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ABSTRACT

Résumé

Les modeles supervisés encodeurs-decodeurs nécessitent de grands jeux de données alignés
pour étre entrainés. Les données nécessaires ne sont pas encore disponibles pour plusieurs
taches telles que la verbalisation de triplets RDF ou la génération de paraphrases.
D’abord, nous avons exploré la tache de verbalisation de triplets RDF. Nous avons entrainé
des modeles TRANSFORMER. sur une nouvelle version des données WebINLG et avons étudié
plusieurs stratégies de pré-entrainement pour surmonter la petite taille du corpus. Ensuite,
nous avons étudié la tdche de génération de paraphrases. Nous avons entrainé des modeles
TRANSFORMER sur des corpus alignés afin de les comparer directement avec les modeles de la
littérature. Une contribution importante de la thése a été de proposer un cadre expérimental
uniforme pour comparer les modeles encodeurs-décodeurs pour la génération de paraphrases.
Nous avons également suivi la voie des méthodes alternatives basées recherche pour générer des
paraphrases. Pour ce faire, nous avons transformé la tache de génération de paraphrases en
un probleme de recherche dans un arbre. Nous avons ensuite développé deux stratégies de
recherche: MCPG et PTS et un module de score des paraphrases qui exploite le BERTscore,
GPT-2 et la distance de Levenshtein. Enfin, nous avons mené des expériences de distillation
avec le modele TRANSFORMER.

Mots-cléfs : encodeur-decodeur, triplets RDF, paraphrase, recherche dans un arbre, distillation

Abstract

In this thesis, we studied the topic of Search-Based and Supervised Text Generation. Supervised
encoder-decoder models require huge aligned dataset to be trained. The necessary data is
not yet available for several tasks such as RDF triples verbalization or paraphrase gen-
eration. First, we explored the data-to-text task of RDF verbalization. We trained supervised
TRANSFORMER models on a newly released version of the WebNLG dataset and studied in
depth several pre-training strategies to overcome the small size of the aligned corpus. Then,
we studied the paraphrase generation task. We have trained TRANSFORMER models on aligned
corpora to directly compare with the literature models. An important contribution of the thesis
was to propose a uniform experimental framework for comparing encoder-decoder models
for paraphrase generation. We also followed the path of search-based alternative strategies to
generate paraphrases. The main motivation was to provide a better control of the generated
paraphrase. To do so, we casted the paraphrase generation tasks as a tree-search problem.
We then developped two search strategies MCPG and PTS and a paraphrase scoring module
that leverages the BERTscore, GPT-2 and the Levenshtein distance. Finally, we conducted
experiments of data distillation for the TRANSFORMER model.

Keywords : encoder-decoder, RDF triples, paraphrase , TRANSFORMER, tree-search, distillation
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SYNTHESE EN FRANCAIS

1 Introduction

Au cours de la derniére décennie, ’apprentissage profond et les réseaux neuronaux ont offert de
nouveaux outils qui ont permis I'amélioration de ’état de I’art dans de nombreuses taches de génération
de texte, comme la traduction automatique. Les récents gains de performance en matiére de génération
de texte ont méme fait 'objet d’articles dans les médias généralistes qui les ont qualifiés de “systeme
d’intelligence artificielle révolutionnaire”. *.

A Dinstar de ce qui s’est passé dans le domaine de la vision par ordinateur avec les couches de
convolution, le domaine du traitement automatique des langues (TALN) a vu le début d’une nouvelle ére
avec le développement des réseaux neuronaux. En particulier, trois étapes importantes ont été franchies.

Tout d’abord, les modeles de vectorisation de mots (ou plongement de mots) tels que word2vec
[Tomas MikoLov, 2012] et GloVe [PENNINGTON et al., 2014] remplacent les encodages disjonctifs et
sacs de mots, alors largement utilisés, par des représentations vectorielles des mots. Ces représentations
sont générées par des réseaux neuronaux qui apprennent un espace ou la distance entre les mots est liée
a leur similarité sémantique.

Ensuite, les modéles encodeurs-décodeurs du Seq2Seq [CHO et al., 2014 ; SUTSKEVER et al., 2014] au
Transformer [VASWANI, SHAZEER, PARMAR, USZKOREIT, L. JONES, Aidan N. GOMEZ et al., 2017a] sont
des architectures de bout en bout qui peuvent générer du texte a partir d’une séquence en entrée. Par
exemple, pour la traduction automatique, un modele encodeur-décodeur recoit une phrase dans une langue
et génere sa traduction dans une autre langue. Ces modeéles ont permis d’améliorer considérablement les
performances sur de nombreuses taches de génération de texte.

Enfin, trés récemment — en méme temps que les travaux présentés dans cette these —, le domaine
du TALN a connu un changement de paradigme majeur avec la sortie d’énormes modeles de langage
pré-entrainés DEVLIN et al. [2018], LEwis, Liu, GOYAL, GHAZVININEJAD, MOHAMED, LEVY, Veselin
STOYANOV et al. [2020] et RADFORD et al. [2019], qui peuvent étre spécialisés pour de nombreuses taches

de génération de texte.

Dans cette these, nous nous sommes concentrés sur le sujet de la génération de texte basée re-
cherche et supervisée. Les modeles supervisés contiennent de plus en plus de parametres et nécessitent
donc de plus en plus de données alignées. Les données nécessaires ne sont pas encore disponibles pour

plusieurs taches telles que la verbalisation de triplets RDF ou la génération de paraphrases. Nous avons

1. "New Al fake text generator may be too dangerous to release, say creators", Alex Hern, The Guar-
dian, 14/02/2019, https://www.theguardian.com/technology/2019/feb/14/elon-musk-backed-ai-writes-
convincing-news-fiction


https://www.theguardian.com/technology/2019/feb/14/elon-musk-backed-ai-writes-convincing-news-fiction
https://www.theguardian.com/technology/2019/feb/14/elon-musk-backed-ai-writes-convincing-news-fiction

Synthese en Francgais

exploré ces deux taches. Par ailleurs, les réseaux neuronaux sont efficaces mais imparfaits. La course
a la performance souléve des questions sur 1’évaluation et en particulier sur les métriques d’évaluation
automatique utilisées pour évaluer les modeles supervisés. Nous avons rencontré des obstacles dans la
reproductibilité de certains modeles — et donc des résultats — publiés dans la littérature.

Nous avons donc étudié les modeles supervisés de génération de texte et avons également exploré des
méthodes alternatives basées recherche.

Ce manuscrit est divisé en deux parties.

Dans la partie 4, on donne d’abord une introduction au modele encodeur-décodeur qui est au coeur de
notre travail. Il s’agit donc d’un prérequis essentiel a la lecture des travaux présentés dans ce manuscrit.
Dans cette partie, on présente également le travail sur la verbalisation des triplets RDF pour le Challenge
WebNLG : une premiére expérience dans la génération de texte. En effet, un bon moyen d’explorer les
derniéres avancées en matiere de modeles supervisés est de les appliquer & une tache particuliere. C’est ce
que nous avons fait en participant au WebNLG Challenge. Le WebNLG Challenge [GARDENT, SHIMORINA
et al., 2017b] vise & promouvoir la verbalisation des triplets RDFs. En effet, la précédente édition du
challenge ayant eu lieu en 2017, les modeles précédemment soumis au challenge ne s’appuyaient pas sur
des Transofrmers et encore moins sur des stratégies de pré-entralnement a grande échelle. Pour le challenge
WebNLG 2020, nous avons soumis des Transformers entrainés a 'aide de stratégies d’augmentation de
données et de pré-entralnement. Nous rapportons les expériences dans la section 2. Il faut mentionner
que le travail sur le challenge WebNLG a été réalisé en collaboration et a contribution égale avec un autre
doctorant, Sébastien Montella. Ces travaux ont fait I’objet d’une publication au workshop WebNLG a
INLG2020. A travers le travail sur la verbalisation des triplets RDF, nous avons fait allusion a 'impact
de I’évaluation et en particulier a I'impact des métriques d’évaluation automatique pour les taches de

génération de texte. De plus, le probléme de la généralisation des modéles supervisés y est mis en évidence.

Dans la partie IT de ce manuscrit et la section 3 de ce résumé en francais, on détaille les expériences sur
une autre tache de génération de texte : la génération de paraphrases.

La génération de paraphrase peut étre vue comme la traduction d’une phrase en une autre phrase de
la méme langue. C’est pourquoi, historiquement, les modéles de génération de paraphrases sont dérivés
des modeles de traduction automatique. Dans un premier temps, nous présenterons la tache de génération
de paraphrases. Ensuite, nous présenterons les expériences sur la génération de paraphrases.

D’abord, nous présenterons des expériences d’entrainement supervisé de modeles encodeur-décodeur
pour la tache de génération de paraphrases. Dans la littérature, des travaux antérieurs avaient déja été
publiés, mais le manque d’uniformité dans les données et le processus d’évaluation, ainsi que parfois le
manque d’informations dans les articles correspondants, ont rendu difficile la reproduction de I’état de
Part.

Nous avons alors exploré des stratégies alternatives basées sur la recherche. Il y avait deux raisons
d’explorer cette voie. Premiérement, la tache de génération de paraphrases peut étre vue comme une tache
de réécriture de la phrase d’entrée. En d’autres termes, au lieu de la considérer comme une génération
a partir de zéro d’une séquence de mots, elle peut étre vue comme une modification d’une séquence
déja existante. Deuxiemement, il existe aujourd’hui de puissantes métriques pour évaluer rapidement les

paraphrases candidates. En particulier, de grands modeles de langue pré-entrainés fournissent de bons
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scores de similarité sémantique et de correction syntaxique que nous avons exploités pour créer une
fonction de score de paraphrase. Dans ce cadre, nous avons développé un générateur de paraphrases
candidates faiblement supervisé, composé d’un générateur de paraphrases qui utilise des transformations
locales applicables & la phrase d’entrée; et d’un algorithme de recherche qui, en explorant cet espace,
sélectionne les paraphrases candidates les plus prometteuses. L’étude des stratégies de génération de
paraphrases basées sur la recherche fait ’objet d’une publication dans un atelier & NeurIPS 2020.

Les méthodes basées sur la recherche sont normalement plus générales. Contrairement aux modeles
supervisés, elles ne nécessitent pas de corpus de données alignés. En revanche, c’est un mécanisme plus
lourd et la génération d’une paraphrase est consommatrice de ressources. D’autre part, nous faisons le pari
que les paraphrases générées peuvent étre utiles pour améliorer 'apprentissage des modeles supervisés.
Nous avons donc étudié la distillation de modeles basés sur la recherche par des modeéles supervisés.
Toutes les expériences sur la génération de paraphrases ont été publiées dans un article long & EACL
2021.

2 Premiere Expérience de Génération de Texte : le
Challenge WebNLG

La tache du challenge WebNLG consiste a générer du texte a partir de données RDF en anglais.
Les données d’entrainement disponibles pour le challenge sont un ensemble de paires données/texte.
Les données sont des ensembles de triplets RDF extraits de DBpedia et le texte correspondant est une
verbalisation des triplets.

Sur le site officiel du challenge ?, les organisateurs fournissent I’exemple présenté dans la Figure 1.
Dans cette figure, les données représentées comme un ensemble de trois triplets RDF sont associées a une
phrase.

La tdche RDF-to-text comsiste & mettre en correspondance un ensemble de triplets avec I'une de
ses lexicalisations possibles. Il est a noter que la verbalisation générée doit étre syntaxiquement et sé-
mantiquement correcte. De plus, elle doit contenir le méme niveau d’information que les données en
entrée.

Pour le challenge, GARDENT, SHIMORINA et al. [2017a] a publié un jeu de données. Une premiére
version des données a été introduite en 2017 avec le challenge [GARDENT, SHIMORINA et al., 2017a]. Une

version améliorée des données a été publiée avec la version 2020 du challenge .

2.1 Données

Apprentissage
Les données d’apprentissage se composent de 13211 ensembles de triplets uniques associés a plusieurs
lexicalisations possibles. Un ensemble de triplets contient jusqu’a sept triplets RDF. Intuitivement, un

ensemble contenant plus de triplets sera associé a plus de verbalisations possibles. Nous avons formé

2. https://webnlg-challenge.loria.fr/, dernier acces : 09/02/2021
3. https://gitlab.com/shimorina/webnlg-dataset /- /tree/master/release_ v3.0
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John_E
Blaha .\
occupation
‘ \‘ Fight Pilot
birthPlace
1942_08_26
San Antonio

“John E. Blaha, born in San Antonio on 1942-08-26, worked as a fighter pilot.”

Fi1GURE 1 — Exemple de verbalisation de triplet RDF. Les données sont encodées
en triplets RDF. Dans cet exemple particulier, chaque triplet contient le méme sujet :
John__E _Blaha. Les triplets contiennent également les prédicats birthDate, birthPlace et
occupation et les objets associés 1942 08 26, San__Antonio et Fight_Pilot. L objectif de
la tache de génération rdf-to-text est de faire correspondre un ensemble de triplets RDF
a un texte. Dans cet exemple, I’ensemble de triplets est converti en John E Blaha, born
in San Antonio on 1942-08-26, worked as a fighter pilot.

des paires RDF /texte associant chaque lexicalisation possible & son ensemble de triplets d’entrée. Cela
conduit & un ensemble d’entrainement de 35426 paires. Il est important de souligner qu’une lexicalisation

n’est pas nécessairement une phrase unique.

Test

L’ensemble de test fourni pour le challenge WebNLG a été divisé en trois types de données qui peuvent

étre considérées comme trois taches différentes pour nos modeles.

Entités et catégories connues. La premiere partie contient des triplets RDF qui contiennent

des entités et des catégories vues dans les données d’apprentissage.

Entités inconnues. La deuxiéme partie contient des triplets RDF avec de nouvelles entités dans
les mémes catégories que les données d’apprentissage. Par exemple, la catégorie Astronaute est présente

dans 'ensemble d’apprentissage mais l’entité Yuri Gagarin n’est jamais vue.

4
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Catégories inconnues. La troisieme partie de ’'ensemble de test contient des ensembles de triplets
RDF basés sur de nouvelles catégories non présentes dans les données d’apprentissage.

Les modeéles soumis sont évalués a l'aide de BLEU [PAPINENI et al., 2001], METEOR [BANERJEE et
LAVIE, 2005], chrF++ [PopoviC, 2017], TER [SNOVER et al., 2006], du BERTscore [ZHANG™ et al., 2020]
et BLEURT. [SELLAM et al., 2020].

2.2 Approches Proposées

Il est difficile d’exploiter les architectures de réseaux de neurones profonds pour cette tache car le
nombre de parameétres a entralner nécessite une grande quantité de données et la verbalisation RDF
manque de données alignées.

Les progres récents des grands modéles pré-entrainés et de I'architecture Transformer sont tres pro-
metteurs pour les taches de génération de texte. Pour le Challenge WebNLG 2020, nous avons proposé
d’explorer l'effet du pré-entrainement massif et du modele Transformer pour la tdche RDF-to-text.

Nous avons choisi d’utiliser des corpus externes pendant le pré-entrainement pour atteindre une
meilleure généralisation. Nous construisons deux ensembles de données supplémentaires dans le but de
pré-entrainer par réduction de bruit (ST1) et d’augmentation des données (WS1).

En outre, nous avons appliqué le paradigme de curriculum learning (CL) pour une convergence plus
rapide et de meilleurs minima locaux & travers le processus d’optimisation. Pour rappel, I'idée du CL [Y.
BENCIO, LOURADOUR et al., 2009] est d’augmenter progressivement la complexité des données pendant
I’apprentissage pour imiter le comportement d’apprentissage humain. Dans notre cas, nous assimilons
la complexité comme le nombre de triplets RDF en entrée. Plus le nombre de triplets est élevé, plus la
complexité est élevée. Nous trions les données WebNLG de telle sorte que les exemples les plus faciles
viennent en premier et les exemples les plus difficiles ensuite.

Nous avons entrainé 8 modeles Transformers correspondant a 8 configuration différentes. Chaque
modele est ensuite évalué a l'aide de ’ensemble de tests officiel du challenge WebNLG.

Pour la pré-entrainement par réduction de bruit, les phrases transformées (voir section 2.3.2) ont été
directement introduites dans le Transformer. Le modele doit donc reconstruire les phrases incompléetes.
Des exemples d’échantillons prétraités pour les différentes configurations d’apprentissage sont présentés
dans le tableau 2.2.

2.3 Résultats

Pour I’évaluation, nous avons utilisé le script d’évaluation officiel de WebNLG (disponible sur github).

Pour évaluer 'impact des différents parametres que nous voulons explorer, nous avons réalisé une
étude d’ablation (ablation study). Nous avons défini notre modele de référence (baseline) comme le Trans-
former entrainé uniquement sur le jeu de données WebNLG, sans curriculum. Nous voulions évaluer
Iinfluence du pré-entrainement, de ’augmentation des données et du CL par rapport a la baseline.

Dans le tableau 2.3, en comparant notre baseline avec les stratégies de pré-entrainement pour chaque
catégorie (sans curriculum), nous notons une augmentation moyenne de 3,07, 19,6 et 10,97 respectivement
en BLEU lors du pré-entrainement. Des variations similaires peuvent étre notées avec les métriques ME-

TEOR, chrf++ et BLEURT, bien que moins frappantes. Basée sur les incorporations contextuelles de BERT,
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BLEURT donne une bonne estimation de la corrélation sémantique entre la prédiction et les références.
La plupart du temps, les métriques basées n-gram et sémantiques montrent une parfaite harmonie. Les
meilleures valeurs de BLEURT sont obtenues pour les mémes modeles que les métriques basées n-gram.
Par conséquent, toutes les métriques tendent a étre corrélées, ce qui prouve une bonne concordance. Le
gain de performance sur des domaines inconnus s’explique facilement par la diversité des données aug-
mentées. Les nouvelles entités et le lexique spécifique au domaine rencontré aident mieux & modéliser les
relations entre les données hors distribution. Ainsi, ces résultats soulignent 'utilité des corpus externes
et renforcent le besoin d’un modéle pré-entrainé pour la lexicalisation de triplets RDF.

Sur les catégories connues, notre baseline donne un score de 55,24. Cependant, pour la génération hors
domaine, tous les modeles démontrent de graves lacunes. Testé sur des entités inconnues, notre baseline
montre une baisse de 42,34 pour atteindre 12,9. Nous constatons une perte similaire et méme plus impor-
tante dans les catégories inconnues. Dans le cas ot les prédicats sont inconnus du modele, il est difficile de
générer une description cohérente des RDFs d’entrée. Des catégories connues aux catégories inconnues,
notre baseline est presque pénalisée par un facteur de 5. Un tel effet est tempéré par nos approches
de pré-entrainement. La baisse moyenne de la qualité des modeles pré-entrainés (sans apprentissage par
programme) est de 25,6 % des catégories vues aux entités non vues, et de 35,5 % des catégories vues aux
catégories non vues.

Lorsqu’une approche d’apprentissage avec CL est utilisée, nous assistons a des baisses de performance.
Ceci est contre-intuitif et opposé a ’expérience précédente sur notre ensemble de validation.

Il est intéressant de noter que les meilleurs résultats sont révélés avec un pré-entrainement sur ST1,
exclusivement. Avec 5 fois moins de données, ST1 conduit & de meilleures performances. Les triplets
extraits comprennent stirement des triplets inexacts. Malgré la qualité imparfaite du jeu de données ST1,
son utilisation contribue a la capacité de généralisation.

En revanche, nous constatons que le pré-entrainement par réduction de bruit ne donne pas de résultats
satisfaisants lorsqu’il est combiné a notre pré-entrainement sur le jeu de données ST1, ce qui conduit
finalement a un effet négatif. Cela peut étre di a une divergence de distribution des entrées entre WS1 et
ST1. Le pré-entrainement par réduction de bruit ne nécessite pas de triplets en entrée mais une phrase
bruitée. Le décalage entre cette représentation et la linéarisation des triplets peut étre la raison de cet
effet négatif.

3 Etude de la Génération de Paraphrase

La génération de paraphrases est une tache fondamentale du traitement automatique des langues. Elle
peut étre considérée comme une variante de la traduction automatique ou la traduction est effectuée dans
la méme langue que I'entrée. Par conséquent, les progres de la génération de paraphrases sont étroitement
liés a ceux de la traduction automatique. La paraphrase est cependant beaucoup moins étudiée. La raison
principale est probablement le manque de ressources disponibles. En particulier, un exemple de modele
performant pour la traduction automatique est le réseau de neurones supervisé, entrainé sur d’énormes
bases de données alignées. De tels ensembles de données ne sont pas disponibles pour la génération de

paraphrases.
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Données

Il n’existe pas d’ensemble de données génériques de paraphrases alignées. Les corpus de paraphrases ali-
gnées disponibles sont souvent orientés vers des problemes spécifiques comme la réponse a des questions
ou le sous-titrage d’images. Nous avons utilisé cinqg corpus de paraphrases pour nos expériences. Tout
d’abord, nous avons utilisé 3 corpus alignés construits pour l'identification des paraphrases : MSRPA-
RAPHRASE, PAWSet QQP. Deuxiémement, deux autres corpus qui ont été construits dans un autre but :

MScoOcopour le sous-titrage d’images et OPUSPARCUS pour la traduction de sous-titres.

Evaluation Les parametres d’évaluation automatique sont similaires & ceux utilisés pour le défi

WebNLG présenté dans la section 2, a savoir le BLEUet le score BERT.

3.1 Générateurs de Paraphrases Supervisés

Tout comme la traduction automatique ou la génération de RDF en texte, la génération de paraphrases
peut étre vue comme un probléeme de séquence a séquence.

Comme la traduction automatique, la génération de paraphrases a bénéficié des réseaux neuronaux
profonds et a évolué vers des architectures efficaces de bout en bout qui peuvent a la fois apprendre
a aligner et & traduire [BAHDANAU, CHO et al., 2016; VASWANI, SHAZEER, PARMAR, USZKOREIT, L.
JoNEs, Aidan N GOMEZ et al., 2017b]. Plusieurs articles, comme [CAO et al., 2017; PRAKASH, Sadid A.
HASAN et al., 2016a], présentent la tache de génération de paraphrases comme un probléme supervisé de
séquence a séquence. Nos expériences confirment que cette approche est efficace pour des types spécifiques
de paraphrases. Elle est également capable de produire des transformations a relativement longue portée
et une structure syntaxique complexe, mais elle nécessite d’énormes ensembles de données alignées de
phrases de bonne qualité pour I'apprentissage.

Nous avons mené des expériences pour reproduire les résultats des modeles supervisés d’encodeurs-
décodeurs tels que rapportés dans la littérature. Il n’existe cependant pas de configuration d’expérience
uniforme permettant de comparer directement les modeles et les expériences présentés dans les différents
articles. Cela entraine des problemes de reproductibilité.

En plus d’essayer de reproduire les résultats existants, nous avons mené les expériences en utilisant
un cadre uniforme afin de comparer réellement les résultats et de les étendre a tous les ensembles de
données.

Comme baselines supervisées, nous avons entrainé trois architectures de réseaux de neurones réputés
comme performants ur MSCOCO et QQP, en particulier, 'architecture Seq2Seq, une architecture Residual
LSTM [PRAKASH, Sadid A HASAN et al., 2016b] et un modéle TRANSFORMER [ECONMWAN et CHALLI,
2019a]. Nous avons étendu les expériences aux autres corpus alignés : MSRPARAPHRASE, OPUSPARCUS et
PAWS.

3.2 Approches Basées Recherche

En l'absence d’ensembles de données alignées génériques, il reste difficile d’entrainer des modeles
de paraphrase génériques de manieére supervisée. Pour cette raison, nous avons étudié une approche

différente : un schéma de génération basé recherche ou des paraphrases candidates sont générées par des
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transformations successives a partir de la phrase originale. Les approches basées recherche permettent un
meilleur contréle de la sortie. Elles sont souvent utilisées pour intégrer des contraintes dans la génération
de texte comme dans CGMH [MIAO et al., 2018].

Nous modélisons la génération de paraphrases comme une séquence d’éditions et de transformations
d’une phrase source en sa paraphrase. Nous ne considérons que les transformations locales, c¢’est-a-dire
le remplacement de certains mots ou groupes de mots par d’autres qui ont la méme signification ou une
signification similaire.

Le principe est simple. A partir d’une phrase source, que nous souhaitons paraphraser, nous créons
un générateur de paraphrases candidates en utilisant des transformations locales applicables & la phrase
source. Ce générateur peut étre vu comme générant un arbre de phrases candidates, ou chaque nceud
est une paraphrase possible de la phrase source et chaque aréte est une transformation effectuée pour
aller du neceud source au noeud cible. La racine de I'arbre étant la phrase source, plus on descend dans
Parbre, plus la paraphrase candidate est différente de la phrase source. Dans un deuxiéme temps, nous
recherchons la meilleur candidate ou le meilleur nceud de I’arbre en utilisant un algorithme de recherche.

