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Spécification des Systèmes Distribués Dynamiques Probabilistes Sécurisés
(Specification of Dynamic Probabilistic Secure Distributed Systems)

par Pierre Civit

Résumé (en français)

Cette thèse propose un modèle hiérarchique naturel pour les systèmes distribués dynamiques proba-
bilistes. Le modèle étend de manière intuitive les systèmes de transition d’états étiquetés capturant
aussi simplement que possible l’intuition d’un objet se déplaçant d’un état à un autre. Le modèle
comprend 3 ingrédients essentiels : (1) une opération de composition parallèle, notée ||, permettant
de représenter un nouvel objet A||B issu de l’interaction entre deux objets A et B, (2) une relation
de préordre ≤, où A ≤ B signifie que l’objet A implémente l’objet B au sens d’une sémantique obser-
vationnelle, (3) la propriété de composabilité pour ≤, c’est-à-dire A ≤ B =⇒ C||A ≤ C||B (≤ est une
précongruence pour ||), (4) une structure hiérarchique, c’est-à-dire qu’un système X, composé d’objets
interagissant les uns avec les autres et pouvant rejoindre et quitter le système dynamiquement, est
lui aussi un objet du modèle. De plus, la thèse discute des conditions nécessaires et suffisantes pour
obtenir (5) La monotonicité (avec ≤) de la création/destruction dynamique d’objets, c’est-à-dire que
si (i) A ≤ B et (ii) XA et XB ne diffèrent que par le fait que XA crée et détruit dynamiquement l’objet
A au lieu de créer et détruire dynamiquement l’objet B comme le fait XB, alors (iii) XA ≤ XB. Un tel
résultat permet une méthodologie modulaire de conception et de raffinement basée uniquement sur la
notion de comportement observable de l’extérieur. Le modèle est décliné en plusieurs variantes : asyn-
chrone, temporelle, bornée. Ces différentes variantes permettent de modéliser des systèmes distribués
complexes faisant des hypothèses de synchronie ou d’adversaire borné, typiquement une "blockchain".

Mots-clés

Automates, Algorithmique distribuée, Verification Formelle, Systèmes Dynamiques

Abstract (in english)

This thesis proposes a natural hierarchical model for dynamic probabilistic distributed systems. The
model extends in an intuitive way the labeled transition systems that best capture the intuition of
an object moving from one state to another. The model consists of 3 essential ingredients : (1) a
parallel composition operation, noted ||, allowing to represent a new object A||B resulting from the
interaction between two objects A and B, (2) a pre-order relation ≤, where A ≤ B means that the
object A implements the object B in the sense of an observational semantics, (3) the composability
property for ≤, that is A ≤ B =⇒ C||A ≤ C||B (≤ is a precongruence for ||), (4) a hierarchical
structure, i.e. a system X, composed of objects interacting with each other and able to join and leave
the system dynamically, is also an object of the model. Furthermore, the thesis discusses the necessary
and sufficient conditions to obtain (5) the monotonicity (with ≤) of dynamic creation/destruction of
objects, i.e., if (i) A ≤ B and (ii) XA and XB differ only by the fact that XA dynamically creates and
destroys the object A instead of dynamically creating and destroying the object B as XB does, then
(iii) XA ≤ XB. Such a result allows a modular design and a refinement methodology based only on
the notion of externally observable behavior. The model is declined in several variants : asynchronous,
timed, and bounded. These different variants allow us to model complex distributed systems making
assumptions of synchrony or bounded adversary, typically a "blockchain".
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Symbols

LTS Labeled Transition System
Signature A triple (in, out, int) of sets of input, output, and internal actions
IOA Input Output Automata, a special kind of LTS equiped with a signature
Probabilistic transition A triple (s, a, η) where s is a state, a is an action and η is a probability

distribution over states, the final state being chosen according to η
PIOA Probabilistic IOA, a generalization of IOA with probabilistic transitions
Dynamic signature A mapping from states to signatures
SIOA Signature IOA, a generalization of IOA with a dynamic signature
PSIOA Probabilistic Signature IOA, an IOA that has both a dynamic signature and

probabilistic transitions
Configuration A finite set of PSIOA together with a local state for each PSIOA
PCA Probabilistic Configuration Automata, a PSIOA equipped with a homomor-

phism from states to configurations which respects PSIOA creation and de-
struction, respects signatures, and respects probability distributions

A PSIOA with id A
QA States of A
(QA,FQA) State space of A, FQA being a sigma-field over QA
Prob(QA,FQA) Set of probabilistic measures over (QA,FQA)
q̄A Start state of A
sig(A) Signature of A, maps each state to a signature
ŝig(A) Signature of A, maps each state to the union of actions of the signature sig(A)
in(A) Input actions of A, maps each state to a set of input actions
out(A) Output actions of A, maps each state to a set of output actions
int(A) Internal actions of A, maps each state to a set of internal actions
ext(A) External actions of A, maps each state q ∈ QA to the pair

(in(A)(q), out(A))(q))
êxt(A) External actions of A, maps each state q ∈ QA to in(A)(q) ∪ out(A))(q)
loc(A) Local actions of A, maps each state q ∈ QA to the pair (out(A))(q), int(A))
l̂oc(A) Local actions of A, maps each state q ∈ QA to out(A))(q) ∪ int(A)
acts(A) Universal set of actions of A, i.e.

⋃
q∈QA

ŝig(A)

DA Probabilistic transitions of A (a subset of QA × acts(A)× Prob(QA,FQA))
Steps(A) Steps of A, i.e. triplet (q, a, q′) ∈ QA × acts(A) × QA s.t. ∃(q, a, η) ∈ DA,

η(q′) > 0
Frags(A) Execution fragments of A, i.e. the set of alternating sequences q0a1q1a2q2...

of states and actions, starting with a state and not finishing with an action,
such that each (qi−1, ai, qi) ∈ Steps(A)

Frags∗(A) Finite execution fragments of A
Fragsω(A) Infinite execution fragments of A
Execs(A) Executions of A, i.e. execution fragments starting with start state
Execs∗(A) Finite executions of A
Execsω(A) Infinite executions of A
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traceA(α) The trace of the execution α of automaton A, i.e. the projection of α over its
external actions only

Traces(A) Traces of A
Traces∗(A) Finite traces of A
Tracesω(A) Infinite traces of A
Reachable(A) Reachable states of A
Cα The set of all executions with α as prefix (called the cone of α)
fstate(α) First state of execution α
lstate(α) Last state of finite execution α
states(α) Set of states that occur in the execution α
actions(α) Set of actions that occur in the execution α
� Projection for states, executions
|| Parallel composition
× Cartesian product, also overloaded as the composition operator for signatures
⊗ Product of measures, also overloaded as product of σ-algebra
Qconf Set of configurations
auts(C) The PSIOA that occur in configuration C
map(C) The mapping from each automata of auts(C) to its current state in C
sig(C) Signature of configuration C, i.e., the product of the current signatures of the

PSIOA in C
in(C) Input actions of configuration C, i.e., the input actions of sig(C)
out(C) Output actions of configuration C, i.e., the output actions of sig(C)
int(C) Internal actions of configuration C, i.e., the internal actions of sig(C)
config(X) Maps each state q of PCA X to a configuration
created(X)(q)(a) The PSIOA created by the execution of action a in state q of PCA X
hidden-actions(X) Maps each state q of PCA X to the hidden actions of PCA X at state q

(hidden-actions(X) ⊆ out(config(X)(q)))
η1

c↔ η2 c is a measure-preserving bijection between distributions η1 and η2
Φ[B/A] The set of PSIOA that results from replacing A by B in the set of PSIOA Φ
C �AB C ′ C and C ′ are the same configurations modulo A in C being replaced by B in

C ′

XA OA,B
XB XA, XB corresponding w.r.t. A, B i.e., XA and XB differ only by the fact that

XA dynamically creates and destroys the automaton A instead of dynamically
creating and destroying the automaton B as XB does

X \ {A} PCA X deprived of A, i.e. , A is removed from every configuration of X
qRconfq

′ The states q and q′ are mapped to the same configuration (q, q′ can be states
of different PCA’s that are implicit)

qR
\{A}
conf q

′ The states q and q′ are mapped to the same configuration if we ignore A
qRstrictq

′ The states q and q′ are mapped to the same components (configuration, hidden
actions, created automata for each action) of their respective PCA’s (may be
the same or different)

qR
\{A}
strictq

′ The states q and q′ are mapped to the same components of their PCA’s if we
ignore A

pot-out(X)(A)(q) The (potential) output actions ofA in config(X)(q): the actual output actions
if A is in the configuration, and the empty set otherwise

Ãsw Simpleton wrapper of A: A PCA that encapsulates A without changing any
behavior

σ Scheduler: entity that resolves pure non-determinism
εσ Measure of probability on Execs(A) generated by the scheduler σ
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env(A) Set of environments of A
f(.,.) Insight function: a function parametrized by a pair (E ,A) where A is an

automaton (PCA or PSIOA) and E ∈ env(A), that captures the ability of the
environment to infer information about the behavior of A. The domain of
f(E,A) is Execs(E||A).

f -dist(E,A)(σ) Measure of probability on f(Execs(E||A)) generated by scheduler σ for E ∈
env(A)

σ B≤ε(E,A,B),f σ
′ σ and σ′ are balanced schedulers iff ∀ζ ∈ range(f(E,A)) ∪ range(f(E,B)),

|f -dist(E,A)(σ)(ζ)− f -dist(E,B)(σ′)(ζ)| ≤ ε
≤S,fε Implementation relation w.r.t. scheduler schema S, insight-function f , and

approximation ε
A ≤S,fε B ∀E ∈ env(A) ∩ env(B), ∀σ ∈ S(E||A), ∃σ′ ∈ S(E||B), σB≤ε(E,A,B),fσ

′

proj(.,.) proj(.,.) is an insight function such that for each automaton K, ∀E ∈ env(K),
∀α ∈ Execs(E||K), proj(E,K)(α) = α � E .That is, proj(E,K) produces the pro-
jection of an execution of K||E onto the environment E

p Abbreviation for proj(.,.)
α ≡crA α′ Executions α and α′ of PCA X differ only on states and internal actions of

the PSIOA A, where A may occur in configurations of X.
So The scheduler schema of creation-oblivious schedulers
≤So,p0 Exact implementation relation w.r.t. scheduler schema So and insight-function

p.
A ≤So,p0 B ∀E ∈ env(A) ∩ env(B), ∀σ ∈ So(E||A), ∃σ′ ∈ So(E||B), σB≤0

(E,A,B),pσ
′
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4.3.3. Executions-matching from X to (X \ {A})||Ãsw . . . . . . . . . . . . . . . . . 125
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Chapter 1 : Introduction

1.1. Complex Systems

For reasons of performance and resilience, to meet the needs of different geographical locations, to allow
the governance of multiple users without a trusted entity, etc., modern systems are often distributed,
i.e. they consist of a number of physically distributed components that interact with each other. These
applications are dynamic in several respects. They involve a dynamic set of users, the number of which
is not known in advance, who may join and leave the system during its life cycle. These users will
exchange messages in a network whose topology will change over time, usually due to mobile failures.
During the execution, a part of the protocol can be downloaded and incorporated into computation on
the fly. In the meantime, a distributed algorithm uses randomization and sophisticated cryptography
(whose foundations lie down to a probabilistic computational model) to circumvent impossibility
results and/or enable scalability for enormous groups of processes. The infrastructures executing these
protocols follow instructions that sometimes cannot hold in less than 1 million lines of code, making
their implementation particularly error-prone, while simple tests cannot cover the immense number of
possibilities. Even in some simple toy examples, the (hyper)properties resulting from the interaction
of a few components can be counter-intuitive. Therefore, it is desirable to have a mathematical model
that is:

1. expressive enough to handle both dynamicity, randomization, and other ingredients that make
distributed systems successful, such as (i) different forms of synchrony (ii) the notion of security
against a polynomially bounded adversary (iii) non-sequential scheduling.

2. simple enough to be understood by a programmer with a background in distributed computing
3. based on already known and proven tools

Finally, to avoid overwhelming monolithic reasoning, a model must 4. allow for modular design, in a
sense elaborated in the next subsections.

1.1.1. Modeling

In the introduction of his famous book "Communicating Sequential Processes" [Hoa85], Tony Hoare
invites us to "think about objects in the world around us, which act and interact with us and with each
other in accordance with some characteristic pattern of behaviour." Of course, there are infinite ways
to formalize these objects. However, if we fix the expressiveness and simplicity of the frameworks,
some of them are more practical than others.

What are the desirable properties of a formalism?

– (composition) Each pair (A,B) of entities of the model that interact with each other can be
composed to obtain a new entity, noted A||B. Of course, this composition has to capture the
interaction in an intuitive way. It is convenient if the composition operator is both associative
and commutative and returns an entity of the same nature as A and B.

– (implementation) We want to be able to express in the model that a concrete, potentially very
sophisticated, object A is meeting the specification of an, usually simple, abstract object B, noted
A ≤ B. This relationship is usually called implementation (a.k.a. realization or emulation) and
is supposed to be a preorder (transitive and reflexive).

– (substitutability) Assume two objects A1 and A2 respectively implement objects B1 and B2, i.e.
A1 ≤ B1 and A2 ≤ B2. We want to be able to deduce that their interaction implements the
interaction of B1 and B2, i.e. A1||A2 ≤ B1||B2. Such a property allows modular reasoning, where
(1) a sophisticated specification B can be decomposed into several sub-specifications B1, ...,Bn
(2) we can find an implementation Ai of each sub-specification Bi and finally (3) all the concrete
implementations can be composed all together to implement B.

2



1.1 Complex Systems

One of the most well-known implementation relationships for non-probabilistic distributed systems
is trace inclusion. The idea is to characterize the specification of a system by its set of external
behaviors. To illustrate this concept, Lamport describes the famous example of the biscuit machine
[Lam]. The specification of a biscuit machine describes how the machine should behave, e.g. when a
coin is inserted and a button is pressed, a cookie is delivered. Such a description does not specify how
the machine checks the value of the coin. A natural tool of description is the notion of trace, where
a trace of an execution is the projection onto its external actions. Typically, if a concrete machine
executes a very sophisticated algorithm to check the validity of the coin, the details of this run are
hidden by the trace operator that just says that (i) a coin has been inserted, (ii) a cookie has been
delivered and (iii) the change has been given. We do not know if the machine has measured the
mass or the dimensions of the coin. In addition, since this specification allows (ii) the cookie to be
delivered and (iii) the change to be given in any order, a correct implementation could always (iii)
deliver the cookie first, then (ii) give change. Hence, a natural definition of implementation is trace
inclusion. A concrete object A1 is said to refine another abstract object A2, noted A1 ≤T A2, if
Traces(A1) ⊆ Traces(A2), with Traces(A) representing the set of traces of an automaton.

Let us note that the non-determinism about the order of different actions like (ii) delivering the cookie
and (iii) giving the change is at the core of distributed computing. This non-determinism is sometimes
called pure non-determinism (to underline the difference with the probabilistic non-determinism, a.k.a.
randomization). Pure non-determinism captures our ignorance about the relative speeds of different
entities to perform their respective computation. Most distributed systems are designed following
the guideline that no matter how the pure non-determinism is resolved, the system does what it is
supposed to do. Thus, the refinement relationship ≤T can be interpreted as: "for any way of resolving
the pure non-determinism in the real world, there exists a way of resolving the pure non-determinism
in the ideal world, such that the external behaviors are the same."

A safety property that says nothing bad ever happens (e.g. the machine never gives more change
than it should) can be seen as a set of traces (a.k.a. trace property). The refinement relationship
≤T ensures the preservation of trace properties with composition: A1 ≤T A2 =⇒ A1||B ≤T A2||B.
This is very good news: if the machine is composed of different sub-modules, we can delegate the
concrete implementation of these sub-modules to different teams and finally merge them to obtain an
implementation of the entire specification, without questioning the validity of this composition.

Among the various approaches to model systems, Lamport acknowledges two major branches which,
for lack of better names, he calls the Hatfields (Hs) and the McCoys (Ms) 1 [Lam].

(Hs): CSP [Hoa85], process algebra such as CCS [Mil80], ...

(Ms): Temporal logic [Lam94], Unity [CM88], I/O automata [LT87], ...

Roughly speaking, the Hatfields follow the tradition of structured operational semantics, which first
formally describe how the individual steps of a computation occur, before proving the desired prop-
erties from derivations of logical statements. On their side, the McCoys follow the tradition of de-
notational semantics, formalizing the meanings of distributed systems by constructing mathematical
objects (called denotations) that describe the meanings of what is a programm or what a program does.
Lamport confesses that he "does not really know what the fundamental difference between the Hat-
fields and McCoys is" and thinks that "the two approaches are good for abstracting different aspects of
a real system". In addition, some strong links have already been exhibited (e.g. [Vaa91, Seg93, DS95]).

Extending previous automata formalisms [Tut87, Seg95b, KLSV06, Mit07, AL16, CCK+07], this thesis
is clearly a descendant of McCoy’s family, where a specification consists of an abstract program written

1. The Hatfield–McCoy feud involved two rural American families in the 19th century. The quarrel has entered the
lexicon of American folklore as a metonymy for any rival party that argues bitterly.

3



Chapter 1 : Introduction

in some form of abstract programming language. "An obvious advantage of specifying a system as an
abstract program is that while few programmers are familiar with temporal logic, they are all familiar
with programs" [Lam93]. A priori, this approach does not have a precisely defined language, with
formal semantics, and proof rules, but some works filled the gap [Mül98, GL00, BGL02, LKLM05,
ALL+06, ALL+08].

1.1.2. Randomization

The resolution of pure non-determinism can be conceptually delegated to an abstract entity called the
scheduler. This scheduler gives so much trouble to computer scientists that it is often called a demon.
Randomization is an incredibly powerful way of mitigating the power of this demoniac entity: it
allows circumventing impossibility results [FLP85, BO83], helps to increase the scalability of a system
[GKM+19, CGMV18, CKS20], and is at the core of the foundational layer of simulation-based security
[PW00, Can01, Can20, KTR20].

However, ≤T does not preserve [GHW11] hyperproperties [CS08] (e.g. security properties), which are
sets of sets of traces, potentially associated with a probability. It might be a problem for the termi-
nation of algorithm or the privacy of data that relies on probabilistic protocols [GHW11]. A more
sophisticated implementation relationship has been introduced by Roberto Segala (undeniably a mem-
ber of the McCoys): trace distribution precongruence, noted ≤DC [Seg95a, LSV03]. A concrete object
A1 is said to strongly observationally refines another abstract objectA2, notedA1 ≤DC A2, if, for every
entity E that can interact with both A1 and A2, for every way of resolving pure non-determinism in the
first world by a certain scheduler, there exists a way of resolving pure non-determinism in the second
world by another scheduler, such that every event is observed with the same probability by E in the two
situations. This implementation relationship is composable, i.e. A1 ≤DC A2 =⇒ A1||B ≤DC A2||B,
and deals with hyperproperties.

Even if ≤DC is equivalent to a relationship called strong linearizability [AE19] which cannot be ensured
both asynchronously and deterministically for every object [AEW21], it makes sense to focus on ≤DC
as an implementation relationship since (1) randomized or partially synchronous implementation can
exist (e.g. via consensus [BO83, DNS88]), (2) restriction to subclasses of schedulers can be studied, (3)
approximated version of the implementation can be ensured [AEW22, ML07a], and (4) the reasoning
for different types of implementation relationships might be similar.

1.1.3. Dynamicity

Real-life systems are not always static, i.e. composed of a fixed set of entities with a fixed topology. It
seems to be fair to say they are sometimes dynamic, i.e. their components (including communication
links) may be created or destroyed during the system’s execution. For example, the cells of a living
being are created and destroyed, new companies are initiated while others go bankrupt in the same
economy, computers of a network crash and have to be replaced, etc.

Some frameworks have been proposed to model, specify, and verify dynamic systems. They mostly
have the form of discrete state machines [AL16, Kap09, Zim03, FHN+11, KPH15, Kur15] sometimes
enriched with continuous steps capturing the passage of time, during which the variables can evolve
(e.g. according to some algebraic differential equations) [KSPL06, Pla10, Pla11, Pla12, CSS10].

These models can be used to handle a high variety of use cases such as self-organization of dynamic
systems [ADGR05, ADPBR10], file systems [SADADJ05], glue code [DGHK05], air-traffic control
[KSPL06], distributed car control verification [Pla10], flight collision avoidance maneuver [Pla11],
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1.1 Complex Systems

peer-to-peer networks [DGV06], reconfigurable systems [YSSY15], actor-based programming [KPH15],
etc.

In 2008, the famous Bitcoin protocol [Nak08] has made the study of dynamic systems fashionable
again. Indeed, its anonymous author known under the pseudonym "Nakamoto", popularized a "simple"
technique to handle Sybil attacks in an anonymous network, where a single malicious machine would
like to masquerade as many [AJ05]. This technique, called Proof-of-Work, depends on the assumption
that correct users possess a certain fraction of the total computational power of the system. This idea
has been modified into a multitude of different variants, generically called proof-of-X, whose resiliency
depends on the assumption that correct users possess a certain fraction of a physical quantity X that
cannot be duplicated for free. With such a mechanism, it is possible to implement anonymous and
decentralized applications without fearing that a malicious minority pretends to represent a majority
and behaves to tackle the desired properties of the system. The most well-known example is certainly
the double-spending attack, where an agent uses the same currency for two different transactions. A
huge literature followed. Most of them address the dynamicity of the membership [SKM17, SK17,
GKK+20, KT20, LTWW22, DZ22], following a long tradition of churn-based protocol analysis [DW93,
MRT+05, BBKR09, BBR11, BN11, KLW11, BBS11, BKLW12, IRS+13, KLW13, BPPb+16, KW19,
AKSW20, AKSW22], while a few also consider the dynamicity of the network [BNS22] or the proof-
of-X mechanism [GKO+20, Ter22, SW21]. In this paradigm, some new sophisticated security tasks
emerged, such as dynamic secret sharing [BDLO15, ZZM+19, GKM+20].

The challenge of specifying dynamic systems has already been addressed by the Hatfields and the
McCoys. Robin Milner, one of the most famous Hatfields, proposed π-calculus, offering an abundance
of operators, a rich algebraic structure, and a well-developed fixed point theory.

On their side, the McCoys, represented by Paul Attie and Nancy Lynch, proposed a (non-probabilistic)
hierarchical model where a system X, composed of objects interacting with each other and able to join
and leave the system dynamically, is also an object of the model, which in turn can be used to build a
system of a higher layer [AL16]. They proved (1) the stability of parallel composition || in their model
(if X and Y are objects of the model, then X||Y is an object of the model) and (2) the composability
of ≤T for dynamic systems. Furthermore, they proved (under technical minor assumptions) another
theorem of substitutivity: (3) the dynamic creation/destruction of objects is monotonic with ≤T , i.e.
if (i) A ≤T B and (ii) XA and XB differ only by the fact that XA dynamically creates and destroys the
object A instead of dynamically creating and destroying the object B as XB does (we note XA O

A,B
XB),

then (iii) XA ≤T XB.

Dynamicity and Randomization Substitutivity results save computer scientists a lot of hassle. To
describe, analyze, and verify complex systems rigorously, one needs an appropriate mathematical
foundation, handling both dynamicity [AL16] and randomization [Seg95b]. To be practical, such
a model has to naturally extend well-established ones, allowing the use of proven tools. Such a
formalism should clarify if issues coming from dynamicity and issues coming from randomization are
(1) independent or (2) can lead to new types of problems. This thesis gives answers in the direction of
the first case (1), namely for composability of implementation relationship, and others in the direction
of the second case (2), namely for monotonicity of creation/destruction of dynamic objects. Also, the
model should allow us to express formally what we mean when we claim that a problem is solved by a
dynamic protocol (evolving in a highly dynamic setting, using sophisticated cryptographic tools and
randomized subroutines, under some synchrony assumptions) and should give us greater confidence
to answer to the question: "Are we not missing something?". Here again, we believe that this thesis
takes a step in this direction.
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1.2. Thesis Overview (Short Version)

The chapter 2 lays down mathematical preliminaries. The sections that it contains should not be
critical to read the thesis. Its first section 2.1, contains basic notions of set and function notations. Its
second section 2.2, describes trajectories that are only used in chapter 5. Its third section 2.3 recalls
the foundations of probability theories, but the thesis can be read without a deep understanding of
it, since it only reminds the foundations to guarantee that we can properly define probabilities and
integrations on the set of executions of a system. The section 2.4 recalls a few formal definitions
related to Turing Machines that are not used outside of subsections 6.1.2 and 6.1.1 that provide sound
computational foundations for simulation-based security. Here again, an intuitive understanding of
Turing Machines is enough to use the framework of Chapter 6. Its last section 2.5 gives the definition
of labeled transition systems (LTS) and explains why different variations of I/O automata formalism
can be seen as particular cases of LTS with very few additional constraints and how to trivially move
from I/O automata to LTS and vice versa.

Chapter 3 describes our new model for dynamic probabilistic systems, which, we believe, achieves a
good tradeoff between expressiveness and simplicity. Basically, an entity of the model is a kind of LTS
with (i) actions that lead to probabilistic distributions on states instead of directly to some states
and (ii) a signature that can evolve during its life. The dynamicity is captured by (ii) and the fact
that (iii) it is possible to build a new object X from a dynamic set of existing objects A1, ...,Ai, ...
interacting with each other and able to join and leave the system dynamically. In that case, we
can see the new object X as a member of a certain layer n for some integer n, while the objects
A1, ...,Ai, ... belong to the layer n− 1. To formalize the construction, each state q of X is associated
with a "configuration", which is a photography of the system at the state q, i.e. a pair (A,S) where A
contains the objects of the layer n−1 at state q and S represents the current states of the elements of A.
The elements of the layer 0 are called PSIOA for probabilistic signature input/output automata, while
the elements of a higher layer are called PCA for probabilistic configuration automata. A dynamic
probabilistic input/output automata (DPIOA) is either a PSIOA or a PCA. The closure of the model
under parallel compositions, (noted ||) is proved in section 3.5 in theorem 2 page 72. The inherent
non-determinism of the model is resolved by traditional schedulers, that (potentially randomly) trigger
the next action among the enabled ones. A classic notion of observational semantics is used, with a
family of implementation relationships of the form ≤S,fε . An implementation relationship captures the
idea that a concrete real system is meeting the specification of an idealized system. Here, an object A
implements another object B, noted A ≤S,fε B, if for every external distinguisher E that can interact
with both A and B , for every way (in S) of resolving the non-determinism in the A-world, there
exists a way (in S) of resolving the non-determinism in the B-world, s.t. every possible observation
via a function f is observed with the same probability in the two worlds, plus or minus ε. The well-
established theory of probabilistic automata allows us to easily obtain good substitutability properties
for the implementation relationships, which are shown to be a precongruence for parallel composition
in theorem 5 page 80. Finally, we state the monotonicity of dynamic creation/destruction with a
particular, but very natural, implementation relationship ≤So,p0 in theorem 7 page 87, i.e. if (1) XA
and XB differ only by the fact that XA dynamically create/destroy A instead of B as XB does, noted
XA OA,B

XB, and (2) A implements B (in the sense of A ≤So,p0 B), then (3) XA implements XB (in the

sense of XA ≤So,p0 XB).

The chapter 4 contains a detailed modular homomorphic-based proof of theorem 7 stated a second time
in theorem 23 page 150. First, we define in section 4.1 the notion of "executions-matching" to capture
the idea that two automata have the same "comportment" 2 along with some corresponding executions.

2. The term is deliberately chosen to be vague.
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1.2 Thesis Overview (Short Version)

Basically an executions-matching from a PSIOA A to a PSIOA B is a morphism connecting their
respective sets of executions, preserving some properties. When the executions-matching is a bijection,
we say A and B are semantically equivalent (they differ only syntactically). Second, we defined the
notion of a PCA XA deprived of a PSIOA A, noted (XA\{A}). Such an automaton corresponds to the
intuition of a similar automaton where A is systematically removed from the underlying configuration
of the original PCA. Thereafter we show that under technical minor assumptions XA \ {A} and Ãsw
are "partially-compatible" where Ãsw and A are semantically equivalent. In fact, Ãsw is the "simpleton
wrapper" of A, that is a PCA that only owns A in its attached underlying configuration. The notion of
partial compatibility corresponds to an extension of the usual compatibility condition on LTS, where
the compatibility revolves around reachable states only. Then we show that there is an (incomplete)
execution-matching from XA to (XA\{A})||Ãsw. The domain of this executions-matching is the set of
executions where A is not (re-)created before the very last action. After this, we always try to reduce
any reasoning on XA (resp. XB) on a reasoning on (XA \ {A})||Ãsw (resp. (XB \ {B})||B̃sw). We
show that under certain reasonable technical assumptions, encapsulated in the definition of XA OA,BXB,

(XA \ {A}) and (XB \ {B}) are semantically-equivalent. We note Y an arbitrary PCA semantically-
equivalent to (XA \ {A}) and (XB \ {B}) . Finally, a reasoning on E||XA (resp. E||XB) can be
reduced to a reasoning on E ′||Ãsw (resp. E ′||B̃sw) with E ′ = E||Y . Since Ãsw implements B̃sw, we have
already some results on E ′||Ãsw and E ′||B̃sw and so on E||XA and E||XB. However, this reduction,
represented in figure 1.9b, is valid only for the subset of executions without the creation of neither
A nor B before the very last action. Ideally, we would like to decompose an "aggregated" class of
perception, with an arbitrary number of creations/destructions of A (resp. B)), into "atomic" classes
of perception without creation/destruction of A (resp. B)) before the last action. Some technical
precautions have to be taken to be allowed to paste these fragments together to finally say that A
implements B impliesXA implementsXB. In fact, such a pasting is generally not possible for a perfect-
information online scheduler, that can trigger an action taking into account the whole history. This
observation motivated us to introduce the class So of schedulers to manipulate independent atomic
classes of perception. This allowed us to prove monotonicity of dynamic creation/destruction with
implementation relationship for this class of schedulers only: if (1) XA OA,BXB, and (2) A ≤So,p0 B, then

(3) XA ≤So,p0 XB. We also discuss a special case of task-schedulers [CCK+18], a very user-friendly class
of fully-offline schedulers, that allows straightforward oblivious fair scheduling. Surprisingly, a naive
adaptation of task-schedulers, to the dynamic paradigm is not a subset of So. We show how a more
sophisticated adaptation of task-based implementation relationship, called tenacious implementation,
noted ≤ten0 , can allow obtaining monotonicity of dynamic creation/destruction of automata. This
result is stated in theorem 24 page 174: if (1) XA OA,BXB, and (2) A ≤ten0 B, then (3) XA ≤ten0 XB.

The chapters 5 and 6 explain how to extend the model with the notion of time and simulation-based
security respectively, using pre-existing well-established variations of the I/O Automata framework.
The associated models are still stable by composition and the new implementation relationships are
still precongruences.

In the end, we obtain a framework that
1. is expressive enough to model non-sequential scheduling, dynamicity, randomness, time, syn-

chrony, limited computational resources, and simulation-based security,
2. enjoys a sound modular design based on a classic observational semantic,
3. naturally extends the well-established framework of labeled transition systems,
4. is as simple as possible for a fixed expressiveness.

7



Chapter 1 : Introduction

1.3. Thesis Overview (Long Version)

1.3.1. Chapter 2: Mathematical Preliminaries

The chapter 2 lays down mathematical preliminaries. The sections that it contains should not be
critical to read the thesis. Its first section 2.1, contains basic notions of set and function notations.
Its second section 2.2, describes trajectories that are only used in chapter 5. Its third section 2.3
recalls the foundations of probability theory, but the thesis can be read without a deep understanding
of it, since it only gives the foundations to guarantee that we can properly define probabilities and
integrations on the set of executions of a system. The section 2.4 recalls a few formal definitions
related to Turing Machines that are not used outside of subsections 6.1.2 and 6.1.1 that provide sound
computational foundations for simulation-based security. Here again, an intuitive understanding of
Turing Machines is enough to use the framework of Chapter 6. Its last section 2.5 gives the definition
of labeled transition systems (LTS) and explains why different variations of I/O automata formalism
can be seen as simple particular cases of LTS and how to trivially move from I/O automata to LTS
and vice versa.

1.3.2. Chapter 3: Dynamic Probabilistic Automata

Chapter 3 describes our new model for dynamic probabilistic systems, which, we believe, achieves a
good tradeoff between expressiveness and simplicity.

Probabilistic Signature Input/Output Automata (PSIOA) The section 3.1 defines the notion of
probabilistic signature Input/Output automata (PSIOA). A PSIOA A is an automaton (an LTS) that
can move from one state to another through actions. The set of states of A is then denoted QA,
while we note q̄A ∈ QA the unique start state of A. At each state q ∈ QA some actions can be
triggered in its signature sig(A)(q). Such an action leads to a new state with a certain probability.
The measure of probability triggered by an action a in a state q is denoted η(A,q,a). The model aims
to allow the composition of several automata (noted A1||...||An) to capture the idea of an interaction
between them. That is why a signature is composed of three categories of actions: the input actions,
the output actions, and the internal actions. In practice, the input action of an automaton potentially
aims to be the output action of another automaton and vice-versa. Hence an automaton can influence
another one through shared action. The entire system is formalized by the automaton issued from the
composition of the automata of the system.

Figure 1.1. – A representation of 2 automata U and V and their composition at 2 different states with
2 different signatures

8



1.3 Thesis Overview (Long Version)

After this, we can speak about an execution of an automaton, which is an alternating sequence of
states and actions. We can also speak about a trace of an automaton, which is the projection of an
execution on its external actions uniquely. This is a classic way to speak about what can we observe
from an outside point of view.

Figure 1.2. – A tree of possible executions for a PSIOA A.

A priori, nothing allows to know which action has to be triggered between e and f after execution
q0, d, q1,x

Scheduler We remarked in the example of figure 1.2, that inherent non-determinism has to be solved
to be able to define a measure of probability over the executions. This is the role of the scheduler,
which is a function σ that (consistently) maps a finite execution fragment to a discrete sub-probability
distribution over the set of discrete transitions of the concerned PSIOA A. Loosely speaking, the
scheduler σ decides (probabilistically) which transition to take after each finite execution fragment α.
Since this decision is a discrete sub-probability measure, it may be the case that σ chooses to halt
after α with non-zero probability.

A scheduler σ generates a measure of probability over the set of executions. Hence, when a scheduler
is made explicit, we can state the probability that an event append or that a property holds in
temporal logic. The set of schedulers for the automaton A is denoted schedulers(A). We denote by
εσ : Execs(A)→ [0, 1] the execution distribution generated by the scheduler σ.

Environment, external behavior, implementation Now it is possible to define the crucial concept of
implementation that captures the idea that an automaton A is meeting the specification of another
automaton B. To do so, we use an environment E which takes on the role of a "distinguisher" for A
and B. The set of environments of the automaton A is denoted env(A). The information used by an
environment to attempt a distinction between two automata A and B is captured by a function f(.,.)
that we call insight function. In the literature, we very often deal with (i) f(E,A) = trace(E,A), the
trace function or (ii) proj(E,A) : α ∈ Execs(E||A) 7→ α � E , the function that maps every execution to
its projection on the environment. The philosophy of the two approaches is the same.

For any insight function f(.,.), we denote by f -distE,A(σ) the image measure of εσ under f(E,A). In-
tuitively, the probability measure f -distE,A(σ) gives the probability of any observation that can be
made by the environment during its interaction with A, when the pure non-determinism has been
resolved by the scheduler σ. From here, this is classic to define the f -external behaviour of A, de-
noted ExtBehfA : E ∈ env(A) 7→ {f -distA,E(σ)|σ ∈ schedulers(E||A)}. Such an object capture all
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Chapter 1 : Introduction

the possible measures of probability on the possible external perceptions of the interaction of the con-
cerned automaton A and an arbitrary environment E . Finally we can say that A f -implements B if
∀E ∈ env(A)∩env(B), ExtBehfA(E) ⊆ ExtBehfB(E), i.e. for any "distinguisher" E for A and B, for any
way of resolving the non-determinism of A-world, there exists a way of resolving the non-determinism
of B-world, such that the probability to observe a situation is the same in the two worlds. This is a
way to formalize that there is no way to distinguish A from B. (see figure 1.3).

However, the correctness of an algorithm may be based on some specific assumptions about the
scheduling policy that is used. Thus, in general, we are interested only in a subset of schedulers(E||A).
A function S that maps any automaton to a subset of its schedulers is called a scheduler schema.
Among the most noteworthy examples are the fair schedulers, the off-line, a.k.a. oblivious schedulers,
defined in opposition with the online schedulers. So, we note ExtBehf,SA : E ∈ env(A) 7→ {f -
distA,E(σ)|σ ∈ S(E||A)} where S is a scheduler schema and we say that A f -implements B according
to a scheduler schema S, noted A ≤S,f0 B, if ∀E ∈ env(A) ∩ env(B), ExtBehf,SA (E) ⊆ ExtBehf,SB (E)
. In the remaining, we will have a great interest in two certain classes of oblivious schedulers, i.e. i)
the class So of schedulers that do not take into account the internal past lives of sub-automata before
their last destruction to trigger an action and ii) the task-scheduler: a user-friendly off-line scheduler
already introduced in [CCK+18]. It is possible to formally define an ε-approximated version of the
implementation relationship, noted ≤S,fε . The intuition is that an environment cannot distinguish the
real world from the ideal world with a probability greater than 1

2 + ε.

Figure 1.3. – An environment E , which is nothing more than a PSIOA compatible with both A and
B, tries to distinguish A from B.

Probabilistic Configuration Automata (PCA) The section 3.2 introduces the notion of probabilistic
configuration automata (PCA). (see figure 1.4). A PCA corresponds to a PSIOA, but each state is
mapped to an underlying configuration C = (A,S) which is a pair constituted by a set A of PSIOA
and the current states of each member of the set (with a mapping function S : A ∈ A 7→ qA ∈ QA).
The idea is that the composition of the attached set can change during the execution of a PCA, which
allows us to formalize the notion of dynamicity, that is the potential creation and potential destruction
of a PSIOA in a dynamic system. Some particular precautions have to be taken to make it consistent.

We state key results for a sound modular design.
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1.3 Thesis Overview (Long Version)

Figure 1.4. – PCA execution fragment

1. We show (theorem 2 page 72) the closure of the set of PCA under parallel composition
2. We show (theorem 5 page 80) that implementation relationship is a precongruence for parallel

composition, i.e. A ≤S,fε B =⇒ A||C ≤S,fε B||C. ≤S,fε (for any scheduler schema, any ε ∈ [0, 1],
any perception function f , which is an insight function with an additional property that captures
the idea that an environment E does not have a greater power of distinction than another
environment E||E ′ for some arbitrary E ′).

3. We show (theorem 7 page 87) that, under certain technical conditions, dynamic creation/destruction
is monotonic with respect to external behavior inclusion, i.e. if a system X dynamically cre-
ates/destroys automaton A instead of dynamically creating/destroying automaton B and the
external behaviors of A are respective subsets of the external behaviors of B, then the set of
external behaviors of the overall system is possibly reduced, but not increased.

The results enable a design and refinement methodology based solely on the notion of externally
visible behavior, that is independent of specific methods of establishing external behavior inclusion.
It permits the refinement of components and subsystems in isolation from the entire system.

A dynamic probabilistic input/output automata (DPIOA) is either a PSIOA or a PCA.

1.3.3. Chapter 4: Road to monotonicity

The chapter 4 contains a detailed modular homomorphic-based proof of theorem 7 of monotonicity
stated a second time in theorem 23 page 150. To do so, we develop different mathematical tools.

Executions-matching First, we define in section 4.1, the notion of executions-matching (see figure
1.5) to capture the idea that two automata have the same "comportment" 3 along with some corre-

3. The term is deliberately chosen to be vague.
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sponding executions. Basically an execution-matching from a PSIOA A to a PSIOA B is a morphism
fex : Execs′A → Execs(B) where Execs′A ⊆ Execs(A) . This morphism preserves some properties
along the pair of matched executions: signature, transition, ... in such a way that for every pair
(α, α′) ∈ Execs(A) × Execs(B) s.t. α′ = fex(α), εσ(α) = εσ′(α′) for every pair of scheduler (σ, σ′)
(so-called alter ego) that are "very similar" in the sense they take into account only the "structure" of
the argument to return a sub-probability distribution, i.e. α′ = fex(α) implies σ(α) = σ′(α′). When
the executions-matching is a bijection function from Execs(A) to Execs(B), we say A and B are
semantically-equivalent (they differ only syntactically).

A PCA XA deprived of a PSIOA A Second, we define in section 4.2 the notion of a PCA XA
deprived of a PSIOA A noted (XA \ {A}) . Such an automaton corresponds to the intuition of a
similar automaton where A is systematically removed from the configuration of the original PCA (see
figure 1.6a and 1.6b).

Reconstruction: (XA \ {A})||Ãsw Thereafter we show in section 4.3 that under technical minor
assumptions XA \ {A} and Ãsw are composable where Ãsw and A are semantically equivalent in the
sense loosely introduced in the section 1.3.3. In fact, Ãsw is the simpleton wrapper of A, which is a
PCA that only owns A in its attached configuration (see figure 1.7). Let us note that if A implements
B, then Ãsw implements B̃sw.

Then we show that there is an (incomplete) execution-matching from XA to (XA \ {A})||Ãsw (see
figure 1.8). The domain of this executions-matching is the set of executions where A is not (re-)created.

After this, we always try to reduce any reasoning on XA (resp. XB ) on a reasoning on (XA\{A})||Ãsw
(resp. (XB \ {B})||B̃sw).

Corresponding PCA We show in section 4.4 that, under certain reasonable technical assumptions
(captured in the definition of corresponding PCA w.r.t. A, B), (XA \ {A}) and (XB \ {B}) are
semantically-equivalent. We can note Y an arbitrary PCA semantically-equivalent to (XA \ {A}) and
(XB \ {B}) . Finally, a reasoning on E||XA (resp. E||XB ) can be reduced to a reasoning on E ′||Ãsw
(resp. E ′||B̃sw) with E ′ = E||Y . Since Ãsw implements B̃sw, we have already some results on E ′||Ãsw
and E ′||B̃sw and so on E||XA and E||XB. However, these results are a priori valid only for the subset
of executions without the creation of neither A nor B before the very last action). This reduction is
represented in figures 1.9a and 1.9b.

Cut-paste execution fragments creation at the endpoints The reduction, which is roughly described
in figures 1.9a and 1.9b, holds only for executions fragments that do not create the automata A and B
after their destruction (or at the very last action). Some technical precautions have to be taken to be
allowed to paste these fragments together to finally say that A implements B implies XA implements
XB. In fact, such a pasting is generally not possible for a perfect-information online scheduler, that can
trigger an action taking into account the whole history. This observation motivated us to introduce the
class So of schedulers that outputs (randomly) a transition without taking into account the triggered
internal actions and the visited states of a sub-automaton A preceding its last destruction.

We prove the monotonicity of dynamic creation/destruction with external behavior inclusion for the
schema of schedulers in So in Section 4.5. This result is encapsulated in Theorem 23 page 150: if (1)
XA OA,B

XB, and (2) A ≤So,p0 B, then (3) XA ≤So,p0 XB. Figure 1.10 represents the issue with schedulers

absent from So. We also discuss a special case of task-schedulers [CCK+18], a very user-friendly class
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of fully offline schedulers, that allows straightforward oblivious fair scheduling. Surprisingly, a naive
adaptation of task-schedulers, to the dynamic paradigm is not a subset of So. We show how a more
sophisticated adaptation of task-based implementation relationship, called tenacious implementation,
noted ≤ten0 , can allow obtaining monotonicity of dynamic creation/destruction of automata. This
result is stated in theorem 24 page 174: if (1) XA OA,BXB, and (2) A ≤ten0 B, then (3) XA ≤ten0 XB.

1.3.4. Chapter 5: Extension with time

Previous chapters 3 and 4 deal with "asynchronous" systems. Based on these results, it is impossible to
express something like "two events are separated by at most a time t", or apply synchrony assumptions
to prove the correctness of an algorithm. In chapter 5, we fill this gap by extending PSIOA (resp. PCA)
with a set of trajectories to obtain probabilistic timed signature input/output automata (PTSIOA-
(resp. probabilistic timed configuration automata (PTCA)), following the well-established theory of
timed I/O automata [KLSV06]. It would have been possible to use the "old-fashioned recipe for
real-time" [AL92] as in [Seg95b], where actions can additionally contain real numbers to capture
the time elapsing. But, we would miss the opportunity to use the theory of timed I/O automata
[KLSV03, KLSV06], which is ready to use. For example, it provides some results to deal with liveness
under fairness assumptions (through notions of feasibility, responsiveness, progressiveness,...) that
might be more intuitive to express than in [AL92] and benefits of enabled tools [ALL+06, ALL+08]
to support system development with, for example, specification simulators, code generators, model
checking, and theorem proving support for analyzing specification, etc. Also, it has been extended
with a (continuous) probabilistic setting [Mit07, ML07b], yielding Probabilistic Timed I/O automata
(PTIOA). Hence, the extension of the formalism to Probabilistic Timed Signature I/O automata
(PTSIOA) becomes an easy adaptation of PTIOA. We keep the continuous probabilistic setting of
Mitra and Lynch [ML07b], since (1) their results are easily adaptable to our dynamic framework, and
(2) it would be convenient to potentially specify hybrid systems where we would like to model the
evolution of some physical quantities (force, mass, velocity, ...) with real numbers, that might be
dependent of some algebraic differential equations, typically for collision avoidance systems [KSPL06,
Pla10, Pla11].

The big picture does not change significantly. Dynamic timed automata have to verify a new constraint
of trajectory preservation, that requires a strong link between the set of trajectories of the dynamic
automata and the ones of the associated configurations. Theorem 26 shows that the composition of
two pre-PTCA is a pre-PTCA itself, where a pre-PTCA is a PTCA that does not necessarily verify a
certain constraint of measurability, noted M. Theoretically, it is possible that the composition of two
PTCA with continuous state space does not verify M, which enables the definition of a probability
measure over its set of executions. However, such an example would be very artificial and should not
correspond to classic systems. The results of substitutability of the implementation relationship do
not change and do not require additional sophisticated treatment.

1.3.5. Chapter 6: Extension with simulation-based security

The chapter 6 explains how to extend the model of chapters 3 and 4 with the notion of simulation-
based security. Indeed, these two latter chapters deal with "unbounded" systems, in the sense that
nothing prevents, a priori, from performing steps that would require a huge amount of computa-
tional resources, which is assumed to be infeasible by classic cryptographic tools, assuming a (usually
polynomially) bounded adversary using a limited amount of computational resources. The achieved
security properties are then of the form, "for any adversary with a bounded computational power,
the probability of violating the security is negligible". Even if we would like to use a symbolic model,
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where operations are seen as functions in a space of symbolic (formal) expressions, its soundness will
rely on a randomized computational model. The most popular approach is simulation-based security.

In the simulation-based security, a.k.a. "real-ideal paradigm", the objective of the adversary is defined
only with respect to an "idealized" game, which can be seen as the specification of the task we want to
solve. Then, the security properties will be stated in the following form: for any adversary, there exists
a "simulator" (which is another "ideal" adversary), so that the "adversary in the real game" and the
"simulator in the ideal game" cannot be distinguished with more than a negligible probability by an
external observer (our environment which plays the role of a "distinguisher"). The idea is to say that
any attack that (i) can be made against the real game (ii) can also be made against the ideal game,
while we are satisfied with such an ideal world (ii). Such a paradigm has many interests. First, the
absence of an explicitly defined goal for the adversary prevents one from missing any subtle attacks
that might occur. Second, it allows for the correct definition of certain properties whose alternative
definitions might be cumbersome (e.g., the property of "not learning something more than something").

In this chapter 6, we extend DPIOA with simulation-based security as Canetti et al. [CCK+07] do with
static PIOA. The resulting model has some interests compared to classic frameworks for composable
simulation-based security, such as UC [CCK+18] or IITM [KTR20], where entities are modeled as
interactive Turing machines (ITMs).

simplicity and abstraction In practice, though entities in the system are defined by interactive Turing
machines (ITMs), a precise description would require too many low-level machine details. Hence the
entities are usually described using some type of pseudo-code, where it remains unknown how it
is supposed to be translated into a Turing Machine. According to Hofheinz and Shoup, "as long
as we restrict ourselves to models that are polynomial-time equivalent to Turing machines, none of
these details matter"[HS15]. In fact, detailed execution fragments of a system of ITMs seem to be
a non-necessary intricacy, that, combined with the sophistication of distributed algorithms, can lead
to an excessively hard-to-follow analysis. It seems that the overuse of the simulation-based security
paradigm, expressed with ITMs, has participated in the respective misunderstanding between the
distributed computing and secure multiparty computing (MPC) communities. Labeled Transition
Systems (LTS) such as I/O automata allow not specify the exact computation of the state transition.
Furthermore, their manipulation is closer to the human intuition and classic informal reasoning that
often appear in distributed computing.

non-sequential scheduling The second interest is that sequential scheduling models are commonly
used in many cryptography frameworks (UC, IITM, etc), where multiple processes must not be active
simultaneously at any given point in time, and the active process activates the next process by produc-
ing and sending some message. Besides being a counter-intuitive modeling, sequential scheduling can
artificially introduce some constraints in the ordering of events, and so artificially restrict the power
of the adversary in comparison to the real world. For example, Canetti et al. [CCLP07] proved that
a beacon protocol preserves security under sequential scheduling (ITM) but not under non-sequential
scheduling, while Yoneyama [Yon10] showed that the beacon protocol verifies indifferentiable secu-
rity (where public channels have to be considered as well as private channels) under the sequential
scheduling but not under the non-sequential scheduling.

time The ITMs-based frameworks are inherently asynchronous. It is possible to add a notion of time
and/or synchrony, assuming the access to an ideal functionality FCLOCK that allows different parties
to synchronize [KMTZ13], but the result is not trivial to handle and does not necessarily correspond
to the human intuition of synchrony. Our model might propose something simpler. We see 3 different
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ways of adding time. First, the "old-fashioned recipe for real-time" [AL92], as used in [Seg95b]. Second,
we can use trajectories with a discrete-time axis. In this case, one unit of time corresponds to the
greatest common divisor of the clock periods (the reverse of clock rates) of all the processors. Then,
we can easily limit the number of steps per unit of time of an object of the model, following a similar
approach to that of Canetti et al. [CCK+08]. Third, we can use trajectories with a continuous time
axis (T = R) but we need to take precautions not to artificially give extra computational power.
Hence, we would restrict the set of continuous variables, to a particular set with type included in N,
the so-called clocks set. Hence, the restriction of a trajectory onto non-clock variables is a constant
function, while the restriction of a trajectory to clock variables is a simple function, where the number
of different values that can be taken is again defined by the greatest common divisor of the clock
periods (the reverse of clock rates) of all the processors.

structure In order to analyze cryptographic protocols Canetti & al. [CCK+07] extends probabilistic
Input/Output automata, with the notion of "structures", which classifies communications into two
categories: those with a distinguisher environment and those with an adversary". Then, they are able
to define a new implementation relationship, called "secure emulation" in the same way as traditional
simulation-based security ([KDMR08, CCLP07, KTR20, RKC22] discuss the relationship between
different notions of simulation-based security). The composability of secure-emulation is then "easily"
derived from the composability of classic implementation relationship for PIOA. Even though the
formalism proposed in [CCK+07] has been already used in the verification of various cryptographic
protocols [CCLP07, CMP07, YKO07, JMMS10, Yon18], this formalism does not allow the modeling
of systems that "can dynamically create new protocol instances at run time". For example, we would
like to cover blockchain systems where sub-chains can be created or destroyed at run time [RPG19].
Hence, on top of dynamic probabilistic I/O automata described in detail in chapters 3 and 4, we
propose an extension of the composable secure-emulation of Canetti et al. [CCK+07] to dynamic
settings. Our framework, composable dynamic secure emulation, enjoys the composability properties
of secure emulation of [CCK+07]. In terms of dynamicity, our work has closed a modeling problem
left open by the work of Canetti et al. [CCK+07]. That is, our framework allows the modeling of
environments (or structures) that can dynamically create new protocol instances at run time.

Most of the results of this chapter are straightforward adaptations of their "static" counterparts in
[CCK+07]. The main source of modification comes from (1) dealing with compatibility at every
reachable state instead of compatibility at each element of the Cartesian product of respective states
and (2) handling general schedulers instead of task-schedulers only. For sake of completeness, we
repeat the results with the required small modifications in the proofs.

1.3.6. Summary

We proposed a framework that
1. is expressive enough to model non-sequential scheduling, dynamicity, randomness, time/synchrony,

limited computational resources, and simulation-based security,
2. enjoys a sound modular design based on a classic observational semantic, where (1) the im-

plementation relationship is a precongruence for parallel composition and (2) dynamic cre-
ation/destruction of automata is monotonic with the implementation relationship,

3. naturally extends the well-established framework of labeled transition systems,
4. is, we believe, as simple as possible for the fixed expressiveness.
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Chapter 1 : Introduction

Figure 1.5. – The respective executions tree of two automata A and B are linked by an executions-
matching.

16



1.3 Thesis Overview (Long Version)

(a) Projection on PCA, part 1/2

(b) Projection on PCA, part 2/2

The figure represents the PCA Y = X \ {T} while the original PCA X is represented in figure 1.6a. We can see
that the sub-automaton T (in purple in figure 1.6a) has been systematically removed from the configurations
attached to the states visited by Y .

Figure 1.6. – PCA deprived of a sub-PSIOA

17



Chapter 1 : Introduction

Figure 1.7. – Simpleton Wrapper

The figure represents the simpleton wrapper Ãsw of an automaton A. The automaton Ãsw is a PCA
that only encapsulates one unique sub-automaton which is A. We can confuse A and Ãsw without
impact. Intuitively, we can see Ãsw as a wrapper of A that does not provide anything.

Figure 1.8. – Reconstruction

The figure shows the similarities between two PCA X and Z = (X \ {V })||Ṽ sw

18



1.3 Thesis Overview (Long Version)

(a) Monotonicity reduction

The figure represents successive steps to reduce the problem of an environment E that tries to distinguish two
PCA XA and XB (represented in the first column) to a problem of an environment ED that tries to distinguish
the automata A and B (represented at last column).

(b) Homomorphism based proof

Figure 1.9. – homomorphism-based-proof

19



Chapter 1 : Introduction

Figure 1.10. – The necessity of a scheduler in So.

The reduction described before holds only for the set of executions that do not create either A or B
before the last action (represented on the left). What if the scheduler σ12

A breaks the independence
of probabilities between executing α1 and executing α2 after α1 ? In that case, we cannot cut-paste
the different reductions and the monotonicity of implementation does not hold, i.e. there is no reason
there exists a scheduler counterpart σ12

B s.t. that observing ζ_ζ ′ (represented in blue and green) has
the same probability to occur in A-world and in B-world.

20
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Chapter 2 : Preliminaries

2.1. Sets and Functions

2.1.1. Sets and intervals

We use standard set theory.

Definition 1 (operations on sets). We use the usual symbols ∈,⊂,∪,∩, \,× for classic notions of set
theory:"is an element of", "is a subset of", union, intersection, set difference, and Cartesian product.
When universal set Ω is clear in the context, the complement of a set S is denoted by Sc , Ω \ S.
The union of a collection {Si}i∈I of pairwise disjoint sets indexed by a set I is written as

⊎
i∈I

Si. The

power set of a set S, is denoted P(S).

classic sets We note:
– R the set of real numbers, R≥0 , R \ {x ∈ R|x < 0}, R>0 , R≥0 \ {0}
– N the set of natural integers, N>0 , N \ {0}
– Q the set of rational numbers, Q≥0 , Q \ {x ∈ R|x < 0}, Q>0 , Q≥0 \ {0}

intervals
– ∀i, j ∈ N, i ≤ j, we denote by [i : j] , {k ∈ N|i ≤ k ≤ j} and sup([i : j]) , j.
– ∀x, y ∈ R, x ≤ y, we denote by

• [x, y] , {z ∈ R|x ≤ z ≤ y}, which is said to be a closed interval, right-closed, and left-closed.
• ]x, y] , [x, y] \ {x}, which is said to be a right-closed and left-open interval.
• [x, y[, [x, y] \ {y}, which is said to be a left-closed and right-open interval.
• ]x, y[, [x, y] \ {x, y}, which is said to be an open interval, right-open, and left-open.
• sup([x, y]) , sup([x, y[) , sup(]x, y]) , sup(]x, y[) , y, the supremum of a fixed interval.

sequences The set of finite (resp. infinite) sequences of elements of a set Σ is noted Σ∗ (resp. Σω).

2.1.2. Functions

Let f be a function. The domain and the range of a function f are denoted by dom(f) and range(f ),

and we use the usual notation to describe such a function, i.e. f :
{

dom(f) → range(f )
x 7→ f(x) .

Definition 2 (restriction of a function). Let f be a function. For a set S ⊆ dom(f), we write fdS

for the restriction of f to S, i.e. fdS :
{
S → range(f )
x 7→ f(x) .

Definition 3 (indicator function). Let Ω be a set clear in the context and S ⊆ Ω. The indicator

function of S is the function 1S :


Ω → {0, 1}

x 7→
{

1 if x ∈ S
0 otherwise

.
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2.1 Sets and Functions

Definition 4 (parallel composition of functions). Let n ∈ N. If ∀i ∈ [1 : n], fi :
{
J → Qi
x 7→ fi(x) ,

then we note f1||...||fn :
{
J → Q1 × ...×Qn
x 7→ (f1(x), ..., fn(x)) .

Definition 5 (coordinate). If f :
{
J → Q1 × ...×Qn
x 7→ (f1(x), ..., fn(x)) , then, ∀i ∈ [1 : n], we write

f ↓ Qi :
{
J → Qi
x 7→ fi(x) .
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Chapter 2 : Preliminaries

2.2. Trajectories

Most of the definitions in subsection can be found in the theory of timed input/output automata
[KLSV03, KLSV06] and in its partial extension to probabilistic setting [Mit07, ML07b]. They are not
used outside the Chapter 5. A trajectory is used to model the evolution of a collection of states over
an interval of time.

Definition 6 (Time Axis). We define T = R≥0∪{∞} to be the time axis (R≥0 can be replaced by N).

2.2.1. Basics

Definition 7 (Trajectory). Let Q be a set. A trajectory in Q is a function τ : J → Q, where J
is a left closed interval in T with left endpoint 0. The set of trajectories in Q is noted trajs(Q). A
trajectory τ with dom(τ) = {0} , and τ(0) = q, is called the point trajectory at q and is written as
℘(q). A trajectory τ is finite if dom(τ) has finite length. It is closed if it is finite and dom(τ) is right
closed. The first state of τ , noted fstate(τ) is τ(0) and the limit time of τ , τ.ltime, is sup{dom(τ)}.
If τ is closed then the limit state of τ , noted lstate(τ), is τ(τ.ltime). Given a set of trajectories T , we
denote the subset of trajectories starting from q by T (q), i.e. T (q) , {τ ∈ T |fstate(τ) = q}.

2.2.2. Time shift, prefix, suffix, concatenation

Definition 8 (Time shift). Given a trajectory τ and t ∈ T, the time shifted function (τ + t) :
(dom(τ) + t)→ Q is defined as (τ + t)(t′) , τ(t′ − t), for each t′ ∈ {u+ t|u ∈ dom(τ)}.

Definition 9 (prefix of a trajectory). Given two trajectories τ1 and τ2, τ1 is a prefix of τ2, written
as τ1 ≤ τ2, if τ1 = τ2ddom(τ1) (in the sense of definition 2). The relation ≤ is obviously an order (≤
is reflexive, antisymmetric, and transitive).

Definition 10 (suffix of a trajectory). Given two trajectories τ1 and τ2, τ1 is a suffix of τ2 if τ1 =
(τ2d[t,∞])− t, for some t ∈ dom(τ2).

Definition 11 (concatenation of trajectories). If τ1 is a closed trajectory with τ1.ltime = t and
fstate(τ2) = lstate(τ1), then the function τ_1 τ2 : dom(τ1) ∪ (dom(τ2) + t) → X is defined as τ1(t) if
t ≤ u and τ2(t− u) otherwise.

2.2.3. Deteministic Trajectories

Definition 12 (deterministic set of trajectories). A set of trajectories T is deterministic if for every
q ∈ Q, τ1, τ2 ∈ T (q), either τ1 ≤ τ2 or τ2 ≤ τ1, i.e. if (T (q),≤) is a total order.

Definition 13 (maximal trajectory). Let T be a set of trajectories. A trajectory τ in T is said to
be maximal if it is the supremal element of T (fstate(τ)). Obviously, a set of trajectories of the form
T (q) contains at most one maximal trajectory.

Definition 14 (maxtime and maxstate). Let Q be a set, let T be a set of trajectories in Q. We define:

maxtimeT :


Q → T

q 7→
{
τ.ltime if there exists a closed maximal trajectory τ ∈ T (q)
∞ otherwise

.

Similarly, we define:
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2.2 Trajectories

maxstateT :


Q → Q

q 7→
{

lstate(τ) if there exists a closed maximal trajectory τ ∈ T (q)
q otherwise

.

2.2.4. Trajectories sets composition and isomorphism

The following definitions are used to define the constraint of trajectory preservation for PTCA, which
are automata that model dynamic probabilistic timed systems.

Definition 15 (Trajectories with same domain). Let Q1, Q2 be sets. Let (T1, T2) ∈ trajs(Q1) ×
trajs(Q2). We note T1 ~ T2 = {(τ1, τ2) ∈ T1 × T2|dom(τ1) = dom(τ2)}.

Definition 16 (Composition of sets of trajectories). Let Q1, Q2 be sets. Let (T1, T2) ∈ trajs(Q1) ×
trajs(Q2). We note T1||T2 , {(τ1||τ2)|(τ1, τ2) ∈ T1 ~ T2} = {τ ∈ trajs(Q1 ×Q2)| τ ↓ Qi ∈ Ti for i ∈
{1, 2}} (in the sense of definitions 4 and 5).

Definition 17 (Homomorphism between sets of trajectories). Let Q1, Q2 be sets. Let (T1, T2) ∈
trajs(Q1) × trajs(Q2). Let u : T1 → T2, v : Q1 → Q2. We note T1

u,v
! T2 if u is a bijection from T1

to T2 such that for every pair (τ1, τ2) with τ1 = u(τ2): (i) dom(τ1) = dom(τ2) , J and (ii) ∀t ∈ J ,
v(τ1(t)) = τ2(t).
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2.3. Probability Theory

We use standard measure theory, like in [Dud04]. An intuitive understanding of probability theory
is sufficient to read the thesis. However, we will define probability over the uncountable set of exe-
cutions of our different automata. Hence, some precautions are required to rigorously define such a
probabilistic space. The Chapter 5 extends a lot of concepts of the Chapter 3 with uncountable sets
instead of countable sets. Such an extension also requires some additional precautions, but here again,
it is possible to read the thesis assuming that all probabilistic spaces and all operators on them stay
well-defined.

2.3.1. Set Algebra

The σ-algebra is the key object for rigorously defining measurable space. Some weaker algebraic
structures are useful for construction perspectives.

Definition 18 (semi-ring). A semi-ring on a set Ω is a set C ⊆ P(Ω) such that:
– ∅ ∈ C

– A,B ∈ C =⇒ A ∩B ∈ C

– A,B ∈ C =⇒ ∃n ∈ N>0, (Ci)i∈[1:n] ∈ C [1:n], A \B =
n⊎
i=1

Ci

Definition 19 (ring). A ring on a set Ω is a set C ⊆ P(Ω) such that:
– ∅ ∈ C

– A,B ∈ C =⇒ A ∩B ∈ C

– A,B ∈ C =⇒ A \B ∈ C

It is easy to show that a semi-ring on a set Ω is a ring on a set Ω.

Definition 20 (semi-field). A semi-field on a set Ω is a semi-ring on Ω that contains Ω.

Definition 21 (field). A field on a set Ω is a ring on Ω that contains Ω.

Definition 22 (σ-algebra). A σ-algebra (sometimes noted sigma-algebra when σ is already used) on
Ω is a set C ⊆ P(Ω) such that:

– ∅,Ω ∈ C

– A ∈ C =⇒ Ω \A ∈ C

– (Ai)i∈N ∈ C N =⇒
⋃
i∈N

Ai ∈ C

It is easy to show that a σ-algebra is a field stable by countable union (and so by countable intersection).

Definition 23 (field(C )). The field generated by a family of sets C , denoted by field(C ) is the smallest
field that contains C . The family C is called a generator for field(C ).

Definition 24 (sigma(C )). The σ-field generated by a family of sets C , denoted by sigma(C ) is the
smallest σ-field that contains C . The family C is called a generator for sigma(C ).

A trivial property of a generator C is sigma(C ) = sigma(field(C )).

The field generated by a family of sets can be obtained following a simple procedure.
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2.3 Probability Theory

Proposition 1 (field generation). Let Ω be a set. Let C ⊆ P(Ω).

1. Let F1(C ) be the family containing ∅,Ω and every C ⊆ Ω such that C ∈ C or (Ω \ C) ∈ C .

2. Let F2(C ) be the family containing all finite intersections of elements of F1(C ).

3. Let F3(C ) be the family containing all finite unions of disjoint elements of F2(C ).

Then field(C ) = F3(C ) .

This procedure will be used to construct a σ-algebra for our set of executions in Section 3.6.

2.3.2. Measure Spaces

Definition 25 (measure). Let C be a set of sets with ∅ ∈ C . We call measure on C , any map
η : C → [0,∞] with the following properties:

– η(∅) = 0

– (Ai)i∈N ∈ C N, A =
⊎
i∈N

Ai, A ∈ C =⇒ η(A) =
∑
i∈N

η(Ai)

Let us note that if C is a σ-algebra on a set Ω, the precondition A ∈ C is necessarily verified in the
second item.

Definition 26 (measurable space). A measurable space is a pair (Ω,FΩ) where FΩ is a σ-algebra
over Ω.

Definition 27 (measure space). A measure space is a triplet (Ω,FΩ, η) where η is a measure on FΩ
and (Ω,FΩ) is a measurable space. In this case, we say that η is a measure on (Ω,FΩ).

Definition 28 (probability and sub-probability). A probability measure (resp. sub-probability mea-
sure) on a measurable space (Ω,FΩ) is a measure on (Ω,FΩ) s. t. η(Ω) = 1 (resp. η(Ω) ≤ 1). A
probability space (resp. sub-probability space ) is a measure space (Ω,FΩ, η) such that η is a probabil-
ity (resp. sub-probability) measure on (Ω,FΩ). The set Ω is called the sample space, and the elements
of FΩ are called events. The set of probability (resp. sub-probability) measures over (Ω,FΩ) is denoted
by Prob(Ω,FΩ) resp SubProb(Ω,FΩ) .

2.3.3. Measurable Function

Definition 29 (measurable function). Let (Ω,FΩ) and (Ω′,FΩ′) be two measurable spaces. A function
f : Ω→ Ω′ is said to be a measurable function from (Ω,FΩ) to (Ω′,FΩ′) if ∀E′ ∈ FΩ′, f−1(E) ∈ FΩ .

The two next propositions are classic results in measure theory [Dud04].

Proposition 2. Let (Ω,FΩ) and (Ω′,FΩ′) be two measurable spaces. If f is a measurable function
from (Ω,FΩ) to (Ω′,FΩ′) and η is a measure on FΩ, then the function g : E′ ∈ FΩ′ 7→ η(f−1(E′)) is
a measure on FΩ′, called the image measure of η under f .

Proposition 3. Let (Ω,FΩ) and (Ω′,FΩ′) be two measurable spaces and let C be a generator of FΩ′.
Let f : Ω→ Ω′. Then f is measurable if ∀C ∈ C , f−1(C) ∈ FΩ.
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2.3.4. Product of Measure Spaces

Definition 30 (Product of Measure Spaces). Let (Ω1,FΩ1 , η1) and (Ω2,FΩ2 , η2) be to measure spaces.
The product measure space (Ω1,FΩ1 , η1)⊗ (Ω2,FΩ2 , η2) is the measure space (Ω1×Ω2,FΩ1⊗FΩ2 , η1⊗
η2), where FΩ1 ⊗ FΩ2 = sigma({A × B|(A,B) ∈ FΩ1 × FΩ2}) is the smallest σ-algebra generated by
sets of the form A × B for all A ∈ FΩ1 , B ∈ FΩ2 and η1 ⊗ η2 is the unique measure s.t. for every
C1 ∈ FΩ1 , C2 ∈ FΩ2, η1 ⊗ η2(C1 × C2) = η1(C1) · η2(C2).

2.3.5. Discrete probability space

Definition 31 (countable set). A set Ω is countable if there exists a bijection bij : Ω → N. A set is
uncountable if it is not countable.

Definition 32 (Discrete measure). A discrete measure on a set Ω is a measure η on (Ω,P(Ω)), such
that, for each C ⊂ Ω, η(C) =

∑
c∈C

η({c}).

Definition 33 (Discrete probability). We define Disc(Ω) (resp. SubDisc(Ω)) to be the set of discrete
probability (resp. sub-probability) measures on Ω.

Definition 34 (Dirac). Given set Ω and a subset C ⊂ Ω, the Dirac measure δC is the discrete
probability measure on Ω that assigns probability 1 to C. For each element s ∈ Ω, we note δs for δ{s}.
In the sequel, we often omit the set notation when we denote the measure of a singleton set.

2.3.6. Measure Spaces Isomorphism

It is convenient to exclude events of zero-probability in our reasoning. Hence, the notion of support
that represents the set of events with non-zero measure is useful.

Definition 35 (support). Let (Ω,FΩ, η) be a measure space. The support of η, is the set noted
supp(η) , {F ∈ FΩ|η(F ) 6= 0}, where the bar denotes the set closure.

In this thesis, to be as close as possible to the notation used in related works, we omit the singleton
notation and we note ω ∈ supp(η) to mean ω ∈ Ω s.t. {ω} ∈ supp(η).

The next definition is used in Chapter 3 to define (in definition 68) PCA, which are automata that
model dynamic probabilistic systems. Then, this definition is amply in chapters 3 and 4 used during
the thesis to deduce a wide range of intermediate results.

Definition 36 (Measure Spaces Isomorphism). Let (Ω1,FΩ1 , η1) and (Ω2,FΩ2 , η2) be to measure
spaces. Let f : Ω → Ω2. We note η1

f↔ η2 if the following is verified: (1) the restriction f̃ of f to
supp(η1) is a bijection from supp(η1) to supp(η2) and (2) ∀s ∈ supp(η1), η1(s) = η2(f(s)).

2.3.7. Integration

The notion of integration is not used outside Chapter 5.

Definition 37 (simple function). A simple function f̂ on a measureable space (S,FS) is a function
of the form

∑
i∈[1:n]

ci1Ci with ∀i ∈ [1 : n], ci ∈ R ∧ Ci ∈ FS where 1Ci is the indicator function of set

Ci , {s ∈ dom(f̂)|f̂(s) = ci}. It means the range of a simple function consists of only finitely many
points: range(f̂ ) = {c1, ..., cn}.
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Definition 38 (integration of a simple function). Let η be a measure on (S,FS), let f̂ =
∑
i∈[1:n]

ci1Ci

be a simple function on (S,FS) and E ∈ FS, then
∫
E
f̂ dη =

∑
i∈[1:n]

ci · η(Ci ∩ E).

Definition 39 (integration of a measurable function). Consider a measureable space (S,FS) and a
measure η on (S,FS). If f : S → R≥0 is measurable and E ∈ FS the Lebesgue integral of f over E is
defined as

∫
E
f dη = sup

f̂≤f

∫
E
f̂ dη where the supremum is take over simple functions f̂ . If the measure

η is clear in the context we note
∫
E
f =

∫
E
f dη.

2.3.8. Carathéodory’s Extension Theorem

The next theorem [Dud04] says that it is possible to define a probability measure η on a measurable
space (Ω,FΩ) by specifying η only on a generator of FΩ.

Theorem 1 (Carathéodory’s Extension Theorem). Consider a set Ω, a semi-ring C on Ω and a
measure η′ on C . There exists a unique measure η extending η′ on the σ-field generated by C (noted
sigma(C )).
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2.4. Turing Machines

This section aims to provide a formal definition of Turing Machine. This notion is not used outside of
the Chapter 6 that handles simulation-based security which is necessarily based on a computational
model. However, a vague understanding of Turing Machines is largely enough to use the framework
of the Chapter 6. Indeed, those notions are only used to define what is a bounded automaton and a
few high level lemma to show that the composition of two automata stays bounded. Thereafter, those
notions are encapsulated in the definition of bounded-automata.

Turing machines are an abstract model of computation. They provide a precise, formal definition of
what it means for a function to be computable in a bounded fashion.

2.4.1. Deterministic Turing Machine

Definition 40 (Deterministic Turing Machine).

A deterministic Turing machine M is a tuple (Σ, Q, q̄, F,D, δ), such that:
– Σ the finite alphabet of symbols that can be read on the tape of the deterministic Turing machine.

The two special elements C,t ∈ Σ represent the start and end of the tape. In Chapter 6, we
require that Σ = {0, 1,C,t}.

– Q a finite set of states
– q̄ ∈ Q the start state
– F = {halt, yes,no} ⊂ Q the finite set of final states. Intuitively, the machine halts if it is in a

state in F and the interpreted returned value is either "yes" (resp. "no") if the machine is in
state yes (resp. no) or the bit string x̄ on the tape (without special symbols C,t) if the machine
is in state halt

– D = {←,→} the possible ways to move in relation to the tape. Intuitively, triggering ← (resp.
→ means moving to the left (resp. right) of the tape.

– δ : Q × Σ → Q × Σ ×D the transition function where δ(q, s) = (q′, s′, d) intuitively means that
when the machine is in state q and read the symbol s, it writes the symbol s′ on its tape, moves
in relation to the tape according to d, and jumps into state q′. It is assumed that the machine
never tries to overwrite the leftmost symbol on its tape nor to move to the left of it, that is
∀q ∈ Q, δ(q,C) = (q′, s′, d) implies d 6=← and s′ =C. The set of Turing Machines is noted TMs

Definition 41 (Configuration of deterministic Turing Machine). A configuration of a deterministic
Turing machine M = (Σ, Q, q̄, F,D, δ) is a triple (x, q, k) ∈ Σ∗ ×Q× N where:

– x = x0, x1, ...xn−1 denotes the string on the tape, where n denotes he length of x, noted |x|. The
string x is required to begin with C and end with t. We note x̄ = x1, ..., xn−2 the string written
in the tape without the special symbols C,t.

– q denotes the machine’s current state,
– k denotes the position of the machine on the tape, which is required to satisfy 0 ≤ k < |x|.

The set of configurations of a deterministic Turing Machine M is noted Confs(M ).

Definition 42 (Step of Turing Machine). A step of a deterministic Turing MachineM = (Σ, Q, q̄, F,D, δ)
captures the jump from one configuration to another one, respecting the constraint imposed by the tran-
sition function. Thus, a step of M is a pair ((x, q, k), (x′, q′, k′)) ∈ Confs(M )2, such that M jump from
the state q to the state q′, i.e. the equality δ(q, xk) = (q′, s′, d) holds for some s′ and d, and verifies
the following constraints, whose associated relation is noted (x, q, k) s′,d−→ (x′, q′, k′):
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– the string x′ is obtained from x by changing xk to s′, and also appending t to the end of x, if
the machine overwrites on the end of the tape, i.e.:
• if k < |x| − 1 or k = |x| − 1 ∧ s′ = t, then x′ = x0, x1, ..., xk−1, s

′, xk+1, ..., xn−1

• if k = |x| − 1 ∧ s′ 6= t, then x′ = x0, ..., xn−2, s
′,t

– the machine moves in relation to the tape according to d, i.e. k = k + 1 if d =→ and k = k − 1
if d =←.

The set of steps of a Turing Machine M is noted Steps(M ).

Definition 43 (Computation of a Turing Machine). A computation of a deterministic Turing Ma-
chine M = (Σ, Q, q̄, F,D, δ) is a (potentially infinite) sequence of configurations α = C0, ..., Ci, ... ∈
Confs(M )∗ ∪ Confs(M )ω such that:

– The first configuration C0 = (q0, x0, k0) is a valid starting configuration, i.e. q0 = q̄ and k0 = 0.
– each pair of consecutive configuration is a step of M , i.e. ∀i ∈ N, 0 ≤ i < |α| − 1, (Ci, Ci+1) ∈

Steps(M ).
– We can remark that previous constraint implictly implies that ∀i, 0 ≤ i < |α|−1, Ci = (qi, xi, ki)

is not a final configuration i.e. qi /∈ F .
– if |α| 6= ∞, we note f = |α| − 1 and the last configuration Cf = (qf , xf , kf ) is a valid final

configuration, i.e. qf ∈ F . In that case, we say that M halts in time |α| − 1.
• If qf = halt, we say that M returns x̄f , i.e. M returns the bit string written in the tape
without the special symbols C,t.
• If qf = yes, we say that M returns "yes" and recognizes x0.
• If qf = no, we say that M returns "no" and does not recognize x0.

We note returned(α) the returned value of α if α is finite and ↗ otherwise.
The set of computations of a deterministic Turing Machine for a fixed entry x0 is noted Computations(M,x0).
It is easy to remark that the computation of a deterministic Turing Machine is unique if we fix x0,
i.e. Computations(M,x0) is a singleton. Hence, we note returned(M,x0) the value returned(α) for
the unique computation α of Computations(M,x0).

2.4.2. Probabilistic Turing Machine

Definition 44 (Probabilistic Turing Machine).

A probabilistic Turing machine M is a tuple (Σ, Q, q̄, F,D, δ0, δ1), such that both (Σ, Q, q̄, F,D, δ0, δ1)
and (Σ, Q, q̄, F,D, δ0) are deterministic Turing Machines. The intuition is that the machine is equipped
with an additional read-only tape with symbols in {0, 1} that provides an external source of randomness,
used by the machine to choose between δ0 and δ1 with probability 1/2.

A lot of equivalent alternative definitions are possible, for example we could have a machine M ′ =
(Σ, Q, q̄, F,D, δ01), where (Σ, Q, q̄, F,D) is defined as in definition 44, with δ : Q×Σ×{0, 1} → Q×Σ×D
such that ∀(q, s) ∈ Q×Σ, δ01(q, s, 0) = δ0(q, s) and δ01(q, s, 1) = δ1(q, s). The intuition is more or less
the same, the next random bit of the read-only random tape is used as an argument of δ01.

Another alternative definition would be a tupleM ′′ = (Σ, Q, q̄, F,D, δp), where (Σ, Q, q̄, F,D) is defined
as in definition 44 and δp : Q×Σ→ Disc(Q×Σ×D) yields a discrete probabilistic distribution over
Q× Σ×D. However, such a definition is less convenient to define encoding.

The definition of a configuration of a probabilistic Turing Machine is the same as the one of a deter-
ministic Turing Machine.
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Definition 45 (Configuration of probabilistic Turing Machine). A configuration of a probabilistic
Turing machine M = (Σ, Q, q̄, F,D, δ0, δ1) is a configuration of M = (Σ, Q, q̄, F,D, δ0) in the sense of
definition 45. Again, we note Confs(M ) the set of configurations of M .

The definition of a step of a probabilistic Turing Machine is very close to the one of a deterministic
Turing Machine.

Definition 46 (Step of probabilistic Turing machine). A step of a probabilistic Turing Machine
M = (Σ, Q, q̄, F,D, δ0, δ1) captures a possible jump from one configuration to another one, respecting
the constraint imposed by the transition functions. Thus, a step of M is a pair ((x, q, k), (x′, q′, k′)) ∈
Confs(M )2, such that there exists (q′, s′, d) ∈ {δ0(q, xk), δ1(q, xk) for some s′ and d, and verifies
(x, q, k) s′,d−→ (x′, q′, k′) (in the sense of definition 42) as for a deterministic Turing machine.

The definition of a computation of a probabilistic Turing Machine is the same as the one of a deter-
ministic Turing Machine.

Definition 47 (Computation of a probabilistic Turing Machine). A computation of a probabilistic
Turing Machine M = (Σ, Q, q̄, F,D, δ0, δ1) is a (potentially infinite) sequence of configurations α =
C0, ..., Ci, ... ∈ Confs(M )∗ ∪ Confs(M )ω such that:

– The first configuration C0 = (q0, x0, k0) is a valid starting configuration, i.e. q0 = q̄ and k0 = 0.
– each pair of consecutive configuration is a step of M , i.e. ∀i ∈ N, 0 ≤ i < |α| − 1, (Ci, Ci+1) ∈

Steps(M ).
– We can remark that previous constraint implictly implies that ∀i, 0 ≤ i < |α|−1, Ci = (qi, xi, ki)

is not a final configuration i.e. qi /∈ F .
– if |α| 6= ∞, we note f = |α| − 1 and the last configuration Cf = (qf , xf , kf ) is a valid final

configuration, i.e. qf ∈ F . In that case, we say that M halts in α in time |α| − 1.
• If qf = halt, we say that M returns x̄f , i.e. M returns the bit string written in the tape
without the special symbols C,t.

• If qf = yes, we say that M returns "yes" and recognizes x0.
• If qf = no, we say that M returns "no" and does not recognize x0.

We note returned(α) the returned value of α if α is finite and ↗ otherwise.
The set of computations of a probabilistic Turing Machine for a fixed entry x0 is noted Computations(M,x0).
However, if we fix the input x0, this computation is not necessarily unique. Thus, we note returned(M,x0)
the set of values {returned(α)|α ∈ Computations(M,x0)} for the unique computation α of Computations(M,x0).

Moreover, we say that a probabilistic Turing Machine M returns a value in time at most b for an input
x0, if for every computation of M starting with configuration (q̄, x0, 0), M returns a value in time at
most b.

2.4.3. Encoding

2.4.3.1. Encoded Sets

Definition 48 (encoding). An encoding of a set Q is injective function 〈.〉Q:
{
Q → {0, 1}∗
q 7→ 〈q〉Q .

An encoded set (Q, 〈.〉Q) is a set Q equipped with an encoding of Q.

When the set in clear in the context, we note 〈.〉 for 〈.〉Q.
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Definition 49 (encoding for integers). We note 〈.〉N :


N → {0, 1}∗

n 7→ bk−1...b1b0 s.t. n =
∑

i∈[0:k−1]
bi · 2i .

Definition 50 (bounded encoded set). Let b ∈ N. An encoded set (Q, 〈.〉Q) is b-bounded if ∀q ∈ Q,
|〈q〉Q| ≤ b.

Proposition 4. For every finite set Q of size |Q| ≤ 2k, there exists an encoding of Q, with k bits
only.

