Introduction

This thesis was carried out in the context of a partnership between the company STMicroelectronics and the VERIMAG laboratory. At STMicroelectronics, the work was done within the "System Platform Solution" team which develops SystemC/TLM models. The VERIMAG laboratory covers research areas oriented towards the development of embedded systems.

Microcontrollers and Their Transactional Models

We study the programmable digital circuits used in embedded systems: microcontrollers. They usually include a processor, memory, and numerous and varied internal peripherals. They are connected to sensors and actuators. STMicroelectronics develops a series of widely used microcontrollers: the STM32s.

It also offers many other circuits, including sensors and actuators. In addition, models of these systems are developed and used mainly internally. They simulate the execution of the software running on the microcontroller to give valuable information about the state of the circuit at a given time, with the aim of assisting development. These models are called transactional models (TLM). They are based on the Sys-temC library [11], created about 20 years ago. They were originally designed to start the development of the embedded software as soon as possible before the real circuit is indeed available, as the manufacturing can last several months. The idea of transaction-level models is to abstract part of the circuit operation to allow a fast simulation of the software execution.

Initial Goal: Designing a Formalism of the Diagnostic Information

The goal of this thesis is to formalize the information needed to provide useful and relevant diagnostics on the execution of embedded software in specific areas: microcontrollers features (valid hardware utilization), power and performance (optimal hardware usage for execution speed). In addition to identifying the required information, the overall goal is to find a clear and simple way to express it so that it can be easily exposed. Finally, the information could be used to automatically generate all or part of a model, or

to formally reason about the system as a whole.
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Experiments on a Real Case Study

We take as a case study a system based on an STM32 with sensors and actuators, used to build a mini weather station. The system comes with a first version of the software that works, but is highly perfectible.

We put ourselves in the shoes of an embedded developer to try to optimize the software, add features and understand in depth how specific parts of the microcontroller operate. These experiments are done using documentations and various tools. Although essential, these tools do not provide enough help to easily program a sophisticated feature. An example is the deep sleep of the circuit for a certain duration. This feature is designed to save a large amount of power (consumption can be reduced by up to 80 %) but is tedious to program. It relies on several internal hardware blocks of the microcontroller whose elements have dependencies with each other that are difficult to identify and very partially exposed by existing tools.

First Approach: Augmenting a TL Model with Monitors

Our first approach consists in the automation of the detection of an inefficient use of the circuit. In practice,

we use a simulated model of the system on which we add monitors designed to detect a specific software behavior. We target two power consuming patterns that can be replaced by optimized implementations based on hardware features.

The detection principle is based on the dynamic observation (in simulation) of the software accesses to the block registers. Consequently, the development of this approach requires the description of access orders to the registers for each feature of each block whose detection is to be automated. For example, a simple access order is a first access to turn on the clock of a timer, then a second access to start the countdown. Defining such orders amounts to describing a model of the block. We realized that this model is based on the dependency relations between elements of the block such as its registers, fields and internal circuits. Rather than designing monitors for a pre-existing model, we decided to think about the formalization of a type of model based on these dependencies.

Identification of Dependencies Between Hardware Elements

To express the dependency relations, we use a graph in which a node represents a hardware element (such as a register) and a directional edge a dependency from one to the other. Splitting the circuit into separate parts is a spatial discretization, common to all types of models. The spatial discretization is performed on a subset of the circuit taken as an example: the deep sleep feature of the STM32. We analyze how each block involved operate and the dependency relationships between each of the elements. For example, we show that a clock, produced at its source with a given frequency, passes through many control sub-circuits before beeing connected to the input of a given block. Each of these sub-circuits can be controlled by the software, forming a chain of dependencies that includes many elements. At the end of the chain, the frequency at the input of the block can have significant effects on the feature: the time spent in a sleep state can be wrong, which is also difficult to perceive humanly. Moreover, knowing the frequency of a clock signal at a given time and place in the circuit is difficult with existing tools like a debugger. This analysis shows the complexity of the studied object, but also the sophistication of its design, especially for the flexibility Vincent Morice 1.6. A MODELING FRAMEWORK BASED ON THE DEPENDENCIES CHAPTER 1. INTRODUCTION of the circuit. The idea of the hardware designers is to propose an highly configurable microcontroller in order to adapt it to many uses and systems. Thus, the search for flexibility and efficiency produces circuits that can be seen as long and complex chains of dependencies, organized in a graph. This gives a first static version of a new type of model that we will refine.

A Modeling Framework Based on the Dependencies

The main proposal of this thesis is therefore focused on the definition of a modeling framework based on the dependencies between hardware elements. The definition of this framework requires the identification of dependencies chains in a given circuit. We distinguish between different types of dependencies and elements depending on what is relevant to show to the embedded developer: the nodes and edges of the graph are of various natures depending on the circuit to be modeled and what the model developer want to show. The framework proposes a library for the building of models and a simulation infrastructure, inspired by existing technologies. It uses a modular approach (models are built by parts that can be configured and reused) and a simulation algorithm based on a modified discrete-event loop to show the evolution of the state of the system in time. The whole is implemented in a Python package which also includes a command line user interface able to dynamically generate graphs of the observed model. The package also provides models of usual blocks in microcontrollers.

We show the modeling and bug-fixing capabilities of the framework on several embedded software examples. A model of the circuits used for the weather station (microcontroller and sensor) has been developed on which we present the modeling method proposed by the framework and modeling choices.

This model is used to simulate the execution of the weather station software and demonstrate how to find multiple bugs using the tool, by exploring the modeled dependency graph.

Contributions

The contribution of this work are:

• A method to automatically detect some inefficient behaviors of the embedded software. The method principle is to enrich a TL model of the system (microcontroller, sensors and actuators) with monitors specifically designed for the behaviors one wants to observe. Our method targets power consumption, but we are confident that it can be adapted to functional problems (bugs) or other extra functional concerns such as execution speed.

• A detailed analysis of the dependency relationships in modern microcontrollers to be shown to embedded developers. A complex but powerful and highly configurable feature of a STM32 microcontroller is taken as an example. This analysis allows us to identify the different natures of the dependencies that are important to distinguish.

• A modeling framework that focuses on the dependency relationships between hardware elements to assist the development of embedded software. This framework involves [START_REF]Arm fastmodel[END_REF] the formal definition of a way to express dependencies in the form of a graph, (2) the implementation of a basic library that proposes a set of standard object models included in embedded systems and a development kit to construct models, (3) a tool that proposes a user interface to simulate the execution of the embedded

1.8. OUTLINE OF THE DOCUMENT software. The tool allows to explore dependency graphs and to observe the evolution of the system in time.

The new modeling framework, while promising, cannot supplant TL models that have been used for several decades. However, a major contribution of this work is to highlight the exposure of hardware dependencies to assist embedded software development. Technical modeling discussions within the STMicroelectronics team are underway to consider how to enhance the internal modeling kit to allow models to expose dependencies.

Outline of the Document

This document does not contain a specific chapter on related work. The topics covered are varied, so references to existing research are scattered throughout each chapter, depending on the topic.

• The first part "Context: Microcontrollers and How to Program them" details how microcontrollers and related systems (sensors and actuators) operate, and presents the case study.

-Chapter 2 "General Principles of Microcontrollers" presents the operation of microcontrollers, sensors and actuators in a general way, then the case of the STM32 specifically.

-Chapter 3 "Building a Study Object: the Weather Station" presents the case study built, its hardware and software. The modeling of a part of this system in the new proposed framework is presented in another chapter.

• The second part "First approach: Detecting Software Behavior to Reveal Hardware Dependencies" presents the first approach to help the development of embedded software and explains why and how we identify the dependencies for a chosen feature.

-Chapter 4 "Diagnosing Power Problems with Monitors on a Simulated Hardware Model" presents the first approach: the definition of two monitors used on a TL model to detect specific problems related to power consumption. Section 4.7 explains why we did not go further in the development of this method, and provides justifications to initiate the design of a new type of model.

-Chapter 5 "Identifying Hardware Dependencies" presents an example of spatial discretization of a part of the STM32 to form dependency graphs, used as a basis for the design of our new framework. This work involves an in-depth analysis of the operation of the system under study.

• The third part "Bubble Dump: A Dependency Accurate Modeling Framework" presents the intuitive, then formal, definitions of the proposed new modeling framework called Bubble Dump. It also presents a model of the system studied in chapter 3 and examples of how to use the tool to find bugs.

-Chapter 6 "General Principles and First Example" presents in an intuitive way the different types of objects of the new modeling framework, as well as some standard models of basic elements of microcontrollers (buses, registers and fields). A first example of model and simulation is given in section 6.4.

-Chapter 7 "Definition of the Modeling Framework" presents the formal definition of the framework, the simulation algorithm and an exploration algorithm. The simulation algorithm contains a degree of non-determinism that is discussed in Section 7.6.
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-Chapter 8 "Concrete Implementation" presents the implementation of the Python package that allows to develop models.

-Chapter 9 "Modeling the Weather Station" presents the model of the mini weather station used as a case study in chapter 3.

-Chapter 10 "Tool Usage for Debugging" presents the possibilities offered by the tool to control the simulation and explore the dependency graph, it also shows how two bugs can be easily identified by exposing the dependencies.

• Finally, the last chapter provides an overall conclusion and prospects of the new modeling framework.

Part I

Context: Microcontrollers and How to Program Them

Chapter 2

General Principles of Microcontrollers

Microcontrollers for Embedded Systems

Microcontrollers are programmable circuits. They come in the form of electronic chips, to which sensors and actuators are connected. A microcontroller is the main component of most embedded systems. An embedded system decides on actions to be executed by the actuators in function of the data gathered through the sensors. The decisions are defined by the software executed by the programmable chip. The software can be modified throughout the life of the hardware, which makes the whole system easily maintainable and reconfigurable. The figure 2.1 shows the general schematic of an embedded system.
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Figure 2.1: General diagram of an embedded system with a microcontroller, sensors and actuators.

Today, embedded systems are present almost everywhere. The most obvious examples are found in personal electronics: phones, computers, multimedia systems (headphones, screens, sound systems), video game consoles, smartwatches, etc. They are also found in household appliances, vehicles, payment terminals (credit cards). Less visible but just as important, embedded systems are widely used in industry for the automation of production and the management of critical systems such as power plants. Embedded systems are also present in spacecraft and military equipment. In recent years, the use of embedded systems has increased with the development of so-called "Internet of Things (IoT)" applications: many micro-controllers are deployed and communicate together to manage intelligently farms, buildings, cities, etc.

Sensors And Actuators

The sensors and actuators are direct interfaces between the microcontroller and the physical world.

CHAPTER 2. GENERAL PRINCIPLES OF MICROCONTROLLERS 2.1. MICROCONTROLLERS USAGE Sensors are circuits that issues digital values related to a physical parameter. There is a wide variety of sensors: temperature, humidity, atmospheric pressure sensors; camera, light sensor, microphones, etc.

The sensors may have several operation modes. For instance, they can produce values at regular intervals, or produce a value on demand. Also, some so-called smart sensors automatically warn if the measured value exceeds a certain threshold.

Actuator is a generic term that is used for all devices that can be connected to a microcontroller and either give information to a user or drive an object of the system. Actuators are motors, displays, LEDs, and more generally any analog component that reacts to an electric current. Components such as transistors can be used as actuators for many applications such as audio amplifiers or radio transmitters. The actuators are driven by the variation of an electric current that must be generated by the chip on the connection pins. The shape of the signal to be produced varies depending on the actuator. For example, a LED is on or off according to the presence or absence of current, but driving the speed variation of a motor requires to generate a more specific signal.

Microcontroller Overview

A given microcontroller can be designed for a specific field. For example, there are specialized microcontrollers for automotive or secure applications. In this thesis we focus on general-purpose microcontrollers that are not dedicated to a specific type of system.

In the embedded systems, the software usually implements a three-step procedure, repeated indefinitely:

1. Gather data from sensors.

2. Process data and perform computations to define the actions to be taken (if any).

Send instructions to the actuators.

For these three steps, a microcontroller has several features. We distinguish two types:

• Manage the communication with the sensors and actuators.

• Perform data processing and calculations, including time management. Most of the applications mentioned may require to perform actions at a specific moment.

It is also important to reduce the power consumption of the electronic devices so they also integrate power management features.

Microcontroller Topology

The microcontrollers are divided into blocks dedicated to a given feature and able to communicate with each other. The blocks can be classified in several categories of use:

• The blocks required for the execution of the software that are included in all microcontrollers:

-The processor, or Central Processor Unit (CPU) that executes the software instructions. It includes an interrupt controller.

-The memory.

-One or more buses or internal communication network that allow the software to drive the other blocks.

• Blocks dedicated to the communication with the sensors and actuators.
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• Blocks dedicated to perform specific operations and calculations for the microcontroller: timers, blocks dedicated to security (cryptography), or to audio/video data processing for instances.

• Blocks dedicated to power management, including clocks (the state of a clock influences the power consumption). 

The processor

The CPU handles the execution of the software. All microcontrollers on the market are based on a small amount of CPU architectures. ARM processors are among the most widely used. The company designs the CPU, the bus and other blocks that are tightly coupled to the processor. ARM also distributes the tools to program the software. However, ARM does not provide microcontrollers. The products traded are the design of a set of blocks, the right to integrate them into a chip and the associated tools.

Specialization by Internal Peripherals

Except for the CPU and the memory, the other blocks are called internal peripherals. Depending on the microcontroller, the internal peripherals are more or less numerous and varied. The presence of a block dedicated to a given communication protocol, or a specific cryptographic calculation, allows the processor to delegate the task to the block. In this way, tasks can be parallelized and performed more efficiently by the hardware. A block dedicated to a given task is designed to be very efficient at performing that task.

It is therefore the internal peripherals available on the chip that distinguish a high performance microcontroller from an entry-level chip. The internal peripherals designs are vendor specific. Microcontroller manufacturers often buy processor designs, and integrate them into a chip to which they add their own blocks to distinguish themselves from the competitors and create a wide range of products.

Figure 2.3 shows two block diagrams of two microcontrollers that address different markets. These diagrams are present in the documentation of the circuits and give an overview of the available blocks.

The ATmega328P (whose diagram is on the left) is an entry-level microcontroller, used in Arduinos. The STM32WB55 is a high end chip that includes many more features and therefore many more varied blocks as shown in the diagram.
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Overview

The Atmel ® ATmega328P is a low-power CMOS 8-bit microcontroller based on the AVR ® enhanced RISC architecture. By executing powerful instructions in a single clock cycle, the ATmega328P achieves throughputs approaching 1MIPS per MHz allowing the system designer to optimize power consumption versus processing speed. 

Block Diagram

Operating Principle

Software Execution

The CPU performs the execution of the instructions of the embedded software written by the developer.

The execution is sequential: each instruction is issued one after the other. The software interacts with the outside world by writing and reading values in memory. Writing or reading in memory results in an access that is managed by the bus.

Interfacing the CPU and Internal Blocks

The software can perform accesses to all the blocks that are connected to the bus. From the software point of view, any access is performed to something that behaves as a memory.

Each bus access is performed at a given address. For each block, accesses can only be performed within a certain range of dedicated addresses. The organization of the addresses is called the address map and is provided in the documentation.

For example the STM32F411 includes a memory whose addresses range from address 0x20000000 to address 0x2002000. The same circuit includes a timer called the SysTick, accessible from address 0xE000E010 to address 0xE000E01C.

Address ranges to which no block is associated are said to be reserved. If the software performs an access to a reserved address, this is an error that can be reported by the bus. The address map is set once and for all when the circuit is manufactured. The figure 2.4 shows the address map of the STM32F411 microcontroller as an example. The memory map is shown in Figure 14. 

Register Bank of a Block

Each address in the address range of a given block is associated with a register. The set of these registers is called its register bank. For example, the SysTick timer has four registers in its bank. There are the control register (STK_CTRL), the STK_LOAD register, the STK_VAL register and the STK_CALIB register. The figure 2.5 shows the register bank of the SysTick timer.
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SysTick register map

The table provided shows the SysTick register map and reset values. The base address of the SysTick register block is 0xE000 E010. Reset Value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0x08 STK_VAL Reserved CURRENT [23:0] Reset Value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0x0C STK_CALIB Reserved TENMS [23:0] Reset Value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 CHAPTER 2. GENERAL PRINCIPLES OF MICROCONTROLLERS
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The control of the internal peripherals by the software is done by performing accesses to its registers.

For instance, writing a certain value in a control register may engage a hardware process, in the case of the SysTick, it can be a countdown starting from a given value. The reading of a register by the software allows to get information about the block state. For example, reading the STK_VAL register gives the value of the current count.

Register Addressing Modes

In a given register bank, the addresses of the registers follow each other. The relative address, also called offset, is the address of the registers from the point of view of the register bank. The STK_CTRL register of the SysTick is at the relative address 0x00, the STK_LOAD register that follows is at the relative address 0x04, etc. When the block is integrated into the circuit, an absolute address is assigned to each register. The absolute address is calculated from the beginning of the range assigned to the block to which the relative address is added. In our example, the SysTick block starts at address 0xE000E010, so the STK_CTRL register is at the absolute address 0xE000E010, the STK_LOAD register at the absolute address 0xE000E014 etc.

The absolute address of a register is provided by the processor to the bus when an access is performed.

The bus performs the routing of the access to the right register using the address.

Fields of the Registers

A register always has a value that can be read by software access, or modified by write accesses. The value is defined in a certain number of bits: the width of the register. For example, the STK_LOAD register of the SysTick has a width of 24.

When the microcontroller is powered on, each register is set at a particular value defined when the circuit is manufactured, called the reset value. For instance the reset value of the STK_CTRL register (in binary) is 0b0000000100.

A register is divided into one or more fields. A field also has a certain width, so it includes one or more bits of the register. Each bit has its own position in the register. For example, the STK_CTRL register of the SysTick has a field called "CLKSOURCE" which is only one-bit wide and is set on the bit 2 of the register. The STK_LOAD register has only one field called "RELOAD", which is 24-bits wide and starts on the bit 0. It therefore fills the whole register. The fields have their own reset values inherited from that of the register. In this example the CLKSOURCE field has a reset value of 1, the RELOAD field a reset value of 0.

The name of the registers and fields means that they are associated with a particular function of the block. The STK_CTRL (control registers) of the SysTick allows operations to be triggered when it is written. The STK_VAL (value register) exposes the current countdown values controlled by the block.

This register is meant to be read by the software to get information about the state of the block.

Field and Register Access Types

Each field, and sometimes an entire register, has an associated access type. The access type defines the behavior of the field or register when a read or write access is performed. For most registers and fields, the access type is defined when the circuit is manufactured. The three main access types are:
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• Read-write: can be read or written.

• Read only: a read returns the value, but a write is ignored.

• Write only: can be written, but a read returns 0.

In our example the register STK_CALIB is read-only, which makes sense because its purpose is to store static information about the block state. It is not intended to trigger any operation. The other fields and registers are read-write. There are many other types of access that define more finely the behavior of the register or fields (for example only certain values can be written), but their denomination is not the same in the whole industry.

Interrupt Mechanism

Any block can change the values of some fields in its registers to provide information about its state.

For instance, when the SysTick timer completes its countdown, a flag is set in its control register. When it happens, the software must check the state of the block with a read access when the information is needed.

However, it may be necessary to make the software react to a change of state of the hardware in a fast enough way. In this case the hardware can be configured to raise an interrupt. When an interrupt fires, the CPU pauses its main execution flow to execute a part of the program dedicated to the handling of this interrupt.

The microcontrollers are able to manage several interrupts. Each block can be associated with one or more interrupts. For example, in the STM32F411, there is an interrupt line dedicated to the SysTick.

Multiple interrupts can be raised and configured independently, but only one can be handled by a processor at a time. In the software, a dedicated function called the interrupt handler is associated with each interrupt.

The interrupt configuration is managed by a dedicated block: the interrupt controller. It has several functions:

• The masking of interrupts. A masked interrupt is ignored by the CPU.

• The management of the priorities between interrupts. If two interrupts are raised simultaneously, or if an interrupt is raised while another is being processed, the handler associated with the highest priority interrupt is executed.

• It gives information about the state of the interrupts, it can be useful in some cases to know if an interrupt has been raised, if it is being handled or waiting to being handled.

Interrupts should usually be enabled by the associated blocks in addition with the masking parameter at the CPU level. The SysTick includes the TICK INT field intended for this purpose.

Power Management & Power Domains

Internal peripherals are able to inform the CPU of a change of state by an interrupt. Depending on the application, the software may have nothing to do but waiting for the change of state of a block before executing some routines. In this case, the CPU and the set of idle blocks can be halted to save power.

There are two mechanisms:

• Turn off the clock.

• Turn off the power supply.

Turning off the clock saves a small amount of power, but turning off the power supply (which involves turning off the clock) is even more efficient. On the downside, power management is more complex. In CHAPTER 2. GENERAL PRINCIPLES OF MICROCONTROLLERS 2.2. OPERATING PRINCIPLE chapter 3 (section 3.6.2.8), we present a case for which turning off the power supply saves about 30 times more than only turning off the clock.

A microcontroller includes low-power (or "sleep") modes. They control the clocks and power supplies of some areas of the circuit. When software execution must be halted, choosing the sleep mode is a tradeoff between the amount of energy saved and the time and power needed to restore the circuit state. For example, it may be more expensive to fall asleep deeply for only a few microseconds, than to choose a sleep mode with a fast wake-up but which saves less power. The different modes allow to choose this trade-off.

Putting the circuit asleep is done in two steps with ARM processors:

1. The software write specific register fields to select a given mode.

2. The software executes a specific instruction, namely Wait For Interrupt (WFI) or Wait For Event (WFE).

The circuit then wakes up when an interrupt is triggered (if everything is properly configured). It then resumes the execution of the software.

A microcontroller is divided into areas that share a common power supply called a power domain.

Each power domain can includes one or several blocs. The power supply of each power domain can be controlled independently. This is necessary so that the blocks used to wake up the circuit remain powered.

For example, when the system has to wait a certain duration before resuming the software execution, a specific timer can be configured to stay powered to measure the waiting time. The timer needs a clock, so a dedicated clock source must also remain on. The timer raises an interruption when the wait is over.

The block that manages the transmission of the interrupt must also remain powered. The set of these three blocks is thus in a common power domain distinct from the other parts of the circuit. To optimize the power consumption, the blocks of this domain are designed so that the domain needs a lower power.

The management of power and sleep modes is usually dedicated to an internal peripheral and can therefore be controlled by software. The block allows controlling the power supply of each domain, and to choose a sleep mode.

The number of power domains and the different levels at which it is possible to put a microcontroller to sleep is another distinction between the different series of chips. For example the STM32WB55 has seven low-power modes. The ATmega328P has only four.

Clock Management & Clock Domain

As for the power domains, a sub-part of the circuit driven by the same clock signal is called a clock domain.

A clock is associated with a certain frequency.

On a chip, a clock is generated by a source that is an analog circuit. The clock is generated at a certain frequency. Derived clock signals are built from the same clock source at a lower frequency. The signal passes through a circuit, called a prescaler, that divides the frequency by a certain factor. The construction of the clock domains is thus done using the clock sources and the prescalers.

In the past, the first microcontrollers had no more than one or a few clock domains that were entirely driven by hardware, the single clock source was turned on and off along with the circuit, which therefore had only two power modes: on or off. The need to save energy was not a major priority because most of the devices were not wearable.

Today, the design of the circuits has evolved to save as much energy as possible. The idea is to divide Vincent Morice 2.2. OPERATING PRINCIPLE CHAPTER 2. GENERAL PRINCIPLES OF MICROCONTROLLERS the circuit as finely as possible to be able to turn on only the clocks of the parts used for a given application. Consequently, the management of the clocks has been shifted to the software. Moreover, the clock frequency is proportional to the power consumption and the execution speed. The higher the frequency, the faster a given operation is performed, the higher the consumption. In the diversity of features offered by a microcontroller, it can be interesting to perform some operations as fast as possible, such as software execution by the CPU, while others are less critical, such as displaying characters in a console. It is therefore important to be able to dynamically configure a different frequency for each block, always with the idea of optimizing energy consumption. The configuration of the input frequencies of the different blocks is therefore now managed by the software. Some blocks need a very precise and stable clock frequency to measure time very precisely. These physical characteristics depend on the clock source used, which is an analog circuit. The more precise and stable the source is, the higher the power consumption when the source is on. Modern microcontrollers therefore include several clocks sources which can also be controlled by software.

Between the clock source and a given block, the clock signal passes through several switches controllable by software called "clock gate". This allows to activate or deactivate the clock for a particular block or for a set of blocks. When the clock is disabled it is said to be gated.

As consequences, the management of the clocks is made extremely flexible to be able to optimize the consumption of the circuit and requires a special attention from the programmer.

Clock Domain Crossing

When two clock domains are used on the same circuit, there is always a moment when information must go from the one to another. The hardware implements dedicated circuits for crossing two domains to make the transfer reliable. Such a circuit is known as a "synchronizer". The use of a synchronizer implies constraints on the management of the blocks involved. These constraints must be carefully managed by the software to avoid bugs that may be difficult to fix. There are several techniques for hardware implementation of synchronizer. [START_REF] Ginosar | Metastability and synchronizers: A tutorial[END_REF] explains in detail how the clock domain synchronization circuits work. We do not go into detail here, we focus on the consequences.

When data must be transmitted from one domain to another, it passes through a synchronizer that can be seen as a buffer before it is indeed available in the destination domain. The transmission time depends on the relative frequencies between the two clocks.

For example, a timer in its own clock domain may have to set a flag when its countdown is complete.

The status of the flag must be available to the software in a register accessible by the bus, thus in a different domain. The crossing of this domain implies a crossing delay. The figure 2.6a shows a schematic of this example system. The figure 2.6b shows the delay induced by the buffer when the countdown ends.

If the software performs accesses to check the state of the flag and/or clear it, the delay must be taken into account. Ignoring this delay imposed by the hardware when the software interacts with a block in a different clock domain can lead to particularly insidious bugs. An example is given in chapter 5 (section 

STM32 Microcontrollers

In this section, we focus on the STM32 microcontrollers from STMicroelectronics to present a concrete implementation of the general operating modes of microcontrollers.

General Presentation and Product Lines

The STM32 is one of the most widely used general purpose microcontrollers. It is named after its 32-bit instruction set. STMicroelectronics offers numerous STM32 that include a variety of features (and therefore blocks). The goal is to target all potential markets. All the STM32 are based on ARM Cortex-M processors.

The STM32 lines are categorized according to the main application areas, as shown in figure 2.7. For example, the STM32F line is meant for high performance, the STM32L line is meant for low-power.

Within the product lines, the product family corresponds to the computing power: the STM32F4 is more powerful than the STM32F2. The figure shows that the F4 includes an ARM Cortex-M4 processor that can be clocked up to 180 MHz. The F2 includes a Cortex-M3 with a lower maximum frequency of 120 MHz.

Figure 2.7: STM32 product families according to the targeted application area. Taken from the STMicroelectronics official website.

There are still several levels of specialization in the product family, the circuits are differentiated by the following elements:

• The internal peripherals available on the circuit. Some basic blocks are always present like general purpose timers. Other more specialized blocks are only available in certain STM32. For example, the CHAPTER 2. GENERAL PRINCIPLES OF MICROCONTROLLERS 2.3. STM32 MICROCONTROLLERS STM32WB includes a block that manages Bluetooth communication. A same block can be included several times, for example to manage several communications with a same protocol simultaneously.

The chips also differ in the amount of features covered by the available blocks.

• The configuration used for the processor: ARM Cortex offers a certain number of tightly coupled optional blocks that can be added. For instance, a floating point unit can be present with the ARM Cortex-M4 processor. This is used to efficiently perform calculations with floating point numbers.

• The amount of memory available.

• The number of available sleep modes.

STM32 Architecture

The The diagram includes a "Flash & SRAM" block at the top right. This is the memory. The STM32 have two types:

• Static Random Access Memory (SRAM) responds quickly to read/write accesses but loses its values when the circuit is not powered. It is also more expensive to manufacture. A small amount is present.

• The Flash memory is slower but keeps the values stored in the absence of power. It is less expensive and present in larger quantity.

ARM CPU and Tightly Coupled Blocks

The figure 2.8 groups the CPU and its tightly coupled blocks:

• The ARM Cortex-M4 CPU. It implements the "ARMv7-M" architecture defined in document [START_REF]Armv7-M Architecture Reference Manual[END_REF]. This architecture and instruction set are common to all the Cortex-M processors.
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• An interrupt controller: the Nested Vector Interrupt Controller (NVIC). "Nested" refers to the interrupts priority management.

• The SysTick timer with its dedicated interrupt line.

Interrupts Process

With the STM32, an interrupt is handled by the following process:

The internal block that triggers the interrupt is connected by a wire to the NVIC, for instance the SysTick. When the SysTick ends counting, a flag is set in its control register. If the block is configured to raise the interrupt, the electrical signal of the interrupt wire changes its level from low to high. The level change is detected by the NVIC, the interrupt goes to the "pending" state, i.e. it is waiting to be processed. If the interrupt is not masked, and has sufficient priority, the processor jumps to the corresponding handler function and the interrupt goes to the state "active". The handler must acknowledge the interrupt by clearing the flag, the hardware then returns the signal to low. When the handler is completed, the interrupt becomes "inactive". This is the default state for all interrupt lines.

The interrupt may remain in the pending state if another higher priority interrupt is running or if it stays masked.

If the handler does not acknowledge the interrupt, it is taken in a loop (which is usually considered an error in the software).

The interrupt path signal is shown by the diagram figure 2.9. This is the general process of external interruption management. However, in some cases, a block that is physically located inside the STM32 may use the external interrupt path. For instance, when the block is in a separate power or clock domain, it is seen as external by the other parts of the circuit. On the example diagram of the STM32 architecture (figure 2.8), this is the case of the Real Time Clock (RTC) block. We come back to it in the sequel.

Clock Management

On STM32, the block that manages the clocks is the Reset and Clock Control (RCC) block. It allows to turning on and off the clock sources and to configure the presaclers in order to choose the frequencies in inputs of the other blocks.

The architecture diagram (figure 2.8) shows a signal at the output of the RCC towards the GPIO block.

This signal controls the switching on and off of the block clock. If the clock is off, the block cannot operate and the accesses to its registers are not processed (read return 0 and writes have no effect).

