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L’objet de cette thèse est l’étude qualitative de problèmes d’optimisation de forme et de géométrie
spectrale issus de situations physiques variées faisant intervenir des discontinuités. Il s’agira prin-
cipalement de problèmes liés à des solutions d’équations aux dérivées partielles elliptiques avec des
conditions de bord dites “de Robin” qui apparaissent entre autres dans les vibrations de membranes
fixées élastiquement, dans les phénomènes de transfert thermique par convection, mais aussi sous
des formes plus générales (conditions de Navier) dans des phénomènes d’adhérence partielle entre un
fluide et une paroi.

Tous ces modèles présentent des discontinuités ; par exemple dans le cas d’un transfert ther-
mique par convection entre un solide et un fluide, il y a une couche limite de transition rapide entre
deux zones de températures distinctes qui sera modélisée dans notre cas par une discontinuité de
la température selon une surface. On peut aussi citer l’étude des fractures en milieu élastique qui
n’apparaîtront pas directement dans ces travaux mais qui sont à l’origine de certaines techniques
utilisées. Notamment nous étudierons l’écoulement d’un fluide visqueux autour d’un obstacle, qui
présente le même type de discontinuité.

Ces questions seront étudiées sous l’angle des problèmes à discontinuité libre. Plus précisément,
il s’agira d’étudier des solutions d’équations aux dérivées partielles et des problèmes d’optimisation
variés présentant des discontinuités selon des ensembles de codimension 1. Un exemple emblématique
de ce type de problème est la fonctionnelle de Mumford Shah; étant donnés g : Ω → [0, 1] une fonction
définie sur un domaine Ω ⋐ Rn, et trois constantes a, b, c > 0, le problème de Mumford Shah consiste
en la minimisation de la fonctionnelle

(K, u) 7→ a

ˆ
Ω\K

|∇u|2dL n + bH n−1(K) + c

ˆ
Ω\K

(u− g)2.

parmi tous les fermés K ⊂ Ω de dimension n− 1, et toutes les fonctions u ∈ H1(Ω \K).

Cette fonctionnelle a été créée à l’origine dans l’étude de la segmentation d’image; Ω est un rectan-
gle de R2, g représente les niveaux de gris de l’image que l’on veut approximer par des niveaux u plus
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lisses dans certaines zones, tout en permettant des transitions rapides (c’est-à-dire des discontinuités)
sur un ensemble K de codimension 1. a, b, c sont des constantes choisies selon l’importance accordée
à chaque phénomène que sont respectivement la régularité de u, la pénalisation de la longueur des
discontinuités et la proximité avec l’image de départ g.

Il existe de nombreux travaux et conjectures autour des minimiseurs de cette fonctionnelle, sur
le plan théorique on peut mentionner les livres [1] et [18] qui font un état de l’art d’il y a quelques
années autour des questions de régularité des minimiseurs. En particulier, l’une des conjectures cen-
trales est la caractérisation de l’ensemble de ces discontinuités K dans le cas bidimensionnel; est-ce
effectivement une union finie de courbes lisses, ne pouvant se rencontrer qu’en des jonctions triples
avec des angles de 120 degré ?

Cette fonctionnelle a plus tard trouvé d’autres applications notamment dans l’analyse des défor-
mations et fractures des matériaux élastiques fragiles avec sa généralisation vectorielle

(K, u) 7→ a

ˆ
Ω\K

|e(u)|2dL n + bH n−1(K) + c

ˆ
Ω\K

(u− g)2dL n,

où u ∈ H1(Ω \ K,Rn) et e(u) = ∇u+∇u∗

2 est la partie symétrique de la différentielle de u. Ce type
de problème apparaîtra dans notre cas dans l’étude de la traînée d’un obstacle plongé dans un fluide
visqueux, un contexte apparemment éloigné mais régi par des équations similaires.

Une idée centrale dans l’étude de ce type de problème est de changer la donnée de (K, u) en la
donnée d’une seule fonction u dans un espace de fonction plus général qui comporte à la fois des
parties lisses, et des discontinuités; il s’agit dans l’idée de fonctions “H1 par morceaux”. Les raisons
pour cela sont multiples: sauf hypothèse topologique ou géométrique particulière une suite de fermés
(Ki) obéissant à certaines contraintes de mesure n’a a priori pas de raison de converger vers un
minimiseur. Il n’y a pas de bonne notion de convergence qui fournit à la fois la compacité (comme
peut le faire la convergence au sens de Hausdorff) et un contrôle de la mesure, voire des fonctions ui
qui sont dans des espaces dépendant de Ki.

En effaçant la donnée de K et en considérant uniquement la fonction u, on se place dans un
espace de fonctions unique (du type BV (Rn)) avec des bonnes propriétés de compacité. En utilisant
ensuite l’équation au dérivées partielles ou le problème d’optimisation vérifié en un sens faible par la
fonction u, on arrive généralement à montrer que celle-ci est assez régulière pour retomber sur notre
problème de départ. Cela est formalisé plus précisément dans la théorie des espaces de fonctions
SBV (Special Bounded Variation), un sous-espace particulier des fonctions à variation bornée dont
la différentielle faible présente une certaine structure. Il s’agit des fonctions u ∈ L1

loc(Rn) telles que
Du (la différentielle de u au sens des distributions) soit une mesure vectorielle localement finie qui
se décompose sous la forme

Du = ∇uL n + (u+ − u−)νuH n−1⌊Ju,

où ∇u ∈ L1
loc(Rn) (et sera en fait L2

loc(Rn) dans beaucoup de problèmes que l’on étudiera) et Ju est
un ensemble rectifiable - inclus dans une union dénombrable d’hypersurfaces C1 - appelé l’ensemble
des sauts de u, qui est l’ensemble des x ∈ Rn tel que u(x+ r·) converge dans L1

loc(Rn) lorsque r → 0
vers la fonction constante par morceaux u+1⟨·,ν⟩>0 + u−1⟨·,ν⟩<0, où ν ∈ Sn−1, u± ∈ R. On y retrouve
les fonctions H1(Rn), pour lesquelles l’ensemble des sauts est H n−1-negligeable, ou au contraire
les indicatrices d’ensembles de périmètres finis E pour lesquelles D1E = −H n−1

⌊∂∗EνE (où ∂∗E est la
frontière réduite de E et νE est le vecteur normal sortant), mais aussi la situation “mixte” d’une
fonction u ∈ H1(Ω) où Ω ⋐ Rn est un ouvert lisse (par exemple Lipschitz), que l’on prolonge en

ũ(x) =
u(x) si x ∈ Ω

0 si x /∈ Ω
, et

Dũ = 1Ω∇uL n − u|∂ΩνΩH n−1⌊∂Ω,
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où u|∂Ω est la trace de u sur ∂Ω et νΩ le vecteur normal sortant de Ω. Mais on y trouve aussi des
fonctions n’étant pas issues de ce genre d’exemples, caractérisées par le fait que l’ensemble des sauts
n’est pas forcément fermé (à un ensemble négligeable près). Le gain de compacité obtenu en relaxant
un problème à discontinuité libre dans un espace SBV n’est donc pas gratuit, et c’est là qu’intervient
la théorie de la régularité de ce type de solutions relaxées, qui permet de revenir dans le problème
original. Le livre [1] est une référence très complète sur le sujet, et les bases et les résultats sur les
fonctions SBV utilisés par la suite sont expliqués dans le chapitre 3.

Dans la suite de l’introduction, je présente dans l’ordre chronologique les différents problèmes que
j’ai abordés pendant ma thèse. Le point de départ a été l’étude d’une équation dite “de Poisson”
avec une condition au bord de Robin, qui se présente de la façon suivante: étant donnés un domaine
borné et lisse Ω dans Rn, une fonction f ∈ L2(Ω), et β > 0, on cherche une fonction u ∈ H1(Ω)
vérifiant {

−∆u = f (Ω)
−∂νu = βu (∂Ω)

Par des méthodes variationnelles standards (théorème de Lax-Milgram), on a l’existence d’une
unique solution u. Voici deux interprétations possibles de cette quantité:

• On peut voir Ω comme un solide de conductivité thermique constante σ, plongé dans un milieu
à température constante T a. On suppose qu’il y a dans Ω une production de chaleur volumique
F , et que les échanges de température entre Ω et l’exterieur sont régis par un transfert par
convection à travers une couche limite, c’est-à-dire que le flux de température ∂νT|∂Ω est pro-
portionnel à T a − T|∂Ω. La constante de proportionnalité (notée α > 0) dépend des grandeurs
caractéristiques de la convection avec l’extérieur (épaisseur de la couche limite, conductivité de
l’extérieur...). Dans ce cas, la température à l’équilibre atteinte dans le solide Ω est la fonction
T : Ω → R vérifiant

{
−∇ · (σ∇T ) = F (Ω)
∂νT = α(T a − T ) (∂Ω)

En renormalisant la température en u := T−Ta

Ta , la production de chaleur en f := F
σTa , et la

constante de convection en β := α
Ta , on retrouve bien l’équation précédente. La solution u est

en particulier donnée par la minimisation de l’énergie

EΩ : v ∈ H1(Ω) 7→ 1
2

ˆ
Ω

|∇v|2dL n + β

2

ˆ
∂Ω
v2dH n−1 −

ˆ
Ω
fv

qui est strictement convexe, coercive, et admet donc un minimum unique par des argument
standards. La solution u vérifie

EΩ(u) = −1
2

ˆ
Ω
udL n

et l’énergie de la température à l’équilibre correspond donc, à une constante près, à la tempéra-
ture moyenne dans Ω à l’équilibre.

• Si on voit Ω comme la forme au repos d’une membrane de densité surfacique constante, qui
est fixée au bord ∂Ω (qui est ici un squelette rigide) de manière élastique - par exemple par
des ressorts de rigidité constante proportionnelle à β répartis uniformément le long de ∂Ω -
et qu’une force orthogonale f est appliquée à cette membrane, alors dans le régime linéaire la
solution u représente le déplacement vertical de la membrane engendré par la force f .

Le premier projet a été d’étudier cette équation pour f = 1 avec de plus une condition d’obstacle
u ≥ c changeant légèrement les conditions de bord, dans le but d’obtenir des estimations quantitatives
sur la distance entre le domaine Ω d’une boule de même mesure, par la différence d’énergie entre ces
deux domaines. Ce projet a été fait en collaboration avec D. Bucur et A. Giacomini et a donné lieu
à une publication dans Archive for Rational Mechanics and Analysis, qui est résumée dans la section
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1.1.1. Celui-ci a ouvert, dans différentes directions, plusieurs des autres problèmes étudiés pendant
ma thèse:

• Un problème de stabilité de l’inégalité de Weinstock, faisant intervenir des fonctions har-
moniques vérifiant des conditions de Robin (aussi appelées conditions de Steklov dans cette
situation), qui s’est révélé être un problème de nature différente présentant notamment une
instabilité intrinsèque. Cela a donné lieu à une publication dans Transactions of the AMS en
collaboration avec D. Bucur, résumé dans la section 1.1.2. La reformulation de ce problème
présente une stabilité en un sens plus faible qui a plus tard conduit à l’étude de la stabilité
d’inégalités spectrales dans les surfaces compactes, telle que l’inégalité de Hersch sur la sphère,
mais aussi sur le plan projectif, et certains tores. Ces travaux sont contenus dans une prépub-
lication écrite en collaboration avec I. Polterovich, M. Karpukhin et D. Stern, décrit en section
1.1.3.

• Un problème d’optimisation de forme à discontinuité libre de nature vectorielle avec l’étude de
domaines minimisant une combinaison des valeurs propre du Laplacien avec condition de Robin.
Il y a deux composantes dans ce travail, l’étude de fonctionnelles dites “non-dégénérées” dans
lesquelles on montre l’existence de domaine optimal en un sens fort, et les fonctionnelles dites
“dégénérées” dans lesquelles l’existence est seulement connue dans un sens relaxé (dans l’espace
SBV ), mais où on montre la dégénérescence des valeurs propres à l’optimum, un problème
ouvert dans le cas des conditions de Dirichlet. Ces travaux sont décrits dans la section 1.2.

• Dans l’étude du problème de Poisson avec obstacle, il y a une question de régularité qui a
été évitée, sur le lieu de contact avec l’obstacle qui est à mi-chemin entre la fonctionnelle de
Mumford-Shah et le problème de Alt-Caffarelli. Bien que cette question reste ouverte, elle a
inspiré l’étude d’une fonctionnelle plus abordable présentant un phénomène d’obstacle similaire
que l’on a pu étudier. Il s’agit ici d’un problème à frontière libre mais sans discontinuité, qui fait
cependant appel à des méthodes similaires. Nous avons pu dans ce cas répondre partiellement à
la question de la régularité en dimension deux, ce qui ouvre la porte à l’étude du problème mixte
Mumford Shah/Alt-Caffarelli. Ces travaux ont été effectués en commun avec B. Velichkov, et
sont décrits en 1.3.

• Comme mentionné précédemment, un passage crucial dans l’étude du problème de Poisson avec
obstacle était de contourner la question de la régularité d’un minimiseur en remplaçant notre
fonctionnelle par une fonctionnelle approchée pour laquelle on sait montrer la régularité. Cette
méthode a permis de résoudre un problème d’optimisation de forme intervenant en isolation
thermique, qui consiste à minimiser le flux de chaleur sortant d’un objet à température constante
(supérieure à l’extérieur) séparé de l’extérieur par une couche d’isolant ; on établit que dans
de nombreux cas la configuration optimale est d’isoler une boule avec une couche d’épaisseur
constante. Ces travaux sont trouvables en preprint et sont une collaboration avec D. Bucur, C.
Nitsch et C. Trombetti, résumés dans la section 1.4.

