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Résumé

Dans divers domaines, certains phénomènes qui dépendent du temps sont représentés par des
modèles mathématiques. En particulier les comportements collectif d’un groupe composé d’un certain
nombre d’agents. Dans les modèles de la théorie cinétique, on étudie la position et la vitesse de chaque
agent au cours du temps. L’équation de Boltzmann est l’une des équations les plus connues dans ce
domaine. Dans la littérature moderne, on trouve beaucoup de modèles cinétiques de type Boltzmann
qui décrivent au cours du temps le comportement collectif d’un groupe (gaz de particules, groupe
d’individus, nuée d’oiseaux, banc de poissons,...). On retrouve dans la plupart de ces modèles les
mêmes résultats que ceux établis pour l’équation de Boltzmann en utilisant les mêmes arguments. Le
but de ce manuscrit est d’introduire puis d’étudier un modèle cinétique de type Boltzmann dans lequel
les outils classiques utilisés pour l’équation de Boltzmann sont inopérants.

Le modèle présenté dans ce manuscrit est un modèle de type Boltzmann qui décrit au cours du
temps le comportement collectif d’un grand groupe d’individus. Celui-ci considère un mécanisme où
lorsque deux individus entrent en collision, ils vont adopter après la collision la même vitesse selon
une distribution centrée sur la vitesse moyenne avant la collision. Le premier chapitre de ce manuscrit
concerne la version la plus simplifiée de ce modèle: la version homogène en espace avec un taux de
collision constant. Nous montrerons dans ce chapitre que dans ce cas particulier, les solutions du
modèle sur Rd convergent exponentiellement vers l’état d’équilibre pour la distance de Wasserstein.
Cette convergence sera obtenue grâce à un phénomène de contraction qui prend place dans le processus
de collision. La convergence des solutions pour la norme forte L1 sera également démontrée pour des
conditions initiales vérifiant une propriété de régularité plus forte. Des illustrations numériques seront
présentes afin de visualiser cette convergence.

Dans un second chapitre, on considèrera le même modèle mais avec un taux de collision quelconque.
La non-constance de celui-ci complique la preuve puisqu’il fait disparaitre le phénomène de contraction
dans le processus de collision. Cependant, on peut écrire le modèle comme une équation différentielle
ordinaire en dimension infinie, ce qui fait apparaître un opérateur qui satisfait la condition de Hölder
pour α = 1/2. Nous montrerons dans ce second chapitre l’existence d’états d’équilibre et des simu-
lations numériques seront présentées. Celles-ci montrerons l’existence d’une solution en tout temps
ainsi que la convergence vers un unique état d’équilibre. La convergence théorique n’est pas démontré
rigoureusement.

Mots-clés: Modèles cinétiques, Dynamique collective, Distance de Wasserstein, Transport optimal.

Laboratoire d’accueil: Institut mathématiques de Bordeaux UMR 5251, Université de Bordeaux,
Bâtiment A33, 351 cours de la Libération, F-33405 Talence cedex France.
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Abstract

In various domains, certain phenomena that depend on time are represented by mathematical
models. In particular the collective behavior of a group composed of a certain number of agents. In
kinetic theory models, we study the position and velocity of each agent over time. The Boltzmann
equation is one of the best-known equations in this domain. In modern literature, there are many
Boltzmann type kinetic models which describe the collective behavior of a group over time (gas of
particles, group of individuals, flock of birds, school of fish,...). We find in most of these models the
same results as those established for the Boltzmann equation using the same arguments. The goal
of this manuscript is to introduce and then to study a kinetic Boltzmann-type model in which the
classical tools used for the Boltzmann equation are inoperative.

The model presented in this manuscript is a Boltzmann-type model that describes the collective
behavior of a large group of individuals over time. This one considers a mechanism where as two
individuals collide, they will adopt after the collision the same post-collisionnal velocity according to a
distribution centered at the mid pre-collisional velocity. The first chapter of this manuscript concerns
the most simplified version of this model: the spatially homogeneous version with a constant collision
rate. We will show in this chapter that in this particular case, the solutions of the model on Rd

converge exponentially towards the equilibrium state for the Wasserstein metric. This convergence will
be obtained thanks to the phenomenon of contraction which takes place in the collision process. The
convergence of solutions for the strong norm L1 will also be proved for initial conditions satisfying a
stronger regularity property. Numerical illustrations will be present to visualize this convergence.

In a second chapter, we will consider the same model but with any collision rate. The non-constancy
of this one complicates the proof since it makes disappear the phenomenon of contraction in the collision
process. However, we can write the model as an ordinary differential equation in infinite dimension,
which gives rise to an operator which satisfies the Hölder condition with α = 1/2. We will show in
this second chapter the existence of equilibrium state and numerical simulations will be presented.
These will show the existence of a solution at all times as well as the convergence towards a unique
equilibrium state. Unfortunately we do not know how to show rigorously the convergence.

Keywords: Kinetic models, Collective dynamics, Wasserstein metric, Optimal transport.

Host laboratory: Institut mathématiques de Bordeaux UMR 5251, Université de Bordeaux, Bâtiment
A33, 351 cours de la Libération, F-33405 Talence cedex France.
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Conventions and recalls

Sets and structures

• N is the set of non-negative integers: N := {0, 1, 2, 3, · · · }, a sequence of elements of a set E is
denoted (xn)n∈N or more simply (xn)n. And Z is the set of integers: Z := {· · · , −1, 0, 1, 2, · · · }.
• Q is the set of rational number: Q := {a/b, a ∈ Z, b ∈ N and b > 0.}.
• R is the set of real numbers. The notation Rd obviously implies that d is a positive integer. For two
vectors x = (x1, · · · , xd) and y = (y1, · · · , yd) in Rd, we denote 〈x, y〉 :=

∑
xiyi the Euclidian scalar

product between x and y. All vectors considered in this text are column vector. The norm in Rd is
denoted by | · |. Since all the norms are equivalent in Rd, | · | will denote the Euclidian norm, whatever
the dimension d: |x| := (

∑
x2
i )

1/2. And Sd is the unit sphere in Rd+1: Sd := {x ∈ Rd+1, |x| = 1}.
• C is the set of complex numbers: C := {z = a+ ib, (a, b) ∈ R2}. The real number a is the real part
of z denoted <(z), the real number b is the imaginary part of z denoted =(z) and i is the imaginary
unit: i2 = −1. The modulus of a complex number z = a + ib is denoted by |z|. It is the Euclidian
norm of the vector (a, b) in R2. And the conjugate of a complex number z = a + ib is the complex
number z̄ := a− ib.
• Mn(R) is the set of real n×n matrices. The matrix In is the n×n identity matrix and we denote by
diag(d1, · · · , dn) the diagonal matrix formed by the di on the diagonal. A matrix M ∈ Mn(R) is said
to be invertible if there exists a matrix P such that MP = PM = In. In this case, P is unique and
it is denoted by M−1. For a matrix M ∈Mn(R), we denote tM , det(M) and Tr(M) the transposate,
the determinant and the trace of M . For two vectors x, y ∈ Rd and for two matrices A, B ∈ Mn(R),
some authors write x⊗ y to designate the matrix x ty and A : B to designate Tr(tAB).
• We say that a symmetric matrix M is positive semi-definite (positive definite), denoted by M � 0
(M � 0) if for every real column vector x, txMx ≥ 0 (for every non-zero real column vector x,
txMx > 0). For M , N ∈ Md(R), we write M � N (M � N) if M − N � 0 (M − N � 0). For a
symmetric matrix M � 0 (M � 0), M1/2 denote the square root of M . It is the unique symmetric
positive semi-definite (positive definite) matrix such that (M1/2)2 = M .
• If A ⊂ E is a set, then Ac is the complement of A in E: Ac := {x ∈ E, x /∈ A}.
• A subset A ⊂ R is said to be bounded above if there exists M ∈ R such that for every x ∈ A, x ≥M .
The smallest possible constant M is called the supremum of A and is denoted sup(A). A is said to be
bounded below if there exists m ∈ R such that for every x ∈ A, x ≤ m. The greatest possible constant
m is called the infimum of A and is denoted inf(A).
• If E is a metric space, then we denote by (E, d) the space E equipped with the metric d. And if E is
a normed vector space, then we denote by (E, ‖ · ‖) the vector space E equipped with the norm ‖ · ‖.
• E×F denotes the Cartesian product between two sets E and F : E×F := {(x, y), x ∈ E and y ∈ F}.
If (E, dE) and (F, dF ) are two metrics spaces, then we can equip E × F with the distance dE + dF .
If (E, ‖ · ‖E) and (F, ‖ · ‖F ) are two normed vector spaces, then we can equip E × F with the norm
‖ · ‖E + ‖ · ‖F .
• The open ball of radius r > 0 and center x0 in a metric space (E, d) is denoted by B(x0, r):
B(x0, r) := {x ∈ E, d(x, x0) < r}. The unit ball B(0, 1) in Rd is denoted by Bd.
• For a set A in a metric space (E, d), the interior of A is denoted by Int(A): Int(A) := {x ∈ A, ∃ε > 0,
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B(x, ε) ⊂ A}. And the closure of A is denoted by A, this is the set of all limits of sequences taking
values in A.
• A set C in a real vector space is said to be convex if tx+ (1− t)y ∈ C for all x, y ∈ C and t ∈ [0, 1].

Functions and sequences

• For a space E, id is the identity mapping on E. For x ∈ E, id(x) := x.
• For u ∈ Rd, τu is the translation of vector u: τu(x) := x+ u.
• If A is a set, then the function 1A is the indicator function of A: 1A(x) := 1 is x ∈ A and 0 otherwise.
If F is a formula, then 1F is the indicator function of the set defined by the formula F .
• In a Cartesian product X1×· · ·×Xj×· · ·×Xn, projj is the projection map into the j-th component:
projj(x1, · · · , xj , · · · , xn) := xj .
• The maximum and the minimum between a and b ∈ R is denoted by max(a, b) and min(a, b). The
positive and negative parts of x ∈ R are defined respectively by x+ := max(x, 0) and x− := max(−x, 0).
Both are non-negative and we naturally have |x| = x+ + x−.
• The floor of a real number x, denoted by bxc, is the largest integer that is less than or equal to x.
And the ceiling of a real number x, denoted by dxe, is the smallest integer that is greater than or equal
to x.
• We write xn −→ x if the real-sequence (xn)n converge to x. An element l ∈ R := R ∪ {±∞} is a
subsequential limit of (xn)n if there exists a subsequence (xσ(n))n which converges to l. The greatest
possible limit l is called the limit superior of (xn)n and the smallest possible limit l is called the limit
inferior of (xn)n. They are denoted lim supxn and lim inf xn.
• A sequence (xn)n in a metric space (E, d) converge to x ∈ E if the real sequence (d(xn, x))n converge
to 0. A sequence (xn)n in a normed vector space (E, ‖ · ‖) converge to x ∈ E if the real sequence
(‖xn − x‖)n converge to 0.
• If f and g are two functions, then f + g, fg and f/g denotes the sum, product and quotient of f by
g: (f + g)(x) := f(x) + g(x), (fg)(x) := f(x)g(x) and (f/g)(x) := f(x)/g(x). The composition of g
by f is denoted by f ◦ g: f ◦ g(x) := f(g(x)) and (f, g) denote the function (f, g)(x) := (f(x), g(x)).
• If f is a function X −→ Y , then the set Im(f) is the image of f : Im(f) := {y ∈ Y , ∃x ∈ X, y = f(x)}
and for a subset B ⊂ Y , f−1(B) denote the inverse image of B under f : f−1(B) := {x ∈ X, f(x) ∈ B}.
If f is a function E −→ R, then the set Dom(f) is the domain of f : Dom(f) := {x ∈ E, f(x) 6= ±∞}.
And if f is a continuous function E −→ R, then the set supp(f) is the support of f : supp(f) :=
{x ∈ E, f(x) 6= 0}.
• A function f : E −→ R is said to be bounded above on E if there exists M ∈ R such that for all
x ∈ E, f(x) ≤M . The smallest possible constant M is called the supremum of f on E and is denoted
sup f or supx f(x). f is said to be bounded below on E if there exists m ∈ R such that for all x ∈ E,
f(x) ≥ m. The greatest possible constant m is called the infimum of f on E and is denoted inf f or
infx f(x).
• If f is a real function, then we write f(x) −→ L when x −→ l if f(x) converges to L when x goes
to l. If f is a function R −→ (E, d), then f(x) converges to L when x goes to l if the real function
dE(f(x), L) converges to 0 when x goes to l.
• The notation f = o(g) means that f becomes insignifiant relative to g in the neighborhood of 0. In
other words, f/g −→ 0 when x −→ 0.
• The derivative of a function f : I −→ R where I is an open interval of R is denoted by f ′ or df/dx:
f ′(x) := limh→0(f(x + h) − f(x))/h. If f is a vector valued function I −→ Rd, then the derivative
of f = (f1, · · · , fd) is the vector valued function f ′ = (f ′1, · · · , f ′d). The derivative of order n of f is
denoted by f (n) or dfn/dxn.
• If f is a function of severable variables, the partial derivative of f with respect to the variable x will
be denoted by ∂f/∂x or ∂xf . The differential of f at the point x is denoted by Dxf and the differential
of order n of f at the point x is denoted by Dn

xf .
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• The gradient of a function f : U −→ R where U is an open set of Rd is denoted by ∇f . It is the
vector composed of all the partial derivatives of f : ∇f := (∂f/∂xi)1≤i≤d. The value of the gradient
of f at the point x will be denoted by ∇f(x). If f is a vector valued function, then ∇f is the vector
composed of the gradient of the components of f .
• The divergence of a function f : U −→ Rd where U is an open set of Rd is denoted by div(f) or
∇ · f : div(f) :=

∑
(∂fi/∂xi). If f is a matrix valued function, then div(f) is the vector composed of

the divergence of the rows of f .
• The Laplacian of a function f : U −→ R where U is an open set of Rd is denoted by ∆f . It is the
divergence of the gradient of f : ∆f := div(∇f).
• If f is a function Rd −→ Rd, then Jf denotes the Jacobian matrix of f . It is the matrix composed
of all the partial derivatives of f : Jf := (∂fi/∂xj)1≤i,j≤d. And if f is a function Rd −→ R, then Hf

denotes the Hessian matrix of f . It is the matrix composed of all the partial derivatives of order 2 of
f : Hf := (∂f2/∂xi∂xj)1≤i,j≤d. The value of the Jacobian matrix of f at the point x will be denoted
by Jf (x) and the value of the Hessian matrix of f at the point x will be denoted by Hf (x).
• A function f : E −→ R is said to be convex if f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y) for all x, y ∈ E
and t ∈ [0, 1].
• A map f between two metric spaces (E, dE) and (F, dF ) is said to be M -Lipschitzian if for all
x, y ∈ E, dF (f(x), f(y)) ≤MdE(x, y). The smallest possible constant M will be denoted by ‖f‖Lip.

Integration and measures

• A σ-algebra on a set X is a family of subsets of X which included X , is closed under complement,
and is closed under countable unions. If X is a topological space, then the Borel σ-algebra is the
smallest σ-algebra on X which contains all the open sets of X . An element of the σ-algebra is said to
be measurable, and an element of a Borel σ-algebra is called Borelian.
• A Borel measure is a measure µ defined on a Borel σ-algebra which for any Borelian A associates a
positive number (or possibly +∞) µ(A) ≥ 0, and satisfies the axiom of countable additivity: µ(∪Ai) =∑
µ(Ai) for all countable family (Ai)i∈N of pairwise disjoints sets. We speak of a signed measure if µ

takes negative values. All measures considered in this text are Borel measures.
• For a measure µ, we define the integral of a real valued measurable function f with respect to µ
the real number (possibly ±∞) denoted

∫
f(x)dµ(x),

∫
f(x)µ(dx) or

∫
fdµ. If f = (f1, · · · , fd) is a

real vector valued measurable function, then
∫
fdµ is the integral of all components of f :

∫
fdµ =

(
∫
f1dµ, · · · ,

∫
fddµ). We say that f is integrable with respect to the measure µ if the quantity

∫
|f |dµ

is finite.
• For a measure µ on X , supp(µ) is the support of µ. It is the intersection of all closed sets of full
measure. Some authors define supp(µ) by its complement: supp(µ)c :=

⋃
{O ∈ O, µ(O) = 0} where

O is the set of open sets of X .
• A probability measure on X is a measure µ such that µ(X ) = 1. In this case, the measured space
(X , µ) is a probability space.
• For a probability measure µ on Rd, the mean of µ is the real vector

∫
xdµ(x) and the covariance

matrix is the positive semi-definite matrix
∫

(x −
∫
xdµ(x))

t
(x−

∫
xdµ(x))dµ(x). If d = 1, then

the covariance matrix is a non-negative number called the variance of µ and is denoted σ2
µ: σ2

µ :=∫
(x −

∫
xdµ(x))2dµ(x). And the moment of order α > 0 of µ, denoted by Mα(µ) is the real non-

negative number Mα(µ) :=
∫
|x|αdµ(x).

• P(X ) is the space of probability measures on X , Pα(X ) the space of probability measures on X
which admit a finite moment of order α > 0 and Pmα (X ) the space of probability measures on X which
admit a finite moment of order α ≥ 1 and of mean m.
• The cumulative distribution function of a probability measure µ on R is the real function denoted
by Fµ: Fµ(x) := µ(]−∞, x]).
• δx0 is the Dirac mass at the point x0 ∈ X . For any Borelian A ⊂ X , δx0(A) := 1x0∈A. In terms of
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integrals, for any measurable function f ,
∫
fδx0 = f(x0).

• λ is the Lebesgue measure. If A is a Borelian on Rd, then Vol(A) := λ(A) is the Euclidian volume
of A.
• A measure µ is said to be absolutely continuous with respect to a measure ν if there exists a
measurable function f with respect to ν such that for any Borelian A, µ(A) =

∫
A f(x)dν(x). We

denote µ = fν. We say that µ is a density measure if it is absolutely continuous with respect to the
Lebesgue measure and that f is a probability density if µ is a probability measure.
• If µ is a measure on X and ν a measure on Y, then µ⊗ ν is the product measure between µ and ν
on X × Y. For any Borelian A× B ⊂ X × Y, µ⊗ ν(A× B) := µ(A)ν(B).
• If µ and ν are two measures on X , then µ ∗ ν is the convolution product between µ and ν on X . For
any Borelian A ⊂ X , µ ∗ ν(A) :=

∫∫
1A(x+ y)dµ(x)dν(y).

• If µ is a measure on X and T a Borel map X −→ Y, then T#µ designates the image measure
(or push-forward) of µ by T (see Definition A.1.1). The law of a random variable X defined on a
probability space (Ω,P) is the measure X#P.
• If µ is a measure on Rd of finite mass: µ(Rd) < +∞, then the function µ̂ : Rd −→ C is the Fourier
transform of µ: µ̂(ξ) :=

∫
e−i〈x,ξ〉dµ(x). If X is a random variable which taking values in Rd of law µ,

then the function ϕX : Rd −→ C is the characteristic function of X: ϕX(t) := µ̂(−t).

Function spaces

• If (E, dE) and (F, dF ) are two metric spaces, then C(E,F ) is the space of continuous functions
E −→ F . We can equip C(E,F ) with the uniform metric d∞: d∞(f, g) := sup dF (f(x), g(x)). If
(E, ‖ · ‖E) and (F, ‖ · ‖F ) are two normed vector spaces, then we can equip C(E,F ) with the uniform
norm ‖ · ‖∞: ‖f‖∞ := sup ‖f(x)‖F . If F = R, we will denote by C(E,R) = C(E).
• Cb(Rd) is the space of bounded continuous functions Rd −→ R, C0(Rd) the space of continuous
functions Rd −→ R which tend to 0 at infinity and Cc(Rd) the space of continuous functions Rd −→ R
with compact support. We can equip these three spaces with the uniform norm ‖ · ‖∞.
• If n is a positive integer, then Cn(Rd) is the space of n-times continuously differentiable functions
Rd −→ R, Cnb (Rd) the space of n-times continuously differentiable functions Rd −→ R such that all the
partial derivatives of f up to the order n are bounded and Cnc (Rd) the space of n-times continuously
differentiable functions Rd −→ R with compact support. We can equip these spaces with the norm
‖ · ‖Cn(Rd): ‖f‖Cn(Rd) :=

∑n
k=0 ‖Dkf‖∞.

• If (X , µ) is a measured space, then Lp(X , µ) with p ≥ 1 is the Lebesgue space of order p. It is the
quotient of the function space X −→ R which are of power p integrable with respect to µ by the space
of zero functions µ-almost everywhere on X . Two functions f and g are in the same equivalence class
in the quotient Lp(X , µ) if and only if f = g µ-almost everywhere. We can equip Lp(X , µ) with the
norm ‖ · ‖Lp(X ,µ): ‖f‖Lp(X ,µ) :=

∫
|f |pdµ. If (X , µ) = (Rd, λ), we will denote by Lp(Rd, λ) = Lp(Rd).

• Hs(Rd) is the Sobolev space of fractionnal order s ≥ 0. It is the space of functions f ∈ L2(Rd, µ)
such that the function ξ 7−→ (1 + |ξ|2)s/2|f̂(ξ)| is in L2(Rd). We can equip Hs(Rd) with the norm
‖ · ‖Hs(Rd): ‖f‖Hs(Rd) := (

∫
(1 + |ξ|2)s|f̂(ξ)|2dξ)1/2.

• If (E, ‖ · ‖E) is a normed vector space, then E∗ is the dual space of E. It is the space of continuous
linear forms E −→ R. The image of x ∈ E by f ∈ E∗ will be denoted by f(x) or 〈f, x〉. We can equip
E∗ with the dual norm ‖ · ‖E∗ : ‖f‖E∗ := sup{|〈f, x〉|, x ∈ E and ‖x‖E ≤ 1}.
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Chapter 1

Introduction

We consider a group of agents subject to various interactions, and we would like to study the collective
behavior over time. There are three scales depending on the precision of the desired observation:
microscopic, mesoscopic and macroscopic. In this introduction, we will begin by explaining what these
three descriptions mean, what their advantages and inconvenients are, and which description is adopted
depending on the physical context. We will give examples of models for each, and we will explain how
to pass from one description to another by passing to the limit. Then we will present the model that
will be considered throughout this manuscript, with the results obtained chapter by chapter.

1.1 Mathematical models in kinetic theory

1.1.1 Presentation

We consider a mathematical model which describes over time the evolution of a system composed
of a large number of agents. This model is a partial differential equation (PDE) whose unknown is
a distribution function in the space X of the phases of the agents. In the case of a dilute gas for
example, the PDE describes its evolution over time and the agents are the particles of the gas. We
admit that the system is observed in a time interval [0, T ], (T ∈ ]0,+∞]), then the solution of the
PDE is a nonnegative function f : (t, x) 7−→ f(t, x) where t ≥ 0 and x ∈ X.

The phase space X depends on the context and on how the state of an agent is determined. For
example in the case of a gas, if we consider that it is contained in a domain Ω ⊂ Rd (d = 3 in general),
then each particle is characterized by its position x ∈ Ω and its velocity v ∈ Rd. The phase space
is therefore Ω × Rd. In population dynamics, we can take the phenotypic traits y ∈ R of each agent
within a population contained in a domain Ω ⊂ Rd (d = 3 in general). So in this case, the phase space
is Ω×R. We have an homogeneous model if the phase space does not contain the space variable. Some
authors consider that the unknown is a probability density f(t, x), t ≥ 0, x ∈ X. It is more natural to
see f as a time-dependent probability measure. Of course, if f is a time-dependent density measure,
the two coincide. In the general framework, a such model is called a mesoscopic model and we speak
of a kinetic model when we take into account the velocities of each agent. We will consider in this text
only kinetic models.

Kinetic theory consists of studying kinetic models. In 1738, Daniel Bernoulli laid the foundations
of the kinetic theory of gases by publishing his book Hydrodynamica. He explained there that a gas
is composed of a large number of molecules moving in all directions, that their impact on a surface
causes the pressure of the gas and that their average kinetic energy determines the temperature of
the gas. In 1857 Rudolf Clausius developed a more sophisticated version of the theory. In which the
molecular movements included translations, rotations and vibrations [27]. It was only a few years later
that James Clerk Maxwell formulated one of the main bases of the kinetic theory of gases according
to which molecular collisions lead to an equalization of temperatures and therefore a tendency to

21



1.1. KINETIC THEORY
;A<

equilibrium [63].
Let us now move on to the mathematical description of the movement of agents. When no force

acts on the system, it is considered that the agents to move at constant velocity along a straight line.
If an agent is moving at velocity v and is at the position x at time t, then it was at time t = 0 at the
position x− tv while moving at the same velocity v. Since f(t, x, v)dxdv denotes the number of agents
in an infinitesimal volume (dxdv) centered at (x, v), then we have f(t, x, v) = f(0, x− tv, v) therefore
f is a solution in the weak sense of the classical transport equation

∂f

∂t
+ v · ∇xf = 0 (1.1.1)

where ∇xf denotes the gradient of the function x 7−→ f(t, x, v). In the case where a macroscopic force
F acts on the system, then the trajectories of the agents are deviated by it. So f is solution of the
following equation called Vlasov’s linear equation

∂f

∂t
+ v · ∇xf +∇v · (Ff) = 0 (1.1.2)

where ∇v · F denotes the divergence of the vector function v 7−→ F (t, x, v). The two equations (1.1.1)
and (1.1.2) have one thing in common. The right-hand side is null, which means that no interaction
takes place between the agents.

1.1.2 The Boltzmann equation

We now want to take into account the interactions between the agents of the system. We call binary
collision a process in which when two agents are close enough, then their respective trajectory will be
strongly deviated during a very short time. We will assume that only binary collisions take place.

In 1872, Ludwig Boltzmann [13] developed a quadratic collision operator Q describing the inter-
actions of (assumed to be identical) particles within a dilute gas that occupies the three-dimensional
space. For a distribution function f = f(t, x, v) ≥ 0, the operator Q is defined by

Q(f, f) :=

∫∫
R3×S2

(f ′f ′? − ff?)q(v − v?, ω)dv?dω (1.1.3)

with f ′ = f(t, x, v′), f? = f(t, x, v?) and f ′? = f(t, x, v′?). The velocities v and v? represent the velocities
of the two particles before the collision while v′ and v′? designate the velocities of the two particles
after the collision and they are written

{
v′ = v − 〈v − v?, ω〉ω,
v′? = v? + 〈v − v?, ω〉ω

where the parameter ω ∈ S2 corresponds to the angle of deviation θ taken between v and v′. We see
that the map (v, v?) 7−→ (v′, v′?) is invertible. We then say that the collisions are microreversible. If we
have two particles with respective velocitiy v′ and v′? after a collision, then we can find their velocitiy
v and v? before the collision. Boltzmann also considered that collisions are elastic, that is to say that
the momentum and the kinetic energy are preserved during a collision and we have therefore

{
v′ + v′? = v + v?
|v′|2 + |v′?|2 = |v|2 + |v?|2.
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θ

v v′

v? v′?

Figure 1.1: Example of an elastic binary collision. ω is the vector of norm 1 and angle θ.

The function q in (1.1.3) is called the Boltzmann collision kernel. It is a nonnegative function that
only depends on |v − v?| and |〈v − v?, ω〉|. Since 〈v − v?, ω〉 = |v − v?| cos(θ), q therefore only depends
on |v − v?| and the cosine of the angle of deviation θ. It can be seen as a probability rate over all
possible choices for the parameter ω ∈ S2. In the particular case of hard spheres, in other words if we
consider that the molecules of gas are assimilated to billiard balls of radius r, then the collision kernel
is proportional to |〈v − v?, ω〉|. We have q(v − v?, ω) = 2r2|〈v − v?, ω〉|.

By definition of the collision operator Q (1.1.3), we notice that we can write it as a difference
between a gain term Q+ and a loss term Q−

Q(f, f) = Q+(f, f)−Q−(f, f) (1.1.4)

where

Q+(f, f) :=

∫∫
R3×S2

f ′f ′?q(v − v?, ω)dv?dω and Q−(f, f) :=

∫∫
R3×S2

ff?q(v − v?, ω)dv?dω.

Q+ is a gain rate of particles at velocity v after collision of two particles at velocities v′ et v′?. And Q−
is a loss rate of particles at velocity v due to collisions of particles of velocity v?.

In the end, the Boltzmann equation is written

∂f

∂t
+ v · ∇xf = Q(f, f) (1.1.5)

or, when a macroscopic force F is present,

∂f

∂t
+ v · ∇xf +∇v · (Ff) = Q(f, f).

The Boltzmann equation (1.1.5) means that in a dilute gas, the particles are subjected to binary elastic
collisions. And apart from any interaction, the particles move at constant velocity along a straight line
or only under the influence of the force F in the case where a macroscopic force F is present.

This equation is very important in the kinetic theory of gases since it has made it possible to check
the conservation over time of certain quantities: mass, momentum and total energy. But the most
important result is the H Theorem, which says that the quantity

∫
f log(f)dv which is interpreted as

the entropy of the system, decreases over time. Boltzmann also finds the result [14], [15] established
by Maxwell a few years earlier [61], [62]. That is, at equilibrium, f is of the form

f(v) =
ρ

(2πθ)3/2
exp

(
−|v − u|

2

2θ

)
where ρ, u and θ denote respectively the density, mean velocity and temperature of the gas (independent
of (t, x)) at equilibrium.

The first global existence result of the Cauchy problem for the Boltzmann equation is due to Ukai
[84] for the small datum inhomogeneous. The greatest breakthrough remains in 1988 where DiPerna
and Lions showed the existence of a so-called renormalized solution to the Cauchy problem for the
Boltzmann equation for any initial data f0 satisfying natural estimates [26], [39].
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1.1.3 Some kinetic models

Vlasov equation

The Vlasov equation, introduced by Anatoly Vlassov [91] in 1938, is the following kinetic equation

∂f

∂t
+ v · ∇xf +∇v · (F [f ]f) = 0 (1.1.6)

where the unknown f = f(t, x, v), t ≥ 0, x ∈ Rd and v ∈ Rd is a probability distribution and the map
F : µ 7−→ F [µ] a given force. In some cases, the vector function F [f ] is given by a convolution product
between a kernel k = k(x, v) and the unknown f . In other words, for a measure π with two variables
we have

F [π](x, v) := (k ∗ π)(x, v) =

∫∫
Rd×Rd

k(x− y, v − w)dπ(y, w). (1.1.7)

The force F can only depend on x if for example the kernel k is independent of v. In this case, the
force term simplifies and becomes ∇v · (F [f ]f) = F [f ] · ∇vf . For example if k(x, v) := −∇U(x) where
U(x) = 1/(4π|x|), x ∈ R3, then (1.1.6) becomes what is called the Vlasov-Poisson equation and we
have ∇v · (F [f ]f) = −∇Φ(t, x) · ∇vf where −∆Φ(t, x) =

∫
f(t, x, v)dv.

This equation is very important in plasma physics because it describes the evolution over time
of the distribution of particles in a plasma, neglecting the effect of binary collisions. We can all the
same consider in this model that the binary collisions are not negligible. To do this, simply add the
Boltzmann collision operator (1.1.3) to the right-hand side of the equation (1.1.6). We say that the
equation (1.1.2) is the linear form of the Vlasov equation (1.1.6) because the force F does not depend
on the unknown f .

Fokker-Planck equation

This is the following kinetic equation

∂f

∂t
+ v · ∇xf = ∇v · (∇vf + fv). (1.1.8)

where the unknown f = f(t, x, v), t ≥ 0, x ∈ Rd and v ∈ Rd is a probability distribution. It is a
diffusion equation. The term on the right-hand side is non-zero, which means that the agents interact
with each other. But contrary to the Boltzmann equation, the collective behavior is influenced by the
random movement of each agent, in a way each agent undergoes multiple small collisions. The term
on the right-hand side is therefore not a collision term, but a sum between a diffusion term ∆vf , the
Laplacian of the function v 7−→ f(t, x, v) (to be taken in the weak sense) and a drift term ∇v · (fv).
The equation (1.1.8) is named in honor of Adriaan Fokker and Max Planck. We can combine the two
equations (1.1.6) and (1.1.8). One obtains the following equation

∂f

∂t
+ v · ∇xf +∇v · (F [f ]f) = ∇v · (∇vf + fv). (1.1.9)

which is the Vlasov-Fokker-Planck equation.

A kinetic equation for traffic flow

Dimarco, Tosin, Zanella [38] propose a kinetic description of traffic flow. In their model, it is assumed
that the vehicles modify their velocity via interactions with other vehicles located at a given constant
headway H > 0. Each vehicle will adapt its velocity according to the vehicle in front of it but will not
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feel the influence of the one behind. Denoting v the velocity of a vehicle, and v? the velocity of the
vehicle in front of it, then the new velocities v′ and v′? after an interaction are given by{

v′ = v + γλ(ρ)(v? − v) +D(v)η,
v′? = v?.

(1.1.10)

In (1.1.10), γ > 0 is a time-scale factor, λ(ρ) > 0 is the reactiveness of the driver which is expressed
as a function of the local vehicle density ρ : ρ(t, x) :=

∫
f(t, x, v)dv, D : [0, 1] −→ R+ is a function

that measures the local relevance of the random fluctuations and η is a centered random variable with
positive variance (in other words its law belongs to P0

2 (R) and its variance σ2 is positive: σ2 > 0),
which models random fluctuations in the driver behavior. The (1.1.10) system is a system inspired by
traffic models of type follow-the-leader [49].

Therefore, the distribution function of the vehicles located at the point x ∈ R2 and circulating at
the (non-dimensional) velocity v ∈ [0, 1] at the instant t ≥ 0 is solution of the following Enskog-type
equation

∂t

∫ 1

0
ϕ(v)f(t, x, v)dv + ∂x

∫ 1

0
vϕ(v)f(t, x, v)dv

=
1

2

∫ 1

0

∫ 1

0
〈ϕ(v′)− ϕ(v)〉f(t, x, v)f(t, x+H, v?)dvdv?

(1.1.11)

where ϕ : [0, 1] −→ R is a test function.

1.1.4 Other models

We have presented in this section only kinetic models, in other words models involving the velocity of
each agent. But there are many other "kinetic" models that do not take velocities into account. These
models are called mesoscopic.

In biology, there exist many mesoscopic models that describe the growth of a population (individ-
uals, cells, bacteria,...) over time. For example, the model introduced by Raoul in Ref. [72] describes
the dynamics of a sexual population. This model considers that at each instant t ≥ 0, the population is
structured by a phenotypic trait y ∈ R and a space variable x. The velocity is therefore not taken into
account. The population is therefore represented by a density n = n(t, x, y) and is the solution of what
is called the Spatially structured Infinitesimal Model (SIM) [64]. Moreover, there exists a connection
between the SIM and the Kirkpatrick-Barton [57] model, a model that was introduced in 1997 and is
widely used in evolutionary ecology.

In financial mathematics, one could, for example, cite a simple kinetic model introduced by Cordier,
Pareschi, Toscani [29] involving both exchanges between agents and speculative exchanges. We could
also cite another model, that of Cordier, Pareschi, Piatecki [28]. In Ref. [28], they describe the behavior
of a simple financial market where agents can create their own portfolio according to two investment
alternatives: a stock and a bond. Their model uses the methods of kinetic theory and consists of a
Boltzmann-type equation of the wealth distribution of the agents coupled with an equation for the
price of the stock. In these models, we take into account the wealth of the agents w ∈ R+ at time
t ≥ 0, and not their velocity.

1.2 Macroscopic models

1.2.1 Introduction to fluid dynamics

Let’s go further. We would like to act on a system of agents or see what impact it has on its environment.
In both cases, the quantities of interest are the same and are those that can be observed naturally
or with measuring devices. They are obtained by carrying out means on the agents: mean density,
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mean velocity, temperature. A macroscopic model is a PDE system whose unknowns are these mean
quantities.

The classic macroscopic models are those of fluid dynamics (hydrodynamic models). The best
known are the Euler and Navier-Stokes equations. They were established by applying Newton’s second
law to each infinitesimal volume of the considered fluid [58]. This method has an advantage because
all hydrodynamic models can be obtained in this way. But it has an inconvenient. This is because
the equations of state and the transport coefficients such as viscosity and thermal conductivity are
given in the form of experimental data and not in the form of data linked to the dynamics of agents.
However, in the case of gases and plasmas for example, the interactions between the particles are very
elementary. So that one can hope to express thermodynamic functions and transport coefficients in
terms of purely mechanical data concerning the collisions between gas molecules.

We will consider in this text that all macroscopic models are hydrodynamic models. Usually, a
fluid is defined as a continuous medium. In other words, it is a set of points which, at a time t, fills a
smooth domain of Rd (d = 2 or 3 in general). Fluid dynamics is based on three fundamental laws (or
equations): The continuity equation, the momentum equation and the balance energy equation.

The continuity equation is the following

∂tρ+ divx(ρu) = 0 (1.2.1)

where ρ = ρ(t, x) is the density of the fluid at point x ∈ Rd and at time t ≥ 0, and u = u(t, x) the
velocity (in Rd) of a fluid particle at point x ∈ Rd and at time t ≥ 0.

The momentum equation derives from the fundamental principle of dynamics applied to the fluid
under consideration. This equation is written as follows

∂t(ρu) + divx(ρu⊗ u− S) = ρF (1.2.2)

where S is the stress tensor and F an external force field (for example gravity or the Lorentz force in
the case of a plasma).

The last equation involves the internal energy of the fluid per unit mass e = e(t, x). The total
energy of the system E = E(t, x) is |u|2/2 + e. It is the sum of kinetic energy and internal energy. The
balance energy equation reads as

∂t

(
ρe+

ρ|u|2

2

)
+ divx

(
ρeu+ ρu

|u|2

2

)
= −divx(Q) + divx(Su) + ρF · u (1.2.3)

where Q is the heat flux.
In the momentum and balance energy equations (1.2.2), (1.2.3), F is a given vector field. While

the density ρ, the velocity field u, the internal energy e, the stress tensor S and the heat flow Q are
unknown. However, these quantities are generally not independent. They are linked by equations of
state which depend on the fluid considered.

1.2.2 Classical models in fluid dynamics

The compressible Euler system

The compressible Euler equations are the system (1.2.1), (1.2.2) and (1.2.3) in the case of an ideal
fluid. An ideal fluid is one in which the effects of viscosity and thermal conductivity can be neglected.
In this case, Q = 0 and the stress tensor is written S = −pId where the scalar p is the pressure. Thus,
the system of equations (1.2.1), (1.2.2) and (1.2.3) becomes

∂tρ+ divx(ρu) = 0,

∂t(ρu) + divx(ρu⊗ u+ pId) = ρF,

∂t

(
ρe+

ρ|u|2

2

)
+ divx

(
ρeu+ ρu

|u|2

2

)
+ divx(pu) = ρF · u.

(1.2.4)
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The unknowns in the (1.2.4) system are ρ, u, e and p. But ρ, e and p are not independent. These
three quantities are linked by the equations of state. We can express the pressure p and the internal
energy e as a function of the density ρ and the temperature θ: p = p(ρ, θ) and e = e(ρ, θ). Thus, the
compressible Euler system (1.2.4) is a system of d+ 2 PDE on the unknowns ρ, u and θ (one equation
for ρ, one for θ and one for each coordinate of u).

In the case of an ideal gas for example, the equations of state are p = kρθ where k is the Boltzmann
constant and e = kθ/(γ − 1) where γ > 1 is a constant called the adiabatic exponent. For an ideal
gas where the particles have n degrees of freedom, γ = 1 + 2/n. We have for example γ = 5/3 for a
monatomic gas and γ = 7/5 for a diatomic gas. If we choose a temperature scale such that k = 1, then
the system (1.2.4) for an ideal gas is

∂tρ+ divx(ρu) = 0,

∂t(ρu) + divx(ρu⊗ u+ ρθId) = ρF,

∂t

(
ρθ

γ − 1
+
ρ|u|2

2

)
+ divx

(
γρθu

γ − 1
+ ρu

|u|2

2

)
= ρF · u.

(1.2.5)

If the temperature θ is constant, then the last equation in (1.2.5) is obtained directly with the other
two. Thus, the system (1.2.5) becomes closed in the unknowns ρ and u and we have

∂tρ+ divx(ρu) = 0,

∂t(ρu) + divx(ρu⊗ u+ ρθId) = ρF
(1.2.6)

with θ a real constant which is therefore the constant temperature of the system. This system (1.2.6)
is called isothermal compressible Euler system.

The compressible Navier-Stokes system

Here, the fluid is no longer ideal. The effects of viscosity and thermal conduction must be taken into
account. Generally, thermal conduction is modeled by Fourier’s law, in other words Q = −κ∇xθ where
κ is the thermal conductivity. It is a constant that depends on temperature and pressure. But since
the pressure depends on the density and the temperature, κ therefore depends on the density and the
temperature: κ = κ(ρ, θ) > 0. While the viscous forces are modeled by adding a corrective term to the
pressure in the stress tensor S. Still following the Fourier law, we have S = −pId+λdivx(u)Id+µD(u)
where D is defined by

D(u) := ∇xu+ t∇xu−
2

d
divx(u)Id

and λ, µ are two scalars called viscosity coefficients. They also depend on pressure and temperature,
and therefore as for κ, λ = λ(ρ, θ) > 0 and µ = µ(ρ, θ) >0. The corrective term is therefore a linear
combination between divx(u)Id and D(u).

We thus obtain the Navier-Stokes equations for compressible fluids

∂tρ+ divx(ρu) = 0,

∂t(ρu) + divx(ρu⊗ u) = −∇xp(ρ, θ) +∇x(λ(ρ, θ)divx(u)) + divx(µ(ρ, θ)D(u)) + ρF,

∂t

(
ρe(ρ, θ) +

ρ|u|2

2

)
+ divx

(
ρe(ρ, θ)u+ ρu

|u|2

2

)
= −p(ρ, θ)divx(u) + divx(κ∇xθ)

+
1

2
µ(ρ, θ)D(u) : D(u)

+ λ(ρ, θ)divx(u)2.

(1.2.7)
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Hydrodynamics models for incompressible fluids

We now turn to the case where the fluid is incompressible. A fluid is incompressible if its volume is
constant whatever the pressure it undergoes. In fluid mechanics, it is often assumed that the studied
fluid is incompressible to simplify the equations. Mathematically, this means that ρ is constant.

In the case of an ideal fluid, the first two equations of the compressible Euler system (1.2.4) under
the constraint ρ is constant becomes

divx(u) = 0,

∂tu+ divx(u⊗ u) = −∇xπ + F
(1.2.8)

where π := p/ρ. Since ρ is constant, the pressure p only depends on the temperature θ, so π depends
on the temperature. However, there is no need for an equation of state to determine π. Indeed, by
taking the divergence on both side of the second equation in (1.2.8), we have

−∆xπ = divx (∂tu+ divx(u⊗ u))− divx(F ) = Tr((∇xu)2)− divx(F ).

So π is the solution of a Laplace equation with unknown u. The system (1.2.8) is called incompressible
Euler system.

Next, if the considered fluid is no longer ideal, we start from the Navier-Stokes equations (1.2.7) and
we assume that the density ρ is constant. The first equation of (1.2.7) gives divx(u) = 0. Moreover, if
we suppose that the coefficient of viscosity µ is constant, the second equation of (1.2.7) becomes

ρ(∂tu+ divx(u⊗ u)) +∇xp(ρ, θ) = µ∆xu+ ρF.

We define the kinematic viscosity ν := µ/ρ and we set π := p/ρ. We arrive at the incompressible
Navier-Stokes equations 

divx(u) = 0,

∂tu+ divx(u⊗ u) +∇xπ = F + ν∆xu.
(1.2.9)

1.2.3 Hydrodynamic limit for the Boltzmann equation

A kinetic description is much more complex than a hydrodynamic description, because the phase
space is much larger. In practical applications, kinetic equations require extremely expensive calcu-
lations. This is the case for the Boltzmann equation because of the collision integral. It is therefore
advantageous, when possible, to replace a kinetic model with a hydrodynamic model.

Let f = f(t, x, v) be a solution of the Boltzmann equation (1.1.5). We define the macroscopic
quantities ρ, u and θ by

ρ(t, x) :=

∫
Rd
f(t, x, v)dv, (1.2.10)

u(t, x) :=
1

ρ(t, x)

∫
Rd
vf(t, x, v)dv, (1.2.11)

θ(t, x) :=
1

dρ(t, x)

∫
Rd
|v − u(t, x)|2f(t, x, v)dv. (1.2.12)

ρ represents the density of particles, u the mean velocity and θ the temperature. In the Boltzmann
equation, we have conservation of mass, momentum and energy. That is,

∫
ϕ(v)Q(f, f)dv = 0 for
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ϕ(v) = 1, v and |v|2 where Q is the Boltzmann collision operator defined by (1.1.3).We multiply the
Boltzmann equation by 1, v, |v|2/2 then we integrate in v. We obtain

∂t

(∫
Rd
fdv

)
+ divx

(∫
Rd
vfdv

)
= 0,

∂t

(∫
Rd
vfdv

)
+ divx

(∫
Rd
v ⊗ vfdv

)
= 0,

∂t

(∫
Rd

|v|2

2
fdv

)
+ divx

(∫
Rd
v
|v|2

2
fdv

)
= 0.

(1.2.13)

Then by definition of ρ, u and θ, (1.2.13) takes the form

∂tρ+ divx(ρu) = 0,

∂t(ρu) + divx(ρu⊗ u) +∇x(ρθ) = −divx
(∫

Rd
A(v − u)fdv

)
,

∂t

(
ρ
|u|2

2
+
dρθ

2

)
+ divx

(
ρu
|u|2

2
+

(d+ 2)ρθu

2

)
=− divx

(∫
Rd
B(v − u)fdv

)
− divx

(∫
Rd
A(v − u)ufdv

)
(1.2.14)

with A(v) := v⊗ v− |v|2Id/d and B(v) := (|v|2 − (d+ 2))v/2. The left-hand side in (1.2.14) coincides
with the compressible Euler system (1.2.5) for gases with γ = 1 + 2/d. The right-hand side, on the
contrary, depends on the solution of the Boltzmann equation f and in general cannot be determined
as a function of the macroscopic variables ρ, u and θ.

The ideal would be that f vanishes the Boltzmann collision operator, Q(f, f) = 0. In this case, f
would be a local Maxwellian (or a local thermodynamic equilibrium) in other words

f =
ρ

(2πθ)d/2
exp

(
−|v − u|

2

2θ

)
.

