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Abstract

Porous materials science is at the heart of processes impacting our societies with ap-
plications in energy storage/conversion, environmental protection, gas separation, etc.
The separation of small molecules such as CH4 and CO2 - relevant for greenhouse gas
reduction - remains a challenge as they interact weakly and not very specifically. In this
context, nanoporous silica materials such as zeolites are promising as they are perme-
able materials through which gases are separated according to their size, diffusivity and
concentration. However, despite a growing number of studies on these materials, the
coupling mechanisms between adsorption, diffusion and transport remain poorly under-
stood in many aspects.

This thesis aims at elucidating the fundamentals of adsorption and transport in zeolite
materials using a coupled experimental and modeling approach. In this context we will
focus on the behavior of methane (CH4) in silicalite-1 zeolites by combining adsorption
and neutron scattering experiments with molecular simulations such as Monte Carlo
and molecular dynamics.In a first step we study the influence of pressure and temper-
ature on methane adsorption in zeolite crystals and thin layers. A model based on the
Frenkel-Halsey-Hill approximation and the Polanyi model is developed to reproduce the
adsorption isotherms at different temperatures. In a second step, we study the indi-
vidual diffusion of methane molecules and its dependence on the loading and on the
temperature. We show that a free volume theory reproduces the diffusive behavior in-
cluding its anisotropic components in the different crystal directions. Finally, in a third
step, we study the collective diffusion and the flux of methane in the zeolite on different
time and space scales. Collective diffusion coefficients are calculated as a function of the
loading. We use the De Gennes narrowing model - which relates the confined methane
structure factor to the collective diffusion coefficient - to successfully describe our results.

In conclusion, the analysis of our results allows to propose models to explain and predict
the behavior of fluids in a zeolite and in particular the coupling between structural,
thermodynamic and dynamic aspects. This subject at the interface between physics
and physical chemistry is a fundamental research but has a strong applicative potential.
Based on an approach combining experiment and theory, this subject bring a deep
molecular understanding of these systems which could allow to optimize their design
and use.

1



Résumé

La science des matériaux poreux est au cœur de procédés impactant nos sociétés avec des
applications en stockage/conversion d’énergie, protection de l’environnement, séparation
des gaz, etc. La séparation de petites molécules comme CH4 et CO2 – pertinente pour
la réduction des gaz à effet de serre – reste un défi car elles interagissent faiblement et
peu spécifiquement. Dans ce contexte, les matériaux nanoporeux de silice tels que les
zéolithes sont prometteurs car ce sont des matériaux perméables au travers desquels les
gaz sont séparés selon leur taille, diffusivité et concentration. Pourtant, malgré un nom-
bre croissant d’études sur ces matériaux, les mécanismes de couplage entre adsorption,
diffusion et transport restent mal compris par de nombreux aspects.

Cette thèse vise à élucider les éléments fondamentaux de l’adsorption et du trans-
port dans des matériaux zéolithiques en utilisant une approche couplant expériences et
modélisations. Dans ce contexte nous nous intéresserons au comportement du méthane
(CH4) dans des zéolithes de type silicalite-1 en associant des expériences d’adsorption
et de diffusion neutronique à des simulations moléculaires de type Monte Carlo et dy-
namique moléculaire. Dans un premier temps nous étudions l’influence de la pression et
de la température sur l’adsorption du méthane dans des cristaux de zéolithes et des films
minces. Un modèle se basant sur les approximations de Frenkel-Halsey-Hill ainsi que
sur le modèle de Polanyi est développé afin de reproduire les isothermes d’adsorption à
différentes températures. Dans un second temps nous étudions la diffusion individuelle
des molécules de méthane et sa dépendance en fonction du taux de remplissage de la
zéolithe ainsi que de la température. Nous montrons qu’une théorie de volume libre
reproduit le comportement diffusif y compris dans ses composantes anisotropes dans les
différentes directions cristallines. Enfin dans un troisième temps, nous étudions la dif-
fusion collective et le flux de méthane dans la zéolithe sur différentes échelles de temps
et d’espace. Les coefficients de diffusion collectifs sont calculés en fonction du taux de
remplissage des zéolithes. Nous utilisons le modèle du rétrécissement de De Gennes –
qui relie le facteur de structure du méthane confiné au coefficient de diffusion collectif –
pour décrire nos résultats avec succès.

En conclusion, l’analyse de nos résultats permet de proposer des modèles pour expliquer
et prédire le comportement de fluides dans une zéolithe et notamment le couplage entre
les aspects structuraux, thermodynamiques et dynamiques. Ce sujet à l’interface entre
physique et physico-chimie relève de la recherche fondamentale mais présente un fort
potentiel applicatif. En reposant sur une approche alliant expérience et théorie, ce
sujet apporte une compréhension moléculaire approfondie sur ces systèmes qui pourrait
permettre d’optimiser leur conception et leur utilisation.
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Introduction

In its last report, the IPCC (“Intergovernmental Panel on Climate Change”) warned on
the inefficiencies of the policies in place to mitigate global warming and climate change.
Without any drastic change in these public policies, experts from IPCC predict an in-
crease of Earth’s temperature by 1.5◦C by the end of this century with catastrophic
consequences for humans and ecosystems. The IPCC report also highlights industrial
processes as one of the main sources of greenhouse production. As an example, distilla-
tion processes, which are widely used to separate chemical compounds, are an important
part of industrial energy consumption. Typically, in the United States, between 45%
and 55% of the industrial energy is consumed on separation processes (data from 2015
reported in [1]). Among these processes, distillation corresponds to the half - in term
of the energy consumption. For example, in oil and gas companies, most refineries use
distillation to separate hydrocarbons from crude oil. This process involves 230 GW per
day, which is the United Kingdom consumption for a year [2].
In order to reduce the impact of energy-consuming chemical separation processes, so-
lutions have been proposed to separate chemical components and, more generally, to
reduce the associated energy consumption in industrial processes. A known efficient al-
ternative to distillation consists of using nanoporous materials to separate hydrocarbons
according to their molecular size. As a result, nanoporous materials and membranes re-
ceive increasing attention as the broad class of available materials allow tuning and
adjusting the permeability to gas and separation properties. However, even if many of
such materials are already used in industrial applications, extension of their use to a
large spectrum of separation processes requires a better knowledge of the basic mech-
anisms at play within these materials. Indeed, optimizing separation processes within
such nanoconfined environments requires to unravel how fluid molecules behave inside
their complex nanoporosity - which includes deciphering the dependence on pressure,
temperature, etc. of fluid adsorption and transport in nanoporous solids. Beyond the
issue of process optimizing, this work is part of fundamental research which should bring
- we believe - its own contributions to public knowledge as it draws a picture of possi-
bilities and solutions that are available for facing social and environmental challenges.

In this framework, my thesis work is aimed at investigating gas adsorption and trans-
port mechanisms in a well-known, prototypical nanoporous material: zeolites. In gen-
eral, porous media have a strong permeability to gas with a porosity consisting of voids
present in a solid matrix. These solids possess a large internal surface where guest fluid
molecules interact with the host matrix. These molecular interactions are strongly de-
pendent on the chemical properties of both the solid surface and the guest molecules.
These interactions are responsible for adsorption mechanisms as they stabilize guest
molecules that accumulate at the solid surface inside the porosity. From a transport
point of view, due to thermal motion, these molecules are constantly in motion so that
jump between adsorption sites, molecule collisions and energy exchanges with other
molecules, etc occur. Diffusion and transport mechanisms describe the individual and
collective motions of these molecules as a result of these events through which molecules
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explore their environment. In the case of nanoporous materials, this environment is
strongly confined as the pore dimension is of the order of 1 to 100 molecular sizes (ac-
cording to IUPAC, nanopores refer to pores between 1 and 100 nm). Such confinement
strongly impacts the thermodynamics and dynamics of fluid molecules.

Early discoveries of nanoporous materials are quite old as zeolites were described by
Alex Cronstedt in 1756. If a large variety of porous materials exists naturally, progress
in synthesis methods in chemistry have allowed scientists to manufacture nanoporous
materials with an almost infinite variety of chemical compositions, porous volume and
shape. In turn, this versatility allows covering a very broad range of properties and
applications. The knowledge gain in this field has led to classify nanoporous materials
according to their chemical composition and pore size. In parallel to the discovery and
synthesis of nanoporous solids, adsorption phenomena in pores started to be observed at
the end of the XVIIIth century – with the first measurement of adsorption on charcoals
and clays. Nowadays, adsorption is routinely used as a characterization method which
allows one to assess key material properties such as their porous volume, specific surface
area, pore size, etc. Significant work has been devoted to this subject and adsorption
isotherms are standard data to classify porous materials according to their pore size and
porous architecture [3]. As far as dynamical properties are concerned, theoretical frame-
works describing diffusion and transport were first developed by Fick and Stokes in the
XIXth century. These pioneer scientists brought new concepts and tools to understand
matter diffusion which, in turn, opened new areas in research. Later, in the XXth cen-
tury, new formalisms such as Onsager’s theory were developed to link thermodynamic
and dynamic properties through the same framework – including the case of transport
in porous media.

The large body of experimental and theoretical studies dedicated to adsorption and
diffusion in nanoporous materials has been already reviewed [4, 5]. However, the coupling
mechanisms between adsorption, diffusion and transport within nanoporous materials
remains poorly understood. In particular, only few studies have reported consistent
models to predict the behavior of fluids in these solids. Within this context, the present
thesis focuses on the three following aspects:

• The individual trajectory of molecules - known as self diffusivity or tracer diffu-
sivity - is dependent on the loading as steric repulsion between molecules combine
with thermodynamic and geometric effects within the confining material. In such
particular environments, the loading dependence of the diffusion coefficient re-
mains to be fully rationalized. Such an aspect challenges existing models such as
the Reed-Ehrlich model [6] - also known as surface diffusion model - which does
not fully predict all diffusivities observed experimentally.

• The collective diffusivity of molecules in such nanoconfined environments depends
on the length and time scales considered experimentally. This dependence has been
already related to the microscopic/mesoscopic structure of the geometry of the
confining solid with strong correlations between dynamic and structural properties
[7, 8]. Moreover, in contrast to self diffusivity, a simple consistent theoretical
picture of the collective transport of fluids in very narrow, anisotropic geometries
is still missing.

• Most nanoporous materials present external surfaces (i.e. interfaces between the
host solid and its external environment) where adsorption, diffusion and transport
mechanisms remain poorly understood. The impact of such external surfaces is
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already documented with striking examples in adsorption uptakes measurements
[9, 10] as well as in separation/chromatography where it plays a key role in the
balance between intra-particle diffusion and hydraulic transport [11, 12]. How-
ever, very practical questions remain unanswered such as the influence on gas ad-
sorption/transport coupling of the surface geometry (orientation, flexibility, etc.).
Moreover, a unified formalism to model in a consistent fashion adsorption, diffusion
and transport in the zeolite core and at its external surface is lacking.

The aim of the present manuscript is to elucidate the fundamental mechanisms driving
adsorption and transport in zeolite materials using a coupled experimental and model-
ing approach. In this context, we will focus on the behavior of a simple gas - methane
(CH4) - in a pure silica zeolite by combining adsorption volumetry and neutron scatter-
ing (QENS) experiments with molecular simulations (Monte Carlo, molecular dynam-
ics). Silicalite-1, the form of zeolite that will be considered throughout this document,
possesses a strong anisotropic structure with different pore geometries. The manuscript
is organized as follows.

• The first chapter provides a short summary of the basic concepts involved in
this work. We present the main characteristics of porous materials and some
application examples in which porous materials are involved. We also introduce the
fundamentals of adsorption, diffusion and transport with the underlying theoretical
frameworks which are at the heart of this study.

• The second chapter presents the principles of the experimental and numerical
methods used in this thesis. We introduce the basics of the molecular simulation
techniques employed in this work (Monte Carlo and Molecular Dynamics). For
the experimental part, we describe the volumetric adsorption technique and also
present general principles of neutron scattering.

• The third chapter is dedicated to the study of methane adsorption in zeolite crys-
tals and zeolite layers. As a first step, experimental and simulation results allow us
to probe the influence of pressure and temperature on adsorption isotherms. In a
second step, a model based on the Frenkel-Halsey-Hill approximation and Polanyi’s
adsorption potential theory is developed and applied to both zeolite crystals and
external surfaces as present in zeolite layers.

• The fourth chapter focuses on the dynamical properties of methane molecules
confined with the zeolite nanoporosity. We illustrate that neutron scattering ex-
periments combined with molecular simulations provide valuable information on
the pressure and temperature dependence of the self diffusion coefficients within
such extremely confined environments. We compare these two approaches to study
the effect of the anisotropic porous geometry. Finally, a simple free volume theory
is applied to the simulation data in order to rationalize the self diffusion behavior
of the guest molecules.

• The fifth chapter is dedicated to the collective and transport diffusivities inside the
zeolite porous network. In a first part, macroscopic collective diffusion coefficients
- at vanishing wave vectors – are calculated as a function of the methane loading
inside the zeolite. In a second part, we use the concept of De Gennes narrowing -
which relates the structure factor of confined methane to its collective diffusivity –
to describe the transport of methane. We also present the preliminary analysis of
an original neutron scattering experiment performed to probe collective diffusion
in zeolites.
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We wish to mention that a significant part of Chapter 3 in this manuscript is taken from
our published article “Gas Adsorption in Zeolite and Thin Zeolite Layers: Molecular
Simulation, Experiment and Adsorption Potential Theory” published in Langmuir in
2022 [13].
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1 General overview

This chapter presents fundamental concepts for understanding adsorption and transport
of gas in porous materials. In a first part, we will introduce the main properties that
characterize porous materials and also some examples of applications in which porous
materials are involved. We will describe more specifically zeolites and its Silicalite-1
structure which is going to be used in this work. In a second time, we will present
the fundamentals of adsorption and some physical models currently used to rationalize
and predict adsorption isotherms. In a last part, we will introduce fundamentals of
diffusion and transport through the definition of diffusion coefficients. We will also
present more specifically the different transport regimes observed in porous media and
a short literature review on diffusion and transport in zeolites.

1.1 Porous materials

Porous solids are common compounds in nature which have led to extensive research
since the middle of the 20th century. They encompass a large spectrum of structures
with different chemical compositions leading to interesting properties for many indus-
trial applications [3, 14, 15, 16]. Among them, we can cite catalysis, gas separation, gas
storage, etc. Zeolites constitute a specific type of porous materials; they are aluminosil-
icates as they are made up of SiO4 tetrahedra in which some of the Si atoms can be
substituted by an Al atom. Used in industry for many years [17, 18, 19], they are a key
element in various area such as oil industry for refining or for xylene separation (plastic
precursors) [20]. In the first section, we introduce some definitions and concepts about
porous materials and their applications. After some generalities, we focus on the specific
case of zeolites since they are at the heart of this thesis. Then, we will briefly intro-
duce the Mobil FIve (MFI) structure which corresponds to the specific zeolite structure
considered in this thesis.

1.1.1 Definitions

Porous materials are like Gruyere cheese. They are made up of a solid skeleton which
coexists with empty cavities – the so-called “pores”. These pores can be of different
sizes, typically from the molecular scale (∼ nm) to the macroscopic scale (∼ mm). They
can be of different shapes, from a regular geometry (spherical, cylindrical, etc.) to more
complex geometries with distorted pore shapes. Moreover, they can be connected to
each other to form a porous network or isolated from each other. In porous materials
with an “open” porosity, the pore network is accessible from the external environment
of the material. In contrast, in a porous material with a “closed” or “occluded” porosity,
the pore network is not accessible from the external environment of the material [21].
A schematic representation of porous materials and their internal surface is shown in
Figure 1.1(a).
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The intrinsic properties of a given porous material depend on the morphology and topol-
ogy of its porous framework but also on the chemical composition of its solid skeleton.
The morphology refers to the geometry of the pores while the topology refers to the way
the pores are connected together in the porous network (independent versus connected
pores, number of connections per pore, etc.). The following paragraphs present the
main basic concepts that allow characterizing porous materials such as the porosity ϕ,
the porous volume Vp, the pore size Dp, the internal specific surface Sp. We also present
other key elements that are relevant to the pore morphology and topology.

Closed
pore

Connected
pores

Opened 
pore

Solid 
skeleton

Complex
pore

Simple 
pore

Skeleton

Pores

Surface Sp

Sp
DP

f, Vp

Pore sizeDP

Porous volumeVp

Porosityf

Do

Do Pore opening size

(a) (b)

Figure 1.1: (a) Schematic representation of a porous material. Pores can be of different
shapes, from a simple spherical/cylindrical geometry to a complex geometry with a
distorted pore shape. Pores can be connected to form a porous network or isolated from
each other. If a pore is not accessible from the external environment of the material,
it is said to be “closed”. Otherwise, it is said to be “open”. (b) Representation of
different porous material properties. The porous volume Vp is defined as the pore volume
accessible to a fluid that would be set in contact with the material. The porosity ϕ
corresponds to the ratio between the porous volume and the total volume V (i.e porous
volume Vp + solid skeleton volume Vs). The internal surface Sp is defined as the surface of
the pore walls. The pore size Dp and the pore opening size Do are important parameters
to determine whether or not the pore is accessible to a given molecule.

Porosity ϕ and porous volume Vp. The porosity ϕ is an important property of
porous materials because it scales with the amount of fluid that can be contained inside
the material. It is defined as the ratio between the pore volume Vp and the total volume
V in the material (with the total volume V defined as the sum of the pore volume Vp

and the solid skeleton volume Vs):

ϕ =
Vp

V
=

Vp

Vp + Vs
(1.1)

Vp is the pore volume accessible to the fluid while V is the total volume of the material as
shown in Figure 1.1(b). The pore volume, skeleton volume and total volume are specific
properties, which means that these quantities are expressed in m3/g. Typically, zeolite
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materials have a porous volume Vp comprised between 0.1 and 0.35 10−6 m3 per gram
of material [22]. As will be discussed later in this section, such large porous volumes
confer some interesting storage properties to this class of materials.

Pore size Dp. The pore size Dp is another important parameter that characterizes
porous materials. According to IUPAC (International Union of Pure and Applied Chem-
istry) [23], porous materials can be subdivided into three categories [24, 21] illustrated
with practical examples in Figure 1.2:

Microporous solids with Dp ≤ 2 nm
Mesoporous solids with 2nm < Dp ≤ 50 nm

Macroporous solids with Dp > 50 nm

Nanoporous materials, which are defined as solids with pores having dimensions in the
nanometric range – typically between 1 and 100 nm – encompass both microporous and
mesoporous materials as exemplified in Figure 1.2 (a) and (b).

Figure 1.2: Typical porous materials as observed using electronic microscopy: (a) micro-
porous material consisting of zeolite Y, (b) mesoporous material and (c) macroporous
material [25]. [Adapted from Ref [25].]

Internal specific surface Sp. Porosity leads to another important feature of porous
materials: a large internal specific surface Sp. The specific surface is defined as the ratio
of the actual surface (including both the internal and external surfaces) normalized to
the sample mass (Sp is in m2/g). Zeolites possess an internal specific surface varying
between 300 and 700 m2/g [22]. For Metal Organic Frameworks (MOF), this surface
is often comprised between 1000 and 2000 m2/g but it can reach 7000 m2/g [26, 27]
(almost the surface of a football field!).

The concept of large internal surfaces can be pictured using a sheet of paper curled up
to form a paper ball. The ball holds in your hand but the sheet exceeds the size of your
hand when unfolded. Typically, the material surface is proportional to the inverse of
the pore size: Sp ∼ 1/ Dp. Thus, Dp ∼ 1 nm yields typical specific surfaces between
100 and 1000 m2/g! Molecules adsorbed at the zeolite surface go inside the pores and
stick to the surface because of molecular interactions between gas molecules and the
host porous material. This property is very important: a large internal surface allows
capturing many molecules. At the microscopic scale, the interactions that drive such
adsorption phenomena between the guest molecules and the atoms of the porous mate-
rial are dispersion interactions, dipolar interactions, etc. The generic term interactions
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responsible for adsorption are discussed in the next section.

Topology. Pores can be connected in different ways. Some simple network notions
allow classifying porous materials: connectivity and tortuosity. The connectivity can
be defined as the average number of connections between pores. Typical displacements
within the porous network increases with connectivity. The tortuosity τ corresponds
to the ratio between the physical length travelled by molecules, L, and the geometrical
distance between the start/end points of their displacement, L0 [28].

τ =
L

L0
(1.2)

However, this definition is often difficult to probe/assess. On the other hand, another
definition relevant to the physics of diffusion/transport can be used for the tortuosity
τ . The tortuosity can be defined as the ratio of the bulk and confined diffusivities (D0

s

and Ds, respectively).

τ =
D0

s

Ds
(1.3)

where Ds is the self diffusion coefficient of the fluid inside the porous material while
D0

s is the self diffusion coefficient of the fluid in the bulk phase taken under the same
thermodynamic conditions. The two definitions are not compatibles as the first one do
not consider the proportion of molecules which take the length path L considered. In the
other hand, we can notice that the second definition consider the tortuosity dependent
of the number of molecules. In general, τ > 1 as fluid diffusion in the pores is hindered
by confinement and surface interactions lead to reduced diffusivities. Some exceptions
exists when one consider slipping surfaces in confined media.

The porous network in a given porous solid is organized more or less regularly. Porous
materials can be divided into three categories according to the morphology and topology
of their porous network as illustrated in Figure 1.4:

• Porous materials with a crystalline network (i.e. where the solid atoms are located
periodically in space on a Bravais lattice). This includes materials such as zeolites,
clays and MOFs as shown in Figure 1.4 (c) and (d)).

• Porous materials with regular networks (but no underlying crystalline atomic
structure) such as MCM-41 (Mobil Composition of Matter) which are ordered
mesoporous silica.

• Porous materials with a disordered porous structure (i.e. with irregular pore
shapes and pore sizes). This includes active carbons which have an amorphous
structure obtained after a pyrolysis step at high temperature and an activation
step of organic matter (Figure 1.4 (b)).

1.1.2 Properties and Applications

The nanometric scale of the pore size in nanoporous materials is an important property
as this characteristic lengthscale is of the same order of magnitude as the range of
microscopic interactions in molecular liquids. As a result, the guest molecules properties,
when confined in the porosity, are very different from those for non-confined molecules.
Some interesting effects can be highlighted:

• Capillary condensation: gases liquefy inside the pores at a capillary pressure Pc

which depends on pore size Dp. The smaller the pore size, the lower the pres-
sure needed to liquefy the gas. This can be described using the Kelvin equation
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which states that the chemical potential corresponding to capillary condensation
is proportional to surface tension and inverse proportional to the pore size:

RT ln

(
Pc

P0

)
∼ γ

Dp
(1.4)

where P0 is the saturating vapor pressure and γ the liquid/gas surface tension.

• Another thermodynamic effect is the shift of the melting temperature Tf of water
in porous materials depending on their pore size Dp. This effect is described by
Gibbs-Thomson equation [29]. Such melting point shift is the topic of intense
research as it is involved in cement degradation upon thawing/unthawing cycles
[30].

As discussed above, porous materials possess a large internal surface that is the host
of interactions and, in some cases, reactions between the guest molecules and the host
structure (Figure 1.3 (a)). Many applications rely on these combined properties:

• Large internal surfaces that yield significant interactions between the host struc-
ture and the fluid

• Broad variability in terms of interaction type which depends on the fluid/solid
couple (dipole-dipole interactions, hydrogen bonding, Van der Waals interactions,
etc.)

There are many applications that rely on the remarkable properties of nanoporous ma-
terials. In practice, we will only discuss three important examples here: catalysis, gas
storage, and fluid separation. The characteristics of the porous material (pore size Dp,
etc.) are very important parameters in these applications. They can be obtained by
synthesising specific porous materials according to required specifications [31, 32].

Catalysis. Catalysis is an important application where nanoporous materials are in-
volved [33]. It is the most important economical activity of zeolites where these materials
are used. Catalysis often relies on the acid properties of the porous structure. The large
variety of zeolites in term of chemical nature, location of acid sites, density and thus se-
lectivity make them very interesting candidates for numerous catalytic applications [34].
Nowdays, by tunning their porous topology and composition, they can reach very high
performances in many processes [35]. An important example is the Y-type zeolite used
in catalytic process for the oil refinery industry [36]. It is typically used for the so-called
fluid catalytic craking or hydro-craking where long hydrocarbon chains are broken into
smaller chains (for example to produce gasoline).

Gas capture and storage. As already explained, the large internal surface in nanoporous
materials are at the heart of some important adsorption properties. Indeed, the strength
of molecular interactions between the host and guest atoms vary according to their
chemical nature. Adsorption can be selective or not (Figure 1.3(b)). While adsorption
concepts will be explained later in this overview chapter, we provide some practical
examples here. Storage of CO2 in coal mines is an important economical and envi-
ronmental application. To mitigate the amount of CO2 released in the atmosphere,
a practical solution consists of capturing CO2 in coal mines thanks to Van der Waals
interactions between this greenhouse gas molecule and the host carbon structure [37].
The CO2 sequestrated in abandoned coal mines is then monitored to avoid CO2 leaks
through the atmosphere.
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Figure 1.3: (a) Adsorption at the pore scale and confinement effects. Molecules in blue
are adsorbed inside the pore and stick to the wall due to molecular interactions with the
host pore surface. Owing to the large internal surface Sp, a large amount of molecules
can be stored inside the pores. The molecular size of the orange molecule is larger than
the pore opening size Do: it is blocked and therefore cannot be adsorbed. (b) Selective
adsorption. The interaction strength between the zeolite framework and the guest fluid
varies with the nature of the guest fluid molecules. The adsorption can be selective
which leads to the adsorption of different amounts of molecules according to their nature
(interactions are stronger with yellow molecules than with the blue molecules in the
cartoon shown here). The selectivity of adsorption is used to do separation.

Microporous materials such as zeolites can also be used to store solar energy. In summer,
some heat can be removed by desorbing water from the porosity of hydrophilic zeolites.
In winter, zeolites adsorb water molecules as the temperature decreases and release heat
towards the external environment as adsorption is exothermal [38]. There are currently
significant efforts being devoted to increasing the porous volume and explore new mate-
rials for such applications. Indeed, if the porous volume increases, the number of fluid
molecules that can be stored also increases.

Separation and purification. Natural gas separation is also an important economi-
cal and environmental application of nanoporous materials. To retrieve methane from
natural or synthetic gas steams, the natural gas has to be purified from CO2, water and
other gases (N2, O2, etc.). This separation can be realized using porous materials such
as zeolites or MOFs [39].
Zeolites can also be used to soften water by exchanging ions. Typically, in water soft-
ening, the zeolite material removes Ca2+ and Mg2+ ions while releasing Na+ ions from
aqueous solutions [40].
Zeolites are also used to separate and capture radioactive cations as cesium 137 for
waste treatment in nuclear industry. It lies on the availability of cations to transfer
between the zeolite structure and the radioactive element. After Fukushima accident,
large amounts of zeolite were dropped in the ocean near the nuclear plant to adsorb
cesium 137 isotopes (which have a quite long life time of 30 years) [41].
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In general, porous materials can be classified according to their nature (i.e their chemical
composition). They can be divided into three categories: organic (typically solids with
carbonaceous structures), inorganic (compounds with inorganic atoms in their struc-
ture) and hybrid (both organic and inorganic) materials [27] (Figure 1.4).

Organic materials. This category includes materials such as polymers, carbon nan-
otubes and active carbons. Carbon nanotubes are made up of one or more carbon
sheets rolled on itself. It provides to these materials many properties including impor-
tant mechanical strength. In this family, we also find polymers of intrinsic microporosity
(PIMs) which are polymers with porosity generated by the voids formed between their
rigid chains. Finally, active carbons are carbonaceous materials which undergo a specific
treatment to obtain an amorphous porous structure. Their large adsorption capacity is
used for gas masks, air filtration, etc.

Inorganic materials. In this category, the most important sub-category is composed
of porous oxides which are materials made up of titanium oxide, silica or alumina. This
thesis will be devoted to the following inorganic material category: porous aluminosili-
cates and, more precisely, zeolites. Aluminosilicates are minerals made up of Si linked
with O to form silica tetrahedra. Some Si may be replaced by Al atoms which will
induce charge defects in the structure framework (these defects are compensated by the
presence of extra-framework cations). The two important families of aluminosilicates
are the tectosilicates and phyllosilicates. We will not further introduce zeolites here
because as il will be done in the next section of this chapter.

Hybrid materials. This family, which is composed of solids made up of both organic
and inorganic parts, includes materials such as Metal Organic Frameworks (MOFs).
MOFs are made up of metal ions that are linked by organic molecules. These materials
were discovered recently at the end of the XXth century. They are considered as promis-
ing candidates for practical applications in industry. Indeed, their large internal specific
surface makes them good candidates for gas storage, transport and separation [3].

Figure 1.4: Examples of porous materials with different pore networks and belonging
to different chemical categories: (a) Organic solids with regular network such as carbon
nanotubes. (b) Organic solids with disordered pore network such as active carbon. (c)
Inorganic solids with a crystalline network such as zeolites. (d) Hybrid solids with a
crystalline network such as MOFs. [Courtesy Benoit Coasne]

1.1.3 Zeolites

History and definitions. Zeolites were discovered by Alex Cronstedt, a swedish
chemist, in 1756. During his experimentation over stilbite, a natural mineral, he ob-
served that the mineral surface seems to be “boiling” upon heating up to 150◦C. Indeed,
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upon heating, this mineral expels the water trapped under ambient temperature in its
hydrophilic porous structure. The mineral was named zeolite as it derives from the
Greek zeo (“which boils”) and lithos (“stone”) [3]. Today, there are about 250 identified
zeolite structures, including 67 natural structures. The International Zeolite Association
(IZA) provides a website which lists all discoveries about zeolites [42]. The large number
of industrial applications (oil industry, catalysis, etc.) have boosted significant research
efforts to create new zeolite structures such as zeolite films [43], nanozeolites [44], hollow
zeolites [45], hierarchical zeolites [46], etc. Such intense research helped to develop the
field of zeolite synthesis and engineering.

Microscopic structures. Zeolites are microporous materials (Dp ≤ 2 nm). They ex-
hibit different pore sizes according to the specific zeolite type. They possess different
connections between their pores which generate different network structures. They are
aluminosilicates as they are composed of silicon and aluminium atoms. The ratio Si/Al
significantly affects the properties of the structure. Zeolites possess a crystalline struc-
ture as atoms occupy positions that repeat periodically in space to form a macroscopic
crystal. At the microscopic scale, zeolites are arranged in the three space dimensions as
tetrahedra TO4 (SiO4 or AlO4) [3]. These tetrahedra, coined as Basic Building Units
(BBU) are connected by oxygens to form Secondary Building Units (SBU). The latter
can arrange over 23 different forms such as square, octagon or dodecagon, etc. For this
reason, there is a limited number of zeolite types even if this number is extremely large.
At the mesoscopic scale, the arrangement of these bricks forms Composit Building Units
(CBU) such as polyhedra, cubes, prisms, etc. They constitute the solid framework of
zeolites [47]. The arrangement of different CBU allows building the elementary lattice,
whose repetition according to symmetry operations generates the macroscopic crystal
(Figure 1.5).

Figure 1.5: Silicon and oxygen atoms are linked to form a tetrahedron, the basic building
unit in zeolite. These tetrahedra are arranged to form the lattice with its specific
periodicity repetition in space forming the zeolite crystal (here, we show the silicalite-1
zeolite structure). The 10 T atoms which build the channel opening are represented by
blue stars.

The microporous pore size (≤ 2 nm) in zeolites is roughly of the order of magnitude
of the molecular size of many small molecules such as CO2, CH4, etc. For a guest
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molecule to enter in a zeolite pore, the pore opening has to be composed of more than 8
T atoms (which means, an arrangement of at least 8 tetrahedra) as shown in Figure 1.6.
According to the atoms layout, which defines the zeolite structure type, the structure
presents different pore diameters Dp and pore opening sizes Do. They can be classified
as follows [24]:

• Small pore sizes with an opening of 8 T atoms leading to a window size between
3 and 4.5 Å

• Intermediate pore sizes with an opening of 10 T atoms leading to a window size
between 4.5 and 6 Å

• Large pore sizes with an opening of 12 T atoms leading to a window size between
6 and 8 A

• Extra-large pore sizes with an opening of at least 14 T atoms leading to a window
size larger than 8 Å

According to their pore size, the zeolite structure is built of three pore categories:

• Cages: Polyhedra can arrange to form a pore with an opening smaller than 8 T
atoms. Such pores only host small molecules such as water, methane and carbon
dioxide. For example, the LTA zeolite possesses cages with an opening of 6 T
atoms and a pore diameter of 6.1 Å (Figure 1.6(a).)

• Cavities: Like cages, cavities are formed by polyhedra arrangement. However,
their pore opening Do is larger than 8 T atoms so that they can host many guest
molecules including large molecules such as xylene, kerosene, olefin, etc. For ex-
ample, FAU zeolites possess cavities with an opening with 12 T atoms and a pore
opening Do of 7.5 Å and a pore diameter Dp of 13 Å (Figure 1.6(b).

• Channels: Channels are cavities but extended to infinity in one dimension. For
example in MFI zeolites, right channels have an opening of 10 T atoms which
corresponds to a pore opening size of 5.4 Å (Figure 1.6(c)).

Chemical nature. The chemical composition of zeolites is an important parameter,
which can vary from a zeolite to another. The general chemical composition of a zeolite
writes: Mn+

x/nAlx(SiO2)1−x. In this chemical formula, x the stoechiometric number of Al,

1−x the stoechiometric number of Si, x/n the number of cations and Mn+ the nature of
cations M with a positive charge n. The ratio between Si and Al is the ratio between the
numbers of Si and Al atoms which is noted rSi/Al = (1−x)/x. The Lowenstein rule [48]
states that two Al atoms cannot be adjacent without making the structure unstable. We
note that recent studies have reported in some cases a violation of the Lowenstein rule
(typically under water loading conditions) [49]. The Lowenstein rule implies that rSi/Al

varies between ∞ (pure silica material) and 1 (equal Si/Al content). When an Al atom
substitutes an Si atom, a charge defect is induced because of the lower valency number
for Al (+III) than for Si (+IV). This extra charge has to be compensated by cations; if
there are x Al atoms, the zeolite neutrality requires x positive charges (if one cation has
n positive charges, the zeolite requires x/n cations outside the skeleton). These cations
can be alkaline metal ions (Na+, Ca2+), transition metal ions (Ag+, Ni2+), protons H+,
etc. These cations lead to zeolites with some important properties for catalysis, ion
exchange, gas separation, etc. as explained earlier in this chapter.

13



(c)(b)(a)

Do ≈ 7.5 Å
Dp ≈ 13 Å

Do ≈ 4.1 Å
Dp ≈ 11 Å

Do ≈ 5.4 Å

Figure 1.6: Three different zeolites with various pore diameters and pore openings [taken
from Ref. [42]]: (a) LTA structure with cages, (b) FAU structure with cavities, and (c)
MFI structure with channels.

1.1.4 MFI structure

Composition. As discussed in the previous section, zeolites encompass many structures
which have different crystalline frameworks and porous network organizations. Fauja-
site (FAU), Mobile FIve (MFI), Beta Zeolite (BEA), Zeolite A (LTA), which are among
the most widely used zeolites, possess their own (i.e. unique) crystalline structure with
different characteristics, pore sizes, and networks. The MFI structure (Mobile FIve) was
discovered in 1972 thanks to significant developments made in the field of zeolite synthe-
sis. It is nowadays used in chemical industry and oil industry for cracking for instance
[3]. This zeolite material is characterized by a strong content in silica: the ratio rSi/Al

is very high from 12 to infinity. The MFI family can be divided into two categories. If
the solid contains aluminium atoms, the zeolite belongs to the ZSM-5 (Zeolite Socony
Mobil 5: ZSM-FIve) subcategory. If the solid does not contain aluminium atoms, MFI
zeolite is coined as silicalite-1 (in practice, silicalite-1 has a ratio rSi/Al > 100).

Figure 1.7: Composite Building Units CBU involved in the formation of the MFI zeolite
structure. The arrangement of these units allows building channels [42].

Structural organisation. Depending on the thermodynamic conditions (pressure,
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temperature, etc.), the MFI crystallizes either in the orthorhombic system (α = β =
γ = 90) or in the monoclinic system (but with an angle very close to an orthorhombic
lattice). The unit cell is composed of 96 silicon and 192 oxygen. The volume of the unit
cell is 5211.3 Å and the MFI density is 18.4 T/1000 Å3 [42] which leads to a density of
about 2811 kg/m3.

The arrangement of CBU (Figure 1.7) generates a microporous structure composed of
channels and small pores. There are two channel types characterizing the MFI structure:
straight channels and sinusoidal (or zigzag) channels which are crossing in intersection
areas (Figure 1.8). The straight channels, which are parallel to the y-axis, possess
an opening of 10 tetrahedra linked between them (Figure 1.4) and a pore opening Do

comprised between 5.1 and 5.6 Å. The pores have an opening of 5 tetrahedra which can
accept small molecules only such as water, CO2, CH4, etc.

Figure 1.8: Channels and intersections in the MFI structure [adapted from Ref. [50]]: (I-
red) straight channels, (II-blue) sinusoidal channels, (III-orange) intersections between
straight and sinusoidal channels.

1.2 Adsorption phenomena

Adsorption is a phenomenon which has been studied since the XVIIIth century. At the
beginning, some pioneering experiments allowed the scientists to make the first discov-
eries on adsorption. Typically, in 1773, Scheele and Fontana observed and measured gas
adsorption by charcoal and clay. Then, in 1783, Lowitz managed to bleach an acid solu-
tion by removing the organic impurities through adsorption in charcoals [51]. Important
developments in physics, chemistry, and physical chemistry have led to physical models
which allow to rationalize and describe adsorption. In this section, we first introduce the
general principles related to the physics and chemistry of adsorption. Then, we discuss
the main adsorption models together with their limitations.
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1.2.1 Concepts

The adsorption phenomenon is defined by the International Union of Pure and Ap-
plied Chemistry (IUPAC) as the increase in the concentration of molecular species –
the so-called adsorbate – at the interface with a solid or a liquid phase – the so-called
adsorbent [23]. This molecular accumulation at interfaces is due to attractive forces that
occur at the microscopic level which bind the adsorbed molecules with the adsorbent.
It forms a layer whose density departs from the bulk phase counterpart as illustrated in
Figure 1.9. Adsorption is involved in many processes which can involve very different
adsorbent/adsorbate couples: solid/liquid, liquid/liquid, liquid/gas, solid/gas. In the
framework of this thesis, we will only consider the last case even if many of our conclu-
sions could be readily extended to other situations.
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Figure 1.9: (a) Schematic representation of gas adsorption onto a solid surface (adsor-
bent). In this molecular description, the solid is coined as adsorbent with the fluid
adsorbed at its surface forming an adsorbed layer. Far from the solid surface, the fluid
molecules form the bulk gas phase as they do not experience any molecular interac-
tions with the atoms of the solid. (b) Schematic picture of the concepts of the Gibbs
dividing surface and surface excess concentration. The interface i.e. adsorbed layer is
spatially located between the two vertical dashed lines; in this region, the density of the
molecular species adsorbed at the solid surface departs from (1) the density within the
adsorbent at the position za and (2) the density in the gas phase at the position zg.
The Gibbs dividing surface (GDS) can be taken anywhere within the interfacial layer.
In this schematic view, it is represented by the black vertical line. The surface excess
concentration nexc

a (molecules shown in blue) corresponds to the number of molecules in
the interfacial i.e. adsorbed layer once the concentration of the bulk phase is subtracted
(molecules in red). (c) Schematic representation of Lennard-Jones potential energy Ep

that would feel an molecule located at a distance r from another atom. It is the sum of
the repulsive (red dashed line) and the attractive (yellow dashed line) terms.

Physisorption versus chemisorption. Depending on the energy involved in adsorp-
tion processes, we can define two adsorption types: physical adsorption (physisorption)
and chemical adsorption (chemisorption) [3]. Chemisorption involves chemical bonds
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between the adsorbent and the adsorbate at the interface. It is characterized by large
interaction energies which lead to high adsorption heats (∼ 1 eV). This type of ad-
sorption is irreversible as the energy involved is much larger than the thermal energy
at room temperature. In contrast, physisorption, which will be considered throughout
this thesis, involves intermolecular forces such as Van der Waals forces with correspond-
ing interaction energies much lower than for chemical bonds. Typically, the following
features apply for physisorption:

• Physisorption is exothermic so that physical adsorption is spontaneous. At con-
stant T and P , ∆G < 0 for the system made up of the bulk gas phase and the
adsorbed phase). The free enthalpy can be written as ∆G = ∆H − T∆S so that
the adsorption enthalpy ∆H must be negative (since the entropy decreases upon
adsorption due to the decrease in the degree of freedom of the adsorbed molecules)
[52].

• The heat of physisorption is of the order of ∼ 0.1 eV (few times the thermal energy
kBT ).

• Physisorption leads to multilayer adsorption and is reversible.

