
HAL Id: tel-04077594
https://theses.hal.science/tel-04077594

Submitted on 21 Apr 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Study of nuclear quantum effects in insulating solids by
means of path-integral Monte-Carlo

Vladislav Efremkin

To cite this version:
Vladislav Efremkin. Study of nuclear quantum effects in insulating solids by means of path-
integral Monte-Carlo. Physics [physics]. Université Grenoble Alpes [2020-..], 2022. English. �NNT :
2022GRALY075�. �tel-04077594�

https://theses.hal.science/tel-04077594
https://hal.archives-ouvertes.fr


THÈSE 
Pour obtenir le grade de 

DOCTEUR DE L’UNIVERSITÉ GRENOBLE ALPES

École doctorale : PHYS - Physique
Spécialité : Physique Théorique
Unité de recherche : Laboratoire Interdisciplinaire de Physique

L'étude des effets quantiques nucléaires dans les solides isolants par
la méthode de chemin intégrale Monte-Carlo

Study of nuclear quantum effects in insulating solids by means of
path-integral Monte-Carlo

Présentée par :

Vladislav EFREMKIN
Direction de thèse :

Jean-Louis BARRAT
PROFESSEUR DES UNIVERSITES, Université Grenoble Alpes

Directeur de thèse

Markus HOLZMANN
 Université Grenoble Alpes

Co-directeur de thèse

Stefano MOSSA
 CEA

Co-directeur de thèse

Rapporteurs :
FABIO FINOCCHI
Directeur de recherche, CNRS DELEGATION PARIS CENTRE
SAMY MERABIA
Directeur de recherche, CNRS DELEGATION RHONE AUVERGNE

Thèse soutenue publiquement le 13 décembre 2022, devant le jury composé de :
JULIA MEYER
Professeur des Universités, UNIVERSITE GRENOBLE ALPES

Présidente

AMBROISE VAN ROEKEGHEM
Ingénieur docteur, CEA CENTRE DE GRENOBLE

Examinateur

FABIO FINOCCHI
Directeur de recherche, CNRS DELEGATION PARIS CENTRE

Rapporteur

SAMY MERABIA
Directeur de recherche, CNRS DELEGATION RHONE AUVERGNE

Rapporteur





iii

Résumé

Historiquement, le mouvement d’un réseau cristallin était traité du point de vue
de la mécanique classique. Cependant, les effets quantiques nucléaires (NQE), à
savoir l’énergie du point zéro et l’effet tunnel à travers la barrière de potentiel, peu-
vent modifier radicalement le comportement d’un cristal qui peut être analysé via
diverses propriétés thermodynamiques. Ces propriétés peuvent être calculées ex-
actement en utilisant des techniques Monte-Carlo d’intégrale de chemin (PIMC).
Cependant, en utilisant cette approche pour déterminer des grandeurs dynamiques,
on se heurte à des difficultés intrinsèques à la méthode. Dans le formalisme de
Green et Kubo, qui est un outil commun pour l’analyse des propriétés de transport,
les fonctions de réponse linéaires peuvent en principe être calculées par continuation
analytique de la fonction de corrélation temporelle imaginaire obtenue avec PIMC.
En pratique, cela correspond à une transformée de Laplace inverse, qui devient
mal définie pour des données numériques souffrant d’une précision finie. Dans le
présent travail, nous abordons ces questions et indiquons la voie possible pour le
problème d’inversion qui convient à divers schémas de calcul. Nous démontrons
l’utilité de cette approche sur plusieurs modèles simples de type oscillateur. A l’aide
de cette machinerie, nous tournons notre attention vers l’analyse du NQE dans un
cristal. Une description, qui tient correctement compte des phénomènes quantiques,
revêt une importance pratique particulière pour les propriétés de transportă: con-
trairement aux métaux, le transport dans les semi-conducteurs et les isolants est régi
par les vibrations de son réseau cristallin, qui sont décrites par les modes normaux.
Dans le cristal réel, les modes interagissent et se dispersent les uns avec les autres,
ce qui donne une durée de vie finie qui, en fin de compte, détermine la conductance
thermique finie. Nous démontrons que la présence de NQE modifie le comporte-
ment en température de chaque mode ainsi que son taux de décroissance. Nous
étudions également les changements correspondants de la conductance thermique
par rapport aux prédictions classiques.
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Abstract

Historically, the motion of a crystal lattice was treated from the perspective of classi-
cal mechanics. However, the nuclear quantum effects (NQE), namely zero-point en-
ergy and tunneling through the potential barrier, can alter drastically the behaviour
of a crystal which can be analyzed via various thermodynamic properties. These
properties can be computed exactly by using path-integral Monte-Carlo (PIMC) tech-
niques. However, employing this approach in order to determine dynamical quan-
tities, one encounters difficulties that are intrinsic to the method. Within the formal-
ism of Green and Kubo, which is a common tool for analysis of transport properties,
linear response functions can in principle be calculated by analytical continuation of
imaginary time correlation function obtained with PIMC. In practice, it corresponds
to an inverse Laplace transform, which becomes ill-defined for numerical data suf-
fering from finite precision. In the present work we address these questions and
indicate the possible way around for the inversion problem which is suitable for
various calculation schemes. We demonstrate the utility of this approach on sev-
eral simple oscillator-like models. Using this machinery, we turn our attention to
the analysis of the NQE in a crystal. A description, which properly accounts for the
quantum phenomena, is of particular practical importance for the transport proper-
ties: unlike metals, the transport in semiconductors and insulators is governed by
the vibrations of it’s crystal lattice, which are described by the normal modes. In
the real crystal the modes interact and scatter with each other resulting in a finite
lifetime which, ultimately, determines the finite heat conductance. We demonstrate
that the presence of NQE alters the temperature behaviour of each mode along with
it’s decay rate. We also study the corresponding changes in the heat conductance in
comparison to the classical predictions.
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1 Introduction

Since its inception the physics aims to describe the nature around us in all its beauty.
In order to do it in a quantitatively accurate way physicists make use of various
mathematical tools and methods. However, in order to apply these tools one must
recast the physical system in a mathematically expressible model.

Thus, the study of any model or process that resembles the actual one is per-
formed with a certain set of approximations. These approximations are fundamen-
tally connected to our ignorance about the underlying governing laws and arise due
to our limitations in calculating the properties of interest for any realistic system.
In materials study, i.e. the field of quantum chemistry or molecular dynamics, one
usually adopts several such conventions [Max Born and Huang, 1954]. One of them
is the Born-Oppenheimer approximation [M. Born and Oppenheimer, 1927], which
is commonly applied in particular for the purpose of numerical analysis. This ap-
proach assumes that the wave function describing the molecule can be separated
into nuclear and electronic parts that can then be studied independently. The as-
sumption is based on the fact that the nuclei are much heavier than the electrons
which implies the different time scale for the characteristic processes of these two
subsystems [Scherrer et al., 2017]. Unlike Born-Oppenheimer approximation whose
limitations were known for long time [Beratan and Hopfield, 1984], another com-
monly used approximation which typically gets much less attention - that the be-
haviour of the nuclei can be understood in terms of classical mechanics [Kushwaha
et al., 1993, Datta et al., 1992]. In the pursuit of more easily performed calcula-
tions one discards the machinery to account for the quantum effects, for example
zero-point energy or tunneling, hoping that the contribution of said effects to the
measurement is sufficiently small. This, however, is not the case for many systems
of interest, which can be illustrated on several examples. The thermal wavelength
of a proton at 300 K is about 0.1 nm, which is comparable to typical intermolecu-
lar distances [R. D. Shannon, 1976]. By consequence, proton delocalization certainly
affects vibrational properties in many molecular systems. Another consideration is
that even at room temperature the zero-point energy (∼ h̄ω/2) for a typical chemical
bond with frequency ω is by an order of magnitude larger than the thermal energy
attributed to the corresponding degree of freedom (∼ kBT) [Brock, Schrobilgen, and
Zemva, 2013]. These indications hint that these effects, commonly referred to as nu-
clear quantum effects (NQE) in the literature, may alter considerably the structure
and dynamics of the system observables.

In the rest of this section we shall briefly overview several (semi-)analytical meth-
ods that are used for the study of nuclear quantum effects in application to the
physics of crystals before giving a brief outline of the methods used here and the
organization of the manuscript.
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1.1 Harmonic crystal

The problem of calculating heat capacity in solids was one of the questions that
classical mechanics was unable to address and which in the end ushered quantum
mechanics. Let us briefly review the problem.

At temperatures below melting temperature the atoms are arranged in a certain
pattern (called crystal lattice) with the position of atoms being at the minimum of
the interaction energy. At low enough temperatures the motion of these atoms is
fluctuations around their minima and it can be described with a small displacement
u.

The resulting model (schematically depicted on the
right) can be studied already at the level of classical me-
chanics: for a system of N particles the Hamiltonian
reads as

H =
N

∑
i=1

p2
i

2m
+

1
2

N

∑
i,j=1

∂2V
∂xi∂xj

uiuj

where pi - moment of the i-th particle, ui - its displace-
ment from the minimum, and m - mass of a particle.
The potential in the quadratic form can be diagonalised with Nmodes = 3N normal
modes which renders the Hamiltonian to the sum of independent oscillators with
frequencies ωi

H =
Nmodes

∑
k=1

p2
k

2m︸︷︷︸
3
2 kBT

+
Nmodes

∑
k=1

mω2
k y2

k
2︸ ︷︷ ︸

3
2 kBT

Upon averaging each mode has a total energy of kBT, thus, the total energy of a
crystal is Eint = 3NkBT. This leads to the renown law of DulongPetit [Dulong and
Petit, 1818] for heat conductivity cclass

v = 3kBN which is independent of temperature
and is uniform for any material. The problem with this simple picture arises from
the experimental observations (see Fig.(1.1) for example of solid neon). The classical
theory is unable to capture even qualitatively the behaviour at low temperatures -
the limit where it is justified.

The solution to this conundrum was proposed by Debye [Debye, 1914] who was
able to solve it by using quantized energy excitations. The resulting formula for the
heat capacity is

cv = 9NkB

(
T

TD

)3 ∫ TD
T

0

x4exdx
[ex − 1]2

(1.1)

. This equation contains the important parameter - the Debye temperature TD =
hvs
2kB

3
√

6ρ
π which is expressed in terms of Planck’s constant h, crystal sound velocity vs

and the crystal number density ρ. It controls the number of phonons participating in
the calculation. Comparing this result with experimental observations (see Fig.(1.1))
one concludes, that the harmonic model, despite its simplicity, is able to explain
behaviour of internal energy (and heat capacity) for many materials at temperatures
below the melting one.
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FIGURE 1.1: Comparison of heat conductivity for solid Ne obtained
from experiment with the analytical calculations - in red classical ap-

proach and in black - Debye model.

1.2 Quasiharmonic approach

There several limitations to the famous Debye law. The formula (1.1) was derived
in the assumption of harmonic approximation for potential energy. This approach is
valid at small temperatures, however, with the increasing temperatures the anhar-
monicities of the potential become more important thus deviating from the Debye
law. The prominent example are the semiconductors, and we plot the specific heat
at various temperatures for the case of silicon (Fig.(1.2)). This figure shows that the
deviations are significant for a relatively low temperatures of around 200K which is
smaller than the Debye temperature of 600K and considerably below melting tem-
perature ( 1400K).

In order to make use of the harmonic model one typically treats the anharmonic
interactions as a small perturbation. Following the ideas of Einstein [Einstein, 1907]
the vibrations inside a crystal are described by the normal modes which as we have
seen above in the case of pure quadratic interactions is equivalent to the analysis
of ensemble of harmonic oscillators. Energy of each normal mode is quantized and
the excitations from the ground energy is called phonons [Tamm, 1930]. This for-
malism is not quite suited for the proper description because it involves only sec-
ond order terms in the expansion of the particles interaction energy. The popular
recipe is to use the quasiharmonic approach, which adopts the harmonic oscillator
viewpoint and modifies the frequencies in order to include thermal expansion cor-
rections [Leibfried and Ludwig, 1961; Brüesch, 1982]. It is usually assumed that the
anharmonicities of the potential affect the observables of the system at high temper-
atures so that the quasiharmonic approach is valid at low temperatures when the
phonon occupation number is low, which is strictly speaking not the case, since the
zero-point energy allows particles to fluctuate from the equilibrium positions thus
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FIGURE 1.2: Heat capacity of silicon: comparison of experiment with
Debye model

increasing high-frequency occupation numbers.
Following the quasiharmonic approach, anharmonic effects are considered weak

so that atomic forces and phonon frequencies are renormalized by accounting only
for thermal expansion. It is motivated by the fact that the anharmonic effects make
an important contribution to the thermal expansion of the crystal which can be
analyzed in experiment. One typically describes the frequency shift by a mode
Grüneisen parameter, γk = −(V∂ωk)/(ωk∂V), where V is the volume and ωk be-
ing the frequency of the kth mode. The parameter appears naturally when writing
the equation of state in the quasiharmonic approximation.

Quasiharmonic approach was reasonably successful in describing certain prop-
erties of the crystals. In particular it was able to provide with reasonable accuracy the
thermal expansion of silicon at varying temperatures [Xu et al., 1991; Baroni, Giron-
coli, et al., 2001] so it became the common tool for the analysis [Toher et al., 2014].
However, observations of frequency shift in various semiconductors already from
early papers demonstrated that this shift cannot be fully accounted by the thermal
expansion alone [Nilsson and Nelin, 1972] and various numerical studies supported
the role of anharmonicities in the temperature shift of phonon frequencies [Lang et
al., 1999; Narasimhan and Vanderbilt, 1991].
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1.3 Computational approaches

Due to the complexity of the problem for the exact analytical solution one is pushed
to the numerical computations.

A promising approach that allows treatment of the NQE is the use of the quan-
tum thermal bath [Dammak et al., 2009; Ceriotti, Bussi, and Parrinello, 2009]. In
this approach the delocalization of a particle is represented by the stochastic motion
caused by the random external force. In this regard the method is similar to the
classical Langevin thermostat with the force constructed as a specific power spec-
trum obtained from the quantum dissipation-fluctuation theorem [Callen and Wel-
ton, 1951]. The method provides reasonable results for certain range of systems and
can be used to refine approximate models for other numerical techniques, yet as
many semiclassical approaches is prone to the zero-point energy leakage - the issue
when part of the energy is unphysically transferred from the high frequency modes
to the low frequency modes [Brieuc et al., 2016].

In our work we shall follow the path-integral Monte-Carlo (PIMC) method for
the calculation of imaginary time correlation functions. The approach necessitates
the knowledge of the interaction energy between atoms. In insulator systems the
interaction between atoms is governed by the behavior of particles electron clouds
- at short atom separation non-bonded overlap between electron clouds lead to the
strong repulsion whilst at long distances the correlation between these clouds result
in attraction of atoms. Thus, the use of the exact potential in the PIMC simulation
would require solution of the system of Shrödinger equations at each time of the
crystal evolution. Instead, typically one adopts another approach and uses the em-
pirically obtained potential for description of the particles interaction [Allen and
Tildesley, 2017] and in this thesis we restrict our attention to such potentials.

1.4 Thesis overview

In the current thesis we are interested in computing transport coefficients, taking
into account NQE, without resorting to the approximate schemes. As a main tool
for the analysis we shall use path-integral Monte-Carlo approach which allows to
obtain time correlation functions for the quantities of interest in an at least in princi-
ple exact way. In practice, however, the calculations are affected by statistical noise,
and the accuracy of the computation is determined by the simulation length which
results in the finite precision. In general, path-integral Monte-Carlo calculations of
real-time evolution is numerically infeasible due to a large statistical error. How-
ever, as we shall see in the following chapters, PIMC can access directly correlations
in imaginary time. The problem of getting real time response function is then mi-
grated to analytically continue the imaginary correlation functions to real times. Al-
ternatively, one can study the spectral density that describes the correlations. In the
case of imaginary time functions, however, one is faced with the ill-defined Laplace
transform due to the finite errorbars of the PIMC calculation. We will employ a
stochastic reconstruction approach for this inversion problem and introduce valida-
tion prescription in order to uniquely fix the parameters of the reconstruction. To
our knowledge, combining the Bayesian stochastic reconstruction with the valida-
tion procedure has never been reported before. We will show that the combination
actually provides very encouraging results.

The manuscript is organized as follows. In the first two chapters we introduce
general formalism and machinery for the calculation of imaginary time correlation
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functions and spectral inversion. In chapter 4 and 5 we then apply these techniques
to the study of simple harmonic oscillator and several oscillator-like models in order
to test their validity. Then, in chapter 6 we analyze the solid neon with the interpar-
ticle interaction described by pairwise Lennard-Jones potential.
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2 Methods

Heat transport properties are usually obtained by measuring heat transfer caused
by a small temperature gradient. In this chapter we lay basis for the linear response
theory which allows to compute changes of thermodynamic properties when a small
external perturbation is applied. The Green-Kubo formalism relates the linear re-
sponse of the system to correlation functions obtained at thermodynamic equilib-
rium. Therefore, we start with the calculation of the time correlation function for
several operators. In the Green-Kubo approach [Green, 1954] the correlation func-
tions are composed of nothing else but the heat current operators. In the framework
of single-mode relaxation time approach [Srivastava, 1990] one can analyze the prop-
erties of each phonon from the mode correlation functions. Whilst there exist various
approximate methods to perform such calculations, no analytical solution can be ex-
pected for a general interacting system. As a consequence, one is forced to resort
to numerical approaches in order to obtain the result and to this end we will use
Monte-Carlo techniques [Metropolis and Ulam, 1949, Bernu and David M Ceperley,
2002].

In order to obtain the heat conductivity from Green-Kubo we need to have access
to real-time correlation functions, the problem too hard, in general, even for numer-
ical approaches. However, path-integral Monte-Carlo methods allow calculation of
imaginary times correlation function which are the analytical continuation of their
real-time analogs. Obtaining the spectral function of the corresponding correlations
necessitates solving the inverse problem for the underlying linear transformation.
However, the inversion of the corresponding kernel is an ill defined problem [O’Sul-
livan, 1986], so that the output of the calculation is extremely sensitive to the accu-
racy of the input data. In the present thesis, we employ a stochastic reconstruction
approach [Sandvik, 1998; Habershon, Braams, and Manolopoulos, 2007] in order
to produce the desired spectrum. In order to improve the reliability of the result,
we will introduce a recipe to increase the accuracy of the time correlation function
calculation. Namely, we will introduce improved numerical estimators for correla-
tion functions that involve momentum operators that are in general very noisy. In-
spired by the so-called virial estimator [Barker, 1979; Parrinello and Rahman, 1984]
for kinetic energy, we describe how a low-variance estimator can be obtained for any
imaginary time correlation function that involves operator of momentum. We split
this part of the thesis into two segments: in the first one we set the ground for the
calculation by describing the Green-Kubo approach and the related inverse problem.
In the next chapter we lay the basics of the path integral method for the calculation
of time correlation function and overview the numerical tools that we will use to
evaluate said correlations. We will also show the prescription on reducing the errors
of the computations.

2.1 Linear response theory

The first building block of our approach is the theory of linear response introduced
by Green [Green, 1954] and Kubo [Kubo, 1957]. This formalism is used to calculate
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the response of an observable to a small perturbation of the system’s Hamiltonian
of a system in the linear approximation. In this chapter we give a brief review of
general linear response theory [Baroni, Bertossa, et al., 2020].

Heat transport in condensed matter system is an example of a macroscopic pro-
cess. For this type of processes one can typically attribute an extensive variable A
which can be expressed, from it’s definition, as a sum of its values for each subsys-
tem. In the limit of a macroscopic system one can introduce a density a such that:

AV =
∫

V
a(r, t)dr, (2.1)

where V denotes the volume of the system and bold indexes denote vectors, that
is r ≡ ~r = {rx, ry, rz}. For a locally conserved extensive quantity one can write an
equation of continuity for the density a:

∂a(r, t)
∂t

+ div jA(r, t) = 0, (2.2)

in the absence of a total current through the system boundary. In the last equation jA
is the density current through the system surface. Performing a Fourier transform
over space coordinates in the form ã(k, t) =

∫
a(r, t)eikrdr, one writes:

∂ã(k, t)
∂t

+ ikj̃A(k, t) = 0 (2.3)

This equation shows that the quantities with longer wavelength k change slower in
comparison to the short wavelength components and one may expect the adiabatic
decoupling of these Fourier densities, which are typically called hydrodynamic vari-
ables. Without loss of generality one can shift the minimum (equilibrium) value of
conserved quantities A to zero. Then, at equilibrium all the corresponding densi-
ties and currents vanish. Treating a system away from equilibrium we shall assume
that the the wavelength along with the time scale of characteristic processes are suf-
ficiently long for the local thermal equilibrium to settle in. A local equilibrium is
characterized by certain value of the local temperature, pressure, chemical potential
etc satisfying local equation of state. For small enough deviation from the equilib-
rium one can express the time derivative of ã(k, t) as the linear combination of the
density itself:

∂ãi(k, t)
∂t

= ∑
j

Bij ãj(k, t) (2.4)

with i and j running over all the conserved densities. Combining the equation (2.4)
with the previous one (2.3) we obtain for the current:

j̃i(k, t) = i
k
k2 ∑

j
Bij ãj(k, t) (2.5)

One expects that in isotropic media coefficients Bij are spherically symmetric func-
tions of k and the current vanishes at k = 0, since the a non-vanishing value would
indicate the dependence of current at long distances on the density fluctuations
which contradicts the idea of local equilibrium. Thus, one can suggest that in the
limit of k → 0 the coefficients behave as Bij ∝ k2bij and one can study a macro-
scopic (k = 0) components of stationary current, Ji =

1
V

∫
ji(r)dr. These currents are
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related to the corresponding density gradients Wi = 1
V

∫
∇ai(r)dr as:

Ji = ∑
j

bijWj (2.6)

This expression is reminiscent of celebrated Onsager’s relation [Onsager, 1931]:

Ji = ∑
j

LijFj (2.7)

where Fj denotes thermodynamic forces, or affinities, whilst linear coefficients Lik
satisfy the celebrated Onsager’s reciprocity relations Lik = Lki. Indeed, equation
(2.6) can be brought to the form of (2.7) by defining susceptibilities κ such that den-
sity gradients can be related to thermodynamic forces as:

Wj = ∑
k

κjkFk (2.8)

thus leading to the Onsager’s form with Lij = ∑k bikκkj.
Let us consider a system that consists of N classical particles interacting via po-

tential U0. In 3D the system is described with 3N degrees of freedom. We write the
initial (unperturbed) Hamiltonian for this system as

H0 =
N

∑
i

p2
i

2mi
+ U0(r1, r2, r3 . . . ). (2.9)

One does not need to restrain the form of the potential and thus it can include all var-
ious combinations of particles. Suppose now that the potential interaction between
atoms is modified with a time-dependent part:

U(R, t) = U0(R) + U′(R, t) (2.10)

We assume that the perturbation U′ can be expressed in terms of densities ai(r, t):

U′(R, t) = ∑
i

∫
V

ui(r, t)ai(r, t)dr (2.11)

Then, according to [Kubo, Yokota, and Nakajima, 1957] one can write the linear
response to the perturbation for the i-component of the current:

jγ
i (r, t) =

1
kBT ∑

k

∫ t

−∞
dt′
∫

V
dr′
〈

jγ
i (r, t)ȧk(r′, t′)

〉
0 uk(r′, t′) (2.12)

Here γ denotes the component of a vector. We used 〈. . . 〉0 to show the averaging
over energy density states of the unperturbed Hamiltonian. Using the continuity
equation (2.2) one can rewrite this expression

jγ
i (r, t) = − 1

kBT ∑
k,σ

∫ t

−∞
dt′
∫

V
dr′
〈

jγ
i (r, t)

∂

∂r′σ
jσ
k (r

′, t′)
〉

0
uk(r′, t′) =

=
1

kBT ∑
kσ

∫ t

−∞
dt′
∫

V
dr′〈jγ

i (r, t)jσ
k (r

′, t′)〉0
∂

∂r′σ
uk(r′, t′) (2.13)

where we integrated by parts and neglected any surface contributions, assuming
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that the fields in the expression decay sufficiently fast. In order to make the com-
parison with Onsager’s relation (2.7) we integrate both sides of the equation (2.12)
over space and take into an account the relation Lik = Lki. The resulting expressions
reads as

Jγ
i =

1
V

∫
drjγ

i (r) (2.14)

Lγσ
ik =

V
kB

∫ ∞

0
dt
〈

Jγ
i (t)Jσ

k (0)
〉

0 (2.15)

Fσ
k =

1
VT

∫
dr

∂

∂rσ
uk(r) (2.16)

2.1.1 Time correlation function of two operators

From the previous section it is clear that quantities that will be most interesting to us
in the following are equilibrium time correlation functions, which will play an essen-
tial role in application of the linear response theory. In general correlation function
for the system described by the Hamiltonian Ĥ that involves observables A at time
t1 and B at time t2 can be written as the thermodynamic average of a product of
operators Â(t1) = eit1 Ĥ/h̄ Â(0)e−it1 Ĥ/h̄ and operator B̂(t2) = eit2 Ĥ/h̄B̂(0)e−it2 Ĥ/h̄:

CAB(t1 − t2) = 〈Â(t1)B̂(t2)〉 =
1

Zβ
tr[Â(t1)B̂(t2)e−βĤ ] (2.17)

where Zβ = tr[e−βĤ ]. From its definition we observe several properties of the corre-
lation function:

− Invariance to time translation
Correlations between operators does not depend on the absolute value of time,
rather it depends on the time difference

〈Â(t + t′)B̂(t′)〉 = 1
Z

tr[e−βĤ Â(t + t′)B̂(t′)] =

=
1
Z

tr[e−βĤeiĤ(t+t′)/h̄ Â(0)e−iĤt/h̄B̂(0)e−iĤt′/h̄] =
1
Z

tr[e−βĤ Â(t)B̂(0)] = 〈Â(t)B̂(0)〉

− Inversion of time
The correlation function is symmetric around time t = ih̄β/2

CAB(−t) = 〈Â(−t)B̂(0)〉 = 1
Z

tr[e−βĤe−iĤt/h̄ Â(0)eiĤt/h̄B̂(0)] =

=
1
Z

tr[eiĤt/h̄B̂(0)e−βĤe−iĤt/h̄ Â(0)] =
1
Z

tr[e−βĤeβĤeiĤt/h̄B̂(0)e−iĤ(t/h̄−iβ) Â(0)] =

= 〈B̂(t − ih̄β)Â(0)〉 = CBA(t − ih̄β),

where in deriving both equations we used the cyclicity of a trace operation
tr(ABC) = tr(CAB).

