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RÉSUMÉ DE THÈSE

Préambule

Cette thèse est le fruit d’une collaboration entre deux équipes : l’équipe Serpico de
l’Inria Rennes et l’équipe CeDRE de l’IGDR (Institut de Génétique et Developpement
de Rennes). L’aspect méthodologique ainsi que les approches basées sur la modélisation,
l’analyse et le traitement des images sont les points communs qui ont amené les deux
équipes à collaborer. Ainsi, un nouveau projet est né, qui avait pour objectif l’élabora-
tion d’une approche basée sur l’assimilation de données pour l’analyse de mécanismes
cellulaires.

Cette thèse s’inscrit dans le cadre de cette collaboration, avec le but de proposer une
approche de modélisation et d’estimation de paramètres, pour l’étude de la variabilité de
mécanismes cellulaires. Ma thèse s’est déroulée à 60% dans l’équipe Serpico, et à 40%
dans l’équipe CeDRE, sous la direction de Charles Kervrann, Directeur de Recherche à
l’Inria Rennes et responsable de l’équipe Serpico, et Yann Le Cunff, Maître de Confé-
rences à l’Université de Rennes 1, membre de l’équipe DyLiSS à l’IRISA (depuis 2021),
et membre de l’équipe CeDRE de l’IGDR pendant l’encadrement de cette thèse, et en
étroite collaboration avec Jacques Pécréaux, chercheur CNRS et responsable de l’équipe
CeDRE au sein de l’IGDR.

Contexte

Les avancées des méthodes d’imagerie, notamment en microscopie de fluorescence,
ont permis l’utilisation de la modélisation mathématique pour l’étude des mécanismes
cellulaires. De nouveaux modèles mathématiques ont été introduits pour étudier des effets
globaux au sein de la cellule, de façon à révéler les tendances générales des mécanismes
étudiés. Notre compréhension des comportements "moyens" est ainsi assez bonne ; en
revanche, les comportements individuels et leur influence à l’échelle de la cellule restent
à élucider. Bien que des modèles locaux aient également été de plus en plus conçus pour
étudier des évènements spécifiques dans la cellule, peu de modèles ou de méthodes existent
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Résumé de thèse

qui puissent à la fois décrire un comportement général et fournir des informations sur ce
qui se produit localement, à plus petite échelle.

Une des conséquences de ces approches est que les valeurs des paramètres liés à la
biophysique ou des paramètres moléculaires sont très partiellement établies. Des connais-
sances approfondies sont disponibles dans la littérature par rapport à des grandeurs bio-
physiques moyennes, et des expériences in vivo ont permis d’estimer certains paramètres
moléculaires ou biophysiques qui sont directement observables en imagerie ; en revanche,
d’autres paramètres sont encore très approximatifs. Une approche hybride comme celle
que nous proposons a pour objectif à la fois d’estimer des paramètres locaux et d’étudier
les interactions entre les différents acteurs impliqués dans le mécanisme d’intérêt.

Contrairement aux modèles préexistants dédiés à l’étude des mécanismes cellulaires,
notre approche a l’avantage d’être une méthode prédictive, permettant d’orienter les ex-
périences, et de faciliter une compréhension a priori du mécanisme étudié.

Contributions

Cette thèse apporte trois contributions principales : deux nouveaux modèles pour
décrire des mécanismes cellulaires, et un cadre d’estimation de paramètres qui permet de
prendre en compte la variabilité du mécanisme étudié, ainsi que les interactions entre les
différents acteurs qui participent à ce mécanisme. Le cadre d’estimation proposé permet
ensuite de tester différents scénarios possibles et d’établir des prédictions pour chacun
d’entre eux.

La première contribution porte sur la création d’un modèle de la diffusion locale des
protéines transmembranaires en imagerie TIRF. La diffusion est habituellement estimée de
façon globale sur une large zone de la cellule : une méthode de corrélation est utilisée pour
estimer le coefficient de diffusion apparente, en supposant une diffusion homogène dans la
membrane. Cette approche ne permet pas de distinguer les différences de diffusion locales,
qui peuvent être induites par la stochasticité des éléments composant la membrane ou
participant à la diffusion elle-même, ou par les différents éléments structurels qui peuvent
modifier la diffusion des protéines transmembranaires. Nous proposons ici un modèle basé
sur une méthode de corrélation, mais sans hypothèse d’homogénéité : notre modèle permet
de calculer la diffusion pour chaque évènement de diffusion au sein de fenêtres d’image
de petite taille. Cette approche permet alors de construire une carte de diffusion d’une
région, afin de détecter des zones de forte variation spatiale de la diffusion.
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Figure 1 – Illustration d’un spot de diffusion locale en imagerie TIRF.

La deuxième contribution de cette thèse concerne la modélisation du comportement
des centrosomes pendant la division cellulaire, et plus précisément pendant la séparation
des chromosomes. Les centrosomes se déplacent vers le côté postérieur de la cellule, et
lors de ce déplacement, ils oscillent transversalement à l’axe antérieur-postérieur. Les
études préexistantes s’intéressent majoritairement au déplacement postérieur, sans prise
en compte des oscillations. Cependant, ces oscillations, fréquemment rencontrées au cours
des divisions asymétriques, semblent jouer un rôle-clé dans la division. Par exemple, dans
le cas de l’embryon C.elegans, leur absence est le signe d’un dysfonctionnement de la
cellule, qui peut conduire à une division erronée, voire à une absence de division et à la
mort de la cellule.

Nous nous intéressons ici à ces oscillations transversales et nous proposons un nou-
veau modèle multi-échelles qui s’appuie sur une approche biophysique du comportement
du centrosome. Un bilan des forces, ainsi que des hypothèses biologiques et physiques
validées dans la littérature, nous permettent d’établir un modèle des oscillations du cen-
trosome pendant la phase de séparation des chromosomes. Il permet de mieux comprendre
quels sont les facteurs déclencheurs des oscillations, quelles sont les conditions nécessaires
à leur existence, et quelles interactions se mettent en place pour leur émergence. Il rend
notamment possible le test de plusieurs scénarios d’absence d’oscillation chez C.elegans,
en combinant les informations données par le modèle et les observations expérimentales.
Il permet enfin de représenter les oscillations du centrosome postérieur pour chaque em-
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Figure 2 – Illustration des oscillations transversales des centrosomes pendant
la division cellulaire.

bryon, ce qui en fait une base solide pour l’étude de la variabilité d’un embryon à l’autre.

La troisième contribution de cette thèse porte sur la création d’un cadre d’estimation
de paramètres en plusieurs étapes, à partir d’un modèle mathématique du mécanisme étu-
dié. La première étape est l’analyse de sensibilité des paramètres, qui permet de regrouper
les paramètres en fonction de leurs influences respectives sur le résultat. La deuxième
étape est la définition des caractéristiques des paramètres, en fonction des connaissances
préalables sur le mécanisme étudié et des observations expérimentales. Enfin, la dernière
étape consiste à estimer des paramètres, une tâche qui est effectuée par blocs en fonction
des résultats de l’analyse de sensibilité, et est conçue sur le principe bayésien d’estimation
des paramètres, l’ "Approximate Bayesian Computation" (ABC). Notre approche s’appuie
sur très peu d’hypothèses et ne nécessite pas de calculer une vraisemblance, ce qui peut
s’avérer complexe. L’estimation des paramètres est faite pour chaque expérience : il est
donc possible d’évaluer les paramètres individuels des expériences, mais aussi d’analyser
la variabilité globale du mécanisme étudié. Un autre grand intérêt de notre méthode ba-
sée sur l’ABC est qu’elle permet de produire des prédictions par rapport aux différents
scénarios possibles, et ainsi de guider les expériences nécessaires pour explorer plusieurs
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hypothèses. Nous avons appliqué avec succès une version simplifiée de notre méthodologie
à la problématique de l’estimation de la diffusion et la version complète à la modélisation
des oscillations. Les deux problématiques sont très différentes et se placent à des niveaux
de description différents. Le méthodologie proposée est donc polyvalente. Elle s’adapte
facilement à des études qui sont en-dehors du cadre de celles présentées dans cette thèse.
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— En préparation : A. Caranfil, J. Pécréaux, C. Kervrann, Y. Le Cunff, "Modelling
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Aperçu de la thèse

Dans le Chapitre 1, nous expliquons l’importance des études de variabilité pour les mé-
canismes cellulaires et nous introduisons la méthode ABC (Approximate Bayesian Com-
putation), qui constitue une technique-clé pour l’estimation et la prédiction de paramètres.

Dans le Chapitre 2, nous introduisons les méthodes d’imagerie TIRFM et des méthodes
de corrélation associées pour l’estimation de paramètres. La première contribution de
cette thèse, un nouveau modèle de diffusion de spots pour l’estimation de la diffusion
locale au niveau de la membrane cellulaire, est ensuite présentée. La méthode d’estimation
qui en résulte est validée et évaluée sur des données synthétiques, puis sur des données
expérimentales.

Le Chapitre 3 explique les mécanismes mis en œuvre lors de l’anaphase de la division
cellulaire asymétrique, et présente des travaux liés aux oscillations des centrosomes durant
cette phase. Notre deuxième contribution, un modèle mathématique de ces oscillations, est
décrite et validée. Nous présentons alors le cadre d’estimation de paramètres qui constitue
la troisième contribution de cette thèse. Ce cadre d’estimation est utilisé pour identifier des
paramètres de notre modèle d’oscillations, afin de le valider sur des données synthétiques.
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SUMMARY

Preamble

This thesis is the result of a collaboration between two teams: the Serpico project-team
at Inria Rennes and the CeDRE team at IGDR (Institut of Genetics and Development
of Rennes). Methodological aspects, as well as approaches based on modeling, analysis
and image processing, are the common threads that led the two teams to collaborate.
Thus, a new project was born, with the objective of designing an approach based on data
assimilation for cellular mechanisms analysis.

This thesis lies within this collaborative project, with the aim of proposing an ap-
proach for modeling and parameter estimation, for the study of the variability of cellular
mechanisms. My thesis took place at 60 % in the Serpico team and at 40 % in the Ce-
DRE team, under the supervision of Charles Kervrann, Research Director at Inria Rennes
and head of the Serpico team, and Yann Le Cunff, Associate Professor at the University
of Rennes 1, member of the DyLiSS team at IRISA, and member of the CeDRE team
at IGDR during the supervision of this thesis, and in close collaboration with Jacques
Pécréaux, CNRS researcher and head of the team CeDRE at IGDR.

Context

Advances in imaging methods, in particular in fluorescence microscopy, made it pos-
sible to use mathematical modelling to study cellular mechanisms. New mathematical
models have been introduced in order to study global effects within the cell, in order to
reveal general trends of the studied mechanisms. Our understanding of "average" behav-
iors is thus quite good; in contrast, individual behaviors and their influence at the cell level
remain poorly understood. Although local models have also been increasingly designed
to study specific events in the cell, few models or methods exist that can both describe
general behaviors and provide information about local events at small scales.

As a consequence, values of biophysical or molecular parameters are only partially
known. On the one hand, thorough knowledge of average biophysical magnitudes is avail-
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able in the literature, and in vivo experiments made it possible to estimate some molecular
or biophysical parameters that are directly observable from imaging techniques; on the
other hand, other parameters are still partially known at best. These issues highlight the
need for mixed approaches, that would allow, at the same time, to estimate local parame-
ters and to study the interactions between the different actors involved in the mechanism
of interest.

Finally, while predictive studies of cellular mechanisms is not made possible by pre-
existing models, the design of a predictive method would allow to direct the experiments,
by facilitating an a priori understanding of the studied mechanism.

Contributions

This thesis brings three main contributions. The first two contributions are two new
models for the description of cellular mechanisms. The third contribution is a parame-
ter estimation framework that allows to take into account the variability of the studied
mechanism, but also the interactions between the various actors involved in the studied
mechanism. The proposed framework then allows to test several possible scenarios and to
establish predictions for each of these scenarios.

The first contribution deals with the design of a model for estimating the local diffusion
of transmembrane proteins in TIRF imaging. Diffusion is usually estimated in a global
way, in large zones in the cell: a correlation method is used to estimate the apparent
diffusion coefficient, under the assumption of a homogeneous diffusion in the membrane.
This approach does not allow to distinguish local diffusion, which may be induced by
the stochasticity of the elements that compose the membrane and the factors of the
diffusion itself, or by the various structural elements that may slow down or even inhibit
the diffusion of transmembrane proteins. Here we propose a model based on a correlation
method, but without any homogeneity assumption; this model allows to evaluate the
diffusion for each diffusion event, within small image windows. This approach then allows
to estimate diffusion maps, in order to identify areas of high spatial variation of the
diffusion.

The second contribution of this thesis deals with the modeling of centrosome behavior
during cell division, more precisely during the separation of chromosomes. Centrosomes
move to the posterior side of the cell and, in doing so, they oscillate transversely to the
anterior-posterior axis. Existing studies focus on posterior displacement, without taking
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Figure 3 – Illustration of a local spot of diffusion in TIRF imaging.

these oscillations into account. However, not only are these oscillations frequently encoun-
tered during asymmetric divisions, but they also seem to play a key role in division. For
instance, in the case of the C.elegans embryo, their absence is a sign of cell dysfunction,
which can lead to erroneous division, or even to a lack of division and, ultimately, the
death of the cell.

We focus here on these transverse oscillations and propose a new multi-scale model,
which is based on a biophysical approach to the behavior of the centrosome. Force bal-
ance, as well as assumptions validated by the literature, allow us to design a model of
centrosome oscillations during the chromosome separation phase. This model allows one
to better understand the factors that trigger the oscillations, the conditions that are nec-
essary for their existence, and the interactions that are put in place for them to occur. It
notably makes it possible to test several scenarios of absence of oscillation in C.elegans,
by combining information given by the model and experimental observations. Finally, it
enables to represent the oscillations of the posterior centrosome for each embryo, yielding
solid grounds for the study of variability from one embryo to another.

The third contribution of this thesis is the design of a multi-step parameter estimation
framework, based on a mathematical model of the studied mechanism. The first step is
a sensitivity analysis of the model parameters, which allows to group the parameters
for estimation, according to their respective influences on the result. The second step is
the definition of the common characteristics of the parameters, based on both previous
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Figure 4 – Illustration of the transverse oscillations of the spindle poles during
cell division.

knowledge about the studied mechanism and experimental observations. Finally, the last
step consists in estimating the parameters, which is performed “blockwise” according
to the results of the sensitivity analysis. Approximate Bayesian Computation, a Bayesian
method for parameter estimation, is used at this stage. Our method allows to estimate the
parameters as soon as a mathematical model is available; it relies on very few assumptions
and does not require the computation of a likelihood. Parameter estimation is performed
for each experiment: hence, it is possible to evaluate the individual parameters for each
experiment, but also to analyze the global variability of the studied mechanism. Another
key asset of our method is that it allows to produce predictions with respect to the different
possible scenarios and, thus, to guide the experiments so as to efficiently explore various
hypotheses. We applied a simplified version of our methodology to the diffusion estimation
problematic and the complete version to the oscillations modeling problematic. The two
biological issues are widely different, with different description levels. The methodology
we propose is therefore versatile, and easily adaptable to studies beyond the scope of those
presented in this thesis.
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— Submitted to Biological Imaging: A. Caranfil, Y. Le Cunff, C. Kervrann, "BayesTICS:
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— Under preparation: A. Caranfil, J. Pécréaux, C. Kervrann, Y. Le Cunff, "Modelling
the oscillatory behavior in asymmetric division of C. elegans embryo"
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— A. Caranfil, C. Kervrann, "Correlation-based method for membrane diffusion es-

timation in TIRF microscopy". Poster presented at : "France BioImaging : 4th
Annual Meeting, Future Challenges in BioImaging", April 2017, Paris

— A. Caranfil, Y. Le Cunff, C. Kervrann, J. Pécréaux, "Modelling oscillatory be-
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Mathematical Biology Modelling days of Besancon", June 2018, Besancon

— A. Caranfil, Y. Le Cunff, C. Kervrann, J. Pécréaux, "Studying oscillatory behav-
ior in asymmetric division of Caenorhabditis elegans embryo with fluorescence mi-
croscopy". Poster presented at : "QBI 2019 - Quantitative BioImaging Conference",
January 2019, Rennes

— A. Caranfil, Y. Le Cunff, C. Kervrann, J. Pécréaux, "Modelling oscillatory behavior
in asymmetric division of C. elegans embryo". Oral presentation at : "BioHazard -
Stochastic Models for Biology", August 2019, Rennes

Thesis outline

In Chapter 1, we explain the importance of variability studies for cellular mechanisms
and we introduce the Approximate Bayesian Computation method as a key technique for
parameter estimation and prediction.

Chapter 2 introduces TIRFM acquisition methods and associated correlation methods
for parameter estimation. The first contribution of this thesis, namely, a new spot diffusion
model for the estimation of local diffusion at the cell membrane, is then presented, and the
resulting estimation method is validated and assessed on both synthetic and experimental
data.

Chapter 3 explains the mechanisms at work during anaphase in asymmetric cell divi-
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sions, and presents works related to the oscillations of the mitotic spindle poles during this
phase. Our second contribution, a mathematical model of these oscillations, is described
and validated. We then present the parameter estimation framework that constitutes the
third contribution of this thesis. This framework is used for estimating the parameters of
our oscillation model, thus validating it on synthetic data.
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Chapter 1

VARIABILITY AT CELL SCALE, HOW TO

HANDLE IT ?

1.1 Why variability matters

Variability is visible at all biological scales, it is what makes life so diverse, and what
enables cells, organisms, and species to survive in an always changing environment [7].
At the cell scale, variability yields robustness to internal and external fluctuations, and it
provides cells with the means to adapt to rapid changes in the environment [2] [82]. At the
population level, a diverse spectrum of responses by individual specialization is achieved
through variability, and this specialization can either enable a few cells to survive in case
of exceptional conditions, or have them trigger a signal resulting in a collective response
of the population and thus enable the population to survive [3].

Cellular variability is more and more considered as an evolutionary mechanism. J.
J. Kupiec [41] suggested that a Darwinian mechanism for developmental decisions could
include variability, as variation generates different cell fate scenarios and regulation mech-
anisms act as a selection mechanism. In the same vein, H. Dueck et al. [22] proposed that
single cell variation is required, at least in part, for system and population-level func-
tion, as seen in ecological communities where individuals with different roles enable group
functioning. In this context, how does a system manage variability to obtain a coherent
behavior that enables survival [52]? Should variability always be reduced or regulated as
much as possible or is variability a mechanism that systems can use in their advantage
[27]? These ongoing questions have been studied for a long time, and partial answers were
given, but much is still to be uncovered.

Types of cellular variability At the cell scale, variability can be genetic, environ-
mental or due to other factors, this last type being referred to as phenotypic variability
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[3]. Although works on genetic and environmental variability have been carried out for
quite a long time, the interest in phenotypic variability is relatively new. Here, we focus
mainly on phenotypic variability, whether this type of variability should be investigated
and when, and what studying phenotypic variability can tell us about a biological system
such as a cell or a population of cells.

Studying phenotypic variability The origins of phenotypic variability are not well
understood. Studying this type of variability is often complex and difficult to set up in
practice, as it has to be measured over several individuals of a population, or over long pe-
riods of time for a single individual. This can sometimes be technically difficult, especially
for in vivo experiments where some kind of invasive technique is used, and long exposure
can result in a variety of effects that can change the phenotype of interest. The impact of
genetic and environmental factors of variation has to be diminished as much as possible
and, in practice, it is almost impossible to get both genetically identical individuals and
homogenous environmental conditions for each observed individual. Nevertheless, several
studies demonstrated that variability can emerge from molecular mechanisms that are
environment-independent [79] [36]. In addition, it has been established that phenotypic
variation can arise at rates that are far greater than the rates of mutational mechanisms,
or to be unaffected by the inactivation of known mutational mechanisms [28]. Finally, as
variability is often an indirect effect of several complex mechanisms working together in a
complex manner, it is mathematically difficult to take every factor and every correlation
into account, especially because there is not enough prior information about these factors
and their interactions [23] [22]. This last part will probably become less of a problem
as more and more phenotypic studies are conducted, and more hypotheses and different
scenarios are being tested and validated.

Perhaps the most thoroughly studied case of phenotypic variability concerns microor-
ganisms. Microorganisms, such as bacteria, have been studied for a long time, especially
in culture setups. The first studies of variability came from Delbruck, who, in the 1940s,
observed that virus-infected E.coli bacteria display a large variability in the number of
phages produced per cell. He suggested that this variability could be due to the stochas-
ticity of chemical interactions in the cell, and also that predetermined factors, such as cell
size, could have an influence on the observed variability. Since then, studies on microor-
ganisms have helped us better understand how phenotypic variability arises and what its
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consequences are.

Stochastic factors In microorganisms, several molecular causes were found to be at
the origin of cellular variability in genetic and environmental identical conditions. One
of them is the stochasticity of some molecular processes, such as gene expression [24]
and distribution of molecules during cell division [36]. One example of phenotypic vari-
ability due to stochastic gene expression is observed in genetically modified large cells
of Bacilius subtilis that have less variability in the initiation of sporulation than normal
cells [79]. Larger cells result in reduced variation in molecular composition and, in turn,
reduced variability in initial sporulation. Other mechanisms that could be responsible for
phenotypic variability are oscillations and periodic cycles, such as the cell cycle. Cell-cell
interaction, through physical contact or diffusable molecules [76] [70] can also result in
such variability. The phenotype of one cell can influence the phenotype of another cell
[3], as gene expression can be regulated by signaling from nearby cells [91] [13], and vari-
ation in such signaling mechanisms can result in variation in gene expression, and thus,
in phenotypic variability.

Deterministic factors Interestingly, although some of the phenotypic variability is
thought to be due to stochastic mechanisms [67] [45], an increasing number of deter-
ministic mechanisms were found to regulate these stochastic mechanisms. Indeed, gene
expression can be regulated through gene-regulatory networks, in a way that can decrease
or increase variation, and this can be achieved through negative or positive feedback loops.
A regulatory mechanism such as a positive feedback loop [75] can give rise to different
groups in a population exhibiting different phenotypes. On the other hand, negative feed-
back loops can lead to decreased variability in gene expression. In E.coli for example,
negative feedback loops are responsible for low levels of variation in the expression noise
of essential genes, which increases the fitness of the cells and, thus, their growth rates [43]
[90]. Switch-like behaviors, that were previously thought to be greatly due to stochastic
processes, were found to be predetermined by cell’s physiology, growth rate or population
density [71]. B. Snijder and L. Pelkmans proposed in 2011 that phenotypic variability
arises largely from the spectrum of microenvironmental differences in a cell population
and from cell’s history (memory of protein levels or phenotypic state for example), and
that studies of cell-to-cell variability need to distinguish between stochastic origins and
regulated, deterministic origins in order to better understand phenotypic variability.
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Phenotypic variability and population survival Phenotypic variability is a com-
plex trait, that is itself variable between individuals, the underlying mechanisms that
cause such variability being diverse in all kinds of ways: different molecular bases, differ-
ent dynamics and different local and global impact. Phenotypic variability can influence
several crucial aspects of the life of an individual or a population, from development to
reproduction and up to survival [67], [7]. If phenotypic variability is an evolutionary trait,
what are its advantages for a cell, an organism or a population?

Studies from microorganisms gave the first answers to this question. In a fluctuating
environment, microorganisms have several strategies to ensure survival. The most common
theories state that individuals sense their environment and respond to changes through
signal transduction and regulation of gene expression that generate the appropriate phe-
notype to fit the given conditions. In low-fluctuation environment, or if fluctuations occur
over a relatively long period of time, this strategy allows most individuals to survive as
they can all adapt to new conditions through this common mechanism. However, this
might fail when changes in the environment happen too fast for individuals to have the
time to generate optimal phenotypes through this mechanism, or when conditions are too
diverse for all individuals to develop a signal transduction pathway. One possible solution
is to increase phenotypic variability regardless of the environment, so that a variety of
responses is already available in case of rapid fluctuations in the environment: this strat-
egy is known as bet hedging. For example, studies on E.coli show that a small part of
the population has a slow growth rate (these individuals are known as persisters), which
ensures a better tolerance to antibiotics in case of sudden exposure [9]. Moreover, E.coli
cells can switch between normal and persistence states in a stochastic manner [45]. Phe-
notypic switching is also present in B.subtilis that can switch between competence and
sporulation [49] [17], suggesting that phenotypic variability is used as a survival strategy
by this organism. Studies on cancer cells suggest that this mechanism could be used to
switch between noninvasive and invasive states, which enables survival to chemotherapies
that target proliferating cells [34] [93]. Other examples of the use of stochastic pheno-
typic variability includes the metabolic functions, that enable organisms to adapt to new
sources of food [2], or the immune system, that can rapidly respond to changing conditions
thanks to individual phenotypic variability [15] [39].

Generating a large variety of phenotypes can play other crucial roles for group survival
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and functioning. One such role is the production and secretion of molecules by a small
percentage of the population, that can benefit the whole population in case of crisis. In
clonal populations of B.subtilis, some individuals produce a protease called subtilisin E
in food-poor environments. This molecule is costly to produce, so only a few individuals
engage in the production and secretion of subtilisin E. The molecule diffuses freely in
the medium of growth, and it allows the degradation of proteins outside of the cell, its
degradation products serving the whole population. This phenotype has its origins in the
expression of the gene aprE that encodes subtilisin E, and only a minority of individuals
were found to express this gene [87]. A second example is the separation of mutually
exclusive tasks between cells. This is the case for nitrogen fixation and photosynthesis
in cyanobacteria, as the process of photosynthesis damages the enzyme responsible for
nitrogen fixation. These two cellular processes are thus accomplished simultaneously by
different cells, ensuring the proper functioning at the organism level for the cyanobacte-
ria [4]. A third example is the coordination of a population by a small percentage that
responds rapidly to changes in the environment and emits a signal that triggers a group
response. Patil et al [61] studied a population of human dendritic cells infected with the
Newcastle disease virus; they showed that a small fraction of the cells, not only rapidly
activated Ifnb1 in order to fight the disease, but, most importantly, emitted paracrine sig-
nals that further activated Ifnb1 expression in the rest of the population. This mechanism
is crucial for populations of cells that need to balance between several behaviors, such as
the immune system that needs a balance between rapid response to attacks and avoiding
self-toxicity [73] [61]. Finally, phenotypic variability can play a major role in contexts that
demand a fractional response from the population. In the case of binary decision at the
cell scale, phenotypic variability transforms the binary behavior into a continuous behav-
ior at the population level, allowing for fractional or dose-dependent responses, instead
of a switch-like behavior that would be triggered from binary decisions in a uniform pop-
ulation. Several studies suggest that this kind of mechanism is responsible for fractional
death of cancer cells in response to chemotherapy [40] [60], and fractional killing in drug
treatment using apoptosis-inducing receptor ligands such as TRAIL [77] [12] [72].

The consequences of phenotypic variability can be a combination of the previously
mentioned functional roles. For example, the variability in virulence genes expression in
Salmonella leads to both segregation of tasks and generation of persisters during antibiotic
exposure [8]. An increasing amount of evidence shows that phenotypic variability has a
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major functional impact from the cell level to the population level, and that its dynamics
is more complex than it was previously assumed [3].

1.2 Measuring variability : model parameter estima-
tion with Approximate Bayesian Computation
method

Cellular variability can be studied in a variety of ways, depending on the prior knowl-
edge, the dynamics of the observed process, and the type of available data. In this thesis,
we propose a direct approach based on the signal modeling of the molecular process and
the estimation of model parameters using a Bayesian framework. This approach yields
both point estimates and complete distributions of the estimated parameters. Moreover,
the model parameters are linked to molecular characteristics. Thus, the variability of these
parameters provides direct information about the molecular variability. In what follows,
we describe the parameter estimation framework we used to study local variability in
Chapter 2 and population variability in Chapter 3.