Interfaces and surface excess concentrations. Considering a solid surface as shown
in Figure 1.9(a), an interface can be defined as a particular zone which separates two
different thermodynamic phases. We will use the term “bulk” phase to refer to the volu-
metric part of these two phases. They have their own thermodynamic properties which
are independent from each other. In contrast, the properties of the interface depends
on the properties of the two phases in contact. Gibbs was one of the first scientists
to introduce a thermodynamic model for the interface by using the concept of surface
excess [51]. The interfacial layer is the region of space where the density of the molecular
species considered departs from those for the bulk phases [i.e. the region between the
two vertical dashed lines in Figure 1.9(b)]. There is an infinite number of possibilities
for the position of the Gibbs dividing surface (GDS) as it can be positioned anywhere
within the interface layer. The surface excess amount nexc

a is the number of molecules
in the interface layer once the concentration of the bulk phase is subtracted. Mathe-
matically, it can be expressed as: nexc

a = ntot
a − ρgVint where ntot

a is the total number
of molecules at the interface, ρg is the gas phase density and Vint the volume of the
interface. In Figure 1.9(b), the surface excess amount is represented by the blue spheres
while the red spheres correspond to the term ρgVint. The surface excess concentration is
the surface excess amount divided by the surface of the GDS. These excess quantities,
which are expressed as relative quantities with respect to the same quantities for the
bulk phases, depart from absolute quantities.

Intermolecular interactions and forces. Considering the system in Figure 1.9(a),
we now focus on the intermolecular interactions which occur at the interface. Such
interactions are responsible for the adsorption of molecules on the adsorbent surface.
Their origin can be found in intermolecular forces e.g. Van der Waals interactions. In
the XIXth century, Laplace (1806-1807) discovered the existence of intermolecular forces
which apply at short distances and are stronger than gravitational forces. This dis-
covery gave a first explanation for the cohesion of liquids as well as for condensation
phenomena and adsorption of fluids into solids at surfaces. In 1814, Saussure produces
a first theory of physical adsorption in which the intermolecular forces are assumed to
occur at the surface of solids and modify the behavior of fluids in its vicinity. Among
important contributions to such intermolecular interactions, the dispersion interactions
find their origin in fluctuations of the electronic cloud around its equilibrium in atoms
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and molecules [53]. Such fluctuations generate non permanent electrical moments (dipo-
lar, quadrupolar, etc.) which lead to the so-called dispersion interactions. The atoms
situated at a distance r from these fluctuating electrical moments feel an attractive inter-
action with an energy proportional to −r−6. On the other hand, at very short distances,
this energy is counterbalanced by Pauli repulsion which decays exponentially with the
distance r. In practice, for the sake of convenience, this repulsive interaction is often
approximated using a scaling in r−12 – in fact, for mathematical reasons as this scaling
is the square of the dispersion term in r−6. This is the spirit of the Lennard-Jones
potential which is illustrated in Figure 1.9(c):

V (r) = 4ϵ

[(
σ

r

)12

−
(
σ

r

)6]
(1.5)

In this equation, r is the distance between the two interacting atoms while ϵ is the
potential well-depth and σ the distance at which the repulsive and attractive forces
compensate each other. In the system gas/solid considered here, Lennard-Jones poten-
tial applies between particles in the gas phase and at the interface between atoms that
compose the solid and gas particles.

Thermodynamics of adsorption. Simple thermodynamical ingredients allow de-
scribing the evolution of the system and its equilibrium state upon adsorption. Let us
start with some basic definitions. The free enthalpy G of a system at a temperature T
and pressure P can be defined from the internal energy U and entropy S of the system:

G = U+ PV− TS (1.6)

where V is the volume of the system. The free enthalpy is a state function which is
defined at equilibrium. Considering that G is an additive function, the free enthalpy of
a system is equal to the sum of the free enthalpy for each phase. In parallel, we can
introduce the chemical potential µ which is defined as the internal energy variation dU
of the system when the number of molecules N varies by a quantity dN:

dU = TdS− PdV + µdN (1.7)

For a single component fluid, the free enthalpy G is also equal by definition to the
chemical potential G = µN. Therefore, by differentiating the equation Eq. (1.6), we
obtain:

dG = dU + PdV +VdP− TdS− SdT = VdP− SdT + µdN (1.8)

where the second equality is obtained by inserting Eq. (1.7) into Eq. (1.8). Comparison
between this last expression and dG = µdN+Ndµ leads to the Gibbs-Duhem equation:

Ndµ = VdP− SdT (1.9)

At constant temperature, dT = 0, the Gibbs-Duhem equation simplifies to:

dµ = VmdP (1.10)

where Vm is the molecular volume. Integration of the Gibbs-Duhem equation between
a known reference point (P0, µ0) and some specific conditions corresponding to a point
(P , µ) leads to:

µ− µ0 =

∫ P

P0

Vm dP (1.11)
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Upon assuming that the fluid behaves as an ideal gas, i.e. Vm = kBT/P , we obtain:

µ = µ0 + kBT ln

(
P

P0

)
(1.12)

In contrast, for an non-ideal gas, the pressure must be replaced by the fugacity f . The
fugacity can be seen as an effective pressure which corresponds to the gas pressure of an
ideal gas at the same chemical potential.

Using Eq. (1.8), upon transforming a system involving a single molecular species at
constant temperature T and pressure P (so that the chemical potential µ is also con-
stant), the variation in the free enthalpy G is equal to dG = µ dN. If we now consider
the two fluid phases in presence (i.e. the bulk gas phase denoted ‘g’ and the adsorbed
phase denoted ‘a’), we can write dG = µadNa + µgdNg. At equilibrium, the function G
is minimal so that dG = 0 so that the transfer of dN molecules from the gas phase into
the adsorbed phase at constant T and P writes (dNg = −dNa):

dG = −dN(µg − µa) = 0 (1.13)

which leads to:
µg = µa

Therefore, at equilibrium, the chemical potential of a given compound is the same in all
coexisting phases (extension to multicomponent systems is straightforward).

Gibbs extended the thermodynamic of surfaces by associating to the interface phase
excess thermodynamic variables that allow to define the free surface energy: dGs =
−Adγ − SsdT + A

∑
i µidn

s
i with A the area of the surface, γ is the superficial tension

(in J.m−2), Ss the surface entropy, µi and dns
i the chemical potential and density of

the i species respectively. Gibbs-Duhem equation for two dimension system can be
established using the last equation and dGs = A

(∑
i µidn

s
i +

∑
i n

s
idµi

)
. It is also called

the Gibbs adsorption equation:

ssdT + dγ +
∑
i

ns
idµi = 0 (1.14)

with ss=Ss/A. At constant temperature, we get the Gibbs adsorption isotherm. For a
single component:

dγ

dµ
= −ns (1.15)

The superficial tension decreases when the chemical potential increases. The superficial
tension is due to Van der Waals forces which insure a stability in the system by the
cohesion of a liquid. However, at the surface, these forces are not compensated. Ad-
sorption is the thermodynamic phenomena which allows to stabilize the surface, and
decrease the superficial tension.

1.2.2 Simple physical models

The equilibrium observed when setting in contact an adsorbent and an adsorbate is
characterized by the characteristic adsorption isotherm. This important quantity de-
scribes the adsorbed amount na as a function of pressure P (or fugacity f) at constant
temperature T . At equilibrium, each point along the adsorption isotherm corresponds to
a unique chemical potential µ which is the same in both the adsorbed and gas phases as
explained above. Several physical models were proposed in the XXth century to provide
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a general framework to rationalize adsorption. In what follows, we only focus on three
important theories which are can be used to predict adsorption isotherms regardless the
type of the intermolecular interactions at play [51, 54].

Langmuir model. The Langmuir model was developed in 1918 using a kinetic descrip-
tion of the adsorption of gas molecules onto a flat solid surface [55]. This model treats
the adsorbent surface as an interface made up of a number Na of adsorption sites. These
sites, which are assumed to be energetically equivalent, can adsorb a single gas molecule
as illustrated in Figure 1.10. Using the kinetic theory of gases, Langmuir expressed the
adsorption vads and desorption vdes rates as a function of pressure P and the number
of adsorption sites Na. At equilibrium, the condition vads = vdes allows expressing the
fraction of occupied solid sites as a function of pressure P :

θ =
KAPA

1 +KAPA
(1.16)

where KA is the adsorption coefficient which describes the competition between adsorp-
tion and desorption processes (i.e. the larger KA, the faster the sites get occupied). In
practice, KA describes the slope of the adsorption isotherm in the low pressure range
(with a maximum adsorbed amount being reached at low pressures). Historically, the
Langmuir model is considered as a very important model as it opened the field of ki-
netic studies on adsorption. However, it is important to note that this model assumes
localized adsorption restricted to monomolecular adsorption. The assumption that all
sites are energetically equivalent imply that it only applies to homogeneous surfaces – a
picture that departs from reality for many experimental situations. Moreover, because
of the hypothesis that all sites are independent, this model fails to include lateral inter-
actions between adsorbed molecules. While this is a reasonable approximation – to some
extent – for small adsorbed amounts (low pressure range), this is known to fail at high
pressures but also for complex molecules. Despite such weaknesses, the Langmuir model
allows one to describe many systems in a very simple manner. In particular, this model
is routinely used to describe adsorption phenomena in many practical applications (e.g.
reaction kinetics at surfaces).

Brunauer, Emmett and Teller theory. Brunauer Emmet and Teller model (BET)
was developed in 1938 to extend the Langmuir model to multilayer adsorption [56]. In
this model, one models adsorption in the first layer (i.e. nearest layer from the surface)
using the Langmuir model. Then, it is assumed that the molecules adsorbed in the first
layer form adsorption sites for the second layer [and so on so that the ith layer provides
sites for adsorption in the i + 1th layer]. This model therefore allows the formation of
layers beyond the first layer as illustrated in Figure 1.10(b). The BET equation that
express the adsorbed volume in function of the pressure can be written:

1

V
[(

P
P0

)
− 1

] =
1

VmC
+

C − 1

VmC

P

P0
(1.17)

with V and Vm the volume of gas adsorbed at the pressure P and saturation pressure
P0 respectively. C is the BET constant and can be linked to the fraction of surface
unoccupied θ0 =

√
C − 1/(C − 1) [3]. In addition to the approximations made using the

Langmuir model, the BET model assumes that the adsorption energy beyond the first
layer is equal to the heat of liquefaction (in fact, this hypothesis is not necessary but it is
often assumed as it makes the application of the model easier). While this is a reasonable
approximation far from the solid surface, it becomes questionable close to the surface
as interactions with the adsorbent surface cannot be neglected. Moreover, like for the
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Figure 1.10: (a) Schematic description of the Langmuir adsorption theory. The solid
surface is made up of adsorption sites which can adsorb a single adsorbate molecule.
The surface is homogeneous so that each site adsorbs with the same adsorption energy.
Molecules from the bulk (fluid) phase adsorb with a rate which depends on the pressure
and the number of available sites. (b) Schematic description of the BET adsorption
model. The first adsorbate layer at the solid surface simply forms according to the
Langmuir adsorption model. Then, beyond the first layer, the adsorption energy is
equal to the gas liquefaction energy. (c) Polanyi model which describes the multilayer
film adsorbed at the solid surface. The density and thickness of the adsorbed layer
depends on the interaction potential between the adsorbate molecules and the solid
surface. The characteristic curve is represented in blue.

Langmuir model, the BET approach does not take into account lateral interactions be-
tween adsorbed molecules within the same layer. Despite such strong approximations,
the BET model is extensively used in both fundamental and practical research for the
determination of specific surface areas. Indeed, using Eq. (1.17), ones can plot the left
side of the equation versus P/P0. This yields to a straight line where the slope and the
intercept can lead to extract Vm and to calculate the surface area. This was done for
the first time by Brunauer and Emmett themselves in their two papers [57, 58].

Adsorption potential theory. This theory was proposed by Polanyi in 1914 through
a series of seminal papers [59, 60]. This important adsorption model relies on two
main concepts: the adsorption potential and the characteristic curve. In contrast to
the Langmuir and BET models, there is no underlying kinetic description as it simply
relies on a thermodynamic approach. The bulk gas molecules which are adsorbed on
the solid surface, form a multilayer film whose thickness depends on the adsorption
potential as illustrated in Figure 1.10(c). This adsorption potential, which is not exactly
known, derives from intermolecular interactions such as Van der Waals interactions
between the adsorbent and the adsorbate. Because it corresponds to an adsorption
energy (and not an adsorption free energy), the adsorption potential is assumed to
be temperature independent. Without being known a priori, the relation between the
adsorption potential and the distance from the adsorbed molecule and the solid surface
is coined as the characteristic curve. The characteristic curve f can be expressed by the
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equation [54, 51]:
E = f [V ] (1.18)

with E the adsorption potential and V the adsorbed volume which can be described
as V = Nv with N the amount of molecules adsorbed and v the molar volume of the
species. Moreover, in this model, lateral interactions between adsorbed molecules are in-
cluded in an effective fashion through the adsorption potential. While the assumption of
a temperature-independent adsorption potential is not always valid, it allows modeling
adsorption isotherms for a broad range of porous materials; typically, using a reference
adsorption isotherm at a given temperature, one extracts the adsorption potential which
is then used to predict adsorption at various temperatures [61]. For the sake of brevity,
we do not present in detail this model as it will be at the heart of Chapter 3 on adsorp-
tion within zeolite materials and at their external surfaces.

1.2.3 Adsorption classification

In 1985, the International Union of Pure and Applied Chemistry (IUPAC) proposed
a classification of the typical physisorption isotherms existing in the literature. This
convention is based on a simple pore/surface classification as illustrated in Figure 1.11
[3].

Figure 1.11: IUPAC classification of adsorption isotherms [taken from Ref. [62]]. The
classification is clarified in the core of the text.

• Type I adsorption isotherm, which corresponds to the Langmuir adsorption isotherm,
is usually observed for microporous solids with small external surfaces. The satu-
ration plateau refers to the maximum adsorbed amount (i.e. saturation capacity)
which is driven by the pore volume accessible to the adsorbate fluid. As will be
seen in this thesis, this adsorption type is typical of adsorption in zeolite systems.
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• Type II adsorption isotherm also corresponds to adsorption as observed for gases in
non porous or macroporous adsorbents. The shape of the curve corresponds to an
unrestricted monolayer or multilayer adsorption regime until very high pressures
P/P 0 (P 0 is the bulk saturating vapor pressure at which all bulk gas molecules
transform into the liquid phase).

• Type III adsorption isotherm also corresponds to adsorption in non-porous or
macroporous adsorbents but with weak interactions between the adsorbent and
the adsorbate phase. This adsorption type is typically observed when the mono-
layer/multilayer adsorption only occurs at high pressures but below the saturating
vapor pressure.

• Type IV adsorption isotherm corresponds to mesoporous adsorbents. It starts like
type II adsorption isotherms (pores size is larger than the molecular size in both
mesoporous and macroporous solids which drives the adsorption at small pressure)
but is followed by pore capillary condensation (i.e. the gas/liquid condensation
pressure is shifted due to confinement in the porosity).

• Type V adsorption is similar to type IV but corresponds to weak adsorbate/adsorbent
interactions so that film adsorption does not occur at low pressures.

• Type VI adsorption corresponds to layer by layer adsorption. This very unusual
adsorption type can be observed when very uniform, i.e. homogeneous, non-porous
surfaces are considered (e.g. graphite).

1.3 Fundamentals of transport

In this part, we introduce the fundamental principles of diffusion and transport of a
molecular species in a porous media. The motion of molecules can be described us-
ing different mechanisms: diffusion, advection, convection and reaction. While reaction
is not strictly speaking a transport mechanism, it is involved in the displacement of
molecules in a porous material as chemical reactions can occur (e.g. catalysis). Reac-
tion processes refer to the creation or deletion of molecules over time. It can be the
consequence of a chemical reaction or an adsorption/desorption process; in the latter
case, an adsorbed molecule can be seen as a molecule with no displacement for a given
lapse of time which can extend to very long times. Diffusion corresponds to the motion
of the molecules from high concentration to low concentration. Diffusion can occur even
if no global concentration gradient is applied; it is the result of local concentration gra-
dients as induced by thermal fluctuations in the system. However, diffusion also occurs
when a global concentration gradient is imposed on the system. As will be seen below,
several diffusion coefficients can be introduced: self, collective and transport diffusivities.
Advection refers to the displacement of the fluid when it is set in motion by a thermo-
dynamical gradient (e.g. pressure gradient, temperature gradient) or any combination
of thermodynamic gradients. Convection refers to the creation of a velocity field by the
displacement of molecules which drives molecules in motion. However, in nanoporous
media, friction with the solid is the main mechanism which drives the motion and im-
poses a laminar advective regime. In the rest of the manuscript, the convective term is
neglected.
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The change in concentration c over time of a given molecular species can be described
using the following advection–diffusion–reaction equation [63]:

∂c

∂t
= ∇ · (Ds∇c)−∇ · (uc) +R (1.19)

With u the Stokes velocity of the fluid, Ds the self diffusion coefficient. The first term
in the right hand side of the equation refers to diffusive transport, while the second
term corresponds to advective transport. Finally, the last term, R is the reaction term
which acts as a sink/source for the transported molecules. The competition between
the diffusion and advection mechanisms is classically described using Peclet number:
Pe = uDp/Ds where Dp is the pore size and u the fluid velocity. For very small Peclet
number Pe << 1, the advective contribution is negligible so that transport mostly occurs
through diffusion.

1.3.1 Self, collective and transport diffusivity

In few words, self diffusivity refers to the displacement of one, tagged molecule while
collective and transport diffusivities correspond to the collective motion of molecules. If
the self diffusivity is measured when the system is at equilibrium, the collective and
transport diffusivities can be measured by both equilibrium and out of equilibrium
methods. In order to define the self, collective and transport diffusivities more formally,
we briefly introduce Onsager’s theory of transport. This phenomenological theory allows
combining the formalism of thermodynamics with transport linear equations.

Onsager coefficient

Considering a thermodynamic system made up of a single compound, we can define the
so-called affinities Fi through Gibbs entropy equation:

dS =
1

T
dU +

P

T
dV − µ

T
dN (1.20)

The different affinities FU , FV , FN are the conjugated variables of the different extensive
variables dU , dV , dN . Thus, we can write FU = 1/T , FV = P/T and FN = µ/T . At
thermodynamic equilibrium, the entropy is maximal and the affinities are homogeneous
over the whole system. However, if we induce a perturbation to shift the system with
respect to its equilibrium state, any affinity gradient will induce a flux J corresponding
which depends on the induced perturbation. For small gradients ∇Fi, the induced flux
Ji can be assumed to follow a linear relation J ∼ ∇Fi with i = U, V,N [64, 65]. Formally,
this linear response model can be expressed as:

Ji =
∑

Li,j∇Fj (1.21)

where the quantities Li,j – the so-called Onsager transport coefficients – are symmetrical
(i.e. Li,j = Lj,i).

This formalism has been already develop to express transport properties - this will be
developed in the following lines. For example, for a system subjected to a temperature
gradient, Onsager’s theory leads to JU = LUU∇FU = −LUU/T

2∇T which can be recast
as Fourier’s law J = −λ∇T (where λ = LUU/T

2, known as the material’s conductivity).
An interesting example – particularly relevant for this thesis – is the case of a system
at constant temperature/pressure subjected to a chemical potential gradient. Using
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Onsager’s theory of transport, the molecule flux induced by a chemical potential gradient
can be written:

JN = −LNN∇
(µ

T

)
= −LNN

T
∇µ (1.22)

where the second equality holds if the system is at constant temperature. As introduced
in the rest of this paragraph, this equation allows defining the different diffusivity coef-
ficients (self Ds, collective D0 and transport DT ) at constant temperature and pressure.

Self diffusivity

Even when no thermodynamic gradient is applied to the system, diffusion occurs under
equilibrium conditions as molecules explore their environment through thermal motion
and collisions. In this context, self diffusivity refers to tracer diffusion where one follows
a single, i.e. tagged, molecule [66]. Such tracer diffusion and its associated transport
coefficient known as self diffusivity Ds can be studied considering a very diluted system
where µ = kBT ln(c). Eq. (1.22) leads to Fick’s law:

J(r, t) = −Ds(c)∇c(r, t) (1.23)

where c(r, t) is the local concentration at a position r at time t and Ds = LNNkB/c.
By adding mass conservation, i.e. ∂c(r, t)/∂t+∇ · J(r, t) = 0, and considering that the
diffusivity is concentration independent (i.e. Ds(c) ∼cst), one arrives at Fick’s second
law:

∂c(r, t)

∂t
−Ds∆c(r, t) = 0 (1.24)

The space and time-dependent solution of Eq. (1.24) has the form of the so-called
Gaussian propagator:

c(r, t) = N
exp(−r2/4Dst)

(4πDst)3/2
(1.25)

with N the number of particles which is assumed to be constant. The Gaussian propa-
gator corresponds to the probability that the particle moves over a distance r in a time
t. Here, we note that we consider Ds independent of the concentration c. The Fickian
regime is defined as the times and distances where the molecule displacements follow
the Gaussian propagator.

Mean square displacement At this stage, it is useful to introduce the mean square
displacements of the molecules which is defined as the root mean square of the position
of a molecule at time t [66]. From Eq. (1.25), it can be shown that the mean square
displacement (MSD) follows Einstein’s equation:

< r2(t) >= |r(t)− r(0)|2 = 6Dst (1.26)

where r(t) and r(0) are the position of the molecule at the time t and the origin t = 0
respectively. For an anisotropic medium, this equation becomes < r2α(t) >= 2Ds,αt
where α = x, y or z.
Figure 1.12(a) shows the mean square displacements (MSD) as function of time for
a molecule entrapped in a porous network (here a zeolite). Several regimes can be ob-
served when monitoring the MSD. The first part of the curve corresponds to the ballistic
regime where < ∆x2(t) > is proportional to t2. Then, the molecule can be stuck in a
pore until the typical escape time τc is reached. Thus, < ∆x2(t) > associated to the
plateau is roughly equal to the characteristic pore size. Finally, after a certain time, the
molecule trajectory becomes fickian with the typical diffusion regime where < ∆x2(t) >
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Figure 1.12: (a) Mean square displacement < ∆x2(t) > as a function of time t for
a fluid confined in a porous media. The first part of the curve corresponds to the
ballistic regime where < ∆x2(t) > is proportional to t2. This regime is valid only in
the very short time before molecules collide with its neighbors. In the intermediate
time range, the molecule can remain trapped in a pore until the typical escape time
τc is reached. Thus, < ∆x2(t) > associated to the plateau is roughly equal to the
characteristic pore size. Finally, after a certain time, the molecule trajectory becomes
fickian as diffusion becomes homogeneous: < ∆x2(t) > is proportional to time t. (b)
Velocity autocorrelation function (VACF) as function of time t. The insert shows the self
diffusion coefficient extracted from the integration of the VACF. The plateau indicates
that the system reached the Fickian regime with a value corresponding to Ds as obtained
from the mean square displacements in the long time limit.

is proportional to time t.

Green Kubo formalism. The Green Kubo formalism allows linking any transport
coefficient to statistical fluctuations in a corresponding microscopic quantity [67, 68].
This is a general formalism which is applicable in order to compute numerous and
various coefficients such as the thermal conductivity [69, 70], the Navier Stokes friction
coefficient [71] or the viscosity [72]. Using this formalism, the self diffusion coefficient
Ds can be related to the velocity autocorrelation function (VACF) < v(0) ·v(t) > where
v is the molecule velocity (which is taken at time t = 0 and a time t later). The brackets
indicate that statistical average over the different molecules in the system and over many
different configurations is considered. The self diffusion coefficient is then obtained using
the following Green-Kubo equation relation:

Ds =
1

d

∫ ∞

0
< v(0) · v(t) > dt (1.27)

with d the dimensionality of the system. As can be found in the book by Hansen and
McDonald [73], the self diffusion coefficient Ds given by the mean square displacement
formula in Eq. (1.26) and the Green-Kubo formalism in Eq. (1.27) are mathemati-
cally equivalent. As an illustration of this equivalence, Figure 1.12(b) shows the typical
VACF obtained for methane confined in the silicalite-1 zeolite at room temperature.
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The insert also shows the self diffusion coefficient extracted from the integration of the
VACF using the Green-Kubo relationship defined above. The plateau indicates that the
system reaches the Fickian regime with a value corresponding to self diffusion coefficient
Ds obtained from the MSD.
This formalism was also used in order to compute D0 the collective diffusion coefficient.
We would draw the attention of the reader here. Indeed, D0 describes a collective mo-
tion; however, in the Green Kubo approach, the system is at equilibrium and thus, the
average velocity of the fluid is u = 0. But D0 is an information contained in statistical
fluctuations of the average velocity. This will be discussed in the chapter dedicated to
collective diffusion.

Incoherent scattering function. The intermediate incoherent scattering function
describes the correlations between the positions of a given particle i at different times:

Finc(q, t) = 1/N
∑
i

ρi(q, 0)ρ
∗
i (q, t) (1.28)

where ρi(q, t) =
∫
exp [−iq · r]ρi(r, t)dr is the Fourier transform of the density distribu-

tion for particle i: ρi(r, t) = δ(r(t) − ri(t)). This density distribution function has the
form of a dirac which becomes non-zero when r(t) = ri(t). In the above equation, the
∗ indicates the conjugate value since ρi(q, t) is an imaginary quantity. From the latter
definition, it is straightforward to show that:

ρi(q, t) =

∫
exp [−iq · r]δ(r(t)− ri(t))dr

= exp [−iq · ri(t)]
(1.29)

so that:
Finc(q, t) = 1/N

∑
i

exp[−iq · (ri(t)− ri(0))] (1.30)

We can also obtain an expression for the intermediate incoherent scattering function by
solving Eq. (1.24) in Fourier space: ∂ρi(q, t)/∂t+Dsq

2ρi(q, t) = 0 (here q is the wave
vector so that q ∼ 1/r). In so doing, one arrives at the following solution:

ρi(q, t) = ρi(q, 0) exp[−Dsq
2t] (1.31)

Because ρ∗i (q, 0)ρi(q, 0) = 1, by multiplying the last equation by ρ∗i (q, 0), we obtain the
intermediate incoherent scattering function [74, 75]:

Finc(q, t) = exp−Dsq2t (1.32)

We notice that this exponential form assumes that the system is to be considered at large
distances (i.e. small q values) and/or long times to consider that the Fickian regime is
reached.

Incoherent dynamic structure factor The incoherent dynamic structure factor
Sinc(q, ω) is the time Fourier transform of the intermediate incoherent scattering func-
tion Finc(q,t) given in Eq. (1.32):

Sinc(q, ω) =

∫
exp (−iωt)Finc(q, t)dt (1.33)

Using the exponential form as defined in Eq. (1.32), we get:

Sinc(q, ω) =
1

π

Dsq
2

ω2 + (Dsq2)2
(1.34)
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which corresponds to a Lorentzian function whose Half Width at Half Maximum (HWHM)
is Dsq

2.

Collective diffusion

The collective and transport diffusivities are Onsager coefficients corresponding to the
system’s response when subjected to a chemical potential or a density gradient respec-
tively. The general form of Eq. (1.22) has to be considered by writing the flux as the
average velocity/flow rate:

JN = ρv =
1

V

∑
i

v⃗ (1.35)

where the sum is performed over each i molecule in the system. Here, we can use
the linear response theory [76] to determine D0. Let us consider the system under a
perturbation ∆H. In the linear response theory, we consider:

∆H(t) = −AF0 exp(−iωt) (1.36)

with F0 = −∇µ the force corresponding to the chemical potential gradient applied to the
system. The conjugated thermodynamical variable to this chemical potential gradient
is A(t) =

∑
i xi(t) i.e. the displacement of the particles. The observable of interest is

the flux that we will call B = JN . The linear response theory states that the change in
the observable < B > induced by the perturbation can be written:

< ∆B >= MBA(ω)F0 exp(−iωt) (1.37)

with

MBA(ω) =
1

kBT

∫
< B(t)A′ > exp(−iωt)dt (1.38)

If we consider the expression of the flux as given in Eq. (1.35) and the derivative of
A(t), we get:

MBA(ω) =
1

3V kBT

∫
<

∑
i,j

vi(t) · vj(0) > exp(−iωt)dt (1.39)

If we now consider a stationary perturbation, ω −→ 0, we have from Eq. (1.37):

< ∆B >= −MBA(0)∇µ (1.40)

By definition, using the velocity autocorrelation function, D0 corresponds to the cor-
relation between the velocity of a given molecule at a time t = 0 and the velocity of
another molecule at a time t later. It includes the self diffusion contribution but also
crossed terms between particles i ̸= j:

D0 =
1

3N

∫ ∞

0

〈∑
i,j

vi(0) · vj(t)
〉
dt (1.41)

We can therefore write D0 as the sum of the self diffusion contribution and all collective
contributions [77]:

D0 =
1

3N

∫ ∞

0

〈 N∑
i=1

vi(0) · vi(t)
〉
dt+

1

3N

∫ ∞

0

〈 N∑
i ̸=j

vi(0) · vj(t)
〉
dt (1.42)

with the first term corresponding to Eq. (1.27).
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We can notice here that in the limit of very diluted system, the hydrodynamic term is
negligible and Ds ∼ D0. However, in many cases, this assumption is not verified and
we usually get D0 > Ds as cross-terms are positive. This term means that the velocity
of a molecule creates a velocity field which favors the diffusion of the other neighboring
molecules.

Now, by replacing B by the observable JN in Eq. (1.40), we can compare Eq. (1.40)
and Eq. (1.22) to identify:

MBA(0) =
LNN

T
(1.43)

From Eq. (1.39) and Eq. (1.41), we can define a relation between MBA(0) and D0:

MBA(0) = D0
ρ

kBT
(1.44)

with ρ the fluid average density. Thus, D0 can be defined as follows:

JN = −D0
ρ

kBT
∇µ (1.45)

Therefore, D0 is the collective diffusion coefficient which corresponds to the response
of the system to a chemical gradient which is characterized by individual motions and
collective transport (see Eq.(1.41)).

Transport and thermodynamic (Darken) factor. In many experiments, the trans-
port is described as the response to a pressure or concentration gradient. In any case,
for small gradients, we can assume a linear response of the flux to write:

JN = −DT∇ρ (1.46)

Comparison between Eq. (1.46) and Eq. (1.45) leads to:

DT = D0
ρ

kBT

∂µ

∂ρ

∣∣∣
T

(1.47)

where ∇µ/∇ρ ∼ ∂µ/∂ρ. By invoking µ = kBT ln(fΛ3/kBT ), where f is the fugacity
(i.e. f=P for an ideal gas) and Λ is the thermal de Broglie wavelength, we have that
∂µ = kBT∂ ln f . [The latter equation derives from the definition of the Helmholtz
free energy F = U − TS with U , T and S the internal energy, temperature and entropy
respectively of a thermodynamical system. It can be shown that the chemical potential is
the derivative of F withN the number of particles: (∂F/∂N)|T, V . The physical statistic
provides a definition for F : dF = kBT ln(Q(N,V, T ) with Q(N,V, T ) the partition
function of the canonical ensemble which will be detailed in Chapter 2. This partition
function brings out Λ and f .] We also have ∂ ln ρ = ∂ρ/ρ so that Eq. (1.47) can be
written as:

DT = D0
∂ ln f

∂ ln ρ
|T (1.48)

In the latter equation, the term ∂ ln f/∂ ln ρ is known as the thermodynamic factor
[78, 79] (sometimes referred to as Darken factor). It can be linked to the isothermal
compressibility of the fluid - the derivation will be provided in Chapter 5 where we will
consider the theory of De Gennes narrowing. In particular, as will be seen later, the
thermodynamic factor can be measured using the adsorption isotherm: it corresponds
to the slope of the adsorption isotherm at a given (P , ρ) adsorption condition.
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Coherent scattering function and coherent dynamic structur factor. The co-
herent scattering function Fcoh(q, t), which is linked to the collective diffusivity, charac-
terizes correlations between molecules at different times t:

Fcoh(q, t) =< ρ(q, 0)ρ∗(q, t) > (1.49)

Of particular interest, the structure factor S(q) corresponds to the intermediate coherent
scattering function at t = 0: S(q) = Fcoh(q, 0). Let us now determine an expression
for Fcoh(q, t). By replacing the flux from Eq. (1.46) in the mass conservation equation
∂ρ(r, t)/∂t+∇ · J(r, t) = 0, one gets:

∂ρ(r, t)

∂t
−DT∆ρ(r, t) = 0 (1.50)

Considering that DT does not depend on r, we can do a spatial Fourier transform to
obtain:

∂ρ(r, t)

∂t
−DTq

2ρ(r, t) = 0 (1.51)

which leads to:
ρ(q, t) = ρ(q, 0) exp[−DTq

2t] (1.52)

As done earlier for the self diffusivity/incoherent function, multiplying by ρ(q, 0) the
above equation leads to:

Fcoh(q, t) = S(q) exp[−DTq
2t] (1.53)

The coherent dynamic structure factor is obtained by the time Fourier transform of the
coherent scattering function:

Scoh(q, ω) =
S(q)

π

DTq
2

ω2 + (DTq2)2
(1.54)

which corresponds to a Lorentzian function whose Half Width at Half Maximum (HWHM)
is DT q

2.

1.3.2 Diffusion in porous materials

This subsection presents the different transport regimes that can be observed in porous
materials depending on pore size Dp. As illustrated in Figure 1.13(a), let us consider a
fluid with some simple parameters such as its molecular size σ and its mean free path
λf (the latter is linked to the density of the fluid by the relation λf = 1/ρσ2). The
different following transport mechanisms can be considered [77, 80].

Molecular sieving occurs when the pore size is smaller than the molecular size Dp < σ
as illustrated in Figure 1.13(b). This condition leads to molecular blocking at the pore
entrance. Molecular sieving may be used to separate different molecule types in a mix-
ture (based on their molecular sizes). In this context, the synthesis of new porous
materials with controlled pore sizes is useful to separate gas or liquid mixtures for in-
dustrial applications [81, 2].

Knudsen diffusion occurs for rarefied gases when the pore size is smaller than the
mean free path Dp < λf . In this case, the main transport phenomena is the diffusion
of individual particles which occurs mainly through collisions of the molecules with the
surface atoms as illustrated in Figure 1.13(c). In other words, collisions between fluid
particles can be neglected. At the opposite, for high density fluid, the flow is mainly
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Figure 1.13: [Adapted from Ref[77]](a) A bulk fluid which consists of molecules with a
molecular size σ. The mean free path λf , which corresponds to the distance traveled
by a molecule between two collisions, depends on density. (b) Molecular sieving regime
when Dp < σ. The fluid molecule is blocked at the pore entrance; this mechanism
allows one to separate different types of molecules. (c) Knudsen regime when Dp < λ.
In the case of rarefied gases, diffusion of the molecules arises from the collisions with the
surface. It is considered as a diffusive regime, a molecule has a collision with the surface
at a velocity vi. It is adsorbed, thermalized and released to the pore volume with a
velocity vT independent from its initial velocity. (d) Molecular diffusion regime when
Dp > λ. The diffusion arises from the collisions with the other fluid molecules. It can
be modelled as a random walk process where the walker moves from a site to another
site in a time δt = tn − tn−1.

advective in the laminar regime and the collective diffusion is predominant. In order to
determine how important Knudsen diffusion is, the Knudsen number can be assessed:

Kn =
λf

Dp
(1.55)

with λf = kBT/
√
2Pπσ2. We can notice that σ can be taken as the Lennard-Jones

parameter for the fluid/fluid interaction (the latter will be defined more rigorously later).

• For Kn >> 10, Knudsen diffusion is the main process through which diffusion
occurs.

• For Kn << 0.1, Knudsen diffusion can be neglected as diffusion is mainly due to
molecular diffusion.

• For 0.1 < Kn < 10, both Knudsen and molecular diffusion occur in parallel.

The Knudsen number was computed from the simulation data in our system. It varies
on 6 order of magnitude (between 10−2 and 104) depending on the pressure considered
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(indeed, we consider pressure from 10−3 to 103 bars). This means that our system passes
through the different regimes listed before. We now present in more details the Knudsen
regime and the molecular diffusion regime.

Knudsen regime

In the Knudsen regime (which is the main process for Kn >> 10), one only considers
collisions of fluid molecules with the atoms of the wall. Let us consider a cylindrical
pore. Any applied gradient ∇ρ induces a flux JK directly linked to the thermal velocity
(i.e vT =

√
(8kBT/πm)) with the probability that the molecule passes through the pore

ω. The flux can be written JK = −ωvT∇ρ. We can also define the diffusion coefficient
associated to this Knudsen regime DK as JK = −DK∇ρ (i.e. Fick’s law). By comparing
the different equations, we can write:

DK ∼
√
T (1.56)

Some important comments are in order here:

• There is no activation barrier here. The self diffusion coefficient follows a contin-
uous and linear relation with

√
T .

• Because of the definition of the velocity (i.e. through the thermal velocity), we
assume that collisions correspond to diffusive scattering phenomena. Indeed, a
molecule collides with the wall with a velocity vi. Then, it is adsorbed, ther-
malized and released with an isotropic direction and a velocity independent of vi
(which only depends on T as shown in Figure 1.13(c) bottom).

• One can introduce a degree of specular reflections (elastic collisions) with the num-
ber f . f is the fraction of molecules which undergo diffusive scattering while 1−f
undergo specular reflection. It is assumed here that f is T -independent. This
contribution has the form of a factor 2− f/f in Eq. (1.56) [77].

Molecular diffusion

Molecular diffusion occurs when the pore size is larger compared to the distance between
molecules Dp > λ. It implies that the diffusion process occurs through the collisions
between fluid particles. It happens for sufficient large pores or considering an important
density of the fluid. In this regime there is no general model but the random walk model
gives a good framework in order to find an expression for Ds. Let us take a lattice
as shown in Figure 1.13(d). A particle, the walker, jumps from one site to another
randomly. The distance between two sites is constant and equal to a. δt = tn − tn−1 is
the time between two jumps. Solving this problem is equivalent to finding the solution
of Brownian motion given by Einstein equation (Eq. 1.26). When site hopping does
not involve any free energy barrier, we can write Ds = D0

s = k0a
2/6 with the hopping

rate k0 = 1/δt = v0/a. If we consider only collisions, we can define v0 the thermal
velocity and we get the same temperature dependence than for the Knudsen regime.
However, when jumping between different sites involves a free energy barrier, there is
an acceptance rate to diffuse from one site to another; the hopping rate can be written
as an exponential form k = k0 exp(−∆F/kBT ). By assuming that ∆F is independent
of the temperature T , we get Arrhenius’ law:

Ds = D0
s exp

(−∆F

kBT

)
(1.57)
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The latter equation can be more formally demonstrated using the transition state theory
[82, 83].

1.3.3 Fluid transport in zeolites

Reviewing all the literature on diffusion and transport in nanoporous materials is an
enormous work that was done in several reviews [4, 5]. Indeed, the diffusion and trans-
port mechanisms can be very different depending on pore size, network topology, chem-
ical composition, etc. of the material under study. In this section, we will briefly focus
on the state of the art of diffusion and transport in zeolites - more specifically in the
MFI zeolite structure. We will try to highlight the general diffusive behavior observed
for small gaseous molecules and its dependence on loading, temperature and pore shape
in the light of previous published works. As seen before, zeolites possess good crystalline
properties with different pore sizes and shapes. These properties make them interest-
ing candidates for both fundamental and practical research. In their review article,
Bukowski et al. [5] distinguished two special diffusive behaviors depending on the pore
size of the host zeolite. We first consider diffusion in small pore zeolites (i.e. < 8-ring
openning) as we believe that understanding such phenomenon is relevant to our system.
Small pores zeolites such as Chabazite (CHA), Rho zeolite (RHO), etc. [42] have a net-
work of pores linked by “windows” whose opening size is equivalent to the size of a small
gas molecule (such as methane considered in this thesis). This condition implies a very
different behavior for the self diffusion coefficient Ds as a function of loading (compared
to data for large pore zeolites). Indeed, several studies [78, 84, 85] have shown that the
self diffusion coefficient increases with loading until reaching a maximum and then de-
creases drastically. On the other hand, this effect is not seen for large pore zeolites. The
studies for small pore zeolites used simulation through a free energy approach such as
the transition state theory (TST) to explain this behavior. They used the term “window
effect” to describe this phenomenon: to jump from one pore to another, molecules have
to cross the window which involves an important free energy barrier. At low loadings,
molecules trapped in the pore do not overcome the free energy barrier as they remain
trapped within the adsorption sites. When the loading increases, two mechanisms com-
pete: collisions between the molecules promote hopping but steric repulsion between the
confined molecules implies hampers diffusion. By computing the variation of the free
energy barrier using simulation data, they have reached the conclusion that these two
phenomena allow to explain the observations made.

We now consider diffusion in medium and large pore zeolites such as MFI or Faujasite.
In this case, pore openings are larger than the molecular size of the confined fluid. In
such zeolites, no “window effects” were observed so that increasing the loading only leads
to steric repulsion and, thus, to a decrease in Ds. However, many parameters impact
the observed diffusion. Without going into details (out of the scope of our study), we
can cite the following elements:

• Influence of extra cation framework. Depending on the strength of the interaction
between the fluid molecules and the cations, it can be observed an increase of Ds

with loading. Indeed, at low loadings, molecules interact with cations. When more
molecules are added (while the cationic sites are already filled), they interact with
the zeolite part with which they have weaker interactions [86].