• Une condition centrale pour la régularité des solutions relaxées à l’équation de Poisson avec
condition de Robin est la stricte positivité de la température u au bord, qui peut aussi se
voir comme la positivité du flux de chaleur en chaque point du bord. Nous avons étendu
certains résultats notamment de [2], basés sur des méthodes entièrement probabilistes, à des
opérateurs elliptiques plus généraux en faisant un lien explicite entre la géométrie du domaine
et la positivité des solutions. Nous avons notamment établi un lien entre le profil de l’inégalité
isopérimétrique relative dans le domaine et la positivité des solutions d’équations elliptiques
générales avec conditions de Robin. Il s’agit d’une collaboration avec D. Bucur et A. Giacomini,
expliquée en section 1.5.

Enfin nous étudions, avec D. Bucur, A. Chambolle et A. Giacomini, un problème à discontinuité
libre vectoriel issu d’une question d’optimisation de forme en mécanique des fluides : comment min-
imiser la traînée d’un obstacle plongé dans un fluide de Stokes, avec des conditions de frottement
le long de l’obstacle ? Bien qu’ayant une littérature abondante sur le plan numérique, ce type de
question a été peu abordé sur le plan théorique ; en se basant un formalisme développé pour les
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apparitions de fractures en milieu élastique, on établit l’existence et la régularité des minimiseurs
sous certaines hypothèses. Un résumé général est donné en section 1.6.

1.1 Notion de stabilité d’une inégalité géométrique

Un problème d’optimisation de forme est la donnée de deux choses ; d’une part un ensemble

A ⊂ {sous-ensembles de Rn}

que l’on appelle l’ensemble des formes admissibles. Celui-ci est par exemple donné par des conditions
de régularité (ouvert, Lipschitz, C2), de géométrie (contenant ou contenu dans une certaine forme,
étoilé, convexe, quasi-convexe), de topologie (simplement connexe, ayant un groupe fondamental
monogène), ou de contrainte sur différentes quantités géométriques (mesure, périmètre).

D’autre part une fonctionnelle J : A → R que l’on cherchera à minimiser (ou à maximiser selon
la situation), qui dans notre cas feront souvent intervenir la solution d’une EDP de type elliptique.

Commençons par mentionner quelques exemples classiques qui apparaîtront à nouveau plus loin:

• Inégalité isopérimétrique: Per(Ω) ≥ Per(Ω∗) dans {Ω ⊂ Rn mesurable t.q. |Ω| = m}, où
m > 0, Ω∗ est la boule de mesure m, et Per désigne le périmètre défini par

Per(Ω) = sup
{ˆ

Ω
∇ · φ, φ ∈ C∞

c (Rn, B1)
}

qui coincide avec H n−1(∂Ω) lorsque Ω est un ensemble suffisament lisse (par exemple à bord
Lipschitz). Plus de détails sur la définition de périmètre seront donnés dans le chapitre suiv-
ant ; l’inégalité isopérimétrique est un résultat connu de longue date dont la première preuve
rigoureuse est attribuée à Weierstrass.

• Inégalité de Faber-Krahn (avec conditions de Robin): λ1(Ω; β) ≥ λ1(Ω∗; β) dans

{Ω ⊂ Rn ouvert t.q. |Ω| = m},

où m > 0, β ∈ (0,+∞], Ω∗ est la boule de mesure m, et λ1(Ω; β) est la première valeur propre
du Laplacien avec condition de Robin, définie par

λ1(Ω; β) = inf
u∈H1(Ω)

´
Ω |∇u|2dL n + β

´
∂Ω u

2dH n−1´
Ω u

2dL n

β = +∞ correspond naturellement aux conditions de Dirichlet, dans ce cas la preuve remonte
aux travaux de Faber [20] et Krahn [28]; cette preuve peut être vue comme une conséquence
de l’inégalité isopérimétrique appliquée aux ensembles de niveaux des fonctions test, à travers
l’inégalité de Polya-Szego. Pour le cas des conditions de Robin avec β ∈ (0,+∞), il faut attendre
les travaux de Bossel [4] et [5] par une méthode de réarrangement différente sur laquelle nous
reviendrons.

• Inégalité de Saint-Venant: T (Ω) ≤ T (Ω∗) dans {Ω ⊂ Rn ouvert t.q. |Ω| = m}, où m > 0,
Ω∗ est la boule de mesure m, et T (Ω) est la moyenne de la fonction uΩ solution de −∆uΩ = 1
dans Ω avec conditions de Robin −∂νuΩ = βuω. Le cas des conditions de Dirichlet peut se
montrer par les même méthodes que pour l’inégalité de Faber-Krahn, mais pour le cas des
conditions de Robin les méthodes de réarrangement de Bossel mentionnées précédemment ne
semblent pas s’adapter à ce cas. L’inégalité de Saint-Venant a donc été montrée par une méthode
variationnelle dans [10], en montrant qu’un domaine optimal existe, et que tout domaine optimal
est nécessairement celui attendu, c’est-à-dire une boule.
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• Inégalité de Weinstock: σ1(Ω) ≤ σ1(D) dans {Ω ⊂ R2 simplement connexe t.q. Per(Ω) =
2π}, où D est le disque unité et σ1 désigne la première valeur propre non-triviale du spectre de
Steklov définie par

σ1(Ω; β) = inf
{´

Ω |∇u|2dL 2´
∂Ω u

2dH 1 , u ∈ H1(Ω),
ˆ
∂Ω
udH 1 = 0

}
.

La preuve de cette inégalité remonte à Weinstock [34]. L’idée est d’utiliser le théorème de
représentation conforme pour construire de bonnes fonctions test. Il existe aussi une version en
toute dimension pour les convexes dans [9], qui passe par la comparaison avec une fonctionnelle
géométrique (le moment).

• Inégalité de Hersch: λ1(S2, g) ≤ λ1(S2, grond), où (S2, g) et (S2, grond) sont des surfaces Rie-
manniennes homéomorphes à la sphère euclidienne S2 ⊂ R3, de même aire, telles que grond soit
de courbure constante, et λ1(S2, g) désigne la première valeur propre non-triviale du Laplacien
−∆g, définie par

λ1(S2, g) = inf
{´

S2 |∇gu|2dvg´
S2 u2dvg

, u ∈ H1(S2, g) :
ˆ
S2
udvg = 0

}
où vg est la mesure d’aire induite par la métrique g. Des inégalités similaires sont connues
pour le plan projectif, le tore, la bouteille de Klein, mais pour une surface compacte générale
il est seulement connu qu’il existe une métrique optimale ayant un nombre fini de singularités
coniques, comme montré par exemple dans [31].

Lorsque l’on résout un problème d’optimisation de forme infΩ∈A J(Ω) qui admet une solution
Ωopt, la question de la stabilité de ce problème peut se formuler de la manière suivante:

Si J(Ω) ≈ J(Ωopt), est-ce que Ω ≈ Ωopt ?

Ici Ω ≈ Ωopt est à prendre au sens d’une certaine topologie dont est muni l’ensemble des formes
admissibles ; un problème peut très bien être stable pour une certaine topologie et instable pour
une autre, comme nous le verrons avec l’inégalité de Hersch, et il peut très bien s’agir d’une topolo-
gie pour laquelle J n’est pas continue mais qui est satisfaisante sur le plan géométrique, telle que
l’asymétrie de Fraenkel définie ci-dessous.

Pour les problèmes d’optimisation dont l’optimum est atteint pour la boule, on utilisera notam-
ment la notion d’asymétrie de Fraenkel

AF (Ω) = inf {|Ω∆(x+ Ω∗)| , x ∈ Rn} ,

où ∆ est la différence symétrique. Un autre exemple est l’asymétrie de Hausdorff

AH(Ω) = inf {dH (Ω, x+ Ω∗) , x ∈ Rn} ,

où dH(A,B) = ∥d(·, A) − d(·, B)∥L∞(Rn) est la distance de Hausdorff.

Un résultat de stabilité peut se présenter sous forme quantitative; on se demande si pour une
certaine notion de distance d entre formes admissibles et pour une certaine fonction croissante F :
R∗

+ → R∗
+, on a

J(Ω) − J(Ωopt) ≥ F (d(Ω,Ωopt)).

On dira qu’un tel résultat est optimal si on peut construire une suite Ωk → Ωopt tel que J(Ωk)−J(Ωopt)
soit de l’ordre de F (d(Ωk,Ωopt)).

Commençons par énoncer quelques résultats connus de stabilité; l’inégalité isopérimétrique quan-
titative optimale a été obtenue dans [22].
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Théorème 1.1. Soit Ω ⊂ Rn un ensemble de mesure finie et Ω∗ la boule de même mesure, alors il
existe une constante c ne dépendant que de n et |Ω| telle que

Per(Ω) − Per(Ω∗) ≥ cAF (Ω)2

Cette inégalité est optimale au sens où pour une suite d’ellipsoïdes qui converge vers une boule,
chaque côté de l’inégalité est du même ordre de grandeur.

Pour l’inégalité de Faber-Krahn (et de Saint-Venant) avec conditions de Dirichlet, un résultat du
même type a été montré dans [6].

Théorème 1.2 ([6]). Soit Ω ⊂ Rn un ouvert de mesure finie et Ω∗ la boule de même mesure, alors
il existe une constante c ne dépendant que de n et |Ω| telle que

λ1(Ω) − λ1(Ω∗) ≥ cAF (Ω)2

Ce résultat est également optimal en regardant le cas des ellipsoïdes. Pour l’inégalité de Faber-
Krahn avec conditions de Robin, le résultat est similaire mais a été établi par des méthodes très
différentes dans [5].

Théorème 1.3. Soit Ω ⊂ Rn un ouvert de mesure finie, β > 0 et Ω∗ la boule de même mesure, alors
il existe une constante c ne dépendant que de n, β et |Ω| telle que

λ1(Ω; β) − λ1(Ω∗; β) ≥ cAF (Ω)2

Cette inégalité repose sur un raffinement de la preuve originale de l’inégalité de Faber-Krahn avec
conditions de Robin λ1(Ω; β) ≥ λ1(Ω∗; β). Plus précisément, il existe une caractérisation de λ1(Ω; β)
(aussi valable à la limite β → ∞ - pour les conditions de Dirichlet) inspirée par les méthodes de
longueurs extrémales de géométrie conforme, établie par Bossel dans [4].
Pour toute fonction ρ ∈ L∞(Ω,R+) que l’on voit comme une métrique multipliant localement les
longueurs par ρ, l’aire d’un ensemble ω ⊂ Ω est Aρ(ω) :=

´
ω
ρ2, et son périmètre est Pρ(Ω) =´

∂ω∩Ω ρ +
´
∂ω∩∂Ω β (notons qu’en particulier pour β = +∞, on peut se restreindre aux ensembles à

distance positive de ∂Ω). La première valeur propre est alors égale à

λ1(Ω; β) = sup
ρ∈L∞(Ω,R+)

inf
ω⊂Ω

Pρ(ω) − Aρ(ω)
|ω|

L’infimum peut en fait être restreint aux ensembles de la forme {u > t}, et il est montré dans [8] que
celui-ci est atteint pour un {u > t} et que cela permet d’établir une estimation de la forme

λ1(Ω; β) ≥ β

2

(
inf
x∈Ω

u(x)
)2 [

Per(Ω) − Per(Ω∗)
]

où u est la première fonction propre normalisée. La différence de périmètre est minorée par
cAF (Ω)2, cependant le minimum de u n’est pas nécessairement contrôlé par en dessous. C’est ici
qu’intervient un principe de sélection, utilisé notamment dans [16] pour l’inégalité isopérimétrique
quantitative et par [6] pour l’inégalité de Faber Krahn (avec conditions de Dirichlet) quantitative ;
pour chaque domaine Ω, on peut construire un domaine ω proche de Ω au sens de la distance L1, de
valeur propre proche, mais tel que infx∈ω uω(x) > 0.

1.1.1 Stabilité de l’inégalité de Saint-Venant

Dans ce premier article, on s’intéresse aux solutions de l’équation suivante{
−∆uΩ = 1 (Ω)

−∂νuΩ = βuΩ (∂Ω)
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pour un domaine ouvert Ω de mesure fixée à une constante m > 0. La solution uΩ est obtenue comme
unique point de minimum de la fonctionnelle

EΩ(u) := 1
2

(ˆ
Ω

|∇u|2dL n +
ˆ
∂Ω
βu2dH n−1

)
−
ˆ

Ω
udL n

Et on notera E(Ω) := E(uΩ; Ω) l’énergie du domaine Ω. Il a été montré dans [7] que parmi les
ouverts de mesure fixée, E(Ω) est minimal sur la boule de même mesure Ω∗. Dans le chapitre 4, on
montre une version quantitative de ce résultat sous la forme suivante.

Théorème 1.4. Soit β ∈ (0,+∞), m > 0, il existe une constante Cn,m,β > 0 telle que pour tout
ouvert Ω de mesure m dans Rn,

E(Ω) − E(Ω∗) ≥ cAF (Ω)2

Ce résultat est obtenu en alliant un principe de sélection et l’inégalité suivante, que l’on obtient
en étudiant un problème mélangeant discontinuité libre et frontière libre (d’où le nom; problème à
discontinuité libre dégénéré).

Théorème 1.5. Soit Ω un ouvert de mesure finie, alors

E(Ω) − E(Ω∗) ≥ β

2

(
inf
x∈Ω

uΩ(x)
)2 [

Per(Ω) − Per(Ω∗)
]

Cette inégalité est très similaire à celle obtenue pour λ1(Ω; β), notons cependant qu’il n’existe
pas de caractérisation par longueur extrémale connue pour l’énergie E qui pourrait permettre de
l’obtenir directement, et la méthode pour l’obtenir sera donc très différente.

Cette inégalité peut présenter un intérêt en soi; en effet, la seule constante qui n’y est pas totale-
ment explicite est infx∈Ω uΩ(x), qui dépend de la géométrie du domaine d’une manière qui n’est pas
encore totalement comprise et sera abordée dans un chapitre ultérieur. Mais si l’on se restreint par
exemple aux convexes qui ne sont pas trop éloignés de la boule, cela donne une inégalité quantitative
de la forme

E(Ω) − E(Ω∗) ≥ Cn,|Ω|,β

[
Per(Ω) − Per(Ω∗)

]
qui est donc plus forte que celle annoncée dans le résultat 1.4, car Per(Ω) − Per(Ω∗) est minoré par
cn,|Ω|AF (Ω)2.

