input, then outputs of the experts are weighted by outputs of the gating
network, i.e., g1, . . . , gK , to produce the final output y.

heterogeneous situations in nonlinear regression, classification, and clustering the data by associating

each expert component to a cluster. In situations where the standard mixture of regression models

fails to approximate well the conditional probability distribution of data, ME model may be a good

substitute because it can capture a wide variety of data distributions thanks to their universal

approximation property well established for almost of popular gating and expert functions. The

approximation capacity of ME will be briefly reviewed in Subsection 2.2.4.

Remark 2.2.1. We also use the terms “gating network” and “expert network” to refer to

the set of all gating functions and the set of all expert functions, respectively. In addition,

throughout the thesis, we will frequently say “gate k” and “expert k” instead of gating function

k and expert function k, respectively.

So far, x and y represent the generic variables. However, in order to recall the concepts, in

the following subsections we will present the modelings of gating and expert functions in the usual

vectorial setting, which has been considered in the original proposed papers (Jacobs et al., 1991;

Xu et al., 1994b; Jordan and Jacobs, 1994) and many others, although they have been extended to

a functional setting that adopts other parametric formulas that we will consider later.

2.2.2 Modeling the gating functions

Let {xi, yi}ni=1 be a sample of n independently and identically distributed (i.i.d.) data, where

xi ∈ Rp is the input and yi ∈ Rq is the output. The most popular models for the function Gatek(x)

in (2.1) are softmax gating and Gaussian gating function.
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2.2 MIXTURE OF EXPERTS MODELS

■ Softmax gating function

With softmax gating modeling, each function Gatek(x) is parameterized by

Gatek(xi;α) =
exp(x⊤i αk)

1 +
∑K−1

k′=1 exp(x
⊤
i αk′)

, (2.3)

where α = (α⊤
1 , . . . , α

⊤
K−1)

⊤, αk ∈ Rp for k ∈ [K − 1], is the unknown parameter vector to be

estimated, here and throughout the thesis the superscript ⊤ denotes the transposition operator.

The notation k ∈ [K−1] means k = 1, . . . ,K−1, we will use this convention throughout the thesis.

Here, from the constraint
∑K

k=1Gatek(x) = 1 in the general notion of ME model, one can see that

in softmax gating modeling, the Kth gate is constrained to have the form

GateK(x;α) =
1

1 +
∑K−1

k′=1 exp(x
⊤αk′)

,

equivalently, the vectorαK is constrained to be a null vector. The reason for this parameterization is

that, without constraining one of the K vectors α1, . . . , αK to a fixed vector, the mixing proportion

Gatek(x;α) can admit an arbitrary number of ways of parameterizing, e.g., α̃ = α − γ for any

γ ∈ Rp.K . So, constraining the parameter vector of theKth gate to be null ensures the identification

condition for the estimation of the gating network.

■ Gaussian gating function

An frequently used alternative to the softmax gating function is the Gaussian gating function which

has the following parametric form

Gatek(xi; ζ) =
πkϕ(xi; νk,Σk)∑K
k′ πk′ϕ(xi; νk′ ,Σk′)

, (2.4)

where

ϕ(x; ν,Σ) = det(2πΣ)−1/2 exp

[
−1

2
(x− ν)⊤Σ−1(x− ν)

]

is the multivariate Gaussian distribution in Rp with mean ν ∈ Rp and symmetric positive definite

covariance matrix Σ ∈ Rp×p. Here, πk > 0 for all k ∈ [K] and
∑K

k=1 πk = 1, and ζ =

(π1, ν
⊤
1 , vech

⊤Σ1, . . . , πK , ν
⊤
K , vech

⊤ΣK)⊤ is the unknown parameter vector of the gating network

to be estimated, where vech(·) is the operator that extracts the unique elements of a symmetric

matrix (Henderson and Searle, 1979). Here, one can easily verify the constraint
∑K

k=1Gatek(xi; ζ) =

1 for all xi.

The modeling (2.4) was first considered by Xu et al. (1994b), since then there have been many

using examples in the literature, e.g., Mak and Kung (2000) with application to speaker verification,

aki Sato and Ishii (2000) with application to robot dynamics problems using their proposed online

EM algorithm, Lima et al. (2007) where Gaussian gating combined with support vector machine
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(SVM) experts was applied to problems of nonlinear dynamic system identification, etc.

The two softmax and Gaussian gating modelings are shown to be equivalent under some

restrictions (Nguyen and Chamroukhi, 2018). In principle, any modeling of the gating network

that satisfies the conditions Gatek(x) ⩾ 0 for all x ∈ X , k ∈ [K], and
∑K

k=1Gatek(x) = 1 for

all x ∈ X can be used as an alternative to (2.3) and (2.4). However, only a few were considered,

including Xu et al. (1994a) where the gating network was modeled using the exponential family

(the Gaussian gating network is an instance), and Perthame et al. (2016) where Student-t gating

function was used in combination with Student-t expert functions to model the air quality on the

subways in Paris.

2.2.3 Modeling the expert functions

The modeling of expert functions depends on the problem at hand. For regression problems with

continuous responses, the Gaussian expert function is often used, while for classification problems

the multinomial expert function is the appropriate choice.

■ Gaussian expert function

When the response y is continuous, Expertk(y|x) is usually modeled by the conditional density

function of the Gaussian distribution

Expertk(yi|xi;θk) = ϕ(yi;x
⊤
i βk, σ

2
k)

= (2πσ2k)
−1/2 exp

[
−(yi − x⊤i βk)2

2σ2k

]
, (2.5)

where θk = (β⊤k , σ
2
k)

⊤ is the unknown parameter vector of the expert k to be estimated. This

modeling is based on the assumption that the error terms εi in the linear relationship yi = x⊤i βk+εi

have normal distribution. Alternatively, for the data containing a group or groups of observations

with asymmetric behavior, heavy tails or atypical observations, other assumptions can be put on the

error terms, resulting in skew-normal experts, robust t experts, and skew t experts (Chamroukhi,

2015, 2017).

ME models with experts modeled by (2.5) have been widely investigated in many contexts and

applied to many regression problems and clustering analysis. We will discuss some notable studies

later in this section. For now, we proceed to introduce another important modeling for the experts.
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■ Multinomial expert function

When the response y is categorical, i.e., in classification problems, the appropriate choice for the

Expertk(y|x) in (2.1) is the conditional density function of the categorical distribution1 given by

Expert(yi|xi;βk) = P (yi|xi;βk)

=

G∏

g=1

[
exp(x⊤i βkg)

1 +
∑G−1

g′=1 exp(x
⊤
i βkg′)

]yig
, (2.6)

where βk = (β⊤k1, . . . , β
⊤
k,G−1)

⊤ is the unknown parameter to be estimated, and yig = I(yi=g),

g ∈ [G]. Here, I denotes the indicator function. Note that, similar to the parameterization of the

softmax gating function, the parameter vector responsible for the class G, i.e., βkG, is constrained

to be a null vector, this allows the estimation of βk to be identified.

Remark 2.2.2. The name “multinomial expert” comes from the fact that in machine learning

literature, it is common to speak of a “multinomial distribution”, although a “categorical

distribution” would be more precise. In addition, estimating parameter of the conditional

density in (2.6) usually appears in regression analysis literature under the name “multinomial

logistic regression”, rather than “categorical logistic regression”. Moreover, it is also known by

a variety of other names such as softmax regression, multiclass logistic regression, maximum

entropy classifier, etc.

In addition to the above mentions, other interesting models for the experts have been considered

in the literature include SVM experts (Cao, 2002; Lima et al., 2007), Gaussian processes experts

(Tresp, 2001; Jeon and Hwang, 2022; Yang and Ma, 2011). Notably, Jordan and Jacobs (1994)

models each expert by another ME model, leading to the so-called hierarchical mixture of experts

(HME) models, an important architecture with many applications, as described below.

■ Hierarchical mixture of experts

In HME models, each expert Expertk(y|x) in (2.1) is modeled by another ME model, i.e.,

Expertk(y|x;θk) =
Jk∑

j=1

Gatej|k(x) Expertkj(y|x), (2.7)

where Jk is the number of experts connected to the kth lower-level gating network. Here, the

function Expertkj(y|x) itself can be further modeled by another ME model and so on, resulting in

higher level HME models. An illustration of a two-level HME architecture for regression is shown

in Figure 2.2.

HME architecture was first introduced in Jordan and Jacobs (1994), since then it has been

1 occasionally called discrete distribution
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Figure 2.2: Example of a two-level HME model. The two ME (rounded by the two dashed
rectangles) are combined with the gate at the top to produce the final response. Each ME model
in the dashed rectangles is itself composed of two experts and a gating network.

broadly studied and has found many interesting applications in various fields. In Jordan and Jacobs

(1994), the authors illustrated the advantages of HME compared to other approaches such as back

propagation network, classification and regression tree (CART), multivariate adaptive regression

splines (MARS). In particular, a four-level HME model was used to solve a nonlinear system

identification problem, it yielded a relative error better than CART, MARS, and with a running

time much shorter than that of the back propagation network. In Ramamurti and Ghosh (1996),

the authors presented the use of HME models with multinomial experts for signal classification. In

particular, both softmax and Gaussian gating functions were investigated, gathering with multinomial

experts, to identify the types of glass in the Glass dataset.

Remark 2.2.3. The softmax-gated mixture of Gaussian regressions and the softmax-

gated mixture of multinomial regressions are the most popular choices for many real-world

applications. They and their extensions to functional data will be considered in the thesis.

2.2.4 Approximation capacity and applications of ME models

The richness of the class of ME models in terms of conditional density approximation capabilities

has been recently demonstrated by proving denseness results (Nguyen et al., 2021a, 2019). In this

section, we review the theoretical results on the approximation capacity of the ME models. Firstly,
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we have an obvious question that: given a continuous function over a compact subset of some

Euclidean space, whether we can approximate that function with a ME models? The answer is yes.

Moreover, the experts in this case are quiet simple, i.e., linear experts. In particular, consider the

ME model in (2.1) in which the gating function Gatek(x) is the soft-max function and the experts

Expertk(y|x) are the linear experts. Then the mean function of this ME model can be written as

a function of x as

E[y|x] =
K∑

k=1

exp(αk0 + x⊤αk)∑K
k′ exp(αk′0 + x⊤αk′)

(βk0 + x⊤βk) := h(x). (2.8)

Let C(X ) be the class of continuous functions and M(X ) = {h(x) : h has form 2.8} be the class

of mean functions of obtained from the mixture of linear experts described above. Then provided

X ⊂ Rp is compact, the classM(X ) is dense within the class C(X ) (Nguyen et al., 2016).

Some successful applications of ME architecture may be mentioned here include ME for time

series prediction (Zeevi et al., 1996; Yümlü et al., 2003), segmentation (Chamroukhi et al., 2013,

2009), ME for social network data (Gormley and Murphy, 2010), for classification of gender and

pose of human faces (Gutta et al., 2000), among many others. For an overview of practical and

theoretical aspects of ME modeling, reader is referred to Nguyen and Chamroukhi (2018); Yuksel

et al. (2012).

2.3 Estimation of ME models

So far, we have only introduced the ME models by describing their concepts, the modelings for

gating and expert functions, and occasionally some applications, but we have not mentioned the

approaches for model inference. This section is devoted to presenting a general overview of the

estimation for ME models. At the end of this section we provide a list of notable applications of

ME models that have been published in the literature.

In this thesis, the ME models will be considered frequently are the softmax gating Gaussian

experts, and the softmax gating multinomial experts (and their variants). By softmax gating

Gaussian experts we refer the ME model with the gating function given by (2.3) and the expert

function given by (2.5). Whereas, by softmax gating multinomial experts, we refer the ME model

with the gating function given by (2.3) and the expert function given by (2.6). For simplicity, from

now on we will refer to them respectively as ME model with Gaussian regression experts and ME

model with multinomial regression experts. In the subsequent parts, we will individually present

the maximum likelihood estimation (MLE) of these two models using EM algorithm.

13
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2.3.1 MLE for ME model with Gaussian regression experts

Let D = {(xi, yi)}ni=1 be an observed sample of n i.i.d. data pairs (xi, yi), where xi ∈ Rp is the

input and yi ∈ R is the output. Suppose that the relationship of xi and yi follows the ME model

f(yi|xi;θ) =
K∑

k=1

πk(xi;α)ϕ(yi;x
⊤
i βk, σ

2
k),

where πk(xi;α) and ϕ(yi;x
⊤
i βk, σ

2
k) are given as in (2.3) and (2.5), respectively. The objective

here is to estimate the unknown parameter θ = (α,β1, . . . ,βk) via MLE. This can be done by

maximizing the observed-data log-likelihood function defined as

logL(θ) =

n∑

i=1

log

K∑

k=1

πk(xi;α)φ(yi;x
⊤
i βk, σ

2
k) (2.9)

using the EM algorithm (Dempster et al., 1977). The EM algorithm starts with an initial solution

θ(0), then alternates the two following steps until convergence, i.e., there is no significant change

in the values of the function logL(θ).

■ E-step. For i = 1, . . . , n, calculate the conditional probability memberships τ
(s)
ik that the

observed pair (xi, yi) originates from the kth expert, given the observed data and the current

estimate θ(s), defined by

τ
(s)
ik =

πk(xi;α
(s))φ(yi;x

⊤
i β

(s)
k , σ2k

(s)
)

∑K
k=1 πk(xi;α

(s))φ(yi;x⊤i β
(s)
k , σ2k

(s)
)
·

■ M-step. Given the memberships τ
(s)
ik , update the value of the parameter θ by maximizing

w.r.t. θ the so-called Q-function defined by

Q(θ;θ(s)) =
n∑

n=1

K∑

k=1

τ
(s)
ik log

[
πk(xi;α)φ(yi;x

⊤
i βk, σ

2
k)
]
. (2.10)

The maximization can be performed separately w.r.t. the gating network parameter α and the

expert network parameters βk, σk as follows.

Updating the gating network parameter α consists of maximizing w.r.t. α the function

Q(α;θ(s)) that is the part of (2.10) involved α. This is a weighted multinomial logistic regression

problem with the weights are the conditional probability memberships τ
(s)
ik . Since there is no closed-

form solution for such problem, one common approach is to use the iteratively reweighted least

squares (IRLS) algorithm (Jordan and Jacobs, 1994; Ng and McLachlan, 2004) that starts from an

14
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initial estimate α(0), then updates α iteratively via the following updating formula

α(t+1) = α(t) −
[
H(α;θ(s))

]−1

α=α(t)
g(α;θ(s))|α=α(t) (2.11)

at each iteration t, where H(α;θ(s)) and g(α;θ(s)) are respectively the Hessian matrix and the

gradient vector of Q(α;θ(s)), given in detailed, for example, in the Appendix B.1. We keep running

this inner-loop until there is no significant change in Q(α;θ(s)), the obtained solution is then an

estimate α(s) for the next EM iteration.

Updating the expert network parameters βk and σk consists of solving K independent

weighted regression problems with the weights are the conditional probability memberships τ
(s)
ik .

This can be done easily with the following closed-form updating formulas:

β
(s+1)
k =

[
n∑

i=1

τ
(s)
ik xix

⊤
i

]−1 n∑

i=1

τ
(s)
ik yixi

σ2k
(s+1)

=
1

∑n
i=1 τ

(s)
ik

n∑

i=1

τ
(s)
ik (yi − x⊤i β(s+1)

k )2.

The EM algorithm increases the value of the log likelihood function logL(θ) at each iteration,

therefore it is guaranteed to converge to at least a local minimum after a finite number of iterations.

2.3.2 MLE for mixture of multinomial regression experts model

ME model with multinomial regression experts is suitable for multiclass classification problems.

Let D = {(xi, yi)}ni=1 be an observed sample of n i.i.d. data pairs (xi, yi), where xi ∈ Rp is the

input, and yi = (yi1, . . . , yiG) ∈ RG is the categorical output. Suppose that the relationship of xi

and yi follows the ME model

f(yi|xi;θ) =
K∑

k=1

πk(xi;α)P (yi|xi;βk),

where πk(xi;α) and P (yi|xi;βk) are given as in (2.3) and (2.6), respectively. The objective here

is to estimate the unknown parameter θ = (α,β1, . . . ,βk) via MLE. Similarly to the ME model

with Gaussian regression experts, this can be done by maximizing the following observed-data

log-likelihood function

logL(θ) =

n∑

i=1

log

K∑

k=1

πk(xi;α)P (yi|xi;βk) (2.12)

via the EM algorithm. The E-step in this case is analogous to the E-step for the ME model

with Gaussian regression experts, with the density function φ is replaced by the density function
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P (yi|xi;βk), i.e., we calculate the posterior probabilities τ
(s)
ik by

τ
(s)
ik =

πk(xi;α
(s))P (yi|xi;β(s)

k )
∑K

k=1 πk(xi;α
(s))P (yi|xi;β(s)

k )
·

In the M-step of the EM algorithm, the update for the gating network parameter α is identified

with the update for the gating network of the ME model with Gaussian regression experts. This

is equivalent to solving a weighted multinomial logistic regression problem, where the weights are

the conditional probability memberships τ
(s)
ik .

However, for each multinomial expert, its parameter vector can no longer be updated in a

closed-form as that of the Gaussian experts. It is instead updated using Newton-Raphson method

(Fletcher, 1987), which performs an update formula analogous to the update formula of IRLS

algorithm in (2.11), but the Hessian matrix and gradient vector are now weighted by the posterior

probabilities τ
(s)
ik of the current EM iteration. The calculations for these Hessian matrix and

gradient vector are provided, for example, in the Appendix B.1. In particular, during the Newton-

Raphson loop, the weights τ
(s)
ik are fixed, and we keep running this loop until its convergence. The

point obtained at convergence is then the update for βk for the next EM iteration.

2.3.3 Regularized MLE for ME model

Alternatively to the MLE, to encourage sparsity in the parameter vectors α and βk’s in high-

dimensional settings, one may estimate the regularized MLE via maximizing the ℓ1-regularized

observed-data log-likelihood

L(θ) = logL(θ)− Penλ,χ(θ), (2.13)

where logL(θ) is the observed-data log-likelihood of θ defined in (2.9) or in (2.12), and Penλ,χ(θ)

is a LASSO regularization term defined by

Penλ,χ(θ) = λ
K∑

k=1

∥βk∥1 + χ
K−1∑

k=1

∥αk∥1,

where λ, χ ∈ R are the tuning parameters and ∥ · ∥1 is the ℓ1-norm operator. The solution to the

maximization of (2.13) cannot be obtained in closed form. However, the EM algorithm can be

adapted to iteratively maximize (2.13), e.g., see Chamroukhi and Huynh (2019).

The MLE and regularized MLE presented above will be revisited frequently throughout this

thesis. In the next chapters, our proposed ME models will oftenly refer to these frameworks for

model estimation, the corresponding EM algorithms will also be presented in detailed particularly

for each model.
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2.4 FUNCTIONAL DATA ANALYSIS

2.4 Functional data analysis

Functional data analysis (FDA) is a branch of statistics that analyzes and provides information

about data of types curves, surfaces or anything else varying over a continuum. FDA has roots

going back to work by Grenander and Karhunen in the 1940s and 1950s (Grenander, 1950; Müller,

2016). Since then, FDA has been rapidly developed to be a rich subfield of statistics, especially in

the last two decades. The term Functional Data Analysis was first coined by Ramsay and Silverman

(2005).

One of the distinctive features of FDA is its ability to incorporate the correlation within the

functional data as well as their derivatives. The key techniques of FDA include data smoothing,

dimensionality reduction, functional data clustering, classification, functional linear modeling and

forecasting methods. In the subsequent sections, we will review the regression models and the

methods of clustering as well as classification for functional data. An excellent review paper on the

applications of FDA can be found in Ullah and Finch (2013).

This section aims first to outline some very basic and important concepts of FDA, e.g., the

mathematical framework, the basis expansions, and some tools for pre-processing functional data

(such as smoothing via penalizing derivatives, curve alignment, etc). Secondly, this section aims to

review the current state of the art works on FDA, including regression, clustering, and classification

for functional data, as well as some related theoretical results. The popular linear models concern

functional data will be presented in details in order to prepare for the ME models proposed in the

next chapters. For convenience, in this thesis, we use the notation, e.g., X(t) (or sometimes X(·)
if there is no ambiguity) to refer to a functional object (more clearly, a function of t), not to a

particular value of X at any t. If we want to refer to a particular value, we will make that clear.

2.4.1 Mathematical framework

By mathematical framework, we aim at presenting here the general view of the elements (i.e., the

functions) that we will work with in FDA, and the basic properties of the space they live in. Firstly,

in FDA, each sample element of functional data is considered to be a random function. The random

functions can be viewed as random elements taking values in some Hilbert space. The common one

is L2(T ), the space of all square integrable functions defined on some interval T ⊂ R, and we will

mainly working on it.

A function X(t) is said to be square integrable on T , i.e., X ∈ L2(T ), if
∫

T
[X(t)]2 dt <∞.

As a Hilbert space, L2(T ) enjoys all properties and theoretical results those have been developed

for Hilbert spaces. Let X, Y be two functions in L2(T ), their inner product is defined by

⟨X,Y ⟩ =
∫

T
X(t)Y (t)dt.
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Analogous to the Euclidean space, each function X in L2(T ) has an associated norm, define by

∥X∥ =
√
⟨X,X⟩, and the distance between two functions, e.g., X and Y , is also defined as the

norm of their difference, i.e.,

∥X − Y ∥ =
[∫

T
(X(t)− Y (t))2 dt

]1/2
. (2.14)

In addition to the Hilbertian point of view, it is common to view random functions from the

applied perspective as stochastic processes, which is more suitable in our context of study in this

thesis. In particular, each random function X(t) can be viewed as a collection of random variables

{X(t)}t∈T , with T ⊂ R. From this perspective, we can also see that functional data are of infinite

dimensional intrinsically.

Mean and covariance functions. Let X be a random function. Similar to the multivariate

case, we have the notions of mean and covariance for random functions. The mean of X is also a

function of t, usually denoted by µ, namely, µ(t) := E[X(t)]. The covariance of X is defined by

c(t, u) = E [(X(t)− µ(t))(X(u)− µ(u))] , for t, u ∈ T .

LetX1, . . . , Xn are realizations ofX. The sample mean and sample covariance functions, respectively,

are given by

µ̂(t) =
1

n

N∑

i=1

Xi(t),

ĉ(t, u) =
1

n− 1

n∑

i=1

(Xi(t)− µ̂(t)) (Xi(u)− µ̂(u)) .

The sample mean and sample covariance functions can be viewed as the estimators of µ(t) and c(t, u)

defined above. It has been shown that µ̂ and ĉ converge to µ and c in L2-norm with convergences

rate of O(n−1/2) (Jacques and Preda, 2013b; Deville, 1974). These functions play an important

role in summary statistics for functional data since they provide a view of the population, similar

to the sample mean and covariance in multivariate data analysis. We will revisit these functions

oftenly throughout the thesis.

2.4.2 Basis expansions

The very first step in working with functional data is to express them via a basis expansion as

Xi(t) ≈
K∑

k=1

xikωk(t), i ∈ [n], (2.15)

in which, xik are the coefficients, and ωk(t) are some collection of basis functions. There are some

popular collections that are oftenly used in FDA, including B-splines, wavelet, Fourier, Gaussian
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and sigmoidal. Figure 2.3 shows some examples of the basis functions collections.

Since we will meet basis expansions many times later, we would mention here some useful

conventions on using basis expansions. Firstly, throughout the thesis the expansions as in (2.15)

are usually written with an equal sign, i.e., “=”. In practice, functional data is often available in

form of discretized values. However, through the representation with basis functions, the functional

data will become available on the whole domain. Therefore, when the time points differ between

the functions, using the basis expansions we can put the functions into a common domain.
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Figure 2.3: Examples of (a) B-splines, (b) Fourier, (c) Gaussian and (d) sigmoidal basis functions

2.4.3 Functional principle component analysis (FPCA)

Analogous to the principal component analysis (PCA) in the classical multivariate analysis, FPCA

is an important tool in FDA that helps explaining the variance in the population, via the principal

components (PCs), extracting the features, visualizing the data, and is a widely used technique for

dimensionality reduction.

The concept of FPCA can be described from the application point of view as follows. Let X

be a random function, and {Xi}ni=1 be an i.i.d. sample of X. We wish to find a decomposition for
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the Xi as

Xi(t) = µ(t) +
∞∑

k=1

ξikυk(t), (2.16)

such that the coefficients ξik are i.i.d., uncorrelated, and have mean zero; the functions µ(t) and

υk(t) are independent of i, υk(t) are orthonormal in L2-space, and importantly Xi can be well

approximated by only a small number of the functions υk(t). One can see, there are many benefits

can be obtained from this decomposition, especially, the dimensionality reduction aspect.

Nowadays, such decomposition in (2.16) is well-known as the Karhunen-Loève expansion of X,

and was in fact conceived from 1946 in Karhunen (1946); Loève (1946). Since then, a framework,

termed as FPCA, was developed to compute such coefficients and functions as in (2.16) and use

them for further data explorations.

Let c(t, u) be the covariance function of X. Consider the following eigenvalue equation

∫

T
c(t, u)υ(u)du = λυ(t).

Denote by λ1, λ2, . . . the non-increasing ordered eigenvalues of the above equation, and υ1, υ2, . . .

their corresponding eigenfunctions. Let µ(t) be the mean function of X and ξik be computed by

ξik =

∫

T
(Xi(t)− µ(t))υk(t)dt. (2.17)

Then µ(t), ξik and υk(t) fulfill the expansion (2.16). In other words, each Xi can be approximated

using the mean function, and a linear combination of the eigenfunctions of c(t, u) with coefficients

are computed as in (2.17). The eigenfunctions υk(t) are called the functional principal components

(FPCs). The coefficients ξik are called the scores of Xi w.r.t. to the FPCs υk(t).

The important properties of the scores ξik are that they are independent across i, uncorrelated

across k, i.e., E[ξik] = 0, Cov(ξik, ξiℓ) = 0 if k ̸= ℓ, moreover, we have

Var[ξik] = λk, and E
[
∥X − µ∥2

]
=

∞∑

k=1

λk.

The latter equation shows that the total variance of X can be decomposed into the sum of the

eigenvalues, i.e., variance of its scores. Because λk’s are arranged in non-increasing order, we

can quantify the explanation of the corresponding principal components. We will use FPCA in

Chapter 3 as an alternative technique to expand the functions in our models. Figure 2.4 and

Figure 2.5 show examples of the estimated eigenfunctions and eigenvalues on the Tecator and

Berkeley growth data. In Figure 2.4 we can see that the shape of υ1 summarizes 98.61% of variability

in the population. The subsequent eigenfunctions explains the next important modes of variability.

On the other hand, in Figure 2.5, we need three first principal components to explain 98.82% of

variability in the data, and the fourth principal component explains only 1.18%. Descriptions of
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the Tecator and Berkeley growth data can be found in the Appendix A.2.
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Figure 2.4: The first four estimated eigenfunctions and their associated eigenvalues of the Tecator
data.

Applications of FPCA. Several works have used FPCA as the starting point to represent the

functional data in their models. By using the scores of the functions corresponding to first few

principal components, the construction of the parametric models becomes more parsimonious. In

Yao et al. (2010), the authors uses FPCA and proposed a mixture regression model for scalar-on-

function regression.

2.5 Scalar-on-function regression

Functional regression models come to deal with situations where one or both of the input and

output variables are functions. The coefficient parameters must therefore be appropriately defined

for such situations. This section and the next two ones are dedicated to present the three most

considered models involving functional data, including: scalar-on-function, function-on-scalar and

function-on-function regression models.

Let {Xi(t), yi}ni=1 be a sample of n i.i.d. data pairs where yi is a real-valued response and Xi(t)
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Figure 2.5: The first four estimated eigenfunctions and their associated eigenvalues of the Berkeley
growth data.

is a functional predictor with t ∈ T ⊂ R. The scalar-on-function regression model (Müller et al.,

2005; Ramsay and Silverman, 2005) is given by

yi = β0 +

∫

T
Xi(t)β(t)dt+ εi, i ∈ [n], (2.18)

where β0 is the unknown intercept and β(t) is the unknown functional parameter to be estimated,

εi ∼ N (0, σ2) are independent Gaussian errors.

The popular approach is to expand the functional parameter β(t) using a collection of basis

functions ω1(t), . . . , ωK(t), i.e.,

β(t) =
K∑

k=1

bkω(t), (2.19)

whee K is generally chosen to be smaller the number of time points at which we observe Xi(t), but

sufficiently large to ensure to capture the vary of the functions. Note that, the equation is only

approximation, but we use the equality sign “=” to be able to manipulate such expansion without
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adding additional error terms. Using the expansion (2.19), the model can be rewritten as

yi = βo +

K∑

k=1

bk

∫

T
Xi(t)ωk(t) + εi

= β0 +
K∑

k=1

bkxik + εi

= β0 + xib+ εi, i ∈ [n],

where xi = (x[i1], . . . , xiK)⊤ with xik =
∫
cT Xi(t)ωk(t)dt is now the new design vector, and b =

(b1, . . . , bK)⊤ is the unknown parameter to be estimated.

The intercept β0 and the parameter vector b are then can be estimated by (β0, b
⊤)⊤ =

(X⊤X)−1X⊤Y , where X and Y denote

X =




1 x11 · · · x1K

1 x21 · · · x2K
...

...
. . .

...

1 xn1 · · · xnK



, Y =




y1

y2
...

yn



.

Above is the easy-to-use approach for fitting parameter of scalar-on-function regression model.

But it is not the only one. Other approaches include functional principal component regression

method (Reiss and Ogden, 2007), hybrid method that consists of a FPCA to pre-process predictor

functions and penalized splines to model the coefficient function (Goldsmith et al., 2011a). In

Yao and Müller (2010), the authors proposed a functional quadratic regression model whose model

parameter is estimated using the FPCA approach. Scalar-on-function regression has shown various

applications in many fields, including medicine, bioinformatics, etc. In the next section we will

present the two less-common but still important models in the family of regression models for

functional data, they are function-on-scalar, and function-on-function regression models.

2.6 Function-on-scalar regression

Many problems today involve modeling functional responses via scalar explanatory variables, especially

in the biological sciences and engineering design. In this section, we present the formulation and

estimation methods for the so-called function-on-scalar regression model, which links a functional

response to scalar covariates via a linear relationship. This regression model will serve as one of

the extensions for the expert regression model that we will consider in Chapter 4.
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2.6.1 Model formulation

Suppose that we observe n i.i.d. realizations {Yi(t)}ni=1 of a real-valued smooth function Y (t),

t ∈ T , corresponding to n i.i.d. realizations {xi}ni=1 of a p-vector valued covariate x. The function-

on-scalar regression model is given by

Yi(t) = β0(t) + xi1β1(t) + . . .+ xipβp(t) + εi(t), i ∈ [n], (2.20)

where β0(t) is the unknown functional intercept and β1(t), . . . , βp(t), t ∈ T , are the unknown

functional parameters, often referred to as effect functions, to be estimated. Here and throughout

the thesis, the notations xij ’s are implicitly understood as the components of the vector xi, i.e.,

xi = (xi1, . . . , xip). The error function εi(t) is commonly assumed to be independent and has a

normal distribution for all t ∈ T and for all i ∈ [n]. However, this assumption on the error function

could also be replaced by the assumption that εi(t) is a Gaussian process with mean zero and some

covariance function Σε(t, s), i.e., in this case we allow the errors to be correlated within individuals,

but not between individuals.

The model (2.20) was considered in Faraway (1997) and was applied to an ergonomics design

problem. In Faraway (1997), the parameters were estimated pointwisely by the least squares

approach. However, it is a pointwise estimation and is only appropriate when the response functions

are smooth. When the responses are noisy, a penalty method, as presented in the next subsection,

is preferable.

For convenience, let us stack the variables into matrix form as follows

Y (t) =




Y1(t)

Y2(t)
...

Yn(t)



, X =




x11 x12 · · · x1p

x21 x22 · · · x2p
...

...
. . .

...

xn1 xn2 · · · xnp



, β(t) =




β1(t)

β2(t)
...

βp(t)



, ε(t) =




ε1(t)

ε2(t)
...

εn(t)



· (2.21)

Then, the equations (2.20) can be written in the familiar form as

Y (t) =Xβ(t) + ε(t). (2.22)

Note that, in (2.21) and throughout the thesis, in terms of data organization, each curve is aligned

as a row of observed values. For example, in practice if the responses are observed in a same grid

t1, . . . , tJ then such Y (t) will be available as a n× J matrix. Like that, the matrix multiplication

in the equation (2.22) is ensured to be correct in practice.
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2.6.2 Penalized least squares estimation

Provided that X has full rank as in the usual regression situation, the least squares estimator of

β(t) can be obtained pointwisely by

β̂LS(t) = (X⊤X)−1X⊤Y (t), ∀t ∈ T .

However, as mentioned earlier, such pointwise least squares estimation may be not suitable for

functional data, especially, for noisy data. In this case, the penalized least squares estimation of

β(t) (e.g., (Kokoszka and Reimherr, 2017, Chapter 5)) defined as follow is more preferred:

β̂(t) = min
β(t)



∫

T
∥Y (t)−Xβ(t)∥2dt+

p∑

j=1

λj

∫

T
[(Dβj)(t)]2 dt


 , (2.23)

where λj are the penalty constants and D is some differential operator, for example, the second

derivative. Here, ∥f(t)∥2 =∑n
i=1 f

2(t) for all f(t) = [f1(t), . . . , fn(t)]
⊤. The following part presents

an approach to solve the penalized least squares estimator β̂(t) in (2.23).

Let ω(t) = [ω1(t), . . . , ωK(t)]⊤ be a vector of basis functions. Then for each i ∈ [n] and j ∈ [p],

one can approximate the functions Yi(·) and βj(·) respectively by

Yi(t) =
K∑

k=1

rikωk(t) =: r⊤i ω(t), and βj(t) =
K∑

k=1

bjkωk(t) =: b⊤j ω(t), (2.24)

where ri, bj ∈ RK are the coefficient vectors. Here, K should ensure the tradeoff between

smoothness of the functions and complexity of the estimation problem.

By using these basis expansions and denoting R = [r1, . . . , rn]
⊤ ∈ Rn×K , B = [b1, . . . , bp]

⊤ ∈
Rp×K , we can rewrite the equation (2.22) as

Rω(t) =XBω(t) + ε(t).

Similarly, the function (Dβj)(t) can also be expressed in terms of B and ω(t) as

(Dβj)(t) =
K∑

k=1

bjk(Dω)(t) =: b⊤j (Dω)(t),

here (Dω)(t) obviously denotes the vector obtained by operating D on the components of ω(t), i.e.,

(Dω)(t) = [(Dω1)(t), . . . , (DωK)(t)]⊤. Then, the integral in the penalty term can be approximated

by

∫

T

[
(Dβj)(t)

]2
dt =

∫

T
b⊤j (Dω)(t).[(Dω)(t)]⊤bjdt

=: b⊤j Dbj ,
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where D denotes the remaining cross-product matrix after factorizing bj , that is

D =

[∫

T
(Dωk)(t)(Dωℓ)(t)dt

]

1⩽k,ℓ⩽K
∈ RK×K . (2.25)

It is worth noting that D is a non-negative definite matrix.

Hence, the objective function in (2.23) can now be rewritten by

∫

T
∥Rω(t)−XBω(t)∥2dt+

p∑

j=1

λjb
⊤
j Dbj . (2.26)

The coefficient matrix B (hence bj ’s) minimizing (2.26) can be obtained by solving a first order

differential equation as for ridge regression in multivariate analysis. Particularly, the penalized

least squares estimator for the coefficient matrix B can be calculated in a condensed form using

the vectorization operator and the Kronecker product operator as follow:

vec(B̂⊤) =
(
U⊤U +Λ⊗D

)−1
U⊤vec(I1/2ω R⊤), U =X ⊗ I1/2ω , (2.27)

in which, Λ = diag(λ1, . . . , λp) and I
1/2
ω is the square root of the non-negative definite matrix Iω

defined by

Iω =

[∫

T
ωk(t)ωℓ(t)dt

]

1⩽k,ℓ⩽K
∈ RK×K .

Note that if the chosen basis is orthonormal then Iω is reduced to an identity matrix. The details

of the derivation of (2.27) can be found in Appendix A.1.1.

Remark 2.6.1. The solution for B given in (2.27) will serve in Section 4.4 as the update

formula for the experts in our proposed function-on-scalar ME model.

2.7 Function-on-function regression

This type of regression problem appears in the situation where both the responses and predictors

are functions. In this case, the relation between functional response Yi(t), t ∈ T , and functional
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predictor Xi(u), u ∈ U , can be modeled by the following fully functional linear model

Yi(t) = β0(t) +

∫

U
Xi(u)β(t, u)du+ εi(t), i ∈ [n],

where β0(t), defined on T , is the unknown functional intercept and β(t, u), defined on T ×U , is the
unknown bivariate regression coefficient function, often referred to as the kernel, to be estimated.

Similarly to the function-on-scalar regression case, the error function εi(t) is usually assumed to

be independent for all i ∈ [n], t ∈ T and has Gaussian distribution with mean zero and covariance

matrix Σε, i.e., εi(t) ∼ N (0,Σε). From now on we will refer to this model by function-on-function

regression model (FFRM).