• Influence of gas mixtures. Snurr and Karger [87] studied a mixture of CH4 and CF4

using a combined simulation/experimental approach. By computing separately
the diffusivity of both species, these authors found that increasing the adsorbed
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amount for the slowest gas makes the diffusivities of both species decrease.

• Influence of the hydrocarbon chain length (i.e. number of carbon atoms in the
chain). Comparison between different techniques to assess Ds as a function of the
number of carbon atoms can be found in Ref. [75, 88]. It can be seen that the
increase in the chain length decreases the self diffusivity as expected.

We now focus on specific literature contributions dedicated to methane diffusion in
silicalite-1 (pure silica of the MFI type). Several studies have compared the self diffu-
sion coefficient obtained using experiments and molecular simulations and have showed
a good agreement between methods [89, 90, 75]. One of the works by June, Bell and
Theodorou [90] is particularly interesting to understand the behavior of methane in MFI
zeolite. These authors used molecular dynamics simulations combined with a free energy
approach (computational determination of the surface potentials, adsorption energies,
activation energies and adsorbate density distributions) to study Ds in the different di-
rections of the crystal x, y and z (one can refers to the Figure 1.8 for the corresponding
channels). They also considered different temperatures in order to observe the effect of
T on diffusion. For the 2 largest temperatures, Ds decreases when the loading increases.
However, for 200 K, they observed that Ds reaches a maximum before decreasing. Using
a free energy approach, the authors showed that the channel intersections are energeti-
cally less favorable than the channel segments for methane adsorption. In other words,
these intersections present a highest potential barrier for diffusion. One explanation
could be that, at the intersections, molecules that come from the zigzag channel and
the straight channel collide with perpendicular velocities that deviate their trajectories.
At low temperature and low loading, molecules are trapped in channel segments. Then
two effects can be highlighted:

• Heating the system makes the molecule’s energy increase, which promotes the
hopping rate across the intersection and, thus, increases the diffusion.

• Increasing the loading increases the number of collisions between fluid molecules.
As explained for the small pore zeolites, it has two effects: (1) help overcome the
free energy barrier and (2) blocking diffusion because of steric hindrance.

The authors also highlighted the anisotropic nature of diffusion by computing the mean
square displacements in the different directions of space. They also discussed the Fourier
transform of the VACF. Diffusion along the x and y directions were found to be simi-
lar with both contributions being faster than along the z direction. Indeed, it can be
explained because along z, there is no direct diffusion path for methane. Because of
the collisions with the pore wall, the molecule velocity often changes its direction/sign
– which prevents diffusion. Moreover, at low loadings, the differences between Dz

s and
Dx,y

s are important because of the effect of the channel geometry and the interactions
with the wall (which prevail at low loadings). In contrast, at high loadings, collisions
between molecules become predominant, which implies a reduction in the diffusion but
also the appearance of anisotropic diffusion.

In order to close this brief literature review, we would like to cite and discuss the pa-
per by Maginn et al. [91] on transport and collective diffusivity. Maginn, Bell and
Theodorou studied the transport of methane in silicalite-1 using the Darken equation
given in Eq. (1.48). These authors computed D0 using a non equilibrium method which
will be introduced in detail in Chapter 5. At infinite dilution, the self Ds and collective
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D0 diffusivities were found to be equal as expected. In contrast, at high loadings, Ds and
D0 are significantly different. Indeed, increasing the loading promotes fluid/fluid inter-
actions which hinders to some extent individual motions corresponding to self diffusion.
In contrast, due to the strong correlations in motion, D0 is less affected so that it remains
nearly constant. Maginn et al. also computed DT using equilibrium and nonequilib-
rium methods and compared their results with Eq. (1.48) for the Darken factor. They
showed a good agreement between the model and the results, which demonstrated that
the Darken formulation is valid for this system (i.e. methane in MFI zeolite). They
also found that the transport diffusivity increases when the loading increases. As the
collective diffusivity remains constant, it is therefore the thermodynamic factor which
increases with loading (i.e. for the Langmuir adsorption isotherm used, it can be shown
that Γ = 1/(1 − Θ) with Θ the loading fraction). Overall, these results are consistent
with the findings by Skoulidas and Sholl [79].

This chapter provided a short summary of fundamental concepts that are going to be
used in the following discussions: main characteristics of porous materials, principles
of adsorption and models to predict it and fundamentals of diffusion and transport
in porous media. However, even if these concepts have been developed for a long time,
adsorption and transport in porous media still remain a topical subject as fluid behavior
inside a porosity is not fully understood.

35



2 Methods

In a past decades, lot of work has been done in order to probe matter on smaller and
smaller scales. In one hand the development of computer sciences allows to perform
numerical experiences faster on increasingly large molecular systems. In an other hand,
technological progress allows to improve experimental set up to get better resolution
and to probe molecular motion on larger time and length scales. This chapter will
focus on the fundamentals of computational and experimental methods that are going
to be used in this thesis. In a first step, we will introduce the main concepts of the
numerical simulations used to study adsorption and transport through Monte Carlo and
Molecular Dynamic. In a second step, we will present the principles of neutron scattering
experiments and the specific experimental set up used to probe gas diffusion in zeolite.

2.1 Computational methods

With the development of computers, macroscopic systems behavior and predictions of
their properties became accessible realizing numerical experiences. From the knowledge
of their microscopic composition, macroscopic properties can be computed. In this thesis
numerical tools will be used to:

• simulate experiences of adsorption using Monte Carlo (MC) method.

• simulate experiences of self and collective diffusion using Molecular Dynamic (MD)

In this section, fundamental principles of statistic mechanics, Monte Carlo method and
Molecular Dynamic will be presented. For the application of these methods to our
system, the reader will refer to the Result part.

2.1.1 Fundamentals of Statistical Mechanics

Classical thermodynamics provides unified framework to describe the macroscopic prop-
erties of a substance (gas, liquid or solid). This formalism relies on a set of scalar vari-
ables to describe the system; these thermodynamic quantities can be extensive such as
the volume V , the number of molecules N , the total energy E or intensive such as the
temperature T , the pressure P . A macroscopic state corresponds to a set of thermo-
dynamical values (E, V , N , T , etc.) describing the system. These quantities remain
constant at equilibrium and can be measured. A microscopic state is the information
(position, velocity, chemical nature, etc.) considering the arrangement of each atom or
molecule in the system. It corresponds to a picture at a single instant of the macroscopic
system. For any macroscopic state, there is in general a large number of microscopic
states possible which lead to thermodynamic variables with the same values as those
defining the macroscopic state. Even if the system is at thermodynamic (macroscopic)
equilibrium, the continuous motion of molecules composing the system – as induced by
thermal energy and collisions – leads to a continuous change in the microscopic state of
the system. Statistical mechanics is the physical formalism which adopts a microscopic
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description of the system to describe its properties [92]. In this context, the understand-
ing of the macroscopic, i.e. thermodynamic, behavior of substances can be derived from
such a microscopic description. In order to introduce the fundamentals of statistical
mechanics, let us consider the total energy of a system E which is defined as the sum
of the energy of each molecule ϵi:

E =

N∑
i=1

ϵi (2.1)

Let us define the positions ri(t) = [xi(t), yi(t), zi(t)] and velocities vi(t) = [vxi (t),
vyi (t), v

z
i (t)] at time t of the N particles of the system (i ∈ [1...N ]). Typically, this

information is needed to describe the system’s evolution in time using Newton’s equation.
In the framework of statistical mechanics, these 6N data describe a single microscopic
configuration in the so-called phase space [rN , pN ] as illustrated in Figure 2.1. A specific
configuration [rN , pN ] is referred to as a “microstate” l whose energy is El [93].
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Figure 2.1: Phase space rN ,pN discretized in the x direction for a system of 9 particles
in a particular microstate l. In this example, the 2×9 = 18 values of positions/velocities
allow to describe the space configuration: x = [x1, x2, x3, x3, x4, x4, x5, x6, x7] and vx =
[vx1, vx2, vx3, vx4, vx5, vx6, vx7, vx4, vx8].

Microstates in the microcanonical ensemble (constant energy)

Let us consider an isolated system so that the number of molecules N , the volume V
and the energy E are constant. Because the total energy of the system E is constant, all
possible microstates are not accessible as the condition

∑N
i=1 ϵi = E has to be reached.

Let Ω(N,V,E) be the number of accessible microstates accessible to the system The
fundamental postulate in statistical mechanics states that every microstate accessible to
the system is equiprobable:

An isolated system (i.e. N,V,E constant) at equilibrium is equally likely to
be found in any of the Ω(N,V,E) accessible microstates.

This postulate simply describes the fact that all accessible microstates are physical so
that their probability distribution is homogeneous. With this fundamental property, the
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probability Pl for the system to be in the microstate l is:

Pl =
1

Ω(N,V,E)
(2.2)

From a macroscopic viewpoint, in the microcanonical ensemble (constant N , V , E), at
equilibrium, the system will be in a macrostate corresponding to the largest number of
microstates. As a result, the macrostate is defined from the largest subset of accessible
microstates in Ω(N,V,E). In statistical mechanics, this allows defining the entropy S
which is a measure of the system’s degeneracy:

S = kB lnΩ(N,V,E) (2.3)

In fact, the maximization of entropy in the microcanonical ensemble corresponds to the
second principle of thermodynamic: the entropy S is maximum at equilibrium. Finding
the microcanonical entropy, which is performed by solving δS/δE = 0, provides all
properties in the microcanonical ensemble (N , V , T ).

Partition function and statistical ensembles

Except for small and/or very simple systems, the information needed to describe the
system at the microscopic scale turns out to be impossible considering the large number
of particles involved. In practice, such a description requires to determine and char-
acterize all accessible microstates considering the external parameters imposed on the
system. The exhaustive list of accessible microstates defines the partition function which
contains all the microscopic information of the system. A partition function is function
of one particular statistical ensemble. We mean by ensemble all the microscopic states
that reach a macroscopic condition. As an example, without mentioning it, all what was
explained before was in the microcanonical ensemble, where the volume, the number of
molecules and the energy are constant. However, this fundamental ensemble is rarely
suitable to describe physical experiments performed on adsorption and confinement of
fluids in nanoporous materials. In this respect, another ensemble which proves to be
very useful to consider is the canonical ensemble [94] where the number of particles
N , the volume V and the temperature T of the system are constant. In other words,
in this ensemble, all the microstates that correspond to constant N , V , and T form the
canonical ensemble for a given system. In statistical mechanics, the probability to ob-
serve a particular microstate with an energy El is given by the corresponding Boltzmann
factor:

Pl =
exp(−El/kBT )∑
l′ exp(−El′/kBT )

(2.4)

The sum appearing in the denominator – the so-called partition function QN,V,T (which
also can be written Z in textbooks) in the canonical ensemble – is the function that
ensures the normalization of the probability distribution:∑

l

Pl = 1 (2.5)

which leads to:
QN,V,T =

∑
l

exp(−El/kBT ) (2.6)

In these expressions, the sum is performed over every microstate l accessible to the
system considering the constraints imposed on the system (constant N , V , T ). Most

38



thermodynamic properties of the system treated in this ensemble can be derived from
the partition function. This includes the total energy of the system:

⟨E⟩ =
∑
l

PlEl = −
∂ lnQN,V,T

∂β
(2.7)

with β = 1/kBT . As for the Helmholtz free energy, it is defined as:

F = −kBT lnQN,V,T (2.8)

Of particular interest in the context of the present thesis, the Grand Canonical en-
semble [94] allows treating systems in which the system is at constant chemical potential
µ (so that its conjugated thermodynamic variable N varies). Until now, we have con-
sidered the total number of particles N constant. However, for many systems such as
those encountered when dealing with adsorption in porous materials, the total number
of molecules N varies depending on the applied external conditions. The adequate en-
semble to study the thermodynamics of these systems is the Grand Canonical ensemble
in which the temperature T , the volume V and the chemical potential µ are kept con-
stant. The probability Pl to find the system in a given microstate of energy El and with
Nl particles is given by the corresponding Boltzmann factor:

Pl =
exp[−(El − µNl)/kBT ]

Qµ,V,T
(2.9)

where Qµ,V,T (which can be written Ξ in textbooks) is the so-called partition function
in the Grand Canonical ensemble. By definition Qµ,V,T is written:

Qµ,V,T =
∑
l

exp[−(El − µNl)/kBT ] (2.10)

In this ensemble, the average number of particles ⟨N⟩ is defined as:

⟨N⟩ = 1

β

∂ ln(Qµ,V,T )

∂µ
(2.11)

Similarly, the total energy ⟨E⟩ is:

⟨E⟩ = −
∂ lnQµ,V,T

∂β
(2.12)

Thermodynamic properties. In order to compute various thermophysical properties
such as the density, viscosity and so on, statistical mechanics rely on the concept of
ensemble average. As a simple example, let us take a single property corresponding
to the observable A. The ensemble average will be the average on all the Ns possible
microscopic states l weighting by the probability Pl of having this particular state.

⟨A⟩ = 1

Ns

Ns∑
l=1

PlAl (2.13)

where Al is the value of the computed observable in the microstate l. As can be seen
from this expression, in ensemble averages, there is no explicit dependence on time t.
However, in many experiments or molecular simulations, the system’s properties are
often realized using a time average – i.e. by probing the observable over a certain period
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of time – rather than using an ensemble average. The time average is expressed as the
integral of the observable A(t) over time.

A = lim
τ→∞

1

τ

∫ τ

0
A(t)dt (2.14)

When the total sampling time τ is large enough, the time average A is independent of
the initial conditions. While ensemble and time averages rely on different expressions
and underlying concepts, they are expected to be equal for a system at equilibrium.
This is the essence of the fundamental principle known as ergodicity: for a system at
equilibrium, considering the ensemble average of a given property over a large number
of microscopic states at one time or the property averaged over a large period of time
are equivalent:

A = ⟨A⟩ (2.15)

2.1.2 Monte Carlo Methods

Monte Carlo (MC) method is a numerical method widely used to compute general prop-
erties of a system by computing ensemble average (Eq. (2.13)). It consists on sample
the phase space randomly to get a set of representative microstates. In this thesis, this
method was used to realise a numerical experiment of adsorption. We will detail the
principle of the method and the reasons to use MC method rather than classical molec-
ular dynamic. Then we will explain the Metropolis algorithm, first in the canonical
ensemble (to simplify the understanding) and then in the Grand Canonical Ensemble
(used in this thesis). Let us consider a system taken in the canonical ensemble (i.e.
constant N , V , T ). In a very large number of systems, the ensemble of microstates
accessible cannot be considered explicitely as it involves a tremendous number of states,
data, etc. In particular, for a system made up of particles that can occupy a contin-
uum of positions and velocities, the number of microstates is infinite so that sums over
microstates must be replaced by integrals. Let us consider a set of N particles whose
positions and momenta are rN and pN . The corresponding density of probability to
get particles in the configuration (rN ,pN ) in the canonical ensemble NV T is defined as
[92, 94]:

ρNV T (r
N , pN ) =

1

QN,V,T

1

h3NN !
exp(−β[U(rN ) +K(pN )]) (2.16)

where U(rN ) and K(pN ) are the potential and kinetic energies so that their sum is
the system’s total energy. h is Planck’s constant which result from the continuous
description while the term N ! accounts for the fact that the particles are indistinguish-
able [92]. The probability associated to ρNV T (r

N , pN ) is directly: pN,V,T (r
N , pN ) =

ρNV T (r
N , pN )drNdpN . QN,V,T is the partition function in the canonical ensemble. It

can be define writing that the average of the probability ρNV T (r
N , pN ) over all config-

uration must be equal to 1. It leads to:

QN,V,T =
1

h3NN !

∫
3N

∫
3N

exp(−β[U(rN ) +K(pN )])drNdpN (2.17)

From the latter equation, it can be noticed that pN is only involved in K(pN ) and the
two integrals can be separated. Using the theorem of equipartition, the kinetic energy
can be written: K(pN ) = p2/2m. The integral over pN can be resolved using Gauss
equation:∫

3N
exp

(
−βK(pN )

)
dpN =

[∫ +∞

−∞
exp(−β

p2

2m
)dp

]3N
=

(√
2πmkBT

)3N
(2.18)
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Thus, replacing the integral over pN in Eq. (2.17) using Eq. (2.18), we obtain a reduced
form for QN,V,T :

QN,V,T =
1

Λ3NN !

∫
3N

exp (−βU(rN ))drN (2.19)

where Λ = h/
√
2πmkBT is De Broglie’s thermal wavelength. At constant temperature,

Λ is fixed and so is the average value of the kinetic energy. As a result, considering that
all molecular simulation methods used in this thesis were used at constant T , the rest
of this brief introduction to the Monte Carlo methods in statistical mechanics will only
consider the positions rN [95].
Considering the complexity of this 3N dimension integral, the Monte Carlo methods
in statistical mechanics were developed to compute this partition function. Let assume
that we wish to compute a property as described earlier in this chapter. In a continuous
description, the average property is given by:

⟨A⟩ =
∫
A(rN ) exp[−βU(rN )]

QN,V,T
drN (2.20)

Computing ⟨A⟩ can be done by sampling the phase space rN to evaluate A(rN ) and
U(rN ) to estimate the ensemble average as defined in Eq. (2.20). However, even for small
systems, it turns out to be very complex if not impossible as the number of evaluations
scales as a power kN . In this context, another sampling approach consists in targeting
the sampling. Indeed, for systems such as a fluid, a large number of configurations
occur with a very low probability distribution as they are unphysical: for example,
strong steric repulsion forbids many configurations in the space phase (it would leads to
a high potential energy U(rN ) and thus the contribution of the integral will be quasi-
zero). This is the spirit of Monte Carlo methods: targeted sampling is used to probe
molecular configurations which correspond to those with the largest probability in the
probability density distribution.

Metropolis method

The Metropolis algorithm was developed by Metropolis, Rosenbluth, Rosenbluth, Teller
and Teller in 1953 [96, 97]. The principle proposed by these authors is to generate
molecular configurations in the phase space following two rules:

1. A Markov chain is used to generate a large set of configurations. This implies that
the configuration Ci+1 in the chain only depends on the previous configuration Ci.

2. The generated configuration Ci+1 is accepted or rejected according to a probability
π(i → i+ 1).

Let us take a system under static equilibrium. As said previously, there is a large num-
ber of microstates which correspond to a given macrostate [95]. In order to maintain
equilibrium , the probability that the system evolves from any microstate i to the mi-
crostate j must be equal to the probability that the system leaves the microstate j to
reach any microstates i: ∑

i

piπi→j =
∑
i

pjπj→i (2.21)

with pi and pj the probabilities to find the system in the state i or j, respectively, and
πi→j the probability for the system to evolve from the microstate i to the microstate
j. As shown in Figure 2.2, in Monte Carlo simulations, evolution from a microstate to
another can be achieved through molecule translation or rotation. In the Metropolis
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algorithm, an stricter rule is used: the concept of microreversibility. This fundamen-
tal principle states that the evolution from a particular microstate i to a particular
microstate j is just as likely than the evolution from j to i:

p(rNi )πi→j = p(rNj )πj→i (2.22)

The probability for the system to leave the i state to reach the j state πi→j can be
decomposed as:

πi→j = αi→j × Pi→j (2.23)

Indeed, as mentioned above, the evolution from a microstate to another depends on trial
Monte Carlo moves. A trial move that drives the system from the microstate i to the
microstate j should be attempted with a probability αi→j and accepted with a proba-
bility Pi→j . In the case of translational and rotational moves in the canonical (N ,V ,T )
ensemble, the matrix α is symmetrical with the condition αi→j = αj→i. Therefore, Eq.
(2.22) can be written as:

Pi→j

Pj→i
=

p(rNj )

p(rNi )
= exp(−β[U(rNj )− U(rNi )]) (2.24)

where rNi and rNj are the coordinates of the N particles in the microstates i and j,

respectively. Similarly, U(rNi ) and U(rNj ) are the energies taken by the system in each
of these two microstates. The solution chosen by Metropolis et al. for the acceptance
probability – among other possibilities – is the following:

Pi→j = min {1,Φ} with Φ =
p(rNj )

p(rNi )
(2.25)

As can be noted, this method bypasses the computation of the partition function QN,V,T

as already mentioned earlier. In practice, the Metropolis algorithm functions as follows:

• If the new microstate has a lower energy U(rNj ) < U(rNi ), then ∆U = U(rNj ) −
U(rNi ) < 0 and exp(−β∆U) > 1. The probability to accept the trial move is taken
as Pi→j = 1.

• If the new microstate has a lower energy U(rNj ) > U(rNi ), then ∆U = U(rNj ) −
U(rNi ) > 0 and exp(−β∆U) < 1. The probability to accept the trial move is taken
as Pi→j = exp(−β∆U).

To decide if the trial Monte Carlo move is accepted or not, considering the acceptance
probability defined above in Eq. (2.25), the following approach is used. Let us take a trial
move that drives the system from an energy state U(rNi ) to U(rNj ) with U(rNj ) > U(rNi ).
Then, Pi→j = exp(−β[∆U ]). In order to reach a decision on acceptance/rejection,
a random number ξ is generated uniformly in the interval [0,1]. If ξ < Pi→j , the trial
move is accepted, it is rejected otherwise. It can be shown that the probability of having
ξ < Pi→j is directly Pi→j . Let us now summarize the different steps of the Metropolis
algorithm:

1. The system is taken with an initial configuration i. Its energy Ui is computed.

2. A particle is chosen at random and undergoes a trial move such as a translation
or rotation.

3. The energy of the new configuration Uj is computed.

4. The trial move is accepted or rejected according to the probability
Pi→j = min {1, exp[−β(Uj − Ui)]}
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Monte Carlo technique in the Grand Canonical ensemble

In the Grand canonical ensemble, the number of molecules N in the system is not con-
stant (in contrast, its conjugated variable – the chemical potential µ – is constant). Let
us consider a system in equilibrium with a reservoir of particles which imposes its chem-
ical potential µ and temperature T to the system. The system exchanges particles with
the reservoir and, thus, the total energy of the system varies due to the variation of the
number of particles. In practice, this implies that the total energy of the system includes
a chemical potential contribution: E = U +K + µN with U and K the potential and
kinetic energies respectively, µ the chemical potential and N the number of particles. In
order to give an expression for the partition function in the Grand Canonical ensemble,
Frenkel and Smit considered an isolated system of volume V0 composed of two subsys-
tems, one of interacting particles of volume V exchanging particles with the reservoir of
V0 − V volume. The complete demonstration can be found in Ref. [94]. In molecular
simulation, particles are numbered and distinguishible. The term 1/N ! will be then re-
moved from the next equations. It can be shown that the density of probability to find
the system in a configuration with N particles distributed according to the coordinate
set rN is given by:

ρµ,V,T (N, rN ) =
1

Qµ,V,T

1

Λ3N
exp[−βU(rN )] exp[βµN ] (2.26)

where we recall that Λ is De Broglie’s thermal wavelength.
The partition function in the Grand Canonical ensemble Qµ,V,T derives from the nor-
malization of the probability defined in Eq. (2.26) over all the possible configurations.
Thus, it includes a sum over the possible amount of particles, from 0 to +∞. Qµ,V,T is
written as

Qµ,V,T (µ, V, T ) =

∞∑
N=0

∫
3N

1

Λ3N
exp[−βU(rN )] exp[βµN ]drN (2.27)

We can also notice that the integral over pN was reduced using the same equation
than Eq. (2.18). The possible trial moves in the Grand Canonical ensemble are the
displacement and rotation of a molecule like for the canonical ensemble. However,
in this ensemble where the number of molecules N is not constant, the removal and
addition of molecules – as illustrated in Figure 2.2 – are also acceptable trial moves as
they respect the external constraints imposed on the system. In this section devoted
to the Grand Canonical ensemble, we will not discuss the displacement or rotation of
molecules as the procedure is the same as in the canonical ensemble. In contrast, we will
focus on the insertion and deletion of molecules as they are specific to this ensemble. The
microreversibility condition must also apply for these trial moves. Let us consider an
initial configuration with N molecules and and proceed with the insertion of a molecule.
The microreversibility rule can be written as:

ρ(rN )drNαN→N+1PN→N+1 = ρ(rN+1)drN+1αN+1→NPN+1→N (2.28)

We can write the probability αN→N+1 to attempt the trial move as the product of the
probability to chose an insertion over a deletion and the probability to insert the particle
in the volume dr. In the case of non biased Monte Carlo, the probability of an insertion
is the same than a deletion, thus:

αN→N+1 =
1

2

dr

V
(2.29)
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with V the total volume. If we now consider αN→N+1, we get:

αN+1→N =
1

2

1

N + 1
(2.30)

with the second term refers to the probability to choose one particle over N + 1. From
Eq. (2.28), we obtain:

PN→N+1

PN+1→N
=

ρ(rN+1)

ρ(rN )

drN+1αN+1→N

drNαN→N+1
(2.31)

=
V

(N + 1)Λ3
exp(βµ) exp(−β[U(rN+1)− U(rN )]) (2.32)

A possible solution for this condition, which is usually implemented in standard Grand
Canonical Monte Carlo algorithm, is of the type:

PN→N+1 = min {1,Φ} with Φ =
V

(N + 1)Λ3
exp(βµ) exp(−β[∆U ]) (2.33)

with ∆U = U(rN+1)− U(rN ).
Similarly, it can be shown that the removal of a particle from the system should be
accepted with the probability:

PN+1→N = min {1,Φ} with Φ =
Λ3N

V
exp(−βµ) exp(β[∆U ]) (2.34)

Then, in the spirit of the Metropolis algorithm for the canonical ensemble, the decision
to accept or reject the trial move is made following the same procedure described earlier
using random numbers.

translation rotation

Canonical ensemble (N, V, T)

Δr

Δϕ

μ, T

insertion

deletion

Grand Canonical ensemble (μ, V, T)

Figure 2.2: Monte Carlo trial moves. In the canonical ensemble (N , V , T ) (green dashed
lines), trial moves consist in translating or rotating a molecule. In the grand canonical
ensemble (µ, V , T ) (red dashed line), the system is in contact with a bulk reservoir (oval
dashed line) which imposes its chemical potential µ and temperature T . The possible
moves in this ensemble are translations and rotations as well as insertion or deletion of
molecules.
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2.1.3 Molecular dynamics

Molecular dynamics is the method of choice to investigate the dynamics of fluids confined
in nanoporous materials. This well-known molecular simulation technique proceeds in a
similar fashion as a typical experiment; the system evolution is monitored in time over a
period of time [98]. Like for real experiments, the following aspects should be considered
with caution:

• Sample initial preparation

• Thermodynamic conditions. For example, it must be ensured that the temperature
remains constant during the ‘numerical’ experiment.

• Uncertainty issues which are sometimes important when the sampling time is in-
sufficient for instance and/or the system size is too small.

In molecular dynamics, the time variable is discretized to solve in a discontinuous fashion
Newton’s equation: ∑

F(t) = ma(t) (2.35)

where
∑

F(t) are the sum of forces applied to a particle, m is the mass of the particle
while a(t) is the acceleration of the particle. In practice, the following steps are followed:

• Define the force field that rule the intramolecular and intermolecular interactions
between the molecules in the system. For the system used in this thesis, inter-
actions are quite basics: a Lenard-Jones potential will be used to model zeo-
lite/methane and methane/methane interactions while harmonic potential will be
used for the flexibility of the matrix. This will be discussed in the Result part of
the manuscript as this chapter is only focused on fundamentals of methods.

• Solve Newton’s equation of motion by computing the position r and velocity v of
each molecule at each time step.

• Monitor and record each molecule trajectory to compute thermodynamical and
dynamical properties.

Verlet algorithm

Considering a set of N molecules, there are several algorithms that allow computing
the equation of motions. Among the different strategies available, the Verlet algorithm
is the most extensively used in the Physics and Physical Chemistry communities and
even beyond [99]. Let us note ∆t the discretized time step – the latter has to be small
enough to apply the following Taylor expansion to express the position of a particle at
time t+∆t.

r(t+∆t) = r(t) +
dr(t)

dt
∆t+

1

2

d2r(t)

dt2
∆t2 +

1

3!

d3r(t)

dt3
∆t3 +O(∆t4) (2.36)

Similarly, we can write the same expansion for the particle position at time t−∆t.

r(t−∆t) = r(t)− dr(t)

dt
∆t+

1

2

d2r(t)

dt2
∆t2 − 1

3!

d3r(t)

dt3
∆t3 +O(∆t4) (2.37)

By adding Eqs. (2.36) and (2.37), we get:

r(t+∆t) + r(t−∆t) = 2r(t) +
d2r(t)

dt2
∆t2 +O(∆t4) (2.38)

45



where Newton’s equation motion imposes that d2r(t)/dt2 =
∑

F(t)/m (
∑

F(t) is the
sum of the forces applied to the molecule). From these equations, the position r(t) can
be computed as:

r(t+∆t) = 2r(t)− r(t−∆t) +

∑
F(t)

m
∆t2 +O(∆t4) (2.39)

Interestingly, we notice here that the velocity v is not required to compute the position.
Yet, the velocity can be computed using Eqs. (2.36) and (2.37) and omitting the third
order term:

r(t+∆t)− r(t−∆t) = 2
dr(t)

dt
∆t+O(∆t3) (2.40)

Finally, since v(t) = dr(t)/dt, we get:

v(t) =
r(t+∆t)− r(t−∆t)

2
+O(∆t3) (2.41)

Thermostats

In molecular dynamics simulations, it is often needed to mimic physical conditions such
as constant temperature environment. In particular, as the present PhD thesis aims
at simulating systems in the canonical ensemble (i.e. at constant temperature T ), we
briefly discuss here thermostats employed in molecular dynamics simulatons (barostats
can also be used in such numerical experiments but they will not be discussed here
as this falls beyond the scope of the present manuscript) [98]. In molecular dynamics
simulations, the temperature T is computed using the kinetic energy – i.e. from the
particle velocities through the equipartition theorem in statistical mechanics:

⟨K⟩ = 3

2
NkBT (2.42)

The particle velocities fluctuate in time and so does the temperature. The idea of a
thermostat in molecular dynamics is to find a physical algorithm that brings the aver-
age temperature of the system ⟨T ⟩ around the desired temperature T0.
The most intuitive method to apply a thermostat in molecular dynamics is to rescale
the particle velocities. In that context, different thermostats can be highlighted.

Direct rescaling. Also called Gaussian thermostat, this method fixes the temperature
and does not allow temperature fluctuations. Velocities are scaled at each time step
according to:

vi(t) =

√
T0

T
vi(t−∆t) (2.43)

with T0 the desired temperature and T the computed temperature of the system at time
t. The drawback of this method is that it introduces discontinuities in the phase space
along pN .

Andersen method. This method also rescales the particle velocities but using stochas-
tic collisions [98]. The employed procedure is the following:

• Integrate the equations of motion until a characteristic time τ chosen to rescale
the velocities.

• Select randomly a particle.

• Generate randomly its momentum from a Maxwell-Boltzmann distribution at the
desired temperature T0.
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The main issue of this method is that it decorrelates velocities. Also, the dynamics of the
system is necessarily biased so that the computing dynamical properties can be affected.

Berendsen thermostat. The Berendsen thermostat consists in weakly coupling the
system with a heat bath at an imposed temperature [100, 101].The idea is to get a time
evolution of the temperature proportional to the difference between the computed and
desired temperatures:

dT

dt
=

(T0 − T )

τ
(2.44)

with τ the coupling time factor. If τ is large, the derivative of the temperature is small
so that the system and thermostat are weakly coupled. On the other hand, if τ is small,
the system and thermostat are strongly coupled. In general, τ has to be large enough
to maintain the temperature constant but small enough to avoid strong perturbations
of the system’s dynamics. The drawback of this method is that the phase space distri-
bution associated cannot be linked to the canonical ensemble.

Nosé Hoover thermostat. In contrast to direct rescaling or Andersen methods described
above, the Nosé-Hoover thermostat described in Ref. [102, 103] does not rely on velocity
rescaling but uses a heat bath at the desired temperature T0. The main idea is to model
the collisions between the heat bath particles and the system’s particles by adding an
external term to the forces applied to the system’s particles. The approach is based on
the use of an extended Lagrangian in which additional coordinates and velocities are
involved [98]. Here, for the sake of simplicity, instead of deriving the whole problem,
we will explain it using Newton’s equation of motion [104]. In short, a friction term
χ [s−1] which slows down or accelerates the particles in the system depending on the
instantaneous temperature is added. This modified Newton’s equation of motion can be
written as:

mi
dvi
dt

=
∑

fi − χmivi (2.45)

where
∑

fi is the sum of the physical forces applied to the particle i (i.e. all forces but
the friction force that drives the system to the desired temperature). The derivative of
the friction term is defined using the difference between the kinetic energy of the system
and the thermal energy associated to the desired temperature T0:

dχ

dt
=

1

Q

[
N∑
i=1

mi
v2i
2

− 3N + 1

2
kBT0

]
(2.46)

where Q in J.s2 refers to the speed of time response of the temperature fluctuation. The
first term of the right side is the kinetic energy of the system provided by the actual
temperature while the second term is the thermal energy imposed by the heat bath.
The N + 1 factor counts the additional degree of freedom of the system. From the two
latter equation, we notice that if the difference between the system’s temperature and
the desired one is large, the derivative of χ will be large and the system will reach faster
the equilibrium temperature. And the other way around for |T (t)−T0| small. We notice
that, in the steady state (i.e. dχ/dt = 0), the kinetic energy writes as expected:

⟨K⟩ = 3N + 1

2
kBT0 (2.47)

The equation of motion in the Nosé-Hoover approach can be easily implemented in
combination with the Verlet algorithm described above. In practice, within this PhD
manuscript, the Nosé-Hoover thermostat was used to conduct the different molecular
dynamics simulations.
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2.2 Experimental methods

In this section, we will first detail principles of volumetric gas adsorption experiment
that we used to load our system. In a second part, we will present fundamentals of
neutron scattering and principles of use of the Time of Flight (TOF) experimental set
up. Neutron experiments were used to determine dynamic properties of diffusion and
transport of methane previously loaded in zeolite. The idea of this section is to give to
the reader the main concepts and equations useful for the understanding of the results
of this thesis.

2.2.1 Volumetric gas adsorption

Along with the gravimetric method, the volumetric (or manometric) adsorption mea-
surement is a common method used to measure the adsorbed amount as a function of gas
pressure. In our work, the experimental adsorption isotherms for methane in silicalite-1
were measured at different temperatures using a Hiden Isochema apparatus. Without
being experts of this device, we provide the main principles about the volumetric ad-
sorption measurement [105]. With this technique, the idea is to monitor the pressure
in a system made up of a known calibration volume V0, the sample holder V1 and the
sample (here a nanoporous material whose solid matrix volume will be called Vskel). The
number of gas molecules which contribute to the pressure can be measured to estimate
the adsorbed amount in the porous solid by comparing the pressure before and after
adsorption. The exact procedure, which is detailed step by step below, is illustrated
in Figure 2.3. For each step, the number of moles present in the system is accurately
known from the pressure reading as the calibration volume V0 is known. To do so, the
volume V0 is filled after closing the valve which links it to the sample holder. Assuming
the adsorbing gas is ideal, the number of injected moles ni is simply given by:

ni =
PiV0

RT
(2.48)

where Pi (in Pa) is the initial pressure, R = 8.314 J.mol−1.K−1 the ideal gas constant
and T the temperature in K. After this dosing step, the next step consists in measuring
the sample holder volume V1 without any solid sample using nitrogen gas. To do that,
after having injected an initial number of moles ni in V0, the valve is opened and the
final pressure P cal

f obtained after equilibration is measured. The volume of the sample
holder cell is directly computed as (Figure 2.3(a)):

V1 =
niRT

P cal
f

− V0 (2.49)

After this calibration step, the next step consists in measuring the dead volume by
estimating the volume occupied by the solid skeleton of the nanoporous sample. In
practice, this is achieved using He pycnometry. After having injected ni moles of He
in the calibration volume V0, the valve is opened so that the He gas in the calibration
volume flows towards the sample holder which contains the empty (i.e. non loaded)
nanoporous sample. In this case, helium gas is used as it interacts very weakly with the
porous material; as a result, it does not adsorb at room temperature. In other words,
all He atoms injected in the system contribute to the pressure so that nf = ni with
nf the final number of moles contributing to the pressure after equilibration. As the
matrix skeleton occupies a certain volume in space, the corrected volume accessible to
the gas is V0 + V ′

1 where V ′
1 can be inferred from the following ideal gas relationship as

illustrated in Figure 2.3(b):

(V0 + V ′
1) =

RTni

P pyc
f

(2.50)
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with P pyc
f the final pressure measured. The skeleton volume of the solid sample is di-

rectly obtained as Vskel = V1 − V ′
1 where we recall that V1 is the known volume of the

sample holder.

Finally, after all these calibration procedures, the adsorbed amount of methane in
silicalite-1 as a function of the gas pressure can be measured as follows. An initial
amount of moles ni is injected in the calibration volume V0. Then, the valve is opened
and part of the injected molecules get adsorbed inside the zeolite porosity as illustrated
in Figure 2.3(c). This adsorbed amount na does not contribute to the pressure measured
in the set-up. In contrast, the amount of gas that contributes to the pressure nf can be
computed using the final pressure in the system P ads

f :

nf =
P ads
f (V0 + V ′

1)

RT
(2.51)

The adsorbed amount is readily obtained as na = ni − nf . The adsorption isotherms
measured in the framework of this thesis were realized at different temperature as dis-
cussed in more details in Chapter 3. The pressure measurement set up was coupled with
a cryostat which allowed us to impose a temperature down to 225 K and up to 300 K.

Pf
cal

V0 V1

open
Pf

pyc

V0

open

He

Pf
ads

V0

open

CH4

(a) Sample holder volume Sample skeleton volume Adsorbed amount

N2

V1’ V1’

(b) (c)

Sample non loaded Sample loaded

nf = ni nf ≠ ni

Sample holderCalibration volume

Figure 2.3: Volumetric adsorption technique. Several steps have to be taken into ac-
count: measuring the sample holder volume (a), measuring the sample skeleton volume
(b) before measuring the the adsorbed amount (c).

2.2.2 Neutron scattering

In contrast with microscopy techniques which allow to study a localised area of a sample,
neutron scattering technique as other radiation methods (for example X-ray or light)
allow to involve an important number of atoms (as the radiation irradiate the whole
sample). It allows to get an important statistic that is necessary to compute system’s
properties. As it will be explained in this section, neutrons are interesting over light
or X-ray diffusion because they are probing both individual atoms motions but also
collective behavior. In this section, we will first provide the fundamental framework
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for understanding neutron scattering and then we will describe the experimental set up
used in this thesis. The detail of the experiments performed, the samples used and the
models used for analysing neutron data will be presented in the Result part.

Neutron properties

Neutrons can be considered using the dual particle/wave framework [106]. They are
particles without any charge, they possess a mass m = 1.6610−27 kg, they have a kinetic
energy, directly link to their velocities EKin = 1/2mv2 and to the temperature in which
they are thermalized EKin = 3/2kBT (with kB the Boltzmann constant). They compose
nucleus of atoms but they can also be separated from a nucleus by nuclear reaction in
order to get a beam of “free” neutrons for scattering experiments. They also can be
considered as a wave with a certain wavelength λ = h/mv (with h the Planck constant)
and a certain wave vector k. As their wavelength is similar to molecular size, interatomic
distances or crystal cell distances and energies similar to those involved in molecular
displacements (phonon, diffusive relaxations...), they are a unique tool to probe the
matter and its dynamic properties. According to the range of distances that ones want
to probe during neutron experiment, neutrons are thermalized to reach the energy E
involved in the molecular displacements: they are thermal if E ∼ 0.025 eV, hot if E ∼ 0.2
eV and cold if 510−5 < E < 0.025 eV. In our case, we used a wavelength of λ = 5.1 Å.
The associated average velocity is then:

v =
h

λm
= 783m.s−1 (2.52)

with h = 6.62610−34m2.kg.s−1 the Planck constant and m the mass. To reach this
velocity, the neutron have to be thermalized at the temperature:

T =
1

3

mv2

kB
= 25K (2.53)

with kB the Boltzmann constant. As it will be discussed later, neutrons have a partic-
ular sensitivity to H. Thus, in order to study methane diffusion in zeolite sample, we
have used the cold neutron time of flight spectrometer (TOF) IN6/SHARP at the ILL.
The following of this section will be about detailing principles of neutrons for studying
diffusion and the TOF set up used.

Neutron/nucleus interaction. When a neutron interacts with a nucleus, two phe-
nomena can happen, depending on the exciting level of the nucleus and the neutron
energy:

• Absorption of the neutron and modification of the nucleus

• Scattering of the neutron with a modification of its momentum and velocity direc-
tion.

The interaction potential neutron/nucleus is short range. As neutrons do not have
charges, they interact with nucleus through spins because of the strong interactions
represented by the Fermi pseudo potential. When a neutron diffuses on a nucleus, the
diffusion is isotropic and can be characterized by b, the scattering length which represents
the strength of the interaction. This quantity depends on the spin of both the neutron
and the scattered nucleus. From the scattering length, we can introduce the coherent
and incoherent scattering:
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• bcohi : coherent scattering length which is the average over all the diffusive nucleus.
This would be the scattering length if the neutron would have evolved in a average
interaction potential. This is intrinsically a collective property.