La base de données Paraphrase Database (PPDB) [PAVLICK et al., 2015] est une grande collection de
regles de paraphrase annotées qui a été construite automatiquement. En appliquant itérativement ces
regles a partir d’une phrase source, on obtient un vaste treillis de paraphrases candidates. Certains de

ces candidates sont bien formées, mais beaucoup sont syntaxiquement incorrectes.

MCPG

Suivant I'idée de [CHEVELU et al., 2009], nous avons d’abord expérimenté Monte-Carlo Tree Search
(McTS) pour explorer le trellis. Notre modele Monte-Carlo Paraphrase Generator (MCPG) utilise MCTS pour
la tache de génération de paraphrases. MCTS a besoin d’une fonction de récompense pour mettre a jour
sa politique a chaque epoch.

Pour classer les paraphrases candidates, nous avons développé une fonction de score de paraphrase que
nous essayons d’optimiser pendant la recherche. L’algorithme MCTS n’est pas congu pour les problemes
multi-objectifs. Nous avons donc dii combiner trois critéres, a savoir la similarité sémantique, la correction
syntaxique et la diversité de surface en un seul critere.

L’équilibre entre ces critéres est difficile a obtenir. L’option la plus simple était une combinaison
linéaire, mais apres une analyse quantitative de la distribution des scores, nous avons réalisé qu’il était
facile de maximiser le score en appliquant simplement beaucoup d’éditions & la phrase source.

Nous avons donc opté pour le polyndéme suivant :
«a-BERTg + 8 - Levg - BERTg — v - GPT2 (1)

Notre fonction de score permet d’obtenir un assez bon équilibre entre les critéres. Cependant, la sortie
de MCPG est parfois imparfaite. En fait, MCPG n’est pas vraiment adapté a un probleme multi-objectif

tel que la génération de paraphrases.

PTS
MCTS est un algorithme efficace sur les problemes combinatoires ou l’évaluation n’est possible que sur

les feuilles de ’arbre. Dans notre cas particulier ot tous les noeuds sont des feuilles, nous ajoutons une
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complexité supplémentaire a la recherche en appliquant de nombreuses transformations au nceud source
pour I’évaluer, alors que nous pourrions ’évaluer directement sans faire de roll-out car il est déja une

feuille.

De plus, MCPG ne peut optimiser qu’un seul score. Comme nous voulons évaluer les paraphrases
candidates selon trois axes, nous avons di "scalariser" les différents sous-scores et fixer les poids afin de
définir une fonction de score. Ce travail est fastidieux. Les hyperparameétres a, 5 et v de (1) sont difficiles

a optimiser automatiquement.

Nous avons donc développé un nouvel algorithme de recherche pour résoudre ces deux problemes :
Pareto-Tree Search (PTS) qui exploite le concept de front de Pareto. Dans notre cas, nous avons un
ensemble de paraphrases qui sont notées avec trois sous-scores. Notre lot de candidats est un ensemble
fini X C R3. Une paraphrase A est efficace dans le sens de Pareto s’il n’existe pas d’autre paraphrase
B telle que tous les sous-scores de B sont supérieurs aux sous-scores de A. L’ensemble des paraphrases
du lot qui sont efficaces constitue ce que 'on appelle le front de Pareto. Les autres paraphrases sont
dites dominées. Nous avons donc adapté MCPG pour explorer le treillis de paraphrases et récupérer une
approximation du front de Pareto, en reportant 1’équilibre entre les criteres comme une étape de post-

optimisation rapide. Il s’agit de l'algorithme Pareto Tree Search (PTS).

3.3 Reésultats

Nous comparons nos modeles avec CGMH un autre algorithme basé recherche présenté par M1AO et al.
[2018]. Cette ligne de base a une approche basée sur la recherche globalement similaire pour la génération
de paraphrases. Nos méthodes MCPG et PTS obtiennent de meilleurs résultats que la baseline CGMH sur

tous les corpus, sauf sur MSCOCO ou les résultats sont similaires.

En comparaison avec les stratégies supervisées, les résultats sont mitigés. Il est cependant important
de garder a ’esprit que contrairement aux stratégies supervisées qui sont réentrainées pour chaque jeu

de données, les parametres des modeles CGMH, MCPG et PTS restent inchangés.

Sur les jeux de données MSCOCO et QQP, les modeles supervisés obtiennent des résultats nettement
meilleurs, mais MCPG et PTS obtiennent de meilleurs résultats sur OPUSPARCUS et PAWS a l’exception
du BERTscore pour lequel le modeéle TRANSFORMER obtient des résultats similaires.

Ces résultats prouvent que méme sans ensembles d’entrainement spécialisés, les méthodes génériques
basées sur la recherche sont compétitives pour la génération de paraphrases. Cependant, il est un fait
que les réseaux encodeurs-décodeurs ont d’excellentes performances pour la génération de textes et ont le
potentiel de générer des paraphrases plus complexes que celles obtenues par de simples transformations

locales comme dans nos modeles.

L’entrainement d’un réseau de génération de paraphrases général nécessiterait un énorme volume de
données. Et il y a encore beaucoup moins de corpus alignés disponibles pour la paraphrase que pour la
traduction.

Les méthodes génériques basées sur la recherche peuvent étre utilisées comme un modele hors ligne

pour 'augmentation des données.
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3.4 Expérience de Distillation

Nous avons mené une expérience simple pour essayer de distiller les connaissances apprises a partir
des politiques de recherche MCPG et PTS avec un réseau neuronal supervisé, a savoir un TRANSFORMER.

Une option qui peut étre considérée comme un apprentissage par transfert est d’enrichir ’ensemble
d’apprentissage d’un TRANSFORMER. avec les résultats des méthodes basées recherche.

Pour tester cette idée, nous avons utilisé nos modeles MCPG et PTS pour augmenter ’ensemble d’ap-
prentissage d’'un TRANSFORMER.

MSRPARAPHRASE contient des paires de paraphrases et des paires de non-paraphrases. Pour nos ex-
périences de génération de paraphrases, nous n’avons eu besoin que des paires de paraphrases, nous avons
donc mis de c6té les autres paires. Cependant, les paires de non-paraphrases appartiennent & la méme
distribution de données que les paires de paraphrases utilisées pour entrainer I’encodeur-décodeur super-
visé sur MSRPARAPHRASE. Nous utilisons ces paires de non-paraphrases inutilisées pour I’entrainement
de notre expérience de distillation.

Tout d’abord, nous transformons les paires de non-paraphrase de MSRPARAPHRASE en phrases
sources a paraphraser par les modeles que nous voulons distiller, & savoir MCPG et PTS.

Ensuite, nous échangeons la paraphrase générée avec la phrase source pour créer de nouvelles paires
de paraphrases. Les paraphrases générées deviennent les nouvelles phrases sources. Et les phrases sources
initiales deviennent les nouvelles phrases de référence. Cette technique, appelée back-translation, a été
introduite par EDUNOV et al. [2018] et SENNRICH et al. [2016]. Elle garantit que le modele a toujours
une phrase syntaxiquement correcte comme référence de sortie. En effet, comme un encodeur-décodeur
est entrainé par teacher forcing sur la phrase de référence, ’apprentissage avec une référence bruitée peut
dégrader 'apprentissage.

Avec ces paires de paraphrases nouvellement générées, nous avons augmenté I’ensemble d’apprentis-
sage MSRPARAPHRASE . Nous avons ensuite formé de nouveaux modeéles supervisés TRANSFORMER sur
les ensembles de train augmentés, 'un augmenté de MCPG et I’autre augmenté de PTS.

Les résultats montrent que ’augmentation de ’ensemble d’apprentisage de MSRPARAPHRASE par
des paires de paraphrases générées par MCPG et PTS a augmenté le score BLEU de 5 points. En revanche,
le BERT score a légerement diminué.

Malgré ces résultats surprenants concernant le BERT score, les approches basées recherche semblent
étre trés intéressantes en tant que systéeme d’augmentation des données hors ligne pour surmonter les
problémes des encodeurs-décodeurs. Elle offre un compromis entre les approches supervisées et faiblement

supervisées.

4 Conclusion et Perspectives

Le modele encodeur-décodeur est au cceur du travail présenté dans cette these. Cette famille de
réseaux neuronaux construite pour des taches de transformation de séquences est bien adaptée aux taches
de génération de texte comme la lexicalisation de données ou de paraphrases; et a amélioré I’état de I'art
dans de nombreuses taches de génération de texte. Les performances du modele Transformer ont conduit

au développement de modeles pré-entrainés, tels que les embeddings contextuels BERT et le modele de
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4. Conclusion et Perspectives

langue GPT-2. Le Transformer est également largement utilisé comme modeéle supervisé appris a partir de
zéro pour des taches de génération de texte sur des corpus alignés et surpasse souvent le Seq2Seq original
qui repose sur des RNN.

En suivant cette idée, nous avons exploré la tache de verbalisation de données RDF. Nous avons
entrainé des modeles supervisés de Transformer sur une version récemment publiée du jeu de données
WebNLG et avons étudié en profondeur plusieurs stratégies de pré-entrainement pour surmonter la petite
taille du corpus aligné.

Le domaine de la génération de paraphrases est étroitement lié a la traduction automatique en raison
de la nature de la tache. Cependant, cette derniére a regu beaucoup plus d’attention en raison de la
disponibilité de corpus alignés massifs. Pour la génération de paraphrases, les corpus sont plus petits et
plus biaisés.

Dans cette these, nous avons entrainé les modeles Transformer sur des corpus alignés pour les com-
parer directement avec le modele de littérature qui était basé sur des RNNs a I’époque. Ceci a conduit
a deux problémes. Premiérement, nous avons trouvé qu’il était trés difficile de reproduire les résultats
de I’état de l'art pour la tache de génération de paraphrases. Une contribution importante de la these a
été de proposer un cadre expérimental uniforme pour comparer les modeles encodeur-décodeur pour la
génération de paraphrases et d’étendre I’entrainement a 5 corpus de paraphrases alignés, y compris les
deux corpus tres biaisés -mscoco et quora- souvent utilisés dans la littérature. Deuxiemement, les modeles
Transformer n’ont pas donné les résultats escomptés.

En effet, nous n’avons noté aucune différence significative entre les architectures de réseaux neuronaux
basées sur les RNN et les Transformers, sauf pour MSRPARAPHRASE. Nous supposons qu’étant donné
que MSRPARAPHRASE est plus petit et contient des phrases plus longues, alors le Transformer s’adapte
moins bien que les réseaux neuronaux basés sur les RNN.

En raison de la nature de la tache et des données disponibles pour la formation supervisée, nous avons
exploré la voie des stratégies basées recherche pour générer des paraphrases. La motivation principale
était de fournir un meilleur controle de la paraphrase générée.

Les résultats ont montré que sans un ensemble d’entrainement spécialisé, les méthodes génériques
basées sur la recherche sont compétitives pour la génération de paraphrases, mais il est clair que les
modeles supervisés ont le potentiel de générer des paraphrases plus complexes.

Enfin, comme les méthodes basées sur la recherche ne pouvaient étre utilisées que comme modele
offline pour 'augmentation de données, nous avons mené des expériences de distillation. Ces expériences
ont montré que la distillation améliorait les performances du modéle TRANSFORMER entrainé sur MSR-
PARAPHRASE et constitue une branche de recherche prometteuse.

Afin d’approfondir cette idée de pré-entrainement et de distillation. Une perspective de ce travail
pourrait étre de fine-tuner un modele de langage générique pré-entrainé pour la tache de génération de
paraphrases.

Une autre perspective de ce travail serait de développer de nouvelles politiques de recherche dans
le cadre de I'approche basée recherche. En particulier, on pourrait penser a une politique entierement
apprise grace a ’apprentissage par renforcement. La principale difficulté consiste a trouver un bon oracle
pour entrainer la politique. Nous supposons que cela sera difficile, mais c’est une piste de recherche

intéressante.
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En outre, on pourrait ajouter plus de controle au schéma supervisé en explorant les solutions de

prédiction structurée pour la génération de texte.
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INTRODUCTION

In the last decade, deep learning and neural networks have offered new tools that have improved
the state-of-the-art in many text generation tasks such as machine translation. The recent performance
gains in text generation have even been the subject of general media articles calling it a “revolutionary
artificial intelligence system”*.

Similar to what happened in the field of computer vision with convolution layers, the field of Natural
Language Processing (NLP) has seen the beginning of a new era with the development of neural networks.
In particular, there are three important milestones.

Firstly, continuous embedding models such as word2vec [Tomas Mikolov, 2012] and Glo Ve [Pennington
et al., 2014] replace the then widely used one-hot encodings and bag-of-words as distributed vector
representations of words. These embeddings are generated by neural networks that learn a space where
the distance between words is related to semantic similarity.

Then, the encoder-decoder models from the Seq2Seq [Cho et al., 2014; Sutskever et al., 2014] to the
Transformer [Vaswani, Shazeer, Parmar, Uszkoreit, L. Jones, Aidan N. Gomez, et al., 2017a] are end-to-
end architectures for generating text from an input sequence. For example, for machine translation, an
encoder-decoder model is fed with a sentence in one language and generates its translation into another
language. These models achieved significant improvements in many text generation tasks.

Finally, very recently — at the same time as the work presented in this thesis —, the field of NLP
has witnessed a major paradigm shift with the release of huge pre-trained language models Devlin et al.
[2018], Lewis, Liu, Goyal, Ghazvininejad, Mohamed, Levy, Veselin Stoyanov, et al. [2020], and Radford
et al. [2019] that can be fine-tuned on many text generation tasks.

In this thesis, we focused on the topic of Search-Based and Supervised Text Generation in
the midst of this NLP revolution. Supervised models contain more and more parameters and therefore
require more and more aligned data to be trained. The necessary data is not yet available for several tasks
such as RDF triples verbalization or paraphrase generation. We explored these two tasks. Also, neural
networks are efficient but not perfect. The race for performance raises questions about evaluation and
in particular the automatic evaluation metrics used to evaluate supervised models. We have encountered
obstacles in the reproducibility of some models — and thus results — published in the literature.

We therefore studied supervised models for text generation and also explored alternative search-based
models.

This manuscript is divided into two parts. The first part can be seen as an introductive part.

As the encoder-decoder model is at the heart of our work, it is an essential prerequisite for reading

the work presented in this manuscript. Although there are many good articles, books or blog posts that

4. "New Al fake text generator may be too dangerous to release, say creators', Alex Hern,
The Guardian, 14/02/2019, https://www.theguardian.com/technology/2019/feb/14 /elon-musk-backed-
ai-writes-convincing-news-fiction
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introduce the Seg2Seq model and its derivates, we give a chronological presentation of the development
of these models in Chapter 1. Chapter 1 does not pretend to be an exhaustive course on the subject and
we refer the reader to pointers when necessary.

A good way to explore the latest advances in supervised models is to apply them to a particular task.
This is what we did by participating in the WebNLG Challenge. The WebNLG Challenge [Gardent,
Shimorina, et al., 2017b] aims at promoting the verbalization of RDFs triples. Indeed, the previous
edition of the challenge having taken place in 2017, the models previously submitted for the challenge
did not rely on Transformers and even less on large-scale pre-training strategies. For the 2020 WebNLG
Challenge, we submitted Transformers trained using data augmentation and pre-training strategies. We
report the experiments in Chapter 2. This first experiment with text generation gives us the opportunity
to introduce the data preprocessing and learning pipelines. This is why we have chosen to leave the
Chapter 2 in the first introductory part of this thesis. However, we highlight that the work presented in
Chapter 2 is novel and has been the subject of a publication to the WebNLG Workshop at INLG2020. It
should also be mentioned that the work on the WebNLG challenge was carried out in collaboration and
equal contribution with another PhD student, Sébastien Montella. Through the work on the verbalization
of RDF triples, we hint at the impact of evaluation and in particular of automatic evaluation metrics for

text generation tasks. Also, the generalization problem of supervised models is highlighted.

Part II of this manuscript reports experiments on another text generation task : paraphrase genera-
tion. This part is divided into four chapters.

Generating a paraphrase of a sentence can be seen as translating the sentence into another sentence in
the same language. That is why, historicaly the paraphrase generation models derived from the machine
translation models. In Chapter 3, we introduce the paraphrase generation task and give an overview of
the paraphrase generators. The following three chapters reports experiments on paraphrase generation.

In Chapter 4, we present supervised encoder-decoder model training experiments for the paraphrase
generation task. In the literature, previous work had already been published, but the lack of uniformity
in the data and evaluation process as well as sometimes the lack of information in the corresponding
papers made it difficult to reproduce the state of the art.

We then explored alternative search-based strategies. There were two reasons for exploring this path.
Firstly, the paraphrase generation task can be seen as a rewriting task of the input sentence. That is,
instead of seeing it as a generation from scratch of a token sequence, it can be seen as a modification of
an already existing sequence. Secondly, there are now powerful metrics for quickly evaluating candidate
paraphrases. In particular, large pre-trained language models provide good semantic similarity and
syntactic correctness scores that we leveraged to create a paraphrase score function. In this framework,
we have developed a weakly-supervised candidate paraphrase generator consisting of a paraphrase space
generator that uses local transformations applicable to the input sentence; and a search algorithm that,
by exploring this space, selects the most promising candidate paraphrases. In Chapter 5, we provide
details of these search-based methods. The study of the search-based stategies for paraphrase generation
is the subject of a publication in a workshop at NeurIPS 2020.

Search-based methods are normally more general as they are not supervised on aligned data corpora
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Introduction

like supervised models. On the contrary, it is a more cumbersome mechanism and the generation of a
paraphrase is resource consuming. On the other hand, we hypothesize that the generated paraphrases
can be useful to improve the learning of supervised models. We have therefore studied the distillation of
search-based models by supervised models. The results are presented in Chapter 6.

All the experiments on paraphrase generation were published in a long paper at EACL 2021.
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Background and First Experiments
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CHAPTER 1

AN INTRODUCTION TO
ENCODER-DECODER NEURAL
NETWORKS

As outlined in the Introduction Chapter, this thesis is about sequence generation and in particular
on the vast topic of text generation. In Chapter 2, we present the work done for the WebNLG Challenge
that involves a data-to-text generation task. In Part II, we explore paraphrase generation. Paraphrase
generation is very similar to machine translation as it can be seen as a translation into the same language.
In Chapter 3, we detail the major differences between the two tasks.

In this Chapter, we introduce the neural network architectures we used to tackle the sequence pre-
dictions tasks. In a first Section 1.1, we describe the recurrent neural networks that are the building
blocks of the original Seq2Seq model presented in Section 1.2. In the following Section 1.3, we focus on
the attention mechanism that allowed significant improvements to the Seq2Seq for text generation and
lead to the Transformer model. The Transformer model and its derivates are presented in Section 1.4.

In Sections 1.5 and 1.6, we focus on the learning and inference of such architectures and its limitations.

1.1 The Recurrent Neural Network (RNN)

Recurrent neural networks (RNN) [Rumelhart et al., 1986] are a type of neural networks designed to
process sequences {z(1) ... (™},

An RNN relies on the principle of parameters sharing to deal with variable-length sequences. Indeed,
a fully connected layer has fixed size input and output. At the opposite, an RNN will generate a sequence
by producing each token of the output iteratively using an update rule applied to the previous outputs.

In Figure 1.1, we display an unfolded RNN cell that maps a sequence x to a generated sequence o
that is compared with the target sequence y.

The RNN’s output can be seen as a probability distribution over the possible output tokens. For
instance, for text generation, the RNN can be used to generate a text word by word. In this simple
example, one have a vocabulary of words and the RNN models a probability distribution over the possible
words. The generated distribution is then directly compared to the target distribution corresponding to
the target word in the ground-truth sentence.

One of the motivations behind RNNs is the possibility to handle long-term dependencies. In fact, at
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1.1. The Recurrent Neural Network (RNN)

Figure 1.1 — Figure reproduced from Figure 10.3 in [I. Goodfellow et al., 2016]. Compu-
tational graph of a recurrent network. The reccurent cell maps iteratively the input x to

the output o. The output is compared with the target sequence y to compute the training
loss L.
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Partie I, Chapter 1 — Encoder-Decoder Neural Networks

each time step, the generation is connected to all the previous generations. In theory RNNs are able to
handle long-term dependencies. But Y. Bengio, Simard, et al. [1994] found that in practice it might be
difficult due to the vanishing gradient problem.

Hochreiter and Schmidhuber [1997] introduced a reccurent cell to tackle this issue: Long Short Term
Memory networks (LSTM). LSTM are able to remember information for a long time. For more details
on the LSTM, the reader is referred to [Hochreiter and Schmidhuber, 1997] or blog post [Olah, 2015].

1.2 The Encoder-Decoder Architecture

RNNSs can handle generation of variable size sequences. However the number of output tokens has to
be the same as the number of input tokens. In other words, the size of the generated sequence is always
the same as the input sequence. While this is no problem for tasks like Optical Character Recognition
(OCR) or Voice Activity Detection (VAD), it is not convenient for many text generation tasks where the
input and the output do not have the same size. For instance, in machine translation, a sentence in one
language has not always the same size as a its translation to another language.

To tackle this problem, Sutskever et al. [2014] introduced a model called Sequence-to-Sequence
(Seq2Seq) that combines two RNNs to deal respectively with the variable-size inputs and the variable-size
outputs. At the same time, Cho et al. [2014] introduced a similar model and called it Encoder-Decoder.
In this thesis, we use Seq2Seq and FEncoder-Decoder interchangeably. We display the Encoder-Decoder
architecture in Figure 1.2

Initially, the Seq2Seq model has been developped to tackle machine translation. The goal of the
translation task is to find a target sentence y that maximizes the conditional probablity of y given a
source sentence « : argmazy p(ylx).

The Seg2Seq belongs to the neural machine translation (NMT) framework that uses neural networks
to tackle the translation task. In the Encoder-Decoder framework, there are two parts: an encoder that
encodes a variable-length source sentence into a fixed-length vector and a decoder that decodes the vector

into a variable-length target sentence.

The encoder takes as inputs the source sentence tokens x = (x1,...27,) and outputs a vector c.
The encoder is an RNN such that :

e = fae, hiZ9)

and
c=q({h{", ..., hie )

, where h{"¢ € R" is the RNN hidden state at time ¢, and c is a vector generated from the sequence of
the hidden states. Sutskever et al. [2014] set ¢ as the last produced hidden state that has been computed
according to all previous hidden states.

The decoder is trained to predict each token 3, at a time given ¢ and the previously predicted words
{y1,...,yt—1}. The decoder is also an RNN that models a probability distribution over the generated
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1.8. The Attention Mechanism

/ENCODER \ X Y Z <eos>

Y

Y

D I<bos> X Y Z

\_ DECODER  /

Figure 1.2 — The initial figure is from [Luong et al., 2015]. We added the encoder and
decoder frames for visual clarity. The figure illustrates the encoder-decoder architecture.
On the left part, there is the two-stacked RNN encoder that takes as inputs the sequence
"A B C D". On the right part, there is the two-stacked RNN decoder that generates the
sequence 'X Y Z". The token <bos>("beginning of sentence") indicates to the decoding
RNN that the current prefix is empty and the token to generate is the first of the sequence.
When the token <eos> ("end of sentence") is generated, it means the end of the decoding.

tokens

Py, ye—1) = g(ye—1, A, )

The probability over the translation y is obtained by decomposing the joint probability according to the

chain rule:

T

p(y) = Hp(yt|{y1, Y1) 0)

t=1

where y = (y1,...,yr,) is the target distribution.

1.3 The Attention Mechanism

As mentionned in Section 1.1, Y. Bengio, Simard, et al. [1994] highlighted the long-term memory
issues of the RNNs. While LSTM was build to tackle the issue, J. Zhao et al. [2020] pointed out that it
is difficult to judge by the performances of the LSTM and finally concluded that LSTM do not have long
memory.

In practice, for machine translation for instance, one can avoid memorising all the information in the

input sentence if one knows where to look at in the latter, at each step of the translation. Bahdanau,
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Attention Layer

Context vector

Global align weights

Figure 1.3 — Attention Layer used at each decoding steps. The figure is from [Luong
et al., 2015]. The figure illustrates the decoding step t. The computed hidden state h; is
used to compute alignmenent scores that are then used to weight the sum of the encoding
hidden states into a context vector ¢;. The computed weights allow the decoding to focus
on some parts of the input sentence at this time step .

Cho, et al. [2016]’s idea was to add an alignment step with the input sequence at each decoding step.