2.1.2 Spectral function

We now introduce another important quantity that we will use in the following.
Let us define a spectral density function SAB(ω) that corresponds to the Fourier
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transform of the correlation function CAB between operators Â and B̂:

SAB(ω) =
1

2π

∫ ∞

−∞
CAB(t)e−iωtdt (2.18)

We notice from the definition and using the properties of the correlation function
from above that

SAB(−ω) =
1

2π

∫ ∞

−∞
eiωtCAB(t)dt = e−βωSBA(ω) (2.19)

2.1.3 Imaginary time correlation functions

For the purpose of numerical analysis with PIMC one deals with the correlations de-
fined for imaginary times, t = ih̄τ, where we also incorporated inside the definition
the factor of h̄. The operators in the Heisenberg representation will then take a form
Â(τ1) = e−τ1 Ĥ Â(0)eτ1 Ĥ, with the correlation function defined in imaginary times as
CAB(τ) =

1
Z tr[A(τ)B(0)e−βĤ ] as the analytical continuation t = ih̄τ.

For such correlation functions one can modify the definition for C(τ) :

CAB(τ) =
∫ ∞

0
dω
[
SAB(ω)e−h̄ωτ + SBA(ω)e−h̄ω(β−τ)

]
, (2.20)

where we used property (2.19). Using this spectral function that one can reexpress
the coefficients Lik from equation (2.15) as spectral density of the current-current
correlation function at ω → 0:

Lγσ =
V

2kB
Sγσ(ω = 0) (2.21)

2.2 Inverse Problem

As we mentioned above, the PIMC provide us with the correlations defined for
imaginary times. Omitting for the moment the question of actual calculation of
the correlation functions (we shall return to this issue in the next chapter) we now
consider the following problem related to the spectral functions. When trying to
obtain the spectral function from imaginary time correlations as indicated in the
previous section from inverting Eq.(2.28), one is quickly faced with a so-called ill-
defined problem [O’Sullivan, 1986] meaning that the reconstructed spectrum is very
sensitive to the accuracy of the input data. There exist many different approaches to
tackle this problem [Alifanov, 1994]. We start this section by briefly reviewing the
classical method which make use of a kernel parameter regularization [Beck, Black-
well, and Clair Jr, 1985; Kaltenbacher, Neubauer, and Scherzer, 2008]. However,
regularized solutions are somewhat unsatisfactory for our purposes. First, it is often
difficult to impose physical constraints on the solution, e.g. a non-negative spectral
function. Second, the solutions can depend very sensitively on the regularization
parameter, such that their uncertainty is very difficult to control. Therefore, in the
following however we will adopt a different route, namely we will use a so-called
stochastic, or maximum entropy, approach. As we shall see, its formulation suggests
that it is a parameter-free method of spectral reconstruction which makes it very at-
tractive. However, as we will point out, this is, for most of the cases, an illusion, and
the method nevertheless depends implicitly on several external parameters, some of
which are not immediately apparent. In order to uniquely fix the parameters, both
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explicit as well as implicit ones, we propose the procedure for verification of the re-
construction based on statistically independent data. As we will show, this step is
essential to obtain reliable and accurate results.

2.2.1 General inverse problem

Let us start with a general definition of the problem. The equation of our interest
defined in the previous section - see equation (2.20)) - is an example of the inverse
problem [Kabanikhin, 2011]. In general this problem can be postulated as a linear
map between two Hilbert spaces X and Y

y = Kx (2.22)

where x and y belong to X and Y respectively, whilst K is a some compact linear
operator, typically referred to as a kernel. The name of the problem comes from the
fact that for such problems one knows the set of measurements y along with a given
operator K and the goal is to reconstruct set x. Moreover, in our case samples y that
we obtained are not exact data points but they are calculated within the uncertainty
ε, which we we will discuss later. Thus, the problem we aim to solve is

y = Kx + ε (2.23)

Before proceeding further, we recall the conditions for a stable inversion:

− Existence
Existence of the solution is guaranteed if the map K is surjective [Bourbaki,
1970]:

∀y ∈ Y ∃x ∈ X : y = Kx (2.24)

that is, each element from the space of values x is mapped to at least one ele-
ment of Y

− Uniqueness
Solution is unique if the map K is injective [Bourbaki, 1970]:

∀x, x′ ∈ X : y = y′ =⇒ x = x′ (2.25)

i.e. for each element x ∈ X there exists only one element y ∈ Y such that y =
Kx. The condition for this is that ker(K) = 0 where ker(K) = {x′ ∈ X|Kx′ = 0}
With this assumption we are able to define an inverse map: K−1 which maps
the elements of Y back to the space X. If accuracy of the data does allows for
more than one solution a usual prescription is to impose additional constraints.

− Stability
In order to guarantee stability of the solution with respect to errors ε we need
to ensure continuity of inverse map K−1. Violation of stability condition is the
most difficult task to address

An inverse problem that satisfy all these criteria is called well-posed [Hadamard,
1902]. If some of them are not met then the problem is ill-posed. In the example
that we are interested, namely in solving the equation (2.20), in the data that we
are using for correlation function are determined with certain accuracy, and the ill-
definition of the inversion means that there exist a huge number of spectral functions
that would produce the result within this accuracy.
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Calculation of a unique solution can be done in a rather straightforward way by
regularization of the kernel [Tikhonov et al., 1995]. From the mathematical point
of view, a regularization for the inverse problem y = Kx is defined as a family of
continuous mappings Rλ : Y → X that converges to the inverse of K in the limit
λ → 0. That is, the original problem is replaced with well-posed problem y = R−1

λ x.
The regularization parameter λ determines how well Rλ approximates the inverse
operator. Let us demonstrate how one can implement regularization in practice on
a simple example.

2.2.2 Regularization of the kernel

In order to preform analysis of the equation (2.20) we use numerical calculations.
Thus, we are obliged to introduce some parametrization of the spectral density S(ω).
For our example we consider a spectral function to be described by the collection of
δ-peaks:

Ŝ(ω) =
P

∑
p=1

Apδ(ω − ωp) (2.26)

where P is some arbitrary number of fitting parameters Ap. The frequencies ωp
are assumed to be fixed, for example, they form a linear progression on a range
[ωmin, ωmax]. In our problem vector y consists of correlation functions at M discrete
imaginary time points. Thus, the kernel K from the general equation y = Kx can be
considered as a map between P-dimensional space of ω and M-dimensional space
of y. In a mathematically rigorous sense one cannot demonstrate in general the exis-
tence of the solution for this problem. However, one can prove [Horn and Johnson,
1985] that the problem admits a solution in a "least squares" sense - one can mini-
mize the difference |y−Kx| on a subset of frequency space. One can devise different
approaches for this minimization [Golub and Van Loan, 1996], here we show one
such example.

We use the form for spectral function (2.26) to solve eq.(2.20) by minimizing the
functional χ2

χ2 =
M−1

∑
α=0

[C(τα)− C̃(τα)]2

σ2(τα)

Here we used

C̃(τα) =
P

∑
p=1

Ap

(
e−ωpτα + e−(β−τα)ωp

)
Minimization of χ2 means that we need a first derivative of χ2 to be equal to 0:

0 =
dχ2

dAp′
=

M−1

∑
α=0

1
σ2(τα)

[
C(τα)−

P

∑
p=1

Ap

(
e−ωpτα + e−(β−τα)ωp

)] (
e−ωp′τα + e−(β−τα)ωp′

)
(2.27)

One can satisfy this set of equations by demanding that each in [. . . ] should vanish:

C(τα) =
P

∑
p=1

Ap

(
e−ωpτα + e−(β−τα)ωp

)
(2.28)
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We can write this expression in a matrix form as C = KA, with

C = (C(τ1), C(τ2), . . . , C(τM))† ≡ (C1, C2 . . . CM)†, (2.29)
A = (A(ω1), A(ω2), . . . A(ωP))

† ≡ (A1, A2, . . . , AP)
†. (2.30)

and

K =


K1(τ1) K2(τ1) . . . KP(τ1)
K1(τ1) K2(τ1) . . . KP(τ1)

. . . . . . . . . . . .
K1(τM−1) K2(τM−1) . . . KP(τM−1)


where

Ki(τα) =
(

e−ωiτα + e−(β−τα)ωi
)

and we have i, j · · · = 1 . . . P and α, β, · · · = 1 . . . M − 1 In this form we can write a
solution for A :

A = (KTK)−1KTC (2.31)

or if we write all the indexes:

A f = (KTK)−1
f j KT

jαCα (2.32)

In the last line we assumed the summation over the repeating indexes. In general
the error can be estimated from the calculation of variance, which in our case reads
as

Var = 〈A2〉 − 〈A〉2 (2.33)

Due to the nonvanishing errors on values of C the first term entering equation (2.33)
could be written as follows:

〈Am(AT)m〉 = (KTK)−1
mj KT

jα〈CαCT
β〉Kβn(KTK)−1T

nm (2.34)

Since 〈CαCT
β〉 = σ2δαβ and (KTK)−1T = (KTK)−1 we can simplify this expression

into
〈Am(AT)m〉 = (KTK)−1

mj KT
jαδαβσ2

α Kβn(KTK)−1
nm (2.35)

For constant σ2 we can simplify this formula to:

〈Am(AT)m〉 = (KTK)−1
mj KT

jαδαβKβn(KTK)−1
nmσ2 =

= (KTK)−1
mj (K

TK)jn(KTK)−1
nmσ2 = δmn(KTK)−1

nmσ2 = (KTK)−1
mmσ2

(2.36)

The reason for the instability of the inversion is the linear dependence between el-
ements of the kernel K which renders the determinant det(KTK) in the matrix in-
version equal to 0. A usual regularization scheme that produces a well-defined in-
version of KTK involves some non-zero parameter. For example, one may consider
adding a constant term λ to the diagonal elements of KTK, thus making the deter-
minant positive defined. Then the expression for A(λ) can be written as a function
of λ:

A f (λ) = (KTK + λI)−1
f j KT

jαCα (2.37)

The solution for A is then formally obtained in the limit λ → 0: A = limλ−→0 A(λ).
In practice however this limit often cannot be reached as the results can get very
sensitive to the numerical precision involved in the operations, and one is forced to
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use a finite parameter which one chooses sufficiently small such that the solution is
insensitive to the changes of λ. On Fig.(2.1) we show example of fitting for different
regularization values λ. Here we perform fit for a correlation function data obtained
in the Sec.(4.1). The fit is done for a fixed values of ωp with 3 adjustable (but not
constrained) parameters Ap. We see that for a large range of parameters λ the sum
rule for the coefficients ∑p Ap = 1 is quite closely fulfilled automatically, however,
for sufficiently small λ’s some of the coefficients Ap become negative which is clearly
not acceptable for a positively defined functional S(ω).

10 9 10 7 10 5 10 3
0.0

0.2

0.4

0.6

0.8

A

A1
A2
A3

FIGURE 2.1: Example of the regularization procedure for a kernel of
the inverse problem. Here we perform a 3 parameter fit and plot val-
ues of χ2 for the fixed set of ωp and corresponding Ap as defined by
eq.(2.37) as a function of regularization parameter λ. Set of correla-
tion function data points and corresponding errors are taken from the

first test case from Sec.(4.1)

2.2.3 Stochastic method for spectral reconstruction

Over the years the problem of obtaining spectral information from imaginary time
correlation functions was tackled from various perspectives. One of the most recent
emerging topic of research is the use of neural network for this task [Kades et al.,
2020]. An obvious drawback of this approach is that it requires construction of a
training data set - data for a model with a known output. The model should be
taken such that it captures the important features of the wanted spectral function
[Fournier et al., 2020], yet it should be sufficiently general in order to not introduce
artifacts to the measurements.

For our calculation we adopt the approach that tackles the inversion problem
from a statistical point of view [Sandvik, 1998; Habershon, Braams, and Manolopou-
los, 2007; Levy, LeBlanc, and Gull, 2017]. In this method the spectral function SME is
obtained as an average over possible spectra S(ω) that describe the correlation func-
tion data within their accuracy. In practice one uses some parametrization in order to
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define spectral configurations. These spectra are summed with a weight determined
by the probability that they are the exact model given the data set (C, σ2),

S(ω)ME =
∫

DS p(S|C, σ2)S(ω). (2.38)

Here DS the phase space element associated with the parametrization of S(ω), whilst
the vector C = (C(τ1), C(τ2), . . . , C(τM))† ≡ (C1, C2, . . . CM)† denotes the totality of
the correlation function data points, and σ2 describes the statistical uncertainty of
these data in the form of a covariance matrix. Making use of the Bayes formula, one
can write

p(S|C, σ2) =
p(C, σ2|S)
p(C, σ2)

p(S), (2.39)

where p(Cσ2|S) is the likelihood function to obtain C given S, p(C, σ2)) =
∫

dSp(C|S)
a normalization factor, and p(S) is a prior probability density that incorporates any
information on the spectrum that has before performing the reconstruction. Assum-
ing that the error of the data C is given by the central limit theorem the likelihood
function obeys Gaussian statistics so that we can write

p(C|S, σ) ∝ e−
1
2 (C−C[S])(σ2)−1(C−C[S]) = e−

1
2 χ2[S] (2.40)

where we introduced χ2(S) = (C − C[S])(σ2)−1(C − C[S]) and σ2 as the covariance
of the data. Here vector C[S] is computed from the definition of correlation function

C(τ) =
∫ ∞

0
dωS(ω)

(
e−h̄ωτ + e−h̄ω(β−τ)

)
(2.41)

and it is obtained by inserting a trial spectrum S into the r.h.s. of equation (2.20) and
computing the resulting M correlation values. In the case of a trial spectrum consist-
ing of the amplitudes A(ωp) which are defined for a set of Nω discrete frequencies
on a regular grid, namely

Ŝ(ω) =
Nω

∑
p=1

Apδ(ω − ωp)

trial correlation function C̃[S](τα) can be written using equation (2.41) in the follow-
ing form

C̃[S](τα) =
Nω

∑
p=1

A(ωp)
(

e−h̄ωpτα + e−h̄(β−τα)ωp
)

. (2.42)

In traditional maximum entropy methods, equation (2.38) is solved with saddle
point approximation by minimizing the functional F = 1

2 χ2[S]− H[S]. Here, H[S] is
an entropic functional, which punishes irregular solutions which presumably would
lead to an overfitting of the resulting spectrum - feature of the reconstruction which
appears when statistical errors contained in the data C(τα) influence to a significant
extent the result and is well-known in the machine learning [Cawley and Talbot,
2007]. A usual prescription for H[S] is to use the associated Shannon entropy [C. E.
Shannon, 1948]:

H[S] = γ
Nω

∑
p=1

Ap ln Ap,

with a coefficient γ controlling the regularisation of the solution [Linden, 1995].
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In this work, however, we follow a slightly different route and employ the stochas-
tic analytical inference, or stochastic maximum entropy [Fuchs, Pruschke, and Jar-
rell, 2010] method. In this approach expression(2.38) is evaluated by Monte-Carlo
sampling over space of possible spectral configurations, which are constrained to
positive values of S since the spectral density is strictly non-negative. The term
χ2[S] can hence be considered as an effective energy functional. In order to make
this analogy more apparent, one can introduce an additional parameter in the form
of an effective inverse temperature Θ as,

S(ω, Θ)ME = Z(Θ)−1
∫

DS S(ω)e−
1
2 Θχ2[S]. (2.43)

Here the normalization factor Z(Θ) =
∫

dS exp[−Θχ2/2] is an effective partition
function. Such approach allows to integrate traditional maximum entropy method
as a mean field version of Eq.(2.43), where one uses as an estimate of the spectrum
the minimum of the mean field free energy FMF(θ) = 1

2 χ2[S] − Θ−1H[S]. In the
following we make the simplifying assumption that data points are uncorrelated
(which is strictly speaking is not the case, but the end conclusion is not affected), so
that the covariance matrix is diagonal. As a result, we can write the energy func-
tional χ2[S] in the form

χ2 =
M−1

∑
α=0

[C(τα)− C̃[S](τα)]2

σ2(τα)
, (2.44)

with σ2(τα) the statistical uncertainty of the data point α. This approach, however, is
not a parameter free calculation - in fact, various simulation parameters, such as grid
density in spectrum space, effective inverse temperature Θ etc play a role analogous
to the explicit regularization parameters [Ghanem and Koch, 2020].

2.2.4 Validation procedure

Despite the vast body of literature on the subject, there does not exist a prescrip-
tion that allows one to fix unambiguously the value of Θ. Some arguments [Fuchs,
Pruschke, and Jarrell, 2010] have been proposed for choosing Θ = 1. In contrast,
other arguments were put forward that suggested picking for Θ the value Θ∗ that
maximizes Z(Θ), which is argued to also maximize the posterior probability P(θ|C)
[Calvetti and Somersalo, 2018]. The latter proposal, which corresponds to a balance
between energy and entropy dominated solutions, requires however a full free en-
ergy calculation. One can also note that increasing the value of Θ is effectively equiv-
alent to rescaling the uncertainties on the data points, a procedure that may lead to
overfitting. The corresponding effect on the validation procedure is discussed in
following parts where we consider test models.

Contrary to this proposals, we do not try to justify an a priori choice of effec-
tive temperature. Instead, we propose an unambiguous and efficient method to
determine the optimal value of Θ. We start with an initial data set, C(τα), which
is generated with known statistical uncertainty σ2(τα) by means of, for instance, a
path integral simulation of the considered model. For another source of data we can
consider cases where C(τ) is known analytically, so that "synthetic" data could be
generated from the exact solution, and a controlled uncertainty can be introduced.
Starting from any of these initial data, we reconstruct the spectrum SME(Θ), ac-
cording to the scheme introduced above. The spectrum is described by P degrees
of freedom A(ωp), and we obtain it through a Monte-Carlo sampling of Eq.(2.43)
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for a given value of Θ. We denote C̄Θ(τα) the correlation function associated with
this average spectrum. Incidentally, this argument can be extended to include any
other possible parameter, such as number of discretization points Nω, different dis-
cretizations on an ω-grid, etc. In order to determine the optimal choice of parameters
and discriminate between different models for S(ω), we combine the maximum en-
tropy approach with a validation procedure borrowed from the statistical learning
theory [Mehta et al., 2019]. One generates P′ new sets of validation data, Cval,i(τα)
(i = 1, . . . , P′), by using the same technique (even not necessarily with the same ac-
curacy, analogously to neural network studies, see for example [Barry-Straume et al.,
2018]) that we used to produce the initial data set, and determine the associated χ2

val
as

χ2
val =

1
P′

P′

∑
i=1

M−1

∑
α=0

[C̄Θ(τα)− Cval,i(τα)]
2. (2.45)

This quantity can be interpreted as a measure of the difference between the estimate
C̄Θ(τα) and the exact correlation function, denoted by Cexact(τα). We can see explic-
itly by writing

χ2
val =

1
P′

P′

∑
i=1

M−1

∑
α=0

[C̄Θ(τα)− Cexact(τα) + Cexact(τα)− Cval,i(τα)]
2 (2.46)

In the limit of large P′ and assuming that the average over the validation data returns
the exact correlation function, we obtain

χ2
val =

M−1

∑
α=0

[C̄Θ(τα)− Cexact(τα)]
2 +

M−1

∑
α=0

σ2
val(τα). (2.47)

The first term is the distance of the estimate to the exact data, while the second is the
variance of the validation data, which is independent of Θ. The choice of parameters
will therefore be eventually influenced only by the behavior of the first term.



19

3 Calculation of imaginary time
correlation functions

3.1 Path Integral formalism

In this chapter we return to the problem of calculating imaginary time correlation
functions, the essential block for the analysis of the dynamical properties. Path-
integral Monte-Carlo (PIMC) techniques, a method of choice for the computation of
the general observables at thermal equilibrium [Feynman, 1998], allows to obtain
them in exact, that is systematically unbiased, way within statistical error. How-
ever, a straightforward application of PIMC to the calculation of real time operator
evolution is unpractical, since the statistical error is not controlled. Nevertheless,
PIMC yields exact correlation functions in imaginary time which contains, at least in
principle, exactly the same analytical information, as we have seen in the previous
chapter. Linear response in imaginary time by means of the analytical continuation
provides the real time response, which constitutes a recipe for calculating dynami-
cal observables. But, since the reconstruction of the spectral function is an ill-posed
problem, controlling (and reducing) statistical error of PIMC computations is essen-
tial, and we address this problem by constructing estimators with reduced variance.

We start this chapter by introducing path-integral calculation procedure for sev-
eral properties of the system, most notably for a general imaginary time correlation
function for two operators defined at distinct imaginary times. We shall see that
the formalism of path integral lends itself to the numerical calculation and we then
follow this chapter by presenting Monte-Carlo techniques that will implement the
ideas of the path integral formalism and allow us to finally obtain the correlations
of interest. Next, we pass to a more technical problem of representing the operator
in the form that is most suitable for the calculation and we compare several such
representation for a couple of quantities of interest and discuss the performance of
the computation.

3.1.1 General approach

Let us begin by obtaining an expression for a partition function which is arguably the
most important quantity that describes the system [Landau and Lifshitz, 1976]. For
simplicity we consider a model which contains only one single particle placed in the
external potential and which is described by one spatial degree of freedom, which
we denote r. The approach can be easily generalized to systems consisting of many
particles and characterized by numerous degrees of freedom. The Hamiltonian of
the model in question is written as

Ĥ = K̂ + Û(r) =
p̂2

2m
+ U(r̂) (3.1)
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Here U(r̂) characterizes external potential, K̂ is a kinetic energy operator, m is a
particle mass, r̂ and p̂ denote the position and momentum operators respectively.
We now write the expression for a partition function - for a quantum system one
obtains the partition function by calculating the trace of the density operator ρ̂β =

exp(−βĤ):

Zβ = tr(ρ̂β) ≡ tr(e−βĤ) =
∫

dr0

〈
r0|e−βĤ |r0

〉
, (3.2)

where β ≡ 1/(kBT), with kB denoting the Boltzmann’s constant and T is the tem-
perature. The trace is taken over any complete basis state, and in our particular case
we select a basis of a position operator |r〉.

Let us look at the expression for ρ̂β in more details. Operators p̂ and r̂ that enter
the Hamiltonian do not commute and neither do any function of these operators,
hence we cannot write eβK̂+βÛ 6= eβK̂eβÛ straightforwardly as it would be the case
in the classical limit. Instead, one uses the Trotter’s [Trotter, 1959, Suzuki, 1976]
theorem in the form

e(Â+B̂) = lim
M−→∞

(
1 +

Â + B̂
M

)M

=

= lim
M−→∞

[(
1 +

Â
M

)(
1 +

B̂
M

)]M

= lim
M−→∞

(
e(Â/M)e(B̂/M)

)M
(3.3)

In numerical calculations one chooses M to be a large positive integer number. The
decomposition (3.3) for a finite M is not exact, but the expansion (3.3) is absolutely
convergent, so that the extrapolation to infinite M can be done numerically.

In practice one performs a computation by splitting the interval [0, β] into M
slices of equal length ∆τ = β/M. Naturally, one can generalize this separation to
the intervals of varying size, provided the constraint ∑M

p ∆pτ = β is satisfied, which
is, however, not done in the following and we employ the former separation. Up
to the lowest order in ∆τ one can then write the density operator [Chandler and
Wolynes, 1981] as

e−βĤ = (e−∆τĤ)M = (e−∆τ
p̂2
2m e−∆τÛ(r))M +O(∆τ) (3.4)

Depending on the interaction potential, the calculation of error made by this approx-
imation might be quite involved [Lloyd, 1996; Childs et al., 2021]. We then make use
of eigenvectors for operators of potential and kinetic energy |r〉 and |p〉 respectively:

U(r̂)|r〉 = U(ri)|r〉
p̂2

2m
|p〉 = p2

2m
|p〉

Each of sets |r〉 and |p〉 forms a complete basis, so that one can write identities

1 =
∫

dr|r〉〈r| , 1 =
1

2π

∫
dp|p〉〈p| (3.5)

Let us introduce the first set of identities into the expression of Zβ. Acting with the
operators that enter the partition function on these states, we recast the expression
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(3.2) into

Zβ =
∫

dr0

〈
r0|e−βĤ |r0

〉
= lim

M−→∞

∫
dr0dr1dr2dr3 . . . drM−1〈r0|e−∆τK̂e−∆τÛ |r1〉

〈r1|e−∆τK̂e−∆τÛ |r2〉〈r2|e−∆τK̂e−∆τÛ |r3〉 . . . 〈rM−1|e−∆τK̂e−∆τÛ |r0〉

In the following in order to improve readability and to simplify formulas we will
denote the terms that enter the expression

ρ(r0, r1, ∆τ) = 〈r0|e−∆τĤ |r1〉

Using these notations we write the expression for Z(β)

Zβ =
∫

dr0dr1dr2 . . . drM−1
[
ρ(r0, r1, ∆τ)ρ(r1, r2, ∆τ) . . . ρ(rM−1, r0, ∆τ)

]
(3.6)

We see that the partition function decomposes into a product of density matrix ele-
ments ρ(ri, ri+1, ∆τ), and each of these elements can be calculated independently.

In order to compute matrix element ρ(r1, r2, ∆τ) we use the second set of identi-
ties from Eq.(3.5). After inserting it into expression for ρ(r1, r2, ∆τ) we get

ρ(r1, r2, ∆τ) = 〈r1|e−∆τK̂e−∆τÛ |r2〉 =
1

(2π)

∫
dp1〈r1|e−∆τK̂|p1〉〈p1|e−∆τÛ |r2〉

Next we remember the relationship between vectors of different basis |r〉 and |p〉,
which has the form 〈r|p〉 = e−ipr and write:

ρ(r1, r2, ∆τ) =
1

(2π)

∫
dp1e−ip1r1 e−∆τp2

1/2meip1r2 e−∆τU(r2)

The potential energy is independent of momentum, which means that we can per-
form the integration over p1 and get the expression for a matrix element:

ρ(r1, r2, ∆τ) =

(
m

2πh̄2∆τ

)1/2

e−m (r2−r1)
2

2h̄2∆τ e−∆τU(r2) (3.7)

Let us write the resulting formula for
a partition function explicitly:

Zβ =

(
m

2πh̄2∆τ

)M/2 ∫
dr0dr1 . . . drM−1

e−m (r1−r0)
2

2h̄2∆τ e−∆τU(r1)e−m (r2−r1)
2

2h̄2∆τ e−τU(r2)

e−m (r3−r2)
2

2h̄2∆τ e−∆τU(r3) . . . e−m
(r0−rM−1)

2

2h̄2∆τ e−∆τU(r0)

(3.8)

In the schematic depiction of this for-
mula on the right the interaction part of
each matrix element is calculated within
a slice, and the kinetic part is represented
as springs that connect same particles on
different slices. Slice M + 1 is associated
with slice 0 (shown in green).

3∆τ

2∆τ

∆τ

0

β
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The utility of the expression (3.8) lies in the fact that we managed to translate cal-
culation of purely quantum quantity (3.2) into "classical" computation of expression
(3.8) which is suitable for the numerical calculations. However, the price to pay is
the necessity to perform multivariable integrals.

3.1.2 Thermodynamic average of an observable

In the similar spirit we can calculate thermodynamic average of any observable. In
quantum mechanics the average is calculated as

〈Â〉 = 1
Zβ

tr
[
Âe−βĤ] = 1

Z

∫
dr0

〈
r0|Âe−βĤ |r0

〉
(3.9)

In order to apply path integral for-
malism we need to introduce Trotter sep-
aration for density matrix. For simplicity
we consider here the observable Â that
depends on the coordinates, however the
calculations can be applied to momenta-
dependent quantities in the analogous
way. The average is calculated by con-
sidering action with the operator Â on
a matrix element ρ(ri, ri+1, ∆τ) in the de-
composition of partition function. Due to
cyclicity of the trace operator we can act
with Â on any matrix element.