• binci : square deviation to the average. This term is added to bcohi and reports the
fact that neutrons are not evolving in an average potential. It corresponds to the
individual and non coordinated motion of molecules.

Because of the spin state differences, the scattering length varies for different chemical
species but also between the different isotopes of a same species. From the scattering
length, we can define the cross-section σ. σscat is defined as the scattering probability
for a neutron to diffuse after a collision with a nucleus (similarly σads is the probability
of adsorption). σscat can be defined by the number of scattering process Iscat considering
an incident beam I0:

Iscat = I0σscat (2.54)

The cross-section can also be seen as a geometric quantity as it is the surface that should
have the nucleus to reproduce the probability of scattering during a collision. For this
reason, the cross-section unity is the barn (1 b = 10−28 m2). The cross section and the
scattering length are linked:

σscat = 4π⟨b2⟩ (2.55)

and can be separated in coherent and incoherent terms:

σscat = σinc + σcoh = 4πb2inc + 4πb2coh (2.56)

The relative part of coherent and incoherent cross section can vary a lot according the
interacting particles. An interesting example is the hydrogen atom. In its common form,
the hydrogen atom has 1 proton 1H while the deuterium (i.e. hydrogen isotope) has 1
neutron and 1 proton 2H. However, even if these two isotopes are the same chemical
element with (nearly) similar properties, their cross sections are very different [106]. For
the common hydrogen, we get:

σinc(
1H) = 79.9 barns

σcoh(
1H) = 1.8 barns

σscat(
1H) = 81.7 barns

While for the deuterium, the reference values are:

σinc(
2H) = 2.04 barns

σcoh(
2H) = 5.6 barns

σscat(
2H) = 7.64 barns

We can notice the large part of incoherent cross section of the hydrogen. It is because
hydrogen spin is mainly incoherent. This property makes incoherent scattering a privi-
leged method for studying individual motion and properties in hydrogenous compounds.
On the other hand, we can notice that the coherent cross section of the deuterium is al-
most 3 times its incoherent cross section. Thus, to study collective properties by neutron
coherent scattering, it is mandatory to use deuterated compounds.

51



Scattering experiment: important parameters

In a neutron scattering experiment, a sample is illuminated with an incident neutron
beam where neutrons possess an initial energy E0 and an initial wave vector k0. After
interacting with the atoms of the sample, neutrons are scattered in all directions of space
(as the scattering is isotropic). The scattering vector q (i.e. momentum transfer) is the
vector difference between the scattered vector k and the initial one k0: q = k − k0.
The energy gain or loss can be measured: ∆E = ℏω = E − E0. In Time Of Flight
(TOF) experiments, neutrons are then detected by detectors that record the time when
neutrons reach detectors as well as the scattered angular position. Several specific cases
can be notified:

• E = E0 and |k| = |k0|: there is no modification of the neutron energy; the
collision in elastic (blue arrow in Figure 2.4(b)). Scattered neutrons will collide
the detectors at the same time than non scattered neutrons.

• E < E0 and |k| < |k0|: there is a loss in the neutron energy; the collision is
inelastic (green arrow in Figure 2.4(b)). Neutrons will collide the detectors later
than elastic scattered neutrons.

• E > E0 and |k| > |k0|: there is a gain in the neutron energy; the collision is
inelastic (red arrow in Figure 2.4(b)). Neutrons will collide the detectors earlier
than elastic scattered neutrons.

• E ∼ E0 and |k| ∼ |k0|: the gain or loss of energy is weak; the collision is named
quasi-elastic.

k0

k

q

2θ

(a)

q = k – k0

E0

sample

Incident 
beam

detectors

k0
E < E0

E = E0

E > E0

qs
qe

ql

(b)

Figure 2.4: Principle of neutron scattering experiment. (a) The scattering vector q is
the difference between the scattered wave vector k and the incident wave vector k0. The
angle between the two vectors is 2θ. (b) [Adapted from Ref [106].] A neutron incident
beam with an energy E0 and a wave vector k0 interact with a sample. The scattering
process can be elastic E = E0 and |k| = |k0| (in blue) or inelastic with an energy loss
E < E0 and |k| < |k0| (in green) or inelastic with a gain in energy E > E0 and |k| > |k0|
(in red).
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The several scattering regimes (elastic/inelastic/quasi-elastic) do not probe the same
molecular motions as shown Figure 2.5(a). This will be discussed below after introducing
the scattering functions.

Scattering functions

The classical formalism used for studying neutron scattering lies on the Van Hove func-
tions G(r, t) [107]. G(r, t) is the probability, knowing the initial position r’ of a particle
at the initial time t = 0, to find another particle at the position r at the time t. If we
consider N diffusive particles, the correlation function G(r, t) can be written:

G(r, t) =
1

N

∫
⟨ρ(r’, 0)ρ(r’+ r, t)⟩dr’ (2.57)

ρ(r, t) is the density distribution of the system ρ(r, t) =
∑N

i=1 δ(r(t) − ri(t)) with ri(t)
the position of the particle i at the time t. ⟨...⟩ denotes the time average. From the
correlation function in the real space, several neutron scattering functions can be de-
rived. They are all linked by Fourier transforms and reverse Fourier transforms. The
intermediate scattering function F (q, t) is the Fourier transform in space of G(r, t):

F (q, t) =

∫
G(r, t) exp(iq · r)dr (2.58)

By replacing G(r, t) using Eq. (2.57), we get a double integral:

F (q, t) =
1

N

∫ ∫
⟨ρ(r’, 0)ρ(r’+ r, t) exp(iq · r)dr’dr (2.59)

If we replace the density distribution by its expression, we get:

F (q, t) =
1

N

N∑
i=1

N∑
j=1

I (2.60)

with I the double integral:

I =

∫ ∫
⟨δ(r’− ri(0))δ(r’+ r(t)− rj(t))⟩ exp(iq · r)dr’dr (2.61)

Then, we can look for the conditions that I has to reach in order to be different than
zero:

• If r’ = ri(0), δ(r’− ri(0)) = 1 otherwise δ(r’− ri(0)) = 0.

• If r’+ r(t) = rj(t), δ(r’+ r(t)− rj(t)) = 1, otherwise δ(r’+ r(t)− rj(t)) = 0.

Then in order to get a non zero integral I, the two conditions have to be reached:
r’ = ri(0) and r’ + r(t) = rj(t). It leads to get r(t) = rj(t) − ri(0). Then, I =
⟨exp(iq · rj(t)) exp(−iq · ri(0))⟩ and we get the following expression:

F (q, t) =
1

N

N∑
i=1

N∑
j=1

⟨exp(iq · rj(t)) exp(−iq · ri(0))⟩ (2.62)

We can also derive the dynamic structure factor by taking the Fourier transform in space
and time of G(r, t):

S(q, ω) =
1

2π

∫ ∫
G(r, t) exp(i(q · r− ωt)drdt (2.63)
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The static structure factor is defined as the integral over the whole energy range:

S(q) =

∫
S(q, ω)dω (2.64)

From these functions, we can define the self or incoherent correlation function Gs(r, t)
which is the probability to find a particle at the position r at the time t knowing that
the same particle was at the position r’ at the initial time. With the correlation of
position of an individual particle, we are looking at individual motion instead of looking
at collective motion with G(r, t). In the same way, the incoherent intermediate scattering
function Finc(q, t) can be written using the average on all the particles:

Finc(q, t) =
1

N

∑
i

⟨exp[−iq · (ri(t)− ri(0))]⟩ (2.65)

We find the same expression for Finc(q, t) than Eq. (1.30). We recall that the incoher-
ent dynamic structure factor Sinc(q, ω) is the time Fourier transform of Finc(q, t) (Eq.
(1.33)). However in neutron experiments, the sum of both coherent and incoherent con-
tributions is measured in the scattered intensity. To separate the contributions and thus
getting the separated dynamics, the coherent and incoherent terms have to be weighted.
Thus, the intermediate scattering function is written:

F (q, t) =
∑
i,j

bcohi bcohj ⟨exp[−iq·(ri(t)−ri(0))]⟩+
∑
i

(binci )2 exp[−iq·(ri(t)−ri(0))] (2.66)

where bcohi and bcohj are the coherent scattering lengths of the atoms i and j respectively

and binci the incoherent scattering length of the atom i. In this expression, the first term
refers to the collective or coherent intermediate scattering function while the second
term correspond to the self or incoherent intermediate scattering function.

Quasi elastic neutron experiments

As explained before, because of the similarity between neutron energy and energy in-
volved in molecular motions, neutrons are suitable to probe the molecular dynamic.
Indeed, several kind of motions can be distinguished. Figure 2.5(a) shows schematic
representation of the scattering function S(q, ω) and the molecular motions associated
according the energy involved. At E = 0, there is no exchange of energy between the
incident neutron and molecules. It physically means that the nuclei are immobile and
the representative function is a dirac centred in E = 0. Near to the elastic peak, ∼ 0.1
meV, neutrons are probing very slow motions as the energy exchange is low. It corre-
sponds to molecular displacement (i.e. translations) and it leads to a broadening of the
elastic peak. This regime is called quasi-elastic (it is going up to few meV). At higher
energy range ∼ 1 meV, molecular motions such as rotations are faster. It can still be
probed by quasi-elastic scattering method as we are going to discuss in the Chapter 4.
At even higher energy, other mechanisms can be observed such as phonon displacement
or molecular vibrations. The regime above 1 meV is referred as spectroscopic and can
be probed by inelastic scattering.
Molecular motions happen on separated energy and length scales. This is the reason
why correlation functions can be taken separately for representing every different motion
[106]. Thus, in order to describe the motion of an individual molecule, the total scat-
tering function Stot

inc(q, ω) can be written as the convolution of each scattering functions
describing a particular motion:

Stot
inc(q, ω) = Srot

inc(q, ω) ∗ Strans
inc (q, ω) ∗ Svib

inc(q, ω) (2.67)
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Figure 2.5: (a) [Adapted from Ref. [108].] Different molecular motions accessible ac-
cording the energy range considered. Quasi elastic neutron scattering allows to look
at the energy range up to few meV. (b) [Adapted from Ref. [109].] On the left side,
the incoherent intermediate scattering function Finc(q, t) ∼ exp(−Dsq

2t) for long range
translational motion. The corresponding dynamic structure factor in the energy domain
is a Lorentzian function whose Half Width at Half Maximum (HWHM) is equal to Dsq

2.

with Srot
inc(q, ω), S

trans
inc (q, ω) and Svib

inc(q, ω) the scattering functions associated to the
rotation, translation and vibration respectively. In the following, we will give some de-
scription of these three components.

Diffusive molecular displacement. If we consider the displacement of a molecule
over “large” time τ , the molecule is going to change its velocity and direction several
times because of collisions with other molecules or even other events which can happen
in the system. If the considered time is large enough for the molecule to have lost
the information of the initial time, the regime reached is referred as Fickian and the
incoherent correlation function Ginc(r, t) is the solution of the equation:

∂Ginc(r, t)

∂t
= Ds∇2Ginc(r, t) (2.68)

This leads to the same solution than Eq. (1.25). Indeed, we are looking at the same
phenomenon. In this regime, the Fourier transform in space of Ginc(r, t) leads to an
exponential form of the incoherent scattering function Finc(q, t) ∼ exp(−Dsq

2t). Then,
the Fourier transform in time of Finc(q, t) leads to the incoherent dynamic structure
factor Strans

inc (q, t) with a Lorentzian form:

Sinc(q, ω) =
1

π

Dsq
2

ω2 + (Dsq2)2
(2.69)

with a Half Width at Half Maximum (HWHM) equal to HWHM= Dsq
2 as shown in

Figure 2.5(b). The self diffusion coefficient can be measured by plotting the HWHM in
function of q2. It will be detailed in the Results part.
However, if we look at smaller time scale, discrepancies to the Fickian regime are ob-
served [74]. It is observed with large q scattering vectors (i.e. small distances). In this
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case, the jump diffusion model (first developed by Chudley and Elliott in their paper
[110]) assumes that a particle stays on a site for a certain time τ0 before jumping to an
other one separated by a distance d. The particle has n jump possibilities. In this case,
the dynamic structure factor writes as:

S(q, ω) =
1

π

HWHM

ω2 +HWHM2
(2.70)

Here, the HWHM is not Dsq
2 anymore but has the following form:

HWHM =
1

nτ0

∑
d

[1− exp(−q · d)] (2.71)

At small q values, the model join the Fick’s law HWHM= q2d2/6τ = Dsq
2. Other

models for studying diffusion at small distances have been summarized by H.Jobic in
Ref. [74].

Molecular rotation. If we consider a rotation of a molecule over a sphere in a confined
media, the time Fourier transform of the solution of the differential equation on the
orientational distribution is the rotational structure factor [111]:

Srot
inc(q, ω) = A0(q)δ(ω) +

∞∑
l=1

Al(q)L
rot
l (q, ω) (2.72)

where A0(q) governs the intensity of the elastic term and Al(q) are the quasi-elastic
structure factors which occur because of the quasi-elastic contributions. Lrot

l corre-
spond to a Lorentzian function with a HWHMrot directly proportional to the rotational
coefficient Dr: HWHMrot = 2Dr. The rotational coefficient (in s−1) is q independent.

Molecular vibration. Without going into too much details, in order to take into
account vibrationnal dynamic of molecules, ones represents a system of N atoms repre-
sented by 3N harmonic oscillators. The vibrationnal scattering function is the sum of
dirac functions centered on frequencies corresponding to vibrationnal modes:

Svib
inc =

[∑
j

αjδ(ω − ωj) + δ(ω)
]
×DW (q) (2.73)

with αj inelastic terms and DW (q) the Debye-Waller factor. The Debye-Waller factor
will be used in the functions used to model our data as it weights the elastic intensity.
For isotropic diffusion in three dimensions, the Debye-Waller factor can be written:

DW (q) = exp(−q2⟨u2⟩/3) (2.74)

with ⟨u2⟩ the mean square displacement of vibrating molecules.

EISF function If we consider the individual dynamic of a particle in a confined media
through Finc(q, t): after a perturbation at t = 0, the system is back to equilibrium at
t = +∞. Then, we can consider the Elastic Incoherent Structure Factor (EISF) is the
elastic contribution of the elastic peak and relates the region of space accessible to the
particle Finc(q, t = +∞) at equilibrium. It can give information on confinement volume
of a particle.
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Figure 2.6: Schematic experimental set up and measurement principle. A neutron beam
lighten a sample after passing through 2 choppers used for selecting the desired neutron
wavelength. Neutrons are then scattered in all direction until reaching detectors which
are placed all around the sample (at the same distance LSD). The time t between the
time when the neutron leaves the second chopper and reaches a detector is measured.
The neutron is counted in the nth channel using the time discretization t = n∆τ . The
data in the time domain is then transform into energy domain as explained in the core
of the text. The spectrum at the right is the output of the experiment at a given angle.
In blue the resolution of the spectrometer and in orange, the unavailable energy range.

Experimental set up

In order to realise neutron scattering experiments, we used the Time of Flight spectrom-
eter IN6/SHARP at the Institute Laue Langevin (ILL). In the following, we will present
the principle of the measurement and the limitation associated to the measure.

Neutron production. Neutrons are produced by the process of nuclear fission in the
experimental nuclear reactor at the ILL. The fuel used in the core of the reactor is en-
riched uranium [112]. In a fission process, an uranium atom adsorbs a neutron after a
collision. The nucleus produced is unstable and separates into two new nucleus. In this
process, two neutrons are produced as well as thermal energy. The two neutrons are
then going to create new fission processes with other uranium atoms: it is the nuclear
chain reaction. In contrast with producing nuclear plant, at the ILL experimental reac-
tor, the thermal energy is not used and is evacuated heating the Drac river in Grenoble.
Moreover, neutrons produced in fission reactions are very fast (2×107 m.s−1) while the
experiments need slower neutrons (in our case, we estimated neutron velocity from Eq.
(2.52) at 783 m.s−1). In order to reach the desired velocities, neutron are slowed down
using a cold source. It consists on liquid deuterium source with an imposed temperature
chosen to reach the desired neutron energy. Once neutrons are thermalized, they are
collected from the tank using neutron guides to experimental set up.

Time of flight set up. In such experiments, the main goal of the measurement is to
count the number of neutrons scattered by the sample in function of the scattering angle
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θ (related to the scattering vector q) and the time for the neutron to travel up to each
detector [109].
The first step is to select neutrons with the desired wavelength λ: the step is called
monochromatization. There are several ways to realize the monochromatization. An
elegant way used in TOF/TOF set up consists on two counter-rotating choppers posi-
tioned on the neutron beam axe (Figure 2.6). Choppers are neutrons absorbing disks
except they possess a slit that allows a small amount of neutrons to pass through them.
The second chopper is out of phase with a constant angle ϕ. The distance between the
two choppers is also constant: L12. Therefore, only neutrons with a specific speed and
thus a specific wavelength will be allowed to pass through the two choppers. The other
wavelengths are going to be adsorbed.
IN6/Sharp is a time focusing spectrometer where the monochromatization is realized us-
ing three composite pyrolytic graphite monochromators [113] and a Fermi chopper. The
neutron beam is diffracted by the graphite monochromators, following Bragg conditions.
As a result, four wavelengths close to each other (4.1 Å, 4.6 Å, 5.1 Å, 5.9 Å) are selected.
A beryllium filter is positioned after the monochromators in the beam axe to cut the
second order reflexion (i.e. in the Bragg law nλ = 2d sin(θ) with λ the wavelength, d
the lattice spacing and θ the scattering angle, the second order corresponds to n=2).
The time focusing condition imposes that for all the four wavelength, neutrons reach
detector at the same time for elastic scattering. To achieve this condition, the beam is
pulsed by a Fermi chopper which possesses multiple slits. It allows to let neutrons pass
at different time according their wavelength in a such way that the above condition is
matched. Moreover, to avoid frame-overlap, an other chopper is placed before the Fermi
one and rotates in phase with a speed n times slower (n integer).
Then the second important step is the detection of neutrons depending on the momen-
tum transfer q and the energy E. The time space is discretized in n time channels of
width ∆τ which depends on the monochromatization. Thus, the time is t = n∆τ . The
neutron travel time t (i.e. the time for the neutron to browse the distance L2S + LSD)
is measured and the neutron is counted in the nth channel associated. We can notice
that knowing the incident wavelength and neutron velocity, we can know the travel time
t0 of elastic scattered neutron (i.e. no energy modification). According to the angular
position of the detector around the sample and the time/energy transfer, the scatter-
ing vector q is recovered. Now in order to get the dynamical structure factor from
the measurement, we need to introduce more formal definitions. The measurement by
unit of solid angle dΩ and arrival time dt of the neutrons onto a detector is link to the
differential cross section by energy dω and solid angle dΩ through:

d2σ

dΩdt
=

dω

dt

d2σ

dΩdω
(2.75)

Moreover, d2σ/dΩdω is connected to the dynamic structure factor using:

d2σ

dΩdω
= N

kf
k0

σ

4π
S(q, ω) (2.76)

= N
kf
k0

σ

4π
[σcohScoh(q, ω) + σincSinc(q, ω)] (2.77)

with kf and k0 the final and incident wave vectors respectively while Scoh(q, ω) and
Sinc(q, ω) the coherent and incoherent structure factor. The associated energies are link
using kf,0 =

√
Ef,02m/ℏ2 with m the mass of a neutron. We also have ℏω = Ef − E0

and Ef = 1/2mv2f . Moreover, using the experimental set up geometry (Figure 2.6), we
know that:

vf =
LSD

t
(2.78)
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By using these different equations, we can link the dynamic structure factor to the direct
measurement d2σ/dΩdt.

Resolution and instrumental limitations. Figure 2.6 shows a typical scattering
function S(q, ω) recorded by a TOF spectrometer. One of the limitation when it comes
to observe molecular motions is the energy range. The accessible windows depends on
the instrument (i.e. using cold, thermal or hot neutrons with different energy range
associated) and the resolution depends on the chopper used. Then, if the observed
motion is too fast, the energy transfer is large and the signal is lost in the background.
On the other hand, if the molecular motion is too slow, the energy transfer can be lower
than the instrumental resolution and the signal is indistinguishable from it. Indeed, the
elastic peak is not a perfect dirac but has a certain width as represented by the blue
peak in Figure 2.6. It is due to the uncertainty on the measured energy ∆E which leads
to a broadening of the peak [109, 107]. The instrumental resolution is usually measured
using a vanadium sample whose signal is only elastic. Neglecting other geometrical
effects, the energy, time and wavelength resolutions are linked together using:

∆E

E
=

2∆τ

τ
=

2∆λ

λ
(2.79)

In order to get a better resolution in time and energy, the usual way is to reduce the
uncertainty on λ by tightening the choppers’ slits. However, the price to pay is the
diminution of the neutron flux and therefore a weaker statistic.
In any case, the resolution function R(ω) of the spectrometer has to be deconvoluted
from the experimental dynamic structure factor Sexp(q, ω) to get the theoretical dynamic
structure factor Stheo(q, ω):

Sexp(q, ω) = Stheo(q, ω) ∗R(ω) (2.80)

Moreover, there are some physical limitations on the q and E range which are not due
to the instrumental resolution.
Indeed, if the neutron can gain as much energy as the system can transmit, it can loose
only the incident energy amount E0. That is why the right part of the energy range is
forbidden above dE = E0 as shown by the red rectangle on the graph Figure 2.6. We
have to notice here that the right part of the scattering function - positive energies -
refers to a lost of the neutron energy and thus a gain of the sample energy. For the left
part of the scattering function, it is the opposite.
Moreover the kinematic condition on the q range has to be highlighted. Indeed, by
definition:

|q| = |kf − k0| (2.81)

which leads to:

|q| =
√
|kf |2 + |k0|2 − 2|kf ||k0|cos(θ) (2.82)

From the latter equation comes the condition that the term inside the square root is
positive. It imposes forbidden values for θ and leads to a restriction on the accessible q
range.

This chapter introduced the fundamentals of both numerical and experimental methods
which are going to be used to probe adsorption, diffusion and transport of methane
in zeolite. Thus, adsorption will be studied by simulation using Monte Carlo while it
will be measured by experimental volumetric method. In an other hand, Molecular
Dynamic will allow us to compute diffusion and transport properties that we will be
able to compare with experimental data performing neutron scattering experiments.
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3 Gas adsorption in zeolite and zeolite
layers

This chapter reports the study realized within this thesis on methane physisorption
on zeolite and zeolite layers. While the confinement of fluids in the core porosity of
zeolites is rather well-understood, the design of novel zeolitic materials such as zeolite
films [43], nanozeolites [44], hollow zeolites [45], hierachical zeolites [46, 114], dendritic
zeolites [115], raises additional basic and practical questions related to adsorption in
their complex architecture [116, 117, 118]. Indeed, a common point to nanozeolites,
hollow zeolites and hierarchical zeolites is their large external surface through which
different porosities connect in a more or less topologically ordered fashion (we note that
even regular zeolite powders already possess a large external surface area but to a lesser
extent compared to the sample types listed here). The impact of this external surface is
already documented with striking examples in adsorption uptakes measurements [9, 10]
as well as in separation/chromatography where it plays a key role in the balance between
intra-particle diffusion and hydraulic transport [11, 12] (see also Ref. [20] for a discussion
on the adsorption of xylene isomers at the external surface of zeolites). In catalysis, the
effect of the external surface remains to be fully established but many papers report
pore mouth catalysis mechanisms [119, 120]. In this context, the geometry and defects
at the external surface was shown to affect both the catalysis of reacting molecules
(e.g. Refs. [121, 122]) and the adsorption/dynamics of fluids (e.g. Refs. [123, 117]) in
nanoporous solids.
Despite the acknowledged impact of the external surface, a detailed picture of adsorp-
tion and transport across nanoporous materials displaying large external surface areas
is still missing. In particular, very practical questions remain unanswered such as the
influence on gas adsorption of the surface geometry (orientation, flexibility, etc.). More-
over, while theoretical frameworks are available to describe gas adsorption in zeolites,
a unified formalism to model in a consistent fashion adsorption in the zeolite core and
at its external surface is lacking. To gain fundamental insights into these issues, this
chapter reports a joint experimental and molecular simulation study on gas adsorption
in zeolite materials. In more detail, using a prototypical system consisting of methane
confined in silicalite-1 [42], we investigate gas adsorption at different temperatures in
the zeolite core porosity as well as at the external surface of zeolite thin layers with
different crystallographic orientations. Using our simulated and experimental data, we
first extend the adsorption potential theory - originally developed by Polanyi to describe
adsorption of condensable vapor onto surfaces [59, 60, 61] - for fluids under supercritical
conditions. Then, we show that this powerful adsorption theory can be used to pre-
dict adsorption at different temperatures both at the external surface and in the core
porosity of zeolites.
The remainder of this chapter is arranged as follows. In Section 3.1, we describe the
numerical tools used to investigate adsorption. We first report how we build both “infi-
nite” zeolite and zeolite layers before detailing the application of Monte Carlo methods to
study adsorption. In Section 3.2, the experimental samples employed in our experiments
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using adsorption volumetry are described. Then, in Section 3.3, both the simulated and
experimental adsorption isotherms are presented. We first discuss methane adsorption
at different temperatures in a bulk zeolite. We also assess the influence of different
parameters such as the lattice parameter and flexibility. Then, using our simple model
of zeolite layers, we discuss the role of the external surface on the overall adsorption
phenomenon. Indeed, using results from the bulk zeolite, we can separate the contri-
butions from the external surface and from the zeolite core. In Section 3.4, using our
experimental and simulated adsorption data, the adsorption potential theory is invoked
to provide a formalism which allows predicting adsorption in the core of zeolites and at
their external surface.

3.1 Computational methods

This section is dedicated to the description of the zeolite numerical system and computa-
tional tools used to simulate adsorption isotherms. We first describe both the “infinite”
zeolite crystal and the zeolite layers with the intermolecular potentials associated. Then,
we present the Monte Carlo algorithm emmployed in Lammps to compute adsorption
isotherms.

3.1.1 Zeolite systems: infinite crystal and layers

The two structures used for our molecular simulations will be presented in this section.
The first zeolite structure is an infinite zeolite crystal, which corresponds in molecular
simulation to crystal used with periodic boundary conditions. The second numerical
structure is the zeolite layer which is oriented along an axis and which present external
surfaces.

Zeolite crystal. The zeolite structure used as input for the molecular simulations
was taken from the International Zeolite Association database (IZA) [42]. Silicalite-1,
which possesses a crystalline network known as MFI, is a pure silica structure – i.e.
only composed of silicon and oxygen atoms as explained in Section 1.1.4 (other MFI
structures, which also include Al atoms with compensation cations such as Na, are
not referred to as silicalite). The experimental unit cell parameters for silicalite-1 are
a = 20.09 Å, b = 19.738 Å and c = 13.142 Å (Figure 3.1 (a)). We chose to work in
this thesis with the orthorhombic version of the MFI structure. Indeed, at the T and
P ambient, the structure is slightly monoclinic. Moreover, under the adsorption, the
silicalite goes to an orthorhombic structure. It is a reasonable approximation.
A MFI crystal supercell, consisting of 2 × 2 × 2 cells along the x, y and z axes, was
obtained by duplicating the crystallographic unit cell. The dimensions were chosen to
optimize the computational time while minimizing finite size effects. Thus, the dimen-
sions of the duplicated crystal are 40.18 Å along x, 39.476 Å along y, and 26.284 Å along
z (Figure 3.1(b)). In practice, the system is made up of a total of 2304 atoms of the
matrix (768 Si and 1536 O).

Zeolite layer. In our molecular simulations, a zeolite layer corresponds to a structure
where periodic boundary conditions are applied in two directions of space (as the zeolite
crystal defined above) while the third direction is considered as the layer axis. Along
this axis, the layer presents external surfaces. However, these surfaces are in contact
with bulk volume at each side of the layer which are subject to periodic boundary con-
ditions. Three layers were built from the MFI unit cell crystal by considering different
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Figure 3.1: (color online) Silicalite-1 zeolite crystal. The Si and O atoms are represented
as yellow and red spheres, respectively. a, b, c denote the crystallographic axes which are
aligned with the x, y and z axes of the Cartesian reference frame. A single unit cell is
represented in (a) while a 2×2×2 crystal is shown in (b). Periodic boundary conditions
(PBC) are applied in each direction to mimic an infinitely large system and, hence,
avoid finite size effects. (c) The MFI unit cell was duplicated 10 times along the chosen
direction (the layer axis, here z) and 2 times along the other directions (perpendicular
to the layer axis, here x and y) to form a zeolite layer with an external surface. Methane
adsorption is simulated by setting the system in contact with a fictive bulk reservoir
which imposes its temperature T and chemical potential µ.

crystallographic orientations for the external surface. In practice, each of the three lay-
ers corresponds to a system in which the external surface is perpendicular to one of
the crystallographic axis: a, b, c (i.e. the crystallographic axes which are aligned with
the x, y and z axes of the Cartesian reference frame). To do so, the MFI unit cell was
duplicated 10 times along the chosen direction (the layer axis) and 2 times long the
other directions (perpendicular to the layer axis). The Figure 3.1(c) shows an example
provided for the zeolite layer c.
These layers were cut at well-defined positions along the chosen perpendicular axis (i.e.
a, b or c); these positions were used to ensure that the two opposite layer external sur-
faces are equivalent in the sense that they possess the same silicon density (to do this,
the silicon and oxygen density profiles were plotted along the layer axis). In so doing,
the two opposite surfaces have similar properties towards gas adsorption, diffusion, and
transport. Finally, whenever the surface has a terminating Si atom, an oxygen atom was
added to build surfaces that are oxygen terminated. The use of an oxygen terminated ex-
ternal surface corresponds to a simplified version of real materials which are expected to
display surfaces terminated with silanols (OH groups). Surface termination is expected
to affect the behavior of many adsorbates at the zeolite external surface – especially
polar molecules or molecules with complex chemical structure. On the other hand, with
simple molecules such as methane considered here, the details of surface termination is
assumed to be of limited impact (in particular, considering the very small polarizability
of hydrogen atoms, the absence of H atoms at the external surface is believed to be a
reasonable approximation).
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Table 3.1: Lennard-Jones parameters σ and ϵ for the fluid/fluid and fluid/zeolite inter-
action potentials.

type σ (Å) ϵ/kB(K)

CH4-CH4 3.73 147.92
CH4-O 3.214 133.27

To account for zeolite flexibility while maintaining the same overall crystalline structure,
two different models were considered. In the rest of this article, “surface oxygen” denotes
an oxygen atom which is only bonded to a silicon atom while “bulk oxygen” denotes an
oxygen atom which is bonded to two silicon atoms. For the first surface flexibility model
(s1), “surface oxygens” were maintained to their original position so that the surface
is frozen while all other atoms are allowed to move. For the second surface flexibility
model (s2), the “surface oxygens” were allowed to move during the simulation but their
motion was restricted to the plane perpendicular to the layer axis.

Intermolecular interactions. The fluid/fluid and fluid/zeolite intermolecular inter-
action potential used in this work correspond to Lennard-Jones potentials. This generic
interaction potential corresponds to the sum of long-range attractive and short-range
repulsive contributions as described in Section 1.2.1.We recall that the potential energy
Ep can be written as:

Ep(r) = 4ϵ

[(σ
r

)12
−
(σ
r

)6
]

A cut-off rc ∼ 13 Å was used in our molecular simulations to speed up the computa-
tional times; beyond this distance (r > rc) the potential energy Ep = 0. To avoid any
non-physical behavior, the box dimension in each Cartesian direction is always larger
than 2rc. The Lennard-Jones potential was used to model the fluid/fluid interactions
between CH4 molecules but also the fluid/solid interactions between CH4 and O groups.
Parameters used can be found in Table 3.1. The United Atom model (UA) was used
for CH4 in which the methane molecule is treated as a single Lennard-Jones sphere. As
a result, no intramolecular interactions have to be taken into account. This is known
to be a good approximation for methane provided the temperature is high enough (like
in the present work in which the minimum temperature considered is about 200 K). As
for the fluid/zeolite contribution, following previous works [124, 125], no Lennard-Jones
potential between CH4 and Si atoms were considered as it can be reasonably neglected.
Indeed, Si atoms have a small polarizability while O atoms have a large polarizabil-
ity. Moreover, the Coulomb interaction between zeolite atoms and CH4 molecules is
not taken into account within the united atom model hypothesis (as there is no partial
charge on the CH4 molecule).

Zeolite intramolecular interactions. We use the model by Vlugt and Schenk [125] to
take into account the flexibility of the zeolite matrix. With this model, simple harmonic
potentials are used to describe the bonds between Si-O and O-O atoms connected to
the same Si atom:

ESiO = kSiO(r − r0SiO)
2

EOO = kOO(r − r0OO)
2

For each bond type, the corresponding potential energy is E while k is the spring con-
stant and r0 the equilibrium bond length. The O-O potential does not correspond to
a real chemical bond but allows to model the matrix flexibility in an effective fashion.
The particularity of this model is that the Si-O and O-O equilibrium bond lengths are
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Table 3.2: Root mean square displacement (RMS) ⟨δr2⟩ for the three zeolite layers. As
explained in the text, two approximations were considered to describe the mobility of
surface atoms. The first number is the RMS computed in the core of the layer (i.e.
calculated at the center of the layers in a 2×2×2 region). The second number is the
RMS of the “surface oxygen” i.e. computed at the external surface. In the last column,
for comparison is the RMS for the MFI “infinite” crystal.

type Layer a Layer b Layer c MFI crystal

s1 0.149/2.45 10−24 Å2 0.155/0.12 10−24 Å2 0.15 Å2

s2 0.148/0.248 Å2 0.149/0.547 Å2 0.15 Å2

not unique but depend on the bond length distribution of the initial zeolite structure.
Indeed, using flexibility, the average position of zeolite atoms can deviate from the rigid
crystal. Using a unique value to describe the distribution of the bond length induces
a model not very accurate. For this reason, the equilibrium bond length distribution
in the initial zeolite structure (experimental data) was calculated. Both the data for
Si-O and O-O bonds were estimated. The equilibrium bond lengths were discretized
with a very fine step of 0.01 Å. In practice, considering this discretization level, 5 val-
ues for the Si-O bond lengths and 12 values for the O-O bond length were considered.
As proposed by Vlugt and Schenk, to reduce the number of variables, we have chosen
k = kOO = 0.2kSiO [125]. Figure 3.2 shows the root mean square fluctuation

√
⟨δr2⟩ of

the oxygen atoms around their average position as a function of kOO/kB with kB the
Boltzmann constant. As expected, the oxygen displacement decreases with increasing
the spring constant k. In the rest of this manuscript, the spring constant k will be set
equal to kOO/kB = 2.6× 104 K.Å−2 as initially proposed in Ref. [125].

Before investigating adsorption in the zeolite layer, we first performed test to verify that
the core of each zeolite layer behaves in a similar fashion as the silicalite-1 crystal. To
do so, the root mean square displacement (RMS) of the “bulk oxygens” were calculated
and compared for each layer. In these calculations, the two surface models – flexible and
rigid – were considered. These data can be found in Table 3.2. The RMS for the “bulk
oxygens” in the layers are in good agreement with those found for the oxygen atoms in
the zeolite crystal. This result indicates that, as expected, the core of the zeolite layer
and the zeolite crystal behave similarly. Moreover, the RMS for “surface oxygens” from
s1 is zero as the “surface oxygens” are maintained to their original position. In contrast,
the RMS for “surface oxygens” with the flexible surface is larger than the RMS for
“bulk oxygens”. This result suggests that these flexible surface atoms are more mobile
as they are linked to a silicon atom only. Therefore, even if their motion is restricted to
a plane parallel to the layer surface, their average displacement is larger than that for
bulk oxygen atoms.

3.1.2 Grand Canonical Monte Carlo simulations

The methane adsorption isotherms at different temperatures in silicalite-1 were calcu-
lated using Grand Canonical Monte Carlo (GCMC) simulations. General principles of
this method were explained in Section 2.1.2. All Monte Carlo simulations were per-
formed using the simulation package LAMMPS (version openmpi 1.8.1) [126]. For both
the zeolite crystal and the zeolite layers, the zeolite system is set in contact with a fic-
tive bulk reservoir of methane imposing its temperature T and chemical potential µ. In
Lammps µ and T are defined by the following lines:
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Figure 3.2: Root mean square fluctuation
√
⟨δr2⟩ of the oxygen atoms around their

average position. Lines with symbol correspond to the results from the literature [125]:
Vlugt and Schenk (■), Demontis et al. (•). Open symbols correspond to the results
from this work: simulation based on Vlugt and Schenk model (□), simulation based on
the model by Demontis et al. (◦)

variable mu index -11.4522
variable temp index 300

As an example, µ and T are fixed at -11.4522 kcal.mol−1 and 300 K respectively. µ
can be directly converted into a pressure P through the equation of state as there is a
unique relation between P and µ at constant T . Assuming an ideal gas, we can write
(see “Transport and thermodynamic (Darken) factor” in Section 1.3.1):

µ = kBT ln
(PΛ3

kBT

)
(3.1)

We recall that Λ is the thermal de Broglie wavelength. At equilibrium, the methane
adsorbed amount na is calculated from the number of molecules N in the system that
fluctuates around its equilibrium value ⟨N⟩. In practice, to reach equilibrium, methane
molecules are translated, inserted or removed randomly (Monte Carlo moves) with an
acceptance probability defined using the Boltzmann factor in the Grand Canonical en-
semble. In order to perform Monte Carlo moves, the following line is added:

fix mygcmc fluid gcmc 10 10 10 1 29494 $temp $mu $disp

Grand Canonical Monte Carlo (“gcmc”) is applied to methane atoms (“fluid”) at tem-
perature defined by $temp and chemical potential $mu every 10 (first number) time
steps. The number of inserting/deleting methane atoms (fourth number “1”) attempts
is given by the second number (10) while the number of translation attempts is given
by the third number (10). The maximum distance for translation attempts is fixed by
$disp which was set at 3.48 Å. The fifth number is an initialization parameter for the
random generator used in Metropolis method.
Finally, the time of the run has to be determined in function of the time needed for
reaching equilibrium. The number of Monte Carlo moves needed to reach equilibrium
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Figure 3.3: Methane amount in the zeolite crystal at 300 K in function of the time for
pressures corresponding to 4.7 bars (left data) and 4.8 104 bars (right data).

depends on both T and P . Indeed, the higher the pressure is, the more MC moves
are needed while the higher the temperature is, the faster the thermalization is and
less MC moves are needed to reach equilibrium. Figure 3.3 shows one MC simulation
that reached equilibrium (at the left) in 3×105 fs and another one which is still out of
equilibrium after 7×106 fs (at the right).

3.2 Adsorption experiments

This section is dedicated to the presentation of the zeolite powder samples and the ex-
perimental protocol used to measure adsorption isotherms. First, we present the zeolite
sample characterization. This characterization was done by Martin Drobek and Anne
Julbe in Montpellier who synthesized the samples according to the procedure described
elsewhere [127]. Even if it is not my own work, the characterization is important for
the readability of the manuscript. On the contrary, I did the experimental adsorp-
tion measurements with the help of Simon Baudoin at Institut Laue Langevin and my
supervisors.

3.2.1 Zeolite samples

There are four powder samples with different crystallite sizes (diameter) Dg: 1 µm, 350
nm, 200 nm and 80 nm. The scanning electron microscope (SEM) images of the silicalite-
1 powder samples are shown in Figure 3.4. For each sample, powder X-ray diffraction
(XRD) and N2 adsorption isotherm at 77 K were determined (see Figure 3.5 and Figure
3.6 respectively). XRD analysis corroborates the presence of silicalite-1 diffraction lines
at 2θ = 7.9°, 8.7°, 23.1°, and 24.4°, corresponding to the reflections of (101), (020), (501)
and (303) crystallographic planes. Nitrogen sorption experiments reveal comparable mi-
croporous characteristics for the four prepared zeolite samples (typical for MFI zeolites),
reaching all a specific surface area of SBET ∼ 400 m2/g. This measured specific surface
area is mainly attributed to the internal zeolite network.
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Figure 3.4: FESEM images of silicalite-1 powder samples with different grain sizes: (a)
Dg: ∼80 nm ; (b) Dg: ∼200 nm ; (c) Dg: ∼350 nm ; (d) Dg: ∼1 µm. (Field Emission
Scanning Electron Microscope, Hitachi 4800)

(a) (b)

(c) (d)

Figure 3.5: XRD patterns for the silicalite-1 powder samples with different grain sizes:
(a) Dg: ∼80 nm ; (b) Dg: ∼200 nm ; (c) Dg: ∼350 nm ; (d) Dg: ∼1 µm. (Philips
X’Pert X-ray diffractometer, CuKα, 40kV, 20mA)
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Figure 3.6: Experimental adsorption isotherms for N2 at 77 K in silicalite-1 samples as
determined by Drobek and Julbe (courtesy from IEM). Different colors correspond to
different samples: (■) Dg = 1 µm, (■) Dg = 350 nm, (■) Dg = 200 nm, (■) Dg = 80
nm.