Indeed, Bahdanau, Cho, et al. [2016] introduced an alignement system to enhance the Seq2Seq archi-
tecture that improved its performances on many tasks: the attention mechanism.

In figure 1.3, we illustrate the attention layer added for the decoding step.

The attention layer is the computation of a new context vector ¢; that depends on the sequence of
annotations to which the encoder map the input sequence, in practice the hidden states (hq,...,hr,).
Each hidden state contains information about the whole sequence with a strong focus on the local parts
surrounding the position i.

The context vector ¢; is a weighted sum of the annotations h;:
C; = Z Oél'j hj
j=1
The weight o;; associated with each position j is computed through a softmax:

_ exp(eyy)
Ckij == .
Zk=1 exp(eqr)

where the e;; are scores computed by an alignment model that tells how well the inputs around position

j and the output at position ¢ match together.

Intuitively, this implements a mechanism of attention in the decoder. The decoder can focus on some

parts of the source sentence to generate its current token.
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1.8. The Attention Mechanism

The
agreement
on

the
European
Economic
Area

was
signed

in
August
1992
<end>

L
accord

sur

la

zone
économique
européenne
a

été

signé

en

aolt

1992

<end>

Figure 1.4 — Example of attention matrix for the generation of a French sentence from an
English source sentence. The task is machine translation. The figure is from [Bahdanau,
Cho, et al., 2016]. This matrix displays the weight «;; of the alignement of the j-th source
word in English on the x-axis for the i-th generated word in French on the y-axis. White
squares means the weight is high. The diagonal shows that there is almost a litteral word-
to-word translation from the source to the target sentence. However, we observe that "the
European Economic Area" is translated into "la zone économique européenne'; so there
is a syntaxe difference between the place of the adjectives in English and French that
is highlighted by the computed alignement. Also, we can notice that for the generation
of the auxiliar in French "a été" the attention was divided to the two words "was" and
"'signed" in the source sentence.

23



Partie I, Chapter 1 — Encoder-Decoder Neural Networks

In figure 1.4, we display an example of attention matrix drawn from [Bahdanau, Cho, et al., 2016].

This attention mechansim allows the encoder to control which information from the source sentence
should be encoded into the fixed-length vector. Indeed the information can be stored throught the
sequence hidden states which will be used by the decoder at the right time. As seen in the example
displayed in Figure 77, most of the decoding steps have a strong focus on one word in the source sentence.

While the attention model introduced by Bahdanau, Cho, et al. [2016] is a global attention mechanism,
Luong et al. [2015] introduced a local attention mechanism.

The concept of attention is extended to become at the core of the encoder-decoder model in the
Transformer model introduced by Vaswani, Shazeer, Parmar, Uszkoreit, L. Jones, Aidan N. Gomez, et al.

[2017a).

1.4 The Transformer and its Derivates

1.4.1 The Transformer

The Transformer introduced by Vaswani, Shazeer, Parmar, Uszkoreit, L. Jones, Aidan N. Gomez,
et al. [2017a] is an encoder-decoder model that replaces the RNN layers using multi-head attention
layers. The Transformer model maintains the encoder-decoder structure of the Seqg2Seq models. It
contains an encoder that computes a representation of the input sequence, and a decoder that takes this
representation along with the output tokens to autoregressively generate the output sequence. However,
in the Transformer the encoder and decoder are composed of stacked self-attention and point-wise, fully
connected layers.

In Figure 1.5, we display the architecture of the Transformer model as introduced by Vaswani, Shazeer,
Parmar, Uszkoreit, L. Jones, Aidan N. Gomez, et al. [2017a].

1.4.2 Transformer-based Models

BERT BerT (Bidirectional Encoder Representations from Transformers) [Devlin et al., 2018] is a
pre-trained language model based on the Transformer model. In particular, BERT’s model architecture
is a multi-layer bidirectional Transformer encoder.The BERT model is pre-trained to generate contextual

embeddings of the tokens of a sentence.

GPT2 Similarly, GPT-2 is a pre-trained large-scale unsupervised Transformer language model that
achieved state-of-the-art performances on several language modeling benchmarks [Radford et al., 2019].

The field of NLP has been significantly impacted by these large pre-trained language models and novel
learning architectures which improved dramatically state-of-the-art results on several benchmarks [Clark
et al., 2020; Devlin et al., 2018; Lewis, Liu, Goyal, Ghazvininejad, Mohamed, Levy, Veselin Stoyanov,
et al., 2020; Radford et al., 2019; Z. Yang et al., 2019; Z. Zhang et al., 2019]. The Transformer model
[Vaswani, Shazeer, Parmar, Uszkoreit, L. Jones, Aidan N Gomez, et al., 2017b] is in most cases at the
core of these improvements. The self-attention mechanism of Transformer enables a better understanding

of underlying dependencies in sentences.
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Figure 1.5 — The figure combines 3 figures from [Vaswani, Shazeer, Parmar, Uszkoreit,
L. Jones, Aidan N. Gomez, et al., 2017a] to illustrates the Transformer architecture. The
main figure on the left illustrates the building components of the encoder and decoder in
the Transformer. On the right, we display the multi-head attention cells and the scaled
dot-product attention layer.
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1.5 Inference

As detailed in Section 1.2, the encoder-decoder model optimizes the probability of the whole target
sequence y by decomposing the joint probability with the chain rule. Decoding consists of generating the
candidate sequence § = (91, . . ., Jr) that maximizes the joint probability p(y|z) = Hthl (Y|, {y1, -, ye—1},
x being the intput sequence. In order to generate the real maximum, we need to generate every path
possible in the output space and compute the corresponding probability. This is intractable. As a conse-
quence, we use approximation strategies to decode the candidate sequence. In the following subsections
1.5.1 and 1.5.2, we present two decoding strategies used for inference : greedy decoding and beam search.

For simplicity, we consider the problem of generating a sequence of letters of size 3. The size of the
vocabulary is 4 and the possible letters are : a,b,c,d. The space of possible candidates is displayed in
Figures 1.6 and 1.7.

It is important to note that this example considers the generation of a sequence of fixed-size. In
practice, the decoding strategies are used for variable-length sequences which add complexity. Indeed,
for the fixed-size case, we need to consider every path of this size in the output space and chose the best;
for the variable-length case, we need to consider every path for every size possible and chose the best.

Also, in text generation tasks, the size of the vocabulary can be several thousand tokens.

1.5.1 Greedy Decoding

The principle of the greedy decoding is displayed on Figure 1.6. The idea is simple, it consists of the
. . . 4 4
following approximation : arg, max [[,_; p(y¢|z, {y1,. .., ye—1} = [[;_; argy, maxp(ye|z, {y1, ..., ye—1}
This approximation is easy done because it follows how the decoder of the Seg2Seq constructs sequences
autoregressively.
On Figure 1.6, we can notice that at each decoding step, a lot of potential sequences are discarded.
That is why, often we want to consider more that one path at each step for the following steps. It is the

idea of the beam search.

1.5.2 Beam Search

The principle of the beam search decoding is displayed on Figure 1.7. In the Figure, we only displayed
the exploration of the output space during decoding. The parallel with the Seq2Seq is the same as in
Figure 1.6. The idea of Beam Search is to keep a beam - a set - of the most promising path at each step.
In the figure, the beam is of size 2 meaning that we keep the top 2 sequences at each step to keep going
the decoding.

1.6 Maximum Likelihood Training (MLE) and its Lim-

itations

The standard training loss for the Seq2Seq model is an approximation of the maximum likelihood

estimation (MLE). At each step in the sequence, the decoder outputs logits that model a probability
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Output space
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Figure 1.7 — Inference using a beam search

distribution over the tokens. We maximize then the probability of the ground truth tokens contained in
the target sequence.

The Seq2Seq decoder is adapted for structured prediction where we want to model the joint probablity
of a target sequence (y1,...,yr,) given an input z; T,, being the length of the output sequence associated
with input x.

To model this, the hidden state generated by the RNN or Transformer decoder is fed through a
projection layer (a linear classifier layer) to obtain a vector of scores s; over the tokens. This scores vector
is then normalized using a softmax layer to obtain a distribution o; over the tokens of the vocabulary.
The vector value o; can be interpreted as the conditional distribution of the t** token given the input

and the prefix already generated : o.(a) := p(aly1,...,yi—1, ).
By applying the chain rule, one can obtain the joint probability of the whole sequence y:

T
plz) = pys, - yrlz) = p(yi|2)p(yalyr, @) - plyrlys, - yr—1, ) = [ [ orlwe)
t=1

We emphasize here that at the training stage, the only information available for the model is contained
in the ground truth target sequence. The only value that can be optimized is the distribution of the target

token given the prefix of the ground truth. In other words, we force the prefix of the generated sequence
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to be the same as the ground truth sequence, in order to optimize the likelihood of the target token. This
strategy is called teacher forcing. While maximum likelihood training is successful in many sequence

generation tasks; teacher forcing and MLE has several limitations.

1.6.1 Exposure Bias

When training with teacher forcing, the model learns the probabilities of the tokens with respect to
the prefix of the ground truth. But at test time, the model generates the tokens autoregressively with
respect to its own previous predictions. This discrepency between the training and inference schemes is
called exposure bias [Ranzato et al., 2015]. Exposure bias is said to be a major issue with MLE and it
has led to the exploration of alternative training strategies [S. Bengio et al., 2015; Chang et al., 2015;
Leblond et al., 2018; Ross et al., 2011; Sabour et al., 2018; Schmidt, 2019; Welleck et al., 2019]. In fact
this phenomenon is typical for sequential prediction tasks explored in the structured prediction literature
Daumé et al. [2009].

1.6.2 Training Loss and Evaluation Metrics Discrepency

Each sequence generation task is associated with corresponding metrics for evaluation. For instance,
a standard evaluation metric used for machine translation and many text generation tasks is BLEU (See
Section 2.1.4 for a definition). The test errors are very different from the training loss that only focuses
on optimizing the probability of the ground truth.

In particular, several papers highlighted that the loss used to train RNNs is local, at the token level
[Bahdanau, Brakel, et al., 2016; Ranzato et al., 2015; Sabour et al., 2018; B. Zhang, 2016]. At the

opposite, the metrics used to evaluate the trained models are at the sequence level.
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CHAPTER 2

A FIRST EXPERIMENT WITH
STRUCTURED PREDICTION : THE
WEBNLG CHALLENGE

The WebNLG challenge aims at promoting the task of automatic RDF-to-text generation.

The RDF (Resource Description Framework) format is an effective format to store information in
large-scale Knowledge Bases (KB). However, it is not easily interpretable by humans. As a direct result,
the automatic verbalization of RDF triples had gained in popularity. The WebNLG challenge is therefore
dedicated to promoting this RDF-to-text generation task.

2.1 A Data to Text Generation Task

In this section we will introduce the data format and the text generation task.

Gardent, Shimorina, et al. [2017a] made available a dataset of data/text pairs in the context of the
WebNLG shared task and provided a challenging benchmark for microplanning. Microplanning consists
in mapping a given content to a text verbalizing this content Gardent, Shimorina, et al. [2017b]. Initially,
this dataset was created with two goals: first, to encourage the development of RDF verbalizers; second

for the development of microplanners capable of processing a wide range of linguistic constructions.

2.1.1 Knowledge Bases

A knowledge graph is a type of knowledge base.

pl Knowledge Base Ny

As defined by Jarke et al. [1989):

A representation of heuristic and factual information, often in the form of facts, assertions and

deduction rules. For Hogan et al. [2021], knowledge may be accumulated from diverse sources. It

can be composed of statements such as "Paris is the capital of France" or "all capital are cities."
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Knowledge Graph

As defined by Hogan et al. [2021]:
A graph of data intended to accumulate and convey knowledge of the real world, whose nodes

represent entities of interest and whose edges represent relations between these entities.

Additional knowledge can be extracted from a knowledge graph using inductive methods. For instance
if the knowledge base contains the two previous examples "Paris is the capital of France" and "all capital
are cities.", one can extract the additional knowledge "Paris is a city’.

There exist open knowledge graphs that are available online. For instance DBpedia [Lehmann et al.,
2015] and Wikidata [Vrandeci¢ and Krétzsch, 2014] are extracted from Wikipedia .

Directed edge-labelled graphs

As defined by Hogan et al. [2021]:
A set of nodes (like "France", "Paris", "1996-03-03 03:40") and a set of directed labelled edges

between those nodes (like ”Paris” — city — ”France”). Nodes represents entities and edges

represents binary relations between the entities.

The Resource Description Framework (RDF) [Consortium et al., 2014] is a standard model based
on directed edge-labelled graphs for describing Web resources. Knowledge graphs can be represented in
RDF.

An RDF statement, or RDF triple, states knowledge by triplets (subject; predicate; object). For
instance if we take the triple (Alan_ Bean; birthDate; 1932), the subject is Alan_ Bean, the predicate/re-
lation/property is birthDate and the object is the date 1952.

The RDF formalism is used to encode many large datasets :

— DBpedia extracts facts from Wikipedia articles and publishes them a RDF data;

— MusicBrainz publishes information about Music Albums;

— FOAF (Friend of a Friend) is designed to describe people, their respective interests and inter-

connections;

— LinkedGeoData.

The RDF/XML format is an XML-based standard syntax for serializing RDF.

This raw triplet representation is an efficient and simple way to store data in knowledge base, but it

is difficult for humans to interpret.

2.1.2 A Text Generation Task

The training data available for the WebNLG challenge [Gardent, Shimorina, et al., 2017a] is a set of
data/text pairs. The data are sets of RDF triples extracted from DBpedia and the corresponding text is

a verbalisation of the triples.

1. www.wikipedia.com
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On the official website of the challenge?, they provide the example shown in Figure 2.1. In this
Figure 2.1, the data encoded as a set of three RDF triples is mapped to a sentence.

John_E

Blaha .\
occupation
) \ Fight_Pilot
birthPlace
1942 08 26
San Antonio

“John E. Blaha, born in San Antonio on 1942-08-26, worked as a fighter pilot.”

Figure 2.1 — Example of data-to-text mapping. The data is encoded by a set of RDF
triples. In this particular example, each triple contain the same subject John FE Blaha.
The triples also contain the predicates birthDate, birthPlace and occupation and their
associated objects 1942 08 26, San__Antonio and Fight_Pilot. The goal of the rdf-to-
text generation task is to map a set of RDF triples to a text. In this example, the set
of triples is mapped to John E Blaha, born in San Antonio on 1942-08-26, worked as a
fighter pilot.

This task can be seen as the automatic translation from sets of RDF triples into human language.
Although the 2020 version of the challenge proposed to work on multilingual corpora, namely in English
and Russian. We only studied the RDF-to-text task in English.

In this manuscript in general and in this chapter in particular, we call RDF verbalization and lexi-
calization the generation of a descriptive text given its corresponding RDF triples.

Indeed, the RDF-to-text task consists of mapping a set of triples to one of its possible lexicalization. It
is to be noted that the generated verbalization must be syntactically and semantically correct. Moreover,
it must contain the same level of information as the input data.

For the challenge, Gardent, Shimorina, et al. [2017a] released a public dataset. A first version of
the dataset was introduced in 2017 with the challenge [Gardent, Shimorina, et al., 2017a]. An enhanced

2. https://webnlg-challenge.loria.fr/, last access: 09/02/2021
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version of the same dataset was released with the 2020 version of the challenge *. We present the WebNLG

Dataset in detail in the next subsection 2.1.3.

2.1.3 The WebNLG Dataset

The English WebNLG 2020 dataset contains RDF-to-text pairs divided into 16 DBpedia categories:
Airport, Astronaut, Building, City, ComicsCharacter, Food, Monument, SportsTeam, University, Writ-
tenWork, Athlete, Artist, CelestialBody, MeanOfTransportation, Politician, Company.

Train Dev
ENTRIES 13.211 1.667
LEXICALIZATIONS 35.426 4.464

DISTINCT PROPERTIES 372 290

Table 2.1 — Size statistics of the WebNLG dataset. Sizes of the official train/dev
split of the WebNLG 2020 dataset.

For every input sample , several lexicalizations are provided. In Table 2.1, we provide some statistics
on the train/dev split provided for the challenge.

The training set consists of 13,211 unique triple sets associated with several possible lexicalization.
A triple set contains up to seven RDF triples. Intuitively, a set containing more triples will be associated
with more possible verbalization. We formed RDF-to-text pairs associating each possible lexicalization
with its input triple set. This leads to a training set of 35,426 samples. It is important to highlight that

a lexicalization is not necessary a single sentence.

2.1.4 The Evaluation Protocol

To evaluate the participants in the challenge, the organisers conducted two test phases. The first
phase was an automatic test phase using automatic evaluation metrics. Each participant could submit
as many models as they wanted to be evaluated on these metrics.

Then, each team could submit one model for the second testing phase : the human evaluation.

First, we will have a look at the test data provided for the challenge and then we will focus on the

evaluation protocol.

Test Data

The test set provided for the WebNLG challenge was split in three types of data that can be seen as

three different tasks for our models.

3. https://gitlab.com/shimorina/webnlg-dataset /- /tree/master/release_ v3.0
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Known entities and categories. The first split contains RDF triples that contain entities and

categories seen in the training data. For instance the entity Alan Bean in the category Astronaut.

Unknown entities. The second split contains RDF triples with new entities within the same
categories as the training data. For instance the category Astronaut is present in the train set but the

entity Yuri Gagarin is never seen.

Unknown categories. The third split of the test set contain sets of RDF triples based on new

categories not present in the training data.

Automatic metrics

The submitted models are evaluated using standard machine translation metrics: BLEU [Papineni
et al., 2001], METEOR [Banerjee and Lavie, 2005], chrF++ [Popovié¢, 2017], TER [Snover et al., 2006], the
BERTscore [Zhang™® et al., 2020] and BLEURT [Sellam et al., 2020].

As mentioned in Post, 2018, BLEU is a parameterized metric that may exhibit wild variations. The

use of multiple metrics gives better outlooks on the general performance of the models.

BLEU (BiLingual Evaluation Understudy) BLEU is the most commonly used machine trans-
lation metric to evalute the quality of a generated text. The idea is to compare the generated sentence
with one or several references generated by a human. By consequence, it is widely used for the evaluation
of text generation tasks.

Introduced by Papineni et al. [2001], the idea is to compare the candidate text with one or sev-
eral references by counting the number of n-grams that occur in both the reference and the candidate.
BLEU is often computed for several values of n (most often n € {1,2,3,4}) and the scores are averaged
geometrically. The BLEU score is in fact a modified n-gram precision score.

The BLEU score ranges from 0 to 1, values close to 1 representing more similar texts compared to the

references.

METEOR (Metric for Evaluation of Translation with Explicit ORdering) The
METEOR metric was proposed and released by Lavie et al. [2004]. Banerjee and Lavie [2005] have then
described the details underlying the metric.

The idea of METEOR is to compute a score based on a word-to-word alignement between the candidate
and a reference. The word-mapping module features external NLP resources, namely a stemmer, a
synonym lexicon and a paraphrase table in order to allow exact unigram matching to maching word
stems, synonyms, and paraphrases.

After the initial alignement step, a parameterized harmonic mean of ungiram precision and recall is
computed.

To take into account the word order, METEOR computes a penalty using a fragmentation fraction

that compute the number of identical chunks in the candidate and the reference.
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TER (Translation Edit Rate). Introduced by Snover et al. [2006], TER measures the amount
of editing that a human would have to perform to change a candidate sentence so it exactly matches the
reference. Possible edits include the insertion, deletion, and substitution of single words as well as shifts

of word sequences. All edits have equal cost.

chrf++ (Character n-gram F-score) first introduced by Popovié¢ [2016] and then improved
by Popovié¢ [2017] is an automatic metric based on character n-gram precision and recall, enhanced with
word n-grams. The scorer calculates the F-score averaged on all character and word n-grams (the default
character n-gram order is 6 and word n-gram order is 2). The arithmetic mean is used for n-gram

averaging.

BERTScore Some previous metrics were surface metrics that directly compared the words or charac-
ters of the candidate sentence and references. There are other metrics that use embedding vectors. An
embedding vector is a projection of a word or a sentence to a low-dimensional continuous space. Embed-
dings provide a semantic representation of the words or the sentence and can be leveraged to compute
the semantic similarity of the candiate and the reference. Indeed in an embedding space, we assume that
close vectors represent similar sentences.

Recently Devlin et al. [2018] introduced the contextual embeddings BERT (Bidirectional Encoder
Representations from Transformers) that not just compute a mapping between a vocabulary and a con-
tinuous space but provide a contextualized embedding that will be different according to the other words
of the sentence. When BERT was released, it achieved state-of-the-art results on several NLU (Natural
Language Understanding) tasks.

Zhang* et al. [2020] introduced an automatic evaluation metric that uses BERT: the BERTscore. The
BERTscore computes a similarity score for each token in the candidate sentence with each token in the
reference sentence. The token similarity is a cosine between contextual embeddings. Then the scorer

computes recall, precision and an F1 measure:

—

1

T A T A

RBErr = 7 E maxz; £; , Pprr = maxx; Ij ,
T,ET i_ij

=

Pggrr - R
Fpgrr = BERTscore = 2———~1 ~ PR

PBERT + RBERT

BLEURT (Bilingual Evaluation Understudy with Representations from Trans-
fOI‘meI‘S) [Sellam et al., 2020] is a learned evaluation metric based on BERT whose main idea is to
model human judgments. As text generation models became more and more efficient, the automatic
metrics like BLEU started to diverge from human judgments. To tackle this issue, [Sellam et al., 2020]
proposes to pretrain a learned metric on millions of synthetic data and then fine-tune it on human judg-
ments. The pre-training signals are automatic metrics like BLEU or the BERTscore. The fine-tuning is
done on specific tasks. For the WebNLG challenge, the fine-tuning of BLEURT has been done on the three

humanly evaluated aspects of WebNLG namely semantics, grammar, and fluency.
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Figure 2.2 — Figure drawn from the original paper introducing the BERTscore [Zhang*
et al., 2020]. The Figure illustrates the computation of the Rypr score. The scorer
computes the contextual BERTembeddings of the candidate and reference’s words. Then
the sentences are aligned using the pairwise cosine similarity. An optional idf importance
weighting is then applied to compute the final Ryug; score.

We noticed that while BLEURT is supposed to correlate better with human judgments, it is however

difficult to understand the sensitivity of the fined-tune BLEURT whitout the model itself.

2.1.5 Human Evaluation

For the RDF-to-text generation, the models outputs are assessed according to five criteria by native
speakers. We report the criteria as they are presented in [Castro Ferreira et al., 2020]:

— Data Coverage: Does the text include descriptions of all predicates presented in the data ?

— Relevance: Does the text describe only predicates, which are found in the data 7

— Correctness: When describing predicates which are found in the data, does the text mention
correct objects and aequately introduces the subject for this specific predicate ?

— Text Structure: Is the text grammatical, well-structured, written in acceptable English language
?

— Fluency: Is it possible to say that the text progresses naturally, forms a coherent whole and is

easy to understand?

2.2 Background : the 2017 WebNLG Challenge Mod-
els

As presented in their report, Gardent, Shimorina, et al. [2017b] received eight models at the WebNLG
2017 challenge. They divided the submitted systems into three categories: pipeline systems, statistical
machine translation (SMT) and neural machine translation (NMT). In the following subsections 2.2.1,
2.2.2 and 2.2.3, we present respectively each categories of models.

In this Section 2.2, we give an overview of the approaches used for the 2017 challenge, and we provide

some required background elements.
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The approaches used for the RDF-to-text task are standard approaches for text generation tasks such
as machine translation or paraphrase generation.

In the part II of this thesis, similar approaches will be used for paraphrase generation and therefore
we take advantage of this contribution to the WebNLG challenge to present the theoretical background

of the work presented next.

2.2.1 Pipeline Systems

According to Gardent, Shimorina, et al. [2017b], three submitted systems used a template or grammar-
based pipeline framework with some Natural Language Generation (NLG) module. This strategy follows
the traditional NLG pipeline [Reiter and Dale, 1997] that focused on the creation of rules or templates
to produce textual output.

Sun and Chris Mellish [2007] and Sun and Christopher Stuart Mellish [2006] have shown that most of
the useful information for the generation is brought by the linguistic information than can be extracted
from RDF predicates. In particular, they highlighted that the predicates can be divided into six cate-
gories based on their pattern. For instance, some predicates are a concatenation of a verb and a noun
like hasEmail, or start with a verb and finishing with an adjective like hasTimeOpen. They developed
handcrafted rules to construct linguistic patterns for each category. This technique enables a domain-
independent verbalization since it is only based on the predicate pattern. On the other hand, Cimiano
et al. [2013] used domain-dependent ontology lexicon to conduct a fine-grained and specific verbalization
of the concepts. Although some methods tried to automatically learn those templates Duma and Klein,
2013, the main drawback of such approaches is the need of handcrafted rules and their poor capacity for
generatlisation.