The Bayesian approach enables model checking and validation as well as parameter
inference and prediction. In this framework, both the data and the model parameters
are considered as random variables. Then, the conditional probability distribution of the
parameters given some observed data contains all the information needed to analyze the
model; this distribution is called the posterior distribution.

Let us consider a model with a p-dimensional vector of parameters θ ∈ Kp. In order
to compute the posterior distribution of θ, a prior distribution for θ, and the so-called
likelihood of the data must be given. The prior distribution is chosen by the expert, and
can provide information about what is already expected about θ, in which case it is in-
formative; but it can also show that nothing is known about the parameters, and in this
case the prior distribution is noninformative. The latter case can take the form of a uni-
form distribution in the range of allowed possible values for θ. The likelihood gives the
probability for each observation, given the model and parameters θ.

The posterior distribution for θ is generated by updating the prior distribution, through

26



1.2. Measuring variability : model parameter estimation with Approximate Bayesian
Computation method

the likelihood, given the observations yobs. Mathematically, Bayes’ theorem gives the pos-
terior distribution:

π(θ|yobs) = p(yobs|θ)π(θ)∫
p(yobs|θ)π(θ) dθ (1.1)

Although this approach is quite simple in its formal description, the complexity of
the model, or that of the prior, makes it impossible to obtain an exact solution for the
posterior distribution. Most of the times, numerical methods are used to compute the
posterior. However, even in this case, the posterior might be impossible to compute be-
cause the numerical evaluation of the likelihood can be too computationally costly, or even
impossible. The prior distribution is always available as it is chosen, but the likelihood
can be difficult to obtain in a mathematical form, and for some models even impossible;
this is the case for models that directly simulate the data-generating mechanism (models
employing neuron networks for example). Thus, the direct application of Bayesian meth-
ods is restricted to fairly simple models.

To solve this problem, several techniques have emerged that approximate the poste-
rior distribution. Among them, methods that are “likelihood-free” have proved effective
and easy to implement. In this group, the Approximate Bayesian Computation – ABC -
has been of particular interest, as an intuitive and accessible method for model analysis
and inference. The idea behind ABC is to approximate the posterior in an indirect way,
without computing or numerically evaluating the likelihood.

This method was first developed in [81] and [66], and it was since extended in a
number of ways, and for a wide range of applications. A few examples of biology related
applications can be found in [69, 68] (protein networks), [44] (single cell gene expression),
[89, 88] (cell biology), [80] (pathogen transmission), [47, 1] (infectous disease dynamics).

1.2.1 Standard ABC method

The classical posterior distribution is given by formula (1.1). The integral in the de-
nominator of the right-hand side acts as a normalization constant. The posterior is thus
proportional to the product of the likelihood and the prior, i.e.:

π(θ|yobs) ∝ p(yobs|θ)π(θ). (1.2)
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As the likelihood is usually not available, the posterior cannot be computed using this
equation. Instead, the basic ABC method [66, 11] provides a way of approximating the
posterior distribution by only using the model itself. A data set ỹ can be directly obtained
by simulating the model for a given parameter vector θ̃. This vector θ̃ is then considered a
valid approximation of θ if the distance between the simulated data ỹ and the observation
yobs is small enough, i.e. ‖ỹ− yobs‖ ≤ h, with ‖ · ‖ a chosen norm, and h close to 0. In this
case, θ̃ is a sample from the desired posterior distribution. Mathematically, this means
drawing samples (θ̃, ỹ) from the joint distribution defined by:

πABC(θ, y|yobs) ∝ I(‖y − yobs‖ ≤ h)p(y|θ)π(θ), (1.3)

where I(·) is the indicator function defined by I(z) = 1 if z is true, and I(z) = 0 otherwise.
Furthermore, the marginal distribution is given by

πABC(θ|yobs) =
∫
πABC(θ, y|yobs) dy. (1.4)

Then, we have

lim
h→0

πABC(θ|yobs) = lim
h→0

∫
πABC(θ, y|yobs) dy

∝ lim
h→0

∫
I(‖y − yobs‖ ≤ h)p(y|θ)π(θ) dy

=
∫ (

lim
h→0

I(‖y − yobs‖ ≤ h)
)
p(y|θ)π(θ) dy

lim
h→0

πABC(θ|yobs) ∝
∫
δyobs

(y)p(y|θ)π(θ) dy

= p(yobs|θ)π(θ)

∝ π(θ|yobs).

Thus, for h → 0, the θ̃ from the samples (θ̃, ỹ) are drawn from the true posterior distri-
bution. This is the basis of the ABC method.
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Numerical implementation From a practical point of view, the basic ABC algorithm
proceeds as follows:

1. Sample a candidate θ̃ from the prior.
2. Use θ̃ to simulate data ỹ from the model (ỹ having the same dimensions as yobs).
3. Compute the distance ‖ỹ−yobs‖. If the distance is small enough i.e. ‖y−yobs‖ ≤ h,

then θ̃ is accepted as a sample from the posterior. If not, discard θ̃.

The final step of the estimation is to compute the posterior expectation known as
the minimum mean square error (MMSE) estimator and defined as θ̃MMSE = E(θ̃|y) =∫
p(θ̃|y)θ̃ dθ̃. The simplest way to compute the MMSE estimator is to draw samples
{θi}i=1,...,N using the procedure detailed above, then approximate θ̃MMSE by θ̃MMSE =
N−1∑ θi. Then, the samples can be used to compute the posterior distribution for which
the maximum mode equals the maximum a posteriori (MAP) estimator θ̃MAP.

This algorithm requires selection of a suitable norm ‖ · ‖, as well as a choice of h. As
h → ∞, accepted θ̃ come from the prior, and as h → 0, accepted θ̃ is drawn from the
posterior. The choice of h reflects the balance between computability and accuracy. When
h = 0, the algorithm is exact and gives samples from the true posterior.

1.2.2 Generalized ABC method

A generalization of this method is possible, in order to improve the approximation
[74]. The first point is to replace the indicator function I(·) with a standard smoothing
kernel Kh(u) defined by:

Kh(u) = 1
h

K
(
u

h

)
. (1.5)

Kernels are symmetric functions with the following characteristics :
• K(u) ≥ 0 for all u,
•
∫
K(u)du = 1,

•
∫
uK(u)du = 0,

•
∫
u2K(u)du <∞.

In particular, this implies limh→0Kh(u) = δ0(u). The kernel Kh(u) introduces weights for
the accepted θ̃, such that the θ̃ for which h is close to zero will have more weight than
those that make h further from 0.
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The second point is to generate θ̃ from an arbitrarily simpler distribution g(θ) instead
of the prior distribution, and accept θ̃ with probability proportional to Kh(u)π(θ̃)

g(θ̃) . The
reason for this probability of acceptance is that the expression of πABC as a function of g
and p is as follows:

πABC(θ, y|yobs) ∝ Kh(‖y − yobs‖)
π(θ)
g(θ)p(y|θ)g(θ). (1.6)

Hence,
πABC(θ, y|yobs) ∝ Kh(‖y − yobs‖)p(y|θ)π(θ), (1.7)

which is very similar to (1.3). Indeed, the limit behavior of the marginal distribution is
the same:

lim
h→0

πABC(θ|yobs) = lim
h→0

∫
πABC(θ, y|yobs) dy

∝ lim
h→0

∫
Kh(‖y − yobs‖)p(y|θ)π(θ) dy

lim
h→0

πABC(θ|yobs) ∝
∫ (

lim
h→0

Kh(‖y − yobs‖)
)
p(y|θ)π(θ) dy

=
∫
δyobs

(y)p(y|θ)π(θ) dy

= p(yobs|θ)π(θ)

∝ π(θ|yobs)

As a result, by generating samples from the joint distribution, θ̃ is drawn from the true
posterior as h→ 0.

Numerical implementation In practice, the ABC algorithm is modified as follows:

1. Sample a candidate θ̃ from g.

2. Use θ̃ to simulate data ỹ from the model (ỹ having the same dimensions as yobs).

30



1.2. Measuring variability : model parameter estimation with Approximate Bayesian
Computation method

3. Compute the probability of acceptance

Kh (‖ỹ − yobs‖) π(θ̃)
Cg(θ̃)

,

where the constant C ensures that this expression properly defines a probability.
Accept θ̃ with this probability.

Then, similar to the basic ABC method, one can compute the MMSE estimator θ̃MMSE

and the MAP estimator θ̃MAP.

The choice of h is paramount in order to balance computability and accuracy: as
h → ∞, the accepted θ̃ is drawn from g, while, as h → 0, the accepted θ̃ is drawn from
the posterior.

The ABC method requires several thousands of samples in order to compute the pos-
terior distribution. Thus, this method becomes appropriate to use when the data θ̃ is
cheap and fast to simulate.

In this thesis, the ABC method was used for parameter inference, in both Chapter 2
and Chapter 3. The complexity of the developed models has guided us to the ABC method,
along with the other advantages previously mentioned in this section. The adjustments
and improvements made to this method are detailed in the respective sections for each
model.
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Chapter 2

LOCAL VARIABILITY: DIFFUSION

ESTIMATION IN FLUORESCENCE IMAGING

Variability at the level of a single cell is essential for cell adaptability to rapidly chang-
ing environments. Studying the local variability of cellular mechanisms can reveal internal
changes, such as changes in dynamics or in local structure. It can also attest of intrin-
sic variability due to stochastic factors that the cell could use to its advantage. In this
chapter, we study the local variability of the diffusion of transmembrane proteins at the
plasma membrane.

Diffusion is the most common way of transport at the microscopic scale, as it requires
no energy to generate movement. It accounts for 80% of trafficking in the cell, and there
are several crucial processes that rely on it for transport.

One of the key processes relying on diffusion is exocytosis, which consists in the trans-
port of cargo to the cell membrane or to the extracellular medium. The role of exocytosis
is to regenerate the membrane, to eliminate waste from the cell and to transport molecules
synthesized in the cell that will play a role outside of it, such as neurotransmitters, hor-
mones, or enzymes.

The most used technique to image the exocytosis process is Total Internal Reflec-
tion Fluorescence Microscopy, or TIRFM. The principle of this technique, illustrated by
Fig. 2.1, is to use the total reflection of light in order to generate a weak electromagnetic
field that will excite the fluorescently tagged molecules. This technique yields a series of
images showing the evolution in time of the fluorescent intensity during exocytosis. In
particular, the different steps of exocytosis have been accurately described using TIRFM.

In order to estimate the diffusion during exocytosis, a standard approach consists in
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Figure 2.1 – Illustration of TIRF microscopy principle.

combining the TIRF acquisition method with a correlation method. This approach yields
mean characteristic values for diffusion, but does not provide any information about the
local variability of the diffusion between different regions of interest, and in particular, it
does not allow for the estimation of diffusion for isolated diffusion events.

In what follows, we propose a new method that allows for the evaluation of local diffu-
sion and its variability in TIRFM images, using a single sequence from classical acquisition.
Our approach, based on a standard correlation method, uses initial local conditions in or-
der to better describe local diffusion events during the exocytosis process. This method
is well suited for both isolated diffusion events and cases where two or several diffusion
events occur in the region of interest.

Sections 2.1 and 2.2 present the biological context, the acquisition method TIRFM
and describe the general principle of the correlation methods. Section 2.3 presents the
mathematical background of how the method for local diffusion estimation adapted for
TIRFMwas designed. We describe extensive simulations and demonstrate the effectiveness
of our method before applying it to real sequences of TIRFM images depicting the diffusion
of transferrin receptors during exocytosis.

2.1 Context : exocytosis mechanisms

In this section we will study the diffusion of transmembrane proteins during the fusion
phase of exocytosis. The proper diffusion of the transmembrane proteins is important, not
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Figure 2.2 – Illustration of the three steps of exocytosis. Adapted from [16].

only for its role in the fusion process, but also later in the cycle of the transmembrane
proteins, because they serve as receptors for outside molecules that are needed in the cell
and help with their transport inside the cell, via the endocytosis process.

The are two types of exocytosis: constitutive exocytosis and regulated exocytosis. On
the one hand, constitutive exocytosis is used to regenerate the cell membrane and to
eliminate waste from the cell, and is thus a process that takes place in every cell. On the
other hand, regulated exocytosis is triggered by an external factor (such as Calcium ions)
and happens only in specialized cells; its role is to transport specific molecules to the cell
membrane and to deliver molecules outside the cell.

The factors influencing exocytosis, as well as the molecules involved in the mechanism
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and their regulation, can be different between cells, or even between parts of the cells,
and can lead to different types of exocytosis. Nevertheless, there are three major steps
that govern exocytosis, as illustrated by Fig. 2.2:

• transport of the cargo by a vesicle from the donor organelle to the cell membrane;
• attachment of the vesicle to the membrane;
• fusion to the membrane.

The first step of exocytosis is the generation of a vesicle and its transport to the cell
membrane, also called plasma membrane. Vesicles form in a donor organelle, and they are
composed of a membrane that encapsulates the cargo molecules. The vesicle membrane
is made of lipids and associated proteins, just as the plasma membrane, but its specific
composition depends on the type of exocytosis, and its role. Once a vesicle is formed,
it undergoes active transport along the cytoskeleton with the help of molecular motors.
In this stage, microtubules (that are tubular structures of the cytoskeleton) have been
shown to play a crucial role. Indeed, when disrupting microtubule growth with nocoda-
zole in adipocytes (fat cells), the transport of the storage vesicles of GLUT4 (glucose
transporter 4), from the intracellular sites to the plasma membrane, is inhibited [18].

When the vesicle arrives near the plasma membrane, the cortical actin network moves
the vesicle to a fusion site, where the second phase of exocytosis takes place: the attach-
ment of the vesicle to the plasma membrane via specialized docking proteins. These dock-
ing proteins are called SNAREs (soluble N-ethylmaleimide-sensitive factor attachment
protein receptors), and are present both in the vesicle (v-SNARE) and in the membrane
(t-SNARE). These proteins interact in a zipper manner and form a SNARE complex that
will attach the vesicle to the membrane. The formation of the SNARE complex is crucial
for attachment, as shown in 2002 by a study on pancreatic beta cells [57]. Cells were
treated so as to reduce the interactions between SNARE proteins, which resulted in a
reduction of proper attachment of secretory vesicles.

During the attachment phase, the actin network and various proteins regulate the
attachment of the vesicle. Disruption of actin has been shown to inhibit attachment of
secretory vesicles in neuroendocrine PC-12 cells [42] and adrenal chromaffin cells [58].
Myosins, that are molecular motors associated with actin filaments, were shown to play
an important role in the transport along the actin network, and in the attachment of
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vesicles. Several studies show that reduced expression or defective Myosin Va results in
reduced transport and attachment of secretory vesicles [86, 38]. Through its dynamic be-
havior, the actin network can either enhance the movement of the vesicles, or diminish
their movements and even act as a barrier to the plasma membrane. This makes actin
and the associated molecular motors an important regulatory system in the attachment
phase of exocytosis.

Once a vesicle is correctly attached, it can fuse to the plasma membrane. The mem-
brane of the vesicle becomes a part of the plasma membrane, thus regenerating the cell
membrane, and, depending on the type of exocytosis, molecules can be delivered outside
the cell. In this phase, several molecular actors are thought to play an important role.
The dynamics of the actin network was shown to play a role in the stability of the fusion
pore. Indeed, the overexpression of B-actin, actin-related protein 3 or mAbp1 in PC-12
cells, as well as high concentrations of cytochalasin D (that inhibits actin filament poly-
merization), slow the delivery of big cargo molecules in Ca2+ regulated exocytosis [26].
Another molecular actor that was shown to play an important role in vesicle fusion in
Ca2+ regulated exocytosis is the Synaptotagmin proteins family. In Syt-1 shRNA PC-12
cells (that express partial loss of function), there was a reduction of fusion pore opening
and expansion that resulted in a reduction in vesicle fusion events in Ca2+ regulated ex-
ocytosis [48]. Other studies showed that Synaptotagmins are involved in the regulation
of vesicle fusion, either by inducing positive membrane curvature [53], or by modulat-
ing fusion pore opening [84]. The Synaptotagmin proteins are transmembrane proteins:
they are permanently attached to the membrane, and span it entirely. Transmembrane
proteins are present in the plasma membrane as well as in the vesicle membrane, and
they are thought to have several roles in exocytosis: they help breaking through the cell
membrane, they keep the cargo molecules in place during transport, and once the fusion
begins, they diffuse in the plasma membrane, taking the cargo molecules alongside and
helping them get outside of the cell.
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2.2 Introduction to image correlation spectroscopy
and TIRFM methods

2.2.1 Principle of Image Correlation Spectroscopy

Fluorescence Correlation Spectroscopy (FCS), illustrated by Fig. 2.3, is an acquisition
and analysis method introduced in 1974 [50, 25, 51], when techniques for tagging molecules
with fluorescent particles first started to emerge. The aim of this method is to capture
the fluorescent signal from the tagged molecules with an optical system and then use
this signal to measure the concentration of particles in the region of focus. The acquired
fluorescent signal is a one-dimensional signal, so the analysis is naturally performed with
a correlation method, a fairly easy method to implement, and popular in signal processing.

The acquisition setup in FCS is relatively simple. A laser beam, previously focused to
a point (using a confocal microscope, usually), is sent to the region of interest. This laser
beam excites the tagged molecules that further emit photons. The photon count gives the
fluorescent signal, that is captured by an optical sensor and transformed into a digital
signal afterwards. This 1D signal depicts the evolution over time of the intensity of the
fluorescence.

It is generally assumed that the concentration of particles in the studied region of
interest (ROI) is low and only one molecule at a time resides in the ROI, so that the
photon count is unambiguously coming from a single molecule. The ROI also needs to
be free of background so there is no possible fluorescent signal interfering with the emit-
ted signal. Because the excitation is obtained directly with a laser beam, the probability
of photobleaching of the fluorophores is high. A low intensity laser beam is generally
recommended. Another consequence of the possible photobleaching is that the time of
acquisition must be short before molecules start photobleaching, which means that only
fast dynamics can be studied. Lastly, the signal-to-noise ratio increases with time, so FCS
is limited to short acquisition times.

In classical FCS, one assumes that the intensity of the emitted fluorescent light de-
pends on the local concentration of the fluorophores and the laser intensity profile. Once
the intensity of emitted light is acquired, the autocorrelation of the fluctuations of the
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Figure 2.3 – Principle of the FCS method. Left: schematic experimental setup. Center:
acquired fluorescent signal. Right: autocorrelation of the signal. Adapted from [29].

signal is computed. Depending on the assumptions on the observed molecule population,
the theoretical form of the autocorrelation can differ.

Two methods derived from FCS have rapidly emerged, to overcome its limitations in
some sense:

ICS - Image Correlation Spectroscopy [64]: ICS uses the same principle as FCS but
the laser moves in space, such that a larger zone is covered. With ICS, an im-
age is acquired showing different fluorescent points corresponding to fluorescent
molecules. The spatial correlation of this image is then used to access information
about the observed population. Using ICS, one can compute the average number
of molecules in the image domain as well as the average concentration of the pop-
ulation. The acquisition in ICS is fast and has less problems with photobleaching
and bad signal-to-noise ratio. However, as for FCS, the number of molecules in the
ROI must be low and the image must be free of background.

TICS - Temporal Image Correlation Spectroscopy [92]: Based on the same principle
as FCS and ICS, TICS combines their advantages; it gives access to the concentra-
tion of the population in the ROI, as well as the dynamical properties such as the
characteristic time of diffusion. It also gives the percentage of immobile particles
in the region of observation. TICS can be applied to both low and fast dynamical
populations, and it can detect diffusion and flow at the same time. TICS uses laser
scanning as ICS to cover a whole region, and it goes further by acquiring a set
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Figure 2.4 – Principle of total reflection of light and evanescent wave.

of images that show the evolution of the studied population in time, in the ROI.
TICS uses the same temporal correlation as FCS, but for a 2D signal, that is, an
image. As for FCS, the concentration of the observed population must be low.

2.2.2 Total Internal Reflection Fluorescence Microscopy

Total Internal Reflection Fluorescence Microscopy (TIRF), is used to capture images
of fluorescently tagged molecules within a thin layer, with a depth of 70-250 nm, at the
surface of the illuminated plane. This method can be used to illuminate large areas, such
as an entire cell or even several cells, as it does not use a focused laser. TIRF imaging has
very little background and minimum impact on the live cell. As the exposure of the cell(s)
to light is minimal, it is possible to acquire long 2D movies. Therefore, it is an excellent
method for getting images of near-surface single molecules and their displacements, pop-
ulations of molecules and their dynamics, as well as distinct structures such as vesicles,
granules, or contact surfaces between domains.

TIRFM uses the total reflection of light and the associated electromagnetic radiation,
called evanescent wave, as the bases of the imaging method (see Fig. 2.4). When a light
beam goes from a dense medium (high refractive index) to a less dense medium (low
refractive index), and the angle between the beam and the contact surface (the incidence
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Figure 2.5 – TIRF microscopy setup. Adapted from [59].

angle) is greater than the so-called critical angle (angle at which the light reflects com-
pletely, and does not refract through the interface and into the low density medium), the
light is totally reflected, so the light returns to the medium it came from, but a part of
the energy of the light still goes into the second medium. This energy is a weak electro-
magnetic field at the interface between the two mediums that propagates into the second
one with exponential decay in intensity with distance from the interface, and with the
same frequency as the light beam: this field is called the evanescent wave. The depth of
the evanescent wave is short, but sufficient to excite the fluorescent molecules that are
near the surface; on the contrary, it is not sufficient to excite fluorescent molecules that
are inside the cell, in the background of the illuminated field.

One possible setup of the TIRFM method, illustrated by Fig. 2.5, is as follows. The
cell is placed on a glass, that is a medium denser than the cell, and an intermediate layer
such as oil can be used to reduce even further the depth of the evanescent field. A laser
beam points toward the glass, and the fluorescent signal emitted by the tagged molecules
is focused and captured by an optical fiber, to be transformed further down the line into
an electrical signal by an Avalanche photodiode (APD); this signal is recorded and pro-
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cessed by a digital correlator.

In the case of the study of the late stage of exocytosis, TIRFM presents all the assets
needed. The fact that the tagged proteins are excited by an evanescent wave, instead of
a direct light beam, makes this method less prone to noise and background signal, and
it does not affect the physiology or movement of the proteins as the excitation from the
evanescent wave is weak. This enables long acquisition times, which makes it possible to
study slow processes such as diffusion. Last but not least, the method is efficient with
a high acquisition rate (50 – 100 ms/image), and its costs are low compared to other
imaging methods.

Through TIRFM, it is possible to identify all important stages of exocytosis. Fluores-
cently tagged vesicles appear in TIRF as spots of light, more or less bright depending on
their location/depth from the surface (i.e., the contact surface between the cell and the
glass). The first phase, the transport phase, corresponds to a roughly linear movement
of a spot in time, while the vesicle is being transported to the plasma membrane via
cytoskeletal elements of the cell. When they arrive near the plasma membrane, vesicles
can undergo attachment. This second phase of exocytosis is visible in TIRFM images as
a restricted movement of the spot, that keeps a constant intensity throughout this phase.
Several studies, though, show that stationary or restricted movement is not enough for the
vesicle to undergo fusion after this phase. A regulatory step is probably involved, between
the attachment and the fusion, such as the calcium concentration of the specific fusion site
at the membrane. The last phase of exocytosis is the fusion to the plasma membrane. This
phase is easily identified in TIRFM images as a sudden increase or burst in fluorescent
intensity, thought to be due to higher excitation of the fluorophores at the exterior part
of the cell than in the inside, or to the change in pH between the two mediums; the fluo-
rescence of the tagged proteins is increased almost twofold, and this burst in intensity is
followed by a spreading of the fluorescent signal as the proteins diffuse in a lateral manner
in the plasma membrane. The study of this last phase in different cell types and under
different conditions help better understand the fusion phase and its regulation. Thanks
to TIRFM, several types of fusion were identified: from a “kiss and run” type where some
of the cargo of the vesicle is released but the vesicle does not fuse to the membrane, to
“mixed kiss and run” type where some of the cargo is released and a part of the vesi-
cle fuses to the membrane, to a “full kiss and run” type where all cargo is released and
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Figure 2.6 – Illustration of a TIRFM sequence depicting TfR protein diffusion,
as well as a selected diffusion event to be analyzed.
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the entire vesicle fuses to the membrane. Finally, for some cell types, when several vesi-
cles arrive at the same fusion spot, they may fuse with each other and with the membrane.

The different types of fusion were qualitatively studied thanks to TIRF microscopy
and the three main types were identified. However, quantitative methods for the local
characterization of the different types of fusion from TIRFM imaging data are still lack-
ing. Moreover, measures of local changes in the membrane can provide significant insights
into the regulatory mechanisms involved in exocytosis. Here, we propose a quantitative
method for the local characterization of diffusion during fusion in exocytosis, from stan-
dard TIRFM images.

2.3 Local diffusion estimation at the cell membrane

In this section, we first describe the mathematical model of local diffusion and propose
a correlation-based method for diffusion estimation. Then, we analyze the behavior of the
model in the space of possible parameter values. We validate the estimation method on
data obtained by directly simulating the model. Finally, we show extensive results on
synthetic images of local diffusion, before applying our method to real TIRFM images
depicting Transferrin Receptor proteins (TfR) diffusion at the plasma membrane after
vesicle fusion (see Fig. 2.6). The estimation method was developed in Matlab 9.4.

2.3.1 ABC-like method for local diffusion estimation in TIRF
images

2.3.1.1 Model for spot diffusion

In TIRFM images, flourescently-tagged vesicles appear as spots of light, and fusion
is identified by a burst in fluorescent intensity followed by a spreading of the fluorescent
signal as proteins diffuse in the plasma membrane. In what follows, we describe the model
for the fluorescent intensity of diffusing spots as proposed in [10], which will later be used
to estimate local diffusion.

Let

 f : Ω× N→ R

(p, t) 7→ f(p, t)
be the fluorescent intensity, with Ω ⊂ R2 the ROI in the
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image domain. The intensity at point p = (x, y) ∈ Ω and time t is noted f(p, t).

The intensity f is assumed proportional (with factor B) to the convolution (denoted ∗)
of the microscopic number density (concentration of molecules) C, and the instrumental
point spread function (PSF) h:

f = B (C ∗ h) , (2.1)

where B = ρεQ, ρ is the efficiency of the instrument to collect photons, ε is the molecular
absorption coefficient and Q is the quantum yield of the fluorophore.

Diffusion of transmembrane proteins is mainly modeled by lateral diffusion in the
membrane [6], and it can be described by Fick’s second law [65]:

∂C(p, t)
∂t

= D∆pC(p, t)

where C(p, t) denotes the concentration of molecules at time t and location p ∈ Ω ⊂ R2,
and ∆ is the Laplacian operator. Here, the diffusion coefficientD is assumed to be constant
over Ω.

In TIRFM images, a vesicle appears to be smaller than the pixel size before fusion.
We thus assume that all tagged proteins are concentrated in p0 ∈ Ω, at initial time t0,
that is:

C(p, t0) = C0δ(p− p0) (2.2)

where C0 is the initial concentration of molecules and δ is the Kronecker symbol.

The closed-form solution to this partial derivative equation is [21]:

C(p, t) = C0

4π(t− t0)D exp
(
‖p− p0‖2

4(t− t0)D

)
.

We obtain:

C(x, y, t) = C0

4π(t− t0)D exp
(
− x2 + y2

4(t− t0)D

)
, ∀ t > t0.