And the system (1.2.14) would be closed on the unknowns ρ, u and θ because the right hand side
would be null. In other words, we would have

∂tρ+ divx(ρu) = 0,

∂t(ρu) + divx(ρu⊗ u) +∇x(ρθ) = 0,

∂t

(
ρ
|u|2

2
+
dρθ

2

)
+ divx

(
ρu
|u|2

2
+

(d+ 2)ρθu

2

)
= 0.

(1.2.15)

We introduce into the Boltzmann equation the Knudsen number Kn defined as being the mean
length l that a particle travels without undergoing a collision over the length L of the considered object
Kn := l/L. After scaling the constants, the Boltzmann equation becomes

∂f

∂t
+ v · ∇xf =

1

Kn
Q(f, f). (1.2.16)

The hydrodynamic limit consists in making Kn tend towards 0. Then to show that the solution fε,
ε = Kn of (1.2.16) tends towards a local thermodynamic equilibrium f when ε −→ 0 and to deduce
from it the limits equations for the hydrodynamic fields associated with f .

The first hydrodynamic limit studies for the Boltzmann equation are due to Hilbert [54], then to
Chapman-Enskog [46] who were inspired by it. Their methods make it possible to derive the Boltzmann
equation in order to formally recover the Euler and Navier-Stokes equations (compressible or not).
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1.2.4 Macroscopic models for traffic flows

To model traffic flow, we use macroscopic models when we consider the flow of vehicles as a continuous
medium. We are therefore dealing with equations derived from fluid dynamics.

A typical example of a first-order model is the famous model independently developed by Lightill,
Whitham [60] and Richards [75] (called the LWR model) in the 1950s. In this model, we are interested
in the density of vehicles ρ(t, x) along the road. The LWR model is the following equation of unknown
ρ

∂tρ+ ∂x(ρV (ρ)) = 0 (1.2.17)

where V is the corresponding preferential velocity. It is a non-increasing given function in ρ, non-
negative for ρ ∈ [0, ρm] where ρm is the density of vehicles during a total traffic jam. However, such
an equilibrium model is unable to describe flows in which there are few slow drivers.

Let us now move on to second-order models with the example of the Payne-Whitham model [69],
[92] (called the PW model). These models are always macroscopic but unlike first-order models such as
the LWR (1.2.17) model, these include two equations which are strongly inspired by one-dimensional
fluid equations. The PW model is the following system of two equations

∂tρ+ ∂x(ρv) = 0,

∂tv + v∂xv +
1

ρ
p′(ρ)∂xρ =

1

τ
(V (ρ)− v) + ν∂2

xv
(1.2.18)

of unknowns ρ and v which are respectively the density and the velocity. The first equation in (1.2.18)
is conservation of mass while the second equation in (1.2.18) mimics the momentum equation (1.2.2).
However, there are big differences between traffic flow and fluid flows. In reality, there is no conservation
of momentum in the first. The pressure term p that we have in fluid dynamics is replaced by an
anticipation factor. That is, a term that describes the reaction of a mean driver to a spatial variation
in the concentration of vehicles in front of him. In the second equation of the system (1.2.18), we have
p = p(ρ) which is inspired by the dynamics of gases by an isothermal law: p(ρ) = ρ. And τ , ν are
non-negative constants.

However, the PW (1.2.18) model has an inconvenient [33]. The characteristic velocities in (1.2.18)
are v = ±

√
p′(ρ). Consequently part of the information travels faster than the velocity v of the

vehicles. Since p(ρ) = ρ, the anticipation factor involves the derivative of the pressure with respect
to x. This is incorrect because if we suppose for example that in front of a driver moving at velocity
v, the density increases with respect to x, but decreases with respect to x − tv, then the model PW
(1.2.18) then predicts that this conductor will slow down since the density increases relative to x. On
the contrary, any reasonable driver would accelerate since this denser traffic is moving faster than him.
This problem has been rectified by Aw, Rascle, Zhang [5], [93] with the following model (called ARZ
model) of unknowns ρ and v 

∂tρ+ ∂x(ρv) = 0,

∂t(v + p(ρ)) + v∂x(v + p(ρ)) = 0
(1.2.19)

where this time the pressure term p is a smooth function which vanishes at 0: p(0) = 0, which has a
strictly increasing derivative: p′(ρ) > 0 for all ρ > 0 and such that the function ρ 7−→ ρp(ρ) is strictly
convex. A typical example is p(ρ) = ργ with γ > 0.

Example of an hydrodynamic limit

In Ref. [38], an ARZ-type model is obtained from a hydrodynamic limit of the equation (1.1.11). If
consistent with a hydrodynamic regime, we assume that the progress H is small, then we approach
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f(t, x+H, v?) ' f(t, x, v?) +H∂xf(t, x, v?) by a truncated Taylor expansion of order 1. Therefore, we
can approximate the equation (1.1.11) by

∂t

∫ 1

0
ϕ(v)f(t, x, v)dv + ∂x

∫ 1

0
vϕ(v)f(t, x, v)dv

=
1

2

∫ 1

0

∫ 1

0
〈ϕ(v′)− ϕ(v)〉f(t, x, v)f(t, x, v?)dvdv?

+
H

2

∫ 1

0

∫ 1

0
〈ϕ(v′)− ϕ(v)〉f(t, x, v)∂xf(t, x, v?)dvdv?.

(1.2.20)

After scaling space and time, the model (1.2.20) can be written for any ε > 0

∂t

∫ 1

0
ϕ(v)f(t, x, v)dv + ∂x

∫ 1

0
vϕ(v)f(t, x, v)dv =

1

ε
(Q(f, f), ϕ) +

H

2
(Q(f, ∂xf), ϕ) (1.2.21)

where Q is the collision operator defined for every test function ϕ : [0, 1] −→ R by

〈Q(f, g), ϕ〉 :=

∫ 1

0

∫ 1

0
〈ϕ(v′)− ϕ(v)〉f(t, x, v)g(t, x, v?)dvdv?. (1.2.22)

with v′ is defined in (1.1.10). On the right hand side in (1.2.21), due to the presence of the partial
derivative at x of f , the time scale of the second term is different from that of the first term. Two time
scales are detected but this can be resolved by means of the following splitting (for details, see Ref.
[44]) 

∂t

∫ 1

0
ϕ(v)f(t, x, v)dv =

1

ε
(Q(f, f), ϕ),

∂t

∫ 1

0
ϕ(v)f(t, x, v)dv + ∂x

∫ 1

0
vϕ(v)f(t, x, v)dv =

H

2
(Q(f, ∂xf), ϕ).

(1.2.23)

The first equation in (1.2.23) describes quick local interactions among the vehicles. By letting ε −→ 0,
we formally obtain Q(f, f) = 0. So f = Mρ,u is a local Maxwellian which is spanned by the local
density of vehicles ρ and the bulk velocity of vehicles u defined as

ρ(t, x) :=

∫ 1

0
f(t, x, v)dv and u(t, x) :=

1

ρ(t, x)

∫ 1

0
vf(t, x, v)dv.

In particular, we have ∫ 1

0
Mρ,u(v)dv = ρ and

1

ρ

∫ 1

0
vMρ,u(v)dv = u.

In the second equation in (1.2.23), we have by (1.1.10) that (Q(f, f), 1) = (Q(f, f), v) = 0. This
expresses the slower transport of the local Maxwellian on the hydrodynamic spatio-temporal scale.
By injecting Mρ,u into the second equation of (1.2.23), one obtains (Q(Mρ,u, ∂xMρ,u), 1) = 0 and
(Q(Mρ,u, ∂xMρ,u), v) = γρ2λ(ρ)∂xu. We obtain the closed system of equations on ρ and u

∂tρ+ ∂x(ρu) = 0,

∂t(ρu) + ∂x(ρE) =
γH

2
ρ2λ(ρ)∂xu

(1.2.24)

where

E :=
1

ρ

∫ 1

0
v2Mρ,u(v)dv

is the energy of the local equilibrium distribution. The system (1.2.24) is an ARZ-type system.
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1.3 Microscopic models

1.3.1 Definition

Consider a system composed of a number n of agents (n is large but finite). A microscopic model is a
mathematical model that describes the evolution of each agent one by one. We therefore have a system
of n equations with for each equation the unknown which is the state of the agent considered. Since
we are in the kinetic case, the state of an agent i is determined by its position xi ∈ Rd and its velocity
vi ∈ Rd (d = 2 or 3 in general). The natural phase space considered is (Rd × Rd)n.

The fundamental principle of dynamics makes it possible to describe the movement of agents in a
classical way. The sum of the forces exerted on an agent is proportional to its acceleration (we will
assume for simplicity that all the agents have the same mass equal to 1). Then each agent exerts a
force on the others and is subject to external forces independent of the other agents. By noting xi(t)
the position of the agent i at time t ≥ 0, and vi(t) the velocity of the agent i at time t ≥ 0, we obtain
the following system

d

dt
xi(t) = vi(t),

d

dt
vi(t) = G(xi(t), vi(t)) +

1

n

n∑
j=1

F (xi(t)− xj(t), vi(t)− vj(t))
(1.3.1)

which is a system of 2n first-order differential equations. We add to this system the initial positions
x0 := (x1(0), · · · , xn(0)) ∈ (Rd)n and the initial velocities v0 := (v1(0), · · · , vn(0)) ∈ (Rd)n.

In (1.3.1), the term G(xi(t), vi(t)) represents the external forces acting on the agent i at time t.
These forces are independent of the other agents. For example, we can have G(x, v) = −∇U(x). It
is the force imposed at the point x in a potential U(x). This is the case for U(x) = α/|x − x0|,
which is the gravitational potential of a star placed at the point x0 ∈ R3 with α > 0. The term
F (xi(t)− xj(t), vi(t)− vj(t)) describes the force exerted by the agent j on the agent i. If F (0, 0) = 0,
then no agent exerts any force on itself, we say in this case that there is no self-interaction. The
coefficient 1/n placed in front just allows to induce a total force of order 1 which will lead to the
mean-field limit. In some models, the function F may only depend on x and derive from a potential
U : F (x, v) = −∇U(x). This is the case for the stars where U(x) = α/|x|, α > 0 and x ∈ R3. It is the
gravitational potential for the stars.

Microscopic models can also be random, in other words for each agent i, its position at time t and
its velocity at time t depend on a random parameter. They are therefore no longer elements of Rd but
random variables which taking values in Rd, denoted Xi(t) and Vi(t). The map t 7−→ Xi(t) are the
trajectories of the agent i.

A fundamental example of trajectories is the Brownian motion (B(t))t, t ≥ 0, which we usually start
at 0: B(0) = 0. Consider a system of n agents where each follows an independent Brownian trajectory,
and each starting from a random initial position Xi(0). So we have for each i, Xi(t) = Xi(0) +Bi(t).
Since the random drifts are infinitesimal, it is more natural to write

dXi(t)

dt
=
dBi(t)

dt
.

Only that doesn’t make sense because the trajectories of Brownian motions are almost surely nowhere
differentiable. Stochastic calculus makes it possible to give a sense to equations of this form. By
convention, the system is therefore written for all 1 ≤ i ≤ n

dXi(t) = dBi(t).

It can very well be made more complex by adding drift terms. For all 1 ≤ i ≤ n,

dXi(t) = dBi(t) + ϕ(Xi(t))dt.
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These equations can be written in integral form,

Xi(t) = X0(t) +Bi(t) +

∫ s

0
ϕ(Xi(s))ds

for all 1 ≤ i ≤ n.
We will rather suppose that the position and the velocity of each agent i satisfy the following

system of stochastic differential equations
dXi(t) = Vi(t)dt,

dVi(t) = G(Xi(t), Vi(t))dt+
1

n

n∑
j=1

F (Xi(t)−Xj(t), Vi(t)− Vj(t))dt+ σBi(t)
(1.3.2)

where σ is a diffusion coefficient that we will assume to be constant and (Bi(t))t independent Brownian
motions. We add the random initial conditions (X1(0), · · · , Xn(0)), (V1(0), · · · , Vn(0)). We say that
the microscopic model (1.3.2) is random when σ 6= 0 and that it is deterministic when σ = 0. In the
deterministic case, the system (1.3.2) is simply the system (1.3.1).

1.3.2 Mean-field limit

We give ourselves a microscopic system composed of n agents. One can ask the following question: Is
there a limit when n tends to infinity ? To study a such passage to the limit, it is first necessary to
consider the problem at the right scale so that the interactions between the agents are weak enough so
that the forces and influences exerted on a given agent remain finite at the limit. We want to identify a
limit, in other words a mathematical object that is defined as the solution of a kinetic (or mesoscopic)
model.

Most of the time, microscopic models have a very high number of agents. There can be up to 109

insects in a swarm or 1012 stars in a galaxy. What interests us is rather the global state of the system
and not the state of each agent. Because each agent taken individually has a very weak action on
the system and cannot generally be observed. We therefore need to observe a microscopic system on
a statistical scale where, rather than studying the state of each agent one by one, we will rather ask
ourselves what is the probability of falling on an agent in a given state or rather in a part of the phase
space. We therefore wish to establish a statistical description of a model from an individual description.
This corresponds to a limit of the law of large numbers type in a probabilistic framework. The simplest
mathematical object allowing to describe a microscopic system at the limit is a probability density f
which represents the statistical distribution of the agents in the system. The mean-field limit is a limit
on the number of agents n in which the larger n, the weaker the action of each agent becomes while
preserving the mean interaction, in other words say that the average action of the agents is of order 1.

From the outset, we are faced with a difficulty. Indeed, if we consider for example a system where
the state of an agent i is its position xi ∈ Rd, then the phase space in which the solution lives is (Rd)n

whose dimension tends to infinity with n. We are therefore led to consider the empirical measure

µn :=
1

n

n∑
i=1

δxi .

The advantage of considering the empirical measure is that it lives in the same space whatever n, the
space of probability measures on Rd: P(Rd). If we add the velocity vi to characterize the state of the
agent i, then the empirical measure is

µn :=
1

n

n∑
i=1

δ(xi,vi).
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It is a probability measure on Rd × Rd.
We give ourselves a non-random microscopic model composed of n agents. Each characterized at

time t by its position xi(t) and its velocity vi(t), with initial positions x0 := (x1(0), · · · , xn(0)) and
initial velocities v0 := (v1(0), · · · , vn(0)). We define at time t ≥ 0 the empirical measure

µn(t) :=
1

n

n∑
i=1

δ(xi(t),vi(t)).

We assume that µn(0) converges to a probability measure µ0. Solving a mean-field limit problem
means finding a time-dependent probability measure µ, which is the solution of a kinetic model with
initial condition µ0 and such that µn(t) converges to µt for all t ≥ 0.

Mean-field limit problems also exist for random microscopic models. In this case, for any instant
t ≥ 0, the empirical measure associated to the system

µn(t) :=
1

n

n∑
i=1

δ(Xi(t),Vi(t))

is no longer a probability measure in Rd × Rd but a random variable taking values in the space of
probability measures on Rd × Rd.

The Boltzmann equation, which is a kinetic model, is not a mean-field limit. Because the particles
only interact with those with which they collide. That within a mean-field limit, each agent feels the
influence of all the others. Nevertheless, the Boltzmann equation can be derived from the fundamental
law of dynamics. This is the Grad limit, which is not a mean-field limit. This problem has been solved
for small times by Lanford [59].

Example in the deterministic case

Consider Newton’s system of equations (1.3.1) (which has already been scaled with the term 1/n) with
the functions G = 0 and F smooth for simplicity. Then (1.3.1) becomes

d

dt
xi(t) = vi(t),

d

dt
vi(t) = (F ∗ µn(t))(xi(t), vi(t)).

(1.3.3)

where µn(t) is the associated empirical measure. It is easy to check that it is a solution of the Vlasov
equation (1.1.6) (in a weak sense) where the force term is the convolution product defined by (1.1.7)
with the kernel k the function F in (1.3.3). In other words µn is solution in the weak sense of

∂f

∂t
+ v · ∇xf +∇v · ((F ∗ f)f) = 0. (1.3.4)

The mean-field limit problem can be stated as follows. Consider a sequence of initial conditions
(x1(0), · · · , xn(0), v1(0), · · · , vn(0)) in (Rd×Rd)n of associated empirical measure µn(0) which converges
to a probability measure µ0 ∈ P(Rd ×Rd). So does at each instant t ≥ 0, the measure µn(t) converges
towards the measure µ(t) solution of (1.3.4) of initial condition µ0 ? Knowing that µn(t) is itself a
solution of (1.3.4). This question comes down to a problem of stability of the solutions of (1.3.4), which
was solved at the end of the 70s independently by Braun, Hepp [17], Dobrushin [41] and Neunzert [66].

1.3.3 Some microscopic models

Cucker-Smale model

This microscopic model introduced by Cucker, Smale [30], [31] describes the collective behavior over
time of a group of individuals (flocks of birds, schools of fish, etc.) without any leader. In this model,
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the velocity of each individual is influenced by the others depending on the distance. We say that
there is flocking when all the individuals tend to have the same velocity and to keep the group. From
a mathematical point of view, this means that

∀1 ≤ i ≤ n, sup
t≥0

∣∣∣∣∣∣xi(t)− 1

n

n∑
j=1

xj(t)

∣∣∣∣∣∣
2

< +∞ and lim
t→+∞

∣∣∣∣∣∣vi(t)− 1

n

n∑
j=1

vj(t)

∣∣∣∣∣∣
2

= 0.

•
•

•
•

•

Figure 1.2: Illustration of flocking.

The idea of Cucker and Smale is that each individual will tend to average its velocity with that of
the others so that there is flocking. In addition, the influence of other individuals decreases with the
distance. So we have the system

d

dt
xi(t) = vi(t),

d

dt
vi(t) =

λ

n

n∑
j=1

ψ(|xi(t)− xj(t)|)(vj(t)− vi(t))
(1.3.5)

where ψ : R 7−→ R is a positive decreasing function called communication rate and λ a positive real
which measures the strength of interaction between individuals. The system (1.3.5) is deterministic
and corresponds to (1.3.1) with G = 0 and F (x, v) = −λψ(|x|)v, so it is a problem of mean-field limit.
In Ref. [30], [31], Cucker and Smale showed that there is flocking in the case where the communication
rate ψ is defined by ψ(r) := 1/(1 + r2)γ with γ ∈ [0, 1/2[. This result was found, then extended to
γ = 1/2 by Ha, Tadmor [53].

In Ref. [53], we have also a hydrodynamic description of flocking. By defining ρ, u by (1.2.10),
(1.2.11), and E by E(t, x) := e(t, x) + |u(t, x)|2/2 with ρ(t, x)e(t, x) :=

∫
|v|2f(t, x, v)dv/2, we have

the closed system of equations on ρ, u and E
∂tρ+ divx(ρu) = 0,

∂t(ρu) + divx(ρu⊗ u+ P ) = S1(t, x),

∂t(ρE) + divx(ρuE + Pu+Q) = S2(t, x).

(1.3.6)

Here, S1(x, t) and S2(x, t) are the nonlocal source terms given by

S1(t, x) := −λ
∫

Rd
ψ(|x− y|)(u(t, x)− u(t, y))ρ(t, x)ρ(t, y)dxdy,

S2(t, x) := −λ
∫

Rd
ψ(|x− y|)(E(t, x) + E(t, y)− u(t, x) · u(t, y))ρ(t, x)ρ(t, y)dxdy
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and P = (pi,j)i,j , Q = (qi)i denote respectively the stress tensor and the heat flux vector

pi,j :=

∫
Rd

(vi − ui)(vj − uj)fdv and qi :=

∫
Rd

(vi − ui)|v − u|2fdv.

There are random versions of the Cucker-Smale model. Ha, Lee and Levy [52] proposed for example
the following model. For 1 ≤ i ≤ n

dXi(t) = Vi(t)dt,

dVi(t) =
λ

n

n∑
j=1

ψ(|Xi(t)−Xj(t)|)(Vj(t)− Vi(t)) +
√
DdBi(t)

with D a non-negative number representing the intensity of the noise and B1, · · · , Bn independent
d-dimensional Brownian motions. This is the system (1.3.2) with G = 0, F (x, v) = −λψ(|x|)v and
σ =
√
D. The random perturbation introduced is independent for each individual. It can be seen as a

model of the degree of freedom or madness of each individual.

Self-propelled model with interactions

This is a microscopic model proposed by D’Orsogna, Chuang, Bertozzi, Chayes [45] reading as
d

dt
xi(t) = vi(t),

d

dt
vi(t) = (α− β|vi|2)vi −

1

n

n∑
j=1

∇U(xi − xj).
(1.3.7)

This is again a deterministic Newton system (1.3.1) with G(x, v) = (α−β|v|2)v and F (x, v) = −∇U(x).
The term G where α and β are two non-negative parameters is a force of self-propelled and friction to
model the tendency of agents to reach a certain velocity limit of norm

√
α/β. The force F for its part

derives from a potential U . It models the tendency of agents to get closer if they are too far apart and
vice versa. A typical potential used in this model is the Morse potential

U(x) = −CAe−|x|/lA + CRe
−|x|/lR

where CA, CR, lR < lA are non-negative constants which indicate the intensity and the characteristic
length of attraction and repulsion.

This model (1.3.7) is also a mean-field limit. The associated empirical measure µn(t) is the solution
of the Vlasov equation

∂f

∂t
+ v · ∇xf − (∇U ∗ ρ) · ∇vf +∇v · ((α− β|v|2)vf) = 0 (1.3.8)

with ρ :=
∫
f(t, x, v)dv. We take a sequence of initial conditions (x1(0), · · · , xn(0), v1(0), · · · , vn(0)) in

(Rd × Rd)n with empirical measure µn(0) which converges to a probability measure µ0 ∈ P(Rd × Rd).
Then for each instant t ≥ 0, the measure µn(t) converges to the measure µ(t) solution of (1.3.8) with
initial condition µ0 [21], [25].

There is a hydrodynamic limit result for the equation (1.3.8) in Ref. [21], [25]. For a potential U ,
we consider the closed system of equations in ρ and u

∂tρ+ divx(ρu) = 0,

∂tu+ divx(u⊗ u) = (α− β|u|2)u−∇xU ∗ ρ.
(1.3.9)
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with initial conditions (ρ0, u0). We assume that there exists (ρ, u) solutions of (1.3.9) with initial
conditions (ρ0, u0) defined on the interval [0, T ] and we define f : [0, T ] −→ P(Rd × Rd) by∫∫

Rd×Rd
ϕ(x, v)f(t, x, v)dxdv :=

∫
Rd
ϕ(x, u(t, x))ρ(t, x)dx.

In other words, f(t, x, v)dv := ρ(t, x)δu(t,x)(dv) is a monokinetic distribution. Then f is the unique
solution of (1.3.8) with initial condition f0(x, v)dv = ρ0(x)δu0(x)(dv).

Vicsek model

This model proposed by Vicsek in 1995 [86] is a random microscopic model. The random positions
Xi(t) and Vi(t) are solutions of the system of Stratonovich stochastic differential equations

dXi(t) = Vi(t)dt,

dVi(t) =
√

2P (Vi(t)) ◦ dBi(t)− P (Vi(t))

 1

n

n∑
j=1

K(Xi(t)−Xj(t))(Vi(t)− Vj(t))

 dt
(1.3.10)

where P (v) is the projection on the tangent space to v/|v| on the unit sphere Sd−1 of Rd. In other
words P (v) := Id − (v ⊗ v)/|v|2. It is kind of a random version of the Cucker-Smale model where the
individuals evolve at constant velocity in norm.

The problem of the mean-field limit for this model has been traited in [12]. Consider the system
of equations (1.3.10) where the initial data (Xi(0), Vi(0)) are independent and have the same law µ0.
For 1 ≤ i ≤ n, we define the fictitious process (X̄i(t), V̄i(t)) which is the solution of

dX̄i(t) = V̄i(t)dt,

dV̄i(t) =
√

2P (V̄i(t)) ◦ dBi(t)− P (V̄i(t))(H ∗ µ(t))(X̄i(t), V̄i(t))dt

(1.3.11)

where H(x, v) := K(x)v, (Bi(t))t the Brownian motion which directs the evolution of the process
(Xi(t), Vi(t)) and µ(t) the solution of the Fokker-Planck equation

∂f

∂t
+ v · ∇xf = ∆vf +∇v · (fP (v)(H ∗ f)) (1.3.12)

with x ∈ Rd, v ∈ Sd−1 and initial data µ0 ∈ P(Rd × Sd−1). The fictitious individual (X̄i(t), V̄i(t))
evolves in the field H ∗µ(t) generated by µ(t) when the physical individual (Xi(t), Vi(t)) evolves in the
field H ∗ µn(t) generated by µn(t), which is close to µ(t). This method is presented in [79] and makes
it possible to obtain convergence rates.

The question of the hydrodynamic limit has been treating for this model. Let Xi(t) be the random
position in Rd and Vi(t) the random velocity in Sd−1 of the agent i. All agents have a constant norm
velocity equal to c. Then the system (1.3.10) is written as

dXi(t) = cVi(t)dt,

dVi(t) = P (Vi(t)) ◦
(
ν
Ji(t)

|Ji(t)|
dt+

√
2DdBi(t)dt

) (1.3.13)

where the parameter ν is the interaction frequency, D the intensity of the noise and

Ji(t) :=
∑

j, |Xi −Xj | ≤ R

Vj(t)
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with R the interaction range. When n tends to infinity, we obtain the mean-field model (1.3.12) of
unknown f = f(t, x, v), t ≥ 0, x ∈ Rd and v ∈ Sd−1 which in the case of (1.3.13) is written

∂f

∂t
+ cv · ∇xf = −∇v · (F [f ]f) +D∆vf (1.3.14)

with F [f ](t, x) := νP (v)I(t, x)/|I(t, x)| where

I(t, x) :=

∫
|x−y|<R

∫
Sd−1

vf(t, y, v)dvdy

and where the constants c, ν, D and R are the same as in (1.3.13). The derivation of the mean-field
model (1.3.14) from the discrete model (1.3.13) has been justified in [12]. After scaling the constants
(for detail, see Ref. [34]) there exists k = O(1) such that the model (1.3.14) can be written for all
ε > 0

∂fε
∂t

+ v · ∇xfε =
1

ε
Q(fε) (1.3.15)

where the collision operator Q is defined by Q(f) := −∇v((kP (v)Jf/|Jf |)f) + ∆vf with k = O(1) and

Jf :=

∫
Sd−1

vf(t, x, v)dv.

When ε tends to 0, fε formally tends to f which satisfies Q(f) = 0. By defining ρ and u by (1.2.10)
and (1.2.11), then there exist two positive constants C1 and C2 such that we have the closed system
of equations on ρ and u 

∂tρ+ C1divx(ρu) = 0,

∂t(ρu) + C2divx(ρu⊗ u) + P (u)∇xρ = 0,

|u| = 1.

(1.3.16)

The limit fε −→ f when ε −→ 0 has been rigorously proved in Ref. [55].

1.3.4 Microscopic models for traffic flow

Microscopic models are used to describe a traffic flow when considering individual vehicles. Typically,
these microscopic models are based on the method called follow-the-leader and are stated as a system
of ordinary differential equations. They are usually based on velocity or acceleration functions that
depend on spacing distance, velocity, predecessor velocity, relative velocity and so on. These models
have a different form than (1.3.1).

One of the simplest approaches is a model based only on the distance between vehicles proposed
by Pipes [70]

d

dt
xi(t) = W (∆xi(t)) (1.3.17)

where ∆xi(t) := xi+1(t)− xi(t) denotes the spacing between vehicle i and its predecessor i+ 1 and W
represents the optimum velocity function as a function of the spacing. The microscopic behavior can
be improved by introducing a reaction and relaxation time. The simplest model is the one proposed
by Newell [67]

d

dt
xi(t+ τ) = W (∆xi(t)) (1.3.18)

38 AYOT Valentin



CHAPTER 1. INTRODUCTION
;A<

with τ > 0 the reaction time. By applying a Taylor expansion on the left-hand side in (1.3.18), we
obtain the optimal velocity model (called the OVM model) introduced by Bando et al [6]

d

dt
xi(t) = vi(t),

d

dt
vi(t) =

1

τ
(W (∆xi(t))− vi(t)).

(1.3.19)

However the inconvenient pointed out by Daganzo [33] for the PW model (1.2.18) can be observed in
models of the type "follow-the-leader" such as the OVM model (1.3.19). Another microscopic model
based on that of Newell (1.3.18) is the one introduced by Tordeux, Seyfried [80]

d

dt
xi(t) = W (∆xi(t)− τ [W (∆xi+1(t))−W (∆xi(t))]). (1.3.20)

The model (1.3.20) is a system of ordinary differential equations of first order with two interacting
predecessors. It is calibrated by the delay time τ ∈ R, that is a reaction time if positive and an
anticipation time if negative, and by the optimal velocity function W .

Another example of a second order microscopic model is the following
d

dt
xi(t) = vi(t),

d

dt
vi(t) = C

vi+1(t)− vi(t)
(∆xi(t))γ+1

+
A

Tr

(
V

(
∆X

∆xi(t)

)
− vi(t)

) (1.3.21)

with ∆xi(t) = xi+1(t) − xi(t), ∆X the length of a car, Tr the relaxation time and C > 0, A > 0 and
γ ≥ 0 given constants. This model (1.3.21) can be derived in order to obtain the ARZ-type macroscopic
model (1.2.19) 

∂tρ+ ∂x(ρv) = 0,

∂t(ρ(v + p(ρ))) + ∂x(ρv(v + p(ρ))) = A
ρ

Tr
(V (ρ)− v).

(1.3.22)

The macroscopic model (1.3.22) can be viewed as the limit of the time discretization of the microscopic
model (1.3.21) when the number of vehicles increases, with a scaling in space and time (a zoom) for
which the density and the velocity remain fixed. This limit has been rigorously proved in Ref. [4].

1.4 Contributions

In this manuscrit, we are interested in a kinetic Boltzmann-type model introduced by Bertin, Droz,
Gregoire [9], [10] which describes the movement of a group of individuals subject to a social interaction.
In this model, each individual (bird, fish, rod,...) moves independently from the others outside the
collisions and are indistinguishable. At the time of the collision if two individuals are close enough,
then they will line up in velocity. For each t ≥ 0, the evolution of the collective behavior is represented
by a probability distribution ft = f(t, x, v) where x denotes the position, and v denotes the velocity
of the individuals. The two velocities v, v? adopted by the two individuals after the collision are
equal v = v?, and randomly distributed according to a probability K( · , v′, v′?) centered at the mid
pre-collisional velocity (v′+v′?)/2. In general, the collision rate is represented by a symmetric function
β(v′, v′?) taking its values close to 1 if the two individuals are almost aligned before the collision and
taking its values close to 0 in the case of grazing collisions. The model may also take into account a
velocity confinment as in Cañizo, Carrillo, Rosado [21]. The position space x is d-dimensional and the
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velocity v ∈ Rd (d = 2 or 3) is of constant modulus equal to 1. In [73], Raoul studies a similar model.
The population of the individuals is structured by a continuous one-dimensional trait. At the time
two individuals meet, they interact sexually and the trait of the offspring is distributed according to a
Gaussian measure centered at the mid trait of the parents.

The unknown probability distribution f = f(t, x, v), t ≥ 0, x ∈ Rd and v ∈ Sd−1 satisfies the
following Boltzmann like equation in the sense of distributions:

∂f

∂t
+ v · ∇xf = Q(f, f) = Q+(f, f)−Q−(f, f) (1.4.1)

where Q(f, f) is the collision operator which is decomposed as in the Boltzmann equation (1.1.5) into
a gain term Q+(f, f) and a loss term Q−(f, f). For any test function ϕ ∈ C∞c (R× Rd × Sd−1),

〈Q+(f, f), ϕ〉 :=

∫ +∞

0

∫
Rd

∫
Sd−1

∫
Sd−1

∫
Sd−1

ϕ(t, x, v)K(dv, v′, v′?)β(v′, v′?)f(t, x, dv′)f(t, x, dv′?)dtdx

and

〈Q−(f, f), ϕ〉 :=

∫ +∞

0

∫
Rd

∫
Sd−1

∫
Sd−1

ϕ(t, x, v)β(v, v′)f(t, x, dv)f(t, x, dv′)dtdx.

In Ref. [9], [10] and Carlen, Carvalho, Degond, Wenneberg [22], the dimension of the velocity is d = 1,
the direction taken after the collision is chosen according to a density probability distribution centered
at the mean (v′ + v′?)/2. This model is called the continuous midpoint model.

v′

v′?

v ' (v′ + v′?)/2

Figure 1.3: Scheme of a collision between two individuals of respective velocity v′ and
v′?. The velocity adopted by the two individuals after the collision will be the same, chosen
according to a probability distribution centered at the mean (v′ + v′?)/2.

In a probabilistic framework, in both cases, the velocity after the collision is written under the
form v = (v′ + v′?)/2 + X where X is a random variable of law g, considered discrete or continuous.
We choose from now on any probability g(dv) on Rd with zero mean and covariance matrix Σg. For
example g(v)dv, a density with respect to the Lebesgue measure as in ref. [22]. The model we consider
in this manuscript is given by the following kernel K,

K(dv, v′, v′?) := τ(v′+v′?)/2#g(dv). (1.4.2)

To establish the existence of solutions of equation (1.4.1), we will equip the space Pp(Rd), p ≥ 1 with
the Wasserstein metric of order p ≥ 1 Wp.

This model is new and interesting because it is located at the interface between collective dynamics
and kinetic theory. The transport equation has no forcing or diffusion term in velocity, the change
of velocity is computed as in Boltzmann framework. Since the collisions are not micro-reversible, it
is not obvious to find an entropy functional. In the Boltzmann equations, micro-reversibility is a
crucial element for obtaining the H Theorem. Consequently, the classical tools for dealing with the
problems of returns to equilibrium, such as for example the Csiszàr-Kullback-Pinsker inequality [37],
are inoperative. In our case, we have instead a phenomenon of contraction in the collision process
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which does not take place for the Boltzmann operator but drives the density towards an equilibrium
state.

We will start in chapter 2, by treating the most basic version of the model, and then we will assume
in chapter 3 that the collision rate is no longer constant, which will add considerable difficulty. At the
end of this manuscript, there are two appendices. The first is devoted to the Wasserstein metric Wp,
a metric which will be of great use to us. And the second will state two elementary results on ODEs.

Chapter 2

In this chapter, we will study the BDG model (1.4.1) in the most simplified version possible. We
will focus on the spatially homogeneous case with a constant collision rate β equal to 1, the so-called
Maxwellian case. And the collision kernel K defined by (1.4.2) with g ∈ P0

2 (Rd). We will also assume
that the velocity v belongs to Rd and not Sd−1. In Ref. [9], [10], [22], the dimension d of the space
of velocities is equal to 1. And in Degond, Frouvelle, Raoul [35], the space of velocities may be a
manifold of any dimension d ≥ 1, but the probability K(dv, v′, v′?) = δ(v′+v′?)/2(dv) must be a Dirac
mass at the mid velocity. The model in Ref. [35] is the BDG model in the particular case when
β = 1 and when the direction taken by the two individuals is exactly the mean (v′ + v′?)/2 of the two
pre-collisionnal directions. In other words with g = δ0. This model is called the discrete midpoint
model. Our results are more general in the sense that they are valid in any dimension and for any
distribution K(dv, v′, v′?). However the technique of proofs we use assume that the space of velocities
is Euclidean. A model where the velocity is constrained to be of norm 1 as in [35] is out of reached by
our methods.

We will show in this chapter the existence of a unique solution called Mild solution (Definition
2.2.2 and Theorem 2.2.1) and that it converges exponentially towards the unique equilibrium state
(Definition 2.3.1) for the Wasserstein metric (Theorem 2.3.1) and for the strong L1 norm (Theorem
2.4.1). Since the collision rate β is constant, we will can use the Fourier transform in equation (1.4.1).
We will show the existence and the uniqueness of the solutions and of the equilibrium state by a
fixed point type argument. Moreover we will have an explicit formula for the Fourier transform of the
equilibrium state (Proposition (2.3.1) of this manuscript and Theorem 1 in Ref. [22]). To prove the
exponential convergence for the strong norm L1, we will control the strong norm L1 by the Fourier-
Toscani-based distance d2 introduced in Carrillo, Toscani [24] and Toscani, Villani [81]. Hence the
interest of passing in Fourier (1.4.1). Then we will show that as for the Wasserstein metric, the
solution converges exponentially towards the equilibrium state for the d2 metric. To bound the strong
L1 norm by the d2 metric, an estimate on the Sobolev norm ‖ · ‖Hs(Rd) is needed for s ≥ 0. We
will also find the result concerning the discrete midpoint model obtained by Degond, Frouvelle, Raoul
(Proposition 2.3 in Ref. [35]). Then we will end with numerical simulations.

Chapter 3

In this chapter, we consider the same model as in the previous chapter (1.4.1) but with a non-constant
collision rate β. The collision rate β added is a symmetric continuous function of Rd × Rd in [0, 1].
This adds a considerable difficulty because in the previous model, the fact that β was constant made
it possible to write the gain term Q+ in the form of a double convolution, and therefore one could
pass to Fourier. Unfortunately, the non-constancy of β gives Q+ a more complicated expression than
a double convolution, and no longer allows passing to Fourier. Therefore, all the tools used in the
previous chapter will be inoperative in this chapter.

However, we can still write the model as a linear ordinary differential equation (B.1) in infinite
dimension which gives rise to an operator Tg,β which depends on g and β. We will show various
properties concerning this operator. It is continuous, in particular it satisfies the Hölder condition
with α = 1/2 for some class of collision rate β, it preserves the space Pm2 (Rd) and it is the double
convolution from the previous chapter if β is constant equal to 1. With this operator, we can therefore
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define a Mild solution (Definition (3.2.1)) as in the previous chapter. Only proving its existence is very
difficult because this operator is a contraction only in the case where β is constant equal to 1.

We will show in this chapter that the operator Tg,β admits a fixed point and therefore that the model
admits an equilibrium state. Moreover we will have an explicit formula of the equilibrium state in the
particular case where g and β are Gaussian with a condition on their variance. We will use for that a
Schauder fixed point Theorem and therefore we will not have the uniqueness of the equilibrium state
contrary to the previous chapter. We will end as for the previous chapter with numerical simulations.
These will show the existence of the solution at all times as well as a convergence towards a unique
equilibrium state. Unfortunately the convergence towards the equilibrium state is not yet proved.

Appendix

This manuscript has two appendices chapters. The first will be devoted to the Wasserstein metric.
This metric will be very useful to us because it allows us to define a metric on the space Pp(Rd). We
will explain the link between this metric and the theory of optimal transport, then we will list various
properties of this metric, including the famous Kantorovich Duality formula (Theorem A.3.1) for which
we will give a rigorous proof for the particular compact case and when the cost function is continuous.
We will give a characterization of what means Converging in the Wasserstein sense (Theorem A.5.1)
with its proof then we will study the topology induced by this metric. And we will finish by explaining
how to implement this metric numerically on the real line. In the second appendix chapter, we will
recall two formulas on the ordinary differential equations (ODE): the Duhamel’s formula and the
Gronwall’s Lemma. We will give the complete proof of these two results.
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Chapter 2

The homogeneous continuous midpoint
model

2.1 Introduction

In this chapter, we consider a simplified version of the BDG model (1.4.1): the density f is independent
of the position of the individuals, the velocity v belongs to Rd and not Sd−1, the collision rate β is
constant equal to 1 and the collision kernelK is defined by (1.4.2) with g ∈ P0

2 (Rd) of covariance matrix
Σg. Thus, the unknown probability distribution f satisfies the following Boltzmann like equation in
the sense of distributions

∂f

∂t
= Q+(f, f)−Q−(f, f)

where for any test function ϕ ∈ C∞c (R× Rd)

〈Q+(f, f), ϕ〉 :=

∫ +∞

0

∫
Rd

∫
Rd

∫
Rd
ϕ(t, v)(τ(v′+v′?)/2#g)(dv)f(t, dv′)f(t, dv′?)dt (2.1.1)

and

〈Q−(f, f), ϕ〉 :=

∫ +∞

0

∫
Rd

∫
Rd
ϕ(t, v)f(t, dv)f(t, dv′)dt. (2.1.2)

For f0 ∈ Pm2 (Rd), the evolution equation (1.4.1) becomes
∂f

∂t
=

∫∫
Rd×Rd

(τ(v′+v′?)/2#g)f(t, dv′)f(t, dv′?)− f(t, · )
∫

Rd
f(t, dv′)

f(0, · ) = f0.

(2.1.3)

The plan of this chapter is the following. We start by establishing the existence of a mild solution
of the equation (2.1.3) in section 2.2. We show the existence of the equilibrium state of the collision
operator Q corresponding to probability measures f satisfying Q(f, f) = 0. And the proof of the
exponential convergence of the solution towards the equilibrium state for the Wasserstein metric W2

in section 2.3. We also make the link with the midpoint model in this same section. Then, we show
the exponential convergence of the solution towards the equilibrium state for the d2 metric, which will
imply the convergence in L1 in section 2.4. The last section is devoted to numerical simulations in
dimension 1.
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2.2 Existence of a Mild solution

To establish the existence of a solution to the equation (2.1.3), we equip the space P2(Rd) with the
Wasserstein metric W2. This metric metrizes the weak topology on P2(Rd) and makes that space
complete (Theorem A.5.1 and A.6.1). Let f ∈ C(R+,P2(Rd)). For any test function ϕ ∈ C∞(R × Rd)
with compact support, we define

〈f, ϕ〉 :=

∫ +∞

0

∫
Rd
ϕ(t, v)f(t, dv)dt

which allows to define a solution in the sense of distributions as follows.

Let f0 ∈ Pm2 (Rd). A solution in the sense of distributions of the equation (2.1.3)
is a measured-valued function f ∈ C(R+,P2(Rd)) satisfying for every test function ϕ ∈
C∞(R× Rd) with compact support

−
〈
f,
∂ϕ

∂t

〉
=

∫
Rd
ϕ(0, v)f0(dv) + 〈Q+(f, f), ϕ〉 − 〈Q−(f, f), ϕ〉. (2.2.1)

Definition 2.2.1

We define a second notion of mild solution as follows, which is stronger than the first one.

A mild solution of the equation (2.1.3) is a function f ∈ C(R+,P2(Rd)) taking values in
the space of probability measures equipped with the Wasserstein metric W2 satisfying for all
t ≥ 0

f(t, · ) = e−tf0 +

∫ t

0

∫
Rd

∫
Rd
e−(t−s)(τ(v′+v′?)/2#g)f(s, dv′)f(s, dv′?)ds (2.2.2)

Definition 2.2.2

For all t ≥ 0, we denote by ρ(t), u(t) and Σf (t) the mass, bulk velocity and covariance matrix at
the instant t of the solution f :

ρ(t) :=

∫
Rd
f(t, dv), (2.2.3)

u(t) :=
1

ρ(t)

∫
Rd
vf(t, dv), (2.2.4)

Σf (t) :=

∫
Rd

(ρ(t)v − ρ(t)u(t)) t(ρ(t)v − ρ(t)u(t))f(t, dv). (2.2.5)

For g ∈ P0
2 (Rd), we define the following operator Tg for any measure µ by

Tg : µ 7−→ Tg[µ] := g ∗ (U#µ) ∗ (U#µ) (2.2.6)

where U is an uniform scaling with scaling factor 1/2: U : v ∈ Rd 7−→ v/2 ∈ Rd. Then for any test
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function ϕ ∈ C∞c (R× Rd), we have by definition of the convolution product

〈Tg[f ], ϕ〉 =

∫ +∞

0

∫
Rd
ϕ(t, v)g ∗ (U#f(t, · )) ∗ (U#f(t, · ))(dv)dt

=

∫ +∞

0

∫∫∫
Rd×Rd×Rd

ϕ(t, v + v′ + v′?)g(dv)(U#f(t, · ))(dv′)(U#f(t, · ))(dv′?)dt

=

∫ +∞

0

∫∫∫
Rd×Rd×Rd

ϕ

(
t, v +

v′ + v′?
2

)
g(dv)f(t, dv′)f(t, dv′?)dt

=

∫ +∞

0

∫∫∫
Rd×Rd×Rd

ϕ(t, v)(τ(v′+v′?)/2#g)(dv)f(t, dv′)f(t, dv′?)dt

= 〈Q+(f, f), ϕ〉.

Thus, the equation (2.1.3) can be written equivently as

∂f

∂t
= Tg[f(t, · )]− ρ(t)f(t, · ). (2.2.7)

This equation (2.2.7) is interesting because this one is written as a linear ODE (B.1) with the initial
condition f0 ∈ Pm2 (Rd). By comparison with (B.1), we have only b depends on time and the unknown
f . The Mild solution of the equation (2.1.3) is in a way the solution written by the Duhamel’s formula
(B.1.1). By direct computation, we have (with the notations v tv = (vivj)1≤i,j≤d)∫

Rd
Tg[f(t, · )](dv) = ρ(t)2, (2.2.8)∫

Rd
vTg[f(t, · )](dv) = ρ(t)2u(t), (2.2.9)∫

Rd
v tvTg[f(t, · )](dv) = ρ(t)2(Σg + u(t) tu(t)) +

Σf (t)

2ρ(t)
. (2.2.10)

The previous computation shows that Tg maps Pm2 (Rd) into itself, hence show the mass and the mean
velocity are preserved, but not the energy. Note that the gain term Q+(f, f) is a density if g is a
density (even if f is a probability measure). Thus, Tg[f(t, · )] is a density for all t ≥ 0 if g is a density
and if moreover f0 is a probability density, then by (2.2.2), f(t, · ) is a probability density for all t ≥ 0
where f is the mild solution of the equation (2.1.3). We will show in this section that the equation
(2.1.3) admits a unique mild solution.

Let m ∈ Rd, f0 ∈ Pm2 (Rd) and g ∈ P0
2 (Rd). Then there exists a unique mild solution to the

equation (2.1.3) f ∈ C(R+,P2(Rd)) with f(0, · ) = f0. Moreover, we have for all t ≥ 0∫
Rd
vf(t, dv) =

∫
Rd
vf0(dv) := m.

Theorem 2.2.1 (Existence of a mild solution)

To prove this existence Theorem, we will use a fixed point type argument. So we’ll need some
properties on W2. The following Lemma is the key step in the fixed point Theorem 2.2.1.

For µ, ν ∈ Pm2 (Rd), we have

W2(Tg[µ], Tg[ν]) ≤ 1√
2
W2(µ, ν). (2.2.11)

Lemma 2.2.1
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Proof. Let µ, ν ∈ Pm2 (Rd). Then by definition of Tg operator (2.2.6), we have by sub-additivity of
W2 with respect to the convolution (A.4.13) and (A.4.14) that

W2(Tg[µ], Tg[ν]) ≤W2((U#µ) ∗ (U#µ), (U#ν) ∗ (U#ν)) ≤
√

2W2(U#µ,U#ν).