For the WebNLG 2017 challenge, three submitted models [Ferreira et al., 2017; Mille and Dasiopoulou,
2017; Phong and Dang, 2017] used this generation framework. Two models [Ferreira et al., 2017; Phong
and Dang, 2017] relied on the extraction of rules or templates from the training data for surface re-
alisation. The third model [Mille and Dasiopoulou, 2017] mostly focused on sentence planning with
predicate-argument templates. For each properties in the trainind and testing data, they manually
defined predicate-argument templates encoding many DBPedia features. In Figure 2.3, we report an
example of predicate-argument template for the floor area of a building drawn from the model report
[Mille and Dasiopoulou, 2017].

Al /‘\
subject floor_area object
dpos=NP definileness=INDFEF class=Literal

Figure 2.3 — Sample predicate-argument template for the floor of a building drawn from
[Mille and Dasiopoulou, 2017].

The predicate-argument are then aggregated and rendered into sentences using rule-based graph

transducers.
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2.2.2 Statistical Machine Translation (SMT)

Source S ) T
Language Tr aﬁlcs)lé%t 11011
Model e

Pr(S) x  Pr(T|8)= Pr(S,7)

A Source Language Model and a Translation Model furnish a probability
distribution over source-target sentence pairs (5,T). The joint probability
P1(S,T) of the pair (S, T) is the product of the probability Pr (5) computed
by the language model and the conditional probability Pr(T | §) computed
by the translation model. The parameters of these models are estimated
automatically from a large database of source-target sentence pairs using a
statistical algorithm which optimizes, in an appropriate sense, the fit between
the models and the data.

Decoder [———

5= argmax Pr(S | T) = argmaxPr (5, T)
S s

A Decoder performs the actual iranslation. Given a sentence T in the target
language, the decoder chooses a viable translation by selecting that sentence
S in the source language for which the probability Pr(S | T) is maximum.

Figure 2.4 — Statistical Machine Translation system. Figure extracted from P. F.
Brown et al. [1990]

Statistical machine translation was first introduced by Weaver et al. [1955] but developped later by
P. Brown et al. [1988], P. E. Brown et al. [1993], and P. F. Brown et al. [1990].

In Figure 2.4, we report the illustration of a statistical machine translation system as depicted in
P. F. Brown et al. [1990].

In the early 2000s phrase-based statistical machine translation (SMT) [Koehn, Och, et al., 2003] has
been the dominant paradigm in machine translation research and de facto in many text generation tasks.
In particular, the Moses open source toolkit Koehn, Hoang, et al., 2007 boosted the development of the
topic.

For the WebNLG 2017 challenge, Ferreira et al. [2017] submitted a model which used the statistical
machine translation framework. The model was trained on the WebNLG dataset using the Moses toolkit
Koehn, Hoang, et al. [2007].

2.2.3 Neural Machine Translation : Supervised Sequence-to-
sequence Neural Networks

Neural Machine Translation (NMT) is derived from phrase-based SMT. Its main divergences from

SMT derive from the use of embeddings (continuous vector representations) for words or hidden stats.
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There is no separate language model, translation and reordering models anymore but just one sequence
model that predicts the tokens iteratively. NMT models uses artificial neural network.

In Chapter 1, we introduced in detail the sequence-to-sequence architecture and how it is trained and
infered.

Supervised Encoder-Decoder models are at the core of neural machine translation.

2.3 Proposed Approaches for the 2020 WebNLG Chal-
lenge

As for mamy text generation tasks, KB verbalization lacks aligned data. In particular, it is difficult
to exploit deep neural network architectures for these tasks because the number of parameters to be
trained requires a large amount of data. In the Part II of this thesis, we present our work on paraphrase
generation — another text generation task — on which we encoutered the same problem of lack of aligned
data.

Hopefully, the dataset released by Gardent, Shimorina, et al. [2017a] for the challenge contains
enough RDFs triples aligned to their corresponding lexicalizations to train neural models. For the 2017
version of the WebNLG challenge, the deep learning methods outperformed rule-based ones. At this time,
deep learning methods relied mostly on attention-based Seq2Seq models [Bahdanau, Cho, et al., 2016;
Sutskever et al., 2014] that are detailed in Chapter 1. The encoder-decoder models perform well but fall
short of its generalization abilities when inferring unseen domains.

After the challenge in 2017, additional work has been published to advance the state of the art.

Y. Zhu et al. [2019] proposed to optimize the inverse KL divergence in order to generate higher-
quality verbalizations. Trisedya et al. [2018] introduced a new neural network architecture based on
Graph Neural Networks to keep the RDF structure in the encoding and manage better the RDF triples
relationships. Following this work, several papers proposed graph-based encoder as a solution [H. Gao
et al., 2020; Marcheggiani and Perez-Beltrachini, 2018; Moussallem et al., 2020; See et al., 2017; C. Zhao
et al., 2020].

In parallel, Tso et al. [2020] introduced the facteditor model which applies multiple edits to turn an
input sequence into the output sequence. They include it in a verbalization scheme which first generates
a candidate verbalization that is then iteratively edited. The possibile editions of a word are keeping the
word, dropping it or generating a new word.

Finally, based on the assumption that the RDF-to-text task is the inverse of the text-to-RDF task,
J. Zhu et al. [2017], Tseng et al. [2020] and Guo et al. [2020] introduce a cycle training framework to
learn both tasks simultaneously.

As concluded in Chapter 1, the recent advances in large pre-trained models and the Transformer
architecture are very promising for text generation tasks. For the 2020 WebNLG Challenge, we proposed
to explore the effect of massive pre-training and the Transformer model for the RDF-to-text task.

We chose to make use of external corpora during pre-training to reach a better generalization. We
built two additional datasets for denoising pre-training and data augmentation purposes. This is moti-

vated by the fact that participants’ systems at previous WebNLG challenge suffered from high drops in
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performance when evaluated on new entities and predicates not encountered during the training phase
Gardent, Shimorina, et al., 2017b. Thus, by incorporating external corpora, we expect our system to

outperform systems solely trained on the WebNLG dataset.

We give an extended introduction to the Transformer in Section 1.4. As highlighted in the original
paper [Vaswani, Shazeer, Parmar, Uszkoreit, L. Jones, Aidan N Gomez, et al., 2017b], the individual
attention heads from the multi-head attention layers learn to perform individually different tasks. In
particular, they appear to learn the syntactic and semantic structure of the sentences independently.
Marecek and Rosa [2019] has shown that the self-attention layers embed implicitly syntactic parse trees.
Similarly, we hoped that our model would benefi from our pre-training stage by incorporating such
syntactic information, while learning intra and inter-triples dependencies in the fine-tuning stage. We
hoped that the Transformer model could learn the structures that were in the lexicalizations of the
triples during the pre-training stage, and then learned the intra and inter-triples dependencies during the

fine-tuning stage.

2.3.1 Data Augmentation

As mentioned earlier, the lack of data is the major obstacle to training large neural networks. In
particular, we speculate that the poor generalization of the models on unseen categories is due to the
lack of diversity in the training data. In the WebNLG corpus, there are only 747 unique subject entities
and 385 unique predicates. Our goal was then to augment the training dataset with new RDF-to-text
aligned data. For this purpose, we first collected a large corpus of sentences from which we then extraced
RDF triples.

Sentence Collection

We used Wikipedia that offers a massive and free amount of data. The WebNLG dataset was

constructed from DBPedia database which itself relies on Wikipedia.

The major advantage of including new data from Wikipedia is the integration of new named entities
that are encountered from much more heterogeneous domains. We assume that this allows for a better
generalization and knowledge integration. As observed in language models [Devlin et al., 2018; Radford
et al., 2019; Z. Zhang et al., 2019], knowledge is somehow assimilated by the model throughout training.

We gathered 13,614 Wikipedia pages containing about 103 million sentences totally . To alleviate
the training process, we filtered sentences that may have obstructed the generation quality. We discarded
a sentence (1) if it did not start with an upper case letter and did not end with a period, (2) if its length
was longer than 50 or (3) if it contained special characters. After this first selection, 57 million unique

sentences remained. We call this set of sentences WS1.

4. We used the 20200401 Wikipedia dump ~ 18GB
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2.8. Proposed Approaches for the 2020 WebNLG Challenge

Triple Extraction

For the step of triple extraction used the Stanford Open Information Extraction (Stanford OpenlE)
tool®. Stanford OpenlE package is schema-free. That means that no preliminary definition of the possible
predicates is required, as opposed to usual RDFs extractors. The raw text linking two entities will be
retrieved as the predicate. Unfortunately, the returned triples may be incomplete, false or alike. For
example, for the input sentence "Barack Obama was born in Hawaidi. ", the returned triples by Stanford
OpenlE are (Barack Obama; was; born) and (Barack Obama; was born in; Hawaii). The first output
triple is false and in some way expresses the same idea as the second one. Therefore, a filtering step
is essential to reduce false triples. We developed simple rules to limit redundancy by comparing each
extracted triple with another.

The filtering step worked as follow. First, we linearized each triple by concatenating words from
the subject, predicate and object. To detect if the linearized version of the triples are equivalent, we
computed the Levenshtein distance [Levenshtein, 1965] to consider minor variations between triples.

Two triples with an edit distance smaller or equal to 2 were considered to be similar. If triples
similarity was confirmed, the longest triple was kept because sharing the more information with the input
sentence. The higher the lexical coverage, the better in order to keep the sentence essential information.
If input triples are considerably incomplete, the model may suffer from hallucination, i.e. it may generate
content that is not present in the given input.

It is possible that the linearized version of the triples are too different in surface but semantically
close. That is why more sophisticated conditions should be exploited. For this purpose, we made use
of BLEU [Papineni et al., 2001]. Extracted triples are derived from the same sentence. Therefore, an
n-gram based metric such as BLEU is a good choice to check if two triples are alike. We assumed triples
to be analogous if their BLEU score was greater than 50. In such case, we kept the triple maximizing its
BLEU score with the reference sentence for better coverage, as explained previously. The final collection
of remaining triples-sentences pairs is called ST1.

Nevertheless, the detection of erroneous information conveyed by the triples is difficult. Aware that
incorrect triples would directly compromise the performance of our model, we exploited this augmented

data in a pre-training step, as detailed in Subsection 2.3.2.

2.3.2 Pre-training Strategies

Our proposal for the WebNLG 2020 challenge is to use Transformer models combined with a pre-
training stage. In this section, we describe the latter.

As introduced in Section 1.4.2, NLP has gained from extensive pre-training strategies of word embed-
ding models and language models. Recent pre-trained models like BART [Lewis, Liu, Goyal, Ghazvinine-
jad, Mohamed, Levy, Ves Stoyanov, et al., n.d.] exploit unlabeled data to boost model performance in
a self-supervised setting. The denoising autoencoder objective from BART has shown a significant per-
formance gain. A denoising objective aims to reconstruct a corrupted input. When fine-tuned on a text
generation task, BART has confirmed to be highly effective. We therefore adopted a similar approach
using our big Wikipedia sentences, i.e. WS1 dataset.

5. Available at https://nlp.stanford.edu/software/openie.html
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Peters et al. [2019] use an arbitrary noising function to permute, delete, and mask words in the
input. Our transformations differ from BART in that we required our corrupted input to contain factual
information, similar to what our model would be exposed to when it was fine-tuned on our RDF-to-text
task. With this in mind, we chose to keep words with specific Part-Of-Speech (POS) tags like nouns,
verbs, adjectives and adverbs. Words with other tags were removed. Modal verbs (e.g. should) and
passive forms were ignored as well. As an example, consider the Wikipedia sentence “In 1860 few of the
streets north of 42nd had been graded.'. After our noising transformations, we obtained the corrupted
input “1860 few streets north 42nd graded.”. We observe that remaining words stand for the semantic

mass of the sentence from which we need to lexicalize and connect entailed concepts and entities properly.

Contrary to RDFs triples, the corrupted sentences have no inherent structure. In order to avoid too
much divergence between pre-training and fine-tuning data, we followed the denoising pre-training with
another pre-training stage on a RDF-to-text task. To do so, we used our constructed ST1 dataset which
contains triple-based inputs, as detailed in Section 2.3.1. We expected that these two pre-training steps

would improve our ability to generate faithful and consistent verbalization for the WebNLG Challenge.

We also tried without resetting the optimizer and obtained similar performances.

2.3.3 Curriculum Learning

In addition, we applied a Curriculum Learning (CL) approach for faster convergence and better local

minima through the optimization process.

To recall, the idea of curriculum learning [Y. Bengio, Louradour, et al., 2009] is to gradually inscrease
the complexity of the data while training to mimic the human learning behavior. In our case, we defined
complexity as the number of RDF triples in the input. The higher the number of triples, the higher the
complexity. We sorted the WebNLG pairs such that easier examples came first and then harder examples
afterwards. Our curriculum approach differs from Y. Bengio, Louradour, et al. [2009] in that both easier
and harder examples are seen within the same epoch, but in a gradually order. In their work, Y. Bengio,

Louradour, et al. [2009] progressively add more complex samples during training.

To avoid shuffling our ordered training set for curriculum learning, we set the number of un-shuffled
epochs to 30. From the 30 epochs onwards, batches were randomly selected. To showcase the effect of
increasing complexity while training, we fine-tuned our pre-trained models with and without curriculum

learning.

2.4 Experiments

We trained 8 Transformer models corresponding to 8 different training settings that we detail later

in this section. Each model was then evaluated using the WebNLG Dataset test set.
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2.4. Experiments

2.4.1 Data Preprocessing

Moses Tokenization

For preprocessing, we used the Moses tokenizer © and subword segmentation following [Sennrich et al.,

2016] with the subword-nmt library 7. We left both the input triples and output text true-cased.

BPE Tokenization

In the context of the WebNLG challenge, we considered a transduction strategy as in [Gammerman
et al., 1998a]. We restricted the vocabulary to the WebNLG dataset (training, validation and testing
set). We forced our model to use a WebNLG-based vocabulary during pre-training so that the same
model could be straightly fine-tuned without any vocabulary discrepancy. Technically, we loaded the last
checkpoint from pre-trained model and directly started to fine-tune it by reseting the ADAM optimizer
and setting the new data loader to the WebNLG training set.

This learning scheme aimed at performing well on a specific set, and not necessary to generalize. This
is called transductive learning [Gammerman et al., 1998b].

The training process remained the same for all our experiments. Only the data loaded in the batches
during training were changed.

To deal with the RDF triples format, we added to the vocabulary four special tokens, namely (object),
(subject), (predicate) and (eot) (end of triple), that we used as separators within and between triples. In
the case of multiple triples, we built the Transformer input sequence by concatenating triples one after
the other. We used this input format on both ST1 and WebNLG.

For the denoising pre-training, we used the WS1 dataset. The transformed sentences (see Section
2.3.2) were directly fed to the Transformer. The model thus has to reconstruct the incomplete sentences.

Examples of the preprocessed samples for the different training settings are reported in Table 2.2.

2.4.2 Training Settings

We used the Transformer implementation from FAIRSEQ library [Ott et al., 2019]® with the trans-
former_base hyper-parameters set defined by Vaswani, Shazeer, Parmar, Uszkoreit, L. Jones, Aidan N
Gomez, et al. [2017b]. We optimized the weights of our neural networks using an ADAM optimizer and a
label-smoothed cross entropy loss.

We made 10 epochs of pre-training and stopped fine-tuning when the performance with the BLEU score
on the validation set did not improved after 30 epochs. At the end, we kept the model that achieved the
best BLEU on the validation set.

To study the impact of curriculum learning, we launched fine-tuning with and without it. In the
former case, we prevented the shuffling of the batches for 30 epochs. The data being sorted by number of
triples, the model had to deal first with simple samples, and then with more complex ones as the learning

did progress. In the results, we report this setting as CL (for Curriculum Learning).

6. Available on github https://github.com/moses-smt/mosesdecoder
7. Available on github https://github.com/rsennrich/subword-nmt
8. We used the compiled version 0.9.0 from https://github.com/pytorch/fairseq
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Task Input sequence Output sequence

subject) Ital redicate) capital
(subject) v ) cap Rome is the capital of Italy .

(object) Rome (eot)

(subject) Bionico (predicate) course
WebNLG | (object) Dessert (eot) (subject) Bionico is a dessert which contains
Bionico (predicate) ingredient (object) | raisins .

Raisin (eot)
He died he@Q art fQQ ailQ@@Q ure | He died of he@@Q art fQ@Q ail@Q@ ure
h@@ ospital October 5 2014 at the h@Q ospital on October 5 , 2014 .

WS1

(subjecty He (predicate) retired
(object) 199@Q 0 (eot)

ST1 He retired in 199QQ 0 .

Table 2.2 — Preprocessed training samples. The input RDF triples are concatenated
into one sequence. We used the Moses tokenizer and a subwords encoding. The subwords
are divided by @@. Special tokens are used to keep the RDFs triple structure : (object),
(subject), (predicate) and (eot). In the case of the denoising task (WS1), we do not have
these special tokens. We left the data truecased and no delexicalization is applied.

For decoding, we did a beam search with a beam of size 5. We merged the subwords back into words

and detokenized.

2.4.3 Ablation Study Results

For evaluation, we used the official WebNLG evaluation script . The metrics we used to compare
our models are BLEU, METEOR, chrf++ and BLEURT. Relying on BERT’s contextual embeddings, BLEURT
offers semantically robust feedback. The n-gram-based evaluation techniques such as BLEU, METEOR or
chrf++ are additional metrics to judge the generation quality. When used together, they give good
assessment of the generation quality of our system.

Unlike in 2017, this time the generated sentences had to be detokenized and true-cased. Our models
were therefore not directly comparable with the models of the previous version of the challenge.

Also, the test base being unavailable, we did not know how many references our generated sentences
were compared to.

To assess the impact of the different parameters we wanted to explore, we conducted an ablation study.
We defined our baseline as the Transformer trained only on the WebNLG dataset, without curriculum.
We wanted to assess the influence of pre-training, data augmentation and curriculum learning compared
to the baseline. To provide a fair and detailed analysis, we evaluated models on seen and unseen domains

to shed light on the models’ generalization ability. Results are given in Table 2.3.

9. Available on github https://github.com/WebNLG/GenerationEval
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Seen categories

WebNLG WS1 ST1 | CL || BLEU METEOR chrf++ BLEURT
v 55.24 0.401 0.680 0.56
v v 57.3 0.417 0.701 0.58
v v 59.32 0.428 0.712 0.6
v v v 57.49 0.420 0.702 0.59
v v 54.78 0.399 0.676 0.56
v v v 56.94 0.417 0.701 0.58
v v v 58.36 0.422 0.703 0.61
v v v v 58.81 0.427 0.713 0.6

Unseen entities

WebNLG WS1 ST1 | CL || BLEU METEOR chrf++ BLEURT
v 12.9 0.167 0.319 -0.62
v v 29.16 0.301 0.518 0.1
v v 35.77 0.326 0.565 0.26
v v v 32.33 0.310 0.535 0.18
v v 11.94 0.156 0.295 -0.68
v v v 28.83 0.295 0.509 0.05
v v v 31.99 0.312 0.537 0.16
v v v v 32.69 0.315 0.542 0.19

Unseen categories

WebNLG WS1 ST1 | CL || BLEU METEOR chrf++ BLEURT
v 11.17 0.162 0.310 -0.64
v v 21.02 0.265 0.452 -0.06
v v 23.26 0.288 0.485 0.03
v v v 23.42 0.275 0.469 -0.02
v v 12.45 0.156 0.298 -0.63
v v v 21.84 0.263 0.451 -0.04
v v v 22.84 0.273 0.465 -0.05
v v v v 22.72 0.276 0.466 -0.02

Table 2.3 — Experiments results. Automatic evaluation on the official WebNLG test
set. For each learning strategy, we provide performances on seen categories (top), unseen
entities (middle) and unseen categories (bottom). Bold and underlined values correspond

to the best and second-best results respectively.
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In Table 2.3, when comparing our baseline with pre-training strategies for each category (no cur-
riculum), we note an average rise of 3.07, 19.6 and 10.97 respectively in BLEU with pre-training. Similar
variations can be noted with METEOR, chrf++ and BLEURT metrics, albeit less striking. Based on BERT’s
contextual embeddings, BLEURT gives a good estimate of the semantic correlation between prediction
and references. Most of the time, n-gram-based and semantic metrics show perfect harmony. Top values
of BLEURT are obtained for the same models as n-gram-based metrics. Therefore, all metrics tend to
correlate proving a good agreement. The high improvements over unseen domains are easily explained
due to the diversity of augmented data. New entities and domain-specific lexicon encountered better help
to model out-of-distribution data relations. Thus, such results underline usefulness of external corpora
and strengthen the need of pre-trained model to lexicalize KBs.

On seen categories, our baseline gives a BLEU score of 55.24. However, for out-of-domain generation,
all models demonstrate severe shortcomings. Tested on unseen entities, our baseline shows a BLEU drop
of 42.34 to reach 12.9. We witness similar and even more important loss in unseen categories. In the
case where predicates are unknown to the model, it is hard to generate a consistent description of the
input RDFs. From seen categories to unseen categories, our baseline is nearly penalized by a factor of
5. Such effect is tempered with our pre-training approaches. The average drop in BLEU of pre-trained
models (without curriculum learning) is 25.6 from seen categories to unseen entities, and 35.5 from seen
to unseen categories.

Unexpectedly, when a curriculum learning approach is used, we witness drops in performance. This
is counter-intuitive and opposed to previous experiment on our validation set. CL seems to help lightly
when the model was pre-trained with both external corpora WS1 and ST1. This result may highlight an
overfitting issue.

It is interesting to note that the best results are revealed with a pre-training on ST1, exclusively.
With 5 times less data, ST1 leads to better performance. The extracted triples surely include inaccurate
triples. Despite the imperfect quality of the ST1 dataset, its use contributes to generalization ability.

On the contrary, we report that denoising pre-training does not show satisfying results when combined
with our pre-training on the ST1 dataset, leading eventually to a negative effect. This may be caused by
an input distribution discrepancy between WS1 and ST1 input. Denoising pre-training doesn’t require
triples as input but a noisy sentence. Mismatch between this representation and the triples linearization
may be the reason of such side-effect.

As for the WebNLG 2020 challenge, participants were requested to submit a single model for evalu-
ation. In our case, we decided to submit our Transformer pre-trained with both WS1 and ST1 (without
curriculum). After an analysis of the generated text, the model trained with much more data has a ten-
dency to be much more fluent and to aggregate information in a better way. Castro-Ferreira et al. [2020]
report human evaluation based on different criteria: data coverage, relevance, correctness, text structure
and fluency. For each criterion, a value between 0 (complete disagreement) and 100 (complete agreement)
is given. The scores are normalized and then clustered into groups such that models of a same cluster

10

do not show any significant statistical differences in their scores When tested on seen categories,

we note that our submitted model is competitive with other teams’ models. However, on unseen data,

10. Details of the evaluation procedure is outlined in Castro-Ferreira et al., 2020 and scores are publicly
available at https://gerbil-nlg.dice-research.org/gerbil /webnlg2020resultshumaneval

46


https://gerbil-nlg.dice-research.org/gerbil/webnlg2020resultshumaneval

2.4. Experiments

although a significant improvement over a simple training of a Transformer, our model shows limitations
compared to other participants. A lower rank is systematically observed for both unseen entities and
unseen categories. We assume that a delexicalization step and a much massive pre-training as in [Devlin

et al., 2018; Radford et al., 2019] would help to improve our generalization ability on unseen domains.
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CHAPTER 3

THE PARAPHRASE (GENERATION TASK

Paraphrase generation is a fundamental task in NLP.

Paraphrasing - or the act of rephrasing - a sentence or piece of text is used in several real-life contexts.
Writers often reword their paragraphs to be more concise or to adapt the vocabulary used for a specific
audience. It is also widely used in journalism where several articles convey the same information often
derived from the same source. Examples can be found every day; like in June 2021 after a football match,
two British newspapers headlined their articles as follows: “England beat Germany as Sterling and
Kane send them to Euro 2020 last eight”! and “England beat Germany as Raheem Sterling

and Harry Kane score to reach Euro 2020 quarters”?

. These two headlines are paraphases of
each other.

Paraphrase generation can be roughly considered as a variant of machine translation where the
translation is performed in the same language as the input. As a consequence, the advances in paraphrase
generation are tighly linked to the advances in machine translation. Paraphrase is however much less
studied. The main reason is probably the lack of resources available. In particular, state-of-the art models
for machine translation are supervised neural networks trained on huge aligned datasets. Such datasets
are not available for paraphrase generation.

