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Solveurs rapides pour l’aéroacoustique haute-fréquence

Résumé : Dans I'industrie aéronautique, l’aéroacoustique est utilisée pour modéliser la propagation d’ondes sonores
dans les flux d’air enveloppant un avion en vol. Il est alors possible de simuler le bruit produit par un avion au niveau
du sol lors du décollage et de l'atterisage afin d’assurer le respect des normes environnementales et de permettre la
conception de futurs modéles d’avion. Contrairement a la plupart des autres simulations complexes en physique, la
méthode consiste en la résolution de systémes linéaires couplés creux/denses. Pour produire un résultat réaliste, le
nombre d’inconnues dans le systéme peut étre extrément important ce qui fait de sa résolution un défi de taille.

Dans ce travail, nous nous focalisons sur la conception et I’évaluation d’algorithmes pour résoudre de grands sys-
témes linéaires de ce genre. D’un c6té, nous proposons des algorithmes utilisant 'interface de programmation (API)
existante de solveurs directs creux et denses riches en fonctionnalités et optimisés. Grace a ces algorithmes, nous ar-
rivons a contourner les défauts majeurs d’un usage basique de ces solveurs et profiter pleinement de leurs fonction-
nalités avancées telles que la compression numérique, le calcul out-of-core et le parallélisme en mémoire distribuée.
D’un autre coté, nous évaluons une API de solveur alternative qui s’appuie sur un couplage de solveurs directs a
base de taches utilisant le méme moteur d’exécution. Une API personnalisée permet d’améliorer la composabilité et
de simplifier '’échange de données entre les solveurs pour une utilisation plus efficace de resources de calcul. Tandis
que l'introduction de ces changements substantiels dans des solveurs aux fonctionnalités avancés et maintenus par
la communauté ne peut se faire qu’a long terme a cause de la complexité de leur code source (quelques centaines de
milliers de ligne de code), nous avons pu implémenter une preuve de concept de cette approche dans un prototype
réduit.

Outre la contribution principale, nous avons consacré un important effort a la reproductibilité de notre travail. A
cette fin, nous avons exploré les principes de la programmation lettrée ainsi que les outils logiciels associés pour
garantir la reproductibilité des environnements expérimentaux et des expériences numériques elles-mémes sur dif-
férentes machines et sur des périodes de temps étendues.

Mots-clés : matrices creuses et denses, H-matrices, grands systémes linéaires, méthode directe, solveurs paralléles,
compression de rang faible, out-of-core, méthode des éléments finis (FEM), méthode des éléments finis de frontiére
(BEM), couplage FEM/BEM, reproductibilité, programmation lettrée

Fast solvers for high-frequency aeroacoustics

Abstract: In the aeronautical industry, aeroacoustics is used to model the propagation of acoustic waves in air flows
enveloping an aircraft in flight. One can thus simulate the noise produced at ground level by an aircraft during the
takeoff and landing phases, in order to validate that the regulatory environmental standards are met and support
the design of future planes. Unlike most other complex physics simulations, the method resorts to solving coupled
sparse/dense systems. In order to produce a result that is physically realistic, the number of unknowns in the system
to solve can be extremely important, which makes its treatment a computational challenge.

In this work, we focus on the design and evaluation of algorithms for solving large linear systems of this kind. On
the one hand, we propose algorithms using the existing Application Program Interface (API) of fully-featured and
well-optimized sparse and dense direct solvers. Thanks to these algorithms, we can get around major shortcomings
of a straightforward usage the solvers and fully benefit from their advanced features such as numerical compression,
out-of-core computation and distributed memory parallelism. On the other hand, we investigate an alternative solver
API relying on the coupling of task-based direct solvers built on top of the same runtime. A custom API allows for a
better composability and an easier data exchange between the solvers leading to a more efficient usage of computing
resources. While introducing such substantial changes into fully-featured community-driven solvers can only be a
long-time work due to their complex codebase (several hundred thousands lines of code), we were able to implement
a proof-of-concept of this approach within a non fully-featured prototype.

Beyond the main contribution, we put a strong emphasis on the reproducibility of our work. To this end, we explore
the principles of literate programming and software tools for ensuring the reproducibility of both experimental en-
vironments and numerical experiments themselves across different machines and extended periods of time.

Keywords: sparse and dense matrices, H-matrices, large linear systems, direct method, parallel solvers, low-rank
compression, out-of-core, Finite Elements Method (FEM), Boundary Elements Method (BEM), FEM/BEM coupling,
reproducibility, literate programming

Unité de recherche
Inria Bordeaux Sud-Ouest, 200 Avenue de la Vieille tour, 33405 Talence, France.



Acknowledgements

In the first place, I would like to thank my advisors Emmanuel Agullo, Luc Giraud et Guil-
laume Sylvand for these more than three years of fruitful collaboration that led to the accom-
plishment of this thesis, allowed me to learn a lot of new exicitng things and granted me a
precious experience for my future life. I truly enjoyed our collaboration and I hope that our
paths will cross again soon.

I thank also Olivier Beaumont and Emmanuelle Saillard, who were in my monitoring com-
mittee, for their constructing remarks during the committee meetings and especially for their
support and advice regarding my future career choices.

I would then like to address my acknowledgements to Jean-Yves L'Excellent and Ulrich Riide
for dedicating their time and expertise to the review of this manuscript and for their construc-
tive feedback on the latter. Many thanks again to Jean-Yves L'Excellent as well as to Patrick
Amestoy for taking time to discuss in depth all the remarks and ideas that emerged since
the submission of the manuscript. I would also like to thank all the other members of the jury,
Stéphanie Chaillat, David Goudin, Konrad Hinsen and Christian Pérez. I thank Alfredo Buttari
for accepting the invitation too. Our collaboration during the thesis represent a very pleasant
and enriching experience for me.

I am very grateful to Jérome Robert from Airbus for our numerous exchanges as well as for his
committement, his time and his expertise that made it possible to implement the algorithms
developed within this thesis. I would also like to thank Jean-Marie Couteyen for his help with
the Airbus benchmarking software that represents one of the key building blocks of this work.

I thank Hervé Mathieu for his involvement and assistance in the deployment of the energy
profiling energy_scope tool as well as Amina Guermouche and Bastien Tagliaro for all of the
help and expertise dedicated to our common effort of studying the energy consumption of the
methods proposed in this thesis.

Many thanks from me go also to the SED and the PlaFRIM teams, especially to Frangois Rué
and Florent Pruvost. Thank you for your valuable technical help, assistance, insights and
enjoyable, often cheerful, discussions and coffee breaks.

I would like to thank again Emmanuel Agullo whose ’kindly insisting encouragements” at the
beginning of the thesis led me to discover a whole new domain of reproducibility, open-source
software and related considerations. It was a more than enriching experience. I had the occa-
sion to learn a lot of new things and tools, to change my mind on some crucial questions but
also to know a whole new community of wonderful people. If I would have to cite one person
among them, it would certainly be Ludovic Courtes. All of the efforts towards improving the
reproducibility of our work would not be possible without his great expertise and patience.
Thank you, Ludo’, for all of our exchanges and insighful discussions.

I am also very greatful to Karim for his support and our interesting discussions which helped
me to go through the toughest last months of the thesis when my working hours were often



aligned with those of evening security officers.

I reserve a huge ‘thank you’ to my fellow colleagues from Inria and LaBRI for these great past
three years and all the cheerful moments we have spent together during the coffee breaks, beer
and wine ’tastings’, apéroplages as well as many others. Thank you all! Thank you for your
friendship and your support!

Nakoniec prejdem do svojho rodného jazyka, tej l'ubozvucnej slovenciny. Vel'ka vdaka patri aj
celej mojej rodine za ich nikdy neutichajicu podporu v tomto dobrodruzstve a v podstate vo
vSetkom, ¢o som si zatial v Zivote zaumienil. Vzhl'adom na nedavnu radostna rodinnt udalost
by som rad tato pracu venoval novopecenému vnucikovi Matusovi!

Fast solvers for high-frequency aeroacoustics Marek FeL$oct



Contents

RESUME EN FRANGAIS

INTRODUCTION

CONTEXT

1.1 Continuousmodel . ... .. ... ... ... . ... ... . ...
1.2 Discretemodel . .. ... .. ... ...
1.3 Problem . . .. .. . . . .. e
1.4 Testmodels . ... ... ... . .. . ... . e
1.5 Solution of linear systems . . . . ... ... .............
1.6 Direct solution of FEM/BEM systems . . . . .. .. .........

STATE OF THE ART

2.1 Buildingblocks . . . ... ...
2.2 Vanillacouplings . . ... ... .. . . . o o
2.3 Limitations . . ... ... .. ... .. o e
24 Relatedwork . ... ...... ... . . o oo
2.5 Positioning of thethesis . . ... ... ... ... ... ... ..
2.6 Selected sparse and dense direct solvers . . . . ... ... .....

TWO-STAGE ALGORITHMS IN SHARED MEMORY

3.1 Multi-solve algorithm . . ... .. ... ... ... . ... ... .
3.2 Multi-factorization algorithm . . . .. .. ... .. ... .. ....
3.3 Experimentalresults . ... ... ... ... . ... ...,
3.4 Industrial application . .. ... ... ... ... .. ...
35 Conclusion . . .. ... ... L o

OUT-OF-CORE TWO-STAGE ALGORITHMS IN SHARED MEMORY

4.1 Out-of-core multi-solve algorithm . . ... ... ... ... ....
4.2 Out-of-core multi-factorization algorithm . . . .. ... ... ...
4.3 Experimentalresults . ... ... ... ... ... . ... ...,
4.4 Industrial application . . ... ... ... .. ... .. ..., .
45 Conclusion. . . .. ... Lo

TWO-STAGE ALGORITHMS IN DISTRIBUTED MEMORY

5.1 Parallel distributed multi-solve algorithm . . . .. ... ... ...

11

15
15
16
17
18
21
25

29
29
30
32
33
34
35

39
40
43
45
52
54

55
56
56
56
65
69

71



CONTENTS

5.2 Parallel distributed multi-factorization algorithm

5.3 Experimental results

5.4

6 MULTI-METRIC STUDY OF TWO-STAGE ALGORITHMS
Related work

Experimental results

6.1
6.2
6.3
6.4

7 TOWARDS A SINGLE-STAGE ALGORITHM

7.1
7.2
7.3
7.4
7.5
7.6

8 REPRODUCIBILITY

8.1
8.2
8.3
8.4
8.5

CONCLUSION AND PERSPECTIVES

Conclusion

Discussion

Conclusion

Design limitations of two-stage algorithms
Single-stage approach
Task-based algorithm
Prototype implementation

Preliminary experimental evaluation

Conclusion

Challenges

Strategy . . . ... ... L.
Minimal working example

Examples from this thesis

Conclusion

APPENDIX

A
B

FEM-only and BEM-only linear systems

Example study manuscript

Fast solvers for high-frequency aeroacoustics

Marexk FELSOCI



Résume en francais

Nous nous intéressons a la résolution de tres grands systemes d’équations linéaires Ax = b avec
la particularité d’étre composés a la fois d’une partie creuse et d’'une partie dense. Dans la
partie creuse, la plupart des coefficients sont nuls, ce qui peut étre exploité pour optimiser le
calcul. Dans la partie dense, la proportion de coefficients nuls n’est pas suffisamment impor-
tante pour en tirer partie. Les systemes de ce genres apparaissent dans différents domaines
scientifiques tels que 1’électromagnétisme, I'acoustique, I’étude des interactions entre le sol et
les structures ou la prédiction génomique. Dans le cas présent, les systémes linéaires émergent
des simulations numériques dans un contexte industriel ou I'on couple deux types de méthodes
des éléments finis, c’est-a-dire la Méthode des éléments finis (FEM) et la Méthode des élements
finis de frontiere (BEM). Il en résulte un systeme linéaire couplé creux/dense FEM/BEM avec
une matrice de coefficients A ayant un partitionnement distinctif 2 x 2 ou le bloc (1, 1) est une
large sous-matrice creuse associée a la FEM, (2, 1) une plus petite sous-matrice creuse représen-
tant le couplage FEM/BEM et (2, 2) une plus petite sous-matrice dense associée a la BEM. Dans
ce travail, nous considérons la plupart du temps des systemes couplés ou A est symétrique.
Néanmoins, nous considérons également un cas industriel spécifique ou A est non-symétrique.
Afin de produire un résultat physiquement réaliste, le nombre d’inconnues dans le systeme
a résoudre peut étre extrément important (des millions d’inconnues BEM, des centaines de
millions d’inconnues FEM) ce qui fait de son traitement un vrai défi.

La motivation initiale pour cette thése réside dans le domaine de 1’aéroacoustique, c’est-a-dire
I’étude du couplage entre les phénomenes acoustiques et la mécanique des fluides. Dans l'in-
dustrie aéronautique, cette discipline est utilisée pour modéliser la propagation d’ondes acous-
tiques dans les flux d’air enveloppant un avion en vol. En particulier, ceci permet de simuler
le bruit produit par un avion au niveau du sol pendant les phases de décollage et d’atterissage.
Au-dela de son importance technique pour attester du respect des normes environementales
en vigueur, c’est aussi un défi sociétal et économique. Les fabricants sont incités a minimiser
le niveau de bruit de leurs avions afin de réduire son impact sur la santé. Lors de la concep-
tion de futurs avions destinés a desservir les aéroports de banlieu, ils ont donc souvent recours
aux simulations numériques de ce genre de phénomeénes. Les modeles physiques sous-jacents
sont exprimés sous forme d’équations aux dérivés partielles. Par conséquent, la conception
d’un modeéle numérique nécessite une approximation du modele physique d’origine sur un do-
maine d’intérét et en utilisant une technique de discrétisation adaptée. Les ondes aéroacous-
tiques sont susceptibles d’interférer avec différents types de supports. Dans le flux de jet émis
par les réacteurs, le support de propagation, c’est-a-dire l'air, est tres hétérogene en termes de
température, densité, etc. Ailleurs, nous considérons le support comme étant homogene. Pour
calculer la propagation des ondes a travers le support hétérogene, c’est-a-dire le flux de jet des
réacteurs, nous utilisons la FEM conduisant a un systéme linéaire creux. Pour le support ho-
mogene, c’est-a-dire a la frontiere de ’avion et du flux de jet, nous nous appuyons sur la BEM
conduisant a un systeme dense. Le couplage de ces méthodes donne donc un systéme linéaire
creux/dense FEM/BEM que nous cherchons a résoudre (chapitre [1).

Les deux classes de méthodes que nous pouvons utiliser pour résoudre un systeme linéaire



8 Résumé en frangais

sont les méthodes itératives et directes. D’un c6té, le but des méthodes itératives est de trou-
ver une approximation de la solution en commencant par une hypothese initiale et en avan-
cant de facon itérative. Si le calcul converge suffisamment pres de la solution exacte en un
nombre raisonnable d’itérations, une méthode itérative peut garder son avantage en perfor-
mance vis-a-vis une méthode directe. De l'autr coté, les méthodes directes sont souvent basées
sur une étape initiale de factorisation de A en un produit de matrices rendant la résolution
du systéme plus facile. Dans le cas d’un systeme symétrique, la matrice A peut étre factori-
sée sous forme A = LLT ou L est une matrice triangulaire inférieure et T marque l'opérateur
de transposition. Dans la cas d’une matrice non-symétrique, A peut étre factorisée sous forme
A =LU ou L et U sont des matrices triangulaires inférieure et supérieure, respectivement. La
faible proportion de coefficients non-nuls dans une matrice creuse motive l'optimisation de
son empreinte mémoire en évitant le stockage de zéros. Le caractere creux permet également
de réduire la compléxité algorithmique des opérations matricielles associées. Néanmoins, la
factorisation d’une matrice creuse est susceptible d’introduire de nouveaux coefficients non-
nuls dans la matrice d’origine. Ce phénomeéne s’appelle le remplissage [66]]. Si le remplissage
est important, les méthodes directes peuvent conduire a une consommation de mémoire tres
élevée. Toutefois, lorsqu’elles rentrent dans la mémoire, elles sont extrément robustes du point
de vue numérique et indispensables dans le cadre d’un contexte industriel ou elles sont régu-
lierement mises en ceuvre pour résoudre des systemes allant des tailles modérées a des tailles
relativement grandes.

Dans cette these, nous nous focalisons sur les méthodes directes et étudions les possibilités de
conception de schémas efficaces pour la résolution de systémes linéaire couplés creux/denses.
Les solveurs directs creux et denses de ’état de 1’art fournissent des briques de construction
que nous pouvons utiliser. La plupart des solveurs proposent des briques de construction ba-
siques telles que la factorisation creuse, la factorisation dense et les opérations de résolution
associées. Nous pouvons les appliquer directement sur les trois sous-matrices (quatre dans un
cas non-symeétrique) de A et composer un solveur direct creux/dense. Certains solveurs bien
équipés nous permettent d’exprimer qu'une partie des inconnues dans le systeme linéaire est
liée a la sous-matrice dense. Dans ce cas, le solveur creux a la connaissance de la matrice A dans
son intégralité et peut effectuer des opérations creuses de maniere plus efficace. Indépendem-
ment du choix des briques de construction, nous appelons ces couplages simples de solveurs
directs creux et denses de 1’état de l’art les couplages de base. Avec la taille grandissante du
systeme linéaire couplé et plus particulierement de sa partie dense, les couplages de bases
peuvent tres vite venir a manquer de mémoire. Pour faire face a ce probleme, nous pouvons
nous appuyer sur certaines fonctionnalités avancées souvent implémentées dans les solveurs
directs bien équipés. Par exemple, dans le cadre d’un seul ordinateur a mémoire partagée, la
compression numérique peut étre utilisée pour réduire 'empreinte mémoire ainsi que le temps
du calcul. Puis, grace aux techniques out-of-core (déplacement de la mémoire vive vers le disque
des données qui ne sont pas utilisées dans le calcul actuel), nous pouvons d’avantage réduire la
consommation mémoire. Finalement, le calcul paralléle sur plusieurs ordinateurs a la fois peut
nous permettre de résoudre des systemes encore plus grands en distribuant la charge de don-
nées et de travail parmi ces ordinateurs. Tandis que les briques de construction individuelles
des solveurs directs creux et denses peuvent bénéficier de ces fonctionnalités avancées, leur ex-
ploitation a l’articulation entre les opérations creuses et denses n’est pas triviale. L'interface de
programmation (API) des solveurs n’a simplement pas été congue pour ce genre d’utilisation.
En effet, peu importe le choix des briques de construction ou des fonctionnalités avancées, le
résultat intermédiaire passé du solveur creux au solveur dense est sous forme d’une matrice
non-compressée entierement stockée en mémoire vive. Cette matrice a la taille du bloc dense
(2, 2) dans le systeme d’origine ce qui représente un important désavantage pour les couplages
de base. A cause de leur dimension (la taille du bloc dense en particulier), les problémes aux-
quels nous nous intéressons ne peuvent pas étre traités en utilisant un couplage de base.

Fast solvers for high-frequency aeroacoustics Marek FeL$oct



La résolution de systemes linéaires couplés creux et denses est cruciale au-dela du domaine de
I’aéroacoustique. Plusieurs approches basées sur des méthodes directes ont été étudiées dans la
litérature [61},(74,[129, 73, [116]]. Dans [74,[129]] 'objectif principal est de bénéficier du parallé-
lisme en mémoire distribuée dans la partie dense du systéeme pour réduire son cout en matiere
du temps de calcul et de la consommation mémoire tandis que la partie creuse ne nécessite
méme pas d’étre parallélisée. Cependant, [61},[73,[116] consideérent des systemes linéaires avec
des parties creuses plus larges et proposent des schémas pour traiter en parallele et la par-
tie dense et la partie creuse. Le chapitre [2| fournit une analyse plus détaillée des approches
connexes. Toutefois, nous soulignons que dans les études citées les tailles de problemes trai-
tées restent relativement petites. Ils peuvent donc étre résolus grace a un couplage de base des
solveurs creux et denses de 1’état de I’art comme nous l’avons vu auparavant. De plus, a notre
connaissance, aucune des approches disponibles pour résoudre des systemes linéaires couplés
ne bénéficie de la compression numeérique, du calcul out-of-core ou n’essaie de mettre en ceuvres
ces techniques en mémoire distribuée.

Le but de cette these est de concevoir et évaluer de nouveaux algorithmes permettant d’aller
au-dela des limites actuelles des approches de résolution de 1’état de ’art (chapitre [2)) aussi
bien sur un seul ordinateur en mémoire partagée que sur une grappe de machines pour le
calcul de haute performance. D’un c6té, nous proposons des algorithmes se basant sur I’API
existante des solveurs directs creux et denses bien équipés et bien optimisés. Les couplages de
bases qui s’appuient sur ces solveurs ne nous permettent de tirer pleinement avantage ni de
la compression numérique, ni du calcul out-of-core, ni du parallélisme en mémoire distribuée
dans le cadre du processus de résolution. Nos algorithmes visent a composer des briques de
construction des solveurs sur des sous-matrices du systeme bien sélectionnées afin de pou-
voir appliquer ces fonctionnalités avancées de maniere efficace (chapitres and |5) dans les
parties creuses et denses du systeme ainsi qu’a 'articulation entre les deux. En plus des expé-
riences spécifiquement destinées a évaluer 'impact de ces fonctionnalités, nous avons mené
une étude multi-métrique (chapitre [6) des algorithmes pour analyser le processus de calcul
plus en détails. De l'autre coté, nous proposons un couplage de solveurs alternatif s"appuyant
sur des solveurs directs choisis a base de taches utilisant le méme moteur d’exécution (chapitre
[7). Dans ce contexte, nous explorons les possiblités d’adaptation de I’API des solveurs directs.
Le but est d’assurer une meilleure composabilité et un passage plus simple de données entre le
solveur creux et le solveur dense ainsi qu’un usage des ressources de calcul plus efficace. Tandis
que changer des algorithmes et ajouter une nouvelle API dans un solveur direct bien équipé
et développé par la communauté représente un travail a long terme a cause de la compléxité
de son code source (plusieurs centaines de milliers de lignes de code), cette approche peut étre
implémentée dans le cadre d’un prototype moins bien équipé au prix de renoncer a certaines
des fonctionnalités avancées.

En plus de la contribution scientifique principale, nous mettons un fort accent sur la répro-
ductibilité de notre travail. Nous faisons usage d’un gestionnaire de paquets transactionnel
garantissant la réproductibilité d’envrionnements logiciels a travers différentes machines et
grappes de calcul de haute performance. En outre, nous nous appuyons sur les principes de
la programmation lettrée dans un effort de maintenir une documentation exhaustive, claire et
accessible de nos expériences et des environnements associés. Nous fournissons ce genre de
journal de laboratoire pour toutes les expériences présentées dans cette theése sous forme de
rapports techniques exhaustifs tels que [30]. Un chapitre entier de la these (Chapitre|8) décrit
notre méthodologie et propose un exemple fonctionnel minimal d’une étude expérimentale
reproductible et des instructions permettant sa reproduction.

Ce manuscrit est organisé comme suit. Le chapitre [1| décrit le contexte de cette thése ainsi
que l'origine des systémes linéaires couplés creux/denses FEM/BEM. Il fournit également une
introduction aux méthodes de résolution de systemes linéaires en général et détaille la solution

Marek FEL$oct Fast solvers for high-frequency aeroacoustics
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des systemes linéaires couplés creux/denses FEM/BEM en particulier. Ensuite, le chapitre
présente 1’état de I’art des approches existantes pour résoudre ce genre de systemes linéaires et
précise le positionnement de cette these vis-a-vis des travaux connexes et de 1’état de ’art.

Dans le chapitre (3| nous introduisons deux nouvelles classes d’algorithmes se basant sur la
compression numérique pour le traitement de systemes linéaires couplés creux/denses FEM/-
BEM relativement grands sur un seul ordinateur en mémoire partagée. Ils s’appuient sur les
briques de construction des solveurs directs creux et denses bien équipés de I’état de l’art. Tan-
dis que la compression numérique peut étre directement appliquée sur des structures de don-
nées internes, le résultat intermédiaire passé du solveur creux au solveur dense est toujours
stocké entierement en mémoire vive sous forme d’une matrice dense non-compressée. Ceci
devient rapidement une limitation pour le traitement de grands systémes couplés. Les algo-
rithmes proposés représentent un schéma alternatif pour I’application des briques de construc-
tion des solveurs permettant l'usage de la compression numérique pour la résolution de sys-
temes couplés FEM/BEM.

Le méme probleme nous empéche d’avoir recours au calcul out-of-core méme si celui-ci peut-
étre appliqué aux structures de données internes des solveurs creux et denses de la méme
facon que la compression numérique. Le chapitre [4 présente alors I’extension des algorithmes
proposés au calcul out-of-core. De plus, pour pouvoir traiter des systemes couplés encore plus
grands, nous adaptons les algorithmes pour le calcul en mémoire distribuée dans le chapitre

Grace a I’étude de multiples métriques de performance au méme temps, nous pouvons mieux
comprendre le comportement d’une implémentation et repousser ses limites dans le but de
traiter de plus gros cas. La considération de l’empreinte carbone dans 'industrie en général
et dans les centres de calcul en particulier ameéne la communauté scientifique et I'industrie a
s’intéresser non seulement aux métriques habituelles telles que le temps de calcul, la consom-
mation de la mémoire vive et de 'espace disque mais aussi a la consommation de I’énergie.
Dans le chapitre [6) nous explorons le profil énergétique de la solution d’un systéme linéaire
couplé FEM/BEM et évaluons la fagcon dont la consommation de la puissance varie avec le
temps de calcul, le nombre d’opérations a virgule flottante, la quantité de mémoire utilisée et
les choix algorithmiques disponibles au niveau du solveur.

Les algorithmes proposés dans le chapitre[3nous donnent la possibilité de traiter des systemes
couplés FEM/BEM considérablement plus grands comparé aux couplages de base des solveurs
de l’état de I’art. Cependant, ces algorithmes restent sous-optimaux et en termes du temps de
calcul et en termes de la consommation mémoire. Dans le chapitre [7, ceci nous conduit a la
conception d’un prototype de schéma d’implémentation s’appuyant sur des solveurs directs
creux et denses a base de taches utilisant le méme moteur d’exécution. Le but est d’arriver a
une implémentation idéale du point de vue de la performance ainsi que de l’exploitation de la
symétrie et du caractere creux du systeme linéaire a résoudre.

Enfin, dans le chapitre[8 nous nous intéressons aux questions de reprodcutiblité. Nous y explo-
rons les principes de la programmation lettrée ainsi que les outils logiciels destinés a garantir
la reproductibilité et des environnements expérimentaux et des expériences elles-mémes a tra-
vers différentes machines et de longs intervalles de temps.
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Introduction

We are interested in the solution of very large linear systems of equations Ax = b, with the
particularity of having both sparse and dense parts. In the sparse part, most of the coefficients
are zeros which can be used to optimize the computation. In the dense part, the proportion
of zero coefficients is not high enough to take advantage of it. Systems of this kind appear in
various scientific fields such as electromagnetism, acoustics, study of structure-soil interaction
or genomic prediction. In our case, the linear systems arise from numerical simulations in
an industrial context when we couple two types of finite elements methods, namely the vol-
ume Finite Element Method (FEM) and the Boundary Element Method (BEM). This leads to a
coupled sparse/dense FEM/BEM linear system with a coefficient matrix A having a distinctive
2 x 2 partitioning where the block (1, 1) is a large sparse submatrix resulting from FEM, (2, 1) a
smaller sparse submatrix representing the FEM/BEM coupling and (2, 2) a smaller dense sub-
matrix resulting from BEM. In this work, most of the time we consider coupled systems where
A is symmetric. However, we consider also a specific industrial situation where A is non-
symmetric. In order to produce a result that is physically realistic, the number of unknowns
in the system to solve can be extremely important (millions of BEM unknowns, hundreds of
millions of FEM unknowns), which makes its treatment a computational challenge.

The original motivation for this thesis comes from the domain of aeroacoustics, which is the
study of the coupling between acoustic phenomena and fluid mechanics. In the aeronautical
industry, this discipline is used to model the propagation of acoustic waves in air flows envelop-
ing an aircraft in flight. In particular, it allows one to simulate the noise produced at ground
level by an aircraft during the takeoff and landing phases. Beyond its technical importance
to validate that the regulatory environmental standards are met, it is also both a societal and
an economic challenge. Manufacturers are enticed to reduce the noise level of their aircrafts
for alleviating the impact on health. While designing future planes that can get authorized to
access suburban airports, they can rely on numerical simulations of such aeroacoustic phenom-
ena. Underlying physical models are expressed using partial differential equations. Therefore,
prior to computing a numerical model, an approximation of its original physical expression
is made over a limited domain using a suitable discretization technique. Aeroacoustic waves
may interfere with various media. In the jet flow created by reactors, the propagation media,
i.e. the air, is highly heterogeneous in terms of temperature, density and so on. Elsewhere, we
approximate the media as homogeneous. To compute acoustic wave propagation in heteroge-
neous media, i.e. the jet flow, we use FEM leading to a sparse linear system. For homogeneous
media, i.e. on the boundary of the aircraft and of the jet flow, we rely on BEM leading to a dense
system. The coupling of these methods results in a sparse/dense FEM/BEM linear system we
seek to solve (Chapter|1).

The two main classes of methods we can employ to solve a linear system are iterative and
direct methods. On the one hand, the goal of iterative methods is to find an approximation
of the solution starting from an initial guess and progressing iteratively. If it converges close
enough to the exact solution in a reasonable amount of iterations, an iterative method can
preserve its performance advantage over a direct approach. On the other hand, direct methods
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12 Introduction

are often based on an initial factorization step of A into a product of matrices making the linear
system easier to solve. In the case of a symmetric linear system, the matrix A may, for instance,
be factorized under the form A = LLT where L is a lower triangular matrix and T denotes the
transpose operator. In the case of a non-symmetric matrix, A can be factorized under the form
A = LU where L is a lower-triangular and U an upper-triangular matrix. The low proportion
of non-zero coefficients in a sparse matrix motivates the optimization of its memory footprint
by avoiding any unnecessary storage of zeros. The sparse pattern also allows for reducing
the algorithmic complexity of associated matrix operations. However, the factorization of a
sparse matrix is likely to introduce new non-zero coefficients into the original matrix. This
phenomenon is called fill-in [66]. If the fill-in is important, direct methods may lead to an
important memory consumption. Nevertheless, when they fit in memory, they are extremely
robust from a numerical point of view and represent a must-have in an industrial context where
they are commonly employed to solve moderate to relatively large problems.

In this thesis, we focus on direct methods and investigate the opportunities to design efficient
schemes for solving coupled sparse/dense linear systems. State-of-the-art sparse and dense
direct solvers provide building blocks we can make use of. Most of the solvers provide baseline
building blocks such as sparse factorization, dense factorization and the corresponding solve
operations. We can directly apply them on the three submatrices (four in a non-symmetric case)
of A and compose a coupled sparse/dense solver. Some fully-featured sparse direct solvers al-
low us to express that part of the unknowns in the linear system is associated with the dense
submatrix. In this case, the sparse solver is aware of the entire coefficient matrix A and can per-
form the sparse operations in a more efficient way. Independently from the choice of building
blocks, we refer to these straightforward couplings of state-of-the-art sparse and dense direct
solvers as to vanilla couplings. However, with growing size of the coupled linear system and
especially of the dense part, vanilla solver couplings may quickly run out of memory. To cope
with this, we can resort to some advanced functionalities often implemented in fully-featured
direct solvers. For instance, considering the scope of a single shared-memory workstation,
numerical compression can be used to reduce the memory footprint as well as the time of
computations. Thanks to out-of-core techniques (moving currently unused data to disk), one
can further reduce the memory consumption. Parallel computation on multiple workstations
then allow for solving even larger problems by distributing the load of data and computations
among the workstations. While individual building blocks of the sparse and the dense direct
solver can benefit from these advanced features, it is not trivial on the articulation between
sparse and dense operations. The Application Program Interface (API) of the solvers was sim-
ply not designed for this kind of usage. Indeed, no matter the choice of building blocks or
advanced features, the intermediate result passed from the sparse to the dense solver is in the
form of a non-compressed dense matrix entirely stored in memory. This matrix has the size
of the dense block (2, 2) in the original system which still represents a major drawback for
vanilla solver couplings. Due to their dimension (the size of the dense block in particular),
the problems we are interested in cannot be processed using a vanilla sparse and dense solver
coupling.

Solution of coupled sparse/dense linear systems is crucial beyond the scope of aeroacous-
tics. Multiple approaches based on direct methods have been investigated in the literature
(61 74, 129, [73] [116]. In [74) 129], the main objective is to take advantage of distributed-
memory parallelism within the dense part of the system to reduce its cost in terms of com-
putation time and memory consumption while the sparse part does not even require parallel
processing. However, [61},[73}[116]] consider linear systems with larger sparse parts and propose
schemes for processing both sparse and dense operations in parallel. We refer to Chapter [2|for
a more detailed review. However, we highlight that, in the cited studies, the tackled problem
size remains relatively small, which makes it possible to handle the system through a vanilla
coupling of the state-of-the-art sparse and dense direct solvers as seen above. Moreover, to
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the best of our knowledge, none of the available approaches for solving coupled systems ben-
efit from numerical compression, out-of-core computation or try to use these techniques in a
distributed-memory environment.

The goal of this thesis is to design and evaluate novel algorithms allowing for bypassing the
current limits of the state-of-the-art solution approaches (Chapter|2) as well on a single multi-
core workstation as on high-performance distributed-memory parallel computers. On the
one hand, we propose algorithms using the existing API of fully-featured and well-optimized
sparse and dense direct solvers. Vanilla couplings based on top of these solvers do not allow
us to fully take advantage of numerical compression, out-of-core computation and distributed-
memory parallelism within the solution process. The aim of our algorithms is therefore to
compose the solver building blocks on carefully chosen submatrices so as to efficiently apply
these advanced features (chapters and [5) in both the sparse and the dense parts of the
coupled system as well as on their articulation. In addition to the experiments meant to specif-
ically evaluate the impact of these features, we conduct a multi-metric study (Chapter|[6) of the
algorithms to analyze the computation process in further details. On the other hand, we pro-
pose an alternative solver coupling relying on selected task-based direct solvers built on top of
the same runtime (Chapter|[7). In this context, we explore the possibilities of adapting the API
of the direct solvers. The goal is to ensure a better composability and an easier data passing be-
tween the sparse and the dense solvers as well as a more efficient usage of computing resources.
While changing the algorithms and adding a new API into a fully-featured community-driven
direct solver would represent a long-time work due to the complex codebase of the latter (up
to several hundred thousands lines of code), this approach can be implemented within a non
fully-featured prototype at the cost of renouncing to some of the advanced features.