The diagram shows several signals from the RCC to the RTC block. This is a timer designed to count time precisely. It can have different clock sources that are managed by the RCC.

Power Management and Sleep Modes

The power domains and the low-power modes are managed by the software through a dedicated block: the Power controller (PWR). As an example, one of the power domains is called the "backup domain".

The blocks in this domain are designed to store data in deep sleep modes and consume as little power as possible. The backup domain also includes the blocks that remain powered: the EXTI and the RTC.

The STM32F411 has three sleep modes:

• The "SLEEP" mode. In this mode, the clocks of some of the internal peripherals and the CPU are gated. The hardware processes of the blocks involved, including the execution of the software, are therefore halted. The clocks sources remain on. Entering and leaving the SLEEP mode is done in a few CPU clock cycles.
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• The "STOP" mode. In this mode, most blocks and clock sources are no longer powered. The registers remain powered so that their values are maintained. The backup domain remains powered and clocked. The STOP mode can be finely tuned by various means. The wake-up duration can vary between from approximately one to several tens of microseconds.

• The "Standby" mode. In this mode, the backup domain remains powered and clocked; most of the clock sources and blocks, including registers, are no longer powered. This implies that the execution of the program restart at the first instruction after waking up. The wake-up time of the standby mode and the STOP mode are the same. However, the duration of the restoration of the circuit configuration by the software can be considered as an additional cost, depending on the system specification. If the embedded software starts with an initialization step, it is executed after leaving the standby mode but not the STOP mode. Considering this time depends on the implementation and can be ignored if there is no specific initialization, or if these times are not relevant for the system.

Summary

Microcontrollers are the central devices of embedded systems. The software executed by the CPU defines the behavior of the system. The CPU drives the chip using accesses to the internal peripherals. The internal peripherals allow communicating with the sensors and actuators, but also to fulfill essential functions: perform specific computations, count time, manage clocks and power consumption. The chip can be put to sleep and woken up by internal interrupts, raised by the blocks, or coming from external signals.

The diversity and the numerous blocks offered by a given microcontroller allows it to stand out, as shown by the example of the STM32. The STM32F411 offers more than 20 different internal peripherals and a fine management of the power and clocks. However, it can be quite complicated to implement an optimal configuration for a beginner programmer. This is shown by the real use case presented in the next chapter.

Chapter 3

Building a Study Object: the Weather Station

This chapter presents how we designed an object of study: a weather station application taken from a real system. The system includes sensors that measure various physical parameters of the environment on a regular basis. The measurements are processed by an STM32 microcontroller, which transfers them to a smartphone via Bluetooth. The existing tools available to embedded developers are reviewed, then the software implemented using these tools is presented. We show that this first version is not very efficient, especially in terms of power management, and that it does not take advantage of the chip's capabilities. Modifications and improvements of the software are thus proposed. We show that the tools are not sufficient to produce an optimized version and that an implementation from scratch may be challenging.

General Approach

We need a real case study to have a concrete idea of the process of embedded software development, and to give a real example of the use of a microcontroller, its sensors and actuators. In this thesis, we have chosen to study a weather station. It is composed of a measurement system that gathers data of atmospheric parameters and communicates them to a smartphone application.

STMicroelectronics provides evaluation boards together with sample code that allows building various concrete objects. In the sequel we will reuse a set of these evaluation boards and corresponding sample code that, put together, constitute a weather station. Such setup is close to what can be found in commercial products such as the Netatmo weather station1 (which includes a STM32)

The chapter starts with a general presentation of the object under study, describing the important hardware elements (section 3.2.1) and the proposed features. This study is restricted to the measurement system, i.e. the microcontroller, its sensors and actuators. Section 3.3 presents the tools and methods for the development of embedded software relevant to the hardware used. We then present the embedded software provided (section 3.4), the simplifications performed (section 3.5), and the addition of new features (section 3.6) including the use of low-power modes, which can strongly optimize the power consumption. The CHAPTER 3. CASE STUDY 3.2. OBJECT PRESENTATION chapter ends with a summary of the state of the final embedded software and a review of the development methods.

Object Presentation

Hardware of the Measurement System

The system is composed of three boards connected together. The main board, called "Nucleo" [START_REF]Nucleo F411RE Board[END_REF], includes the STM32 (The part number is "STM32F411RE" [14]) and other elements developed in the sequel. The two other extension boards are the sensor board (part number "X-NUCLEO-IKS01A2" [START_REF]IKS01A2 sensore Extension Board[END_REF]) and the Bluetooth board (part number X-NUCLEO-IDB05AL [START_REF]IDB05A1 bluetooth low energy Extension Board[END_REF]).

The three electronic boards presented are part of the range of products exclusively intended to show the possibilities offered by the chips. They are not intended to be used on a large scale in an consumer product.

For the weather station, the important features of the Nucleo board are:

• The ability to power, program and debug the STM32 via an USB connection to a computer. Also, it is possible to display character strings in a computer console, in order to facilitate the software development.

• Make the STM32 drive a LED integrated to the board.

• Reset the STM32 by pressing a dedicated button.

• Measure the current consumption of the STM32.

The sensor expansion board includes several sensors, also manufactured by STMicroelectronics, which are able to communicate with the STM32 of the Nucleo board via I2C or Serial Peripheral Interface (SPI).

The current consumed by each sensor can be measured independently (this feature has been used to produce the results presented in the sequel). An annotated photo of the Nucleo and sensor boards is available on figure 3.1.

USB Connector

Reset Button

User LED

Extension boards connectors

Current Measuring

Probe Pins (a) Nucleo board from [START_REF]Nucleo F411RE Board[END_REF]. We focus on one of the sensor available: the HTS221 [START_REF]HTS221 temperature sensor[END_REF]. It combines a temperature and humidity sensor.

When the measurement is completed, the value are issued in output registers accessible via the I2C or SPI bus. For instance, the temperature values are stored in the TEMP_OUT_L and TEMP_OUT_H which respectively contains the low and most significant bits. The sensor has two operating modes, "one-shot" and "auto-refresh"2 .

• In auto-refresh mode, the sensor is configured to produce values on a chosen regular time base.

When a measurement is done, the temperature and humidity values are written in the output registers (it is not possible to measure only one parameter at a time).

• In one-shot mode, the software starts a measurement process with a write access to the register CTRL_REG2 that is write-only. The ONE_SHOT field, at position 0, must be set. The field can only be set, the documentation indicates that it is cleared by the hardware when the measurement is completed.

In our application, the I2C bus is used to program the operating mode and read the measured values.

As with many physical sensors, a calibration is necessary before the correct temperature and humidity values can be obtained. The calibration phase is performed by the software. 

Features

The system consists of two devices that communicate via Bluetooth:

• The measurement system: a STM32 chip and several sensors. The STM32 is also connected to a Bluetooth module.

• A smartphone on which a dedicated application runs to receive and format the processed data. A screenshots is visible on figure 3.4.

The system implements the usual pattern of embedded system software. The main loop reads the sensors and performs three actions:

1. Gathering the data from the sensors. CHAPTER 3. CASE STUDY 3.2. OBJECT PRESENTATION 2. Sending the data to the smartphone.

Waiting for 800 milliseconds.

The smartphone application displays the atmospheric parameters as soon as a new data packet is received.

The corresponding pseudo code is shown in figure 3.3.

The development of the embedded software to implement these features is based on tools presented in the following section. 

Existing Tools for Embedded Software Development

The STM32F411RE has more than 30 internal peripherals, 250 configuration registers, 10 clock domains and 4 power modes. As a consequence, it is challenging to make the weather station work properly, but it is even harder to optimize power consumption and execution speed to exploit the capabilities of the hardware correctly and efficiently. This challenge is even more difficult as the interactions between the user and the inputs/outputs of a microcontroller are limited. Unless a dedicated actuator is correctly programmed, a bug is not immediately highlighted by a visual cue. As a consequences, manufacturers propose dedicated tools for embedded software development to overcome these issues.

Compiling & Debugging

The most basic development tools that comes with every microcontroller are a compiler and a debugger. STM32CubeIDE [START_REF][END_REF] is the free development environment tool provided by STMicroelectronics to develop software on the STM32. It include a compiler based on the ARM tool chain and a debugger with a graphical user interface.

Most of the software for embedded platforms is coded in C or C++. The code is compiled for a specific architecture, then the generated binary file is downloaded (or "flash") into the memory of the microcontroller. The new program starts to run at the next chip reset.

The use of a debugger is a first step for a programmer to make sure that the code that is executed corresponds to its intent, and that the system behave as expected. The two major standard features offered by a debugger are:

• Set breakpoint on a given software instruction. The debugger stops the program just before this instruction is executed.

• Set a watchpoint on a memory address. The debugger stops when a read or write access is performed to this address.

Both breakpoint and watchpoint can be triggered conditionally.

With microcontrollers, the program is debugged from a host computer. In practice, with the weather station hardware, the host is connected via the USB port of the Nucleo board. The debugger, executed from the host, may ask for a value at a given memory address or CPU registers, or may control the execution (start it, halt it or execute it step by step).

The debugger being able to access any memory point, this includes the registers of the internal peripherals of the microcontroller, which is essential to know the state of the blocks when they are used.

Several hardware blocks can function concurrently with the execution of the embedded software. The software can be halted at any time by the debugger, while hardware blocks may continue functioning.

Depending on the microcontroller model and the debugger blocks, it may be possible to halt the processing of a given block when the execution of the software is halted. This is the case for STM32, but this feature is not available for all blocks. For example, the SysTick timer can be frozen at the same time as the CPU is halted for debug. But a communication block may complete the current transmission, if any. This can make it more difficult to detect certain bugs when the debugger is used. This is why the debugger behavior is called "intrusive" in this context. 

Gathering Information

Documentations

Documentation includes essential general information such as the address map or the physical characteristics of the circuit (called "absolute maximum ratings"), including the start-up times of the clocks, the wake-up duration, the maximum operating temperature, the necessary supply voltages and currents, etc.

After the introduction and general information, each section is usually dedicated to the description of one block. There is a description of each register and each field, the reset values, the effects triggered by the different values that can be written. The expected read values. The position of each field in each register and the relative position (i.e. address) of a register in the block. The same section also includes a functional description of the block. The operation of each feature is detailed, as well as its relationship with the state of the registers. There are also references to other blocks when necessary. The CPU instruction set is also given.

The description of a feature can take several forms:

• The natural language. It is immediately understandable by all speakers, but sometimes suffers from language-related ambiguities.

• Tables, specifically convenient for fields and registers.

• Electronic circuit diagrams of all kinds. These can be analog (with resistors, capacitors, etc.), digital or mixed, with various abstraction level: some sub-parts may be grouped in one box. It allows to focus on the essential, but brings the risk of omitting potentially important information. The choice of what to show is critical: if too much details are given the reader may be lost.

• Timing diagrams representing digital signals and hardware states. The timeline is sometimes annotated with software access to be performed on a register of the block at a given time for the operation to proceed correctly as shown on figure 3.5. In the same idea, features are sometimes illustrated by a state machine as shown on figure 3.6. These last two formats are close to what is actually used in the design of the circuit. These are more rigorous and allow to avoid ambiguities or errors but may appear more complex for a beginner programmer not familiar with microcontrollers.

The use of documentation alone presents some problems (information disseminated in several documents or sections), we show the limits of its use in the software development example section 3.6.1.

Sample Code

The documentation does not provide code directly. Starting to code from an example is the general approach to development, especially for beginners or when a different hardware or framework is used. Sample codes (or "example codes") are off-the-shelf applications that are fully implemented and functional. Most manufacturers provide several example codes. Each application can only be run on a specific hardware.

Applications allow a beginner user to quickly get to grips with the hardware and the associated tools. 

Break characters

Setting the SBK bit transmits a break character. The break frame length depends on the M bit (see Figure 168).

If the SBK bit is set to '1 a break character is sent on the TX line after completing the current character transmission. This bit is reset by hardware when the break character is completed (during the stop bit of the break character). The USART inserts a logic 1 bit at the end of the last break frame to guarantee the recognition of the start bit of the next frame.

Note:

If the software resets the SBK bit before the commencement of break transmission, the break character will not be transmitted. For two consecutive breaks, the SBK bit should be set after the stop bit of the previous break. When the Wait state is entered, the command timer starts running. If the timeout is reached before the CPSM moves to the Receive state, the timeout flag is set and the Idle state is entered.

Note:

The command timeout has a fixed value of 64 SDIO_CK clock periods.

If the interrupt bit is set in the command register, the timer is disabled and the CPSM waits for an interrupt request from one of the cards. If a pending bit is set in the command register, the CPSM enters the Pend state, and waits for a CmdPend signal from the data path subunit. When CmdPend is detected, the CPSM moves to the Send state. This enables the data counter to trigger the stop command transmission.

Note:

The CPSM remains in the Idle state for at least eight SDIO_CK periods to meet the N CC and When development starts with sample code, there always comes a moment when the provided code must be inspected, modified and rewritten to get the application to follow the specification. With the weather station hardware, we can use the sample code to manage the LED, but it does not give any information about how to gather the sensor data or the implementation of the wait. The development of a full software application can become a task of adapting and merging several code samples. Therefore, the documentation is still necessary.

Hardware Abstraction Layer

The management of a same internal peripheral by the software is very similar from one application to another, so manufacturers provide libraries to avoid developers to re-code the same functions. The Hardware Abstraction Layer (HAL) refers to specific pieces of code dedicated to the use of a given block. Code layers are also provided for external hardware blocks such as sensors. The objective of these layers is to reduce the time needed for prototyping or creating an application on existing hardware. They also allow to getting started with the hardware and to show its capabilities. In fact, most of the sample codes relies on HALs.

Using the HAL of the STM32

This section takes as an example the HAL of the STM32 because it is the one that has been studied the most, but the HALs of other manufacturers have also been analyzed such as NXP, Microship, Infineon, Cypress and Renesas. The STM32's HAL is presented as a C or C++ Application Programming Interface (API). For a given block, there is usually a pair of .c and .h files, where the functions to be called are defined. However, Vincent Morice 3.3. TOOLS CHAPTER 3. CASE STUDY including these two files alone is not enough because the HAL works as a whole. It is therefore necessary to include specific headers of the HAL which contain for example enumerated types HAL_OK, HAL_ERROR and HAL_BUSY. It is also necessary to include headers specific to the microcontroller used. For instance, a dedicated header called stm32f411xe.h must be included when using the STM32F411RE. The HAL is therefore modular because it allows to add or remove pieces of code depending on the blocks used, but some files must always be present.

Example Implementation

The Universal Asynchronous Receiver Transmitter (UART) is a basic communication protocol that transfers data byte by byte. Any STM32 (and almost any microcontroller) has a block dedicated to UART communication. We take as an example the part of the HAL that allows to manage this basic block, to give an idea of the code to handle.

For the STM32 HAL specifically, the block control functions require at least one input parameter that is a pointer to a structure. From the software point of view, this structure defines the block. The code in figure 3.8 shows the beginning of the UART initialization function. The structure pointer of the UART is required as input and the first operation performed is to verify that the structure exists. The type of the expected structure is defined by the code figure 3.9. The structure is defined by the code figure 3.10. This is a redundant code pattern of the HAL, and more generally of the APIs. This pattern is used for all blocks: a structure must be instantiated by the user, it is associated with a block and saves its parameters and its state. A call to a HAL function associated to a block consists in:

1. Checking the state and the parameter by reading the fields of the structure.

2. Performing the operation associated to the function. For instance the function HAL_UART_Transmit() start a UART transmission.

3. Updating the structure by reading the registers of the bloc.

Consequently, the state information of the block, which is indicated by its registers, is replicated in the memory of the circuit, and this for each block used. The choice to use this pattern, and more generally the HAL, allows to avoid errors when a given feature of a block must be used. The drawback is that the code is not very efficient either in execution time or in memory used.

The use and especially the adaptation of the HAL code also requires an understanding of its mechanisms and its implementation. Depending on the user's experience, this step can be tedious. The time spent analyzing the HAL can therefore be compared to the time spent understanding the operation of a given block, using the documentation for example.

Other tools may be provided to reduce the effort required.

CHAPTER 

Code Generation & Downloading

As an example, one of the main interests of the STM32CubeIDE [START_REF][END_REF] development environment framework is to generate and download already coded features for a given configuration.

Let's describe more in depth the usage process:

1. The tool starts by downloading most of the code from STMicroelectronics servers according to the hardware selected by the user (STM32 part number, blocks used, extension boards...).

2. In a second step, the code is automatically modified according to the desired configuration. We can for example define a counting frequency for a timer.

3. Finally the initialization code is generated as well as the main.c and main.h files. These two files contain holes in which the user is supposed to write his own code. This allows to possibly re-generate code in case of configuration change without affecting the user's additions.

The different configurations are done through graphical interfaces and allow several things :

3.3. TOOLS CHAPTER 3. CASE STUDY
• Initialization of the software: the tool generates the specific assembly startup code, it defines the location of the code in the memory (Flash or SRAM) which can be chosen by the user.

• Activation of the blocks: the tool generates the code that enables the blocks that need to be used.

• Pin use and routing to peripherals: each pin of the STM32 must be configured to indicate whether it will be used, and to which peripheral it is routed to. Concretely, a pin is selected using the graphical interface and the user declares that it must be routed to a signal of a given block. The corresponding STM32CubeIDE graphical user interface is shown figure 3.11.

• Clock initialization : the tool presents a dynamic clock tree (see figure 3.12). A clock value can be requested at a given point in the circuit and the tool calculates and displays the values to be set for the different clock dividers involved.

Figure 3.11: Pin configuration interface for the STM32F411RE. The green pins are routed to the signal of a block, the name of the signal is next to the pin. The grey pins are not used. Some pins are reserved (especially for power supplies) or pre-routed according to the soldering of the Nucleo board. To define a routing, the user clicks on a pin and accesses a drop-down menu allowing to choose the internal signal to connect.

The dynamic clock tree shown in figure 3.12 is particularly interesting. Its appearance alone shows that clock management is not trivial: there are several clock sources, multiplexers, dividers and multipliers that can be controlled by software. Without this tool, setting or knowing the frequency of a given clock is not easy: the user needs to follow the path and perform the calculations. The challenge is to determine the dependency chain of a given clock. This operation can be difficult for a non-expert user, especially since the clock trees are more complex on modern circuits (see appendix B).

3.3. TOOLS Figure 3.12: Part of the interactive clock tree for the STM32F411RE. The frequencies can be chosen on the right of the interface. This has the effect of changing the parameters in the upstream boxes, which correspond to clock prescalers. After validation, the tool generates the initialization code to set the clocks to the desired frequency.

Operating Systems

Operating Systems (OSes) are another way to address the complexity of using hardware. In the embedded world, many systems exist. [START_REF] Sabri | Comparison of iot constrained devices operating systems: A survey[END_REF] presents a comparison of the most used OSes in embedded systems: linux embedded [4], FreeRTOS [START_REF]freeRTOS[END_REF], Mbed [START_REF] Mbed | [END_REF] from ARM, Contiki [START_REF] Dunkels | Contiki -a lightweight and flexible operating system for tiny networked sensors[END_REF], TinyOS [START_REF] Levis | Tinyos: An operating system for sensor networks[END_REF], RIOT [START_REF] Baccelli | Riot: An open source operating system for low-end embedded devices in the iot[END_REF].

The use of operating systems greatly accelerates the development process of an application because they allow to save the effort of managing the usual resources of any computer system: memory, and parallel execution of software processes. They do not address the complexity of managing peripheral blocks, they rely on HALs. Using an OS on a particular microcontroller usually includes the corresponding HAL.

Therefore, the pro and cons are the same as those of the HALs when the concern is to help programmers use these blocks.

It is possible to design applications without an operating system, such an implementation is called "bare-metal". A bare-metal implementation requires additional effort from the programmer. For instance, when an operating system is used, a software access to an unauthorized address usually results in a segmentation fault but the OS allows the system to continue running and possibly restart the process. In baremetal, the hardware generates a non-maskable interrupt ("hardfault" in ARM). The programmer must then anticipate such an error and implement a recovery procedure, otherwise the system is completely blocked.

Implementing such a procedure takes time, but also some memory space which can become problematic on very constrained systems.

Generally speaking, the use of an OS has an additional cost in performance (execution time, memory usage, power consumption) compared to a bare-metal implementation. [START_REF] Sabri | Comparison of iot constrained devices operating systems: A survey[END_REF] shows that the use of a baremetal implementation is ranked second in embedded systems.
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Original Embedded Software

The original software code was developed internally by STMicroeletronic. It uses several code samples proposed for the three boards used (see section 3.2.1) which are assembled to implement the required features. The code samples are based on the HAL for the management of the internal peripherals.

The main() function shown in figure 3.13 implements Bluetooth pairing, sensor reading and waiting.

All the sub-functions are provided by the HAL. 

Simplifications of the Embedded Software

The original embedded software has been simplified. This allowed to familiarize with the tools presented in section 3.3 and to quickly build a mastered development and experimentation environment. The two major modifications are presented in this section.

Replacement of the Bluetooth

The Bluetooth management is replaced by the display of the character string in the host computer console, used to program the board. From a high-level point of view, the need is simply to transfer the processed data to another device dedicated to the display. We mentioned that most embedded systems have a common operation principle: gather data from sensors, process them and then send them to the user interface. The In the original software, the code that reads the sensors relying on the HAL and so uses many separated functions in various files. In order to clarify the reading, the code has been refactored and gathered in a single function. Since the data acquisition process is similar for the different sensors, only the temperature has been kept. The idea is to simplify the case study into an easily observable object.

The code is shown in figure 3.14. It gives an idea of the operations required to obtain a consistent value for an environmental parameter. This implementation relies on other functions related to the I2C. This code gives an overview of the effort needed to implement a supposedly simple sensor reading. The sensor must be activated, configured and calibrated. The processing associated with the calibration is crucial to get a consistent value.
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Adding New Features

Mastering the development environment allows to add new features, which is also a good opportunity to learn more about the operation of the microcontroller and its environment. This section presents the implementation process of two features using the tools presented in section 3.3.

Driving the LED

The first feature we add is the management of a LED. It should be turned on when the temperature exceeds a certain threshold.

Temperature measurement is already implemented (see line 13 of the main function in figure 3.13) thus we focus on the LED management.

Approach

The straightforward idea is to use the sample code presented in section 3.3.2.2. However, we choose to present the implementation approach using the documentation because the program of the sample code relies on the HAL, therefore the initialization steps are scattered in many files. Also, the code is generic and is designed to entirely configure the blocks used, so it contains many steps that are not necessary to drive a LED. The exercise consists in finding and identifying the relevant lines of code and refactoring them. This is not very interesting to present and does not tell us much about the hardware. The presentation of the implementation process from scratch gives a first idea of the complexity of the hardware. is connected to the LED. If the pin is set to high level, the LED is turned on; if the pin is set to low level, the LED is turned off.

Implementation

For the GPIO block, the useful parameters to drive the LED are:

• The routing of the pin to the internal signal. In this case the pin is used as output so the MODER5 field of the MODER register must be set to 0b01 according to documentation shown figure 3.16.

• This setting routes the pin to the ODR5 field of the ODR register (see figure 3.17). The field value drives the level of the output pin.
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GPIO registers

This section gives a detailed description of the GPIO registers. For a summary of register bits, register address offsets and reset values, refer to Table 26.

The GPIO registers can be accessed by byte (8 bits), half-words (16 bits) or words (32 bits).

GPIO port mode register (GPIOx_MODER) (x = A..E and H)

Address offset: 0x00

Reset values:

• 0xA800 0000 for port A

• 0x0000 0280 for port B

• 0x0000 0000 for other ports

GPIO port output type register (GPIOx_OTYPER) (x = A..E and H)

Address offset: 0x04

Reset value: 0x0000 0000 
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GPIO registers

This section gives a detailed description of the GPIO registers. For a summary of register bits, register address offsets and reset values, refer to Table 26.

The GPIO registers can be accessed by byte (8 bits), half-words (16 bits) or words (32 bits).

GPIO port mode register (GPIOx_MODER) (x = A..E and H)

Address offset: 0x00

Reset values:

• 0xA800 0000 for port A

• 0x0000 0280 for port B

• 0x0000 0000 for other ports

GPIO port output type register (GPIOx_OTYPER) (x = A..E and H)

Address offset: 0x04

Reset value: 0x0000 0000 

MODER15[1:0] MODER14[1:0] MODER13[1:0] MODER12[1:0] MODER11[1:0] MODER10[1:0] MODER9[1:0] MODER8[1:0] rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 1 5 1 4 1 3 1 2 1 1 1 0 9 8 7 6 5 4 3 2 1 0 MODER7[1:0] MODER6[1:0] MODER5[1:0] MODER4[1:0] MODER3[1:0] MODER2[1:0] MODER1[1:0] MODER0[1:0] rw rw

E and H)

Address offset: 0x10

Reset value: 0x0000 XXXX (where X means undefined) 

GPIO port output data register (GPIOx_ODR) (x = A..E and H)

GPIO port input data register (GPIOx_IDR) (x = A..E and H)

Address offset: 0x10

Reset value: 0x0000 XXXX (where X means undefined) However, executing this code does not turn on the LED. The problem is that the clock of the GPIOA block stays disabled so the write accesses to its registers are ignored.

GPIO port output data register (GPIOx_ODR) (x = A..E and H)

The clock must therefore be enabled first. The GPIOAEN field of the AHB1ENR register must be set

(see figure 3.19
). The AHB is the bus technology used to connect the blocks.
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Reset and clock control (RCC) for STM32F411xC/E

RCC AHB1 peripheral clock enable register (RCC_AHB1ENR)

Address offset: 0x30

Reset value: 0x0000 0000

Access: no wait state, word, half-word and byte access. 

RCC AHB2 peripheral clock enable register (RCC_AHB2ENR)

Address offset: 0x34

Reset value: 0x0000 0000

Access: no wait state, word, half-word and byte access.

RCC APB1 peripheral clock enable register (RCC_APB1ENR)

Address offset: 0x40

Reset value: 0x0000 0000

Access: no wait state, word, half-word and byte access. 

Implementing a Wait

A wait must be performed after the measurement and the update of the LED status. The implementation is critical because the goal is to save as much power as possible. This section presents and compares different implementations according to the sleep modes.

Presentation of the SysTick Timer

The original implementation of the wait uses the SysTick timer. Its register bank is given section 2.2.2.1.

It counts down from a software-defined value in the RELOAD register. The countdown speed is defined by the input clock. When the countdown reaches 0, the COUNTFLAG is raised and an interrupt is triggered if TICK_INT is set. Also, the countdown circuit re-samples the value in RELOAD and restarts the countdown. The process is started/paused when ENABLE is set/cleared by software. A read access to CTRL clears COUNTFLAG after the value is returned.

Active Waiting Using the HAL

The provided implementation uses the HAL, which is sufficient to meet the functional specification: wait for 800 ms. The code is provided in figure 3.21 (the HAL_Delay() function is called at the end of the original main function).

In this code, the SysTick timer is used with a particular pattern called a polling loop. The software calls the HAL_Delay() function, passing as parameter the duration of the wait in milliseconds. The polling form is: while(HAL_GetTick() -tickstart < delay){}. tickstart is the start time. HAL_GetTick() returns a variable that is incremented at each SysTick timer interrupt. It is programmed at initialization to end its countdown every millisecond, which triggers the execution of the interrupt handler function.

With this implementation, no sleep mode is used. The CPU executes the while loop permanently (except when the handler is called) until the delay is reached. It is called an active wait. It is quite inefficient.

As shown in the sequel, a more efficient implementation reduces the power consumption by a factor of 80.

Vincent Morice 52 It is configured at software initialization to trigger an interrupt every millisecond. We have added comments in the code to facilitate its understanding.

Problems Related to the Use of the SysTick Timer

The over-consumption of such an implementation is not the only problem, the uwTick variable returned by HAL_GetTick() is not protected against overflows. On 32 bits, the maximum number of countable milliseconds is m = 2 31 . Let's convert this time into days with the following formula (s, h and d respectively to convert into seconds, hours and days):

d = m s.h.d = 2 31 1000 × 3600 × 24 ≈ 25 days (3.1)
The variable will overflow before a month of functioning. This time may be relatively short compared to the lifetime of IoT objects, for example.

Other bugs may appear, related to the SysTick clock and the value n from which the timer starts to down count until 0. The following formula is used to determine the n to be fixed as a function of the desired time t between two interruptions: n = t × f , with t in seconds and f the counting frequency in 53 Vincent Morice CHAPTER 3. CASE STUDY 3.6. ADDING NEW FEATURES Hz. For example, to count t = 1 ms at the frequency f = 100 MHz, n = 100×10 6 ×0.001 = 100 000. The counting clock of the SysTick is shared by the CPU and other blocks. The HAL software uses this formula to calculate n at initialization, according to the clock that has been chosen beforehand. A first problem appears if the frequency of this clock is changed later, the timer will no longer count milliseconds. A developer not aware of these links can easily cause such a bug by changing the clock of one of these other blocks.

Another malfunction may occur if the software programs a very small SysTick count value n (if f or t is small in the formula n = t×f ). Our experiments have shown that it is almost impossible to use a debugger correctly if the value is less than ≈ 100, depending on the length of the SysTick interrupt handler code.

Indeed, in this situation, the processor must execute the interrupt handler every 100 cycles. ARM Cortex-M processors take 12 cycles to enter and exit the interrupt, 24 cycles in all, to be added to the execution cycles of the handler itself. Under these conditions, the processor executes the handler continuously and can hardly perform other operations, including giving the hand to the debugger.

However, the existence of these problems is not enough to completely discard this implementation of the HAL. It can still be interesting to have a ready-to-use wait function.

Putting the Circuit to Sleep

We will now present the use of sleep modes to save power while waiting. It is possible to choose between several modes, which define a trade-off between power consumption and wake-up duration. Therefore, several parameters are involved.

Consumption was first measured using board probes. However, these are not accurate enough for very low current (approx. ± 0.1 mA). STMicroelectronics provides a tool to simulate power consumption according to the sleep mode of the circuit and the state of the blocks (on or off). The tool is available in the STM32CubeIDE development environment. It is used along with measurements on the board to evaluate the power consumption in order to obtain sufficiently accurate estimates.

Table 3.1 summarizes the compromise between the different modes.