Another key difference between machine translation and paraphrasing is that generating paraphrases
requires by essence more diversity than machine translation: a simple copy of a sentence is obviously not
a good paraphrase.

In the next section 3.1, we will formalize what a paraphrase generator is and we will provide a few
examples of its NLP applications.

In Section 3.2, we will describe the corpora of aligned or comparable paraphrases that we use in
the paraphrase generation experiments of Chapters 4 and 5. Finally, in Section 3.3, we will detail the

protocols and metrics that we used to evaluate the performances of the paraphrase generator models.

3.1 Definition and Applications

Automatic paraphasing has been an active research topic for some time now. Paraphrase generation is

a task that is often approached as a componant of other tasks. McKeown [1979] developped a paraphraser

1. David Hytner, The Guardian, url: https://www.theguardian.com/football/2021/jun/29/
england-germany-euro-2020-last-16-match-report, last access : 07/01/2021

2. Sam Wallace, Alan Tyers and Uche Amako, The Telegraph, url: https://www.telegraph.co.
uk/euro-2021,/2021/06/29/england-vs-germany-live-euro-2020-score- team-news-updates/, last access :
07/01/2021
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3.1. Definition and Applications

component for a question-answering system. Meteer and Shaked [1988] combined a natural language
understanding (NLU) system with a natural language generation (NLG) system to build a paraphrase
generator model. They also investigated the role of paraphrasing in a cooperative dialog system.

In fact, paraphrase generators are useful for many downstream tasks. The underlying task is decisive
with the available resources for the paraphrase generator development. In Subsection 3.1.2, we give an
overview of the applications of paraphrase generation.

The task of paraphrase generation is difficult due to the structure of the langage itself. Both McKeown
[1979] and Meteer and Shaked [1988] highlighted the issue of ambiguity when paraphrasing. An example
given by McKeown [1979] is the following question : Which students read books on computers dating from
the ’60s ?. This sentence has two equally valid interpretations; either the computers are dating from
the ’60s or the books. Both possible interpretations lead to different paraphrases that could be either
Assuming that there are books on computers (those computers date from the ’60s), which students read
those books ? or Assuming that there are books from the 60s on computers, which students read those
books ¢

The concept of paraphrase that we formally define in subsection 3.1.1 is simple but it leads to several
subtilities that need to be clarified.

3.1.1 Definition

We give here a definition of a paraphrase drawn from an English dictionary.

As defined in the online Oxford University Press dictionary ®:

— werb : Express the meaning of (something written or spoken) using different words, espe-
cially to achieve greater clarity.

— noun : A rewording of something written or spoken.

a. (2021). Definition of paraphrase [online]. Oxford University Press. Available at:
https://www.lexico.com/definition /paraphrase (Accessed: 2 July 2021).

The noun « paraphrase » itself is ambiguous. In this thesis, we will only talk about paraphrase pairs
that we define next. The term paraphrase can be used at different levels of text granularity. One may

want to paraphrase a full text, a sentence, a phrase or only a word.

Paraphrase pair

As defined by Dras [1999]:

A paraphrase pair is a pair of units text deemed to be interchangeable.

In Table 3.1, we give examples of pairs of paraphrases drawn from aligned corpora. Paraphrase pairs

can be used for two distinct tasks: paraphrase identification and paraphrase generation.
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Paraphrase identification task

The paraphrase identificaton task consists of a binary classification task. Given a pair of
sentences as input, a paraphrase identifier outputs if yes or no the input sentences are paraphrases

of each other.

Paraphrase generation task

The paraphrase generation task consists of a text generation task. Given an input sentence, a

paraphrase generator outputs its paraphrase.

We highlight here that the paraphrase generation task is more difficult than the paraphrase identifi-
cation task because a paraphrase generator needs to first generate a valid sentence and second generate a
sentence semantically similar to the input one. In Section 3.3.2, we report an experiment on paraphrase
identification. Otherwise, all the experiments presented in this Part of the thesis involve paraphrase
generation.

A paraphrase generator is useful in many applications.

3.1.2 Applications

Paraphrase generation is a fundamental task of NLP. Indeed, the capacity of being able to generate
paraphrases of sentences to provide diversity and coverage finds applications in several domains like
machine translation, question answering, improving evaluation metrics, dialog systems, or adversarial
learning. In the following paragraphs, we give a quick overview of a few applications of paraphrasing to

give an insight into the value of an efficient paraphrase generator.

Question-Answering and Dialogue Systems S. Gao et al. [2020] proposes a framework
that jointly trains a paraphrase model and a response generation model to improve a global dialogue
generation model. For that, they constructed a high-quality dialogue paraphrase corpus which is used to
train a paraphrase generation model. Their experiments show that their paraphrase-augmented model
does not suffer when reducing the training data and is still efficient in low resource settings.

Gardent and Barahona [2013] explores how paraphrasing can increase the accuracy and the robustness
of supervised models in dialogue systems. They argue that training corpora for question answering (QA)
characters should be large, balanced and varied. They explored the different ways of augmenting the
training data of a supervised QA engine. In order to do that, they expanded the size and quality of the

training corpus using paraphrase generation techniques.

Information extraction and retrieval
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Information retrieval (IR)

Finding documents of an unstructured nature (text) that satisfies an information need from within
large collections, using queries. Often, IR systems compute a similarity score on how well each

documents in the database matches the query, and rank the documents with respect to this score.

Culicover [1968] explores the use of paraphrases to effect the retrieval of stored English texts and
the information contained in stored English texts. The idea is to add a paraphrasing module in the IR
pipeline. Roughly, the IR pipeline select keyphrases and keywords of an English text and try to match
the extracted keywords to another keyword of the target area in the text. If a match is found, the model
returns the text surrounding the keyword. This is called the kerword-keyphrase method. To make this
pipleline more robust, Culicover [1968] added a paraphrasing module that automatically generates a list
of paraphrases of the keyword to be matched with the text, improving the chances of matching and
retrieving paraphrased informations.

A lot of research has been conducted to explore paraphrase generation for generating similar or
related queries since. [Beeferman and Berger, 2000; R. Jones et al., 2006; Metzler et al., 2007; Sahami
and Heilman, 2006; Shi and C. C. Yang, 2007]

Information extraction (IE)

Task of automaticaly extracting structured information from unstructured documents. For exam-
ple, knowledge base population is an IE task. It consists of filling a database of facts stored as

RDFs triples given a set of documents.

Sekine [2006] introduces an IE system that extracts the information with respect to the user’s query
by creating patterns and building tables using paraphrase discovery. The paraphrase matching module

finds patterns that lead to the same table.

Improving machine translation Paraphrasing has been used to improve machine translation
following two paths. Firstly, it can be applied to improve the translation process itself. Secondly,
paraphrasing is useful in the evaluation of machine translation systems.

Callison-Burch, Koehn, et al. [2006b] used paraphrases to improve an SMT system. To be more
precise, they allow any source phrase to be translated by the translation of its paraphrase. In other
words, any unknown source phrase can be paraphrased before being translated. They show that this
strategy achieves an improvement in coverage and translation quality.

Evaluating machine translation systems is a challenging problem due to the high quality of the recent
machine translation models. Freitag et al. [2020] aims to show that the metric is important but the
nature of the references is also important. In particular, some references have poor diversity and lack

coverage.
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Recently, paraphrase generation has been used to create more robust automatic metrics for machine
translation. Indeed, automatic metric scores compare the generated sentence with one or several reference
sentences. But in some cases, the model would generate valid sentences for the task but very different
from the reference sentence used for evaluation. The automatic metrics would record bad performances
while a human annotator would accept the generated sentence. That is why the automatic metric scores
correlate badly with human judgment.

For instance, the top systems for English to German translation are different with respect to auto-
mated or human evaluation [Barrault et al., 2019; Bojar et al., 2018].

Sellam et al. [2020] introduced a learned metric BLEURT for text generation task and in particular
machine translation to try to tackle this issue. To train BLEURT, they used existing sentence pairs
datasets and added automatically generated sentence pairs using three techniques. One of them is using
a backtranslation strategy that consists of translating from English to another language and then back
to English with a translation model. This paraphrasing model can produce mispredictions but BLEURT
uses them as a source of realistic alterations in order to be able to identify them.

Iyyer et al. [2018] introduced syntactically controlled paraphrase networks (SCPNs) that are trained
to generate paraphrase with respect to a desired syntax. This piece of work highlights that SCPNs
generate paraphrases at least as good as uncontrolled paraphrase systems would but with the ability to
generate syntactically adversarial examples. Such adversarial examples can fool pretrained models and
be used in a data augmentation scheme to improve the models robustness to syntactic variation.

I. J. Goodfellow et al. [2014] showed that many learned models can be fooled by adversarial examples.
Such adversarial examples can be easily generated manually by introducing lexical or syntactic variation
not seen in the training set.

This non-exhaustive list of potential applications of paraphrase generation shows that paraphases are

useful in several NLP applications and as a consequence a very active reseach topic.

3.2 Data

There exists no generic aligned paraphrases dataset. The available aligned paraphrase corpora are
often biased toward specific problems like question answering or image captioning. In this section, we
introduce the different paraphrase corpora divided in two categories according to how they were created.
First, there are the paraphrase identification corpora that have been crafted for paraphrase identification
specificaly. Secondly, there are two other corpora that have been built following another objective namely

image captioning and subtitles translation but can be seen as paraphrase corpora.

3.2.1 Aligned Corpora Built for Paraphase Identification

MSRPARAPHRASE

At the opposite of Statistical and later Neural Machine Translation, research works on paraphrase

generation and identification lacked large-scale labeled corpora of sentential paraphrases for a long time.
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In an attempt to fill this gap, Dolan and Brockett [2005] released the Microsoft Research Paraphrase
Corpus (MSRPARAPHRASE).

The MSRPARAPHRASE dataset consists of sentence pairs initially extracted from the Web. An
initial database was first constructed with two heuristics based on shared lexical properties and sentence
position in documents. A second database was then distilled from the first one with more precise criteria
on the size of the sentences and the number of words overlap between the two sentences. Finally the
sentence pairs were automatically classified as paraphrases or not with a low threshold set to deliberately
over-assume paraphrase pairs. This strategy allows to extract paraphrase pairs and "likely" paraphrase
pairs. This last updated database was then humanly annotated and split between paraphrase and non-
paraphrase pairs.

The MSRPARAPHRASE dataset contains mostly long sentences drawn from pieces of news. It is a

small but high-quality paraphrase identification corpus that was labeled by humans.

Here is a couple of paraphrase pairs drawn from MSRPARAPHRASE:

e If people took the pill daily, they would lower their risk of heart attack by
88 percent and of stroke by 80 percent, the scientists claim.
e Taking the pill would lower the risk of heart attack by 88 percent and of

stroke by 80 percent, the scientists said.

e Retail industry experts predict the next five days will likely make or break
Christmas 2003 for many retailers.
e As the holiday shopping season peaks, industry experts predict the coming

week could make or break Christmas 2003 for many retailers.

Here is a couple of non-paraphrase pairs drawn from MSRPARAPHRASE:

e A tropical storm rapidly developed in the Gulf of Mexico Sunday and was
expected to hit somewhere along the Texas or Louisiana coasts by Monday
night.

e A tropical storm rapidly developed in the Gulf of Mexico on Sunday and could
have hurricane-force winds when it hits land somewhere along the Louisiana

coast Monday night.

e Both studies are published in the Journal of the American Medical
Association.
e The study appears in the latest issue of the Journal of the American

Medical Association.
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QQP

Quora Question Pairs (QQP or Quora) is a dataset [Kornél Csernai, 2017] is a paraphrase identification
corpus dedicated to question-answering systems.

The main purpose of the QQP dataset was to improve the duplicate questions identifier for the
Quora website ® which is a question answering website. Quora’s users can post questions to be answered
by other users. Quora tries to keep each question page associated with a unique question and avoid
duplicate question pages.

To tackle the issue of questions duplicates, Quora released a tool called question merging* that allows
a user to merge several duplicate questions at once. This tool is available to any user from any question
page. The merges are then approved or not by bots. Using this duplicate tagging tool, Quora built a
dataset of duplicate questions that can be considered paraphrase pairs.

In order to build a duplicate identification dataset, they added negative examples using the related
questions associated with each questions on Quora. The related questions are then on similar topics but
not semantically equivalent.

QQP is then an ideal paraphrase identification corpus with paraphrase pairs and non-paraphrase but
still close sentences pairs. The main drawback of QQP is its bias towards question answering. Indeed,
all the sentences that belong to QQP are questions. On top of that, the data annotation process using
question merging is noisy and the labels are not guaranteed to be perfect [Kornél Csernai, 2017].

We provide examples of pairs of sentences drawn from QQP in the first part of Table 3.1.

PAWS

The PAWSyi; dataset [Y. Zhang et al., 2019] is a recent paraphrase identification corpus that contains
several lexicaly similar but hard-to-classify pairs like "Flights to Florida from New-York" and "Flights
from Florida to New-York'. The PAWS corpus was introduced to adress the lack of sentence pairs with
high-lexical overlap that are being paraphrases.

Y. Zhang et al. [2019] generated challenging pairs using word swapping and back translation. The
pAwsdataset is divided into two categories: PAWSqqp generated from the QQP dataset, and PAWSwyiki
generated from Wikipedia. As we already used the QQP datasets using our own train/dev/test split; we
only considered the PAWSyj; for our experiments. In this manuscript we will use PAWS and PAWSyik;
equivalently, and whenever we mention the PAWScorpus, we will refer to the PAWS1; part only.

We provide examples of pairs of sentences drawn from PAWS in the second part of Table 3.1.

3.2.2 Comparable Sentences Corpora

MSCOCO

The Microsoft Common Objects in Context (MSCOCO) dataset [Lin et al., 2014] was first built as an

scene understanding and object recognition dataset. The dataset gathers images of common objects in

3. www.quora.com
4. https://quorablog.quora.com/Introducing- Question-Merging
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3.2. Data

Sentence 1 Sentence 2 Label
Why are African-Americans so . . .
o
beautiful? Why are hispanics so beautiful’ 0
Is there a reason why we should | What are some reasons to travel 1
travel alone? alone?
What was the deadliest battle in his- | What was the bloodiest battle in his- 1
tory? tory?
How is vanilla extract made? H9W do yo‘u make sugar cookies 0
without vanilla extract?
are aliens real or are they fake ? Do aliens exists? 1
The Tabaci River is a tributary of | The Leurda River is a tributary of 0
the River Leurda in Romania . the River Tabaci in Romania .
The Tabaci River is a tributary of | The river Tabaci is a tributary of the 1
the Leurda River in Romania . River Leurda in Romania .
It was that Easipower said , It was Easipower that said : 1
The tracks were produced by | The tracks were produced by
Tommy Lee , and feature Michael | Michael Beinhorn and have Tommy 0
Beinhorn on drums . Lee on drums .
Th i i F
The episode was written by Chuck e episode was written by Fred
Savage and directed by Chuck 0
Tatham and led by Fred Savage . Tathamm

Table 3.1 — Examples of pairs of paraphrases drawn from the corpora QQP [Kornél Csernai,
2017] and PAWS [Y. Zhang et al., 2019]
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natural contexts. The images were then annotated according to different tasks: object category labeling,
object instance spotting, image segmentation, and image captionning.

We focus here on the latter: image captionning. With each image in the dataset, they added several
captions. The description of the image captionning annotation is provided on a separate publication
[Chen et al., 2015].

The captions were provided by human annotators using Amazon’s Mechanical Turk (AMT). Several
annotation instructions were given; for instance, it was asked to describe all the important parts of the
scene and not to focus on unimportant details; not to interpret the past or future of the moment captured
by the image nor describing what a person might say or her name. There was also a constraint on the
size of the sentence.

Assuming that two captions of one image are semantically close to each other as they describe the
same picture, the MSCOCO dataset can be seen as a paraphrase dataset. We assume that two captions
of the same image are paraphrases.

The MSCOCO dataset is widely used in the paraphase community for two main reasons. First, the
corpus is big. Second, the paraphrases come as set of several captions instead of just pairs. The different
possible paraphrases can be used at test time to compare with a candidate paraphrase which provide
coverage and diversity, especially for surface-based metrics like BLEU. However, in practice, the bias over
image description is strong and the quality of the paraphrases is often questionable.

On Figure 3.1, we display images extracted from the MSCOCO dataset associated with some of their
respective captions. We can notice the limits of such corpora for paraphrase generation. Some captions
lack elements mentionned in others. On the third image in the figure, the annotators do not agree on the
nature of the bear (The large bear is made up of clay. and A teddy bear that appears to be made out of
wood.). As a consequence, the captions are not semantically equivalent.

The first MSCcOCcO dataset was released in 2014. In 2017, they released a new version with more

annotations. In this manuscript, when we write about the MSCOCO dataset, we refer to the 2017 version.

OPUSPARCUS

The OpenSubtitles Paraphrase Corpus (OPUSPARCUS) dataset [Creutz, 2018] is a corpus of para-
phrases extracted from the OpenSubtitles2016 corpus [Lison and Tiedemann, 2016] which contains sub-
titles from movies and TV shows.

The strategy to build the paraphrase corpora is to use the pivot language technique introduced by
Bannard and Callison-Burch [2005]. The technique consists in translating a source sentence into another
language - the pivot language - and translating back. That way, the last translation is a paraphrase of
the initial source sentence.

The OPUSPARCUS corpus is interesting for the nature of the data that are more informal and colloquial
sentences. However, according to the authors, in the data there are many sentence pairs that only slightly
differ from each other. This lack of diversity between the paraphrases may be problematic to train a

paraphrase generator.

Here is a few paraphrase pairs drawn from OPUSPARCUS:

e When ’d you last see him 7 e When was the last time you saw him 7
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¢ Teddy bear next to monkey in foreground of picture.
e A stuffed teddy bear and monkey share the picture.
e two stuffed animals a bear and a monkey

e Two cups of fruits placed next to each other.
e Pair of fruit cups on kitchen marble counter.

e A carved bear that has a ribbon around the neck.
e A wood carved bear is sitting on a table.

e a statue of a bear wearing a red ribbon

e A teddy bear that appears to be made out of wood.
e The large bear is made up of clay.

Figure 3.1 — Sample pictures from the MSCOCO dataset associated with captions written
by human annotators. Several captions associated with the same image can be considered
as paraphrases. In practice, we notice that not all of them are necessarily semantically
close. For example, for the third image, one annotator speaks of a clay bear where another
see a wooden bear. Also, a caption may focus on more or less elements in the picure. For
instance, for the second image, the second caption mention the marble counter that is
not mentionned in the first caption.
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e Oh , what year is this 7 e What year is it , anyway 7
e You did all you could do . e You did everything you could .
e It ’s gonna be okay . e It ’s all going to be fine

3.2.3 Statistics on the Aligned Corpora

Each corpus has been split into three set : train, dev and test. In this Section, we provide a description
of the split process for each corpora. In Table 3.2, we provide basic statistics on the different aligned
corpora. In particular, we give the exact size of the train/dev/test sets and the median number of words

in the sentences contains in each corpus.

MSRPARAPHRASE
The original MSRPARAPHRASE dataset comes with a train/test split of aligned sentence pairs. We first
filterd out the pairs labeled as non-paraphrase. Then we sampled 500 pairs from the train split to make

out dev split.

QQP

The original QQP dataset contains 149k pairs of sentences annotated as same questions. We assume these
are paraphrases. We sampled 4k to make a test set. Then we sampled 145k data as the train set and the
rest as dev set. In some papers [Gupta et al., 2018] released before 2017, authors created several version
of the train set by sampling 150k, 100k or 50k data. However, the official QQP release was cleaned in
2017, and the number of samples went from 155k to 149k. Also, to be consistent with the methodolgy of
other publications, we generated a bidirectional version of the dataset by swapping the source and target

sentences and doubling the number of samples in the training set.

PAWS

We only kept the PAWSyy;x; data. The original data comes as "labeled" or "unlabeled". The "labeled"
data have human judgements while the "unlabeled" data have noisy labels without human judgements.
All data are generated from both word swapping and back translation methods. We kept the original
train/dev/test labeled split and added the noisy data as an auxiliary training set.

MSCOCO

The original data were split as train and valid splits. Also each image was associated with 5 captions. We
kept the original train split as our train split to be consistent with the litterature. In order to obtain an
aligned paraphrases corpus, we created every paraphrase pairs from the captions sets in the train split.
For the valid split, we kept one sentence as the source sentence and the other captions as references. That
way, we have several references to compare with the generated candidate. We sampled 5000 samples of

the valid set as our test split and the remaining samples as our dev split.

OPUSPARCUS
For OPUSPARCUS , we kept the original train/test/dev split. The train set is automaticaly annotated while
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the other two are manually annotated by two different annotators. Each sentences pairs is associated
with a score that is a combination of the two annotators score. In the annotating scale, a mark of 4
means that the two sentences are paraphrases, 3 means that they are almost paraphrases. A score of 3.5
for a pair of annotators means that one annotator scored the pair with 4 and the other annotator with
3. In our final aligned paraphrases dataset, we only kept the sentences pairs that had a score (automatic
or manual) of at least 3.5 that corresponds to paraphrases pairs.

In Table 3.2, we give the median number of words in the sentences contains in each corpus.

We can note that MSRPARAPHRASE and PAWS contain mostly long sentences while OPUSPAR-
cus short ones. Also, these statistics highlight the difference in size of the different corpora. The big

size of MSCOCO explains its wide utilisation in the paraphrase community especially for neural network

training.
Corpus MSRPAR. QQP PAWS MSCOCO OPUSPAR.
train 5006 290 000 695170 2369 206 919872
Nb. of samples  dev 500 526 17078 20000 1456
test 2294 4000 7072 5000 1446
Median nb. of words 23 10 20 11 6
Nature bias News articles | Questions | Lexical overlap | Image captioning Dialogues

Table 3.2 — Basic statistics on the aligned paraphrase corpora. Each corpus has been split
into train, dev and test sets. We display the number of samples in each split for each
corpus. We also provide the median number of words in the sentences of each corpus. One
can notice that MSRPARAPHRASE has mostly long sentences while OPUSPARCUS short
ones. We also recall the biases associated with each corpus in the last row of the table.

Also, it is worth mentioning that for MSCOCO and QQP , that are the two mostly used corpus for
evaluation paraphrase generators, there are no official test set. While there is an overall consensus on the

size of the test set, each publication records performances on a different sampled test set.

3.3 Evaluation

The automatic evaluation metrics are similar to the one used for the WebNLG Challenge presented
in Subsection 2.1.4 namely BLEU, METEOR, TERand the BERTscore. As we are willing to make the two
parts of this thesis independantly readable, we recall in the following Subsection 3.3.1 the definitions of
the metrics already defined in Subsection 2.1.4. We add other metrics used in the paraphrase generation
experiments. In Subsection 3.3.2, we present a little experiment on paraphrase identification carried on

QQP and PAWS using the automatic metrics BLEU and BERT score as classifiers.

61



Partie II, Chapter 3 — The Paraphrase Generation Task

3.3.1 Automatic Metrics

Automatic evaluation of text generation requires a comparison of candidate sentences to annotated
references. One can use automatic metrics with aligned corpora presented in Section 3.2 using the pairs
of paraphrases as source and reference pairs. We recap here the automatric metrics. Some were already
defined in Section 2.1.4 for the WebNLG Challenge.

BLEU

BLEU is the most commonly used machine translation metric and by consequence very used in para-
phrase translation. Introduced by Papineni et al. [2001], BLEU counts n-gram overlap between the
candidate and the references. The idea is to compare the candidate with one or several references by
counting the number of n-grams that occur in both the reference and the candidate. BLEU is often com-
puted for several values of n (most often 1,2,3,4) and the scores are averaged geometrically. BLEU is a
surface metric and if the candidate sentence and the references do not use the same vocabulary, they will
obtain a very low BLEU score. This is what we want when the candidate is bad. However the candidate
may contain synonyms or phrasal paraphrases of words in the reference and be completly valid. Such

candidate would obtain a low BLEU score.

METEOR

Banerjee and Lavie [2005] tackles this issue by introducing METEOR. METEOR uses external resources,
namely a stemmer, a synonym lexicon and a paraphrase table, in order to allow exact unigram matching
to machting word stems, synonyms, and paraphrases.

On can use other metrics designed for more specific tasks.

Levenshtein Distance

Word edit distance or word error rate [Levenshtein, 1965] computes the number of edit operations

required to get from the candidate sentence to the reference.

TER

TER [Snover et al., 2006] is an enhanced version of the edit distance by normalizing it by the number
of reference words. In other words, TER measures the amount of editing that a human would have to

perform to change a candidate sentence so it exactly matches the reference.