In addition to the main scientific contribution, we put a strong emphasis on ensuring the repro-
ducibility of our work. We make use of a functional transactional package manager allowing
for a complete reproducibility of software environments across different machines and high-
performance computing clusters. Also, we rely on the principles of literate programming in an
effort to maintain an exhaustive, clear and accessible documentation of our experiments and
of the associated environment. We provide this kind of documentation for all the experiments
presented in this thesis in the form of exhaustive technical reports such as [30]. However,
an entire chapter of the thesis (Chapter|8)) describes our methodology and proposes a minimal
working example of a reproducible experimental study and associated reproducing guidelines.

The present manuscript is organized as follows. Chapter [1| describes the context of the thesis
and the origin of the coupled sparse/dense FEM/BEM linear systems. It also provides an in-
troduction to the solution methods for linear systems in general and details the solution of the
coupled sparse/dense FEM/BEM linear systems in particular. Chapter [2]then draws a state of
the art of existing approaches for solving this kind of linear systems and specifies the position-
ing of the thesis with respect to related work and the state of the art.

In Chapter |3, we introduce two new classes of algorithms relying on numerical compression
techniques allowing for processing relatively large coupled sparse/dense FEM/BEM systems
on a single shared-memory workstation. They are based on the building blocks of fully-
featured state-of-the-art sparse and dense direct solvers. While numerical compression can
be applied on internal data structures out-of-the-box, the intermediate result passed from the
sparse to the dense solver is always stored entirely in memory in a non-compressed dense form.
This quickly becomes a limitation for the processing of large coupled systems. The proposed
algorithms represent an alternative scheme for applying the solver building blocks which en-
ables the usage of numerical compression for the solution of coupled FEM/BEM systems.

The same limitation also prevents us from resorting to out-of-core computation although it
can be applied on internal data structures of both the sparse and the dense direct solvers, just
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as numerical compression. Chapter [4/thus presents the extension of the proposed algorithms
to out-of-core computation. Furthermore, to allow for the processing of even larger coupled
systems, we adjust the algorithms for distributed-memory parallelism in Chapter

Thanks to the study of multiple performance metrics at the same time, one can better under-
stand the behavior of an implementation and push its limits in order to handle larger cases.
The consideration of carbon footprint issues in industry in general and in computing centers
in particular leads the research community and the industry to consider not only the usual
metrics such as the computation time, the consumed RAM and the disk space but also the en-
ergy consumption. In Chapter [6), we explore the energy profile of the solution of a coupled
FEM/BEM linear system, and assess how the power consumption varies with the computation
time, the flop rate, the amount of memory used and with the available algorithmic choices at
the solver level.

Thanks to the algorithms proposed in Chapter (3| we can process considerably larger coupled
FEM/BEM systems compared to a vanilla coupling of state-of-the-art solvers. However, the
algorithms remain suboptimal in terms of both the computation time and the memory con-
sumption. In Chapter|[7} this leads to the design of a prototype implementation scheme relying
on task-based sparse and dense direct solvers sharing the same runtime. The goal is to get on
the track of an ideal implementation from the point of view of performance and the exploita-
tion of sparsity and symmetry of the system.

Finally, in Chapter (8, we address the questions of reproducibility. To this end, we explore the
principles of literate programming and software tools for ensuring the reproducibility of both
experimental environments and numerical experiments themselves across different machines
and extended periods of time.
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CHAPTER

Context

Within this thesis, we focus on the solution of a particular kind of linear systems, i.e. the
coupled FEM/BEM linear systems, arising from the simulations of aeroacoustic problems such
as the propagation of sound waves around the aircrafts. The goal of the present chapter is
to explain the origin of these linear systems and how to solve them numerically. We thus
introduce the studied phenomenon and its initial continuous physical model in Section[I.1} In
Section we discuss the discretization of the physical model into a numerical one. Then, in
Section [I.3] we give the expression of the latter using a system of linear equations. Solving the
system finally leads to the result of the simulation. Our main interest resides precisely in the
associated numerical solution methods. We thus explain methods for solving linear systems in
general and coupled FEM/BEM systems in particular in sections[1.5/and 1.6} respectively.

1.1 Continuous model

We are interested in a particular kind of aeroacoustic phenomenon and study the propagation
of sound waves produced by an aircraft at take-off (see Figure|l.1)). It can be seen as an acoustic
wave propagation problem and expressed using Partial Differential Equations (PDE).

Figure 1.1: Airbus A350-900 XWB [3] at take-off producing a jet of exhaust gas traversed by an
acoustic wave (blue arrow) from the engine, reflected on the wing and crossing the jet flow.

There are multiple media aeroacoustic waves may interfere with. The model takes into consid-
eration aircraft’s and engine’s surfaces as well as exhaust gas and air flows (see Figure[1.2a). On
the other hand, some aspects such as engine interior or retro-action sound waves are omitted
to prevent the model from being unnecessarily too complex. Eventually, the model allows us to
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16 CHAPTER 1. CONTEXT

study how acoustic waves produced by a jet engine propagate throughout a heterogeneous en-
vironment. Although some waves may only go through, for example, ambient air considered to
be a homogeneous medium, others may traverse environments with varying parameters. Here,
the homogeneous Helmholtz PDE is used to model the domains considered as homogeneous,
such as the air surrounding the aircraft (see the light blue part in Figure|1.2b). On the contrary,
the jet of exhaust gas produced by the aircraft’s engine must not be con31dered as such. Both
temperature and velocity vary inside of the jet flow depending on the engine operation condi-
tion (see the green-striped part in Figure [[.2b). This is represented thanks to an anisotropic
second-order PDE.
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(b) A zoom on the left figure where
dashed lines delimit the green-striped
(a) A global view where the red part rep-  domain considered heterogeneous in-
resents the boundary of the media con-  (Juding cold jet flow (dark blue) passing
sidered as homogeneous and the green  through the ducted fan, slower hot jet
part represents the media considered as  flow (violet) passing through the engine’s
heterogeneous. core and a part of ambient air (light blue)
for discretization to yield a simpler cylin-
drical 3D form.

Figure 1.2: An aeroacoustic wave (dark blue arrow) produced by the aircraft’s engine, reflected
on the wing and traversing the jet of exhaust gas and the ambient air (light blue).

1.2 Discrete model

The continuous physical model introduced in Section|1.1|is expressed using Partial Differential
Equations (PDE) which are likely to involve concepts that can not be modelled on computers
such as equations of integral functions. Therefore, prior to representing the model numerically,
an approximation of its original physical expression must be made over a limited domain us-
ing an appropriate discretization technique. In this case, heterogeneous media are discretized
using the Finite Elements Method (FEM) [49,169,[108,130] and the Boundary Elements Method
(BEM) [46} [115} [126]] is applied on media considered as homogeneous (see Figure [1.2).

The idea behind FEM is to partition the target domain into smaller parts referred to as finite
elements such as tetrahedrons. Eventually, to each of these elements, a local linear equation is
attributed, which approximates the original PDE on the selected part of the domain. The set of
these linear equations forms a linear system that approximates the original continuous model
to the extent of the domain of interest. Here, we model the jet flow beginning at the rear part
of the aircraft’s engine up to a limited distance from the engine and for a concrete frequency
of the problem. On the other hand, the goal of BEM is to solve a given problem only on the
boundary values of the considered domain. As the media it is applied on is considered as homo-
geneous, the method does not mesh over the entire domain, only over its surface. By definition,
discretization of a three-dimensional problem using BEM makes it two-dimensional.

Both methods may be used together thanks to a coupling technique [55} [54] allowing one to
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1.3. Problem 17

relate the unknowns of linear systems resulting from both methods with each other if, as in
our case, the problems expose identical properties on the interface between FEM and BEM
domains. Figure shows examples of a 3D cylinder volume mesh resulting from a FEM
discretization and a 2D surface mesh resulting from a BEM discretization, used on the outer
surface of the volume mesh as well.

(a) A real-life case. (b) A numerical model example.

Figure 1.3: Example of a FEM/BEM discretization. The red mesh corresponds to the BEM
discretization of the surface of the aircraft as well as the outer surface of the green 3D cylinder
volume mesh. The latter represents the FEM discretization of the jet of exhaust gas produced
by the aircraft’s engine.

1.3 Problem

The discretization of the continuous model (see Section [1.1)) based on the FEM/BEM coupling
discussed in Section [I.2] leads to the global linear system in featuring three main cat-
egories of unknowns: x; associated with the formulation of the FEM discretization on the
three-dimensional domain corresponding to the jet exhaust flow, x, associated with the cou-
pling where unknowns are shared between the BEM-discretized domain and the boundaries of
the FEM-discretized domain on the exterior surface of the jet exhaust flow, x5 associated with
the formulation of the BEM discretization on the two-dimensional domain corresponding to
the surface of the aircraft (see Figure [I.3b). The zeros in the coefficient matrix A, namely at
As; and Aqz, indicate that there is no interaction between the FEM-discretized and the BEM-
discretized domains in the matching part of the model.

Aip A 0 X by
Ay Ay Ayl X x| = b (1.1)
0 Az Az X3 b3

In practice, x, and x3 can be grouped to one unique surface mesh [ related to the BEM dis-
cretization while x; is associated to the volume mesh [@ resulting from the FEM discretization.
Consequently, in the simplified formulation of the system, x, and x5 from become x; and
x1 becomes x,:

R || 4, AT X, by | (1.2)
Rzl Agy A Xs bs

A in is a 2 x 2 block symmetric coefficient matrix, where A,, represents the action of the
volume part on itself, A, represents the action of the exterior surface on itself, Ay, represents
the action of the volume part on the exterior surface and Al is the transpose of Ay,. R; and R,
respectively denote the first and the second block rows of the linear system.
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The solution of leads to the result of the numerical simulation of the acoustic pressure
in different parts of the model (see Section[1.2). Key properties of the system with respect to
the design of dedicated numerical solution methods, i.e. the total number of unknowns and
the ratio of FEM-related unknowns x, to BEM-related unknowns x,, depend on the simulated
acoustic frequencies as well as the extent of the model. In a model considering a full aircraft
(see Figure[1.3b) and the acoustic frequency up to 20 kHz inducing edge sizes below 1 cm, the
number of unknowns x, and the number of unknowns x; can be extremely high. It grows like
the cube and the square of the simulated acoustic frequency, respectively. Also, such a model
has a larger surface mesh and consequently a higher ratio of x; to x, compared to a more
reduced model, e.g. representing only a wing and a part of the aircraft’s fuselage (see Figure
[1.6), or to an academic model, e.g. considering only the boundary of the volume domain (see

figures and [1.4b).

From an industrial point of view, it is crucial to be able to reduce the cost of these simula-
tions in terms of memory usage and time, in order to tackle the largest possible spectrum of
audio-frequencies on existing workstations and high-performance computing clusters. The
main focus of this thesis is therefore to propose efficient numerical solution methods for cou-
pled sparse/dense FEM/BEM linear systems such as (1.2). For the evaluation of the proposed
methods, we rely on multiple test models introduced in Section

1.4 Test models

Most of the time, we assess the proposed numerical solvers for coupled FEM/BEM systems
such as on open-source academic test cases (see Section available to the scientific
community [22]. They are easy and fast to generate in arbitrarily large sizes and still yield
linear systems which are close enough to those arising from real-life models (see Figure [1.3).
In addition to that, we validate the solvers on an industrial test case (see Section [1.4.2).

1.4.1 Academic cases

Academic test cases have a simplified pipe shape (see Figure[1.4). We can conveniently choose
arbitrary pipe size, radius as well as the total number of unknowns in the corresponding cou-
pled FEM/BEM linear system. In this thesis, we perform benchmarks on a wide pipe and a
narrow pipe test cases. Both are 4 meters long. However, the wide pipe (see Figure has a
radius of 2 meters and the narrow pipe (see Figure has a radius of 0.8 meters. Smaller
radius reduces the volume domain and therefore leads to a higher proportion of BEM-related
unknowns x, in the narrow pipe compared to the wide pipe.

The vertices of the pipe mesh represent the unknowns in the linear system coming out of
the problem discretization (see Section [I.3). In the volume part of the pipe (green portion in
Figure[L.4), discretized using FEM, each vertex interacts solely with its immediate neighbors.
In the outer surface of the pipe (red portion in Figure[1.4), discretized using BEM, each vertex
interacts with all the others. All the unknowns rely on the same mesh. The unknown count
depends on the wavelength A of the physical problem being simulated. The more there are
vertices in the mesh, the more there are unknowns and the more the model is accurate (see
Figure[1.5). For the experiments, we consider the wavelength parameter A to be set such that
there are 10 vertices per wavelength.

The coefficient matrix A in the resulting coupled sparse/dense FEM/BEM linear system can be
symmetric or non-symmetric. The elements of A can be either real or complex, using simple or
double precision arithmetic and are defined depending on the associated category of unknowns
(see Section [I.3). For two unknowns x and p associated with the BEM discretization, with
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a) wide pipe (b) narrow pipe
(length 4 m, radius: 2 m) (length: 4 m, radius: 0.8 m)

Figure 1.4: Academic test cases in shape of pipe with BEM surface mesh in red and FEM volume
mesh in green.

a) wide pipe couting 20,000 vertices. b) wide pipe counting 100,000 vertices.

Figure 1.5: wide pipe with different number of vertices. Both images use the same scale.
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k =2m/) and r the distance between these unknowns, the interaction ay, of the latter is defined
as follows:
eikr

fyy = ypem (1.3)

If r is 0, we set r to the size of an average mesh step divided by 2. Then, for two unknowns
x and y associated with the FEM discretization (connected by one edge), the interaction a,, of
these two unknowns is defined as follows:

: -5y if
axy:{OOSX(l )3) ifxzy (1.4)

Note that this is not the way the interactions are determined in real-life aeroacoustic models.
Nevertheless, the definitions in (1.3) and (1.4) allow for a simple construction of coefficient
matrices for testing purposes while providing values that are similar enough to real-life cases.

In the experimental evaluations, we consider symmetric coupled FEM/BEM linear systems of
various sizes. N, npgpr and nggys denote the total number of unknowns in the system, the count
of FEM-related unknowns and the count of BEM-related unknowns, respectively. Regarding
the wide pipe test case, the values of nggys and nggy, for each value of N we consider in this
thesis are detailed in Table[1.1l

Total unknowns # FEM-related unknowns # BEM-related unknowns

N NEEM NBEM
50,000 44,960 5,040
100,000 91,891 8,109
250,000 235,165 14,835
500,000 476,423 23,577

1,000,000 962,831 37,169
1,300,000 1,255,732 44,268
1,500,000 1,451,250 48,750
2,000,000 1,941,090 58,910
2,500,000 2,431,476 68,524
3,000,000 2,922,756 77,244
4,000,000 3,906,407 93,593
5,000,000 4,891,562 108,438
6,000,000 5,878,057 121,943
7,000,000 6,864,384 135,616
8,000,000 7,852,006 147,994
9,000,000 8,839,766 160,234
12,000,000 11,805,780 194,220
14,000,000 13,784,898 215,102
15,000,000 14,774,880 225,120
28,000,000 27,658,780 341,220
34,000,000 33,611,392 388,608
40,000,000 39,567,785 432,215

Table 1.1: Counts of FEM-related and BEM-related unknowns for all the coupled FEM/BEM
linear systems considered within the thesis and arising from the wide pipe test case.

For the narrow pipe test case, the values of npg) and nggy are given in Table[1.2]
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Total unknowns # FEM-related unknowns # BEM-related unknowns

N NEEM NBEM
1,000,000 949,800 50,200
2,000,000 1,920,116 79,884
3,000,000 2,895,744 104,256
4,000,000 3,873,517 126,483
5,000,000 4,852,940 147,060
6,000,000 5,834,472 165,528
7,000,000 6,816,640 183,360

Table 1.2: Counts of FEM-related and BEM-related unknowns for all the coupled FEM/BEM
linear systems considered within the thesis and arising from the narrow pipe test case.

1.4.2 Industrial case

The industrial test case we rely on is illustrated in Figure It features 2,090,638 volume
unknowns x, and 168,830 surface unknowns x;. The proportion of surface unknowns is sig-
nificantly higher than in the considered academic cases (see Section[1.4.1). Indeed, in the pipe
the surface mesh covers only the outer surface of the jet flow (i.e. the volume mesh), whereas
in this industrial test case it also includes the wing and part of the fuselage of the aircraft. Due
to the physical model used, the coefficient matrix A is complex and non-symmetric.

(a) A global view. (b) A vertical cut-plane showing the inside of the
reactor and the flow: the green mesh is made
of tetrahedra, while the red mesh is hollow and
made of triangles.

Figure 1.6: Industrial test case with BEM surface mesh in red (the right part of the plane, the
wing and the engine) and FEM volume mesh in green (the jet flow).

1.5 Solution of linear systems

Prior to focusing on the solution methods shaped for the target coupled FEM/BEM linear sys-
tem (1.2)) in particular, we give an overview of numerical solving techniques for linear systems
in general. We also discuss the accuracy of the numerical solution in Section|1.5.2

We consider two classes of linear systems, sparse and dense. In sparse linear systems, the
coefficient matrix is mostly composed of zeros and has only a few non-zero entries. In dense
linear systems, it is the opposite. There is no universal condition for deciding whether a matrix
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should be considered sparse or not. In practice, a matrix can be characterized as sparse when
the computation involving the matrix can take advantage of the high count of zero entries and
their locations [114].

Regardless its sparsity, a linear system may be solved using either an iterative or a direct ap-
proach. The goal of iterative methods is to find an approximation of the solution. A sequence
of terms xy,...,x, is calculated, in which a given term x; is based on previous ones and ap-
proximates the solution x. The idea is to converge as much as possible to the exact solu-
tion while preserving the performance advantage over direct methods. For solving coupled
FEM/BEM systems, numerous iterative approaches have been proposed in the last decades
(124} 51,1106, /84}92,91],194,(109,83],50, 116].

We remind the reader that, in this thesis, we exclusively focus on direct methods. In a sparse
context, direct methods are known to possibly consume a large amount of memory due to fill-
in [66] (earlier announced in and further discussed in Section [1.5.1.2). On the
other hand, when they fit in memory, they are extremely robust from a numerical point of
view and represent a must-have in an industrial context where they are commonly employed
to solve moderate to relatively large problems.

1.5.1 Direct methods

Instead of computing the inverse of the coefficient matrix, direct methods generally rely on an
initial decomposition or factorization of the latter into a product of matrices making the linear
system easier to solve. For example, the LU factorization algorithm decomposes the coefficient
matrix into a lower triangular matrix L and an upper triangular matrix U transforming an
initial system of form Ax = b to LUx = b which can be split into a couple of equations such
as Ly = b and Ux = y. These triangular systems may be eventually solved using the so-called
forward substitution for the first equation and the so-called backward substitution for the
second one.

The LU factorization first appeared in the work of the Polish astronomer Tadeusz Banachie-
wicz from 1938 [45) [119]. It is also applicable on non-symmetric matrices unlike the earlier
Cholesky decomposition, named after André-Louis Cholesky and published in 1924 after his
death [58, 119], working only with symmetric matrices. These procedures may be considered
as matrix forms of Gaussian elimination, described by Leonhard Euler as the most natural way
of solving simultaneous linear equations [70] and the traces of which have been discovered in
multiple ancient sources [78]. Other factorization methods for symmetric matrices appeared
in the last decades [52]. For instance, the Cholesky procedure can be viewed as an A = LLT
decomposition where L is a lower triangular matrix and LT the transpose of L. Another example
is LDLT factorization where D is a diagonal or a block diagonal matrix (see also [52]).

In this thesis, we rely on the LL” factorization for complex (symmetric but not positive definite)
matrices. In case of real symmetric matrices, we use the LDLT factorization instead. For non-
symmetric matrices, we resort to the LU factorization.

1.5.1.1 Hierarchical low-rank approximation

As mentioned above, the main drawback of direct methods certainly is a high consumption
of computing resources. Hierarchical low-rank or H-matrices [81] represent a way to store
matrices in a compressed form. It is an algebraic hierarchical structure consisting of either
full-rank or compressed low-rank submatrices (see Figure [L.7). Being a major advantage of
the format, the complexity of a matrix-matrix product of two dense matrices may be, under
certain conditions, lowered from O(n?) to O(nlog(n)) [82] thanks to data compression. Despite
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the compression, the implied loss of accuracy remains acceptable in our context as further

discussed in Section

Figure 1.7: An H-matrix where violet submatrices are stored as full-rank and light blue ones
are in the compressed low-rank format with the inner values indicating the rank.

1.5.1.2 Sparse systems

Moreover, in the case of sparse systems, we can take advantage of the high number of zero en-
tries in the coefficient matrix and reduce the time and the memory footprint of the computation
by preventing the storage of null coefficients. However, the factorization of a sparse matrix is
likely to cause some initially zero entries to become non-zero. This effect, called fill-in [76] (see
Figure[1.8), is directly related to the process of Gaussian elimination. Depending on the order
in which the unknowns in the linear system are eliminated, the fill-in may be more or less
important. There are multiple reordering techniques to reduce the fill-in [37,[98}, 105} 110} 75].
The problem is generally NP-complete [127]; so these techniques have to rely on heuristics.
The aim is to search for an optimal rearrangement of the equations and the unknowns in the
linear system so as to reduce the appearance of new non-zero entries during the factorization.

Figure 1.8: Example of a sparse matrix before factorization (left) and after an LU factorization
(right) demonstrating the fill-in effect. Black squares represent non-zero entries.

The goal being to store only the non-zero elements of a sparse matrix, it is useful to estimate
the memory that has to be allocated for the factorization phase. This is the role of symbolic
factorization [97]] which is a simulation of the actual factorization based on the zero/non-zero
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pattern of the matrix and allows one to locate where the fill-in appears. The direct solution of
a sparse system usually features more computation steps in addition to factorization and solve:
reordering of unknowns and symbolic factorization. We shall not further describe these steps
in this thesis. We refer the reader to [97,[66] for more details.

1.5.2 Solution accuracy

The quality of the numerical solution of a linear system depends on various factors. On the one
hand, we have the errors due to the approximation of the concepts of continuous mathematics
such as real and complex numbers on computers working in finite precision arithmetic. On
the other hand, the design of the algorithms involved in the computation comes into play. For
example, in many cases, we can opt for a solution with lower accuracy (while remaining on
an acceptable level) in exchange for a significant decrease in computation time and memory
consumption. Eventually, it is important to be able to evaluate the accuracy of the numerical
solution, which is only an approximation of the exact solution to the system.

1.5.2.1 Forward error

The forward error is an approach to measure the accuracy of a numerical approximation of the
exact solution to a given linear system [86]). In this section, let Ax = b be a linear system, where
A is the coefficient matrix, x the unknown solution vector and b the right-hand side vector.
Following [86]], we note £ a numerically computed approximation of the exact solution x.

The absolute forward error E;; of % is defined as the difference between the exact solution and
its approximation:

Eqps(%) = [|£ — x]|.

Then, the relative forward error of %, referred to as E,,;, corresponds to:

Eyei(£) = ||£ — x[l/]|x]| (1.5)

In practice, the exact solution x is not known and therefore, we have to rely on an estimation
of E,,;(X). However, in order to assess a numerical solver, we can make use of an artificial test
case allowing us to actually compute the relative forward error. We give ourselves A and x as
well as a right-hand side b such that:

b=Ax.

Then, assuming that the computation of b = Ax was exact, we solve Ax = b using a numerical
method:

£=A"1p

which involves the factorization of A and the solve operation performing the so-called back-
ward and forward substitutions on the resulting triangular systems (see Section |1.5). As both
x and % are eventually known, we are able to determine E,,/(X) (see Equation|1.5].
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1.5.2.2 Machine precision

A machine working in finite precision arithmetic can be used to simulate an arbitrarily high
precision, which means that theoretically, the accuracy of the solution is not limited by the ma-
chine precision [86]]. However, within this study, we do not consider such a simulation. There-
fore, we assume that the accuracy of a numerically computed solution using a direct method
(see Section[1.5) is proportional to the precision of the target machine provided that the prob-
lem is not ill-conditioned. According to [86)}, [125], the problem is considered ill-conditioned
when the condition number of the matrix A is high. This means that inaccuracies in A or b
may have a great impact and significantly worsen the accuracy of the solution approximation.
The machine precision, noted u, is defined as the difference between 1.0 and the next greater
floating-point value [86]. When using a 64 bits IEEE floating-point representation, u is approx-
imately 2733 ~ 1.11 x 1071¢ [[77,[39], assuming u rounded to the nearest representable number.

1.5.2.3 Trade-off on accuracy

Computing in high precision may be too consuming in terms of time and memory. With the
aim to reduce the cost of the computation, solvers providing some kind of data compression can
be instrumented to compute an approximate solution x of a system Ax = b in a lower precision.
Eventually, the relative forward error of X (see Section is higher but the accuracy of the
result remains acceptable in our context.

There is no absolute guarantee of achieving such a result, especially in the case of very ill-
conditioned problems [86]. However, when the problem is not ill-conditioned, a recent work
proved that it is possible to guarantee for a particular kind of compression mechanism to yield
a solution approximation verifying the target accuracy [87.

To control the accuracy of solution approximations, compressed solvers usually expose a thresh-
old parameter referred to as €. During the compression, all the values that are smaller than the
compression threshold times the maximum value are discarded, i.e. they are rounded to zero.
At Airbus, in research [101}[71] and further in engineering work, setting € to 1072 is considered
enough to obtain satisfying results.

1.6 Direct solution of FEM/BEM systems

In Section|[1.3} we defined the coupled FEM/BEM linear system we want to solve. In Sec-
tion we presented different direct methods for solving linear systems depending on their
sparse or dense character. In this section, we address the particular partitioning and different
sparsity levels, due to the FEM/BEM coupling, in the coefficient matrix A of the system. We
then focus on the application of the sparse and dense direct methods on the numerical solution
of the latter.

1.6.1 Properties

In our case, the linear systems resulting from FEM are termed sparse as each element of the
corresponding mesh interacts only with its direct neighbors. The linear systems resulting from
BEM are termed dense as each element of the associated mesh interacts with all the others.

Eventually, in the target system resulting from the coupling of both methods (1.2), A,, is a large
and sparse submatrix, A, is another sparse submatrix and A, is a smaller dense submatrix (see
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Figure|1.9). Note that the relative dimensions of these submatrices within A are defined by the
ratio of volume unknowns x,, to surface unknowns x; in the system (see Section[1.3).

Ayy
sparse

oSl sparse) -

Figure 1.9: Internal dimensions, partitioning and sparsity of A in 1)

1.6.2 Formulation

The first step of a direct solution of (1.2) consists of reducing the problem on the boundaries
and simplifying the system to solve. Based on its first block row R;, we express x, as:

Xy :A;zlz(bv_As];xs) . (1-6)

Then, substituting x, in R, by (1.6) yields a reduced system without x, in R,. This represents
one step of Gaussian elimination, i.e. R, <~ R, — A, A}l x Ry:

Rl AVV AVS X xV — bV . ( 1 . 7)
Ry 0 Agy- Astng Az;/ Xs by — Ast;g b,

The expression Ay, — A, A;L AL, which appears in R, in (1.7), is often referred to as the Schur
complement [128], denoted S, associated with the partitioning v and s of the variables in the

system (see Section [L.3).

Basically, we have to compute S:

S :Ass_Ast;iAsTv (1-8)

and find x; by solving the reduced Schur complement system matching R, in (1.7) after elimi-
nation of x,:

Xs :S_l(bs_Ast;bv)- (1-9)

Once we have computed x,, we use its value to determine x,, according to (1.6).

The decomposition of A (see Section[L.3)) and the choice to eliminate x, from R, in allows
one to take advantage of the sparsity of the submatrix A,, during the solution process. On
the contrary, eliminating x, from R; instead of the current choice would result in an important
fill-in (see Section of A,,, where the Schur complement would have been computed.

When solving the problem numerically, rather than actually computing the inverses of A, and
S, we factorize A,, as well as S into products of matrices making the equations easier to solve

(see Section[1.5.1)).
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1.6.3 Ideal symmetry and sparsity of the factorized coupled system

In this section, we describe the ideal approach for the numerical computation of the solution of
which would allow us to fully take advantage of the symmetry of the system by containing
the computation in its lower symmetric part as well as to exploit the sparse pattern of A,, and
A, as much as possible.

In theory, we would begin by computing S which corresponds to the core step of the entire
solution process. To do this, we would factorize A,, into L,,Ll and compute A, (LL,)™" in
order to express S as:

S=As— [Asv(Lgv)_l][Asv(Lgv)_l]T . (1-10)

Then, we would factorize S into Lng and finally compute the solutions x; and x,, using:

{xs = (LsLI) (b~ Ag(LyLL,) 'D,) 111)

Xy = (vaLZ;v)_l(bv_Asq;zxs)-

In practice, exploiting the sparsity of A, and Ay, is a hard task. It requires to resort to ad-
vanced techniques, including symbolic factorization and management of complex data struct-
ures, e.g. to cope with arising dense submatrices due to fill-in (see Section[1.5.1.2)) in both A,,
and A, (see Figure[1.10).

va
sparse
with fill-in
:'.‘o". AR 'o..' o
Ty-1]e%e
Asv(va ) o> @
sparse PN
o0 e’ | with fill-in _|’e
AN ATCI A

Figure 1.10: Internal dimensions, partitioning and sparsity of A in (1.2) when using the ideal
approach for computing S according to (1.10).

This is what sparse direct solvers are meant for. They can take care of numerical, combinato-
rial and performance issues for us. In particular, thanks to them, we can perform the proper
factorization of A,, and benefit from reordering techniques (see Section to limit fill-in
as well as from the performance of BLAS-3 operations. If we wanted to implement the above
approach by ourselves, it would require to, at least partially, implement a sparse direct solver.
The necessary effort would not only be extremely time-consuming (e.g. the version 5.1.2 of
MUMPS, introduced in Section has 418,556 lines of code) but might also lead to an
under-performing implementation.

In this thesis and from an industrial perspective, we instead decided to build our coupled
solver on top of existing sparse and dense solvers. This also means that we have to deal with
their API. Chapter [2|draws a state of the art of different capabilities of sparse and dense direct
solvers and introduces some possible ways of exploiting them to design a coupled sparse/dense

solver for (1.2).
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CHAPTER

State of the art

In Chapter |1}, we introduced the aeroacoustic context of this thesis and the related coupled
sparse/dense FEM/BEM linear systems we seek to solve. Based on an overview of different
general numerical techniques for solving linear systems, we explained a direct approach for
solving the target coupled FEM/BEM system (1.2). This chapter deals with existing software,
its characteristics and features as well as the possible ways of exploiting it for the design of
a coupled sparse/dense FEM/BEM solver. In Section we identify various building blocks
available in the API of the sparse and dense direct solvers. Then, in Section we describe
how we can make use of these building blocks to implement a coupled solver and what are
the limitations of such couplings. In Section [2.4, we go through the related work found in the
literature. In Section we position this thesis with respect to the state of the art. In Section
[2.6] we discuss selected sparse and dense direct solvers from the point of view of their different
characteristics and functionalities.

2.1 Building blocks

In order to implement a coupled sparse/dense direct solver for the target linear system (1.2))
following the computation steps described in Section[I.6} we can make use of different building
blocks of sparse and dense direct solvers. This section introduces the relevant building blocks.

2.1.1 Sparse direct solver building blocks

Most sparse direct solvers do not allow one to express that part of the unknowns is associated
with a dense block. In this case, only the A,, block (see in Section can be handled
with the sparse direct solver and other operations must be handled on top of that, leading to
a suboptimal scheme for the reasons discussed in Section We call this first scenario the
baseline usage of the sparse direct solver (see Section[2.1.1.1). Nonetheless, some fully-featured
sparse direct solvers, such as MUMPS [38]], PaStiX [85] or PARDISO [118]], provide in their API
a Schur complement functionality (for MUMPS see option ICNTL(19) in [56], for PaStiX see
[89] and for PARDISO see Section 1.3 in [117])). It allows one to delegate the computation of S
entirely to the sparse direct solver, which can (it is designed for that) fully exploit the symmetry
and the sparsity of the system according to the ideal scenario described in Section We
call this scheme the advanced usage of the sparse direct solver (see Section[2.1.1.2).
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2.1.1.1 Baseline usage

In the first scenario, we use the sparse direct solver only on the A,, block, for performing the
sparse factorization of the A,, submatrix into L,,LI, and for computing (L,,L] )"'Al using a
sparse solve step like in (1.8).

2.1.1.2 Advanced usage

In the second scenario, we rely on the aforementioned Schur complement functionality. This
feature consists of the factorization of A,, and the computation of the Schur complement
~Ag, Ay AT associated with the [ﬁ’f” AOZ;] matrix. This functionality represents a building block
on its own. In the following, we shall refer to the latter as to sparse factorization+Schur step.
Due to the API of sparse direct solvers that support this functionality, the resulting Schur com-
plement is returned as a non-compressed dense matrix stored entirely in RAM [56} 89}, 117]],
which will still represent a limitation in our context as discussed further.

2.1.2 Dense direct solver building blocks

Once the Schur complement is obtained with either the baseline or the advanced usage of
sparse direct solver, a dense direct solver may be used for some of the operations associated
with (1.11)), i.e. the dense factorization of S and the dense solve for computing x;.

2.2 Vanilla couplings

In Section we introduced various sparse and dense direct solver building blocks. Here,
we discuss possible schemes for applying these building blocks directly on the submatrices
Ayy, Agy and Agg of in order to compose a coupled sparse/dense solver. As explained in
throughout the thesis, we refer to these straightforward couplings of state-of-
the-art sparse and dense direct solver as to vanilla couplings.

2.2.1 Baseline sparse/dense solver coupling

A possible way of composing these building blocks is to rely on the baseline usage of the sparse
direct solver (Section [2.1.1.1). This leads to Algorithm [1] The first step (line 2) of the solution
process is thus a sparse factorization of A,, into L,, LI . The factorization is followed by a sparse
solve step (line 3) to get Y = (L, LT ) 1AL , which is, in this baseline usage, non optimally
retrieved as a dense matrix entirely stored in RAM. From a combinatorial perspective, Y is not
dense. However, taking advantage of its sparsity is far from trivial (see Section [1.6.3). It is
possible to exploit the sparsity of the operands during the sparse solve [35] (for MUMPS see
option ICNTL(20) in [56], which we always turn on in this thesis). Nevertheless, because the
internal data structures are complex, the user still gets, as in all fully-featured direct solvers
we are aware of, the output as dense.

