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RESUME DE THESE

Préambule

Cette these est le fruit d’une collaboration entre deux équipes : 1’équipe Serpico de
I'Inria Rennes et I’équipe CeDRE de 'IGDR (Institut de Génétique et Developpement
de Rennes). L’aspect méthodologique ainsi que les approches basées sur la modélisation,
I’analyse et le traitement des images sont les points communs qui ont amené les deux
équipes a collaborer. Ainsi, un nouveau projet est né, qui avait pour objectif 1’élabora-
tion d’une approche basée sur l'assimilation de données pour 'analyse de mécanismes
cellulaires.

Cette these s’inscrit dans le cadre de cette collaboration, avec le but de proposer une
approche de modélisation et d’estimation de parametres, pour I'étude de la variabilité de
mécanismes cellulaires. Ma these s’est déroulée a 60% dans 1'équipe Serpico, et a 40%
dans I’équipe CeDRE, sous la direction de Charles Kervrann, Directeur de Recherche a
I'Inria Rennes et responsable de I'équipe Serpico, et Yann Le Cunff, Maitre de Confé-
rences a 1'Université de Rennes 1, membre de ’équipe DyLiSS a I'IRISA (depuis 2021),
et membre de 'équipe CeDRE de 'lGDR pendant I’encadrement de cette these, et en
étroite collaboration avec Jacques Pécréaux, chercheur CNRS et responsable de I'équipe
CeDRE au sein de I'IGDR.

Contexte

Les avancées des méthodes d’imagerie, notamment en microscopie de fluorescence,
ont permis l'utilisation de la modélisation mathématique pour 1’étude des mécanismes
cellulaires. De nouveaux modeles mathématiques ont été introduits pour étudier des effets
globaux au sein de la cellule, de facon a révéler les tendances générales des mécanismes
étudiés. Notre compréhension des comportements "moyens' est ainsi assez bonne; en
revanche, les comportements individuels et leur influence a 1’échelle de la cellule restent
a ¢lucider. Bien que des modeles locaux aient également été de plus en plus congus pour

étudier des évenements spécifiques dans la cellule, peu de modeles ou de méthodes existent
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qui puissent a la fois décrire un comportement général et fournir des informations sur ce
qui se produit localement, a plus petite échelle.

Une des conséquences de ces approches est que les valeurs des parametres liés a la
biophysique ou des parametres moléculaires sont tres partiellement établies. Des connais-
sances approfondies sont disponibles dans la littérature par rapport a des grandeurs bio-
physiques moyennes, et des expériences in vivo ont permis d’estimer certains parametres
moléculaires ou biophysiques qui sont directement observables en imagerie ; en revanche,
d’autres parametres sont encore trés approximatifs. Une approche hybride comme celle
que nous proposons a pour objectif a la fois d’estimer des parametres locaux et d’étudier
les interactions entre les différents acteurs impliqués dans le mécanisme d’intérét.

Contrairement aux modeles préexistants dédiés a 1’étude des mécanismes cellulaires,
notre approche a 'avantage d’étre une méthode prédictive, permettant d’orienter les ex-

périences, et de faciliter une compréhension a priori du mécanisme étudié.

Contributions

Cette these apporte trois contributions principales : deux nouveaux modeéles pour
décrire des mécanismes cellulaires, et un cadre d’estimation de parametres qui permet de
prendre en compte la variabilité du mécanisme étudié, ainsi que les interactions entre les
différents acteurs qui participent a ce mécanisme. Le cadre d’estimation proposé permet
ensuite de tester différents scénarios possibles et d’établir des prédictions pour chacun
d’entre eux.

La premiere contribution porte sur la création d’'un modele de la diffusion locale des
protéines transmembranaires en imagerie TIRF. La diffusion est habituellement estimée de
facon globale sur une large zone de la cellule : une méthode de corrélation est utilisée pour
estimer le coefficient de diffusion apparente, en supposant une diffusion homogene dans la
membrane. Cette approche ne permet pas de distinguer les différences de diffusion locales,
qui peuvent étre induites par la stochasticité des éléments composant la membrane ou
participant a la diffusion elle-méme, ou par les différents éléments structurels qui peuvent
modifier la diffusion des protéines transmembranaires. Nous proposons ici un modele basé
sur une méthode de corrélation, mais sans hypothese d’homogénéité : notre modele permet
de calculer la diffusion pour chaque évenement de diffusion au sein de fenétres d’image
de petite taille. Cette approche permet alors de construire une carte de diffusion d’une

région, afin de détecter des zones de forte variation spatiale de la diffusion.

10
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F1GURE 1 — Illustration d’un spot de diffusion locale en imagerie TIRF.

La deuxieme contribution de cette these concerne la modélisation du comportement
des centrosomes pendant la division cellulaire, et plus précisément pendant la séparation
des chromosomes. Les centrosomes se déplacent vers le c6té postérieur de la cellule, et
lors de ce déplacement, ils oscillent transversalement & l’axe antérieur-postérieur. Les
études préexistantes s’intéressent majoritairement au déplacement postérieur, sans prise
en compte des oscillations. Cependant, ces oscillations, fréquemment rencontrées au cours
des divisions asymétriques, semblent jouer un role-clé dans la division. Par exemple, dans
le cas de 'embryon C.elegans, leur absence est le signe d'un dysfonctionnement de la
cellule, qui peut conduire a une division erronée, voire a une absence de division et a la

mort de la cellule.

Nous nous intéressons ici a ces oscillations transversales et nous proposons un nou-
veau modele multi-échelles qui s’appuie sur une approche biophysique du comportement
du centrosome. Un bilan des forces, ainsi que des hypotheses biologiques et physiques
validées dans la littérature, nous permettent d’établir un modele des oscillations du cen-
trosome pendant la phase de séparation des chromosomes. Il permet de mieux comprendre
quels sont les facteurs déclencheurs des oscillations, quelles sont les conditions nécessaires
a leur existence, et quelles interactions se mettent en place pour leur émergence. Il rend
notamment possible le test de plusieurs scénarios d’absence d’oscillation chez C.elegans,
en combinant les informations données par le modele et les observations expérimentales.

Il permet enfin de représenter les oscillations du centrosome postérieur pour chaque em-

11
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FIiGURE 2 — Illustration des oscillations transversales des centrosomes pendant
la division cellulaire.

bryon, ce qui en fait une base solide pour I’étude de la variabilité d’un embryon a I'autre.

La troisieme contribution de cette these porte sur la création d’un cadre d’estimation
de parametres en plusieurs étapes, a partir d’'un modele mathématique du mécanisme étu-
dié. La premiere étape est ’analyse de sensibilité des parametres, qui permet de regrouper
les parametres en fonction de leurs influences respectives sur le résultat. La deuxieme
étape est la définition des caractéristiques des parametres, en fonction des connaissances
préalables sur le mécanisme étudié et des observations expérimentales. Enfin, la derniere
étape consiste a estimer des parametres, une tache qui est effectuée par blocs en fonction
des résultats de I'analyse de sensibilité, et est concue sur le principe bayésien d’estimation
des parametres, I’ "Approximate Bayesian Computation" (ABC). Notre approche s’appuie
sur tres peu d’hypotheses et ne nécessite pas de calculer une vraisemblance, ce qui peut
s’avérer complexe. L’estimation des parametres est faite pour chaque expérience : il est
donc possible d’évaluer les parametres individuels des expériences, mais aussi d’analyser
la variabilité globale du mécanisme étudié. Un autre grand intérét de notre méthode ba-
sée sur 'ABC est qu’elle permet de produire des prédictions par rapport aux différents

scénarios possibles, et ainsi de guider les expériences nécessaires pour explorer plusieurs

12
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hypotheses. Nous avons appliqué avec succes une version simplifiée de notre méthodologie
a la problématique de I'estimation de la diffusion et la version complete a la modélisation
des oscillations. Les deux problématiques sont tres différentes et se placent a des niveaux
de description différents. Le méthodologie proposée est donc polyvalente. Elle s’adapte

facilement a des études qui sont en-dehors du cadre de celles présentées dans cette these.