Proof. We note Q = {q1, ..., q|Q|}. We can choose 〈.〉Q, such that ∀n ∈ [1 : |Q|], 〈qn〉Q = 〈n〉N.

The next function is a classic simple tool to avoid ambiguity when we "compose" several encodings.

Definition 51 (double). The function double: {0, 1}∗ → {0, 1}∗ is the function that maps each
sequence of k-bits bk−1bk−2...b0 to the sequence of bits bk−1bk−1bk−2bk−2...b0b0 where each bit is repeated
twice.

The idea is two write bit-strings of the form b = double(b1)01double(b2) such that there is a unique
way to extract b1 and b2 from b since we can browse the bit-string 2 by 2 until reaching the bit-string
01.

This well-known trick allows us to encode easily a Turing Machine. Also it allows obtaining the two
following trivial propositions that will be used in subsection 6.1.2 to show that the composition of two
bounded automata stay bounded with a linear factor.

Proposition 5. Let b1, b2 ∈ N. Let (Q1, 〈.〉Q1) be a b1-bounded encoded set and (Q2, 〈.〉Q2) be a b2-

bounded encoded set. Let Q12 = Q1×Q2. Let 〈.〉Q12:
{
Q1 ×Q2 → {0, 1}∗
(q1, q2) 7→ double(〈q1〉Q1)01double(〈q2〉Q2) .

Then (Q12, 〈.〉Q12) is a 2 · (b1 + b2 + 1)-bounded encoded set.

Proof. Let q12 = (q1, q2), q′12 = (q′1, q′2) ∈ Q12, 〈q12〉Q12 = 〈q′12〉Q12 = b. Because of property of double
function, there exists a unique sequence of bits 01 in b. Thus b = b101b2 with 〈q1〉Q1 = 〈q′1〉Q1 = b1
and 〈q2〉Q2 = 〈q′2〉Q2 = b2. The injectivity of both 〈.〉Q1 and 〈.〉Q2 terminates the proof.

In the same way:

Proposition 6. Let b1, b2 ∈ N. Let (Q1, 〈.〉Q1) be a b1-bounded encoded set and (Q2, 〈.〉Q2) be a
b2-bounded encoded set. Let Q12 = Q1 ∪Q2.

Let 〈.〉Q12 :


Q1 ∪Q2 → {0, 1}∗

q 7→
{

0〈q〉Q1) if q ∈ Q1

1〈q〉Q2) otherwise
.

Then (Q12, 〈.〉Q12) is a (max(b1, b2) + 1)-bounded encoded set.

Proof. Let q, q′ ∈ Q12, 〈q〉Q12 = 〈q′〉Q12 = b′b with b′ ∈ {0, 1} and b ∈ {0, 1}∗. If b′ = 0, then
〈q〉Q1 = 〈q′〉Q1 = b and by injectivity of 〈.〉Q1 , q = q′. If b′ = 1, then 〈q〉Q2 = 〈q′〉Q2 = b and by
injectivity of 〈.〉Q2 , q = q′.

33



Chapter 2 : Preliminaries

2.4.3.2. Encoding of Turing Machines

The practical feasibility of a concrete Turing Machine might depends of its size in a sense that remains
to be defined. Such a notion of size is usually defined by the number of bits of the string x returned by
an encoding function encoding : TMs → {0, 1}∗. Since, this encoding function is not unique, we gives
a possible example, which is supposed to be a reasonable tradeoff between simplicity and efficiency.

We stress that we can choose any (potentially more efficient) alternative encoding for this definition.

Definition 52 (encoding (arbitrary)). Let M = (Σ, Q, q̄, F,D, δ) be a Turing Machine where Q,
Σ and D are finite encoded sets with |Q| = i, |Σ| = j and |D| = 2. Let (q, s, q′, s′, d) such that
δ(q, s) = (q′, s′, d). The bit-string representation of (q, s, q′, s′, d) according to M , knowing i, j is the
sequence of bits 〈q, s, q′, s′, d〉Mi,j , 〈q〉〈s〉〈q′〉〈s′〉〈d〉. The bit-string representation of M , knowing i, j
is the sequence of bits encodingi,j(M) =

〈q`1 , s`1 , q′`1 , s
′
`1 , d`1〉

M
i,j

〈q`2 , s`2 , q′`2 , s
′
`2 , d`2〉

M
i,j

...

〈q`L , s`L , q
′
`L
, s′`L , d`L〉

M
i,j

where (q`, s`, q′`, s′`, d`) denotes the `-th line in the transition table of M , representing the L ≤ |Q| · |Σ|
possible transitions (q, s, q′, s′, d) such that δ(q, s) = (q′, s′, d).

The bit string representation of a deterministic Turing MachineM is the sequence of bits encoding(M) ,
double(〈i〉N) 01 double(〈j〉N) 01 encodingi,j(M) with i = dlog2(|Q|)e and j = (dlog2(|Σ|)e

The bit string representation of a probabilistic Turing Machine M = (Σ, Q, q̄, F,D, δ0, δ1) is the
sequence of bits encoding(M) , 0 ones(i) 0 ones(j) 0 encodingi,j(M0) encodingi,j(M1) with i =
dlog2(|Q|)e and j = (dlog2(|Σ|)e, M0 = (Σ, Q, q̄, F,D, δ0) and M = (Σ, Q, q̄, F,D, δ1).

Definition 53 (bit-representation-size). Let M be a (deterministic or probabilistic) Turing Machine.
Its bit-representation size is the number of bits of its encoding encoding(M) for the encoding function
encoding described above.

Definition 54. Let b ∈ N. A (deterministic or probabilistic) Turing Machine M is b-bounded if
– its bit-representation size s ≤ b and
– for every input x0 ∈ {0, 1}∗, for every computation α ∈ Computations(M,x0), |α| ≤ b.

2.4.4. Decision

The next definitions make formal the definitions 208 and 207 of subsection 6.1.1.

Definition 55 (decision). Let M be a (deterministic or probabilistic) Turing Machine M . Let P :
{0, 1}∗ → {true, false} be a predicate and X ⊆ {0, 1}∗ be a set of bit-strings. We say that M decides
P (resp. given an element in X, M decides P ) if for every input x0 ∈ {0, 1}∗ (resp. x0 ∈ X),
for every computation α ∈ Computations(M,x0), M halts in α, returns either "yes" or "no" and
returned(α) = "yes"⇐⇒ P (x0) = true.

Definition 56 (recognizable set). Let b ∈ N. Let (S, 〈.〉S) be an encoded set. A Turing Machine
M recognizes S if M decides the predicate P : x ∈ {0, 1}∗ → [∃s ∈ S, 〈s〉S = x]. The set S is said
b-recognizable if there exists a b-bounded Turing machine M , such that M recognizes S.
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2.5. Labeled Transition System (LTS)

Here, we quickly survey the literature on I/O automata that led to PSIOA. We first present the very
well-known Labeled Transition Systems (LTS). Then we briefly discuss the new features brought by
I/O Automata, probabilistic I/O Automata, and signature I/O Automata.

2.5.1. Simple Labeled Transition System

Roberto Segala describes LTS as follows ([Seg95b], section 3.2, p. 37): "A Labeled Transition Sys-
tem is a state machine with labeled transitions. The labels, also called actions, are used to model
communication between a system and its external environment." A possible definition of a LTS, us-
ing notation of [LV95], is a tuple A = (QA, q̄A, ˇsig(A), steps(A)) where QA represents the states
of A, q̄A represents the start state of A, ˇsig(A) = ( ˇext(A), ˇint(A)) represents the signature of A,
i.e. the set of actions that can be triggered, that are partitioned into external and internal ac-
tions, and steps(A) ⊆ QA × acts(A) × QA represent the possible transition of the transition with
acts(A) = ˇext(A) ∪ ˇint(A). We can note enabled(A) : q ∈ QA 7→ {a ∈ acts(A)|∃(q, a, q′) ∈ Steps(A)}
to model the actions enabled at a certain state. "The external actions model communication with the
external environment; the internal actions model internal communication, not visible from the external
environment." It is possible to make several LTS communicate with each other through shared exter-
nal actions in CSP [Hoa85] style. Typically, if A and B are two LTS s.t. the compatibility condition
acts(A) ∩ ˇint(B) = acts(B) ∩ ˇint(A) = ∅ is verified, we can define their composition, A||B with

– QA||B = QA ×QB,
– q̄A||B = (q̄A, q̄B),
– ˇsig(A||B) = ( ˇext(A) ∪ ˇext(B), ˇint(A) ∪ ˇint(B)),
– Steps(A||B) = {((qA, qB), a, (q′A, q′B)) ∈ QA||B×acts(A||B)×QA||B|a ∈ enabled(A)∪enabled(B)∧
∀K ∈ {A,B}, (qK, a, q′K) /∈ Steps(K) =⇒ (a /∈ enabled(K) ∧ q′K = qK)}).

An execution of an LTS A is an alternating sequence of states and actions q0a1q1a2... such that each
(qi−1, ai, qi) ∈ Steps(A). A trace is the restriction to external actions of an execution. A LTS A
implements another LTS B if Traces(A) ⊆ Traces(B), where Traces(K) represents the set of traces of
K.

2.5.2. I/O Automata

The input output Automata (IOA) [LT87] are LTS with the following additional points for some pair
(A,B) of IOA :

– (I/O partitioning) There is a partition (ǐn(A), ˇout(A)) of ˇext(A) where ǐn(A) denotes the input
actions and ˇout(A) denotes the output actions. Moreover, ˇloc(A) denotes the local actions.

– (Output compatibility) The compatibility condition requires out(A) ∩ out(B) = ∅ in addition.
– (I/O composition) After composition, we have in addition out(A||B) = out(A) ∪ out(B) and

in(A||B) = in(A) ∪ in(B) \ out(A||B)
– (Input enabling) ∀q ∈ QA, in(A) ⊆ enabled(A)(q)

The interests of these additional restrictions for formal verification are subtle (e.g. input enabling
can avoid trivial liveness property implementation, locality allows simple definitions of fairness and
oblivious scheduler, I/O partitioning allows the intuitive definition of forwarding, ...). However, they
do not add complexity to the analysis of this thesis. Typically, they are never required in the key
results of this thesis. Adapting this thesis to LTS is straightforward. We have kept I/O automata to
be as close as possible from [AL16] and [CCK+18].
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2.5.3. PIOA

The probabilistic input/output automata (PIOA) [WSS97] are kind of I/O automata where transitions
are randomized, i.e. triggering an action leads to a probability measure on states instead of a particular
state. The transitions of a PIOA A are then elements of DA ⊆ QA×acts(A)×Disc(QA). Now, the set
of steps is Steps(A) = {(q, a, q′)|∃(q, a, η) ∈ DA ∧ q′ ∈ supp(η)}. To define a measure of probability on
the set of executions, it is convenient to call on a scheduler σ that will resolve the non-determinism and
enable the construction of a measure of probability εσ on executions. The notion of implementation
has to be adapted to a probabilistic setting to be relevant.

2.5.4. DIOA

The signature I/O automata (SIOA) [AL16] are a kind of I/O automata where the signature is evolving
during the time. This feature is particularly convenient to model dynamicity. The signature of the
automaton A becomes a function mapping each state q to a signature sig(A)(q).

A configuration automaton (CA) is a a kind of SIOA, linked to a configuration (which is a set of SIOA
associated with current states) whose membership can evolve along an execution of the CA. Some
constraints have to be respected tu ensure the consistency of the whole.

A dynamic I/O automaton (DIOA) is either a PSIOA or a CA.

2.5.5. TIOA

The timed I/O automata (TIOA) [KLSV06] are a kind of I/O automata, extended with trajectories
in their state space which capture the evolution of the state with real-time. The notion of trajectory
is presented in section 2.2. This notion of timed automata, uniquely used in Chapter 5, is developped
in the same chapter. Instead of being an alternate sequence of states and actions, an execution of a
timed automaton is an alternate sequence of trajectories and actions. Hence, an execution of a timed
automaton represents a succession of continuous and discrete transitions.

2.5.6. DPIOA

A PSIOA (resp. PCA, resp. DPIOA) is the result of the generalization of SIOA (resp. CA, resp.
DIOA) and PIOA. The framework of DPIOA is introduced in Chapter 3. The figure 1.4 gives a first
intuition of what is a DPIOA.

2.5.7. DPTIOA

A PTSIOA (resp. PTCA, resp. DPTIOA) is the result of the generalization of SIOA (resp. CA, resp.
DIOA) and PTIOA, where a PTIOA is the generalization of both PIOA and TIOA. The framework
of DPIOA is introduced in Chapter 3. We must underline that PTIOA have been introduced in the
Mitra’s thesis [Mit07].

2.5.8. Overwiev of the I/O Automata framework

We summarize this section about I/O automata framework with the figure 2.1. In this thesis, we do
not cover the Hybrid I/O automata (HIOA) [LSVW95] that extend TIOA and allow modelling hybrid
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systems that can interact with shared external variables in addition of shared external actions. We
are not aware of a probabilistic (PHIOA) or a dynamic (DHIOA) extension of HIOA framework. The
work that would most closely resemble a DHIOA would be the quantified differential dynamic logic
for distributed hybrid systems from André Platzer [Pla10].

Figure 2.1. – the variations of the I/O Automata framework
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Chapter 3
Dynamic Probablistic I/O Automata

This chapter introduces Dynamic Probabilistic Automata: a framework to reason about dynamic
probabilistic distributed systems.
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Chapter 3 : Dynamic Probablistic I/O Automata

This chapter introduces Dynamic Probabilistic Automata: a framework to reason about dynamic
probabilistic distributed systems. We strongly encourage reading Subsection 1.3.2 page 8 to get a first
intuition about the content of this chapter 3.

In section 3.1 we define probabilistic signature I/O automata (PSIOA) as a kind of labeled transition
system (LTS) with (i) a signature that can evolve from one state to another, (ii) actions that lead to
a probabilistic distribution on states instead of directly to a state, (iii) external actions are separate
into input and output actions. Section 3.2 introduces probabilistic configuration automata (PCA), an
automaton (equivalent to a PSIOA) representing a dynamic distributed system that can create/destroy
dynamically PCA/PSIOA of a lower layer. Section 3.4 presents executions of a set of automata as
alternating sequences of states and actions. It allows defining reachable states of a set of automata,
that are said compatible if they are compatible at each reachable state (in the sense their signature
are compatible). The closure of the set of PCA under parallel compositions is proved in section 3.5.
Pure non-determinism is resolved in section 3.6, before defining the implementation relationship that
is shown to be composable. In section 3.7, we give a definition of what are corresponding automata
XA,XB w.r.t. PSIOA A,B, that differ only by the fact thatXA dynamically creates/destroys A instead
of B as XB does, noted XA OA,BXB. Finally, we give technical necessary conditions (partially captured

in the definition of XA OA,BXB) to obtain monotonicity of dynamic creation/destruction of PSIOA with
implementation relationship.

3.1. Probabilistic Signature Input/Output Automata (PSIOA)

This section aims to introduce the first brick of our formalism: the probabilistic signature input/output
automata (PSIOA).

3.1.1. Action Signature

We use the signature approach from [AL16]. We assume the existence of a countable set Autids of
unique probabilistic signature input/output automata (PSIOA) identifiers, an underlying universal
set Auts of PSIOA, and a mapping aut : Autids → Auts. aut(A) is the PSIOA with identifier A.
We use "the automaton A" to mean "the PSIOA with identifier A". We use the letters A,B, possibly
subscripted or primed, for PSIOA identifiers. The executable actions of a PSIOA A are drawn from a
signature sig(A)(q) = (in(A)(q), out(A)(q), int(A)(q)), called the state signature, which is a function
of the current state q of A.

in(A)(q), out(A)(q), int(A)(q) are pairwise disjoint sets of input, output, and internal actions, respec-
tively. We define ext(A)(q), the external signature ofA in state q, to be ext(A)(q) = (in(A)(q), out(A)(q)).

We define loc(A)(q), the local signature of A in state q, to be loc(A)(q) = (out(A)(q), int(A)(q)).
For any signature component, generally, the .̂ operator yields the union of sets of actions within
the signature, e.g., ŝig(A) : q ∈ Q 7→ ŝig(A)(q) = in(A)(q) ∪ out(A)(q) ∪ int(A)(q). Also we
define acts(A) =

⋃
q∈Q

ŝig(A)(q), that is acts(A) is the "universal" set of all actions that A could

possibly trigger, in any state. In the same way UI(A) =
⋃
q∈Q

in(A)(q), UO(A) =
⋃
q∈Q

out(A)(q),

UH(A) =
⋃
q∈Q

int(A)(q), UL(A) =
⋃
q∈Q

l̂oc(A)(q), UE(A) =
⋃
q∈Q

êxt(A)(q).
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3.1 Probabilistic Signature Input/Output Automata (PSIOA)

3.1.2. PSIOA

We combine the SIOA of [AL16] with the PIOA of [WSS97, CCK+06a]:

Definition 57 (PSIOA). A PSIOA A = (QA, q̄A, sig(A), DA), where:

– QA is a countable set of states, (QA, 2QA) is the state space,
– q̄A is the unique start state.
– sig(A) : q ∈ QA 7→ sig(A)(q) = (in(A)(q), out(A)(q), int(A)(q)) is the signature function that

maps each state to a triplet of mutually disjoint countable set of actions, respectively called
input, output and internal actions.

– DA ⊂ QA× acts(A)×Disc(QA) is the set of probabilistic discrete transitions where ∀(q, a, η) ∈
DA : a ∈ ŝig(A)(q). If (q, a, η) is an element of DA, we write q a→ η and action a is said to
be enabled at q. We note enabled(A) : q ∈ QA 7→ enabled(A)(q) where enabled(A)(q) denotes
the set of enabled actions at state q. We also note Steps(A) , {(q, a, q′) ∈ QA × acts(A) ×
QA|∃(q, a, η) ∈ DA, q′ ∈ supp(η)}.

In addition A must satisfy the following conditions
– T (Transition determinism): For every q ∈ QA and a ∈ ŝig(A)(q) there is at most one η(A,q,a) ∈
Disc(QA), such that (q, a, η(A,q,a)) ∈ DA.

– E (Enabled actions tracking): ŝig(A) = enabled(A).
The axiom E has been added for sake of simplicity. Indeed, for every state q ∈ QA, ŝig(A)(q) ⊆
enabled(A)(q), while an adaptation of classic input enabling axiom would be q ∈ QA, in(A)(q) ⊆
enabled(A)(q). Since the signature is dynamic, for any PSIOA that does not verify E, it is always
possible to remove the non-enabled actions of its signature to obtain an equivalent PSIOA verifying
E.

Later, we will define execution fragments as alternating sequences of states and actions with classic
and natural consistency rules. But a subtlety will appear with the composability of a set of au-
tomata at reachable states. Hence, we will define execution fragments after "local composability" and
"probabilistic configuration automata".

3.1.3. Local composition

The main aim of a formalism of concurrent systems is to compose several automata A = {A1, ...,An}
and provide guarantees by composing the guarantees of the different elements of the system. Some
syntactical rules have to be satisfied before defining the composition operation.

Definition 58 (Compatible signatures). Let S = {sigi}i∈I be a set of signatures. Then S is compatible
iff, ∀i, j ∈ I, i 6= j, where sigi = (ini, outi, inti), sigj = (inj , outj , intj), we have: 1. (ini ∪ outi ∪
inti) ∩ intj = ∅, and 2. outi ∩ outj = ∅.

In the framework, automata communicate by shared external actions that cannot be locally triggered
at more than one place. Moreover, internal actions are not shared.

Definition 59 (Composition of Signatures). Let Σ = (in, out, int) and Σ′ = (in′, out′, int′) be compat-
ible signatures. Then we define their composition Σ×Σ = (in∪in′−(out∪out′), out∪out′, int∪int′) 1.

1. not to be confused with Cartesian product. We keep this notation to stay as close as possible to the literature.
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Chapter 3 : Dynamic Probablistic I/O Automata

Signature composition is clearly commutative and associative.

Remark 1. Without a distinction between inputs and outputs, two signatures sig and sig′ would be
compatible (only) under the condition that internal actions are not shared. The resulting external
signature would be the same, i.e. the union of respective sets of external signatures. There is no
additional difference. In this thesis, we kept this notation to be as close as possible from [AL16], but
the entire framework and all the associated results can be translated to Dynamic Probabilistic Labeled
Transition Systems (without explicit distinction between input and output actions) in a straightforward
manner.

Now we can define the compatibility of several automata at a state with the compatibility of their
attached signatures. First, we define compatibility at a state and discrete transition for a set of
automata for a particular compatible state.

Definition 60 (compatibility at a state). Let A = {A1 , ...,An} be a set of PSIOA. A state of A
is an element q = (q1, ..., qn) ∈ QA , QA1 × ... × QAn. We note q � Ai , qi. We say A1, ...,An
are (or A is) compatible at state q if {sig(A1)(q1), ..., sig(An)(qn)} is a set of compatible signatures.
In this case we note sig(A)(q) , sig(A1 )(q1 ) × ... × sig(An)(qn) as per definition 59 and we note
η(A,q,a) ∈ Disc(QA), s.t. ∀a ∈ ŝig(A)(q), η(A,q,a) = η1 ⊗ ... ⊗ ηn where ∀j ∈ [1 ,n], ηj = η(Aj ,qj ,a)
if a ∈ sig(Aj)(qj) and ηj = δqj otherwise. Moreover, we note steps(A) = {(q, a, q′)|q, q′ ∈ QA, a ∈
sig(A)(q), q′ ∈ supp(η(A,q,a))}. Finally, we note q̄A = (q̄A1 , ..., q̄An).

The probabilistic distribution η(A,q,a) is the product of "independent" probabilistic distributions ηj
over respective sets of states QAj of the component Aj of A, triggered by action a at their respective
state q � Aj (with the convention of triggering a Dirac if a is not enabled). If A is compatible at state
q, it does not necessarily mean that A is compatible at every state in supp(η(A,q,a)). Such a condition
will characterize partial-compatibility of A introduced in section 3.4.

Let us note that an action a shared by two automata becomes an output action and not an internal
action after composition. First, it permits the possibility of further communication using a. Second, it
allows associativity. If this property is counter-intuitive, it is always possible to use the classic hiding
operator that "hides" the output actions transforming them into internal actions.

3.1.4. Hiding operator

Definition 61 (hiding operator). Let sig = (in, out, int) be a signature and H a set of actions. We
note hide(sig,H ) , (in, out \H, int ∪ (out ∩H)).

Let A = (QA, q̄A, sig(A), DA) be a PSIOA. Let h : q ∈ QA 7→ h(q) ⊆ out(A)(q). We note hide(A, h) ,
(QA, q̄A, sig′(A), DA), where sig′(A) : q ∈ QA 7→ hide(sig(A)(q), h(q)). Clearly, hide(A, h) is a
PSIOA.

Lemma 1 (hiding and composition are commutative). Let siga = (ina, outa, inta), sigb = (inb, outb, intb)
be compatible signature and Ha, Hb some set of actions, s.t.

– (Ha ∩ outa) ∩ ŝigb = ∅ and
– (Hb ∩ outb) ∩ ŝigb = ∅,

then sig′a , hide(sig,Ha) , (in′a, out′a, int′a) and sig′b , hide(sigb, Hb) , (in′b, out′b, int′b) are compati-
ble. Furthermore, if

– outb ∩Ha = ∅ ,and
– outa ∩Hb = ∅
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3.1 Probabilistic Signature Input/Output Automata (PSIOA)

then sig′a × sig′b = hide(siga × sigb, Ha ∪Hb).

Proof. – compatibility: After the hiding operation, we have:
• in′a = ina, in′b = inb

• out′a = outa \Ha, out′b = outb \Hb

• int′a = inta ∪ (outa ∩Ha), int′b = intb ∪ (outb ∩Hb)
Since outa ∩ outb = ∅, a fortiori out′a ∩ out′b = ∅. inta ∩ ŝigb = ∅, thus if (outa ∩Ha) ∩ ŝigb = ∅,
then int′a ∩ ŝigb = ∅ and with the symetric argument, int′b ∩ ŝiga = ∅. Hence, sig′a and sig′b are
compatible.

– commutativity:
After composition of sig′c = sig′a × sig′b operation, we have:
• out′c = out′a ∪ out′b = (outa \Ha) ∪ (outb \Hb). If outb ∩Ha = ∅ and outa ∩Hb = ∅, then
out′c = (outa ∪ outb) \ (Ha ∪Hb).
• in′c = in′a ∪ in′b \ out′c = ina ∪ inb \ out′c
• int′c = int′a∪int′b = inta∪(outa∩Ha)intb∪(outb∩Hb) = inta∪intb∪(outa∩Ha)∪(outb∩Hb).
If outb ∩Ha = ∅ and outa ∩Hb = ∅, then int′c = inta ∪ intb ∪ ((outa ∪ outb) ∩ (Ha ∪Hb).

and after composition of sigd = siga × sigb
• outd = outa ∪ outb
• ind = ina ∪ inb \ outd
• intd = inta ∪ intb

Finally, after hiding operation sig′d = hide(sigd, Ha ∪Hb) we have :
• in′d = ind

• out′d = outd \Ha ∪Hb = (outa ∪ outb) \ (Ha ∪Hb)
• int′d = intd ∪ (outd ∩ (Ha ∪Hb)) = (inta ∪ intb) ∪ (outd ∩ (Ha ∪Hb))

Thus, if outb ∩Ha = ∅ and outa ∩Hb = ∅
• in′d = in′c

• out′d = out′c

• int′d = int′c

Remark 2. We can restrict the hiding operation to a set of actions included in the set of output actions
of the signature (H ⊆ out). In this case, since we already have outa ∩ outb = ∅ by compatibility, we
immediately have outa ∩ Hb = ∅ and outb ∩ Ha = ∅. Thus to obtain compatibility, we only need
inb ∩Ha = ∅ and ina ∩Hb = ∅. Later, the compatibility of PCA will implicitly assume this predicate
(otherwise the PCA could not be compatible).

In our momentum, we introduce the classic “action renaming” operator.

3.1.5. Action renaming

Action renaming is useful to make automata compatible. This operator is used in the proof of theorem
4 of transitivity of implementation relationship.
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Definition 62 (Action renaming for PSIOA). Let A be a PSIOA and let r be a partial function on
QA × acts(A), s.t. ∀q ∈ QA, r(q) is an injective mapping with ŝig(A)(q) as domain. Then r(A) is
the automata given by:

1. q̄r(A) = q̄A.
2. Qr(A) = QA.
3. ∀q ∈ QA, sig(r(A))(q) = (in(r(A))(q) , out(r(A)) (q) , int(r(A))(q)) with

– out(r(A))(q) = r(out(A)(q)),
– in(r(A))(q) = r(in(A)(q)),
– int(r(A))(q) = r(int (A)(q)) .

4. Dr(A) = {(q, r(a), η)|(q, a, η) ∈ DA} (we note η(r(A),q,r(a)) the element of Disc(Qr(A)) which is
equal to η(A,q,a).

Intuitively, r(A) is just the automaton where each action a has been replaced by action r(a).

Lemma 2 (PSIOA closure under action-renaming). Let A be a PSIOA and let r be a partial function
on QA × acts(A), s.t. ∀q ∈ QA, r(q) is an injective mapping with ŝig(A)(q) as domain. Then r(A)
is a PSIOA.

Proof. We need to show (1) ∀(q, a, η), (q, a, η′) ∈ DA, η = η′ and a ∈ ŝig(A)(q), (2) ∀q ∈ QA,∀a ∈
ŝig(A)(q), ∃η ∈ Disc(QA), (q, a, η) ∈ DA and (3) ∀q ∈ QA : in(A)(q) ∩ out(A)(s) = in(A)(q) ∩
int(A)(q) = out(A)(q) ∩ int(A)(q) = ∅.

– Constraint 1: From definition 62, we have, for any q ∈ Qr(A): ŝig(r(A))(q) = out(r(A))(q) ∪
in(r(A)) (q) ∪ int(r(A))(q) = r(out(A)(q)) ∪ r(in(A)(q)) ∪ r(int(A)(q)) = r(ŝig(A)(q)). Since
A is a PSIOA, we have ∀(q, a, η), (q, a, η′) ∈ DA : a ∈ ŝig(A)(q) and η = η′. From defini-
tion 62, Dr(A) = {(q, r(a), η)| (q, a, η) ∈ DA} Hence, if (q, r(a), η), (q, r(a), η′) are arbitrary
element of Dr(A), then (q, a, η), (q, a, η′) ∈ DA, and so η = η′ and a ∈ ŝig(A)(q). Hence
r(a) ∈ r(ŝig(A)(q)). Since r(ŝig(A)(q)) = ŝig(r(A))(q), we conclude r(a) ∈ ŝig(r(A))(q).
Hence, ∀(q, r(a), η), (q, r(a), η′) ∈ Dr(A) : r(a) ∈ ŝig(r(A))(q) and η = η′. Thus, Constraint 1
holds for r(A).

– Constraint 2: From definition 62, Dr(A) = {(q, r(a), η)|(q, a, η) ∈ DA}, Qr(A) = QA, and for
all q ∈ Qr(A), in(r(A))(q) = r(in(A)(q)). Let q be any state of r(A), and let q ∈ ŝig(r(A))(q).
Then b = r(a) for some a ∈ ŝig(A)(q). We have (q, a, η) ∈ DA for some η, by Constraint 2
of action enabling for A. Hence (q, a, η) ∈ Dr(A). Hence (q, b, η) ∈ Dr(A). Hence Constraint 2
holds for r(A).

– Constraint 3: A is a PSIOA and so satisfies Constraint 3. From this and definition 62 and the
requirement that r be injective, it is easy to see that r(A) also satisfies Constraint 3.
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3.2 Probabilistic Configuration Automata

3.2. Probabilistic Configuration Automata

In previous subsection, we gave a syntactical description of PSIOA, that are automata that probabilis-
tically move from one state to another through triggered actions that belong to a dynamic signature.
Before adressing the semantics of their interactions as we will do in section 3.4, we introduce some
syntactical tools to describe dynamic behaviors. We combine the notion of configuration of [AL16]
with the probabilistic setting of [WSS97, CCK+06a]. A configuration is a set of automata associated
with their current states. This will be a very useful tool to define dynamicity by mapping the state of
an automaton of a certain "layer" to a configuration of automata of the lower layer, where the set of
automata in the configuration can dynamically change from on state of the automaton of the upper
level to another one.

3.2.1. configuration

Definition 63 (Configuration). A configuration is a pair (A,S) where
– A = {A1, ...,An} is a finite set of PSIOA identifiers and
– S maps each Ak ∈ A to a state of Ak.

We note Qconf the set of configurations.

In distributed computing, configuration usually refers to the union of states of all the automata of
the "system". Here, there is a subtlety, since it captures a set of some automata (A) in their current
state (S), but the set of automata of the systems will not be fixed in the time.

Proposition 7. The set Qconf of configurations is countable.

Proof. (1) {A ∈ P(Autids)|A is finite} is countable since Autids is countable, (2) ∀A ∈ Autids,QA
is countable by definition 57 of PSIOA and (3) the cartesian product of countable sets is a countable
set.

We can define compatibility of configuration in the obvious manner, in a consistent manner with
definition 60 of automata compatible at a state.

Definition 64 (Compatible configuration). A configuration (A,S), with A = {A1, ...,An}, is com-
patible iff the set A is compatible at state (S(A1), ...,S(An)) as per definition 60

For sake of convenience, we equip configurations with some useful methods.

Definition 65 (Intrinsic attributes of a configuration). Let C = (A,S) be a compatible configuration.
Then we define

– auts(C) = A represents the automata of the configuration,
– map(C) = S maps each automaton of the configuration with its current state,
– TS(C) = (S(A1), ...,S(An)) yields the tuple of states of the automata of the configuration.
– sig(C) = (in(C), out(C), int(C)) = sig(auts(C))(TS(C)) in the sense of definition 60, is called

the intrinsic signature of the configuration

Here we define a reduced configuration as a configuration deprived of the automata that are in the
very particular state where their current signatures are the empty set. This mechanism will be used
later to capture the idea of the destruction of an automaton.
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Definition 66 (Reduced configuration). reduce(C) = (A′,S′), where A′ = {A|A ∈ A and sig(A)(S(A)) 6=
∅} and S′ is the restriction of S to A′, noted S � A′ in the remaining.

A configuration C is a reduced configuration iff C = reduce(C).

We will define some probabilistic transitions from configurations to others where some automata can
be destroyed or created. To define it properly, we start by defining "preserving transition" where no
automaton is neither created nor destroyed and then we define above this definition the notion of
configuration transition.

Definition 67 (From preserving distribution to intrinsic transition).
– (preserving distribution) Let ηp ∈ Disc(Qconf ). We say ηp is a preserving distribution if it exists

a finite set of automata A, called family support of ηp, s.t. ∀(A′,S′) ∈ supp(ηp),A = A′.
– (preserving configuration transition C

a
⇀ ηp) Let C = (A,S) be a compatible configuration,

a ∈ ŝig(C). Let ηp be the unique preserving distribution of Disc(Qconf ) such that (1) the family
support of ηp is A and (2) ηp

TS↔ η(A,TS(C),a). We say that (C, a, ηp) is a preserving configuration
transition, noted C a

⇀ ηp.
– (ηp ↑ ϕ) Let ηp ∈ Disc(Qconf ) be a preserving distribution with A as family support. Let ϕ be

a finite set of of PSIOA identifiers with A ∩ ϕ = ∅. Let Cϕ = (ϕ, Sϕ) ∈ Qconf with ∀Aj ∈
ϕ, Sϕ(Aj) = q̄Aj . We note ηp ↑ ϕ the unique element of Disc(Qconf ) verifying ηp

u↔ (ηp ↑ ϕ)
with u : C ∈ supp(ηp) 7→ (C ∪ Cϕ).

– (distribution reduction) Let η ∈ Disc(Qconf ). We note reduce(η) the element of Disc(Qconf )
verifying ∀c ∈ Qconf , (reduce(η))(c) = Σ(c′∈supp(η),c=reduce(c′))η(c′)

– (intrinsic transition C a=⇒ϕ η) Let C = (A,S) be a compatible configuration, let a ∈ ŝig(C), let
ϕ be a finite set of of PSIOA identifiers with A∩ϕ = ∅. We note C a=⇒ϕ η, if η = reduce(ηp ↑ ϕ)
with C a

⇀ ηp. In this case, we say that η is generated by ηp and ϕ.

Preserving configuration transition (C, a, ηp) is the intuitive transition for configurations, correspond-
ing to the transition (TS(C), a, η(auts(C),TS(C),a)) (see figure 3.1). The operator ↑ ϕ describes the
deterministic creation of automata in ϕ, who will appear at their respective start states. The reduce
operator enables to remove "destroyed" automata from the possibly returned configurations (see figure
3.2).

Figure 3.1. – Trivial homomorphism between preserving distribution and distribution on states of
automata of its family support.

The homomorphism holds between ηp and η(A,TS(C),a) with C = (A,S) a
⇀ ηp.
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Figure 3.2. – An intrinsic transition

Automaton A1 is destroyed deterministically and automata in ϕ = {A4,A5} are created determinis-
tically. First, we have the preserving distribution ηp s.t. C a

⇀ ηp with ηp
TS↔ η(A,TS(C),a). Second, we

take into account the created automata in ϕ, captured by the distribution ηp ↑ ϕ. Third, we remove
the automata in a particular state with an associated empty signature (A1 in our example). This is
captured by distribution reduce(ηp ↑ ϕ).

3.2.2. probabilistic configuration automata (PCA)

Now we are ready to define our probabilistic configuration automata (see figure 3.3). Such an automa-
ton is a kind of PSIOA that maintains a strong link with a dynamic configuration.

Definition 68 (Probabilistic Configuration Automaton). A probabilistic configuration automaton
(PCA) X consists of the following components:

– 1. A probabilistic signature I/O automaton psioa(X). For brevity, we define QX = Qpsioa(X), q̄X =
q̄psioa(X), sig(X) = sig(psioa(X)),Steps(X) = Steps(psioa(X)), and likewise for all attributes
of psioa(X).

– 2. A configuration mapping config(X) with domain QX and such that, for all q ∈ QX ,
config(X)(q) is a reduced compatible configuration.

– 3. For each q ∈ QX , a mapping created(X)(q) with domain sig(X)(q) and such that ∀a ∈
sig(X)(q), created(X)(q)(a) ⊆ Autids with created(X)(q)(a) finite.

– 4. A hidden-actions mapping hidden-actions(X) with domain QX s.t. ∀q ∈ QX hidden-
actions(X)(q) ⊆ out(config(X)(q)).

and satisfies the following constraints, for every q ∈ QX , C = config(X)(q), H = hidden-actions(X)(q).

– 1. (start states preservation) If config(X)(q̄X) = (A,S), then ∀Ai ∈ A,S(Ai) = q̄Ai.
– 2. (top/down transition preservation) If (q, a, η(X,q,a)) ∈ DX , then ∃η′ ∈ Disc(Qconf ) s.t.
η(X,q,a)

c↔ η′ with C a=⇒ϕ η
′, where ϕ = created(X)(q)(a) and c = config(X).

– 3. (bottom/up transition preservation) If q ∈ QX and C
a=⇒ϕ η′ for some action a, ϕ =

created(X)(q)(a), and reduced compatible probabilistic measure η′ ∈ Disc(Qconf ),
then (q, a, η(X,q,a)) ∈ DX , and η(X,q,a)

c↔ η′ where c = config(X).
– 4. (signature preservation modulo hiding) ∀q ∈ QX , sig(X)(q) = hide(sig(C), H).

This definition, proposed in a deterministic fashion in [AL16], captures the dynamicity of the system.
Each state is linked with a configuration. The set of automata of the configuration can change during
execution. If A ∈ created(X)(q)(a), the sub-automaton A is created from state q by the triggering
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of action a. A sub-automaton A is destroyed if the non-reduced attached configuration distribution
leads to a configuration where A is in a state qφA s.t. ŝig(A)(qφA) = ∅. Then the corresponding reduced
configuration will not hold A. The last constraint states that the signature of a state q of X must
be the same as the signature of its corresponding configuration config(X)(q), except for the possible
effects of hiding operators, so that some outputs of config(X)(q) may be internal actions of X in state
q.

Figure 3.3. – A PCA life cycle.

As for PSIOA, we can define the hiding operator applied to PCA.

Definition 69 (hiding on PCA). Let X be a PCA. Let h : q ∈ QX 7→ h(q) ⊆ out(X)(q).We note
hide(X,h) the PCA X ′ that differs from X only on

– psioa(X ′) = hide(psioa(X), h)
– sig(X ′) = hide(sig(X), h) and
– ∀q ∈ QX = QX′, hidden-actions(X ′)(q) = hidden-actions(X)(q) ∪ h(q).

The notion of local compatibility can be naturally extended to the set of PCA.

Definition 70 (PCA compatible at a state). Let X = {X1, ..., Xn} be a set of PCA. Let q =
(q1, ..., qn) ∈ QX1 × ... × QXn. Let us note Ci = (Ai,Si) = config(Xi)(qi), ∀i ∈ [1, n]. The PCA
in X are compatible at state q iff 2:

1. PSIOA compatibility: psioa(X1), ..., psioa(Xn) are compatible at qX.
2. Sub-automaton exclusivity: ∀i, j ∈ [1 : n], i 6= j : Ai ∩Aj = ∅.
3. Creation exclusivity: ∀i, j ∈ [1 : n], i 6= j,∀a ∈ ŝig(Xi)(qi) ∩ ŝig(Xj)(qj) :

created(Xi)(qi)(a) ∩ created(Xj)(qj)(a) = ∅.

If X is compatible at state q, for every action a ∈ ŝig(psioa(X))(q), we note η(X,q,a) = η(psioa(X),q,a)
and we extend this notation with η(X,q,a) = δq if a /∈ ŝig(psioa(X))(q).

2. We can remark that the conjunction of PSIOA compatibility and sub-automata exclusivity implies the compatibility
of respective configurations as defined later in definition 76
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3.3. A Toy Example: Specification of a Dynamic Reliable Broadcast

We illustrate DPIOA with the example of a distributed task: the Dynamic Byzantine Reliable Broad-
cast [GKK+20]. Intuitively, implementing this task would allow processes to reliably broadcast mes-
sages despite both (1) the presence of a certain fraction of malicious (Byzantine) processes that can
arbitraly deviate from the prescribed protocol and (2) a non-static set of participants that can dy-
namically evolve along the execution. The presentation is progressive. In subsection 3.3.1, we give the
specification of Static Byzantine Reliable Broadcast, where only one (potentially malicious) process
known by everyone can broadcast one unique message in a reliable manner among a known static set
of n participants. We also model an implementation of this task. Then, we very briefly discuss in
subsection 3.3.2 how randomization can appear in the model, with a randomized implementation of
the static Byzantine consensus problem, that guarantees that some processes can agree on a common
value despite the presence of a certain fraction of Byzantine processes. Thereafter, we describe the Dy-
namic Byzantine Reliable Broadcast Problem [GKK+20] and gives a specification in subsection 3.3.3.
Finally, we discuss how randomization can appear in an implementation of a relaxed specification of
the Dynamic Byzantine Reliable Broadcast Problem [GKM+19].

First of all, we explain the pseudo-language to describe an automaton. As in [KLSV06], we assume a
universal set V of variables. A variable represents a location within the state of a system. For each
variable v, we assume a (static) type, which gives the set of values it may take on. A valuation v for
V ′ ⊂ V is a function that associates with each variable v ∈ V ′ a value in type(v). We write val(V ′) the
set of evaluations of V ′. Each automatonA presented in this section is associated with a set of variables
VA and its set of states QA is a set of valuations for this set of variables, i.e. QA ⊆ val(VA). Each
action of an automaton A is associated with conditions on its set of variables VA. A precondition Pre
means that the action is enabled in the state q ∈ val(VA) if and only if it corresponds to an evaluation
of the variables that verifies Pre. A postcondition Post means that if the action is triggered from a
state q ∈ val(VA), then the next state q′ will be the evaluation of variables that corresponds to q to
which we have applied the updates of Post. A post condition can be randomized. For example if there
is a variable v with type(v) = {0, 1}, a postcondition can be written Post: v := rand(0 : 1) to says
that variable v will be updated according to a uniform distribution on {0, 1}, while the other variales
stay unchanged.

3.3.1. Modelisation of Byzantine Reliable Broadcast

Let us assume a static set of n processes P = {Pi1 , ..., Pin} with known ids in a set Ids = {i1, ..., in},
connected by a reliable point-to-point network, i.e. they can directly communicate by message-passing
with the certitude that any message sent will be eventually received. Among processes in P, a clearly
identified source Psrc for some src ∈ Ids want to broadcast an important message. Ideally, we would
like that processes agree on this message. Of course, if there is no doubt that the source is honest,
it is enough for him to simply send a copy of this message to each participant (we say he broadcasts
its message). However, the processes suspect the presence of some traitors among them, that might
even be the source. How to proceed to ensure that (1) if the source is correct, every correct process
eventually deliver its message and (2) if one correct process delivers a message m, then every correct
process eventually delivers m and never deliver another different message, even if the source and some
of its friends are malicious?

This problem [LSP82], often called Byzantine Reliable Broadcast has been widely studied in the
litterature. Imbs and Raynal have proposed a very simple asynchronous solution [IR15] that tolerates
up to t < n/5 Byzantine failures, without randomization nor authentication. Imbs and Raynal present
the specification of the problem as follows:
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The reliable broadcast (denoted RB-broadcast) communication abstraction provides the processes with
two operations denoted RB-Broadcast() and RB-Deliver(). When a process invokes RB-Broadcast(),
we say that it “RB-Broadcasts a message”. Similarly, when a process executes RB-Deliver(), we say
that it “RB-delivers a message”. RB-broadcast is defined by the following properties:

– RB-Validity. If a correct process RB-Delivers the message m from a correct process Pi, then Pi
RB-Broadcast m.

– RB-Integrity. A correct process RB-delivers at most one message from any process Pi.
– RB-Agreement. Given a process Pi, no two correct processes RB-Deliver distinct messages from
Pi

– RB-Termination-1. If a correct process RB-Broadcast a message, all correct processes eventually
RB-Deliver this message.

– RB-Termination-2. If a correct process RB-Delivers a message from Pi (possibly faulty) then all
correct processes eventually RB-Deliver a message from Pi.

A description of this abstraction is given with a pseudo-language in figure 3.5. An intuition is given
with the figures 3.4 and 3.6.

The pseudo-code of the n/5-resilient solution of [IR15] is given in figure 3.7, while its automata-based
description is given in figure 3.8 . The automata-based description of the reliable point-to-point
network is given in figure 3.9.

In figure 3.6, we can see that the process Pi1 is the adversary for the real-world implementation. In
real-ideal paradigm [Lin17], we often compare this situation to an idealized-world, where the users
interact with an ideal specification that also interact with an idealized adversary called the simulator.
This simulator has a very limited power and is often invoked for sake of fair comparison. Its presence
becomes very useful to specify subtle security properties such as privacy.

The natural question, "does the protocol solve the problem?" can be reformulated as follows: "is it
possible for an environment (here the users) to distinguish the ideal world from the real world?", where
the real world is composed of processes exchanging messages through a network to coordinate with
each other and reach a decision.

3.3.2. Static Consensus

The Byzantine Consensus Problem [PSL80] is another agreement problem where the different parties
(1) propose their inputs and (2) have to agree on a common value. Moreover, (3) if all correct parties
propose the same value, then this value has to be decided. It is well-known that a fully asynchronous
solution of this problem is necessarily randomized if it is resilient to at least one crash [FLP85]. The
first fully asynchronous solution of the binary version of the problem has been proposed by Ben-Or
[BO83]. The solution is resilient to up to t < n/5. The figures 3.10 and 3.11 underline the similarities
between distributed tasks (see figures 3.4 and 3.6) .

The solution of Ben-Or is given in figure 3.12. We do not provide the automata-based description
of this solution. We just give the part of the modelisation that concern the potentially probabilistic
transition of step (3)(c).
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(a) BRB ideal without failure

(b) BRB real without failure

Figure 3.4. – Static Non-probabilistic Byzantine Reliable Broadcast
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Static Signature
Input:
{RBcastsrc(m)|src ∈ Ids,m ∈M}
Output:
{Deliveri(src,m)|i, src ∈ Ids,m ∈M}
Steps
Output Deliveri(src,m)
Pre: m ∈ bcastReq
∧(m, i) /∈ delivered
∧(m′ 6= m) /∈ deliveredOnce

Post: delivered.add(m, i)
∧deliveredOnce.add(m)

Variables
corrupted ⊂ Ids, init: ∅
bcastReqCorr ⊂M, init: ∅
bcastReqByz ⊂M, init: ∅
bcastReq ⊂M, init: ∅
deliveredOnce ⊂M, init: ∅
delivered ⊂M× Ids, init: ∅
always:
bcastReq = bcastReqByz ∪ bcastReqCorr

Input D-RBcastsrc(m)
Post: if src /∈ corruptedOnce

bcastReqCorr.add(m)
elif src ∈ corrupted
bcastReqByz.add(m)

Figure 3.5. – Specification of Byzantine Reliable Broadcast

3.3.3. Dynamic Byzantine Reliable Broadcast

The Dynamic Byzantine Reliable Broadcast [GKK+20] is a primitive that extends the (static) Byzan-
tine Reliable Broadcast to the dynamic setting, where the set of participants is dynamically evolving
during the time. Hence, the specification is enriched with the following operations and callbacks:

– D-Joini used outside the system by user with id i to join the system. The operation eventually
returns the associated acknowledgement D-Join-Acki.

– D-Leavei used by a participating user with id i to leave the system. The operation eventually
returns the associated acknowledgement D-Leave-Acki.

We also allow consider the case where it is possible to D-RBBcast and D-RBDeliver several messages.
To do so, a sequence number is associated to every message, and the protocol should guarantee that
two conflicting messages for the same source and the same sequence number cannot be D-BRDelivered
by two corret processes.

The figure 3.13 gives a first intuition of the structure of a potential implementation without any
failure. This implementation consists of the composition of the composition of two DIOA. The first
DIOA is the network (see specification in figure 3.18), while the second DIOA is the dynamic set
of processes. The specification (see figure 3.17) of the dynamic set of processes simply gives (1) the
initial configuration corresponding to the start state and (2) the mechanism of creation. Here, the
creation is always allowed by a passive automaton, called the manager, with one unique state and
all the inputs of the form D-joini() enabling the creation of new processes (see figure 3.15) within
the DIOA representing a dynamic set of processes. A possible automata-based specification of the
failure-free version of the primitive is given in figure 3.14.

Of course, the problem is more interesting with Byzantine failures. An intuition of a possible modelisa-
tion is given in figure 3.19. In this representation, an adversary can corrupt in the flight the processes.
It can also repair the corrupted processes and corrupt new ones. In our modelisation, the corruption
is not direct, but is performed by a kind of handshake. The manager has been replaced by the relay
(see figure 3.22) to handle this handshake. First, the adversary sends a request corrupt-acki to the
relay. Then, the relay corrupts the process Pi that is destroyed and finally the relay acknowledge the
adversary that can create a new process P ′i that will send messages on behalf of the process Pi. Such
an handshake allows the environment to be aware of the different corruptions and so to partition its
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(a) BRB ideal with Byzantine failures

(b) BRB real with Byzantine failures

Figure 3.6. – Static Non-probabilistic Byzantine Reliable Broadcast with Byzantine failures

Figure 3.7. – A simple solution from Imbs and Raynal to Byzantine Reliable Broadcast
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Static Signature
Input:
{BRBcasti(m)|m ∈M} if i = src
{rcvi(j,m′)|j ∈ Ids,m′ ∈M× TAG}
Output:
{BRDeliveri(m)|m ∈M}
{sendi(j,m′)|j ∈ Ids,m′ ∈M× TAG}

Steps
Input BRBcasti(m)
Post: if (INIT,m′ 6= m) /∈ toBcast:

toBcast.add(INIT,m)

Input rcvi(j, (TAG,m))
Post:
if TAG = INIT:

if (WITNESS,m′ 6= m) /∈ toBcast:
toBcast.add(WITNESS,m)

if TAG = WITNESS:
witness[m].add(j)
if |witness[m]| = n− 2t+ 1:
toBcast.add(WITNESS,m)

if |witness[m]| = n− t+ 1:
toDeliver.add(m)

Variables
toBcast ⊂ TAG×M
toDeliver ∈M
sent ⊂ Ids× TAG×M
delivered ∈ {0, 1}
dict witness
witness.keys() ⊂M
witness.values() ⊂ Ids

Constant
n = |Ids|
t < n/5
src ∈ Ids
TAG = {INIT,WITNESS}

Output sendi(j, (tag,m))
Pre: (tag,m) ∈ toBcast

∧(j, (tag,m)) /∈ sent
Post: sent.add(j, (tag,m))

Output BRDeliveri(m)
Pre: toDeliver = m ∧ delivered = 0
Post: delivered = 1

Figure 3.8. – Local Protocol: Process Pi following the solution proposed by Imbs and Raynal.

Static Signature
Input:
{sendi(j,m)|i, j ∈ Ids,m ∈M′}
Output:
{rcvi(j,m)|i, j ∈ Ids,m ∈M′}

Variables
multiset toSend ⊂ Ids2 ×M

Steps
Input sendi(j,m)
Post: toSend.addInstance(i, j,m)

Output rcvi(j,m)
Pre: (j, i,m) ∈ toSend
Post: toSend.removeInstance((j, i,m))

Figure 3.9. – Static Network

observations into the 2 cases with or without an overcorrupted system. This modelisation can help to
show that the real system implements the ideal specification in the sense that an environment cannot
distinguish the two situations (see figure 3.20). We propose a specification of the problem (see figure
3.21) with a naive condition for the overcorruption. The solution proposed in [GKK+20] does not
implement this exact specification, but something similar. This solution has a certain cost in term of
communication complexity. To improve its complexity, we could be tempted to relax the specification
with some probabilistic guarantees. Typically, it is possible to improve significantly the complexity
of (static) Byzantine Reliable Broadcast with randomization [GKM+19]. It is an open problem to
precisely specify and implement a combination of [GKK+20] and [GKM+19] that would be a scalable
Dynamic Probabilistic Byzantine Reliable Broadcast.
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(a) Consensus ideal without failure

(b) Consensus real without failure

Figure 3.10. – Static Probabilistic Consensus without failure
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(a) Consensus ideal with failures

(b) Consensus real with Byzantine failures

Figure 3.11. – Static Probabilistic Consensus with Byzantine failures
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Constant
S = {(0, D), (1, D), ?}
N
t < N/5
Variables
round ∈ N
xP ∈ {0, 1}
2dimension-table delivered2[][]
delivered2[r ∈ N][s ∈ S] ⊂ Ids
...
Steps
...
Input rcvi(j, (2, r, s))
Post: delivered2[r][s].add(j)

if |delivered2[r]| = N − t:
if (a):

...
if (b):

...
else xP := rand(0 : 1)

round ++

Figure 3.12. – BenOr Consensus
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(a) DBRB: Initially 4 processes, but process P3 is about to leave

(b) DBRB: process P3 left, but process P5 is about to join

(c) DBRB: process P5 joined the system

Figure 3.13. – Dynamic Byzantine Reliable Broadcast Real without-failure.

The Manager is just a passive automaton with one unique state and all the inputs of the form D-joini()
enabling the creation of new processes within the DIOA representing a dynamic set of processes.
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Universal Signature
Input:
{D-Joini(), D-Leavei()|i ∈ Ids}
{D-RBcasti(s,m)|i ∈ Ids, s ∈ N,m ∈M}
Output:
{D-Join-Acki, D-Leave-Acki|i ∈ Ids},
{D-RDeliveri(j, s,m)|i, j ∈ Ids, s ∈ N,m ∈M}

Steps
Output D-Join-Acki
Pre: i ∈ entering
Post: installed.add(i)
∧entering.remove(i)

Output D-Leave-Acki
Pre: i ∈ leaving
Post: installed.remove(i)
∧leaving.remove(i)

Output D-RDeliverj(i, s,m)
Pre: j ∈ inside
∧(i, s,m) ∈ bcastReq
∧(i, s,m, j) /∈ delivered
∧(i, s′ 6= s,m) /∈ deliveredOnce

Post: delivered.add(i, s,m, j)
∧deliveredOnce.add(i, s,m)

Variables
installed ⊂ Ids, init: I0

entering ⊂ Ids, init: ∅
leaving ⊂ Ids, init: ∅
inside ⊂ Ids, init: I0

bcastReq ⊂ Ids× N×M, init: ∅
deliveredOnce ⊂ Ids× N×M, init: ∅
delivered ⊂ Ids× N×M× Ids, init: ∅
always:
inside = installed ∪ entering ∪ leaving

Input D-Join()i
Post: if i /∈ inside,

entering.add(i)

Input D-Leave()i
Post: if i ∈ installed,

leaving.add(i)

Input D-RBcasti(s,m)
Post: if i ∈ intalled \ crashed

bcastReq.add(i, s,m)

Figure 3.14. – Specification of Dynamic Reliable Broadcast without failure: DRBideal

Universal Signature
Input:
D-Leavei()
{D-RBcasti(m)|m ∈M}
{rcvi(j,m)|j ∈ Ids,m ∈M}
Output:
D-Join-Acki, D-Leave-Acki
{D-RDeliveri(m)|m ∈M}
{sendi(j,m)|j ∈ Ids,m ∈M}
Internal:

Variables
destroyed ∈ {0, 1}, initially 0

Destruction
q.destroyed = 1⇐⇒ ŝig(Algi)(q) = ∅

Steps
Output D-Leave-Acki
Pre: UNSPECIFIED
Post: destroyed := 1

Figure 3.15. – Local protocol without failure: Process Pi

The steps are unspecified

Universal Signature Steps
Input: Input D-Joini()
D-Joini()

Figure 3.16. – Manager
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Configurations
{C ∈ Qconf |auts(C) ⊂ P({Manager} ∪ {Pi|i ∈ Ids})
initially, auts(Config(Processes)(q̄Processes)) = {Manager} ∪P0

with P0 = {Pi|i ∈ I0}

Creations
created(Processes)(q)(D-Joini()) = {Pi}

Figure 3.17. – Dynamic Set of Processes (DPIOA)

Universal Signature
Input:
{D-Joini,D-Leave-Acki|i ∈ Ids}
{bcasti(m)|i ∈ Ids,m ∈M}
{sendi(j,m)|i, j ∈ Ids,m ∈M}
Output:
{rcvi(j,m)|i, j ∈ Ids,m ∈M}

Steps
Output rcvi(j,m)
Pre: (j, i,m) ∈ toSend
Post: toSend.removeInstance((j, i,m))

Variables
inside ⊂ Ids
multiset toSend ⊂ Ids2 ×M

Steps
Input D-Joini
Post: inside.add(i)

Input D-Leave-Acki
Post: inside.remove(i)

Input sendi(j,m)
Post: toSend.addInstance(i, j,m)

Input bcasti(m)
Post: for each j ∈ inside :
toSend.addInstance(i, j,m)

Figure 3.18. – Network
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Figure 3.19. – Dynamic Byzantine Reliable Broadcast with Byzantine failures
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(a) DBRB ideal with failures

(b) DBRB real-box with Byzantine failures

Figure 3.20. – Dynamic Byzantine Reliable Broadcast with Byzantine failures
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Universal Signature
Input:
{D-Joini(), D-Leavei()|i ∈ Ids}
{D-RBcasti(s,m)|i ∈ Ids, s ∈ N,m ∈M}
{Corrupt-Reqi,Repair-Reqi|i ∈ Ids}
Output:
{D-Join-Acki, D-Leave-Acki|i ∈ Ids},
{D-RDeliveri(j, s,m)|i, j ∈ Ids, s ∈ N,m ∈M}
{Corrupti,Corrupt-Acki,Repairi|i ∈ Ids}

Steps
Output Corrupti
Pre: i ∈ (inside ∩ corruptReq) \ corrupted
Post: corruptedOnce.add(i)
∧corrupted.add(i)
∧corruptReq.remove(i)
∧corruptToAck.add(i)
∧M := {(i, s,m) ∈ bcastReqCorr}
∧bcastReqByz.add(M)
∧bcastReqCorr.remove(M)
∧[|corruptedOnce ∩ inside| ≥ |installed|/3]
=⇒ overcorrupted := 1

Output CorruptAcki
Pre: i ∈ corruptToAck
Post: corruptToAck.remove(i)

Output Repairi
Pre: i ∈ inside ∩ corrupted ∩ repairReq
Post: corrupted.remove(i)

∧ repairReq.remove(i)

Output D-Join-Acki
Pre: i ∈ entering
Post: installed.add(i)
∧entering.remove(i)

Output D-Leave-Acki
Pre: i ∈ leaving
Post: installed.remove(i)
∧leaving.remove(i)
∧[|corruptedOnce ∩ inside| ≥ |installed|/3]
=⇒ overcorrupted := 1

Output D-RDeliverj(i, s,m)
Pre: j ∈ inside
∧(i, s,m) ∈ bcastReq
∧(i, s,m, j) /∈ delivered
∧[(i, s′ 6= s,m) /∈ deliveredOnce
∨overcorrupted == 1]

Post: delivered.add(i, s,m, j)
∧deliveredOnce.add(i, s,m)

Variables
installed ⊂ Ids, init: I0

entering ⊂ Ids, init: ∅
leaving ⊂ Ids, init: ∅
inside ⊂ Ids, init: I0

corruptReq ⊂ Ids, init: ∅
corruptedOnce ⊂ Ids, init: ∅, init: ∅
corrupted ⊂ Ids, init: ∅
corruptToAck ⊂ Ids, init: ∅
bcastReqCorr ⊂ Ids× N×M, init: ∅
bcastReqByz ⊂ Ids× N×M, init: ∅
bcastReq ⊂ Ids× N×M, init: ∅
deliveredOnce ⊂ Ids× N×M, init: ∅
delivered ⊂ Ids× N×M× Ids, init: ∅
overcorrupted ∈ {0, 1}, init: 0
always:
bcastReq = bcastReqByz ∪ bcastReqCorr
inside = installed ∪ entering ∪ leaving

Input CorruptReqi
Post: corruptReq.add(i)

Input RepairReqi
Post: repairReq.add(i)

Input D-Join()i
Post: if i /∈ inside,

entering.add(i)

Input D-Leave()i
Post: if i ∈ installed,

leaving.add(i)

Input D-RBcasti(s,m)
Post: if i ∈ intalled \ corruptedOnce

bcastReqCorr.add(i, s,m)
elif i ∈ inside ∩ corruptedOnce
bcastReqByz.add(i, s,m)

Figure 3.21. – Dynamic Byzantine Reliable Broadcast Specification: DBRBideal 63
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Universal Signature
Input:
{D-Joini()|i ∈ Ids}
{Corrupt-Reqi,Repair-Reqi|i ∈ Ids}
Output:
{Corrupti,Corrupt-Acki,Repairi|i ∈ Ids}

Steps
Output Corrupti
Pre: i ∈ corruptReq
Post: corruptReq.remove(i)

∧corruptToAck.add(i)

Output CorruptAcki
Pre: i ∈ corruptToAck
Post: corruptToAck.remove(i)

Output Repairi
Pre: i ∈ repairReq
Post: repairReq.remove(i)

Variables
corruptReq ⊂ Ids, init: ∅
corrupted ⊂ Ids, init: ∅
corruptToAck ⊂ Ids, init: ∅

Steps
Input CorruptReqi
Post: corruptReq.add(i)

Input RepairReqi
Post: repairReq.add(i)

Input D-Join()i

Figure 3.22. – Relay
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3.4. Executions, reachable states, partially-compatible automata

3.4.1. Executions, reachable states, traces

In previous sections, we have described how to model probabilistic transitions that might lead to the
creation and destruction of some components of the system. In this section, we will define pseudo
execution fragments of a set of automata to model the run of a set A of several dynamic systems
interacting with each other. With such a definition, we will kill two birds with one stone, since it
will allow defining reachable states of A and then compatibility of A as compatibility of A at each
reachable state.

Definition 71 (pseudo execution, reachable states, partial-compatibility). Let A = {A1, ...,An} be a
finite set of PSIOA (resp. PCA). A pseudo execution fragment of A is a finite or infinite sequence
α = q0a1q1a2... of alternating states and actions, such that:

1. If α is finite, it ends with a state. In that case, we note lstate(α) the last state of α.
2. A is compatible at each state of α, with the potential exception of lstate(α) if α is finite.
3. for ever action ai, (qi−1, ai, qi) ∈ steps(A).

The first state of a pseudo execution fragment α is noted fstate(α). A pseudo execution fragment α of
A is a pseudo execution of A if fstate(α) = q̄A. The length |α| of a finite pseudo execution fragment
α is the number of actions in α. A state q of A is said reachable if there is a pseudo execution α s.t.
lstate(α) = q. We note Reachable(A) the set of reachable states of A. If A is compatible at every
reachable state q, A is said partially-compatible.

In [AL16], a compatible set of PCA is compatible at every (potentially non-reachable) state of the
associated Cartesian product. In addition to being slightly less restrictive, our definition has other
advantages. First, it could be more intuitive to model the movement of an agent A (a PSIOA) from
location X (a PCA) to another location Y (another PCA). Indeed, if both X and Y can create the
same PSIOA A, then X and Y could not be compatible according to the corresponding definition
in [AL16], while they can be partially-compatible according to definition 71. Second, this definition
allows the construction of the next chapter 4 which is the main contribution of this manuscript.

Definition 72 (executions, concatenations). Let A be an automaton. An execution fragment (resp.
execution) of A is a pseudo execution fragment (resp. pseudo execution) of {A}. We use Frags(A)
(resp., Frags∗(A)) to denote the set of all (resp., all finite) execution fragments of A. Execs(A) (resp.
Execs∗(A)) denotes the set of all (resp., all finite) executions of A.

We define a concatenation operator _ for execution fragments as follows:
If α = q0 a1 q1 ...anqn ∈ Frags∗(A) and α′ = q0 ′a1 ′q1 ′... ∈ Frags∗(A), we define α_α′ , q0a1q1...anqn

a1′q1′... only if s0 = qn, otherwise α_α′ is undefined. Hence the notation α_α′ implicitly means
fstate(α′) = lstate(α).

Let α, α′ ∈ Frags(A), then α is a proper prefix of α′ iff ∃α′′ ∈ Frags(A) such that α′ = α_α′′ with
α 6= α′. In that case, we note α < α′. We note α ≤ α′ if α < α′ or α = α′ and say that α is a prefix
of α′. Finally, α, α′ are said comparable if either α ≤ α′ or α′ ≤ α.

Definition 73 (traces). The trace of an execution α represents its externally visible part, i.e. the
external actions. Let A be a PSIOA (resp. PCA). Let q0 ∈ QA, (q, a, q′) ∈ Steps(A), α, α′ ∈
Execs∗(A)× Execs(A) with fstate(α′) = lstate(α).

traceA(q0) is the empty sequence, noted λ,

traceA(qaq′) =
{
a if a ∈ êxt(A)(q)
λ otherwise. ,
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traceA(α_α′) = traceA(α)_traceA(α′)

We say that β is a trace of A if ∃α ∈ Execs(A) with β = traceA(α). We note Traces(A) (resp.
Traces∗(A), resp. Tracesω(A)) the set of traces (resp. finite traces, resp. infinite traces) of A. When
the automaton A is understood from context, we write simply traceα.

The projection of a pseudo-execution α on an automaton Ai, noted α � Ai, represents the contribution
of Ai to this execution.

Definition 74 (projection). Let A be a set of PSIOA (resp. PCA), let Ai ∈ A. We define projection
operator � recursively as follows: For every (q, a, q′) ∈ Steps(A), for every α, α′ being two pseudo
executions of A with fstate(α′) = lstate(α).

(q, a, q′) � Ai =
{

(q � Ai), a, (q′ � Ai) if a ∈ ŝig(Ai)(q � Ai)
(q � Ai) = (q′ � Ai) otherwise. ,

(α_α′) � Ai = (α � Ai)_(α′ � Ai)

3.4.2. PSIOA and PCA composition

We are ready to define the composition operator, the most important operator for concurrent systems.
Such a definition is normally simpler but a detour was necessary to integrate PCAs compatible at each
reachable state, but not necessarily at all states of the Cartesian product.

Definition 75 (PSIOA partial-composition). If A = {A1, ...,An} is a partially-compatible set of
PSIOA, with Ai = (QAi , q̄Ai , sig(Ai), DAi), then their partial-composition A1||...||An, is defined to be
A = (QA, q̄A, sig(A), DA), where:

– QA = Reachable(A)

– q̄A = (q̄A1 , ..., q̄An)

– sig(A) : q ∈ QA 7→ sig(A)(q) = sig(A)(q) as per definition 60.

– DA = {(q, a, η(A,q,a))|q ∈ QA, a ∈ ŝig(A)(q)} as per definition 60.

The next definition describes the union of several configurations in the obvious way.

Definition 76 (Union of configurations). Let C1 = (A1,S1) and C2 = (A2,S2) be configurations such
that A1 ∩A2 = ∅. Then, the union of C1 and C2, denoted C1 ∪ C2, is the configuration C = (A,S)
where A = A1 ∪ A2 and S agrees with S1 on A1, and with S2 on A2. Moreover, if C1 ∪ C2 is
a compatible configuration, we say that C1 and C2 are compatible configurations. It is clear that
configuration union is commutative and associative. Hence, we will freely use the n-ary notation
C1 ∪ ... ∪ Cn, whenever ∀i, j ∈ [1 : n], i 6= j, auts(Ci) ∩ auts(Cj) = ∅.

Lemma 3. Let C1 = (A1,S1) and C2 = (A2,S2) be configurations such that A1 ∩ A2 = ∅. Let
C = (A,S) = C1 ∪ C2 be a compatible configuration. Then sig(C) = sig(C1)× sig(C2) (in the sense
of definition 59).

Proof.
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out(C) =
⋃
Ak∈A

out(Ak)(S(Ak))

= (
⋃
Ai∈A1

out(Ai)(S(Ai))) ∪ (
⋃
Aj∈A2

out(Aj)(S(Aj)))

= (
⋃
Ai∈A1

out(Ai)(S1(Ai))) ∪ (
⋃
Aj∈A2

out(Aj)(S2(Aj)))

= out(C1) ∪ out(C2)

in(C) =
⋃
Ak∈A

in(Ak)(S(Ak)) \ out(C)

= (
⋃
Ai∈A1

in(Ai)(S(Ai))) ∪ (
⋃
Aj∈A2

in(Aj)(S(Aj))) \ out(C)

= (
⋃
Ai∈A1

in(Ai)(S1(Ai))) ∪ (
⋃
Aj∈A2

in(Aj)(S2(Aj))) \ out(C)

= in(C1) ∪ in(C2) \ (out(C1) ∪ out(C2))

int(C) =
⋃
Ak∈A

int(Ak)(S(Ak))

= (
⋃
Ai∈A1

int(Ai)(S(Ai))) ∪ (
⋃
Aj∈A2

int(Aj)(S(Aj)))

= (
⋃
Ai∈A1

int(Ai)(S1(Ai))) ∪ (
⋃
Aj∈A2

int(Aj)(S2(Aj)))

= int(C1) ∪ int(C2)

Partial-composition can be extended to PCA in the obvious manner.

Definition 77 (PCA partial-composition). If X = {X1, ..., Xn} is a partially-compatible set of PCA,
then their partial-composition X1||...||Xn, is defined to be the PCA X (proved in theorem 2 in section
3.5) s.t. psioa(X) = psioa(X1)||...||psioa(Xn) and ∀q ∈ QX :

– config(X)(q) =
⋃

i∈[1,n]
config(Xi)(q � Xi)

– ∀a ∈ ŝig(X)(q), created(X)(q)(a) =
⋃

i∈[1,n]
created(Xi)(q � Xi)(a),

with the convention created(Xi)(qi)(a) = ∅ if a /∈ ŝig(Xi)(qi)
– hidden-actions(q) =

⋃
i∈[1,n]

hidden-actions(Xi)(q � Xi)
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3.5. Toolkit for configurations & PCA closure under composition

In this section, we define some tools to manipulate measure preserving bijections between probability
distributions (relations of the form η

f↔ η′). These tools will be used to prove (1) the closure of PCA
under parallel composition (theorem 2) and (2) some intermediate results in the proof of monotonicity
of dynamic creation/destruction of PSIOA with implementation relationship.

Merge, join, split Next definition introduces join function that returns the product of of several
probabilistic distributions.

Definition 78 (join). Let η̃ = (η1, ..., ηn) ∈ Disc(Q1) × ... × Disc(Qn) with each Qi being a set. We

define, join(η̃):
{
Q1 × ...×Qn → [0, 1]

q̃ 7→ (η1 ⊗ ...⊗ ηn)(q̃)

The next lemma simply reduces the product measure of several measures over configurations into the
associated join measure over the associated union of configurations.

Lemma 4 (Joint preserving probability distribution for union of configuration). Let n ∈ N, let
{Ck}k∈[1:n] be a set of compatible configurations and C0 =

⋃
k∈[1:n]

Ck. Let (η0
p, ..., η

n
p ) ∈ Disc(Qconf )n+1

s.t. ∀k ∈ [0 : n], Ck
a
⇀ ηkp if a ∈ ŝig(Ck) and ηkp = δCk otherwise.

Then, ∀(C ′1, ..., C ′n) ∈ Qnconf , s.t. ∀k ∈ [1 : n], aut(C ′k) = aut(Ck),

η0
p(

⋃
k∈[1:n]

C ′k) = (η1
p ⊗ ...⊗ ηnp )(C ′1, ..., C ′n) .

Proof. We note {Ck = (Ak,Sk)}k∈[1:n], C0 = (A0,S0), qk = TS(Ck) for every k ∈ [0 : n]. We note
(I,J ) the partition of [1 : n] s.t. ∀i ∈ I, a ∈ ŝig(Ci) and ∀j ∈ J , a /∈ ŝig(Cj). Since A0 =

⋃
k∈[1:n]

Ak

and S0 agrees with Sk on A ∈ Ak for every k ∈ [1 : n], we have ηA0,q0,a = η(A1,q1,a) ⊗ ... ⊗ η(An,qn,a)

with the convention η(Aj ,qj ,a) = δqj , ∀j ∈ J . Furthermore, for every k ∈ [1, n], ηkp
TS↔ η(Ak,qk,a), that

is for every (C ′k, q′k) ∈ Qconf × QAk
with q′k = TS(C ′k), ηkp(C ′k) = η(Ak,qk,a)(q′k). Hence for every

((C ′1, ..., C ′n), (q′1, ..., q′n)) ∈ Qnconf × QA0 with q′1 = TS(C ′1), ..., q′n = TS(C ′n), η(A0,q0,a)((q′1, ..., q′n)) =
(η(A1,q1,a) ⊗ ...⊗ η(An,qn,a)))((q′1, ..., q′n)) = (η1

p ⊗ ...⊗ ηnp ((C ′1, ..., C ′n)) (*).
By definition of η0

p, ∀(C ′0, q′0) ∈ Qconf × QA0 , with q′0 = TS(C ′0), η(A0,q0,a)(q′0) = η0
p(C ′0). Since we

deal with preserving distribution and A0 =
⋃

k∈[1:n]
Ak, q′0 is of the form (q′1, ..., q′n) with q′k ∈ QAk

and

verifies C ′0 = C ′1 ∪ ... ∪ C ′n with auts(C ′k) = Ak and TS(C ′k) = q′k (**).
Hence we compose (*) and (**) to obtain for every configuration C ′0 = (A0,S′0), for every finite set of
configurations {C ′k = (Ak,S′k)}k∈[1:n], s.t. C ′0 =

⋃
k∈[1:n]

C ′k, then η0
p(C ′0) = (η1

p ⊗ ...⊗ ηnp )((C ′1, ..., C ′n)).

The merged measure introduced in next definition represents the probability to obtain a certain
configuration from the product of a tuple of several measures. Let us remark that a configuration can
be obtained by different union operations (e.g. (C1∪C2)∪C3 = C1∪ (C2∪C3) or C1∪C2 = C2∪C1).
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Definition 79 (merge). Let η̃ = (η1, ...ηn) ∈ Disc(Qconf )n. We define

merge(η̃):


Qconf → [0, 1]
C 7→

∑
(C′1,...,C′n)∈Qn

conf

join(η̃)((C ′1, ..., C ′n)) · 1(C′1∪...∪C′n)=C

Here, we give a few results for merging operation applied to preserving transitions triggered from
compatible configurations. In that case, every configuration C ′ reacheable by the merge measure
merge(η̃p) with η̃p = (η1

p, ..., η
n
p ) can be obtained with a unique decomposition (C ′1, ..., C ′n) where each

element C ′i is reacheable from the preserving distribution ηip. This unique decomposition is noted
split η̃p(C

′) and is a measure-preserving homomorphism between merge(η̃p) and join(η̃p).

Lemma 5 (Preserving-merging). Let n ∈ N, let {Ck}k∈[1:n] be a set of compatible configurations. Let
η̃p = (η1

p, ..., η
n
p ) ∈ Disc(Qconf )n. Assume ∀k ∈ [1 : n], if a ∈ ŝig(Ck), then Ck

a
⇀ ηkp and otherwise,

ηkp = δCk .

Then, ∀C ′0 ∈ supp(merge(η̃p)), there exists a unique (C ′1, ..., C ′n), noted split η̃(C ′0), s.t.

(a) C ′0 =
⋃

k∈[1:n]
C ′k and (b) ∀k ∈ [1, n], C ′k ∈ supp(ηkp).

We note split η̃ :
{

supp(merge(η̃p)) → supp(η1
p)× ...× supp(ηnp )

C ′0 7→ split η̃p(C
′
0)

Moreover, merge(η̃p)
s↔ join(η̃p) with s = split η̃p

Proof. (Uniqueness) Let us imagine two candidates (C ′1, ..., C ′n) and (C ′′1 , ..., C ′′n) verifying both (a)
and (b). Let k, ` ∈ [1 : n], k 6= `. First, by compatibility of C0, ϕk ∩ ϕ` = ∅. Hence auts(C ′k) ∩
auts(C ′′` ) = auts(Ck) ∩ auts(C`) = ∅. Since auts(

⋃
k∈[1:n]

C ′k) = auts(
⋃

k∈[1:n]
C ′k), ∀k ∈ [1 : n],

auts(C ′k) = auts(C ′′k ). By equality, ∀k ∈ [1 : n], map(C ′k) = map(C ′′k ) and so ∀k ∈ [1 : n],
C ′k = C ′′k . (Existence) By construction of merge. By uniqueness and existence properties, s = split η̃p
is then a bijection from supp(merge(η̃p)) and supp(η1

p) × ... × supp(ηnp ). Let C ′0 ∈ supp(merge(η̃p)).
By definition merge(η̃p)(C ′0) =

∑
(C′1,...,C′n)∈Qn

conf

join(η̃p)((C ′1, ..., C ′n)) · 1(C′1∪...∪C′n)=C′0 . By bijectivity,

merge(η̃p)(C ′0) = join(η̃p)(split η̃p(C
′
0)).

Here, we define deter-dest(C, a) that represents the set of automata that will be deterministically
destroyed from configuration C if the action a is triggered.

Definition 80 (deter-dest). Let C = (A,S) be a configuration. For every A ∈ A, we note q = S(A).
Let ϕ ∈ P(Autids). We define deter-dest(C, a) = {A ∈ A|ηA,qA,a = δ

qφA
} if a ∈ ŝig(A)(q) and ∅

otherwise.

This last definition allows a generalization of intrisinc transitions where the triggering of an action a
shared by two compatible configurations C1 and C2 can deterministically destroys automaton A from
C1 and creates A in C2 at the same time. Such a mechanism is useful to describe the motion of an
agent A from one place to another one in one atomic step. The results of this subsection tolerates
this extension, but it can be ignored in a first reading.

The next lemma gives the main results used in the proof of theorem 2 of closure of PCA under
composition. It proves the soundness of several intuitive merging operations.
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Lemma 6 (Merging). Let n ∈ N, Let (ϕ1, ..., ϕn) ∈ P(Autids)n with ∀k, ` ∈ [1 : n], ϕk ∩ ϕ` = ∅.
Let {Ck}k∈[1:n] be a set of compatible configurations. Let η̃ = (η1, ..., ηn) ∈ Disc(Qconf )n. Assume
∀k ∈ [1 : n], if a ∈ ŝig(Ck), then Ck

a=⇒ϕk ηk and otherwise, ηk = δCk and ϕk = ∅. We note
ϕ0 =

⋃
k∈[1:n]

ϕk and C0 =
⋃

k∈[1:n]
Ck.

1. Assume, ∀k, ` ∈ [1 : n], k 6= `, ϕk ∩ auts(C`) ⊆ deter-dest(C`, a).
a) ∀C ′0 ∈ supp(merge(η̃)), there exists a unique (C ′1, ..., C ′n), noted split η̃(C ′0), s.t.

(a) C ′0 =
⋃

k∈[1:n]
C ′k and (b) ∀k ∈ [1, n], C ′k ∈ supp(ηk).

We note split η̃ :
{

supp(merge(η̃)) → supp(η1)× ...× supp(ηn)
C ′0 7→ split η̃(C ′0)

b) merge(η̃) s↔ join(η̃) with s = split η̃
c) merge(η̃) = reduce(merge(η̃p) ↑ ϕ0).
d) C0

a=⇒ϕ0 merge(η̃) if a ∈ ŝig(C0) and merge(η̃) = δC0 otherwise.
2. Assume ∀C ′0 ∈ supp(merge(η̃)), C ′0 is compatible. Then, ∀k, ` ∈ [1 : n], k 6= `, ϕk ∩ auts(C`) ⊆

deter-dest(C`, a).

Proof. 1.

a) Indeed, let us imagine two candidates (C ′1, ..., C ′n) and (C ′′1 , ..., C ′′n) verifying both (a) and
(b). Let k, ` ∈ [1 : n], k 6= `. By contradiction, let A ∈ auts(C ′k) ∩ auts(C ′′` ). By
compatibility, A /∈ auts(Ck) ∩ auts(C`). W.l.o.g., A ∈ ϕk ∩ auts(C`). By assumption
A ∈ deter-dest(C`, a) and so mathcalA /∈ auts(C ′′` ) which leads to a contradiction. Hence,
∀k ∈ [1 : n], auts(C ′k) = auts(C ′′k ). Since auts(

⋃
k∈[1:n]

C ′k) = auts(
⋃

k∈[1:n]
C ′k), ∀k ∈ [1 : n],

auts(C ′k) = auts(C ′′k ). By equality, ∀k ∈ [1 : n], map(C ′k) = map(C ′′k ) and so ∀k ∈ [1 : n],
C ′k = C ′′k . The existence comes from the construction of join.

b) The fact that s = split η̃ is a bijection from supp(merge(η̃)) and supp(η1) × ... × supp(η1)
comes from the existence and the uniqueness of pre-image proved in item 1a. Let C ′0 ∈
supp(merge(η̃)).
By definition merge(η̃)(C ′0) =

∑
(C′1,...,C′n)∈Qn

conf

join(η̃)((C ′1, ..., C ′n)) · 1(C′1∪...∪C′n)=C′0 . By bi-

jectivity, merge(η̃)(C ′0) = join(η̃)(split η̃(C ′0)).
c) We want to show that merge(η̃) , merge((reduce(η1

p ↑ ϕ1), ..., (reduce(ηnp ↑ ϕn)) =
reduce(merge(η̃p) ↑

⋃
k∈[1:n]

ϕk) , reduce(merge(η̃p) ↑ ϕ0). Intuitively, it comes from 1b

that gives merge(η̃) s↔ join(η̃) with s = split η̃ and ∀k ∈ [1 : n], ηk = reduce(ηkp ↑ ϕk), with
∀k, ` ∈ [1 : n], k 6= `, ϕk ∩ ϕ` = ∅. Let us elaborate.
Let C ′0 ∈ supp(merge(η̃)). merge(η̃)(C ′0) = join(η̃)(split η̃(C ′0)) by 1b.
Hence, merge(η̃)(C ′0) = Πk∈[1:n](reduce(ηkp ↑ ϕk)(C ′k) with split η̃(C ′0) = (C ′1, ..., C ′n). Thus,
for every k ∈ [1, n], C ′k = (A′k,S′k) with (i) A′k = A′′k ∪ ϕk, (ii) ∀A ∈ ϕk,S′k(A) = q̄A (iii)
∀A ∈ A′k,S′k(A) 6= qφA (*). This leads to merge(η̃)(C ′0) = Πk∈[1:n](reduce(ηkp))(C ′′k ) with
C ′′k = (A′′k,S′′k) where S′′k = S′k � A′′k.
Hence,merge(η̃)(C ′0) = Πk∈[1:n](

∑
C′′
k,`
,reduce(C′′

k,`
)=C′′

k

ηkp(C ′′k,`)) where every C ′′k,` = (A′′k,`,S′′k,`) ∈

supp(ηkp) with reduce(C ′′k,`) = C ′′k verifies A′′k,` = Ak and S′′k,` � A′′k = S′′k (**).
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Second, for every k ∈ [1 : n], we note Ad
k = deter-dest(Ck, a), ηkp,d the unique preserving

distribution such that ηkp
destk↔ ηkp,d with destk : (A′k,S′k) 7→ (A′k \Ad

k,S′k � (A′k \Ad
k)) and

we note ηkp,d,↑ = ηkp,d ↑ ϕk . We note η̃p,d,↑ = (η1
p,d,↑, ..., η

n
p,d,↑). Clearly, (reduce(merge(η̃p) ↑

ϕ0)) = (reduce(merge(η̃p,d,↑)).
(reduce(merge(η̃p,d,↑))(C ′0) =

∑
C′0,d,`,reduce(C

′
0,d,`)=C

′
0

(merge(η̃p,d,↑))(C ′0,d,`), where every C ′0,d,` =

(A′0,d,`,S′0,d,`) ∈ supp((merge(η̃p,d,↑)) with reduce(C ′0,d,`) = C ′0 verifies A′0,` = A0 \
⋃
k[1:n]

Ad
k

and S′0,d,` � A′0 = S′0.
By lemma 5, for each `, (merge(η̃p,d,↑))(C ′0,d,`) = split η̃p,d,↑(C

′
0,d,`) = Πk∈[1:n]η

k
p,d,↑(C ′′k,d,`),

with split η̃p,d,↑(C
′
0,d,`) , (C ′1,d,`, ..., C ′n,d,`).