Using the Sleep Mode

A first version uses the sleep mode, still with the SysTick timer. However, unlike this previous implementation, this is not an active wait. Instead of counting every millisecond, the SysTick counts the duration of the wait while the CPU is asleep.

The interrupt at the end of the count of the timer is configured to wake up the processor, the count is then launched for the desired duration and the processor is put to sleep using the WFI instruction while waiting for the interrupt. The code is visible figure 3.22 (the HAL_Delay() function has been renamed

wait()).

The while loop lines 12 to 14 is a classical code structure. Checking the flag ensures that this is the end of counting that indeed wakes up the CPU.

With active wait, the consumption is around 12 mA. Using the sleep mode for the same functionality brings the consumption down to around 3 mA (four times less). This is far better, but more power can be saved with a deeper sleep mode. Moreover this first new implementation can be done in any chip with an ARM Cortex-M based CPU. So we do not get the most out of the STM32. 

Using the Stop Mode

The stop mode saves more energy than the sleep mode. The STM32 includes a hardware block precisely dedicated to counting time while being in stop mode: the Real Time Clock (RTC). This block allows waking up the chip after a precise programmable duration.

The parameters to be managed when the stop mode is used are:

• The restoration of the clock configuration after the wake-up.

• The state of the flash memory while stopped.

• The state of the voltage regulators while stopped. The regulator is an analog component present in any microcontroller. It allows to adapt the input voltage to the different power domains. This process consumes power and takes some time to stabilize after the regulator is turned on.

The code that uses the RTC and the stop mode is shown figure 3.23. It mainly manages some particular cases related to the RTC block and the stop mode. Saving and restoring the clocks is implemented in the functions save_clocks_config() and restore_clocks_config() shown in figure 3.24.

Significant parts of the code of the figure 3.23 are:

• Lines 16 to 18 and 24 to 26 start the counting process.

• Line 45 triggers the stop mode.

• The processor wakes up on interrupts, the code that is executed first is the interrupt handler (lines 50 to 54), then the software resumes its execution, restores the clocks and disables the RTC (line 7).

Implementing this feature correctly, relying only on the reference manual and the debugger, was not easy. This complexity can also lead to many bugs that have been exhaustively listed in appendix A.

Implementing the wait process using the RTC and the stop mode decreases the consumption to 112 µA. For instance, when powered by a 700 mAh battery, changing the code from active wait to stop mode can extend the lifetime of the system approximately from 3 days to 8 months.

Reconfiguration of the Clocks

The documentation states that the whole content of registers is saved in stop mode, including SRAM, the memory used for the code in our example. This also includes the Flash Memory and Main Regulator Configuration Managing flash memory and main regulator settings allows to fine-tune the power efficiency / wake-up time compromise:

• The flash memory has its own "deep power down mode". This increases the wake-up time and reduces the power consumption.

• The voltage regulator can also be set to its own low-power mode, which has the same consequences.

In both cases, a field has to be written in a register before going to sleep. However, depending on the electrical wiring of the board, the regulator may be bypassed. In this case, whether or not it is set to low-power mode has no influence.

The configuration of the state of the flash memory and the regulator is managed on lines 44 and 45 of code figure 3.23. The RCC is the block that controls the clocks (not to be confused with the RTC which is the timer used in stop mode).
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Using the Standby Mode

As shown in table 3.1, the wait can also be implemented using standby mode to save even more power.

The RTC can still be activated to count time. The main difference with the stop mode is that all register values are lost when switching to standby. This implies that the software does not restart after the WFI sleep instruction but at the very first instruction. All initializations have to be re-executed. This can take a longer time than simply restoring the pre-sleep state as with stop mode, depending on the initializations.

In our example, the main initialization steps are:

1. Copying the code from flash memory to SRAM, as the latter is faster.

2. Initializing the clocks, a step that is also necessary when leaving stop mode.

The flash memory and the regulator are powered down in standby mode. The possibility to use standby also depends on the wiring of the board. If the regulator is bypassed, the standby mode is not available.

Comparison of the Low-power Modes

The code figure 3.25 shows the different operations to select a low-power mode. Table 3.1 shows the power consumption and the software resume duration according to the selected sleep mode and the configuration of the blocks, for the wait functionality. The temporal data are taken from the STM32 datasheet [14] (p 82 Table 34). For the sleep mode, the consumption value is obtained using the probe and is confirmed by the STMicroelectronics power simulation tool. For the other modes, only the tool is used.

The diversity of possible sleep modes shows the will to offer a fine tuning to adapt to any situation. knowledge of the board or search in the dedicated documentation and cross reference this information with the operation of the low-power modes to be sure to select the desired mode. In addition, the possible configurations of the sleep modes show that the power consumption of the circuit depends on many parameters in various blocks and on the instruction sequence executed by the processor.

Conclusion on Low-power Modes

Using low-power modes allows a consequent power saving for the weather station application and also allows to take the best advantage of the features offered by the STM32 microcontroller.

However, we have seen that the implementation of this procedure is not simple. The elements of the circuits involved are distributed in many blocks, their registers, fields, internal hardware and even analog components. The will of the hardware designers is to provide many configuration parameters which allows to manage very finely the trade-off. The downside is that the number of potential bugs is big, the associated symptoms are difficult to see for a human being, and their analysis is challenging with standard tools (debugger). 

Summary and Outcomes

Objects similar to the one studied in this chapter are available on the market. The core is a mini weather station that transmits temperature values (and other atmospheric parameters) to a user interface at regular time intervals. The implementation of this specification on a microcontroller, as well as the management of sensors and actuators is not easy because these circuits are complex objects. For example, many parameters are involved in the management of clocks, there are several clock domains on the same chip. Each device is dedicated to a given function and works in its own way, and must be handled by the developer.

We have studied the proposed embedded software, and performed some simplification to get the grips with the tools and understand how they work. We have shown that the first implementation has a potential for optimization. Then we tried two modifications:

• The addition of the system's LED lighting up when the temperature exceeds a certain threshold. We have shown that this feature already requires some knowledge of the hardware and research effort in several documentations, so it is not as simple as one might think.

• The exploitation of low-power modes to save power. The circuit is put into a deep sleep: a part of it is not powered during the waiting phase. We have shown that this feature is difficult to use.

Limitations of Existing Methods and Tools for Embedded Software Development

Building this study object shows that the existing methods and tools, although necessary, are not sufficient to achieve a quick development of an efficient and correct code that makes the best use of the hardware.

• The information needed to write a software can be found in documentation or in samples of provided codes. However, this information is very scattered and requires research and gathering steps that can be long. This is the case for the documentation and for the code samples. This is shown by the implementation of the LED control and the use of low-power modes.

• The use of a debugger can be intrusive and make it difficult to solve bugs, for example when the circuit is asleep.

• It is changeling to obtain an optimal implementation based on the HAL and the generated code. The uses of low-power modes shows that high power savings can be achieved for the same functionality (waiting a given duration), where the HAL uses active wait that is very power-consuming.

In the sequel, we focus on the design of new tools to assist the development of embedded software on microcontrollers.

Chapter 4

Diagnosing Power Problems with Monitors on a Simulated Hardware Model

Having observed with the case-study of the previous chapter that existing tools are not sufficient for a programmer to use micro-controllers platforms efficiently, this chapter describes the first approach we investigated, in order to assist the development of embedded software on microcontrollers. The idea is to analyze the software in order to detect cases in which the sophisticated features of the hardware, especially those dedicated to power issues, are not used efficiently. The approach has been published in [START_REF] Vincent Morice | Towards A Power Advisor in a Devkit for Internet-of-Things Microcontrollers[END_REF]. This study helped us identify that a key problem is the existence of complex dependencies between hardware elements, often hidden from the programmer, or at least difficult to understand. This notion of dependency will be detailed in chapter 5.

First Attempt: Automatic Detection of Non-Efficient Code

Our first approach is to investigate automatic methods to detect software performance issues for microcontrollers, so as to help the software developer with power-related aspects. The idea is to find pieces of code that constitute bad programming practices. The term anti-pattern has been used as a reference to good programming practices expressed by design patterns [START_REF] Gamma | Design patterns: elements of reusable object-oriented software[END_REF]. The example of chapter 3 gives two ideas of particularly expensive common problems:

• Polling loops, as the one used in the active waiting described in chapter 2 (section 3.6.2.2).

• The management of the temperature sensor modes.

In order to detect those problems automatically, two families of approaches can be studied: static approaches, in which tools work on the software source, without the need for executing it; dynamic approaches, in which the software can be executed and its traces analyzed, either on-the-fly or at the end of the execution. As with formal verification, static methods have the potential to give more general results than dynamic ones (e.g., this piece of software will never produce a divide-by-zero error, whatever the execution), but are more costly and limited by complexity or decidability problems.

We first review some existing detection methods and explain why we choose an approach in which the software is executed on a simulated hardware model, augmented with monitors specifically designed for the two types of problems (polling loops and sensor modes).

EXISTING METHODS

Review of Existing Detection Methods and Selection of a Dynamic Method

A software anti-pattern can be detected statically or dynamically. We first review some static methods.

The principle is to analyze the source code or the execution traces.

• [START_REF] Smith | Software performance antipatterns[END_REF] can identify critical points quickly in a large number of code lines, but these points are not necessarily bugs or actual problems in real executions; it was first proposed for object-oriented development; it is more difficult on less-structured low-level code.

• [START_REF] Hecht | Detecting antipatterns in android apps[END_REF] is able to detect certain software performance anti-patterns (resource leaks such as CPU, memory, battery) in android applications, which are sometimes imposed by the underlying frameworks.

In our case, this would be due to the HAL. The approach is based on analyzing the code of the application, thus being static but without the need for the source code. The 8 patterns detected are all related to the static structure of the code.

• [START_REF] Iegorov | Data mining approach to temporal debugging of embedded streaming applications[END_REF] Applies data mining techniques to the automatic detection of patterns in execution traces. It relies on the availability of a large number of traces, and algorithms to search those large data sets; it is not meant for a monitoring (incremental) implementation.

Dynamic methods are based on the detection of patterns during the execution of the software:

• [START_REF] Minos N Garofalakis | Spirit: Sequential pattern mining with regular expression constraints[END_REF] presents efficient algorithms to find frequent sequences in databases of ordered transactions.

The type of patterns that may be searched resembles what we need for the polling case, but the search criteria is a quantitative measure of the frequency in the whole database. On the contrary, our definition of a polling is local, it does not relate to the frequency, in the whole behavior, of the memory transactions generated by the evaluation of the loop condition. Moreover, the family of algorithms developed for pattern mining in databases does not necessarily work in a incremental way, which is necessary for our monitoring purpose.

• [START_REF] Peiris | Automatically detecting excessive dynamic memory allocations software performance anti-pattern[END_REF] proposes to use Dynamic Binary Instrumentation (DBI) to detect excessive dynamic memory allocations, and argues that it is a software performance anti-pattern very difficult to detect statically, because it relies on timing (it detects short-lived, high-frequency dynamic memory allocations). The general framework is very similar to ours. We use a simulation of the hardware because power consumption depends on the state of the hardware platform, and sometimes on timing. We may use instrumentations of an instruction-set simulator, which has the same potential as DBI. [START_REF] Peiris | Automatically detecting excessive dynamic memory allocations software performance anti-pattern[END_REF] also provides an interesting review of other dynamic approaches for other software performance antipatterns. Because of the intrinsic limitations of static methods, we decided to use dynamic methods. STMicroelectronics being one of the promoters of the SystemC/TLM technology, it is interesting to exploit all the existing tools and expertise for our problem.

The SystemC/TLM technology is based on virtual prototypes of the hardware. We will be able to execute the real object code on a simulated model of the hardware platform, given as a SystemC transaction level model augmented with dedicated monitors. For the two cases taken from the weather station case study of chapter 3, we show that our method can help detect patterns that would be difficult to detect statically, even when the source code is available, because they involve the state of the hardware and the timing of operations. We show why dynamic information is key to the detection of real problems, and we Vincent Morice 4.3. SYSTEMC/TLM OVERVIEW CHAPTER 4. DIAGNOSING POWER PROBLEMS show how to choose specific events and patterns to observe in TL traces in order to find occurrences of those two problems.

Quick Overview of Transaction-Level Models (TLM) and SystemC

Transaction Level Model (TLM) started to be designed and used a few decades ago. These models can be used to run software in a simulator. TLM was first designed to be able to run software quickly enough before the real circuit is indeed available. Once the design of the circuit is completed, the idea is to perform simultaneously the manufacturing of the circuit, which can last long (several months) and the development of the software throughout a simulator. In this context, a TL circuit model is called a virtual prototype.

Today, the use of TL models is more diversified. They may be externally delivered with custom circuit, because of their high observability. They have also been used to make consumption estimates [START_REF] Moy | Modeling power consumption and temperature in tlm models[END_REF] or to explore architecture design [START_REF] Safar | Tlm based approach for architecture exploration of multicore systems-on-chip[END_REF].

Another interesting aspect is the suitability to simulate the behavior of the circuit environment. For instance, in our weather station, we would like to be able to display an alert when the temperature exceeds a certain threshold, for example 42 degrees. This type of test condition is difficult to setting up with real hardware. The use of the TL model allows to define an appropriate input stimulus and to validate the behavior of the system under such conditions. This type of usage, along with the ability to easily integrate monitors, makes this technology still relevant after the real circuit is available. The model can be run in parallel for the validation of the specification of the whole embedded system. In this case, these models are no longer seen as prototypes but as digital twins.

TLM Concepts

TLM uses transactional communication to represent the exchanges between the processor and its environment, which abstracts the exact sequence of bus signals that enable this exchange. A TL model is a circuit abstraction that leaves out everything that is not relevant to the execution/validation of the software. In TLM, the time evolution follows the standard time representation of a discrete-event simulator, but with imprecise timings (i.e. loose timings) to represent timings that are not precisely known or nondeterministic (e.g. stabilization time of a clock). The figure 4 With SystemC/TLM, each block has his dedicated class (called a SystemC Module). The model of a block is created using the circuit specification, i.e. a precise description of the hardware architecture also used for the design of the real chip. This is the reason why this type of model is developed in-house.

A SystemC module exchanges information with the outside through its ports. There are two types:

• The initiator ports allow to start a transaction. For example the CPU has an initiator port to model bus accesses.

• The target ports are used to receive a transaction to be processed by the block. The models of the internal peripherals that are memory mapped have a target port to receive transactions to their register bank.

The modules are assembled and connected together in a higher level instance where initiator ports are connected to target ports.

When a SystemC program is launched, a binary file of the embedded software is provided, then a connection phase (also called "elaboration") is performed before the simulation starts. The SystemC simulation kernel performs each transaction one after the other with time annotations.

TL Model of the Weather Station

The weather station model with its STM32, its temperature sensor and its LED is provided by STMicroelectronics. It is developed using the in-house modeling kit. The CPU model and its coupled blocks are provided by ARM in a different technology. These models are called FastModel. The ARM FastModel of the Cortex-M4 is wrapped in SystemC and integrated within the weather station model. The modeling kit presents the necessary tools to set up the monitors: it is possible to observe the transactions and to process the information externally with programs written in Python.

Detecting Polling Loops

The first example is about detecting polling loops because it is generally more power consuming than waiting for an appropriate interrupt if available. When using methods based on the structure of the code [START_REF] Hecht | Detecting antipatterns in android apps[END_REF], it means detecting the pattern while(condition){};, either syntactically, or on the binary code.

As far as power consumption is concerned, the cost comes from the CPU being active (while it could be sleeping), but also from the bus activity induced by the evaluation of the condition. We aim at detecting polling loops even if the corresponding code is spread across several layers of low-level code, part of it possibly available in binary form only. Moreover, we would like to warn only when they have a significant effect, which may depend on the effective number of passes in the loop: looping twice is probably harmless, but 50 times may be significant.

A Problematic Polling Loop

In the original code of the weather station, the function HAL_Delay() includes a first pooling loop (line 9 of the code figure 4.2). We have already shown in the chapter 3 that this code is power consuming and how to improve the implementation. As a reminder, in this code, the HAL_GetTick() function returns a variable incremented every millisecond. The active wait is performed during 800 ms. This is a typical case of a harmless polling loop because the way the hardware is designed ensures a very small number of iterations (in our example, we observed 20 in the worst case). This type of polling case can be ignored easily, by using a threshold on the number of iterations.

Characterizing and Detecting Polling Loops on TL Models

The first step is to characterize problematic polling loops by observing the dynamic behavior of the code.

The idea is to focus on the actual effect of a polling mechanism, even if it is not written as a typical polling loop; or it is, but with harmless effects.

DETECTING POLLING LOOPS

The effect of a polling mechanism is characterized by some repetitive pattern being observed, and we can decide to issue a warning after a given number of repetitions. We propose to observe the sequence S of read transactions issued on the bus. Section 4.6 explains what is indeed observable (not all variable accesses do generate bus transactions), and how to filter out other read transactions (e.g., from interrupt handlers).

With HAL_Delay(), there are 3 variables in the condition of the loop: Delay, uwTick and tickstart. The latter is stored in a CPU register, hence does not generate bus transactions. There are only two addresses that appear in read transactions; (HAL_GetTick() function calls also generate read transactions, but this is not an issue as explained in section 4.6.) uwTick++ is filtered since it is executed in an interrupt handler.

When the wake-up timer is unlocked, there is only one access to RTC registers generating a read transaction on the bus. Section 4.6 explains the instrumentation of the TL model, and shows how to detect the first case, while ignoring the second one.

The last important point is to characterize the repetitive patterns of read transactions that are indeed issued on the bus for typical polling loops. For instance, if the code indeed contains a loop while(condition){};, each evaluation of the condition generates successive read transactions, depending on the logical structure of the condition (in C the evaluation of cond1 && cond2 does not evaluate cond2 -hence does not access its variables -if cond1 is false). There is no cache between the CPU and the bus, so each access to a variable generates a transaction. Observing repeated accesses to the variables of cond1 is a hint that some polling situation might be involved, but it depends on which other accesses are observed between the accesses to the variables of cond1. Extracting also the variables of cond2 helps confirm that there is a polling case.

Formalizing Patterns

As an example, let us consider the dynamic behavior of a program that checks repeatedly a condition cond:

((a < 12)&&(a >= 0))||(b == 0)||(c == 0), either written exactly like that, or obtained with macros and calls to other software layers. Notice the same variable may appear several times in the condition.

The iterative evaluation of cond generates sequences of accesses of the form (a|aa|aab|aabc) * if all variables are observable (i.e., generate transactions on the bus) or simply (a|aa|aac) * if, e.g., b

does not.

Since we do not know in advance which addresses a, b, c to look for when searching for polling loops, our problem is a parametric version of the above example: we search for (x|xy|xyz|xyzt|...) * , where x, y, z, t, ... can be instantiated with any address. The number of these "parameters" depends on the condition. It is not too restrictive to consider that it is bounded by a relatively small number P . In the sequel, we take P = 3 as an example (3 observable accesses). The problem becomes to check whether an execution trace is of the form: (x|xy|xyz) * for some x, y, z. | (xyz) [n,+∞] . See details in Section 4.6. This example does not fully characterize all polling loops. For instance, instructions in the condition or the loop body (especially branching) can partially hide the repetition or produce a large number of repetitive addresses observed on the bus. Moreover, if we choose a very big P , we might end up detecting the infinite loop of the main program.

Detecting Unsuitable Uses of a Sensor Mode

The The cost of one bus transaction alone is very hard to estimate, so the power consumption of the microcontroller has been measured on the board with the initial and modified versions of the EnvSensor_-GetTemperature() function and our proposed modification for the HAL_Delay() function. Average consumption is 1.57 mA (± 0.01 mA) for auto-refresh mode and 2.47 mA (± 0.01 mA) for one-shot mode.

It would correspond to an increase in the lifetime from approximately 12 days to more than 18 days with a 700 mAh battery.

Detecting the One-Shot Mode on TL Traces

The type of situation we want to detect involves software intended to read a fresh value of the temperature at a regular rate. Compared to auto-refresh mode, using one-shot mode with a period P r < 1 s is not efficient. A write access to the sensor is required to request a new value, whereas the auto-refresh mode produces one automatically at a comparable frequency. The auto-refresh period can vary between 1 second and 13 ms. Establishing the efficiency of using one mode or the other therefore depends on how often the values are required. The decision is given by Table 4.1. The last line shows a hypothetical case where the software needs a new value more than once every 13 ms. It might be useful for some critical applications where the temperature is rising up extremely fast, but it cannot be accomplished in auto-refresh mode, the one-shot mode should be used. In this case this is not a matter of power efficiency so this is out of our scope.

We can observe the accesses to the sensor registers: reading the value, and requesting the one-shot mode. The tricky part is to measure time between requests to estimate the period, because we work with a simulated model of the hardware platform for which timing is always an approximation; moreover, even with a simple loop code, the software on the real platform does not read the value on a strictly periodic way.

We measure the period several times and compute the average. For the polling loops we observe bus transactions. For the temperature sensor, we observe the transactions on some of its registers: CTRL_REG2 is written when a value is asked in one-shot mode, TEMP_OUT_H and TEMP_OUT_L contain the temperature value, CTRL_REG1 controls the auto-refresh rate.

In our proof-of-concept implementation, the monitors are first implemented as classes in Python scripts. The scripts are called at the beginning of the SystemC simulation, and instantiate Python objects representing the monitors. Using Python allows high flexibility and coding simplicity: adding a new monitor can be done without heavy C++ re-compiling of the platform.

In the SystemC simulation, the bus and the sensor registers are represented as "modeling objects" which receive transactions. The object constructor of the monitors sets a watchpoint on a modeling object and is programmed to trigger when receiving a transaction with certain conditions (ex: address within a given range, etc.). When it happens, the SystemC simulation is paused, the state of the hardware model can be inspected (for instance bits in control registers), the simulation date and the transaction are given to a Python method of the monitor. When the method returns it gives control back to the SystemC simulation.

The monitors can wait for a user action before giving control back to the SystemC simulator. This can be useful for the user to see the current instruction of the embedded software, via a connected debugger, or to inspect the internal state of the monitors.

Monitor for the Detection of Polling Loops

In the virtual prototype we used, the CPU model is an ARM FastModel as mentioned in section 4.3.3. For time and technical reasons, it has not been possible to introspect the internal values of the CPU, such as the program counter. So our polling loop detection works only with the memory accesses and the accesses to registers in blocks different from the CPU. The monitor sets a watchpoint on the bus that triggers on read accesses only. When SystemC calls back a dedicated method in the Python object, it also transmits the target module name and the address.

Filtering Bus Transactions

We need to observe the sequence S of read addresses issued on the bus by running the polling loop alone.

But other accesses are due to the execution of the interrupt handlers on the same CPU. It is possible to ignore any transaction issued while an interrupt is in active state. The interrupt controller included in the model (called the NVIC, see section 2.3.2.2) provides flags that indicate the status of each interrupt. An interrupt is active when the CPU is running the interrupt handler. As the first monitor is disabled when an interrupt is active, we instantiate another monitor -destroyed at the end of the interrupt handler -in order to detect polling loops inside it. So the maximum number of monitor instances is limited to the maximum number of possible nested interrupts: 52 with this STM32. Transactions due to fetching instructions from memory can also be filtered out: the memory location of the code is known so the corresponding addresses can be ignored.

Recognizing a Polling Loop Sequence

We now work only with read transactions observed on the bus, targeting the data memory section and the peripherals. As mentioned in section 4.4.4, the monitor looks for the regular expression x [n,+∞] | (xy) [n,+∞] | (xyz) [n,+∞] in the sequence of transactions. The recognizer is fully implemented in Python in the monitor class, initialized with a given maximal size of the repetitive patterns to be recognized P , and a minimum number of iterations n. We use P = 3 and n = 21 in the example.

Monitor for Sensor Mode Advice

The monitor of the sensor model sets three watchpoints: (1) On the one-shot bit of the register CTRL_REG2 triggering on write accesses only, (2) on the register TEMP_OUT_L triggering on read accesses and (3) on the register TEMP_OUT_H with the same condition. When a watchpoint is triggered, the monitor updates the associated measured periods with the simulation date. It then checks for the inequalities of the table 4.1 and warns the user in the inefficient cases. The monitor also checks the field ODR of the register CTRL_REG1 that indicates the sensor mode (ODR ̸ = 0 for auto-refresh, 0 for one-shot).

Example Results as Shown to the Developer

In our example, Fig. 4.6 is the message displayed when the monitor detects an inefficient use case of the sensor. If a debugger is connected then the simulation is stopped and it indicates that the software is currently running the TEMP_SENS_Set_One_Shot() function in the call stack. Fig. 4.7 is the message for a polling loop. The debugger indicates that the software is currently running HAL_Delay().

Possible inefficient use of the sensor: top.NODE_0.LPS22HB.registers.CTRL_REG2 ONE-SHOT asked with a period: 803,135,151 ns. auto-refresh at 100 ms might save some transactions. 

Impact of the Instrumentation on Simulation Time

In all cases above, the embedded software has been compiled with the -O0 option using embedded GCC.

The additional cost of the instrumentation is due to: (1) the context switches between SystemC and Python;

(2) the cost of the pattern detection algorithms themselves. The cost of detecting sensor uses is negligible, because the registers are accessed very seldom in the main loop, and checking the sensor mode does not require any costly operation.

We therefore focus on the polling-loop monitor. We measured the simulation duration from the start until the first call to HAL_Delay(800) in the main function with various combinations of monitor enabling and disabling. In table 4.2, None indicates that the monitor is disabled. C++ indicates that the monitor is implemented directly in the model in C++. We have also tested a monitor that triggers a Sys-temC to Python context switch at each read bus transaction, but does nothing. This is useful to evaluate separately the cost of the pattern detection algorithm. The duration have been measured using the "time" linux command, adding the user and the system times. Results show a serious performance breakdown due to Python/SystemC context switches, so monitors has also been coded directly in C++ to overcome this problem. The pattern recognition algorithm itself also slow down the simulation. In addition instantiating monitors also have a small impact while it should not. This is due to the loading of the Python monitor when simulation starts.

Monitor

These measures show that we can focus on the detection algorithms alone, the instrumentation mechanism being sufficiently efficient.

Lessons Learnt

About Dynamic and Static Methods

We showed on two frequent examples how detecting problems dynamically allows to focus on the real impact of bad software. A piece of code that looks like a polling loop is not always one, and even if it is, it is not always bad for energy consumption. The replacement of the polling loop involves the use of a CPU sleep mode, whose effect cannot be captured at source level. For the sensor example, the dynamic detection on a timed simulation model allows to reason about periods, which, again, would be difficult statically. Other classes of power-related problems have been studied. We tried to the design a dedicated algorithm for the detection of polling loops, exploiting the fact that the pattern (x|xy|xyz) has a very particular shape. We also investigated whether our patterns can be formalized as properties of the traces written in languages like PSL [START_REF] Cohen | Using PSL/Sugar for formal and dynamic verification: Guide to Property Specification Language for Assertion-based Verification[END_REF], so that they can then be compiled into monitors, using techniques similar to those of [START_REF] Pierre | A tractable and fast method for monitoring systemc tlm specifications[END_REF], for instance.

Dependencies: The Source of Hardware Complexity

Designing such monitors requires a relatively deep understanding of the hardware parts involved (CPU, bus, timer, sensor). It shows that the system is complex. To be specific, even if such a system can be analyzed in a modular way tackling a sub-part one after another, a given block is never really isolated and cannot be completely understood without considering its environment. For instance, we have shown that a misuse of the sensor, physically on a separate board from the microcontroller, can result in overconsumption of the latter. This analysis shows dependencies between hardware elements of the circuit.

These dependencies are not clearly mentioned in the documentation nor are they explicitly exposed by other available tools or TL models. Detecting hardware misuses requires the knowledge of these different dependencies.

How to Express Dependencies

We did not go further in the approach of augmenting a TL model with monitors, because it seems that this is not the best way to express hardware dependencies.

The goal was to extend the idea to the detection of other patterns. We show in chapter 3 that using the RTC to optimize the power consumption during the waiting phase is not easy. We also mentioned that simply turning on the LED using the GPIOA block can be tedious. GPIO or RTC misuse could be detected using a similar approach. Let's take the GPIO as an example: before any write access to its registers, it is necessary to enable its clock. So there is a certain order to respect in the accesses to perform. The idea is to encode this order in a monitor and to warn the programmer when it is not respected.

Even if it seems promising, pushing this idea further would lead to a situation in which a rather complex model of the hardware (especially the dependencies) is in fact expressed by the code of the monitors.

Moreover those dependency relations are in fact already present in the TL model since it represents the hardware functional behavior accurately. However, this technology does not allow us to exploit and express them directly and easily, and the language is not designed for such a use:

• A given dependency can be defined by a set of lines of C++/SystemC code from which the simulator user cannot get anything directly (moreover the code must be available, which is not necessarily the Vincent Morice 4.7. LESSONS LEARNT CHAPTER 4. DIAGNOSING POWER PROBLEMS case.).

• The dependency can be defined in add-on tools that are part of the in-house modeling kit. STMicroelectronics develops this type of tool internally, but their operation relies on a particular introspection of the model that is not part of the SystemC standard.

• It is possible to design a SystemC model that highlights the connections between the internal signals, based on the hardware description. However, this is a specific way of modeling that may not follow the idea of transaction models. To be simple, the model developer might reproduce a description as precise as the real hardware, which is not desirable.

Therefore, it seems irrelevant to use an existing model (or even a real circuit) and add redundant dependency information that are already part of the hardware description but expressed differently.

Yet Another Type of Model: the Motivations

The dependency relationships are present in the real hardware and the models at transaction level, but are difficult to exploit. These are also present in the sample code of the embedded software (and the HAL) already written and provided to the user mentioned in chapter 3: for example, the sample code that allows the LED to blink, provided on the shelf, performs the register accesses in the right order. The dependencies from a field to another are indeed captured. However, the exploitation of this code to extract dependencies remains difficult because it is necessary to inspect and analyze statically or dynamically the code of the HAL. Dependencies are also present in documentation but the information is scattered and can be difficult to find (as mentioned in chapter 3).

In order to avoid these problems, we propose a new type of model that focuses on the representation of the hardware dependencies. We want to propose a type of model that can be simulated and where the embedded developer can have access to the effect of the instructions executed by the software. The goal is to show the importance of the dependency relations on the dynamic behavior. We therefore want to build a modeling and simulation framework. However, before such a framework can be designed, it is necessary to clearly identify the dependency relationships between hardware elements, such as those mentioned above. This is the purpose of the next chapter.