Embedding vectors metrics

At the opposite of the surface metrics, the embedding metrics uses sentence or word embeddings
information to compute the semantic similarity of the candidate and the reference. One can leverages

the BERT contextual embeddings [Devlin et al., 2018] for instance.
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BERT score

We call BERT score the Fpprr metric introduced by Tianyi [2019]. The BERT score leverages the
contextual embeddings BERT introduced by Devlin et al. [2018] that provide a contextualized embedding
of the tokens in a sentence. The BERT score computes a similarity score for each token in the candidate
paraphrase with each token in the reference sentence. From these scores, the scorer then computes an

recall, precision and an F1 measure.

Scoring the datasets

The task of generating paraphrases is special in the way that the source sentence is a paraphrase
of the target sentence. Unlike the translation task where a transformation must be performed on the
source sentence to obtain a candidate translation, for the paraphrase task the source sentence is already
a candidate paraphrase.

The aligned paraphrase datasets presented in Section 3.2 contains paraphrases by definition. We can
therefore evaluate our automatic metrics on the datasets directly.

We computed the BERTscore and the Levenshtein distance between the two sentences of each para-

phrase pairs for all corpora. We report in Table 3.3 the rough distribution of the two scores on the

corpora.
Corpus BERTscore > 0.75 | Lev < 0.25
MSRPARAPHRASE 81.8% 18.3%
QQP 64.1% 21.8%
PAWS 100% 65.6%
MSCOCO 13.6% 0.6%
OPUSPARCUS 36.0% 0.5%

Table 3.3 — Rough distribution of the BERTscore and the Levenshtein distance (Lev)
computed on the corpora paraphrases pairs.

From the BERTscore, we can deduct that the pairs of sentences taken from MSCOCO or OPUSPARCUS are
mostly not close semantically speaking. For MSCcocCoO, this is logical knowing how we created this dataset.
For OPUSPARCUS, it may come from the sensitivity of the BERTscore with very short sentences (majority
in the corpus).

Concerning the Levenshtein distance, these statistics show that the sentence pairs from the PAWS cor-
pus are very close on the surface. In the same way, it is very logical knowing that PAWS has been created
by word swapping techniques and contains sentences containing the same words.

Before digging into the parphrase generation task, we conducted a small experiment on paraphrase

identification.
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3.3.2 A Paraphrase Identification Experiment

The paraphrase identification task is a classification task. The goal is simple: from a pair of
sentences as input, a binary classifier labels it as a paraphrase pair or not. As a first experiment, we tried

to model a paraphrase classifier.

Paraphrase identification data

For this experiment, we used two paraphrase identification datasets that are composed of sentences
pairs. Some are pairs of paraphrases - labelled as 1 - others are not - labelled as 0.

It is important to notice that these corpora contain only valid sentences in terms of syntax and
fluency. As a consequence, a good paraphrase identifier is a model that tells if two correct sentences are

semantically close or not.

Text generation metrics

There exist several metrics to evaluate text generation tasks by comparing generated text with a gold
target. It was the case for the RDF-to-text task presented in Chapter 2 and it is the case for machine
translation and paraphrase generation too.

The goals of this experiment is to tell if the metrics used to evaluate the performances of paraphrase
generators are good paraphrase identifiers.

Here we will evaluate the metrics BLEU and the BERT score as paraphrases identifiers.

Training datasets

To carry this experiment, we used two datasets: QQP and PAWS.

As a reminder, QQP is a corpus of questions extracted from Quora and PAWS is a corpus that contains
adversarial paraphrases with a high lexical coverage. PAWS is by definition difficult for surface metrics
like BLEU. The pairs of this datasets are hence challenging for models that do not capture non-local
contextual information.

We give examples drawn from those two datasets in Table 3.1. These corpora are widely used
paraphrase identification corpora but they can bu used as paraphrase generation corpora as well. We

give more details on these datasets in Section 3.2.

Evaluation metrics

We evaluate the performances of the BLEU and the BERT scores as paraphrase identifier.
One can make a classifier out of a metric by setting a threshold. Sentences pairs associated with a
higher score would be classified as paraphrases pairs. At the opposite, sentence pairs associated with a

lower score would be classified as non-paraphrase pairs.
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We can check the performances of the two metrics as classifier models by computing the Receiver
Operating Characteristics (ROC) curve and the Area Under The Curve (AUC). A perfect classifier would

have an AUC of 1 while a random classifier would only obtain 0.5.

Experiment results

We plot the ROC curve in Figure 3.2. For each corpus, we plot the ROC obtained by each model,

corresponding to BLEU, the BERT score and a random classifier. We also report the AUC for each curves.
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Figure 3.2 — Paraphrase identification experiment with automatic metrics BLEU and
BERT score on paraphrase identification corpora QQP and PAWS. The figure show the Area
under ROC curve (AUC) on QQP (Subfigure (a)) and pPAWS (Subfigure (b)). The metrics
BLEU (blue curve) and BERT score (orange curve) are used as paraphrase identifiers. Both
metrics are reasonable as paraphrase identifiers. On PAWS we observe a slight decrease
in AUC that suggests that the metrics may fail to distinguish the harder adversarial
examples.

This experiment shows that we have metrics that are reasonable as paraphrase identifiers The
BLEU metric classifiers achieve AUC of 0.7 and 0.71 on QQP and PAWS respectively. The BERT score
has an even higher AUC on QQP (0.75). However on PAWS, we observe a slight decrease (0.65). Zhang*
et al. [2020] presented a similar experiment to evaluate the robustness of the BERT score and showed a
performance drop of all the metrics on PAWS by suggesting that the metrics fail to distinguish the harder
adversarial examples. Sentence pairs in PAWS are generated through word swapping that can lead to

difficulties for a too simple classifier.
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Conclusions

To conclude on this, we focused here on the paraphrase identification task. It is still an active topic
of research and convey its own difficulties linked to the data and task complexity.

The task of paraphrase generation is however more difficult than the identification task. Indeed,
indentifying the pairs of sentences that are paraphrase or not is just a binary classification problem.
Also, it is often assumed that the pairs of sentences that we try to classify are valid sentences. There
is no guarantee that a classifier trained on valid sentences would be efficient if deployed on ill-formed
sentences. On the opposite, the paraphrase generation task implies, first to generate a valid sentence and
second that this sentence is a paraphrase of another sentence. In the following subsection 3.4 we survey

the existing paraphrase generation approaches.

3.4 Paraphrase Generators Overview

3.4.1 Rule-based and Statistical Approaches

Following the path of machine translation, the paraphrase generation literature first evolved from
laboriously handcrafted linguistic rules [Carroll et al., 1999; Chandrasekar and Srinivas, 1997; McK-
eown, 1979; Meteer and Shaked, 1988] to more automatic and data-driven rules extraction methods
[Callison-Burch, Koehn, et al., 2006a; Madnani and Dorr, 2010]. Like in machine translation, phrase-
level substitution rules can be extracted by sub-sentence alignment algorithms from parallel corpora [P. E.
Brown et al., 1993]. One can use different sources of data, the ideal being a human-labeled monolingual
parallel corpus. i.e. a set of aligned sentences each being a proper variant of the others. Building such
a dedicated corpus being a long and costly task, one usually transforms other corpora through a “pivot
representation’ [Barzilay and McKeown, 2001; Callison-Burch, Koehn, et al., 2006a; Chen et al., 2015;
Ganitkevitch et al., 2013]. Alignment algorithms being quite robust, one can use even more lightly-related
texts like news from the same period [Dolan and Brockett, 2005]. The strength of this approach is that
large tables of phrase-level rewriting rules are relatively easy to extract even from lightly related texts.

The weakness of these approaches is that phrase-level rewriting rules alone are not able to build
coherent sentences. A typical data-driven paraphrase generator used to be a mixture of potentially noisy
handcrafted and data-driven rewriting rules coupled with a score that had to be optimized on real time
though dynamic programming. But dynamic programming methods like Viterbi are constrained by the
requirement of a score that decomposes into a sum of word-level or phrase-level criteria [Xu et al., 2016].
Some attempts were made to relax this constraint with search-based approaches [Chevelu et al., 2009;
Daumé et al., 2009], but the global optimized criteria were simplistic and the obtained solutions were not

suitable for a practical deployment.

3.4.2 Supervised Encoder-decoder Approaches

Just like machine translation, paraphrase generation benefited from deep neural networks and evolved

to efficient end-to-end architectures that can both learn to align and translate [Bahdanau, Cho, et al.,
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2016; Vaswani, Shazeer, Parmar, Uszkoreit, L. Jones, Aidan N. Gomez, et al., 2017a]. Several papers
like [Cao et al., 2017; Prakash, Sadid A. Hasan, et al., 2016a] set the paraphrase generation task as a
supervised sequence-to-sequence problem. As confirmed by our experiments in Section 4.2, this approach
is efficient for specific types of paraphrases, it is also able to produce relatively long-range transformations.

But it also requires huge and high-quality sentence-level aligned datasets for training.
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CHAPTER 4

SUPERVISED PARAPHRASE (GENERATORS

Similarly to machine translation or RDF-to-text generation, paraphrase generation can be seen as a
sequence to sequence problem.

Artificial neural networks achieved high performances on the machine translation task leading to a
new approach to machine translation: neural machine translation (NMT). Indeed, the original encoder-
decoder architecutre or seq2seq [Sutskever et al., 2014] enabled the power of deep neural networks to map
sequences to sequences and outperform the phrase-based SMT systems. NMT has been an active topic
of research since and the encoder-decoder architectures became huge.

A major drawback of using the advances of NMT directly to the task of paraphrase generation is that
there is not as many aligned data for paraphrase generation as for machine translation. The corpora are
smaller and/or more biased. The recent release of the QQP corpus and the existence of the Mscoco dataset
that can be used as an aligned paraphrase corpus, enabled the use of supervised encoder-decoder models
for paraphrase generation.

In Section 4.1, we give an overview of the supervised encoder-decoder models used for paraphrase
generation. We also highlight in Subsection 4.1.2 the reproducibility issues we encountered with the

litterature models.

4.1 Overview of Supervised Paraphrase Generation

4.1.1 Survey

Like machine translation, paraphrase generation benefited from deep neural networks and evolved
to efficient end-to-end architectures that can both learn to align and translate [Bahdanau, Cho, et al.,
2016; Vaswani, Shazeer, Parmar, Uszkoreit, L. Jones, Aidan N Gomez, et al., 2017b]. Several papers
like [Cao et al., 2017; Prakash, Sadid A. Hasan, et al., 2016a] set the paraphrase generation task as a
supervised sequence-to-sequence problem. As confirmed by our experiments in Section 4.2, this approach
is efficient for specific types of paraphrases. It is also able to produce relatively long-range transformations
and complex syntax structure, but it requires huge and high-quality sentence-level aligned datasets for
training.

The paraphrase generation literature mostly reports their results on the MSCOCO and QQP datasets
which are built respectively from image captions and duplicate questions. These datasets are very specific:
MSCOCO is strongly biased toward image description sentences, and QQP is dedicated to questions.

To illustrate the datasets biases, a Transformer model trained on QQP typically transforms any input
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into a question. For instance, from "He is speaking on june 14." it generates "Who is speaking on june
14 2"

We conducted experiments to reproduce the results of the supervised encoder-decoder models as
reported in the literature. There is however no uniform experiment setup to directly compare the models
and the experiments shown in the diverse papers. This leads to reproducibility issues that we detail
in Subsection 4.1.2. On top of trying to reproduce the existing results, we conducted the experiments
using a uniform framework in order to actually compare the results and extend them to all datasets. We

present the results of those experiments in Section 4.2.

4.1.2 State of the Art Results Reproduction Issues

In the paraphrase generation literature, most of the papers report on MSCOCO and QQP. In table 4.1,
we provide the BLEU scores as reported in [Egonmwan and Chali, 2019a; Fu et al., 2020; Gupta et al.,
2018; Prakash, Sadid A. Hasan, et al., 2016a]. However, even if the dataset names coincide, and even if
each evaluation methodology is correct on its own, the discrepancies between methodologies render these
values impossible to compare with each other.

The strange gap between the residual LsSTM performance of [Prakash, Sadid A. Hasan, et al., 2016a]
and the one reported in [Fu et al., 2020] that tried to reproduce the results of the former can be explained
by the fact that the first one is using the 2014 version of MSCOCO while the other is using the 2017
version. But we also found several other divergences:

— test sets splits

— sentence length shrinking

— vocabulary size

— tokenization strategies

— case

Regarding the sentence lengths, Prakash, Sadid A Hasan, et al. [2016b] and Gupta et al. [2018] shrunk
all sentences to 15 words. Fu et al. [2020] set the maximum length to 16 while Egonmwan and Chali
[2019b] set it to 15 and 10 respectively for the input and target sentences. Knowing that roughly 56%
(resp. 5% ) of MSCOCO target sentences are strictly longer than 10 (resp. 15) words, these small changes
can have a great impact on the results.

The vocabulary considered also differs. Fu et al. [2020] used a vocabulary of 8%k and 11k tokens from
the train sets of QQP and MSCOCO respectively, whereas Egonmwan and Chali [2019b] had a vocabulary
of approximately 15k words that was constructed on both the train and test sets.

The scripts used to compute metrics did also differ from one paper to another, and it is known that
BLEU scores can vary widly with different parameterizations [Post, 2018].

For our reproduction experiments results, we used the code associated with the respective papers
when available and otherwise, we tried as much as possible to reproduced the models of the literature
faithfully. This allowed us to have the exact same preprocessing, training and testing pipeline for all our
experiments. As a side effect, we provide a grounded benchmark between the methods that we could
test.
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Model applied on MScoco BLEU ?t
REsIDUAL LSTM [Fu et al., 2020] 23.7
LBOW-Toprk [Fu et al., 2020] 25.3
RESIDUAL LSTM [Prakash, Sadid A. Hasan, et al., 2016a] 37.0
VAE-SVG-Eq [Gupta et al., 2017] 39.6
TRANSFORMER |[Egonmwan and Chali, 2019a] 41.8
TRANSSEQ [Egonmwan and Chali, 2019a] 44.5
Model applied on QQP BLEU 1
RESIDUAL LSTM [Fu et al., 2020] 24.9
CGMH [Miao et al., 2018] - weakly-supervised 18.8
LBOW-TOPK [Fu et al., 2020] 26.2
VAE-SVG-EQ [Gupta et al., 2017] 37.1
TRANSFORMER [Egonmwan and Chali, 2019a] 39.0
TRANSSEQ [Egonmwan and Chali, 2019a] 39.8

Table 4.1 — Inconsistent BLEU scores as reported in several articles on paraphrase gener-
ation.
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4.2 Paraphrase Generation Experiment

As supervised baselines, we trained three neural network architectures that were previsouly reported
to achieve good results on MSCOCO and QQP, in particular, the Seq2Seq architecture, a Residual LSTM ar-
chitecture [Prakash, Sadid A Hasan, et al., 2016b] and a TRANSFORMER model [Egonmwan and Chali,
2019a]. We extended the experiments to the other aligned corpora: MSRPARAPHRASE, OPUSPARCUS and
PAWS.

4.2.1 Settings

To be more precise, we trained a 4-layers LSTM Seq2Seq with a bidirectional encoder and decoder
using attention. This architecture is reported as SEQ2SEQ in the results. We trained a 4-layer Residual
LSTM Seq2Seq as introduced by Prakash, Sadid A. Hasan, et al. [2016a] and reproduced by Fu et al.
[2020]. This architecture is reported as RESIDUAL LSTM in the results. The results we obtained with
this model are close to the ones reported by Fu et al. [2020].

Finally, we trained a TRANSFORMER using the transformer_base hyper-parameters set of Vaswani,
Shazeer, Parmar, Uszkoreit, L. Jones, Aidan N Gomez, et al. [2017b]. This architecture is reported as
TRANSFORMER BASE in the results.

For all the encoder-decoder experiments, we used the fairseq framework [Ott et al., 2019] that im-
plements the SEQ2SEQ and TRANSFORMER architectures. We added our own implementation of the
RESIDUAL LSTM architecture.

For preprocessing, we used Moses tokenizer and subword segmentation following Sennrich et al. [2016]
and using the subword-nmt library. The maximum sentence length is set to 1024 tokens which is the

default setting in fairseq. For decoding, we did a beam search with a beam of size 5.

4.2.2 Results

We summarize the results of the experiments in Table 4.2. First, the three end-to-end architectures
achieve very similar performances on all the corpora except on the MSRPARAPHRASE corporus.

On MSRPARAPHRASE, the TRANSFORMER model (BLEU: 20.7; METEOR: 21.6) is almost twice as
good as the two other LSTM-based architecture BLEU: 11.6/10.5; METEOR: 12.6/11.2). The TRANS-
FORMER model achieves higher results because it handles better the long sentences of the MSRPARA-
PHRASE corpus. Howerver, overall on MSRPARAPHRASE, the three encoder-decoder neural networks
perform poorly. This result can be explained by the small number of training examples available on this

corpus.

4.2.3 Analysis

We do not report significant differences between the neural networks architectures SEQ2SEQ, RESID-
UAL LSTM and TRANSFORMER BASE.

Also the reported results on MSCOCO (BLEU = 27) and QQP (BLEU ~ 29) is coherent with the
literature. Indeed, Fu et al. [2020] reports BLEU scores of 26.2 on QQP and 25.6 on Mscoco for their

71



Partie 11, Chapter 4 — Supervised Paraphrase Generators

Corpus Model BLEUt TER| | METEOR1T BERT?®
SEQ2SEQ 27.5 62.3 24.3 0.76
MSCOCO RESIDUAL LSTM 26.9 63.3 24.2 0.76
TRANSFORMER BASE 26.9 63.3 24.2 0.76
SEQ2SEQ 29.2 60.3 30.7 0.8
QQP REsiDuAL LSTM 28.4 59.1 30.2 0.8
TRANSFORMER BASE 29.1 59.5 30.5 0.8
SEQ2SEQ 8.4 79.3 13.8 0.69
OPUSPARCUS REsiDUAL LSTM 8.1 78.6 14.3 0.7
TRANSFORMER BASE 8.1 84.3 13.9 0.7
SEQ2SEQ 44.0 36.8 39.2 0.92
PAWS REsibuAL LSTM 43.6 37.1 38.9 0.92
TRANSFORMER BASE 42.4 37.6 38.9 0.92
SEQ2SEQ 11.6 89.5 12.6 0.53
MSRPARAPHRASE | RESIDUAL LSTM 10.5 93.7 11.2 0.52
TRANSFORMER BASE 20.7 76.7 21.6 0.65

Table 4.2 — Experiments summary. Symbol 1" means that higher value is better. The
results are in same range for the tree models for all corpora except for MSRPARAPHRASE.
On MSRPARAPHRASE the TRANSFORMER model outperforms the other two. This can
be explained by the best performances of the TRANSFORMER on long sentences.
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model. However Egonmwan and Chali [2019a] reports much higher results (BLEU = 41.8 on MSCOCO and
BLEU = 39.0 on QQP). We explain this gap by the different experiment settings that render the expriments

incomparable.

73



CHAPTER 5

SEARCH-BASED APPROACHES

In Chapter 4, we trained sequence-to-sequence neural networks to generate paraphrases. This method
is very efficient for many text generation tasks. The main drawback of this strategy is its requirement to
have a large aligned dataset. We also noticed that even if a model trained on a specific dataset performs
well on that dataset, it remains very biased. The available aligned paraphrase corpora presented in
section 3.2 are often biased toward specific problems like question answering or image captioning.

With the lack of generic aligned datasets, it remains challenging to train generic paraphrase models
in a supervised manner. For this reason, we studied a different approach: a search-based approach.

Search-based approaches provide a better control of the output. They are often used to integrate
constraints in text genetation like in CGMH [Miao et al., 2018].

In this chapter, we detail the study of a search-based generation scheme where candidate paraphrases
are generated by iterated transformations from the original sentence. The motivation behind this ap-
proach is to have a more generic model and to be independent of the requirement of a huge aligned
training dataset.

The chapter is divided in several sections. In Section 5.1, we introduce the casting of the paraphrase
generation task as a tree-search problem. In Sections 5.2 and 5.3, we detail our search-based algorithms
MCPG and PTS. In Section 5.4 we provide an extensive set of experiments on the five paraphrase datasets.

And finally we conclude in Section 6.3

5.1 A Paraphrase Tree Generator

We model paraphrase generation as a sequence of editions and transformations from a source sentence
into its paraphrase. We only consider local transformations, 7.e replacement of certain words or group of
words by others that have the same or similar meanings.

The concept is easy. Starting from a source sentence, that we are willing to paraphrase, we create a
generator of paraphrase candidates using local transformations. This generator can be seen as generating
a tree of candidates, where each node is a possible paraphrase of the source sentence and each edge is
a transformation made to go from the source node to the target node. The root of the tree being the
source sentence, the deeper we go in the tree, the more different the candidate paraphrase is from the
source sentence. In a second stage, we are looking for the best paraphrase candidate or the best node in
the tree using a search algorithm.

This paraphrase tree generator leverages a database of phrasal and lexical transformation called

pPDB [Pavlick et al., 2015] presented in subsection 5.1.1. In the following subsection 5.1.2, we will
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show some statistics about the generated paraphrase spaces according to each paraphrases corpora. The

paraphrase scorer is detailed in section 5.2.3

5.1.1 PPDB: The Paraphrase Database

The Paraphrase Database (PPDB) [Pavlick et al., 2015] is a large collection of scored paraphrase
rules that was automatically constructed from various bilingual corpora using a pivot alignment method
[Callison-Burch, 2008]. The database is divided into increasingly large and decreasingly accurate subsets
labelled S, M, L, XL and XXL. We used the XL subset, and we removed the rules labeled as "Inde-
pendent”. This left us with a set of 5.5 million rewriting rules. We give some examples of these rules in
Figure 5.1. PPDB provides also several informations on the transformation rule. In particular, it includes
the PPDB2.0Score which is the score that was used to rank the rules in the database.

PPDB 2.0 score is a supervised scoring model introduced by Pavlick et al. [2015] when introducing
the second version of PPDB, PPDB 2.0. Pavlick et al. [2015] collected 26455 humanly annotated paraphrase
pairs from PPDB. They then fitted a regression of the human judgements using 209 features detailed in the
paper. The features are lexical overlap features, features derived from WordNet, distributional similarity

features or the cosine similarity of the word embeddings.

[JJ] ||| unavoidable ||| inevitable ||| PPDB2.0Score=4.39597

[VB] ||| ill-treatment ||| mistreatment |||
PPDB2 .0Score=4.69058
[JJ] ||| authorized ||| authorised ||| PPDB2.0Score=4.39584

[PP] ||| different parts of the world ||| various
parts of the world ||| PPDB2.0Score=5.90031

[NP/VP] ||| one of the key factors ||| one of the most
critical factors ||| PPDB2.0Score=5.73433

[RB] ||| intentionally ||| deliberately |||
PPDB2 .0Score=4.59228

Figure 5.1 - PPDB transformations sample. Six lines sampled from the PPDB database.
The transformation rules correspond to the second and third fields. PPDB also include
several informations. We use the PPDB2.0Score in the fourth field.

By iteratively applying the rules from a source sentence like illustrated in figure 5.2, we obtain a vast
lattice of candidate paraphrases. Some of these candidates like "he’s talking on june 14" are well-formed,

but many are syntactically broken, like "he is speak now on june 14".
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he is speaking on june 14th . he is speaking on june fourteen .

he is speaking on june 14.

he is speaking on flag day . he is discussing on june fourteen .

he is giving a talk on june 14 .

he is speaking ‘at the occasion of the flag day .

he participates or june 14 . he is to say this on june 14 .

he is providing a talk on june 14 .

he i giving a talk at the occasion of the flag day .

he 's talking on june 14 . he is discussing on june 14 .

Figure 5.2 — Example of a generated paraphrase space. Starting from the source sen-
tence (the root) "he is speaking on june 14.", the paraphrase generator applies PPDB trans-
formations represented by the arrows in the figure. A transformation can be lexical or
phrasal. Each transformations leads to a node in the generated tree representing a po-
tential paraphrase of the source sentence. By applying one or many transformations to
the source sentence, the model generates many paraphrase candidates.

5.1.2 Statistics on the Paraphrase Spaces

The number of rules that apply depends on the source sentence’s size and the words it contains. For
instance, on MSRPARAPHRASE dataset, sentences are quite long and the median number of PPDB-XL
rules that apply is around 450. After two rewriting steps, the median number of candidates is around
10°, and by iterative rewriting, we quickly reach a number of paraphrase candidates that is greater than
108

For a unique source sentence, the model can generate many candidates. The next phase was to
develop and implement a good search algorithm to choose the best paraphrase among the lattice of

candidates. In the following Section 5.2 and 5.3 we introduce two search- strategies: MCPG and PTS.