Then, since U is a Lipschitzian map of Lipschitz norm ‖U‖Lip = 1/2, then by (A.4.5) we have
W2(U#µ,U#ν) ≤W2(µ, ν)/2 and (2.2.11) follows. �

This result is already present in Theorem 4.1 in ref. [72]. The proof presented here is different. We
recall the following elementary fact.

The space Pm2 (Rd) is a complete metric space for W2.

Lemma 2.2.2

Proof. For µ ∈ P1(Rd), we define the map T by T : µ 7−→
∫
vdµ(v). Let π be a coupling of (µ, ν)

with µ, ν ∈ P2(Rd). We have

|T (µ)− T (ν)| =
∣∣∣∣∫∫

Rd×Rd
(v − u)dπ(u, v)

∣∣∣∣ ≤ ∫∫
Rd×Rd

|v − u|dπ(u, v).

By taking the infimum over π, we obtain |T (µ) − T (ν)| ≤ W1(µ, ν) and by Comparaison of the
Wasserstein metrics (A.4.1), we have W1(µ, ν) ≤ W2(µ, ν). Therefore T is continuous. Since the
space P2(Rd) is complete for the Wasserstein metric W2 (Proposition A.6.1), it suffices to show that
Pm2 (Rd) is closed in P2(Rd). Let (µn)n be a sequence in Pm2 (Rd) which converges to µ for W2. We have
µ ∈ P2(Rd) by completeness and the continuity of T gives that T (µn) converges to T (µ). So T (µ) = m
in other words µ ∈ Pm2 (Rd). �

Let ϕ ∈ C([0, T ]) be a function such that
∫ T

0 ϕ(t)dt = 1. Then by convexity of W2 with respect
to the transition kernel (Proposition A.6.3) with µ the measure having for density ϕ1[0,T ], f1 and
f2 ∈ C(R+,P2(Rd)), we obtain

W2

(∫ T

0
ϕ(t)f1(t, · )dt,

∫ T

0
ϕ(t)f2(t, · )dt

)2

≤
∫ T

0
ϕ(t)W2(f1(t, · ), f2(t, · ))2dt. (2.2.12)

The following Lemma shows that a mild solution can be seen as a fixed point of some contracting
non-linear operator.

Let m ∈ Rd, f0 ∈ Pm2 (Rd) and g ∈ P0
2 (Rd). Define Ef0 := C(R+,Pm2 (Rd)) with f(0, · ) = f0

equipped with the uniform norm. For f ∈ Ef0 , we define the map Φ : Ef0 −→ Ef0 by

Φ[f ](t, · ) := e−tf(0, · ) +

∫ t

0
e−(t−s)Tg[f(s, · )]ds. (2.2.13)

Then for all f1
0 , f2

0 ∈ Pm2 (Rd) and for f1 ∈ Ef10 , f
2 ∈ Ef20 , we have

W2(Φ[f1](t, · ),Φ[f2](t, · ))2 ≤ 1

2

∫ t

0
e−(t−s)W2(f1(s, · ), f2(s, · ))2ds

+ e−tW2(f1
0 , f

2
0 )2.

(2.2.14)

Lemma 2.2.3
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Proof. Let f ∈ Ef0 . It is clear that Φ[f ](0, · ) = f0 and since for all t ≥ 0, f(t, · ) ∈ Pm2 (Rd), we have
ρ(t) = 1 and u(t) = m. And so by (2.2.8), (2.2.9) and (2.2.10), Φ[f ](t, · ) ∈ Pm2 (Rd) for all t ≥ 0. By
writing

Φ[f ](t, · ) = e−tf0 + (1− e−t)
∫ t

0

e−(t−s)

1− e−t
Tg[f(s, · )]ds,

we have by convexity of W2 (A.4.12) that for all f1 ∈ Ef10 , f
2 ∈ Ef20 with f1

0 , f2
0 ∈ Pm2 (Rd),

W2(Φ[f1](t, · ),Φ[f2](t, · ))2 ≤ (1− e−t)W2

(∫ t

0

e−(t−s)

1− e−t
Tg[f

1(s, · )]ds,
∫ t

0

e−(t−s)

1− e−t
Tg[f

2(s, · )]ds

)2

+ e−tW2(f1
0 , f

2
0 )2

And using (2.2.12), it holds that

W2(Φ[f1](t, · ),Φ[f2](t, · ))2 ≤ e−tW2(f1
0 , f

2
0 )2 +

∫ t

0
e−(t−s)W2(Tg[f

1(s, · )], Tg[f2(s, · )])2ds.

And by (2.2.11), we obtain (2.2.14). �

To prove Lemma 2.2.3, we used arguments that are used several times in ref. [73].

Proof of Theorem 2.2.1. Let f0 ∈ Pm2 (Rd) and g ∈ P0
2 (Rd). We take the map Φ defined by (2.2.13).

Then for f1, f2 ∈ Ef0 , we have by (2.2.14)

W2(Φ[f1](t, · ),Φ[f2](t, · ))2 ≤ 1

2

∫ t

0
e−(t−s)W2(f1(s, · ), f2(s, · ))2ds.

Passing to the supremum in time,

W2(Φ[f1](t, · ),Φ[f2](t, · ))2 ≤ 1

2

(
sup
t∈R+

W2(f1(t, · ), f2(t, · ))2

)∫ t

0
e−(t−s)ds

=
1− e−t

2
sup
t∈R+

W2(f1(t, · ), f2(t, · ))2.

One obtains

sup
t∈R+

W2(Φ[f1](t, · ),Φ[f2](t, · )) ≤ 1√
2

sup
t∈R+

W2(f1(t, · ), f2(t, · )). (2.2.15)

Hence Φ preserves the space Ef0 and is a contraction. Since Pm2 (Rd) is a complete metric space for
W2, Ef0 is complete. Hence there exists a unique mild solution of the equation (2.1.3) belonging to
Ef0 . �

Let m ∈ Rd, f ∈ C(R+,Pm2 (Rd)) be the mild solution of equation (2.1.3) with f(0, · ) = f0.
Then we have the following properties.

(1) f is a solution of equation (2.1.3) in the sense of distributions (see Definition 2.2.1).

(2) For all t ≥ 0,

Σf (t) = e−t/2Σf (0) + 2(1− e−t/2)Σg. (2.2.16)

(3) For every mild solution f1, f2 ∈ C(R+,Pm2 (Rd)), we have for all t ≥ 0

W2(f1(t, · ), f2(t, · )) ≤ e−t/4W2(f1(0, · ), f2(0, · )). (2.2.17)

Proposition 2.2.1 (Properties of mild solutions)
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Proof. (1) By direct computation

−
〈
f,
∂ϕ

∂t

〉
= −

∫ +∞

0

∫
Rd

∫ t

0
e−(t−s)∂ϕ

∂t
(t, v)Tg[f(s, · )](dv)dsdt−

∫ +∞

0

∫
Rd
e−t

∂ϕ

∂t
(t, v)f0(dv)dt

= −
∫ +∞

0

∫
Rd
es
(∫ +∞

s
e−t

∂ϕ

∂t
(t, v)dt

)
Tg[f(s, · )](dv)ds+

∫
Rd
ϕ(0, v)f0(dv)

−
∫ +∞

0

∫
Rd
e−tϕ(t, v)f0(dv)dt

= −
∫ +∞

0

∫
Rd

∫ +∞

s
ϕ(t, v)e−(t−s)Tg[f(s, · )](dv)dtds+

∫ +∞

0

∫
Rd
ϕ(s, v)Tg[f(s, · )](dv)ds

+

∫
Rd
ϕ(0, v)f0(dv)−

∫ +∞

0

∫
Rd
e−tϕ(t, v)f0(dv)dt

=

∫
Rd
ϕ(0, v)f0(dv) + 〈Q+(f, f), ϕ〉 −

∫ +∞

0

∫
Rd
ϕ(t, v)f(t, dv)dt.

Since for any t ≥ 0, f(t, · ) is a probability measure, we have∫ +∞

0

∫
Rd
ϕ(t, v)f(t, dv)dt =

∫ +∞

0

∫
Rd

∫
Rd
ϕ(t, v)f(t, dv)f(t, dv?)dt = 〈Q−(f, f), ϕ〉.

(2) We have by (2.2.2) and (2.2.10)∫
Rd
v tvf(t, dv) = e−t

∫
Rd
v tvf0(dv) +

∫ t

0
e−(t−s)

(∫
Rd
v tvTg[f(s, · )](dv)

)
ds

= e−t
∫

Rd
v tvf0(dv) +

∫ t

0
e−(t−s)

(
Σg +m tm+

Σf (s)

2

)
ds.

So we have

etΣf (t) = Σf (0) + (et − 1)Σg +

∫ t

0

es

2
Σf (s)ds.

Applying the case of equality in Gronwall’s Lemma (B.2.5), we have

etΣf (t) = Σf (0) + (et − 1)Σg +

∫ t

0

Σf (0) + (es − 1)Σg

2
e(t−s)/2ds

= Σf (0) + (et − 1)Σg + (et/2 − 1)Σf (0) + (et + 1− 2et/2)Σg.

Which implies formula (2.2.16).

(3) Let f1 ∈ C(R+,Pm2 (Rd)) be the mild solution with initial condition f1
0 ∈ Pm2 (Rd) and let f2 ∈

C(R+,Pm2 (Rd)) be the mild solution with initial condition f2
0 ∈ Pm2 (Rd). By (2.2.14), we have

W2(f1(t, · ), f2(t, · ))2 ≤ e−tW2(f1
0 , f

2
0 )2 +

1

2

∫ t

0
e−(t−s)W2(f1(s, · ), f2(s, · ))2ds.

By Gronwall’s Lemma (Lemma B.2.1), we have

etW2(f1(t, · ), f2(t, · ))2 ≤W2(f1
0 , f

2
0 )2 +

∫ t

0

W2(f1
0 , f

2
0 )2

2
e(t−s)/2ds

= W2(f1
0 , f

2
0 )2 + (et/2 − 1)W2(f1

0 , f
2
0 )2

= et/2W2(f1
0 , f

2
0 )2.

Hence the estimate (2.2.17). �
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2.3 Equilibrium state

This section is devoted to the determination of the equilibrium state of the collision operator of equation
(2.1.3). Equilibrium states of the collision operator Q corresponding to the probability distribution
functions satisfying Q(f, f) = 0. We will mainly focus on the convergence to the unique equilibrium
state of the equation (2.1.3) that is defined as follows.

An equilibrium state of the equation (2.1.3) is a probability distribution f ∈ P2(Rd)
satisfying the fixed point equation

f =

∫∫
Rd×Rd

(τ(v′+v′?)/2#g)f(dv′)f(dv′?). (2.3.1)

Definition 2.3.1

For f ∈ C(R+,P2(Rd)) and for t ≥ 0, the function f̂(t, · ) : ξ 7−→ f̂(t, ξ) is the Fourier transform of
the probability measure f(t, · ). So if f ∈ C(R+,Pm2 (Rd)) is the mild solution of equation (2.1.3) (see
Definition 2.2.2) with initial condition f(0, · ) = f0, then f̂ is solution of the fixed point equation

f̂(t, ξ) = e−tf̂(0, ξ) +

∫ t

0
e−(t−s)ĝ(ξ)f̂

(
s,
ξ

2

)2

ds. (2.3.2)

Note that the changeover in Fourier variable can be performed because β is constant. The equation
(2.3.2) allows to differentiate f̂ which satisfies therefore

∂f̂

∂t
= ĝ(ξ)f̂

(
t,
ξ

2

)2

− f̂(t, ξ),

f̂(0, ξ) = f̂0(ξ).

(2.3.3)

We notice that equation (2.3.1) can be written equivalently as

f = Tg[f ].

In other words, f is a fixed point of Tg. Passing in Fourier, equation (2.3.1) is equivalent to

f̂(ξ) = ĝ(ξ)f̂

(
ξ

2

)2

. (2.3.4)

Let m ∈ Rd, f0 ∈ Pm2 (Rd) and g ∈ P0
2 (Rd). Then there exists a unique equilibrium state

f∞m ∈ Pm2 (Rd), that is a probability measure f∞m satisfying

Q(f∞m , f
∞
m ) = 0.

And if f ∈ C(R+,Pm2 (Rd)) is the mild solution of equation (2.1.3) with f(0, · ) = f0, then
we have for all t ≥ 0

W2(f(t, · ), f∞m ) ≤ e−t/4W2(f0, f
∞
m ). (2.3.5)

Theorem 2.3.1 (Exponential convergence for W2)

Kinetic Theory & Collective Dynamics 53



2.3. EQUILIBRIUM STATE
;A<

The existence of a unique equilibrium state is a consequence of the following proposition. Theorem
1 of Ref. [22] is improved by choosing a probability measure g(dv) instead of a density g(v)dv and by
proving the uniqueness of the equilibrium state in this general setting. Moreover we do not use Levi’s
Theorem to recognize a Fourier transform of a probability measure. Results close to the existence of a
unique equilibrium state are present in Ref. [22] and in Lemma 2.2 in Ref. [73] (the model is different
and g is Gaussian). (2.3.5) is similar to step two of the proof of Lemma 2.1 in Ref. [73]. The author
shows a perturbation result about the a Gaussian solution; we show an exponential convergence to an
equilibrium state which may be non Gaussian. Our result is also valid in any dimension.

Let g ∈ P0
2 (Rd). For all m ∈ Rd, there exists a unique f ∈ Pm2 (Rd) solution of (2.3.1). In

addition we have

f̂(ξ) = e−i〈m,ξ〉
+∞∏
n=0

ĝ

(
ξ

2n

)2n

. (2.3.6)

Proposition 2.3.1 (Theorem 1 in Ref. [22])

Proof. Let f ∈ Pm2 (Rd). Then Tg[f ] ∈ Pm2 (Rd) since Tg maps Pm2 (Rd) into itself by (2.2.8), (2.2.9)
and (2.2.10). And by (2.2.11), Tg is a contraction on the metric space (Pm2 (Rd),W2) which is complete
by Lemma 2.2.2. Hence, there exists a unique f ∈ Pm2 (Rd) such that Tg[f ] = f . Let us now show that
f̂ satisfies (2.3.6). By iterating the equation (2.3.4), we have by a Taylor expansion

f̂(ξ) =

(
n−1∏
k=0

ĝ

(
ξ

2k

)2k
)
f̂

(
ξ

2n

)2n

=

(
n−1∏
k=0

ĝ

(
ξ

2k

)2k
)(

1 +
1

2n

(
−i〈m, ξ〉 −

tξ(Σf +m tm)ξ

2n+1
+ o

(
|ξ|2

2n

)))2n

.

The second factor on the right-hand side converges to e−i〈m,ξ〉 when n tends to infinity since if the real
sequence (xn)n converges to x, then (1 + xn/n)n converges to ex. We thus obtain (2.3.6) by letting n
tend to infinity. �

We denote by f∞m (which is a density if g is a density) the unique solution of (2.3.1) in Pm2 (Rd).
In particular, f̂∞m satisfies (2.3.6). By calculating Hf̂∞m

(0), we notice that if f ∈ C(R+,Pm2 (Rd))
is the mild solution of equation (2.1.3), then by (2.2.16), Σf (t) converges to 2Σg when t goes to
infinity. Which corresponds well to the covariance matrix of f∞m . Indeed, by differentiating the function
ξ 7−→ log(f̂∞m (ξ)), we have since f̂∞m satisfies (2.3.6) that

∇f̂∞m (ξ) =

(
−im+

+∞∑
n=0

∇ĝ(ξ/2n)

ĝ(ξ/2n)

)
f̂∞m (ξ).

By differentiating this formula, we have

Hf̂∞m
(ξ) = f̂∞m (ξ)

+∞∑
n=0

ĝ(ξ/2n)Hĝ(ξ/2
n)−∇ĝ(ξ/2n) t∇ĝ(ξ/2n)

2n(ĝ(ξ/2n))2
+∇f̂∞m (ξ)

t(
−im+

+∞∑
n=0

∇ĝ(ξ/2n)

ĝ(ξ/2n)

)
.

We obtain the covariance matrix of f∞m by calculating this expression above at ξ = 0 since for a
probability measure µ of mean vector m, µ̂(0) = 1, i∇µ̂(0) = m and −Hµ̂(0) =

∫
v tvdµ(v). And
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in the particular case where g ∈ P0
2 (Rd) is a Gaussian (centered of covariance matrix Σg), then

ĝ(ξ) = exp(−(tξΣgξ)/2) and by (2.3.6),

f̂∞m (ξ) = e−i〈m,ξ〉
+∞∏
n=0

exp

(
−
tξΣgv

2n+1

)
= exp

(
−i〈m, ξ〉 −

tξΣgξ

2

+∞∑
n=0

1

2n

)
= exp

(
−i〈m, ξ〉 − tξΣgξ

)
.

So by the Fourier inverse transform, f∞m is also a Gaussian with mean vector m and covariance matrix
2Σg.

Proof of Theorem 2.3.1. The existence of a unique equilibrium state f∞m ∈ Pm2 (Rd) readily follows
from Proposition 2.3.1. Let f ∈ C(R+,Pm2 (Rd)) be the mild solution of equation 2.1.3 with initial
condition f0 ∈ Pm2 (Rd). Note that

∀t ≥ 0, f∞m = e−tf∞m +

∫ t

0
e−(t−s)Tg[f

∞
m ]ds.

By taking the map Φ defined in (2.2.13), we have by (2.2.14)

W2(f(t, · ), f∞m )2 = W2(Φ[f ](t, · ),Φ[f∞m ])2 ≤ e−tW2(f0, f
∞
m )2 +

1

2

∫ t

0
e−(t−s)W2(f(s, · ), f∞m )2ds.

By Gronwall’s Lemma (Lemma B.2.1), we have

etW2(f(t, · ), f∞m )2 ≤W2(f0, f
∞
m )2 +

∫ t

0

W2(f0, f
∞
m )2

2
e(t−s)/2ds

= W2(f0, f
∞
m )2 + (et/2 − 1)W2(f0, f

∞
m )2

= et/2W2(f0, f
∞
m )2.

Which implies (2.3.5). �

We now make the link with the result obtained in Ref. [35]. The discrete midpoint model corre-
sponding to the equation (2.1.3) with g = δ0.

We consider equation (2.1.3) with g = δ0. For f0 ∈ Pm2 (Rd), there exists a unique mild
solution of equation (2.1.3) f ∈ C(R+,Pm2 (Rd)) with initial condition f0. Moreover, we have
the estimate

W2(f(t, · ), δm) ≤ e−t/4W2(f0, δm). (2.3.7)

Proposition 2.3.2 (Proposition 2.3 in Ref. [35])

Proof. Existence and uniqueness of the solution follow from Theorem 2.2.1. By Theorem 2.3.1, there
exists a unique equilibrium state f∞m ∈ Pm2 (Rd) such that

W2(f(t, · ), f∞m ) ≤ e−t/4W2(f0, f
∞
m ).

Since g = δ0, we have ĝ(ξ) = 1 for all ξ. And so by (2.3.6) we have f̂∞m (ξ) = e−i〈m,ξ〉. We recognize
the Fourier transform of δm, so f∞m = δm and (2.3.7) follows. �

As mentioned in Ref. [35], the conservation of the center of mass m has played a fundamental role
in the functional space Pm2 (Rd). It would be much more difficult to prove these estimates on the sphere
Sd−1 because the center of mass is no longer conserved.
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2.4 Convergence for the strong L1 norm

This section is devoted to the proof of the exponential convergence of the solution of (2.1.3) towards
the equilibrium state for the strong L1 norm.

Let m ∈ Rd, f0 ∈ Hs(Rd) ∩ Pm2 (Rd) and g ∈ Hs(Rd) ∩ P0
2 (Rd) densities with s > 2 + d/2.

If f ∈ C(R+,Pm2 (Rd)) is the mild solution of equation (2.1.3) with f(0, · ) = f0 and if
f∞m ∈ Pm2 (Rd) is the equilibrium state of (2.1.3) with mean velocity m, then there exists a
constant C > 0 explicitly computable such that for all t ≥ 0,

‖f(t, · )− f∞m ‖L1(Rd) ≤ Ce−t/(d+4). (2.4.1)

Theorem 2.4.1 (Exponential convergence for the strong L1 norm)

To prove this theorem, we control the strong-norm L1 by the Fourier-Toscani-based distance d2

introduced in Carrillo, Toscani [24] and Toscani, Villani [81]. Then we show that the solution converges
exponentially towards the equilibrium state of Q(f, f) defined in (2.1.3, 2.1.1, 2.1.2) for the distance
d2.

For µ, ν ∈ Pm2 (Rd) having the same mean value, we define the Fourier-Toscani-based
distance between µ and ν by

d2(µ, ν) := sup
ξ∈Rd

|µ̂(ξ)− ν̂(ξ)|
|ξ|2

. (2.4.2)

Definition 2.4.1

A Taylor expansion shows that this metric is well-defined for µ, ν ∈ Pm2 (Rd) and metrizes the
weak topology on Pm2 (Rd) (see Ref. [81]). We proved in the previous section that f∞m ∈ Pm2 (Rd). So
d2(f(t, · ), f∞m ) is well defined for all t ≥ 0. The following result gives the exponential convergence of
f(t, · ) to f∞m for the d2 metric.

Let m ∈ Rd, f0 ∈ Pm2 (Rd) and g ∈ P0
2 (Rd). If f ∈ C(R+,Pm2 (Rd)) is the mild solution of

equation (2.1.3) with f(0, · ) = f0 and if f∞m ∈ Pm2 (Rd) is the equilibrium state of (2.1.3)
with mean velocity m, then it holds that for all t ≥ 0

d2(f(t, · ), f∞m ) ≤ M2(f0) + 2M2(g) + |m|2

2
e−t/2. (2.4.3)

Proposition 2.4.1 (Exponential convergence for d2)

Proof. We set for t ≥ 0 and for ξ ∈ Rd,

H(t, ξ) :=
f̂(t, ξ)− f̂∞m (ξ)

|ξ|2

where f ∈ C(R+,Pm2 (Rd)) is the mild solution of equation (2.1.3). A Taylor expansion gives that

e−i〈v,ξ〉 = 1− i〈v, ξ〉 − 〈v, ξ〉2
∫ 1

0
(1− s)e−is〈v,ξ〉ds.
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So

|H(t, ξ)| =
∣∣∣∣∫

Rd

∫ 1

0

〈v, ξ〉2

|ξ|2
(1− s)e−is〈v,ξ〉f(t, v)dsdv −

∫
Rd

∫ 1

0

〈v, ξ〉2

|ξ|2
(1− s)e−is〈v,ξ〉f∞m (v)dsdv

∣∣∣∣
≤
∫

Rd

∫ 1

0

∣∣∣∣〈v, ξ〉2|ξ|2
(1− s)e−is〈v,ξ〉(f(t, v)− f∞m (v))

∣∣∣∣ dsdv.
Hence the previous inequality taken at t = 0 and Cauchy-Schwarz inequality leads to

|H(0, ξ)| ≤
∫

Rd

∫ 1

0
|v|2(1− s)|f0(v)− f∞m (v)|dsdv =

M2(f0) +M2(f∞m )

2
.

And M2(f∞m ) = 2M2(g) + |m|2 leads imediately

|H(0, ξ)| ≤ M2(f0) + 2M2(g) + |m|2

2
. (2.4.4)

We define now G by

G(t, ξ) :=
ĝ(ξ)

4

(
f̂

(
t,
ξ

2

)
− f̂∞m

(
ξ

2

))
.

Using (2.3.3) and (2.3.4), it holds that

G(t, ξ)H

(
t,
ξ

2

)
−H(t, ξ) =

ĝ(ξ)

4

(
f̂

(
t,
ξ

2

)
+ f̂∞m

(
ξ

2

))(
f̂(t, ξ/2)− f̂∞m (ξ/2)

|ξ|2/4

)
− f̂(t, ξ)− f̂∞m (ξ)

|ξ|2

=
ĝ(ξ)

|ξ|2
f̂

(
t,
ξ

2

)2

− f̂(t, ξ)

|ξ|2
−

(
ĝ(ξ)

|ξ|2
f̂∞m

(
ξ

2

)2

− f∞m (ξ)

|ξ|2

)

=
1

|ξ|2
∂f̂

∂t
.

So H satisfies
∂H

∂t
(t, ξ) = G(t, ξ)H

(
t,
ξ

2

)
−H(t, ξ).

And by Duhamel’s formula B.1.1, we get

H(t, ξ) = e−tH(0, ξ) +

∫ t

0
e−(t−s)G(s, ξ)H

(
s,
ξ

2

)
ds.

For R > 0, we set
y(t) := et sup

|ξ|≤R
|H(t, ξ)|

since the map ξ 7−→ ξ/2 maps B(0, R) into B(0, R/2) ⊂ B(0, R). Since G(t, ξ) ≤ 1/2, Gronwall’s
Lemma (Lemma B.2.1) applied to inequality

y(t) ≤ y(0) +

∫ t

0
(y(s)/2)ds

gives that for all R ≥ 0,
sup
|ξ|≤R

|H(t, ξ)| ≤ sup
|ξ|≤R

|H(0, ξ)|e−t/2.

So by using the estimate (2.4.4) we get formula (2.4.3). �
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To bound the L1 norm by the d2 metric, an estimate on the Sobolev norm ‖ · ‖Hs(Rd) is needed for
s ≥ 0. The initial condition f(0, · ) is assumed to be a regular function and we prove the exponential
convergence in L1 of f(t, · ) to the equilibrium state determined in section 2.3. The regularity of the
initial condition is measured in term of the Sobolev norm.

Let s ≥ 0 and f0, g ∈ Hs(Rd) ∩ P2(Rd). Let f ∈ C(R+,P2(Rd)) be the mild solution of
equation (2.1.3) with initial condition f0. Then for every t ≥ 0, f(t, · ) ∈ Hs(Rd) and

‖f(t, · )‖Hs(Rd) ≤ e−t‖f0‖Hs(Rd) + (1− e−t)‖g‖Hs(Rd). (2.4.5)

Proposition 2.4.2

Proof. Let R > 0. Define

ZR(t) :=

∫
|ξ|<R

(1 + |ξ|2)s|f̂(t, ξ)|2dξ.

Using (2.3.3) and the inequality |µ̂(ξ)| ≤ 1 for µ a probability measure, it comes that ∂tf̂(t, ξ) is
uniformly bounded by 2. By differentiation, it holds that

d

dt
ZR(t) =

∫
|ξ|<R

(1 + |ξ|2)s
∂

∂t
|f̂(t, ξ)|2dξ

= 2

∫
|ξ|<R

(1 + |ξ|2)s<

(
f̂(t, ξ)

∂f̂

∂t
(t, ξ)

)
dξ

= 2

∫
|ξ|<R

(1 + |ξ|2)s<

(
ĝ(ξ)f̂

(
t,
ξ

2

)2

f̂(t, ξ)

)
dξ − 2ZR(t).

Using the classical inequality <(z) ≤ |z| for all z ∈ C, we have

d

dt
ZR(t) ≤ 2

∫
|ξ|<R

(1 + |ξ|2)s

∣∣∣∣∣ĝ(ξ)f̂

(
t,
ξ

2

)2

f̂(t, ξ)

∣∣∣∣∣ dξ − 2ZR(t)

≤ 2

∫
|ξ|<R

(1 + |ξ|2)s|ĝ(ξ)| · |f̂(t, ξ)|dξ − 2ZR(t).

Cauchy-Schwarz inequality applied to the right-hand side gives that

d

dt
ZR(t) ≤ 2

(∫
|ξ|<R

(1 + |ξ|2)s|ĝ(ξ)|2dξ

)1/2(∫
|ξ|<R

(1 + |ξ|2)s|f̂(t, ξ)|2dξ

)1/2

− 2ZR(t)

≤ 2‖g‖Hs(Rd)

√
ZR(t)− 2ZR(t).

Since ZR(t) never vanishes,

d

dt

√
ZR(t) ≤

2‖g‖Hs(R)

√
ZR(t)− 2ZR(t)

2
√
ZR(t)

= ‖g‖Hs(Rd) −
√
ZR(t).

And by Gronwall’s Lemma (Lemma B.2.1),

√
ZR(t) ≤ e−t

√
ZR(0) +

∫ t

0
e−(t−s)‖g‖Hs(Rd)ds = e−t

√
ZR(0) + (1− e−t)‖g‖Hs(Rd).

We conclude the proof by letting R to infinity. �
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Since g is a probability density, ‖ĝ‖∞ ≤ 1, using the explicit definition f̂∞m in (2.3.6), we obtain
|f̂∞m | ≤ |ĝ| and the following result:

∀s ≥ 0, ‖f∞m ‖Hs(Rd) ≤ ‖g‖Hs(Rd). (2.4.6)

We also need the following two interpolation inequalities (Theorem 4.1 and 4.2 in Ref. [23]) that we
prove for the reader convenience.

Let α > 0 and d ≥ 1 be an integer. Then there exists a constant C(α, d) > 0 such that for
every function f ∈ L2(Rd) ∩ Pα(Rd)

‖f‖L1(Rd) ≤ C(α, d)‖f‖α′L2(Rd)Mα(f)1−α′ (2.4.7)

with α′ := 2α/(2α+ d).

Lemma 2.4.1

Proof. We have for every R > 0∫
Rd
|f(v)|dv =

∫
|v|≤R

|f(v)|dv +

∫
|v|>R

|f(v)|dv

≤
√

Vol(B(0, R))‖f‖L2(Rd) +
1

Rα

∫
|v|>R

|v|α|f(v)|dv.

Recall that Vol(B(0, R)) = RdVol(Bd). We have∫
Rd
|f(v)|dv ≤ Rd/2

√
Vol(Bd)‖f‖L2(Rd) +

1

Rα
Mα(f).

We choose R such that

Rd/2
√

Vol(Bd)‖f‖L2(Rd) =
1

Rα
Mα(f) ⇐⇒ R =

(
Mα(f)√

Vol(Bd)‖f‖L2(Rd)

)2/(2α+d)

.

We substitute in the previous inequality, we obtain

‖f‖L1(Rd) ≤

(
Mα(f)√

Vol(Bd)‖f‖L2(Rd)

)d/(2α+d)√
Vol(Bd)‖f‖L2(Rd)

+

(
Mα(f)√

Vol(Bd)‖f‖L2(Rd)

)−2α/(2α+d)

Mα(f).

By setting α′ := 2α/(2α+ d), we have

‖f‖L1(Rd) ≤ Vol(Bd)−(1−α′)/2+1/2‖f‖1+(α′−1)

L2(Rd)
Mα(f)1−α′ + Vol(Bd)α

′/2‖f‖α′L2(Rd)Mα(f)1−α′

= 2Vol(Bd)α
′/2‖f‖α′L2(Rd)Mα(f)1−α′ .

So we obtain (2.4.7) with C(α, d) = 2Vol(Bd)α
′/2. �

Let s ≥ 0 and d ≥ 1 be an integer. For every s′ > d/2 + 2s + 2 there exists a constant
C(s, s′, d) > 0 such that for every f1, f2 ∈ Hs′(Rd) ∩ P2(Rd) having the same mean,

‖f1 − f2‖Hs(Rd) ≤ C(s, s′, d)
√
d2(f1, f2)

√
‖f1 − f2‖Hs′ (Rd). (2.4.8)

Lemma 2.4.2
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Proof. For s′ > d/2 + 2s+ 2, we have

‖f1 − f2‖2Hs(Rd) =

∫
Rd

(1 + |ξ|2)s|f̂1(ξ)− f̂2(ξ)|2dξ

≤
∫

Rd

|f̂1(ξ)− f̂2(ξ)|
|ξ|2

(1 + |ξ|2)s+1

(1 + |ξ|2)s′/2
(1 + |ξ|2)s

′/2|f̂1(ξ)− f̂2(ξ)|dξ.

By Cauchy-Schwarz inequality, it holds that∫
Rd

(1 + |ξ|2)s|f̂1(ξ)− f̂2(ξ)|2dξ ≤ d2(f1, f2)

(∫
Rd

dξ

(1 + |ξ|2)s′−2s−2

)1/2

‖f1 − f2‖Hs′ (Rd).

The assumption on s′ implies that the integral in the right-hand side is finite. Because
∫
dξ/((1+|ξ|2)α)

is finite if α > d. �

Proof of Theorem 2.4.1. Applying (2.4.7) with the function v 7−→ |f(t, v)−f∞m (v)| and with α = 2
leads to

‖f(t, · )− f∞m ‖L1(Rd) ≤ C(2, d)‖f(t, · )− f∞m ‖
4/(d+4)

L2(Rd)
M2(|f(t, · )− f∞m |)d/(d+4).

Since M2(|f(t, · ) − f∞m |) ≤ M2(f(t, · )) + M2(f∞m ), we have by (2.2.16) that M2(|f(t, · ) − f∞m |) ≤
M2(f0) + 4M2(g) + |m|2 for all t ≥ 0 and so

‖f(t, · )− f∞m ‖L1(Rd) ≤ C1‖f(t, · )− f∞m ‖
4/(d+4)

L2(Rd)
(M2(f0) +M2(g) + |m|2)d/(d+4) (2.4.9)

with C1 := 4d/(d+4)C(2, d). Then by (2.4.8) with s = 0 and s′ > 2 + d/2, it comes that

‖f(t, · )− f∞m ‖2L2(Rd) ≤ C(0, s′, d)2d2(f(t, · ), f∞m )‖f(t, · )− f∞m ‖Hs′ (Rd).

Since ‖f(t, · ) − f∞m ‖Hs′ (Rd) ≤ ‖f(t, · )‖Hs′ (Rd) + ‖f∞m ‖Hs′ (Rd), we have by (2.4.5) and (2.4.6) that
‖f(t, · )− f∞m ‖Hs′ (Rd) ≤ ‖f0‖Hs′ (Rd) + 2‖g‖Hs′ (Rd) for all t ≥ 0 and so

‖f(t, · )− f∞m ‖
4/(d+4)

L2(Rd)
≤ C2d2(f(t, · ), f∞m )2/(d+4)(‖f0‖Hs′ (Rd) + ‖g‖Hs′ (Rd))

2/(d+4) (2.4.10)

with C2 := 22/(d+4)C(0, s′, d)4/(d+4). Substituting (2.4.10) in (2.4.9), leads to

‖f(t, · )− f∞m ‖L1(Rd) ≤ C3d2(f(t, · ), f∞m )2/(d+4)

with C3 := C1C2(‖f0‖Hs′ (Rd) + ‖g‖Hs′ (Rd))
2/(d+4)(M2(f0) +M2(g) + |m|2)d/(d+4). And then by (2.4.3),

d2(f(t, · ), f∞m )2/(d+4) ≤
(
M2(f0) + 2M2(g) + |m|2

2

)2/(d+4)

e−t/(d+4)

≤ (M2(f0) +M2(g) + |m|2)2/(d+4)e−t/(d+4).

Thus, we obtain (2.4.1) with a constant

C := C3(M2(f0) + 2M2(g) + |m|2)2/(d+4).

And consequently the exponential convergence of f(t, · ) towards f∞m is obtained since f0 ∈ Hs′(Rd) ∩
Pm2 (Rd) and g ∈ Hs′(Rd) ∩ P0

2 (Rd) with s′ > 2 + d/2. �
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2.5 Numerical results

This section is devoted to the numerical resolution of (2.1.3) in dimension d = 1. We will present
six tests cases for two different initial conditions f0 and with three different values of g, where g is a
density. For each test case, the solution f is depicted for different values of t and compared with the
equilibrium state f∞m theoretically found in order to characterize the exponential rate of convergence for
the Wasserstein metricW2 and for the strong-norm L1. To represent the solution of (2.1.3) numerically,
we use an Euler scheme in time for ∆t = 0.015 followed by a Simpson rule on the interval [−10, 10]
with a uniform step ∆x = 0.1. We will use a quadrature method to numerically represent the strong
L1 norm. And to represent numerically the Wasserstein metric W2 between two measures with density
µ := f1λ and ν := f2λ with compact support contained in a segment [a, b], we discretize them this way

µ :=
n∑
i=1

xif1(xi)δxi and ν :=
n∑
i=1

xif2(xi)δxi

where xi := a + i(b − a)/n, then we will apply (A.7.9) with p = 2. We will therefore represent
numerically the solutions of the equation

∂f

∂t
=

∫∫
R×R

g

(
v − v′ + v′?

2

)
f(t, dv′)f(t, dv′?)− f(t, · )

∫
R
f(t, dv′)

f(0, · ) = f0.

(2.5.1)

In the first case, g is a centered Gaussian of variance σ2
g = 1,

g(v) =
1√
2π

exp

(
−v

2

2

)
. (2.5.2)

In the second case where g is an indicator function

g(v) =
1

2
1[−1,1](v). (2.5.3)

In the third case, g writes

g(v) =
1

n

n∑
i=1

1√
2πσ2

i

exp

(
−(v −mi)

2

2σ2
i

)
, (2.5.4)

with
∑
mi = 0 since g is zero mean. We take in (2.5.4) n = 3, m1 = 3, m2 = m3 = −3/2, σ2

1 = 1,
σ2

2 = 2 and σ2
3 = 4. In other words, g is a normalized sum of three Gaussians. For each g, we consider

two different initial conditions f0 defined as follows

• The first the initial condition f0 is a normalized Gaussian of mean 2 given by

f0(v) =
1√
2π

exp

(
−(v − 2)2

2

)
. (2.5.5)

• The second initial condition f0 is equal to g defined by (2.5.4), with n = 3, m1 = 3,
m2 = m3 = −3/2, σ2

1 = 1, σ2
2 = 2 and σ2

3 = 4.
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Test case 1

For the first test case, g is a normalized centered Gaussian (2.5.2). Since g is a Gaussian, Proposition
2.3.1 gives an explicit formula for the equilibrium state. In that case, f∞m is a Gaussian of variance
2σ2

g = 2 with the same mean as the initial condition f0. Hence for f0 defined by (2.5.5), f∞m writes

f∞m (v) =
1√
4π

exp

(
−(v − 2)2

4

)
. (2.5.6)

From f0 defined by (2.5.4), f∞m writes

f∞m (v) =
1√
4π

exp

(
−v

2

4

)
(2.5.7)

Figure 2.1: Distribution function of the solution of (2.5.1) with g defined by (2.5.2). On
the left, solution for initial condition (2.5.5) at times t = 0, t = 30 and on the right, solution
for initial condition (2.5.4) at times t = 0, t = 30. Equilibrium state given by (2.5.7) (in
circle).

Figure 2.2: Functions t 7−→ log ‖f(t, · ) − f∞m ‖L1 and t 7−→ logW2(f(t, · ), f∞m ) where f
is the solution of (2.5.1) with g defined by (2.5.2). On the left, f(t, · ) for initial condition
(2.5.5) and f∞m given by (2.5.6). On the right, f(t, · ) for initial condition defined by (2.5.4)
and f∞m is given by (2.5.7).
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Since we have shown that f(t, .) converges exponentially to f∞m for the Wasserstein metric W2 and
for the strong-norm L1, then the two functions t 7−→ logW2(f(t, · ), f∞m ) and t 7−→ log ‖f(t, .)−f∞m ‖L1

must be bounded by an affine function. For the strong L1 norm, this is the case in Figure 2.2 but with
a ratio 1/2 and not 1/5 theoretically found. Unfortunately for the Wasserstein metric W2 it is a little
less clear. But we still have at the beginning a linear decreasing as for the strong L1 norm but with
always a ratio 1/2 and not 1/4 theoretically found.

Test case 2

For the second test case, g is defined by (2.5.3). Since g is not a Gaussian, the expression of the
equilibrium state f∞m is not explicit. Then f∞m is approached by f(t, · ) at time t = 35 corresponding
to a converged result.

Figure 2.3: Distribution function of the solution of (2.5.1) with g defined by (2.5.3). On
the left, solutions for initial condition (2.5.5) at times t = 0, t = 20, t = 30 and on the right,
solutions for initial condition (2.5.4) at times t = 0, t = 20, t = 30.

Figure 2.4: Functions t 7−→ log ‖f(t, · ) − f∞m ‖L1 and t 7−→ logW2(f(t, · ), f∞m ) for f the
solution of (2.5.1) with g defined by (2.5.3). On the left, f(t, · ) for initial condition (2.5.5)
and f∞m is replaced by a converged solution f(t, · ) at time t = 35. On the right, f(t, · ) for
initial condition (2.5.4) and f∞m replaced by a converged solution f(t, · ) at time t = 35.

Figure 2.3 shows that f(t, · ) goes towards the same asymptotic limit for the two different initial
conditions. This numerical result is consistent with Proposition 2.3.1 claiming that the equilibrium
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state depends only on g. In Figure 2.4, the two curves are not rectilinear because there are two
phenomenons. First of all, the distribution goes towards a Maxwellian distribution and next to the
right one. However Figure 2.4 shows that the convergence remains with an exponential rate.

Test case 3

The third test case is devoted to g defined by (2.5.4). Since g is not a Gaussian, no explicit formula
are again available for the equilibrium state f∞m . Hence f∞m is again approached by converged solution
obtained at time t = 35 as for test case 2.

Figure 2.5: Distribution function of the solution of (2.5.1) with g defined by (2.5.4). On
the left, solutions with initial condition (2.5.5) at times t = 0, t = 20, t = 30 and on the
right, solutions with initial condition (2.5.4) at times t = 0, t = 20, t = 30.

Figure 2.6: Functions t 7−→ log ‖f(t, · ) − f∞m ‖L1 and t 7−→ logW2(f(t, · ), f∞m ) where f
is the solution of (2.5.1) with g defined by (2.5.4) and f∞m the equilibrium state. On the
left, f(t, · ) with initial condition (2.5.5) and f∞m is replaced by a converged solution f(t, · )
at time t = 35. On the right, f(t, · ) for initial condition (2.5.4) and f∞m replaced by a
converged solution f(t, · ) at time t = 35.

Figure 2.5 shows that the two different initial conditions lead to the same asymptotic state that
theoretically only depends on the distribution g.
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2.6 Conclusion

We have shown in this chapter the existence of a unique mild solution f ∈ C(R+,P2(Rd)) of the
equation (2.1.3) for any initial condition f0 ∈ Pm2 (Rd). And the existence of a unique equilibrium state
f ∈ Pm2 (Rd) of the equation (2.1.3). We have also shown the exponential convergence of the mild
solution towards the equilibrium state for the Wasserstein metric W2 and for the strong L1 norm, in
the case β = 1. The result elaborated by Degond, Frouvelle, Raoul in Ref. [35] has been extended to
the cases g ∈ P0

2 (Rd).

2.A Appendix: Hydrodynamic description of the BDG Model

In this appendix section, we now consider the inhomogeneous version of the BDG model (1.4.1). We
add the space variable. The position x and the velocity v belong to Rd, the collision kernel K is always
defined by (1.4.2) with g ∈ P0

2 (Rd) of covariance matrix Σg and the collision rate β is always constant:
β = 1. The density f(t, x, v) satisfies the following equation in the sense of distributions

∂f

∂t
+ v · ∇xf = Q+(f, f)−Q−(f, f)

where for any test function ϕ ∈ C∞c (R× Rd × Rd)

〈Q+(f, f), ϕ〉 :=

∫ +∞

0

∫
Rd

∫
Rd

∫
Rd

∫
Rd
ϕ(t, x, v)(τ(v′+v′?)/2#g)(dv)f(t, x, dv′)f(t, x, dv′?)dtdx (2.A.1)

and

〈Q−(f, f), ϕ〉 :=

∫ +∞

0

∫
Rd

∫
Rd

∫
Rd
ϕ(t, x, v)f(t, x, dv)f(t, x, dv′)dtdx. (2.A.2)

In other words, f is solution of
∂f

∂t
+ v · ∇xf =

∫∫
Rd×Rd

(τ(v′+v′?)/2#g)f(t, x, dv′)f(t, x, dv′?)− f(t, x, · )
∫

Rd
f(t, x, dv′)

f(0, · ) = f0 ∈ P2(Rd × Rd).

(2.A.3)

This equation (2.A.3) is to be taken in the weak sense. Let f ∈ C(R+,P2(Rd × Rd)). For any test
function ϕ ∈ C∞(R× Rd × Rd) with compact support, we define

〈f, ϕ〉 :=

∫ +∞

0

∫
Rd

∫
Rd
ϕ(t, x, v)f(t, x, dv)dtdx

which allows to define a solution in the sense of distributions as follows.

A solution in the sense of distributions of the equation (2.A.3) is a measured-valued
function f ∈ C(R+,P2(Rd×Rd)) satisfying for every test function ϕ ∈ C∞(R×Rd×Rd) with
compact support

−
〈
f,
∂ϕ

∂t
+ v · ∂ϕ

∂x

〉
=

∫∫
Rd×Rd

ϕ(0, x, v)f0(x, dv)dx+ 〈Q+(f, f), ϕ〉

− 〈Q−(f, f), ϕ〉.
(2.A.4)

Definition 2.A.1
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Let f ∈ C(R+,P2(Rd × Rd)). Then for any t ≥ 0, x ∈ Rd, we define the hydrodynamic quantites ρ
and u by

ρ(t, x) :=

∫
Rd
f(t, x, dv) and u(t, x) :=

1

ρ(t, x)

∫
Rd
vf(t, x, dv). (2.A.5)

It is understood that ρ is the function ρ : R+ −→ P2(Rd) obtained by taking the first marginal at each
time t. Thus, the equation (2.A.3) can be written equivently as

∂f

∂t
+ v · ∇xf = Tg[f(t, x, · )]− ρ(t, x)f(t, x, · ) (2.A.6)

where Tg is the operator defined by (2.2.6).
We will now establish a hydrodynamic description of the BDG model (2.A.3). We formally take a

function f ∈ C(R+,P2(Rd × Rd)) such that Q(f, f) = 0. By integrating in v the equation (2.A.6), we
have the first equation

∂tρ+ divx(ρu) = 0.

Then, we multiply by v the equation (2.A.6) and we integrate in v. One obtains the second equation

∂t(ρu) + divx
(∫

Rd
v ⊗ vf(t, x, dv)

)
= 0.