Chapter 5

Identifying Hardware Dependencies

This chapter focuses on the dependencies between hardware elements. We take as an example a specific feature of the STM32 and extract all the dependencies involved. The chosen feature is the auto wake-up offered by the Real Time Clock (RTC) block mentioned in the chapters 3. Its purpose is to allow a deep sleep of the circuit for a certain duration precisely measured, in order to save power. The analysis is divided into three parts, starting with detailed technical explanations. For each part, the identified dependencies are synthesized to form a graph. The precise definition of the types of dependencies and elements is done in chapter 6.

Focusing on the Dependencies of a Hardware Feature

In chapter 4, we tried to review possible methods to automatically detect power consumption problems.

We have tried to develop a method that relies on the execution of the software by a simulated model of the hardware. The model is augmented by monitors dedicated to the detection of specific problems. We have seen that this approach is somewhat limited, and that the design of the monitors implies a prior analysis on the dependency relations between the hardware elements. In fact, the final code of the monitors necessarily includes some operational verification that the dependencies are met, and the hardware elements used in an appropriate order.

Dependencies are, therefore, a key aspect to understand the hardware operation and to assist the development of embedded software. In this chapter, we explore more deeply these dependencies for a given STM32 functionality: the RTC's auto wake-up.

Our analysis method starts with an approach similar to the development of the embedded software. We use the documentation to find the section that describes the auto wake-up feature, then we start writing code. The description of the feature alone is not enough, one has to gather information from the sections describing the other blocks involved, read the descriptions of the registers, and sometimes use different documents. It is very likely that the first attempts to write code will be unsuccessful, so the debugger is used to check the correct execution of the software instructions. For instance, we check if the registers of the block have the right value. If not, we check the code and we go back to the documentation. As an example, some registers of the RTC are write-protected, which is briefly mentioned and therefore can lead the embedded developer to fall into the trap a first time before correcting the code. This back and forth

DEPENDENCIES IN THE RTC

process between the documentation and the debugger is done until the implementation is correct.

In a second step, experiments are performed on the code in order to identify precisely the dependencies.

For example, we vary the order of the register accesses to see their influences. This is a kind of reverse engineering to understand how a block works from the programmer's point of view. During this process, all relevant dependencies found are organized in the form of a graph as follows:

• Nodes are pieces of hardware.

• Edges indicate a dependency from A to B: to understand what is happening to B, A has to be inspected.

A first view of the hardware is obtained as a dependency graph. A sequence of edges in the graph gives a chain of dependencies with a series of hardware pieces involved in the behavior of the final one.

Identifying Dependencies in the RTC Auto Wake-Up Feature

This section presents the auto wake-up feature of the RTC, a complex timer designed to count time very precisely, especially when the circuit is asleep.

The RTC is used in the improved version of the proposed weather station code presented in chapter 3.

The circuit is deeply asleep while the RTC is used to count a precise time after which the circuit is woken up by a dedicated interrupt to make a new measurement. This section goes into details of this feature of the block to expose the associated dependency chains. The feature has been separated into tree parts :

• The enabling of the RTC timer.

• The choice of the counting frequency.

• The configuration of the wake-up mechanism.

A sleep mode must also be selected and configured. It has been described in chapter 3. The auto wake-up feature seems simple at first sight: the value to be counted must be written in the Wake-Up Timer Register (WUTR) of the RTC, the clock frequency must be set to define the counting period, then the timer is started and triggers an interrupt at the end of the count. However, achieving these operations involves several blocks of the circuit as shown in Figure 5.1. There are several write-protection elements and levels, each with a larger set:
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• The Wake-Up Timer Write Flag (WUTWF) field locks only the CR register.

• The Write Protection Register (WPR), through the protection logic, locks the write accesses to a set of RTC registers, of which only the CR register appears on the diagram.

• The RTC Clock Enable (RTCEN) field locks the whole RTC block.

• The Disable Backup domain write Protection (DBP) field locks the whole backup domain.

The RTC and more generally the backup domain are critical areas of the circuit. They are designed with the idea of being used to implement restoration procedures, to measure timing in potentially critical real-time applications, or more simply to manage the calendar of an autonomous or partially autonomous remote device. For example, a smartphone temporarily off the network must still be able to manage its time accurately in an autonomous way until the next synchronization. This is why these areas of the circuit are strongly secured against potential software write errors. This example shows that starting a timer, which might seem simple at first sight, involves six fields in five different registers of three different hardware blocks. The manipulation of these fields by the software must be done in a fixed order to succeed in starting the counting. The procedure is therefore more complex than it seems because of the dependency chains. For this case, the dependency graph is shown figure 5.3.

First View of the Timer Enabling Dependency Graph

Dependency Chains of the Counting Clock

We now know the dependency chains to start the RTC count. The next challenge is to set the counting clock in order to define the waiting time. As mentioned in section 2.2.5, the numerous clocks present on the STM32 make their management by software non-trivial. As illustrated on figure 5.4, the path between Vincent Morice 5.2. DEPENDENCIES IN THE RTC CHAPTER 5. IDENTIFYING HARDWARE DEPENDENCIES a clock source and the input frequency of a block can be long. For example, the "HSE OSC" 1 clock source can go through the "SW" multiplexer (in the center of the diagram), then through two prescalers: the AHB PRESC 2 and the APBx PRESC. For each peripheral in this domain, a switch (called "clock enable" on the diagram) allows controlling its dedicated clock. For a given block, other switches and prescalers can also be present inside the block, which is not shown on the diagram. This is the case for the RTC as we show in the sequel. Each of these elements can be controlled by software, so it is difficult to know the final frequency without doing a calculation or using a dedicated tool, like the one presented in section 3.3.4. It is even more complicated to program a desired frequency.

Finding Sources of Dependency Chains in the Clock Tree

RTC Clock Blocks Clocks

In/Out Pins Clock Sources In this case, the quartz is externally powered to generate an oscillation signal which is then processed by the blocks to serve as a clock. The use of quartz is known to offer better oscillation performances (high precision, low frequency drift, low noise), but it needs more time to start. With a quartz, the LSE can take up to two seconds to stabilize, compared to a few microseconds for the HSI according to the circuit datasheet [14]. These same pins can be used to bring in directly an external clock.

The clocks of the peripheral blocks and the CPU, located on the right side of the diagram, are derived from the system clock that passes through various software-driven prescalers and switches.

The input clock of the RTC block is highlighted at the top right. it is stable (LSIRDY, LSERDY and HSERDY). Indeed, any oscillating circuit takes some time to stabilize. The clock is only released once it is usable by the downstream blocks. From the software point of view, this means that it has to wait until the flag is set before starting the countdown, otherwise the delay duration may be longer than expected.

Exposing the Dependency Chains of the Counting Clock

The purpose of having several clock sources is their different characteristics: starting time, frequency range, precision. However, this induces a difficulty of understanding and management. Six registers and eleven fields in two different blocks have to be observed to know the path of the clock signal, in addition to four potential prescalers. Any configuration parameter may be a potential cause of bug or misuse.

First View of the Timer Clock Dependency Graph

The diagram also allows to show additional clock management parameters inside the RTC block that are hidden in the global clock tree of the circuit. This adds more paths in the dependency chains. The resulting graph is shown the figure 5.6. 

Counting Logic Clock

About the Difficulty of Managing Clocks

The idea of the hardware designers is to offer as many different configurations as possible to offer a complete parameterization, which makes fine optimization possible. For example, we mentioned in section CHAPTER 5. IDENTIFYING HARDWARE DEPENDENCIES 5.2. DEPENDENCIES IN THE RTC 2.2.5 that the possibility to switch on or off each clock source independently allows saving energy: those that are not used can be switched off. The challenges that come with it are already visible in the documentation. The appearance of the clock tree diagram speaks for itself: a more versatile circuit is more complex to use. If the reader is not convinced, another clock tree is presented in appendix B about another STM32 with a few more blocks.

Solving a problem related to a frequency configuration error is particularly tedious with standard tools like those used for the case study presented in section 3.3 (debugger). Indeed, no register indicates directly the frequency of a given clock, it has to be recalculated from the information contained in the registers.

Moreover, the symptoms of a wrongly set frequency can be strange, like weird characters displayed on the communication console, if transmission frequency are too different between the two devices. The symptom may even be completely invisible or extremely difficult to detect, for example if the duration of sleep lasts 800 ms instead of 400 ms, it is not humanly possible to see the difference.

Dependency Chains of the Wake-Up Mechanism

We now have a more precise idea of the dependency chains for (1) turning on the RTC timer and (2)

choosing its counting clock. The waiting can be done, but now we have to look at the wake-up process of the circuit.

Three different blocks are involved in the configuration of the wake-up, each of which depends on the previous one for the wake-up to actually occur. This is related to the management of the external interrupts discussed in the section 2.3.2.2:

• The RTC raises an interrupt signal at the end of the countdown.

• The EXTI block detects the edge and transmits the signal to the NVIC.

• The NVIC awakes and manages the interrupt. It triggers the execution of the handler by the CPU.

The diagram in the figure 5.7 show the blocks, fields and registers involved in the wake-up mechanism. 

Dependencies in the RTC block

When the RTC has finished counting, the WUTF flag of the Initialization and Status Register (ISR) is set by hardware. In order to propagate the change of state outside the block, the Wake-Up Timer Interrupt Enable (WUTIE) field of the same register must be set by software beforehand. The information is then transmitted to the EXTI block by the "end counting" wire.

Dependencies from RTC to EXTI

The EXTI can handle interrupt signals from outside the chip as explained in section 2.3.2.2. In this case, the signal comes from inside the circuit but it is seen as external because the RTC and EXTI are in an isolated part of the circuit that can remains powered when the other parts are off.

The EXTI has several interrupt lines. The RTC end-of-count signal is wired on line 22. Three parameters must be correctly configured (from right to left):

• The Rising Trigger event configuration bit of line 22 (TR22) field of the Rising Trigger Selection Register (RTSR) must be set to detect rising edges using the edge detector3 .

• The event Mask on line 22 (MR22) field of the Event Mask Register (EMR) must be set to unmask the detection.

• When the edge is detected, the Pending bit 22 (PR22) field of the Pending Register (PR) is set by hardware, it must be cleared by the software interrupt handler to acknowledge the interrupt.

Dependencies from EXTI to NVIC

If both the RTC and the EXTI are correctly configured, the event is then transmitted to the NVIC via the "External Interrupt" wire. It must also be configured to detect the corresponding interrupt (a unique field have to be set) so that the end-of-count event wakes up the processor which then executes the handler.

Handling of the Interrupt

The code of the handler is visible in the chapter 3 with the case study modifications, line 50 to 54 of the code figure 3.23. It clears the WUTF flag, which is necessary to detect a future rising edge. It also clears the PR22 field of the PR register of the EXTI, otherwise the handler is executed in a loop.

The previous paragraphs involves seven fields of six registers in four different blocks. This brings seven different potential bug sources. For five of them, the associated symptom is a circuit that never wakes up. Another similar symptom appears when forgetting to clear the WUTF flag: a single sleep/wake cycle is done, the circuit does not wake up after the second cycle. In these cases, using a debugger may be confusing because the debug block causes the circuit to wake up. 

First View of the Dependency Graph of the Wake-Up Mechanism

Tedious Flag Clear Management

This particular case of interrupt handling is interesting because it involves a clock domain crossing which, if not managed correctly, can lead to problems that are difficult to solve. Clock domain crossing has been presented in section 2.2.6.

Clearing the WUTF flag is not done immediately when the bus access is performed. The operation is delayed by a certain time which depends on the clock frequency of the bus, in practice three cycles. This is because the RTC counting logic and register bank are in different clock domains. The two domains depend on different clock sources. The extra three cycles are needed to achieve synchronization when clearing the flag. The problem that can occur is that the end of count supposed to set the flag can be missed, even though clearing the flag has been started before as shown by the diagrams of figure 5.9. The figure 5.9a

shows the case when the flag is correctly cleared before the next end of count. The figure 5.9b shows the case when the next end of count is missed.

Even if everything has been correctly programmed, this problem may appear. The timing diagram of figure 5.9 has been re-constructed using information provided by the STMicroelectronics colleagues who have worked on the RTC block. It appears that highlighting such a bug is extremely difficult, even impossible with standard tools because it would be necessary to visualize the internal signals of the circuit to which the programmer does not have access. 

How Dependency Analysis Shows Hardware Complexity

The deep dive into a specific feature of the STM32 shows its complexity. The use by a beginner programmer, and probably by an experienced programmer, proves to be tricky. Understanding how to use the wake-up feature correctly required the support of both hardware and software STMicroelectronics colleagues. More than 35 possible types of mistakes have been found (see list in appendix A). This list involves many circuit elements that are not part of the RTC block. By observing and understanding the operation of the circuit, one can also guess that the designers want to offer the most efficient system possible. Other features, and more generally other microcontrollers are all based on the same hardware technologies. Thus, an in-depth analysis of another circuit or feature would give similar results.

The analysis shows that there are chains of dependencies of variable length and involving a certain amount of various hardware elements (clock source, register, field, internal logic of the blocks), and the current state of the blocks (idle, processing, asleep...). The clock tree presented section 5.2.3 is a perfect illustration. However, this diagram is not sufficient to know all the dependencies about the clocks. Dependencies are not clearly expressed in the documentation because of the formats used, which are by nature not very strict.

In addition, this analysis leads to a major observation: even if power consumption and execution speed are important, the first need of a programmer is to make its application work. The design of a programming assistance tool should then focus on functional bugs but nevertheless lay the foundations to anticipate the future integration of extra-functional properties.

We start from these observations to propose a tool that highlights the dependencies of elements and their states during the execution in order to help programmers solve problems such as those mentioned.

Part III Bubble Dump : A Dependency Accurate Modeling Framework

Chapter 6

General Principles and First Example

This chapter introduces our framework for modeling and simulating embedded systems based on chains of dependencies between hardware elements called Bubble Dump. We first explain the spatial and temporal discretization of the circuits to be modeled. The basic bricks and some standard models are then described, and a small but complete example of a block modeling is detailed. This example presents the simulation flow and how to capture and show the various dependencies and their type.

Introducing the Bubble Dump Framework

In chapter 5 we described exhaustively the dependency chains involved in a given feature of the STM32 and showed their complexity. This analysis can be generalized to define the relationships between the elements. These dependency chains form graphs that are used as the basis for our new type of model.

This chapter is an introduction to the Bubble Dump modeling framework. It allows to describe models of embedded systems and simulate the execution of the software. The idea of the framework is to focus the modeling on the definition of the hardware dependencies and their natures. The framework is composed of a graph-based modeling formalism and an associated tool. The tool also includes a simulation mechanism inspired by discrete-event simulators, and a user interface. The whole tool is implemented in a Python package.

Spatial and Temporal Discretizations

All simulation models are based on a spatial and a temporal discretization. The system under study is split into individual spatial elements and atomic events. For digital circuit models, a hardware element is a subset of the circuit. For our modeling framework, a subset of the circuit is grouped in a node of the dependency graph, as shown in chapter 5. The temporal discretization is linked to the events and hardware processes that one wants to observe, and to the degree of interleaving of these processes. Our modeling framework defines the temporal behavior of the dependencies by the types of edges of the graph. Edges are interpreted differently by the simulator to create events and processes that may or may not interleave.

DISCRETIZATION

This section explains in detail how to perform the spatial and temporal discretizations to define the different types of edges and nodes.

Spatial Discretization into Graph Nodes

Chapter 5 presents a complete example of the process of splitting a real circuit into several nodes and defining their dependency relationships. This example does not yet provide a precise definition of the nature of dependencies and nodes. With our framework, a node represents a piece of the circuit, typically the field of a register accessible by software, or a sub-circuit internal to a block, such as the part that manages a count. These examples are different types of circuit pieces that are important to show to the developer. The system is dynamic and stores a global state that changes in time. An embedded developer may be familiar with the notion of state: it is stored in the circuit registers, but also in internal circuits not accessible by software. It is therefore important to distinguish between elements capable of storing memory, which we call memory nodes, and others, which we call function nodes. The function nodes represent circuit parts such as combinatorial functions. These are elements that perform calculations, and therefore modify the data, but do not store any value.

Temporal Discretization by Edge Types

For a given dependency from A to B, we want to represent two distinct behaviors:

• The effect of the dependency is instantaneous, i.e. the event on A that triggers a change on B is atomic and we do not want to show what happens elsewhere in the circuit during the propagation of the information.

• The effect of the dependency takes a certain amount of time and the information transmitted by A arrives at a later date at B. This implies that other events, and thus effects on other dependencies, may occur in the meantime.

Dependencies that take time to transmit the information are denoted as promise dependencies. In addition to these two types, the framework proposes a division between two subtypes of atomic dependencies:

• The active dependencies: an effect on A may immediately trigger an effect on B.

• The passive dependencies: B can instantaneously access A, but an effect on A does not trigger an effect on B.

In our framework, the dynamic representation is based on a modified discrete-event simulator. A promise dependency defined from A to B gives the ability to A to send a promise to B with a given deadline.

The due date of this promise constitutes an event of the simulator. At each simulation loop the promises that meet their deadlines are processed and the graph is traversed to propagate the effects of the atomic dependencies. The implementation of the simulation algorithm is detailed in section 7.5. 

Modeling Bricks to Define Microcontroller Models

This section presents the basic objects of the framework to model microcontrollers. The goal is to provide a library that exploits the framework to propose a way to model the basic elements of circuits.

A Python package has been developed and offers various basic classes. Model developers can inherit from these to create their own. The model of a given circuit is described in a Python script that imports the different classes, instantiates the objects and describes the connections. The script also imports the class of the package dedicated to the simulator and ends by starting the simulation.

Modular Approach

Our framework allows to model and simulate circuits (or sets of circuits). It is necessary to give an infrastructure adapted to the construction of the models. The hardware description languages propose suitable solutions, also used for software engineering.

As for real circuits, models are built from reusable pieces. We mentioned that a given block can be present several times in the same microcontroller, or sold separately in its own package. Our framework thus uses a modular object-oriented approach. It proposes a notion of module that is typically dedicated to a block, a module that defines a given block can be instantiated several times.

A block communicates with the outside through incoming and outgoing connections, via ports. Modules are instantiated and linked together according to strict connection rules related to the nature of the dependency defined for the internal elements. These rules are described in the sequel.

Modules, Ports, Connections and Elaboration Phase

A module is a box for packaging a part of the model. The concept is the same as for SystemC modules. The purpose is to build a system by components and to reuse these components in different models or with various parameters.

Modules can be declared as memory-mapped. If so, an address range must be provided. A memorymapped module comes with everything needed to be connected to a bus, namely, a register bank. A programmable interface allows to add registers after its instantiation.

The non-memory-mapped modules are used, for example, to simulate the external environment of the circuit such as the evolution of the ambient temperature, or an analog component such as a LED.

Each module includes its own graph with nodes and dependencies.

The modules communicate with the outside world through ports, typically a memory-mapped module has ports to be connected to the bus (see figure 6.2). Ports are used to define dependencies between nodes in different modules. There are output ports and input ports. The use of ports must follow two rules:

• An output port is linked to a single node, the nature of the dependencies is not specified.

• Each link between an input port and a node must define the nature of the dependency.

The simulator includes an initialization step that checks the port connections and indeed creates the dependency between the nodes of the different modules. An example of the resolution of the connections is shown figure 6.3.

An output port left unbound has no consequence. However, input ports must be connected. In order to make modules usable in different contexts, the library offers the possibility to use stub nodes. 

Standard Models of Basic Elements

BUS

The bus module proposed by the library takes as input the address map of the microcontroller. It includes two function nodes: the BUSAccessNode that performs routing to the blocks and the BUSReturnNode that transmits the read return values to the CPU. Separating the nodes allows to distinguish the two functions. The bus module and its ports are shown Figure 6.4. This is an example with two blocks A and B. The bus clock comes from outside the module. It is used to calculate the duration of the accesses. The return duration is managed by the blocks as it can be different for each. 

Register Bank

The memory-mapped blocks have a register bank accessible thought the bus. The corresponding modules have therefore a RegBank node. When an access is routed by the bus to a module, it goes to its RegBank node which then performs local routing to the target register.

An example of the architecture of the dependencies between the modules and the bus, after initialization, is presented in the figure 6.5. 

Registers and Fields

Memory-mapped modules have registers with parameters important for the software: the offset of the register, its bitwidth, its name, its access type (read-write, write-only or read-only). A register is a set of nodes and dependencies. The node that represents the register has predefined dependencies with the RegBank node of the module.

Following the same principle, fields have their own parameters: the position, the bitwidth, the name and the access type. A field is associated with a node that has predefined dependencies with the register node.

Following the principle of the RegBank node, a register node transmits values from the RegBank node to its fields.

An example of a module with some registers and fields is shown figure 6.6. We use this example to give an idea of the nature of the dependencies and the types of nodes in the next paragraph.

In our framework, memory nodes store a value while function nodes only perform processing/calculations. In our example, the nodes that model the routing circuits are function nodes (like the RegBank).

The nodes that model the fields are memory nodes. To remain flexible, it is not mandatory to add fields to a register, this is useful for registers with only one field. In this case the node that models the register is a memory node and so does not transmit anything. This is shown by our example module: the register 2 has no fields; the register 1 has two fields.

The module shows another aspect: the access type of registers and fields is taken into account in the definition of dependencies between the RegBank, registers and field nodes:

• The field #1 is write only, so there is no passive dependency towards the register node 1.

• The register 2 is read only, so there is no active dependency from the RegBank node.

• The field #2 is read and write accessible, so there is an active dependency in the direction Register 1 → Field #2 and a passive dependency in the direction Field #2 → Register 1.

The previous chapters have shown the various features that can be found in microcontrollers, especially at the register level. The definition of this set of basic bricks in a library gives an idea of how the dependencies can be captured by the modeling. The representation of the dependency relations between registers, their fields and the bus allows the embedded developer to immediately get precise information about a block, and specifically about the actions possible by its software.

The next section shows how these standard elements are used on a first example. 

First Example: Simple Counter

This section introduces the simple counter example described with the Bubble Dump framework and implemented with the associated tool. This is a model of a small part of a circuit inspired by real hardware features.

In this example:

• We show concretely how hardware dependencies are captured in a model, and give an idea of how a block can be split into different nodes. The definition of the dependencies between the nodes, and their nature, proposes a model of the temporal evolution of the system to be shown to an embedded developer.

• We show the use, as a model developer, of the objects described in the previous section. We also describe how they operate in the context of the simulation.

• We give a first idea of how the simulation algorithm works by running it on the example. The algorithm is based on a discrete-event loop in which, at each iteration, the graph is traversed and thus each node is visited once.

A complete simulation sequence is presented, then we go into the details of the graph traversal for a specific iteration.

Modeling the Simple Counter Using a Graph

Simple counter is a counter block. Its incrementation is managed by the S input wire. The circuit diagram is shown figure 6.7. The block includes:

• An edge detector driven by the S input.

• A read-only count register that stores the current integer value of the counter.

• A combinatorial part that performs the +1 operation.

• A control register with two fields:

-A flag, set by the hardware when the counter reaches a given value. In this example we choose the constant 2 (the purpose is to quickly show the effects during the simulation). The flag can be read or cleared by a software access.

-A single-bit field ("Enable") which can be set and cleared by software accesses. The counter only increments if "Enable" is set.

The offsets and reset values of the fields and registers of the block are shown in table 6 The figure 6.8 shows the model as a dependency graph of the block, built with the framework from its diagram (Fig. 6.7) and its specification described above. The nodes and dependencies of the registers, fields and the RegBank node are described using the library. The access types are respected and the ports to and from the bus are present. The S input is defined as a port, and the sub-circuit that performs the increment operation is modeled by a dedicated node. It uses the value of the count register to provide the increment as output, and so does not store anything. It is thus modeled by a function node.

The other internal circuits of the block are separated into different pieces and integrated into the nodes:

• The AND logic, the edge detector and the count register are integrated in the Count node.

• The comparator is integrated in the Flag node.

The wires that connect the internal circuits are captured by dependencies:

• The wire from the count register connected to the comparator is modeled by an active dependency 101
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• The wire from the S input to the edge detector is modeled by an active dependency to the Count node.

• The count register is connected to the input of the incrementer, itself connected to the input of the AND gate. These two wires are modeled by passive dependencies between Count and Incrementer nodes, one for each directions.

Evolution Over Time

The effects we choose to represent with a certain duration are the bus accesses. An access is performed at a given date and ends later. Meanwhile, the S input can trigger an increment, which may result in a chain reaction that ends with the flag being set. The reaction of the flag to S is (modeled as) instantaneous. The sequence of events would therefore be (1) the bus initiates the access (2) the S input changes state and so the flag is set (3) the access is received by the RegBank.

This interleaving of effects is important to show in order to understand the concurrency between different hardware processes. Promise dependencies are designed to model processes during which other effects can occur, where the active and passive dependencies model atomic effects. Therefore, the dependency chain from the S input to the flag includes only passive and active dependencies (see Fig. 6.8).

The dates of issuance and receipt of promises along with the dates of external stimuli schedule the evolution of the system over time. These are the events that set the system in motion. In this example, we consider the dates of receipt of the bus accesses and the changes of state of the input S to show an example of the simulation process.

Behavior of the Nodes

To be able to simulate the model and manipulate values, the operations of the circuit are captured in the behavior of the nodes. It is defined by two functions:

• A function evaluate. It is called when the node is visited. It returns values on the outgoing edges (promise and active only) in function of the values of all its incoming edges, including passive ones.

It also uses and updates the value stored in the node, if it is a memory node. The current values of the memory nodes, the values produced by evaluate or computed by compute can be of type boolean, integer, or more complex structures including for example the address of a register and the value to write to it.

The promises, issued on the promise edges, also include two specific parameters:

• The delay before the promise is received.

• A directive to indicate whether the promise should be added or removed.

These two parameters are used by the simulation algorithm to add or remove future events. For example, when a read to the control register is received from the bus by the RegBank, it issues a promise 6.4. FIRST EXAMPLE: SIMPLE COUNTER CHAPTER 6. GENERAL PRINCIPLES AND FIRST EXAMPLE with the form (value: 1, delay: 5, add) to the bus. It indicates that the value of the register is 1 and that the promise should be set at the corresponding input of the bus node within 5 time units. The date of receipt of the promise is calculated and added to the list of events. Deleting a promise can be used, for example, if the transmitter block is reset before the date of the receipt of the promise. In this case the corresponding event is canceled.

We also need to represent the absence of value, as we use Python, we use the term "none" in this example.

( Each date is a time step of the discrete-event loop of our simulator. Our tool is able to generate an annotated graph of the model for each time step, the graphs corresponding to the dates of the events of the sequence are presented in figures 6.10 and 6.12, for the dates T = 0 to T = 24. The date T = 26 is presented in more detail in the sequel. On these graphs, the values of the memory nodes are represented along with the interesting values as labels on the edges, according to the observed date. 

Visiting RegBank at T = 24

The second example is the visit of node RegBank at date T = 24.

Its evaluate function has two purposes:

• When a write access is received, it is routed to the destination register. The received promise value is a structure that includes the relative address of the destination register and the data. The evaluate function of the RegBank extracts the data and sets it on the active edge towards the register. This happens at date 21, as we just mentioned for the control register.

• When a read access is received, the value read is returned. The value of the promise received is the relative address of the register to be read. Before calling the RegBank's evaluate function, the values carried by the incoming passive edges are fetched from the register nodes: the current value of the memory nodes is taken, as for Count; the value returned by the compute function of the function nodes is taken, as for Control. The value fetched is used by the evaluate function for the promise produced on the promise edge towards the bus_out port. This happen at date 24 (see graph in figure 6.12) when the read access to Count is performed:

1. The inputs of the function evaluate of RegBank are fetched:

-The value of the promise coming from the port bus_in: read;@=0x0.

-The current value of Count: 1.

-The value calculated on the fly by the function compute of Control: 1. It is calculated from the current values of its fields Enable and Flag.

2. evaluate is called: read;@=0x0 indicates a read of the count register. A promise is thus built with the following structure:

-The value of the promise uses the input from Count: 1.

-The delay of the promise is set to 5 time units.

-A boolean set to true indicates that the promise must be added. 3. The structure of the promise is analyzed by the algorithm: an event is scheduled for the date 24 + 5 = 29. The value of the promise is set on the promise edge towards the bus_out port.

The table 6.4 summarizes the RegBank visit at T = 24.

RegBank Inputs at T = 24

Output at T = 24 from value to value purpose bus_in port read;@=0x0 bus_out port (value: • Flag can be cleared by a value of 0 on the active edge coming from Control, when a write access is received by the bus.

In the evaluate function, the priority is explicitly given to the write access. At date T = 26, there is no access, so Flag is indeed set. The table 6.9 summarizes the values of the inputs and outputs. Flag is the last node evaluated so the graph in figure 6. [START_REF] Flanagan | Dynamic partial-order reduction for model checking software[END_REF] shows the values carried by all the edges. 

Flag Inputs at T = 26

Output at T = 26 from value to value self current value 0 self current value 1 Count 2 Control None Table 6.9: Flag evaluation summary.

6.5. FLASHBACK ON THE FRAMEWORK CHAPTER 6. GENERAL PRINCIPLES AND FIRST EXAMPLE or more software instructions. For example, it is possible for Flag to be set between the moment when the read instruction is issued and the moment when its value is actually sampled to be returned.

Among the atomic effects, it is important for the user to distinguish triggering effects, represented by the active dependencies, from the need to access an element value, represented by the passive dependencies. It is convenient to quickly discriminate which elements can cause a trigger or not. On the example of the simple counter, when the dependencies of Count are inspected, a user can directly know that the Enable field cannot trigger the incrementation thanks to the nature of the dependency. The dependency types of the hierarchical structures of the RegBank and Control nodes also show that a value can be written to the fields in only one direction: from the bus input port to the field nodes. The dependencies in the opposite direction are used to model the read accesses. They are passive, which suggests that a change of state in a field does not trigger any operations on the bus.