Publications et communications

Publications :

— Soumis au journal Biological Imaging : A. Caranfil, Y. Le Cunff, C. Kervrann,
"BayesTICS : Local temporal image correlation spectroscopy and Bayesian simu-
lation technique for sparse estimation of diffusion in fluorescence imaging' (en
révision)

— FEn préparation : A. Caranfil, J. Pécréaux, C. Kervrann, Y. Le Cunff, "Modelling

the oscillatory behavior in asymmetric division of C. elegans embryo'

Posters et présentations orales :

— A. Caranfil, C. Kervrann, "Correlation-based method for membrane diffusion es-
timation in TIRF microscopy". Poster presented at : "France Biolmaging : 4th
Annual Meeting, Future Challenges in Biolmaging", April 2017, Paris

— A. Caranfil, Y. Le Cunff, C. Kervrann, J. Pécréaux, "Modelling oscillatory be-
havior in asymmetric division of C.elegans embryo". Oral presentation at : "3rd
Mathematical Biology Modelling days of Besancon", June 2018, Besancon

— A. Caranfil, Y. Le Cunff, C. Kervrann, J. Pécréaux, "Studying oscillatory behavior
in asymmetric division of Caenorhabditis elegans embryo with fluorescence micro-
scopy"'. Poster presented at : "QBI 2019 - Quantitative Biolmaging Conference",
January 2019, Rennes

— A. Caranfil, Y. Le Cunff, C. Kervrann, J. Pécréaux, "Modelling oscillatory behavior
in asymmetric division of C. elegans embryo". Oral presentation at : "BioHazard -
Stochastic Models for Biology", August 2019, Rennes
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Apercu de la these

Dans le Chapitre 1, nous expliquons I'importance des études de variabilité pour les mé-
canismes cellulaires et nous introduisons la méthode ABC (Approximate Bayesian Com-
putation), qui constitue une technique-clé pour 'estimation et la prédiction de parametres.

Dans le Chapitre 2, nous introduisons les méthodes d’imagerie TIRFM et des méthodes
de corrélation associées pour l'estimation de parametres. La premiere contribution de
cette these, un nouveau modele de diffusion de spots pour l'estimation de la diffusion
locale au niveau de la membrane cellulaire, est ensuite présentée. La méthode d’estimation
qui en résulte est validée et évaluée sur des données synthétiques, puis sur des données
expérimentales.

Le Chapitre 3 explique les mécanismes mis en ceuvre lors de 'anaphase de la division
cellulaire asymétrique, et présente des travaux liés aux oscillations des centrosomes durant
cette phase. Notre deuxiéme contribution, un modele mathématique de ces oscillations, est
décrite et validée. Nous présentons alors le cadre d’estimation de parameétres qui constitue
la troisieme contribution de cette theése. Ce cadre d’estimation est utilisé pour identifier des

parametres de notre modele d’oscillations, afin de le valider sur des données synthétiques.

14



SUMMARY

Preamble

This thesis is the result of a collaboration between two teams: the Serpico project-team
at Inria Rennes and the CeDRE team at IGDR (Institut of Genetics and Development
of Rennes). Methodological aspects, as well as approaches based on modeling, analysis
and image processing, are the common threads that led the two teams to collaborate.
Thus, a new project was born, with the objective of designing an approach based on data
assimilation for cellular mechanisms analysis.

This thesis lies within this collaborative project, with the aim of proposing an ap-
proach for modeling and parameter estimation, for the study of the variability of cellular
mechanisms. My thesis took place at 60 % in the Serpico team and at 40 % in the Ce-
DRE team, under the supervision of Charles Kervrann, Research Director at Inria Rennes
and head of the Serpico team, and Yann Le Cunff, Associate Professor at the University
of Rennes 1, member of the DyLiSS team at IRISA, and member of the CeDRE team
at IGDR during the supervision of this thesis, and in close collaboration with Jacques
Pécréaux, CNRS researcher and head of the team CeDRE at IGDR.

Context

Advances in imaging methods, in particular in fluorescence microscopy, made it pos-
sible to use mathematical modelling to study cellular mechanisms. New mathematical
models have been introduced in order to study global effects within the cell, in order to
reveal general trends of the studied mechanisms. Our understanding of "average" behav-
iors is thus quite good; in contrast, individual behaviors and their influence at the cell level
remain poorly understood. Although local models have also been increasingly designed
to study specific events in the cell, few models or methods exist that can both describe
general behaviors and provide information about local events at small scales.

As a consequence, values of biophysical or molecular parameters are only partially

known. On the one hand, thorough knowledge of average biophysical magnitudes is avail-
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able in the literature, and in vivo experiments made it possible to estimate some molecular
or biophysical parameters that are directly observable from imaging techniques; on the
other hand, other parameters are still partially known at best. These issues highlight the
need for mixed approaches, that would allow, at the same time, to estimate local parame-
ters and to study the interactions between the different actors involved in the mechanism
of interest.

Finally, while predictive studies of cellular mechanisms is not made possible by pre-
existing models, the design of a predictive method would allow to direct the experiments,

by facilitating an a priori understanding of the studied mechanism.

Contributions

This thesis brings three main contributions. The first two contributions are two new
models for the description of cellular mechanisms. The third contribution is a parame-
ter estimation framework that allows to take into account the variability of the studied
mechanism, but also the interactions between the various actors involved in the studied
mechanism. The proposed framework then allows to test several possible scenarios and to
establish predictions for each of these scenarios.

The first contribution deals with the design of a model for estimating the local diffusion
of transmembrane proteins in TIRF imaging. Diffusion is usually estimated in a global
way, in large zones in the cell: a correlation method is used to estimate the apparent
diffusion coefficient, under the assumption of a homogeneous diffusion in the membrane.
This approach does not allow to distinguish local diffusion, which may be induced by
the stochasticity of the elements that compose the membrane and the factors of the
diffusion itself, or by the various structural elements that may slow down or even inhibit
the diffusion of transmembrane proteins. Here we propose a model based on a correlation
method, but without any homogeneity assumption; this model allows to evaluate the
diffusion for each diffusion event, within small image windows. This approach then allows
to estimate diffusion maps, in order to identify areas of high spatial variation of the
diffusion.

The second contribution of this thesis deals with the modeling of centrosome behavior
during cell division, more precisely during the separation of chromosomes. Centrosomes
move to the posterior side of the cell and, in doing so, they oscillate transversely to the

anterior-posterior axis. Existing studies focus on posterior displacement, without taking
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Figure 3 — Illustration of a local spot of diffusion in TIRF imaging.

these oscillations into account. However, not only are these oscillations frequently encoun-
tered during asymmetric divisions, but they also seem to play a key role in division. For
instance, in the case of the C.elegans embryo, their absence is a sign of cell dysfunction,
which can lead to erroneous division, or even to a lack of division and, ultimately, the
death of the cell.

We focus here on these transverse oscillations and propose a new multi-scale model,
which is based on a biophysical approach to the behavior of the centrosome. Force bal-
ance, as well as assumptions validated by the literature, allow us to design a model of
centrosome oscillations during the chromosome separation phase. This model allows one
to better understand the factors that trigger the oscillations, the conditions that are nec-
essary for their existence, and the interactions that are put in place for them to occur. It
notably makes it possible to test several scenarios of absence of oscillation in C.elegans,
by combining information given by the model and experimental observations. Finally, it
enables to represent the oscillations of the posterior centrosome for each embryo, yielding

solid grounds for the study of variability from one embryo to another.

The third contribution of this thesis is the design of a multi-step parameter estimation
framework, based on a mathematical model of the studied mechanism. The first step is
a sensitivity analysis of the model parameters, which allows to group the parameters
for estimation, according to their respective influences on the result. The second step is

the definition of the common characteristics of the parameters, based on both previous
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Figure 4 — Illustration of the transverse oscillations of the spindle poles during
cell division.

knowledge about the studied mechanism and experimental observations. Finally, the last
step consists in estimating the parameters, which is performed “blockwise” according
to the results of the sensitivity analysis. Approximate Bayesian Computation, a Bayesian
method for parameter estimation, is used at this stage. Our method allows to estimate the
parameters as soon as a mathematical model is available; it relies on very few assumptions
and does not require the computation of a likelihood. Parameter estimation is performed
for each experiment: hence, it is possible to evaluate the individual parameters for each
experiment, but also to analyze the global variability of the studied mechanism. Another
key asset of our method is that it allows to produce predictions with respect to the different
possible scenarios and, thus, to guide the experiments so as to efficiently explore various
hypotheses. We applied a simplified version of our methodology to the diffusion estimation
problematic and the complete version to the oscillations modeling problematic. The two
biological issues are widely different, with different description levels. The methodology
we propose is therefore versatile, and easily adaptable to studies beyond the scope of those

presented in this thesis.
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Publications and communications

Publications:

— Submitted to Biological Imaging: A. Caranfil, Y. Le Cunff, C. Kervrann, 'BayesTICS:
Local temporal image correlation spectroscopy and Bayesian simulation technique
for sparse estimation of diffusion in fluorescence imaging" (in revision)

— Under preparation: A. Caranfil, J. Pécréaux, C. Kervrann, Y. Le Cunft, "Modelling

the oscillatory behavior in asymmetric division of C. elegans embryo'

Posters and talks:

— A. Caranfil, C. Kervrann, "Correlation-based method for membrane diffusion es-
timation in TIRF microscopy". Poster presented at : "France Biolmaging : 4th
Annual Meeting, Future Challenges in Biolmaging", April 2017, Paris

— A. Caranfil, Y. Le Cunff, C. Kervrann, J. Pécréaux, "Modelling oscillatory be-
havior in asymmetric division of C.elegans embryo". Oral presentation at : "3rd
Mathematical Biology Modelling days of Besancon", June 2018, Besancon

— A. Caranfil, Y. Le Cunff, C. Kervrann, J. Pécréaux, "Studying oscillatory behav-
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Thesis outline

In Chapter 1, we explain the importance of variability studies for cellular mechanisms
and we introduce the Approximate Bayesian Computation method as a key technique for
parameter estimation and prediction.