A sparse-dense matrix multiplication (SpMM) then follows (line 4) to compute Z = A, Y, for
which it is not evident to exploit the sparsity either. Indeed, Y is retrieved entirely in RAM as
a dense matrix while Ay, is a ‘raw’ sparse matrix yielding a sub-optimal arithmetic intensity
in addition to useless computation on the zeros stored in Y. The subtraction Ay — Z (line 5)

finally yields S (see Figure [2.1).
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LVV

° sparse
o ‘L with fill-in

Figure 2.1: Computation of S in the baseline sparse/dense solver coupling (see Algorithm .

In the next stage, we compute the solutions x; and x, following (I.11). At first, we form the
right-hand side b;—A,, (L,,LL )b, by performing the sparse solve b, = (L,, LI )b, (line 6), the
sparse matrix-vector product Ay, b, and a final vector subtraction (line 7). Then, we perform
the dense factorization of S (line 8) and a dense solve to determine x; (line 9). At the end, we
compute the sparse matrix-vector product Al x; and after a vector subtraction, we compute
the sparse solve of (L,,LT )71 (b, — AL x,) to get x, (line 10).

Algorithm 1: Vanilla baseline coupling algorithm for computing S based on (1.8) and
solving (1.2).

Function VanillaBaselineCoupling(A,b):
A,, < SparseFactorization(A,,)

1
2
3 Y « Spa rseSolve(Aw,ASTv)

4 Z— Ay xY > SpMM
5 Ay —Ass— 2 > AXPY
6 b, < SparseSolve(A,,,b,)
7 bs ~ bs _Asvbv
8 Ags < DenseFactorization(Ay)
9 X, < DenseSolve (A, b;)

10 x, < SparseSolve(A,,, b, _AsTvxs)

2.2.2 Advanced sparse/dense solver coupling

Alternatively, as proposed in Algorithm[2} we can use a sparse factorization+Schur step (see Sec-
tion |2.1.1.2). Thanks to this building block, the sparse direct solver yields (line 3) the Schur

v A];/'
SV O
the system is symmetric, we do not have to explicitly store either the upper triangular part of

A,y or AT in the W matrix (line 2). We sum the resulting matrix X with A, based on (1.10)
to get S (see Figure [2.2). The advantage of doing so is that we benefit from the fine manage-
ment of the sparsity and efficient usage of BLAS-3 on non-zero blocks, transparently offered
by the sparse direct solver, up to the computation of the Schur. Internally, the solver follows
the ideal approach for computing S described in Section therefore benefiting from all
the optimized operations. However, as discussed in Section and recaped below, the

complement —A,, A;1 AL, denoted X, associated with the [’2 ] matrix, denoted W. Because
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Schur complement matrix returned by the sparse factorization+Schur step is dense and entirely
stored in RAM. The computation steps following the computation of S (lines 5 - 9) then remain
identical to the ones of the baseline coupling (see Section [2.2.1].

LVV

sparse
with fill-in

Y00 %0 0 % %0 e % % ¢ /p

-....::. o o% .T.-1.::'.‘

e 'Asv(va ) (S i
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o0 .0 0 with fill-in e0g0 § dense
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Figure 2.2: Computation of S in the advanced sparse/dense solver coupling (see Algorithm .

Algorithm 2: Vanilla advanced coupling algorithm for computing S based on (1.10)

and solving (1.2).

1 Function VanillaAdvancedCoupling(A,b):
> AL within W is implicitly known based on Ag,:
2 W <—[ iw 8 ]
sv
3 X « SparseFactorization+Schur(W)
4 A — A+ X > AXPY
> Reusing the factorized A,, within W:
b, < SparseSolve(A,,,b,)
by « by — A, b,
Ags < DenseFactorization(A)
X; < DenseSolve (A, by)

O© 00 N’

x, < SparseSolve(A,,, b, — Al x,)

2.3 Limitations

We formulated the solution method of in Section[I.6] The vanilla solver couplings intro-
duced in Section simply apply the sparse and the dense direct solver building blocks (see
Section to perform the necessary operations on the submatrices A,,, As, and A, of the
system. However, there are several major drawbacks in those vanilla couplings. In this section,
we address them in details.

2.3.1 Baseline coupling

The baseline sparse/dense solver coupling (see Section [2.2.1) presents important limitations
in solving larger FEM/BEM systems in terms of both performance and memory consumption.
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In particular, we lose the ideal symmetry and sparsity condition of the factorized system (see
Section D and the result Y of (L,,LI )"'AT, stored in an extra matrix, as well as the Schur
complement itself are large dense matrices entirely stored in RAM.

2.3.2 Advanced coupling

Although the advanced solver coupling (see Section [2.2.2)) is an optimal approach in terms of
performance when it fits in memory, it implies storing the Schur complement matrix entirely
in RAM in dense format, which restricts the range of problem sizes we can handle.

2.3.3 Discussion

The API of the sparse direct solver lead, in case of both baseline and advanced sparse/dense
solver couplings, to the storage of potentially very large non compressed dense matrices. In
terms of memory constraints, this quickly becomes a significant limiting factor in solving larger
coupled systems. For example, considering the FEM/BEM system (counting 2,090,638 in the
sparse part and 168,830 unknowns in the dense part) associated with the test case in Sec-
tion the sole storage of the Schur complement matrix would require around 212 GiB
(168,830% x 16 bytes per coefficient + 2 + 1,024 + 1,024 + 1,024) of RAM (considering complex
matrices). In case of the baseline solver coupling, we would need 2.6 TiB (2,090, 638x168,830x
16 bytes per coefficient + 2 + 1,024 + 1,024 + 1,024) of extra RAM to store the result Y of the
sparse solve (L, LL )" AL in a dense matrix.

Moreover, even if some direct solvers individually propose asynchronous execution of compu-
tations, it does not allow us to call the sparse and the dense solver an asynchronous fashion
(see Section [2.6.2). Indeed, it is not possible to express the inter-solver dependencies on data
and computations using the existing APIs of the sparse direct and dense direct solvers.

2.4 Related work

In the literature, we found similar approaches for solving coupled sparse and dense linear sys-
tems based on direct methods [61}, 74, 129, [73] [116]). [61] addresses linear systems with both
sparse and dense parts in the context of genomic prediction. According to the authors, such
systems may have up to 100,000 unknowns associated with the dense part. However, they
evaluate the proposed implementation on a smaller system with 1,279 unknowns in the dense
part. [74] is related to soil-structure interaction problems. In this case, the author does not
precise the target system size and presents performance evaluation results for systems with
BEM-discretized part counting, to the best of our understanding, at most 1,536 boundary ele-
ments. In [129]], the authors are interested in solution of linear systems arising from a coupled
FEM/BEM formulation in the context of acoustic radiation problems. In the performance eval-
uation, they have processed systems with up to 3,017 unknowns in total. [73] is also set in
the acoustic domain. In terms of problem size, the performance of the proposed implementa-
tion is evaluated on FEM systems with up to 982,912 degrees of freedom and up to 2,048 for
BEM systems. [116] belongs to the domain of soil-structure interaction problems. The largest
coupled test cases considered have 52,758 degrees of freedom.

To the best of our understanding, all of these approaches rely on a baseline usage (similar to the
one discussed in Section[2.2.1)) of the sparse direct solver, i.e., without using the Schur comple-
ment functionality. More importantly, the tackled problem size associated with the BEM part
(vyielding the dense block) is relatively small, which makes it possible to handle it with one
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of the above schemes (see sections [2.2.1|and [2.2.2). In particular, no numerical compression
nor out-of-core computation are employed. On the contrary, due to their dimension (especially
the size of the dense block), the problems we tackle cannot be processed with the baseline and
advanced solver coupling approaches.

2.5 Positioning of the thesis

Throughout the current chapter, we drew a state of the art of different capabilities of sparse
and dense direct solvers, introduced the possible ways of using them to design a coupled
sparse/dense solver and discussed their limitations in relation to the nature and the expected
size of the system to solve (see Section [1.3). In this thesis, we therefore propose new classes
of algorithms, namely two-stage and single-stage algorithms, to cope with the limitations ex-
posed in Section [2.3| preventing us from solving large coupled sparse/dense FEM/BEM linear
systems using a direct method (see Section[I.5.1).

In the first place, in chapters[3}[4}[5|and[6} we choose to rely on existing API of sparse and dense
direct solvers. The idea is to work on carefully chosen submatrices of the coefficient matrix A
in (1.2) so as to reduce the negative impact of the limitations in vanilla solver couplings. In this
context, we propose two algorithms, multi-solve and multi-factorization, based on a block-wise
computation of the Schur complement matrix S. This work builds upon an existing codebase
from Airbus. In the thesis, the goal is to consolidate the arising algorithms and maximize their
performance. The choice to use the existing API as-is gives us the possibility to rely on some
well-optimized fully-featured solvers developed by the community implementing numerical
compression, out-of-core computation and distributed-memory parallelism. The algorithms
are then designed to take advantage of these advanced features in all the parts of the linear
system, including S, unlike in the case of vanilla couplings (see Section [2.3). However, the
same design choice prevents us from fully achieving the ideal implementation seen in Section
Indeed, the current API of the direct solvers was not designed with this application in
mind in particular. Even if multi-solve and multi-factorization allow for bypassing the vanilla
couplings limitations in terms of usage of advanced solver features, they do not eliminate them
completely. As explained in Section our design choice also implies synchronous calls to
the sparse and the dense solver, i.e. in two separate stages. Therefore, we commonly refer to
multi-solve and multi-factorization as to two-stage algorithms.

The objective of the more exploratory chapter [7|is to get on the track of the ideal implemen-
tation (see Section through an alternative solver coupling relying on selected task-based
direct solvers built on top of the same runtime. In this context, we explore the possibilities of
adapting the API of the direct solvers. In the first place, the goal is to achieve the ideal sym-
metry and sparsity condition of the system during the solution process. In the second place,
making the computation asynchronous (see Section would allow for pipelining the calls
to the sparse and the dense solver. This way, we do not have to wait for the Schur complement
to be entirely assembled prior to beginning its factorization and the subsequent solve opera-
tions (see Section [1.6). Therefore, we refer to this design pattern as to single-stage algorithm.
In terms of the ideal symmetry and sparsity condition of the system, it represents the best
option with respect to the two-stage algorithms. However, implementing this approach into
fully-featured direct solvers can only be a long-term work due to the complexity of the sparse
solver’s codebase (up to hundred thousands lines of code) in particular. In the short term, a
prototype of such implementation can be realized within a non fully-featured framework, in
our case, by sacrificing numerical compression and distributed memory parallelism.

Throughout this thesis, we put a strong emphasis on ensuring the reproducibility of our work.
Chapter [8] explains how we make use of a functional transactional package manager allowing

Fast solvers for high-frequency aeroacoustics Marek FeL$oct



2.6. Selected sparse and dense direct solvers 35

for a complete reproducibility of software environments across different machines as well as
the principles of literate programming. This paradigm combines formatted text with source
code. In terms of experimental studies, it allows us to surround our algorithms and experi-
ments with the related explanations and experimental analysis. In terms of experimental soft-
ware environments, it allows us to associate the source code and the description of its purpose.

2.6 Selected sparse and dense direct solvers

In Section we introduced the building blocks of the sparse and dense direct solvers we can
make use of to design a coupled solver for (1.2). Then, in Section we presented vanilla
solver couplings based on these building blocks and analyzed their limitations preventing us
from processing large coupled linear systems. Finally, in Section we announced the re-
search directions we explore within this thesis to cope with the limitations in the state-of-the-
art approaches. Here, we discuss different features and types of API that sparse and dense
direct solvers may provide as well as different programming models they can build on. Based
on these properties, we then present the direct solvers we choose to rely on in this thesis.

2.6.1 Feature range

Fully-featured direct solvers may provide numerical compression, out-of-core computation or
distributed-memory parallelism. Using numerical compression we can, for instance, instru-
ment the solver to provide a solution approximation with lower accuracy (while remaining
on an acceptable level) in exchange for an important performance improvement (see Section

1523)

Thanks to out-of-core techniques, we can lower the memory footprint of the computation by
moving the portions of data that are not being currently used from RAM (Random Access
Memory) to disk. The RAM being also referred to as the core memory, the out-of-core qualifier
refers to the temporary storage of data by the algorithms out of the core memory, i.e. on disk.
On the contrary, we say of the algorithms that operate with data in RAM that they are in-core
algorithms.

Once we reach the limits of a given workstation, we can distribute data and workload across
multiple workstations, e.g. within a high-performance computing cluster.

2.6.2 API type

Solvers usually implement a synchronous API where all function calls are blocking. However,
some solvers provide also an asynchronous API where the function calls only trigger the cor-
responding operation but return to the calling program as soon as possible. This allows for a
concurrent execution of multiple operations working on different data or for pipelining of the
operations sharing a data dependency.

2.6.3 Parallel programming model

Regardless the features they provide and their API type, solvers may follow different paral-
lel programming models. In our context, we consider two categories of solvers based on this
criterion. On the one hand, solvers may handle the aspects of parallel execution, such as par-
titioning and scheduling computations or transferring data to and from processing units, on
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their own. On the other hand, it is possible to achieve a higher level of abstraction in paral-
lel programming by delegating these functions to a runtime. In this case, the solver submits
computation tasks and associated data dependencies to the runtime. The latter takes care of
scheduling and executing the tasks on available (possibly heterogeneous) computing resources
and ensures related data transfers. Runtimes may also implement features such as out-of-core
computation the solver can implicitly benefit from as the data transfers are handled by the
runtime and not by the solver itself. Using runtime-based solvers can be further beneficial
for designing a coupled solver. Indeed, if two solvers resort to the same runtime, it favors the
sharing of data, relevant dependencies as well as asynchronous execution of tasks between the
two solvers. This composability is likely to be much more complex to achieve within the first
category of solvers.

2.6.4 Selected direct solvers

Within this thesis, we choose different sparse and dense direct solvers to implement our algo-
rithms depending on their feature range, type of API and programming model. For two-stage
algorithms (introduced in Section [2.5), we rely on fully-featured direct solvers. In terms of
functionalities, we are looking for parallel processing of multiple sparse right-hand sides and
the sparse factorization+Schur building block (see Section in the sparse solver and more
generally for numerical compression, out-of-core computation and distributed-memory paral-
lelism in both the sparse and the dense solvers. For instance, the sparse solver MUMPS [38},36]
meets the aforementioned criteria. Regarding the dense solvers, we can consider HMAT [101]).

For single-stage algorithm (also introduced in Section [2.5), we rely on task-based sparse and
dense direct solvers sharing the same runtime. These are the key criteria that should be met
despite renouncing to some of the advanced features (see Section [2.6.1). Here, qr_mumps [20]
and PaStiX [96] are suitable candidates for the sparse solver and HMAT for the dense solver.

2.6.4.1 Sparse solvers

Regarding sparse solvers, we rely on MUMPS [38]] for the implementation of two-stage algo-
rithms and we choose qr_mumps [20] for the implementation of single-stage algorithm. This
choice is motivated by the fact that both MUMPS and qr_mumps implement the same approach
for solving linear systems, the multifrontal method [67,68,99]. From the experimental point of
view, this allows for a more insightful comparison between the implementations of two-stage
and single-stage algorithms.

MUMPS relies on LU or LDLT factorization and provides also Schur complement (see Sec-
tion computation routines. It features both distributed and thread-level parallelism
relying on MPI (Message-Passing Interface) [104] and OpenMP (Open Multi-Processing) [13]],
respectively. Moreover, the solver implements out-of-core computation as well as numerical
compression through a single-level H-matrix scheme referred to as Block Low-Rank compres-
sion (BLR) [36].

qr_mumps implements QR and Cholesky factorization algorithms. It is a task-based solver re-
lying on the StarPU runtime [44]. Contrary to MUMPS, qr_mumps does not aim at implementing
numerical compression. Parallel execution of tasks and out-of-core computation [28] are dele-
gated to the runtime. Note that qr_mumps and MUMPS are two independent software projects.
The name of qr_mumps was inspired by the close relationship between the development teams
of the two solvers.
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2.6.4.2 Dense solvers

We consider two dense direct solvers, SPIDO [100} [34] and HMAT [11], [101]]. Both solvers
implement out-of-core computation and distributed-memory parallelism. However, SPIDO is
a non-compressed solver and HMAT a compressed solver. Using also a non-compressed dense
solver allows for the evaluation of the impact of numerical compression in the dense part of
the target coupled linear system (1.2).

SPIDO is a proprietary dense direct solver from Airbus. To solve linear systems, it relies
either on LU or LDLT factorization. When the linear system is too large to fit in memory,
SPIDO can perform computations out-of-core. It splits the coefficient matrix evenly into mul-
tiple submatrices called blocks. The currently unused blocks are temporarily stored on disk to
reduce memory consumption. When an out-of-core block is loaded into memory for compu-
tation, it is further divided into smaller parts called processor blocks that may be distributed
and processed in parallel using MPI (see Figure [2.3). Also, an additional thread-level paral-
lelism relying on OpenMP can be enabled to potentially further speed-up the computation.
Block sizes may be either set manually or determined automatically by the solver itself based
on the size of the problem, the count of available computation nodes and threads as well as the
amount of available memory.

Figure 2.3: A coefficient matrix split into 4 out-of-core blocks. Currently processed block (in
red) is divided into 4 processor blocks counting 4 thread blocks each.

HMAT is another dense direct solver developed and maintained at Airbus. Like SPIDO, it is a
proprietary solver. However, an open-source sequential implementation of HMAT is available
as HMAT-OSS [11]]. The solver implements the hierarchical low-rank (H-matrix) structure (see
Section [1.5.1.1) and associated hierarchical variants of LU, LLT and LDLT factorization and
solve algorithms. So as qr_mumps, it is based on the StarPU runtime. Out-of-core computations
and parallel execution of tasks in HMAT are delegated to the runtime. Unlike other dense
direct solvers, HMAT handles sparse matrices too E—l Although, this is not one of the goals of
this thesis, a preliminary experimental study in Section |A.1|in |[Appendix| evaluates HMAT for
the processing of sparse matrices.

1To reduce fill-in (see Section|1.5.1.2) resulting from factorization, HMAT provides an implementation prototype
of the Nested Dissection algorithm [75]. Improvements has been made in this direction [71]], although further work
is required to include these into the mainstream version of HMAT.
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CHAPTER

Two-stage algorithms in shared
memory

In Chapter |2| we discussed sparse and dense direct solvers, different features and building
blocks they provide as well as how to possibly compose them to implement a sparse/dense
solver for coupled FEM/BEM linear systems such as defined in Section We also ex-
posed the limitations of vanilla couplings (see Section of the state-of-the-art solvers pre-
venting us from fully taking advantage of some of their advanced features such as numerical
compression, out-of-core computation and asynchronous execution of the sparse and the dense
solver. Finally, we presented the two main research directions we explore in this work, namely
the two-stage and single-stage classes of algorithms. They are based on different strategies but
both of them try to cope with the limitations related to vanilla solver couplings. The goal is to
approach as much as possible the ideal implementation of a coupled sparse/dense FEM/BEM
solution presented in Section [1.6.3]

In this chapter, we present two-stage algorithms (discussed in Section [2.5), namely multi-solve
and multi-factorization, adopting the approach of exploiting the existing API of sparse and
dense direct solvers on well chosen submatrices of the target linear system (1.2). The main
strength of these algorithms is to build upon fully-featured direct solvers developed and opti-
mized by the community. These solvers implement features we want to benefit from in order
to process larger problems in a shared-memory environment, i.e. numerical compression and
out-of-core computation. While it is possible to transparently activate numerical compression
and out-of-core computation within individual building blocks, in all cases, the Schur comple-
ment S (see Section is retrieved as non-compressed dense matrix entirely stored in RAM.
The core idea of both multi-solve and multi-factorization is thus to allow for exploiting numer-
ical compression and out-of-core computation also within the Schur complement part. This is
achieved through a block-wise computation of S using a sparse direct solver which represents
the first stage of the solution. Once S is entirely assembled, a dense direct solver takes over
for the dense operations on S in the second stage. Multi-solve is a variation of the baseline
coupling (see Section while multi-factorization is a variation of the advanced coupling
(see Section [2.2.2). In this chapter, we introduce only the usage of numerical compression.
We present an alternative and complementary approach relying on out-of-core computation in
Chapter

For each one of the algorithms, we propose two variants: a baseline version (see sections [3.1.1]
and|3.2.1)) and an extension ensuring compression of the Schur complement matrix S (see sec-
tions[3.1.2|and [3.2.2). The baseline multi-solve and multi-factorization represent the starting
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point for their compressed Schur counterparts and serve us in the experimental study (see Sec-
tion[3.3) to assess the intrinsic overhead of the proposed multi-stage algorithms with respect to
the vanilla baseline and advanced solver couplings from sections [2.2.1|and [2.2.2| The purpose
of the compressed Schur variants (sections [3.1.2|and [3.2.2) is to build on top of the blocking
scheme of their baseline counterparts (from sections|3.1.1|and |3.2.1} respectively) to compress
the dense Schur blocks successively retrieved in order to limit the memory consumption so as
to process larger problems. In Section 4.3} we rely on academic test cases to analyze the impact
of numerical compression on the time to solution and memory consumption in shared memory.
Experiments on an industrial application are discussed in Section We conclude in Section

(4.5

3.1 Multi-solve algorithm

In this approach, we build on the baseline solver coupling presented in Section How-
ever, instead of performing the sparse solve step (L,,LI,)"' AL using the entire submatrix AL,
we split the latter in blocks of 1. columns ASTvi and perform successive parallel sparse solve op-
erations. This leads to a block-wise assembly of the Schur complement matrix S by blocks of
columns S;. Given ngg);, the number of unknowns associated with the formulation of BEM,

and 7., the number of columns of AT in one block AsTvi, there are ngg)/n. blocks in total (see

Figure . We denote AsTv,- and Ay, the ith blocks of 1. columns of AT and A, respectively.
Then, based on the definition of S in (1.8)), S; is a block of 7, columns of S defined as:

Y;
—_——

Si :Ass,» —Agy (vasz)_lAZ;,~ (3.1)

e

1

3.1.1 Baseline algorithm

The baseline multi-solve algorithm (see Algorithm |3) begins by the sparse factorization of A,,
(line 3) into L,,LL,. Then, we loop (line 4) over the blocks ASTV,, of AT and the blocks A, of
Ags to compute all the blocks Z; such as defined in (3.1). The first step of this computation
(line 4) is a sparse solve for determining the block Y; = (LWLVTV)‘lASTvi. Fully-featured sparse
direct solvers additionally allow us to benefit from the sparsity of the right-hand side matrix
AST,,I_ during the solve operation [35]. However, independently from the sparsity of the input
right-hand side, the resulting Y; is a dense matrix [56]. Finally, we have to temporarily store
both the AsTv,- and Y; blocks explicitly (see Figure .

3.1.2 Compressed Schur variant

Both the sparse and the dense direct solver implement numerical compression within their
respective building blocks (see Section [2.6). In the compressed Schur multi-solve variant (see
Algorithm [4), we can thus transparently apply it to the sparse submatrices A,, and Ay, as
well as to the dense submatrix A,,. However, the Y; block is still retrieved dense and non-
compressed so as the Z; block (see Figure [3.2). Therefore, we have to transform Z; into a
temporary compressed matrix (line 8) before performing the final operation of the computation
of the associated Schur complement block S; (line 9), i.e. Ay, —Z; (see Figure . Although A
is initially compressed, this operation implies a re-compression of the block at each iteration
of the loop on i.
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Algorithm 3: baseline multi-solve algorithm for computing S based on (3.1)) and solving
2.

1
2
3

10

Function BaselineMultiSolve(A,Db):
Ay, < SparseFactorization(A,,)
for i =1 to nggp/n. do
> Using the i block of columns of AL, as right-hand side:
Y; « Spa rseSolve(Aw,A;i)
Zi — Ay xY; > SpMM
Ags, — Ags, = Z; > AXPY
b, < SparseSolve(A,,,b,)
Ags < DenseFactorization(A)
x, < DenseSolve (A, b, — A, b,)
X, < SparseSolve(A,,, b, — AL x;)

1 i Ngem/Ne
I ————

LVV

sparse
with fill-in

1P 0® g0 0 Vp® qPoe ¥y

Figure 3.1: Computation loop of S in baseline multi-solve (see Algorithm . AsTv,- is explicitly
stored and Y; is a dense matrix.
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Algorithm 4: compressed Schur multi-solve variant for computing S based on (3.1 and

solving (1.2)).

1 Function CompressedSchurMultiSolve(A,b):

2
3
4

10
11
12
13

A,, < SparseFactorization(A,,)
for i =1 to nggp/ng do
for j =1 to ng/n. do
> Using the ij" block of columns of AT, as right-hand side:
Y;j < Spa rseSolve(AW,AsTvij)
Zjj — Agy X Yj; > SpMM
Z; < Concatenate(Z;, Z;;)

Compress(Z;)
| Si— Ay, —Z; > Compressed AXPY
b, < SparseSolve(A,,,b,)
A, < DenseFactorization(Ay) > Compressed factorization
Xs < DenseSolve (A, by — Ag,by) > Compressed solve

| Xy <& SparseSolve(A,,,b, _AsTvxs)

Moreover, in the compressed Schur multi-solve algorithm, we dissociate the parameter 1., han-
dling the size of blocks AsTv,- of AT and consequently the size of Y; and Z;, from the parameter
ng handling the size of the Schur complement blocks S;. The reason for this separation is the
overhead associated with the transformation of the blocks Z; into compressed matrices as well
as the computation of Ay, —Z; (line 9) which implies a re-compression of A,,. With the sepa-
rate parameter ng, we can use larger blocks Z; to minimize additional computational cost due
to frequent matrix compressions and keep smaller blocks ASTVZ_ and Y; preventing an excessive
rise of memory consumption. We discuss this further in Section

L

WA
compressed
sparse
with fill-in

e —— A
S sv
—S———
E——"S—""7 compressed == | compressed
e sparse e

S=—"—= dense

1 i Neem/Ne

Figure 3.2: Computation loop of S in compressed Schur multi-solve (see Algorithm . AsTvi is
explicitly stored and Yj; is a dense matrix.
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3.2 Multi-factorization algorithm

The multi-factorization method is based on the advanced sparse/dense solver coupling pre-
sented in Section Nevertheless, instead of trying to compute the entire Schur comple-
ment using a single call to the sparse factorization+Schur step, we split A, and AT, submatrices
into ny, blocks Ay, and ASTI,]_, respectively. The goal is to call the sparse factorization+Schur step
on smaller submatrices composed of A,,, Ay, and AT and compute the Schur complement S
by square blocks S;; of equal size npgyi/ny (see Figure|3.3). We denote Ay, a block of nppp/ny,
rows of A, and ASTV]_ a block of nggp/ny, columns of A;,. Then, based on the definition of S in

(1.8), S;; is a block of nggp/ny rows and columns of S such as:

—_—
_ —1 4T
Sij - Assij _Asv,-Avasv]- . (32)

3.2.1 Baseline algorithm

The computation of the Schur complement S in the baseline multi-factorization algorithm (see
Algorithm [5) is performed within the main loop on line 2. In this loop, we construct a tempo-
rary submatrix W from A,,, A,,. and Asij:
W - A'l/'l/ A’STUJ .
Ay, 0

However, when i = j, W is composed of:

Ay O
W(_[Asv,- 0].

Then, we call the sparse factorization+Schur step on W (line 8) relying on the Schur complement
feature provided by the sparse direct solver (see Section [2.1.1). When i # j, we can not rely on
a symmetric mode of the direct solver and have to enter both the lower and upper parts of
Ay, (see Figure as well as ASTV]_ into W. The sparse factorization+Schur step then returns the

Schur complement block X;; = —Agy,(Lyy UW)‘IASTVj associated with the submatrix W. When

i = j, W do not have to contain the upper part of A,, nor AST,,]_ which is implicitly known
from A, . In this case, we can rely on a symmetric mode of the direct solver and the sparse
factorization+Schur step returns X;; = —Ag,, (L,,,,Lgy)‘lAsT,,j. To determine the block §;; of the
Schur complement S, we have to compute Ass;; + Xij (line 9) following .

The need for the temporary submatrix W leads to duplicated storage. This comes from two
sources. One, a block of rows Ay, of Ay, is copied into W. When i = j, we also have to count
a block of columns ASTV], of AL Two, W explicitly stores the copy of the lower-triangular part
of A,, in its upper-triangular part when i # j. To prevent the storage of two copies of A,,, the
original is stored on disk.

The sparse factorization+Schur step involving W implies a re-factorization of A,, in W at each
iteration although it does not change during the computation, hence the name of the method -
multi-factorization. The API of the sparse direct solver does not allow us to reuse the result of
the first factorization in the subsequent calls to sparse factorization+Schur. As a result, the more
blocks A is split into, the more superfluous factorizations of A, are performed. We discuss
this further in Section

Marek FEL$oct Fast solvers for high-frequency aeroacoustics



44

CHAPTER 3. TWO-STAGE ALGORITHMS IN SHARED MEMORY

Algorithm 5: baseline multi-factorization algorithm for computing S based on (3.2) and

solving (1.2).

1 Function BaselineMultiFactorization(A,b):

2 fori=1ton;, do
3 for j=1toido
4 if i = j then
5 W<—[ Ap 0 ]
Ay 0
6 else
T
7 W P A'I}'I} ASV]'
B Ag, 0
8 Xij < SparseFactorization+Schur (W)
9 | ASSij — ASSZ']' + Xl]
10 A,, < SparseFactorization(A,,)
11 b, < SparseSolve(A,,,b,)
12 Ags < DenseFactorization(A)
13 x, < DenseSolve (A, b, — A, b,)
14 | x, < SparseSolve(A,,,b, — AT x,)

> AXPY

Ny

|
0 %0 0 %%¢ %¢ o Ssparse

sparse

T
AL

sparse

ASVi
- |sparse|’ . -

Figure 3.3: Computation loop of S in baseline multi-factorization (see Algorithm . Construct-
ing W requires a temporary duplicated storage of A,, (upper part), Ay, and optionally AST,,],

(when i #j).
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3.2.2 Compressed Schur variant

As in the multi-solve algorithm, we rely on the sparse direct solver to process A,,, A5, and
on the dense direct solver to process A, in a compressed fashion out-of-the-box for us. Nev-
ertheless, the Schur complement itself remains returned as a non-compressed dense matrix
(see Section [2.3). In the compressed Schur multi-factorization variant (see Algorithm [6)), we thus
compress the X;; Schur block into a temporary compressed matrix as soon as the sparse solver
returns it (line 9).

Algorithm 6: compressed Schur multi-factorization algorithm for computing S based on

(3.2) and solving (1.2).

1 Function CompressedSchurMultiFactorization(A,b):

2 fori=1ton,do

3 for j=1toido

4 if i = j then

5 W« [ Avy 0 ]

Ag, 0
6 else
7 e As
B Aw, O

8 Xij « SparseFactorization+Schur(W)

9 Compress(Xij)

10 Ass,-]- «— Ass,-]- +Xij > Compressed AXPY
11 A,, < SparseFactorization(A,,)
12 b, < SparseSolve(A,,,b,)
13 A,s < DenseFactorization(Ag;) > Compressed factorization
14 xs < DenseSolve (A, by — Ag,by) > Compressed solve
15 | x, < SparseSolve(A,,,b, — Al x,)

The corresponding fully assembled S;; block can then be computed using both the compressed
Xij and A, (line 10). Like in the case of compressed Schur multi-solve (see Section , this
operation implies a re-compression of the initially compressed A, .

3.3 Experimental results

We have evaluated the previously discussed algorithms allowing for efficient low-rank com-
pression schemes for solving coupled sparse/dense FEM/BEM linear systems such as defined
in (1.2). For the purpose of this evaluation, we used the wide pipe test case (see Section [1.4.1).
The test case is designed so that we can compute the relative error of the numerical solution

(see Section [1.5.2.1]).

We have conducted our experiments on a single miriel node on the PlaFRIM platform [19]. A
miriel node has a total of 24 processor cores running each at 2.5 GHz and 128 GiB of RAM. It is
the policy of the platform to deactivate Hyper-Threading and Turbo-Boost in order to improve
the reproducibility of the experiments. The solver test suite is compiled with GNU C Compiler
(gec) 9.3.0, Intel(R) MKL library 2019.1.144, and MUMPS 5.2.1. Each run presented below
uses one node, with one process and 24 threads.
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Figure 3.4: Computation loop of S in compressed Schur multi-factorization (see Algorithm @)
Constructing W requires a temporary duplicated storage of A,, (upper part), Ay, and option-
ally AsTv]- (when i = j).

3.3.1 Implementation and configuration

We resort to the selected sparse and dense direct solvers introduced in Section to imple-
ment the proposed two-stage algorithms. For comparison with the state of the art, we consider
also the advanced vanilla solver coupling defined in Section [2.2.2}

3.3.1.1 Two-stage algorithms

We have implemented the multi-solve and multi-factorization algorithms (see sections[3.1]and
on top of the coupling of the sparse direct solver MUMPS (see Section with either
the proprietary ScaLAPACK-like [48] dense direct solver SPIDO or the hierarchical low-rank
H-matrix compressed solver HMAT (see Section [2.6.4.2). SPIDO is used for the baseline vari-
ants from sections [3.1.1] and [3.2.1] and HMAT for the compressed variants from sections [3.1.2]
and In the rest of the experimental study, we thus refer to these baseline and compressed
couplings as to MUMPS/SPIDO and MUMPS/HMAT, respectively. We use double precision
accuracy. MUMPS and HMAT both provide low-rank compression and expose a precision pa-
rameter € set to 1073 (see Section . Because the activation of the compression within the
sparse direct solver, MUMPS in this evaluation, is independent from the two-stage algorithms
and is completely transparent from the coupling point of view, we systematically turn it on for
both MUMPS/SPIDO and MUMPS/HMAT. For the tests in sections|3.3.3|and[3.3.4] all the ma-
trices are stored in-core (see Section[2.6.1), i.e. the out-of-core feature of the sparse and dense
solvers (see Section [2.6.4), when available, was not used.