Moreover, every C ′k,d,` , (A′k,d,`,S′k,d,`) ∈ supp(ηkp,d ↑ ϕk)) with reduce(C ′k,d,`) = C ′k,d,
A′k,d,` = (Ak \ Ad

k) ∪ ϕk, S′k,d,` � A′k = S′k. We obtain (reduce(merge(η̃p,d,↑))(C ′0) =∑
C′0,d,`,reduce(C

′
0,d,`)=C

′
0

(join(η̃p,d,↑)(split η̃p,d,↑(C
′
0,d,`))) and so

(reduce(merge(η̃p,d,↑))(C ′0) =
∑

C′0,d,`,reduce(C
′
0,d,`)=C

′
0

(Πk∈[1:n](ηkp,d,↑)(C ′k,d,`)) (***).

Clearly, for every k ∈ [1 : n], (ηkp ↑ ϕk)
destk↔ ηkp,d,↑.

Combined with (**) and (***), we find merge(η̃)(C ′0) = (reduce(merge(η̃p) ↑ ϕ))(C ′0) for
every C ′0 ∈ supp(merge(η̃)), which ends the proof.

d) If a /∈ ŝig(C0), the result is trivial. Assume a ∈ ŝig(C0) Let η̃p = (η1
p, ..., η

n
p ) ∈ Disc(Qconf )n

s.t. ∀k ∈ [1 : n], Ck
a
⇀ ηkp if a ∈ ŝig(Ck) and ηkp = δCk otherwise. For every k ∈

[1 : n], ηk = reduce(η1
p ↑ ϕk). By compatibility of C0, for every k, ` ∈ [1, n], k 6= `,

Ap
k ∩ Ap

` = ∅. Hence, we can apply lemma 4 and we have C0
a
⇀ merge(η̃p). Thus,

C0
a=⇒ϕ0 reduce(merge(η̃p) ↑ ϕ0). Finally, merge(η̃) = reduce(merge(η̃p) ↑ ϕ0) by 1c.

2. By contradiction. W.l.o.g., let us assume A ∈ ϕk ∩ auts(C`) \ deter-dest(C`, a). Since C is
compatible, A /∈ Ak ∩A`. By definition of deter-dest it exists (C ′k, C ′`) ∈ supp(ηk) × supp(η`),
A ∈ auts(C ′k)∩auts(C ′`) and C ′k∪C ′` is not compatible. So it exists (C ′1, ..., C ′n) ∈ supp(η1⊗...⊗ηn)
s.t. (C ′1 ∪ ... ∪ C ′n) is not compatible.

trivial results about homomorphisms between probability measures Before tackling the theorem 2
of closure of PCA under composition, we gives a few trivial results about measure-preserving bijections
between two measures.

First, the relationship of measure-preserving bijection between two measures is shown to be transitive
and symmetric.

Lemma 7. Let (η1, η2, η3) ∈ Disc(Q1)×Disc(Q2)×Disc(Q3), with Qi being a set for each i ∈ {1, 2, 3}.
Let f : Q1 ⇀ Q2 and g : Q1 ⇀ Q2 defined on supp(η1) and supp(η2) respectively. Let f̃ (resp. g̃)
denotes the restriction of f (resp. g) on supp(η1) (resp. supp(η2)).

If η1
f↔ η2 and η2

g↔ η3, then

1. η1
h↔ η3 where the restriction h̃ of h on supp(η1) verifies h̃ = g̃ ◦ f̃ and

2. η2
k↔ η1 where the restriction k̃ of k to supp(η2) verifies k̃ = f̃−1.
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Proof.
– (bijectivity) The composition of two bijections is a bijection and the reverse function of a bijection

is a bijection.
– (measure preservation) In the first case, ∀q ∈ supp(η1), η1(q) = η2(f(q)) with f(q) ∈ supp(η2)

which means η2(f(q)) = η3(g(f(q))). In the second case ∀q′ ∈ supp(η2),∃!q ∈ supp(η1), η1(q) =
η2(q′ = f̃(q)) and hence ∀q′ ∈ supp(η2), η2(q′) = η1(q = f̃−1(q′)).

Second, the relationship of measure-preserving bijection between two measures is shown to be preserved
by join operation.

Lemma 8 (correspondence preservation for joint probability). Let η̃ = (η1, ..., ηn) ∈ Disc(Q1)× ...×
Disc(Qn), η̃′ = (η′1, ..., η′n) ∈ Disc(Q′1)× ...× Disc(Q′n) with each Qi (resp. Q′i) being a set. For each
i ∈ [1 : n], let fi : Qi ⇀ Q′i, where dom(fi) ⊆ supp(ηi), with ηi

fi↔ η′i.

Then join(η̃) f↔ join(η̃′) with f :
{
Q1 × ...×Qn ⇀ range(f1 )× ...× range(fn)

(x1, ..., xn) 7→ (f1(x1), ..., fn(xn)) .

Proof. The restriction f̃ of f on supp(join(η̃)) = supp(η1) × ... × supp(ηn) is still a bijection and
∀x = (x1, ..., xn) ∈ dom(f1) × ... × dom(fn), join(η̃)(x) = η1(x1) · ... · ηn(xn) = η′1(f1(x1)) · ... ·
η′n(fn(xn)) = join(η̃′)(f(x1, ..., xn)).

PCA closure under composition Now we are ready to prove the theorem that claims that a compo-
sition of PCA is a PCA.

Theorem 2 (PCA closure under composition). Let X1, ..., Xn, be partially-compatible PCA. Then
X = X1||...||Xn is a PCA.

Proof. We need to show that X verifies all the constraints of definition 68.

– (Constraint) 1: The demonstration is the same as the one in [AL16], section 5.1, proposition
21, p 32-33. Let q̄X and (A,S) = config(X)(q̄X). By the composition of psioa, then q̄X =
(q̄X1 , ..., q̄Xn). By definition, config(X)(q̄X) = config(X1)(q̄X1) ∪ ... ∪ config(Xn)(q̄Xn). Since
for every j ∈ [1 : n], Xj is a configuration automaton, we apply constraint 1 to Xj to conclude
S(A`) = q̄A` for every A` ∈ auts(config(Xj)(q̄Xj ).
Since (auts(config(X1)(q̄X1), ..., auts(config(Xn)(q̄Xn)) is a partition of A by definition of com-
position, S(A`) = q̄A` for every A` ∈ A which ensures X verifies constraint 1.

– (Constraint 2)
Let (q, a, η(X,q,a)) ∈ DX . We will establish ∃η′ ∈ Disc(Qconf ) s.t. η(X,q,a)

c↔ η′ where c =
config(X) and config(X)(q) a=⇒ϕ η

′ with ϕ = created(X)(q)(a).
For brevity, let Pi = psioa(Xi) for every i ∈ [1 : n]. By definition 77 of PCA compositon,
psioa(X) = psioa(X1)||...||psioa(Xn) = P1||...||Pn. By definition 196 of PSIOA composition,
q = (q1, ..., qn) ∈ QP1 × ...×QPn , while a ∈

⋃
i∈[1:n]

ŝig(Pi)(qi) and ηX,q,a = ηP1,q1,a ⊗ ...⊗ ηPn,qn,a

with the convention ηPi,qi,a = δqi if a /∈ ŝig(Pi)(qi).
Let (I,J ) be a partition of [1 : n] s.t. ∀i ∈ I, a ∈ ŝig(Pi)(qi) and ∀j ∈ J , a /∈ ŝig(Pj)(qj). Then
by PCA top/down transition preservation, it exists η′i ∈ Disc(Qconf ) s. t. ηXi,qi,a = ηPi,qi,a

ci↔ η′i
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with ci = config(Xi) and config(Xi)(qi)
a=⇒ϕi η

′
i with ϕi = created(Xi)(qi)(a). For every

j ∈ J , we note ϕj = ∅ and η′j = δconfig(Xj)(qj) that verifies δqj
cj↔ η′j with cj = config(Xj).

We note η̃′ = (η′1, ..., η′n) and ϕ =
⋃

i∈[1:n]
ϕi. By definition 77 of PCA composition, ϕ =

created(X)(q)(a).
We have ηX,q,a

c′↔ η′ with c′ : q = (q1, ..., qn) 7→ (c1(q1), ..., cn(qn)) by lemma 8.
Moreover merge(η̃′) s↔ join(η̃′) with s = split η̃ by lemma 6, item 1b.
So ηX,q,a

c↔ merge(η̃′) with c = s−1 ◦ c′ = config(X).
Moreover we have config(X)(q) a=⇒ϕ merge(η̃′) by lemma 6, item 1d.

– (Constraint 3)
Let q ∈ QX , C = config(X)(q), a ∈ ŝig(X)(q), ϕ = created(X)(q)(a) that verify C a=⇒ϕ η

′.
We need to show that it exists (q, a, η(X,q,a)) ∈ DX s.t. η(X,q,a)

c↔ η′ with c = config(X).
For brevity, let Pi = psioa(Xi) for every i ∈ [1 : n]. By definition 77 of PCA composition
psioa(X) = psioa(X1)||...||psioa(Xn) = P1||...||Pn. By definition 196 of PSIOA composition,
q = (q1, ..., qn) ∈ QP1 × ...×QPn , while a ∈

⋃
i∈[1:n]

ŝig(Pi)(qi).

Let (I,J ) be a partition [1 : n] s.t. ∀i ∈ I, a ∈ ŝig(Pi)(qi) and ∀j ∈ J , a /∈ ŝig(Pj)(qj).
For every i ∈ I, we note ϕi = created(Xi)(qi)(a),while for every j ∈ J , we note ϕj = ∅ and
η′j = δconfig(Xj)(qj) that verifies δqj

cj↔ η′j with cj = config(Xj).
We note ϕ = created(X)(q)(a). By pca-composition definition, ϕ =

⋃
k∈[1:n]

ϕk. For every k ∈ [1 :

n], we note Ck = config(Xk)(qk) and for every i ∈ I, η′i ∈ Disc(Qconf ) s.t. Ci
a=⇒ϕi η

′
i. We

note η̃′ = (η′1, ..., η′n)
By constraint 3 (bottom/up transition preservation), ∀i ∈ I, ∃(qi, a, ηXi,qi,a) ∈ DXi s.t. ηXi,qi,a

ci↔
η′i with ci = config(Xi). by lemma 8, ηX,q,a = ηX1,q1,a ⊗ ... ⊗ ηXn,qn,a

c′↔ η′1 ⊗ ... ⊗ η′n =
join(η̃′) with the convention ηXj ,qj ,a = δqj for j ∈ J and c′ : q = (q1, ..., qn) ∈ states(X) 7→
(c1(q1), ..., cn(qn)).
By partial-compatibility, for every C ′ ∈ supp(merge(η̃′)), C ′ is compatible. Hence we can apply
lemma 6, item 1b, which gives merge(η̃′) s↔ join(η̃′) with s = split η̃′ . Hence ηX,q,a

c′′↔ merge(η̃′)
with c′′ = s−1◦c′, that is ηX,q,a

c↔ η′ with c = config(X) and the restriction of c′′ on supp(ηX,q,a)
is c. We can apply lemma 6 again, but for item 1d, which gives C a=⇒ϕ merge(η̃′).

– (Constraint 4).
Let q = (q1, ..., qn) ∈ QX . For every i ∈ [1, n], we note hi = hidden-actions(Xi)(qi), Ci =
config(Xi)(qi), h =

⋃
i∈[1,n]

hi and C = config(X)(q). Since X1, ..., Xn are compatible at state

q, we have both {Ci|i ∈ [1, n]} compatible and ∀i, j ∈ [1, n], in(Ci) ∩ hj = ∅. By compatibility,
∀i, j ∈ [1, n], i 6= j, out(Ci)∩out(Cj) = int(Ci)∩ ŝig(Cj) = ∅, which finally gives ∀i, j ∈ [1, n], i 6=
j, ŝig(Ci) ∩ hj = ∅.
Hence, we can apply lemma 1 of commutativity between hiding and composition to obtain
hide(sig(C1)× ....× sig(Cn), h1 ∪ ...∪ hn) = hide(sig(C1), h1)× ...× hide(sig(Cn), hn) where ×
has to be understood in the sense of definition 59 of signature composition.
That is sig(psioa(X))(q) = sig(psioa(X1))(q1)) × .... × sig(psioa(Xn))(qn)), as per definition
59, with sig(psioa(X))(q) = hide(sig(config(X)(x)), h). Furthermore h ⊆ out(config(X)(q)),
since ∀i ∈ [1, n], hi ⊆ out(Ci). This terminates the proof.
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3.6. Scheduler, measure on executions, implementation

In previous sections we have describe a semantics for the behaviours of interacting dynamic probabilis-
tic systems. Namely, we have shown theorem 2 that the composition of two PCA is a PCA and we gave
some tools to handle executions of a PCA. However, we are still unable to express the probability of
the occurrence of an event for a particular PCA. As a matter of fact, an inherent pure non-determinism
appears in concurrent systems. Indeed, after composition (or even before), it is natural to obtain a
state with several enabled actions. The most common case is the reception of two concurrent messages
in flight from two different processes. This pure non-determinism is desirable to capture our lack of
knowledge about the real worl, but it must be solved if we want to define a probability measure on
the automata executions and be able to say whether a situation is likely to occur or not. To solve the
pure non-determinism, we invoke the well-known scheduler, an abstract entity that chooses the next
enabled action to trigger after a certain finite execution. For example, if Alice broadcasts the same
message to Bob and Carol and the two possible orders of reception are possible, then this is the role
of the scheduler to specify who will first receive the message among Bob and Carol.

3.6.1. General definition and probabilistic space (Frags(A),FFrags(A), εσ,µ)

A scheduler is hence a function that takes an execution fragment as input and outputs the probability
distribution on the set of transitions that will be triggered. We reuse the formalism from [Seg95b]
with the syntax from [CCK+18].

Definition 81 (scheduler). A scheduler of a PSIOA (resp. PCA) A is a function

σ : Frags∗(A) → SubDisc(DA) such that (q, a, η) ∈ supp(σ(α)) implies q = lstate(α). We note
schedulers(A) the set of schedulers of A.

Here SubDisc(DA) is the set of discrete sub-probability distributions on DA. Loosely speaking, σ
decides (probabilistically) which transition to take after each finite execution fragment α. Since this
decision is a discrete sub-probability measure, it may be the case that σ chooses to halt after α with
non-zero probability: 1 − σ(α)(DA) > 0. If we want a deterministic scheduler, it suffices to impose
that for each finite execution α the support of σ(α) is a singleton.

Since the scheduler resolves the pure non-determinism, we are able to define a measure of probability
over the set of executions of an automaton.

Definition 82 (measure εσ,α generated by a scheduler and a fragment). A scheduler σ and a finite
execution fragment α generate a measure εσ,α on the sigma-algebra FFrags(A) generated by cones of
execution fragments, where each cone Cα′ is the set of execution fragments that have α′ as a prefix,
i.e. Cα′ = {α ∈ Frags(A)|α′ ≤ α} . The measure of a cone Cα′ is defined recursively as follows:

εσ,α(Cα′) = :


0 if both α′ � α and α � α′

1 if α′ ≤ α
εσ,α(Cα′′) · σ(α′′)(η(A,q′,a)) · η(A,q′,a)(q) if α ≤ α′′ and α′ = α′′_q′aq

Intuitvely, we have fixed α as a known event, i.e. we assume that α occurs and we want to measure some
cones of execution. The first case says that a cone with α′ as prefix, where α′ is not comparable with
α, has a zero measure. It comes as no surprise since an execution in this cone would be incompatible
with α. The second case says that a cone with α′ as prefix, where α′ is a prefix of α, has a measure of
1. Here again, it comes as no surprise since assuming α occurs implies that α′ occurs. The third case
describes a simple conditional probability for α′ = α′′_q′aq : the probability of having an execution in
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cone Cα′ is the probability of the conjunction of (1) having an execution in cone Cα′′ , (2) the scheduler
triggers action a after α′′ and (3) we reache the state q from distribution η(A,q′,a).

For the time being, we only gave a measure over cones of executions, but clearly, the set of cones of
executions is not a sigma-algebra.

Extend εσ,α to FFrags(A) Standard measure theoretic arguments [Seg95b] ensure that εσ,α is well-
defined. The proof of [Seg95b] (terminating with theorem 4.2.10, section 4.2) is very general and
might appear discouraging for a brief reading. For sake of completeness, we adapt the construction of
[Seg95b] to the formalism of [CCK+18] 3.

First, for every set C of subset of a set Ω, we define F1(C ), F2(C ), F3(C ) = field(C ) as in the
construction of proposition 1 and FΩ , sigma(F3(C )) = sigma(C ).

If µ is a measure on F3(C) = field(C ), by famous Carathéodory’s extension theorem [Dud04], there
exists a unique extension µ′ of µ to the sigma-algebra FΩ (defining µ′(

⊎
k∈N

Ek) ,
∑
k∈N

µ(Ek)).

Hence, we just need to make explicit the extension of εσ,α to F3(C) = field(C ) with C = {Cα′ |α′ ∈
Frags(A)}.

Let C = {Cα′ |α′ ∈ Frags(A)} be the set of cones. Clearly, C is a set of subsets of Frags(A). As
mentioned earlier, we define FFrags(A) as the sigma-algebra on Frags(A) generated by C .

Also, for every pair of execution fragments α1 and α2, if α1 and α2 are non-comparable, then Cα1∪Cα2

is not a cone, while if α1 and α2 are comparable, Cα1 and Cα2 are not disjoint. Hence, sigma-additivity
is trivially ensured by εσ,α on C . Now, let us generate the appropriate sigma-algebra FFrags(A) on
Frags(A) and let us extend εσ,α to FFrags(A).

– Let F1(C ) be the be the family containing ∅, Frags(A), and all C ⊆ Frags(A) such that either
C ∈ C or Frags(A) \ C ∈ C .
There exists a unique extension εiσ,α of εσ,α to F1(C ). Indeed, there is a unique way to extend the
measure of the cones to their complements since for each α′, εiσ,α(Cα′)+εiσ,α(Frags(A)\Cα′) = 1.
Therefore εiσ,α coincides with εσ,α on the cones and εiσ,α is defined to be 1 − εiσ,α(Cα) for the
complement of any cone Cα . By countably branching structure of Frags(A) (QA and acts(A)
are both countable), the complement of a cone is a countable union of cones. Indeed, let
α′ ∈ Frags∗(A), Cα′ ∈ C , then Frags(A)\Cα′ =

⋃
α′′∈Frags∗(A),α′′
α′∧α′
α′′

Cα′′ . Hence, σ-additivity

is preserved.

– Let F2(C ) be the family containing all finite intersections of elements of F1(C ). There exists a
unique extension εiiσ,α of εiσ,α to F2(C ). Indeed, let us fix a pair of execution fragments α1 and
α2, if α1 and α2 are non-comparable, then Cα1 ∩ Cα2 = ∅ is not a cone, while if α1 and α2 are
comparable, let say α1 ≤ α2, then Cα1 ∩Cα2 = Cα2 . Thus, the intersection of finitely many sets
of F1(C ) is a countable union of cones. Therefore σ-additivity enforces a unique measure on the
new sets of F1(C ).

– Let F3(C ) be the family containing all finite unions of disjoint elements of F2(C ) .
There exists a unique extension εiiiσ,α of εiiσ,α to F2(C ). Indeed, there is a unique way of assigning
a measure to the finite union of disjoint sets whose measure is known, i.e., adding up their
measures. Since all the sets of F3(C ) are countable unions of cones, σ-additivity is preserved.

3. We are not aware of such an adaptation in the literature. This concise presentation might have its own pedagogical
interest
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– Clearly, F3(C ) is a field on Frags(A), i.e. it is a family of subsets of Frags(A) that contains
∅,Frags(A), and that is closed under complementation and finite union. FFrags(A) is defined as
the smallest sigma-algebra containing F3(C ). (This is also the smallest σ-algebra containing C ).
By famous Carathéodory’s extension theorem [Dud04], there exists a unique extension εivσ,α of
εiiiσ,α to the sigma-algebra FFrags(A) (defining εivσ,α(

⊎
k∈N

Ek) =
∑
k∈N

εiiiσ,α(Ek)).

In the remaining, we abuse the notation and use εσ,α to denote its extension εivσ,α on FFrags(A).

Limit We can remark that

– ∀α′ ∈ Frags∗(A), {α′} = Cα′ \ (
⋃

α′′∈Frags∗(A),α′<α′′
Cα′′).

– ∀α′ ∈ Fragsω(A), {α′} = Frags(A) \ (
⋃
i∈N

⋃
α′′∈Frags∗(A),α′|i<α′′,α′|i+1 6=α′′|i+1

Cα′′).

Hence ∀α′ ∈ Frags(A), {α′} ∈ FFrags(A).

Necessarily, we have ∀α′ ∈ Fragsω(A), εσ,α(α′) = limi→∞εσ,α(α′|i). Let us note that the limit is
well-defined, since ∀i ∈ N, (1) εσ,α(α′|i+1) ≤ εσ,α(α′|i) and (2) εσ,α(α′|i) ≥ 0.

Notations We call the state fstate(α) the first state of εσ,α and denote it by fstate(εσ,α). If α
consists of the start state q̄A only, we call εσ,α a probabilistic execution of A. Let µ be a discrete
probability measure over Frags∗(A). We denote by εσ,µ the measure

∑
α∈supp(µ)

µ(α) · εσ,α and we say

that εσ,µ is generated by σ and µ. We call the measure εσ,µ a generalized probabilistic execution
fragment of A. If every execution fragment in supp(µ) consists of a single state, then we call εσ,µ a
probabilistic execution fragment of A.

The collection F (CExecs(A)) of sets obtained by taking the intersection of each element in F3(C ) with
Execs(A) is a field in Execs(A). We note FExecs(A) the smallest sigma-algebra containing F (CExecs(A)).
In the remaining part of the thesis, we will mainly focus on probabilistic executions of A of the form
εσ , εσ,δq̄A = εσ,q̄A . Hence, we will deal with probablistic space of the form (Execs(A),FExecs(A), εσ).

Figure 3.23. – Non-deterministic execution requires a scheduler

The scheduler allows us to solve the pure non-determinism, by triggering an action among the enabled
ones. Typically after execution α = q0 d q1,x, the actions e and f are enabled and the probability to
take one transition is given by the scheduler σ that computes σ(α).
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Scheduler Schema Without restriction, a scheduler could become a too powerful deamon for prac-
tical applications. Hence, it is common to only consider a subset of schedulers, called a scheduler
schema. Typically, a classic limitation is often described by a scheduler with "partial online informa-
tion". Some formalism has already been proposed in [Seg95b] (section 5.6) to impose the scheduler
that its choices are correlated for executions fragments in the same equivalence class where both the
equivalence relation and the correlation must to be defined. This idea has been reused and simplified
in [CCK+06b] that defines equivalence classes on actions, called tasks. Then, a task-scheduler (a.k.a.
"off-line" scheduler) selects a sequence of tasks T1, T2, ... in advance that it cannot modify during the
execution of the automaton. After each transition, the next task Ti triggers an enabled action if there
is no ambiguity and is ignored otherwise. One of our main contributions, the theorem of monotonic-
ity of dynamic creation/destrution of PSIOA with implementation relationship is ensured only for a
certain scheduler schema, so-called creation-oblivious. However, we will see that the practical set of
task schedulers is not composed of creation-oblivious schedulers only.

Definition 83 (scheduler schema). A scheduler schema is a function that maps every PSIOA (resp.
PCA) A to a subset of schedulers(A).

3.6.2. Implementation

In last subsection, we have defined a measure of probability on executions with the help of a scheduler
to resolve the pure non-determinism. Now we can define the notion of implementation. The intuition
behind this notion is the fact that any environment E that would interact with both A and B, would
not be able to distinguish A from B. The classic use-case is to formally show that a (potentially very
sophisticated) algorithm implements a specification.

For us, an environment is simply a partially-compatible automaton, but in practice, he will play the
role of a "distinguisher".

Definition 84 (Environment). A probabilistic environment for PSIOA A is a PSIOA E such that A
and E are partially-compatible. We note env(A) the set of environments of A.

Now we define insight function which is a function that captures the insights that could be obtained
by an external observer to attempt a distinction.

Definition 85 (insight function). An insight-function is a function f(.,.) parametrized by a pair (E ,A)
of PSIOA where E ∈ env(A) s.t. f(E,A) is a measurable function from (Execs(E||A),FExecs(E||A)) to
some measurable space (G(E,A),FG(E,A)).

Some examples of insight-functions are the trace function and the environment projection function.
In cryptography, the insight function can be the occurence or the absence of an explicit "accept"
action triggered by the environment depending on whether he thinks he is interacting with the (real)
automaton A or the (ideal) automaton B.

Since an insight-function f(.,.) is measurable, we can define the image measure of εσ,µ under f(E,A),
i.e. the probability to obtain a certain external perception under a certain scheduler σ and a certain
probability distribution µ on the starting executions.

Definition 86 (f -dist). Let f(.,.) be an insight-function. Let (E ,A) be a pair of PSIOA where E ∈
env(A). Let µ be a probability measure on (Execs(E||A),FExecs(E||A)), and σ ∈ schedulers(E||A). We
define f -dist(E,A)(σ, µ), to be the image measure of εσ,µ under f(E,A) (i.e. the function that maps any
C ∈ FG(E,A) to εσ,µ(f−1

(E,A)(C)) ) . We note f -dist(E,A)(σ) for f -dist(E,A)(σ, δq̄(E||A)). We slightly abuse
the notation by defining f -dist(E,A)(σ)(C) = 0 if C /∈ FG(E,A).
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Now we define the notion of balanced schedulers, which will help to capture the incapacity of an
environment to distinguish two situations under two so-called balanced schedulers.

Definition 87 (balanced schedulers). Let f be an insight function. Let A and B be two PSIOA
(resp. PCA), let E ∈ env(A) ∩ env(B), let σ, σ′ be schedulers of E||A and E||B respectively. Let
ε ∈ R≥0. We note σB≤ε(E,A,B),fσ

′, if for every "external perception" ζ ∈ range(f(E,A)) ∪ range(f(E,B)),
|(f -dist(E,B)(σ′)(ζ)− f -dist(E,A)(σ)(ζ))| ≤ ε.

We can remark schedulers are "perfectly balanced", noted σB≤0
(E,A,B),fσ

′, if ∀ζ ∈ range(f(E,A)) ∪
range(f(E,B)) , f -dist(E,B)(σ′)(ζ) = f -dist(E,A)(σ)(ζ).

Also, we could consider an alternative definition where σB≤ε(E,A,B),fσ
′, if for every set of "external

perceptions" ζ ⊆ range(f(E,A)) ∪ range(f(E,B)), |(f -dist(E,B)(σ′)(ζ) − f -dist(E,A)(σ)(ζ))| ≤ ε. Such a
definition might be more desirable for monotonicity of dynamic creation/destruction of PSIOA with
approximate implementation relationship.

Next lemma simply states that the relationship B≤ε(E,.,.),f between balanced schedulers is transitive.

Lemma 9 (B≤ε(E,.,.),f transitivity). Let f be an insight function. Let A,B,C be three PSIOA (resp.
PCA), let E ∈ env(A)∩env(B)∩env(C), let σ, σ′, σ′′ be schedulers of E||A, E||B, and E||C respectively.
Let ε12, ε23, ε13 ∈ R≥0 with ε13 = ε12 + ε23. If σB≤ε12

(E,A,B),fσ
′ and σ′B≤ε23

(E,B,C),fσ
′′, then σB≤ε13

(E,A,C),fσ
′′

Proof. Let ζ ⊆ range(f(E,A))∪range(f(E,C)), then ζ ⊆ range(f(E,A))∪range(f(E,B)) and ζ ⊆ range(f(E,B))∪
range(f(E,C)). By the triangle inequality, |(f -dist(E,C)(σ′′)(ζ)−f -dist(E,A)(σ)(ζ))| ≤ |(f -dist(E,C)(σ′′)(ζ)−
f -dist(E,B)(σ′)(ζ))|+ |(f -dist(E,B)(σ′)(ζ)− f -dist(E,A)(σ)(ζ))| ≤ ε12 + ε23.

We can see the next definition of f -implementation as the incapacity of an environment to distinguish
two automata if it uses only information filtered by the insight function f .

Definition 88 (f -implementation). Let f(.,.) be an insight-function. Let S be a scheduler schema. Let
ε ∈ R≥0. We say that A f -implements B according to S with approximation ε, noted A ≤S,fε B, if
∀E ∈ env(A) ∩ env(B), ∀σ ∈ S(E||A), ∃σ′ ∈ S(E||B), σB≤ε(E,A,B),fσ

′.

This definition is a formal generalisation of the informal definition of implementation that says that a
(real) system A implements a (ideal) system B iff for every way of resolving the pure non-determinism
in the A-world, there exists a way of resolving the pure non-determinism in the B-world, such that
the two worlds are undistinguishable from an external point of view.

We would like to state a natural sufficient condition to obtain composability of f -implementation.

Definition 89 (Possible definitions of stability by composition). Let f(.,.) be an insight-function. Here
are several possible definitions of "stability by composition".

1. for every triplet of PSIOA (resp. PCA) (A,B, E), s.t. B ∈ env(A) and E ∈ env(B||A), f(E,B||A) =
f(E,B) ◦ f(E||B,A).

2. for every quadruplet of PSIOA (resp. PCA) (A1,A2,B, E), s.t. B ∈ env(A1)∩ env(A2) and E ∈
env(B||A1) ∩ env(B||A2), for every (C1, C2) ∈ FExecs(E||B||A1) ×FExecs(E||B||A2), f(E||B,A1)(C1) =
f(E||B,A2)(C2) =⇒ f(E,B||A1)(C1) = f(E,B||A2)(C2).

3. for every triplet of PSIOA (resp. PCA) (A,B, E), s.t. B ∈ env(A) and E ∈ env(B||A), for every
C,C ′ ∈ FExecs(E||B||A), f(E||B,A)(C) = f(E||B,A)(C ′) =⇒ f(E,B||A)(C) = f(E,B||A)(C ′).
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4. for every quadruplet of PSIOA (resp. PCA) (A1,A2,B, E), s.t. B ∈ env(A1) ∩ env(A2) and
E ∈ env(B||A1) ∩ env(B||A2), for every σ, σ′ scheduler of E||B||A1 and E||B||A2 respectively,
∀ε ∈ R≥0, σB≤ε(E||B,A1,A2),fσ

′ =⇒ σB≤ε(E,B||A1,B||A2),fσ
′.

Lemma 10. – (1) implies (2)
– (2) implies (3)
– (1) implies (4)

Proof. – (1) implies (2) Let C1, C2 ∈ FExecs(E||B||A1)×FExecs(E||B||A2), we noteD , f(E||B,A1)(C1) =
f(E||B,A2)(C2) by assumption. Hence, f(E,B||A1)(C1) = (f(E,B) ◦ f(E||B,A1))(C1) = f(E,B)(D), while
f(E,B||A2)(C2) = (f(E,B) ◦ f(E||B,A2))(C2) = f(E,B)(D), which gives the desired result.

– (3) implies (2) Take A1 = A2

– (1) implies (4) Let ζ ⊂
⋃

i∈{1,2}
range(f(E,B||Ai)). Let ζ ′ = f−1

(E,B)(ζ). |f -dist(E,B||A1)(σ)(ζ) − f -

dist(E,B||A2)(σ′)(ζ)| = |f -dist(E||B,A1)(σ)(ζ ′)− f -dist(E||B,A2)(σ′)(ζ ′)| ≤ ε

The expression 4 is what we want for composability of implementation, but property 3 is used in
lemma 46. for the monotonicity theorem. Moreover, the expression 1 is simple to understand. The
perception of E of the system W , E||B||A is the perception of E of the perception of E||B of the
system W. This why we keep this first expression.

If an insight function is stable by composition, it is said to be a perception-function.

Definition 90 (Perception function). A perception-function is an insight function f(.,.), such that
for every triplet of PSIOA (resp. PCA) (A,B, E), s.t. B ∈ env(A) and E ∈ env(B||A), f(E,B||A) =
f(E,B) ◦ f(E||B,A).

This property captures the fact that an environment E does not have a greater power of distinction
than E composed with another system B, which is quite intuitive. Any reasonable function that
captures the perception of an automaton A by an environment E ∈ env(A) should be a perception
function.

Substitutability We can restate the classic theorem of composability of implementation in a quite
general form.

Theorem 3 (Implementation composability). Let f(.,.) be a perception-function. Let ε ∈ R≥0 Let S
be a scheduler schema. Let A1, A2, B be PSIOA, s.t. A1 ≤S,fε A2. If B ∈ env(A1) ∩ env(A2), then
B||A1 ≤S,fε B||A2.

Proof. If E is an environment for both B||A1 and B||A2, then E ′ = E||B is an environment for both A1
and A2. By associativity of parallel composition, we have for every i ∈ {1, 2}, (E||B)||Ai = E||(B||Ai).
Since A1 ≤S,fε A2, for any scheduler σ ∈ S((E||B)||A1), there exists a corresponding scheduler
σ′ ∈ S((E||B)||A2), s.t. σB≤ε(E||B,A1,A2),fσ

′. Thus, by stability by composition, for any scheduler
σ ∈ S(E||(B||A1)), there exists a corresponding schedule σ′ ∈ S(E||(B||A2)), s.t. σB≤ε(E,B||A1,B||A2),fσ

′,
which ends the proof.

We also want to restate the classic theorem of f -implementation transitivity in the same form.
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Theorem 4 (Implementation transitivity). Let S be a scheduler schema. Let f(.,.) be an insight-
function. Let ε12, ε23, ε13 ∈ R≥0 with ε13 = ε12 + ε23. Let A1, A2, A3 be PSIOA, s.t. A1 ≤S,fε12 A2 and
A2 ≤S,fε23 A3, then A1 ≤S,fε13 A3.

Proof. Let E ∈ env(A1) ∩ env(A3).

Case 1: E ∈ env(A2). Let σ1 ∈ S(E||A1) then, since A1 ≤S,fε12 A2 there exists σ2 ∈ S(E||A2), s.t.
σ1B

≤ε12
(E,A1,A2),fσ2and since A2 ≤S,fε13 A3, there exists σ3 ∈ S(E||A3) s.t. σ2B

≤ε23
(E,A2,A3),fσ3and so for every

σ1 ∈ S(E||A1) ,there exists σ3 ∈ S(E||A3) s.t. σ1B
≤ε13
(E,A1,A3),fσ3 by lemma 9, i.e. A1 ≤S,fε13 A3.

Case 2: E /∈ env(A2). A renaming procedure has to be performed before applying Case 1.

Let A = {E ,A1,A2,A3}. We note acts(A) =
⋃
B∈A

acts(B). We use the special character r for our

renaming which is assumed to not be present in any syntactical representation of any action in acts(A).

We note rint the action renaming fonction s.t. ∀q ∈ QE , ∀a ∈ ŝig(E)(q), if a ∈ int(E)(q), then
rint(q)(a) = arint and rint(q)(a) = a otherwise. Then we note E ′ = rint(E).

If E ′ and A2 are not partially-compatible, it is only because of some reachable state (qE , qA2) ∈
Q′E × QA2 s.t. out(A2)(qA2) ∩ out(E ′)(qE) 6= ∅. Thus, we rename the actions for each state to avoid
this conflict.

We note rout the renaming function for E ′, s.t. ∀qE ∈ QE , ∀a ∈ ŝig(E)(qE), rout(qE)(a) = arout if
a ∈ out(E)(qE) and a otherwise. In the same way, We note, for every i ∈ {1, 2, 3} riin the renaming
function for Ai, s.t. ∀qAi ∈ QAi , ∀a ∈ ŝig(Ai)(qAi) rin(qAi)(a) = arout if a ∈ in(Ai)(qAi) and
a otherwise. By lemma 2, E ′′ , rout(E ′) is a PSIOA. Finally, E ′′ and A′′i = riin(Ai) are obviously
partially-compatible (and even compatible) for each i ∈ {1, 2, 3}.

There is an obvious isomorphism between E ′′||A′′1 and E||A1 and between E ′′||A′′3 and E||A3 that allows
us to apply case 1, which ends the proof.

The two last theorems allow stating the classical theorem of substitutability.
Theorem 5 (Implementation substitutability). Let f(.,.) be a perception-function. Let S be a scheduler
schema. Let εa, εb, εc ∈ R≥0 with εc = εa + εb. Let A1, A2, B1, B2 be PSIOA (resp. PCA), s.t.
A1 ≤S,fεa A2 and B1 ≤S,fεb B2. If both B1 and B2 are partially compatible with both A1 and A2 then
A1||B1 ≤S,fεc A2||B2.

Proof. By theorem 3 of implementation composability, A1||B1 ≤S,fεa A2||B1 and A2||B1 ≤S,fεb A2||B2.
By theorem 4 of implementation transitivity A1||B1 ≤S,fεc A2||B2.

Trace and projection on the environment are perception-functions
Proposition 8 (trace is measurable). Let A be a PSIOA (resp. PCA).

traceA : (Execs(A),FExecs(A))→ (Traces(A),FTraces(A)) is measurable.

Proof. This is enough to show that ∀β ∈ Traces∗(A), trace−1
A (Cβ) ∈ FExecs(A). Yet, trace−1

A (Cβ) =⋃
α∈Execs∗(A),traceA(α)=β

Cα. Hence, this is a countable union of cones of executions of A, i.e. an element

of FExecs(A).
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Proposition 9 (projection is measurable). Let A be a PSIOA (resp. PCA) and E ∈ env(A).

proj(E,A) :
{

(Execs(E||A),FExecs(E||A)) → (Execs(E),FExecs(E))
α 7→ α � E is measurable.

Proof. This is enough to show that ∀α′ ∈ Execs∗(E), proj−1
(E,A)(Cα′) ∈ FExecs(E||A). Yet, proj−1

(E,A)(Cα′) =⋃
α∈Execs∗(A),α�E=α′

Cα. Hence, this is a countable union of cones of executions of E||A, i.e. an element

of FExecs(E||A).

Lemma 11 (projection is a perception function). The function proj(.,.) parametrized with PSIOA
E ,A where E ∈ env(A) is a perception function.

Proof. – (measurability) Immediate by proposition 9.
– (stability by composition) in the sense 1 of definition 89 Let A be a PSIOA (resp. PCA). Let
B ∈ env(A), E ∈ env(B||A). Let α ∈ Execs(E||B||A), clearly α � E = (α � (E||B)) � E .

We have the same kind of result for the trace function, which is more often used for the perception
function in practice.

Lemma 12 (trace is a perception function). The function trace(.,.) parametrized with PSIOA E ,A
where E ∈ env(A) (with trace(E,A) = trace(E||A)) is a perception function.

Proof. – Immediate by proposition 8.
– (stability by composition) in the sense 3 and 4 of definition 89. The result is even more trivial

since for every triplet of PSIOA (A,B, E), s.t. B ∈ env(A), E ∈ env(B||A), trace(E,B||A) =
trace(E||B,A)

Thus, given an environment E of A probability measure µ on FExecs(E||A), and a scheduler σ of (E||A)
we define pdist(E,A)(σ, µ) , proj-dist(E,A)(σ, µ), to be the image measure of εσ,µ under proj(E,A). We
note pdist(E,A)(σ) for pdist(E,A)(σ, δq̄E||A).

This choice that slightly differs from tdist(E,A)(σ, µ) = trace-dist(E,A)(σ, µ) used in [CCK+07], is
motivated by the achievement of monotonicity of p-implementation w.r.t. PSIOA creation.

The combination of theorems 2 and 5 allow to study dynamic probabilistic distributed systems in a
modular manner. For "horizontal interactions" in the "same layer", we can substitute a specification
with a concrete protocol without losing hyper-properties. However, can we perform the same kind
of susbtitution for "vertical interactions" at "different layers"? This question is discussed in the next
section.
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3.7. Introduction on PCA corresponding w.r.t. PSIOA A, B to introduce
monotonicity

Here, we take an interest in PCA XA and XB that differ only on the fact that B supplants A in XB.

3.7.1. An informal statement of the theorem

Definition 91 ((Informal) corresponding w.r.t. A, B). Intuitively, XA and XB are corresponding
w.r.t. A, B, noted XA OA,BXB if they differ only in that XA dynamically creates and destroys automaton
A instead of creating and destroying automaton B as XB does. Some technical minor assumptions
have to be verified:

1. config(XA)(q̄XA) �AB config(XB)(q̄XB): The associated configuration of respective start states
are identical except that the automaton B supplants A but with the same external signature.

2. XA, XB are creation&hiding-corresponding w.r.t. A,B: the two PCA hide some output actions
and create some PSIOA in the same manner, excepting for the creation of B that supplants the
creation of A.

3. ∀K ∈ {A,B}, ∀q ∈ QXK , for every K-exclusive action a at state q, created(XK)(q)(a) = ∅,
where a K-exclusive action is an action which is in the signature of sub-automaton K only.

4. (Technical)

a) ∀K ∈ {A,B}, XK is K-conservative: Each state of XK is perfectly defined by its configura-
tion deprived of sub-automaton K and external actions of K are not hidden.

b) ∀K ∈ {A,B}, XK is K-creation explicit: the creation of K is equivalent to the triggering of
an action in a dedicated set.

We would like to state the monotonicity of PSIOA creation with p-implementation. However, it holds
only for a specific class of schedulers, so-called creation-oblivious that do not take into account the
visited states and the triggered exclusive actions of a sub-automaton before its last destruction to
output the next action to trigger.

Definition 92 ((Informal) creation-oblivious scheduler). Let Ã be a PSIOA, W̃ be a PCA, σ̃ ∈
schedulers(W̃ ). We say that σ̃ is A-creation oblivious if for every triplet (α̃1, α̃2, α̃3) s.t. (1)
lstate(α̃1) = lstate(α̃2) = fstate(α̃3) and (2) α̃1 and α̃2 differ only on A-exclusive actions and vis-
ited states of sub-automaton A, then (3) σ̃(α̃_1 α̃3) = σ̃(α̃_2 α̃3). A creation oblivious scheduler is a
A-creation oblivious for every PSIOA A. The scheduler schema that outputs only creation oblivious
oblivious scheduler is denoted So.

The formal definitions of the two last concepts are defined in the remaining part of this section. It is
crucial to limit the power of the scheduler to decompose the measure of a class of comportment as a
function of measures of classes of shorter comportment where no creation of A or B occurs excepting
potentially at very last action. This reduction is more or less necessary to obtain monotonicity of
dynamic creation/destruction:

Theorem 6 (monotonicity with p-implementation ≤So,p0 ). Let A,B be PSIOA, let XA, XB be PCA.Let
So be the schema of creation-oblivious schedulers and p = proj(.,.).
If (1) A ≤So,p0 B and (2) XA OA,BXB, then (3) XA ≤So,p0 XB
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3.7.2. Naive correspondence between two PCA

We formalize the idea that two configurations are identical except that the automaton B supplants A
but with the same external signature. The following definition comes from [AL16].

Definition 93 (�AB-corresponding configurations). (see figure 4.11) Let Φ ⊆ Autids, and A,B
be PSIOA identifiers. Then we define Φ[B/A] = (Φ \ A) ∪ {B} if A ∈ Φ, and Φ[B/A] = Φ if
A /∈ Φ. Let C,D be configurations. We define C �AB D iff (1) auts(D) = auts(C)[B/A], (2)
for every A′ /∈ auts(C) \ {A} : map(D)(A′) = map(C)(A′), and (3) ext(A)(s) = ext(B)(t) where
s = map(C)(A), t = map(D)(B). That is, in �AB-corresponding configurations, the SIOA other than
A,B must be the same and must be in the same state. A and B must have the same external signature.
In the sequel, when we write Ψ = Φ[B/A], we always assume that B /∈ Φ and A /∈ Ψ.

Figure 3.24. – �AB corresponding-configuration

Remark 3. It is possible to have two configurations C, D s.t. C �AA D. That would mean that C
and D only differ on the state of A (s or t) that has even the same external signature in both cases
ext(A)(s) = ext(A)(t), while we would have int(A)(s) 6= int(A)(t).

Now, we formalize the fact that two PCA create some PSIOA in the same manner, except for B that
supplants A. Here again, this definition comes from [AL16].

Definition 94 (Creation corresponding configuration automata). Let X,Y be PCA and A,B be
PSIOA. We say that X,Y are creation-corresponding w.r.t. A,B iff

1. X never creates B and Y never creates A.
2. Let (α, π) ∈ Execs∗(X)×Execs∗(Y ) s.t. traceA(α) = traceB(π). Let q = lstate(α), q′ = lstate(π).

Then ∀a ∈ ŝig(X)(q) ∩ ŝig(Y )(q′) : created(Y )(q′)(a) = created(X)(q)(a)[B/A].

In the same way, as in definition 94, we formalize the fact that two PCA hide some output actions in
the same manner. Here again, this definition is inspired by [AL16].

Definition 95 (Hiding corresponding configuration automata). Let X,Y be PCA and A,B be PSIOA.
We say that X,Y are hiding-corresponding w.r.t. A,B iff

1. X never creates B and Y never creates A.
2. Let (α, π) ∈ Execs∗(X)×Execs∗(Y ) s.t. traceA(α) = traceB(π). Let q = lstate(α), q′ = lstate(π).

Then hidden-actions(Y )(q′) = hidden-actions(X)(q).

Next definition is the immediate conjunction of the two previous ones.

Definition 96 (creation&hiding-corresponding). Let X,Y be PCA and A,B be PSIOA. We say that
X,Y are creation&hiding-corresponding w.r.t. A,B, if they are both creation-corresponding and hiding-
corresponding w.r.t. A,B
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Now we define the notion of A-exclusive action that corresponds to an action which is in the signature
of A only. This definition is motivated by the fact that monotonicity induces that A-exclusive (resp.
B-exclusive) actions do not create automata. Indeed, otherwise two internal actions a and a′ of A and
B respectively could create different automata C and D and break the correspondence.

Definition 97 (A-exclusive action). Let A ∈ Autids, X be a PCA. Let q ∈ QX , (A,S) = config(X)(q),
act ∈ ŝig(X)(q). We say that act is A-exclusive at state q if for every A′ ∈ A \ {A}, act /∈
ŝig(A′)(S(A′)) (and so act ∈ ŝig(A)(S(A)) only).

The previous definitions 93, 94, 95 and 97 allow us to define a first (naive) definition of PCA corre-
sponding w.r.t. A, B.

Definition 98 (naively corresponding w.r.t. A, B). Let A,B ∈ Autids, XA and XB be PCA we say
that XA and XB are naively corresponding w.r.t. A, B, if they verify:

1. config(XA)(q̄XA) �AB config(XB)(q̄XB).
2. XA, XB are creation&hiding-corresponding w.r.t. A,B
3. (No exclusive creation from A and B) for each K ∈ {A,B}, ∀q ∈ QXK , for every K-exclusive

action a, created(XK)(q)(a) = ∅

However, the PSIOA creation is not proved monotonic with the p-implementation relationship (in-
troduced in subsection 3.6.2) without some additional technical assumptions informally introduced in
defintion 91 and presented in next subsection 3.7.3. Roughly speaking, it allows to 1) define a PCA
Y = X \ {A} that corresponds to X "deprived" of A and 2) define the composition between Y and
A, 3) avoiding some ambiguities during the construction. In the first instance, the reader should skip
the next subsection 3.7.3 on conservatism and keep in mind the intuition only. This sub-section 3.7.3
can be used to know the assumptions of the theorems of monotonicity and use them as black boxes.
The assumptions will be recalled during the proof.

3.7.3. Conservatism: the additional assumption for relevant definition of
correspondence w.r.t. A,B

This subsection aims to define the notion of A-conservative PCA, informally introduced in definition
91, item 4a.

Some definitions relative to configurations In the remaining, it will often be useful to reason on
the configurations. This is why we introduce some definitions that will be used again and again in the
demonstrations.

The next definition captures the idea that two states of a certain layer represent the same situation
for the bottom layer.

Definition 99 (configuration-equivalence between two states). Let K,K ′ be PCA and (q, q′) ∈ QK ×
QK′. We say that q and q′ are config-equivalent, noted qRconfq′, if config(K)(q) = config(K ′)(q′).
Furthermore, if

– config(K)(q) = config(K ′)(q′),
– hidden-actions(K)(q) = hidden-actions(K ′)(q′) and
– ∀a ∈ ŝig(K)(q) = ŝig(K ′)(q′), created(K)(q)(a) = created(K ′)(q′)(a),

we say that q and q′ are strictly-equivalent, noted qRstrictq′ .
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Now, we define a special subset of PCA that do not tolerate different configuration-equivalent states.

Definition 100 (Configuration-conflict-free PCA). Let K be a PCA. We say K is configuration-
conflict-free, if for every q, q′ ∈ QK s.t. qRconfq′, then q = q′. The current state of a configuration-
conflict-free PCA can be defined by its current attached configuration.

For some elaborate definitions, we found it useful to introduce the set of potential output actions of
A in a configuration config(X)(q) coming from a state q of a PCA X:

Definition 101 (potential ouput). Let A ∈ autids. Let X be a PCA. Let q ∈ QX . We note pot-
out(X)(q)(A) the set of potential output actions of A in config(X)(q) that is

– pot-out(X)(q)(A) = ∅ if A /∈ auts(config(X)(q))
– pot-out(X)(q)(A) = out(A)(map(config(X)(q))(A)) if A ∈ auts(config(X)(q))

Here, we define a configuration C deprived of an automaton A in the most natural way.

Definition 102 (C \ {A} Configuration deprived of an automaton). C = (A,S). C \ {A} = (A′,S′)
with A′ = A \ {A} and S′ the restriction of S on A′

The two last definitions 101 and 102 allows us to define in compact way a new relation between states
that captures the idea that two states q ∈ QX and q′ ∈ QY are equivalent modulo a difference uniquely
due to the presence of automaton A in config(X)(q) and config(Y )(q′).

Definition 103 (R\{A} relationship (equivalent if we forget A)). Let S = {QX |X is a PCA } be the
set of states of any PCA. Let A ∈ Autids. We defined the equivalence relation R\{A}conf and R\{A}conf on S
defined by ∀X,Y PCA, ∀(qX , qY ) ∈ QX ×QY :

– qXR
\{A}
conf qY ⇐⇒ config(X)(qX) \ {A} = config(Y )(qY ) \ {A}

– qXR
\{A}
strictqY ⇐⇒ the conjonction of the 3 following properties:

• qXR\{A}conf qY

• ∀a ∈ ŝig(X)(qX) ∩ ŝig(Y )(qY ), created(Y )(qY )(a) \ {A} = created(X)(qX)(a) \ {A}
• hidden-actions(X)(qX)\pot-out(X)(qX)(A) = hidden-actions(Y )(qY )\pot-out(Y )(qY )(A)

A-fair and A-conservative: necessary assumptions to authorize the construction used in the proof
Now, we are ready to define A-fairness and then A-conservatism.

A A-fair PCA is a PCA s.t. we can deduce its current properties from its current configuration
deprived of A. This assumption will allow us to define Y = X \ {A} in the proof of monotonicity.

Definition 104 (A-fair PCA). Let A ∈ Autids. Let X be a PCA. We say that X is A-fair if
– (configuration-conflict-free ) X is configuration-conflict-free.
– (no conflict for projection) ∀qX , q′X ∈ QX , s.t. qXR

\{A}
conf q

′
X then qXR\{A}strictq

′
X .

– (no exclusive creation by A) ∀qX ∈ QX , ∀a ∈ ŝig(X)(qX) A-exclusive in qX ,
created(X)(qX)(a) = ∅

This definition 104 allows the next definition 105 to be well-defined. A A-conservative PCA is a A-fair
PCA that does not hide any output action that could be an external action of A. This assumption
will allow us to define the composition between A and Y = X \ {A} in the proof of monotonicity.

Definition 105 (A-conservative PCA). Let X be a PCA, A be a PSIOA. We say that X is A-
conservative if it is A-fair and ∀q ∈ QX , C = config(X)(q) s.t. A ∈ auts(C) and map(C)(A) , qA,
hidden-actions(X)(q) ∩ êxt(A)(qA) = ∅.
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3.7.4. Corresponding w.r.t. A, B

We are closed to state all the technical assumptions to achieve monotonicity of PSIOA creation with
p-implementation. We introduce one last assumption so-called creation-explicitness, used in section
4.5 to reduce implementation of XB by XA to implementation of B by A.

Intuitively, a PCA is A-creation-explicit if the creation of a sub-automaton A is equivalent to the
triggering of action in a dedicated set. This property will allow obtaining the reduction of lemma 56.

Definition 106 (creation-explicit PCA). Let A be a PSIOA and X be a PCA. We say that X is
A-creation-explicit iff: it exists a set of actions, noted creation-actions(X)(A), s.t. ∀qX ∈ QX ,
∀a ∈ ŝig(X)(qX), if we note AX = auts(config(X)(qX)) and ϕX = created(X)(qX)(a), then A /∈
AX ∧ A ∈ ϕX ⇐⇒ a ∈ creation-actions(X)(A).

Now we can define new (non naive) correspondence w.r.t. PSIOA A, B to define (non naively)
monotonic relationship.

Definition 107 (XA OA,BXB). Let A,B ∈ Autids, XA and XB be PCA we say that XA and XB are

corresponding w.r.t. A, B, noted XA OA,BXB, if 1) they are naively corresponding w.r.t. A, B, 2) they

are A-conservative and B-conservative respectively and 3) they are A-creation explicit and B-creation
explicit respectively, i.e. they verify:

1. config(XA)(q̄XA) �AB config(XB)(q̄XB) in the sense of definition 93.
2. XA, XB are creation&hiding-corresponding w.r.t. A,B, in the sense of definition 96.
3. ∀K ∈ {A,B}, ∀q ∈ QXK , for every K-exclusive action a at state q (in the sense of definition

97), created(XK)(q)(a) = ∅.
4. (Technical)

a) ∀K ∈ {A,B}, XK is K-conservative in the sense of definition 105.
b) ∀K ∈ {A,B}, XK is K-creation explicit in the sense of definition 106.

Definition 108 (Preorder allowing monotonicity of PSIOA creation). Let P be a preorder on PSIOA
and PCA. We say that P allows monotonicity of PSIOA creation if for every pair of PSIOA (A,B) and
every pair of PCA (XA, XB), we have: (1) (A,B) ∈ P and (2) XA OA,BXB implies (3) (XA, XB) ∈ P .

We would like to claim that p-implementation allows monotonicity of PSIOA creation, but it holds
only for a certain class of schedulers, so-called creation-oblivious introduced in next subsection 3.7.5.

3.7.5. Creation-oblivious scheduler

Here we present a particular scheduler schema, that does not take into account previous exclusive
actions of a particular sub-automaton to output its probability over transitions to trigger.

We start by defining strict oblivious-schedulers that output the same transition with the same prob-
ability for pair of execution fragments that differ only by prefixes in the same class of equivalence.
This definition is inspired by the one provided in the Segala’s thesis but is more restrictive since we
require strict equality instead of a correlation (section 5.6.2 in [Seg95b]).

Definition 109 (oblivious scheduler). Let W̃ be a PCA or a PSIOA, let σ̃ ∈ schedulers(W̃ ) and let
≡ be an equivalence relation on Frags∗(W̃ ) verifying ∀α̃1, α̃2 ∈ Frags∗(W̃ ) s.t. α̃1 ≡ α̃2, lstate(α1) =
lstate(α2) . We say that σ̃ is (≡)-strictly oblivious if ∀α̃1, α̃2, α̃3 ∈ Frags∗(W̃ ) s.t. 1) α1 ≡ α2 and
2) fstate(α̃3) = lstate(α̃2) = lstate(α̃1), then σ̃(α̃_1 α̃3) = σ̃(α̃_2 α̃3).
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3.7 Introduction on PCA corresponding w.r.t. PSIOA A, B to introduce monotonicity

Now we define the relation of equivalence that defines our subset of creation-oblivious schedulers.
Intuitively, two executions fragments ending on A creation are in the same equivalence class if they
differ only in terms of exclusive actions of A.

Definition 110 (α̃ ≡crA α̃′). Let A be a PSIOA, and W̃ be a PCA. For every α̃, α̃′ ∈ Frags∗(W̃ ), we
say α̃ ≡crA α̃′ iff:

1. α̃, α̃′ both ends on A-creation.
2. α̃ and α̃′ differ only in the A-exclusive actions and the states of A, i.e. µ(α̃) = µ(α̃′) where

µ(α̃ = q̃0a1q̃1...anq̃n) ∈ Frags∗(W̃ ) is defined as follows:
– remove the A-exclusive actions
– replace each state q̃i by its configuration Config(W̃ )(q̃) = (Ai,Si)
– replace each configuration (Ai,Si) by (Ai,Si) \ {A}
– replace the (non-alternating) sequences of identical configurations (due to A-exclusiveness

of removed actions) by one unique configuration.
More formally, µ can be recursively defined as follows:

– µ(α̃) = Config(W̃ )(q̃) \ {A} if α̃ = q̃ ∈ QW̃

– µ(α̃aq̃) =
{
µ(α̃)a(Config(W̃ )(q̃) \ {A}) if a is not A-exclusive
µ(α̃) otherwise.

3. lstate(α̃) = lstate(α̃′)

Remark 4. We can remark that the items 3 can be deduced from 1 and 2 if X is configuration-conflict-
free.

Definition 111 (creation-oblivious scheduler). Let Ã be a PSIOA, W̃ be a PCA, σ̃ ∈ schedulers(W̃ ).
We say that σ̃ is A-creation oblivious if it is (≡crA )-strictly oblivious.

We say that σ̃ is creation-oblivious if it is A-creation oblivious for every sub-automaton A of W̃
(A ∈

⋃
q∈QW̃

auts(config(W̃ )(q))). We note So the function that maps any PCA W̃ to the set of

creation-oblivious schedulers of W̃ .

We have formally defined our notion of creation-oblivious scheduler. This will be a key property
to ensure lemma 56 that allows reducing the measure of a class of comportment into a function of
measures of classes of shorter comportment where no creation of A or B occurs excepting potentially
at very last action. This reduction is more or less necessary to obtain monotonicity of implementation
relation:

Theorem 7 (≤So,p0 allows monotonicity). Let A,B be PSIOA, let XA, XB be PCA. Let So be the
scheduler schema of creation-oblivious schedulers and p = proj(.,.).
If A ≤So,p0 B and XA OA,BXB, then XA ≤

So,p
0 XB.

The next chapter is dedicated to the proof of this theorem 7. We start by defining in section 4.1
a morphism between executions of automata, so-called executions-matching, that preserves structure
and measure of probability under alter ego schedulers. Next, we define in section 4.2 the notion of an
automatonXA deprived of a PSIOAA, notedXA\{A}. Furthermore, we show in section 4.3 that there
is an executions-matching from a PCA XA to (XA \ {A})||Ãsw where Ãsw is the simpleton wrapper
of A, i.e. a PCA that only handle A. The section 4.5 uses the morphism of section 4.3 to reduce the
implementation of XB by XA to the implementation of B by A and finally obtain the monotonicity of
implementation w.r.t. PSIOA creation. Finally section 4.6 explains why the task-scheduler introduced
in [CCK+07] is not creation-oblivious.
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3.8. Summary

In this chapter, we introduced Dynamic Probabilistic I/O Automata. The model naturally merges
Dynamic I/O Automata of Attie et Lynch [AL16] and Probabilistic I/O Automata of Segala et al.
[Seg95b, CCK+06b, CCK+18] with each other. The first main result is theorem 2 that ensures that
the composition of two (partially-compatible) dynamic automata is itself a dynamic automaton. This
comes with the associated constraints that link a dynamic automaton with a configuration, keeping
track of the evolving set of elements of a lower level with their associated current states. Then,
benefiting from well established probabilistic observational semantic [Seg95a, LSV03], it was easy to
reformulate composability results for dynamic automata, namely in theorem 5 of substitutability of
implementation relationship ≤S,fε for any "perception function" f(.,.), which is a function, characterizing
the observational semantic, that ensures the very natural property that an environment E does not
have a power of perception greater than an environment E||B for an arbitrary automaton B (≤S,fε is
then a precongruence for parallel composition ||). We exhibit two classic perception functions, the trace
function and the projection on the environment itself. Finally, we have defined (see definition 107) what
it means for two dynamic systems XA and XB to differ only on the fact that XA dynamically creates
and destroys A instead of B as XB does. In that case, we say that XA and XB are corresponding
w.r.t. A,B, noted XA OA,B

XB. We stated following theorem (see theorem 7): (i) XA OA,BXB and (ii)

A ≤So,p0 B implies XA ≤So,p0 XB, where p is the function that maps each execution to its projection on
the environment and So represents the set of schedulers that do not take into account the exclusive
past lives of sub-automata before their last creation to trigger the next action. Hence, if A implements
B and XA and XB only differ on that XA dynamically creates and destroys A instead of B as XB
does, then XA implements XB. These results guarantee the soundness of modular design based on an
observational semantic.

In next chapter, we prove this last mentioned theorem 7.

88



Chapter 4
Monotonicty of dynamic
creation/destruction of PSIOA with
implementation

This chapter contains the proof of the monotonicity of dynamic creation/destruction with implemen-
tation relationship.
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In previous chapter 3 we have introduced a framework to reason about dynamic probabilistic systems,
with two important theorems of stability and composability (theorem 2 page 72 and theorem 5 page
80). Moreover, we have stated the theorem 7 of monotonicity of dynamic creation/destruction of
PSIOA with ≤So,p0 XB, i.e. (i) XA OA,BXB and (ii) A ≤So,p0 B implies XA ≤So,p0 XB. Informally, if A
implements B and XA and XB only differ on that XA dynamically creates and destroys A instead of
B as XB does, then XA implements XB.

In this chapter, we give a detailed modular proof of theorem 7 of monotonicty of dynamic cre-
ation/destruction with implementation relationship. In order to get a first intuition about the content
of this chapter 4, we encourage taking a look at the figures of the Subsection 1.3.3 of thesis overview
that we recall here:

First, we define in section 4.1, the notion of executions-matching (see figure 1.5) to capture the idea that
two automata have the same "comportment" 1 along with some corresponding executions. Basically
an execution-matching from a PSIOA A to a PSIOA B is a morphism fex : Execs′A → Execs(B)
where Execs′A ⊆ Execs(A) . This morphism preserves some properties along the pair of matched
executions: signature, transition, ... in such a way that for every pair (α, α′) ∈ Execs(A)×Execs(B)
s.t. α′ = fex(α), εσ(α) = εσ′(α′) for every pair of scheduler (σ, σ′) (so-called alter ego) that are
"very similar" in the sense they take into account only the "structure" of the argument to return a
sub-probability distribution, i.e. α′ = fex(α) implies σ(α) = σ′(α′). When the executions-matching is
a bijection function from Execs(A) to Execs(B), we say A and B are semantically-equivalent (they
differ only syntactically).

Second, we define in section 4.2 the notion of a PCA XA deprived of a PSIOA A noted (XA \ {A})
. Such an automaton corresponds to the intuition of a similar automaton where A is systematically
removed from the configuration of the original PCA (see figure 1.6a and 1.6b).

Thereafter we show in section 4.3 that under technical minor assumptions XA \ {A} and Ãsw are
composable where Ãsw and A are semantically equivalent in the sense loosely introduced in the section
1.3.3. In fact Ãsw is the simpleton wrapper of A, which is a PCA that only owns A in its attached
configuration (see figure 1.7). Let us note that if A implements B, then Ãsw implements B̃sw.

Then we show that there is an (incomplete) execution-matching from XA to (XA \ {A})||Ãsw (see
figure 1.8). The domain of this executions-matching is the set of executions where A is not (re-)created.

After this, we always try to reduce any reasoning on XA (resp. XB ) on a reasoning on (XA\{A})||Ãsw
(resp. (XB \ {B})||B̃sw).

We show in section 4.4 that, under certain reasonable technical assumptions (captured in the definition
of corresponding PCA w.r.t. A, B), (XA \ {A}) and (XB \ {B}) are semantically-equivalent. We can
note Y an arbitrary PCA semantically-equivalent to (XA \ {A}) and (XB \ {B}).

Finally, a reasoning on E||XA (resp. E||XB ) can be reduced to a reasoning on E ′||Ãsw (resp. E ′||B̃sw)
with E ′ = E||Y . Since Ãsw implements B̃sw, we have already some results on E ′||Ãsw and E ′||B̃sw and
so on E||XA and E||XB.

However, these results are a priori valid only for the subset of executions without the creation of
neither A nor B before the very last action). This reduction is represented in figures 1.9a and 1.9b.

The reduction, which is roughly described in figures 1.9a and 1.9b, holds only for executions fragments
that do not create the automata A and B after their destruction (or at the very last action). Some tech-
nical precautions have to be taken to be allowed to paste these fragments together to finally say that A
implements B impliesXA implementsXB. In fact, such a pasting is generally not possible for a perfect-

1. The term is deliberately chosen to be vague.
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information online scheduler, that can trigger an action taking into account the whole history. This
observation motivated us to introduce the class So of schedulers that outputs (randomly) a transition
without taking into account the triggered internal actions and the visited states of a sub-automaton
A preceding its last destruction. We prove the monotonicity of dynamic creation/destruction with
≤So,p0 in Section 4.5. This result is encapsulated in Theorem 23 page 150: if (1) XA OA,BXB, and (2) A

≤So,p0 B, then (3) XA ≤So,p0 XB. The figure 1.10 represents the issue with schedulers absent from So.
We also discuss a special case of task-schedulers [CCK+18], a very user-friendly class of fully-offline
schedulers, that allows straightforward oblivious fair scheduling. Surprisingly, a naive adaptation of
task-schedulers, to the dynamic paradigm is not a subset of So. We show how a more sophisticated
adaptation of task-based implementation relationship, called tenacious implementation, noted ≤ten0 ,
can allow obtaining monotonicity of dynamic creation/destruction of automata. This result is stated
in theorem 24 page 174: if (1) XA OA,BXB, and (2) A ≤ten0 B, then (3) XA ≤ten0 XB.

4.1. Executions-matching

In this section, we introduce some tools to formalize the fact that two automata have the same com-
portment for the same scheduler. This section is composed of two sub-sections on PSIOA executions-
matching and PCA executions-matching. Basically, an executions-matching execution from an au-
tomaton A to another automaton B is a morphism fex from Execs(A) to Execs(B) that is structure-
preserving. In the remaining, we will often use an executions-matching to show that a pair of exe-
cutions (α, π = fex(α)) ∈ Execs(A) × Execs(B) have the same probability εσ(α) = εσ′(π) under a
pair of so-called alter-ego schedulers (σ, σ′) ∈ schedulers(A)× schedulers(B) that have corresponding
comportment after corresponding executions fragment (α′, π′ = fex(α′)) ∈ Frags∗(A)× Frags∗(B).

4.1.1. PSIOA executions-matching and semantic equivalence

This first subsection is about PSIOA executions-matching.

matching execution An executions-matching need a states-matching (see definition 112) and a
transitions-matching (see definition 114) to be defined itself.

First, we define states-matching, which is a mapping between states of 2 automata that preserves
starting states and signatures modulo a possible hiding operation.

Definition 112 (states-matching). Let A and B be two PSIOA, let Q′A ⊂ QA and let f : Q′A → QB
be a mapping that verifies:

– Starting state preservation: If q̄A ∈ Q′A then f(q̄A) = q̄B

– Signature preservation (modulo an hiding operation): ∀(q, q′) ∈ Q′A × QB, s.t. q′ = f(q),
sig(A)(q) = hide(sig(B)(q′), h(q′)) with h(q′) ⊆ out(B)(q′) (resp. with h(q′) = ∅, that is
sig(A)(q) = sig(B)(q′) ).

then we say that f is a weak (resp. strong) states-matching from A to B. If Q′A = QA, then we say
that f is a complete (weak or strong) states-matching from A to B.

Before being able to define transitions-matching, some requirements have to be ensured. A set of
transition that would ensure these requirements would be called eligible to transitions-matching.
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4.1 Executions-matching

Definition 113 (transitions set eligible to transitions matching). Let A and B be two PSIOA,let
Q′A ⊂ QA and let f : Q′A → QB be a states-matching from A to B. Let D′A ⊆ DA be a subset of
transition. If D′A verifies that ∀(q, a, η(A,q,a)) ∈ D′A:

– Matched states preservation: q ∈ Q′A and

– Equitable corresponding distribution: ∀q′′ ∈ supp(η(A,q,a)), q′′ ∈ Q′A and η(A,q,a)
f←→ η(B,f(q),a)

then we say that D′A is eligible to transitions-matching domain from f . We omit to mention the
states-matching f when this is clear in the context.

Now, we are able to define a transitions-matching, which is a property-preserving mapping from a set
of transitions D′A ⊆ DA to another set of transitions D′B ⊆ DB.

Definition 114 (transitions-matching). Let A and B be two PSIOA, let Q′A ⊂ QA and let f : Q′A →
QB be a states-matching from A to B. Let D′A ⊆ DA be a subset of transition eligible to transitions-
matching domain from f .

We define the transitions-matching (f, f tr) from A to B induced by the states-matching f and the
subset of transition D′A s.t. f tr : D′A → DB is defined by f tr((q, a, η(A,q,a))) = (f(q), a, η(B,f(q),a)) . If
f is complete and D′A = DA, (f, f tr) is said to be a complete transitions-matching. If f is weak (resp.
strong) (f, f tr) is said to be a weak (resp. strong) transitions-matching. If f is clear in the context,
with a slight abuse of notation, we say that f tr is a transitions-matching.

The function f tr needs to verify some constraints imposed by f , but if the set D′A of concerned
transitions is correctly-chosen to ensure the 2 properties of definition 113, then such a transitions-
matching is unique.

Now, we can easily define an executions-matching with a transitions-matching, which is a property-
preserving mapping from a set of execution fragments F ′A ⊆ Frags(A) to another set of execution
fragments F ′B ⊆ Frags(B).

Definition 115 (executions-matching). Let A and B be two PSIOA. Let (f, f tr) be a transitions-
matching from A to B. Let F ′A = {α , q0a1q1...anqn... ∈ Frags(A)|∀i ∈ [0 : |α|−1], (qi, ai+1, η(A,qi,ai+1)) ∈
dom(f tr)}. Let fex : F ′A → Frags(B), built from (f, f tr) s.t. ∀α = q0

Aa
1q1
A...a

nqnA... ∈ F ′A,
fex(α) = f(q0

A)a1f(q1
A)...anf(qnA)...

We say that (f, f tr, fex) is an executions-matching from A to B. Furthermore, if (f, f tr) is complete
and F ′A = Frags(A), (f, f tr, fex) is said to be a complete executions-matching. If (f, f tr) is weak
(resp. strong) (f, f tr, fex) is said to be a weak (resp. strong) executions-matching. When (f, f tr) is
clear in the context, with a slight abuse of notation, we say that fex is an executions-matching.

The function fex is completely defined by (f, f tr), hence we call (f, f tr, fex) the executions-matching
induced by the transition matching (f, f tr) or the executions-matching induced by the states-matching
f and the subset of transitions dom(f tr).

The construction of fex allows us to see two executions mapped by an executions-mapping as a
sequence of pairs of transitions mapped by the attached transitions-matching. This result is formalised
in next lemma 13.

Lemma 13 (executions-matching seen as a sequence of transitions-matchings). Let A and B be two
PSIOA. Let (f, f tr, fex) be an executions-matching from A to B. Let α = q0

Aa
1q1
A...a

nqnA... ∈ dom(fex)
and π = fex(α) = q0

Ba
1q1
B...a

nqnB... = f(q0
A)a1f(q1

A)...anf(qnA).... Then for every i ∈ [0 : |α| − 1],
(qiB, ai+1, η(B,qiB,ai+1)) = f tr((qiA, ai+1, η(A,qiA,ai)

))
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Proof. First, matched states preservation and action preservation are ensured by construction. By defi-
nition, for every i ∈ [0 : |α|−1], (qiA, ai+1, η(A,qiA,ai+1)) ∈ dom(f tr). We note triB , f tr((qiA, ai+1, η(A,qiA,ai+1))).
By definition, triB is of the form (f(qiA), ai+1, η). But a transition of this form is unique, which means
triB = (f(qiA), ai+1, η(B,f(qiA),ai+1)) which ends the proof.

Figure 4.1. – Executions-matching

Here we define the states-matching f : Q′A → QB with Q′A =
{q0, q1, ..., q9} ( QA, s.t. ∀k ∈ [1, 9], f(qk) = q̃k, and D′A =
{(q0, a, η(A,q0,a)), (q1, b, η(A,q1,b)), (q1, c, η(A,q1,c)), (q2, d, η(A,q2,d)), (q4, e, η(A,q4,e)), (q5, f, η(A,q5,f)), (q7, h, η(A,q7,h))}.
We can define the executions-matching (f, f tr, fex) induced by f and D′A.

Now we overload the definition of executions-matching to be able to state the main result of this
paragraph i.e. theorem 8.

Definition 116 (executions-matching overload: pre-execution-distribution). Let A and B be two
PSIOA. Let (f, f tr, fex) be an executions-matching from A to B. Let (µ, µ′) ∈ Disc(Frags(A)) ×
Disc(Frags(B)) s.t. µ fex↔ µ′. Then we say that (f, f tr, fex) is an executions-matching from (A, µ) to
(B, µ′).

In practice, we will often use executions-matching from (A, δq̄A) to (B, δq̄B).

Continued executions-matching Motivated by PSIOA creation that would break the states-matching
from a PCA XA to the PCA ZA , (X \ {A})||Ãsw defined in section 4.3, we introduce the notion
of continuation of executions-matching. This continuation will allow us to keep a matching for one
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additional step (after a new creation in practice), which will be convenient for copy-pasting operations
over execution fragments.

Definition 117 (Continued executions-matching). Let A and B be two PSIOA. Let (f, f tr, fex) be
an executions-matching from A to B with dom(f) , Q′A ⊂ QA and dom(f tr) , D′A ⊂ DA.

Let f+ : Q′′A → QB with Q′′A ⊂ QA. Let D′′A ⊂ DA be a subset of transitions verifying for every
(q, a, η(A,q,a)) ∈ D′′A \D′A:

– Matched states preservation: q ∈ Q′A
– Extension of equitable corresponding distribution: ∀q′′ ∈ supp(η(A,q,a)), q′′ ∈ Q′′A and η(A,q,a)

f+
←→

η(B,f(q),a).
We define the (f+, D′′A)-continuation of f tr as the function f tr,+ : D′A∪D′′A → DB s.t. ∀(q, a, η(A,q,a)) ∈
D′A ∪D′′A, f tr,+((q, a, η(A,q,a))) = (f(q), a, η(B,f(q),a)).

Let F ′′A = dom(fex) ∪ {α_qaq′ ∈ Execs∗(A)|α ∈ dom(fex) ∧ (q, a, η(A,q,a)) ∈ D′′A}. We define the
(f tr,+)-continuation of fex as the function fex,+ : F ′′A → Frags(B) s.t. ∀α ∈ dom(fex), fex,+(α) =
fex(α) and ∀α′ = α_q, a, q′ ∈ F ′′A \ dom(fex), fex,+(α′) = fex(α)_f(q), a, f+(q′).

Then, we say that ((f, f+), f tr,+, fex,+) is the (f+, D′′A)-continuation of (f, f tr, fex) which is a con-
tinuation of (f, f tr, fex) and a continued executions-matching from A to. B.

Moreover, if (µ, µ′) ∈ Disc(Frags(A))×Disc(Frags(B)) s.t. µ fex,+←→ µ′, then we say that ((f, f+), f tr,+, fex,+)
is a continued executions-matching from (A, µ) to (B, µ′).

From executions-matching to probabilistic distribution preservation We want to states that a
(potentially-continued) executions-matching preserves measure of probability of the corresponding
executions.

To do so, we define alter egos schedulers to a certain executions-matching. Such pair of schedulers
are very similar in the sense that their outputs depends only on the semantic structure of the input,
preserved by the executions-matching.

Definition 118 ((f, f tr, fex)-alter egos schedulers). Let A and B be two PSIOA. Let (f, f tr, fex) be an
executions-matching from A to B. Let (σ̃, σ) ∈ schedulers(A)×schedulers(B). We say that (σ̃, σ) are
(f, f tr, fex)-alter egos (or fex-alter egos) if, and only if, for every (α̃, α) ∈ Frags∗(A) × Frags∗(B)
s.t. α = fex(α̃) (which means ŝig(A)(q̃) = ŝig(B)(q) , sig with q̃ = lstate(α̃) and q = lstate(α)
by signature preservation property of the associated states-matching), ∀a ∈ sig, σ̃(α̃)((q̃, a, η(A,q̃,a))) =
σ(α)((q, a, η(B,q,a))).

Let us remark that the previous definition implies that the probability of halting after corresponding
executions fragments (α̃, α) is also the same.

Now we are ready to states an intuitive result that will be often used in the remaining.

Theorem 8 (Executions-matching preserves general probabilistic distribution). Let A and B be two
PSIOA. Let (µ̃, µ) ∈ Disc(Frags(A)) ×Disc(Frags(B)). Let (f, f tr, fex) be an executions-matching
from (A, µ̃) to (B, µ) . Let (σ̃, σ) ∈ schedulers(A) × schedulers(B), s.t. (σ̃, σ) are (f, f tr, fex)-alter
egos. Let (α̃, α) ∈ Frags∗(A)× Frags∗(B) s.t. α = fex(α̃).

Then εσ̃,µ̃(Cα̃) = εσ,µ(Cα) and εσ̃,µ̃(α̃) = εσ,µ(α).

Proof. First, by definition 116 of executions-matching, fex is a bijection from supp(µ̃) to supp(µ)
where ∀α̃o ∈ supp(µ̃), µ(fex(α̃o)) = µ̃(α̃o) (*). Second, by definition 82 of measure generated by a
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scheduler, εσ,µ(Cα′) = Σαo∈supp(µ)µ(αo) · εσ,αo(Cα′) and εσ̃,µ̃(Cα̃′) = Σα̃o∈supp(µ̃)µ̃(α̃o) · εσ̃,α̃o(Cα̃′) (**).
Hence, by combining (*) and (**), we only need to show that for every (α̃o, αo) ∈ supp(µ̃)× supp(µ)
with fex(α̃o) = αo, for every (α̃′, α′) ∈ Frags∗(A)×Frags∗(B) with fex(α̃′) = α′, we have εσ,αo(Cα′) =
εσ̃,α̃o(Cα̃′) that we show by induction on the size s = |α̃| = |α|. We fix (α̃o, αo) ∈ supp(µ̃) × supp(µ)
with fex(α̃o) = αo.

Basis: s = 0

Let α̃′ = q̃′ ∈ Frags∗(A), α′ = q′ ∈ Frags∗(B) with α′ = fex(α̃′). We have |α̃′| = |α′| = 0. By
definition 82 of measure generated by a scheduler,

εσ̃,α̃o(Cα̃′) = :


0 if both α̃′ � α̃o and α̃o � α̃′

1 if α̃′ ≤ α̃o
εσ̃,α̃o(Cα̃) · σ̃(α̃)(η(A,q̃,a)) · η(A,q̃,a)(q̃′) if α̃o ≤ α̃ and α̃′ = α̃_q̃aq̃′

and

εσ,αo(Cα′) = :


0 if both α′ � αo and αo � α′

1 if α′ ≤ αo
εσ,αo(Cα) · σ(α)(η(B,q,a)) · η(B,q,a)(q′) if αo ≤ α and α′ = α_qaq′

Since |α̃′| = |α′| = 0 the third case is never met. The second case can be written: α̃′ ≤ α̃o (resp.
α′ ≤ αo) iff fstate(α̃o) = q̃′ (resp. fstate(αo) = q′). Hence, for every (α̃o, αo) s.t. fex(α̃o) = αo,
εσ̃,α̃o(Cα̃′) = εσ,αo(C ′α) which ends the basis.

Induction: We assume the result to be true up to size s and we show it implies the result is true
for size s + 1. Let (α̃′, α̃, α′, α) ∈ Frags∗(A)2 × Frags∗(B)2 with α̃′ = α̃_q̃aq̃′ and α′ = α_qaq′ s.t.
α′ = fex(α̃′) with |α̃′| = |α′| = s+ 1. We want to show that εσ̃,µ̃(Cα̃′) = εσ,µ(Cα′). By definition 82 of
measure generated by a scheduler,

εσ̃,α̃o(Cα̃′) = :


0 if both α̃′ � α̃o and α̃o � α̃′

1 if α̃′ ≤ α̃o
εσ̃,α̃o(Cα̃) · σ̃(α̃)(η(A,q̃,a)) · η(A,q̃,a)(q̃′) if α̃o ≤ α̃ and α̃′ = α̃_q̃aq̃′

and

εσ,αo(Cα′) = :


0 if both α′ � αo and αo � α′

1 if α′ ≤ αo
εσ,αo(Cα) · σ(α)(η(B,q,a)) · η(B,q,a)(q′) if αo ≤ α and α′ = α_qaq′

Again, the executions-matching implies that i) both α̃′ � α̃o and α̃o � α̃′ ⇐⇒ both α′ � αo and αo �
α′, ii) α̃ ≤ α̃o ⇐⇒ α ≤ αo and iii) α̃o ≤ α̃ ⇐⇒ αo ≤ α. Moreover, by induction assumption
εσ̃,α̃o(Cα̃) = εσ,αo(Cα). Hence we only need to show that σ̃(α̃)(η(A,q̃,a)) · η(A,q̃,a)(q̃′) = σ(α)(η(B,q,a)) ·
η(B,q,a)(q′) (***). By definition of alter-ego schedulers, σ̃(α̃)(η(A,q̃,a)) = σ(α)(η(B,q,a)) (j). By definition
of executions-matching, η(A,q̃,a)(q̃′) = η(B,q,a)(q′) (jj). Thus (j) and (jj) implies (***) which allows us
to terminate the induction to obtain εσ̃,α̃o(Cα̃′) = εσ,αo(Cα′).