Chapter 2 introduces TIRFM acquisition methods and associated correlation methods
for parameter estimation. The first contribution of this thesis, namely, a new spot diffusion
model for the estimation of local diffusion at the cell membrane, is then presented, and the
resulting estimation method is validated and assessed on both synthetic and experimental
data.

Chapter 3 explains the mechanisms at work during anaphase in asymmetric cell divi-
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Summary

sions, and presents works related to the oscillations of the mitotic spindle poles during this
phase. Our second contribution, a mathematical model of these oscillations, is described
and validated. We then present the parameter estimation framework that constitutes the
third contribution of this thesis. This framework is used for estimating the parameters of

our oscillation model, thus validating it on synthetic data.
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CHAPTER 1

VARIABILITY AT CELL SCALE, HOW TO
HANDLE IT ?

1.1 Why variability matters

Variability is visible at all biological scales, it is what makes life so diverse, and what
enables cells, organisms, and species to survive in an always changing environment [7].
At the cell scale, variability yields robustness to internal and external fluctuations, and it
provides cells with the means to adapt to rapid changes in the environment [2] [82]. At the
population level, a diverse spectrum of responses by individual specialization is achieved
through variability, and this specialization can either enable a few cells to survive in case
of exceptional conditions, or have them trigger a signal resulting in a collective response

of the population and thus enable the population to survive [3].

Cellular variability is more and more considered as an evolutionary mechanism. J.
J. Kupiec [41] suggested that a Darwinian mechanism for developmental decisions could
include variability, as variation generates different cell fate scenarios and regulation mech-
anisms act as a selection mechanism. In the same vein, H. Dueck et al. [22] proposed that
single cell variation is required, at least in part, for system and population-level func-
tion, as seen in ecological communities where individuals with different roles enable group
functioning. In this context, how does a system manage variability to obtain a coherent
behavior that enables survival [52]7 Should variability always be reduced or regulated as
much as possible or is variability a mechanism that systems can use in their advantage
[27]7 These ongoing questions have been studied for a long time, and partial answers were

given, but much is still to be uncovered.

Types of cellular variability At the cell scale, variability can be genetic, environ-

mental or due to other factors, this last type being referred to as phenotypic variability
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[3]. Although works on genetic and environmental variability have been carried out for
quite a long time, the interest in phenotypic variability is relatively new. Here, we focus
mainly on phenotypic variability, whether this type of variability should be investigated
and when, and what studying phenotypic variability can tell us about a biological system

such as a cell or a population of cells.

Studying phenotypic variability The origins of phenotypic variability are not well
understood. Studying this type of variability is often complex and difficult to set up in
practice, as it has to be measured over several individuals of a population, or over long pe-
riods of time for a single individual. This can sometimes be technically difficult, especially
for in vivo experiments where some kind of invasive technique is used, and long exposure
can result in a variety of effects that can change the phenotype of interest. The impact of
genetic and environmental factors of variation has to be diminished as much as possible
and, in practice, it is almost impossible to get both genetically identical individuals and
homogenous environmental conditions for each observed individual. Nevertheless, several
studies demonstrated that variability can emerge from molecular mechanisms that are
environment-independent [79] [36]. In addition, it has been established that phenotypic
variation can arise at rates that are far greater than the rates of mutational mechanisms,
or to be unaffected by the inactivation of known mutational mechanisms [28]. Finally, as
variability is often an indirect effect of several complex mechanisms working together in a
complex manner, it is mathematically difficult to take every factor and every correlation
into account, especially because there is not enough prior information about these factors
and their interactions [23] [22]. This last part will probably become less of a problem
as more and more phenotypic studies are conducted, and more hypotheses and different

scenarios are being tested and validated.

Perhaps the most thoroughly studied case of phenotypic variability concerns microor-
ganisms. Microorganisms, such as bacteria, have been studied for a long time, especially
in culture setups. The first studies of variability came from Delbruck, who, in the 1940s,
observed that virus-infected E.coli bacteria display a large variability in the number of
phages produced per cell. He suggested that this variability could be due to the stochas-
ticity of chemical interactions in the cell, and also that predetermined factors, such as cell
size, could have an influence on the observed variability. Since then, studies on microor-

ganisms have helped us better understand how phenotypic variability arises and what its
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consequences are.

Stochastic factors In microorganisms, several molecular causes were found to be at
the origin of cellular variability in genetic and environmental identical conditions. One
of them is the stochasticity of some molecular processes, such as gene expression [24]
and distribution of molecules during cell division [36]. One example of phenotypic vari-
ability due to stochastic gene expression is observed in genetically modified large cells
of Bacilius subtilis that have less variability in the initiation of sporulation than normal
cells [79]. Larger cells result in reduced variation in molecular composition and, in turn,
reduced variability in initial sporulation. Other mechanisms that could be responsible for
phenotypic variability are oscillations and periodic cycles, such as the cell cycle. Cell-cell
interaction, through physical contact or diffusable molecules [76] [70] can also result in
such variability. The phenotype of one cell can influence the phenotype of another cell
[3], as gene expression can be regulated by signaling from nearby cells [91] [13], and vari-
ation in such signaling mechanisms can result in variation in gene expression, and thus,

in phenotypic variability.

Deterministic factors Interestingly, although some of the phenotypic variability is
thought to be due to stochastic mechanisms [67] [45], an increasing number of deter-
ministic mechanisms were found to regulate these stochastic mechanisms. Indeed, gene
expression can be regulated through gene-regulatory networks, in a way that can decrease
or increase variation, and this can be achieved through negative or positive feedback loops.
A regulatory mechanism such as a positive feedback loop [75] can give rise to different
groups in a population exhibiting different phenotypes. On the other hand, negative feed-
back loops can lead to decreased variability in gene expression. In E.coli for example,
negative feedback loops are responsible for low levels of variation in the expression noise
of essential genes, which increases the fitness of the cells and, thus, their growth rates [43]
[90]. Switch-like behaviors, that were previously thought to be greatly due to stochastic
processes, were found to be predetermined by cell’s physiology, growth rate or population
density [71]. B. Snijder and L. Pelkmans proposed in 2011 that phenotypic variability
arises largely from the spectrum of microenvironmental differences in a cell population
and from cell’s history (memory of protein levels or phenotypic state for example), and
that studies of cell-to-cell variability need to distinguish between stochastic origins and

regulated, deterministic origins in order to better understand phenotypic variability.
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Phenotypic variability and population survival Phenotypic variability is a com-
plex trait, that is itself variable between individuals, the underlying mechanisms that
cause such variability being diverse in all kinds of ways: different molecular bases, differ-
ent dynamics and different local and global impact. Phenotypic variability can influence
several crucial aspects of the life of an individual or a population, from development to
reproduction and up to survival [67], [7]. If phenotypic variability is an evolutionary trait,

what are its advantages for a cell, an organism or a population?

Studies from microorganisms gave the first answers to this question. In a fluctuating
environment, microorganisms have several strategies to ensure survival. The most common
theories state that individuals sense their environment and respond to changes through
signal transduction and regulation of gene expression that generate the appropriate phe-
notype to fit the given conditions. In low-fluctuation environment, or if fluctuations occur
over a relatively long period of time, this strategy allows most individuals to survive as
they can all adapt to new conditions through this common mechanism. However, this
might fail when changes in the environment happen too fast for individuals to have the
time to generate optimal phenotypes through this mechanism, or when conditions are too
diverse for all individuals to develop a signal transduction pathway. One possible solution
is to increase phenotypic variability regardless of the environment, so that a variety of
responses is already available in case of rapid fluctuations in the environment: this strat-
egy is known as bet hedging. For example, studies on E.coli show that a small part of
the population has a slow growth rate (these individuals are known as persisters), which
ensures a better tolerance to antibiotics in case of sudden exposure [9]. Moreover, E.coli
cells can switch between normal and persistence states in a stochastic manner [45]. Phe-
notypic switching is also present in B.subtilis that can switch between competence and
sporulation [49] [17], suggesting that phenotypic variability is used as a survival strategy
by this organism. Studies on cancer cells suggest that this mechanism could be used to
switch between noninvasive and invasive states, which enables survival to chemotherapies
that target proliferating cells [34] [93]. Other examples of the use of stochastic pheno-
typic variability includes the metabolic functions, that enable organisms to adapt to new
sources of food [2], or the immune system, that can rapidly respond to changing conditions

thanks to individual phenotypic variability [15] [39].