FFRM model was first considered by Ramsay and Silverman (1997), in which the functional

parameter β(t, u) is estimated by minimizing the integrated sum of squares. Shimokawa et al. (2000)

extended it to the case of there are more than one covariate, i.e., functional multiple regression

model. Yamanishi and Tanaka (2003) suggested a geographically weighted regression model to

explore the functional relationship between the variables. Müller and Yao (2008) proposed an

adaptive approach to FFRM where the functional parameters are estimated with regularization. In

Matsui et al. (2013), the authors proposed a maximum penalized likelihood approach to estimate

β(t, u) since the maximum likelihood approach and least squares approach have been shown to

potentially produce unstable estimates for the functional parameter β(t, u). Recently, Beyaztas and

Shang (2020) proposed a partial least squares approach to estimate the parameter of the FFRM

model, overcoming the singular matrix problem that occurs when a large number of functional

predictors are included in the FFRM.

2.7.1 Model formulation and least squares estimation

Since one can replace the functions Xi and Yi by their centered versions, the functional intercept

β0(t) can be simplified from the model. Therefore, in the remainder we consider the following

model

Yi(t) =

∫

U
Xi(u)β(t, u)du+ εi(t), i ∈ [n], (2.28)

with assumption that EX = 0 and consequently EY = 0.

Let ω⋆(t, u) = {ω⋆1(t, u), . . . , ω⋆K(t, u)} be a collection of bivariate basis functions defined on

T ×U . Then with K sufficiently large, the bivariate functional parameter β(t, u) can be expressed

by

β(t, u) =

K∑

k=1

bkω
⋆
k(t, u), (2.29)
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with bk are the coefficients. Therefore, the model (2.28) can be rewritten as

Yi(t) =

∫

U
Xi(u)

(
K∑

k=1

bkω
⋆
k(t, u)

)
du+ εi(t)

=
K∑

k=1

bk

∫

U
Xi(u)ω

⋆
k(t, u)du+ εi(t)

=:
K∑

k=1

bkX
⋆
ik(t) + εi(t), i ∈ [n], (2.30)

where X⋆
ik(t) :=

∫
U Xi(u)ω

⋆
k(t, u)du are functions of t which serve as new predictors of the model,

and bk are now the unknown coefficients to be estimated. Let us denote

X⋆(t) =




X⋆
11(t) X⋆

12(t) · · · X⋆
1K(t)

X⋆
21(t) X⋆

22(t) · · · X⋆
2K(t)

...
...

. . .
...

X⋆
n1(t) X⋆

n2(t) · · · X⋆
nK(t)



, b =




b1

b2
...

bK



·

Then the equations (2.30) can be rewritten simply under matrix form as

Y (t) =X⋆(t) b+ ε(t), (2.31)

where Y (t) and ε(t) are as in (2.21), and the matrix multiplication is understood formally, i.e.,

each X⋆
ik(t) is treated as an element of the matrix X⋆(t). Such equations (2.22) and (2.31) are the

yet simplest and condensed representations for the considered models.

Suppose that the Yi(t) are observed on a finite grid which does not depend on i, and X⋆
i (t) can

also be calculated on the same grid. If we organize all the curves in Y (t) and X∗(t) vertically (to

make the equation (2.31) holds in practice) then we can estimate b directly with raw data by

b̂ =
(
X⋆⊤(t)X⋆(t)

)−1
X⋆⊤(t)Y (t).

However, analogously as in functional-on-scalar model, such raw approach is sensitive with

noise and potentially produce rough estimate for β(t, u). Therefore, here again, we express Yi(t)

and X⋆
ik(t) using basis expansions and work on their coefficient vectors as done previously for the

functional-on-scalar model. Moreover, a penalization on the derivatives of β(t, u) is necessary to

produce a smooth estimation for β(t, u).

Remark 2.7.1. The collection of bivariate basis functions ω⋆(t, u) are generally constructed

using two collections of univariate basis functions. In particular, if {ωk(t), k ⩾ 1} and

{ψℓ(u), ℓ ⩾ 1} are bases in L2(T ) and L2(U), then {ωk(t)ψℓ(u), k, ℓ ⩾ 1} is a basis in

L2(T × U). The orthonormal property can also be inherited.
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2.7.2 Penalized least squares estimation

Similarly to (2.23), the penalized least squares estimation of the parameter β(t, u) is defined as

follow

β̂(t) = min
β(t)

[∫

T
∥Y (t)−X⋆(t) b∥2dt+ Penλ(β(t, u))

]
, (2.32)

where Penλ(β(t, u)) is the penalty term that responsible for the smoothness of β(t, u). It it common

to penalize the t and u directions separately with a penalty term taking the following form

Penλt,λu(β(t, u)) = λt

∫∫
[(Dtβ)(t, u)]2 dtdu+ λu

∫∫
[(Duβ)(t, u)]2 dtdu, (2.33)

where Dt (resp. Du) is the derivative operator w.r.t. t (resp. u), and λt, λu are the smoothness

penalty constants. For example, Dt and Du are usually chosen to be the second-order partial

derivative operators ∂2

∂t2
and ∂2

∂u2
.

Let ψ(t) = [ψ1(t), . . . , ψL(t)]
⊤ be a vector of basis functions defined on T . Firstly, we can

express Yi(t) and X
⋆
ik(t) as follows

Yi(t) =

L∑

ℓ=1

riℓψℓ(t) =: r⊤i ψ(t),

X⋆
ik(t) =

L∑

ℓ=1

x⋆ikℓψℓ(t) =: x⋆⊤ik ψ(t),

where ri ∈ RL and x⋆ik ∈ RL are the vectors of coefficients. In practice, the coefficients x⋆ikℓ can be

calculated directly using Xi(t) and the basis responsible for covariate u that construct ω⋆(t, u), see

Remark 2.7.1, particularly,

x⋆ik =

[∫

U
Xi(u)ω1(u)du, . . . ,

∫

U
Xi(u)ωL(u)du

]⊤
∈ RL.

Let us denote R = [r⊤1 , . . . , r
⊤
n ]

⊤ ∈ Rn×L, and

G =




x⋆⊤11 x⋆⊤12 · · · x⋆⊤1K
x⋆⊤21 x⋆⊤22 · · · x⋆⊤2K
...

...
. . .

...

x⋆⊤n1 x⋆⊤n2 · · · x⋆⊤nK



∈ Rn×KL.

Then, the model (2.31) can be rewritten in the basis expansion fashion as

Rψ(t) = Gbψ(t) + ε(t), (2.34)

in which, we conventionally treat each vector x⋆⊤ik as an element when performing the matrix
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multiplication. Thus, the function-on-function regression problem (2.28) now has been approximated

by the tractable finite dimensional vector-on-vector regression problem (2.34).

Next, analogously to the penalized least squares estimation for function-on-scalar model, the

penalty term in (2.32) can also be expressed in terms of the coefficient vector b and derivatives of

the bivariate basis functions. In particular, we have

∫∫
[(Dtβ)(t, u)]2 dtdu =

K∑

k,ℓ=1

bkbℓ

∫∫
(Dtωk)(t, u).(Dtωℓ)(t, u)dtdu

=: b⊤Dtb, (2.35)

where Dt denotes the K ×K matrix whose entries calculated by
∫∫

(Dtωk)(t, u).(Dtωℓ)(t, u)dtdu,
with k, ℓ ∈ [K]. Similarly, the smoothness penalty term corresponding to the u direction can also

be expressed by

∫∫
[(Duβ)(t, u)]2 dtdu =

K∑

k,ℓ=1

bkbℓ

∫∫
(Duωk)(t, u).(Duωℓ)(t, u)dtdu

=: b⊤Dub, (2.36)

with Du is defined correspondingly.

Finally, given the above notations, the penalized least squares estimator of b takes the following

formula

b̂ =
(
V ⊤V + λtDt + λuDu

)−1
V ⊤vec(I

1/2
ψ R⊤), (2.37)

in which V is defined by

V =




I
1/2
ψ x⋆11 I

1/2
ψ x⋆12 · · · I

1/2
ψ x⋆1K

I
1/2
ψ x⋆21 I

1/2
ψ x⋆22 · · · I

1/2
ψ x⋆2K

...
...

. . .
...

I
1/2
ψ x⋆n1 I

1/2
ψ x⋆n2 · · · I1/2ψ x⋆nK



∈ RnL×K ,

where I
1/2
ψ is the square root of the non-negative definite matrix Iψ defined by

Iψ =

[∫

T
ψk(t)ψℓ(t)dt

]

1⩽k,ℓ⩽L
∈ RL×L.

The detailed calculation to establish (2.37) can be found in Appendix A.1.2.
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2.7.3 Maximum likelihood estimation

Another way to approach the model estimation is via maximum likelihood method. Firstly, we

assume that the error functions εi(t) can also be represented by linear combination of basis functions

in ψ(t), i.e.,

εi(t) =

L∑

ℓ=1

εiℓψℓ(t) =: ε⊤i ψ(t),

with εi ∼ NL(0,Σ), for some unknown symmetric matrix Σ ∈ RL×L. Then, the equation (2.34)

can be rewritten by

Rψ(t) = Gbψ(t) + Eψ(t),

where E = (ε⊤1 , . . . , ε
⊤
n )

⊤ ∈ Rn×L is the matrix of error coefficients. Observe that the matrix

ψ(t)ψ⊤(t) is non-singular, therefore the above equation implies

R = Gb+ E, (2.38)

which takes a familiar form as in ordinary multivariate regression if the matrix multiplication is

conventionally understood as in (2.34). Alternatively, if we reframe the matrices R and E into

column vectors, equation (2.38) can also be rewritten as

vec(R⊤) =Hb+ vec(E⊤), (2.39)

where the matrix H, differs from G, is formed by the vectors x⋆ik ∈ RL as follow

H =




x⋆11 x⋆12 · · · x⋆1K
x⋆21 x⋆22 · · · x⋆2K
...

...
. . .

...

x⋆n1 x⋆n2 · · · x⋆nK



∈ RnL×K . (2.40)

Note, however, that (2.39) is not the usual linear equation met in linear regression with

continuous response, because the noise here may not be i.i.d., and more importantly, the observations

are not independent of each other since the matrices are correlated within each L-rows block due

to the correlation between the components of ri and x
⋆
ik.

From the representation (2.38), we see that the model estimation can be viewed as maximum

likelihood estimation for the following probability density function

f(ri|xi;θ) = det(2πΣ)1/2 exp

[
1

2
(ri −Zib)⊤Σ−1(ri −Zib)

]
, (2.41)

where Zi := [x⋆i1, . . . ,x
⋆
iK ] ∈ RL×K , and θ = {b,Σ} is the unknown parameter of the model to be
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estimated. The maximum likelihood estimators of b and Σ are given by

b̂ =
(
H⊤H

)−1
H⊤vec(R⊤), (2.42)

Σ̂ =
1

n

(
R−Gb̂

)⊤ (
R−Gb̂

)
. (2.43)

where the matrix H is given in (2.40).

Remark 2.7.2. The solution for b and Σ presented here will serve in Section 4.4 as the

update formula for the experts in our proposed function-on-scalar ME model.

2.8 Clustering and classification of functional data

Clustering and classification are important topics of FDA. The purpose of this section is to review

the most important concepts and methods related to clustering and classification of functional data,

via illustrative examples, to help the reader have a picture about the fields.

2.8.1 Clustering of functional data

Similarly to the classical multivariate data analysis, clustering functional data concerns an upsupervised

learning process that group a set of functional data into homogenous subgroups, i.e., clusters,

such that whose members are more similar than across clusters with respect to some metric. The

concepts and algorithms developed for clustering multivariate data are therefore can be extended to

functional data, certainly with additional considerations regarding to, e.g., the infinite dimension,

the approximations of distance measures, etc.

There are various algorithms for clustering functional data. They can be categorized into

four groups based on their approaches: raw-data clustering, two-stage clustering, non-parametric

clustering, and model-based clustering.

Raw-data clustering. This is the most simple approach that uses directly the observed values of

the functions as vectorial data for clustering. However, due to the so-called “curse of dimensionality”,

i.e., these raw-data are typically of high-dimension, the techniques in this direction mostly consist

of a dimension reduction step followed by an algorithm for clustering vectorial data. The most

often used dimension reduction methods includes principal component analysis (PCA) and factor

analysis (FA). For a complete review of PCA and FA methods, we would refer reader to Bishop

(2006), Chapter 12.
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Two-stage clustering. This approach consists of a filtering step followed by a classical clustering

algorithm for finite dimensional data. Although it seems to be similar to the raw-data clustering

that, their difference is that: rather than using PCA or FA, in the filtering step, we use the tools

of FDA to represent the functional data. In particular, the representations via Spline basis (e.g.,

in Abraham et al. (2003); Rossi et al. (2004)) and FPCA (e.g., in Jacques and Preda (2013a);

Peng and Müller (2008)) are the most common choices in this direction. Once the coefficients are

obtained, they are fitted to the usual clustering algorithms such as k-means (see, e.g., Hartigan

(1975); Hartigan and Wong (1979)) or Self-Organised Map (SOM) (Kohonen and Schroeder, 1995).

Non-parametric clustering. This terminology covers all clustering techniques that involve non-

parametric algorithms. Analogously for multivariate data, the techniques in this approach require

a dissimilar measure for two objects. The common choice is the measure dℓ defined based on the

L2-distance in (2.14), given by

dℓ(Xi, Xj) =

[∫

T
(X

(ℓ)
i (t)−X(ℓ)

j (t))2dt

]1/2
,

where X
(ℓ)
i denotes the ℓ-derivative of X. Note that, with ℓ = 0 the measure dℓ becomes exactly

the distance defined in (2.14), which is equivalent to using the raw-data approach.

In this direction, there are several interesting works, for example, in Ieva et al. (2013) the

authors used K-means combing with d0, d1, and (d20 + d21)
1/2 to cluster ECG2 traces, aim at early

detect the heart failure, replacing a traditional clinical observation. In Tarpey and Kinateder

(2003), K-means and d0 were used for clustering Gaussian processes. Moreover, cluster centres

are shown to be a linear combinations of the FPCA eigenfunctions. Figure 2.6 shows the result of

doing clustering for Tecator data (see Appendix A.2) using d0, d1 and d2 measures combined with

K-means algorithm.

Model-based clustering. Let us briefly recall the ideas of the method of model-based clustering

for multivariate data. In the view of model-based clustering, the observations {xi}ni=1 are assumed

to be generated according to a K-component mixture distribution. Let zi = (zi1, . . . , ziK) be the

unknown one-hot vector that encodes the membership of xi, and the aim here is to estimated zi’s.

This can be done by treating zi’s as missing data and maximizing the so-called complete-data

log-likelihood function given by

L(Ψ;x1, . . . ,xn, z1, . . . , zn) =

n∑

i=1

log

K∏

k=1

[
P(zik = 1)fk(xi; θk)

]zik

=
n∑

i=1

K∑

k=1

zik log(πkfk(xi; θk)),

2 electrocardiograph
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Figure 2.6: Examples of clustering Tecator data using non-parametric technique. Here, the curves
are clustered into two groups byK-means using (a) d0 measure, (b) d1 measure, and (c) d2 measure.
Bottom panels: (d) Tecator data, (e) the first derivative, and (f) the second derivative curves.
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where Ψ = (θ1, . . . , θK , π1, . . . , πK) is the model parameter to be estimated, fk(xi|θk) is the density
corresponding to the kth cluster, parameterized by θk, and πk is the probability that an observation

belongs to the kth cluster. The common choice of fk(xi|θk) is the multivariate normal distribution

with mean µk and variance Σk (i.e., θk = (µk,Σk)), for example in Banfield and Raftery (1993),

Celeux and Govaert (1995). The inference is usually carried by an iterative procedure such as EM

algorithm. Finally, the cluster labels are estimated using the Maximum A Posteriori (MAP) rule

ẑi = argmaxk∈[K]

π̂kfk(xi; θ̂k)∑K
k=1 π̂kfk(xi; θ̂k)

.

In this model-based direction for clustering functional data, the techniques are generally consists

of two tasks: one performs function expansion (using basis functions or FPCA) and one performs

model-based clustering. However, as highlighted in Jacques and Preda (2013b), it differs from the

two-stage direction in that it performs the two mentioned tasks simultaneously, whereas in two-

stage techniques, clustering is applied once the functions were already “converted” to vectors of

coefficients.

The first model-based clustering algorithm for functional data was proposed by James and

Sugar (2003), in which the spline expansion coefficients of the curves are assumed to be distributed

according to a mixture Gaussian distribution with cluster-specific means µk and common variance

Σ. Later, Giacofci et al. (2013) proposed using wavelet expansion as an alternative, since the spline

expansion is only convenient when the curves are regular but not appropriate for irregular (e.g.,

peak-like) data. The authors assumes a Gaussian model on the wavelet decomposition of the curves

whose parameters are estimated via MLE, and applies the approach on mass spectrometry data,

as well as proposes an original application on microarray CGH3 data. In Chapter 3, via the FME

model, we also propose a model-based clustering technique and apply for Canadian weather and

DTI4 data.

2.8.2 Classification of functional data

Similar to regression and clustering for functional data, due to the practical needs, classification for

functional data also has a long history of study with many notable applications. Many approaches

have been proposed for functional data classification, they are mostly based on functional regression

models that treat class labels as responses and the observed functional data as predictors. For

example, in Müller et al. (2005), the authors used the PCA in combination with logistic regression

model for classification problems, and applied to simulated and medfly data. The generalized

linear model has also been extended to functional data (James, 2002; Müller, 2005; Müller et al.,

2005). Recently, in Mousavi and Sørensen (2018), the authors applied a wavelet basis expansion

in combination with multinomial functional regression model to classify acceleration signals in the

problem of lameness diagnosis for horses, and periodogram signals in phoneme data. In their

3 Comparative Genomic Hybridization. CGH profiles are oftenly used to identify molecular subtypes of cancer
4 Diffusion Tensor Imaging
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proposed model, the parameter vector is estimated via regularized MLE which produces a certain

level of sparsity. In Chapter 4, our proposed FME model for classification also use the phoneme

data as a benchmark and compare the result with that of Mousavi and Sørensen (2018).

Let X(t), t ∈ T , be a functional predictor and y be its categorical response, y ∈ [G]. In

multinomial functional regression model, the probability that y belongs to category g is modeled

by

P(y = g|X(t)) =
exp{βg,0 +

∫
T βg(t)X(t)dt}

∑G
g′ exp{βg′,0 +

∫
T βg′(t)X(t)dt}

, (2.44)

where βg,0 are the unknown constant intercepts, and βg(t), t ∈ T , are the unknown coefficient

functions to be estimated. Similar to the softmax modeling for the gating function in ME models,

model (2.44) is over-parameterized since it can get a same probability by adding a constant to all

of the intercepts and coefficient functions. Therefore, one can also constraint, e.g., the parameter

responsible for gth class (βg,0, βg(t)) to be null, which yields the model

P(y = g|X(t)) =
exp{βg,0 +

∫
T βg(t)X(t)dt}

1 +
∑G−1

g′ exp{βg′,0 +
∫
T βg′(t)X(t)dt}

·

We will use this parameterization for the functional gating function of the FME model proposed in

Chapter 3. Alternatively, over-parameterization in (2.44) can be dealt by the LASSO regularization

as can be seen in Mousavi and Sørensen (2018).

Classification of functional data can also be approached using discriminant analysis. The early

works include Hall et al. (2001) and James and Hastie (2001a), where linear discrimination analysis

(LDA) was applied on the scores obtained from PCA technique, and on the coefficients from

spline expansion, respectively. In Ferraty and Vieu (2003), the authors proposed a non-parametric

approach for functional data. Later, Chang et al. (2014) developed a kernel-based non-parametric

approach, applied to classify the major depressive disorders based on positron emission tomography

images. Berlinet et al. (2008) proposed a supervised wavelet-based functional data classification

method. Along this line of discriminant analysis, theoretical results have been also developed for

linear and quadratic decision boundaries (Delaigle and Hall, 2012, 2013).

2.9 Preliminary on divergence

In order to prepare for Chapter 5 where we propose a distributed learning approach for ME models,

in this section we briefly present some preliminaries on general notations of divergence and distance

on the space of probability measures.

Let us recall the general notions of divergence and distance defined on the space of probability
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measures.

Definition 2.9.1 (Divergence). Let Θ be a space and ρ(·, ·) be a bivariate function defined on

Θ. Then ρ(·, ·) is called a divergence if ρ(θ1, θ2) ⩾ 0 for all θ1, θ2 ∈ Θ, with equality holding

if and only if θ1 = θ2.

Kullback-Leibler (KL) is one of the most used divergences in machine learning to measures the

similarity between two probability distributions, or can be interpreted as the information gain from

using p instead of q (Cover and T., 2006).

Definition 2.9.2 (KL-divergence). Let p and q are two probability distributions, KL-

divergence between p and q is defined by

KL (p∥q) =
∫
p(u) log

p(u)

q(u)
du.

In our case, u being (x, y), the KL-divergence KL (p∥q) can be factorized as

KL (p(x, y)∥q(x, y)) =
∫∫

p(x, y) log
p(x, y)

q(x, y)
dxdy

=

∫
p(x) log

p(x)

q(x)
dx+

∫
p(x)

∫
p(y|x) log p(y|x)

q(y|x)dxdy

= KL (p(x)∥q(x)) + Ep(x)
[
KL (p(y|x)∥q(y|x))

]
, (2.45)

where

KL (p(y|x)∥q(y|x)) :=
∫
p(y|x) log p(y|x)

q(y|x)dy. (2.46)

The last term in (2.45) is known as conditional KL-divergence, which is the expected value of the

KL-divergence between conditional distributions p(y|x) and q(y|x) where the expectation is taken

with respect to p(x).

2.10 Summary

This chapter has introduced the main framework we will working on in the next chapters, i.e.,

ME models. Notably, the general notion, the modelings, as well as the estimation procedure for

gating and expert networks have been presented, these will make the following chapters more

consistent and easier to follow. This chapter has also present the necessary tools and concepts for

FDA such as data pre-processing, FPCA, functional linear models. Interested reader is referred
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to other comprehensive books on functional regression models Kokoszka and Reimherr (2017),

Ramsay and Silverman (2005), Ramsay et al. (2011). While the ME models with vectorial setting

has been widely studied in literature, their functional versions are still lack of investigations and

applications. This thesis therefore proposes, in the subsequent chapters, three new ME models to

deal with situations where data are available under functional forms.
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Functional mixtures of experts
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3.1 Introduction

Recall that the general notion of a ME is given by

ME(y|x) =
K∑

k=1

Gatek(x) Expertk(y|x). (3.1)
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To the best of our knowledge, ME models have been exclusively studied in multivariate analysis

when the inputs are vectors, i.e., x ∈ X = Rp. However, in many problems, the predictors

and/or the responses are observed from smooth functions. Indeed, in many situations, unlike

in predictive and cluster analyses of multivariate and potentially high-dimensional heterogeneous

data, which have been studied with the ME modeling in (3.1), the observed data may arise from

continuously observed processes, e.g., time series. Thus, a multivariate (vectorial) analysis does

not allow one to enough capture the inherent functional structure of the data. In such situations,

classical multivariate models are not adapted as they ignore the underlying intrinsic nature and

structure of the data. Functional Data Analysis (FDA) (Ramsay and Silverman, 2005; Ferraty and

Vieu, 2006) in which the individual data units are assumed to be functions, rather than vectors,

offers an adapted framework to deal with continuously observed data, including in regression,

classification and clustering. FDA considers the observed data as (discretized) values of smooth

functions, rather than multivariate observations represented in the form of “simple” vectors.

The study of functional data has been considered in most of the statistical modeling and

inference problems including regression, classification, clustering, functional graphical models (Qiao

et al., 2019), among others. In regression, functional linear models have been introduced including

penalized functional regression (Élodie Brunel et al., 2016; Goldsmith et al., 2011b) and in particular

the FLiRTI approach, a functional linear regression constructed upon interpretable regularization

(James et al., 2009), and more generally generalized linear models with functional predictors

(Müller et al., 2005; James, 2002), which cover functional logistic regression for classification. In

classification, we can also cite functional linear discriminant analysis (James and Hastie, 2001b),

and, as a penalized model, Lasso-regularized functional logistic regression (Mousavi and Sørensen,

2017). To deal with heterogeneous functional data, the construction of mixture models with

functional data analytic aspects have been introduced for model-based clustering (Liu and Yang,

2009) including Lasso-regularized mixtures for functional data (Devijver, 2017; James and Sugar,

2003; Jacques and Preda, 2014; Chamroukhi and Nguyen, 2019). The resulting functional mixture

models are better able to handle functional data structures compared to standard multivariate

mixtures.

The problem of clustering and prediction in presence of functional observations from heterogeneous

populations, leading to complex distributions, is still however less investigated. In this chapter, we

investigate the framework of Mixtures-of-Experts (ME) models, as models of choice in modeling

heterogeneity in data for prediction and clustering with vectorial observations, and extend it to

the functional data framework. Firstly, we introduce in Section 3.2 a new family of functional

ME models to relate a functional predictor to a scalar response, and develop a dedicated EM

algorithm for the maximum-likelihood parameter estimation. Secondly, to deal with potential high-

dimensional setting of the introduced FME model, we develop in Section 3.2.6 a Lasso-regularized

approach, which consists of a penalized MLE estimation via a hybrid EM-Lasso algorithm, which

integrates an optimized coordinate ascent procedure to efficiently implement the M-Step. Thirdly,

we in particular present in Section 3.3 and extended FME model, which is constructed upon

a sparse and highly-interpretable regularization of the functional expert and gating parameters.
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The resulting model, abbreviated as iFME, is fitted by regularized MLE via an dedicated EM

algorithm. The developed algorithms for the two introduced ME models are applied and evaluated

in Section 3.4 on several simulated scenarios and on real-world data sets, in both clustering and

non-linear regression. This chapter is a detailed version of the paper Chamroukhi et al. (2022).

3.2 Functional Mixtures-of-Experts (FME)

We wish to derive and fit new ME models in presence of functional predictors and functional

responses. In this chapter, we first consider ME models with a functional predictor X(·) and a

real response Y where the pair arises from heterogeneous population composed of unknown K

homogeneous sub-populations.

3.2.1 ME with functional predictor and scalar response

Let {Xi(t), Yi}ni=1, be a sample of n i.i.d. data pairs where Yi is a real-valued response and Xi(t)

is a functional predictor with t ∈ T ⊂ R, for example the time in time series. First, to model

the conditional relationships between the continuous response Y and the functional predictor X(·),
given an expert z, we formulate each expert component Expertz(y|x) in (3.1) as a functional

regression model (cf. Müller et al. (2005), James et al. (2009)). The resulting functional expert

regression model for the ith observation takes the following stochastic representation

Yi = βzi,0 +

∫

T
Xi(t)βzi(t)dt+ εi, i ∈ [n], (3.2)

where βzi,0 is an unknown constant intercept, βzi(t), t ∈ T is the function of unknown coefficients

of functional expert zi, and εi ∼ N (0, σ2zi) are independent Gaussian errors, zi ∈ [K] being the

unknown label of the expert generating the ith observation. In this context, the response Y is

related to the entire trajectory of X(·). Let β = {βz,0, βz(t), t ∈ T }Kz=1 represent the set of

unknown functional parameters for the experts network.

Now consider the modeling of the gating network in the proposed functional ME model. As

in the context of ME for vectorial data, different choices are possible to model the gating network

function, typically softmax-gated or Gaussian-gated ME (e.g., see Nguyen and Chamroukhi (2018),

Xu et al. (1994a), Chamroukhi et al. (2019)). A standard choice as in Jacobs et al. (1991) to model

the gating network Gatez(x) in (3.1) is to use the multinomial logistic (softmax) function as a

distribution of the latent variable Z. In this functional data modeling context with K ⩾ 2 experts,

we use a multinomial logistic function as an extension of the functional logistic regression presented

in Mousavi and Sørensen (2018) for linear classification. The resulting functional softmax gating
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network then takes the following form

πz (X(t), t ∈ T ;α) = P(Z = z|X(t), t ∈ T ;α)

=
exp{αz,0 +

∫
T X(t)αz(t)dt}

1 +
∑K−1

z′=1 exp{αz′,0 +
∫
T X(t)αz′(t)dt}

, (3.3)

where α = {αz,0, αz(t), t ∈ T }Kz=1 is the set of unknown constant intercept coefficients αz,0 and

functional parameters αz(t), t ∈ T for each expert z ∈ [K]. Note that model (3.3) is equivalent

to assuming that each expert z is related to the entire trajectory X(·) via the following functional

linear predictor for the gating network

hz(X(t), t ∈ T ;α) = log

{
πz (X(t), t ∈ T ;α)
πK (X(t), t ∈ T ;α)

}

= αz,0 +

∫

T
X(t)αz(t)dt. (3.4)

The objective is to estimate the functional parameters α and β of the FME model defined

by (3.2)-(3.3), from an observed sample. In this setting with functional predictors, this requires

estimating a possibly infinite number of coefficients (as many as the number of temporal observations

for the predictor). In order to reduce the complexity of the problem, the observed functional

predictor can be projected onto a fixed number of basis functions so that we sufficiently capture

enough the functional structure of the data, and sufficiently reduce enough the number of coefficients

to estimate.

3.2.2 Smoothing representation of the functional experts

Here we consider the case of fixed design, that is, the covariatesXi(t) are non-random functions. We

suppose that the Xi(·)’s are measured with error at any given time t. Hence, instead of observing

directly Xi(t), one has a noisy version of it Ui(t), defined as

Ui(t) = Xi(t) + δi(t), i ∈ [n],

where δi(·) ∼ N (0, σ2δ ) are measurement errors assumed to be independent of the Xi(·)’s and

the Yi’s. Since the functional predictors Xi(t) are not directly observed, we first construct an

approximation of Xi(t) from the noisy predictors Ui(t) by projecting the latter onto a set of

continuous basis functions. Let br(t) = [b1(t), . . . , br(t)]
⊤ be a r-dimensional (B-spline, Fourier,

Wavelet) basis, then with r sufficiently large Xi(t) can be represented as

Xi(t) =
r∑

j=1

xijbj(t) = x
⊤
i br(t), (3.5)

where xij =
∫
T Xi(t)bj(t)dt for j ∈ [r] and xi = (xi1, . . . , xir)

⊤. Since Xi(t) is not observed,

the representation coefficients xij ’s are unknown. Hence we propose an unbiased estimator of xij
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defined as

x̂ij :=

∫

T
Ui(t)bj(t)dt.

Thus, an estimate X̂i(t) of Xi(t) is given by

X̂i(t) = x̂
⊤
i br(t), i ∈ [n], (3.6)

with x̂i = (x̂i1, . . . , x̂ir)
⊤.

Similarly, to represent the regression coefficient functions βz(·), consider a p-dimensional basis

bp(t) = [b1(t), b2(t), . . . , bp(t)]
⊤. Then the function βz(t) can be represented as

βz(t) = η
⊤
z bp(t) (3.7)

where ηz = (ηz,1, ηz,2, . . . , ηz,p)
⊤ is the vector of unknown coefficients and the choice of p should

ensure the tradeoff between smoothness of the functional predictor and complexity of the estimation

problem. We select r ⩾ p to satisfy the identifiability constraint (see for instance Goldsmith et al.

(2011b), Ramsay and Silverman (2002)). Furthermore, rather than assuming a perfect fit of βz(t)

by bp(t) as in (3.7), we use for each Gaussian expert regressor z, the following error model as

proposed by James et al. (2009) for functional linear regression

βz(t) = η
⊤
z bp(t) + e(t)

where e(t) represents the approximation error of βz(t) by the linear projection (3.7). As we choose

p≫ n, |e(t)| can be assumed to be small.

3.2.3 Smoothing representation of the functional gating network

Since here we are examining functional predictors, an appropriate representation has also to be

given for the gating network (3.3) with functional parameters {αz(t), t ∈ T }Kz=1. Due to the

infinite number of these parameters, we also represent the gating network by a finite set of basis

functions similarly as for the experts network. For the representation of the functional predictors

Xi(t), i ∈ [n], we use X̂i(t) established in (3.6). The coefficients function αz(t) is represented

similarly as for the β coefficients function of the experts network, by using a q-dimensional basis

bq(t) = [b1(t), b2(t), . . . , bq(t)]
⊤, (q ⩽ r) via the projection

αz(t) = ζ
⊤
z bq(t), (3.8)

where ζz = (ζz1, ζz2, . . . , ζzq)
⊤ is the vector of softmax coefficients function . Note that here we use

the same type of basis functions for both representations of βz and αz, but one can use different

types of bases if needed. Then, by using the representations (3.6) and (3.8) of X(t) and αz(t),

respectively, in the linear predictor hz(.) defined in (3.4) for i ∈ [n], the latter is thus approximated
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as

hz(Ui(t), t ∈ T ;α) = αzi,0 + ζ
⊤
ziri, (3.9)

where ri =
[∫

T br(t)bq(t)
⊤dt
]⊤
x̂i. Thus, following its definition in (3.3), the functional softmax

gating network is approximated as

πk(ri; ξ) =
exp {αk,0 + ζ⊤k ri}

1 +
∑K−1

k′=1 exp {αk′,0 + ζ⊤k′ri}
(3.10)

where ξ =
(
(α1,0, ζ

⊤
1 ), . . . , (αK−1,0, ζ

⊤
K−1)

)⊤ ∈ R(q+1)(K−1) is the unknown parameter vector of the

functional gating network to be estimated.

3.2.4 The FME model conditional density

We now have appropriate representations for the functional predictors, as well as for both the

functional gating network and the functional experts network, involved in the construction of the

functional ME (FME) model (3.2)-(3.3). Gathering (3.6) and (3.7), the stochastic representation

(3.2) of the FME model can thus be defined as follows,

Yi|ui(·) = βzi,0 + η
⊤
zixi + ε⋆i , i ∈ [n], (3.11)

where xi =
[∫

T br(t)bp(t)
⊤dt
]⊤
x̂i and ε

⋆
i = εi+x̂

⊤
i

∫
T br(t)e(t)dt. From this stochastic representation

under the Gaussian assumption for the error variable εi, the conditional density of each approximated

functional expert zi = k is thus given by

f(yi|ui(·), zi = k;θk) = ϕ(yi;βk,0 + η
⊤
k xi, σ

2
k), (3.12)

where ϕ(.;µ, v) is the Gaussian probability density function (pdf) with mean µ and variance v,

βk,0 + η⊤k xi is the mean of the approximated functional regression expert, σ2k its variance, and

θk = (βk,0,η
⊤
k , σ

2
k)

⊤ ∈ Rp+2 the unknown parameter vector of expert density k, k ∈ [K] to be

estimated. Finally, combining (3.12) and (3.10) in the ME model (3.1), leads to the the following

conditional density defining the FME model,

f(yi|ui(·);Ψ) =
K∑

k=1

πk(ri; ξ)ϕ(yi;βk,0 + η
⊤
k xi, σ

2
k), (3.13)

where Ψ = (ξ⊤,θ⊤1 , . . . ,θ
⊤
K)⊤ is the parameter vector of the model to be estimated.

3.2.5 Maximum likelihood estimation via the EM algorithm

The FME model (3.13) is now defined upon an adapted finite representation of the functional

predictors, and its parameter estimation can then be performed given an observed data sample. We
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first consider the maximum likelihood estimation framework via the EM algorithm (Dempster et al.,

1977; Jacobs et al., 1991) which has many desirable properties including stability and convergence

guarantees (eg. see McLachlan and Krishnan (2008), for more details). Note that here we use the

term maximum likelihood estimation to not unduly clutter the clarity of the text, while as it will

be specified later, we refer to the conditional maximum likelihood estimator.

In practice, the data are available in the form of discretized values of functions. The noisy

functional predictors Ui(t) are usually observed at discrete sampling points ti1 < . . . < timi with

tij ∈ T for j ∈ [mi]. We suppose that Ui(t) is scaled such that 0 ⩽ t ⩽ 1 and divide the

time period [0, 1] up into a fine grid of mi points ti1, . . . , timi . Thus, in (3.11) we have xi =[∑mi
j=1 br(tij)bp(tij)

⊤
]⊤
x̂i, ri =

[∑mi
j=1 br(tij)bq(tij)

⊤
]⊤
x̂i, where x̂ij =

∑mi
j=1 Ui(tij)bj(tij). Note

that if we choose p = q = r, then xi = ri = x̂i. Let D = {(u1, y1), . . . , (un, yn)} be an i.i.d sample

of n observed data pairs where ui = (ui,1, . . . , ui,mi) is the observed functional predictor for the ith

response yi.

We use D to estimate the parameter vector Ψ by iteratively maximizing the observed data

log-likelihood,

logL(Ψ) =
n∑

i=1

log
K∑

k=1

πk(ri; ξ)ϕ(yi;βk,0 + η
⊤
k xi, σ

2
k), (3.14)

via the EM algorithm. As detailed in Appendix B.1, the EM algorithm for the FME model is

implemented as follows. After starting with an initial solution Ψ (0), it alternates, at each iteration

s, between the two following steps, until convergence (when there is no longer a significant change

in the values of the log-likelihood (3.14)).

■ E-step. Calculate the following conditional probability memberships τ
(s)
ik (for all i ∈ [n]), that

the observed pair (ui, yi) originates from the kth expert, given the observed data and the current

parameter estimate Ψ (s),

τ
(s)
ik = P(Zi = k|yi, ui(·);Ψ (s)) =

πk(ri; ξ
(s))ϕ(yi;β

(s)
k,0 + x⊤

i η
(s)
k , σ2k

(s)
)

f(yi|ui(·);Ψ (s))
· (3.15)

■ M-step. Update the value of the parameter vector Ψ by maximizing the Q-function (B.2) with

respect to Ψ . The maximization is performed by separate maximizations w.r.t the gating network

parameters ξ and, for each expert k, w.r.t the expert network parameters θk, for each of the K

experts.