Chapter 7

Definition of the Modeling Framework

After the informal presentation of the modeling framework in chapter 6, we give here a mathematical definition of all the elements and structures involved in the framework, and sketch the simulation algorithm. In the next chapters we will give more details on the implementation.

Objects of the Modeling Framework

This chapter presents the definitions of the basic elements mentioned in chapter 6 used to model circuits with the Bubble Dump framework. We first define the two types of nodes, namely the memory nodes (which store a value) and the function nodes (which do not). We then define the promises that can be sent by a node A to a node B when a promise dependency is defined from A to B.

We then define the construction rules of the graph that models the dependencies. The edges of the graph can be of three types, as presented in the chapter 6. We obtain three graphs that correspond to the type of dependencies with a set of common nodes: the active graph, the passive graph and the promise graph. They have specific construction rules.

To correctly define the organization of nodes in graphs, we need to introduce the notion of connectors.

Nodes are seen as boxes presenting a set of connectors on which upstream and downstream dependencies are linked to form the graphs. The possibility to connect a dependency of a given type to a given node depends on the availability of a connector of this type for this node.

Algorithm 1 on page 128 relies on the definition of these objects to perform model simulation. The definition of this framework and the simulation algorithm allow for a certain degree of non-determinism in the models, the consequences of which are discussed at the end of the chapter.

The chapter ends with the presentation of a graph exploration algorithm. It is used in the associated tool to generate a sub-graph of the system, which allows to show the dependencies in a localized way and to inform about the state of the system at a given date.

NODES

Nodes

The memory and function nodes have common characteristics:

• A set of input connectors for each type of dependencies.

• A set of output connectors for active dependencies and promise dependencies.

• A compute function.

• An evaluate function.

compute and evaluate define the behavior of the node. Note that there are no passive output connectors.

N is the set of nodes, it is the (disjoint) union of the set of memory nodes, and the set of function nodes:

N = N mem ∪ N f .
We first define connectors, then the two types of nodes.

Connectors

Nodes will be connected to other nodes via dependencies of three different types. A node A may have "input" dependencies, i.e., dependencies from another node B to the node A, or "output" dependencies, i.e., dependencies from A to another node B. In order to describe the behavior of a node, one needs to know which dependencies it is part of. The connectors play the role of formal parameters for functions in programming languages. For the simulation algorithm, they will hold a value. The value of input connectors will be available when the behavior of the node is computed, and as a result it will produce values on its output connectors.

Each node has 3 tuples of input connectors, and 2 tuples of output connectors, as shown on Figure 7.1.

The values conveyed by the connectors depend on the type of dependency attached to the connector. We note V the set of all possible values, and ⊥ the absence of values.

The promises will be built by the simulator, given the promise directives produced by the nodes on their promise output connectors. The information needed to build a promise is contained in the promise directive: the value to assign to the promise, the delay (used to calculate the due date) and a Boolean that distinguishes between the request fot the addition of a new promise or the request for the removal of an existing one.

We note P the set of all possible promises directives and ψ the absence of directive. (promises and promise directives are defined in section 7.3).
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(a) Graphical representation of the sets of connectors of a function node (oval shape) and memory node (rectangle shape). A stands for active, S for passive, and B for promise. The subscripts i, o stand for input, output. Superscripts are used to number the connectors in their corresponding tuple. where:
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• S i is the tuple of the passive input connectors of n.

• A i is the tuple of the active input connectors of n.

• B i is the tuple of the promise input connectors of n.

• A o is the tuple of the active output connectors of n.

• B o is the tuple of the promise output connectors of n.

• evaluate is a function that maps a tuple of values given on all the inputs connectors, to a tuple of values made available on all the output connectors. • compute is a function that defines the (unique) passive output of n, given the values available on all the passive connectors.

In the above definition, the tuples of connectors are similar to the formal parameters of a function in a programming language. The name of a given connector of a node n (e.g., n.a j i ) will be used both as: 1) a formal name to be mentioned in connections between nodes to form the dependency graphs (see Section 7.4 below); 2) the name of a variable that can contain a value during simulation (see Section 7.5 below).

Example

In the simple counter, Control is a function node that represents the control register. The node acts as an interface between the fields which indeed store the values, and the register bank which routes the accesses between the bus and the registers of the block. When a write access occurs, the evaluate function of the Control node transmits new values to the Enable and Flag fields. When a read access occurs, Control gathers the fields' values to return the register value as a single integer using its compute function. The Control node is modeled as follows:

• S i = (s 0 i , s 1 i ), with s 0 i the passive input connector corresponding to the Enable Field value and s 1 i the passive input connector corresponding to the Flag field value.

• A i = (a 0 i ), the only active connector input, corresponds to the RegBank node. • B i = (), there is no input promise connector.

• A o = (a 0 o , a 1 o )
, where a 0 o corresponds to the Enable Field and a 1 o to the Flag field. • B o = (), there is no output promise connector.

• The evaluate function maps the values available on the input connectors ((s 0 i , s 1 i ), (a 0 i )) to values produced on the output connectors (v 0 , v 1 ) .

The definition of the function is given in equation 7.2. It is based on the slice function (equation 7.1).

It allows to extract the value of a field at position k, of bitwidth w, in the value x of its register.

Enable is at position 0 and is one-bit wide so k = 0 and w = 1. Flag is at position 1 and is also one-bit wide, so k = 1 and w = 1. x takes the value set by RegBank. The passive input connectors (s 0 i and s • S i is the tuple of the passive input connectors of n.

(x, k, w) = x 2 k -2 w x 2 k+w (7.1) evaluate((s 0 i , s 1 i ), (a 0 i )) = ( slice(a 0 i , 0, 1) if a 0 i ̸ = ⊥ else ⊥ , slice(a 0 i , 1, 1) if a 0 i ̸ = ⊥ else ⊥ ) (7.2) compute(s 0 i , s 1 i ) = s 0 i + 2 × s 1 i (7.3)
• A i is the tuple of the active input connectors of n.

• B i is the tuple of the promise input connectors of n.

• A o is the tuple of the active output connectors of n.

• B o is the tuple of the promise output connectors of n.

• evaluate is a function that maps a tuple of values given on the inputs connectors and the current value, to a tuple of values made available on the output connectors and the new value. • c ∈ V is the current value of n.

• c init ∈ V is the initial value of n.

As for funtion nodes, in the above definition, the tuples of connectors are similar to the formal parameters of a function in a programming language. The name of a given connector of a node n (e.g., n.a j i ) will be used both as: 1) a formal name to be mentioned in connections between nodes to form the dependency graphs (see Section 7.4 below); 2) the name of a variable that can contain a value during simulation (see 

Example

In the simple counter example, The Count memory node stores the integer value that is incremented when the switch goes from 1 to 0, only if the Enable field is set. It is modeled as follows:

• c init = 0.

• S i = (s 0 i , s 1 i ), with s 0 i the passive input connector corresponding to the Enable Field value and s 1 i the passive input connector corresponding to the Incrementer value.

• A i = (a 0 i ), the only active connector input corresponds to the Switch node. • B i = ∅, there is no input promise connector. 

(c, (s 0 i , s 1 i ), (a 0 i )) = s 1 i if s 0 i = 1 and a 0 i = 1 else c s 1 i if s 0 i = 1 and a 0 i = 1 else c (7.4)

Promises

As mentioned in chapter 6, promises are used to build the sequence of events that make the system evolve.

A value is promised by a node to another node through a dedicated connector, for a given date. A node with a promise output connector can produce a promise directive. The simulation algorithm 1 (See section 7.5 below) uses the promise directives to add or cancel a promise dynamically during the simulation, in a mechanism very similar to the events of discrete-event simulators. Promise directives also store the relative delay, from which the absolute date of the promise is computed.
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Definitions

A promise sent by a node n to a node n ′ contains a value, the absolute date at which it should be delivered, and an input promise connector of the target node through which it will be delivered.

A promise directive produced by a node n contains a value (the value of the promise to be built from this directive), a delay relative to the date when the node that produces this directive is computed, and a

Boolean value that determines whether the directive adds or removes a promise.

The simulation algorithm interprets the various promise directives produced by the nodes during one step, to define the actual set of promises to be considered in subsequent steps. In particular, delays are transformed into absoluted dates.

We give the formal definitions below.

Definition 3 (Promise). A promise is a tuple: Definition 4 (Promise Directive). A promise directive is a tuple r = (n, n ′ , v, d y , m) where n, n ′ ∈ N are the source and target nodes of the promise directive, m is a Boolean that tells whether the promise should be added or removed, v ∈ V is the value of the promise and d y is the delay.

p = (n, n ′ , v, b i , b o , d)

Examples

In the simple counter example, the RegBank node is evaluated at date T = 24 (see section 6.4.3.2). It receives a promise from the bus input port bus_in which models the read access to the register at relative address 0. The graph with the involved nodes and annotated connectors is shown in figure 7.4. We have

p = (bus_in, RegBank, 0x0, b 0 o , b 0 i , 24 
). • The value of the promise is 0x0, the relative address of the register.

• b 0 i is the promise input connector of RegBank through which the promise arrives. • b 0 o is the promise output connector of bus_in through which the promise is produced. • 24 is the due date.

The evaluation of the node issues a promise to the bus_out port. The evaluation function of the RegBank node issues the corresponding directive r = (RegBank, bus_out, 1, 5, true) on the output connector RegBank.b 0 o . The connector is used in the simulation algorithm to direct it to the output port bus_out using the promise graph. The directive parameters are:

• Its associated Boolean is set to true meaning the promise should be added in the promise list (see the algorithm in section 7.5).

• Its delay is 5 time units. This allows the algorithm to calculate the due date (T = 24 + 5 = 29).

• Its value is 1. It is the value of the count register which is read.

So the resulting promise will be p = (RegBank, bus_out, 1, b 0 i , 29).
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Graphs

The dependencies between the nodes are formalized by three graphs, with a graph per dependency nature.

The three graphs have a common set of nodes N .

Graph of the Promises

Definition

An edge of the promise graph models a directional data channel. The promise connectors are interfaces for a node to receive/send data, considering that the transfer takes time. Processing the received data is modeled in the receiver evaluate function.

Definition 5 (Promise Graph). The promise graph is a directed graph between output and input promise connectors, i.e., a set of pairs:

G pro = {((n, b o ), (n ′ , b i ))}, where n, n' ∈ N and b o ∈ n.B o , b i ∈ n ′ .B i . Any
promise connector can only be linked once, so a given n.b o or n ′ .b i can appear only once in G pro .

Example

In the simple counter example, the two promise dependencies are from the bus_in port to the RegBank node, and from the RegBank node to the bus_out port. As mentioned, they are used to model bus access and return access. The promise graph is 

G pro = {((bus_in, b 0 o ), (RegBank, b 0 i )), ((RegBank, b 0 o ), (bus_out, b 0 i ))} It is shown figure 7.4.
G act = {((n, a o ), (n ′ , a i ))} where n, n' ∈ N and a o ∈ n.A o , a i ∈ n ′ .A i .
A tuple that includes n and n ′ can only appear once in G act , so there can only be one active dependency between any two nodes.

Example

The active graph of the simple counter is: As for digital circuits, combinatorial loops are forbidden to ensure the stability of the system. In Bubble Dump, it means that the passive graph must not include cycles made of function nodes only.

G act = {((S, a 0 o ), (Count, a 0 i )), ((Count, a 0 o ), (Flag.a 1 i )), ((RegBank, a 0 o ), (Control.a 0 i )), ((Control, a 0 o ), (Flag.a 0 i )), ((Control, a 0 o ), (Enable.a 0 i ))} (7.
Definition 7 (Passive Graph). The passive graph is a directed graph between a node and an input passive connector, i.e, a set of pairs: G pass = {(n, (n ′ , s i ))} where n, n' ∈ N and s i ∈ n ′ .S i .

Any passive connector can only be linked once, so a given (n ′ , s i ) can appear only once in G pass . n ′ is called a passive successor of n.

There are no cycles through function nodes only in G pass .

Example

The passive graph of the simple counter is:

G pass = {(Flag, (Control, s 1 i )), (Enable, (Control, s 0 i )), (Control, (RegBank, s 0 i )), (Count, (RegBank, s 1 i )), (Enable, (Count, s 1 i )), (Count, (Incrementer, s 0 i )), (Incrementer, (Count, s 0 i ))} (7.6)
It is shown on the figure 7.6. Note that there is a cycle between the Count and Incrementer nodes, but this is consistent with the definition because Count is a memory node. 

Simulation Algorithm

Algorithm 1 below defines the simulation process. It is based on the classical loop of a discrete-event simulator where events are promises. An iteration of the main loop is called a step of the simulator. Inside the main loop, operations are performed in an inner loop to prepare and then evaluate each node.

Functions and Objects Used in the Algorithm

Tow functions used in the algorithm are defined separately:

• The ResetPromiseConnectors function. It is used during the initialization and after the evaluation of each node to reset the input and output promise connectors. The behavior of the nodes can be different depending on the presence or absence of values at the corresponding inputs. Other connectors do not need to be initialized, because they are always set before use.

• The VAL function. This function returns the value of the node when it is required by a passive successor. It is a recursive function, the passive graph is traversed in the reverse direction to obtain the values on the passive input connectors. In the case of function nodes, the value is calculated by the compute function of the node using the values of the connectors (line 3 and 4). The recursion stops (line 1) when a memory node is reached or when a function node without passive input connectors is reached. This condition is always met because there is no cycle that includes only function nodes in G pass .

The algorithm works with several objects:

• N mem is the set of memory nodes with N mem ⊆ N .

• N f is the set of function nodes with N f ⊆ N (and

N f ∩ N mem = ∅).
• d ∈ N is the current date of the simulation.

• P is a set of promises.

• Q is a subset of the promises at the current date, it is taken from P .

• T is a topological order on N according to G act .

Function ResetPromiseConnectors(n)

1 for b i ∈ n.B i do b i ← ⊥ 2 for b o ∈ n.B o do b o ← ⊥ Function VAL(n) 1 if n ∈ N mem then return n.c // Recursion stop condition 2 else 3 for (n ′ , (n, s i )) ∈ G pass do s i ← val(n ′ ) // recursive call 4 return n.compute(n.S i ) 5 end

Steps of the Algorithm and Global Remarks

For the simulation, each connector of each node contains a value, or a promise directive (depending on its type), either before its functions evaluate and compute are called, or after. In the algorithm, the name of the connector is used as a variable that can be set and then read. The steps of the algorithm 1 are:

1. The initialization phase sets the current value of the memory nodes to their initial value (line 1), then empties the promise connectors of all nodes (line 2), then sets the initial P to an empty set and the date d to zero (lines 3 and 4).

2. The main loop starts line 5. It is first performed without promises, the first node evaluations produce the initial promises. It is executed as long as there are promises to be considered (checked line 33).

3. The inner loop starts on line 6, it processes the evaluation of all the nodes in a total order T compatible with the active graph G act . When a node is evaluated, the algorithm guarantees that the input connectors contain either a value or ⊥ that represents an absence of value. The evaluation function can take different actions on the presence or absence of a value. All output connectors are filled after the evaluation, which guarantees that a value (or ⊥) is present on a o when required by successors (if any) on line 7. The first node evaluated has no active input connectors because the graph is traversed in the topological order of G act in which this node is a source. 5. The node n is then evaluated by its evaluate function, with the right inputs and outputs according to the type of node (lines 9 to 14). V act and V dir are tuples of values for the output connectors.

6. Lines 15 to 17 fill the output connectors with V act and V dir .

7. Lines 18 to 22 manage the addition and deletion of promises. Each output promise connector is checked, if a directive is present a promise can be added or deleted (test line 18). The corresponding input connector b i is fetched from G pro (line 19), then the promise p is constructed (line 20). p is then added/removed to P according to the request. Promise directives are issued on an output connector linked to an input connector in the G pro promise graph. This guarantees that a node can only send promises to nodes to which it is connected, and that it can only cancel promises that it has issued. The cancellation of a promise that has not been issued is ignored. To build a new promise, the promise directive gives a positive delay, which is then added to the current date d (line 20). This guarantees that the simulation time can only go forward. 8. P is checked to be non-empty before preparing the next step (line 27.) 9. The promise connectors of the node n are emptied line 25 before moving to the next node.

10. The lines 28 to 30 update the current simulation date d, select the promises to be processed at this date and remove them from P .

11. The values of the promises from Q are then placed on the connectors of the relevant nodes line 31.

A new traversal is then started if any promises remain to be processed. 

for (n ′ , (n, s i )) ∈ G pass do n.s i ← val(n ′ ) / * Evaluate the node * / if n ∈ N mem then 10 (V act , V dir , n.c) ← n.evaluate(n.c, n.S i , n.A i , n.B i ) end else // n is a function node 13 (V act , V dir ) ← n.evaluate(n.S i , n.A i , n.B i ) end / * Filling output connectors * / for k ∈ {1, 2, ..., |n.A o |} do n.a k o ← V act (k) //
P ← P \ Q for p = (n ′ , n, v, b i , d) ∈ Q do n.b i = v //

Handling the Non-Determinism of the Visiting Order

The simulation algorithm 1 allows to visit the nodes in several orders, as long as they are compatible with the order defined by G act . Therefore it is legitimateto ask whether the overall results are the same, whatever the effective evaluation order. A similar problem exists with SystemC/TLM. When the functional dependencies between processes do not constrain the order completely, the execution order of SystemC processes is not defined by the standard and is therefore dependent on the implementation (typically, the way the set of eligible processes is managed by the scheduler). This is a situation in which the model is a non-deterministic specification, meaning there exist several (deterministic) implementations. Even if this non-deterministic specification/model of the hardware is general enough to exhibit lots of bugs in the embedded software, a particular simulation/implementation will produce only one behavior of the hardware, among all those contained in the specification, and some bugs of the embedded software may be missed. For both types of modeling (TLM and Bubble Dump), the consequence is that the use of a given model does not cover all the error cases that can arise when the embedded software is executed on the real hardware.

Example of Non-Determinism in the simple counter Model

In the simple counter simulation example, a complete graph traversal is presented in section 6.4.3.3.

An effective order has been chosen in which the Enable node is evaluated before Count. However, other effective orders are valid, in which Count is evaluated before Enable. The difference in behavior depending on the effective order chosen is visible at date T = 21: a write access to the bus causes Enable to change from 0 and to 1 and a rising edge is present on the S input simultaneously (see Table 6.2). The rising edge can trigger an increment of Count or not, depending on the effective order. Table 7.1 summarizes the two different behaviors.

Initial state

Count current value is 0 and Enable is clear. It is very difficult to know the real behavior of the circuit without a description of the real hardware;

Effective Order

It is sometimes not even sufficient when a bug is randomly caused by a changing physical phenomena, for example when data are exchanged between two clock domains (see section 2.2.6).

Management of Non-Determinism

The non-deterministic cases can be tackled in various ways.

In TLM, [START_REF] Helmstetter | Validation de modèles de systèmes sur puce en présence d'ordonnancements indéterministes et de temps imprécis[END_REF] proposes to explore all possible execution orders to cover all cases and then reduce the set to the cases that have an impact on the set of embedded software bugs that can be detected. This is made efficient thanks to dynamic partial order techniques [START_REF] Flanagan | Dynamic partial-order reduction for model checking software[END_REF]. A similar solution with Bubble Dump would be to consider all valid effective graph traversal orders and then select a subset following the same principles. In the case of the simple counter, the number of effective orders is large (more than a hundred) but only two orders are needed with the Count and Enable positions reversed, to cover all related bugs.

Another way could be to detect during the construction of the graph and/or during the simulation the problematic cases to warn the model developer and force a deterministic implementation.

For this first version of our tool, we have chosen to offer the model developer the possibility to choose an effective order. The management of this parameter of the simulator is detailed in chapter 10.

Graph Exploration Algorithm

One of the benefits of defining the model formally with a graph is to exploit it with automatic tools to give relevant information to the embedded developer. In this section, we give an automatic graph exploration algorithm to show the dependency chains of a chosen node n. The operating principle of the exploration is a backward traversal of the graphs starting from n.

The function explore takes as parameters the starting node n and a maximum exploration depth d max .

It is called recursively starting from n. The recursion stops according to one of these two conditions:

• The maximum depth has been reached.

• The last node found has no dependencies so the chain is complete.

In the function explore, G is the sub-graph that is generated and d is the current depth that is set to 0 at first call.

Function explore(n, G, d, d max ) 

1 if n / ∈ G then 2 G.AddNode(n) / *

Concrete Implementation

Languages and Packages Used

Bubble Dump is implemented in a Python package. It includes everything needed to describe a microcontroller model and control its simulation with a user interface. This chapter explains how to develop a model as a user manual would, and presents how the base elements operate. It also presents standard objects for microcontroller models, specifically, a bus, a CPU model and the management of the embedded software.

This chapter contains many pieces of Python code. As it is a bit verbose, and to keep it concise, some parts of the code are not shown. The code statement # (...) indicates the place of the hidden lines.

The tool is able to generate graph images automatically. The graph drawing is based on GraphViz (DOT language) [START_REF] Emden | An open graph visualization system and its applications to software engineering[END_REF]. The Python package pydot [12] is used to interface between Python and GraphViz.

The calculation of the topological order of the graph is done with the Python package NetworkX [START_REF] Aric | Exploring network structure, dynamics, and function using networkx[END_REF].

Why not Reuse SystemC

The development of a proof of concept of the Bubble Dump framework was initiated with SystemC, as they have some common points as mentioned in the previous chapters. However, we quickly decided to use Python instead for several reasons:

• Python is easier to code than C++/SystemC. As a result, execution performances may be lower, but is acceptable for a proof of concept. We did not suffer from long simulations run times with our test model.

• Re-developing a simulator from scratch allows to fully understand how it operates and to face the same problems encountered by other simulators. This allowed us to confirm the need for a modular approach, for instance.

• The full implementation of a tool also allows us to not be influenced by the concepts used by Sys-temC: our framework is based on dependencies, while SystemC is not. A similar approach has been used for jTLM [START_REF] Funchal | jtlm: an experimentation framework for the simulation of transaction-level models of systems-on-chip[END_REF] with the Java language.

EXAMPLE MODELING OF A BLOCK

Example Modeling of a Block

In this section, we present the coding steps to model a given block. We have chosen as an example the EXTI model, which is part of the STM32 model described in chapter 9.

The Bubble Dump package is implemented with an object-oriented approach. The complete UML class diagram is presented in appendix C.1. 

Module Declaration

Declaring Nodes

To declare a node, the model developer creates a dedicated class that inherits from the MemoryNode and FunctionNode classes. These two classes are based on the Node class. As shown in the simple counter example Section 6.4, it is sometimes necessary to detect state changes such as rising edges. The implementation of this feature is done in the active connectors, part of the class code of which is presented in figure 8.5. The previous value (pre_value) of the node connected to the connector is stored internally. The has_changed_from() method can be called in the evaluation functions to detect an edge. The pre_value buffer must be updated at each evaluation, this is the purpose of the acknowledge() method. 

Declaring a Function Nodes

An excerpt of the code for the FunctionNode class is shown in figure 8.6. Default methods are provided for compute() and evaluate(); they also show the correct prototype of the methods.

During the simulation, when the graph is traversed, the visit() method call the evaluate() """0: Interrupt request from line x is masked 

function

Building the Global Model and Run the Simulation

The building of the global model and the driving of the simulation is based on the Simulator class. Its members are:

• An instance of the Shell class, which manages the user interface.

• An instance of each module. A part of the main script for building the STM32 platform presented in chapter 9 and then start the simulation is shown in figure 8.17. The process is as follows:

1. The model developer declares modules as shown in the previous section. 

Implementation of the Simulation Algorithm

The management of the simulation flow is shared between the Simulator and GlobalGraph classes, part of whose code is shown in figure 8.18 and 8.19 respectively.

The step() method of the simulator can be called using the shell to process the events of each date and to traverse the global graph. The traverse() method is shown in the code of the GlobalGraph class in figure 8. [START_REF] Funchal | jtlm: an experimentation framework for the simulation of transaction-level models of systems-on-chip[END_REF].

The simulator has other features. It is interfaced with a class that manages the drawing of graphs using GraphViz. In addition, it is sometimes necessary to inject randomness into the models, especially for the management of timings. The simulator allows generating a same sequence of random numbers using a same seed rand to make reproducible tests. The StateMachine class is based on a memory node. In this class, the state is stored in the current value of the node. The transition conditions are functions of the inputs of the node. They are checked when the node is evaluated. The class also proposes timed transitions, implemented using self-promises:

when the node is evaluated and goes into a state where one of the next outgoing transitions is a timed one, a promise is issued to itself with the corresponding delay (the delay can be a function of the inputs). Later, when the promise is received, the transition is taken. Additional conditions checked when the promise is received can be added to the transition. If the state is changed before the promise is received, it is canceled.

For outputs, the state is available to successors with a passive dependency, as for any memory node.

The modeler can also add any custom outputs in the evaluation function, after the transitions have been For timed transitions, the delay of the promise must be provided. • When an access returns, the block sends a promise through the dedicated input port to the BusReturnNode which immediately transmits it to the CPU through the dedicated output port. is present on the active input connector coming form the CPU (checked line 7). If any, a promise is set on the output connector corresponding to the block to which the access should be performed with a given delay. The delay is randomly taken into a range from one to three bus clock periods (line 13).

BUSReturnNode evaluation function (line 30 to 38) check all its promises inputs and transmits the value to the CPU through the dedicated active output connector. In this model it is assumed that only one read return is performed at a time. Handling a case where multiple returns are performed at the same time would require extra modeling efforts. This has not been implemented at the moment because this model is sufficient for our proof of concept. To make the module a little more robust, an exception is thrown if more than one input connector contains a value. Vincent Morice • The return of bus accesses through an active dependency on the BUS_in port, so that it can receive the values after performing read accesses.

• The active dependency from the IRQPending node transmits an interruption.

• The CPU clock.

• A promise sent by the node to itself which contains a model of the instruction to execute. It can be a read or write access, a sleep instruction (WFE or WFI) or a handler end signal. Only these four types of instructions produce promises when the code is translated from C to Python.

• The state, that is stored in the current value of the node.

There are two outputs:

• A dependency towards the bus to issues read/write accesses through BUS_out port.

• A promise output to itself, which contains the next instruction as value, and the delay.

The CPU state machine is designed to model the execution of the software, the sleep, wake up and interrupt procedures. The states are:

• A THREAD state in which the CPU executes the main() function of the embedded software.

• A SLEEP state in which the CPU is halted.

• An IRQ_HANDELING state in which the interrupt handler functions are executed.

• Timed states ENTERING_IRQ, LEAVING_IRQ and RE_ENTERING_IRQ which represent a certain time lapse between the acknowledging of an interrupt by the CPU and the moment when the handler execution starts. In this model, the software translated into Python is encoded in internal functions get_next_thread_access() and get_next_handler_access(). These two functions return the next access made to a peripheral block. If the software is waiting for a read return, the read value can be given as a parameter. The memory is considered ideal: all accesses are instantaneous and hidden in these functions. They also contain the control flow mechanisms such as branches (if else etc.).

The evaluate() method of the CPUStateMachine node called the manage_esw() method (see code figure 8.27). The initial state is THREAD. In the execution states, i.e. THREAD and IRQ_HANDLING, the access received is immediately transmitted to the bus. In the case of a write, the node issues a new promise to itself with the next instruction and a delay corresponding to the clock period (lines 7 and 15).

In the case of a read, no promise is emitted. The next access is prepared after the read access returns (line 9 and 17).

The execution context management is modeled as follows: if an interrupt occurs while an access is in progress, it is saved (line 21 to 25) and restored (line 29 to 34) at the exit of the handler. Going to the IRQ_HANDLEING state triggers the preparation of the first instruction of the handler (line 40).

Limitations

This model has several limitations.

It does not handles interrupt priorities, it is possible to define several interrupts but there are two assumptions:

• Only one interrupt is raised at a given date.

• No interrupt is raised while an interrupt handler is running. This is sufficient to validate the principle of the framework but it may be limited for production use.

Specifically because the translation effort necessary from C to Python. The two simulators are synchronized with the following mechanism:

1. SystemC begins to execute the software until the first CPU accesses to an external block. Its execution is then paused and the data and the current date of the access are transmitted to the Bubble Dump simulator.

2. A promise is programmed and sent to itself to the CPU node with the data and the delay, computed from the SystemC simulator date. The Bubble Dumpe part is then executed until the CPU receives the promise corresponding to the access (SystemC is still blocked).

3. The promise is then processed in the evaluation function of the CPU node. At this point, the two simulators have the same date. What happens next depends on the type of access:

• For a write access, the Bubble Dump part is paused, then the SystemC part is resumed until the next access.

• For a read, the Bubble Dump part continues to be executed until the value is returned to the CPU node, then the SystemC part is resumed until the next access.

This process is illustrated in figure 8.29.

This simulation algorithm is a first attempt to quickly validate the communication principle between the two simulators. However, the main limitation is that it does not (yet) handle interrupts. One of the priority future works is to implement this mechanism.

Chapter 9

Modeling the Weather Station

This chapter presents a model of the weather station hardware, related to the study object of chapter 3. We define a scope of what has been modeled, and present the modeling of a selection of dependency chains. We show the capabilities of this modeling approach, especially for modeling complex parts of the circuit, but also for capturing important dependencies relations between elements. The modeling choices are related to the nature of the dependencies and the partitioning of the real hardware into modules and nodes. We show that our modeling framework allows the model developer to highlight the information required by the embedded developer to use a given feature. The model has several differences and specificities compared to the real hardware:

General Presentation of the Weather Station Model

• The model includes only the blocks needed to run the weather station software. We did not model the whole STM32.

• Within the blocks, the registers, fields and internal circuits modeled are the bare minimum needed to run and debug the weather station software. We have not modeled the registers and fields that 9.2. MODELING THE LED CONTROL are not used.

• On the real hardware, the temperature sensor is remote on a separate board. The communication between the STM32 and the sensor is done by the I2C protocol and is managed by a dedicated block of the microcontroller. On this model we consider the sensor directly connected to the bus of the STM32, as an internal block. The I2C block is not modeled.

• The model exists in two versions, one with the native CPU and one with the CPU that includes an ISS. In both cases, the SysTick timer is modeled as a separate block.

• The model includes an "Environment" module that models the LED and the ambient temperature, with a node for each. A module that models the LSI clock source is also included. These two modules have no registers and are therefore not memory-mapped.