(k + 1)∆τ

k∆τ

(k − 1)∆τ

0

β

∆τ = β/MÂ

The resulting path integral expression is

〈Â〉 = 1
Zβ

∫
dr0

〈
r0|Âe−βĤ |r0

〉
=

1
Zβ

∫
dr0· · ·

∫
drM−1

[
ρ(r0, r1, ∆τ)A(r1)ρ(r1, r2, ∆τ) . . . ρ(rM−1, r0, ∆τ)

]
(3.10)

Similar to the calculation of partition function in the previous section, we managed
to replace computation of trace operator for quantum operators with "classical" com-
putation of integrals. The common way to calculate multidimensional integrals is to
use Monte-Carlo approach. We will see in the following sections how it can be per-
formed.

Before proceeding with the numerical calculations, however, we need to address
important question of computing correlation function between operators at different
times.
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3.1.3 Correlation function between pair of operators at different imagi-
nary times

We have seen in Section 2.1.1 that in order to calculate heat conductivity we require
the correlation function between heat current operators. In the sections above we
saw that applying path integral approach we can calculate equilibrium properties.

In order to apply PI formalism we remember the calculation of real time correla-
tion function for two quantum operators. First, we write the evolution of operator
Â using Heisenberg representation:

Â(t) = eiĤt/h̄ Â(0)e−iĤt/h̄

Then, the correlation function between operators Â and B̂ separated by the time
interval t is defined as

CAB(t) = 〈Â(t)B̂(0)〉 = 1
Zβ

tr
[
Âe−itĤ/h̄B̂e−(β+it/h̄)Ĥ] (3.11)

What one can calculate in the path
integral formalism is the correlation
between operators at different slices.
Again, here we consider operators that
depend on position of particles, however
one can do similar analysis for a general
operator. First, we act with the opera-
tors on separate slices. Then, associating
quantity τ with the "distance" between
them, i.e. τ = k∆τ ≡ kβ/M in the ex-
ample on the right, we can write the PI
expression for the correlation as

1
Zβ

∫
dr0

∫
dr1· · ·

∫
drM−1[

ρ(r0, r1, ∆τ) . . . ρ(rk−1, rk, ∆τ)A(rk)ρ(rk, rk+1, ∆τ) . . . ρ(rM−1, r0, ∆τ)B(r0)
]
=

1
Zβ

tr[Âe−τĤ B̂e−(β−τ)Ĥ ] ≡ 〈Â(τ)B̂(0)〉

(3.12)

τk+1

τk

τk−1

0

β

Â

B̂

τ = k∆τ

Comparing this expression with the previous one (3.11) we observe that we can
now translate one equation into another by replacing real time t with imaginary time
τ by performing a Wick rotation [Wick, 1954] and replacing the real time t with an
imaginary time t = iτh̄.

Alternatively, one can observe that the reason to work with imaginary time lies
in the fact that imaginary part for the statistical weight of the matrix element, which
makes it not suitable for usual numerical sampling methods [Makri and Miller,
1987].
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3.2 Numerical methods

In the previous section we have established the method that allows to represent the
density operator as a path integral. The later has the advantage, that it can be ex-
plicitly written down in the position representation in form of an integration over
paths, without having to diagonalize the Hamiltonian. In the following we show
how, at least in principle, one can calculate thermodynamic averages and time cor-
relation functions for any given system and observables. In practice, however, the
highly dimensional integral that one ends up with after writing the expression for
the correlation functions (even with momenta degrees of freedom integrated out)
are often quite elaborated to tackle down exactly. There are several possibilities to
get around this issue - either to use various approximations (as for example [Erkoç
and Sever, 1988]) or to resort to numerical methods. For the purpose of this work
- namely, to obtain imaginary time correlations exactly and control the accuracy of
the computation - we adopt the numerical approach in the form of Monte-Carlo path
integral [Kurt Binder and Heermann, 2010]. The rest of this chapter is constructed in
the following way. First, we provide a short introduction to a general Monte-Carlo
calculation of the average quantities and corresponding errors. Then, we discuss
several expressions for the numerical representations of correlation functions that
involve momentum operator and compare their effect on the accuracy of the result.

3.2.1 Monte Carlo integration

Monte-Carlo methods (which we will occasionally refer to as MC for simplicity)
have a great variety of applications, however, originally MC calculations were de-
veloped as a set of techniques for evaluating integrals (namely in application to nu-
clear physics). The general idea can be illustrated by the following simple example
[Sobol’, 1967].
Let us consider an integral of a single variable defined on the interval [a, b]: I =∫ b

a f (x)dx where f (x) is some function (not necessarily regular). In order to evalu-
ate such integral one can employ different strategies, and Monte-Carlo approaches
tackle this problem from the stochastic point of view. Let us take at random N points
xi uniformly distributed on [a, b) and then calculate the quantity

Iest =
b − a

N

N

∑
i=0

f (xi)

It is clear from the definition, that in the limit of N → ∞ the quantity Iest, which we
will call estimator, is equal to I. However, depending on the function and the chosen
range of variables, the convergence rate of the estimator to the actual value as a func-
tion of sample points N might be quite slow (for example, see illustrations by Figs.
3.1). For a function in our illustration it is then reasonable to divide interval [a, b)
into smaller intervals and evaluate integral I on each of these intervals separately:

Iest =
c − a

N1

N1

∑
i

f (xi) +
b − c

N2

N2

∑
j

f (yi)

where points {xi}, {yj} were plucked from intervals [a, c), [c, b) respectively.
This is an example of importance sampling [Kloek and Dijk, 1978]. In general, the
importance sampling is the strategy to reduce the variance of the Monte-Carlo mea-
surement. The idea behind the method is quite straightforward. One assumes that
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FIGURE 3.1: Calculation of integral

certain ranges of simulated quantity have more importance for the output than the
others and finds such distribution that would bias the measurements in order to em-
phasize these ranges in the sampling. Naturally, this would bias the result if it is ap-
plied directly to the calculation of quantities. However, by weighting the simulation
output to account for the bias, one ensures that the importance sampling estimator
is unbiased. The weight is given by the likelihood ratio between true underlying
distribution with respect to the introduced biased distribution.

Let us start with calculation of the average value. Consider N statistically inde-
pendent random samples X = x1, x2, . . . , xN obtained from the distribution PX. In
order to calculate the average of function g(X) defined for values of x one writes

〈g(X)〉 ≡ ∑
x

g(x)pX(x) (3.13)

In the computer simulations one
has only limited access to the
"pure" random numbers - for ex-
ample, in the form of thermal
noise [Gabriel et al., 2010; Bier-
horst et al., 2018].
However, at the present the
collection of such data is quite
slow, so instead one typically
employs for any practical pur-
pose a set of pseudo-random
numbers constructed via nu-
merical algorithm from initial
("seed") number which can
be taken to be "true" random
number [Niederreiter, 1992].
The most common such al-
gorithm currently used is the
Mersenne twister [Matsumoto
and Nishimura, 1998].

Let us now define another random variables Y with a
probability pY(y) such that pY(x) > 0 when pX(x) > 0.
Then, the average 〈g(X)〉 can be cast as

〈g(X)〉 = ∑
x

g(x)pX(x) = ∑
x

g(x)
pX(x)
pY(x)

pY(x) =

= ∑
y

g(y)
pX(y)
pY(y)

pY(y) = 〈 pX(Y)
pY(Y)

g(Y)〉 (3.14)

In deriving last equation we took into account that
pX(y) = 0 for elements y that do not belong to the space
of x.

One can immediately apply this expression to the
computation of average values by Monte-Carlo integra-
tion. In the numerical calculation one generates N in-
dividual random variables x1, . . . , xN . Then, in order to
evaluate the mean value of a certain function g(x), one
uses the sample mean:

〈g〉N =
1
N

N

∑
i=1

g(xi) (3.15)

Taking the expression above, one can find alternative
approximation for 〈g〉N by sampling N values y1, . . . yN
from another distribution. The mean value then can be
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estimated by

〈g〉N =
1
N

N

∑
i=1

pX(Yi)

pY(Yi)
g(Yi) (3.16)

3.2.2 Metropolis algorithm

In the practical computation of correlation functions the normalization factor (which
is the partition function Z) is usually unknown. The calculation of Z poses at least
the same difficulties as the the calculation of correlations themselves. Furthermore,
the partition function is not required for the study of transport properties. In order
to sample the configuration space via Monte-Carlo methods, one typically adopts
dynamic process: one prescribes the procedure that the system follows to evolve
from one configuration to another. In general this procedure does not correspond
to the actual time evolution of a system: the purpose of this procedure is merely
to efficiently generate states of the system according to a weight proportional to pi.
The advantage of this approach is that the transition from state i to state j can be
generated knowing only with the ratio pj/pi instead of pi, thus eliminating the need
to know the partition function Z. The resulting chain of states is called Markov chain
[Feller, 1957].

Let us introduce the transition probability Tij ≡ T(xi → xj) - probability of mov-
ing system from xi to xj. This probability depends only on the current state and
the previous dynamics does not influence it. In order that the resulting states are in-
deed distributed according to pi we must impose several conditions on Tij [Diaconis,
2009]:

− Detailed balance
The transition probability should satisfy the relation

piTij = pjTji ∀i, j (3.17)

− Ergodicity
It must be possible to reach any configuration starting from a given one in a
finite number of steps.

Together with normalization of Tij, ∑j Tij = 1, these conditions ensure that the sys-
tem in state i already distributed with a probability pi actually evolves into state j
distributed with probability pj

∑
i

piTij = pj ∑
i

Tji = pj

There are however many ways to construct a Markov chain. One of the vastly used
approaches is the Metropolis method. The algorithm works in a following way. First,
we need to make initial configuration: we assign to parameters of the system (posi-
tion of the particles, for example) some values and calculate the total energy of the
system E0. Then we propose a simple move: change value of one or several param-
eters and recalculate energy - Ej. If Ej < Ei then we accept the move. If Ej > Ei then
we either accept the move with probability P = e−β(Ej−Ei) or reject it. In general,
if the transition matrix is not symmetric, i.e. Tij 6= Tji, the acceptance probability

is written as P = min
(

1, pjTji
piTij

)
. After that we propose another step and so the al-

gorithm proceeds. One can check explicitly the detailed balance for this algorithm.
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Supposing that pjTji ≤ piTij, one can write probability of moving the system from
state i to j as

Πij = Tij min
(

1,
pjTji

piTij

)
=

pj

pi
Tji

The probability of the inverse process is given by

Πji = Tji min
(

1,
piTij

pjTji

)
= Tji

Combining these expressions one gets

piΠij = pi
pj

pi
Tji = pjTji = pjΠji (3.18)

which demonstrates that the Metropolis’ rule satisfies detailed balance.

3.2.3 Estimating of error

Monte Carlo calculation is quite often referred to as a "numerical experiment". Simi-
lar to a real-life experiment we need to perform a statistical analysis on the results of
our simulation in order to define errors that correspond to our observables [Krauth,
2006]. For a set of N uncorrelated measurements of O we can write the error as:

δ〈O〉est =

√
σ2

N
=

√
∑N

i=1(Oi − 〈O〉est)2

N(N − 1)
, (3.19)

provided that Oi is gaussian distributed. However, data that we get from Monte
Carlo calculations are highly correlated due to the nature of the algorithm for Markov
chain. One can use autocorrelation function to quantify the degree of correlation:

φ(t) =
〈Ot+iOi〉 − 〈Oi〉2

〈O2
i 〉 − 〈Oi〉2

, (3.20)

where we denoted Oi and Ot+i - measurements of O taken after i and t + i MC steps
respectively. For large t, φ(t) is proportional to exp(−t/T). We start a simulation
from a given configuration and then the system relaxes to a global energy minimum
and the observables fluctuate around their average values. Initial state and correla-
tion time T play an important role at how long we have to run the simulation before
taking samples.

Binning analysis of error

Another issue associated with large correlation time is that we can no longer use
simple expression (3.19) while evaluating the errors. There exist several recipes to
take the correlation between data points into account [Geyer, 1992; Tibshirani and
Efron, 1993; Koehler, Brown, and Haneuse, 2009]. We will focus on binning analysis.
The set of samples N that we get from MC simulation is divided into Nb batches of
size L without overlap. Then we calculate block averages:

〈Ob〉k =
1
L

L

∑
i=1

Oi+(k−1)L, k = 1, .., Nb (3.21)
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Providing that these block averages are uncorrelated we can then estimate the aver-
age 〈O〉

Ō =
1

Nb

Nb

∑
k=1

〈Ob〉k (3.22)

If the distribution of Oi has a finite variance, then the distribution of the block av-
eraged values is guaranteed to approach a Gaussian distribution for large L by the
central limit theorem. Therefore the error can be estimated by the variance of the
block averaged data using the formula (3.19):

δ〈O〉est =

√
σ2

b
Nb

=
1√

Nb(Nb − 1)

√√√√ Nb

∑
k=1

(〈Ob〉k − Ō)2 (3.23)

The practical question - how to determine the size L of the block? For small values of
L block averages 〈Ob〉k are still strongly correlated. Increasing size of a block we can
get more uncorrelated points, however we can construct fewer blocks Nb. To avoid
the effect of separation into finite bins, on practice one typically performs binning
analysis repeatedly: after calculating block averages on smaller block bins, we treat
these values as a new data set and perform this procedure several times. After that
we reach true error and repeating this analysis further does not change it.
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3.3 Calculation of PIMC estimators for a correlation func-
tions that involve momenta

Computation of transport coefficients typically necessitates use of correlation func-
tions that involve momentum operator, the simplest example of such function is just
a correlation between momenta Cpp(τ) = 〈 p̂(τ) p̂(0)〉. In the path integral represen-
tation one can use different forms of the momentum operator with varying statistical
accuracy. In the derivation of Eq.(??) in the Section 3.1.1 we used a so called prim-
itive approximation for momentum operator. Starting from this equation, we can
then apply the momentum operator to the density matrix. The resulting estimator
is well known classical form, "mass times velocity", i.e. the difference of coordinates
of consecutive imaginary times divided by the imaginary time difference.

Cpp(τk) = − 1
∆τ2 〈(rk+1 − rk)(r1 − r0)〉,

where we denoted by rk ≡ r(τk) value of r on the k-th time slice with τk = k∆τ = k β
M

being discretized imaginary time. The formula is valid for τ 6= 0, whilst for the zero-
time correlation function we write

Cpp(0) = 1/(2β)− 1
∆τ2 〈(r1 − r0)

2〉

In the next part we will consider a more general form of the correlation function,
namely correlations that include position operators.

3.3.1 "Naive" estimator for a current correlation function

Let us study a more complicated quantity, such as p̂ f (r̂), and calculate its autocor-
relation function. We consider f (r̂) to be dependent only on coordinate operator. In
the derivation we shall follow the same ideas as in the Section 3.1.3 and make use of
the primitive approximation for the momentum operator.

We start with a general formulation of the correlation function 〈 p̂(t)F(r̂(t)) p̂(0)F(r̂(0))〉
as a path integral:

〈 p̂(t)F(r̂(t)) p̂(0)F(r̂(0))〉 = 1
Z

∫
dr〈r|e−(β−τ)Ĥ p̂(0)F(r̂(0))e−τĤ p̂(0)F(r̂(0))|r〉

(3.24)
Inserting identities with position and momenta basis states from Eq.(3.5) we get

〈 p̂(t)F(r̂(t)) p̂(0)F(r̂(0))〉 = 1
Z

∫
dRdp1dp2 . . . 〈r0|e−(β−τ)Ĥ |ri〉

p1F(rj)〈rj|e−τĤ |rk〉e−ip2rk/h̄ p2eip2r0/h̄F(r0)

where dR = dr0dridrjdrk . . . By using the shorthand notation

〈r1|e−τĤ |r2〉 ≡ ρ(r1, r2; τ)
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we can rewrite the expression in the form:

〈 p̂(t)F(r̂(t)) p̂(0)F(r̂(0))〉 = 1
Z

∫
dRdp1dp2ρ(r0, ri; β − τ)p1e−ip1(ri−rj)/h̄F(rj)

ρ(rj, rk; τ)p2e−ip2(rk−r0)/h̄F(r0)

Treating p1 as −i ∂
∂rj

eip1(rj−ri)/h̄ we can write:

〈 p̂(t)F(r̂(t)) p̂(0)F(r̂(0))〉 = 1
Z

∫
dRdp1dp2ρ(r0, ri; β − τ)(−i)

∂

∂rj

(
eip1(rj−ri)/h̄

)
F(rj)ρ(rj, rk; τ)(−i)

∂

∂r0

(
eip2(r0−rk)/h̄

)
F(r0) =

=
1
Z

∫
dRdp2(ρ(r0, rj; β − τ)F′(rj)ρ(rj, rk; τ)

(
∂

∂r0
eip2(r0−rk)/h̄

)
F(r0)+

+ ρ(r0, rj; β − τ)F(rj)
∂

∂rj

(
ρ(rj, rk; τ)

) ∂

∂r0

(
eip2(r0−rk)/h̄

)
F(r0)) (3.25)

Then taking the derivative we finally obtain

〈 p̂(t)F(r̂(t)) p̂(0)F(r̂(0))〉 = 1
Z

∫
dRdp2(ρ(r0, rj; β − τ)F′(rj)ρ(rj, rk; τ)(

∂

∂r0
eip2(r0−rk)/h̄

)
F(r0)+

+ ρ(r0, rj; β − τ)F(rj)ρ(rj, rk; τ)
m
h̄

(
rj+1 − rj

∆τ

)
∂

∂r0

(
eip2(r0−rk)/h̄

)
F(r0)) =

= − 1
Z

∫
dR(ρ(r0, rj; β − τ)

m
h̄

(
r1 − r0

∆τ

)
F′(rj)ρ(rj, r0; τ)F(r0)+

+ ρ(r0, rj; β − τ)F′(rj)ρ(rj, r0; τ)F′(r0)+

+ ρ(r0, rj; β − τ)F(rj)
m
h̄

(
r1 − r0

∆τ

)
ρ(rj, r0; τ)

m
h̄

(
rj+1 − rj

∆τ

)
F(r0)+

+ ρ(r0, rj; β − τ)F(rj)ρ(rj, r0; τ)
m
h̄

(
rj+1 − rj

∆τ

)
F′(0)) (3.26)

We note that p̂ f (r̂) is not hermitian, so that it cannot represent an observable. One of
the possible observables is the symmetric combination C{pF}(τ) of operators p̂ and
f (r̂),

C{pF}(τ) =
1
4
[
p̂(τ)F(r̂(τ)) p̂(0)F(r̂(0)) + p̂(τ)F(r̂(τ))F(r̂(0)) p̂(0)+

+ F(r̂(τ)) p̂(τ)F(r̂(0)) p̂(0) + F(r̂(τ)) p̂(τ) p̂(0)F(r̂(0))
]

(3.27)

Computation of other terms from C{pF}(τk) goes in a similar way as the one
above, the difference being the order of the function involved in the calculation.
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In the end we get

C{pF}(τk) =
1
Z

∫
dr0drj

(ρ(r0, rj; β − τ)F(rj)

(
− r1 − r0

∆τ

)
ρ(rj, r0; τ)

m2

h̄2

(
rj+1 − rj

∆τ

)
F(r0)+

+
1
2

ρ(r0, rj; β − τ)F(rj)ρ(rj, r0; τ)
m
h̄

(
rj+1 − rj

∆τ

)
F′(r0)+

+
1
2

ρ(r0, rj; β − τ)
m
h̄

(
r1 − r0

∆τ

)
F′(rj)ρ(rj, r0; τ)F(r0)−

− 1
4

ρ(r0, rj; β − τ)F′(rj)ρ(rj, r0; τ)F′(r0)) (3.28)

For the case when τ = 0 formula for the estimator C{pF}(τk) is slightly modified:

C{pF}(τ = 0) =
1
Z

∫
dr0ρ(r0, r0; β)[

−1
4

r1 − r0

∆τ

r0 − rM−1

∆τ

m2

h̄2 F2(r0)−
1
2

r0 − rM−1

∆τ

m
h̄

F(r0)F′(r0)+

+
1
2

F(r0)F′(r0)
m
h̄

(
r1 − r0

∆τ

)
− 1

4
F′(r0)F′(r0)

]
(3.29)

3.3.2 Improved estimators for Monte Carlo calculations

In order to calculate C{pF}(τk) numerically we will employ MC approach. However,
the MC evaluation of CpF(τk) is hampered by the fact that, when ∆τ is getting small,
relative fluctuations in (xi+1 − xi) become large and the variance of the measured
observable grows rapidly (in fact it diverges for ∆τ → 0). As the uncertainty δMC of
the MC estimate of an observable A is related to its variance σ2

A by δMC ∝ σA/
√

τsim,
one is therefore forced to increase the simulation time, τsim, in order to achieve a
given precision.

This problem was identified early in the development of PIMC, when trying to
estimate the atoms kinetic energy, which is ∝ Cpp(τ = 0). A solution was proposed
in [Herman, Bruskin, and Berne, 1982]: instead of directly using the above expres-
sion for Cpp(τk), the integrals entering the correlation function can be rearranged in
order to producing a new estimator for Cpp(τk), with identical average but smaller
variance. The new expression, known in the case of the kinetic energy as the "virial
estimator", does not depend explicitly on terms of ∆τ divergent in the limit ∆τ → 0,
and therefore does not suffer from the diverging variance associated with the "naive"
estimator.

Kinetic energy estimator

Let us first recall the derivation of "virial" form for the kinetic energy [D. M. Ceper-
ley, 1995]. Later we will use the same approach in order to obtain the estimator for
the desired correlation function. We start by considering the following identity

0 =
1
Z

M−1

∑
j=0

∫
dr0dr1 . . . drM−1∇j

[
rj

M−1

∏
i=0

e
− Mm

2βh̄2 (ri+1−ri)
2

e−
β
M U(ri)

]
(3.30)
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assuming that surface terms vanish. Here Z is the usual partition function

Z =
∫

dr0〈r0|e−βH |r0〉 =
∫

dr0dr1 . . . drM−1

M−1

∏
i=0

e
− Mm

2βh̄2 (ri+1−ri)
2

e−
β
M U(ri)

Taking the derivative of both sides of the last equation we obtain

1
Z

M−1

∑
j=0

∫
dr0dr1 . . . drM∇j

[
rj

M−1

∏
i=0

e
− Mm

2βh̄2 (ri+1−ri)
2

e−
β
M U(ri)

]
=

= 3M +
1
Z

M−1

∑
j=0

∫
dr0dr1 . . . drM

[
xj∇j

M−1

∏
i=0

e
− Mm

2βh̄2 (xi+1−xi)
2

e−
β
M U(ri)

]
=

= 3M − 1
Z

M−1

∑
j=0

∫
dr0dr1 . . . drM

β

M
rjU′(rj)

M−1

∏
i=0

e
− Mm

2βh̄2 (ri+1−ri)
2

e−
β
M U(ri)+

1
Z

M−1

∑
j=0

∫
dr0dr1 . . . drM

(
Mm
βh̄2 rj(rj+1 − rj)−

Mm
βh̄2 rj(rj − rj−1)

)
M−1

∏
i=0

e
− Mm

2βh̄2 (ri+1−ri)
2

e−
β
M U(ri) = 0

If we impose periodicity of r: rj+M = rj, we can rearrange terms in brackets into
following expression:

M−1

∑
j=0

rj(rj+1 − rj)− rj(rj − rj−1) = −
M−1

∑
j=0

(rj+1 − rj)
2

Our integral then can be rewritten as

0 = 3M − 1
Z

M−1

∑
j=0

∫
dr0dr1 . . . drM

Mm
βh̄2 (rj+1 − rj)

2
M−1

∏
i=0

e
− Mm

2βh̄2 (ri+1−ri)
2

e−
β
M U(ri)−

− β

M
rjU′(rj)

M−1

∏
i=0

e
− Mm

2βh̄2 (ri+1−ri)
2

e−
β
M U(ri) =

= 3M − Mm
βh̄2

M−1

∑
j=0

〈(
rj+1 − rj

)2
〉
− β

M

M−1

∑
j=0

〈
rjU′(rj)

〉
=

= 3M − M2m
βh̄2

〈
(r1 − r0)

2
〉
− β

〈
r0U′(r0)

〉
= 0

Thus, we can reexpress the kinetic term that has large fluctuations:

3M
2β

− m
2∆τ2h̄2

〈
(r1 − r0)

2
〉
=

1
2
〈
r0U′(r0)

〉
(3.31)

The main characteristic of new estimator is its independence from the imaginary
time discretization, which ensures lower fluctuations at large M. In the next part
we will consider a more general form of a correlation function and we will derive
similar estimator with reduced variance.

Current correlation function

In this part we show that the strategy used to obtain the virial estimator can be gen-
eralized to any correlation function involving the momentum operator. We consider
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the same correlation function as the one from the previous part which is a building
block in the calculation of transport coefficients: C{pF}(τ) = 〈( p̂(τ)F̂(τ))s( p̂(0)F̂(0))s〉.
Here F̂(τ) is a shorthand notation for a generic local function F(x̂(τ)), which in the
case of heat transport would be related to the potential energy. The subscript s in-
dicates that the operator product, which represents an observable quantity, is by
convention made Hermitian by symmetrizing the operator, as ( p̂F̂)s =

1
2 ( p̂F̂ + F̂ p̂).

Within the primitive approximation we obtained in the previous part the expres-
sion for C{pF}(τk) (Eq.(3.28)):

C{pF}(τk) = − m2

h̄2∆τ2
〈(rk+1 − rk)F(rk)(r1 − r0)F(r0)〉+

m
2h̄∆τ

〈(rk+1 − rk)F(rk)F′(r0)〉+

+
m

2h̄∆τ
〈(r1 − r0)F(r0)F′(rk)〉 −

1
4
〈F′(rk)F′(r0)〉, (3.32)

This expression is valid for k ≥ 1, while the case k = 0 requires slightly different
expression as was treated by the Eq.(3.29).