Pour un domaine Ω quelconque on ne peut cependant pas en tirer une inégalité quantitative
directement ; en effet la quantité infx∈Ω uΩ(x) peut être nulle dans plusieurs situations. Par exemple,
parmi les domaines d’énergie bornée la quantité

´
∂Ω u

2
Ω sera bornée, et donc infx∈Ω uΩ(x) est petit

dans les ensembles de grand périmètre. Un exemple plus fin est le suivant, considérons Ω ⋐ Rn un
domaine lisse en dehors de l’origine tel que

Ω ∩B1 =
{
(x1, x

′) ∈ B1 : x1 > 0, |x′| < x2
1

}
dans ce cas le périmètre de Ω reste borné, et pourtant uΩ(0) = 0. Ce type de phénomène et des
critères de positivités pour la solution uΩ sont étudiés plus en détails dans le chapitre 9.

Dans notre cas, on utilise un principe de sélection qui prend la forme suivante: pour tout domaine
Ω, possiblement peu lisse, on résout un problème d’optimisation de forme intermédiaire qui nous
donne au final un domaine ω ⊂ Ω tel que E(Ω) ≳ E(ω) et AF (Ω) ≲ AF (ω). Celui-ci est obtenu par
la minimisation

inf {E(ω) + k|ω|, ω ⊂ Ω}
pour une constante k choisie suffisament petite en fonction des paramètres du problème. Sur la
solution ω à ce problème, on est capable de montrer une estimation uniforme

inf
x∈ω

uω(x) ≥ δn,β,|Ω|(> 0)
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ce qui, à partir du théorème 1.5, permet de conclure. Pour obtenir le théorème 1.5, l’idée est de voir
ce résultat de manière variationelle: on définit une énergie modifiée

Ec(Ω) = inf
u∈H1(Ω),u≥c

(
1
2

ˆ
Ω

|∇u|2dL n + β

2

ˆ
∂Ω
u2dH n−1 −

ˆ
Ω
udL n

)
− β

2 c
2Per(Ω) + c|Ω|,

où c > 0 sera fixée plus tard. On montre que parmi tous les domaines de mesure fixée, la quantité
Ec(Ω) est minimale pour la boule, et une fois ceci obtenu il suffit de poser c = infx∈Ω uΩ(x) pour
obtenir le théorème 1.5.

Le fait que Ec est minimale sur la boule est obtenu en montrant qu’il existe un minimiseur en un
sens relaxé (SBV ), que ce minimiseur relaxé est un minimiseur classique par un résultat de régular-
ité, et qu’un minimiseur classique est nécessairement une boule.

La seconde étape de régularité consiste à dire qu’un minimiseur relaxé (au sens SBV ) u vérifie
H n−1(Ju \Ju) = 0, ce qui permet de définir un ouvert Ω tel que u soit une solution au sens classique
dans Ω et Ju ⊂ ∂Ω ; une estimation centrale pour obtenir cela est que u vérifie

inf
{u>c}

u > c,

c’est-à-dire que u ne vient jamais toucher l’obstacle: cela est faux en général, et la régularité est
en fait seulement obtenue pour une fonctionnelle approchée Ec,ϵ qui admet aussi la boule comme
minimiseur (car elle a les mêmes propriétés de symétrie). La régularité des minimiseurs de Ec reste
en fait un problème ouvert qui se ramène - en linéarisant la fonctionnelle autour de u ≈ c - à l’étude
de

u ∈ SBVloc(Ω,R+) 7→
ˆ

Ω
|∇u|2dL n + α

ˆ
Ju∩Ω

(u+ + u−)dH n−1 + k|{u > 0}|

sur laquelle peu de choses sont actuellement connues.

1.1.2 Instabilité de l’inégalité de Weinstock

Pour tout ouvert connexe, borné et lisse Ω ⋐ Rn, on définit l’opérateur de Steklov comme l’opérateur
pseudodifférentiel suivant:

SΩ :
C∞(∂Ω) → C∞(∂Ω)
u 7→ ∂ν(Hu)

,

où Hu est l’extension harmonique de u sur Ω et ∂νf = ν ·∇f , où ν est le vecteur normal sortant de Ω.
Bien que ce ne soit pas un opérateur différentiel classique (on constate aisément qu’il est non-local),
celui-ci présente des propriétés similaires à

√
−∆∂Ω et est dans certain cas égal à celui-ci, notamment

lorsque Ω est un demi-espace.

C’est un opérateur auto-adjoint positif dont l’inverse - qui est bien défini dans l’espace des fonc-
tions de moyenne nulles - est compact, et il existe donc une suite de valeurs propres

0 = σ0(Ω) < σ1(Ω) ≤ . . . → ∞

associées à des fonctions propres uk ∈ C∞(∂Ω) (que l’on assimile, par abus de notation, à leurs
extensions harmoniques) qui forment une base de L2(∂Ω) telles que{

∆uk = 0 (Ω)
∂νuk = σk(Ω)uk (∂Ω)

L’inégalité de Weinstock nous dit que parmi les ouverts simplement connexes du plan de perimètre
fixé à 2π,

σ1(Ω) ≤ σ1(D)(= 1),
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où D est le disque unité. Des recherches récentes autour de cette inégalité ont montré une forme
de stabilité dans certain cas, citons par exemple le résultat de [23] où il est montré que parmi les
convexes en toute dimension, où la boule est toujours maximale, il y a une inégalité quantitative de
la forme σ(B) − σ(Ω) ≥ F (AH(Ω)) pour une fonction F strictement croissante explicite dépendant
de la dimension.

Dans ce second article, on établit que sans hypothèse autre que la simple connexité, l’inégalité de
Weinstock est instable en générale, c’est-à-dire que l’on peut construire des suites d’ouverts simple-
ment connexes (Ωϵ)ϵ>0 de périmètre 2π tels que Ωϵ −→

ϵ→0
Ω en un sens fort (Ωϵ est obtenu comme une

perturbation Lipschitz de la frontière de Ω), σ1(Ωϵ) −→
ϵ→0

1, mais Ω n’est pas le disque. On montre
plus généralement un résultat d’instabilité de tout le spectre.
Théorème 1.6. Soient Ω, ω deux ouverts bornés et Lipschitz de R2, tels qu’il existe une application
conforme entre les deux. Alors il existe une suite de domaines Ωϵ → Ω, tous homéomorphes à Ω et
de périmètres uniformément bornés, tels que pour tout k ≥ 0,

Per(Ωϵ)σk(Ωϵ) −→
ϵ→0

Per(ω)σk(ω)

L’instabilité de l’inégalité de Weinstock s’obtient en prenant Ω simplement connexe quelconque, et
ω = D. On établit cependant une caractérisation partielle des suites de domaines (Ωϵ)ϵ de périmètre
2π vérifiant σ1(Ωϵ) −→

ϵ→0
1; on sait que la dichotomie suivante est toujours vérifiée:

• Soit AH(Ωϵ) → 0.

• Soit ∥ log(|g′
ϵ|)∥Cα(D) −→

ϵ→0
+∞ en un sens quantifié, où gϵ est n’importe quelle suite d’applications

conformes gϵ : D → Ωϵ bijective.
Bien que cette deuxième condition ne soit pas géométriquement explicite, l’idée est que dans une
suite de domaines (Ωϵ)ϵ qui sont un contre-exemple à la stabilité de l’inégalité de Weinstock, le bord
des Ωϵ a forcément des oscillations ou des singularités.

1.1.3 Cas de l’inégalité de Hersch

L’inégalité spectrale de Hersch peut se résumer ainsi: si (S2, g) est une variété Riemannienne home-
omorphe à la sphère de dimension 2, et que l’on note

(0 =)λ0(S2, g) < λ1(S2, g) ≤ . . . → ∞

les valeurs propres du Laplacien de (S2, g), alors nécessairement
vg(S2)λ1(S2, g) ≤ 8π,

où vg est la mesure induite par g, le maximum étant exactement atteint par les sphère dotées d’une
métrique à courbure constante. On étudie la stabilité de cette inégalité spectrale dans le cadre général-
isé des valeurs propres associées à une mesure. Plus précisément, par théorème d’uniformisation on
sait qu’il n’existe à difféomorphisme près qu’une classe conforme de métrique sur la sphère, disons
engendrée par une métrique de courbure constante notée g, et l’inégalité de Hersch peut se reformuler
de la sorte : pour toute fonction u ∈ C∞(S2),(ˆ

S2
e2udvg

)
λ1
(
S2, e2ug

)
≤ 8π.

Cela peut encore être généralisé aux mesures quelconques, grâce au formalisme développé par Kokarev
dans [27]: pour toute mesure de Borel positive µ définie sur la sphère, on pose

λk(µ) := inf
V :dim(V )=k+1

sup
v∈V

´
S2 |∇v|2dvg´

S2 v2dµ .

où V est pris parmi les sous-espaces de H1(S2, g). Dans ce cadre, l’inégalité de Hersch devient
µ(S2)λ1(µ) ≤ 8π, et on montre le résultat de stabilité suivant.
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Théorème 1.7. Soit µ une mesure de probabilité sur la sphère S2, alors il existe deux constantes
universelles c1, c2 > 0 ne dépendant pas de µ, et une métrique h conforme à g de courbure constante
telle que

λ1(µ) ≤ 8π − c1 min
(
c2, ∥µ− vh∥2

H−1(S2,h)

)
.

On établit aussi l’existence de mesures de probabilité (µϵ)ϵ telles que c∥µϵ − vg∥2
H−1(S2,g) ∼

8π − λ1(µϵ) → 0, ce qui montre l’optimalité de l’exposant 2, ainsi que l’existence de mesures de
probabilités (µϵ)ϵ telles que λ1(µϵ) −→

ϵ→0
8π mais µϵ ne converge vers aucune métrique ronde dans

l’espace
(
W 1,2,− 1

2
)∗

, ce qui montre une forme d’optimalité de l’espace H−1 (l’espace
(
W 1,2,− 1

2
)∗

étant
entre autres intercalé entre H−1 et tous les H−s pour s < 1).

1.2 Optimisation des valeurs propres d’ordres supérieurs

Dans ce chapitre, on s’intéresse aux problème d’optimisation du type

inf {F (λ1(Ω; β), . . . , λk(Ω; β)), Ω ⊂ Rn ouvert t.q. |Ω| = m} (1.1)

où m,β > 0 sont fixés et les (λi(Ω; β))i≥1 sont les valeurs propres du Laplacien avec condition de
Robin définies par l’équation {

−∆uk = λk(Ω; β)uk (Ω)
∂νuk + βuk = 0 (∂Ω)

On suppose que F : (0,+∞)k → R est une fonction qui a une dérivée partielle positive ou nulle
selon chaque coordonnée, et qui tend vers l’infini lorsque sa dernière coordonnée tend vers l’infini
(l’hypothèse de régularité de F peut en fait être allégée; voir le chapitre 6 pour plus de détails). Les
deux prototypes de fonctionnelles que l’on peut avoir en tête sont

F (λ1, . . . , λk) = λ1 + . . .+ λk

et
F (λ1, . . . , λk) = λk.

On commence par établir un résultat d’existence et de régularité partielle dans le premier cas.

Théorème 1.8. Soit F une telle fonction, avec des dérivées partielles strictement positives, et m,β >
0, alors la borne inférieure dans (1.1) est atteinte. De plus, n’importe quel ouvert Ω qui atteint cette
borne vérifie H n−1(∂Ω) ≤ C(n,m, β), et ∂Ω est Ahlfors-régulier.

Les étapes principales sont les suivantes:

• On considère une suite minimisante Ωi, et ui = (ui1, . . . , uik) un choix des k premières fonctions
propres du Laplacien avec conditions de Robin. En prolongeant ces fonctions par 0 à l’exterieur
de Ωi, on obtient une suite de fonctions bornées dans SBV et on peut montrer que celles-ci
peuvent s’accumuler autour d’au plus k suites divergentes de points, ce qui permet d’obtenir
l’existence d’un minimiseur au sens SBV .

• On montre la régularité des minimiseurs SBV par une méthode similaire à celle de De Giorgi,
Carriero et Leaci pour la fonctionnelle de Mumford-Shah, mais dans une version vectorielle
; l’idée principale est qu’en tout point du support, au moins l’une des fonctions propres est
supérieure (en valeur absolue) à une valeur seuil, ce qui permet de déduire des bornes sur la
longueur des discontinuités partagées.

On s’intéresse ensuite au second cas, la minimisation de la k-ème valeur propre seule. Dans ce
cas là on ne sait pas montrer de régularité sur le domaine Ω, et l’existence est seulement connue dans
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un cadre relaxé et a été traitée dans [11]. Dans ce cadre relaxé, on ne considère plus des domaines
mais des paquets de fonctions u = (u1, . . . , uk) linéairement indépendantes, sur lesquelles ont définit

λi(u; β) = inf
V⊂Vect(u),dim(V )=i

sup
v∈V

´
Rn |∇v|2dL n + β

´
Ju

(v2 + v2)dH n−1´
Rn v2dL n

.

Et un paquet de fonctions u est dit admissible lorsqu’il vérifie certaines conditions de régularité (qui
seront précisées plus en détail) ainsi qu’une contrainte de volume |{u ̸= 0}| = m. Malgré l’absence de
régularité, on est cependant capable de montrer la dégénérescence des valeurs propres au minimum,
au moins en dimension trois et plus:

Théorème 1.9. Soit n ≥ 3, k ≥ 2, β ∈]0,+∞[, m > 0, et soit u un minimiseur relaxé (SBV ) de
la fonctionnelle

v 7→ λk(v; β)
parmi les fonctions de Rn admissibles dont la mesure du support est m. Alors

λk−1(u; β) = λk(u; β).

Dans le cas où β = ∞, qui s’identifie au problème de Laplacien avec conditions de Dirichlet, il
s’agit d’une conjecture citée notamment dans [30], [26] qui a été observée numériquement. Ici, ce
résultat est une conséquence du fait que l’on est capable de montrer, si la k-ième valeur propre est
simple, que la k-ieme fonction propre ne prend pas de valeurs dans (−ϵ,+ϵ)\{0} pour ϵ suffisamment
petit, ce qui signifie que la solution est nécessairement associée à des fonctions dont le support est
disconnexe.