We consider that the PSF h is approximated by a Gaussian function with isotropic
bandwidth σPSF, that is:

h(p) = 1
2πσ2

PSF

exp
(
− ‖p‖

2

2σ2
PSF

)
.
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This writes:
h(x, y) = 1

2πσ2
PSF

exp
(
−x

2 + y2

2σ2
PSF

)
.

One can then compute the fluorescent intensity using (2.1), that yields :

f(x, y, t) = B × C0

2π (2(t− t0)D + σ2
PSF) × exp

(
− x2 + y2

4(t− t0)D + 2σ2
PSF

)
. (2.3)

Finally, the expression of the fluorescent intensity at spatial position p given an initial
spot position located at p0 is given by :

f(p, t) = A0

2(t− t0)D + σ2
PSF

× exp
(
− ‖p− p0‖2

4(t− t0)D + 2σ2
PSF

)
. (2.4)

with A0 = C0B

2π .

2.3.1.2 Autocorrelation of the fluorescent intensity in TIRF images

In the TICS method, one calculates the temporal autocorrelation of the fluorescent
intensity, which is further used to compute the concentration of the population and the
characteristic time of diffusion. In this method, one assumes that the process associated
with the image sequence is stationary. Or, considering (2.2), this assumption does not
hold in our modeling framework, and we can not use the classical TICS formula. Here,
we propose two new models for the temporal autocorrelation of the fluorescent intensity:
G1 for images with uniform background, and G2 for non-uniform background. We use
the model for the fluorescent intensity described above in conjunction with the TICS ap-
proach to establish our models. Our approach has two main advantages : it uses classical
TIRF sequences so there is no need for new data acquisition, and the models allow for
both local and global estimation of the apparent diffusion.

Model G1 for uniform background

Here, the following expectation formula for the autocorrelation function is used:

G1(t, τ) = 〈 f(t+ τ)f(t) 〉
〈 f 〉2t

, (2.5)
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where 〈 · 〉 and 〈 · 〉t denotes the spatial and spatio-temporal averages respectively, and τ
is the temporal lag.

Using the expression of the fluorescent intensity adapted to TIRF sequences, given by
(2.4), with t0 = 0 (without loss of generality), let us compute G1(t, τ):

G1(t, τ) = 〈 f(t+ τ)f(t) 〉
〈 f 〉2t

=

〈
A2

0
(2Dt+ σ2

PSF)(2D(t+ τ) + σ2
PSF) exp

(
− ‖p− p0‖2

2
4Dt+ 2σ2

PSF

− ‖p− p0‖2
2

4D(t+ τ) + 2σ2
PSF

) 〉
〈

A0

2Dt+ σ2
PSF

exp
(
− ‖p− p0‖2

2
4Dt+ 2σ2

PSF

) 〉2

Let σ2(t) = 2Dt+ σ2
PSF. Then, we get

G1(t, τ) =

〈
A2

0
σ2(t)σ2(t+ τ) exp

(
−‖p− p0‖2

2
2σ2(t) − ‖p− p0‖2

2
2σ2(t+ τ)

) 〉
〈

A0

σ2(t) exp
(
−‖p− p0‖2

2
2σ2(t)

) 〉2

= A2
0

σ2(t)σ2(t+ τ)
σ4(t)
A2

0

〈
exp

(
−‖p− p0‖2

2 (σ2(t) + σ2(t+ τ))
2σ2(t)σ2(t+ τ)

) 〉
〈

exp
(
−‖p− p0‖2

2
2σ2(t)

) 〉2

= σ2(t)
σ2(t+ τ)

〈
exp

(
−‖p− p0‖2

2 (σ2(t) + σ2(t+ τ))
2σ2(t)σ2(t+ τ)

) 〉
〈

exp
(
−‖p− p0‖2

2
2σ2(t)

) 〉2
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G1(t, τ) = σ2(t)
σ2(t+ τ)

1
|Ω|

∫
p∈Ω

exp
(
−‖p− p0‖2

2 (σ2(t) + σ2(t+ τ))
2σ2(t)σ2(t+ τ)

)
dp[

1
|Ω|

∫
p∈Ω

exp
(
−‖p− p0‖2

2
2σ2(t)

)
dp
]2

= |Ω| σ2(t)
σ2(t+ τ)

∫
p∈Ω

exp
(
−‖p− p0‖2

2 (σ2(t) + σ2(t+ τ))
2σ2(t)σ2(t+ τ)

)
dp[∫

p∈Ω
exp

(
−‖p− p0‖2

2
2σ2(t)

)
dp
]2 .

Moreover, the integral of the exponential on the domain Ω is approximately equal to
the integral on R2 when p is far from p0, which results in a Gauss integral. It follows that

G1(t, τ) ≈ |Ω| σ2(t)
σ2(t+ τ)

2π σ2(t)σ2(t+ τ)
σ2(t) + σ2(t+ τ)

1
[ 2π σ2(t)]2

,

≈ |Ω|
2π (σ2(t) + σ2(t+ τ)) ,

G1(t, τ) ≈ |Ω|
4π (Dτ + 2Dt+ σ2

PSF) .

(2.6)

Thus, for the process we are modeling, the autocorrelation function depends on both the
time lag τ and time t.
In model G1 (2.6), there are two parameters to estimate: the diffusion coefficient D and
the variance σ2

PSF of the PSF. The parameter |Ω| depends on the data and its default value
will be discussed in Section 2.3.2.

Model G2 for non-uniform background

In the case of non-uniform background, the following expectation formula for the
autocorrelation function is used:

G2(t, τ) = 〈 δf(t)δf(t+ τ) 〉
〈 f 〉2t

, (2.7)

where δf(t) = f(t)− f̄t is the fluorescent intensity fluctuation around the temporal aver-
age value, and f̄t = 1

T−t
∫ T
t f(θ) dθ.
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Let us now calculate the explicit formula for G2(τ) :

G2(t, τ) = 〈 δf(t)δf(t+ τ) 〉
〈 f 〉2t

=
〈
(
f(t)− f̄t

) (
f(t+ τ)− f̄t

)
〉

〈 f 〉2t

= 〈 f(t)f(t+ τ) 〉
〈 f 〉2t

− 〈 f(t+ τ)f̄t 〉
〈 f 〉2t

− 〈 f(t)f̄t 〉
〈 f 〉2t

+ 〈 f̄
2
t 〉

〈 f 〉2t
.

Let us now calculate each term of the right hand side of the previous equation. The
first term was already explicitly calculated for the first model, so :

〈 f(t)f(t+ τ) 〉
〈 f 〉2t

= G1(t, τ) ≈ |Ω|
4π (Dτ + 2Dt+ σ2

PSF) . (2.8)

For the second term :

〈 f(t+ τ)f̄t 〉 =
〈

A0

2D(t+ τ) + σ2
PSF

exp
(
− ‖p− p0‖2

2
4D(t+ τ) + 2σ2

PSF

)
1

T − t

∫ T

t
f(θ)dθ

〉

〈 f(t+ τ)f̄t 〉 = A0

(2D(t+ τ) + σ2
PSF)(T − t)

1
|Ω|

∫
p∈Ω

exp
(
− ‖p− p0‖2

2
4D(t+ τ) + 2σ2

PSF

)∫ T

t
f(θ)dθ dp

= A0

σ2(t+ τ)(T − t)|Ω|

∫
p∈Ω

∫ T

t
exp

(
− ‖p− p0‖2

2
2σ2(t+ τ)

)
A0

σ2(θ) exp
(
−‖p− p0‖2

2
2σ2(θ)

)
dθ dp,

where σ2(t) = 2Dt + σ2
PSF. By inverting the two integrals, and using the Gauss integral,

as done previously for the first model, as well as a change of variable at the end (x =
D(θ + t+ σ) + σ2

PSF, dx = Ddθ) one obtains :

〈 f(t+ τ)f̄t 〉 = πA2
0

D|Ω|(T − t) ln D(t+ T + τ) + σ2
PSF

D(2t+ τ) + σ2
PSF

(2.9)
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In the same way, one obtains :

〈 f(t)f̄t 〉 = πA2
0

D|Ω|(T − t) ln D(t+ T ) + σ2
PSF

2Dt+ σ2
PSF

. (2.10)

For the third term, we have

〈 f̄t f̄t 〉 =
〈

1
(T − t)2

∫ T

t

f(θ1)dθ1

∫ T

t

f(θ2)dθ2

〉

=
1

|Ω|(T − t)2

∫
p∈Ω

∫ T

t

∫ T

t

f(θ1)f(θ2)dθ1dθ2dp

=
1

|Ω|(T − t)2

∫
p∈Ω

∫ T

t

∫ T

t

A0

2Dθ1 + σ2
PSF

exp
(
−
‖p− p0‖22

4Dθ1 + 2σ2
PSF

)
A0

2Dθ2 + σ2
PSF

exp
(
−
‖p− p0‖22

4Dθ2 + 2σ2
PSF

)
dθ1dθ2dp

=
A2

0
|Ω|(T − t)2

∫
p∈Ω

∫ T

t

∫ T

t

1
σ2(θ1)

exp
(
−
‖p− p0‖22
2σ2(θ1)

)
1

σ2(θ2)
exp
(
−
‖p− p0‖22
2σ2(θ2)

)
dθ1dθ2dp,

where σ2(θ) = 2Dθ+σ2
PSF. As previously, by inverting the integrals, and using the Gauss

integral, as well as a triple change of variable (first x = D(θ1 + θ2) + σ2
PSF, dx = Ddθ1,

then y = D(t+ θ2) +σ2
PSF, dy = Ddθ2 and then z = y+D(T − t), dz = dy) one obtains :

〈 f̄t f̄t 〉 = πA2
0

D2|Ω|(T − t)2

[ (
2DT + σ2

PSF

)
ln
(

2DT + σ2
PSF

D(T + t) + σ2
PSF

)
+
(
2Dt+ σ2

PSF

)
ln
(

2Dt+ σ2
PSF

D(T + t) + σ2
PSF

)]
.

(2.11)
The last term is obtained as follows:

〈 f 〉2t =
〈

A0

2Dt+ σ2
PSF

exp
(
− ‖p− p0‖2

2
4Dt+ 2σ2

PSF

) 〉2

=
 ∫

p∈Ω

A0

2Dt+ σ2
PSF

exp
(
− ‖p− p0‖2

2
4Dt+ 2σ2

PSF

)
dp
2

=
 ∫

p∈Ω

A0

σ2(t) exp
(
−‖p− p0‖2

2
2σ2(t)

)
dp
2

.

Again, the integral of the exponential is the Gauss integral, which yields :

〈 f 〉2t = 4π2A2
0

|Ω|2 . (2.12)
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Finally, the autocorrelation model for non-uniform background is defined as:

G2(t, τ) = 〈 f(t)f(t+ τ) 〉
〈 f 〉2t

− 〈 f(t+ τ)f̄t 〉
〈 f 〉2t

− 〈 f(t)f̄t 〉
〈 f 〉2t

+ 〈 f̄
2
t 〉

〈 f 〉2t

= G1(τ)−
πA2

0
D|Ω|(T−t) ln D(t+T+τ)+σ2

PSF
D(2t+τ)+σ2

PSF
4π2A2

0
|Ω|2

−
πA2

0
D|Ω|(T−t) ln D(t+T )+σ2

PSF
2Dt+σ2

PSF
4π2A2

0
|Ω|2

+
πA2

0
D2|Ω|(T−t)2

[
(2DT + σ2

PSF) ln
(

2DT+σ2
PSF

D(T+t)+σ2
PSF

)
+ (2Dt+ σ2

PSF) ln
(

2Dt+σ2
PSF

D(T+t)+σ2
PSF

)]
4π2A2

0
|Ω|2

.

After all simplifications, one gets:

G2(t, τ) = G1(t, τ) + |Ω|
[

1
4πD(T − t) ln

(
Dτ + 2Dt+ σ2

PSF

Dτ +D(T + t) + σ2
PSF

)

+ 2DT + σ2
PSF

4πD2(T − t)2 ln
(

2DT + σ2
PSF

D(T + t) + σ2
PSF

)
+ D(T + t) + σ2

PSF

4πD2(T − t)2 ln
(

2Dt+ σ2
PSF

D(T + t) + σ2
PSF

)]
.

(2.13)

Let us define :

K1(t, τ) = 1
4πD(T − t) ln

(
Dτ + 2Dt+ σ2

PSF

Dτ +D(T + t) + σ2
PSF

)
, (2.14)

and

K2(τ) = 2DT + σ2
PSF

4πD2(T − t)2 ln
(

2DT + σ2
PSF

D(T + t) + σ2
PSF

)
+D(T + t) + σ2

PSF

4πD2(T − t)2 ln
(

2Dt+ σ2
PSF

D(T + t) + σ2
PSF

)
.

(2.15)
Finally, we get

G2(t, τ) = G1(t, τ) + |Ω| (K1(t, τ) +K2(t)) . (2.16)

As in the case of uniform background, the autocorrelation function depends on both the
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time lag τ and time t.
In model G2 (2.13), the parameters to be estimated are: the diffusion coefficient D and
the variance σ2

PSF of the PSF. The parameters |Ω| and T depend on the data and their
default values will be discussed in Section 2.3.2.

2.3.1.3 Local diffusion estimation

In our approach, a simple to implement version of the ABC method was used. Here,
a simulation of the model is directly and quickly computed with formulas (2.6) or (2.13).
For a typical diffusion event, the algorithm requires 100 000 evaluations of the model and
takes about 1 minute for analyzing a single spot. The different steps of the method are
the following ones :

Step 0 : Compute the autocorrelation of the fluorescent intensity in the ROI using the
discrete form of (2.5) for model G1, or (2.7) for model G2, that is :

z1(t, τ)|t=0 = 1
W ×H

W∑
i=1

H∑
j=1

fi,j(t+ τ)fi,j(t)
f̄ 2
t

z2(t, τ)|t=0 = 1
W ×H

W∑
i=1

H∑
j=1

(fi,j(t+ τ)− f̄)(fi,j(t)− f̄)
f̄ 2
t

respectively, where (i, j) denotes a pixel in Ω, W and H are the width and height of
the ROI (|Ω| = W × H), f̄ = 1

T |Ω|
∑W
i=1

∑H
j=1

∑T−1
k=0 fi,j(k), and f̄t = 1

|Ω|
∑W
i=1

∑H
j=1 fi,j(t),

t ∈ {0, ..., T − 1}.
The following default values were used :

• ROI size : |Ω| = 20× 20 pixels.
• Image length T : 50 images (or more) for both G1 and G2. Ideally, 300 images for
G2.

Step 1 : Generate θ = (D, σ2
PSF) from prior, where the parameters D and σ2

PSF are
generated independently.

• Prior distribution for both D and σ2
PSF: Uniform D ∼ U [0.1; 2] and σ2

PSF ∼ U [0.1; 2].
• Number of samples θ = (D, σ2

PSF) is 100000 samples.

Step 2 : Compute simulations and compare with the autocorrelation computed at
Step 0.
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• Compute simulations G1 and G2 for each of the 100000 samples.
• Compute the error (in terms of L2 distance) between G1 and G2 and the autocor-

relation from the observed sequence.

Step 3 : Accept "the best" (in terms of L2 error) simulations and compute the estimates
for parameters D and σ2

PSF.

• Accept the best 1% of the simulations.
• Keep the corresponding parameters of the best 1% simulations, and compute the

estimates θ̃MAP and θ̃MMSE.

In practice, the estimates are computed as follows :

• θ̃MMSE = 1
Nsamples

∑
θ̃ where Nsamples = 100000 and θ̃ represents the accepted sam-

ples corresponding to the best 1% of the simulations;
• θ̃MAP = argminθ errorL2(Autocorrobs, G1/2).

2.3.2 Model Validation

The final objective of this part was the implementation and first validation of a proof
of concept of the proposed method in Matlab. The results shown in the remainder of this
Chapter were obtained in this context. A complete statistical analysis on large samples
was out of the scope of this thesis, but would be required for the full validation of the
method.

2.3.2.1 Analysis of the expected autocorrelation function

The aim of this section is to analyze the influence of the parameters on the expected
autocorrelation function, for the two models derived in the previous section : Model G1 is
suitable for isolated, single diffusing spots, without background, while Model G2 is suit-
able for diffusing spots with background and possible other diffusion spots in the region
of interest.
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We performed experiments with the following default parameters:


D = 0.5 pixels2/frame

σ2
PSF = 1 pixels2

|Ω| = 400 pixels2

T = 50 frames

(2.17)

where D is the diffusion coefficient, σ2
PSF is the standard deviation for the PSF, |Ω| is the

image size, and T is the length of the sequence.

The parameters of interest are D and σ2
PSF for both models. Other parameters of interest

are |Ω| and T that will be discussed when appropriate.

Expected autocorrelation function with model G1 The influence of the parame-
ters on the expected autocorrelaton function with model G1 (2.6) is studied here.

The influence of the parameters D and σ2
PSF on the autocorrelation function is first an-

alyzed. Figure 2.7 shows the autocorrelation function G1 when parameters D and σ2
PSF

are varying in the same time. 100 pairs of values (D, σ2
PSF) were randomly chosen, with

D ∈ [0.1; 1.5] and σ2
PSF ∈ [0.5; 2]. The starting value of G1 is significantly influenced by

the variation of the parameters, and it reaches higher values than in the case of a single
varying parameter (see Figs. A.1a and A.1b). The slope of the the autocorrelation curve
is also influenced in a significant way, and can be steeper than in the case of single varying
parameter, meaning that the combined impact of the two parameters can lead to faster
dynamics. Meanwhile, the end value of G1 is barely influenced by the variation in these
parameters.

Another parameter of interest in G1 is the size |Ω| of each image. We tested the influence of
the ROI size as follows: 100 values were randomly chosen between 50 and 2500, the other
parameters being fixed to default values. Figure 2.8 shows the autocorrelation function
when parameter |Ω| varies. The impact of |Ω| on G1 is global, as expected from (2.6),
and it acts as a stretching parameter. This makes sense, as it is a multiplicative factor in
the right-hand side of (2.6): it amplifies the effects of D and σ2

PSF in the same way. The
starting values of G1 are thus higher, and the dynamics is faster, for larger values of |Ω|.
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2.3. Local diffusion estimation at the cell membrane

Figure 2.7 – Influence of model parameters on the autocorrelation function for
model G1. Each curve illustrates the simulation of model G1 for a pair of values (D,σ2

PSF),
all other parameters being fixed to the default values.

Figure 2.8 – Influence of the parameter |Ω| on the autocorrelation function for
model G1. Each curve illustrates the simulation of the model for a given value of |Ω|, all
other parameters being fixed to the default values.
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Expected autocorrelation function with model G2 We then analyzed the influence
of the parameters on the expected autocorrelaton function with model G2 (2.13).

As for modelG1, the joint influence of the parametersD and σ2
PSF is first studied. Figure 2.9

shows the autocorrelation function when D and σ2
PSF are jointly simulated. As previously,

100 pairs of values (D, σ2
PSF) were randomly chosen, with D ∈ [0.1; 1.5] and σ2

PSF ∈ [0.5; 2].
The effects on model G2 are different than on model G1. While the starting value is still
influenced by the joint variation of the parameters, the range of variation is smaller than
for model G1. Meanwhile, the influence on the ending value of G2 is slightly higher. The
slope of the autocorrelation curve varies mostly in the same way as for model G1.
The influence of the ROI size |Ω| is shown in Fig. 2.10a. |Ω| has a similar influence on
G1 and G2, it multiplies the effects of the variation of D and σ2

PSF. The influence of the
length T of the sequence, is shown in Fig. 2.10b. The value of T has an impact on the
dynamics of G2. This could affect the estimation of the parameters, in particular when T
is small (less than 100). When T is large, i.e., close to 300, the impact is much weaker. In
conclusion, T should be chosen large enough when using the model G2 in order to reduce
its influence on the estimation.

2.3.2.2 Validation of the parameter estimation method

In this section, we examine the performance of models G1 and G2. The proposed es-
timation method is applied to simulated data obtained directly from (2.6) and (2.13).
We assess the parameter estimation error for each model. We first show the estimation
results for model G1, then for model G2. The parameters of interest D and σ2

PSF are jointly
estimated while the other parameters are fixed to default values.

The default parameters are set as follows:


|Ω| = 400 pixels2

T = 50 frames

Nsamples = 20000

R = 0.01

(2.18)
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2.3. Local diffusion estimation at the cell membrane

Figure 2.9 – Influence of model parameters on the autocorrelation function for
model G2. Each curve illustrates the simulation of model G2 for a pair of values (D,σ2

PSF),
all other parameters being fixed to the default values.

(a) |Ω| (b) T

Figure 2.10 – Influence of the parameters |Ω| and T on the autocorrelation
function for model G2. Each curve illustrates the simulation of model G2 for a given
value of |Ω| a) or T (b), all other parameters being fixed to the default values.
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The parameter Nsamples corresponds to the number of samples generated by the method,
from which the final solution is chosen. The parameter R corresponds to the fraction of
samples that are accepted by the estimation method (here the best 1% of the samples are
accepted).

Parameter estimation with model G1 The parameter estimation is applied here to
simulated data obtained from model G1 (2.6).

The joint estimation of the parameters was performed, and the results are shown in
Fig. 2.11. The a priori distribution interval for D is set to [0.1, 1.5] and the one for σ2

PSF is
set to [0.5, 2].The estimation of the parameter D is accurate as shown in Fig. 2.11a, with
relative errors on θ̃MAP and θ̃MMSE lower than 5%. The standard deviation is also small,
as seen in Fig. 2.11c. The estimation of D is thus very accurate when both parameters are
estimated together from model G1. The results of the estimation of parameter σ2

PSF are
given in the right-hand side pictures in Figure 2.11. The estimation of σ2

PSF is less accurate
than the estimation of D for two values out of the ten tested values. This can be observed
in Fig. 2.11b, where the MMSE relative error for the first two values is around 20%. The
theoretical values for these two cases are on the edge of the a priori distribution interval,
which seems to influence the quality of the estimation of this parameter. Nevertheless,
the relative error on θ̃MAP is in the same range as the other 8 estimations, that is, lower
than 5%. The boxplots in Fig. 2.11d show that the standard deviations for the estimation
of σ2

PSF are higher than those of the estimation of D. The range is reasonable though, and
the MMSE and MAP estimates are accurate, so the estimation of σ2

PSF is overall reliable
when both parameters are estimated from model G1.

Parameter estimation with model G2 The parameter estimation is applied here to
simulated data obtained from model G2 (2.13).

The estimation is performed in the same way as for model 1: the parameters D and
σ2

PSF are studied jointly. In what follows, the diffusion coefficient D ranges between 0.1 and
1.5 and the parameter characterizing the PSF, σ2

PSF, ranges between 0.5 and 2. The results,
shown in Fig. 2.12d, are similar to those obtained with model G1. The estimation of D is
slightly more accurate than the estimation of σ2

PSF, with a maximum relative error of 5%
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2.3. Local diffusion estimation at the cell membrane

(a) D relative error estimation (b) σ2
PSF relative error estimation

(c) D posterior distribution (d) σ2
PSF posterior distribution

Figure 2.11 – Estimation of both D and σ2
PSF with model G1. (a,b) Relative esti-

mation error for the MAP (blue) and MMSE (magenta) estimates with respect to the
theoretical value of the parameter. (c,d) Estimated distribution of the parameters, for the
ten tested cases. The true value of the parameters is represented by black circles.
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for D while, for σ2
PSF, the relative error is about 5% for 8 tested cases and two cases yield

MMSE relative errors of 10%− 20% (see Figs. 2.12a and 2.12b). The standard deviation
for the estimation of D is slightly higher for model G2 than for model G1, whereas the
standard deviation for the estimation of σ2

PSF is slightly smaller for model G2. Globally,
the joint estimation of the parameters D and σ2

PSF is accurate for all tested cases.

(a) D relative error estimation (b) σ2
PSF relative error estimation

(c) D posterior distribution (d) σ2
PSF posterior distribution

Figure 2.12 – Estimation of both D and σ2
PSF with model G2. (a,b) Relative esti-

mation error for the MAP (blue) and MMSE (magenta) estimates with respect to the
theoretical value of the parameter. (c,d) Estimated distribution of the parameters, for the
ten tested cases. The true value of the parameters is represented by black circles.
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2.3.2.3 Influence of parameters |Ω| and T

In this section, the influence of the parameters |Ω| and T is studied. For this purpose,
joint estimations of parameters D and σ2

PSF are performed for models G1 and G2, while
the parameters |Ω| and T vary in a given range. For the parameters Nsamples and R,
that could influence the estimation indirectly, see Appendices Figs. (C.3), (C.4), (C.7)
and (C.8). Values for parameter |Ω| are chosen randomly in the range [50; 2500], and the
values for parameter T are chosen in the range [20; 300].

Influence of the parameter |Ω| on the estimation with model G1 The parameter
estimation is applied here to simulated data obtained from model G1 (2.6), while varying
the parameter |Ω|. The other parameters are set to default values.

The results of the joint estimation of the parameters D and σ2
PSF, with varying param-

eter |Ω|, are shown in Fig. 2.13. The MMSE and MAP estimates of both parameters are
accurate, with a maximum relative error of 1% for D and 4% for σ2

PSF as shown in Figs.
2.13a and 2.13b depincting plots of the relative errors of the MMSE and MAP estimates
with respect to the value of |Ω|. The standard deviation for the estimation of D is very
small, and the standard deviation for the estimation of σ2

PSF is also quite small, as shown
in Fig. 2.14. From these results, variations of the parameter |Ω| do not seem to have a
specific influence on parameter estimation. Thus, the ROI size can be chosen as conve-
nient, as long as there is no information added or subtracted from the image by varying
the ROI size, i.e., the background stays the same.

Influence of the parameters |Ω| and T on the estimation with model G2 The
parameter estimation is applied here to simulated data obtained from model G2 (2.13),
while varying the parameter |Ω|, then T . The other parameters are set to default values.

The estimation of the parameters D and σ2
PSF with varying parameter |Ω| was per-

formed in the same way as for model G1. Figure 2.15 illustrates the results. The MMSE
and MAP estimates are accurate for most of the tested cases. In Figs. 2.15a and 2.15b,
the relative errors for D are lower than 4%, while relative errors for σ2

PSF are lower than
2% in 9 out the the 10 tested cases; only one case has a relative error of 10% for the
MMSE estimate of σ2

PSF. The standard deviation is relatively low for both D and σ2
PSF,

and they are relatively constant for all tested cases. The estimation of both parameters
for this model is thus accurate even when varying the size of the image. As with model
G1, the size of the image can be chosen as convenient.
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(a) D relative error estimation (b) σ2
PSF relative error estimation

Figure 2.13 – Influence of |Ω| on parameter estimation with model G1. (a,b)
Relative estimation error for the MAP (blue) and MMSE (magenta) estimates with respect
to the value of |Ω|.

The estimation of the parameters D and σ2
PSF with varying parameter T was then

performed. In Fig. 2.18, the MMSE and MAP estimates are accurate for most of the
tested cases (8 out of 10) for both parameters. The MMSE relative error for D is lower
than 5% for 8 cases out of 10 and around 10% for the 2 remaining cases, as shown in Fig.
2.16a. For parameter σ2

PSF the MMSE relative error is also lower than 5% for 8 out of 10
cases, and close to 10% and 20%, respectively, for the two remaining cases, as illustrated in
Fig. 2.16b. Figure 2.18a shows the estimator for the parameter D for each tested value of
T . The standard deviation of the estimator is negatively correlated to T , with a Pearson’s
linear correlation coefficient of about −0.74 and a corresponding p-value around 0.015.
However, the standard deviation is relatively small, even when T is small. Figure 2.18b
shows the estimator for σ2

PSF for the 10 tested values of T . Here, there does not seem to be
any correlation between the value of T and the standard deviation. As with the previous
results, the standard deviation for σ2

PSF is slightly higher than the one for D. Some caution
is thus needed when choosing the value of T in order to have the best estimation for D.
Globally, the results are accurate for all tested cases.
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2.3. Local diffusion estimation at the cell membrane

(a) D posterior distribution

(b) σ2
PSF posterior distribution

Figure 2.14 – Influence of |Ω| on parameter estimation with model G1. (a,b)
Estimated distribution of parameters D and σ2

PSF, for the ten tested cases corresponding
to ten values of |Ω|. The true values of D and σ2

PSF are represented by black circles.
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(a) D relative error estimation (b) σ2
PSF relative error estimation

Figure 2.15 – Influence of |Ω| on parameter estimation with model G2. (a,b)
Relative estimation error for the MAP (blue) and MMSE (magenta) estimates with respect
to the value of |Ω|.