Since Q(f, f) = 0, then Tg[f ] = ρf and we have by direct computation∫
Rd
v ⊗ vf(t, x, dv) =

1

ρ(t, x)

∫
Rd
v ⊗ vTg[f(t, x, · )](dv)

=
1

ρ(t, x)

(
ρ(t, x)2Σg +

ρ(t, x)2u(t, x)⊗ u(t, x)

2
+
ρ(t, x)

2

∫
Rd
v ⊗ vf(t, x, dv)

)
= ρ(t, x)Σg +

ρ(t, x)u(t, x)⊗ u(t, x)

2
+

1

2

∫
Rd
v ⊗ vf(t, x, dv).

We obtains the following closed system of equations on ρ and u
∂tρ+ divx(ρu) = 0,

∂t(ρu) + divx(ρu⊗ u+ 2ρΣg) = 0.
(2.A.7)

This system (2.A.7) is very similar to the isothermal compressible Euler system (1.2.6). Except the fact
that the stress tensor is not diagonal. This comes from the fact that the matrix Σg is not diagonal but
only positive semi-definite. In the future, we intent to study the hydrodynamic limits of this system
(2.A.7).

2.B Appendix: The biased mid-point model

In the model (2.1.3), the velocity chosen after the collision by the two individuals is a median velocity.
It is a particular choice. But it is just as interesting to choose a biased velocity with respect to the
median. That is to say that the model could consider that the velocities after the collision will no
longer be chosen along the mean but along a convex combination of the pre-collisional velocities. In
this case, the kernel K would take the following form

K(dv, v′, v′?) := ταv′+(1−α)v′?
#g(dv) (2.B.1)

with α ∈ ]0, 1[ and g ∈ P0
2 (Rd) a probability measure, discrete or continuous.
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Only such a formula (2.B.1) prohibits considering that the agents are indistinguishable. So the
choice of the couple (α, 1−α) must be chosen with a probability (1/2, 1/2). We would obtain a kernel
K in two terms where the first is when the agent v′ has an influence on the agent v′? and the second
when the agent v′? has an influence on the agent v′. Thus, we obtain a symmetry in (v′, v′?) only the
kernel is complicated to write so we allow ourselves to keep the simple form (2.B.1) because we will
see that the results obtained will be symmetric in (α, 1− α).

v′

v′?

v ' αv′ + (1− α)v′?

Figure 2.7: Scheme of a collision between two individuals of respective velocity v′ and
v′?. The velocity adopted by the two individuals after the collision will be the same, chosen
according to a probability distribution centered at the convex combination αv′ + (1− α)v′?.

Thus, the unknown probability distribution f satisfies the following Boltzmann like equation in the
sense of distributions

∂f

∂t
= Q+(f, f)−Q−(f, f)

where for any test function ϕ ∈ C∞c (R× Rd)

〈Q+(f, f), ϕ〉 :=

∫ +∞

0

∫
Rd

∫
Rd

∫
Rd
ϕ(t, v)(ταv′+(1−α)v′?

#g)(dv)f(t, dv′)f(t, dv′?)dt (2.B.2)

and Q−(f, f) is defined by (2.1.2):

〈Q−(f, f), ϕ〉 :=

∫ +∞

0

∫
Rd

∫
Rd
ϕ(t, v)f(t, dv)f(t, dv′)dt.

For f0 ∈ Pm2 (Rd), the evolution equation (1.4.1) becomes
∂f

∂t
=

∫∫
Rd×Rd

(ταv′+(1−α)v′?
#g)f(t, dv′)f(t, dv′?)− f(t, · )

∫
Rd
f(t, dv′)

f(0, · ) = f0.

(2.B.3)

This equation (2.B.3) is to be taken in the weak sense. We define a solution in the weak sense
of the equation (2.B.3) in the same way as for the equation (2.1.3) but with Q+ defined by (2.B.2)
instead of (2.1.1).

A solution in the sense of distributions of the equation (2.B.3) is a measured-valued
function f ∈ C(R+,P2(Rd)) satisfying for every test function ϕ ∈ C∞(R× Rd) with compact
support

−
〈
f,
∂ϕ

∂t

〉
=

∫
Rd
ϕ(0, v)f0(dv) + 〈Q+(f, f), ϕ〉 − 〈Q−(f, f), ϕ〉. (2.B.4)

Definition 2.B.1
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For g ∈ P0
2 (Rd) and for α ∈ ]0, 1[, we define the measured-valued operator Tg,α by

Tg,α : µ 7−→ Tg,α[µ] := g ∗ (Uα#µ) ∗ (U1−α#µ) (2.B.5)

where for a ∈ R, Ua is an uniform scaling with scaling factor a: Ua : v ∈ Rd 7−→ av ∈ Rd. Thus, the
equation (2.B.3) can be written equivently as

∂f

∂t
= Tg,α[f(t, · )]− ρ(t)f(t, · ) (2.B.6)

where for all t ≥ 0, ρ(t) is the mass at the instant t of the solution f defined by (2.2.3):

ρ(t) :=

∫
Rd
f(t, dv).

The gain term is always written as a double convolution. Only the function that appears in the second
term of the double convolution (2.B.5) and that in the third term are different. This will complicate
the computations.

A mild solution of the equation (2.B.3) is a function f ∈ C(R+,P2(Rd)) taking values in
the space of probability measures equipped with the Wasserstein metric W2 satisfying for all
t ≥ 0

f(t, · ) = e−tf0 +

∫ t

0
e−(t−s)Tg,α[f(s, · )]ds. (2.B.7)

Definition 2.B.2

The notion of mild solution is stronger than the first one since a mild solution is a weak solution
(See Proof of item (1) of Proposition 2.2.1). By direct computation, we have∫

Rd
Tg,α[f(t, · )](dv) = ρ(t)2, (2.B.8)∫

Rd
vTg,α[f(t, · )](dv) = ρ(t)2u(t), (2.B.9)∫

Rd
v tvTg,α[f(t, · )](dv) = ρ(t)2(Σg + u(t) tu(t)) +

(α2 + (1− α)2)Σf (t)

ρ(t)
(2.B.10)

where for all t ≥ 0, u(t) and Σf (t) are the bulk velocity and covariance matrix at the instant t of the
solution f defined respectively by (2.2.4) and (2.2.5)

u(t) :=
1

ρ(t)

∫
Rd
vf(t, dv) and Σf (t) :=

∫
Rd

(ρ(t)v − ρ(t)u(t)) tρ(t)v − ρ(t)u(t)f(t, dv).

This calculation shows that for any α ∈ ]0, 1[, Tg,α maps Pm2 (Rd) into itself, hence shows the mass
and the mean velocity are preserved, but not the energy. The gain term Q+(f, f) is a density if g is
a density (even if f is a probability measure). Thus, Tg,α[f(t, · )] is a density for all t ≥ 0 if g is a
density and if moreover f0 is a probability density, then by (2.B.7), f(t, · ) is a probability density for
all t ≥ 0 where f is the mild solution of the equation (2.B.3).

We now consider the equilibrium state of the equation (2.B.3). Equilibrium states of equation
(2.B.3) corresponding to the probability distribution functions satisfying Q(f, f) = 0.
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An equilibrium state of the equation (2.B.3) is a probability distribution f ∈ P2(Rd)
satisfying the fixed point equation

f =

∫∫
Rd×Rd

(ταv′+(1−α)v′?
#g)f(dv′)f(dv′?). (2.B.11)

Definition 2.B.3

Equivalently, the equilibrium states of the equation (2.B.3) are the fixed points of the operator
Tg,α. We always have the existence of a unique Mild solution and that this one converges exponentially
towards a unique equilibrium state. This is the following Theorem.

Let m ∈ Rd, α ∈ ]0, 1[, f0 ∈ Pm2 (Rd) and g ∈ P0
2 (Rd).

(1) There exists a unique mild solution of the equation (2.B.3) f ∈ C(R+,P2(Rd)) with
f(0, · ) = f0. In addition, we have for all t ≥ 0∫

Rd
vf(t, dv) =

∫
Rd
vf0(dv) := m.

(2) There exists a unique equilibrium state f∞m ∈ Pm2 (Rd).

(3) If f ∈ C(R+,Pm2 (Rd)) is the mild solution of equation (2.B.3) with f(0, · ) = f0, then
for all t ≥ 0

Σf (t) = 2(α2 + (1− α)2)((e−t/2 − e−t)Σf (0) + (1 + e−t − 2e−t/2)Σg)

+ e−tΣf (0) + (1− e−t)Σg.
(2.B.12)

(4) If f ∈ C(R+,Pm2 (Rd)) is the mild solution of equation (2.B.3) with f(0, · ) = f0, then
we have for all t ≥ 0

W2(f(t, · ), f∞m ) ≤ e−α(1−α)tW2(f0, f
∞
m ). (2.B.13)

Theorem 2.B.1

The key point for showing item (1) and (2) is the following result.

For µ, ν ∈ Pm2 (Rd) and for α ∈ ]0, 1[, we have

W2(Tg,α[µ], Tg,α[ν]) ≤
√
α2 + (1− α)2W2(µ, ν). (2.B.14)

Lemma 2.B.1

Proof. Let µ, ν ∈ Pm2 (Rd). Then by definition of Tg,α operator (2.B.5), we have by sub-additivity of
W2 with respect to the convolution (A.4.13) and (A.4.14) that

W2(Tg,α[µ], Tg,α[ν])2 ≤W2((Uα#µ) ∗ (U1−α#µ), (Uα#ν) ∗ (U1−α#ν))2

≤W2(Uα#µ,Uα#ν)2 +W2(U1−α#µ,U1−α#ν)2.

Then, since Uα and U1−α are two Lipschitzians maps of respectives Lipschitz norm ‖Uα‖Lip = α and
‖U1−α‖Lip = 1− α, then by (A.4.5) we have

W2(Uα#µ,Uα#ν)2 ≤ α2W2(µ, ν)2 and W2(U1−α#µ,U1−α#ν)2 ≤ (1− α)2W2(µ, ν)2
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and (2.B.14) follows. �

Proof of Theorem 2.B.1. (1) Let m ∈ Rd, α ∈ ]0, 1[, f0 ∈ Pm2 (Rd) and g ∈ P0
2 (Rd). Define Ef0

:= C(R+,Pm2 (Rd)) with f(0, · ) = f0 equipped with the uniform norm. For f ∈ Ef0 , we take the map
Φ : Ef0 −→ Ef0 defined by (2.2.13):

Φ[f ](t, · ) := e−tf(0, · ) +

∫ t

0
e−(t−s)Tg,α[f(s, · )]ds.

Let f ∈ Ef0 . It is clear that Φ[f ](0, · ) = f0 and since for all t ≥ 0, f(t, · ) ∈ Pm2 (Rd), we have ρ(t) = 1
and u(t) = m. And so by (2.B.8), (2.B.9) and (2.B.10), Φ[f ](t, · ) ∈ Pm2 (Rd) for all t ≥ 0. By writing

Φ[f ](t, · ) = e−tf0 + (1− e−t)
∫ t

0

e−(t−s)

1− e−t
Tg,α(s, · )]ds,

we have by convexity of W2 (A.4.12) that for all f1 ∈ Ef10 , f
2 ∈ Ef20 with f1

0 , f2
0 ∈ Pm2 (Rd),

W2(Φ[f1](t, · ),Φ[f2](t, · ))2 ≤ (1− e−t)W2

(∫ t

0

e−(t−s)

1− e−t
T 1
g,α(s, · )]ds,

∫ t

0

e−(t−s)

1− e−t
T 2
g,α(s, · )]ds

)2

+ e−tW2(f1
0 , f

2
0 )2

And using (2.2.12), it holds that

W2(Φ[f1](t, · ),Φ[f2](t, · ))2 ≤ e−tW2(f1
0 , f

2
0 )2 +

∫ t

0
e−(t−s)W2(Tg,α[f1(s, · )], Tg,α[f2(s, · )])2ds.

And by (2.B.14), we obtain

W2(Φ[f1](t, · ),Φ[f2](t, · ))2 ≤ (α2 + (1− α)2)

∫ t

0
e−(t−s)W2(f1(s, · ), f2(s, · ))2ds

+ e−tW2(f1
0 , f

2
0 )2.

(2.B.15)

Now, we use the Banach fixed point Theorem since a Mild solution of the equation (2.B.3) corresponds
to a fixed point of Φ in the space Ef0 . Let f1, f2 ∈ Ef0 . We have by (2.B.15)

W2(Φ[f1](t, · ),Φ[f2](t, · ))2 ≤ (α2 + (1− α)2)

∫ t

0
e−(t−s)W2(f1(s, · ), f2(s, · ))2ds.

Passing to the supremum in time,

W2(Φ[f1](t, · ),Φ[f2](t, · ))2 ≤ (α2 + (1− α)2)

(
sup
t∈R+

W2(f1(t, · ), f2(t, · ))2

)∫ t

0
e−(t−s)ds

= (α2 + (1− α)2)(1− e−t) sup
t∈R+

W2(f1(t, · ), f2(t, · ))2.

One obtains

sup
t∈R+

W2(Φ[f1](t, · ),Φ[f2](t, · )) ≤
√
α2 + (1− α)2 sup

t∈R+

W2(f1(t, · ), f2(t, · )). (2.B.16)

Hence Φ preserves the space Ef0 and is a contraction since α ∈ ]0, 1[. By Lemma 2.2.2, Pm2 (Rd) is
a complete metric space for W2 so Ef0 is complete. Hence there exists a unique mild solution of the
equation (2.B.3) belonging to Ef0 .
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(2) Let f ∈ Pm2 (Rd). Then Tg,α[f ] ∈ Pm2 (Rd) since Tg,α maps Pm2 (Rd) into itself by (2.B.8), (2.B.9) and
(2.B.10). And by (2.B.14), Tg,α is a contraction on the metric space (Pm2 (Rd),W2) which is complete
by Lemma 2.2.2. Therefore by The Banach fixed point Theorem, there exists a unique f ∈ Pm2 (Rd)
such that Tg,α[f ] = f . And so there exists a unique equilibrium state in Pm2 (Rd) since the equilibrium
states correspond to the fixed points of Tg,α.

(3) We have by (2.B.7) and (2.B.10)∫
Rd
v tvf(t, dv) = e−t

∫
Rd
v tvf0(dv) +

∫ t

0
e−(t−s)

(∫
Rd
v tvTg,α[f(s, · )](dv)

)
ds

= e−t
∫

Rd
v tvf0(dv) +

∫ t

0
e−(t−s)(Σg +m tm+ (α2 + (1− α)2)Σf (s))ds.

So we have

etΣf (t) = Σf (0) + (et − 1)Σg +

∫ t

0
(α2 + (1− α)2)esΣf (s)ds.

Applying the case of equality in Gronwall’s Lemma (B.2.5), we have

etΣf (t) = Σf (0) + (et − 1)Σg +

∫ t

0
(α2 + (1− α)2)(Σf (0) + (es − 1)Σg)e

(t−s)/2ds

= Σf (0) + (et − 1)Σg + 2(α2 + (1− α)2)((et/2 − 1)Σf (0) + (et + 1− 2et/2)Σg).

Which implies formula (2.B.12).

(4) Let f ∈ C(R+,Pm2 (Rd)) be the mild solution of equation 2.B.3 with initial condition f0 ∈ Pm2 (Rd).
Note that

∀t ≥ 0, f∞m = e−tf∞m +

∫ t

0
e−(t−s)Tg,α[f∞m ]ds.

By taking the map Φ defined in (2.2.13), we have by (2.B.15)

W2(f(t, · ), f∞m )2 = W2(Φ[f ](t, · ),Φ[f∞m ])2

≤ e−tW2(f0, f
∞
m )2 + (α2 + (1− α)2)

∫ t

0
e−(t−s)W2(f(s, · ), f∞m )2ds.

By Gronwall’s Lemma (Lemma B.2.1), we have

etW2(f(t, · ), f∞m )2 ≤W2(f0, f
∞
m )2 +

∫ t

0
(α2 + (1− α)2)W2(f0, f

∞
m )2e(α2+(1−α)2)(t−s)ds

= W2(f0, f
∞
m )2 + (et(α

2+(1−α)2) − 1)W2(f0, f
∞
m )2

= et(α
2+(1−α)2)W2(f0, f

∞
m )2.

Which implies (2.B.13). �

For f ∈ C(R+,P2(Rd)) and for t ≥ 0, the function f̂(t, · ) : ξ 7−→ f̂(t, ξ) is the Fourier transform of
the probability measure f(t, · ). So if f ∈ C(R+,Pm2 (Rd)) is the mild solution of equation (2.B.3) with
initial condition f(0, · ) = f0, then f̂ is solution of the fixed point equation

f̂(t, ξ) = e−tf̂(0, ξ) +

∫ t

0
e−(t−s)ĝ(ξ)f̂(s, αξ)f̂(s, (1− α)ξ)ds. (2.B.17)

This equation (2.B.17) allows to differentiate f̂ which satisfies therefore
∂f̂

∂t
= ĝ(ξ)f̂(s, αξ)f̂(s, (1− α)ξ)− f̂(t, ξ),

f̂(0, ξ) = f̂0(ξ).

(2.B.18)
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Since an equilibrium state of the equation (2.B.3) is a fixed point of Tg,α, then passing in Fourier the
equation (2.B.11) we obtain that the Fourier transform of a fixed point of Tg,α satisfies

f̂(ξ) = ĝ(ξ)f̂(s, αξ)f̂(s, (1− α)ξ). (2.B.19)

By iterating this equation (2.B.19), we obtain a recurrence relation for the Fourier transform of the
equilibrium state of the equation (2.B.3):

∀n ∈ N∗, f̂(ξ) =

(
n−1∏
k=0

k∏
l=0

ĝ(αl(1− α)k−lξ)C
k
l

)(
n∏
k=0

f̂(αk(1− α)n−kξ)C
n
k

)
(2.B.20)

where Cnk := n!/(k!(n− k)!) are the binomial coefficients.
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Chapter 3

The homogeneous continuous midpoint
model with collision rate

3.1 Introduction

In this chapter, we still consider the simplified version of the BDG model (1.4.1) studied in the previous
chapter, but this time with a non-constant collision rate: the density f is independent of the position
of the individuals, the velocity v belongs to Rd and not Sd−1, the collision kernel K is defined by (1.4.2)
with g ∈ P0

2 (Rd) of covariance matrix Σg and the collision rate β : (v, v′) ∈ Rd×Rd 7−→ β(v, v′) ∈ [0, 1]
is a continuous symmetric function. Thus, the unknown probability distribution f satisfies the following
Boltzmann like equation in the sense of distributions

∂f

∂t
= Q+(f, f)−Q−(f, f)

where for any test function ϕ ∈ C∞c (R× Rd)

〈Q+(f, f), ϕ〉 :=

∫ +∞

0

∫
Rd

∫
Rd

∫
Rd
ϕ(t, v)β(v′, v′?)(τ(v′+v′?)/2#g)(dv)f(t, dv′)f(t, dv′?)dt (3.1.1)

and

〈Q−(f, f), ϕ〉 :=

∫ +∞

0

∫
Rd

∫
Rd
ϕ(t, v)β(v, v′)f(t, dv)f(t, dv′)dt. (3.1.2)

For f0 ∈ Pm2 (Rd), the evolution equation (1.4.1) becomes
∂f

∂t
=

∫∫
Rd×Rd

β(v′, v′?)(τ(v′+v′?)/2#g)f(t, dv′)f(t, dv′?)− f(t, · )
∫

Rd
β(v, v′)f(t, dv′)

f(0, · ) = f0 ∈ Pm2 (Rd).

(3.1.3)

This equation (3.1.3) is to be taken in the weak sense. We define a solution in the weak sense of the
equation (3.1.3) in the same way as for the equation (2.1.3) but with Q+ and Q− defined by (3.1.1)
and (3.1.2) instead of (2.1.1) and (2.1.2).

A solution in the sense of distributions of the equation (3.1.3) is a measured-valued
function f ∈ C(R+,P2(Rd)) satisfying for every test function ϕ ∈ C∞(R× Rd) with compact
support

−
〈
f,
∂ϕ

∂t

〉
=

∫
Rd
ϕ(0, v)f0(dv) + 〈Q+(f, f), ϕ〉 − 〈Q−(f, f), ϕ〉. (3.1.4)

Definition 3.1.1
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The plan of this chapter is the following. We start in section 3.2 by introducing the operator Tg,β
depending on g and β which will allow us to write the model (3.1.3) as a linear ODE (B.1). We will
show in this same section various properties of this operator. We will then show in the next section
that the operator Tg,β admits a fixed point, which amounts to saying that the model (3.1.3) admits an
equilibrium state. The last section will first explain how to implement numerically the operator Tg,β
and will then be devoted to numerical simulations in dimension 1.

3.2 The Tg,β operator

3.2.1 Definition of the operator

As in the previous chapter, we denote for all t ≥ 0, ρ(t), u(t) and Σf (t) the mass, bulk velocity and
covariance matrix at the instant t of the solution f defined respectively by (2.2.3), (2.2.4) and (2.2.5),

ρ(t) :=

∫
Rd
f(t, dv),

u(t) :=
1

ρ(t)

∫
Rd
vf(t, dv),

Σf (t) :=

∫
Rd

(ρ(t)v − ρ(t)u(t)) t(ρ(t)v − ρ(t)u(t))f(t, dv).

We define the following measured-valued operator Tg,β for any measure µ by

Tg,β : µ 7−→ Tg,β[µ] :=

∫∫
Rd×Rd

β(v′, v′?)(τ(v′+v′?)/2#g)µ(dv′)µ(dv′?)

+

∫∫
Rd×Rd

(1− β(v, v′))
δv + δv′

2
µ(dv)µ(dv′).

(3.2.1)

In other words for any test function ϕ we have∫
Rd
ϕ(v)Tg,β[µ](dv) =

∫∫∫
Rd×Rd×Rd

ϕ

(
v +

v′ + v′?
2

)
β(v′, v′?)g(dv)µ(dv′)µ(dv′?)

+

∫∫
Rd×Rd

(1− β(v, v′))
ϕ(v) + ϕ(v′)

2
µ(dv)µ(dv′).

(3.2.2)

Note that if β = 1, then we have Tg,β = Tg where Tg is the operator in the previous chapter defined
by (2.2.6). For any test function ϕ ∈ C∞c (R× Rd) we have

〈Tg,β[f ], ϕ〉 =

∫ +∞

0

∫
Rd
ϕ(t, v)Tg,β[f(t, · )](dv)dt

=

∫ +∞

0

∫∫∫
Rd×Rd×Rd

ϕ

(
t, v +

v′ + v′?
2

)
β(v′, v′?)g(dv)f(t, dv′)f(t, dv′?)dt

+

∫ +∞

0

∫∫
Rd×Rd

(1− β(v, v′))
ϕ(t, v) + ϕ(t, v′)

2
f(t, dv)f(t, dv′)dt.

Since β is symmetric, then the second term is symmetric on (v, v′). One obtains

〈Tg,β[f ], ϕ〉 =

∫ +∞

0

∫∫∫
Rd×Rd×Rd

ϕ(t, v)β(v′, v′?)(τ(v′+v′?)/2#g)(dv)f(t, dv′)f(t, dv′?)dt

+

∫ +∞

0

∫∫
Rd×Rd

(1− β(v, v′))ϕ(t, v)f(t, dv)f(t, dv′)dt

= 〈Q+(f, f), ϕ〉 − 〈Q−(f, f), ϕ〉+ 〈ρf, ϕ〉.
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And so the equation (3.1.3) can be written equivently as

∂f

∂t
= Tg,β[f(t, · )]− ρ(t)f(t, · ). (3.2.3)

The symmetry of the β function allowed us to write the equation (3.1.3) in the form (3.2.3), which is a
linear ODE (B.1) in infinite dimension with initial condition f0 ∈ Pm2 (Rd). By comparison with (B.1),
we have a = −ρ and b = Tg,β which depends on time and the unknown f . With the equation (3.2.3),
we can, as in the previous chapter, define a mild solution of the equation (3.1.3) using the Duhamel’s
Formula (B.1.1).

A mild solution of the equation (3.1.3) is a function f ∈ C(R+,P2(Rd)) taking values in
the space of probability measures equipped with the Wasserstein metric W2 satisfying for all
t ≥ 0

f(t, · ) = e−tf0 +

∫ t

0
e−(t−s)Tg,β[f(s, · )]ds. (3.2.4)

Definition 3.2.1

By direct computation, we have∫
Rd
Tg,β[f(t, · )](dv) = ρ(t)2, (3.2.5)∫

Rd
vTg,β[f(t, · )](dv) = ρ(t)2u(t), (3.2.6)∫

Rd
|v|2Tg,β[f(t, · )](dv) ≤ ρ(t)2‖β‖∞

∫
Rd
|v|2g(dv) +

ρ(t)(1 + ‖1− β‖∞)

2

∫
Rd
|v|2f(t, dv)

+ ρ(t)2|u(t)|2 1− ‖1− β‖∞
2

.

(3.2.7)

This calculation shows that the equation (3.1.3) preserves the mass and the mean velocity. We obtain
(3.2.5) and (3.2.6) immediately by definition of the Tg,β operator (3.2.2) and by the fact that g ∈
P0

2 (Rd). The energy is however not preserved but we can control the moment of order 2 of Tg,β[f(t, · )]
if we control the moment of order 2 of f(t, · ). The estimate (3.2.7) is a little more complex to obtain.
We perform the same calculation as in the proof of Proposition 3.2.1 to obtain the estimate (3.2.8)
using the expressions that define ρ and u.

Note that if β is not symmetric, then we can still reduce the equation (3.1.3) to a linear ODE. It
suffices to symmetrize the Tg,β operator in the following way. By setting β̃ the function β̃(v, v?) :=
β(v?, v), we define the operator T g,β := Tg,(β+β̃)/2. We have β̃ = β and T g,β = Tg,β if β is symmetric
and in all cases the equation (3.1.3) is equivalent to

∂f

∂t
= T g,β[f(t, · )]− ρ(t)f(t, · ).

However, considering β non-symmetric is unjustifiable from a physical point of view. There is no reason
to consider that the agent v′ has more influence than the agent v′?. We will assume from now on that
ρ(t) = 1 for all t ≥ 0.

3.2.2 Properties of the operator

We state in this section some properties of Tg,β operator. Here, the function β is not necessarily
assumed to be symmetric. The first property of Tg,β is that it maps Pm2 (Rd) into itself. We recall that
M2(µ) designates the moment of order 2 of µ.

Kinetic Theory & Collective Dynamics 77



3.2. THE Tg,β OPERATOR
;A<

If µ ∈ Pm2 (Rd), then Tg,β[µ] ∈ Pm2 (Rd) and we have

M2(Tg,β[µ]) ≤M2(g) +
(1 + ‖1− β‖∞)(M2(µ)− |m|2)

2
+ |m|2. (3.2.8)

Proposition 3.2.1

Proof. By (3.2.5) and (3.2.6), we have immediately that Tg,β[µ] is a probability measure of mean m.
Let’s now to prove (3.2.8). By definition of Tg,β we have

∫
Rd
|v|2Tg,β[µ](dv) =

∫∫∫
Rd×Rd×Rd

∣∣∣∣v +
v′ + v′?

2

∣∣∣∣2 β(v′, v′?)g(dv)µ(dv′)µ(dv′?)

+

∫∫
Rd×Rd

(1− β(v, v′))
|v|2 + |v′|2

2
µ(dv)µ(dv′).

By expanding, we have since g is zero mean that∫
Rd
|v|2Tg,β[µ](dv) = M2(g)

∫∫
Rd×Rd

β(v, v′)µ(dv)µ(dv′) +

∫∫
Rd×Rd

∣∣∣∣v + v′

2

∣∣∣∣2 β(v, v′)µ(dv)µ(dv′)

+

∫∫
Rd×Rd

(1− β(v, v′))
|v|2 + |v′|2

2
µ(dv)µ(dv′).

We will add and substract the quantity∫∫
Rd×Rd

(1− β(v, v′))

∣∣∣∣v + v′

2

∣∣∣∣2 µ(dv)µ(dv′).

One obtains∫
Rd
|v|2Tβ[µ](dv) = M2(g)

∫∫
Rd×Rd

β(v, v′)µ(dv)µ(dv′) +
M2(µ)− |m|2

2
+m2

+

∫∫
Rd×Rd

∣∣∣∣v − v′2

∣∣∣∣2 (1− β(v, v′))µ(dv)µ(dv′)

≤M2(g) +
1 + ‖1− β‖∞

2
(M2(µ)− |m|2) + |m|2

and (3.2.8) follows. �

Since the Tg,β operator maps Pm2 (Rd) into itself, then the convex combination (Tg,β + Tg,1−β)/2
maps Pm2 (Rd) into itself. By definition of the Tg,β operator, we have immediately the following identity

Tg,β + Tg,1−β = Tg + id. (3.2.9)

And by Proposition 2.3.1, the unique fixed point in Pm2 (Rd) of the Tg operator, f∞m , is the unique
solution of the following fixed-point equation

1

2
(Tg,β[µ] + Tg,1−β[µ]) = µ

in Pm2 (Rd). The following Proposition gives an explicit formula of T̂g,β[µ] in the Gaussian case.
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Consider the operator where g is a Gaussian with zero mean and covariance matrix Σg and
β is a "non-normalized Gaussian" defined by

β(v, v?) := exp

(
−
t(v − v?)Σ−1

β (v − v?)
2

)
(3.2.10)

where Σβ � 0. If µ is a probability measure with density f which is Gaussian, with mean
m and covariance matrix Σf , then there exists a constant C which depends on m, Σf and
Σβ such that

T̂g,β[µ](ξ) = C

(
exp

(
−
tξΣgξ

2

)
− exp

(
−1

4
tξ
(

2Σ−1
β + Σ−1

f

)−1
ξ

))
+ µ̂(ξ). (3.2.11)

Proposition 3.2.2

Proof. By definition of the Tg,β operator and the Fourier transform, we have

T̂g,β[µ](ξ) =

∫∫∫
Rd×Rd×Rd

e−i〈v+(v′+v′?)/2,ξ〉β(v′, v′?)g(dv)f(v′)f(v′?)dv
′dv′?

+

∫∫
Rd×Rd

(1− β(v, v′))
e−i〈v,ξ〉 + e−i〈v

′,ξ〉

2
f(v)f(v′)dvdv′.

We set Z[f ] := (2π)d/2
√
|det(Σf )| the normalization factor of f . One obtains

T̂g,β[µ](ξ) =
ĝ(ξ)

Z[f ]2

∫∫
Rd×Rd

e−i〈(v+v?)/2,ξ〉e−(t(v−v?)Σ−1
β (v−v?)+t(v−m)Σ−1

f (v−m)+t(v?−m)Σ−1
f (v?−m))/2dvdv?

− 1

Z[f ]2

∫∫
Rd×Rd

e−i〈v,ξ〉e−(t(v−v?)Σ−1
β (v−v?)+t(v−m)Σ−1

f (v−m)+t(v?−m)Σ−1
f (v?−m))/2dvdv?

+ f̂(ξ).

We make the following change of variables
v −m :=

u+ u?√
2

,

v? −m :=
−u+ u?√

2
.

To compute dvdv?/(dudu?), we calculate the determinant of the following block matrix[
A B
C D

]
where A, B, C and D ∈ Md(R) are 4 diagonal matrices: A = B = D := diag(1/

√
2, · · · , 1/

√
2) and

C := −A. We have
dvdv?
dudu?

= | det(A−BD−1C) det(D)| = | det(diag(
√

2, · · · ,
√

2)) det(diag(1/
√

2, · · · , 1/
√

2))| = 1.

This gives

T̂g,β[µ](ξ)

=
ĝ(ξ)

Z[f ]2

∫∫
Rd×Rd

e−i〈u?/
√

2+m,ξ〉e−(2 tuΣ−1
β u+(t(u+u?)Σ−1

f (u+u?)+t(−u+u?)Σ−1
f (−u+u?))/2)/2dudu? + f̂(ξ)

− 1

Z[f ]2

∫∫
Rd×Rd

e−i〈(u+u?)/
√

2+m,ξ〉e−(2 tuΣ−1
β u+(t(u+u?)Σ−1

f (u+u?)+t(−u+u?)Σ−1
f (−u+u?))/2)/2dudu?.
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By Fubini Theorem,

T̂g,β[µ](ξ) =
e−i〈m,ξ〉ĝ(ξ)

Z[f ]2

(∫
Rd
e−

tu(2Σ−1
β +Σ−1

f )u/2du

)(∫
Rd
e−i〈u?,ξ/

√
2〉e−

tu?Σ−1
f u?/2du?

)
+ f̂(ξ)

− e−i〈m,ξ〉

Z[f ]2

(∫
Rd
e−i〈u,ξ/

√
2〉e−

tu(2Σ−1
β +Σ−1

f )u/2du

)(∫
Rd
e−i〈u?,ξ/

√
2〉e−

tu?Σ−1
f u?/2du?

)
.

We set h(v) := exp(− tu(2Σ−1
β + Σ−1

f )u/2). We recognize in the above right-hand side the Fourier
transform of h and f . Therefore we have

T̂g,β[µ](ξ) =
e−i〈m(

√
2−1),ξ/

√
2〉ĝ(ξ)

Z[f ]
f̂

(
ξ√
2

)∫
Rd
h(u)du− e−i〈m(

√
2−1),ξ/

√
2〉

Z[f ]
f̂

(
ξ√
2

)
ĥ

(
ξ√
2

)
+ f̂(ξ).

Computing ĥ, T̂g,β[µ] becomes

T̂g,β[µ](ξ) =
e−i〈m(

√
2−1),ξ/

√
2〉

Z[f ]
f̂

(
ξ√
2

)
exp

(
−
tξΣgξ

2

)∫
Rd
h(u)du+ f̂(ξ)

− e−i〈m(
√

2−1),ξ/
√

2〉

Z[f ]
f̂

(
ξ√
2

)
exp

(
−1

4
tξ
(

2Σ−1
β + Σ−1

f

)−1
ξ

)∫
Rd
h(u)du

and (3.2.11) follows. �

The following Proposition is the most important of this section. We showed in the previous chapter
that Tg,β is a contraction if β is constant equal to 1. In the general case, the Tg,β operator is unfor-
tunately no longer a contraction but the Hölder condition is satisfied with α = 1/2 for some class of
β.

Let µ, ν ∈ Pm2 (Rd). Then for every continuous functions β1, β2 : Rd × Rd −→ [0, 1] we have

W2(Tg,β1 [µ], Tg,β2 [ν])2 ≤ 1 + ‖min(1− β1, 1− β2)‖∞
2

W2(µ, ν)2 + Tr(Σg)‖β1,2‖∞

+
Tr(Σµ)

2
‖(β1,2)−‖∞ +

Tr(Σν)

2
‖(β1,2)+‖∞.

(3.2.12)

where β1,2(v, v?, v
′, v′?) := β1(v, v?)− β2(v′, v′?).

Proposition 3.2.3

Proof. Let µ, ν ∈ Pm2 (Rd) and let π∗ ∈ Π(µ, ν) be an optimal coupling for W2. By setting β1 :=
β1(v, v′), β2 := β2(v?, v

′
?) and γ(dvdv?dv

′dv′?) := π∗(dvdv?)π∗(dv
′dv′?), we define the coupling π for

every test function ϕ by∫∫
ϕ(v, v?)dπ(v, v?) :=

∫∫∫∫∫
min(β1, β2)ϕ

(
v + v′

2
+ w,

v? + v′?
2

+ w

)
g(dw)dγ(v, v?, v

′, v′?)

+
1

2

∫∫∫∫∫
(β1 − β2)+

(
ϕ

(
v + v′

2
+ w, v?

)
+ ϕ

(
v + v′

2
+ w, v′?

))
g(dw)dγ(v, v?, v

′, v′?)

+
1

2

∫∫∫∫∫
(β1 − β2)−

(
ϕ

(
v,
v? + v′?

2
+ w

)
+ ϕ

(
v′,

v? + v′?
2

+ w

))
g(dw)dγ(v, v?, v

′, v′?)

+
1

2

∫∫∫∫
min(1− β1, 1− β2)(ϕ(v, v?) + ϕ(v′, v′?))dγ(v, v?, v

′, v′?).
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Using the formulas min(a, b) + (a− b)+ = a and min(1− a, 1− b) + (a− b)− = 1− a, we have∫∫
ϕ(v)dπ(v, v?) =

∫∫∫∫∫
(min(β1, β2) + (β1 − β2)+)ϕ

(
v + v′

2
+ w

)
g(dw)dγ(v, v?, v

′, v′?)

+

∫∫∫∫
(min(1− β1, 1− β2) + (β1 − β2)−)

ϕ(v) + ϕ(v′)

2
dγ(v, v?, v

′, v′?)

=

∫∫∫
ϕ(w)β1(v, v′)(τ(v+v′)/2#g)(dw)µ(dv)µ(dv′) +

∫∫
(1− β1(v, v′))

ϕ(v) + ϕ(v′)

2
µ(dv)µ(dv′)

=

∫
ϕ(v)Tg,β1 [µ](dv).

By doing the same calculation, we obtain by symmetry that
∫∫

ϕ(v?)dπ(v, v?) =
∫
ϕ(v?)Tg,β2 [ν](dv?)

so π is a coupling of (Tg,β1 [µ], Tg,β2 [ν]). We take ϕ(v, v?) = |v − v?|2 to obtains

W2(Tg,β1 [µ], Tg,β2 [ν])2 ≤
∫∫∫∫

min(β1, β2)

∣∣∣∣(v − v?) + (v′ − v′?)
2

∣∣∣∣2 dγ(v, v?, v
′, v′?)

+
1

2

∫∫∫∫∫
(β1 − β2)+

(∣∣∣∣v + v′

2
− v? + w

∣∣∣∣2 +

∣∣∣∣v + v′

2
− v′? + w

∣∣∣∣2
)
g(dw)dγ(v, v?, v

′, v′?)

+
1

2

∫∫∫∫∫
(β1 − β2)−

(∣∣∣∣v? + v′?
2

− v + w

∣∣∣∣2 +

∣∣∣∣v? + v′?
2

− v′ + w

∣∣∣∣2
)
g(dw)dγ(v, v?, v

′, v′?)

+
1

2

∫∫∫∫
min(1− β1, 1− β2)(|v − v?|2 + |v′ − v′?|2)dγ(v, v?, v

′, v′?).

(3.2.13)

In the right-hand side of (3.2.13), we note I1 the first term, I2 the second, I3 the third and I4 the last.
For the first term, we have by expanding

I1 =
1

4

∫∫∫∫
min(β1, β2)(|v − v?|2 + |v′ − v′?|2)dγ(v, v?, v

′, v′?)

+
1

2

∫∫∫∫
min(β1, β2)〈v − v?, v′ − v′?〉dγ(v, v?, v

′, v′?).

(3.2.14)

Then for the second integral, we have

I2 =
1

8

∫∫∫∫
(β1 − β2)+(|v − v?|2 + |v′ − v?|2 + |v − v′?|2 + |v′ − v′?|2)dγ(v, v?, v

′, v′?)

+
1

4

∫∫∫∫
(β1 − β2)+(〈v − v?, v′ − v?〉+ 〈v − v′?, v′ − v′?〉)dγ(v, v?, v

′, v′?)

+M2(g)

∫∫∫∫
(β1 − β2)+dγ(v, v?, v

′, v′?).

We add and substract the quantity

1

2

∫∫∫∫
(β1 − β2)+〈v − v?, v′ − v′?〉dγ(v, v?, v

′, v′?)

and the identity |v − v?|2 + |v′ − v?|2 + |v − v′?|2 + |v′ − v′?|2 + 2〈v − v?, v′ − v?〉+ 2〈v − v′?, v′ − v′?〉 −
4〈v − v?, v′ − v′?〉 = 2|v − v?|2 + 2|v′ − v′?|2 + 2|v? − v′?|2 gives that

I2 =

∫∫∫∫
(β1 − β2)+

(
〈v − v?, v′ − v′?〉

2
+M2(g)

)
dγ(v, v?, v

′, v′?)

+
1

4

∫∫∫∫
(β1 − β2)+(|v − v?|2 + |v′ − v′?|2 + |v? − v′?|2)dγ(v, v?, v

′, v′?).

(3.2.15)
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For the third integral, we have

I3 =
1

8

∫∫∫∫
(β1 − β2)−(|v − v?|2 + |v − v′?|2 + |v? − v′|2 + |v′ − v′?|2)dγ(v, v?, v

′, v′?)

+
1

4

∫∫∫∫
(β1 − β2)−(〈v − v?, v − v′?〉+ 〈v? − v′, v′? − v′〉)dγ(v, v?, v

′, v′?)

+M2(g)

∫∫∫∫
(β1 − β2)−dγ(v, v?, v

′, v′?).

We add and substract the quantity

1

2

∫∫∫∫
(β1 − β2)−〈v − v?, v′ − v′?〉dγ(v, v?, v

′, v′?)

and the identity |v − v?|2 + |v − v′?|2 + |v? − v′|2 + |v′ − v′?|2 + 2〈v − v?, v − v′?〉+ 2〈v? − v′, v′? − v′〉 −
4〈v − v?, v′ − v′?〉 = 2|v − v?|2 + 2|v′ − v′?|2 + 2|v − v′|2 gives that

I3 =

∫∫∫∫
(β1 − β2)−

(
〈v − v?, v′ − v′?〉

2
+M2(g)

)
dγ(v, v?, v

′, v′?)

+
1

4

∫∫∫∫
(β1 − β2)−(|v − v?|2 + |v′ − v′?|2 + |v − v′|2)dγ(v, v?, v

′, v′?).

(3.2.16)

For the last integral, we add and substract the quantity

1

2

∫∫∫∫
min(1− β1, 1− β2)〈v − v?, v′ − v′?〉dγ(v, v?, v

′, v′?)

and the identity 2|v−v?|2 + 2|v′−v′?|2−2〈v−v?, v′−v′?〉 = |v−v?|2 + |v′−v′?|2 + |(v−v?)− (v′−v′?)|2
gives that

I4 =
1

4

∫∫∫∫
min(1− β1, 1− β2)(|v − v?|2 + |v′ − v′?|2)dγ(v, v?, v

′, v′?)

+
1

4

∫∫∫∫
min(1− β1, 1− β2)|(v − v?)− (v′ − v′?)|2dγ(v, v?, v

′, v′?)

+
1

2

∫∫∫∫
min(1− β1, 1− β2)〈v − v?, v′ − v′?〉dγ(v, v?, v

′, v′?).

(3.2.17)

We sum (3.2.14), (3.2.15), (3.2.16) and (3.2.17). Using the identities a+ +a− = |a|, min(a, b)+min(1−
a, 1− b) + |a− b| = 1 and that µ and ν have the same mean, we obtain

W2(Tg,β1 [µ], Tg,β2 [ν])2 ≤ 1

4

∫∫∫∫
(|v − v?|2 + |v′ − v′?|2)dγ(v, v?, v

′, v′?)

+
1

4

∫∫∫∫
(β1 − β2)+|v? − v′?|2dγ(v, v?, v

′, v′?) +
1

4

∫∫∫∫
(β1 − β2)−|v − v′|2dγ(v, v?, v

′, v′?)

+
1

4

∫∫∫∫
min(1− β1, 1− β2)(|v − v?|2 + |v′ − v′?|2)dγ(v, v?, v

′, v′?)

+M2(g)

∫∫∫∫
|β1 − β2|dγ(v, v?, v

′, v′?).

And (3.2.12) follows since Tr(Σg) = M2(g), Tr(Σµ) = M2(µ)− |m|2 and Tr(Σν) = M2(ν)− |m|2. �

There are several interesting particular cases of (3.2.12). The first is when β1 = β2 = 1. In this
case, we find (2.2.11). Another is the following Proposition.
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We assume that β is of the form β(v, v?) = β̃(v − v?) where β̃ : Rd −→ [0, 1] is a function
which satisfies the following Lipschitzian condition. There exists a constant C > 0 such that
for every v, v? ∈ Rd,

|β̃(v)− β̃(v?)| ≤ C
|v − v?|√

1 + |v|2 + |v?|2
. (3.2.18)

Then for any µ, ν ∈ Pm2 (Rd) we have

W2(Tg,β[µ], Tg,β[ν])2 ≤ C
(√

2Tr(Σg) +
1

2

√
Tr(Σµ) + Tr(Σν)

)
W2(µ, ν)

+
1 + ‖1− β‖∞

2
W2(µ, ν)2.

(3.2.19)

Corollary 3.2.1

Proof. Let µ, ν ∈ Pm2 (Rd) and let π∗ ∈ Π(µ, ν) be an optimal coupling for W2. By setting β1 :=
β(v, v′), β2 := β(v?, v

′
?) and γ := π∗ ⊗ π∗, we have by Cauchy-Schwarz∫∫∫∫

|β1 − β2|dγ(v, v?, v
′, v′?) ≤ C

∫∫∫∫
|(v − v′)− (v? − v′?)|dγ(v, v?, v

′, v′?)

≤ C
(∫∫∫∫

|(v − v′)− (v? − v′?)|2dγ(v, v?, v
′, v′?)

)1/2

=
√

2CW2(µ, ν).

And we also have∫∫∫∫
(β1 − β2)+|v? − v′?|2dγ(v, v?, v

′, v′?) +

∫∫∫∫
(β1 − β2)−|v − v′|2dγ(v, v?, v

′, v′?)

≤
∫∫∫∫

|β1 − β2|(|v? − v′?|2 + |v − v′|2)dγ(v, v?, v
′, v′?)

≤ C
∫∫∫∫

|(v − v′)− (v? − v′?)|√
1 + |v − v′|2 + |v? − v′?|2

(|v? − v′?|2 + |v − v′|2)dγ(v, v?, v
′, v′?).

One obtains by Cauchy-Schwarz inequality∫∫∫∫
(β1 − β2)+|v? − v′?|2dγ(v, v?, v

′, v′?) +

∫∫∫∫
(β1 − β2)−|v − v′|2dγ(v, v?, v

′, v′?)

≤
√

2CW2(µ, ν)

(∫∫∫∫
(|v − v′|2 + |v? − v′?|2)dγ(v, v?, v

′, v′?)

)1/2

= 2CW2(µ, ν)
√

Tr(Σµ) + Tr(Σν).

So (3.2.12) becomes in this case (3.2.19). �

3.3 Equilibrium state

3.3.1 Existence of an equilibrium state

We consider the equilibrium state of the equation (3.1.3). As in the previous chapter, the equilibrium
states of equation (3.1.3) corresponding to the probability distribution functions satisfying Q(f, f) = 0.
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An equilibrium state of the equation (3.1.3) is a probability distribution f ∈ P2(Rd)
satisfying the fixed point equation

f

∫
Rd
β(v, v′)f(dv′) =

∫∫
Rd×Rd

(τ(v′+v′?)/2#g)β(v′, v′?)f(dv′)f(dv′?). (3.3.1)

Definition 3.3.1

Note that the equilibrium states are densities if g is a density. The goal of this subsection is to
show that the equation (3.1.3) admits an equilibrium state.