3.2.2 Experimental protocol

Experimentally, methane adsorption in the zeolite samples was measured at the Institute
Laue Langevin (ILL) in Grenoble, France. These experiments were carried out using a
Hiden Isochema apparatus which relies on a volumetric method to measure adsorption
at equilibrium. The principles of this method were developed in Section 2.2.1. In short,
methane is injected in a dosing cell prior to connection to the sample holder containing
the zeolite matrix. The number of adsorbed molecules is determined from the difference
between the number of injected molecules and the number of molecules left in the gas
phase once equilibrium is reached (the latter being assessed from the final pressure and
the cell volume corrected for the volume occupied by the zeolite sample). The sample
is put in a cryostat which regulates the temperature. These experiments last between
10 minutes and few hours depending on the injected amount of methane and imposed
temperature. Considering the experimental setup employed in this study, the adsorption
data were recorded at low temperatures for which the operating conditions allowed us to
obtain reliable data. As will be discussed later, these data were found to be consistent
with data obtained by other groups at larger temperatures. Data at higher temperatures
were also recorded but, as will be explained later, their reliability can be questioned.

3.3 Adsorption in zeolitic systems

This section presents first experimental and simulation results on adsorption in “bulk”
zeolite and second simulated adsorption isotherms for zeolite layers. In order to study
the impact of the external surface, layers were described using three regions : the core,
the external surface and the external phase. Adsorption in “bulk” zeolite was compared
to adsorption in zeolite layers in order to separate the external surfaces contribution.
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Figure 3.7: (color online) Experimental and simulated adsorption isotherms na(P ) for
methane at different temperatures in silicalite-1 zeolite. The different colors correspond
to the following temperatures: 200 K (black), 225 K (blue), 250 K (green), 275 K (or-
ange), 300 K (red). The lines with crosses correspond to the results from our molecular
simulations. The symbols without lines correspond to experimental data. The open
symbols correspond to our experimental data. The closed symbols correspond to ex-
perimental data at 300 K from other groups: Abdul-Rehman et al. (diamonds), Ding
et al. (circles), Golden and Sircar (squares), Richard and Rees (triangles). All these
experimental data were reproduced from Smit et al. [124]. The adsorbed amount na is
expressed in number of methane molecules per zeolite unit cell. The arrow indicates data
obtained for increasing temperatures. The insert shows our experimental data obtained
at 250 K for powder samples with different grain sizes: Dg = 1 µm (squares), 350 nm
(diamonds), 200 nm (circles), 80 nm (triangles). It also shows experimental data at 225
K (blue) and 300 K (red) for Dg = 1 µm.

Figure 3.7 shows the methane adsorption isotherms obtained at T = 300 K (red), 275 K
(orange), 250 K (green), 225 K (blue), 200 K (black). The lines with crosses correspond
to the simulation data while the symbols denote the experimental data. As expected
for fluids confined in the very narrow pores of zeolites, adsorption is a reversible and
continuous process which does not display any sharp increase in the adsorbed amount
or hysteresis loop [128, 117]. While the methane adsorbed amount na increases upon
increasing the pressure P at a given T , it increases upon decreasing T at a given P .
For each T , the different regions of the adsorption isotherm correspond to different phe-
nomena. Typically, at T = 300 K, the data in the pressure range between ∼ 0.4 and
11 bar corresponds to pore filling while the data in the pressure range from 11 to 103

bar corresponds to pore saturation. In the latter range, the zeolite pore volume is al-
ready filled so that the slope in the adsorption isotherm arises from the compressibility
of confined methane which allows the insertion of additional methane molecules upon
further increasing the pressure. Such a scenario (pore filling followed by saturation)
was verified by careful inspection of the molecular configurations generated along the
Grand Canonical Monte Carlo simulations at different chemical potentials. The effective
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methane compressibility inside the zeolite once pores are saturated was estimated from
the slope of the adsorption isotherm in this pressure range: χT = 1/ρ × ∂ρ/∂P . For
example, at 300 K and P = 1200 bar, the compressibility from our simulating data is
3.52 Pa−1 for confined methane and 4.68 Pa−1 for bulk methane. The fact that the
compressibility of confined methane is lower than that of bulk methane under similar
thermodynamic conditions is in agreement with previous studies on nanoconfined fluids
[129]. In addition, Figure 3.7 shows the experimental adsorption isotherms for methane
obtained at different temperatures for the four powder samples (open symbols). We
also show experimental data obtained at 300 K from other groups taken from Ref. [124]
(Abdul-Rehman et al. [130], Ding et al. [131], Golden and Sircar [132], Richard and
Rees [133]).

Experimentally, the trend observed in our molecular simulation is also seen as adsorp-
tion increases upon decreasing the temperature (owing to the reduced thermal energy
which promotes adsorption). The grain size Dg in the zeolite powders does not strongly
impact adsorption as can be observed from the data obtained at T = 250 K in the
insert. This result was expected as the external surface area in the zeolite samples is
small compared to the internal surface in the zeolite porous structure. The simulation
data at 300 K are found to be in reasonable agreement with the experimental data.
However, Abdul-Rehman et al. [130] found larger adsorbed amounts compared to our
simulation data but also with respect to other experimental data. Such discrepancies
may stem from different material parameters including the type of silicalite-1 used by
these authors; in particular, as explained in Ref. [124], Linde S-115 sample corresponds
to silicalite-1 mixed with a clay binder to form pellets so that its porosity and, hence, ad-
sorption properties may differ from other (more conventional) samples. The insert also
shows experimental data measured at 300 K (open red squares). When the pressure
increases, the adsorbed amount reaches a maximum (∼ 4.2 bars) and start to decrease.
We applied a correction (red dashed line with crosses) which is based on the difference
excess/absolute adsorption (see Section 1.2.1). Indeed, volumetric set up measures the
excess amount of molecules as adsorbed molecules do not contribute to pressure. How-
ever, the methane amount inside the zeolite (also given by MC) is: nabs = nexc+Vp×ρg

with Vp and ρg the porous volume and the gas phase density respectively. The right side
of the equation gets more and more importance with an increasing temperature (as the
density increases with temperature). However, by comparing the excess and absolute
data, we concluded that the decrease observed at the highest pressures is not only the
result of excess/absolute correction but corresponds to measurements out of the regular
regime of the device.

Influence of lattice parameters. The effect of the specific zeolite microscopic struc-
ture was also studied by considering 3 different zeolite unit cells. The first structure,
which corresponds to the standard model discussed in Section 3.1.1, is built from the
IZA database [42]. The structure referred to as “A” corresponds also to an orthorom-
bic structure but with the following lattice parameters: a = 20.072 Å, b = 19.9517 Å
and c = 13.4262 Å. These parameters were provided by F. Porcher from LLB, Saclay,
France, who performed diffraction experiments for a silicalite-1 structure. The structure
referred to as “B” corresponds to an orthorombic structure but with the following lat-
tice parameters: a = 20.022 Å, b = 19.899 Å and c = 13.383 Å. “B” was obtain using
the crystallographic structure from the IZA database after relaxation with the forcefield
developed by Catlow et al. Figure 3.8 (b) shows the methane adsorption isotherms
obtained by means of GCMC simulations for the different zeolite structures presented
above: ◦ IZA database, □ model “A”, △ model “B”. The structure does not have much
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effect on the adsorption isotherms. As the IZA structure is the most referenced, we will
used this structure in the rest of the study.
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Figure 3.8: (a) Comparison of methane adsorption isotherms at 300K for different unit
cell parameters. “A” refers to an orthorhombic structure with the following lattice pa-
rameter: a = 20.072 Å, b = 19.9517 Å, c = 13.4262 Å. “B” refers to IZA database
structure after relaxation with the force field developed by Catlow et al. and corre-
sponds to the following lattice parameter: a = 20.022 Å, b = 19.899 Å, c = 13.383
Å. (b) Simulated adsorption isotherms for methane at 300 K using a rigid or a flexible
framework.

Influence of the zeolite flexibility. Figure 3.8 (b) shows simulated adsorption
isotherms for methane at 300 K using a rigid or a flexible zeolite framework. The
flexibility of the zeolite matrix does not impact significantly the adsorption at low and
intermediate pressures (pressures up to 2000 bars). However, beyond this pressure, in
the flexible matrix, the zeolite structure distorts as more CH4 molecules get adsorbed
inside the small cages. Such additional adsorption at high pressures is responsible for
the adsorbed amount increase around 104 bars. In contrast, the rigid zeolite cannot
distort by construction so that the adsorbed amount reaches and stays at a plateau at
high pressures. Despite the small impact of flexibility, in the rest of this manuscript, the
flexible structure will be used to describe the zeolite structure as flexibility might have
a stronger impact on methane diffusion and transport.

3.3.2 Zeolite layers

Using molecular simulation, the adsorption isotherms were computed at T = 300 K, 275
K, 250 K, 225 K, and 200 K for the three layers aligned along the a, b and c directions,
respectively. As explained in the Section 3.1.1, for each layer, the adsorption isotherms
were computed for two surface flexibility models (s1 and s2). As will be discussed later,
the adsorption isotherms for these two surface models were found to lead to similar
adsorption isotherms so that only data for the model s1 will be discussed extensively.
Moreover, for the sake of clarity, we will present adsorption isotherms for the layer a
(data for the layers b and c at T = 300 K will be discussed later).
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Figure 3.9: (color online) (a) Methane density for the silicalite-1 layer aligned along
the c crystallographic axis. For visualization purpose, only the left side of the layer is
shown (the system is symmetrical with respect to the position z = 0). The cavity size
is about 1/3 of the Lennard-Jones size parameter for the methane molecule. (b) and (c)
show the adsorption isotherms in the core of the zeolite layer and density in the external
fluid phase, respectively. Different colors correspond to different temperatures T : 300
K (red), 275 K (orange), 250 K (green), 225 K (blue), 200 K (black). In (b), the lines
show the adsorbed amounts obtained for the infinite zeolite while the open circles show
the adsorbed amounts obtained by counting methane molecules adsorbed in the core of
the layers.

To determine the impact of the zeolite external surface, the methane density profile
was first computed at different methane pressures for each zeolite layer. An example
obtained for the layer aligned along the c axis at T = 300 K and P = 4.6 bar is provided
in Figure 3.9(a). The gray line corresponds to the local methane density in the system
at a given position z – where z can lie in the bulk phase, at the external surface or in
the core of the zeolite layer. These three regions are delimited by the two vertical black
dashed lines. The first region, which is located on the left Figure 3.9(a), corresponds to
the methane density in the external gaseous phase. The simulated density in this region
was found to be close to the experimental density available from NIST [134] for bulk
methane under the same thermodynamic conditions [see the blue horizontal dashed line
in Figure 3.9(a)]. The second region, which is located between the two black vertical
dashed lines in Figure 3.9(a), corresponds to the methane density at the external surface
of the zeolite layer. Finally, the third region corresponds to methane adsorbed in the
core of the zeolite layer as illustrated in Figure 3.9(a). The adsorbed density peaks in
this region show marked variations corresponding to the varying methane concentration
in the zeolite channels/cages. The average adsorbed methane density computed in this
region - which does not include any contribution from the gaseous phase or methane
adsorbed at external surface – was compared with the average adsorbed methane density
estimated from the calculations for the infinite zeolite crystal [indicated by the horizon-
tal red dashed line in Figure 3.9(a)]. The two values are found to be close to each other;
while the mean adsorbed methane density for the zeolite crystal is ρinf = 44.14 kg.m−3,
the average methane density in the core of the zeolite layer is ρc = 45.65 kg.m−3. An
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important remark is in order here. Different choices can be made to define the bound-
aries used to estimate the methane density in the zeolite core, at the external surface,
and in the bulk phase (leading to different excess quantities once volume boundaries
and interfaces have been selected). However, to ensure consistency between volume and
surface amounts, we made sure that our boundary definition in Figure 3.9 leads to bulk
densities and adsorbed amounts in the zeolite core that match those obtained for bulk
methane and the zeolite crystal without external surface (further discussion will be pro-
vided later when excess data for adsorption at the external surface are commented).
In the same context, we highlight that Barrer and Robbins [135] developed a general
approach that provides an equation of state for adsorbed films. In our case, while such
a strategy could be used to define adsorption at the external surface, there is additional
complexity as the surface on which adsorption occurs is nanoporous (zeolite layer be-
neath the external surface). Therefore, this raises the question of the boundary used to
define surface adsorption versus adsorption in the core of the zeolite layer. Figure 3.9(b)
shows the methane adsorbed amount as a function of pressure for the core of the zeolite
layer a at different temperatures ranging from T = 200 K to 300 K. These data, which
were extracted from the simulation data for the zeolite layer, correspond to the adsorbed
amount in the innermost region of the zeolite layer (to avoid any surface effects from the
zeolite external surface). In more detail, such data in molecules per unit cell correspond
to the number of molecules adsorbed in a 2×2×2 supercell located at the center of the
layer. As can be seen in Figure 3.9(b), these adsorption isotherms (open circles) match
those obtained for the infinite zeolite crystal (full lines which correspond to data from
Figure 3.7). Figure 3.9(c) shows the density of the bulk methane phase as assessed from
the number of molecules in the region outside the zeolite layer. As expected, for all
temperatures, methane behaves as an ideal gas (i.e. ρe = P/RT ) provided the pressure
does not exceed ∼ 100 bar. The density of bulk methane at P = 103 b and T = 300 K in
our simulation (ρe = 2.11×10−2 mol.cm−3) is in good agreement with the experimental
value from NIST (ρNIST = 2.13× 10−2 mol.cm−3).

Adsorption at the external surfaces. Figure 3.10 shows the adsorption isotherms
obtained at different temperatures for methane at the external surface of the zeolite
layer oriented with a normal vector along the crystallographic axis a. These data corre-
spond to the absolute adsorbed amount obtained in the region between the two vertical
dashed lines in Figure 3(a). As expected, the methane adsorbed amount ρs in mol per
unit of surface area increases upon increasing pressure but decreases upon increasing
the temperature. Figure 3.10 also shows the data obtained for the different surface
flexibility models (s1 or s2) and layer orientations (a, b or c) at 300 K. Considering
the different layer orientations, in the lower pressure range [< 200 bar], the methane
adsorbed amounts for a, b and c are found to be very similar. On the other hand, above
200 bar, at a given pressure, the methane adsorbed amount can be ranked as c > a > b.
This result can be explained as follows. While the external surface in layers a and b
possesses the same surface oxygen density, surface oxygens in layer b are distributed
heterogeneously because of the large porosity corresponding to the MFI straight chan-
nels along the y-axis; layer a is thus believed to display a larger number of adsorption
sites which, in turn, leads to larger adsorbed amounts. On the other hand, the layer
c presents a larger oxygen surface density than the layers a and b, therefore leading
to larger methane adsorbed amounts for c. As far as the effect of surface flexibility is
concerned, the methane adsorbed amounts for the s1 and s2 models are found to be very
close to each other over the entire pressure range. The insert in Figure 3.10 shows the
contributions of the external phase, the adsorbed amount at the external surface and in
the zeolite core to the adsorption isotherm for the zeolite layer a at T = 300 K. In more
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detail, for the different pressures considered in our study, these data show the ratios r
= Ne/N , Ns/N , and Nc/N – expressed in % – where Ne, Ns and Nc are the number
of methane molecules in the external phase, at the zeolite external surface and in the
zeolite core while N is the total number of methane molecules. At low pressures (< 10
bar), due to strong confinement in the zeolite pores, the fraction of methane molecules
in the zeolite core is the main contribution to the adsorption isotherm. For pressures
larger than 10 bar, the zeolite pores are saturated with methane while the number of
molecules at the external surface and in the gas phase keeps increasing. As a result, the
contribution from these two regions increase while that from the zeolite core decreases.
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Figure 3.10: (color online) (a) Adsorption isotherms for methane at the external surface
of the zeolite layer a (these data are obtained for the surface model s1 in which surface
atoms are frozen). Different colors correspond to the following temperatures: 300 K
(red), 275 K (orange), 250 K (green), 225 K (blue), 200 K (black). The methane
adsorbed amounts are expressed as surface densities ρs in mol.cm−2. The insert shows
the following ratios at 300 K where N is the total number of methane in the system:
methane at the surface Ns/N (line with open triangles), methane inside the core Nc/N
(line with open circles), methane in the external phase Ne/N (line with open squares).
(b) Adsorption isotherms for methane at the external surface for layers a, b, c which
correspond to the lines with open circles, open squares, and open triangles, respectively.
The symbols are obtained for the surface model s1 in which surface atoms are frozen (s1
model). The crosses correspond to data for the layer a with the flexible surface model
(s2 model). Note that the data for the s1 and s2 models are nearly identical.

Following the work by Do et al. [136] on methane adsorption on surfaces at temperatures
T > Tc, we have also calculated surface excess density for the layer orientation a which
is illustrated in Figure 3.11. Surface excess densities were estimated by subtracting the
methane density of the external phase density from the methane surface density. As
expected, in the low pressure range, the excess surface density is close to the absolute
density as the external phase density is small (below 10 bar, the external phase and
the surface both contribute to adsorption with the same amount). Around 15 bar, a
peak is observed corresponding to a higher contribution from the surface. It happens
when the core of the zeolite is saturated with methane and surface adsorption takes
over. Then surface is saturated and methane stays in the bulk phase. Then, in the large
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Figure 3.11: Surface excess density (in mol.cm−3) at 300K for the surface model s1 and
for the layer orientation a.

pressure range, the external phase density is large so that the excess density becomes
very small and even negative. These results are consistent with previous work by Vlugt
and coworkers [137] who showed that surface excess concentrations for pure ethane and
propane increase and become positive when the adsorption isotherm reaches a plateau
(therefore also supporting favorable adsorption at the surface). Similarly, using free en-
ergy considerations, Inzoli et al. [138] proposed that surface adsorption becomes more
favorable as pores get saturated due to the increasing contribution from steric interac-
tions inside the zeolite cages.

3.4 Polanyi’s adsorption potential theory

In this section, we discuss a rational thermodynamic framework that allows describing in
a consistent fashion adsorption in the zeolite core and at its external surface. With this
goal, we invoke the adsorption potential theory which was introduced in his seminal work
by Polanyi [59, 60, 61]. Despite its theoretical nature, this model is mostly used in an
empirical way with very practical applications through characterization equations such
as the Dubinin–Radushkevich relation for instance [139]. In contrast, in the following
section, we derive the adsorption potential theory by starting from the Hill’s adsorption
scheme which corresponds to a perturbation treatment of molecular adsorption [140,
141, 142].

3.4.1 Frenkel-Halsey-Hill approximation

Polanyi’s adsorption potential theory can be derived by starting from a simple approx-
imation which provides a physical model for gas adsorption on a solid surface. Let us
consider a fluid phase adsorbed (a) at a temperature T on a flat surface in equilibrium
with a bulk fluid phase (g) so that their chemical potential are equal µa = µg (Figure
3.12). Assuming the fluid phase behaves as an ideal gas, its chemical potential µg can be
written as µg − µ0 = RT ln[P/P0] where µ0 is the chemical potential at the saturating
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vapor pressure P0(T ) (we note that the same expression can be used for a non-ideal
phase but the pressure has to be replaced by the fugacity). Within this approximation,
the chemical potential µa of the adsorbed phase is described using a simple perturba-
tion treatment by assuming that it corresponds to the chemical potential µ0 of the bulk
liquid at saturation corrected for the interaction U(z) with the solid surface:

µa − µ0 = U(z) (3.2)

This is the essence of this simple approximation which assumes that a molecule gets
adsorbed at a position z from the surface when the interaction with the solid surface
counterbalances the difference between the chemical potential of the fluid phase and
that of the dense, cohesive liquid. In other words, at the chemical potential µ, the bulk
liquid phase is not stable but the solid/fluid interaction stabilizes the adsorbed liquid.
At very small z, the surface interaction potential U(z) is positive due to the repulsive
interactions with the solid surface (hard core-like, repulsive part of the solid/fluid inter-
action). In contrast, at larger z, U(z) becomes negative with a minimum observed at
a distance corresponding approximately to the position of the first adsorbed layer. At
even larger z, U(z) goes to zero as interactions with the solid surface become vanish-
ingly small. Note that Eq. (3.2) does not assume that the pressure or chemical potential
depends on the position z; this would be unphysical from a thermodynamic viewpoint
as chemical potential and pressure must be homogeneous because of chemical and me-
chanical equilibrium, respectively. In practice, the statistical film thickness t and surface
potential U(z) can be related to the position z of the outermost adsorbed molecules as
follows: t can be converted from the adsorbed volume Nv as t = Nv/S where N is
the number of adsorbed molecules, v the molar volume assumed to correspond to that
of the bulk liquid and S the surface area of the solid phase (Figure 3.12). For a given
molecular configuration of adsorbed molecules, there is a unique function that links t
and z; t = z + σ/2 where σ is the kinetic diameter of the adsorbate molecule. In other
words, the surface interaction potential can be written as U(z) or equivalently U(t) –
therefore offering a mean to relate the film thickness and surface potential using the
perturbation treatment described in Eq. (3.2).
While the treatment above shares similarities with the well-known Frenkel-Halsey-Hill
approximation, it differs from this seminal treatment for the following reasons.
First, in the Frenkel-Halsey-Hill approximation, the adsorption film is assumed to be a
homogeneous phase whose properties are close to those of the bulk liquid. In contrast,
considering that we treat the case of a highly heterogeneous adsorbed phase (above the
bulk critical point and in a pressure range where the adsorbed phase is heterogeneous),
our system departs from the conditions considered in the Frenkel-Halsey-Hill approxi-
mation.
Second, within this approximation, one considers that the free energy difference be-
tween the adsorbed film and the bulk liquid simplifies to the potential energy difference
corresponding to the adsorbate/solid interactions (in other words, entropy terms and
fluid/fluid contributions cancel out as the bulk and adsorbed phase are assumed identi-
cal). Here, despite the important differences between the adsorbed and bulk phase, we
assume that the free energy difference can still be approximated as the interaction en-
ergy of an adsorbed methane molecule with the MFI zeolite channel or external surface.
For these different reasons, our treatment should be considered only related to the
Frenkel-Halsey-Hill approximation. In fact, in this respect, considering the treatment
made and system conditions under study, this approach is closer to that introduced
by Barrer and Robbins [135] and Hill [142, 141, 140] who proposed extension to non
homogeneous adsorbed films (with local densities dependent on the distance from the
surface).
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3.4.2 Polanyi’s model

Polanyi’s adsorption potential theory states that adsorption equilibrium is governed by
a simple bijective function f such as:

Nv = f [µ− µ0] (3.3)

where N is the adsorbed amount in moles and v is the molar volume of the adsorbed
phase. This function, which is unique for a given fluid/solid couple, has no explicit
temperature dependence but we note that v, µ and µ0 are temperature dependent. This
equation is most often used as an empirical relation but its physical meaning can be
understood as follows. Polanyi’s model simply states that adsorption in sites having
an adsorption energy E occurs as the chemical potential difference µ − µ0 is such that
µ− µ0 = E. With this formalism, considering that intermolecular interactions are tem-
perature independent since they derive from a Hamiltonian, it can be assumed that the
latter condition is temperature independent and so is the function f . The characteristic
function f does not have to be temperature independent. However, to allow practical use
(i.e. to determine adsorbed amounts at a given temperature from available adsorption
data at a reference temperature), it is often assumed that f is temperature independent
– at least on the temperature range covering the reference temperature and that at which
the data will be extrapolated. In particular, as will be shown below, Polanyi’s model
is found to be relatively accurate by offering at least a semi-quantitative description of
adsorption in zeolite materials.

At equilibrium, the gas and adsorbed phase possess the same chemical potential, i.e.
µg = µa = µ. Using the FHH approximation, we can write that molecules get ad-
sorbed at a position z when the chemical potential of the adsorbed molecules is such
that µ − µ0 = U(z). Considering that U(z) is a bijective function of z in the range
of z values where adsorption occurs, we can write z = U−1(µ − µ0) (where U−1 is the
inverse function that transforms the chemical potential into the z position of the ad-
sorbed molecule). By noting that t = Nv/S ∼ z, this equation is equivalent to Polanyi’s
equation with this analogy leading to f ∼ U−1. In practice, Polanyi’s equation relies on
the knowledge of an adsorption isotherm at a given temperature T to predict any ad-
sorption isotherm at a different temperature. To illustrate Polanyi’s model application,
let us assume that the adsorbed amount at a state P , T is known.
The chemical potential is also known through the appropriate equation of state at such
pressure/temperature conditions (here, for the sake of simplicity, we assume that the
ideal gas equation applies as it is relevant to the conditions considered in our study). Us-
ing the chemical potential/pressure relation for an ideal gas [i.e. µ−µ0 ∼ kBT lnP/P0],
we can predict the pressure P ′ at which the same chemical potential condition will be
reached when the temperature is T ′ :

kBT
′ lnP

′

P ′
0

= kBT
lnP

P0
(3.4)

where P0 and P ′
0 are the saturating vapor pressure at T and T ′, respectively.

Using Polanyi’s model, i.e. Nv ∼ constant, we obtain :

N ′v′ = Nv (3.5)

when the same chemical potential conditions are met. In practice, with such a model, to
predict data at a given temperature, one needs to shift the adsorbed amount along the
y axis by considering that the molar volume v of the adsorbed film is identical to that of
the bulk phase at the same temperature. Upon considering a different temperature, the
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data must also be shifted along the x axis to account for the shift in chemical potential
(or equivalently in pressure) since Polanyi’s model assumes that data can be described
consistently through Eq. (3.3) where µ0 describes the saturating chemical potential.

U(z)

z

U
(∞

) 
~

 0

μg

z

eq.

t = Nv/S

μa

Figure 3.12: (color online) Schematic representation of the adsorption potential theory.
The chemical potential of the fluid phase (red spheres) is µg. The adsorbed phase (blue
spheres) has a statistical film thickness t which can be converted from the adsorbed
volume Nv as t = Nv/S where N is the number of adsorbed molecules, v the molar
volume and S the surface area of the solid phase. For the adsorbed phase, the chemical
potential µa is described using a perturbation term by assuming that it corresponds to
the chemical potential µ0 of the bulk liquid at saturation corrected for the interaction
U(z) with the solid surface: µa − µ0 = U(z). At very small z, the surface interaction
potential U(z) is positive due to repulsive interactions with the solid surface. At larger
z, U(z) becomes negative with a minimum located at a distance corresponding approx-
imately to the position of the first adsorbed layer. At larger z, U(z) goes to zero as
interactions with the solid surface become vanishingly small.

3.4.3 Predictions of Polanyi’s model

Figure 3.13 compares the predictions from Polanyi’s model with our simulated methane
adsorption isotherms obtained at different temperatures. Both the theoretical and sim-
ulated data for adsorption at the external surface (a) and in the zeolite pores (b) are
shown. For both adsorption types, the adsorption isotherm obtained at T = 250 K
(green data) was used as reference data to predict the adsorption isotherms obtained at
other temperatures T ′. Within the frame of the adsorption potential theory, we note
that the accuracy of the inferred adsorption data from available data depends on the
chosen reference temperature. In the present work, we chose to use data at 250 K as this
temperature is intermediate between all temperatures under study (+/- 50 K). While
we think that this is the best option available, we checked that the absolute error bar
remains of the same order – typically ∼ 1-2 molecules per unit cell – when choosing an
extremum temperature (i.e. 200 K or 300 K). The reference data were smoothed using
a nearest neighbor moving average (full green lines). In more details, data were first
interpolated using splines and then 15 points were considered for the nearest neighbor
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smoothing – it was checked that, within numerical errors, the detailed treatment does
not affect our conclusions below. Considering that all data shown in Figure 3.13 are
obtained at temperatures above the critical point of methane (Tc ∼ 190 K), Polanyi’s
model must be extended under such conditions. Indeed, for such temperatures, there
is no saturating vapor pressure P0 and, hence, no chemical potential at saturation µ0.
Similarly, for a fluid phase under such supercritical conditions, one cannot define the
liquid molar volume v as involved in the adsorption potential theory. To extend the
validity of Polanyi’s approach, we invoke the two following hypotheses to define pseudo-
quantities equivalent to v(T ) and P0(T ) for T > Tc.
(1) P0(T ) is obtained by extrapolating Antoine’s Law at temperatures above Tc. An-
toine law parameters were taken from NIST [134].
(2) v is obtained by fitting our simulated adsorption isotherms at the external surface
once saturation is reached (Figure 3.10). In more detail, for each temperature T , the
high pressure range of the adsorption isotherm at the external surface was fitted using
the following function: ρs(P, T ) = ρs,0(T ) + b exp[−cP ] where ρs,0(T ) = 1/v(T ) is the
surface density at saturation while b and c are fitting parameters. Considering that the
molar volume v of methane adsorbed at saturation (or equivalently its density since
ρ ∼ 1/v) is not defined above the critical temperature Tc, one has to estimate its ex-
trapolated value from the saturation value observed in the adsorption isotherms. To do
so, several functions were considered to fit the simulated adsorbed amounts obtained
for the external surface. In practice, the simple mathematical function above was found
to accurately describe the change in the methane adsorbed amount upon increasing the
pressure. While purely mathematical, we note that this function does predict the right
evolution of the methane adsorbed amount upon increasing the pressure, so that it can
be used to predict the extrapolated molar volume at saturation as 1/ρs,0(T ) (we note
that the parameters b and c were determined using the fit of the isotherm at 250 K and
then were kept constant for the other temperatures as they relate to the same fluid/solid
couple). The insert in Figure 3.13(a) shows the evolution of the ratio v(T ′)/v(T ) where,
as mentioned above, T = 250 K is the reference temperature considered when applying
Polanyi’s model.
Before discussing the predictions from the adsorption potential theory, we mention that
the extrapolation of the concepts of the saturating vapor pressure and molar volume of
the adsorbed phase is far from trivial. Such approximations assume that the adsorbed
phase at temperatures above the critical point is reminiscent of the liquid phase under
subcritical conditions. This is justified by the fact that, even under critical conditions,
the dense adsorbed phase displays a density that is close to the random close packing
density inherent to the liquid phase. Similarly, while the concept of saturating vapor
pressure does not apply to fluids above their critical point, its extension at temperatures
beyond Tc characterizes the pressure (or chemical potential) at which surface adsorption
increases sharply with pressure.

As shown in Figure 3.13, for both adsorption in the zeolite pores and at its external
surface, the predictions from the adsorption potential theory are in good agreement with
the simulated data. To further test the validity of the adsorption potential theory, it was
also applied to our experimental adsorption isotherms obtained for methane adsorption
at different temperatures (two powder samples with grain sizesDg = 350 nm and Dg = 1
µm were considered but as mentioned above the grain size was found to make almost no
difference). Like with the simulated data, the experimental adsorption isotherm at 250
K for the powder with grain size Dg = 350 nm was used as reference data to predict
adsorption at a lower temperature for the other powder. The extrapolated values for
P0 and molar volumes at saturation v(T ) were taken identical to those obtained from
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the simulated data. As shown in Figure 3.13(c), a good agreement is observed between
the predictions from the adsorption potential theory and the experimental data. This
finding further confirms the applicability of Polanyi’s theory to predict adsorption as
a function of temperature from available reference data – even at conditions above the
fluid critical temperature.
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Figure 3.13: (color online) Polanyi’s adsorption potential theory applied to simulated
methane adsorption isotherms in zeolite layer a (a) and in a zeolite crystal (b) at dif-
ferent temperatures T . In (c), Polanyi’s model is applied to our experimental data.
Different colors correspond to the following temperatures: 300 K (red), 275 K (orange),
250 K (green), 225 K (blue), 200 K (black). The open symbols correspond to the sim-
ulated/experimental adsorbed amounts as obtained using Monte Carlo simulations in
the Grand Canonical ensemble/adsorption volumetric technique. For the three figures,
the adsorption isotherm obtained at T = 250 K (green data) was used as reference data
to predict the adsorption isotherms obtained at other temperatures. The dashed lines
correspond to the predictions from Polanyi’s model at different temperatures T ′. In
(c) the adsorption isotherm for the powder of Dg = 350 nm at 250 K was used as the
reference to predict the adsorption of the powder of Dg = 1 µm at 225 K. The adsorbed
amount na is expressed in mol.cm−2 (a), number of methane molecules per zeolite unit
cell (b) and mol.cm−3 (c). The insert in figure (a) corresponds to the ratio of the molar
volume at T over the molar volume at the reference temperature T = 250 K. The insert
in figure (b) corresponds to the adsorption data predicted using the FHH approximation
in combination with the interaction potential by Peterson et al.. These data correspond
to the adsorbed amount in the straight channels of silicalite-1 in the pressure range from
1 to 100 bar. The black line corresponds to the adsorption isotherm for the zeolite chan-
nels obtained by means of molecular simulation. The dashed orange line corresponds to
the adsorption isotherm calculated using the attractive part of the interaction potential
by Peterson et al. [143].

To assess the quantitative validity of perturbation treatment, we now consider explicitly
the fluid/solid interaction potential U(z) to describe methane adsorption in the cylindri-
cal channels aligned along the b-axis in silicalite-1. To do so, considering the cylindrical
geometry of these channels and the Lennard-Jones potential employed in our molecular
simulation to describe the methane/zeolite interactions, we use the interaction poten-
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tial by Peterson et al. [143] which corresponds to an integrated version of the 12-6
Lennard-Jones interaction energy:

V (s1) = 16ϵ1ρzπ ×
(
7σ12

1

512
K9(s1)−

σ6
1

16
K3(s1)

)
(3.6)

where K9(s1) and K3(s1) are two mathematical functions that only depend on the
distance of a methane molecule from the channel center s1. ρz is the atom density of the
cylindrical pore considered as homogeneous in this continuum-level equation while ϵ1 and
σ1 are the fluid/solid Lennard-Jones parameters (for detailed calculations, the reader is
referred to Ref. [143]). Here, we use the same Lennard-Jones parameters as those used in
the GCMC simulations for the CH4/zeolite interactions. However, while the solid/fluid
interaction for an adsorbed molecule in GCMC simulations is given by a discrete sum
over each O atom in the zeolite, the interaction potential by Peterson et al. assumes that
the zeolite can be described as a continuum medium. By inserting such an integrated
potential into the FHH approximation, we can predict the adsorption isotherm at 300 K
for methane restricted to the straight channels in silicalite-1. For a straight cylindrical
channel having a radius R and a length L, the radial position of the outermost adsorbed
molecules z is related to the adsorbed amount N(z) as N(z) = πρL[R2 − (R − z)2]
where ρ is the density of the adsorbed phase. The insert in Figure 3.13(b) compares the
simulated adsorption isotherm for the straight channels (black line with crosses) with
the predictions from the perturbation treatment based on the interaction potential by
Peterson et al. (orange lines). The methane density ρ used to compute the methane
adsorbed amount was adjusted to match the simulated adsorbed amount at saturation.
The orange dashed line corresponds to data obtained using the perturbation treatment
in combination with the attractive contribution of the interaction potential by Peterson
et al. The data are plotted up to 20 bars only where the pore gets filled z = R (the
FHH approximation model assumes the adsorbed phase to be incompressible so that
adsorbed amount remains constant beyond pore filling). As can be seen from these data,
the perturbation treatment used here in combination with the interaction potential by
Peterson et al is not quantitatively accurate. We emphasize that this is not due to an
intrinsic failure of the Frenkel–Halsey–Hill approximation but to the following points.
(1) As already discussed, while the Frenkel–Halsey–Hill hypothesis relies on the free
energy rather than the interaction energy, here we only consider the interaction energy
of a single methane molecule so that it neglects the role of entropy contributions as well
as of fluid/fluid contributions to the adsorbed phase free energy.
(2) In our estimate of the interaction energy, we use Peterson’s potential which relies on
a continuum description of the Lennard-Jones interaction potential while the interaction
energy landscape – even for a single molecule – can be more complex.

3.5 Partial conclusion

Using a combined experimental and molecular simulation study, we provide microscopic
insights into the adsorption of simple gases in silicalite-1 zeolite crystals and thin layers.
By considering both adsorption in the zeolite pores and at the external surface of zeolite
layers with different crystalline orientations, we investigate the impact of the zeolite
external surface on the overall thermodynamic behavior of the gas/solid couple. Due to
strong confinement effects in the zeolite pores, we observe that methane first adsorbs in-
side the zeolite porous structure and then adsorbs at the external surface once the core
porous volume gets filled. In an attempt to provide a simple thermodynamic frame-
work for adsorption in such zeolite samples, we employ the formalism of the adsorption
potential theory to rationalize adsorption data at different temperatures. Considering
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that methane adsorption in our study occurs at temperatures above its critical point,
we extend the adsorption potential theory for such supercritical conditions. Both our
experimental and simulated data suggest that the adsorption potential theory is a robust
thermodynamic modeling approach to capture adsorption at different temperatures in
zeolite materials. We believe that this general framework can be applied to any zeolite
pore geometries (channels and/or cages). In particular, considering that the MFI zeolite
displays a rather complex network structure compared to many other zeolites, we feel
that such an extension should apply successfully. Moreover, our simulated data for the
adsorption in the zeolite core porous volume and at its external surface suggest that
the same parameters can be used to rationalize adsorbed amounts in these different
regions. These findings provide a step toward the development of a consistent thermo-
dynamic formalism to predict surface/volume adsorption in nanoporous materials with
non-negligible external surface areas.
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4 Methane self-diffusion in zeolite

Diffusion in nanoporous materials can be studied using both experimental and theoreti-
cal approaches (for details, the reader is referred to the recent review paper by Bukowski
et al. [5]). Experimentally, microscopic methods such as quasi-elastic neutron scatter-
ing, nuclear magnetic resonance relaxometry and pulse field gradient nuclear magnetic
resonance allow probing diffusion on length scales varying from nm to µm. Macroscopic
methods such as the zero length column approach and the different chromatography
techniques allow assessing diffusion on larger lengthscales. However, due to intrinsic
free energy barriers and/or surface barriers in nanoporous solids, the transport coeffi-
cients obtained by means of macroscopic approaches are usually smaller than those esti-
mated by means of microscopic methods [144, 145, 146]. As for the theoretical methods,
molecular dynamics simulations are considered the method of choice to estimate self
diffusivity in nanoporous materials as the typical system size accessible in these calcu-
lations are of the order of a few times the representative elementary volume of the host
solid [32, 147, 148]. With this class of methods, diffusion is probed over length scales
of the order of nm so that it is directly comparable to quasi-elastic neutron scattering
experiments. This has lead several studies to couple neutron experiments and molecular
simulation in order to probe fluid diffusion inside the porosity of various porous mate-
rials [149, 150, 151]. Among nanoporous materials, the dynamics of fluids confined in
zeolites have received significant attention with an abundant literature reporting both
experimental and molecular simulation approaches [32, 66, 152, 5]. While confinement
and surface forces lead to fluid dynamics that is smaller than that of the bulk fluid
under the same thermodynamic conditions, a rich behavior is often reported. Typically,
the loading dependence of diffusivity is expected to be non-monotonous [5, 153]. Many
pioneering works were reported as mentioned in Section 1.3.3 however several questions
remain unanswered regarding the dynamics of fluids in the porosity of zeolite (even
when simple probes are considered). In particular, despite the numerous studies on
the dynamics of fluids confined in zeolite with different adsorbed amounts, the loading
dependence of the observed self diffusivity remains to be fully rationalized.

This chapter is dedicated to present an approach to predict the loading-dependence
of self diffusivity in zeolites. Using a combined experimental/theoretical approach in-
volving quasi-elastic neutron scattering and molecular dynamics simulations, we show
that the free volume theory – which was initially derived to describe diffusion in liquids
and glasses [154] – provides a simple thermodynamic framework to predict the impact of
loading on self diffusion. In more detail, using the system consisting of methane loaded in
silicalite-1 zeolite as described in the precedent chapter, the self diffusion of the confined
fluid is studied at different temperatures and pressures. First, using quasi-elastic neu-
tron scattering experiments, we investigate the scattering vector q-dependence of the
dynamic structure factor S(q, ω) to identify the translational and rotational diffusion
modes. After validation of our molecular simulation approach against the experimental
data, we investigate by means of molecular dynamics the microscopic mechanisms for
diffusion in the zeolite including its matrix components along both the straight channels
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and the zigzag channels. Using our molecular simulation data, we check the ability of
the free volume theory to accurately capture the impact of loading on the self diffusivity
of confined methane. We further assess its validity by verifying its predictions for the
diffusion in the different directions of space as well as when the zeolite/fluid interaction
is varied. The remainder of this chapter is organized as follows. Section 4.1 presents
the details about the experimental and simulation methods used to conduct our study.
Section 4.2 presents the experimental and simulated data obtained for methane diffusion
in silicalite-1 as a function of temperature and pressure. In the molecular simulation
part, we also discuss the diffusivity anisotropy by considering diffusion in the straight
and zigzag channels. In Section 4.3, we present the free volume theory and discuss its
applicability to anisotropic diffusion in zeolite materials.

4.1 Experimental and computational methods

This section is dedicated to the presentation of the experimental and numerical ap-
proaches used to measure diffusivities. The first part describes the sample used and
the protocol to analyse neutron data while the second part will be dedicated to the
application of molecular dynamic using LAMMPS to study methane diffusion in zeolite.