Generating a large variety of phenotypes can play other crucial roles for group survival
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and functioning. One such role is the production and secretion of molecules by a small
percentage of the population, that can benefit the whole population in case of crisis. In
clonal populations of B.subtilis, some individuals produce a protease called subtilisin E
in food-poor environments. This molecule is costly to produce, so only a few individuals
engage in the production and secretion of subtilisin E. The molecule diffuses freely in
the medium of growth, and it allows the degradation of proteins outside of the cell, its
degradation products serving the whole population. This phenotype has its origins in the
expression of the gene aprE that encodes subtilisin E, and only a minority of individuals
were found to express this gene [87]. A second example is the separation of mutually
exclusive tasks between cells. This is the case for nitrogen fixation and photosynthesis
in cyanobacteria, as the process of photosynthesis damages the enzyme responsible for
nitrogen fixation. These two cellular processes are thus accomplished simultaneously by
different cells, ensuring the proper functioning at the organism level for the cyanobacte-
ria [4]. A third example is the coordination of a population by a small percentage that
responds rapidly to changes in the environment and emits a signal that triggers a group
response. Patil et al [61] studied a population of human dendritic cells infected with the
Newcastle disease virus; they showed that a small fraction of the cells, not only rapidly
activated Ifnb1 in order to fight the disease, but, most importantly, emitted paracrine sig-
nals that further activated Ifnb1 expression in the rest of the population. This mechanism
is crucial for populations of cells that need to balance between several behaviors, such as
the immune system that needs a balance between rapid response to attacks and avoiding
self-toxicity [73] [61]. Finally, phenotypic variability can play a major role in contexts that
demand a fractional response from the population. In the case of binary decision at the
cell scale, phenotypic variability transforms the binary behavior into a continuous behav-
ior at the population level, allowing for fractional or dose-dependent responses, instead
of a switch-like behavior that would be triggered from binary decisions in a uniform pop-
ulation. Several studies suggest that this kind of mechanism is responsible for fractional
death of cancer cells in response to chemotherapy [40] [60], and fractional killing in drug

treatment using apoptosis-inducing receptor ligands such as TRAIL [77] [12] [72].

The consequences of phenotypic variability can be a combination of the previously
mentioned functional roles. For example, the variability in virulence genes expression in
Salmonella leads to both segregation of tasks and generation of persisters during antibiotic

exposure [8]. An increasing amount of evidence shows that phenotypic variability has a
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major functional impact from the cell level to the population level, and that its dynamics

is more complex than it was previously assumed [3].

1.2 Measuring variability : model parameter estima-
tion with Approximate Bayesian Computation
method

Cellular variability can be studied in a variety of ways, depending on the prior knowl-
edge, the dynamics of the observed process, and the type of available data. In this thesis,
we propose a direct approach based on the signal modeling of the molecular process and
the estimation of model parameters using a Bayesian framework. This approach yields
both point estimates and complete distributions of the estimated parameters. Moreover,
the model parameters are linked to molecular characteristics. Thus, the variability of these
parameters provides direct information about the molecular variability. In what follows,
we describe the parameter estimation framework we used to study local variability in

Chapter 2 and population variability in Chapter 3.

The Bayesian approach enables model checking and validation as well as parameter
inference and prediction. In this framework, both the data and the model parameters
are considered as random variables. Then, the conditional probability distribution of the
parameters given some observed data contains all the information needed to analyze the

model; this distribution is called the posterior distribution.

Let us consider a model with a p-dimensional vector of parameters 6§ € KP. In order
to compute the posterior distribution of 8, a prior distribution for 6, and the so-called
likelihood of the data must be given. The prior distribution is chosen by the expert, and
can provide information about what is already expected about #, in which case it is in-
formative; but it can also show that nothing is known about the parameters, and in this
case the prior distribution is noninformative. The latter case can take the form of a uni-
form distribution in the range of allowed possible values for #. The likelihood gives the

probability for each observation, given the model and parameters 6.

The posterior distribution for 6 is generated by updating the prior distribution, through
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the likelihood, given the observations y.,s. Mathematically, Bayes’ theorem gives the pos-
terior distribution:
p(?/obsle)ﬂ-(e)

mO1ors) = oyl (9) 0 (1)

Although this approach is quite simple in its formal description, the complexity of

the model, or that of the prior, makes it impossible to obtain an exact solution for the
posterior distribution. Most of the times, numerical methods are used to compute the
posterior. However, even in this case, the posterior might be impossible to compute be-
cause the numerical evaluation of the likelihood can be too computationally costly, or even
impossible. The prior distribution is always available as it is chosen, but the likelihood
can be difficult to obtain in a mathematical form, and for some models even impossible;
this is the case for models that directly simulate the data-generating mechanism (models
employing neuron networks for example). Thus, the direct application of Bayesian meth-

ods is restricted to fairly simple models.

To solve this problem, several techniques have emerged that approximate the poste-
rior distribution. Among them, methods that are “likelihood-free” have proved effective
and easy to implement. In this group, the Approximate Bayesian Computation — ABC -
has been of particular interest, as an intuitive and accessible method for model analysis
and inference. The idea behind ABC is to approximate the posterior in an indirect way,

without computing or numerically evaluating the likelihood.

This method was first developed in [81] and [66], and it was since extended in a
number of ways, and for a wide range of applications. A few examples of biology related
applications can be found in [69, 68| (protein networks), [44] (single cell gene expression),

[89, 88] (cell biology), [80] (pathogen transmission), [47, 1] (infectous disease dynamics).

1.2.1 Standard ABC method

The classical posterior distribution is given by formula (1.1). The integral in the de-
nominator of the right-hand side acts as a normalization constant. The posterior is thus

proportional to the product of the likelihood and the prior, i.e.:

7T-(eyyobs> ocp(yob5|t9)7r(9). (12)
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As the likelihood is usually not available, the posterior cannot be computed using this
equation. Instead, the basic ABC method [66, 11] provides a way of approximating the
posterior distribution by only using the model itself. A data set §j can be directly obtained
by simulating the model for a given parameter vector 6. This vector 6 is then considered a
valid approximation of  if the distance between the simulated data ¢ and the observation
Yobs is small enough, i.e. |7 — yops|| < h, with || - || a chosen norm, and A close to 0. In this
case, 0 is a sample from the desired posterior distribution. Mathematically, this means

drawing samples (6, 7) from the joint distribution defined by:

7TABC<07 y|yobs> X I(Hy - yobsH S h)p(y|9)7r(9), (13)

where I(-) is the indicator function defined by I(z) = 1 if z is true, and I(z) = 0 otherwise.

Furthermore, the marginal distribution is given by

Tanc(Olyons) = [ Tanc(6, ylyon) dy. (14)

Then, we have

}lli_>1ré7rABc(9|yobs) = %%/WABC(G,m%bS)dy
o Tim [ 10y = yosll < 1p(y16)7(0) dy
—0

= [ (1 10y = yoasll < 1))p(10)7(0) dy

lim manc(Olys) o [ 3y, (5)p(yl6)7(0) dy

= p(yobs ‘9)77(9)

< (0] Yobs)-

Thus, for h — 0, the 6 from the samples (9~, y) are drawn from the true posterior distri-
bution. This is the basis of the ABC method.
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Numerical implementation From a practical point of view, the basic ABC algorithm

proceeds as follows:
1. Sample a candidate 6 from the prior.
2. Use 6 to simulate data  from the model (7 having the same dimensions as o).

3. Compute the distance ||§ — yops||- If the distance is small enough i.e. ||y — yops|| < A,

then 6 is accepted as a sample from the posterior. If not, discard 6.