There exists an equilibrium state of the equation (3.1.3) f ∈ Pm2 (Rd). Moreover we have

M2(f) ≤ 2M2(g)

1− ‖1− β‖∞
+ |m|2.

Theorem 3.3.1 (Existence of an equilibrium state)

Rather than considering the equation (3.3.1), we will rather study the existence of fixed points of
the operator Tg,β . It is quite difficult to prove that Tg,β is a contracting operator. So we will use a
Schauder fixed-point Theorem to show the existence of an equilibrium state.

We recall that the Schauder fixed-point Theorem asserts that if C is a non-empty closed convex
subset of a normed vector space X and if T is a continuous mapping of C into a compact subset of
C, then T has a fixed point in C. This result was proved by Schauder (Ref. [78] and Theorem 2.2 in
Ref. [16]) then he conjectured the general case in the Scottish book. In 1934, Tychonoff proved the
Theorem in the case where C is compact convex and X is locally convex (Ref. [83] and Theorem 3.2
in Ref. [16]). This result is known as Tychonoff fixed-point Theorem. Then, B.V. Singbal extended
the Tychonoff result by removing the compactness assumption on C (Appendix in Ref. [16]). It is this
result that we will use.

Let X be a locally convex Hausdorff linear topological space, C a non-empty closed convex
subset of X, T a continuous mapping of C into a compact subset of C. Then T has a fixed
point in C.

Theorem 3.3.2 (Schauder fixed-point Theorem)

Proof of Theorem 3.3.1. Let E be the space (C0(Rd), ‖ · ‖∞). We will apply the Schauder fixed-
point Theorem (Theorem 3.3.2) with T = Tg,β and X = E∗. By the Riesz-Markov Theorem (Theorem
A.3.4), the dual space of E, E∗ is the set of bounded Radon measures on Rd (i.e the set of regular
bounded countable additivity "measures" on Rd, rca(Rd)) equipped with the weak* topology, which is
the topology inducted by the variational norm. We consider the following space

C := {µ ∈ Pm2 (Rd), M2(µ) ≤ Σ}

with Σ ≥ 2M2(g)/(1 − ‖1 − β‖∞) + |m|2. Since probability measures are Radon measures, we have
C ⊂ E∗, so we will show that the operator Tg,β has a fixed point in C. For beginning, let µ ∈ C, we
have by Proposition 3.2.1 that

∫
Tg,β[µ](dv) = 1,

∫
vTg,β[µ](dv) = m and

M2(Tg,β[µ]) ≤M2(g) +
(1 + ‖1− β‖∞)(M2(µ)− |m|2)

2
+ |m|2 ≤ 2M2(g)

1− ‖1− β‖∞
+ |m|2 ≤ Σ.
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Thus, Tg,β preserves the space C.

Let us show that C is convex and closed. By linearity of the integral, it is easy to show that Pm2 (Rd) is
convex. Let µ, ν ∈ C and t ∈ [0, 1]. Then, since tµ+ (1− t)ν ∈ Pm2 (Rd), we have M2(tµ+ (1− t)ν) =
tM2(µ) + (1− t)M2(ν) and therefore M2(tµ+ (1− t)ν) ≤ Σ. Thus, C is convex. Next, let (µn)n be a
sequence in C which converges to µ for the weak* topology. For R > 0, we define ϕR : Rd −→ [0, 1] a
continuous function such that ϕR(v) = 1 for |v| ≤ R and ϕR(v) = 0 for |v| ≥ R+ 1. We have∣∣∣∣1− ∫

Rd
ϕR(v)dµn(v)

∣∣∣∣ =

∫
|v|≥R

(1− ϕR(v))dµn(v) ≤ 1

R2

∫
|v|≥R

(1− ϕR(v))|v|2dµn(v) ≤ Σ

R2

which is valid for any R > 0 therefore µ is a probability measure. Then,∣∣∣∣m− ∫
Rd
ϕR(v)dµn(v)

∣∣∣∣ ≤ ∫
|v|≥R

(1− ϕR(v))|v|dµn(v) ≤ 1

R

∫
|v|≥R

(1− ϕR(v))|v|2dµn(v) ≤ Σ

R

which is valid for any R > 0 therefore µ has for mean m. And finally we have since ϕR ∈ Cc(Rd)∫
Rd
ϕR(v)|v|2dµ(v) = lim

n→+∞

∫
Rd
ϕR(v)|v|2dµn(v) ≤ Σ.

By letting R −→ +∞, we have M2(µ) ≤ Σ and hence C is closed for the weak* topology.

Let us show that the map Tg,β is continuous for the weak* topology. Let (µn)n be a sequence in
C which converge to µ ∈ C for the weak* topology. To show that Tg,β is continuous for the weak*
topology, it suffices to show that the sequence (Tg,β[µn])n converges to Tg,β[µ] for the weak* topology.
For any test function ϕ ∈ E we have∫

Rd
ϕ(v)Tg,β[µn](dv) =

∫∫∫
Rd×Rd×Rd

ϕ

(
v +

v′ + v′?
2

)
β(v′, v′?)g(dv)µn(dv′)µn(dv′?)

+

∫∫
Rd×Rd

ϕ(v) + ϕ(v′)

2
(1− β(v, v′))µn(dv)µn(dv′)

=

∫∫∫
Rd×Rd×Rd

Φ(v, v′, v′?)g(dv)µn(dv′)µn(dv′?) +

∫∫
Rd×Rd

Ψ(v, v′)µn(dv)µn(dv′)

where Φ(v, v′, v′?) := ϕ(v + (v′ + v′?)/2)β(v′, v′?) and Ψ(v, v′) := (ϕ(v) + ϕ(v′))(1− β(v, v′))/2. Since β
is continuous, then Φ ∈ Cc(Rd × Rd × Rd), Ψ ∈ Cc(Rd × Rd). So by Lemma A.5.1 we have

lim
n→+∞

∫
Rd
ϕ(v)Tg,β[µn](dv)

= lim
n→+∞

∫∫∫
Rd×Rd×Rd

Φ(v, v′, v′?)g(dv)µn(dv′)µn(dv′?) + lim
n→+∞

∫∫
Rd×Rd

Ψ(v, v′)µn(dv)µn(dv′)

=

∫∫∫
Rd×Rd×Rd

Φ(v, v′, v′?)g(dv)µ(dv′)µ(dv′?) +

∫∫
Rd×Rd

Ψ(v, v′)µ(dv)µ(dv′)

=

∫
Rd
ϕ(v)Tg,β[µ](dv).

We have Tg,β[µn] −→ Tg,β[µ] for the weak* topology when n −→ +∞ hence Tg,β is continuous for the
weak* topology.

It remains to show that there exists a compactK ⊂ C such that Tg,β : C −→ K. We takeK := Tg,β(C).
K is closed and included in C since the operator Tg,β preserves the space C which is closed. Then, we
define BE∗ := {µ ∈ E∗, ‖µ‖ ≤ 1} the unit closed ball in E∗. By the Banach-Alaoglu Theorem, BE∗ is
compact for the weak* topology. Let µ ∈ C, by setting Φ := {ϕ ∈ E, ‖ϕ‖∞ ≤ 1}, we have

‖µ‖ := sup
ϕ∈Φ

∣∣∣∣∫
Rd
ϕ(v)dµ(v)

∣∣∣∣ = |µ|(Rd) = 1
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since µ is a probability measure therefore µ ∈ BE∗ . So C is compact for the weak* topology since it
is closed and contained in a compact set for the weak* topology. This immediately implies that K is
compact for the weak* topology.

We have shown that C is a closed convex set and that Tg,β : C −→ K is continuous with K ⊂ C which
is compact. So by Schauder fixed-point Theorem (Theorem 3.3.2), the operator Tg,β has a fixed point
in C. �

In the particular Gaussian case, in other words if g is a Gaussian with zero mean and covariance
matrix Σg, and if β is a "non-normalized Gaussian" defined by (3.2.10) where Σβ � 0, then we can
explicitly determine an equilibrium state under certain conditions.

Consider g a Gaussian with zero mean and covariance matrix Σg and β a "non-normalized
Gaussian" defined by (3.2.10) where Σβ � 4Σg. Then there exists an equilibrium state f of
the equation (3.1.3) which is Gaussian of mean m and such that this covariance matrix Σf

satisfies

2Σg = (2Σ−1
β + Σ−1

f )−1. (3.3.2)

Proposition 3.3.1

Proof. Let g be a Gaussian with zero mean and covariance matrix Σg, and β a "non-normalized
Gaussian" defined by (3.2.10) where Σβ � 0. If we assume that the equilibrium state is Gaussian,
then by Proposition 3.2.2, we obtain a fixed point of Tg,β if we manage to vanishe the first term of the
right-hand side in (3.2.11). But this can only be vanished if Σβ � 4Σg and in this case, the covariance
matrix of f , Σf must satisfy (3.3.2). �

If otherwise we have Σβ � 4Σg, then the first term of the right-hand side in (3.2.11) cannot vanish
and thus Σf cannot satisfy the condition (3.3.2). It just means that there are no equilibrium states
which are Gaussian of the equation (3.3.1). If d = 1, then g is a Gaussian with zero mean and variance
σ2
g and β is defined by β(v, v?) := exp(−(v − v?)/2b2). And if we have b2 > 4σ2

g , then by Proposition
3.2.2, there exist equilibrium states of the equation (3.1.3) which are Gaussians such that their variance
σ2
f satisfies

1

2σ2
g

=
2

b2
+

1

σ2
f

. (3.3.3)

Another particular case is when β is of the form 1 − β̃ where β̃ : Rd × Rd −→ [0, 1] is a symmetric
continuous function. In this case, we have Tg,β = Tg,1−β̃ and the identity (3.2.9) implies that a fixed
point of Tg,1−β̃ is solution of the equation Tg,β̃[µ] = Tg[µ].

3.3.2 Discussion on the existence of an equilibrium state in the Wasserstein space

The existence of a fixed point for the Tg,β operator leads to the existence of an equilibrium state of the
equation (3.1.3). One can wonder if one could have directly applied the Schauder fixed-point Theorem
(Theorem 3.3.2) on the Wasserstein space X := (P2(Rd),W2). Taking as in the proof of Theorem 3.3.1
the space

C := {µ ∈ Pm2 (Rd), M2(µ) ≤ Σ}

with Σ ≥ 2M2(g)/(1 − ‖1 − β‖∞) + |m|2, we have C which is a subspace of Pm2 (Rd) so C ⊂ P2(Rd).
And C is a convex closed for W2 since Pm2 (Rd) is a complete metric space for W2 (Lemma 2.2.2) and
that the convergence for the Wasserstein metric W2 implies the convergence of the moments of order
2 (Theorem A.5.1).
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The map Tg,β : C −→ C is continuous for the Wasserstein metric W2.

Proposition 3.3.2

Proof. By Theorem A.5.1, Tg,β is continuous for W2 if for every sequence (µn)n in C which converge
weakly to µ ∈ C, we have Tg,β[µn] −→ Tg,β[µ] weakly and M2(Tg,β[µn]) −→ M2(Tg,β[µ]) when n −→
+∞. The weak convergence of Tg,β[µn] to Tg,β[µ] has been established in the proof of Theorem 3.3.1.
To prove the convergence of moments of order 2, we use Lemma A.5.4. Since we have shown weak
convergence, it suffices to show that the family {Tg,β[µn], n ∈ N} is tight for moments of order 2, in
other words that

lim
R→+∞

sup
n

∫
|v|>R

|v|2Tg,β[µn](dv) = 0.

Since g ∈ P0
2 (Rd), we have

lim
R→+∞

∫
|v|>R

ϕi(v)g(dv) = 0, i ∈ {1, 2, 3} (3.3.4)

where ϕ1(v) = 1, ϕ2(v) = v and ϕ3(v) = |v|2. Then, since W2(µn, µ) −→ 0 when n tends to infinity,
we have by Lemma A.5.4

lim
R→+∞

sup
n

∫
|v|>R

ϕi(v)µn(dv) = 0, i ∈ {1, 2, 3} (3.3.5)

where ϕ1(v) = 1, ϕ2(v) = |v| and ϕ3(v) = |v|2. And finally, since µn ∈ C, we have

sup
n

∫
Rd
µn(dv) = 1, sup

n

∫
Rd
vµn(dv) = m and sup

n

∫
Rd
|v|2µn(dv) ≤ Σ + |m|2.

By definition of Tg,β we have∫
|v|>R

|v|2Tg,β[µn](dv) =

∫∫∫
|v+(v′+v′?)/2|2>R2

∣∣∣∣v +
v′ + v′?

2

∣∣∣∣2 β(v′, v′?)g(dv)µn(dv′)µn(dv′?)

+
1

2

∫∫
|v|>R

|v|2(1− β(v, v′))µn(dv)µn(dv′)

+
1

2

∫∫
|v′|>R

|v′|2(1− β(v, v′))µn(dv)µn(dv′).

In the right-hand side, we respectively define I1 the first term, I2 the second and I3 the third. We will
show that each of these three terms tends to 0 when R tends to infinity. For I1, we use the following
inclusion

{(x, y, z) ∈ R3, |x+ y + z|2 > R2} ⊂

{
|x|2 >

(
R

3

)2
}
∩

{
|y|2 >

(
R

3

)2
}
∩

{
|z|2 >

(
R

3

)2
}
.

One obtains

I1 ≤
∫∫∫

|v|2>(R/3)2

∣∣∣∣v +
v′ + v′?

2

∣∣∣∣2 β(v′, v′?)g(dv)µn(dv′)µn(dv′?)

+

∫∫∫
|v′|2>(2R/3)2

∣∣∣∣v +
v′ + v′?

2

∣∣∣∣2 β(v′, v′?)g(dv)µn(dv′)µn(dv′?)

+

∫∫∫
|v′?|2>(2R/3)2

∣∣∣∣v +
v′ + v′?

2

∣∣∣∣2 β(v′, v′?)g(dv)µn(dv′)µn(dv′?).
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The right-hand side is a sum of three terms. We denote J1 the first, J2 the second and J3 the third.
We use the classical convexity inequality |a+ b+ c|2 ≤ 3|a|2 + 3|b|2 + 3|c|2 in the three integrals. For
J1 we have

J1 ≤ 3‖β‖∞
∫∫∫

|v|2>(R/3)2

(
|v|2 +

|v′|2

4
+
|v′?|2

4

)
g(dv)µn(dv′)µn(dv′?)

≤ 3‖β‖∞
∫
|v|2>(R/3)2

|v|2g(dv) +
3‖β‖∞

2

(
sup
n

∫
R
|v|2µn(dv)

)∫
|v|2>(R/3)2

g(dv).

So by (3.3.4), we have that supn J1 tends to 0 when R tends to infinity. For J2 we have

J2 ≤ 3‖β‖∞
∫∫∫

|v′|2>(2R/3)2

(
|v|2 +

|v′|2

4
+
|v′?|2

4

)
g(dv)µn(dv′)µn(dv′?)

≤ 3‖β‖∞
(
M2(g) +

1

4
sup
n

∫
R
|v′?|2µn(dv′?)

)
sup
n

∫
|v′|2>(2R/3)2

µn(dv′)

+
3‖β‖∞

4
sup
n

∫
|v′|2>(2R/3)2

|v′|2µn(dv′).

So by (3.3.5), we have that supn J2 tends to 0 when R tends to infinity. For J3, we do the same
calculation as J2 and we obtains the same thing by symmetry on (v′, v′?). Next for I2 we have

I2 ≤
‖1− β‖∞

2

∫∫
|v|>R

|v|2µn(dv)µn(dv′) ≤ ‖1− β‖∞
2

sup
n

∫
|v|>R

|v|2µn(dv).

So we have supn I2 which tends to 0 when R tends to infinity by (3.3.5) and we have the same thing for
I3 by symmetry on (v, v′). We have just shown the convergence of the moments of order 2 by Lemma
A.5.4 and therefore the operator Tg,β is continuous for W2. �

Is there a compact K ⊂ C such that Tg,β : C −→ K ? We come up against a considerable
difficulty. For the weak* topology, it was the Banach-Alaoglu Theorem which made it possible to
answer positively to this question. Unfortunately for the topology induced by W2, the closed balls
of P2(Rd) are not compact, in other words the Wasserstein space (P2(Rd),W2) is not locally compact
(Proposition 2.2.9 in Ref. [68]).

3.4 Numerical results

3.4.1 Implementation of Tg,β operator

We consider the non-linear operator Tg,β on R introduced in (3.2.1) with g a density g(v)dv and
β(v, v′) := β̃(v− v′) where β̃ : R −→ [0, 1] is a continuous even function. We want to solve numerically
the fixed point equation µ = Tg,β[µ] where µ is a probability measure supported on the interval [−R,R],
R > 0. For this, we need to write Tg,β as a linear combination of Dirac masses. Assume that µ is a
linear combination of Dirac masses, in other words

µ :=

2n∑
i=1

aiδvi

with
∑
ai = 1 and (vi)1≤i≤2n a family of points of R such that −R ≤ v1 < v2 < · · · < v2n ≤ R, there

are 2n points. We choose an uniform subdivision on the interval [−R,R], for all i, vi := −R + iR/n.
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The kernel g is supposed to be supported on [−R,R]. The non-linear operator Tg,β is a sum of two
operators T (1)

g,β and T (2)
g,β defined for any test function ϕ by

∫
R
ϕ(v)T

(1)
g,β [µ](dv) :=

∫
R
ϕ(v)

 2n∑
i=1

2n∑
j=1

aiaj β̃(vi − vj)g
(
v − vi + vj

2

) dv,

∫
R
ϕ(v)T

(2)
g,β [µ](dv) :=

2n∑
i=1

2n∑
j=1

aiaj(1− β̃(vi − vj))ϕ(vi).

T
(1)
g,β [f ] is a measure with density h supported in [−2R, 2R] where

h(v) :=
2n∑
i=1

2n∑
j=1

aiaj β̃(vi − vj)g
(
v − vi + vj

2

)

and T (2)
g,β [f ] is a discrete measure:

T
(2)
g,β [f ] =

2n∑
i=1

ai

 2n∑
j=1

aj(1− β̃(vi − vj)

 δvi .

We assume that g and β̃ are known functions that can computed at any value. We discretize any
integral of the form

∫ 2R
−2R h(x)dx using a Riemann sum on the subdivision (xi)1≤i≤4n∫ 2R

−2R
h(x)dx =

4n∑
i=1

αih(xi)

with
∑
αi = 4R. For the Riemann algorithm, we use an uniform step, we have αi = R/n and

xi := −2R + iR/n for all i ∈ J1, 4nK. In order to eliminate the mass in (xi) for i ∈ J1, nK and
i ∈ J3n + 1, 4nK, we use the truncation method. The external masses on [−2R,−R] and [R, 2R] are
discarded and transported uniformly inside [−R,R]. The measure T (1)

g,β [µ] becomes then a discrete

measure with support on [−R,R]. Combining with T (2)
g,β [µ], we obtain a discrete probability

Tg,β[µ] =
1

Zg,β[µ]

2n∑
i=1

 2n∑
j=1

2n∑
k=1

αiajakβ̃(vj − vk)g
(
vi −

vj + vk
2

)
+ aiajak(1− β̃(vi − vj))

 δvi

where Zg,β[µ] is a normalizing factor. We decrease the computational cost by memorazing a g-kernel
and a β̃-kernel. By setting gi := g(−2R + iR/2n) for i ∈ J2, 8n − 2K and β̃i := β̃(−2R + iR/n) for
i ∈ J1, 4n− 1K, the non-linear operator Tg,β becomes

Tg,β[µ] =
1

Zg,β[µ]

2n∑
i=1

 2n∑
j=1

2n∑
k=1

αiajakβ̃2n+j−kg4n+2i−j−k + aiajak(1− β̃2n+i−j)

 δvi . (3.4.1)

However, the numerical scheme (3.4.1) may decenter Tg,β[µ]. For example, if µ has zero mean and

1

Zg,β[µ]

2n∑
i=1

vi

 2n∑
j=1

2n∑
k=1

αiajakβ̃2n+j−kg4n+2i−j−k + aiajak(1− β̃2n+i−j)

 = m 6= 0,

then it is necessary to recenter the numerical scheme.
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Let µ be a discrete probability measure on R, µ :=
∑
aiδxi . We assume that there exists

R > 0 such that for all x ∈ Z, xi := −R+ iR/n. If there exists i0 such that µ has mean xi0 ,
then the measure µ0,

µ0 :=

+∞∑
i=−∞

ai+i0−nδxi

has zero mean.

Lemma 3.4.1

Proof. Since µ has mean xi0 , we have
∑
aixi = xi0 . And by direct computation we have

+∞∑
i=−∞

ai+i0−nxi =
+∞∑
i=−∞

ai

(
−R+ (i− i0 + n)

R

n

)

= −R
+∞∑
i=−∞

ai +
+∞∑
i=−∞

ai
iR

n
−

+∞∑
i=−∞

ai
i0R

n
+R

+∞∑
i=−∞

ai

=
+∞∑
i=−∞

ai

(
−R+

iR

n

)
−

+∞∑
i=−∞

ai

(
−R+

i0R

n

)
= 0

since
∑
ai = 1. �

We are looking for the first index i0 such that vi0 ≥ m. We naturally have i0 := dn(m + R)/Re.
If m > 0, then i0 > n and the mass must be pushed to the left so that the index i0 takes the place
of the index n. We have therefore pushed the mass to the left by i0 − n points, which means that the
values for i going from 1 to 3n − i0 take the values for i going from i0 − n + 1 to 2n and the values
for i going from 3n− i0 + 1 to 2n take the value 0 since µ is supported on the interval [−R,R]. Hence
formula (3.4.1) becomes

1

Zg,β[µ]

3n−i0∑
i=1

 2n∑
j=1

2n∑
k=1

αi0−n+iajakβ̃2n+j−kg2(n+i0+i)−j−k + ai0−n+iajak(1− β̃n+i0+i−j)

 δvi .

If m < 0, then i0 ≤ n and the mass must be pushed to the right so that the index i0 takes the place of
the index n. We have therefore pushed the mass to the right by n − i0 points, which means that the
values for i going from 1 to n − i0 take the value 0 since µ is supported on the interval [−R,R] and
the values for i going from n− i0 + 1 to 2n take the values for i going from 1 to n+ i0. Hence formula
(3.4.1) becomes

1

Zg,β[µ]

2n∑
i=n−i0+1

 2n∑
j=1

2n∑
k=1

αi0−n+iajakβ̃2n+j−kg2(n+i0+i)−j−k + ai0−n+iajak(1− β̃n+i0+i−j)

 δvi .

3.4.2 Numerical simulations

This subsection is devoted to the numerical resolution of (3.1.3) in dimension d = 1 with g a density
and β(v, v′) := β̃(v−v′) where β̃ : R −→ [0, 1] is a continuous even function. We will present three test
cases for different functions β̃. For each test case, the solution f is depicted for different values of t and
compared with the solution of the fixed point equation Tg,β[f ] = f obtained by iterating Tng,β . And we
will show numerically the convergence of the solution towards the state of equilibrium for the strong
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norm L1. To represent the solution of (3.1.3) numerically, we use as in the previous chapter an Euler
scheme in time for ∆t = 0.015 followed by a Simpson rule on the interval [−10, 10] with a uniform step
∆x = 0.1. To represent numerically the solution of the fixed point of the Tg,β operator, we will iterate
the formula (3.4.1). We will use a quadrature method to numerically represent the strong L1 norm.
We will therefore represent numerically the solutions of the equation

∂f

∂t
=

∫∫
R×R

g

(
v − v′ + v′?

2

)
β̃(v′ − v′?)f(t, dv′)f(t, dv′?)− f(t, · )

∫
R
β̃(v − v′)f(t, dv′)

f(0, · ) = f0.

(3.4.2)

For each of the five cases, the density g is a centered Gaussian of variance σ2
g = 1,

g(v) =
1√
2π

exp

(
−v

2

2

)
(3.4.3)

and the initial condition f0 is the normalized sum of three Gaussians defined in the previous chapter
by (2.5.4),

f0(v) =
1

n

n∑
i=1

1√
2πσ2

i

exp

(
−(v −mi)

2

2σ2
i

)
, (3.4.4)

with n = 3, m1 = 3, m2 = m3 = −3/2, σ2
1 = 1, σ2

2 = 2 and σ2
3 = 4. We consider for each of the five

cases the function β̃ defined as follows

• For the first case, β̃ is a non-normalized Gaussian given by

β̃(v) = exp

(
− v2

2b2

)
(3.4.5)

where b2 = 8, b2 = 4 and b2 = 1.

• For the second case, we take for β̃ the function

β̃(v) = 1− exp

(
− v2

2b2

)
(3.4.6)

where b2 = 8.

• And for the last case, the function β̃ is equal to

β̃(v) =
C√

1 + |v|2
+ (1− C). (3.4.7)

where C = 1, C = 1/2 and C = 0.

Test case 1

We will start with the Gaussian case. The function β̃ is a non-normalized Gaussian defined by (3.4.5).
Since g is a centered normalized Gaussian with variance σ2

g = 1, then we will distinguish three cases:
The case b2 > 4, the case b2 = 4 and the case b2 < 4. For the case b2 > 4, we take b2 = 8. In this case,
Proposition 3.2.2 gives an explicit formula for the equilibrium state. In this case, the equilibrium state
f∞m is a centered Gaussian such that its variance σ2

f satisfies (3.3.3). In other words σ2
f = 4 and hence

f∞m writes

f∞m (v) =
1√
8π

exp

(
−v

2

8

)
. (3.4.8)
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For the case b2 < 4, we take b2 = 1. When b2 = 4 and b2 = 1, the condition b2 > 4 is not satisfied,
then according to the proposition 3.2.2, there is no equilibrium state which is Gaussian for these two
cases and we do not have an explicit formula for this. Then f∞m is approached by Tng,β[f0] with n = 400
and with f0 the initial condition (3.4.4) corresponding to a converged result.

Figure 3.1: Distribution function solution of (3.4.2) with initial condition f0 given by
(3.4.4) with g defined by (3.4.3) and β̃ by (3.4.5). On the left, solutions for b2 = 8 at times
t = 0, t = 40 with the equilibrium state given by (3.4.8) compared to the fixed point of Tg,β
obtained by calculating Tng,β [f0] with n = 400 and f0 the initial condition (3.4.4). On the
middle, solutions for b2 = 4 at times t = 0, t = 30 and t = 40 compared to the fixed point of
Tg,β obtained by computing Tng,β [f0] with n = 400 and f0 the initial condition (3.4.4). On
the right, solutions for b2 = 1 at times t = 0, t = 30 and t = 40 compared to the fixed point
of Tg,β obtained by computing Tng,β [f0] with n = 400 and f0 the initial condition (3.4.4).

Figure 3.2: Function t 7−→ log ‖f(t, · ) − f∞m ‖L1 where f is the solution of (3.4.2) with
initial condition f0 given by (3.4.4) with g defined by (3.4.3) and β̃ by (3.4.5). For b2 = 8,
f∞m is given by (3.4.8) while for b2 = 4 and b2 = 1, f∞m is replaced by Tng,β [f0] with n = 400
and with f0 the initial condition (3.4.4).

We see in the three cases that the solution of the time equation (3.4.2) seems to converge towards
the fixed point of Tg,β . The convergence seems to be much faster when we are in the case b2 > 4.

Test case 2

This test is devoted to the case 1− β. Here, the function β̃ is defined by (3.4.6). In other words β̃ is
of the form 1− β̃1 where β̃1 is the function of the first test which is defined by (3.4.5) with b2 = 8. We
have no explicit formula for the equilibrium state, we only know from the identity (3.2.9) that it is the
solution of the equation Tg,β̃1 [µ] = Tg[µ]. Then f∞m is approached as in the previous case by Tng,β[f0]
with n = 400 and with f0 the initial condition (3.4.4).
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Figure 3.3: Distribution function solution of (3.4.2) with initial condition f0 given by
(3.4.4) with g defined by (3.4.3) and β̃ by (3.4.6). On the left, solutions at times t = 0,
t = 30 and t = 40 compared to the fixed point of Tg,β obtained by computing Tng,β [f0] with
n = 400 and f0 the initial condition (3.4.4). On the right, function t 7−→ log ‖f(t, · )−f∞m ‖L1

where f is the solution of (3.4.2) with initial condition f0 given by (3.4.4) with g defined
by (3.4.3) and β̃ by (3.4.6), and where f∞m is replaced by Tng,β [f0] with n = 400 and with f0
the initial condition (3.4.4).

We see also in this case that the solution of the time equation (3.4.2) seems to converge towards
the fixed point of Tg,β . We took as function β̃ a perturbation of 1. The larger b2 is, the weaker the
perturbation is, the faster the convergence is.

Test case 3

For this last test case, we take a function β̃ which satisfies the Lipschitz condition (3.2.18). Thus,
we take β̃ is defined by (3.4.7). The case C = 0 is the case β constant equal to 1. We have an
explicit formula for the equilibrium state in this case (see Figure 2.1). For the other two cases C = 1
and C = 1/2, no explicit formula are again available for the equilibrium state. Hence f∞m is again
substituted by some Tng,β[f0] for a large n (n = 400 in the simulations) and with an initial condition
f0 (3.4.4) as in test case 2.

Figure 3.4: Distribution function solution of (3.4.2) with initial condition f0 given by
(3.4.4) with g defined by (3.4.3) and β̃ by (3.4.7). On the left, solutions for C = 1/2 at
times t = 0, t = 30 and t = 40 compared to the fixed point of Tg,β obtained by computing
Tng,β [f0] with n = 400 and f0 the initial condition (3.4.4). On the right, solutions for C = 1
at times t = 0, t = 30 and t = 40 compared to the fixed point of Tg,β obtained by computing
Tng,β [f0] with n = 400 and f0 the initial condition (3.4.4).
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Figure 3.5: Function t 7−→ log ‖f(t, · ) − f∞m ‖L1 where f is the solution of (3.4.2) with
initial condition f0 given by (3.4.4) and g defined by (3.4.3). The function β̃ is defined by
(3.4.7) with C = 1 (in blue), C = 1/2 (in red) and C = 0 (in purple). For C = 1 and
C = 1/2, f∞m is replaced by Tng,β [f0] with n = 400 and with f0 the initial condition (3.4.4)
while for C = 0, f∞m is given by (2.5.7).

Figure 3.5 shows that the solution of the time equation (3.4.2) converges exponentially towards the
fixed point of Tg,β . The convergence seems to be faster when C is close to 0, in other words when β̃ is
close to 1.

3.5 Conclusion

We have shown in this chapter the existence of an equilibrium state f ∈ Pm2 (Rd). Furthermore the
numerical simulations show the existence of a solution at all times that converges towards a unique
equilibrium state. We hope in the future to show rigorously the uniqueness of the equilibrium state,
then the existence of a solution at all times and the convergence of this one towards the unique
equilibrium state.
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Conclusion and perspectives

In this manuscript, we have studied a Boltzmann-type kinetic model of velocity alignment (1.4.1)
introduced by Bertin, Droz, Gregoire [9], [10]. This model is new and interesting because it is located
at the interface between collective dynamics and kinetic theory. The transport equation has no forcing
or diffusion term in velocity, the change of velocity is computed as in Boltzmann framework. In
this model, the collisions are not micro-reversible and it is not obvious to find an entropy functional.
In the Boltzmann equations, micro-reversibility is a crucial element for obtaining the H Theorem.
Consequently, the classical tools for dealing with the problems of returns to equilibrium, such as for
example the Csiszàr-Kullback-Pinsker inequality [37], are inoperative . In this model, we have instead
a phenomenon of contraction in the collision process which does not take place for the Boltzmann
operator but drives the density towards an equilibrium state.

We have considered the spatially homogeneous version of the model and we have assumed that the
space of velocities is Euclidean. We started in the chapter 2 by treating the Maxwellian case where
the collision rate β is constant equal to 1, then we treated the case for any β in chapter 3.

In chapter 2, the collision rate β is therefore constant equal to 1. This version of the model has
already been discussed in Ref. [35] where it is considered that the direction taken by the two individuals
is exactly the mean (v′+ v′?)/2 of the pre-collisionnal directions, and where the space of velocities may
be a manifold of any dimension. Our results are more general, however they assume that the space of
velocities is Euclidean. We have shown in this chapter that our model (2.1.3) has a unique mild solution
f ∈ C(R+,P2(Rd)) for any initial condition f0 ∈ Pm2 (Rd). The existence has been proved by using a
fixed point type argument for the Wasserstein metric W2. An argument of the same style had already
been used in Ref. [72] for a model similar to ours. Furthermore, there is a unique equilibrium state
f ∈ Pm2 (Rd). This mild solution f converges exponentially to the equilibrium state for the Wasserstein
metric W2 and for the strong L1 norm. The exponential convergence for the strong L1 norm has been
proved by bounding the strong L1 norm by the Fourier-Toscani based distance d2 thanks to estimates
on the Sobolev norm.

However, a model where for example the velocity is constrained to be of norm 1 as in Ref. [35] is
out of reached by our methods. A first perspective would be to extend our results to the case where
the space of velocities is a manifold of any dimension. A second perspective would be to add the
space variable to this model. In this case we could give a hydrodynamic description of the model. We
have formally shown that this hydrodynamic description is similar to the isothermal compressible Euler
system but with a non-diagonal stress tensor. A third perspective would be to study the hydrodynamic
limit.

In chapter 3, the collision rate β is arbitrary. This adds a considerable difficulty because in the
Maxwellian case, the fact that β is constant equal to 1 made it possible to write the gain term Q+

in the form of a double convolution. If β is not constant, then Q+ has a more complex expression
and therefore all the tools used in chapter 2 are inoperative. We wrote our model as a linear ODE in
infinite dimension, which gives rise to an operator Tg,β which is the double convolution of the chapter
2 when β = 1. We have shown that this operator admits a fixed point, which is equivalent to say that
we have shown the existence of an equilibrium state.

The numerical simulations show the existence of a solution at all times that converges towards
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a unique equilibrium state. A first perspective would be to show rigorously the uniqueness of the
equilibrium state, then the existence of a solution at all times and the convergence of this one towards
the unique equilibrium state. To show the existence of the solution at all times, we tried to apply a
result present in Ref. [1]. This result is an extension of Peano’s Theorem in infinite dimension with the
assumption that the vector field defining the differential equation is α-Lipschitz where α is Kuratowski
index of non-compactness.

We would also like to show the existence of an equilibrium state using the Schauder fixed point The-
orem in the Wasserstein space (P2(Rd),W2). The problem is the non-compactness of the closed balls of
P2(Rd) for the topology induced byW2. We tried to compute the Kuratowski index of non-compactness
of the set Tng,β{µ ∈ Pm2 (Rd), M2(µ) ≤ Σ}: α(Tng,β{µ ∈ Pm2 (Rd), M2(µ) ≤ Σ}). A preliminary compu-
tation seems to show that α(Tng,β{µ ∈ Pm2 (Rd), M2(µ) ≤ Σ}) tends to 0 when n tends to infinity which
would mean that the set Tng,β{µ ∈ Pm2 (Rd), M2(µ) ≤ Σ} will become more and more compact as n
becomes large.

A second perspective would be, as for the Maxwellian case, to consider the case where the space of
velocities is no longer Euclidean but would be a manifold of any dimension. In order to introduce for
example a velocity confinement. Adding the space variable to the model is also considered, as well as
the hydrodynamic description of the model with the study of the hydrodynamic limit.
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Appendix A

On the Wasserstein metric

A.1 Introduction to Optimal Transport

In 1781, the French mathematician Gaspard Monge published his memoir entitled Mémoire sur la
théorie des déblais et des remblais. Memoir in which he introduces the following reflection: How to
fill in the most economical way possible a hole with a pile of sand ? In this problem, it is very useful
to consider the pile of sand as being a Borelian X of R3 and the hole as being a Borelian Y of R3 of
the same volume: Vol(X ) = Vol(Y) := V . We associate with them the probability measures µ and
ν defined by µ := 1Xλ/V and ν := 1Yλ/V . In physical terms, we can see the measure µ as being
the density of distribution of the grains of sand at the beginning (in infinitely large number) and the
measure ν as being the density of distribution of the grains of sand in the hole once it is filled. Monge’s
problem consists in finding a Borel map T : R3 −→ R3 which transports µ on ν with a minimal cost.

Pile of sand
Hole

X

Y

µ

ν

T

Figure A.1: Illustration of Monge’s problem

Let T : X −→ Y be a Borel map and let µ be a measure on X . We define the image measure
(or push-forward) of µ by T as being the measure ν on Y such that for any Borelian A ⊂ Y,
we have ν(A) = µ(T−1(A)). We denote by ν := T#µ and in terms of integrals, we have for
any test function ϕ ∫

Y
ϕ(y)dν(y) =

∫
X
ϕ(T (x))dµ(x).

Definition A.1.1

To explain this term from a physical point of view, writing ν = T#µ means that if the grains of
sand are initially distributed according to the configuration µ and that we move each grain of sand of
the location x to the location T (x), then these latters will be distributed, after transport, according
to the configuration ν.
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We give ourselves a cost function c : (x, y) ∈ R3 × R3 7−→ c(x, y) ∈ [0,+∞[ which gives the
transport cost of a unit of volume from the point x to the point y. The cost of the infinitesimal volume
transported from x to y = T (x) is c(x, T (x))dx. So the total cost is∫

X
c(x, T (x))dx = V

∫
R3

c(x, T (x))dµ(x).

Since V is fixed, Monge’s problem consists in minimizing the quantity
∫
c(x, T (x))dµ(x) on the set

{T : R3 → R3, T#µ = ν}.

• •
•

• •
µ

�
�

�
�

�

ν

T

Figure A.2: Example in the discrete case in R2 of the Monge problem. µ is defined for
any Borelian A by µ(A) = {Number of points in A}/5 and T represents the map which
associates each point of µ to a square of ν. The total transport cost is the sum of the
transport costs for each of the five points of µ.

However, the condition T#µ = ν is actually very restrictive. Indeed, in the particular case where
µ and ν are measures with for respective density f and g, then we have by the change of variable
formula that T#µ = ν if and only if ν has for density the function x 7−→ f(T−1(x))|det(JT−1(x))|.
And by the classical equality JT−1(x) = (JT (T−1(x)))−1, then T#µ = ν if and only if T is solution of
the following Jacobian equation

f(x) = g(T (x))| det(JT (x))|. (A.1.1)

So minimize
∫
c(x, T (x))dµ(x) over the set {T : R3 → R3, T#µ = ν} consists in minimizing over the

set of solutions of the equation (A.1.1). Worse, we can even end up in the case where the set
{T : R3 → R3, T#µ = ν} is empty. For example if we take µ = δx1 and ν = (δy1 + δy2)/2 with y1 6= y2,
then we have on one side ν({y1}) = 1/2 and on the other hand µ(T−1(y1)) = 1 if T−1(y1) = x1 and
0 otherwise. In both cases, ν({y1}) 6= µ(T−1(y1)) so there is no map T such that T#µ = ν. This
problem has therefore been left abandoned during a very long time.

It was not until the 1940s that this problem resurfaced, thanks to the Russian mathematician
Leonid Kantorovich. This one have seen the Monge’s problem under another point of view, which
made it possible to circumvent this constraining problem of the existence of map T such as T#µ = ν.
It was this new approach that won him the Nobel Prize in Economics in 1975. We can see the Monge’s
problem as follows. Rather than pouring the totality of the infinitesimal mass in x at the point y, it
can be partially pour it in y but also at other locations. In the case µ = δx1 and ν = (δy1 + δy2)/2,
one can for example pour half of the mass in x1 into the point y1 and the other half at point y2. It is
nevertheless necessary that the totality of the infinitesimal mass of x be poured (but not necessarily
at the same point y), and that one pours in y the totality of its infinitesimal mass (but not necessarily
taken on a single point x). From a mathematical point of view, if dπ(x, y) represents the quantity of
infinitesimal mass at point x poured at point y (divided by V so that we have a probability measure),
then π must have as marginals µ and ν. Thus, the cost of the infinitesimal volume transported from
x to y is V c(x, y)dπ(x, y) and therefore the total cost is

V

∫∫
R3×R3

c(x, y)dπ(x, y).
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Let µ, ν ∈ P(Rd). We say that π ∈ P(Rd × Rd) is a coupling of (µ, ν) if π admits µ and ν
as marginals. In other words if for any test functions ϕ and ψ, we have∫∫

Rd×Rd
(ϕ(x) + ψ(y))dπ(x, y) =

∫
Rd
ϕ(x)dµ(x) +

∫
Rd
ψ(y)dν(y).

We denote Π(µ, ν) the set of couplings of (µ, ν).

Definition A.1.2

We can interpret the marginals in several ways. In terms of image measure, π is a coupling of
(µ, ν) if proj1#π = µ and proj2#π = ν. And in terms of Borelians, π is a coupling of (µ, ν) if for
any Borelians A, B ⊂ Rd, we have π(A × Rd) = µ(A) and π(Rd × B) = ν(B). Monge’s problem from
Kantorovich’s point of view consists in minimizing the quantity

∫∫
c(x, y)dπ(x, y) on the set Π(µ, ν).

And the constraint of existence of map T such that T#µ = ν is lifted since Π(µ, ν) is always non-empty.
Indeed, for all µ, ν ∈ P(Rd), µ⊗ ν ∈ Π(µ, ν).

•x3

•x2

•x1

� y3

� y2

� y1

x3 4/10 5/10 1/10

x2 5/10 5/10 0

x1 1/10 0 9/10

y1 y2 y3

Figure A.3: Illustration of Monge’s problem from Kantorovich’s point of view in the
discrete case in R2. The array on the right gives the quantities of mass in xi poured at
point yj (i.e 3dπ(xi, yj)). The coupling π is defined for any Borelian A× B by π(A× B) =∑

(xi,yj)∈A×B dπ(xi, yj). The total transport cost is the sum of the transport costs for each
pair (xi, yj) multiplied by the quantity of mass transported from xi to yj .

Another parameter that influences the cost of filling the hole is the mean distance between the pile
of sand and this one. If we consider for a cost function c the optimal transport cost

inf
π∈Π(µ,ν)

∫∫
R3×R3

c(x, y)dπ(x, y)

between the two measures µ and ν, we get a way to "measuring" the distance between µ and ν.
However, the map to which two measures µ and ν associates the optimal transport cost between µ
and ν does not always verify the axioms of a metric. It actually depends on the cost function and it
is interesting to consider the case where this is the Euclidean norm.

For µ, ν ∈ Pp(Rd), p ≥ 1, we define the Wasserstein metric of order p between µ and ν
by

Wp(µ, ν) :=

(
inf

π∈Π(µ,ν)

∫∫
Rd×Rd

|x− y|pdπ(x, y)

)1/p

. (A.1.2)

Definition A.1.3

It was the Russian mathematician Roland Dobrushin who named this metric Wasserstein metric
after having discovered it in the works of the Russian mathematician Léonid Vasershtein [85]. However,
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this distance had already been used by Kantorovich before [56]. The quantity Wp(µ, ν) is always
well-defined. Indeed, if π is a coupling between µ and ν, then by the classic convexity inequality
|x− y|p ≤ 2p−1(|x|p + |y|p) we have∫∫

Rd×Rd
|x− y|pdπ(x, y) ≤ 2p−1

(∫
Rd
|x|pdµ(x) +

∫
Rd
|y|pdν(y)

)
which is finite since µ and ν are in Pp(Rd). If p = 1, then W1(µ, ν) is the solution of Monge’s problem
when the transport cost between two points is the Euclidean distance between these two points. Note
that if µ and ν are probability measures with bounded support, then we can define the Wasserstein
metric Wp between µ and ν for p = +∞ as the limit of Wp(µ, ν) when p −→ +∞. And we have

W∞(µ, ν) := lim
p→+∞

Wp(µ, ν) = inf
π∈Π(µ,ν)

‖c‖L∞(Rd×Rd,π)

where c(x, y) := |x − y|. This particular case p = +∞ is given special attention in Ref. [77] but will
not be discussed in this text. We will therefore assume that p ∈ [1,+∞[. The question we can ask
ourselves is: Is there a coupling π of (µ, ν) which attains the infimum in (A.1.2)?

Let µ, ν ∈ Pp(Rd) and let π ∈ Π(µ, ν). We say that π is an optimal coupling for Wp if

Wp(µ, ν) =

(∫∫
Rd×Rd

|x− y|pdπ(x, y)

)1/p

.

In other words if π attains the infimum in (A.1.2).

Definition A.1.4

Let E be a metric space. We recall that a function f : E −→ R ∪ {+∞} is said to be lower semi-
continuous at the point x ∈ E if for any sequence (xn)n converging to x, we have f(x) ≤ lim inf f(xn).
It is said to be lower semicontinuous on E if it is lower semicontinuous at any point x of E. In
particular, a lower semicontinuous function on a compact set is bounded below and attains its lower
bound. Thus, the existence of an optimal coupling for Wp is guaranteed by the fact that the map
π ∈ Π(µ, ν) 7−→

∫∫
|x − y|pdπ(x, y) is lower semicontinuous on Π(µ, ν) which is compact. More gen-

erally, for a cost function c, the map π ∈ Π(µ, ν) 7−→
∫∫

c(x, y)dπ(x, y) is lower semicontinuous if the
cost function c is lower semicontinuous (Theorem 4.1 in Ref. [88]). In the particular case p = 2, if µ
is absolutely continuous, then there exists a unique optimal coupling π∗ for W2. And it is given by
π∗ = (id, T )#µ where T : Rd −→ Rd is a map such that T#µ = ν [18].

A.2 Proof that Wp is a metric

Symmetry

Let µ, ν ∈ Pp(Rd) and let π ∈ Π(µ, ν) be an optimal coupling. We define the map f by f : (x, y) 7−→
(y, x). It is clear that the coupling π∗ := f#π is a coupling of (ν, µ) and we have

Wp(ν, µ)p ≤
∫∫

Rd×Rd
|x− y|pdπ∗(x, y) =

∫∫
Rd×Rd

|y − x|pdπ(x, y) = Wp(µ, ν)p.

Doing the same thing but taking π ∈ Π(ν, µ) an optimal coupling and π∗ = f#π, we obtainWp(µ, ν) ≤
Wp(ν, µ) and therefore Wp(µ, ν) = Wp(ν, µ).
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Identity of indiscernible

For µ ∈ Pp(Rd), we take π := (id, id)#µ. It is clear that π ∈ Π(µ, µ) and therefore µ = ν implies that

Wp(µ, ν)p ≤
∫∫

Rd×Rd
|x− y|pdπ(x, y) =

∫
Rd
|x− x|pdµ(x) = 0.