La régularité d’un tel minimiseur est ouverte dû à cette dégénérescence de la valeur propre; il
serait intéressant de commencer par comprendre le cas de la minimisation de λ3(·; β), où l’on s’attend
à ce qu’en n’importe quel minimiseur connexe (c’est-à-dire qui ne soit pas une union disjointe de
trois boules, ce qui est une possibilité lorsque β est petit), cette valeur propre ait une multiplicité
d’exactement deux.

1.3 Régularité d’un problème à frontières libres avec obstacle

Cette étude est entre autres motivée par la compréhension des problèmes à frontière libre et à discon-
tinuité libre “dégénérés” tels que mentionnés plus tôt, pour les (quasi-)minimiseurs de fonctionnelles
de la forme ˆ

Rn

|∇u|2dL n +
ˆ
Ju

(
|u+| + |u−|

)
dH n−1.

On commence par l’étudier dans un cadre possiblement plus simple, d’un problème sans discontinuité
libre; étant donnés un domaine ouvert borné et lisse noté D, un ensemble mesurable E0, une fonction
φ ∈ H1/2(∂D,R+), on cherche l’ensemble E et la fonction u ∈ H1(D,R+) minimisant la quantité

JD(u,E) 7→
ˆ
D

|∇u|2dL n +
ˆ
D∩∂∗E∩{u>0}

udH n−1.

parmi les couples (u,E) coincidant avec (φ,E0) à l’extérieur de D.

On sait qu’il existe des couples minimaux (u,E), et u est automatiquement harmonique sur E et
son complémentaire. On peut de plus montrer que u ∈ C0, 2

n+2
loc (D), et la question de la régularité se

pose surtout le long de ∂E:

• Si x ∈ ∂∗E ∩ {u > 0}, alors E est un quasiminimiseur du périmètre dans un voisinage de x
et est donc décomposable en R ⊔ S où R est C1,γ et dim(S) ≤ n − 8. Plus précisément, il est
montré dans [25] que R est lisse et u1E, u1Ec sont lisses jusqu’au bord.
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• Si u|Bx,r∩∂E ≡ 0, alors (1Ec − 1E)u est harmonique dans Bx,r et ∂E est donc la ligne de niveau
d’une fonction harmonique ; notamment en deux dimensions il s’agit de variétés lisses en dehors
d’un ensemble localement fini de points de jonctions.

Il y a donc deux théories de régularités distinctes pour chaque partie de la frontière ∂∗E ∩ {u > 0}
et {u = 0}, et l’enjeu est de comprendre comment se lient ces deux frontières.

Théorème 1.10. Soit (u,E) un minimiseur local de JD dans un ouvert D ⊂ R2, et soit B ⋐ D,
alors Per(E|B) < ∞, ∂∗E ∩ {u > 0} est localement C∞ et {u = 0} est inclus dans l’union d’un
nombre fini de courbes C1.

Voici le plan de preuve, où les deux premiers points sont valables en dimension n ≥ 2.

• On établit des estimations de régularité; soit (u,E) un minimiseur de J sur B4, on a une
estimation intérieure

∥u∥
C

2
n+2 (B1)

≤ CnJB2(u,E)

JB1(u,E) ≤ Cn

ˆ
∂B2

udH n−1

et une estimation extérieure
ˆ
∂B1

udH n−1 ≤ Cn(1 + u(0))

• On en déduit en particulier la compacité des suites de minimiseurs ponctuellements bornés; cela
permet de montrer l’existence de minimiseurs pour des conditions de bord fixées.

• On établit la monotonie de la fonctionnelle

r → W

(
u(r·)
r

,
E

r

)
,

où W (u,E) = JB1(u,E) −
´
∂B1

u2. En deux dimensions cela nous permet d’identifier les min-
imiseurs homogènes obtenus comme blow-up autour de points de {u = 0}. Ces minimiseurs
sont de la forme

u(x) = |x · e|, E = {x : x · e > 0},

où e ∈ R2 \ {0} est tel que |e| ≤ 1
4 , ou de la forme u ≡ 0.

• On prouve une version améliorée de la formule de monotonie; pour tout minimiseur (u,E) de
J dans B2 tel que u(0) = 0, il existe des constantes universelles γ, ϑ ∈]0, 1[ telles que

d

dr

∣∣∣∣∣
r=1

W (ur, Er) ≥ 2
(
γ ∧W (u,E)ϑ

)
W (u,E).

Cette estimation est obtenue en construisant un compétiteur explicite (v, F ) dans B1 tel que
(v, F )|∂B1 = (u,E)|∂B1 et

W (v, F ) ≤
(
1 − γ ∧W (uh, Eh)ϑ

)
W (uh, Eh),

où (uh, Eh) est l’extension 1-homogène de (u,E)|∂B1 sur B1.

• On en déduit des estimations quantitatives de la vitesse de convergence vers les blow-up, et
on obtient en particulier l’unicité du blow-up en chaque point de {u = 0} avec une dépen-
dance C1,log, ainsi qu’une propriété de “non-dégénérescence” qui caractérise entièrement les
minimiseurs près des petits blow-up.
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Le point crucial est l’avant dernier, connu dans des situations similaires comme une inégalité
épipérimètrique ; des méthodes similaires ont été utilisées avec succès pour les surfaces mini-
males dans [32], pour le problème de Alt-Caffarelli et le problème d’obstacle fin dans [33].
La question de la régularité est loin d’être résolue, on laisse en particulier les pistes suivantes:

• Peut-on dire que tout ∂E est lisse ? Le résultat obtenu en est très proche, surtout avec la
convergence des blow-up sur chaque point de {u = 0}, mais la continuité de la normale de
∂∗E ∩ {u > 0} n’est pas claire.

• Que dire en dimension supérieure ? La formule de monotonie reste vraie mais la classification
des minimiseurs homogènes n’est pas connue.

1.4 Un problème d’optimisation de forme pour l’isolation thermique

On s’intéresse ici à un problème d’optimisation de forme où l’on essaie d’isoler un solide à température
constante (supérieure à la température extérieure, supposée constante) par une couche d’isolant de
mesure fixée, avec une loi générale de transfert thermique entre l’isolant et l’extérieur (convection,
radiation...). Plus précisément, étant donné un compact à bord lisse K ⊂ Rn, un ouvert lisse Ω ⊂ Rn

contenant K, et une fonction Θ : [0, 1] → R+ supposée croissante, semi-continue inférieurement et
telle que Θ(0) = 0, on pose

EΘ(K,Ω) = inf
{ˆ

Ω
|∇v|2dL n +

ˆ
∂Ω

Θ(v)dH n−1, v ∈ H1(Ω) : 1K ≤ v ≤ 1
}
.

Lorsque Θ est convexe le minimum est atteint pour une unique fonction u qui représente la tem-
pérature à l’équilibre, égale à 1 dans K, 0 à l’extérieur, qui est harmonique dans l’isolant Ω \K, et
lorsque Θ est suffisamment lisse on a une condition de bord−∂νu = 1

2Θ′(u) (∂Ω ∩ {u > 0})
−∂νu ≤ 1

2Θ′(u) (∂Ω ∩ {u = 0})

Voici quelques exemples de choix de Θ pertinents:

• Θ(u) = βu2; dans ce cas on obtient des conditions de Robin

−∂νu = βu

au bord de Ω, en particulier lorsque Ω est suffisamment lisse on a infx∈Ω u(x) > 0 et le flux
de chaleur est proportionnel à la différence de température. Cela correspond par exemple au
transfert thermique obtenu lorsque la température extérieure est uniforme par convection (dans
un fluide) avec un phénomène de couche limite le long de Ω.

• Θ(u) = c1u>0; il s’agit ici du cas où l’on possède un isolant parfait ayant un coût surfacique c
que l’on peut appliquer sur le bord de Ω. La condition de bord obtenue est

u = 0 ou ∂νu = 0

• Θ(u) = 2cu+; correspond à un flux de chaleur constant, avec une condition de bord

−∂νu

= c dans ∂Ω ∩ {u > 0}
∈ (0, c] dans ∂Ω ∩ {u = 0}

• Θ(u) = 2
5u

5
+ + 2Tu4

+ + 4T 2u3
+ + 4T 3u2

+ où T ≥ 0 correspond au transfert de chaleur issu d’un
phénomène de radiation thermique dans un milieu à température T , associé à la condition de
bord

−∂νu = (T + u)4 − T 4

19



• Toute combinaison linéaire des fonctions précédentes.

Le problème de l’optimisation de EΘ(K,Ω) à K fixé, parmi tous les domaines Ω vérifiant cer-
taines contraintes de mesure, a été étudié dans [12], [13]. Nous nous intéressons ici au problème
d’optimisation de forme où Ω et K peuvent varier ; plus précisément, soit ωn la mesure de la boule
unité de Rn, M > ωn et Λ > 0, on s’interesse aux deux problèmes

inf
K⊂Ω, |K|=ωn, |Ω|≤M

EΘ(K,Ω), (1.2)

et la version pénalisée
inf

K⊂Ω, |K|=ωn

EΘ(K,Ω) + Λ|Ω \K|. (1.3)

Nous verrons que selon la loi de transfert Θ, on peut dans certain cas donner une description
complète des solutions du premier problème, et pour un Θ général on obtient une solution complète du
second problème, qui donne une solution partielle (c’est-à-dire pour seulement certaines valeurs deM)
du premier. Un phénomène notable est que dans certains cas il est préférable de ne pas utiliser tout
l’isolant, c’est-à-dire que la contrainte |Ω| ≤ M n’est pas nécessairement saturée, particulièrement
lorsque M est proche de ωn. Les résultats principaux sont les suivants

Théorème 1.11 (Cas convectif). Soit Θ(u) = βu2 et M = Rnωn (où R ≥ 1), la solution de (1.2)
consiste en deux boules concentriques, où la boule extérieure est de rayon 1 ou R selon le minimum
entre EΘ(B1, BR) et EΘ(B1, B1)}.

La preuve de ce premier résultat est pratiquement auto-contenue, basée sur une formulation par
longueur extrémale équivalente inspirée par les travaux de Bossel [4], il y a cependant en dimension
n ≥ 3 un cas qui échappe à cette analyse mais est obtenu grâce au résultat suivant. Plus précisément,
il y a trois cas possibles:

• Si β ≥ n− 1, alors EΘ(K,Ω) ≥ EΘ(B1, BR).

• Si β ∈ (n−2, n−1), alors il existe Rn,β >
n−1
β

tel que EΘ(K,Ω) ≥

EΘ(B1, BR) si R ≥ Rn,β

EΘ(B1, B1) si R ≤ Rn,β

.

• Si β ≤ n−2, ce qui ne peut se produire qu’en dimension 3 et plus, alors EΘ(K,Ω) ≥ EΘ(B1, B1).

Les deux premiers cas sont obtenus par une méthode directe qui établi un lien entre EΘ(K,Ω) et la
longueur extrémale de la famille des courbes (ou hypersurface, en dimension 3 et plus) séparant ∂Ω
de K; on montre que

EΘ(K,Ω) = sup
ρ∈L∞(Ω,R+)

inf
K⊂ω⊂Ω

(
βPer(ω; ∂Ω) +

ˆ
∂∗ω∩Ω

ρdH n−1 −
ˆ
ω

ρ2dL n

)

où la borne inférieure est prise sur les ouvert ω de périmètre fini. Par des méthodes de réarrangement
de la métrique optimale ρ = |∇ log u|, on obtient des deux premiers points mais pas le dernier. Celui-
ci est obtenu comme conséquence du résultat suivant.

Théorème 1.12 (Cas général pénalisé). Pour tout Λ > 0 et tout Θ : [0, 1] → R+ croissant, semi-
continue inférieurement avec Θ(0) = 0, la solution de (1.3) consiste en deux boules concentriques
avec une température à l’équilibre u radiale.

Ce résultat est essentiellement obtenu en deux étapes: on montre l’existence d’un minimiseur, et
on montre qu’un minimiseur est nécessairement la boule. L’existence est en fait obtenue pour une
version approchée de la fonction Θ - ce qui est suffisant pour nos besoins - par le résultat suivant.
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Théorème 1.13 (Cas général). Il existe une constante cn > 0 tel que pour tout Θ : [0, 1] → R+

croissant, semi-continue inférieurement avec Θ(0) = 0, inf0<s<1
Θ(s/3)
Θ(s) > 0, et

M < ωn + cn

(
inf

0<s<1

Θ(s/3)
Θ(s)

)2n ˆ 1

0

t2n−1dt
Θ(t)n , (1.4)

alors le problème (1.2) a une solution (K,Ω). Si |Ω| < M alors (K,Ω) sont des boules concentriques.
Sinon Ω est un ouvert de bord rectifiable tel que H n−1(∂Ω) < ∞ et K est relativement fermé dans
Ω, et de périmètre localement fini. La température à l’équilibre u ∈ H1(Ω) est dans C0, 2

n+2
loc (Ω) et en

dimension 2, ∂K ∩ Ω est analytique.

La preuve de ce résultat est inspirée de la preuve d’existence d’agrégats de périmètre optimaux
détaillée dans le livre de Maggi [29]; il s’agit de considérer une suite minimisante (Ki,Ωi), d’obtenir
par des méthodes de concentration-compacité et des estimations de densité que, quitte à translater
des parties de (Ki,Ωi), ceux-ci convergent vers un minimiseur vérifiant les mêmes contraintes de
mesure. Une difficulté est ajoutée par le fait qu’on prend en fait une limite sur la température à
l’équilibre (ui) et non directement la suite (Ki,Ωi); un tel minimiseur est dans un espace SBV plus
général et il faut donc aussi montrer la régularité de ces minimiseurs généralisés.

On a enfin un dernier résultat sur le cas où la quantité d’isolant autorisée M − ωn est proche de
0.