(a) D relative error estimation (b) σ2
PSF relative error estimation

Figure 2.16 – Influence of T on parameter estimation with model G2. (a,b) Relative
estimation error for the MAP (blue) and MMSE (magenta) estimates with respect to the
value of T .
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(a) D posterior distribution

(b) σ2
PSF posterior distribution

Figure 2.17 – Influence of |Ω| on parameter estimation with model G2. (a,b)
Estimated distribution of parameters D and σ2

PSF, for the ten tested cases corresponding
to ten values of |Ω|. The true values of D and σ2

PSF are represented by black circles.
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(a) D posterior distribution

(b) σ2
PSF posterior distribution

Figure 2.18 – Influence of T on parameter estimation with model G2. (a,b) Esti-
mated distribution of parameters D and σ2

PSF, for the ten tested cases corresponding to
ten values of T . The true values of D and σ2

PSF are represented by black circles.
66



2.3. Local diffusion estimation at the cell membrane

2.3.3 Results on synthetic data

In this section, we assess our method on synthetic images, that is, simulated images of
real data. In particular, we estimate the model parameters, i.e., the diffusion coefficient
and the standard deviation for the PSF, on synthetic images depicting diffusing spots,
and in different scenarios that could challenge our method. The previous section gave
us insights on how the model parameters influence the model, and how varying these
parameters impacts the estimation. From this knowledge, a step further can be taken
by testing the method on synthetic images that contain spots simulating a vesicle that
diffuses according to the hypothesis of pure diffusion from an initial point of concentration.

2.3.3.1 Presentation of the synthetic image dataset

The synthetic images were generated by using the method from [10]. A sequence of
images containing several diffusing spots was obtained, then corrupted with Gaussian
noise with 6 different levels (yielding 6 general sequences with different signal-to-noise
ratios). Each sequence contains 300 frames, and each image in the sequence is of size
256× 256 pixels. Diffusing spots appear and disappear at different times of the sequence.
Each diffusing spot is concentrated in one pixel at the first frame, and the values of the
parameters are D = 0.10 and σ2

PSF = 1.

Four scenarios were considered:
Scenario #1: A set of sequences, each containing a diffusing spot, centered in the

image, with the same image size. All tested spots are isolated.
Scenario #2: A set of sequences, starting from the same diffusing spot, with different

image sizes. Additional spots might be present in the image for large ROI sizes.
Scenario #3: A set of sequences, starting from the same diffusing spot. The spot is

located in different places in the image. Additional spots might also be present in
the image.

Scenario #4: A set of sequences, starting from the same diffusing spot, centered in
the image, with noise levels that vary between sequences. In all sequences, the spot
is isolated.

Across these scenarios, both models G1 and G2 are tested and the joint estimation of
the model parameters is performed. Assessing our method on synthetic images gives us
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Figure 2.19 – Synthetic images depicting selected spots for sparse estimation.

more information on the accuracy of the method in conditions close to those observed
with real microscopy acquisition images, on its range of applicability, and on its possible
limitations.

2.3.3.2 Parameter estimation on synthetic images

For each tested scenario, the different diffusing spots were selected from the 6 general
sequences generated. The model parameters are known: D = 0.10 and σ2

PSF = 1. The
parameters |Ω| and T , related to the image sequence, vary among the different scenarios.
The parameters related to the estimation are fixed to the following values: Nsamples =
20000, R = 0.01.
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Scenario #1: Sparse estimation on synthetic images In scenario #1, 10 diffusing
spots were selected and extracted from a general synthetic sequence with a low noise
level. A typical image sequence depicting spots is shown in Fig. 2.19. Each spot is close
to the center of the image, and the patch size is 24x22 pixels. For model G1, the length
of the sequence is T = 100 frames; for model G2, the length T is the maximum length
possible, from the frame the spot appears up to frame 300. For models G1 and G2, the
joint estimation of the parameters D and σ2

PSF was performed.

The results of the estimation for all 10 sequences are reported in Fig. 2.21 for model
G1, and Fig. 2.23 for model G2. Each figure shows four results for a given diffusing spot
(from left to right) :

• Autocorrelation computed from the image sequence (in black) together with the
kept simulations that form the proposed solution (in green);

• Autocorrelation computed from the image sequence (in black) together with the
simulations corresponding to the MMSE and MAP estimates (in magenta and
green, respectively);

• Histogram of the estimator for parameter D;
• Histogram of the estimator for parameter σ2

PSF.

The histograms are a visual representation of the estimated distributions for each
parameter, which are extracted from the joint estimated distribution of (D, σ2

PSF). They
provide a general idea of the estimated distribution. The following description of the re-
sults also relies on the punctual estimates, which are computed using the algorithm and
the formulas given in section 2.3.1.3.

For model G1, the fitting is very good for all ten tested spots. In particular, both
simulations corresponding to the MMSE and MAP estimates fit almost perfectly the
curve of the computed autocorrelation. The theoretical value for the parameter D is 0.1.
Here, the range of D is [0.1; 1.5]. Note that this scenario can be considered an edge case,
as the theoretical value is an endpoint of the interval. As such a situation is expectedly
hard to handle, we assess the quality of the estimation with respect to both the relative
estimation error and the range of the a priori distribution of the parameter.

The distributions for the parameter D for the ten spots is asymmetric, with a MMSE
around [0.12; 0.13], a minimum value of 0.1 and a maximum value of 0.18. The theoretical
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value of σ2
PSF is 1. The histograms show a distribution with a MMSE value between 0.9

and 1, with a minimum value of 0.7 and a maximum value of 1.4. The distribution of σ2
PSF

is also asymmetric, which might mean that the distribution of D influences the global
form of the distribution of σ2

PSF.

For model G2, the quality of the fitting is not as good as with model G1. As explained
in the previous section, the parameter corresponding to the length of the sequence can
hinder the estimation for this model. While the quality of the fitting is very good at the
beginning of the curve, it then deteriorates. Nevertheless, the quality seems to improve
when getting from 100 frames to 300 frames. The estimation of the parameter D is similar
to the one for model G1, with a mean around [0.12; 0.13], a minimum value of 0.1 and
a maximum value of 0.2. As for the estimation of the parameter σ2

PSF, it slightly differs
from that of model G1. The mean value is in the range [0.7; 1], with a minimum value of
0.6 and a maximum value of 1.2. Thus, σ2

PSF seems to be slightly underestimated for some
spots.

For a better comparison, Fig. 2.20 shows the boxplots of the estimators of both pa-
rameters, for model G1 and model G2. Each figure displays the ten results for the ten
tested spots. On the one hand, the estimation of D with model G1 is very consistent,
the mean values and standard deviations being almost identical for all spots (see Fig.
2.20a), whereas there are some discrepancies between the estimators with model G2 (see
Fig. 2.20b); in particular, the mean value and the standard deviation vary more between
spots with model G2. On the other hand, the MAP estimate with model G2 is always
equal to 0.1, the real value of D, which is not the case for model G1. A similar observation
can be made for the estimation of parameter σ2

PSF : the estimation seems more consistent
with model G1, especially in terms of standard deviation, whereas, with model G2, the
estimation slightly varies between spots (see Fig. 2.20c and 2.20d). In addition, model G2

seems to consistently underestimate the value of σ2
PSF. All in all, the estimation of both D

and σ2
PSF for this edge case is satisfactory with both models. These results are promising

in terms of the robustness of the estimation method.
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(a) Model G1 - D estimation (b) Model G2 - D estimation

(c) Model G1 - σ2
PSF estimation (d) Model G2 - σ2

PSF estimation

Figure 2.20 – Sparse estimation of the model parameters with both models on
synthetic images. (a,b) Estimated distribution of parameter D with model G1 (a) and
model G2 (b) for the ten selected spots. (c,d) Estimated distribution of parameter σ2

PSF

with model G1 (c) and model G2 (d) for the ten selected spots. The theoretical value is
represented by a black dot, the MAP estimate by a green dot and the MMSE estimate
by a magenta dot.
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Figure 2.21 – Sparse estimation for model G1 on synthetic images, for the first
five tested cased. The first column gives the computed autocorrelation (in black), and
the simulation results for the solution proposed by our method (in green). The second
column gives the computed autocorrelation (in black), the simulation corresponding to
the MAP estimate (in green) and the simulation corresponding to the MMSE estimate
(in magenta). The third column gives the histogram of the estimated distribution of D.
The fourth column gives the histogram of the estimated distribution of σ2

PSF.



Figure 2.22 – Sparse estimation for model G1 on synthetic images,for the last
five tested cased. The first column gives the computed autocorrelation (in black), and
the simulation results for the solution proposed by our method (in green). The second
column gives the computed autocorrelation (in black), the simulation corresponding to
the MAP estimate (in green) and the simulation corresponding to the MMSE estimate
(in magenta). The third column gives the histogram of the estimated distribution of D.
The fourth column gives the histogram of the estimated distribution of σ2

PSF.



Figure 2.23 – Sparse estimation for model G2 on synthetic images, for the first
five tested cased. The first column gives the computed autocorrelation (in black), and
the simulation results for the solution proposed by our method (in green). The second
column gives the computed autocorrelation (in black), the simulation corresponding to
the MAP estimate (in green) and the simulation corresponding to the MMSE estimate
(in magenta). The third column gives the histogram of the estimated distribution of D.
The fourth column gives the histogram of the estimated distribution of σ2

PSF.



Figure 2.24 – Sparse estimation for model G2 on synthetic images, for the last
five tested cased. The first column gives the computed autocorrelation (in black), and
the simulation results for the solution proposed by our method (in green). The second
column gives the computed autocorrelation (in black), the simulation corresponding to
the MAP estimate (in green) and the simulation corresponding to the MMSE estimate
(in magenta). The third column gives the histogram of the estimated distribution of D.
The fourth column gives the histogram of the estimated distribution of σ2

PSF.
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Figure 2.25 – Synthetic images: tested image sizes (ROI).

Scenario #2: Varying image size In scenario #2, one spot was selected from a gen-
eral synthetic sequence with a low noise level, and ten different sequences centered on
this spot were extracted from this data, with different image sizes. Image sizes are the
following: 73× 57 pixels, 54× 43 pixels, 31× 28 pixels, 21× 19 pixels, 12× 11 pixels and
8 × 7 pixels .The length T of each sequence is 100 frames for model G1, and 247 frames
for model G2. In the large image sizes, additional spots appear and diffuse. Figure 2.25
illustrates the six image sequences that were used in this scenario.

The results of the joint estimation of D and σ2
PSF, for both model G1 and model G2,

for the 6 tested sequences, are shown in Figure 2.26.
For both models, the estimation of D is very good for all image sizes larger than 400

≈ (21× 19) pixels. However, while the estimation with model G2 is not influenced by the
image size, the estimation with model G1 seems to be less accurate when the image size
is lower than 400 pixels. We can notice a correlation with image size: the lower the image
size, the lower the quality of the estimation (see Figs. 2.26a and 2.26b). The estimation
of the parameter σ2

PSF is shown in Figs. 2.26c and 2.26d. One can see that the results are
different for this parameter than for D. For model G1, the MMSE and MAP estimates
get better when the image size is larger, although the standard deviation increases with
image size. For model G2 however, the estimation gets better for lower image sizes.

The choice of the size of the image needs to balance the effects on the estimation of
the two parameters, and in particular, for model G1. In the case tested here, an image
size of more or less 400 pixels seems to be at equilibrium.

Scenario #3: Varying spot position For scenario #3, a diffusing spot was picked
from a general synthetic sequence with low noise, and 6 different sequences of the same

76



2.3. Local diffusion estimation at the cell membrane

(a) Model G1 - D estimation (b) Model G2 - D estimation

(c) Model G1 - σ2
PSF estimation (d) Model G2 - σ2

PSF estimation

Figure 2.26 – Estimation of the model parameters for varying ROI size, with
both models, on synthetic images. (a,b) Estimated distribution of parameter D with
model G1 (a) and model G2 (b) for the six tested cases. (c,d) Estimated distribution
of parameter σ2

PSF with model G1 (c) and model G2 (d) for the six tested cases. The
theoretical value is represented by a black dot, the MAP estimate by a green dot and the
MMSE estimate by a magenta dot.
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Figure 2.27 – Synthetic images: tested diffusing spot positions.

size were extracted by moving the ROI around this spot between sequences. As a result,
the spot is not always isolated: a second spot can appear and diffuse in the image. In each
sequence, the region of interest is of size 37 × 37 pixels; the length T of the sequence is
100 frames for model G1, and 271 frames for model G2. Figure 2.27 shows frames from
all six sequences used for this scenario.

The results of the estimation of the parameters are reported in Fig. 2.28. The esti-
mation is consistent between all tested sequences, for both parameters and both models:
there does not seem to be any influence of the spot position on the estimation. The esti-
mation of D is very accurate for both models (Figs. 2.28a and 2.28b). The estimation of
σ2

PSF is better in terms of both MMSE and MAP estimates with model G1, but the stan-
dard deviation is lower for model G2. Overall, the quality of estimation is good for both
parameters. The region on interest for the estimation can thus be chosen as convenient.

Scenario #4: Varying noise level In scenario #4, six noise levels, ranging from low
to medium, were tested for the same isolated diffusing spot. For each sequence, the spot
is located in the center of the image, the image size is 28 × 28 pixels, and the length
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(a) Model G1 - D estimation (b) Model G2 - D estimation

(c) Model G1 - σ2
PSF estimation (d) Model G2 - σ2

PSF estimation

Figure 2.28 – Estimation of the model parameters for varying spot position in
the ROI, with both models, on synthetic images. (a,b) Estimated distribution of
parameter D with model G1 (a) and model G2 (b) for the six tested cases. (c,d) Estimated
distribution of parameter σ2

PSF with model G1 (c) and model G2 (d) for the six tested cases.
The theoretical value is represented by a black dot, the MAP estimate by a green dot and
the MMSE estimate by a magenta dot.
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Figure 2.29 – Synthetic images: tested noise levels.

T is 100 frames for model G1 and 247 frames for model G2. Figure 2.29 displays the 6
image sequences used for this scenario. The results of the estimation of the parameters
are given in Fig. 2.30. The estimation of D is pretty accurate with both models (see Figs.
2.30a and 2.30b), with MMSE and MAP estimates close to the real value and a small
standard deviation. The estimation of σ2

PSF is less consistent. With model G1, the MMSE
and MAP estimates are more precise than with model G2, but the standard deviation
of the estimation is higher with model G1. Thus, some caution might be needed for the
estimation of the parameter σ2

PSF when noise is present, but not for the estimation of the
parameter D, which is consistent, and very accurate no matter the noise level.

2.3.4 Results on experimental data

In this section, diffusion is estimated on experimental real data using the same model
and estimation method as in the previous section. The data is a TIRFM 2D image se-
quence (acquired with a frame rate of 100 ms, and pixel size of 160 nm), shown in Fig.
2.31, depicting Transferrin Receptor molecules (TfR) tagged with pHluorin in M10 cells,
undergoing exocytosis. Five spots were manually selected, and local diffusion for these
spots was estimated.

Figure 2.32 displays the diffusing spots, and the obtained results for each of them. The
diffusing spots display some variability, in terms of maximum intensity and spreading in
the region of interest. In addition, background is present in the five images, and other
spots are present in the region of interest for cases 2 and 3. Finally, the noise level is
medium to high in all images. The estimation is thus challenged by all these factors.

The fitting is good for almost all spots, except for spots #2 and #3 with model G2,
where the beginning and the end are well fitted, but the model does not manage to capture
the proper dynamics of the middle part. As the influence of D on the autocorrelation is
stronger on this middle part than that of σPSF (see Figs. A.1 and A.2), this may indicate
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(a) Model G1 - D estimation (b) Model G2 - D estimation

(c) Model G1 - σ2
PSF estimation (d) Model G2 - σ2

PSF estimation

Figure 2.30 – Estimation of the model parameters for varying noise level, with
both models, on synthetic images. (a,b) Estimated distribution of parameter D with
model G1 (a) and model G2 (b) for the six tested cases. (c,d) Estimated distribution
of parameter σ2

PSF with model G1 (c) and model G2 (d) for the six tested cases. The
theoretical value is represented by a black dot, the MAP estimate by a green dot and the
MMSE estimate by a magenta dot.

that the estimation of D is less accurate. Similar questions are raised by the estimated
distributions, that seem further from Gaussian or Gamma distributions than the ones
obtained on synthetic data. The first spot is the one that seems to have the best conditions
for the estimation: distributions for both D and σPSF are closer to the ones obtained from
synthetic data, and the estimates are similar for both models.
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Figure 2.31 – TIRFM image depicting diffusing pHluorin-tagged spots at the
plasma membrane (courtesy of PICT facility, UMR144-CNRS Institut Curie).

Finally, a surprising result was obtained for spot #4 with model G1, where the es-
timation of both parameters strongly differs from the estimation on all the other spots.
This might be due to the poor fitting of the beginning of the experimental data, which
then influences the estimation of σPSF. This, in turn, might force the algorithm in a local
minimum, where D is not well estimated.

82



Model	G1

Model	G2

Model	G1

Model	G2

Model	G1

Model	G2

Model	G1

Model	G2

Model	G1

Model	G2

Spot		s1

Spot		s2

Spot		s3

Spot		s4

Spot		s5

𝐷!"# = 0.33
𝐷!!$% = 0.35

𝐷!"# = 0.29
𝐷!!$% = 0.30

𝐷!"# = 0.12
𝐷!!$% = 0.14

𝐷!"# = 0.10
𝐷!!$% = 0.14

𝐷!"# = 0.11
𝐷!!$% = 0.13

𝐷!"# = 0.10
𝐷!!$% = 0.16

𝐷!"# = 1.36
𝐷!!$% = 1.43

𝐷!"# = 0.32
𝐷!!$% = 0.33

𝐷!"# = 0.27
𝐷!!$% = 0.28

𝐷!"# = 0.30
𝐷!!$% = 0.31

𝜎#$&'!"# = 0.81
𝜎#$&'!!$% = 0.82

𝜎#$&'!"# = 1.28
𝜎#$&'!!$% = 1.28

𝜎#$&'!"# = 0.51
𝜎#$&'!!$% = 0.56

𝜎#$&'!"# = 0.58
𝜎#$&'!!$% = 0.63

𝜎#$&'!"# = 0.78
𝜎#$&'!!$% = 0.80

𝜎#$&'!"# = 0.25
𝜎#$&'!!$% = 0.18

𝜎#$&'!"# = 2
𝜎#$&'!!$% = 1.97

𝜎#$&'!"# = 1.09
𝜎#$&'!!$% = 1.10

𝜎#$&'!"# = 0.71
𝜎#$&'!!$% = 0.73

𝜎#$&'!"# = 1.31
𝜎#$&'!!$% = 1.32

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

Figure 2.32 – Estimation results on a real TIRF sequence. The first column illus-
trates the selected spot. The second column shows the computed autocorrelation from
the real sequence, and the simulations corresponding to the MAP (green) and MMSE
(magenta) estimates. The third column gives the histogram of the estimated distribution
of D. The fourth column gives the histogram of the estimated distribution of σ2

PSF.
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2.4 Discussion and conclusion

In this chapter, we studied on the estimation of diffusion in TIRF imaging and, in par-
ticular, on the case of diffusing spots observed during exocytosis. The aim was to build
a method that would enable the estimation of local diffusion and the evaluation of its
spatial variability from standard sequences obtained from TIRF microscopy.

In Sections 2.1 and 2.2, the context of this study was introduced. Both the Total
Internal Reflection Fluorescence Microscopy acquisition technique and the Fluorescence
Correlation Spectroscopy analysis method were described together with their advantages
and limitations.

In Sections 2.3.1 and 2.3.2, we proposed a proof-of-concept for local diffusion estima-
tion in fluorescence microscopy imaging. We detailed how the method was built and we
validated it by analyzing the model with respect to involved parameters and by evaluating
the estimation error from data sets built from the autocorrelation model. Preexisting es-
timation methods use correlation methods that yield ensemble diffusion values; however,
these methods do not provide information related to the variability between diffusing
spots, as they do not allow to estimate diffusion for isolated diffusion events. Our method
was designed to address these issues.

In Sections 2.3.3 and 2.3.4, we evaluated the proposed method on both synthetic and
experimental data sets. We assessed its accuracy as well as its robustness to ROI size,
SNR, spot position in the ROI and cluttered background, and we showed the added value
of our method and discussed its limitations. Our method yielded promising results on syn-
thetic images and proved reliable for all tested scenarios. The application on real TIRF
images showed its assets, and in particular, its robustness to medium to high SNR, to
other spots diffusing in the ROI, and to cluttered background.

Two limitations need to be adressed: first, the need for long image sequences of at least
100 frames, due to the correlation basis itself; second, the sensitivity of the estimation
to interfering dynamics in the ROI, when a process other than pure diffusion is present.
This could be improved by introducing a broader model for the expected dynamics in the
region of focus and by considering a dynamic background, which should greatly improve
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the estimation in such cases.

A short-term application of the work presented above would be the computation of
a diffusion map, by computing estimates of the diffusion on a large number of small-
sized regions of interest in the frame. The model could also be enhanced by integrating
flow components, so that parameters related to flow-diffusion behaviors could also be
evaluated. This would enable, among others, the detection of "kiss and run" or "mixed
kiss and run" vesicle fusions. Finally, a three-dimensional extension of the method could
be envisioned.
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Chapter 3

CELL POPULATION VARIABILITY : THE

MITOTIC SPINDLE POLES BEHAVIOR IN

ASYMMETRIC DIVISION

Asymetric cell division is a key mechanism for the development of living organisms, as
it yields daughter cells with different cellular fates. In particular, the series of asymmetric
divisions occurring in the early stages of the embryogenesis of the nematode Caenorhabdi-
tis elegans (C.elegans) has been thoroughly studied.s Nevertheless, this process is not yet
fully understood: while a global understanding and very precise information about some
specific proteins are present in the literature, interactions between the actors involved in
the division mechanism are still relatively obscure. Light could be shed on these “miss-
ing links” between the microscopic and macroscopic scales by developing a biophysical
understanding of the process. However, this is a pretty difficult task, due to both the com-
plexity of the mathematical approach and the limited reliability of the image acquisition
and processing methods in use.

Anaphase is a crucial stage of the division: as the separation of the chromosomes oc-
curs during this stage, errors can lead to the death of the organism. The behavior of the
mitotic spindle, which is the cytoskeletal structure formed for orchestrating the separation
of chromosomes, has a strong impact on the whole division. Its poles generally exhibit
transversal oscillations in asymmetric division, and the lack of these oscillations is an
indicator of an erroneous division.

In this chapter, we propose a new mathematical model of these spindle pole oscillations
during anaphase, based on preexisting knowledge about the process and its biophysical
factors and molecular actors. In order to be able to put this model into operation on exper-
imental data, we designed a novel framework for model-based parameter estimation, that
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is also presented in what follows. The resulting method aims at providing more insight
into several aspects of the division process, including its variability and limit behaviors,
but also its robustness to parameter perturbations and the underlying interactions be-
tween molecular actors.

This chapter begins with a summary of the current knowledge about the first division
of the C.elegans embryo and the spindle pole oscillations occurring during anaphase. Our
mathematical model for these oscillations is then presented, and it is analyzed in terms of
phenotypic variability and parameter influence. The third part of this chapter introduces
our novel parameter estimation framework, explaining how it combines sensitivity analysis
and Bayesian estimation; this framework is then used with our spindle pole oscillations
model.

3.1 Introduction and Related Work

3.1.1 Description of the first division of the C.elegans embryo

3.1.1.1 C.elegans: general considerations

The C.elegans nematode is a simple organism that has been extensively used as a
biological model in the last 50 years. It is a small transparent worm, that is 1 mm long
and has only 959 cells at adult stage. The C.elegans embryo is approximately 50 microns
long and is big enough to be observed by different optic techniques. Despite being a fairly
simple organism, C.elegans has complex components such as basic nervous and digestive
systems, and an innate immune system that have several mechanisms in common with
those in mammalian systems. The C.elegans model is thus a perfect starting point to
better understand fundamental biological mechanisms that can be transferred to human
biology. C.elegans was first used by Sydney Brenner in 1974 to study the nervous system
functioning [14], and since then, this biological model has been used to better understand
neurodegenerative diseases such as Parkinson and Alzheimer, bacterial and fungus infec-
tions, drug response, and toxicity related mechanisms.

The development of C.elegans is fast, going from a one-cell embryo of 50 microns, to
a 1 mm adult stage in roughly 3 days at 20 C [56]. The nematode lives approximately 20
days and in temperatures of 12 to 25 C. Its life cycle is composed of different stages (see
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Figure 3.1 – Developpement of the C.elegans : embryo, L1 stage, L2 stage, L3
stage, L4 stage and adult stage. Adapted from [20].

Fig. 3.1), starting with the embryonic stage, that lasts for about 14 hours. At the end of
the embryonic stage, the eggshell breaks and the embryo gets to a first larva stage, called
L1 phase, that is able to feed itself. The larva goes through three more larvae stages L2,
L3 and L4 that are easily identified thanks to size and morphology. After phase L4, the
larva transforms into an adult worm that is able to reproduce.

One of the most remarkable features of the C.elegans nematode is the reproducibility
and fidelity of its first division. This characteristic facilitates the analysis of biological
mechanisms occurring during cell division. Another advantage of C.elegans is the facility
to deplete proteins using RNAi. Coupled with techniques for expressing fluorescently
tagged proteins, it makes it possible to study the effects of malfunctioning proteins and
related mechanisms on cell division.

3.1.1.2 C.elegans: first division

Phases of division The first division of the C.elegans nematode is asymmetric, result-
ing in two daughter cells with different sizes. We focus here on mitosis in the C.elegans
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embryo, that takes place after two meioses. This process is illustrated by Fig. 3.2. At
the beginning of mitosis, the one-cell embryo has two pronuclei, one male and one fe-
male, that are at opposite sides of the cell. When the trigger for the start of mitosis is
activated, the two pronuclei move toward the center of the cell, the female pronucleus
traveling further than the male one. At this stage, chromosomes are condensed, and the
nuclear envelope is intact for both pronuclei. In addition, the male pronucleus has the
two centrosomes formed, and they are at opposite sides of the nuclear envelope. The two
pronuclei meet at about 70% of the embryo length, forming a nuclear-centrosome com-
plex. This complex then moves toward the center of the cell, while also rotating, thanks
to microtubules emanating from the centrosomes. At the end of this phase, nuclear en-
velopes start to dissipate and thus the first phase of mitosis, called prophase, is achieved.
In the next phase, as the nuclear envelopes have disappeared, condensed chromosomes
can now be catched by microtubules. The mitotic spindle starts to form as the chromo-
somes get attached to the corresponding centrosome. This phase is called prometaphase,
and it is followed by metaphase, when the mitotic spindle finishes its assembly, and the
chromosomes align vertically, on the so-called metaphase plate. When all chromosomes
are aligned, and correctly attached by microtubules (as illustrated by Fig. 3.3), there is a
trigger to get to the next phase of division, that is anaphase. During anaphase, sister chro-
matids are separated, and move toward the pole they were attached to, while the mitotic
spindle elongates and moves toward the posterior side of the cell. When the movement of
the mitotic spindle and the separation of chromosomes end, the cell enters the last phase
of mitosis, the so-called telophase. In this last stage, sister chromatids decondense while
the nuclear envelope forms around each chromosome. The mitotic spindle is disassembled,
and the cell achieves its division by cytokinesis, a process that separate the cytoplasm
between the two daughter cells.