The final step of the estimation is to compute the posterior expectation known as
the minimum mean square error (MMSE) estimator and defined as fynse = E(f]y) =
[ p(Bly)8dh. The simplest way to compute the MMSE estimator is to draw samples
{0;}i=1,..n using the procedure detailed above, then approximate éMMSE by éMMSE =
N~136;. Then, the samples can be used to compute the posterior distribution for which

the maximum mode equals the maximum a posteriori (MAP) estimator NS

This algorithm requires selection of a suitable norm || - ||, as well as a choice of h. As
h — oo, accepted O come from the prior, and as h — 0, accepted 6 is drawn from the
posterior. The choice of h reflects the balance between computability and accuracy. When

h = 0, the algorithm is exact and gives samples from the true posterior.

1.2.2 Generalized ABC method

A generalization of this method is possible, in order to improve the approximation
[74]. The first point is to replace the indicator function I(-) with a standard smoothing
kernel Ky (u) defined by:

K (1) — ;K (Z) | (1.5)

Kernels are symmetric functions with the following characteristics :

o K(u) >0 for all u,

o [K(u)du =1,

e [uK(u)du=0,

o [u*K(u)du < co.
In particular, this implies limy, o K (u) = do(u). The kernel K}, (u) introduces weights for
the accepted 6, such that the 8 for which & is close to zero will have more weight than
those that make A further from 0.
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The second point is to generate 6 from an arbitrarily simpler distribution g(@) instead

of the prior distribution, and accept  with probability proportional to Ky (u )
reason for this probability of acceptance is that the expression of m4pc as a functlon of g

and p is as follows:

WABC(ea y|yobs) X Kh(Hy - yObSH)gEZ;p(?JW)Q(Q) (16)

Hence,
7TABC<97 y’yobs> X Kh(Hy - yobs|‘)p(y|8>ﬂ-(9)7 (17)

which is very similar to (1.3). Indeed, the limit behavior of the marginal distribution is

the same:

}Lim TaBc(0|Yobs) = 1im/7TABc(9ay|yobs)dy
—0 h—0

o lim [ Ki(lly = voul o y16)(6) dy

’IIEI(I)WABC(H‘yobs) (S8 /(}ZIL%K}I(HZ/ _yobsH)>p(y’9)7T(9) dy

= [ G (w)p(yl6)7(0) dy

= D(Yobs|0)T(0)

X 7T(6|yobs)

As a result, by generating samples from the joint distribution, 6 is drawn from the true

posterior as h — 0.

Numerical implementation In practice, the ABC algorithm is modified as follows:

1. Sample a candidate 6 from g.

2. Use 0 to simulate data § from the model (7 having the same dimensions as Yops)-

30



1.2. Measuring variability : model parameter estimation with Approximate Bayesian
Computation method

3. Compute the probability of acceptance

Ky, (|lg — yofs“) 7T(§>
Cy(0) ’

where the constant C' ensures that this expression properly defines a probability.
Accept 6 with this probability.

Then, similar to the basic ABC method, one can compute the MMSE estimator OnivisE
and the MAP estimator fyap.

The choice of h is paramount in order to balance computability and accuracy: as
h — oo, the accepted @ is drawn from g, while, as h — 0, the accepted @ is drawn from

the posterior.

The ABC method requires several thousands of samples in order to compute the pos-
terior distribution. Thus, this method becomes appropriate to use when the data 6 is

cheap and fast to simulate.

In this thesis, the ABC method was used for parameter inference, in both Chapter 2
and Chapter 3. The complexity of the developed models has guided us to the ABC method,
along with the other advantages previously mentioned in this section. The adjustments
and improvements made to this method are detailed in the respective sections for each

model.
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CHAPTER 2

LOCAL VARIABILITY: DIFFUSION
ESTIMATION IN FLUORESCENCE IMAGING

Variability at the level of a single cell is essential for cell adaptability to rapidly chang-
ing environments. Studying the local variability of cellular mechanisms can reveal internal
changes, such as changes in dynamics or in local structure. It can also attest of intrin-
sic variability due to stochastic factors that the cell could use to its advantage. In this
chapter, we study the local variability of the diffusion of transmembrane proteins at the

plasma membrane.

Diffusion is the most common way of transport at the microscopic scale, as it requires
no energy to generate movement. It accounts for 80% of trafficking in the cell, and there

are several crucial processes that rely on it for transport.

One of the key processes relying on diffusion is exocytosis, which consists in the trans-
port of cargo to the cell membrane or to the extracellular medium. The role of exocytosis
is to regenerate the membrane, to eliminate waste from the cell and to transport molecules
synthesized in the cell that will play a role outside of it, such as neurotransmitters, hor-

mones, Oor enzymes.

The most used technique to image the exocytosis process is Total Internal Reflec-
tion Fluorescence Microscopy, or TIRFM. The principle of this technique, illustrated by
Fig. 2.1, is to use the total reflection of light in order to generate a weak electromagnetic
field that will excite the fluorescently tagged molecules. This technique yields a series of
images showing the evolution in time of the fluorescent intensity during exocytosis. In

particular, the different steps of exocytosis have been accurately described using TIRFM.

In order to estimate the diffusion during exocytosis, a standard approach consists in
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Figure 2.1 — Illustration of TIRF microscopy principle.

combining the TIRF acquisition method with a correlation method. This approach yields
mean characteristic values for diffusion, but does not provide any information about the
local variability of the diffusion between different regions of interest, and in particular, it

does not allow for the estimation of diffusion for isolated diffusion events.

In what follows, we propose a new method that allows for the evaluation of local diffu-
sion and its variability in TIRFM images, using a single sequence from classical acquisition.
Our approach, based on a standard correlation method, uses initial local conditions in or-
der to better describe local diffusion events during the exocytosis process. This method
is well suited for both isolated diffusion events and cases where two or several diffusion

events occur in the region of interest.

Sections 2.1 and 2.2 present the biological context, the acquisition method TIRFM
and describe the general principle of the correlation methods. Section 2.3 presents the
mathematical background of how the method for local diffusion estimation adapted for
TIRFM was designed. We describe extensive simulations and demonstrate the effectiveness
of our method before applying it to real sequences of TIRFM images depicting the diffusion

of transferrin receptors during exocytosis.

2.1 Context : exocytosis mechanisms

In this section we will study the diffusion of transmembrane proteins during the fusion

phase of exocytosis. The proper diffusion of the transmembrane proteins is important, not
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Figure 2.2 — Illustration of the three steps of exocytosis. Adapted from [16].

only for its role in the fusion process, but also later in the cycle of the transmembrane
proteins, because they serve as receptors for outside molecules that are needed in the cell

and help with their transport inside the cell, via the endocytosis process.

The are two types of exocytosis: constitutive exocytosis and regulated exocytosis. On
the one hand, constitutive exocytosis is used to regenerate the cell membrane and to
eliminate waste from the cell, and is thus a process that takes place in every cell. On the
other hand, regulated exocytosis is triggered by an external factor (such as Calcium ions)
and happens only in specialized cells; its role is to transport specific molecules to the cell

membrane and to deliver molecules outside the cell.

The factors influencing exocytosis, as well as the molecules involved in the mechanism
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and their regulation, can be different between cells, or even between parts of the cells,
and can lead to different types of exocytosis. Nevertheless, there are three major steps

that govern exocytosis, as illustrated by Fig. 2.2:

 transport of the cargo by a vesicle from the donor organelle to the cell membrane;
« attachment of the vesicle to the membrane;

« fusion to the membrane.

The first step of exocytosis is the generation of a vesicle and its transport to the cell
membrane, also called plasma membrane. Vesicles form in a donor organelle, and they are
composed of a membrane that encapsulates the cargo molecules. The vesicle membrane
is made of lipids and associated proteins, just as the plasma membrane, but its specific
composition depends on the type of exocytosis, and its role. Once a vesicle is formed,
it undergoes active transport along the cytoskeleton with the help of molecular motors.
In this stage, microtubules (that are tubular structures of the cytoskeleton) have been
shown to play a crucial role. Indeed, when disrupting microtubule growth with nocoda-
zole in adipocytes (fat cells), the transport of the storage vesicles of GLUT4 (glucose

transporter 4), from the intracellular sites to the plasma membrane, is inhibited [18].

When the vesicle arrives near the plasma membrane, the cortical actin network moves
the vesicle to a fusion site, where the second phase of exocytosis takes place: the attach-
ment of the vesicle to the plasma membrane via specialized docking proteins. These dock-
ing proteins are called SNAREs (soluble N-ethylmaleimide-sensitive factor attachment
protein receptors), and are present both in the vesicle (v-SNARE) and in the membrane
(t-SNARE). These proteins interact in a zipper manner and form a SNARE complex that
will attach the vesicle to the membrane. The formation of the SNARE complex is crucial
for attachment, as shown in 2002 by a study on pancreatic beta cells [57]. Cells were
treated so as to reduce the interactions between SNARE proteins, which resulted in a

reduction of proper attachment of secretory vesicles.