Théorème 1.14. Si Θ : [0, 1] → R+ est croissante, Θ(0) = 0, et si de plus Θ est C1 dans un
voisinage de 1 et

Θ′(1)2

Θ(1) < 4(n− 1),

alors il existe M > ωn dépendant de n et Θ tel que la solution de (1.2) est K = Ω = B1.

Il s’agit essentiellement d’un raffinement des estimations précédentes; on montre que pour tout
u ∈ SBV (Rn, [0, 1]) tel que |{u = 1}| = ωn, |{0 < u < 1}| ≪ 1, on peut supposer quitte à réduire le
support de u sans trop changer son énergie, que inf{u>0} u ≈ 1, puis on fait un développement limité
de Θ. Ce critère est optimal et on retrouve en particulier le phénomène constaté pour les conditions
de convection, où il peut être mieux de ne mettre aucun isolant.

Le problème (1.3) est donc entièrement résolu, mais nous laissons ouvert (1.2) dans certains cas:
en particulier, si M = ωRn est tel que

R /∈
⋃

Λ>0
argmin {r 7→ EΘ(B1, BR) + Λ|BR \B1|} ,

peut-on dire dans ce cas que EΘ(K,Ω) ≥ inf1≤r≤REΘ(B1, Br) ?

1.5 Positivité des fonctions surharmoniques vérifiant une condition de
Robin

On considère, comme cela a pu être fait précédemment, un domaine ouvert Ω ⊂ Rn dont la frontière
topologique est supposée rectifiable et une fonction f ∈ L2(Ω), alors sous de faibles hypothèses de
régularité on peut définir au sens variationnel une unique solution u à{

−∆u = f (Ω)
−∂νu = βu (∂Ω)

Si f ≥ 0 est non-trivial, alors la solution u est strictement positive à l’intérieur de Ω par principe
du maximum fort sur les fonctions harmoniques. De plus, lorsque Ω vérifie une condition de sphère
tangente intérieur en chaque point de ∂Ω - par exemple si ∂Ω est C2 - le principe du maximum de
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Hopf nous dit que u et ∂νu ne peuvent pas être tous les deux nuls, et comme ces deux quantités sont
proportionnelles dans notre cas on déduit donc que u|∂Ω > 0.

En particulier, cela nous dit que ∂νu(x) < 0 en chaque x ∈ ∂Ω. Si l’on retourne à l’interprétation
thermique de ce problème, en voyant u comme la température à l’équilibre d’un solide Ω soumis à
une génération de chaleur f et une condition de transfert par convection avec l’extérieur, la condition
∂νu(x) < 0 signifie qu’il y a un flux de chaleur non-nul en x. En reprenant la terminologie utilisée
par [2], on dit qu’un tel point x ∈ ∂Ω est actif lorsque ∂νu(x) < 0, et le lemme de Hopf entraîne
donc que dans un domaine C2, chaque point du bord est actif.

Lorsque Ω ∩ B1 = {(x1, x
′) ∈ B1 : x1 > 0, |x′| < xα1 } pour un α > 0, on sait au contraire que

l’origine est un point actif si et seulement si α < 2.

Dans [2], il est établi par des méthodes probabilistes que dans un large cadre de domaines peu
lisses (domaines obtenus par union croissante de domaines Lipschitz avec des constantes uniformes,
voir plus de détail dans [2]), il existe un critère nécessaire et suffisant à ce qu’un point soit actif.
En particulier, étant donné (Dn) une décomposition en blocs dits hyperboliques d’un voisinage d’un
point x ∈ ∂Ω, le point x est actif si et seulement si ∑n≥0 nH 1(∂Dn ∩ ∂Ω) < ∞ en dimension 2
(voir notamment le début de la section 3 et de la section 4 de [2] pour les détails des définitions et
la caractérisation plus complexe en dimension quelconque).

Un de nos objectif a été de trouver par des méthodes variationnelles des conditions de positivité
faisant plus explicitement appel à la géométrie du domaine, afin d’ensuite les généraliser à des
opérateurs elliptiques autres que le Laplacien ; on s’intéresse de manière assez générale à une solution
d’un opérateur monotone {

−∇ · A(x,∇u) ⪈ 0 (Ω)
A(x,∇u).νΩ + B(x, u) = 0 (∂Ω) (1.5)

où A ∈ C0(Ω × RN ,RN), B ∈ C0(∂Ω × R,R) vérifient les deux hypothèses suivantes
• Il existe p ∈ (1,+∞), 0 < α1 ≤ α2 et ψ ∈ C0(∂Ω,R) tels que pour tout x ∈ Ω, y ∈ ∂Ω, z ∈ Rn,

α1|z|p ≤ zA(x, z), |A(x, z)| ≤ α2|z|p−1, |B(y, z)| ≤ ψ(y)|z|p−1.

• Pour tout x ∈ Ω, y ∈ ∂Ω, z1, z2 ∈ Rn,
(z1 − z2)(A(x, z1) − A(x, z2)) ≥ 0,
(z1 − z2)(B(y, z1) − B(y, z2)) ≥ 0.

On définit le profil isopérimétrique du domaine Ω comme la fonction qui à tout m > 0 suffisam-
ment petit associe

I(m) := inf
{
H n−1(∂∗A ∩ ω), A ⊂ Ω ouvert t.q. |A| ≤ 1

2 |Ω|, |A|1− 1
p H n−1(∂A ∩ ∂Ω)

1
p ≥ m

}
.

Puis on établit le critère que pour tout u solution d’un opérateur monotone d’ordre p de la forme
(1.5),

1/I est intégrable au voisinage de 0 =⇒ inf
x∈Ω

u(x) > 0.

Cela est par exemple le cas lorsque Ω vérifie une inégalité isopérimétrique relative de type

H n−1(∂∗A ∩ ∂Ω) ≤ C
H n−1(∂∗A ∩ Ω)

|A|α
,

pour tous les ensembles A ⊂ Ω de périmètre fini, de mesure suffisament petite et pour un α <
1
N

(
1 − 1

p

)
. On étudie aussi une version plus locale de ce résultat, ainsi que le cas particulier des

domaines en pointe

Ω =
{
x = (x1, x

′) ∈ R+ × Rn−1 t.q. x1 > 0, |x′| ≤ h(x1)
}
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pour une fonction croissante h ∈ C1(R+,R+) telle que h(0) = 0 et hn−1 est convexe. On montre dans
ce cas que

ˆ 1

0

´ t0 hn−2´ t
0 h

n−1

 1
p

dt < ∞ implique que tout ∂Ω est actif pour l’équation (1.5)

1.6 Optimisation de la forme d’un obstacle plongé dans un fluide de
Stokes

Dans le dernier chapitre, on aborde un autre problème à discontinuité libre vectoriel, qui est issu
de la mécanique des fluides. Le modèle est le suivant: on considère un écoulement de fluide incom-
pressible visqueux dans une boite Ω ⋐ Rn au bord de laquelle le fluide a une vitesse constante u∞
(sous-entendu “la vitesse à l’infini” ; on ne peux pas prendre Ω = Rn pour des raisons techniques).
Le fluide s’écoule autour d’un obstacle E ⋐ Ω, que l’on suppose Lipschitz au début, et vérifie sur
le bord de E une condition dite de Navier que l’on peut interpréter comme provenant d’une friction
entre le fluide et le bord de E.

Plus précisément, la vitesse de fluide u ∈ H1(Ω \ E,Rn) et la pression p ∈ L2(Ω \ E,R) vérifient
l’équation de Stokes incompressible avec condition de Navier de paramètre β, c’est-à-dire que

(a) Incompressibilité: div u = 0 dans Ω \ E.

(b) Condition à l’infini: u = u∞ dans ∂Ω.

(c) Non-pénétration: u · νE = 0 dans ∂E, où νE est le vecteur normal sortant de E.

(d) Équilibre: on définit le tenseur de stress σ := −pId + 2µe(u), où µ > 0 est un paramètre de
viscosité, e(u) = ∇u+(∇u)∗

2 est le gradient symétrisé de u, et p est une pression. On a alors
div σ = 0 dans Ω \ E.

(e) Condition de Navier: (σνE)τ = βu dans ∂E, où Vτ désigne la composante tangentielle à ∂E
d’un vecteur V et β > 0 est une constante de friction.

u peut être aussi défini de manière variationnelle comme le minimiseur de l’énergie

EE(u) := 2µ
ˆ

Ω\E
|e(u)|2dL n + β

ˆ
∂E

|u|2dH n−1

dans la classe des champs de vecteurs suffisament lisses vérifiant les conditions (a,b,c) ci-dessus, notée
Vreg
E,u∞(Ω) ; les conditions (c,d) apparaissent comme équation variationnelle de cette énergie.

La traînée de E est la composante dans la direction u∞ de la force s’exerçant sur K, donc donnée
par

Drag(E) :=
ˆ
∂E

σν · u∞dH n−1

et celle-ci peut être en fait définie de façon variationnelle par Drag(E) = infu∈Vreg
E,u∞ (Ω) EE(u).

Soient Ω, u∞, µ, β des données du problème, ainsi que c > 0, f : (0, |Ω|) → R ∪ {+∞} une
application semi-continue inférieurement, on s’intéresse à la minimisation de fonctionnelles du type

J (E, u) = EE(u) + cH n−1(∂E) + f(|E|)

pour E Lipschitz, u ∈ Vreg
E,u∞(Ω). On ne s’attend généralement pas à ce qu’il existe un minimum dans

cette classe, non seulement à cause de la régularité de E mais aussi à cause de l’apparition possible
de structures de dimension inférieure lorsque l’obstacle devient “fin” comme dans la figure ci-dessous,
(ce qui était impossible sous des conditions de dirichlet u|∂E = 0, mais l’est avec les conditions de
Navier).
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Ei
E

Cela appelle a une relaxation du problème; pour tout (E, u) admissible, on peut prolonger u par 0
à l’intérieur de E et cela place naturellement u dans l’espace des fonctions SBD (fonctions spéciales
à déformation bornées), des fonctions v ∈ L1

loc(Rn) telles que Dv+(Dv)∗

2 (où Dv désigne la dérivée
au sens des distributions) est une mesure de Radon présentant la structure suivante: en notant Jv
l’ensemble des x ∈ Rn tels qu’il existe νv(x) ∈ Sn−1, v±(x) ∈ Rn vérifiant

v(x+ r·) −→
L1

loc(Rn)
v+(x)1{y:y·νv(x)>0} + v−(x)1{y:y·νv(x)<0} quand r → 0

alors v ∈ SBDloc(Ω) lorsque

Dv + (Dv)∗

2 = e(v)L n + (v+ − v−) ⊙ νvH
n−1⌊Jv

pour e(v) ∈ L1
loc(Rn), et où ⊙ désigne le produit tensoriel symétrisé a⊙ b = a⊗b+b⊗a

2 . On note

V(Ω) =
{
u ∈ SBD(Ω) : Tr[e(u)] = 0, νu · u± = 0 dans Ju

}
l’ensemble des flots incompressibles tangents à leurs discontinuités, et pour tout ensemble de périmètre
fini E,

VE,u∞(Ω) =
{
u ∈ V(Ω) : u|∂Ω = u∞, u|E = 0

}
.

Notons en particulier que u est autorisé à avoir des discontinuités à l’extérieur de E, et pas seulement
sur ∂∗E. On pose alors

J (E, u) =
ˆ

Ω
2µ|e(u)|2dL n +

ˆ
∂∗E

(c+ β|u+|2)dH n−1

+
ˆ
Ju\∂∗E

(2c+ β|u+|2 + β|u−|2)dH n−1 + f(|E|)

et on s’intéresse à la minimisation

inf {J (E, u), E de périmètre fini, u ∈ VE,u∞(Ω)} . (1.6)

C’est un problème à discontinuité libre similaire au problème d’apparition de fracture de Griffith
[24]; la fonctionnelle est essentiellement la même exceptée le terme donnant la condition de Navier,
mais la différence est que u est prise dans un espace bien plus restreint correspondant aux flots
incompressibles. On établit trois résultats.

Théorème 1.15. (1.6) admet un minimum.

Ce résultat a plusieurs composantes; l’idée de base est de considérer une suite admissible (Ei, ui)
dont l’énergie converge vers l’infimum. Il faut alors vérifier les choses suivantes:

• On peut extraire de (ui) une sous-suite convergente ; c’est possible par les résultats de compacité
de [3], et on peut donc supposer que (ui) converge vers une limite u au sens L1

loc.
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• La limite u vérifie les conditions d’incompressibilité et de non-pénétration; la première con-
trainte est directe à la limite, mais la seconde demande de faire appel au résultat récent de
semicontinuité des fonctionnelles symétriques conjointement convexes de [21], dont fait partie
la fonctionnelle ˆ

Ju

(
|u+ · νu| + |u− · νu|

)
dH n−1

• L’énergie de u est bien minimale ; cela demande de montrer un nouveau résultat de semiconti-
nuité de rentrant pas dans le cadre des précédents, en particulier de la fonctionnelleˆ

Ju

(
|u+|2 + |u−|2

)
dH n−1.

Un minimum de (1.6) est dit fort si H n−1(∂∗E ∪ Ju \ (∂∗E ∪ Ju)) = 0; cela signifie qu’en posant
F le complémentaire de l’union des composantes connexes de Ω \ ∂∗E ∪ Ju où u = 0, alors F est un
fermé à bord topologique rectifiable, u ∈ VF,u∞(Ω) avec u ∈ H1

loc(Ω \ F ), et J(F, u) prend la valeur
minimale dans le problème (1.6). En particulier on retrouve que u est une solution de l’équation
de Stokes au sens classique dans Ω \ F , et u qui vérifie la condition de Navier sur ∂F au sens
variationnel.
Théorème 1.16. En dimension 2, si f est décroissante et Ω est simplement connexe, alors (1.6)
admet un minimum fort dans la classe des compacts K tels que K et R2 \K sont connexes.