Anaphase regulation The transition between metaphase and anaphase is highly reg-
ulated by the spindle assembly checkpoint. During metaphase, chromosomes align on the
metaphase plate. This is done through a mechanism called search and catch where micro-
tubules nucleating from the centrosomes explores the space until they find a chromosome
to attach to. During this time, the two sister chromatids are held together by kinetochores,
and more precisely by a complex called cohesin complex. Microtubules attach to kineto-
chores creating tension between sister chromatids. Any kinetochore that is not under
tension produces a signal that blocks the activation of the anaphase-promoting complex.
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Figure 3.2 – Phases of the first division of C.elegans. Left: Schematic illustrations
of the major features of the division. Right: Images of each division phase, collected by
spinning disk confocal microscopy. Adapted from [56].
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Figure 3.3 – Schematic representation of the mitotic spindle and associated
molecular actors. Adapted from [46] and [54].

When all chromosomes are attached, all kinetochores are under tension, and thus there
is no signal that stops the activation of the anaphase-promoting complex. The activation
of the anaphase-promoting complex triggers the activation of separase, an enzyme that
breaks the cohesin complex that keeps sister chromatids linked. Sister choromatids are
now free to separate, and anaphase can take place.

Spindle poles separation and forces involved in anaphase Anaphase in C.elegans
is driven by the separation of the two spindle poles. In other organisms, anaphase is
separated in two phases : anaphase A during which only the sister chromatids separate
thanks to internal forces of the mitotic spindle, mainly by the microtubules that pull
them towards their respective spindle poles; anaphase B when the spindle poles separate
thanks to exterior forces pulling on astral microtubules. In C.elegans, anaphase is mainly
driven by the spindle poles separation, external forces having a bigger impact on the
chromosomes and centrosomes separation than internal forces. Internal forces might still
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be needed at the beginning of anaphase when centrosomes are closer to each other. Also,
internal forces are needed for spindle elongation as mitotic spindles still elongate when
there are no external forces acting on them, but displacement towards the posterior pole,
and oscillations are absent in these cases.

How the molecular actors participate to the robustness of anaphase The main
components driving anaphase are microtubules and microtubules-associated molecular
motors. Microtubules are fiber-like polymers that can grow and shrink in the cytoplasm,
and have several roles in the cell. Microtubules can generate and transmit forces at the
cell-scale. They can also be used as highways for cargo transporting for molecular motors
that can move along the microtubules while carrying/transporting cargos. Microtubules
are hollow cylinders made of tubulin subunits. The dense structure of these tubulin sub-
units makes microtubules difficult to break as a high number of bonds are present. This
feature gives rigidity to microtubules, and high resistance to lateral forces. In addition,
through the orientation of the tubulin subunits, microtubules have a given polarity with a
plus-end and a minus-end. Both ends are changing through association-dissociation (i.e.,
polymerization-depolymerization) processes, but the minus-end is a lot more dynamic
than the plus-end, which is more stable. When a microtubule changes state from growing
to shrinking, it is said to undergo a catastrophe event, and when it goes from shrinking to
growing, the microtubule undergoes a rescue event. Microtubules are thus in a state of dy-
namic instability at any given moment. Figure 3.4 summarizes the association-dissociation
cycle of microtubules.

Microtubule-associated molecular motors are protein complexes that can apply forces
on microtubules, and transport cargos. These complexes go through continuous trans-
formation by binding, hydrolyzing and unbinding of ATP. This continuous movement
together with the polarized microtubule fibers makes molecular motors walk on micro-
tubules. Molecular motors transmit the force they generate to the microtubule, and as
microtubules are rigid structures, the force is transmitted to centrosomes. One family of
molecular motors of particular interest for our study, is the dyneins family. In particular,
we are interested in cytoplasmic dynein, which is present in the cytoplasm, and has the
role of transporting cargo and generate force on the microtubule. Dynein is a minus-end
oriented molecular motors, so it transports cargo toward the minus-end of the microtubule.
Cytoplasmic dynein has two heavy chains that are responsible for energy and movement
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Figure 3.4 – Polymerization-depolymerization cycle of microtubules. This cycle
is driven by GTP-tubulin and GDP-tubulin hydrolysis. Adapted from [5].

generation, and different intermediate and light chains that help the motor attach to cargo.

Although the global mechanism involved in anaphase during the first division of
C.elegans is well established, our understanding of how the external forces drive the be-
havior of the spindle poles, and how specific parameters are linked to this process, is still
limited. In the next section, we propose an overview of the main related work and discuss
the main assumptions and conclusions we used to build our bio-physical model of the
spindle poles oscillations during anaphase.

3.1.2 Spindle modeling during anaphase

Some of the early experiments conducted to better understand the behavior of the
spindle poles during anaphase in asymmetric division have given the main axis of expla-
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Figure 3.5 – Anaphase and spindle poles oscillations. Left: Images of a cell during
anaphase, obtained by fluorescence microscopy. The anterior and posterior poles are cir-
cled in red and blue, respectively. Top right: Illustration of the movement of the spindle
poles. Bottom right: Evolution of the position of the poles (transversal to the AP axis)
over time. Adapted from [62].

nation for the observed behavior. During anaphase, the spindle poles move toward the
posterior side of the cell, they move apart from each other as the mitotic spindle elon-
gates, and the posterior pole oscillates transversely to the Anterior-Posterior (AP) axis,
as shown in Fig. 3.5. To understand what drives this behavior, Grill et al. [32] have tested
several hypotheses by cutting the mitotic spindle with an ultraviolet laser beam at the
beginning of anaphase. The two main hypothesis were that the 3 types of movement un-
dergone by the poles during anaphase (elongation, displacement towards posterior and
oscillations) are: either the interior forces of the spindle are responsible for this behavior,
either exterior forces are the ones driving the spindle poles behavior. The first hypothesis
was fueled by other experiments done in Drosophila for example, that show that over-
lapping microtubules in the mitotic spindle can create pushing forces on the poles, thus,
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moving the poles apart from each other. The second hypothesis was motivated by other
experiments showing that astral microtubules can pull on the spindle poles (thus external
force being responsible for the behavior in anaphase).

By cutting the mitotic spindle at the beginning of anaphase, Grill et al. observed that
the poles moved even further apart than in wild-type regular embryos, that the peak
velocities of the poles were higher that in regular embryos, and that the posterior pole
oscillated when arriving close to the cortex. This means that the forces driving the elonga-
tion, displacement, and oscillations of the poles are external to the mitotic spindle. Also,
the posterior pole travelled further then the anterior one and its peak velocity was 40%
higher. In theory, this could be explained by a change in viscous drag between the anterior
and posterior sides of the cell. Grill et al. tested this hypothesis through a yolk-granule
motion analysis. They found that the diffusion of granules at the anterior side were simi-
lar to those at the posterior side, only a 6% difference in average diffusion coefficient was
found, which could not account for the 40% difference in peak velocities for the poles. This
means that the viscous drag, although it probably has some effect on the peak velocity
differences, is not the main cause of this observation. The behavior of the spindle poles
during anaphase seems to be mainly driven by forces exterior to the mitotic spindle in
the first asymmetric division of the C.elegans embryo.

In their paper, the authors propose a simple model to account for the behavior of the
spindle pole after spindle severing. For this, they assume that the pulling forces acting on
the spindle pole are generated by astral microtubules. This assumption is motivated by
experiments where the astral microtubules are cut, that showing that poles move toward
the opposite side of the cell after cutting. Microtubules-driven pulling forces is thus a
plausible hypothesis.

Later on, in [33] Grill et al. confirmed this latter hypothesis and took a step further
in understanding how pulling forces are generated by astral microtubules. In this exper-
iments, they ablated the central region of the centrosome, that cause fragments of the
centrosome to move away from the initial position, toward the respective cortex (anterior
side for the anterior centrosome, and posterior side for the posterior centrosome). Also,
the other centrosome did not move from its original position. This confirms that pulling
forces are generated by external (from the mitotic spindle) forces, and that astral micro-
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tubules can be the basis of this forces. In this experiment, the authors also observed that
the fragments, that were of similar size, expanded radially around the initial position,
which means that force generators are not confined to a specific region of the cortex, but
rather distributed on the posterior and anterior side. Interestingly, the fragments from
the anterior centrosome moved symmetrically around the initial position (still toward the
cortex), whereas for the posterior side, when the ablation took place during oscillations,
fragments that moved in the initial direction of movement of the centrosome travelled at
higher speeds than fragments that moved in the opposite direction of the initial move-
ment of the centrosome. But as the viscous drag is the same on the anterior and posterior
side, and the fragments were similar in size and the direction of movement and the size
of the fragment were uncorrelated, authors propose that this difference in speed is due to
differences in pulling forces, that are higher for the fragments travelling faster, and lower
for the fragments travelling slower. This could be explained by either a larger number
of force generators per fragments, or by a larger force per individual force generator. By
analyzing the variance of the speed of the fragments, authors concluded that the first
option is more realistic than the second one. Moreover, as the variance increases and then
decreases, the authors suggest that pulling forces are governed by a two-stage process:
first the number of force generators increases which makes the variance in speed increase,
then this number gets to a saturation number, and the variance in speed decreases.

Finally, the authors conducted the same experiment on GPR-1/2 RNAi embryos.
GPR-1/2 proteins are involved in forces regulation, via the Gα-protein activity inhibition
[19, 31, 78]. Authors observed that, in these embryos, spindle displacement is disrupted.
When ablating the center region of the centrosome, fragments did not expand toward the
cortex, and the mean speed was low compared to wild-type embryos. This means that,
in GPR-1/2 RNAi embryos, pulling forces were almost absent, which suggests that there
are no active force generators at the cortex.

In 2006, Pécréaux et al. [62] went one step further in the study of spindle displace-
ment and oscillations. In this paper, the authors investigated how the force generators
can give rise to oscillations while also displacing the spindle toward the posterior side of
the cortex. The main hypothesis tested here is that a threshold number of active force
generators is needed in order to start oscillations. Furthermore, to account for the build
up and die down of oscillations together with the spindle displacement, they propose that
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force generators stay attached to a microtubule for a longer period of time as the division
progresses. This means that the unbinding average rate of a force generator decreases over
time, which is explained by the authors in terms of increasing processivity of the force
generators.

An antagonistic-motors model is considered, and the hypothesis of a threshold is tested
by comparing the behavior given by the model and the observed behavior in RNAi embryos
with reduced levels of dynein light intermediate chain and GPR-1/2 that are involved in
the regulation of force generators. Model prediction of a threshold number of active force
generators was confirmed by the experiments. In the RNAi embryos, oscillations were ei-
ther greatly reduced, or completely abolished when the RNAi effect was strong. Reducing
GPR-1/2 expression will reduce the motor activity, and thus, when the motors activity is
too low, the oscillations are either reduced, or completely inexistent if the needed motor
activity threshold is not crossed. Thanks to this model, the authors could also test what
parameter could account for the build up and die down of oscillations while also preserv-
ing the posterior displacement. They found that, the only parameter that could account
for both of these behaviors, is the average motor activity, by a monotonic increase in this
parameter. Finally, the authors propose that one motor could generate both oscillations
and posterior displacement, and the most probable motor that could have this role is
cortical dynein as it was previously showed that dynein is crucial for spindle centering in
metaphase and for spindle oscillations in anaphase.

These papers shed light on crucial bio-physical aspects of how the spindle poles sep-
arate during the first division of C.elegans. Experiments involving cutting the mitotic
spindle at the beginning of anaphase and ablating the central region of the centrosomes
showed that (i) pulling forces are responsible for the three types of movements of the
poles during anaphase, (ii) these pulling forces are external to the mitotic spindle and
most probably generated by the astral microtubules, and (iii) they are governed by a
two-stage process which involves an increase of the number of force generators until a
threshold is reached. An antagonistic-motors model and further experiments including
GPR-1/2 RNAi embryos, confirmed that this process is able to produce both posterior
displacement and poles oscillations and that it requires a threshold number of active force
generators; it was further explained by a monotonic increase in the mean motor activity.
These papers set the bases for understating the spindle poles separation during anaphase,
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but there are many aspects that need to be further studied, in particular: how the different
parameters influence the behavior of the poles; how they are linked to molecular motors
participating in anaphase; how they vary between individuals, or between populations,
beyond the mean behavior previously studied.

3.2 Model of spindle pole oscillations during anaphase

Our aim is to build a mathematical model that describes the spindle pole oscillations
during anaphase in the first division of the C.elegans embryo. An important step in this
direction was performed in [62], where a simplified model of the oscillations is proposed
by Pécréaux et al. We show, in what follows, how a similar approach helped us create a
more elaborate model, that is adapted to a wider range of oscillatory behaviors.

3.2.1 Pole oscillations from a biophysical point of view

While the two poles of the embryo influence each other via the mitotic spindle during
anaphase, their interaction does not have a significant impact on the oscillations [32].
Thus, we focus our study on single pole behavior. This study can be applied to both an-
terior and posterior pole independently, as the same assumptions hold for both cases. In
what follows, we describe the model for the posterior pole, as it exhibits stronger oscilla-
tions, and we refer to it as the "spindle pole". The anterior pole will be studied in Section
3.3.3.3, where we provide a compared analysis between the anterior and the posterior
poles.

Tracking of the spindle pole shows that the pole starts to elongate and move toward the
posterior side of the cell when anaphase is triggered. Then, when it reaches about 70% of
the embryo length, it starts to oscillate vertically for 100 to 200 seconds. The oscillations
build up and reach a maximum that is consistent between embryos of the same condition.
Then the oscillations die out, the pole reaching an asymmetric equilibrium position close
to the posterior cortex, and centered in vertical position. The oscillations are symmetric
with respect to the maximum amplitude, the build up and die down periods of time being
similar.

To model the spindle pole behavior, a biophysical approach was used (as in [62]), and
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Figure 3.6 – Schematic representation of the posterior pole, microtubules and
molecular motors. In (1), the motor is bound to a microtubule. In (2), the motor is
walking on the microtubule, thus generating a pulling force. In (3), the motor unbinds
from the microtubule.

in particular, a force-balance equation gave the basis for our model. The pole is under the
action of several forces. First, there are pulling forces generated at the cortex by active
motors as seen the previous section ([32, 33]). These motors can bind to a microtubule,
pull on the microtubule by “walking” on it, and by consequence, pull on the pole (assum-
ing that microtubules are “rigid enough” structures). These forces pull the spindle pole
off-center toward the cortex. Opposing the movement of the pole, there is a viscous force
arising from the microtubule network ([35]) and viscosity of the cytoplasm ([30]). The
higher the speed of the pole, the higher this force will be, thus slowing down the pole.
Finally, there is a force that brings the pole back to a centered vertical position ([35],[63]),
that we call a centering force. This force is thought to be generated by the microtubules
reaching the cortex that are not actively in a pulling state. This centering mechanism is
essential to maintain the spindle centered during metaphase while the chromosomes get
aligned and attached to their respective pole, and its action continues through anaphase.
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Our model is based on three main modelling assumptions (see Fig. 3.6):

1. Astral microtubules can be in a pulling or non-pulling state. When microtubules
(MT) are growing from the centrosome, they are in a non-pulling state until they
reach the cell cortex. At the cortex, a MT can either encounter an active force
generator and have a certain probability to switch to a pulling state (by having a
force generator binding to it), or it does not encounter an active force generator,
and it will be in a non-pulling state. When in a non-pulling state, a MT can
continue to grow and starts pushing on the cortex (this pushing force contributes
to the centering force), or it can bundle when it has been pushing for too long. At
any moment, a MT can start to depolymerize and thus start shrinking. Sometimes
the depolymerization can be “reversed” when the MT starts growing again and the
same possible scenarios as described in this paragraph can take place.

2. A force generator can bind to a MT, pull on the MT, and then it can unbind from
the MT. This process has been described via a relation between the force and the
unbinding rate of the force generator from the MT. When the force increases, the
unbinding rate increases exponentially, thus the higher the force, the higher the
chance for the force generator to unbind from the MT, in an exponential manner.

3. Force is generated by having a force generator walking on the MT. This has been
described via an inverse linear relation between the speed of the force generator
and the force it creates. When the force generator speeds up, the force in the direc-
tion of movement gets weaker, and its magnitude decreases linearly with increasing
speed.

With these assumptions, the behavior of the spindle pole during anaphase can be com-
pletely described. When anaphase is triggered, the mitotic spindle, and thus the poles,
move along the AP-axis toward the posterior side of the cell, while also elongating, the two
poles getting further apart from each other. When it reaches 70% of the embryo length,
the system gets to an unstable state. When in this state, oscillations can be triggered
when a threshold of active force generators is passed, by the binding and unbinding of the
force generators. Noise or any perturbation (like thermal perturbation) can make the pole
move, e.g., vertically toward the upper cortex. In this case the speed increases toward the
upper cortex, and as a consequence, the force per motor at the upper cortex decreases,
which, in turn, will decrease the unbinding rate. This will increase the binding time of force
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generators to microtubules. The binding rate is superior to the unbinding rate, so with
larger binding times, the total pulling force from the upper cortex will increase, despite
having lower individual force per force generator. This increase in total force is enough
to counteract the viscous and the centering forces for a small period of time. Meanwhile,
as the pole gets further from the center, the centering force increases, until its magnitude
is big enough to compensate the increase of the total force generated at the cortex. The
pole will thus reach a maximum amplitude, stop and then reverse movement toward the
lower cortex.

The pole is now pulled toward the AP axis by the centering force, and its speed starts
to increase again but in the other direction. On the upper cortex this increase in opposite
speed creates an increase in the individual force, and therefore an increase of the unbind-
ing rate which ultimately means a decrease of the total pulling force for the upper cortex
as microtubules unbind quicker. From the lower cortex perspective, the speed increases,
which brings the system in the same position as discussed previously for the upper cor-
tex. The same scenario takes place while the pole moves vertically toward the lower cortex.

At this stage, the pole can continue to oscillate vertically while moving horizontally
toward the posterior side of the cell. But the oscillations build up, and then die down after
100 to 200 seconds. To account for this behavior and horizontal displacement, Pécréaux
et al. [62] propose that the average unbinding rate decreases over time at given force.
This would have an effect on the frequency of oscillation, that would decrease over time.
Pécréaux et al. confirmed this experimentally by measuring the change in frequency over
time in wild-type embryo, and found that the frequency is indeed decreasing. We thus keep
this assumption in our model. The monotonic decrease in the unbinding rate, accounts
for the build up and die down of oscillations. The pole then reaches its final posterior
position, vertically centered, but horizontally displaced toward the posterior side of the
cell, and this sets the end of anaphase in C.elegans.

3.2.2 Proposed mathematical model and modeling assumptions

The construction of the model is based on a physical approach and relies on a force
balance. In the context of the studied problem, four forces act on the centrosome, as
illustrated by Fig. 3.7:

• F+: total force exerted by the motors of the upper cortex;
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Figure 3.7 – Schematic representation of the forces acting on the posterior pole,
assuming the pole is moving upwards.

• F−: total force exerted by the motors of the lower cortex;
• Fviscous: viscous force, that opposes the movement of the centrosome;
• Fcentering: centering force, that pulls the centrosome back towards the AP axis.

The standard expression for the centering force is Fcentering = −K0 y where K0 is the
elasticity coefficient and y is the vertical position (perpendicular to the AP axis) of the
centrosome. In a similar fashion, the viscous force is written as Fviscous = −Γ ẏ, where Γ
is the viscosity coefficient and ẏ the velocity of the centrosome.

Three assumptions are used for building our model.

Assumption 1 concerns the “state” of the microtubules: they can be either pulling
on the centrosome or not. A microtubule is not pulling on the centrosome, either
because there is no molecular motor where it is attached to the cortex, or because
it is not long enough to be in contact with the cortex. In what follows, we will
be referring to microtubules that are pulling on the centrosome as attached, and
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to microtubules that are not pulling as detached. Let p be the probability that a
microtubule is attached (thus, 1 − p is the probability that it is detached). This
probability depends on binding and unbinding rates of the microtubules to the
cortex, denoted by kon and koff . The evolution law of p is then given by:

ṗ(t) = −koff (t)p(t) + kon(1− p(t)). (3.1)

Note that, when a microtubule is detached, it may contribute to the viscosity force.
Assumption 2 concerns the relation between the force f exerted on a centrosome by

a motor, and the velocity ẏ of the motor, taken to be equal to the velocity of
the centrosome (i.e., rigid microtubules are considered). A first-order relationship
between the force and the velocity is assumed, that is:

f ≈ f̄ − fpẏ. (3.2)

where f̄ denotes the “reversal force”, above which the direction of the motor is
reversed, and fp is the slope of the force-velocity curve.

Assumption 3 concerns the relation between the force exerted on a centrosome by a
motor, and the detachment rate of the corresponding microtubule: the greater the
exerted force, the higher the chance for the microtubule to detach. An exponential
relation is assumed, under the form:

koff (t) = k0 exp
(
|f |
fc

)
, (3.3)

where fc represents the sensitivity to the pulling force generated by the motor.

The force balance equation writes as follows:

Γ ẏ +K0 y = F+ + F− (3.4)
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where 

F+ = Np+f+ (3.5a)
F− = Np−f− (3.5b)
f+ ≈ f̄ − fpẏ (3.5c)
f−(ẏ) = −f+(−ẏ) (3.5d)
p−(ẏ, ÿ) = p+(−ẏ,−ÿ) (3.5e)

In this system, N denotes the number of active molecular motors, and p+ (respectively,
p−) is the probability of attachment of a microtubule at the upper (resp., lower) cortex.

Let us first compute p. We use Assumption 1, and write:

ṗ(t) = −koff (t)p+ kon(1− p). (3.6)

Hence, for the upper cortex and the lower cortex respectively, one has:

ṗ+(t) = −k+
off (t)p+ kon(1− p), (3.7)

ṗ−(t) = −k−off (t)p+ kon(1− p). (3.8)

Then, by using Assumption 3, then Assumption 2 :

k+
off (t) = k0 exp

(
|f+|
fc

)
= k0 exp

(
f̄ − fpẏ
fc

)

= k0 exp
(
f̄

fc

)
exp

(
−fp
fc
ẏ

)
.

Assuming −fp

fc
ẏ small, a second order Taylor expansion of the exponential is used: 1

exp
(
−fp
fc
ẏ

)
≈ 1− fp

fc
ẏ + 1

2

(
fp
fc

)2

(ẏ)2 . (3.9)

1. We chose to use a second-order expansion here after we developed and tested a first complete model
using a first-order Taylor expansion. We observed that this first model did not capture oscillations with
large amplitudes. The second-order expansion makes it possible to model a wider range of behaviors.
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Thus :

k+
off (t) = k0 exp

(
f̄

fc

)1− fp
fc
ẏ + 1

2

(
fp
fc

)2

(ẏ)2

 (3.10)

= koff

1− fp
fc
ẏ + 1

2

(
fp
fc

)2

(ẏ)2

 , (3.11)

where koff is defined as:

koff = k0 exp
(
f̄

fc

)
. (3.12)

In the same manner, for the lower cortex, one obtains:

k−off (t) = k0 exp
(
|f−|
fc

)
= k0 exp

(
f̄ + fpẏ

fc

)
(3.13)

= k0 exp
(
f̄

fc

)
exp

(
fp
fc
ẏ

)
(3.14)

= k0 exp
(
f̄

fc

)1 + fp
fc
ẏ + 1

2

(
fp
fc

)2

(ẏ)2

 (3.15)

= koff

1 + fp
fc
ẏ + 1

2

(
fp
fc

)2

(ẏ)2

 (3.16)

Using (3.11) and (3.16) in the (3.7) and (3.8) respectively, it yields:

ṗ+(t) = kon(1− p+)− p+koff

1− fp
fc
ẏ + 1

2

(
fp
fc

)2

(ẏ)2

 . (3.17)

ṗ−(t) = kon(1− p−)− p−koff

1 + fp
fc
ẏ + 1

2

(
fp
fc

)2

(ẏ)2

 . (3.18)

At this point in their modeling, Pécréaux et al. [62] make use of a supplementary
assumption on the dynamics of p+ and p−, which are directly related to y via a linear
second-order ODE; this results in a constraint on the shape of the solutions. We choose
instead to keep the complete expressions of these variables, in order to keep our model
closer to the dynamics of the oscillations.

Let us define p1 = p+− p− and p2 = p+ + p−. Then, by adding and subtracting (3.17)
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and (3.18), one obtains:

ṗ2(t) = 2kon − (kon + koff )p2 + koff
fp
fc
ẏp1 −

koff
2

(
fp
fc

)2

(ẏ)2 p2, (3.19)

ṗ1(t) = −(kon + koff )p1 + koff
fp
fc
ẏp2 −

koff
2

(
fp
fc

)2

(ẏ)2 p1. (3.20)

Let us now determine an expression for ẏ(t). From the force balance (3.4) and (3.5a),
(3.5b), (3.5c), (3.5d), it yields:

Γ ẏ +K0 y = F+ + F−

Γ ẏ +K0 y = Np+f+ +Np−f−

= Np+
(
f̄ − fpẏ

)
+Np−

(
−f̄ − fpẏ

)
= Nf̄ (p+ − p−) +Nfp (−p+ − p−) ẏ
= Nf̄ (p+ − p−)−Nfp (p+ + p−) ẏ.

Then:
Γ ẏ +Nfp (p+ + p−) ẏ = Nf̄ (p+ − p−)−K0 y. (3.21)

Hence:
ẏ = Nf̄ (p+ − p−)−K0 y

Γ +Nfp (p+ + p−) . (3.22)

By introducing p1 and p2, one obtains:

ẏ = Nf̄p1 −K0 y

Γ +Nfpp2
. (3.23)

Finally, the proposed mathematical model is summarized as follows:



ẏ = Nf̄ p1 −K0 y

Γ +Nfp p2

ṗ1 = −(kon + koff ) p1 + koff
fp
fc
ẏ p2 −

koff
2

(
fp
fc

)2

(ẏ)2 p1

ṗ2 = 2kon − (kon + koff ) p2 + koff
fp
fc
ẏ p1 −

koff
2

(
fp
fc

)2

(ẏ)2 p2

(3.24)

In model (3.24), the parameters to be estimated are N , f̄ , K0, Γ, kon, koff , fp and fc.
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In addition, Pécréaux et al. [62] showed that a monotonic decrease of koff accounts for
the build-up and die down of the oscillations. In what follows, we model koff in the same
way, that is:

koff (t) = a− k̃end
1 + exp(dt− b) + k̃end. (3.25)

Parameters a, b, d and k̃end will thus be estimated alongside the other parameters of (3.24).

3.2.3 Simulations and model analysis

As discussed above, there is a lack of quantitative evaluation of the parameters involved
in the oscillations of the spindle poles during anaphase in C.elegans. Our aim is to better
understand the relation between these parameters and the observed phenotype, both for
individual embryos and between populations of embryos. To this purpose, we start by
analyzing the simulations given by the proposed model with respect to the characteristics
of the oscillations, then we connect these characteristics to the parameter values. Matlab
(version 9.4) was used to simulate the oscillations model.

We first describe how our model adapts to variations in oscillations and, in particular,
to three characteristics of interest observed on wild-type embryos. We then illustrate the
influence of key parameters on these characteristics. Finally, we show how our model
behaves for limit values of these parameters and we deduce necessary ranges of these
parameters for oscillations to still be generated.