The MC calculation of Eq. (3.32) suffers from the same numerical problem as the
momentum correlations, the variance of the leading term in 1/∆τ diverging as ∆τ
approaches zero. In order to improve the estimator, we generalize the procedure
originally used for the kinetic energy calculations (Cpp(0)), and obtain a new esti-
mator with reduced variance for general correlation functions. Let us first consider
non-zero imaginary times. We start from the term quadratic in 1/∆τ in Eq. (3.32),
since it has the strongest dependence on ∆τ. It can be expressed as

m2

h̄2∆τ2
〈F(rk)(rk+1 − rk)F(r0)(r1 − r0)〉 =

=
m2

h̄2∆τ2Z

∫
dr0

∫
dr1· · ·

∫
drMF(rk)(rk+1 − rk)F(r0)(r1 − r0)

ρ0(r1 − r0; ∆τ) . . . ρ0(rM − rM−1; ∆τ) exp

[
−∆τ

M

∑
j=0

V(xi)

]
, (3.33)

where ρ0(x − y; ∆τ) = 〈x|e−∆τK̂|y〉 ∼ exp{−m (x−y)2

2h̄2∆τ
}. We now transform the set

of coordinates {r0, ri} to {r0, yi}, such that yi = ri+1 − ri. The constraint rM ≡ r0 is
accounted for by introducing a term δ

(
∑M−1

i=0 yi

)
, leading to

m2

h̄2∆τ2
〈F(rk)(rk+1 − rk)F(r0)(r1 − r0)〉 =

=
m2

h̄2∆τ2Z

∫
dr0

∫
dy0· · ·

∫
dyM−1δ

(
M−1

∑
i=0

yi

)
F

(
k−1

∑
i=0

yi + r0

)
ykF(r0)y0ρ0(y0; ∆τ) . . . ρ0(yM−1; ∆τ) exp[−∆τW], (3.34)

with

W =
M−1

∑
j=0

V

(
j

∑
i=0

yi + r0

)
(3.35)

By using the identity:

m
h̄∆τ

ykρ0(yk; ∆τ) = −∂yk ρ0(yk, ∆τ), (3.36)
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we can integrate by parts for the integration over yk. Our next step is based on the
observation that the derivative of the δ function w. r. t. to y0 can be distributed over
all coordinates, i.e., ∂yk δ

(
∑ yj

)
= 1

M ∑i ∂yi δ
(
∑ yj

)
. A second integration by parts

over each of the yi variables eventually leads to

m2

h̄2∆τ2
〈F(rk)(rk+1 − rk)F(r0)(r1 − r0)〉 =〈

m
h̄

F(rk)(r1 − r0)F(r0)

[
1
M

M−1

∑
j=1

jV ′(rj)−
M−1

∑
j=k+1

V ′(rj)

]〉
−

− mk
(h̄∆τM)

〈F′(rk)(r1 − r0)F(r0)〉 −
m

(h̄∆τM)
〈F(rk)F(r0)〉. (3.37)

Repeating the procedure for the terms linear in 1
∆τ , such as the second term in

Eq.(3.37), we can write the correlation in a form that does not depend on ∆τ ex-
plicitly:

m
h̄∆τ

〈F(rk)(rk+1 − rk)F′(r0)〉 =

= ∆τ

[
−

M−1

∑
i=k+1

〈F(rk)V ′(ri)F′(r0)〉 −
k

∆τM
〈F′(rk)F′(r0)〉+

+
1
M

〈F(rk)F′(r0)
M−1

∑
i=1

iV ′(ri)〉
]

, (3.38)

and

m
h̄∆τ

〈F′(rk)(r1 − r0)F(r0)〉 =

= ∆τ

[
1

∆τ
〈F′′(rk)F(r0)〉 −

M−1

∑
i=1

〈F′(rk)V ′(ri)F(r0)〉−

− k
∆τM

〈F′′(rk)F(r0)〉+
1
M

〈F′(rk)F(r0)
M−1

∑
i=1

iV ′(ri)〉
]

(3.39)

When computing with Eq.(3.37), we need to keep in mind that the expression is valid
only for τk 6= 0. For the case k = 0, we can apply a similar trick finding the "virial"
form.
Again, starting with the general expression:

m2

h̄2∆τ2
〈(r1 − r0)F(r0)

2(r1 − r0)〉 =

=
m

h̄2∆τ2Z

∫
dr0

∫
dy0· · ·

∫
dyM−1δ(

M−1

∑
i=0

yi)F(r0)
2y0y0ρ0(y0; ∆τ) . . . ρ0(yM−1; ∆τ) exp(−∆τW),

(3.40)

where as before we denoted

W =
M−1

∑
j=0

V(
j

∑
i=0

yi + r0). (3.41)
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By using the relation
m

h̄∆τ
y0ρ(yi; ∆τ) = −∂y0 ρ(y0, ∆τ) (3.42)

we can re-write (3.40) as,

m2

h̄2∆τ2
〈(r1 − r0)F(r0)

2(r1 − r0)〉 =

= − m
h̄∆τZ

∫
dr0

∫
dy0· · ·

∫
dyM−1δ(

M−1

∑
i=0

yi)F(r0)
2y0∂y0 ρ0(y0; ∆τ) . . . ρ0(yM−1; ∆τ) exp(−∆τW) =

= −m
h̄

M−1

∑
k=1

〈F(r0)
2(r1 − r0)V ′(rk)F(r0)〉+

1
∆τ

〈F(r0)F(r0)〉

+
m

h̄∆τZ

∫
dr0

∫
dy0· · ·

∫
dyM−1∂yk δ(

M−1

∑
i=0

yi)F(r0)y0F(r0)ρ0(y0; ∆τ) . . . ρ0(yM−1; ∆τ) exp(−∆τW)

(3.43)

By substituting,

∂y0 δ(
M−1

∑
i=0

yi) =
1
M

M−1

∑
j=0

∂yj δ(
M−1

∑
i=0

yi), (3.44)

we finally obtain,

m2

h̄2∆τ2
〈(r1 − r0)F(r0)

2(r1 − r0)〉 =

= (
m

h̄∆τ
− m

h̄∆τM
)〈F(r0)F(r0)〉 −

m
h̄

M−1

∑
k=1

〈F(r0)
2(r1 − r0)V ′(rk)F(r0)〉

+
m

h̄M
〈F(r0)(r1 − r0)F(r0)

M−1

∑
j=1

jV ′(rj)〉 (3.45)

In contrast with the initial expression Eq. (3.32), all terms are now well-defined
as ∆τ → 0. We note, however, that the number of terms involved in the first part
of Eq. (3.37) increases linearly with M = β/∆τ, so that the gain following our ma-
nipulation is not immediately obvious. The argument that Eq. (3.37) indeed leads
to a variance reduction is the following: If all the M contributions to the first term
were independent, its variance would scale as ∆τ × M, where ∆τ comes from the
term 〈|r1 − r0|〉, and the factor M accounts for the M contributions in the sum. As
the segments in the path are correlated, even if this estimate is only approximate it
still indicates that the variance remains finite even for ∆τ → 0. We will explicitly
verify the variance reduction numerically for the test case of harmonic oscillator in
the following sections.

We note, that the above derivation of the improved estimator can be adapted
beyond the use of the primitive approximation. Similar refinements can be expected
to work when employing improved actions, as well as within improved sampling
schemes, e.g., PIMD methods based on staging or normal modes M. Tuckerman,
2010, as the variance of the estimator is entirely determined by the analytical form
of the kinetic energy part of the action.
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4 Path integral Monte Carlo and
stochastic reconstruction study of a
single quantum harmonic oscillator

In the last chapters, we have briefly introduced the two main methods that we em-
ployed in this thesis. PIMC is used to provide unbiased calculations of imaginary
time correlation functions from which one expects to obtain the underlying spec-
tral function via a stochastic reconstruction. We have further addressed the main
bottlenecks of this approach: the need of very precise data of the imaginary time
correlation functions for the spectral reconstruction, and, the remaining sensitivity
of the stochastic reconstruction to unavoidable intrinsic parameters, such as the pre-
cise representation of the spectral function and the effective temperature due to cor-
relation of the noise. For that, we have shown how to construct variance-reduced
estimators involving momentum operators to be used in the PIMC calculation for
our ultimative purpose of calculating current-current correlations. Further, we pro-
posed to combine the stochastic reconstruction with a validation procedure which
selects the best reconstruction based on its unbiased predictive power. In this chap-
ter we apply both methods, together with our improvements, to study the harmonic
oscillator. Although elementary, the quantum oscillator is the standard test in this
context as our numerical methods, PIMC and stochastic reconstruction, are generic
for many degres of freedom, e.g. spatial dimension and number of particles, and do
not assume any specific interaction potential

In this part we focus in details on the classical example of a single quantum har-
monic oscillator and analyze computation of various correlation functions as well
as their respective spectra. In the next chapter we consider more elaborate models,
that are nonetheless based on the single oscillator and thus readily solvable analyt-
ically. When studying these models we shall concentrate primarily on the spectral
reconstruction, as it poses in these examples more difficult problem.

We start this chapter by analyzing the correlation function for coordinate op-
erator as the simplest example of correlations. We then pass to the correlations
of momenta and correlation function for current operator. For these quantities we
then compute the respective spectral densities. The simplicity of the model allows
a straightforward analytical computation of properties of interest both in real and
imaginary times. Thus, the model constitutes a good benchmark test for our numer-
ical tools, particularly for the spectral reconstruction. Furthermore, the example will
serve as a preliminary step to more complicated systems such as solids and disor-
dered systems, although we have not addressed the latter one in the thesis.



38
Chapter 4. Path integral Monte Carlo and stochastic reconstruction study of a

single quantum harmonic oscillator

4.1 Position correlation function in imaginary time

4.1.1 Analytical expressions

Hamiltonian of the quantum harmonic oscillator has the from:

Ĥ =
h̄2

2m
p̂2 +

mω2
0

2
x̂2 (4.1)

First of all, we consider a correlation function between position operators x̂ which
we write as Cxx(τ) = 〈x̂(τ)x̂(0)〉. We notice that position correlation function at
t = 0 is just a mean squared displacement 〈x̂2〉. It is related to the average potential
energy 〈Epot〉 which can be computed in several different ways, as we will demon-
strate. In this part we treat position correlation functions (and related quantities) in
an analytical way and then we compare the results with numerical calculations in
the next part.
We start by writing the expression for the partition function Zh.o. of quantum har-
monic oscillator

Zh.o. =
∞

∑
i=0

e−h̄βω0(n+1/2) =
1

2 sinh
(

h̄βω0
2

)
For the harmonic oscillator one can relate the value of the potential energy to the
total energy 〈Epot〉 = 1

2 〈Etot〉 which in turn can be calculated from the partition
function Z: 〈

Epot
〉
= −ω0

2
∂ log Zh.o.

∂ω0
= −1

2
∂

∂β
log Zh.o. = − 1

2Zh.o.

∂

∂β
Zh.o.

After differentiating Zh.o. with respect to β we obtain the result

〈
Epot

〉
=

h̄ω0

2
coth

(
h̄βω0

2

)
However, this expression is valid only in the limit of continuous imaginary time,
that is in the limit M → ∞ of the corresponding path integral. In the following we
will derive the same quantities calculated within a discretized path integral for finite
M to provide a more direct comparison with numerical PIMC evaluations.

Computation of a correlation function within a discretized path integral

We will now derive the analog expressions within path integral formalism out-
lined in the Section 3.1.1. We start with the general formula for a partition function
(Eq.(3.8)) written for the primitive approximation in imaginary time

Z =
∫

dx1dx2 . . . dxM

M−1

∏
k=0

e−
m

2h̄2∆τ
(xk+1−xk)

2
e−

mω2
0∆τ

2 x2
k (4.2)

and reexpress it as a gaussian integral in a matrix form

Z =
∫

dXe−
1
2 XTAX
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where

A =


a b 0 . . . b
b a b . . . 0
0 b a . . . 0
...

...
. . . . . .

...

 (4.3)

with the following notations a = 2m
h̄2∆τ

+ mω2
0∆τ and b = − m

h̄2∆τ
.

The formal expression for the partition function in these notations is

Z = (2π)
M
2 [det A]−1/2

For a gaussian integral the pair correlation function 〈x(τk)x(0)〉 ≡ 〈xix0〉 written for
a discretized time τk = k∆τ can be readily calculated as

〈xkx0〉 = (A−1)k0 (4.4)

where A−1 is the inverse matrix of A. In general, one performs the inversion of ma-
trix A by numerical methods. Diagonal elements of A−1, however, can be calculated
in a straightforward manner fully analytically. First of all we determine the set of
eigenvalues {λ} of the matrix A. This amounts to solving the equation

λxj = axj + bxj−1 + bxj+1

We look for solutions of the form

x(k)j = e2iπ kj
M

where k ∈ [0, . . . M − 1].
The corresponding eigenvalues are

λ(k) = a + 2b cos
(

2πk
M

)
Since the determinant of a matrix is invariant with respect to orthonormal rotations
the determinant can be expressed as a product of the eigenvalues det A = ∏k λ(k):

det A =
M−1

∏
k=0

[
a + 2b cos

(
2πk
M

)]
For the calculation of thermodynamic properties we will also require an expression
for log(det A):

log(det A) =
M−1

∑
k=0

log
[

a + 2b cos
(

2πk
M

)]
With this preparations we can finally obtain

〈
∑j x2

j

〉
= 1

Z tr ∑j x2
j e−βĤ. By differenti-

ating the partition function Z with respect to β we will get

〈x2
j 〉 ≡ 〈x2

0〉 =
1
M

〈∑
k

x2
k〉 =

1
M

∂

∂a
log(det A) =

=
M−1

∑
k=0

1

mω2
0β + 4m M2

h̄2β
sin2

(
πk
M

) =
M/2

∑
k=−M/2

1

mω2
0β + 4m M2

h̄2β
sin2

(
πk
M

) , (4.5)
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where in the last line we used the invariance of the expression with respect to the
translation k → k + M. In the following part we shall obtain the same correlation
function by means of the PIMC and by comparison with this formula we will es-
timate the dependence of the result on the imaginary time discretization. One can
already get an intuition for this formula by considering the limit of large number of
time slices M (we remind ourselves that the value of β is fixed). In this limit one can
approximate the expression by:

1

mω2
0β + 4m M2

h̄2β
sin2

(
πk
M

) −−−→
M→∞

const + O(M−2) (4.6)

4.1.2 Analytical calculation of the real-time position correlation function

Yet another way to find the position correlation function 〈x̂(t)x̂(0)〉 is to use canon-
ical representation for the position and momenta operators. We go back to the
Hamiltonian (Eq.(4.1)) and write it in terms of operators x̂ and p̂. Then we ap-
ply the general formula for a thermodynamic average of a quantum observable
〈Ô〉 = 1

Z tr[Ôe−βĤ ] which we can write in the basis of Hamiltonian operator as

〈x̂(t)x̂(0)〉 = 1
Z ∑

n
〈n|x̂(t)x̂(0)|n〉e−βEn , (4.7)

where En and |n〉 are the energy eigenstates and eigenvectors respectively. In the
Heisenberg representation time evolution for operators is embodied by the transfor-
mation of the form x̂(t) = eiĤt/h̄ x̂e−iĤt/h̄. To simplify slightly the notations we de-
note as usual x̂(0) ≡ x̂. For a quantum oscillator it is possible to introduce creation
and annihilation operators â† and â that will facilitate the computation of correla-
tion functions. These new operators are chosen such that momentum and position
operators can be expressed as:

x̂ =

√
h̄

2mω0

(
â + â†

)
(4.8)

p̂ = i

√
h̄mω0

2

(
â† − â

)
(4.9)

Operators â and â† satisfy commutation relation

[â, â†] = 1 (4.10)

Using the operators â and â† one can simplify the expression for the Hamiltonian
and write it as :

Ĥ = h̄ω0(â† â +
1
2
). (4.11)

One can also define N̂ ≡ ââ† as the occupation number operator. It will be useful to
calculate commutators between Ĥ with â and â†:

[Ĥ, â] = h̄ω0[â† â, â] = h̄ω0(â† ââ − ââ† â) = h̄ω0[â†, â]â = −h̄ω0 â (4.12)
[Ĥ, â†] = h̄ω0 â† (4.13)
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Now let us consider eigenvectors of the energy operator:

Ĥ|n〉 = En|n〉

and derive some of their properties. From commutators between Hamiltonian and
creation-annihilation operators we can see a following properties:

Ĥâ|n〉 = (En − h̄ω0)â|n〉
Ĥâ†|n〉 = (En + h̄ω0)â†|n〉

Hence vectors â|n〉 and â†|n〉 belong to the linear space of eigenvectors of Hamilton
operator with eigenvalues (En − h̄ω0) and (En + h̄ω0) respectively. We denote the
corresponding eigenvectors as |n − 1〉 and |n − 1〉. From the commutation relation
one can also find the explicit action of operators â and â† on any given state |n〉. In
the end we get:

â|n〉 =
√

n|n − 1〉 (4.14)
â†|n〉 =

√
n + 1|n + 1〉 (4.15)

Using this formalism one can write an expression for the correlation function 〈x̂(t)x̂(0)〉:

〈x̂(t)x̂(0)〉 = 1
Z ∑

n
〈n|eiĤt/h̄ x̂e−iĤt/h̄ x̂|n〉e−βEn =

=
1
Z

√
h̄

2mω0
∑
n
〈n|eiĤt/h̄ x̂e−iĤt/h̄

(√
n|n − 1〉+

√
n + 1|n + 1〉

)
e−βEn =

=
1
Z

h̄
2mω0

∑
n

eiEnt/h̄
(

ne−iEn−1t/h̄ + (n + 1)e−iEn+1t/h̄
)

e−βEn (4.16)

For the energy operator of the quantum oscillator (4.11) one can find the eigenvalues
explicitly En = h̄ω0(n + 1

2 ) along with partition function Zh.o. =
1

2 sinh(h̄βω0/2) , which
we can use to simplify the expression for the correlation function

〈x̂(t)x̂(0)〉 = h̄
2mω0

eiω0t +
h̄

mω0

1
Zh.o.

∑
n

n cos(ω0t)e−h̄ω0(n+1/2)β

Using the formula

∑
n

ne−xn =
d

dx

(
1

1 − e−x

)
=

−e−x

(1 − e−x)2 =
ex/2

4
sinh(x/2 − cosh(x/2))

sinh2(x/2)

we can rewrite the second term in the previous equation and obtain

〈x̂(t)x̂(0)〉 = h̄
2mω0

eiω0t +
h̄

mω0
cos(ω0t)e−h̄ω0β/22 sinh

h̄ω0β

2
eh̄ω0β/2

4[
1

sinh(h̄ω0β/2)
− cosh(h̄ω0β/2)

sinh2(h̄ω0β/2)

]
=

=
h̄

2mω0
(cos(ω0t) + i sin(ω0t))− h̄

2mω0

[
1 − cosh(h̄ω0β/2)

sinh(h̄ω0β/2)

]
cos(ω0t) (4.17)
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Since our computer simulations are performed in the imaginary time we can easily
update our equation accordingly and make the substitution t = ih̄τ which results in
a following result:

〈x̂(τ)x̂(0)〉 =

=
h̄

2mω0
(cosh(h̄ω0τ)− sinh(h̄ω0τ))− h̄

2mω0

[
1 − cosh(h̄ω0β/2)

sinh(h̄ω0β/2)

]
cosh(h̄ω0τ) =

=
h̄

2mω0

cosh(h̄ω0(τ − β/2))
sinh(h̄ω0β/2)

(4.18)

The correlation function is explicitly symmetric around τ = β/2.
Using the definition of spectral function Sxx(ω) = 1

2π

∫ ∞
−∞ e−iωtCxx(t)dt with

Cxx = 〈x̂(t)x̂(0)〉 and comparing Eq.(4.18) with the inversion for imaginary times
correlations (2.28) written in the form Cxx(τ) =

∫ ∞
0 dωSxx(ω)

[
e−h̄ωτ + e−ω(β−h̄τ)

]
one observes that the corresponding spectral function has only one non-zero fre-
quency. Thus, using a discrete representation for the spectrum S(ω) = ∑i A(ωi)δ(ω−
ωi) performing a spectral reconstruction we should end up with only one coefficient
which corresponds to the frequency ω = ω0. The value of this coefficient is also
defined by the Eq.(4.18) up to corrections of order M−2.
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FIGURE 4.1: The dependence of the mean squared displacement 〈x2〉
on the imaginary time discretization ∆τ = β/M for a single quan-
tum harmonic oscillator. Here we compare analytical results obtained
with Eq.(4.5)(orange line) and Eq.(4.18)(green line) against the results

of a PIMC calculation (blue dots).
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FIGURE 4.2: Position correlation 〈x(τ)x(0)〉 as a function of imagi-
nary time for a single quantum harmonic oscillator. Solid line cor-
responds to the diagonalization of the Hamiltonian (eq.(4.5)) and
dashed line is given by eq.(4.18). Dots correspond to the MC sim-
ulations for different imaginary time discretizations β/M. Value of
β is fixed and equal to 1 for all the data on the figure. Errorbars are

smaller than the size of the dots.

4.1.3 PIMC calculations of the imaginary time correlation function

In this part we present the result for the Monte-Carlo calculation of the position cor-
relation function and compare it with an exact analytical result provided by Eq.(4.18).
The dependence of 〈x2〉 on a discretization scheme (Fig.(4.1)) demonstrates that, as
we have already observed from analyzing Eq.(4.6), the mean squared displacement
〈x2〉 converges to the continuous time value (orange line on the plot) as M−2 for
large M. The formula (4.5) provides us with an exact expression for this conver-
gence. Plotting numerical results on the same figure we see that PIMC data follow
this behavior. These results prove that discretization of imaginary time in Eq.(3.2)
and our numerical representation of this formula play an important role in compu-
tation of thermodynamical properties of the system. This figure also illustrates how
to choose the imaginary time discretization in practice. Namely, ratio ∆τ = β/M
needs to be sufficiently small so that the error in the approximation (3.4) becomes
negligible in comparison with the statistical error, associated with the Monte-Carlo
algorithm itself. This plot also shows us that in order to obtain quite accurate data,
that is, such that aiming for an accuracy of order 10−3 for our PIMC data, it is suffi-
cient to choose β/M ≈ 0.1.

In Figs. (4.2) and (4.3) we look at the role of imaginary time discretization more
closely and study the correlation function Cxx(τ) = 〈x(τ)x(0)〉 at fixed β and at
fixed value of M.

Fig. (4.2) illustrates the behavior of correlation function for different numbers
of time slices M that we employed for the Fig.(4.1) with fixed value of β = 1. The
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FIGURE 4.3: MC results for the normalized correlation function(dots)
as a function of τ plotted for several values of β. We compare them

with the exact result(dashed line) which is obtained from Eq.(4.18)

Fig.(4.3) shows the correlation functions calculated at several different values of β
with fixed M = 10. For the sake of comparison we plot these functions normalized
to unity. Similar to the Fig.(4.2) in this section we observe that the difference between
numerical outputs and analytical results decreases rapidly with ∆τ getting smaller
and the accuracy of these data reaches relative error of 10−3 for comparatively small
values of ∆τ ∝ 0.1. From these simulations we also notice that the part of the cor-
relation function that is most susceptible to the stochastic and discretization error is
the region around τ = β/2, whilst the region around τ = 0 and τ = β is affected
the least. This is a common pattern and we will see the same behavior for all the
following computations.

4.1.4 Stochastic reconstruction of the spectral function

We now proceed to the calculation of a spectral density that corresponds to the cor-
relation function Cxx(τ) from the previous part (Fig 4.2). To this end we shall follow
the average spectrum approach outlined in chapter (2.2.3). We sample configuration
space of spectral densities and then average them with weight e−Θχ2/2, where we
define functional χ2 with inaccurate data coming from the MC simulation of a cor-
relation function.
Since we approximate spectral density with S(ω) = ∑P

i A(ω)δ(ω − ωi), in prac-
tice sampling of the configuration space involves probing space of coefficients Ai ≡
A(ωi). Due to positivity of a spectral function we know that these coefficients
should also be positive Ai ≥ 0. Another constraint can be obtained by consid-
ering the correlation function at a given fixed time τk, for simplicity of the argu-
ment let us put k = 0. Then it is clear from the definition of the spectral function
C(τ) =

∫ ∞
0 dωS(ω)

(
e−h̄ωτ + e−h̄ω(β−τ)

)
that the coefficients Ai are not independent
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and in the case τ = 0 their sum is equal to the value of C(0) within the error σ2(0).
These restrictions may however result in not sampling the configuration space ef-
ficiently. It might then be desirable to slightly weaken these conditions. From our
computations we find that a sum rule is reflected in the output data, so that it is not
necessary to impose it explicitly. The positivity constraint is more severe, however,
and one need to incorporate it explicitly. In order to test the effect of this requirement
one can introduce a "soft" cutoff: we include in the calculation of average spectrum
such configurations that allow small negative value of coefficients Ai. We expect
that after averaging we recover positive coefficients and the condition S(ω) ≥ 0 will
be satisfied. The reconstructed spectral density for the position correlation function

0.5 1.0 1.5 2.00.0

0.1

0.2

0.3

0.4

0.5

S(
)

cutoff = 0
cutoff = -0.01

FIGURE 4.4: Spectral reconstruction of position correlation function
(eq.4.18). Calculation was performed on a range of ω = [0, 2] with
Nω = 50 δ-peaks. We used 2 types of constraint for spectral density:

"hard" cutoff Ai ≥ 0 and "soft" cutoff Ai ≥ −0.01

is plotted on the Fig.(4.4). As we discussed earlier the exact spectrum of correlation
function consists of only one frequency at ω = 1 in the units of the plot. With the
accuracy of the data for 〈x̂(τ)x̂(0)〉 we were able to identify a single peaked function
centered around ω = 1. The width of the curve is determined by the accuracy of
our sample data. For the considered model both constraint ("hard" and "soft" cutoff)
result in a practically identical spectral density and the convergence of the MC algo-
rithm used for the stochastic reconstruction was not affected by the change of this
constraint.
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4.2 Momentum correlation function

4.2.1 Analytical results

Now we would like to obtain the correlation between momenta operators Cpp =
〈 p̂(t) p̂(0)〉 of the quantum harmonic oscillator.
Following the canonical formalism that we used in the previous section to derive
position correlation function, we again use canonical creation and annihilation op-
erators a† and a for expressing the momentum operator as follows:

p̂ = i

√
h̄mω0

2

(
â† − â

)
In this formalism the correlation function can be written in the Heisenberg represen-
tation as:

〈 p̂(t) p̂(0)〉 = 1
Z ∑

n
〈n|eiĤt/h̄ p̂e−iĤt/h̄ p̂|n〉e−βEn (4.19)

where as before En and |n〉 are the eigenvalues and eigenvectors of the energy oper-
ator Ĥ. We denoted as usual p̂(0) ≡ p̂.
Writing the action of the operators p̂ on this states and simplifying the result in the
same way as we did in derivation in the previous section, we get:

〈 p̂(t) p̂(0)〉 = h̄mω0

2Z ∑
n

eiEnt/h̄
(
(n + 1)e−iEn+1t/h̄ + ne−En−1t/h̄

)
eβEn (4.20)

This formula is similar to the expression for position correlation function (eq.(4.16)).
Putting in the values of energy for the harmonic oscillator and replacing real time
with the imaginary one t = ih̄τ we end up with the resulting formula for momenta
correlations :

〈 p̂(τ) p̂(0)〉 = h̄mω0

2
cosh(h̄ω0(τ − h̄β/2))

sinh(h̄ω0β/2)
= m2ω2

0 〈x̂(τ)x̂(0)〉 (4.21)

One observes the same behaviour with imaginary time as for the position correlation
function (Eq.(4.18)). Furthermore, setting m = ω0 = 1 one gets exactly the same
expressions for two quantities. Despite the fact that the analytical expression is the
same, this correlation is an interesting benchmark for our numerical calculation. As
we shall see in the next section, the path-integral Monte-Carlo estimator that one
straightforwardly obtains from the path integral calculation is not the same as for
the position correlation function. Whilst both these estimators produce the same
average value, their variance differs and the PIMC algorithm produces data with
different accuracy, which in turn affects the spectral reconstruction.