The complete model is large (about 2500 lines of Python code). This chapter presents some parts to show the modeling capabilities of the framework, how to model dependencies and some particular features:

• First, the modeling of the circuit parts used to control the LED is presented. This shows the usage of the framework on a simple model.

• Then, we present another part of the model about the RTC timer. We detail the path of the end-ofcount interrupt which wakes up the circuit and the nodes and dependencies involved in the procedure to clear the corresponding flag. We mentioned in chapter 5 (section 5.2.4.6) that this procedure is tedious because it involves clock domains crossing.

The use of the tool to help fixing bugs is presented in the chapter 10, with examples based on the parts of the model presented in the following sections.

Modeling the LED Control

In this section, we present a part of the model that drives the LED. Three modules are involved with connections to each other through ports:

• The Environment module, which contains a node that models the LED. An input port anode_led_pin models the connection to the LED pin on which the driving current is provided (called the anode). This port is connected to the LED node by a passive dependency.

• The GPIOA module, which models the GPIOA block of the STM32 with the required fields. It includes an input port GPIOAEN, which enable or disable the block. This is modeled by a passive dependency on the RegBank node. The module also has a PA5 node connected to the output port PA5_pin which models the state of the chip's pin. It is connected to the anode_led_pin port of the Environment module.

• The RCC module, which models the RCC block of the STM32. What is important for the LED is the GPIOAEN field of the AHB1ENR register. It allows to enable/disable the GPIOA block and its value is transmitted through ports. 

LED Modeling

The LED node of the Environment module is a function node with only a passive dependency from PA5, through a port. A part of the code of the module is shown in figure 9.3. The compute() returns directly the value given on the input passive port, so a value of 0 and 1 represents the LED as respectively off or on. This model is a simplified version of the electrical circuit around the LED. On the real board, the LED is always connected in series with a resistor that influences its brightness. The brightness may also vary depending on the power supply of the circuit and some configurable electrical parameters of the STM32 pin. This is not modeled, we chose a simple two-state model, sufficient to debug the on-and-off switch. The different GPIO blocks of the STM32 are indexed by letters (GPIOA, GPIOB, GPIOC, etc...); the module is coded in a generic way with the parameter index_letter to be specified for each instance. In the same way, the class that models the pin node takes as parameter its index (lines 6 and 7).

Modeling the RCC GPIOAEN Field

The GPIOAEN field of the AHB1ENR register of the RCC is modeled using the classes provided by the package. The field has no specific behavior so the default implementation is used. The code is therefore quite short (see figure 9.6). We can see here the advantage to provide classes with a standard behavior for the model developer. 

Advantages of a Dependency-Based Model for LED Control

The Bubble Dump framework allows capturing explicitly the dependencies to control the LED. Specifically, the dependency from the GPIOAEN field of the RCC block to the register bank of the GPIOA block is important because it is expressed in a scattered way in the STM32 and Nucleo board documentations and therefore difficult to find quickly for the embedded developer. An example of a related bug fix is presented in chapter 10. Going up the dependency chain from the LED to the pin and then to the registers allows to knowing immediately the software accesses to code. The values to write in the registers can also be easily deduced from the compute() function of the pin.

Modeling the RTC Wake-Up Timer Interrupt Path

In this section we present part of the model that manages the RTC timer, used in the modified version of the weather station to put the circuit to sleep. Specifically, we present the model of the path of the interrupt signal that wakes up the other parts of the circuit, the flag involved, the counter circuit and the procedure for clearing the flag.

This part of the circuit involves three blocks that transmit the interrupt signal to each other. They are each modeled by a module, the signal is transmitted through ports. The internal nodes of the modules are linked by active dependencies after the model elaboration phase. The modules are:

• The RTC. The end counting interrupt signal is modeled by a dependency to an output port.

• The EXTI. The external interrupt signal on line 22, which comes from the RTC, is modeled by a dependency from an input port. After processing, the transmitted interrupt signal is modeled by a dependency to an output port.

• The CPU in native version in order to manage the interrupt. The interrupt signal coming from the EXTI is modeled by a dependency from an input port to the node that handles the interrupts. The main node is the edge detector. Its evaluate() method is shown in figure 9.9 lines 15 to 29.

The fields TR22 and MR22 are accessible by passive dependencies. TR22 activates the detection on rising edge, and MR22 unmasks (i.e activates) the interrupt. The two fields have no particular behavior and are modeled using the basic classes of the package. When the conditions are met and an edge is detected on the input port, the enumerated value EdgeEnum.EDGE is transmitted to the PR22 field. The PR22 field has a specific implementation. Its evaluate() method is shown on lines 6 to 13.

According to the real hardware, the write accesses can only clear the field by writing 1 to it. This behavior is modeled by the code lines 7 and 8. The following code manages the setting of the field when the edge is indeed detected.

Example of a Hardware Conflict Made Explicit by the Model

An interesting point in the modeling of the PR22 field is the management of the operation priorities. The field value can be modified in two ways: it can be forced to 0 by a software write access or it can be set by the hardware. On the real circuit, as on the model, it is unlikely but possible that these two operations are performed simultaneously, that is to say on the same clock edge / discrete-event. In our model, we have chosen to prioritize software access. This choice is clearly expressed in the code and can be easily reversed.

The evaluate() method performs an arbitration between the values received in input in favor of the write access, to compute the final state of the field. We cannot certify that our model conforms to reality, but we can see that the model developer is forced to make a choice by the modeling framework, and that this choice can be made explicit for the embedded developer by showing the evaluate() method. In other types of models, such as SystemC/TLM, a choice is indeed made during the implementation, but according to the modeling kit, it might not be made in full awareness by a beginner model developer and moreover the language does not provided standard tool to show it to the embedded developer. 

Vincent Morice

Modeling the RTC End Counting Interrupt

The complete graph of the block is shown in figure 9.10. It contains many nodes and dependencies (the corresponding Python is about 500 lines long). In this section, a subset involved in the triggering of the end-of-count interrupt is presented. 

Interrupt Signal and Flag Control Model

The interrupt signal is transmitted on the wake_up_timer_iq port (at the bottom right of the diagram).

It is controlled by the EndCountIrq function node. The node raises the interrupt on the rising edge of the WUTF flag (through an active dependency) if the WUTIE field is set (through a passive dependency). Figure 9.11 shows the codes of the evaluate() methods of the three fields involved. The WUTIE field is entirely driven by the software write accesses, thus it is modeled using the base class of the package (declaration line 6).

The WUTF flag has a more specific behavior, it is implemented with its own class. According to the real hardware, it is set when the count is completed and can be cleared by a write access. In reality, the flag is not immediately cleared when the access is performed, the procedure takes some time due to the clock domain crossing as explained in section 5.2.4.6 of chapter 5. In our model, the clearing procedure is modeled by a state machine node. When the procedure is initiated, the information is transmitted by the flag to the state machine node through an active dependency (see lines 17 and 18). Later, the end of the procedure is indicated through a promise dependency in the opposite direction (see lines 23 to 25). The internal counting circuit is also modeled by another state machine node. The end of count is indicated through a passive dependency from this node to the flag that is immediately set (see line 26 and 27).

In case of simultaneous clear and set, priority was given to the clear operation, as shown by the code of the evaluate() method. If it happens, the flag remains at 0 and the interrupt is not raised. 

Model of the Internal Counter Circuit

The WakeUpTimerFSM state machine node models the RTC timer internal counter circuit. The representation of the FSM is given in figure 9.15. It switches from IDLE to COUNTING on the rising edge of the WUTE field and returns to IDLE on the falling edge.

There is also a clock domain crossing between the WUTE field and the counter circuit, so the counter takes a certain amount of time to activate and deactivate due to the resynchronizer. This is modeled by the transient states ENABLING and DISABLING. The delays of the associated timed transitions depend only on the input clock of the RTC modeled by the RTCCLK node. The transitions indicate that the duration is taken in a range from one to two RTCCLK periods.

When it is activated, the circuit works like a usual timer, it counts a certain number of periods of the This example shows how to model complex circuit parts such as clock domain resynchronizers. The modeling framework provides all the necessary tools (FSM nodes with timed transitions).

We also see the purpose of distinguishing the types of dependencies for the embedded developer.

On the two state machines presented, the promise dependencies (including self-dependencies) suggest a process that takes some time. Active upstream dependencies, e.g. from WUTE to WakeUpTimerFSM,

show the interfaces through which the process is driven. A software instruction must be execute to perform an access to the WUTE field to drive the counting circuit. The passive dependencies show the process parameters, here the waiting time with the clocks and the Reload value. Downstream, the model shows the dependencies towards the elements that give information on the state of the internal circuit, here WUTF and WUTWF.

The relationship between the WUTF flag and the state machine that models the clearing procedure present an interdependency. The active dependency of the flag to the FSM suggest that the process is triggered by an action on the flag (a write access), the promise dependency in the opposite direction suggests that the flag will be modified at a later date. In the documentation this process is suggested by a sentence saying "the WUTF flag must be cleared 1.5 RTCCLK before the next end of count". This type of indication may seem meaningless to the embedded developer, especially if one does not have the circuit in mind. Our modeling framework allows to suggest a specific behavior and to have an idea of how it operates, even without knowing the details. We will see in chapter 10 how this translates concretely during a user debug session.

Chapter 10

Tool Usage for Debugging

This chapter presents how the weather station model described in chapter 9 can be used to assist development by exposing some bugs. We show how a beginner embedded developer can quickly manage to make the LED light up thanks to the highlighting of the dependency chains involved, where the use of the existing tools presented in chapter 3 requires a more consistent effort to reach the same objective, though supposedly simple. We also show how the model can quickly highlight a particularly insidious bug related to the end-of-count interrupt of the RTC timer, described in section 5.2.4.6. These two examples are based on the use of a command line user interface that is presented. This tool being a proof of concept, possible improvements are discussed at the end of the chapter.

Tool Usage

The use of the tool is summarized by the diagram in figure 10.1. The model developer provides a set of Python files coded using the basic classes offered by the package. The set of files provided contains a main script that describes the system model as mentioned in chapter 8. The main script is launched by the embedded developer with the compiled embedded software as parameter. The last code line launches the simulation. The simulation is paused at T = 0 and the control is given to a command line interface.

Features of the Command Line Interface

The Command Line Interface (CLI) offers several commands, some of which are presented in this section.

Simulation Flow Control Commands

The three commands to drive the simulation flow are:

• step n=1. By default, it executes one simulation loop (n = 1), i.e. a traversal of the model graph.

An integer n can be given as parameter to execute n loops. If a watchpoint is set and triggers (see next section), the simulation may be paused before completing the n steps.

• continue. It executes simulation loops indefinitely, or until paused by the triggering of a watchpoint. This is equivalent to step with n = ∞.

• wait d. Takes as parameter a date d after which control is given back to the user. In this section, we show how the tool is used to debug the LED control. The implementation of the LED management on real hardware is presented in chapter 3. This first example is chosen to give an idea of how the tool can be used to develop and fix bugs in its embedded software. Programming the microcontroller to light up the LED with the weather station hardware can be done easily using a sample code (we discuss the limitations of this approach in section 3.3.2.2). Here we are in a scenario where the embedded programmer does not have a code sample, but has a Bubble Dump model and its tool. 

Execution in Simulation

The simulation is launched, the firmware used corresponds to the code figure 10.3. To check if the LED is on, the watch command is used with the GPIOA:RegBank as parameter to pause on the GPIO register accesses. The continue command is used, then simulation pauses when the access that sets the ODR5 field is reached (line 7).

At this point, the debug LED command is used to generate the sub-graph of the LED node dependencies, the exploration depth is set to 4 beforehand. The obtained graph is shown in figure 10.4. One can see that the LED is off (modeled by the value 0). The graph shows that the LED is connected to pin PA5 (modeled by the corresponding node) and its dependencies to the fields MODER5, ODR5 and OT5.

The values of the fields at this date are 0 which indicates that the write access attempted by the embedded software had no effect. Following the upstream dependencies, on can see that the register bank of the GPIOA block depends on the GPIOAEN field in the RCC block. This gives a first clue about the origin of the problem.

The debug command also displays a readable version of the code of the methods that define the behavior of the node. The model developer can choose whether the code to be displayed comes from evaluate or compute. It is also possible to customize the display, which can be useful to hide implementation details.

Without directives given by the model, the interface is designed to determine which of the two functions is CHAPTER 10. TOOL USAGE FOR DEBUGGING 10.2. DEBUGGING THE LED CONTROL more relevant to display. Figure 10.5 shows part of the standard output of the command, at the same time as the graph is displayed. The behavior of the RegBank node is clearly visible, and it allows to understand that the GPIOAEN field must be set to 1 so that register accesses can be processed. One can also see the methods codes of the PA5 and LED nodes, which shows that the embedded code instructions to write the ODR and MODER registers seem to be correct. In this section, we show how our tool helps to solve a particularly insidious bug. It is explained in section 5.2.4.6 (chapter 5). We give here a summary.

The RTC block is used to count a specific duration (as in the improved software of the weather station).

At the end of each count, its WUTF flag is set and an interrupt is raised. The handling of the interrupt by the software includes an instruction to clear the flag. Because of the clock domain crossing (see section 2.2.6). The operation to clear the flag is actually performed with a certain delay induced by the hardware.

During this time, depending on the configuration, the timer may have had enough time to complete a new count, so the next interrupt is missed if the flag has not been cleared yet, because it is at the origin of the interrupt dependency chain.

Software Implementation

The software is close to the C program of the case study when the RTC is used (figure 3.23 section 3.6.2.6).

A version in pseudo code is shown in figure 10.8 to keep it concise and readable. The pseudo code shows directly the writes of the fields. WFI instruction put the processor asleep following the ARM assembler mnemonic.

The main function first performs initialization (line 2 to 20): the PCLK clock is set, the LSI clock source is started (line 3 and 4), the external interrupts are activated in the EXTI (line 6 and 7) and the RTC registers access is unlocked (line 9 to 14). The CPU is then put to sleep line 16 while waiting for the LSI to be released.

The value to be counted is then set to 1 (line 18), the counting clock is set and the timer is started (line 20). For this example, the resulting counting duration is fixed to approx. 61 µs. 

Highlighting the Problem

Highlighting the bug is not easy. The symptom is a wrong waiting time. The intent is to implement a waiting phase of approx. 61 µs between two wake-ups, but the duration sometimes increases to approx.

122 µs because off the bug.

With the real board, it is very difficult for a human to perceive this problem. One of the advantages of having a model that includes time annotations is to be able to verify, even approximately, the correctness of the specified timing.

With the Bubble Dump tool, a watchpoint can be placed on the first interrupt executed by the handler on the line 31 of the embedded code (using the watch EXTI:RegBank command). The compilation of the dates at which the simulation is paused by the watchpoint shows that the time elapsed between each pause is variable. We observe a duration that alternates between 61 µs (the desired duration) and 122 µs.

The observations are summarized in table 10.1.

This first step makes it possible to identify that there is a problem in time management, but only on one counting phase out of two. The combination with the code of the flag method shown allows to understand that a certain delay is necessary for clearing the flag and that this delay depends on the clocks. We deduce that the CLEARING state of the WUTFlagClearFSM node corresponds to the clearing operation of the previous interrupt, and that therefore the flag has not been cleared since.

In order to verify this assumption, we can display the information about the nodes of the RTC. The output of the console is given in figure 10.12. One can see that the counting circuit modeled by the WakeUpTimerFSM sends the set directive to the WUTF flag (line 4 and 6). The flag receives the set directive but is already set, so the end of counting does not trigger a new interrupt.

compiled software in simulation and check the times between each interrupt, as previously. Our tests show that setting the clock to 500 kHz is sufficient for the clear procedure to be completed in time. Reducing the clock to 490 kHz would cause the bug to appear again. The software is modified to set PCLK to 500 kHz (line 2 of the code in figure 10.13). 

Possible Improvements

These examples show that our tool, based on the Bubble Dump framework, allows a user to solve insidious bugs more easily. The source of the bugs can be identified by the dependencies between the elements and their states. The graphs can then be shown, for example in a visual way, through our proof of concept tool. However several improvements can be interesting.

Display and User Interface

• It is currently not possible to easily define breakpoints in the software instructions to give control to the CLI and observed the model after or before a given instruction. This must be done indirectly by stopping the simulation on a register access of a module. Such a feature would be interesting to implement for easy manipulations. More generally, commands can be developed to set conditional watchpoints, for instance.

• The graphical display could be developed to implement a real graphical user interface. Today, our tool only generates pictures. Some reflections should be done to find a more pleasant way to display the nodes, their dependencies and their behaviors. One could think of a more interactive interface allowing to explore the dependency chains step by step, and to ask for the information of a node during the exploration (value of the connectors, current value, behavior).

Exploration of the Graph

The most important feature of the tool that can be improved is the way to explore dependencies. what this thesis and especially chapter 5 tries to demonstrate. However, a consequence is that the design of a precise exploration is more difficult.

The manual management of the depth of exploration allows to get subgraphs that are synthetic enough, as shown in the examples. The drawback is that this management is delegated to the user. This approach requires precise explanations of how the tool works before using.

In the future, it would be interesting to find ways to filter more accurately some dependencies. We have imagined two ways:

• Use the evaluate and compute methods to dynamically determine which dependencies should be shown. In the first example section 10.2, light up the LED requires three fields to be at the right value: the evaluate methods of the PA5 node is 1 if MODER5 == 0b01 and OT5 == 0 and ODR5 == 1 else 0. If two of these fields are correctly configured, it seems more relevant to show only the dependency on the last field. With this approach, the tool has to guess or to ask the user's intent (in this case, to light up the LED) and to process it automatically. We then need a strongly constrained description of the function to be able to invert it and find the dependency 185 Vincent Morice CHAPTER 10. TOOL USAGE FOR DEBUGGING 10.4. POSSIBLE IMPROVEMENTS to explore. This seems intuitively simple for this case but not easy to generalize. For example, the problem is more challenging for nodes that can generate promises. Also, the full Python semantic is allowed in the function code.

• Have the model developer describe the dependencies that are important or not. Unlike the previous idea, this can only be done statically. However, the generalization of this process requires more development and design effort from the model developer.

Chapter 11

Conclusion 11.1 Summary and Wrap-Up

Programming microcontrollers such as the STM32 for embedded system design is difficult. They include many and varied internal peripherals, intended for communication with sensors and actuators, but also for the fine management of the circuit itself. For example, they include numerous low-power modes (up to 8 on the STM32WB55). One of the most complex aspects of these devices is the power management.

Multiple "low-power" modes allows adjusting the consumption depending on the task being performed.

The circuit must therefore be highly configurable, so it includes several power domains and clock domains.

The clocks and power domains are designed to be managed by software and depend on many parameters.

Writing correct and optimized software is therefore difficult. This problem is not new, but becomes more critical as the complexity of circuits increases. Development tools and methods have been designed since the beginning of embedded programming. Each of these tools and methods proposes a different way to tackle the problem. In order to make a review of these methods, to understand the needs of the embedded developers, and to analyze in depth a microcontroller, we have chosen as object of study a weather station. The main component of this station is a STM32, which communicates with sensors to measure atmospheric parameters and transmit them to a user interface. We had access to the code of the software that drives the system, and we were able to compile it and run it on the dedicated boards. This software is a combination of several code samples and software layers developed and provided by STMicroelectronics. A code sample is an implementation of a particular feature on a specific hardware. For example, there is a code sample to turn on the LED of the Nucleo board (which is used by the weather station). The software layers are part of the HAL. It is a set of C (or C++) functions developed to use a particular hardware block. For example, the weather station code uses the HAL of the I2C block, it manages the communication with the sensors. The analysis of this code showed us the pros and cons of the development method that consists in using the HAL and the code samples.

The main benefit is that we don't need to understand in depth how the circuit operates to get our system to work. The drawbacks are that a tremendous effort is required to mix the different codes provided, and the result is not optimal. This became clear when we decided to modify the software. The purpose was to explore the features of the circuit and to face the challenges of embedded developers. We implemented and evaluated the use of different types of low-power modes. It required the understanding of the details of the operations performed by the code provided. For example, the call to a given function can prevent 11.1. SUMMARY AND WRAP-UP the circuit from going to sleep. To understand this, one needs to observe the call stack through several code layers and analyze the implementation and architecture of the code to find the instructions involved.

A similar approach would be required for each new feature to be implemented. Therefore, relying on the HAL and sample codes is not enough to solve the problems that embedded software developers face. For the second modification, which is simply to turn on an LED, we tried another method: understanding the hardware operation using the documentation, then writing code. Despite the supposed simplicity of the specification, the implementation was not easy. The information is located in several places in the documentation, sometimes more than 40 pages apart, especially because different blocks of the microcontroller are involved. We have concluded from these experiments that the combination of code samples with the HAL or the use of the documentation alone is not sufficient. A consequent investigation effort is necessary in both cases, and the results may not be optimal. We have also noticed that the use of these methods does not take the best out of the features offered by the microcontroller. For example, the low-power modes of the STM32 were not used by the original software of the weather station.

Our first idea was to set up the automatic detection of some specific software behavior. As we had noticed some over-consumption in the original software of the weather station, we focused on the detection of this kind of wrong behavior. Many methods exist to analyze code statically, but power consumption is closely related to hardware, so we decided to use a transaction-level model of the weather station developed in SystemC and available in my team to detect software patterns at runtime. Such a model is completely observable in simulation, which is an advantage compared to real hardware. We enriched the model with two monitors dedicated to a particular behavior. We have automated the detection of polling loops and the misuse of a sensor that generates heavy traffic on the circuit; both case are power-consuming. The idea of this approach was to define a software pattern using a given formalism and to be able to compile this definition into a specific monitor that would then be instantiated with the simulation platform. However, we did not go further in this approach for the following reasons: the definition of the events to be observed, such as the sequence of bus accesses, already gives another type of hardware model. For example, we tried to define a partial order of the bus accesses that had to be performed in order to engage a given block feature. This order can be seen as a model of the hardware that highlights the dependency relations between elements such as registers, fields and internal circuits. These dependency relationships exist on the real circuit, are explained in the documentation, and programmed in the TL models. However, we established that none of these descriptions could be easily used to automatically extract the information needed by the embedded developer. Consequently, we started to design a new type of model that focuses on the dependency relationships between hardware elements.

The first step was to formally define what the elements are and what is a dependency from one to another, then to organize them into graph. To do so, we have chosen to analyze entirely the sleep and the auto wake-up features of the STM32, which use the RTC block timer (this same feature has been used in the modified software of the weather station). We extracted the dependencies and defined the elements that are the nodes of the graph. The result is a spatial discretization of a part of the circuit that we want to model using our new framework. Then, we had to add to the framework a way to simulate the temporal behavior of the system, especially to simulate the execution of the embedded software. Indeed, the goal is not only to have a flat dependency model and to reason on it, but also to observe the behavior of the circuit, and the effect of the dependency relationships on the hardware for a given software. The 11.2. PROSPECTS CHAPTER 11. CONCLUSION formalization therefore had to be refined to represent the temporal evolution of the system. We have introduced a distinction between different types of edges in our graph. The types allow us to model and show dependency relationships whose effect is atomic, and others where the effect is postponed. Postponed effects, called promise dependencies, involve a representation of the interleaving of events: atomic effects can occur between the time a hardware operation begins and ends. Typically, the value of a register that receives a read bus access can change between the time the corresponding instruction is issued by the CPU and the time the value is actually sampled. Such behavior is important to show to the embedded developer to succeed in solving tedious bugs. The framework therefore contains three types of edges, one type for postponed events (promise dependencies) and two types for atomic events: passive and active dependencies. For a dependency from an element A to B, this second distinction shows that A can act on B (active dependency) or that B only needs to know A (passive dependency). One of the examples presents a counter whose incrementation control by another node is represented by an active dependency. This same counter includes an Enable bit-field that allows to activate/deactivate it, the dependency from this field to the counter is passive. A last distinction is about the nodes, we differentiate the elements that have memory (memory nodes), and therefore store the state of the system, from those that perform calculations (function nodes). For example, registers and their fields are represented by memory nodes, while the nodes used to model the bus are exclusively function nodes. The three types of edges and the two types of nodes allow to model and show the dependency relations, but are not sufficient to describe all the behavior observed on programmable digital circuits. The exact behavior of the nodes is therefore defined by two internal functions. These functions are defined by the modeler. Finally, in order to complete the modeling infrastructure, we designed an algorithm to simulate the behavior of the entire model. The algorithm is based on a discrete-event loop for which the events are the dates of the promise's expiration, i.e. the dates of the postponed effect between promise dependencies. The graph is traversed at each iteration and the edge types are interpreted to transmit the effects of the dependencies. Each node is evaluated using one 

Prospects

We are convinced that the definition of the new Bubble Dump modeling framework allows answering the problem identified, and is relevant to assist the embedded developer in the elaboration of the software. The adoption of a new type of model is a long process, in which the different actors must be convinced.

One of the main ideas highlighted in this thesis is the importance of dependency relationships between hardware elements to assist the development of embedded software. More precisely, the formalized graph structure of these dependencies allows exploiting them with an automatic tool like the one developed as a proof of concept. Within the STMicroelectronics modeling team, discussions are underway to define how this type of structure can be integrated into models through the internal modeling kit to be able to propose it to users. The evaluation of the relevance of this integration will guide the direction to take for enriching future models.

Appendix B Examples Microcontroller Clock Trees

This appendix present two clock tree diagrams. 
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 222 Figure 2.2 shows an example of the internal diagram of a microcontroller.

Figure 2

 2 Figure 2.3: Block diagrams of the microcontrollers ATmega328P from Microship (left) and STM32WB55 from STMicroelectronics (right) taken from their datasheet.
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 14 Figure 14. Memory map
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 24 Figure 2.4: Address map of the STM32F411 microcontroller, taken from its datasheet.

Figure 2 . 5 :

 25 Figure 2.5: Register bank of the SysTick timer, taken from the reference manual of the STM32F411 microcontroller.

( a )

 a Clock domain crossing diagram with the flag of a timer as an example. The use of the buffer implies a certain delay. Delay between the change of level of the signal end count and the FLAG state when the countdown ends.
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 26 Figure 2.6: Example of diagram and data transmission delay induced by the crossing of the clock domain.
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 28 Figure 2.8: Example of a block diagram of a STM32.
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 210 Figure 2.10: Interrupt signal path for an external interrupt signal.

  Sensor board from[START_REF]IKS01A2 sensore Extension Board[END_REF].

Figure 3 . 1 :

 31 Figure 3.1: Photos of the Nucleo and sensor board annotated with point of interest.
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 332 Figure 3.2 shows a diagram of a subset of the circuit, including the temperature sensor used in the one-shot mode.

1 while

 1 Figure 3.3: Pseudo codes of the main loop for the measurement system (3.3a) and the smartphone application side (3.3b). It displays in real time the measured environmental parameters with a refresh rate of about one second (800 ms). The communication is implemented via Bluetooth. The pairing phase of the two devices is not shown.
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 34 Figure 3.4: Screenshots of the smartphone application of the weather station. The up right symbol is suppose to be clicked to switch on a LED, but it is not available.

Figure 3 . 5 :Figure 238 .

 35238 Figure 3.5: Timing diagram of the Universal Asynchronous Receiver Transmitter (UART) block of the STM32F411 when the block is transmitting. Taken from the STM32F411 reference manual. Secure digital input/output interface (SDIO) RM0383

17 } 18 }Figure 3 . 7 :

 171837 Figure 3.7: C++ code of the Mbed blinking LED application on the Nucleo board described section 3.2.1.

1 HAL_StatusTypeDef HAL_UART_Init(UART_HandleTypeDef * huart) 2 { 3 /* 5 { 6 return HAL_ERROR; 7 }Figure 3 . 8 :

 12356738 Figure 3.8: Beginning of the function of the STM32's HAL that initializes the UART structure.

  Figure 3.10: C code of the HAL of the STM32 that defines the possible states of a UART as an enumerated type.
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 313 Figure 3.13: Main function of the original weather station software.

  CHAPTER 3. CASE STUDY 3.5. SIMPLIFICATIONS OF THE EMBEDDED SOFTWARE communication uses the UART protocol and goes through the USB port of the Nucleo board. This handles the same functionality: communicating processed values to the outside world.

3. 5 . 2 temp <<= 8 ; 8 t0}Figure 3

 52883 Figure 3.14: (Re-)Implementation of the temperature reading function. The measurement is performed in several steps: (1) enabling of the sensor (2) measurement request (3) reading of the previous value (4) calibration (5) processing and return of the value.
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 315 Figure 3.15: Diagram of the hardware parts used to turn on the LED. The Advanced Microcontroller Bus Architecture (AMBA) High-performance Bus (AHB) links the CPU, the RCC and the GPIO port A. The pin 5 of the port A is connected to the LED. The clock of the GPIOA block comes from the RCC.
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 3 Figure 3.15 shows the diagram of figure 2.8 with the LED connected and a focus on the parts used: the RCC, the block that manages the clocks on STM32s, and the GPIO port A. On the STM32s, the GPIOs are divided into ports, each associated with a letter that drive a set of pins. The RCC block controls the clock of the GPIO. The GPIO controls pin voltage (high or low level). Here, the pin 5 of the GPIO port A (PA5)
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 150 Figure 3.16: MODER Register from GPIO block. Taken from STM32 Reference Manual 0383, p 157. Only MODER5 field is used.
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 150 ODRy: Port output data (y = 0..15) These bits can be read and written by software. Note: For atomic bit set/reset, the ODR bits can be individually set and reset by writing to the GPIOx_BSRR register (x = A..E and H).

Figure 3 . 17 : 1 void led_init(){ 2 / 1 4 13 }Figure 3 . 18 :

 31712113318 Figure 3.17: ODR Register from GPIO block. Taken from STM32 Reference Manual 0383, p 159. Only ODR5 field is used.

Figure 3 . 19 : 5 SET_BITFigure 3 . 20 :

 3195320 Figure 3.19: AHB1EN Register from RCC block. Taken from STM32 Reference Manual 0383, p 117-118. Other fields are not used.