Updating the gating network’s parameters ξ consists of maximizing w.r.t ξ the part of (B.2)

that is a function of ξ. Since we use a softmax-gated expert network in (3.10), this maximization

problem consists of a weighted multinomial logistic problem for which there is no a closed-form

solution. We then use a Newton-Raphson (NR) procedure, which iteratively maximizes (B.3) after

starting from an initial parameter vector ζ(0), by updating, at each NR iteration t, the values of
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the parameter vector ξ according to the following updating formula:

ξ(t+1) = ξ(t) −
[
H(ξ;Ψ (s))

]−1

ξ=ξ(t)
g(ξ;Ψ (s))

∣∣
ξ=ξ(t)

, (3.16)

where H(ξ;Ψ (s)) and g(ξ;Ψ (s)) are, respectively, the Hessian matrix and the gradient vector of

Q(ξ;Ψ (s)), and are provided in Appendix B.1. At each NR iteration, the Hessian matrix and

gradient vector are evaluated at the current value of ξ. We keep updating the gating network

parameter ξ according to (3.16) until there is no significant change in Q(ξ;Ψ). The maximization

then provides ξ(s+1) for the next EM iteration.

Updating the experts network parameters θk consists of solving K independent weighted

regression problems where the weights are the conditional expert memberships τ
(s)
ik given by (3.15).

The updating formulas for the regression parameters (βk,0,ηk) and the noise variances σ2k for each

expert k are straightforward and correspond to weighted versions of those of standard Gaussian

linear regression, i.e., weighted ordinary least squares. The updating rules for the experts network

parameters are given by the following formulas:

β
(s+1)
k,0 = (n

(s)
k )−1

n∑

i=1

τ
(s)
ik (yi − x⊤

i η
(s)
k ); η

(s+1)
k =

[ n∑

i=1

τ
(s)
ik xix

⊤
i

]−1
n∑

i=1

τ
(s)
ik (yi − β(s+1)

k,0 )xi,

σ2k
(s+1)

= (n
(s)
k )−1

n∑

i=1

τ
(s)
ik

[
yi − (β

(s+1)
k,0 + x⊤

i η
(s+1)
k )

]2
,

(3.17)

where n
(s)
k =

∑n
i=1 τ

(s)
ik represents the expected cardinal number of component k.

This EM algorithm, designed here for the FME that is constructed upon smoothing of the

functional data, can be seen as a direct extension of the vectorized version the mixture-of-experts

model. While it can hence be expected to provide accurate estimations as in the vector predictors

setting, the number of parameters to estimate here in the case of the functional ME can still be high,

for example when a big number of basis functions is used to have more accurate approximation of

the functional predictors. In that case, it is better to regularize the maximum likelihood estimator

in-order to establish a compromise between the quality of fit and complexity.

3.2.6 Regularized maximum likelihood estimation

We rely on the LASSO (Tibshirani, 1996) as a successful procedure to encourage sparse models

in high-dimensional linear regression based on an ℓ1-penalty, and include it in this mixture of

experts modeling framework for functional data. The ℓ1-regularized ME models have demonstrated

their performance from a computational point of view (Chamroukhi and Huynh, 2019; Huynh and

Chamroukhi, 2019a) and enjoy good theoretical properties (Nguyen et al., 2020, 2021b).
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3.2.7 ℓ1-regularization and the EM-Lasso algorithm

We propose an ℓ1-regularization of the observed-data log-likelihood (3.18) to be maximized, along

with coordinate ascent algorithms to deal with the high-dimensional setting when updating the

parameters within the resulting EM-Lasso algorithm. The objective function in this case is given

by the following ℓ1-regularized observed-data log-likelihood,

L(Ψ) = logL(Ψ)− Penλ,χ(Ψ), (3.18)

where logL(Ψ) is the observed-data log-likelihood of Ψ defined by (3.14), and Penλ,χ(Ψ) is a LASSO

regularization term encouraging sparsity for the expert and the gating network parameters, defined

by

Penλ,χ(Ψ) = λ

K∑

k=1

p∑

j=1

|ηk,j |+ χ

K−1∑

k=1

q∑

j=1

|ζk,j |, (3.19)

where λ and χ are positive real values representing tuning parameters. The maximization of (3.18)

cannot be performed in a closed form but again the EM algorithm can be adapted to iteratively

solve the maximization problem. The resulting algorithm for the FME model, called EM-Lasso,

takes the following form, as detailed in Appendix B.2. After starting with an initial solution Ψ (0), it

alternates between the two following steps, until convergence (when there is no longer a significant

change in the values of the ℓ1-penalized log-likelihood (3.18)).

■ E-step. The E-Step in this EM-Lasso algorithm is unchanged compared to the previously

presented EM algorithm, and only requires the computation of the conditional expert memberships

τ
(s)
ik according to (3.15).

■ M-step. In this regularized MLE context, the parameter vector Ψ is now updated by maximizing

the regularizedQ-function (B.5), i.e., Ψ (s+1) = argmaxΨ
{
Q(Ψ ;Ψ (s))− Penλ,χ(Ψ)

}
. This is performed

by separate maximizations w.r.t the gating network parameters ξ and, for each expert k (k ∈ [K]),

w.r.t the expert network parameters θk.

Updating the gating network parameters. At iteration s of the EM-Lasso algorithm consists

of maximizing the following regularized Q-function w.r.t ξ,

Qχ(ξ;Ψ (s)) = Q(ξ;Ψ (s))− χ
K−1∑

k=1

∥ζk∥1, (3.20)

where Q(ξ;Ψ (s)) =
∑n

i=1

[∑K−1
k=1 τ

(s)
ik

(
αk,0 + ζ

⊤
k ri
)
− log

(
1 +

∑K−1
k′=1 exp{αk′,0 + ζ⊤k′ri}

)]
. One

can see this is equivalent to solving a weighted regularized multinomial logistic regression problem

for which Qχ(ξ;Ψ (s)) is its penalized log-likelihood, the weights being the conditional probabilities

τ
(s)
ik . There is no closed-form solution for this kind of problem. We then use an iterative optimization

algorithm to seek for a maximizer of Qχ(ξ;Ψ (s)), i.e., an update for the parameters of the gating
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network. To be effective when the number of parameters to estimate is high, we propose a coordinate

ascent algorithm to update the softmax gating network coefficients in this regularized context.

Coordinate ascent for updating the gating network. The idea of the coordinate ascent

algorithm (eg. see Hastie et al. (2015), Huynh and Chamroukhi (2019a)), implemented in our

context at the sth EM-Lasso iteration to maximize Qχ(ξ;Ψ (s)) at the M-Step, is as follows. The

gating function parameter vectors ξk = (αk,0, ζ
⊤
k )

⊤ as components of the whole gating network

parameters ξ = (ξ⊤1 , . . . , ξ
⊤
K−1)

⊤, are updated one at a time, while fixing the other gate’s parameters

to their previous estimates. Furthermore, to update a single gating parameter vector ξk, we only

update its coefficients ξkj one at a time, while fixing the other coefficients to their previous values.

More precisely, for each single gating function k, we partially approximate the smooth part of

Qχ(ξ;Ψ (s)) with respect to ξk at the current EM-Lasso estimate, say ξ(t), then optimize the

resulting objective function (with respect to ξk). This corresponds to solving penalized weighted

least squares problems using coordinate ascent. Thus, this results into an inner loop, indexed by

m, that cycles over the components of ξk and updates them one by one, while the others are kept

fixed to their previous values, i.e., ξ
(m+1)
kh = ξ

(m)
kh for all h ̸= j, until the objective function (B.7) is

not significantly increased.

The obtained closed form updates for each coefficient ζkj , j ∈ [q], and for the intercept αk,0,

are as follows

ζ
(m+1)
kj =

Sχ
(∑n

i=1wikrij(cik − c̃
(m)
ikj )

)

∑n
i=1wikr

2
ij

for j ∈ [q], α
(m+1)
k,0 =

∑n
i=1wik(cik − r⊤i ζ

(m+1)
k )∑n

i=1wik
,

where c̃
(m)
ikj = α

(m)
k0 + r⊤i ζ

(m)
k − ζ(m)

kj rij is the fitted value excluding the contribution from the jth

component of the ith vector rij in the design matrix of the gating network and Sχ(·) is a soft-

thresholding operator defined by Sχ(u) = sign(u)(|u| − χ)+ and (v)+ a shorthand for max{v, 0}.
The values (α

(m+1)
k,0 , ζ

(m+1)
k ) obtained at convergence of the coordinate ascent inner loop for the

kth gating function are taken as the fixed values of that gating function, in the procedure of

updating the next parameter vector ξk+1. Finally, when all the gating functions have their values

updated, i.e., after K−1 inner coordinate ascent loops, to avoid numerical instability, we perform a

backtracking line search, before actually updating the gating network’s parameters for the next EM-

Lasso iteration. More precisely, the update is ξ(t+1) = (1−ν)ξ(t)+νξ̄(t), where ξ̄(t) is the output after
K − 1 inner loops and ν is backtrackingly determined to ensure Qχ(ξ(t+1);Ψ (s)) ⩾ Qχ(ξ(t);Ψ (s)).

We keep cycling these updated iterates for the parameter vectors ξk, until convergence of the

whole coordinate ascent (CA) procedure inside the M-Step, i.e., when the relative increase in the

Lasso-regularized objective Qχ(ξ;Ψ (s)) related to the softmax gating network is not significant,

e.g., less than 10−6. Then, the next EM-Lasso iteration is calculated with the updated gating

network’s parameters ξ(s+1) = (α̃1,0, ζ̃
⊤
1 , . . . , α̃K−1,0, ζ̃

⊤
K−1)

⊤ where the values α̃k,0 and ζ̃kj for all

k ∈ [K − 1], j ∈ [q] are those obtained for the αk,0’s and the ζkj ’s at convergence of the CA

algorithm.
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Updating the experts network parameters. The maximization step for updating the expert

parameters θk consists of maximizing the function Qλ(θk;Ψ (s)) given by

Qλ(θk;Ψ (s)) = Q(θk;Ψ
(s))− λ∥ηk∥1, (3.21)

whereQ(θk;Ψ
(s)) = − 1

2σ2
k

∑n
i=1 τ

(s)
ik

(
yi − (βk,0 + η

⊤
k xi)

)2−n
2 log(2πσ

2
k)· This corresponds to solving

a weighted LASSO problem where the weights are the conditional experts memberships τ
(s)
ik . We

then solve it by an iterative optimization algorithm similarly to the previous case of updating the

gating network parameters. As it can be seen in Appendix B.2.2, updating (βk,0,ηk) according to

(3.21) is obtained by coordinate ascent as follows. For each j ∈ [p], the closed-form update for ηkj

at the mth iteration of the coordinate ascent algorithm within the M-Step of EM-Lasso, is given

by

η
(m+1)
kj =

S
λσ2

k
(s)

(∑n
i=1 τ

(s)
ik xij(yi − ỹ(m)

ij )
)

∑n
i=1 τ

(s)
ik x2ij

, β
(m+1)
k,0 =

∑n
i=1 τ

(s)
ik (yi − x⊤

i η
(m+1)
k )

∑n
i=1 τ

(s)
ik

in which ỹ
(m)
ij = β

(m)
k,0 + x⊤

i η
(m)
k − η(m)

kj xij is the fitted value excluding the contribution from xij

and S
λσ2

k
(s)(·) is the soft-thresholding operator. We keep updating the components of (βk,0,ηk)

cyclically until no enough increase in objective function (3.21). Then, once (βk,0,ηk) are updated

while fixing the variance σ2k, the latter is then updated straightforwardly as in the case of standard

weighted Gaussian regression, and it is update is given by

σ2k
(s+1)

=

∑n
i=1 τ

(s)
ik

(
yi − β(s+1)

k,0 − x⊤
i η

(s+1)
k

)2

∑n
i=1 τ

(s)
ik

,

where (β
(s+1)
k,0 ,η

(s+1)
k ) = (β̃k,0, η̃k) is the solution obtained at convergence of the CA algorithm,

which is taken as the update in the next EM-Lasso iteration.

This completes the parameter vector update Ψ (s+1) = (ξ(s+1),θ
(s+1)
1 , . . . ,θ

(s+1)
K ) of the regularized

FME model, where ξ(s+1) and θ
(s+1)
k , k ∈ [K], are, respectively, the updates of the gating network

parameters and the experts network parameters, calculated by the coordinate ascent algorithms.

The EM-Lasso algorithm provides an estimate of the FME parameters with sparsity constraints

on the values of the parameter vectors ξ and θk, k ∈ [K]. Actually, since here these parameter

vectors do not rely directly the original functional inputs, to the output, assuming some of their

values is zero is not easily interpretable, compared to the sparsity in vectorial generalized linear

models, mixture of regressions and ME models.

From now on, we refer to FME and FME-Lasso, respectively, the FME model fitted by EM

algorithm in Section 3.2.5 and the regularized FME model fitted by EM-Lasso algorithm, in

Section 3.2.7. In the following section, we introduce a regularization that is interpretable and

encourages sparsity in the FME model.
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3.3 Interpretable Functional Mixture of Experts (iFME)

In this section, we provide a sparse and, especially highly-interpretable fit, for the coefficient

functions {βk(t), t ∈ T } and {αk(t), t ∈ T } representing each of the K functional experts and

gating network. We call our approach Interpretable Functional Mixture of Experts (iFME). The

presented iFME allows us to control the expert and gating parameter functions while still providing

performance as with the standard FME model presented previously.

3.3.1 Motivation

We rely on the methodology of Functional Linear Regression That’s Interpretable (FLiRTI) presented

in James et al. (2009). The idea of the FLiRTI methodology is as follows. We use variable selection

with sparsity assumption on appropriate chosen derivatives of the coefficient function, say βzi(t)

here, in the case of the functional expert network, to produce a highly interpretable estimate for the

coefficient functions βzi(t) . For instance, β
(0)
zi (t) = 0 implies that the predictor Xi(t) has no effect

on the response Yi at t, β
(1)
zi (t) = 0 means that βzi(t) is constant in t, β

(2)
zi (t) = 0 shows that βzi(t)

is linear in t, etc. Assuming sparsity in higher-order derivatives of βzi(t), for instance when d = 3

or d = 4, will however give us a less easily interpretable fit. Hence, for example, if one believes that

the expert parameter function βzi(t) is exactly zero over a certain region and exactly linear over

other region of t, then it is necessary to estimate βzi(t) such that β
(0)
zi (t) = 0 and β

(2)
zi (t) = 0 over

those regions, respectively. In this situation, we need to model βzi(t) assuming that its zeroth and

second derivatives are sparse. However, with the EM-Lasso method derived above via the Lasso

regularization, there is no actually any reason that we could obtain those desired properties, which

may result in an estimate for βzi(t) that is rarely exactly zeros (and/or linear), and making the

sparsity and coefficient curves hard to interpret. The same situation may occur with the gating

parameter functions. To handle this, we describe in what follows the construction of our iFME

model that produces flexible-shape and highly-interpretable estimates for the expert and gating

coefficient functions, by simultaneously constraining any two of their derivatives to be sparse.

3.3.2 Interpretable sparse regularization

We start by selecting a p-dimensional basis bp(t) and a q-dimensional basis bq(t) for approximating

the experts and gating networks, respectively. For the expert network, if we divide the time

domain into a grid of p evenly spaced points, and let Dd be the dth finite difference operator
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defined recursively as

Dbp(tj) = p [bp(tj)− bp(tj−1)] ,

D2bp(tj) = D
[
Dbp(tj)] = p2[bp(tj)− 2bp(tj−1) + bp(tj−2)

]
,

...

Ddbp(tj) = D
[
Dd−1bp(tj)

]
,

then Ddbp(tj) provides an approximation for b
(d)
p (tj) = [b

(d)
1 (tj), . . . , b

(d)
p (tj)]

⊤, j ∈ [p].

Let

Ap =
[
Dd1bp(t1), D

d1bp(t2), . . . , D
d1bp(tp), D

d2bp(t1), D
d2bp(t2), . . . , D

d2bp(tp)
]⊤

(3.22)

be the matrix of approximate d1th and d2th derivative of the basis bp(t). We denote A
[d1]
p the first

p rows of Ap and A
[d2]
p the remainder, i.e., Ap = [A

[d1]
p A

[d2]
p ]⊤. One can see such matrix Ap is

in R2p×p and A
[d1]
p is a square invertible matrix. Similarly, let Aq = [A

[d1]
q A

[d2]
q ]⊤ ∈ R2q×q be the

corresponding matrix defined for the gating network.

Now, if we consider the following representation for the expert network coefficient function

γzi = Apηzi (3.23)

with γzi = (γ
[d1]
zi

⊤
,γ

[d2]
zi

⊤
)⊤, where γ

[d1]
zi = (γ

[d1]
1,zi

, . . . , γ
[d1]
p,zi)

⊤ and γ
[d2]
zi = (γ

[d2]
1,zi

, . . . , γ
[d2]
p,zi)

⊤, and ηzi

defined as in relation to βzi(t) in (3.7), then γ
[d1]
zi (resp. γ

[d2]
zi ) provides an approximation to β

(d1)
zi (t),

the d1th derivative of βzi(t) (resp. β
(d2)
zi (t), the d2th derivative of βzi(t)). Hence, enforcing sparsity

in γzi constrains β
(d1)
zi (t) and β

(d2)
zi (t) to be zero at most time points. Similarly, if we consider the

following representation for the gating network coefficient function

ωzi = Aqζzi (3.24)

with ωzi = (ω
[d1]
zi

⊤
,ω

[d2]
zi

⊤
)⊤, where ω

[d1]
zi = (ω

[d1]
1,zi
, . . . , ω

[d1]
q,zi)

⊤, ω
[d2]
zi = (ω

[d2]
1,zi
, . . . , ω

[d2]
q,zi)

⊤, and ζzi
defined as in relation to αzi(t) in (3.8), then we can derive the same interpretation for the coefficient

vector ωzi and the gating parameter function αzi(t). The constraints (3.23) and (3.24) imply

ηzi = A[d1]
p

−1
γ[d1]
zi , γ[d2]

zi = A[d2]
p A[d1]

p

−1
γ[d1]
zi ,

and

ζzi = A[d1]
q

−1
ω[d1]
zi , ω[d2]

zi = A[d2]
q A[d1]

q

−1
ω[d1]
zi ,

respectively.

In fact, one can construct Ap and Aq with only one derivative. Then the constraints involved to

the d2th derivative will be eliminated making the estimation easier, but also limiting the flexibility

in the shapes of the functions. That is why in this construction and in our experimental studies,
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Ap and Aq are constructed with multiple derivatives in order to produce curves of βzi(·) and αzi(·)
with such many desired properties.

3.3.3 The iFME model

Combining the stochastic representation of the FME model in (3.11) for the experts model and the

linear predictor definition in (3.9), we obtain the following iFME model construction,

Yi|ui(·) = βzi,0 + γ
[d1]
zi

⊤
vi + ε⋆i , (3.25)

hzi(ui(·);α) = αzi,0 + ω
[d1]
zi

⊤
si, (3.26)

subject to

γ[d2]
zi = A[d2]

p A[d1]
p

−1
γ[d1]
zi and ω[d2]

zi = A[d2]
q A[d1]

q

−1
ω[d1]
zi , (3.27)

where vi = (A
[d1]
p

−1
)⊤xi is the new design vector for the experts and si = (A

[d1]
q

−1
)⊤ri the new

one for the gating network. Hence, from (3.25) and (3.26), the conditional density of each expert

and the gating network are now written as

f(yi|ui(·);ψk) = ϕ(yi;βk,0 + γ
[d1]
k

⊤
vi, σ

2
k) (3.28)

and

πk(si;w) =
exp {αk,0 + ω[d1]

k

⊤
si}

1 +
∑K−1

k′=1 exp {αk′,0 + ω
[d1]
k′

⊤
si}

, (3.29)

where ψk = (βk,0,γ
[d1]
k

⊤
, σ2k)

⊤ is the unknown parameter vector of expert component density k

and w =

(
α1,0,ω

[d1]
1

⊤
, . . . , αK−1,0,ω

[d1]
K−1

⊤
)⊤

, with (αK,0,ω
[d1]
K

⊤
)⊤ a null vector, is the unknown

parameter vector of the gating network. Finally, gathering (3.28) and (3.29) as for (3.13), the iFME

model density is now given by

f(yi|ui(·);Ψ) =
K∑

k=1

πk(si;w)ϕ(yi;βk,0 + γ
[d1]
k

⊤
vi, σ

2
k), (3.30)

where Ψ = (w⊤,ψ⊤
1 , . . . ,ψ

⊤
K)⊤ is the parameter vector of the model to be estimated. Thus,

the iFME model constructed upon the parameter vectors γk’s and ωk’s, for which the sparsity is

assumed to obtain interpretable estimates.
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3.3.4 Regularized MLE via the EM-iFME algorithm

In order to fit the iFME model and to maintain the sparsity in γk and ωk, the following EM-iFME

algorithm is then developed to maximize the penalized log-likelihood function

L(Ψ) =
n∑

i=1

log f(yi|ui(·);Ψ) + Penλ,χ(Ψ) (3.31)

with the conditional iFME density f(yi|ui(·);Ψ) is defined in (3.30) and the new sparse and

interpretable regularization term is given by

Penλ,χ(Ψ) = λ

K∑

k=1

(∥γ[d1]
k ∥1 + ρ∥γ[d2]

k ∥1) + χ
K−1∑

k=1

(∥ω[d1]
k ∥1 + ϱ∥ω[d2]

k ∥1), (3.32)

where ρ and ϱ are, respectively, the weights associated to the d2th derivative of the expert and the

gating parameter function. The appearance of the weighting parameters ρ and ϱ, besides the usual

regularization parameters λ and χ, is motivated by the fact that one may wish to place a greater

emphasis on sparsity in the d2th derivative than in the d1th derivative of the parameter functions,

or vice versa. In practice, the selection of ρ and ϱ is more about whether they are greater than

or less than one, (i.e., the emphasis on d2th) rather than select an exact value. It is worth noting

two points: first, unlike the previous FME-Lasso, in iFME model the regularization operates on

the functional derivative γk’s rather than the functional coefficients ηk’s for the experts, and on

the functional derivatives ωk’s rather than the functional coefficients ζk’s for the gating network;

and second, maximizing the penalized log-likelihood function (3.31) with penalization in (3.32) in

iFME model must be coupled with the constrains (3.27). Follows are the two steps of the proposed

EM-iFME algorithm.

■ E-Step. The E-Step for the new iFME model calculates for each observation the conditional

probability memberships of each expert k

τ
(s)
ik = P(Zi = k|yi, ui(·);Ψ (s)) =

πk(si;w
(s))ϕ(yi;β

(s)
k,0 + v⊤

i γ
[d1]
k

(s)
, σ2k

(s)
)

f(yi|ui(·);Ψ (s))
, (3.33)

where f(yi|ui(·);Ψ (s)) is now calculated according to the iFME density given by (3.30).

■ M-Step. The maximization is performed by separate maximizations w.r.t the gating network

parameters w and the experts network parameters ψk’s.

Updating the gating network parameters. The maximization step for updating the gating

network parameters w =

(
α1,0,ω

[d1]
1

⊤
, . . . , αK−1,0,ω

[d1]
K−1

⊤
)⊤

consists of maximizing the function

53



CHAPTER 3 FUNCTIONAL MIXTURES OF EXPERTS

Qχ(w;Ψ (s)) given by

Qχ(w;Ψ (s)) = Q(w;Ψ (s))− χ
K−1∑

k=1

(∥ω[d1]
k ∥1 + ϱ∥ω[d2]

k ∥1), (3.34)

subject to

ω
[d2]
k = A[d2]

q A[d1]
q

−1
ω

[d1]
k , ∀k ∈ [K − 1], (3.35)

where Q(w;Ψ (s)) =
∑n

i=1

[∑K−1
k=1 τ

(s)
ik

(
αk,0 + ω

[d1]
k

⊤
si

)
− log

(
1 +

∑K−1
k′=1 exp{αk′,0 + ω

[d1]
k′

⊤
si}
)]
· This

is a constrained version of the weighted regularized multinomial logistic regression problem, where

the weights are the conditional probabilities τ
(s)
ik .

To solve it, in the same spirit as when updating the gating network in the previous EM-Lasso

algorithm, we use an outer loop that cycles over the gating function parameters to update them one

by one. However, to update a single gating function parameter wk = (αk,0,ω
[d1]
k

⊤
)⊤, k ∈ [K − 1],

since the maximization problem (3.34) is now coupled with an additional constraint (3.35), rather

than using a coordinate ascent algorithm as in EM-Lasso, we use the following alternative approach.

For each single gating network k, using a Taylor series expansion, we partially approximate the

smooth part of Qχ(w;Ψ (s)) defined in (3.34) w.r.t. wk at the current estimate w(t), then maximize

the resulting objective function (w.r.t. wk), subject to the corresponding constraint (w.r.t. k)

in (3.35). It corresponds to solving the following penalized weighted least squares problem with

constraints,

max
(αk,0, ω

[d1]
k ,ω

[d2]
k )

−1

2

n∑

i=1

wik(cik − αk,0 − s⊤i ω
[d1]
k )2 − χ(∥ω[d1]

k ∥1 + ϱ∥ω[d2]
k ∥1)

subject to ω
[d2]
k = A[d2]

q A[d1]
q

−1
ω

[d1]
k ,

(3.36)

where wik = πk(w
(t); si)

(
1− πk(w(t); si)

)
are the weights and cik = α

(t)
k,0+s⊤i ω

[d1]
k

(t)
+
τ
(s)
ik −πk(w(t);si)

wik

are the working responses computed given the current estimate w(t). This problem can be solved

by quadratic programming (see, e.g., Gaines et al. (2018)) or by using the Dantzig selector (Candes

et al., 2007), which we opt to use in our experimental studies. The details of using Dantzig selector

to solve problem (3.36) are given in Appendix B.3.1.

Therefore, if (α̃k,0, ω̃
[d1]
k , ω̃

[d2]
k ) is an optimal solution to problem (3.36), then w̃k = (α̃k,0, ω̃

[d1]
k

⊤
)⊤

is taken as an update for the gating parameter vector wk. We keep cycling over k ∈ [K − 1] until

there is no significant increase in the regularized Q−function (3.34).
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Updating the experts network parameters. The maximization step for updating the expert

parameter vector ψk = (βk,0,γ
[d1]
k

⊤
, σ2k)

⊤ consists of solving the following problem:

max
(βk,0, γ

[d1]
k ,γ

[d2]
k ,σ2

k)

n∑

i=1

τ
(s)
ik log ϕ(yi;βk,0 + v⊤

i γ
[d1]
k , σ2k)− λ(∥γ

[d1]
k ∥1 + ρ∥γ[d2]

k ∥1)

subject to γ
[d2]
k = A[d2]

p A[d1]
p

−1
γ
[d1]
k .

(3.37)

As in the previous EM-Lasso algorithm, we first fix σ2k to its previous estimate and perform the

update for (βk,0,γ
[d1]
k ), which corresponds to solving a penalized weighted least squares problem

with constraints. This is be performed by using the Dantzig selector, in the same manner as

previously for solving problem (3.36). The corresponding technical details can be found in Appendix B.3.2.

Once the (βk,0,γ
[d1]
k ) are updated, the straightforward update for the variance σ2k is given by

the standard estimate of a weighted Gaussian regression. More specifically, let (β̃k,0, γ̃
[d1]
k , γ̃

[d2]
k ) be

the solution to the problem (3.37) (with σ2k fixed to σ2k
(s)

), the updates for expert parameter vector

ψk are given by

(β
(s+1)
k,0 ,γ

[d1]
k

(s+1)
) = (β̃k,0, γ̃

[d1]
k ),

σ2k
(s+1)

=

∑n
i=1 τ

(s)
ik

(
yi − β(s+1)

k,0 − v⊤
i γ

[d1]
k

(s+1)
)2

∑n
i=1 τ

(s)
ik

·

Thus, at the end of the M-Step, we obtain a parameter vector update Ψ (s+1) = (w(s+1),

ψ
(s+1)
1 , . . . ,ψ

(s+1)
K ) for the next EM iteration, where w(s+1) and ψ

(s+1)
k , k ∈ [K], are, respectively,

the updates of the gating network parameters and the experts network parameters, calculated by

the two procedures described above. Alternating the E-Step and M-Step until convergence, i.e.,

when there is no longer a significant change in the values of the penalized log-likelihood (3.31),

leads to a penalized maximum likelihood estimate Ψ̂ for Ψ .

Estimating the coefficient functions. Finally, once the parameter vector of iFME model has

been estimated, the coefficient functions of the gating network αk(t), k ∈ [K − 1] and the ones of

the experts network βk(t), k ∈ [K], can be reconstructed by the following formulas,

α̂k(t) = bq(t)
⊤A−1

q ω̂
[d1]
k ,

β̂k(t) = bp(t)
⊤A−1

p γ̂
[d1]
k ,

(3.38)

where ω̂
[d1]
k and γ̂

[d1]
k are respectively the regularized maximum likelihood estimates for ω

[d1]
k and

γ
[d1]
k .
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3.3.5 Clustering and non-linear regression with FME models

Once the model parameters have been estimated, a soft partition of the data into K clusters,

represented by the estimated posterior probabilities τ̂ik = P(Zi = k|ui, yi; Ψ̂), is obtained. A

hard partition can also be computed according to the Bayes’ optimal allocation rule. That is,

by assigning each curve to the component having the highest estimated posterior probability τik,

defined by (3.15) for FME or by (3.33) for the iFME model, uing the MLE Ψ̂ of Ψ :

ẑi = arg max
1⩽k⩽K

τik(Ψ̂), i ∈ [n],

where ẑi denotes the estimated cluster label for the ith curve.

For the aim of functional non-linear regression, the unknown non-linear regression function with

functional predictors is given by the following conditional expectation ŷ|u(·) = E[Y |U(·); Ψ̂ ], which

is defined by

ŷi|ui(·) =
K∑

k=1

πk(ri; ξ̂)(β̂k,0 + η̂
⊤
k xi, σ̂

2
k)

for the FME model (3.13), and by

ŷi|ui(·) =
K∑

k=1

πk(si; ŵ)(β̂k,0 + γ
[d1]
k

⊤
vi, σ̂

2
k)

for the iFME model (3.30).

3.3.6 Tuning parameters and model selection

In practice, appropriate values of the tuning parameters should be chosen. In using FME, this

cover the selection of K, the number of experts, and r, p, and q, the dimensions of B-spline bases

used to approximate, respectively, the predictors, the experts, and the gating network functions,

although they can be chosen to be equal. For the FME-Lasso, additionally the ℓ1 penalty constants

χ and λ in (3.19) should be chosen. For the iFME model, the tuning parameters include also d1,

d2, the two derivatives related to the sparsity constraints, and ρ, ϱ, the weights associated to the

d2th derivative of the expert and gating functions (see (3.32)).

The selection of the tuning parameters can be performed by a cross–validation procedure with

a grid search scheme to select the best combination. An alternative is to use the well-known BIC

criterion (Schwarz, 1978) or, in our context, its extension, called modified BIC (Städler et al., 2010)

defined as

mBIC = L(Ψ̂)− df(Ψ̂)
log n

2
, (3.39)

where Ψ̂ is the obtained log-likelihood estimator (for the FME model) or penalized log-likelihood

estimator (for the FME-Lasso and iFME models), and the number of degrees of freedom df(Ψ̂) is
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the effective number of parameters of the model, given by

df(Ψ̂) =




df(ζ) + (K − 1) + df(η) +K +K for the FME and FME-Lasso models,

df(ω) + (K − 1) + df(γ) +K +K for the iFME model,

in which the quantities df(ζ), df(η), df(ω) and df(γ) are, respectively, the counts for non-zero free

coefficients in the vectors ζ, η, ω, and γ. Note that, because of the constraints (3.27) for the iFME

model, free coefficients in ω and γ consist of only the part related to the d1 derivative. That is,

df(ζ) =
∑K−1

k=1

∑q
j=1 1{ζkj ̸=0}, df(η) =

∑K
k=1

∑p
j=1 1{ηkj ̸=0}, df(ω) =

∑K−1
k=1

∑q
j=1 1{ω[d1]

kj ̸=0} and

df(γ) =
∑K

k=1

∑p
j=1 1{γ[d1]kj ̸=0}. We apply both the BIC and the modified BIC in our experimental

study.

3.4 Experimental studies

We study the performances of the FME, FME-Lasso, and iFME models in regression and clustering

problems by considering simulated scenarios and real-world data with functional predictors and

scalar responses. The interests of this study consist of the prediction performance as well as the

estimation of the functional parameters, i.e., the expert and gating functions in the mixture-of-

experts model, along with the clustering partition of the considered heterogeneous data.

3.4.1 Evaluation criteria

We will use the following criteria, for where applicable, to assess and compare the performances of

the models and the related algorithms. For regression evaluation, we use the relative predictions

error (RPE) and the correlation (Corr) index to quantify the relationship between the true and

the predicted values of the scalar outputs. The RPE is defined by RPE =
∑n

i=1(yi− ŷi)2/
∑n

i=1 y
2
i ,

where yi and ŷi are, respectively, the true and the predicted response of the ith observation in the

testing set. For clustering evaluation, we use the adjusted Rand index (ARI), and the clustering

error (ClusErr), to quantify how similar the testing observations are presented in the true partition

compared to the predicted partition. To evaluate the parameters estimation performance, we

compute the mean squared error (MSE) between the true and the estimated functional parameters.

The MSE between a true function g(·) and its estimate ĝ(·) is defined by

MSE(ĝ(·)) = 1

m

m∑

j=1

(g(tj)− ĝ(tj))2 , (3.40)

m being the number of time points taken into account. The function g(·) here corresponds to an

expert function β(·), or a gating function α(·). The parameter functions are reconstructed from
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the model parameters using (3.7, 3.8) for both FME and FME-Lasso models, and using (3.38) for

iFME model.

The values of these criteria are averaged over N Monte Carlo runs (N = 100 for simulation, for

the real-world data, see the corresponding section). Note that, the average over N sample replicates

of MSE(ĝ(·)) is equivalent to the usual Mean Integrated Squared Error (MISE) MISE(ĝ(·)) =

E
[∫

T (ĝ(t)− g(t))2dt
]
, where the integral here is calculated numerically by a Riemann sum over

the grid t1, . . . , tm.

3.4.2 Simulation studies

3.4.2.1 Data generating protocol

In the simulated data, the data generation protocol is as follows. We consider a K-component

functional mixture of Gaussian experts model that relates a scalar response y ∈ R to a univariate

functional predictor X(t), t ∈ T defined on a domain T ⊂ R. Given the model parameters (defined

in the next paragraph) β = {βk,0, βk(t), σ2k}Kk=1 and α = {αk,0, αk(t)}Kk=1, t ∈ T , we first construct

the functional predictors Xi(·) for i ∈ [n] using the representation defined in (3.5), with detailed

parameterization in (3.42). Then, for each i ∈ [n], conditional on the functional predictor Xi(·),
a hidden categorical random variable Zi ∈ [K] is generated following the multinomial distribution

M
(
1,
(
π1(Xi(t);α), . . . , πK(Xi(t);α)

))
, where πk(Xi(t);α) for k ∈ [K] is given by (3.3). Finally,

conditional on Zi = zi and Xi(·), the scalar response Yi is obtained by sampling from the Gaussian

distribution with mean βzi,0+
∫
T Xi(t)βzi(t)dt and variance σ2zi . The value zi is then the true cluster

label of the predictor Xi(·). This hierarchical generative process can be summarized as follows:

Yi|Zi = zi, Xi(t) ∼ N
(
βzi,0 +

∫

T
Xi(t)βzi(t)dt; σ

2
zi

)
,

Zi|Xi(t) ∼ M
(
1,
(
π1(Xi(t);α), . . . , πK(Xi(t);α)

))
.

(3.41)

The true generated data (Xi(·), Yi, Zi) are used for evaluating the prediction and clustering performance.

Finally, to mimic real-world data, in our simulations, the generated predictorsXi(·) are contaminated

with measurement errors, that means we will not use Xi(·) for analysis, but

Ui(t) = Xi(t) + δi(t),

with δi(t) is an independent Gaussian noise with mean zero and constant variance σ2δ for all t ∈ T .
We considered different noise levels σ2δ (see Table 3.1).

3.4.2.2 Simulation parameters and experimental protocol

The parameters that were used in the data generating process (3.41) are as follows. We consider

K = 3 components and a time-domain T = [0, 1].
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Functional experts and gating parameters: The functional experts parameters are given by

β1(t) =





−50(t− 0.5)2 + 4 if 0 ⩽ t < 0.3,

0 if 0.3 ⩽ t < 0.7,

50(t− 0.5)2 − 4 if 0.7 ⩽ t ⩽ 1,

β2(t) = −β1(t),
β3(t) = 100(t− 0.5)2 − 10, 0 ⩽ t ⩽ 1,

(β1,0, β2,0, β3,0)
⊤ = (−5, 0, 5)⊤,

(σ21, σ
2
2, σ

2
3)

⊤ = (5, 5, 5)⊤,

and the functional gating network parameters are given by

α1(t) = 80(t− 0.5)2 − 8,

α2(t) = −α1(t), α3(t) = 0, 0 ⩽ t ⩽ 1,

(α1,0, α2,0, α3,0)
⊤ = (−10,−10, 0)⊤.