4.2.2 Path-integral approximation of the momentum operator

Let us look in detail at the numerical expression that one uses in the computational
algorithm of path-integral calculations. In the position representation, the momen-
tum operator simply acts as a derivative operator, such that we can obtain an esti-
mator for the momentum correlation function when applied inside the discretized
path-integral expression (see chapter 3):

〈 p̂(τ) p̂(0)〉 = 1
Z

∫
dx0〈x0|e−(β−τ)Ĥ p̂(0)e−τĤ p̂|x0〉 (4.22)
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Then we insert into this equation identities from the Eq.(3.5) and obtain

〈 p̂(τ) p̂(0)〉 = 1
Z

∫∫
dxdp1dp2〈x0|e−(β−τ)Ĥ |xi〉e−ip1xi/h̄ p1eip1xj/h̄〈xj|e−τĤ |xk〉e−ip2xk/h̄ p2eip2x0/h̄

(4.23)
To simplify notations we use the notation:

〈xa|e−τĤ |xb〉 ≡ ρ(xa, xb; τ) (4.24)

Then

〈 p̂(τ) p̂(0)〉 = 1
Z

∫∫
dx0dxidxjdxkdp1dp2ρ(x0, xi; β− τ)eip1(xj−xi)/h̄ p1ρ(xj, xk; τ)eip2(x0−xk)/h̄ p2

(4.25)

From this formula we see that momentum can be written as a derivative.
For example:

p1eip1(xj−xi) = −ih̄
∂

∂xj
eip1(xj−xi)/h̄ (4.26)

Thus we have

〈 p̂(τ) p̂(0)〉 = 1
Z

∫∫
dx0dxidxjdxkdp1dp2ρ(x0, xi; β − τ)

(−i)h̄
∂

∂xj
eip1(xj−xi)ρ(xj, xk; τ)(−i)h̄

∂

∂x0
eip2(x0−xk) (4.27)

In the simple approximation of the momentum in the path integral calculation we
represented it as a difference of coordinates. Using this, we can take this integral by
parts and swap derivative with respect to x0

〈 p̂(τ) p̂(0)〉 = 1
Z

∫∫
dx0dx1dx2 . . . dp1dp2

(
x1 − x0

β
mM

)
ρ(x0, x1; ∆τ)ρ(x1, x2; ∆τ) . . .

ρ(xi−1, xi; ∆τ)
∂

∂xj
eip1(xj−xi)ρ(xi, xi+1; ∆τ)eip1(x0−xk) . . . (4.28)

In derivinig this equation we took into account that the surface terms vanish. Now
we can do the integral over p1 which results in delta function δ(x0 − xk).
Repeating this procedure with respect to xj we end up with

〈 p̂(τ) p̂(0)〉 = 1
Z

∫∫
dx0dx1dx2 . . .

(
x1 − x0

β
mM

)
ρ(x0, x1; ∆τ)ρ(x1, x2; ∆τ) . . .(

xj+1 − xj

β
mM

)
ρ(xi, xi+1; ∆τ) . . . ρ(xM−1, x0; ∆τ) =

=

〈(
x1 − x0

∆τ
m
)(

xj+1 − xj

∆τ
m
)〉

(4.29)

The case τ = 0 requires some additional calculations.

〈 p̂(0) p̂(0)〉 = 1
Z

∫
dx0〈x0|e−βĤ p̂(0) p̂|x0〉 (4.30)
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Following the same ideas we just showed we write:

〈 p̂(0) p̂(0)〉 = 1
Z

∫∫
dx0dxidxjdxkdp0dp1ρ(x0, xj; β)p2

1eip1(x0−xj) (4.31)

To avoid differentiating twice with respect to x0 we will employ instead mixed
derivative

p2
1eip1(x0−xj) =

∂

∂x0

∂

∂xj
eip1(x0−xj) (4.32)

〈 p̂(0) p̂(0)〉 = 1
Z

∫∫
dx0dxjdxkdp0ρ(x0, xj; β)

∂

∂x0

∂

∂xj
eip1(x0−xj) =

= − 1
Z

∫∫
dx0dx1dx2 . . . dp0

(
x1 − x0

β
mM

)
ρ(x0, x1; ∆τ)ρ(x1, x2; ∆τ) . . .

∂

∂xj
eip1(x0−xj) =

= − 1
Z

∫∫
dx0dx1 . . . dp0

(
x1 − x0

β
mM

)(
xj − xj−1

β
mM

)
ρ(x0, x1; ∆τ)ρ(x1, x2; ∆τ) . . . eip1(x0−xj)

− 1
Z

∫∫
dx0dx1 . . . dp0

(
x1 − x0

β
mM

)
β

M
V ′(xj)ρ(x0, x1; ∆τ)ρ(x0, x1; ∆τ) . . . eip1(x0−xj)

(4.33)

As we mentioned already in the previous section, these estimators are different, even
after setting m = ω0 = 1, from the ones we used to calculate position correlation
function, namely simple 〈x̂(τ)x̂(0)〉 = 〈xjx0〉. Yet, it could be brought to the same
expression.

Let us go back to Eq.(4.27):

〈 p̂(τ) p̂(0)〉 = 1
Z

∫∫
dx0dxidxjdxkdp0dp1ρ(x0, xi; β − τ)

(−i)
∂

∂xj
eip1(xj−xi)ρ(xj, xk; τ)(−i)

∂

∂x0
eip2(x0−xk) =

=
1
Z

∫
dx
(

d
dx0

e−
1

2∆τ (x1−x0)
2
)

e−
1

2∆τ (x2−x1)
2

. . .
(

d
dxj

e−
1

2∆τ (xj+1−xj)
2
)

. . . e−∆τV(x0)...,

(4.34)

where we have swapped the derivative from the δ-function by taking the integral
by parts. But instead of differentiating kinetic parts of the density element ρ we take
one of this integrals by parts again to swap derivative on the potential part:

〈p(τ)p(0)〉 = − 1
Z

∫
dx

(x1 − x0)

∆τ

(
1

∆τ
(xj − xj−1)− ∆τV ′(xj)

)
e−S =

=
1

∆τ2 〈(x1 − x0)(xj − xj−1)〉 − 〈(x1 − x0)V ′(xj)〉 (4.35)

where e−S includes all the density matrices factors. Let us consider term x1V ′(xj) in
more detail:

〈x1V ′(xj)〉 = − 1
Z

∫
dXx1

1
∆τ

d
dxj

(e−∆τV(xj))e−Sj (4.36)

where Sj = S − ∆τV(xj). After integration we get

〈x1V ′(xj)〉 =
1

∆τ2 〈x1(xj−1 − xj + xj+1 − xj)〉 (4.37)
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In order to help ourselves to see a connection with the equation (4.35) more easily
we denote 〈xix0〉 := C(i). Then we can write

〈x1V ′(xj)〉 = C(j − 2)− 2C(j − 1) + C(j)

If reexpress first term in Eq.(4.35) we get

1
∆τ2 〈(x1 − x0)(xj − xj−1)〉 = 2C(j − 1)− C(j)− C(j − 2)

which cancels exactly against 〈x1V ′(xj)〉.
We end up with expression for an estimator

〈p(τ)p(0)〉 = 〈x0V ′(xj)〉 ≡ 〈x(0)V ′(x(τ))〉 (4.38)

which in the case of harmonic oscillator simplifies to

〈p(τ)p(0)〉 = 〈x0xj〉 ≡ 〈x(τ)x(0)〉

which demonstrates the correspondence between momentum correlation and po-
sition correlation at the level of the estimators, which we already observed from
canonical computation of these functions. Note that in deriving the last equation we
have used for simplification m = ω0 = 1.



50
Chapter 4. Path integral Monte Carlo and stochastic reconstruction study of a

single quantum harmonic oscillator

4.2.3 Numerical comparison of the estimators

The example of 〈 p̂(τ) p̂(0)〉 allows us to compare results for different types of esti-
mators: a simple, or "naive", expression that one obtains directly from path integral
calculation such as the one provided by Eq.(4.29) and a "virial" one that is obtained
after some recalculations in the starting expression. The example of the second type
is the Eq.(4.38). We have already inadvertently made the simulation with a "virial"
estimator of the momentum correlation of a harmonic oscillator when we computed
〈x̂(τ)x̂(0)〉. Another example of the virial estimator can be found in the introduction
where we obtained a general expression for the estimators of the correlation func-
tions that involve momentum operator (see Eq.(3.28)). Fig.(4.5) demonstrates the
comparison between these results. As can be seen, mean values that are obtained
with all three of them converge to the result predicted with analytical calculation.
The difference between them appears when we consider variance of the output data
and as consequence accuracy of these data. The simple equation (4.29) produces the
most noisy sample points, with a sizeable portion of samples lying outside of the
errorbars from the theoretical curve (Fig.(4.6)). The relative error σ(τi)/F(τi) is huge
in comparison to the other estimators.
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FIGURE 4.5: Comparison of different estimators for momentum cor-
relation function for the same MC simulation of harmonic oscillator.
Here we can see results for "naive" estimator eq.(4.29) (orange curve)
and the calculation made with the estimator from eq.(3.32) written
in the form (3.37) adopted to the momenta correlations (plotted in

green).

The actual "virial" estimator ( 〈p(τ)p(0)〉 = 〈x(0)V ′(τ)) produces both the smallest
error and the relative one. Naturally, we would be interested in using similar esti-
mators for a more complicated correlation functions. The problem, however, comes
from the fact that the cancellation that occurred in the derivation of Eq.(4.38) in case
of a more complicated operators, for example of the form p(τ) f (x(τ))p(0) f (x(0))
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in which we will be interested in the following, would involve computation of some
additional terms with large variance. For this reason we employed slightly differ-
ent approach in deriving the more general expression of a correlation function in
the introduction. The formula contains terms that are proportional to the number
of time slices M which potentially can lead to a large variance. From the results
presented here, however, we observe that the variance, while larger than the one
from the 〈x(τ)x(0)〉 estimator, is considerably lower than the one produced by the
naive estimator 〈p(τ)p(0)〉. Thus, we expect that such estimators will perform sig-
nificantly better than the straightforward ones, and we shall check this explicitly
while calculating current correlation function in the next section. Let us note, that
the large variance that Eq.(4.29) produces is due to the M2 term. Just by replacing it
with terms linear in M we already drastically improved the output data, particularly
for small imaginary times.
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FIGURE 4.6: Comparison of relative errors between different estima-
tors (naive and virial ones) of momentum correlation function. Figure
(4.6a) shows the result for the whole range of imaginary time [0, β]
and figure (4.6b) demonstrates the behaviour of the error for small

times. With correlation function C(τ)
τ→β/2−−−−→ 0 accuracy of the mea-

surements becomes worse, most notably for the naive estimator.
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4.2.4 Spectral reconstruction

Using the correlation functions Cpp(τ) from the previous part we can now compute
the corresponding spectral density. As before we follow the scheme of the Section
2.2.3 and sample the space of the spectral configurations. This time we restrict the
configuration space to the strictly non-negative values S(ω) ≥ 0. Since we already
considered the reconstruction from the virial estimator RiV ′(Ri) while considering
the position correlation function, here we restrict our attention only to the second
virial estimator, namely the one from the Eq.(3.28) with F = 0, and the naive one,
obtained from the expression (4.29).
We compare two results on the Fig.(4.7) and Fig.(4.8). Plotted are the reconstruc-
tions for the correlation functions from the previous section, on the first figure we
demonstrate the spectral densities whilst the second one shows the corresponding
imaginary time correlation functions. For the latter figure we plot the deviation of
momenta correlation functions (both for MC data and reconstruction) from the ex-
act function given by the equation (4.21). Despite that both data produce a spectra
peaked around ω = 1 (here we put ω0 = 1), these figures demonstrates that for
the model under consideration the larger errorbars on the data results in a less de-
fined peak. As we will in the subsequent studies for the models with several peaks
it might become difficult to distinguish different frequencies. In these future cases
we will resort to a more complicated reconstruction schemes which can described
by several degrees of freedom (one can find examples for such reconstruction in lit-
erature, for example, see [Tsujii et al., 2003]).

0.5 1.0 1.5 2.0 2.50.0

0.1

0.2

0.3

0.4

0.5

S(
)

< p( )p(0) > naive

< p( )p(0) > vir

FIGURE 4.7: Reconstruction of spectra of momentum correlation
function (eq. 4.21). Calculation was performed on a range of ω (0,5)
with discretization Nω = 50. We compare the results obtained with 2

different estimators: "naive" and "virial" ones.
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lation functions with the MC data used for the analysis. We plot the
result as the deviation from the exact momenta correlation function
(4.21). The errorbars are estimated from the analysis of the MC data.
The reconstructed correlation functions are obtained from the spectra

depicted on the Fig.(4.7) with the same color notations.

4.3 Current-current correlation function

4.3.1 Analytical calculation of the current-current

Now we would like to employ methods we introduced in previous parts to calcu-
late a more complex correlation function. Since we are still working with a quantum
harmonic oscillator with single degree of freedom, we will be able to obtain an exact
result which we will use later for the purpose of comparison.
In the following we will be interested in a current response function. In general, such
quantities require computation of correlation functions composed by the operators
of a form Ĵ ∝ f̂ (x(t)) p̂, where f̂ (x) is some operator that depends only on the particle
position. Due to the non-commutativity of momentum and position operators func-
tions that depend on these operators, such as f̂ (x) also do not commute with one
another. In fact, one can write a commutation relationships, for example between
f̂ (x) and p̂: [ f̂ (x), p̂] = i f̂ ′(x). Hence, we have that operator Ĵ is not self-adjoint
Ĵ† 6= Ĵ, which means that the operator Ĵ is not suitable to serve as an observable, so
that we use the following symmetrized one

ĴS =
1
2
( p̂ f̂ (x) + f̂ (x) p̂) (4.39)

We can write the expression for a correlation function for this operator:

CJS JS(t) = 〈 ĴS(t) ĴS(0)〉 =
1
Z

tr
(

e−(β−it/h̄)Ĥ ĴSe−itĤ/h̄ ĴS

)
, (4.40)
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In order to calculate CJ† J(t) for the quantum harmonic oscillator system we shall use
canonical formalism. To simplify the calculation we will consider the case f̂ (x) =
V̂(x), where V̂(x) is a harmonic potential energy operator. Similar to the previous
calculation we will make use of canonical ladder operators â and â† introduced ear-
lier, that allows to rewrite operators of position and momentum

x̂ =

√
h̄

2mω0

(
â + â†

)
(4.41)

p̂ = i

√
h̄mω0

2

(
â† − â

)
(4.42)

With these operators potential energy will take the form V̂(0):

V̂|n〉 = mω2
0

2
x̂2|n〉 = mω2

0
2

√
h̄

2mω0
x̂
(√

n|n − 1〉+
√

n + 1|n + 1〉
)
=

=
h̄ω0

4

(
n|n〉+

√
n(n − 1)|n − 2〉+ (n + 1)|n〉+

√
(n + 1)(n + 2)|n + 2〉

)
(4.43)

where we used simplified notation Â(0) ≡ Â.
The computation of the correlations proceed in a straightforward but a tedious way,
and here we just mention few steps in its derivation. Let us act with the operator ĴS
on a state |n〉

ĴS|n〉 =
1
2
( p̂V̂ + V̂ p̂)|n〉 = i

√
h̄mω0

2
h̄ω0

4[
−
√

n(n − 1)(n − 2)|n − 3〉 − n
√

n|n − 1〉+ (n + 1)
√

n + 1|n + 1〉

+
√
(n + 1)(n + 2)(n + 3)|n + 3〉

]
(4.44)

Then we substitute this expression into the correlation function (4.40):

〈 ĴS(t) ĴS〉 =
1

Zh.o.
∑
n
〈n|e−βĤe−iĤt ĴSeiĤt ĴS|n〉 (4.45)

Writing down explicitly the action of the operators ĴS we get

〈 ĴS(t) ĴS〉 =
1
Z ∑

n
〈n|e−βĤe−iĤt ĴSeiĤt ĴS|n〉 =

=
h̄ω0

4
i

√
h̄mω0

2
1
Z ∑

n
e−βEn e−iEnt〈n| ĴSeiĤt

[
−
√

n(n − 1)(n − 2)|n − 3〉 − n
√

n|n − 1〉+

+ (n + 1)
√

n + 1|n + 1〉+
√
(n + 1)(n + 2)(n + 3)|n + 3〉

]
(4.46)
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Let us look separately at terms that enter this expression. We compute as an example
the first one.

ĴS(t)
√

n(n − 1)(n − 2)|n − 3〉 = h̄ω0

4
i

√
h̄mω0

2

√
n(n − 1)(n − 2)[

−
√
(n − 3)(n − 4)(n − 5)|n − 6〉 − (n − 3)

√
n − 3|n − 4〉+

+ (n − 2)
√

n − 2|n − 2〉+
√
(n − 2)(n − 1)n|n〉

]
The only non-zero term in this expression is the |n〉 term

ĴSeiĤt
√

n(n − 1)(n − 2)|n − 3〉 → h̄ω0

4
i

√
h̄mω0

2
(n − 2)(n − 1)n|n〉eiEn−3t

In analogy one can compute all other terms in Eq.(4.46). Combining the results and
doing some cancellation we end up with

〈 ĴS(t) ĴS(0)〉 =
(

mh̄3ω3
0

32

)
1
Z ∑

n
e−βh̄ω0(n+1/2)

[(n − 2)(n − 1)ne−3iω0t + n3e−iω0t + (n + 1)3eiω0t + (n + 3)(n + 2)(n + 1)e3iω0t] =

=

(
mh̄3ω3

0
32

)
1
Z ∑

n
e−βh̄ω0(n+1/2)

[
(n3 − 3n2 + 2n)e−3iω0t + n3e−iω0t + (n3 + 3n2 + 3n + 1)eiω0t + (n3 + 6n2 + 11n + 6)e3iω0t

]
=

(
mh̄3ω3

0
32

)
1
Z ∑

n
e−βh̄ω0(n+1/2)

n3(e−3iω0t + e−iω0t + eiω0t + e3iω0t) + n2(−3e−3iω0t + 3eiω0t + 6e3iω0t)+

+ n(2e−3iω0t + 3eiω0t + 11e3iω0t) + eiω0t + 6e3iω0t

〈 ĴS(t) ĴS(0)〉 =
(

mh̄3ω3
0

32

)
1
Z ∑

n
e−βh̄ω0(n+1/2)

n3(e−3iω0t + e−iω0t + eiω0t + e3iω0t) + n2(−3e−3iω0t + 3eiω0t + 6e3iω0t)+

+ n(2e−3iω0t + 3eiω0t + 11e3iω0t) + eiω0t + 6e3iω0t (4.47)

We can perform the summation if we remember that

∑
k

kne−αk = (−1)n dn

dαn ∑
k

e−αk
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Then

〈 ĴS(t) ĴS(0)〉 =
(

mh̄3ω3
0

32

)
1
Z ∑

n
e−βh̄ω0(n+1/2)

n3(e−3iω0t + e−iω0t + eiω0t + e3iω0t) + n2(−3e−3iω0t + 3eiω0t + 6e3iω0t)+

+ n(2e−3iω0t + 3eiω0t + 11e3iω0t) + eiω0t + 6e3iω0t =

=

(
mh̄3ω3

0
32

)
1
Z

e−βh̄ω0/2
[

e−βh̄ω0 + 4e−2βh̄ω0 + e−3βh̄ω0

(1 − e−βh̄ω0)4 (e−3iω0t + eiω0t + e−iω0t + e3iω0t)+

+
e−βh̄ω0 + e−2βh̄ω0

(1 − e−βh̄ω0)3 (−3e−3iω0t + 3eiω0t + 6e3iω0t)+

+
e−βh̄ω0

(1 − e−βh̄ω0)2 (2e−3iω0t + 3eiω0t + 11e3iω0t) +
1

1 − e−βh̄ω0
(eiω0t + 6e3iω0t)

]
=

=

(
mh̄3ω3

0
32

)
1
Z

e−βh̄ω0/2

(1 − e−βh̄ω0)4[
(e−βh̄ω0 + 4e−2βh̄ω0 + e−3βh̄ω0)(e−3iω0t + eiω0t + e−iω0t + e3iω0t)+

+ (1 − e−βh̄ω0)(e−βh̄ω0 + e−2βh̄ω0)(−3e−3iω0t + 3eiω0t + 6e3iω0t)+

+ (1 − e−βh̄ω0)2e−βh̄ω0(2e−3iω0t + 3eiω0t + 11e3iω0t)+

+ (1 − e−βh̄ω0)3(eiω0t + 6e3iω0t)

]
Simplifying the result we get

〈 ĴS(t) ĴS(0)〉 =
(

mh̄3ω3
0

256

)
1

sinh3(βh̄ω0/2)[
6e3iω0t + (4e−βh̄ω0 + e−2βh̄ω0 + 1)eiω0t + (e−βh̄ω0 + 4e−2βh̄ω0 + e−3βh̄ω0)e−iω0t + 6e−3βh̄ω0 e−3iω0t

]
(4.48)

For comparison with MC calculation we need to substitute t = ih̄τ

CpV(τ) = 〈 ĴS(τ) ĴS(0)〉 =
(

mh̄3ω3
0

256

)
1

sinh3(βh̄ω0/2)[
6e−3ω0τ + (4e−βh̄ω0 + e−2βh̄ω0 + 1)e−ω0τ + (e−βh̄ω0 + 4e−2βh̄ω0 + e−3βh̄ω0)eω0τ + 6e−3βh̄ω0 e3ω0τ

]
=

=

(
mh̄3ω3

0
256

)
1

sinh3(βh̄ω0/2)[
12 cosh(

3βh̄ω0

2
− 3ω0τ) + 2(4e−βh̄ω0 + e−2βh̄ω0 + 1)eβh̄ω0 cosh(

βh̄ω0

2
− ω0τ)

]
(4.49)

From the expression (4.49) it is clear that our spectral density will have 2 non-zero
frequencies: ω = ω0 and ω = 3ω0. We study numerically the effect of different vari-
ables that enter this formula in more details in section on the spectral reconstruction.
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4.3.2 PIMC calculation of the correlation function

The result of any PIMC calculation is given with uncertainty. The error can be at-
tributed to two general categories: systematic bias and stochastic fluctuations. For
a harmonic oscillator, the systematic deviation due to the discretization of the imag-
inary time ∆τ = β/M can be assessed directly, by comparing the result expected
from the path integral approach (which in this case can be obtained exactly) with the
analytical expression for the correlation function CpV(τ) above, which corresponds
to the continuous limit M → ∞.

In order to calculate the exact expression of the correlation function within the
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FIGURE 4.9: Relative discretization error, 1 − CPI
pV(τ)/Cexact

pV (τ), be-

tween the path integral, CPI
pV(τ), and the exact results, Cexact

pV (τ), for
the energy current correlation function, as a function of h̄ω0β/M.
We show the data corresponding to the imaginary times τ = 0 and
τ = β/2, and indicate with symbols and solid lines the results for

h̄β = 3 and 10, respectively.

primitive approximation of the discretized path integral, we note again that all the
integrals involved in the calculation are Gaussian. By using the discretized represen-
tation for the momentum operator, one writes CpV(τ) as a thermodynamic average
of products of the variables x. Leaving out for the moments all the prefactors, one
can write:

CpV ∝ 〈(xk+1 − xk)x2
k(x1 − x0)x2

0〉

For a gaussian integral, Wick’s theorem allows to recast such correlations into prod-
ucts of pair correlation functions 〈xixj〉. The pair correlations in turn can be easily
accessed from the following consideration. Let us write the pair correlation function
in the form 〈xixj〉 =

∫
dXxixje−XTAX, where A is a symmetric M × M matrix which

incorporates the Hamiltonian. Then the required pair correlation can be calculated
as the element of the inverse matrix 〈xixj〉 = A−1

ij .
We can therefore use numerical methods to calculate the matrix elements, as we

discussed in Section 4.1.1. The relative difference between the two calculations is
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illustrated in Fig. 4.9. We observe that, for a sufficiently small value of β/M, the
deviation is virtually not affected by a change of β. Also, our case studies below are
performed by employing an imaginary time discretization ∆τ = β/M = 0.1ω−1

0 ,
a choice primarily dictated by the need to control the error associated to the prim-
itive approximation. It also limits, however, the resolution of the imaginary time
correlation function and, consequently, that of the reconstructed spectral function,
especially at high frequencies. We will comment below how this potential bias can
be addressed within the verification process. In general, since the high frequency
asymptotics is governed by sum rules, it is often most conveniently dealt with by
computing leading terms of the short time Taylor expansion.
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FIGURE 4.10: Difference between the exact correlation function
Cexact

pV (τ) and the values obtained by PIMC sampling, CMC
pV (τ), of a

path with M = 100 time slices, for h̄ω0β = 1, illustrating the variance
reduction obtained by the improved estimator discussed in Sect. 3.3.2.
We show with line-points the primitive estimator and with the contin-
uous line the improved estimator, both using the same path-integral

Monte Carlo data.

We next focus on the second source of error affecting the PIMC calculation: lim-
ited sampling. Indeed, error bars corresponding to average values are obtained by
estimating the variance of the observable, which decreases as τ−1/2

sim , with τsim the
simulation time. For a given τsim, the quality of the result therefore crucially depends
on the variance of the estimator. We illustrate this point in Fig.4.10 and Fig.4.11,
by comparing calculations for the energy current correlation function, CpV , using
the naive estimator, Eq. (3.32), and the improved version of Eq. (3.37). The data of
Fig. 4.10 clearly show that the virial estimator leads to a spectacular improvement
compared to the naive one, with a statistical error that is now comparable to the sys-
tematic one resulting from the discretization. Comparing this figure with Fig. 4.11
we also observe that the variance of the improved estimator less sensitive to the
decrease of ∆τ as we predicted from the derivation of Eq. (3.37).
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reduction obtained by the improved estimator discussed in Sect. 3.3.2.
We show in blue the calculations the ’primitive’ estimator and in red
- the improved estimator, both using the same path-integral Monte

Carlo data.

4.3.3 Stochastic reconstruction combined with validation

We now use the reconstruction procedure outlined in Sect. 2.2.3 to extract the fre-
quency spectrum for the correlation functions obtained in the previous section. In
order to perform a reconstruction one needs both to define the set of parameters
that expresses the spectral density in Eq. (2.42) and in the integration measure of
Eq. (2.43), and to chose the effective inverse temperature Θ. (To simplify the no-
tation in the considered examples, we set ω0 = m = h̄ = 1.) In the following,
we use a discretized model of the spectral density, which is described as a sum of
Nω delta-functions in the ω-space, see Eq. (2.38). Specifically, we consider a regular
grid of ω-values defined on the interval [0, 5], with a fixed spacing between points,
∆ω = 5/Nω. In addition, we will consider the possibility of a global shift of the grid
by δω < ∆ω. Unless specified otherwise, δω = 0, and we fix the origin of the grid
in ω = 0.

The exact expression for the time correlation function, Eq. (4.49), implies that
CpV(τ) decays exponentially with τ in the interval [0, β/2], with a decay rate O(1).
Larger values of β therefore lead to a larger amplitude in the decay, with the conse-
quence that the contribution of different frequencies can be more easily resolved for
larger β’s. In short, a correlation function of the form [exp(−τ) + exp(−3τ)] will be
hard to distinguish from 2 exp(−2τ) if data are only available in the interval [0, 1].
Resolving the two frequencies ω1 = 1 and ω2 = 3 is therefore essentially impossible
if β/2 < 1.