Ce résultat peut être obtenu pratiquement indépendamment du précédent, avec en particulier des
simplifications sur la fermeture des contraintes à la limite et la semicontinuité ; l’idée est de formuler
la fonctionnelle grâce à la fonction de flux de u, c’est-à-dire la fonction scalaire ψ telle que ∇⊥ψ = u,
ce qui revient à dire que les lignes de niveau de ψ sont les trajectoires du fluide dans le champ u.
On dispose sur ψ d’estimation uniforme dans des espaces Hölder, et le théorème de Goła̧b sur les
compacts connexes de R2 permet d’obtenir la compacité à moindre frais.

Théorème 1.17. On suppose que n = 2 et que f est Lipschitz. Soit (E, u) un minimiseur de (1.6),
alors

H 1(Ω ∩ Ju ∪ ∂∗E \ (Ju ∪ ∂∗E)) = 0.

Cela signifie que (E, u) est localement un minimiseur fort. Ce résultat n’est ni plus fort, ni
plus faible que le précédent; en particulier son raisonnement fait appel à des fonctions test qui ne
conservent pas la connexité de l’obstacle. La preuve de ce résultat est similaire à la preuve de
la fermeture des sauts des minimiseurs SBV de la fonctionnelle de Mumford-Shah de De Giorgi,
Carriero, Leaci [19]. Plus précisément, cette stratégie a été utilisée avec succès pour montrer que
les minimiseurs SBD du problème de Griffith statique sont forts, en dimension 2 (dans [17]) et
en dimension quelconque (dans [15]). L’idée générale est de montrer la fermeture en établissant
une estimation de densité uniforme autour des discontinuités. Plus précisément, notons Qx,r =
x + [−r, r]n, on établit l’existence de r, ϵ, C > 0 dépendant seulement des constantes µ, c, λ > 0 (et
étonnament pas de β) telles que si u ∈ V(Qx,r) est un minimiseur de (1.6) dans Qx,r pour r ∈ (0, r),
et si ˆ

Qx,r

|e(u)|2dL 2 + H 1(Ju ∩Qx,r) ≤ ϵr

alors pour tout ρ ∈ (0, r), ˆ
Qx,ρ

|e(u)|2dL 2 + H 1(Ju ∩Qx,ρ) ≤ Cr− 1
2ρ

3
2 ,

ce qui exclut en particulier l’existence de sauts dans un voisinage de x.

Cette borne est obtenue à travers un raisonnement par compacité similaire à [19], dont l’une
des composantes principales est le lemme d’approximation suivant, qui peut présenter un intérêt
indépendant du reste.

On fixe ρ ∈ C∞
c (B1/8,R+) une fonction radiale d’intégrale 1, et on note ρδ := δ−2ρ(δ−1·).
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Théorème 1.18. Il existe des constantes C, η > 0 telles que pour tout u ∈ V(Q1) vérifiant H 1(Ju) ≤
η, il existe r ∈ [1 − H 1(Ju)

1
4 , 1], φ ∈ C∞

c (Qr, [0, 1]) telle que Q
r−

√
H 1(Ju) ⊂ {φ = 1}, et une fonction

v ∈ V(Q1) ∩H1(Qr) telle que

• {u ̸= v} ⊂ Qr, H 1(Jv \ Ju) = 0,

•
´
Q1

∣∣∣∣e(v) −
(
ρ√

H 1(Ju) ∗ e(u)
)
φ

∣∣∣∣2 dL 2 ≤ CH 1(Ju)
1
6
´
Q1

|e(u)|2dL 2.

Autrement dit, un flot incompressible avec peu de discontinuités peut être lissé. L’idée générale de la
preuve est de poser δ =

√
H 1(Ju), et choisir un rayon r proche de 1 tel que tous les carrés de tailles

δ
2k à distance δ

2k−1 de ∂Qr contiennent peu de sauts (par rapport à leur côté), ce qui est possible
en deux dimensions par un argument de recouvrement de Vitali. De là, on commence de manière
similaire à [15] en découpant le carré Qr en carrés de côté δ à l’intérieur, et de côté δ

2k près du bord
∂Qr (par une décomposition dyadique). Sur chacun de ces carrés, on trouve une application affine
suffisament proche du flot u par une inégalité de Korn pour les fonctions SBD, issue de [14]. On joint
ces approximations et on vérifie enfin que le flot obtenu peut être ajusté pour respecter la condition
de divergence nulle.

Cette méthode est ici suffisament robuste pour fonctionner sur des presque quasi-minimiseurs de
fonctionnelles plus générales, on pourra voir les détails au chapitre 10.

Ces résultats ouvrent plusieurs pistes. La question de la régularité des minimiseurs relaxés en
dimension trois reste ouverte, elle nécessiterait par exemple de montrer une version affaiblie du
lemme d’approximation (qui en l’état actuelle n’a aucune chance de se généraliser en dimension
supérieure). L’approximation numérique (même en deux dimensions) de la traînée par une méthode
de champ de phase, par exemple par une fonctionnelle similaire celle d’Ambrosio-Tortorelli pour
le problème de Mumford-Shah, semble abordable grâce au lemme d’approximation ci-dessus, mais
elle pose des questions toujours ouvertes sur la formulation des contraintes de non-pénétration.
Enfin, il est naturel d’essayer de généraliser ces résultats à l’équation de Navier-Stokes, et il semble
qu’on ne puisse s’attendre à obtenir les mêmes conclusions à cause de l’apparition potentielle de
microstructures au bord de l’obstacle qui change le comportement du fluide sur les parois.
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The purpose of this PhD is the qualitative study of shape optimization and spectral geome-
try problems arising from various physical situations involving discontinuities. These problems are
mainly related to solutions of elliptic partial differential equations with so-called “Robin” boundary
conditions that appear - among other things - in the vibrations of elastically fixed membranes, in
heat transfer phenomena by convection, but also in more general forms (called Navier conditions) in
the presence of partial adherence between a fluid and a wall.

All these models have discontinuities; for instance, in the case of heat transfer by convection
between a solid and a fluid there is a thin transition layer between two distinct temperature zones
which will be modeled in our case by a discontinuity of the temperature along a surface. We can
also mention the study of fractures in an elastic medium that will not appear directly in this work
but which are at the origin of certain techniques that we use. In particular we will study the flow of
a viscous fluid around an obstacle, which presents the same type of discontinuity.

These questions will be studied from the point of view of problems with free discontinuities. More
precisely, we will study solutions of partial differential equations and various optimization problems
with discontinuities along sets of codimension 1. An emblematic example of this type of problem is
the Mumford Shah functional; given g : Ω → [0, 1] a function defined on a domain Ω ⋐ Rn, and three
constants a, b, c > 0, the Mumford Shah problem consists in the minimization of the functional

(K, u) 7→ a

ˆ
Ω\K

|∇u|2dL n + bH n−1(K) + c

ˆ
Ω\K

(u− g)2.

among all closed sets K ⊂ Ω of dimension 1, and all functions u ∈ H1(Ω \K).

This functional was originally created for the purpose of image segmentation; Ω is a rectangle of
R2, g represents the grayscale of the image that we want to approximate by a smoother grayscale u
in some areas, while allowing fast transitions (i.e., discontinuities) on a set K of codimension 1. a, b, c
are constants chosen according to the importance given to each phenomenon, which are respectively
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the regularity of u, the penalization of the length of the discontinuities and the proximity with the
original image g.

There are many works and conjectures around the minimizers of this functional, on the theoret-
ical side we can mention the books [35] and [52] which give a state of the art of a few years ago
about the questions of regularity of minimizers. In particular, one of the central conjectures is the
characterization of the set of discontinuities K in the two-dimensional case; is it indeed a finite union
of smooth segments, which can only meet in triple junctions with angles of 120 degree ?

This functional later turned out to have other applications, notably in the analysis of deformations
and fractures of brittle elastic materials with its vectorial generalization

(K, u) 7→ a

ˆ
Ω\K

|e(u)|2dL n + bH n−1(K) + c

ˆ
Ω\K

(u− g)2dL n,

where u ∈ H1(Ω \ K,Rn) and e(u) = ∇u+∇u∗

2 is the symmetric part of the differential of u. This
type of problem will appear in our case when studying the drag of an obstacle immersed in a viscous
fluid, a context apparently distant from fracture mechanic but governed by similar equations.

A central idea in this type of problem is to change the data of (K, u) into a single function u in
a more general functional space that includes both smooth functions and discontinuities; one may
imagine these functions as “piecewise H1”. There are several reasons for this: without any particular
topological or geometrical hypothesis, a sequence of closed sets (Ki) verifying some measure con-
straint has a priori no reason to converge to a minimizer in a meaningful sense. There is no good
notion of convergence that has both compactness (like Hausdorff convergence) and control on the ge-
ometric data of the domain, including the functions ui that are in functional spaces dependent on Ki.

By deleting the dependence on the data K and considering only the function u, we are in a
unique function space (of the type BV (Rn)) with good compactness properties. Then, using the
partial differential equation or the optimization problem verified in a weak sense by the function u,
we can generally show that it is regular enough to fall back to our starting problem. This is formalized
more precisely in the theory of the SBV (Special Bounded Variation) function space, a particular
subspace of functions with bounded variation whose weak differential has a certain structure. These
are functions u ∈ L1

loc(Rn) such that Du (the differential of u in the sense of distributions) is a locally
finite vector-valued Radon measure that decomposes into the form

Du = ∇uL n + (u+ − u−)νuH n−1⌊Ju,

where ∇u ∈ L1
loc(Rn) (and will actually be in L2

loc(Rn) for many of the problems we study) and
Ju is a rectifiable set - meaning included in a countable union of C1 hypersurfaces up to a negligible
set - called the jump set of u, defined as the set of x ∈ Rn such that u(x+ r·) converges in L1

loc(Rn)
as r → 0 to the piecewise constant function u+1⟨·,ν⟩>0 + u−1⟨·,ν⟩<0, where ν ∈ Sn−1, u± ∈ R. It
contains the subspace H1(Rn) for which all functions have a H n−1-negligible jump set, as well as
the indicator of sets of finite perimeter E for which D1E = −H n−1

⌊∂∗EνE (where ∂∗E is the reduced
boundary of E and νE the outward normal vector). We have also the “mixed” case of a function

u ∈ H1(Ω) for some Lipschitz open set Ω ⋐ Rn that we extend into ũ(x) =
u(x) if x ∈ Ω

0 if x /∈ Ω
, and

Dũ = 1Ω∇uL n − u|∂ΩνΩH n−1⌊∂Ω,

where u|∂Ω is the trace of u on ∂Ω and νΩ is the outward normal vector of Ω. We also find in it
functions that are not of this kind, characterized by the fact that the jump set is not necessarily
closed (up to a negligible set). The gain in compactness obtained by relaxing a free discontinuity
problem in an SBV space is therefore not gratuitous, and this is where the theory of regularity of
this kind of relaxed solutions comes in, which allows us to go back to the original problem. The book
[35] is a very complete reference on the subject, and the basics and results on SBV functions used in
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the following works are explained in chapter 3.

In the following introduction, I present in chronological order the different problems I have worked
on during my PhD. The starting point was the study of a so-called Poisson equation with a Robin
boundary condition, which is presented as follows: given a bounded, smooth domain Ω in Rn, a
function f ∈ L2(Ω), and β > 0, we look for a function u ∈ H1(Ω) that satisfies{

−∆u = f (Ω)
−∂νu = βu (∂Ω)

The existence of a unique solution u may be obtained through standard variational methods
(Lax-Milgram theorem). Here are two possible interpretations of this quantity:

• We may see Ω as a solid of constant thermal conductivity σ, immerged in a medium of constant
temperature T a. It is assumed that there is a volumetric heat production F in Ω, and that
the temperature exchanges between Ω and the exterior are governed by a convective transfer
through a boundary layer, i.e. the temperature flux ∂νT|∂Ω is proportional to T a − T|∂Ω. The
proportionality constant (noted α > 0) depends on the quantitative physical characteristic of
the convection with the exterior (thickness of the boundary layer, conductivity of the outside...).
In this case, the equilibrium temperature reached in the solid Ω is the function T : Ω → R
verifying {

−∇ · (σ∇T ) = F (Ω)
∂νT = α(T a − T ) (∂Ω)

When renormalizing the temperature into u := T−Ta

Ta , the heat production into f := F
σTa , and

the convection constant β := α
Ta , we find the previous equation. The solution u is particularly

obtained as the minimizer of the energy

EΩ : v ∈ H1(Ω) 7→ 1
2

ˆ
Ω

|∇v|2dL n + β

2

ˆ
∂Ω
v2dH n−1 −

ˆ
Ω
fv

that is strictly convex and coercive. The solution u verifies

EΩ(u) = −1
2

ˆ
Ω
udL n

so the corresponding energy is, up to a constant, the mean temperature in Ω at the equilibrium.

• If we see Ω as the shape at rest of a membrane of constant area density, that is attached to
the boundary ∂Ω (which is here seen as a rigid skeleton) elastically - for example by springs of
constant stiffness proportional to β distributed uniformly along ∂Ω - and an orthogonal force
f is applied to this membrane, then in the linear regime the solution u represents the vertical
displacement of the membrane generated by the force f .

The first project was to study this equation when f = 1 with an additional obstacle condition
u ≥ c that changes slightly the boundary conditions, in order to obtain quantitative estimates on the
distance between the domain Ω and a ball of same measure, by the energy difference between these
two domains. This project has been done in collaboration with D. Bucur and A. Giacomini and has
resulted in a publication in Archive for Rational Mechanics and Analysis, which is summarized in
the section 2.1.1. This project opened, in different directions, several of the other problems studied
during my thesis:

• The problem of stability of the Weinstock inequality, involving harmonic functions verifying
Robin conditions (also called Steklov conditions in this situation), which turned out to be a
problem of a different nature with an intrinsic instability. This led to a publication in Trans-
actions of the AMS in collaboration with D. Bucur, summarized in the section 2.1.2. The
reformulation of this problem presents a stability in a weaker sense which later led to the study
of the stability of spectral inequalities in compact surfaces, such as the Hersch inequality on
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the sphere, but also on the projective plane, and some tori. This work is contained in a pre-
publication written in collaboration with I. Polterovich, M. Karpukhin and D. Stern, described
in section 2.1.3.