Note that to satisfy the identifiability condition (see Jiang and Tanner (1999)), the experts are

ordered, for instance (β1,0, β1, σ
2
1) ≺ . . . ≺ (βK,0, βK , σ

2
K), and the last gating network parameters,

αK,0, αK(t), are initialized, i.e., fixed to zero. Here, “≺” is the lexicographical order on Rp+2.

As it can be seen in Figure 3.1, the expert parameter functions β1(t) and β2(t) have a flat

region in the interval 0.3 ⩽ t < 0.7, outside of which they are quadratic, while β3(t) and the

gating parameter functions α1(t), α2(t) are all quadratic on the whole domain. By considering

this network, we can later compare the sparsity in the zeroth and third derivatives of the solutions

obtained by the proposed models.
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Figure 3.1: The true expert and gating functions used in simulations.

Functional predictors parameters: In this simulation, the functional predictors Xi(·) are

constructed using the following formula,

Xi(t) = x
⊤
i b(t), t ∈ T , (3.42)

in which b(t) = [b1(t), . . . , b10(t)]
⊤ is a 10-dimensional B-spline basis xi ∈ R10 is a coefficient vector

defined as xi = Wvi, where W ∈ R10×10 is a matrix of i.i.d random values from the uniform
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distribution U(0, 1) and vi ∈ R10 is a vector of i.i.d random values from the normal distribution

N (0, 10). Here, the matrix W acts as a factor to facilitate the fluctuation of the generated Xi(·).

Noisy functional predictors: Since in real practical situations we do not usually directly

observe the true functional predictors X(·)’s, but only a noisy and discretized version of them,

we thus consider several scenarios with different noise and sampling levels. To this end, in the data

generating protocol we consider noisy versions Ui(tj) = Xi(tj) + δi(tj) of the functional predictors

values Xi(tj), where δi(tj) ∼ N (0, σ2δ ) is a centred Gaussian noise with variance σ2δ , for all i ∈ [n],

j ∈ [m]. We investigate simulated scenarios S1, . . . , S4 with curve length m and the noise level σ2δ
of the functional predictors, including two levels of sampling m ∈ {100, 300}, and two levels of noise

σ2δ ∈ {1, 4}. The resulting four considered scenarios of simulated data are presented in Table 3.1.

For each considered scenario, we generate N = 100 datasets, each dataset contains n = 200 pairs

of (Ui(t), Yi), i ∈ [n]. Figure 3.2 displays, for each scenario, 10 randomly taken predictors colored

according to their corresponding clusters. For each run, the concerned dataset is randomly split
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-40

-20

0

20

40

S1 predictors

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-40

-20

0

20

40

60
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Figure 3.2: 10 randomly taken predictors in scenarios S1 (large m and small σδ), S2 (small m and
small σδ), S3 (large m and large σδ), and S4 (small m and large σδ). Here, the noisy predictors
Ui(·) are colored (blue, red, yellow) according to their true cluster labels Zi ∈ {1, 2, 3}.

into a training set and testing set of equal size, the model parameters are estimated using training

set, with the tuning parameters selected by maximizing the modified BIC (3.39). The evaluation

Scenario S1 S2 S3 S4

σ2δ 1 1 4 4
m 300 100 300 100

Table 3.1: Simulation scenarios with different noise level σ2δ and curve sampling level m.
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criteria are computed on testing set and reported for each model accordingly.

3.4.2.3 Some implementation details

For all scenarios, for all datasets, we implemented the three proposed models with 10 EM runs

and with a tolerance of 10−6. For the iFME model, in principle, for each parameter function the

two derivatives d1 and d2 to be penalized, and the weights for the latter (i.e., ρ and ϱ) can be

seen as tuning parameters. However, such an implementation could be computationally expensive

in this simulation study with 400 datasets in total and 10 EM runs for each dataset. Therefore,

we opted to fix d1 and d2 for all implementations (d1 = 0 and d2 = 3 for both expert and gating

networks.) and left ρ and ϱ to be selected in some sets of targeted values. The choices of the

targeted values were made by the following straightforward arguments. Since β1(·) and β2(·) have
zero-valued regions, the weight for their zeroth derivative in penalization term should be large,

equivalently, the weight for the third derivative should be small, so ρ is selected in a set of small

values: ρ ∈ {10−2, 10−3, 10−4}. On the other hand, for α1(t) and α2(t), we select ϱ ∈ {10, 102, 103}
as we should emphasize sparsity in their third derivative.

3.4.2.4 Simulation results

Clustering and prediction performances. We report in Table 3.2 the results of regression

and clustering tasks on simulated datasets in the four considered scenarios.

RPE Corr ARI ClusErr

S1 (m = 300, σ2
δ = 1)

FME .1552(.1282) .9188(.0602) .7852(.0934) .0899(.0434)
FME-Lasso .1390(.1074) .9224(.0603) .7670(.1436) .1112(.0891)

iFME .1334(.0977) .9287(.0504) .7997(.0796) .0792(.0340)
S2 (m = 100, σ2

δ = 1)

FME .1600(.1698) .9164(.0712) .7966(.0881) .0852(.0427)
FME-Lasso .1656(.1316) .9071(.0733) .7455(.1520) .1236(.0961)

iFME .1540(.0950) .9192(.0476) .7955(.0822) .0820(.0341)
S3 (m = 300, σ2

δ = 4)

FME .1724(.1807) .9110(.0778) .7798(.0838) .0918(.0415)
FME-Lasso .1457(.1504) .9197(.0785) .7629(.1524) .1115(.0928)

iFME .1432(.0860) .9228(.0448) .7987(.0899) .0783(.0361)
S4 (m = 100, σ2

δ = 4)

FME .2251(.4462) .9048(.0822) .7816(.1040) .0927(.0497)
FME-Lasso .1432(.1229) .9188(.0683) .7526(.1654) .1215(.1055)

iFME .1639(.0978) .9125(.0521) .7798(.0848) .0864(.0325)

Table 3.2: Evaluation criteria of FME, FME-Lasso and iFME models for test data in scenarios
S1, . . . , S4. The reported values are the averages of 100 Monte Carlo runs with standard errors in
parentheses. The bold values correspond to the best solution.
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The mean and standard error of the relative predictions error (RPE) and correlation (Corr)

summarize the regression performance, while the mean and standard error of the Rand index (RI),

adjusted Rand index (ARI) and clustering error (ClusErr) summarize the clustering performance.

As we can see from Table 3.2, all the models have very good performances on both regression

and clustering tasks, with high correlation, RI, ARI, and small RPE and clustering error. The

iFME appears to slightly have a better performance than the others in all scenarios. The low

standard errors confirm the stability of the algorithms.

Figure 3.3 shows the clustering results obtained by the models with highest values of the

modified BIC criterion, on a dataset selected in scenario S1. Here, we plotted the responses against

the predictors at two specific time points: t1 = 0 and t50 = 0.5. The highly accurate predictions (in

both regression and clustering) can be seen visually through Figure 3.3. This figure also shows that

it is difficult to cluster these data according to a few number of time observations, for example in

R2, according to {(Ui(t0), yi)}ni=1 or {(Ui(t50), yi)}ni=1, which suggests using functional approaches.
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Figure 3.3: Scatter plots of ŷi against Ui(t1) (top panels) and Ui(t150) (bottom panels) on a
randomly selected dataset. Here, the clustering errors are 5.5%, 4.75% and 5.0% for FME, FME-
Lasso and iFME models, respectively.

Comparison with functional regression mixtures (FMR). Finally, we compare our proposed

models with the functional mixture regression (FMR) model proposed in Yao et al. (2010). In their

approach, the functional predictors are first projected onto its eigenspace, then the obtained new

coordinates are fed to the standard mixture regression model to estimate the weights and the

coefficients of the β̂(·) in that eigenspace. They performed functional principal component analysis

(FPCA) to obtain estimates for the eigenfunctions and the principal component scores (which

serve as predictors). The number of relevant FPCA components are chosen automatically for each

dataset by selecting the minimum number of components that explain 90% of the total variation
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of the predictors. It is noticed that, in their simulation studies, the authors computed the scalar

responses by using conditional prediction, i.e., the true yi were used to determine which cluster the

observation belongs to. Then the predicted ŷi is calculated as the conditional mean of the density

of the corresponding cluster. For comparison with that approach, we also used this strategy to

make predictions in our models. We further employed the FMR model with the B-spline functional

representation, instead of the functional PCA, the number of B-spline functions is set to be the

same as the number of basis functions used in our models. Table 3.3 shows the evaluation criteria

corresponding to the considered models evaluated on 100 datasets in scenario S3. Here, FMR-PC

is the original model of Yao et al. (2010) and FMR-B is the modified one with B-spline bases. As

expected, FME, FME-Lasso, and iFME, which are more flexible compared to the the FMR model,

allows to capture more complexity in the data, thanks to the predictor-depending mixture weights,

and provides clearly better results than the FMR alternatives.

RPE Corr ARI ClusErr

FME .0614(.0896) .9681(.0469) .8523(.0934) .0618(.0490)
FME-Lasso .0145(.0254) .9924(.0133) .9582(.0641) .0174(.0325)

iFME .0139(.0086) .9928(.0046) .9594(.0430) .0151(.0166)
FMR-B .0460(.0399) .9768(.0201) .7064(.1044) .1124(.0434)

FMR-PC .0191(.0331) .9902(.0164) .8345(.0794) .0612(.0361)

Table 3.3: Performance comparison of the models for datasets in scenarios S3. The reported values
are the averages of 100 Monte Carlo samples with standard errors in parentheses.

Parameter estimation performance. To evaluate the parameter estimation performance, we

consider the functional parameter functions estimation error as defined by (3.40). This error

between the true function and the estimated one, provides an evaluation of how well the proposed

models reconstruct the hidden functional gating and expert networks. In this evaluation, we

considered scenario S1, i.e., m = 300, σ2δ = 1. Moreover, in order to provide an idea of the

impact of training size on parameter estimation, we run the models with different training sizes

(share the same scenario S1) and report the MSE for each function, for each model in Table 3.4.

It shows that there are significant improvements, even with small training size, when using iFME

model in estimating the gating network, compared to the FME and FME-Lasso model.

Now, in order to evaluate the designed sparsity of zeroth and third derivatives of the reconstructed

functions, we compute the MSEs versus their true values, i.e., zeros, on each designed intervals.

In particular, we divide the domain T = [0, 1] into three parts: T1 = [0, 0.3), T2 = [0.3, 0.7), and

T3 = [0.7, 1], then for each model the MSEs on the corresponding intervals are reported in Table 3.5.

The reported values show that, as expected, iFME model is better than both FME and FME-

Lasso in providing sparse solutions with respect to the derivatives of the parameter functions.

Table 3.6 shows the means and the standard errors of the estimated intercepts and variances.
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β̂1(·) β̂2(·) β̂3(·) α̂1(·) α̂2(·)
Training size: 100

FME 11.68(56.63) 6.21(24.34) 8.57(27.60) 5.15e+04
(7.23e+04)

5.69e+04
(5.90e+06)

FME-Lasso 0.53(0.19) 0.66(0.55) 0.62(0.79) 17.06(28.68) 19.50(37.07)
iFME 1.09(0.78) 1.05(0.82) 2.44(3.06) 5.76(7.78) 4.25(3.58)

Training size: 200

FME 0.77(0.48) 0.61(0.30) 0.19(0.20) 8.55(11.99) 9.57(8.29)
FME-Lasso 0.54(0.18) 0.54(0.20) 0.31(0.81) 10.71(16.63) 12.64(16.33)

iFME 0.55(0.50) 0.48(0.38) 1.26(2.91) 5.34(6.21) 2.81(2.82)
Training size: 300

FME 0.62(0.56) 0.59(0.50) 0.16(0.18) 12.58(19.83) 16.49(30.97)
FME-Lasso 0.60(0.52) 0.57(0.44) 0.17(0.19) 11.26(16.56) 13.15(24.80)

iFME 0.56(0.43) 0.59(0.50) 0.49(0.47) 2.98(3.12) 3.16(3.02)
Training size: 400

FME 0.54(0.23) 0.53(0.19) 0.11(0.12) 8.27(11.73) 7.08(8.53)
FME-Lasso 0.52(0.18) 0.51(0.16) 0.15(0.18) 6.09(8.98) 5.14(6.51)

iFME 0.34(0.19) 0.38(0.25) 0.74(0.62) 3.06(4.21) 2.77(3.21)
Training size: 500

FME 0.49(0.22) 0.50(0.28) 0.09(0.11) 5.17(7.52) 3.90(5.69)
FME-Lasso 0.49(0.18) 0.49(0.21) 0.09(0.11) 4.62(7.28) 7.63(16.27)

iFME 0.35(0.23) 0.40(0.25) 0.55(0.63) 2.11(2.82) 2.68(4.70)

Table 3.4: Average of 100 Monte Carlo runs of MSE between the estimated functions resulted by
FME, FME-Lasso and iFME models in S1 scenario.

64



3.4 EXPERIMENTAL STUDIES

on T2 on T1 ∪ T3 on T
β̂
(0)
1 (·) β̂

(0)
2 (·) β̂

(3)
1 (·) β̂

(3)
2 (·) β̂

(3)
3 (·) α̂

(3)
1 (·) α̂

(3)
2 (·)

Training size: 100

FME 0.26
(0.15)

0.48
(0.91)

0.15
(0.07)

0.12
(0.08)

3.96e908
(1.37e907)

9.24e906
(3.32e905)

1.08e905
(2.62e905)

FME-Lasso 0.27
(0.19)

0.26
(0.16)

0.14
(0.07)

0.15
(0.09)

1.64e909
(7.64e909)

7.37e909
(2.64e908)

5.12e909
(1.70e908)

iFME 0.40
(0.26)

0.37
(0.30)

0.20
(0.10)

0.18
(0.11)

6.48e909
(2.44e908)

4.05e909
(1.33e908)

2.46e909
(4.51e909)

Training size: 200

FME 0.43
(0.56)

0.22
(0.09)

0.16
(0.10)

0.14
(0.05)

2.23e911
(2.69e911)

1.64e910
(2.33e910)

3.83e910
(8.90e910)

FME-Lasso 0.21
(0.11)

0.20
(0.09)

0.15
(0.05)

0.15
(0.05)

3.62e911
(6.04e911)

2.36e910
(3.38e910)

2.96e910
(6.41e910)

iFME 0.18
(0.08)

0.17
(0.09)

0.12
(0.05)

0.12
(0.05)

9.95e910
(2.00e909)

1.44e909
(2.72e909)

8.52e910
(1.22e909)

Training size: 300

FME 0.25
(0.30)

0.22
(0.25)

0.16
(0.10)

0.15
(0.09)

1.72e911
(2.30e911)

2.55e910
(4.61e910)

1.01e910
(1.42e910)

FME-Lasso 0.25
(0.28)

0.21
(0.23)

0.16
(0.09)

0.15
(0.08)

1.73e911
(2.52e911)

1.41e910
(2.00e910)

1.64e910
(3.77e910)

iFME 0.25
(0.19)

0.24
(0.19)

0.16
(0.08)

0.15
(0.08)

5.94e910
(1.26e909)

5.41e910
(7.26e910)

7.15e910
(1.05e909)

Training size: 400

FME 0.23
(0.12)

0.23
(0.10)

0.16
(0.05)

0.16
(0.06)

1.62e911
(3.53e911)

1.29e910
(3.59e910)

8.14e911
(1.02e910)

FME-Lasso 0.22
(0.11)

0.21
(0.10)

0.16
(0.05)

0.16
(0.05)

1.90e911
(3.55e911)

9.71e911
(1.63e910)

1.03e910
(1.54e910)

iFME 0.14
(0.08)

0.16
(0.09)

0.08
(0.03)

0.08
(0.04)

1.87e908
(1.42e908)

1.13e908
(1.77e908)

9.91e909
(1.05e908)

Training size: 500

FME 0.22
(0.11)

0.21
(0.10)

0.17
(0.05)

0.17
(0.05)

2.12e911
(4.66e911)

8.98e911
(2.70e910)

1.03e910
(2.83e910)

FME-Lasso 0.21
(0.09)

0.20
(0.09)

0.17
(0.05)

0.17
(0.05)

1.90e911
(3.64e911)

7.02e911
(1.44e910)

8.91e911
(1.69e910)

iFME 0.14
(0.07)

0.16
(0.08)

0.08
(0.04)

0.08
(0.04)

1.55e908
(1.34e908)

1.03e908
(1.58e908)

8.34e909
(1.20e908)

Table 3.5: MSE of the derivatives of reconstructed functions on the corresponding interested
intervals, in which, T1 = [0, 0.3), T2 = [0.3, 0.7), T3 = [0.7, 1] and T = [0, 1]. The reported
values are the averaged of 100 Monte Carlo samples with standard errors in parentheses.
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Note that these coefficients are not considered in the penalization. For the intercepts βk,0, all the

models estimated them very well, while for the intercepts αk,0, iFME is slightly better than the

others. For the variances, FME-Lasso gave the estimated values closest with the true values on

average.

β̂1,0 β̂2,0 β̂3,0 α̂1,0 α̂2,0 σ̂1 σ̂2 σ̂3

True value −5 0 5 −10 −10 5 5 5

Training size: 100

FME −16.90
(18.91)

−3.18
(3.25)

4.17
(8.87)

−31.37
(30.74)

−25.20
(41.27)

32.38
(40.05)

15.19
(25.15)

21.47
(24.71)

FME-Lasso −6.48
(9.37)

−0.07
(1.95)

5.51
(4.63)

−12.53
(8.99)

−12.69
(10.99)

6.86
(10.98)

6.73
(8.08)

10.01
(20.60)

iFME −4.95
(1.14)

0.21
(1.08)

5.05
(0.90)

−9.44
(3.85)

−9.39
(3.31)

5.70
(1.46)

5.75
(1.49)

4.70
(1.51)

Training size: 200

FME −4.83
(0.78)

0.14
(0.54)

4.89
(0.38)

−23.77
(26.36)

−16.10
(6.65)

5.77
(1.26)

5.63
(0.95)

5.24
(0.79)

FME-Lasso −4.97
(0.66)

0.07
(0.60)

4.99
(0.45)

−12.70
(4.45)

−13.72
(4.38)

5.94
(1.23)

5.99
(1.12)

4.92
(1.30)

iFME −4.85
(0.72)

0.19
(0.68)

4.99
(0.42)

−9.30
(3.15)

−9.21
(2.83)

5.77
(0.90)

5.72
(1.02)

5.28
(1.27)

Training size: 300

FME −4.99
(0.55)

−0.06
(0.54)

4.98
(0.26)

−16.82
(13.09)

−17.18
(14.89)

5.92
(1.14)

5.87
(0.94)

5.34
(0.84)

FME-Lasso −5.03
(0.54)

−0.03
(0.53)

4.98
(0.27)

−13.06
(4.54)

−12.96
(4.96)

6.08
(1.10)

5.99
(1.07)

5.37
(0.89)

iFME −4.93
(0.61)

0.04
(0.56)

5.00
(0.29)

−8.96
(2.48)

−8.85
(2.57)

5.54
(0.75)

5.53
(0.72)

5.53
(0.87)

Training size: 400

FME −5.02
(0.43)

0.01
(0.40)

5.04
(0.28)

−16.37
(9.93)

−15.39
(7.83)

5.99
(1.01)

6.20
(1.09)

5.47
(0.77)

FME-Lasso −5.03
(0.43)

−0.02
(0.38)

5.02
(0.27)

−13.18
(4.61)

−12.65
(4.57)

5.99
(0.94)

6.13
(1.01)

5.45
(0.84)

iFME −4.89
(0.45)

0.05
(0.35)

5.01
(0.27)

−10.17
(2.79)

−9.82
(2.61)

5.08
(0.60)

5.22
(0.58)

5.57
(0.85)

Training size: 500

FME −5.00
(0.41)

−0.01
(0.38)

5.01
(0.25)

−14.09
(7.26)

−15.42
(9.64)

6.09
(0.98)

6.06
(0.93)

5.44
(0.69)

FME-Lasso −4.99
(0.40)

−0.01
(0.37)

5.01
(0.26)

−11.35
(3.27)

−12.38
(4.15)

6.13
(0.98)

6.06
(0.90)

5.44
(0.68)

iFME −4.92
(0.44)

0.06
(0.34)

5.02
(0.27)

−9.23
(1.93)

−9.61
(2.68)

5.23
(0.55)

5.13
(0.55)

5.60
(0.75)

Table 3.6: Intercepts and variances obtained by FME, FME-Lasso and iFME models in scenario
S1. The reported values are the averages of 100 Monte Carlo samples with standard errors in
parentheses.

Table 3.7 shows a comparison between three different initialization strategies for the EM

algorithm. In particular, the initialization strategies regards only the gating network parameter

vector, since for the expert network a K-means approach is more suitable. With the “rand.”
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log likelihood RPE Time (s)

rand. zeros LR rand. zeros LR rand. zeros LR

FME −215.52
(24.77)

−221.03
(18.51)

−285.23
(69.30)

0.19
(0.16)

0.20
(0.13)

0.38
(0.29)

0.21
(0.50)

0.16
(0.12)

0.52
(1.99)

FME-Lasso −235.35
(21.98)

−239.47
(18.54)

−244.99
(63.09)

0.14
(0.11)

0.13
(0.10)

0.20
(0.16)

1.13
(1.23)

1.08
(2.48)

4.63
(15.51)

iFME −254.65
(7.83)

−256.26
(13.76)

−336.87
(80.38)

0.13
(0.09)

0.13
(0.09)

0.35
(0.30)

6.58
(4.45)

4.17
(3.65)

3.91
(2.08)

Table 3.7: Comparison of different initialization strategies. The reported values are the mean and
standard error (in parentheses) over 100 Monte Carlo runs.

strategy, all coefficients of the gating network parameter vectors are drawn randomly in N (0, 1).

With the “zeros” strategy, they are initialized as zeros. And with the “LR” we basically perform a

logistic regression where the predictors are the design vectors associated with the gating network

(i.e., ri for FME, FME-Lasso, and si for iFME model), and the responses are the labels resulted

by K-means on the gating design matrix.

Finally, to illustrate the selection of the number of expert components using BIC and/or

modified BIC in this simulation study, we provide, in Figure 3.4, the plots of these criteria against

the number of experts for each model. Here, we implemented the models with all fixed tuning

parameters, except K which varies in the set {1, . . . , 6}. We can observe that BIC selects the

correct number K = 3 for both FME-Lasso and iFME, while it selects K = 4 for FME. However,

the modified BIC selects K = 4 for both FME and FME-Lasso, and selects the true number of

components K = 3 for iFME.
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Figure 3.4: Values of BIC (top) and modified BIC (bottom) for (a) FME, (b) FME-Lasso and (c)
iFME model versus the number of experts K, fitted on a randomly taken dataset in scenario S1.
Here, the square points correspond to the highest values.
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3.4.3 Application to real-world data

In this section, we apply the FME, FME-Lasso and iFME models to two well-known real-world

datasets, Canadian weather and Diffusion Tensor Imaging (DTI). For each dataset, we perform

clustering and investigate the prediction performance, estimate the functional mixture of experts

models with different number of experts K and perform the selection of K using modified BIC,

and discuss the obtained results.

3.4.3.1 Canadian weather data

Canadian weather is a well-known meteorological data set in FDA. This dataset consists ofm = 365

daily temperature measurements (averaged over the year 1961 to 1994) at n = 35 weather stations in

Canada, and their corresponding average annual precipitation (in log scale). The weather stations

are located in K = 4 climate zones: Atlantic, Pacific, Continental and Arctic (Figure 3.5b). In this

dataset, presented in Figure 3.5a, the noisy functional predictors Ui(·) are the curves of 365 averaged
daily temperature measurements, the scalar responses Yi are the corresponding total precipitation

at each station i, during the year, for 35 stations. Its station climate zone is taken as a cluster label

(the cluster label Zi ∈ {1, · · · , 4}. The aim here is to use the daily temperature curves (functional
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Figure 3.5: (a) 35 daily mean temperature measurement curves; (b) Geographical visualization of
the stations, in which the sizes of the bubbles corresponds to their log of precipitation values and
the colors correspond to their climate regions.

predictors) to predict the precipitations (scalar responses) at each station. Moreover, in addition to

predicting the precipitation values, we are interested in clustering the temperature curves (therefore

the stations), as well as identifying the periods of time of the year that have effect on prediction

for each group of curves.

Firstly, in order to assess the prediction performance of the FME, FME-Lasso and iFME models

on this dataset, we implement the models by selecting the tuning parameters, including the number

of expert components K in the set {1, 2, 3, 4, 5, 6}, by maximizing the modified BIC criterion, given

its performance as shown in the simulation study. We report in Table 3.8 the results in terms of

correlations, sum of squared errors (SSE) and relative prediction errors.
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Corr SSE RPE

FME 0.690 14.410 0.290
FME-Lasso 0.632 2.011 0.045

iFME 0.944 0.582 0.012

Table 3.8: 7-fold cross-validated correlation (Corr), sum of squared errors (SSE) and relative
prediction error (RPE) of predictions on Canadian weather data.

According to the obtained results, iFME provides the best results w.r.t all the criteria. The

cross-validated RPE provided by iFME is only of 1.2%, the next is FME-Lasso with 4.5%, while

the FME model has the worst RPE value. Note that in James et al. (2009), the authors applied

their proposed model to Canadian weather data and obtained a 10-fold cross-validated SSE of 4.77.

Clearly, with the smaller cross-validated SSEs, the FME-Lasso and iFME models significantly

improve the prediction. Finally, in this cross-validation study, the obtained number of components

was K = 4 for FME and iFME, while for the FME-Lasso model, the selected one is K = 5.

Figure 3.6 shows the obtained results with the FME, FME-Lasso and iFME models, withK = 4,

and with the derivatives d1 = 0, d2 = 3 for the iFME model. The estimated experts functions

and gating functions are presented in the two top panels of the curve, while the clustering for

the temperature curves and the stations are shown in the two bottom panels. As we can see,

all models provide reasonable clustering for the curves which may be corresponding to different

complicated underlying meteorological forecasting mechanisms. Particularly, although not using

any spatial information, merely temperature information, the obtained clustering for the stations

is also comparable with the original labels of the stations. For example, the FME and FME-Lasso

models identify exactly the Arctic stations, while iFME identifies exactly the Pacific stations, and

all of the models provide reasonable spatially organized clusters. However, what is interesting here

is the shape of the expert and gating functions α̂(·)’s and β̂(·)’s obtained by the models. While

FME and FME-Lasso gave less interpretable estimations, iFME appears to give, as it can be seen in

the two top-right panels, piece-wise zero-valued and possibly quadratic estimated functions, which

have a wide range of flat relationship from January to February and from June to September.

Motivated by the above results, on direction of identifying the periods of time of the year that

truly have an effect on prediction, we implement the iFME model with K = 2, and the derivative

levels d1 and d2 are set to be the zeroth and the third derivatives. The reason for the choices of

d1 and d2 is that the penalization on the zeroth derivative would take into account zero ranges

in the expert and gating functions, while the penalization on the third derivative, would take into

account the smoothness for the changes between the periods of times in the functions. The obtained

results are shown in Figure 3.7. As we can see, there are differences in the prediction mechanisms

of the models between the northern stations and the southern stations. At southern stations, the

obtained β̂2(t) shows that there is a negative relationship in the spring and a positive relationship

in the late fall, but no relationship in the remaining period of the year. This phenomenon is

concordant with the result obtained in James et al. (2009), where the authors obtained the same
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Figure 3.6: Results obtained by FME (left panels), FME-Lasso (middle panels) and iFME (right
panels) on Canadian weather data with K = 4. For each column, the panels are respectively the
estimated functional experts network, estimated functional gating network, estimated clusters of
the temperature curves and estimated clusters of the stations.
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Figure 3.7: Results obtained by iFME model with K = 2, d1 = 0, d2 = 3: (a) Estimated functional
expert network, (b) Estimated functional gating network, (c) Estimated clusters of the temperature
curves, and (d) Estimated clusters of the stations.

relationships in the same periods of time. However, our iFME model additionally suggests that, at

the northern stations, the relationship between temperature and precipitation may differ from that

of southern stations. This may be explained by the differences in mean temperatures and climatic

characteristics between the two regions.

Finally, Figure 3.8 displays the values of modified BIC for varying number of expert component

for the proposed models on Canadian weather data. According to these plots, FME-Lasso and

iFME select K = 2, while FME selects K = 3.
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Figure 3.8: Values of modified BIC for (a) FME, (b) FME-Lasso and (c) iFME model, versus the
number of experts K, fitted on Canadian weather data. The square points correspond to highest
values. Here, iFME is implemented with d1 = 0, d2 = 3 and ρ = ϱ = 100.
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3.4.3.2 Diffusion tensor imaging data for multiple sclerosis subjects

We now apply our proposed models to the diffusion tensor imaging (DTI) data for subjects with

multiple sclerosis (MS), discussed in Goldsmith et al. (2012). The data come from a longitudinal

study investigating the cerebral white matter tracts of subjects with multiple sclerosis, recruited

from an outpatient neurology clinic and healthy controls. We are interested in the underlying

relationship between the fractional anisotropy profile (FAP) from the corpus callosum and the

paced auditory serial addition test (PASAT) score, which is a commonly used examination of

cognitive function affected by MS. The FAP curves are derived from DTI data, which are obtained

by a Magnetic Resonance Imaging (MRI) scanner. Each curve is recorded at 93 locations along the

corpus callosum. The PASAT score is the number of correct answers out of 60 questions, and thus

ranges from 0 to 60. In our context, the FAP curves serve as the noisy functional predictors Ui(·)
and the PASAT scores serve as the scalar responses Yi. So this dataset consists of n = 99 pairs

(Ui(·), Yi), i ∈ [n], with each Ui(·) contains m = 93 fractional anisotropy values. A visualization

of the predictors (i.e., the FAP curves) and the responses (i.e., the PASAT Scores) can be seen in

Figure 3.9 (top-left panel) and Figure 3.10 (for example, top-right panel).
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Figure 3.9: DTI data with (a) FAP curves of all subjects, (b) Cluster 1 and (c) Cluster 2, obtained
by iFME model with d1 = 0, d2 = 2, and (d) the point-wise average of the curves in each of the
two clusters.

In Ciarleglio and Ogden (2016), the authors applied their Wavelet-based functional mixture

regression (WBFMR) model with two components to this dataset, and observed that there is one

group in which there is no association between the FAP and the PASAT score for those subjects
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belonging to it. We accordingly fix K = 2 in our models. Figure 3.10 displays the obtained

results for each of the three models, and Figure 3.9a shows the functional predictors FAP curves

clustered with the iFME model. In this implementation, we tried iFME model with two different

combinations of d1 and d2: (d1, d2) = (0, 2) and (d1, d2) = (0, 3). As expected, when d2 is the

second derivative, the reconstructed parameter functions are piecewise zero and linear, while when

d2 is the third derivative, the reconstructed functions have smooth changes along the tract location.
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Figure 3.10: The estimated expert and gating coefficient functions, the estimated groups of the
PASAT scores, resulted by FME, FME-Lasso and iFME models with K = 2 for the DTI dataset.
For iFME model, the upper is implemented with penalization on the zeroth and third derivatives,
while the lower is with penalized zeroth and second derivatives.
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In Figure 3.10, we have the three following observations. First, as it can be observed in

Figure 3.10 right-panel, all models give a threshold of 50 that clusters the PASAT scores; This

is the same as the threshold observed in Ciarleglio and Ogden (2016). Second, the absolute values

of the coefficient functions β̂2(t)’s are significantly smaller than those of β̂1(t)’s; This is again the

same with the result obtained by the WBFMR model. Third, when β̂2(t) is estimated as zero in

the FME-Lasso and iFME models, the shape of β̂1(t) is almost the same as the shape obtained

in Ciarleglio and Ogden (2016), particularly, the peak at around the tract location of 0.42. These

confirm the underlying relationship between the fractional anisotropy and the cognitive function:

higher fractional anisotropy values between the locations about 0.2 to 0.7 results in higher PASAT

scores for subjects in Group 1. The clustering of the FAP curves, resulted by the iFME model with

d1 = 0, d2 = 2, is shown in Figure 3.9 (b)-(d).

Next, to compare with Ciarleglio and Ogden (2016), we investigate the prediction performance

of the proposed models with respect to the leave-one-out cross validated relative prediction errors

(CVRPE) defined by CVRPE =
∑n

i=1(yi− ŷ
(−i)
i )2/

∑n
i=1 y

2
i , where yi is the true score for subject i

and ŷ
(−i)
i is the score predicted by the model fit on data without subject i. In this implementation,

we keep fixing K = 2 and select the other tuning parameters by maximizing the modified BIC.

The CVRPEs corresponding to the models are provided in Table 3.9. Note that, for comparison,

in Ciarleglio and Ogden (2016), the CVRPE of their WBFMR model is 0.0315 and of the wavelet

based functional linear model (FLM) is 0.0723.

CVRPE

FME 0.0273
FME-Lasso 0.0280

iFME (with 0th and 3nd derivatives) 0.0271
iFME (with 0th and 2nd derivatives) 0.0267

Table 3.9: CVRPEs of the models on the DTI data.

Finally, we present in Figure 3.11 the selection of the number of experts K with modified BIC.

In this case, FME and FME-Lasso select K = 2, and iFME selects K = 4.
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Figure 3.11: Values of modified BIC for (a) FME, (b) FME-Lasso and (c) iFME, versus the number
of experts K, fitted on DTI data. The square points correspond to highest values.
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3.5 Summary

The first algorithm for mixtures-of-experts constructed upon functional predictors is presented in

this chapter. Beside the classic maximum likelihood parameter estimation, we proposed two other

regularized versions that allow sparse and interpretable solutions, by regularizing in particular the

derivatives of the underlying functional parameters of the model, after projecting onto a set of

continuous basis functions. The performances of the proposed approaches are evaluated in data

prediction and clustering via experiments involving simulated and two real-world functional data.

The presented FME models can be extended in different ways. First direct extensions of

the modeling framework presented here can be considered with categorical response, to perform

supervised classification with functional predictors, or with vector response, to perform multivariate

functional regression. Then, it may be interesting to consider the extension of the FME model to

setting involving vector (or scalar) predictors and functional responses (Chiou et al., 2004). Another

extension, which we intend also to investigate in the future, concerns the case when we observe pairs

of functional data, i.e., a sample of n functional data pairs {Xi(u), Yi(t)}ni=1 t ∈ T ⊂ R, u ∈ U ⊂ R,
where Yi(·) is a functional response, explained by a functional predictor Xi(·). The modeling with

such FME extension then takes the form Yi(t) = βzi,0(t) +
∫
tXi(u)βzi(t, u)du + εi(t), to explain

the functional response Y by the functional predictor X via the unknown discrete variable z. The

particularity with this model is that, for the clustering, as well as for the prediction, we model the

relation between Y at any time u and the entire curve of X, or the entire curve of each variable

Xij in the case of multivariate functional predictor Xi.
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4.1 Introduction

In this chapter, we have two goals. First, we extend the FME and iFME models proposed in

previous chapter to the case of categorical responses, i.e., for multiclass classification problems.

Second, we develop ME models to deal with the situations where the responses are functions.

To achieve the first goal, in Section 4.2 we model the experts in FME models by the functional

multinomial logistic regression model, and develop the corresponding conditional density functions

for the FME and iFME models. The numerical experiments are also presented to illustrate the

performance of the extended models.
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In Section 4.3, a ME model for function-on-function regression is proposed. It can be viewed as

an extension of the FME model to the case of functional responses. We refer to it by function-on-

function FME model (FF-FME). The model estimation is performed via maximizing a penalized

log-likelihood function, with the penalized term is constructed such that estimated kernels are

smoothened. An efficient EM-like algorithm is developed to estimate the model parameters. The

proposed model is examined on both simulated and real-world data.

Finally, in Section 4.4, to complete the family of FME models, we present a ME model for

function-on-scalar regression. We refer to this model by function-on-scalar FME model (FS-FME).

A penalized MLE is considered, in which the penalization is given to the roughness of the functional

parameters. We also develop the corresponding EM-like algorithm for model estimation. The model

performance is evaluated on simulated data, which show promising results for other applications.

4.2 FME for classification

In this section, we extend the FME framework for multiclass classification, derive adapted EM-like

algorithms to obtain sparse and interpretable fit of the gating and experts network coefficients

functions. Let {Xi(t), t ∈ T ;Yi}ni=1, be a sample of n i.i.d. data pairs where Yi ∈ {1, . . . , G} is the
class label of a functional predictor Xi(·), G being the number of classes. In this case of functional

inputs, a natural choice to model the conditional distribution Expertk(y|x) = P(Y = y|Xi(·)) in

(2.1) is to use the functional multinomial logistic regression modeling, e.g., see Müller et al. (2005);

James (2002), that is

P (yi|Xi(·);βk) =
G∏

g=1

[
exp

{
βkg,0 +

∫
T Xi(t)βkg(t)dt

}

1 +
∑G−1

g′=1 exp
{
βkg′,0 +

∫
T Xi(t)βkg′(t)dt

}
]yig

, (4.1)

where βk represents the set of coefficient functions {βkg(t), t ∈ T } and intercepts {βk,0} for k ∈
[K] = {1, . . . ,K} and g ∈ [G], and yig = I{yi=g}.