4.1.1 Neutron scattering and zeolite samples

The quasi-elastic neutron scattering (QENS) experiments were performed at the Institut
Laue-Langevin (ILL) in Grenoble, France, using the Time of Flight (TOF) IN6/Sharp
spectrometer. This instrument was recently upgraded to achieve higher neutron flux.
The incident wavelength was taken at 5.1 Å. The energy resolution of 40 µeV at the half
width at half maximum (HWHM) was measured using a vanadium reference sample.
The software used to process the data and perform the fits is Lamp which was devel-
oped at the Institut Laue Langevin. The scattering vector q range used in our analysis
is 0.14 Å−1 < q < 0.9 Å−1.

Sample preparation. The zeolite sample used in our study was silicalite-1 (pure silica
MFI) synthesized in Montpellier at the Institut Européen des Membranes. The sample
grain size used for all the experiments is Dg = 1µm (Figure 3.4(d)). The characteriza-
tion of this sample was described in Section 3.2.1. Prior to the experiments, in order to
remove all the likely adsorbed molecules inside the zeolite porosity, the sample powder
was first heated up to 473 K for 60 hours in an oven under vacuum. The powder was
then carefully transferred into a cylindrical sample holder to perform the neutron scat-
tering experiments. Even if silicalite-1 is known to be hydrophobic, we tried to avoid as
much as possible contact with air. All neutron scattering experiments were performed
using a cryostat and a pressure set up to monitor the temperature and pressure in the
sample holder.

Neutron data analysis. As described in Section 2.2.2, IN6 spectrometer records the
intensity of neutrons arriving on detectors in function of the time. Figure 4.1 shows the
analysis performed on these data. The steps are detailed in the following:

1. We select the files with data to analyse.

2. The incident intensity is not constant as it depends on the reactor flux. Then the
recorded intensity is normalized by the incident intensity.

3. As some detectors are not functional, we remove them.
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M=[90,93,97,215,216, 217,236]

t=0.8

1. w1=rdopr('227804>227808’) 

2. w2=normalise(w1) 

3. w3=remove_spectra(w2,M) 

4. w4=sumbank(w3) 

5. w4=w4-t*w58 & e4=sqrt(e4^2+(t*e58)^2) 

6. w5=vnorm(w4,w60,min=550, max=650

7. w6=t2e(w5) 

8. w7 = sqw_rebin(w6,emin=-20.0,dq=0.1) 

9. w8=transpose(w7(3:20,*)) 

10. w9=reb(w8,0.01,/force)

11. w24=w9

Figure 4.1: Lamp script used to analyse our data. The detail of each command line is
given in the core of the text.

4. We sum the intensities coming from detectors which have the same angle θ but
different height.

5. The intensity from the sample holder is subtracted to the intensity from the sample.
The elastic diffusion coming from the sample holder is more intense than the one
from the sample. We took it into account by using a factor 0.8.

6. We normalize the intensity by the one from the vanadium which is q dependent.

7. Time bin are converted into energy bin as explained in Section 2.2.2.

8. Angular range is converted into q range using Eq. (2.82). The q discretization was
taken dq = 0.1Å−1.

9. Matrices are transposed to represent the energy on the x-axis.

10. As explained in chapter II, there is no linear relation between E and t as E ∼ 1/t2.
Energy channels are rebin with a constant width of dE = 0.01 meV.

4.1.2 Molecular dynamics simulations

Molecular dynamic simulations were performed using LAMMPS package (version Open-
MPI 1.8.1) [126]. Numerical samples used for this study are “infinite” flexible zeolite
crystals defined in Section 3.1.1. The intermolecular interactions are also defined in
Section 3.1.1. In this chapter, molecular dynamic simulations are performed at constant
methane adsorbed amount. Initial configurations with a fixed number of molecules
N were taken after having performed adsorption using Monte Carlo simulation as ex-
plained in Chapter 3. All MD simulations were performed in the canonical ensemble (i.e.
constant number of molecules N , volume V and temperature T ) using a Nosé hoover
thermostat. The LAMMPS command line which allows to perform MD simulation is :

fix mynvt all nvt temp $temp $temp $(100.0*dt)
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with a constant temperature at the start and end of the run (= 300 K) and a dumping
parameter (i.e. it controls how fast the temperature is relaxed) 100 times the timestep
dt.
When one perform molecular dynamic simulations on small systems, some precautions
have to be taken. One side effect of MD is the shift of the center of mass.

Center of mass displacement. The shift of the center of mass of the zeolite matrix
has an impact on the computation of properties. This issue arises from the small system
size considered in a typical molecular simulation (∼ nm). Indeed, as discussed before,
the flexible zeolite model involves harmonic bonds between the Si and O atoms, which
are therefore allowed to move during the simulation. This movement leads to a fluctu-
ating shift in the center of mass together with an instantaneous momentum to the mass
center. However, for a large system, the center of mass displacement will be vanishingly
small because of the statistics. In a finite system, this phenomenon has to be corrected
because it biases properties we want to observe. To avoid that, we consider two correc-
tions: we calculate the mass center, the vector between the new mass center and the
initial zeolite mass center and substract to all atoms this vector, we also calculate the
mass center velocity and substract it to all atoms as shown in Figure 4.2. The procedure
is repeated at each time step. It does not bias the velocity of each atom but removes
the contribution of the mass center displacement.

Three other parameters are important: the total simulation time, Newton’s equation
integration time and the frequency at which positions and velocities are recorded. In
this chapter, simulations were performed for at least 10 ns – this simulation time was
found to be large enough to allow molecules to explore distances larger than 10 nm
and, more importantly, to reach the Fickian regime. The time step used to integrate
Newton’s equation of motion is 1 fs and the molecular configurations were stored ev-
ery 1 ps along the trajectory. We notice that a compromise has to be made between
a frequent recording (i.e. more statistic) and the weight of the produced trajectories files.

Figure 4.2: Mass center displacement phenomenon and applied correction. (a) During
the simulation, due to the use of a zeolite flexible model, the center of mass drifts (from
the red frame to the blue frame). (b) To correct this non physical contribution, which
becomes be vanishingly small as the system size increases, vectors of the direction and
speed of the mass center is subtracted for all atoms.
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4.2 Self diffusion in zeolite crystals

This section reports experimental and numerical results of methane self diffusion in
zeolite crystal. Molecular simulation and quasi-elastic neutron scattering are combined
to study the effect of the loading, the temperature and the crystal orientation on the
self diffusivity. The first and second parts present experimental and simulation results,
respectively. The last part compares and discusses the self diffusion coefficients obtained
using experimental and simulation approaches.

4.2.1 Experimental results

Dynamic structure factor. The QENS experiments were performed at four tem-
peratures T : 210 K, 225 K, 250 K and 275 K. For each temperature, several methane
loadings na were considered by imposing different pressures P using the equation given
in Eq. (3.1). Figure 4.3(a) shows the experimental and simulated adsorption isotherms
at T = 250 K (correspond to green ones in Figure 3.7). The color circles referring to
the methane adsorbed amounts na considered in the neutron experiments. During the
experiments, because of intrinsic inaccuracies in the pressure set up and in the pressure
monitoring within the sample holder, it was realized that the error bar on the imposed
loading is quite large especially for the lowest loadings. As a result, the exact methane
adsorbed amounts considered were cross-checked and refined – as discussed later in this
section – using the overall scattered amplitudes.
Figure 4.3(b) shows the dynamic structure factors S(q, ω) as measured using QENS ex-
periments. For hydrogenated molecules such as methane, neutron scattering is mostly
incoherent owing to the large incoherent cross-section of hydrogen atoms. For all load-
ings/temperatures, the dynamic structure factor presents a narrow and a broader contri-
bution over a few tenth of meV. While the first peak corresponds to the elastic contribu-
tion from the host zeolite, the second peak corresponds to the quasi-elastic component
due to methane diffusive motions. In the quasi-elastic contribution, two components
can be identified: a first contribution corresponding to methane rotation and a sec-
ond contribution corresponding to methane translation. The top panel in Figure 4.3(b)
shows S(q, ω) obtained for T = 250 K and na = 6 molec./uc (i.e. molecules per unit
cell) with different scattering vectors q. As expected, due to diffusion, a broadening of
the quasi-elastic peak is observed upon increasing q (see more quantitative discussion
below). The bottom panel in Figure 4.3(b) shows S(q, ω) obtained at T = 250 K and a
scattering vector q = 0.5 Å−1 for different loadings na. A narrowing of the quasi-elastic
peak is observed upon increasing na, which suggests that diffusion becomes slower upon
increasing the methane adsorbed amount.

Fitting and data analysis

Even under equilibrium conditions, diffusion occurs as molecules explore their environ-
ment through thermal motion and collisions. As a result, even when no thermodynamic
gradient is applied to the system, diffusion remains an important transport mechanism
that prevails in many situations (such as in extreme confinement where advection is
usually of very limited amplitude). We recall the expression of the functions that are
going to be used for studying self diffusivity. The development of these functions can be
found in the Section 1.3.1. The equation for the incoherent scattering function is given
:

Finc(q, t) ∼ ⟨ρ(q, t)ρ∗(q, 0)⟩ ∼ exp[−Dsq
2t] (4.1)
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Figure 4.3: (a) Adsorption isotherm na(P) for methane in silicalite-1 zeolite at 250 K
as obtained using Grand Canonical Monte Carlo simulations (full line with crosses) and
adsorption experiments (open squares) [Adapted from Ref. [13]]. The experiments were
realized for a powder sample with a grain size of Dg = 1 µm. Open colored circles
correspond to the values (P , na) considered in the neutron scattering experiments. (b)
dynamic structure factors S(q, ω) measured by QENS experiments. The upper figure
corresponds to S(q, ω) measured at a fixed temperature T and loading na but different
scattering vectors q. The Lorentzian function width increases as q increases. The bottom
figure corresponds to S(q, ω) measured at a fixed temperature T and scattering vector
q but different loadings na (corresponding to those represented in (a)). The Lorentzian
function width decreases as na increases.

The incoherent dynamic structure factor S(q, ω) is the time Fourier transform of the
intermediate incoherent scattering function Finc(q, t). Using Eq. (4.1), S(q, ω) can be
written as a Lorentzian function:

S(q, ω) =
1

π

Dsq
2

ω2 + (Dsq2)2
(4.2)

whose half width at half maximum is given by HWHM = Dsq
2. In the Fickian regime

(i.e., in the long time regime), the self diffusion coefficient Ds is homogeneous, i.e. q-
independent, so that HWHM is a linear function of q2. In contrast, at short times, the
HWHM is not linear in q2 as diffusion is not homogeneous on short time scales/small
length scales.

Translational/rotational diffusion. The dynamic structure factors S(q, ω) in Fig-
ure 4.3(b) were fitted using a sum of three contributions: two Lorentzian functions [to
account for translational diffusion LT (q, ω) and for rotational diffusion LR(q, ω), respec-
tively] and a delta function δ(q) [to account for the elastic peak].

S(q, ω) = fDW (q)× [LT (q, ω) + LR(q, ω) + δ(q)] (4.3)

In this phenomenological equation, fDW (q) refers to the Debye-Waller factor where the
mean square displacement ⟨u2⟩ was taken constant at 1.5 Å2 in every fit (i.e. regardless
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of T , na and q). The function defined in Eq. (4.3) was also convoluted with the
instrumental resolution and a flat background (for the sake of clarity, it is omitted
here).
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Figure 4.4: (a) Typical dynamic structure factor S(q, ω) (grey closed circles) for the
silicalite-1 powder with grain sizes Dg =1 µm filled with methane at 250 K and P = 485
mbar. The scattering vector is q = 0.6 Å−1. The data are fitted against a three
component model as described in the core of the text. The blue line is made up of a
delta function which corresponds to the elastic peak (no energy transfer between the
neutron and the zeolite) while the red and green curves correspond to a Lorentzian
functions which describe translational and rotational diffusion respectively. Finally the
black line correspond to the fitting function which is the sum of the three mentioned
functions. A flat background was taken into account. (b) Half width at half maximum
(HWHM) for the translational Lorentzian component as a function of q2 for different
loadings (as indicated in Figure 4.3(a)). The black dashed line indicates the Fickian
regime limit in the low q range where the self diffusion coefficient Ds can be extracted
from a linear fitDs ∼ q−2. dFick indicates the typical size beyond which Fickian diffusion
is observed. (c) The rotational diffusion coefficient Dr as a function of loading na for
different temperatures T : 210 K (purple), 225 K (blue), 250 K (green), 275 K (orange).

Figure 4.4(a) shows the experimental S(q, ω) (grey closed circles) measured at T = 250
K for the adsorbed amount na = 6 molec./uc (the scattering vector is q = 0.6 Å−1 in this
specific example). In this figure, the solid lines correspond to the different contributions
to the fitting function given in Eq. (4.3). In more detail, the blue line corresponds to
the delta function - which describes the elastic peak arising from the zeolite - while the
red curve refers to the Lorentzian function corresponding to translational diffusion. The
green line corresponds to the Lorentzian function describing rotational diffusion.
Figure 4.4(b) shows the width of the translational Lorentzian as a function of q2 for
different loadings na (the color code for loadings is indicated in Figure 4.3(a); it in-
creases from blue, green, orange and red). HWHM increases linearly with q2 until
reaching q2=0.4 Å−2 (we notice that the HWHM at the lowest q falls within the reso-
lution range of the instrument). The maximum q at which HWHM = Dsq

2 is observed
(q2 ∼ 0.4) allows probing the minimum distance needed to observe Fickian diffusion; we
find d ∼ 2π/q ∼ 10 Å. The highest q values are not fitted as they do not fall within the
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Fickian range (the signal remains flat and does not evolve anymore). The linear regime
HWHM = Dsq

2 was fitted to extract the self diffusivity Ds as a function of loading na

and temperature T . Self diffusion coefficients will be presented later in this chapter when
comparison with the simulation data will be made. However, we already see in Figure
4.4(b) that Ds decreases with loading (see the decreasing slope in HWHM ∼ Dsq

2),
which suggests that steric repulsion hinders diffusion upon increasing the loading na.
This behavior, which will be analyzed more quantitatively below, is well-known in the
field of nanoporous materials such as zeolites [66, 152].

Before discussing all results together, we analyze in Figure 4.4(c) the rotational coeffi-
cient Dr as a function of loading na for different temperatures: 210 K (purple), 225 K
(blue), 250 K (green), 275 K (orange). The rotational diffusion is measured using the
HWHM of the rotational compound as: HWHM = 2Dr. Because Dr is expected to be
independent of the scattering vector q, for each couple (T , na), it was decided to keep
Dr constant for all q in the fitting procedure. As shown in Figure 4.4(c), the rotational
coefficient Dr remains constant upon varying the loading na and tends to increase with
temperature T . These values for Dr are 20 times larger than those reported by Jobic
et al. [155]; such a discrepancy can be explained by the fact that these authors used
an aluminosilicate zeolite with a large number of compensation cations which hinder
diffusion through steric repulsion and additional interactions. Interestingly, Theodorou
and coworkers [90], who computed the rotational coefficient Dr for methane in the same
silicalite-1 zeolite, reported values of the same order of magnitude as those found in the
present study (on the other hand, they also reported an increase in Dr with loading
which does not seem to be observed in our experimental data).

4.2.2 Molecular dynamics simulations

Mean square displacements and incoherent scattering. Like in experimental
approaches, there are several frameworks that can be used to assess theoretically the
self diffusion coefficient Ds. In molecular dynamics simulations, the classical strategy
consists of measuring the mean square displacement (MSD) ⟨∆r2(t)⟩ as a function of
time t to extract Ds in the Fickian regime:

⟨∆r2(t)⟩ = ⟨|r(t)− r(0)|2⟩ = 6Dst (4.4)

In practice, considering the limited statistics available in a typical molecular simula-
tion run, data accuracy can be increased by considering time shift averages (using the
system’s stationary property):

⟨∆r(τ)2⟩ = 1/N × 1/[tmax − τ ]×
N∑
i=1

tmax∑
t′=τ

|ri(t′)− ri(t
′ − τ)|2 (4.5)

where the first sum runs over the N molecules in the system and the time origin goes
from t = 0 to tmax. In the long time limit, the molecules obey the Fickian regime as
described in Eq. (4.4). Formally, we checked that extracting the self diffusivity Ds

from the MSD is equivalent to its determination from the time integral of the velocity
auto-correlation function Ds ∼ 1/3

∫∞
0 ⟨v(0) · v(t)⟩dt (see Figure 4.6 and the associated

discussion in the part 4.2.2). In the present work, the anisotropic diffusion was also
studied by considering the MSD restricted to the x, y and z directions. To compute the
corresponding anisotropic self diffusion coefficients Dα

s with α = x, y and z, the MSD
in a single direction was determined using molecular dynamics simulations. Figure
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Figure 4.5: (a) Mean square displacement (MSD) as a function of time in log-log scale.
The MSD is shown in each direction of space x (blue), y (red), z (green) and averaged
over the three directions (black). In the Fickian regime, ∆r2 ∼ t with the slope yielding
the self diffusion coefficient D3D

s and its three components Dx
s , D

y
s , and Dz

s . (b) Inverse
relaxation time 1/τs(q) as a function of the squared scattering vector q2 for the direction
x and y. The open symbols correspond to data obtained from the simulated intermediate
incoherent scattering function Finc(q, t); Finc(q, t) is fitted using an exponential function
Finc(q, t) ∼ exp[−t/τs(q)]. The open blue circles correspond to the simulated data in the
x direction while the open red squares correspond to the y direction. The lines indicate
the expected behavior at small q (large distances) where the dynamics is expected to
be Fickian: 1/τs(q) = Ds(0)q

2 with Ds(q → 0) estimated from the MSD obtained in
molecular dynamics. The red line corresponds to the data for the y direction while
the bluoe line corresponds to the x direction. The insert shows the 1D intermediate
incoherent scattering function F x,y

inc (q, t) for q ∼ 0.031 Å−1 (dashed), q ∼ 0.09 Å−1

(dotted), q ∼ 0.15 Å−1 (long dashed).

4.5(a) shows the 3D and anisotropic MSD for a methane loading of na = 6 molec./uc in
silicalite-1 at 300 K. As expected, in the Fickian regime limit, the MSD in each direction
is proportional to time with the anisotropic self diffusion coefficient given by:

∆r2α = 2Dα
s t (4.6)

where α = x, y or z. One recovers the 3D self diffusion coefficient by computing:

Ds = [Dx
s +Dy

s +Dz
s ]/3 (4.7)

Looking at the MSD obtained using molecular dynamics, we find that the Fickian regime
is reached for distances larger than ∆r2 ∼ 100 Å2. This value implies that the mini-
mum distance that must be traveled by molecules to reach the Fickian regime is of the
order of dFick ∼ 10 Å – a value in very good agreement with that estimated from our
experimental data (Figure 4.4).

The self diffusion coefficients derived from the MSD were cross-checked by determining
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the intermediate incoherent scattering functions from the MD trajectories:

Finc(q, t) = 1/N
∑
i

exp [−iq · (ri(t)− ri(0))] (4.8)

We should warn the reader that these functions were computed on large zeolite crystals
oriented along x, y and z. The description of these systems are reported on Section
5.3.1. Indeed, as it is going to be described in Section 5.2.1, the periodic boundary con-
ditions used in molecular simulation impose that the scattering vectors q = (qx, qy, qz)
have to be chosen of the type (2πnx/Lx, 2πny/Ly, 2πnz/Lz) where nx,y,z are integers
and Lx, Ly, Lz are the box sizes in the three directions of space. Thus, we had to build
a larger zeolite system to consider lowest q range (i.e. larger distances). The insert
in Figure 4.5(b) shows Finc(q, t) computed for different scattering vectors q values cho-
sen along the x and y directions. As expected, these data show that the decay time
in Finc(q, t) increases with decreasing q; this is due to the fact that the relaxation of
density fluctuations over large distances (small q) occurs over longer times. Moreover,
for a given q vector, we find that the relaxation time in the y direction is faster than
in the x direction. This indicates that diffusion in the large straight channels is faster
than in the narrow zigzag channels. For small q, the Fickian regime is reached so that
the exponential form Finc(q, t) ∼ exp[−Dsq

2t] can be used to fit the data.

Figure 4.5(b) shows the reciprocal of the relaxation time 1/τs(q) = Ds(q)q
2 as a function

of q2. The circles and squares correspond to data obtained from the simulated interme-
diate incoherent scattering function Finc(q, t) along the x and y directions, respectively.
The lines indicate the Fickian behavior 1/τs(q) = Ds(q)q

2 with Ds obtained from the
MSD. The dashed and dotted lines correspond to the data for the x and y directions,
respectively. As can be seen from this comparison, there is very good agreement between
the self diffusivity obtained from the MSD and Finc(q, t) at small q. Interestingly, the
Fickian regime seems to hold to larger q for the x direction than for the y direction.
This result suggests that, owing to the smaller pore size in the zigzag channels (en-
hanced confinement effects), more collisions with other fluid molecules and the zeolite
atoms allow reaching the Fickian regime on shorter length scales.

In order to check the numerical model that we used, we looked at the influence of differ-
ent parameters on the self diffusion coefficient. We will first discuss the method of both
MSD versus VACF, then the effect of the matrix flexibility and finally, the influence of
the correction of the center of mass displacement.

Comparison of the Green Kubo and Einstein formalisms. Simulations using
VACF method lasted 10 ps saving molecules trajectories each 1 fs. Figure 4.6 shows
important differences between the integration of the VACF and the MSD methods (30 %
for 16 molecules per uc). Such large difference could be explained by the simulating time
in VACF analysis which is too small to reach equilibrium (insert in Figure 4.6). Indeed,
a dilemma has to be faced: trajectories files generated during the simulations reach an
important size which make the data analysis complicated. Indeed, a small discretization
of the trajectories is necessary to take into account the first peak at the beginning of
simulations. The minimal delta calculated for discretization was 1 fs. However, with a
10 ps simulating time, the file sizes started to increase. The analysis becomes too com-
plicated for such data files to allow increasing the simulating time. For this reason, we
chose to use the mean square displacement method (the MSD) to compute self diffusion
coefficients.
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Figure 4.6: Simulated self diffusion coefficients Ds in function of the loading computed
using the integral of the VACF (open circles) and the MSD method (open squares).
The difference between the results from the both methods are quite important, up to
30 % on our simulating points. It can be explained by the insert showing the integral
of VACF simulation on 2 ns. A long time has to be simulated to reach a convergence of
the integral (not obtained here). Because of that, errors bars in VACF points are very
important.

Influence of the matrix flexibility. The influence of flexibility was studied by com-
paring our system to a rigid one (i.e. same crystal without zeolite/zeolite interactions).
Even if the simulation points were made with a varying loading between the curve corre-
sponding to flexible matrix and the curve corresponding to rigid matrix, a trend can be
observed. Indeed, the self diffusion coefficient is higher for flexible matrix than for rigid
matrix as it is shown in Figure 4.7 (a). For the lowest loading the difference is around 25
%. The vibration of the frame, represented as an harmonic oscillator, in case of flexible
matrix, helps methane molecules to diffuse inside the zeolite pores as it can be expected.

4.2.3 Self diffusivity in silicalite-1

Correction of the loading. Figure 4.8(a) compares the self diffusion coefficients
obtained by molecular dynamics and neutron scattering experiments for the different
methane adsorbed amounts considered in our study. The open circles correspond to
the experimental data Ds extracted from HWHM ∼ Dsq

2 (see Section 3.1). As ex-
plained earlier, the experimental loadings na suffer from significant uncertainties so that
the corresponding error bar is large. To provide more accurate values for na and es-
timate the error bars associated, we computed the scattered amplitude by integrating
the Lorentzian function associated to diffusion LT . The insert of Figure 4.9 shows the
scattered amplitude Itot as a function of the adsorbed amount n∗

a estimated from the
imposed gas pressure in QENS experiments using the adsorption isotherm data at the
three temperatures considered. The total scattered amplitude Itot is the sum on the
whole q range considered of the amplitudes of the Lorentzian functions associated to
the translational diffusion. The total scattered amplitude should be proportional to the
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Figure 4.7: Effect of different parameters on the self diffusion coefficient Ds. (a) Self
diffusion coefficient computed for a flexible (open squares) and a rigid (close squares)
matrix. Ds is larger for the flexible matrix. It is due to the capacity of the structure
to distort helping methane molecules to diffuse inside the matrix. (b) Self diffusion
coefficient computed before the correction of the center of mass deviation (open squares)
and without the correction (open diamonds). For the explanation of the correction
procedure, see the core of the text. Ds is lower when the bias is corrected. Indeed, the
mass center displacement adds a contribution.

methane adsorbed amount. The linear fit (black dashed line) is used to correct the
methane loading : na = n∗

a/α (with α=0.556) the slope of the linear fit). This method
allows to estimate more accurately the real adsorbed amount na in the sample during
the experiment and its error bar which raises from |na − n∗

a|. Indeed, the inaccuracy on
the loading measurement comes from several factors such as the pressure set up precision
and an outgassing too quick. In this context, the high loading values are more reliable
and thus are used to interpolate the low loading values.
Moreover, it was checked that consistent results are obtained when considering the am-
plitude of the rotational Lorentzian LR(q, ω). While this approach allowed us to estimate
the corrected adsorbed amount (i.e. using the scattered amplitude Itot), we decided to
leave in Figure 4.8(a) the error bars which arise from the discrepancy between the cor-
rected and nominal adsorbed amounts. As for the y axis, the error bars correspond to
the uncertainty in the linear fit used to extract Ds from HWHM ∼ Dsq

2.

Self diffusion coefficients

As shown in Figure 4.8(a), a reasonable agreement is obtained between the simulated
and experimental self diffusivities at different loadings. Both the experimental and sim-
ulated data show that Ds decreases upon increasing the loading na. This result suggests
that increasing the density in the dense adsorbed phase necessarily leads to a decrease in
diffusion like in bulk liquids. This interpretation is supported by our analysis performed
in the final section in which a simple free volume theory was found to fully capture the
dependence of Ds on the adsorbed amount na. Overall, as shown in Figure 4.9, our
data are in good agreement with previous simulation data on methane in silicalite-1.
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Experimentally, Jobic et al. [155] found self diffusion coefficients of the same order of
magnitude; the measured self diffusivities are lower than those found in our work but,
as already mentioned, these authors considered an aluminosilicate sample with a small
Si/Al ratio (and, hence, with a large number of compensation cations which slow down
diffusion of confined fluids in the zeolite porosity).
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Figure 4.8: (a) Self diffusion coefficientDs as a function of methane adsorbed amount na.
Different colors corresponds to different temperatures: 300 K (red), 275 K (orange), 250
K (green), 225 K (blue), 210 K (purple), 200 K (black). The open squares correspond to
data derived from the MSD obtained by molecular dynamics simulation while the open
circles correspond to experimental data measured by QENS. The insert shows the free
energy as a function of the methane adsorbed amount as estimated from an Arrhenius
plot of Ds versus 1/T . The dashed line corresponds to the thermal energy at 300 K,
RT ∼ 2.5 kJ.mol−1. (b) Self diffusivity as a function of loading na obtained by molecular
simulation at 300 K. The open symbols correspond to Dz

s (triangles), Dx
s (circles), Dy

s

(diamonds), D3D
s (squares).

As shown in Figure 4.8(a), Ds increases with increasing the temperature T as thermal
energy promotes diffusion. The simulation data were used to estimate the free energy
barrier ∆F for diffusion from a simple Arrhenius law:

Ds = D0
s exp [−∆F/kBT ] (4.9)

where D0
s is the self diffusion coefficient at high temperature. As shown in the insert

of Figure 4.8(a), ∆F decreases with increasing the loading na. This result can be ex-
plained by the fact that fluid/fluid interactions become more significant upon increasing
the loading. On the one hand, at low loading, the free energy barrier is mostly driven by
the fluid/solid interaction energy (adsorption site free energy). On the other hand, upon
increasing na, the free energy barrier evolves towards the bulk free energy barrier which
is driven by the fluid/fluid interactions. Overall, the data in Figure 4.8(a) show that the
steric repulsion between adsorbed molecules leads to a decrease in Ds with increasing
na but with a free energy barrier that decreases with na. This dual impact of loading
and temperature on diffusion of methane in zeolite is in agreement with the findings

95



by June et al. [90]. Considering that the free energy barriers assessed in our molecular
simulations are close to the thermal energy at room temperature ∼ 2.5 kJ.mol−1, we do
not expect strong diffusion barriers for methane in silicalite-1 – a result which is also
supported by the fact that the MSD were found to reach the Fickian regime on very
short timescales (∼ 1 − 10 ns). However, we note that diffusion barrier effects are ex-
pected if the temperature is decreased or if bulkier and/or more complex molecules are
considered (so that the free energy barrier becomes larger than the thermal energy kBT ).
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Figure 4.9: Self diffusion coefficient Ds as a function of the methane adsorbed amount na

for methane confined in silicalite-1. Different colors correspond to various temperatures:
300 K (red), 275 K (orange), 250 K (green), 225 K (blue), 210 K (purple), 200 K (black).
The open symbols correspond to the results of our molecular simulations (squares) and
experiments (circles) while the closed symbols correspond to experimental data from
Jobic et al. (close circles) and simulation data from several groups [taken from Skoulidas
et al. [79]] (close squares : Skoulidas et al. [156] / triangles : June et al. [157] /
diamond : Goodbody et al. [158] / cross : Jost et al. [159]). The insert shows the
total scattered amplitude Itot measured by QENS neutron experiments as a function of
methane adsorbed amount n∗

a : 275 K (orange), 250 K (green) and 225 K (blue). n∗
a

is estimated from the imposed gas pressure in QENS experiments using the adsorption
isotherm data.

Anisotropic self diffusion. Figure 4.8(b) shows the self diffusivity Ds as a function
of loading na as obtained by molecular simulation along the x, y and z directions (for
comparison, we also report the 3D self diffusivity). Like for the 3D self diffusion coeffi-
cient, Dx

s , D
y
s and Dz

s decrease when the loading increases. For all na, the self diffusion
coefficients follow the order: Dz

s < Dx
s < Dy

s . This logical order is due to the chan-
nel geometries and sizes in which molecules diffuse along these directions. While the
channels in the y direction are straight and of a large diameter (∼ 5.5 Å), the zigzag
channels oriented along the x direction are smaller and tortuous (with a diameter ∼ 5.3
Å). As for the z direction, there is no direct diffusion path so that the corresponding
diffusion component is even weaker. Figure 4.10 shows that the ratio Dy

s/Dx
s evolves

from 1.8 to 1.4 and Dy
s/Dz

s from 6.2 to 6.0 as na increases from 1 to 8 molec./uc. At low
loadings, the impact of the channel geometry and of the solid/fluid interactions prevail
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with important differences between Dz
s , D

y
s , Dz

s . On the other hand, at high loadings,
collisions between fluid molecules become more important which leads to a reduction
in the diffusion as already discussed but also to smaller anisotropy effects in diffusion.
Such evolution is consistent with the analysis performed by June et al. [90]. In contrast
to the analysis above, for na > 10 molec./uc, anisotropy increases with Dy

s/Dx
s ∼ 3.8

and Dy
s/Dz

s ∼ 9.9; this is due to the fact that the free volume available for diffusion
per unit volume – which necessarily decreases with increasing the number of confined
molecules – is smaller in small channels than in large channels.
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Figure 4.10: Self diffusivity ratio Dy
s/Dx

s (open squares) and Dy
s/Dz

s (open circles) as a
function of the methane loading na. All these data were obtained by means of molecular
dynamics simulations for methane confined in silicalite-1 at 300 K.

4.3 Free volume theory

In this section, we consider the free volume theory – which was initially introduced by
Cohen and Turnbull [154] for molecular transport in liquids and glasses – to rationalize
the self diffusivity of fluids nanoconfined in zeolite porosity. This molecular model,
which accounts for the free volume left in the cavity when fluid molecules are adsorbed
in their porosity, allows describing the impact of the fluid adsorbed amount and, hence,
the pressure dependence of the self diffusivity Ds. This model, applied in bulk fluid
systems [160, 161] was also probed on confined media [162, 163]. We describe in a first
part the principles of the model. Then, we consider the numerical calculation of the free
volume for our zeolite system. Finally, in the last part, we apply this model to 3D and
anisotropic diffusivities.

4.3.1 Principles

In order to introduce this seminal model, we consider a zeolite filled with N fluid
molecules. Within the free volume theory, we write that the self diffusion coefficient cor-
responding to diffusion through a cavity of volume v can be written as Ds(v) = fga(v)u.
In this formula, fg is the structure factor which takes into account the cavity geometry,

97



(a) (b)

Figure 4.11: (a) Schematic representation of the free volume theory: a methane molecule
(in blue) diffuses provided a free cavity is available around it. As explained in the text, a
free cavity is defined as a void which does not overlap with any other methane molecules
(grey spheres) or Si/O atoms of the zeolite structure. (b) Schematic principle of the free
volume calculations Vf (N). Many mathematical points (in green) are selected randomly
in the zeolite structure. The distance di to every atom/molecule i in the system (zeolite
atoms + methane molecules) is calculated for each mathematical point. If di < σi/2
with σi corresponding to the excluded diameter around the atom/molecule i, the point
does not contribute to the free volume Vf (N). Otherwise, it contributes to the free
volume. In the end, the free volume is derived from the ratio between the number
of mathematical points which contribute to the free volume and the total number of
mathematical points picked in the zeolite structure.

a(v) is the cavity diameter and u is the fluid velocity. Without any net flow (i.e. without
any thermodynamic gradient imposing transport), u corresponds to the thermal velocity
u =

√
3kT/m. With this simple model, introducing the normalized probability p(v,N)

to find a cavity with a free volume v in the zeolite filled with N fluid molecules, the
average self diffusivity Ds(N) is simply given by integrating Ds(v) over the whole free
volume available:

Ds(N) =

∫ ∞

v0

p(v,N)Ds(v)dv (4.10)

where v0 is the smallest cavity volume accessible to the diffusing molecule. Using p(v,N),
one can define the free volume Vf (N) available for diffusion of the N molecules as:

Vf (N) =

∫ ∞

0
γvp(v,N)dv (4.11)

where γ is a numerical factor that depends on the molecule shape/size. In more detail,
γ takes into account the fact that several of the N fluid molecules inside the system
can share the same free volume. By assuming an exponential cavity size distribution as
proposed by Cohen and Turnbull [154]:

p(v,N) = γN/Vf (N) exp[−γv/Vf (N)] (4.12)
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and that Ds(v) = Ds(v0) for all v, it is straightforward to show that the solution of Eq.
(4.10) is:

Ds(N) = Ds(0) exp

[
− γNv0

Vf (N)

]
(4.13)

= Ds(0) exp

[
− γ

(
V 0
f

Vf
− 1

)]
(4.14)

where Ds(0) is the self diffusion coefficient at infinite dilution (N → 0) (the latter takes
implicitly into account the fluid velocity u). To obtain the second equality, we simply
use that Vf (N) = V 0

f −Nv0 where V 0
f is the free volume in the absence of any adsorbed

molecules (porous volume). As shown in Refs. [162, 163], the free volume Vf (N) can be
expressed as a function of the adsorbed amount:

Vf (N) = V 0
f (1− βΓ) (4.15)

where Γ is the ratio between the adsorbed amountN and the maximum adsorbed amount
N∞ and β is the packing fraction that takes into account the geometry of the molecules.
In practice, this free volume versus adsorbed amount relationship is very useful as it
allows expressing the self diffusivity as a function of loading/adsorbed amount instead
of the free volume; Ds = Ds(0) exp[−γβΓ/(1 − βΓ)]. In the present work, as shown in
Figure 4.12, using Eq. (4.15), we found β = 0.24. This value is lower but similar to the
one found in previous work [163]. The numerical method to compute the free volume is
given in the next section.
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Figure 4.12: Vf/V
0
f as a function of Γ= n/ninf using the simulation data (see

manuscript). ninf was obtained by fitting the simulated adsorption isotherm with the
function na = ninf × [1− exp(−cP )] with ninf and c the fitting parameters. The slope
of the linear fit is β which corresponds to the packing fraction (the value is reported in
the main text).
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4.3.2 Free volume assessment

To verify the validity of the free volume theory to describe the impact of adsorption on
methane diffusion in silicalite-1, we estimated the free volume Vf as a function of the
loading na. As illustrated in Figure 4.11, for each loading, using configurations gener-
ated along the MD simulations, we estimated Vf using a simple Monte Carlo sampling
procedure. A total of NT

p mathematical points are selected randomly in the zeolite vol-
ume. For each point, the distance di to every atom/molecule i in the system (zeolite
atoms and methane molecules) is calculated and compared to the exclusion diameter
σi around this atom (for a given atom/molecule type, this exclusion diameter is taken
equal to the Lennard-Jones parameter between this species and the methane molecule).
On the one hand, if any of the measured di is such that di ≤ σi/2, the mathematical
point overlaps with the zeolite and/or methane phase so that it does not contribute to
Vf (N). On the other hand, if di > σi/2 for all i, the mathematical point is accessible
so that it contributes to Vf (N). The total number Np of mathematical points which
verifies the second condition allows computing the free volume as Vf/V = Np/N

T
p where

V is the system’s entire volume.
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Figure 4.13: Comparison between the free volume model and the molecular dynamics
results for the self diffusion coefficient Ds. The symbols correspond to Ds as obtained
by molecular dynamics while the dashed lines correspond to the free volume model
(with D0

s and γ fitted against the simulation data as explained in the main text). (a)
The different data sets were obtained by varying the Lennard-Jones parameter of the
methane molecule interaction with the oxygen atoms of the zeolite: σ = 3.214 Å (red),
σ = 3.5354 Å (green) and σ = 3.8568 Å (blue). The insert shows the variation of the
free volume Vf as a function of the methane adsorbed amount na. (b) Same as in (a)
but for the self diffusivity along the y direction Dy

s (yellow) and in the xz plane Dxz
s

(purple). Like in (a), we also show in red the 3D self diffusivity Ds. To estimate Vf

along the y axis, we define a channel radius R; the insert shows the ratio ϕ0 = Vf (R)/V
along y as a function of R. The vertical dashed line indicates R = 4 Å which was chosen
to estimate Vf (y) as explained in the main text.
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4.3.3 Loading dependence

Figure 4.13(a) compares our simulation results (open circles) with the free volume theory
(dashed lines). We also show in the insert the estimated free volume Vf as a function of
the loading na. As can be seen from the red data in the main figure, this simple model
describes accurately the change in self diffusivity Ds(na) upon increasing the loading na

with only the shape factor γ and the self diffusivity at infinite dilution Ds(0) as fitting
parameters. To further assess the robustness of the free volume theory in describing
the impact of adsorption on diffusivity, the following additional molecular simulations
were performed. The Lennard-Jones parameter σ describing the interaction between the
methane molecule and the zeolite oxygen atoms was artificially increased. As expected,
such modifications induce a drastic change both in the free volume Vf available for
diffusion and in the associated self diffusion coefficient Ds. In practice, at every loading
na, the self diffusion coefficients Ds(na) and free volumes Vf (na) were calculated for
σ = 3.8568 Å, σ = 3.5354 Å, σ = 3.214 Å (the latter value is the nominal value which
has been discussed at the beginning of this paragraph). As can be seen in Figure 4.13(a),
for all data sets, even when σ gets large, the free volume model reasonably captures the
decrease observed in Ds(na) upon increasing na. The parameters γ and D0

s obtained by
fitting the free volume model against the simulated data for different σ are presented in
Table 4.1. As expected, Ds(0) decreases when σ increases as larger excluded volumes
in the methane/oxygen interaction leads to reduced volumes for diffusion – even under
infinite dilution conditions. Moreover, our data suggest that increasing σ leads to more
free volume overlap between different confined molecules as γ increases.

Table 4.1: Free volume parameters γ and D0
s as obtained when varying the Lennard-

Jones parameter σ for the interaction between the methane molecule and the oxygen
atoms in the zeolite (see text).

σ(Å) γ D0
s(m

2.s−1)

3.214 7.43 1.61 10−8

3.5354 8.13 1.58 10−8

3.8568 11.49 1.56 10−8

4.3.4 Diffusion anisotropy

To further assess the validity of the free volume model, we checked its ability to probe
anisotropic diffusion as observed in our molecular simulations for methane confined in
silicalite-1. As already discussed, the methane molecules exhibit different diffusivities
inside the straight channels (i.e. along the y direction) and inside the zigzag channels
(i.e. in the xz plane). To apply the free volume model in different directions/planes,
we computed the free volume along the y direction and in the xz plane. The same
methodology as that described in Figure 4.11 was used but we restricted the mathemat-
ical sampling to the straight channels or to the zigzag channels. To illustrate our free
volume approach restricted to a channel type, let us consider the straight channels in the
y direction. Considering such channels without any adsorbed molecules, we first need
to define its radius. To do so, as shown in the insert in Figure 4.13(b), we measured the
void fraction ϕ0 = Vf/V by sampling randomly the pore volume in a region of radius
R. As expected, ϕ0 = 1 when R is smaller than the channel radius as only the void
region is probed (R < Rchannel). On the other hand, as R ∼ Rchannel, the void fraction
drops as sampling lead to selected mathematical points that overlap with the zeolite
atoms. Finally, when R >> Rchannel, ϕ0 converges to the average porosity in silicalite-1
(0.4–0.5) as sampling is homogeneous within the unit cell. From such data, we define the
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straight channel radius Rchannel ∼ 4 Å as it corresponds to the intermediate ϕ0 value
between the two asymptotic regimes described above. While this value is somewhat
arbitrary, the data in Figure 4.13(b) shows that it leads to a good agreement between
the free volume theory and the molecular simulation data. A similar treatment was used
to predict the free volume in the zigzag channels – i.e. in the xz plane. As can be seen
in Figure 4.13(b), the free volume model describes also reasonably the self diffusivity in
the zigzag channels at different loadings na.