3.2.3.1 Simulations and phenotypic variability

Oscillations, considered as a phenotypic trait, show a great variability in wild-type
embryos as well as in RNAi embryos [85]. Here, we show that this variability is well
accounted for by our model, and in particular, the three main types of variation given by
the model will be discussed :

• variation in maximum amplitude of oscillations;
• variation in frequency of oscillations;
• variation in number of oscillations.

Variation in maximum amplitude A large spectrum of values for the maximum
amplitude is possible with our model. Simulations with varying maximum amplitude are
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(a) small maximum amplitude (b) medium maximum amplitude

(c) large maximum amplitude (d) all simulations

Figure 3.8 – Oscillation variability illustrated by our model. Variation of maximum
amplitude across simulations.

given in Fig. 3.8. The regular range of maximum amplitude in wild-type embryos is in the
order of micrometers. The provided simulation examples go from 2 µm in Fig. 3.8a, which
corresponds to a rather small maximum amplitude, to 3.5 µm in Fig. 3.8b, which is around
the mean maximum amplitude observed in wild-type embryos, and up to approximately
5 µm in Fig. 3.8c, which is a rather large maximum amplitude in wild-type embryos. Fig.
3.8d shows the three simulations together, for a better appreciation of the variation in
maximum amplitude. In RNAi embryos, the mean maximum amplitude varies significantly
depending on the condition, ranging from 1 µm to 7 µm. Our model accounts for variation
in maximum amplitude for all embryos, wild-type and perturbed alike.

Variation in frequency Although less important than those on amplitude, variations
of frequency of oscillations in wild-type embryos of C.elegans are observed. Our model
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(a) low frequency (b) medium frequency

(c) high frequency (d) all simulations

Figure 3.9 – Oscillation variability illustrated by our model. Variation of frequency
across simulations.

allows for some variation in frequency, with a limited impact for most of the parameters.
In Figure 3.9, several scenarios for the frequency are given : an example of low frequency
of 0.035 Hz in Fig. 3.9a, a regular frequency of 0.06 Hz in Fig. 3.9b, and a high frequency
of 0.09 Hz in Fig. 3.9c. In wild-type embryos, the typical frequency is between 0.05 and
0.06 Hz. Thus, our model takes into account the variability in the frequency of oscillations,
and allows for simulations with frequency values ranging from 0.02 Hz to 0.1 Hz.

Variation in number of oscillations Our model also allows for variations in the
number of oscillations. In wild-type and perturbed embryos, there is significant variability
in the number of oscillations. As an example, Fig. 3.10 shows several simulations of our
model with different numbers of oscillations, from 3 oscillations and up to 6 oscillations.
In wild-type embryos, the number of oscillations typically ranges between 3 and 5, but in
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Figure 3.10 – Oscillation variability illustrated by our model. Variation of the
number of oscillations across simulations: 3 oscillations (in yellow), 4 oscillations (in red)
and 6 oscillations (in blue).

RNAi embryos, this number can vary substantially. In some conditions, the oscillations
are not present at all, or are highly impacted with only 1 or 2 oscillations, while in other
conditions, the number of oscillations goes up to 6 or 7 oscillations. Our model is able to
take into account all these scenarios.

Other types of variations Variability in oscillations is very clear during anaphase in
the C.elegans embryo. We already showed that out model produces simulations that take
into account the main sources of variability: maximum amplitude, frequency and number
of oscillations. However, there are other secondary sources of variability in oscillations
that can be identified, and that are not handled by our model. Specifically, our model
does not account for aborted oscillations that can sometimes be seen in experimental
data, and it does not model trajectory drifts (i.e., cases in which the mean value of the
vertical position of the pole is not constant). The aborted oscillations are probably due to
resynchronization mechanisms between the two poles. Our model focuses on the movement
of a single pole, and thus, cannot take these mechanisms into account.

Other types of variations, concerning the total time of oscillations, or the build-up and
die-down times, are covered by our model, and will be discussed, when appropriate, later
in this chapter.
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3.2.3.2 Model analysis: how parameters influence the oscillations

In order to better understand the results of the parameter estimation (discussed in
the next chapter), it is helpful to analyze the relation between the variation in parameter
values and the variation in the characteristics of the oscillations. In this section, we explicit
the influence of the variation of each parameter (taken individually) on the oscillations.
The default parameters values are set in accordance to values estimated or computed
in previous papers [62, 35, 30], and such that a typical wild-type oscillatory behavior is
observed:



N = 80

f̄ = 7× 10−12 N

fp = 1.2× 10−6 N · s/m

fc = 7× 10−13 N

K0 = 50× 10−6 N/m

Γ = 400× 10−6 N · s/m

kon = 0.6 s−1

a = 1.2

b = 7

d = 0.165

k̃end = 0.2

(3.26)

Parameters f̄ , fp and fc are related to the forces generated by the motors. Several
studies suggest that a single type of motor is responsible for the forces generated at the
cortex. Thus, these parameters are fixed to the default values provided by the literature
[83, 62].

Regarding the parameters related to koff , the value of k̃end can be fixed without loss
of generality: the impact of koff on the oscillations directly stems from its variation over
time, which can be controlled by the parameters a, b and d only.

Finally, parameters K0 and Γ are physical parameters whose values are hard to inter-
pret at a molecular level, which is why we leave them out of the following analysis.

For these reasons, we only study here the influence of parameters N , kon, a, b and
d on the oscillations. Appendix D completes this analysis, in order to check the correct
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behavior of the model.
The considered characteristics of the oscillations are the maximum amplitude, the

number of oscillations and the frequency. In particular, specific computations are required
in order to compute the latter. We rely on a discrete Fourier transform of the signal via
FFT; the component of the Fourier transform with the greatest amplitude approximates
the fundamental frequency of the signal, i.e., the frequency of the oscillations. All signals
are subject to the same time discretization. As a result, all approximated frequencies lie
in the same finite set of possible frequencies provided by the FFT. Hence, plotting the
computed frequencies with respect to the values of a parameter results in a step-wise
approximation of the actual behavior. Such plots provide us with valuable information
about the frequency range and general trend. More precise results could be obtained by
increasing the sampling rate.

In what follows, we summarize the results of this analysis in a table format : the first
column defines the parameter of interest and gives the tested range of values, and the
second column reports the most important observations with respect to the influence of
the parameter on the characteristics of the oscillations.
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Parameter range
and definition

Influence on the oscillations

N : [50; 150]
Number of molecu-
lar motors generating
pulling forces.

Maximum amplitude : increases linearly with the value of N
(see Fig. 3.11b).
Frequency : decreases with the value of N , but remains close
to typical values (see Fig. 3.11c).
Build up and die-down : the timing of the beginning of the
oscillations is fairly stable, whereas the end time varies con-
siderably (see Fig. 3.11a).
Number of oscillations : varies slightly.

kon : [0.5; 1.6] s−1

Binding rate.
Maximum amplitude : decreases linearly with the value of kon
(see Fig. 3.12b).
Frequency : increases with the value of N , but remains close
to typical frequency values (see Fig. 3.12c).
Build up and die-down : the timing of the beginning of the
oscillations is fairly stable, whereas the end time varies con-
siderably (see Fig. 3.12a).
Number of oscillations : varies slightly.

a : [0.38; 1.5]
Starting value of the
unbinding rate.

Maximum amplitude : increases with the value of a, then
reaches a plateau at a ≈ 1.2 (see Fig. 3.13b).
Frequency : mostly stable (see Fig. 3.13c).
Build up and die-down : the timing of the beginning and end-
ing of the oscillations varies largely; this variation seems to
follow a step-wise pattern and might be correlated to the ad-
dition/subtraction of a new oscillation. (see Fig. 3.13a).
Number of oscillations : increases step-wise.
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b : [3; 10]
Delay after which the
unbinding rate starts
to decay.

Maximum amplitude : moderately impacted; it increases with
the value of b, but quickly reaches a plateau (see Fig. 3.14b).
Frequency : almost constant (see Fig. 3.14c).
Build up and die-down : the timing of the beginning of os-
cillations is not influenced by b. The build-up of oscillations
follows the same pattern for all simulations, but the die-down
pattern and timing change in a slow monotonic fashion (see
Fig. 3.14a).
Number of oscillations : increases monotonically with b.

d : [0.05; 0.22]
Slope of the unbinding
rate.

Maximum amplitude : moderately impacted; it decreases with
the value of d, starting from a relative plateau (see Fig. 3.15b).
Frequency : fairly stable (see Fig. 3.15c).
Build up and die-down : the timing of the beginning and the
pattern of the build-up are the same for all simulations, with
only the amplitude changing slightly. The die-down timing and
the number of oscillations decrease rapidly (after the plateau
values) with increasing values of d (see Fig. 3.15a).
Number of oscillations : monotonically decreases while d in-
creases.
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(a) y vs t

(b) max ampl vs param (c) freq vs param

Figure 3.11 – Influence on the oscillations of the values of the parameter N . (a)
Transverse oscillations for different tested parameter values, providing information about
the number of oscillations, the build-up and die-down timing. (b) Variation in maximum
amplitude with respect to the variation in parameter value. (c) Variation in frequency
with respect to the variation in parameter value.
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(a) y vs t

(b) max ampl vs param (c) freq vs param

Figure 3.12 – Influence on the oscillations of the values of the parameter kon. (a)
Transverse oscillations for different tested parameter values, providing information about
the number of oscillations, the build-up and die-down timing. (b) Variation in maximum
amplitude with respect to the variation in parameter value. (c) Variation in frequency
with respect to the variation in parameter value.
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(a) y vs t

(b) max ampl vs param (c) freq vs param

Figure 3.13 – Influence on the oscillations of the values of the parameter a. (a)
Transverse oscillations for different tested parameter values, providing information about
the number of oscillations, the build-up and die-down timing. (b) Variation in maximum
amplitude with respect to the variation in parameter value. (c) Variation in frequency
with respect to the variation in parameter value.

118



3.2. Model of spindle pole oscillations during anaphase

(a) y vs t

(b) max ampl vs param (c) freq vs param

Figure 3.14 – Influence on the oscillations of the values of the parameter b. (a)
Transverse oscillations for different tested parameter values, providing information about
the number of oscillations, the build-up and die-down timing. (b) Variation in maximum
amplitude with respect to the variation in parameter value. (c) Variation in frequency
with respect to the variation in parameter value.
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(a) y vs t

(b) max ampl vs param (c) freq vs param

Figure 3.15 – Influence on the oscillations of the values of the parameter d. (a)
Transverse oscillations for different tested parameter values, providing information about
the number of oscillations, the build-up and die-down timing. (b) Variation in maximum
amplitude with respect to the variation in parameter value. (c) Variation in frequency
with respect to the variation in parameter value.
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Robustness of the model to parameter Y0 : Although not an explicit model pa-
rameter, the influence of Y0 – the initial value of the vertical position of the pole, required
for model simulation – is of particular interest. Indeed, this initial value is typically set
by default, as measuring it from the acquired real microscopy data is not possible; thus,
robustness to this value is crucial in order to avoid significant numerical errors. The influ-
ence of the parameter Y0 was thus tested here, with Y0 varying from 0.01 nm to 0.1 µm,
the other parameters being fixed to the default values given above, and 80 simulations of
the model were generated.

Figure 3.16 shows the influence of the parameter Y0 on the oscillations. The maximum
amplitude (see Fig. 3.16b) and frequency (see Fig. 3.16c) are almost fixed. The only
noticeable effect is on the beginning of the oscillations, with a half-oscillation being added
for larger values of Y0 (see Fig. 3.16a). A slight shift in time can also be observed. Overall,
the influence of the parameter Y0 on the oscillations is very limited, which means that our
model is robust to this parameter and that its value can be set by default as convenient.

3.2.3.3 Model analysis: limits of parameter values

In this section, we explore the limit oscillatory behavior given by our model and discuss
the extremal parameter values with respect to the characteristics of the oscillations. In
addition to testing the limits of the model and comparing its behavior to observations on
wild-type embryos, this analysis provides bounds to drive oscillations, and the transitory
behavior of the model from oscillatory to non-oscillatory. For this purpose, we proceed
as in the previous section: the parameters are set to default values such that the sim-
ulation reproduces the behavior of a typical wild-type embryo. Then each parameter is
tested individually. The minimal and maximal ranges of values are empirically obtained
by performing large numbers of simulations.

Limit behavior for the parameter N The lower limit of N was tested in the range
[20, 55], and the upper limit in the range [150, 200]. As seen in the previous section, the
maximum amplitude increases with the values of N . When the value of N is around
50, oscillations are still present, but their amplitude decreases with smaller values, as
shown in Fig. 3.17b. When N gets even lower, i.e., N < 40, oscillations do not build up
anymore; instead, they die out immediately, starting from the initial position Y0 = 1 nm,
or even become nonexistent when N gets closer to 20, in which case the trajectory of Y
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(a) y vs t

(b) max ampl vs param (c) freq vs param

Figure 3.16 – Influence of the value of parameter Y0 on the oscillations. (a)
Oscillations of the pole for different values. (b) Maximum amplitude with respect to the
parameter value. (c) Frequency of oscillations with respect to the parameter value.

follows a simple decay to 0, as shown in Fig. 3.17a. In contrast, for high values of N , the
oscillations continue to be present, as shown in Fig. 3.17c, but the pattern is not realistic.
The amplitude continues to increase with increasing values of N , while the frequency and
number of oscillations decrease.

Limit behavior for the parameter kon The lower limit of kon was tested in the range
[0.4, 0.7] s−1, and the upper limit in the range [1.7, 2.1] s−1. For low values of kon (see Fig.
3.18a), the oscillations occur, the maximum amplitude is high, the frequency is low, and
the number of oscillations is stable (this last part is actually the case for all values of kon,
as this parameter has a very limited impact on the number of oscillations). For high values
of kon (see Figs. 3.18b and 3.18c), the oscillations decrease in maximum amplitude until
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(a) N = 20 : 40 (b) N = 40 : 55

(c) N = 150 : 200

Figure 3.17 – Limit behavior of the model for extremal values of the parameter
N .

there is no build-up, and finally disappear. The maximum amplitude decreases steadily.
The frequency and the number of oscillations are stable for this range of values.

Limit behavior for the parameters related to koff The limit behavior of the model
for extremal values of the parameters a, b, and d were tested individually. The lower limit
of a was tested in the range [0.34, 0.38], and the upper limit in the range [1.40, 1.80]. The
results for low values of a are given in Figs. 3.19a and 3.19b. The oscillations decrease
steadily in maximum amplitude, whereas the frequency and number of oscillations are
stable. For high values of a, the maximum amplitude is high but almost steady, and the
frequency and number of oscillations are stable, as shown in Fig. 3.19c.
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(a) kon = 0.4− 0.7 s−1

(b) kon = 1.7− 1.9 s−1 (c) kon = 1.9− 2.1 s−1

Figure 3.18 – Limit behavior of the model for extremal values of the parameter
kon.

The limit behavior for extremal values of the parameters b and d mirror each other:
the behavior for low values of b corresponds to the behavior for high values of d, and the
other way around. The parameter b was tested in the range [0.30, 2.50] for low values, and
in the range [9, 12] for high values. The parameter d was tested in the range [0.04, 0.06] for
low values, and in the range [0.20, 0.40] for high values. For low values of b (respectively,
high values of d), the oscillations decrease in maximum amplitude, but the frequency is
stable, as shown in Figs. 3.20a and 3.20b (resp., Figs. 3.21b and 3.21c). For high values
of b (respectively, low values of d), the oscillations get to a stable pattern that is realistic,
with high amplitude, high number of oscillations, and stable frequency, as can be seen in
Fig. 3.20c (resp., Fig. 3.21a). The beginning and build-up of oscillations are not impacted
at all by the values of these parameters.
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(a) a = 0.34− 0.36 (b) a = 0.36− 0.38

(c) a = 1.40− 1.80

Figure 3.19 – Limit behavior of the model for extremal values of the parameter
a.
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(a) b = 0.30− 1.50

(b) b = 1.50− 2.50 (c) b = 9− 12

Figure 3.20 – Limit behavior of the model for extremal values of the parameter
b.
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(a) d = 0.04− 0.06

(b) d = 0.20− 0.30 (c) d = 0.30− 0.40

Figure 3.21 – Limit behavior of the model for extremal values of the parameter
d.

Discussion The general patterns observed in the previous section with respect to the
characteristics of the oscillations were confirmed for the extremal values for each pa-
rameter; no sudden change of behavior is observed in the simulations when a parameter
transitions from characteristic values to extremal ones. Increasing values for parameters
N , a and b yields an increase in maximum amplitude, whereas parameters kon and d have
the opposite effect on amplitude. In all cases, the pattern is monotonic and the rate of
increase/decrease is fairly constant. Only the parameter N displays, for high values, a
behavior that might not correspond to real data, as the oscillations are too sharp for val-
ues close to 200. However, the maximum amplitude for such values is higher than 10 µm
which is never observed in real data, where the maximum amplitude reaches, at most,
8 µm. Thus, this type of behavior, although allowed by the model, will not be attained
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when estimating the parameters by fitting the real data. The frequency also follows a con-
sistent pattern with the one observed in the previous section. Increasing extremal values
for parameter N yields a decrease in frequency, whereas increasing parameters kon, a, b
and d results in a constant or almost constant frequency. Meanwhile, similar patterns in
terms of number of oscillations occur for all the parameters: for values that result in low
maximum amplitudes, the number of oscillations varies monotonically, in a way consistent
with the previously observed pattern; for values generating high maximum amplitudes,
the number of oscillations is constant or nearly so between simulations.

The limit dynamic behavior is complex to observe in real data, especially on wild-type
embryos under normal conditions, that show a rather typical behavior. Yet, we showed
that all observed behaviors (wild-type and RNAi embryos) can be accounted for by our
model, with only the exceptions discussed in Section 3.2.3.1, in particular, cases of aborted
oscillations and trajectory drifts. Furthermore, as described by our model, the system can
transition from non-oscillatory to oscillatory mode, in a smooth way, without changing
the underlying dynamics. This is in agreement with previous conclusions in [32, 33, 62],
stating that a single process is responsible for the global behavior of the spindle poles
during anaphase. The analysis of our model also shows that the transition to oscillatory
mode is achieved by a change in parameter value only; this is in line with [62], showing
that a threshold in active force generators is required for the beginning of the oscillations.
Finally, our analysis shows that the parameters N , kon, a, b and d can all be responsible
for initiating or abolishing the oscillations, when their effect is considered individually.
Table 3.1 gives approximates of the boundary values needed for oscillations to exist, for
the five mentioned parameters.

Parameter N kon (s−1) a b d

Upper boundary – 1.8 – – 0.3
Lower boundary 45 – 0.35 0.8 –

Table 3.1 – Approximate boundary values required for oscillations to exist. All
other parameter values are set according to (3.26).
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3.3 Estimation of model parameters

3.3.1 ABC-like estimation framework

3.3.1.1 Parameter sensitivity analysis with the Morris method

Our model involves several correlated parameters (11 parameters), that can have non-
linear effects on the outcome. Before estimating the parameters, we first performed a
parameter sensitivity analysis in order to assess the sensitivity of the model to each pa-
rameter, which in turn, will allows us to categorize the parameters depending on their
respective influence on the model outcome. This step is crucial for building an effective
estimation method, as the basic parameters estimation can result in large errors because
of the interaction and non-linear effects of the parameters.

There are several methods that can be used to perform a sensitivity analysis. For
a review on global sensitivity analysis methods we refer the reader to [37]. Here, only
a qualitative assessment of the parameters sensitivity is needed, so we chose to use a
screening technique, from the family of OAT (One At a Time) methods. In particular,
we focus on the Morris method [55], which allows to classify the parameters into three
categories :

• Parameters that have a low influence on the outcome : these parameters can be
either set to default values or let within large intervals.

• Parameters that have a linear effect on the outcome : these parameters have an
easy, predictable influence on the model outcome.

• Parameters that have a non-linear effect on the outcome, with or without inter-
action with the other parameters : these parameters have the largest influence
on the model, and must be well constrained in the estimation process, because a
small variation in these parameters can result in a complex variation in the model
outcome.

Screening techniques use a discretization of the parameter space in order to explore the
model behavior. The aim is to find the non-influential and the most influential parameters
from a reasonable number of evaluations of the model, and with realistic hypotheses on
the model.

From a practical point of view, the Morris method can be implemented in four steps as

129



Chapter 3 – Cell population variability : the mitotic spindle poles behavior in asymmetric
division

follows:

1. Building of random trajectories. The parameter space is scaled to the hypercube
[0, 1]N (where N is the number of parameters), then discretized with a fixed step size for
each parameter. A trajectory is then defined as a sequence of points in the discretized
parameter space. Random trajectories are built from the following rules:

— each parameter varies only once per trajectory;
— the order of variation of the parameters in a trajectory is random;
— the starting point of the trajectory is chosen randomly;
— the direction of variation of each parameter is also random.

2. Cost function for the evaluation of the model outcome. The cost function
involves important characteristics of the model outcome.

3. Computing of elementary effect of each parameter. For a given parameter Xi,
a trajectory j and a cost function F , the elementary effect is given by :

E
(j)
i = F (. . . , Xi + αδ, . . . )− F (. . . , Xi, . . . )

δ
(3.27)

where δ is the step size (that is the same for all parameters), and α = ±1 is the direction
of variation of the parameter (randomly chosen when the trajectory is built).

4. Computing of the two Morris indices. For each parameter Xi, the first index is
the mean µ∗i of the absolute values of the elementary effects, and the second index is the
standard deviation σi of the elementary effects. A plot of σi as a function of µ∗i gives the
needed information to classify the model parameters according to the three categories.
Specifically, the two Morris indices can be interpreted as follows :

— µ∗i measures the influence of the parameter Xi on the outcome of the cost function.
The larger µ∗i , the larger the influence of this parameter to the dispersion or the
outcome.

— σi measures the non-linear or interactions effects of the parameter Xi on the out-
come. If σi is small, a small variation in the parameter results in a small variation
in the outcome, which in turn means that a linear effect of the parameter on the
outcome is very likely. If σi is large, than a small perturbation in the parameter
results in a large variation in the outcome, which means that there are non-linear
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effects and/or interaction effects on the outcome.

Thus, the three categories are the following ones:

• Parameters with low influence : small σi and small µ∗i ;
• Parameters with linear effect : small σi and larger µ∗i ;
• Parameters with non linear effect : large σi and large µ∗i .

Application of the Morris method to our model. Our aim is to classify the model’s
parameters depending on their influence on the model outcome, that can then be used to
design the estimation method. Our model is controlled by 11 heterogeneous parameters.
The most obvious characteristic of our model outcome is the maximum amplitude of
the oscillations. The parameters space was discretized into 20 levels (20 values for each
parameter), and 50 trajectories were used to compute the two Morris indices. A clustering
algorithm, using the K-means method, was then applied, yielding three parameter groups
:

— parameters with low influence: a, b, d, k̃end, kon, N ;
— parameters with linear effects: fp, K0, Γ;
— parameters with non-linear effects: f̄ , fc.

These groups were further used in the design of the hierarchical estimation method de-
scribed below, from which all results given in the remainder of this chapter were obtained.

A first implementation of our parameter estimation method without parameter group-
ing yielded unsatisfactory results. Using the parameter groups given by the sensitivity
analysis, on the other hand, made it possible to obtain very promising results, as shown
in the remainder of this chapter.

Nevertheless, implementation issues for the sensitivity analysis were detected at the
end of the writing of this manuscript. Better choices of parameter groups could poten-
tially result in better fitting of the experimental data, but it appears that the choice of
an optimal grouping is harder than initially thought. This perspective of our works is
presented in Appendix F.
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3.3.1.2 Hierarchical estimation framework

In this section, an estimation framework is proposed. In Chapter 2, a simple implemen-
tation of the ABC method was introduced in order to estimate the two model parameters.
Here, the model involves 11 parameters that interact in a non-linear way and for which the
a priori knowledge is weak. Below, we propose a three step procedure for the estimation
of the model parameters. This hierarchical estimation method was developed in Matlab
9.4.

Step 1 : Perform a parameter sensitivity analysis in order to group the parameters into
3 categories that impact differently the model outcome. This step corresponds to a model
reduction procedure, as it will allow for a blockwise estimation, each block estimating a
fraction of the parameters. In turn, the accuracy of the estimation should be improved.
In our study, only a qualitative assessment of the parameters sensitivity is required and
the Morris method investigated.

Step 2 : Define specific characteristics that the model simulations should respect. The
aim is to constrain the model such that the simulations are close to the experimental data.
This can be achieved by imposing a range of acceptable values for the most important
features of the model outcome, or by defining common parameter values for all generated
simulations if this is appropriate and in line with the model’s assumptions. In our case,
two features are essential: the amplitude and the frequency of oscillations, that were set
to be at most 50% higher or lower than the values computed on the experimental data. In
addition, 4 parameters were set to default values in all simulations : the parameters related
to the force per motor f̄ , fc and fp, as well as one of the parameters of the unbinding
coefficient k̃end. The first three parameters can be considered fixed because the pulling
forces at the cortex are supposed to be generated by only one type of molecular motor,
and the mechanics of the motor makes it difficult to allow for significant variation in such
characteristic values. The last parameter, related to the unbinding coefficient, is supposed
to be set to a default value for similar reasons : the underlying mechanics of unbinding
is probably constrained in order to yield coherent outcomes. We thus chose to set one
parameter out of the four parameters governing the behavior of the unbinding coefficient.

Step 3 : Estimate the parameters using the Approximate Bayesian Computation
method. If several parameter blocks were identified in the first step, then the estima-

132



3.3. Estimation of model parameters

tion should be done block by block, starting with the parameters that do not need to be
constrained because their effects on the outcome are small, and ending with the parame-
ters that need to be strongly constrained because their effects on the outcome are strong
and non-linear. For estimating the parameters of a given block, all other parameters are
fixed to their previously estimated values or, if no such values were computed, to their
default values. This whole estimation pass is then iterated until global convergence is
obtained.

The characteristic features are used to select the model samples that are close enough
to the experimental data, with respect to these features. Our method proposes three
criteria to decide whether a model sample can be accepted: the amplitude as well as the
frequency of the simulation must be close to those of the experimental curve (maximum
twice the value for the maximum amplitude of the experimental data, and one and a half
times the frequency of the experimental data), and the L2 distance error between the
simulation curve and the experimental curve has to be in the lowest 1% of all computed
simulations (with around 200 000 simulations generated for each embryo). The distance
between the experimental data and the simulation is weighted such that the difference
for middle oscillations weight more in the computed distance, than the beginning and the
end of the oscillations, as our model does not capture some of the mechanisms involved
in the behavior of the first and last oscillations. This means that the frequency is slightly
perturbed at the beginning and at the end of the simulation, but this difference is not
significant for the purpose of the method.

The current implementation relies on a temporal registration to speed up this process.
This registration amounts to shifting each simulated data in time so that the maximum
amplitude of the oscillations coincides (in time) with that of the experimental data. In
the model, the time shift is entirely encoded in the relationship between parameters b and
d, and it can be taken into account by only changing the value of b. One can see temporal
registration as a way of "correcting" the value of parameter b from the experimental data.
This results in more model samples being selected, thus reducing the global computation
time.

3.3.2 Parameter estimation on simulated data

The aim of this section is to evaluate our parameter estimation method on simulated
data of pole oscillations. This will allow to evaluate the performance of the method given
ground truths, before testing it on experimental real data.
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First, a description of the data is provided, together with information about the param-
eters and how the artificial data was obtained. The second part presents the convergence
error (in terms of L2 error), and the error of the estimation of the parameters, for all
the tested data. Finally, the last part shows the complete distributions of the parameters
estimations.