Similarly, a typical choice for the functional gating network Gatek(x) = P(Z = k,X(·)) in (2.1),

where Z ∈ [K] is a hidden within-class clustering label, acting as weights for potential clusters {k}
in the heterogeneous functional inputs X(·) and which we denote as πk(X(·)), is to use a functional

softmax function defined by

πk(Xi(·);α) =
exp{αk,0 +

∫
T Xi(t)αk(t)dt}

1 +
∑K−1

k′=1 exp{αk′,0 +
∫
T Xi(t)αk′(t)dt}

, (4.2)

with α is composed of the set of coefficient functions {αk(t), t ∈ T } and intercepts {αk,0} for

k ∈ [K].

Then, from (4.1) and (4.2) given Xi(·), the probability that Yi = yi, can be modeled by the
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following K-component FME model for classification

P (yi|Xi(·);ψ) =
K∑

k=1

πk(Xi(·);α)P (yi|Xi(·);βk), ψ = (α,β1, . . . ,βK). (4.3)

where ψ = (α,β1, . . . ,βK) is the unknown parameter of the model. Here the coefficient functions

αk(·), βkg(·) have the roles as the coefficient vectors as in the classic ME model for classification.

4.2.1 Smooth functional representation

In practice, Xi(·) is observed at a finite but large number of points on T ⊂ R. In the perspective

of parameter estimation, this results in estimating a very large number of coefficients β and α.

In order to handle this high-dimensional problem, we consider a usual approach that projects

the predictors and coefficient functions onto a family of reduced number of basis functions. Let

br(t) = [b1(t), . . . , br(t)]
⊤ be a r-dimensional basis (B-spline, Wavelet, ...). Then, with r, p, q ∈ N

sufficiently large, one can approximate Xi(·), αk(·) and βkg(·) respectively by

Xi(t) = x
⊤
i br(t), αk(t) = ζ

⊤
k bp(t), βkg(t) = η

⊤
kgbq(t). (4.4)

Here, xi = (xi1, . . . , xir)
⊤, with xij =

∫
T Xi(t)bj(t)dt for j ∈ [r], is the vector of coefficients of Xi(·)

in the basis br(t), ζk = (ζk,1, . . . , ζk,p)
⊤, and ηkg = (ηkg,1, . . . , ηkg,q)

⊤ are the unknown coefficient

vectors associated with the gating coefficient function αk(·) and the expert coefficient function

βkg(·) in the corresponding basis. In our case, we used B-spline bases.

Using the approximation of Xi(·) and αk(·) in (4.4), the functional softmax gating network (4.2)

can be represented by

πk(ri; ξ) =
exp{αk,0 + r⊤i ζk}

1 +
∑K−1

k′=1 exp{αk′,0 + r⊤i ζk′}
, (4.5)

where ri =
[∫

T br(t)bp(t)
⊤dt
]⊤
xi is the design vector associated with the gating network and

ξ = ((α1,0, ζ
⊤
1 ), . . . , (αK−1,0, ζ

⊤
K−1)) ∈ R(p+1)(K−1) is the unknown parameter vector of the gating

network, to be estimated.

In the same manner, using the approximations ofXi(·) and βkg(·) in (4.4), the expert conditional

distribution (4.1) can be represented by

P (yi|xi;θk) =
G∏

g=1

[
exp

{
βkg,0 + x⊤

i ηkg
}

1 +
∑G−1

g′=1 exp
{
βkg′,0 + x⊤

i ηkg′
}
]yig

, (4.6)

where xi =
[∫

T br(t)bq(t)
⊤dt
]⊤
xi is the design vector associated with the expert network, and

θk = (θ⊤k1, . . . ,θ
⊤
k,G−1)

⊤, with θkg = (βkg,0,η
⊤
kg)

⊤ ∈ Rq+1 for g ∈ [G−1], is the unknown parameter

vector to be estimated of the expert distribution k.

Finally, combining (4.5) and (4.6), the conditional distribution P (yi|Xi(·);ψ) in (4.3) can be
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rewritten as

P (yi|Xi(·);Ψ) =
K∑

k=1

πk(ri; ξ)P (yi|xi;θk),

where Ψ = (ξ⊤,θ⊤1 , . . . ,θ
⊤
K)⊤ is the unknown parameter vector of the model.

4.2.2 Parameter estimation via EM algorithm

A maximum likelihood estimate (MLE) Ψ̂ of Ψ can be obtained by using the EM algorithm for ME

model for classification with vector data as in Chen et al. (1999). We will refer to this approach as

FME-EM.

Similarly to the FME model, to encourage sparsity in the model parameters Ψ , one can perform

penalized MLE by using the EM-Lasso algorithm as in Huynh and Chamroukhi (2019b). We refer

to this approach as FME-EM-Lasso.

4.2.3 Interpretable FME for classification

Although fitting the FME model via EM-Lasso can accommodate sparsity in the parameters, it

unfortunately does not ensure the reconstructed coefficient functions α̂k(·) and β̂kg(·) are sparse

and enjoy easy interpretable sparsity.

To obtain interpretable and sparse fits for the coefficient functions, we simultaneously estimate

the model parameters while constraining some targeted derivatives of the coefficient functions to

be zero (Chamroukhi et al., 2022). The construction of the interpretable FME model which we will

fit with an adapted EM algorithm, is as follows.

First, in order to calculate the derivative of the gating coefficient functions αk(·), let Ap be the

matrix of approximate d1th and d2th derivative of bp(t), defined as in (3.22) by

Ap = [A[d1]
p A[d2]

p ]⊤ =
[
Dd1bp(t1), . . . , D

d1bp(tp), D
d2bp(t1), . . . , D

d2bp(tp)
]⊤
,

where Dd is the dth finite difference operator. Here A
[dj ]
p is a square invertible matrix and Ap ∈

R2p×p. Similarly, to calculate the derivatives of the expert coefficient functions βkg(·), let Aq =

[A
[d1]
q A

[d2]
q ]⊤ ∈ R2q×q be the corresponding matrix defined for the bq(t)’s.

Now, if we define ωk = Apζk and denote ωk = (ω
[d1]
k

⊤
,ω

[d2]
k

⊤
)⊤, then ω

[d1]
k and ω

[d2]
k provide

approximations to the d1 and the d2 derivatives of the coefficient function αk(·), respectively, which
we denote as α

(d1)
k (·) and α

(d2)
k (·). Therefore, enforcing sparsity in ωk will constrain α

(d1)
k (·) and

α
(d2)
k (·) to be zero at most of time points. Similarly, if we define γkg = Aqζk and denote by

γkg = (γ
[d1]
kg

⊤
,γ

[d2]
kg

⊤
)⊤, then we can derive the same regularization for the coefficient functions

βkg(·).
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From the definitions of ωk and γkg we can easily get the following relations:




ζk = A[d1]

p

−1
ω

[d1]
k and ω

[d2]
k = A[d2]

p A[d1]
p

−1
ω

[d1]
k

ηkg = A[d1]
q

−1
γ
[d1]
kg and γ

[d2]
kg = A[d2]

q A[d1]
q

−1
γ
[d1]
kg .

(4.7a)

(4.7b)

Plugging the relation (4.7a) into (4.5) one gets the following new representation for πk(ri; ξ)

πk(si;w) =
exp {αk,0 + s⊤i ω

[d1]
k }

1 +
∑K−1

k′=1 exp {αk′,0 + s⊤i ω
[d1]
k′ }

, (4.8)

where si = (A
[d1]
p

−1
)⊤ri is now the new design vector and w = (α1,0,ω

[d1]
1

⊤
, . . . , αK−1,0,ω

[d1]
K−1

⊤
)⊤,

with (αK,0,ω
[d1]
K

⊤
)⊤ a null vector, is the unknown parameter vector of the gating network.

Similarly, plugging (4.7b) into (4.6) one obtains the new representation for P (yi|xi;θk):

P (yi|vi;Γk) =
G∏

g=1




exp
{
βkg,0 + v⊤

i γ
[d1]
kg

}

1 +
∑G−1

g′=1 exp
{
βkg′,0 + v⊤

i γ
[d1]
k′g

}



yig

, (4.9)

in which, vi = (A
[d1]
q

−1
)⊤xi is now the new design vector and Γk = (βkg,0,γ

[d1]
k′g

⊤
)⊤ is the unknown

parameter vector of the expert network. Finally, gathering the gating network (4.8) and the expert

network (4.9), the iFME model for classification is given by

P (yi|Xi(·);Υ) =
K∑

k=1

πk(si;w)P (yi|vi;Γk), (4.10)

where Υ = (w⊤,Γ⊤
1 , . . . ,Γ

⊤
K)⊤ is the unknown parameter vector to be estimated.

We perform penalized MLE by penalizing the ML via a Lasso penalization on the derivative

coefficients ωk’s and γkg’s of the form Penχ,λ(Υ) = χ
∑K−1

k=1 ∥ωk∥1 + λ
∑K

k=1

∑G−1
g=1 ∥γkg∥1, with

χ and λ regularization constants. The estimation is performed by using an adaptation to this

classification context of the EM algorithm developed in Chamroukhi et al. (2022). The only

difference resides in the maximization with respect to the expert network parameters Γk.

4.2.4 Numerical experiments

■ Experiments on simulated data

We conducted experiments by considering a 3-class classification problem (i.e., G = 3) with

a K = 2-component FME model. In particular, we generate n = 1000 functions Xi(·) using

Xi(t) = x
⊤
i br(t), with xi =Wvi, W ∈ R8×8 is a matrix of i.i.d. random values from the uniform

distribution U(0, 1), vi ∈ R8 is a vector of i.i.d. random values from the normal distribution

N (1, 10), and br(t) is the 8-dimensional B-spline basis defined on [0, 1]. Then, Yi is generated

conditional on Xi(·) and the true coefficient functions. The time domain is divided into a grid of
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m = 100 evenly spaced points. To mimic real-world data, for each i ∈ [n], we add to Xi(tj), j ∈ [m],

measurement error δi(tj) ∼ N (0, σ2δ ), with σ
2
δ the noise level. We consider two situations: σ2δ = 1

and σ2δ = 5. We compare our proposed models, including FME fitted by EM, FME fitted by EM-

Lasso, and iFME-EM model, with the classic functional multinomial logistic regression (FMLR)

model that receives the coefficient vectors xi’s as inputs.

Each dataset is split into training and testing set of equal sizes. Parameters are fits on training

set and the correct classification rates are evaluated on testing set. This procedure is repeated 100

times.

The classification results obtained with the described algorithms FME-EM, FME-EM-Lasso

and iFME-EM, as well as with functional multinomial logistic regression (FMLR), are given in

Table 4.1 and show higher classification performance of the iFME-EM approach.

Model Correct classification rate

Noise level: σ2δ = 1 Noise level: σ2δ = 5
FME-EM .8560(.0199) .8474(.0196)

FME-EM-Lasso .9332(.0104) .9178(.0142)
iFME-EM .9346(.0108) .9219(.0127)

FMLR .7951(.0249) .7922(.0270)

Table 4.1: Correct classification rates obtained on testing data. The reported values are averages
on 100 samples with standard errors in parentheses.

■ Application to phonemes data

We then applied the two algorithms allowing for sparsity (FME-EM-Lasso and iFME-EM) to the

well-known phoneme data (Hastie et al., 1995). The data consists of n = 1000 log-periodogram

recordings of length 256 each, used here as the univariate functional predictors, of five phonemes

transcribed (i.e., the corresponding class labels): “sh” as in she, “dcl” as in dark, “iy” as the vowel

in she, “aa” as the vowel in dark, and “ao” as the first vowel in water.

The obtained averaged correct classification rate for the two approaches are more than 0.94

in mean, which are competitive with the correct rate of 0.929 resulted by the wavelet-based

multinomial functional regression (MFR) model (Mousavi and Sørensen, 2017). Figure 4.1 shows

the estimated coefficient functions for the gating network α̂k(t) (left) and those for the expert

network β̂kg(t) as functions of sampling time t, obtained by FME-EM-Lasso (top) and the iFME-

EM (bottom). Here the iFME-EM is fitted with constraints on the zero and the second derivatives

of the coefficients functions. The results show clearly sparse and piece-wise-linear gating and experts

functions when using the iFME-EM approach.
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Figure 4.1: Results of (top) FME-EM-Lasso and (bottom) iFME-EM on phoneme data.
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4.3 FME for function-on-function regression

In this section, we extend the FME model proposed in Chapter 3 to the case where the responses

are functions, i.e., to relate input and output when they are both functions. In particular, we

assume that in the population, the relationship between the functional output and the functional

input is governed by some kernels that vary among the subpopulations of the input space. We refer

to this proposed model as function-on-function FME model (FF-FME).

This model can also be viewed as an extension of the mixture model for functional regression

proposed in Devijver (2015), where the author considered a mixture of functional regression models

to deal with function-on-function regression problems. In Devijver (2015), the model parameters

are estimated using MLE and penalized MLE approaches, and the performance was evaluated on

both simulated and real functional datasets. In our proposed FF-FME model, similar to the way the

mixture of experts regression model extends the mixture model, we allow the mixing proportions

to vary across predictors via a functional gating network, so that the model can potentially capture

a more complex structure in the population.

This section begins with the construction of the FF-FME model. Then the model estimation

via EM algorithm is presented. Finally, the numerical experiments on both simulated and real

functional data are presented to illustrate the use of the proposed model.

4.3.1 The FF-FME model

Let {Xi(u), Yi(t)}ni=1 be a sample of n i.i.d. data pairs where Yi(t), t ∈ T , is a functional response,

and Xi(u), u ∈ U , is a functional predictor, where T and U are some intervals on R. An example

of such context is: Yi(t) is the demand of electricity, and Xi(u) is the temperature during the day

at a certain house or city. In this case, both the response and the predictor are time series and U
and T represent the time, e.g., from 0h to 24h.

Firstly, we formulate each expert component Expertk(y|x) in (2.1) by a fully functional linear

model as in (2.28). In particular, the regression model for the ith observation takes the following

stochastic representation

Yi(t) = βzi,0(t) +

∫

U
Xi(u)βzi(t, u)du+ εi(t), i ∈ [n], (4.11)

where βzi,0(t), defined on T , is the unknown functional intercept, βzi(t, u), defined on T ×U , is the
unknown kernel (i.e., unknown bivariate function) associated with expert zi to be estimated, and

εi(t) is an independent random error function follows a normal distribution with mean zero and

covariance function Σzi(t, u). Here zi ∈ [K] denotes the unknown label of the expert responsible

for the ith observation. However, the appearance of βzi,0(t) in the model can be simplified by

assuming that the functional predictors and responses are all centered (e.g., as mentioned in

Section 2.7). Therefore, for simplicity, from now on we take this assumption and denote by
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β = {β1(·, ∗), . . . , βK(·, ∗)} the set of K unknown kernels of the expert network to be estimated.

Modeling the functional gating network

The modeling for the functional gating network is unchanged compared to the FME model. That is,

we also model the gating network by the functional logistic regression model for linear classification

(Mousavi and Sørensen, 2017), with the note that the intercept αz,0 is now simplified. The resulting

functional softmax gating network is then given by

πk (Xi(u), u ∈ U ;α) =
exp{

∫
U Xi(u)αk(u)du}

1 +
∑K−1

k′=1 exp{
∫
U Xi(u)αk′(u)du}

, (4.12)

where αk(u) is the unknown functional parameter of gating network, and α = {αk(u), u ∈ U}K−1
k=1

is the set of unknown functional parameters αk(u), u ∈ U to be estimated. Again, the function

αK(u) is necessarily zero to satisfy the identifiability condition.

Analogous to the construction for the finite representation of the functional gating network

as in (3.10) or in (4.5), here we can also obtain such representation for (4.12). In particular, let

ω(u) = [ω1(u), . . . , ωq(u)]
⊤ be a vector of basis functions defined on U . Then with q sufficiently

large, we can approximate αk(u) by

αk(u) = ζ
⊤
k ω(u), (4.13)

where ζk ∈ Rq is the unknown vector of coefficients of the functional gating parameter αk(u).

Substituting (4.13) into (4.12) we obtain a new representation for the gating network:

πk (ri; ξ) =
exp(ζ⊤k ri)

1 +
∑K−1

k′=1 exp(ζ
⊤
k ri)

, (4.14)

where ri =
( ∫

U Xi(u)ω1(u)du, . . . ,
∫
U Xi(u)ωq(u)du

)⊤ ∈ Rq is the new design vector, and ξ =

(ζ⊤1 , . . . , ζ
⊤
K−1)

⊤ ∈ Rq(K−1) is now the unknown parameter vector to be estimated.

Modeling the functional expert network

It is known that in general there is no notion of probability density for functional data (Delaigle

and Hall, 2010), so in particular in our case it is not obvious to write down a conditional density

function for the functional responses Yi(t) as in (3.13). However, as can be seen in Section 2.7,

using projections onto appropriate bases, and assuming a normal distribution for the coefficients of

the error functions, we can also introduce the conditional density function for the FF-FME model

analogously to (3.13) as follows.

Let ω⋆(t, u) = [ω⋆1(t, u), . . . , ω
⋆
M (t, u)]⊤ be a vector of bivariate M basis functions defined on

T ×U . Then withM sufficiently large, the bivariate functional parameter βk(t, u) can be expressed
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by

βk(t, u) =
M∑

m=1

bkmω
⋆
m(t, u) =: b⊤k ω

⋆(t, u), (4.15)

where bk = (bk1, . . . , bkM )⊤ ∈ RM is the vector of unknown coefficients associated with the expert

kth, to be estimated. Recall that, analogous to the equations related to basis expansions stated

throughout the thesis, the equation (4.15) is only approximation, but we use the equality sign “=”

to be able to manipulate such expansion without adding additional error terms.

The stochastic representation (4.11), with the intercept has been simplified as discussed earlier

and with zi = k, can be rewritten as

Yi(t) =

∫

U
Xi(u)

(
M∑

m=1

bkmω
⋆
m(t, u)

)
du+ εi(t)

=

M∑

m=1

bkm

∫

U
Xi(u)ω

⋆
m(t, u)du+ εi(t)

=
M∑

m=1

bkmX
⋆
im(t) + εi(t), i ∈ [n], (4.16)

where X⋆
im(t) :=

∫
U Xi(u)ω

⋆
m(t, u)du are functions of t which now serve as new predictors.

Let ω(t) = [ω1(t), . . . , ωq(t)]
⊤ be a vector of basis functions defined on T . Then with q

sufficiently large, the functions Yi(t), X
⋆
im(t) and εi(t) can also be represented by

Yi(t) =

q∑

ℓ=1

yiℓωℓ(t) =: y⊤i ω(t), (4.17a)

X⋆
im(t) =

q∑

ℓ=1

x⋆imℓωℓ(t) =: x⋆⊤imω(t), (4.17b)

εi(t) =

q∑

ℓ=1

εiℓωℓ(t) =: ϵ⊤i ω(t), (4.17c)

respectively, where yi, x
⋆
im and ϵi belong to Rq are the coefficient vectors, and εi ∼ Nq(0,Σ) for

some unknown symmetric matrix Σ ∈ Rq×q.
Note that the matrix ω(t)ω⊤(t) is non-singular, therefore by substituting equations (4.17) into

(4.16) and simplifying ω(t), we obtain a new stochastic representation for the model:

yi =

M∑

m=1

bkmx
⋆
im + ϵi

=X⋆⊤
i bk + ϵi, i ∈ [n],

where X⋆
i denotes the matrix [x⋆i1, . . . ,x

⋆
iM ]⊤ ∈ RM×q. From this representation and the Gaussian

assumption for the error εi, the conditional density of each approximated functional expert zi = k
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is then given by

f(yi|Xi(·), zi = k;θk) = ϕ(yi;X
⋆⊤
i bk,Σk), (4.18)

where ϕ(·;µ,ν) is the pdf of the q-dimensional Gaussian distribution with mean µ and covariance

matrix ν, and θk = (b⊤k , vech
⊤Σk)

⊤ is the unknown parameter vector of the expert k, k ∈ [K],

to be estimated. Here, vech(·) is the operator that extracts the unique elements of a symmetric

matrix (Henderson and Searle, 1979).

Conditional density function of the FF-FME model

Finally, combining the gating network (4.14) and the expert density (4.18) leads to the following

conditional density function for our FF-FME model

f(yi|Xi(u);Ψ) =

K∑

k=1

πk(ri; ξ)ϕ(yi;X
⋆⊤
i bk,Σk), (4.19)

where Ψ = (ξ⊤,θ⊤1 , . . . ,θ
⊤
K)⊤ is the parameter vector of the model to be estimated.

There are some remarks on the constructions of the design vectors in practice. First, although

the formulas are written using the functions Xi(u) and Yi(t), in practice they are only available in

form of discretized values. However, for simplicity we use the same notations to indicate the noisy

version. Second, as seen in the previous models, all the involving integrals here can be calculated

numerically by a Riemann sum over the grid where data was sampled. Finally, in practice the

design vectors x⋆im can be calculated directly from the predictors Xi(t) and the basis responsible

for covariate u that construct ω⋆(t, u), as we have seen in Section 2.7. For example, if the bivariate

basis ω⋆(t, u) is constructed by two B-spline bases ω(t) and ω(u), where ω(u) = [ω1(u), . . . , ωq(u)]
⊤,

then x⋆im is simply

x⋆im =

[∫

U
Xi(u)ω1(u)du, . . . ,

∫

U
Xi(u)ωq(u)du

]⊤
∈ Rq.

4.3.2 Penalized maximum likelihood estimation via EM algorithm

The FF-FME model (4.19) is now defined upon a tractable finite representation of the functional

predictors and responses. In this subsection, we consider the MLE of the model via the EM

algorithm (Dempster et al., 1977).

With the maximum likelihood estimation method, the observed-data log-likelihood function for

FF-FME model to be maximized is given by

logL(Ψ) =
n∑

i=1

log
K∑

k=1

πk(ri; ξ)ϕ(yi;X
⋆⊤
i bk,Σk),

where Ψ = (ξ⊤,θ⊤1 , . . . ,θ
⊤
K)⊤. However, to encourage the smoothness of the bivariate functions
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βk(t, u), we propose to consider the following penalized log-likelihood function

L(Ψ) = logL(Ψ)− Penχ(Ψ)− Penλ(Ψ).

In the above definition, Penχ(Ψ) is the penalty term with respect to the gating network, defined

by

Penχ(Ψ) = χ
K−1∑

k=1

∥ξk∥1,

and Penλ(Ψ) is a roughness penalty term for the expert network, defined by

Penλ(Ψ) =
K∑

k=1

[
λt

∫∫
[(Dtβk)(t, u)]2 dtdu+ λu

∫∫
[(Duβk)(t, u)]2 dtdu

]
, (4.20)

where Dt and Du are the second-order partial derivatives with respect to t and u directions, and

χ, λt, λu are the tuning parameters. If χ = λt = λu = 0, the penalty term does not contribute to

L(Ψ), we end up with a maximum likelihood estimation. Note that, the dependence of Penλ(Ψ)

on the model parameter Ψ is understood implicitly, since the bivariate functions (Dtβk)(t, u) and
(Duβk)(t, u) can be expressed in terms of the coefficient vector bk as we have seen in (2.35) and

(2.36). The two steps of the EM algorithm for FF-FME model are performed as follows.

E-step. The conditional probability memberships τ
(s)
ik that the observed pair (Xi(u), Yi(t)) originates

from the kth expert at EM iteration sth is calculated by

τ
(s)
ik = P(zi = k|Xi(u), Yi(t); Ψ̂

(s)) =
πk(ri; ξ̂

(s))ϕ(yi;X
⋆⊤
i b̂

(s)
k , Σ̂

(s)
k )

f(yi|Xi(∗); Ψ̂(s))
, (4.21)

where Ψ̂(s) = (ξ̂(s)⊤, θ̂
(s)⊤
1 , . . . , θ̂

(s)⊤
K )⊤ is the estimate of Ψ at iteration sth of the EM algorithm.

M-step. The maximization is performed by separately with respect to the gating network parameter

ξ and the expert network parameters θk for each of K experts.

First, the maximization with respect to ξ for such a functional gating function has been done

earlier in this thesis, for example in (3.16) via the MLE, or in (3.20) via the regularized MLE.

Therefore, we refer to the updating gating network parameters part given in Appendix B.1 for the

maximization with respect to ξ, with a minor difference that in FF-FME model we have simplified

the intercept αk,0.

The maximization with respect to θk, on the other hand, consists of solving a weighted function-

on-function regression problem, where the weights are the conditional expert memberships τ
(s)
ik

given in (4.21). More specifically, if penalized MLE is considered, then by expressing the penalized

log-likelihood function L(Ψ) in terms of the parameters of the expert kth, i.e., bk and Σk, the

maximization with respect to bk can be recognized as a penalized least square problem. Therefore,
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we can take advantage from the solution formula for the function-on-function regression model

presented in Subsection 2.7.2.

In particular, let us denote Y = [y1, . . . ,yn]
⊤, τ

(s)
k = (τ

(s)
k1 , . . . , τ

(s)
kn )

⊤. The update formulas for

the parameters of expert k for the next EM iteration are then given by

b̂
(s+1)
k =

(
V ⊤
τ Vτ + λtDt + λuDu

)−1
V ⊤
τ vec(I1/2ω Y ⊤

τ ), (4.22)

Σ̂
(s+1)
k =

1
∑n

i=1 τ
(s)
ik

(
Yτ −Gτ b̂

(s+1)
k

)⊤ (
Yτ −Gτ b̂

(s+1)
k

)
. (4.23)

Follows is the definitions of the matrices appear in the above formulas. First, Dt and Dt are the

matrices related to the penalty term, defined similarly as in (2.35) and (2.36). Particularly, if we

consider Dt and Du the second-order partial derivatives, which is the case in our experimental

studies later, Dt and Du take the following forms

Dt =

[∫∫
∂2ωg
∂t2

(t, u).
∂2ωh
∂t2

(t, u)dtdu

]

1⩽g,h⩽M
∈ RM×M ,

Du =

[∫∫
∂2ωg
∂u2

(t, u).
∂2ωh
∂u2

(t, u)dtdu

]

1⩽g,h⩽M
∈ RM×M .

Next, I
1/2
ω is the principal square root of the matrix Iω given by

Iω =

[∫

T
ωg(t)ωh(t)dt

]

1⩽g,h⩽q
∈ Rq×q.

The matrix Yτ denotes the weighted version of Y , i.e., Yτ =

√
τ
(s)
k ⊙ Y , where the square root is

componentwise and ⊙ is the Hadamard product operator. The matrix Vτ is the weighted design

matrix given by

Vτ =

(√
τ
(s)
k ⊗ 1q

)
⊙




I
1/2
ω x⋆11 I

1/2
ω x⋆12 · · · I

1/2
ω x⋆1M

I
1/2
ω x⋆21 I

1/2
ω x⋆22 · · · I

1/2
ω x⋆2M

...
...

. . .
...

I
1/2
ω x⋆n1 I

1/2
ω x⋆n2 · · · I1/2ω x⋆nM



∈ Rnq×M ,

where ⊗ is the Kronecker product operator. Finally, Gτ is the weighted design matrix given by

Gτ =

√
τ
(s)
k ⊙




x⋆⊤11 x⋆⊤12 · · · x⋆⊤1M
x⋆⊤21 x⋆⊤22 · · · x⋆⊤2M
...

...
. . .

...

x⋆⊤n1 x⋆⊤n2 · · · x⋆⊤nM



∈ Rn×Mq,

and the matrix multiplication Gτ b̂
(s+1)
k in equation (4.23) is performed by treating each x⋆⊤ij ,

i ∈ [n], j ∈ [M ], as an element, the same way as discussed in (2.34).
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We can see, the right hand sides of (4.22) and (4.23) depend on the current iteration of the EM

algorithm implicitly via the posterior probabilities τ
(s)
k . Finally, if MLE is considered, then (4.22)

can also be used to update the parameter bk by simply setting λt = λu = 0.

4.3.3 Numerical experiments

In this subsection, we illustrate the use of the proposed FF-FME model on both simulated and

real-world data to show its practical utility. For model evaluation, we compute the MISE between

the true and the predicted functional responses, which quantifies how well our model was used for

predicting. To evaluate the approximation performance, we also compute the MISE between the

true and the estimated functional gating networks, as well as between the true and the estimated

functional expert networks. Here, the MISE for bivariate functions is simply defined as follow

MISE(β̂(t, u)) = E
[∫

T

∫

U
(β̂(t, u)− β⋆(t, u))2dtdu

]
,

where β⋆(t, u) and β̂(t, u) respectively represents the true and the estimated functions. Moreover,

we use ARI to evaluate the clustering performance of the model.

■ Experiment on simulated data

The data generating process is as follows. Firstly, we fix two kernel functions β1(t, u), β2(t, u) and

a gating function α1(t) those to be estimated. The domains for both t and u are fixed to be the

interval [0, 1]. Next, we generate the predictors Xi(u) using the formula

Xi(u) = x
⊤
i ω(u), t ∈ [0, 1],

in which ω(u) is a 5-dimensional B-spline basis, and xi ∈ R5 is the coefficient vector follows the

normal distributed N5(0, 1). Then, the functional responses Yi(t) are constructed using the usual

data generating protocol for ME models. In particular, for each i ∈ [n], sample Zi from on the

multinomial distributionM
(
1,
(
π1(Xi(t);α), . . . , πK(Xi(t);α)

))
, then conditional on Zi = zi, the

response Yi(t) is generated by

Yi(tj) =

∫ 1

0
Xi(u)βzi(tj , u)du+ εi(tj), i ∈ [n],

where εi(tj) ∼ N (0, 1) at all time points tj . Furthermore, to mimic real-world data, we contaminate

the predictors Xi(u) with measurement noises before performing model estimation. That means

we will not use the Xi(u), but

X̃i(u) = Xi(u) + δi(u),

for analysis. Here, δi(u) is an independent Gaussian noise, and for all uj , δi(uj) follows the

distribution N (0, 0.04).

We generated 200 pairs (Ui(u), Yi(t)) for training and another sample of 200 pairs for evaluation.
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For illustration, Figure 4.2 displays some randomly taken predictors X̃i(u) and their responses Yi(t)

that we have just generated.
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Figure 4.2: 50 randomly taken predictors and their responses.

Results. Figure 4.3 shows the true and the estimated kernels obtained by FF-FME model. We

can see, given the generated dataset, the estimated kernels approximate very well the true ones.

The results estimated without roughness penalization fit almost exactly the true kernels. MISEs

for each of β̂1(t, u) and β̂2(t, u) are 0.02 and 0.01, respectively. When estimating with roughness

penalization, the resulting kernels clearly less wiggle than the the ones obtained without roughness

penalization. Here the simulated true kernels are smooth and the noise level in data is quite

small, so the estimated ones in both cases have more chance to be smooth. However, in real-world

applications, when the data are more noisy, and the underlying true kernels may not be smooth,

the proposed roughness penalization is promising.

The true and estimated functional gating networks are also shown in Figure 4.4 for illustration.

The MISE of the predicted functional responses Ŷi(t) on testing set is 0.3928. Finally, the ARI

between the true labels and the estimated labels using the maximum a posteriori (MAP) rule is

0.7822.

■ Application to Berkeley growth data

In this part, we apply the proposed FF-FME approach to the Berkeley growth data, which is a

well-known data originally published in Tuddenham and Snyder (1954) and have broadly been

analyzed in the literature since then. The data consists of the height records for 39 boys and 54

girls from age 1 to 18. In original data, the measurements were taken quarterly from ages 1 to 2,

annually from 2 to 8, and semiannually from 8 till 18. Therefore, as in many related studies, we

performed a simple interpolation such that the trajectories are all available quarterly from age 1

to 18.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.3: Panels (a) and (b) are the true kernels β1(t, u) and β2(t, u). Panels (c) and (d) are
the estimated kernels β̂1(t, u) and β̂2(t, u), estimated without roughness penalization. Panels (e)
and (f) are the estimated kernels β̂1(t, u) and β̂2(t, u), estimated with roughness penalty constant
λt = λu = 0.001.

91



CHAPTER 4 EXTENSIONS OF FUNCTIONAL MIXTURES OF EXPERTS

0 0.2 0.4 0.6 0.8 1

-15

-10

-5

0

5

10

15
Gating function

True

Estimated

Figure 4.4: The true gating function α1(t) and its estimated α̂1(t).

In Ramsay et al. (1995), the authors investigate the height acceleration to reveal the dynamics

of human growth. In their study, they predicted the height at age 18 based on the dynamic pattern

till age 9, since it is known that the growth patterns of boys and girls during their pubertal spurts

differ significantly in terms of magnitude and timing. The height trajectories of the two groups

and their heights at 18 can be found in the appendix (Figure A.2).

In this experiment for FF-FME model, we study from a different perspective by examining

the dependence of the heights at age 9 to 18 (functional response) on the heights at age 1 to 9

(functional predictor), i.e., before the pubertal spurts. Figure 4.5 displays our functional predictors

Xi(u) and functional responses Yi(t), where u ∈ [1, 9] and t ∈ [9, 18].
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Figure 4.5: The functional predictors and the true functional responses from Berkeley data.

Implementation details and results. Firstly, we split the data in to training and testing sets

with 83 and 10 pairs, respectively. Next, we centerize the functional predictors and responses using

the mean functions µX(u), µY (t) computed on the training set. The centered data on training
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set are then fed into our algorithm. Here, we used K = 2, a tolerance of 10−8 and five random

initializations for the EM algorithm.

For simplicity, the penalty constant χ for the functional gating function is fixed to a constant.

Then, we implement the FF-FME model with four different values for the roughness penalty

constant to see the effect of them on the shapes of the estimated kernels. In particular, λt = λu = γ,

with γ ∈ {0, 10−7, 10−5, 10−2} were used as illustrations. Figure 4.6 shows the corresponding results.

As we can see, the larger roughness penalty constant, the smoother kernels were obtained. The

shapes of β̂1(t, u) and β̂2(t, u) can give us some interpretations about the relationship between the

heights before and after age 9. The kernels estimated without roughness penalization suggest that,

for example, for boys, the height at age 18 is highly related to the height at age 6, whereas for

girls it is at age 3. Further deeper interpretations could be made about the growth patterns, but

that is beyond the scope of this experiment. The estimated gating function, for example when

λt = λu = 0, is shown in Figure 4.7a.

Finally, we evaluate the prediction performance by compute the MISE between the true and

the predicted responses on the testing set. Given Xi(u), the predicted response Ŷi(t) is computed

using the estimated kernels β̂1(t, u), β̂2(t, u) and the estimated gating parameter α̂ as

Ŷi(t) = E
[
Yi(t)|Xi(u)

]
= µY (t) +

K∑

k=1

πk(Xi(u), α̂)

∫

U
Xi(u)β̂k(t, u)du, t ∈ T .

Note that, in the notation E [Yi(t)|Xi(u)], the independent variables t and u were written to clarify

the defined domains of Y and X, although it is more correctly to write E [Yi(t)|Xi(∗)].
Figure 4.7b show the predicted responses obtained by the model estimated with λt = λu = 0.

If we compare Figure 4.7b and Figure 4.5b, we can see that the predicted responses agree with the

true responses about the average heights of two groups, i.e., higher for boys and lower for girls.

Moreover, the roots of the MISEs for training and testing data are 1.64 and 1.54, respectively. Here,

the root of MISE is reported because it is directly proportional to the unit of the height (cm). This

means that, on testing set, given the heights at ages 1 to 9, the average error of predictions for

heights at ages 9 to 18 is 1.54 cm.
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Figure 4.6: Estimated kernels β̂1(t, u) and β̂2(t, u) resulted by FF-FME model for Berkeley data.
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Figure 4.7: (a) Estimated functional gating function resulted by FF-FME model and (b) the
functional responses predicted by FF-FME model, colored in their predicted cluster.

4.4 FME for function-on-scalar regression

To complete the family of FMEmodels, this sections extends the FMEmodel proposed inChapter 3

to the case where the responses are functions and the predictors are scalars. In particular, we

consider a function-on-scalar FME (FS-FME) in which the responses are univariate functions, e.g.,

curves or time series, and we wish to relate them with the explanatory variables via a mixture of

experts model. The dedicated algorithm is developed, via maximizing log-likelihood function, to

estimate the expert and gating networks. Numerical experiments are also presented to illustrate

the usage of our proposed model.

4.4.1 The FS-FME model

Let {xi, Yi(t)}ni=1 be a sample of n i.i.d. data pairs where xi ∈ Rp is the input and Yi(t) is a

functional response with t ∈ T ∈ R. For each k ∈ [K], we formulate the expert component

Expertk(y|x) in (2.1) by the function-on-scalar linear model as in (2.20). In particular, the

regression model for the ith observation takes the following stochastic representation

Yi(t) = βzi,0(t) +

p∑

j=1

xipβzi,j(t) + εi(t), i ∈ [n], (4.24)

where εi(t) is an independent random error function follows a normal distribution with mean zero

and covariance function Σzi(t, s), and zi ∈ [K] denotes the unknown label of the expert responsible

for the ith observation.

For simplicity, we can simplify the functional intercept βzi,0 by assuming that the number one

was already incorporated into the predictor vector xi. Then conditional on zi = k the above
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equations can be rewritten under matrix form simply as

Yi(t) = x⊤
i βk(t) + εi(t), i ∈ [n], (4.25)

where βk(t) = [βk1, . . . , βkp]
⊤ is the vector of functional parameters to be estimated.