Finally, let sig = ŝig(A)(lstate(α̃′)) = ŝig(A)(lstate(α′)), then εσ̃,α̃o(α̃′) = εσ̃,α̃o(Cα̃′)·(1−Σa∈sigσ̃(α̃′)(a)) =
εσ,αo(Cα′) · (1− Σa∈sigσ(α′)(a)) = εσ,αo(α′), which ends the proof.

We restate the previous theorem with continued executions-matching.

Theorem 9 (Continued executions-matching preserves general probabilistic distribution). Let A
and B be two PSIOA. Let (µ̃, µ) ∈ Disc(Frags(A)) × Disc(Frags(B)). Let (f, f tr, fex) be an
executions-matching from (A, µ̃) to (B, µ) . Let ((f, f+), f tr,+, fex,+) be a continuation of (f, f tr, fex).
Let (σ̃, σ) ∈ schedulers(A) × schedulers(B), s.t. (σ̃, σ) are (f, f tr, fex)-alter egos. Let (α̃, α) ∈
Frags∗(A)× Frags∗(B) s.t. α = fex,+(α̃). Then εσ̃,µ̃(Cα̃) = εσ,µ(Cα).
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Proof. The proof is exactly the same than the one for theorem 8

Before dealing with composability of executions-matching, we prove two results about injectivity and
surjectivity of executions-matching in next lemma 14 and 15.

Lemma 14 (Injectivity of executions-matching). Let (f, f tr, fex) be an executions-matching from A
to B and ((f, f+), f tr,+, fex,+) a continuation of (f, f tr, fex).

Let f̃ex,+ : F ′′A ⊆ dom(fex,+)→ F̃B ⊆ range(fex,+). Let f̃ : Q′′A ⊆ dom(f)→ QB be the restriction of
f on a set Q′′A ⊆ dom(f).

1. If i) ∀α ∈ F ′′A, fstate(α) ∈ Q′′A and ii) f̃ is injective, then f̃ex,+ is injective.
2. (Corollary) if F ′′A ⊆ Execs(A), fex,+ is injective.

Proof. 1. By induction on the size k of the prefix: Basis: By i) fstate(α), fstate(α′) ∈ Q′′A,
by construction of fex,+, f(fstate(α)) = f(fstate(α′)) = fstate(π) and by ii) fstate(α) =
fstate(α′) Induction. We assume the injectivity of f̃ex,+ to be true for execution on size k
and we show this is also true for size k + 1. Let π = s0b1s1...skbk+1sk+1 ∈ F ′′B Let α =
q0a1q1...qkak+1qk+1, α′ = q′0a′1q′1...q′ka′k+1q′k+1 ∈ F ′′A s.t. f(α) = f(α′) = π. By construc-
tion of fex,+, ∀i ∈ [1, n], bi = ai = a′i. By construction of fex,+, fex,+(q′0a′1q′1...q′k) =
fex,+(q0a1q1...qk) = s0a1s1...sk. By induction assumption q′0a′1q′1...q′k) = q0a1q1...qk. By
definition of execution, sk+1 ∈ supp(η(B,sk,ak+1)). By equitable corresponding distribution, If
η(A,qk,ak+1) ∈ dom(f tr), the restriction of f , f̃ : supp(η(A,qk,ak+1)) → supp(η(B,sk,ak+1)) is bijec-
tive and η(A,qk,ak+1) ∈ dom(f tr,+) \ dom(f tr), the restriction of f+, f̃+ : supp(η(A,qk,ak+1)) →
supp(η(B,sk,ak+1)) is bijective so qk+1 = q′k+1 which ends the proof.

2. We have |start(A)| = 1. Hence the restriction of f on start(A) is necessarily injective (ii). Let
α ∈ Execs(A). By definition of execution, fstate(α) ∈ start(A) (i). All the requirements of
lemma 14, first item are met, which ends the proof.

Lemma 15 (Surjectivity property preserved by continuation). Let A and B be two PSIOA. Let
(f, f tr, fex) be an executions-matching from A to B. Let ((f, f+), f tr,+, fex,+) be the (f+, D′′A)-
continuation of (f, f tr, fex) (where by definition D′′A\dom(f tr) respect the properties of matched states
preservation and extension of equitable corresponding distribution from definition 117). If the restric-
tion f̃ex : E′A ⊆ Execs(A) → ẼB ⊆ Execs(B) is surjective, then f̃ex,+ : E′,+A = {α′ = α_qA, a, q

′
A ∈

Execs(A)|α ∈ EA, (qA, a, ηA,qA,a) ∈ dom(f tr,+)} → Ẽ+
B = {π′ = π_qB, a, q

′
B ∈ Execs(B)|π ∈

ẼB,∃α ∈ (fex)−1(π) ∩ E′A, qA = lstate(α), (qA, a, ηA,qA,a) ∈ dom(f tr,+)} is surjective.

Proof. Let π′ ∈ ẼB. We have π′ = π_qB, a, q
′
B ∈ Execs(B) s.t. π ∈ ẼB and ∃α ∈ (fex)−1(π)∩E′A, qA =

lstate(α) and (qA, a, η(A,qA,a)) ∈ dom(f tr,+). By (qA, a, ηA,qA,a) ∈ dom(f tr,+), if i) (qA, a, ηA,qA,a) ∈

dom(f tr,+) \ dom(f tr) ηA,qA,a
f+
←→ ηB,qB,a and if ii) (qA, a, ηA,qA,a) ∈ dom(f tr) ηA,qA,a

f←→ ηB,qB,a. In
both cases, it exists q′A ∈ supp(ηA,qA,a) s.t. fex,+(α′ = α_qA, a, q

′
A) = π′ with α′ ∈ E′,+A .

We finish this paragraph with the concept of semantic equivalence that describes a pair of PSIOA that
differ only syntactically.

Definition 119 (semantic equivalence). Let A and B be two PSIOA. We say that A and B are
semantically-equivalent if it exists f : Execs(A)→ Execs(B) which is a complete bijective executions-
matching from A to B.
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Composability of executions-matching relationship Now we are looking for composability of executions-
matching. First we define natural extension of notions presented in previous paragraph for the au-
tomaton obtained after composition with another automaton E .

Definition 120 (E-extension). Let A and B be two PSIOA. Let E be partially-compatible with both
A and B.

1. Let Q′A ⊂ QA. We call E-extension of Q′A the set of states Q′A||E = {q ∈ QA||E |q � A ∈ Q′A}

2. Let f : Q′A ⊂ QA → QB. We call E-extension of f the function g : Q′A||E → QB × QE s.t.
∀(qA, qE) ∈ Q′A||E , g((qA, qE)) = (f(qA), qE))

3. Let D′A ⊂ DA a subset of transitions. We call E-extension of D′A the set D′A||E =
{((qA, qE), a, η((A,E),(qA,qE),a)) ∈ DA||E |qA ∈ Q′A ∧ [(qA, a, η(A,qA,a)) ∈ D′A∨ a /∈ enabled(A)(qA)]}.

Now, we can start with the composability of states-matching.

Lemma 16 (Composability of states-matching). Let A and B be two PSIOA. Let E be partially-
compatible with A and B. Let f : Q′A ⊂ QA → QB be a states-matching. Let g be the E-extension of
f .

If range(g) ⊂ QB||E , then g is a states-matching from A||E to B||E.

Proof. – Starting state preservation: if (q̄A, q̄E) ∈ QA||E then q̄A ∈ Q′A which means f(q̄A) = q̄B,
thus g((q̄A, q̄E)) = (q̄B, q̄E).

– Signature preservation (modulo an hiding operation): ∀((qA, qE), (qB, qE)) ∈ Q′A||E ×QB||E with
(qB, qE) = g((qA, qE)), we have sig(A)(qA) = sig(B)(f(qA)) = hide(sig(B)(qB), h(qB)) with
h(qB) ⊆ out(B)(qB). SinceA and E are partially-compatible, sig(A)(qA) = hide(sig(B)(qB), h(qB))
is compatible with sig(E)(qE) which means a fortiori sig(B)(qB) is compatible with sig(E)(qE).
Namely ∀act ∈ h(qB), act /∈ in(E)(qE).
Hence sig((A, E))((qA), qE)) = hide(sig((B, E))((qB, qE)), h′((qB, qE)) with h′((qB, qE)) = h(qB) ⊆
out(B)(qB) ⊆ out(B||E)((qB, qE)) which ends the proof.

The composability of states-matching is ensured under the condition range(g) ⊂ QB||E where g is the
E-extension of the original states-matching f : Q′A ⊆ QA → QB. In next lemma, we give a sufficient
condition to ensure range(g) ⊂ QB||E . This is the one that we will use in practice.

Definition 121 (reachable-by and states of execution (recall)). Let A be a PSIOA or a PCA.
Let E′A ⊆ Execs(A). We note reachable-by(E′A) = {q ∈ QA|∃α ∈ E′A, lstate(α) = q}. Let α =
q0, a1, q1, ...an, qn, .... We note states(α) =

⋃
i∈|α|

qi.

Lemma 17 (A sufficient condition to obtain range(g) ⊂ QB||E). Let A and B be two PSIOA. Let E
be partially-compatible with both A and B. Let f : Q′A ⊂ QA → QB be a states-matching. Let Q′A||E
be the E-extension of Q′A.

Let Q′′A||E ⊂ Q
′
A||E the set of states reachable by an execution that counts only states in Q′A||E , i.e.

– E′′A||E = {α ∈ Execs(A||E)|states(α) ⊆ Q′A||E}

– Q′′A||E = reachable-by(E′′A||E)
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Let f ′′ the restriction of f to set Q′′A = {qA = ((qA, qE) � A)|(qA, qE) ∈ Q′′A||E}.

Then the E-extension of f ′′, noted g′′ verifies range(g′′) ⊂ QB||E .

Proof. By induction on the minimum size of an execution α̃ = q0a1...qn with q∗ = qn,∀i ∈ [0, n], qi ∈
Q′A||E . Basis (|α| = 0 =⇒ α = q̄A): we consider q∗ = q̄A. We have g((q̄A, q̄E)) = (f(q̄A), q̄E) =
(q̄B, q̄E) ∈ QB||E .

We assume this is true for α̃ with lstate(α̃) = q and we show this is also true for α̃′ = α̃_qaq′.
By induction hypothesis q ∈ QB||E . Since q′ ∈ QA||E , A and E are compatible at state (q′A, q′E),
that is sig(A)(q′A) and sig(E)(q′E) are compatible, which means that a fortiori, (sig(B)(f ′′(q′A)) and
sig(E)(q′E) are compatible and so B and E are compatible at state (f ′′(q′A), q′E) = g′′(q′). Hence g′′(q′)
is a reachable compatible state of (B, E) which means this is a state of B||E .

Now, we can continue with the composability of transitions-matching.

Lemma 18 (Composability of eligibility for transitions-matching). Let A and B be two PSIOA. Let E
be partially-compatible with A and B. Let f : Q′A ⊂ QA → QB be a states-matching and D′A a subset
of transitions eligible to transitions-matching domain from f . Let g be the E-extension of f and D′A||E
the E-extension of DA.

If range(g) ⊂ QB||E , then D′A||E is eligible to transitions-matching domain from g.

Proof. Let ((qA, qE), a, η((A,E),(qA,qE),a)) ∈ D′A||E .

By definition, qA ∈ Q′A which means (qA, qE) ∈ Q′A||E , so the matched states preservation is ensured.
We still need to ensure the equitable corresponding distribution.

– Let (q′′A, q′′E) ∈ supp(η((A,E),(qA,qE),a)). If a ∈ ŝig(A)(qA), then q′′A ∈ supp(η(A,qA,a)) which means
q′′A ∈ Q′A and hence (q′′A, q′′E) ∈ Q′A||E . If a /∈ ŝig(A), η(A,qA,a) = δqA , which means q′′A = qA ∈ Q′A
and hence (q′′A, q′′E) ∈ Q′A||E . Thus for every (q′′A, q′′E) ∈ supp(η((A,E),(qA,qE),a)), (q′′A, q′′E) ∈ Q′A||E .

– η((A,E),(qA,qE),a)((q′′A, q′′E)) = η(A,qA,a)⊗η(E,qE ,a)(q′′A, q′′E) = η(A,qA,a)(q′′A)·η(E,qE ,a)(q′′E) = η(B,f(qA),a)(f(q′′A))·
η(E,qE ,a)(q′′E) = η(B,f(qA),a)⊗η(E,qE ,a)(f(q′′A), q′′E) = η((B,E),g(qA,qE),a)(g(q′′A, q′′E)) which ends the proof
of equitable corresponding distribution.

Definition 122 (E-extension of an executions-matching). Let A and B be two PSIOA. Let E be
partially-compatible with both A and B. Let (f, f tr, fex) be an executions-matching from A to B. Let
g the E-extension of f . If range(g) ⊂ QB||E , then

1. we call the E-extension of f tr the function gtr : (q, a, η(A||E,q,a)) ∈ D′A||E 7→ (g(q), a, η(B||E,g(q),a))
where D′A||E is the E-extension of the domain dom(f tr) of f tr.

2. we call the E-extension of (f, f tr, fex) the matching-execution (g, gtr, gex) from A||E to B||E
induced by g and dom(gtr).

Finally we can states the main result of this paragraph, i.e. theorem 10 of executions-matching
composability.

Theorem 10 (Composability of executions-matching). Let A and B be two PSIOA. Let E be partially-
compatible with both A and B. Let (f, f tr, fex) be an executions-matching from A to B where g rep-
resents the E-extension of f . If range(g) ⊂ QB||E , then the E-extension of (f, f tr, fex) is a matching-
execution (g, gtr, gex) from A||E to B||E induced by g and dom(gtr).
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Proof. We repeated the previous definition, while an executions-matching only need a states-matching
g and a set dom(gtr) of transitions eligible to transitions-matching domain from g which is provided
by construction.

Here we give some properties preserved by E-extension of an executions-matching.

Lemma 19 (Some properties preserved by E-extension of an executions-matching). Let A and B be
PSIOA. Let (f, f tr, fex) be an executions-matching from A to B.

1. If f is bijective and f−1 is complete, then for every PSIOA E partially-compatible with A, E is
partially-compatible with B.

2. Let E partially-compatible with both A and B, let g be the E-extension of f .

a) If f is bijective and f−1 is complete, then range(g) = QB||E and so we can talk about the
E-extension of (f, f tr, fex)

b) If (f, f tr) is a bijective complete transition-matching, (g, gtr) is a bijective complete transition-
matching. (And (f, f tr, fex) and (g, gtr, gex) are bijective complete executions-matching. )

c) If f is strong, then g is strong

3. Let E partially-compatible with both A and B, let g be the E-extension of f . Let assume
range(g) ⊆ QB||E . Let (g, gtr, gex) be the E-extension of (f, f tr, fex)
a) If the restriction f̃ex : E′A ⊆ Execs(A) → ẼB ⊆ Execs(B) is surjective, then g̃ex : {α ∈

Execs(A||E)|α � A ∈ E′A} → {π ∈ Execs(B||E)|π � B ∈ ẼB} is surjective
b) If f is strong, g is strong.

Proof. 1. We need to show that every pseudo-execution of (B, E) ends on a compatible state. Let
π = q0a1q1...anqn be a finite pseudo-execution of (B, E). We note α = (f−1(q0

B), q0
E)a1(f−1(q1

B), q1
E)

...an(f−1(qnB), qnE ). The proof is in two steps.
First, we show by induction that α = (f−1(q0

B), q0
E)a1(f−1(q1

B), q1
E) ...an(f−1(qnB), qnE ) is an exe-

cution of A||E .
Second, we deduce that it means (f−1(qnB), qnE ) is a compatible state of (A, E) which means that
a fortiori, (qnB, qnE ) is a compatible state of (B, E) which ends the proof.

– First, we show by induction that α is an execution of A||E . We have (f−1(q̄B), q̄E) = (q̄A, q̄E)
which ends the basis.
Let assume (f−1(q0

B), q0
E)a1(f−1(q1

B), q1
E)...ak(f−1(qkB), qkE) is an execution of A||E . Hence

(f−1(qkB), qkE) is a compatible state of (A, E) which means that a fortiori qk is a compatible
state of (B, E) because of signature preservation of f .
For the same reason, ŝig(B||E)(qk) = ŝig(A, E)((f−1(qkB), qkE)), so ak+1 ∈ ŝig(A, E)((f−1(qkB), qkE)).
Then we use the completeness of (f−1, (f tr)−1), to obtain the fact that either η(B,qkB,ak+1) ∈

dom((f tr)−1) or ak+1 /∈ ŝig(B)(qkB) (and we recall the convention that in this second case
η(B,qkB,ak+1) = δqkB

). which means either (f−1(qkB), ak+1, η(A,f−1(qkB),ak+1)) is a transition
of A that ensures ∀q′′ ∈ supp(η(B,qkB,ak+1)), f

−1(q′′) ∈ supp(η(A,f−1(qkB),ak+1)) or ak+1 /∈

ŝig(A)(f−1(qkB)) (and we recall the convention that in this second case η(A,f−1(qkB),ak+1) =
δf−1(qkB)). Thus for every (q′′, q′′′) ∈ supp(η(B,E),qk,ak+1)), (f−1(q′′), q′′′) = g−1((q′′, q′′′)) ∈
supp(η(A,E),g−1(qk),ak+1)) namely for (q′′, q′′′) = (qk+1

B , qk+1
E ). Hence, (f−1(qk+1

B ), qk+1
E ) is

reachable by (A, E) which means the alternating sequence
(f−1(q0

B), q0
E)a1(f−1(q1

B), q1
E)...ak(f−1(qkB), qkE)ak(f−1(qkB), qkE)ak+1(f−1(qk+1

B ), qk+1
E ) is an ex-

ecution of A||E . Thus by induction α is an execution of A||E .
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– Since A and E are partially-compatible (f−1(qnB), qnE ) is a state of A||E , so (f−1(qnB), qnE ) is
a compatible state of (A, E) which means (qkB, qkE) is a fortiori a compatible state of (B, E)
. Hence every reachable state of (B, E) is compatible which means B and E) are partially
compatible which ends the proof.

2. a) – Let (qnB, qnE ) ∈ QB||E . This state is reachable, so we note π = (q0
B, q

0
E)a1(q1

B, q
1
E)...an(qnB, qnE )

the execution of B||E . Thereafter, we note α = (f−1(q0
B), q0

E)a1(f−1(q1
B), q1

E)...an(f−1(qnB), qnE ).
We can show by induction that α is an execution of A||E . The proof is exactly the
same than in 1.
Hence α is an execution of A||E which means (f−1(qnB), qnE ) is a state of A||E and then
g((f−1(qnB), qnE )) = (qnB, qnE ) to finally prove that it exists q∗ s.t. g(q∗) = (qnB, qnE ) which
means states(B||E) ⊆ dom(g).
We can reuse the proof of 1. to show that if q ∈ QA||E , then g(q) ∈ QB||E which means
dom(g) ⊆ QB||E .
Hence dom(g) = QB||E .

– We can apply the previous lemma 18 to obtain the eligibility of DA||E .

b) Let assume (f, f tr) are bijective. The bijectivity of g is immediate g(., .) = (f(.), Id(.)). The
bijectivity of gtr is also immediate since gtr : η(A,qA,a) ⊗ η(E,qE ,a) → f tr(η(A,qA,a))⊗ η(E,qE ,a)
with f tr bijective.

c) Immediate, since in this case sig(A)(qA) = sig(B)(f(qA)) implies sig(A||E)((qA, qE)) =
sig(B||E)((f(qA), qE)).

3. a) Let π = ((q0
B, q

0
E), a1, (q1

B, q
1
E), ..., an, (qnB, qnE )) ∈ Execs(B||E) with π � B = q̂0

B, â
1, q̂1
B, ..., â

m, q̂mB ∈
ẼB, where the monotonic function k : [0, n]→ [0,m], verifies ∀i ∈ [0, n], k(i) ∈ [0,m], qiB =
q̂
k(i)
B By surjectivity of fex we have α̂ = q̂0

A, â
1, q̂1
A, ..., â

m, q̂mA ∈ E′A s.t. fex(α̂) = π � B.
We note α = (q0

A, q
0
E)a1(q1

A, q
1
E)...an(qnA, qnE ) where ∀i ∈ [0, n], qiA = q̂

k(i)
A . Hence, ∀i ∈

[0, n], g((qiA, qiE)) = (qiB, qiE). Moreover, by signature preservation, ∀i ∈ [0, n − 1], ai+1 ∈
ŝig(A)(qiA) ∪ ŝig(E)(qiE). Furthermore, ∀i ∈ [0, n − 1]. (qi+1

A , qi+1
E ) ∈ supp(η(A,qiA,ai)

⊗
η(B,qiB,ai)

) since (qi+1
B , qi+1

E ) ∈ supp(η(B,qiB,ai)
⊗η(B,qiB,ai)

), (qiB, ai, η(B,qiB,ai)
) = f tr(qiA, ai, η(A,qiA,ai)

)
and qi+1

B = f(qi+1
A ). Thus, α ∈ Execs(A||E). Finally, by signature preservation of f ,

∀i ∈ [1, n]ŝig(A)(qA) = ŝig(B)(qB), which lead us to α � A = α̂ ∈ E′A. So for every
π ∈ Execs(B||E) with π � B ∈ ẼB, it exists α ∈ Execs(A||E) with α � A ∈ E′A which ends
the proof.

b) Immediate by rules of composition of signature: ∀(qA, qE) ∈ states(A||E), ∀(qB, qE) ∈
states(B||E) if sig(A)(qA) = sig(B)(qB), then sig(A||E)(qA, qE) = sig(B||E))(qB, qE).

We are ready to states the composability of semantic equivalence.

Theorem 11 (composability of semantic equivalence). Let A and B be PSIOA semantically-equivalent.
Then for every PSIOA E:

– E is partially-compatible with A ⇐⇒ E is partially-compatible with B
– if E is partially-compatible with both A and B, then A||E and B||E are semantically-equivalent

PSIOA.

Proof. – The first item (E is partially-compatible with A ⇐⇒ E is partially-compatible with B)
comes from lemma 19, first item.
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– The second item (if E is partially-compatible with both A and B, then A||E and B||E are
semantically-equivalent PSIOA) comes from lemma 19, second item.

A weak complete bijective transition-matching implies a weak complete bijective executions-matching
which means the two automata are completely sementically equivalent modulo some hiding operation
that implies that some PSIOA are partially-compatible with one of the automaton and not with the
other and that the traces are not necessarily the same ones.

composition of continuation of executions-matching Here we define E-extension of continued
executions-matching in the same way we defined E-extension of executions-matching just before.

Definition 123 (E-extension of continued executions-matching). Let A and B be two PSIOA. Let
E be partially-compatible with both A and B. Let (f, f tr, fex) be an executions-matching from A
to B. Let ((f, f+), f tr,+, fex,+) be the (f+, D′′A)-continuation of (f, f tr, fex) (where by definition
D′′A \ dom(f tr) respect the properties of matched states preservation and extension of equitable corre-
sponding distribution from definition 117). If the respective E-extension of f and f+, noted g and
g+, verifie range(g) ∪ range(g+) ⊆ (B||E), we define the E-extension of ((f, f+), f tr,+, fex,+) as
((g, g+), gtr,+, gex,+), where

– (g, gtr, gex) is the E-extension of (f, f tr, fe)
– gtr,+ : (q, a, η(A||E),q,a) ∈ D′′A||E 7→ (g(q), a, η(A||E),g(q),a) where D′′A||E is the E-extension of dom(f tr,+)

– ∀α′ = α_q, a, q′, with α′ ∈ dom(gex), if (q, a, η(A||E),q,a) ∈ dom(gtr) gex,+(α) = gex(α) and if
(q, a, η(A||E),q,a) ∈ dom(gtr,+) \ dom(gtr) gex,+(α′) = gex(α)_g(q), a, g+(q)

Lemma 20 (Commutativity of continuation and extension). Let A and B be two PSIOA. Let E be
partially-compatible with both A and B. Let (f, f tr, fex) be an executions-matching from A to B. Let
((f, f+), f tr,+, fex,+) be the (f+, D′′A)-continuation of (f, f tr, fex) (where by definition D′′A respect the
properties of matched states preservation and extension of equitable corresponding distribution from
definition 117). Let

– (g, gtr, gex) be the E-extension of (f, f tr, fe) verifying range(g) ⊆ QB||E ,

– D
′′,(c,e)
A||E the E-extension of dom(f tr,+), i.e. D′′,(c,e)A||E = {((qA, qE), a, η(A||E,(qA,qE),a)) ∈ DA||E |qA ∈

dom(f) ∧ [(qA, a, η(A,qA,a)) ∈ dom(f tr,+) ∨ a /∈ ŝig(A)(qA)]}.
– g+

(c,e) be the E-extension of f+

Then
1. D′′A||E \ dom(gtr) verifies matched states preservation and extension of equitable corresponding

distribution.
2. the (g+

(c,e), (D
′′,(c,e)
A||E ))-continuation of (g, gtr, gex), noted ((g, g+

(c,e)), g
tr,+
(c,e), g

ex,+
(c,e) ) is equal to the E-

extension of ((f, f+), f tr,+, fex,+), noted ((g, g+
(e,c)), g

tr,+
(e,c), g

ex,+
(e,c) ).

We show that the operation of continuation and extension are in fact commutative.

Proof. We start by showing D′′,(c,e)A||E \dom(gtr) verifies matched states preservation and extension of eq-
uitable corresponding distribution. By definition 117 of E-extension,D′′,(c,e)A||E = {((qA, qE), a, η(A||E,(qA,qE),a)) ∈
DA||E |qA ∈ dom(f) ∧ [(qA, a, η(A,qA,a)) ∈ dom(f tr,+) ∨ a /∈ ŝig(A)(qA)]}, while dom(gtr) =
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{((qA, qE), a, η(A||E,(qA,qE),a)) ∈ DA||E |qA ∈ dom(f) ∧ [(qA, a, η(A,qA,a)) ∈ dom(f tr) ∨ a /∈ ŝig(A)(qA)]}.

Thus D′′,(c,e)A||E \ dom(gtr) = {((qA, qE), a, η(A||E,(qA,qE),a)) ∈ DA||E |qA ∈ dom(f) ∧ [(qA, a, η(A,qA,a)) ∈
dom(f tr,+) \ dom(f tr)]} (*)

Let tr = ((qA, qE), a, η(A||E),(qA,qE),a) ∈ D
′′,(c,e)
A||E \ dom(gtr), then

– Matched states preservation: By (*) qA ∈ dom(f) which leads immediately to (qA, qE) ∈ dom(g)

– Extension of equitable corresponding distribution: ∀(q′′A, q′′E) ∈ supp(η(A||E,(qA,qE),a)), (q′′A, q′′E) ∈
supp(η(AqA,a) ⊗ η(E,qE ,a)) with η(AqA,a) ∈ dom(f tr,+) \ dom(f tr) by (*) which means q′′A ∈
dom(f+) and η(AqA,a)(q′′A) = η(Bf(qA),a)(f+(q′′A)) and so (q′′A, q′′E) ∈ dom(g+) and η(A,qA,a) ⊗
η(E,qE ,a)(q′′A, q′′E) = η(A,qA,a)(q′′A) · η(E,qE ,a)(q′′E) = η(B,f(qA),a)(f+(q′′A)) · η(E,qE ,a)(q′′E) = η(B,f(qA),a) ⊗
η(E,qE ,a)(f+(q′′A), q′′E) = η(B||E,g(qA,qE),a)(g+(q′′A, q′′E))

We have shown that D′′,(c,e)A||E \dom(gtr) verifies matched states preservation and extension of equitable
corresponding distribution.

Now, we show the second point.

– By definition 117 of continuation, g+
(c,e) = g+

(e,c).

– We prove dom(gtr,+(c,e)) = dom(gtr,+(e,c)) = D
′′,(c,e)
A||E . By definition 117 of continuation, dom(gtr,+(e,c)) =

dom(gtr) ∪ D′′,(c,e)A||E = {((qA, qE), a, η(A||E,(qA,qE),a)) ∈ DA||E |qA ∈ dom(f) ∧ [(qA, a, η(A,qA,a)) ∈
dom(f tr)∨a /∈ ŝig(A)(qA)]}∪{((qA, qE), a, η(A||E,(qA,qE),a)) ∈ DA||E |qA ∈ dom(f)∧[(qA, a, η(A,qA,a)) ∈
dom(f tr,+)∨a /∈ ŝig(A)(qA)]} = {((qA, qE), a, η(A||E,(qA,qE),a)) ∈ DA||E |qA ∈ dom(f)∧[(qA, a, η(A,qA,a)) ∈
dom(f tr,+) ∨ a /∈ ŝig(A)(qA)]} = D

′′,(c,e)
A||E .

Parrallely, by definition 122 of E-extension, dom(gtr,+(c,e)) = {((qA, qE), a, η(A||E,(qA,qE),a)) ∈ DA||E |qA ∈
dom(f) ∧ [(qA, a, η(A,qA,a)) ∈ dom(f tr,+) ∨ a /∈ ŝig(A)(qA)]} = D

′′,(c,e)
A||E . Thus dom(gtr,+(c,e)) =

dom(gtr,+(e,c)) = D
′′,(c,e)
A||E .

– We prove gtr,+(c,e) = gtr,+(e,c) Let ((qA, qE), a, η(A||E,(qA,qE),a)) ∈ D′′A||E .

By definition 122 of E-extension, gtr,+(c,e)(((qA, qE), a, η(A||E,(qA,qE),a))) = (g(qA, qE), a, η(A||E,g(qA,qE),a))),
while by definition 117 of continuation, gtr,+(e,c)(((qA, qE), a, η(A||E,(qA,qE),a))) = (g(qA, qE), a, η(A||E,g(qA,qE),a))).
We can remark that properties of equitable corresponding distribution are not conflicting since
dom(gtr,+c,e ) \ dom(gtr) = dom(gtr,+e,c ) \ dom(gtr).

– ge,+(e,c) and g
e,+
(c,e) are entirely defined by ((g, g+

(e,c)), (g
tr, gtr,+(e,c))) and ((g, g+

(c,e)), (g
tr, gtr,+(c,e))) that are

equal.

application for renaming Before dealing with PCA-executions-matching, we state an intuitive the-
orem of executions-matching after renaming.

Theorem 12. (weak complete bijective executions-matching after hiding) Let A be a PSIOA. Let h
defined on states(A), s.t. ∀q ∈ QA, h(q) ⊆ out(A)(q). Let B = hiding(A, h). Let Id the iden-
tity function from states(A) to states(B) = QA. Then (Id, Idtr, Idex) is a weak complete bijective
executions-matching from A to B.
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Proof. By definition Id ensures starting state preservation and weak signature preservation. By defini-
tion Id is a complete bijection, which implies matched state preservation. The equitable corresponding
distribution is also ensured by definition of hiding. Hence, all the properties are ensured

4.1.2. PCA-matching execution

Here we extend the notion of executions-matching to PCA. In practice, we will build executions-
matchings that preserve the sequence of configurations visited by concerned executions. Hence, the
definition of PCA states-matching is slightly more restrictive to capture this notion of configuration
equivalence (modulo action hiding operation), while the other definitions are exactly the same ones.

matching execution

Definition 124 (PCA states-matching). Let X and Y be two PCA and let f : Q′X ⊂ QX → QY be a
mapping s.t. :

– Starting state preservation: If q̄X ∈ Q′X , then f(q̄X) = q̄Y .
– Configuration preservation (modulo hiding): ∀(q, q′) ∈ Q′X×QY , s.t. q′ = f(q), if auts(config(X)(q)) =

(A1, ...,An), then auts(config(Y )(q′)) = (A′1, ...,A′n) where ∀i ∈ [1 : n],Ai = hide(A′i, hi) with
hi defined on states(A′i), s. t. hi(qA′i) ⊆ out(A

′
i)(qA′i) (resp. s.t. hi(qA′i) = ∅, that is Ai = A′i)

– Hiding preservation (modulo hiding): ∀(q, q′) ∈ Q′X×QY , s.t. q′ = f(q), hidden-actions(X)(q) =
hidden-actions(Y )(q′)∪h+(q′) where h+ defined on states(Y ), s. t. h+(qY ) ⊆ out(Y )(qY ) (resp.
s.t. h+(qY ) = ∅, that is hidden-actions(X)(q) = hidden-actions(Y )(q′))

– Creation preservation ∀(q, q′) ∈ Q′X × QY , s.t. q′ = f(q), ∀a ∈ ŝig(X)(q) = ŝig(Y )(q′),
created(X)(q)(a) = created(Y )(q′)(a).

then we say that f is a weak (resp. strong) PCA states-matching from X to Y . If Q′X = QX , then
we say that f is a complete (weak or strong) PCA states-matching from X to Y .

We naturally obtain that a PCA states-matching is a PSIOA states-matching:

Lemma 21 (A PCA states-matching is a PSIOA states-matching). If f is a weak (resp. strong) PCA
states-matching from X to Y , then f is a PSIOA states-matching from psioa(X) to psioa(Y ) (in the
sense of definition 112). (The converse is not necessarily true.)

Proof. The signature preservation immediately comes from the configuration preservation and the
hiding preservation.

Now, all the definitions from definition 113 to definition 115 of previous subsections are the same that
is:

Definition 125 (PCA transitions-matching and PCA executions-matching). Let X and Y be two
PCA and let f : Q′X ⊂ QX → QY be a PCA states-matching from X to Y .

– Let D′X ⊆ DX be a subset of transitions, D′X is eligible to PCA transitions-matching domain
from f if it is eligible to PSIOA transitions-matching domain from f according to definition 113.

– Let D′X ⊆ DX be a subset of transitions eligible to PCA transitions-matching domain from f .
We define the PCA transitions-matching (f, f tr) induced by the PCA states-matching f and
the subset of transitions D′X as the PSIOA transitions-matching induced by the PSIOA states-
matching f and the subset of transitions D′X according to definition 114.
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– Let f tr : D′X ⊆ DX → DY s.t. (f, f tr) is a PCA transitions-matching, we define the PCA
executions-matching (f, f tr, fex) induced by (f, f tr) (resp. by f and dom(f tr)) as the PSIOA
executions-matching (f, f tr, fex) induced by (f, f tr) (resp. by f and dom(f tr)) according to
definition 115. Furthermore, let (µ, µ′) ∈ Disc(Frags(X)) × Disc(Frags(Y )) s.t. for every
α′ ∈ supp(µ), α′ ∈ dom(fex) and µ(α) = µ′(fex(α′)). then we say that (f, f tr, fex) is a PCA
executions-matching from (X,µ) to (Y, µ′) according to definition 116.

– The (f+, D′′X)-continuation of a PCA-executions-matching (f, f tr, fex) is the (f+, D′′X)- contin-
uation of (f, f tr, fex) in the according to definition 117.

We restate the theorem 8 and 9 for PCA executions-matching:

Theorem 13 (PCA-executions-matching preserves probabilsitic distribution). Let X and Y be two
PCA (µ, µ′) ∈ Disc(Frags(X)) × Disc(Frags(Y )). Let (f, f tr, fex) be a PCA executions-matching
from (X,µ) to (Y, µ′) . Let (σ̃, σ) ∈ schedulers(A)× schedulers(B), s.t. (σ̃, σ) are (f, f tr, fex)-alter
egos. Let (α, π) ∈ dom(fex)× Frags(Y ).
If π = fex(α), then εσ̃,µ̃(Cα̃) = εσ,µ(Cα) and εσ̃,µ̃(α̃) = εσ,µ(α).

Proof. We just re-apply the theorem 8, since (f, f tr, fex) is a PSIOA executions-matching from
(psioa(X), µ) to (psioa(Y ), µ′).

Theorem 14 (Continued PCA executions-matching preserves general probabilistic distribution). Let
X and Y be two PCA (µ, µ′) ∈ Disc(Frags(X)) × Disc(Frags(Y )). Let (f, f tr, fex) be a PCA
executions-matching from (X,µ) to (Y, µ′) . Let ((f, f+), f tr,+, fex,+) be a continuation of (f, f tr, fex).
Let (σ̃, σ) ∈ schedulers(A) × schedulers(B), s.t. (σ̃, σ) are (f, f tr, fex)-alter egos. Let (α, π) ∈
dom(fex,+)× Frags(Y ).
If π = fex,+(α), then εσ̃,µ̃(Cα̃) = εσ,µ(Cα).

Proof. We just re-apply the theorem, 9 since ((f, f+), f tr,+, fex,+) is a continued PSIOA executions-
matching from (psioa(X), µ) to (psioa(Y ), µ′).

Composability of executions-matching relationship Now we are looking for composability of PCA
executions-matching. Here again the notions are the same than the ones for PSIOA excepting for
states-matching and for partial-compatibility. Hence we only need to show that i) the E-extension
of a PCA states-matching is still a PCA states-matching (see lemma 22), ii) if f : QX → QY is a
bijective PCA states-matching and f−1 is complete, then for every PCA E partial-compatible with X,
E is partial-compatible Y (see lemma 23).

Lemma 22 (Composability of PCA states-matching). Let X and Y be two PCA. Let E be partially-
compatible with both X and Y . Let f : Q′X ⊂ QX → QY be a PCA states-matching. Let g be the
E-extension of f .

If range(g) ⊂ QY ||E , then g is a PCA states-matching from X||E to Y ||E.

Proof. – If (q̄X , q̄E) ∈ QX||E then q̄X ∈ Q′X which means f(q̄X) = q̄Y , thus g((q̄X , q̄E)) = (q̄E , q̄E).
– ∀((qX , qE), (qY , qE)) ∈ Q′X||E ×QY ||E with (qY , qE) = g((qX , qE)), we have

• Configuration preservation (modulo hiding): if auts(config(X)(qX)) = (A1, ...,An), then
auts(config(Y )(qY )) = (A′1, ...,A′n) where ∀i ∈ [1 : n],Ai = hide(A′i, hi) with hi defined on
states(A′i), s. t. hi(qA′i) ⊆ out(A′i)(qA′i) (resp. s.t. hi(qA′i) = ∅, that is Ai = A′i). Hence if
auts(config(X||E)((qX , qE)) = (A1, ...,An,B1, ...,Bm), then auts(config(Y ||E)((qY , qE)) =
(A′1, ...,A′n,B1, ...,Bm) where ∀i ∈ [1 : n],Ai = hide(A′i, hi) with hi defined on states(A′i),
s. t. hi(qA′i) ⊆ out(A

′
i)(qA′i) (resp. s.t. hi(qA′i) = ∅, that is Ai = A′i).
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• Hidding preservation (modulo hiding): hidden-actions(X)(qX) = hidden-actions(Y )(qY )∪
h+(qY ) where h+ defined on states(Y ), s. t. h+(qY ) ⊆ out(Y )(qY ).
Hence hidden-actions(X||E)((qX , qE)) = hidden-actions(X)(qX)∪hidden-actions(E)(qE) =
hidden-actions(Y )(qY )∪hidden-actions(E)(qE)∪h+(qY ) = hidden-actions(Y ||E)((qY , qE))∪
h+′((qY , qE)) where h+′ defined on states(Y ||E), s. t. h+′((qY , qE)) = h+(qY ) ⊆ out(Y )(qY ) ⊆
out(Y ||E)((qY , qE)).

• Creation preservation ∀a ∈ ŝig(X)(qX) = ŝig(Y )(qY ), created(X)(qX)(a) = created(Y )(qY )(a).
Hence ∀a ∈ ŝig(X||E)((qX , qE)) = ŝig(Y ||E)((qY , qE)), either
— a ∈ ŝig(X)(qX) = ŝig(Y )(qY ) but a /∈ ŝig(E)(qE) and then created(X||E)((qX , qE))(a) =

created(X)(qX)(a) = created(Y )(qY ) = created(Y ||E)((qY , qE))(a)
— or a /∈ ŝig(X)(qX) = ŝig(Y )(qY ) but a ∈ ŝig(E)(qE) and then created(X||E)((qX , qE))(a) =

created(E)(qE)(a) = created(Y ||E)((qY , qE))(a)
— or a ∈ ŝig(X)(qX) = ŝig(Y )(qY ) and a ∈ ŝig(E)(qE) and then created(X||E)((qX , qE))(a) =

created(X)(qX)(a) ∪ created(E)(qE)(a) = created(Y )(qY ) ∪ created(E)(qE)(a) , i.e.
created(X||E)((qX , qE))(a) = created(Y ||E)((qY , qE))(a)

Thus, ∀a ∈ ŝig(X||E)((qX , qE)) = ŝig(Y ||E)((qY , qE)), we have
created(X||E)((qX , qE))(a) = created(Y ||E)((qY , qE))(a).

We restate the theorem 10 of executions-matching composability.

Theorem 15 (Composability of PCA matching-execution). Let X and Y be two PCA. Let E be
partially-compatible with both X and Y . Let (f, f tr, fex) be a PCA executions-matching from X to
Y . Let g be the E-extension of f . If range(g) ⊂ QY ||E , then the E-extension of (f, f tr, fex) is a PCA
executions-matching (g, gtr, gex) from X||E to Y ||E induced by g and dom(gtr).

Proof. This comes immediately from theorem 10.

We extend the lemma 19 but we have to take a little precaution for the partial-compatibility since
here the configurations have to be pairwise compatible, not only the signatures.

Lemma 23 (Some properties preserved by E-extension of a PCA executions-matching). Let X and
Y be two PCA. Let (f, f tr, fex) be a PCA executions-matching from X to Y .

1. If f is complete, then for every PSIOA E partially-compatible with X, E is partially-compatible
with Y .

2. Let E partially-compatible with both X and Y , let g be the E-extension of f .

a) If f is bijective and f−1 is complete, then range(g) = QY ||E and so we can talk about the
E-extension of (f, f tr, fex)

b) If (f, f tr) is a bijective complete transition-matching, (g, gtr) is a bijective complete transition-
matching. (And (f, f tr, fex) and (g, gtr, gex) are bijective complete executions-matching. )

c) If f is strong, then g is strong

Proof. 1. We need to show that every pseudo-execution of (Y, E) ends on a compatible state. Let
π = q0a1q1...anqn be a finite pseudo-execution of (Y, E). We note α the alternating sequence
(f−1(q0

Y ), q0
E)a1(f−1(q1

Y ), q1
E)...an(f−1(qnY ), qnE ). The proof is in two steps.
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First, we show by induction that α = (f−1(q0
Y ), q0

E)a1(f−1(q1
Y ), q1

E)...an(f−1(qnY ), qnE ) is an exe-
cution of X||E . Second, we deduce that it means (f−1(qnY ), qnE ) is a compatible state of (X, E)
which means that a fortiori, (qnY , qnE ) is a compatible state of (Y, E) which ends the proof.
– First, we show by induction that α is an execution ofX||E . We have (f−1(q̄Y ), q̄E) = (q̄X , q̄E)

which ends the basis.
Let assume (f−1(q0

Y ), q0
E)a1(f−1(q1

Y ), q1
E)...ak(f−1(qkY ), qkE) is an execution of X||E . Hence

(f−1(qkY ), qkE) is a compatible state of (X, E) which means that a fortiori qk is a compatible
state of (Y, E) because of signature preservation of f .
Similarly, ŝig(Y, E)(qk) = ŝig(X||E)((f−1(qkY ), qkE)), so ak+1 ∈ ŝig(X, E)((f−1(qkY ), qkE)).
Then we use the completeness of (f−1, (f tr)−1), to obtain the fact that either η(Y,qkY ,ak+1) ∈

dom((f tr)−1) or ak+1 /∈ ŝig(Y )(qkY ) (and we recall the convention that in this second case
η(Y,qkY ,ak+1) = δqkY

). which means either (f−1(qkY ), ak+1, η(X,f−1(qkY ),ak+1)) is a transition
of X that ensures ∀q′′ ∈ supp(η(Y,qkY ,ak+1)), f

−1(q′′) ∈ supp(η(X,f−1(qkY ),ak+1)) or ak+1 /∈

ŝig(X)(f−1(qkY )) (and we recall the convention that in this second case η(X,f−1(qkY ),ak+1) =
δf−1(qkY )). Thus for every (q′′, q′′′) ∈ supp(η(Y,E),qk,ak+1)), (f−1(q′′), q′′′) = g−1((q′′, q′′′)) ∈
supp(η(X,E),g−1(qk),ak+1)) namely for (q′′, q′′′) = (qk+1

Y , qk+1
E ). Hence, (f−1(qk+1

Y ), qk+1
E ) is

reachable by (X, E) which means the alternating sequence
(f−1(q0

Y ), q0
E)a1(f−1(q1

Y ), q1
E)...ak(f−1(qkY ), qkE)ak(f−1(qkY ), qkE)ak+1(f−1(qk+1

Y ), qk+1
E ) is an ex-

ecution of X||E . Thus by induction α is an execution of X||E .
– Since X and E are partially-compatible (f−1(qnY ), qnE ) is a state of X||E , so (f−1(qnY ), qnE ) is

a compatible state of (X, E) which means (qkY , qkE) is a fortiori a compatible state of (Y, E)
. Hence every reachable state of (Y, E) is compatible which means Y and E are partially
compatible which ends the proof.

2. This comes immediately from lemma 19 since (f, f tr, fex) is a PSIOA executions-matching from
psioa(X) to psioa(Y ) by construction.

Finally, we restate the semantic-equivalence.

A strong complete bijective transitions-matching implies a strong complete bijective executions-matching
which means the two automata are completely semantically equivalent.
Definition 126 (PCA semantic equivalence). Let X an Y be two PCA. We say that X and Y are
semantically-equivalent if it exists a complete bijective strong PCA executions-matching from X to Y
Theorem 16 (composability of semantic equivalence). Let X and Y be PCA semantically-equivalent.
Then for every PSIOA E:

– E is partially-compatible with X ⇐⇒ E is partially-compatible with Y
– if E is an environment for both X and Y , then X||E and Y ||E are PCA semantically-equivalent.

Proof. – The first item comes from lemma 23, first item
– The second item comes from lemma 23, second item

A weak complete bijective PCA transitions-matching implies a weak complete bijective PCA executions-
matching which means the two automata are completely semantically equivalent modulo some hiding
operation that implies that some PSIOA are partially-compatible with one of the automaton and not
with the other one and that the traces are not necessarily the same ones.
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4.1.3. Digest

We have introduced the concept of executions-matching which is an homomorphism between 2 sets of
executions of two automata X and Y that preserves (modulo hiding operations):

– starting state
– signature at each pair of matched states
– measure of probability over matched states at each pair of matched transitions
– configuration at each pair of matched states
– created automata by each action of the common signature of each pair of matched states

Such an executions-matching is said:
– "strong" if no hiding opeartion was required for the correspondance, "weak" otherwise.
– "complete" if is domain covers the entire set of executions of X

If two automata are linked by a strong complete bijective executions-matching, we say they are
semantically-equivalent.

The key property of an executions-matching f̃ between to automata X and Y is that for every
scheduler σ of X, it is easy to define its f̃ -alter ego σ′ ∈ schedulers(Y ) such that the measures of
corresponding executions are preserved, i.e. εσ(Cα) = εσ′(Cα′) and εσ(α) = εσ′(α′) for each pair of
executions (α, α′) ∈ Execs(X)× Execs(Y ) linked by the executions-matching.

When an executions-matching f̃ between to automata X and Y exists, it is possible (under minor
technical conditions) to define its E-extension, i.e. the executions-matching g̃ between the automata
X||E and Y ||E such that g̃ deprived of its attributes relative to E corresponds to f̃ . All the good
properties are preserved by extension. In a certain sense, we can say that an extensions-matching is
composable.

We also introduced the concept of continued executions-matching, that allows the loss of some prop-
erties for the very last steps of the concerned executions. This will be a key notion for copy-pasting
operations over execution fragments, where an executions-matching might lose its properties upon the
(re-)creation of a sub-automaton.

Intuitively, we can say that the operations of continuation and extension commute.
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4.2. Projection

This section aims to formalize the idea of a PCA XA considered without an internal PSIOA A. This
PCA will be noted YA = XA \ {A}. The reader can already take a look on the figures 4.7 and 4.8 to
get an intuition on the desired result. This is an important step in our reasoning since we will be able
to formalise in which sense XA and psioa(XA \ {A})||A are similar.

We first define some notions of projection on configurations on subsection 4.2.1. Then we define
the notion of A-fair PCA X in subsection 4.2.2, which will be a sufficient condition to ensure that
Y = X \ {A} is still a PCA, namely that it ensures the constraints of top/down and bottom/up
transition preservation, which is proved in the last subsection 4.2.3.

4.2.1. Projection on Configurations

In this subsection, we want to define formally η′ ∈ Disc(Qconf ) that would be the result of η ∈
Disc(Qconf ) "deprived of an automaton A". This is achieved in definition 130. This definition requires
particular precautions and motivate the next sequence of definitions, from definition 127 to 130.

The next definition captures the idea of a state deprived of a PSIOA A.

Definition 127 (State projection). Let A = {A1, ...,An} be a set of PSIOA compatible at state
q = (q1, ..., qn) ∈ QA1 × ...×QAn. Let As = {As1 , ...,Asn}. We note :

– q \ {Ak} = (q1, ..., qk−1, qk+1, ..., qn) if Ak ∈ A and q \ {Ak} = q otherwise.
– q \As = (q \ {Asn}) \ (As \ {Asn}) (recursive extension of the previous item).
– q � As = q \ (A \As) if As ⊂ A (recursive extension of the previous item). We can remark that
q � Ak = qk if Ak ∈ A.

Since, � can be defined with \, the next sequence of definitions only handles \ but can be adapted to
support � in an obvious way.

Figure 4.2. – State projection

The next definition captures the idea of a family transition deprived of a PSIOA A.

Definition 128 (Family transition projection). (see figure 4.3 first for an intuition) Let A1 be a set
of automata compatible at state q1 ∈ QA1. Let As,A2 = A1 \As 6= ∅. Let q2 = q1 \As. Let a be an
action. We note η(A1,q1,a) \As , η(A2,q2,a) with the convention η(Ai,qi,a) = δqi if a /∈ ŝig(Ai)(qi) for
each i ∈ {1, 2}.

Lemma 24 (family transition projection). Let A1 be a set of automata compatible at state q1 ∈ QA1.
Let As,A2 = A1 \As 6= ∅. Let q2 = q1 \As. Let a be an action. Let η1 = η(A1,q1,a) and η2 = η1 \As

with the convention η(A1,q1,a) = δq1 if a /∈ ŝig(A1)(q1).

Then ∀q′2 ∈ QA2, η2(q′2) =
∑

q′1∈QA1 ,q
′
1\As=q′2

η1(q′1)
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Proof. Comes from total probability law. If As ∩A1 = ∅, A2 = A1, the result is immediate. Assume
As ∩ A1 6= ∅. Let A3 = A \ A2 = A \ (A \ As) 6= ∅. We note q3 = q1 \ A2, η3 = η1 \ A2 Then
∀q′1 ∈ QA1 , η1(q′1) = η2(q′2) ⊗ η3(q′3) with q′2 = q′1 � A2 and q′3 = q′1 � A3. Hence ∀q′2 ∈ QA2 ,∑
q′1∈QA1 ,q

′
1\As=q′2

η1(q′1) =
∑

q′1∈QA1 ,q
′
1�A2=q′2

η2(q′2) · η3(q′1 � A3) = η2(q′2) ·
∑

q′3∈QA3

η3(q′3) = η2(q′2), which

ends the proof.

Figure 4.3. – total probability law for family transition projection

Then we apply this notation to preserving distributions.

Definition 129 (preserving transition projection). (see figure 4.4) Let A, As, A2 = A \As be set of
automata, q ∈ QA, and a be an action. Let ηp ∈ Disc(Qconf ) be the unique preserving distribution s.t.
ηp

TS↔ η(A,q,a) with the convention η(A,q,a) = δq if a /∈ ŝig(A)(q). We note ηp \As the unique preserving
distribution s.t. (ηp \As) TS↔ (η(A,q,a) \As) if A2 6= ∅ and ηp = δ(∅,∅) otherwise.

Lemma 25 (preserving transition projection). Let As be finite sets of PSIOA. Let a be an action.
For each i ∈ {1, 2}, let Ci ∈ Qconf , Ci

a
⇀ ηip if a ∈ ŝig(Ci) and ηip = δCi otherwise. Let η̃2

p = η1
p \As.

Assume C2 = C1 \As. Then,
– η2

p = η̃2
p, i.e. (C1 \As) a

⇀ (η1
p \As).

– For every C ′2 ∈ Qconf , η2
p(C ′2) = Σ(C′1∈Qconf ,C′1\As=C′2)η

1
p(C ′1)

Proof.
– Immediate by definitions 67 and 129.

– For each i ∈ {1, 2}, we note Ai = auts(Ci), qi = TS(Ci). By definition, we have ηip
TS↔ η(Ai,qi,a)

with the convention η(Ai,qi,a) = δq if a /∈ ŝig(Ai)(qi). Finally, we apply lemma 24.

Now we are able to define intrinsic transition deprived of a PSIOA A.
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Figure 4.4. – total probability law for preserving configuration

Definition 130 (intrinsic transition projection). (see figure 4.5) Let A, As be finite sets of automata,
q ∈ QA, and a be an action. Let ηp ∈ Disc(Qconf ) be the unique preserving distribution s.t. ηp

TS↔
η(A,q,a) with the convention η(A,q,a) = δq if a /∈ ŝig(A)(q). Let ϕ be a finite set of PSIOA identifiers
with aut(ϕ) ∩A = ∅. Let η = reduce(ηp ↑ ϕ). We note η \As = reduce((ηp \As) ↑ (ϕ \As)).

Lemma 26 (intrinsic transition projection). Let As be finite sets of PSIOA. Let a be an action. For
each i ∈ {1, 2}, let ϕi be a finite set of PSIOA identifiers, let Ci ∈ Qconf , Ci

a=⇒ϕi η
i if a ∈ ŝig(Ci)

and ηi = δCi otherwise. Let η̃2 = η1 \As and ϕ̃2 = ϕ1 \As. Assume C2 = C1 \As. Then,

1. η2 = η̃2 and ϕ̃2 = ϕ2, i.e. (C1 \As) a=⇒ϕ1\As (η1 \As).

2. For every C ′2 ∈ Qconf , (η2
p ↑ ϕ2)(C ′2) =

∑
(C′1∈Qconf ,C′1\As=C′2)

(η1
p ↑ ϕ1)(C ′1)

3. For every C ′2 ∈ Qconf , η2(C ′2) = Σ(C′1∈Qconf ,C′1\As=C′2)η
1(C ′1)

Proof.

1. Immediate by definitions 67, 130 and lemma 25

2. Let C3 = C1 \ (auts(C1) \As). We note ϕ3 = ϕ1 \ ϕ2. By definition 67, for each i ∈ {1, 2, 3},
for each C ′i ∈ Qconf , (ηip ↑ ϕi)(C ′i) = δCϕi (C

′
i � ϕi) · ηip(C ′i \ ϕi) with auts(Cϕi) = ϕi and ∀A ∈

ϕi,map(Cϕi)(A) = q̄A. By previous lemma, for every C ′′2 ∈ Qconf , η1
p(C ′′2 ) =

∑
C′′1 ,C

′′
1 \As=C′′2

η1
p(C ′′1 ).

Hence, (η2
p ↑ ϕ2)(C ′2) = δCϕ2

(C ′2 � ϕ2) ·
∑

C′′1 ,C
′′
1 \As=(C′2\ϕ2)

η1
p(C ′′1 ) and so (η2

p ↑ ϕ2)(C ′2) =
∑

C′′1 ,C
′′
1 \As=(C′2\ϕ2)

δCϕ2
(C ′2 � ϕ2) · η1

p(C ′′1 ).

We remark that the conjunction of C ′′1 ∈ supp(η1
p), C ′′1 \ As = (C ′2 \ ϕ2) and C ′2 � ϕ2 = Cϕ2

implies (C ′′1 ∪ Cϕ3 ∪ Cϕ2) \As = C ′2 .
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Thus,

(η2
p ↑ ϕ2)(C ′2) =

∑
C′′′1 ,C′′′1 \As=(C′2)

δCϕ2
(C ′2 � ϕ2) · δCϕ3

(C ′′′1 � ϕ3) · η1
p(C ′′′1 \ ϕ1)

=
∑

C′′′1 ,C′′′1 \As=(C′2)
δCϕ2

(C ′′′1 � ϕ2) · δCϕ3
(C ′′′1 � ϕ3) · η1

p(C ′′′1 \ ϕ1)

=
∑

C′′′1 ,C′′′1 \As=C′2

δCϕ1
(C ′′′1 � ϕ1) · η1

p(C ′′′1 \ ϕ1)

=
∑

C′′′1 ,C′′′1 \As=C′2

(η1
p ↑ ϕ1)

3. By definition 67, for each i ∈ {1, 2}, for each C ′i ∈ Qconf , ηi(C ′i) =
∑

C′′i ,reduce(C
′′
i )=C′i

(ηip ↑ ϕi)(C ′′i ).

By previous lemma, for every C ′′2 ∈ Qconf , η1
p(C ′′2 ) =

∑
C′′′1 ,C′′′1 \As=C′′2

(η1
p ↑ ϕ1)(C ′′′1 ). Thus,

η2(C ′2) =
∑

C′′2 ,reduce(C′′2 )=C′2

(
∑

C′′′1 ,C′′′1 \As=C′′2

(η1
p ↑ ϕ1)(C ′′′1 ))

=
∑

C′′′1 ,reduce(C′′′1 \As)=C′′2

(η1
p ↑ ϕ1)(C ′′′1 )

=
∑

C′′′1 ,reduce(C′′′1 )\As=C′′2

(η1
p ↑ ϕ1)(C ′′′1 )

=
∑

C′1,C
′
1\As=C′2

(
∑

C′′1 ,reduce(C′′1 )=C′1

((η1
p ↑ ϕ1)(C ′′1 )))

=
∑

C′1,C
′
1\As=C′2

η1(C ′1)

Figure 4.5. – intrinsic transition projection

In next subsection, this lemma 26 will lead to lemma 27 which will be a key lemma to allow the
constructive definition 132 of PCA deprived of a (sub) PSIOA.
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4.2.2. A-fairness assumption, motivated by our definition of PCA deprived of an
internal PSIOA: X \ {A}

Here we recall in definition 131 the definition 104 of a A-fair PCA. Then we show lemma 27 (via
lemma 26) that will be used to enable the constructive definition of X \ {A}.

Definition 131 (A-fair PCA (recall)). Let A ∈ Autids. Let X be a PCA. We say that X is A-fair
if it verifies the following constraints.

– (configuration-conflict-free) X is configuration-conflict-free, that is ∀q, q′ ∈ QX , s.t. qRconfq
′

(i.e. config(X)(q) = config(X)(q′)) then q = q′

– (no conflict for projection) ∀q, q′ ∈ QX , s.t. qR\{A}conf q
′ then qR\{A}strictq

′. That is if config(X)(q) \
{A} = config(X)(q′) \ {A}, then
• ∀a ∈ ŝig(X)(q) ∩ ŝig(X)(q′), created(X)(q)(a) \ {A} = created(X)(q′)(a) \ {A}
• hidden-actions(X)(q)\pot-out(X)(q)(A) = hidden-actions(X)(q′)\pot-out(X)(q′)(A) where
for each q′′ ∈ QX :
— pot-out(X)(q′′)(A) = ∅ if A /∈ auts(config(X)(q′′)), and
— pot-out(X)(q′′)(A) = out(A)(map(config(X)(q′′))(A)) if A ∈ auts(config(X)(q′′)).

– (no exclusive creation by A) ∀q ∈ QX , ∀a ∈ ŝig(X)(q) A-exclusive in q, created(X)(q)(a) = ∅
where A-exclusive means ∀B ∈ auts(config(X)(q)), B 6= A, a /∈ ŝig(B)(map(config(X)(q))(B)).

A A-fair PCA is a PCA s.t. we can deduce its current properties from its current configuration
deprived of A. This will allow the definition of X \ {A}, where X is a PCA, to be well-defined.

Now we give the second key lemma (after lemma 26) to allow the definition 132 of PCA deprived of a
(sub) PSIOA. Basically, this lemma states that if two states qX and qY are strictly equivalent modulo
the deprivation of a (sub) automaton P , noted qXR

\{P}
strictqY , then the intrinsic configurations issued

from these states deprived of P are equal.

Lemma 27 (equality of intrinsic transition after deprivation of a sub-PSIOA). Let X1, X2 be two
PCA, (q1, q2) ∈ QX1 × QX2 s.t. q1R

\{P}
strictq2. Let a be an action. For each i ∈ {1, 2}, we note

Ci , config(X)(qi), ϕi , created(X)(qi)(a), ηi s.t. if a ∈ ŝig(Ci), Ci
a=⇒ϕi ηi and ηi = δCi

otherwise. Then,
– C0 , C1 \ {P} = C2 \ {P},
– ϕ0 , ϕ1 \ {P} = ϕ2 \ {P},
– η , η1 \ {P} = η2 \ {P},
– If a ∈ ŝig(C0), C0

a=⇒ϕ η0 and η0 = δC0 otherwise.

Proof. The two first items comes directly from definition of R\{P}strict. By lemma 26, if a ∈ ŝig(C0), we
have both C0

a=⇒ϕ η1 \{P} and C0
a=⇒ϕ η2 \{P}, while if a /∈ ŝig(C0), we have both (η1 \{P}) = δC0

and (η2 \ {P}) = δC0 . By uniqueness of intrinsic transition, we have η1 \ {P} = η2 \ {P}.

Definition 132 (X\{P}). (see figure 4.6 for the constructive definition and figures 4.7 and 4.8 for the
desired result.) Let P ∈ Autids. Let X be a P -fair PCA, with psioa(X) = (QX , q̄X , sig(X), DX). We
note X \ {P} the automaton Y equipped with the same attributes than a PCA (psioa, config, hidden-
actions, created), µPs : QX → QY and µPd : DX \ {η(X,qX ,a) ∈ DX |a is P -exclusive in qX} → DY that
respect systematically the following rules:

– P -deprivation: ∀qY ∈ QY , P /∈ config(Y )(qY ), ∀a ∈ ŝig(Y )(qY )(a), P /∈ created(Y )(qY )(a).
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– µPs -correspondence: ∀(qX , qY ) ∈ QX ×QY s.t. µPs (qX) = qY , then qXR\{P}strictqY .
– µPd -correspondence: ∀((qY , a, η(Y,qY ,aY )), (qX , a, η(X,qX ,aX))) ∈ DX ×DY s.t. (qY , a, η(Y,qY ,aY )) =
µPd (qX , a, η(X,qX ,aX)), then
• µPs (qX) = qY ,
• aX = aY and
• ∀q′Y ∈ QY , η(Y,qY ,a)(q′Y ) = Σq′X∈QX ,µs(q

′
X)=q′Y η(X,qX ,a)(q′X).

and constructed (conjointly with the mapping µPs and µPd ) as follows:
– (Partitioning):

We partition QX in equivalence classes according to the equivalence relation R
\{P}
conf that is we

obtain a partition (Cj)j∈J⊂N s.t. ∀j ∈ J , ∀qX , q′X ∈ Cj, qXR
\{P}
conf q

′
X and by P -fair assumption,

qXR
\{P}
strictq

′
X

– (QY , sig(Y ) and µPs ):
∀j ∈ J , we construct qjY ∈ QY and conjointly extend µPs s.t. ∀qX ∈ Cj, µPs (qX) = qjY , verifying
the P -deprivation-rule and µPs -correspondence rule, that is
• config(Y )(qjY ) = config(X)(qX) \ {P},
• hidden-actions(Y )(qjY ) = hidden-actions(X)(qX) \ pot-out(X)(qX)(P ),
• sig(Y )(qjY ) = hide(sig(config(Y )(qjY )), hidden-actions(Y )(qjY ))
• ∀a ∈ ŝig(Y )(qjY ), created(Y )(qjY )(a) = created(X)(qX)(a) \ {P}.
• Furthermore q̄Y = µPs (q̄X).

– (DY and µPd ):
∀qY ∈ QY , ∀a ∈ ŝig(Y )(qY ) (and so ∀qX ∈ (µPs )−1(qY ), a ∈ ŝig(X)(qX)) we construct η(Y,qY ,a)
and conjointly extend µPd s.t. ∀qX ∈ (µPs )−1(qY ), (qY , a, η(Y,qY ,aY )) = µPd (qX , a, η(X,qX ,aX)),
verifies the µPd -correspondence rule. We show this construction is possible:

• We note CY = config(Y )(qY ), ϕY = created(Y )(qY )(a), ηY the unique element of Disc(Qconf )
s.t. CY

a=⇒ϕY ηY . Let (qiX)i∈I⊂N = (µPs )−1(qY ). For every i ∈ I, we note CiX =
config(X)(qiX), ϕiX = created(X)(qiX)(a), ηiX the unique element of Disc(Qconf ) s.t.
CiX

a=⇒ϕiX
ηiX . By lemma 27, ∀i ∈ I, CiX \ {P} = CY , ϕi \ {P} = ϕY and ηiX \ {P} = ηY .

• For every qiX ∈ (µPs )−1(qY ), we partition supp(η(X,qiX ,a)) in equivalence classes according
to the equivalence relation R

\{P}
conf that is we obtain a partition (C ′j)j∈J ′⊂N s.t. ∀j ∈ J ′,

∀q′X , q′′X ∈ C ′j, q′XR
\{P}
conf q

′′
X and by P -fair assumption, q′XR

\{P}
strictq

′′
X . For each j ∈ J ′, we

extract an arbitrary q′X ∈ C ′j and q′Y = µPs (q′X). We fix η(Y,qY ,a)(q′Y ) := ηY (C ′Y ) with
C ′Y = config(Y )(q′Y ).

ηY (C ′Y ) =
∑

C′X ,C
′
Y =C′X\{P}

ηiX(C ′X) by lemma 26

=
∑

q′X ,C
′
Y =config(X)(q′X)\{P}

η(X,qiX ,a)(q′X) by bottom/up transition preservation

=
∑

q′X ,q
′
Y =µPs (q′X)

η(X,qiX ,a)(q′X) By µPs -correspondence

Thus, the µPd -correspondence constraint holds for all the possible qiX ∈ (µPs )−1(qY ).
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Figure 4.6. – constructive definition of PCA projection

constructive definition of Y = X \ {P}. First, we construct q̃0 which is the initial state of Y .
Then we partition supp(η(X,q0,a)) = {q1xu , q1xv} ∪ {q1yu , q1yv} s.t. q1xuR

\{P}
conf q

1xv and q1yuR
\{P}
conf q

1yv .
Thereafter we construct ˜q1x = µs(q1xu) = µs(q1xv) and ˜q1y = µs(q1yu) = µs(q1yv). Then, η(Y,q̃0,a)
is defined s.t. η(Y,q̃0,a)(q̃

1x) = η(X,q0,a)(q1xu) + η(X,q0,a)(q1xv) and η(Y,q̃0,a)(q̃
1y) = η(X,q0,a)(q1yu) +

η(X,q0,a)(q1yv). We perform another time this procedure. by partitioning supp(η(X,q1yu ,a)) = {q2xu} ∪
{q2yu} or supp(η(X,q1yv ,a)) = {q2xv , q2xw} ∪ {q2yv , q2yw} arbitrarily. Indeed the obtai,ed result is the
same: (i) q1yuR

\{P}
conf q

1yv since they are both pre-image of q̃1y by µs, which means (ii) q1yuR
\{P}
strictq

1yv

since X is assumed to be P -fair. If we note Cu = config(X)(q1yu), Cv = config(X)(q1yv), ϕu =
created(X)(q1yu)(c), ϕv = created(X)(q1yv)(c), Cu

c=⇒ϕu ηu and Cv
c=⇒ϕv ηv we have j) Cu \ {P} =

Cv \ {P}, jj) Cu \ {P}
c=⇒ϕu\{P} ηu \ {P} and jjj) Cv \ {P}

c=⇒ϕv\{P} ηv \ {P} which implies jv)
ηu \ {P} = ηv \ {P}.

In the remaining, if we consider a PCA X deprived of a PSIOA A we always implicitly assume that
X is A-fair.

4.2.3. Y = X \ {A} is a PCA if X is A-fair

Here we prove a sequence of lemma to show that Y = X \ {P} is indeed a PCA, by verifying all the
constraints.

Prepare the top/down transition preservation We show a useful lemma to show Y = X \ {A}
verifies the constraint 2 of top/down transition preservation.
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Figure 4.7. – Projection on PCA (part 1/2, the part 2/2 is in figure 4.8): the original PCA X

Figure 4.8. – Projection on PCA (part 2/2, the part 1/2 is in figure 4.7): the PCA Y = X \ {T}
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Lemma 28 (corresponding transition after projection). Let A be a PSIOA. Let X be a A-fair PCA
and Y = X \ A. ((qX , a, ηX), (qY , a, ηY )) ∈ DX ×DY , s.t. (qY , a, η(Y,qY ,a)) = µd(qX , a, η(X,qX ,a)). For
each K ∈ {X,Y }, we note CK = config(K)(qK), ϕK = created(K)(qK)(a).

Let η′X the unique element of Disc(Qconf ) s.t. x0) η(X,qX ,a)
c↔ η′X with x1) c = config(X) and x2)

CX
a=⇒ϕX η′X .

Let η′Y = η′X \ {A}. Then η′Y verifies y0) η(Y,qY ,a)
c′↔ η′Y with y1) c′ = config(Y )(qY ) and y2)

Config(Y )(qY ) a=⇒ϕY η
′
Y .

Proof. We note (QXi )i∈I the partition of supp(ηX,qX ,a) s.t. ∀i ∈ I, ∀q
′
X , q

′′
X ∈ QXi , q′XR

\{A}
conf q

′′
X . ∀i ∈ I,

we note C\{A}i = config(q′X)\{A} for an arbitrary element q′X ∈ QXi and Ci = {C ∈ supp(η′X)|C\A =
C
\{A}
i }. Since x0) η(X,qX ,a)

f↔ η′X with x1) f = config(X)(qX), (Ci)i∈I is a partition of supp(η′X).

For every i ∈ I, we note qYi = µs(q′X) for an arbitrary element q′X ∈ QXi . By µAs -correspondance,
config(qYi ) = C

\{A}
i = config(q′X) \ {A}

By µAd -correspondence,

η(Y,qY ,a)(q′Y ) = Σq′X ,µs(q
′
X)=q′Y η(X,qX ,a)(q′X)

= Σi∈IΣq′X∈Q
X
i ,µs(q

′
X)=q′Y

η(X,qX ,a)(q′X)

By assumption x0) and x1), η(X,qX ,a)
c↔ η′X with c = config(X), thus

ηY,qy ,a(q′y) = Σi∈IΣq′X∈Q
X
i ,µs(q

′
X)=q′Y

η′X(config(X)(q′X))

= Σi∈IΣC′X∈Ci,C
′
X\A=config(q′Y )η

′
X(C ′X)

= ΣC′X ,C
′
X\A=config(q′Y )η

′
X(C ′X)

Therafter, we use the lemma 26 and get η(Y,qy ,a)(q′Y ) = η′Y (config(Y )(q′Y )) with η′Y = η′X \ {A}. By
definition of Y , Config(Y )(qY = µs(qX)) = Config(X)(qX) \ {A}. We can apply lemma 26. Since
a ∈ ŝig(config(X)(qX) \ {A}), Config(Y )(qY ) a=⇒ϕY η

′
Y with η′Y = η′X \ {A} and ϕY = (ϕX \ {A}).

By µAs -correspondance, created(Y )(qY )(a) = created(X)(qX)(a)\{A}, thus ϕY = created(Y )(qY )(a).

Finally the restriction of config(Y ) on supp(η(Y,qY ,a)) is a bijection. Indeed, we note f1 : qY 7→ QXi s.t.
{qY } = µs(QXi ), f2 : QXi 7→ Ci f3 : Ci 7→ C

\A
i . By construction, f1 and f3 are bijection. By bijectivity

of the restriction of config(X) on supp(ηX,qX ,a), f2 is a bijection too. Moreover, the restriction f ′ of
config(Y ) on supp(ηY,qY ,a) is f1 ◦ f2 ◦ f3 and hence this is a bijection too.

Now we are able to demonstrate that the PCA set is closed under deprivation.

Theorem 17 (X \ {P} is a PCA). Let P ∈ Autids. Let X be a P -fair PCA, then Y = X \ {P} is a
PCA.

Proof. – (Constraint 1) By construction of Y , q̄Y = µPs (q̄X) and by µs-correspondence rule,
config(Y )(q̄Y ) = config(X)(q̄X) \ {P}. Since constraint 1 is respected by X, it is a fortiori
respected by Y .
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– (Constraint 2) Let (qY , a, η(Y,qY ,a)) ∈ DY . By construction of Y , we know it ∃(qX , a, η(X,qX ,a)) ∈
DX with η(Y,qY ,a) = µd(η(X,qX ,a)) and qY = µs(qX). Then, because of constraint 2 ensured by X,
we obtain it exists a reduced configuration distribution η′X ∈ Disc(Qconf ) s.t. x0) η(X,qX ,a)

c↔ η′X
with x1) c = config(X) and x2) Config(X)(qX) a=⇒ϕX η′X where ϕX = created(X)(qX)(a).
We can apply lemma 28 to obtain that η′Y = η′X \ {P} is a reduced configuration transition that
verifies y0) η(Y,qY ,a)

c′↔ η′Y with y1) c′ = config(Y ) and y2) config(Y )(qY ) a=⇒ϕY η′Y where
ϕY = ϕX \ {P} = created(Y )(qY )(a).
This terminates the proof of constraint 2.

– (Constraint 3) Let qY ∈ QY , CY = config(Y )(qY ), a ∈ ŝig(CY ), ϕY = created(Y )(qY )(a), η′Y ∈
Disc(Qconf ) s.t. CY

a=⇒ η′Y .
By construction of Y = X \ {P}, if qY ∈ QY , ∃qX ∈ QX , µs(qX) = qY , CX = config(X)(qX),
CX \ {P} = CY . Necessarily, a ∈ ŝig(CX) and by construction of Y = X \ {P}, ϕX \ {P} = ϕY
with ϕX = created(X)(qX)(a). We note η′X verifying CX

a=⇒ϕX η′X . By lemma 26, η′Y =
η′X \ {A}.
Because of constraint 3, it means (qX , a, ηX,qX ,a) ∈ DX with x0) η(X,qX ,a)

c↔ η′X with x1)
c = config(X). Since qY = µs(qY ) and a ∈ ŝig(Y )(qY ), the construction of DY implies
(qY , a, η(Y,qY ,a)) ∈ DY with (qY , a, η(Y,qY ,a)) = µPd ((qX , a, η(X,qX ,a))).

We can apply lemma 28 to obtain that η′Y verifies y0) η(Y,qY ,a)
c′↔ η′Y with y1) c′ = config(Y )

and y2) CY
a=⇒ϕY η

′
Y .

This terminates the proof of constraint 3.
– (Constraint 4) Verified by construction (We recall that ∀(qY , qX) ∈ QY×QX , qY = µPs (qX), sig(Y )(qY ) ,
hide(sig(config(Y )(qY ), hidden-actions(Y )(qY ))
where hidden-actions(Y )(qY ) , hidden-actions(X)(qX) \ pot-out(X)(qX)(P ).
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4.3. Reconstruction

In the previous section, we have shown that Y = X \ A is a PCA (as long as X is A-fair ). In this
section, we will

1. introduce the concept of simpleton wrapper Ãsw that is a PCA that encapsulates A.
2. prove that X \ {A} and Ãsw are partially-compatible (see theorem 18)
3. There is a strong executions-matching from X to (X \{A})||Ãsw in a restricted set of executions

of X that do not create A (see theorem 19). Hence it is always possible to transfer a reasoning
on X into a reasoning on (X \ {A})||Ãsw if no re-creation of A occurs.

4. The operation of projection/deprivation and composition are commutative (see theorem 21).

4.3.1. Simpleton wrapper : Ãsw

Here we introduce simpleton wrapper Ãsw, a PCA that only encapsulates Ãsw

Definition 133 (Simpleton wrapper). (see figure 4.9) Let A be a PSIOA. We note Ãsw the simpleton
wrapper of A as the following PCA:

– psioa(Ãsw) = A
– config(Ãsw)(qφA) = (∅, ∅)
– ∀q ∈ QA, qA 6= qφA, config(Ãsw)(q) = (A, {(A, q)})
– ∀q ∈ QA,∀a ∈ ŝig(Ãsw)(q), created(Ãsw)(q)(a) = ∅
– ∀q ∈ QA, hidden-actions(Ãsw)(q) = ∅

We can remark that when Ãsw enters in qφÃsw = qφA where ŝig(Ãsw)(qφÃsw) = ∅ , this matches the
moment where A enters in qφA where ŝig(A)(qφA) = ∅, s.t. the corresponding configuration is the empty
one.

Figure 4.9. – Simpleton wrapper

4.3.2. Partial-compatibility of (XA \ {A}) and Ãsw

In this subsection, we show that (XA\{A}) and Ãsw are partially-compatible and that (XA\{A})||Ãsw
mimics XA as long as no creation of A occurs (see figure 4.10).
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Figure 4.10. – Reconstruction of a PCA via Z = (X,X \ {V })

Map X and (X \ {A}, Ãsw) We first introduce two functions to map X and (X \ {A}, Ãsw).

Definition 134 (µAz and µAe : mapping of reconstruction). Let A ∈ Autids, X be a A-fair PCA,
Y = X \ A. Let Ãsw be the simpleton wrapper of A. Let qφA ∈ QA the (assumed) unique state s.t.
ŝig(A)(qφA) = ∅. We note:

– The function X.µAz : QX → QY × QÃsw s.t. ∀qX ∈ QX , X.µAz (qX) = (X.µAs (qX), qA) with
qA = map(config(X)(qX))(A) if A ∈ (auts(config(X)(qX))) and qA = qφA otherwise.

– The function X.µAe that maps any alternating sequence αX = q0
X , a

1, q1
X , a

2... of states and
actions of X, to µAe (αX) the alternating sequence αZ = X.µAz (q0

X), a1, X.µAz (q1
X), a2, ....

The symbols A and X. are omitted when this is clear in the context.

Now, we recall definition 105 of A-conservative PCA, an additional condition to allow the compatibility
between X \ A and Ãsw.

Definition 135 (A-conservative PCA (recall)). Let X be a PCA, A ∈ Autids. We say that X is
A-conservative if it is A-fair and for every state qX ∈ QX , CX = (AX ,SX) = config(X)(qX) s.t.
A ∈ AX and SX(A) , qA, hidden-actions(X)(qX) = hidden-actions(X)(qX) \ êxt(A)(qA).
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A A-conservative PCA is a A-fair PCA that does not hide any output action that could be an external
action of A.

Preservation of properties Now we start a sequence of lemma (from lemma 29 to lemma 33) about
properties preserved after reconstruction to eventually show in theorem 18 that X \ A and Ãsw are
partially-compatible.

The next lemma shows that reconstruction preserves signature compatibility.

Lemma 29 (preservation of signature compatibility of configurations). Let A ∈ Autids. Let X
be a A-conservative PCA, Y = X \ A. Let qX ∈ QX , CX = (AX ,SX) = config(X)(qX). Let
qY ∈ QY , qY = µs(qX). Let CY = (AY ,SY ) = config(Y )(qY ).

If A ∈ AX and qA = SX(A), then sig(CY ) and sig(Ãsw)(qA) are compatible and sig(CX) = sig(CY )×
sig(Ãsw)(qA).

If A /∈ AX , then sig(CY ) and sig(Ãsw)(qφA) are compatible and sig(CX) = sig(CY )× sig(Ãsw)(qφA).

Proof. Let A ∈ Autids Let X and Y \ {A} be PCA. Let qX ∈ QX . Let CX = config(X)(qX),
AX = auts(CX) and SX = map(CX). Let qY ∈ QY , qY = µs(qX). Let CY = config(Y )(qY ),
AY = auts(CY ) and SY = map(CY ). By definition of Y , CY = CX \ {A}.

Case 1: A ∈ AX

Since X is a PCA, CX is a compatible configuration, thus ((AY ,SY ) ∪ (A, qA)) is a compatible
configuration. Finally sig(CY ) and sig(A)(qA) are compatible with sig(A)(qA) = sig(Ãsw)(qφA) .

By definition of intrinsinc attributes of a configuration, that are constructed with the attributes of
the automaton issued from the composition of the family of automata of the configuration, we have
AX = AY ∪ {A} and sig(CX) = sig(CY )× sig(A)(qA), that is sig(CX) = sig(CY )× sig(Ãsw)(qA).

Case 2: A /∈ AX

Since X is a PCA, CX is a compatible configuration, thus CY = CX is a compatible configuration.
Finally sig(CY ) and sig(A)(qφA) = (∅, ∅, ∅) = sig(A)(qA) = sig(Ãsw)(qφA) are compatible.

By definition of intrinsinc attributes of a configuration, that are constructed with the attributes of the
automaton issued from the composition of the family of automata of the configuration (here AY and
AX = AY ), we have sig(CX) = sig(CY ). Furthermore, sig(Ãsw)(qφA) = sig(A)(qφA) = (∅, ∅, ∅). Thus
sig(CX) = sig(CY )× sig(Ãsw)(qφA)

The next lemma shows that reconstruction preserves signature.

Lemma 30 (preservation of signature). Let A ∈ Autids. Let X be a A-conservative PCA, A ∈
Autids, Y = X \ {A}. For every qX ∈ QX , we have sig(X)(qX) = sig(Y )(qY ) × sig(Ãsw)(qA) with
(qY , qA) = µAz (qX).