Conversely, if Wp(µ, ν) = 0, then there exists a coupling π ∈ Π(µ, ν) such that
∫∫
|x− y|pdπ(x, y) = 0.

In other words, there exists a coupling π such that x = y π-almost everywhere. If we denote ∆ :=
{(x, x), x ∈ Rd} the diagonal of Rd × Rd, then we have π(∆c) = π({(x, y) ∈ Rd × Rd, x 6= y}) = 0. Let
ϕ ∈ Cb(Rd), we have ∫

Rd
ϕ(x)dµ(x) =

∫∫
∆
ϕ(x)dπ(x, y) +

∫∫
∆c

ϕ(x)dπ(x, y).

The second term on the right-hand side is bounded by ‖ϕ‖∞π(∆c) = 0. Then∫
Rd
ϕ(x)dµ(x) =

∫∫
∆
ϕ(x)dπ(x, y) =

∫∫
∆
ϕ(y)dπ(x, y) =

∫∫
Rd×Rd

ϕ(y)dπ(x, y) =

∫
Rd
ϕ(y)dν(y).

The equality is valid for any ϕ ∈ Cb(Rd) therefore µ = ν.

Triangle inequality

To prove the triangle inequality, we need to the following Lemma. We recall that a Polish space is a
complete, separable metric space.

Let X, Y , Z be three Polish spaces and let π1 ∈ P(X × Y ), π2 ∈ P(Y × Z) and µ ∈ P(Y )
such that proj2#π1 = proj1#π2 = µ. Then there exists π ∈ P(X × Y × Z) such that for
any test functions ϕ and ψ,∫∫∫

X×Y×Z
(ϕ(x, y) + ψ(y, z))dπ(x, y, z) =

∫∫
X×Y

ϕ(x, y)dπ1(x, y)

+

∫∫
Y×Z

ψ(y, z)dπ2(y, z).

(A.2.1)

Lemma A.2.1 (Gluing Lemma)

In other words, if π1 is a coupling of (µ1, µ) and if π2 is a coupling of (µ, µ2), then we can construct
a coupling π with three variables which satisfies (A.2.1) by "gluing" π1 and π2 along their common
marginal µ. Hence the name "Gluing Lemma". The proof use the following result [36].

Let X , Y be two Polish spaces. We say that the map P : x ∈ X 7−→ P (x, · ) ∈ P(Y) is
a transition kernel if for any Borelian B ⊂ Y, the map x ∈ X 7−→ P (x,B) ∈ [0, 1] is
measurable.

Definition A.2.1
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Let X , Y be two Polish spaces, µ ∈ P(X ), let f : X −→ Y be a Borel map and let
ν := f#µ ∈ P(Y). Then there exists a transition kernel P such that for any test function
ϕ, we have ∫

X
ϕ(x)dµ(x) =

∫
Y

(∫
f−1(y)

ϕ(x)P (y, dx)

)
dν(y)

and P is unique ν-almost everywhere.

Theorem A.2.1 (Disintegration Theorem)

In the particular case where X = X × Y and Y = X, then µ := π ∈ P(X × Y ), f = proj1 and
ν := µ = proj1#π ∈ P(X). We can canonically identify each slice proj−1

1 (x) by Y and we obtain for
any test function ϕ ∫∫

X×Y
ϕ(x, y)dπ(x, y) =

∫
X

(∫
Y
ϕ(x, y)P (x, dy)

)
dµ(x).

We denote π(dxdy) = µ(dx)P (x, dy).

Proof of Lemma A.2.1. We use the disintegration Theorem (Theorem A.2.1) on π1 and π2. Then
there exists two transition kernels P1 and P2 such that π1(dxdy) = µ(dy)P1(y, dx) and π2(dydz) =
µ(dy)P2(y, dz). We set π := µ⊗ P1(y, · )⊗ P2(y, · ). In other words for any test function ϕ we have∫∫∫

X×Y×Z
ϕ(x, y, z)dπ(x, y, z) =

∫
Y

(∫
Z

(∫
X
ϕ(x, y, z)P1(y, dx)

)
P2(y, dz)

)
dµ(y).

It is clear that π ∈ P(X × Y ×Z) since P1(y, · ) ∈ P(X) and P2(y, · ) ∈ P(Z) for all y ∈ Y . And it is
easy to check that π satisfies (A.2.1). Therefore, π is suitable. �

Let us now show the triangle inequality. Let µ1, µ2, µ3 ∈ Pp(Rd) and let π1,2 ∈ Π(µ1, µ2) and π2,3 ∈
Π(µ2, µ3) two optimals couplings. By the Gluing Lemma (Lemma A.2.1), we can construct a coupling
π ∈ P(Rd×Rd×Rd) with three variables such that (proj1, proj2)#π = π1,2 and (proj2, proj3)#π = π2,3.
We set π1,3 := (proj1, proj3)#π. It is clear that π1,3 ∈ Π(µ1, µ3). So we have

Wp(µ1, µ3) ≤
(∫∫

Rd×Rd
|x− z|pdπ1,3(x, z)

)1/p

=

(∫∫∫
Rd×Rd×Rd

|x− z|pdπ(x, y, z)

)1/p

≤
(∫∫∫

Rd×Rd×Rd
(|x− y|+ |y − z|)pdπ(x, y, z)

)1/p

.

By the Minkowski inequality, we have

Wp(µ1, µ3) ≤
(∫∫∫

Rd×Rd×Rd
|x− y|pdπ(x, y, z)

)1/p

+

(∫∫∫
Rd×Rd×Rd

|y − z|pdπ(x, y, z)

)1/p

=

(∫∫
Rd×Rd

|x− y|pdπ1,2(x, y)

)1/p

+

(∫∫
Rd×Rd

|y − z|pdπ2,3(y, z)

)1/p

= Wp(µ1, µ2) +Wp(µ2, µ3).

We can thus equip the space Pp(Rd) with the Wasserstein metric Wp. The metric space (Pp(Rd),Wp)
is sometimes called the Wasserstein space of order p (see Ref. [88]).
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A.3 Kantorovich formula

We consider factories being supplied with coal. We would like to minimize the transport cost of coal
from mines to factories. We give ourselves a cost function c : (x, y) ∈ R3 × R3 7−→ c(x, y) ∈ [0,+∞[
which gives the transport cost of a unit of volume from mine x to factory y. If dπ(x, y) represents the
quantity of infinitesimal mass of coal transported from mine x to factory y, then the total transport
cost is

∫∫
c(x, y)dπ(x, y). And the marginals of π are µ and ν where dµ(x) represents the infinitesimal

quantity of coal produced in the mine x and dν(y) the infinitesimal quantity of coal consumed in the
factory y. It is assumed that mines produce as much as factories consume, in other words µ and ν are
probability measures (even if it means normalizing). Since the marginals of π are fixed, the problem
consists in minimizing the quantity

∫∫
c(x, y)dπ(x, y) on the set Π(µ, ν) so we are in the presence of a

Monge-Kantorovich problem.
Suppose instead that a shipper offers to charge a price ϕ(x) for loading a unit of volume into

the mine x and a price ψ(y) for unloading a unit of volume into the factory y. Knowing that the
sum of these two prices will always be lower than the transport cost from mine x to factory y. The
problem is therefore transferred to the shipper because the latter must fix its prices such that its profit
is maximized, while respecting the constraint ϕ(x) + ψ(y) ≤ c(x, y) for that its proposition remains
attractive. In mathematical terms, the shipper must maximize the quantity∫

R3

ϕ(x)dµ(x) +

∫
R3

ψ(y)dν(y)

on the set of all pairs of price functions (ϕ,ψ) satisfying the inequality ϕ(x) +ψ(y) ≤ c(x, y) for all x,
y ∈ R3.

Let µ, ν ∈ P(Rd) and let c : Rd × Rd −→ [0,+∞[ be a lower semicontinuous cost function.
Then we have

inf
π∈Π(µ,ν)

∫∫
Rd×Rd

c(x, y)dπ(x, y) = sup
(ϕ,ψ)∈Φc

(∫
Rd
ϕ(x)dµ(x) +

∫
Rd
ψ(y)dν(y)

)
(A.3.1)

where Φc := {ϕ, ψ ∈ Cb(Rd), ∀x, y ∈ Rd, ϕ(x) + ψ(y) ≤ c(x, y)}.

Theorem A.3.1 (Kantorovich duality)

The formula (A.3.1) remains true if we extend the class Φc to the following class Φc(µ, ν) :=
{ϕ ∈ L1(Rd, µ), ψ ∈ L1(Rd, ν), ∀x, y ∈ Rd, ϕ(x) + ψ(y) ≤ c(x, y)}. It would be tempting to prove the
Theorem A.3.1 by a double inequality because the following inequality

sup
(ϕ,ψ)∈Φc

(∫
Rd
ϕ(x)dµ(x) +

∫
Rd
ψ(y)dν(y)

)
≤ inf

π∈Π(µ,ν)

∫∫
Rd×Rd

c(x, y)dπ(x, y). (A.3.2)

is very easy to prove. Indeed, let µ, ν ∈ P(Rd) and let π∗ ∈ Π(µ, ν) be a coupling such that

inf
π∈Π(µ,ν)

∫∫
Rd×Rd

c(x, y)dπ(x, y) =

∫∫
Rd×Rd

c(x, y)dπ∗(x, y).

Such a coupling π∗ exists since the map π ∈ Π(µ, ν) 7−→
∫∫

c(x, y)dπ(x, y) is lower semicontinuous
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(because c is lower semicontinuous) on Π(µ, ν) which is compact. Let (ϕ,ψ) ∈ Φc, we have∫
Rd
ϕ(x)dµ(x) +

∫
Rd
ψ(y)dν(y) =

∫∫
Rd×Rd

(ϕ(x) + ψ(y))dπ∗(x, y)

≤
∫∫

Rd×Rd
c(x, y)dπ∗(x, y)

= inf
π∈Π(µ,ν)

∫∫
Rd×Rd

c(x, y)dπ(x, y).

And we take the supremum over (ϕ,ψ), we obtain (A.3.2). However, the reverse inequality is very
complicated to prove. We will therefore directly show the equality (A.3.1) using convex analysis tools.
The proof of this Theorem A.3.1 is given in Villani [89], where convex analysis plays a fundamental
role. It is separated into three steps: first we treat the compact case and when the cost function c is
continuous, then we prove the non-compact case but with c bounded and uniformly continuous and
we end with the general case. We give a rigorous proof of this Theorem A.3.1 but only of the first step
of the proof taken from Villani [89], in other words in the particular compact case and when the cost
function c is continuous. We recall a preliminary result on convex sets.

Let E be a normed vector space and let C ⊂ E be a convex set. Then Int(C) is convex, and
if in addition Int(C) 6= ∅, then we have C = Int(C).

Lemma A.3.1

Proof. Let x, y ∈ Int(C). Then there exists ε > 0 and u ∈ E with |u| < 1 such that x + εu and
y+ εu ∈ C. For t ∈ [0, 1], we set z := tx+ (1− t)y. By convexity of C, t(x+ εu) + (1− t)(y+ εu) ∈ C.
But at the same time, we have t(x+ εu) + (1− t)(y + εu) = z + εu. So B(z, ε) ⊂ C, in other words,
z ∈ Int(C).

Let x ∈ Int(C), then there exists a sequence (xn)n in Int(C) which converges to x. And Int(C) ⊂ C
immediately results in x ∈ C thus Int(C) ⊂ C. Conversely, if x0 ∈ Int(C), then there exists r0 > 0
such that B(x0, r0) ⊂ C. For x ∈ C and 0 < ε < 1, we set z := (1− ε)(x− x0) + x0. Then for u ∈ E
with |u| < 1, we have by convexity of C that z+εr0u ∈ C, because it is a convex combination of x and
x0 + r0u. So B(z, εr0) ⊂ C, in other words z ∈ Int(C). Now let x ∈ C, then there exists a sequence
(xn)n in C which converges to x. For x0 ∈ Int(C) (which exists since Int(C) is non-empty), we define
the sequence (zn)n by

zn :=

(
1− 1

n

)
(xn − x0) + x0.

We have zn ∈ Int(C) since xn ∈ C, and (zn)n converges to x. So x ∈ Int(C), in other words
C ⊂ Int(C). �

To prove Theorem A.3.1, we use the following result which allows to interchange the infimum and
the supremum in the specific case of convex functions (Theorem 1.9 in Ref. [89], Theorem 1.11 in Ref.
[19]).

Let E be a normed vector space and let T : E −→ R ∪ {+∞} a function which is not
identically equal to +∞ (i.e there exists x0 ∈ Dom(T ) such that T (x0) < +∞). We define
the conjugate of T the function T ∗ : E∗ −→ R ∪ {+∞} by

T ∗(f) = sup
x∈E

(f(x)− T (x)).

Definition A.3.1
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Let E be a normed vector space and let T , S : E −→ R ∪ {+∞} be two convex functions.
Assume that there exists x0 ∈ E such that T (x0) < +∞, S(x0) < +∞ and T is continuous
at x0. Then

inf
x∈E

(T (x) + S(x)) = sup
f∈E∗

(−T ∗(−f)− S∗(f)) (A.3.3)

and the supremum on the right-hand side is attained.

Theorem A.3.2 (Fenchel-Rockafellar)

Proof. Let f ∈ E∗, we have

inf
x,y∈E

(T (x) + S(y) + f(x− y)) = inf
x∈E

(f(x) + T (x)) + inf
y∈E

(−f(y) + S(y))

= − sup
x∈E

(−f(x)− T (x))− sup
y∈E

(f(y)− S(y))

= −T ∗(−f)− S∗(f).

Thus,
−T ∗(−f)− S∗(f) = inf

x,y∈E
(T (x) + S(y) + f(x− y)) ≤ inf

x∈E
(T (x) + S(x)).

And by taking the supremum over f , we obtain

sup
f∈E∗

(−T ∗(−f)− S∗(f)) ≤ inf
x∈E

(T (x) + S(x)).

Conversely, let m := infx(T (x) + S(x)). We set A := {(x, λ) ∈ E × R, T (x) ≤ λ} the epigraph of T
and B := {(x, λ) ∈ E × R, λ ≤ m− S(x)} the hypograph of m−S. The convexity of T and S implies
that A and B are convex. In addition, T (x0) < +∞, S(x0) < +∞ together with the continuity of T
at x0 gives that Int(A) and B are non-empty. By Lemma A.3.1, Int(A) is open and convex. And in
addition, if (x, λ) ∈ Int(A), then T (x) < λ and thus m ≤ T (x) + S(x) < λ + S(x), in other words
(x, λ) /∈ B. Int(A) and B are disjoint, so according to the Hahn-Banach Theorem, there exists a closed
hyperplan that separates Int(A) and B. In other words there exists a linear form Φ on E × R and
α ∈ R such that

Φ(x, λ) ≥ α ∀(x, λ) ∈ Int(A)

Φ(x, λ) ≤ α ∀(x, λ) ∈ B.

More precisely, there exists k ∈ R and f ∈ E∗ such that Φ(x, λ) = f(x) + kλ. If (x, λ) ∈ Int(A), then
there exists a sequence (xn, λn)n in Int(A) which converges to (x, λ). We have by continuity of f that
f(x) + kλ ≥ α for all (x, λ) ∈ Int(A). We therefore have by Lemma A.3.1

f(x) + kλ ≥ α ∀(x, λ) ∈ A (A.3.4)
f(x) + kλ ≤ α ∀(x, λ) ∈ B. (A.3.5)

By taking x = x0 in (A.3.4), we see by making λ tends to +∞ that k ≥ 0. Suppose that k = 0, then
we have f(x) ≥ α for all (x, λ) ∈ A and f(x) ≤ α for all (x, λ) ∈ B. In other words, we have f(x) ≥ α
for all x ∈ Dom(T ) and f(x) ≤ α for all x ∈ Dom(S). Since x0 ∈ Dom(T ) ∩Dom(S), then f(x0) = α
and since T is continuous at x0, then there exists a ball B(x0, ε) ⊂ Dom(T ). For all x ∈ E with |x| < ε
and for all δ ∈]− 1, 1[, we have

f(x0 + δx) ≥ α ⇒ f(x0) + δf(x) ≥ α ⇒ δf(x) ≥ 0.
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So f(x) = 0 for all x ∈ B(0, ε) and therefore f = 0 on E, which is a contradiction. So k > 0 and we
have by (A.3.4)

T ∗
(
−f
k

)
= sup

x∈E

(
−1

k
f(x)− T (x)

)
= − inf

x∈E

(
1

k
f(x) + T (x)

)
= −1

k
inf
x∈E

(f(x) + kT (x)) ≤ −α
k

since (x, T (x)) ∈ A. Similary, we have by (A.3.5)

S∗
(
f

k

)
= sup

x∈E

(
1

k
f(x)− S(x)

)
=

1

k
sup
x∈E

(f(x) + k(m− S(x)))−m ≤ α

k
−m

since (x,m− S(x)) ∈ B. So we have

m =
α

k
+
(
m− α

k

)
≤ −T ∗

(
−f
k

)
− S∗

(
f

k

)
≤ sup

f∈E∗
(−T ∗(−f)− S∗(f)) ≤ m.

This results in (A.3.3) where the supremum is attained by f/k. �

This Theorem A.3.2 involves the dual space. We will recall before moving on to the proof of
Theorem A.3.1 what are the duals spaces of continuous functions. We first start by defining the total
variation of a signed measure (i.e which can take negative values).

For a signed measure µ on a measured space X , the total variation of µ is defined for any
Borelian A of X by

|µ|(A) := sup
+∞∑
i=1

|µ(Ai)| (A.3.6)

where the supremum is taken over all the partitions of A.

Definition A.3.2

The total variation of a signed measure µ is in a way the absolute value of µ. Note that |µ|(A) ≥
|µ(A)|, but that in general |µ|(A) is not equal to |µ(A)|. The total variation of a a signed measure µ,
|µ| is a measure and if µ is a measure, we have |µ| = µ.

Let µ be a signed measure (i.e it can take negative values) on a measured space X . We
define the positive part and the negative part of µ as being the two measures µ+ and
µ− defined for any Borelian A of X by

µ+(A) := sup
B⊂A

µ(B) and µ−(A) := sup
B⊂A

(−µ(B)). (A.3.7)

Definition A.3.3

The Jordan’s decomposition Theorem guarantees the existence of a unique pair of measures (µ+, µ−)
such that |µ| = µ+ + µ− and such that there exists a Borelian A satisfying µ−(A) = µ+(X\A) = 0.
And µ+ and µ− are defined by (A.3.7). Definition A.3.3 extends the notion of positive and negative
part to signed measures. It is easy to check that we have as for real numbers µ = µ+ − µ−. We can
define in a similar way to real numbers, the maximum and the minimum between two signed measures
µ and ν by

max(µ, ν) := ν + (µ− ν)+ and min(µ, ν) := µ− (µ− ν)+. (A.3.8)
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Let E be a topological space and let B(E) be the Borelian set of E. Consider a map
µ : B(E) −→ R. We say that µ is

(1) Bounded on E if for any Borelian A ∈ B(E), |µ|(A) < +∞.

(2) Finitely (Countably) additive if for any finite (countable) number of disjoint set
(Ai)i in B(E), it holds that µ(

⋃
Ai) =

∑
µ(Ai).

(3) Regular if for any Borelian A ∈ B(E) and for any ε > 0, there exists an open set O
and a closed set F such that F ⊂ A ⊂ O and such that for any Borelian B ⊂ O\F it
holds that |µ|(B) < ε.

Definition A.3.4

We denote by ba(E) the set of maps µ : B(E) −→ R bounded and finitely additive, rba(E) that
of regular bounded and finitely additive maps, and rca(E) that of regular bounded and countably
additive maps. Equipped with the variational norm ‖ · ‖: ‖µ‖ := |µ|(E), ba(E) is a Banach space if E
is a normal topological space. The space ba(E) is a fairly large space of "measures". Note that we did
neither assume that the member are countably additive nor that the values µ(A) shall be non-negative.
However, we assumed the all values |µ|(A) are finite which excludes for example the Lebesgue measure
on E = R. The space ba(E) is slightly too large to be the dual space of Cb(E) for a normal topological
space E and we need another restriction. We need that a "measure" in ba(E) to be regular in other
words that it be in rba(E), which is a closed subspace of ba(E).

For a normal topological space E, it holds that Cb(E)∗ = rba(E).

Theorem A.3.3

This Theorem is Theorem IV.6.2 in Ref. [43]. The proof is lenghty and technical. Now we assume
that E is a Hausdorff space (in other words separate) and locally compact. The absence of compactness
will be compensated by the fact that the function "vanishes at the boundary". We obtain the following
result called the Riesz-Markov Theorem.

If E is a locally compact Hausdorff space, then every bounded linear functionnal on C0(E)
is represented by a unique "measure" µ ∈ rca(E). Moreover, the norm of µ is the total
variation of µ: ‖µ‖ := |µ|(E).

Theorem A.3.4 (Riesz-Markov Theorem)

This result is best known when it states that the dual of C(E) when E is compact is rca(E). This
is Theorem IV.6.3 in Ref. [43]. But the locally compact case is more general. It is now time to move
on to the proof of Kantorovich duality Theorem A.3.1.

Proof of Theorem A.3.1. We take the proof given by Villani in Ref. [89]. This is separated into
three steps. The first step consists in proving the equality (A.3.1) in the compact case and when the
cost function c is continuous. It is here that the convex analysis will play a fundamental role. In the
second step, we extend (A.3.1) to the non-compact case but with the assumption that c is bounded
and uniformly continuous. We will reduce to the compact case by a truncation procedure. And we
end with the general case in a third step, by setting c = sup cn where cn is a non-decreasing sequence
of non-negative and uniformly continuous cost functions.
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We only give here the proof of the first step. Let X, Y be two compacts on Rd and µ ∈ P(X),
ν ∈ P(Y ). We set E := Cb(X × Y ) and we define the two functions T and S : E −→ R ∪ {+∞} by

T (f) :=

{
0 if f(x, y) ≥ −c(x, y),
+∞ else.

S(f) :=


∫
X
ϕ(x)dµ(x) +

∫
Y
ψ(y)dν(y) if f(x, y) = ϕ(x) + ψ(y), ϕ ∈ Cb(X), ψ ∈ Cb(Y ),

+∞ else.

We have

Dom(T ) = {f ∈ E, ∀(x, y) ∈ X × Y , f(x, y) ≥ −c(x, y)}
Dom(S) = {f ∈ E, ∀(x, y) ∈ X × Y , f(x, y) = ϕ(x) + ψ(y), ϕ ∈ Cb(X), ψ ∈ Cb(Y )}.

Note that the decomposition f(x, y) = ϕ(x)+ψ(y) in Dom(S) is not unique. If we have ϕ1(x)+ψ1(y) =
ϕ2(x) + ψ2(y) for every x ∈ X, y ∈ Y , then there exists a constant λ ∈ R such that ϕ1 = ϕ2 + λ and
ψ1 = ψ2−λ and therefore

∫
ϕ1dµ+

∫
ψ1dν =

∫
ϕ2dµ+

∫
ψ2dν. So S is well-defined. If we take f0 = 1,

then f0 ∈ Dom(T ) ∩Dom(S) and T is continuous at f0. Let us show that T and S are convex. Let f
and g be two functions in E such that T (f) = +∞ or T (g) = +∞ and let t ∈ [0, 1]. We have clearly

T (tf + (1− t)g) ≤ tT (f) + (1− t)T (g) = +∞.

If T (f) < +∞ and T (g) < +∞, then we have f(x, y) ≥ −c(x, y) and g(x, y) ≥ −c(x, y). Therefore
tf(x, y) + (1− t)g(x, y) ≥ −c(x, y) for all t ∈ [0, 1] and this results in that

T (tf + (1− t)g) = 0 = tT (f) + (1− t)T (g).

So T is convex. For S, if S(f) = +∞ or S(g) = +∞, we have clearly

S(tf + (1− t)g) ≤ tS(f) + (1− t)S(g) = +∞.

If S(f) < +∞ and S(g) < +∞, then f(x, y) = ϕ1(x) + ψ1(y) and g(x, y) = ϕ2(x) + ψ2(y). Therefore
(tf + (1− t)g)(x, y) = (tϕ1 + (1− t)ϕ2)(x) + (tψ1 + (1− t)ψ2)(y) and this results in that

S(tf + (1− t)g) =

∫
X

(tϕ1(x) + (1− t)ϕ2(x))dµ(x) +

∫
Y

(tψ1(y) + (1− t)ψ2(y))dµ(y)

= tS(f) + (1− t)S(g).

So S is convex, we can apply the Fenchel-Rockafellar Theorem (Theorem A.3.2). Let’s now compute
both sides of (A.3.3). Since

Dom(T ) ∩Dom(S) = {f ∈ E, ∃(ϕ,ψ) ∈ Cb(X)× Cb(Y ), ∀(x, y) ∈ X × Y , f(x, y) = ϕ(x) + ψ(y)

≥ −c(x, y)},

on one side we have

inf
f∈E

(T (f) + S(f)) = inf
f∈Dom(T )∩Dom(S)

(T (f) + S(f))

= inf
f∈Dom(T )∩Dom(S)

(∫
X
ϕ(x)dµ(x) +

∫
Y
ψ(y)dν(y)

)
= − sup

(ϕ,ψ)∈Φc(X×Y )

(∫
X
ϕ(x)dµ(x) +

∫
Y
ψ(y)dν(y)

)
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where Φc(X × Y ) := {(ϕ,ψ) ∈ Cb(X)× Cb(Y ), ∀(x, y) ∈ X × Y , ϕ(x) + ψ(y) ≤ c(x, y)}. And on the
other hand, since E = Cb(X×Y ) withX and Y compact, then by the Riesz-Markov Theorem (Theorem
A.3.4), the dual space of E, E∗ is the set of Radon bounded measures on X × Y (i.e the set of regular
bounded countable additivity "measures" on X × Y , rca(X × Y )). Let π ∈ E∗ with positive part
π+ and negative part π−: π = π+ − π−. We assume that π+ 6= 0. There are Z+ and Z− such that
X × Y = Z+ ∪ Z− with Z+ ∩ Z− = ∅ and π+(Z−) = π−(Z+) = 0. Since π+ and π− are regular
measures, then for all λ > 0, there exists a compact K ⊂ Z+ such that π+(K) > 0 and an open set
Oλ ⊃ Z+ such that π−(Oλ) ≤ 1/λ. Let f0 ∈ E such that 1K ≤ f0 ≤ 1Oλ . In particular f0 ≥ −c since
f0 is non-negative and therefore it results that

T ∗(π) = sup
f∈E

(∫∫
X×Y

f(x, y)dπ(x, y)− T (f)

)
≥ λ

∫∫
X×Y

f0(x, y)dπ+(x, y)− λ
∫∫

X×Y
f0(x, y)dπ−(x, y)

≥ λ
∫∫

X×Y
f0(x, y)dπ+(x, y)− λπ−(Oλ) −→ +∞

when λ −→ +∞. So π /∈ Dom(T ∗) if π+ 6= 0 and π+ = 0 immediately implies that

T ∗(π) = sup
f≥−c

∫∫
X×Y

f(x, y)dπ(x, y) = sup
f≤c

∫∫
X×Y

f(x, y)dπ−(x, y) =

∫∫
X×Y

c(x, y)dπ−(x, y)

since π− is a measure. We therefore have that Dom(T ∗) is the set of Radon measures π ∈ E∗ with
zero positive part: π+ = 0. Thus we have

T ∗(π) =

 −
∫∫

X×Y
c(x, y)dπ(x, y) if π ∈ Dom(T ∗),

+∞ else.

We will now show that Π(µ, ν) = {π ∈ E∗, π ∈ Dom(S∗), −π ∈ Dom(T ∗)}. If π ∈ Π(µ, ν), then π has
zero negative part which means that −π ∈ Dom(T ∗). Furthermore,

S∗(π) = sup
f∈E

(∫∫
X×Y

f(x, y)dπ(x, y)− S(f)

)
= sup

f=ϕ+ψ

(∫∫
X×Y

f(x, y)dπ(x, y)−
∫
X
ϕ(x)dµ(x)−

∫
Y
ψ(y)dν(y)

)
= 0

since π has µ and ν as marginals, hence π ∈ Dom(S∗). Conversely, let π ∈ E∗ such that π ∈ Dom(S∗)
and −π ∈ Dom(T ∗). Then π has zero negative part. If we suppose that π /∈ Π(µ, ν), then there exists
ϕ0 ∈ Cb(X) such that

∫
ϕ0dπ >

∫
ϕ0dµ and this results in that

S∗(π) = sup
(ϕ,ψ)

(∫∫
X×Y

ϕ(x)dπ(x, y)−
∫
X
ϕ(x)dµ(x) +

∫∫
X×Y

ψ(y)dπ(x, y)−
∫
Y
ψ(y)dν(y)

)
≥ λ

(∫∫
X×Y

ϕ0(x)dπ(x, y)−
∫
X
ϕ0(x)dµ(x)

)
−→ +∞

when λ −→ +∞ then π /∈ Dom(S∗) which is a contradiction. Therefore, π ∈ Π(µ, ν) which results in

sup
π∈E∗

(−T ∗(−π)− S∗(π)) = sup
(π,−π)∈Dom(S∗)×Dom(T ∗)

(−T ∗(−π)− S∗(π))

= sup
π∈Π(µ,ν)

(
−
∫∫

X×Y
c(x, y)dπ(x, y)

)
= − inf

π∈Π(µ,ν)

∫∫
X×Y

c(x, y)dπ(x, y).
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Putting everything together and changing signs, we obtain

inf
π∈Π(µ,ν)

∫∫
X×Y

c(x, y)dπ(x, y) = sup
(ϕ,ψ)∈Φc(X×Y )

(∫
X
ϕ(x)dµ(x) +

∫
Y
ψ(y)dν(y)

)
which is (A.3.1) in the compact case. �

Theorem A.3.1 gives an alternative expression for the Wasserstein metric called Kantorovich for-
mula. For µ, ν ∈ Pp(Rd), we have

Wp(µ, ν) =

(
sup

(ϕ,ψ)∈Φp

(∫
Rd
ϕ(x)dµ(x) +

∫
Rd
ψ(y)dν(y)

))1/p

(A.3.9)

where Φp := {ϕ, ψ ∈ Cb(Rd), ∀x, y ∈ Rd, ϕ(x) + ψ(y) ≤ |x− y|p}. This formula (A.3.9) gives in the
particular case p = 1 a very nice expression.

Let µ, ν ∈ P1(Rd). By setting F := {f , ‖f‖Lip ≤ 1}, we have

W1(µ, ν) = sup
f∈F

∣∣∣∣∫
Rd
f(x)dµ(x)−

∫
Rd
f(y)dν(y)

∣∣∣∣ . (A.3.10)

Corollary A.3.1 (Dual representation of W1)

Proof. Let µ, ν ∈ P1(Rd). We set

S := sup
f∈F

∣∣∣∣∫
Rd
f(x)dµ(x)−

∫
Rd
f(y)dν(y)

∣∣∣∣ .
Let π ∈ Π(µ, ν) be an optimal coupling and let f be a 1-Lipschitzian function. Then we have∣∣∣∣∫

Rd
f(x)dµ(x)−

∫
Rd
f(y)dν(y)

∣∣∣∣ =

∣∣∣∣∫∫
Rd×Rd

(f(x)− f(y))dπ(x, y)

∣∣∣∣
≤
∫∫

Rd×Rd
|f(x)− f(y)|dπ(x, y)

≤
∫∫

Rd×Rd
|x− y|dπ(x, y)

= W1(µ, ν).

And we take the supremum over f , we obtain S ≤W1(µ, ν).

Conversely, let ε > 0. Then by (A.3.9) with p = 1, there exists ϕ ∈ L1(Rd, µ) and ψ ∈ L1(Rd, ν) such
that ϕ(x) + ψ(y) ≤ |x− y| and

W1(µ, ν)− ε ≤
∫

Rd
ϕ(x)dµ(x) +

∫
Rd
ψ(y)dν(y).

We set f(x) := supy(ψ(y)− |x− y|). Then by the triangle inequality we have

f(x) = sup
y∈Rd

(ψ(y)− |x− y|) ≤ sup
y∈Rd

(ψ(y)− |x′ − y|+ |x− x′|) = f(x′) + |x− x′|.

So f is 1-Lipschitz and µ, ν ∈ P1(Rd) implies that f ∈ L1(Rd, µ)×L1(Rd, ν) (because any Lipschitzian
function is integrable with respect to µ if µ ∈ P1(Rd)). By taking x = y in the supremum defining f ,
we have f(x) ≥ ψ(x). And since ϕ(x) + ψ(y) ≤ |x− y|, we also have f(x) ≤ −ϕ(x). So we have

W1(µ, ν)− ε ≤
∫

Rd
ϕ(x)dµ(x) +

∫
Rd
ψ(y)dν(y) ≤ −

∫
Rd
f(x)dµ(x) +

∫
Rd
f(y)dν(y) ≤ S.

Hence W1(µ, ν) ≤ S since ε is arbitrary. �
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A.4 Properties of the Wasserstein metric

This paragraph lists various properties on the Wasserstein metric.

Let 1 ≤ p ≤ q and let µ, ν ∈ Pq(Rd). Then we have

Wp(µ, ν) ≤Wq(µ, ν). (A.4.1)

Proposition A.4.1 (Comparaison)

Proof. Let π ∈ Π(µ, ν) an optimal coupling for Wq. Then by the Hölder inequality, we have since
p ≤ q

Wp(µ, ν)p ≤
∫∫

Rd×Rd
|x− y|pdπ(x, y) ≤

(∫∫
Rd×Rd

|x− y|qdπ(x, y)

)p/q
= Wq(µ, ν)p.

�

The most useful exponents for the Wasserstein metric are p = 1 and p = 2. W1 therefore is
the weakest of all, but it is also the easiest to manipulate with the formula (A.3.10). W2 has more
interesting properties and is better adapted. But the results obtained for W1 are generally difficult to
show for W2.

If µ belongs to Pp(Rd), then for all x0 ∈ Rd

Wp(µ, δx0) =

(∫
Rd
|x− x0|pdµ(x)

)1/p

. (A.4.2)

Proposition A.4.2 (Wasserstein metric from a Dirac measure)

Proof. Let π ∈ Π(µ, δx0) and let π∗ := µ⊗ δx0 . For ϕ ∈ Cc(Rd × Rd), we have∫∫
Rd×Rd

ϕ(x, y)dπ∗(x, y) =

∫
Rd
ϕ(x, x0)dµ(x) =

∫∫
Rd×Rd

ϕ(x, x0)dπ(x, y).

Let ε > 0, since ϕ ∈ Cc(Rd × Rd), then ϕ is uniformly continuous. So there exists δ > 0 such that for
all (x, y), (x′, y′),

√
|x− x′|2 + |y − y′|2 < δ implies that |ϕ(x, y)− ϕ(x′, y′)| < ε. So that results in∣∣∣∣∫∫

Rd×Rd
ϕ(x, y)dπ(x, y)−

∫∫
Rd×Rd

ϕ(x, y)dπ∗(x, y)

∣∣∣∣ ≤ ∫∫
Rd×Rd

|ϕ(x, y)− ϕ(x, x0)|dπ(x, y)

=

∫∫
|y−x0|<δ

|ϕ(x, y)− ϕ(x, x0)|dπ(x, y)

+

∫∫
|y−x0|≥δ

|ϕ(x, y)− ϕ(x, x0)|dπ(x, y).

The second term on the right-hand side is bounded by 2‖ϕ‖∞π({(x, y), |y − x0| ≥ δ}) = 0 since x0 /∈
{y, |y − x0| ≥ δ}. For the first term on the right-hand side, we use the uniform continuity of ϕ with
the pair (x, y), (x, x0). Since

√
|x− x|2 + |y − x0|2 < δ, then |ϕ(x, y)− ϕ(x, x0)| < ε, which results in∣∣∣∣∫∫

Rd×Rd
ϕ(x, y)dπ(x, y)−

∫∫
Rd×Rd

ϕ(x, y)dπ∗(x, y)

∣∣∣∣ < ε.

Valid for any ε > 0, for any ϕ ∈ Cc(Rd × Rd) and for any coupling π ∈ Π(µ, δx0) therefore π = π∗. �
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Proposition A.4.2 shows that the only coupling in Π(µ, δx0) is µ ⊗ δx0 (all the mass should be
transported to x0). We can show this with the monotone class Theorem. Let ν ∈ P(Rd) be the
measure defined for any Borelian A ⊂ Rd by ν(A) := π(A × {x0}). If π ∈ Π(µ, δx0), then for any
Borelian A× B ⊂ Rd × Rd we have

π(A× B) = π((A× (B ∩ {x0})) ∪ (A× (B\{x0}))) = π(A× (B ∩ {x0})) + π(A× (B\{x0})).

And π(A× (B\{x0})) ≤ π(Rd × (B\{x0})) = 0 so that implies that

π(A× B) = π(A× (B ∩ {x0}))1x0∈B + π(A× (B ∩ {x0}))1x0 /∈B = π(A× {x0})1x0∈B = ν(A)1x0∈B.

So by the monotone class Theorem, we have π = ν⊗δx0 and therefore we have for any Borelian A ⊂ Rd

that µ(A) = π(A× Rd) = ν(A)δx0(Rd) = ν(A) so µ = ν.

Let µ ∈ P2(R) with for density f and let x0 ∈ R such that µ({x ≤ x0}) = α. Then for all u,
v ∈ R such that u < v we have

W2(µ, αδu + (1− α)δv)
2 =

∫ x0

−∞
|x− u|2f(x)dx+

∫ +∞

x0

|x− v|2f(x)dx. (A.4.3)

Proposition A.4.3 (Non-decreasing coupling)

Proof. Let π ∈ Π(µ, αδu + (1−α)δv). We define the two measures µ1 and µ2 for any Borelian A ⊂ R
by µ1(A) := π(A×{u})/α and µ2(A) := π(A×{v})/(1−α). Let A×B ⊂ R2 be a Borelian. We have

π(A× B) = π((A× (B ∩ {u})) ∪ (A× (B ∩ {v})) ∩ (A× (B\{u, v})))
= π(A× (B ∩ {u})) + π(A× (B ∩ {v})) + π(A× (B\{u, v})).

And π(A× (B\{u, v})) ≤ π(R× (B\{u, v})) = 0 so that implies that

π(A× B) = π(A× (B ∩ {u}))1u∈B + π(A× (B ∩ {u}))1u/∈B
+ π(A× (B ∩ {v}))1v∈B + π(A× (B ∩ {v}))1v/∈B
= π(A× {u})1u∈B + π(A× {v})1v∈B.

So by the monotone class Theorem, we have π = αµ1 ⊗ δu + (1−α)µ2 ⊗ δv. Let A ⊂ R be a Borelian,
we have µ(A) = π(A×R) = αµ1(A)+(1−α)µ2(A) so µ(A) = 0 implies that µ1(A) = µ2(A) = 0 since
α ∈ [0, 1]. So the two measures µ1 and µ2 are absolutely continuous with respect to µ and consequently
there exists by the Radon-Nikodym Theorem two densities f1 and f2 such that for any test function ϕ∫

R
ϕ(x)f(x)dx = α

∫
R
ϕ(x)f(x)f1(x)dx+ (1− α)

∫
R
ϕ(x)f(x)f2(x)dx.

In other words, we have the equality f = αff1 + (1− α)ff2. By setting h := αf1, we have in the end
that for any test function ϕ∫∫

R×R
ϕ(x, y)dπ(x, y) =

∫
R
ϕ(x, u)h(x)f(x)dx+

∫
R
ϕ(x, v)(1− h(x))f(x)dx. (A.4.4)

Let π∗ be the coupling defined by the formula (A.4.4) with h : x 7−→ h(x) := 1]−∞,x0](x). Then for all
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π ∈ Π(µ, αδu + (1− α)δv) we have∫∫
R×R
|x− y|2dπ(x, y)−

∫∫
R×R
|x− y|2dπ∗(x, y) = −2u

∫
R
xh(x)f(x)dx− 2v

∫
R
x(1− h(x))f(x)dx

+ 2u

∫ x0

−∞
xf(x)dx+ 2v

∫ +∞

x0

xf(x)dx

= 2(v − u)

∫ +∞

x0

xh(x)f(x)dx

− 2(v − u)

∫ x0

−∞
x(1− h(x))f(x)dx.

To know the sign of the right-hand side, we study the sign of the quantity∫ +∞

x0

xh(x)f(x)∫ +∞
x0

h(x)f(x)dx
dx−

∫ x0

−∞

x(1− h(x))f(x)∫ x0
−∞(1− h(x))f(x)dx

dx

since
∫ +∞
x0

h(x)f(x)dx =
∫ x0
−∞(1 − h(x))f(x)dx. Since for all x0 ∈ R and for all µ ∈ P(] − ∞, x0]),

ν ∈ P([x0,+∞[), we have
∫ x0
−∞ xdµ(x) ≤

∫ +∞
x0

xdν(x), we conclude since u < v that∫∫
R×R
|x− y|2dπ(x, y)−

∫∫
R×R
|x− y|2dπ∗(x, y) ≥ 0

in other words π∗ is optimal. �

Given µ, ν ∈ Pp(Rd) and f , g : Rd −→ Rd.

(1) If f is a Lipschitzian Borel map, then

Wp(f#µ, f#ν) ≤ ‖f‖LipWp(µ, ν). (A.4.5)

(2) If f and g are two µ-measurable maps in Lp(Rd), then

Wp(f#µ, g#µ) ≤ ‖f − g‖Lp(Rd,µ). (A.4.6)

Proposition A.4.4 (Transfert)

Proof. For (A.4.5), let π ∈ Π(µ, ν) be an optimal coupling. We set π∗ := (f, f)#π, then π∗ ∈
Π(f#µ, f#ν) and therefore

Wp(f#µ, f#ν) ≤
(∫∫

Rd×Rd
|x− y|pdπ∗(x, y)

)1/p

=

(∫∫
Rd×Rd

|f(x)− f(y)|pdπ(x, y)

)1/p

≤ ‖f‖Lip

(∫∫
Rd×Rd

|x− y|pdπ(x, y)

)1/p

= ‖f‖LipWp(µ, ν).

To prove (A.4.6), we set π := (f, g)#µ. It is easy to check that π ∈ Π(f#µ, g#µ) and therefore

Wp(f#µ, g#µ) ≤
(∫∫

Rd×Rd
|x− y|pdπ(x, y)

)1/p

=

(∫
Rd
|f(x)− g(x)|pdµ(x)

)1/p

= ‖f − g‖Lp(Rd,µ).

�
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Let µ, ν ∈ Pp(Rd) and let f : Rd −→ Rd be a Lipschitzian map. So we have∣∣∣∣∣
(∫

Rd
|f(x)|pdµ(x)

)1/p

−
(∫

Rd
|f(x)|pdν(x)

)1/p
∣∣∣∣∣ ≤ ‖f‖LipWp(µ, ν). (A.4.7)

In other words, the map µ ∈ (Pp(Rd),Wp) 7−→ ‖f‖Lp(Rd,µ) is Lipschitzian.

Corollary A.4.1 (Wp-Lipschitz continuity of p-moments)

Proof. Using the classical inequality |d(x, z)− d(y, z)| ≤ d(x, y) for a distance d and (A.4.2), we have∣∣∣∣∣
(∫

Rd
|f(x)|pdµ(x)

)1/p

−
(∫

Rd
|f(x)|pdν(x)

)1/p
∣∣∣∣∣ = |Wp(f#µ, δ0)−Wp(f#ν, δ0)| ≤Wp(f#µ, f#ν).

And by (A.4.5), we obtain (A.4.7). �

An interesting property of the Wasserstein metric for p = 2 is that we can link W2(µ1, ν1) with
W2(µ2, ν2) if µ2 is a translation of µ1 and ν2 a translation of ν1.

Let µ ∈ Pmµ2 (Rd) and ν ∈ Pmν2 (Rd). Then for any u, v ∈ Rd we have

W2(τu#µ, τv#ν)2 = W2(µ, ν)2 + 2〈mµ −mν , u− v〉+ |u− v|2. (A.4.8)

Proposition A.4.5 (Translation)

Proof. Let π∗ := (τu, τv)#π with π ∈ Π(µ, ν). By direct computation we have∫∫
Rd×Rd

|x− y|2dπ∗(x, y) =

∫∫
Rd×Rd

|x+ u− y − v|2dπ(x, y)

=

∫∫
Rd×Rd

|x− y|2dπ(x, y) + 2

∫∫
Rd×Rd

〈x− y, u− v〉dπ(x, y) + |u− v|2.

Expanding the scalar product and using
∫∫

xidπ(x, y) = mµ(i),
∫∫

yidπ(x, y) = mν(i), one obtains∫∫
Rd×Rd

|x− y|2dπ∗(x, y) =

∫∫
Rd×Rd

|x− y|2dπ(x, y) + 2〈mµ −mν , u− v〉+ |u− v|2.

Since the map π 7−→ (τu, τv)#π maps Π(µ, ν) into Π(τu#µ, τv#ν) and is bijective, then taking the
infimum over π we have

inf
π∈Π(µ,ν)

∫∫
Rd×Rd

|x− y|2dπ∗(x, y) = inf
π∈Π(τu#µ,τv#ν)

∫∫
Rd×Rd

|x− y|2dπ(x, y)

= W2(µ, ν)2 + 2〈mµ −mν , u− v〉+ |u− v|2

which is (A.4.8). �

Proposition A.4.5 involves two interesting special cases. The first is when u = 0 and ν = µ, this is
Monge’s problem in the particular case of translation for quadratic cost and we have

W2(µ, τv#µ) = |v|. (A.4.9)

One can easily show by the formula (A.3.10) that (A.4.9) remains true for W1.
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µ τv#µ

v

Figure A.4: Illustration of Monge’s problem in the particular case of translation.

The second particular case is when u = mµ and v = mν , then Proposition A.4.5 implies that

W2(µ, ν)2 = W2(µ0, ν0)2 + |mµ −mν |2 (A.4.10)

where µ0 and ν0 are the centered measures of zero mean of µ and ν. In other words µ0 := τ−mµ#µ
and ν0 := τ−mν#ν. The proof taken from [42] of the following Proposition uses (A.4.10).