Modeling the gating network

The gating function in this case can take the same form as one of those in the vectorial setting,

e.g., softmax gating function as in (2.3) or Gaussian gating function as in (2.4). Here, we opt to

model the gating network for FS-FME model using softmax modeling

πk(xi;α) =
exp(x⊤

i αk)

1 +
∑K−1

k′=1 exp(x
⊤
i αk′)

, (4.26)

where α = (α1, . . . , αK−1)
⊤ ∈ Rp(K−1) is the gating parameter vector to be estimated.

Modeling the expert network

Analogously to the modeling of expert network in the FF-FME model, we assume that the responses

Yi(t), the parameters βkj(t), and the error functions εi(t) can be represented by a collection of basis

functions ψ(t) = [ψ1(t), . . . , ψq(t)]
⊤ as

Yi(t) = y
⊤
i ψ(t)

⊤, βkj(t) = b
⊤
kjψ(t), and εi(t) = ϵ

⊤
i ψ(t),

where yi, bkj , ϵi ∈ Rq are the corresponding coefficient vectors, and ϵi ∼ N (0,Σzi). Then, the

equations in (4.25) implies

yi = x⊤
i Bk + ϵ

⊤
i , i ∈ [n], (4.27)

where Bk = [bk1, . . . , bkp]
⊤ ∈ Rp×q is now the unknown coefficient matrix associated with the

expert kth to be estimated.

From (4.27), the model for a coefficient vector yi of a functional response Yi(t) given xi can be

expressed as a probability density function as follows

f(yi|xi, zi = k;θk) = ϕ(yi;x
⊤
i Bk,Σk), (4.28)

where ϕ(·;µ,ν) is the pdf of the q-dimensional Gaussian distribution with mean µ and covariance

matrix ν, and θk = (vec(B⊤
k )

⊤, vech⊤Σk)
⊤ is the unknown parameter vector of the expert k,

k ∈ [K], to be estimated.
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Conditional density function of the FS-FME model

Gathering the gating function (4.26) and the expert density (4.28) we obtain the following conditional

density function for the FS-FME model:

f(yi|xi;Ψ) =
K∑

k=1

πk(xi;α)ϕ(yi;x
⊤
i Bk,Σk), (4.29)

where Ψ = (α⊤,θ⊤1 , . . . ,θ
⊤
K)⊤ is the parameter vector of the model.

4.4.2 Penalized maximum likelihood estimation via EM algorithm

The maximum likelihood estimation for FS-FME model can be obtained via the EM algorithm

in the same manner as in the FF-FME model considered in previous section. In addition, to

obtain smooth fits for the functional parameters βkj(t) we impose a roughness penalty term to the

log-likelihood function and consider the following penalized log-likelihood function

L(Ψ) = logL(Ψ)− Penλ(Ψ), (4.30)

where logL(Ψ) is the observed-data log-likelihood of Ψ and Penλ(Ψ) is a roughness penalty term

that encouraging smoothness for the functional experts defined by

Penλ(Ψ) =

K∑

k=1

p∑

j=1

λkj

∫

T

[
(Dβkj)(t)

]2
dt, (4.31)

where D is some differential operator, for example, the second derivative. Here, similarly to the

FF-FME model, the dependence of the penalty term of Ψ is implicitly. The two steps of the EM

algorithm for FS-FME model are performed as follows.

E-step. We calculate the conditional probability memberships τ
(s)
ik given by

τ
(s)
ik = P(zi = k|xi,yi; Ψ̂(s)) =

πk(xi; α̂
(s))ϕ(yi;x

⊤
i B̂

(s)
k , Σ̂

(s)
k )

f(yi|xi; Ψ̂(s))
, (4.32)

where Ψ̂(s) = (ξ̂(s)⊤, θ̂
(s)⊤
1 , . . . , θ̂

(s)⊤
K )⊤ is the estimate ofΨ at the iteration sth of the EM algorithm.

M-step. In the M-step, the gating parameter and the expert parameters will be estimated

separately as we have seen many times before. Firstly, for the gating network, similarly to the

FF-FME model, the maximization with respect to α can be done as in (3.16) via the MLE, or in

(3.20) via the regularized MLE. Therefore, we again refer to the updating gating network parameters

part given in Appendix B.1 for the maximization with respect to α.

For each functional expert k, because of the stochastic representation (4.24), we can recognize

that the maximization with respect to θk consists of solving a weighted function-on-scalar regression
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problem, where the weights are the current conditional expert memberships τ
(s)
ik given in (4.32).

Therefore, we can take advantage from the solution formula for the function-on-scalar regression

model presented in Subsection 2.6.2. In particular, let us denote Y = [y1, . . . ,yn]
⊤, X =

[x1, . . . ,xn]
⊤, τ

(s)
k = (τ

(s)
k1 , . . . , τ

(s)
kn )

⊤, the update formula for the parameter vector of expert kth

for the next EM iteration is given by

vec(B̂⊤
k )

(s+1) =
(
U⊤
τ Uτ +Λk ⊗D

)−1
U⊤
τ vec(I1/2ω Y ⊤

τ ), Uτ =Xτ ⊗ I1/2ω , (4.33)

Σ̂
(s+1)
k =

1
∑n

i=1 τ
(s)
ik

(
Yτ −Xτ B̂

(s+1)
k

)⊤ (
Yτ −Xτ B̂

(s+1)
k

)
, (4.34)

where

Λk = diag(λk1, . . . , λkp) ∈ Rp×p,

D =

[∫

T
(Dωg)(t)(Dωh)(t)dt

]

g,h

∈ Rq×q,

I1/2ω I1/2ω =

[∫

T
ωg(t)ωh(t)dt

]

g,h

∈ Rq×q,

Xτ =

√
τ
(s)
k ⊙X ∈ Rn×p,

Yτ =

√
τ
(s)
k ⊙ Y ∈ Rn×q

where the square root is understood componentwise, ⊗ is the Kronecker product operator and

⊙ is the Hadamard product operator. Similarly to the update formulas in FF-FME model, the

dependence of the right hand side of (4.33) on the sth iteration of the EM algorithm is implicit via

τ
(s)
k .

4.4.3 Numerical experiments

Data generating process

In this part, we illustrate the usage of the proposed FS-FME model on simulated data, to relate

functional responses to scalar predictors. The data generating process is follows. First, we fix a

true functional expert network that consists of the functions βkj(t) as can be seen in Figure 4.8.

Here K = 3, p = 3, and we intentionally created rough curves so that we can see the effect of the

smooth penalization on the estimation.

Next, we generated 200 predictors xi with whose components follow N (0, 1), N (1, 1), N (2, 1)

with equal proportions. The functional responses Yi(t) are then generated by

Yi(t)|Zi = zi,xi = x⊤
i βzi(t) + εi(t),

Zi|xi ∼ M
(
1,
(
π1(xi;α), . . . , πK(xi;α)

))
.

We can see, the wiggles in Yi come from both the expert functions and the error functions. Figure 4.8
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shows the generated Yi(t) colored according to their true labels.
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Figure 4.8: The true functional experts and the noisy functional responses in the simulated data.

Implementation and results

We split the dataset into training and testing sets with equal proportions, estimate the functional

experts using the training set, and report the evaluation metrics on the testing set. Specially, we

implement the FS-FME model with different roughness penalty constants to illustrate the effect

of the smooth penalization on the estimation. In this study, we set the operator D to the second

derivative.

To evaluate the estimation of the functional experts, we compute the following quantity

MISE(β̂λ) =
1

Kp

K∑

k=1

p∑

j=1

∫

T
(β̂λkj(t)− βkj(t))2dt,

where βkj(t) is the true parameter function, and β̂λkj(t) is the parameter function estimated with

penalty constant λ. To evaluate the prediction, we compute the MISE between the true and the

predicted responses in the testing set.

Figure 4.9 shows the estimated expert functions β̂kj(t) with three different penalty constants:

λ1 = 0, λ2 = 0.001, λ3 = 1, and the corresponding predicted responses Ŷ (t) for the predictors in

the testing set. As we can see, the larger λ results in the smoother for the estimated functions.

With λ = 1, the estimated experts tends to straight lines. The corresponding values for MISE(β̂λ)

are 0.0151, 0.0107, and 0.1607. The prediction on testing set can be seen visually in Figure 4.9.

The MISEs in prediction on the testing set are 24.6612, 24.4827, and 25.4218, respectively for the

three estimated models.
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Figure 4.9: The estimated functional experts resulted by different roughness penalty constants, and
the predicted responses for the predictors in the testing set.
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4.5 Summary

In this chapter, we extended the FME, FME-Lasso and iFME models proposed in Chapter 3 to

the case of categorical responses, i.e., for multiclass classification problems. The corresponding

EM algorithm were also developed for the extended models. Simulation study was constructed to

illustrate the performance of the models. We also applied the models to the phoneme data and

obtained promising results in terms of both classification correct rate and accuracy of parameter

fitting.

The first time ME models are developed to deal with regression problems with functional

responses. In particular, we proposed FS-ME and FF-ME models to model the relationship

between functional responses and vetorial predictors (FS-ME model)/ functional predictors (FF-

ME model) in heterogeneous populations. The dedicated algorithms were presented for parameter

estimations. These models have many potential applications as illustrated in the experimental

studies subsections, especially the effect of roughness penalization on producing smooth fits for the

underlying true kernels.

There are many other extensions can be considered. For example, we can develop interpretable

variants for the FF-FME and FS-FME models. In particular, the functional gating network in the

FF-FME model can be defined upon the finite representation of the gating function’s derivatives.

Like that, the estimated kernels can be truly sparse and get interpretable shapes as seen in the

iFME models.
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5.1 Introduction

Many modern applications nowadays, including regression, classification as well as clustering, must

deal with datasets that cannot be stored on a single machine. This may be due to the nature of the

data, communication issues such as with data in meteorology where they are collected at different
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stations, or by privacy restriction such as with data in finance and medicine. Even if a single full

dataset is available, it often requires a huge processing resource for handling and running statistical

inference methods, this may be evenly more expensive.

Such restrictions may prevent one from obtaining global estimators for the models assumed on

the data. Parallelizing or sequentializing the existing learning algorithms and statistical methods

is therefore an active research area. Most of works are based on a two-step divide and conquer

procedure: • Local inference (or local computation) and • Aggregation. In the first step, standard

inference or computation is performed on subsets of data available at local machines, then in the

second step, the local results are collected to a central machine where they are aggregated.

Although relying on the same divide and conquer principle, these attempts can be categorized

into two groups: one parallelizes the model computation and one parallelizes the model inference.

Parallelizing the model computation means the estimator for the model parameter is maintained

and updated on a central machine, while the computations for that update procedure are distributed

and carried out on local machines. However, not all the computations of the existing algorithms

can be parallelized effectively, by the nature of the formulas, or by the high cost of communication

across the machines during the computations. Therefore, parallelizing the model inference is a

preferred approach. It performs standard inference on local machines to obtain local estimators,

then transmits them to a central machine where they are aggregated together, based on some

efficient strategies, to produce an overall estimator for the model parameter.

There are many successful attempts in this direction of parallelizing the existing learning

algorithms and statistical methods. Those may be mentioned here include parallelizing stochastic

gradient descent(Zinkevich et al., 2010), parallelizing multiple linear regression(Mingxian et al.,

1991), parallelK-Means clustering based on MapReduce (Zhao et al., 2009), distributed learning for

heterogeneous data via model integration (Merugu and Ghosh, 2005), split-and-conquer approach

for penalized regressions (Chen and ge Xie, 2014), for logistic regression (Shofiyah and Sofro, 2018),

distributed learning for finite Gaussian mixtures (Zhang and Chen, 2021), among others.

To make this chapter self-complete, let us briefly recall the notion of the ME framework. The

main idea of ME models themselves is also the divide-and-conquer principle, in which a complex

problem is divided into smaller simple sub-problems, then each one can be solved by a special

expert. A ME model can be written in general notation as

f(y|x) =
K∑

k=1

Gatek(x) Expertk(y|x),

in which f(y|x), the distribution of response y given the covariate x, is modeled as a mixture

distribution with covariate-dependent mixing proportions Gatek(x) and conditional mixture components

Expertk(y|x). In MEmodel terminology, Gatek(x) is referred to as gating function, and Expertk(y|x)
is referred to as expert function, while K ∈ N is the number of experts. ME is therefore a fully

conditional mixture model that allows the mixing proportions to be functions of the covariates.

The most popular models for the function Gatek(x) are the softmax gating function and the
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Gaussian gating function, while for the conditional mixture components Expertk(y|x), there are

many choices depend on the considered problem. When the response y is continuous and assumed

to be Gaussian given the input x, Expertk(y|x) can be modeled by the conditional density function

of Gaussian distribution. When the response y is binary, resp. categorical, the suitable choice

for Expertk(y|x) is the conditional density function of the binary, resp. multinomial, logistic

regression distribution. In addition to these popular ones, many other models for the conditional

mixture components have been studied (Chamroukhi, 2015). In situations where standard mixture

of regression models fails to approximate the conditional probability distribution of data, ME

model may be a good replacement as it can capture a wide variety of data distributions thanks to

their universal approximation property well established for almost of popular gating and experts

functions (Nguyen et al., 2019, 2021a).

Some successful applications of ME architecture may be mentioned here include ME for time

series prediction (Zeevi et al., 1996; Yümlü et al., 2003), segmentation (Chamroukhi et al., 2013,

2009), ME for social network data (Gormley and Murphy, 2010), for classification of gender and

pose of human faces (Gutta et al., 2000), etc. For an overview of practical and theoretical aspects

of ME modeling, reader is referred to Nguyen and Chamroukhi (2018); Yuksel et al. (2012).

In this chapter, we particularly introduce a distributed learning approach for the softmax-gated

mixtures of Gaussian experts model because of its popularity in applications. Let (x, y) ∈ X × Y
be a random observation from some probability model, where x ∈ X ⊂ Rd (d ∈ N) is the input and
y ∈ Y ⊂ R is the output. A softmax-gated mixture of Gaussian experts model links y and x via

the following conditional density function

f(y|x;θ) =
K∑

k=1

πk(x;α)φ(y;x
⊤βk, σ

2
k), (5.1)

where θ = (α⊤,β⊤
1 , . . . ,β

⊤
K , σ

2
1, . . . , σ

2
K)⊤ is the parameter vector of the model. Here, πk(x;α) is

the softmax gating function given by

πk(x;α) =
exp(x⊤αk)

1 +
∑K−1

k′=1 exp(x
⊤αk′)

,

where α = (α⊤
1 , . . . ,α

⊤
K−1)

⊤, αk ∈ Rd for k ∈ [K − 1], is the parameter vector of the gating

network; φ(·;µ, σ2) is the conditional Gaussian density function with mean µ and variance σ2, and

(β⊤
k , σ

2
k)

⊤ ∈ Rd+1 is the parameter vector of the expert k for k ∈ [K].

Such setting has been exclusively studied in multivariate analysis. However, in practice when

the dataset (based on it we estimate the model parameter) is large, the computation for parameter

estimation may be costly or evenly infeasible. Therefore, a distributed learning approach for this

ME model is particularly interesting and will be developed in this chapter.

The rest of this chapter is organized as follows. In Section 5.2 we formulate the problem of

aggregating the local estimates of a ME model and we will propose a numerical strategy for solving

it in Section 5.3. Section 5.5 is dedicated for numerical study and Section 5.6 is for summary and
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discussion.

5.2 Aggregating distributed ME models

5.2.1 Problem setting

Let D = {(xi, yi)}Ni=1 be a random sample of N (with N ∈ N supposed to be large) independently

identically distributed (i.i.d.) data pairs from a ME model f(·|x,θ∗) as in (5.1), where (xi, yi) ∈
X × Y, X ⊂ Rd, Y ⊂ Rq, and θ∗ is the true parameter vector. For simpler notation, we will

denote by f∗ the true conditional density function f(·|x,θ∗). Note that xi, yi denote observed

data, whereas x, y denote the generic variables.

With the assumption that N is so large that it is difficult to estimate θ∗ on a single computer

within a reasonable amount of time, a natural approach is to use the divide-and-conquer principle

to estimate θ∗. Suppose that D is randomly divided intoM disjoint subsets D1, . . . ,DM and stored

onM local machines. Let f(·|x, θ̂m), abbreviated simply by f̂m, be the conditional density function

(with parameter vector θ̂m) of the ME model estimated based on sample Dm, namely,

f̂m := f(·|x, θ̂m) =
K∑

k=1

πk(x; α̂
(m))φ(·|x; β̂(m)

k ), (5.2)

where θ̂m = (α̂(m), β̂
(m)
1 , . . . , β̂

(m)
K ) obtained by maximizing the observed-data log-likelihood function

(2.9) with the data in Dm.

The question is how to approximate the true global density f∗ from the local densities f̂m,

and more importantly, how to aggregate the local estimators θ̂m to produce a single aggregated

estimator for the true parameter vector θ∗. Here and after, we use “local density” and “local

estimator” to refer to the conditional density function f̂m and the parameter vector θ̂m, respectively,

of the ME model estimated at local machine m based on Dm, m ∈ [M ]. Besides, for the reader’s

convenience, from now on the local models and local parameters will be denoted with hat notations.

5.2.2 Aggregation strategies

Let Nm be the sample size of the subset Dm, i.e.,
∑M

m=1Nm = N . A natural strategy to

approximate the true density f∗ is to use the weighted average density f̄W defined by

f̄W =

M∑

m=1

λmf̂m, (5.3)
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where λm denote the sample proportions Nm
N those sum to one, and f̂m are the local densities

defined in (5.2). This average density f̄W fits our intuition about an average model, and in fact,

approximates very well the true density f∗. However, there are two issues with this aggregating

strategy. First, it only gives us an expression to approximate the conditional probability values,

i.e., for each x ∈ X we have f̄W (y|x) ≈ f∗(y|x), it does not give us the approximation expression

for the true parameter θ∗. In other words, it is not clear how to obtain a “weighted average”

approximation for θ∗ from the local estimators θ̂m’s. Second, since each f̂m is a mixture of K

components, we can express the density f̄W in (5.3) as

f̄W =

M∑

m=1

λm

K∑

k=1

πk(x; α̂
(m))φ(·|x; β̂(m)

k )

=
M∑

m=1

K∑

k=1

λmπk(x; α̂
(m))φ(·|x; β̂(m)

k ). (5.4)

One can see that
∑M

m=1

∑K
k=1 λmπk(x; α̂

(m)) = 1 for all x ∈ X , so f̄W can be viewed as a mixture

model with MK components in which the component densities are φ(·|x; β̂(m)
k ) and the gating

functions are λmπk(x; α̂
(m)), for k ∈ [K], m ∈ [M ]. Therefore, although this MK-component

mixture approximates well the true density f∗, it has a wrong number of components, i.e., MK

instead of K, this will make the clustering results useless or difficult to interpret. Hence, this

aggregating approach is not what we are aiming for.

Let MK denotes the space of all K-component ME models as in (5.1). Two other common

strategies to aggregate the local densities f̂1, . . . , f̂M are via

f̄B := f(y|x; θ̄B) = arg inf
g∈MK

M∑

m=1

λmρ(f̂m, g), (5.5)

and

f̄R := f(y|x; θ̄R) = arg inf
g∈MK

ρ(f̄W , g), (5.6)

where ρ(·, ·) is some divergence defined on the space of finite mixture distributions. The solution

f̄B and f̄R are often known as barycenter solution and reduction solution, respectively, with their

interpretations are given as follows.

In the case of f̄B, we are finding aK-component ME model g that can be viewed as a barycenter

the local models f̂1, . . . , f̂M with respect to the weights λ1, . . . , λM and the divergence ρ(·, ·).
Whereas, in the case of f̄R, we are finding a K-component ME model g that is closest with the

weighted average density f̄W defined in (5.3), with respect to the divergence ρ(·, ·). Because we are
searching for solutions inMK , both f̄B and f̄R solve the problem of wrong number of components

in f̄W .

Both solutions are desirable, and in fact, can be shown to be connected under specific choices

of ρ(·, ·). Indeed, for any bivariate function ρ(·, ·) that is linear in the first argument, f̄B and f̄R

are identical. However, in this chapter we prefer the reduction solution f̄R for many reasons. First,
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as we have already remarked, the MK-component mixture f̄W is a good approximation to the

true density f∗, so it makes more sense to find a K-component ME model that approximates f̄W ,

which we already know is good. Second, the barycenter approach may lead to a counter-intuitive

solution under some specific ρ(·, ·), e.g., as already shown in Zhang and Chen (2021) for the case

of univariate Gaussian mixture models and the 2-Wasserstein divergence with Euclidean ground

distance. Finally, as we can see, given the same divergence ρ(·, ·), the computation in (5.5) will be

more expensive than that of (5.6), especially in our large data context.

Thus, our objective in the next sections is to develop an efficient algorithm to find the reduction

estimator θ̄R. We shall denote the components of the reduction estimator by θ̄R = (ᾱR, β̄R1 , . . . , β̄
R
K).

A description of our considered problem can be seen in Figure 5.1, in which, the gating and expert

parameters are explicitly indicated for each component of the local and the reduced models.

λ1, π1(x; α̂(1)), ϕ(y|x; β̂
(1)

1 )

...
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(M)

1 )

...

λM , πK(x; α̂(M)), ϕ(y|x; β̂
(M)

K )

m
a
ch

in
e
1
,
D

1
m
a
ch

in
e
M

,
D

M
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Figure 5.1: Description of the considered aggregation problem. Left panels are the components
of the local ME models with their corresponding estimated parameters. Right panels are the
components of the aggregated K-component ME model, i.e., the desired solution. The unknowns
are therefore ᾱR, β̄R1 , . . . , β̄

R
K .

5.2.3 Some remarks and notation conventions

Recall that, as we can see in equation (5.4), the weighted average mixture f̄W has totally MK

terms of the form λmπk(x; α̂
(m))φ(·|x; β̂(m)

k ), form ∈ [M ], k ∈ [K]. However, due to the presence of

the weights λm and the fact that the local gating parameters α̂(1), . . . , α̂(M) are not yet integrated

into a single gating parameter vector, f̄W do not has the standard form of a ME model as in (5.1).

For mathematical convenience, we will incorporate the weights λm into the local gating functions

πk(x; α̂
(m)) and write them simply by {π̂ℓ(x)}ℓ∈[MK], which will be also referred to as gating

functions. The corresponding experts in f̄W will be abbreviated by {φ̂ℓ(y|x)}ℓ∈[MK]. Similarly,

for g ∈ MK , we will abbreviate its K gating functions by {πk(x)}k∈[K], and its K experts by
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{φk(y|x)}k∈[K]. We then have

f̄W =
MK∑

ℓ=1

π̂ℓ(x)φ̂ℓ(·|x) and g =
K∑

k=1

πk(x)φk(·|x), (5.7)

for g ∈ MK . Here, the dependence of the functions on the parameters is understood implicitly.

Table 5.1 summarizes our notations for this chapter.

Symbol Explanation

θ Parameter vector of the model
xi, yi Training data. Without subscript they refer to generic variables
K, M Number of components of the true model, number of local machines
U The interval [0, 1] ⊂ R
f̄W , f̄B, f̄R Weighted average, barycenter and reduction densities
{πk(x)}k∈[K] Gating functions πk(x;α), k ∈ [K], with unknown α

{φk(·|x)}k∈[K] Expert functions φ(·|x;βk), k ∈ [K], with unknown βk
{π̂ℓ(x)}ℓ∈[MK] Gating functions πk(x; α̂

(m)), m ∈ [M ], k ∈ [K]

{φ̂ℓ(·|x)}ℓ∈[MK] Expert functions φ(·|x; β̂(m)
k ), m ∈ [M ], k ∈ [K]

Tc(h, g) Transportation divergence between mixtures h and g
Tc(g) Abbreviation of Tc(f̄W , g)
Rc(g) Relaxation of Tc(g) from the constraints involving π

Sc(g, g(t)) Majorant function of Rc(g) at g(t)

Table 5.1: Summary of notation

5.3 Optimal transport approach for the reduction strategy

Let us substitute (5.3) into (5.6) and write the problem more explicitly as

f̄R = arg inf
g∈MK

ρ

(
M∑

m=1

λmf̂m, g

)
, (5.8)

that is, we are seeking for a K-component ME model g of form as in (5.1) that is closest to the

MK-component mixture f̄W =
∑M

m=1 λmf̂m with respect to some divergence ρ(·, ·). In general, an

analytical solution is difficult to obtain for such reduction problem, especially in the context of ME

models where the conditional density function is made up of several different gating and expert

functions. Therefore, the aim of this section is to propose a framework to find a numerical solution
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for the the reduction model f̄R.

We observe that, firstly, the solution depends heavily on the choice of the divergence ρ(·, ·),
which measures the goodness of a candidate model g ∈ MK . A good choice of ρ should take

into account the dissimilarity between the experts, as well as the weights incorporated in the

gating functions between the mixtures. Then, the best candidate mixture g should minimize the

divergence from the large mixture f̄W . Secondly, compute the divergence between two mixtures

is difficult, while it would be easier to compute the divergence between two component densities,

which may has explicit formula in some specific cases. Therefore, borrowing the idea in Zhang

and Chen (2021) that finds a reduction estimator for finite Gaussian mixtures based on minimizing

transportation divergence between the large starting mixture and the desired mixture, we establish

a framework for solving a reduction estimator for ME models, which is generally formalized as

in (5.8). Particularly, in the case φ(y|x;β) being Gaussian experts, if conditionally on one single

observation of x, problem (5.8) can be viewed as the problem of finding reduction estimator for

finite mixtures of 1D Gaussian distributions.

5.3.1 Expected transportation divergence

Let h =
∑L

ℓ=1 π̂ℓ(x)φ̂ℓ(y|x), L ∈ N, and g =
∑K

k=1 πk(x)φk(y|x) be two mixture models of L and

K components, respectively. Here, h will play the role as the mixture f̄W in problem (5.6). We

wish to define a divergence that measures the dissimilarity between the two mixtures h and g. Let

Φ denotes the family of the component conditional densities φ(·|x;β) =: φ(·|x). Let π̂ and π be,

respectively, the column vectors of gating functions π̂ℓ(·)’s and πk(·)’s. For x ∈ X , we denote

Πx(π̂,π) := Π (π̂(x),π(x)) =
{
P ∈ UL×K : P1K = π̂(x),P⊤1L = π(x)

}
,

where U denotes the interval [0, 1], 1K and 1K are vectors of all ones. In other words, for x ∈ X ,
Πx(π̂,π) denotes the set of all matrices P of size L ×K, with entries Pℓk ∈ [0, 1], satisfying the

marginal constraints

K∑

k=1

Pℓk = π̂ℓ(x), for all ℓ ∈ [L], (5.9a)

L∑

ℓ=1

Pℓk = πk(x), for all k ∈ [K]. (5.9b)

Given x ∈ X , one can think of such matrix P ∈ Πx(π̂,π) as a plan that transports an amount

of material distributed according to π̂(x) to distributed according to π(x), for short, we will say

“transports π̂(x) to π(x)”. Suppose that the transportation is costing for each unit of material.

We are then interested in the optimal way, i.e., with a minimum cost, to transports π̂(x) to π(x).

The optimal plan is clearly depends on x. We will write P (x) to indicate such optimal plan.

Figure 5.2 gives an example of transportation plans.
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π̂`(x)

0

0.2

0.4

0.6

` = 1 2 3 4 5 6

πk(x)

0

0.2

0.4

0.6

k = 1 2 3

P 1 =




0.2 0 0
0 0.1 0
0 0.1 0
0 0.1 0.1
0 0 0.3
0 0 0.1




P 2 =




0.1 0.1 0
0 0 0.1
0 0.1 0
0 0.1 0.1
0.1 0 0.2
0 0 0.1




Figure 5.2: Example of transportation plans with L = 6 and K = 3. Given x ∈ X , the vectors
π̂(x) and π(x) can be viewed as the distributions of the weights (sum to one). Here, for example,
the weights are distributed as in the left and right panels. P1 and P2 are two valid plans those
transport π̂(x) in two different ways to π(x).

Definition 5.3.1 (Expected transportation divergence). Given the above notations, the

expected transportation divergence between two mixtures h and g is defined by

Tc(h, g) = E

[
inf

P∈Πx(π̂,π)

L∑

ℓ=1

K∑

k=1

Pℓk c (φ̂ℓ(·|x), φk(·|x))
]
=: E

[
Tc(h, g,x)

]
, (5.10)

where c(·, ·) is a real-valued bivariate function defined on Φ × Φ satisfies c(φ1, φ2) ⩾ 0 for

all φ1, φ2 ∈ Φ, and the equality holds if and only if φ1 = φ2.

Here, the expectation is taken with respect to x and the function c is often referred to as the cost

function. Assume that, for a given x ∈ X , P ∗(x) is an optimal solution to the optimization problem

inside the expectation operator in (5.10). Then the value of Tc(h, g,x) can be interpreted as the

optimal total cost of transporting π̂(x) to π(x) with the unit cost of transportation is proportional

to the values c (φ̂ℓ(·|x), φk(·|x))’s. This interpretation is common in optimal transportation literature

under the name Kantorovich formulation, e.g., Oberman and Ruan (2015). The value Tc(h, g) is

therefore defined as the expected value of these optimal transportation costs.

The cost function c must be chosen such that it not only reflects the dissimilarity between the

conditional densities φ̂ℓ(·|x) and φk(·|x), but also has to be easy to calculate. Later we will see

that c being KL-divergence is a suitable choice for both the cases when the experts are Gaussian

regression models (i.e., for regression problems), and when the experts are logistic regression models

(i.e., for classification problems).
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Thus, by considering ρ(·, ·) being the expected transportation divergence Tc(·, ·), problem (5.6)

becomes

f̄R = arg inf
g∈MK

Tc(f̄W , g)

= arg inf
g∈MK

{
E

[
inf

P∈Πx(π̂,π)

MK∑

ℓ=1

K∑

k=1

Pℓk c (φ̂ℓ(·|x), φk(·|x))
]}
· (5.11)

From now on, we will use Tc(g) to refer to Tc(f̄W , g), since our objective now is to minimize the

transportation divergence Tc(f̄W , g) as a function of g ∈MK .

Problem (5.11) appears to involve two optimizations: one over Πx(π̂,π) and one over MK .

However, we will show that the constraint P ∈ Πx(π̂,π) in fact can be relaxed to P ∈ Πx(π̂, ·).
This means we only need P to satisfy (5.9a), the constraints (5.9b) are redundant. In other word,

instead of searching, for each x, a plan P that satisfies π(x), we can move π, the gating functions

make up g, to match P .

Indeed, for f̄W and g as in (5.7), let us define Rc(f̄W , g) as a function of g as follow

Rc(f̄W , g) = E

[
inf

P∈Πx(π̂,·)

MK∑

ℓ=1

K∑

k=1

Pℓk c (φ̂ℓ(·|x), φk(·|x))
]
=: E

[
Rc(f̄W , g,x)

]
. (5.12)

Here, the MK ×K matrix P is now free of the constraints involving the gating network π of g,

namely, for all x ∈ X , the equality P⊤1MK = π(x) need not to be hold. Then, the following

proposition will claim that solving f̄R = arg inf
g∈MK

Tc(f̄W , g) can actually be reduced to solving

f̄R = arg inf
g∈MK

Rc(f̄W , g), which is much easier.

Before presenting the proposition, we define P(f̄W , g,x) a function of g ∈ MK and x ∈ X as

follow

P(f̄W , g,x) = arg inf
P∈Πx(π̂,·)

MK∑

ℓ=1

K∑

k=1

[Pℓk c (φ̂ℓ(·|x), φk(·|x))] . (5.13)

This function returns the optimal plan for the optimization problem inside the expectation operator

in the definition of Rc(f̄W , g). For simplicity of notation, similarly to Tc(g), from now on we let the

dependence of the functions on f̄W in the background, i.e.,Rc(f̄W , g),Rc(f̄W , g,x) and P(f̄W , g,x)
will be written by Rc(g), Rc(g,x) and P(g,x), respectively.
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Proposition 5.3.1. Let Tc(g),Rc(g) and P(g,x) defined as above. Then

inf
g∈MK

Tc(g) = inf
g∈MK

Rc(g).

The reduction solution is hence given by

f̄R = arg inf
g∈MK

Rc(g), (5.14)

and the gating functions of f̄R can be calculated by

πk(x) =
MK∑

ℓ=1

Pℓk(f̄R,x), ∀x ∈ X , (5.15)

where Pℓk(f̄R,x) denotes the entry (ℓ, k) of P(f̄R,x).

The proof of Proposition 5.3.1 is given in Appendix C.1.1. It is important to note here that the

equation (5.15) only gives us an expression for computing the values of the gating network for each

x ∈ X , it does not yet have the parametric form as in the standard model (5.1). Thus, to obtain

the desired gating parameter ᾱR as described in Figure 5.1, we need to perform an additional

estimation step as in equation (5.21), which will become clearer later in Subsection 5.4.2.

Thus, thanks to Proposition 5.3.1, our objective now is to minimize Rc(g) with respect to g.

Replacing Tc(g) by Rc(g), problem (5.11) becomes

f̄R = arg inf
g∈MK

Rc(g)

= arg inf
g∈MK

{
E

[
inf

P∈Πx(π̂,·)

MK∑

ℓ=1

K∑

k=1

Pℓk c (φ̂ℓ(·|x), φk(·|x))
]}
· (5.16)

This optimization can be done with the help of majorization-minimization (MM) algorithm (e.g.,

Lange (2016)). We defer the numerical approach for solving the problem (5.16) in Section 5.4, now

we will show that the problem is well-posed and state the conditions for the consistency of the

reduction estimator.

5.3.2 Well-posedness and consistency of the reduction estimator

We will make the following standard assumptions.

A1 The dataset D = {(xi, yi)}Ni=1 is an i.i.d. sample from theK-component ME model f(y|x,θ∗),
in which the parameters are ordered and initialized.

A2 The cost function c(·, ·) is continuous in both arguments, and c(φ1, φ2) → 0 if and only if

φ1 → φ2 in distribution.
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A3 The cost function c(·, ·) is convex in the second arguments. This property holds for most

of popular divergences such as Kullback Liebler, Hellinger distance, ..., see e.g., Dragomir

(2013).

■ Well-posedness. First, we observe that for any x ∈ X , the minimization problem inside

the expectation operator in (5.16) is in fact a linear programming (LP) problem. Moreover, for

x ∈ X , we see that Πx(π̂, ·) is a nonempty set, and the sum
∑MK

ℓ=1

∑K
k=1 Pℓkc (φ̄ℓ(·|x), φk(·|x)) is

bounded below by zero for all P ∈ Πx(π̂, ·). Therefore, this LP problem has a global minimizer

(e.g., see Boyd and Vandenberghe (2004)). Hence, for all g ∈MK , there exists non-negative finite

expectation for the random quantity Rc(g,x).
Now, for a mixture g ∈MK as in (5.7), we let C(P ,φ) be a function of the transport plan with

respect to the component densities of g, given by

C(P ,φ) =
MK∑

ℓ=1

K∑

k=1

Pℓk c (φ̂ℓ(·|x), φk(·|x)) ,

where P ∈ UMK×K , U = [0, 1] ⊂ R, and φ = (φ1(·|x), . . . , φK(·|x)) ∈ ΦK . Here, we can think

of the family Φ as the space of parameter vectors that make up the density φ(·|x) (typically Rκ,
for some κ ∈ N∗). Then, the assumptions A2 and A3 on the continuity and convexity of the cost

function c immediately lead to the continuity and convexity in φ of the function C(P ,φ). Moreover,

C(P ,φ) as an affine function is obviously continuous and convex in P .

Next, for x ∈ X , let I(g,x) be a function of g and x defined by

I(g,x) = inf
P∈Πx(π̂,·)

C(P ,φ),

i.e., the optimal cost given g and x inside the expectation operator in (5.16). We see that, the

value of I(g,x) depends on the mixture g only through the component densities φ, but the gating

functions. Then, the objective function of the problem (5.16) can be written as Rc(g) = E [I(g,x)].
We have the following proposition.

Proposition 5.3.2. Given the notations as above. Assume in addition that there exists

∆ ∈ R+ such that I(g,x) ⩽ ∆ for all g ∈MK , x ∈ X . Then Rc(g) is continuous and convex

as a function of g ∈MK . It follows that the problem (5.16) has a global solution.

The proof of the Proposition 5.3.2 is given in Appendix C.1.2. Note that the condition on the

boundedness of the optimal transportation costs is common, and the solution to the problem (5.16)

is not necessarily unique.

■ Consistency. The reduction estimator θ̄R has a desired property that it is a consistent

estimator of the true parameter θ∗ as soon as the local estimators are consistent estimators of

θ∗. We have the following proposition.
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Proposition 5.3.3. Let θ̄R be the parameter of the reduction density f̄R defined in (5.6) with

ρ being the expected transportation divergence Tc. Suppose assumptions A1-A2 are satisfied.

Then θ̄R is a consistent estimator of θ∗.

The assumption that the parameters are ordered and initialized in Assumption A1 is necessary

because under it the MEmodels are identifiable (Jiang and Tanner, 1999). The proof of Proposition 5.3.3

is given in Appendix C.1.3.

5.4 An MM algorithm for constructing the reduction estimator

5.4.1 The main algorithm

We see that, the optimization problem (5.16) is accompanied by the objective functionRc(g) defined
upon another optimization, with respect to the transportation plan P , that makes the approach

such as gradient descent hard to apply directly. In this section, we present the approach of using the

MM algorithm, which requires the definition of a so-called majorant function, to solve the problem

(5.16). We will apply it to the two common specifications of ME models: softmax-gated mixtures

Gaussian regression and softmax-gated mixtures logistic regression models.