3.3.1.2 Reference vanilla advanced coupling

From the algorithmic point of view, the advanced vanilla coupling (see Algorithm |2) is almost
equivalent to the baseline multi-factorization (see Algorithm [5/in Section with n;, set to
1, i.e. when the Schur complement matrix is not split into multiple blocks and processed at
once. The only difference is the additional sparse factorization of A, on line 10 of the baseline
multi-factorization algorithm. While it extends the overall time to solution, the peak in terms
of RAM usage remains in the sparse factorization+Schur step (see experimental confirmation in
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Section [6.2.2]of Chapter 6] being the core step of both of the algorithms.

To evaluate the performance of the advanced vanilla coupling, we thus rely on the implemen-
tation of the baseline multi-factorization algorithm on top of MUMPS and SPIDO as described
in Section and set the n;, parameter to 1. We use double precision accuracy, numeri-
cal compression in MUMPS is systematically turned on and € set to 1073 like in the case of
two-stage algorithms.

3.3.1.3 Known limitations

There are two limitations in the implementation of the multi-factorization algorithm we rely
on in this particular experimental study. One, it uses a non-symmetric mode of the sparse
direct solver within the sparse factorization+Schur step even for diagonal Schur complement
blocks, i.e. when i = j in the loop on line 8 in algorithms [5 and [6] Note that this leads to a
longer computation time but has no impact on the RAM usage peak. Two, in the version 5.2.1
of MUMPS used in this study, an integer overflow prevents from setting the Schur complement
block size above 46,340 rows or columns [56]. In a particular case (discussed below), this
prevents us from lowering the value of the n;, parameter as much as we could with respect to
the available amount of RAM.

Note that these limitations appear only in the implementation used within this experimental
study, i.e. within Section and in Section [6.2] of Chapter [6] They do not appear within all
the other experimental studies, i.e. in Section [3.4) of the present chapter as well as in chapters

@ Bland[7]

3.3.2 Monitoring tools

Computation times appearing in this study are provided by our application which measures
the execution time of all the routines. In figures, we report the "Factorization time’ which
corresponds to the execution time of all the steps of the multi-solve and multi-factorization
algorithms except for the computation of the solution vectors x; and x,, (see the last two lines

of algorithms and|6).

To monitor the RAM usage we resort to an external Python script relying on the /proc/[PID]/
statm system file (the resident size field). The acquisition frequency is set to 1 Hz, i.e. one
measure per second.

3.3.3 Solving larger systems

In this section, the goal is to determine what are the largest systems that the multi-solve and
multi-factorization algorithms allow us to process on the target compute node, and the associ-
ated computation times. We consider coupled FEM/BEM linear systems with the total number
of unknowns N ranging from 1,000,000 up to exceeding the memory limit. Table details
the counts of FEM and BEM unknowns, namely ngg); and nggyy, for each value of N. In addi-
tion, we evaluate multiple configurations for each algorithm. Regarding the baseline multi-solve
algorithm (see Section relying on the MUMPS/SPIDO coupling, we vary the size n. of
blocks AST,/I, of columns of the AL, submatrix (see Figure between 32 and 256. For the com-
pressed Schur multi-solve (see Section [3.1.2), relying on the MUMPS/HMAT coupling, the size
of blocks of columns of S and Al is handled by two different parameters, ng and 7, respec-
tively (see Figure[3.2). In this case, we set 71, to a constant value of 256 columns (motivated
by the results of the study in Section and vary ng in the range from 512 to 4,096. In
the case of the multi-factorization algorithm, both the baseline multi-factorization (see Section

Marek FEL$oct Fast solvers for high-frequency aeroacoustics



48 CHAPTER 3. TWO-STAGE ALGORITHMS IN SHARED MEMORY

3.2.1) and the compressed Schur multi-factorization variants (see Section[3.2.2) expose the n;, pa-
rameter handling the count of square blocks S;; per block row and block column of the Schur
complement submatrix S (see figures[3.3]and [3.4). The tested values of 1, are between 1 and
10.

In Figure for each solver coupling, we show the best computation times of both variants of
the multi-solve and the multi-factorization algorithms among all of the evaluated configura-
tions and problem sizes. The algorithm allowing us to process the largest coupled sparse/dense
FEM/BEM system is the compressed Schur multi-solve variant for N as high as 9,000,000 un-
knowns in total. In the case of the MUMPS/SPIDO coupling, when S and Ay, are not com-
pressed, we could reach 7,000,000 unknowns. In the multi-factorization case, the compression
of S and Ay, did not allow us to lower the memory footprint enough for processing larger sys-
tems than what we could achieve without. Indeed, in both cases we could process systems
with up to 2,500,000 unknowns which is a considerably smaller size compared to multi-solve.
This is due, in particular, to the duplicated storage induced by the loss of symmetry in the
multi-factorization method (see Section combined with the relatively large ratio of FEM-
related to BEM-related unknowns of the wide pipe test case (see Section [I.4.1). In Section
we will see that this differs in the industrial test case. Eventually, both the multi-solve and
the multi-factorization methods make it possible to process significantly larger systems than
the advanced vanilla coupling (see Section employed in the state of the art. According
to our experiments, the latter allowed us to process at most 1,300,000 unknowns in 455 sec-
onds. However, in this case, we were not able to process larger systems due to the limitation
on the Schur complement block size (see Section [3.3.1.3). A recent experiment using a newer
version of MUMPS (5.5.1) which does not suffer from this limitation showed that the advanced
vanilla coupling can process a coupled system with up to 1,700,000 unknowns in 957 seconds
before exceeding the memory limit. In this experiment, we also relied on a symmetric mode of
MUMPS within the sparse factorization+Schur step (see Section [3.3.1.3).

One may expect that the multi-solve method should always present better computation time
than the multi-factorization method due to the superfluous re-factorizations of the A,, sub-
matrix in the latter. However, in Figure we can see that multi-factorization may outper-
form multi-solve on smaller systems, here for N as high as 2,000,000. Indeed, unlike multi-
solve, which relies on a baseline usage of the sparse direct solver (see Section [2.2.1)), multi-
factorization takes advantage of the efficiency of the Schur complement functionality of the
sparse solver. On the other hand, multi-factorization implies duplicated storage leading to in-
creased memory consumption and a lot of re-factorizations of A,, when there is not enough
memory with respect to the size of the problem. Here, with a fixed amount of available mem-
ory, when the problem is small enough, we can use large blocks §;; of the Schur complement
S and need only few re-factorizations, in which case the multi-factorization performs better
than multi-solve. For larger problems, multi-factorization is more and more penalized and the
multi-solve algorithm becomes the best performing one. We further study these trade-offs in
Section[3.3.4 We can also observe that in the case of multi-solve, the computation time is better
for the baseline multi-solve variant. However, this is not true for all the runs nor does it mean
that the compression of Ag; and S has no effect or a negative impact on the efficiency of the
algorithm. The computation time of the factorization of the Schur complement is lower for the
MUMPS/HMAT coupling but the time spent by MUMPS to perform the sparse solve step Ay AL
is higher for MUMPS/HMAT than for MUMPS/SPIDO. Indeed, there is a non-negligible com-
putation time variability from one benchmark to another, especially if the benchmarks are not
performed on the very same miriel node. We further address this phenomenon in the multi-
metric study of multi-solve and multi-factorization presented in Chapter [6] (see Section [6.2.4]
in particular).

Eventually, Figure [3.6 shows the relative error for the test cases featured in Figure The
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Figure 3.5: Best computation times of multi-solve and multi-factorization for both of the
solver couplings MUMPS/HMAT and MUMPS/SPIDO. Parallel runs using 24 threads on single
miriel node.

precision parameter € was set to 107> for both MUMPS and HMAT solvers providing low-
rank compression. Unlike for the fully-compressed test cases relying on the MUMPS/HMAT
coupling, the relative error is smaller in the case of MUMPS/SPIDO when the dense part of the
linear system is not compressed at all and thus the final result of the computation suffers less
from the loss of accuracy due to the compression. It is to note that the low-rank compression in
MUMPS was activated for both the MUMPS/SPIDO and the MUMPS/HMAT couplings. In all
cases, the relative error is below the selected threshold 10~ which confirms that the algorithm
allows us to reach the expected accuracy.

3.3.4 Study of the performance-memory trade-off

We now further detail the trade-off between performance and memory consumption of the
algorithms. We want to know how to run the algorithms efficiently with a given amount of
memory. To a certain extent, this method may be related to the so-called memory-aware ap-
proaches [111}, 126} 128, [102].

3.3.4.1 Multi-solve algorithm

We consider a coupled FEM/BEM linear system with N, the total unknown count, fixed to
2,000,000. Regarding the baseline multi-solve (see Section relying on the MUMPS/SPIDO
coupling, we vary the size n. of block ASTUI, of columns of the AL submatrix. For the compressed
Schur multi-solve (see Section [3.1.2), using the MUMPS/HMAT solver coupling, the size of
blocks of columns of S and AJ, is handled by the ng and n, parameters, respectively. In this
case, we first set n. equal to ng varying from 32 to 256, then we maintain 7. at a constant value
of 256 columns (motivated by the results presented further in this section) and vary ng between
512 and 4,096. Note that the n, parameter also handles the number of right-hand sides treated
simultaneously by MUMPS during the sparse solve step A7} AL within the Schur complement
computation (see Section[1.6.2).
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Figure 3.6: Relative error E,,; for the runs of multi-solve and multi-factorization having the
best execution times and for both of the solver couplings MUMPS/HMAT and MUMPS/SPIDO.
Parallel runs using 24 threads on single miriel node.

In the first place, we focus on the n. parameter and its impact on the performance of MUMPS
within the baseline multi-solve algorithm. According to Figure setting 1, to a sufficiently
high value, i.e. 256 in this case, can considerably improve the computation time. For higher
values of n, than 256, the performance improvement begins to be less significant compared to
the rapidly increasing RAM usage due to the fact that the result of the sparse solve step A;L AL
is a dense matrix. Based on this result, we choose to set n. to 256 in case of the compressed
Schur multi-solve tests. In this compressed variant, if the Schur complement block is too small,
it leads to too frequent matrix compressions and increases the computation time, hence the
introduction of the separate parameter ng for the size of Schur complement blocks. We can
observe this phenomenon when #ng is too small, i.e. between 32 and 256 in this case. Just
like for n,, there is no need to increase ng as much as possible. From a sufficiently high value,
ng =512 in this case, ng has only a little impact on the computation time of the compressed Schur
multi-solve variant. Eventually, when we compare the baseline multi-solve to the compressed
Schur multi-solve, we can observe that compressing the dense submatrices S and A, allows us
to significantly decrease the memory consumption of the multi-solve algorithm.

3.3.4.2 Multi-factorization algorithm

We consider a coupled FEM/BEM linear systems with N, the total unknown count fixed to
1,000,000. Both the baseline multi-factorization (see Section and the compressed Schur
multi-factorization variants (see Section expose the n;, parameter handling the count of
square blocks §;; per block row and block column of the Schur complement submatrix S. The
tested values of 7, are between 1 and 4.

In Figure we can observe the negative impact of the increasing number of superfluous re-
factorizations of A,, on the performance of the multi-factorization algorithm with the increas-
ing number of Schur complement blocks §;;. On the other hand, smaller Schur complement
blocks allow one to reduce the memory footprint of the multi-factorization algorithm. While
in multi-solve the main impact of the block size parameter . is on the parallel efficiency of the

Fast solvers for high-frequency aeroacoustics Marek FeL$oct



3.3. Experimental results

51

10.3h
n. = 32
ng = 32
n. = 64
ng = 64

£
-
2

R 2.4h{
—
£
Q
<
o

1h-

50m 1

39m 1

2 $ S $ 5
RAM usage peak [GiB]
MUMPS/HMAT MUMPS/SPIDO

Figure 3.7: Comparison (in terms of RAM usage and performance) between the multi-solve im-
plementations for the MUMPS/SPIDO and MUMPS/HMAT couplings on a coupled FEM/BEM
system counting 2,000,000 unknowns for varying values of n, and ng.

MAREek FELSOCI

Fast solvers for high-frequency aeroacoustics



52 CHAPTER 3. TWO-STAGE ALGORITHMS IN SHARED MEMORY

successive sparse solve operations, in multi-factorization, using lower values of 1, we can reduce
the number of factorizations to perform which is much more crucial and efficient. Application
of low-rank compression techniques to the dense submatrix Ay and the Schur complement
submatrix S, further reduces the memory consumption of the algorithm. However, the gain
is not as noticeable as for the multi-solve method. The duplicated storage due to the loss of
symmetry in multi-factorization plus the dense storage of the Schur complement blocks by the
sparse solver significantly increase the RAM usage of the application and counterbalances the
positive effect of the low-rank compression in the dense part of the system.
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Figure 3.8: Comparison (in terms of RAM usage and performance) between the multi-
factorization implementations for the MUMPS/SPIDO and MUMPS/HMAT couplings on a
coupled FEM/BEM system counting 1,000,000 unknowns for varying values of ;.

3.4 Industrial application

We present in this section an example of industrial application processed at Airbus R&T using
the multi-solve and multi-factorization algorithms. In this case, we rely on the industrial test
case from Section Compared to the academic test cases from Section it covers a
larger surface domain leading to a higher proportion of BEM-related unknowns in the asso-
ciated coupled linear system. Hence the relative cost of the (dense) BEM part will be more
important and its compression has a bigger impact.

To run these tests, we use Airbus HPC5 computing facility. Each computing node has two
Intel(R) Xeon(R) Gold 6142 CPU at 2.60GHz, for a total of 32 cores (Hyper-Threading and
Turbo-Boost are deactivated) and 384 GiB of RAM. The acoustic application Actipole is com-
piled with Intel(R) 2016.4 compilers and libraries, and MUMPS 5.4.1. Each run presented be-
low uses one node, with one process and 32 threads. For these tests, all the matrices are stored
in memory, i.e. the out-of-core feature of the sparse and dense solvers (see Section [2.6.1), when
available, was not used. We use simple precision accuracy and, for compressed solvers, the
precision parameter € is set to 104, Measurements of computation time and RAM usage are
done as described in Section[3.3.2]

Table presents the results obtained on this test case using different approaches. For ref-
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Algorithm Dense Sparse n, RAM Time
compressed compressed (GiB) (s)
N/A OOM -
N/A 249 18h
12 OOM -

N/A 224 15.6h
12 275 8.1h
N/A 35 9.5h
12 82 2.3h
6 92 1.2h
3 137 52m

1

2

3 (

4 multi-solve (§3.1.1
5  multi-facto. (

6

7

8

9

multi-solve (§3.1.2)
multi-facto. (§
multi-facto. (§3.2.2
multi-facto. (§

XXX
LI T I B

Table 3.1: Performance of various algorithms on the industrial test case with numerical com-
pression optionally enabled. OOM stands for ‘out of memory’.

erence, we have performed preliminary experiments with compression turned off both in the
sparse (unlike in the rest of the chapter) and dense solvers (rows 1 - 3 in the table). In this case,
the state-of-the-art advanced vanilla coupling (see Section and the multi-factorization
algorithm can simply not run on this machine by lack of memory, multi-solve is the only un-
compressed solver that can run here. In the first time (rows 4 - 5), adding compression in
the sparse solver reduces CPU time and memory consumption for the multi-solve, and allows
multi-factorization to complete successfully (using more memory but less time than the multi-
solve). In a second time (rows 6 - 7), using compression in the dense solver yields an even
larger improvement in CPU time and RAM usage. Finally (rows 8 - 9), multi-factorization
can be further accelerated by lowering the number of tiles n; per block row and block column
of the Schur complement matrix. This reduces the number of factorizations at the cost of an
increase in the memory usage. Hence, the benefit of the memory gain coming from our algo-
rithms is twofold: one, it allows us to run cases that were inaccessible otherwise, and second,
the memory spared can be used to increase the Schur complement block size and reduce even
further the CPU-time in the multi-factorization approach. In the view of these results, multi-
factorization is the privileged approach in production for this type of test case on this type of
machines (but this conclusion strongly depends on the number of unknowns and the amount
of memory available). An example of physical result is presented on Figure

Figure 3.9: Industrial test case result: the acoustic pressure is visualized in the flow (at the
front) and on the surface of the plane (at the back). The color scale is saturated, so as to see the
acoustic pressure on the fuselage, which is much smaller than the pressure in the flow (as one
might expect, the noise is much higher inside the engine). The blurry pale part of the flow on
the left is the hot part of the jet flow, coming out of the combustion chamber (not represented).
It underlines the strong heterogeneity of the flow.
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3.5 Conclusion

In this chapter, we proposed the multi-solve and multi-factorization two-stage algorithms
adopting the strategy of exploiting the existing API of sparse and dense direct solvers for the
solution of coupled sparse/dense systems such as (1.2). The design of the algorithms makes
it possible for them to benefit from the most advanced features and building blocks of the
fully-featured direct solvers they are built on (such as the internal management of the Schur
complement, compression techniques and sparse right-hand sides). Thanks to multi-solve and
multi-factorization, and especially their further compressed variants, we were able to process
academic aeroacoustic problems more than 5x larger than standard coupling approaches (see
Section allow for on a given shared-memory multi-core machine. We furthermore showed
that the algorithms can take advantage of the whole available memory to increase their perfor-
mance, in a memory-aware fashion. Regarding the multi-factorization algorithm, it proved to
be particularly interesting in the context of the industrial test case when it was up to 11x faster
than the multi-solve approach. In chapters[4and 5, we extend this work to the out-of-core and
distributed-memory cases, respectively.
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CHAPTER

Out-of-core two-stage algorithms in
shared memory

In Chapter [3} we proposed two-stage algorithms, namely multi-solve and multi-factorization,
for solving coupled sparse/dense FEM/BEM systems such as defined in Section The
main strength of these algorithms is to rely on well-optimized and fully-featured sparse and
dense direct solvers. Fully-featured solvers implement some advanced functionalities we want
to take advantage of in order to reduce the time to solution and memory requirements of our
algorithms with the aim to process ever larger sparse/dense FEM/BEM systems. In particular,
we are interested in numerical compression and out-of-core computation which amounts to
moving currently unused data from RAM to disk, out of the core memory (see Section [2.6.1).
Both of the selected sparse and dense direct solvers implement these functionalities within
their different building blocks (see Section [2.1). Nevertheless, the current API of the solvers
prevents us from efficiently using the advanced features on the articulation between the sparse
and the dense building blocks, i.e. on the Schur complement part S of the system (see Sec-
tion|[1.3). The multi-solve and multi-factorization algorithms were designed to cope with these
limitations. In Chapter (3| we focused on the application of numerical compression on S. We
showed that, on a shared-memory workstation, the two-stage algorithms allow us to process
considerably larger coupled systems compared to the state-of-the-art vanilla solver couplings
(see Section [2.2). This could be achieved even without compressing S. However, its com-
pression gives us the possibility to process even larger coupled systems. The purpose of this
chapter is to explore the possibility of taking advantage of out-of-core computation within the
solution process, including on the Schur complement matrix. The goal is to further reduce the
memory consumption of the two-stage algorithms on a single shared-memory workstation and
potentially allow for processing even larger coupled systems.

In sections[4.1]and [4.2] we thus propose an extension of the multi-solve and multi-factorization
two-stage algorithms, respectively, to out-of-core computation. In Section we rely on aca-
demic test cases to analyze the impact of out-of-core on the time to solution and memory con-
sumption in shared memory. Experiments on an industrial application are discussed in Section

We conclude in Section [4.5]

55



56 CHAPTER 4. OUT-OF-CORE TWO-STAGE ALGORITHMS IN SHARED MEMORY

4.1 Out-of-core multi-solve algorithm

This section introduces the extensions of the baseline multi-solve (see Algorithm |3|in Section
3.1.1) and the compressed Schur multi-solve (see Algorithm [4]in Section [3.1.2)) two-stage algo-
rithms to out-of-core computation.

As of the multi-solve algorithm, the result Y; of the sparse solve step (LWLZU)’lASTvi (line 4 in
Algorithm [3|and line 5 in Algorithm [4), can only be retrieved in RAM, i.e. in-core (see Section
[2.6.1). The block Z; is also stored in-core. In baseline multi-solve (see Algorithm [3)), A is split
into square out-of-core blocks (see Figure [4.1a). Then, when assembling S;, we load data into
memory from only one out-of-core block at a time. Furthermore, as the dimension of out-of-
core blocks usually does not match the dimension of S; blocks, we load into memory only the
portion of the out-of-core block of Ay which is overlayed by the current S; block. Regarding
compressed Schur multi-solve (see Algorithm [4} Figure [4.1D), the out-of-core feature of the dense
direct solver is dynamically and transparently handled by the runtime on top of which the
solver is implemented (see Section [2.6). The runtime starts to eject data of compressed Z; and
A, to disk when an arbitrary chosen memory limit is reached during the computation. In
the experiments below, the dense solver is instrumented to use not more than 4% of available
RAM. The remaining portion is left for the sparse direct solver and other data.

4.2 Out-of-core multi-factorization algorithm

In this section, we propose the extensions of the baseline multi-factorization (see Algorithm
in Section [3.2.1) and the compressed Schur multi-factorization (see Algorithm[6]in Section [3.2.2)
two-stage algorithms to out-of-core computation.

In the case of the multi-factorization algorithm, the Schur complement block X;; (see Figure
associated with the temporary submatrix W is returned entirely assembled in RAM (in-
core). Just like for baseline multi-solve, in the baseline multi-factorization case (see Algorithm|5),
Ags is split into square out-of-core blocks (see Figure [4.2a). However, here the dimension of
the Schur blocks X;; and §;; is a multiple of the out-of-core block dimension. Then, when as-
sembling S;;, we load only one out-of-core block at a time into RAM. Regarding the compressed
Schur multi-factorization (see Algorithm [6} Figure [4.2b), the out-of-core feature of the dense di-
rect solver, concerning the compressed X;; and Ay, is dynamically and transparently handled
by the underlying runtime as it is for compressed Schur multi-solve (see Section [4.1)).

4.3 Experimental results

We conducted an experimental study of the multi-solve and multi-factorization algorithms
for solving larger coupled sparse/dense FEM/BEM linear systems such as defined in (1.2) in
order to evaluate the impact of out-of-core computation performance. For the purpose of this
evaluation, we used both the wide pipe and the narrow pipe test cases (see Section [1.4.1).

We rely on the implementation of the multi-solve and multi-factorization algorithms from Sec-
tion in Chapter [3|on top of the MUMPS/SPIDO and MUMPS/HMAT solver couplings
respectively for the baseline variants and the compressed variants of the algorithms. We use dou-
ble precision accuracy. The precision parameter € is set to 103 for both MUMPS and HMAT
(see Section [1.5.2.3). The low-rank compression in MUMPS is systematically turned on for
both MUMPS/SPIDO and MUMPS/HMAT. Measurements of computation time and RAM us-
age are done as described in Section [3.3.2]of Chapter 3] Like RAM consumption, disk usage is
monitored by the rss.py Python script but through the du command [3].
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Figure 4.1: Out-of-core block-wise computation of S using the multi-solve algorithm (zoom on
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Figure 4.2: Out-of-core block-wise computation of S using the multi-factorization algorithm
(zoom on the Schur complement dense part of the system).
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We have conducted our experiments on bora nodes on the PlaFRIM platform [19]. A bora node
has a total of 36 processor cores running each at 2.5 GHz, 192 GiB of RAM and a local hard disk
SATA Seagate ST1000NX0443 turning at 7200 rpm. It is the policy of the platform to deactivate
Hyper-Threading and Turbo-Boost in order to improve the reproducibility of the experiments.
The solver test suite is compiled with GNU C Compiler (gcc) 12.1.0, Intel(R) MKL library
2019.1.144, MUMPS 5.5.1 and StarPU 1.3.9. Each run presented below uses one node running
one process with 36 threads. Regarding the out-of-core feature, we consider three scenarios.
The All in-core label is used for benchmarks where out-of-core has been completely disabled in
both sparse and dense solvers, i.e. all the data has been stored in the core memory (in-core).
Then, the Out-of-core except Schur complement label is used for benchmarks where out-of-core
has been enabled only in the sparse direct solver, i.e. the dense part (A and consequently S)
has been stored in-core. Finally, the All out-of-core label has been used for benchmarks where
out-of-core has been enabled for both the sparse and the dense direct solver, including the
Schur complement part S.

The goal of this study is to determine whether out-of-core techniques may help us to lower the
memory footprint of the two-stage algorithms on a shared-memory workstation so as to allow
for processing even larger coupled systems and if so, to which extent. We consider coupled
FEM/BEM linear systems with N, the total unknown count, starting at 1,000,000 and increas-
ing until the memory limit is reached. As of the algorithm parameters, we evaluate multiple
configurations. For baseline multi-solve (see Section relying on the MUMPS/SPIDO cou-
pling, we vary the size n. of blocks ASTVZ_ of columns of the A, submatrix between 128 and 512.
For the compressed Schur multi-solve variant (see Section [3.1.2), relying on the MUMPS/HMAT
coupling, the size of blocks of columns of S and A], is handled by the ng and 1, parameters,
respectively. In this case, we set 1, to a constant value of 256 columns (motivated by the re-
sults of the study in Section and the RAM capacity of the bora nodes) and vary ng in
the range from 256 to 1,024. In the case of the multi-factorization algorithm, both the base-
line multi-factorization (see Section and the compressed Schur multi-factorization variants
(see Section expose the 1, parameter handling the count of blocks S;; per block row and
block column of the Schur complement submatrix S. The tested values of nj are 1, 3, 7 and 11.
As a reference from state of the art, we consider the advanced vanilla solver coupling (see Sec-
tion [2.2.2). From the implementation point of view, we rely on the baseline multi-factorization
algorithm with the MUMPS/SPIDO coupling and #n; set to 1 (see further details in Section
[3.3.1.2). The corresponding results are represented by blue curves with round points in the
figures below.

4.3.1 wide pipe

In the first place, we consider the wide pipe academic test case (see Section [1.4.1)). Note that
compared to the narrow pipe, it has a larger volume mesh and therefore a higher ratio of FEM-
related unknowns to BEM-related unknowns (see sections|1.3|and [1.4).

4.3.1.1 Multi-solve

Figures[4.3]and [4.4]show respectively the computation times as well as the peak RAM and hard
drive usage of the multi-solve algorithm for both of the solver couplings, i.e. MUMPS/SPIDO
and MUMPS/HMAT.

When both the sparse and the dense solver keep all the data in RAM (see the All in-core col-
umn in the figures), MUMPS/SPIDO is able to process up to 8,000,000 unknowns with 7, set
up to 256 columns before reaching the memory limit. When the Schur complement part is
compressed, i.e. in the case of MUMPS/HMAT, we can reach up to 12,000,000 unknowns.
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Now, using out-of-core exclusively in the sparse solver (see the Out-of-core except Schur comple-
ment column in the figures) enables MUMPS/SPIDO to solve systems with N up to 9,000,000
before running out of RAM. With MUMPS/HMAT, we can go up to 14,000,000. However, in
this case, we were not bound by the RAM, used at 62%, but by the time limit of the PlaFRIM
platform for one execution, i.e. 3 days. Putting the RAM consumption aside, running the
sparse solver out-of-core slows down the computation in the case of both couplings. In average,
we can observe 67% slow-down for MUMPS/SPIDO and 69% for MUMPS/HMAT with respect
to the All in-core benchmarks. Such an important overhead can be explained by the numerous
calls to the sparse solve step in MUMPS during the Schur complement assembly. Indeed, in
order to perform each of the sparse solve steps of MUMPS in multi-solve, the solver reads the
factors of the previously factorized A,, from disk. However, thanks to out-of-core, we can rise
n. to 512 which reduces the number of calls to sparse solve and thus allows us to counterbalance
the slow-down. Understanding the different levels of overhead between MUMPS/SPIDO and
MUMPS/HMAT would require a deeper investigation which is beyond the scope of this study.

Running all the solvers out-of-core (see the All out-of-core column in the figures) further de-
grades the time to solution leading to an overhead of 70% for MUMPS/SPIDO and 80% for
MUMPS/HMAT. In this case, MUMPS/SPIDO and MUMPS/HMAT could process coupled sys-
tems with up to 14,000,000 unknowns while taking respectively 72% and 62% of available
RAM. Past this problem size, the execution time exceeded the limit of 3 days on the PlaFRIM
platform. This is also the explanation of why MUMPS/SPIDO with 1, < 512 could not reach
further than 9,000,000 unknowns.

In summary, while it induces an overhead in terms of computation time, out-of-core allowed us
to significantly lower the memory footprint of the multi-solve algorithm thanks to its activation
in the Schur complement part in particular. As a result, multi-solve could process coupled sys-
tems which are up to 1,75x larger than without out-of-core, i.e. 14,000,000 against 8,000,000,
and up to 7x larger than the state-of-the-art advanced vanilla coupling, i.e. 14,000,000 against
2,000,000 (see the blue round points in the All in-core column of Figure representing an
execution of MUMPS/SPIDO using the baseline multi-factorization algorithm with the entire
Schur complement processed at once, i.e. with n set to 1). When out-of-core is used concur-
rently with numerical compression of S, the impact of out-of-core is only slightly noticeable
due to the efficiency of the compression. This trend could be different on larger problems.
Nevertheless, such experiments would require a high-performance computing platform with
less restrictive execution time limits.

4.3.1.2 Multi-factorization

Figures and respectively show the computation times as well as the peak RAM and
hard drive usage of the multi-factorization algorithm for both of the solver couplings, i.e.
MUMPS/SPIDO and MUMPS/HMAT. Unlike in the case of multi-solve (see Section [4.3.1.1)),
we report only a very low computation time overhead associated to the usage of out-of-core.
Without out-of-core and with out-of-core activated only in the sparse solver (see the All in-core
and the Out-of-core except Schur complement columns in the figures), the MUMPS/SPIDO cou-
pling can process up to 2,000,000 unknowns before reaching the memory limit. When running
both the sparse and the dense solvers out-of-core (see the All out-of-core column in the figures),
MUMPS/SPIDO allowed us to reach 3,000,000 unknowns with n;, set to 11. Thanks to the com-
pression of the Schur complement part, i.e. with MUMPS/HMAT, we can reach up to 3,000,000
unknowns. Activating out-of-core in the sparse solver then allows for lowering the value of n,,
from 11 to 3. This reduces the number of calls to the sparse factorization+Schur building block
(see Section[2.1)) in the core phase of multi-factorization (see Section [3.2) and thus significantly
accelerates the computation of the 3,000,000-unknown test case.
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Figure 4.3: Computation times of multi-solve on coupled FEM/BEM linear systems of varying
number of unknowns for both of the solver couplings MUMPS/HMAT and MUMPS/SPIDO
and for varying values of n. and ng. We test 3 different configurations of the out-of-core fea-
ture: completely disabled (all in-core), enabled except for the Schur complement matrix S or
enabled including for S (all out-of-core). Parallel runs on single bora node using the wide pipe

test case.
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Figure 4.4: RAM and hard drive usage peaks of multi-solve on coupled FEM/BEM linear sys-
tems of varying number of unknowns for both of the solver couplings MUMPS/HMAT and
MUMPS/SPIDO and for varying values of n, and ng. We test 3 different configurations of the
out-of-core feature: completely disabled (all in-core), enabled except for the Schur complement
matrix S or enabled including for S (all out-of-core). Parallel runs on single bora node using
the wide pipe test case.
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However, in this situation, the dense Schur complement part is not large enough with respect
to the sparse submatrices of A, for it to represent the most important limitation in terms of
RAM consumption. Actually, the bottleneck is the amount of RAM required by the sparse
solver during the Schur complement assembly. The multi-factorization algorithm implies data
duplication related to the loss of symmetry in the temporary submatrix W on which the sparse
factorization+Schur building block (see Section[2.1)) is applied (see Section|[3.2). The loss of sym-
metry then amplifies the negative impact of fill-in in W on RAM usage. In addition to that, the
out-of-core feature of MUMPS has only a limited influence on the RAM consumption of sparse
factorization+Schur because the Schur complement is kept in the core memory as discussed in
Section[2.1.1.2] This also explains the low overhead of out-of-core in this case. Nevertheless, we
expect this trend to vary depending on the ratio of the number of unknowns in the dense part
of the system to the number of unknowns in its sparse part. We therefore evaluate out-of-core
in the multi-factorization algorithm on a second academic test case with higher proportion of
unknowns in the dense part and further on an industrial test case in Section
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Figure 4.5: Computation times of multi-factorization on coupled FEM/BEM linear sys-
tems of varying number of unknowns for both of the solver couplings MUMPS/HMAT and
MUMPS/SPIDO and for varying values of n,. We test 3 different configurations of the out-
of-core feature: completely disabled (all in-core), enabled except for the Schur complement
matrix S or enabled including for S (all out-of-core). Parallel runs on single bora node using
the wide pipe test case.

4.3.2 narrow pipe

In the second part of this study, we consider the narrow pipe academic test case (see Section
[1.4.1). Compared to the wide pipe, it has a smaller volume mesh and therefore a higher ratio of
BEM-related unknowns in the dense part of the resulting system to FEM-related unknowns in
the sparse part of the resulting system (see sections and [1.4).
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Figure 4.6: RAM and hard drive usage peaks of multi-factorization on coupled FEM/BEM lin-
ear systems of varying number of unknowns for both of the solver couplings MUMPS/HMAT
and MUMPS/SPIDO and for varying values of n;,. We test 3 different configurations of the
out-of-core feature: completely disabled (all in-core), enabled except for the Schur complement
matrix S or enabled including for S (all out-of-core). Parallel runs on single bora node using
the wide pipe test case.
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4.3.2.1 Multi-factorization

Considering the narrow pipe test case, figures and [4.8| show respectively the computation
times as well as the peak RAM and hard drive usage of the multi-factorization algorithm for
both of the solver couplings, i.e. MUMPS/SPIDO and MUMPS/HMAT.

When out-of-core is disabled for both the sparse and the dense solver (see the All in-core column
of the figure), MUMPS/SPIDO can process up to 3,000,000 unknowns with n;, set to 11 blocks
and up to 2,000,000 with 7, in between 1 and 7 blocks before reaching the memory limit. When
the Schur complement part is compressed, i.e. in the case of MUMPS/HMAT, we can reach up
to 4,000,000 unknowns in total. Moreover, we can process the 3,000,000 problem using only 7
blocks per block row and column of S instead of 11 like in the case of MUMPS/SPIDO.