3. 6 .voidFigure 3 . 21 :

 6321 Figure 3.21: Code of HAL_Delay() and the related functions. It implements a wait of a given time. The SysTick timer is the hardware block used. It is configured at software initialization to trigger an interrupt every millisecond. We have added comments in the code to facilitate its understanding.
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 322 Figure 3.22: Implementation code of a wait using the SysTick timer and the sleep mode. The clock is 16 MHz by default.

  processor registers (stack pointer, program counter...), which makes it possible to resume the code at the instruction that follows the sleep. The registers of the internal peripherals are also saved, except the status fields because most of the hardware processes are stopped and therefore the states of the peripherals change. For instance, putting the circuit in stop mode forces the clocks to turn off so the flags that indicate 55Vincent Morice CHAPTER 3. CASE STUDY 3.6. ADDING NEW FEATURES the state of these clocks are cleared. As a consequence, it is necessary to save the configuration of the clocks before going to sleep, and to restore it once awake to have a sufficiently robust implementation. A code for saving and restoring clocks is proposed in figure 3.24. The execution time of this code has to be taken into account in the restart time of the software, because it is not necessary in sleep mode. This also implies a slight memory overuse (less than one hundred 32 bit assembly instructions compiled with the option -O0, so approximately 1 Kbyte vs 512 Kbytes of Flash memory and 128 Kbytes of SRAM available on the chip).
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 6323324 Figure 3.23: Implementation of the wait() function using stop mode and RTC. The lines 2 to 20 handle special cases with conditional statements (if/else) and then start the waiting. This is done in several phases: (1) configuration of the RTC block (2) saving the clocks (3) putting the circuit in STOP mode (4) Waking up on interrupt (5) restoring the clocks and then disabling the RTC block.
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 325 Figure 3.25: Code procedures to put the circuit in sleep, stop or standby mode.

  choosing a sleep mode and putting the circuit in this mode is simple and requires only a few instructions as shown in the code figure 3.25. However, the procedures executed before and after putting the circuit to sleep are the ones that are difficult. Many errors are possible with symptoms that are not necessarily obvious. Selecting the wrong sleep mode results in a consumption different from the theoretical value, which must be measured in order to be detected. An error during the restoration of the state can have very indirect symptoms like a strange display in the console. Also, the power consumption and mode selection depend on the circuit environment such as the wiring of the board.
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 7326327 Figure 3.26: Weather station hardware diagram.

1 /*uint32_t tickstart = 0; 5 tickstart = HAL_GetTick(); 6 / 10 }

 15610 Figure 4.2: A problematic polling loop in the HAL_Delay() function of the weather station.

1 /

 1 * asking access to registers * / 2 CLEAR_BIT(RTC->CR, RTC_CR_WUTE); 3 / * Wait till access to wakeup timer is allowed * / 4 while(READ_BIT(RTC->ISR,RTC_ISR_WUTWF) != 1); 5 config_wakeup_timer();

Figure 4 . 3 :

 43 Figure 4.3: Polling loop on registers of the wakeup timer

  For a given vocabulary V and m ∈ V * , we can define m ∈(x|xy|xyz) * as: ∃(a, b, c) ∈ V 3 .m ∈(a|ab|abc) * . If the vocabulary V where a, b, c belong is finite, this can be written as a simple regular expression, because ∃ can be expanded into ordinary alternatives: m ∈(x|xy|xyz) * ⇐⇒ m ∈ (a,b,c)∈V 3 (a|ab|abc) * .Finally, we replace the * by[n,+∞] , to start warning about the presence of a polling loop only if it Vincent Morice 4.5. DETECTING UNSUITABLE USES OF A SENSOR CHAPTER 4. DIAGNOSING POWER PROBLEMS exceeds a number n of effective iterations. In order to validate quickly the idea of using monitoring techniques to detect polling loops, we implemented a simpler (yet very frequent) case without Boolean operations. Instead of searching instances of (x|xy|xyz)[n,+∞] , we search for x[n,+∞] | (xy)[n,+∞] 

1 int16_tFigure 4 . 4 : 1 int16_tFigure 4 . 5 :

 144145 Figure 4.4: Temperature measurement code in one-shot mode (simplified).
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 46471248 Figure 4.6: Detection of Inefficient Uses of a Sensor Polling suspected at addresses 0x20000260, 0x20017FD0 target: top.NODE_0.NUCLEO.STM32.RAM You might consider putting the CPU in sleep mode and programming a wake-up interrupt!Figure 4.7: Detection of a Polling Loop 4.6.5 Accuracy of the Detection Principle
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 51 Figure 5.1: Diagram of the STM32 architecture about the RTC auto-wakeup feature.

Figure 5 . 2 :

 52 Figure 5.2: Subset of the system view figure 5.1, with a view of the elements inside the blocks.Only the elements involved in the enabling of the RTC's auto-wake-up feature are shown. The Wake-Up Timer Enable (WUTE) field starts the count. The various elements represented must have the appropriate value so that WUTE can be set by software. The "register lock" input indicates that the register is write-locked as long as the connected wire is not 1. All the wires are Boolean except the wire connected to the KEY field which has 8 bits. The "block reset" input maintains all registers to their reset values and prevents any software writing as long as the Backup Domain software Reset (BDRST) field is set to 1.
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 53 Figure 5.3: Dependency graph related to the WUTE field that starts the countdown of the RTC wake up timer. Diagram elements come from the circuit diagram figure 5.2 (Registers are not shown because they are only containers for fields). For example, the dependency from RTCEN to WUTE means that WUTE can only receive software accesses if RTCEN is 1.

Figure 5 .

 5 Figure 5.4: STM32F411 clock tree taken from the reference manual [14] with annotated points of interest.

Figure 5 .

 5 Figure 5.4 shows the clock tree of the STM32F411. The circuit has four clock sources, present on the diagram: (from top to bottom) The Low Speed Internal oscillator (LSI), the Low Speed External oscillator (LSE), the High Speed Internal oscillator (HSI) and the High Speed External oscillator (HSE). These four sources are analog components called oscillators that generate a digital clock output when they are turned on. Internal clock sources (LSI and HSI) are indeed fully analog circuits, but the external sources (LSE and HSE) may require the connection of a quartz on dedicated pins, represented on the left of the diagram.
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 55 Figure 5.5: Subset of the system view diagram 5.1, with a view of the elements inside the blocks. Only the elements involved in the RTC's auto-wakeup clock are shown. The "clock" entry of the "Counting logic" block defines the frequency at which the counter decrements. The sub-blocks Low Speed External oscillator (LSE), Low Speed Internal oscillator (LSI) and High Speed External oscillator (HSE) are the circuits of the three possible clock sources, they can be enable by the "xxxON" field with "xxx" being the clock name. Clocks enabling takes some time so their states are indicated by the "xxxRDY" fields. Several fields can select different clock paths and sources, as well as different frequency prescalers.
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 56 Figure 5.6: Dependency graph related to the counting clock of the RTC wake up timer. Diagram elements come from the circuit diagram figure 5.5 (Registers are not shown because they are only container for fields).
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 57 Figure 5.7: Subset of the system view diagram 5.1, with a view of the elements inside the blocks. Only the elements involved in the wake-up mechanism are shown. When the count ends, the RTC block sets the Wake-Up Timer Flag (WUTF). The interrupt is handled by the CPU if the fields of the registers of the different blocks presented are correctly set to transmit the interrupt signal.
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 2 DEPENDENCIES IN THE RTC CHAPTER 5. IDENTIFYING HARDWARE DEPENDENCIES

AFigure 5 . 8 :

 58 Figure 5.8: Dependency graph of the wake-up mechanism. Diagram elements come from the circuit diagram figure 5.7 (Registers are not shown because they are only containers for fields).
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 3 COMPLEXITY OF THE DEPENDENCIES CHAPTER 5. IDENTIFYING HARDWARE DEPENDENCIES The flag is cleared before the next end of count. The flag is cleared after the next end of count.
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 59 Figure 5.9: Timing diagrams of RTC WUTF flag clearing. New flag setting may be missed (figure 5.9b) due to clearing delay implies by clock domain crossing between bus access and counting logic.
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 661 Figure 6.1 summarizes the different types of edges and nodes and shows the graphic semantics used.
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 62 Figure 6.2: A module with input and output ports to the bus. N and Q can be memory or function nodes.
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 6 Figure 6.3: Resolution of port bindings after initialization. N, Q and R can be memory or function nodes.
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 64 Figure 6.4: Graph of the module modeling a bus. BUSAccessNode is used for routing the access from the CPU to the block, BUSReturnNode is used to handle read returns.
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 65 Figure 6.5: Example of the definition of the dependencies between two modules and the bus.
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 6768 Figure 6.7: Diagram of the hardware of the simple counter block.

  active_outputs[m], promise_outputs[n], current) = evaluate(current, passive_inputs[i], active_inputs[j], promise_inputs[k]) node.(active_outputs[m], promise_outputs[n]) = evaluate(passive_inputs[i], active_inputs[j], promise_inputs[k])
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 69 Figure 6.9: Relationship between dependencies and functions of nodes.
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 4 FIRST EXAMPLE: SIMPLE COUNTER CHAPTER 6. GENERAL PRINCIPLES AND FIRST EXAMPLE T = 0. All the memory nodes of the graph (namely Enable, Count and Flag) are at their reset value: 0. T = 5. The input S has a rising edge, but as Enable is still 0, Count does not increment. T = 21. A bus write access to the control register is received with the value 1. It is routed by the Reg-Bank to the Control node which transmits its new value to Enable which is now set. Simultaneously, the input S has a rising edge. Count increments and transmits its new value to Flag which remains clear because the threshold is not yet reached.

Figure 6 . 10 :

 610 Figure 6.10: Annotated graphs of the simple counter example.

Figure 6 .

 6 Figure 6.18: T = 26, after Flag evaluation (end of the traversal).

  Example: RegBank is a function node in the simple counter example.

Figure 7 1 (

 71 Figure 7.1

Figure 7 . 2 :

 72 Figure 7.2: Sub-graph of the simple counter example with the Count node, its predecessors and successors and connectors annotated.

  slice

•

  A o = (a 0 o ), with a 0 o corresponding to the Flag Field. • B o = ∅, there is no output promise connector. • The evaluate function maps values available on all the inputs connectors to values produced on all the output connectods. The function is defined by the equation 7.4. Note that the values computed for v and c ′ are equal. The sub-graph with annotated connectors of the Count node and its predecessors and successors is shown figure 7.3.

Figure 7 .

 7 Figure 7.3: Sub-graph of the simple counter example with the Count node, its predecessors and successors and connectors annotated.

  evaluate

  where n, n ′ ∈ N are the source and target nodes of the promise, v ∈ V is the promise value, b i ∈ n.B i is a promise input connector in the set of promise input connectors of the target node n ′ and d ∈ N is a date. Promises are issued by a node at one of its output connectors b o ∈ n.B o .

Figure 7 . 4 : 6 (

 746 Figure 7.4: Promise graph of the simple counter example. The connectors of the nodes are annotated.

5 )Figure 7 . 5 :

 575 Figure 7.5: Active graph of the simple counter example. The connectors of the nodes are annotated.

  Passive dependencies are defined from a node A to the input connector of another node B. B is a memory or function node that needs the value of A either to define what is stored in its memory or to provide its value to one of its successors. The data available for a given node B can be:• The value stored if A is a memory node, Vincent Morice 7.4. GRAPHS CHAPTER 7. DEFINITION OF THE MODELING FRAMEWORK • The value defined by the compute function of A if it is a function node.

Figure 7 . 6 :

 76 Figure 7.6: Passive graph of the simple counter example. The connectors of the nodes are annotated.

  4. Lines 7 and 8 fill the active and passive input connectors of the node n being processed. The values of the active input connectors are fetched from the corresponding output connectors in the active graph. The values of the passive input connectors are computed on the fly by the VAL function.

  n ∈ N mem do n.c ← n.c init for n ∈ N do ResetPromiseConnectors(n) P = ∅ d = 0 / * Discrete Event Loop * / do for n ∈ T do // Visit each node in a topological order T compatible with G act / * Filling input connectors * / // Transferring values form active outputs to active inputs for ((n ′ , a o ), (n, a i )) ∈ G act do n.a i ← n ′ .a o // Filling the passive input connectors

18 if n.b ℓ o ̸ = ψ then 19 Let 20 p

 181920 active output connectors for ℓ ∈ {1, 2, ..., |n.B o |} do // promise output connectors 17 n.b ℓ o ← V dir (ℓ) / * Deleting or adding promises according to the directive (if non empty) * / b i be s.t. ((n, b ℓ o ), (n ′ , b i )) ∈ G pro // get the unique promise input connector connected to n.b ℓ o ← (n, n ′ , b ℓ o , b i , n.b ℓ o .d y + d) // build the actual promise 21 if n.b ℓ o .m = f alse then P ← P \ {p} // Remove the promise 22 else P ← P ∪ {p} // Add the promise = ∅ then d ← min(P ) // date of the earliest deadline in the set of promises Q ← select(P, d) // Promises that have their deadline at this min date

  Filling the input promise connectors end while P ̸ = ∅ Vincent Morice 7.6. HANDLING NON-DETERMINISM CHAPTER 7. DEFINITION OF THE MODELING FRAMEWORK

CHAPTER 7 .

 7 DEFINITION OF THE MODELING FRAMEWORK 7.7. GRAPH EXPLORATION

Figure 8 .Figure 8 . 1 :

 881 Figure 8.1: Sub-part of the class diagram of the Bubble Dump package.

  To declare a new module, the model developer creates a dedicated class that inherit from the Module class (part of the code is shown figure 8.2). As an example, part of the code of the declaration of the EXTI module is shown figure 8.3. The specific nodes and registers are declared as internal classes. In this implementation, there is one graph per module, and a global graph that includes these. Each module has a graph member of class Graph which is thus a simple container for nodes and dependencies. The model developer adds the nodes, dependencies and input/output ports in the module constructor. Methods are provided to automatically add the connectors when the dependency or port is added.

Figure 8 . 2 :

 82 Figure 8.2: Part of the Python code of the Module class.

8. 2 . 2 . 1

 221 Base Classes for Node and Connectors Part of the code of the Node class is shown in the figure 8.4. It manages the node connectors, and provides methods for issuing and canceling promises that can be called in the node evaluation functions. It also includes the visit() interface method called by the global graph during traversal. A default concrete implementation of the visit() method is done in the classes of the memory and function nodes.

Figure 8 . 4 :

 84 Figure 8.4: Part of the Python code of the node class.

Figure 8 . 5 :

 85 Figure 8.5: Part of the Python code of the active connector class.

8 1 : 9 #Figure 8 . 9 :Figure 8 . 10 : 1 class Field: 2 def 2 ,Figure 8 .

 19898101228 Figure 8.9: Declaration of the EMR register and the MR22 field of the EXTI module. The Field class is used directly. The description of the field from the STM32 documentation is added as a Python comment (line 7 and 8).

•Figure 8 . 16 :

 816 Figure 8.16: Sub-part of the class diagram of the Bubble Dump package. It focuses on the relation between the simulator, the modules, the graphs and the global graph.

2 . 5 .Figure 8 . 17 :

 25817 Figure 8.17: Part of the code of the main Python script to build the STM32 model and launch the simulation.

Figure 8 . 18 :

 818 Figure 8.18: Part of the Python code of the Simulator class.

  the code of the StateMachine class is available in appendix D.1. It includes internal classes that the model developer can use to instantiate states, transitions and timed transitions. To declare a state machine node, the model developer creates a dedicated class that inherits from the StateMachine class. States are declared as inner classes, and transitions are added to states at instantiation. For regular transitions, the name of the destination state is provided, as well as a reference to the transition function.

8. 5 . 1 . 1

 511 figure 8.21. It implements the temperature measurement feature in "one shot" mode of the weather station temperature sensor presented in section 3.2.1.1. The FSM is in the IDLE state at initialization. When a rising edge on the ONE_SHOT field is received by an input active dependency, the FSM goes into the MEASURING state. When the transition is taken, the class internally manages the sending of a promise to itself. The reception of this promise corresponds to the timed transition which indicates the end of the measurement process. At this moment, the FSM returns to the IDLE state.Additional promises are issued simultaneously with the same deadline (see line 21 to 25). They allow to signal to the registers that contain the measured value (TEMPR) to update, and to reset the ONE_SHOT field.

Figure 8 . 21 :

 821 Figure 8.21: Final state machine of the temperature sensor.

8. 5 . 2

 52 Bus ModelBubble Dump includes a generic bus model, which manage routing of bus accesses based on the address map. A reference to the address map (managed by the Simulator class) must be provided when the module is instantiated. The model manages the duration of the accesses, which are based on the clock provided as a passive input dependency. Our bus module includes two function nodes: the BUSAccessNode that performs routing to the blocks and the BUSReturnNode that transmits the read return values to the CPU. The bus module and its ports are shown figure8.22. This is an example with two blocks A and B.Accesses are modeled with promises a so:• When the CPU perform an access, the structure that contains the information of the access (address and value, if any) is transmitted by an active dependency through the dedicated input port.A promise dependency from the BUSAccessNode is then emitted to the destination block. (The dependency nature is not shown on the diagram because the ports are not yet connected).

Figure 8 . 22 :

 822 Figure 8.22: Graph of the module modeling a bus. BUSAccessNode is used for routing the access from the CPU to the block, BUSReturnNode is used to handle read returns.

8. 5 .Figure 8 . 28 :

 5828 Figure 8.28: Communication architecture diagram between SystemC and Bubble Dump when an ISS is used.

Figure 9 . 1 :

 91 Figure 9.1: Full graph of the weather station model with highlighted modules.

The diagram 9 .Figure 9 . 2 :

 992 Figure 9.2: Connections between the modules involved in the management of the LED through their ports (graph drawn manually).

1 class 5 return

 15 Environmentpassives['anode_led_pin'].value

6 7defFigure 9 . 3 :

 693 Figure 9.3: Modeling code of the LED node in the Environment module.

Figure 9 . 5 :

 95 Figure 9.5: Part of the GPIOA module code.The different GPIO blocks of the STM32 are indexed by letters (GPIOA, GPIOB, GPIOC, etc...); the module is coded in a generic way with the parameter index_letter to be specified for each instance. In the same way, the class that models the pin node takes as parameter its index (lines 6 and 7).

The diagram figure 9 Figure 9 . 7 : 1

 9971 Figure 9.7: Connections between the modules involved in the RTC wake-up timer interrupt path through their ports (graph drawn manually).

Figure 9 . 8 :

 98 Figure 9.8: EXTI module graph.

Figure 9 . 10 :

 910 Figure 9.10: RTC module graph.

Figure 9 . 13 :

 913 Figure 9.13: Final state machine of the WUTFlagClearFSM node. Inputs and outputs are shown on the sub-graph figure 9.12.

10. 2 .

 2 DEBUGGING THE LED CONTROL CHAPTER 10. TOOL USAGE FOR DEBUGGING 10.2 Debugging the LED Control

10. 2 . 1 1 int 1 5 6 while( 1 ){ 7 SET_BIT 8 }}Figure 10 . 3 :

 21116178103 Figure 10.3: First software implementation code trying to turn the LED on.

Figure 10 . 4 :

 104 Figure 10.4: Sub-graph of the dependencies of the LED node with the software of the figure 3.18. The graph is generated after the execution of the code line 7.

Figure 10 . 5 :

 105 Figure 10.5: Console output of the debug LED command. Part of the output is masked with (...) to keep it concise.

Figure 10 . 7 :

 107 Figure 10.7: Sub-graph of the dependencies of the LED node with the software of the figure 3.18. The graph is generated after the execution of the code line 7.

  The infinite loop is then started, it put the CPU asleep (line 23). It is woken up by the end of the RTC timer count. The handler acknowledges the interrupt at the EXTI level (line 31) and clears the flag (line 32).

Figure 10 . 10 :

 1010 Figure 10.10: Subgraph of dependency chains from the IRQPending node, generated after the second counting cycle. (The graph has been manually edited to fit the page, it is based on the graph generated by the tool shown in Appendix E.1)

Figure 10 . 13 :

 1013 Figure 10.13: Beginning of the pseudo-code of the correct software used to drive the RTC auto wake-up timer.

  Our implementation is simple to validate the proof of concept: all the dependencies are gathered, then the global graph is traversed in backward direction starting from a node chosen by the user. The first tests have shown that the results can become difficult to understand, sometimes too many nodes and dependencies are present. Moreover, it may happen that a large amount of the nodes of the global graph are included in what should be a particular sub-graph. Such problems can occur frequently because the nodes that are the most difficult to manage have long dependency chains. This confirms our analysis, it is

  of its dedicated functions, which produces values emitted on the outgoing edges according to the values gathered on the incoming edges. The definition of this formalism allows automatic exploitation to target and show the dependencies and the relevant elements to solve a given issue. We have developed a simple exploration algorithm that builds a subgraph of the model starting from a node. The algorithm explores its dependencies up to a certain threshold. It is exploited in the developed tool to illustrate the interest of the modeling framework.The Bubble Dump modeling framework has been implemented in a Python package. The package provides base classes to create models and a command line user interface to control the simulation and display the subgraphs that are generated on demand. Chapter 9 shows how a part of the STM32 has been modeled. Chapter 10 shows the two usage examples. The model is run in simulation and the exploration of the dependency relationships allows to identify and solve two bugs, one of which is particularly difficult to detect with real hardware.

  However, our framework cannot quickly and totally supplant the use of SystemC/TLM for this same pur-models have been used for two decades by a large part of the microelectronics industry.

Figure B. 1 Figure 27 - 1 .APPENDIXFigure B. 2 :

 12712 Figure 27-1. Generic clocking architecture diagram Figure B.1: NXP's K32L3A clock tree directly extracted from the chip reference manual
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-1. Block Diagram
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Table 10 . STM32F411xC/xE register boundary addresses

 10 

	Bus	Boundary address	Peripheral
		0xE010 0000 -0xFFFF FFFF	Reserved
	Cortex ® -M4	0xE000 0000 -0xE00F FFFF	Cortex-M4 internal peripherals
		0x5004 0000 -0xDFFF FFFF	Reserved

Table 55 . SysTick register map and reset values

 55 

	Offset	Register	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	0x00	STK_CTRL						Reserved							COUNTFLAG					Reserved						CLKSOURCE	TICK INT	EN ABLE
		Reset Value																0														1 0 0
	0x04	STK_LOAD			Reserved												RELOAD[23:0]									

  figure 2.8 gives an idea of the architecture of an STM32 with some blocks chosen as examples. The blocks designed by ARM are annotated. The diagram includes several blocks and sub-parts, explained in the sequel, to give a concrete example of the architecture of a specific microcontroller. The two blocks

					CPU			
					interrupt			Design by ARM
	EXTI	23	NVIC	52	CPU core		SysTick	Flash & SRAM
					BUS			
	PWR	lock	RTC	clocks reset	RCC	clock	GPIO	I2C
	interrupt			2				
							to LED	to sensor

at the bottom right are examples of communication blocks. The General Purpose Input Output (GPIO) block is used to control the electrical state of output pins, it can for example be connected to a LED. Inter-Integrated Circuit (I2C) is a standard serial communication protocol. The I2C block is dedicated to the management of this protocol, it can be used to communicate with a sensor, for example.

  2. GENERAL PRINCIPLES OF MICROCONTROLLERS 2.3. STM32 MICROCONTROLLERSOne of the purposes of handling external interrupts independently is related to power management.The NVIC is present in all Cortex-M processor. The design imposes to put the NVIC and the CPU in a common clock and power domain. The EXTI can be placed in a different domain which allows, for example, to put the circuit (including NVIC and CPU) to sleep deeply and to leave only the EXTI powered while waiting to be woken up by an external interrupt. This particular interrupt architecture allows optimizing power consumption.The external interrupt path signal is shown by the diagram figure 2.10.

	block			EXTI	NVIC
	Register		Mask Register	Pending Register	Mask Register	Pending Register
	Field			Mask Field	Pending Field	Mask Field	Pending Field
	Wire					
	& logic AND Circuit Internal	External interrupt signal	Edge detector		&	&	CPU Core
	block			SysTick		NVIC
	Register Field			CTRL Register TICK INT COUNTFLAG	Mask Register Mask Field	Pending Register Pending Field
	Wire & logic AND	Coun�ng Logic	interrupt signal	&	&	CPU Core
	Internal					
	Circuit					

Figure 2.9: Path of the interrupt signal for an internal block, example with the SysTick. TICK INT is the field which enables the interrupt at SysTick level, COUNTFLAG is the end of count flag. 2.3.2.3 External Interrupt with the EXTI When interrupt signals come from outside the chip, they first pass through a dedicated block: the External Interrupt/event Controller (EXTI). The block is shown on the top left of the diagram figure 2.8. The external interrupt signal is physically connected to a pin of the chip. This pin is internally routed to one of the EXTI inputs. When the signal changes level, the information can be transmitted by the EXTI by raising an interrupt detected by the NVIC like any other internal peripheral. External interrupt signals can be masked at the EXTI level. It also indicates whether the signals are pending or not. When an external interrupt is raised and handled by the processor, the acknowledgment is performed by clearing a flag in the EXTI.

For each signal, the EXTI can be configured to transmit an interrupt if the external signal level changes from low to high (rising edge) or from high to low (falling edge), or both. CHAPTER

Figure 170. TC/TXE behavior when transmitting

  

		1. A read from the USART_SR register
	3.3. TOOLS Note:	2. A write to the USART_DR register The TC bit can also be cleared by writing a '0 to it. This clearing sequence is recommended CHAPTER 3. CASE STUDY
		only for Multibuffer communication.
	512/844	RM0383 Rev 3

Table 3 .

 3 1: Comparison of the software resume duration and the estimated power consumption according to the low-power mode used to implement a wait. The time data are taken from the STM32 datasheet [14] (p 82, Table34, typical values). The restoration or re-initialization time of the software must be added. The consumption values of the stop and standby mode are obtained using STM32CubeIDE.

	The user should have a good

  .1 represents a TL model. Building and Simulating TL Models TL models are written in the SystemC language[11]. This is a C++ library developed and maintained by a consortium of large business companies including STMicroelectronics.

	CHAPTER 4. DIAGNOSING POWER PROBLEMS	4.4. DETECTING POLLING LOOPS
	4.3.2		
				wire output
	CPU	Internal Block	wire input
				ini�ator port
	interrupt wire	BUS		target port
	Other Internal Block	Memory	
	Figure 4.1: Example of TLM platform diagram.
	67			Vincent Morice

Table 4 .

 4 

	None	C++	Python with empty callback Python callback with the detection program
	1.19 sec 1.24 sec	24.05 sec	28.41 sec

2: Impact of enabling/disabling monitor during simulation, measured until first call to HAL_Delay().

Table 6 .

 6 .1.

				Bits	
	Offset Register Name			
			31 -2	1	0
	0x00	Count	reserved	(no dedicated name)
		reset value			0
	0x04	Control	reserved	Flag	Enable
		reset value		0	0
	Vincent Morice				100

1: Offset and reset values of the simple counter registers and fields.

  For the memory nodes, their current value is returned. As a consequence, there is only one value that is carried by all the outgoing passive edges of a node at a given date.The figure6.9 shows how functions are used by the memory (fig 6.9a) and function (fig 6.9b) nodes.

• A compute function, for function nodes only. It returns a value on the node's outgoing passive edge in function of the incoming passive edges. It is called on request from other nodes linked by a downstream passive edge.

Table 6 .

 6 2 shows the sequence of events used as an example.

	Date	0	5	13	21	24	26	29
					S rising edge;	S falling edge;		
	Events		S rising edge S falling edge	write bus access to the	read bus access to	S rising edge bus read return
					control register with value 1	the count register		

Table 6 .

 6 2: Sequence of events of the simple counter example scenario.

Table 6 .

 6 6.4. FIRST EXAMPLE: SIMPLE COUNTER CHAPTER 6. GENERAL PRINCIPLES AND FIRST EXAMPLE 3: Control evaluation summary at T = 21.

		Inputs at T = 21	Output at T = 21
		from node	value to node value
	Control	Flag (not used)	0	Flag	0b0
		Enable (not used) 0	Enable 0b1
		RegBank	0x1		

Table 6 .

 6 The traversal follows a topological order of the active graph, which should therefore be acyclic. In this example the chosen order is: 1. RegBank, 2. Control, 3. Enable, 4. Incrementer, 5. Count, 6. Flag.In this section, we go into the details of the graph traversal performed at date T = 26. Before the traversal starts, the current values of the memory nodes are those of the previous step and the values coming from the input ports are set. This is shown on the graph figure 6.13. Figure6.13: Beginning of the step at T = 26, which is going to visit the node in the order RegBank, Control, Enable, Incrementer, Count, Flag.6.4.3.3.1 Visiting RegBankFollowing the order, the first node to visited is RegBank. There is no read nor write access at date T = 26, so the values produced to the RegBank outputs are None. The table6.5 summarizes the inputs and outputs of the RegBank node. Values are annotated on the graph figure6.14. Visiting Control At date T = 26, no value is received from RegBank, so no value is transmitted, as shown by the table 6.6 and graph in figure6.15. Visiting Enable The evaluate function of Enable performs the basic operation of the fields nodes: the current value is updated using the value transmitted by the incoming active edge from the node of the register, here Control. If no value is transmitted, the current value remains at its last value. This is what happen here (see table 6.7). Visiting Count In general, the evaluate function of the Count node updates its current value with the value of the increment on rising edge of the input S if Enable is set, otherwise the current value remains at its last value. The corresponding pseudo-code is shown figure6.16. To detect the rising edge, each change of value of the input S is stored by the node Count internally. The library provides methods to implement this mechanism. The function set the new current value on the active output edge toward Flag. Figure 6.16: Pseudo-code of the function evaluate of Count.At date T = 26, before calling evaluate, the values of the incoming passive edges are fetched. Enable returns its current value (==1); The function compute of Incrmeneter is called, it takes as input the current value of Count (==1) and returns its increment (==2). The table 6.8 and the graph in figure6.17shows the result of the evaluation of Count.

	1, delay:5, add) read access return

Table 6 .

 6 8: Count evaluation summary. Visiting Flag The evaluate function of Flag has two purposes: • Flag is set if the value on the active edge coming from Count is greater than or equal to 2. This is what happens at date T = 26.