MM algorithm (Lange, 2004) is an iterative procedure that consists of alternating between two

steps: Majorize the objective function at the current iterate with a majorant function, andMinimize

the majorant function to define the next iterate. The sequence of minimizers of the majorant

functions is guaranteed to converge to a stationary point of the objective function. Employing

MM algorithm to our problem means that we will starts from an initial model g(0) ∈MK , then at

each iteration tth, find a majorant function for Rc(g) at g(t), and minimize it to obtain the next

model g(t+1). The generated sequence (g(t))t⩾1 satisfies Rc(g(0)) ⩾ Rc(g(1)) ⩾ . . . We keep running

until convergence is reached, i.e., there is no significant change in the value of Rc(g). The model

obtained at convergence is then supposed to be the desired model f̄R. Note that, for a general

objective function, MM algorithm only guarantees to converge to a stationary point, not a global or

local minimum, so multiple initializations are often required in order to obtain high quality solution

(Nguyen, 2016).

The following proposition gives us a majorant function for Rc(g).
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Proposition 5.4.1. Let g(t) be the model obtained at MM iteration t-th. Let

Sc(g, g(t)) = E

[
MK∑

ℓ=1

K∑

k=1

Pℓk(g(t),x) c(φ̂ℓ(·|x), φk(·|x))
]
, (5.17)

where Pℓk(g(t),x) is given by

Pℓk(g(t),x) =





π̂ℓ(x) if k = arg inf
k′∈[K]

c(φ̂ℓ(·|x), φ(t)
k′ (·|x))

0 otherwise.
(5.18)

Then Sc(g, g(t)) is a majorant function of Rc(g) at g(t).

The proof of Proposition 5.4.1 is in Appendix C.1.4. Here we see that, the plan with entries

Pℓk(g(t),x) given in (5.18) is an optimal plan for the optimization problem (5.13) when g = g(t)

(this will be clear in the proof of the proposition). Note that, similarly to Rc(g), the function

Sc(g, g(t)) varies only through the parameters of the conditional densities φk(·|x)’s.
Then, the next step is to minimize Sc(g, g(t)), with respect to g, to obtain a next point g(t+1)

for the MM algorithm. As we can see, the optimization for Sc(g, g(t)) can be performed separately.

At each iteration tth, the parameter vector of the expert k can be optimized via

φ
(t+1)
k (·|x) = arg inf

φ∈Φ

{
E

[
MK∑

ℓ=1

Pℓk(g(t),x) c(φ̂ℓ(·|x), φ(·|x))
]}

. (5.19)

According to each specification of the experts and the cost function c(·, ·), problem (5.19) has a

certain form that is supposed to be easy to solve, as we will see later for the cases of the Gaussian

and logistic regression experts, with c is the KL-divergence.

Hence, our algorithm will alternate between two following steps until convergence:

• calculating majorant function Sc(g, g(t)) as in (5.17), which in fact only involves updating

Pℓk(g(t),x) according to (5.18);

• updating the experts parameters by solving (5.19).

At the convergence, the parameters of all the experts are optimized, so it remains to update

the parameter of the gating functions. To do that, we rely on the equation (5.15), in which

the theoretical solution f̄R is replaced by the model g∗ obtained at the convergence of the MM

algorithm. This procedure of updating the gating parameter will be presented in Subsection 5.4.2.

As we can see, up to this point all the optimizations carried on the central machine are involving

the expectations with respect to x. In practice, the distribution of x is unknown. Therefore, our

approach is to create a small sample DS = {(xs, ys)}Ss=1 of size S by randomly drawing from the

full dataset D . This DS acts as a supporting sample for the calculations on the central machine.

Then, the expectation Eµ(x)[ · ] will be understood as the empirical expectation calculated based
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on the empirical distribution µ(·) = S−1
∑S

s=1 δxs(·). The size of DS is also an issue for further

consideration. However, let us assume that DS has a sufficiently large size to characterize the

distribution of the variable x. We will denote byXS the set of all observations xs in the supporting

sample DS , and where there is no ambiguity we also use XS to denote the matrix with each row

corresponds to one row vector x⊤
s .

The Algorithm 5.1 gives a pseudo-code that summarizes our main algorithm of aggregating ME

models.

Algorithm 5.1 Aggregating ME local estimators

Input:
- local gating parameters α̂(m), m ∈ [M ];
- local expert parameters β̂

(m)
k , m ∈ [M ], k ∈ [K];

- sample proportions λm, m ∈ [M ].
Output: Reduction estimator θ̄R = (ᾱR, β̄R1 , . . . , β̄

R
K).

1: Initialize a ME model g(0), i.e., initialize θ(0) = (α(0), β
(0)
1 , . . . ,β

(0)
K ). Assign t←− 0

2: Sampling a supporting sample DS from D
3: repeat
4: for k ∈ [K] do
5: for ℓ ∈ [MK] do
6: For all x ∈ DS , compute Pℓk(g(t),x) according to (5.18)
7: end for
8: Update expert parameters by solving (5.19). Depending on weather the expert is Gaussian

or logistic regression model, update formula takes the form (5.23) or (5.23), respectively
9: end for

10: Assign t←− t+ 1
11: until the objective function (5.17) converges.
12: Estimate the gating parameter according to (5.21).

5.4.2 Updating the gating network parameter

As mentioned earlier, although the equation (5.15) gives a formula to compute the mixing weights

for every covariate x, to obtain the final desired ME model as described in Figure 5.1, it is necessary

to find the parameter ᾱR for the gating functions πk(·, ᾱR). Therefore, we propose to estimate

ᾱR via solving a softmax regression problem in which the predictors are XS and the responses are

computed according to (5.15). In particular, let A = [ask] be a matrix in RS×K defined by

ask =
MK∑

ℓ=1

Pℓk(g∗,xs), (5.20)
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where g∗ is the model obtained at convergence of the MM algorithm, xs ∈ DS , and Pℓk(g∗,xs) is
computed according to (5.18). Then ᾱR can be estimated via the maximum likelihood approach

ᾱR = argmax
α

S∑

s=1

K∑

k=1

ask log πk(xs;α)

= argmax
α

S∑

s=1

[
K−1∑

k=1

askα
⊤
k xs − log

(
1 +

K−1∑

k′=1

exp{α⊤
k′xs}

)]
. (5.21)

This problem can be efficiently solved by the Newton-Raphson procedure, for example as used for

updating the gating network in the M-Step of the EM algorithm in Section 2.3.1. Here, we note

that the parameter vector is also initialized, i.e., the Kth gate’s parameter is constrained to be

zero, this is necessary for proving the consistency of θ̄R.

Now, we are left with the question of how to obtain the update for the expert parameter β
(t+1)
k

as the solution of (5.19). In the next subsections, we will present the update formulas for the two

cases of the Gaussian regression expert and logistic regression expert when the cost function c(·, ·)
is KL-divergence.

5.4.3 Updating the Gaussian regression experts parameter

Now, we consider the case of φ(·|x) being Gaussian regression experts, i.e., φ(·|x) = φ(·|x⊤β;σ2),

where β ∈ Rd and σ2 ∈ R+ are the parameters of the expert. The KL-divergence between two

Gaussian regression experts takes the following form

KL
(
φ1(·|x)∥φ2(·|x)

)
=

1

2

(
log

σ22
σ21

+
σ21
σ22

+
(β2 − β1)

⊤xx⊤(β2 − β1)

σ22
− 1

)
.

Therefore, with the experts being Gaussian and the cost function c(·, ·) being KL(·∥·), the

objective function of the problem (5.19) can be written as a function of β and σ2 as

K(β, σ2) := E

[
MK∑

ℓ=1

P(t)
ℓk (x)

1

2

(
log

σ2

σ̂2ℓ
+
σ̂2ℓ
σ2

+
(β − β̂ℓ)⊤xx⊤(β − β̂ℓ)

σ2
− 1

)]
, (5.22)

where P(t)
ℓk (x) denotes Pℓk(g(t),x), which is calculated by (5.18) with c(φ̂ℓ(·|x), φ(t)

k′ (·|x)) is now

replaced by KL(φ̂ℓ(·|x)∥φ(t)
k′ (·|x)). Then, (5.19) can be simply rewritten by

(β
(t+1)
k , σ2k

(t+1)
) = arg inf

(β,σ2)∈Rd×R+

K(β, σ2).

The following proposition gives a solution to this problem, i.e., the updating formula for the

parameters of the Gaussian regression experts.
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Proposition 5.4.2. Let the notations be as defined above. If c(·, ·) is chosen to be KL (·∥·),
and φ

(t+1)
k (·|x) in (5.19) are Gaussian regression experts, then the update formulas for their

parameters are given by

β
(t+1)
k = (X⊤

SD
(t)
k XS)

−1X⊤
SXS ⊙ (W

(t)⊤
k B̂⊤)1p, (5.23a)

σ2k
(t+1)

=
1

trace(D
(t)
k )

(
Σ̂⊤W

(t)
k 1S + 1⊤

MKW
(t)
k ⊙ (β(t+1) − B̂)⊤X⊤

SXS(β
(t+1) − B̂)1MK

)
,

(5.23b)

in which, the matrices D
(t)
k , W

(t)
k and B̂ are given in (C.6)-(C.8).

The detailed calculations are given in Appendix C.1.5.

5.4.4 Updating the logistic regression experts parameter

When the problem under consideration is classification, it is common to use logistic regression model

to model the component densities. For simplicity, we consider here the case of binary responses,

i.e., y ∈ {0, 1}. The conditional density in this case takes the following form

φ(y|x;β) =
[

exp(x⊤β)

1 + exp(x⊤β)

]y [
1

1 + exp(x⊤β)

]1−y
,

where β ∈ Rd is the parameter vector. Let φ1(y|x;β1) and φ1(y|x;β2) be the conditional densities

of two binary logistic regression experts, then the KL-divergence between them is given by

KL
(
φ1(·|x)∥φ2(·|x)

)
=

exp(x⊤β1)

1 + exp(x⊤β1)

(
log

exp(x⊤β1)

1 + exp(x⊤β1)
− log

exp(x⊤β2)

1 + exp(x⊤β2)

)

+
1

1 + exp(x⊤β1)

(
log

1

1 + exp(x⊤β1)
− log

1

1 + exp(x⊤β2)

)
. (5.24)

Analogously to the case of Gaussian regression experts, substituting the expression of KL-

divergence between two logistic experts into (5.19), the objective function can be rewritten as a

function of β by

KBi(β) := E

[
MK∑

ℓ=1

P(t)
ℓk (x)

(
log
(
1 + exp(x⊤β)

)
− x⊤β

exp(x⊤β̂ℓ)

1 + exp(x⊤β̂ℓ)
+ const

)]
, (5.25)

where P(t)
ℓk (x), similarly to the case of Gaussian experts, is calculated by (5.18) with c(φ̂ℓ(·|x), φ(t)

k′ (·|x))
is now replaced by KL(φ̂ℓ(·|x)∥φ(t)

k′ (·|x)) given in (5.24).
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Proposition 5.4.3. Let the notations be as defined above. If c(·, ·) is chosen to be KL (·∥·),
and φ

(t+1)
k (·|x) in (5.19) are logistic regression experts, then the update formulas for their

parameters are given by

β
(t+1)
k = (X⊤

SXS)
−1X⊤

S (log(V
(t)
k )− log(1− V (t)

k )), Vk =D
(t)
k

−1
W

(t)⊤
k U⊤, (5.26a)

in which, the matrices D
(t)
k and W

(t)
k the same with those in Proposition 5.4.2, and U is

given in (C.11).

The detailed calculations can be found in Appendix C.1.6.

5.5 Experimental study

5.5.1 Models in comparison

In this section, we illustrate the effectiveness of our proposed approach on simulated and real-world

datasets of various sizes. In particular, we compare the performances of our reduction estimator

θ̄R and the following estimators:

• Global estimator, denoted by θG. It is the MLE of the ME model estimated based on the

full dataset on the central machine.

• Middle estimator, denoted by θ̄Mid. It is the parameter of the local density (among M local

densities) that gives the smallest sum of transportation divergences, weighted by λm, with

the other local densities, i.e.,

f̄Mid = f(y|x; θ̄Mid) = arg inf
g∈{f̂1,...,f̂M}

M∑

m=1

λmTc(f̂m, g).

• Weighted average estimator, denoted by θ̄W . It is an ad-hoc estimator defined as the pointwise

weighted average of the local estimators, i.e.,

θ̄W =

M∑

m=1

λmθ̂m.

One can see this estimator is sensitive with label switching and non-i.i.d. data partitions,

i.e., when there are differences between the partitions in terms of sample sizes of in terms of

the equilibrium between clusters. However, when the partitions are i.i.d., have equal sizes,

119



CHAPTER 5 DISTRIBUTED LEARNING FOR MIXTURES OF EXPERTS

and the estimated parameters are well-ordered, i.e., satisfy the identification condition for

ME model (Jiang and Tanner, 1999), θ̄W is a potential candidate.

5.5.2 Evaluation metrics

We compare the estimators in terms of the following metrics

• Transportation distance, defined in (5.10) with c being KL divergence, between the true

mixture and the estimated mixture. This metric is used for simulated data where we know

the true mixture.

• Log likelihood value of the estimated parameter evaluated on the testing set.

• Mean squared error (MSE) between the true parameter and the estimated parameter, used

for simulated data.

• Relative prediction error (RPE) on testing set, defined by RPE =
∑n

i=1(yi − ŷi)2)/
∑n

i=1 y
2
i ,

where yi and ŷi are, respectively, the true and the predicted responses of the ith observation

in the testing set.

• Adjusted Rand Index (ARI) between the true clustering in the testing set and the clustering

predicted by the estimated mixture. ARI is used for simulated data where we know prior

labels of the clusters.

• Learning time, i.e., the time consumed to obtain the estimator.

5.5.3 Simulated data

Data generating process

In this simulation, we fixed K = 4 and d = 20. We considered datasets of different sizes, from

moderate to very large, to illustrate the statistical performance of the estimators. The datasets were

generated as follows. Firstly we specified a true mixture of K components, which to be estimated,

and the centers x(k) of the clusters k ∈ [K]. Then for each N ∈ {100000, 500000, 1000000}, we
generated 100 random dataset D = {(xi, yi)}Ni=1 by drawing, for each k, N/K points from a

multivariate Gaussian distribution with mean x(k) and covariance matrix defined by Σuv =
1
4

|u−v|
,

for u, v ∈ [d]. Finally, the responses yi are generated by the standard generating process for ME

model, i.e.,

yi|Zi = k,xi ∼




N
(
x⊤
i β

∗
k; σ

∗2
k

)
if regression problem,

M
(
1,
(
π1(xi;β

∗
k), . . . , πG(xi;β

∗
k)
))

if classification problem

Zi|xi ∼ M
(
1,
(
π1(xi;α

∗), . . . , πK(xi;α
∗)
))
,

whereM(1,π) is the multinomial distribution with parameter vector π. Here, the true parameter

vector of the model to be estimated is θ∗ := (α∗⊤,β∗
1
⊤, . . . ,β∗

K
⊤, σ∗1

2, . . . , σ∗K
2)⊤, if regression
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problem, or θ∗ := (α∗⊤,β∗
1
⊤, . . . ,β∗

K
⊤)⊤, if classification problem. In this simulation study, we

opted to consider the regression problem. To have more fairly data generating process, these true

parameter vectors and the cluster centers are also selected randomly from the set of integers in the

interval [−5, 5]. For each of the N ’s considered above, we also generated 100 corresponding testing

sets such that the ratio of training-testing split is 80%− 20%, more precisely, the testing sets will

have 50k, 125k and 500k observations, respectively. It is worth mentioning that each of the datasets

with one million observations consumes roundly 1.6 GB of memory. The estimators are computed

using training sets and the metrics (except the learning time) are evaluated on testing sets.

Implementation details and results

For the distributed approaches, i.e., the reduction, middle and weighted average estimators, we

consider four settings of M , respectively, 4, 16, 64 and 128 machines. The data are distributed

equally to the local machines, and the size of the supporting set is taken to be equal to the size of

local data, i.e., S = Nm = N/M for all m ∈ [M ].

The Global estimator is obtained by running the EM algorithm, on a single computer. The

learning time for each of them is therefore the total time of running the corresponding algorithm.

On the other hand, for the reduction estimator, since the local inferences can be performed parallelly

on multiple machines, the learning time is recorded as the sum of the maximum local time and

the aggregating time, i.e., the time consumed by the Algorithm 5.1. Similarly, the learning time

of Middle and Weighted average estimator is the sum of the maximum local time and the time of

the corresponding calculations to obtain them. All EM algorithms involving the global and local

inferences are run with five random initializations. Finally, for each of the obtained estimators, we

compute the transportation distance form the true model, the log-likelihood, MSE, RPE and ARI

on the corresponding testing sets. model evaluation metrics described in Subsection 5.5.2.

Figure 5.3 shows the box plots of 100 Monte Carlo runs of the evaluation metrics when

N = 100000. For each panel, e.g., the transport distance, the x-axis has two rows. The lower

one represents the number of machines used for training, while the upper one represents the

leaning approaches in comparison. As we can see, the prediction and clustering performance of

our reduction estimator is as good as that of the global estimator when M is 4 or 16 machines.

When M is 64 or 128 machines, the errors of the reduction estimator are slightly higher than the

global estimator, but still better than the middle and weighted average estimators. In terms of

transportation distance, we can see that with the reduction estimator, the obtained ME model is as

close as the ME model formed by the global estimator, even when M = 128 machines. Finally, in

terms of learning time, the distributed approach requires much less time than the global approach,

for example 25 times on average when 4 machines are used.

Figure 5.4 and Figure 5.5 show the results when N is 500k and one million, respectively. Here,

the evaluation metrics behave similarly to those in Figure 5.3, except in the MSE panels where the

reduction estimator appears to be much worse than the middle and weighted average estimators

whenM = 128. However, given the magnitudes of the MSE in these cases, the difference is actually

not too large. This behavior can also be explained by the fact that for N of 500k and one million,
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Figure 5.3: Performance comparison of the Global ME (G), Reduction (R), Middle (M) and
Weighted average (W) estimator on datasets of size N=100000 with different number of machines.
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Figure 5.4: Same interpretation as of Figure 5.3 but with N = 500000.

even withM = 128, the local sizes Nm are approximately 3900 and 7800 observations, respectively,

which are still large sample sizes for estimating the model parameters.

In Figure 5.6, we compare the evaluation metrics of the estimators across sample sizes when 128

machines were used. With this large number of machines, the learning time is significantly reduced
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Figure 5.5: Same interpretation as of Figure 5.3 but with N = 1000000.
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Figure 5.6: Performance comparison of the Global (G), versus Reduction (R), Middle (M) and
Weighted average (W) estimator using 128 machines on different sizes of datasets.

when using the distributed approaches, especially for datasets with one million observations. The

prediction and clustering performance metrics such as MSE, RPE and ARI behave as expected

across estimators and across sample sizes.
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5.5.4 Application to MMASH dataset

Data description and pre-processing

In this study, we investigate the prediction performance of all the learning approaches (i.e., global,

distributed, median and weighted averaged) to the Multilevel Monitoring of Activity and Sleep

in Healthy people (MMASH) dataset. This dataset consists of 24 hours of continuous inter-beat

interval data (IBI), triaxial accelerometer data, sleep quality, physical activity and psychological

characteristics of 22 healthy young males. During the 24-hours data recording, participants wore

two devices that continuously recorded heartbeats and beat-to-beat interval (via a heart rate

monitor), and actigraphy information such as accelerometer data, sleep quality and physical activity

(via an Actigraph device). The data was recorded on a second-by-second basis for each subject.

More details about the experiment setup of MMASH are provided in Rossi et al. (2020), Oyeleye

et al. (2022).

While MMASH is a rich dataset to assess many relations between physical, psychological and

physiological characteristics, in this study we consider the problem of predicting the upcoming

heart rate (HR) given the most recent records from them. In particular, we applied the data pre-

processing procedure as in Oyeleye et al. (2022) to extract a HR series dataset that contains HR

series of all participants in the MMASH dataset. Then, for each participant, his/her HR series is

reframed into a set of predictor-response data pairs, i.e., into supervised setting. More specifically,

we will use the last HRs during 300 seconds, to predict the 5-minutes-ahead HR. Each predictor

can be viewed as a sample of 300 discretized values U(tj), j ∈ [300], of some HR function X(t),

and the 5-minutes-ahead HR (to be predicted) is its scalar response. Therefore, the FME model

proposed in Chapter 3 will be the choice in this context.

The recording times vary among the participants, so the number of pairs (Xi(t), yi) extracted

from their HR series are different from each other. However, the differences are not large, and

the average is about 66000 pairs for each participant. In total, our dataset contains 1453000 data

pairs (Ui(t), yi). The dataset is split into training and testing data with a ratio of 80%-20% (to

ensure the balance, this split is also made w.r.t. each participant). The size of our training set

is N = 1162400, and the size of testing set is 290600. Figure 5.7 shows some randomly taken

predictors Ui(t), as well as their smooth versions using a 50-dimensional B-spline basis.
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Figure 5.7: (a) 50 randomly taken HR curves and (b) their smooth versions using a 50-dimensional
B-spline basis.
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Model evaluation, implementation details and results

Beside the RPE metric as used before in many regression problems throughout the thesis, we

use the root mean square error (RMSE) value to evaluate the HR prediction since it is directly

proportional to the unit of the predicted values. In addition, to compare with the related work

in Oyeleye et al. (2022), the scatter index (SI), which is simply the RMSE divided by the average

value of the observed value, was also computed. It is commonly understood that SI < 10% is a

good model, and SI < 5% is a very good model.

Now, we describe how we integrate our distributed leaning approach into the FME model

proposed in Chapter 3, it is quite simple as follows. First, the functional predictors, the functional

expert and the gating networks are represented using some appropriate basses (here we used B-

spline). Then the conditional density function of the model can be written in a vectorial fashion as

in (3.13). Note that, if we use a same basis for the functional expert and gating networks (which

is our case here), the design vectors ri and xi are identical. Therefore, the model density (3.13)

is now taking the same formula as the density (5.1), which is our starting point for developing

the distributed learning approach. This means we can employ the Algorithm 5.1 to estimate the

parameter vector Ψ in (3.13) of the FME model in a distributed manner.

The RPE, RMSE, SI and the learning time of each approach are given in Table 5.2. We can see,

the distributed approach significantly reduced the learning time while other prediction metrics are

not too different. The estimated functional expert and gating functions are shown in Figure 5.8.

RPE RMSE SI Learning time (min)

Global estimator 1.03% 8.58 9.01% 57.32
Reduction estimator, M = 64 1.45% 9.46 9.54% 7.84
Reduction estimator, M = 128 1.45% 9.49 9.58% 6.32

Table 5.2: Comparison of Global estimator and Reduction estimator on MMASH data.
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Figure 5.8: Estimated functional expert and gating networks of the FME model applied on MMASH
data.
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5.6 Summary

In this chapter, a distributed learning approach for ME models was proposed. In particular, the

learning approach is based on minimizing the expected transportation divergence between two ME

models: one is the large ME model that consists of all local mixtures obtained from the local

machines, and one is the targeted K-component ME model. An algorithm based on MM principle

was also proposed to solve the resulting minimization problem.

The proposed distributed learning approach was successfully applied to simulated and real-world

datasets. This distributed approach was shown to have a leaning time much less than the global

approach, but still give results as good as those based on training with full dataset. Specially, we

applied the proposed distributed learning approach to the FME model for functional data proposed

in Chapter 3 with promising remarks: the integration is easy and the prediction performance is as

good as the global approach, while the learning time has been much improved.
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Conclusion and future directions
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6.1 Conclusion

This thesis was written regarding to the ME models for functional data and a distributed learning

approach for ME models. The goal of developing efficient ME models for functional data was

achieved through the introduction of a new class of ME models, referred to by functional mixtures-

of-experts (FME), whose members including

i. FME for regression, i.e., scalar-on-function FME,

ii. FME for classification, also a scalar-on-function FME,

iii. FF-FME for regression, i.e., function-on-function FME,

iv. FS-FME for regression, i.e., function-on-scalar FME.

In addition, for scalar-on-function FME models, we have developed their interpretable variants:

iFME for regression and iFME for classification, which were able to produce highly-interpretable

fits for the functional expert and gating networks. The goal of developing a distributed learning

approach for ME models was also achieved through the proposed reduction strategy and an efficient

developed MM algorithm whose performance was demonstrated via application to simulated and

real-world data.

More specifically, in Chapter 3, we proposed a ME for regression problems that takes functional

data as inputs and continuous scalars as outputs. We refer to it by FME. Model estimation was

performed using MLE and regularized MLE, which results in the FME-Lasso model that imposes

a certain degree of sparsity on the estimated parameters. Furthermore, to obtain truly sparse fits

for the functional expert and gating networks, we proposed an interpretable version of the FME
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model, referred to by iFME model, to produce fits that are not only sparse itself, but also sparse

with respect to their derivatives. The proposed FME, FME-Lasso, and iFME models for regression

were applied to simulated and real-world datasets. The implementation of the algorithms, model

selection, as well as the interpretation of the results were also discussed in detail. Matlab codes

for the proposed FME model (as well as FME-Lasso and iFME models) will be available at the

following link: https://github.com/fchamroukhi/FunME.

In Chapter 4, we extended the FME, FME-Lasso, and iFME models to the classification

problems. In this case, we modeled the experts by the functional multinomial regression models.

The resulting models were also outperform the current state of the art methods as the case of

regression in the previous chapter. The corresponding EM algorithms were also developed for model

estimations in the classification case. Furthermore, the FME model was extended to the case of

functional responses via the introduction of two new models: FF-FME and FS-FME. Specially, the

proposed models were estimated using penalized MLE that penalizes the roughness (via appropriate

derivative operators) and results in smooth fits for the functional parameters. The corresponding

EM-like algorithms were also developed for model estimations. Numerical experiments were shown

to illustrate the application of the models.

Finally, in Chapter 5, a distributed learning approach was proposed for ME models to deal

with the situation where the data is so large that it is difficult to estimate the model parameter

on a single computer, within a reasonable amount of time. The approach is based on the divide-

and-conquer principle. In particular, the local estimators (of ME models on local machines) are

aggregated by minimizing an expected transportation divergence between two ME models. The

MM algorithm was also developed particularly for Gaussian and logistic regression experts. The

experiments on simulated and real data verified the efficiency of our approach.

6.2 Future directions

Given the promising results of our proposals and the motivation from a methodological point of

view, there are many further interesting extensions that can be considered in future work. First,

with the FME models for regression and classification, it is natural to extend them to the multiple

case, i.e., for each expert/gate k there are more than one functional parameter. This can also be

applied to extend the iFME models.

Second, an interpretable approach to the FF-FME and FS-FME models can be explored. In

particular, as we can see in Chapter 4, the models were able to generate smooth fits for the functional

parameters via roughness penalties with second-order (partial) derivatives, they do not ensure

highly sparse fits as, for example, in Figure 3.7. Therefore, according to our idea, a representation

upon the coefficients of the derivatives of the functional parameter can be established for the model.

In this way, constraining sparsity on the resulting parameter vectors can lead to truly sparse fits
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for the experts and gating networks.

Regarding the distributed learning approach for ME models, some interesting considerations

can also be made. For example, in high-dimensional setting, the local parameter vectors are oftenly

estimated with regularization, so the update formula such as the one in (5.23) must be adapted

to preserve (at some level) the sparsity in the local estimators. This can be approached using a

majority voting method as in Chen and ge Xie (2014). Moreover, the proposed distributed learning

approach can be applied to the iFME, FF-FME, and FS-FME models.

Although numerous extensive experiments were constructed throughout the thesis to demonstrate

the performance of the proposed models, real-world data experiment for the FS-FME model

unfortunately was not included. However, we would like to mention that, given the performance

on the simulated data, we strongly believe that FS-FME model can also produce good results

when applied to real-world data. Numerical experiment for the distributed learning approach in

classification problems was also not provided, it therefore is one of our future works. Finally,

although the proposed models and the proposed learning approach work quite well, the theoretical

results, however, need further investigation.
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Appendix A
A.1 Calculations for the State of the art chapter

A.1.1 Penalized LS estimation of function-on-scalar regression

This appendix presents the detailed calculations to obtain the penalized least squares estimator

(2.27). The problem under consideration now is

minimize
B∈Rp×K





∫

T
∥Rω(t)−XBω(t)∥2dt+

p∑

j=1

λjb
⊤
j Dbj



 , (A.1)

whereB = [b1, . . . , bp]
⊤ ∈ Rp×K is the coefficient matrix to be estimated; R ∈ Rn×K andX ∈ Rn×p

are the response and design matrix, ω(t) = [ω1(t), . . . , ωK(t)]⊤, and finally D ∈ RK×K is given in

(2.25).

The first term of the objective function in (A.1) can be reformulated as

∫

T
∥Rω(t)−XBω(t)∥2dt =

∫

T

n∑

i=1

(r⊤i ω(t)− x⊤
i Bω(t))

2dt

=
n∑

i=1

∫

T
(r⊤i ω(t)− x⊤

i Bω(t))
2dt

=
n∑

i=1

∫

T
(r⊤i − x⊤

i B)ω(t) [ω(t)]⊤(r⊤i − x⊤
i B)⊤dt

=
n∑

i=1

(r⊤i − x⊤
i B)

[∫

T
ω(t) [ω(t)]⊤dt

]
(r⊤i − x⊤

i B)⊤. (A.2)

Let

Iω :=

[∫

T
ωk(t)ωℓ(t)dt

]

1⩽k,ℓ⩽K
∈ RK×K ,

then Iω is a non-negative define matrix, hence there exits I
1/2
ω ∈ RK×K such that Iω = I

1/2
ω I

1/2
ω .
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The equation (A.2) can thus be continued as

∫

T
∥Rω(t)−XBω(t)∥2dt =

n∑

i=1

(r⊤i − x⊤
i B)I1/2ω I1/2ω (r⊤i − x⊤

i B)⊤

= ∥RI1/2ω −XBI1/2ω ∥2 (A.3)

= ∥ vec(I1/2ω R⊤)− (X ⊗ I1/2ω ) vec(B⊤)∥2, (A.4)

in which the last equality can be verified by a simple vectorization step that uses the definition of

the matrices.

The second term of the objective function in (A.1) can be written in terms of vec(B⊤) as

p∑

j=1

λjb
⊤
j Dbj = [vec(B⊤)]⊤Λ⊗D vec(B⊤), (A.5)

where Λ = diag(λ1, . . . , λp). Gathering (A.4) and (A.5), the problem (A.1) is now reformulated to

minimize
vec(B⊤)∈RpK

{
∥ vec(I1/2ω R⊤)− (X ⊗ I1/2ω ) vec(B⊤)∥2 + [vec(B⊤)]⊤Λ⊗D vec(B⊤)

}
, (A.6)

which takes the same form as the usual ridge regression. Therefore, by calculating the first order

derivative with respect to vec(B⊤) and setting it to zero, the solution to (A.6) is established as

given in (2.27).

A.1.2 Penalized LS estimation of function-on-function regression

This appendix presents the detailed calculations to obtain the penalized least squares estimator

(2.37) for the function-on-function regression problem. First, by plugging (2.33) into (2.32) and

using the vectorization representation of the penalty term, the problem under consideration is now

rewritten as

minimize
b∈RK

{∫

T
∥Y (t)−X⋆(t) b∥2dt+ λtb

⊤Dtb+ λub
⊤Dub

}
, (A.7)

where Y (t) and X⋆(t) are defined as in (2.31).

From the relations (2.31) and (2.34), the first term of the objective function in (A.7) can be

expressed as

∫

T
∥Y (t)−X⋆(t) b∥2dt =

∫

T
∥Rω(t)−Gbω(t)∥2dt

= ∥RI1/2ω −GbI1/2ω ∥2 (A.8)

with the second equality was obtained using the same manner as in (A.2) and (A.3).
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Let V be defined by

V =




I
1/2
ψ x⋆11 I

1/2
ψ x⋆12 · · · I

1/2
ψ x⋆1K

I
1/2
ψ x⋆21 I

1/2
ψ x⋆22 · · · I

1/2
ψ x⋆2K

...
...

. . .
...

I
1/2
ψ x⋆n1 I

1/2
ψ x⋆n2 · · · I1/2ψ x⋆nK



∈ RnL×K ,

where I
1/2
ψ is the square root of the non-negative definite matrix Iψ defined by

Iψ =

[∫

T
ψk(t)ψℓ(t)dt

]

1⩽k,ℓ⩽L
∈ RL×L.

Then (A.8) can be reformulated by

∥RI1/2ω −GbI1/2ω ∥2 = ∥ vec(I1/2ω R⊤)− V b∥2, (A.9)

which can be verified simply by the definitions of the matrices.

Thus, the problem (A.7) can thus be rewritten by

minimize
b∈RK

{
∥ vec(I1/2ω R⊤)− V b∥2 + λtb

⊤Dtb+ λub
⊤Dub

}
. (A.10)

By taking the first derivative of the objective function and setting it to zero, the solution is obtained

as given in (2.37).

A.2 Descriptions of data

Tecator data

Tecator is a well-known data in FDA. This dataset consists of 215 spectrometric curves and

the corresponding Water, Fat and Protein content of meat samples. Each spectrometric curve

corresponds to the absorbance measured at 100 wavelengths (100 discretization points from 850mm

to 1050mm). The curves are split according to Ferraty and Vieu (2006) into two classes: with small

(less than 20) and large fat content obtained by an analytical chemical processing.

Berkeley growth data

Berkeley growth data was originally published in Tuddenham and Snyder (1954) and was analyzed

by many studies of functional data since then. The data consists of the height records for 39

boys and 54 girls. In original data, the measurements were taken quarterly from ages 1 to 2,
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Figure A.1: Spectrometric curves in the Tecator data.

annually from 2 to 8, and semiannually from 8 till 18. Therefore, it is common to perform a simple

interpolation such that the trajectories are available quarterly from age 1 to 18. Figure A.2 display

the height trajectories of the two groups.
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Figure A.2: Left panel: height trajectories from age 1 to 18 of 39 boys and 54 girls. Right panel:
height at age 18 of the two groups.
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Appendix B
B.1 EM for the FME model

The FME model can be fitted by iteratively maximizing the observed-data log-likelihood (3.14)

iteratively via the EM algorithm. For FME, the EM takes the following form. The complete-data

log-likelihood upon which the EM principle is constructed is defined by

logLc(Ψ) =
n∑

i=1

K∑

k=1

Zik log
[
πk(ri; ξ)ϕ(yi;βk,0 + η

⊤
k xi, σ

2
k)
]
, (B.1)

Zik being an indicator binary-valued variable such that Zik = 1 if Zi = k (i.e., if the ith pair

(xi,yi) is generated from the kth expert component) and Zik = 0, otherwise.

E-step This step computes at each EM iteration s the expectation of the complete-data log-

likelihood (B.1), given the observed data D, and the current parameter vector Ψ (s):

Q(Ψ ;Ψ (s)) = E
[
logLc(Ψ)|D;Ψ (s)

]

=

n∑

i=1

K∑

k=1

τ
(s)
ik log

[
πk(ri; ξ)ϕ(yi;βk,0 + η

⊤
k xi, σ

2
k)
]
, (B.2)

where τ
(s)
ik = P(Zi = k|yi, ui(·);Ψ (s)) is the conditional probability that the observed pair (ui(·), yi)

is generated by the kth expert. This step therefore only requires the computation of the conditional

probabilities τ
(s)
ik as defined by (3.15).

M-step This step updates the value of the parameter vector Ψ by maximizing the Q-function

(B.2) with respect to Ψ , that is Ψ (s+1) = argmaxΨ Q(Ψ ;Ψ (s)), via separate maximizations w.r.t

the gating network parameters, and the experts network parameters as follows.
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Updating the gating network parameters Updating the the gating network’s parameters ξ

consists of maximizing w.r.t ξ the following function

Q(ξ;Ψ (s)) =

n∑

i=1

K∑

k=1

τ
(s)
ik log πk(ri; ξ)

=
n∑

i=1

[
K−1∑

k=1

τ
(s)
ik (αk,0 + ζ

⊤
k ri)− log

(
1 +

K−1∑

k′=1

exp{αk′,0 + ζ⊤k′ri}
)]
· (B.3)

This consists of a weighted multinomial logistic problem for which there is no closed-form solution.

This can be performed by the Newton-Raphson (NR) algorithm which iteratively maximizes (B.3)

according to the procedure (3.16).

Let us denote by ξ1, . . . , ξK−1 the parameter vectors (α1,0, ζ
⊤
1 )

⊤, . . . , (αK−1,0, ζ
⊤
K−1)

⊤. Since

there are K−1 parameter vectors to be estimated, the Hessian matrix H(ξ;Ψ (s)) is a block-matrix,

consists of (K − 1)× (K − 1) blocks, in which each block Hkℓ(ξ;Ψ
(s)), for k, ℓ ∈ [K − 1], is given

by:

Hkℓ(ξ;Ψ
(s)) =

∂2Q(ξ;Ψ (s))

∂ξk∂ξ
⊤
ℓ

= −
n∑

i=1

πk(ri; ξ
(t))
[
δkℓ − πl(ri; ξ(t))

]
rir

⊤
i ,

where δkℓ is the Kronecker symbol (δkℓ = 1 if k = ℓ, 0 otherwise). The gradient vector consists of

K − 1 gradients corresponding to the vectors ξk, for k ∈ [K − 1], and is given by

g(ξ;Ψ (s)) =
∂Q(ξ;Ψ (s))

∂ξ
=
[
g1(ξ

(t)), . . . , gK−1(ξ
(t))
]⊤
,

where, for k ∈ [K − 1], gk(ξ
(t)) = ∂Q(ξ;Ψ (s))

∂ξk
=
∑n

i=1

[
τ
(s)
ik − πk(ξ(t); ri)

]
r⊤i .