Proof. We note CX = config(X)(qX) and CY = config(Y )(qY ). The last lemma 29 tells us for
every qX ∈ QX , we have sig(CX) = sig(CY ) × sig(Ãsw)(qA) with (qY , qA) = µz(qX). Since X is A-
conservative, we have (*) sig(X)(qX) = hide(sig(CX), acts) where acts ⊆ (out(X)(qX)\(ext(A)(qA)).
Hence sig(Y )(qY ) = hide(sig(CY ), acts). Since (**) acts∩ext(A)(qA) = ∅ , sig(Y )(qY ) and sig(A)(qA)
are also compatible. We have sig(CX) = sig(CY ) × sig(A)(qA) = sig(CY ) × sig(Ãsw)(qA) which
gives because of (*) hide(sig(CX), acts) = hide(sig(CY ), acts) × sig(A)(qA), that is sig(X)(qX) =
sig(Y )(qY )× sig(A)(qA) = sig(Y )(qY )× sig(Ãsw)(qA).
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The next lemma shows that reconstruction preserves partial-compatibility at any reachable state.

Lemma 31 (preservation of compatibility at any reachable state). Let A ∈ Autids, X be a A-
conservative PCA, Y = X \ {A}, Z = (Y, Ãsw) Let qZ = (qY , q̃Ãsw) ∈ QY ×QÃsw and qX ∈ QX s.t.
µAz (qX) = qZ . Then psioa(Y ) and psioa(Ãsw) are compatible. Moreover, by definition of Y = X \{A}
and Ãsw being the simpleton wrapper of A, the sub-automaton exclusivity and creation exclusivity of
definition 70 are necessarily ensured. Hence, Z is compatible at state qZ .

Proof. SinceX is aA-conservative PCA, the previous lemma 30 ensures that sig(Y )(qY ) and sig(A)(qA) =
sig(Ãsw)(qA) are compatible, thus by definition Z is compatible at state qZ .

Here, we show that reconstruction preserves the probabilistic distribution of the corresponding tran-
sition, as long as no creation of the concerned automaton occurs.

Lemma 32 (homomorphic transition without creation). Let A ∈ Autids, X be a A-conservative PCA,
Y = X \ {A}, Z = (Y, Ãsw). Let qZ = (qY , q̃Ãsw) ∈ QY × QÃsw and qX ∈ QX s.t. (i) µz(qX) = qZ .
Let a ∈ sig(X)(qX) = sig(Y )(qY ) × sig(Ãsw)(q̃Ãsw) , verifying (ii): No creation from A, i.e. if a is
A-exclusive in state qX ,then created(X)(qX)(a) = ∅, then

– If A is not created by a, i.e. if either
• A ∈ auts(config(X)(qX)), or
• A /∈ auts(config(X)(qX)) and A /∈ created(X)(qX)(a) (X does not create A with proba-
bility 1)

Then η(X,qX ,a)
µz↔ η(Z,qZ ,a)

– If A is created by a i.e. A /∈ auts(config(X)(qX)) and A ∈ created(X)(qX)(a) (X creates A
with probability 1)

Then η(X,qX ,a)
fφ↔ η(Z,qZ ,a) where fφ : q′X ∈ supp(η(X,qX ,a)) 7→ (X.µAs (q′X), qφÃsw).

Proof. By lemma 30, we have sig(X)(qX) = sig(Y )(qY )×sig(A)(qA) = sig(Y )(qY )×sig(Ãsw)(q̃Ãsw =
qA).

We note CX = (AX ,SX) = config(X)(qX), CY = (AY ,SY ) = config(Y )(qY ), CÃsw = (AÃsw ,SÃsw) =
config(Ãsw)(qÃsw). By construction of µz, CX = CY ∪ CÃsw with CY and CÃsw compatible configu-
ration (1).

We note ϕX = created(X)(qX)(a), ϕY = ϕX \ {A}, ϕÃsw = ∅, ϕZ = ϕY ∪ ϕÃsw = ϕY .

– If a is A-exclusive in state qX , then ϕX = ϕY = ϕZ = ∅ by assumption.
– If A is not created by a, then ϕX = ϕZ ,
– If A is created by a, then ϕX = ϕZ ∪ {A} and ϕZ = ϕX \ {A}

We note (ηX , ηY , ηÃsw) ∈ Disc(QX) × Disc(QY ) × Disc(QÃsw) and (ηX , ηY , ηÃsw) ∈ Disc(Qconf )3

such that:
– ηX = η(X,qX ,a)

– ηY = η(Y,qY ,a) if a ∈ sig(Y )(qY ) and ηY = δqY otherwise
– ηÃsw = η(Ãsw,qÃsw ,a) if a ∈ sig(Ãsw)(qÃsw) and ηÃsw = δqÃsw otherwise
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– CX
a=⇒ϕX η′X

– CY
a=⇒ϕY η

′
Y if a ∈ sig(Y )(qY ) and η′Y = δCY otherwise

– CÃsw
a=⇒ϕÃsw

η′Ãsw if a ∈ sig(Ãsw)(qÃsw) and η′Ãsw = δCÃsw otherwise
The constraint 2 of top/down transition preservation applied to PCA implies that:

– ηX
cX↔ η′X with cX = config(X) (2)

– ηY
cY↔ η′Y with cY = config(Y ) (3)

– ηÃsw
cÃ
sw

↔ η′Ãsw with cÃsw = config(Ãsw) (4)
Since Y never creates A and Ãsw never contains an automaton different from A, the lemma 6 can be
applied with (1), (2), (3), and (4) as preconditions:

– by item 1b of lemma 6: merge((η′Ãsw , η
′
Y )) fs↔ join((η′Ãsw , η

′
Y )) with fs : C ′Z 7→ (C ′Y , C ′Ãsw) s.t.

i) C ′Z = C ′Y ∪ C ′Ãsw , ii) A /∈ C ′Y and iii) ∀B 6= A, B /∈ C ′Ãsw (5)

– by item 1d of lemma 6: CX
a=⇒ϕZ merge((η′Ãsw , η

′
Y )) (6)

Furthermore ηZ,qZ ,a = ηY ⊗ ηÃsw . So by (4), ηZ,qZ ,a
fZ←→ join((η′Ãsw , η

′
Y )) (***) with fZ : q′Z =

(q′Y , q′Ãsw) 7→ (config(Y )(q′Ãsw), config(Ãsw)(q′Ãsw)).

Now we deal have to separate the treatment of the two cases:

– If A is not created by a, since ϕZ = ϕX , because of (6) and (3), merge((η′Ãsw , η
′
Y )) = η′X

and because of (3) η(X,qX ,a)
fX↔ merge((η′Ãsw , η

′
Y )) (7). Because of (7) and (5), η(X,qX ,a)

g←→
join((η′Ãsw , η

′
Y )) with g = fs ◦ fX .

Hence, if A is not created by a η(X,qX ,a)
h←→ η(Z,qZ ,a) with h = (fZ)−1 ◦ fs ◦ fX = µz which

ends the proof for this case.
– If A is created by a, we have both

• CX
a=⇒ϕZ merge((η′Ãsw , η

′
Y ))

• CX
a=⇒ϕZ∪{A} η

′
X

which means CX
a
⇀ η′p with

• merge((η′Ãsw , η
′
Y )) generated by η′p and ϕZ and

• η′X generated by η′p and ϕZ ∪ {A}.

Thus η′X
gφ←→ merge((η′Ãsw , η

′
Y )) with gφ : C ′X = C ′Y ∪ C̄Ãsw 7→ C ′Y . where C̄Ãsw({A},S′Ãsw :

A 7→ q̄Ãsw).
To summarize, we have:

• η(X,qX ,a)
fX←→ η′X

• η′X
gφ←→ merge((η′Ãsw , η

′
Y ))

• merge((η′Ãsw , η
′
Y )) fs←→ join((η′Ãsw , η

′
Y ))

• η(Z,qz ,a)
fZ←→ join((η′Ãsw , η

′
Y ))

Hence η(X,qX ,a)
h←→ η(Z,qZ ,a) with fφ = (fZ)−1 ◦ fs ◦ gφ ◦ fX , i.e.

fφ : q′X ∈ supp(η(X,qX ,a)) 7→ (X.µAs (q′X), qφÃsw), which ends the proof for this case.
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The second case where A is created will not be used before section 4.5.

We take advantage of the lemma 33 used for theorem 18 to introduce the notion of twin PCA and
extends directly the lemma 33 and theorem 18 to twin PCA.

Definition 136 (Xq̄X→q̄′X ). Let X = (QX , q̄X , sig(X), DX) be a PSIOA and q̄′X ∈ reachable(X). We
note Xq̄X→q̄′X the PSIOA X ′ = (QX , q̄′X , sig(X), DX).

Two PCA X and X ′ are A-twin if they differ only by their start state where one of them corresponds
to A-creation.

Definition 137 (A-twin). Let A ∈ Autids. Let X,X ′ be PCA. We say that X ′ = Xq̄X→q̄X′ is a A-
twin of X if it differs from X at most only by its start states q̄X′ reachable by X s.t. either X ′ = X or
A ∈ config(X ′)(q̄X′) and map(config(X ′)(q̄X′))(A) = q̄A. If X ′ is a A-twin of X and Y = X \ {A}
and Y ′ = X ′ \ {A}, we slightly abuse the notation and say that Y ′ is a A-twin of Y ′.

Lemma 33 (partial surjectivity 1). Let A ∈ Autids. Let X be a PCA A-conservative and X ′ a
A-twin of X. Let Y ′ = X ′ \ {A}. Let Y ′ be a A-twin of Y . Let Z′ = (Y ′, Ãsw).

Let α = q0, a1, ..., ak, qk be a pseudo execution of Z′. Let assume the presence of A in α, i.e. ∀s ∈
[0, k − 1], qsÃsw 6= qφA .

Then ∃α̃ ∈ Execs(X ′), s.t. X ′.µAe (α̃) = α.

Proof. By induction on each prefix αs = q0, a1, ..., as, qs with s ≤ k.

Basis: case 1) A ∈ config(X ′)(q̄X′): We have µz(q̄X′) = (q̄Y ′ , q̄A). Hence µe(q̄X′) = (q̄Y ′ , q̄A).

case 2) A /∈ config(X ′)(q̄X′), (necessarily X = X ′): µz(q̄X′) = (q̄Y ′ , qφA). Hence µe(q̄X′) = (q̄Y ′ , qφA).

Induction: we assume this is true for s and we show it implies this is true for s + 1. We note α̃s
s.t. µe(α̃s) = αs. We also note q̃s = lstate(α̃s) and we have by induction assumption µz(q̃s) = qs =
(qsY , qsA). Because of preservation of signature compatibility, sig(X)(q̃s)) = sig(Y )(qsY ))×sig(A)(qsA)).
Hence as+1 ∈ sig(X)(q̃s). Thereafter, by construction of X \ {A} there exists q̃s+1 s.t. qs+1 =
µAz (q̃s+1). Finally, since no creation of and from A occurs by assumption of presence of A, we can
use lemma 32 of homomorphic transition which give η(X,q̃s,as+1)

µz↔ η(Z,qs,as+1) which means q̃s+1 ∈
supp(η(X,q̃s,as+1)) which ends the induction and so the proof.

Before using lemma 33 and 31 to demonstrate theorem 18 of partial compatibility after reconstruction,
we take the opportunity to extend lemma 33:

Lemma 34 (partial surjectivity 2). Let A ∈ Autids. Let X be a PCA A-conservative. Let Y = X \A.
Let Y ′ be a A-twin of Y . Let Z = Y ′||Ãsw.

Let α = q0, a1, ..., ak, qk be a an execution of Z. Let assume (a) qsÃsw 6= qφA for every s ∈ [0, k∗] (b)
qsÃsw = qφÃsw for every s ∈ [k∗ + 1, k] (c) for every s ∈ [k∗ + 1, k − 1], for every q̃s, s.t. µz(q̃s) = qs,
A /∈ created(X)(q̃s)(as+1). Then ∃α̃ ∈ Frags(X), s.t. µe(α̃) = α. If Y ′ = Y , ∃α̃ ∈ Execs(X), s.t.
µe(α̃) = α.

Proof. We already know this is true up to k∗ because of lemma 33. We perform the same induction
as the one of the previous lemma on partial surjectivity: We note α̃s s.t. µe(α̃s) = αs. We also note
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q̃s = lstate(α̃s) and we have by induction assumption µz(q̃s) = qs = (qsY , qsA). Because of preservation
of signature compatibility, sig(X)(q̃s)) = sig(Y )(qsY )) × sig(A)(qsA). Hence ak+1 ∈ sig(X)(q̃s). Now
we use the assumption (c), that says that A /∈ created(X)(q̃s)(as+1) to be able to apply preservation
of transition since no creation of A can occurs.

Now we can use lemma 33 and 31 to demonstrate theorem 18 of partial compatibility after reconstruc-
tion.

Theorem 18 (Partial-compatibility after resconstruction). Let A ∈ Autids. Let X be a PCA A-
conservative s.t. ∀qX ∈ QX , for every action a A-exclusive in qX , created(X)(qX)(a) = ∅. Let X ′ ba
a A-twin of X and Y ′ = X ′ \ {A}. Then Y ′ and Ãsw are partially-compatible.

Proof. Let Z′ = (Y ′, Ãsw). Let α be a pseudo-execution of Z′ with Let lstate(α) = qZ = (qY ′ , qÃsw).
Case 1) qÃsw = qφÃsw . The compatibility is immediate since sig(Ãsw)(qφÃsw) = ∅. Case 2) qÃsw 6= qφÃsw .
Since (*) A cannot be re-created after destruction by neither Y or Ãsw and (**) ∀qX ∈ QX , for
every action a A-exclusive in qX , created(X)(qX)(a) = ∅ we can use the previous lemma 33 to show
∃ α̃ ∈ Execs(X ′), s.t. µe(α̃) = α. Thus, lstate(α) = µz(lstate(α̃)) which means Z′ is partially-
compatible at lstate(α) by lemma 31. Hence Z is partially-compatible at every reachable state, which
means Y ′ and Ãsw are partially-compatible. We can legitimately note Z ′ = Y ′||Ãsw.

Since Z′ = (Y ′, Ãsw) is partially-compatible, we can legitimately note Z ′ = Y ′||Ãsw, which will be the
standard notation in the remaining.

4.3.3. Executions-matching from X to (X \ {A})||Ãsw

In this subsection, we show in theorem 19 that X.µAe is a (incomplete) PCA executions-matching from
X to (X \ {A})||Ãsw in a restricted set of executions of X that do not create A.

We start by defining the restricted set of executions of X that do not create A with definitions 138
and 139.

Definition 138 (execution without creation). Let A be a PSIOA. Let X be a PCA , we note
execs-without-creation(X)(A) the set of executions of X without creation of A, i.e. execs-without-
creation(X)(A) = {α = q0a1q1...akqk ∈ Execs(X)|∀i ∈ [0, |α|],A /∈ auts(config(X)(qi)) =⇒ A /∈
auts(config(X)(qi+1))}.

Definition 139 (reachable-by). Let X be a PSIOA or a PCA. Let Execs′X ⊆ Execs(X). We note
reachable-by(Execs′X) the set of states of X reachable by an execution of Execs′X , i.e. reachable-
by(Execs′X) = {q ∈ QX |∃α ∈ Execs′X , lstate(α) = q}

The next 2 lemmas show that reconstruction preserves configuration and signature. They will be
sufficient to show that the restriction of µAe on reachable-by(execs-without-creation(X)(A)) is a PCA
executions-matching.

Lemma 35 (µz configuration preservation). Let A ∈ Autids. Let X be a A-conservatiee PCA, Y =
X \ A, Z = Y ||Asw. Let qX ∈ QX , qZ = (qY , qÃsw) ∈ QZ s.t. µz(qX) = qZ . Then config(X)(qX) =
config(Z)(qZ).

Proof. By definition of composition of PCA, config(Z)(qZ) = config(Y )(qY ) ∪ config(Ãsw)(qÃsw).
(*)
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Also, by µAz -correspondence, config(X)(qX) \ A = config(Y )(qY ) (**).

We deal with the two cases ŝig(Ãsw)(qÃsw) = ∅ or ŝig(Ãsw)(qÃsw) 6= ∅

– If ŝig(Ãsw)(qÃsw) = ∅, then A /∈ aut(config(X)(qX)) which means, that config(X)(qX) =
config(X)(qX) \ A (1). Furthermore, config(Ãsw)(qÃsw) = (∅, ∅) (2) .Because of (**) and (1),
config(X)(qX) = config(Y )(qY ) and because of (*) and (2), config(X)(qX) = config(Z)(qZ).

– If ŝig(Ãsw)(qÃsw) 6= ∅, then A ∈ aut(config(X)(qX)). We note CA = config(Ãsw)(qÃsw) =
({A},S : A 7→ map(config(X)(qX))(A)). By (*), config(Z)(qZ) = config(Y )(qY )∪CA and by
(**) config(Y )(qY )∪CA = config(X)(qX)\A∪CA = config(X)(qX). Hence, config(X)(qX) =
config(Z)(qZ)

Thus in all cases, config(X)(qX) = config(Z)(qZ) which ends the proof.

Lemma 36 (µz signature-preservation). Let A ∈ Autids. Let X be a A-conservatiee PCA, Y = X\A,
Z = Y ||Asw. Let qX ∈ QX , qZ = (qY , qÃsw) ∈ QZ s.t. µz(qX) = qZ . Then sig(X)(qX) = sig(Z)(qZ).

Proof. By lemma 30 of preservation of signature sig(X)(qX) = sig(Y )(qY ) × sig(Ãsw)(qÃsw). By
definition of composition of PCA, sig(Z)(qZ) = sig(Y )(qY )×sig(Ãsw)(qÃsw) which ends the proof.

Now we can state our strong PCA executions-matching:

Definition 140. Let A be a PSIOA. Let X be a A-conservative PCA. Let Y = X \ {A} and Z =
Y ||Ãsw.

We define (X.µ̃Az , X.µ̃Atr, X.µ̃Ae ) (noted (µ̃Az , µ̃Atr, µ̃Ae ) when it is clear in the context) as follows:
– µ̃Az the restriction of µAz on reachable-by(execs-without-creation(X)(A)).
– f tr : (qX , a, η(X,qX ,a)) ∈ D′X 7→ (µ̃Az (qX), a, η(Z,µ̃Az (qX),a)) where D′X = {(qX , a, η(X,qX ,a)) ∈
DX |qX ∈ reachable-by(execs-without-creation(X)(A)), (A /∈ auts(config(X)(qX) =⇒ A /∈
created(X)(qX)(a))}.

– µ̃Ae the restriction of µAe on execs-without-creation(X)(A).

Theorem 19 (executions-matching after reconstruction). Let A be a PSIOA. Let X be a A-conservative
PCA. Let Y = X \ {A}. The triplet (µ̃Az , µ̃Atr, µ̃Ae ) is a strong PCA executions-matching from X to
Y ||Ãsw if A ∈ auts(config(XA)(start(XA))) and from X to Y ||Ãsw

q̄Ãsw→q
φ

Ãsw
otherwise.

Proof. We note Z = Y ||Ãsw and Zφ = Y ||Ãsw
q̄Ãsw→q

φ

Ãsw

– µ̃Az is a strong PCA-state-matching since
• starting state preservation is ensured by construction:

— A ∈ auts(config(XA)(start(XA))) : µ̃Az (q̄X) = q̄Z

— A /∈ auts(config(XA)(start(XA))) :µ̃Az (q̄X) = q̄Zφ

• signature preservation is ensured ∀(qX , qZ) ∈ QX × QZ s.t. qZ = µ̃Az (qX), sig(X)(qX) =
sig(Z)(qZ) by lemma 36 of signature preservation of µz.

– D′X , dom(µ̃Atr) is eligible to PCA transition-matching (and thus (µ̃Az , µ̃Atr) is a strong PCA-
transition-matching) since
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• matched state preservation is ensured: ∀η(X,qX ,a) ∈ D′X , qX ∈ dom(µ̃Az ) by construction of
D′X

• equitable corresponding distribution is ensured: ∀η(X,qX ,a) ∈ D′X ,∀q′′ ∈ supp(η(X,qX ,a)),
η(X,qX ,a)(q′′) = η(Z,µ̃Az (qX),a)(µ̃Az (q′′)) by lemma 32 of homomorphic transition.

– (µ̃Az , µ̃Atr, µ̃Ae ) is the PCA-executions-matching induced by (µ̃Az , µ̃Atr). and correctly verifies:

• For each state q in an execution in execs-without-creation(X)(A), q ∈ dom(µ̃Az ).

Then, the triplet (µ̃Az , µ̃Atr, µ̃Ae ) is a strong PCA-executions-matching fromX to Z ifA ∈ auts(config(XA)(q̄XA))
: µ̃Az (q̄X) = q̄Z and from X to Zφ otherwise.

extension and continuation of (µ̃Az , µ̃Atr, µ̃Ae ) Now, we continue the executions-matching (µ̃Az , µ̃Atr, µ̃Ae )
to deal with A creation at very last action.

Definition 141 (Preparing continuation of PCA executions-matching from X to Z). Let A be a
PSIOA. Let X be a A-conservative PCA. We define

– execs-with-only-one-creation-at-last-action(X)(A) = {α′ = α_q, a, q′ ∈ Execs(X)|α ∈ execs-
without-creation(X)(A) ∧ α′ /∈ execs-without-creation(X)(A)}.

– µ̃A,+z : qX ∈ reachable-by(execs-with-only-one-creation-at-last-action(X)(A)) 7→ (µ̃As (qYA), qφA).

– µ̃A,+tr : (qX , a, η(X,qX ,a)) ∈ dom(µ̃Atr) ∪D′′X 7→ (µ̃Az (qX), a, η(X,µ̃Az (qX),a)) where
D′′X = {(qX , a, η(X,qX ,a)) ∈ DX |qX ∈ reachable-by(execs-without-creation-at-last-action(X)(A))∧
A /∈ auts(config(X)(qX)) ∧ A ∈ created(X)(qX)(a)}

We show that dom(µ̃A,+tr ) \ dom(µ̃Atr) verifies the equitable corresponding property of definition 117.

Lemma 37 (Continuation of PCA transitions-matching from X to Z). Let A be a PSIOA. Let X be
a A-conservative PCA. Let Y = X \ {A} and Z = Y ||Ãsw.

∀(qX , a, η(X,qX ,a)) ∈ dom(µ̃A,+tr )\dom(µ̃Atr), ∀q′X ∈ supp(η(X,qX ,a)), η(X,qX ,a)(q′X) = η(Z,µ̃Az (qX),a)(µ̃A,+z (q′X))

Proof. By configuration preservation, Conf = config(X)(qX) = config(Z)(µ̃Az (qX)). We have
Conf

a
⇀ η(Conf,a),p. Moreover, by µs-correspondence rule, ϕX\{A} = ϕZ , with ϕX = created(X)(qX)(a)

and ϕZ = created(Z)(µ̃Az (qX))(a).

Hence Conf a=⇒ϕX η′X with η′X generated by ϕX and η(Conf,a),p, while Conf a=⇒ϕZ η′Z with η′Z
generated by ϕZ and η(Conf,a),p.

Since A is created, for every Conf ′Z = (A′Z ,S′Z) with A /∈ AZ , for every Conf ′X = (A′X ,S′X) with
A′X = A′Z ∪{A} where S′X(A) = q̄A and S′X agrees with S′Z on A′Z , η′Z(Conf ′Z) = η′X(Conf ′X), while
η′X(Conf ′′X) = 0 for every Conf ′′X = (A′′X ,S′′X) s. t either A /∈ A′′X or A ∈ A′′X but S′′X(A) 6= q̄A. So
η(Z,µ̃Az (qX),a)(µ̃A,+z (q′X)) = η′Z(config(Z)(µ̃A,+z (q′X))) = η′X((config(X)(q′X))) = η(X,qX ,a)(q′X) which
ends the proof.

Since dom(µ̃A,+tr ) \ dom(µ̃Atr) verifies the equitable corresponding property of definition 117, we can
define a continuation of (µ̃Az , µ̃Atr, µ̃Ae ) that deal with A-creation at very last action.
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Definition 142 (Continuation of PCA executions-matching from X to Z). Let A be a PSIOA. Let X
be a A-conservative PCA. Let Y = X \{A} and Z = Y ||Ãsw. Let D′′X = dom(µ̃A,+z )\dom(µ̃Az ). Since
∀(qX , a, η(X,qX ,a)) ∈ D′′X , ∀q′X ∈ supp(η(X,qX ,a)), η(X,qX ,a)(q′X) = ηZ,µ̃Az (qX),a)(µ̃A,+z (q′X)) by previous
lemma 37, we can define:

((µ̃Az , µ̃A,+z ), µ̃A,+tr , µ̃A,+e )) the (µ̃A,+z , D′′X)-continuation of (µ̃Az , µ̃Atr, µ̃Ae ).

We terminate this subsection by showing the E-extension of our continued PCA executions-matching
is always well-defined.

Theorem 20 (extension of continued executions-matching after reconstruction). Let A be a PSIOA.
Let X be a A-conservative PCA. Let Y = X \ {A} and Z = Y ||Ãsw. Let Ẽ partially-compatible with
both X and Z. The Ẽ-extension of the executions-matching ((X.µ̃Az , X.µ̃A,+z ), X.µ̃Atr, X.µ̃Ae ) from X
to Z, noted (((Ẽ ||X).µ̃Az , (Ẽ ||X).µ̃A,+z ), (Ẽ ||X).µ̃Atr, (Ẽ ||X).µ̃Ae ), is a strong continued PCA executions-
matching from Ẽ ||X to Ẽ ||Z.

Proof. By definition of µ̃A,+z and µ̃Az , we have

– ẼẼ||X = execs-without-creation(Ẽ ||X)(A)

– Ẽ+
Ẽ||X = execs-with-only-one-creation-at-last-action(Ẽ ||X)(A)

– ẼX = execs-without-creation(X)(A)
– Ẽ+

X = execs-with-only-one-creation-at-last-action(X)(A)
– Q̃Ẽ||X = reachable-by(ẼẼ||X)

– Q̃+
Ẽ||X = reachable-by(Ẽ+

Ẽ||X)

– Q̃X = reachable-by(ẼX)
– Q̃+

X = reachable-by(Ẽ+
X)

– dom((Ẽ ||X).µ̃A,+z ) = Q̃+
Ẽ||X

– dom((Ẽ ||X).µ̃Az ) = Q̃Ẽ||X

– dom(X.µ̃A,+z ) = Q̃+
X

– dom(X.µ̃Az ) = Q̃X

This allows us to apply lemma 17 of "sufficient conditions to obtain range inclusion" to both (Ẽ ||X).µ̃A,+z

and (Ẽ ||X).µ̃Az which gives range((Ẽ ||X).µ̃A,+z ) ⊆ QẼ||Z and range((Ẽ ||X).µ̃Az ) ⊆ QẼ||Z which allows
us to apply lemma 20.

The lemma 23 implies that the resulting executions-matching is a strong one.

4.3.4. Composition and projection are commutative

This section aims to show in theorem 21 that operation of projection/deprivation and composition are
commutative.

Theorem 21 ((X||E)\{A} and (X \{A})||E are semantically equivalent). Let A be a PSIOA. Let X
be a A-fair PCA partially-compatible with E where both X, E, and X||E are configuration-conflict-free.
The PCA (X||E) \ {A} and (X \ {A})||E are semantically equivalent.

128



4.3 Reconstruction

Proof. We noteW = X||E , U = (X||E)\{A}, V = (X\{A})||E , µX,As = X.µAs , µW,As = W.µAs . To stay
simple, we note Id the identity function on any domain, that is we note Id for both IdE : qE ∈ QE 7→ qE
and IdU : qU ∈ QU 7→ qU .

The plan of the proof is the following one:

– We will construct two functions, isoUV : QU → QV and isoV U : QV → QU , s.t. isoUV (qU )
is the unique element of (µX,As , Id)((µW,As )−1(qU )) and isoV U ((qY , qE)) is the unique element of
µW,As ((µX,As , Id)−1((qY , qE))).

– Then we will show that isoUV and isoV U are two bijections s.t. isoV U = iso−1
UV .

– Thereafter we will show that for every (qU , qV ), (q′U , q′V ) ∈ (states(U)×QV ), s.t. qV = isoUV (qU )
and q′V = isoUV (q′U ), then qURstrictqV , q′URstrictq′V and for every a ∈ ŝig(U)(qU ) = ŝig(V )(qV ),
η(U,qU ,a)(q′U ) = η(V,qV ,a)(q′V ).

– Finally, it will allow us to construct a strong complete bijective executions-matching induced by
isoUV and DU (the set of discrete transitions of U) in bijection with a strong complete bijective
executions-matching induced by isoV U and DV (the set of discrete transitions of V ) .

First, we show that for every qW = (qX , qE) ∈ reachable(W ) ⊂ QX×QE , the state qV , (µX,As , Id)(qW ) =
(µX,As (qX), qE) is an element of reachable(V ) (*). We proceed by induction. Basis: (µX,As (q̄X), q̄E)
is the initial state of V . Induction: Let qW , (qX , qE), q′W , (q′X , q′E) ∈ reachable(W ), qV ∈
reachable(V ), a ∈ ŝig(W )(qW ) s.t. q′W ∈ supp(η(W,qW ,a)), qV = (µX,As , Id)(qW ), and q′V = (µX,As , Id)(q′W )
. There are two cases:

case 1) a is A-exclusive in qW . In this case qWR\{A}q′W , which means q′V = qV and ends the proof

case 2) a ∈ ŝig(V )(qV ) ∩ ŝig(W )(qW )

We need to show that q′V ∈ supp(η(V,qV ,a)). This is easy to show. Indeed, q′W ∈ supp(η(W,qW ,a))
means (q′X , q′E) ∈ supp(η(X,qX ,a) ⊗ η(E,qE ,a)) (with the convention η(X,qX ,a) = δqX if a /∈ ŝig(X)(qX))
and η(E,qE ,a) = δqE if a /∈ ŝig(E)(qE))) which means q′X ∈ supp(η(X,qX ,a)) and q′E ∈ supp(η(E,qE ,a)).
So µX,As (q′X) ∈ supp(η(Y,µX,As (qX),a)) which means (µX,As (q′X), q′E) ∈ supp(η(Y,µX,As (qX),a) ⊗ η(E,qE ,a)),
that is (µX,As (q′X), q′E) ∈ supp(η((Y,E),(µX,As (qX),qE),a))η(E,qE ,a)) and thus q′V ∈ supp(η(V,qV ,a)) so q′V ∈
reachable(V ) .

Second, we show that for every qV , (qY , qE) ∈ reachable(V ), ∃ qW , (qX , qE) ∈ reachable(W )
s.t. qV = (µX,As , Id)(qW ) (**). The reasoning is the same, we proceed by induction. The basis is
performed with start state correspondence as before. Induction: Let qV , (qY , qE), q′V , (q′Y , q′E) ∈
reachable(V ), qW ∈ reachable(W ), a ∈ ŝig(V )(qV ) ∩ ŝig(W )(qW ) s.t. q′V ∈ supp(η(V,qV ,a)) with qV =
(µX,As , Id)(qW ).

We need to show that ∃ q′W ∈ supp(η(W,qW ,a)) s.t. q′V = (µX,As , Id)(q′W ). This is easy to show
because of µX,Ad -correspondence. For every q′V , (q′Y , qE) ∈ supp(η(V,(qY ,qE),a)) , q′Y ∈ supp(η(Y,qY ,a)).
Because of µX,Ad -correspondance, ∃ q′X ∈ supp(η(X,qX ,a)) with q′Y = µX,As (q′X), thus ∃ q′W = (q′X , q′E) ∈
supp(η(W,(qX ,qE),a)) s.t. q′V = (µX,As (q′X), q′E) which ends the proof of this second point.

Now we can construct isoUV and isoV U .
– isoUV : for every qU ∈ QU , (µW,As )−1(qU ) 6= ∅ by construction of U and for every qW ,

(qX , qE), q′W , (q′X , q′E) ∈ (µW,As )−1(qU ), qWR\{A}strictq
′
W

[...],
which means for every qW , (qX , qE), q′W , (q′X , q′E) ∈ (µW,As )−1(qU ), (µX,As , Id)((qX , qE)) =
(µX,As , Id)((q′X , q′E)) and so (µX,As , Id)((µW,As )−1(qU )) = {qV } where qV , isoUV (qU ) ∈ QV by
(*).
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– isoV U : for every qV , (qY , qE) ∈ QV , (µX,As , Id)−1(qV ) 6= ∅ by (**). Furthermore for every
qW , (qX , qE), q′W , (q′X , qE) ∈ (µX,As , Id)−1(qV ), qXR\{A}strictq

′
X , which means qWR\{A}strictq

′
W and so

µW,As ((µX,As , Id)−1(qV )) = {qU} where qU , isoV U (qV ) ∈ QU
Now we can show that isoUV is a bijection with isoV U = iso−1

V U .

– surjectivity of isoUV : Let qV = (qY , qE) ∈ reachable(V ), we will show that ∃ qU ∈ reachable(U)
s.t. isoUV (qU ) = qV . Indeed, we already know that (*) ∃ qW = (qX , qE) ∈ (µX,As , Id)−1(qV ) ∩
reachable(W ). Let qU = µW,As (qW ). By construction of U , we have qU ∈ reachable(U) and
qW ∈ (µW,As )−1(qU ) and (µX,As , Id)(qW ) = qV which means isoUV (qU ) = qV and ends this item.

– injectivity of isoUV : Let qV ∈ reachable(V ), Let qU , q′U ∈ reachable(U) s.t. isoUV (qU ) =
isoUV (q′U ) then qU = q′U . Again for every qW , q

′
W ∈ (µX,As , Id)−1(qV ), qWR\Astrictq

′
W and so

µW,As (qW ) = µW,As (q′W ). But for every qU , q
′
U ∈ iso−1

UV (qV ), qU , q′U ∈ µW,As (µX,As , Id)−1(qV )
which means qU = q′U .

Let (i) qV = isoUV (qU ) or (ii) qU = isoUV (qV ) we will show that in both (i) and (ii) qVRstrictqU . By
definition, {qV } = (µX,As , Id)(µW,As )−1(qU )).

In case (i) we note qW an arbitrary element of (µW,As )−1(qU ) 6= ∅, while in case (ii) we note qW an
arbitrary element of (µX,As , Id)−1(qV ) 6= ∅ . In both cases, we have 1a) config(W )(qW ) \ {A} =
config(U)(qU ) and 1b) config(W )(qW ) \ {A} = config(V )(qV ), which means 1c) config(U)(qU ) =
config(V )(qV ). Then we have 2a) hidden-actions(W )(qW )\pot-out(W )(qW )(A) = hidden-actions(U)(qU )\
pot-out(W )(qW )(A) = hidden-actions(U)(qU ) and 2b) hidden-actions(W )(qW )\pot-out(W )(qW )(A) =
hidden-actions(V )(qV ) \ pot-out(W )(qW )(A) = hidden-actions(V )(qV ), which means 2c) hidden-
actions(U)(qU ) = hidden-actions(V )(qV ). Thereafter we have 3a) for every action a ∈ ŝig(W )(qW )∩
ŝig(U)(qU ), created(W )(qW )(a) \ {A} = created(U)(qU )(a) \ {A} = created(U)(qU )(a) and 3b) for
every action a ∈ ŝig(W )(qW ) ∩ ŝig(V )(qV ), created(W )(qW )(a) \ {A} = created(V )(qV )(a) \ {A} =
created(V )(qV )(a) which means 3c) for every action a ∈ ŝig(U)(qU ) = ŝig(V )(qV ), created(U)(qU )(a) =
created(V )(qV )(a). The conjonction of 3a), 3b) and 3c) lead us to qVRstrictqU .

Now we can show that isoUV is the reverse function of isoV U : Let (qU , qV ) ∈ reachable(U) ×
reachable(V ) s.t. qV = isoUV (qU ). We need to show that isoV U (qV ) = qU . The point is that ∃!
q′U , isoV U (qV ) and we have qVRstrictqU and qVRstrictq′U which means qURstrictq′U and so qU = q′U by
assumption of configuration-conflict-free PCA. Hence isoUV = iso−1

V U .

The last point is to show that that for every (qU , qV ), (q′U , q′V ) ∈ reachable(U) × reachable(V ), s.t.
qV = isoUV (qU ) and q′V = isoUV (q′U ), then qURstrictqV , q′URstrictq′V and for every a ∈ ŝig(U)(qU ) =
ŝig(V )(qV ), η(U,qU ,a)(q′U ) = η(V,qV ,a)(q′V ).

For every a ∈ ŝig(U)(qU ) = ŝig(V )(qV ) we have a unique η s.t. C a=⇒ϕ η with C = config(U)(qU ) =
config(V )(qV ) and ϕ = created(U)(qU )(a) = created(V )(qV )(a). Hence for every configuration C ′ ∈
supp(η), ∃! (q′U , q′V ) ∈ reachable(U)×reachable(V ) s.t. C ′ = config(U)(q′U ) = config(V )(q′V ). Hence
isoUV (q′U ) = q′V and furthermore η(U,qU ,a)(q′U ) = η(V,qV ,a)(q′V ) = η(C).

Everything is ready to construct the PCA-executions-matching, which is (j) the PCA-executions-
matching induced by isoUV and DU (the set of discrete transition of U) and (jj) the PCA-executions-
matching induced by isoV U and DV (the set of discrete transition of V )
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4.4. PCA corresponding w.r.t. PSIOA A, B

In the previous section we have shown that XA||E and Ãsw||(XA \ {A}||E) are linked by a strong
PCA executions-matching as long as A is not re-created by XA. This also means that the probability
distribution of XA||E is preserved by Ãsw||(X \ {A}||E), as long as A is not re-created by XA. We
can have the same reasoning to obtain a strong PCA executions-matching from XB||E and B̃sw||(XB \
{B}||E).

In this section we take an interest in PCA XA and XB that differ only on the fact that B supplants A
in XB. Hence, we recall the definitions of section 3.7. Then, we show that under slight assumptions,
XA \ {A} and XB \ {B} are semantically equivalent (see theorem 22).

Combined with the result of previous section we will realise that we can obtain a strong PCA
executions-matching from (*) XA||E to Ãsw||(Y ||E) and (**) from XB||E to B̃sw||(Y ||E) where Y
is semantically equivalent to both XB \ {B} and XA \ {A}. Hence if E ′ = E||Y cannot distinguish Ãsw
from B̃sw, we will be able to show that E cannot distinguish XA from XB which will be the subject of
sections 4.5 to finally prove the monotonicity of p-implementation.

�AB-correspondence between two configurations We formalize the idea that two configurations are
the same excepting the fact that the automaton B supplants A but with the same external signature.
The next definition comes from [AL16].

Definition 143 (�AB-corresponding configurations). (see figure 4.11) Let Φ ⊆ Autids, and A,B
be PSIOA identifiers. Then we define Φ[B/A] = (Φ \ A) ∪ {B} if A ∈ Φ, and Φ[B/A] = Φ if
A /∈ Φ. Let C,D be configurations. We define C �AB D iff (1) auts(D) = auts(C)[B/A], (2)
for every A′ /∈ auts(C) \ {A} : map(D)(A′) = map(C)(A′), and (3) ext(A)(s) = ext(B)(t) where
s = map(C)(A), t = map(D)(B). That is, in �AB-corresponding configurations, the SIOA other than
A,B must be the same and must be in the same state. A and B must have the same external signature.
In the sequel, when we write Ψ = Φ[B/A], we always assume that B /∈ Φ and A /∈ Ψ.

Figure 4.11. – �AB corresponding-configuration

The next lemma states that �AB-corresponding configurations have the same external signature, which
is quite intuitive when we see the figure 4.11.

Proposition 10. Let C,D be configurations such that C �AB D. Then ext(C) = ext(D).

Proof. The proof is in [AL16], section 6, p. 38. We write the proof here to be complete:

If A /∈ C then C = D by definition , and we are done. Now suppose that A ∈ C, so that C =
(A ∪ {A},S) for some set A of PSIOA identifiers s.t. A /∈ A, and let s = S(A). Then, by definition
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65 of attributes of configuration, out(C) = (
⋃
Ai∈A

out(Ai)(S(Ai))) ∪ out(A)(s). From C �AB D and

definition , we have D = (A ∪ {B},S′), where S′ agrees with S on all Ai ∈ A, and t = S′(B) such
that ext(A)(s) = ext(B)(t). Hence out(A)(s) = out(B)(t) and in(A)(s) = in(B)(t). By definition 65
of configuration attributes, out(D) = (

⋃
Ai∈A

out(Ai)(S′(Ai))) ∪ out(B)(t). Finally, out(C) = out(D)

since S′ agrees with S on all A ∈ A and out(A)(s) = out(B)(t). We establish in(C) = in(D) in the
same manner, and omit the repetitive details. Hence ext(C) = ext(D).

Remark 5. It is possible to have two configurations C, D s.t. C �AA D. That would mean that C
and D only differ on the state of A (s or t) that has even the same external signature in both cases
ext(A)(s) = ext(A)(t), while we would potentially have int(A)(s) 6= int(A)(t).

The next lemma states that �AB-corresponding configurations are equal if we omit the automata A
and B.

Lemma 38 (Same configuration). Let A,B ∈ Autids. Let XA, XB be A-fair and B-fair PCA respec-
tively, where XA never contains B and XB never contains A. Let YA = XA \ {A}, YB = XB \ {B}.
Let (xa, xb) ∈ QXA × QXB s.t. config(XA)(xa) �AB config(XB)(xb). Let ya = XA.µ

A
s (xa), yb =

XA.µ
A
s (xb)

Then config(YA)(ya) = config(YB)(yb).

Proof. By projection, we have config(YA)(ya) �AB config(YB)(yb) with each configuration that does
not contain A nor B, thus for config(YA)(ya) and config(YB)(yb) contain the same set of automata
ids (rule (1) of �AB) and map each automaton of this set to the same state (rule (2) of �AB).

same comportment of two PCA modulo A, B In this paragraph, we formalize the fact that two
PCA have the same comportment, except for B that supplants A.

First, we formalize the fact that two PCA create some PSIOA in the same manner, excepting for B
that supplants A. Here again, this definition comes from [AL16].

Definition 144 (Creation corresponding configuration automata). Let X,Y be configuration au-
tomata and A,B be PSIOA. We say that X,Y are creation-corresponding w.r.t. A,B iff

1. X never creates B and Y never creates A.
2. ∀(α, π) ∈ Execs∗(X)×Execs∗(Y ) s.t traceA(α) = traceB(π), for x = lstate(α), y = lstate(π), we

have Then ∀a ∈ ŝig(X)(x) ∩ ŝig(Y )(y) : created(Y )(y)(a) = created(X)(x)(a)[B/A].

Naturally [B/A]-corresponding sets of created automata are deprived of A and B respectively, they
become equal, which is formalized in the next lemma.

Lemma 39 (Same creation after projection). Let A,B ∈ Autids. Let XA, XB be A-fair and B-
fair PCA respectively, where XA never contains B and XB never contains A (B /∈ UA(XA) and
A /∈ UA(XB)). Let YA = XA\{A}, YB = XB\{B}. Let (xa, xb) ∈ QXA×QXB and act ∈ sig(XA)(xa)∩
sig(XB)(xb) s.t. created(XB)(xb)(act) = created(XA)(xa)(act)[B/A]. Let ya = XA.µ

A
s (xa), yb =

XB.µ
B
s (xb)

Then created(YB)(xb)(act) = created(YA)(xa)(act)

Proof. By definition of PCA projection, we have created(YB)(xb)(act) = (created(XB)(xb)(act))\B =
(created(XA)(xa)(act)[B/A]) \ B = created(XA)(xa)(act) \ A = created(YA)(xa)(act).
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Second, we formalize the fact that two PCA hide their actions in the same manner. The definition is
strongly inspired by [AL16].

Definition 145 (Hiding corresponding configuration automata). Let X,Y be configuration automata
and A,B be PSIOA. We say that X,Y are hiding-corresponding w.r.t. A,B iff

1. X never creates B and Y never creates A.
2. ∀(α, π) ∈ Execs∗(X)×Execs∗(Y ) s.t traceA(α) = traceB(π), for x = lstate(α), y = lstate(π), we

have hidden-actions(Y )(y) = hidden-actions(X)(x).

Naturally if hidden actions of �AB-corresponding states are equal, it remains true after respective
deprivation of A and B which is formalized in next lemma.

Lemma 40 (Same hidden-actions after projection). Let A,B ∈ Autids. Let XA, XB be A-fair and
B-fair PCA respectively, where XA never contains B and XB never contains A (B /∈ UA(XA) and
A /∈ UA(XB)). Let YA = XA \ {A}, YB = XB \ {B}. Let (xa, xb) ∈ QXA × QXB , ya = XA.µ

A
s (xa),

yb = XB.µ
B
s (xb) s.t.

– xaR
\{A}
conf xb, i.e. yaRconfyb

– hidden-actions(XB)(xb) = hidden-actions(XA)(xa)
Then hidden-actions(YB)(yb) = hidden-actions(YA)(ya)

Proof. We note CXA = config(XA)(xa), CXB = config(XB)(xb), CYA = config(YA)(ya), CYB =
config(YB)(yb). By assumption, CXA \ {A} = CYA = CYB = CXB \ {B}.

We note hXA = hidden-actions(XA)(xa), hXB = hidden-actions(XB)(xb), hYA = hidden-actions(YA)(ya),
hYB = hidden-actions(YB)(yb). By assumption, hXA = hXB , while by construction, hYA = hXA \ pot-
out(XA)(A) and hYB = hXB \ pot-out(XB)(B).

Case 1: pot-out(XA)(A)(xa) = pot-out(XB)(B)(xb), the result is immediate, Case 2: pot-out(XA)(A)(xa)∩
hXA = pot-out(XB)(B)(xb) ∩ hXB = ∅, the result is immediate.

Case 3: Without loss of generality, we assume act = pot-out(XA)(A)(xa) ∩ hXA 6= ∅. For every
C ∈ auts(CYB), C ∈ auts(CYA) since CYA = CYB and C ∈ auts(CXA) since CYA = CXA \ {A}. By
compatibility of CXA , pot-out(XA)(A)(xa) ∩ pot-out(XA)(C)(xa) = ∅.

Case 3a) B /∈ auts(CXB), which means both i) act ⊂ hXB , ii) act ∩ out(CXB) = ∅ and iii) hXB ⊂
out(CXB) which is impossible. Thus we only consider

Case 3b) B ∈ auts(CXB). Since j) for every C ∈ auts(CYB), pot-out(XA)(A)(xa)∩pot-out(XA)(C)(xa) =
∅ and jj) hXB ⊂ out(CXB), we have act ⊂ pot-out(XB)(B)(xb).

For symmetrical reason, we have both pot-out(XA)(A)(xa) ∩ hXA ⊂ pot-out(XB)(B)(xb) and pot-
out(XB)(B)(xb) ∩ hXB ⊂ pot-out(XA)(A)(xA), which means hXA \ pot-out(XB)(B)(xb) = hXB \ pot-
out(XB)(B)(xb) and ends the proof

Now we are ready to define corresponding PCA w.r.t. PSIOA A, B, that is two PCA XA and XB that
differ only on the fact that B supplants A in XB. Some additional assumptions are added to ensure
monotonicity later. This definition is still inspired by definitions of [AL16].

Definition 146 (corresponding w.r.t. A, B). Let A,B ∈ Autids, XA and XB be PCA we say that XA
and XB are corresponding w.r.t. A, B, if they verify:
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– config(XA)(q̄XA) �AB config(XB)(q̄XB).
– XA never contains B (B /∈ UA(XA)), while XB never contains A (A /∈ UA(XB)).
– XA, XB are creation-corresponding w.r.t. A,B.
– XA, XB are hiding-corresponding w.r.t. A,B.
– XA (resp. XB) is a A-conservative (resp. B-conservative) PCA.
– (No exclusive creation from A and B)

• ∀qXA ∈ QXA , for every action act A-exclusive, created(XA)(qXA)(act) = ∅ and similarly
• ∀qXB ∈ QXB , for every action act′ B-exclusive, created(XB)(qXB)(act′) = ∅

equivalent transitions to obtain semantic equivalence after projection In this last paragraph of
the section, we show that if two PCA XA XB are corresponding w.r.t. A and B, then there respective
projection YA = XA\{A} and YB = XB \{B} are semantically equivalents. To do so, we use notions of
equivalent transitions. the idea is to recursively show that any corresponding executions of YA and YB
lead to strictly equivalent transitions to finally build the complete bijective PCA executions-matching
from YA to YB.

We start by defining equivalent transitions.

Definition 147 (configuration-equivalence and strict-equivalence between two distributions). Let
K,K ′ be PCA and (η, η′) ∈ Disc(states(K))×Disc(states(K ′)).

– We say that η and η′ are config-equivalent, noted η f←→
conf

η′, if there exists f : QK −→ QK′ s.t.

η
f←→ η′ with ∀q′′ ∈ supp(η), q′′Rconff(q′′).

– If additionally, ∀q′′ ∈ supp(η), q′′Rstrictf(q′′), then we say that η and η′ are strictly-equivalent,
noted η f←→

strict
η′.

Basically, equivalent transitions are transitions where the states with a non-zero probability to be
reached are mapped by a bijective function that preserves i) the probability to be reached and ii)
configuration. A stricter version preserves also iii) future-created automata and hidden actions.

The next lemma states that if we take two corresponding transitions from strict equivalent states,
then we obtain configuration equivalent transitions.

Lemma 41. (strictly-equivalent states implies config-equivalent transition) Let K,K ′ be PCA and
let (q, q′) ∈ QK × QK′ strictly-equivalent, i.e. qRstricitq

′. Let a ∈ ŝig(K)(q) = ŝig(K ′)(q′) and let
((q, a, η(K,q,a)), (q′, a, η(K′,q′,a))) ∈ DK × DK′. Then η(K,q,a) and η(K′,q′,a) are config-equivalent, i.e.
∃f : QK → QK′ s.t. η

f←→
conf

η′.

Proof. This is the direct consequence of constraints 2 and 3 of definition 68 of PCA. We note C =
config(K)(q) = config(K ′)(q′) and ϕ = created(K)(q)(a) = created(K ′)(q′)(a). By constraint 2, ap-
plied toK, there exists η s.t. η(K,q,a)

fK←→ η with fK = config(K) and config(K)(q) a=⇒created(K)(q)(a)

η By constraint 2, applied to K ′, there exists η′ s.t. η(K′,q′,a)
fK′←→ η′ with fK′ = config(K ′) and

config(K ′)(q′) a=⇒created(K′)(q′)(a) η
′.

Since qRstrictq′, C , config(K)(q) = config(K ′)(q′) and ϕ , created(K)(q)(a) = created(K ′)(q′)(a).

Hence C a=⇒ϕ η and C a=⇒ϕ η
′ which means η = η′.
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So η(K,q,a)
f←→ η(K′,q′,a) with f̃ = (f̃K′)−1 ◦ f̃K where f̃ (resp. f̃K′, resp. f̃K) is the restriction of f

(resp. fK′, resp. fK) on supp(η(K,q,a)) (resp. supp(η(K′,q′,a)), resp. supp(η(K,q,a))).

Thus, for every (q̃, q̃′) ∈ supp(η(K,q,a)) × supp(η(K′,q′,a)) s.t. q̃′ = f(q̃), fK(q̃) = fK′(q̃′), that is
config(K)(q̃) = config(K ′)(q̃′), i.e. q̃Rconf q̃′.

Hence η(K,q,a)
f←→

conf
η(K′,q′,a) which ends the proof.

Now we start a sequence of lemma (from lemma 42 to lemma 44) to finally show in theorem 22 that if
XA and XB are corresponding w.r.t. A, B then XA \ {A} and XB \ {B} are semantically-equivalent.

The next lemma shows that we can always construct an execution α̃X ∈ Execs(X) from an execution
αY ∈ Execs(Y ) with Y = X \ {A} that preserves the trace.

Lemma 42 (Execs(X \ {A}) can be obtained by Execs(X)). Let A ∈ Autids, X a A-fair PCA,
Y = X \ {A}.

Let αY = q0
Y , a

1, q1
Y , ..., q

n
Y ∈ Execs(Y ). Then there exists, α̃X = q̃0

X , a
1, q̃1

X , ..., q̃
n
X ∈ Execs(X) s.t.

∀i ∈ [0, n], qiY = µAs (q̃iX).

Proof. By induction on the size s = |αsY | of prefix αsY = q0
Y , a

1, q1
Y , ..., q

s
Y .

Basis (|αsY | = 0): By definition 132, q̄Y = X.µAs (q̄X)

Induction: let assume the proposition is true for prefix αsY = q0
Y , a

1, q1
Y , ..., q

s
Y with s < |αY |. We will

show it is true for αs+1
Y . We have qsY = X.µAs (qsX). By construction of DY provided by definition

132, there exists η(X,qsX ,as+1) ∈ DX s.t. X.µAd (η(X,qsX ,as+1)) = η(Y,qsY ,as+1). By X.µAd -correspondence of
definition 132, η(Y,qsY ,as+1)(qs+1

Y ) =
∑

q′X∈QX ,µs(q
′
X)=qs+1

Y

η(X,qsX ,as+1)(q′X). By definition of an execution,

qs+1
Y ∈ supp(η(Y,qsY ,as+1)), which means there exists qs+1

X ∈ QX s.t. 1) µAs (qs+1
X ) = qs+1

Y and 2)
qs+1
X ∈ supp(η(X,qsX ,as+1)). Thus, it exist α̃s+1

X = q̃0
X , a

1, q̃1
X , ..., q̃

s+1
X ∈ Execs(X) s.t. ∀i ∈ [0, s+1], qiY =

µAs (q̃iX), which ends the induction and so the proof.

The next lemma states that, after projection, two configuration-equivalent states obtain via executions
with the same trace are strictly equivalent.

Lemma 43 (After projection, configuration-equivalence obtain after same trace implies strict equiva-
lence). Let XA and XB be two PCA corresponding w.r.t. A, B. Let YA = XA\{A} and YB = XB\{B}.
Let (αYA , πYB) ∈ Execs(YA)× Execs(YB) with lstate(αYA) = qYA and lstate(πYB) = qYB . If

– qYARconfqYB and
– trace(αYA) = trace(πYB) = β,

then qYARstrictqYB

Proof. By lemma 42, ∃(α̃XA , π̃XB) ∈ Execs(XA) × Execs(XB) s.t. (i) trace(α̃XA) = trace(αYA) =
trace(πYB) = trace(π̃XB) and (ii) qYA = XA.µ

A
s (q̃XA) and qYB = XB.µ

B
s (q̃XB) where q̃XB = lstate(π̃XB)

and q̃XA = lstate(α̃XA).

Since trace(α̃XA) = trace(π̃XB), we have j) hidden-actions(XA)(q̃XA) = hidden-actions(XB)(q̃XB) by
hiding-correspondence of definition 95 and jj) ∀a ∈ ŝig(XA)(q̃XA)∩ŝig(XB)(q̃XB), created(XA)(q̃XA)(a) =
created(XB)(q̃XB)(a).
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By lemma 40 we have (*) hidden-actions(YA)(q̃YA) = hidden-actions(YB)(q̃YB) , and by lemma 39 we
have (**) ∀a ∈ ŝig(YA)(qYA) = ŝig(YB)(qYB).

If we combine the definition qYARconfqYB with (*) and (**), we obtain qYARstrictqYB , which ends the
proof.

Finally, the next lemma states that, after projection, two configuration-equivalent states obtain via
executions with the same trace lead necessarily to strictly equivalent transitions.

Lemma 44 (After projection, configuration-equivalence obtain after same trace implies strict equiv-
alent transitions). Let XA and XB be two PCA corresponding w.r.t. A, B. Let YA = XA \ {A} and
YB = XB \ {B}. Let (αYA , πYB) ∈ Execs(YA)× Execs(YB) with lstate(αYA) = qYA and lstate(πYB) =
qYB . If

– qYARconfqYB and
– trace(αYA) = trace(πYB) = β,

then for every a ∈ ŝig(YA)(qYA) = ŝig(YB)(qYB), η(YA,qYA ,a) and η(YB,qYB ,a) are strictly equivalent, i.e.

∃f : QK → QK′ s.t. η
f←→

strict
η′

Proof. By previous lemma 43, qYA and qYB are strictly equivalent. Thus by previous lemma 41, there
exists f s.t. η(YA,qYA ,a)

f←→
conf

η(YB,qYB ,a). Let two corresponding states (q′YA , q
′
YB) ∈ supp(η(YA,qYA ,a)) ×

η(YB,qYB ,a) s.t. f(q′YA) = q′YB . We have q′YARconfq
′
YB(*). Furthermore, since qYARstrictqYB , sig(YA)(qYA) =

sig(YB)(qYB), namely ext(YA)(qYA) = ext(YB)(qYB), which means trace(α_YAqYAaq
′
YA) = trace(π_YBqYBaq

′
YB).

So we can reapply previous lemma to obtain q′YARstrictq
′
YB which ends the proof.

Now we can finally show that if XA and XB are corresponding w.r.t. A, B then XA\{A} and XB \{B}
are semantically-equivalent which was the main aim of this subsection.

Theorem 22 (XA OA,BXB implies XA\{A} and XB\{B} semantically-equivalent). Let A,B be PSIOA.

Let XA, XB be PCA. XA OA,BXB implies (XA \ {A}) and (XB \ {B}) are semantically-equivalent.

Proof. We note YA = XA \ {A} and YB = XB \ {B}. We recursively construct a strong complete bi-
jective PCA executions-matching (fs, f trans , fexs ) where fs : reachable≤s(YA) → reachable≤s(YB) and
fexs : {α ∈ Execs(YA)||α| ≤ s} → {π ∈ Execs(YB)||π| ≤ s} s.t. fexs (α) = π implies lstate(α)Rstrictlstate(π).

Basis: s = 0, reachable≤0(YA) = {q̄XA}, while reachable≤0(YB) = {q̄XB}.

By definition 107 of corresponding automata config(XA)(q̄XA)�ABconfig(XB)(q̄XB), while (q̄YA , q̄YB) =
(XA.µAs (q̄XA), XB.µBs (q̄XB)) by definition 132 of PCA projection, which gives q̄YARconf q̄YB by lemma
38. Moreover traceYA(q̄YA) = traceYB(q̄YB) = λ (λ denotes the empty sequence). Thus we can ap-
ply lemma 43 to obtain q̄YARstrictq̄YB . We construct f0(q̄YA) = q̄YB , f

ex
0 (q̄YA) = q̄YB . Clearly f0

is a bijection from reachable0(YA) to reachable0(YB), while fex0 is a bijection from Execs0(YA) to
Execs0(YB)

Induction: We assume the result to be true for an integer s ∈ N and we will show it is then true for
s+ 1. Let Execss(YA) = {α ∈ Execs(YA)||α| = s} and Execss(YB) = {π ∈ Execs(YB)||π| = s}.
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We can build fs+1 (resp. fexs+1) s.t. ∀q ∈ reachable≤s(YA), fs+1(q) = fs(q) (resp. s.t. ∀α ∈
Execs≤s(YA) fexs+1(α) = fexs (α)) and ∀qjYA ∈ reachables+1(YA), fs+1(q∗) (resp. ∀αa,j ∈ Execss(YA),
fexs+1(α′) ) is built as follows:

We note αa,j = α_YAqYAaq
j
YA

(qYA = lstate(αYA)). We note πYB = fexs (αYA). By induction assumption,
qYARstrictqYB with qYA = lstate(αYA) and qYB = lstate(πYB). Hence sig(YA)(qYA) = sig(YB)(qYB) and

by previous lemma 44, for every a ∈ sig(YA)(qYA) = sig(YB)(qYB), ∃gja, η(YA,qYA ,a)
gja←→

strict
η(YB,qYB ,a).

Hence, we define fexs+1 : αa,j = α_YAqYAaq
j
YA
7→ fexs+1(αYA)_fs(qYA)agja(q

j
YA

), while fs+1 is natu-
rally defined via fexs+1, i.e. for every qjYA ∈ reachables+1(YA), we note αa,j ∈ Execss+1(YA) s.t.
lstate(αa,j) = qjYA and fs+1(qjYA) = gja(q

j
YA

) = lstate(fexs+1(αa,j)).

We finally define fex : q0a1...anqn... 7→ f0(q0)a1...anfn(qn), f : q 7→ fn(q) where q = lstate(q0a1...qn)
and f tr : (q, a, η(YA,q,a)) 7→ (f(q), a, η(YB,f(q),a)).

Clearly (f, f tr, fex) is strong since for every pair (qYA , qYB), s.t. f(qYA) = qYB , qYARstrictqYB .

Moreover, (f, f tr, fex) is complete since dom(f) = reachable(YA) = QYA .

Finally, the bijectivity of fex is given by the inductive bijective construction.

Hence (f, f tr, fex) is strong complete bijective PCA executions-matching from YA to YB which ends
the proof.
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4.5. Top/Down corresponding classes

In previous section 4.4, we have shown in theorem 22 that if XA and XB are corresponding w.r.t.
A and B (in the sense of definition 107), then YA = XA \ {A} and YB = XB \ {B} are semantically
equivalent. We can note Y an arbitrary PCA semantically equivalent with both YA and YB.

In section 4.3, we have shown in theorem 19 that for every PCA E environment of both XA and XB,
XA||E and Ãsw||YA||E (resp. XB||E and B̃sw||YB||E ) are linked by a PCA executions-matching

It is time to combine these two results to realize that for every PCA E environment of both XA and
XB, XA||E and Ãsw||E ′ (resp. XB||E and B̃sw||E ′) are linked by a PCA executions-matching where
E ′ = E||Y .

Hence (*) if E ′ cannot distinguish Ãsw from B̃sw, we will be able to show that E cannot distinguish
XA from XB.

In this section, we formalise (*) in theorem 23 of monotonicity of implementation relation. However,
some assumptions are required to reduce the implementation of XB by XA into implementation of B
by A. These are all minor technical assumptions except for one: our implementation relation concerns
only a particular subset of schedulers so-called creation-oblivious, i.e. in order to compute (potentially
randomly) the next transition, they do not take into account the internal actions of a sub-automaton
preceding its last destruction.

4.5.1. Creation-oblivious scheduler

Here we recall the definition of creation-oblivious scheduler (already introduced in subsection 3.7.5),
which does not take into account previous internal actions of a particular sub-automaton to output
its probability over transitions to trigger.

We start by defining strict oblivious-schedulers that output the same transition with the same proba-
bility for pair of execution fragments that differ only by prefixes in the same class of equivalence. This
definition is inspired by the one provided in Segala’s thesis but is more restrictive since we require
strict equality instead of a correlation (section 5.6.2 in [Seg95b]).

Definition 148 (strict oblivious scheduler (recall)). LetW be a PCA or a PSIOA, let σ ∈ schedulers(W )
and let ≡ be an equivalence relation on Frags∗(W ) verifying ∀α1, α2 ∈ Frags∗(W ) s.t. α1 ≡ α2,
lstate(α1) = lstate(α2) . We say that σ is (≡)-strictly oblivious if ∀α1, α2, α3 ∈ Frags∗(W̃ ) s.t. 1)
α1 ≡ α2 and 2) fstate(α3) = lstate(α2) = lstate(α1), then σ(α_1 α3) = σ(α_2 α3).

Now we define the relation of equivalence that defines our subset of creation-oblivious schedulers.
Intuitively, two executions fragments ending on A creation are in the same equivalence class if they
differ only in terms of internal actions of A.

Definition 149. (α̃ ≡crA α̃′ (recall)). Let Ã be a PSIOA, W̃ be a PCA, ∀α̃, α̃′ ∈ Frags∗(W̃ ), we say
α̃ ≡crA α̃′ iff:

1. α̃, α̃′ both ends on A-creation.
2. α̃ and α̃′ differ only in the A-exclusive actions and the states of A, i.e. µ(α̃) = µ(α̃′) where

µ(α̃ = q̃0a1q̃1...anq̃n) ∈ Frags∗(W̃ ) is defined as follows:
– remove the A-exclusive actions
– replace each state q̃i by its configuration Config(W̃ )(q̃) = (Ai,Si)
– replace each configuration (Ai,Si) by (Ai,Si) \ {A}
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– replace the (non-alternating) sequences of identical configurations (due to A-exclusiveness
of removed actions) by one unique configuration.

More formally, µ can be recursively defined as follows:

– µ(α̃) = Config(W̃ )(q̃) \ {A} if α̃ = q̃ ∈ QW̃

– µ(α̃aq̃) =
{
µ(α̃)a(Config(W̃ )(q̃) \ {A}) if a is not A-exclusive
µ(α̃) otherwise.

3. lstate(α1) = lstate(α2)

We can remark that the items 3 can be deduced from 1 and 2 if X is configuration-conflict-free. We can
also remark that if W̃ is a A-conservative PCA, we can replace µ(α̃) = µ(α̃′), by µAe (α̃) � (W̃ \{A}) =
µAe (α̃′) � (W̃ \ {A}) but we want to be as general as possible for next definition of creation oblivious
scheduler :

Definition 150 (creation-oblivious scheduler). Let A be a PSIOA, W be a PCA, σ ∈ schedulers(W ).
We say that σ is A-creation oblivious if it is (≡crA )-strictly oblivious.

We say that σ is creation-oblivious if it is A-creation oblivious for every sub-automaton A of W
(A ∈

⋃
q∈QW

auts(config(W )(q))). We note So the function that maps every PCA W to the set of

creation-oblivious schedulers of W . If W is not a PCA but a PSIOA, So(W ) = schedulers(W ).

If σ is A-creation oblivious, we can remark that ∀α, α′ ∈ Execs∗(W ), α ≡crA α′, σ|α = σ|α′ in the sense
of definition 151 stated immediately below.

Definition 151 (conditioned scheduler). Let A be a PSIOA, σ ∈ schedulers(A) and let α1 ∈
Frags∗(A). We note σ|α1 : {α2 ∈ Frags∗(A)|fstate(α2) = lstate(α1)} → SubDisc(DA) the sub-
scheduler conditioned by σ and α1 that verifies ∀α2 ∈ Frags∗(A), fstate(α2) = lstate(α1), σ|α1(α2) =
σ(α_1 α2).

We take the opportunity to state a lemma of conditional probability that will be used later for lemma
58.

Lemma 45 (conditional measure law). Let A be a PSIOA, σ ∈ schedulers(A) and let α1 ∈ Frags∗(A)
and σ|α1 the sub-scheduler conditioned by σ and α1. Let αo, α2 ∈ Frags∗(A), fstate(α2) = lstate(α1) ,
q12. Then

εσ,αo(Cα_1 α2) = :
{
εσ,αo(Cα1) · εσ|α1 ,q12(Cα2) if α1 � αo
εσ|α1 ,α

′
o
(Cα2) if αo = α_1 α

′
o

Proof. We note α12 = α_1 α2.

1. α1 � αo:
a) α1 � αo and αo � α1:

This implies α12 � αo and αo � α12 thus εσ,αo(Cα_1 α2) = εσ,αo(Cα1) = 0 which ends the
proof.

b) αo ≤ α1:
This implies αo ≤ α12 By induction on size s of α2. Basis: s = 0, i.e. α2 = lstate(α1) = q12.
Thus, we meet the second case of definition of εσ|α1 ,q12(Cα2): α2 ≤ q12, which means
εσ|α1 ,q12(Cα2) = 1 and terminates the basis. Induction: We assume the result to be
true up to size s ∈ N and we want to show it is still true for size s + 1. Let α2 ∈
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Frags∗(A), fstate(α2) = lstate(α1) , q12 with |α2| = s + 1. We note α2 = α′_2 q′aq and
α′12 = α_1 α

′
2. We have |α′2| = s and αo ≤ α′12

By definition we have εσ|α1 ,q12(Cα2) = εσ|α1 ,q12(Cα′2) · σ(α′2)(η(A,q′,a)) · η(A,q′,a)(q).
In Parallel, by definition: εσ,αo(Cα12) = εσ,αo(Cα′12

) · σ(α′12)(η(A,q′,a)) · η(A,q′,a)(q) and by
induction assumption, εσ,αo(Cα12) = εσ,αo(Cα1) · εσ|α1 ,q12(Cα′2) · σ(α′12)(η(A,q′,a)) · η(A,q′,a)(q)
and so εσ,αo(Cα12) = εσ,αo(Cα1) · εσ|α1 ,q12(Cα2), which ends the induction and so the case.

2. αo = α_1 α
′
o. By definition, εσ,αo(Cα1) = 1

a) both α12 � αo and αo � α12. This implies α2 � α′o and α′o � α2 Then, by definition,
εσ,αo(Cα12) = εσ|α1 ,α

′
o
(Cα2) = 0.

b) α12 ≤ αo. This implies α2 ≤ α′o. Then, by definition, εσ,αo(Cα12) = εσ|α1 ,α
′
o
(Cα2) = 1

c) αo ≤ α12:
We proceed by induction on size s of α2.
Basis: s = 0, i.e. α2 = q12. Then by definition εσ,αo(Cα12) = εσ,αo(Cα1) = 1. Moreover
q12 ≤ α′o which means εσ|α1 ,α

′
o
(Cα2) = 1, which ends the basis.

Induction:
We assume the result to be true up to size s ∈ N and we want to show it is still true for
size s+ 1. Let α2 ∈ Frags∗(A), fstate(α2) = lstate(α1) , q12 with |α2| = s+ 1. We note
α2 = α′_2 q′aq and α′12 = α_1 α

′
2. We have |α′2| = s and αo ≤ α′12.

By definition we have εσ|α1 ,α
′
o
(Cα2) = εσ|α1 ,α

′
o
(Cα′2) · σ(α′2)(η(A,q′,a)) · η(A,q′,a)(q).

In Parallel, by definition: εσ,αo(Cα12) = εσ,αo(Cα′12
) · σ(α′12)(η(A,q′,a)) · η(A,q′,a)(q) and by

induction assumption, εσ,αo(Cα12) = εσ,αo(Cα1) · εσ|α1 ,α
′
o
(Cα′2) · σ(α′12)(η(A,q′,a)) · η(A,q′,a)(q)

and so εσ,αo(Cα_1 α2) = εσ,αo(Cα1) · εσ|α1 ,α
′
o
(Cα2). Finally, since εσ,αo(Cα1) = 1, we have

εσ,αo(Cα12) = εσ|α1 ,α
′
o
(Cα2) which ends the induction, the case and so the proof.

We have formally defined our notion of creation-oblivious scheduler. This will be a key property to
ensure lemma 56 that allows decomposing the measure of a class of comportment into a function of
measures of classes of shorter comportment where no creation of A or B occurs excepting potentially
at very last action. This reduction is more or less necessary to obtain monotonicity of dynamic
creation/destruction with implementation relation.

4.5.2. Tools: proxy function, creation-explicitness, classes

In this subsection, we introduce some tools frequently used during our proof of monotonicity. Later,
we will adopt a quite general approach to understand the key properties of a perception function to
ensure monotonicity. All these properties will be met by environment projection function proj(.,.), but
not by trace function.

First we introduce proxy function, which enables a generic reduction from automata (Ẽ ||XA) to au-
tomata ((Ẽ ||XA \ {A})||Ãsw)

Definition 152 (proxy). Let A be a PSIOA. Let f(.,.) be an insight function. The A-proxy function
of f , noted fA,proxy(.,.) , is the insight function s.t. for every A-conservative PCA X, ∀Ẽ ∈ env(X),

∀α̃ ∈ dom((Ẽ ||X).µA,+e ), fA,proxy(Ẽ,X) (α̃) = f((Ẽ||X\{A}),Ãsw)(
˜

µA,+e (α̃))

Second, we define ordinary function, as functions capturing the fact that an environment obtain the
exact same insight from XA or from ((XA \ {A})||Ãsw). Any reasonable insight function is ordinary.
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Definition 153 (ordinary). Let f(.,.) be an insight function. We say f(.,.) is ordinary if for every
PSIOA A, for every A-conservative PCA X, ∀Ẽ ∈ env(X), ∀α̃ ∈ dom((Ẽ ||X).µA,+e ), f(Ẽ,X)(α̃) =

f(Ẽ,((X\{A})||Ãsw))(
˜

µA,+e (α̃))

It is worthy to remark that for ordinary perception function, a common perception in the reduced
world implies a common perception in the original world. This fact will be used in the proof of lemma
54 of partitioning.

Lemma 46 (ordinary perception function). Let f be an ordinary perception function. Then for every
PSIOA A, for every A-conservative PCA X, ∀Ẽ ∈ env(X), ∀α̃, α̃′ ∈ dom((Ẽ ||X).µA,+e )

fA,proxy(Ẽ,X) (α̃) = fA,proxy(Ẽ,X) (α̃′) =⇒ f(Ẽ,X)(α̃) = f(Ẽ,X)(α̃
′)

Proof. By definition of proxy function, f((Ẽ ||X\{A}),Ãsw)(
˜

µA,+e (α̃)) = f((Ẽ||X\{A}),Ãsw)(
˜

µA,+e (α̃′)). By

definition of perception function, f(Ẽ,((X\{A})||Ãsw))(
˜

µA,+e (α̃)) = f(Ẽ,((X\{A})||Ãsw))(
˜

µA,+e (α̃′)). By defi-
nition of ordinary function, f(Ẽ,X)(α̃) = f(Ẽ,X)(α̃

′).

Proposition 11. The environment projection function proj(.,.) (i.e. for each automaton K, ∀E ∈
env(K), proj(E,K) : α ∈ Execs(E||K) 7→ α � E) and the trace functions are ordinary function.

Proof. By definition

Now, we introduce two new concepts. First, we introduce the notion of creation-explicitness, which
states that an automaton has a clear dedicated set of actions to create each sub-automaton. This
property of creation-explicitness will clarify the condition to obtain surjectivity of µ̃A,+e since it suffices
to consider this function with a restricted range where no action of creation-actions(X)(A) appears
before the last action.

Definition 154 (creation-explicit PCA). Let A be a PSIOA and X be a PCA. We say that X is
A-creation-explicit iff: there exists a set of actions, noted creation-actions(X)(A), s.t. ∀qX ∈ QX ,
∀a ∈ ŝig(X)(qX), if we note AX = auts(config(X)(qX)) and ϕX = created(X)(qX)(a), then A /∈
AX ∧ A ∈ ϕX ⇐⇒ a ∈ creation-actions(X)(A).

Second, we define classes of equivalence of some executions that imply the exact same perception from
the environment.

Definition 155 (class of equivalence). Let f be an insight function. Let A be a PSIOA. Let E ∈
env(A). Let ζ ∈

⋃
PSIOA B,E∈env(B)

range(f(E,B)). We note Class(E ,A, f, ζ) = {α ∈ Execs(E||A)}|f(E,A)(α) =

ζ}.

4.5.3. Homomorphism between simple classes

In this subsection, we exhibit the conditions such that µ̃A,+e is a homomorphism between the perception
after reduction and the original perception. These conditions are met by the projection function.

First, we state that µ̃A,+e is surjective if we consider a range constituted of executions that do not
create A before the very last action.
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Lemma 47 (Partial surjectivity with explicit creation). Let A be a PSIOA and X be a A-conservative
and A-creation-explicit PCA. Let Ẽ be partially-compatible with X. Let Y = X \ {A}. Let EA =
Ẽ ||Y . Let (((Ẽ ||X).µ̃Az , (Ẽ ||X).µ̃A,+z ), (Ẽ ||X).µ̃A,+tr , (Ẽ ||X).µ̃A,+e ) be the continued executions match-
ing Ẽ-extension of ((X.µ̃Az , X.µ̃A,+z ), X.µ̃A,+tr , X.µ̃A,+e ). Let α, α′ ∈ Execs(EA||Ãsw) s.t. creation-
actions(X)(A) ∩ actions(α) = ∅

1) Then ∃α̃ ∈ dom(µ̃Ae ) s.t. µ̃A,+e (α̃) = µ̃Ae (α̃) = α.

2) If α′ = α_q, a!, q
′ with a! ∈ creation-actions(X)(A), then ∃α̃′ ∈ dom(µ̃A,+e ) s.t. µ̃A,+e (α̃′) = α′.

Proof. We proof the results in the same order they are stated in the lemma:
1. We note α = q0, a1, ..., an, qn... and we proof the result by induction on the prefix size s. Basis:

the result trivially holds for any execution α of size 0 by construction of X \ {A} that requires
X.µAs (q̄X) = q̄X\{A}. We assume the result holds up to prefix size s and we show it still holds
for prefix size s + 1. We note αs = q0, a1, ..., as, qs and α̃s ∈ Execs(Ẽ ||X) s.t. µ̃Ae (α̃s) = αs.
By lemma 36 of signature preservation as+1 ∈ sig(Ẽ ||X)(q̃s). Moreover, by assumption as+1 /∈
creation-actions(X)(A) which means the application of lemma 32 of homomorphic transitions
leads us to η((Ẽ||X),q̃s,as+1)

µAz←→ η((EA||Ãsw),qs,as+1). So there exists q̃s+1 ∈ supp(η((Ẽ||X),q̃,a!)) with
µAz (q̃) = q. So µAe (α̃_s q̃sas+1q̃s+1) = αs+1. This ends the induction and so the proof of 1. .

2. We apply 1. and note α̃ ∈ Execs(Ẽ ||X) s.t. µ̃Ae (α̃) = α. By lemma 36 of signature preservation
a! ∈ sig(Ẽ ||X)(q̃) with q̃ = lstate(α). Moreover, by lemma 32 of homomorphic transition,

η(Ẽ||X),q̃,a!

µA,+z←→ η(EA||Ãsw),q,a!
. So there exists q̃′ ∈ supp(η(Ẽ||X),q̃,a!

) with µA,+z (q̃′) = q′. So
µA,+e (α̃_q̃a!q̃

′) = α′ which ends the proof.

Since we i) classify executions in some classes according to their projection on an environment and
ii) are concerned by the actions of the execution that create A, the next lemma will simplify this
classification. It states that if the projection e of an execution α ∈ Execs(EA||Ãsw) on the environment
EA ends by an action a! ∈ creation-actions(X)(A), then the execution necessarily ends by a! (without
additional suffix).

Then we define Γ-delineated function f that verifies the fact that an execution α perceived in Γ
through f implies α does not create A before very last action.

Definition 156 (delineated function). Let A be a PSIOA, X a A-conservative PCA, E ∈ env(X),
Y = X \ {A}, EA = E||Y . Let f(.,.) be an insight function. Let Γ ⊆ range(f(EA,Ãsw)). We say
that f is (Γ, Ẽ , X,A)-delineated if ∀ζ ∈ Γ, ∀α ∈ Execs(EA||Ãsw), f(EA,Ãsw)(α) = ζ, implies α ∈
rangef(Ẽ ||X).µA,+e , i.e ∀α′ < α, actions(α′) ∩ creation-actions(X)(A) = ∅.

It is worthy to remark that if the projection e of an execution α does not contain actions dedicated
to the creation of A before very last action, then α does not create A before the very last action.

Lemma 48 (projection is a delineated function with explicit creation). Let A be a PSIOA, X a
A-conservative PCA, E ∈ env(X), Y = X \ {A}, EA = E||Y . Let Γ , {e ∈ Execs(EA)|∀e′ <
e, actions(e′)∩creation-actions(X)(A) = ∅}. The projection function proj(.,.) is (Γ, Ẽ , X,A)-delineated.

Proof. Let α ∈ Execs(EA||Ãsw), (α � EA) = e′ ∈ Γ. Hence either |e′| = 0 or e′ = e_qa!q
′ with

actions(e′) ∩ creation-actions(X)(A) = ∅. If actions(α) ∩ creation-actions(X)(A) = ∅, the result is
immediate. Assume the opposite. We note α = α1_q1

` , a!, q
2_
f α2 with a! ∈ creation-actions(X)(A).
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We have q1
` � Ãsw = qφÃsw . Indeed, let us assume the contrary: q1

` � Ãsw 6= qφÃsw . Then q � Ã
sw 6= qφÃsw

for every state q ∈ α1. Since creation-actions(X)(A) ∩ actions(e′) = ∅, creation-actions(X)(A) ∩
actions(α1) = ∅. Thus we apply lemma 47 of partial surjectivity with explicit creation to obtain,
there exists α̃1 ∈ Execs(Ẽ ||X) s.t. µ̃A,+e (α̃1) = α1 with both A ∈ auts(config(X)(lstate(α̃1) � X))
and a! ∈ creation-actions(X)(A) ∩ sig(X)(lstate(α̃1)) � X) which is impossible.

Since q1
` � Ãsw = qφÃsw , q � Ã

sw = qφÃsw for every state q ∈ α2. Hence, α2 = q2
f to respect α �

EA = e′, which means α = α1_q1
` , a!, q

2
f . Since creation-actions(X)(A) ∩ actions(e) = ∅, creation-

actions(X)(A) ∩ actions(α1) = ∅, which ends the proof.

Now, we can clarify when µ̃A,+e is a bijection between "top/down" corresponding classes of equivalence.

Lemma 49. (µ̃A,+e is a bijection from C̃ to C). Let A be a PSIOA and let X be a A-conservative and
A-creation-explicit PCA. Let Ẽ ∈ env(X). Let (((Ẽ ||X).µ̃Az , (Ẽ ||X).µ̃A,+z ),(Ẽ ||X).µ̃A,+tr , (Ẽ ||X).µ̃A,+e )
be the Ẽ-extension of ((X.µ̃Az , X.µ̃A,+z ), X.µ̃A,+tr , X.µ̃A,+e ). Let Y = X \ {A}. Let EA = Ẽ ||Y .

Let f be an ordinary perception function, (Γ, Ẽ , X,A)-delineated.

For every ζ ∈ Γ, (Ẽ ||X).µ̃A,+e is a bijection from C̃ to C, where
– C̃ = Class(Ẽ , X, fA,proxy, ζ)
– C = Class(EA, Ãsw, f, ζ)

Proof. – Injectivity is immediate by lemma 14, item (2).
– Surjectivity: Let α ∈ C. By definition, f(EA,Ãsw)(α) = ζ ∈ Γ. Since f is (Γ, Ẽ , X,A)-delineated,

then ∀α′ < α, (actions(α′) ∩ creation-actions(X)(A) = ∅. Hence, we can apply lemma 47 of
partial surjectivity with explicit creation

Hence, we obtain an equiprobability of top/down corresponding cones equipped with alter-ego sched-
ulers.

Lemma 50 (equiprobability of top/down corresponding cones). Let A be a PSIOA and X be a A-
conservative and A-creation-explicit PCA. Let Ẽ ∈ env(X). Let Y = X \ {A}. Let EA = Ẽ ||Y . Let
(((Ẽ ||X).µ̃Az , (Ẽ ||X).µ̃A,+z ), (Ẽ ||X).µ̃A,+tr , (Ẽ ||X).µ̃A,+e ) the Ẽ-extension of ((X.µ̃Az , X.µ̃A,+z ), X.µ̃A,+tr , X.µ̃A,+e ).