4.4 Partial conclusion

In this chapter, we used a combined experimental/theoretical approach to investigate
the dynamics in confinement of a simple fluid inside the nanoscale porosity of zeolites.
By using QENS experiments and MD simulations, we considered the effect of tempera-
ture and loading on self diffusivity with the aim to identify the molecular mechanisms
responsible for diffusion. In particular, by analyzing in detail the experimental dynamic
structure factor, we showed that the obtained data can be rationalized using a combina-
tion of q-independent rotational modes and q-dependent translational modes (the latter
providing a means to derive the self diffusivity). To further identify the microscopic
mechanisms leading to diffusion in confinement, we complemented our QENS approach
using MD simulations (the latter are first validated against our experiments and data
from previous works [155, 79, 159, 157, 158, 156]). By considering data at different P
and T conditions, we showed that the self diffusivity of the confined fluid can be ratio-
nalized using a simple free volume theory in which the free volume is directly related to
the adsorbed amount. The robustness of this approach is assessed by verifying that it
captures both the 3D self diffusivity and its anisotropic components in the y direction
and in the xz plane. We also checked that it describes consistently the self diffusivity as
a function of loading when the fluid/zeolite interaction is varied. The following chapter
will be dedicated to the study of the collective and transport diffusivities - properties
which take account of, not only individual motion of molecules, but also correlations
between different molecules.
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5 Collective diffusion and transport in
zeolite

In this chapter, we present our main results about gas transport in zeolite. In this
context, transport through the nanoporous material is induced using a concentration,
density or pressure gradient applied to the fluid. Transport diffusivity of molecules in
such confined environment depends on the length and time scales on which it is observed.
This dependence has been already related to the microscopic structure of the confined
geometry with correlation between dynamic and structural properties [7, 8]. In order to
study these correlations, wave vector dependent diffusion coefficients can be computed
using intermediate scattering functions (as described in Section 1.3) as shown by several
studies [164, 165]. As an important aspect in this chapter, the concept of De Gennes
narrowing is used to rationalize the wave vector dependent collective diffusivity D0(q)
using the structure factor S(q). In order to check ability of De Gennes narrowing to
describe transport at the nanoscale, we first consider a simple model consisting of a
simulation box filled with methane above its critical temperature. Then, in a second
step, we assess the ability of De Gennes narrowing model to describe the collective
diffusion of methane in an “infinite” zeolite crystal. Finally, at the end of this chapter,
as a preliminary step, we also report neutron scattering data for deuterated methane,
which allow us to probe microscopically the transport of nanoconfined methane in the
zeolite porosity.

5.1 Generalities and principles

This section presents generalities concerning collective diffusion that is going to be used
for probing De Gennes narrowing model. First, we will present the gradient method
which is a numerical method for computing homogeneous collective diffusion coefficients.
The loading dependence of global and anisotropic collective diffusion coefficients will be
discussed. Then, we will present the main principles of De Gennes narrowing model.

5.1.1 Collective diffusion

Non equilibrium MD: the gradient method

Equilibrium molecular dynamics techniques are commonly used to compute the collec-
tive diffusion coefficient D0 using the Green-Kubo formalism or from the mean square
displacement of the center of mass of the fluid. However, unlike computing the self dif-
fusion coefficient Ds, for which the statistics is greatly improved by considering all the
molecules in the system, a very large number of configurations has to be considered to
get sufficient statistics when computing D0. In this context, non equilibrium molecular
dynamics, in which the fluid response to a thermodynamic gradient is probed, is an
important method (typically, D0 is the response to a chemical gradient ∇µ imposed on
each molecule in the system). In the linear response regime (i.e. for sufficiently small
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gradients as will be discussed later), a flux J proportional to ∇µ is induced:

JN = −Deff∇µ (5.1)

with Deff an effective coefficient which describes the system’s response to ∇µ. Consid-
ering Eq. (1.45) in Section 1.3, we have :

Deff =
ρD0

kBT
(5.2)

with D0 the so-called collective diffusion coefficient, ρ the density of the fluid and T the
temperature. In practice, by definition, the induced flux can be written as the sum of
the molecular velocities over every molecule i:

JN = ρ
1

N

N∑
i=1

vi (5.3)

As explained in Section 2.1.3, molecular dynamics provides every molecule’s coordinates
and velocities at each time step. The principle of the non-equilibrium method is to apply
a constant force (i.e. constant chemical potential) to each molecule to set the system
in motion. In other words, the system responds to this external solicitation by flowing.
We can compute the velocity of the center of mass vc = 1/N

∑
i vi as a function of the

applied force ∇µ. In the linear response regime, we have:

vc = −α∇µ (5.4)

with α the proportionality coefficient. By multiplying this last equation by the density,
we get:

J = −αρ∇µ (5.5)

Comparison between Eqs. (5.1) and (5.5) shows that D0 is readily obtained as:

D0 = αkBT (5.6)

Implementation. In practice, the non equilibiurm method introduced above can be
performed using the Molecular Dynamics software LAMMPS [126]. Let us consider a
typical LAMMPS molecular dynamics script. First, we define the driving force (chemical
potential gradient) as:

variable F index 6.0
variable forcefac equal 0.01439

variable extforce equal $(v F*v forcefac)

Here, we apply a driving force F = ∇µ = 6 pN that is applied to each molecule. However,
in LAMMPS, forces have to be input in kcal.mol−1.Å−1. The conversion coefficient is
then defined as “forcefac” variable (second line). Finally, “extforce” is the force variable
in the right unit that is applied to each molecule:

fix pressure fluid addforce $extforce 0 0

This command is adding “extforce” defined above on the x component of the forces
applied to a methane molecule (ie “fluid”) in Newton’s equation of motion. No additional
forces are applied along the y and z directions (i.e. 0 0 at the end of the line). As
explained in the “Thermostat” section, the temperature is computed using molecular
velocities. Without any other modifications in the script here, the temperature would be
computed using the modified vx wich could lead to a wrong estimation of the temperature
for large ∇µ. To avoid such errors, we add the next two lines in the LAMMPS script :
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Figure 5.1: (a) Velocity of the fluid center of mass along the x direction as a function
of the driving force Fx (i.e. chemical potential gradient applied along the x direction)
for different methane loadings in silicalite-1 (6 molec/uc: purple, 12 molec/uc: blue,
16 molec/uc: green, 20 molec/uc: red). (b) Velocity of the fluid center of mass along
the x (open circles), y (open rectangles), z (open triangles) directions for methane in
silicalite-1 at a fixed loading of 12 molec/uc.

compute yztemp all temp/partial 0 1 1
fix modify mynvt temp yztemp

The first line allows us to compute the partial temperature using vy and vz velocities.
The second line modifies the MD parameters to take into account the new partial tem-
perature.
Figure 5.1(a) shows the velocity of the fluid center of mass along the x direction as a
function of Fx (i.e. force applied along the x direction) for different methane loadings
in silicalite-1. Upon increasing the loading, the proportionality coefficient α decreases.
This indicates that the anisotropic collective diffusion coefficient Dx

0 decreases with load-
ing. In order to compute the collective diffusion D0, the anisotropic diffusion coefficients
were computed by plotting the fluid center of mass velocity as a function of the force
applied along the three directions x, y, z [Figure 5.1(b)]. Then, the 3D average collective
diffusivity is given by D0 = [Dx

0 +Dy
0 +Dz

0]/3.

Linear response regime. The linear response regime is a necessary condition to write
a linear relation between the flux and the force as defined in Eq. (5.1). In order to verify
the application range of the linear regime hypothesis, we ran several simulations with
applied forces up to 30 pN. We compared the square of the thermal velocity vth at 300
K (kinetic energy) and the average of the square of the center of mass velocity during
the simulation time (in each space direction). The thermal velocity in one direction
was computing using the energy equipartition: ⟨v2th⟩ = kBT/m with m the molecular
mass of the fluid molecule. The average square of the center of mass velocity for each
directions was computed as ⟨v2⟩ =

∑N
i=1 v

2
i where N is the number of molecules. Figure

5.2(a) shows that for a 2 pN force applied to each molecule the squared velocity reaches
the expected value at 300 K (in each direction of space). On the other hand, Figure
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Figure 5.2: (a) Squared velocity at 300 K (black line) and squared velocity components v2x
(orange circles), v2y (grey circles) and v2z (yellow circles) for Si atoms (top), oxygen atoms
(middle) and methane molecules (bottom). Velocities were computed while methane
molecules were subjected to a 2 pN force in the x direction. (b) Comparison of the
squared thermal velocity at 300 K and methane squared velocity components v2x, v

2
y and

v2z for different forces applied to methane molecules in the x direction [from 10 pN to 30
pN, the color code is the same as in panel (a)].

5.2(b) shows that for an increasing force, a discrepancy appears between the computed
and expected kinetic energy. This discrepancy is more pronounced on the x direction
(orange circles). Indeed, it is the direction of the applied force so that the velocity
increase in this direction is more pronounced. Moreover, we can notice that the y and
z components of the velocities are also affected in this case even if no force is applied in
these directions.

3D and anisotropic collective diffusion coefficients

Figure 5.3(a) shows the collective diffusion coefficients computed using non equilibrium
molecular dynamics along x (open circles), y (open squares), z (open triangles) and
total (open diamonds) as a function of methane loading in silicalite-1. The anisotropic
diffusion coefficients can be ranked as Dz

0 < Dx
0 < Dy

0 . The effect of channels geometry
explains this ranking as channels in the y direction are larger than the zigzag channels
in the x direction (on the other hand, we recall that there is no direct path in the z
direction). Moreover, with increasing the loading, two regimes can be observed. First,
a plateau is observed in D0 until the loading reaches a value which depends on the
orientation: 6 molec./uc for Dx

0 and Dz
0 and 16 molec./uc for Dy

0 . Then, upon further
increasing the plateau, the collective diffusion coefficients decrease with loading. This
result is in good agreement with the work by Maginn et al. [91]. The collective diffusion
coefficient is the sum of a self-contribution (correlations of a molecule’s velocity at dif-
ferent times) and a cross-contribution (cross-correlations between molecule velocities at
different times) as described by Eq. (1.42). Figure 5.3(b) shows the decrease in the ratio
Ds/D0 as the methane loading in silicalite-1 increases. As the loading tends to zero,
Ds/D0 tends to 1 as methane-methane cross-interactions become negligible. In contrast,
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Figure 5.3: (a) Collective diffusion coefficients computed using the gradient method
along x (open circles), y (open squares), z (open triangles) and total (open diamonds)
in function of the loading. Collective diffusion coefficient values from Skoulidas et al. are
reported by the closed diamonds. Loading corresponding to different colors (6 molec/uc:
purple, 12 molec/uc: blue, 16 molec/uc: green, 20 molec/uc: red) are the same than
Fig5.1 and will be used to probe De Gennes narrowing in the last section. (b) Ratio
Ds/D0 in function of the loading. As the loading increases, the ratio is decreasing as
expected. Indeed, at low loading D0 is driven by individual motions as collective effects
is negligible.

as the loading increases, the packing density increases and methane-methane interactions
become significant. As already discussed with Figure 4.8, steric repulsion becomes more
important as density/loading increases so that Ds decreases in a monotonous fashion
with loading. Moreover, as cross-correlations from methane-methane interactions in-
crease with loading, the self diffusion contribution to the collective diffusion coefficients
decreases. We can conclude that the collective interactions in D0 increases with increas-
ing loading, therefore compensating to some extent the decrease due to steric repulsion
(in fact, D0 remains nearly constant upon changing the loading). At larger loadings,
the density increase leads to more pronounced steric repulsion which make D0 decrease
with loading.

5.1.2 De Gennes narrowing

In 1959, the French physicist De Gennes proposed a model to describe and predict the
collective diffusivity D0(q) [166]. This model, known as De Gennes narrowing, relates
the structural ordering through the structure factor S(q) to wave vector-dependent col-
lective diffusivity D0(q). As discussed in Section 1.3, the limit at vanishingly small wave
vector q → 0 of this collective diffusivity is the macroscopic value as defined in Onsager’s
theory of transport. As already discussed, the latter is directly related to the perme-
ability k measured in macroscopic experiments on transport in porous media. Here, we
present the general principles of De Gennes narrowing. This simple model describes
the collective response of the system to a deviation from the equilibrium position of the
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system. As will be introduced in a more quantitative and formal way below, the struc-
ture factor S(q) describes the distribution of molecules at thermodynamical equilibrium.
Typically, this structure factor describes density correlations in the system at a charac-
teristic lengthscale l ∼ 1/q. Near the main correlation peak observed at q ∼ qmax in the
structure factor, density correlations are frequent as they correspond to low free energy
models. On other hand, far from the S(q) peak, density correlations are less frequent
because the associated free energy cost is large so that S(q) is small. The concept of De
Gennes narrowing can be understood as follows: a density perturbation involving a wave
vector q ∼ qmax relaxes slowly to equilibrium as the density correlations at ∼ 1/qmax are
frequent (i.e. thermodynamically favorable) and the free energy cost is low. Therefore,
in this case, the associated collective diffusion coefficient D0(q) is small. On the other
hand, for density perturbations with a wave vector q such that S(q) is small, the system
relaxes fast to equilibrium as the associated free energy cost is large. Therefore, in this
case, the corresponding collective diffusion coefficient D0(q) is large.

To introduce more formally the concept of De Gennes narrowing, let us consider a system
whose local density distribution at time t is ρ(r, t) [77]. We can define the local chemical
potential µ(r, t) from the local free energy F (r, t) as:

µ(r, t) =
δF (r, t)

δρ(r, t)
(5.7)

The conservation of the number of particles imposes that:

δρ

δt
+∇J = 0 (5.8)

where J is the particle flux which is assumed to follow the linear response theory:

JN = −α∇µ (5.9)

By replacing J and µ in Eq. (5.8), we obtain:

δρ(r, t)

δt
− α△ δF (r, t)

δρ(r, t)
= 0 (5.10)

Using Fourier transforms, we can convert Eq. (5.10) into:

δρ(q, t)

δt
− αq2

δF (q, t)

δρ(q, t)
= 0 (5.11)

At this stage, we express the free energy as a sum of uncoupled modes having an am-
plitude A(q):

F (q, t) =
∑
q

1

2
A(q)ρ(q, t)ρ∗(q, t) (5.12)

where the ∗ indicates the conjugated complex quantity. For a given mode q, F (q, t) can
be identified as the potential energy of a harmonic oscillator that brings the system back
to its equilibrium state (in this expression, A(q) is the force constant). Inserting Eq.
(5.12) in Eq. (5.10) leads to :

δρ(q, t)

δt
+ αq2A(q)ρ(q, t) = 0 (5.13)

The solution to this equation is given by:

ρ(q, t) = ρ(q, 0) exp[−D0(q)q
2t] (5.14)
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with D0(q) = αA(q) the wave vector dependent collective diffusivity. The energy
equipartition theorem implies that each mode is populated by the thermal energy so
that A(q)ρ(q)2 ∼ kBT . As a result, the structure factor can be written as:

S(q) =< ρ(q)ρ∗(q) >=
kBT

A(q)
(5.15)

Replacing A(q) in the expression for D0(q) leads to:

D0(q) =
αkBT

S(q)
(5.16)

This correlation between structural and dynamical properties has been probed for diverse
bulk systems such as glasses [167], colloidal dispersion [168] or supercooled liquid [169].
However, studies structure/diffusivity relations on confined fluid are still missing. On
this topic, Nygard et al. showed -using photon spectroscopy- the wave dependence of the
collective diffusion coefficient following the structure factor oscillations around the S(q)
peak. This qualitative agreement with the model was shown to stand when considering
anisotropic S(q) and D0(q).
In the next two sections, we present the calculations for the collective diffusion coefficient
D0(q) and structure factor S(q) to discuss the applicability of Eq. (5.16) in the case of
a bulk fluid phase and the zeolite filled with confined methane molecules.

5.2 Bulk fluid

This section is dedicated to De Gennes narrowing applied to a bulk fluid phase. In
practice, this simple system is used to develop our computational tools and illustrate
the application of De Gennes’ model.

5.2.1 Structure factor

Computational aspects. The system is made up of 8586 methane molecules within
a box of a size Lx = 120.54 Å, Ly = 118.428 Å, Lz = 78.858 Å. The intermolecu-
lar pair potential used is the Lennard-Jones potential (see section 3.1.1) between CH4

molecules. All molecular Simulations were done at 300 K. The static structure factor
S(q) was computed from a molecular dynamics simulation using the two following con-
ventional methods. The first method consists of using the radial distribution function
g(r) which is linked to the Fourier transform of the S(q). The second method, which
is a direct method, relies on computing the structure factor S(q) directly in Fourier space.

Indirect calculation (g(r) method). The radial distribution function g(r) describes
the distribution of molecules at a distance between r and r + dr of another molecule.
For an isotropic medium, it is linked to the static structure factor S(q) by the following
Fourier transform:

S(q) = 1 + ρ

∫ ∞

0
[g(r)− 1]× sin(q.r)

q.r
× 4πr2dr (5.17)

with ρ the fluid number density. In practice, g(r) was computed in this work by counting
for each methane molecule the number of methane molecules at a distance between r
and r + dr: dn(r) = N/V g(r)dr with N the total number of methane molecules and V
the volume of the system.
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Figure 5.4: Static structure factor using both the direct method (crosses) and the radial
distribution function integration (full line). The insert shows the radial distribution
function g(r) plotted up to the maximum distance rmax = Lz/2

Direct calculation in Fourier space. S(q) can also be computed directly as:

S(q) =
1

N
< ρ(q)ρ∗(q) > (5.18)

with ρ(q) =
∫
ρ(r)e−iq·rdr the Fourier component of the density (ρ∗(q) is its complex

conjugate as already introduced) and N the total number of molecules. The density can
be expressed as a sum of Dirac on each atom position at the time t, ri(t):

ρ(r, t) =
N∑
i=1

δ(r− ri(t)) (5.19)

Upon replacing ρ(r) in Eq. (5.19), the Dirac sum selects r in the Fourier transform as:

ρ(q) =

N∑
i=1

e−iq·ri(t) (5.20)

The structure factor S(q) can then be computed as:

S(q) =

〈
1

N

∑
i

∑
j

e−iq(ri−rj)

〉
(5.21)

where the bracket <> denotes ensemble or temporal average. Because of the use of pe-
riodic boundary conditions, only some particular, quantified scattering vectors q can be
considered. Indeed, periodic boundary conditions induce an infinite number of molecules
images with the coordinates (x + nxLx, y + nyLy, z + nzLz), nx,y,z integers so that in
general the structure factor S(q) will be dependent on the origin of the system. Indeed,
if we do not take into account this specificity linked to the use of periodic boundary
conditions, we will add the terms of the unphysical images correlations at infinity in the
structure factor S(q). To overcome this difficulty, we use quantified scattering vectors
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q as q = nx,y,z2π/Lx,y,z so that the calculated structure factor is corrected for such
artefacts:

S(q) =

〈
1

N

∑
i

∑
j

e−iq·(ri−rj+Lxx+Lyy+Lzz)

〉
(5.22)

=

〈
1

N

∑
i

∑
j

e−iq(ri−rj)e−iq·(Lxx+Lyy+Lzz)

〉
(5.23)

=

〈
1

N

∑
i

∑
j

e−iq·(ri−rj)e−i(2πnxx+2πnyy+2πnzz)

〉
(5.24)

=

〈
1

N

∑
i

∑
j

e−iq·(ri−rj)

〉
(5.25)

Figure 5.4 shows the static structure factor S(q) computed by the direct method (crosses)
and the radial distribution function integration (full line). Both methods give similar
results. The smallest q value computed using the direct method is given by the box
length q = 2π/Lz. On the other hand the limiting distance below which the radial
distribution function (in the insert) is integrated is rmax = Lz/2.

5.2.2 Collective diffusivity

To test the concept of De Gennes narrowing, the wave vector collective diffusion coef-
ficient D0(q) has to be computed. To do so, we rely on intermediate scattering func-
tions F (q, t) which characterize correlations between molecules taken at different times.
Two F (q, t) functions can be defined. On the one hand, Finc(q, t) characterizes self-
correlations as it corresponds to correlations for the same molecule at different times
t:

Finc(q, t) = 1/N

N∑
i=0

< ρi(q, 0)ρ
∗
i (q, t) >

with ρi(q, t) the Fourier transform of the single molecule density. On the other hand,
Fcoh(q, t) corresponds to collective correlations as it characterizes correlations between
molecules at different times t:

Fcoh(q, t) =< ρ(q, 0)ρ∗(q, t) >

In this context, we note that the structure factor is given by the intermediate coherent
scattering function at t = 0: S(q) = Fcoh(q, 0)

Self diffusivity. We recall that Finc(q, t) is related to the self diffusion coefficient Ds

as determined in Fick’s regime (see Section 1.3.1):

Finc(q, t) = exp[−Dsq
2t] (5.26)

However, even if the Fickian regime is not reached (typically, for large q vectors), a
relaxation time τs(q) can be associated with an underlying wave vector self diffusivity
Ds(q): τs(q) = 1/Ds(q)q

2 is the relaxation time over a characteristic length ∼ 1/q.
In the present thesis, the functions Finc(q, t) were computed by the direct method (see
Section 5.2.1) with an average performed over all the molecules in the system:

Finc(q, t) = 1/N
∑
i

< ρi(q, 0)ρ
∗
i (q, t) >= 1/N

∑
i

exp [−iq(ri(t)− ri(0))]
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Figure 5.5: (a) Intermediate incoherent scattering function Finc(q, t). The open symbols
correspond to the simulated data Finc(q, t) as obtained from molecular dynamics. The
different colors correspond to increasing wave vectors q as indicated by the dashed ar-
row: q = 0.261, 0.782, 1.824, 2.867, 3.909, 4.952, 5.994, 7.037, 8.079 and 9.122 Å−1. (b)
Inverse relaxation time 1/τs(q) a function of the squared wave vector q2. The open sym-
bols correspond to data obtained from the simulated intermediate incoherent scattering
function Finc(q, t) the orange circles correspond to 1/τs(q) as obtained by integrating
Finc(q, t). The red circles were obtained by fitting Finc(q, t) using a simple exponen-
tial function Finc(q, t) ∼ exp[−t/τs(q)]. The blue dashed line indicates the expected
behavior at small q (large distances) where the dynamics is expected to be Fickian
1/τs(q) = Ds(0)q

2 where Ds(0) was estimated from the mean square displacement ob-
tained in molecular dynamics.

with ri(t) and ri(0) the positions of molecule i at time t and 0, respectively. Figure
5.5 (a) shows the simulated intermediate incoherent scattering functions Finc(q, t). As
expected, upon increasing q, the relaxation time becomes shorter because molecules are
displaced over shorter distances.

To extract 1/τs(q) from Finc(q, t), two methods were used. The first method corresponds
to the time average as defined from Finc(q, t):

τs(q) =

∫
Finc(q, t)dt (5.27)

However, for small q, integrals as defined in this equation do not converge because
the simulation time was not large enough. In this case, we chose to fit Finc(q, t) ∼
exp[−t/τs(q)] with τs(q) the characteristic relaxation time. This fitting method relies
on the fact that Finc(q, t) can be written as an exponential in the small q range (i.e.
Fickian regime). The results from the two methods are presented in Figure 5.5(b) where
data from the integral method are represented by orange circles while data from the
fitting method correspond to red circles. The two methods converge in the interval
q ∼ 0.08 − 0.3 Å−1. The blue dashed line indicates the expected behavior at small q
(large distances) where the dynamics is expected to be Fickian. Thus, in this range,
the characteristic time is 1/τs(q) = Ds(0)q

2 where Ds(0) was estimated from the mean
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square displacement obtained in real space from molecular dynamics trajectories.

Collective diffusivity. Fcoh(q, t) and D0(q) are related thanks to Eq. (5.14). Indeed,
if we multiply Eq. (5.14) by ρ∗(q, 0), we obtain:

Fcoh(q, t) = S(q) exp[−D0(q)q
2t] (5.28)
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Figure 5.6: (a) Intermediate coherent scattering function Fcoh(q, t) normalized to
Fcoh(q, 0). The open symbols correspond to the simulated data Fnorm(q, t) =
Fcoh(q, t)/Fcoh(q, 0) as obtained from molecular dynamics. The different colors corre-
spond to increasing wave vectors q as indicated by the dashed arrow: q = 0.573, 1.095,
2.137, 3.180, 4.222, 5.265, 6.307, 7.350, 8.392 and 9.435 Å−1. (b) Inverse relaxation time
1/τ0(q) as a function of the squared wave vector q2. The open symbols correspond to
data obtained from the simulated intermediate coherent scattering function Fcoh(q, t).
While the orange circles correspond to 1/τ0(q) as obtained by integrating Fcoh(q, t) after
normalization by Fcoh(q, 0), the red circles were obtained by fitting Fcoh(q, t) using a
simple exponential function Fcoh(q, t) ∼ exp[−t/τ0(q)]. The blue dashed line indicates
the expected behavior at small q (large distances) where the dynamics is expected to be
Fickian 1/τ0(q) = D0q

2 with D0 the macroscopic collective diffusivity.

The functions Fcoh(q, t) were computed by means of the direct method: Fcoh(q, t) =<
ρ(q, 0)ρ∗(q, t) >= 1/N

∑
i

∑
j exp [−iq(ri(t)− rj(0))] with ri(t) and rj(0) the positions

of molecule i at time t and molecule j at time t = 0, respectively.
Figure 5.6(a) shows the intermediate coherent scattering function Fcoh(q, t) normalized
by Fcoh(q, 0) = S(q). When q increases, the characteristic time τ0(q) decreases. In
practice, data at large time t suffer from poor statistics as they are coherent functions
(so that statistics is much less than for the incoherent functions). Therefore, to extract
τ0(q) by the integral method (see above), the coherent functions were fitted at large
times using a function of the form : f = a exp[−(t − t0)/τfit] with t0 the time where
the coherent function is equal to 0.2 (this value was taken arbitrarily but it was checked
that the following conclusions remain valid) and a the value of the function at the
cut Fcoh(q, t0). Figure 5.6(b) shows 1/τ0(q) as a function of q2. The orange circle
correspond to 1/τ0(q) as computed by the integral method after smoothing the data.
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The red circles correspond to the fitting method against Fcoh(q, t) ∼ exp[−t/τ0(q)] with
τ0(q) the characteristic relaxation time. The two methods provide similar results in the
range q ∼ 0.3 − 0.8 Å−1. At small q, 1/τ0(q) = D0(0)q

2 and D0(q) is independent of q
because molecules follow the Fickian regime.

5.2.3 De Gennes narrowing
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Figure 5.7: (a) Reciprocal static structure factor 1/S(q) (orange line), collective diffusion
coefficient D0(q) (red symbols) and self diffusion coefficient Ds(q) (yellow symbols) as
a function of the wave vector q. For q <0.3 Å−1, as expected, D0(q) is q-independent.
The red dashed line was obtained by smoothing the data D0(q) (see text).The yellow
dashed curve was obtained by smoothing the data Ds(q). The vertical black dashed
lines indicate q vectors where changes in the structure factor and in D0(q) are observed.
(b) Product of the static structure factor S(q) and collective diffusion coefficient D0(q).
The symbols are obtained using the data in (a) while the dashed line was obtained by
replacing the data points D0(q) by the smoothed line in (a). The insert shows D0(q) as a
function of 1/S(q) for wave vectors corresponding to the second plateau of D0(q)×S(q)
(i.e. q ∼ 0.8− 1.9 Å−1).

For each scattering vector q, the wave vector dependent collective coefficient D0(q) was
calculated from the relaxation time D0(q) = 1/τ0(q)q

2. Similarly, the self diffusion
coefficient was calculated as Ds(q) = 1/τs(q)q

2. Figure 5.7(a) shows the structure factor
S(q) represented by the orange line, the collective diffusion coefficient D0(q) (red data)
and the self diffusion coefficient Ds(q) (yellow symbols). Data at small q were fitted by
a polynomial curve to smooth D0(q) as q tends to zero (this fit, which corresponds to
the red dashed line, is only intended for visualization purpose but it does not impact
the following discussion). As expected, D0(q) is constant as q tends to zero. More
importantly, in qualitative agreement with the concept of De Gennes narrowing, the
collective diffusion D0(q) follows oscillations that correspond to those observed in the
structure factor S(q). For the sake of visualization, the vertical black dashed line in the
figure indicates q vectors where changes/oscillations in D0(q) and S(q) are observed.
In contrast, as expected, no correlation is observed between the self diffusivity Ds(q)
and the structure factor S(q) since static structure ordering only involves correlations
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between different molecules.
Figure 5.7(b) shows the product of the structure factor S(q) and the collective diffusion
coefficient D0(q) as a function of q. The red dashed line corresponds to the fit of
the curve by a polynomial. These data indicate that D0(q) × S(q) is q-independent
when q tends to zero as expected. It is also observed that D0(q) × S(q) is constant in
the range q ∼ 0.8 − 1.9 Å−1. This range corresponds to the region around the main
peak in the S(q) data. This correlation between D0(q) and 1/S(q) is illustrated in the
insert in Figure 5.7(b) which shows a direct correlation. This correlation shows that De
Gennes narrowing applies in the region around the main correlation peak observed in
the structure factor S(q). In contrast, at larger q, very small distances are considered
so that the mesoscopic equations used to define transport coefficients do not apply. As
a result, in this range of high q vectors, we do not expect the concept of De Gennes
narrowing to apply.

5.3 Nanoconfined fluid

This section is dedicated to De Gennes narrowing applied to a nanoconfined fluid. First,
we introduce the system used for this study and discuss the static structure factor and
the effect of loading. Then, we present the self diffusion and collective diffusion as
obtained for this system. Finally, we discuss the applicability of De Gennes narrowing
to a severely confined fluid.

5.3.1 Structure factor

In what follows, 3 elongated zeolite crystals were built to allow investigating correlations
at small q in the directions x, y and z. Indeed, as explained in Section 5.2, quantified q
values have to be used to compute properties such as the static structure factor or inter-
mediate scattering functions. However, the smallest q that can be considered depends
on the crystal size as qmin = 2π/L. Therefore, to reach small q values and thus large
distances, we increased as much as possible the size of the system in a given direction
(x, y or z). In practice, as shown in Figure 5.8 an elongated zeolite crystal consists of
a structure where the unit cell was duplicated 10 times along the chosen direction and
2 times along the other directions. Three large zeolite crystals were built considering
the different crystal orientations x, y and z. Like throughout this thesis, the interaction
potentials used to model zeolite/zeolite, zeolite/methane and methane/methane inter-
actions are the same as those described in Chapter 3. The next step consisted of filling
the large zeolite crystals with methane by duplicating the configurations obtained for
smallest zeolite crystals. To investigate the dynamics in these systems, we ran three
molecular dynamics simulations: “Large” (L) trajectories of 80 ns with configurations
saved every 1000 fs; “Middle” (M) trajectories of 40 ns with configurations saved every
100 fs and “Small” (S) trajectories of 2 ns with configurations saved every 5 fs. Figure
5.8(c) shows the adsorption isotherm at 300 K as described in Section 3.3 for the small
zeolite crystal. The different colors correspond to the different loadings considered in
this study: 20 molec./uc (red), 16 molec./uc (green), 12 molec./uc (blue), 6 molec./uc
(purple). All simulations were performed at 300 K.

Like for the bulk fluid, direct calculation methods were used to compute the static
structure factors S(q) for methane for different loadings and crystal orientations. We
recall the main equation used to compute S(q):

S(q) =

〈
1

N

∑
i

∑
j

e−iq(ri−rj)

〉
(5.29)
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Figure 5.8: (a) Schematic representation of a small zeolite crystal filled with methane
using GCMC method. (b) Large zeolite crystal oriented in the y direction filled with
methane. (c) Adsorption isotherm at 300 K as described in Section 3.3. Colors cor-
respond to different loadings: 20 molec./uc (red), 16 molec./uc (green), 12 molec./uc
(blue), 6 molec./uc (purple).

with N the number of molecules, ri and rj the positions of molecules i and j, respec-
tively. The rest of this chapter will mainly present results obtained for the large zeolite
crystal oriented along the x axis. Some results for the large zeolite crystal oriented along
the y axis will also be discussed.

Bragg peaks. Figure 5.9(a) shows the static structure factor S(q) for methane confined
in large zeolite crystal along x for different loadings. The static structure factor shows
very narrow and intense peaks at some specific q values. These values, which depend
on the loading and crystal orientation as shown in Figure 5.9(a) and (b), correspond
to multiples of the lattice parameter. The black dashed lines indicate the three first
peaks which are centered exactly at qx = n × 2π/a with n ∈ [2,4,6]. n has to be even
because the system is periodic on a distance of twice the lattice parameter (see Figure
3.1). While the data for the bulk fluid does not show such Bragg peaks (bottom of Fig-
ure 5.9(a)), the zeolite crystal imposes its periodicity for nanoconfined methane (a sort
of fingerprint from the host matrix). As an example, along the x direction, the Bragg
peaks arise from methane molecules within the straight channels which are centered with
a periodicity of 2 × a (with a the lattice parameter along the x crystallographic axis).
It is also interesting to notice the effect of loading. Figure 5.9(a) shows a variation of
the peak intensity depending on the loading (see also experimental results Figure 5.17).
More interesting, some peaks decrease upon increasing the loading.

Correlation peaks. Omitting such Bragg peaks, the first peak in the static structure
factor (indicated by a red dashed line in Figure 5.9(a) for the bulk phase and the loaded
zeolite at 20 molec./uc) provides information on the fluid structure. The position of
this peak, i.e. qpeak, corresponds to the reciprocal of the typical distance between near-
est methane molecules. Interestingly, this distance is the same for bulk and confined
methane. This can be rationalized by comparing the zeolite straight channel size and
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the distance corresponding to qpeak = 1.72 Å−1. Indeed, the first methane neighbour
is at a distance of l = 2π/qpeak = 3.65 Å which is 3 times smaller than the straight
channel opening. Therefore, the zeolite structure does not have severe impact on the
peak position. Figure 5.9(a) also shows that the peak in the S(q) data is shifted to a
lower q value as the loading decreases. Indeed, as the methane amount decreases, the
equilibrium distance for the first neighbor is larger (i.e. smaller q). Figure 5.9(b) shows
the effect of the orientation as qxpeak > qypeak. In contrast to the data for the x axis,
the zeolite matrix has a strong effect on the first neighbor distance in the y direction.
Indeed, the zigzag channel opening is smaller than that of the straight channels so that
the zigzag channel morphology imposes a larger equilibrium distance between neighbour
molecules. Finally, Figure 5.9(c) shows the static structure factor for flexible (red) and
rigid (back dashed line) zeolites filled with a loading 20 molec./uc. These data show
that there is not noticeable effect of the matrix flexibility on the static structure factor.
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Figure 5.9: (a) The top panel shows the static structure factor S(q) for methane confined
in the elongated zeolite crystal in the x direction for different loadings (the color legend
is the same as in Figure 5.8(c)). The bottom panel shows the static structure factor
S(q) for the bulk system described in section 5.2. Black dashed lines refer to the four
first Bragg peaks while the red dashed line corresponds to the S(q) peak at 20 molec/uc.
(b) Comparison of S(q) for the elongated zeolite crystals in the x (red line) and y (black
dashed line) directions taken at the same loading 20 molec./uc. (c) Static structure
factor for flexible (red) and rigid (back dashed line) zeolites.

5.3.2 Wave vector dependent diffusion

As mentioned in Section 5.1.2, De Gennes narrowing allows relating the wave vector
dependent collective diffusivity to the static structure factor. This section considers the
transport and collective diffusion coefficients as a function of the wave vector q. As
explained in Section 1.3, D0 is the sum of the self diffusion coefficient Ds and a term
which corresponds to collective interactions (see Eq. (1.42)). Thus, the first part of this
section will present the results for Ds(q) i.e. the wave vector dependent self diffusion
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coefficient. In practice, for both Ds(q) and D0(q), we can write:

Ds(q) −→
q→0

Ds (5.30)

D0(q) −→
q→0

D0 (5.31)

where Ds and D0 are the homogeneous diffusion coefficients studied in Chapter 4 and
Section 5.1 respectively.
Self diffusion coefficient Ds(q).
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Figure 5.10: (a) Mean square displacement for an elongated crystal along the x axis
loaded at 20 molec./uc. The insert shows the VACF for the same loaded zeolite. Be-
tween the ballistic regime (∆x2 ∼ t2) and the Fickian regime (∆x2 ∼ t), a plateau can
be observed in the MSD at a characteristic time of τa = 1000fs. It also corresponds
to the time of the second minimum in the VACF. (b) Incoherent intermediate scatter-
ing function Finc(q, t) for the elongated crystal along the x axis with a loading of 20
molec./uc. Different colors correspond to different q values. From the right to the left
(in Å−1) : 0.09, 0.2, 0.4, 0.7, 1.0, 1.7, 2.6, 3.9.

As explained in Chapter 4, several methods can be used to compute the self diffusion
coefficient.
The mean square displacement along a given direction is computed as:

⟨∆α(τ)2⟩ = 1/N × 1/[tmax − τ ]×
N∑
i=1

tmax∑
t′=τ

|αi(t
′)− αi(t

′ − τ)|2 (5.32)

where α = x, y or z.
The velocity autocorrelation function along a given direction is computed using:

V ACF =< vα(0) · vα(t) >= 1/N × 1/[tmax − τ ]×
N∑
i=1

tmax∑
t′=τ

vi
α(t

′) · vi
α(t

′ − τ) (5.33)

The incoherent scattering function along a given direction is computed using:

Fα
inc(qα, t) = 1/N

∑
i

exp [−iqα · (αi(t)− αi(0))] (5.34)
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These functions were computed for the elongated crystal along the x and y axes for dif-
ferent loadings. Figure 5.10 shows the self diffusivity of methane loaded at 20 molec./uc
inside the large crystal oriented along x. Using the three functions presented above (i.e.
MSD, VACF, Finc), we can assess the self diffusivity on different time and length scales.
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Figure 5.11: (a) Inverse relaxation time 1/τs(q) as a function of the squared scattering
vector q2 for the elongated crystal along x. The open symbols correspond to data ob-
tained from the fits of simulated intermediate incoherent scattering functions Finc(q, t).
Different colors correspond to different loadings with the same color code as in Fig-
ure 5.8(c). The lines indicate the expected behavior at small q (large distances) where
the dynamics is Fickian: 1/τs(q) = Ds(0)q

2 with Ds(q → 0) estimated from the MSD
obtained in molecular dynamics. The insert shows the 1D intermediate incoherent scat-
tering function F x

inc(q, t) for four loadings and two q (from right to left: q ∼ 0.031 Å−1

and q ∼ 0.16 Å−1). (b) Characteristic time of the second minimum in the VACF τa
as a function of methane loading. (c) Characteristic time of the model (see text) as a
function of τa presented in (b) for x data (open circles) and y data (open squares). The
dashed line corresponds to τa = tmodel.

The results presented in this paragraph are similar to those in Chapter 4 which deals
with the self diffusivity in the long time limit. However, as this stage, it seems important
to us to show the good agreement between the Ds values obtained from the MSD and
the Finc functions. As explained in Chapter 4, the homogeneous self diffusion coefficient
can be computed using MSD in the Fickian regime (see Eq. (4.6)). It corresponds to
large times in Figure 5.10(a) (t > 106 fs). Ds can also be extracted from incoherent
scattering functions at large distances (i.e. small q values). These functions have an ex-
ponential form, as shown by the red curves in the right side of Figure 5.10(b) and in the
insert of Figure 5.11(a). Therefore, they can be fitted using Finc(q, t) ∼ exp[−Dsq

2t].
Figure 5.11(a) shows the inverse relaxation time 1/τs(q) = Ds(q)q

2 as a function of the
squared vector q2 for the elongated crystal along x for different loadings. For small q,
1/τs(q) (open symbols) is proportional to q2 so that Ds(q) is q independent and reaches
the value inferred from the MSD (dashed lines). At larger q, Ds(q) diverges from the
macroscopic value Ds (q > 0.05 Å−1 for 16 molec./uc) as the typical displacements are
too small to reach the Fickian regime. In all cases, we verified that the self diffusivi-
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ties Ds inferred from the MSD for the elongated zeolite crystals are the same as those
obtained for the small zeolite crystal presented in Chapter 4. Figure 5.12(b) shows sim-
ilar MSD for large zeolite crystals (full lines) and the small zeolite crystal (dashed lines).