3.3.2.1 Description of the experimental simulated data

In order to evaluate our estimation method, 14 experimental data were created by
simulating the model with specific parameters. The values of the parameters were chosen
such that, the associated experimental curves are close to the ones obtained from real
data, and that are coherent with the order of magnitude given in the literature. The pa-
rameters were also chosen such that a wide range of oscillatory behaviors are tested.

As explained in the previous section, several parameters are set to constant values
as follows : f̄ = 7 × 10−12 N , fc = 7 × 10−13 N , fp = 1.2 × 10−6 N · s/m, k̃end = 0.2.
Thus, our method is applied to estimate the following parameters : N , K0, Γ, kon and the
parameters related to the unbinding coefficient a, b and d. The sets of parameters for the
14 experimental data are repported in Appendices (Section G).

The selected sets of parameters yield a variety of oscillations features. The 14 cases are
illustrated in Fig. 3.22. Some cases show low amplitude of oscillations as in Figs. 3.22a and
3.22c, while other cases show high amplitude as in Fig. 3.22j. The number of oscillations
also varies significantly, between 2 oscillations such as displayed in Fig. 3.22e, to 5 or more
as shown in Figs. 3.22j and 3.22k. As for the frequency of oscillations, it varies also, but
in a smaller range than the two other features.

3.3.2.2 Convergence and estimation error assessment

Estimating the parameters on simulated data allows for a proper evaluation of the
proposed method. For this purpose, the two most important aspects to investigate are
the convergence of the algorithm and the parameter estimation error. Figures 3.23 shows
the relative error of the MMSE estimate for each parameter. The relative estimation error
is low for all tested case, for the parameters N , K0, Γ and kon, with a maximum relative
error of 20%. The parameters related to the unbinding coefficient a, b and d seem to
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be slightly less well estimated. This can be explained by the fact that a registration is
preliminary performed. Nevertheless, even if a few cases show higher relative error for
these parameters, in most cases the relative error is lower than 20%. Thus, our estimation
framework produces reliable results for a wide variety of oscillatory behaviors, and a wide
range of parameters values.

3.3.2.3 Estimation of parameter distribution

In the previous section, the relative errors of the MMSE estimates were presented.
Here we focus on the distributions of the parameters.

First, Fig. 3.24 shows the estimated distribution for each given case, and every figure
shows the results for one particular parameter. The theoretical (known) value is labeled
with a black dot, and the MMSE estimate is labeled with a magenta dot, for each case.

Figure 3.24a shows the results for the number of active motors N , with theoretical
values between 40 and 90. The MMSE estimates are close to the theoretical values, as
explained in the previous sub-section, but a certain variability is observed in the standard
deviation of the estimation. This result is consistent with the parameter sensitivity anal-
ysis, that showed that the parameter N does not have to be particularly constrained in
order to obtain a good fitting solution. From a biological point of view, this might mean
that the number of active motors can vary in a significant way between embryos, and still
achieve oscillations during anaphase.

The estimation of the physical parameters K0 and Γ is illustrated in Figs. 3.24b and
3.24c. In both cases, the MMSE estimates are close to the theoretical values. The stan-
dard deviation shows some variability between the different tested cases. Nevertheless,
the results are highly homogeneous in the case of the viscosity coefficient Γ, which is to be
expected as the viscosity of the cell does not vary significantly, and only other parameters
that might yield a viscous-like outcome can make the viscous coefficient vary (such as the
microtubules that are growing but don’t touch the cortex). The elasticity coefficient K0

shows more variability in standard deviation because this component is not well under-
stood, and it is likely due to dynamic components and not only physical properties of the
microtubules/mitotic spindle.
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Figure 3.24d shows the estimated distribution for the binding coefficient kon for all
tested cases. This parameter shows similar characteristics to the parameter N and they
are probably correlated (which is to be expected from the mathematical expression of
the model) : when N is high, kon is also high, and the other way around. The MMSE
estimates for kon are fairly good, and the standard deviation varies between the tested
cases. In the sensitivity analysis, the parameter kon was also in the group of parameters
that do not need to be strongly constrained, so the variation in standard deviation is to
be expected.

The estimation of the parameters related to the unbinding coefficient is illustrated in
Figs. 3.24e, 3.24f and 3.24g. The parameter a which sets the beginning of the unbind-
ing coefficient evolution, is mostly homogeneous for the tested cases, and the standard
deviation is low, except in 4 cases. Parameters b and d, which drive the timing of the
decrease of the unbinding coefficient and the slope of the decrease respectively, display a
large variability, in both mean values and standard deviation. This can be explained by
the variety of oscillatory behaviors observed in experimental data in terms of increase and
decrease timing, and the parameters that influence the most these aspects are b and d.
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(a) case 1 (b) case 2 (c) case 3

(d) case 4 (e) case 5 (f) case 6

(g) case 7 (h) case 8 (i) case 9

(j) case 10 (k) case 11 (l) case 12

(m) case 13 (n) case 14

Figure 3.22 – Experimental simulated data: oscillations (posterior pole position y vs
time) for 14 cases simulated by our model with the parameter values given in Appendix
G.



(a) N (b) K0

(c) Γ (d) kon

(e) a (f) b

(g) d

Figure 3.23 – Relative error of MMSE parameter estimates for the 14 experi-
mental data illustrated in Figure 3.22.



(a) N (b) K0

(c) Γ (d) kon

(e) a (f) b

(g) d

Figure 3.24 – Distribution of the estimated parameters for the 14 experimental
curves displayed in Fig. 3.22. Black dots represent the real parameter values; magenta
dots represent the MMSE estimates of the parameters.
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3.3.3 Parameter estimation on real data

In this section, the proposed estimation framework is applied to experimental real data,
that is, to tracks obtained from images of the spindle pole oscillations in the first division
of the C.elegans embryo. A total of fourteen tracks were used, that were generated from
seven embryos, for both the anterior and the posterior poles. The experimental data is
briefly described in the first part, then the results in terms of fitting and error between the
real data and the selected model samples are illustrated. Finally, a discussion concerning
the parameters estimation and a comparison between the anterior and posterior poles is
proposed.

3.3.3.1 Description of the experimental real data

The data used in this section was obtained from seven wild-type embryos, from both
anterior and posterior spindle poles. The embryos were observed at a temperature of 23
degrees Celsius. The corresponding oscillations tracks from the fourteen poles are illus-
trated in Fig. 3.25. Each figure shows the tracks for one embryo, for the two poles : blue
track for posterior, and red track for anterior.

The behavior between the different embryos, as well as the behavior between the
anterior and posterior poles show a large diversity in the number of oscillations, the
amplitude and frequency of oscillations, the build-up/die-down times etc. Our model
is able to exhibit all these behaviors, as shown in the previous section. Notably, the
maximum amplitude of the oscillations of the anterior pole is lower or at most equal to
the maximum amplitude of the posterior pole. This can be due to different parameters :
the number of active force generators has a strong influence on the maximum amplitude,
but other parameters can also influence the maximum amplitude (as discussed in the
model analysis section). The general behavior for the posterior pole is more homogeneous
than the anterior pole, with well marked build-up and die-down periods, and a distinct
oscillation corresponding to the maximum amplitude.
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(a) embryo E1 (b) embryo E2

(c) embryo E3 (d) embryo E4

(e) embryo E5 (f) embryo E6

(g) embryo E7

Figure 3.25 – Experimental real data: each sub-figure illustrates the oscillations of the
anterior pole (in red) and the posterior pole (in blue) of one wild-type embryo.
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3.3.3.2 Fitting the real data : example of the posterior pole

The fitting between the experimental data and the given solution, as well as the L2
distance errors, are discussed for the set of posterior poles described above. This is a cru-
cial step in the proposed framework, as it constitutes the main criterion to decide whether
a model sample must be selected or discarded. We will see here that our method is able to
fit a variety of behaviors, even on real data, that can present a large spectrum of features,
but also "flaws/artifacts" due to the dynamic nature of the oscillations.

The fitting of the selected model samples for each embryo is illustrated in Fig. 3.27
(for the fitting on the anterior pole see Fig. H.1). The beginning of the oscillations is
usually less well fitted, with sometimes, small oscillations that are being missed by the
simulation, or the amplitude for one oscillation not corresponding to the experimental
data. This can be due to the model itself because it does not capture the whole dynam-
ics of the build-up (because of the model being only temporal, and not having a spacial
component that drives some of the dynamics of the beginning of oscillations). The ending
of the oscillations is sometimes less well fitted as well, as can be seen for the posterior
pole, for the embryos E1 and E3 for example. One can notice that the experimental data
can have a partially missed oscillation (embryos E1, E5, E6, E7), a small drift (embryo
E3), or sustained oscillations (embryos E1, E3), and these can also slightly change the
frequency for the second part of the oscillations. This is probably due to a local event
interfering with the general dynamics of the pole, such as a synchronicity event between
the anterior and the posterior pole. As the model does not include these events, these
perturbations will have some impact on the fitting and the value of the distance error,
but will very slightly, or not at all, influence the parameter estimation. In general, our
model yield very good fitting for the main oscillations, which confirms that our model is
well suited to describe the global behavior of the pole during anaphase.

The L2 distance error between the experimental data and the proposed solutions is
reported in Fig. 3.26. The embryo with the largest mean distance error is the embryo
E6 which has a partially missed oscillation in the real data, so it is expected to have a
consequence on the distance error. The smallest distance errors are for the embryos E4
and E5, which have the best fitting, as seen previously. The other embryos have similar
distance errors, between 5 × 10−6 m and 6 × 10−6 m. Thus, the distance error and the
fitting are consistent. Although there is some variability between the seven embryos, the
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Figure 3.26 – L2 errors between the experimental data and the solution given
by our method for the posterior pole of the wild-type embryos illustrated in
Figure 3.25.

internal variability for each embryo is very small. This means that the distance error
can not be used by itself as a criterion for the proposed solution, so it must be used in
conjunction with other criteria, but it does provide homogeneous final solutions.
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(a) embryo E1 (b) embryo E2

(c) embryo E3 (d) embryo E4

(e) embryo E5 (f) embryo E6

(g) embryo E7

Figure 3.27 – Fitting the posterior pole on wild-type embryos. In each sub-figure,
the black curve represents the experimental data (tracking of the posterior pole position
in time) and the colored curves represent the simulations corresponding to the solution
given by our method.
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3.3.3.3 Parameter estimation on real data : anterior vs posterior poles

In this section, the results of the estimation of the parameters for the seven described
embryos are discussed. In particular, the estimation of the following parameters are de-
tailed : the number of molecular motors N , the binding coefficient kon and the parameters
related to the unbinding coefficient koff . Figures 3.29 to 3.33 below display the estimation
of each parameter for the seven anterior poles and seven posterior poles. Each figure shows
the estimation of one particular parameter, with the estimation for the anterior poles be-
ing illustrated on the left-hand side of the figure, and the estimation for the posterior
poles on the right-hand side.

The anterior pole has a smaller maximum amplitude than the posterior one. This
means that the solution given by our method probably has a smaller maximum ampli-
tude for the anterior pole than for the posterior pole. Figure 3.28 shows the maximum
amplitude of the proposed solution, for all the seven tested embryos. It confirms that our
method yields solutions that are coherent in terms of amplitude with the real data values.
For each embryo, the maximum amplitude for the anterior pole is lower than the posterior
pole, but the difference anterior-posterior varies between the embryos. In particular, for
the embryo E3 the difference is very small, which is to be expected as the difference from
real anterior and posterior data is also small. This could imply that some parameters
are of similar average value between the anterior and the posterior pole for this embryo.
Another interestingly observation is that the maximum amplitude for the proposed so-
lution shows a certain internal variability for some embryos. Some embryos show little
variability, such as for the embryo E3 (anterior and posterior poles), while others show
larger internal variability, such as the anterior pole for the embryo E2 and the posterior
pole for the embryo E1. Are these differences linked to particular parameters values, or is
internal variability naturally appearing because of the variability in amplitude given by
the experimental data ?

The estimation of the number of molecular motors N is shown in Fig. 3.29. The es-
timated values for N vary between 30 to 125 approximately. The MMSE estimates for
the anterior poles are all lower than the MMSE estimates for the posterior poles, which
is expected on wild-type embryos. In addition, for each individual embryo, the MMSE
estimate for the anterior pole is also lower than the MMSE estimate for the posterior
pole. There is one exception in the tested embryos, the embryo E4, which has a higher
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Figure 3.28 – Maximum amplitude of the simulations corresponding to the solu-
tion given by our method for the posterior and anterior poles of the wild-type
embryos illustrated in Fig. 3.25. The results for the anterior poles are illustrated on
the left-hand side; the results for the posterior poles are illustrated on the right-hand side.

mean N for the anterior pole than for the posterior pole. This is probably due to several
factors. First, the posterior pole shows a relatively low maximum amplitude, similar to
the one of the embryo E5, and their MMSE estimates are the lowest, around 50, among
all posterior poles. The result for the posterior pole is thus coherent with the remaining
parameters of the estimation. For the anterior pole, the estimate is on the high range,
around 80, which goes against the general trend for the anterior vs posterior behavior.
However, the MMSE estimate for this embryo is close to the MMSE estimate for the ante-
rior pole of embryo E7 (also around 80), and their oscillatory behavior is similar. Another
factor that can influence the estimation here is the fact that, the anterior pole for the
embryo E4, has two partially missed oscillations, on each side of the maximum amplitude
oscillation. This could have as a consequence that the model is not able to capture the
real dynamics of the oscillations, and thus, over-estimated N . Another possible scenario
is that, the missed oscillations are generated by a dynamic biological event that interferes
with the global oscillatory behavior, which forces the number of molecular motors to go up.

The estimation of the binding coefficient kon is shown in Fig. 3.30. The mean estima-
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tion is between 0.3 s−1 and 1.2 s−1 and there does not seem to be a significant difference
between the anterior and the posterior poles. For both groups, there are two poles (not the
same between the two groups) that have a low estimation for kon, in the range [0.3; 0.5] s−1,
and the others show a mean binding coefficient in the range [0.6; 1.2] s−1. Also, there are
4 embryos that follow the same trend as for N , that is, the estimation is lower for the
anterior pole than for the posterior pole, and 3 embryos for which the anterior pole has a
higher MMSE estimate than the posterior pole. Although no general trend emerges, the
estimation for the binding coefficient is relatively homogeneous with most of the estima-
tion values being between 0.6 s−1 and 1.2 s−1. Thus the binding coefficient seems to has
a moderate variability, but without a strong influence from the features of the oscillations.

The estimation of the parameters related to the unbinding coefficient, i.e., a, b and d,
are respectively shown in Figs. 3.31, 3.32 and 3.33. The parameter a, corresponding to
the beginning of the oscillations is stable for most poles (except two posterior poles), with
a vary small individual variability. This is to be expected as the timing of the beginning
of the oscillations, influenced by a, should not vary too much between the simulations in
order to fit in the best way possible the experimental data. The parameter d is also quite
stable, although with a larger variability between the different poles. This parameter sets
the timing for the die-down of the oscillations, and, as explained before, it can have a
strong influence on the number of oscillations and total time of the die-down.The MMSE
estimates, between 0.05 and 0.15, correspond to the range where this parameter has a
weak influence on the features of the oscillations; the stability of the estimation is thus
consistent with what is expected theoretically. Finally, the parameter b is the one that
varies the most both individually for each pole, and between the poles. The parameter
b influences also the timing of the die-down of the oscillations, as well as the number of
oscillations, but in a weaker manner than d. It is thus to be expected to have a larger
variability. However, the individual variability is very large for some poles, and in partic-
ular for the anterior poles.

Another interesting result is the estimation of the parameter N with respect to the
maximum amplitude of the oscillations. Figure 3.34 shows the plot of the estimated N

versus the maximum amplitude of the solution, for all the tested embryos. For the ante-
rior poles (in red), no correlation is observed between N and the maximum amplitude,
whereas, for the posterior poles, there seems to be a positive correlation between these
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Figure 3.29 – Estimated distribution of the parameter N for the wild-type em-
bryos illustrated in Fig. 3.25. The results for the anterior poles are illustrated on the
left-hand side; the results for the posterior poles are illustrated on the right-hand side.

two parameters. From the model analysis, it was noticed that, when taken independently,
N increases with the maximum amplitude. This might mean that, for the posterior pole,
the parameter N is not much influenced by other parameters (or that they are correlated
in the same way with the maximum amplitude), or that N is the parameter that leads the
behavior with respect to the maximum amplitude. This does not seems to be the case for
the anterior pole, either because there is a stronger correlation with other parameters, or
because the value of the parameter N is not large enough to have the strongest influence
with respect to the maximum amplitude.
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Figure 3.30 – Estimated distribution of the parameter kon for the wild-type
embryos illustrated in Fig. 3.25. The results for the anterior poles are illustrated on
the left-hand side; the results for the posterior poles are illustrated on the right-hand side.

Figure 3.31 – Estimated distribution of the parameter a for the wild-type em-
bryos illustrated in Fig. 3.25. The results for the anterior poles are illustrated on the
left-hand side; the results for the posterior poles are illustrated on the right-hand side.



Figure 3.32 – Estimated distribution of the parameter b for the wild-type em-
bryos illustrated in Fig. 3.25. The results for the anterior poles are illustrated on the
left-hand side; the results for the posterior poles are illustrated on the right-hand side.

Figure 3.33 – Estimated distribution of the parameter d for the wild-type em-
bryos illustrated in Fig. 3.25. The results for the anterior poles are illustrated on the
left-hand side; the results for the posterior poles are illustrated on the right-hand side.



3.4. Discussion and conclusion

Figure 3.34 – Maximum amplitude vs N for all anterior poles (in red) and
all posterior poles (in blue). The red dots on the right-hand side correspond to the
solution for the anterior pole of embryo E7, that has a maximum amplitude higher than
the other anterior poles.

3.4 Discussion and conclusion

In this chapter, we focused on the study of spindle pole oscillations during anaphase.
Transversal oscillations of the mitotic spindle poles have been shown to be a crucial process
in asymmetric cell division, and this behavior is influenced by a large number of molecular
actors. The existing literature provides both a very thorough global understanding of the
process and specific information about some of its aspects, but the interactions between
the actors involved in the oscillations, or even in the whole asymmetric division process,
are still mostly unknown. To address these issues, we introduced a new biophysical model
of spindle pole oscillations and a new estimation method that provide a link between the
parameters influencing the oscillations, as well as a way of assessing the variability of
these parameters between embryos or populations of embryos.

Section 3.1 introduced the biological context of the study of C.elegans, and provided
a general description of the first division of the C.elegans embryo. The main modeling
concepts already validated in the literature were discussed.
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In Section 3.2, we proposed a new biophysical model for the spindle pole oscillations
and performed a model analysis that provided both validation of the model and further
information about the conditions under which oscillations can occur, by making it possi-
ble to compute parameters thresholds above/below which oscillations are inhibited. We
showed that this model is able to reproduce a very wide range of oscillating behaviors that
are observed on real data, and that the characteristic values of these computed behaviors,
especially the frequency and amplitude of the oscillations, are realistic.

In Section 3.3, we presented a hierarchical parameter estimation framework based on
a Bayesian method. We first described the successive steps of the estimation framework,
then we applied this framework to the estimation of the parameters of the aforementioned
model of oscillations, on both simulated and experimental data. Our method was vali-
dated on synthetic data, as we showed that it yields estimates that are very close to the
expected values on data generated from the model. Applying our method on the anterior
and posterior poles of wild-type embryos suggested that the difference in maximum am-
plitude and number of oscillations between the poles can be explained by a difference in
the parameter related to the number of active force generators, in accordance with results
from the literature. We also showed that some parameters are stable between the anterior
and posterior poles, while others vary significantly between the two types of poles, or
even between embryos of the same type. This suggests that some parameters have a cer-
tain internal variability, that might contribute to the robustness of the oscillations during
anaphase.

Estimating the parameters of this model from real data proved to be a very complex
task for several reasons, including the large number of parameters and their nonlinear
interactions. Moreover, as mentioned above, preexisting methods are not fit for variability
studies. We thus designed a novel parameter estimation framework; important features
of this framework are the use of sensitivity analysis in order to group parameters with
strong interactions, and the implementation of an Approximate Bayesian Computation
method that yields posterior distributions of parameter for every embryo. This framework
is versatile, and can easily be adapted to studies other than the one detailed in this chapter.
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GENERAL CONCLUSION

This thesis deals with the estimation of the biophysical parameters of cellular mecha-
nisms, with a special focus on two applications: diffusion events linked to exocytosis, and
spindle pole oscillations during anaphase in asymmetric cell divisions. In both cases, flu-
orescence microscopy techniques coupled with mathematical modeling have been widely
used for studying the mechanisms of interest; however, existing approaches are typically
unable to provide information about both general and local behaviors.

In order to address these shortcomings, we focused on models and estimation methods
that would make it possible to gain insights into the variability of the studied mechanisms,
be it the local variability of the diffusion events inside a cell, or the population-wise vari-
ability of the spindle poles behavior during asymmetric division.

We first introduced a novel mathematical model for local diffusion at the cell mem-
brane during exocytosis. Although this model is based on a standard correlation method,
it does not rely on any homogeneity assumption; thus, its use in a Bayesian framework
yields information about the spatial variability of diffusion along the cell membrane. An
estimate for the local diffusion can be computed from very small regions of interest in
an image sequence. The model has proved to be robust to noise and spot positions in
the frame; it enables the evaluation of local diffusion in various regions of interest in the
sequence, including cases in which several diffusion events occur next to each other.

Possible short- and medium-term improvements were listed in the conclusion of the
corresponding chapter; they include outputting diffusion maps, incorporating flow terms
in the model for dealing with “kiss and run” fusions, and extending the approach to 3D
sequences. On the longer term, the method could be used for other proteins than the
one on which our works focused. Several transmembrane proteins have been identified,
for which diffusion behaviors are not yet understood; they include Rab11, that has been
shown to play a role in protein trafficking among others, and Langerin, which has been
linked to the protection of cells against HIV-1 infection.
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We then presented a new biophysical model for spindle pole oscillations during anaphase,
as well as a novel parameter estimation framework based on both sensitivity analysis and
an Approximate Bayesian Computation approach. The model has proved able to repro-
duce a wide range of observed behaviors, and provided valuable information about the
conditions under which pole oscillations, that are essential for asymmetric cell division,
can occur. It was then successfully used in our framework, yielding satisfactory estimates
on synthetic data and making it possible to identify interactions between some parame-
ters, hinting at interactions between the molecular actors themselves. The introduction
of spatial components could be used to improve the current model.

A major perspective of these works is the application of our method to different pop-
ulations, in order to further study the impact of several factors, including local genetic
mutations. In many cases, one would like to determine whether or not the same mecha-
nism takes place, but with different parameters, and if so, the molecular causes for the
observed alterations might be traced back from the variations in the parameters.

The biophysical parameters of the model could also be expressed in terms of molecular
actors and mechanisms, according to the various hypotheses available in the literature.
Thorough testing would then make it possible to partially confirm or infirm these hy-
potheses according to the corresponding behavior of the model and its similarity to the
observed behaviors in real image sequences.
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APPENDICES

A Local variability - Expected autocorrelation func-
tion for varying parameter values

Expected autocorrelation function with model G1

Figure A.1a shows the autocorrelation function G for varying values of the parame-
ter D, using 100 values that were randomly chosen in the range [0.1, 1.5], all the other
parameters being set to their default values. For this first model, the parameter D has a
global impact on the autocorrelation curve. In particular, D influences the slope of G, as
well as its starting and ending values.

Figure A.1b shows the autocorrelation function G for varying values of the parameter
σ2

PSF, for which 100 values were randomly chosen in the range [0.5, 2]. All the other pa-
rameters were set to the default values. For this first model, the parameter σ2

PSF influences
the starting value of G, but not its dynamics, as expected: in Equation (2.6), parameter
σ2

PSF is not tied to τ , so its influence is restricted to the starting point.

Expected autocorrelation function with model G2

The influence of the parameter D alone was studied by computing the autocorrelation
function g for varying values of D in the range [0.1, 1.5], and fixed values for the other pa-
rameters. For this second model, D also has a global impact on the autocorrelation curve,
but this impact is lower than for the first model, as showed in Fig. A.2a. The beginning
and ending of the autocorrelation curve are influenced by the value of D, but the range
of g is smaller than for the first model. In particular, its starting values are closer to one
another. The parameter D still influences the slope of the autocorrelation curve, as for
the previous model.

The influence of σ2
PSF alone, was studied by computing the autocorrelation function g
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for varying values in the range [0.5, 2], and fixed values for the other parameters. Figure
A.2b shows that the influence of σ2

PSF is similar to the previous model. The main impact is
on the beginning point of the autocorrelation curve. In addition, σ2

PSF has a slight influence
on the ending point, but no particular impact on the dynamics of g.
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(a) Influence of D

(b) Influence of σ2
PSF

Figure A.1 – Influence of model parameters on the autocorrelation function for
model G1. Each curve displays the simulation of model G1 for a specific value of D (a)
or σ2

PSF (b), the other parameters being set to the default values.
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(a) Influence of D

(b) Influence of σ2
PSF

Figure A.2 – Influence of model parameters on the autocorrelation function for
model G2. Each curve displays the simulation of model G1 for a specific value of D (a)
or σ2

PSF (b), the other parameters being set to the default values.
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B Local variability - Validation of the parameter es-
timation method for each parameter

Parameter estimation with model G1

The diffusion coefficient D was first estimated, and the results are reported in Figure
B.1. Figure B.1a plots the relative errors on the estimation of D. The relative error is
very low for all tested values: it is below 0.5% in all cases. This confirms that both the
MMSE and MAP estimates for D alone are precise. Figure B.1b shows the variability of
the estimator in a boxplot form. The real value is labeled a black filled circle, the MMSE
estimate with a magenta filled circle, and the MAP estimate by a blue filled circle. Here,
the three circles fully overlap for all tested values and the standard deviation is very low:
the estimator for D alone is thus very accurate.

(a) D relative error estimation (b) D posterior distribution

Figure B.1 – Estimation of D alone with model G1. (a) Relative estimation error for
the MAP (blue) and MMSE (magenta) estimates with respect to the theoretical value of
D. (b) Estimated distribution of the parameters, for the ten tested cases. The true value
of D is represented by a black circle.

The standard deviation for the PSF, σ2
PSF, was then estimated alone; the results are

shown in Fig. B.2. As for the parameter D, both the MMSE and MAP estimates are
accurate, as shown in Fig. B.2a, with both the MMSE and MAP relative errors being
close to 0 (below 0.5%). In Fig. B.2b, the standard deviation of the estimator is very
low for all tested values of σ2

PSF. The estimation of the parameter σ2
PSF alone is also very
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accurate with model G1.

(a) σ2
PSF relative error estimation (b) σ2

PSF posterior distribution

Figure B.2 – Estimation of σ2
PSF alone with model G1. (a) Relative estimation error

for the MAP (blue) and MMSE (magenta) estimates with respect to the theoretical value
of σ2

PSF. (b) Estimated distribution of the parameters, for the ten tested cases. The true
value of σ2

PSF is represented by a black circle.

Parameter estimation with model G2

The estimation of the diffusion coefficient D alone, with model G2, is shown in Figure
B.3. The MMSE and MAP estimates are very accurate, with relative errors of less than
0.5% for both (see Fig. B.3a). Figure B.3b confirms these results, as the standard deviation
of the estimation of D is also low. The estimation of D alone with model G2 is thus very
accurate.

The estimation of σ2
PSF alone with model G2 is also accurate. In Figure B.4a, one can

see that the relative error of both MMSE and MAP estimates are very low, i.e., below
0.5%. The boxplots in Figure B.4b show that the standard deviation of the estimator is
also low for all tested real values. The estimation of σ2

PSF alone is thus very accurate with
model G2.
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(a) D relative error estimation (b) D posterior distribution

Figure B.3 – Estimation of D alone with model G2. (a) Relative estimation error for
the MAP (blue) and MMSE (magenta) estimates with respect to the theoretical value of
D. (b) Estimated distribution of the parameters, for the ten tested cases. The true value
of D is represented by a black circle.