Activating out-of-core only in the sparse solver (see the Out-of-core except Schur complement col-
umn in the figure) has again a limited effect. The overhead with respect to the All in-core bench-
marks was of 3% for MUMPS/SPIDO and 4% for MUMPS/HMAT. However, MUMPS/HMAT
could reach 4,000,000 of unknowns with n; set to 7 instead of 11 and 3,000,000 unknowns
with ny, set to 3 instead of 7.

Unlike in the wide pipe test case (see Section [4.3.1.2), using out-of-core also on the Schur com-
plement part (see the All out-of-core column in the figure) brings more advantages. On the
one hand, MUMPS/SPIDO is capable of processing systems with up to 4,000,000 of unknowns
using less Schur complement blocks, i.e. with lower n;. On the other hand, the 3,000,000-
unknown case can be processed by both couplings with n; set to 3 blocks, i.e. resorting
to 6 calls to sparse factorization+Schur instead of 66 (n, = 11) and 28 (n, = 7) respectively
for MUMPS/SPIDO and MUMPS/HMAT without using out-of-core on the Schur complement
part. In the All out-of-core configuration, the reported slow-down with respect to the All in-core
benchmarks was of 9% for MUMPS/SPIDO and 3% for MUMPS/HMAT.

Compared to the case of multi-solve (see Section [4.3.1.1)), the impact of out-of-core, especially
in the dense part of the system, when combined with numerical compression is more present
both in terms of better computation time and lower RAM consumption.

4.4 Industrial application

This section presents an example of industrial application processed at Airbus Central R&T
using the multi-solve and multi-factorization algorithms. Here, we use the same industrial test
case and experimental setup as in Section We remind the reader that compared to both of
the wide pipe and the narrow pipe academic test cases also employed in this study (see Section
[1.4.1), the industrial test case covers a larger surface domain leading to a higher proportion
of BEM-related unknowns in the associated coupled linear system. Hence the relative cost of
the dense BEM part will be more important and numerical compression as well as out-of-core
techniques will have a bigger impact on time to solution and RAM consumption.

4.4.1 No numerical compression

For reference, we have performed preliminary benchmarks without compression neither in
the sparse nor in the dense solver. The corresponding results are provided in Table In
the case of multi-solve, when we activate out-of-core in the dense solver (row 2), it allows us
to considerably decrease the RAM usage from 255 to 52 GiB for an overhead of only 4% in
computation time. When the sparse solver is out-of-core as well (row 3), we can further reduce
the memory consumption but the associated slow-down becomes excessively high, i.e. 380%.
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Figure 4.7: Computation times of multi-factorization on coupled FEM/BEM linear sys-
tems of varying number of unknowns for both of the solver couplings MUMPS/HMAT and
MUMPS/SPIDO and for varying values of n;,. We test 3 different configurations of the out-
of-core feature: completely disabled (all in-core), enabled except for the Schur complement
matrix S or enabled including for S (all out-of-core). Parallel runs on single bora node using
the narrow pipe test case.
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Figure 4.8: RAM and hard drive usage peaks of multi-factorization on coupled FEM/BEM lin-
ear systems of varying number of unknowns for both of the solver couplings MUMPS/HMAT
and MUMPS/SPIDO and for varying values of n;,. We test 3 different configurations of the
out-of-core feature: completely disabled (all in-core), enabled except for the Schur complement
matrix S or enabled including for S (all out-of-core). Parallel runs on single bora node using

the narrow pipe test case.
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This is due to the fact that the sparse solver reads the factors of A,, from disk on each call
to the sparse solve building block during the Schur complement assembly. As the compression
is deactivated, this represent large amounts of data. Without out-of-core, multi-factorization
can only run with n; set to 12 blocks (row 4) which leads to 1 day of execution time compared
to 18.1 hours for multi-solve. Activating out-of-core in the dense and then also in the sparse
solver allows us to lower n; to 3 blocks, reduce the number of re-factorizations from 78 (with
ny set to 12) to 6 and process the linear system in 12.8 hours.

Algorithm Dense Sparse n, RAM Disk Time
out-of-core out-of-core (GiB) (GiB)

1 multi-solve (§3.1.1) N/A 255 25 18.1h
2 multi-solve (§4.1 X N/A 52 229 18.8h
3 multi-solve (§4.1] X X N/A 12 265 3.6d
4 multi-facto. ( 12 377 20 1d
5  multi-facto. X 12 207 223 1.4d
6  multi-facto. X 6 227 223 20h
7  multi-facto. X X 12 55 398 1.6d
8  multi-facto. X X 6 68 408 22.4h
9  multi-facto. X X 3 115 423  12.8h

Table 4.1: Performance of the two-stage algorithms on the industrial test case without com-
pression and with out-of-core optionally enabled.

4.4.2 Numerical compression in sparse solver

This time, we activate the numerical compression in the sparse solver but not in the dense
solver. The results are presented in Table In multi-solve, out-of-core in the dense solver
(row 2) brings again an important decrease in RAM usage without degrading the computation
time. Using out-of-core also in the sparse solver (row 3) leads to a lower overhead compared
to the reference benchmarks (see Section [4.4.1)), i.e. 54% instead of 380%, but does not consid-
erably reduce the RAM consumption either which is already low thanks to the out-of-core in
the dense solver. Here, multi-factorization performs better in all its configurations. However,
thanks to out-of-core in the dense solver (rows 5 and 6) and further in the sparse parts of the
system, we can lower 7, to 3 and accelerate the computation 3.25x (row 9) compared to the
fastest multi-solve executions (rows 1 and 2).

Algorithm Dense Sparse n, RAM Disk Time
out-of-core out-of-core (GiB) (GiB)

1 multi-solve (§3.1.1) N/A 229 25 15.6h
2 multi-solve (§4.1 X N/A 24 229 15.6h
3 multi-solve (§H X X N/A 14 235 1d
4 multi-facto. ( 12 279 20 8.3h
5  multi-facto. X 12 80 223  8.5h
6  multi-facto. X 6 82 223 6.2h
7 multi-facto. X X 12 57 235  8.5h
8  multi-facto. X X 6 64 235  6.6h
9  multi-facto. X X 3 120 235  4.8h

Table 4.2: Performance of the two-stage algorithms on the industrial test case with compression
in the sparse solver, without compression in the dense solver and with out-of-core optionally
enabled.
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4.4.3 Numerical compression in both sparse and dense solvers

Eventually, we activate the numerical compression in both the sparse and the dense solvers
and observe the impact of out-of-core. The results are in Table Regarding multi-solve, the
compression in all the parts of the system brings an important gain in time to solution and
RAM usage already (row 1). Moreover, activating out-of-core leads to only a limited decrease
in memory consumption but to an important slow-down which may go as high as 213% (row
3). Similar observations come out of the analysis of compressed Schur multi-solve. In this case,
the runs without out-of-core seem to be the best-performing ones in terms of the computation
time. With n;, set to 3 (row 6), we were able to perform the computation in only 50 minutes.
For the benchmarks resorting to out-of-core in rows 9 and 12 the memory consumption is even
slightly higher than without it (row 6). So far, we have not found the reason for this increase.
A deeper investigation is required to explain the phenomenon.

Algorithm Dense Sparse n, RAM Disk Time
out-of-core out-of-core (GiB) (GiB)
1 multi-solve (§|3.1.2[) N/A 35 4 9.3h
2 multi-solve (§4.1 X N/A 34 11 10.4h
3 multi-solve (§4.1] X X N/A 22 17 29.1h
4 multi-facto. (§3.2.2 12 81 5 2.1h
5 multi-facto. (§3.2.2 6 122 5 1.1h
6 multi-facto. (§3.2.2 3 142 5 50m
7  multi-facto. (§ X 12 89 11 3h
8  multi-facto. ( X 6 113 11 1.2h
9  multi-facto. ( X 3 162 11 53m
10 multi-facto. ( X X 12 75 17 2.5h
11 multi-facto. ( X X 6 103 17 1.2h
12 multi-facto. ( X X 3 150 15 52m

Table 4.3: Performance of the two-stage algorithms on the industrial test case with compression
in both the sparse and the dense solvers and with out-of-core optionally enabled.

4.5 Conclusion

In this chapter, we proposed an extension of the multi-solve and multi-factorization two-stage
algorithms to out-of-core computation. We validated the implementation on an experimen-
tal study including both academic and industrial test cases. On the one hand, when both the
sparse and the dense solvers resort to numerical compression, the effect of out-of-core on the
computation time and the RAM consumption of the two-stage algorithms is limited thanks to
the efficiency of numerical compression. On the other hand, in a framework where numeri-
cal compression is not available, out-of-core computation allows us to significantly lower the
memory footprint of the algorithms, especially when applied to the dense Schur complement
part. On a given shared-memory multi-core machine, we could thus process academic aeroa-
coustic problems larger than both state-of-the-art advanced vanilla coupling (see Section
and the two-stage algorithms themselves without resorting to out-of-core techniques. Regard-
ing the computation time, the overhead was more present in the case of multi-solve than in the
case of multi-factorization. For multi-solve, the overhead can be reduced using higher values of
n.. However, instead of RAM the final bottleneck became the time to solution due to the limit
on execution time of the considered computing platform. The boundaries for multi-solve on
a single shared-memory workstation were therefore not reached yet. Out-of-core in the multi-
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factorization algorithm had stronger positive impact in the context of the test cases leading
to coupled systems with higher proportion of unknowns in the dense part with respect to the
sparse part, i.e. in the narrow pipe academic test case and further in the industrial test case.
Thanks to out-of-core, multi-factorization allowed us to to process larger problems as well as
to process problems significantly faster thanks to lower values of n;, leading to fewer factor-
izations. This effect was especially strong in the context of the industrial test case. Without
numerical compression, out-of-core allowed multi-factorization to perform considerably less
calls (1, = 3) to the sparse factorization+Schur step compared to in-core computation (n, = 12).
Interestingly, in such cases, the out-of-core multi-factorization is faster then its in-core counter-
part. Moreover, multi-factorization remains faster then multi-solve like in in-core computation
(see Section[3.4)in Chapter[3). In Chapter[5] we extend this work to distributed-memory cases.
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CHAPTER

Two-stage algorithms in distributed
memory

In this thesis, we are interested in the design of coupled solvers for large sparse/dense FEM/BEM
linear systems such as defined in Section[1.3). In Chapter[2} concretely in Section [2.3]| we
saw that vanilla couplings of the state-of-the-art sparse and dense direct solvers do not allow us
to efficiently exploit advanced features such as numerical compression and out-of-core compu-
tation on the articulation between sparse and dense operations, i.e. in the Schur complement
part (see Section [I.3). We thus dedicated chapters [3| and [4] to the design of two-stage algo-
rithms, namely multi-solve and multi-factorization, allowing us to cope with this limitation
in a shared-memory environment. In this chapter, we pursue our effort to process ever larger
coupled FEM/BEM systems by resorting to distributed-memory computation.

However, taking advantage of distributed-memory parallelism in addition to the other ad-
vanced features within the solution process is not trivial either. The sparse solver implement
the possibility to compute and store the Schur complement in a distributed fashion. This would
allow vanilla solver couplings to process larger coupled systems compared to what they could
achieve in a shared-memory environment. However, without the possibility to efficiently apply
numerical compression nor out-of-core computation locally on different computational nodes,
they would quickly run into the same limitations as in shared-memory. Indeed, the distribu-
tion of a compressed matrix is not compatible with the distribution of a dense non-compressed
matrix returned by the sparse solver. A naive application of the compression routine would
thus require for the distributed Schur complement matrix to be copied in its entirety over all
of the computational nodes. Moreover, even if the dense A, submatrix may be stored out-of-
core by the dense direct solver, the portions of the Schur complement matrix on each node
would be entirely stored in RAM in a non-compressed dense form.

To deal with these limitations and enable a more efficient usage of numerical compression
and out-of-core computation in a distributed-memory environment, the goal of this chapter is
to present parallel distributed extensions of the multi-solve and the multi-factorization algo-
rithms.

In sections and we introduce the extended multi-solve and multi-factorization algo-
rithms. In Section we then analyze their performance in distributed memory with and
without compression of the Schur complement part S. Further experiments then attempt to
solve the largest possible coupled systems using the two-stage algorithms on a given amount
of computers and using both numerical compression and out-of-core techniques. We conclude
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in Section [5.4

5.1 Parallel distributed multi-solve algorithm

The original baseline multi-solve (see Algorithm |3) and compressed Schur multi-solve (see Al-
gorithm [4) two-stage algorithms respectively proposed in Sections [3.1.1|and [3.1.2|of Chapter
were extended to out-of-core computation in Section of Chapter 4 Their extension to
distributed-memory parallelism introduced in this section is based on the out-of-core multi-
solve algorithms.

In multi-solve, the sparse factorization of A,, as well as the dense factorization of the Schur
complement S, followed by the solve operations to determine x; and x,, can be transparently
done in parallel in distributed memory by the sparse and the dense direct solvers. Indeed,
the corresponding building blocks take care of distributing data and computations. However,
in order to be able to perform the multiplication Ay, Y; leading to Z; (line 5 in Algorithm
and line 6 in Algorithm [4), the columns of A, must be sorted so that on a given process I,
the indices of local columns of Ay, match those of local rows of Y; (see Figure [5.1). After the
multiplication, values from all processes are combined to compute the resulting Z; which is
then sent back to all processes. In the case of baseline multi-solve, each out-of-core block of A
(see Section is distributed among parallel processes by packs of rows in a cyclic manner.
This way, during the final assembly of S;, we process one parallel out-of-core block at a time.
Note that when the out-of-core feature is turned off, all the blocks are kept in memory but
the partitioning and the distribution remain the same. As of compressed Schur multi-solve, the
distribution of the compressed Z; and Ay, is handled transparently by the dense direct solver
through the underlying runtime.

5.2 Parallel distributed multi-factorization algorithm

The original baseline multi-factorization (see Algorithm [5) and compressed Schur multi-factoriza-
tion (see Algorithm [6) two-stage algorithms respectively proposed in Sections[3.2.1]and [3.2.2]
of Chapter 3| were extended to out-of-core computation in Section of Chapter Their
extension to distributed-memory parallelism introduced in this section is based on the out-of-
core multi-factorization algorithms.

As of multi-factorization, the sparse factorization+Schur steps on the temporary W matrices as
well as the dense factorization of the Schur complement S, followed by the solve operations to
determine x; and x,,, can be transparently done in parallel in distributed memory by the sparse
and the dense direct solvers. The corresponding building blocks take care of distributing data
and computations. Nevertheless in the baseline multi-solve variant, X;; is obtained distributed
across parallel processes in a cyclic manner by packs of rows. We choose the size of the lat-
ter so as to match the distribution of the out-of-core blocks (see Section of A, (see Figure
. As in the case of baseline multi-solve (see Section , during the final assembly of S;;,
we process one parallel out-of-core block at a time. The algorithm behaves the same way when
out-of-core is turned off. Then, all the blocks are simply kept in memory. As of compressed
Schur multi-factorization (see Figure [5.2D)), the distribution of Ay is handled transparently by
the dense direct solver through the underlying runtime. Moreover, due to the specificities of
the hierarchical low-rank compression technique [101]], data distribution in the compressed
submatrix A, is more complex and incompatible with data distribution in the dense non-
compressed submatrix X;; following a standard 2D-block cyclic scheme [48]. Consequently,
during the assembly of the block §;;, one process may require a portion of the non-compressed
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Figure 5.1: Out-of-core parallel distributed (assuming three parallel processes Py, P, and P,)
block-wise computation of S using the multi-solve algorithm (zoom on the Schur complement
dense part of the system). Only parts of L,,, A, ¥; and Yj; are represented.
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Xjj located on another process. To accommodate with this constraint, we propose a communi-
cation scheme based on a virtual ring topology for the processes to share their local portions
of Xj; so as to ensure that each process receives each of the local portions of X;; one at a time
without having to store a copy of the entire X;; on each process.

Figure [5.3]illustrates this communication scheme on an example assuming three parallel pro-
cesses Py, P; and P,. This leads to a three-step assembly of a tile S;; based on a non-compressed
tile X;; split into three packs of rows X;j,, Xjjs and X;;, distributed among all processes. At
first, Py assembles the local part of S;; for the locally available pack of rows Xj;,. Then, it sends
the latter to its immediate neighbor P;. Meanwhile, it receives X;;,, from P, and continues the
assembly of the local part of S;;. In the last step, P receives X;;z from P, (which received it
from P;) and completes the assembly of its local part of S;;. The remaining parts of S;; are
assembled analogically by P, and P,.

5.3 Experimental results

We conducted an experimental study of the extended multi-solve (see Section and multi-
factorization (see Section algorithms for solving larger coupled sparse/dense FEM/BEM
linear systems such as defined in in order to evaluate their performance in a distributed-
memory environment. For the purpose of this evaluation and based on previous results from
chapters[3]and [4} we used the wide pipe test case (see Section for the evaluation of multi-
solve and the narrow pipe test case (see Section for the evaluation of multi-factorization.
We remind the reader that the test cases are designed so that we can compute the relative
error of the numerical solution (see Section [1.5.2.1). Computation time and RAM usage are
measured as described in Section p- For the RAM consumption, we collect the usage
peaks from all the computation nodes and report the highest one.

Regarding the implementation of the distributed multi-solve and multi-factorization algo-
rithms, we have extended the shared-memory MUMPS/SPIDO and MUMPS/HMAT solver
couplings defined in Section The distributed-memory parallelism is implemented us-
ing the OpenMPI communication library [14] based on the MPI standard [79]. We use double
precision accuracy and in the case of MUMPS and HMAT, the precision parameter € set to
1073 (see Section . Furthermore, we systematically turn on numerical compression in
MUMPS for both MUMPS/SPIDO and MUMPS/HMAT (see Section [3.3.1.1).

We have conducted our experiments on skylake nodes on the TGCC Irene platform [23]. A sky-
lake node has a total of 48 processor cores running each at 2.7 GHz and 180 GiB of RAM. This
platform activates Hyper-Threading and Turbo-Boost by default. However, Hyper-Threading is
not taken into account by the scheduler unless the user explicitly specifies it, which was not the
case for the experiments below. The solver test suite is compiled with GNU C Compiler (gcc)
8.3.0, OpenMPI 4.1.4, StarPU 1.3.8, Intel(R) MKL library 19.0.5.281 and MUMPS 5.5.1. Each
run presented below uses one MPI process and 48 threads per node. This choice of parallel con-
figuration is motivated by earlier scalability tests of the solvers involved in the computation.
The best-performing setup for the combined use of these solvers was to use one MPI process
per computational node and delegate the intra-node parallelism to threads (see Figure in
the Appendix for MUMPS and Figure [8.17]in the Appendix for SPIDO and HMAT applied on
dense matrices).

In the first part of the study (Section [5.3.1), the goal is to evaluate the distributed two-stage
algorithms both from the point of view of scalability and parallel efficiency but also to ad-
dress them in a memory-aware fashion (see Section [3.3.4). We indeed first consider prob-
lems that may be processed on a single node to see whether the distributed multi-solve and
multi-factorization schemes can take advantage of the available memory and computational
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Figure 5.2: Out-of-core parallel distributed (assuming three parallel processes Py, P, and P,)
block-wise computation of S using the multi-factorization algorithm (zoom on the Schur com-
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Figure 5.3: Parallel distributed assembly of a Schur complement tile S;; by the compressed Schur
multi-factorization algorithm (assuming three parallel processes Py, P, and P,).

resources to increase their performance. In the second part of the study (Section [5.3.2), we
consider the two-stage algorithms with both the extension to out-of-core and the extension to
parallel distributed computation and try to reach their limits on a given number of computa-
tional nodes.

5.3.1 In-core scalability
5.3.1.1 Multi-solve

We consider coupled FEM/BEM linear systems with the total unknown count N equal to
1,000,000, 3,000,000 and 7,000,000. We run benchmarks on 1 to 16 nodes, i.e. using 48 to
768 cores.

baseline multi-solve In the first place, we focus on the baseline multi-solve (see Section |3.1.1)
relying on the MUMPS/SPIDO coupling. We vary the size n, of block AsTv,- of columns of the

AST,, submatrix in between 128 and 4,096.

Figure[5.4shows the computation time of the MUMPS/SPIDO coupling in function of per-node
RAM usage peaks. Then, Figure[5.5|shows the scalability and the parallel efficiency.

Regarding the n. parameter, we observe analogous behavior like in the case of the experiments
in shared memory (see Section [3.3.4.1). Sufficiently high 7. (see Figure gives the sparse
solver enough right-hand sides to process in parallel during the sparse solve step A;LAL (line
4 in Algorithm [3} p. and leads to an important improvement in computation time and
parallel efficiency. However, as the outcome of the operation is a dense non-compressed ma-
trix, too high values for n, can result in a dramatic increase in RAM consumption. Moreover,
ever higher n, does not translate into a proportional performance improvement. It may even
lead to a degradation. For example, with N = 7,000,000 and 8 computational nodes, going
from n, = 1,024 to n. = 4,096 shortens the computation time by 14% but more than doubles
the memory footprint. There is no large gap between the parallel efficiency of these two cases
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either. Then, with N = 3,000,000 and 4 to 8 nodes, increasing n. from 2,048 to 4,096 even
worsens the computation time in addition to a higher RAM consumption. In the end, the opti-
mal value of n, then depends on the size of the problem and the number of parallel processing
units used for the computation.

From a more general point of view, with increasing number of nodes, we can reduce both
the memory footprint as well as the computation time of the multi-solve algorithm. This is
crucial for our effort to process ever larger coupled FEM/BEM systems. In this part of the
study, we limited ourselves to at most 7,000,000 of unknowns. For systems of this size, 4 to
8 computational nodes seem to deliver satisfying efficiency both in terms of time and RAM
consumption. Pushing up to 16 nodes leads to a relatively small improvement. However,
in Section we then demonstrate the ability of the algorithm to take advantage of the
available memory and computational power of the 16 nodes to process considerably larger
coupled systems.

compressed Schur multi-solve For the compressed Schur multi-solve (see Section [3.1.2), using
the MUMPS/HMAT solver coupling, the size of blocks of columns of S and A], is handled
by two different parameters, ng and n,, respectively (see Figure [3.2). For the experiments in
shared memory (see Section [3.3.4.1), the optimal value of n. for the MUMPS/HMAT coupling
seemed to be 256 for a single problem with 2,000,000 unknowns. Here, we consider systems
of varying size and on varying number of nodes. The best 1, setting will therefore not be the
same for every case. For the evaluation of multi-solve using the MUMPS/HMAT coupling, we
therefore set ng to multiples (1x, 2x or 4x) of n. instead of considering a fixed value. For ex-
ample, according to the results in Figure the optimal n, for the problem with 3,000,000 of
unknowns running on 8 nodes seems to be 2,048. For the equivalent MUMPS/HMAT bench-
mark, we thus set n, to 2,048 and ng to 2,048 (1xn,.), 4,096 (2xn,) or 8,192 (4xn,).

Figure then compares the computation times and maximum RAM usage peaks of multi-
solve using MUMPS/HMAT with varying ng to the corresponding best-performing runs relying
on MUMPS/SPIDO. Figure [5.7|completes the analysis with parallel efficiency measures.

At first, we focus on the impact of the varying ng parameter. The computation times between
different values of ng present only minor differences. Like in shared memory (see Section
[3.3.4.1)), high enough ng reduces the overhead of compressing the dense Z; blocks as well as of
the corresponding compressed AXPY §; = Ay, — Z; (lines 8 and 9 in Algorithm p- during
the Schur complement assembly. The scalability and parallel efficiency results corroborate this
observation. There is no visible impact of varying ng on RAM consumption either.

In the second time, we compare the MUMPS/HMAT runs to their MUMPS/SPIDO references.
As of the computation time, the compression of S does not bring significant improvements.
In some cases MUMPS/HMAT is slightly faster than MUMPS/SPIDO, in some other cases it is
the opposite. These differences have two main causes. First, our application presents a non-
negligible execution time variability, even in shared memory (see Section [6.2.4). Second, the
way MUMPS distributes computation load and data varies and impacts the time to solution
differently from one execution to another, even if we consider the exact same linear system.
As of the RAM usage of MUMPS/HMAT compared to MUMPS/SPIDO, the compression of S
brings an important reduction of the application’s memory footprint. On smaller problems,
i.e. for N up to 3,000,000, this phenomenon is noticeable especially for low numbers of com-
putational nodes, i.e. 1 or 2. However, for larger problems, i.e. starting with N at 7,000,000,
the positive impact of compressing S is present even for higher numbers of nodes, i.e. up to
16.

Eventually, figures[5.8|and [5.9] show the relative error for the test cases featured in figure
and The precision parameter € was set to 1073 for both MUMPS and HMAT solvers pro-
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viding low-rank compression. Compared to the fully compressed test cases relying on the
MUMPS/HMAT coupling, the relative error is smaller in the case of MUMPS/SPIDO when the
dense part of the linear system is not compressed at all. Consequently, the final result of the
computation suffers less from the loss of accuracy due to the compression. In all cases, the
relative error is below the selected threshold 1073 which confirms that the algorithm allows us
to reach the expected accuracy.
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Figure 5.8: Relative error (E,,;) of multi-solve with MUMPS/SPIDO on FEM/BEM linear sys-
tems of varying size N and for varying values of n.. Parallel runs on 1 to 16 skylake nodes
using 48 threads per node.

5.3.1.2 Multi-factorization

In this section, we involve coupled FEM/BEM linear systems (arising from the narrow pipe test
case) with N, the total unknown count, of 1,000,000, 2,000,000 and 3,000,000. We run bench-
marks on 1 to 16 nodes, i.e. using 48 to 768 threads. Both the baseline multi-factorization (see
Section and the compressed Schur multi-factorization variants (see Section expose
the n, parameter handling the count of square blocks S;; per block row and block column of
the Schur complement submatrix S. The tested values of n; are 1, 3, 7 and 11. Note that, from
the implementation point of view, running baseline multi-factorization (MUMPS/SPIDO) with
ny set to 1 (blue curves with round points in the figures below) corresponds to the advanced
vanilla coupling from the state of the art (see definition in Section and implementation
details in Section [3.3.1.2). These results serve as reference points in the present study.

Figure shows the computation time as a function of per-node RAM usage peaks for both
the MUMPS/SPIDO and the MUMPS/HMAT couplings. Again, the behavior of the algorithm
with respect to the n;, parameter is analogous to the one observed in the case of the experi-
ments in shared memory (see Section . The smaller the value of n;, and the lower the
number of calls to the sparse factorization+Schur building block, causing the superfluous and
costly re-factorization of the large sparse A,, submatrix within W. To optimize the perfor-
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Figure 5.9: Relative error (E,,;) of multi-solve with MUMPS/HMAT on FEM/BEM linear sys-
tems of varying size N and for varying values of ng. Parallel runs on 1 to 16 skylake nodes
using 48 threads per node.

mance, the goal is therefore to lower n; as much as possible before reaching the memory limit.
For example, with N = 2,000,000 on one node, the computation time of multi-factorization
with n, = 3 (leading to 6 calls to sparse factorization+Schur) is more than eight times lower
than with n, = 11 (leading to 66 calls to sparse factorization+Schur). However, unlike in the
case of distributed multi-solve (see Section [5.3.1.1), computation time of multi-factorization
decreases only slightly with increasing number of nodes. This is especially noticeable for small
values of n;,. The results of scalability and parallel efficiency in figures and respec-
tively, confirm this observation. For example, considering 2,000,000 of unknowns, for both
MUMPS/SPIDO and MUMPS/HMAT, the computation time remains almost constant for all
the parallel configurations, when n;, < 7. Given that this happens in particular when n, is 1, i.e.
in the supposedly optimal performance condition, indicates a possible issue in the sparse fac-
torization+Schur building block of the sparse solver. We further discuss this in the multi-metric
study of the two-stage algorithms (see Section in Chapter [6). The parallel efficiency of
multi-factorization therefore remains low, i.e. below 20%.

Moreover, the results show that the per-node memory footprint of the distributed multi-factori-
zation algorithm can be reduced when using a higher number of nodes. The larger the problem
the more important the decrease. For example, in the case of a coupled system with 3,000,000
unknowns and n; set to 3 blocks, the maximum RAM peak on 4 nodes is of approximately
125 GiB whereas on 16 nodes it is around 55 GiB. Compression of the dense Schur comple-
ment part in the MUMPS/HMAT coupling further favors this effect. However, this becomes
less noticeable with increasing number of nodes. Indeed, the reduction of memory footprint
brought by the compression is already very important. This way, distributing small amount
of data for computation over a too large amount of nodes leads to duplication and, in terms
of RAM usage, penalizes MUMPS/HMAT which looses its advantage over MUMPS/SPIDO. At
the end, thanks to distributed-memory parallelism, multi-factorization allows us not only to
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process larger problems but also to use smaller values of 1, compared to a single-node exe-
cution. This leads to faster processing of problems that can be treated on one node but only
when considering large n; values leading to poor performance. For example, let us consider
the case of the system with 3,000,000 unknowns. Using MUMPS/SPIDO, it could not even be
processed on one node. Using MUMPS/HMAT, the lowest possible n;, was 7, leading to 28 calls
to the sparse factorization+Schur building block. Increasing the number of nodes to 4 allowed
us to process this case with n;, = 3 and even with n;, = 1 which is the optimal situation.

Figures[5.13|and[5.14]then show the relative error for the test cases featured in Figure The
precision parameter € was set to 107> for both MUMPS and HMAT solvers providing low-rank
compression. The observations are the same as in the case of multi-solve (see Section[5.3.1.1].
In summary, the relative error is below the selected threshold 10~ which confirms that the
algorithm allows us to reach the expected accuracy.

5.3.2 Solving larger problems

The goal of this second part of the experimental evaluation is to push the distributed multi-
solve and multi-factorization algorithms to their limits on a given number of nodes and con-
sidering both the numerical compression and the out-of-core computation extensions proposed
in chapters [3|and [4} respectively. In this case, we consider 16 skylake nodes and increase the
total unknown count N of the problem until either the memory or the execution time limit
on the platform is reached. As in the rest of this study, we consider both the baseline as well
as the compressed Schur variants of the two-stage algorithms relying on the MUMPS/SPIDO
and MUMPS/HMAT coupling, respectively. The tested values of the 1. and ng parameters for
multi-solve and of the n; parameter for multi-factorization were analogous to those from the
corresponding sections|5.3.1.1]and |5.3.1.2} As a reference from the state of the art, we consider
the advanced vanilla solver coupling (see Section [2.2.2). From the implementation point of
view, we rely on the baseline multi-factorization algorithm with the MUMPS/SPIDO coupling
and n;, set to 1 (see further details in Section [3.3.1.2).

In Figure we show the best computation times for all of the evaluated configurations
and problem sizes. Figure then shows the corresponding maximum RAM usage peaks.
The algorithm allowing us to process the largest coupled sparse/dense FEM/BEM system is
multi-solve for N as high as 40,000,000 unknowns in total. In the case of the compressed Schur
multi-solve, this result was reached without necessity for out-of-core in the Schur complement
part of the system. As we showed in Chapter |3} compressing the Schur complement part (see
Algorithm |4, p. is very efficient by itself and the usage of out-of-core has thus only a
limited effect. On the contrary, in the case of the baseline multi-solve, we had to resort to out-
of-core in all the parts of the system to prevent running out of memory. However, none of the
variants reached the physical memory limit. Therefore, they could possibly process even larger
FEM/BEM systems without the execution time restrictions of the platform, i.e. 3 days. With
multi-factorization, we could reach 7,000,000 unknowns. Here, the numerical compression,
out-of-core or distributed-memory computation did not allow us to push significantly further
than what is possible to achieve with the state-of-the-art advanced vanilla coupling (see Section
, i.e. 6,000,000 unknowns. Indeed, in this case, the bottleneck is not the storage of the
Schur complement part but the superfluous storage and the loss of symmetry in the multi-
factorization algorithm (see Section[3.2).
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Figure 5.10: Computation times of multi-factorization with MUMPS/SPIDO and
MUMPS/HMAT couplings on FEM/BEM linear systems of varying size N and for n;, from 11
to 1 or until the RAM limit is reached. Labels indicate the lowest n; we could achieve. Parallel
runs on 1 to 16 skylake nodes using 48 threads per node.
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MUMPS/HMAT couplings on FEM/BEM linear systems of varying number of unknowns and
for varying values of ;. Parallel runs on 1 to 16 skylake nodes using 48 threads per node.
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MUMPS/HMAT couplings on FEM/BEM linear systems of varying number of unknowns and
for varying values of ;. Parallel runs on 1 to 16 skylake nodes using 48 threads per node.
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5.4 Conclusion

Following the implementation of out-of-core techniques in the two-stage multi-solve and multi-
factorization algorithms in Chapter[4}, we proposed their extension to distributed-memory par-
allelism in this chapter. The subsequent experimental study showed that both of the algorithms
can make use of the available memory to increase their performance and allow for processing
larger coupled FEM/BEM systems compared to their shared-memory counterparts as well as
to the state of the art. The experiments further revealed that the multi-solve algorithm is also
able to take advantage of an increasing number of parallel computational nodes to accelerate
the computation. This was not the case of multi-factorization. The issue might be coming from
its core component, i.e. the sparse factorization+Schur building block of the sparse direct solver,
but a deeper investigation is required to confirm or contradict this hypothesis. Nevertheless,
compared to the state of the art, we were eventually able to process more than 6.5x larger
(40,000,000 unknowns against 6,000,000) coupled systems thanks to the proposed two-stage
approach without even going out of memory. Without the 3-day execution time limit on the
target platform, we might be able to process even larger coupled systems.

The next step of this study would be to deploy the parallel distributed versions of multi-solve
and multi-factorization at Airbus. They could allow for processing of more demanding indus-
trial simulations. Also, the multi-factorization scheme may appear much more interesting for
certain configurations as we saw in chapters[3|and

Finally, the multi-metric study of both multi-solve and multi-factorization presented in Chap-
ter [6] further analyzes the performance but also the energy consumption as well as the flop
rate of the algorithms for a more complete insight on their behavior in both shared-memory
and distributed-memory parallel environments.
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CHAPTER

Multi-metric study of two-stage
algorithms

In Chapter (3} we introduced the two-stage algorithms, namely multi-solve and multi-factoriz-
ation, for solving coupled FEM/BEM systems such as defined in Section Compared
to the state-of-the-art approaches (see Section [2.2), they allow for processing larger problems
thanks to a more efficient usage of numerical compression (see Chapter [3)), out-of-core compu-
tation (see Chapter [4) and distributed memory parallelism (see Chapter [5) through the cou-
pling of fully-featured and well-optimized sparse and dense direct solvers (see Section [2.6).