			Simple Counter	
					Incrementer	S
					1	2	0 -> 1
	bus_in				Count: 1
					Count Register
	None	2		1
	Flag: 0		RegBank
	0	None	None	1	1	None
	Control				bus_out
	None	1			
	Enable: 1		
	Control Register		
	Figure 6.17: T = 26, after Enable, Incrementer and then Count evaluation.
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  The compute function maps the values available on the input connectors (s 0 i , s 1 i ) to the value for the whole register. The definition of the function is given in equation 7.3. It gathers the binary values of the two fields (Enable and Flag) to build the integer value of the register.The sub-graph with annotated connectors of the Control node and its predecessors and successors is shown figure 7.2.
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	• Enable	s i 0 a o 0	Control s i 1	a i 0 a o 1	RegBank Flag
	1 i ) are not used.				
	119				Vincent Morice

Table 7 .

 7 

1: Result of Count's evaluation of the simple counter example at date T = 21 for two different visiting orders.

  and gives the connectors as parameters. The get_value() function, line 14, prepares the input and calls the compute() function of the node. It is called during the evaluation of a downstream node which defines a passive dependency from the function node. As an example, the code of the EdgeDectector function node of the EXTI module is shown in figure 8.7.Figure 8.6: Part of the Python code of function node (the partner_node of the passive input connector, used line 16, is the predecessor node at the base of the passive edge). EdgeDetector function node declaration in the EXTI module.Figure 8.8: Part of the Python code of memory node class8.2.3 Declaration of the Register Banks, Registers and FieldsTo declare a field and a register, the model developer creates dedicated classes that inherit from Register and Field classes respectively; it is also possible to declare a register or a field directly using the base class so that it adopts the default behavior. An example of declaration is shown figure 8.9.

	CHAPTER 8. CONCRETE IMPLEMENTATION	8.2. EXAMPLE MODELING OF A BLOCK
	class EXTI(Module):
		# (...)
		class EdgeDetector(FunctionNode):
			def __init__(self, num):
			super().__init__(f'EdgeDetector{num}')
	1	self.num = num class EXTI(Module):
	2	self.add_active_output('edge') class IMRegister(Register):
	3	""" Interrupt mask register """
	4	def evaluate(self, passives, actives, promise_deps, active_outs): def __init__(self):
	5		""" toggle value if rising/falling (regarding configuration) super().__init__(name='IMR', bit_width=32, offset=0)
	6		edge detected on input and if interrupt is not masked. """ self.add_field(Field(name='MR22', bit_offset=22, bit_width=1))
	7		falling_edge =
			→	actives[f'external_interrupt_{self.num}'].has_changed_from(1,0)
			rising_edge =
			→	actives[f'external_interrupt_{self.num}'].has_changed_from(0,1)
			detect_rising = passives[f'TR{self.num}'].value == 1
			masked = passives[f'MR{self.num}'].value == 0
			if rising_edge or falling_edge:
			if rising_edge and detect_rising and not masked:
			active_outs['edge'].value = 'EDGE'
			elif not rising_edge and not detect_rising and not masked:
			active_outs['edge'].value = 'EDGE'
	# (...)
	class FunctionNode(Node): def compute(self, passives): pass Figure 8.7: class MemoryNode(Node):
		def evaluate(self, passives, actives, promise_deps, active_outs): def __init__(self, name, reset_value=None):
		pass super().__init__(name)
		self._reset_value = reset_value
		def visit(self): self.current = reset_value
		self.evaluate(passives=self.passives, actives=self.actives, # a default red output connector that contains the current value
		promise_deps=self.promise_deps, active_outs=self.active_outs) self.add_active_output('current')
		self.acknowledge_all_actives() # (...)
		def get_value(self): def evaluate(self, last_value, passives, actives, promise_deps, active_outs):
		for passive in self.passives.values: return last_value
			passive.value = passive.partner_node.get_value()
		def visit(self):
		return self.compute(self.passives) next = self.evaluate(last_value=self.current, passives=self.passives,
		→	actives=self.actives, promise_deps=self.promise_deps,
		→	active_outs=self.active_outs)
		self.acknowledge_all_actives()
		self.active_outs['current'].value = next
		self.current = next
	8.2.2.3 Declaring a Memory Nodes
		def get_value(self):
	Similarly, the memory nodes must be based on the MemoryNode class (code figure 8.8). The main dif-return self.current
	ference is that the handling of the current value and the setting of a default active output connector for # (...)
	it.	
		The code for the declaration of the field PR22 figure 8.13 in the sequel, shows the use of a memory
	node and the evaluation function.

  ). The default evaluate() method handles write accesses. It can be used if the register has fields or not. In this last case, the associated node is a memory and the method works as for the Field class. Figure 8.13: Declaration of the PR register and the associated field of the EXTI module.The EXTI uses the default register bank. The example given in figure8.15 is the register bank of the SysTick timer, also present in the STM32 model chapter 9. It implements a side effect: a read access to its CTRL register clear the flag. The SysTick is described section 3.6.2.1. Figure 8.15: Python code of the custom register bank of the SysTick timer model.

	CHAPTER 8. CONCRETE IMPLEMENTATION 8.2. EXAMPLE MODELING OF A BLOCK CHAPTER 8. CONCRETE IMPLEMENTATION	8.2. EXAMPLE MODELING OF A BLOCK CHAPTER 8. CONCRETE IMPLEMENTATION 8.3. GLOBAL MODEL & SIMULATION
	class EXTI(Module):
	# (...)	
	class PRegister(Register):
	class PRField(Field):
		"""0: No trigger request occurred 1: selected trigger request occurred
	This bit is set when the selected class SysTick(Module):
	edge event arrives on the external interrupt line. # (...)
	This bit is cleared by programming it to '1'. """ class SysTickRegBankNode(RegBankNode):
		def evaluate(self, passives, actives, promise_deps, active_outs):
		def __init__(self, bit_offset): # normal read/write operation
			super().__init__(name=f'PR{bit_offset}', bit_offset=bit_offset, super().evaluate(passives, actives, promise_deps, active_outs)
			bit_width=1) # clear flag of CTRL if it has been read →
			self.node.add_active(f'EdgeDetector{self.bit_offset}') access = promise_deps['bus_access_in']
			if access is not None:
		def evaluate(self, last_value, passives, actives, promise_deps, if not access.is_write:
		→	active_outs): register = self.register_bank.get_register(access.address)
			if actives['register'].value == 1: # read, clear / write 1 if register.name == 'CTRL': # read access to CTRL
			return 0 # get the register data using passive dep from register
			elif actives[f'EdgeDetector{self.bit_offset}'].value == 'EDGE': data =
			# edge detector notif BitAccessibleData(data=passives[register.address].value, →
			return 1	register=register)
			else:	data['FLAG'] = 0 # modify FLAG
			return last_value active_outs['CTRL'].value = data # transmit new value to
			→	register
	def __init__(self): # (...)
	super().__init__(name='PR', bit_width=32, offset=0x14) def __init__(self, name):
		super().__init__(name)
		self.add_field(self.PRField(22))
	# (...)	register_bank = RegisterBank(module=self,
		→	custom_node=SysTick.SysTickRegBankNode())
		self.add_the_register_bank(register_bank)
		# (...)
	class RegisterBank:
	def __init__(self, module, custom_node=None):
	self.module = module
	if custom_node is None:
		self.node = RegBankNode()
	else:
		self.node = custom_node
	self.node.register_bank = self
	self.module.graph.add_node(self.node)
	self.registers = {}
	# (...)
	def add_register(self, register):
	# (...)
	def evaluate(self, passives, actives, promise_deps, active_outs):
	access = promise_deps['bus_access_in'] # for readability
	if access is not None: # bus access, transfer to register
		if access.is_write:
			register = self.get_register(access.address)
			write_access = BitAccessibleData(data=access.data, register=register)
			active_outs[register.name].value = write_access
		else:
			self.node.send(promise_out_name='bus_access_return',
			value=passives[access.address].value,
			delay=SimulationTime(passives['return_delay'].value))
	def get_register(self, address):
	# (...)
	The figure 8.13 shows an example of the declaration of a register.
		Figure 8.14: Part of the Python code of the RegisterBank class.

  The Bubble Dump package includes several standard classes useful in all microcontroller models.8.5.1 Final State Machine Based on Memory NodeThe Bubble Dump package proposes a representation of Finite State Machines (FSMs). It is syntactic sugar based on memory nodes.FSMs are widely used in digital circuit design to describe circuit behavior. It is interesting to inform the embedded developer about the state of the internal circuit of a block, and what it depends on. For example, showing that a sensor is currently performing a measurement and that it may be necessary to wait until it is completed before requesting a new one.

	CHAPTER 8. CONCRETE IMPLEMENTATION	8.5. STANDARD CLASSES
	8.5 Standard Classes for Microcontrollers Modeling
	all_nodes.extend(self.stubs)
	[all_nodes.extend(graph.nodes) for graph in self.graphs]
	return all_nodes
	@property	
	def active_dependencies(self):
	# (...)	
	def traverse(self):
	# gather promises
	promises = list(filter(lambda promise: promise is not None,
		[promise_dep.transfer() for promise_dep in
		→	self.promise_deps]))
	if len(promises) > 0:
	print(Fore.LIGHTMAGENTA_EX + " *** Promises: " + str(promises) +
	→	Fore.RESET)
	for node in self.topological_order:
	for active_dep in list(filter(lambda dependency: dependency.destination
	→	is node,
			self.active_dependencies)):
		active_dep.transfer()
	for passive in node.passives.values:
		passive.value = passive.partner_node.get_value()
	node.visit()
	# set all input blue connectors value to None (cause they have been just
	→	processed)
	node.promise_deps.clear()
	# set all red output to None
	for node in self.nodes:
	for active_out_name in node.active_outs.names:
		node.active_outs[active_out_name].value = None
	def compute_topological_order(self, sort_conditions):
	# (...)	
	# (...)	
	Figure 8.19: Part of the Python code of the GlobalGraph class.

  Figure 8.20: Python code of the state machine of the temperature sensor model.

	class TempSensorFSM(StateMachine):
	def get_measurement_duration(self):
	return self.passives.system_clock.value.period * 160
	class IDLE(StateMachine.State):
	def __init__(self, state_machine):
		super().__init__(name='IDLE', state_machine=state_machine)
		self.add_transition(destination='MEASURING',
			guard=lambda:
			→	self.actives['ONE_SHOT'].has_changed_from(0,1))
	class MEASURING(StateMachine.State):
	def __init__(self, state_machine):
		super().__init__(name='MEASURING', state_machine=state_machine)
		self.add_timed_transition(destination='IDLE',
				deadline_function=
				lambda:
				→	self.state_machine.get_measurement_duration())
	def evaluate(self, last_value, passives, actives, promise_deps, active_outs):
	new_state = super().evaluate(last_value, passives, actives, promise_deps,
	→	active_outs)	
	if last_value == self.IDLE and new_state == self.MEASURING:
		self.send(promise_out_name='TEMPR', value='End_of_measurement',
		delay=self.get_measurement_duration())
		self.send(promise_out_name='ONE_SHOT', value=0,
		delay=self.get_measurement_duration())
	return new_state	
	def __init__(self, module):
	super().__init__(name='TempSensorFSM', module=module)
	self.add_initial_state(self.IDLE(self))
	self.add_state(self.MEASURING(self))
			'ONE_SHOT' rising edge / send promise to self
		IDLE	promise return after 160 system clock period	MEASURING

  CPUStateMachine node is built from the state machine class presented in section 8.5.1. The FSM is shown figure 8.26. The transition functions depend on the following parameters:
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	The	
	class BUS(Module):	
	class BUSAccessNode(FunctionNode):
	def __init__(self, address_map):
	# (...)	
	def evaluate(self, passives, actives, promise_deps, active_outs):
	if actives['CPU'].value is not None:
	# CPU access, perform routing
	access = actives['CPU'].value
	module = self.get_addressable_module(access.address)
	register_address = access.address -
	→	self.get_module_base_address(module)
	# get access delay regarding bus clock
	delay =
	→	SimulationTimeRange(from_time=passives['bus_clock'].value.period,
	→	to_time=passives['bus_clock'].value.period * 3)
	if access.is_write:
		self.send(promise_out_name=f'{module.name}_out',
		→	value=BusAccess(address=register_address, data=access.data),
		→	delay=delay)
	else:	
	self.send(promise_out_name=f'{module.name}_out',
	→	value=BusAccess(address=register_address), delay=delay)
	def get_addressable_module(self, address):
	# (...)	
	def get_module_base_address(self, module):
	# (...)	
	class BUSReturnNode(FunctionNode):
	def __init__(self):
	super().__init__('BUSReturnNode')
	def evaluate(self, passives, actives, promise_deps, active_outs):
	"""handle read returns"""
	for promise_dep_name, value in promise_deps.items():
	# check each promise input from blocks for a read return
	if value is not None:
		if active_outs['CPU'].value is not None:
			raise RuntimeError(f"several reads return at the same date")
		active_outs['CPU'].value = value
	# (...)	
			Figure 8.23: Part of the bus module code.

  The modeling of this time period is necessary because state changes of other blocks can occur in the meantime. The delay is set to 12 clock cycles according to the docu-

	CHAPTER 8. CONCRETE IMPLEMENTATION 8.5. STANDARD CLASSES		8.5. STANDARD CLASSES CHAPTER 8. CONCRETE IMPLEMENTATION
	8.5.3.2 Software Model	
			schedule next access
		THREAD	no IRQ fire AND no WFI or WFE / bus_out.value = access, schedule next access
			CPU issues WFI or WFE
		IRQ fire / save context	SLEEP
			IRQ fire
		ENTERING_IRQ		true after 12 clock period AND no IRQ fire / restore context
	mentation of ARM Cortex processors. It correspond to the saving/restoring duration of the execution true after 12 clock period / schedule next access
	context. IRQ_HANDLING	not handler end / bus_out.value = access, schedule next access	no IRQ fire
		Handler end	
		true after 12 clock period	LEAVING_IRQ
		no IRQ fire	IRQ fire
		RE_ENTERING_IRQ
		Figure 8.26: State Machine representation of the native CPU.

  Figure 9.11: Part of the RTC module code with the declaration of the WUTIE and WUTF fields and the EndCountIrq node.9.3.2.2 Modeling the Flag Management CircuitThe state machine node WUTFlagClearFSM models the WUTF flag clearing procedure. The representation of the FSM is given in figure9.13. It passes from the IDLE state to CLEARING when the 'START_CLEARING' directive is received. A timed transition causes the node to return from the CLEAR-ING state to IDLE; the flag is cleared at the same time by transmitting a promise.The duration of the crossing of the clock domain is modeled by the delay of the timed transition which depends on the CKWUT and PCLK passive dependencies. CKWUT is a function node that models the counting clock of the RTC; PCLK is the clock of the bus that is connected to the registers, it is accessible through a dedicated input port (see graph figure 9.10). These two clocks are in separate domains. MODELING THE WEATHER STATION 9.3. MODELING THE RTC INTERRUPT source is enough to show the problems that we can help to solve. However, the diagram shows that the management of a single source at the level of the RTC module already involves many nodes. Tracing the chain of dependencies of the clock allows to see which elements are involved. Sub-graph of the dependencies of the WUTFlagClearFSM node (drawn manually). Dotted arrows means there are other dependencies not shown.

	9.3. MODELING THE RTC INTERRUPT	CHAPTER 9. MODELING THE WEATHER STATION
	class RTC(Module):
	class CRegister(Register):
	# (...)	
	def __init__(self):
	name = 'CR'
	self.add_field(Field(name='WUTIE', bit_offset=14, bit_width=1))
	# (...)
	class ISRegister(Register):
	# (...)	
	class WUTFField(Field):
	def __init__(self):
		super().__init__(name='WUTF', bit_offset=10, bit_width=1)
		self.node.add_active('WakeUpTimerFSM')
			CK_WUT	PCLK
	def evaluate(self, last_value, passives, actives, promise_deps,
	→	active_outs):
		if actives['register'].value == 0 and last_value == 1: # start
		→	clearing process active_outs['WUTFlagClearFSM'].value = 'START_CLEARING' WUTFlagClearFSM
		clear_FSM = promise_deps['WUTFlagClearFSM']
		timer_FSM = actives['WakeUpTimerFSM'].value
		# priority given to clearing process, as real hardware do if clear_FSM == 'clear': WUTF
			# return to idle after clearing
			return 0
		elif timer_FSM == 'set':
	return 1 else: return last_value receive 'START_CLEARING' and CK_WUT.period != 0 and PCLK.period != 0 Figure 9.12: IDLE # (...) CK_WUT.period * 0.5 + PCLK.period * 2 / send 'CLEAR' to WUTF	CLEARING

class EndCountIrq(FunctionNode): def __init__(self): super().__init__(name='EndCountIrq') def evaluate(self, passives, actives, promise_deps, active_outs): if actives['WUTF'].value == 1: # WUTF rising edge if passives['WUTIE'].value == 1: # Interrupt enable at RTC level active_outs['irq'].value = 1 else: # WUTF falling edge active_outs['irq'].value = 0 # (...)

The node that models the CKWUT clock is based on the LSI input port as illustrated by the graph of the modeled RTC block (Fig.

9

.10). The LSI is managed by a different block (the RCC). On the real hardware, three clock sources are possible, but our model does not include the other sources. Only one CHAPTER 9.

  9.3. MODELING THE RTC INTERRUPT CHAPTER 9. MODELING THE WEATHER STATION CKWUT clock. This is modeled by the timed self-transition of the COUNTING state. The delay is based on the Reload node, which contains the integer value to be counted, and CKWUT which models the counting clock. The FSM has two outputs controlled by active dependencies: the WUTWF field is cleared when the counter is active, and set otherwise; the WUTF flag is set at each end of count. Final state machine of the WakeUpTimerFSM node. Inputs and outputs are shown on the sub-graph figure 9.14 9.3.3 Advantages of a Dependency-Based Model for the Auto Wake-Up Interrupt

		WUTE	Reload	RTCCLK	CK_WUT
			WUTF	WUTWF
		IDLE		
	WUTE rising edge WUTE falling edge	
	ENABLING			
	waitRange(RTCCLK.period, RTCCLK.period * 2) and not WUTE falling edge / clear WUTWF	waitRange(RTCCLK.period, RTCCLK.period * 2) / clear WUTWF
	COUNTING	CK_WUT.period * wait(Reload, NS) and not WUTE falling edge / set WUTF
		WUTE falling edge	
		DISABLING	
	Figure 9.15:			

WakeUpTimerFSM

Figure 9.14: Sub-graph of the dependencies of the WakeUpTimerFSM node (drawn manually). Dotted arrows means there are other dependencies not shown.

https://www.netatmo.com/en-us/weather/weatherstation

This name never appears in the official reference manual, but we decided to use it as it seems meaningful.

Note that it is possible to detect rising and/or falling edges, always in this idea to make the hardware as flexible as possible. This parameter is managed by another field. In our example, we have to detect rising edges only.

Part II

First approach: Detecting Software Behaviors to Reveal Hardware Dependencies CHAPTER 6. GENERAL PRINCIPLES AND FIRST EXAMPLE 6.4. FIRST EXAMPLE: SIMPLE COUNTER

Simulation Process

The pseudo code of the simulation algorithm is shown in figure 6.11.

The simulation algorithm is driven by the list of promises. It starts with a set of initial promises. In this example, it corresponds to the sequence presented in table 6.2. The simulation stops when there are no more promises.

A pass in the main loop is called a step.

At each step, the promises with the earliest date are selected and the simulated time is advanced to this date, as usual in discrete-event simulators. Then each node is visited exactly once, in a total order compatible with the partial order defined by the active dependency graph.

Visiting a node means: getting its inputs from the incoming dependencies, computing its evaluate function, and setting values on its outgoing dependencies. Fetching the values of passive dependencies calls the compute function of the other corresponding nodes.

The evaluation of the nodes can produce promises, which are added to the global list (like new events in discrete-event simulators). Strictly speaking, the evaluation of the nodes produces promise directives, which are transformed into promises by the detailed algorithm, see section 7.5. In the sequel we observe the behavior of this algorithm for the simple counter. First, two evaluation examples are given for nodes Control and RegBank, respectively at dates T = 21 and T = 24, to introduce the evaluation mechanism. Then, we present the evaluation of each node at date T = 26, which gives an example of the execution of the algorithm on the full graph.

Visiting Control at T = 21

The first example is the visit of node Control at the T = 21. At this date, there is one promise that meets its deadline, it models a bus write access received from the bus. The corresponding graph is shown in figure [START_REF]HTS221 temperature sensor[END_REF].10d.

First, the RegBank node is visited and its evaluation function transmits the data to the Control node.

Then, the Control node is visited. The inputs and outputs of its evaluation function are summarized in the table 6.3. The function slices the data and sends it to each of the fields according to their bitwidth and position. For this access, the received value is 0x1, so 0b0 is transmitted to Flag which is at position 1, and 0b1 is transmitted to Enable which is at position 0 (both fields are a single bit). Flag and Enable input values are not used at this date for this operation. Vincent Morice

Flashback on the Elaboration of the Modeling Framework

The simulation algorithm 1 is presented in chapter 7 with the formal description of the basic objects of the framework. It has been designed to simulate models with the three types of dependency: passive, active and promise. Several iterations, rollbacks, modifications and tests were necessary to get an algorithm that allows to represent and simulate what we needed. We summarize below the main questions we had to consider, and the benefits of the choices we made.

Benefits of Having a Standard Object Library

This example shows the advantage of having a library with flexible basic objects: most of the blocks modeled are connected to the bus and have registers and fields with various access types. The proposed standard model defines a set of dependencies between the register bank, register and field nodes, which is instantiated differently according to the possible access types. Some dependencies may or may not be present and the type of nodes may vary (see section 6.3.6). It is important to show these mechanisms to the developer of the embedded code.

Benefits of Spatial Discretization with Node Types

The modeling of the simple counter shows a spatial discretization example. For instance, we choose to separate the Incrementer from the Count register. Another valid way to model the same example is to implement the +1 operation in the Count node's evaluation function. However, from a developer's point of view, Count is a register and does not perform any operation by itself. So it seems interesting to show the Incrementer and the Count register as two distinct elements.

Benefits of the Temporal Discretization with Edge Types

The two interesting dependencies in the simple counter model are captured and made explicit: the dependency from Enable to Count and the dependency from Count to Flag. They model an internal circuit on which we want to draw the attention of the embedded developer because of its significant impact on the behavior of registers and fields.

The types of dependencies immediately show the relationship nature between two elements. The active dependencies express the fact that stimulating the element at the base of the arrow, e.g. Count, can make the element at the top of the arrow, e.g. Flag, change immediately, here when the threshold is reached. Passive dependencies express the need for the element at the top of the arrow, e.g. Count, to be able to access the value of the element at the base of the arrow, e.g. Enable, which authorizes or not the incrementation. Promise dependencies express the ability of the element at the base of the arrow, e.g. the input port of the bus, to send control or data to the element at the top of the arrow, e.g. the RegBank, and especially that this process takes a certain amount of time. Promises play the role of posting events in usual discrete-event simulation.

The distinction between atomic and non-atomic effects is chosen according to what one wants to show to the embedded developer. It is clear that the Count to Flag dependency is atomic: no software instructions or other hardware processes can be interleaved between the instants when the modeled electrical signal transits from one element to the other. However, this is not the case for bus accesses that last one Vincent Morice • Another version of the module has been developed to be connected to an Instruction Set Simulator (ISS) that executes the same binary as on the real hardware.

During the development of the package, we realized that it would be more interesting to be able to execute the compiled code. Also, this thesis focuses on the challenges of managing peripheral blocks, so modeling the CPU is out of scope. 

GPIOA Modeling

The modeled system follows the wiring of the components on the Nucleo board (see section 3.2.1). Consequently, the most important parameters for the LED management are in the GPIOA block. It is modeled by the module whose graph is presented in figure 9.4. For the three registers and their fields, the classes provided by the package have been instantiated with the corresponding parameters (name, offset, position, bitwidth). They are all read and write accessible and have no specific behavior, so the default evaluate() and compute() methods are used.

A portion of the module code is shown in Figure 9.5. The two points of interest are:

• The custom RegBank. Its evaluation function is shown line 23 to 26. It models the control of the state of the block (activated or deactivated) through the GPIOAEN port. On the real hardware, register accesses are ignored when the block is disabled (and operates normally otherwise). This is modeled by a passive dependency from the port to the RegBank. When the value returned by the port is 1, the RegBank performs routing based on the parent class (line 26).

• The modeling of the PA5 pin by a dedicated node. It models the electrical state (high or low level) according to the values of the fields involved. This is modeled by passive dependencies from the fields to the pin. When the module is integrated in the full model, the PA5 node is linked to the LED by a passive dependency, so the compute() method of PA5 (line 11 to 20) gives the status of the LED.

The model of GPIOA module is limited to the management of LED according to the following scope:

• The three registers are the ones that the embedded developer has to act on, but several others are involved in the management of the pin. However, they can be left at their reset value without influencing the driving of the LED, so we have not modeled them.

• The registers include only one field where the real block registers have 15 (for example we have MODER0, MODER1, MODER2... up to MODER15). They control other pins the same way. The real hardware uses only one pin, so the model includes only the MODER5 field.

• The pin can take only two states. On the real hardware, other states are possible (such as the "high impedance" state mentioned in the comment of the code), and other adjustable parameters manage the electrical configuration. However, a two-state pin is sufficient for the use of our model. The promises that are due at a given date are displayed. On this example a promise that models a bus write to the EXTI arrives at 969 nanoseconds (line 2). The output format is:

• Bus access promise: [source node -@ address, data decimal/data hexa/data binary-> destination node] Commands allow to manage the display of some information related to the evaluation of the nodes:

• unmute m displays the evaluation information of all the nodes of module m.

• mute m hides the evaluation information of all the nodes of module m.

• solo m hides the evaluation information of all nodes, and activates those of module m.

In figure 10.2, the evaluation information of the EXTI nodes are shown on lines 3 to 29. The information included are the names of the module and the node and the status of the connectors. For the memory nodes, the current value is also displayed. If it has changed the previous value is also shown with the -> separator in between. For instance the MR22 is set at this step (see line 17). The connectors information are formatted as so: The watch n [OPTIONAL: connector value] command allows to place a watchpoint on the node n. By default, when the node receives a promise from one of its input promise connectors, the simulation is paused and the control is given back to the user. A connector and a value can be specified, in which case it is also possible to request a break on the transfer of an active connector. In figure 10.2, a watchpoint has been set on the RegBank node of the EXTI. The message is displayed on line 30. This feature is inspired by the usual debugger breakpoint/watchpoint, but the advantage of having a model is that the simulation can be stopped on any node. A standard debugger can only break on memory/register accesses.

Graph Exploration

The debug n1 n2 n3... command generates a sub-graph of the modeled dependencies with n1 n2 n3 ... a list of node. Several examples of generated graphs are presented in the sequel. The tool performs a model exploration to generate and display a graph with chains of dependencies of the nodes. The exploration is based on the recursive algorithm explained in section 7.7. The recursion stops according to a constant c which can be defined beforehand with the command set_depth c. The recursion is finite by design following the graph structure (see chapter 7). By default, c is set to a value that explores the entire dependency chains. This ensures that they are all shown to the user but can lead to results that are difficult to understand. This problem is discussed further in section 10.4.2.

Additional information are available in the console: a string representation of the evaluation and/or compute function of each nodes and parts of the circuit documentation that correspond to the presented nodes, when existing (for example for registers and fields accessible by the software). An example is shown section 10.2.
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Second Software Implementation

The correct code shown on figure 10.6 starts by setting the GPIOAEN field (line 3). 

Functional Check with Simulation

The simulation is restarted and paused at the same point. The same debug LED command is run and gives the graph figure 10.7 (the console output is the same as previously). This time, the LED is indeed lit, and the fields are at the right value.

As mentioned in chapter 3, finding the solution can take a while for the embedded developer, especially if he doesn't know that each circuit block needs its clock to be enabled to work properly. GPIO 

Understanding the Origin of the Bug by Exploring the Model

The simulation is restarted and paused on the first triggering of the same watchpoint, i.e. at the date 698,427 ns which corresponds to the first row of Table 10.1. This date corresponds to the first counting cycle of the timer. A sub-graph is generated using the debug IRQPending command with an exploration depth of 4. The graph is shown in figure 10.9. On this graph, we can see that the IRqPending node (located at the bottom right) can receive several interrupt sources from the different modeled blocks. By following the dependency to its left, we can see that it passes through the EXTI, and comes from the RTC. The EndCountIrq node (located at the bottom center) drives the RTC end-of-count interrupt signal. The nodes in the RTC block are the most interesting and inform the embedded developer about the operation of the block:

• The end-of-count interrupt signal depends on the WUTF flag. The active dependency indicates that it is a change of state of the flag that drives the signal. This can already give the intuition that a rising edge on the flag is necessary to raise the interrupt.

• The flag depends on an internal circuit modeled by the node WUTFlagClearFSM (on its top left).

It is a promise dependency which suggests an effect of some duration.

At this point, everything seems to be correct. A new watchpoint is defined with the following command: watch WUTF WakeUpTimerFSM 'set'. 

Solution

We mentioned that the console output of figure 10.11 shows a comment about the duration t c of the flag clear procedure. The formula 10.1 shows that t c depends on the periods of the clocks CKWUT and PCLK. CKWUT is the counting clock of the timer, it is one of the dependencies of the state machine WakeUpTimerFSM which manages the counting (first line of the console output figure 10.12). CKWUT must therefore not be modified to keep a waiting time of 61 µs. It is therefore necessary to modify PCLK, which is the bus clock. Its frequency must be increased to reduce the period and thus the duration of the clear procedure t c . Finding the minimum value at which the clock should be set involves several parameters, some of which are not known precisely. For example, the value depends on the number of cycles to perform a bus access. We mentioned in section 8.5.2 (which presents the bus modeling) that the actual duration is difficult to know. However, a practical solution is to try to increase the frequency and run the newly

Appendices

Appendix A Potential Bugs With RTC Auto Wake-Up Feature

A.1 Use Case Description

The software aims to wait a certain time (for instance 1 second). To optimize power consumption, the chip can be put asleep in a low-power mode. On the STM32 the RTC internal peripheral has been designed for this purpose, among other. The RTC has an auto wake-up feature. This is a basic timer with its dedicated clock. The software starts the auto wake-up timer then puts the rest of the chip asleep. When the auto wake-up timer ends counting, it triggers an interruption that awakes all the chip.

A.2 Bugs List

When implementing the use case, one may face all bugs briefly described in the table A.1.