• A vectorial optimization problem with free discontinuity, with the study of domains minimizing
a combination of the eigenvalues of the Laplacian with Robin boundary condition. There are
two components to this work, the study of so-called “nondegenerate” functionals in which we
show the existence of optimal domains in a strong sense, and so-called “degenerate” functionals
in which the existence is only known in a relaxed sense (in the SBV space), but where we show
the degeneracy of the eigenvalues at the optimum, an open problem in the case of Dirichlet
conditions. This work is described in section 2.2.

• In the study of the Poisson problem with obstacle, we avoided a question of regularity about
the contact set of the function u with the obstacle, a problem which is halfway between the
Mumford-Shah functional and the Alt-Caffarelli problem. Although this question remains open,
it has inspired the study of a more approachable functional with a similar obstacle phenomenon.
This is a free boundary problem without discontinuity, which however uses similar methods. In
this case we were able to partially answer the question of regularity in dimension two, which
opens the door to the study of the mixed Mumford Shah/Alt-Caffarelli problem. This work
has been done jointly with B. Velichkov, and is described in 2.3.

• As mentioned previously, a crucial step in the study of the Poisson problem with obstacle
was to avoid the question of regularity of the minimizer. This was done by replacing the
energy functional by an approximation for which we know how to prove the regularity. This
method allowed us to solve a similar shape optimisation problem from thermal insulation, of
the minimization of the heat flux coming out of an object at constant temperature (higher than
the exterior) separated to the exterior by a layer of insulating material; it is established that
in many cases the optimal configuration is to insulate a ball with a layer of constant thickness.
This work can be found in preprint and is a collaboration with D. Bucur, C. Nitsch and C.
Trombetti, summarized in the section 2.4

• A central condition for the regularity of the relaxed solutions of the Poisson equation with Robin
boundary condition is the strict positivity of the temperature u at the boundary, which can
also be seen as the positivity of the heat flux at each point of the boundary. We have extended
some results of [36], based on fully probabilistic methods, to more general elliptic operators by
making an explicit link between geometry of the domain and the positivity of the solutions. In
particular, we establish a link between the profile of the relative isoperimetric inequality in the
domain and the positivity of solutions of general elliptic equations with Robin conditions. This
is a collaboration with D. Bucur and A. Giacomini, explained in section 2.5.

Finally we study, with D.Bucur, A.Chambolle and A.Giacomini, a vectorial free discontinuity
problem arising from a shape optimization question in fluid mechanics: how to minimize the drag
of an obstacle immerged in a Stokes fluid, with partial adherence conditions along the wall of the
obstacle ? Although there is some literature on the numerical side, this type of question has received
few attention from the theoretical side; based on a formalism developed for fracture growth in brittle
elastic materials, we establish the existence and regularity of minimizers under certain assumptions.
A general summary is given in section 2.6.

2.1 Notion of stability of a geometric inequality

A shape optimization problem is given by two things. On one one hand, a set

A ⊂ { subset of Rn}

usually called the set of admissible shape, given for example by conditions of regularity (open, Lips-
chitz, C2), of geometry (containing or contained in a certain shape, star-like, convex, quasi-convex),
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of topology (simply connected, or having a monogenous fundamental group), or of constraint on
different geometric quantities (measure, perimeter).

On the other hand, we have a functional J : A → R to minimizer (or maximize, depending on
the situation), that in our case will often include the solution of an elliptic PDE.

Let us first mention a few classical exemples that will appear again later:

• Isoperimetric inequality: Per(Ω) ≥ Per(Ω∗) in {Ω ⊂ Rn measurable s.t. |Ω| = m}, where
m > 0, Ω∗ is the ball of measure m, and Per designates the De Giorgi perimeter defined by

Per(Ω) = sup
{ˆ

Ω
∇ · φ, φ ∈ C∞

c (Rn, B1)
}

that coincides with H n−1(∂Ω) when Ω is a sufficiently smooth set (for instance with Lipschitz
boundaries). More details on the definition of perimeter will be given in the next chapter;
the isoperimetric inequality is a long-known result whose first rigorous proof is attributed to
Weierstrass.

• Faber-Krahn inequality (with Robin condition): λ1(Ω; β) ≥ λ1(Ω∗; β) in

{Ω ⊂ Rn open s.t. |Ω| = m},

where m > 0, β ∈ (0,+∞], Ω∗ is the ball of measure m and λ1(Ω; β) is the first eigenvalue of
the Laplacian with Robin boundary condition, defined by

λ1(Ω; β) = inf
u∈H1(Ω)

´
Ω |∇u|2dL n + β

´
∂Ω u

2dH n−1´
Ω u

2dL n

β = +∞ corresponds naturally to Dirichlet boundary conditions, for which the proof goes back
to the works of Faber [54] and Krahn [62]; this proof may be seen as a consequence of the
isoperimetric inequality applied to the superlevel set of test functions through the Polya-Szego
inequality. For the case of Robin boundary conditions, this was proved by Bossel in [38] and
[39] through a completely different rearrangement method on which we will come back.

• Saint-Venant inequality: T (Ω) ≤ T (Ω∗) in {Ω ⊂ Rn open s.t. |Ω| = m}, where m > 0, Ω∗

is the ball of measure m, and T (Ω) is the average of the function uΩ solution of −∆uΩ = 1 in
Ω with Robin boundary condition −∂νuΩ = βuω. The case of Dirichlet boundary conditions
may be shown with the same methods as the Faber-Krahn inequality, but with Robin boundary
conditions, the Bossel rearrangement methods mentioned above do not seem to fit this case. The
Saint-Venant inequality has therefore been shown by a variational method in [44], by showing
that an optimal domain exists, and that any optimal domain is necessarily the expected one,
i.e. a ball.

• Weinstock inequality: σ1(Ω) ≤ σ1(D) in {Ω ⊂ R2 simplement connexe s.t. Per(Ω) = 2π},
where D is the unit disk and σ1 is the first non-zero eigenvalue of the Steklov operator defined
by

σ1(Ω; β) = inf
{´

Ω |∇u|2dL 2´
∂Ω u

2dH 1 , u ∈ H1(Ω),
ˆ
∂Ω
udH 1 = 0

}
.

The proof of this inequality goes back to Weinstock [68]. The idea is to use the conformal
representation theorem to build good test functions. There is also a version for convex sets in any
dimension in [43], that uses a comparison with a geometric functional (called the “moment”).

• Hersch inequality: λ1(S2, g) ≤ λ1(S2, ground), where (S2, g) and (S2, ground) are Riemannian
surfaces homeomorphic to the Euclidian sphere S2 ⊂ R3, with same surface area, such that
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grond has constant curvature and λ1(S2, g) is the first non-trivial eigenvalue of the Laplacian
−∆g defined by

λ1(S2, g) = inf
{´

S2 |∇gu|2dvg´
S
u2dvg

, u ∈ H1(S2, g) :
ˆ
S2
udvg = 0

}
where vg is the area measure induced by the metric g. Similar inequalities are known for the
projective plane, the torus, the Klein bottle, however for a general compact surface it is only
known that there exists an optimal metric with a finite number of conical singularities, as shown
for instance in [65].

When we solve a shape optimization problem of the form infΩ∈A J(Ω) that admits a solution Ωopt,
the stability of this problem may be formulated in the following way:

If J(Ω) ≈ J(Ωopt), is it true that Ω ≈ Ωopt ?

Here Ω ≈ Ωopt is to be taken in the sense of a certain topology on the set of admissible shapes; a shape
optimization problem may very well be stable for a topology and unstable for another as we will see
with the Hersch inequality, and the “right” topology may very well be one for which J is not continu-
ous but that is satisfying from a geometric view point, such as the Fraenkel asymmetry defined below.

For optimization problems where the optimum is reached for the ball, we will use in particular
the notion of Fraenkel asymmetry

AF (Ω) = inf {|Ω∆(x+ Ω∗)| , x ∈ Rn} ,

where ∆ is the symmetric difference. Another example is the Hausdorff asymmetry

AH(Ω) = inf {dH (Ω, x+ Ω∗) , x ∈ Rn} ,

where dH(A,B) = ∥d(·, A) − d(·, B)∥L∞(Rn) is the Hausdorff distance.

A stability result may be only qualitative, or it may be quantitative; for a certain notion of
distance d between admissible shapes and for a certain increasing function F : R∗

+ → R∗
+,

J(Ω) − J(Ωopt) ≥ F (d(Ω,Ωopt)).

We will say such a result is sharp if we can build a sequence Ωk → Ωopt such that J(Ωk) − J(Ωopt)
has the same order of magnitude as F (d(Ωk,Ωopt)).

Let us begin by stating a few known stability results; the sharp quantitative isoperimetric in-
equality has been obtained in [56].

Theorem 2.1. Let Ω ⊂ Rn be a measurable set of finite measure and Ω∗ be the ball of same measure,
then there is a constant c > 0 that only depends on n and |Ω| such that

Per(Ω) − Per(Ω∗) ≥ cAF (Ω)2

This inequality is sharp in the sense that for a sequence of ellipsoids that converges to a ball, each
side of the inequality has the same order of magnitude.

For the Faber-Krahn (and Saint-Venant) inequality with Dirichlet boundary conditions, a similar
result has been shown in [40].

Theorem 2.2 ([40]). Let Ω ⊂ Rn be an open set with finite measure and Ω∗ be the ball of same
measure, then there is a constant c > 0 that depends only on n and |Ω| such that

λ1(Ω) − λ1(Ω∗) ≥ cAF (Ω)2
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This is also optimal due to the ellispoids. For the Faber-Krahn inequality with Robin conditions,
the result is similar but has been established by very different methods in [39].

Theorem 2.3. Let Ω ⊂ Rn be an open subset of finite measure, β > 0 and Ω∗ the ball of same
measure, then there is a constant c > 0 that depends only on n, β and |Ω| such that

λ1(Ω; β) − λ1(Ω∗; β) ≥ cAF (Ω)2

This inequality relies on a refinement of the original proof of the Faber-Krahn inequality with
Robin conditions λ1(Ω; β) ≥ λ1(Ω∗; β). More precisely, there is a characterization of λ1(Ω; β) (that
is also valid in the limit β → ∞ - for Dirichlet conditions) inspired by extremal length methods of
conformal geometry, established by Bossel in [38].

For every function ρ ∈ L∞(Ω,R+) that we see as a metric that locally multiplies the length by ρ,
the area of a subset ω ⊂ Ω is Aρ(ω) :=

´
ω
ρ2, and its perimeter is Pρ(Ω) =

´
∂ω∩Ω ρ +

´
∂ω∩∂Ω β (note

in particular that for β = +∞ we may restrict ourselves to sets that are bounded away from ∂Ω).
The first eigenvalue is then equal to

λ1(Ω; β) = sup
ρ∈L∞(Ω,R+)

inf
ω⊂Ω

Pρ(ω) − Aρ(ω)
|ω|

The infimum can in fact be restricted to sets of the form {u > t}, and it is shown in [42] that this is
reached for a {u > t}, and this allows us to establish an estimate of the form

λ1(Ω; β) ≥ β

2

(
inf
Ω
u
)2 [

Per(Ω) − Per(Ω∗)
]

where u is the first normalized eigenfunction. The perimeter difference is bounded from below
by cAF (Ω)2, however the minimum of u is not necessarily controlled from below. This is where a
selection principle comes into play, used in particular in [50] for an alternate proof of the quantitative
isoperimetric inequality and by [40] for the quantitative Faber Krahn inequality (with Dirichlet
conditions); for each domain Ω, we can construct a domain ω close to Ω in the sense of distance L1,
of similar first eigenvalue, but such that infx∈ω uω(x) > 0.

2.1.1 Stability of the Saint-Venant inequality

In this first article, we are interested in the solutions of the following equation:{
−∆uΩ = 1 (Ω)

−∂νuΩ = βuΩ (∂Ω)

for an open domain Ω of measure m > 0. The solution uΩ is obtained as the unique minimizer of
the functional

EΩ(u) := 1
2

(ˆ
Ω

|∇u|2dL n +
ˆ
∂Ω
βu2dH n−1

)
−
ˆ

Ω
udL n

and we will denote E(Ω) := E(uΩ; Ω) the energy of the domain Ω.
It has been shown in [41] that among the open sets of fixed measure, E(Ω) is minimal on the ball of
same measure Ω∗. In chapter 4 we prove a quantitative version of this result in the following form.

Theorem 2.4. Let β > 0, m > 0, there exists a constant Cn,m,β > 0 such that for any open set Ω of
measure m in Rn,

E(Ω) − E(Ω∗) ≥ cAF (Ω)2

This result is obtained by combining a selection principle and the following inequality, that we get
by studying a problem mixing free discontinuity and free boundary (hence the name; degenerate
free discontinuity problem).
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Theorem 2.5. Let Ω be an open set of finite measure, then

E(Ω) − E(Ω∗) ≥ β

2

(
inf
x∈Ω

uΩ(x)
)2 [

Per(Ω) − Per(Ω∗)
]

This inequality is similar to the one obtained in the proof of stability of λ1(Ω; β), note however
that there is no known characterization by extremal length for the energy E, that would allow us to
get it directly. The method to find it will thus be different.

This inequality may be interesting in itself; indeed, the only constant that is not completely
explicit in it is infx∈Ω uΩ(x), which depends on the geometry of the domain in a way that is not
yet fully understood and will be discussed in a later chapter. If we restrict ourselves for example to
convex sets which are not too far from the ball, this gives a quantitative inequality of the form

E(Ω) − E(Ω∗) ≥ Cn,|Ω|,β

[
Per(Ω) − Per(Ω∗)

]
which is stronger than the one announced in 2.4 since Per(Ω) − Per(Ω∗) is controlled from below by
cn,|Ω|AF (Ω)2.