5.2 Monte-Carlo Paraphrase Generator

Following the idea of [Chevelu et al., 2009], we first experimented Monte-Carlo Tree Search (MCTS)
to explore the PPDB lattice.

5.2.1 Monte-Carlo Tree Search

Monte-Carlo Tree Search (MCTS) is a heuristic search algorithm that has three key ingredients.

First, a bandit policy applied at each node of the search tree selects the most promising paths. Second,
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5.2. Monte-Carlo Paraphrase Generator

randomized Monte-Carlo explorations (roll-outs) estimate the quality of the selected paths. Finally, a
reward function is backpropagated along the paths to update the bandit.

The implementation of MCTS should also have a cache system to avoid duplicate evaluate of paths.
Because, in our case the explored tree is rather a lattice and several branches can lead to the same
paraphrase.

The historical version of MCTS was called ucT for Upper-Confidence for Trees [Kocsis and Szepesvari,

2006]. It was based on a deterministic optiministic bandits and designed mostly for problems like computer

go where the evaluation of positions was binary and only possible on the leaves. Several improvements
have been added afterwards:
— the RAVE heuristic which reinforce good positions already in the cache [Gelly and Silver, 2007]
— the bandit is replaced by an RL-trained policy network by Silver et al. [2016]
We opted here for a randomized bandit policy called ExP3 [P. Auer et al., 2002]. It samples sub-trees

according to a Gibbs distribution.

exp(w;/T)
> exp(A-w;/T)

The weights w; of each sub-tree i is first initialized to a bias value and then reinforced or lessened

P = (5.1)

according to the feedback thus making the exploration focus towards the most promising options. The
temperature parameter 7 controls the balance between exploration and exploitation: when 7 is small,
the distribution is uniform and the algorithm explores a lot. Higher values tend to peak the distribution
toward the most rewarding options. We have set this value to 0.1 in our experiments. This policy was
combined with a RAVE heuristic to speed up the algorithm by also considering paths out of order when
updating node.

Our model Monte-Carlo Paraphrase Generator uses MCTS for the task of paraphrase generation.

5.2.2 MCPG

The MCPG algorithm is described as pseudo-code in Algorithm 1 and illustrated in Figure 5.3.

The paraphrase generation task has a few specificities that require adaptations from the original
MCTS algorithm. First, the average rewriting graphs are not very deep, but their branching factor vary
and it can be very high on some instances thus rendering the exploration of all sub-trees intractable.

In McTS only the leaves are evaluated while there is the possibility to score any node as each node
is a paraphrase candidate although on some examples it may be misleading. For instance, when a
transformation rule changes the singular to the plural form of a subject in the source sentence, another
transformation rule is needed to change the verb form accordingly. We call it a two-steps transform.
The candidate with the two transformations is valid but the intermediate candidate with only the first
transformation is incorrect. Thus this first transformation can be scored as bad even if in theory it is
completely fine as it leads to good candidates.

Also, to reduce complexity and to avoid a semantic drift, we forbid the modification of a word that
was already rewritten.

Finally, from each node except the root, a stop action is playable to evaluate the paraphrase. There-

fore, the best paraphrase can never be the source sentence.
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PPDB2.0

new input sentence

new lattice

INITIALIZATION o
filtering applicable OF THE TREE

initializing search policy with

- PPB2.0 score as prior

.
tF—

paraphrase candidates
scores

MONTE-CARLO roll-
TREE SEARCH 2
external scoring A ‘v
module : P O E
o ©°
batch of paraphrase
candidates

Figure 5.3 — Overview of the MCPG program. The first phase is depicted in green.
MCPG first loads the source sentence to paraphrase and filters the applicable PPDB rules.
It initializes the root of the search tree and the search policy with the PPDB 2.0score as
prior. The second phase depicted in orange in the figure is the actual search. It is a loop
that consists of 3 main steps. 1. Selection : MCPG applies the policy to choose nodes to
explore. 2. Roll-out : from the selected nodes, MCPG applies the policy until leaves in
the tree. The corresponding leaves are the paraphrase candidates that are scored by an
external scoring module. 3. Update search policy : MCPG updates the policy with the
computed paraphrase candidates scores and loops to the first step. This loop stops when
the resources are consumed or when the whole tree has been explored.
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Algorithm 1: MCPG
Input: input sentence
1 candidates <— REWRITE(input_ sentence)
2 depth < 1
3 while time/space < budget do
4 while time/space < layer-budget do
nodes <~ MAB.SELECTS__FROM/(candidates)
paths <— ROLLOUT__FROM(nodes)
scored < scored U NN.SCORE(paths.leaves)

© 0 N o O

MAB.UPDATES__POLICY (node rewards)

10 layer best < ARGMAX(scored)
11 candidates <— candidates U REWRITE(layer_best)
12 | depth < depth + 1

13 return ARGMAX all scored nodes)

In figure 5.3, we detail all the steps of the program. MCPG was implemented in C++ and is inspired
from the source code of Chevelu et al. [2009].

At the loading of MCPG, the program loads the PPDB database in memory. Then, for each new
input source sentence, the program filters the PPDB database keeping only the rules applicable to this
particular sentence. Additionaly, the program initiates a new search policy for the new sentence leveraging
the PPDB2.0Score associated with every applicable rule. This is what we call the initialization of the
tree phase. It is represented in green in the overview illustation Figure 5.3.

Then — represented in orange in the illustration — the algorithm proceeds by epochs. The first epoch
samples candidates without replacement according to the prior, and the next epochs takes the score
feeback into account to focus the search on promising sub-trees. We have set the epoch to 10000 to
balance between CPU and GPU. The prior bias is an important hyper-parameters. At each epoch, the

program applies the steps of the MCTSsalgorithm:

1. selection
2. roll-out
3. updating the policy

We developed a new C++ implementation of the algorithm described in Chevelu et al. [2009]. This
version includes some code optimizations and caching techniques to speed up computation.

MCTS needs a reward function to update its policy at each epoch. We implemented an external
scoring module as illustrated on the bottom left in Figure 5.3. More about this score will be given in
subsection 5.2.3.

From a technical perspective, the MCPG program and the external scoring module communicate with
text files directly in the file system. To launch an experiment we launch a wrapper script that launches in

parallel the MCPG program and the scoring module. In Figure 5.4, we display the typical folder structure
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input. txt
languagetool _8081.
languagetool 8082.
languagetool 8083.
languagetool_8084.
languagetool 8085.
languagetool 8086.
languagetool_8087.
languagetool 8088.
launch_expe.sh

batch_0.txt
batch_1.txt
batch_2.txt
batch_3.txt
batch_4.txt

batch_©O_score_bert.txt
batch_0 score_gpt.txt
batch_©_score_grammar.txt
batch_©_score_levenshtein.
batch_0 score.txt.backup
batch_1 score_bert.txt
batch_1 score_gpt.txt
batch_1 score_grammar.txt
batch_1 score_levenshtein.
batch_1_score.txt.backup
batch_2 score_bert.txt
batch_2 score_gpt.txt
batch_2_score_grammar.txt
batch_2 score_levenshtein.
batch_2 score.txt.backup
batch_3_score_bert.txt
batch_3 score_gpt.txt
batch_3 score_grammar.txt
batch_3 score_levenshtein.
batch_3 score.txt.backup
test.output. txt

Figure 5.4 — Typical folder structure for an experiment with McPG. The scores and
samples folders allow the search program and the score function program to communicate
the batches to be scored and the corresponding scores. The two programs that run
in parallel can be launched from a bash script for example. Here it is the role of the
bash script launch__expe.sh. The sentences to be paraphrased are also stored in a text
file: here input.tzt. And the generated paraphrases are stored in another text file: here
test.output.tzt. The program can also generate different log files.
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for an experiment with MCPG.

To rank the paraphrase candidates, we developped a paraphrase score function that we try to optimize
during the search. The vanilla MCTS algorithm is not designed for multi-objective problems. Hence, we
needed to combine our criteria, namely the semantic similarity, the syntax correctness and the surface

diversity into a single criterion. We detail the scoring function in the next subsection 5.2.3.

5.2.3 Scoring Function

In this subsection, we detail how we developed a paraphrase score. As presented in Chapter 3, the
paraphrase generation task combines Natural Language Understanding (NLU) and Natural Language
Generation (NLG). In particular, we saw in the experiment on paraphrase identification in subsection
3.3.2 that the metrics used to evaluate the paraphrase generation make reasonably good paraphrase
classifiers.

On the basis of these remarks, we consider three axes for defining a good paraphrase.

Firstly, we need to maximize the semantic similarity between the source sentence and the generated
paraphrase. Indeed, a paraphrase must have the same meaning as the source sentence, this is the NLU
part of the score function.

Secondly, the generated paraphrase must be a valid sentence. This is the NLG part. We therefore
need to add a syntax correction dimension to be maximized.

In terms of semantic, the best paraphrase of a sentence is the sentence itself. To make sure that
the generated paraphrase has a different surface from the source sentence, we add a surface diversity
dimension.

As it depends on the type of text we consider that may be spoken or written, casual or formal. It
is not easy to define a universal semantic distance or a universal scale of well formed syntax. However,
recent advances in NLP with neural networks like BERT and GPT-2 trained on huge corpora have led to
the development of metrics that can act as good proxies for these ideal notions.

For each dimension, we detail in the following Sections 5.2.3, 5.2.3, 5.2.3 the scores we used to quantify

each criterion. In Section 5.2.3, we introduce our scoring function that combines the three criteria.

Semantic

For the semantic distance, a quick experiment confirms that the BERTscore [Tianyi, 2019; T. Zhang
et al., 2019] performs well on difficult paraphrase identification tasks. The BERTscore is an Fl-measure
over an aligment of the BERTcontextual word embeddings of each of the sentences. We opted for the
BERTSscore between the source sentence and paraphrase candidate (denoted BERT;) as our semantic score.

We introduced the BERT score in subsection 2.1.4 and Section 3.3.

Syntax

Regarding the syntax quality, the perplexity of a language model is a good ranking criterion. The
GPT-2 model [Radford et al., 2019] is a large pre-trained language model that leverage the TRANS-
FORMER model. It achieves state-of-the-art results on several NLP tasks.
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Although, as illustrated in Table 5.1, in some cases, a rule-based spell-checker may detect errors that
GPT-2 would miss (but the reverse is also true). We hence opted for GPT-2 as a primary criterion for
syntax quality, combined with the LANGUAGE-TOOL spell-checker [Naber, 2003] that we only used on a

second stage for performance reasons.

Diversity

The lexical distance is important to ensure the diversity of the produced paraphrases. It is however
simple to handle. Some authors use the BLEU surface metric [Miao et al., 2018], we opted here for the

normalized character-level Levenshtein edition distance.
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the agency could not say when the tape was made , though the voice says he
Source . . .
is speaking on june 14 .
Policy Candidate Sentence BERT; | GPT-2 | Levs | ERRS
. the agency could not say when the tape was
High pERT . made , though the voice says he is on | 0.99 4.23 0.04 0
— conservative .
june 14 .
the could just 'm
. saying the was
High Lev : 060 | 7.83 | 1.0 | 0
— risk prone
he
. the cies was able say when the tape
High Gpr-2 though the | 0.82 | 7.10 | 055 | 2
— bad syntax . .
voice he on june 14 .
the organisation are
Spell & when the tape : 073 | 549 | 079 | 2
Grammar errors | the voice he have on
june 14 .
the could not say when the tape
Balanced perfor- was made , the voice that | 0.95 4.34 0.28 0
mances . .
he is on june 14 .
the could not say when the tape
MCPGoutput was made , though the voice that he | 0.96 4.36 0.26 0
is on june 14 .
the agency could the tape
Aligned target , though the voice says he is speaking on june | 0.87 4.77 0.22 0
14 .

Table 5.1 — An example of a source sentence sampled from the MSRPARAPHRASE train
set with some candidate paraphrases generated by our system. The transformation made
on the original sentence are highlighted in blue. The spell and grammar errors detected
by the LanguageTool spell-checker are highlighted in red. We display here a candidate
that maximizes the BERTScore and is, as a consequence, very conservative; a candidate
that maximizes the Levenshtein distance and takes a lot of risks; a candidates with a bad
syntax; a candidates that illustrates the utility of the spell-checker; our equilibrium goal,
the paraphrase generated by our model MCPG and the target in the dataset.
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Source it ’s going to be all right .
Policy Candidate Sentence BERT, | GPT-2 | Levs | ERRS
High BegrT it ’s to be all right . 0.96 | 520 | 007 | 0

— conservative

High Lev to be

. 0.38 7.22 1.0 0
— risk prone

High gpr-2 it be 052 | 9.08 | 1.0 | 0
— bad syntax

Spell & it 089 | 395 014 | 1
Grammar errors

Balanced perfor- |, be all right . 096 | 474 | 017 | 0
mances

MCPGoutput it ’s going to be all right . 0.94 4.57 0.31 0
Aligned target it ’s be 0.78 5.27 0.79 0

Table 5.2 — An example of a source sentence sampled from the OPUSPARCUS train set
with some candidate paraphrases generated by our system.
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The three criteria equilibrium

The balance between these criteria is difficult to obtain.

In order to illustrate the choice of our score function, we dispay, in Tables 5.1 and 5.2, several
examples of candidate paraphrases from two batches generated by the MCPG module for sentences drawn
respectively from MSRPARAPHRASE and OPUSPARCUS . For each sentence, we detail the different parts
of our score, namely the BERT score, the perplexity score from the GPT-2 model, the Levenshtein distance
Levs and the number of new spell and grammar errors detected by the LANGUAGE-TOOL system in the
candidate sentence.

Table 5.1 illustrates their impact on a sentence taken from the train set of MSRPARAPHRASE. The
candidate examples in Tables 5.1 and 5.2 underline the tough dilemma between maximizing the semantic
similarity (safe and conservative policy) and maximizing the lexical distance (risk-prone). The third and
fourth examples underline the utility of the spell-checker:some low-perplexity examples are ill-formed.

The easiest option was a linear combination but after some quantitative analysis of the scores dis-
tributions, we realized that it was easy to maximize the score by just applying a lot of editions to the
source sentence.

We hence opted for the following polynomial:
a - BERTg + - Levg - BERTg — v - GPT2 (5.2)

where the product Levg - BERTYg is intended to avoid a trivial maximization of the score by applying
a lot of editions to the source sentence. After a few experiments on train sets, we tuned empirically the
weights to a = 3,8 = 0.5 and v = 0.025 in order to obtain a balance as the one described on Tables 5.1
and 5.2.

In both tables, we display the paraphrase generated by MCPG using the scoring function defined
previously. For information purposes, we also display the gold target reference associated with the two
sentences in their respective datasets. Our scoring function achieves a good balance between the criteria.
However, as illustrated by the example sampled from OPUSPARCUS in Table 5.2, the MCPG output is
sometimes not perfect.

In fact, MCPG is not really suited for such a multi-objective problem like paraphrase generation. In

the next Section 5.3, we introduce a second model to correct the MCPG defaults.

5.3 Pareto Tree Search

We have previously highlighted that MCPG, the method based on the Monte-Carlo Tree Search algo-
rithm, does not suit well the problem of paraphrase generation.

First in the case of the paraphrase generation problem and in particular in the search-based framework
we have chosen where for each source sentence we construct a lattice of candidate paraphrases (the nodes)
associated with local transformations (the edges), each node is also a leaf. In practice, MCTS is an efficient
algorithm on combinatorial problems where evaluation is only possible on the leaves of the tree. In our
particular case where all nodes are leaves, we add an extra complexity to the search by applying many

transformations to the source node to evaluate it, whereas we could directly evaluate it without doing
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a roll-out because it is already a leaf. As pointed out in Section 5.2.2, some transformations are two-
steps transformations, meaning that the candidate after the two transformations is syntaxicly valid while
the candidate with only the intermediate transformation is syntaxicaly broken. In practice two-steps
rewriting is rare and the branching factore is too high to explore all the two-steps rewritings.

Also, MCPG can only optimize a single score. Since we want to evaluate the candidate paraphrases
along three axes that we defined in section 5.2.3 we had to scalarize the different subscores and set the
weights in order to define a score function. This work is tedious and inexhaustive. Hyperparameters are
difficult to optimize automatically.

As detailled in Section 5.2.3, the ideal would be to have a score function that sufficiently models the
balance between all criteria. But in practice, this balance is unstable because it is much easier to optimize
the surface diversity than the semantic similarity, especially if we do roll-outs. The examples Tables 5.1
and 5.2 illustrate this problem well.

We have developed a new search algorithm presented in this section to tackle both problems.

5.3.1 From a Single Objective to the Pareto Front

When developing the score function presented in equation 5.2, we plotted some batches of candidates
as scatter plots. Each candidate is a point in a three-dimension space, one dimension by subscore. After
that, we chose a type of score function suited to model the paraphrase score.

In fact, we can explore this idea even further. We can directly compute the Pareto front of the batch
of candidate paraphrases.

Let’s define the concept of Pareto efficiency and the Pareto front.

Pareto efficiency

As defined in [Osborne and Rubinstein, 1994]
Let N be a finite set and let X C RY be a set.
Then x € X is Pareto efficient if there is no y € X for which y; > x; for all i € N;

z € X is strongly Pareto efficient if there is no y € X for which y; > x; for all i € N and

y; > x; for some i € N.

In our case, we have a set of paraphrases that are scored with three subscores. Our batch of candidates
is a finite set X C R3. A paraphrase A is Pareto efficient is there is no other paraphrase B such that all
the subscores of B are higher than the subscores of A. All the paraphrases of the batch that are efficients

constitute what we call the Pareto front. The other paraphrases are said to be dominated.

Pareto front

The Pareto front (also frontier or set) is the set of all Pareto efficient samples.
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In practice, by plotting the distributions of the scores like in Figure 5.5, we noticed that most of
the candidates were dominated in the Pareto sense: it was possible to eliminate most of the candidates
paraphrases without any hyperparameter tuning.

Hence, we adapted MCPG to explore the paraphrase lattice and recover an approximation of the
Pareto front, postponing the balance between the criteria as a quick post-optimization stage. This is the
Pareto Tree Search (PTS) algorithm. We detail PTS in the next Subsection 5.3.2.

5.3.2 PTS

The pTs algorithm is described as pseudo-code in algorithm 2 and illustrated in Figure 5.6.

Algorithm 2: PTS

Input: input sentence

candidates <— REWRITE(input sentence)

depth < 1

while time/space < budget do

while time/space < layer-budget do
batch < SAMPLE(candidates)

L scored <— scored U NN.SCORES(batch)

[= I B U U

3

layer front_set <— PARETO-FRONT(scored)
candidates «— REWRITE(layer_front_ set)
| depth < depth +1

0]

10 return PARETO-FRONT(all scored nodes)

For pTS, the initialization phase is identical to that of MCPG.

The search process is iterative over the depth of the tree. In other words, at each iteration we go
down one step in the tree.

The idea is simple, we consider all the paraphrases or a fixed size sample if the sentence is very long
(or if there are many applicable rules) by applying all the possible transformations (or a sample). This is
represented as step I in Figure 5.6. These paraphrases constitute the current batch of candidates. This
batch is scored with the same tools as for McPG. This is step 2.

Using the score vectors associated with each candidate, we filter out the Pareto front and the domi-
nated paraphrases. This is step 3 in the illustration. The dominated paraphrases are removed and these
branches will not be explored further.

In the next interations, we start again from the current Pareto front. We apply the applicable
transformations on the already scored paraphrases (the already explored nodes), we score and we filter
the dominated paraphrases in the Pareto sense.

This orange loop in Figure 5.6 corresponds to the two while loops on line 16 and 17 of Algorithm 2. In
practice, the two steps of creating new candidates by applying rules and scoring them is done iteratively
in smaller batches because of the space limit of the scoring module. That is why we have two loops in

the algorithm. For the convenience of the reader, only one loop is shown in the illustration.
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Figure 5.5 — Candidates scores distribution sample and Pareto front. The figure
displays an example of the subscores distributions for a batch of paraphrases candidates.
The candidates that belong to the Pareto Front are depicted in orange circles. One can
notice that the majority of the candidates are Pareto dominated.
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Figure 5.6 — Overview of the PTS program.
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When the search is complete, we have extracted a set of candidate paraphrases that form an estimate
of the Pareto front. A final step is therefore necessary to select the best paraphrase to be generated by
the model. This is the selection phase. In fact, different selection policies can be applied. And we will
see later that we can easily use native selection policies as a baseline to evaluate the model. For our

experiments, we optimized the score developed for MCPG as a selection criterion within the Pareto front.

5.3.3 E-PTS

PTS is not guaranteed to deliver the global Pareto Front due to the two-steps rewriting rules ans the
sampling procedures. In order to deal with two-steps rewriting we also developed a relaxed version of

PTS: E-PTS inspired by the work on the Pareto front approximation presented by Legriel et al. [2010].

E-Pareto efficiency

Let N be a finite set and let X C RN be a set.

Then z € X is E-Pareto efficient if there is no y € X \ {z} for which y; > x; + € for all i € N;
A point x that is not £-Pareto efficient is said to be £-Pareto dominated. =z € X is £-Pareto
dominated in X if 3y € X \ {z} for which z; + € < y;,Vi € N

When € = 0, £-Pareto and Pareto are equivalent. The higher €, the more points are included in the

E-Pareto front and the less points are dominated.

Let N be a finite set and X, X’ C RY be sets. X is an £-net of X’ if Vo’ € X'3z € X for which
|z, — 2| <eVie N

Let N be a finite set and X, X’ C RN be sets.
If x € X is &-Pareto dominated in X then Vz’ € X such that |z; — 2| < e Vi € N 2’ is Pareto-

dominated in X.

Proof of Lemma 1

Let N be a finite set and X, X’ C RY be sets.
Let x € X be £-Pareto dominated in X: Jy such that Vi € Ny; > x; + € .
Let 2’ € X such that |z} — x;| <eVie N.
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Vi e N, |zt —x;] <€
=Vie Nz, —z; <e
=>Vie Nz, <z +e<vy;
=z’ is dominated by y.

From this concept of relaxed Pareto front, we relaxed the PTS algorithm into the £-PTS algorithm.

The latter is presented in pseudo-code in Algorithm 3.

Algorithm 3: £-PTS

Input: input sentence

candidates <— REWRITE(input_sentence)

depth < 1

while time/space < budget do

while time/space < layer-budget do
batch < SAMPLE(candidates)
scored <— scored U NN.SCORES(batch)

[= I B U U

N1

layer_front_ set <— £-PARETO-FRONT(scored, €)
8 candidates «+— REWRITE(layer_front_ set)
| depth < depth + 1

10 return £-PARETO-FRONT(all scored nodes)

A higher e value implies a higher probability to retrieve the Pareto front. But in practice, it was
slower and it did not improve significantly the results. In the experiments presented in Section 5.4, we

only present the results with PTS that is equivalent to £-PTS with € set to 0.

5.4 Experiments

In this Chapter 5, we have described two search-based approaches for the paraphrase generation task.

The motivation was to overcome the problems encountered by the supervised methods studied in
Chapter 4. Indeed, we wanted to elaborate a paraphrase generation strategy that is more generic than
the training of encoder-decoder models which are highly biased by their training sets. Using PPDB trans-
formation rules, we can generate a tree of candidate paraphrase from a source sentence. We have developed
two search models to explore the generated trees and find the best candidate paraphrase.

Initially, we exploited a Monte-Carlo search and developed a multi-objective score function that
combines three axes to be optimized in parallel: semantic similarity, syntax and surface diversity with
respect to the source sentence. This is the MCPG model.

To solve the limitations of the MCPG model, we developed the PTS algorithm which approximates
the Pareto front obtained with the different scores to be optimized to explore the space of candidate

paraphrases. To evaluate these methods, we use CGMH, a baseline presented by Miao et al. [2018] which
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has an approach directly comparable to our methods. We also present two baseline search policies pts-
random and pts-upperbound to try to better analyze our results. We present the baselines in more detail
in Section 5.4.1.

We detail the setting for the experiments in Section 5.4.2. In section 5.4.3, we detail the results and

their analysis. The evaluation metrics and datasets are described respectively in Section 3.2 and 3.3.

5.4.1 Baselines

CGMH

We compare our models with cGMH which is another search-based algorithm presented by Miao et al.
[2018]. This baseline has an overall similar search-based approach for paraphrase generation.

Constrained Sentence Generation by Metropolis-Hastings Sampling (CGMH) [Miao et al., 2018] is
an approach that uses Metropolis-Hastings sampling [Metropolis et al., 2004] for constrained sentence
generation.