During the attachment phase, the actin network and various proteins regulate the
attachment of the vesicle. Disruption of actin has been shown to inhibit attachment of
secretory vesicles in neuroendocrine PC-12 cells [42] and adrenal chromaffin cells [58].
Myosins, that are molecular motors associated with actin filaments, were shown to play

an important role in the transport along the actin network, and in the attachment of
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vesicles. Several studies show that reduced expression or defective Myosin Va results in
reduced transport and attachment of secretory vesicles [86, 38]. Through its dynamic be-
havior, the actin network can either enhance the movement of the vesicles, or diminish
their movements and even act as a barrier to the plasma membrane. This makes actin
and the associated molecular motors an important regulatory system in the attachment

phase of exocytosis.

Once a vesicle is correctly attached, it can fuse to the plasma membrane. The mem-
brane of the vesicle becomes a part of the plasma membrane, thus regenerating the cell
membrane, and, depending on the type of exocytosis, molecules can be delivered outside
the cell. In this phase, several molecular actors are thought to play an important role.
The dynamics of the actin network was shown to play a role in the stability of the fusion
pore. Indeed, the overexpression of B-actin, actin-related protein 3 or mAbpl in PC-12
cells, as well as high concentrations of cytochalasin D (that inhibits actin filament poly-
merization), slow the delivery of big cargo molecules in Ca®" regulated exocytosis [26].
Another molecular actor that was shown to play an important role in vesicle fusion in
Ca?* regulated exocytosis is the Synaptotagmin proteins family. In Syt-1 shRNA PC-12
cells (that express partial loss of function), there was a reduction of fusion pore opening
and expansion that resulted in a reduction in vesicle fusion events in Ca®" regulated ex-
ocytosis [48]. Other studies showed that Synaptotagmins are involved in the regulation
of vesicle fusion, either by inducing positive membrane curvature [53], or by modulat-
ing fusion pore opening [84]. The Synaptotagmin proteins are transmembrane proteins:
they are permanently attached to the membrane, and span it entirely. Transmembrane
proteins are present in the plasma membrane as well as in the vesicle membrane, and
they are thought to have several roles in exocytosis: they help breaking through the cell
membrane, they keep the cargo molecules in place during transport, and once the fusion
begins, they diffuse in the plasma membrane, taking the cargo molecules alongside and

helping them get outside of the cell.
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2.2 Introduction to image correlation spectroscopy
and TIRFM methods

2.2.1 Principle of Image Correlation Spectroscopy

Fluorescence Correlation Spectroscopy (FCS), illustrated by Fig. 2.3, is an acquisition
and analysis method introduced in 1974 [50, 25, 51], when techniques for tagging molecules
with fluorescent particles first started to emerge. The aim of this method is to capture
the fluorescent signal from the tagged molecules with an optical system and then use
this signal to measure the concentration of particles in the region of focus. The acquired
fluorescent signal is a one-dimensional signal, so the analysis is naturally performed with

a correlation method, a fairly easy method to implement, and popular in signal processing.

The acquisition setup in FCS is relatively simple. A laser beam, previously focused to
a point (using a confocal microscope, usually), is sent to the region of interest. This laser
beam excites the tagged molecules that further emit photons. The photon count gives the
fluorescent signal, that is captured by an optical sensor and transformed into a digital
signal afterwards. This 1D signal depicts the evolution over time of the intensity of the

fluorescence.

It is generally assumed that the concentration of particles in the studied region of
interest (ROI) is low and only one molecule at a time resides in the ROI, so that the
photon count is unambiguously coming from a single molecule. The ROI also needs to
be free of background so there is no possible fluorescent signal interfering with the emit-
ted signal. Because the excitation is obtained directly with a laser beam, the probability
of photobleaching of the fluorophores is high. A low intensity laser beam is generally
recommended. Another consequence of the possible photobleaching is that the time of
acquisition must be short before molecules start photobleaching, which means that only
fast dynamics can be studied. Lastly, the signal-to-noise ratio increases with time, so FCS

is limited to short acquisition times.

In classical FCS, one assumes that the intensity of the emitted fluorescent light de-
pends on the local concentration of the fluorophores and the laser intensity profile. Once

the intensity of emitted light is acquired, the autocorrelation of the fluctuations of the
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Figure 2.3 — Principle of the FCS method. Left: schematic experimental setup. Center:
acquired fluorescent signal. Right: autocorrelation of the signal. Adapted from [29].

signal is computed. Depending on the assumptions on the observed molecule population,

the theoretical form of the autocorrelation can differ.

Two methods derived from FCS have rapidly emerged, to overcome its limitations in

some sense:

ICS - Image Correlation Spectroscopy [64]: ICS uses the same principle as FCS but

the laser moves in space, such that a larger zone is covered. With ICS, an im-
age is acquired showing different fluorescent points corresponding to fluorescent
molecules. The spatial correlation of this image is then used to access information
about the observed population. Using ICS, one can compute the average number
of molecules in the image domain as well as the average concentration of the pop-
ulation. The acquisition in ICS is fast and has less problems with photobleaching
and bad signal-to-noise ratio. However, as for FCS, the number of molecules in the

ROI must be low and the image must be free of background.

TICS - Temporal Image Correlation Spectroscopy [92]: Based on the same principle

as FCS and ICS, TICS combines their advantages; it gives access to the concentra-
tion of the population in the ROI, as well as the dynamical properties such as the
characteristic time of diffusion. It also gives the percentage of immobile particles
in the region of observation. TICS can be applied to both low and fast dynamical
populations, and it can detect diffusion and flow at the same time. TICS uses laser

scanning as ICS to cover a whole region, and it goes further by acquiring a set

39



Chapter 2 — Local variability: diffusion estimation in fluorescence imaging

E Evanescent
i Wave
Aqueous E
Solution E T decreasing
(RI=1.33) | ~——————P ilensity } <250nm
Interface :
Glass i
(RI=152) '
\ ' Total Internal
Critical 1 Reflection
Angle E

Figure 2.4 — Principle of total reflection of light and evanescent wave.

of images that show the evolution of the studied population in time, in the ROI.
TICS uses the same temporal correlation as FCS, but for a 2D signal, that is, an

image. As for FCS, the concentration of the observed population must be low.

2.2.2 Total Internal Reflection Fluorescence Microscopy

Total Internal Reflection Fluorescence Microscopy (TIRF), is used to capture images
of fluorescently tagged molecules within a thin layer, with a depth of 70-250 nm, at the
surface of the illuminated plane. This method can be used to illuminate large areas, such
as an entire cell or even several cells, as it does not use a focused laser. TIRF imaging has
very little background and minimum impact on the live cell. As the exposure of the cell(s)
to light is minimal, it is possible to acquire long 2D movies. Therefore, it is an excellent
method for getting images of near-surface single molecules and their displacements, pop-
ulations of molecules and their dynamics, as well as distinct structures such as vesicles,

granules, or contact surfaces between domains.

TIRFM uses the total reflection of light and the associated electromagnetic radiation,
called evanescent wave, as the bases of the imaging method (see Fig. 2.4). When a light
beam goes from a dense medium (high refractive index) to a less dense medium (low

refractive index), and the angle between the beam and the contact surface (the incidence
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Figure 2.5 — TIRF microscopy setup. Adapted from [59].

angle) is greater than the so-called critical angle (angle at which the light reflects com-
pletely, and does not refract through the interface and into the low density medium), the
light is totally reflected, so the light returns to the medium it came from, but a part of
the energy of the light still goes into the second medium. This energy is a weak electro-
magnetic field at the interface between the two mediums that propagates into the second
one with exponential decay in intensity with distance from the interface, and with the
same frequency as the light beam: this field is called the evanescent wave. The depth of
the evanescent wave is short, but sufficient to excite the fluorescent molecules that are
near the surface; on the contrary, it is not sufficient to excite fluorescent molecules that

are inside the cell, in the background of the illuminated field.

One possible setup of the TIRFM method, illustrated by Fig. 2.5, is as follows. The
cell is placed on a glass, that is a medium denser than the cell, and an intermediate layer
such as oil can be used to reduce even further the depth of the evanescent field. A laser
beam points toward the glass, and the fluorescent signal emitted by the tagged molecules
is focused and captured by an optical fiber, to be transformed further down the line into

an electrical signal by an Avalanche photodiode (APD); this signal is recorded and pro-
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cessed by a digital correlator.