Until now, the dimensioning variables for such a calculation were the computation time, the
consumed RAM and disk space. The study of these quantities allowed us to understand the
behavior of the software and to push its limits in order to handle larger cases. The consider-
ation of carbon footprint issues in industry in general and in computing centers in particular
leads both players to consider another physical dimension: the energy consumption of compu-
tations. In this chapter, we present an energy profile of the solution of a coupled FEM/BEM
linear system. We assess the total energy consumption of the solver as well as how the power
consumption varies with the computation time, the flop rate, the amount of memory used and
the available algorithmic choices. We consider both shared-memory multi-core machines and
small clusters of such nodes, typically used for relatively large problems in aeroacoustic indus-
try. We want to establish whether the improvements brought by the proposed two-stage algo-
rithms in terms of time to solution and memory usage also translate to the energy consumption,
detect potential performance bottlenecks and share a detailed analysis of the resulting profile
with the community.

In Section[6.1] we present related work on the analysis of the energy consumption in the context
of numerical simulation in general and numerical linear algebra in particular. The hardware,
software and instrumentation setup we employ for this study is detailed in Section The
energy profile of the multi-solve and multi-factorization algorithms on a shared-memory node
is then analyzed in sections [6.2.1| and [6.2.2} respectively, before being prolonged to a multi-
node context in Section The overhead of the software probes used is studied in Section
We discuss the experimental results in Section[6.3]and conclude in Section
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6.1 Related work

While many studies like [57,[122]] analyze the energy consumption of various applications on
different architectures, fewer studies focus on dense or sparse solvers. [43] presents the en-
ergy consumption of OpenMP runtime systems on three dense linear algebra kernels. [33] and
[42] focus on sparse solvers. While the former studies the behavior of the Conjugate Gradient
method on different CPU-only architectures, the latter focuses on sparse solvers on heteroge-
neous architectures. In [41], the authors present an energy and performance study of state-of-
the-art sparse matrix solvers on GPUs. Note that many studies have been conducted regard-
ing the improvement of the energy consumption of sparse or dense linear algebra algorithms
[40,25]). In our case, we analyze an application coupling both sparse and dense techniques.

6.2 Experimental results

We conducted an energy consumption study of the two-stage multi-solve and multi-factorization
algorithms (see Chapter (3) for solving larger coupled sparse/dense FEM/BEM linear systems
such as involving also measures of memory usage and flop rate. For the purpose of this
evaluation, we used the wide pipe test case (see Section [1.4.1).

We rely on the same implementation of the multi-solve and multi-factorization algorithms as
in Section on top of the MUMPS/SPIDO and MUMPS/HMAT solver couplings. We use
double precision accuracy and in the case of MUMPS and HMAT, the precision parameter €
set to 1073 (see Section . We systematically turn on numerical compression in MUMPS
for both MUMPS/SPIDO and MUMPS/HMAT (see Section [3.3.1.1). However, the out-of-core
extension of multi-solve and multi-factorization (see Chapter[4) is not considered here and the
corresponding feature in MUMPS, SPIDO and HMAT was disabled for all the benchmarks.

The experiments were carried on the PlaFRIM platform [19] where we used the miriel com-
puting nodes equipped with 2 x 12-core Haswell Intel(R) Xeon(R) E5-2680 v3 at 2.5 GHz
with a Thermal Design Power (TDP) of 120 W, Hyper-Threading and Turbo-Boost deactivated,
128 GiB (5.3 GiB/core) RAM bank at 2933 MT/s, an OmniPath 100 Gbit/s and a 10 Gbit/s
Ethernet network links. Note that TDP refers to the power consumption under the maximum
theoretical load [24]. The solver test suite is compiled with GNU C Compiler (gcc) 9.4.0, Open-
MPI 4.1.1, StarPU 1.3.8, Intel(R) MKL library 2019.1.144, and MUMPS 5.2.1.

Measurements of computation time and RAM usage are done as described in Section [3.3.2]
p. In this study, the reported "Execution time’ covers the overall computation time of the
application. We measure the power consumption of our application with energy scope, a soft-
ware package dedicated to creating energy profiles of HPC codes [4]. It has an acquisition
and statistics delivering module running on the cluster and a post-processing and data anal-
ysis module running on a dedicated server. Measurements are performed at a user-defined
frequency on both the processor and the RAM. We monitor also flop rate using the likwid [80]]
software tool. All of the software probes run as separate threads which regularly access the
corresponding counters and sleep inbetween measures. Data acquisition was performed at the
frequency of 1 Hz by all of the software probes and for all the benchmarks presented in sec-
tions [6.2.1} [6.2.2 and [6.2.3] Data acquisition frequency then varies for selected test cases in
Section discussing the overhead of the monitoring software.
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6.2.1 Study of multi-solve in shared-memory

At first, we study the evolution of power consumption (in Watts) with respect to execution time
of the multi-solve algorithm (see Section on a single computational node. We consider a
coupled FEM/BEM linear system with 1,000,000 unknowns in total.

Regarding the baseline multi-solve algorithm relying on the MUMPS/SPIDO coupling, we set
the size n, of the ASTv]_ and S; blocks to 256 columns (see Figure in Section |3.1.1). For the
compressed Schur multi-solve relying on the MUMPS/HMAT coupling, the size of the S; and the
size of the AST,,]_ blocks are handled respectively by the ng and n, parameters (see Figure in
Section [3.1.2). In this case, we set n, to 256 and ng to 1,024 columns so that compression is
delayed until four blocks involving Asij are completed. The choice of these values is motivated
by the previous study of the multi-solve algorithm in Section In Figure the top plot
shows the evolution of the CPU and RAM power consumption as well as the flop rate for the
multi-solve algorithm with the MUMPS/SPIDO coupling. Then, the bottom plot of the figure,
shows the corresponding RAM usage evolution. The labels mark the alpha and the omega, i.e.
the beginning and the end, of the most important computation phases. In the same way, Figure
[6.2]then shows the results for the multi-solve algorithm with the MUMPS/HMAT coupling.

In the case of multi-solve, the Schur complement computation dominates the execution time
as well as the RAM usage. From the point of view of the computational intensity, illustrated by
the flop rate, it is the opposite. The factorization phase of the dense Schur complement matrix
is very short for the MUMPS/HMAT coupling thanks to the usage of low-rank compression.
Nevertheless, as of the MUMPS/SPIDO coupling, this phase consists of a dense factorization
which is a computationally intensive operation. Indeed, in this case, we reach the flop rate as
well as the power consumption peaks.

Figures [6.3|and [6.4] represent a zoom on figures [6.1] and [6.2] between the execution times 498
and 525 s, i.e. within the Schur complement computation phase. In these figures, we can
observe cycles of high and low power consumption and flop rate. As of the RAM usage, the
cycles are also present but less noticeable. Based on the labels, we can see that these cycles
are almost entirely due to the sparse solve operation involved in the computation of each of the
Schur complement blocks S; (see Chapter [3). In case of fork-join algorithms such as multi-solve
and multi-factorization, i.e. where the computations within one iteration are performed in
parallel but the iterations themselves are not, it is not surprising to see this kind of cycles. From
performance analysis point of view, they represent a waste of computation time. However,
when we consider also the energetic point of view, the cycles represent a waste of energy for
powering an idle CPU or RAM module.

Figure finally compares the total energy consumption (in Joules), the total execution time
and the peak RAM usage, once again of both variants (baseline MUMPS/SPIDO and further
compressed MUMPS/HMAT) of the multi-solve algorithm. We consider three coupled FEM/-
BEM systems of a total of 1,000,000, 3,000,000 and 5,000,000 unknowns, respectively. The
results confirm, as one may expect, that the energy consumption, the execution time as well as
the peak RAM usage rise with increasing size of the linear system. Moreover, the results show
that the compressed MUMPS/HMAT variant (the one that also performs compression within
the Schur) consumes less energy, in addition to being faster. This is an interesting result from
an industrial point of view, further motivating the usage of low-rank compression techniques.

6.2.2 Study of multi-factorization in shared-memory

We now consider the multi-factorization algorithm. For the 1,000,000 unknown test case (see
figures and[6.7), we set the number of Schur complement block rows and columns #;, to 3
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MUMPS/SPIDO on a FEM/BEM system with 1,000,000 unknowns. Parallel runs using 24
threads on a single miriel node. a and w mark the beginning and the end of a computation
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5,000,000 unknowns. Parallel runs using 24 threads on a single miriel node.

for both MUMPS/SPIDO and MUMPS/HMAT solver couplings. As for multi-solve, in the case
of multi-factorization, the execution time is dominated by the Schur complement computation.
With n;, = 3, we have a total of 6 Schur complement blocks S;; to compute. We can identify
the moment of computation of each §;; thanks to the apparent cycles of high and low power
consumption and flop rate and especially of RAM usage. Here, the Schur complement compu-
tation phase again consumes most of the RAM but is not the most computationally intensive
part of the algorithm. The peak power consumption and flop rates are met within the dense
factorization of S in case of the MUMPS/SPIDO coupling.

Figure[6.8|compares the total energy consumption (in Joules), the total execution time and the
peak RAM usage of the multi-factorization algorithm with problems of 1,000,000, 1,500,000
and 2,000,000 total unknowns. We can draw the same conclusion as in the case of multi-solve,
i.e. the energy consumption, the execution time as well as the peak RAM usage rise with in-
creasing linear system size. Nevertheless, the advantage of compressing the Schur complement
matrix S is less important in the case of multi-factorization.

6.2.3 Multi-node study

We now consider a platform composed of four computational nodes and assess a coupled sys-
tem of 2,000,000 total unknowns. Larger systems resulting in models with better resolution
are analyzed in chapters and [5| dedicated to the design of the multi-solve and the multi-
factorization algorithms. Here, we choose the system size large enough for leading to repre-
sentative results when processed in parallel on multiple nodes.

6.2.3.1 Multi-solve algorithm

Figures[6.9)and show the processor and RAM power consumption over all four monitored
nodes of the multi-solve algorithm for the MUMPS/SPIDO and the MUMPS/HMAT couplings,
respectively. The values of the block size parameters #n, and ng are the same as defined in
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Figure 6.6: Power consumption, flop rate and RAM usage evolution of multi-factorization
for MUMPS/SPIDO on a FEM/BEM system with 1,000,000 unknowns. Parallel runs using 24
threads on single miriel node. a and w mark the beginning and the end of a computation
phase.
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for MUMPS/HMAT on a FEM/BEM system with 1,000,000 unknowns. Parallel runs using 24
threads on single miriel node. a and w mark the beginning and the end of a computation
phase.
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Figure 6.8: Total energy consumption, computation time and peak RAM usage of multi-
factorization for MUMPS/SPIDO and MUMPS/HMAT on FEM/BEM systems with 1,000,000,
1,500,000 and 2,000,000unknowns. Parallel runs using 24 threads on a single miriel node.

Section The results confirm that the power consumption in a distributed parallel test
case evolves similarly to the single node test case (see Section [6.2.1). The RAM usage also
follows the pattern of the single node test case.

6.2.3.2 Multi-factorization algorithm

Figures[6.11]and [6.12]show the behavior of the multi-factorization algorithm for the MUMPS/-
SPIDO and the MUMPS/HMAT couplings, respectively. The number of Schur complement
block rows and columns n,, is again set to 3 for both couplings as in Section The evolu-
tion of RAM usage of multi-factorization follows the pattern of the single node test case (see
Section [6.2.2). Regarding the power consumption, the high and low cycles corresponding to
the computation of different Schur complement blocks differ considerably compared to the
single-node test case. At the beginning of each cycle, there is a peak but the consumption
falls down long before the end of the sparse factorization+Schur step which may indicate an
under-optimized usage of this routine in a parallel distributed environment, e.g. a load im-
balance. An analysis of execution traces might give us a better insight on the exact cause of
this behavior. However, the present study accentuates our previous observation from Chapter
reporting a potential bottleneck in the usage of the distributed-memory parallelization of a
key component in the solver stack. This increases the interest of such multi-metric profiles
beyond the assessment of the overall energy consumption.

6.2.4 Overhead

In this section, we study the overhead of the three software probes rss.py, energy scope and
likwid used to take memory usage, power consumption and flop rate measures. For this we
run the application with and without the monitoring software on a coupled FEM/BEM linear
system with 1,000,000 unknowns for both multi-solve and multi-factorization algorithms and
for both solver couplings, i.e. MUMPS/SPIDO and MUMPS/HMAT. We consider the same
block sizes as defined in sections|6.2.1/and [6.2.2!

Marek FEL$oct Fast solvers for high-frequency aeroacoustics



102 CHAPTER 6. MULTI-METRIC STUDY OF TWO-STAGE ALGORITHMS

Multi-solve (two-stage)

MUMPS/SPIDO

—_
o
o
o

9001  TDP: 960 W
800

7001
6001
500 |
400+
3001
2001

Power consumption [W

Device [l cPu I RAM

70+

P TSP R W | 1 PO |
LI/ LA I I

o e e

50 0
401
30+
20
101

RAM usage [GiB]

S
~
Execution time [s]

S $
v o)

Computation phase

O S=A,—A A v_lesTv (Schur complement)

S~! (Schur factorization)

Figure 6.9: Power consumption, flop rate and RAM usage evolution of multi-solve for
MUMPS/SPIDO on a FEM/BEM system with 2,000,000 unknowns. Distributed parallel runs
using a total of 96 threads on 4 miriel nodes. @ and w mark the beginning and the end of a
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Figure 6.11: Power consumption, flop rate and RAM usage evolution of multi-factorization for
MUMPS/SPIDO on a FEM/BEM system with 2,000,000 unknowns. Distributed parallel runs
using a total of 96 threads on 4 miriel nodes. @ and w mark the beginning and the end of a
computation phase.
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Figure 6.13: Computation times of different levels of instrumentation for multi-solve and
multi-factorization and for both the MUMPS/SPIDO and the MUMPS/HMAT solver cou-
plings on a FEM/BEM linear system with 1,000,000 unknowns. Parallel runs using 24 threads
on single miriel node.

In Figure we rely on a box plot representation to compare the computation times of the
application running with different levels of instrumentation; that is instrumented with each
software probe separately, with all the software probes at once and with no instrumentation.
The acquisition frequency is always 1 Hz. All the runs related to a given algorithm, solver
coupling and instrumentation level, e.g. multi-solve with MUMPS/SPIDO and rss.py, are run
on the same computational node. Each test case is repeated 6 times with and without instru-
mentation. In other words, we have 4 possible algorithm and solver coupling combinations.
Each combination is run 6 times with and without instrumentation. Finally, there are 4 dif-
ferent levels of instrumentation, i.e. running separately with rss.py, likwid and energy scope
and with all probes together. In total, we performed 192 (4 x 2 x 6 x 4) runs on at most
16 (4 x 4) different miriel nodes. The results lead to three main observations. One, there is
a non-negligible computation time variability at all levels, even when no instrumentation is
used, which makes the interpretation of the overhead a complex matter. The variability could
be reduced by making all the 192 tests on the same node. Two, the fact that instrumentation
with likwid all alone can cause a more important overhead than instrumentation with all the
software probes at once, e.g. in case of multi-factorization with MUMPS/SPIDO, will require a
deeper investigation. Three, the overhead of all the probes used at once is 6% to 8%.

likwid and energy_scope support custom acquisition profiles. Throughout the study, we were
monitoring only one metric at a time and at the frequency of 1 Hz with each of the soft-
ware probes. To evaluate the impact on the application overhead, we also run likwid and
energy_scope with alternative acquisition profiles, i.e. with up to 2 Hz frequency and monitor-
ing up to 2 metrics at once. For likwid, we considered RAM bandwidth in addition to flop rate
and for energy scope, we considered CPU temperature in addition to CPU and RAM power
consumption. According to results in Table considering higher acquisition frequency or
multiple metrics at once most of the time leads to an individual overhead of each software
probe which is higher than the combined overhead of all the probes in the case of our initial
acquisition profile, i.e. 6% to 8% with 1 Hz frequency and 1 metric per probe.

Note that, within this study, we wanted to perform a high-level profiling with non-intrusive
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Software probe | Frequency | Metrics | Max. overhead
likwid 2 Hz 1 10%
likwid 1 Hz 2 11%
likwid 2 Hz 2 17%

energy_scope 2 Hz 1 9%
energy_scope 1 Hz 2 4%
energy_scope 2 Hz 2 9%

Table 6.1: Maximal overhead of likwid and energy_scope on the application for varying acqui-
sition frequencies and metrics.

tools. Here, the term 'non-intrusive’ does not refer to the performance but to the fact that there
is no need for modifying the source code of our application to perform the measures. In the
case we want a finer analysis with a lower overhead, we might have to resort to lower-level
libraries such as PAPI whose overhead is known to be very low [90].

6.3 Discussion

The experimental results confirmed that the performance advantages of the compressed Schur
multi-solve and compressed Schur multi-factorization algorithms also translate into energy con-
sumption. In addition to that, the study allowed us to pinpoint a major performance bottle-
neck represented by the unwanted cycles of high and low power consumption in case of both
multi-solve and multi-factorization schemes. It is not exactly within the sparse solver itself,
but more on the fact that the schemes make many calls to the solvers and that their API (the
one of MUMPS but also of other fully-featured solvers) is synchronous. We anticipated that it
might lead to a performance penalty but we did not expect the impact to be that significant.
After presenting this study to developers of sparse direct solvers, they agreed that alleviating
the synchronizations through asynchronous calls would certainly be a nice feature. Because
fully-featured sparse direct solvers have hundreds of thousands lines of code and changing
their algorithms and API is a complex task, this can only be a long-term work. However, this
could be achieved within a non fully-featured prototype. Chapter [7|is therefore dedicated to
the exploration of an alternative solver coupling allowing for an asynchronous management so
that we can change the flow with which we call the solvers and avoid synchronizations. The
idea is to rely on a novel task-based design proposing asynchronous calls in the API of the
solvers so that the calls to the sparse and the dense solver can be pipelined. We expect such
an asynchronous scheme to alleviate the potential load balancing issues in the advanced sparse
factorization+Schur functionality of the sparse direct solver highlighted within the multi-node
study.

6.4 Conclusion

We have studied the energetic profile of a complex HPC application, involving dense, sparse,
and compressed operations. The study established that the further compressed algorithms
(MUMPS/HMAT) are also worth from an energetic perspective. The energy profiles together
with the memory usage and flop rate allowed us to better understand the behavior of the ap-
plication, up to the point that we identified a major performance bottleneck in our implemen-
tation as well as a potential load balancing issue in the sparse direct solver.

These results offer new directions to explore and may as well serve as feedback for the devel-
opers of sparse direct solvers. While the main goal of Chapter|[7]is to implement an alternative
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single-stage algorithm class, it could also allow us to alleviate the aforementioned drawbacks.
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CHAPTER

Towards a single-stage algorithm

We dedicated the first part of this thesis to the design and extension of the two-stage algo-
rithms, namely multi-solve and multi-factorization, for the solution of large coupled sparse/-
dense FEM/BEM systems presented in Section [1.3] The core idea of these algorithms is to rely
on the existing API of fully-featured and well-optimized sparse and dense direct solvers imple-
menting in their building blocks advanced features such as numerical compression, out-of-core
and parallel distributed computation. The experimental studies in chapters 3} [4and [5|showed
that the two-stage algorithms allow for more efficient couplings of fully-featured direct solvers
compared to a straightforward usage of the latter within the vanilla baseline and advanced
approaches (see Section [2.2). However, in Section we explain why they remain suboptimal
with respect to the ideal implementation which would lead to optimal performance and mem-
ory consumption. Therefore, in Section we discuss the possible design of a single-stage
algorithm leveraging the limitations of the vanilla couplings which the two-stage algorithms
allowed us to cope with, nevertheless, without fully avoiding them.

The rest of this chapter is organized as follows. In Section we propose a task-based single-
stage algorithm meant for fully exploiting the symmetry and the sparsity of the target linear
system within the solution process. A non fully-featured prototype implementing the
proposed algorithm is introduced in Section[7.4] We conduct a preliminary experimental eval-
uation of our implementation in Section We conclude in Section

7.1 Design limitations of two-stage algorithms

The two-stage algorithms are designed to cope with the limitations in the state-of-the-art vanilla
solver couplings related to a straightforward usage of the fully-featured direct solvers. Derived
from the baseline coupling (see Section[2.2.1)), multi-solve avoids the explicit storage of the en-
tire AL, in a non-compressed dense matrix. Together with multi-factorization, derived from
the advanced coupling (see Section[2.2.2), the algorithms aim at assembling the Schur comple-
ment matrix S in multiple smaller blocks. The common motivation is to enable the application
of numerical compression and out-of-core computation techniques also on the dense Schur
complement part of the system. Although the two-stage algorithms allow for bypassing the
limitations of their vanilla counterparts, they cannot eliminate them completely and reach the
ideal approach (see Section[1.6.3)) while relying on the existing API of direct solvers. As we dis-
cussed in Section 3.1} multi-solve cannot fully preserve the symmetry of the system as it needs
to store a block Y; of columns of Al in a dense matrix at each iteration (see Figure on p-
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and Figure[3.2)on p. [42). It does not benefit from the optimal performance of the sparse factor-
ization+Schur building block either. Multi-factorization (see Section [3.2) implies an important
data duplication in A,, for the computation of extra-diagonal blocks of S and suffers from su-
perfluous re-factorizations of A,, in W (see Figure[3.3|on p. [44]and Figure[3.4/on p.[46) at each
iteration. Moreover, the fork-join character of the algorithms induced by synchronous API calls
leads to an important performance degradation as was pointed out in the multi-metric study
in Chapter [6] In the aim to reach the ideal implementation of a sparse/dense coupled solver
described in Section[I.6.3]and avoid the aforementioned drawbacks related to the usage of the
existing solver API, we propose the single-stage algorithm scheme relying on an alternative
APL

7.2 Single-stage approach

The advanced vanilla solver coupling (see Section [2.2.2)) preserves and exploits the symmetry
and the sparsity of the linear system to solve . When it fits in memory, it represents an
optimal implementation from the performance point of view too. However, as discussed in
Section there is a major drawback in terms of memory footprint of the algorithm on the
articulation between the sparse and the dense direct solver, i.e. on the Schur complement part
S. Before the dense solver takes over with the dense factorization of S in the second stage, the
latter must be fully assembled in RAM in a non-compressed dense matrix by the sparse solver
in the first stage of the computation (see Figure[7.1).

S S

(a) first stage: assembly of the entire S by  (b) second stage: factorization of S by the
the sparse solver dense solver

Figure 7.1: Core phases of the advanced vanilla coupling (see Section D in two stages.

The goal of the single-stage approach is multi-faceted. One, we want to preserve and take
advantage of the ideal symmetry and sparsity condition of the coupled system. Two, similarly
to the multi-solve and multi-factorization algorithms but without their remaining drawbacks
(see Section [7.1)), we want to avoid the assembly of the entire Schur complement matrix S
in RAM by resorting to out-of-core techniques. Three, we want to be able to begin the dense
factorization of S before it is fully assembled and this way perform the entire computation
asynchronously in a single stage instead of two synchronous stages (see Figure[7.2).

To achieve such an implementation, we can rely either on a unique solver capable of applying
both sparse and dense operations according to the partitioning of the target linear system or on
a coupling of a sparse and dense direct solvers having APIs compatible enough to ensure the
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Sy Si/

(a) Beginning of the sparse factoriza-  (b) Factorization of the first tile of S while
tion+Schur and computation of the first  the sparse factorization+Schur continues.
tile of the Schur complement matrix S.

Figure 7.2: Principle of the single-stage approach.

composability between the sparse and dense operations as described above. The first option
seems to be the one that favors such a composability the most. However, it practically implies
the development of a new solver having all the capabilities and optimizations of sparse and
dense direct solvers. It could be done only as a long-term work. Therefore, in this thesis,
we choose to focus on the second option. This way, we can adapt existing solvers and take
advantage of all their available features. While modifying the API of a fully-featured direct
solver can also be only a long-term work due to complex code base, a proof-of-concept can be
implemented within a non fully-featured prototype.

7.3 Task-based algorithm

We consider a coupling of task-based (see Section sparse direct and dense direct solvers.
To improve the composability of the solvers as well as to ease the design of compatible APIs
allowing us to avoid the synchronization on the link between sparse and dense operations, we
resort to solvers using the same runtime.

Like the advanced vanilla solver coupling (see Section [2.2.2), the task-based single-stage al-
gorithm builds on the sparse factorization+Schur building block of the sparse direct solver to
compute the Schur complement X = —A,, A7} AT associated with the [ﬁ”” AST”] matrix. However,
instead of returning the entire Schur complement in a unique dense matrix, the building block
has been adapted so as to split the latter into multiple blocks X;; = —AS,,I_A;}AST,,]_ of equal size
ngem/ny where Ag,. is a subset of nggp/ny, rows of Ay, and ASTUJ, a subset of ngg)/n, columns
of AT . The blocks can then be assembled in an asynchronous manner and stored out-of-core
before triggering the computation of the corresponding equally-sized blocks S;; = Ass;; + Xij of
the Schur complement S. The number of blocks per block row and block column of X and S is
determined by the n;, parameter. Finally, based on the definition of S in , Sij is a block of
ngem/npy rows and columns of S such as:

—_—
_ -1 4T
Sij —Assij _Asv,-Avasv/- : (71)
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We therefore propose a task-based single-stage approach in Algorithm 7} It begins by the con-
struction of a temporary submatrix W from A,, and A, (line 2). Initial A,, and A;, are saved
to disk in order to prevent data duplication. Then, we call the sparse factorization+Schur step on
W (line 3) relying on the Schur complement feature provided by the sparse direct solver (see
Section [2.1.1). This call returns only references to blocks of the Schur complement X associ-
ated with the submatrix W. Meanwhile, each block X;; = -Ay,, (LWLZV)‘lAST,,j can be assembled
asynchronously. Then, we trigger the Ay, + X;; operations (line 6) to determine the blocks §;;
of the Schur complement S following (7.1). The instructions on lines 7 to 11 leading to the
final solution in x, and x; can also be triggered immediately. The runtime the solvers are built
on shall handle the execution of all the tasks and ensure the data dependencies between them.

Algorithm 7: Single-stage algorithm for the solution of (1.2) relying on the coupling
of task-based sparse and dense direct solvers.

1 Function SingleStage(A,b):
2 1%% <—[ Ay 0 ]

Ay, O
> Below operations can all be triggered immediately and performed
asynchronously:
X « SparseFactorization+Schur(W) > Retrieve block references.

fori=1ton,do
Lforjzltoido

o G A W

t ASSZ']‘ — ASS,']' + XZ] > AXPY

7 Ags < DenseFactorization(A)
> Reusing the factorized A,, within W:

8 b, < SparseSolve(A,,,b,)

9 bs — bs _Asvbv

10 X; < DenseSolve (A, by)

11 x, < SparseSolve(A,,, b, — Al x;)

In this case, avoiding a dramatic increase in RAM usage during the computation, especially
due to the Schur complement assembly, can be achieved thanks to two mechanisms. On the
one hand, we can rely on the out-of-core feature (see Section of the underlying runtime
(see Section to respect a given RAM usage limit by evicting currently unused data on
disk. On the other hand, we can limit the number of tasks submitted to the runtime to prevent
the latter from further allocating memory if a given threshold is reached. In this case, one
must ensure that delaying task submission will not lead to a deadlock due to an unsatisfied
inter-task dependency. Also, compared to the first option, this strategy is likely to limit the
parallelism whereas disk usage in the case of out-of-core is likely to degrade the performance
of the application due to higher latency of input/output operations. [28|, 126} (111} 102} [120]
provide deeper insight on the problem.

7.4 Prototype implementation

As we explained in Section[7.2} implementation of the single-stage algorithm (see Algorithm
in fully-featured direct solvers is a complex task and can only be done as a long-term work. In
this thesis, we thus choose to implement a proof-of-concept in a non fully-featured prototype.
For this, we rely on the sparse direct solver qr_mumps (see Section[2.6.4.1) and the dense direct
solver HMAT (see Section [2.6.4.2). Both solvers are task-based and use the StarPU runtime
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[44]. Also, the solvers expose synchronous and asynchronous API. Following our initiative
to implement the single-stage algorithm, qr_mumps was extended with an LLT factorization
routine for complex symmetric matrices as well as with the crucial sparse factorization+Schur
building block.

There are some sacrifices to be made in a non fully-featured framework. The qr_mumps solver
does not implement either distributed memory parallelism (although it is an ongoing work
[27]]) or numerical compression. Although it exposes a parameter to control its memory con-
sumption [20, 28]}, it has no effect on the sparse factorization+Schur building block so far. This
is due to the memory management and currently implemented memory allocation granular-
ity. In the current implementation, the Schur complement must be fully allocated in RAM.
Another limitation prevents us from reusing the factorized A,, within W for the sparse solve
operation on line 8. In the prototype implementation, we thus have to restore the original A,,
from disk, which also makes us put a synchronization barrier after the dense factorization on
line 7, re-factorize A,, and perform the remaining operations in a synchronous manner.

However, we seek to implement a proof-of-concept and this solver configuration allows us
to implement a prototype of the single-stage algorithm leading to a better composability of
sparse and dense operations thanks to the common usage of the StarPU runtime. This also
favors asynchronous execution of sparse and dense computation tasks, at least up to the dense
factorization of the Schur complement S. Note that, as a consequence of using HMAT as dense
solver, the Xi]' tiles, retrieved on line 3, need to be compressed before the AXPY operation in
line 6 which thus becomes a compressed AXPY.

7.5 Preliminary experimental evaluation

We conducted a preliminary experimental study of the prototype single-stage implementation
(see Section for solving coupled sparse/dense FEM/BEM linear systems such as defined in
(L.2). For the purpose of this evaluation, we used the wide pipe test case (see Section[1.4.1). We
remind the reader that the test case is designed so that we can compute the relative error of the
numerical solution (see Section [1.5.2.1). Computation time and RAM usage are measured as
described in Section Like for two-stage algorithms, the reported "Factorization time’ in
figures corresponds to the execution time of all the steps of the proposed single-stage prototype
algorithm except for the computation of the solution vectors x; and x, (see the last two lines of
Algorithm[7).

We use double precision accuracy. The precision parameter € for HMAT providing low-rank
compression is set to 1073 (see Section |1.5.2.3). qr_mumps currently implements no compression
mechanism.

We have conducted our experiments on either a laptop having an Intel(R) Core i7-8650U with
4 cores running each at 4.2 GHz and 32 GiB of RAM or a single bora node on the PlaFRIM
platform [19]]. A bora node has a total of 36 processor cores running each at 2.5 GHz and
192 GiB of RAM. Hyper-Threading and Turbo-Boost are deactivated. The solver test suite
is compiled with GNU C Compiler (gcc) 12.2.0, Intel(R) MKL library 19.0.5.281 and StarPU
1.3.8.

In the first part of the study, in Section we evaluate the impact of the asynchronous
API on the single-stage algorithm. Then, in Section we compare the performance of the
prototype single-stage implementation with the two-stage algorithms.

Marek FEL$oct Fast solvers for high-frequency aeroacoustics



114 CHAPTER 7. TOWARDS A SINGLE-STAGE ALGORITHM

7.5.1 Asynchronous execution

We consider coupled FEM/BEM linear systems with N, the total unknown count, ranging from
100,000 to 2,000,000. The number 1, of blocks per block row and block column of the Schur
complement matrices X and S (see Section is set to either 10 or 30. Note that in the
hereby case of the single-stage algorithm, the n;, parameter is not the same as in the two-
stage multi-factorization algorithm (see Section [3.2). In particular, values higher than 1 do not
lead to superfluous re-factorizations of the A,, submatrix within the sparse factorization+Schur
building block. Here, we make only one call to the latter. Finally, the computation is done
either in synchronous or in asynchronous execution mode.

Figure [7.3| shows the computation times and Figure [7.4] the corresponding RAM usage peaks.
At first, let us focus on the number n;, of Schur complement blocks per block row and block
column of S. In the qr_mumps solver, this parameter also defines the granularity of parallel
tasks. Smaller blocks lead to higher concurrency. However, when the blocks are too small, it
can lead to the generation of a large amount of short tasks without enough of workload to com-
pensate the cost of their compression by HMAT as well as the related scheduling cost. When
the blocks are too large, it may negatively impact the RAM usage. Just like in the case of the
blocking parameters of the two-stage algorithms, there is a trade-off to be found based on dif-
ferent quantities, such as the total unknown count, amount of available RAM and processing
units. Here, for smaller problems, i.e. for N < 1,000,000, it is better to consider fewer, but
larger, blocks (n; set to 10). However, for a larger problem considering 2,000,000 unknowns,
ny set to 10 leads to physical memory overflow. Operating system then resorts to the swap disk
space which degrades the performance. Note that 2,000,000 unknowns is the maximum we
can achieve on a bora node before reaching its memory limit. As of the execution mode, asyn-
chronous execution seems to be the best performing one. However, in the 2,000,000-unknown
case with n; set to 10, we can observe the negative impact of swapping which makes asyn-
chronous mode lose its advantage over synchronous execution.

Figure then shows the relative error for the benchmarks featured in Figure The pre-
cision parameter € was set to 1072 for the HMAT solver providing low-rank compression. For
the problem with 250,000 unknowns, the relative error slightly exceeds the given threshold. In
this case, the deviation is not important enough to be considered as significant. This situation
does not seem to be specific to the prototype single-stage implementation as it arises also when
comparing the latter to other approaches (see further in Section [7.5.2). However, it requires
a deeper investigation. Eventually, for all the other benchmarks, the relative error is below
the selected threshold 103 which confirms that the algorithm allows us to reach the expected
accuracy.

In figures and we present the execution traces of respectively a synchronous and an
asynchronous execution of the prototype single-stage implementation. In this case, the bench-
marks were performed using a laptop on a small problem, i.e. counting 50,000 unknowns
in total. Each of the figures features two plots. The top plot shows the computation tasks of
the qr_mumps (blue) and the HMAT (red) solvers executed by each of the processor cores. The
bottom plot represents the activity of the underlying StarPU runtime for each of the processor
cores. The total execution time is displayed at the right end of the top plot in milliseconds.