Let f be an ordinary perception function, (Γ, Ẽ , X,A)-delineated. Let ζ ∈ Γ, and
– C̃ = Class(Ẽ , X, fA,proxy, ζ)
– C = Class(EA, Ãsw, f, ζ)

Then for every σ̃ ∈ schedulers(Ẽ ||X), for σ (((Ẽ ||X).µ̃Az , (Ẽ ||X).µ̃A,+z ), (Ẽ ||X).µ̃A,+tr , (Ẽ ||X).µ̃A,+e )-
alter ego of σ̃,

εσ̃,δq̄(Ẽ||X)
(CC̃) = εσ,δq̄(EA||Ãsw)

(CC)

Proof. By lemma 49, µ̃A,+e is a bijection from C̃ to C. We note {(α̃i, αi)}i∈I = C̃ ×C the related pairs of
executions s.t. µ̃A,+e (α̃i) = αi. We obtain εσ̃,δq̄(Ẽ||X)

(CC̃) =
∑
i∈I

εσ̃,δq̄(Ẽ||X)
(Cα̃i) and εσ,δq̄(EA||Ãsw)

(CC) =∑
i∈I

εσ,δq̄(EA||Ãsw)
(Cαi).
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Thus it is enough to show that ∀i ∈ I, εσ̃,δq̄(Ẽ||X)
(Cα̃i) = εσ,δq̄(EA||Ãsw)

(Cαi) which is given by theorem

9 that can be applied since µ̃A,+e is a continued executions-matching by theorem 20.

4.5.4. Decomposition, pasting-friendly functions

In the last subsection, the dynamic creation/destruction of A has been discarded. It is time to
generalize the previous approach with dynamic creation/destruction of A.

We first define some tools to describe the decomposition of an execution into segments whose last
action is in the dedicated set to create A.

Definition 157. (n-building-vector for executions). Let α be an alternating sequence of states and
actions starting by state and finishing by a state if α is finite. Let n ∈ N ∪ {∞}. A n-building-vector
of α is a (potentially infinite) vector →α = (α1, ..., αi, ...) of |→α| = n alternating sequences of states and
actions starting by state and finishing by a state (excepting potentially the last one if it is infinite)
s.t. α1_...αi−1_αi_... = α (with ∀i ∈ [1, |→α| − 1], fstate(αi+1) = lstate(αi)). We note Building-
vectors(α, n) the set of n-building-vector of α and →α n: α to say →α ∈ Building-vectors(α, n). We note
Building-vectors(α) =

⋃
n∈N∪{∞}

Building-vectors(α, n) and →α : α to say α ∈ Building-vectors(α).

We note →α[i] = αi and →α[: i] = α1_..._αi−1. If W is an automaton, α ∈ Execs(W ), →α : α and f a
function with dom(f) ⊆ Frags(W ), we note f(→α) = [f(→α[1]), ..., f(→α[i]), ...].

Definition 158. ( →α :
(X,A)

α) Let W and X be two PCA s.t. X is A-creation-explicit, α ∈ Frags(W ).

We note →α :
(X,A)

α ( and →α :
A
α when X is clear in the context) the (clearly unique) vector →α ∈

Building-vectors(α) of execution fragments s.t.
1. ∀i ∈ [1, n], ∀α′ < →α[i], actions(α′) ∩ creation-actions(X)(A) = ∅ and
2. ∀i ∈ [1, n− 1], laction(→α[i])) ∈ creation-actions(X)(A).

We write →α n:
(X,A)

or →α n:
A
to indicate that |→α| = n.

Definition 159. (A-decomposition) Let A be a PSIOA and X be a PCA. Let α = q0a1...anqn... ∈
Frags(X). We say that

– α is a A-open-portion iff α does not create A, i.e. ∀i ∈ [1, |α|]A /∈ auts(config(X)(qi−1)) =⇒
A /∈ auts(config(X)(qi)).

– α is a A-closed-portion iff α does not create A excepting at very last last action, i.e. ∀i ∈
[1, |α|]A /∈ auts(config(X)(qi−1)) ∧ A ∈ auts(config(X)(qi))⇐⇒ i = |α|.

– α is a A-portion of X if it is either a A-open-portion or a A-closed-portion.
We call A-decomposition of α, noted A-decomposition(α), the unique vector (α1, ..., αn, ...) ∈ Building-
vectors(α) s.t.

– ∀i ∈ [1, |A-decomposition(α)| − 1], αi is a A-closed-portion of X and
– if |A-decomposition(α)| = n ∈ N, αn is a A-portion of X.

Lemma 51. (→α :
(X,A)

α means →α = A-decomposition(α)). Let A be a PSIOA and X be a A-creation-

explicit PCA. Let α ∈ Frags(X). Let →α = A-decomposition(α). Then →α n:
(X,A)

α.
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Proof. By definition, →α ∈ Building-vectors(α). Still by definition, ∀i ∈ [1, |A-decomposition(α)|− 1],
αi is a A-closed-portion of X, i.e. αi does not create A excepting at very last last action laction(αi).
By definition of creation-explicitness, the two item of definition 158 are verified for every i ∈ [1, |A-
decomposition(α)| − 1]. Finally, by definition, if |A-decomposition(α)| = n ∈ N, αn is a A-portion of
X, i.e. αn does not create A excepting potentially at the very last action if αn is finite. Again, by
definition of creation-explicitness, the first item of definition 158 is verified.

Now, we introduce the crucial property, called pasting-friendly, required for a perception function f
to ensure monotonicity of ≤So,f0 . This property allows to cut-paste a general class of equivalence into
a composition of smaller classes of equivalence, without the creation of A before the very last action,
where lemma 50 of equiprobability between top-down corresponding cones can be applied to each
smaller class.

Definition 160 (pasting friendly). Let f(.,.) be an insight function. We say that f(.,.) is pasting-
friendly if for every PSIOA A, for every A-conservative and A-creation-explicit PCA X, ∀Ẽ ∈ env(X),
∀ζ̃ ∈

⋃
K,Ẽ∈env(K)

range(f(Ẽ,K)), ∀
→
ζ ∈ →

proxy(ζ̃)Ẽ,X,A then

1. ∀α̃, α̃′, →α = A-decomposition(α̃), →α
′

= A-decomposition(α̃′), fA,proxy(Ẽ,X) (→α) = fA,proxy(Ẽ,X) (→α
′
) ,

→
ζ

implies |→α| = |→α| = |
→
ζ | , n ∈ N ∪ {∞}∧ ∀i ∈ [1, n− 1], lstate(→α[i]) = lstate(→α

′
[i]) , q`i .

2. We note Ẽ1 = Ẽ, X1 = X, and ∀i ∈ [2, n], we note Ẽ i = Ẽq̄Ẽ→(q`i−1�Ẽ) (resp Xi = Xq̄X→(q`i−1�X)).

∀j ∈ [1, n],∀αj ∈ Execs((Ẽj ||Xj)), fA,proxy(Ẽj ,Xj) (αj) =
→
ζ [j], then

a) for every α′j < αj, actions(α′j) ∩ creation-actions(X)(A) = ∅ and

b) if j ∈ [1, n− 1], αj = α′_j aj! q
j
` with aj! ∈ creation(X)(A)

We state an intermediate lemma to show that projection on the environment is pasting-friendly (see
lemma 53).

Lemma 52 (chunks ending on creation). Let A be a PSIOA, let X be a A-conservative and A-creation-
explicit PCA and Ẽ partially-compatible with X. Let α̃ ∈ Frags(Ẽ ||X) and e ∈ Frags(Ẽ ||X \ {A})
s.t. (Ẽ ||X).µA,+e (α̃) � (Ẽ ||X \ {A}) = e.

Then
– laction(α̃) = a! ∈ creation-actions(X)(A) =⇒ laction(e) = a! ∈ creation-actions(X)(A).
– if α̃ ∈ dom(µ̃A,+e ),
laction(α̃) = a! ∈ creation-actions(X)(A) ⇐= laction(e) = a! ∈ creation-actions(X)(A).

Proof. We prove the two implications in the same order.
– =⇒) Let assume a! , laction(α̃) ∈ creation-actions(X)(A). Since X is A-creation-explicit,

we have α̃ = α̃′_q′a!q with A /∈ auts(config(X)(q′)). Thus laction(e) = a! ∈ creation-
actions(X)(A).

– ⇐=) Let assume a! , laction(e) ∈ creation-actions(X)(A). Thus a! ∈ actions(α̃). Since X
is A-creation-explicit, it implies α̃ = α̃1_q1

` , a!, q
2_
f α̃2 where A /∈ auts(config(X)(q1

` )) and
A ∈ auts(config(X)(q2

f )). But α̃ ∈ dom((Ẽ ||X).µ̃A,+e ), so α̃2 = q2
f and hence laction(α̃) = a! ∈

creation-actions(X)(A)
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Now, we are ready to show that projection on the environment is pasting-friendly.

Lemma 53. The projection function proj(., .) (for each automaton K, ∀E ∈ env(K), proj(E,K) : α ∈
Execs(E||K) 7→ α � E is pasting friendly.

Proof. 1. Let A be a PSIOA, let X be a A-conservative PCA, let Ẽ ∈ env(X), let EA = (Ẽ ||(X \
{A})). We note q`,i = lstate(→α[i]) and q′`,i = lstate(→α

′
[i]), C`,i = (A`,i,S`,i) = config(Ẽ ||X)(q`,i)

and C ′`,i = (A′`,i,S′`,i) = config(Ẽ ||X)(q′`,i). Let i ∈ [1, |α|−1]. By construction ofA-decomposition,

S`,i(A) = S′`,i(A) = q̄A (1). Moreover, fA,proxy(Ẽ,X) (→α) = fA,proxy(Ẽ,X) (→α
′
) ,

→
ζ , i.e. proj(EA,Ãsw)(

→
α[i]) =

proj(EA,Ãsw)(
→
α
′
[i]), which means q`,i � EA = q′`,i � EA. Hence, A`,i \ {A} = A′`,i \ {A} , A′′`,i and

∀B ∈ A′′`,i, S`,i(B) = S′`,i(B) (2). By (1) and (2), C`,i = C ′`,i. Since X is configuration-conflict-
free, q`,i = q′`,i.

2. Let j ∈ [1, n], let αj ∈ Execs((Ẽj ||Xj)), fA,proxy(Ẽj ,Xj) (αj) =
→
ζ [j] Let α̃ ∈ Execs(Ẽ ||X), →α =

A-decomposition(α̃), →α ∈ (projA,proxy(Ẽ,X) )−1(
→
ζ ).

a) Let us assume j ∈ [1, n−1]. By construction ofA-decomposition, We have→α[j] = α∗_j (aj! q
j
` )

with actions(α∗j ) ∩ creation-actions(X)(A) = ∅ and aj! ∈ creation-actions(X)(A). By

lemma 52, it implies,
→
ζ [j] = e∗_j (aj! q

j
` � Ẽ) with actions(e∗j ) ∩ creation-actions(X)(A) =

∅ and aj! ∈ creation-actions(X)(A). By lemma 52, it implies αj = α′_j (aj! (qj` )) with
actions(α′j) ∩ creation-actions(X)(A) = ∅ and aj! ∈ creation-actions(X)(A) (*). More-
over, let us assume n ∈ N. For every α∗n <

→
α[n], actions(α∗n)∩ creation-actions(X)(A) = ∅,

hence, for every e∗n <
→
ζ [n], actions(e∗n) ∩ creation-actions(X)(A) = ∅ and so for every

α∗n < αn, actions(α∗n) ∩ creation-actions(X)(A) = ∅.
b) Let j ∈ [1, n−1]. By previous item, αj = α′_j (aj! q

j
` ) with actions(α

′
j)∩creation-actions(X)(A)

= ∅ and aj! ∈ creation-actions(X)(A) (*). Moreover, by construction, we have projA,proxy(Ẽ,X) )(αj) =
projA,proxy(Ẽ,X) )(→α[j]) (**). We can apply the exact same reasoning as in item 1.

Before stating our first lemma 54 of decomposition, we define the set of vector proxies. This set

contains all the explanations
→
ζ
k

, from reduction, of a perception ζ̃.

Definition 161. (
→

proxy(ζ̃)) Let f(.,.) be an insight function. Let A be a PSIOA, let X be a A-
conservative PCA, let Ẽ ∈ env(X), Let ζ̃ ∈

⋃
K,Ẽ∈env(K)

range(f(Ẽ,K)). We note

→
proxy(ζ̃)(Ẽ,X,A,f) = {

→
ζ
k

|∃α̃ ∈ f−1
(Ẽ,X)(ζ̃) ∧ fA,proxyẼ,X (A-decomposition(α̃)) =

→
ζ
k

}.

When f is clear in the context, we omit f in the subscript.

Now, we can partition executions with a common perception ζ̃ into a sub-set of classes with more
details related to the reduction.
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Lemma 54. Let f be an ordinary perception function pasting friendly. Let A be a PSIOA, let X be
a A-conservative PCA, let Ẽ ∈ env(X), Let ζ̃ ∈

⋃
K,Ẽ∈env(K)

range(f(Ẽ,K)). Let C ζ̃ = Class(Ẽ , X, f, ζ̃).

C ζ̃ =
⊎

→
ζ
k

∈
→

proxy(ζ̃)(Ẽ,X,A)

C
→
ζ
k

with

C
→
ζ
k

= Class(Ẽ , X, fA,proxy ◦ A-decomposition,
→
ζ
k

)

Proof. The proof is immediate by construction, since A-decomposition is unique.
– (equality) We first show equality by double inclusion.

• (⊆) Let α̃ ∈ C ζ̃ . We note →α = A-decomposition(α̃). By construction, we have →α :
A
α̃. We

note
→
ζ = fA,proxy(Ẽ,X) (→α). Obviously,

→
ζ ∈

→
proxy(ζ̃)(Ẽ,X,A).

• (⊇) Let
→
ζ
k

∈
→

proxy(ζ̃)(Ẽ,X,A), with n , |
→
ζ
k

|, let α̃ ∈ C
→
ζ
k

. We want to show that α̃ ∈ C ζ̃ .

Let →α = A-decomposition(α̃). By definition of
→

proxy(ζ̃)(Ẽ,X,A), ∃α̃
′ ∈ f−1

(Ẽ,X)(ζ̃) such that

fA,proxyẼ,X (A-decomposition(α̃′)) =
→
ζ
k

. Let fix such a α̃′. Let →α
′
= A-decomposition(α̃′).

By construction fA,proxyẼ,X (→α) = fA,proxyẼ,X (→α
′
). Moreover, f is assumed to be pasting friendly,

which implies ∀i ∈ [1, n], fA,proxyẼi,Xi (→α[i]) = fA,proxyẼi,Xi (→α
′
[i]) where Ẽ i and Xi are defined as

in definition 160 of pasting friendly functions. Since f is an ordinary perception function,
we can apply lemma 46, which implies that ∀i ∈ [1, n], fẼ,X(→α[i]) = fẼ,X(→α

′
[i])) and so

fẼ,X(α̃) = fẼ,X(α̃′) = ζ̃, that is α̃ ∈ C ζ̃ .

– (partitioning) We show that ∀(
→
ζ
k

,
→
ζ
`

),
→
ζ
k

6=
→
ζ
`

, C
→
ζ
k

∩ C
→
ζ
`

= ∅. Let (α̃, α̃′) ∈ C
→
ζ
k

× C
→
ζ
`

.

Let →α :
A
α and →α

′
:
A
α′. We have fA,proxy(Ẽ,X) (→α) =

→
ζ
k

6=
→
ζ
`

= fA,proxy(Ẽ,X) (→α
′
). Thus →α 6= →

α
′
. By

lemma 51, →α = A-decomposition(α̃) and →α
′

= A-decomposition(α̃′), and so α̃ 6= α̃′. Hence,

∀(
→
ζ
k

,
→
ζ
`

),
→
ζ
k

6=
→
ζ
`

, C
→
ζ
k

∩ C
→
ζ
`

= ∅.

Then, we perform our decomposition of Ĉ
→
ζ = Class(Ẽ , X, fA,proxy ◦ A-decomposition,

→
ζ
k

) into small
chunks.

Lemma 55 (decomposition into simple classes). Let f(.,.) be pasting friendly perception function. Let
A be a PSIOA, X be a A-conservative and A-creation-explicit PCA and Ẽ partially-compatible with

X. Let EA = Ẽ ||(X \{A}). Let ζ̃ ∈
⋃

K,Ẽ∈env(K)

range(f(Ẽ,K)). Let n ∈ N∪{∞}, let
→
ζ ∈

→
proxy(ζ̃)(Ẽ,X,A)

with |
→
ζ | = n. Let Ĉ

→
ζ = Class(Ẽ , X, fA,proxy ◦ A-decomposition,

→
ζ ).

Then, Ĉ
→
ζ =

n⊗
i=1
Ĉ
→
ζ [i] with

1. Ĉ
→
ζ [i] = Class(Ẽ i, Xi, fA,proxy,

→
ζ [i])
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2. ∀αi ∈ Ĉ
→
ζ [i] if i ∈ [1, n − 1], αi = α′_i ai!q

i
` with ai! ∈ creation(X)(A) and if n ∈ N ∀α′n <

αn, actions(α′n) ∩ creation-actions(X)(A) = ∅ (ensured by pasting friendship of f).

3. ∀i ∈ [1, n− 1], we note qi−1
` the unique last state of every execution of Ĉ

→
ζ [i] (ensured by pasting

friendship of f).
4. Ẽ1 = Ẽ and ∀i ∈ [2, n], Ẽ i = Ẽq̄E→qiE , (as per definition 136), with qiE = qi−1

` � Ẽ.

5. X1 = X and ∀i ∈ [2, n], Xi = Xq̄X→qiX
(as per definition 136) with qiX = qi−1

` � X.

6.
n⊗
i

Ci = C1 ⊗ C2 ⊗ ...⊗ Cn

7. C1 ⊗ C2 = {α_1 α2|α1 ∈ C1, α2 ∈ C2} (The concatenation is always defined by item 3)

Proof. The properties are ensured by the fact f is pasting-friendly. We prove equality by double
inclusion.

– ⊆) Let α ∈ Ĉ
→
ζ , and. →α = A-decomposition(α), i.e. fA,proxyẼ,X (→α) =

→
ζ . By construction due

to A-decomposition, ∀i ∈ [2, n], fstate(→α[i]) = lstate(→α[i − 1]) where →α[i − 1] ends on A-
creation (1). Moreover, since f is assumed to be pasting-friendly, each qi` is well defined (2).
By (1) and (2), fstate(→α[i]) = q̄Ẽi||Xi where Ẽ i and Xi are defined like in the lemma (3). By
construction due to A-decomposition, →α[i] does not create A before its very last action, i.e.

∀α′i <
→
α[i], actions(α′i) ∩ creation-actions(X)(A) = ∅ (4). Thus by (3) and (4), α ∈

n⊗
i

Ĉ
→
ζ [i].

Hence, Ĉ
→
ζ ⊆

n⊗
i

Ĉ
→
ζ [i]

– ⊇) Let α ∈
n⊗
i

Ĉ
→
ζ [i] Let →α = (α1, α2, ..., αi, ...) ∈ Ĉ

→
ζ [1] × Ĉ

→
ζ [2] × ... × Ĉ

→
ζ [i] × ..., s.t. →α : α. By

construction, ∀i ∈ [1, n] fA,proxy(Ẽi,Xi) (αi) =
→
ζ [i]. Hence fA,proxy(Ẽi,Xi) (→α) =

→
ζ . It remains to show that

→
α = A-decomposition(α), which comes immediately from item 2.

A first trivial analysis of the measure of the big class of equivalence gives the following lemma
Lemma 56 (measure after partitioning and decomposition). Let A be a PSIOA, X be a A-conservative
and A-creation-explicit PCA and Ẽ partially-compatible with X. Let EA = Ẽ ||X \ {A}. Let ζ̃ ∈⋃
K,Ẽ∈env(K)

range(f(Ẽ,K)). Let σ̃ ∈ schedulers(Ẽ ||X).

εσ̃(CC̃ζ̃ ) =
∑

→
ζ ∈

→
proxy(ζ̃)(Ẽ,X,A)

εσ̃(C
|
→
ζ |⊗
i=1
Ĉ
→
ζ [i]

).

Proof. Immediate by two previous lemma 54 and 55

4.5.5. Creation oblivious scheduler applied to decomposition

Now we want to transform the term εσ̃(C
|
→
ζ |⊗
i=1
Ĉ
→
ζ [i]

) as a function of some terms εσ̃i(C
Ĉ
→
ζ [i]

) where σ̃i must

be defined. The critical point is that the occurrence of these events might not be independent with (*)
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a perfect-information scheduler that chooses the measure of class Ĉ
→
ζ [i] as a function of the concrete

prefix in class Ĉ
→
ζ [j<i]. This observation enforced us to weaken the implementation definition to make

it monotonic w.r.t. PSIOA creation by handling only creation-oblivious schedulers that cannot make
the choice (*).

Here again, we exhibit a key property of a perception function to ensure monotonicity of implemen-
tation w.r.t. creation oblivious schedulers.

Definition 162 (creation oblivious function). Let f(.,.) be an insight function. f is said creation-
oblivious, if for every PSIOA A, for every A-conservative and A-creation-explicit PCA X, ∀Ẽ ∈
env(X), ∀α̃, α̃′ ∈ Execs(Ẽ ||X), α̃, α̃′ ends on A-creation, then fA,proxy(Ẽ,X) (α̃) = fA,proxy(Ẽ,X) (α̃′) implies
α̃ ≡crA α̃′.

In that case, for every A-creation-oblivious scheduler σ̃ of Ẽ ||X, we can note σ̃|A,ζ = σ̃|α̃ for any
α̃ ∈ Execs(Ẽ ||X) s.t. fA,proxy(Ẽ,X) (α̃) = ζ.

This property is naturally verified by the environment projection function.

Lemma 57. Let proj(.,.) the environment projection function i.e. for each automaton K, ∀E ∈
env(K), proj(E,K) : α ∈ Execs(E||K) 7→ α � E. Then proj(.,.) is creation-oblivious.

Proof. Let A be a PSIOA, let X be a A-conservative and A-creation-explicit PCA, let Ẽ ∈ env(X),
let α̃, α̃′ ∈ Execs(Ẽ ||X), s.t. α̃, α̃′ ends on A-creation and projA,proxy(Ẽ,X) (α̃) = projA,proxy(Ẽ,X) (α̃′). Then by
definition, (Ẽ ||X).µ̃Ae (α) � (Ẽ ||(X \ {A}) = (Ẽ ||X).µ̃Ae (α′) � (Ẽ ||(X \ {A}) which meets the definition
of α̃ ≡crA α̃′.

Finally, we can terminate our decomposition argument, assuming a creation oblivious scheduler.

Lemma 58 (measure after decomposition for oblivious creation scheduler). Let A be a PSIOA, X be a
A-conservative, A-creation-explicit PCA and Ẽ partially-compatible with X. Let f a creation-oblivious
insight function.

Let ζ̃ ∈
⋃

K,Ẽ∈env(K)

range(f(Ẽ,K)). Let n ∈ N ∪ {∞}, let
→
ζ ∈

→
proxy(ζ̃)(Ẽ,X,A) with |

→
ζ | = n. Let

σ̃ ∈ schedulers(Ẽ ||X) that is A-creation-oblivious.

Then εσ̃(C n⊗
i

Ĉ
→
ζ [i]

) =
n
Π
i
εσ̃i(C

C
→
ζ [i]

) with ∀i ∈ [1, n], σ̃i = oblivious
A,
→
ζ [:i]

(σ̃).

Proof. We recall the remark of definition 150 of A-creation-oblivious scheduler for a A-conservative
PCA that raises the fact that if an execution fragment α̃ ∈ Frags∗((Ẽ ||X)) verifying

i) α̃ ends on A-creation and ii) fA,proxy(Ẽ,X) (α̃) = ζ, then σ̃|A,ζ = σ̃|α̃, the sub-scheduler conditioned
by σ̃ and α̃ in the sense of definition 151. Then we simply apply lemma 45, which states that for
every α = α_x αy ∈ Frags∗(Ẽ ||X), for σ̃|αx the sub-scheduler conditioned by σ̃ ∈ schedulers(Ẽ ||X)
and αx (in the sense of definition 151), for εσ̃ generated by σ̃, εσ̃(Cα) = εσ̃(Cαx) · εσ̃|αx (Cαy) with
σ̃|αx(αz) = σ̃(α_x αz) for every αz with fstate(αz) = lstate(αx).

For every α ∈
n⊗
i

Ĉ
→
ζ [i], for →α = A− decomposition(α), εσ̃(Cα) =

n
Π
i
εσ̃
|
→
α [1:i−1]

(C→
α [i]), with

→
α[1 : i−1] =

α1_..._αi−1.
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ByA-creation-oblivious property of σ̃ and creation-oblivious of f ,
n
Π
i
εσ̃
|
→
α [1:i−1]

(C→
α [i]) =

n
Π
i
εσ̃
|
→
ζ [1:i−1]

(C→
α [i])

with
→
ζ [1 : i− 1] = fA,proxy(Ẽ,X) (→α[1 : i− 1]).

Hence, for every i ∈ [1, n] we note σ̃i ∈ schedulers(Ẽ i||Xi) that matches σ̃|→α [1:i−1] on Cζj for an
arbitrary →α[1 : i− 1].

This leads us to: ∀α ∈
n⊗
i

Ĉ
→
ζ [i], for →α :

(X,A)
α, εσ̃(Cα) =

n
Π
i
εσ̃i(C→α [i])

Thus εσ̃(C n⊗
i

Ĉ
→
ζ [i]

) =
∑

→
α :

(X,A)
α, α∈

n⊗
i

Ĉ
→
ζ [i]

n
Π
i
εσ̃i(C→α [i]) and by lemma 55,

εσ̃(C n⊗
i

Ĉ
→
ζ [i]

) =
∑

α1∈C
→
ζ [1]

...
∑

αi∈C
→
ζ [i]

...
n
Π
i
εσ̃i(Cαi) =

n
Π
i
εσ̃i(C

C
→
ζ [i]

)

4.5.6. Monotonicity of implementation

We use the previous decomposition to state the monotonicity of dynamic creation/destruction with
the implementation relationship.

Theorem 23 (monotonicity). Let A, B be PSIOA, let XA, XB be PCA. Let So be the scheduler schema
of creation-oblivious schedulers. Let f(.,.) = proj(.,.) the environment projection function i.e. for each
automaton K, ∀E ∈ env(K), f(E,K) : α ∈ Execs(E||K) 7→ α � E.

If A ≤So,f0 B and XA OA,BXB, then XA ≤
So,f
0 XB.

Proof. Let Ẽ ∈ env(XA) ∩ env(XB). Let YA = XA \ {A}, YB = XB \ {B}, EA = Ẽ ||YA, EB = Ẽ ||YB
and E an arbitrary PCA semantically equivalent to both EA and EB with E ∈ env(Ãsw) ∩ env(B̃sw)
by theorem 22. We note µAC the (complete, strong and bijective) PCA executions-matching from EA
to E and µCB the (complete, strong and bijective) PCA executions-matching from E to EB. We also
note µ×AC the (complete, strong and bijective) PCA executions-matching from EA||Ãsw to E||Ãsw and
µ×CB the (complete, strong and bijective) PCA executions-matching from E||B̃sw to EB||B̃sw.

In the remaining we note (Ẽ ||XA)↓ζ the automaton (Ẽ ||XA)q̄(Ẽ||XA)→q (as per definition 136) where q
is the unique last state of every execution α̃ s.t. fproxy(Ẽ,XA)(α̃) = ζ. Respectively, we note (Ẽ ||XB)↓ζ the
automaton (Ẽ ||XB)q̄(Ẽ||XB)→q (as per definition 136) where q is the unique last state of every execution
π̃ s.t. fproxy(Ẽ,XB)(π̃) = ζ. This notation is possible because f is pasting-friendly. Finally, ∀e ∈ Execs(Ẽ),
we note Ẽe = Ẽq̄E→lstate(e).

Let σ̃ ∈ So(Ẽ ||XA). We need to show there exists σ̃′ ∈ So(Ẽ ||XB) s.t.
– ∀ζ̃ ∈ range(f(Ẽ,XA)) ∪ range(f(Ẽ,XB)), εσ̃(C

C̃ζ̃XA
) = εσ̃′(CC̃ζ̃XB

)

– where C̃ ζ̃XA = Class(Ẽ , XA, f, ζ̃) and C̃ ζ̃XB = Class(Ẽ , XB), f, ζ̃).

Let ζ̃ ∈ range(f(Ẽ,XA))∪ range(f(Ẽ,XB)). For every
→
ζ ∈ →

proxy(ζ̃)(Ẽ,XA,A), ∀i ∈ [1 : |
→
ζ |], we note σ

|A,
→
ζ [:i]
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the ((Ẽ ||XA)↓
→
ζ [:i]).µ̃A,+e alter-ego of σ̃

|A,
→
ζ [:i]

. For every i ∈ [1 : |
→
ζ |] α̃′, α̃′′ ∈ (fA,proxy(Ẽ,XA) )−1(

→
ζ [: i]),

lstate(α̃′) = lstate(α̃′′) , qi−1
` since f is pasting-friendly. We note E(

→
ζ ,i) = Eq̄E→µAC(qi−1

`
�EA)

We note σc
|A,
→
ζ [:i]
∈ schedulers(E(

→
ζ ,i)||Ãsw) the µ×AC alter-ego of σ

|A,
→
ζ [:i]

.

(*) Since A ≤So,f0 B, ∃σd
|B,
→
ζ [:i]
∈ So(E(

→
ζ ,i)||B̃sw) balanced with σc

|A,
→
ζ [:i]

, i.e.

– ∀ζ ′ ∈ range(f(E i ,Ãsw)) ∪ range(f(E i ,B̃sw)), σ
c

|A,
→
ζ [:i]

(CČζ′A
) = σd

|B,
→
ζ [:i]

(CČζ′B
)

– where Čζ
′

A = Class(E i, Ãsw, f, ζ ′) and Čζ
′

B = Class(E i, B̃sw, f, ζ ′)

We note σ′
|B,
→
ζ [:i]

the µ×CB alter-ego of σd
|B,
→
ζ [:i]

.

We build σ̃′ ∈ So(Ẽ ||XB) as follows:

For every ζ̃ ∈ range(f(Ẽ,XB)) \ range(f(Ẽ,XA)), ∀
→
ζ ∈ →

proxy(ζ̃)(Ẽ,XB,B), ∀i ∈ [1 : |
→
ζ |], we require that

σ̃
|B,
→
ζ [:i]

halts (i.e. ∀α̃′, fB,proxy(Ẽ,XB) (α̃′) =
→
ζ [: i], supp(σ̃

|B,
→
ζ [:i]

(α̃′)) = ∅).

For every ζ̃ ∈ range(f(Ẽ,XA)) ∪ range(f(Ẽ,XB)), ∀
→
ζ ∈ →

proxy(ζ̃)(Ẽ,XB,B), ∀i ∈ [1 : |
→
ζ |], we require that

σ̃
|B,
→
ζ [:i]

and σ′
|B,
→
ζ [:i]

are ((Ẽ ||XB)↓
→
ζ [:i]).µ̃B,+e alter-ego.

Let ζ̃ ∈ range(f(Ẽ,XA)) ∪ range(f(Ẽ,XB)), let
→
ζ ∈ →

proxy(ζ̃)(Ẽ,XB,B) For every i ∈ [1 : |
→
ζ |] π̃′, π̃′′ ∈

(fB,proxy(Ẽ,XB) )−1(
→
ζ [: i]), lstate(π̃′) = lstate(π̃′) , qi−1

` since f is pasting-friendly. We note E ′(
→
ζ ,i) =

Eq̄E→µBC(qi−1
`
�EB). Moreover, E ′(

→
ζ
′
,i) = E(

→
ζ ,i) for every pair (

→
ζ ,
→
ζ
′
), s.t. µ×AC(

→
ζ ) = µ×BC(

→
ζ
′
).

Now we show that σ̃ and σ̃′ are balanced:

Let ζ̃ ∈ range(f(Ẽ,XA)) ∪ range(f(Ẽ,XB)), (ζ̃ ∈ Execs(Ẽ)). Let

– C̃ ζ̃A = Class(Ẽ , XA, f, ζ̃) and

– C̃ ζ̃B = Class(Ẽ , XB, f, ζ̃)
.

We need to show that εσ̃(C
C̃ζ̃A

) = εσ̃′(CC̃ζ̃B
):

We apply lemma 56 to obtain:

– εσ̃(C
C̃ζ̃A

) =
∑

→
ζ a∈

→
proxy(ζ̃)(Ẽ,XA,A)

εσ̃(C n⊗
i

Ĉ
→
ζ a[i]
A

).

– εσ̃′(CC̃ζ̃B
) =

∑
→
ζ b∈

→
proxy(ζ̃)(Ẽ,XB,B)

εσ̃′(C n⊗
i

Ĉ
→
ζ b[i]
B

).

Since EA and EB are semantically equivalent, the sets {ζa ∈ Execs(EA)|ζa � Ẽ = ζ̃} and {ζb ∈
Execs(EB)|ζb � Ẽ = ζ̃} are in bijection. Hence, it is enough to show that ∀(ζac, ζbc) ∈ Execs(EA) ×
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Execs(EB) with ζbc = µAC ◦ µCB(ζac) and ζbc � Ẽ = ζac � Ẽ = ζ̃, for
→
ζ
ac n:
A
ζac,

→
ζ
bc n:
A
ζbc, then

εσ̃(C n⊗
i

Ĉ
→
ζ
ac

[i]
A

) = εσ̃′(C n⊗
i

Ĉ
→
ζ
bc

[i]
B

).

By definition, σ̃ is A-creation-oblivious, and by construction, σ̃′ is B-creation-oblivious. This allows
us to apply lemma 58 to obtain:

– εσ̃(C n⊗
i

Ĉ
→
ζ
ac

[i]
A

) =
n
Π
i
εσ̃i(C

Ĉ
→
ζ
ac

[i]
A

) with ∀i ∈ [1, n], σ̃i = oblivious
A,
→
ζ
ac

[:i]
(σ̃) = σ̃

|A,
→
ζ
ac

[:i]
.

– εσ̃′(C n⊗
i

Ĉ
→
ζ
bc

[i]
B

) =
n
Π
i
εσ̃′i(C

Ĉ
→
ζ
ac

[i]
B

) with ∀i ∈ [1, n], σ̃′i = oblivious
B,
→
ζ
bc

[:i]
(σ̃′) = σ̃

|B,
→
ζ
bc

[:i]
.

– where →z [: i] = →
z [1]_..._→z [i− 1] for →z ∈ {

→
ζ
ac

,
→
ζ
bc

}

– Ĉ
→
ζ
ac

[i]
A = Class((Ẽ ||XA)↓

→
e
ac

[:i]), fA,proxy,
→
ζ
ac

[i])

– Ĉ
→
ζ
bc

[i]
B = Class((Ẽ ||XB)↓

→
e
bc

[:i]), fB,proxy,
→
ζ
bc

[i])

Thus it is enough to show that ∀i ∈ [1, n], εσ̃i(C
Ĉ
→
ζ
ac

[i]
A

) = εσ̃′i(C
Ĉ
→
ζ
bc

[i]
B

). Let i ∈ [1, n]

By lemma 48 combined with lemma 50, we obtain:

– εσ̃i(C
Ĉ
→
ζ
ac

[i]
A

) = εσ
|A,
→
ζ
ac

[:i]
(Č(
→
ζ
ac

[i])
(EA,A) )

– εσ̃′i(C
Ĉ
→
ζ
bc

[i]
B

) = εσ′
|B,
→
ζ
bc

[:i]

(Č(
→
ζ
bc

[i])
(EB,B) .

where:

– Č(
→
ζ
ac

[i])
(EA,A) = Class(E

→
ζ
ac

[:i]
A , Ãsw, f,

→
ζ
ac

[i]) and

– Č(
→
ζ
bc

[i])
(EB,B) = Class(E

→
ζ
bc

[:i]
B , B̃sw, f,

→
ζ
bc

[i])

– σ
|A,
→
ζ
ac

[:i]
is the ((Ẽ ||XA)↓

→
ζ
ac

[:i]).µ̃A,+e alter-ego of σ̃i.

– σ′

|B,
→
ζ
bc

[:i]
is the ((Ẽ ||XB)↓

→
ζ
bc

[:i]).µ̃B,+e alter-ego of σ̃′i.
.

Hence it is sufficient to show that εσ
|A,
→
ζ
ac

[:i]
(C
Č(
→
ζ
ac

[i])
(EA,A)

) = εσ′
|B,
→
ζ
bc

[:i]

(C
Č(
→
ζ
bc

[i])
(EB,B)

).

Finally, we find again our construction (*):

– εσ
|A,
→
ζ
ac

[:i]
(C
Č(
→
ζ
ac

[i])
(EA,A)

) = εσc
|A,
→
ζ [:i]

(C
Č(
→
ζ [i])

(E,A)

)

– εσ′
|B,
→
ζ
bc

[:i]

(C
Č(
→
ζ
bc

[i])
(EB,B)

) = εσd
|B,
→
ζ [:i]

(C
Č(
→
ζ [i])

(E,B)

)

– εσc
|A,
→
ζ [:i]

(C
Č(
→
ζ [i])

(E,A)

) = εσd
|B,
→
ζ [:i]

(C
Č(
→
ζ [i])

(E,B)

)
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where:

– →e is the vector of (Frags∗(E))n s.t. ∀j ∈ [1 : n],
→
ζ [j] = µAC(

→
ζ
ac

[j]) = µ−1
CB(
→
ζ
bc

[j]).

– Č(
→
ζ [i])

(E,A) = Class(E
→
ζ [:i]), Ãsw, f,

→
ζ [i]) and

– Č(
→
ζ [i])

(E,B) = Class(E
→
ζ [:i]), B̃sw, f,

→
ζ [i])

.

This leads us to εσ
|A,
→
ζ
ac

[:i]
(C
Č(
→
ζ
ac

[i])
(EA,A)

) = εσ′
|B,
→
β [:i],

→
ζ
bc

[:i]

(C
Č(
→
ζ
bc

[i])
(EB,B)

), which ends the proof.
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4.6. Task schedule

We have shown in the previous section that dynamic creation/destruction of PSIOA is monotonic
with ≤So,p0 relationship. In this section, we explain why, without cautious modifications, an easy-to-
use off-line scheduler introduced by Canetti et al. [CCK+06a, CCK+18], so-called task-scheduler, is
not a priori creation-oblivious which prevents us from obtaining the same result of monotinicity for
this particular schema.

4.6.1. Task-schedulers for PIOA

It is convenient to partition the properties required of a program into safety properties and liveness
properties [AS85]. A safety property says that nothing bad will ever happen and a liveness property,
says that something good will eventually happen. We can understand safety properties as allowed
behavior and liveness properties as required behavior. The same kind of partitioning can be done
for hyperproperties [CS08]. In distributed computing, the satisfaction of the most interesting liveness
properties can be ensured only if the pure non-determinism is resolved by a fair scheduler, which
does give the opportunity to every process to make computational progress infinitely often. We can
imagine a wide variety of fairness conditions imposed on a scheduler schema. The distinction between
input and output actions in the context of I/O automata has simplified the specification of such
fairness conditions [Tut87]. Indeed, such a distinction allows us to define local actions and simplify
the specification of "having the opportunity to make a computational progress". The original idea was
to classify the local actions of an I/O automaton A into tasks, where the set of the tasks of A is its
task-structure, noted RA. The task-structure of the composition of two I/O automata A and B is
then RA ∪RB. An example of the definition of "(weakly) fair execution" α can then be an execution
such as, for every task T of the task structure:

– no action of T is enabled from lstate(α) if α is finite.
– If α is infinite, either actions from T appear infinitely often in α or states from which no action

of T is enabled appear infinitely often in α
A fair scheduler is then a scheduler resolving the pure non-determinism such that the probability of
an unfair execution is 0. Finally, we can exclusively reason with fair schedulers to prove some liveness
properties.

Of course, fairness alone might be not sufficient. For example, a powerful perfect-information scheduler
can avoid termination of asynchronous randomized consensus protocols, based on the emulation of a
common coin, if it is immediately aware of the results of the local coin draws. Here again, the task
structure is useful to limit the power of the scheduler, by requiring him to only output tasks instead
of actions, without knowing the exact situation. This idea can be formalized easily with the task-
scheduler introduced by Canetti et al. [CCK+06a, CCK+18]. Such a scheduler provides in advance
(a.k.a. off-line) a potentially infinite sequence ρ = T1, T2, ... of tasks. Then the system continuously
makes progress by successively (i) triggering the unique enabled action of the next task if it exists, or (ii)
ignoring the task otherwise. This scheduler schema is easy to use and the associated implementation
relationships can be proved with well-established simulation relationships [CCK+06a, ML07a].

4.6.2. Discussion on adaptation of task-structure in dynamic setting

We adapt the task structure of [CCK+06a, CCK+18] to the dynamic setting. For any PSIOA
A = (QA, q̄A, sig(A), DA), we note acts(A) =

⋃
q∈QA

sig(A)(q), UI(A) =
⋃

q∈QA

in(A)(q), UO(A) =
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⋃
q∈QA

out(A)(q), UH(A) =
⋃

q∈QA

int(A)(q), UL(A) =
⋃

q∈QA

l̂ocal(A)(q), UE(A) =
⋃

q∈QA

êxt(A)(q).

In classic PIOA formalism [Seg95b], if an action a ∈ OA ∩ IB is an output action for A and an input
action for B, then a is an output for A||B and this does not depend on the current state of A||B.

In PSIOA formalism, if an action a ∈ UO(A) ∩ UI(B) is an output action for A at a certain state
qA, without being an input action of A at any other state, while this is an input action for B at some
state qB, without being an output action of B at another state, then it does not say that a will never
be an input of A||B at a certain state q′ = (q′A, q′B) where a ∈ in(B)(q′B) but a /∈ out(A)(q′A).

To summarize, if an action can clearly and definitely be an input or an output in PIOA formalism
[Seg95b], this is not the case in PSIOA formalism where an action can be an input and becomes an
output and vice-versa.

Figure 4.12. – Signature is not fixed

We represents the composition W = U ||V of two automata U and V . At two different states
qW = (qU , qV ) and q′W = (q′U , q′V ) where sig(U)(q′U ) = (in(U)(qU ), out(U)(qU ) \ {c}, int(U)(q′U )).
The different states are represented with different colors. The action c is an output of W in qW but
an input of W ′ in q′W .

In [CCK+18], a task-structure RA of a PIOA A is an equivalence class on local actions of A and a
task-schedule is a sequence of tasks. The task-structure is assumed to ensure next-action determinism,
that is for each state q ∈ QA, for each task T ∈ RA, there exists at most one (local) action a ∈
T ∩ local(A)(q) enabled in q. A task-schedule can hence "resolve the non-determinism", leading to a
unique probabilistic measure on the executions. A nice property is that next-action determinism is
preserved by composition if the task-structure R of the parallel composition of task-PIOA (A,RA)
and (B,RB) is defined as R = RA ∪RB

In PSIOA formalism, the preservation of well-formdness after a composition is less obvious. If we
assume that a task is a set of actions ensuring (local action determinism) (that is for each state
q ∈ QA, for each task T ∈ RA, at most one local action a ∈ T is enabled in q), this property will not be
preserved by the composition. Indeed let imagine PISOA A, B, (qA, qB) ∈ QA×QB with sig(A)(qA) =
({a}, {b}, ∅), sig(B)(qB) = (∅, {a}, ∅) and T = {a, b} is a task of A. Then sig(A||B)(qA, qB) =
(∅, {a, b}, ∅) and both a and b can be enabled.

This observation motivates an additional assumption, called input partitioning. We assume the ex-
istence of a set of "atomic entities" Autids0 ⊂ Autids, s.t. for every A ∈ Autids0, every action
a ∈ acts(A), a ∈ UI(A) =⇒ a /∈ UO(A). Since the vocation of an input a of A is to be triggered as
an output action of a compatible automaton B, this assumption is very conservative. Furthermore, in
[AL16], the composition is defined for automata where all the states are compatible. Hence nothing
is lost compared to the formalization of [AL16]. Now, we can assume that, for every A ∈ Autids0, for
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every action a ∈ UI(A), for every task T of A, a /∈ T .

This assumption is not preserved by the composition. Indeed, if a is an output of A ⊂ Autids0 and an
input of B ⊂ Autids0, we can have a task T = {a} of A, that would become a task of A||B, where a
can be an input of A||B. In fact, we will assume both input partitioning for Autids0 and local action
determinism and we will show that local action determinism is ensured by any PSIOA or PCA built
with atomic elements of Autids0.

Another subtlety appears. In static setting, since the signature is unique and compatibility of A and B
means UL(A)∩UL(B) = ∅, there is no ambiguity in defining a subset of tasks T ′ = {Tk′}k′∈K′ among
the ones of A||B composed uniquely of tasks of A (or B symmetrically). In the dynamic setting, if
a task T is only a set of action labels, T could be a task for different automata (not at the same
time). For example, T could be triggered by the A "contribution" of A||B or by the B "contribution"
of A||B in alternative execution branches. The confusion can become much greater for a configuration
automaton X (formalized in section 4) where each state points to a configuration of dynamic set AX

of automata (with their own current state). What if the scheduler proposes a task T to a configuration
automaton X that goes successively into states qX and q′X pointing to configuration CX and C ′X with
different set of automata AX and A′X where B ∈ AX and is in its current state qB and B′ ∈ A′X and is
in its current state qB′ with B 6= B′ but l̂oc(B)(qB)∩ l̂oc(B′)(qB′)∩ T 6= ∅ ? There are a lot of different
ways to deal with this source of ambiguity. To solve it, we have two motivations:

– Reuse the notion of projection of a schedule on an environment as in [CCK+07]
– Obtain our theorem of monocity,. To do so, we need to avoid that a task T that was intended to

be triggered by an automaton A in a certain execution branch α and ignored in another branch
α′ can be triggered by another automata A′ in an execution branch α̃′ with trace(α′) = trace(α̃′)
of a configuration automaton X that creates A′ instead of A.

Figure 4.13. – An execution with clones

An example of an execution α̃ of a probabilistic configuration automata (PCA) XA||E . At first, A is
a "member" (yellow dot) of XA , then it is destroyed and finally a clone A′ is created (green dot) in
XA. The formalism of [AL16] allows that A and A′ are "members" of XA in two different states as
long as they cannot be members in the same state.

The monocity theorem is based on the fact that XA||E mimics the behaviour of Ãsw||E ′′A with E ′′A =
XA \ {A}||E where Ãsw is the simpleton wrapper of A (formalized in definition 133) and XA \ {A}
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(formalized in definition 132) is the PCA XA deprived of A at each configuration (see figures 4.13 and
4.14). If we examine the succession of reduced configurations (configuration without automata with
empty signature) visited in α̃ ∈ Execs(XA||E) and in corresponding α ∈ Execs(A||E ′′A), α = µAe (α̃),
we obtain the same ones (see figure 4.15). Since our theorem takes advantage of the corresponding
successions of configurations, it is natural to make appear the ids of Autids0, representing the "atomic"
entities among all the entities.

Figure 4.14. – An execution with clones: The perspective of sub-automaton A

The corresponding execution α of A||E ′′A, noted α = µAe (α̃). At first, A is "alive" (yellow dot), then it
goes forever into a "zombie state" qφA (black dot) where ŝig(A)(qφA) = ∅. Finally a clone A′ is created
(green dot) in E ′′A. The formalism of [AL16] is not supposed to allow this composition since among
all the states of QA ×QE ′′A , some of them are not compatible. However, it is possible to extend their
formalism and define a partial-compatibility where all reachable states of QA ×QE ′′A are compatible.

Figure 4.15. – homomorphism between PSIOA and PCA

As long as no creation of A occurs, the executions α̃ ∈ Execs(XA||E) and α ∈ Execs(A||E ′′A) handle
the same succession of reduced configurations.

This formalism avoids the possibility for an atomic entity A to be a "member" of two different hier-
archies as it was already the case in [AL16] which is completely normal in I/O automata formalism.
However, contrary to [AL16], the notion of partial-compatibility does not prevent an automaton A
to move from a configuration X to another configuration Y . Indeed we can imagine X and Y that
create and destroy A so that they are partially-compatible (while they cannot be compatible). We
can remark we are not dealing with a schedule of a specific automaton anymore, which differs from
[CCK+07]. However, the restriction of our definition to the "static" setting, where each automaton is
the composition of a finite set of automata in Autids0, matches their definition. It will be the respon-
sibility of the task-scheduler to choose a task-schedule ρ = T1, ..., Tk, ... that produces the probabilistic

157



Chapter 4 : Monotonicty of dynamic creation/destruction of PSIOA with implementation

distribution that it wants.

According to our understanding, the fact that the set of tasks is not a set of equivalence classes for an
equivalence relation is not crucial for the model.

4.6.3. task-schedule for dynamic setting

We formalize the scheduler schema of task-schedulers that is a schema of off-line schedulers.

We assume the existence of a subset Autids0 ⊂ Autids that represents the "atomic entities" of our
formalism. Any automaton is the result of the composition of automata in Autids0.

Definition 163 (Constitution). For every PSIOA or PCA A, we note

constitution(A) :
{
QA → P(Autids0) where P(Autids0) denotes the power set of Autids0
q 7→ constitution(A)(q)

The function constitution is defined as follows:

– ∀A ∈ Autids0, ∀q ∈ QA, constitution(A)(q) = {A}.
– ∀A = {A1, ...,An} ∈ (Autids0)n, ∀q ∈ QA, if A is partially-compatible, then constitution(A1||...||An)(q) =

A.
– The constitution of a PCA is defined recursively through its configuration. For every PCA X,
∀q ∈ QX , if we note (A,S) = config(X)(q), constitution(X)(q) =

⋃
A∈A

constitution(A)(S(A)).

We can extend the principle of a partial function map (attached to a configuration) to the entire
constitution of a PCA or PSIOA.

Definition 164 (hierarchy mapping SH). Let X be a PCA or a PSIOA. Let q ∈ QX We note
SH(X)(q) 2 the function that maps any PSIOA Ai ∈ constitution(X)(q) to a state qAi ∈ QAi s.t.

– if X = Ai, qAi = q

– if X = A1||...||Ai||...||An, then qAi = q � Ai
– if X is a PCA, qAi = SH(Y )(qY ) where Y is the unique member of auts(config(X)(q)) s.t.
Ai ∈ constitution(Y )(qY ) with qY = map(config(X)(q))(Y )

Anticipating the definition of an enabled task, we extend the definition of tasks of [CCK+18] with an
id of Autids0.

Definition 165 (Task). A task T is a pair (id, actions) where id ∈ Autids0 and actions ⊂ acts(aut(id))
is a set of action labels. Let T = (id, actions), we note id(T ) = id and actions(T ) = actions.

Now, we are ready to define the notion of enabled tasks.

Definition 166 (Enabled task). Let X be a PSIOA or a PCA. A task T is said enabled in state
q ∈ QX if

– id(T ) ∈ constitution(X)(q)
– there exists a unique local action a ∈ l̂oc(A)(qAi) ∩ actions(T ) enabled at state SH(X)(q)(A) 3.
2. H stands for "hierarchy" and S refers to notation of mapping function of a configuration (A,S).
3. action enabling assumption implies that a ∈ ŝig(Ai)(SH(X)(q)(A)) =⇒ a enabled at state SH(X)(q)(A) (i.e.

∃η ∈ Disc(QA) s.t. (SH(X)(q)(A), a, η) ∈ DA)
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All previous precautions allow us to define a task-schedule, which is a particular subclass of schedulers,
avoiding the technical problems mentioned in the previous subsection. We are not dealing with a task-
schedule of a specific automaton anymore, which differs from [CCK+18]. However, the restriction of
our definition to a "static" setting matches their definition.

Definition 167 (task-schedule). A task-schedule ρ = T1, T2, T3, ... is a (finite or infinite) sequence of
tasks.

Since our task-schedule is defined, we are ready to solve the non-determinism and define a probability
on the executions of a PSIOA. We use the measure of [CCK+18].

Definition 168. (task-based probability on executions: applyA(µ, ρ) : Frags(A) → [0, 1]) Let A be a
PSIOA. Given µ ∈ Disc(Frags(A)) a discrete probability measure on the execution fragments and a
task schedule ρ, apply(µ, ρ) is a probability measure on Frags(A). It is defined recursively as follows.

1. applyA(µ, λ) := µ. Here λ denotes the empty sequence.

2. For every T and α ∈ Frags∗(A), apply(µ, T )(α) := p1(α) + p2(α), where:

– p1(α) =
{
µ(α′)η(A,q′,a)(q) if α = α′_(a, q), q′ = lstate(α′) and a is triggered by T enabled after α′
0 otherwise

– p2(α) =
{
µ(α) if T is not enabled after α
0 otherwise

3. 3. If ρ is finite and of the form ρ′T , then applyA(µ, ρ) := applyA(applyA(µ, ρ′), T ).

4. 4. If ρ is infinite, let ρi denote the length-i prefix of ρ and let pmi be applyA(µ, ρi). Then
applyA(µ, ρ) := lim

i→∞
pmi.

Proposition 12. Let A be a PSIOA, For each measure µ on Frags∗(A) and task schedule ρ, there
exists a scheduler σ for A such that apply(µ, ρ) is the generalized probabilistic execution fragment εσ,µ.

Proof. The result has been proven in [CCK+18], appendix B.4.

4.6.4. Why a task-scheduler is not creation-oblivious ?

Let us imagine the following example. The class Cx is composed of two executions αx,1 and αx,2, the
class Cy is composed of two executions αy,1 and αy,2 and the class Cz is composed of four executions
αz,11 = αx,1_αy,1, αz,12 = αx,1_αy,2, αz,21 = αx,2_αy,1, αz,22 = αx,2_αy,2. Let ρ = ρ1_ρ2 be a
task-schedule. We do not have apply(., ρ)(Cz)) = apply(., ρ1)(Cx) · apply(., ρ2)(Cy) ! Indeed, the
executions αx,1 and αx,2 can differ s.t. they do not ignore the same tasks. Typically, ρ1 could be
written ρ1 = ρ1,a_ρ1,b where the last action of αx,1 is triggered by the last task of ρ1,a and ρ1,b is
"ignored by αx,1. The issue comes if both apply(., ρ2)(Cy) 6= ∅ and apply(., ρ1,b_ρ2)(Cy) 6= ∅. The
point is that Cz can be obtained with different cut-paste: cut-paste A: ρ1,a for Cx and ρ1,b_ρ2 for Cy
; cut-paste B: ρ1 for Cx and ρ2 for Cy.

There is room for finding the appropriate natural assumptions to obtain creation-obliviousness for
task-schedules in future work.

159



Chapter 4 : Monotonicty of dynamic creation/destruction of PSIOA with implementation

Figure 4.16. – non-deterministic execution requires a (task ?) scheduler

Non-deterministic execution: The scheduler allows us to solve the non-determinism, by triggering an
action among the enabled one. We give an example with an automaton A = (QA, q̄A = q0, sig(A), DA)
and the tasks Tg, To, Tp, Tb (for green, orange, pink, blue) with the respective actions
{a}, {d}, {b, b′}, {c, c′}, and the tasks Tgo, Tbo with the respective actions {a, d}, {c, c′, d}. At
state q0, sig(A)(q0) = (∅, {a}, {d}). Hence both a and d are enabled local action at q0, which means
both Tg and To are enabled at state q0, but Tgo is not enabled at state q0 since it does not solve the
non-determinism (a and d are enabled local action at q0). At state q1, Tp is enabled but neither To or
Tb. We give some results: apply(δq0 , Tg)(q0, a, q1,v) = 1
apply(δq0 , TgTp)(q0, a, q1,v, b, q2,w) = apply(apply(δq0 , Tg), Tp)(q0, a, q1,v, b, q2,w) = 1/2
apply(δq0 , TgTpTb)(q0, a, q1,v, b, q2,w, c, q3,w) = apply(apply(δq0 , TgTp), Tb)(q0, a, q1,v, b, q2,w, c, q3,w) =
3/8
apply(δq0 , TgTpToTb)(q0, a, q1,v, b, q2,w, c, q3,w) = 3/8, since To is not enabled at state q2,w.

4.7. Monotonicity of Tenacious Task-Implementation

To rescue the task-schedulers, we propose an alternative definition of implementation, called tenacious
implementation. In this definition, the equiprobability of corresponding classes for two "balanced"
task-schedulers ρ and ρ′ has to be preserved even if we "cut" the task-schedulers at some arbitrary
points.

First, we anticipate some technical issues and we adapt the definition of environment.

Definition 169 (Independent environment). Let V be a PCA (resp a PSIOA). An independent en-
vironment E for V is a PCA (resp. a PSIOA) partially-compatible with V s.t. UA(E) ∩ UA(V) = ∅.
We note ienv(V) the set of independent environment of V.

At first glance, we might think that such a new definition would prevent from applying the argument of
proof of theorem 3 for the composability of implementation. Indeed, ifA and B are partially compatible
and E ∈ ienv(A||B), we cannot say that E||B ∈ ienv(A) since we could have UA(A) ∩ UA(B) 6= ∅
(typically, to model the movement of an agent from A to B and vice versa. But again, we can apply
a renaming operator to B, to obtain B′ ∈ ienv(A) (and so E||B′ ∈ ienv(A)) with A||B′ completely

160



4.7 Monotonicity of Tenacious Task-Implementation

equivalent to A||B. Thus, this definition does not limit the expressiveness of the model.

The next definition 170 captures the idea that two schedulers implies the same probability measure
for corresponding classes of executions, with the same perception from the environment.

Definition 170 (S≤ε(A,B)). Let A and B be two PSIOA or two PCA. Let (ρ, ρ′) be two task-schedulers.
Let ε ∈ R≥0 We say that ρS≤ε(A,B)ρ

′ if ∀E ∈ ienv(A) ∩ ienv(B), ∀e ∈ Execs(E),
|apply(E||A)(δq̄E||A , proj

−1
(E,A)(e))− apply(E||B)(δq̄E||B , proj

−1
(E,B)(e))| ≤ ε.

For any environment, the probability to make a distinction between the two situations under the
respective schedulers ρ and ρ′ is not greater than 1

2 + ε. We stress that the pair (ρ, ρ′) is fixed for all
the possible environments.

We can remark that schedulers are "perfectly balanced", noted ρS≤0
(A,B)ρ

′, if ∀E ∈ ienv(A) ∩ ienv(B),
∀e ∈ Execs(E), apply(E||A)(δq̄E||A , proj

−1
(E,A)(e)) = apply(E||B)(δq̄E||B , proj

−1
(E,B)(e)).

Also, we could consider an alternative definition where ρS≤ε(A,B)ρ
′ if ∀E ∈ ienv(A) ∩ ienv(B), ∀E ⊆

Execs(E), |apply(E||A)(δq̄E||A , proj
−1
(E,A)(E)) − apply(E||B)(δq̄E||B , proj

−1
(E,B)(E))| ≤ ε. Such a definition

might be more convenient for monotonicity of dynamic creation/destruction of PSIOA with approxi-
mate tenacious implementation.

4.7.1. schedule notations

Here, we give syntactical tools to manipulate easily task-schedules.

Definition 171 (simple schedule notation). Let ρ = T `, T `+1, ..., T h, ... be a schedule, i. e. a sequence
of tasks, beginning with T ` and terminating by T h if ρ is finite with `, h ∈ N∗. For every q, q′ ∈
[`, h], q ≤ q′, we note:

– hi(ρ) = h the highest index in ρ (hi(ρ) = ω if ρ is infinite)
– li(ρ) = ` the lowest index in ρ
– ρ[q] = T q

– ρ|q = T `...T q

– q|ρ = T q...T h...

– q|ρ|q′ = T q...T q
′

By doing so, we implicitly assume an indexation of ρ, ind(ρ) : ind ∈ [li(ρ), hi(ρ)] 7→ T ind ∈ ρ. Hence
if ρ = T 1, T 2, ..., T k, T k+1, ..., T q, T q+1..., T h, ..., ρ′ =k |ρ, ρ′′ =q |ρ′, then ρ′′ =q |ρ.

Definition 172 (Schedule partition and index). Let ρ be a schedule. A partition p of ρ is a sequence of
schedules (finite or infinite) p = (ρm, ρm+1, ..., ρn, ...) so that ρ can be written ρ = ρm, ρm+1, ..., ρn, ....
We note min(p) = m and max(p) = card(p) +m− 1 (if p is infinite, max(p) = ω).

A total ordered set (ind(ρ, p),≺) ⊂ N2 is defined as follows :

ind(ρ, p) = {(k, q) ∈ (N∗)2|k ∈ [min(p),max(p)], q ∈ [li(ρk), hi(ρk)]} For every ` = (k, q), `′ =
(k′, q′) ∈ ind(ρ, p):

– If k < k′, then ` ≺ `′

– If k = k′, q < q′, then ` ≺ `′

– If k = k′ and q = q′, then ` = `′. If either ` ≺ `′ or ` = `′, we note ` � `′.
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For every ` = (k, q) ∈ ind(ρ, p), we note ` + 1 the smaller element (according to ≺) of ind(ρ, p) that
is greater than `. For convenience, we extend ind(ρ, p) with {(k, 0) ∈ (N∗)2|k ≤ card(p)} , where
(k + 1, 0) , (k, card(ρk)).

Definition 173 (Schedule notation). Let ρ be a schedule. Let p be a partition of ρ. For every
` = (k, q), `′ = (k′, q′) ∈ ind(ρ, p)2, we note (when this is allowed):

– ρ[p, `] = ρk[q]
– ρ|(p,`) = ρ1, ..., ρk|q
– (p,`)|ρ = (q|ρk), ...

– `|ρ|(p,`′) = (q|ρk), ..., (ρk
′ |q)

The symbol p of the partition is removed when it is clear in the context.

4.7.2. Tenacious Implementation

Before defining tenacious implementation, we take some precautions to properly partition the tasks
dedicated to the environment and the task dedicated to the analysed system.

Definition 174 (V-partition of a schedule). Let V be a PCA or a PSIOA. Let ρVE be a schedule. Let
p = (ρ1

V , ρ
2
E , ρ

3
V , ρ

4
E ...) be the obviously unique partition of ρVE where (1) each ρ2k+1

V is a sequence of
tasks of UA(V) only, (2) each ρ2k

E does not contain any task of UA(V), and (3) each ρ2k
E has a length

strictly greater than 0. We call such a partition, the V-partition of ρVE .

Thus, in the remaining, we say the V-partition of a schedule.

Definition 175 (Environment corresponding schedule). Let V and W be two PCA or two PSIOA.
Let ρVE and ρWE be two schedules. Let (ρ1

V , ρ
2
E , ρ

3
V , ρ

4
E ...) (resp. ρWE : (ρ1

W , ρ
2′
E , ρ

3
W , ρ

4′
E , ...)) be the

V-partition (resp. W-partition) of ρVE (resp. ρWE). We say that ρVE and ρWE are VW-environment-
corresponding if for every k, ρ2k

E = ρ2k′
E .

Environment corresponding schedules only differ on the tasks that do not concern the environment.

Definition 176 (Sten,≤ε(A,B) ). Let A and B be two PSIOA or two PCA. Let (ρ, ρ′) be two task-schedulers.
Let ε ∈ R≥0. We say that ρSten,≤ε(A,B) ρ

′ if

– ρ and ρ′ are (A,B)-environment-corresponding
– ∀`, `′ ∈ ind(ρ, p) ∩ ind(ρ′, p′) ∩ (2N,N), for ρ̃ = (`|ρ|`′), ρ̃′ = (`|ρ′|`′), ρ̃S≤ε(A,B)ρ̃

′

Definition 177 (Tenacious implementation). Let A and B be two PSIOA or two PCA. Let ε ∈ R≥0.
We say that A ε-tenaciously implements B, noted A ≤tenε B, if for every task-scheduler ρ, there exists
a task-scheduler ρ′ such that ρSten,≤ε(A,B) ρ

′. If ε = 0, we say A tenaciously implements B

4.7.3. sub-classes according to a task schedule

It appeared that the monotonicity of PSIOA creation with ≤ten0 is not straightforward. The next 3
definitions will give us useful tools to address the demonstration in a modular way.

The next definition captures the idea that the last action of a given execution is triggered by the last
task of a task-schedule.
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Definition 178 (execution matching a schedule). Let X be an automaton, let α be an execution of
X, and ρ = ρ′T be a task-schedule. We say that α matches ρ iff α ∈ supp(applyX(δfstate(α), ρ)) but
α /∈ supp(applyX(δfstate(α), ρ

′)).

If α ∈ supp(applyX(δfstate(α), λ)), we say that α match λ (the empty sequence).

Hence, the last action of α is triggered by the last task of ρ.

The next definition formalizes the idea that a prefix of a task-schedule is not useless to provoke an
execution. This definition has only a pedagogical interest to stress we do not require this kind of
"matching".

Definition 179 (execution strongly matching a schedule). Let X be an automaton, let α = q0a1_α′

be an execution of X, and ρ = Tρ′ be a task-schedule. We say that α strongly matches ρ iff α matches
ρ and a1 is triggered by T at state q0.

The idea is that T is not useless. In fact, we will see that this definition has no interest to obtain our
intermediate results. We introduced it only to explain why this form of matching is not relevant.

Now, we can introduce a notation to represent sub-sets of executions that matches a certain sub-
schedule. It is an important step before our partitioning.

Definition 180 (Notations for executions matching a schedule). Let K be a PCA or a PSIOA, let
α ∈ execs(K) and α ⊂ execs(K), s. t. α ∈ α. Let ρ be a schedule, p be a fixed partition of ρ,
`1, `2, `

−
1 , `
−
2 , `

+
1 , `

+
2 ∈ ind(ρ, p) , we note :

– α(`1,ρ) = {α̃ ∈ α|α̃ matches ρ|`1}
– α(`1,`2,ρ) = {α̃ ∈ α|α̃ matches `1 |ρ|`2} (warning: 6= {α̃ ∈ α|α̃ strongly matches `1 |ρ|`2} )
– α(`1,[`−2 ,`

+
2 ],ρ) = {α̃ ∈ α|∃`2 ∈ [`−2 , `

+
2 ], α̃ matches `1 |ρ|`2}

We can remark that if `1 = min(ind(ρ, p)), then α(`2,ρ) = α(`1,`2,ρ) by definition.

The next lemma states that for every task-schedule ρ a set α of executions can be partitioned with
sub-sets of the form α`,ρ modulo some executions with zero-probability to occur under task-schedule
ρ

Lemma 59 (class-partitioning according to a schedule). Let X be a PSIOA or a PCA, α ∈ execs(X)
and α ⊂ execs(X), s. t. α ∈ α , ρ be a task-schedule, p be a fixed partition of ρ.

Then {α(`+,ρ)∩supp(applyX(δfstate(α), ρ))|`+ ∈ ind(ρ, p)} is a partition of α∩supp(applyX(δfstate(α), ρ))}.

Proof. – empty intersection: Let `, `′ ∈ ind(ρ, p). Let α ∈ α`,ρ, we show that α /∈ α`′,ρ. By contra-
diction, we assume the contrary: thus, α ∈ supp(applyX(δfstate(α), ρ|`)), α ∈ supp(applyX(δfstate(α), ρ|`′))
but α /∈ supp(applyX(δfstate(α), ρ|`−1)) and α /∈ supp(applyX(δfstate(α), ρ|`′−1)). If ` = `′ + 1 or
`′ = `+ 1, the contradiction is immediate.
Without lost of generality, we assume `′ ≺ ` + 1. Since α ∈ supp(applyX(δfstate(α), ρ|`)),
α ∈ supp(applyX(δfstate(α), ρ|`′)), all the tasks in `′+1|ρ|` are not enabled in lstate(α), but
this is in contradiction with the fact that both α ∈ supp(applyX(δfstate(α), ρ|`′)) and α /∈
supp(applyX(δfstate(α), ρ|`−1)).

– complete union: Let α′ = α′′_aq′ ∈ supp(applyX(δfstate(α), ρ)), with q′′ = lstate(α′′). We show
it exists ` ∈ ind(ρ, p), so that α′ matches ρ|`. By contradiction, it means α′ matches ρ|` for
every ` ∈ ind(ρ, p), namely α′ matches ρ|0 = λ (the empty sequence) and that for every task T
in ρ, T is not enabled in q′′. Thus applyX(δfstate(α), λ)(α′) > 0, which is in contradiction with
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α′ 6= fstate(α). If α′ = q0 and for every task T in ρ, T is not enabled in q0, then α′ matches
ρ0 = 0.

Hence, for any task-schedule, each class of executions can be partitioned into sub-classes that match
one of the prefixes of ρ. This allows us to express a natural lemma of total probability law on all the
possible matchings.

Lemma 60 (Total probability law on all possible matchings). Let X be a PSIOA or a PCA, α ∈
execs(X) and α ⊂ execs(X), s. t. α ∈ α , ρ be a task-schedule, p be a fixed partition of ρ.

applyX(δfstate(α), ρ)(α) =
∑

`+∈ind(ρ,p)
applyX(δfstate(α), ρ)(α(`+,ρ))

Proof. {α`+,ρ∩supp(applyX(δfstate(α), ρ))|`+ ∈ ind(ρ, p)} is a partition of α∩supp(applyX(δfstate(α), ρ))},
which gives applyX(δfstate(α), ρ)(α) =

∑
`+∈ind(ρ,p)

applyX(δfstate(α), ρ)(α(`+,ρ)) that is the result.

We stress that the second argument of function apply(., .)(.) in the right term is ρ and not ρ|`+ ,
otherwise, the result would be applyX(δfstate(α), ρ)(α) =

∑
`+∈ind(ρ,p)

applyX(δfstate(α), ρ|`+)(α(`+,ρ) ∩

supp(δfstate(α), ρ))

We slightly anticipate the next subsection to reduce the problem to the probability measures of classes
of equivalence of executions without creation before the last action.

Lemma 61 (Express a cut with the entire class). Let X be a PSIOA or a PCA, α ∈ execs(X) and
α ⊂ execs(X), s. t. α ∈ α , ρ be a task-schedule, p be a fixed partition of ρ.

∀`− ∈ ind(p, ρ),
`−≺`+∑

`+∈ind(p,ρ)
applyX(δfstate(α), ρ)(α`+,ρ) = applyX(δfstate(α), ρ)(α)−applyX(δfstate(α), ρ|`−)(α)

Proof. We simply apply the previous lemma twice, for both

applyX(δfstate(α), ρ)(α) =
∑

`∈ind(ρ,p)
applyX(δfstate(α), ρ)(α`,ρ) and

applyX(δfstate(α), ρ|`−)(α) =
∑

`∈ind(ρ|`− ,p)
applyX(δfstate(α), ρ)(α`,ρ) and the substraction gives the re-

sult.

We finish the current paragraph by introducing a sort of notion of "independence" between successive
executions:

Lemma 62 (independent successive executions for a split task-schedule). Let K be a PSIOA. Let
ρ = ρ1_ρ2 and α = α1_α2 ∈ execs(K) with α1 matching ρ1 where q0 = fstate(α1), q1 = lstate(α1) =
fstate(α2), q2 = lstate(α2).

Then apply(δq0 , ρ)(α) = apply(δq0 , ρ1)(α1) · apply(δq1 , ρ2)(α2)

Proof. By induction on the size of ρ2.

Special case: ρ2 = λ
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Case 1) α2 = q1.

apply(δq0 , ρ)(α) = apply(δq0 , ρ1)(α1) while apply(δq1 , ρ2)(α2) = 1

Case 2) α2 = α2′_q2′aq2. In this case, apply(δq1 , ρ2)(α2) = apply(δq0 , ρ)(α) = 0

This ends the special case, we can start the induction.

We note µ1 = apply(δq0 , ρ1)

Basis: ρ2 = T

We have:

apply(δq0 , ρ)(α) = apply(µ1, T )(α) = p1(α) + p2(α) with

– p1(α) =
{
µ1(α′) · ηK,q′,a(q2) if a triggered by T enabled at q′ with α = α′_q′aq2

0 otherwise

– p2(α) =
{
µ1(α) if T is not enabled after α
0 otherwise

and

apply(δq1 , ρ2)(α2) = apply(δq1 , T )(α2) = p′1(α2) + p′2(α2) with

– p′1(α2) =
{
δq1(α2′) · ηK,q2′,a(q2) if a triggered by T enabled at q2′ with α2 = α2′_q2′aq2

0 otherwise

– p′2(α2) =
{
δq1(α2) if T is not enabled after α2

0 otherwise

We have T enabled after α ⇐⇒ T enabled after α2

Case 1) α2 = q2 = q1 i. e. α = α1 and δq1(α2) = 1.

Since α1 is matching ρ1, the factor µ1(α′) of p1 is necessarily equal to 0, which means p1(α) = 0.
Moreover, p′1(α2) = 0 since |α2| = 0.

So apply(δq1 , ρ2)(α2) = p′2(α2), while apply(δq0 , ρ)(α) = p2(α) and we find apply(δq0 , ρ)(α) = µ1(α1) ·
apply(δq1 , ρ2)(α2).

Case 2) α2 = α2′_q2′aq2 i. e. q′ = q2′, α′ = α1_α2′

We have T enabled after α′ ⇐⇒ T enabled after α2′

If T not enabled after α, apply(δq1 , ρ2)(α2) = 0, while apply(δq0 , ρ)(α) = apply(δq0 , ρ1)(α1 _ α2) = 0
since α1 matches ρ1 and |α2| > 0. and we find apply(δq0 , ρ)(α) = µ1(α1) · apply(δq1 , ρ2)(α2) = 0.

If T is enabled after α,

Case 2a) α2′ = α2′′_q2′′a′q′. For the same reasons than in previous case, apply(δq0 , ρ)(α) = µ1(α1) ·
apply(δq1 , ρ2)(α2) = 0.

Case 2b) α2 = q1aq2, i. e. α2′ = q1 and α′ = α1 and δq1(α2′) = 1

We have apply(δq1 , ρ2)(α2) = p′1(α2), while apply(δq0 , ρ)(α) = p1(α) = µ1(α1)·apply(δq1 , ρ2)(α2) which
ends the basis.
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Induction: We assume the result to be true for task schedule ρ2′ and we show this also true for
ρ2 = ρ2′T .

We note µ12′ = apply(δq0 , ρ1ρ2′) and µ2′ = apply(δq1 , ρ2′).

By induction assumption, µ12′(α1_α2) = apply(δq0 , ρ1)(α1) · apply(δq1 , ρ2′)(α2) = µ1(α1) · µ2′(α2)

We have:

apply(δq0 , ρ)(α) = apply(apply(δq0 , ρ1ρ2′), T )(α) = apply(µ12′, T )(α) = pi1(α) + pi2(α) with

– pi1(α) =
{
µ12′(α′) · ηK,q′,a(q2) if a triggered by T enabled at q′ with α = α′_q′aq2

0 otherwise

– pi2(α) =
{
µ12′(α) if T is not enabled after α
0 otherwise

and

apply(δq1 , ρ2)(α2) = apply(apply(δq1 , ρ2′), T )(α2) = apply(µ2′, T )(α2) = pj1(α2) + pj2(α2) with

– pj1(α2) =
{
µ2′(α2′) · ηK,q2′,a(q2) if a triggered by T enabled at q2′ with α2 = α2′_q2′aq2

0 otherwise

– pj2(α2) =
{
µ2′(α2) if T is not enabled after α2

0 otherwise

Case 1) T not enabled after α2 then apply(δq1 , ρ2)(α2) = pj2(α2) = µ2′(α2), while apply(δq0 , ρ)(α) =
pi2(α) = µ12′(α) = µ1(α1) · µ2′(α2) by induction assumption which gives apply(δq0 , ρ)(α) = µ1(α1) ·
apply(δq1 , ρ2)(α2).

Case 2) T enabled after α2

Case 2a) α2 = q2 and so apply(δq0 , ρ)(α) = 0 = apply(δq1 , ρ2)(α2) which gives apply(δq0 , ρ)(α) =
µ1(α1) · apply(δq1 , ρ2)(α2)

Case 2b) α2 = α2′_q2′aq2. Here again apply(δq1 , ρ2)(α2) = pj1(α2) = µ2′(α2′), while apply(δq0 , ρ)(α) =
pi1(α) = µ12′(α′) = µ1(α1) · µ2′(α′) by induction assumption which gives apply(δq0 , ρ)(α) = µ1(α1) ·
apply(δq1 , ρ2)(α2).

This ends the induction for all the cases and so the proof.

This lemma can remind the Bayes law for independent events.

Reduction to class without creation Now we want to express a variant of the lemma 58, i. e. being

able to express the measure of
n⊗
i

Ĉ
→
e [i] under ρ as a function of measures of the classes C

→
e [i] under

the different cuts ρ̃ =` |ρ|`′ . This result is stated in lemma 64 and is the main step to rescuing the
monotonicity of dynamic creation/destruction with task-based implementation relationships.

The next definition introduce A-brief partition which is a generalisation of the definition 159 of A-
decomposition. This definition facilitates the proof of both lemma 64 and theorem 24 of monotonicity
of tenacious implementation.
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Definition 181 (A-brief-partition). Let A be a PSIOA, X be a PCA, and let ρ be a task-schedule.
Let α ∈ frags(X). Let →α = (α̃s1 , α̃s2 , ...α̃sm) = A-decomposition(α). A A-brief-partition of α is a
sequence (α1, α2, ..., αn). s. t.

– α = α1_α2_..._αn

– ∀i ∈ [1, n],∃!(`i, hi) ∈ [1,m]2, αi = α̃s
`i_..._α̃s

hi

– ∀i ∈ [1, n− 1], `i+1 = hi + 1

Here, we prepare the lemma 64 by introducing a weaker version that states a total probability law for
one unique cut.

Lemma 63 (Total probability law with one cut). Let f(.,.) = proj(.,.) (a pasting friendly perception
function). Let A be a PSIOA, X be a A-conservative and A-creation-explicit PCA and Ẽ partially-
compatible with X. Let EA = Ẽ ||(X \ {A}). Let ζ̃ ∈

⋃
K,Ẽ∈env(K)

range(f(Ẽ,K)). Let n ∈ N ∪ {∞}, let

→
ζ ∈

→
proxy(ζ̃)(Ẽ,X,A) with |

→
ζ | = n. Let Ĉ

→
ζ = Class(Ẽ , X, fA,proxy ◦ A-decomposition,

→
ζ ) 6= ∅ and for

each i ∈ [1 : n] ∩ N, Ĉ
→
ζ [i] = Class(Ẽ i, Xi, fA,proxy,

→
ζ [i]) as defined in lemma 55, that claims that

Ĉ
→
ζ =

n⊗
i=1
Ĉ
→
ζ [i]

Let k ∈ [1 : n] ∩ N, Ĉ1 =
k⊗
i=1
Ĉ
→
ζ [i] and Ĉ2 =

n⊗
j=k+1

Ĉ
→
ζ [j] (trivially, Ĉ

→
ζ = Ĉ1 ⊗ Ĉ2).

Let (α1, α2) ∈ Ĉ1 × Ĉ2. We note α1 = Ĉ1, α2 = Ĉ2, α12 = α1_α2 and α12 = Ĉ
→
ζ .

Let ρ be a task-schedule.

applyX(δfstate(α12), ρ)(α12) =
0≺`1≺`2∑

`1

apply(δfstate(α1), ρ|`1)(α1
(`1,ρ)) · apply(δfstate(α2),(`1+1) |ρ)(α2)

Proof. We note q̄1 = fstate(α1) = fstate(α12) and q̄2 = fstate(α2). Furthermore, we note α1
+ =

{α1,x ∈ α1|∃`x1 ∈ ind(ρ, p), α1,x matches ρ|`x1} and for every α1,x ∈ α1
+, we note `x1 s. t. `x1 ∈

ind(ρ, p), α1,x matches ρ|`x1 .

applyX(δq̄1 , ρ)(α12) =
∑

α12,w∈α12

apply(δq̄1 , ρ)(α12,w) =
∑

α1,u∈α1

∑
α2,v∈α2

apply(δq̄1 , ρ)(α1,u_α2,v) since α12 =

α1 ⊗ α2 by lemma 55.

Then by lemma 60 we obtain

applyX(δq̄1 , ρ)(α12) =
∑

`1∈ind(p,ρ)

∑
α1,x∈α1

(`1,ρ)

∑
α2,v∈α2

apply(δq̄1 , ρ)(α1,x_α2,v).

By definition ∀α1,x ∈ α1
(`1,ρ), α

1,x matches ρ|`1 .

Hence, we can apply lemma 62 to obtain
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applyX(δq̄1 , ρ)(α12) =
∑

`1∈ind(p,ρ)

∑
α1,x∈α1

(`1,ρ)

∑
α2,v∈α2

apply(δq̄1 , ρ|`1)(α1,x) · apply(δq̄2 ,(`1+1) |ρ)(α2,v)

=
∑

`1∈ind(p,ρ)

∑
α1,x∈α1

(`1,ρ)

apply(δq̄1 , ρ|`1)(α1,x) · apply(δq̄2 ,(`1+1) |ρ)(α2)

=
0≺`1≺`2∑
`1∈ind(p,ρ)

∑
α1,x∈α1

(`1,ρ)

apply(δq̄1 , ρ|`1)(α1,x) · apply(δq̄2 ,(`1+1) |ρ)(α2)

because (*) α1,u ∈ α1 cannot match λ since creation of A occurs at last action of α1,u and so |α1,u| ≥ 1
which implies 0 ≺ `1 and (**) α2,v ∈ α2 cannot match λ since |α2,v| ≥ 1 which implies `1 ≺ `2.

Finally applyX(δq̄1 , ρ)(α12) =
0≺`1≺`2∑
`1∈ind(p,ρ)

apply(δq̄1 , ρ|`1)(α1
(`1,ρ)) · apply(δq̄2 ,(`1+1) |ρ)(α2)

Now, we can recursively use the previous lemma 63 to obtain a total probability law on all the possible
cuts s. t. each chunk of the A-brief partition matches one cut.

Lemma 64 (Total probability law with all the possible cuts). Let f(.,.) = proj(.,.) (a pasting friendly
perception function). Let A be a PSIOA, X be a A-conservative and A-creation-explicit PCA and Ẽ
partially-compatible with X. Let EA = Ẽ ||(X\{A}). Let ζ̃ ∈

⋃
K,Ẽ∈env(K)

range(f(Ẽ,K)). Let n
′ ∈ N∪{∞},

let
→
ζ ∈

→
proxy(ζ̃)(Ẽ,X,A) with |

→
ζ | = n′. Let Ĉ

→
ζ = Class(Ẽ , X, fA,proxy ◦ A-decomposition,

→
ζ ) 6= ∅ and

for each i ∈ [1 : n′] ∩ N, Ĉ
→
ζ [i] = Class(Ẽ i, Xi, fA,proxy,

→
ζ [i]) as defined in lemma 55, that claims that

Ĉ
→
ζ =

n′⊗
i=1
Ĉ
→
ζ [i] .