In the case of the study of the late stage of exocytosis, TIRFM presents all the assets
needed. The fact that the tagged proteins are excited by an evanescent wave, instead of
a direct light beam, makes this method less prone to noise and background signal, and
it does not affect the physiology or movement of the proteins as the excitation from the
evanescent wave is weak. This enables long acquisition times, which makes it possible to
study slow processes such as diffusion. Last but not least, the method is efficient with
a high acquisition rate (50 — 100 ms/image), and its costs are low compared to other

imaging methods.

Through TIRFM, it is possible to identify all important stages of exocytosis. Fluores-
cently tagged vesicles appear in TIRF as spots of light, more or less bright depending on
their location/depth from the surface (i.e., the contact surface between the cell and the
glass). The first phase, the transport phase, corresponds to a roughly linear movement
of a spot in time, while the vesicle is being transported to the plasma membrane via
cytoskeletal elements of the cell. When they arrive near the plasma membrane, vesicles
can undergo attachment. This second phase of exocytosis is visible in TIRFM images as
a restricted movement of the spot, that keeps a constant intensity throughout this phase.
Several studies, though, show that stationary or restricted movement is not enough for the
vesicle to undergo fusion after this phase. A regulatory step is probably involved, between
the attachment and the fusion, such as the calcium concentration of the specific fusion site
at the membrane. The last phase of exocytosis is the fusion to the plasma membrane. This
phase is easily identified in TIRFM images as a sudden increase or burst in fluorescent
intensity, thought to be due to higher excitation of the fluorophores at the exterior part
of the cell than in the inside, or to the change in pH between the two mediums; the fluo-
rescence of the tagged proteins is increased almost twofold, and this burst in intensity is
followed by a spreading of the fluorescent signal as the proteins diffuse in a lateral manner
in the plasma membrane. The study of this last phase in different cell types and under
different conditions help better understand the fusion phase and its regulation. Thanks
to TIRFM, several types of fusion were identified: from a “kiss and run” type where some
of the cargo of the vesicle is released but the vesicle does not fuse to the membrane, to
“mixed kiss and run” type where some of the cargo is released and a part of the vesi-

cle fuses to the membrane, to a “full kiss and run” type where all cargo is released and
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|

Figure 2.6 — Illustration of a TIRFM sequence depicting TfR protein diffusion,
as well as a selected diffusion event to be analyzed.
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the entire vesicle fuses to the membrane. Finally, for some cell types, when several vesi-

cles arrive at the same fusion spot, they may fuse with each other and with the membrane.

The different types of fusion were qualitatively studied thanks to TIRF microscopy
and the three main types were identified. However, quantitative methods for the local
characterization of the different types of fusion from TIRFM imaging data are still lack-
ing. Moreover, measures of local changes in the membrane can provide significant insights
into the regulatory mechanisms involved in exocytosis. Here, we propose a quantitative
method for the local characterization of diffusion during fusion in exocytosis, from stan-
dard TIRFM images.

2.3 Local diffusion estimation at the cell membrane

In this section, we first describe the mathematical model of local diffusion and propose
a correlation-based method for diffusion estimation. Then, we analyze the behavior of the
model in the space of possible parameter values. We validate the estimation method on
data obtained by directly simulating the model. Finally, we show extensive results on
synthetic images of local diffusion, before applying our method to real TIRFM images
depicting Transferrin Receptor proteins (TfR) diffusion at the plasma membrane after

vesicle fusion (see Fig. 2.6). The estimation method was developed in Matlab 9.4.

2.3.1 ABC-like method for local diffusion estimation in TIRF

images
2.3.1.1 Model for spot diffusion

In TIRFM images, flourescently-tagged vesicles appear as spots of light, and fusion
is identified by a burst in fluorescent intensity followed by a spreading of the fluorescent
signal as proteins diffuse in the plasma membrane. In what follows, we describe the model
for the fluorescent intensity of diffusing spots as proposed in [10], which will later be used

to estimate local diffusion.

fOxN-=R ) ) ) )
Let be the fluorescent intensity, with Q C R? the ROI in the

(p,t) = f(p,1)
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image domain. The intensity at point p = (x,y) € Q and time ¢ is noted f(p,?).

The intensity f is assumed proportional (with factor B) to the convolution (denoted )
of the microscopic number density (concentration of molecules) C, and the instrumental
point spread function (PSF) h:

f=B(Cxh), (2.1)

where B = pe@), p is the efficiency of the instrument to collect photons, € is the molecular
absorption coefficient and @) is the quantum yield of the fluorophore.

Diffusion of transmembrane proteins is mainly modeled by lateral diffusion in the

membrane [6], and it can be described by Fick’s second law [65]:

where C(p,t) denotes the concentration of molecules at time ¢ and location p €  C R?,
and A is the Laplacian operator. Here, the diffusion coefficient D is assumed to be constant

over §).

In TIRFM images, a vesicle appears to be smaller than the pixel size before fusion.
We thus assume that all tagged proteins are concentrated in pg € 2, at initial time t,
that is:

C(p, to) = Cod(p — po) (2.2)

where () is the initial concentration of molecules and ¢ is the Kronecker symbol.

The closed-form solution to this partial derivative equation is [21]:
Co lp = pol|?
Cpt) = ———x .
(1) At —to) D P (4(t —to)D
We obtain:

Co %+ y?

Clz,y,t) = (i —to)D P <_4(t—to)D

),V t > tg.

We consider that the PSF h is approximated by a Gaussian function with isotropic

bandwidth opgp, that is:
) — g (LI
2mo? 202, )"

PSF PSF
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This writes:

1 2 2
h(x>y): €xXp <_x +y )

2
2UPSF

One can then compute the fluorescent intensity using (2.1), that yields :

Xexp|— .
27 (2(t — t9)D + 024;) A(t — to) D + 202

PSF

f(z,y,t) = B x

(2.3)

Finally, the expression of the fluorescent intensity at spatial position p given an initial

spot position located at pg is given by :

f(p,t) =

Ay ||p —JUOH2
— . 24
2(t —to)D + 024 X exp < A4(t — to)D + 202, (2:4)

B
27

2.3.1.2 Autocorrelation of the fluorescent intensity in TIRF images

In the TICS method, one calculates the temporal autocorrelation of the fluorescent
intensity, which is further used to compute the concentration of the population and the
characteristic time of diffusion. In this method, one assumes that the process associated
with the image sequence is stationary. Or, considering (2.2), this assumption does not
hold in our modeling framework, and we can not use the classical TICS formula. Here,
we propose two new models for the temporal autocorrelation of the fluorescent intensity:
Gy for images with uniform background, and G5 for non-uniform background. We use
the model for the fluorescent intensity described above in conjunction with the TICS ap-
proach to establish our models. Our approach has two main advantages : it uses classical
TIRF sequences so there is no need for new data acquisition, and the models allow for

both local and global estimation of the apparent diffusion.
Model G, for uniform background

Here, the following expectation formula for the autocorrelation function is used:

(FE+)/0) 25)

Gt =y
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where (-) and ( - ); denotes the spatial and spatio-temporal averages respectively, and 7

is the temporal lag.

Using the expression of the fluorescent intensity adapted to TIRF sequences, given by

(2.4), with ty = 0 (without loss of generality), let us compute Gy(t,7):

6 (r) = S DI0)

4 v (= ml3 o= pl?
(2Dt + 02,,)(2D(t + 7) + 02.p) ADt + 202, AD(t+ 1)+ 202,
2
Ao exp [ — I — poll3
2Dt + 02, 4Dt + 202,
Let 0%(t) = 2Dt + o2,,.. Then, we get

AS exp _||p—p0||§ . 1P — poll3

a?(t)o?(t + 1) 202(t) 202(t + 1)

< A (_up—pou%) >
a2t P\ T 20201

PN S . )

o*(t)o*(t+7) A < exp (‘W) >2

Gl (t, 7') =

)
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L[ o (_up—poua (1) +oﬂ<t+7>>> 0

a2(t) 19| 202(t)o2(t + 7)

o2t + 1) [|§12| /peﬂexp (_W) dp]2

o e <_up—pou2<a (t)+o <t+r>>> 0"

202(t)o2(t + 1)
o2(t 4 7) VpEQexp (—W) dpr

Moreover, the integral of the exponential on the domain €2 is approximately equal to

G1 (t, 7') =

= 19|

the integral on R? when p is far from pg, which results in a Gauss integral. It follows that

N a(t)  2mo?(t)o(t+7) 1
Gi(t,7) ~ |Q] 2t +71) o2(t) + a2t +71) [2r02(t)]
. ©
~ 27'(' (O'Q(t) —|—O’2(t—|—7'))7 (26)
Gl(t 7') ~ ’Q’
’ 4 (DT + 2Dt + OI%SF)

Thus, for the process we are modeling, the autocorrelation function depends on both the
time lag 7 and time t.