Large wave vectors. At intermediate q values, a “bump”’ can be observed in the inco-
herent scattering functions (see Figure 5.10(b) for the brown to the green Finc functions).
The characteristic time at which this feature is observed is approximately τa = 1000 fs.
Such a typical time corresponds to both the end of the plateau in the MSD and the
position of the second minimum in the VACF [see red dashed line in Figure 5.10(a)].
This characteristic time correspond to the time during which methane molecules remain
trapped in adsorption sites. These molecules collide with a sign change in their velocity
(corresponding to an extremum in the VACF) before leaving the site. Thus, this char-
acteristic time τa can be seen as the residence time of the molecule in the adsorption
sites. Figure 5.11(c) shows τa as measured from the position of the second minimum in
the VACF as a function of methane loading. Upon increasing the loading, τa slightly
decreases until 15 molec./uc. Indeed, increasing the amount of methane molecules leads
to a larger number of collisions which, in turn, increases the probability to leave an
adsorption site. To verify this interpretation, the characteristic time τa was modeled
using a simple activation energy barrier in Figure 5.11(b). We write that τa depend on
the energy barrier ∆F (the higher the free energy barrier, the longer the residence time
in the adsorption site):

τa(na) = τc(na) exp[∆F (na)/kBT ] (5.35)

with τc the crossing time, i.e. the time between two attempts to escape from the site,
and na the loading. In this work, this time was estimated as the time difference between
the second maximum t2 and the first minimum t1 in the VACF: τc = t2 − t1. ∆F is
the energy barrier fitted from the data shown in Figure 5.11(b). An exponential form
was used to fit the data: ∆F = a + b × exp(−na/x0). The fitting parameters are a
= 2.28 kJ.mol−1, b=1.77 kJ.mol−1, and x0 = 5.1 molec./uc. Figure 5.11(d) shows the
predicted value for τa plotted as a function of τa obtained from the VACF. Open circles
and squares correspond to data for the elongated zeolite crystals along the x and y axes,
respectively. The agreement between the model and the measured characteristic time is
very good, therefore suggesting that our interpretation is relevant.

5.3.3 Collective diffusivity

As described in the beginning of this chapter, the macroscopic collective diffusion coeffi-
cient D0 was computed using two methods: the integration of the collective VACF and
the non equilibrium molecular dynamics approach. Moreover, we also used the coherent
scattering functions as described when discussing the transport properties of a bulk fluid.
Figure 5.13 shows the results obtained by the three methods to compute D0. Figure
5.13(a) shows a comparison between the integration of the VACF and D0 obtain by the
gradient method for a loading of 6 molec./uc. While the integration becomes very noisy
at long times t, the inferred value is qualitatively consistent with D0(t) around 20 ps.
Figure 5.13(b) shows the coherent scattering functions at a small wave vector q = 0.0313
Å−1 normalized by S(q) for each loading considered. The relaxation time τ0(q) is de-
fined from the coherent scattering functions. At small q, we can assume that the Fickian
regime is reached as the coherent scattering functions have a clear exponential form:

Fcoh(q, t) = S(q) exp[−DT (q)q
2t] (5.36)
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Figure 5.12: (a) Inverse relaxation time 1/τs(q) as a function of the squared wave vector
q2 for the elongated crystal along y. The legend is the same as for Figure 5.11(a). (b)
Comparison of the MSD along x at different loadings (see color code in Figure 5.8(c)) for
the elongated crystal along x (full lines) and the small crystal as described in Chapter
3 (dashed black lines).

where 1/τ0(q) = DT (q)q
2. As will be seen in the next paragraph, the assumption of

an exponential form does not hold anymore when larger q values are considered. In
the rest of the manuscript, the coherent scattering functions Fcoh will be plotted after
normalization by S(q). Figure 5.13(c) shows the inverse relaxation time 1/τ0(q) as a
function of q2 for the elongated crystal along x and for different loadings. In Figure
5.13(c), the open circles correspond to data from the fitted Fcoh functions while the
dashed lines are plotted using the non equilibrium method 1/τ0(q) = DNEMD

T q2. The
simple quantitative difference betweenD0 andDT will be clarified in the next paragraph.

Transport versus collective diffusion. We recall the connection between DT and
D0 as given in Section 1.3 :

DT = D0
∂ ln f

∂ ln ρ

∣∣∣
T

(5.37)

where Γ = ∂ ln f/∂ ln ρ is known as the thermodynamic factor. Γ can be linked to the
structure factor S(q) in the limit q → 0 using the isothermal compressibility χT . Let
us start from definitions provided in standard textbooks [73]. The isothermal compress-
ibility is linked to the fluctuation of the number of molecules N through the following
equation:

ρkBTχT =
< N2 > − < N >2

< N >
(5.38)

with ρ the density of molecules in the system. In the small q limit, the structure factor
can be written as:

lim
q→0

S(q) = ρkBTχT (5.39)

Together, Eqs. (5.38) and (5.39) lead to:

lim
q→0

S(q) =
⟨N2⟩ − ⟨N⟩2

⟨N⟩
(5.40)
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Figure 5.13: [The color code remains the same as the one defined Figure 5.8(c)] (a) The
black line corresponds toD0(t) which is computed by integrating the collective VACF for
6 molec./uc. The dashed purple line refers to D0 obtained by non equilibrium molecular
dynamics. (b) The coherent scattering functions at q = 0.0313 Å−1 normalized by S(q)
for each loading. (c) Inverse relaxation time 1/τ0(q) as a function of q2 for the elongated
crystal along x and for different loadings.

S(0) is therefore a measure of the fluctuation in the number of molecules in the system
[170]. Eqs. (5.39) and (5.40) allow us to go further into the interpretation of the follow-
ing result S6(0) > S12(0) > S16(0) > S20(0) shown in Figure 5.9. At small loadings, the
methane molecules are more compressible than at high loadings where S(0) tends to 0.
Furthermore, methane in confined zeolite is less compressible than in the bulk zeolite
as SBulk(0) > Szeo(0) [129]. This result is in good agreement with the compressibilities
compared in Section 3.3.1 of Chapter 3.

To link the isothermal compressibility to the thermodynamic structure factor, we start
from the definition of the thermodynamic structure factor : Γ = ∂ln(P )/∂ln(ρ) with P
the pressure and ρ the density.
Considering a constant number of molecules ∂N = 0, we use ∂ln(ρ) = ∂ρ/ρ to get
∂ln(ρ) = N/ρ× ∂V/V 2. Then, the thermodynamic structure factor can be written :

Γ = −∂P

∂V
× V

P
(5.41)

By definition, the isothermal compressibility χT is given by :

χT = − 1

V
× ∂V

∂P

∣∣∣
T,N

(5.42)

Combining Eq. (5.41) and Eq. (5.42) leads to :

Γ =
1

χT
× 1

P
(5.43)

Replacing χT in Eq. (5.43) by Eq. (5.39) and using the ideal gas law leads to:

Γ =
1

S(0)
(5.44)
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Figure 5.14: (a) Transport diffusivity DT obtained by fitting the coherent scattering
functions at low q values (see text) as a function of D0/S(0). The color code is the
same as in Figure 5.8(c). The open circles correspond to the data for the elongated
crystal in the x direction while the squares refer to the data for the elongated crystal
along y. The data for the flexible matrix (open) or rigid (closed) matrices are shown.
The D0 data were obtained from the non equilibrium method while S(0) correspond to
the extrapolation of S(q) shown in Figure 5.9(a). (b) Static structure factor at q → 0
S(0) as a function of the thermodynamic factor Γ = ∂P/∂ρ. The insert shows Γ which
corresponds to the slope of the adsorption isotherm at given loadings (as an example,
the dashed blue line is the derivative of the isotherm at 12 molec./uc).

Figure 5.14(a) shows the transport diffusivity DT – as assessed by fitting the coherent
scattering functions at small q values – as a function of D0/S(0). DT , D0 and S(0)
were measured for different loadings and crystal directions. S(0) was extrapolated from
a linear fit of the smallest q values in the S(q). Comparison between Eqs. (5.44) and
(5.37) leads to:

DT =
D0

S(0)
(5.45)

As can be seen in Figure 5.14(a), there is a good agreement between DT and D0/S(0) as
expected from Eq. (5.45). However, we can notice that data are always below the black
dashed line indicating DT = D0/S(0). This is due to the fact that DT is measured from
the slope of the linear curve given by the slowest q values (1/τ0 = DT q

2). Unfortunately,
this slope depends on the number of q values available; It is therefore probable that we
do not have enough small q values to ensure that the Fickian regime is fully reached.
Further investigation is needed to clarify this issue. Figure 5.14(b) shows the static
structure factor at q → 0 extrapolated from a linear fit mentioned above as a function
of the thermodynamic factor Γ = ∂P/∂ρ. In practice, Γ was measured directly from the
adsorption isotherm computed in Chapter 3 (see insert Figure 5.14(b)). The agreement
is very good between the two measurement methods, which confirms that Eq. (5.44) is
verified in our computational study.

Microscopic/molecular scale. As coherent scattering functions do not have an ex-
ponential form on the whole q range, several methods were considered to assess the
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relaxation time τ0 associated to diffusion.

Simple exponential form. We fitted Fcoh at small q using a simple exponential
function:

f(q, t) = exp[−t/τ0(q, t)] (5.46)

Stretched exponential form. We fitted Fcoh using a stretched exponential:

f(q, t) = exp[−(t/τ∗(q))β] (5.47)

with β the stretching factor (β > 1). With a stretched exponential, the characteristic
relaxation time is given by τ0(q) = τ∗(q, t)β−1Γ∗(β−1) with Γ∗ the gamma function.

Characteristic time at 1/e decay. We also measured τ0(q) by determining the time
at which the coherent scattering functions reaches the value of Fcoh = 1/e = 0.368. The
main advantage of this method is that it does not depend on the time range used to fit
functions using the two other methods.

As shown in Figure 5.15(a), Fcoh always display the “bump” around 1000 fs (see dis-
cussion above on incoherent scattering). Indeed, as the coherent scattering functions
characterize the correlations between molecules, it also includes a self term which takes
into account correlations between the same molecule at different times. Thus, the res-
idence time, which was discussed in the previous section, is also found in the coherent
functions. In practice, as we focus only on the diffusive behavior of confined methane,
we fitted Fcoh with a stretched exponential on the time range before τB, i.e. the char-
acteristic time corresponding to molecule residence in adsorption sites. Figure 5.15(a)
shows the comparison between the three methods. At low q values, the agreement is
good between the simple exponential and the 1/e method. We notice that, as we in-
crease q, the exponential form is no longer valid as the Fickian regime does not apply
in this range. At larger q values, the stretched exponential and the 1/e method lead to
a very similar behavior with very close 1/τ0(q) values. Because the 1/e method is not
time range dependent, we will use this method to probe the applicability of De Gennes
narrowing in the rest of this chapter.

Bragg peaks. The data presented in Figure 5.15(a) were corrected at q values corre-
sponding to Bragg peaks. Indeed, as shown in the insert of Figure 5.15(b), the coherent
functions obtained at q corresponding to Bragg peaks do not converge to zero at very
large times; in fact, they decrease to a non zero value as the structural order imposed by
the matrix make the confined molecules relax towards a well-defined structure. Yet, Fcoh

at q corresponding to the Bragg peaks display a relaxation time so that we shifted and
renormalized these Fcoh so that they converge to zero in the long time limit. The result
of this correction is shown as the black curve in Figure 5.15(b). Figure 5.15(b) shows
also Fcoh around the first Bragg peak. We can notice that the closest curves from the
peak have an oscillatory behavior. From this figure, we can rank the relaxation times as:
τ0(qpeak) < τ0(qpeak+2) < τ0(qpeak−2) < τ0(qpeak+/−1). It means that, regardless of the
method used to determine the characteristic time τ , the relaxation time at the Bragg
peak is lower than those in the neighboring q values. Moreover, the relaxation time for
the two closest Fcoh from the Bragg peak are the largest. At the time this manuscript
is being finalized, we are still in the process of fully understanding these data. However,
as will be shown in the next paragraph, we are already in a position to discuss – at
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least to some extent – the ability of De Gennes narrowing to describe the wave vector
dependent collective diffusivity.
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Figure 5.15: (a) Inverse relaxation time 1/τ as a function of q. Open green circles
correspond to 1/τB with τB the characteristic time of the bump observed in Fcoh. This
residence time does not depend on q and remains around 103 fs. Other colors refer to
the three methods employed to determine the characteristic time for collective diffusion
from Fcoh: a simple exponential (red circles), a stretched exponential (blue circles)
and the time at which Fcoh = 1/e (black circles). These data are corrected when q
corresponding to the Bragg peaks are considered (see main text). The insert shows
Fcoh for different q values. From right to left (in Å−1 : 0.031, 0.094, 0.156, 0.313,
0.469, 1.72, 2.03, 2.658, 3.909). (b) Coherent scattering functions Fcoh around the first
Bragg peak (qpeak−2=0.563 Å−1 [peak-2] dark red, qpeak−1=0.594 Å−1 [peak-1] orange,
qpeak+1=0.657 Å−1 [peak+1] light green, qpeak+2=0.688 Å−1 [peak+2] dark green) and
at the Bragg peak after correction (q=0.626 Å−1 black curve). The black dashed line
indicates the zero while the red one indicates the value of 1/e. In insert, Fcoh at the
Bragg peak without the correction.

5.3.4 De Gennes narrowing in a nanoconfined fluid

Figure 5.16(a) shows the inverse static structure factor 1/S(q) after corrections for Bragg
peaks as well as the transport diffusion coefficient DT (q) and self diffusion coefficient
Ds(q). These data are shown as a function of the wave vector q for q < 4 Å−1. The trans-
port and self diffusion coefficients were obtained using the relaxation time measured by
the 1/emethod [see Figure 5.15(a)] asDT (q) = 1/(τ0(q)×q2) andDs(q) = 1/(τs(q)×q2).
The static structure factor was corrected from the Bragg peaks. First, we removed the
S(q) values at the Bragg peaks. Then, we used a Bessel Spline function as an interpo-
lation method to smooth the data. The result is shown in the insert of Figure 5.16(b):
the red curve corresponds to the corrected structure factor and the black line with open
squares corresponds to the raw data. From Figure 5.16(a), we see that the transport
diffusion coefficient follows the variation in 1/S(q) as expected from De Gennes narrow-
ing. The vertical black dashed lines indicate oscillations with a change in DT (q) and
1/S(q). In contrast, as expected, Ds(q) does not correlate with the structure factor
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S(q). At small q, both DT (q) and Ds(q) are constant as expected in the macroscopic
Fickian regime. Figure 5.16(b) shows the product of the structure factor and the trans-
port diffusion coefficient DT (q)×S(q) for the bulk supercritical fluid (black circles) and
the zeolite (red circles which come from data in (a)). It is interesting to notice that
around qpeak (i.e. the value at which the fluid correlation peak is observed in S(q)),
the q range where DT (q) × S(q) is constant is much larger for the zeolite system than
for the bulk fluid (0.7 Å−1 < q < 2.15 Å−1 for the zeolite against 0.8 Å−1 < q < 1.9
Å−1 for the bulk phase). In contrast, while the concept of De Gennes narrowing seems
to apply to extremely confined nanofluids – such as methane in zeolite nanoporosity –
the behavior for q values near the Bragg peaks requires more work to be fully understood.
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Figure 5.16: (a) Inverse static structure factor 1/S(q) (orange open circles) after cor-
rections for Bragg peaks, transport diffusion coefficient DT (q) (red symbols) and self
diffusion coefficient Ds(q) (yellow symbols) as a function of the wave vector q. The
vertical black dashed lines indicate changes in the structure factor that correspond at
the same time to changes in DT (q). (b) Product of the static structure factor S(q) and
transport diffusion coefficient DT (q). Red symbols are obtained using the data in (a)
while black symbols correspond to the DT (q)× S(q) rescaled for the bulk supercritical
fluid obtained in Section 5.2. The insert shows the static structure factor before (open
squares and black line) and after (red line) corrections as discussed in the main text.

5.4 Experimental investigation : QENS experiment and
preliminary analysis.

The experimental investigation of De Gennes narrowing was performed by quasi-elastic
neutron scattering, which indeed provides a method of choice in probing the collective
diffusive dynamics at the microscopic scale. This QENS experiment was performed -
similarly to the one presented in the previous chapter to characterize the individual
diffusion - by using CD4 as a substitution of the CH4. Indeed, as explained in Section
2.2.2, deuterium possesses a large coherent cross section compared to its incoherent one
at the difference of CH4. We recall that σcoh(

2H) = 5.6 barns while σinc(
2H) = 2.04 barns.
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This implies that using deuterated methane, we are able to track the collective diffusion
behavior of the gas. The experiments were performed at the Institut Laue-Langevin
(ILL) in Grenoble, France, using the Time of Flight (TOF) IN6/Sharp spectrometer in
similar conditions to the CH4 one. The instrument was, in between our two experiments,
upgraded to achieve higher neutron flux. The incident wavelength was taken at 5.1 Å,
the energy resolution was 40 µeV at the half width at half maximum (HWHM) and
measured using a vanadium reference sample. The data were recorded up to q values
of ∼ 2.1 Å−1. They were reduced using the MANTID program and the software Lamp
was used for data fitting. The range of scattering vector q useful in our analysis, for
reasons explained below, was reduced to 0.14 Å−1 < q < 1 Å−1.
The powder sample used for these experiments has a grain size of Dg = 1µm (the
description of the sample can be found section 3.2.1). The measurements were performed
at two temperatures : 210 K and 250 K. For each temperature, different loadings were
considered by imposing different pressures. The loading na was estimated from the
monitored pressure P , based on the computed adsorption isotherms (see Figure 3.7).

5.4.1 Structure factor : effect of the methane adsorption.
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Figure 5.17: Experimental structure factor S(q) as function of q. On the left side,
comparison of the S(q) at 210 K for different loadings : dry (blue), 8.6 molec./uc
(orange), 11 molec./uc (green), 16 molec./uc (red) and 17 molec./uc (purple). The
insert is a zoom on the second and third Bragg peaks. The two curves corresponding
to loadings 16 molec./uc and 17 molec./uc are almost indistinguishable. Right side, a
comparison between the dry sample (blue) and the sample loaded at 11 molec./uc at 210
K (green) and 250 K (orange). The curves at 250 K and 210 K are very well overlapped.

Figure 5.17 shows the experimental static structure factor S(q) as function of q, obtained
by integrating the spectra over the energy range. The intense peaks, already present in
the dry sample, are the Bragg peaks of the zeolite matrix. For example, the two peaks
centered at q1 = 0.55 Å−1 and q2 = 0.62 Å−1 correspond to distances between 12 and
10 Å respectively, which are the characteristic distances between two straight or zigzag
channels. The left side of Figure 5.17 shows a comparison of the S(q) at 210 K for
different loadings. We observe a clear variation of the peaks intensity with the loading.
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We note that this variation can be a decrease or an increase of intensity when the loading
increases: for example, the two peaks centered in q1 and q2 exhibit a decrease of intensity
with I(dry) > I(8.6 molec./uc) > I(11 molec./uc) > I(16 molec./uc) > I(17 molec./uc);
on the contrary, the peaks centered around q = 1.6 Å−1 increase their intensity with
methane adsorption and I(dry) < I(8.6 molec./uc) < I(11 molec./uc) < I(16 molec./uc)
< I(17 molec./uc). Similar effects have been reported on different matrices by X-ray or
neutron scattering experiments [171, 172]. In particular, in their paper [171] on methane
adsorption in MFI zeolites, Llewellyn et al. shows a decrease of the Bragg peak centered
at q = 0.6 Å−1 that they associated to pore filling process. Indeed, this effect is related
to additional scattering length involved in the Bragg peaks intensities when CD4 is
adsorbed. At small values of q (0-5-0.6Å−1), the contrast between the zeolite matrix and
void/CD4 is at play, decreasing with methane adsorption thus reducing the intensities.
Indeed, zeolite atoms have coherent cross sections of σcoh(Si) = 2.2 barns and σcoh(O) =
4.2 barns which lead to a contrast between empty voids and the matrix at the origin of
a coherent signal (dry sample in blue). When the loading increases and CD4 molecules
enter inside the porosity, the contrast decreases and we can observe a reduction of the
peaks. We notice that as CH4 has a very low coherent cross section, this loading effect is
not visible. At higher values of q, Bragg peaks related to smaller distances are affected
because of variation of the unit cell content, inducing here in the observed peaks an
increase of the intensities. This effect could be, in the future, quantitatively exploited
to precisely deduce the loading and methane organization within the zeolite. The right
side of Figure 5.17 shows the S(q) at [P,T = 300 mb, 210 K] and [P,T = 2 b, 250 K].
According to the adsorption isotherms, these two experimental conditions provide the
same loading in the matrix. We indeed observe that the curves are overlaid, meaning
that the loading is quite similar in both conditions. Moreover, it has already been shown
that the structure factor is not modified with the temperature (this result was observed
for a temperature up to 80 K) for the same loading [171].

5.4.2 QENS analysis

For each loading and temperature, the raw data were reduced according to standard
procedures and normalized to the vanadium reference sample. Figure 5.18(a - top left)
shows S(q, ω) measured by QENS experiments at a fixed temperature (T = 210 K) and
fixed loading (na = 16 molec./uc) but for different scattering vectors. We can observe an
increase of the Lorentzian width with the increase of q on the first q values. This signal
broadening with q indicates a diffusive process. The signal become apparently flat after
the fourth first q values indicating a dynamic too fast for the energy window available.
The fitting model considers three components: first, the dry sample is used as a back-
ground with a scaling factor. We check that the scaling factor was close to the sample
transmission, although the presence of Bragg peaks alters this assumption. Second, an
additional elastic contribution was added, accounting for potential mismatch in the dry
matrix intensity, and/or localised dynamics giving rise to an elastic contribution. Third,
a Lorentzian function accounts for diffusional dynamics. Note that in a first approxima-
tion in which both translational and rotational dynamics give rise to Lorentzian signal,
which are moreover convoluted since they apply on the same molecules, the resulting
function is a Lorentzian of width equal to the sum of the rotational and translational
components.
Once the matrix intensity is removed, the given dynamic structure factor can therefore
be written :

S(q, ω) = fDW (q)× [LT (q, ω) + δ(q)] (5.48)

fDW (q) refers to the Debye-Waller factor (see analysis of the CH4 experiment in Section
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4.2.1) where the mean square displacement ⟨u2⟩ was taken constant at 1.5 Å2 in every fit
(i.e. regardless of T , na and q). The function defined in Eq. (5.48) was also convoluted
with the instrumental resolution and summed with the background (scaled dry sample)
as previously stated.
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Figure 5.18: (a - top) Dynamic structure factor S(q, ω) measured by QENS experiments
at a fixed temperature (T = 210 K) and fixed loading (na = 16 molec./uc) but for
different scattering vectors. The signal broadens with q on the firsts q values but remain
constant quickly. (a - bottom) Typical fit of the dynamic structure factor S(q, ω) (grey
open circles) under the same conditions than the upper figure but for one scattering
vector q = 0.45 Å−1. The data are fitted with a three components model as described
in the text. The green line corresponds to the dry sample, the blue line is made up of
a delta function which corresponds to the elastic peak while the red curve corresponds
to a Lorentzian function which describes diffusional motions. The black curve is the
total fitting function. (b) Half width at half maximum (HWHM) as a function of q2 for
two temperatures : 210 K (above) and 250 K (below). Colors correspond to different
loading. For 210 K : 17 molec./uc (red), 16 molec./uc (orange), 11 molec./uc (green)
and 8.6 molec./uc (blue). For 250 K : 11 molec./uc (orange), 7.6 molec./uc (yellow) and
5.7 molec./uc (dark green). Black dashed lines correspond to the fit of the firsts q value
with a function of a form f(x) = ax+ b.

Figure 5.18(a - bottom) shows a typical fit of the dynamic structure factor S(q, ω) (grey
open circles, T = 210 K and na = 16 molec./uc, q = 0.45 Å−1). In the figure, the green
line corresponds to the dry sample used for the background, the blue line is made up
of a delta function which corresponds to the additional elastic peak while the red curve
corresponds to a Lorentzian function which describes diffusional motions. The black
curve is the total fitting function. Figure 5.18(b) shows the half width at half maximum
(HWHM) as a function of q2 for different loadings (the color code is indicated in the
figure caption) at two temperatures : 210 K (top panel) and 250 K (bottom panel).
We notice first that the highest q value in this analysis is 1 Å−1. Beyond this value,
the quasi-elastic component is too large and not distinguishable anymore from the back-
ground.
Considering Eq. (1.54), for transport diffusivity in the Fickian regime, the HWHM is
expected to be proportional to q2 as HWHM= DT q

2. We emphasize that the trans-
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port diffusion coefficient DT is involved - and not the collective one D0 - even if we
will further show that both are related. In the Figure 5.18(b), we can see that for the
firsts values of q (ie below q = 0.45 Å−1 ), the HWHMs can be fitted by a straight line
crossing or not zero. In order to measure this transport diffusion coefficient, we chose
to fit the HWHM in the linear regime by an equation of the form f(x)=a× q2 + b. The
linear fits are shown by the dotted lines in Figure 5.17(b). By using this equation, we
assume that the observed HWHM is the sum of two contributions: one is q-independent
and could be associated to the rotational diffusion (as assumed in Chapter 4) and the
other is linear with q2 and corresponds to the translational diffusion ( a = DT ). The
slope of this curve, a, increases when the loading increases - except at 210 K for na=16
molec./uc and na=17 molec./uc. It implies that the transport coefficient is increasing
with the loading.
We observe that for the lowest loadings at 210 K and at the temperature of T = 250 K,
the HWHM vs q2 crosses 0 (b ∼ 0). This trend occurs for the fastest dynamics, when
the rotation is faster and the associated signal broader (see results and discussions of
Figure 4.4(c)). The associated Lorentzian is then too large to be distinguishable from
the background, in agreement with the hypothesis of a rotational compound.
We also specify that the HWHM corresponding to the first q value (q ∼ 0.14 Å−1) has
not been used when the value was too far from the linear fit, as can be seen in the Figure
5.17(b). The lowest q range is indeed more sensitive to various artefacts (direct beam
pollution, small energy range...) and less reliable.

5.4.3 Transport diffusivity in silicalite-1 : experimental results

Figure 5.19 shows the experimental transport diffusion coefficient (open circles) mea-
sured as previously described as a function of the loading for 210 K (purple) and 250
K (green). We want to notice that for the y axis, error bars are probably underesti-
mated as they correspond to the uncertainty in the linear fit used to extract Ds which
strongly depend on the number of q values considered. In Figure 5.19, we first observe
for both temperatures an increases of DT when the loading increases, as expected from
previous work [91, 79]. The only discrepancy is at 210 K for data at 17 molec./uc and
16 molec./uc, that may however be assigned to the error bars on the loading, as already
observed in the static structure factors (see Figure 5.18), almost overlapped for 16 and
17 molec./uc.
Second, the transport diffusion coefficients increase when the temperature increases, as
expected because of the thermal agitation.
The transport diffusion coefficients DT computed at 300 K are shown in the same fig-
ure for comparison (black filled circles). Transport diffusion coefficients were computed
using DT = D0/S(0) (see Eq. (5.45)) with D0 computed using the gradient method
(the data are presented in Section 5.1.1 and figure 5.3) while S(0) was obtained by ex-
trapolating the simulated S(q) at low q values (data are presented in Figure 5.14(b)).
The experimental results are in qualitative agreement with the numerical ones, being
of the same order of magnitude and showing the same trends as a function of the load-
ing. Both simulated and experimental data are also coherent with the temperature as
DT (300K) > DT (250K) > DT (210K). These results are also in good agreement with
the simulated ones founded by Maginn et al. [91].
Figure 5.19 also presents the experimental self diffusion coefficients Ds presented Figure
4.8 in the previous Chapter. Data are consistent with transport diffusion coefficients
at 210 K, less at 250 K. Indeed, at 210 K, we can see DT > Ds at constant loading.
The transport coefficient indeed corresponds to correlation between molecules, it also
includes the self part and should therefore be larger. In addition, at low loading, the
measured DT and Ds seem to converge which is expected according to the relation
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DT = Ds in the limit of infinite dilution [91]. However, at 250 K, DT and Ds cross each
other at low loading. The error bars may be underestimated in this region.
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Figure 5.19: Transport and self diffusion coefficients (DT and Ds respectively) as func-
tion of the loading. Black filled circles correspond to transport diffusion coefficient
computed at 300 K DT = D0/S(0). Open symbols refer to experimental diffusion co-
efficients measured for different temperatures. Circles correspond to transport diffusion
coefficients while self diffusion coefficients correspond to squares. The color code refers
to temperatures : 210 K (purple), 250 K (green).

This section has presented an original QENS experiment for measuring transport diffu-
sivity in zeolite. The results presented at this first stage of analysis are quite encourag-
ing. However, some points of the analysis need be be deepened. First, a procedure to
measure the CD4 amount inside the zeolite from the Bragg peaks variations will bring
an improvement on the accuracy of the loading measurement. Then, as explained, the
fitting model will be improved in taking explicitly into account the rotational diffusion.
Moreover, we believe that with slowest diffusive motions (by lowering the temperature
for example), we could get access to more accurate data on a larger q range. A com-
plementary perspective is to use different neutron spectroscopy instruments to increase
available energy resolution, i.e. getting access to smaller or higher diffusion coefficients.
These are a valuable perspectives in order to experimentally probe De Gennes narrowing
model around q ∼ 1.7 Å−1.

5.5 Partial conclusion

In this chapter, using molecular simulations, we were able to compute the macroscopic
collective diffusion coefficients by means of the non equilibrium method and the coherent
scattering functions obtained at small wave vectors (large correlation distances). These
results were used to check the consistency of the definitions forD0 andD0(q) when q → 0
(the latter is a measure of the collective diffusivity on different length scales). Coherent
and incoherent scattering functions were computed on a large q range ∼ 0.03 Å−1 to ∼ 4
Å−1 to estimate Ds(q) and D0(q). The structure factor was also computed and plotted
against the diffusion coefficients Ds(q) and D0(q) to assess the ability of the concept
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of De Gennes narrowing to rationalize the transport of a severely nanoconfined fluid.
We found a good agreement between our results and De Gennes prediction around the
S(q) peak. Considering that MFI zeolites posses a rather complex pores architecture,
we believe that De Gennes narrowing model can be extended to any zeolite geometries.
However, some questions remain to be addressed as the behavior of the system around
Bragg peaks is not fully understood as this manuscript is being written. In addition,
the first stage of an original neutron experiment for probing collective diffusivity was
presented.
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General Conclusion

Adsorption and transport of fluid in nanoporous media display a complex interplay due
to specific interactions with the porous architecture that imposes surface forces and ge-
ometrical confinement. Despite the abundant literature on the topic, the comprehensive
description of some of these rich phenomena is still missing. Yet, these nanoporous
materials are at the heart of important developments impacting our economy and en-
vironment with diverse applications in our everyday life (gas storage and separation,
energy conversion/storage, etc). Indeed, these nanoporous solids possess a large inter-
nal surface that promotes interactions between the host porous material and the guest
fluid. In this thesis, we chose to work on zeolites, which are prototypical nanoporous
materials. These materials are crystalline, inorganic, silica-based porous compounds.
They are already well-known for their permeability properties to fluids and are used in
numerous applications from oil industry to cat litter. By using such model systems, we
aim to study adsorption/transport coupling with the idea that the results found could be
extended to more complex systems. The MFI zeolite structure was chosen as it displays
different pore types such as channels and small cages and an underlying anisotropic
architecture. Pores and channels for which the opening size varies between 5 and 8 Å
lead to marked confinement effects on the behavior of the confined fluid.

A specific feature of this thesis is to use a dual approach by combining results obtained
using experiments and molecular simulations to study methane behavior inside the zeo-
lite porosity. By using this hybrid approach, we were able to produce a set of data that
allowed us to interpret adsorption, diffusion and transport mechanisms of methane in ze-
olite but also to probe available theoretical models to predict these mechanisms. On the
one hand, among experiments, volumetric adsorption was used to measure adsorption
isotherms while quasi elastic neutron scattering was used to probe molecular motion of
methane over a distance range up to few Å. On the other hand, molecular simulations
were set up to investigate the adsorption and transport of the same fluid – methane – in
the zeolite nanoporosity. In particular, the Grand Canonical Monte Carlo method was
used to compute adsorption isotherms at different temperatures and pressures (up to
pressures not accessible by most experimental set ups). Molecular dynamics simulations
were used to track molecules trajectories that provide a means to assess structural and
dynamical properties. We tried to check as much as possible the validity of our model
and our computation methods by studying the impact of different parameters such as
the matrix flexibility.

A first objective of this thesis was to study methane adsorption in two zeolite systems:
a bulk zeolite and a thin zeolite layer. By comparing the data for these two systems, we
were able to evaluate the contributions of the adsorption contributions from the bulk
zeolite and the external surface, respectively. As a first step, we studied the methane
adsorption in the bulk zeolite. Both experimental and simulation results showed that
adsorption increases with pressure until reaching a plateau corresponding to porosity
saturation. As expected for physisorption phenomena, our results also show that tem-
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perature promotes desorption. In order to cross check our results, the experimental and
simulated results were compared between them and with results from the literature. As
a second step, we showed that adsorption at the external surface follows the same trend
as adsorption in bulk zeolite when varying the pressure and temperature. It was also
shown that, upon increasing the pressure, methane first adsorbs in zeolite porosity and
then - once the core porosity saturation is reached - adsorbs at the external surface.
The effect of the layer orientation was shown to be linked to the amount of adsorption
sites and their distribution on the external surface. Considering a formalism combining
Frenkel-Halsey-Hill approximations and Polanyi’s model, we extended the adsorption
potential theory to supercritical gas conditions. This framework was validated by com-
paring the model predictions and the set of experimental and simulation results in the
bulk zeolite and at the external surfaces of zeolite layers. The good agreement between
the theoretical predictions and our results suggests that this model is a robust ther-
modynamic framework to describe adsorption at different temperatures and pressures.
Moreover, this model predicts at the same time bulk and external surface adsorption
which is a step forward to the understanding of the effect of external surface on adsorp-
tion mechanisms. Considering that the MFI structure has a rather complex architecture
as it possesses different channels along different orientations, we think that this thermo-
dynamic framework could be extended to different zeolite materials.

In a second step, methane self diffusivity was probed in the bulk zeolite. One inter-
esting aspect of the study reported here was to couple quasi elastic neutron scattering
experiments and molecular simulations to unravel the molecular mechanisms at play.
Using neutrons experiments, we were able to decipher both translational and rotational
diffusion. However, using molecular simulation, as methane is treated as a single sphere
(United Atom model), no rotation was considered but only translational motion. Us-
ing molecules positions given by molecular dynamics, the mean square displacement
and incoherent scattering functions were computed in order to assess the self diffusion
coefficient for different loadings and along different crystallographic directions. Using
experimental and simulation data, we showed that the diffusivity decreases when the
loading increases due to steric effects. By probing the diffusivity at different tempera-
tures, we estimated the free energy barrier using an Arrhenius law. This barrier close
to thermal energy at room temperature decreases when the loading increases, therefore
indicating that collisions between molecules promote desorption from adsorption sites.
Anisotropic diffusivities were also found to be strongly dependent of the porosity archi-
tecture as larger diffusion coefficients were computed along larger channels (i.e. straight
channels). A simple free volume theory was invoked to rationalize our simulated dif-
fusion data. The robustness of this approach was checked by comparing simulated 3D
and anisotropic diffusion coefficients against predictions of this model. Considering the
good agreement between the theoretical predictions and the data, we believe that the
free volume theory is a powerful model to predict diffusivity in porous media.

Finally, in a last step, the collective and transport diffusivities were studied in bulk zeo-
lites (these two quantities are directly related to the engineering concept of permeability
as shown in this thesis). First, we computed the self and collective diffusion coefficients
dependent on the length scale considered. In the limit of vanishing wave vector (q → 0),
these self and transport coefficients reach the macroscopic limits Ds and D0. In paral-
lel, to cross check our data, we also determine D0 using the non equilibrium molecular
dynamics in which a chemical potential gradient is applied. The resulting collective
diffusion coefficients were obtained as a function of the loading for each crystallographic
direction. Then, we relied on the concept of De Gennes narrowing to relate the structure
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factor S(q) to the collective diffusion coefficient D0(q). This model considers the col-
lective diffusivity as a response to density fluctuations over a distance of characteristic
length scale 1/q. For both bulk supercritical methane and methane nanoconfined in
zeolite, we showed that De Gennes narrowing provides a reasonable description of the
wave vector dependent collective diffusivity. For the zeolite system, the collective diffu-
sion coefficients also include the signature of the Bragg peaks imposed in the structure
factor by the host zeolite (crystalline) matrix. Indeed, through its periodic architecture,
the zeolite matrix imposes strong structural ordering on the distribution of methane
molecules inside the porosity. The consequences of this crystalline, periodic fingerprint
for the collective diffusion are discussed in this thesis by scrutinizing the coherent scat-
tering functions. In this chapter, some issues remain to be clarified such as the behavior
of coherent scattering functions around Bragg peaks. Finally, in this chapter, we also
reported a preliminary analysis of a complete set of experimental data using deuterated
methane. While this contribution deserves to be further investigated, we think that it
is an important source of information to better understand collective diffusivity and,
hence, permeability in nanoconfined fluids. In particular, it provides direct microscopic
information on fluid permeability and flow at the nanoscale that perfectly complements
available molecular simulation approaches and nanofluidic experiments.
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[54] Ondřej Kadlec. The History and Present State of Dubinin’s Theory of Adsorption
of Vapours and Gases on Microporous Solids. Adsorption Science & Technology,
19(1):1–24, February 2001.

[55] Irving Langmuir. The adsorption of gases on plane surfaces of glass, mica and
platinum. Journal of the American Chemical Society, 40(9):1361–1403, 1918.

[56] Stephen Brunauer, P. H. Emmett, and Edward Teller. Adsorption of gases in
multimolecular layers. Journal of the American Chemical Society, 60(2):309–319,
1938.

[57] Stephen Brunauer and P. H. Emmett. THE USE OF VAN DER WAALS
ADSORPTION ISOTHERMS IN DETERMINING THE SURFACE AREA OF
IRON SYNTHETIC AMMONIA CATALYSTS. Journal of the American Chem-
ical Society, 57(9):1754–1755, 1935.

[58] Stephen Brunauer and P. H. Emmett. The use of low temperature van der waals
adsorption isotherms in determining the surface areas of various adsorbents. Jour-
nal of the American Chemical Society, 59:2682–2689, 1937.

139



[59] M. Polanyi. Adsorption from the point of view of the third law of thermodynamics.
Verhandlungen der Deutschen Physikalischen, Gesellschaft, 16:1012–1016, 1914.

[60] Michael Polanyi. The potential theory of adsorption. Science, New Series,
141(3585):1010–1013, 1963.

[61] Alexander V. Neimark and Ivan Grenev. Adsorption-Induced Deformation of Mi-
croporous Solids: A New Insight from a Century-Old Theory. The Journal of
Physical Chemistry C, 124(1):749–755, January 2020.

[62] Zeid Alothman. A review: Fundamental aspects of silicate mesoporous materials.
Materials, 5:2874–2902, 12 2012.

[63] R. Byron Bird, Warren E. Stewart, and Edwin N. Lightfoot. Transport Phenom-
ena, Revised 2nd Edition. Wiley, 2006.

[64] Noelle Pottier. Nonequilibrium Statistical Physics. Oxford press, 2014.

[65] Jean-Louis Barrat and Jean-Pierre Hansen. Basic Concepts for Simple and Com-
plex Liquids. Cambridge University Press, 2003.

[66] Jörg Kärger. Transport phenomena in nanoporous materials. ChemPhysChem,
16(1):24–51, 2015.

[67] Ryogo Kubo. Statistical-mechanical theory of irreversible processes. i. general
theory and simple applications to magnetic and conduction problems. Journal of
Physical Society of Japan, page 16, 1957.

[68] Melville S. Green. Markoff random processes and the statistical mechanics of time-
dependent phenomena. II. irreversible processes in fluids. The Journal of Chemical
Physics, 22(3):398–413, 1954.

[69] N. Bernstein, J. L. Feldman, and D. J. Singh. Calculations of dynamical properties
of skutterudites: Thermal conductivity, thermal expansivity, and atomic mean-
square displacement. Physical Review B, 81(13):134301, 2010.

[70] Suranjan Sarkar and R. Panneer Selvam. Molecular dynamics simulation of effec-
tive thermal conductivity and study of enhanced thermal transport mechanism in
nanofluids. Journal of Applied Physics, 102(7):074302, 2007.

[71] Haruki Oga. Theoretical framework for the atomistic modeling of frequency-
dependent liquid-solid friction. Physical Review Research, page 6, 2021.

[72] A. Zaragoza, M. A. Gonzalez, L. Joly, I. López-Montero, M. A. Canales, A. L. Be-
navides, and C. Valeriani. Molecular dynamics study of nanoconfined TIP4p/2005
water: how confinement and temperature affect diffusion and viscosity. Physical
Chemistry Chemical Physics, 21(25):13653–13667, 2019.

[73] Jean-Pierre Hansen and Ian R. McDonald. Theory of Simple Liquids. Academic
Press, 2013.
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[114] Javier Pérez-Ramı́rez, Danny Verboekend, Adriana Bonilla, and Sònia Abelló. Ze-
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