Updating the experts network parameters Updating the experts network’s parameters θk

consists of maximizing the function Q(θk;Ψ
(s)) given by

Q(θk;Ψ
(s)) =

n∑

i=1

τ
(s)
ik log ϕ(yi;βk,0 + η

⊤
k xi, σ

2
k)

= − 1

2σ2k

n∑

i=1

τ
(s)
ik

[
yi − (βk,0 + η

⊤
k xi)

]2
− n

2
log(2πσ2k)·

Thus, updating θk = (βk,0,η
⊤
k , σ

2
k)

⊤, consists of a weighted Gaussian regression problem where the

weights are the conditional memberships τ
(s)
ik , and the updates are given by (3.17).
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B.2 EM-Lasso for ℓ1-regularized MLE of the FME model

The EM-Lasso algorithm for the maximization of (3.18) firstly requires the construction of the

penalized complete-data log-likelihood

Lc(Ψ) = logLc(Ψ)− Penλ,χ(Ψ) (B.4)

where logLc(Ψ) is the non-regularized complete-data log-likelihood log-likelihood defined by (B.1).

Thus, the EM algorithm for the FME model is implemented as follows. After starting with an

initial solution Ψ (0), it alternates between the two following steps, until convergence (when there

is no longer a significant change in the values of the penalized log-likelihood (3.18)).

E-step. This step computes the expectation of the complete-data log-likelihood (B.4), given the

observed data D, using the current parameter vector Ψ (s):

Qλ,χ(Ψ ;Ψ (s)) = E
[
Lc(Ψ)|D;Ψ (s)

]
= Q(Ψ ;Ψ (s))− Penλ,χ(Ψ), (B.5)

which only requires the computation of the posterior probabilities of component membership τ
(s)
ik

(i ∈ [n]), for each of the K experts as defined by (3.15).

M-step. This step updates the value of the parameter vector Ψ by maximizing the Q-function

(B.5) with respect to Ψ , that is, by computing the parameter vector update

Ψ (s+1) = argmax
Ψ
Qλ,χ(Ψ ;Ψ (s)). (B.6)

The maximization is performed by separate maximizations w.r.t the gating network parameters

and the experts network parameters.

B.2.1 Updating the gating network parameters

Updating the gating network parameters at the sth EM iteration consists of maximizing the

following function

Qχ(ξ;Ψ (s)) = Q(ξ;Ψ (s))− χ
K−1∑

k=1

∥ζk∥1,

with

Q(ξ;Ψ (s)) =
∑n

i=1

[∑K−1
k=1 τ

(s)
ik

(
αk,0 + ζ

⊤
k ri
)
− log

(
1 +

∑K−1
k′=1 exp{αk′,0 + ζ⊤k′ri}

)]

where ξ = (α1,0, ζ
⊤
1 , . . . , αK−1, ζ

⊤
K−1)

⊤ ∈ R(q+1)(K−1) is the gating network parameter vector and

Ψ (s) is the current estimation of model’s parameters. One can see this is equivalent to solving
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a weighted regularized multinomial logistic problem for which Qχ(ξ;Ψ (s)) is its penalized log-

likelihood. There is no closed-form solution for this kind of problem. We then use an iterative

optimization algorithm to seek for a maximizer of Qχ(ξ;Ψ (s)), i.e., an update for the parameters

of the gating network. The idea is to update only a single gate at a time, while fixing other gate’s

parameters to their previous estimates. Again, to update that single gate, we only update one

component at a time, while fixing the other components to their previous values. This procedure

for updating the gating network parameters is supported by the methodology of coordinate ascent

algorithm: if the objective function consists of a concave, differentiable function and a sum of

concave functions then the maximizer can be achieved by iteratively maximizing with respect to

each coordinate direction at a time.

Coordinate ascent for updating the gating network. Suppose at the sth EM iteration, we

wish to update the gates one by one such that it maximizes Qχ(ξ;Ψ (s)). To do that, we create an

outer loop, indexed by t, which cycles over the gates. For each single gate, say gate k, we partially

approximate the smooth part of Qχ(ξ;Ψ (s)) with respect to (αk,0, ζk) at ξ(t), then optimize the

obtained objective function (with respect to (αk,0, ζk)) by solving a penalized weighted least square

problem using coordinate ascent algorithm. Note that ξ(t) denotes the current value of ξ at the

iteration tth of the outer loop, while ξ(s) is the value of ξ before entering the outer loop.

In particular, using Taylor expansion, one has a quadratic approximation for smooth part of

Qχ(ξ;Ψ (s)) with respect to (αk,0, ζk) at ξ
(t) given by

lk(αk,0, ζk) = −
1

2

n∑

i=1

wik(cik − αk,0 − r⊤i ζk)
2 + C(ξ(t)),

where

wik = πk(ξ
(t); ri)

[
1− πk(ξ(t); ri)

]
, (weights)

cik = α
(t)
k,0 + r⊤i ζ

(t)
k +

τ
(s)
ik − πk(ξ(t); ri)

wik
, (working response)

and C(ξ(t)) is a function of ξ(t). After calculating the partial quadratic approximation lk(αk,0, ζk)

about the current estimator ξ(t), we then solve the following penalized weighted least square problem

max
(αk,0,ζk)

lk(αk,0, ζk)− χ∥ζk∥1, χ > 0, (B.7)

to obtain an update for the parameters of gate k.

As mentioned above, this problem could be solved by coordinate ascent algorithm. This means

we will create an inner loop, indexed by m, cycles over the components of (αk,0, ζk) and update

them one by one until the objective function of (B.7) does not gain any significant increase. For

each j ∈ [q], using the soft-thresholding operator (see Hastie et al. (2015), sec. 5.4), one can obtain
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the closed form update for ζkj as follows

ζ
(m+1)
kj =

Sχ
(∑n

i=1wikrij(cik − c̃
(m)
ikj )

)

∑n
i=1wikr

2
ij

,

in which c̃
(m)
ikj = α

(m)
k0 + r⊤i ζ

(m)
k − ζ(m)

kj rij is the fitted value excluding the contribution from rij ,

Sχ(·) is a soft-thresholding operator defined by Sχ(u) = sign(u)(|u| − χ)+ and (v)+ a shorthand

for max{v, 0}. Note that at each iteration of the inner loop, only one component is updated while

the others are kept to their previous values, that means ζ
(m+1)
kh = ζ

(m)
kh for all h ̸= j. For αk,0, the

closed-form update is given by

α
(m+1)
k,0 =

∑n
i=1wik(cik − r⊤i ζ

(m+1)
k )∑n

i=1wik
.

Once the inner loop converges, the new values of (αk,0, ζk) are used for the updating procedure of

the next gate. When all the gates have their new values, i.e., after K − 1 inner loops, we perform

a backtracking line search before actually updating the gating network’s parameters for the next

t-indexed iteration. More precisely, the update is ξ(t+1) = (1 − ν)ξ(t) + νξ̄(t) where ξ̄(t) is the

output after K − 1 inner loops and ν is backtrackingly determined to ensure Qχ(ξ(t+1);Ψ (s)) >

Qχ(ξ(t);Ψ (s)).

We keep running the t-indexed loop until convergence, i.e., when there is no significant relative

variation in Qχ(ξ;Ψ (s)). Once αk,0 and ζkj reach their optimal values α̃k,0 and ζ̃kj for all k ∈ [K −
1], j ∈ [q], the update for gating network’s parameters is then ξ(s+1) = (α̃1,0, ζ̃

⊤
1 , . . . , α̃K−1,0, ζ

⊤
K−1)

⊤.

B.2.2 Updating the experts network parameters

The maximization step for updating the expert parameters θk consists of maximizing the function

Qλ(θk;Ψ (s)) given by

Qλ(θk;Ψ (s)) = Q(θk;Ψ
(s))− λ∥ηk∥1,

with

Q(θk;Ψ
(s)) = − 1

2σ2k

n∑

i=1

τ
(s)
ik

[
yi − (βk,0 + η

⊤
k xi)

]2
− n

2
log(2πσ2k),

where θk = (βk,0,η
⊤
k , σ

2
k)

⊤ ∈ Rp+2 is the unknown vector and Ψ (s) is the current estimation of

model’s parameters. There is no closed-form solution for this optimization problem, we then solve

it by an iterative optimization algorithm similarly to updating the gating network parameters.

We first perform the update for (βk,0,ηk) while fixing σ2k. This corresponds to solving a weighted

LASSO problem where the weights are the the posterior experts memberships τ
(s)
ik . Once (βk,0,ηk)

has new value, the variance σ2k is updated straightforwardly by the standard update of a weighted
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Gaussian regression.

More specifically, when σ2k, the variance of expert k, is fixed to σ2k
(s)

, updating (βk,0,ηk) consists

of solving the following weighted LASSO problem:

max
(βk,0,ηk)

− 1

2σ2k
(s)

n∑

i=1

τ
(s)
ik

[
yi − (βk,0 + η

⊤
k xi)

]2
− n

2
log(2πσ2k

(s)
)− λ

q∑

j=1

|ηkj |, λ > 0, (B.8)

which can be solved by coordinate ascent algorithm. For each j ∈ [p], the closed-form update for

ηkj is given by

η
(m+1)
kj =

S
λσ2

k
(s)

(∑n
i=1 τ

(s)
ik xij(yi − ỹ(m)

ij )
)

∑n
i=1 τ

(s)
ik x2ij

,

in which ỹ
(m)
ij = β

(m)
k,0 +x⊤

i η
(m)
k −η(m)

kj xij is the fitted value excluding the contribution from xij and

Sχ(·) is the soft-thresholding operator (see Hastie et al. (2015), sec. 5.4). Here m denotes the mth

iteration of the coordinate ascent algorithm. The update for βk,0 is

β
(m+1)
k,0 =

∑n
i=1 τ

(s)
ik (yi − x⊤

i η
(m+1)
k )

∑n
i=1 τ

(s)
ik

·

We keep updating the components of (βk,0,ηk) cyclically until the change in objective function of

(B.8) is small enough. So, the update for (βk,0,ηk) in this EM iteration is then (β
(s+1)
k,0 ,η

(s+1)
k ) =

(β∗k,0,η
∗
k) where the latter is the optimal solution of (B.8). Finally, the update for σ2k is given by

σ2
(s+1)
k =

∑n
i=1 τ

(s)
ik (yi − β(s+1)

k,0 − x⊤
i η

(s+1)
k )2

∑n
i=1 τ

(s)
ik

·

Hence, the update for the value of parameters vector Ψ at M-step, i.e., the solution to problem

(B.6), is Ψ (s+1) = (ξ(s+1),θ
(s+1)
1 , . . . ,θ

(s+1)
K ) where ξ(s+1) and θ

(s+1)
k , k ∈ [K], are solved by

maximizing Qχ(ξ;Ψ (s)) and Qλ(θk;Ψ (s)), respectively, using the algorithms described above. The

EM algorithm monotonically increases (3.18). Furthermore, the sequence of parameter estimates

generated by the EM algorithm converges toward a local maximum of the log-likelihood function

(Dempster et al., 1977; McLachlan and Krishnan, 2008; Wu, 1983).
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B.3 EM-iFME for updating iFME model parameters

B.3.1 Updating the gating network parameters

This section presents the using of Dantzig selector to solve problem (3.36). Let us simplify the

subscript k in the notations and rewrite the problem under matrix form as follows

max
ω̃∈R2q+1

− 1

2
∥cw −Xwω̃∥22 − χ∥Ωω̃∥1

subject to Aω̃ = 0q,

(B.9)

where ω̃ = (α0, ω
[d1]⊤,ω[d2]⊤)⊤ is the unknown coefficients vector, cw = (

√
w1c1, . . . ,

√
wncn)

⊤

is the weighted working response vector, Xw = [
√
w|Sw|0n×q] ∈ R2q+1 is the weighted design

matrix, Ω = diag(0,1⊤q , ϱ1
⊤
q ) is the diagonal weighting matrix and A = [0q|A[d2]

q A
[d1]
q

−1
| − Iq] is

the constraints matrix. Here,
√
w = (

√
w1, . . . ,

√
wn)

⊤, Sw = [
√
w1s1, . . . ,

√
wnsn]

⊤, with si are

the design vectors (see (3.27)), 0n×q ∈ Rn×q contains 0’s, 0q ∈ Rq contains 0’s, 1q ∈ Rq contains

1’s and Iq is the identity matrix in Rq×q. This problem can be viewed as the problem of finding

a sparse solution via Lasso estimate for a linear regression model with constraints. Therefore, we

can solve it alternatively by Dantzig selector estimate as the solution to the following problem

max
ω̃∈R2q+1

−∥Ωω̃∥1

subject to

{
|X⊤

w(cw −Xwω̃)| ⩽ χ12q+1,

Aω̃ = 0q,

where the absolute value operator is understood componentwise. By decomposing ω̃ into its positive

and negative parts, ω̃ = ω̃+ − ω̃−, the above problem becomes

max
(ω̃+,ω̃−)∈R4q+2

− [0,1⊤q , ϱ1
⊤
q , 0,1

⊤
q , ϱ1

⊤
q ]

[
ω̃+

ω̃−

]

subject to





[
X⊤

wXw −X⊤
wXw

−X⊤
wXw X⊤

wXw

][
ω̃+

ω̃−

]
⩽

[
χ+X⊤

wcw

χ−X⊤
wcw

]
,

[
A −A

] [ω̃+

ω̃−

]
= 04q+2,

ω̃+ ⩾ 02q+1, ω̃− ⩾ 02q+1,

(B.10)

which is a standard linear program with 4q + 2 variables, therefore can be easily solved by

available toolboxes for linear programming, e.g., Matlab’s linprog function. Finally, the solution

ω̃∗ = (α∗
0, ω

[d1]∗⊤,ω[d2]∗⊤)⊤ to the original problem could be retrieved by the relation ω̃∗ = ω̃∗
+−ω̃∗

−
where (ω̃∗⊤

+ , ω̃∗⊤
− )⊤ is the solution of (B.10).
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B.3.2 Updating the expert network parameters

This section presents how to solve problem (3.37). Firstly, we fix σ2k to its previous estimate

and perform an update for (βk,0,γ
[d1]
k ), it corresponds to solving a penalized weighted least square

problem with constraints. From now on, let us simplify the subscript k in the notations and rewrite

the problem under matrix form as follows

max
γ̃∈R2p+1

− 1

2
∥yστ −Xστ γ̃∥22 − λ∥Λγ̃∥1 −

nk
2

log(2πσ2)

subject to Aγ̃ = 0p,

where γ̃ = (β0, γ
[d1]⊤,γ[d2]⊤)⊤ is the unknown coefficients vector, yστ = (σ

√
τ1y1, . . . , σ

√
τnyn)

⊤

∈ Rn is the weighted response vector, Xστ = σ ⊙ [
√
τ |Vτ |0n×p] ∈ Rn×(2p+1) is the weighted

design matrix, Λ = diag(0,1⊤p , ρ1
⊤
p ) is the diagonal weighting matrix, nk =

∑n
i=1 τik and A =

[0p|A[d2]
p A

[d1]
p

−1
| − Ip] ∈ Rp×(2p+1) is the constraints matrix. Here,

√
τ = (

√
τ1, . . . ,

√
τn)

⊤ ∈ Rn,
Vτ = [

√
τ1v1, . . . ,

√
τnvn]

⊤ ∈ Rn×p, with vi are the design vectors (see (3.27)), 0n×p ∈ Rn×p

contains 0’s, 0p ∈ Rp contains 0’s, 1p ∈ Rp contains 1’s and Ip is the identity matrix in Rp×p. As

the last term in the objective function is independent of γ̃, this problem is similar to the problem

(B.9) and then can be solved by Dantzig selector estimate as the solution to the following problem

max
γ̃∈R2p+1

− ∥Λγ̃∥1

subject to

{
|X⊤

στ (yστ −Xστ γ̃)| ⩽ λ12p+1,

Aγ̃ = 0p.

Similarly to the problem in the gating network update, by decomposing γ̃ into its positive and

negative parts, γ̃ = γ̃+ − γ̃−, the above problem becomes

max
(γ̃+,γ̃−)∈R4p+2

− [0,1⊤p , ρ1
⊤
p , 0,1

⊤
p , ϱ1

⊤
p ]

[
γ̃+

γ̃−

]

subject to





[
X⊤

στXστ −X⊤
στXστ

−X⊤
στXστ X⊤

στXστ

][
γ̃+

γ̃−

]
⩽

[
λ+X⊤

στyστ

λ−X⊤
στyστ

]
,

[
A −A

] [γ̃+
γ̃−

]
= 04p+2,

γ̃+ ⩾ 02p+1, γ̃− ⩾ 02p+1,

(B.11)

which is a standard linear program with 4q + 2 variables and can be solved similarly to the gating

network case. The solution γ̃∗ = (β∗0 , γ
[d1]∗⊤,γ[d2]∗⊤)⊤ to the original problem is retrieved by the

relation γ̃∗ = γ̃∗
+ − γ̃∗

− where (γ̃∗⊤
+ , γ̃∗⊤

− )⊤ is the solution of (B.11).
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Finally, the update for σ2k is

σ2k
(s+1)

=

∑n
i=1 τ

(s)
ik (yi − β(s+1)

k,0 − v⊤
i γ

[d1]
k

(s+1)
)2

∑n
i=1 τ

(s)
ik

,

in which β
(s+1)
k,0 ,γ

[d1]
k

(s+1)
are the new updates for βk,0 and γ

[d1]
k .
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Appendix C
C.1 Proofs

C.1.1 Proof of Proposition 5.3.1

First, by definition, Rc(g) is obtained by relaxing the constraint in Tc(g) from P ∈ Πx(π̂,π) to

P ∈ Πx(π̂, ·), therefore the inequality

inf
g∈MK

Tc(g) ⩾ inf
g∈MK

Rc(g)

is trivial.

The inequality in the opposite direction is also true. Indeed, let g⋆ = arg inf
g∈MK

Rc(g) be a

minimizer of Rc(g), i.e., we have Rc(g⋆) = inf
g∈MK

Rc(g). Then, in the remainder we will show

that inf
g∈MK

Tc(g) ⩽ Rc(g⋆). We denote the gating and expert functions of g⋆ by {π⋆(x), φ⋆k(·|x)},
k ∈ [K].

According to (5.15), the gating functions are calculated by

π⋆k(x) =

MK∑

ℓ=1

Pℓk(g⋆,x), ∀x ∈ X , (C.1)

where Pℓk(g⋆,x) denotes the entry (ℓ, k) of P(g⋆,x) as defined in (5.13). The relation (C.1) means

that the matrix P(g⋆,x) is belonging to Πx(·,π⋆). On the other hand, by its definition P(g⋆,x) is
obviously belonging to Πx(π̂, ·). Hence, P(g⋆,x) ∈ Πx(π̂,π

⋆). Note that, this holds for all x ∈ X .
Therefore, taking expectation we have

inf
g∈MK

Tc(g) = inf
g∈MK

{
E

[
inf

P∈Πx(π̂,π)

KM∑

ℓ=1

K∑

k=1

Pℓk c (φ̂ℓ(·|x), φk(·|x))
]}

⩽ E

[
inf

P∈Πx(π̂,π⋆)

L∑

ℓ=1

K∑

k=1

Pℓk(g⋆,x) c (φ̂ℓ(·|x), φ⋆k(·|x))
]

= Rc(g⋆),
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which completes the proof.

C.1.2 Proof of Proposition 5.3.2

Continuity. Firstly, we show that, conditional on x, I(g,x) is continuous in g. Indeed, because

C(P ,φ) is a continuous function, and Πx(π̂, ·) is a compact set for all x ∈ X , the function defined

by φ 7→ inf
P∈Πx(π̂,·)

C(P ,φ) is continuous, moreover, the infimum is attained. By definition, I(g,x)
depends on g only through φ, it follows that I(g,x) is also continuous in g.

Then, since I(g,x) is bounded for all g and x by the assumption, from the Lebesgue’s dominated

convergence theorem we have that: for all sequence (g(t))t⩾1 such that g(t) → g,

lim
t→∞

∫

X
I(g(t),x)dµ(x) =

∫

X
I(g,x)dµ(x) = Rc(g),

that is Rc(g) is continuous.
Convexity. We observe that Πx(π̂, ·) is a convex set for all x ∈ X (it can be verified easily by

definition). It follows that I(g,x) is convex in g because of the facts that C(P ,φ) is convex and

taking infimum over a convex set preserves convexity. Then, let g1, g2 ∈ MK and λ1, λ2 ∈ [0, 1]

such that λ1 + λ2 = 1, one have

Rc(λ1g1 + λ2g2) =

∫

X
I(λ1g1 + λ2g2,x)dµ(x)

⩽
∫

X
(λ1I(g1,x) + λ2I(g2,x)) dµ(x)

= λ1Rc(g1) + λ2Rc(g2),

which is the definition for the convexity of Rc(g).

C.1.3 Proof of Proposition 5.3.3

For each m ∈ [M ], the assumption that the local estimator θ̂m is consistent implies that its expert

parameters β̂
(m)
1 , . . . , β̂

(m)
K must be ordered and its gating parameter α̂(m) must be initialized as

those of θ∗. Therefore, their weighted average θ̄W =
∑M

m=1 λmθ̂m is also a consistent estimator of

θ∗, i.e., we have θ̄W → θ∗ in probability. It follows that the expected transportation divergence

between the two corresponding ME models, f̄W and f∗, will tend to zero almost surely as N →∞,

i.e., we have T (f̄W , f∗)→ 0.

On the other hand, by definition, the ME model corresponding to the reduction estimator θ̄R

is the one, among all g ∈ MK , minimizes the expected transportation divergence from the true

model f∗. Therefore, we have

T (f̄R, f∗) ⩽ T (f̄W , f∗)→ 0 (C.2)

almost surely. As a consequence, β̄Rk → β∗
k in probability, because any possibility that it does not
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hold will lead to a contradiction to (C.2). Indeed, suppose that there exists k ∈ [K] such that the

expert parameter β̄Rk does not tend to β∗
k at some event. Then due to the property of the cost

function c(·, ·), the value T (f̄R, f∗) must be bounded from below by some positive constant, which

obviously contradicts the fact (C.2).

We are left to show that ᾱR also converge to α∗ in probability. The estimation of ᾱR via

MLE in (5.21) makes itself a consistent estimator for the parameter of the logistic regression

model with predictors xs ∈ XS and responses ask given in (5.20). Since α̂(m) p→ α∗ and the fact

that the gating function is continuous with respect to the parameter, for all xs ∈ XS we have

πk(xs; α̂
(m))

p→ πk(xs;α
∗) by the Slusky theorem. It follows

M∑

m=1

λmπk(xs; α̂
(m))

p→ πk(xs;α
∗), ∀xs ∈XS . (C.3)

Moreover, because at the convergence of the MM algorithm, the obtained experts parameters

are supposed to be the theoretical solution β̄Rk , the matrix Pℓk(g∗,x) in (5.20) can be written by

Pℓk(g∗,xs) =





π̂ℓ(xs) if k = arg inf
k′∈[K]

c(φ̂ℓ(·|xs), φRk′(·|xs))

0 otherwise,
(C.4)

where φRk′(·|xs) denotes φk′(·|xs; β̄Rk ), the kth expert density of the reduced ME model. Therefore,

by noting the convention about the connection between λmπk(xs; α̂
(m)) and π̂ℓ(xs) (discussed at the

beginning of the Subsection 5.2.3), we can see that the responses ask are in fact the approximations

of πk(xs;α
∗). This means ᾱR is also a consistent estimation of α∗.

C.1.4 Proof of Proposition 5.4.1

We will use the definition to prove that Sc(g, g(t)) given in (5.17) is a majorant function of Rc(g)
given in (5.12) at g(t). That is, we will show that Sc(g, g(t)) ⩾ Rc(g) and the equality holds when

g = g(t).

First, for all g ∈MK and x ∈ X , from the definition of Pℓk(g(t),x) we see that

K∑

k=1

Pℓk(g(t),x) = π̂ℓ(x), ∀ℓ ∈ [MK].

This means the transportation plan P = [Pℓk(g(t),x)]ℓk is a member of Πx(π̂, ·). Therefore, by the

definition of Sc(g, g(t)) and Rc(g) we have Sc(g, g(t)) ⩾ Rc(g).
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Finally, at g = g(t), by definition the functions Sc(g, g(t)) and Rc(g) are respectively given by

Rc(g(t)) = E

[
inf

P∈Πx(π̂,·)

MK∑

ℓ=1

K∑

k=1

Pℓk c
(
φ̂ℓ(·|x), φ(t)

k (·|x)
)]

, (C.5)

Sc(g(t), g(t)) = E

[
MK∑

ℓ=1

K∑

k=1

Pℓk(g(t),x) c(φ̂ℓ(·|x), φ(t)
k (·|x))

]
.

Obviously, the transportation P = [Pℓk(g(t),x)]ℓk with Pℓk(g(t),x) given in (5.18) is a minimizer of

the minimization in (C.5). This means that the two quantities above are equal.

C.1.5 Proof of Proposition 5.4.2

To see this, it is necessary to minimize the function K(β, σ2) given in (5.22). Firstly, we observe

that K(β, σ2) is continuously differentiable and convex with respect to β, so any stationary point

is a global minimizer of K(β, σ2) as a function of β. On the other hand, K(β, σ2) is coercive with

respect to σ2, then it has a global minimizer that satisfies the first-order optimality condition.

The partial derivatives of K(β, σ2) with respect to β and σ2 are given by

∂K
∂β

= E

[
MK∑

ℓ=1

P(t)
ℓk (x)

xx⊤(β − β̂ℓ)
σ2

]
,

∂K
∂σ2

= E

[
MK∑

ℓ=1

P(t)
ℓk (x)

(
σ2 − σ̂2ℓ − (β − β̂ℓ)⊤xx⊤(β − β̂ℓ)

2σ4

)]
.

Replacing the expectation operator by the empirical expectation and setting ∂K
∂β to 0 one gets

1

S

S∑

s=1

MK∑

ℓ=1

P(t)
ℓk (xs)xsx

⊤
s β =

1

S

S∑

s=1

MK∑

ℓ=1

P(t)
ℓk (xs)xsx

⊤
s β̂ℓ

⇔
S∑

s=1

xs

(
MK∑

ℓ=1

P(t)
ℓk (xs)

)
x⊤
s β =

S∑

s=1

xsx
⊤
s

MK∑

ℓ=1

P(t)
ℓk (xs)β̂ℓ.

Let us denote

B̂ =
[
β̂1, . . . , β̂MK

]
∈ Rp×MK , (C.6)

D
(t)
k = diag

(
MK∑

ℓ=1

P(t)
ℓk (x1), . . . ,

MK∑

ℓ=1

P(t)
ℓk (xS)

)
∈ US×S , (C.7)

W
(t)
k =




P(t)
1k (x1) P(t)

1k (x2) . . . P(t)
1k (xS)

...
...

. . .

P(t)
MK,k(x1) P(t)

MK,k(x2) . . . P(t)
MK,k(xS)


 ∈ UMK×S , (C.8)
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where U = [0, 1] ⊂ R. Then the above equation can be written under matrix form as

X⊤
SD

(t)
k XSβ =X⊤

SXS ⊙ (W⊤
k B̂

⊤)1p,

where ⊙ denotes the Hadamard product. This follows the root for β is given by

β = (X⊤
SD

(t)
k XS)

−1X⊤
SXS ⊙ (W

(t)⊤
k B̂⊤)1p.

Similarly, setting ∂K
∂σ2 to 0 one gets

S∑

s=1

MK∑

ℓ=1

P(t)
ℓk (xs)σ

2 =

S∑

s=1

MK∑

ℓ=1

P(t)
ℓk (xs)

(
σ̂2ℓ + (β − β̂ℓ)⊤xx⊤(β − β̂ℓ)

)
,

which can be written under matrix form as

trace(D
(t)
k )σ2 = Σ̂⊤W

(t)
k 1S + 1⊤

MKW
(t)
k ⊙ (β − B̂)⊤X⊤

SXS(β − B̂)1MK ,

where Σ̂ = (σ̂21, . . . , σ̂
2
MK)

⊤ ∈ RMK
+ . The conclusion is followed immediately.

C.1.6 Proof of Proposition 5.4.3

To see the update formula for the parameter vector of the logistic regression expert, it is necessary

to minimize the function KBi(β) given in (5.25). The first order derivative of KBi(β) is given by

∂K
∂β

= E

[
MK∑

ℓ=1

P(t)
ℓk (x)

(
x exp(x⊤β)

1 + exp(x⊤β)
− x exp(x⊤β̂ℓ)

1 + exp(x⊤β̂ℓ)

)]
.

Replacing the expectation operator by the empirical expectation and setting ∂K
∂β to 0 we obtain the

following equation

S∑

s=1

MK∑

ℓ=1

P(t)
ℓk (xs)

xs exp(x
⊤
s β)

1 + exp(x⊤
s β)

=

S∑

s=1

MK∑

ℓ=1

P(t)
ℓk (xs)

xs exp(x
⊤
s β̂ℓ)

1 + exp(x⊤
s β̂ℓ)

. (C.9)

Let us denote

E =

[
exp(x⊤

1 β)

1 + exp(x⊤
1 β)

, . . . ,
exp(x⊤

Sβ)

1 + exp(x⊤
Sβ)

]⊤
∈ US , (C.10)

U =




exp(x⊤
1 β̂1)

1+exp(x⊤
1 β̂1)

exp(x⊤
1 β̂2)

1+exp(x⊤
1 β̂2)

. . .
exp(x⊤

1 β̂MK)

1+exp(x⊤
1 β̂MK)

...
...

. . .

exp(x⊤
S β̂1)

1+exp(x⊤
S β̂1)

exp(x⊤
S β̂2)

1+exp(x⊤
S β̂2)

. . .
exp(x⊤

S β̂MK)

1+exp(x⊤
S β̂MK)



∈ US×MK . (C.11)
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Then the equation (C.9) can be rewritten under matrix form as

X⊤
SD

(t)
k E1S =X⊤

SW
(t)⊤
k U⊤1S .

We see that, the above equation holds if E =D
(t)
k

−1
W

(t)⊤
k U⊤, or equivalently, XSβ = log(V

(t)
k )−

log(1 − V (t)
k ) with Vk := D

(t)
k

−1
W

(t)⊤
k U⊤. Therefore, we obtain β = (X⊤

SXS)
−1X⊤

S (log(V
(t)
k ) −

log(1− V (t)
k )).
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151



BIBLIOGRAPHY

Devijver, E. (2017). Model-based clustering for high-dimensional data. Application to functional

data. Advances in Data Analysis and Classification, 11:243–279.
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Élodie Brunel, Mas, A., and Roche, A. (2016). Non-asymptotic adaptive prediction in functional

linear models. Journal of Multivariate Analysis, 143:208–232.

158



List of Figures

2.1 Visualization of the architecture of a ME model. Here, the gating network and each

of K expert receive x as input, then outputs of the experts are weighted by outputs

of the gating network, i.e., g1, . . . , gK , to produce the final output y. . . . . . . . . . . . . . . 8

2.2 Example of a two-level HME model. The two ME (rounded by the two dashed

rectangles) are combined with the gate at the top to produce the final response.

Each ME model in the dashed rectangles is itself composed of two experts and a

gating network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Examples of (a) B-splines, (b) Fourier, (c) Gaussian and (d) sigmoidal basis functions 19

2.4 The first four estimated eigenfunctions and their associated eigenvalues of the Tecator

data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.5 The first four estimated eigenfunctions and their associated eigenvalues of the Berkeley

growth data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.6 Examples of clustering Tecator data using non-parametric technique. Here, the

curves are clustered into two groups by K-means using (a) d0 measure, (b) d1

measure, and (c) d2 measure. Bottom panels: (d) Tecator data, (e) the first derivative,

and (f) the second derivative curves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.1 The true expert and gating functions used in simulations. . . . . . . . . . . . . . . . . . . . . . . . 59

3.2 10 randomly taken predictors in scenarios S1 (large m and small σδ), S2 (small m

and small σδ), S3 (large m and large σδ), and S4 (small m and large σδ). Here, the

noisy predictors Ui(·) are colored (blue, red, yellow) according to their true cluster

labels Zi ∈ {1, 2, 3}. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
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Modeling and Learning with Mixtures of Experts for Functional Data and Distributed Data

Abstract: Mixture of experts (ME) models are popular in statistics and machine learning and have been
studied for high-dimensional vectorial data and that are centralized. However, in many problems, we observe
time series data and applying the existing ME models directly to these raw data may limit the performance
because they ignore the correlation between variables, an intrinsic nature of functional data, and therefore do
not adequately capture the inherent functional structure of the data. In many applications the data may also
be not available at a centralized mode, and there is therefore a need to develop adapted distributed strategies
allowing for efficient parallel computations. This thesis studies mixture of experts (ME) models in functional
data and large-scale problems, in a heterogeneous scenario. The main objectives are i) to deal with situations
in which we are given functional predictors (e.g., time series) to predict a potentially functional response, and
ii) to learn from distributed data. We first propose in this thesis a new family of ME models, called functional
mixture of experts (FME), which includes scalar-on-function FME, function-on-scalar FME, and function-
on-function FME. We introduce regularized model estimation approaches via appropriate regularizations
that encourage sparse and smooth estimates, while being interpretable. We develop efficient EM algorithms
to maximize the corresponding observed-data log-likelihood functions and conduct extensive experimental
studies to highlight the performance of the proposed models and algorithms. Then, to scale-up the ME
estimation to a potentially distributed data, we develop a distributed learning strategy of ME models. It
performs standard inference on local machines to obtain local estimators, then transmits them to a central
machine where they are aggregated. Based on minimizing a proposed expected transportation divergence,
the local estimators are aggregated to obtain a reduced estimator that is consistent with the global one, i.e.,
the estimator that could be possibly constructed upon the full dataset. Experimental studies demonstrate
the performance of our approach.

Keywords: Mixture of Experts; Functional Data Analysis; Regularized Estimation; LASSO; EM algorithm;
MM Algorithm; Distributed Learning; Optimal Transport; Prediction; Clustering.

***
Modélisation et Apprentissage avec des Mélanges d’Experts pour des Données Fonctionnelles

et des Données Distribuées

Résumé: Les modèles de mélange d’experts (ME) sont populaires en statistique et en apprentissage
automatique et ont été étudiés pour des données vectorielles de haute dimension et qui sont centralisées.
Cependant, dans de nombreux problèmes, nous observons des données de séries temporelles et l’application
des modèles ME existants directement à ces données brutes peut limiter les performances car ils ignorent la
corrélation entre les variables, une prropriété intrinsèque à ces données fonctionnelles, et ne capturent donc
pas adéquatement la structure fonctionnelle inhérente à ces données. Dans de nombreuses applications, les
données peuvent également ne pas être disponibles en mode centralisé, et il est donc nécessaire de développer
des stratégies distribuées adaptées permettant des calculs parallèles efficaces. Cette thèse étudie les modèles
de mélange d’experts (ME) pour les données fonctionnelles et les problèmes à grande échelle, dans un
scénario hétérogène. Les objectifs principaux sont i) d’adresser des situations dans lesquelles on cherche
à prédire une réponse potentiellement fonctionnelle à partir d’un prédicteur fonctionnel (par exemple, des
séries temporelles), et ii) d’apprendre à partir de données distribuées. Dans cette thèse, nous proposons
premièrement une nouvelle famille de modèles ME, appelée mélanges d’experts fonctionnels (FME), qui
inclut le FME scalaire-sur-fonction, le FME fonction-sur-scalaire, et le FME fonction-sur-fonction. Nous
introduisons des approches d’estimation régularisée via des régularisations appropriées qui encouragent des
solutions parsimonieuses et des modèles lisses, tout en étant interprétables. Nous développons des algorithmes
EM efficaces pour maximiser les fonctions de log-vraisemblance pour des données observées et menons des
études expérimentales approfondies pour mettre en évidence les performances des modèles et algorithmes
proposés. Ensuite, pour étendre l’estimation des mélanges d’experts ME au cas des données potentiellement
distribuées, nous développons une stratégie d’apprentissage distribué des modèles ME. Elle effectue une
inférence standard sur des machines locales pour obtenir des estimateurs locaux qui sont agrégés au niveau
central. En se basant sur la minimisation d’une divergence de transport espérée proposée, les estimateurs
locaux sont agrégés pour obtenir un estimateur réduit qui est consistant avec l’estimateur global, i.e.,
l’estimateur qui pourrait éventuellement être construit à partir de l’ensemble complet de données dans
la version non-distribuée. Des études expérimentales démontrent la performance de notre approche.

Mots-clés: Mélanges d’Experts; Analyse de Données Fonctionnelles; Techniques de régularisation; LASSO;
Algorithmes EM; Algorithmes MM; Apprentissage Distribué; Transport Optimal; Prédiction; Clustering.
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