Let µ ∈ P2(Rd) with for density a Gaussian of mean vector mµ and covariance matrix Σµ.
And let ν ∈ P2(Rd) with for density a Gaussian of mean vector mν and covariance matrix
Σν . Then

W2(µ, ν)2 = |mµ −mν |2 + Tr(Σµ) + Tr(Σν)− 2Tr
((

Σ1/2
µ ΣνΣ1/2

µ

)1/2
)
. (A.4.11)

Proposition A.4.6 (Wasserstein metric between two Gaussians)

Proof. If mµ, mν 6= 0, then applying (A.4.10) we have

W2(µ, ν)2 = W2(τ−mµ#µ, τ−mν#ν)2 + |mµ −mν |2.

Since τ−mµ#µ is a Gaussian with zero mean and covariance matrix Σµ, and τ−mν#ν a Gaussian with
zero mean and covariance matrix Σν , it suffices to show (A.4.11) in the particular case where µ and ν
are centered Gaussians. We therefore assume that mµ = mν = 0. Let π ∈ Π(µ, ν), we have∫∫

Rd×Rd
|x− y|2dπ(x, y) =

∫∫
Rd
|x|2dµ(x) +

∫∫
Rd
|y|2dν(y)− 2

∫∫
Rd×Rd

〈x, y〉dπ(x, y)

=
d∑
i=1

(∫
Rd
x2
i dµ(x) +

∫
Rd
y2
i dν(y)− 2

∫∫
Rd×Rd

xiyidπ(x, y)

)
= Tr(Σ1) + Tr(Σ2)− 2Tr(C)

where C = (ci,j)1≤i,j≤d is a matrix defined by ci,j :=
∫∫

xiyjdπ(x, y). The coupling π has for covariance
matrix the block matrix Σπ defined by

Σπ :=

[
Σµ C
tC Σν

]
.

The main observation is that the matrix Σπ is a symmetric positive semi-definite matrix. Indeed for
any column vector u, v ∈ Rd we have

Q(u, v) :=
[
tu tv

]
× Σπ ×

[
u
v

]
=

d∑
i=1

d∑
j=1

uiujΣµ(i, j) + 2uivjci,j + vivjΣν(i, j)

=

∫∫
Rd×Rd

 d∑
i=1

d∑
j=1

uiujxixj + 2uivjxiyj + vivjyiyj

 dπ(x, y).
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Using (
∑
ai)

2 =
∑∑

aiaj , one obtains

Q(u, v) =

∫∫
Rd×Rd

∣∣∣∣∣
d∑
i=1

xiui +

d∑
i=1

yivi

∣∣∣∣∣
2

dπ(x, y).

Thus, Σπ � 0 but the quadratic form Q can be degenerate. Let m ≥ d be the rank of Q, there exists
an orthogonal basis which diagonalizes it. So there exists P , D ∈M2d(R) such that Σπ = tPDP where
P = (pi,j)1≤i,j≤2d and D := diag(d1, · · · , dm, 0, · · · , 0) where for all i, di ≥ 0. So for any column vector
u, v ∈ Rd we have

Q(u, v) =
[
tu tv

]
× tPDP ×

[
u
v

]
=

m∑
i=1

 d∑
j=1

uj
√
dipi,j +

d∑
j=1

vj
√
dipi,d+j

2

.

For 1 ≤ i ≤ m, we define the column vectors ai = (ai(j))1≤j≤d, bi = (bi(j))1≤j≤d where ai(j) :=
√
dipi,j

and bi(j) :=
√
dipi,d+j . So we obtain for any column vector u, v ∈ Rd

Q(u, v) =
m∑
i=1

| taiu+ tbiv|2.

By expanding, we have on one side Q(u, v) = tuΣµu + 2 tuCv + tvΣνv and on the other hand, since
taiu ∈ R, then taiu = tuai and therefore we have | taiu+ tbiv|2 = tuai

taiu+ tvbi
tbiv + 2 tuai

tbiv. We
therefore obtain that for any column vector u, v ∈ Rd

tuΣµu+ 2 tuCv + tvΣνv =
m∑
i=1

(tuai
taiu+ tvbi

tbiv + 2 tuai
tbiv).

By identification, we find C =
∑
ai
tbi, Σµ =

∑
ai
tai and Σν =

∑
bi
tbi. CalculatingW2(µ, ν) consists

in finding the maximum of the function F : (a, b) 7−→ Tr
(∑

ai
tbi
)
under the constraints

∑
ai
tai = Σµ

and
∑
bi
tbi = Σµ. The set of constraints being compact, the maximum is therefore attained. For

(i, j), we define the functions g1
i,j : (a, b) 7−→

∑
ai
tai − Σµ(i, j) and g2

i,j : (a, b) 7−→
∑
bi
tbi − Σν(i, j).

Differentiate F , g1
i,j , g

2
i,j , we have

D(a,b)F (h, k) =
m∑
i=1

d∑
j=1

bi(j)hi(j) +

m∑
i=1

d∑
j=1

ai(j)ki(j) = Tr

(
m∑
i=1

(bi
thi + ai

tki)

)
,

D(a,b)g
1
i,j(h, k) =

m∑
l=1

(al(j)hl(i) + al(i)hl(j)),

D(a,b)g
2
i,j(h, k) =

m∑
l=1

(bl(j)kl(i) + bl(i)kl(j)).

So by the Lagrange multipliers Theorem there exists real constants λ1
i,j , λ

2
i,j , 1 ≤ i, j ≤ d such that for

any (h, k)

D(a,b)F (h, k) =
d∑
i=1

d∑
j=1

D(a,b)g
1
i,j(h, k)λ1

i,j +
d∑
i=1

d∑
j=1

D(a,b)g
2
i,j(h, k)λ2

i,j .

Let Λ1 ∈Md(R) be the matrix formed by λ1
i,j and Λ2 ∈Md(R) the matrix formed by λ2

i,j . Using trace
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properties, Tr(AB) = Tr(BA), Tr(tA) = Tr(A) and Tr(A tB) =
∑∑

ai,jbi,j , we obtains

Tr

(
m∑
i=1

(bi
thi + ai

tki)

)
=

d∑
i=1

d∑
j=1

m∑
l=1

(al(j)hl(i) + al(i)hl(j))λ
1
i,j

+

d∑
i=1

d∑
j=1

m∑
l=1

(bl(j)kl(i) + bl(i)kl(j))λ
2
i,j

= Tr

(
m∑
i=1

(hi
tai + ai

thi)
tΛ1

)
+ Tr

(
m∑
i=1

(ki
tbi + bi

tki)
tΛ2

)

= Tr

(
m∑
i=1

ai
thi(Λ1 + tΛ1)

)
+ Tr

(
m∑
i=1

bi
tki(Λ2 + tΛ2)

)
.

By setting M1 := Λ1 + tΛ1 and M2 := Λ2 + tΛ2, we find by identification bi = M1ai and ai = M2bi.
Since M1 and M2 are symmetric, it is easy to check that M1ΣµM1 = Σ2 and M2ΣνM2 = Σ1. So that
implies that

Tr(C) = Tr

(
m∑
i=1

ai
tbi

)
= Tr

(
m∑
i=1

ai
taiM1

)
= Tr(ΣµM1) = Tr(Σ1/2

µ M1Σ1/2
µ ).

We set R := Σ
1/2
µ M1Σ

1/2
µ . It is easy to check that R2 = Σ

1/2
µ ΣνΣ

1/2
µ . So R2 is a symmetric positive

definite matrix since Σµ, Σν � 0. But R is not necessarily the square root matrix of R2. Let λ1, · · · ,
λd be the positive eigenvalues of R2. So we have

Tr(C) = Tr(R) =

d∑
i=1

εi
√
λi

where for all i, εi = ±1. Thus, we therefore have

max

{
Tr

(
m∑
i=1

ai
tbi

)
:

m∑
i=1

ai
tai = Σµ et

m∑
i=1

bi
tbi = Σν

}
= max

{
d∑
i=1

εi
√
λi: εi = ±1

}
=

d∑
i=1

√
λi

= Tr
((

Σ1/2
µ ΣνΣ1/2

µ

)1/2
)
.

We deduce that for any coupling π ∈ Π(µ, ν)∫∫
Rd×Rd

|x− y|2dπ(x, y) ≥ Tr(Σµ) + Tr(Σν)− 2Tr
((

Σ1/2
µ ΣνΣ1/2

µ

)1/2
)
.

Let A := Σ
−1/2
µ (Σ

1/2
µ ΣνΣ

1/2
µ )1/2Σ

−1/2
µ , we define the coupling π∗ := (id, T )#µ where T : x ∈ Rd 7−→

Ax ∈ Rd. We recall that if a probability measure µ ∈ P(Rd) has for density a Gaussian with mean
vector m and covariance matrix Σ, then the image measure of µ by the map x 7−→ Ax + b has for
density a Gaussian with mean vector Am+ b and covariance matrix AΣ tA. We also recall that if M is
a symmetric positive definite matrix, then its inverseM−1 and its square rootM1/2 are also symmetric
positive definite matrices. By symmetry of the matrix Σ

1/2
µ ΣνΣ

1/2
µ we have

tA = tΣµ
−1/2

t(
Σ1/2
µ ΣνΣ1/2

µ

)1/2
tΣµ

−1/2 = Σ−1/2
µ

(
Σ1/2
µ ΣνΣ1/2

µ

)1/2
Σ−1/2
µ = A.
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So A is symmetric. By direct computation, we have

AΣµ
tA = Σ−1/2

µ

(
Σ1/2
µ ΣνΣ1/2

µ

)1/2
Σ−1/2
µ ΣµΣ−1/2

µ

(
Σ1/2
µ ΣνΣ1/2

µ

)1/2
Σ−1/2
µ

= Σ−1/2
µ

(
Σ1/2
µ ΣνΣ1/2

µ

)1/2 (
Σ1/2
µ ΣνΣ1/2

µ

)1/2
Σ−1/2
µ

= Σ−1/2
µ Σ1/2

µ ΣνΣ1/2
µ Σ−1/2

µ

= Σν .

We have T#µ = ν and∫∫
Rd×Rd

|x− y|2dπ∗(x, y) =

∫
Rd
|x−Ax|2dµ(x)

=

∫
Rd
|x|2dµ(x) +

∫
Rd
|Ax|2dµ(x)− 2

∫
Rd
〈x,Ax〉dµ(x)

= Tr(Σµ) + Tr(Σν)− 2

∫
Rd
〈x,Ax〉dµ(x).

Using the equality
∫
〈x,Ax〉dµ(x) = Tr(ΣµA), one obtains∫∫

Rd×Rd
|x− y|2dπ∗(x, y) = Tr(Σµ) + Tr(Σν)− 2Tr(ΣµA)

= Tr(Σµ) + Tr(Σν)− 2Tr
(

Σ1/2
µ Σ1/2

µ Σ−1/2
µ

(
Σ1/2
µ ΣνΣ1/2

µ

)1/2
Σ−1/2
µ

)
= Tr(Σµ) + Tr(Σν)− 2Tr

((
Σ1/2
µ ΣνΣ1/2

µ

)1/2
)
.

So π∗ is optimal. �

In the particular case where d = 1, the proof is simplified. If µ ∈ P2(R) has for density a Gaussian
with zero mean and variance σ2

µ and if ν ∈ P2(R) has for density a Gaussian with zero mean and
variance σ2

ν , then for any coupling π ∈ Π(µ, ν) we have∫∫
R×R
|x− y|2dπ(x, y) = σ2

µ + σ2
ν − 2

∫∫
R×R

xydπ(x, y).

And by the Cauchy-Schwarz inequality, we obtain the lower bound∫∫
R×R
|x− y|2dπ(x, y) ≥ σ2

µ + σ2
ν − 2

(∫
R
|x|2dπ(x, y)

)1/2(∫
R
|y|2dπ(x, y)

)1/2

= (σµ − σν)2.

By defining the coupling π∗ := (id, T )#µ where T : x 7−→ σνx/σµ, it is easy to check with a change of
variable that T#µ = ν and we obtain∫∫

R×R
|x− y|2dπ∗(x, y) =

∫
R
|x− T (x)|2dµ(x) =

(
1− σν

σµ

)2 ∫
R
|x|2dµ(x) = (σµ − σν)2.

So π∗ is optimal.

Given µ1, µ2, ν1 and ν2 in Pp(Rd) and t ∈ [0, 1], then

Wp(tµ1 + (1− t)µ2, tν1 + (1− t)ν2)p ≤ tWp(µ1, ν1)p + (1− t)Wp(µ2, ν2)p (A.4.12)

Proposition A.4.7 (Convexity)
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Proof. Let π1 ∈ Π(µ1, ν1) and π2 ∈ Π(µ2, ν2) be two optimal couplings. For t ∈ [0, 1], we set
π := tπ1 + (1− t)π2. It is easy to check that π ∈ Π(tµ1 + (1− t)µ2, tν1 + (1− t)ν2) and therefore

Wp(tµ1 + (1− t)µ2, tν1 + (1− t)ν2)p ≤
∫∫

Rd×Rd
|x− y|pdπ(x, y)

= t

∫∫
Rd×Rd

|x− y|pdπ1(x, y) + (1− t)
∫∫

Rd×Rd
|x− y|pdπ2(x, y)

= tWp(µ1, ν1)p + (1− t)Wp(µ2, ν2)p.

�

Given µ1, ν1 ∈ P2(Rd) have the same mean and µ2, ν2 ∈ P2(Rd). Then

W2(µ1 ∗ µ2, ν1 ∗ ν2)2 ≤W2(µ1, ν1)2 +W2(µ2, ν2)2. (A.4.13)

Proposition A.4.8 (Sub-additivity with respect to convolution)

Proof. Let π1 ∈ Π(µ1, ν1) and π2 ∈ Π(µ2, ν2) be two optimal couplings. We set π := π1 ∗ π2. It is
easy to check that π ∈ Π(µ1 ∗ µ2, ν1 ∗ ν2) and therefore

W2(µ1 ∗ µ2, ν1 ∗ ν2)2 ≤
∫∫

Rd×Rd
|x− y|2dπ(x, y)

=

∫∫∫∫
Rd×Rd×Rd×Rd

|x+ u− y − v|2dπ1(x, y)dπ2(u, v).

Using the classical equality |x+ y|2 = |x|2 + |y|2 + 2〈x, y〉, we have

W2(µ1 ∗ µ2, ν1 ∗ ν2)2 ≤W2(µ1, ν1)2 +W2(µ2, ν2)2

+ 2

∫∫∫∫
Rd×Rd×Rd×Rd

〈x− y, u− v〉dπ1(x, y)dπ2(u, v).

And by using the equality
∫∫
〈x, y〉dµ(x)dν(y) = 〈

∫
xdµ(x),

∫
ydν(y)〉, we therefore have that the

second term on the right-hand side is equal to 0 since µ1 and ν1 have the same mean. �

Inequality (A.4.13) is also true forW1. But in this case, the condition of equality of means between
µ1 and ν1 is not necessary. If π1 ∈ Π(µ1, ν1) and π2 ∈ Π(µ2, ν2) are two optimal couplings, then still
setting π := π1 ∗ π2, we have

W1(µ1 ∗ µ2, ν1 ∗ ν2) ≤
∫∫

Rd×Rd
|x− y|dπ(x, y)

=

∫∫∫∫
Rd×Rd×Rd×Rd

|x+ u− y − v|dπ1(x, y)dπ2(u, v).

And by the triangle inequality,

W1(µ1 ∗ µ2, ν1 ∗ ν2) ≤
∫∫∫∫

Rd×Rd×Rd×Rd
(|x− y|+ |u− v|)dπ1(x, y)dπ2(u, v)

=

∫∫
Rd×Rd

|x− y|dπ1(x, y) +

∫∫
Rd×Rd

|u− v|dπ2(u, v)

= W1(µ1, ν1) +W1(µ2, ν2).

For p ∈ {1, 2}, if µ1, µ2, ν ∈ Pp(Rd), then we obtain by (A.4.13)

Wp(µ1 ∗ ν, µ2 ∗ ν) ≤Wp(µ1, µ2). (A.4.14)
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A.5 Convergence in Wasserstein sense

In this section, we give a characterization so that a sequence of measures (µn)n in Pp(Rd) converges
to µ ∈ Pp(Rd) for the Wasserstein metric Wp. We recall before the different types of convergence for
the measures. Let (µn)n be a sequence of measures on Rd and µ a measure on Rd. We consider a test
function ϕ satisfying

lim
n→+∞

∫
Rd
ϕ(x)dµn(x) =

∫
Rd
ϕ(x)dµ(x). (A.5.1)

We say that (µn)n converges

(1) Vaguely to µ if (A.5.1) is satisfied for all ϕ ∈ Cc(Rd).

(2) Weakly to µ if (A.5.1) is satisfied for all ϕ ∈ C0(Rd).

(3) Narrowly to µ if (A.5.1) is satisfied for all ϕ ∈ Cb(Rd).

Definition A.5.1

Since we have the obvious inclusions Cc(Rd) ⊂ C0(Rd) ⊂ Cb(Rd), then narrow convergence implies
weak convergence and weak convergence implies vague convergence.

If (µn)n is a sequence of measures which converges vaguely to µ such that µn(Rd) −→ µ(Rd)
when n goes to infinity, then (µn)n converges narrowly to µ.

Proposition A.5.1

Proof. Let ϕ ∈ Cb(Rd) and let ψ : Rd −→ [0, 1] be a continuous function. We have∣∣∣∣∫
Rd
ϕ(x)dµn(x)−

∫
Rd
ϕ(x)dµ(x)

∣∣∣∣ ≤ ∫
Rd
|ϕ(x)− ϕ(x)ψ(x)|dµn(x)

+

∣∣∣∣∫
Rd
ϕ(x)ψ(x)dµn(x)−

∫
Rd
ϕ(x)ψ(x)dµ(x)

∣∣∣∣+

∫
Rd
|ϕ(x)ψ(x)− ϕ(x)|dµ(x)

≤ ‖ϕ‖∞
∫

Rd
(1− ψ(x))dµn(x) + ‖ϕψ‖∞|µn(Rd)− µ(Rd)|+ ‖ϕ‖∞

∫
Rd

(1− ψ(x))dµ(x).

The second term tends to 0 by hypothesis and the first term tends to the third by vague convergence.
So we have

lim sup
n→+∞

∣∣∣∣∫
Rd
ϕ(x)dµn(x)−

∫
Rd
ϕ(x)dµ(x)

∣∣∣∣ ≤ 2‖ϕ‖∞
∫

Rd
(1− ψ(x))dµ(x).

The right-hand side can be made as small as we want. Because there exists an increasing sequence
of functions (ψk)k in Cc(Rd) such that for all k, ψk(x) ∈ [0, 1] and which converges to the constant
function 1. We have by Lebesgue’s dominated Theorem

lim
k→+∞

∫
Rd

(1− ψk(x))dµ(x) = µ(Rd)− lim
k→+∞

∫
Rd
ψk(x)dµ(x) = 0.

�

We have immediately that if (µn)n is a sequence of probability measures which converges to a
probability measure µ, then the three convergence are equivalent. We will say in this particular
case that (µn)n converges weakly to µ. A first result concerns the weak convergence of a product of
probability measures.
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Let (µn)n be a sequence of probability measure on Rd which converges weakly to µ ∈ P(Rd)
and let (νn)n be a sequence of probability measure on Rd which converges weakly to ν ∈
P(Rd). Then the sequence (µ⊗ ν)n converges weakly to µ⊗ ν.

Lemma A.5.1

This Lemma is shown trivially with the Levy’s Continuity Theorem. We assume that µn is the law
of a random variable Xn and that νn is the law of a random variable Yn. If Xn converges in distribution
to X, and if Yn converges in distribution to Y , then the independent random couple (Xn, Yn) converges
in distribution to the independent random couple (X,Y ). Indeed, by using the characteristic function
ϕn of (Xn, Yn) and the characteristic function ϕ of (X,Y ), we have for all t, s ∈ Rd

lim
n→+∞

ϕn(t, s) = lim
n→+∞

∫∫
Rd×Rd

ei〈t,x〉+i〈s,y〉dµn(x)dνn(y)

=

(
lim

n→+∞

∫
Rd
ei〈t,x〉dµn(x)

)(
lim

n→+∞

∫
Rd
ei〈s,y〉dνn(y)

)
=

∫∫
Rd×Rd

ei〈t,x〉+i〈s,y〉dµ(x)dν(y)

= ϕ(t, s).

We propose a rigorous proof of the Lemma A.5.1 without using the Levy’s Continuity Theorem.

Proof of Lemma A.5.1. Let X and Y be two compacts on Rd. We will show that the space E of
finite sums of functions (x, y) 7−→ ϕ(x)ψ(y) where ϕ ∈ C(X), ψ ∈ C(Y ) is dense in C(X × Y ). Let f
and g belong to E and let λ, µ ∈ R. We have

λf(x, y) + µg(x, y) = λ
n∑
i=1

ϕ1
i (x)ψ1

i (y) + µ
m∑
i=1

ϕ2
i (x)ψ2

i (y) =
n+m∑
i=1

ϕi(x)ψi(y)

with ϕi = λϕ1
i , ψi = ψ1

i if i ≤ n and ϕi = µϕ2
i−n, ψi = ψ2

i−n if i > n. So E is a linear subspace of
C0(X × Y ). Then, for f and g in E, we have

f(x, y)g(x, y) =

(
n∑
i=1

ϕ1
i (x)ψ1

i (y)

)(
m∑
i=1

ϕ2
i (x)ψ2

i (y)

)
=

n∑
i=1

m∑
j=1

ϕ1
i (x)ϕ2

j (x)ψ1
i (y)ψ2

j (y).

Let σ be a bijection of {1, · · · , n}×{1, · · · , m} in {1, · · · , nm}. Then by setting ϕl(x) := ϕ1
i (x)ϕ2

j (x)

and ψl(y) := ψ1
i (y)ψ2

j (y) where l = σ(i, j), we have

f(x, y)g(x, y) =

n∑
i=1

m∑
j=1

ϕ1
i (x)ϕ2

j (x)ψ1
i (y)ψ2

j (y) =

nm∑
l=1

ϕl(x)ψl(y).

Therefore, E is closed by multiplication. And then, it is clear that the constant function equal to 1
belongs to E and if (x1, y1), (x2, y2) are two points in X × Y such that (x1, y1) 6= (x2, y2), we have for
example if x1 6= x2 that the function f(x, y) := |x1 − x| entails that f(x1, y1) 6= f(x2, y2). Thus, E
separates points so by Stone-Weierstrass Theorem, there exists for any ϕ ∈ C(X × Y ) a sequence of
functions in E which converges uniformly to ϕ.

Let’s now to show the weak convergence. Let ϕ ∈ Cc(Rd × Rd), then there exists R > 0 such that
supp(ϕ) ⊂ B(0, R) × B(0, R) and µ({|x| = R}) = ν({|x| = R}) = 0. Let ε > 0, then there exists
f ∈ E such that for any (x, y) ∈ B(0, R)×B(0, R), |ϕ(x, y)−f(x, y)| < ε. For ρ ∈ ]0, R[, we define the
function χρ,R : Rd −→ [0, 1] such that χρ,R(x) = 1 if |x| ≤ ρ, χρ,R(x) = 0 if |x| ≥ R and χρ,R ∈ C∞(Rd).
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By the Lebesgue’s dominated Theorem, we can fix ρ ∈ ]0, R[ such that µ({ρ ≤ |x| ≤ R}) < ε and
ν({ρ ≤ |y| ≤ R}) < ε. Then, since (µn)n converges weakly to µ and (νn)n converges weakly to ν,
then by the Portremanteau Theorem, we have lim supµn({ρ ≤ |x| ≤ R}) ≤ µ({ρ ≤ |x| ≤ R}) and
lim sup νn({ρ ≤ |y| ≤ R}) ≤ ν({ρ ≤ |y| ≤ R}). So there exists n0 ∈ N such that for all n > n0,
µn({ρ ≤ |x| ≤ R}) < ε and νn({ρ ≤ |y| ≤ R}) < ε. By setting

un :=

∣∣∣∣∫∫
Rd×Rd

ϕ(x, y)dµn(x)dνn(y)−
∫∫

Rd×Rd
ϕ(x, y)dµ(x)dν(y)

∣∣∣∣ ,
we have

un ≤ ‖ϕ− f‖∞

∣∣∣∣∣
∫∫

B(0,R)
2
χρ,R(x)χρ,R(y)dµn(x)dνn(y)−

∫∫
B(0,R)

2
χρ,R(x)χρ,R(y)dµ(x)dν(y)

∣∣∣∣∣
+

∣∣∣∣∫∫
Rd×Rd

f(x, y)χρ,R(x)χρ,R(y)dµn(x)dνn(y)−
∫∫

Rd×Rd
f(x, y)χρ,R(x)χρ,R(y)dµ(x)dν(y)

∣∣∣∣
+ ‖ϕ‖∞

∣∣∣∣∣
∫∫

B(0,R)
2
(1− χρ,R(x)χρ,R(y))dµn(x)dνn(y)−

∫∫
B(0,R)

2
(1− χρ,R(x)χρ,R(y))dµ(x)dν(y)

∣∣∣∣∣ .
Since f belongs to E, there exists functions ϕi, ψi ∈ C0(B(0, R)), 1 ≤ i ≤ p such that f(x, y) =∑
ϕi(x)ψi(y). By setting � := (B(0, R)×B(0, R))\(B(0, ρ)×B(0, ρ)), we have

un ≤ ε

∣∣∣∣∣
∫∫

B(0,R)
2
χρ,R(x)χρ,R(y)dµn(x)dνn(y)−

∫∫
B(0,R)

2
χρ,R(x)χρ,R(y)dµ(x)dν(y)

∣∣∣∣∣
+

p∑
i=1

∣∣∣∣∫∫
Rd×Rd

(ϕiχρ,R)(x)(ψiχρ,R)(y)dµn(x)dνn(y)−
∫∫

Rd×Rd
(ϕiχρ,R)(x)(ψiχρ,R)(y)dµ(x)dν(y)

∣∣∣∣
+ ‖ϕ‖∞

∣∣∣∣∫∫
�

(1− χρ,R(x)χρ,R(y))dµn(x)dνn(y)−
∫∫

�
(1− χρ,R(x)χρ,R(y))dµ(x)dν(y)

∣∣∣∣ .
For the second term on the right-hand side, the functions ϕiχρ,R, ψiχρ,R are continuous with compact
support on Rd so there exists n1 ∈ N such that for all n > n1∣∣∣∣∫∫

Rd×Rd
(ϕiχρ,R)(x)(ψiχρ,R)(y)dµn(x)dνn(y)−

∫∫
Rd×Rd

(ϕiχρ,R)(x)(ψiχρ,R)(y)dµ(x)dν(y)

∣∣∣∣ < ε.

Therefore if n > max(n0, n1), one obtains

un ≤ ε(µn ⊗ νn(Rd × Rd) + µ⊗ ν(Rd × Rd) + p) + ‖ϕ‖∞(µn ⊗ νn(�) + µ⊗ ν(�))

≤ ‖ϕ‖∞(µn({ρ ≤ |x| ≤ R}) + νn({ρ ≤ |y| ≤ R}) + µ({ρ ≤ |x| ≤ R}) + ν({ρ ≤ |y| ≤ R}))
+ ε(p+ 2)

≤ ε(2 + p+ 4‖ϕ‖∞).

�

The following Theorem is the main result of this part taken from [88] and [89].

Let (µn)n be a sequence of probability measures in Pp(Rd) and let µ ∈ Pp(Rd). The following
statements are equivalent.

(1) Wp(µn, µ) −→ 0 when n goes to infinity.

(2) (µn)n converges weakly to µ and lim
n→+∞

∫
Rd
|x|pdµn(x) =

∫
Rd
|x|pdµ(x).

Theorem A.5.1 (Convergence in Wasserstein sense)
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This Theorem gives us a characterization of convergence in the Wasserstein sense. Thus, a sequence
of probability measures (µn)n in Pp(Rd) converges in the Wasserstein sense to µ ∈ Pp(Rd) if and only
if (µn)n converges weakly to µ and the moments of order p of µn converge to the moment of order p
of µ. To prove this Theorem (A.5.1), we will need some Lemmas.

We say that a sequence of functions (ρn)n is an approximate of identity if it satisfies

(1) For all n,
∫
ρn(x)dx = 1.

(2) There exists a constant C such that supn ‖ρn‖L1 ≤ C.

(3) For all R > 0, lim
n→+∞

∫
|x|>R

|ρn(x)|dx = 0.

Definition A.5.2

Let ϕ ∈ Cc(Rd). Then there exists a sequence of function (ψn)n in C∞c (Rd) which converges
uniformly to ϕ.

Lemma A.5.2

Proof. Let ϕ ∈ Cc(Rd) and let (ρn)n be an approximate of identity. We set ψn := ϕ ∗ ρn. Then for
δ > 0, we have

ψn(x)− ϕ(x) =

∫
Rd

(ϕ(x− y)− ϕ(x))ρn(y)dy − ϕ(x)

(
1−

∫
Rd
ρn(y)dy

)
=

∫
|y|<δ

(ϕ(x− y)− ϕ(x))ρn(y)dy +

∫
|y|≥δ

(ϕ(x− y)− ϕ(x))ρn(y)dy

− ϕ(x)

(
1−

∫
Rd
ρn(y)dy

)
.

Which implies

|ψn(x)−ϕ(x)| ≤
∫
|y|<δ

|ϕ(x− y)−ϕ(x)| · |ρn(y)|dy+ 2‖ϕ‖∞
∫
|y|≥δ

|ρn(y)|dy+‖ϕ‖∞
∣∣∣∣1− ∫

Rd
ρn(y)dy

∣∣∣∣ .
By the uniform continuity of ϕ, we obtain

‖ψn − ϕ‖∞ ≤ ε
∫
|y|<δ

|ρn(y)|dy + 2‖ϕ‖∞
∫
|y|≥δ

|ρn(y)|dy + ‖ϕ‖∞
∣∣∣∣1− ∫

Rd
ρn(y)dy

∣∣∣∣ .
The three terms on the right-hand side can be made as small as we want by definition of the approximate
of identity. It remains to show that ψn ∈ C∞c (Rd). If ρ is a function in C∞c (Rd) such that

∫
ρ(x)dx = 1,

then ρn : x 7−→ ρn(x) = ndρ(nx) is an approximate of identity and for any n, ρn ∈ C∞c (Rd). We have
by definition of the convolution that ψn ∈ C∞c (Rd). �

Let (fn)n be a sequence of continuous functions on Rd such that fn(0) = 0 for all n. If
there exists a constant M independant of n such that |fn(x)−fn(y)| ≤M |x−y|, then there
exists a subsequence (fσ(n))n which converges uniformly on compact sets to aM -Lipschitzian
function f which satisfies f(0) = 0.

Lemma A.5.3
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Proof. It suffices to show that (fn)n converges uniformly for all closed balls with center 0 and radius
N ∈ N∗. LetN ∈ N∗, then the family (fn1{|x|<N})n is uniformly bounded and uniformly equicontinuous
on the ball B(0, N). Then by Ascoli’s Theorem, we can extract a subsequence (fσ(n)1{|x|<N})n which
converges uniformly on B(0, N) to a function f , and we have σ = σ1 ◦ σ2 ◦ · · · ◦ σN with σi : N↗ N.
Moreover f satisfies f(0) = 0 by pointwise convergence and |f(x)−f(y)| ≤ 2‖f−fn‖∞+|fn(x)−fn(y)|,
which implies that f is a M -Lipschitzian function. �

We say that a family F of probability measures on Rd is tight if for any ε > 0, there exists
a compact Kε such that µ(Rd\Kε) < ε for all µ ∈ F . And we say that F is tight for
moment of order p if for any ε > 0, there exists a compact Kε such that∫

Rd\Kε
|x|pdµ(x) < ε.

Definition A.5.3

"Tightness" is a concept from measure theory, in which the intuitive idea is that a collection of
probability measures cannot escape to infinity. The notion of "Tightness for moment of order p" is
more stronger and we immediately notice that "Tight for moment of order p = 0" is "Tight". In the
particular case where F = {µn, n ∈ N}, then the family F is tight if supn µn({|x| > R}) goes to 0
when R goes to infinity. And F is tight for moment of order p if

lim
R→+∞

sup
n

∫
|x|>R

|x|pdµn(x) = 0.

We also notice that if F is tight for moment of order p, then the following inequality∫
|x|>R

|x|qdµn(x) ≤ Rq

Rp

∫
|x|>R

|x|pdµn(x), q < p

immediately results in F is tight for moment of order q for all q < p. The tightness of the measures
is related to the relative compactness in the space of the probability measures [71].

Let X be a separable metric space. Then a family F of probability measures on X is
relatively compact for the weak topology if and only if it is tight.

Theorem A.5.2 (Prokhorov Theorem)

The following result makes the link between the convergence of the moments of order p of a sequence
of probability measures (µn)n and the tightness for the moments of order p of the family {µn, n ∈ N}.

Let (µn)n be a sequence in Pp(Rd) which converges weakly to µ ∈ Pp(Rd). Then

lim
n→+∞

∫
Rd
|x|pdµn(x) =

∫
Rd
|x|pdµ(x)

if and only if (µn)n is tight for moments of order p.

Lemma A.5.4
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Proof. Let R > 0. We set χR : Rd −→ [0, 1] a continuous function such that χR(x) = 1 for |x| ≤ R
and χR(x) = 0 for |x| ≥ R+ 1. We assume that the moments of order p of µn converge to the moment
of order p of µ. We have∫
|x|>R+1

|x|pdµn(x) =

∫
Rd
|x|pdµn(x)−

∫
|x|≤R+1

|x|pdµn(x)

=

∫
Rd
|x|pdµn(x)−

∫
Rd
|x|pdµ(x) +

∫
Rd
|x|pdµ(x)−

∫
Rd
|x|p1{|x|≤R+1}(x)dµn(x)

−
∫

Rd
χR(x)|x|pdµ(x) +

∫
Rd
χR(x)|x|pdµ(x).

Since −1{|x|≤R+1} ≤ −χR, we therefore have∫
|x|>R+1

|x|pdµn(x) ≤
∣∣∣∣∫

Rd
|x|pdµn(x)−

∫
Rd
|x|pdµ(x)

∣∣∣∣+

∣∣∣∣∫
Rd
χR(x)|x|pdµ(x)−

∫
Rd
χR(x)|x|pdµn(x)

∣∣∣∣
+

∫
Rd

(1− χR(x))|x|pdµ(x).

The first term tends to 0 by convergence of moments, the second term tends to 0 by weak convergence
and the third term tends to 0 when R goes to infinity by Lebesgue’s dominated Theorem.

Conversely, we assume that (µn)n is tight for moments of order p. We have∣∣∣∣∫
Rd
|x|pdµn(x)−

∫
Rd
|x|pdµ(x)

∣∣∣∣ ≤ ∣∣∣∣∫
Rd
χR(x)|x|pdµn(x)−

∫
Rd
χR(x)|x|pdµ(x)

∣∣∣∣
+

∣∣∣∣∫
Rd

(1− χR(x))|x|pdµn(x)−
∫

Rd
(1− χR(x))|x|pdµ(x)

∣∣∣∣
≤
∣∣∣∣∫

Rd
χR(x)|x|pdµn(x)−

∫
Rd
χR(x)|x|pdµ(x)

∣∣∣∣
+ sup

n

∫
|x|>R

|x|pdµn(x) +

∫
Rd

(1− χR(x))|x|pdµ(x).

The first term tends to 0 by weak convergence, the second tends to 0 when R goes to infinity since (µn)n
is tight for moments of order p, and the third term tends to 0 when R goes to infinity by Lebesgue’s
dominated Theorem. �

If the moments of order p of µn converge to the moment of order p of µ and that (µn)n converge
weakly to µ, then (µn)n is tight. This comes from the inequality∫

|x|>R
dµn(x) ≤ 1

Rp

∫
|x|>R

|x|pdµn(x).

Proof of Theorem A.5.1. (1)⇒ (2) We assume that Wp(µn, µ) −→ 0 when n goes to infinity. Let
us show to begin with the convergence of moments of order p. By (A.4.7), we have∣∣∣∣∣

(∫
Rd
|x|pdµn(x)

)1/p

−
(∫

Rd
|x|pdµ(x)

)1/p
∣∣∣∣∣ ≤Wp(µn, µ)

which tends to 0 by hypothesis. We prove now weak convergence, let ϕ ∈ Cc(Rd). By Lemma A.5.2,
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there exists a sequence of functions (ψk)k ∈ C∞c (Rd) which converges uniformly to ϕ. Which implies∣∣∣∣∫
Rd
ϕ(x)dµn(x)−

∫
Rd
ϕ(x)dµ(x)

∣∣∣∣ ≤ ∫
Rd
|ϕ(x)− ψk(x)|dµn(x) +

∫
Rd
|ϕ(x)− ψk(x)|dµ(x)

+

∣∣∣∣∫
Rd
ψk(x)dµn(x)−

∫
Rd
ψk(x)dµ(x)

∣∣∣∣
≤ 2‖ϕ− ψk‖∞ +

∣∣∣∣∫
Rd
ψk(x)dµn(x)−

∫
Rd
ψk(x)dµ(x)

∣∣∣∣ .
Let πn ∈ Π(µn, µ) be an optimal coupling. For fixed k, we have∣∣∣∣∫

Rd
ψk(x)dµn(x)−

∫
Rd
ψk(x)dµ(x)

∣∣∣∣ ≤ ∫∫
Rd×Rd

|ψk(x)− ψk(y)|dπn(x, y)

≤ ‖Dψk‖∞
∫∫

Rd×Rd
|x− y|dπn(x, y)

≤ ‖Dψk‖∞
(∫∫

Rd×Rd
|x− y|pdπn(x, y)

)1/p

= ‖Dψk‖∞Wp(µn, µ)

which goes to 0 when n goes to infinity. So for fixed k, we have

lim sup
n→+∞

∣∣∣∣∫
Rd
ϕ(x)dµn(x)−

∫
Rd
ϕ(x)dµ(x)

∣∣∣∣ ≤ 2‖ϕ− ψk‖∞

which can be made as small as we want since (ψk)k converges uniformly to ϕ.

(2)⇒ (1) We assume that the moments of order p of µn converge to the moment of order p of µ and
that (µn)n converge weakly to µ. We first show that W1(µn, µ) goes to 0 when n goes to infinity. It
is enough to show that for every subsequence of (µσ(n))n, σ : N ↗ N, there exists a subsubsequence
σ′ : N ↗ N such that W1(µσ◦σ′(n), µ) converges to 0. To simplify the notations, we assume that
σ(n) = n. By the dual representation of W1 (A.3.10), there exists Lipschitzians functions ϕn such that

W1(µn, µ) ≤
∣∣∣∣∫

Rd
ϕn(x)dµn(x)−

∫
Rd
ϕn(x)dµ(x)

∣∣∣∣+
1

n

with ‖ϕn‖Lip ≤ 1. We may assume that ϕn(0) = 0 (by considering ϕn − ϕn(0) if necessary). By
Lemma A.5.3, there exists a subsequence (ϕσ(n))n which converges uniformly on compact set to a
1-Lipschitzian function ϕ. Let χR : Rd −→ [0, 1], R > 0 be a continuous function such that χR(x) = 1
for |x| ≤ R and χR(x) = 0 for |x| ≥ R+ 1. Then∫

Rd
ϕσ(n)(x)dµσ(n)(x) =

∫
|x|>R

(1− χR(x))ϕσ(n)(x)dµσ(n)(x) +

∫
|x|≤R+1

χR(x)ϕσ(n)(x)dµσ(n)(x).

Using the fact that |ϕn(x)| ≤ |x|, we obtain∣∣∣∣∫
Rd
ϕσ(n)(x)dµσ(n)(x)−

∫
Rd
ϕσ(n)(x)dµ(x)

∣∣∣∣ ≤ ∫
|x|>R

|x|dµσ(n)(x) +

∫
|x|>R

|x|dµ(x)

+

∣∣∣∣∣
∫
|x|≤R+1

χR(x)ϕ(x)dµσ(n)(x)−
∫
|x|≤R+1

χR(x)ϕ(x)dµ(x)

∣∣∣∣∣
+

∫
|x|≤R+1

|χR(x)| · |ϕσ(n)(x)− ϕ(x)|dµσ(n)(x) +

∫
|x|≤R+1

|χR(x)| · |ϕσ(n)(x)− ϕ(x)|dµ(x).
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And so we have∣∣∣∣∫
Rd
ϕσ(n)(x)dµσ(n)(x)−

∫
Rd
ϕσ(n)(x)dµ(x)

∣∣∣∣ ≤ ∫
|x|>R

|x|dµσ(n)(x) +

∫
|x|>R

|x|dµ(x)

+

∣∣∣∣∣
∫
|x|≤R+1

χR(x)ϕ(x)dµσ(n)(x)−
∫
|x|≤R+1

χR(x)ϕ(x)dµ(x)

∣∣∣∣∣+ 2 sup
|x|≤R+1

|ϕσ(n)(x)− ϕ(x)|.

The third term goes to 0 since (µσ(n))n converges weakly to µ, and the fourth term goes to 0 since
(ϕσ(n))n converges uniformly to ϕ on the closed ball B(0, R+ 1). One obtains

lim sup
n→+∞

W1(µσ(n), µ) ≤ sup
n

∫
|x|>R

|x|dµσ(n)(x) +

∫
|x|>R

|x|dµ(x)

≤ sup
n

1

Rp−1

∫
|x|>R

|x|pdµσ(n)(x) +

∫
|x|>R

|x|dµ(x).

The first term goes to 0 when R goes to infinity by the Lemma A.5.4, and the second term goes to
0 when R goes to infinity by the Lebesgue’s dominated Theorem. By letting R −→ +∞, one obtains
W1(µσ(n), µ) −→ 0. We now prove that Wp(µn, µ) −→ 0 when n goes to infinity. Let πn ∈ Π(µn, µ)
be an optimal coupling for W1, and R > 0. Then

Wp(µn, µ)p ≤
∫∫
{|x|≤R}∩{|y|≤R}

|x− y|pdπn(x, y) +

∫∫
|y|≤R≤|x|

|x− y|pdπn(x, y)

+

∫∫
|x|≤R≤|y|

|x− y|pdπn(x, y) +

∫∫
{R≤|x|}∩{R≤|y|}

|x− y|pdπn(x, y)

≤ (2R)p−1

∫∫
Rd×Rd

|x− y|dπn(x, y) + 2p
∫∫

R≤|x|
|x|pdπn(x, y) + 2p

∫∫
R≤|y|

|y|pdπn(x, y)

+ 2p−1

∫∫
{R≤|x|}∩{R≤|y|}

(|x|p + |y|p)dπn(x, y)

≤ (2R)p−1W1(µn, µ) + 2p+1

∫
R≤|x|

|x|pdµn(x) + 2p+1

∫
R≤|y|

|y|pdµ(y).

So we have

lim sup
n→+∞

Wp(µn, µ)p ≤ 2p+1

(
sup
n

∫
|x|≥R

|x|pdµn(x) +

∫
|x|≥R

|x|pdµ(x)

)
.

By letting R −→ +∞, the first term goes to 0 by the Lemma A.5.4 and the second term goes to 0 by
Lebesgue’s dominated Theorem. And so we have

lim
n→+∞

Wp(µn, µ) = 0.

�

From this Theorem, we deduce immediately that if (µn)n is a sequence in Pp(Rd) which converges
weakly to µ ∈ Pp(Rd). And if (νn)n is a sequence in Pp(Rd) which converges weakly to ν ∈ Pp(Rd),
such that

lim
n→+∞

∫
Rd
|x|pdµn(x) =

∫
Rd
|x|pdµ(x) and lim

n→+∞

∫
Rd
|x|pdνn(x) =

∫
Rd
|x|pdν(x).

Then we have

lim
n→+∞

Wp(µn, νn) = Wp(µ, ν). (A.5.2)

In other words, if we consider that to converge in Pp(Rd) means to converge weakly and to converge for
moments of order p, then Wp is continuous on Pp(Rd) for convergence in Pp(Rd). Thus, Wp metrizes
the weak topology on Pp(Rd) (Definition 6.8 and Theorem 6.9 in Ref. [88]).
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A.6 Topological properties of the Wasserstein space

The Wasserstein space of order p is the space Pp(Rd) equipped with the Wasserstein metric Wp. It is
therefore a metric space. In this section, we will see that the topological properties of the Wasserstein
space are very similar to the topological properties of the space Lp(Rd). The first property concerns
the completeness and the separability.

The Wasserstein space (Pp(Rd),Wp) is a complete separable metric space.

Proposition A.6.1

Another way to state this Proposition is to say that the Wasserstein space Pp(Rd) is a Polish space.
In general, if X is a Polish space, then the Wasserstein space Pp(X ) is also a Polish space (Proposition
7.1.5 in Ref. [3] and Theorem 6.18 in Ref. [88]). We will only focus on the case X = Rd. The proof of
separability uses the fact that one can control the Wasserstein metric by the weighted total variation
(Theorem 6.15 in Ref [88]).

Let µ, ν ∈ Pp(Rd). Then

Wp(µ, ν) ≤ 21/q

(∫
Rd
|x|pd|µ− ν|(x)

)1/p

(A.6.1)

with 1/p+ 1/q = 1.

Proposition A.6.2 (Control of Wp by weighted total variation)

Proof. Let a := (µ − ν)+(Rd) (see Definition A.3.3 for the positive part of a signed measure). Is it
easy to check that a = (µ − ν)−(Rd). We define the coupling π by π := (id, id)# min(µ, ν) + ((µ −
ν)+⊗ (µ− ν)−)/a where min(µ, ν) is defined by (A.3.8). In other words we have for any test function
ϕ∫∫

Rd×Rd
ϕ(x, y)dπ(x, y) :=

∫
Rd
ϕ(x, x)d(min(µ, ν))(x) +

∫∫
Rd×Rd

ϕ(x, y)

a
d((µ−ν)+)(x)d((µ−ν)−)(y).

By easily checking that min(µ, ν) = ν − (µ − ν)−, we have that π is a coupling of (µ, ν) and by the
classical convexity inequality (x+ y)p ≤ 2p−1(xp + yp) we have

Wp(µ, ν)p ≤
∫∫

Rd×Rd
|x− y|pdπ(x, y)

≤ 2p−1

a

∫∫
Rd×Rd

(|x|p + |y|p)d((µ− ν)+)(x)d((µ− ν)−)(y)

= 2p−1

(∫
Rd
|x|pd((µ− ν)+)(x) +

∫
Rd
|x|pd((µ− ν)−)(x)

)
= 2p−1

∫
Rd
|x|pd|µ− ν|(x)

and (A.6.1) follows. �

And to prove the completeness, we will use the following result taken from [36].
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Let (Xn)n be a sequence of Polish spaces. For each n ∈ N, let Yn :=
∏n
i=1Xi = Yn−1 ×Xn

and let µn ∈ P(Yn). If we have for all n ∈ N, (proj1, · · · , projn)#µn+1 = µn, then there
exists µ ∈ P(Y N) such that for any n ∈ N, (proj1, · · · , projn)#µ = µn.