In order to illustrate this point, we calculate and analyze the spectral function
for the energy current correlation functions at the two inverse temperatures β = 3
and 10, with an imaginary time discretization ∆τ = 0.1. With this value of ∆τ, the
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FIGURE 4.12: Reconstruction of the spectral function associated to
CpV(τ) at β = 10 corresponding to the indicated values for the num-
ber of delta functions in the model, Nω, and effective temperature
Θ = 1. The area of the filled rectangles indicate the weight of the two
delta-functions of the exact spectrum centered at ω1 = 1 and ω2 = 3,
corresponding to the ∆ω = 1 discretization. As indicated in the text,

we set ω0 = 1.

systematic discretization error is smaller than the statistical error for our simulation
time, so it can be safely neglected. The main constraint for the reconstruction comes
from the imaginary time interval [0, 1]. The relative error of the PIMC data corre-
sponding to these values of τ is of O(10−2). For larger τ the relative error becomes
comparable with the data due to the fact that CpV(τ) approaches 0 with τ → β/2.

We start by considering the case β = 10. First, we evaluate the effect of the
grid size, Nω, on the reconstruction. In Fig. 4.12 we show the spectra obtained for
various values of Nω, keeping a fixed Θ = 1. As mentioned above, there is no a-
priori argument guiding the most appropriate parametrization of the spectrum. In
the following we analyze the accuracy of the spectral reconstruction by comparing
the values of χ2

val defined in Eq. (2.45), using an independent test data set. This is
obtained within an additional MC simulation of the correlation function, with the
same parameters as the original one. We also consider a data set of the same size, P′,
as the one that was used to produce CpV(τk).

In Fig. 4.14 we show χ2
val as a function of the number of grid points. Clearly,

increasing the number of coefficients A(ωi) of Eq. (2.38) does not lead to a better
spectral reconstruction. In contrast, by introducing more degrees of freedom, one
increases the entropy, and the spectral weight is smeared out excessively. In Fig. 4.14
we also show the effect on χ2

val of a shift δω. As expected, shifting the nodes away
from ω1 = 1 and ω2 = 3, which are the only frequencies present in the exact spec-
trum determined by Eq. (4.49), deteriorates the accuracy of the spectrum obtained
through the validation step.
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FIGURE 4.13: Reconstructed spectra for the energy current correlation
function CpV(τ) at β = 10, with Nω = 25 and at the indicated values
of Θ. The filled rectangles are centered at the positions of the two
delta-functions of the exact spectrum, with an area corresponding to

their respective weights.

The second parameter determining the quality of the statistical maximum en-
tropy reconstruction is the effective temperature, Θ. In Fig. 4.13 we show the be-
haviour of the spectral function for a chosen ω-grid at the indicated values of Θ. As
expected from Eq. (2.38), by increasing Θ the result approaches the most probable
configuration that describes the correlation function CpV(τ), reducing entropic ef-
fects. In Fig. 4.15 we combine the above results for different pairs of parameters (Θ,
Nω), and plot the corresponding χ2

val. Our validation procedure therefore strongly
points to using models with a smaller number of delta functions combined with
large values of Θ � 1 for the spectral reconstruction. Based on the comparison with
the exact spectrum, this choice is also clearly the one that leads to the description
of the spectrum in closest agreement with the exact prediction. We conclude that
the use of χ2

val indeed seems to provide an unbiased estimate of the quality of the
reconstruction.

We now consider the spectral reconstruction for CpV(τ) at β = 3, again clari-
fying the influence of Θ and of the lattice discretization Nω. In Figs. 4.16 and 4.17
we show selected examples of the resulting spectra. In contrast to the case β = 10,
we now observe in general a much stronger broadening of the peaks, which pre-
vents us from resolving the two peak structure for Θ = 1, even for sparse ω-grids.
However, when combining sparse grids with sufficiently large Θ in the inversion,
one improves towards the correct two peaks structure, as can be seen in Fig. 4.17.
The data shown in Fig. 4.18 also indicate that this choice indeed corresponds to the
lowest values of χ2

val, confirming the validity of this indicator. We also note that, for
large Θ, the values of χ2

val tend to exhibit a minimum or weak oscillations, that are
probably indicative of overfitting. As a consequence, considering larger values of Θ
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FIGURE 4.14: Nω-dependence of the χ2
val extracted from the valida-

tion step of the reconstructed spectral functions for CpV(τ) at β = 10
and with Θ = 1. Squares and triangles correspond to shifted grids:
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does not further improve the result.
We remark that in this Section the spectral reconstruction has been based on dis-

cretized imaginary time correlation functions. For convenience, the discretization
usually coincides with the imaginary time step controlling the Trotter error of the
path integral. In order to estimate the influence and potential bias of the discretiza-
tion on the spectral reconstruction, one can perform the verification step involving
subsets of C′(τk) at no additional cost. For the test case of the double well poten-
tial discussed later, we have investigated this point explicitly. In particular, we have
observed that the verification is not qualitatively affected by the change of data dis-
cretization for a reasonable range of ∆τ, apart from a shift of the minimum in Θ.
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FIGURE 4.15: Main panel: Comparison of the χ2
val obtained from our

validation of the reconstructed spectral function for various values of
Θ and Nω for CpV(τ) at β = 10. The area of the circles is proportional
to the corresponding value of χ2

val. Inset: χ2
val as a function of Θ, at

the indicated values of Nω.
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FIGURE 4.16: Spectral reconstruction for CpV(τ) at β = 3, obtained
at the indicated values of the discretization, Nω, for a fixed Θ = 1.
The filled rectangles are centered at the positions of the two delta-
functions of the exact spectrum for ∆ω = 1, with an area correspond-

ing to their respective weights.
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FIGURE 4.17: Spectral reconstructions from CpV(τ) at β = 3 for Nω =
5 using different values of Θ. The filled rectangles are centered at the
positions of the two delta-functions of the exact spectrum, with an

area corresponding to their respective weights.
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FIGURE 4.18: Main panel: χ2
val from the validation procedure of the

reconstructed spectral function at the corresponding values Θ and Nω

for CpV(τ) at β = 3. The area of the circles is proportional to the value
of χ2

val. Inset: χ2
val as a function of the effective temperature Θ, at the

indicated values of Nω.
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5 Case studies for stochastic
reconstruction

In our previous study of the harmonic oscillator in chapter 4, we have addressed two
conceptually different difficulties. First, we have used the example of the oscillator
to study and improve the convergence of various correlation functions calculated
by Path-Integral Monte Carlo methods. Then, we have benchmarked the stochastic
reconstruction of the spectral function from the actual imaginary time correlations.
In the following, we focus on the second aspect and test our reconstruction method
combined with validation on models having spectral functions qualitatively differ-
ent from the single oscillator: a double well potential and a continuous density of
oscillators. For that, we do not require to perform a full Path-Integral Monte Carlo
calculation. These models are still sufficiently simple to be solved exactly by other
means. In order to analyze realistic cases, we then simply create an artificial noise on
top of the exactly calculated correlation functions. This allows us to concentrate only
on the stochastic reconstruction scheme we developed. We stress that to our knowl-
edge, the validation procedure on top of the stochastic reconstruction has never been
proposed and studied in the present context. Our results are encouraging that the
validation allows for eliminating the remaining influence of explicit and implicit pa-
rameters entering into the reconstruction.

5.1 Double well potential

5.1.1 Exact analytical spectrum

In order to illustrate that our discussion is not intrinsically limited to harmonic os-
cillators, we examine an additional classical benchmark example [Perez, M. E. Tuck-
erman, and Muser, 2009] with strongly anharmonic features. Let us consider the
Hamiltonian describing a particle trapped in a double well potential,

Ĥ =
p̂2

2m
− α

2
x̂2 +

γ

4
x̂4, (5.1)

and we choose α = 1 and γ = 1. We can obtain the energy spectrum and the
correlation functions of interest by numerical diagonalisation of Ĥ. We show the
resulting potential along with first few energy levels on the Fig.(5.1). In the following
we consider the position correlation function, Cβ

xx(τ) = 〈x̂(τ)x̂(0)〉.

Cxx(τ) = 〈x̂(τ)x̂(0)〉 = 1
Z ∑

n,m
e−Emτe−(β−τ)En |〈n|x̂|m〉|2 (5.2)

The corresponding spectral function can be expressed analytically as,

S(ω) =
1
Z ∑

n,m
e−βEn |〈n|x̂|m〉|2δ(ω − Em + En). (5.3)
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FIGURE 5.1: The double well potential described by the Hamiltonian
Eq.(5.1). The values of parameters m, α and γ are fixed to 1. We also

indicate the values of first energy levels of the system.

E0 0.14719
E1 0.87197
E2 2.12692
E3 3.58846
E4 5.2399

TABLE 5.1: Ground energy and lowest excited energy states of the
particle inside the double well potential.

5.1.2 Spectral reconstruction and validation

Starting from the exact correlation function, we generate an extended data set C̃(τk)

with an artificial Gaussian noise of variance σk = 10−3 × C̃β
xx(τk), which is com-

parable to the typical stochastic error of the MC calculation that we performed for
a single harmonic oscillator. We next employ the calculation scheme detailed in
Sect. 2.2.3, and apply the χ2

val validation criteria in order to determine the optimal
reconstruction. As discussed in the previous section, we are interested in the effect
of the modification of the simulation hyper-parameters on the quality of the spectral
reconstruction.

As above, we focus in particular on the effective inverse temperature, Θ, the
number, Nω, of δ-functions considered in the ω-interval [0, 5], and the uniform shift,
δω. Note that, contrary to the case of the harmonic oscillator, the spectral function
is now expressed in terms of a set of non-equally-spaced δ-peaks (see Table 5.2). As
a consequence, none of the nodes of the uniform ω-grid we consider in our calcu-
lations coincides with the ωi. This is an intentionally non-optimal choice which,
however, allows us to further illustrate important features of the reconstruction and
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ω1 0.72478
ω2 1.25495
ω3 1.46154
ω4 1.65143
ω5 1.80533

TABLE 5.2: Lowest excited states frequency values, ωn = En − En−1,
of the spectrum of Cβ

xx(τ) for the double well potential.

associated validation, and provides hints towards possible improvements.
We first consider the inverse temperature β = 8, and choose ∆τ = 0.1. At this

low temperature, all coefficients at frequencies larger than ω1 = E1 − E0 in Eq.(5.3)
are suppressed exponentially, and the spectrum practically consists of a single δ-
peak. As for any discrete spectrum, the reconstruction becomes quite sensitive to
the positions of the frequencies ωi if the grid is sparse. One can therefore study
in detail the accuracy of the reconstruction when modifying the shift, δω, and the
distance between the grid points. Here, however, we do not perform such a detailed
analysis, and for the sake of illustration we consider only a few different models
with a regular grid shifted by a constant amount.

In Fig. 5.2 we show the resulting spectral functions at the indicated values of
Nω and δω, while Fig. 5.3 displays the corresponding χ2

val. The data for Nω = 10
and δω = 0 correspond to values of χ2

val approximately ten times larger than those
associated with the shifted lattice case, δω = 0.25, and have been thus omitted.
If we consider the inaccuracy in the alignment of the ω-grid with the exact peak
positions, it comes as no surprise that the model with Nω = 10 and δ = 0.25 provides
a worse reconstruction than what we have obtained with the non-shifted Nω = 25
grid, despite visually resembling more closely the exact spectrum. Reconstruction of
a single peak spectrum is performed essentially with only a few coefficients A(ωi)
that are closest to ω1, and because with denser grids we have more fitting parameters
at our disposal, it is natural that one obtains a better validation with Nω = 25.

We now consider the more challenging case of the correlation function Cβ=1
xx at

β = 1 (calculated with ∆τ = 0.02), whose spectrum displays several peaks (Fig. 5.4).
We perform the reconstruction with the same parameters as in the case above, the
resulting values of χ2 of the reconstruction are plotted in Fig.5.5. We observe that
the use of sparse grids (even "inaccurately" placed) proves advantageous in this
case. Both models with Nω=10 perform considerably better than in the previous
case, whilst the shifted lattice shows the best fit among considered models at Θ = 10
(Fig.5.6). This figure also clearly demonstrates the effect of the overfitting, which
manifests itself in the plot as the increase of the validation χ2

val after some value of
Θ for each configuration of parameters.

Another practical issue that is interesting to address is the influence of the imagi-
nary time discretization of the test set of correlation function. Using sparser data set
for calculation of χ2

val we do not observe qualitative effect on the result. Value of Θ,
at which the best fit (minimum of χ2

val) is achieved, however, becomes smaller with
less accurate test data.
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FIGURE 5.2: Spectral reconstruction of Cβ=8
xx (τ) for the double well

potential, at the indicated values of the discretization Nω and Θ re-
constructed on the range of ω = [0, 5]. Value of Θ corresponds to
the minimum of χ2

val for Nω = 25 model as shown in the Fig. 5.3.
Red spectral function corresponds to a Nω = 10 lattice shifted by
δω = 0.25. The exact spectrum of Cβ=8

xx (τ) at β = 8 is plotted as gray
hatched area. For the purpose of illustration all delta-functions are

shown with the finite width ∆ω = 0.01.

5.2 Continuum distribution of oscillators

5.2.1 Calculation of the spectrum

We now move to our next test model, and study the potential energy current correla-
tion function of a system containing a large number of independent, non interacting
harmonic oscillators. Considering the CpV of Eq. (4.49) as a function of ω0, the cor-
relation function for an ensemble of oscillators with a continuum of frequencies can
be written as,

Ccont
pV (τ) =

∫ ωcut

0
dω0 Cexact

pV (τ; ω0)g(ω0). (5.4)

The form of the density of states, g(ω0), and the value of the frequency cutoff, ωcut,
are arbitrary. In the following we consider a Debye-like g(ω0) ∝ ω2

0, with ωcut = 1,
and fix β = 10. With this choice, the exact spectrum for the energy current corre-
lation is a superposition of two functions with a compact support, assuming non
zero values in the range [0, ωcut] and [0, 3ωcut], respectively. As a result, it will
display two sharp discontinuities, at ωcut and 3ωcut, respectively. As we already
done in our study of the double well potential, here we do not generate the data by
Monte Carlo simulation, but we rather employ the exact analytical expression, sub-
sequently adding a Gaussian random noise with a variance proportional to the data
themselves, σk = 10−2 × Ccont

pV (τk). This variance is also used as the uncertainty to
compute the χ2 of Eq. (2.44).
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FIGURE 5.3: Θ-dependence of the χ2
val calculated from the validation

step of the reconstructed spectral functions for Cβ=8
xx (τ) for frequency

discretization Nω = 10 and Nω = 25. Spectral functions for non
shifted Nω = 10 grid (shown at Θ = 15 as blue spectrum on Fig. 5.2)
gives considerably worse result and the corresponding χ2

val are not
plotted here.

By following the same workflow discussed above for the single oscillator, we
reconstruct the spectral densities for different values of Θ and number of delta func-
tions in the model, Nω. In Fig. 5.7, we show the influence of the discretization Nω by
fixing the canonical value Θ = 1. Following the same procedure as above, we cal-
culate again χ2

val for the validation set by generating test correlation function from
the exact result of Eq. (5.4), with the same variance σk. The values of χ2

val, shown
in Fig. 5.9, indicate again a more statistically sound reconstruction corresponding to
sparse grids. Unfortunately, none of the curves of Fig. 5.7, convincingly captures the
sharp edges of the exact spectral density, which rather resemble two symmetrically
broadened peaks. Considering shifted grids (Fig. 5.8), however, as also quantita-
tively supported by the validation procedure, results in contrast in more asymmet-
ric features, clearly improving the reconstruction towards the exact spectrum. Note,
however, that employing sparse ω-grids considerably limits frequency resolution,
so that the reconstruction in the case of the continuous spectrum with its sharp dis-
continuities remains quite difficult.

5.3 Extension of the reconstruction approach

We tested the stochastic reconstruction method coupled with the validation step on
several simple models. We note that the approach can be developed further and
tested on the spectra of real solids, for example, by including spectra with van Hove
singularities. It is also worth testing the reconstruction approach on other more com-
plex models such as the models with non-harmonic Hamiltonians. The prominent
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FIGURE 5.4: Spectral reconstruction of Cβ=1
xx (τ) for the double well

potential, at the indicated Θ. Values of Θ correspond to the minima of
χ2

val for each model respectively as shown in the Fig. 5.6. We compare
models with frequency discretization Nω = 10 and Nω = 25, red
spectral function corresponds to a Nω = 10 lattice shifted by δω =
0.25. The gray hatched area indicates the exact spectral function at
β = 1. All delta-functions are shown with the finite width ∆ω = 0.01.

example of such models is the model with Fermi resonances or the system of two
coupled harmonic oscillators (see, Plé et al., 2021). One should study carefully the
dependence of the reconstruction results for various parameters and adapt the dis-
cretization of spectral density. We remark that the validation procedure introduces
an unambiguous criteria for selecting the most optimal spectrum.
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FIGURE 5.5: Θ-dependence of the χ2 calculated from the reconstruc-
tion procedure for Cβ=1

xx (τ). Here we compare shifted (δω = 0.25)
and non shifted lattices which have frequency discretization Nω = 10

and Nω = 25.
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FIGURE 5.6: Θ-dependence of the validation ∆χ2
val ≡ chi2val − chi20 cal-

culated from the validation step of the reconstructed spectral func-
tions for Cβ=1

xx (τ). Value of chi20 corresponds to a reconstruction with
Nω = 10 shifted by δω = 0.25 at Θ = 10. Here we compare shifted
(δω = 0.25) and non shifted lattices which have frequency discretiza-

tion Nω = 10 and Nω = 25.
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FIGURE 5.7: Spectral reconstruction of Ccont
pV (τ) for the continuous

distribution of oscillator frequencies, at the indicated values of the
discretization Nω, at fixed Θ = 1. The shaded area indicates the exact

spectral function.
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FIGURE 5.8: Spectral reconstruction of Ccont
pV (τ) for the continuous

distribution of oscillators, for Nω = 10 and Θ = 1 and 6, respectively.
Here we compare the results pertaining to a grid shifted by δω = 0.25
to those with δω = 0, the usual (not shifted) case. The shaded area

indicates the exact spectral function.
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FIGURE 5.9: Main panel: χ2
val from the validation procedure of spec-

tral function at the corresponding values Θ and Nω for Ccont
pV (τ). The

area of the circles is proportional to the value of χ2
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set: χ2

val as a function of the effective temperature Θ, at the indicated
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6 Phonon lifetimes in rare gas
solids, implication for heat
conductivity

After having introduced and tested our methods on simple models with known, an-
alytical solutions, we will apply them in the present chapter to the Lennard-Jones
solid towards first, preliminary results on the heat conductivity. As we have seen in
the second chapter, linear response theory relates the heat conductivity to the heat
(or energy) current-current correlation function. Its behavior in imaginary time can
be directly obtained from PIMC, and the corresponding spectrum from the stochas-
tic reconstruction. Although this program is rather straigthforward, we will not
pursue it in the following. Since we have leave the playground of exactly solved
problems, comparison with approximate theories or experiment are the only possi-
bility to judge the quality and validity of our results. However, the finite size of our
simulation cell used in PIMC usually prevents direct comparisons and results must
be properly extrapolated to the thermodynamic limit. Therefore, we have started to
focus first on more "elementary" quantities, like phonon frequencies and life times.
These quantities are rather well understood, and provide the basic quantities un-
derlying many thermal and transport properties of the solid. Still, a quantitative
description of those quantities, in particular of lifetimes of the quantum crystal ob-
tained from PIMC is lacking in literature. Here we provide a first study, comparing
our results with those of obtained from classical molecular dynamics. We use our
results of the phonon frequencies and lifetimes to estimate the heat conductivity di-
rectly via elementary transport theory without invoking Green-Kubo

The question of heat transport is a long standing one and it has been addressed
for various systems. The heat transport in solids can be understood in terms of
several separate contributions. One of the component comes from the motion of free
electrons inside the bulk and their interactions with the lattice structure. In the case
of metal systems these effect plays the crucial role where the electrons define the
properties of material. Another contribution to the heat transport comes from the
vibrations of the underlying lattice itself.

For metals it is smaller than the electron part and can be safely neglected for most
calculations. However, starting with the semiconductors systems and continuing
with insulating solids composed of rare gas atoms the heat transport is conducted
mainly by means of lattice vibrations. The pure crystal vibrations is an idealized con-
cept as seen from the fact that for a system with quadratic potential normal modes
cannot interact with one another and hence there is no thermal equilibrium [De-
bye, 1914]. In this system the heat would travel with the speed of sound yielding
infinite (lattice) conductivity. On the contrary, in the real system the anharmonic-
ity in the potential energy and the defects of the lattice force modes to interact and
decay which results in a finite heat conductivity. We will choose as a model that
captures the most prominent features of interparticle interactions inside the insula-
tor the Lennard-Jones crystal [Jones, 1924] (Fig.(6.1)). It is a common practice for
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calculations to consider the motion of lattice nodes as classical one. As we shall see
in this chapter for the case of insulating systems it is not always justified, because
the quantum effects can modify drastically the parameters of these vibrations thus
affecting the predictions for the heat transport coefficients.

The outline of this chapter is following. We shall provide a brief description of
the model, highlighting several prominent issues that will be important in the fol-
lowing analysis. Then, we shift our focus to the classical theory of harmonic solids,
putting more attention to the calculation of mode correlation function and its spec-
tral density. We then generalize this approach to systems with pair-wise anharmonic
interactions. We will briefly explain the role of anharmonicities on the quantities of
interest and rederive the expression for the heat conductivity using this method,
which is our ultimate objective for the analysis. We then proceed with the actual
calculation of the mode correlations, first in the classical approximation and then in
the quantum regime. We shall mention the techniques that we use in both of these
cases and provide the results of the calculation. We will concentrate on the spectral
function which we will study individually for each mode, particularly focusing on a
peak frequency of the spectrum and the broadening of the peak which indicates the
phonon lifetime. We then will discuss the role of quantum effects for these quanti-
ties and demonstrate the different predictions for the heat conductivity arising from
classical and quantum computations.

6.1 Lennard-Jones model of rare gas

6.1.1 The expansion of the interaction energy

Powered by TCPDF (www.tcpdf.org)

FIGURE 6.1: Comparison
[Maitland and Smith, 1971]
of experimentally mea-
sured interaction between
atoms of argon (solid line)
and LJ potential(dashed
line) (reprint from [Allen

and Tildesley, 2017])

As we outlined above we are interested in studying the
purely insulating material, represented by the rare gases.
The distinctive feature of the noble gases is the filled elec-
tron shells which leads to the absence of free electrons
inside the crystal bulk. Thus, we can model the system
by ensemble of simple atomic particles placed on a lat-
tice nodes and interacting via some potential. In a real
system the constituents interact via various different pro-
cesses. In general the potential energy can be written as a
sum of interactions between various number of particles
- single atoms, pairs, triplets, quadruples etc. The poten-
tial energy in this case depends on the positions of atoms
{rn} and have a form:

V =
N

∑
i=1

v1(ri)+
N

∑
i,j>i

v2(ri, rj)+
N

∑
i,j>i,k>j>i

v3(ri, rj, rk)+ . . . ,

(6.1)
where N denotes the total number of particles in the sys-
tem. The sums over pairs, triplets ... are taken in such
way in order to avoid counting the interaction several
times. The first term in the expression (6.1) encompasses the effects that the external
field has on the system. Among the interaction terms the leading contribution is pro-
vided by the pair-wise potential. As a side remark, we note that from the symmetry
one can see that the pair-wise interaction can only depend on the distance between
particles, that is v2(ri, rj) ≡ v(rij), where we introduced the notation rij ≡ |ri − rj|.
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For the purpose of numerical analysis the terms in the expansion (6.1) that involve
more than two particles are generally excluded from the analysis due to the increas-
ing difficulty of the simulation.

The interaction between two particles of the rare gas is well studied experimen-
tally [Tanaka and Yoshino, 1970; Buck et al., 1973; Aziz and Slaman, 1989]. An es-
timation of this potential is shown on the Fig.(6.1). One can see several distinct
properties of the potential. First, one observes the quickly rising repulsion at short
separation due to the overlap of the particle electron clouds which do not form a
bond configuration. Then, there is the weakly attractive tail at sufficiently large dis-
tances between particles which arises essentially due to the correlation between the
electron clouds. There is also a potential well which allows to form a bound state.

In numerical simulation one typically employs a rather simple and idealized po-
tential that approximates the empirical one. A common choice is the Lennard-Jones
model with appropriately defined parameters:

V = 4ε ∑
i<j

[(
σ

rij

)12

−
(

σ

rij

)6
]

(6.2)

Here the value of σ sets the coordinate scale, whilst ε sets the energy scale of the
model. In solid phase the atoms form a lattice whose structure is defined exactly
by the interactions between atoms and certain external parameters. At sufficiently
low temperatures and pressures the particles position themselves in a face-centered
cubic (fcc) lattice. Certain freedom, however, remains in defining the exact value of
crystal density and the related lattice spacing. We shall treat the crystal density as an
external parameter. This model captures the prominent features of the interaction
inside the material, including the energy well and the repulsion barrier.

6.1.2 Conventions

For the purpose of numerical analysis, we introduce several conventions that are
commonly used in the field. The Lennard-Jones potential approaches zero value
quite fast with increasing particle separation, so that one can neglect the interaction
between particles far away. Furthermore, the particle-particle interaction becomes
screened by the other particles in the system which means that the Lennard-Jones
potential is in fact an effective potential. In our simulations we select the value of
cutoff of the potential at Rcut = 2.5σ which allows to account for the effect of near-
est and next nearest neighbours on a particle. That is, we replace the (at least in
principle) infinite range interaction with

v(rij) =

4ε

[(
σ
rij

)12
−
(

σ
rij

)6
]

, if rij ≤ Rcut

0, if rij > Rcut ,
(6.3)

In order to make this potential continuous at the point rij = Rcut we will shift
all the values of interaction energy upwards by some constant, so that v(Rcut) ≡ 0.

Clearly, the value of the shift is defined by the cutoff separation: ecut ≡ 4ε

[(
σ

Rcut

)12
−
(

σ
Rcut

)6
]

.

The system that one can study numerically is necessarily of the finite size and
particle number. In view of minimizing the effect of boundaries we employ the
periodic boundary conditions and simulate the ensemble of particles on a torus:
ri = ri + L with L being the linear box size. It may however occur that, even within
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the cutoff range, the interaction between certain particles is taken more than once
in the calculation of Eq.(6.2) due to the various possible images of the particles. To
avoid the overcounting we introduce another important simplification - the near-
est image convention (Fig.(6.2)). The idea is as simple as the name suggests - one
chooses Rcut ≤ L/2, such that one needs to account each interaction only once keep-
ing track of the separations between various copies of the system, only those which
correspond to the smallest distance rij modulo L.

6.1.3 PIMC of the Lennard-Jones solid

FIGURE 6.2: In nearest image convention
one considers several copies of the orig-
inal system and accounts only the inter-
action that corresponds to the smallest
separation between particles. In this ex-
ample only the interaction between green
particle and blue one from the left-upper

image of the system is accounted.