(a) σ2
PSF relative error estimation (b) σ2

PSF posterior distribution

Figure B.4 – Estimation of σ2
PSF alone with model G2. (a) Relative estimation error

for the MAP (blue) and MMSE (magenta) estimates with respect to the theoretical value
of σ2

PSF. (b) Estimated distribution of the parameters, for the ten tested cases. The true
value of σ2

PSF is represented by a black circle.
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C Local variability - Influence of parameters Nsamples

and R on the estimation

The influence of the parameters Nsamples (the algorithm parameter that defines the
total number of generated simulations of the autocorrelation) andR (the algorithm param-
eter that sets the number of best simulations that are kept for the distribution estimation)
is evaluated in what follows with respect to both model G1 and model G2.

Influence of the parameters Nsamples and R on the estimation with
model G1

The influence of the parameters Nsamples and R for model G1 is illustrated in Fig. C.3
and C.4. The influence of t is very small on the estimation of the parameter D with a
relative estimation error of less than 2% for most cases, whereas, for the parameter σ2

PSF,
the influence is significant, but reasonable, with a relative error of 10% − 20% for most
cases. In addition, the standard deviation of the estimated σ2

PSF is much larger than for
the estimation of D. A similar trend is observed for the parameter Nsamples, that has a
low influence on the estimation of the parameter D (relative estimation error of less than
3% and small standard deviation) but a slightly higher influence on the parameter σ2

PSF

(relative estimation error of less than 5% for most cases, and a larger standard deviation).
Finally, for the parameter R, we notice a significant influence on the estimation of both
parameters D and σ2

PSF with, again, a higher influence for the parameter σ2
PSF.

Influence of the parameters Nsamples and R on the estimation with
model G2

The influence of the parameters Nsamples and R for model G2 is illustrated in Fig. C.7
and C.8. The results are very similar to those for model G1 : the estimation of the param-
eter D is barely influenced by these parameters (slightly for R), whereas the estimation
of the parameter σ2

PSF is significantly influenced by these parameters, but remains in rea-
sonable ranges. In all cases, the MAP estimation is very accurate.
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(a) D relative error estimation (b) σ2
PSF relative error estimation

Figure C.1 – Influence of Nsamples on parameter estimation with model G1. (a,b)
Relative estimation error for the MAP (blue) and MMSE (magenta) estimates with respect
to the value of Nsamples.

(a) D relative error estimation (b) σ2
PSF relative error estimation

Figure C.2 – Influence of R on parameter estimation with model G1. (a,b) Relative
estimation error for the MAP (blue) and MMSE (magenta) estimates with respect to the
value of R.
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(a) D posterior distribution

(b) σ2
PSF posterior distribution

Figure C.3 – Influence of Nsamples on parameter estimation with model G1. (a,b)
Estimated distribution of parameters D and σ2

PSF, for the ten tested cases corresponding
to ten values of Nsamples. The true values of D and σ2

PSF are represented by black circles.
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(a) D posterior distribution

(b) σ2
PSF posterior distribution

Figure C.4 – Influence of R on parameter estimation with model G1. (a,b) Esti-
mated distribution of parameters D and σ2

PSF, for the ten tested cases corresponding to
ten values of R. The true values of D and σ2

PSF are represented by black circles.
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(a) D relative error estimation (b) σ2
PSF relative error estimation

Figure C.5 – Influence of Nsamples on parameter estimation with model G2. (a,b)
Relative estimation error for the MAP (blue) and MMSE (magenta) estimates with respect
to the value of Nsamples.

(a) D relative error estimation (b) σ2
PSF relative error estimation

Figure C.6 – Influence of R on parameter estimation with model G2. (a,b) Relative
estimation error for the MAP (blue) and MMSE (magenta) estimates with respect to the
value of R.
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(a) D posterior distribution

(b) σ2
PSF posterior distribution

Figure C.7 – Influence of Nsamples on parameter estimation with model G2. (a,b)
Estimated distribution of parameters D and σ2

PSF, for the ten tested cases corresponding
to ten values of Nsamples. The true values of D and σ2

PSF are represented by black circles.
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(a) D posterior distribution

(b) σ2
PSF posterior distribution

Figure C.8 – Influence of R on parameter estimation with model G2. (a,b) Esti-
mated distribution of parameters D and σ2

PSF, for the ten tested cases corresponding to
ten values of R. The true values of D and σ2

PSF are represented by black circles.
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D Cell population variability - influence on the oscil-
lations of the other model parameters

Influence of the parameter f̄ on the oscillations Figure D.1 shows the influence of
the parameter f̄ on the oscillations. Here, f̄ varies in the range [6× 10−12, 10× 10−12] N ,
the other parameters being set to default values. We considered 50 simulations of the os-
cillations corresponding to 50 values of f̄ that were randomly chosen in the given interval.

Figure D.1a shows that f̄ has also a global impact on the oscillations; amplitude,
frequency, shape and number of oscillations change with the value of f̄ . Figure D.1b shows
the maximum amplitude as a function of the value of this parameter. In the same way
as for N , the maximum amplitude depends almost linearly on the value of f̄ : the higher
the value of f̄ , the higher the maximum amplitude of the oscillations. The maximum
amplitude goes from 1× 10−6 m for f̄ = 6× 10−12 N to 7× 10−6 m for f̄ = 10× 10−12 N .
Here, a small variation in f̄ creates a large variation in the maximum amplitude of the
oscillations. The frequency of oscillations is given in Figure D.1c. As for N , the frequency
goes from approximately 0.03 Hz to 0.05 Hz, and it decreases with the value of f̄ .

Influence of the parameter fc on the oscillations Figure D.2 shows the influence
of the parameter fc on the oscillations. Here, fc varies in the range [4×10−13, 8×10−13] N ,
the other parameters being set to default values. We considered 50 simulations of the os-
cillations corresponding to 50 values of fc that were randomly chosen in the given interval.

In Fig. D.2a, one can notice that the parameter fc has a global impact on the os-
cillations, similar to the previous parameters. The maximum amplitude, frequency and
number of oscillations vary with the values of fc. The maximum amplitude is shown in
Figure D.2b; its value decreases with higher values of fc in an almost linear fashion, go-
ing from 6 × 10−6 m for a value of fc = 4 × 10−13 N , to 2 × 10−6 m for a value of
fc = 8 × 10−13 N . As for f̄ , the variation in fc has a large impact on the maximum
amplitude. The frequency of oscillations is given in Fig. D.2c. As for previous parameters,
the frequency ranges from approximately 0.03 Hz to 0.05 Hz, and it increases with the
value of fc.
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Influence of the parameter fp on the oscillations Figure D.3 shows the influence of
the parameter fp on the oscillations. Here, fp varies in the range [0.9× 10−6, 3× 10−6] N ·
s/m, the other parameters being set to default values. We considered 50 simulations of
the oscillations corresponding to 50 values of fp that were randomly chosen in the given
interval.

Figure D.3a shows that the parameter fp has also a global impact on the oscillations.
The maximum amplitude, frequency and number of oscillations vary with the values of
fp, although the variation in fp has a slightly lower impact on the oscillations than that
in f̄ and fc. Indeed, the maximum amplitude, given in Figure D.3b, goes from 1×10−6 m

to 5 × 10−6 m while the value of fp more than triples, going from 0.9 × 10−6 N · s/m
to 3 × 10−6 N · s/m. In contrast, studies of the respective influences of f̄ and fc yielded
maximum amplitude that were the same or even greater, but for a maximum parameter
value that was, as most, double the initial value. As for the frequency of the oscillations,
it decreases with the value of fp, as showed in Fig. D.3c, and goes from 0.055 Hz to
0.025 Hz, so that fp has approximately the same impact on the frequency as the previous
parameters.

Influence of the parameter K0 on the oscillations Figure D.4 shows the influence of
the parameterK0 on the oscillations. Here,K0 varies in the range [6×10−6, 60×10−6]N/m,
the other parameters being set to default values. We considered 50 simulations of the os-
cillations corresponding to 50 values ofK0 that were randomly chosen in the given interval.

Figure D.4a shows the impact of the parameter K0 on the oscillations. As for the
other parameters, the impact is global, but in a different manner: the beginning and the
end of the oscillations occur at almost the same time for all values of the parameter K0;
this was not the case for the previous parameters N , f̄ , fc and fp. Thus, K0 does not
affect the timing of the oscillations. Nevertheless, the amplitude, frequency and number of
oscillations do vary with the values of K0. The maximum amplitude, shown in Fig. D.4b,
decreases with the value of the parameter, going from 5×10−6 m to 1×10−6 m as K0 goes
from 6× 10−6 N/m to 60× 10−6 N/m. The frequency of oscillations, shown in Fig. D.4c,
increases from 0.03 Hz to 0.1 Hz. Hence, the parameter K0 has a moderate global impact
on the oscillations, similar to fp.
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Influence of the parameter Γ on the oscillations Figure D.5 shows the influence of
the parameter Γ on the oscillations. Here, Γ varies in the range [50×10−6, 200×10−6] N ·
s/m, the other parameters being set to default values. We considered 50 simulations of
the oscillations corresponding to 50 values of Γ that were randomly chosen in the given
interval.

Figure D.5a shows that Γ has a global impact on the oscillations; in particular, it
has a strong influence on the amplitude and the number of oscillations. Interestingly, Γ
seems to have a higher impact on the timing for the beginning of the oscillations than
the other parameters. The maximum amplitude is given in Fig. D.5b: it decreases in a
linear manner with the values of Γ, going from 5× 10−6 m for Γ = 50× 10−6 N · s/m, to
less than 1× 10−6 m for Γ = 200× 10−6 N · s/m. In contrast to the other parameters, Γ
has almost no impact on the frequency of oscillations. Figure D.5c shows the frequency
as a function of the value of the parameter; it shows that, for almost all simulations, the
frequency is constant to approximately 0.049 Hz.

Influence of the parameter k̃end on the oscillations Figure D.6 shows the influ-
ence of the parameter k̃end on the oscillations. Here, k̃end varies in the range [0.01, 1], the
other parameters being set to default values. We considered 50 simulations of the oscil-
lations corresponding to 50 values of k̃end that were randomly chosen in the given interval.

Figure D.6a shows the impact of the parameter k̃end on the oscillations. The parameter
k̃end has an influence that is even more restricted than that of parameter d, although the
impact is similar to that of b and d. The timing of the beginning and the build-up are
exactly the same for all simulations. In addition, the amplitude during build-up does not
change either from one simulation to another. Only the second part of the oscillations
changes. Depending on the value of k̃end relative to a, the oscillations either die out (if
k̃end < a) or get amplified (if k̃end > a). The maximum amplitude is shown in Fig. D.6b.
For values of k̃end in the interval [0.01, 0.5], the maximum amplitude does not change
significantly, whereas for k̃end > 0.5 (and, here, a = 0.5), the amplitude increases with
k̃end. In contrast, the frequency of oscillations does not change at all for varying k̃end, as
shown in Fig. D.6c: its value is stable at 0.05 Hz.
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(a) y vs t

(b) max ampl vs param (c) freq vs param

Figure D.1 – Influence of parameter f̄ on the oscillations. (a) Transverse oscilla-
tions for different tested parameter values, providing information about the number of
oscillations, the build-up and die-down timing. (b) Variation in maximum amplitude with
respect to the variation in parameter value. (c) Variation in frequency with respect to the
variation in parameter value.
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(a) y vs t

(b) max ampl vs param (c) freq vs param

Figure D.2 – Influence of parameter fc on the oscillations. (a) Transverse oscilla-
tions for different tested parameter values, providing information about the number of
oscillations, the build-up and die-down timing. (b) Variation in maximum amplitude with
respect to the variation in parameter value. (c) Variation in frequency with respect to the
variation in parameter value.
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(a) y vs t

(b) max ampl vs param (c) freq vs param

Figure D.3 – Influence of parameter fp on the oscillations. (a) Transverse oscilla-
tions for different tested parameter values, providing information about the number of
oscillations, the build-up and die-down timing. (b) Variation in maximum amplitude with
respect to the variation in parameter value. (c) Variation in frequency with respect to the
variation in parameter value.
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(a) y vs t

(b) max ampl vs param (c) freq vs param

Figure D.4 – Influence of parameter K0 on the oscillations. (a) Transverse oscil-
lations for different tested parameter values, providing information about the number of
oscillations, the build-up and die-down timing. (b) Variation in maximum amplitude with
respect to the variation in parameter value. (c) Variation in frequency with respect to the
variation in parameter value.
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(a) y vs t

(b) max ampl vs param (c) freq vs param

Figure D.5 – Influence of parameter Γ on the oscillations. (a) Transverse oscilla-
tions for different tested parameter values, providing information about the number of
oscillations, the build-up and die-down timing. (b) Variation in maximum amplitude with
respect to the variation in parameter value. (c) Variation in frequency with respect to the
variation in parameter value.
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(a) y vs t

(b) max ampl vs param (c) freq vs param

Figure D.6 – Influence of parameter k̃end on the oscillations. (a) Transverse oscil-
lations for different tested parameter values, providing information about the number of
oscillations, the build-up and die-down timing. (b) Variation in maximum amplitude with
respect to the variation in parameter value. (c) Variation in frequency with respect to the
variation in parameter value.
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E Cell population variability - Limit behavior for ex-
tremal values of the other model parameters

Limit behavior for the parameter f̄ The limit behavior of the model for extremal
values of the parameter f̄ was evaluated; the results are shown in Fig. E.1. Simulations
were obtained by varying f̄ , with the other parameters being set to default values. Taking
into account the default values of the other parameters, the lower limit of f̄ was studied in
the range [4×10−12, 6×10−12]N , and the upper limit in the range [11×10−12, 15×10−12]N .

As for the parameter N , in the low range [4×10−12, 6×10−12] N for f̄ , the oscillations
decrease as f̄ decreases, until they reach a point where they do not build up anymore;
they then die out rapidly, and disappear completely when f̄ is close to 4 × 10−12 N , as
shown in Fig. E.1a and E.1b. When f̄ is in the upper range, the model behaves in a way
similar to the case when N is in its upper range. Figure E.1c shows the oscillations for
high values of f̄ ; it can be seen that, as in the case of N , the oscillations continue to exist,
the maximum amplitude increases with increasing f̄ , the frequency and the number of
oscillations decrease, but the pattern of oscillations is not realistic.

Limit behavior for the parameter fc The limit behavior of the model for extremal
values of the parameter fc was evaluated; the results are shown in Figure E.2. Simula-
tions were obtained by varying fc, with the other parameters being set to default values.
Taking into account the default values of the other parameters, the lower limit of fc
was studied in the range [2 × 10−13, 3.5 × 10−13] N , and the upper limit in the range
[8.5× 10−13, 11× 10−13] N .

The oscillatory behavior for the limit values of fc is similar to the one for the parameter
f̄ , but in reverse. This is shown in Fig. E.2a. For low values of fc, the oscillations occur as
with high values for f̄ : oscillations continue to exist, but following an unrealistic pattern,
with high maximum amplitude and low frequency and number of oscillations. As for
high values of fc, as shown in Fig. E.2b and E.2c, the oscillations decrease in maximum
amplitude, until there is no build-up; finally, above a given value for fc, the oscillations
disappear completely.
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Limit behavior for the parameter fp The limit behavior of the model for extremal
values of the parameter fp was evaluated; the results are shown in Fig. E.3. Simulations
were obtained by varying fp, with the other parameters being set to default values. Tak-
ing into account the default values of the other parameters, the lower limit of fp was
studied in the range [0.7 × 10−6, 0.9 × 10−6] N · s/m, and the upper limit in the range
[3.5× 10−6, 4.5× 10−6] N · s/m.

The behavior of the model for extremal values of fp is roughly the same as the behavior
for f̄ . The case of low range is shown in Fig. E.3a and E.3b, and the case of high range
is given in Fig. E.3c. The main difference with the behavior for f̄ is the impact on the
maximum amplitude. Here, for decreasing values of fp, the maximum amplitude decreases
at a lower rate than for f̄ , so that the switching between the case of oscillations with build-
up and the case of only die-out oscillations is clearly visible in Fig. E.3a.

Limit behavior for the parameter K0 The limit behavior of the model for extremal
values of the parameter K0 was evaluated; the results are shown in Fig. E.4. Simula-
tions were obtained by varying K0, with the other parameters being set to default values.
Taking into account the default values of the other parameters, the lower limit of K0

was studied in the range [6 × 10−6, 9 × 10−6] N/m, and the upper limit in the range
[120× 10−6, 200× 10−6] N/m.

Figure E.4a shows the oscillations for low values of K0, and it can be seen that the
behavior is similar to the behavior for low values of the parameter fc: high amplitude, but
low frequency and number of oscillations. For high values of K0, the model also behaves
in a way similar to the case of high values of fc, but the frequency of the oscillations is
much higher: around 0.1 Hz, that is, approximately double the frequency for high values
of fc (around 0.05 Hz). For this case, the results are shown in Fig. E.4b and E.4c. As for
the previous parameter, the rate of increase/decrease of the maximum amplitude is very
low, so that the point when the oscillations do not build up anymore is clearly visible,
despite the very high frequency.

Limit behavior for the parameter Γ The limit behavior of the model for extremal
values of the parameter Γ was evaluated; the results are shown in Fig. E.5. Simulations
were obtained by varying Γ, with the other parameters being set to default values. Tak-
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ing into account the default values of the other parameters, the lower limit of Γ was
studied in the range [10 × 10−6, 40 × 10−6] N · s/m, and the upper limit in the range
[190× 10−6, 240× 10−6] N · s/m.

The oscillatory behavior for extremal values of Γ is similar to the behavior for extremal
values of K0. For low values of Γ, the results are given in Fig. E.5a; the main difference
with the previous case (for parameter K0) is the frequency of the oscillations, that is here
constant, and not varying as for K0. As for K0, the oscillations continue to exist, and
the maximum amplitude is high, whereas the frequency and number of oscillations stay
roughly the same for the different values of Γ. The results for high values of Γ are given in
Fig. E.5b and E.5c. Again, the behavior is quite similar to K0, with the same difference
concerning the frequency, which is constant for Γ while it varied for K0. The other notable
difference is in the rate of decrease for the maximum amplitude, which is much higher for
Γ than for K0. The oscillations decrease in maximum amplitude until there is no build-up,
and then, until they completely disappear; this last part is not visible in Fig. E.5c.

Limit behavior for the parameter k̃end The behavior for limit values of k̃end is shown
in Fig. E.6. Taking into account the default values of the other parameters, the lower limit
of k̃end was studied in the range [0.01, 0.10], and the upper limit in the range [0.60, 0.90].
The parameter k̃end only affects the die-out and ending of oscillations, so that in both low
and high value cases, the oscillations continue to exist. For low values of k̃end, the impact
on the oscillations is minimal, with only the last oscillation being affected, with a lower
amplitude, as shown in Fig. E.6a. For high values of k̃end, the behavior follows one of the
two following scenarios:

• If the value of k̃end is lower than the value of a, the oscillations eventually die out
after a period of steady oscillations, as shown in Fig. E.6b.

• If the value of k̃end is higher than the value of a, the oscillations get amplified and a
second build-up occurs after a period of steady oscillations, as shown in Fig. E.6c.

The parameter k̃end is the only one that cannot abolish oscillations by itself. For all
cases, the frequency of oscillations is stable.

180



(a) f̄ = 4 ∗ 10−12 − 5 ∗ 10−12 (b) f̄ = 5.5 ∗ 10−12 − 6 ∗ 10−12

(c) f̄ = 11 ∗ 10−12 − 15 ∗ 10−12

Figure E.1 – Limit behavior of the model for extremal values of the parameter
f̄ .
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(a) fc = 2× 10−13 − 3.5× 10−13

(b) fc = 8.5× 10−13 − 9.5× 10−13 (c) fc = 9.5× 10−13 − 12× 10−13

Figure E.2 – Limit behavior of the model for extremal values of the parameter
fc.
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(a) fp = 0.7× 10−6 − 0.8× 10−6 (b) fp = 0.8× 10−6 − 0.9× 10−6

(c) fp = 3.5× 10−6 − 4.5× 10−6

Figure E.3 – Limit behavior of the model for extremal values of the parameter
fp.
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(a) K0 = 6× 10−6 − 9× 10−6

(b) K0 = 120× 10−6 − 150× 10−6 (c) K0 = 150× 10−6 − 200× 10−6

Figure E.4 – Limit behavior of the model for extremal values of the parameter
K0.
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(a) Γ = 10× 10−6 − 40× 10−6

(b) Γ = 190× 10−6 − 220× 10−6 (c) Γ = 220× 10−6 − 240× 10−6

Figure E.5 – Limit behavior of the model for extremal values of the parameter
Γ.
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(a) endkoff = 0.01− 0.10

(b) k̃end = 0.30− 0.60 (c) k̃end = 0.60− 0.90

Figure E.6 – Limit behavior of the model for extremal values of the parameter
k̃end.
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F Cell population variability - Morris sensitivity anal-
ysis

The estimation framework introduced in section 3.3 uses the Morris method to analyze
the sensitivity of our model to its parameters. Our implementation of this method showed
that the 11 parameters of our model could be split into three groups, describing subsets of
parameters with different influences on the results. This clustering, illustrated in Fig. F.1,
was used as a basis for the design of our hierarchical estimation framework.

(a) Results for the 11 parameters (b) Paramer Clustering

Figure F.1 – First results of the parameter sensitivity analysis, using the max-
imum amplitude as a cost function (see below for corrected figure). (a) Plot
of the first and second Morris indices (log scale) for the 11 parameters of our model. (b)
Clustering of the previous result.

As shown in the remainder of chapter 3, the proof-of-concept implementation of the
estimation framework, based on these parameter groups, yields very promising results.

However, issues were discovered in the implementation of the Morris method during
the late stages of the writing of this manuscript. More specifically, subtle bugs had been
unnoticed in the computation of the elementary effects.

Fig. F.2 shows the results of the corrected analysis when two different characteristics
of the model outcome are used as cost functions for the method: the maximum amplitude
of the oscillations, and their computed frequency.
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(a) Maximum amplitude (b) Frequency

Figure F.2 – Parameter sensitivity analysis with the Morris method. Plot of the
first and second Morris indices for the 11 parameters of our model using (a) the maximum
amplitude and (b) the frequency of oscillations, as a cost function.

Depending on the cost function, different Morris indices are computed for the pa-
rameters of the model, and the number of apparent groups changes. In chapter 3 of
the manuscript, the initial groups provided satisfactory results. Further studies would be
needed in order to determine how to "optimally" split the set of parameters, and how to
make this analysis fully automated.
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G Cell population variability - Parameter estimation
on simulated data : setting the parameters

The following table provides the parameters values used to generate the 14 simulated
data used in Section 3.3.2, that are close in behavior to typical wild-type embryos.

N K0 (N/m) Γ (N · s/m) kon (s−1) a b d
42.9 1.65e-5 1.71e-4 0.56 0.91 11.30 0.116
43.8 3.90e-5 1.23e-4 0.30 0.73 7.83 0.095
80.0 2.66e-5 1.39e-4 0.94 0.38 2.28 0.052
47.6 1.74e-5 1.36e-4 0.78 0.37 12.36 0.056
52.2 1.57e-5 1.40e-4 0.78 0.43 11.70 0.187
64.2 1.85e-5 1.66e-4 0.81 0.41 7.82 0.054
81.9 2.85e-5 1.25e-4 0.91 0.37 3.46 0.113
54.1 1.71e-5 1.27e-4 1.03 0.58 5.41 0.077
87.5 2.57e-5 1.30e-4 1.02 0.39 7.79 0.119
94.9 2.34e-5 1.25e-4 0.97 0.38 2.11 0.053
87.7 4.06e-5 1.33e-4 0.40 1.00 3.45 0.187
72.8 1.67e-5 1.46e-4 0.95 0.38 5.96 0.070
71.4 3.26e-5 1.28e-4 0.47 0.37 3.10 0.104
49.0 1.67e-5 1.54e-4 0.76 1.97 2.76 0.057

Table G.1 – Parameter values used for the generation of the 14 simulated data
used in Section 3.3.2.

H Cell population variability - Parameter estimation
on real data : fitting the anterior pole

In what follows, we show the fitting of the anterior pole for the seven real embryos.
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(a) embryo E1 (b) embryo E2

(c) embryo E3 (d) embryo E4

(e) embryo E5 (f) embryo E6

(g) embryo E7

Figure H.1 – Fitting the anterior pole on wild-type embryos. In each sub-figure,
the black curve represents the experimental data (tracking of the anterior pole position
in time) and the colored curves represent the simulations corresponding to the solution
given by our method.
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Titre : Modélisation du signal et estimation bayésienne pour l’analyse de mécanismes cellulaires :
étude de la diffusion membranaire et de la division cellulaire
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laire

Résumé : La microscopie de fluorescence per-
met de s’appuyer sur la modélisation mathé-
matique pour l’étude de mécanismes cellulaires
complexes, mais les modèles préexistants ne
permettent pas d’obtenir des informations à la
fois sur les tendances globales et les comporte-
ments locaux, et ne sont pas adaptés à l’étude
des interactions complexes entre les différents
acteurs moléculaires. Dans cette thèse, nous
proposons une approche mixte conçue pour pal-
lier ces limitations, et l’appliquons à l’étude de
deux mécanismes cellulaires. Nous proposons
un premier modèle pour l’estimation de la dif-
fusion locale en imagerie TIRF ; ce modèle per-
met l’évaluation de la diffusion en plusieurs spots
de diffusion dans une région d’intérêt, répon-

dant ainsi aux problèmes complexes causés par
l’hétérogénéité de la membrane. Un deuxième
modèle est introduit pour l’étude du comporte-
ment des centrosomes durant la division cellu-
laire, qui permet une meilleure compréhension
des facteurs, et des interactions de ces fac-
teurs, qui contribuent aux oscillations des cen-
trosomes durant l’anaphase ; ce modèle fournit
des moyens de prédiction pour des phénotypes
liés à des divisions asymétriques erronées. Ces
deux modèles sont utilisés grâce à un nouveau
cadre d’estimation de paramètres, qui s’appuie
sur l’analyse de sensibilité et les méthodes bayé-
siennes ABC. Ce framework est polyvalent et fa-
cilement adaptable à d’autres contextes que ce-
lui des études présentées dans cette thèse.

Title: Signal modeling and Bayesian estimation for cellular mechanism analysis: study of diffusion
at the cell membrane and cell division

Keywords: signal modeling, Bayesian estimation, membrane diffusion, cell division

Abstract: Fluorescence microscopy makes it
possible to rely on mathematical modeling for the
study of complex cellular mechanisms, but pre-
existing models do not yield information on both
global trends and local behaviors, and are not
fit for the study of the complex interactions be-
tween the molecular actors involved. In this the-
sis, we propose a mixed approach designed with
these limitations in mind, and use this approach
to study two cellular mechanisms. We propose
a first model for the estimation of local diffusion
in TIRF imaging, which addresses the challeng-
ing issues caused by membrane heterogeneity
by allowing to evaluate the diffusion for several

diffusing spots in a region of interest. A second
model is introduced for the study of centrosome
behavior during cell division, that allows to better
understand the factors and interactions that con-
tribute to the oscillations of centrosomes during
anaphase, thus providing means of prediction
for phenotypes related to misguided asymmet-
ric division. Both models are put into operation
thanks to a novel parameter estimation frame-
work, that relies on sensitivity analysis and Ap-
proximate Bayesian Computation. This versatile
framework is easily adaptable to studies beyond
the context of the ones presented in this thesis.
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