Theorem A.6.1 (The Kolmogorov extension Theorem)

Proof of Proposition A.6.1. We start by showing the separability. Let µ ∈ Pp(Rd) and let ε > 0.
There exists a positive integer N such that∫

|x|>N
|x|pdµ(x) < ε.

We define the projection πN on the closed ball B(0, N), πN : x 7−→ x if |x| ≤ N and Nx/|x| otherwise.
By setting µN := πN#µ, then (id, πN )#µ is a coupling of (µ, µN ) and we have

Wp(µ, µN )p ≤
∫

Rd
|x− πN (x)|pdµ(x) =

∫
|x|>N

|x− πN (x)|pdµ(x) ≤
∫
|x|>N

|x|pdµ(x) ≤ ε

since N/|x| < 1. As B(0, N) is compact, then there exists a finite family of open balls B(xi, ε), xi ∈ Rd

covering B(0, N) in other words

B(0, N) ⊆
n⋃
i=1

B(xi, ε).

We define by induction the family Ci by C1 := B(x1, ε) ∩B(0, N) and for every 2 ≤ i ≤ n,

Ci :=
(
B(xi, ε) ∩B(0, N)

)
\

(
i−1⋃
k=1

Ck

)

in other words x ∈ B(0, N) is in Ci if it is in the ball B(xi, ε) but is not in any of the balls B(xj , ε), j < i.
It is clear that the family (Ci)1≤i≤n is a partition of B(0, N). We define the measure γ1 :=

∑
aiδxi

where ai := µN (Ci). Let f be the function to which x associates xi if x ∈ Ci, then (id, f)#µN is a
coupling of (µN , γ1) and we have

Wp(µN , γ1)p ≤
∫
|x|≤N

|x− f(x)|pdµN (x) =
n∑
i=1

∫
Ci

|x− f(x)|pdµN (x) =
n∑
i=1

∫
Ci

|x− xi|pdµN (x) < εp

since x ∈ B(xi, ε) if x ∈ Ci and
∑
ai = 1. Let (yi)1≤i≤n ∈ Qd be a family such that for every i,

|xi − yi| < ε. We define the measure γ2 :=
∑
aiδyi . Let g be the function which xi associates yi, then

(id, g)#γ1 is a coupling of (γ1, γ2) and we have

Wp(γ1, γ2)p ≤
∫

Rd
|x− g(x)|pdγ1(x) =

n∑
i=1

ai|xi − yi|p < εp.

Let (bi)1≤i≤n ∈ Qd be a family of rational numbers. We define the measure ν :=
∑
biδyi . By definition

of the total variation for a complex measure (A.3.6), we have |γ2−ν| =
∑
|ai− bi|δyi and consequently

we have by (A.6.1)

Wp(γ2, ν) ≤ 21/q

(∫
Rd
|x|pd|γ2 − ν|(x)

)1/p

= 21/q

(
n∑
i=1

|ai − bi||yi|p
)1/p

≤ 21/q max
1≤i≤n

|xi|
n∑
i=1

|ai − bi|1/p
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By choosing the rationals bi so that 21/q max |xi|
∑
|ai − bi|1/p < ε, we finally have

Wp

(
µ,

n∑
i=1

biδyi

)
≤Wp(µ, µN ) +Wp(µN , γ1) +Wp(γ1, γ2) +Wp(γ2, ν)

≤ ε1/p + ε+ ε+ ε.

We have shown that we can approximate µ by ν and we can identify ν by an element of
⋃
n Qn ×

(Qd)n. This space is countable and is dense in Pp(Rd) for the Wasserstein metric so consequently the
Wasserstein space Pp(Rd) is separable.

Let us now show the completeness. Let (µn)n be a Cauchy sequence in Pp(Rd). Then there exists a
subsequence σ : N↗ N such that

+∞∑
n=1

Wp(µσ(n), µσ(n+1)) < +∞.

We will show that the subsequence (µσ(n))n is convergent, which will imply the convergence of the
sequence (µn)n since it is Cauchy. To simplifie the notations, we assume that σ(n) = n. For each
n ∈ N, we take πn ∈ Π(µn, µn+1) an optimal coupling. By successively applying the Gluing Lemma
(Lemma A.2.1), we can construct for each n ∈ N the measure γn ∈ P((Rd)n) defined by

γ1 = µ1,
γ2 = π1,
γn = µn−1 ⊗ Pγn−1(xn−1, dx1 · · · dxn−2)⊗ Pπn−1(xn−1, dxn) n ≥ 3

with πn(dxndxn+1) = µn(dxn)Pπn(xn, dxn+1) and γn(dx1 · · · dxn) = µn(dxn)Pγn(xn, dx1 · · · dxn−1).
By construction, it is easy to check that for all n ∈ N, (proj1, · · · , projn)#γn+1 = γn since Pγn(xn, · ) ∈
P((Rd)n−1). So by the Kolmogorow extension Theorem (Theorem A.6.1), there exists γ ∈ P((Rd)N)
such that for all n ∈ N, (proj1, · · · , projn)#γ = γn. So we have

+∞∑
n=1

Wp(µn, µn+1) =

+∞∑
n=1

(∫∫
Rd×Rd

|xn − xn+1|pdπn(xn, xn+1)

)1/p

=
+∞∑
n=1

(∫
(Rd)N

|projn(x)− projn+1(x)|pdγ(x)

)1/p

=
+∞∑
n=1

‖projn − projn+1‖Lp((Rd)N,γ) < +∞.

So the sequence of functions (projn)n is a Cauchy sequence in the space Lp((Rd)N, γ) which is complete.
So there exists f ∈ Lp((Rd)N, γ) such that (projn)n converges to f in Lp((Rd)N, γ). We set µ := f#γ ∈
Pp(Rd), then by (A.4.6) we have

lim sup
n→+∞

Wp(µn, µ) = lim sup
n→+∞

Wp(projn#γ, f#γ) ≤ lim sup
n→+∞

‖projn − f‖Lp((Rd)N,γ) = 0.

�

For a measured space X , we can identify a measure µ in the Wasserstein space Pp(X ) by a random
variable X of law µ in Lp(X ). The topological properties of (Pp(Rd),Wp) and of Lp(X ) are there-
fore linked since as for Lp(X ), the Wasserstein space Pp(X ) is separable if X is separable and the
completeness of Lp(X ) results in the completeness of Pp(X ) for the Wasserstein metric. However, the
Wasserstein space (Pp(X ),Wp) has the same negative topological properties as Lp(X ). Indeed, just
like the space Lp(X ), (Pp(X ),Wp) is neither σ-compact, nor locally compact (see § 2.2.3 in Ref. [68]).
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Given P : x ∈ Rd 7−→ P (x, · ) ∈ Pp(Rd), Q : x ∈ Rd 7−→ Q(x, · ) ∈ Pp(Rd) two continuous
transition kernels and µ ∈ P(Rd), then

Wp

(∫
Rd
P (x, · )dµ(x),

∫
Rd
Q(x, · )dµ(x)

)p
≤
∫

Rd
Wp(P (x, · ), Q(x, · ))pdµ(x). (A.6.2)

Proposition A.6.3 (Convexity with respect to transition kernel)

The proof of Proposition A.6.3 uses the following result (Theorem 1 in Ref. [20], Theorem 6.3 in
Ref. [74]).

Let X, Y be two Polish spaces and E ⊂ X × Y . If for every x ∈ X, the slice Ex :=
{y ∈ Y , (x, y) ∈ E} is σ-compact (i.e a countable union of compacts), or possibly empty,
then the first projection F := {x ∈ X, Ex 6= ∅} of E is a Borel set and there exists a Borel
map s : F −→ Y such that for all x ∈ F , (x, s(x)) ∈ E.

Theorem A.6.2 (The Borel selection Theorem)

Proof of Proposition A.6.3. For x ∈ Rd and for π ∈ P(Rd × Rd), we define the space E as the set
of (x, π) ∈ Rd × P(Rd × Rd) satisfying the three following conditions:

(1) ∀ ϕ, ψ ∈ Cc(Rd),
∫∫

Rd×Rd
(ϕ(u) + ψ(v))dπ(u, v) =

∫
Rd
ϕ(u)P (x, du) +

∫
Rd
ψ(v)Q(x, dv).

(2)
∫∫

Rd×Rd
|u− v|pdπ(u, v) ≤Wp(P (x, · ), Q(x, · )).

(3)
∫∫

Rd×Rd
|u|pdπ(u, v) ≤

∫
Rd
|u|pP (x, du) and

∫∫
Rd×Rd

|v|pdπ(u, v) ≤
∫

Rd
|v|pQ(x, dv).

We will show that E is closed. Let (xn, πn)n be a sequence in E such that (πn)n converges weakly to π
and (xn)n converges to x. By hypothesis the maps P and Q are continuous. So Wp(P (xn, · ), P (x, · ))
and Wp(Q(xn, · ), Q(x, · )) tend to 0 when n tends to infinity which implies by Theorem A.5.1 that
P (xn, · ) converges weakly to P (x, · ) and that Q(xn, · ) converges weakly to Q(x, · ). For ϕ, ψ ∈ Cc(Rd)
we have ∫∫

Rd×Rd
(ϕ(u) + ψ(v))dπ(u, v) = lim

n→+∞

∫∫
Rd×Rd

(ϕ(u) + ψ(v))dπn(u, v)

= lim
n→+∞

(∫
Rd
ϕ(u)P (xn, du) +

∫
Rd
ψ(v)Q(xn, dv)

)
=

∫
Rd
ϕ(u)P (x, du) +

∫
Rd
ψ(v)Q(x, dv).

So (x, π) satisfies (1). Let χR : Rd −→ [0, 1], R > 0 be a continuous function such that χR(x) = 1 for
|x| ≤ R and χR(x) = 0 for |x| ≥ R+ 1. Then the function (u, v) 7−→ χR(u)χR(v)|u− v|p is continuous
with compact support and by (A.5.2) we have∫∫

Rd×Rd
χR(u)χR(v)|u− v|pdπ(u, v) = lim

n→+∞

∫∫
Rd×Rd

χR(u)χR(v)|u− v|pdπn(u, v)

≤ lim
n→+∞

Wp(P (xn, · ), Q(xn, · ))

= Wp(P (x, · ), Q(x, · )).
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And by letting R −→ +∞, we obtain (2) for (x, π). By Theorem A.5.1, the moments of order p
of P (xn, · ) converge to the moment of order p of P (x, · ) and the moments of order p of Q(xn, · )
converge to the moment of order p of Q(x, · ). And since the two functions (u, v) 7−→ χR(u)χR(v)|u|p
and (u, v) 7−→ χR(u)χR(v)|v|p are continuous with compact support, we have∫∫

Rd×Rd
χR(u)χR(v)|u|pdπ(u, v) = lim

n→+∞

∫∫
Rd×Rd

χR(u)χR(v)|u|pdπn(u, v)

≤ lim
n→+∞

∫
Rd
|u|pP (xn, du)

=

∫
Rd
|u|pP (x, du)

and we also have∫∫
Rd×Rd

χR(u)χR(v)|v|pdπ(u, v) = lim
n→+∞

∫∫
Rd×Rd

χR(u)χR(v)|v|pdπn(u, v)

≤ lim
n→+∞

∫
Rd
|v|pQ(xn, dv)

=

∫
Rd
|v|pQ(x, dv).

So by letting R −→ +∞, we obtain (3) for (x, π) so E is closed. We now show that the slice
Ex := {π ∈ P(Rd × Rd), (x, π) ∈ E} is compact. Let R > 0 and x ∈ Rd. Then we have for π ∈ Ex∫

|u|2+|v|2>R2

dπ(u, v) ≤
∫
|u|2>R2/2

dπ(u, v) +

∫
|v|2>R2

dπ(u, v)

≤
(

2

R

)p ∫
Rd
|u|pdπ(u, v) +

(
2

R

)p ∫
Rd
|v|pdπ(u, v)

≤
(

2

R

)p(∫
Rd
|u|pP (x, du) +

∫
Rd
|v|pQ(x, dv)

)
.

For any ε > 0, we can choose R large enough such that π({(u, v) ∈ Rd × Rd, |u|2 + |v|2 > R2}) < ε so
the slice Ex is tight which leads by Prokhorov Theorem (Theorem A.5.2) that Ex is relatively compact
for the weak topology. Moreover, Ex is closed since E is closed so Ex is compact. We deduce by
the Borel Selection Theorem (Theorem A.6.2) that the set F of x ∈ Rd such that Ex 6= ∅ and such
that there is a coupling π ∈ Π(P (x, · ), Q(x, · )) of moment bounded by Mp(P (x, · )), Mp(Q(x, · ))
is Borelian (F = Rd). And furthermore, there exists a measurable section s : Rd −→ P(Rd × Rd)
such that for all x ∈ Rd, (x, s(x)) ∈ E. We can therefore consider for x ∈ Rd an optimal coupling
πx ∈ Π(P (x, · ), Q(x, · )) such that the map x 7−→ πx is measurable. We set π :=

∫
πxdµ(x). It is easy

to check that π ∈ Π(
∫
P (x, · )dµ(x),

∫
Q(x, · )dµ(x)) and therefore

Wp

(∫
Rd
P (x, · )dµ(x),

∫
Rd
Q(x, · )dµ(x)

)p
≤
∫∫

Rd×Rd
|u− v|pdπ(u, v)

=

∫∫∫
Rd×Rd×Rd

|u− v|pdπx(u, v)dµ(x)

=

∫
Rd
Wp(P (x, · ), Q(x, · ))pdµ(x).

�

The following result is Proposition 14.3 in Ref. [40].

138 AYOT Valentin



APPENDIX A. THE Wp METRIC
;A<

Let P : x ∈ Rd 7−→ P (x, · ) ∈ (Pp(Rd),Wp) be a transition kernel such that ‖P‖Lip is finite.
Then for all µ, ν ∈ Pp(Rd), we have

Wp

(∫
Rd
P (x, · )dµ(x),

∫
Rd
P (x, · )dν(x)

)
≤ ‖P‖LipWp(µ, ν). (A.6.3)

Proposition A.6.4 (Lipschizianity with respect to transition kernel)

Proof. Let π∗ ∈ Π(µ, ν) and let πx0,y0 ∈ Π(P (x0, · ), P (y0, · )) be two optimal couplings. We have∫∫
Rd×Rd

|x− y|pdπx0,y0(x, y) ≤ ‖P‖pLip|x0 − y0|p.

For (x, y) ∈ Rd × Rd and for π ∈ P(Rd × Rd), we define the space E as the set of (x, y, π) ∈ Rd × Rd ×
P(Rd × Rd) satisfying the three following conditions:

(1) ∀ ϕ, ψ ∈ Cc(Rd),
∫∫

Rd×Rd
(ϕ(u) + ψ(v))dπ(u, v) =

∫
Rd
ϕ(u)P (x, du) +

∫
Rd
ψ(v)P (y, dv).

(2)
∫∫

Rd×Rd
|u− v|pdπ(u, v) ≤Wp(P (x, · ), P (y, · )).

(3)
∫∫

Rd×Rd
|u|pdπ(u, v) ≤

∫
Rd
|u|pP (x, du) and

∫∫
Rd×Rd

|v|pdπ(u, v) ≤
∫

Rd
|v|pP (y, dv).

We will show that E is closed. Let (xn, yn, πn)n be a sequence in E such that (πn)n converges weakly
to π, (xn)n converges to x and (yn)n converges to y. By hypothesis the map P is Lipschitzian and
therefore continuous. So Wp(P (xn, · ), P (x, · )) and Wp(P (yn, · ), P (y, · )) tend to 0 when n tends to
infinity which implies by Theorem A.5.1 that P (xn, · ) converges weakly to P (x, · ) and that P (yn, · )
converges weakly to P (y, · ). For ϕ, ψ ∈ Cc(Rd) we have∫∫

Rd×Rd
(ϕ(u) + ψ(v))dπ(u, v) = lim

n→+∞

∫∫
Rd×Rd

(ϕ(u) + ψ(v))dπn(u, v)

= lim
n→+∞

(∫
Rd
ϕ(u)P (xn, du) +

∫
Rd
ψ(v)P (yn, dv)

)
=

∫
Rd
ϕ(u)P (x, du) +

∫
Rd
ψ(v)P (y, dv).

So (x, y, π) satisfies (1). Let χR : Rd −→ [0, 1], R > 0 be a continuous function such that χR(x) = 1 for
|x| ≤ R and χR(x) = 0 for |x| ≥ R+ 1. Then the function (u, v) 7−→ χR(u)χR(v)|u− v|p is continuous
with compact support and by (A.5.2) we have∫∫

Rd×Rd
χR(u)χR(v)|u− v|pdπ(u, v) = lim

n→+∞

∫∫
Rd×Rd

χR(u)χR(v)|u− v|pdπn(u, v)

≤ lim
n→+∞

Wp(P (xn, · ), P (yn, · ))

= Wp(P (x, · ), P (y, · )).

And by letting R −→ +∞, we obtain (2) for (x, y, π). By Theorem A.5.1, the moments of order p
of P (xn, · ) converge to the moment of order p of P (x, · ) and the moments of order p of P (yn, · )
converge to the moment of order p of P (y, · ). And since the two functions (u, v) 7−→ χR(u)χR(v)|u|p
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and (u, v) 7−→ χR(u)χR(v)|v|p are continuous with compact support, we have∫∫
Rd×Rd

χR(u)χR(v)|u|pdπ(u, v) = lim
n→+∞

∫∫
Rd×Rd

χR(u)χR(v)|u|pdπn(u, v)

≤ lim
n→+∞

∫
Rd
|u|pP (xn, du)

=

∫
Rd
|u|pP (x, du)

and we also have∫∫
Rd×Rd

χR(u)χR(v)|v|pdπ(u, v) = lim
n→+∞

∫∫
Rd×Rd

χR(u)χR(v)|v|pdπn(u, v)

≤ lim
n→+∞

∫
Rd
|v|pP (yn, dv)

=

∫
Rd
|v|pP (y, dv).

So by letting R −→ +∞, we obtain (3) for (x, y, π) so E is closed. We now show that the slice
E(x,y) := {π ∈ P(Rd × Rd), (x, y, π) ∈ E} is compact. Let R > 0 and (x, y) ∈ Rd × Rd. Then we have
for π ∈ E(x,y) ∫

|u|2+|v|2>R2

dπ(u, v) ≤
∫
|u|2>R2/2

dπ(u, v) +

∫
|v|2>R2

dπ(u, v)

≤
(

2

R

)p ∫
Rd
|u|pdπ(u, v) +

(
2

R

)p ∫
Rd
|v|pdπ(u, v)

≤
(

2

R

)p(∫
Rd
|u|pP (x, du) +

∫
Rd
|v|pP (y, dv)

)
.

For any ε > 0, we can choose R large enough such that π({(u, v) ∈ Rd × Rd, |u|2 + |v|2 > R2}) < ε so
the slice E(x,y) is tight which leads by Prokhorov Theorem (Theorem A.5.2) that E(x,y) is relatively
compact for the weak topology. Moreover, E(x,y) is closed since E is closed so E(x,y) is compact. We
deduce by the Borel Selection Theorem (Theorem A.6.2) that the set F of (x, y) ∈ Rd × Rd such
that E(x,y) 6= ∅ and such that there is a coupling π ∈ Π(P (x, · ), P (y, · )) of moment bounded by
Mp(P (x, · )), Mp(P (y, · )) is Borelian (F = Rd × Rd). And furthermore, there exists a measurable
section s : Rd × Rd −→ P(Rd × Rd) such that for all (x, y) ∈ Rd × Rd, (x, y, s(x, y)) ∈ E. We can
therefore define the four-variable coupling π defined for any test function ϕ by∫∫∫∫

Rd×Rd×Rd×Rd
ϕ(x, y, u, v)dπ(x, y, u, v) =

∫∫∫∫
Rd×Rd×Rd×Rd

ϕ(x, y, u, v)dπx,y(u, v)dπ∗(x, y).

We set π3,4 := (proj3, proj4)#π. Since π∗ ∈ Π(µ, ν) and πx,y ∈ Π(P (x, · ), P (y, · )), it is easy to check
that π3,4 ∈ Π(

∫
P (x, · )dµ(x),

∫
P (x, · )dν(x)). And so we have

Wp

(∫
Rd
P (x, · )dµ(x),

∫
Rd
P (x, · )dν(x)

)p
≤
∫∫

Rd×Rd
|u− v|pdπ3,4(u, v)

=

∫∫
Rd×Rd

(∫∫
Rd×Rd

|u− v|pdπx,y(u, v)

)
dπ∗(x, y)

≤
∫∫

Rd×Rd
‖P‖Lip|x− y|pdπ∗(x, y)

= ‖P‖pLipWp(µ, ν)p.

�
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A.7 Implementation of the Wasserstein metric on the real line

Let’s come back to Monge’s problem but in the particular case d = 1. We want to minimize the
quantity

∫∫
c(x, y)dπ(x, y) on the set Π(µ, ν). We assume that µ and ν are linear combinations of

Dirac masses, that is to say that

µ :=

n∑
i=1

aiδxi and ν :=

n∑
j=1

bjδyj (A.7.1)

with
∑
ai =

∑
bj = 1 and where (xi)1≤i≤n, (yj)1≤j≤n are two ordered families of points of R: x1 <

x2 < · · · < xn and y1 < y2 < · · · < yn. Constructing a coupling π ∈ Π(µ, ν) consists in creating a
configuration that sends the entire mass ai for each point xi on the points (yj)1≤j≤n so that each point
yj receives all of its mass bj . If the cost function c satisfies the following property

∀i ∈ J1, n− 1K, c(xi, yi) + c(xi+1, yi+1) ≤ c(xi, yi+1) + c(xi+1, yi), (A.7.2)

then it is easy to construct an optimal coupling. We start from i = 1 and start by sending the mass of
x1 to y1. If y1 receives all of its mass, then we send mass at x1 to y2 and so on until x1 has sent all of its
mass. Let yi1 be the point reached when x1 sent all its mass, then we send the mass of x2 to yi1 . If yi1
receives all of its mass, then we send mass at x2 to yi1+1 and so on until x2 has sent all of its mass. Let
yi2 be the point reached when x2 sent all its mass, we repeat the process with x3 and we do this with
all the points xi. If µ and ν are empirical measures, in other words ai = bi = 1/n, then construct an
optimal coupling for a cost function c satisfying (A.7.2) is easy. It is enough to send all the mass in xi
on yi. We can check that if a cost function c is of the form c(x, y) = h(x−y) with h : R −→ R a convex
function, then it satisfies (A.7.2). Indeed, for all i ∈ J1, n− 1K, we set ui := xi− yi+1, vi := xi− yi and
wi := xi+1 − xi. Then (A.7.2) becomes

h(vi) + h(ui + wi) ≤ h(ui) + h(wi + vi).

By dividing on each side by wi > 0, we obtain the following inequality

h(ui + wi)− h(ui)

wi
≤ h(vi + wi)− h(vi)

wi

which is true by the chordal slope Lemma. Thus, in dimension 1, we can compute Wp(µ, ν) explicitly
when µ and ν are defined by (A.7.1) since the function x 7−→ |x|p is convex for all p ≥ 1.

•
x1

•
x2

�
y1

�
y2

•
x3

�
y3

�
y4

•
x4

•
x1

•
x2

�
y1

�
y2

•
x3

�
y3

�
y4

•
x4

Figure A.5: Example of construction of an optimal coupling π ∈ Π(µ, ν) which minimizes∫∫
c(x, y)dπ(x, y) when the cost function satisfies (A.7.2). Above, case where µ and ν satisfy

(A.7.1) with a1 +a2 = b1, a3 = b2 +b3 and a4 = b4. Below, case where µ and ν are empirical
measures.

For µ ∈ P(R), we define the generalized inverse of Fµ the function

F−1
µ (t) := inf{x ∈ R, Fµ(x) > t}. (A.7.3)

Definition A.7.1
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The generalized inverse of Fµ is a function that defines quantiles, it is sometimes called quantile
function. Since Fµ takes its values in [0, 1] and is always non-decreasing and right-continuous, then the
generalized inverse of Fµ is defined on [0, 1[ and is always non-decreasing and right-continuous. And
we have the inequalities F−1

µ (Fµ(x)) ≥ x for all x ∈ R and Fµ(F−1
µ (t)) ≥ t for all t ∈ [0, 1[. These

two inequalities become equalities if Fµ is increasing, which means in this case that the generalized
inverse of Fµ is the reciprocal function of the cumulative distribution function of µ. We have also
limt→1 F

−1
µ (t) = +∞. To compute Wp(µ, ν) in R, we use the following result.

Let µ, ν ∈ Pp(R). Then we have

Wp(µ, ν) =

(∫ 1

0
|F−1
µ (t)− F−1

ν (t)|pdt
)1/p

. (A.7.4)

Theorem A.7.1 (Wasserstein metric on R)

The generalized inverse provides a closed form of the Wasserstein metricWp on R. For µ, ν ∈ Pp(R),
Wp(µ, ν) is the Lp([0, 1[) norm of the function t 7−→ F−1

µ (t) − F−1
ν (t). We will give a proof of this

Theorem only in the case that interests us, that is to say for the case p = 2 only. The proof uses the
following Lemma.

For µ ∈ P(R), we have

Vol({t ∈ ]0, 1[, F−1
µ (t) ≤ x}) = Fµ(x) (A.7.5)

Lemma A.7.1

Proof. We set F−1
µ (t) := inf{x ∈ R, Fµ(x) ≥ t}. If F−1

µ (t) ≤ x0, then for all ε > 0 we have
inf{x ∈ R, Fµ(x) ≥ t} < x0 + ε and therefore there exists yε < x0 + ε such that Fµ(yε) ≥ t. Since Fµ
is non-decreasing and right-continuous, we have t ≤ Fµ(x0 + ε) and t ≤ limε→0+ Fµ(x0 + ε) = Fµ(x0)
therefore t ≤ Fµ(x0). Then, if t ≤ Fµ(x0), then [x0,+∞[ ⊆ {x ∈ R, Fµ(x) ≥ t} and taking the infimum
on each side, we have F−1

µ (t) ≤ x0. We thus have the equivalence

F−1
µ (t) ≤ x ⇐⇒ t ≤ Fµ(x). (A.7.6)

We can deduce that

Vol({t ∈ ]0, 1[, F−1
µ (t) ≤ x}) = Vol({t ∈ ]0, 1[, t ≤ Fµ(x)}) = Vol([0, Fµ(x)]) = Fµ(x).

Then, if at first x is such that Fµ(x) > t, then Fµ(x) ≥ t in other words {x ∈ R, Fµ(x) > t} ⊆
{x ∈ R, Fµ(x) ≥ t}. Taking the infimum, we have F−1

µ (t) ≤ F−1
µ (t). Hence if t ∈ ]0, 1[ is such that

F−1
µ (t) ≤ x, then F−1

µ (t) ≤ x in other words {t ∈ ]0, 1[, F−1
µ (t) ≤ x} ⊆ {t ∈ ]0, 1[, F−1

µ (t) ≤ x}. And
if in a second time we have F−1

µ (t) > x and F−1
µ (t) ≤ x, then we have by (A.7.6) that Fµ(x) ≥ t, and

x /∈ {x ∈ R, Fµ(x) > t} therefore Fµ(x) ≤ t and therefore Fµ(x) = t. We finally deduce that

Vol({t ∈ ]0, 1[, F−1
µ (t) ≤ x}) = Vol({t ∈ ]0, 1[, F−1

µ (t) ≤ x} ∩ {t ∈ ]0, 1[, F−1
µ (t) ≤ x})

+ Vol({t ∈ ]0, 1[, F−1
µ (t) ≤ x} ∩ {t ∈ ]0, 1[, F−1

µ (t) > x})
= Vol({t ∈ ]0, 1[, F−1

µ (t) ≤ x}) + Vol({Fµ(x)}).

We obtain (A.7.5) since Vol({Fµ(x)}) = 0 and Vol({t ∈ ]0, 1[, F−1
µ (t) ≤ x}) = Fµ(x). �
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Let x ∈ R. Thanks to (A.7.5), we deduce that F−1
µ #λ(]−∞, x]) = Vol({t ∈ ]0, 1[, F−1

µ (t) ≤ x}) =
µ(]−∞, x]). We therefore have by the monotone class Theorem that

F−1
µ #λ = µ. (A.7.7)

We also have that F−1
µ (t) ≤ x if and only if t < Fµ(x). It is enough to make a reasoning analogous to

that which we made to obtain (A.7.6).

Proof of Theorem A.7.1. We show the case p = 2 only. We set π∗ := (F−1
µ , F−1

ν )#λ. We have by
(A.7.7) that π∗ ∈ Π(µ, ν). Then, we have

π∗(]−∞, x] × ]−∞, y]) = Vol({t ∈ ]0, 1[, F−1
µ (t) ≤ x, F−1

ν (t) ≤ y})
= Vol({t ∈ ]0, 1[, F−1

µ (t) ≤ x} ∩ {t ∈ ]0, 1[, F−1
ν (t) ≤ y})

= Vol({t ∈ ]0, 1[, t < Fµ(x)} ∩ {t ∈ ]0, 1[, t < Fν(y)})
= Vol([0, Fµ(x)[ ∩ [0, Fν(y)[)

= min(Fµ(x), Fν(y)).

Let us now show that π∗ is optimal. We will start by assuming that µ and ν are supported on [0,+∞[
(by restricting µ et ν on [−R,+∞[, R > 0, normalizing to a probability measure, and translating by
R). We have ∫ +∞

0

∫ +∞

0
xydπ∗(x, y) =

∫ +∞

0

∫ +∞

0

∫ x

0

∫ y

0
dπ∗(x, y)dadb

=

∫ +∞

0

∫ +∞

0

(∫ +∞

a

∫ +∞

b
dπ∗(x, y)

)
dadb

=

∫ +∞

0

∫ +∞

0
π∗(]a,+∞[ × ]b,+∞[)dadb.

Let π ∈ Π(µ, ν), we notice that π(]−∞, x] × ]−∞, y]) ≤ π(]−∞, x]× R) = Fµ(x) and therefore
π(]−∞, x] × ]−∞, y]) ≤ min(Fµ(x), Fν(y)). Since π∗(]a,+∞[ × ]b,+∞[) = 1 − Fµ(a) − Fµ(b) +
π∗(]−∞, a] × ]−∞, b]), we can deduce that∫ +∞

0

∫ +∞

0
xydπ∗(x, y) =

∫ +∞

0

∫ +∞

0
(π∗(]a,+∞[ × ]b,+∞[)− π(]a,+∞[ × ]b,+∞[))dadb

+

∫ +∞

0

∫ +∞

0
xydπ(x, y).

The first term in the right-hand side is non-negative. Hence∫ +∞

0

∫ +∞

0
|x− y|2dπ∗(x, y) =

∫ +∞

0
|x|2dµ(x) +

∫ +∞

0
|y|2dν(y)− 2

∫ +∞

0

∫ +∞

0
xydπ∗(x, y)

≤
∫ +∞

0
|x|2dµ(x) +

∫ +∞

0
|y|2dν(y)− 2

∫ +∞

0

∫ +∞

0
xydπ(x, y)

=

∫ +∞

0

∫ +∞

0
|x− y|2dπ(x, y).

Suppose now that the support of µ and ν are not lower bound. We define the two sequences of
probability measures (µn)n and (νn)n by µn := 1]−n,+∞[µ/µ(] − n,+∞[) and νn := 1]−n,+∞[ν/ν(] −
n,+∞[). In others words, we have for any test function ϕ∫

R
ϕ(x)dµn(x) :=

∫ +∞

−n

ϕ(x)dµ(x)

µ(]− n,+∞[)
and

∫
R
ϕ(x)dνn(x) :=

∫ +∞

−n

ϕ(x)dν(x)

ν(]− n,+∞[)
.
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For all n, µn and νn are supported in [−n,+∞[ so (A.7.4) is satisfied for µn and νn. Since µ, ν ∈ P2(R),
it is easy to check that µn converge weakly to µ, νn converge weakly to ν, and the moment of order 2
of µn converge to the moment of order 2 of µ, the moment of order 2 of νn converge to the moment of
order 2 of ν. Hence, we have by Theorem A.5.1

W2(µ, ν) = lim
n→+∞

W2(µn, νn) = lim
n→+∞

(∫ 1

0
|F−1
µn (t)− F−1

νn (t)|2dt
)1/2

.

We will apply the Lebesgue’s dominated Theorem. To begin, we have

Fµn(x) =

∫ x

−∞

1]−n,+∞[(x)dµ(x)

µ(]− n,+∞[)
=
Fµ(x)− Fµ(−n)

1− Fµ(−n)
1]−n,+∞[(x).

So by definition of the generalized inverse (A.7.3), we have

F−1
µn (t) = inf

{
x ∈ R,

Fµ(x)− Fµ(−n)

1− Fµ(−n)
1]−n,+∞[(x) > t

}
.

Since Fµ is non-decreasing and that t ∈ [0, 1[,

F−1
µn (t) = inf

{
x ∈ R,

Fµ(x)− Fµ(−n)

1− Fµ(−n)
> t

}
= inf{x ∈ R, Fµ(x) > t(1− Fµ(−n)) + Fµ(−n)}
= F−1

µ (t(1− Fµ(−n)) + Fµ(−n)).

Since Fµ(x) −→ 0 when x −→ −∞ and that for every n, t(1 − Fµ(−n)) + Fµ(−n) ≥ t, then by
right-continuity of Fµ we have that F−1

µ (t(1− Fµ(−n)) + Fµ(−n)) converge to F−1
µ (t) when n goes to

infinity. Which entails that

lim
n→+∞

|F−1
µn (t)− F−1

νn (t)|2 = lim
n→+∞

|F−1
µ (t(1− Fµ(−n)) + Fµ(−n))− F−1

ν (t(1− Fν(−n)) + Fν(−n))|2

= |F−1
µ (t)− F−1

ν (t)|2.

Next, for t ∈ [0, 1[ fixed, the function n 7−→ F−1
µ (t(1− Fµ(−n)) + Fµ(−n)) = F−1

µ (Fµ(−n)(1− t) + t)
is a non-increasing function. So we have

|F−1
µn (t)− F−1

νn (t)|2 ≤ 2|F−1
µn (t)|2 + 2|F−1

νn (t)|
≤ 2|F−1

µ (t(1− Fµ(0)) + Fµ(0))|2 + 2|F−1
ν (t(1− Fµ(0)) + Fµ(0))|2.

By making the change of variable u = t(1− Fµ(0)) + Fµ(0), we have∫ 1

0
|F−1
µ (t(1− Fµ(0)) + Fµ(0))|2dt =

1

1− Fµ(0)

∫ 1

Fµ(0)
|F−1
µ (x)|2dx ≤ 1

1− Fµ(0)

∫ 1

0
|F−1
µ (x)|2dx.

By (A.7.7), the right integral is finite since µ ∈ P2(R). Same for ν. So we can apply the Lebesgue’s
dominated Theorem. �

In the particular case p = 1, there is an alternative formula of (A.7.4).

If p = 1, then W1(µ, ν) is the L1 distance between the cumulative distribution function. In
other words

W1(µ, ν) =

∫
R
|Fµ(x)− Fν(x)|dx. (A.7.8)

Corollary A.7.1
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Proof. Let A ⊂ R2 defined by

A :={(x, t), min(Fµ(x), Fν(x)) ≤ t ≤ max(Fµ(x), Fν(x)), x ∈ R}
={(x, t), min(F−1

µ (t), F−1
ν (t)) ≤ x ≤ max(F−1

µ (t), F−1
ν (t)), t ∈ ]0, 1[}.

By Fubini’s Theorem, we have

Vol(A) =

∫
R

∫ max(Fµ(x),Fν(x))

min(Fµ(x),Fν(x))
dtdx =

∫ 1

0

∫ max(F−1
µ (t),F−1

ν (t))

min(F−1
µ (t),F−1

ν (t))
dxdt.

Since max(a, b)−min(a, b) = |a− b|, we have by (A.7.4)

W1(µ, ν) =

∫ 1

0
|F−1
µ (t)− F−1

ν (t)|dt =

∫ 1

0
(max(F−1

µ (t), F−1
ν (t))−min(F−1

µ (t), F−1
ν (t)))dt

=

∫ 1

0

∫ max(F−1
µ (t),F−1

ν (t))

min(F−1
µ (t),F−1

ν (t))
dxdt =

∫
R

∫ max(Fµ(x),Fν(x))

min(Fµ(x),Fν(x))
dtdx

=

∫
R
(max(Fµ(x), Fν(x))−min(Fµ(x), Fν(x)))dx

=

∫
R
|Fµ(x)− Fν(x)|dx.

�

To compute numerically the Wasserstein metric Wp between µ and ν ∈ Pp(R), we consider that µ
and ν are linear combinations of Dirac masses:

µ :=
n∑
i=1

aiδxi and ν :=
m∑
j=1

bjδyj

with
∑
ai =

∑
bj = 1 and where (xi)1≤i≤n, (yj)1≤j≤m are two families of points of R such that

x1 < x2 < · · · < xn and y1 < y2 < · · · < ym. It is so easily to compute the cumulative distribution
functions Fµ and Fν . If we set sk :=

∑k
i=1 ai and s′k :=

∑k
i=1 bi, then we have Fµ(x) = sk if

x ∈ [xk, xk+1[ and Fν(y) = s′k if y ∈ [yk, yk+1[ where in both cases xn+1 = yn+1 = +∞. Fµ and
Fν are therefore step functions, so by the formula which defines the generalized inverse (A.7.3), we
have an explicit formula for F−1

µ and F−1
ν . We have F−1

µ (t) = xk if t ∈ [sk−1, sk[ and F−1
µ (t) = yk

if t ∈ [s′k−1, s
′
k[ with for convention s0 = s′0 = 0. F−1

µ and F−1
ν are also step functions, but on two

different subdivisions.
Calculating Wp(µ, ν) consists of integrating the step function t ∈ [0, 1[ 7−→ |F−1

µ (t)−F−1
ν (t)|p. We

can represent a step function f : x ∈ [a, b[ 7−→ f(xi−1) if x ∈ [xi−1, xi[ on a subdivision a = x0 < x1 <
x2 < · · · < xn < b by an array with two rows and n columns which gives f(xi) on the first line and
xi−1 on the second line. Which gives for F−1

µ and F−1
ν

F−1
µ (t) x1 x2 x3 · · · xn
t s0 = 0 s1 s2 · · · sn−1

and
F−1
ν (t) y1 y2 y3 · · · ym
t s′0 = 0 s′1 s′2 · · · s′m−1

To obtain the difference F−1
µ − F−1

ν , we must sort the family of points (ti)0≤i≤n+m−2 where t0 = 0,
ti = si for i ∈ J1, n− 1K and ti = s′i−(n−1) for i ∈ Jn, n+m− 2K. The array corresponding to F−1

µ on
the new subdivision t0 = 0 < t1 ≤ t2 ≤ · · · ≤ tn+m−2 < 1 is

F−1
µ (t) x1 x1 x2 x2 x3 · · · xn
t t0 = 0 · · · s1 · · · s2 · · · tn+m−2
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and the array corresponding to F−1
ν on the new subdivision t0 = 0 < t1 ≤ t2 ≤ · · · ≤ tn+m−2 < 1 is

F−1
ν (t) y1 y1 y2 y2 y3 · · · ym
t t0 = 0 · · · s′1 · · · s′2 · · · tn+m−2

We obtain by (A.7.4) that

Wp(µ, ν) =

(
n+m−1∑
i=1

(ti − ti−1)|F−1
µ (ti−1)− F−1

ν (ti−1)|p
)1/p

(A.7.9)

with tn+m−1 = 1. In the particular case where µ and ν are two empirical measures, in other words if
n = m and ai = bi = 1/n for all i, then we have sk = s′k = k/n for all k. So F−1

µ and F−1
ν are two

step functions on the same subdivision. Thus, Wp(µ, ν) is computed more easily and (A.7.9) becomes

Wp(µ, ν) =

(
1

n

n∑
i=1

|xi − yi|p
)1/p

.
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Appendix B

Recalls on Ordinary Differential Equations

Given continuous functions a, b : I −→ R where I is an open interval, and constants t0 ∈ I, y0 ∈ R.
We consider the initial value problem {

y′ = a(t)y + b(t),
y(t0) = y0.

(B.1)

In this appendix chapter, we give two results on the first order linear ODE (B.1) that we will use as
well as their proof. The first result is the Duhamel’s formula and the second is the Gronwall’s Lemma.

B.1 Duhamel’s Formula

The following result gives an explicit formula for the solution of the first order linear ODE (B.1).

Then the initial value problem (B.1) has an unique solution y on I, given by

y(t) = y0 exp

(∫ t

t0

a(s)ds

)
+

∫ t

t0

b(s) exp

(∫ t

s
a(u)du

)
ds. (B.1.1)

Proposition B.1.1 (Duhamel’s formula)

Proof. Let t0 ∈ I and y0 ∈ R. We define the function y by

y : t ∈ I 7−→ y(t) := y0 exp

(∫ t

t0

a(s)ds

)
+

∫ t

t0

b(s) exp

(∫ t

s
a(u)du

)
ds.

It is clear that y(t0) = y0 and that y is derivable on I since a and b are continuous. So by derivating
y we have

y′(t) = a(t)y0 exp

(∫ t

t0

a(s)ds

)
+ b(t) exp

(∫ t

t
a(u)du

)
+

∫ t

t0

b(s)a(t) exp

(∫ t

s
a(u)du

)
ds

= a(t)

[
y0 exp

(∫ t

t0

a(s)ds

)
+

∫ t

t0

b(s) exp

(∫ t

s
a(u)du

)
ds

]
+ b(t)

= a(t)y(t) + b(t).

So y is a solution of (B.1) and the uniqueness follows directly from the Cauchy-Lipschitz Theorem. �

The formula (B.1.1) is obtained by applying the method of variation of parameter (or variation of
constant) to the first order linear ODE (B.1). The name "Duhamel" refers to the mathematician Jean-
Marie Duhamel. This formula (B.1.1) is sometimes called Duhamel’s principle. Note that the method
of the variation of parameters gives an explicit formula for the solution of a linear ODE whatever its
order.
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B.2 Gronwall’s Lemma

The Gronwall’s Lemma, or the Gronwall’s inequality, allows to bound a function satisfying a certain
differential or integral inequality by the solution of the corresponding differential or integral equation.
There exist two forms of the Lemma, a differential form and an integral form. We give in this section
the integral form with its complete proof.

Let I = [a, b], b ∈ ]a,+∞[ an interval on R. Let α, β and y be real valued continuous functions
defined on I, and assume that β is non-negative. If y satisfies the integral inequality

y(t) ≤ α(t) +

∫ t

a
β(s)y(s)ds ∀t ∈ I, (B.2.1)

then for all t ∈ I,

y(t) ≤ α(t) +

∫ t

a
α(s)β(s) exp

(∫ t

s
β(u)du

)
ds. (B.2.2)

Lemma B.2.1 (Gronwall’s Lemma)

This result is named after Thomas Hakon Gronwall who first showed it in 1919 when α and β are
[51] constants. The integral form in the more general case was proved by Richard Bellman in 1943
[7]. The proof of the Gronwall’s Lemma (Lemma B.2.1) uses the following result which shows that
a function satisfying a first order linear differential inequality can be bounded by the solution of the
considered differential equation whose expression is given by the Duhamel formula (B.1.1).

Let I = [a, b], b ∈ ]a,+∞[ an interval on R. Let α, β and y be real valued continuous
functions defined on I. If y is derivable on ]a, b[ and satisfies the differential inequality

y′(t) ≤ α(t)y(t) + β(t) ∀t ∈ ]a, b[, (B.2.3)

then for all t ∈ I,

y(t) ≤ y(a) exp

(∫ t

a
α(s)ds

)
+

∫ t

a
β(s) exp

(∫ t

s
α(u)du

)
ds. (B.2.4)

Lemma B.2.2

Proof. For t ∈ I, we set

f(t) := y(t) exp

(
−
∫ t

a
α(s)ds

)
−
∫ t

a
β(s) exp

(
−
∫ s

a
α(u)du

)
ds.

Since α and β are continuous on I, and y is derivable on ]a, b[, then f is derivable on ]a, b[ and we have
by (B.2.3)

f ′(t) = y′(t) exp

(
−
∫ t

a
α(s)ds

)
− α(t)y(t) exp

(
−
∫ t

a
α(s)ds

)
− β(t) exp

(
−
∫ t

a
α(s)ds

)
≤ (α(t)y(t) + β(t)) exp

(
−
∫ t

a
α(s)ds

)
− α(t)y(t) exp

(
−
∫ t

a
α(s)ds

)
− β(t) exp

(
−
∫ t

a
α(s)ds

)
= 0.
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So f ′(t) ≤ 0 for all t ∈ I which implies that f(t) ≤ f(a) for all t ∈ I. So using the definition of f , we
have

y(t) exp

(
−
∫ t

a
α(s)ds

)
−
∫ t

a
β(s) exp

(
−
∫ s

a
α(u)du

)
ds ≤ y(a)

and (B.2.4) follows. �

Proof of Lemma B.2.1. For t ∈ I, we set

f(t) :=

∫ t

a
β(s)y(s)ds.

Since β and y are continuous on I, then f is derivable on ]a, b[. Moreover, the non-negativity of β and
(B.2.1) results in f ′(t) ≤ β(t)f(t) + α(t)β(t). So by the Lemma B.2.2, we have∫ t

a
β(s)y(s)ds ≤

∫ t

a
α(s)β(s) exp

(
−
∫ t

s
β(u)du

)
ds.

And the inequality (B.2.1) results in (B.2.2). �

We can use the Duhamel’s formula (B.1.1) to show that if y is a real-valued continuous function
on I = [a, b], b ∈ ]a,+∞[ which satisfies the integral equation for all t ∈ I

y(t) = α(t) +

∫ t

a
β(s)y(s)ds,

with α, β real-valued continuous functions on I, then for all t ∈ I

y(t) = α(t) +

∫ t

a
α(s)β(s) exp

(∫ t

s
β(u)du

)
ds. (B.2.5)

This is the particular case of equality in the Gronwall Lemma. Note that in this particular case, the
non-negativity of β is not necessary.
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