In the following, we consider N particles in-
teracting via a Lennard-Jones potential. In
the path-integral representation, our con-
figuration of particles will have a classical
Boltzmann weight ∝ exp[−S] where the ac-
tion S is given by

S =
M

∑
n=1

N

∑
i=1

mMσ2

2h̄2β

(
rn+1

i − rn
i

σ

)2

+

+ 4ε
β

M ∑
j>i

( σ

|rn
i − rn

j |

)12

−
(

σ

|rn
i − rn

j |

)6
 ,

(6.4)

The indices i and j run over the total num-
ber of particles whereas the index m goes
over the M time slices. Looking at the ex-
pression 6.4 we can now introduce several
dimensionless variables.

Working with the Lennard-Jones poten-
tial, v(r) = 4ε[(r/σ)−12 − (r/σ)−6], it is nat-
ural to measure length in units of σ and en-
ergies in units of ε. Namely, one can con-
sider quantity V(r)/ε as a dimensionless
function of the dimensionless argument x =
r/σ. Next, we define a characteristic time t0
for our system by setting the kinetic energy
≈ mσ2/t2

0 equal to ε. We get t2
0 = mσ2/ε

which can be used as unit of time, e.g. ωt0 = ω
√

mσ2/ε will be dimensionless for
frequencies ω.

For quantum system, we have additional dimensionless combination Q =
√

h̄2/εmσ2

which allows to rewrite characteristic time as t0 = h̄/εQ, so that we have h̄ω/ε =

ωt0h̄/(εt0) = ωt0

√
h̄2/εmσ2 = Qωt0. Therefore, when referring to "Lennard-Jones

units", one writes all formulas in terms of T∗ = kBT/ε, ω∗ = ωt0, x = r/σ and
h̄ω/kBT = Qω∗/T∗.
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ρσ3 0.965
Rcut 2.5σ

N 108 and 864
Q 0.091840621
ε 36.68

TABLE 6.1: Parameters of the simulation of the neon crystal.

We denote the combination βε as β∗ and the product h̄2/(εmσ2) as Q2. Then the
formula 6.4 will take the form

S =
M

∑
m=1

N

∑
i=1

M
2Q2β∗

(
xm+1

i − xm
i

)2
+

+
4β∗

M ∑
j>i

( 1
|xm

i − xm
j |

)12

−
(

1
|xm

i − xm
j |

)6
 . (6.5)

where we have also introduced the dimensionless variable for coordinates x = r/σ.
The ratio Q (which essentially characterizes how "quantum" the system is) the ef-
fective inverse temperature β∗, along with the length of the box L/σ and the cutoff
distance Rcut/σ for the Lennard-Jones potential constitute the total set of parame-
ters that one needs for the simulation. The size of the system is related to the density
of the crystal ρ which we select instead as the parameter of the simulation. A rea-
sonable choice for the density is dictated by the consideration that one should have
approximately 1 particle per unit of space, that is, the density needs to satisfy the
relation ρσ3 ≈ 1. In the following we fix the crystal density for all the calculation at
value close to 1 in the parameters of our simulation (more exactly, we choose density
ρσ3 = 0.965). There is more freedom in choosing values of β∗, we select such tem-
peratures for which the crystal is well below the melting point. In order to choose
Q we have following guidance. One expects that the lighter a particle the more pro-
nounced NQE, which means that among the rare gases neon suits the best for the
analysis. The choice of neon translates to the value Q ≈ 0.092.

6.2 Harmonic analysis

6.2.1 Expansion of the potential

It is not possible to obtain exact analytical results for a many-particle system inter-
acting with a Lennard-Jones potential, so one is forced to resort to approximations.
A particularly useful approach is the harmonic approximation [Ashcroft and Mer-
min, 1976]. In this part we shall briefly overview the main concepts and results for
Lennard-Jones system in the harmonic approximation. Let us define the set of coor-
dinates for particles in the crystal (at zero temperature, i.e. when particles form the
fcc lattice) as {X0}. For clarity of notations we omit the time indexes. One can then
expand the potential up to the second order as

V = V0 +
N

∑
i
(xi − x0

i )(∇iV
∣∣
X0) +

N

∑
ij
(xi − x0

i )(∇Vi∇Vj
∣∣
X0)(xj − x0

j ) (6.6)



80 Chapter 6. Phonon lifetimes in rare gas solids, implication for heat conductivity

Here the V0 is the minimum value of energy and does not play a role in the following
analysis so we will consider the energies as a shift from the minimum. Each term in
the first sum is nothing else but the force exerted on particle in the position x0

i at the
equilibrium. Since at the equilibrium there is no total force acting on any particle,
this sum must be equal to 0. The second sum can be rewritten as

Vharm =
1
2 ∑

ij
(xiα − x0

iα)Dαβ
ij (xjβ − x0

jβ), (6.7)

where we put the labels α, β . . . for the vector components. The matrix Dij ≡ ∂2V
∂xi∂xj

∣∣
X0

is the hessian matrix with values calculated at the lattice coordinates {X0}:Dαβ
ij =

(
V′′

ij

(x0
ij)

2 −
V′

ij

(x0
ij)

3

)
x0

ij,αx0
ij,β −

V′
ij

x0
ij

δαβ, for i 6= j

Dαβ
ii = ∑j 6=i Dαβ

ij , otherwise
(6.8)

A useful approach to describe excitations in the system is to represent them as quasi-
particles. These excitation can be characterized by the energy h̄ω and the quasimo-
mentum h̄k defined for each particle inside the Brillouin zone. The simplest way to
calculate the frequencies is to diagonalize the matrix D and to obtain the eigenval-
ues. In the following, we will use translational symmetry to blockdiagonalize the
matrix, such that ω(k) can be obtained much more efficiently.

6.2.2 Normal modes

We remind ourselves
that the primitive vec-
tors of the fcc lattice can
be written

a1 = {0, a
2 , a

2}
a2 = { a

2 , 0, a
2}

a3 = { a
2 , a

2 , 0}
,

where a is the sepa-
ration between nodes
of the lattice. These
vectors determine the
reciprocal lattice (bcc)
with the corresponding
basis which satisfies the
relation
aibj = 2πδij:

b1 = {− 2π
a , 2π

a , 2π
a }

b2 = { 2π
a ,− 2π

a , 2π
a }

b3 = { 2π
a , 2π

a ,− 2π
a }

The idea of employing normal modes for the analysis of
crystal was introduced in the works [Max Born, 1942]
and [Begbie and Max Born, 1947]. We have a system of
3N equations describing the behaviour of each of the par-
ticle component:

müiγ = −∂Vharm

∂uiγ
= −∑

j
Dγβ

ij ujβ (6.9)

where we put for brevity uiα ≡ xiα − x0
iα. One can recast

these equations in a vector form combining all compo-
nents of a particle together

müi = −∂Vharm

∂ui
= −∑

j
Dijuj (6.10)

We are looking for a regular solution in the form of plane
waves:

ul(t) = κe−i(kR0
l −ωt) (6.11)

Vector κ is the polarization of the normal mode which
describes the direction of wave propagation. Periodic
boundaries of the crystal translate into the Born-von Kar-
man condition on the solution u: u(R0

k + Nγaγ) = u(R0
k)

for each of the 3 primitive vectors aγ. Here Nγ are quite
large integers taken such that N1N2N3 = N. The choice of boundary condition puts
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a restriction on the allowed values of wave vectors k:

k =
n1

N1
b1 +

n2

N2
b2 +

n3

N3
b3, (6.12)

with nc being the integrals whilst bc denote the basis of reciprocal lattice. The
translational invariance of the crystal imposes periodicity on the wavevector which
means that only values of k corresponding to the primitive cell of the reciprocal
lattice will produce a distinctive result. Hence there exists only N solutions It is typ-
ically convenient to assign this cell as a first Brillouin zone. We can now substitute
the solution (6.11) into the equation of motion:

mω2κ = D(k)κ, (6.13)

with D(k) = ∑j Dije
−ikR0

j , which is independent of value of i due to the translational
symmetry. The matrix D(k) is typically referred to as a dynamical matrix.

Let us look a little closer at the dynamical matrix. The matrix Dαβ
ij has several

properties of interest. First, it is symmetric under the exchange of pair of indexes:
Dαβ

ij = Dαβ
ji and Dαβ

ij = Dβα
ij . Second, its sum over all particles is equal to zero:

∑i Dαβ
ij = 0 which is simply the embodiment of the fact that if all the particles in

the crystal are shifted by the same uα
i ≡ u then the energy of the system remains

constant. With this observations one write the matrix D(k) as

D(k) = ∑
j

Dije
−ikR0

j =
1
2 ∑

j
Dij

(
e−ikR0

j + eikR0
j − 2

)
=

= ∑
j

Dij[cos(kR0
j )− 1] = ∑

j
Dij sin2(kR0

j /2) (6.14)

We see that the sum is strictly positive and symmetric. From the linear algebra one
knows that the symmetric positive-defined matrices has the same number of eigen-
values as the rank of the matrix. They satisfy the equation:

D(k)κs = λs(k)κs (6.15)

The relation with normal mode frequency is then straightforward:

ωγ(k) =

√
λγ(k)

m
(6.16)

Thus, putting in different values of k from (6.12) one recovers all the normal fre-
quencies of the Lennard-Jones potential.

6.2.3 Effect of higher order terms in the expansion of potential

In the previous analysis we considered only quadratic terms in the expansion of
Lennard-Jones potential. For many practical purposes this is not sufficient as we
shall see in the example of heat conductivity in the next part. The full analysis is a
challenging task and we refrain ourselves to a qualitative description. The formal-
ism in terms of normal modes is still applicable, yet there will be some noticeable
changes.

In the following analysis we will compare two distinct setups: a classical system

governed by the Hamiltonian H = ∑i
p2

i
2m + ∑ij vLJ(rij) and its quantum equivalent
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with the usual replacement by the operators. In the classical case the behavior of
the ω is dictated predominantly by the thermal fluctuations from the equilibrium
(lattice) configuration. Thus, at the limit of zero temperature the fluctuations are
negligible and the mode frequency approaches the one of the harmonic crystal. With
higher temperature the system is able to probe configurations further away from the
minimum and the difference between full potential and the quadratic approximation
becomes more significant leading to a larger shift in frequencies. Since the thermal
fluctuations grow linearly with T one can expect that the normal modes will follow
the same pattern.

The picture is different for the "quantum" scenario where already at zero temper-
ature the system has some nonvanishing ground energy. In this case the behaviour
is more difficult to analyse and we will discuss it in more details later in this chapter.
One can anticipate however that the effect of temperature on a normal mode will
be less pronounced than in the classical case and for high enough ω even irrelevant
due to the fact that in this limit the temperature acts mostly on the density of state
operator 1

eβh̄ω−1 which is small in the same limit.
Another important consequence of treating full potential is that there will be

non-zero interaction of any given mode with large number of other modes. This will
show itself in the broadening of the peaks δ-peaks of the spectrum. This behaviour is
similar in both classical and quantum systems, however in the classical regime one
expects that the broadening vanishes with T → 0 and grows with T increasing. In
the quantum case the zero-point motion should play a role apparently leading to a
non width of the peak at the same limit of T → 0.

6.2.4 Heat conductivity

The scattering of phonons and their finite lifetime give rise to thermal resistivity
which manifests itself in the (finite) heat conductivity. For the analysis of lattice
heat transport one typically employs one of the general approaches: Green-Kubo ap-
proximation, variational method and the relaxation time approach. Here we show
derivation using the latter method. The relaxation time approach (as well as vari-
ational method) is based on the Boltzmann transport equation [Peierls, 1929] and
it was successfully used to describe heat transfer in semiconductors [Broido et al.,
2007; Zhou, Liao, and Chen, 2016] and whilst the Green-Kubo formalism tackles the
problem from a more fundamental angle using the correlations of quantum opera-
tors.

6.2.5 Kinetic theory approach

In order to apply the Boltzmann equation we require the existence of the distribu-
tion nk(r, t) which shows the mode occupation number in the vicinity of r at time
t. We assume that in the system there exists a temperature gradient across the sam-
ple. Then, one can study two main processes that cause the change in the phonon
occupation number - diffusion and scattering (decay) into other phonons.

One can describe the effect of diffusion of phonons with the use of temperature
gradient: (

∂nk

∂t

)
diff

= −vk∇T
∂nk

∂T
(6.17)

where vk is the phonon group velocity.
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Another process that contributes to evolution of nk(r, t) is a phonon scattering.
The rate of variation due to decay is given by the relaxation time τk as(

∂nk

∂t

)
scat

= −nk − n̄k

τk
, (6.18)

which means that the rate is proportional to the deviation of nk from the equilibrium
distribution. Since in the steady state of heat flow through the crystal the total time
derivative of the occupation number vanishes, one can write:(

∂nk

∂t

)
scat

+

(
∂nk

∂t

)
diff

= 0

Substituting into this expression formulas from above one get:

− nk − n̄k

τk
= vk∇T

∂nk

∂T
(6.19)

In the steady state with a temperature gradient ∇T the heat flow per unit area in the
direction normal to the said gradient is given by the macroscopic expression

J = −λ∇T (6.20)

where λ denotes the heat conductivity. For dielectric materials one can express the
microscopic heat current as the summation of energy per phonon mode over all
possible modes of the crystal:

J =
1
V ∑

k
h̄ωk(nk − n̄k)vk (6.21)

We notice that only modes that contribute to the heat flux are those that have the
nonequlibrium phonon occupation number. Using the Eq.(6.19) we bring this ex-
pression to the form of Eq.(6.20) with

λ =
1
V ∑

k
v2

kτk
∂εk

∂T
=

1
V ∑

k
lk

∂εk

∂T

(
∂ωk

∂k

)
(6.22)

Here ∂εk
∂T is the modal heat capacity, ∂ωk

∂k is the definition of the mode group veloc-
ity and lk is mean free path for phonon. The mean free path is the characteristic
distance that phonon travels between different scattering events. In the absence of
anharmonic interactions normal modes do not interact with one another and they
propagate through the whole crystal unperturbed thus producing an infinite mean
free path lk which in turn results in an infinite heat conductivity. This is clearly un-
physical which means that any real system ought to have some sort of processes that
forces modes to decay.

Let us rewrite the formula (6.22) in units of Lennard-Jones as discussed in Section
(6.1.3):

λ =
1
V ∑

k
v2

kτk
∂ε̄k

∂T
=

1
σ3(V/σ3) ∑

k
(σ/t0)

2(vkt0/σ)2t0(τk/t0)kB
∂(h̄ω̄k)

∂(kBT)
=

=
kB

σt0V∗ ∑
k

v∗2
k τ∗

k
∂ε̄∗k
∂T∗ (6.23)
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where ε̄ ≡ h̄ωk[(exp[h̄ωk/kBT] − 1)−1 + 1/2] is the mean energy per mode. From
the last line we see that quantity λσt0/kB is dimensionless.

6.2.6 Green-Kubo linear response

In the first chapter we showed the general formulation of the linear response theory.
In that treatment we used a system at the thermal equilibrium being subject to the
external (mechanical) perturbation. Despite the fact that the heat transport cannot be
associated with any mechanical perturbations, one can still formally derive similar
expression for heat current as we did before [Kadanoff and Martin, 1963]. The ap-
proach is based on the assumption that the system is locally at thermal equilibrium,
i.e. the temperature changes sufficiently slow on the length and time scale in com-
parison with atomic processes. For a smooth function T(r) that can be written as a
small perturbation from the constant temperature T(r) = T + ∆T(r) with |∆T| � T.
Then the effect of the perturbation can be described by

P ∝ e−
∫ e(r)

kBT(r) dr

where e(r) is the density of the Hamiltonian such that H0 =
∫

e(r)dr. Expanding
T(r) one can write

P ∝ e−
H0+V′

kBT dr (6.24)

with
V ′ = − 1

T

∫
e(r)∆T(r)dr (6.25)

This potential resembles the general mechanical perturbation that we considered
earlier and thus we can adopt the same attitude and write for the system whose
only conserved quantity is energy, the heat current via the the temperature gradient:

J = −λ∇T. (6.26)

The heat conductivity that enters this equation can be expressed from the Green-
Kubo relation as the current-current correlation function:

λαβ =
V

kBT2

∫ ∞

0
〈Jα(t)Jβ(0)〉0dt (6.27)

The macroscopic current J has the form

J(Γ) =
1
V

∫
j(r)dr =

1
V

∫
ė(r)rdr, (6.28)

where we used the continuity equation in going to the second expression. Expand-
ing this formula one can write

J =
1
V

∫
ė(r)rdr =

1
V

∫ (
∑

i

∂e
∂Ri

dRi

dt
+

∂e
∂Pi

dPi

dt

)
rdr (6.29)

The formula for the heat current is not uniquely defined - one can, for example,
consider antisymmetric terms in the particle interaction which does not change the
total Hamiltonian of the system whilst modifying the current-current correlations.
These various expression for the heat current, however, result in a singly defined
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heat capacity [Ercole et al., 2016] which stresses the fact that the heat capacity is a
proper physical observable unlike the heat flux.

6.3 Analysis of equilibrium properties

Before moving to the calculation of the dynamical properties, let us first analyze the
time independent thermodynamic quantities and compare the results with already
existing studies, numerical and experimental. In this section we look into the behav-
ior of kinetic energy and pressure for a range of parameters of the simulation.

6.3.1 Kinetic energy

We have seen in the Chapter 3 that calculation of kinetic energy can pose certain
difficulty, thus it serves as a good benchmark for our approach. We compare the
values of kinetic energy with reference data from the work [Cuccoli et al., 1993]. For
our analysis we use the "virial" estimator for the kinetic energy that we introduced
in Chapter 3. In this section we simulate the crystal of N = 108 particles. We start
by studying behavior of kinetic energy at a fixed temperature (T = 5K) and fixed
density of crystal (ρσ3 = 0.965) for various time discretization M. Fig.(6.3) shows
the results of the calculation. To make comparison with reference analysis we use
the same separations M = 4, 8, 16, 24, and 32 as indicated in the paper. The result is
then plotted as a function of 1/M. The data for sufficiently large M usually can be
approximated by a smooth curve (in the current example - straight line) which tends
to a well defined limit as 1/M → 0.

T, K ρσ3

5 0.965
10 0.9630
15 0.955
20 0.944

TABLE 6.2: Parameters of the test simulation of the neon crystal for
the comparison with [Cuccoli et al., 1993].
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FIGURE 6.3: Kinetic energy per particle eK of neon for several imagi-
nary time discretization numbers M. The system is studied at T = 5K
and ρσ3 = 0.965. We compare the results of our simulation (red) with
the data obtained from QMC simulation of analogous system in the

work [Cuccoli et al., 1993].

On Fig.(6.4) we also compare the calculation of kinetic energy at different temper-
atures. Again, we follow the work [Cuccoli et al., 1993] and compare the quantity at
the indicated values of parameters, namely we adopted the values of crystal density
following the Table 6.2. In both these examples we observe good correspondence
between current simulation and the previously performed analysis.

We remark that in the reference study the crystal density (as indicated in the Ta-
ble 6.2) was adapted with temperature such that the system was at zero pressure at
all values of T. On the contrary, in our simulation we observed non-zero pressure at
indicated values of parameters. The discrepancy is caused by the fact that the pres-
sure calculations, unlike computations of kinetic energy, are quite sensitive to the
form of the potential energy and in particular to the smoothness of the interaction
at the cut-off distance. Since in our work we did not consider smoothed potential
it is natural to expect the deviations from reference data, for example obtained here
[Müser, Nielaba, and K. Binder, 1995]. Nevertheless, as we shall see in the following
test, even with such shape of the potential we are able to obtain results for the ther-
mal expansion of crystal lattice, which are reasonably close to the experimentally
measured values.
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FIGURE 6.4: Kinetic energy per particle eK of neon as a function of
temperature T. The values of density of crystal at each temperature
are as indicated in Table 6.2. The red data indicate the present simu-
lation, whilst the blue ones - reference data from paper [Cuccoli et al.,

1993]. The reference data were approximated in the limit ∆τ → 0.

6.3.2 Thermal expansion of lattice constant

Before moving to the study of phonon time correlation function let us look in more
details into the equilibrium properties of the system. An interesting quantity to com-
pare classical and quantum calculations is the thermal expansion of lattice. In the ex-
periment the quantity is typically measured at constant pressure with varying tem-
perature. The QMC algorithm that we use allows us to obtain properties at constant
volume, and in order to study the properties at constant pressure we need to sim-
ulate the system at different densities. On Fig.(6.6) we illustrate the dependence of
pressure p on temperature on the example of systems with densities ρσ3 = 0.965
and ρσ3 = 0.944. For the purpose of comparison we indicate on the same plot the
values of pressure at the same parameters for the system described by the classical
Hamiltonian. Using these data one can now analyze the thermal expansion of lat-

tice constant a = 1
3

3
√

N
ρ for N = 108 particles. Increasing the temperature from 5K

to 20K we observe the lattice parameter changes by approximately +1.2% which is
reasonably close to the experimentally observed value of +0.9% [Batchelder, Losee,
and Simmons, 1967] for the same temperature change. We note that the classical
calculation of lattice parameter produce higher shift of around 7%.
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FIGURE 6.5: Pressure as a function of temperature for neon crystal
described by quantum LJ potential. The figure shows the data for

systems at indicated constant densities ρσ3.
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FIGURE 6.6: Pressure as a function of temperature for neon crystal
described by LJ potential. The figure shows the data for systems at
constant densities ρσ3 = 0.965 and ρσ3 = 0.944. For comparison we
plot results for the classical (squares) and quantum (triangles) sys-

tems.
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6.4 Molecular Dynamics simulation of mode correlation func-
tion

As we mentioned above, we perform the analysis of classical and quantum sys-
tems of Lennard-Jones crystal. In order to separate the "pure" quantum effects from
those that can be understood without evoking quantum mechanics, in this section
we perform a calculation of a crystal that is governed by the classical Hamiltonian.
We shall focus primarily on the temperature dependence for quantities of interest,
i.e. we will look at the spectral function for each mode and study the frequency
of the peak and the broadening of the peak caused by the interaction of a normal
mode with other modes. We take the temperatures well below the melting point
and study the range T = [5K, 20K], which translates to the range [0.136, 0.545] in the
dimensionless LJ units. We will also consider systems consisting of different num-
ber of particles (N = 108 and N = 864) in view of estimating size effects. In the
simulation we will focus on neon due to the fact that among the rare gases neon
possess the lightest mass. Keeping in mind the Hamiltonian of the system, one can
expect that the Nuclear Quantum effects will be the strongest in comparison to other
rare gases. Before discussing of results let us say a few words about the numerical
procedures and algorithms that we used in order to obtain the desired correlation
functions and to study the respective spectral densities. Without going into much
details we shall focus on several questions of the simulations, both MD and QMC,
and make some notes considering the error estimation in both of the cases. In this
part we treat Molecular Dynamics calculation and then in the next part we move to
the Quantum Monte-Carlo.

Due to the fact that for QMC methods it is notoriously difficult to treat real time
correlations and that for a classical system there exists many reliable well-developed
tools, the machinery that we introduced in the first chapter of this thesis is not partic-
ularly convenient to use here for the simulation. In the present study we will employ
Molecular Dynamics (MD) for the calculation of modes time correlation functions.
We do not develop any particularly method, instead we opt for the use of LAMMPS
algorithm [Thompson et al., 2022] for this task.

At its base the MD approaches are build around the idea of solving numerically
equations of motion. In practice it is typically done by calculating the forces acting
on particles at each point of discretized time and then using these forces to displace
the particles according to the second Newton’s law. By adjusting a time step suitably
one can access a wide range of time dependent quantities on different time scales. In
our case the time step is determined by the frequency of oscillations t∗ ∝ 1/ω which
we estimate from the quadratic expansion of the potential.
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FIGURE 6.7: Example of a mode correlation function CAA(t) obtained
from the MD calculation for the classical system with Lennard-Jones
pair interaction. Various colors represent 12 different modes, all hav-
ing the same degerate frequency. The black line shows the correlation

that is obtained by averaging over all these degenarate modes.

The mode correlation function that we are interested in is calculated through the
position correlation function which is simply the product

Cxx
iα (t) = 〈xiα(t1 + t)xiα(t1)〉 , (6.30)

where t1 is some arbitrary time. For the calculation of modes we use diagonalization
of Hessian matrix D in the form

D = OΛO−1, (6.31)

where the matrix Λ is diagonal and the O is the orthonormal matrix composed of
eigenvectors of D. In this case the modes can then be computed and treated sep-
arately via application of the transformation O as Ap = ∑j Ol jxj which leads to a
correlation function of the form:

CAA
pγ (t) =

〈
Apγ(t1 + t)Apγ(t1)

〉
(6.32)

In the simulation the average (6.32) is obtained by summing over different values
of t1 in such fashion that preserves t constant. On Fig.(6.7) we show the sample of
correlation function for 12 degenerate modes that correspond to the second lowest
frequency. In black is plotted the average of all these degeneracies. One clearly
observes the oscilations with certain frequency modulated by the decaying rate. The
longer time oscilations in the correlation function that are visible on the figure is
simply the data noise that can be reduced by taking more values of t1, and one can
see the reduction of these oscilations already from the averaging over degeneracies.
In the end, the correlations at long times are not relevant for the present analysis
as the most information comes from the small times. This figure also shows that
whilst shown mode correlations should have precisely the same frequencies along
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with decay rate (at least in theory), in practice the result is affected by some noise.
The main source of the noise is the stochastic fluctuations which can be reduced in
the same way we just mentioned - by averaging over more data. This, however,
would require increasingly more data storage, which means that the compromise is
necessary.

Thus, one cannot avoid having uncertainty on the simulation output. However,
the proper error analysis is tricky since the error distribution does not obey the Gaus-
sian law so we will not go into this elaborated calculation. Instead, we estimate the
errorbars from the following consideration. We will not study the results for each
component separately, but we will group them by degeneracy and analyze the con-
figuration averaged over such block. The results for each individual mode of the
block will be then plotted as the uncertainty.
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FIGURE 6.8: Example of a fit performed on the average mode cor-
relation functions CAA(t). Figure shows the spectral density for the
same mode calculated for the system at various temperatures. Differ-
ent dots correspond to the spectra obtained by transforming CAA(t)

whereas dashed line denotes the fit.

Unlike the simulation of the quantum system where one is forced to work with
imaginary times, the correlations for the classical system can be readily calculated at
real times. This makes the correlation function easily accessible for the spectral anal-
ysis which is a straightforward Fourier transform. One can then approximate the
spectrum with a Gaussian or Lorentzian function in order to evaluate the frequency
of the peak and its width. The example of a spectrum and the corresponding fits are
shown on Fig.(6.8). Making a fit for a given mode possess an uncertainty in defining
the position of the peak and, mainly, in its width and amplitude (Fig.(6.8)). This un-
certainty, however, is smaller than the uncertainty across the degenerate modes and
thus already accounted by the error estimation.

As we expected earlier there is a broadening of the peak due to the interaction
of a mode with other modes which is in a stark contrast with a single δ-peak of a
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harmonic potential. Whilst the position of the peak is well defined and corresponds
to the maximum overlap of the eigenvectors (which is clearly κiακiα interaction with
itself), the spectral density does not decay exponentially fast and one observes heavy
tails indicating that there is a nonzero overlap in eigenvectors even for modes far
apart in frequency space.