Let n ∈ N, k0 = 0, k1, k2, ..., kn−1 ∈ [1 : n′] ∩ N and kn = n′ with k0 < k1 < k2 < ... < kn−1 < kn. For

every j ∈ [1 : n], we note Ĉj =
kj⊗

i=kj−1+1
Ĉ
→
ζ [i]. (Obviously, Ĉ

→
ζ =

n⊗
j=1
Ĉj)

Let (α1, ..., αn) ∈ Ĉ1 × ... × Ĉn. We note αj = Ĉj for each j ∈ [1 : n] and for every j′, j′′ ∈ [1 : n],

α(j′,j′′) = αj
′_..._αj

′′ and α(j′,j′′) =
j′′⊗
j=j′
Ĉj.

Let ρ be a task-schedule. Let `n = max(ind(ρ, p)) where p is any partition of ρ.

applyX(δfstate(α(1,n)), ρ)(α(1,n))) =

∑
`1,`2,...,`n−1

0≺`1≺`2≺...≺`n−1≺`n

Γ(α1, `1, ρ) · [Πi∈[2:n−1]Γ′(αi, `i−1, `i, ρ)] · Γ′′(αn, `n−1, ρ)

with
– Γ(α1, `1, ρ) = applyX(δfstate(α1), ρ|`1)(α1

`1,ρ),
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– Γ′(αi, `i−1, `i, ρ) = applyX(δfstate(αi),(`i−1+1) |ρ|`i)(αi(`i−1,`i,ρ))) and

– Γ′′(αn, `n−1, ρ) = applyX(δfstate(αn),(`n−1+1) |ρ)(αn)

Proof. By induction on the size of the brief-partition. The basis is true by the previous lemma. We
assume the predicate true for n− 1 and we show this implies the predicate is true for integer n.

Let (α1, ..., αn−1, αn) be a A-brief-partition of α(1,n).

We note α(1,n) = α1_α(2,n). (α2, ..., αn) is clearly a A-brief-partition of α(2,n) of size n−1, (α1, α(2,n))
is a A-brief-partition of α(1,n) with size 2 lower or equal than n.

Now applyX(δfstate(α), ρ)(α(1,n)) =

∑
`1

0≺`1≺`n

applyX(δfstate(α1), ρ|`1)(α1
(`1,ρ)) · applyX(δfstate(α(2,n)), (`1+1|ρ))(α(2,n)))

(*) by induction hypothesis.

We note ρ′ =`1+1 |ρ, and reuse the induction hypothesis, which gives

applyX(δfstate(α(2,n)), ρ
′)(α(2,n))) =

∑
`2,...,`n−1

0≺`2≺...≺`n−1≺`n

Γ(α2, `2, ρ′)[Πi∈[3:n−1]Γ′(αi, `i−1, `i, ρ′)]Γ′′(αn, `n−1, ρ′)

For every `i s. t. `1 ≺ `i,`i+1 |ρ′ =`i+1 |(`1+1|ρ) =`i+1 |ρ, while for every `2 � `1,Γ(α2, `2, ρ′) = 0 thus

applyX(δfstate(α(2,n)), ρ
′)(α(2,n))) =

∑
`2,...,`n−1

`1≺`2≺...≺`n−1≺`n

Γ′(α2, `1, `2, ρ)[Πi∈[3:n−1]Γ′(αi, `i−1, `i, ρ)]Γ′′(αn, `n−1, ρ)

(**)

We compose the last two results (*) and (**) to obtain

applyX(δfstate(α(1,n)), ρ)(α(1,n))) =

∑
`1,`2,...,`n−1

0≺`1≺`2≺...≺`n−1≺`n

Γ(α1, `1, ρ) · [Πi∈[2:n−1]Γ′(αi, `i−1, `i, ρ)] · Γ′′(αn, `n−1, ρ)

, which is the desired result.

This lemma 64 is very valuable since it will allow us to reduce the problem to classes without creation
before the last action.
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4.7.4. Preparation before monotonicity

Before starting the proof of monotonicity, we state two easy intermediate results.

The first one states thatAB-environment-corresponding schedules are alsoXAXB-environment-corresponding
schedules for XA, XB corresponding w.r.t. A, B. This is important to use pairs of balanced AB-
environment-corresponding schedules as essential elements of the implementation of XB by XA.

Lemma 65 (Corresponding-environment relation is preserved in the upper level ). (see figure 4.17)

Let A, B be PSIOA. Let XA, XB be PCA corresponding w.r.t. A, B. Let ρ, ρ′ be AB-environment-
corresponding schedules. ρ, ρ′ are also XAXB-environment-corresponding schedules.

Proof. We note YA = XA \ {A} and YB = XB \ {B}. We note UY = UA(YA) = UA(YB) =
UA(XA) \ {A} = UA(XB) \ {B}, UE the set of ids not in the ids of UY and UE ′ the set of ids
different that the ones of A and B. We note (ρ1

A, ρ
2
E , ρ

3
A, ρ

4
E , ..., ρ

2k
E , ρ

2k+1
A , ...) the A-partition of ρ and

(ρ1
B, ρ

2
E , ρ

3
B, ρ

4
E , ..., ρ

2k
E , ρ

2k+1
B , ...) the B-partition of ρ′.

We partition each sub-schedule ρ2k
E into tasks with id in UY and tasks with id not in UY , i. e. in

UE . Hence, ρ2k
E = ρ2k,1

E ′ , ρ2k,2
Y , ..., ρ2k,2i−1

E ′ , ρ2k,2i
Y , ..., ρ2k,2`k−1

E ′ , ρ2k,2`k
Y where empty sequence is allowed

for ρ2k,1
E ′ and ρ2k,2`k

Y .

So if we note (ρ1
XA , ρ

2
E ′ , ρ

3
XA , ρ

4
E ′ , ..., ρ

2q
E ′ , ρ

2q+1
XA

, ...) theXA-partition of ρ and (ρ1
XB , ρ

′2
E ′ , ρ

3
XB , ρ

′4
E ′ , ..., ρ

′2q
E ′ , ρ

2q+1
XB

, ...)
the XB-partition of ρ′, for every j it exists (k, i) s. t. ρ2j

E ′ = ρ′2jE ′ = ρ2k,2i−1
E ′ .

We can remark that each ρ2q+1
XA

is either ρ2k,2i
Y for some pair (k, i) or ρ2k,2`k

Y ρ2k+1
A for some k or

ρ2k,2`k
Y ρ2k+1

A ρ2k+2,2
Y if ρ2k+2,1

E ′ is an empty sequence and similarly for ρ2q+1
XB

.

The second lemma of this subsection is a general manipulation of sum and products that will naturally
occur when we will compute the difference between the probability of two corresponding classes that
can be expressed by the sum of products of elementary probabilities.

Lemma 66 (difference of products). Let n ∈ N, (Xi)i∈[1,n] ∈ Rn, (Yi)i∈[1,n] ∈ Rn. Πi∈[1,n]Xi −
Πi∈[1,n]Yi =

∑
k∈[1,n]

(Πi∈[1,k−1]Xi)·(Xk−Yk)·(Πj∈[k+1,n]Yj) (with the convention Πi∈[1,0]Xi = Πj∈[n+1,n]Yj =

1)

Proof. The case n = 1 is immediate. Idem for n = 2. By induction.

Πi∈[1,n+1]Xi − Πi∈[1,n+1]Yi = Πi∈[1,n]X
′
i − Πi∈[1,n]Y

′
i where ∀i ∈ [1, n − 1]X ′i = Xi and Y ′i = Yi while

X ′n = Xn ·Xn+1 and Y ′n+1 = Yn · Yn+1. By induction assumption, Πi∈[1,n]X
′
i −Πi∈[1,n]Y

′
i =∑

k∈[1,n]
(Πi∈[1,k−1]X

′
i) · (X ′k − Y ′k) · (Πj∈[k+1,n]Y

′
j ) =

[
∑

k∈[1,n−1]
(Πi∈[1,k−1]X

′
i) · (X ′k − Y ′k) · (Πj∈[k+1,n]Y

′
j )] + [(Πi∈[1,n−1]X

′
i) · (X ′n − Y ′n)] =

∑
k∈[1,n−1]

(Πi∈[1,k−1]Xi) · (Xk − Yk) · (Πj∈[k+1,n+1]Yj ] + (Πi∈[1,n−1]Xi) · ((Xn ·Xn+1)− (Yn · Yn+1)) =
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[
∑

k∈[1,n−1]
(Πi∈[1,k−1]Xi) · (Xk−Yk) · (Πj∈[k+1,n+1]Yj)] + (Πi∈[1,n−1]Xi) · ((Xn−Yn) ·Yn+1) +Xn · (Xn+1−

Yn+1)) =∑
k∈[1,n+1]

(Πi∈[1,k−1]Xi) · (Xk − Yk) · (Πj∈[k+1,n]Yj)

4.7.5. Tenacious Implementation Monotonicity

After the proof of lemma 64, we are ready to obtain the theorem 24 of monotonicity of tenacious
implementation. The main step is the next lemma 67 that states that the good balance of two task-
schedule for two automata A and B is preserved in the upper level for PCA corresponding w. r. t. A,
B

Lemma 67 (monotonocity of dynamic creation/destruction with tenacious implementation: main
step). Let A, B be two PSIOA. Let ρ, ρ′ be task-schedules s.t. ρSten,≤0

(A,B) ρ
′. Let XA, XB be PCA

corresponding w.r.t. A, B. Then ρSten,≤0
(XA,XB)ρ

′

Proof. First, because of lemma 65, ρ and ρ′ are also XAXB-environment-corresponding.

Let f(.,.) = proj(.,.) (a pasting friendly perception function). Let Ẽ ∈ env(XA) ∩ env(XB). Let
EA = Ẽ ||(X \ {A}) and EB = Ẽ ||(X \ {B}). Let E ∈ env(A) ∩ env(B) semantically equivalent to both
EA and EB.

Let ẽ ∈
⋃

K,Ẽ∈env(K)

range(f(Ẽ,K)). Let n ∈ N ∪ {∞}, let →e ∈
→

proxy(ẽ)(Ẽ,XA,A) ∪
→

proxy(ẽ)(Ẽ,XB,B) with

|→e | = n.

Let Ĉ
→
e
A = Class(Ẽ , XA, fA,proxy ◦ A-decomposition,→e ) 6= ∅ and for each i ∈ [1 : n] ∩ N, Ĉ

→
ζ [i]
A =

Class(Ẽ i, Xi
A, f

A,proxy,
→
e [i]) as defined in lemma 55, that claims that Ĉ

→
ζ
A =

n⊗
i=1
Ĉ
→
ζ [i]
A .

Let Ĉ
→
e
B = Class(Ẽ , XB, fB,proxy ◦ A-decomposition,→e ) 6= ∅ and for each i ∈ [1 : n] ∩ N, Ĉ

→
ζ [i]
B =

Class(Ẽ i, Xi
B, f

B,proxy,
→
e [i]) as defined in lemma 55, that claims that Ĉ

→
ζ
B =

n⊗
i=1
Ĉ
→
ζ [i]
B .

Let (α1, ..., αj , ...) ∈ Ĉ
→
e [1]
A × ... × Ĉ

→
e [j]
A × .... Let (π1, ..., πj , ...) ∈ Ĉ

→
e [1]
B × ... × Ĉ

→
e [j]
B × .... We note

αj = Ĉ
→
e [j]
A and πj = Ĉ

→
e [j]
B for each j ∈ [1 : n]. We note α = α1_..._αj_..., π = π1_..._πj_...,

α = Ĉ
→
e
A and π = Ĉ

→
e
B

Let W̃A = XA||Ẽ and W̃B = XB||Ẽ .

We note p the A-partition of ρ and p′ the B-partition of ρ′. In the remaining, we note for every
`1, `2 ∈ ind(ρ, p)

– ΓW̃A(α, `1, ρ) = applyW̃A(δfstate(α1), ρ|`1)(α1
`1,ρ),

– Γ′W̃A(α, `1, `2, ρ) = applyW̃A(δfstate(α),(`1+1) |ρ|`2)(α(`1,`2,ρ))) and

– Γ′′W̃A(α, `1, ρ) = applyW̃A(δfstate(α),(`1+1) |ρ)(α)
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and for every `1, `2 ∈ ind(ρ′, p′)
– ΓW̃B(π, `1, ρ′) = applyW̃B(δfstate(π1), ρ

′|`1)(π1
`1,ρ′),

– Γ′W̃B(π, `1, `2, ρ′) = applyW̃B(δfstate(π),(`1+1) |ρ′|`2)(π(`1,`2,ρ′))) and

– Γ′′W̃B(π, `1, ρ′) = applyW̃B(δfstate(π),(`1+1) |ρ′)(π)
We note I = ind(ρ, p) ∩ ind(ρ′, p′) ∩ (2N× N). We fix `, `′ ∈ I and ρ̃ =` |ρ|`′ and ρ̃′ =` |ρ′|`′ .

We need to evaluate ∆→
e

= applyW̃A(δfstate(α), ρ̃)(α)− applyW̃B(δfstate(π), ρ̃
′)(π).

We have two cases: n = 1 and n > 1. We treat only n > 1 since the former one is trivial.

Since for every i ∈ [1, n − 1], αi (resp. πi) ends on A (resp. B) creation, the last action of αi is
necessarily triggerd by a task T = ρ̃[`i] with even index `i ∈ ind(ρ, p) ∩ (2N × N) , that is αi (resp.
πi) cannot match ρ̃|`i (resp. ρ̃′|`) if `i = (2ki + 1, qi) .

We note `0 + 1 the first index of ρ̃ and ρ̃′ and `n the last index of ρ̃ and ρ̃′

We apply lemma 64, to obtain

– apply(δfstate(α), ρ̃)(α) =
∑

`(1,n−1)∈L(1,n−1)
(`0,`n)

Πi∈[1:n]Γ̃W̃A(αi, `i−1, `i, ρ̃)

– apply(δfstate(π), ρ̃
′)(π) =

∑
`(1,n−1)∈L′(1,n−1)

(`0,`n)

Πi∈[1:n]Γ̃W̃B(πi, `i−1, `i, ρ̃
′)

where

– L
(u,v)
(`x,`y) = {` = (`u, ..., `v) ∈ ind(ρ, p)(v−u+1)|`x ≺ `u ≺ `u+1 ≺ ... ≺ `v ≺ `y}

– L
′(u,v)
(`x,`y) = {` = (`u, ..., `v) ∈ ind(ρ′, p′)(v−u+1)|`x ≺ `u ≺ `u+1 ≺ ... ≺ `v ≺ `y}

– ∀i ∈ [1, n− 1], Γ̃(αi, `i−1, `i, ρ̃) = applyW̃A(δfstate(αi),(`i−1+1) |ρ̃|`i)(αi(`i−1+1,`i,ρ̃)))

– ∀i ∈ [1, n− 1], Γ̃(πi, `i−1, `i, ρ̃
′) = applyW̃B(δfstate(πi),(`i−1+1) |ρ̃′|`i)(πi(`i−1+1,`i,ρ̃′)))

– Γ̃W̃A(αn, `n−1, `n, ρ̃) = applyW̃A(δfstate(αn),(`n−1+1) |ρ̃|`n)(αn)
– Γ̃W̃B(πn, `n−1, `n, ρ̃

′) = applyW̃B(δfstate(πn),(`n−1+1) |ρ̃′|`n)(πn)

Let ` ∈ L(1,n−1)
(`0,`n) (resp. `′ ∈ L′(1,n−1)

(`0,`n) ). Let k ∈ [1 : n − 1]. Since αk (resp. πk) ends on A (resp. B )
creation, the last action of αk (resp. πk) can be triggered only by a task T = ρ̃[`] (resp. T = ρ̃′[`])
s. t. ` ∈ (2N × N). Let fix `k−1 ∈ ind(p, ρ̃) (resp. `k−1 ∈ ind(p′, ρ̃′). For every k ∈ [1, n − 1], for
every `k ∈ ind(ρ, p) ∩ (2N+ 1,N) (resp. `k ∈ ind(ρ′, p′) ∩ (2N+ 1,N)), Γ̃W̃A(αk, `k−1, `k, ρ̃) = 0 (resp.
Γ̃W̃B(πk, `k−1, `k, ρ̃′) = 0).

Hence, the previous result can be written

– apply(δfstate(α), ρ̃)(α) =
∑

`(1,n−1)∈L∗(1,n−1)
(`0,`n)

Πi∈[1:n]Γ̃W̃A(αi, `i−1, `i, ρ̃)

– apply(δfstate(π), ρ̃
′)(π) =

∑
`(1,n−1)∈L∗(1,n−1)

(`0,`n)

Πi∈[1:n]Γ̃W̃B(πi, `i−1, `i, ρ̃
′)

where

– L
∗(u,v)
(`x,`y) = {` = (`u, ..., `v) ∈ I(v−u+1)|`x ≺ `u ≺ `u+1 ≺ ... ≺ `v ≺ `y}
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We will apply lemma 66

– ∀k ∈ [1, n], ∀y ≥ k − 1, ∀v = y − 1,∀` ∈ L∗(1,v)
(`0,`y), we note

P k−1(`) = Πi∈[1,k−1]Γ̃W̃A(αi, `i−1, `i, ρ̃) (with the convention P 0 = 1)

– ∀k ∈ [1, n], ∀x ≤ k, ∀u = x+ 1, ∀` ∈ L∗(u,n−1)
(`x,`n) , we note

Qk+1(`) = Πj∈[k+1,n]Γ̃W̃B(πj , `j−1, `j , ρ̃) (with the convention Qn+1 = 1)

– ∀k ∈ [1, n], ∀x ≤ k − 1, ∀y ≥ k, ∀u = x+ 1, ∀v = y − 1, ∀` ∈ L∗(u,v)
(`x,`y), we note

∆Γ(k, `) = (Γ̃W̃A(αk, `k−1, `k, ρ̃)− Γ̃W̃B(πk, `k−1, `k, ρ̃′))
We apply the lemma 66 of difference of products to obtain

∆→
e

=
∑

`∈L∗(1,n−1)
(`0,`n)

∑
k∈[1,n]

P k−1(`) ·∆Γ(k, `) ·Qk+1(`) =

=
∑

k∈[1,n]

∑
`(k−1,k)∈L∗(k−1,k)

(`0,`n)

∑
`(1,k−2)∈L∗(1,k−2)

(`0,`k−1)

∑
`(k+1,n−1)∈L∗(k+1,n−1)

(`k,`n)

P k−1(`(1,k−2))·∆Γ(k, `(k−1,k))·Qk+1(`(k+1,n−1))

and so

∆→
e

=
∑

k∈[1,n]
[

∑
`(k−1,k)∈L∗(k−1,k)

(`0,`n)

∆Γ(k, `(k−1,k))] ·P(k) ·Q(k) (4.1)

with P(k) = [
∑

`(1,k−2)∈L∗(1,k−2)
(`0,`k−1)

P k−1(`(1,k−2))] and Q(k) = [
∑

`(k+1,n−1)∈L∗(k+1,n−1)
(`k,`n)

Qk+1(`(k+1,n−1))]

Even if it is not crucial, we can remark that:

– P(k) = apply(δfstate(α),`0+1 |ρ̃|`k−1)(α(1,k−1)
`0+1,`k−1,ρ̃

) ≤ 1

– Q(k) = apply(δfstate(πk+1),`k+1 |ρ̃|`n)(α(k+1,n)) ≤ 1

This remark might be relevant for an adaptation to approximate version of the lemma.

Now we will show that ∀k ∈ [1, n],
∑

`(k−1,k)∈L∗(k−1,k)
(`0,`n)

∆Γ(k, `(k−1,k)) = 0

We begin with k ∈ [1, n− 1].

[
∑

`(k−1,k)∈L∗(k−1,k)
(`0,`n)

(Γ̃W̃A(αk, `k−1, `k, ρ̃)− Γ̃W̃B(πk, `k−1, `k, ρ̃′))] =

[
∑

`k−1∈I
(
`k−1≺`∑

`∈ind(ρ,p)
Γ̃W̃A(αk, `k−1, `, ρ̃)−

`k−1≺`′∑
`′∈ind(ρ′,p′)

Γ̃W̃B(πk, `k−1, `′, ρ̃′))] =

[
∑

`k−1∈I
((applyW̃A(δfstate(αk), ρ)(αk)−applyW̃A(δfstate(αk), ρ|(`k−1))(αk))−(applyW̃B(δfstate(πk), ρ

′)(πk)−

applyW̃B(δfstate(πk), ρ
′|(`k−1))(πk))] by lemma 61.

Thus
∑

`(k−1,k)∈L∗(k−1,k)
(`0,`n)

∆Γ(k, `(k−1,k)) =
∑

`k−1∈I
∆app(k)−∆′app(k, `k−1), with
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– ∆app(k) = applyW̃A(δfstate(αk), ρ)(αk)− applyW̃B(δfstate(πk), ρ
′)(πk), and

– ∆′app(k, `) = applyW̃A(δfstate(αk), ρ|`)(αk)− applyW̃B(δfstate(πk), ρ
′|`)(πk)

In the case k = n,
∑

`(k−1,k)∈L∗(k−1,k)
(`0,`n)

∆Γ(k, `(k−1,k)) =
∑

`n−1∈I
∆′′app(`n−1)

with ∆′′app(`) = applyW̃A(δfstate(αn),(`+1) |ρ̃)(αn)− applyW̃B(δfstate(πn),(`+1) |ρ̃′)(πn).

It remains to show that ∀` ∈ I, ∀k ∈ [1, n− 1], ∆app(k) = ∆′app(k, `) = ∆′′app(`) = 0.

This comes from lemma 50 since (1) ρSten,≤0
(A,B) ρ

′ (2) A task-scheduler is an alter-ego for himself from
W̃A to EA||Ãsw (resp. from W̃B to EB||B̃sw) (3) The executions-matching holds since we consider
executions without creation before last action (4) EA and EB are semantically equivalent .

Hence, ∆→
e

= 0.

By lemma 54, ∆ẽ = applyW̃A(δq̄W̃A , ρ̃)(C̃ ẽA)− applyW̃B(δq̄W̃B , ρ̃
′)(C̃ ẽB) =

∑
→
e∈Prox

∆→
e

= 0 with C̃ ẽA =

Class(Ẽ , XA, f, ẽ), C̃ ẽB = Class(Ẽ , XB, f, ẽ), and Prox =
→

proxy(ẽ)(Ẽ,XA,A) ∪
→

proxy(ẽ)(Ẽ,XB,B)

This ends the proof.

Remark 6. We might think an adaptation of the theorem to the approximate version could be easy
with ε being a negligible function compared to |I|. Indeed, for the same reasons we would have
∆app(k),∆′app(k, `),∆′′app(`) ≤ ε. Moreover n ≤ |I| since the creation of A and B comes necessar-
ily from a task T ∈ ρ[i] for some i ∈ I. So we would obtain ∆→

e
≤ ε′ with ε′ = ε · |I|2. However, we

do not know how to generalize to ∆ẽ.

Finally we can use the preservation of Sten,≤0 to show the monotonicity of tenacious implementation
≤ten0 .

Theorem 24 (Implementation monotonicity wrt creation/destruction). Let A, B be PSIOA. Let XA,
XB be PCA.
If A ≤ten0 B and XA OA,B XB, then XA ≤

ten
0 XB.

Proof. Let ρ be a task-schedule, Since A ≤ten0 B there exists a task-schedule ρ′ s. t. ρSten,≤0
(A,B) ρ

′. By
previous lemma ρSten,≤0

(XA,XB)ρ
′. This ends the proof.
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4.7 Monotonicity of Tenacious Task-Implementation

Figure 4.17. – AB-environment-corresponding schedules are also XAXB-environment-corresponding
schedules.

Here, each task is represented by a colored square where the color corresponds to a set of id: yellow for
UA(Y ) = UA(XA \{A}) = UA(XB \{B}), red for A, blue for B, orange for UA(XA) = UA(Y )∪{A},
green for UA(XB) = UA(Y ) ∪ {B} and brown for the ones not in UA(Y ) ∪ {A,B}.
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4.8. Summary

We have proved the monotonicity of dynamic creation/destruction of automata with ≤So,p0 precongru-
ence, i.e. if (i) A implements B (A ≤So,p0 B), and (ii) XA and XB only differ on that XA dynamically
creates and destroys A instead of B as XB does, then (iii) XA implements XB (XA ≤So,p0 XB), where
p is the function that maps each execution to its projection on the environment and So represents the
set of schedulers that do not take into account the internal past lives before last creation to trigger
the next action. Since a naive adaptation of task-schedulers would not be a subset of So we discussed
an alternative more sophisticated adaptation, the tenacious implementation ≤ten0 , which also allows
monotonicity of dynamic creation/destruction of automata.

In addition to the results guaranteeing the soundness of modular design based on observational se-
mantics, the proof itself might be even more interesting. First, it is instructive for handling dynamic
systems. Second, its modularity allows it to be easily applied to certain variations of the model,
typically with the notion of time or security.
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Chapter 5 : Dynamic Probablistic Timed I/O Automata

Previous chapters 3 and 4 deal with "asynchronous" systems. For the moment, it is impossible to
express something like "two events are separated by at most a time t", or apply synchrony assumptions
to prove the correctness of an algorithm. In this chapter, we fill this gap by extending PSIOA (resp.
PCA) with sets of trajectories to obtain PTSIOA (resp. PTCA). It would have been possible to use
the "old-fashioned recipe for real-time" [AL92] as in [Seg95b], where actions can additionally contain
real numbers to capture the time elapsing. But, we would miss the opportunity to use the theory
of timed I/O automata [KLSV03, KLSV06], which is ready to use. For example, it provides some
results to deal with liveness under fairness assumptions (through notions of feasibility, responsiveness,
progressiveness,...) that might be more intuitive to express than in [AL92] and benefits of enabled tools
to support system development with, for example, specification simulators, code generators, model
checking and theorem proving support for analyzing specification, etc [ALL+06, ALL+08]. Also, it
has been extended with (continuous) probabilistic setting [Mit07, ML07b]. Hence, the extension of
the formalism to Probabilistic Timed Signature I/O automata (PTSIOA) becomes an easy adaptation
of PTIOA. We keep the continuous probabilistic setting of Mitra and Lynch [ML07b], since (1) their
results are easily adaptable to our dynamic framework and (2) It would be convenient to potentially
specify hybrid systems where we would like to model the evolution of some physical quantities (force,
mass, velocity, ...) with real numbers, that might be dependent of some algebraic differential equations.
The continuous space states require an additional work to verify the measurability of the different
operators. However, these details can be left aside for a first reading.

5.1. Probabilistic Timed Signature I/O Automata (PTSIOA)

This section aims to introduce the first brick of our formalism, i.e. the probabilistic timed signa-
ture input/output automata (PTSIOA). A PTSIOA is the result of the generalization of probabilistic
timed input/output automata (PTIOA) [Mit07, ML07b] and signature input/output automata (SIOA)
[AL16]. A PTSIOA is thus an automaton that can deterministically 1 follow a trajectory before ran-
domly move from one state to another in response to some actions. The set of possible actions is the
signature of the automaton and is partitioned into input, output and internal actions. An action can
often be both the input of one automaton and the output of another one to capture the idea that the
behavior of an automaton can influence the behavior of another one. As for the SIOA [AL16], the
signature of a PTSIOA can change according to the current state of the automaton, which allows us
to formalize dynamicity later.

Again, we use the signature approach from [AL16]. We assume the existence of a countable set
Autids of unique probabilistic signature input/output automata (PTSIOA) identifiers, an underlying
universal set Auts of PTSIOA, and a mapping aut : Autids → Auts. aut(A) is the PTSIOA with
identifier A. We use "the automaton A" to mean "the PTSIOA with identifier A". We use the letters
A,B, possibly subscripted or primed, for PTSIOA identifiers.

Definition 182 (PTSIOA). A pre-PTSIOA A = ((QA,FA), q̄A, sig(A), DA, TA), where:

– QA is the set of states, (QA,FA) is a measurable space called the state space,
– qA is the unique start state.
– sig(A) : q ∈ QA 7→ sig(A)(q) = (in(A)(q), out(A)(q), int(A)(q)) is the signature function that

maps each state to a triplet of mutually disjoint countable set of actions, respectively called
input, output and internal actions. We note acts(A) =

⋃
q∈QA

ŝig(A)(q), which is assumed to be

countable.
1. This determinism will be removed later via a local scheduler that will solve the non-determinism.
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– There exists at most one state, noted qφA such that ŝig(A)(qφA) = ∅. If such a state exists,
{qφA} ∈ FA.

– DA ⊂ QA × acts(A) × Prob(QA,FQA) is the set of probabilistic transitions where ∀(q, a, η) ∈
DA : a ∈ ŝig(A)(q). If (q, a, η) is an element of DA, we write q a→ η and action a is said
to be enabled at q. The set of enabled actions at state q is noted enabled(A)(q).The set of
states in which at least one action from the set B ⊆ acts(A) is enabled is denoted by EB. In
addition A must satisfy the axiom E of enabled actions tracking: ŝig(A) = enabled(A)We note
steps(A) , {(q, a, q′) ∈ QA × acts(A)×QA|∃(q, a, η) ∈ DA, q′ ∈ supp(η)}.

– TA is a set of trajectories in QA which is (i) closed under prefix, suffix, concatenation, and (ii)
contains ℘(q) for every q ∈ QA.

A PTSIOA A is a pre-PTSIOA that satisfies the following conditions:
– D (Determinism)

• D1 (Trajectory determinism) TA is deterministic.
For every R ⊆ R>0 and every P ⊆ QA, we define:
— ER,P = {q ∈ QA|maxtimeTA(q) ∈ R ∧ maxstateTA(q) ∈ P} the set of states from

which there exists a maximal trajectory with length in R and final state in P .
— FR,P = {maxstateTA(q)|q ∈ QA ∧maxtimeTA(q) ∈ R} the set of states reachable by a

maximal trajectory with length in R and starting from state in P .
• D2 (Time-action determinism) For any state q at most one of the following may exist:

— a local action a ∈ acts(A) such that q ∈ Ea and a ∈ l̂oc(A)(q)
— a non-point trajectory τ ∈ TA(q).

• D3 (Transition determinism) For every q ∈ QA and a ∈ enabled(A)(q) there exists a unique
η ∈ Prob(QA,FQA), such that (q, a, η) ∈ DA, and we note η(A,q,a) this distribution η. The
notation η(A,q,a) implicitly means a ∈ enabled(A)(q).
For every P ⊆ QA, we note HP = {q′ ∈ supp(ηA,q,a)|q ∈ P ∧ a ∈ int(A)(q)} the set of
reachable states by an internal action triggered from a state in P .

– M (Measurability)
• M1 (Transitions Measurability) For all B ⊆ acts(A), EB is measurable.
• M2 (Trajectory Measurability) For measurable sets R ⊆ R≥0, P ∈ FQA , ER,P is measur-

able, i.e. ER,P ∈ FQA
Finally, we anticipate the issue of measurability of some perception functions.
A post-PTSIOA is a PTSIOA that satisfies:
• M′ (Measurability)

— M3 For measurable sets R ⊆ R≥0, P ∈ FQA , FR,P is measurable, i.e. FR,P ∈ FQA
— M4 For measurable set P ∈ FQA , HP is measurable, i.e. HP ∈ FQA .

The axiom E was already present for PSIOA for sake of simplicity, since for any PTSIOA that does
not verify E, it is always possible to remove the non-enabled actions of its signature to obtain an
equivalent PTSIOA verifying E.

The axioms of measurability M and M′ are technical axioms to ensure that the required objects during
the proofs are well-defined.

The axiom D3 of transition determinism is the same than the one for PSIOA.
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Roughly speaking, the axioms of determinism D1 and D2 mean that when a state q is reached by a
discrete transition, then the automaton evolves in a deterministic manner until reaching after a certain
time t (that can be 0) a state q′ with enabled local actions. At that moment, the time cannot elapse
without triggering an enabled local action. Such a restriction might appear problematic. Typically,
how could we model a partially synchronous distributed algorithm where (i) a decision might be
triggered by the expiration of a timer, while (ii) the fact that some messages are in flight means that
the reception of these messages are enabled ? In that situation, the time could not elapse with in
flight messages. Intuitively, time-elapsing underlines the difference between two different notions of
pure non-determinism. The first one captures the lack of knowledge about "what is the next action
that will be triggered" ? The second one captures the ignorance about "when the next action will
be triggered" ? In fact, these axioms D1 and D2 are relaxed in section 5.6 with automata that do
not verify D1 and D2, while the pure non-determinism is resolved in two steps. First, we resolve the
pure non-determinism about "when the next action will be triggered?" by restricting the behaviours
of the automata with local schedulers, imposing axioms D1 and D2. Second, we resolve the pure
non-determinism about "what is the next action that will be triggered?" with the classic schedulers.
Of course, this resolution could have been performed in one unique step, but this separation allows to
reuse the concepts used for untimed PSIOA.

Trivial extension of some definitions We trivially extend definition 60 of compatibility at a state,
definition 61 of hiding operator, definition 62 of action renaming operator.

Definition 183 (compatibility at a state). Let A = {A1 , ...,An} be a set of PTSIOA. A state of A
is an element q = (q1, ..., qn) ∈ QA , QA1 × ... × QAn. We say A1, ...,An are (or A is) compatible
at state q if {sig(A1)(q1), ..., sig(An)(qn)} is a set of compatible signatures. In this case we note
sig(A)(q) , sig(A1 )(q1 )× ...× sig(An)(qn) as per definition 59 and we note η(A,q,a) ∈ Disc(QA), s.t.
∀a ∈ ŝig(A)(q), η(A,q,a) = η1 ⊗ ...⊗ ηn where ∀j ∈ [1 ,n], ηj = η(Aj ,qj ,a) if a ∈ sig(Aj)(qj) and ηj = δqj

otherwise. Moreover, we note steps(A) = {(q, a, q′)|q, q′ ∈ QA, a ∈ sig(A)(q), q′ ∈ supp(η(A,q,a))}.
Finally, we note q̄A = (q̄A1 , ..., q̄An) and FQA = FQA1

⊗ ...⊗FQAn

It is convenient for the remaining to define the composition of a set of trajectories of a set of PTSIOA.

Definition 184 (Composition of set of trajectories of a set of PTSIOA). Let A = {A1 , ...,An} be
a set of PTSIOA. Let q = (q1, ..., qn) ∈ QA, we note TA(q) , TA1(q1)||...||TAn(qn). We note TA ,
TA1 ||...||TAn where the composition (||) of a set of trajectories is defined in definition 16 in section 2.2.

The hiding and action renaming operator does not modify the set of trajectories, hence the extension
to PTSIOA is immediate.

Definition 185 (hiding and action renaming operator). Let A′ = (QA, q̄A, sig(A), DA). Let A =
(A′, TA) be a PTSIOA with (QA, q̄A, sig(A), DA) = (QA′ , q̄A′ , sig(A′), DA′).

– Let h : q ∈ QA 7→ h(q) ⊆ out(A)(q). We note hide(A, h) , (hide(A′, h), TA) as per definition
61.

– let r be a partial function on QA × acts(A), s.t. ∀q ∈ QA, r(q) is an injective mapping with
ŝig(A)(q) as domain. Then r(A) , (r(A′), TA) as per definition 62.
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5.2. Probabilistic Timed Configuration Automata

Here again, we trivially extend configurations and PCA to their timed version. A

Definition 186 (Timed configuration). A timed configuration is a pair (A,S) where
– A = {A1, ...,An} is a finite set of PTSIOA identifiers and
– S maps each Ak ∈ A to a state sk ∈ QAk .

Moreover, we note TS((A,S)) = (S(A1), ...,S(An)), the tuple of states of the automata of the config-
uration.

Finally, the set of timed configurations is noted Qtconf .

All the following definitions of section 3.2
– definition 64 of compatible configuration (with PTSIOA compatible at a state in the sense of

definition 183.)
– definition 65 of intrinsic attributes
– definition 66 of reduced configuration

can be adapted in the obvious way by replacing:
– configuration by timed configuration
– PSIOA by PTSIOA

When it is clear in the context, we omit the adjective "timed" for a configuration.

The discrete transitions have already been defined in definition 67 in section 3.2 of chapter 3. Here,
we characterize their continuous evolutions.

Definition 187 (intrinsic trajectories). Let C = (A,S) be a timed configuration. We note TC ⊂
trajs(Qconf ) such that there exists a bijection u from TC to TA(TS(C)), verifying TC

u,v
! TA(TS(C))

with v = TS, i.e. for every pair (τ, τ ′) with τ ′ = u(τ):
– dom(τ) = dom(τ ′) , J
– ∀t ∈ J , TS(τ(t)) = τ ′(t)

A trajectory starting from a configuration is a trajectory of the associated set of automata starting
from their attached states defined by the configuration. In such a trajectory, no automaton creation
is allowed.

5.2.1. Measurable space on configurations

The set Qtconf is not countable anymore. In this subsection, we define the appropriate measurable
spaces.

Definition 188 (Generators of measurable spaces for timed configurations). Let A = {A1, ...,An} be
a finite set of PTSIOA. We define:

– QA
tconf = {C ∈ Qtconf |auts(C) = A} the set of configurations with A as set of automata

– Q⊆A
tconf = {C ∈ Qtconf |auts(C) ⊆ A} the set of configurations with a set of automata included in

A.
– C A

tconf = {{C ∈ QA
tconf |TS(C) ∈ F1 × ... × Fn}|(F1, ..., Fn) ∈ FA1 × ... × FAn} the collections

of subsets of timed configurations matching the parallelepipeds built with elements of respective
σ-algebra of each automaton in A.
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– C⊆A
tconf = {FA′

tconf ∈ C A′
tconf |A′ ⊆ A} the collection of subsets of Q⊆A

tconf built with all the sets of
all the collections C A′

tconf for all the A′ ⊆ A.

– Ctconf = {FA′
tconf ∈ C A′

tconf |A′ is a finite set of PTSIOA } the collection of subsets of QA′
tconf built

with all the sets of all the collections C A′
tconf for all the finite sets of PTSIOA A′.

– FQtconf = sigma(Ctconf ) the smallest σ-algebra containing Ctconf .

– FQA
tconf

= sigma(C A
tconf ) the smallest σ-algebra containing C A

tconf .

– F
Q⊆A
tconf

= sigma(C⊆A
tconf ) the smallest σ-algebra containing C⊆A

tconf .

We often want to define union operation, thus we verify its measurability.

Lemma 68 (union is measurable). Let Aa,Ab and Ac = Aa ] Ab be finite sets of PTSIOA. The
function

union(Aa,Ab):
{

(QAa

tconf ,×QAb

tconf , sigma({F a × F b|(F a, F b) ∈ C Aa

tconf × C Ab

tconf )}) → (QAc

tconf ,FQAc
tconf

)
(C1, C2) 7→ C1 ∪ C2

is measurable.

Proof. We note Aa = {A1, ...,An},Ab = {An+1, ...,Am}. Let FAc

tconf ∈ C Ac

tconf , i.e. FAc

tconf = {C ∈
QAc

tconf |TS(C) ∈ F1× ...×Fn×Fn+1× ...×Fm} for some (F1, ..., Fn, Fn+1, ..., Fm) ∈ FA1 × ...×FAn ×
FAn+1 × ... × FAm . We have E = union−1

(Aa,Ab)(F
Ac

tconf ) = {(Ca, Cb) ∈ QAa

tconf × QAb

tconf |TS(Ca) ∈
F1 × ...× Fn ∧ TS(Cb) ∈ Fn+1 × ...× Fm}. Thus E = {Ca ∈ QAa

tconf |TS(Ca) ∈ F1 × ...× Fn} × {Cb ∈
QAb

tconf |TS(Cb) ∈ Fn+1 × ... × Fm} and so E = Ea × Eb with Ea ∈ C Aa

tconf and Eb ∈ C Ab

tconf . Thus
∀FAc

tconf ∈ C Ac

tconf , union−1
(Aa,Ab)(F

Ac

tconf ) ∈ {F a × F b|(F a, F b) ∈ C Aa

tconf × C Ab

tconf}. By proposition 3,
union(Aa,Ab) is measurable.

In the same way

Lemma 69 (simple union is measurable). Let Aa,ϕ and Ac = Aa ] ϕ be finite sets of PTSIOA. Let
Cϕ = (ϕ,Sϕ) with ∀A ∈ ϕ,Sϕ(A) = qφA.

The function

unionϕ(Aa):
{

(QAa

tconf ,FQAa
tconf

) → (QAc

tconf ,FQAc
tconf

)
C 7→ C ∪ Cϕ

is measurable.

Proof. The proof is exactly the same one as previous lemma.

We want to define intrinsic transitions on (Qtconf ,FQtconf ). This definition requires measurability of
reduce function.

Lemma 70. Let A be a finite set of PTSIOA. The function

reduceA:
{

(QA
tconf ,FQA

tconf
) → (Q⊆A

tconf ,FQ⊆A
tconf

)
C 7→ reduce(C)

is measurable.

Proof. We note A = {A1, ...,An}. Let FA′
tconf ∈ C⊆A

tconf , i.e. F
A′
tconf ∈ C A′

tconf for some A′ ⊆ A. Without
loss of generality, let us assume A′ = {A1, ...,Ak} for k ∈ [1 : n]. By definition, FA′

tconf = {C ′ ∈
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QA′
tconf |TS(C ′) ∈ F1 × ...× Fk} for some (F1, ..., Fk) ∈ FA1 × ...×FAk Let EA

tconf = reduce−1
A (FA′

tconf ).
We have EA

tconf = {C ∈ QA
tconf |TS(C) ∈ F1 \ {qφA1

} × ... × Fk \ {qφAk} × {q
φ
Ak+1
} × ... × {qφAn}} and

so EA
tconf = {C ∈ QA

tconf |TS(C) ∈ E1 × ... × En} for some (E1, ..., Ek) ∈ FA1 × ... × FAn . Hence
EA
tconf ∈ C A

tconf . So ∀F ∈ C⊆A
tconf , reduce

−1
A (F ) ∈ C A

tconf . By proposition 3, reduceA is measurable.

Now we are ready to define intrinsic transitions for timed configurations

Definition 189 (From preserving distribution to intrinsic transition (continuous case)). Let A be a
finite set of PTSIOA.

– (preserving distribution) Let ηp ∈ Prob(QA
tconf ,FQA

tconf
). We say ηp is a preserving distribution

with family support A.
– (preserving configuration transition C a

⇀ ηp) Let C = (A,S) be a compatible timed configuration,
a ∈ ŝig(C). Let ηp ∈ Prob(QA

tconf ,FQA
tconf

) such that ηp
TS↔ η(A,TS(C),a). We say that (C, a, ηp)

is a preserving configuration transition, noted C a
⇀ ηp.

– (ηp ↑ ϕ) Let ηp ∈ Prob(QA
tconf ,FQA

tconf
) be a preserving distribution with A as family support.

Let ϕ be a finite set of PTSIOA identifiers with A ∩ ϕ = ∅.
Let Cϕ = (ϕ, Sϕ) ∈ Qtconf with ∀Aj ∈ ϕ, Sϕ(Aj) = q̄Aj . We note ηp ↑ ϕ the unique element of
Prob(QA∪ϕ

tconf ,FQA∪ϕ
tconf

) verifying ηp
u↔ (ηp ↑ ϕ) with u : F 7→ {(C ∪ Cϕ)|C ∈ F}.

– (distribution reduction) Let η ∈ Prob(QA
tconf ,FQA

tconf
) be a preserving distribution. We note

reduce(η) the image measure of η by reduceA,i.e. reduce(η) ∈ Prob(Q⊆A
tconf ,FQ⊆A

tconf
) with ∀F ∈

F
Q⊆A
tconf

, reduce(η)(F ) = η(reduce−1
A (F )) = η({C ∈ QA

tconf |reduceA(C) ∈ F}).

– (intrinsic transition C
a=⇒ϕ η) Let C = (A,S) be a compatible timed configuration, let a ∈

ŝig(C), let ϕ be a finite set of PTSIOA identifiers with A ∩ ϕ = ∅. We note C a=⇒ϕ η, if
η = reduce(ηp ↑ ϕ) with C a

⇀ ηp. In this case, we say that η is generated by ηp and ϕ.

This definition 189 is nothing more than the extension of definition 67 to timed configurations with
continuous state spaces. We have used an heavy formalism to ensure that the definition 189 was well-
defined, but the intuition behind definition 67 remains the same. If C a=⇒ϕ η with η is generated by
ηp and ϕ, it means triggering a lead to a probabilistic distribution that (i) agrees with ηp for PTSIOA
originally belonging to C, (ii) creates deterministically the PTSIOA in ϕ, (iii) destroys the PTSIOA
with an empty signature.

5.2.2. Probabilistic Timed Configuration Automata

Here we define our probabilistic timed configuration automata (PTCA). Such an automaton defines
a strong link with a dynamic timed configuration.

First we need to extend the intrinsic measure.

The next lemma is not strictly necessary, but might be convenient to simplify mental representation.

Lemma 71. Let A be a finite set of PTSIOA. ∀η ∈ Prob(QA
tconf ,FQA

tconf
), there exists a unique

measure η̄ ∈ Prob(Qtconf ,FQtconf ) such that for every finite set of PTSIOA A′, ∀FA′
tconf ∈ C A′

tconf ,

η̄(FA′
tconf ) =

{
η(FA′

tconf ) if A′ = A
0 otherwise
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Proof. The existence and uniqueness comes from the classic construction.
– Let F1(Ctconf ) be the be the family containing ∅, Qtconf , and all E ⊆ Ctconf such that either
E ∈ Ctconf or Qtconf \ E ∈ C .
There exists a unique extension η1 of η to F1(C ). Indeed, there is a unique way to extend the
measure since for each E1 ∈ F1(Ctconf ), η1(E1) = η(E1) if E1 ∈ Ctconf and we necessarily have
η1(E1) = 1 − η(Ec1) if Qtconf \ E1 ∈ C . Moreover ∀E1, E

′
1 ∈ F1(Ctconf ), E1 ∪ E′1 ∈ F1(Ctconf )

only if E1, E
′
1 ∈ C A′

tconf for some finite set of PTSIOA A′. If A′ = A, η1(E1∪E′1) = η(E1∪E′1) =
η(E1) + η(E′1) = η1(E1) + η1(E′1) by σ-additivity of η. If A′ 6= A, η1(E1 ∪ E′1) = 0 = 0 + 0 =
η1(E1) + η1(E′1) so σ-additivity is preserved.

– Let F2(Ctconf ) be the family containing all finite intersections of elements of F1(Ctconf ). There
exists a unique extension η2 of η1 to F2(Ctconf ). Let E1

2 , ..., E
n
2 a sequence of elements of

F2(Ctconf ) and E2 their intersection. If one element Ej2 is an element C A′
tconf for some A′,

then either E2 = ∅ or E2 is an element of C A′
tconf too. In that case, η2(E2) = η1(E2). If all

elements Ej2 can be written Qtconf \ E′j2 , then η2(E2) = 1−
∑

j∈[1:n]
η1(E′j2 ).

– Let F3(Ctconf ) be the family containing all finite unions of disjoint elements of F2(Ctconf ) . There
exists a unique extension η3 of η3 to F3(Ctconf ). Indeed, there is a unique way of assigning a
measure to the finite union of disjoint sets whose measure is known, i.e., adding up their measures
i.e. η3(

⊎
j∈[1:n]

Ej2) =
∑

j∈[1:n]
η2(Ej2) for every finite set of disjoint elements Ej2 of F2(Ctconf ).

– Clearly, F3(Ctconf ) is a field on Ctconf , i.e. it is a family of subsets of Ctconf that contains
∅,Ctconf , and that is closed under complementation and finite union. FQtconf , sigma(Ctconf ) =
sigma(F3(Ctconf )). By famous Carathéodory’s extension theorem [Dud04], there exists a unique
extension η̄ of η3 to the sigma-algebra FQtconf (defining η̄(

⊎
j∈N

Ej3) =
∑
j∈N

η3(Ej3) for every count-

able set of disjoint elements Ej3 of F3(Ctconf )).
This detail might appear unnecessarily cumbersome. Moreover, we can remark that the identity
function is a bijection between generators of non-zero measurement of η and η̄ i.e. from supp(η̄)∩Ctconf
and supp(η)∩C A

tconf . In the remaining, we often abuse the notation and use η to denote its extension
η̄.

Lemma 72. Let A be a finite set of PTSIOA. ∀η ∈ Prob(Q⊆A
tconf ,FQ⊆A

tconf
), there exists a unique

measure η̄ ∈ Prob(Qtconf ,FQtconf ) such that for every finite set of PTSIOA A′, ∀FA′
tconf ∈ C A′

tconf ,

η̄(FA′
tconf ) =

{
η(FA′

tconf ) if A′ ⊆ A
0 otherwise

Proof. The proof is the same as previous lemma.

Definition 190 (extension). Let A be a finite set of PTSIOA.
– ∀η ∈ Prob(QA

tconf ,FQA
tconf

), we note η̄ the unique measure in Prob(Qtconf ,FQtconf ) such that for

every finite set of PTSIOA A′, ∀FA′
tconf ∈ C A′

tconf , η̄(FA′
tconf ) =

{
η(FA′

tconf ) if A′ = A
0 otherwise

– ∀η ∈ Prob(Q⊆A
tconf ,FQ⊆A

tconf
), we note η̄ the unique measure in Prob(Qtconf ,FQtconf ) such that for

every finite set of PTSIOA A′, ∀FA′
tconf ∈ C A′

tconf , η̄(FA′
tconf ) =

{
η(FA′

tconf ) if A′ ⊆ A
0 otherwise
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Now, we are able to define PTCA. The definition is basically the same as the definition 68 of PCA
where (i) the associated PSIOA is replaced by a PTSIOA, (ii) the configuration mapping yields timed
configurations, but with one additional constraint, so-called trajectory preservation.

Definition 191 (Probabilistic Timed Configuration Automaton (PTCA)). A probabilistic timed con-
figuration automaton (PTCA) (resp. pre-PTCA, resp. post-PTCA) X consists of the following com-
ponents:

– 1. A probabilistic signature I/O automaton (resp. pre-PTSIOA, resp. post-PTSIOA) ptsioa(X)
. For brevity, we define QX = Qptsioa(X), q̄X = q̄ptsioa(X), sig(X) = sig(ptsioa(X)) and likewise
for all other (sub)components and attributes of ptsioa(X).

– 2. A configuration mapping config(X) with domain QX and such that config(X)(q) is a reduced
compatible configuration for all q ∈ QX .

– 3. For each q ∈ QX , a mapping created(X)(q) with domain ŝig(X)(q) and such that ∀a ∈
ŝig(X)(q), created(X)(q)(a) ⊆ Autids with created(X)(q)(a) finite.

– 4. A hidden-actions mapping hidden-actions(X) with domain QX and such that ∀q ∈ QX ,
hidden-actions(X)(q) ⊆ out(config(X)(q)).

and satisfies the following constraints

– 1. (start states preservation) If config(X)(q̄X) = (A,S), then ∀Ai ∈ A,S(Ai) = q̄Ai

– 2. (top/down transition preservation) If (q, a, η(X,q,a)) ∈ DX then there exists η̄′ ∈ Prob(Qtconf ,FQtconf )
s.t. η(X,q,a)

c←→ η̄′ with i) c = config(X) and ii) config(X)(q) a=⇒ϕ η
′, where ϕ = created(X)(q)(a)

– 3. (bottom/up transition preservation) If q ∈ QX and config(X)(q) a=⇒ϕ η
′ for some action a,

ϕ = created(X)(q)(a), and reduced compatible probabilistic measure η′, then (q, a, η(X,q,a)) ∈ QX ,
and η(X,q,a)

c←→ η̄′ with c = config(X) .
– 4. (signature preservation modulo hiding)

For all q ∈ QX , sig(X)(q) = hide(sig(config(X)(q)), hidden-actions(q)).
– 5. (trajectory preservation) For every pair (q, C) ∈ QX × Qconf with C = config(X)(q),
TX(q) u,c

! TC with c = config(X), i.e.
There is a bijection u from TX(q) to TC such that for every pair (τ, τ ′) with τ ′ = u(τ):
• dom(τ) = dom(τ ′) , J
• ∀t ∈ J , config(X)(τ(t)) = τ ′(t)

Compared to definition 68, we only added the constraint of trajectory preservation, which requires
that trajectories of the PTCA are linked in an obvious manner with the trajectories of the associated
configurations.

We can remark that the requirement of reduced configuration for each state, implies that a continuous
trajectory cannot lead to the destruction of a sub-automaton. Hence, sub-automaton destruction can
only occur during discrete transitions.

Yet again, compatibility of a set of PTCA at a particular state (resp. hiding on PTCA) is defined as
in definition 70 (resp. definition 69), where the PCA are replaced by PTCA and configurations are
replaced by timed configurations.
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5.3. Executions

In this section, we adapt the definitions of section 3.4 with time elapsing. In this way, executions
become alternating sequences of actions and trajectories. It captures a run that is an alternation of
discrete and continuous transitions.

Definition 192 (pseudo execution fragment of a finite set of PTSIOA). Let A = {A1, ...,An} be a
finite set of PTSIOA (resp. PTCA). A pseudo execution fragment of A is a finite or infinite sequence
α = τ0a1τ1a2... of alternating trajectories and actions, such that:

1. If α is finite, it ends with a trajectory. In that case, we note lstate(α) the last state of the last
trajectory of α.

2. At the potential exception of lstate(α) if α is finite, for every trajectory τ i, for every time
t ∈ dom(τ i), A is compatible at state τ i(t).

3. for ever action ai, (τ i−1.lstate, ai, τ i.fstate) ∈ steps(A)
The first state of a pseudo execution fragment α, fstate(α), is fstate(τ0). A pseudo execution fragment
α of A is a pseudo execution of A if fstate(α) = q̄A. The length |α| of a finite pseudo execution
fragment α is the number of actions in α. A pseudo execution fragment α is closed if it is a finite
sequence and the last trajectory is closed. Given a closed execution fragment α = τ0a1τ1a2...τn, its

limit time is defined to be
n∑
i=0

τ i.ltime. A state q of A is said reachable if there is a pseudo execution

α s.t. lstate(α) = q. We note Reachable(A) the set of reachable states of A. If A is compatible at
every reachable state q, A is said partially-compatible.

Definition 193 (executions, concatenations). Let A be an automaton. An execution fragment (resp.
execution) of A is a pseudo execution fragment (resp. pseudo execution) of {A}. We use Frags(A)
(resp., Frags∗(A)) to denote the set of all (resp., all finite) execution fragments of A. Execs(A) (resp.
Execs∗(A)) denotes the set of all (resp., all finite) executions of A.

Let α be an execution fragment of A. The length |α| of a finite execution fragment α is the number of
transitions along α.

We define a concatenation operator _ for execution fragments as follows:
If α = τ0 a1 τ1 ...anτn ∈ Frags∗(A) and α′ = τ0 ′a1 ′τ1 ′... ∈ Frags∗(A), we define α_α′ = τ0a1τ1...anτn_

τ0′a1′τ1′...

Let α, α′ ∈ Frags(A), then α is a proper prefix of α′ iff ∃α′′ ∈ Frags(A) such that α′ = α_α′′ with
α 6= α′. In that case, we note α < α′. We note α ≤ α′ if α < α′ or α = α′ and say that α is a prefix
of α′.

The trace of an execution represents its externally visible part, namely the external actions and time
passage. It is obtained by removing internal actions, concatenating consecutive trajectories, and
replacing all the trajectories with their limit times.

Definition 194 (traces). Let A be a PTSIOA or a PTCA, let α ∈ Execs(A).

We recursively define the function traceA with dom(traceA) = Execs(A), such as ∀α ∈ Execs(A), ∀τ ∈
TA, ∀a ∈ acts(A):

traceA(α) = τ.ltime if α = τ ∈ trajs(QA),

traceA(αaτ) =
{
trace(α)aτ.ltime if a ∈ êxt(A)(lstate(α))
β′(τ ′_τ).ltime where traceA(α) = β′τ ′.ltime otherwise.
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We say that β is a trace of A if there is α ∈ Execs(A) with β = trace(α). We note Traces(A) the set
of traces of A.

The projection of a pseudo-execution α on an automaton Ai, noted α � Ai, represents the contribution
of Ai to this execution.

Definition 195 (projection). Let A be a set of PTSIOA (resp. PTCA), let Ai ∈ A. We define
projection operator � recursively such as for every pseudo-execution α of A, for every τ ∈ trajs(QA):

α � Ai = τ ↓ QAi if α = τ

(αaτ) � Ai =
{

(α � Ai)a(τ � Ai) if a ∈ ŝig(Ai)(q � Ai)
π′(τ ′_(τ � Ai)) where α � Ai = π′τ ′otherwise.

Having defined executions, traces and projection, we state the final axiom for PTSIOA. This axiom
is more or less necessary to prove the measurability of a perception function. Henceforth, we assume
that a PTSIOA satisfies

P (Progressive) A never generates infinitely many locally controlled actions within a finite time inter-
val, i.e. ∀α ∈ ExecsA, with α.ltime <∞, α has finite local actions.
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5.4. Global composition

Finally, we can formally define our operation of composition.

5.4.1. PTSIOA composition

Definition 196 (partially-compatible PTSIOA composition). Let A = {A1, ...,An} be a set of pre-
PTSIOA, with ∀i ∈ [1, n],Ai = ((QAi ,FQAi ), q̄Ai , sig(Ai), DAi , TAi). The automata in A are said
partially-compatible if A is compatible at each reachable state q of A. In that case, their partial-
composition, noted A1||...||An, is defined to be A = ((QA,FQA), q̄A, sig(A), DA, TA), where:

– QA = Reachable(A)
– FQA = sigma({F = F1 × ...× Fn|(F1, ..., Fn) ∈ FQ1 × ...×FQn ∧ F ⊆ Reachable(A))
– q̄A = (q̄A1 , ..., q̄An)
– sig(A) : q ∈ QA 7→ sig(A)(q) = sig(A)(q)
– DA = {(q, a, η(A,q,a))|q ∈ QA, a ∈ ŝig(A)(q)}

– TA =
⋃

q∈QA

TA1(q � A1)||...||TAn(q � An)

Theorem 25 (pre-PTSIOA closure under composition). Let A1,A2 be partially-compatible pre-PTSIOA.
Let A = A1||A2. Then A is a pre-PTSIOA. Furthermore, if A1 and A2 satisfy D, then A satisfies D
too.

Proof. – ∀q ∈ QA, sig(A)(q) is a triplet of mutually disjoint set by definition of composition of
signatures.

– Axiom E of enabled actions tracking is trivially preserved by construction sinceDA is constructed
with all the transitions of Ai for i ∈ {1, 2} that also satisfy E.

– Let τ ∈ TA. Then τ = (τ1||τ2) for some (τ1, τ2) ∈ TA1 ~ TA2 . A prefix (resp. suffix) τ ′ of τ , can
be written (τ ′1||τ ′2) where τ ′i is a prefix (resp. suffix) of τi for each i ∈ {1, 2}. Since TAi is closed
under prefix (resp. suffix) for each i ∈ {1, 2}, τ ′ ∈ TA. Hence TA is closed under prefix (resp.
suffix). In the same way, TA is closed under concatenation and ∀q ∈ QA, ℘(q) ∈ TA.

– D1: Let q ∈ QA. Then ∃(q1, q2) ∈ QA1 × QA2 , q = (q1, q2) Let τ, τ ′ ∈ TA(q). Then τ =
(τ1||τ2), τ ′ = (τ ′1||τ ′2) for some (τ1, τ2), (τ ′1, τ ′2) ∈ TA1(q1) ~ TA2(q2). By trajectory determinism
satisfied by A1 and A2, (1) either τ ′1 ≤ τ1 or τ1 ≤ τ ′1 and (2) either τ ′2 ≤ τ2 or τ2 ≤ τ ′2. Moreover,
dom(τ1) = dom(τ2) and dom(τ ′1) = dom(τ ′2). Thus either (a) τ ′1 ≤ τ1 and τ ′2 ≤ τ2 or (b) τ1 ≤ τ ′1
and τ2 ≤ τ ′2. Hence either τ ′ ≤ τ or τ ≤ τ ′.

– D2: Let q ∈ QA. Then ∃(q1, q2) ∈ QA1 ×QA2 , q = (q1, q2) Let τ ∈ TA(q). Then τ = (τ1||τ2) for
some (τ1, τ2) ∈ TA1(q1)~ TA2(q2).
Suppose some local action a ∈ l̂oc(A)(q)∩enabled(A)(q). Let us assume without loss of generality
that a ∈ l̂oc(A1)(q1) \ l̂oc(A2)(q2). Then a ∈ enabled(A1)(q1) and since A1 satisfies D2, there
does not exist any non-point trajectory in TA1(q1) (and therefore in TA(q)) that starts from q1.
Likewise, if there exists a non-point trajectory starting from q, then no local action is enabled
at q1 or at q2 (l̂oc(A1)(q1) ∩ enabled(A1)(q1) = l̂oc(A1)(q1) ∩ enabled(A2)(q2) = ∅) which leads
to l̂oc(A)(q) ∩ enabled(A)(q) = ∅ .

– D3 Immediate by construction
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Remark 7. Why M1 is not necessarily preserved by composition? Since EA1
a (resp. EA2

a ) satisfies
M1, EA1

a ∈ FQA1
(resp. EA2

a ∈ FQA2
). Moreover, by definition of sigma-field, QA1 ∈ FQA1

and
QA2 ∈ FQA2

. Hence (*) (EA1
a ×QA2), (EA2

a ×QA1) ∈ {(F1 × F2)|∀i ∈ {1, 2}, Fi ∈ FQAi} . Moreover,
(**) (EA1

a ×QA2)∪(EA2
a ×QA1) ∈ F ′ where F ′ is a sigma-field generated by {(F1×F2)|∀i ∈ {1, 2}, Fi ∈

FQAi} .

Let EA1
a ⊆ QA1 (resp. EA2

a ⊆ QA2) be the set of states of A1 (resp. A2) where a is enabled.
The set of states of A where a is enabled is EAa = {(q1, q2) ∈ QA|q1 ∈ EA1

a ∨ q2 ∈ EA2
a }. Hence

EAa = [(EA1
a × QA2) ∪ (EA2

a × QA1)] ∩ QA. However, the reachability of sets (EA1
a × QA2) and

(EA2
a ×QA1) remains unclear and so it is unclear if these sets are in FQA.

5.4.2. Configuration composition

Union of timed configurations and compatible timed configurations are defined as in definition 76,
where configurations are replaced by timed configurations. Composition of partially-compatible PTCA
is defined as in definition 77.

Proposition 13. Let C1 = (A1,S1) and C2 = (A2,S2) be compatible configurations such that A1 ∩
A2 = ∅. Let C = (A,S) = C1 ∪ C2 be a compatible configuration. Then sig(C) = sig(C1)× sig(C2),
as per Definition 59.

Proof. The proof is the same one as the proof of lemma 3.

The next lemma exhibits a direct homomorphism between (i) the pair of sets of trajectories of a pair
of configuration (C1, C2) and (ii) the resulting set of trajectories of the configuration C1 ∪ C2.

Lemma 73 (union is an homomorphism from TC1 ~ TC2 to TC). Let C1 = (A1,S1) and C2 =
(A2,S2) be compatible configurations such that A1 ∩ A2 = ∅. Let C = (A,S) = C1 ∪ C2 be a
compatible configuration. Then, there is a bijection u from TC1 ~ TC2 to TC such that ∀((τ1, τ2), τ) ∈
(TC1 ~ TC2)× TC , with τ = u(τ1, τ2) we have :

– dom(τ1) = dom(τ2) = dom(τ) , J
– ∀t ∈ J , τ(t) = τ1(t) ∪ τ2(t)

Proof. By definition, we have TC
w,v
! TA(TS(C)), TC1

w1,v1! TA1(TS(C1)), TC2
w2,v2! TA2(TS(C2)) with

v = v1 = v2 = TS.

Also, by definition, TA(TS(C)) = TA1(TS(C1))||TA2(TS(C2)) , {(τ ′1||τ ′2)|(τ ′1, τ ′2) ∈ TA1(TS(C1)) ~
TA2(TS(C2))}.

Moreover (τ ′1||τ ′2) = (τ ′′1 ||τ ′′2 ) implies τ ′1 = τ ′′1 and τ ′2 = τ ′′2 .

Thus, the function

tuple′ :
{
TA1(TS(C1))~ TA2(TS(C2)) → TA(TS(C))
(τ ′1, τ ′2) 7→ τ ′1||τ ′2

is a bijection.

Hence f :
{
TC1 ~ TC2 → TC
(τ1, τ2) 7→ w−1(w1(τ1)||w2(τ2)) is a bijection.

By definition, w,w1, w2 preserves the domain of related functions.

It remains to show that ∀(τ1, τ2) ∈ TC1 ~ TC2 , the trajectory τ , w−1(w1(τ1)||w2(τ2)) verifies τ =
u(τ1, τ2), i.e. ∀t ∈ dom(τ1) = dom(τ2) , J , τ(t) = τ1(t) ∪ τ(t).
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Since w is a bijection, it is equivalent to show that ∀(τ1, τ2) ∈ TC1 ~ TC2 , the trajectory τ ′ ,
(w1(τ1)||w2(τ2)) verifies τ ′ = w(u(τ)), i.e.

∀t ∈ J , (w1(τ1)||w2(τ2))(t) = w(u(τ1, τ2))(t).

By definition (w1(τ1)||w2(τ2))(t) = (TS(τ1(t)), TS(τ2(t))) and w(u(τ1, τ2))(t) = TS(τ1(t) ∪ τ2(t)).
Finally, the definition of union of configuration ensures (TS(τ1(t)), TS(τ2(t))) = TS(τ1(t) ∪ τ2(t))
which allows us to conclude the expected result.

We can extend the theorem 2 of closure of the set of the PCA under composition to pre-PTCA, where
we just have to show that trajectory preservation is preserved by composition.

Theorem 26 (pre-PTCA closure under composition). Let X1, X2 be partially-compatible pre-PTCA.
Let X = X1||X2. Then X is a pre-PTCA.

Proof. By theorem 25, ptsioa(X) is a pre-PTSIOA. We need to show that the constraints of the
definition of pre-PTCA are still verified.

– The preservation of constraint of (i) start state preservation, (ii) transition preservation, (iii)
signature preservation, have been proved in the proof of theorem 2.

– constraint of trajectory preservation:
Let (q = (q1, q2), C) ∈ QX × Qconf s.t. C = config(X)((q1, q2)). We need to show that
TX(q) u,c

! TC with c = config(X).
We note C1 = config(X1)(q1) and C2 = config(X2)(q2). Clearly C = C1 ∪ C2.
Since X1 and X2 are both PTCA, they both satisfy the constraint of trajectory preservation.
Hence, TX1(q1) u1,c1! TC1 and TX2(q2) u2,c2! TC2 with c1 = config(X1) and c2 = config(X2).
We will prove the expected result with u : τ ∈ TX(q) 7→ (u1(τ ↓ QX1) ∪ (u2(τ ↓ QX2)), where
(τ ′1 ∪ τ ′2)(t) = τ ′1(t) ∪ τ ′2(t).
By definition of composition of PTSIOA, TX(q) = TX1(q1)||TX2(q2) , {(τ1||τ2)|(τ1, τ2) ∈ TX1(q1)~
TX2(q2)} .
Moreover, ∀(τ1, τ2), (τ ′1, τ ′2) ∈ TX1(q1) ~ TX2(q2), (τ ′1||τ ′2) = (τ1||τ2) implies (τ ′1, τ ′2) = (τ1, τ2).
Thus,

f :
{
TX(q) → TX1(q1)~ TX2(q2)
τ 7→ (τ ↓ QX1 , τ ↓ QX2) is a bijection.

By lemma 73

g :
{
TC1 ~ TC2 → TC
(τ ′1, τ ′2) 7→ τ ′1 ∪ τ ′2

is a bijection.

Hence u :
{
TX(q) → TC
τ 7→ (u1(τ ↓ QX1) ∪ (u2(τ ↓ QX2)) is a bijection.

Let (τ, τ ′) ∈ TX(q) × TC with τ ′ = u(τ) and t ∈ dom(τ) = dom(τ ′) , J . We need to show that
c(τ(t)) = τ ′(t). We note (τ1, τ2) = f(τ), τ ′1 = u1(τ1), τ ′2 = u2(τ2), τ ′ = g(τ ′1, τ ′2) We have τ ′(t) = τ ′1(t)∪
τ ′2(t) = c1(τ1(t)) ∪ c2(τ2(t)) = config(X1)(τ1(t)) ∪ config(X2)(τ2(t)) = config(X1)((τ ↓ QX1)(t)) ∪
config(X2)((τ ↓ QX1)(t) = config(X)(τ(t)) = c(τ(t)) which ends the proof.

Corollary 1. Let X1, X2 be partially-compatible PTCA (resp. post-PTCA). Let X = X1||X2. If X
satisfies axiom M (resp. M and M′) of measurability, then X is a PTCA (resp. post-PTCA).
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5.5. Measure over executions, scheduler, implementation

In this section, we adapt the section 7.4 of Sayan Mitra PhD thesis [Mit07]. Basically, there are not a
lot of differences. We choose a more general scheduler and a more general implementation definition.
The sigma-field over executions (generated by cylinders of executions instead of cones of executions)
is the same. However, the measurability of a perception function defined on this σ-field is proved only
for post-PTCA (i.e. under additional measurability axiom M′) and a particular class of environment,
called closing environment, because of the dynamicity of the signature.

5.5.1. Ring on Executions and Traces Definition

The continuity of the involved state spaces and the the continuity of the time axis require more efforts
to build a σ-algebra on the executions of the automata. This σ-algebra will be generated by basic
sets, a.k.a. cylinders, of executions instead of cones.

Definition 197 (base). A base for a pre-PTSIOA (resp. pre-PTCA) A is a finite sequence of the form
Λ = Q0R0Q

′
0A1Q1R1Q

′
1A2Q2...Q

′
m−1AmQmRmQ

′
m, where for every i ∈ {0, ...,m}, Qi, Q′i ∈ FQA, Ri

is a measurable set in R≥0 and for every i ∈ {1, ...,m}, Ai ⊆ acts(A). The length of a base is the
number of sets of actions in the sequence. The set of bases for A is noted Bases(A).

Definition 198 (basic set). Let A be a pre-PTSIOA (resp. pre-PTCA). The basic set (a.k.a. cylinder)
corresponding to a base Λ ∈ Bases(A) is a set of execution fragments of A, CΛ = {τ0a1τ1...τ

_
m α|α ∈

FragsA, τ0.fstate ∈ Q0, ∀i ∈ {0, ...,m}, τi.ltime ∈ Ri, τi.lstate ∈ Q′i,∀i ∈ {1, ...,m}, ai ∈ Ai}. The set
of basic sets is noted Cyls(A) , {CΛ|Λ ∈ Bases(A)}.

If Λ = Q0R0Q
′
0...Q

′
m−1AmQmRmQ

′
m , Λ1 = Q0R0Q

′
0...Q

′
m−1AmQm, and Λ2 = Q0R0Q

′
0...Q

′
m−1, we

will abbreviate Λ as Λ1RmQ
′
m or as Λ2AmQmRmQ

′
m.

Lemma 74 (Ring over FragsA). The collection Cyls(A) of all basic sets of A is a ring.

Proof. See [Mit07], lemma 7.9, section 7.4, pages 143-144.

The σ-algebra generated by Cyls(A) is denoted by FFragsA . The collection of sets obtained by taking
the intersection of each element in Cyls(A) with ExecsA is a ring in ExecsA. We denote the σ-
algebra generated by this ring by FExecsA , i.e. FExecsA = sigma({C ∩ ExecsA|C ∈ Cyls(A)}). We
define the measurable space of executions of A to be (ExecsA,FExecsA). By restricting basic sets
to finite execution fragments, we define finite basic sets. The collection of all finite basic sets forms
a semi-ring over set Frags∗A of finite execution fragments of A. The σ-algebra on Frags∗A, and the
measurable space (Execs∗A,FExecs∗A) of finite executions are defined in a manner identical to the above
constructions.

Aside concerning traces It is possible to define a σ-algebra on the traces of an automaton in a
similar way

Definition 199. A trace base is a finite sequence of the form Λ = R0E1R1E2...Rn−1En where ∀i ∈
{O, ..., n− 1}, Ri, is a measurable set in R≥0 and ∀j ∈ {1, ..., n}, Ej ⊆

⋃
q∈QA

êxt(A)(q). The length of

such a trace base is defined to be n. The trace basic set corresponding to the base A is a set of traces
of A defined as: CΛ = {τ0a1τ1...anβ ∈ TracesA|∀i ∈ {0, ..., n}, τ i.ltime ∈ Ri,∀i ∈ {1, ..., n}, a ∈ Ei} .

191



Chapter 5 : Dynamic Probablistic Timed I/O Automata

The collection D of all trace basic sets of A is a semi-ring. The σ-algebra FTraces on the set of traces
of A is defined as the σ-algebra generated by the collection of trace basic sets; the measurable space of
traces is denoted by (TracesA,FTracesA).

In Mitra’s thesis [Mit07] (theorem 7.14, section 7.4.3, page 151.), it is proved that the trace function
traceA : (ExecsA,FExecsA)→ (TracesA,FTracesA) is measurable where A is a PTIOA, i.e. a DPTIOA
with a static signature. However, the proof of this theorem cannot be adapted directly. Hence, we
propose to prove the measurability of the projection function under additional axioms. We stress that
the theorem 27 of measurability of projection, and all the intermediate lemma to prove it are a direct
adaptation of Mitra’s thesis [Mit07] (section 7.4.3, page 147-151).

Measurability of projection function First, we define the closed environment.

Definition 200 (closed environment). Let A be a pre-PTSIOA (resp. PTSIOA, resp. post-PTSIOA,resp.
pre-PTCA,resp. PTCA,resp. post-PTCA). A closing environment E of A is a pre-PTSIOA (resp. PT-
SIOA, resp. post-PTSIOA,resp. pre-PTCA,resp. PTCA,resp. post-PTCA) partially-compatible with
A such that ∀q ∈ QE||A, ∀a ∈ ŝig(E||A)(q),

a ∈ êxt(A)(q � A) =⇒ a ∈ êxt(E)(q � E).

We note cenv(A), the set of closing environment of A.

Such an environment never misses an external action of A. We can remark that a good start to allow
the existence of closing environment of A is to require that the signature of A does not increase along
a trajectory and after an internal action. The point would be always warning a modification of its
signature to its environment.

We can adapt the proof of Mitra [Mit07] to the projection function.

First, we define canonical bases in the same way as Mitra does for canonical trace bases (definition
7.10 p148 in [Mit07]).

Definition 201 (canonical base). A base of the form Λ̄ = Q0R0Q
′
0A1Q1R1Q

′
1A2Q2...Q

′
m−1AmQmRmQ

′
m

is said canonical if ∀i ∈ [1 : m], Ri = [0, bi[ with bi ∈ R≥0. We note Canons(A) the set of canonical
bases of a PTSIOA (resp. PTCA) A.

The next lemma 75 (like lemma 7.11 p148 in [Mit07]) will simplify the task.

Lemma 75 (measurability on canonical basic sets is enough). Let A, E be partially-compatible pre-
PTSIOA (resp. PTSIOA, resp. post-PTSIOA,resp. pre-PTCA,resp. PTCA,resp. post-PTCA). Let
f : (Execs(E||A),FExecs(E||A))→ (Execs(E),FExecs(E)). If ∀Λ̄ ∈ Canons(E||A), f−1(CΛ̄) ∈ FExecs(E||A),
then ∀Λ ∈ Bases(E||A), f−1(CΛ) ∈ FExecs(E||A).

Proof. The proof adapts the strategy of lemma 7.11 p148 in [Mit07].

We note C , {E ⊆ Execs(E||A)|f−1(E) ∈ FExecs(E||A)}. It is easy to show that C is a σ-algebra on
Execs(E||A):

– f−1(Execs(E)) = Execs(E||A) ∈ FExecs(E||A) and f−1(∅) = ∅ ∈ FExecs(E||A). Thus, ∅,Execs(E) ∈
C

– ∀E ∈ C , f−1(Execs(E) \ E) = (Execs(E||A) \ f−1(E)) ∈ FExecs(E||A) since FExecs(E||A) is a
σ-algebra, and so, is stable by complementation. Hence ∀E ∈ C , (Execs(E) \ E) ∈ C .
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– ∀(Ei)i∈N ∈ (C )N, f−1(
⋃
i∈N

Ei) =
⋃
i∈N

f−1(Ei) ∈ FExecs(E||A), since FExecs(E||A) is a σ-algebra, and

so, is stable by countable union. Hence ∀(Ei)i∈N ∈ (C )N,
⋃
i∈N

Ei ∈ C .

Next, we show that if ∀Λ̄ ∈ Canons(E||A), f−1(CΛ̄) ∈ FExecs(E||A), then ∀Λ ∈ Bases(E||A), f−1(CΛ) ∈
FExecs(E||A), that is, if ∀Λ̄ ∈ Canons(E||A), CΛ̄ ∈ C , then ∀Λ ∈ Bases(E||A), CΛ ∈ C .

We show the result for base length of 1.

The assumption implies that for every canonical base Λ̄1 = Q0R0Q
′
0A1Q1 ∈ Canons(E), CΛ̄1

∈ C .

First, we will show that for every base Λ[b,∞[
1 = P0S0P

′
0B1P1 ∈ Bases(E), with S0 = [b,∞[, CΛ[b,∞[

1
∈ C .

It is enough to remark that CΛ[b,∞[
1

= (
⋃
i∈N

CΛ[0,i[
1

) \ CΛ[0,b[
1

with Λ[0,x[
1 = P0[0, x[P ′0B1P1 ∈ Canons(E)

for each x ∈ N ∪ {b}. So CΛ∞1 ∈ C since C is a σ-algebra and cylinders corresponding to canonical
bases are assumed to belong to C .

Second, we show that for every base Λ[0,b]
1 = P0S0P

′
0B1P1 ∈ Bases(E), with S0 = [0, b], CΛ[0,b]

1
∈ C .

To do so, we choose (bi)i∈N ∈ (R≥0)N with lim
i→∞

bi = b, ∀i ∈ N, bi < bi+1. Then, it suffices to remarks

that CΛ[0,b]
1

=
⋂
i∈N

CΛ[0,bi[
1

, where ∀i ∈ N, Λ[0,bi[
1 = P0[0, bi[P ′0B1P1 ∈ Canons(E).

Third, for every base Λ[a,b]
1 = P0S0P

′
0B1P1 ∈ Bases(E), with S0 = [a, b], CΛ[a,b]

1
= CΛ[0,b]

1
∩CΛ[a,∞[

1
∈ C ,

where Λ[0,b]
1 = P0[0, b]P ′0B1P1 and Λ[a,∞[

1 = P0[a,∞[P ′0B1P1.

Fourth, for every base Λ[a,b[
1 = P0S0P

′
0B1P1 ∈ Bases(E), with S0 = [a, b[, CΛ[a,b]

1
= CΛ[0,b[

1
∩CΛ[a,∞[

1
∈ C ,

where Λ[0,b[
1 = P0[0, b[P ′0B1P1 and Λ[a,∞[

1 = P0[a,∞[P ′0B1P1.

Fifth, for every base Λ]a,b]
1 = P0S0P

′
0B1P1 ∈ Bases(E), with S0 =]a, b], CΛ]a,b]

1
= (

⋂
i∈N

CΛ[ai,b]
1

) ∈ C ,

where Λ[ai,b]
1 = P0[ai, b]P ′0B1P1 for each i, and (ai)i∈N ∈ (R≥0)N with lim

i→∞
ai = a, ∀i ∈ N, ai > ai+1

and a0 = b.

Sixth, for every base Λ]a,b[
1 = P0S0P

′
0B1P1 ∈ Bases(E), with S0 =]a, b[, CΛ]a,b[

1
= CΛ[a,b[

1
∩ CΛ]a,b]

1
∈ C ,

where Λ[a,b[
1 = P0[a, b[P ′0B1P1 and Λ]a,b]

1 = P0]a, b]P ′0B1P1.

So, for every Λ1 = Q0R0Q
′
0A1Q1 ∈ Bases(E), CΛ1 ∈ C .

The result for any base length m ∈ N is obtained with the same construction applied to every Ri. The
operations performed in a countable fashion in the case m = 1, are then still performed in a countable
fashion for every m ∈ N.

Thanks to previous lemma 75, we can focus on canonical basic sets only.

We want to establish the measurability of percpetion function for canonical basic sets of Cyls(E) only.
To do so, we need to obtain a counterpart in Cyls(E||A) such that the executions in this counterpart
can "explain" the executions in a canonical basic set of Cyls(E). This counterpart will be built with the
set Qm,r defined in the next definition 202, strongly inspired by definition 7.11 p 149 in [Mit07]. The
dynamic signatures led us to introduce the axioms M3 and M4 for post-PTSIOA (resp. post-PTCA).

Definition 202 (m-explanation of a canonical base). Let A be a post-PTSIOA or a post-PTCA. Let
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E ∈ cenv(A). Let Λ̄1 = Q0
ER

0
EQ
′0
E A

1
EQ

1
E ∈ Canons(E) with R0

E = [0, r[ and r ∈ R>0. For every m ∈ N
a m-explanation of Λ̄1 is a base of length m of the form:

Λm,rq1,q′1,...,qm,q
′
m

= Q0
E||A[q1, q

′
1]Q′0E||AA

1
E||AQ

1
E||A[q2, q

′
2]Q′1E||AA

2
E||AQ

2
E||A...[qm, q

′
m]Q′(m−1)

E||A AmE||AQ
m
E||A with:

– (specified edges)
• AmE||A = A1

E ∩ acts(A)

• Q0
E||A = Q0

E ×QA

• Q′(m−1)
E||A = Q′0E ×QA

• QmE||A = Q1
E ×QA

– (unspecified intermediate states)
• ∀j ∈ [0 : m− 2], Q′jE||A = F[qj+1,q′j+1],QjE||A

(in the sense of axiom M3 of post-PTSIOA)

• ∀j ∈ [1 : m− 1] QjE||A = H
Q′j−1
E||A

(in the sense of axiom M4 of post-PTSIOA)

– (no shared action before AmE||A)

• ∀j ∈ [1 : m− 1], AjE||A =
⋃

q∈Q′j−1
E||A

int(A)(q � A)

– (partially specified time control)
• ∀j ∈ [1 : m], qj , q′j ∈ Q≥0

• ∀j ∈ [1 : m], qj < q′j

•
∑

j∈[1:m]
q′j < r

We note Qm,r ,
⋃

q1,q′1,...,qm,q
′
m∈Q≥0

CΛm,r
q1,q′1,...,qm,q

′
m

The next lemma shows that perception function is measurable for the canonical basic sets with one
action only. This lemma and its proof corresponds to the lemma 7.12 p. 150 in [Mit07].