On the synchronous execution trace, we distinguish only continuous blocks of either qr_mumps
or HMAT tasks. The first block of HMAT tasks corresponds to matrix initialization. Follows a
block of qr_mumps tasks corresponding to the sparse factorization+Schur step. Note that the first
part of this block represents a symbolic factorization (see sections|1.5.1.2|and[1.6.3) performed
in sequential at the beginning of the sparse factorization+Schur step. The next block of HMAT
tasks represents the compression and the dense factorization of the Schur complement matrix
S. The blocks at the end match the sparse factorization of A,, (including a sequential sym-
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Figure 7.3: Computation times of the prototype single-stage implementation using the
qr_mumps/HMAT solver coupling. Parallel runs using 36 threads on single bora node.
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Figure 7.4: RAM usage peaks of the prototype single-stage implementation using the
qr_mumps/HMAT solver coupling. Parallel runs using 36 threads on single bora node.
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Figure 7.5: Relative error E,, of the prototype single-stage implementation using the
qr_mumps/HMAT solver coupling. Parallel runs using 36 threads on single bora node.

bolic factorization) and the final computation steps to obtain x,. Note that the dense solve step
of HMAT involved in the computation of x is extremely short and virtually invisible on the
trace. The computation of x, does not appear on these traces. On the asynchronous execution
trace, the qr_mumps block representing the sparse factorization+Schur step and the HMAT block
corresponding to the compression and the dense factorization of S overlap. This illustrates the
asynchronous single-stage approach (see Section|[7.2). However, the sparse and the dense oper-
ations are not as superposed as they could. This can be improved by harmonizing the priorities
of HMAT tasks with respect to qr_mumps’s ones as well as by investigating alternative schedul-
ing policies. Eventually, from the runtime activity in the case of the synchronous execution,
we can see that at the beginning of the block of HMAT tasks representing the compression and
the dense factorization of S the processor cores were often idle between the different tasks. The
runtime was thus spending time in inactivity (sleeping). However, it was possible to prevent
these inactivity periods in the case of the asynchronous execution.

7.5.2 Comparison with two-stage algorithms

We again consider coupled FEM/BEM linear systems with N, the total unknown count, ranging
from 100,000 to 2,000,000. As of the single-stage implementation, the number of blocks per
row and column of the Schur complement matrices X and S (see Section is set to either
10 or 30. Regarding the two-stage algorithms (see Chapter [3), we rely on their compressed
Schur variants using the MUMPS/HMAT coupling. For multi-solve, we set the size 1, of block
AsTv,- of columns of the A, submatrix to 256 and the size ng of blocks S; of columns of S to
1,024 (motivated by the results presented in Section [3.3.4.1). For multi-factorization, we set
the n, parameter (see Figure p- handling the count of square blocks S;; per block row
and block column of the Schur complement submatrix S between 1 and 3. To ensure a fair
comparison of the two-stage algorithms to the non fully-featured prototype of the single-stage
algorithm, we disable low-rank compression in MUMPS as well as out-of-core in MUMPS and
HMAT for the benchmarks below. As a reference, we consider the advanced vanilla solver
coupling (see Section [2.2.2). From the implementation point of view, we rely on the baseline
multi-factorization algorithm with the MUMPS/SPIDO coupling (without compression in the
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Figure 7.6: Execution trace of the prototype single-stage implementation using the
qr_mumps/HMAT solver coupling. Synchronous parallel runs using 2 threads on a laptop. The
top plot represents the computation tasks of qr_mumps and HMAT. The bottom plot represents
runtime activity. Blank spaces correspond to inactivity.
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Figure 7.7: Execution trace of the prototype single-stage implementation using the
qr_mumps/HMAT solver coupling. Asynchronous parallel runs using 2 threads on a laptop.
The top plot represents the computation tasks of qr_mumps and HMAT. The bottom plot repre-
sents runtime activity. Blank spaces correspond to inactivity.
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dense Schur complement part) and n;, set to 1 (see further details in Section|3.3.1.2).

In Figure we show the best computation times of all of the evaluated algorithms, pa-
rameter variations and problem sizes. Figure then shows the corresponding RAM usage
peaks. Unlike with multi-factorization and with the advanced vanilla coupling, both the pro-
totype single-stage and the multi-solve algorithms can process FEM/BEM systems with N up
to 2,000,000. In terms of computation time, the single-stage implementation outperforms all
the other concurrents. Especially, it has a large advance over the multi-solve and the state-of-
the-art advanced vanilla coupling. Although multi-solve reported to be the slowest one, it is
the less limited of the three approaches regarding RAM usage. It reached only 40 GiB (20 %) of
available RAM for N =2,000,000. The advanced vanilla coupling and multi-factorization went
out of memory before arriving at 2,000,000 unknowns. This also represents the limit for the
prototype single-stage implementation lacking proper out-of-core feature. Eventually, there is
no significant difference between the single-stage prototype and multi-factorization. Indeed,
up to N = 1,000,000, multi-factorization could run with n; set to 1. As we do not consider out-
of-core assembly of the Schur complement part, from the algorithmic point of view, the mem-
ory requirements of the single-stage prototype are very close to those of multi-factorization
with 1, = 1 and numerical compression active in the Schur complement part. However, with
the Schur complement matrix split into multiple tiles using the n; parameter (see above), the
single-stage implementation can benefit from asynchronous execution and becomes faster than
the multi-factorization algorithm.
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Figure 7.8: Best computation times of prototype single-stage, multi-solve and multi-
factorization. Parallel runs using 36 threads on single bora node.

Figure[7.10]then shows the relative error for the benchmarks featured in Figure The preci-
sion parameter € was set to 107> for the HMAT solver providing low-rank compression. Like in
the evaluation of the prototype single-stage implementation in Section the relative error
slightly exceeds the given threshold when N = 250,000. Still, the deviation remains low to be
considered as significant. For all the other benchmarks, the relative error is below the selected
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Figure 7.10: Relative error E,,; of prototype single-stage, multi-solve and multi-factorization
corresponding to the benchmarks featured in Figure Parallel runs using 36 threads on
single bora node.

7.6 Conclusion

The major part of this thesis was dedicated to the two-stage algorithms for solving coupled
sparse/dense systems such as (1.2). Relying on the existing API of some fully-featured di-
rect solvers, the main strength of these algorithms is to take advantage of their advanced and
well-optimized features (such as the internal management of the Schur complement, compres-
sion and out-of-core techniques and distributed-memory parallelism). While multi-solve and
multi-factorization reduce the negative impact of the limitations in the state-of-the-art vanilla
solver couplings (see Section[2.2), they cannot eliminate them completely and therefore remain
suboptimal with respect to the ideal implementation (see Section[1.6.3).

In this chapter, we proposed a single-stage algorithm with the ambition to achieve the ideal
approach. The main ideas of this design are to fully benefit from the optimal symmetry and
sparsity of the FEM/BEM system, to avoid assembling the entire Schur complement matrix S
in RAM and to improve the composability of the sparse and dense operations so as to allow for
their asynchronous execution. While the implementation of the single-stage algorithm within
fully-featured direct solvers can only be a long-term work due to their complex codebase, we
proposed a proof-of-concept in a non fully-featured prototype. Despite missing numerical
compression in the sparse parts of the system, proper out-of-core and distributed-memory
parallelism, we validated the potential of the asynchronous execution and showed the compet-
itivity of the single-stage approach with respect to the state-of-the-art as well as the two-stage
algorithms. Although there is still a long way to go before the single-stage algorithm may rep-
resent a serious concurrency to the two-stage algorithms including all of the advanced features
of the fully-featured solvers they rely on, this work is meant to serve as a proof-of-concept and
an inspiration for future research.

In the short term, the next step would be to enable out-of-core computation of the Schur com-
plement blocks and explore the potential of the approach to process even larger coupled sys-
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tems through a memory-aware study. In the long term, it would be interesting to launch a
discussion with the development teams of sparse direct solvers about a possible implementa-
tion of an analogous approach in fully-featured solvers.
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CHAPTER

Reproducibility

Beyond the main contribution related to the solvers for coupled sparse/dense FEM/BEM linear
systems, we dedicated a substantial part of this thesis to improving the reproducibility of our
work. In computer science in general and in HPC in particular, reproducibility of a research
study has always been a complex matter. On the one hand, rebuilding exactly the same soft-
ware environment on various computing platforms and over extended periods of time may be
long, tedious and sometimes virtually impossible to be done manually. On the other hand,
while the experimental method is usually explained in research studies, the instructions re-
quired to reproduce the latter from A to Z should also be provided in a comprehensive manner.

The topic of reproducible research has been addressed from multiple points of view as well
as in multiple scientific domains and applications [59, 88,62, 123} [60]. In computational sci-
ences, a dedicated peer-reviewed journal promotes and encourages the reproducibility [112].
Throughout this chapter, we address the challenges of ensuring a reproducible research study
in computer science in general and in the context of this thesis in particular. We then present
the strategy we adopt to face these challenges including working principles, software tools
and their alternatives. To share the resulting guidelines, we provide a minimal working exam-
ple of a reproducible research study on solvers for coupled FEM/BEM systems. Moreover, we
introduce and reference examples of such studies from this thesis.

Concretely, in Section we discuss the reproducibility of both software environments and
numerical experiments as well as the issue of a long-term preservation of all the materials re-
lated to a research study, including the source code and reproducing instructions. In Section
we analyze approaches and tools we can rely on to improve the reproducibility of our
scientific production. Then, in Section we provide a minimal working example of a repro-
ducible research study and in Section we cite examples of such studies from this thesis.
Finally, we conclude in Section

8.1 Challenges

Regarding the reproducibility of a research study in computer science, we distinguish three
main challenges to take on. When we design our working software environment on a given
machine, using given revisions of software packages and configurations, it is important to be
able to recreate the exact same conditions on a different machine, i.e. on a high-performance
computing platform for performing experiments. This brings us to the next problem. We
often need to perform the experiments more than once, using various software versions or
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algorithmic options and maybe months or years later. We thus deem crucial to maintain a
complete documentation, a sort of laboratory log book, on how to recreate the adequate soft-
ware environment and perform all the experiments from scratch. The third issue resides in
the availability of all the materials related to a research study in the long term. Here, we
refer especially to the aforementioned documentation, experimental results and associated sci-
entific publications. However, we also have to consider all the source code required to run the
experiments, regardless of whether it is our own or an external dependency.

Ensuring software environment reproducibility in the context of this thesis is all the more dif-
ficult because of a complex software stack including numerous linear algebra libraries, sparse
and dense direct solvers as well as post-processing tools. In addition to that, working with
proprietary Airbus source code and external libraries available only in binary form limits our
efforts for fully reproducible research from the very beginning. As of the experiments, due to
a large spectrum of problem sizes, algorithmic choices and software revisions we want to ex-
plore, we face the challenge of maintaining a relatively easily customizable and reproducible
benchmark campaign.

8.2 Strategy

To set up or reproduce a software environment, scientists often rely on modules and manual
builds. The main issue of this approach is that modules as well as building instructions vary
from one machine or system configuration to another. These may provide different package
versions or not provide the required software at all. A more convenient solution would be to
rely on a package manager, such as Spack [72]], allowing for easily defining custom package
versions, using different configurations and available compilers. Nevertheless, Spack relies on
system-provided compilers and other low-level components of the software dependency tree.
This still threatens the reproducibility of the resulting software environment on other ma-
chines and over the time. We can bypass this problem by resorting to an autonomous software
bundle produced for example using Singularity [95}63] or Docker [103] [2].

However, the container solution does not alleviate some of the most important concerns. For
example, if we want to use a different version of one or more packages, we either have to
modify the container interactively, which would make it even less reproducible, or re-build it
from scratch, which can take a lot of time if performed regularly. Moreover, because containers
are often based on an existing Linux distribution, we are limited to the versions of various core
packages (compilers, parallel libraries, linear algebra kernels, solvers, ...) provided by that
particular distribution in that particular release unless we want to re-build and re-configure
an important portion of the software stack.

Our goal is to cope with these limitations and be able to generate fully controlled software
environments that we can easily modify and reproduce. To this end, we propose to explore an
approach resorting to an alternative package manager such as Guix [8]] or Nix [64]). In this case,
we choose to rely on Guix. The reason is twofold. One, there is an important effort to optimize
Guix for reproducible scientific workflows in HPC known as Guix-HPC [9]. The second reason
is our proximity to the main developers involved in the Guix project.

Guix [8]] is a transactional package manager. Using the latter, we can provide a self-contained,
executable description of the whole software environment used to run our experiment. This
precision is a crucial building block for reproducible scientific workflows, yet it is something
README:s and containers do not even approximate.

What can be seen as a drawback of Guix is that it requires root privileges to be installed. While
this is not a practical problem on a personal machine, it represents an important limitation
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on high-performance computing clusters for example. To this day, these rarely provide Guix
natively. However, in absence of a native Guix installation on the target machine, it is possible
to produce a standalone tarball, a Singularity or a Docker image containing the entire environ-
ment on the development machine with root privileges, e.g. a personal computer, and transfer
it to the target workstation. On computing clusters, Singularity and Docker are currently much
more widespread in comparison to Guix. This alternative makes us suffer from some of the dis-
advantages related to containers, as discussed above, but it allows us to preserve the complete
reproducibility of our software environments. Moreover, the container production process in
Guix remains fully automated and transparent to the end-user.

When it comes to reproducing the experiments, we usually have to settle for comments in
source code and README files to know how to use the scripts dedicated to run experiments
and post-process results. Following [123] [107], we choose to write the source code of scripts
and various configuration files allowing us to design and automatize numerical experiments in
respect of the paradigm known as literate programming [93]. The idea of this approach is to
associate source code or commands to execute with a narrative written in a natural language.
There are numerous software tools designed for literate programming. We rely on Org mode
for the Emacs text editor [65} 6] which defines the Org markup language allowing to combine
formatted text, images and figures with source code. An Org document can then be exported
to various output formats [16], such as IXTgX, Beamer or HTML, and shared with peers. Org is
also suitable for composing final scientific publications. Source code blocks in an Org file may
be either exported into a source file [17], e.g. to be compiled, or evaluated on-the-fly [15]]. The
evaluation may be triggered manually by the user or automatically on export and the result of
execution, such as a figure or a return value of a math formula, can then be included in the
surrounding formatted text.

Eventually, the scheme adopted for improving the reproducibility of the research studies within
this thesis consists in building for each study a standalone version-controlled repository, i.e. a
git repository. In the latter, the software environment is defined and handled by Guix and all
the local source code, scripts as well as final publications such as articles and research reports
are formatted in Org following the literate programming paradigm. Each repository also con-
tains a set of guidelines for reproducing the software environment, running the experiments
and producing the final publications.

As an alternative, we could consider the Maneage [32]] project. In its philosophy, a reproducible
research study is represented by a version-controlled repository. Whereas in our scheme the
management of the software environment is delegated to Guix, in this case the study repository
also contains the instructions on where to acquire, how to configure and build all the software
stack including system libraries and compilers. The minimal requirement of Maneage is a
Linux-like system distribution. Compared to Guix, there is no need for root privileges. How-
ever, while the build time of the software stack in Guix can be optimized thanks to pre-built
binary substitutes of the major part of the software packages, in Maneage, the entire software
stack has to be rebuilt on each target machine from scratch. Then, where we use Org mode for
composing the experimental results post-processed using dynamically executable code blocks
with a narrative to form the resulting scientific publications, Maneage relies on IXTgX docu-
ments with macros for dynamic inclusion of experimental results. This choice also makes it
difficult to adopt the principles of literate programming, i.e. composing source code, which
can be easily extracted, with natural language.

The last, but not least, subject we are concerned with is the long-term availability of our
research studies and related source code, including external dependencies. It happens that
version-controlled repositories, i.e. git or subversion, hosted on a code forge platform, e.g.
Inria Forge or BitBucket, become suddenly unavailable due to the shutdown of the platform
for example. This is where the Software Heritage project [21]] comes into play. The goal of
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the latter is to guarantee the availability of software or other type of source code in a long
term by regularly archiving existing repositories and making them available through unique
identifiers.

8.3 Minimal working example

The goal of this section is to provide a complete minimal working example of a research study
following the principles of reproducibility and using the associated tools discussed in Section
Whereas in the context of this thesis we partially rely on proprietary source code and
libraries, in the below example we build exclusively upon open-source software and test cases
so as to allow anyone to reproduce the example research study.

This section is split into two major parts. Section contains the example research study
and Section the companion document containing the literate description of all the local
source code and scripts as well as the instructions for reproducing the entire study and the
numerical experiments it features in the original software environment.

Note that the figures and results cited in the text of the experimental part of the example study
are produced dynamically thanks to associated code blocks in the Org source of the study
manuscript (see Section [8.2)). For illustrative purposes, the complete listing of the latter is
provided in Section [B|of the Appendix.

8.3.1 Example study
8.3.1.1 Introduction

This is an example experimental study relying on the test_FEMBEM solver test suite. Here, we
are especially interested in solving coupled sparse/dense FEM/BEM linear systems arising in
the domain of aeroacoustics. The idea is to evaluate the solvers available in the open-source
version of test_FEMBEM for the solution of this kind of linear systems.

8.3.1.2 Experiments

The open-source version of test_FEMBEM [22]] does not implement couplings of sparse and dense
direct solvers which is the preferred method for solving sparse/dense FEM/BEM systems.
Therefore, we process the systems as dense using either the HMAT-OSS or the Chameleon
direct solver. HMAT-OSS [10]] is an open-source and sequential version of the compressed hi-
erarchical H-Matrix dense direct solver HMAT [101]] developed at Airbus. Chameleon [1] is a
fully open-source dense direct solver without compression.

As of the test case, we consider a simplified wide pipe which is still close enough to real-life
models (see Figure [8.1). Note that all the benchmarks were conducted on a single machine
equipped with an octa-core Intel(R) Xeon(R) W3520 running at 2.661 GHz and 8 GiB of RAM.
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Figure 8.1: A wide pipe mesh counting 20,000 vertices.

At first, we want to know to which extent can data compression improve the computation
time. For this, we compare sequential executions of both HMAT-OSS, the compressed solver,
and Chameleon, the non-compressed solver, on coupled FEM/BEM systems of different sizes
(see Figure[8.2). The results clearly show the advantage of using data compression, especially
with increasing size of the target linear system.

B (o2}
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Computation time [s]
N
o

2000 4000 6000 8000
# Unknowns (N)

-o- HMAT-OSS (compressed)
Solver
-o- Chameleon (non compressed)

Figure 8.2: Computation times of sequential runs of HMAT-OSS and Chameleon on coupled
sparse/dense FEM/BEM linear systems of varying size.

To study the impact of parallel execution on the time to solution, we limit ourselves to the
Chameleon solver as HMAT-OSS is sequential-only. In Figure([8.3] we compare the computation
times of Chameleon on coupled FEM/BEM systems of different sizes using either one or four
threads. According to the results, we can observe a significant decrease in computation time
in case of parallel executions. Moreover the parallel efficiency of the run on the largest linear
system considered (8000 unknowns) is approximately 77%.
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Figure 8.3: Computation times of sequential and parallel runs of Chameleon on coupled
sparse/dense FEM/BEM linear systems of varying size.

8.3.1.3 Conclusion

We evaluated the performance of the solvers available in the test_ FEMBEM test suite on coupled
sparse/dense FEM/BEM linear systems. The solvers considered were HMAT-OSS, a sequen-
tial compressed dense direct solver and Chameleon, a multi-threaded non-compressed dense
direct solver.

The comparison of sequential runs of HMAT-OSS and Chameleon showed an important pos-
itive impact of data compression on the time to solution. In addition, the comparison of se-
quential and parallel runs of Chameleon as well as the computed parallel efficiency showed a
considerable speed-up of the parallel execution.

8.3.1.4 Notes on reproducibility

With the aim of keeping the experimental environment of the study reproducible, we man-
age the associated software framework with the GNU Guix transactional package manager
[8]. Moreover, relying on the principles of literate programming [93]], we provide a full doc-
umentation on the construction process of the experimental environment, the execution of
benchmarks, the collection and the visualization of results as well as on producing the final
manuscripts in a dedicated technical report associated with this study (see Section [8.3.2). A
public companion contains all of the source code, guidelines and other material required for re-
producing the study: https://gitlab.inria.fr/thesis-mfelsoci/dissertation/example- fembem,
archived on|https://archive.softwareheritage.org//under the identifier
swh:1:snp:d8cdf44424c392dc25564870cfach9fec5872554.
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8.3.2 Reproducing guidelines

Within our research work, we put strong emphasis on ensuring the reproducibility of the ex-
perimental environment. On the one hand, we make use of the GNU Guix transactional pack-
age manager allowing for a complete reproducibility of software environments across different
machines. On the other hand, we rely on the principles of literate programming in an effort to
maintain an exhaustive, clear and accessible documentation of our experiments and the asso-
ciated environment allowing others to reproduce the study.

The goal of this section is to provide such a documentation of our study entitled ‘Solvers for
coupled sparse/dense FEM/BEM linear systems’ (see Section [8.3.1). Especially, we aim to de-
scribe and explain here all of the source code and procedures involved in construction of the
experimental software environment, execution of benchmarks, gathering and post-processing
of results as well as publishing of the study manuscript.

In Section we provide detailed guidelines on how to reproduce the study and post-
process the experimental results. In Section we remind the concept of literate pro-
gramming and the associated tools. In the beginning of Section [8.3.2.3] we present GNU Guix
and how it can be used to build a reproducible software environment. Then in paragraphs
[Defining benchmarks|and [Running benchmarks| of Section we detail the design of our
numerical experiments.

8.3.2.1 Guidelines for reproducing the study

We include here a set of guidelines for reproducing the experimental software environment
we describe in this technical report, the experiments and graphical representations of results
presented in Section as well as the corresponding manuscript itself.

We provide instructions for the situation where native Guix is installed on the system. Note
that if the target machine where the study should be reproduced misses Guix or the latter can
not be installed there, e.g. a high-performance computing platform, it is possible to create a
Singularity image, a Docker bundle or a relocatable standalone tarball containing the required
software environment using Guix on compatible computer and transfer the result to the target
machine [12].

All the materials necessary to reproduce the study reside in a dedicated Git repository at https:
//gitlab.inria.fr/thesis-mfelsoci/dissertation/example- fembem. In case of unavailability
of the repository at the aforementioned address, it has been archived on the Software Heritage
platform (https://archive.softwareheritage.org/) under the identifier

swh:1:dir:2f1ff4ffd940332c2e7480146ddb67d24be82cd2 with no time limit on its conservation.

At first, we clone the repository on the target machine and navigate to it. To clone from its
original location, we use the standard Git command.

git clone https://gitlab.inria.fr/thesis-mfelsoci/dissertation/example-fembem
cd example-fembem

At first, we need to extract source code from Org files (see Section (8.3.2.2).

guix shell --pure git emacs emacs-org -- emacs --batch --no-init-file -1 org \
--eval '(progn (setq org-src-preserve-indentation t) (dolist (file
< (directory-files-recursively "." "\\.org$")) (org-babel-tangle-file
< file)))'
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In order to reproduce the experimental software environment, we rely on a list of channels (see
in Section [8.3.2.3), a manifest file (see Environment specification|in Section [8.3.2.3)
and then the combination of the guix time-machine and the guix shell commands. This is
followed by the command for launching the experiments which will be executed in that envi-
ronment.

guix time-machine -C channels.scm -- shell --pure -m manifest.scm -- \
./benchmarks/run.sh -d ./benchmarks/definitions.csv -o ./benchmarks/results

Finally, we produce the PDF files corresponding to the study manuscript and the hereby guide-
lines. On export of the Org source of the study manuscript, the experimental results will be
post-processed thanks to the R code blocks within the document.

guix time-machine -C channels.scm -- shell --pure -m manifest.scm -- \
emacs --batch --no-init-file --load publish.el \
--eval '(org-publish "example-fembem")"

8.3.2.2 Literate programming

We choose to write the source code of scripts and various configuration files allowing us to
design and automatize numerical experiments in respect of the paradigm known as literate
programming [93]. The idea of this approach is to associate source code with an explanation
of its purpose written in a natural language.

There are numerous software tools designed for literate programming. We rely on Org mode
for Emacs [65, /6] which defines the Org markup language allowing to combine formatted text,
images and figures with traditional source code. Files containing documents written in Org
mode should end with the .org extension.

Extracting a compilable or interpretable source code from an Org document is called tangling
[17]. It is also possible to evaluate a particular source code block directly from the Emacs editor
[15] while editing. For example, this is particularly useful for the visualization of experimental
results.

Eventually, an Org document can be exported to various output formats [16] such as IXIgX or
Beamer, HTML and so on. This is done using a custom Emacs Lisp publishing script.

Publishing script The Emacs Lisp script described in this section allows for transforming
Org documents in the repository into IXTEX PDF documents.

At first, we load packages for:

* Org mode support,

(require 'org)

¢ evaluation of R source code blocks,

(require 'ess)

* publishing functions,
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(require 'ox-publish)

* KATEX publishing functions,

(require 'ox-latex)

* bibliography support.

(require 'org-ref)

We have to force publishing of unchanged files to make sure all the documents get exported.
Otherwise, the files considered unmodified based on Org timestamps are not published even
if they were previously deleted from the publishing directory.

(setq org-publish-use-timestamps-flag nil)

Also, we want to use a custom IXTgX publishing command.

(setq org-latex-pdf-process (list "latexmk --shell-escape -f -pdf %f"))

Then, we need to load languages for code block evaluation,

(org-babel-do-1load-languages
'org-babel-1load-languages
"((shell . t)

(R . 1))

prevent the publishing back-end from prompting for code block evaluation on export

(setq org-confirm-babel-evaluate nil)

and enable code block evaluation.

(setq org-export-babel-evaluate t)

Regarding the formatting and the visual aspect of code blocks, we want to:

* preserve indentation on export and tangle

(setq org-src-preserve-indentation t)

¢ use TAB to indent code blocks,

(setq org-src-tab-acts-natively t)

* customize the appearance of code blocks.
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(setq my-minted-options
"(("linenos = false") ("mathescape") ("breaklines")
("bgcolor = yellow!15")))
(setq org-latex-packages-alist '())
(add-to-1list 'org-latex-packages-alist '("" "minted"))
(setq org-latex-listings 'minted)
(setq org-latex-minted-options my-minted-options)

At the end, we configure PDF document publishing.

(setq org-publish-project-alist
(list
(list "study"
:base-directory "."
:exclude ".*"
:include ["study.org"l]
:base-extension "org"
:publishing-function '(org-latex-publish-to-pdf)
:publishing-directory ".")
(list "guidelines"
:base-directory
:exclude ".*"
:include ["reproducing-guidelines.org"]
:base-extension "org"
:publishing-function '(org-latex-publish-to-pdf)
:publishing-directory ".")
(list "example-fembem"
:components '("study" "guidelines"))))
(provide 'publish)

8.3.2.3 Building reproducible software environments

To keep our software environment bit-for-bit reproducible, we rely on the GNU Guix [8] pack-
age manager. Guix is a transactional package manager and a stand-alone GNU Linux distribu-
tion where each user can install its own packages without any impact on the others and with
the possibility to switch between multiple system or package versions. An environment cre-
ated using Guix is fully reproducible across different computing platforms. In other words, a
package built on a computer with a given commit remains the same when rebuilt on another
machine.

Channels Software packages in Guix are available through dedicated Git repositories, called
channels, containing package definitions. The first and default channel is the system one pro-
viding Guix itself as well as the definitions of some commonly used packages such as system
libraries, compilers, text editors and so on. Afterwards, we need to include additional channels
using a custom channel file channels.scm. For each channel, we specify the commit of the as-
sociated repository to acquire. This way, we make sure to always build the environment using
the exact same versions of every single package in the system and guarantee a better repro-
ducibility. Following the system channel, we include also guix-hpc providing various scientific
software and libraries.

(list
(channel
(name 'guix)
(url "https://git.savannah.gnu.org/git/guix.git")
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(commit "eb34ff16cc9038880e87ela58a93331fca37ad92"))
(channel

(name 'guix-hpc)

(url "https://gitlab.inria.fr/gquix-hpc/guix-hpc.git")
(commit "7506a50557beca54903fead96f3185b86c354e35")))

Environment specification To enter a particular software environment using Guix, we use
the guix shell command. Options of the latter allows us to specify the packages to include
together with the desired version, commit or branch. To avoid typing long command lines
anytime we want to enter the environment, we use a Guix manifest file [7] describing the
packages to include into the target environment using a Scheme language expression.

(packages->manifest
(list (specification->package "test FEMBEM")

(specification->package "openmpi")
(specification->package "openssh")
(specification->package "sed")
(specification->package "which")
(specification->package "grep")
(specification->package "coreutils")
(specification->package "bash")
(specification->package "python-pygments")
(specification->package "python@3")
(specification->package "texlive")
(specification->package "r")
(specification->package "r-ggplot2")
(specification->package "inkscape")
(specification->package "emacs")

(specification->package
(specification->package
(specification->package
(specification->package

"emacs-org")
"emacs-biblio")
"emacs-org-ref")
"emacs-ess")

(specification->package "sed")
(specification->package "which")
(specification->package "grep")))

Defining benchmarks Within the experimental part of the study, we want to run the bench-
mark cases specified in the comma-separated values definitions.csv file in Listing [I| The
latter features six columns:

1. system_type indicating the type of linear system (fem, bem or fembem),

2. solver specifying the solver to use (hmat or chameleon),

3. threads giving the number of threads to use for computation,

4. nbpts giving the number of unknowns in the system, i.e. the size of the system,

5. arith defining the arithmetic and precision of matrix coefficients (s for simple real, d for
double real, ¢ for simple complex or z for double complex),

6. sym indicating the symmetry of the coefficient matrix (1 for symmetric or © for non-
symmetric).

We then pass the definitions.csv file to the run.sh shell script (see[Running benchmarks|) we
use to execute all the benchmarks.
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system type,solver,threads,nbpts,arith,sym
fembem, hmat,1,1000,z,1
fembem, hmat,1,2000,z,1
fembem, hmat,1,4000,z,1
fembem, hmat,1,6000,z,1
fembem, hmat,1,8000,z,1
fembem, chameleon,1,1000,z,1
fembem, chameleon, 1,2000,z,1
fembem, chameleon, 1,4000,z,1
fembem, chameleon,1,6000,z,1
fembem, chameleon,1,8000,z,1
fembem, chameleon, 4,1000,z,1
fembem, chameleon, 4,2000,z,1
fembem, chameleon,4,4000,z,1
fembem, chameleon, 4,6000,z,1
fembem, chameleon, 4,8000,z,1

Listing 1: definitions.csv file defining benchmark cases to run within the experimental part
of the study.

Running benchmarks To run the benchmarks from the definition file introduced in[Defining|
we rely on a shell script named run.sh described below. The script begins with a
help function that can be triggered using the -h option.

function help() {
echo "Run test FEMBEM benchmarks defined in FILE." >&2
echo "Usage: $(basename $0) [options]" >&2

echo >&2

echo "Options:" >&2

echo " -h Print this help message." >&2

echo " -d FILE Run the benchmarks defined in FILE. This is a" \
"mandatory option." >&2

echo " -e EXECUTABLE Set test FEMBEM executable to EXECUTABLE. The" \
"default value is 'test FEMBEM'." >&2

echo " -o FOLDER Run the benchmarks, then store the logs and" \

" results in FOLDER. The default value is '$(pwd)'." >&2

Then, we parse the arguments. run.sh recognizes four options:

DEFINITIONS=""
TEST FEMBEM="test FEMBEM"
OUTPUT="$(pwd) "

while getopts ":hd:e:o0:" option;
do
case $option in

1. -d, a mandatory option used to indicate the path to a benchmark definition file,

d)
DEFINITIONS=$0PTARG

if test ! -f $DEFINITIONS;
then
echo "Error: '$DEFINITIONS' is not a valid file!" >&2
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exit 1
fi

r

2. -e allowing one to specify an alternative path to the test_FEMBEM executable,

e)
TEST FEMBEM=$0PTARG

if test ! -x $TEST FEMBEM;
then

echo "Error: '$TEST FEMBEM' is not a valid executable!" >&2
exit 1
fi

r

3. -h which can be used to show a help message on how to use the script,

h)
help
exit 0

r

4. -o used to specify an output folder to store benchmark results in.

0)
OUTPUT=$0PTARG

if test ! -d $OUTPUT;
then

echo "Error: '$OUTPUT' is not a valid folder!" >&2
exit 1
fi

r

We also need to handle:

* the unknown option case,

\?) # Unknown option

echo "Arguments mismatch! Invalid option '-$0PTARG'." >&2
echo

help
exit 1

r

* the missing option argument case and

1) # Missing option argument
echo "Arguments mismatch! Option '-$0PTARG' expects an argument!" >&2
echo
help
exit 1

r
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* any other situation.

*)
help
exit 1

esac
done

Once the options have been parsed, we check if a benchmark definition file was specified.

if test "$DEFINITIONS" == "";

then
echo "Error: No benchmark definition file specified!" >&2
exit 1

fi

Before parsing the definition file, we need to determine the number of lines in the latter.

DEFINITIONS NBLINES=$(wc -1 $DEFINITIONS | cut -d ' ' -f 1)

If the file ends with a newline, we do not want to count that empty line.

if test $(tail -c 1 $DEFINITIONS | wc -1) -gt 0;
then

DEFINITIONS NBLINES=$(expr $DEFINITIONS NBLINES - 1)
fi

Then, we finally read the definition file but without the header.

DEFINITIONS WITHOUT HEADER=$(cat $DEFINITIONS | tail -n $DEFINITIONS NBLINES)

However, we extract and keep the header to reuse it later when creating an output results file.

HEADER=$ (cat $DEFINITIONS | head -n 1)

We now create the output folder, if it does not exist yet, and navigate to it. Although, we store
the current working directory path at first.

CWD=$ (pwd)
mkdir -p $OUTPUT
cd $OUTPUT

Afterwards, we can prepare a *.csv file to store benchmark results in. We call it results.csv.
It will have the same columns as the definition file plus the columns for computation times
and relative error.