6.5 Quantum Monte-Carlo calculation

After discussing the simulation of a classical system we now move on to the quan-
tum case. As a main tool for the analysis of the system governed by the quantum
Hamiltonian in this section we will again use the QMC techniques developed in the
first chapter. This section is dedicated to a brief description of the simulation with
emphasis on several prominent issues. In the next section we will collect all the
results from this and the previous section and discuss them together.

For the purpose of comparison with the classical results we perform the simula-
tions on the systems described by the same parameters introduced in the previous
section. Similar to the above studied problem of a single oscillator the output of the
MC simulation is affected by different biases, systematic and stochastic. One deals
with the stochastic uncertainty in the usual way, i.e. by controlling the length of the
simulation. Since the observable does not include momentum dependence there is
no reason that one can reduce errors by rewriting the MC estimators. The system-
atic deviations come from the discretization of time in the Trotter decomposition and
one can reliably control these discrepancy as we showed in the Chapter 3. For the
analysis there we used the exact expression for the correlation function of interest
and tested it against the numerical calculation of the path-integral formula. One can
do similar analysis for the purely harmonic approximation of Lennard-Jones inter-
action. For the case of a single oscillator the position correlation function have the
form:

〈x(τ)x(0)〉 = h̄
2mω

cosh(h̄ω(τ − β/2))
sinh(h̄ωβ/2)

The mode correlation function in the harmonic approximation have exactly the same
form. Translating the expression into Lennard-Jones units one writes

(Charm)AA
iα = 〈Aiα(τ)Aiα(0)〉harm =

Qσ2

2ω∗
iα

cosh(Qω̃iα(τ
∗ − β∗/2))

sinh(Qω̃iαβ∗/2)
, (6.33)

we remind that Q =
√

h̄2

mεσ2 and β∗ = βε. In writing this formula we used the
expression for frequency in LJ units which comes from the dimensional analysis

ω∗ =

√
mσ2

ε
ω (6.34)

The analysis presented in the Chapter 5 for a single oscillator let us estimate that the
systematic deviations are small when time discretization satisfies the relation βh̄ω

M ≈
0.1. In the present simulation one can use for the estimate the highest frequency
(which in our case is approximately 20 in the Lennard-Jones units) and write this
relation as

β∗Qω̃max

M
≈ 0.1 (6.35)

which sets the number of time slices M ≈ 200β∗Q.
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In order to make use of the formula for the spectral reconstruction one also needs
first to translate the expression (4.18) into the proper units. Since we are not inter-
ested in spectral function unless it can be compared with Molecular dynamics result,
we will write it immediately in the LJ units. We also denote explicitly that the spec-
tral density depends on the broadening of the peak:

C(τ) =
∫

dωS(ω̃, ω̃0, γ̃)
(

e−τh̄ω + e−(β−τ)h̄ω
)
=

=

√
ε

mσ2

∫
dω̃S(ω̃, ω̃0, γ̃)

(
e−τ∗Qω̃ + e−(β∗−τ∗)Qω̃

)
(6.36)

For the analysis of the spectral density we can again use the method that we devel-
oped in Chapter 3. However, the study of the harmonic oscillator in the Chapter 4
showed us that the fitting of spectral function with the discrete peaks (with a trial
spectral density S(ω) = ∑j A(ωj)δ(ω −ωj))is not particularly useful for the descrip-
tion of continuous spectra. In order to get an accurate fit it is preferable to introduce
several auxiliary parameters and then study the behaviour for different parameter
values. Since we are interested in the peak frequency and the width of the distri-
bution, in the end we need to approximate the resulting spectra with a Gaussian
(or Lorentzian) in analogy to what we did for MD calculation in the previous part.
Instead of doing this, in this section we search for a spectral density in the form

S(ω̃, ω̃0, γ̃) = A exp
(
− (ω̃ − ω̃0)2

2γ̃2

)
, (6.37)

which depends only on few parameters. We then make a simple minimization
procedure on a functional

∣∣∣∣CAA
iα (τ)− C̃AA

iα (τ)
∣∣∣∣ with mode correlations C̃AA

iα (τ) =∫
dωK(ω)S(ω̃, ω̃0, γ̃) being constructed from the trial spectrum.

Let us compare this minimization to the stochastic reconstruction we used before.
We remind ourselves that following the recipe from the Chapter 3 we need to dis-
cretize the frequency range with Nω delta-functions each contributing some weight
Ai ≡ A(ωi) to the spectral function. The resulting frequency discretization ∆ω along
with several others parameters constitute the parameter space for the model. We do
not provide here an exhaustive analysis and restrict our attention to the discussion
of the reconstruction for a given ∆ω with varying effective inverse temperature Θ
which defines the weight of the configuration. On Fig.(6.9) we demonstrate several
such spectra and overlay them with the result of the fit with a Gaussian distribu-
tion. For concreteness, we used in this example Nω = 50 on the range of frequencies
[0, 30], the relative error of the input correlation function is of order 10−2.
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FIGURE 6.9: Examples of various fit of a mode correlation function
which corresponds to the lowest frequency in the LJ spectrum. The
fit is performed with the stochastic reconstruction on a discretized
range of frequencies, the different colours show few distinct effective
inverse temperatures, whilst the number of δ-peaks is fixed Nω = 50.
For the purpose of comparison we show the approximation of the
spectrum with a gaussian distribution S(ω), which is obtained by a

minimization routine.

Similar to the single harmonic oscillator model, increase in Θ considerably nar-
rows the peak. Provided the peak lies within the chosen range of frequencies, the
minimization procedure is equivalent to taking Θ → ∞ in the limit Nω → ∞, and
thus the algorithm selects the most probable configuration. For Nω finite this is not
the case, because of the nonzero ∆ω terms contribution and misalignment of delta-
peaks with the maximum of spectral function, unless artificially constructed.

On the Figure (6.10) we show the efficiency of different fits demonstrated by the
calculation of validation parameter: χ2

val = ∑m
[
Cval

iα (τm)− C̃iα(τm)
]2, where we put

back explicitly the time slice indexes. The validation data set Cval
iα (τ) is obtained

through the separate calculation of the mode correlation function with the same
QMC algorithm which we used to obtain original data. The efficiency of the recon-
struction, as usual, increases with Θ as demonstrated by the decrease in the value of
χ2

val which we plot here corrected by some constant χ2
0 that we discussed in Chapter

3. As we expected at large Θ the performance of the reconstruction is quite close
to the Gaussian fit of the spectrum. At smaller Θ, however, one can find a spectra
which agree better with test data. This could also be expected simply from the fact
that the Gaussian function does not reflect properly the features of the underlying
spectrum which is asymmetric and have heavy tails. On the other hand, with suffi-
ciently many δ-peaks one can redistribute the weights A(ωi) associated with them
and gain a better description. As we mentioned above, the analysis of the discrete
spectrum might be quite cumbersome and in the end one would still need to ap-
proximate the resulting spectrum with a smooth function in order to get an estimate
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for the frequency of the maximum of the spectral density as well as the width of
the peak. Keeping also in mind that the Gaussian fit provides a reasonable descrip-
tion for the spectral density, as illustrated by this discussion, we will use it for the
analysis of other correlation functions.
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FIGURE 6.10: Comparison between different calculation of spec-
tra. The dots show the stochastic spectral reconstruction with dif-
ferent effective inverse temperature Θ with ∆ω = 0.06. The blue
line demonstrates the fit result obtained from minimizing the func-
tional

∣∣∣∣CAA
iα (τ)−

∫
dωK(ω)S(ω, ω0, γ)

∣∣∣∣ with a Gaussian spectrum
S(ω, ω0, γ).
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6.6 Discussion of the results

In this section we collect together the results of the classical and quantum simula-
tions announced in the previous parts. We show the calculations for the ensemble
of N = 108 particles. The choice of the system size is dictated by the constraints
of the fcc lattice (the number of atoms needs to satisfy the relation N = 4p3 with p
integer). Another limitation on quantity N comes from the error estimation analy-
sis, in particular for Monte-Carlo simulation. The QMC calculation of ensemble at
low T∗ requires increasingly more time slices M which for the case of large systems
drastically slows down the convergence of observables to the mean values. Thus,
we want to keep the value of N sufficiently small. In this section we are interested
in obtaining the dispersion relation for ω(k, T∗, ω0) as a function of wave-vector k,
temperature T∗ and harmonic frequencies ω0. With this objective in mind, the rea-
sonable requirement for a crystal size is to allow at least few discretizations of k
vector inside the Brillouin zone in several directions. The ensemble of 108 particles
allows to do it while enabling to well control the error for various temperatures.

The Monte-Carlo calculations are prone to system size effects which might affect
the observables. In order to control it we make a few test calculations of a larger
system (namely, with N = 864 in order to be able to compare the frequencies at the
same wavevectors) at few temperatures. As we shall see immediately, within the
errorbars of calculation the result does not depend on the crystal size. We show it
explicitly on the following figures on the example of QMC simulation of systems of
different sizes for T∗ = 0.54.

6.6.1 Mean frequency

We start by the calculation of a mode peak frequency. For each set of degenerate
modes we obtain a temperature dependence along with uncertainty estimation. On
Fig.(6.11) we provide the examples for several of these modes. In this example we
choose modes that correspond to the wavevectors along the {1, 0, 0} direction and
we plot the data for two different wave polarizations, longitudinal and transverse.
We put also for the reference the value of frequency for the same mode for strictly
harmonic Hamiltonian. As can be seen from the plot, the frequencies of the classical
system (depicted in blue) grow linearly with temperature. At the same time the
frequency of the quantum system (shown in red) does not exhibit strong temperature
dependence and for high enough frequency does not change with temperature.

We found that the system size effect for both simulations is irrelevant and does
not affect the results. We demonstrate it on the same set of figures on the example of
QMC calculation for the ensemble of N = 864 particles (plotted in green).

We can also gather the data for each mode on a single plot. We do it separately
for MD and QMC to avoid cluttering the figure. From Fig.(6.11) it is clear that all
the frequencies should be calculated with respect to the mode frequency of a har-
monic crystal ω0

k which in turn depends on few other quantities. On Fig.(6.16) and
Fig.(6.15) we plot the shifts of mode frequencies with respect to ω0 as a function of
the same harmonic frequency ω0 for Monte-Carlo and Molecular dynamics simula-
tions respectively.
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FIGURE 6.11: The comparison of mean frequency for two sets of
modes corresponding to the {1, 0, 0} direction in k-space. On the
left we show the transverse branch and on the right - longitudinal.
Results of the Molecular dynamics calculation are plotted in blue
with the linear approximation of temperature behaviour depicted as a
dashed line. The linear regression is made with a fixed point at T = 0
corresponding to the mode frequency of a perfectly harmonic crystal.
The output of the QMC simulation is showed in red. As the indica-
tion of insensitivity of the QMC data with respect to the change of the
system size, we depict in green the result for the crystal of N = 864
particles at T∗ = 0.54. In order to avoid overlapping with other data

we shifted the point to the right.
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6.6.2 Specific heat

Using the data from the previous part we are now in a position to analyze the va-
lidity of the single-phonon approach. To this end, we study the behaviour of the
specific heat. As the baseline for our comparison we measure this quantity in a
rather straightforward fashion from the calculation of the total energy of the system
[Fig.(6.12)]. Since we are dealing here with the quantum system, energy estimation,
in particular the calculation of kinetic energy, is more involved as we discussed in
preceding sections, see Sec.(3.3.2). We then approximate the data points with the 4th
order polynomial in temperature and calculate its derivative in order to obtain the
result for specific heat.

0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55
T

2.0

2.1

2.2

2.3

2.4

E
* to

ta
l /

 N

fit
PIMC data

FIGURE 6.12: The total energy of the system per particle for the QMC
simulation (data are shown in blue). The orange dashed line shows

the polynomial fit.

Next, we compute the heat capacity in the phonon approximation making use of
the formula:

cV =
1
N

∂

∂T ∑
n

h̄ωn

eh̄ωn/kBT − 1
=

kB

N ∑
n

(
h̄ωn

kBT

)2 eh̄ωn/kBT

[eh̄ωn/kBT − 1]2
=

=
kB

N ∑
n
(Qω∗

nβ∗)2 eQω∗
n β∗

[eQω∗
nβ∗ − 1]2

(6.38)

where in the last line we adopted the expression to reduced units of LJ formalism.
With this expression, we compare both sets of data, from QMC as well as from clas-
sical MD simulations, the latter having the meaning of the "quasi"-quantum approx-
imation. We show the comparison on Fig.(6.13). For neon, which corresponds to
our choice of parameters, we find that the Debye law for heat capacity with the tem-
perature ΘD = 68.5K (similar to [Moyano, Schwerdtfeger, and Rosciszewski, 2007]),
or T∗

D = ΘD/ε = 1.87 describes well our simulation data. This value is reasonably
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close to the experimentally measured ΘD = 74.6K or Θ∗
D = ΘD/ε = 2.03 [Fenichel

and Serin, 1966]. We note that the temperature range we have considered is far from
the Debye temperature, more precisely 0.05 < T/ΘD < 0.3. On fig.(6.13) we illus-
trate different calculations of cV and compare them with the experimentally obtained
data from [Fenichel and Serin, 1966].
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FIGURE 6.13: The comparison between various calculations of heat
capacity for quantum neon crystal. The dashed line is calculated via
the energy calculation [Fig.(6.12)], the blue and red dots are computed
with the mode heat capacity given by expression (6.38). For the cal-
culation of red points the frequency were used frequencies obtained
from the QMC simulation whilst for the blue ones - the results of the

MD computation.
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FIGURE 6.14: The comparison between various calculations of heat
capacity for quantum neon crystal. The dashed line shows the heat
capacity calculated with the Debye law at ΘD = 65.8K, or in LJ units
T∗

D = 1.87. The blue and red dots are computed with the mode heat
capacity given by expression (6.38). As for the Fig.(6.13), for the cal-
culation of red points the frequency were used frequencies obtained
from the QMC simulation whilst for the blue ones - the results of the
MD computation. For comparison we show the experimental data

[Fenichel and Serin, 1966]

6.6.3 Dispersion relation

One can analyze the behavior of frequency shifts using the data on Fig.(6.15) and
Fig.(6.16) and deduce an empirical expression for the mode frequency for classical
and quantum systems. For simplicity we distinguish frequencies only by their po-
larization and look for the description which is otherwise uniform for all modes.
In the case of quantum system one observes that there is a clear dependence on ω0

which we estimate as:
∆ωQMC

k

ω0
k

= a(L,T)ω0
k + b(L,T) (6.39)

with a and b being some external parameters that we approximate for a given polar-
ization, transverse (T) or longitudinal(L), denoted on the plots. From our analysis
we find that the parameters are

a(T) = 0.01, a(L) = 0.003,

b(T) = 0.08, b(L) = 0.2.
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FIGURE 6.15: We demonstrate here the shift in mode frequencies
ωk for the quantum Lennard-Jones crystal from the harmonic ones
ω0

k plotted against the ω0
k . The different colors represent longitudi-

nal and transverse branches. The data as well as the uncertainty are
shown divided by the harmonic value of the same mode.
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the classical Lennard-Jones crystal from the harmonic ones ω0

k plotted
against the ω0

k . The different colors again represent longitudinal and
transverse branches. The data along with the uncertainty are shown
divided by the corresponding temperature and harmonic frequency

of the same mode.
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One can study in the same way the classical system (Fig.(6.16)). In this figure we
accounted for the temperature dependence of the quantity by separating the vari-
ables. Similarly to the quantum system, the shift in frequency mode also grows with
ω0. We can now write the expression for frequency shift as

∆ωMD
k

ω0
k

= c(L,T)T (6.40)

Estimating from the data coefficients c(L,T) we obtain

c(T) = 0.2 and c(L) = 0.3.
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FIGURE 6.17: The phonon dispersion relationship for several direc-
tions of wave-vector k. Here we plot the results of QMC (red trian-
gles) and MD (blue dots) simulations and demonstrate the prediction
of equations (6.39) and (6.40) for frequencies of quantum and classical
Lennard-Jones crystal. The shown results correspond to the system of

N = 108 particles and T∗ = 0.41.

These estimations can also be used in order to compare dispersion relationship
with the one from the experiment. In order to make the comparison we translate the
measured quantities from LJ units to the units used in the experiment. For neon, we
have ε = 36.68K/kB = 3.16meV, σ = 2.79Å = 2.79 · 10−10m and Q = 0.0918. The
experimental measurements in the Ref.[Endoh, Shirane, and Skalyo, 1975] are taken
at T = 6.5K, however, as we have seen above, there is no temperature dependence
for the phonon frequency for the quantum system, thus we are allowed to juxtapose
them. The MD data are, however, more sensitive to temperature, yet they systemat-
ically considerably underestimate the frequency values and thus they are shown for
illustration purpose.
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FIGURE 6.18: The phonon dispersion relationship for several direc-
tions of wave-vector k. The results of QMC (in red ) and MD (in blue)
simulations along with the prediction of equations (6.39) and (6.40)
are compared against the experiments [Endoh, Shirane, and Skalyo,

1975].

With this estimations we can now calculate the mode frequencies for every value
of wavevector k inside the Brillouin zone using the computation of harmonic mode
frequency from Sec.(6.2.2). We show this approximation on Fig.(6.17) where we
show the result for values of k for several commonly used directions, namely {1, 0, 0}, {1, 1, 0}
and {1, 1, 1}.

6.6.4 Estimation of the peak width

In the same spirit one can analyze the width of the peak which we define as the pa-

rameter γ in the spectral function S(ω) ∝ e
− (ω−ω̄)2

2γ2 . We study the same systems as in
the previous part, namely, classical and quantum Lennard-Jones crystal of 108 parti-
cles at fixed density and for various temperatures. On Fig.(6.19) we again show the
example of modes corresponding to values of wavevector in the direction {1, 0, 0}.
For the classical system the width is going to zero with decreasing temperature since
the anharmonic corrections become small. For the quantum system it is generally not
the case due to the zero-point motion. As we observe, however, for small frequen-
cies this effect is quite small and the temperature behaviour is similar to the classical
crystal. At larger frequencies, on the other hand, the quantum effects are more pro-
nounced which leads to the finite width even at zero temperature. As before we also
study the effect of the size of the crystal and do not observe significant changes.
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FIGURE 6.19: The comparison of peak widths for two sets of modes
corresponding to the {1, 0, 0} direction in k-space. On the left we
show the transverse branch and on the right - longitudinal. Results
of the Molecular dynamics calculation are plotted in blue whilst the
output of the QMC simulation is showed in red. As the indication
of insensitivity of the QMC data with respect to the change of the
system size, we depict in green the result for the crystal of N = 864
particles at T∗ = 0.54. In order to avoid overlapping with other data

we shifted the point to the right.
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6.7 Heat conductivity calculation

We can combine the results for the peak frequencies and the width of the peak in
order to compute heat conductivity λ. Let us remind ourselves of the equation for λ
(Eq.(6.23)):

λ =
kB

σt0V∗ ∑
k

v∗2
k τ∗

k
∂ε̄∗k
∂T∗ (6.41)

As we can see it combines several ingredients. First, one needs the group velocity ∂ω
∂k

for each mode in the system. We can easily obtain this quantity using the approxi-
mations from Sec.(6.6.3) which reduce the derivative of ωMD,QMC to the derivative of
harmonic frequencies ω0 which one can straightforwardly calculate for any k inside
the Brillouin zone using the algorithm from Section (6.2.2). The second constituent
is the decay rate of mode τk which can be calculated via the width of the peak as
τk = 1/2γk for the case of Lorentzian peak or as τk = 1/2

√
2γk for the case of Gaus-

sian spectral function. The last ingredient to the calculation of heat conductivity is
the modal heat capacity ck given by the expression (6.38)

ck = kB(Qω∗
k β∗)2 eQω∗

k β∗

[eQω∗
k β∗ − 1]2

. (6.42)

Again, the last equation is written in Lennard-Jones units.
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FIGURE 6.20: The calculation of heat conductivity from the data of
Sec.(6.6). In blue we show the results for the Molecular dynamics
calculation whilst in red we plot the quantum Monte-Carlo results.
The mode heat capacity is calculated with the same formula given by
Eq.(6.42) with the replacement of ω by the mode peak frequency in

both cases.
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Combining together the data we obtain the result for λ for various tempera-
tures and plot them on Fig.(6.20) along with the experimental data from [Weston
and Daniels, 1984] (taken for molar volume vM = 13.35cm3/mol which translates to
density ρσ3 ≈ 0.98 - reasonably close to the value ρσ3 = 0.965 used in our simula-
tion).

In order to compare our results with experimental values given in Ref.[Weston
and Daniels, 1984], we have to go back from Lennard-Jones units to conventional
ones for experiments. Our highest temperature, T∗ = 0.55 corresponds to T = 20K.
There, the heat conductivity λ∗ = λσt0/kB is around 15 in LJ units translates to
λ = 0.027λ∗[Wm−1K−1] which gives ≈ 0.4Wm−1K−1. This value compares approxi-
mately to the experimental one obtained for vM = 13.36 in Ref. above. However, for
lower temperatures, there is a qualitative disagreement: whereas our calculated heat
conductivity drops with decreasing temperature, the experimental one increases! In-
deed, the drop of the heat conductivity lowering temperature is unphysical, as the
mean-free path should rather rise at low temperature.

In order to avoid introducing artifacts in the calculation from the small size of
the crystal we study the heat conductivity for systems of larger sizes. We observe an
increase of around 20% in values of κ which is clearly not sufficient to account for the
deviations of the calculated conductivity from the experiment. The expression (6.23)
consists of three types of ingredients: phonon heat capacity, phonon group velocity
and phonon lifetimes. We found that the dispersion relationship for frequencies that
we obtained in Sec.6.6.1 is in good correspondence with experimentally observed
values. Furthermore, we checked that the heat capacity calculated as the sum over
individual modes (eq.(6.38)) produces the result which is close to specific heat ob-
tained from the total energy of the crystal. This also indicates that the study of sys-
tem properties in terms of phonons is a reasonably good approximate approach. All
these considerations indicate that the discrepancy in the calculation of heat conduc-
tivity comes from our estimation of phonon life time. Going back to the calculation
of τk which we performed in the Sec.(6.6.4) we note that we estimated the phonon
life time from the decay of mode correlation function. Thus, we included implicitly
in this calculation all possible scattering processes of mode Ak. However, the only
processes that contribute to the energy transport inside the crystal are the phonon
scatterings to the modes outside of the Brillouin zone. This is the Umklapp process,
and clearly, at high temperature this process becomes dominant, and phonon mean
free path approaches the mean free path of phonons scattering outside of the Bril-
louin zone. At low temperatures, however, it is not the case and the phonon life time
is smaller than the life time of "transport phonons". In our calculation we do not dis-
tinguish between various scattering processes which results in incorrect values of τk.
The proper way to study heat conductivity is by following Green-Kubo formalism
and analyze heat current correlation functions.
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The Nuclear Quantum effects are important for interatomic interactions inside the
insulating crystal and have to be treated carefully. In order to analyze quantitatively
their effect we introduce the computational scheme based on the calculation of imag-
inary time correlation functions obtained by path integral Monte Carlo simulations.
One can tackle the problem from several angles and in general it may involve com-
putation of correlation functions containing current or momentum operators.

Thus, we have described a general strategy for wisely expressing improved esti-
mators with reduced statistical variance for such correlations. Next, we have intro-
duced an inversion procedure in order to obtain corresponding spectral functions.
The algorithm is based on a stochastic maximum entropy method, a Bayesian ap-
proach commonly used for such problems. The outcome of these procedures is, in
general, strongly dependent on the parameters of the simulation, as we have illus-
trated on several examples of the oscillator spectra employing different values for
the effective inverse temperature, Θ, as well as different choices for the grid dis-
cretization, Nω, or offset, δω. These models proved a challenging benchmarks for
the spectral reconstruction due to the sharp undamped delta-functions they contain
and the necessity of high accuracy of the imaginary time correlation function.

Pure Bayesian approaches suggest to eliminate the parameters dependence by
using the most general and flexible model for the spectral density, e.g., a large value
for Nω, together with Θ = 1 to encompass all possible solutions consistent with
the data. On the contrary, in our case studies of oscillator models we have shown
that the spectra corresponding to these standard choices exceedingly suffer from the
usual problems of all maximum entropy reconstructions: broadening or merging of
peaks, smoothing out any sharp features in the underlying exact spectrum.

In fact, path integral Monte Carlo data are strongly correlated in imaginary time,
which undermines a true justification of the Bayesian choice Θ = 1. Different values
of Θ may therefore be considered to efficiently approximate the true, unknown like-
lihood function. On the other hand, the use of flexible models for the spectral func-
tion, containing a large number of parameters, possibly introduces a large amount of
entropy into the Bayesian inversion, such that different parametrizations in general
strongly modify the results.

In order to address these difficulties we developed a validation procedure to
quantitatively control any parameter dependence of the Bayesian inversion. Our
proposal is based on the quantity χval which measures the accuracy of the fitted
correlations with respect to independent data (i.e. not involved in the maximum
entropy inversion), which provides an efficient and readily applicable method to
select the optimal choice of parameters, corresponding to the lowest value of χval.

We have shown that the validation step identifies a discrete set of two delta func-
tions in the case study of the single harmonic oscillator, and provides indications
towards the correct asymmetric sharp edges in the case of an underlying continuous
frequency spectrum. In the case of the double well potential we also demonstrated
the utility of sparse frequency grids with varying (non uniformly) the spacing be-
tween nodes for optimal description of discrete spectral functions.
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We then put this machinery to use for the analysis of insulating crystal mod-
eled by the nearest-neighbor Lennard-Jones potential. Using the normal mode de-
scription we analyze mode correlation functions along with the corresponding spec-
tra. For the conclusive study we perform the quantum Monte-Carlo simulation and
compare the results with classical molecular dynamics simulation. Non-quadratic
terms in the interaction potential led in both cases to the shift and broadening of
delta-peaks of the harmonic crystal spectrum which indicated the interaction and
decay of modes. For both types of system we obtained well-defined characteristic
Gaussian peaks and their respective frequencies of the spectral function maxima and
widths. Using the validation procedure we verified that the usual minimization of
the spectral function provides good results both for classical and quantum cases thus
allowing for more accurate evaluation of peaks and broadening.

For the mentioned systems we observed two distinct behaviours. The atoms of
neon (at the observed parameters) used in the simulation constitute a system that
displays strong quantum effects. For the mean mode frequency this leads to the
weak dependence on temperature, whilst its classical counterpart grows linearly
with T. For the broadening of the peak this results in a different temperature be-
haviour and non-vanishing of the decay at low T. Taking into account both of these
effects along with the change of density of state, we calculate the corrections to the
classical heat conductivity.

A possible extension of this work includes the application of the Green-Kubo
formalism outlined in the work for computation of heat current correlation func-
tion. This would then allow for more accurate analysis of the utility of the single
mode relaxation time approach. Following this route, another possible application
of this method would be in the domain of glassy materials: recent studies [Simon-
celli, Marzari, and Mauri, 2019; Isaeva et al., 2019] showed that the Green-Kubo
method coupled with the perturbative treatment of anharmonic effects can be re-
markably efficient for the determination of heat conductivity at low temperature in
systems such as amorphous silicon. One can envision that the current work can be
extended to arbitrary region of temperatures and stronger anharmonic effects, using
the path integral approach to go beyond perturbative treatment of anharmonicity,
and employing the spectral reconstruction techniques developed here.
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