In model G; (2.6), there are two parameters to estimate: the diffusion coefficient D and
the variance o2, of the PSF. The parameter |Q2| depends on the data and its default value

will be discussed in Section 2.3.2.
Model G5 for non-uniform background

In the case of non-uniform background, the following expectation formula for the

autocorrelation function is used:

(0f(t)of(t+T))

Galtom) =

(2.7)

where § f(t) = f(t) — f, is the fluorescent intensity fluctuation around the temporal aver-
age value, and f, = = [ f(6)do.
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Let us now calculate the explicit formula for Go(7) :

(6f(t)of(t+7))

Calt) =y

Let us now calculate each term of the right hand side of the previous equation. The

first term was already explicitly calculated for the first model, so :

GOLET) Q
()2 = Giltr) ~ 4 (D1 4 2Dt + 02 (2.8)

PSF)

For the second term :

R Ag Hp—po”2 1 r
(fle+)fi) = < 2D(t+ 1) 4 024, P <_4D(t +7)+ ;a§SF> T—t /t J(6)d8 >

N Ay 1 Hp—poﬂg T
7)1 = 2D(t+ 1) + o2, ) (T —1) |9 /pen P <_4D(t Y+ 20§SF> /t 1(0)dé dp

. Ao r P — poll3 Ao P — poll3
T 2(t+1)(T - 1) /peg/t eXp( 2071 7)) 2(0) “P\ T 2020 ) 9P

where 02(t) = 2Dt + o2

“sp- Dy inverting the two integrals, and using the Gauss integral,

as done previously for the first model, as well as a change of variable at the end (x =
D0+t + o) + o2, dr = DdO) one obtains :

L A2 D(t+T+71)+ 02
<f(t+T)ft>_D|Q|(T—t) YTDRt )+ o2,

(2.9)
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In the same way, one obtains :

- AZ Dt+T 2
<f(t)ft>=D‘Q7|T(T°_t) n (21J)rt+);:z;m‘ (2.10)

For the third term, we have

1 T T
(fe fr) = < 7/ f(91)d91/ f(62)do- >
(T —t)2 . .
£(61)£(62)d01d02dp
|Q|(T ~/p€§2/t /
T /T 2 2
— A —
N o (- ol IS GO B WP
|Q|(T—t) vea Jt ‘ 2D91+UPSF 4D6 +20PSF 2D92+0‘PSF 4D92+20’PSF

llp — poll3 1 llp — poll3
- 461 d6>dp,
( 202(61) ) o2(62) TP\ 202(6,) 1evep

where 02(6) = 2D0 + o2.. As previously, by inverting the integrals, and using the Gauss

|Q|(Tft

peEQ Jt

integral, as well as a triple change of variable (first x = D(6; + 65) + 02, do = Ddb;,
then y = D(t +0,) + 02, dy = Ddf, and then z = y+ D(T —t), dz = dy) one obtains :

-z A3 9 2DT + o2, 9 2Dt + o2,
= ————|(2DT | 2Dt | .
ede) = Doy — o2 [( + 0k ) In (D(T+t) o2, +(@Dt+ ofe ) n | T =
(2.11)
The last term is obtained as follows:
A I —pol Y\
2 _ 0 P —Doll2
e < 2DE+ 0 ( 4Dt+2a%sp> >
_ 2
Ay 1P — poll3
= - [ L i L T d
/peg 9Dt + o2, ¥ ( 4Dt + 202, ) P
- 2
_ / ORI U i [ A
peq 02(1) 20%(t)
Again, the integral of the exponential is the Gauss integral, which yields :
42 A2
() =g (2.12)
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Finally, the autocorrelation model for non-uniform background is defined as:

Comy = LOICED)  (fC+ D) (FOF) | ()
’ ()i ()i (e (i
mA2 1 D(t+T+7)+03qp TA2 1 D(t+T)+02ep
DIT—t) M D@t toden DIQ[(T—1) 2Dt+o2g,
- GI(T) B 471'214(2) B 47r2Ag
122 12[2
mA2 2DT+o0?2 2Dt+03
- [(QDT +02,)In (M) + (2Dt + 02,)In (Mmfasl;ﬂ
+ 42 A2 :
1[2

After all simplifications, one gets:

Gg(tﬂ') = Gl(t,T) + ‘Q|

1 Dt + 2Dt + oigp
In
a7 D(T —t) D7+ D(T +t) + o3gp

2DT + odsy | ( 2DT + o2, ) D(T +1) +odse | ( 2Dt + 02, > 1

4t D2(T —t)? D(T +t) + 034 4T D2(T —t)? D(T +t) + o3gp
(2.13)
Let us define :
1 Dt + 2Dt + o2
Ki(t,7) = 1 i 2.14
{87 = DT =1 n<D7+D(T+t)+a§SF>’ (2.14)
and
o) — 2DT + o2, 2DT + o2, D(T +1t) + o2 | 2Dt + 02,
2(7) = ArD*(T —t)? D(T +t) + o2 AnD?(T —t)? " D(T +t) + o2
PSF PSF
(2.15)
Finally, we get
G2<t,T) :Gl(t,T)—F ’Q’(Kl(t,T)—i-KQ(t)) . (216)

As in the case of uniform background, the autocorrelation function depends on both the
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time lag 7 and time ¢.
In model Gy (2.13), the parameters to be estimated are: the diffusion coefficient D and
of the PSF. The parameters |Q2| and 7" depend on the data and their

default values will be discussed in Section 2.3.2.

the variance o2,

2.3.1.3 Local diffusion estimation

In our approach, a simple to implement version of the ABC method was used. Here,
a simulation of the model is directly and quickly computed with formulas (2.6) or (2.13).
For a typical diffusion event, the algorithm requires 100 000 evaluations of the model and
takes about 1 minute for analyzing a single spot. The different steps of the method are

the following ones :

Step 0 : Compute the autocorrelation of the fluorescent intensity in the ROI using the
discrete form of (2.5) for model Gy, or (2.7) for model G, that is :

21(t, 7)|e=0 = WXHZZf” E+ Dfislt)

21]1 ft

ZZ (fig(t+7) = (fis@®) — f)

(1, 7)li=0 =
i=17=1 ft

W><H

respectively, where (i,7) denotes a pixel in 2, W and H are the width and height of
the ROL (|Q] = W x H), [ = 7, 7l POl 121 1 Yoo fii(k), and f; = ﬁZfL Zf:l (),
te{0,.., T —1}.
The following default values were used :

o ROI size : |2 = 20 x 20 pixels.

o Image length T : 50 images (or more) for both G and G5. Ideally, 300 images for

Go.
Step 1 : Generate § = (D,o02,,) from prior, where the parameters D and o2, are
generated independently.
o Prior distribution for both D and o2 ,: Uniform D ~ U[0.1;2] and o2, ~ U[0.1;2].
o Number of samples 6 = (D, 02.) is 100000 samples.
Step 2 : Compute simulations and compare with the autocorrelation computed at

Step 0.
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o Compute simulations G; and G5 for each of the 100000 samples.
« Compute the error (in terms of L2 distance) between G and G5 and the autocor-

relation from the observed sequence.

Step 3 : Accept "the best" (in terms of L2 error) simulations and compute the estimates

2
PSF*

for parameters D and o
o Accept the best 1% of the simulations.
o Keep the corresponding parameters of the best 1% simulations, and compute the

estimates Oyap and Oypvisk.

In practice, the estimates are computed as follows :

1
Nsamples

ples corresponding to the best 1% of the simulations;

o Oyiise = Zé where Nggmpies = 100000 and 0 represents the accepted sam-

o Oyiap = argming errorL2(Autocorr s, G 2).

2.3.2 Model Validation

The final objective of this part was the implementation and first validation of a proof
of concept of the proposed method in Matlab. The results shown in the remainder of this
Chapter were obtained in this context. A complete statistical analysis on large samples
was out of the scope of this thesis, but would be required for the full validation of the
method.

2.3.2.1 Analysis of the expected autocorrelation function

The aim of this section is to analyze the influence of the parameters on the expected
autocorrelation function, for the two models derived in the previous section : Model G is
suitable for isolated, single diffusing spots, without background, while Model G, is suit-
able for diffusing spots with background and possible other diffusion spots in the region

of interest.
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We performed experiments with the following default parameters:

D = 0.5 pizels®/ frame
02y = 1 pizels?
psr = P (2.17)
Q2] = 400 pizels?
T =50 frames

where D is the diffusion coefficient, o2, is the standard deviation for the PSF, |Q]| is the
image size, and T is the length of the sequence.

2

The parameters of interest are D and o2,

for both models. Other parameters of