Lemma 76 (perception is measureable on canonical basic sets with length 1). Let A be a post-
PTSIOA or a post-PTCA. Let E ∈ cenv(A). Let Λ̄1 = Q0

ER
0
EQ
′0
E A

1
EQ

1
E ∈ Canons(E) with R0

E = [0, r[
and r ∈ R>0.

proj−1
(E,A)(CΛ̄1

) =
⋃
m∈N

Qm,r

Proof. First, we show that
⋃
m∈N

Qm,r ⊆ proj−1
(E,A)(CΛ̄1

). Let α ∈ Qm,r, for somem ∈ N. The constraints

imposes α = α′a℘(q1
E||A) with

– a ∈ A1
E

– q1
(E||A) � E ∈ Q

1
E

– lstate(α) � E ∈ Q′0E
– fstate(α) � E ∈ Q0

E

– α.ltime ∈ [0,
∑

j∈[1:m]
q′j ] and so α.ltime ∈ [0, r[
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– actions(α′) ∩ ŝig(E)(fstate(α) � E) = ∅. This last claim comes from the fact that E and A are
partially-compatible and so the internal signature of A and the signature of E are disjoint for
any reachable state.

It follows that (α � E) ∈ CΛ̄1
.

Second, we show that proj−1
(E,A)(CΛ̄1

) ⊆
⋃
m∈N

Qm,r.

Let α ∈ Execs((E||A)), such that αE , (α � E) ∈ CΛ̄1
Since αE .ltime < r and α.ltime = αE .ltime, we

have α.ltime < r. The axiom P1 of progressiveness implies that α counts m actions for some m ∈ N.
Moreover, since αE ∈ CΛ̄1

, αE counts only one action am ∈ A1
E and so α = α′am℘(q1

E||A) where

– q1
E||A � E ∈ Q

1
E .

– fstate(α′) � E ∈ Q0
E

– lstate(α′) � E ∈ Q′0E
– actions(α′) = τ0a1...τm−1 with ∀j ∈ [1 : m− 1]aj ∈ int(A)(lstate(τ j−1) � A). This comes from

the fact that E ∈ cenv(A). Thus if aj ∈ êxt(A)(lstate(τ j−1) � A), then aj ∈ êxt(A)(lstate(τ j−1) �
E) and so αE /∈ CΛ̄1

.

We note α = τ0a1τ1...am℘(q1
E||A). We note ε = r − α.ltime

m+ 1 . By density of Q≥0 in R≥0, ∀j ∈ [0,m−1],

∃(qj+1, q
′
j+1) ∈ Q≥0, such that τ j .ltime ∈ [qj+1, q

′
j+1] with |q′j+1 − τ j .ltime| < ε and so

∑
j∈[1:m]

q′j < r.

Hence, α ∈ CΛ with Λ = Λm,rq1,q′1,...,qm,qm′
, that is α ∈ Qm,r.

The next lemma 77 is just the generalization of lemma 76 for any length m. Here again, this lemma
and its proof are strongly inspired by lemma 7.13 p. 150 in [Mit07].

Lemma 77 (perception is measureable on canonical basic sets). Let A be a post-PTSIOA or a post-
PTCA. Let E ∈ cenv(A). Let Λ̄m = Q0

ER
0
EQ
′0
E A

1
EQ

1
ER

1
EQ
′1
E A

2
EQ

2
E ...A

m
E Q

m
E ∈ Canons(E) with ∀j ∈ [1 :

m] RjE = [0, rj [ and rj ∈ R>0.

proj−1
(E,A)(CΛ̄m) ∈ FExecs(E||A).

Proof. By induction.

Basis: by previous lemma 76.

Induction: We assume the result to be true up to a particular m ∈ N and we show it implies it is
true for m+ 1. Let Λ̄m+1 = Λ̄mRmE Q′mE Am+1

E Qm+1
E with RmE = [0, r[ for some r ∈ R≥0. By induction

hypothesis, we know that proj−1
(E,A)(CΛ̄m) ∈ FExecs(E||A), i.e. proj−1

(E,A)(CΛ̄m) =
⋃
i∈N

C∆i
for some basic

sets (∆i)i∈N ∈ Bases(E||A)N. Here, the ∆i are concatenation of explanation bases for the sets in Λ̄n
(one per chunk QjER

j
EQ
′j
EA

j+1
E Qj+1

E ). Hence, following the construction of the proof of previous lemma,
we have:

proj−1
(E,A)(CΛ̄m+1

) =
⋃
i∈N

⋃
m∈N

⋃
(q1,q′1,...,qm,q′m)∈Gm

C∆iΛm,r
q1,q′1,...,qm,q

′
m

with Gm = {(q1, q
′
1, ..., qm, q

′
m) ∈ (Q≥0)2m|∀j ∈ [1 : m], qj < q′j ∧

∑
j∈[1:m]

q′j < r}.

Hence, proj−1
(E,A)(CΛ̄m+1

) is a countable union of basic sets which means proj−1
(E,A)(CΛ̄m+1

) ∈ FExecs(E||A).
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We finally obtained the measurability of projection function.
Theorem 27 (p is measurable). Let A be a post-PTSIOA or a post-PTCA. Let E ∈ cenv(A). The
function projE,A : (Execs(E||A),FExecs(E||A))→ (Execs(E),FExecs(E)) is measurable.

Proof. By conjunction of lemma 75 and lemma 77.

5.5.2. Probability Measure

Definition 203 (scheduler). Let A be a PTSIOA or a PTCA. A scheduler is a function σ that maps
each execution fragment α ∈ Frags∗A to a probability measure η ∈ Disc(enabled(A)(lstate(α))). The
set of schedulers of A is noted scheduler(A).

Let σ be a scheduler. We define the probabilistic measure on (ExecsA,FExecsA) generated by σ, noted
εσ as follows:

1. εσ(CP ) = 1 if q̄A ∈ P and 0 otherwise.

2. a) εσ(CΛRP ) =
∫
α∈CΛ

1ER,P (lstate(α)) · εσ(α) dα

b) εσ(CΛBP ) =
∫
α∈CΛ

∫
a∈supp(σ(α))∩B

σ(α)(a) · η(A,lstate(α),a)(P ) · εσ(α) dα

where B ⊆ acts(A), P ⊆ QA and R is a Borel set of R≥0.

Item 1 states that any execution fragment that does not start with the start state has a measure of
the probability of 0, while the measure of ExecsA is 1.

Item 2 describes the measure recursively.

The item 2a, says that the measure of cylinder CΛRP is the measure of all executions in cylinder CΛ
that ends in a state so that the trajectory starting from this state ends in a state in P after a time in
R. Let us note that the definition implicitly requires axiom M2 of measurability of ER,P .

Item 2b, says that the measure of cylinder CΛBP is a double weighted sum on (1) executions in cylinder
CΛ and (2) actions, triggered by the scheduler after the executions, that are in B. Let us note that
the definition implicitly requires axiom M1.

This double sum is weighted by the product of (i) the probability σ(α)(a) that the scheduler triggers a
after α, (ii) the probability η(A,lstate(α),a)(P ) of reaching a state in P after triggering a from lstate(α),
and (iii) the measure εσ(α) of α.
Theorem 28. εσ is a probability measure on (Execs,FExecs).

Proof. For any base Λ, εσ(CΛ) ≥ 0, εσ(ExecsA) = εσ(C{q̄A}) = 1 and if CΛ = ∅, εσ(CΛ) = 0. Next,
we consider a countable disjoint collection of bases {Λi}i∈I . For any i, j ∈ I, at least one of the sets
in the sequence Λi must be disjoint with the corresponding set in Λi . (If Λi and Λj are of different
lengths, say Λi is shorter than Λj , then there must exist a disjoint set in the prefix of the Λi that
equals in length to Λj .) Therefore, εσ(

⊎
i∈I

CΛi) =
∑
i∈I

εσ(CΛi) by additivity of integral. Thus εσ is a

probability measure over the ring {C ∩ ExecsA|C ∈ Cyls(A)} defined by the collection of all basic
sets of executions. It follows that εσ is a probability measure on (Execs,FExecs).

In summary, each scheduler for A gives rise to a probabilistic execution, which is a probability measure
on the space (Execs,FExecs). A set of schedulers gives a set of probabilistic executions.
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5.5.3. Implementation

Definition of environment, perception function, f -dist, balanced schedulers, implementation relation-
ship are the same ones than in section 3.6.2. All the results still hold since they are independent of
the sigma-field and the definition of executions.
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5.6. Local Scheduler

This section is a straightforward adaptation of [Mit07, ML07b] where a probabilistic semantic for
the PTSIOA (resp. PTCA) that do not necessarily satisfy the determinism axioms D1 and D2, is
developed. This development relies on local schedulers which are PTSIOA (resp. PTCA) that do
satisfy the determinism axioms D1 and D2.

Definition 204 (Generalized PTSIOA). A generalized PTSIOA A is a pre-PTSIOA, satisfying axiom
M1 of transitions measurability, axiom D3 of transition determinism, but not necessarily axiom D1
and D2 of trajectory determinism and time-action determinism.

Thus, from a given state q ∈ QA of a generalized PTSIOA A, there may be a non-deterministic
choice of actions that could be performed and also a choice of distinct trajectories starting from q.
A local scheduler for generalized PTSIOA A, is a PTSIOA ((QA,FQA), q̄A, sig(A), D′A, T ′A) that is
identical to A except that D′A ⊆ DA, T ′A ⊆ TA. A local scheduler satisfies D1 and D2 and has
deterministic trajectories. A probabilistic system captures the notion of possible ways of resolving the
non-determinism in a generalized PTSIOA. Formally, a probabilistic-system is a pair M = (A,L),
where A is a generalized PTSIOA and L is a set of local schedulers for A. An environment forM is
any PTSIOA E ∈ env(A). We note env(M) the set of environment forM

A probabilistic execution forM is defined to be any probabilistic execution of L, for any L ∈ L.

Compatibility and composition of generalized PTSIOA are defined in the same way as in the case of
PTSIOA. We remind the reader that the composition A = A1||A2 of partially-compatible generalized
PTSIOA A1 and A2, is also a generalized PTSIOA only if A satisfies M1 and M2. In order to avoid
restating this condition in all our definitions and results, we assume that whenever two compatible
generalized PTSIOA are composed, their composition satisfies M1 and M2, and hence is a generalized
PTSIOA.

Definition 205 (implementation relationship for probabilistic systems). Let M1 = (A1,L1) and
M2 = (A2,L2) be probabilistic systems. Let f be a perception function, S be a scheduler schema and
ε ∈ R≥0. Then, M1 ≤S,fε M1 if ∀E ∈ env(M1) ∩ env(M2), ∀L1 ∈ L1, ∀σ1 ∈ S(E||L1), ∃L2 ∈ L2,
∃σ2 ∈ S(E||L2) such that σ1B

≤ε
(E,L1,L2),fσ2

This definition can be understood as, for every distinguisher E , for every way of resolving the non-
determinism for the first probabilistic system interacting with E , there exists a way of resolving the
non-determinism for the second probabilistic system interacting with E , such that the distinguisher is
unable to distinguish the two situations with a probability greater than ε.

Two probabilistic systems M1 = (A1,L1) and M2 = (A2,L2) are compatible if A1 and A2 are
compatible, and their composition M1||M2 is defined as (A1||A2,L), where L = {L1||L2|(L1, L2) ∈
L1 × L2}.

Theorem 29. Let ε ∈ R≥0. Let f be a perception-function. Let S be a scheduler schema.

Let M1 = (A1,L1), M2 = (A2,L2) and M3 = (A3,L3) be 3 probabilistic systems satisfying: M3 is
partially compatible with bothM1 andM2. Then the following holds.

IfM1 ≤S,fε M2, thenM3||M1 ≤S,fε M3||M2.

Proof. Consider any environment E for M3||M1 = (A3||A1,L31) and M3||M2 = (A3||A2,L32). We
must show that, for every L31 ∈ L31, for every scheduler σ31 ∈ S(E||L31), there is a local scheduler
L32 ∈ L32 and a scheduler σ32 ∈ S(E||L32) such that σ31B

≤ε
E,fσ32. To show this we fix L31 ∈ L31
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5.6 Local Scheduler

and σ31 ∈ S(E||L31). By definition, ∃(L3, L1) ∈ L3 × L1, such that L31 = L3||L1. Hence, σ31 ∈
S((E||L3)||L1). Yet,M1 ≤S,fε M2 and (E||L3) is an environment for bothM1 andM2. Thus, there
exists L2 ∈ L2 and σ32 ∈ S((E||L3)||L2) such that σ31B

≤ε
(E||L3),fσ32. Finally, stability by composition

of f gives σ31B
≤ε
(E,f)σ32 which ends the proof.

Theorem 30 (Transitivity). Let ε12, ε23, ε13 ∈ R≥0 with ε13 = ε12 +ε23. Let f be an insight-function.
Let S be a scheduler schema.

Let M1 = (A1,L1), M2 = (A2,L2) and M3 = (A3,L3) be 3 probabilistic systems. If M1 ≤S,fε12 M2
andM2 ≤S,fε23 M3, thenM1 ≤S,fε13 M3

Proof. Let E ∈ env(M1) ∩ env(M3).

Case 1: Let us assume E ∈ env(M2). Let L1 ∈ L1, σ1 ∈ S(E||L1). Since M1 ≤S,fε12 M2, ∃L2 ∈ L2,
σ2 ∈ S(E||L2), σ1B

≤ε12
(E,L1,L2),fσ2. Since M2 ≤S,fε23 M3, ∃L3 ∈ L3, σ3 ∈ S(E||L3), σ2B

≤ε23
(E,L2,L3),fσ3. By

lemma 9, σ1B
≤ε13
(E,L1,L3),fσ3., which ends the proof for this case.

Case 2: Let us assume E /∈ env(M2). A renaming procedure like in the proof of theorem 4 allows us
to fall back to case 1.
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5.7. Summary

We have shown how to merge PSIOA (resp. PCA) with the timed setting of Mitra and Lynch to
obtain PTSIOA (resp. PTC). The big picture did not change significantly. Dynamic timed automata
have to verify a new constraint of trajectory preservation, that requires a strong link between the set
of trajectories of the dynamic automata and the ones of the associated configurations. Theorem 26
shows that the composition of two pre-PTCA is a pre-PTCA itself. The results of substitutability of
implementation relationship do not change and do not require an additional treatment. Handling both
dynamicity and continuous states spaces requires some precautions to define the associated measures.

200



Chapter 6
Dynamic Secure Emulation

This chapter explains how to extend the framework with simulation-based security.

Overview
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Chapter 6 : Dynamic Secure Emulation

Previous chapters 3 and 4 deal with "unbounded" systems,in the sense, that nothing prevents, a priori,
from performing steps that would require a huge amount of computational resources. However, mod-
ern applications often rely on sophisticated cryptographic tools, assuming an (a priori polynomially)
bounded adversary using a limited amount of computational resources. The achieved security prop-
erties are then of the form, "for any adversary with a bounded computational power, the probability
of violating the security is negligible". Very often, distributed secure systems are analyzed in the
symbolic model [DY83], where cryptographic operations are seen as functions on a space of symbolic
(formal) expressions. In such a model, it does not make any sense for an adversary to see a signed
message as a sequence of bits. It is just a pair (message, signature) where each element is an atomic
entity of the symbolic space. Although such a model is very powerful for automated proof [BPW03], it
does not a priori carry any cryptographic computational security guarantees. Several formal analysis
frameworks linking the two aspects have been proposed. For example, one approach is to connect
symbolic security and computational security with soundness (e.g.[AR00, MW05, CW05, CH11]). If
soundness is guaranteed, a security proof by a symbolic analysis also holds against computational ad-
versaries. This kind of connection is often delicate and requires a foundational computational model.
The most popular approach is simulation-based security introduced in [GM84, GMR85] (a tutorial
can be found in [Lin17]).

In the simulation-based security, a.k.a. "real-ideal paradigm", the objective of the adversary is defined
only with respect to an "idealized" game, which can be seen as the specification of the task we want to
solve. Then, the security properties will be stated in the following form: for any adversary, there exists
a "simulator" (which is another "ideal" adversary), so that the "adversary in the real game" and the
"simulator in the ideal game" cannot be distinguished with more than a negligible probability by an
external observer (our environment which plays the role of a "distinguisher"). The idea is to say that
any attack that (i) can be made against the real game (ii) can also be made against the ideal game,
while we are satisfied with such an ideal world. Such a paradigm has many interests. First, the absence
of an explicitly defined goal for the adversary prevents one from missing any subtle attacks that might
occur. Second, it allows for the correct definition of certain properties whose alternative definitions
might be cumbersome (e.g., the property of "not learning something more than something").

Composable simulation-based security has been pioneering at the beginning of the century (e.g.
[Can01, PW00]), with a lot of extensions and restrictions. A unified model, embedding UC-framework
[Can01, Can20] has been proposed [RKC22], using inexhaustible interactive Turing machines (IITM)
[KTR20]. This model (1) allows relating a large number of different notions of simulation-based secu-
rity, (2) enjoys a great expressivity, with its own notion of dynamicity, via an operation of creation,
called "bang" operator (noted "!") following the common terminology of process calculus [Mil80]. It is
even possible to add the notion of synchrony to the UC framework (which is inherently asynchronous)
assuming the access to an ideal functionality FCLOCK that allows different parties to synchronize
[KMTZ13].

In this chapter, we extend DPIOA with simulation-based security as Canetti et al. [CCK+07] do with
static PIOA. But what is the interest if the model of IITM [KTR20] is so expressive? Here are some
thoughts:

simplicity and abstraction In practice, though entities in the system are defined by interactive Turing
machines (ITMs), a precise description would require too many low-level machine details. Hence the
entities are usually described using some type of pseudo-code, where it remains unknown how it is
supposed to be translated into a Turing Machine. According to Hofheinz and Shoup [HS15], "as long as
we restrict ourselves to models that are polynomial-time equivalent to Turing machines, none of these
details matter". In fact, detailed execution fragments of a system of ITMs seem to be a non-necessary
intricacy, that, combined with the sophistication of distributed algorithms, can lead to an excessively
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hard-to-follow analysis. It seems that the overuse of the simulation-based security paradigm, expressed
with ITMs, has participated in the respective misunderstanding between the distributed computing
and secure multi-party computing (MPC) communities. Labeled Transition Systems (LTS) such as
I/O automata allow not to specify the exact computation of the state transition. Furthermore, their
manipulation is closer to the human intuition and classic informal reasoning that often appear in
distributed computing.

non-sequential scheduling The second interest is that sequential scheduling models are commonly
used in many cryptography frameworks (UC, IITM, etc), where multiple processes must not be active
simultaneously at any given point in time, and the active process activates the next process by produc-
ing and sending some message. Besides being a counter-intuitive modelization, sequential scheduling
can artificially introduce some constraints in the ordering of events, and so artificially restrict the power
of the adversary in comparison to the real world. For example, Canetti et al. [CCLP07] proved that
a beacon protocol preserves security under sequential scheduling (ITM) but not under non-sequential
scheduling, while Yoneyama [Yon10] showed that the beacon protocol verifies indifferentiable secu-
rity (where public channels have to be considered as well as private channels) under the sequential
scheduling but not under the non-sequential scheduling. An extension of LTS like our model does not
suffer from the problems of sequential scheduling.

time The ITMs-based frameworks are inherently asynchronous. It is possible to add the notion of
time and synchrony, assuming the access to an ideal functionality FCLOCK that allows different parties
to synchronize [KMTZ13], but the result is not trivial to handle and does not necessarily correspond
to the human intuition of synchrony. Our model proposes something simpler. We can add time in 3
different manners.

1. Use the "old-fashioned recipe for real-time" [AL92], as used in [Seg95b].
2. Use trajectories with discrete time axis (T = N). In this case, one unit of time corresponds to the

greatest common divisor of the clock periods (the reverse of clock rates) of all the processors.
Then, we can easily bound the number of steps per unit of time of an object of the model,
following a similar approach as in [CCK+08].

3. Use trajectories with a continuous time axis (T = R) but we need to take precautions not to
artificially give extra computational power. Indeed, with such a solution, the set of variables
evolving along trajectories, are called clocks and cannot visit a too high number of different states
in a certain time window. In this way, the restriction of a trajectory to non-clock variables is
a constant function, while the restriction of a trajectory to clock variables is a simple function,
where the number of different values that can be taken is again defined by the greatest common
divisor of the clock periods (the reverse of clock rates) of all the processors.

Each solution is promising to a simple modelization of time.

In order to analyze cryptographic protocols, Canetti & al. [CCK+07] extends probabilistic In-
put/Output automata, with the notion of "structures", which classifies communications into two
categories: those with a distinguisher environment and those with an adversary (whose respective
roles are those of the real-ideal paradigm described above). Then, they are able to define a new
implementation relationship, called "secure emulation" in the same way as traditional simulation-
based security ([KDMR08, CCLP07, KTR20, RKC22] discuss the relationship between different no-
tions of simulation-based security). Composability of secure emulation is then "easily" derived from
the composability of classic implementation relationship for PIOA. Even though the formalism pro-
posed in [CCK+07] has been already used in the verification of various cryptographic protocols
[CCLP07, CMP07, YKO07, JMMS10, Yon18], this formalism does not allow to model systems that
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"can dynamically create new protocol instances at run time". For example, we would like to cover
blockchain systems where subchains can be created or destroyed at run time [RPG19]. Hence, on
top of dynamic probabilistic I/O automata described in detail in chapters 3 and 4, we propose an
extension of the composable secure emulation of Canetti et al. [CCK+07] to dynamic settings. Our
framework, composable dynamic secure emulation, enjoys the composability properties of secure em-
ulation of [CCK+07]. In terms of dynamicity, our work closes a modelization problem left open by
the work of Canetti et al. [CCK+07]. That is, our framework allows us to model environments (or
structures) that can dynamically create new protocol instances at run time.

Most of the results of this chapter are straightforward adaptations of their "static" counterparts in
[CCK+07]. The main source of modification comes from dealing with compatibility at every reachable
state instead of compatibility at each element of the Cartesian product of respective sets of states.
For sake of completeness, we repeat the results with the required small modifications in the proofs.

6.1. Polynomial-Bounded automata: formalizing implementation by
computational indistinguishability

In this section, we extend the approximate implementation relation defined in [CCK+07] to dynamic
settings, to express the idea that every behavior of one family of dynamic automata is computationally
indistinguishable from some behavior of another dynamic automata family.

We adopt a standard bit-representation where we note 〈q〉, 〈a〉, 〈tr〉, 〈C〉 the respective bit-string
representations of state q, action a, discrete transition tr and configuration C.

Definition 206 (bounded Turing Machine). Let b ∈ N. A (probabilistic or deterministic) Turing
Machine is said b-bounded if it always runs in time at most b and can be described using a bit string
length of at most b, according to some standard encoding of Turing machines. The formal definitions
associated to Turing Machines, can be found in Section 2.4.

6.1.1. time-bounded automata

In the following, we extend the definition of time-bounded PIOA [CCK+07] to dynamic settings.
We define bounded PSIOA and then bounded PCA. The idea is to both limit the memory and the
computational power of the concerned PSIOA. Typically, we prohibit transitions that would implicitly
violate some computational hardness assumptions. Details about the meaning of a Turing Machine
deciding a predicate can be found in Section 2.4, namely in definitions 55 and 56 in subsection 2.4.4.

Definition 207 (PSIOA b-bounded). PSIOA A is said to be b-bounded, where b ∈ N≥0, provided that:
1. Automaton parts: The length of the bit-string representation of every action, state, and the

transition is at most b.
2. Decoding: There exist b-bounded deterministic Turing Machines Mstates, Mstart, Mact, Min,

Mout, Mint, Mtrans, Mstep so that:
– given the representation 〈q〉 of a candidate state q, Mstates decides whether q ∈ QA,
– given the representation 〈q〉 of a state q, Mstart decides whether q is the unique start state
q̄A of A,

– given the representation 〈a〉 of a candidate action a, Mact decides whether a ∈ acts(A),
– given the representation 〈q〉 of a state q ∈ QA, given the representation 〈a〉 of an action that

is a candidate input action, (resp. output action, resp. internal action) Min (resp. Mout,
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resp. Mint) decides whether a ∈ in(A)(q) (resp. a ∈ out(A)(q), resp. a ∈ int(A)(q)).
we note Msig the deterministic Turing Machine that given the representation 〈q〉 of a state
q ∈ QA, that given the representation 〈a〉 of an action that is a candidate enabled action,
decides whether a ∈ ŝig(A)(q).

– given the representation 〈q〉 of a state q ∈ QA, the representation 〈a〉 of an action a ∈
ŝig(A)(q) and the representation 〈tr〉 of tr = (q, a, η), Mtrans decides whether tr ∈ DA and

3. Determining the next state: There is a b-bounded probabilistic Turing machine Mstate that, given
the representation 〈q〉 of a state q of A, and the representation 〈a〉 of an action a ∈ ŝig(A)(q)
that is enabled in q, produces the representation 〈q′〉 of the next state q′ resulting from the unique
transition of A of the form (q, a, η).

We naturally extend the last definition 207 to PCA, that are PSIOA equipped with additional tools
to define constraints.

Definition 208 (PCA b-bounded). PCA X is said to be b-bounded, where b ∈ N≥0, provided that:
psioa(X) is b-bounded as per definition 207.

We extend these definitions 207 and 208 to automata families in the obvious manner. An automata
family (Ak)k∈N is b-bounded with b ∈ NN, if ∀k ∈ N, Ak is b(k)-bounded. Finally, An automata family
(Ak)k∈N is polynomially-bounded if it is b-bounded with a polynomial b.

For sake of conciseness, we introduce the following opeartor.

Definition 209 (universal set). For every PSIOA or PCA A for every mappingm(A) with dom(m(A)) =
QA, we note ^

m(A) =
⋃

q∈QA

m(A)(q).

6.1.2. Boundedness preservation by usual operators

As for bounded PIOA [CCK+07], the composition of two time-bounded PSIOA (resp. PCA) is also
time-bounded, with a bound that is a linear combination of the bounds for the two components.

Lemma 78 (composition of bounded PSIOA is bounded). There exists a constant ccomp such that the
following holds. Suppose A1 is a b1-time-bounded PSIOA (resp. PCA) and A2 is a b2-time-bounded
PSIOA (resp. PCA), where b1, b2 ≥ 1. Then A1||A2 is a ccomp ·(b1 +b2)-bounded PSIOA (resp. PCA).

Proof. We describe how the different bounds of definition 207 combine when we compose A1 and A2.
Details about encoding of the cartesian product (resp. union) of two encoded sets can be found in
2.4.3.1, namely in proposition 5 (resp. 6).

1. Automaton parts: Every action has a standard representation which is the same as its rep-
resentation in A1 or A2. The length of this representation is, therefore, at most max(b1, b2).
Every state of A1||A2 can be represented with a 2 · (b1 + b2) + 2 ≤ 3 · (b1 + b2)-bit string, by
following each bit of the bit-string representations of the states of A1 and A2 with a zero, and
then concatenating the results, separating them with the string 11. Likewise, every transition
of A1||A2 can be represented as a 3 · (b1 + b2)-bit string, by combining the representations of
transitions of one or both of the component automata.

2. Decoding: It is possible to decide whether a candidate state q = (q1, q2) is the start state of
A1||A2 by checking if q1 is the start state of A1 and q2 is the start state of A2. Given the
representation 〈(q1, q2)〉 of a state (q1, q2) ∈ QA1||A2 , it is possible to decide if a candidate
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input action is an element of in(A1||A2)(q1, q2) by checking if it is an element of in(A1)(q1) or
in(A2)(q2) but not an element of in(A1)(q1) or in(A2)(q2). Given the representation 〈(q1, q2)〉
of a state (q1, q2) ∈ QA1||A2 , it is possible to decide if a candidate action is an element of
out(A1||A2)(q1, q2) (resp. int(A1||A2)(q1, q2)) by checking if it is either an element of out(A1)(q1)
or out(A2)(q2) (resp. int(A1)(q1) or int(A2) (q2)) All these verifications can be done in time
O(b1 + b2).
Given the representations 〈(q1, q2)〉 and 〈a〉 of a state (q1, q2) ∈ QA1||A2 and an action a ∈
ŝig(A1||A2)((q1, q2)), it is possible to decide whether a candidate transition tr = ((q1, q2), a, η1⊗
η2) is a transition of A1||A2 by checking if tr1 = (q1, a, η1) is a transition of A1 or tr2 = (q2, a, η2)
is a transition of A2 after having extracted the bit-string representation of q1, q2, tr1, tr2 with
time O(b1 + b2).

3. Determining the next state: Assume Mstate1 and Mstate2 are the probabilistic Turing Machines
described in last item of definition 207 for A1 and A2 respectively. We define Mstate for A1||A2
as the probabilistic Turing machine that, given state q = (q1, q2) of A1||A2 where q1 = q � A1
and q2 = q � A2 and action a ∈ ŝig(A)(q), outputs the next state of A1||A2 as q′ = (q′1, q′2),
where q′1 is the next state of A1 and q′2 is the next state of A2. The state q′ is computed as
follows: If a ∈ ŝig(A1)(q1), then q′1 is the output of Mstate1(q1, a), while q′1 = q1 otherwise. If
a ∈ ŝig(A2)(q2) then q′2 is the output of Mstate2(q2, a), while q′2 = q2 otherwise. Mstate always
operates within time O(b1 + b2): this time is sufficient to determine whether a ∈ ŝig(A1)(q1)
and/or a ∈ ŝig(A2)(q2), to extract the needed parts of q to run Mstate1 and/or Mstate2. Using
standard Turing machine encoding, each of the needed Turing machines can be represented using
O(b1 + b2) bits.

Of course, the result holds for PCA.

Lemma 79 (composition of bounded PCA is a bounded). There exists a constant c′comp such that
the following holds. Suppose X1 is a b1-time-bounded PCA and X2 is a b2-time-bounded PCA, where
b1, b2 ≥ 1. Then X1||X2 is a c′comp · (b1 + b2)-bounded PCA.

Proof. psioa(X1||X2) = psioa(X1)||psioa(X2) which implies psioa(X1||X2) is a c · (b1 + b2)-bounded
PSIOA.

The hiding operator does not affect the boundedness of an automaton.

Definition 210 (b-recognizable function). Let h : Q → P(A) where Q and A are encoded sets.
The function h is b-recognizable if there exists a b-bounded Turing Machine M , such that, given the
representation 〈q〉 of a state q ∈ Q, given the representation 〈a〉 ∈ {0, 1}∗ of a candidate action, M
decides if a ∈ h(q).

Details on decision can be found in subsection 2.4.4, namely in definition 55.

Lemma 80 (hiding of bounded automata is bounded). There exists a constant chide such that the
following holds. Suppose A is a b-time-bounded PSIOA (resp. PCA), where b ∈ N, b ≥ 1. Let h be
a b′-time recognizable function with QA as domain. Then hide(A, h) is a chide · (b+ b′)-time-bounded
PSIOA (resp. PCA).
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Proof. All properties for B = hide(A, S) are straightforward to check, except for the output actions
and the internal actions. Let 〈q〉 be the bit-string representation of q ∈ QB. Let 〈a〉 be the bit-string
representation of a candidate action a.

1. Output actions: To check whether a is an element of out(B)(q), we use the fact that a is an element
of out(B)(q) if and only if a is an element of out(A)(q) and is not in S(q). So, to determine whether a
is an element of out(B)(q), we can use the procedure for checking whether a is an element of out(A)(q),
followed by checking whether a is in S(q).

2. Internal actions: To check whether a is an element of int(B)(q), we use the fact that a is an element
of int(B)(q) if and only if a is an element of int(A)(q) or is in S(q). So, to determine whether a is
an element of int(B)(q), we can use the procedure for checking whether a is an element of int(A)(q),
followed by checking whether a is in S(q).

using a reserved special bit constant-sized sequence of bits b∗ for concatenation, it the bit-string
representation of hidden-actions(B)(q) can easily have a size of O(b+ b′) bits.

In all cases, the total time is proportional to b + b′. Using standard Turing machine encodings, each
of the needed Turing machines can be represented using a number of bits that is proportional to
b+ b′.

6.1.3. Bounded Scheduling

In the previous section, we adapted the boundness of I/O automata from [CCK+07] into the dynamic
setting. However, at the moment, there is no bound imposed on the number of transitions that a
PSIOA or a PCA may perform, which could lead to a potentially unbounded behavior and so to a
potentially too important computational power.

Therefore [CCK+07] introduced a final restriction on runtime imposed only for comparison of the
behaviors of different PSIOA (resp. PCA) using implementation relations, by adding bounds on the
number of activations.

In this thesis, we are slightly less restrictive than [CCK+07], since we tolerate a broader set of sched-
ulers instead of only accepting task-schedulers [CCK+18] which generalizes fully off-line schedulers
that decide in advance order of "tasks" to perform, where a task is an equivalence class on actions. In
addition to the obtained generality, the advantages are as follows:

– We do not have to formalize the extension of task-structures to the dynamic setting with the
attached issues mentioned in section 4.6.2.

– We can define a scheduler schema that is oblivious in the sufficient sense to ensure the correctness
of the studied emulation candidate.

– We can define a creation-oblivious scheduler schema. This property has been shown in section 4.5
to be necessary to ensure that the implementation relation is monotonic w.r.t. PSIOA creation,
i.e. if PCA XA and XB differ only in that XA dynamically creates and destroys PSIOA A
instead of creating and destroying PSIOA B as XB does, and if A implements B (in the sense
they cannot be distinguished by any external observer), then XA implements XB. This property
will allow us to obtain monotonicity w.r.t. PSIOA creation for the relation of secure emulation
in future work.

Definition 211 (bounded scheduler). Let A be an automaton, let b ∈ N. Let σ ∈ schedulers(A), we
say that σ is b-time bounded if ∀α ∈ Execs(A) with |α| > b, supp(σ(α)) = ∅, i.e. the scheduler never
executes more than b actions.

207



Chapter 6 : Dynamic Secure Emulation

We could require that (*) the scheduler has to be a bounded automaton, but this precision is at the
discretion of the designers of the solution. The results remain true if (*) is required or not.

6.1.4. Implementation

In this section, we adapt the approximate implementation to the bounded setting following the same
methodology as in [CCK+07].

Strongly inspired by classic literature of cryptography, the choice of perception-function f(.,.) in
[CCK+07] is the function accept that, given an execution α, outputs 1 if a special action acc ap-
pears in trace(α) and 0 otherwise. This function captures the idea that the environment distinguishes
the real world from the idealized one. This is at the discretion of the user of the framework to
choose a particular perception-function. But we let it as general as possible to be also able to use the
perception-function of environment projection proj(.,.) that is particularly well-suited to obtain the
monotonicity w.r.t PSIOA creation of implementation (see section 4.5). In future work, we want to
use the perception-function proj(.,.) to extend this monotonicity result to secure emulation.

We recall that a scheduler of a PSIOA (resp. PCA) A is a function that maps each execution fragment
to a probability on the enabled transitions, i.e. σ : Frags∗(A) → SubDisc(DA) such that (q, a, η) ∈
supp(σ(α)) implies q = lstate(α).

Definition 212 (scheduler). A scheduler of a PSIOA (resp. PCA) A is a function

σ : Frags∗(A) → SubDisc(DA) such that (q, a, η) ∈ supp(σ(α)) implies q = lstate(α). Here
SubDisc(DA) is the set of discrete sub-probability distributions on DA. Loosely speaking, σ decides
(probabilistically) which transition to take after each finite execution fragment α. Since this decision
is a discrete sub-probability measure, it may be the case that σ chooses to halt after α with non-zero
probability: 1− σ(α)(DA) > 0. We note schedulers(A) the set of schedulers of A.

Now we are ready to extend the approximate implementation of [CCK+07] to both bounded and
dynamic settings.

Definition 213 (approximate implementation). Let S be a scheduler schema and f be an insight
function. Let A and B be two PSIOA (resp. PCA). Let ε ∈ R≥0, (p, q1, q2) ∈ N3. We note A ≤S,fp,q1,q2,ε B
if for every p-bounded E ∈ env(A)∩env(B), for every q1-bounded σ ∈ S(E||A), there exists a q2-bounded
σ′ ∈ S(E||B) s.t. σB≤ε(E,A,B),fσ

′ in the sense of definition 176. We extend this definition to scheduler
families as follows:

Let A = (Ak)k∈N and B = (Bk)k∈N be two PSIOA (resp. PCA) families, p, q1, q2 ∈ NN and ε : N →
R≥0. We note A ≤S,fp,q1,q2,ε B if ∀k ∈ N, Ak ≤S,fp(k),q1(k),q2(k),ε(k) Bk.

Finally, we note A ≤S,fneg,pt B if there exists polynomial functions p, q1, q2 and a negligible function ε

s.t. A ≤S,fp,q1,q2,ε B.

Lemma 81 (Implementation transitivity). Let S be a scheduler schema. Let ε12, ε23, ε13 ∈ R≤0, p, q1, q2, q3 ∈
N with ε13 = ε12 + ε23, Let f(.,.) be an insight-function. Let A1, A2, A3 be PSIOA (resp. PCA), s.t.
A1 ≤S,fp,q1,q2,ε12 A2 and A2 ≤S,fp,q2,q3,ε23 A3, then A1 ≤S,fp,q1,q3,ε13 A3.

Proof. Let E ∈ env(A1) ∩ env(A3) be p-bounded.

Case 1: E ∈ env(A2). Let σ1 ∈ S(E||A1) q1-bounded, then, since A1 ≤S,fp,q1,q2,ε12 A2 there exists
σ2 ∈ S(E||A2) q2-bounded s.t. σ1B

≤ε12
(E,A1,A2),fσ2. and since A2 ≤S,fp,q2,q3,ε23 A3, there exists σ3 ∈
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S(E||A3) q3-bounded s.t. σ2B
≤ε23
(E,A2,A3),fσ3 and so, by lemma 9 of transitivity of relation B≤ε(E,.,.)f , for

every σ1 ∈ S(E||A1) q1-bounded, there exists σ3 ∈ S(E||A3) q3-bounded s.t. σ1B
≤ε13
(E,A1,A3),fσ3 , i.e.

A1 ≤S,fp,q1,q3,ε13 A3.

Case 2: E /∈ env(A2). The same renaming procedure as in the proof of theorem 4 can be applied
before applying Case 1.

Theorem 31 (Implementation transitivity). Let S be a scheduler schema. Let f(.,.) be an insight-
function.

Let A1, A2 and A3 be PSIOAs (resp. PCA) families satisfying:

A1 ≤
S,f
neg,pt A2, and A2 ≤

S,f
neg,pt A3 then A1 ≤

S,f
neg,pt A3.

Proof. Immediate by lemma 81.

Lemma 82 (composability ≤S,fp,q1,q2,ε). Let ε ∈ R≥0 and p, p3, q1, q2 ∈ N be given. Let f be a
perception-function.

Let S be a scheduler schema. Let A1, A2 and A3 be 3 PSIOA (resp. PCA) satisfying: A3 has
p3-bounded description and is partially compatible with both A1 and A2. Then the following holds:

If A1 ≤S,fccomp(p+p3),q1,q2,ε A2, where ccomp is the constant factor associated with description bounds in
parallel composition (see lemma 78 ), then A3||A1 ≤S,fp,q1,q2,ε A3||A2.

Proof. Fix A1, A2 and A3 and all the constants as in the hypotheses. Consider any p-time-bounded
environment E for A3||A1 and A3||A2. We must show that, for every q1-time-bounded scheduler σ1 ∈
S(E||A3||A1), there is a q2-time-bounded scheduler σ2 ∈ S(E||A3||A2) such that σB≤ε(E,A3||A1,A3||A2),fσ

′

To show this, fix σ1 to be any q1-time-bounded scheduler in S(E||A3||A1). The composition E||A3 is
an environment for both A1 and A2. Moreover, lemma 78 implies that E||A3 is ccomp · (p+ p3)-time-
bounded. Since A1 ≤S,fccomp·(b+b3),b1,b2 A2, E||A3 is a ccomp(b+b3)-time-bounded environment for A1 and
A2, and σ1 is a q1-time-bounded scheduler for E||A3||A1 , we know that there is a q2-time-bounded
scheduler σ2 for E||A3||A2 such that σ1B

≤ε
(E||A3,A2,A1),fσ2. Finally, the stability by composition of f

gives σ1B
≤ε
(E,A3||A1,A3||A2),fσ2 which ends the proof.

Lemma 83 (composability ≤S,fp,q1,q2,ε
). Let ε : N → R≥0 and p, p3, q1, q2 ∈ NN be given. Let S be

a scheduler schema. Let f(.,.) be a perception-function. Let A, B and C be 3 PSIOA (resp. PCA)
families satisfying: C has p3-bounded description and is partially compatible with both A and B. Let
ccomp be the constant factor associated with description bounds in parallel composition (see lemma 78)
Then the following holds.

If A ≤S,fccomp(p+p3),q1,q2,ε B, then C||A ≤
S,f
p,q1,q2,ε C||B.

Proof. Fix A = (Ak)k∈N, B = (Bk)k∈N, C = (Ck)k∈N and all the functions as in the hypotheses.

By definition 213, for every k ∈ N, Ak ≤S,fp′(k),q1(k),q2(k) Bk with p′ = (ccomp · (p+ p3)),

Thus, ∀k ∈ N, (Ck||Ak) ≤S,fp(k),q1(k),q2(k) (Ck||Bk) by lemma 82.

Finally, we obtain that C||A ≤S,p,q1,q2,ε C||B, as needed, applying definition 213 once again.
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Theorem 32 (composability ≤S,fneg,pt). Let S be a scheduler schema. Let f(.,.) be a perception-function.

Let A1, A2 and A3 be PSIOAs (resp. PCA) families satisfying: A3 has p3-bounded description where
p3 is a polynomial and is partially compatible with both A1 and A2. Then the following holds.

If A1 ≤
S,f
neg,pt A2, then A3||A1 ≤

S,f
neg,pt A3||A2. Observe that, by induction, the theorem generalizes to

any constant number of substitutions.

Proof. Suppose A1, A2, A3 and all the functions as in the hypotheses. Fix polynomial p3 such that A3
is p3-time-bounded. To show that A3||A1 ≤

S,f
neg,pt A3||A2, we fix polynomials p and q1; we must obtain

a polynomial q2 and a negligible function ε such that A3||A1 ≤S,fp,q1,q2,ε A3||A2. Define p′ to be the
polynomial ccomp(p + p3). Since A1 ≤

S,f
neg,pt A2, there exist a polynomial q2 and a negligible function

ε such that A1 ≤
S,f
p′,q1,q2,ε

A2. Lemma 83 then implies that A3||A1 ≤
S,f
p′,q1,q2,ε

A3||A2, as needed.

Theorem 33 (substitutability of ≤S,fneg,pt). Let S be a scheduler schema. Let f be a perception function.

Let (A1,A2,A3,A4) be a quadruplet of families of PSIOA (resp. PCA).

If A1 ≤
S,f
neg,pt A2, A3 ≤

S,f
neg,pt A4 and A3,A4 are both partially compatible with both A1,A2, then

A3||A1 ≤
S,f
neg,pt A4||A2.

Observe that, by induction, the theorem generalizes to any constant number of substitutions.

Proof. By theorem of composability A3||A1 ≤
S,f
neg,pt A3||A2 and A4||A1 ≤

S,f
neg,pt A4||A2. By theorem of

transitivity A3||A1 ≤
S,f
neg,pt A4||A2.
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6.2. Security Layer

In this section, we adapt the security layer of [CCK+07], on top of the foundational layer introduced in
previous sections. This layer follows the general outline of simulation-based security. In this approach,
computational security is captured within the model itself.

6.2.1. Structured dynamic I/O Automata

First, we extend the PSIOA definition with an additional attribute called the environment action
mapping EActA : q ∈ QA 7→ EActA(q) ⊆ êxt(A)(q) , that captures the idea that some actions are
intended to be accessible by the environment while others by the adversary.

Definition 214 (Structured PSIOA). A structured PSIOA A is a n-uplet ((QA, q̄A, sig(A), DA), EActA)
where (QA, q̄A, sig(A), DA) is a PSIOA and EActA is a mapping function with domain QA such that
∀q ∈ QA, EActA(q) ⊆ êxt(A)(q).

The adversary action mapping of A is AActA : q ∈ QA 7→ êxt(A)(q) \ EActA(q).

For convenience, we also define:
1. EIA : q ∈ QA 7→ EActA(q) ∩ in(A)(q) (environment inputs),
2. EOA : q ∈ QA 7→ EActA(q) ∩ out(A)(q) (environment outputs),
3. AIA : q ∈ QA 7→ AActA(q) ∩ in(A)(q) (adversary inputs) and
4. AOA : q ∈ QA 7→ AActA(q) ∩ out(A)(q) (adversary outputs).

Let SA : q ∈ QA 7→ SA(q) ⊆ out(A)(q). We note EActA \ SA : q ∈ QA 7→ EActA(q) \ SA(q)). We
note hide((A, EActA), SA) = (hide(A, SA), EActA \ SA)

When this is clear in the context, we slightly abuse the notation and call a structured PSIOA a PSIOA.

Observe that nothing prevent us to require that (
⋃

q∈QA

EActA(q),
⋃

q∈QA

AActA(q)) is a partition of

acts(A) s.t. an action a cannot be an environment action in a state and become an adversary action
in another state.

We state the compatibility conditions and the composability operation for compatible structured
PSIOA.

Definition 215 (Compatible structured PSIOA). Two structured PSIOA (A1, EActA1) and (A2, EActA2)
are compatible at state (q1, q2) ∈ QA1×QA2 if A1 and A2 are compatible at state (q1, q2) ∈ QA1×QA2

and ŝig(A1)(q1)∩ ŝig(A2)(q2) = EActA1(q1)∩EActA2(q2). Furthermore, they are partially-compatible
if A1 and A2 are partially-compatible and (A1, EActA1) and (A2, EActA2) are compatible at every
reachable state of (A1,A2). That is, every shared action must be an environment action of both
structured PSIOA.

Definition 216 (Structured PSIOA composition). Given partially-compatible structured PSIOA (A1, EActA1)
and (A2, EActA2), their partial-composition (A1, EActA1)||(A2, EActA2) is the structured PSIOA
(A1||A2, EActA1 ∪EActA2) where EActA1 ∪EActA2 : (q1, q2) ∈ QA1||A2 7→ EActA1(q1)∪EActA2(q2).

We can also extend the previous definition to PCA:

Definition 217 (Structured configuration). A structured configuration is a pair (A,S) where A
is a family of structured PSIOA and S is a mapping function with domain A such that for every
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A ∈ A,S(A) ∈ QA. Furthermore, in addition of attributes of definition 65, we note EAct(C) =⋃
A∈A

EActA(S(A)).

Definition 218 (Compatible structured configuration). A structured configuration (A,S) is compat-
ible iff, for all A,B ∈ A,A 6= B, A,B are compatible at state (S(A),S(B))

Definition 219 (Structured PCA). A structured PCA X is a PCA s.t. (1) the attached PSIOA is
replaced by a structured PSIOA, (2) config(X) is a function that maps every q ∈ QX to a compatible
structured configuration config(X)(q) and (3) X is associated with the mapping EActX with domain
QX s.t. ∀q ∈ QX , EActX(q) = EActpsioa(X)(q) = EAct(config(X)(q)) \ hidden-actions(X)(q)

We can naturally define the composition of partially-compatible structured PCA which is the same as
the one of definition 216. Such a composition naturally yields a structured PCA.

Lemma 84 (Closure of structured PCA under composition). Let X1 and X2 be partially-compatible
structured PCA. Then X1||X2 is a structured PCA.

Proof. Let X = X1||X2. For every q ∈ QX (resp. qi ∈ QXi with i ∈ {1, 2}), we note h(q) = hidden-
actions(X)(q) (resp. hi(qi) = hidden-actions(Xi)(qi) with i ∈ {1, 2}). In the same way, for every
q ∈ QX (resp. qi ∈ QXi with i ∈ {1, 2}), we note C(q) = Config(X)(q) (resp. Ci(qi) = Ci(Xi)(qi)
with i ∈ {1, 2}).

The closure under composition is ensured if the new restriction ∀(q1, q2) ∈ QX ∩ (QX1 × QX2) ,
EActX((q1, q2)) = EAct(C((q1, q2))) \ h((q1, q2)) is still ensured after composition.

Let (q1, q2) ∈ QX ∩ (QX1 ×QX2) , EActX((q1, q2)) = EAct(C((q1, q2))) \ h((q1, q2)). We need to show
that EActX1(q1) ∪ EActX2(q2) = (EAct(C1(q1)) \ h1(q1)) ∪ (EAct(C2(q2)) \ h2(q2)) = EAct(C1(q1)
∪ C2(q2)) \ (h1(X1)(q1) ∪ h2(q2)). This constraint is ensured for the same reason that the fourth
one. Indeed, let α be a pseudo execution of (X1, X2) ending on state (q1, q2). Since X1 and X2
are partially-compatible by assumption, (i) the signatures sig(C1(q1)) and sig(C2(q2)) are compatible
and (ii) sig(X1)(q1) and sig(X2)(q2) are compatible. The conjonction of (i) and (ii) implies h1(q1)
∩ ŝig(X2)(q2) = h2(q2) ∩ ŝig(X1)(q1) = ∅. This is enough to ensure (EAct(C1(q1)) \ h1(q1)) ∪
(EAct(C2(q2)) \ h2(q2)) = EAct(C1(q1) ∪ C2(q2)) \ (h1(q1)∪h2(q2)) which terminates the proof.

6.2.2. Adversary for structured automata

In the following, we extend the notion of adversary introduced in [CCK+07] to the adversary for
structured PSIOA.

Definition 220 (Adversary for structured automaton). An adversary Adv for a structured PSIOA
(resp. PCA) (A, EACTA) is a PSIOA (resp. PCA) s.t.

– Adv is partially-compatible with A
– For every q = (qA, qAdv) ∈ Q(A||Adv),

• IAA(qA) ⊆ out(Adv)(qAdv)
• EActA(qA) ∩ ŝig(Adv)(qAdv) = ∅

We extend the definition to an automata family: An adversary Adv for a structured PSIOA (resp.
PCA) family (A, EActA) = (Ak, EActAk)k∈N is a family (Advk)k∈N of PSIOA (resp. PCA) s.t.
∀k ∈ N, Advk is an adversary of Ak
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Lemma 85 (An advesary for A||B is an adversary for A). Suppose A and B are compatible structured
PSIOA (resp. PCA), and Adv is an adversary for A||B. Then Adv is an adversary for A. Also, if
A and B are compatible structured PSIOA (resp. PCA) families, and Adv is an adversary family for
A||B. Then Adv is an adversary family for B.

Proof. Suppose A and B are compatible structured PSIOA and Adv is an adversary for A||B. We
observe that the conditions of definition 220 are satisfied.

1. Adv is compatible with A. This follows from the fact that Adv is compatible with A||B.
2. Let q′ = (qA, qAdv) ∈ Q(A||Adv). Then there exists q = (qA, qB, qAdv) ∈ Q(A||B||Adv). Since Adv is

an adversary for A||B we know that:
– IAA(qA) ∪ IAB(qB) ⊆ out(Adv)(qAdv), which means that IAA(qA) ⊆ out(Adv)(qAdv).
– EActA(qA)∪EActB(qB)∩ŝig(Adv)(qAdv) = ∅, which means that EActA(qA)∩ŝig(Adv)(qAdv) =
∅.

The extension to structured automata families and adversaries families is straightforward.

6.2.3. Dynamic Secure-Emulation

The framework is finally expressive enough to define secure-emulation [CCK+07] for distributed sys-
tems with (i) non-sequential scheduling and (ii) dynamic creation/destruction of automata. This
relation will be shown to be (iii) composable, which is the main contribution of this chapter.

Definition 221 (Secure Emulation). Let A and B be two structured PSIOA (resp. PCA) families.
Let S be a scheduler schema and f(.,.) be an insight function.

We say that A secure-emulates B w.r.t. S and f (denoted A ≤S,fSE B) if, for every polynomially bounded
adversary family Adv for A with, there is a polynomially bounded adversary family Sim for B such
that:
hide(A||Adv,AActA) ≤S,fneg,pt hide(B||Sim,AActB). Transitivity of ≤S,fSE follows immediately from
transitivity of ≤S,fneg,pt.

Dummy Adversary To prove the composability of secure-emulation, we use the well-known technique,
introduced by Canetti [Can01], based on dummy-adversary which plays the role of a forwarder between
a structured PSIOA (resp. PCA) A and another (potentially more sophisticated) adversary of g(A)
where g is an action-renaming function.

Let A be a structured PSIOA family and, for each k ∈ N, let gk be a partial function defined on
QA × acts(A) s.t. ∀q ∈ QA, gk(q) is a bijection from AActAk to a set of fresh action names. We refer
to g = {gk}k∈N as a renaming of adversary actions for A, and we write g(A) for the result of applying
gk to Ak for every k ∈ N.

Definition 222 (Dummy Adversary). Let A be a PSIOA (resp. PCA) and g be a bijection from
AActA to a set of fresh action names. Then Dummy(A, g) is the PSIOA (resp. PCA) Adv′ defined
as follows:

– (States) Every state q of Adv′ is described by its unique variable q.pending ∈
^

AOA∪g(
^
AIA)∪{⊥}

– (Start state) q̄Adv′ .pending = ⊥
– (Signature) ∀q ∈ QAdv′:

• in(Adv′)(q) =
^
in(Adv′) =

^
AOA ∪ g(

^
AIA)
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• int(Adv′)(q) = ∅

• out(Adv′)(q) =


{a} if g(a) = q.pending ∈ g(AIA)
{g(a)} if a = q.pending ∈ AOA
∅ if q.pending = ⊥

– (Transition) ∀q ∈ QAdv′, ∀a ∈ ŝig(Adv′)(q), supp(η(Adv′,q,a)) = {q′} s.t.:
• if a ∈ in(Adv′)(q), q′.pending = a

• if a ∈ out(Adv′)(q), q′.pending = ⊥
We extend this definition to families: Let A be a structured PSIOA (resp. PCA) family {Ak}k∈N. Let
g = {gk}k∈N be a family of bijection from

^
AActAk to a set of fresh action names. Then Dummy(A, g) =

{Dummy(Ak, gk)}k∈N is a dummy adversary family for A.

The following lemma 86 shows that dummy adversaries can be transparently added between a struc-
tured PSIOA (resp. PCA) and an adversary for that structured PSIOA (resp. PCA). This fact is used
in the proof of composability of secure-emulation, with the classic decomposition technique introduced
by Canetti [Can01]. Additional work is required compared to [CCK+07] since we have to deal with
a more general definition that enables schedulers that are not task-schedules. However, the approach
follows the same methodology, i.e. when the scheduler σ instructs to trigger an action shared by g(A)
and Adv, the corresponding balanced scheduler σ′ successively orders to trigger the corresponding
action (modulo a potential renaming) and the attached forward by the dummy adversary. The proof
of this lemma 86 introduces two natural constructions Forwarde(A,g,Adv) and Forwards(A,g,Adv), to
formalise the fact that the dummy adversary forwards the actions between A and Adv. A pair (S, f)
made up of a scheduler and an insight function that allow these very natural constructions, is said
brave. For sake of simplicity, these natural constructions Forwarde(A,g,Adv) and Forwards(A,g,Adv) are
defined in the proof itself.

Lemma 86 (Dummy adversary insertion). Let (S, f) be a brave pair made of a scheduler schema S and
an insight-function f . Let A be a structured PSIOA (resp. PCA) family {Ak}k∈N. Let g = {gk}k∈N
be a family of bijection from

^
AActAk to a set of fresh action names. Let Adv = {Advk}k∈N be an

adversary for both g(A) and hide(A||Dummy(A, g), AActA). Then,

g(A)||Adv ≤S,fneg,pt hide(A||Dummy(A, g), AActA)||Adv

Proof. Let q1 be any polynomial and set q2 := 2 · q1. Let p, q be any polynomials and ε be the
constant zero function, i. e. ∀k ∈ N, ε(k) = 0. Fix k ∈ N, we note Dk = Dummy(Ak, gk), Hk =
hide(Ak||Dk, AActAk) andD = (Dk)k∈N andH = (Hk)k∈N. Let E be an environment for gk(Ak)||Advk
and for Ak||Hk||Advk. Let σ ∈ Sch(E||gk(Ak)||Advk) be a q1 bounded scheduler.

We are going to construct σ′ ∈ Sch(E||Hk||Advk) balanced with σ and q2 bounded scheduler in the
intuitive way.

First, we partition the functions depending if they are triggered by the environment or by the adversary.
Hence, ∀q = (qE , qA, qAdv) ∈ Q(E||gk(Ak) || Advk), for every q+ = (qE , qA, qD, qAdv) ∈ Q(E||Hk||Advk), we
note:

– E(q) = E(q+) = ŝig(E||gk(Ak)||Advk)((qE , qA, qAdv)) \ ([êxt(gk(Ak))(qA) ∩ êxt(Advk)(qAdv)] ∪
êxt(Dk)(qD)), i. e. the actions not dedicated to the dummy adversary.

– • FA(q) = [out(gk(Ak))(qA) ∩ in(Advk)(qAdv)] ∩ in(Dk)(qD),
• FAdv(q) = [in(gk(Ak))(qA) ∩ out(Advk)(qAdv)] ∩ in(Dk)(qD)
• F (q) = FA(q) ∪ FAdv(q)
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• F+
A (q+) = in(Dk)(qD) ∩ out(Ak)(qA)

• F+
Adv(q

+) = in(Dk)(qD) ∩ out(Adv)(qAdv)
• F+(q) = F+

A (q) ∪ F+
Adv(q)

each set holds actions that have to be forwarded by the dummy adversary.
– ∀a ∈ F+

A (q+), origin(a) = gk(a) and forward(a) = gk(a). ∀gk(b) ∈ F+
Adv(q

+), origin(gk(b)) =
gk(b) and forward(gk(b)) = b. When an action a is received by the dummy adversary, origin(a)
returns the corresponding action shared by gk(Ak) and Advk, while forward(a) returns the
action forwarded by the dummy adversary with potential gk-renaming.

– G+(q+) = ŝig(E||Ak)||Dk||Advk)((qE , qA, qDqAdv)) \ [E+(q+) ∪F+(q+)]. These actions corre-
sponds to a scenario where a new action is received by the dummy adversary before the appro-
priate forward. These actions will never be triggered by σ′.

Now, we define a relationship between executions, noted α ∼ α′, that captures the fact that the latter
member α′ of the relation corresponds to the former one α when each action shared by gk(Ak) and
Advk is correctly forwarded by dummy adversary in α′.

∀(α, α′) ∈ frags∗(E||gk(Ak)||Advk) × frags∗(E||Hk||Advk) we note α ∼ α′ iff:
– (initialisation): α′ = start(E||Hk, AActAk)||Advk) and α = start(E||g(Ak)||Advk)
– (environment side) α = (qE , qA, qAdv) a (q′E , q′A, q′Adv), α′ = (qE , qA, qD, qAdv) a (q′E , q′A, q′D, q′Adv)

with a ∈ E((qE , qA, qAdv))
– (forward) α = (qE , qA, qAdv) a (qE , q′A, q′Adv), α′ = (qE , qA, qD, qAdv) b (qE , q′A, q′D, q′Adv) b′ (qE , q′′A, q′′D, q′′Adv)

with a = origin(b) ∈ F ((qE , qA, qAdv)), b ∈ F+((qE , qA, qD, qAdv)), b′ = forward(b).
– (generalization) α = α1_α2_..._αn, α′ = α′1_α′2_..._α′n and ∀i ∈ [1, n], αi ∼ α′i

We note Forwarde(A,g,Adv)(α) the (clearly) unique α′ s.t. α ∼ α′.

Now we recursively define σ′ = Forwards(A,g,Adv)(σ) as follows: Let (α, α′) ∈ frags∗(E||gk(Ak)||Advk)
× frags∗(E||Hk||Advk), σ′ mimics σ, i. e.

– if α ∼ α′, ∀b ∈ ŝig(E||Hk||Advk)(lstate(α′)),
• if b ∈ E+(lstate(α′)), σ′(α′)(b) = σ(α)(b)
• if b ∈ G+(lstate(α′)), σ′(α′)(b) = 0
• if b ∈ F+(lstate(α′)), σ′(α′)(b) = σ(α)(origin(b))

– if α′ = α′′_bq′ with α ∼ α′′ and b ∈ F+(lstate(α′′)), then σ′(α′) = δforward(b).
By construction, for every α′ s.t. |α′| > q2(k), σ′(α′) = 0.

The construction ensures εσ(α) = εσ′(α′) for α ∼ α′ and εσ′(α′) = 0 if there is no α′′ with α′ as
prefix with |α′′| = |α′| + 1 s.t. there exists an execution α verifying α ∼ α′′. Since, by bravery
property, for every pair (α, α′) with α ∼ α′, we have f(Ek,Hk||Advk)(α) = f(Ek,gk(Ak)||Advk)(α′), we obtain
f -dist(Ek,gk(Ak)||Advk)(σ) = f -dist(Ek,Hk||Advk)(σ′).

We can use the previous lemma 86 to use the technique of reduction to dummy adversary introduced
by Canetti [Can01].

Theorem 34 (Composability of dynamic secure-emulation). Let (S, f) be a brave pair made of a
scheduler schema S and a perception-function f . Let b ∈ N. Let A1,A2, ...,Ab and B1,B2, ...,Bb
be pair-wise partially-compatible polynomial-time-bounded structured PSIOA (resp. PCA) families,
with Ai ≤S,fSE B

i for every i ∈ [1, b]. Then, we have Â ≤SE B̂ with Â = A1||A2||...||Ab and B̂ =
B1||B2||...||Bb.
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Proof. Let Adv be an adversary family for Â with polynomially bounded description. We need to
construct an adversary family Sim for B̂ with polynomially bounded description such that:
hide(Â||Adv,AActÂ) ≤S,fneg,pt hide(B̂||Sim,AActB̂).

For every (i, k) ∈ [1, b] × N. We note gik an arbitrary bijection from AActAi
k
to a set of fresh action

names, i. e. gi = {gik}k∈N is a renaming of adversary actions for Ai. These functions induce a renaming
for Â: g = {gk}k∈N with ∀k ∈ N, gk = g1

k ∪ ... ∪ gbk, i. e. ∀q ∈ QÂk , ∀a ∈ AActÂ(q), gk(a) = gik(a) iff

a ∈ AActAi
k
(q � Aik). We recall that cthe ompatibility definition for structured PSIOA requires that

shared actions of two automata cannot be adversary actions of their composition.

Let D̂um = Dummy(A1, g1)||...Dummy(Ab, gb). Let i ∈ [1, b]. Since Ai ≤SE Bi, then ∃DSimi s.t.
hide(Ai||Dummy(Ai, gi), AActiA)

≤neg,pt hide(Bi||DSimi, AActiB).

We note D̂Sim = DSim1||...||DSimb.

We observe the following:

hide(Â||Adv,AActÂ) ≡S,fneg,pt

hide(g(Â)||g(Adv), g(AActÂ)) ≤S,fneg,pt

hide(Â||D̂um||g(Adv), g(AActÂ) ∪AActÂ) ≤S,fneg,pt

hide(B̂||D̂Sim||g(Adv), g(AActÂ) ∪AActB̂) ≡S,fneg,pt

hide(B̂||hide(D̂Sim||g(Adv), g(AActÂ)), AActB̂)

Here, the first relation follows from the property of renaming, the second from lemma 86, the third
from theorem 33, and the last from the properties of the hiding operator.

We define Sim = hide(D̂Sim||g(Adv), g(AActÂ))

Hence we have shown that for every adversary family Adv for Â with polynomially bounded description
there exists a polynomially bounded adversary Sim for B̂ such that: hide(Â||Adv,AActÂ) ≤S,fneg,pt
hide(B̂||Sim,AActB̂), which ends the proof.
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6.3. Summary

We have shown how to merge PSIOA (resp. PCA) with computational restrictions and structures of
Canetti et al. [CCK+07] to enable simulation-based security. Here again, the good foundations of
chapter 3 have prevented any particular challenge from appearing.

However, some limitations appear. First, the theorem 34 of composability of dynamic secure emulation
only holds for a constant number of compositions, while we might be expected a polynomial number
of compositions. This limitation should not be too difficult to circumvent, by using a classic hybrid
argument [CCK+07]. For example, using the task-based scheduler mentioned in chapter 3, combined
with the hybrid argument of [CCK+07], should directly give the result. Second, fixed polynomial
runtime has been criticized in compositional simulation-based security literature [HMQU09, KTR20]
and is addressed with an alternative, quite sophisticated definition. It would be interesting to show
how to address this issue in a more simple LTS-based model like I/O Automata.
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Conclusion

Results

We have presented Dynamic Probabilistic I/O Automata. A framework extending in a natural manner
from previous I/O automata frameworks [Tut87, Seg95b, KLSV06, Mit07, AL16, CCK+07] to reason
on complex dynamic probabilistic systems, where features such as the notion of time and simulation-
based security can be easily added. In Chapter 3, the model has been shown (see theorem 2) to
be closed under parallel composition ||. Also, inheriting from previous composability results on trace
distribution precongruence ≤DC [Seg95b], our implementation relationship ≤S,fε is shown (see theorem
5) to be composable (i.e. a precongruence) for any scheduler schema S, any approximation ε and any
perception function f (e.g. trace or projection on the environment). In addition, these results of
closure and composabilty have been demonstrated for the timed setting in Chapter 5 (see theorems
26, 27, 29, 30) and for the secured setting in Chapter 6 (see lemma 79 and theorem 34).

Moreover, in Chapter 4, we proposed a generic proof of monotonicity of dynamic creation/destruction
of automata with ≤So,p0 , where p is the function of projection on the environment and So is the set
of schedulers that triggers actions without taking into account the triggered internal actions and the
visited states of automata before their last destruction. Hence if (1) A implements B and (2) XA and
XB only differ in the fact that XA dynamically creates/destroys A instead of B as XB does then (3)
XA implements XB. Formally, Theorem 23 states that:

if (1) A ≤So,p0 B and (2) XA OA,B XB, then (3) XA ≤So,p0 XB.

A similar theorem 24 of monotonicity has been proven for a new task-based implementation relation-
ship ≤ten0 , called tenacious implementation:

if (1) A ≤ten0 B and (2) XA OA,B XB, then (3) XA ≤ten0 XB.

Such a task-based framework might be more user-friendly to specify a fair and oblivious scheduler for
cyber-secure applications. The generic structure of the proof should allow the application of the same
reasoning to extensions of the framework with time and/or simulation-based security.

All these results allow a sound modular design of dynamic complex systems, based only on the exter-
nally visible behavior of each component.

Future Directions

Complementary Results Some questions remain open.

First, we do not know the simulation relationships necessary and/or sufficient to guarantee ≤So,p0
(and even more generally to guarantee ≤S,fε for any scheduler schema S, perception function f and
approximation ε). The similarity with ≤DC [Seg95a] suggests that such a simulation relationship
should be similar to the probabilistic forward simulation relationship [LSV03], but in which formal
sense? We stress that this question remains open even for the static setting and is linked with strong
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linearizability [GHW11, HHW12], where (1) the hyperproperties preservation depends on the choice
of the scheduler schema S and (2) some notions of approximate strong linearizability [AEW22] might
be defined. A source of inspiration can be found in [ML07a] that introduces expanded approximate
simulation for probabilistic input/output automata.

Second, we do not know if the dynamic creation/destruction of automata is monotonic with approxi-
mate implementation relationships such as ≤So,pε or ≤tenε (*), i.e.

if (1) A ≤So,pε B (resp. A ≤tenε B) ∧ (2) XA OA,B XB, do we have (3) XA ≤So,p0 XB (resp. XA ≤tenε XB)?

Third, if (*) turns out to be true, can we extend it to dynamic secure-emulation. Indeed, the definition
of secure-emulation implies a correspondence of one particular simulator for one particular adversary.
However, adapting the structure of the proof of monotonicity of chapter 4 to secure-emulation would
make appear a tree of different adversaries, which means that the dynamic simulator should find a
way to "track" all these different adversaries in a polynomial time. There is nothing to say, a priori,
that such an adaptation is possible.

Fourth, the possibility of adapting our monotonicity results to the timed setting also remains open.
Here, we are more confident, as we do not see any conceptual differences between timed and untimed
implementations. Typically, all the homomorphisms introduced in Chapter 4 can be trivially extended
to timed executions, while the copy-pasting operations in Section 4.5 should be adaptable to timed
executions as well. Of course, these intuitions do not constitute a proof and a rigorous proof is required
here.

Finally, it would be interesting to establish the set of consistency criteria (weaker than (strong)
linearizability) [Per16] whose implementation allows monotonicity of dynamic creation/destruction of
automata. Here again, the generic structure of the proof of Chapter 4 might help to give a generic
answer.

Verification of concrete dynamic distributed protocols In future work, we would like to give for-
mal and modular proofs of concrete distributed algorithms that manipulate notions of dynamicity,
randomization, partial synchrony, and cryptography. Such a venture should be faced in a gradual
manner. First, we could exhibit non-randomized simulation relationships [LV95] for non-randomized
dynamic protocols [DW93, MRT+05, BBKR09, BBR11, BN11, KLW11, BBS11, IRS+13, KLW13,
KW19, AKSW20, AKSW22] in a DIOA-based formalism. Second, we could exhibit probabilistic (for-
ward) simulation relationships [LSV03] for randomized dynamic protocols [BKLW12]. Third, such an
investigation could be extended to approximate simulations [ML07a] for randomized dynamic protocols
(in the symbolic model [DY83]) with a non-zero probability of failure, such as Algorand [CGMV18] or a
dynamic scalable Byzantine reliable broadcast, typically obtained from the combination of [GKM+19]
and [GKK+20]. Finally, the symbolic model could be replaced by a computational model to obtain a
composable simulation-based security analysis [CCK+07]. This would allow the composable analysis of
some sophisticated tasks such as dynamic secret sharing [BDLO15, ZZM+19, GKM+20] or side-chains
protocols that instantiates new blockchains on-the-fly on the top of the main blockchain [RPG19].

Parallelly, the Dynamic Automata framework gives a simple way to model mobile Byzantine processes
[Gar94, BDNPB16, BPPb+16, Del17]. Each process Xi is a PCA with a unique underlying PSIOA Ai
representing the program executed by the process, that additionally admits at each state a countable
set of input actions of the form corruptBi , such that triggering corruptBi both creates Bi and destroys
Ai in Xi at the same time. In addition, we require that every malicious program Bi additionally
admits at each state the input repairi such that triggering repairi both creates Ai and destroys Bi in
Xi at the same time. Analyzing protocols resilient to mobile Byzantine processes with this framework
is an interesting direction of research.

220



6.3 Summary

Sybil-Attack resistance mechanisms Another direction would be the investigation of relationships
between Sybil-Attack resistance mechanisms for group membership in the permissionless model [LPR21].
For example, what can be the exact guarantees provided by a Proof-of-Work [GKO+20] mecha-
nism versus a Proof-of-Stake [SW21], versus a Proof-of-Elapsed-time [PK21], versus a Proof-of-Space
[TZDC21], etc. Can we compose them in an intuitive sense? Do we need hybrid automata [Mit07] to
model properly the physical assumptions?

Also, we can identify different approaches to solving distributed tasks in the permissionless model. A
first approach is to ensure a kind of agreement and a Sybil-Attack resistance at once [Nak08], while
a second approach separates these two sub-tasks: (1) first, using a proof-of-X mechanism to elect a
committee of size n = o(m) among an enormous set of m processes that will then (2) implements a
classic Byzantine distributed task (e.g. consensus) on behalf of the other anonymous nodes [PS17].
This second technique allows scalability against a slight concession in terms of security. It seems
easier to reason on distributed tasks in the permissionless model if these two different sub-problems
are solved independently. Maybe the first achievement holds additional properties that can be used
by the second sub-protocol to improve its efficiency. The different pairings between (1) and (2) should
be investigated.

Simulation-based security Clearly, Universal-Composable (UC) framework [Can01, Can20] is the
most widely adopted model to analyze cryptographic systems with composable simulation-based secu-
rity. Both UC and alternative models [HS15, KTR20] proposed to overcome some weaknesses of UC
are sequential, i.e. pure-non determinism is resolved implicitly via a "master machine" that will select
the next machine to activate. It has been shown that non-sequential and sequential scheduling can
lead to different notions of security [CCLP07, Yon10]. Hence, a clarification of the potential results
of equivalency between the two models would be welcome. In which situations can we simulate UC
(or IITM [KTR20] or GNUC [HS15]) with Automata and vice-versa? The same kind of clarifications
would be appreciated for timed systems. The frameworks based on sequential Interactive Turing
Machines (ITMs) need extra efforts to handle timing assumptions [KMTZ13], while the notion of
trajectory [KLSV06, CCK+08] seems more user-friendly. Hence, what are the relationships between
these timed frameworks? Finally, what would be the translation of the non-fixed polynomial-runtime
[HMQU09] to the non-sequential scheduling?

Final word In this thesis, we provided new tools and new results to reason in a modular and rigorous
way about dynamic probabilistic distributed systems. We believe it is a relevant approach to face the
vertiginous complexity of modern systems. Such an undertaking should improve the understanding,
verification, and synthesis of current and forthcoming real complex systems.
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AppendixA
Second Part of the thesis: Byzantine
Distributed Tasks

A.1. Overview

The second part of the thesis addresses the implementation of Byzantine distributed tasks. Here, we
briefly present the associated contributions.

Decision task A decision task is a distributed input-output problem between n processes interacting
by message-passing, in which each process starts with its input value and eventually produces its output
value. In this second part of the thesis, we are particularly interested in non-synchronous protocols:
protocols that operate in an environment without (permanent) timely communication. A protocol is
said to be a t0-resilient implementation of a distributed task if it meets the specification of the task
despite the presence of t ≤ t0 Byzantine processes that collude and perform arbitrary (Byzantine)
failures. Unfortunately, for interesting tasks, it is impossible to design a t0-resilient algorithm that
avoids safety violations in the presence of a coalition of t ≥ n − 2t0 Byzantine processes, even in the
authenticated setting. This comes from a classic partition argument (see for example the proof of
theorem 4.4 of [DNS88]).

Accountability By contrast, only recently did the community discover that some of these distributed
protocols can be made accountable [HKD07, HK09] by ensuring that correct processes irrevocably
detect some faulty processes responsible for any safety violation. This realization is particularly
surprising (and positive) given that accountability is a powerful tool to mitigate safety violations
in distributed protocols. Indeed, exposing crimes and introducing punishments naturally incentivize
exemplarity. A protocol is said to be a t0-resilient accountable implementation of a distributed tasks
D if (1) it is a t0-resilient accountable implementation of D and (2) in case of a safety violation,
every correct process eventually outputs an irrefutable proof of misbehavior against at least n − 2t0
Byzantine processes.

Consensus Among these tasks, consensus is a fundamental problem of distributed computing which
enables processes to agree on a common value despite Byzantine failures. The Byzantine consensus
problem is defined among n processes, out of which some processes can behave arbitrarily; processes
that follow their protocol are correct, whereas processes that do not are faulty.

Each correct process initially proposes its value and may eventually produce an irrevocable decision
on some value. The Byzantine consensus problem is characterized by the following properties:

– Agreement: No two correct processes decide different values.
– Validity: If all correct processes propose the same value v, then no correct process decides a

value v′ 6= v.
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– Termination: Every correct process eventually decides.
This problem is one of the most important problems in distributed computing since it is equivalent
to (1) the problem of atomicity, which provides the illusion that a set of distributed machines acts
as (emulates) a unique machine, equivalent itself to (2) problem of state machine replication, where
several nodes can observe the same execution of a state machine, even if this machine is emulated by
geographically separated processes.

Contributions This part of the thesis is the result of a collaboration with the Distributed Computing
Lab (DCL) of EPFL, the Concurrent Systems Research Group (CSRG) of the University of Sydney,
and the Department of Computer Science: Algorithms and Theory of NUS Computing, under the
respective supervision of Professor Rachid Guerraoui, Professor Vincent Gramoli and Professor Seth
Gilbert. This cooperation led to the following 4 publications:

– Polygraph: Accountable Byzantine Agreement. P. Civit, S. Gilbert and V. Gramoli. 41st IEEE
International Conference on Distributed Computing Systems (ICDCS), 2021.

– As easy as ABC: Optimal (A)ccountable (B)yzantine (C)onsensus is easy! P. Civit, S. Gilbert,
V. Gramoli, R. Guerraoui, and J. Komatovic. 2022 IEEE International Parallel and Distributed
Processing Symposium (IPDPS), 2022.
(Best Paper Award)

– Crime and Punishment in Distributed Byzantine Decision Tasks. P. Civit, S. Gilbert, V.
Gramoli, R. Guerraoui, J. Komatovic and A. Seredinschi. 42nd IEEE International Confer-
ence on Distributed Computing Systems (ICDCS), 2022.
(Best Paper Award)

– Byzantine Consensus is Θ(n2): The Dolev-Reischuk Bound is Tight even in Partial Synchrony!
P. Civit, M. A. Dzulfikar, S. Gilbert, V. Gramoli, R. Guerraoui, J. Komatovic and M. Vidigueira.
36th International Symposium on Distributed Computing (DISC), 2022.
(Best Student Paper Award)

A.2. Polygraph: Accountable Byzantine Agreement.

In this paper, we present Polygraph [CGG20, CGG21], the first accountable consensus protocol (with
optimal dn3 e − 1-resiliency). The paper also shows why a large class of "leader-based" Byzantine
consensus protocols cannot be made accountable by a naive transformation. We deployed blockchains
based on Polygraph on up to n = 80 c4.xlarge AWS virtual machines, located in 5 availability zones
on two continents: Frankfurt, Ireland, London, North California, and North Virginia.

A.3. As easy as ABC: Optimal (A)ccountable (B)yzantine (C)onsensus is
easy!

In this paper [CGG+22a], we present the following contributions:

– We introduce ABC: a simple yet efficient transformation of any Byzantine consensus protocol to
an accountable one. ABC introduces an overhead of only two all-to-all communication rounds
and O(n2) additional bits in executions with up to t0 faults (i.e., in the common case).

226



A.4 Crime and Punishment in Distributed Byzantine Decision Tasks.

– We define accountability complexity, a complexity metric representing the number of accountability-
specific messages that correct processes must send. Furthermore, we prove a tight lower bound.
In particular, we show that any accountable Byzantine consensus protocol incurs cubic ac-
countability complexity. Moreover, we illustrate that the bound is tight by applying the ABC
transformation to any Byzantine consensus protocol.

– We demonstrate that, when applied to an optimal Byzantine consensus protocol, ABC constructs
an accountable Byzantine consensus protocol that is (1) optimal with respect to the communica-
tion complexity in solving consensus whenever consensus is solvable, and (2) optimal with respect
to the accountability complexity in obtaining accountability whenever disagreement occurs.

– We generalize ABC to other distributed computing problems besides the classic consensus prob-
lem. We characterize a class of agreement tasks, including reliable and consistent broadcast,
that ABC renders accountable.

A.4. Crime and Punishment in Distributed Byzantine Decision Tasks.

In this paper [CGG+22b], we propose the first generic transformation, called τscr , of any non-
synchronous distributed protocol solving a decision task into its accountable version. Our τscr trans-
formation is built upon the well-studied simulation of crash failures on top of Byzantine failures and
increases the communication complexity by a quadratic multiplicative factor in the worst case.

First, we show that one must be able to detect commission faults – faults that occur once a faulty
process invalidly sends a message – in order to achieve accountability in a non-synchronous setting.
Indeed, we prove that (1) every irrevocable detection must be based on a detected commission fault
(otherwise, a correct process can falsely be detected), and (2) (luckily for accountability!) whenever
safety is violated, “enough” processes have committed commission faults.

Furthermore, we separate all commission faults into (1) equivocation faults, faults associated with
an act of claiming conflicting statements, and (2) evasion faults, faults that occur once a faulty
process sends a message which cannot be sent given the previously received messages. Then, we
illustrate that detecting equivocation faults is easier in non-synchronous settings than detecting evasion
faults, concluding that equivocation faults are preferable means of violating safety in non-synchronous
distributed protocols.

Finally, we observe that the approach exploited by the well-studied simulation of crash failures on
top of Byzantine failures can be modified to ensure that evasion faults are masked (i.e., their effect is
eliminated), thus allowing only equivocation faults to violate safety.

Such a simulation is achieved using the secure broadcast primitive [MMR00]: (1) each originally sent
message is secure-broadcast, and (2) no secure-delivered message “affects” the receiver before a correct
causal past of the message has been established. Hence, no message that is a product of an evasion
fault influences a correct process (even if the system is entirely corrupted), implying that any safety
violation is necessarily the consequence of some equivocation faults. We base the τscr transformation
on the aforementioned approach based on the secure broadcast. Due to the complexity of the secure
broadcast primitive, our transformation increases the communication and message complexities of the
original protocol by an O(n2) multiplicative factor.
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A.5. Byzantine Consensus is Θ(n2): The Dolev-Reischuk Bound is Tight
even in Partial Synchrony!

The Dolev-Reischuk bound says that any deterministic Byzantine consensus protocol has (at least)
quadratic communication complexity in the worst case. While it has been shown that the bound is
tight in synchronous environments, it was still unknown whether a consensus protocol with quadratic
communication complexity can be obtained in partial synchrony, where a bound on time of message
exists but holds only eventually. Until now, the most efficient known solutions for Byzantine consensus
in partially synchronous settings had cubic communication complexity (e.g., HotStuff, binary DBFT).

This paper [CDG+22] closes the existing gap by introducing SQuad, a partially synchronous Byzan-
tine consensus protocol with quadratic worst-case communication complexity. In addition, SQuad
is optimally-resilient and achieves linear worst-case latency complexity. The key technical contribu-
tion underlying SQuad lies in the way we solve view synchronization, the problem of bringing all
correct processes to the same view with a correct leader for sufficiently long. Concretely, we present
RareSync, a view synchronization protocol with quadratic communication complexity and linear
latency complexity, which we utilize in order to obtain SQuad.
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