RESULTS="results.csv"
echo "$HEADER, tps facto,tps solve,error" > $RESULTS
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Finally, we initialize a counter of failed benchmarks and iterate over all the lines read from the
benchmark definition file to:

FAILURES=0

for line in $DEFINITIONS WITHOUT HEADER;
do

* extract benchmark parameters from the current line,

SYSTEM _TYPE=$(echo $line | cut -d ',' -f 1)
SOLVER=$(echo $line | cut -d ',' -f 2)
THREADS=$(echo $line | cut -d ',' -f 3)
NBPTS=$(echo $line | cut -d ',' -f 4)
ARITH=$(echo $line | cut -d ',' -f 5)
SYM=$(echo $line | cut -d ',' -f 6)

* choose a log file name based on the above values,

LOG="$SYSTEM TYPE-$SOLVER-$THREADS - $NBPTS-$ARITH-$SYM. log"

* keep a unique benchmark name for later,

BENCHMARK="$SYSTEM TYPE, $SOLVER (threads: $THREADS, unknowns: $NBPTS,"
BENCHMARK="$BENCHMARK arithmetic: $ARITH, symmetric: $SYM)"

* transform the parameters to test_FEMBEM options,

SYSTEM TYPE="--$SYSTEM TYPE"
SOLVER="-solve$SOLVER"

if test "$SOLVER" == "hmat";
then

SOLVER="--hmat --hmat-eps-assemb le-3 --hmat-eps-recompr le-3 $SOLVER"
fi

NBPTS="-nbpts $NBPTS"
ARITH="-$ARITH"

if test $SYM -eq 1;

then
SYM="--sym"
else
SYM="--nosym"
fi

* run test_FEMBEM with the given parameters,

echo -n "Running $BENCHMARK..."
OMP_NUM THREADS=1 MKL NUM THREADS=1 STARPU NCPU=$THREADS $TEST FEMBEM \
$SYSTEM TYPE $SYM $ARITH $NBPTS $SOLVER > $LOG 2>&1

* parse computation times and relative error from the log file on success and append them
to the results file or

Marek FEL$oct Fast solvers for high-frequency aeroacoustics



138 CHAPTER 8. REPRODUCIBILITY

if test $? -eq 0;

then
TPS_FACTO=$(cat $LOG | grep -E "<PERFTESTS> TpsCpu.*Facto" | \
cut -d '=' -f 2 | sed 's/["0-9.1//9")
TPS SOLVE=$(cat $LOG | grep -E "<PERFTESTS> TpsCpuSolve" | \
cut -d '=" -f 2 | sed 's/[70-9.1//9")
ERROR=$(cat $LOG | grep -E "<PERFTESTS> Error" | \
cut -d '=' -f 2 | sed 's/["-0-9%e.+1//9")

echo "$line, $TPS FACTO,$TPS SOLVE,$ERROR" >> $RESULTS
echo "Done"
else

* show an error message and increase the failed benchmark counter on failure.

echo "Failed"
FAILURES=$(expr $FAILURES + 1)
fi
done

At the end of benchmark execution we show global results,

echo
echo "Successful benchmarks: $(expr $DEFINITIONS NBLINES - $FAILURES)"
echo "Failed benchmarks: $FAILURES"

perform some cleaning,

rm -f testHMAT matrix.json

restore the initial working directory and exit.

cd $CWD
exit 0

8.4 Examples from this thesis

This section refers to two examples of research studies the results of which are parts of this
thesis. The studies were conducted according to the principles of reproducibility and using
the tools promoted in Section

[29] was our first study. An accompanying technical report [30], similar to the example in
Section [8.3.2] was released describing all the experimental software stack and providing all the
guidelines necessary to reproduce the study provided that the user has access to the proprietary
Airbus source code.

[31]] is a more elaborate example. The version-controlled git repository, containing both the
study and the reproducing instructions, is better structured and archived on Software Heritage
under the identifier swh:1:dir:c512a02f28164a47fee5af715b642b28b2f9528.
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8.5 Conclusion

This manuscript itself has been composed in Org mode in a git repository. Besides the manu-
script and the associated static files such as figures, the repository also contains the specifica-
tion of the software environment using Guix which is required to compile the source Org file
into the present document through IXTEX.

Since the beginning of this thesis and with reproducibility in mind, we experienced Guix, Org
mode but also other tools mentioned in Section The way we make use of Guix, Org mode
and more recently of Software Heritage varies and evolves over time. In this chapter, we ad-
vocate our current methods and principles regarding the reproducibility of research studies
in computer science. By sharing these, we hope to draw more attention to this topic and pro-
vide the scientific community with elements that may help to improve the reproducibility of
scientific production.
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Conclusion and perspectives

This thesis deals with direct methods for solving large coupled sparse/dense FEM/BEM linear
systems of equations arising in an industrial context of aeroacoustic simulations. Due to their
size, the systems cannot be processed through a straightforward coupling of the state-of-the-art
sparse and dense direct solvers.

To tackle this problem, we proposed two new classes of algorithms, namely the two-stage meth-
ods multi-solve and multi-factorization, designed to bypass the limitations in vanilla sparse
and dense direct solver couplings from the state of the art. These algorithms thus allow us
to benefit from numerical compression techniques within the solver building blocks them-
selves as well as on the link between the sparse and the dense operations. To validate the al-
gorithms, we performed an experimental study involving both academic and industrial aeroa-
coustic problems. The results show that thanks to numerical compression the algorithms make
it possible to process significantly larger coupled FEM/BEM systems than vanilla coupling ap-
proaches allow for on a given shared-memory multi-core machine. We furthermore showed
that the algorithms can take advantage of the available memory to increase their performance,
in a memory-aware fashion.

Thanks to the introduction of out-of-core computation into the multi-solve and multi-facto-
rization methods, we further reduced the memory requirements of the proposed algorithms.
We are now able to process even larger coupled FEM/BEM systems on a single workstation.
Furthermore, in the case of the multi-factorization method, this also allows for accelerating
the computation. Finally, we extended the two-stage algorithms to distributed-memory paral-
lelism.

In summary, compared to a reference state-of-the-art approach, the proposed algorithms make
it possible to process coupled FEM/BEM systems up to 7x larger (14 millions of unknowns in
total against 2 millions) on a single shared-memory multi-core machine and more than 6.5x
larger (40 millions of unknowns in total against 6 millions) in a distributed-memory environ-
ment.

We also studied the energetic profile of the two-stage methods within a multi-metric study.
Experimental results established that the usage of numerical compression techniques is worth
from an energetic perspective too. The profiles of the processor and memory power consump-
tion together with the memory usage and flop rate allowed us to better understand the behavior
of the application. Eventually, the study allowed us to identify a major performance bottleneck
in our implementation as well as a potential load balancing issue in the sparse direct solver.

Despite allowing us to process considerably larger coupled systems compared to the state-of-
the-art vanilla couplings, the two-stage methods remain suboptimal. Also, the issues brought
to light by the multi-metric study of the algorithms led the proposition of an alternative single-
stage coupling scheme. We presented a proof-of-concept of such an implementation relying
on task-based sparse and dense direct solvers using the same runtime which favors more ef-
ficient data sharing between the building blocks of the sparse and the dense solver as well
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as asynchronous computations. A preliminary comparative experimental study validated our
implementation by confirming that it can reach the target solution accuracy. Furthermore, we
illustrated the potential benefit of an asynchronous execution and showed that even a proof-
of-concept of this approach can compete with as well two-stage methods as state-of-the-art
vanilla couplings.

This work offers multiple promising prospects. Regarding the two-stage methods, the next step
would be to deploy the parallel distributed multi-solve and multi-factorization algorithms at
Airbus with the aim to process even more demanding industrial simulations than before.

Regarding the single-stage approach, in the short term, we should focus on enabling the out-of-
core computation of the Schur complement preventing us from processing significantly larger
coupled systems in the proof-of-concept. In the long term, it would be interesting to launch a
discussion with the development teams of sparse direct solvers about a possible implementa-
tion of an analogous approach in fully-featured solvers.

Then, the single-stage scheme may not be necessarily implemented using a coupling of two dis-
tinct solvers, i.e. a sparse and a dense solver. Another possible approach would be to consider
a unique solver capable of applying either sparse or dense operations based on the partition-
ing of the input coupled FEM/BEM system. This would allow for the most straightforward
interoperability between the sparse and the dense building blocks in terms of both data shar-
ing and task execution. Recent developments in the HMAT solver [71] make the solver a good
candidate for this kind of implementation.

Other perspectives for future research in this domain have more general context. In this thesis,
we focused on symmetric coupled systems. However other physical models may lead to non-
symmetric systems. Adjusting the proposed algorithms and exploring their performance on
non-symmetric systems may enlarge their scope of application. Moreover, we could evaluate
other finite element methods in the corresponding sparse part of the coupled linear system
such as discontinued Galerkin [53} 113} [47] or high-order finite elements [121]. This would
likely have an impact on the proportion of FEM-related unknowns in the system and could
change the conclusions regarding the best-performing algorithms. Furthermore, if we do not
limit ourselves only to direct solution methods, there is a large scale of iterative approaches to
explore. One would then need to address the questions regarding the choice of the iterative
solvers, sparse and dense preconditioners and so on.
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A FEM-only and BEM-only linear systems

To implement the proposed algorithms for solving coupled sparse/dense FEM/BEM linear sys-
tems (see Section[1.3), we resort to different sparse and dense direct solvers (see Section [2.6.4).
In this section, we present a preliminary experimental study the goal of which is to bench-
mark these solvers separately on purely sparse linear systems arising from FEM discretization
(see Section and then on purely dense linear systems arising from BEM discretization (see
Section [A.2). This separated evaluation allow us to detect their performance specificities for
a better understanding of their behavior when committed to solve coupled FEM/BEM linear
systems. In other words, after isolating performance issues linked to the individual solution
of FEM and BEM systems, we are more likely to identify the best performing coupled solver
configurations while focusing only on the parameters specific to the latter.

For the purposes of this evaluation, we used test cases based on the wide pipe (see Section|[1.4.1)
but leading to either purely FEM or purely BEM linear systems (see Figure [8.4). Unlike in
the case of coupled FEM/BEM systems (see Section [1.6.3), here, the solution process simply
amounts to a sparse factorization step (FEM-only systems) or dense factorization step (BEM-only
systems) followed by a sparse solve step or a dense solve step, respectively. We remind the reader
that the test cases are designed so that we can compute the relative error of the computed
solution instead of only estimating it (see Section [1.5.2). We consider complex coefficients
in double precision accuracy. MUMPS and HMAT both provide low-rank compression and
expose a precision parameter € set to 1073 or 107% when using the compression feature (see
Section [1.5.2.3). Measurements of computation time and RAM usage are done as described
in Section of Chapter (3] Like RAM consumption, disk usage is monitored by the rss.py
Python script but through the du command [3]]. Computation time is reported separately for
the factorization and the solve steps.

We have conducted our experiments on a single miriel node on the PlaFRIM platform [19].
A miriel node has a total of 24 processor cores (in 2 sockets and 4 NUMA subnodes) running
each at 2.5 GHz and 128 GiB of RAM. It is the policy of the platform to deactivate Hyper-
Threading and Turbo-Boost in order to improve the reproducibility of the experiments. The
solver test suite is compiled with GNU C Compiler (gcc) 9.3.0, OpenMPI 4.0.3, Intel(R) MKL
library 2019.1.144, and MUMPS 5.2.1.

On one hand, we vary a set of solver parameters considering a fixed parallel configuration and
observe the evolution of the computation time, relative error E,,; of the solution approximation
(see Section[1.5.2), RAM and disk usage peaks according to the unknown count and e. For these
tests, all the matrices are stored in memory;, i.e. the out-of-core feature of the sparse and dense
solvers (see Section [2.6.1)), when available, was not used.

On the other hand, we consider linear systems having a fixed count of unknowns and evaluate
the scalability of different solvers for various parallel configurations listed in Table
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(a) wide pipe considering only a volume mesh @l  (b) wide pipe considering only a surface mesh [§
and leading to FEM-only linear systems. and leading to BEM-only linear systems.

Figure 8.4: wide pipe test cases for FEM-only and BEM-only benchmarks.

# MPI processes Binding # threads
1 node 1,6,12,18 or 24
2 socket 1,2,4,80r12
4 NUMA subnode 1,2,4o0r6
1,6,12,18 or 24 core 1

Table 8.1: Complete list of parallel configurations considered for the study in Section@

A.1 FEM systems

At first, we study the performance of the direct solvers MUMPS and HMAT (see sections[2.6.4.1]
and on sparse linear systems resulting from FEM discretization and counting from
250,000 up to 10,000,000 unknowns. Here, we thus rely on the wide pipe test case variant in
Figure [8.4a]

The hierarchical matrix structure as well as its implementation in the HMAT solver were pri-
marily intended for dense matrices. Indeed, according to the results featured in figures (8.5
and [8.6) MUMPS seems to perform better both in terms of computation time and memory con-
sumption. For illustration, HMAT is unable to process systems with 4,000,000 unknowns and
more due to memory limitations while MUMPS can go up to 10,000,000 unknowns provided
that € is set to 107°.

Unlike in the case of HMAT, different low-rank compression thresholds do not significantly
impact the performance of MUMPS in terms of computation time. On the other hand and as
expected, the more precision we ask for, the more memory the solver consumes. This is true
both for MUMPS and HMAT. Although, the difference in memory consumption of MUMPS is
more significant only when the compression is completely disabled (see Figure [8.6). Finally,
the nearly non-existent disk space consumption of both MUMPS and HMAT confirms that the
out-of-core computation has been disabled.

HMAT features an implementation prototype of the Nested Dissection (ND) algorithm (see
Section which is a heuristic reordering technique allowing to reduce matrix fill-in re-
sulting from factorization (see Section[1.5.1.2) with the aim to reduce solver’s memory require-
ments and improve its performance. Due to current implementation limitations, HMAT is
able to apply the algorithm only on non-symmetric matrices. Moreover, a considerably higher
memory consumption of the solver when using ND does not allow us to test cases with more
than 250,000 unknowns on miriel nodes having 128 GiB of RAM. Note that more advanced
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Figure 8.5: Computation time of MUMPS and HMAT on FEM systems run in parallel using 1

MPI process and 24 threads on a single miriel node for different low-rank compression thresh-
olds € and no € for MUMPS when compression is disabled.
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schemes for processing sparse matrices have been derived [71]] but have not been integrated in
the industrial framework and are thus not discussed in the present study.

In Figure we compare HMAT with and without the use of ND on smaller sparse FEM
systems using non-symmetric matrices and having from 25,000 up to 250,000 unknowns. We
can not observe a significant difference in computation time among runs with different low-
rank compression thresholds when using ND. Nevertheless, it appears to provide a clearly
better performance in terms of computation time for cases with up to 100,000 unknowns.
Although, starting from 200,000 unknowns, this trend seems to cease.
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Figure 8.7: Computation time of HMAT on non-symmetric FEM systems with and without the
Nested Dissection (ND) enabled, run in parallel using 1 MPI process and 24 threads on a single
miriel node for different low-rank compression thresholds e.

Notice that, HMAT was run with ND only to produce the results featured in Figure In all
the other cases, ND was disabled.

According to Figure HMAT yields a better solution accuracy on sparse FEM than on dense
BEM systems (see Section [A.2). Although the relative error of the solution approximations
computed by MUMPS when using compression is smaller than the corresponding low-rank
compression thresholds, it is not as low as in the case of HMAT. When the compression is
disabled, we naturally observe the relative error to approach the machine precision u (see
Section [1.5.2.3). Eventually, the results also validates the stability of both solvers for given
problem sizes.

To compare the scalability of MUMPS and HMAT on FEM systems while putting in action var-
ious parallel configurations (see Table , we consider systems having 2,000,000 unknowns
for both MUMPS and HMAT. In the case of MUMPS, we consider systems with 4,000,000 un-
knowns as well. The more MPI processes are involved in the computation, the more memory
consumption increases (see Figure [8.9). This also explains that, the case with 4,000,000 un-
knowns relying exclusively on MPI parallelism causes a memory overflow using 16 cores and
more. Finally, the low-rank compression threshold € (see Section has been set to 1072
for all the runs.

Fast solvers for high-frequency aeroacoustics Marek FeL$oct



A. FEM-only and BEM-only linear systems 147

le-03
[ ] i i -
1e-06 A
— ———
E . ' ° ]
=
~ W W u
—
o
—
b
© le-104
>
2
=
i‘@
&
le-134
& & & & & & &
L L RS RS £ L
§ § § § § § ¢
& “ N & w o N

# Unknowns (N)

‘Solver ~om- HMAT —e— MUMPS‘

‘E » 1.0e-03 —eo— 1.0e—06‘
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In Figure we show the computation times and in Figure we show the parallel effi-
ciency of factorization and solve phases of MUMPS and HMAT for different count of processor
cores made available for the computation. Considered parallel configurations are listed in Ta-
ble MUMPS scales well for all of the assessed parallel configurations with no significant
difference in computation time of the most demanding factorization phase.

Regarding the parallel efficiency, the best performing MUMPS configuration for both problem
sizes and the factorization phase seems to be the one using 4 MPI processes times 1 to 6 threads
yielding nearly 20% parallel efficiency on 24 cores. In the case of the solve phase, exclusively
MPI parallelism yields the best results with 20% parallel efficiency on 24 cores considering a
problem with 2,000,000 unknowns and nearly 30% on 12 cores considering a problem with
4,000,000 unknowns. However, this study was conducted using an older version of MUMPS,
i.e. 5.2.1, and numerous optimizations have been implemented in the more recent versions of
the solver [56].

HMAT scales well only if we rely exclusively on local thread parallelism. The parallel efficiency
of factorization reaches approximately 40% on 24 cores. The MPI parallelization of HMAT is
not optimized for computations on a single node. Therefore, we dropped the scalability tests
of HMAT for the parallel configurations involving more than one MPI process as the results
would not be representative. A preliminary investigation revealed that the significant decrease
in performance, when MPI processes are involved, comes from a poorly balanced workload.
In HMAT, it is difficult to determine an efficient static mapping for MPI processes. Yet in
the explored model we rely on static mapping which explains the execution trace provided by
StarPU and presented in Figure The more MPI processes are involved in the computation,
the more time threads spend in inactivity (sleeping).

A.2 BEM systems

In this section, we evaluate the performance of the direct solvers SPIDO and HMAT (see sec-
tions|2.6.4.2|and [2.6.4.2) on dense linear systems resulting from BEM discretization and count-
ing from 25,000 up to 1,000,000 unknowns. Here, we thus rely on the wide pipe test case variant

in Figure

According to Figure the computation times of SPIDO are significantly higher than those
measured in the case of HMAT. For example, the factorization time of SPIDO on a system
with 100,000 unknowns is comparable to the factorization time of HMAT on a system having
1,000,000 unknowns. Also, without out-of-core and lacking any kind of data compression,
SPIDO quickly approaches the 128 GiB memory limit of the miriel nodes leaving it unable to
process linear systems with 200,000 or more unknowns (see Figure|8.14).

These results show the advantages the hierarchical matrix structure and the low-rank com-
pression capabilities (see Section implemented in HMAT (see Section for the
solution of dense linear systems. We have observed both better computation times as well as
lower memory footprint allowing the HMAT solver to process systems with up to 1,000,000 of
unknowns when the low-rank compression threshold € is set to 1073, Nevertheless, after tight-
ening up the threshold to 107, the factorization time increases more rapidly and the memory
limit is reached sooner too. Ultimately, this makes the runs on systems counting more than
400,000 unknowns (see figures[8.13|and [8.14) fail due to insufficient memory. The difference is
naturally less noticeable for the solve phase having a considerably lower complexity compared
to factorization.

Out-of-core being disabled, HMAT shows no disk space consumption (see Figure [8.14). One
would expect the same for SPIDO, although the version of the solver used for the experiment
stores an auxiliary matrix on disk regardless the out-of-core setting. This happens only when
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Figure 8.10: Scalability of MUMPS and HMAT on FEM systems run in 4 different kinds of
parallel configurations using only 1 MPI process without binding times 1 to 24 threads or 2
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Figure 8.12: Graphical visualization of the execution traces provided by the StarPU runtime
corresponding to the execution of HMAT on a FEM system having 25,000 unknowns using
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the LDLT -factorization is used and it has been corrected by commit e857b1d6 in the MPF pack-
age by the time of finishing this study.

Real memory (RAM) Disk drive
n
120 1
= .
S5
v 901
<
O
o8
g—’o L]
0 601 :
n
=]
o 1
e 1
= 30
o ]
S .
n n
0 T Weeeeerrennns O
N N ® N Ni SR N & & N SN
A A A 2 A LR A A A A R L R
< <$ <$ <$ <$ SIS $ <$ <$ <§ SO
% o N v W N N & N D% W o N

S .
# Unknowns (N)

Solver ---a-- HMAT —e— SPIDO

o4 > 1.0e-03 —e— 1.0e-06

Figure 8.14: RAM and disk usage peaks of SPIDO and HMAT on BEM systems run in parallel
using 1 MPI process and 24 threads on a single miriel node for different low-rank compression
thresholds € in the case of HMAT and no € set for SPIDO.

Figure validates the stability of the solvers for given problem sizes. The relative error
of the solution approximations computed by HMAT exceeds the given low-rank compression
thresholds e (see Section [1.5.2). However, it is merely a small deviation and we consider it as
non-significant in this case. Regarding SPIDO using no data compression, the relative error is
naturally approaching the machine precision u (see Section|1.5.2.3).

When it comes to evaluate the scalability and the parallel efficiency of SPIDO and HMAT, we
consider dense systems with 100,000 unknowns processed using multiple parallel configura-
tions (see Table . In the case of HMAT, we consider also systems with 1,000,000 unknowns.
Note that the low-rank compression threshold e for HMAT has been set to 1073.

In Figure we show the computation times and in Figure we show the parallel effi-
ciency of factorization and solve phases of SPIDO and HMAT for different counts of processor
cores. SPIDO scales well for all of the assessed parallel configurations. Unlike in case of the
solve phase, there is no significant difference in computation times of the factorization phase.
In terms of parallel efficiency, the two best performing configurations regarding the factoriza-
tion phase are the one using only MPI parallelism and the one combining 4 MPI processes times
1 to 6 threads yielding almost 90% parallel efficiency on 24 cores. The solve phase appears to
scale the best when relying exclusively on MPI parallelism yielding nearly 80% parallel effi-
ciency on 24 cores.

Unlike SPIDO, HMAT scales well when relying exclusively on thread parallelism (and a single
MPI process) for both factorization and solve phases as it was the case for FEM systems (see Sec-
tion[A.1). The parallel efficiency of factorization reaches approximately 60% on 24 cores con-
sidering a system with 100,000 unknowns and approximately 50% with 1,000,000 unknowns.
The solve phase represents only a small part in the overall computation time which explains its
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Figure 8.15: Relative error E,,; of SPIDO and HMAT on BEM systems run in parallel using 1
MPI process and 24 threads on a single miriel node for different low-rank compression thresh-
olds € in the case of HMAT and no € set for SPIDO.

low efficiency in a multi-threaded environment. We confirm the poor performance of HMAT
when MPI parallelism is involved on a single node for sparse systems too. According to the
execution trace provided by StarPU and presented in Figure The more MPI processes are
involved in the computation, the more time threads spend in inactivity (sleeping).
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Figure 8.16: Scalability of SPIDO and HMAT on BEM systems run in 4 different kinds of par-
allel configurations using only 1 MPI process without binding times 1 to 24 threads or 2 MPI
processes bound to sockets times 1 to 12 threads or 4 MPI processes bound to NUMA subnodes
times 1 to 6 threads or 1 to 24 MPI processes bound to cores times 1 thread on single miriel
node with the low-rank compression threshold e set to 1072 and no € set for SPIDO.
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miriel node with the low-rank compression threshold € set to 1073 and no € set for SPIDO.
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Figure 8.18: Graphical visualization of the execution traces provided by the StarPU runtime
corresponding to the execution of HMAT on a BEM system having 25,000 unknowns using
(from the top to the bottom of the figure) 1 MPI process times 4 StarPU workers, 2 MPI pro-
cesses times 2 threads, 4 MPI processes with 1 thread per per process on a single miriel node
respectively. Blank spaces represent the time spent in computation. The dark violet color indi-
cates sleeping.

B Example study manuscript

This section represents the complete listing of the Org source of the example research study
manuscript from Section [8.3.1}

The Org document begins by a header defining various properties, such as title and authors,
simple replacement macros [18] similar to custom KETEX commands. We then have the state-
ments specific to IXTEX export, i.e. lines beginning with #+LaTeX CLASS and #+LaTeX HEADER.

#+TITLE: Solvers for coupled sparse/dense FEM/BEM linear systems
#+AUTHOR: Marek FelsSoci

#+DATE: {{{time(%B %d\, %Y)}}}

#+0OPTIONS: toc:nil

#+MACRO: test FEMBEM ~test FEMBEM~

#+MACRO: hmat HMAT

#+MACRO: hmat-oss HMAT-0SS

#+MACRO: chameleon Chameleon

#+MACRO: epsilon $10°{-3}$

#+MACRO: spipe /wide pipe/

#+MACRO: hmatrix \(\mathcal{H}\)-Matrix

#+MACRO: ggplot ~ggplot2~

#+MACRO: svglite ~svglite~

#+LaTeX CLASS: article

#+LaTeX CLASS OPTIONS: [adpaper, 1llpt, twoside, table]

#+LaTeX HEADER: \usepackage[inkscapelatex = false]{svg}

#+LaTeX HEADER: \usepackage[margin = 25mm, head = 10mm]{geometry}
#+LaTeX HEADER: \setlength{\parindent}{Opt}

#+LaTeX HEADER: \setlength{\parskip}{2mm}

#+LaTeX HEADER: \PassOptionsToPackage{hyphens}{url}\usepackage{hyperref, float}
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Follows the Org-formatted text corresponding to the section Introduction (see Section (8.3.1.1
and to the beginning of the section Experiments (see Section [8.3.1.2). We can notice macro
expansions in between triple curly brackets, i.e. HMAT for the hmat macro.

* Introduction

: PROPERTIES:

:CUSTOM ID: example-introduction
:END:

This is an example experimental study relying on the {{{test FEMBEM}}} solver
test suite. Here, we are especially interested in solving coupled sparse/dense
FEM/BEM linear systems arising in the domain of aeroacoustics. The idea is to
evaluate the solvers available in the open-source version of {{{test FEMBEM}}}
for the solution of this kind of linear systems.

* Experiments

: PROPERTIES:

:CUSTOM _ID: example-study
:END:

The open-source version of {{{test FEMBEM}}} cite:testFEMBEM does not implement
couplings of sparse and dense direct solvers which is the preferred method for
solving sparse/dense FEM/BEM systems. Therefore, we process the systems as dense
using either the {{{hmat-oss}}} or the {{{chameleon}}} direct solver.
{{{hmat-oss}}} cite:hmat-oss is an open-source and sequential version of the
compressed hierarchical {{{hmatrix}}} dense direct solver {{{hmat}}} cite:Lizel4d
developed at Airbus. {{{chameleon}}} cite:chameleon is a fully open-source dense
direct solver without compression.

As of the test case, we consider a simplified {{{spipe}}} which is still close
enough to real-life models (see Figure [[figure:example-pipe]]). Note that all
the benchmarks were conducted on a single machine equipped with an octa-core
Intel(R) Xeon(R) W3520 running at 2.661 GHz and 8 GiB of RAM.

#+CAPTION: A {{{spipe}}} mesh counting 20,000 vertices.
#+NAME: figure:example-pipe

#+ATTR LaTeX: :width .3\columnwidth :placement [H]
[[./figures/pipe-2.png]]

At first, we want to know to which extent can data compression improve the
computation time. For this, we compare sequential executions of both
{{{hmat-oss}}}, the compressed solver, and {{{chameleon}}}, the non-compressed
solver, on coupled FEM/BEM systems of different sizes (see Figure
[[figure:hmat-chameleon]]). The results clearly show the advantage of using data
compression, especially with increasing size of the target linear system.

The fragment below features the R code block responsible for generating Figure[8.2] The header
of the code block specifies that the output is a graphics file and gives also its dimensions and
resulting file name. When the code block is evaluated, the result is dynamically inserted into
the surrounding text where the #+RESULTS: keyword followed by the #+NAME of the source code
block is located.

#+HEADER: :results output graphics file :exports results :width 5 :height 5
#+HEADER: :file ./figures/hmat-chameleon.svg :eval yes

#+NAME: code:hmat-chameleon

#+BEGIN SRC R

library(ggplot2)

data <- read.csv(file = "benchmarks/results/results.csv", header = TRUE)
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ggplot(
data = subset(x
mapping = aes(x
) +
geom line() +
geom point(size = 2.5) +

data, threads == 1),
nbpts, y = tps_facto + tps solve, color = solver)

scale x_continuous(name = "# Unknowns (\U1D441)") +
scale y continuous(name = "Computation time [s]") +
labs(color = "Solver") +
scale _color_manual(
values = c("hmat" = "#FO7E26", "chameleon" = "#9B0O4F"),
labels = c(
"hmat" = "HMAT-0SS (compressed)", "chameleon" = "Chameleon (non compressed)"
)
) +
theme bw() +
theme (
legend.background = element rect(color = "gray40", size = 0.5),
legend.box = "vertical",
legend.position = "bottom",

legend.text = element text(size = 14),
legend.title = element text(size = 14, face = "bold"),
text = element text(size = 16)
) +
guides(
color = guide legend(
order 1,
nrow = 2,
byrow = TRUE
)
)
#+END_SRC

gu

In this case, it is in a figure environment directly after the code block. Here, the output graphic
file is represented by a local file link. Note that the Emacs text editor can be set up to display
the corresponding image itself instead of the link to it.

#+CAPTION: Computation times of sequential runs of {{{hmat-oss}}} and
#+CAPTION: {{{chameleon}}} on coupled sparse/dense FEM/BEM linear systems of
#+CAPTION: varying size.

#+NAME: figure:hmat-chameleon

#+ATTR LaTeX: :width .6\columnwidth

#+RESULTS: code:hmat-chameleon

[[./figures/hmat-chameleon.svg]]

The next paragraph of text ends with a dynamically computed percentage value. The latter
results from the evaluation of the R source code block below the paragraph.

To study the impact of parallel execution on the time to solution, we limit
ourselves to the {{{chameleon}}} solver as {{{hmat-oss}}} is sequential-only. In
Figure [[figure:chameleon]], we compare the computation times of {{{chameleon}}}
on coupled FEM/BEM systems of different sizes using either one or four threads.
According to the results, we can observe a significant decrease in computation
time in case of parallel executions. Moreover the parallel efficiency of the run
on the largest linear system considered (8000 unknowns) is approximately

call efficiency(results="benchmarks/results/results.csv", size=8000, nt=4)%.

#+NAME: efficiency
#+HEADER: :var results="NA" size=-1 nt=-1 :exports none :results raw
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#+BEGIN SRC R
data <- read.csv(file

results, header

TRUE)

data <- subset(data, solver == "chameleon" & nbpts == size)
data$time <- datas$tps facto + data$tps solve

Ts <- data[data$threads == 1,
Tp <- data[data$threads nt,
E <- (Ts / (Tp * nt)) * 100
print(as.integer(E))

#+END SRC

"time"]
"time"]

The following fragment corresponds to the R source code block for generating Figure

#+HEADER: :results output graphics file :exports results :width 5 :height 5
#+HEADER: :file ./figures/chameleon.svg :eval yes
#+NAME: code:chameleon
#+BEGIN SRC R
library(ggplot2)
data <- read.csv(file = "benchmarks/results/results.csv", header = TRUE)
ggplot(
data = subset(x = data, solver == "chameleon"),
mapping = aes(
X = nbpts,
y = tps_facto + tps solve,
color = solver,
linetype = as.character(x = threads),
shapes = as.character(x = threads)

)
) +
geom line() +
geom_point(size = 2.5) +
scale_x_continuous(name

"# Unknowns (\U1D441)") +

scale y continuous(name = "Computation time [s]") +
labs(color = "Solver", linetype = "# Threads", shape = "# Threads") +

scale_color _manual(
values c("chameleon"
labels c("chameleon"
) +
scale linetype manual(
values = c("1" = "solid",
) +
scale shape manual(
values = c("1" = 15,
) +
theme bw() +
theme (
legend.
legend.
legend.
legend.
legend.
text =
) +
guides(
color = guide legend(
order 1,
nrow = 1,
byrow = TRUE
)
)

"#9B0O0O4F"),
"Chameleon")

||4|| =

||4|| = 16) ,

box = "vertical",

position = "bottom",

text element text(size =
title = element text(size =
element text(size = 16)

14),

background = element rect(color = "gray40", size =

"dotted"),

0.5),

14, face = "bold"),
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#+END_SRC

After Figure we continue with the section Conclusion (see Section|8.3.1.3).

#+CAPTION: Computation times of sequential and parallel runs of {{{chameleon}}}
#+CAPTION: on coupled sparse/dense FEM/BEM linear systems of varying size.
#+NAME: figure:chameleon

#+ATTR LaTeX: :width .6\columnwidth

#+RESULTS: code:chameleon

[[./figures/chameleon.svg]]

* Conclusion

: PROPERTIES:

:CUSTOM_ID: example-conclusion
:END:

We evaluated the performance of the solvers available in the {{{test FEMBEM}}}
test suite on coupled sparse/dense FEM/BEM linear systems. The solvers
considered were {{{hmat-oss}}}, a sequential compressed dense direct solver and
{{{chameleon}}}, a multi-threaded non-compressed dense direct solver.

The comparison of sequential runs of {{{hmat-oss}}} and {{{chameleon}}} showed
an important positive impact of data compression on the time to solution. In
addition, the comparison of sequential and parallel runs of {{{chameleon}}} as
well as the computed parallel efficiency showed a considerable speed-up of the
parallel execution.

We end with the section Notes on reproducibility (see Section [8.3.1.4) and the inclusion of
bibliography.

* Notes on reproducibility

: PROPERTIES:

:CUSTOM _ID: example-reproducibility
:END:

With the aim of keeping the experimental environment of the study reproducible,
we manage the associated software framework with the GNU Guix transactional
package manager cite:guix. Moreover, relying on the principles of literate
programming cite:Knuth84, we provide a full documentation on the construction
process of the experimental environment, the execution of benchmarks, the
collection and the visualization of results as well as on producing the final
manuscripts in a dedicated technical report associated with this study
cite:RT-EXAMPLE. A public companion contains all of the source code, guidelines
and other material required for reproducing the study:
[[https://gitlab.inria.fr/thesis-mfelsoci/dissertation/example-fembem]],
archived on [[https://archive.softwareheritage.org/]] under the identifier
@@latex:\\@@ =swh:1:snp:d8cdf44424c392dc25564870cfacb9fec5872554=.

bibliography:references.bib
bibliographystyle:siam
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