Starting from the source sentence, the CGMH algorithm samples a sequence of sentences by using lo-
cal editions: word replacement, deletion and insertion. For paraphrase generation, CGMH constraints the
sentence generation using a matching function that combines a measure of semantic similarity and a mea-
sure of English fluency. This model is therefore directly comparable with the MCPG and PTS approaches
detailed in Sections 5.2 and 5.3.

In addition, cGMH also includes the semantic diversity axis in the search loop termination. Indeed,
as soon as a candidate paraphrase is far enough from the source sentence in terms of BLEU score, the
search stops.

This method thus uses a search strategy in a candidate paraphrase space and a paraphrase scoring
function comparable to ours. To the best of our knowledge, this is the only published work directly
comparable to our models.

To evaluate CGMH as introduced by Miao et al. [2018] we used the code they provided . We managed
to reproduce their results on QQP. On our test set, we achieved a BLEUscore of 22.5 while they only
reported 18.8. We then extended the experiment to other datasets and metrics. These results are
reported in Table 5.3.

PTS baseline and selection policies

As detailed in Section 5.3, the PTS algorithm extracts a subset of paraphrase candidates that are in
the Pareto front. The final phase of the algorithm is to select the best paraphrase candidate among the
Pareto front. For our experiment, we set the selection policy to optimize the balanced score function
developed for MCPG and a new balanced score function optimized a posteriori for the Pareto front. We
also used other selection policies to compare to and evaluate the model performances.

We hence developped two selection policies to use as baselines:

— PTS random: this policy consists of sampling randomly the generated paraphrase among the

Pareto front. This naive policy aims at evaluating the quality of the Front.

1. https://github.com/NingMiao/CGMH
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— PTS upper-bound: the motivation for this policy is to measure the maximum performance
that the model could have achieved if it had selected the candidate paraphrase that would have
obtained the best score. To be more precise, the policy consists in selecting the paraphrase of the

Pareto front that is closest to the reference gold target from the dataset in terms of BLEU score.

Remark While very naive the PTS random selection policy can be used to generate the paraphrases.
However, the PTS upper-bound uses the reference paraphrase to generate the best candidate. So the
latter can only be used as a reference for analysis purposes to evaluate the actual capacity of the weakly-

supervised model to generate a paraphrase that would be close to the reference one.

5.4.2 Settings

Data preprocessing

PPDB rules being lowercase, we lowercased all the source and target sentences from all datasets.
We then proceed to a basic tokenization scheme. We split on whitespaces and considered every
punctuation (%, 77, 71’ 7?7, 7)) as tokens. Also, again to match the PPDB rules, we split the contractions

from the root words. For instance, "we’ll" was tokenized as "we ‘Il" and "doesn’t" as "does n’t".

Datasets

We conducted the experiments on the five aligned data corpora presented in Section 3.2 — MSCOCO,
QQP, OPUSPARCUS, MSRPARAPHRASE, and PAWS — even though in practice our models are not directly
supervised on the data so we do not require aligned corpora. We kept the same train/test splits as for

the experiments with the supervised models in Chapter 4.

Evaluation

We evaluated our models and the baselines using four automatic metrics: BLEU, TER, METEOR, and
BERT. These metrics are described more thoroughly in Section 3.3.

As a reminder, BERT here used as an evaluation metric is the BERT-score computed between the
paraphrase produced by the model and the corresponding aligned reference paraphrase in the test data.
It measures the semantic similarity between the produced paraphrase and the gold target. We emphasize
that this metric is different from the BERT-score used in the score function optimized by the MCPG and
PTS models because in this case it compared the source sentence to the candidate paraphrases.

The same reasoning applies to the BLEU metric which is used as a measure of surface diversity by the
CGMH model.

5.4.3 Results

Table 5.3 summarizes the results of the comparison of our models MCPG and PTS and the weakly-

supervised method CGMH.
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Corpus Model BLEU+t TER| | METEORY BERT?
CGMH 17.3 72.6 21.9 0.7
MCPG 16.5 73.5 23.2 0.71
MSCOCO PTS 17.0 69.9 22.8 0.64
PTS upper-bound 17.6 69.8 23.5 0.64
PTS random 6.4 90.1 17.9 0.56
CGMH 9.7 72.9 15.4 0.48
MCPG 39.3 52.4 37.2 0.81
MSRPARA. | PTS 40.3 484 36.1 0.80
PTS upper-bound 49.9 43.0 39.5 0.82
PTS random 28.3 62.9 31.9 0.74
CGMH 7.6 78.9 16.8 0.58
MCPG 9.6 78.6 23.3 0.67
OPUSPAR. | PTS 9.1 70.1 22.1 0.68
PTS upper-bound 14.5 65.8 24.2 0.68
PTS random 4.3 93.0 18.1 0.57
CGMH 15.4 58.1 20.7 0.61
MCPG 55.5 24.3 49.2 0.93
PAWS PTS 57.9 21.9 48.5 0.92
PTS upper-bound 65.3 18.4 51.3 0.93
PTS random 36.5 43.2 41.1 0.82
CGMH 22.5 65.0 27.0 0.72
CGMH Miao et al., 2018 18.8 - - -
MCPG 24.1 64.5 31.8 0.78
QQP
PTS 25.6  58.7 314 0.78
PTS upper-bound 32.7 54.2 33.7 0.79
PTS random 9.8 88.4 24.5 0.66

Table 5.3 — Experiments summary. Symbol 1’ means that higher value is better.
Significantly best values are marked in bold.
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Our methods MCPG and PTS outperform the CGMH baseline on all corpora except on the MSCOCO dataset

where the results are similar.

Discussion

Comparison with the supervised approach

Table 5.3 summarizes the results of the comparison of our models, supervised encoder-decoder neural
networks and the weakly-supervised search-based methods detailed in this Chapter 5.

Overall, these results are mixed. It is however important to keep in mind that contrary to the super-
vised baselines which are retrained for each dataset, the parameters of the CGMH, MCPG and PTS models
are left unchanged.

On the MscocoO and QQP datasets, the supervised baselines achieve clearly better results, but
MCPG and PTS achieve better results on OPUSPARCUS and PAWS except with the BERT score for which
the TRANSFORMER model achieves similar results.

These results prove that even without a specialized training sets, generic search-based methods are
competitive for paraphrase generation. However, it is a fact that encoder-deoder networks have excellent
performances for text generation and have the potential to generate more complex paraphrases than those
obtained by simple local transformations as in our models.

Training a general — all-purpose — paraphrase generation network would require a huge volume of
data. And there is yet much less aligned corpora available for paraphrase than for translation.

Generic search-based methods can be used as an offline model for data augmentation. In Chapter 6,

we conduct experiments on distilling data generated by MCPG and PTS models for TRANSFORMER models.
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CHAPTER 6

DISTILLATE SEARCH POLICIES

6.1 Background

6.1.1 Supervised Pretraining and Fine-tuning

Pretraining is a strategy used to train a model to solve a specific task that can be complex and
hard to optimize. In particular, several pre-training algorithms have been developped to train big neural

networks architectures.

Greedy layer-wise supervised training Y. Bengio, Lamblin, et al. [2007] introduce a super-
vised greedy and layer-wise algorithm to train neural networks. The idea is simple, we train each layer
as the hidden layer of a one-hidden layer supervised neural network. After each layer-wise training, the
output layer of the network is thrown away and we only keep the trained hidden layer’s parameters as
pre-training initialization of the new top layer of the neural network. That way, each layers of the neural
network is trained iteratively, constructing sequentially the whole architecture.

This algorithm lead to several greedy algorithms that break the problem into several subtasks and
solve each one separately. Often, greedy algorithms are followed by a fine-tuning stage [I. Goodfellow
et al., 2016] to ensure a joint optimization of all the subtasks and search for an optimal solution to the

full problem.

Transfer learning As discussed by I. Goodfellow et al. [2016], Yosinski et al. [2014] studied super-
vised pretraining of big neural networks in the context of transfer learning [Y. Bengio, 2012; Y. Bengio,
Bastien, et al., 2011; Caruana, 1995]. In transfer learning, a first network is trained on a dataset for some
task. Then, the learned features are transfered to a second network that is trained on another dataset
for another task. This works if the learned features are general to both tasks.

Usually for transfer learning, a small network is trained on the first task. Then a bigger network is
initialized with the learned parameters of the first network and randomly for the new layers. This second
network is then trained on the second task. This second task can that way have a smaller training set

without overfitting because of the general features learned from the first training.

6.1.2 Distillation

Bucilua et al. [2006] compressed the knowledge of an ensemle of models into a single model. Hinton
et al. [2015] developed the idea further with the idea of distillation. According to Hinton et al. [2015],
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a simple form of distillation is when knowledge is transfered to the distilled model by training it on a
transfer set. In fact, their work focus on distilling a big neural network into a smaller one. In our case,
the knowledge we would like to distill is the results of a learned search policy.

We conducted a simple experiment to try to distil the knowledge learned from the MCPG and

PTS search policies introduced in Chapter 5 into a supervised neural network like in Chapter 4.

6.2 Experiments

In Chapter 4, we trained supervised encoder-decoders neural networks for paraphrase generation.
The neural networks achieve good performances in many text generation tasks. From our experiments in
Section 4.2, we concluded that SEQ2SEQ models could learn to generate complex paraphrase structures,
but the main drawback of this method comes from the lack of a large training set. Indeed, the learned
models were highly biased by the training data. And in the case of MSRPARAPHRASE, the models
performed poorly, probably due to the too small size of the training set.

To overcome the limits of the supervised strategy, in Chapter 5 we studied weakly supervised
search-based methods for paraphrase generation. In particular, we developped two search models called
MCPG and PTS to generate more generic paraphrases. As seen in Section 5.4, while being weakly su-
pervised, the search approaches achieve comparable results with the supervised methods. In the case of
MSRPARAPHRASE, MCPG and PTS outperform the encoder-decoders.

In order to get the best of both worlds, we distill the knowledge learned by MCPG and PTS into
an encoder-decoder neural netwotks. One option that can be seen as transfer learning is to enrich the
training set of a TRANSFORMERwith the results of the search-based methods.

To test this idea, we used our MCPG and PTS models to augment the MSRPARAPHRASE training set.

As presented in Section 3.2, MSRPARAPHRASE is a paraphrase identification corpora. In other words,
MSRPARAPHRASE contains paraphrase pairs and non-paraphrase pairs. For our paraphrase generation
experiments, we only needed the paraphrase pairs, so we threw away the other pairs. However, the
non-paraphrase pairs belong to the same data distribution as the paraphrase pairs used to train the
supervised encoder-decoder on MSRPARAPHRASE. We make use of these non-paraphrase pairs unused
for the TRANSFORMER training in Section 4.2 for our distillation experiment.

6.2.1 Settings

First, we turn the non-paraphrase pairs of MSRPARAPHRASE into source sentences to be paraphrased
by the models we want to distil namely MCPG and PTS.

Then, we swap the generated paraphrase with the source sentence to create new paraphrase pairs.
The generated paraphrases become the new source sentences. And the initial source sentences become
the new reference sentences. This technique, called back-translation, was introduced by Sennrich et al.
[2016] and Edunov et al. [2018]. It ensures that the model always has a syntactically correct sentence as
output reference. Indeed, as an encoder-decoder is learned by teacher forcing on the reference sentence,

learning with a noisy reference can degrade the training.
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With these newly generated paraphrase pairs, we augmented the MSRPARAPHRASE training set. We
then trained new supervised TRANSFORMER models on the augmented training sets, one augmented with

MCPG and the other one augmented with PTS.

6.2.2 Results

Train set BLEUYt TER| | METEOR?1T BERT?®
ORIG. 20.7 76.7 21.6 0.65
ORIG. 4+ MCPGPARAPHRASES 253 69.6 24.5 0.63
ORIG. + PTSPARAPHRASES 25.3 71.1 24.6 0.63

Table 6.1 - Data-augmentation experiment summary. Symbol 1" means that higher
value is better. Best values are marked in bold. We trained a TRANSFORMER base model
on three versions of the MSRPARAPHRASE dataset: the original training set (ORIG.)
and the original training set extended by paraphrasing other sentences from the same
distribution with the MCPG and PTS models. The models trained with the extended
datasets achieve better results. This shows that our weakly-supervised models can be
distilled to improve state-of-the-art models.

We report the results of this experiment in Table 6.1. The models trained with the augmented

training set achieved a significant performance gain on BLEU, TER and METEOR.

6.2.3 Analysis

State-of-the-art of paraphrase generation is achieved by encoder-decoder models that have the ability
to learn complex sentence transformations. For paraphrase generation, these methods are limited by the
biased and small training datasets. By augmenting the training datasets with paraphrase pairs generated
by search-based models, we are able to improve the neural networks without overfitting.

As shown in Table 6.1, augmenting the training set of MSRPARAPHRASE by paraphrase pairs gen-
erated by MCPG and PTS increased the BLEU score by 5 points. On the contrary, the last column of the
table also shows that the BERT score has slightly decreased. As illustrated in Table 5.1 showing candidate
paraphrases examples, the candidates selected by the search policy obtains a BERT scores with respect to
the source equal to 0.96. Additionnaly, the MCPG model on its own achieves a BERT score performance
of 0.81 (cf. Table 5.3).

Despite these surprising results with the BERT score, the search-based approaches seem to be very
interesting as offline data augmentation systems to overcome the problems of the encoder-decoders. It

provides a compromise between supervised and weakly-supervised approaches.
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6.3 Conclusion on Paraphrase Generation

In this second part of this manuscript, we presented the research work on paraphrase generation.

The paraphrase generation task presented in Chapter 3 is difficult. The structure we model is the
structure of the language itself and paraphrase generation is far from being solved.

Supervised encoder-decoder models, which are very popular for all text generation tasks are not yet
as efficient as for the translation task, for example.

In fact, when we started this work, the state-of-the-art was achieved by LSTM or Residual-LSTM models
[Prakash, Sadid A. Hasan, et al., 2016a]. Later, the TRANSFORMER model [Vaswani, Shazeer, Parmar,
Uszkoreit, L. Jones, Aidan N. Gomez, et al., 2017a], as for many other tasks, obtained very good results
for the generation of paraphrases [Egonmwan and Chali, 2019a]. The state-of-the-art is evolving very
fast and a lot of research have been conducted so far.

In Chapter 4, we conducted experiments on using supervised encoder-decoder models for the task of
paraphrase generation. Additionnaly, we have homogenised the experiments presented in the literature,
which were difficult to reproduce and not comparable. From these experiments, we extracted the main
limitation to this type of model: the lack of a large training dataset. Indeed, the learned models are too
biased, and tend to overfit when the training set is too small.

This lead us to explore another approach for paraphrase generation: the search-based approach. In
Chapter 5, we defined a framework of paraphrase generation as a search problem in a lattice of paraphrase
candidates. To find the best paraphrase candidate in this vast space we studied two search algorithms.

First, MCPG implements an MCTS approach with a multi-objective reward function to find the best
candidate. The scoring function we used combines three dimensions: the semantic similarity, the syntax
correctness and the surface diversity.

We oberved two drawbacks for MCTS. It was designed for combinatorial problems like Go where
the evaluation is only possible on the leaves of the search tree. This is not the case for paraphrase
generation where the neural models can evaluate any rewriting step and where rewriting from good
candidates is more likely to provide good paraphrases than rewriting from bad ones. Also , it has been
designed for single-criterion search which requires fixing the balances between criteria definitively before
any paraphrase search begins. This is not very flexible, and it becomes painful when we want to generate
sets of good candidates.

To overcome these issues, we developped another search strategy that approximates the Pareto front
between the three criteria. This is the PTS model.

These seach-based models outperform a baseline from the literature CGMH and achieve performances
comparable with the supervised neural networks’ ones.

However, search-based models are cumbersome and not at all suitable for fast generation. To find
the best of both worlds, in Chapter 6 we conducted an experiment to distill MCPG and PTS knowledge
into TRANSFORMER models. The distillation improved the performances of the TRANSFORMER model on
MSRPARAPHRASE and is a promising research branch.

Publications

This work has been published at conferences in two parts:
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Partie II, Chapter 6 — Distillate Search Policies

— the search-based methods presented in Chapter 5 were published at a workshop on learning with
combinatorial algorithms :
¢ Neural-Driven Multi-criteria Tree Search for Paraphrase Generation.
Fabre, B., Urvoy, T., Chevelu, J., & Lolive, D. (2020, December). In Learning Meets Combina-
torial Algorithms (LMCA) Workshop at NeurIPS 2020.
— the supervised models and the distillation experiment presented respectively in Chapters 4 and
6 were published as a conference article at EACL :
¢ Neural-Driven Search-Based Paraphrase Generation.
Fabre, B., Urvoy, T., Chevelu, J., & Lolive, D. (2021, April). In Proceedings of the 16th Con-
ference of the European Chapter of the Association for Computational Linguistics: Main Volume
(pp. 2100-2111).
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CONCLUSION

The encoder-decoder model is at the heart of the work presented in this thesis. This family of neural
networks built for sequence to sequence tasks are well suited for text generation tasks like data-to-text
or paraphrase generation and have improved the state-of-the-art in many text generation tasks. The
Transformer model performances lead to the development of pre-trained transformer-based models like
BERT contextual embeddings and the GPT-2 language model. The Transformer is also widely used as a
supervised model learned from scratch for text generation tasks on aligned corpora and often outperforms
the original Seq2Seq that relies on RNNs.

Following this idea, in Chapter 2, we explored the data-to-text task of RDF verbalization. We trained
supervised Transformer models on a newly released version of the WebNLG dataset and studied in depth
several pre-training strategies to overcome the small size of the aligned corpus. This first experiment (see
Section 2.4.3) on text generation with supervised models highlighted the limit of such models with a lack
of generalization.

The field of paraphrase generation is closely related to machine translation due to the nature of the
task. However, the latter received much more attention because of the availabily of massive aligned
corpora. For paraphrase generation, the corpora are smaller and more biased (See Section 3.2).

In this thesis, we have trained Transformer models on aligned corpora to directly compare with the
litterature model that was based on RNNs at the time. This lead to two issues. First, we found it very
difficult to reproduce the state-of-the-art results for the paraphrase generation task. An important con-
tribution of the thesis was to propose a uniform experimental framework for comparing encoder-decoder
models for paraphrase generation and to extend the training to 5 aligned paraphrase corpora including the
two highly biased ones — MSCOCO and QQP — often used in the literature. Second, the Transformer models
did not achieve the expected results. Indeed, in Section 4.2, we reported no significant differences between
the RNN-based neural networks architectures and the Transformers except on MSRPARAPHRASE. We
assume that as MSRPARAPHRASE is smaller and contains longer sentences, then the Transformer overfit
less than the RNN-based neural networks.

Due to the nature of the task and data available for supervised training, we followed the path
of search-based alternative strategies to generate paraphrases. The main motivation was to provide a
better control of the generated paraphrase. In Chapter 5, we described a search-based scheme where
candidate paraphrases are generated by iterative rewritting of the source sentence. For that, we casted
the paraphrase generation tasks as a tree-search problem. We then, developped two search strategies
MCPG and PTS and a paraphrase scoring module that leverages the BERTscore, GPT-2 and the Levenshtein
distance. The results reported in Section 5.4 showed that without a specialized training set, generic search-
based methods are competitive for paraphrase generation but it is clear that the supervised models have
the potential to generate more complex paraphrases.

Finally, as the search-based methods could only be used as an offline model for data augmentation,
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we conducted experiments of data distillation for the TRANSFORMER model in Chapter 6. The experi-
ments showed that the distillation improved the performances of the TRANSFORMER model trained on
MSRPARAPHRASE and is a promising research branch.

In order to dig deeper into this idea of pre-training and distillation. An extension to this work could
be to fine-tune a general pre-trained language model to the task of paraphrase generation. We hypothesis
that this would tackle the issue of few and biased data that we encountered when training transformer
models in chapter 4.

Another perspective to this work would be to develop new search policies in the search-based frame-
work. In particular, one could think of a fully learned policy with reinforcement learning. The main
difficulty is to find a good oracle to train the policy. We assume this would be difficult but an interesting
research avenue.

Also, one could add more control to the supervised scheme by exploring the structured prediction

solutions to text generation.
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APPENDIX A

PARAPHRASE SCORING MODULE

In this appendix, we detail the development and the implementation of the scoring module used for
the MCPG model presented in Chapter 5 and in particular in section 5.2.
The scoring module that scores the pairs of paraphrases generated by MCPG was coded in Python.
The constant renewal of models and frameworks in NLP and deep learning in general makes it difficult
to reimplement all architectures from scratch to test different scoring strategies. It was therefore decided
to unify the different implementations available to build a flexible score module that could be quickly
adapted to new models.
The idea is simple, we create a Python object for each sub-scorer in our scoring function. Each scorer
is called independently on the whole batch. Finally the sub-scores are combined in a scoring function.
In our module, we implemented scorers for the BERTscore, GPT-2, LANGUAGE-TOOL and the levenshtein
distance that were used in our final scoring function. All those classes used already available implemented
models.
We also added other scorers like :
— T2TSCORER : a scorer that interfaces the TENSOR2TENSOR [Vaswani, S. Bengio, et al., 2018]
library that implements the TRANSFORMERand SOTA neural networks architectures in TENSOR-
FLOW

— FASTTEXTSCORER : a sorer that computes the cosine similarity between FASTTEXT embeddings
[Bojanowski et al., 2017] of the two sentences. It relies on the official FASTTEXT repository. *

— BLEUSCORER, ROUGESCORER, METEORSCORER that leverage the nig-eval Python API to

use BLEU, ROUGE and METEOR metrics as the score for MCPG

Each one of these scorer modules generates a batch of score from a batch of pairs of paraphrases.
Then, the resulting list of scores is feeded to a scoring function that computes the final batch of score.

To easily choose the scorers and scoring functions, we use a simple configuration files system using
the YAML language.

1. https://github.com/facebookresearch /fast Text


https://github.com/facebookresearch/fastText
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La Génération de Texte Basée Recherche et Supervisée

Mot clés : encodeur-decodeur, triplets RDF, paraphrase, recherche dans un arbre, distillation

Résumé Les modeles supervisés
encodeurs-decodeurs nécessitent  de
grands datasets alignées pour étre entrainés.
Les données nécessaires ne sont pas en-
core disponibles pour plusieurs taches telles
que la verbalisation de triplets RDF ou la
génération de paraphrases. D’abord, nous
avons exploré la tache de verbalisation de tri-
plets RDF. Nous avons entrainé des modeles
TRANSFORMER sur une nouvelle version des
données WebNLG et avons étudié plusieurs
stratégies de pré-entrainement pour surmon-
ter la petite taille du corpus. Ensuite, nous
avons étudié la tache de génération de para-
phrases. Nous avons entrainé des modeles
TRANSFORMER sur des corpus alignés afin de
les comparer directement avec les modeles de

la littérature. Une contribution importante de
la these a été de proposer un cadre expeéri-
mental uniforme pour comparer les modeles
encodeurs-décodeurs pour la génération de
paraphrases. Nous avons également suivi la
voie des méthodes alternatives basées re-
cherche pour générer des paraphrases. Pour
ce faire, nous avons transformer la tadche de
génération de paraphrases en un probléme
de recherche dans un arbre. Nous avons
ensuite développé deux stratégies de re-
cherche : MCPG et PTS et un module de score
des paraphrases qui exploite le BERTscore,
GPT-2 et la distance de Levenshtein. Enfin,
nous avons mené des expériences de distil-
lation avec le modele TRANSFORMER.

Search-Based and Supervised Text Generation

Keywords: encoder-decoder, RDF verbalization, paraphrase , TRANSFORMER, tree-search, distillation

Abstract: In this thesis, we studied the topic
of Search-Based and Supervised Text Gen-
eration. Supervised encoder-decoder mod-
els require huge aligned dataset to be trained.
The necessary data is not yet available for
several tasks such as RDF triples verbaliza-
tion or paraphrase generation. First, we
explored the data-to-text task of RDF ver-
balization. We trained supervised TRANS-
FORMER models on a newly released ver-
sion of the WebNLG dataset and studied in
depth several pre-training strategies to over-
come the small size of the aligned corpus.
Then, we studied the paraphrase generation
task. We have trained TRANSFORMER mod-
els on aligned corpora to directly compare

with the literature model. An important con-
tribution of the thesis was to propose a uni-
form experimental framework for comparing
encoder-decoder models for paraphrase gen-
eration. We also followed the path of search-
based alternative strategies to generate para-
phrases. The main motivation was to provide
a better control of the generated paraphrase.
To do so, we casted the paraphrase genera-
tion tasks as a tree-search problem. We then,
developped two search strategies MCPG and
PTS and a paraphrase scoring module that
leverages the BERTscore, GPT-2 and the Lev-
enshtein distance. Finally, we conducted ex-
periments of data distillation for the TRANS-
FORMER model.
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