However for a general domain Ω one cannot derive a quantitative inequality directly from 2.4;
indeed the quantity infΩ uΩ can be zero in several situations. For example, among domains of bounded
energy the quantity

´
∂Ω u

2
Ω will be bounded, so infx∈Ω uΩ(x) is small in sets of large perimeter. A

more problematic example is the following; consider Ω ⋐ Rn a domain smooth outside the origin
such that

Ω ∩B1 =
{
(x1, x

′) ∈ B1 : x1 > 0, |x′| < x2
1

}
in this case the perimeter of Ω remains bounded, and yet uΩ(0) = 0. This kind of phenomenon and
positivity criteria for the solution uΩ are studied in more details in chapter 9.

In our case, we use a selection principle which takes the following form: for any domain Ω, that
is possibly not very smooth, we solve an intermediate shape optimization problem which gives us
a domain ω ⊂ Ω such that E(Ω) ≳ E(ω) and AF (Ω) ≲ AF (ω). This domain is obtained by the
minimization

inf {E(ω) + k|ω|, ω ⊂ Ω}
for a sufficiently small k > 0. We are able to prove the following uniform estimate on the solution:

inf
x∈ω

uω(x) ≥ δn,β,|Ω|(> 0)

which, from theorem 2.5, is enough to conclude. To obtain 2.5, the idea is to see this as a minimization
problem itself: we define a modified energy

Ec(Ω) = inf
u∈H1(Ω),u≥c

(
1
2

ˆ
Ω

|∇u|2dL n + β

2

ˆ
∂Ω
u2dH n−1 −

ˆ
Ω
udL n

)
− β

2 c
2Per(Ω) + c|Ω|,

where c > 0 will be fixed later. We show that among every domains of fixed measure, the quantity
Ec(Ω) is minimal for the ball, and once this is proved it is enough to take c = infx∈Ω uΩ(x) to obtain
the theorem 2.5.

The fact that Ec is minimal on the ball is obtained by showing that there exists a relaxed mini-
mizer (in the SBV sense), that this relaxed minimizer is a classical minimizer by a regularity result,
and that a classical minimizer is necessarily a ball.

The regularity step consists in saying that a relaxed minimizer (in the SBV sense) u verifies
H n−1(Ju \ Ju) = 0, which is enough to define an open set Ω on which u is a classical solution and
Ju ⊂ ∂Ω ; the central estimate to obtain this is that u verifies

inf
{u>c}

u > c,
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meaning u never touches the obstacle: this is false in general, and the regularity is in fact only
obtained for an approximate functional Ec,ϵ which also admits the ball as a minimizer (because it
has the same symmetry properties). The regularity of the minimizers of Ec remains in fact an open
problem which reduces - by linearizing the functional around u ≈ c - to the study of

u ∈ SBVloc(Ω,R+) 7→
ˆ

Ω
|∇u|2dL n + α

ˆ
Ju∩Ω

(u+ + u−)dH n−1 + k|{u > 0}|

on which few things are known.

2.1.2 Instability of the Weinstock inequality

For every open, smooth, connected bounded set Ω ⋐ Rn, we define the Steklov operator as the
following pseudodifferential operator:

SΩ :
C∞(∂Ω) → C∞(∂Ω)
u 7→ ∂ν(Hu)

,

where Hu is the harmonic extension of u in Ω and ∂νf = ν · ∇f , where ν is the outward normal
vector of Ω. Although it is not a classical differential operator (it is easy to see that it is non-local),
it has similar properties as

√
−∆∂Ω and is in fact equal to it when Ω is a half-space.

It is a self-adjoint positive operator and its inverse - which is well-defined on the space of function
with zero boundary average - is compact, so there is a sequence of eigenvalues

0 = σ0(Ω) < σ1(Ω) ≤ . . . → ∞

associated to eigenfunctions uk ∈ C∞(∂Ω) (that we assimilate - by abuse of notation - to their
harmonic extensions) that form a basis of L2(∂Ω) such that{

∆uk = 0 (Ω)
∂νuk = σk(Ω)uk (∂Ω)

The Weinstock inequality tells us that among every simply connected sets Ω of area 2π in R2, we
have

σ1(Ω) ≤ σ1(D)(= 1),
where D is the unit disk. Recent researches around this inequality have shown a form of stability
in some cases, let us cite for example the result of [57] where it is shown that among convex sets
in any dimension, where the ball is always maximal, there is a quantitative inequality of the form
σ(B) − σ(Ω) ≥ F (AH(Ω)) for an explicit strictly increasing function F depending on the dimension.

In this second paper, we establish that without any other hypothesis that simple connexity,
the Weinstock inequality is unstable in general, meaning that we may build a sequence of simply
connected open sets (Ωϵ)ϵ>0 of perimeter 2π such that Ωϵ −→

ϵ→0
Ω in a strong sens (Ωϵ is obtained as

a Lipschitz perturbation of the boundary of Ω), σ1(Ωϵ) −→
ϵ→0

1, but Ω is not the disk. We show more
generally a result of instability of the whole spectrum.

Theorem 2.6. Let Ω, ω two open, bounded, Lipschitz sets of R2 such that there is a conformal
application between them. Then there exists a sequence of domains Ωϵ → Ω, all homeomorphic to Ω
with uniformly bounded perimeter such that for every k ≥ 0,

Per(Ωϵ)σk(Ωϵ) −→
ϵ→0

Per(ω)σk(ω)

The instability of the Weinstock inequality is obtained by taking Ω any simply connected smooth
set and ω = D. We establish a partial characterization of sequences of domains (Ωϵ)ϵ of perimeter
2π that verify σ1(Ωϵ) −→

ϵ→0
1; we know the following dichotomie is always verified:
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• Either AH(Ωϵ) → 0.

• Or ∥ log(|g′
ϵ|)∥Cα(D) −→

ϵ→0
+∞ in a quantified sense, where gϵ is any sequence of conformal maps

gϵ : D → Ωϵ.

Although this second condition is not geometrically explicit, the idea is that in a sequence (Ωϵ)ϵ of
domains which are a counterexample to the stability of the Weinstock inequality, the boundaries of
the Ωϵ necessarily has oscillations or singularities.

2.1.3 Case of the Hersch inequality

Hersch’s spectral inequality can be summarized as such: let (S2, g) be a Riemannian surface that is
homeomorphic to the sphere of dimension 2, and denote

(0 =)λ0(S2, g) < λ1(S2, g) ≤ . . . → ∞

the eigenvalues of the Laplacian on (S2, g), then necessarily

vg(S2)λ1(S2, g) ≤ 8π,

where vg is the measure induced by g, and the maximum 8π is reached exactly for spheres of constant
curvature. We study the stability of this inequality in the setting of generalized eigenvalues associated
to a measure. More precisely, by uniformization theorem we know there exists (up to diffeomorphism)
only one conformal class of metrics on the sphere, that is generated by a metric with constant
curvature denoted g, and Hersch’s inequality may be rewritten as: for any function u ∈ C∞(S2),(ˆ

S2
e2udvg

)
λ1
(
S2, e2ug

)
≤ 8π.

This may be further generalized to any measure with the formalism developped by Kokarev in [61]:
for any positive Borel measure µ défined on the sphere (S2, g), we let

λk(µ) := inf
V :dim(V )=k+1

sup
v∈V

´
S2 |∇v|2dvg´

S2 v2dµ .

where V is taken among the subspaces of H1(S2, g). In this setting, Hersch’s inequality becomes
µ(S2)λ1(µ) ≤ 8π, and we prove the following stability result.

Theorem 2.7. Let µ be a probability measure on the sphere S2, then there are two universal constants
c1, c2 > 0 that do not depend on µ, and a metric h conformal to g and with constant curvature such
that

λ1(µ) ≤ 8π − c1 min
(
c2, ∥µ− vh∥2

H−1(S2,h)

)
.

We also establish the existence of probability measures (µϵ)ϵ such that c∥µϵ − vg∥2
H−1(S2,g) ∼

8π−λ1(µϵ) → 0, which proves the optimality of the exponent 2, as well as the existence of probability
measure (µϵ)ϵ such that λ1(µϵ) −→

ϵ→0
8π but µϵ do not converge to a round metric in the space(

W 1,2,− 1
2
)∗

, which shows a form of optimality of the space H−1 (the space
(
W 1,2,− 1

2
)∗

being inserted
between H−1 and the H−s for s < 1).

2.2 Optimization of the higher eigenvalues of the Laplacian with Robin
boundary condition

In this chapter, we are interested in the following type of optimization problem

inf {F (λ1(Ω; β), . . . , λk(Ω; β)), Ω ⊂ Rn ouvert s.t. |Ω| = m} (2.1)
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where m,β > 0 are fixed and the (λi(Ω; β))i≥1 are the eigenvalues of the Laplacian with Robin
boundary condition defined by the equation{

−∆uk = λk(Ω; β)uk (Ω)
∂νuk + βuk = 0 (∂Ω)

We suppose F : (0,+∞)k → R is a smooth function that has nonnegative partial derivative in
each coordinate, and that tends to infinity when its last coordinate goes to infinity (the regularity
hypothesis of F may be lightened; see chapter 6 for more details). The two functionals that we have
in mind are

F (λ1, . . . , λk) = λ1 + . . .+ λk

and
F (λ1, . . . , λk) = λk.

We begin by establishing an existence and partial regularity result for the first case.

Theorem 2.8. Let F be such a function, with strictly positive partial derivative and m,β > 0,
then the lower bound in (2.1) is attained. Moreover, any open set Ω that reaches that bound verifies
H n−1(∂Ω) ≤ C(n,m, β), and ∂Ω is Ahlfors-regular.

The main steps are the following:

• Consider a minimizing sequence Ωi, and ui = (ui1, . . . , uik) a choice of the first k eigenfunctions
of the Laplacian with Robin boundary condition. By extending these functions by 0 at the
exterior of Ωi, we obtain a sequence of function that are bounded in SBV and we prove an
accumulation of this sequence of functions around at most k diverging sequences of points,
which implies the existence of a minimizer in the SBV sense.

• We prove the regularity of SBV minimizers by a method similar to the one of De Giorgi,
Carriero and Leaci ([53]) for the Mumford-Shah functional, but in a vectorial version; the main
idea is that at every point of the support at least one of the eigenfunctions is larger (in absolute
value) than a positive threshold, which allows us to deduce bounds on the length of the shared
discontinuities.

We are then interested in the second case, the minimization of the k-th eigenvalue alone. In this
case we do not prove the general regularity of the domain Ω, and the existence is only known in a
relaxed setting and has been treated in [45]. In this relaxed setting, we do not consider domains but
instead bundles of linearly independant functions u = (u1, . . . , uk) on which we define

λi(u; β) = inf
V⊂span(u),dim(V )=i

sup
v∈V

´
Rn |∇v|2dL n + β

´
Ju

(v2 + v2)dH n−1´
Rn v2dL n

.

And a bundle of functions u is said to be admissible when it verifies some regularity conditions (that
will be made more precise later) as well as a measure constraint |{u ̸= 0}| = m. Despite the absence
of regularity, we are able to prove the degeneracy of the eigenvalue at the minimum in dimension
three or more:

Theorem 2.9. Let n ≥ 3, k ≥ 2, β ∈]0,+∞[, m > 0, and let u be a relaxed (SBV ) minimizer of
the functional

v 7→ λk(v; β)
among the admissible functions of Rn for which the measure of the support is m. Then

λk−1(u; β) = λk(u; β).

In the case β = ∞, that identifies to the eigenvalues of the Laplacian with Dirichlet boundary
conditions, this is a conjecture that was cited in [64], [60] with numerical evidences. Here this result
is a consequence of the following fact: we prove that when the k-th eigenvalue is simples then the
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k-th eigenfunction do not take values in (−ϵ,+ϵ) \ {0} for some small enough ϵ, meaning that the
solution is necessarily associated to functions with a disconnected support.

The regularity of such a minimizer is still open due to the degeneracy of the eigenvalue ; it would
be interesting to start by understanding the minimization of λ3(·; β), where we expect that any
connected minimizer (meaning any minimizer that is not a disjoint union of three balls, which is a
possibility when β is small), this eigenvalue has a multiplicity of exactly two.

2.3 Regularity of a free boundary transmission problem with obstacle

This work is motivated, between other things, by the understanding of free boundary and free dis-
continuity problems that are “degenerate” as mentioned ealier, for (quasi-)minimizers of functionals
of the form ˆ

Rn

|∇u|2dL n +
ˆ
Ju

(|u| + |u|) dH n−1.

We begin by studying a possibly simpler case, of a problem with no free discontinuity; given a smooth
bounded open set D ⊂ Rn, a measurable set E0, a function φ ∈ H1/2(∂D,R+), we look for the set
E and the function u ∈ H1(D,R+) that minimize the quantity

JD(u,E) 7→
ˆ
D

|∇u|2dL n +
ˆ
D∩∂∗E∩{u>0}

udH n−1

among couples (u,E) that coincide with (φ,E0) at the exterior of D.

We know there are optimal couples (u,E), and u is automatically harmonic on the interior of E
and Ec. We may moreover prove that u ∈ C0, 2

n+2
loc (D), and the regularity of (u,E) is unclear near ∂E

only:

• If x ∈ ∂∗E ∩ {u > 0}, then E is a quasiminimizer of the perimeter in a neighbourhood of x and
so it may be decomposed into R ⊔ S where R is C1,γ and dim(S) ≤ n − 8. More precisely, it
was proven in [59] that R is smooth and u1E, u1Ec are smooth to the boundary.

• If u|Bx,r∩∂E ≡ 0, then (1Ec − 1E)u is harmonic in Bx,r and ∂E is thus the level set of a harmonic
function ; in two dimensions it is a smooth curve outside a locally finite set of equiangular
junction points.

There are thus two distinct regularity theory for each part of the boundary ∂∗E ∩ {u > 0} and
{u = 0}, and our goal is to understand how these two boundaries join.

Theorem 2.10. Let (u,E) be a local minimizer of JD in an open set D ⊂ R2, and let B ⋐ D, then
Per(E|B) < ∞, ∂∗E ∩ {u > 0} is locally C∞ and {u = 0} is included in a finite number of C1,log

segments.

Here is the proof plan, where the first two points are valid in dimension n ≥ 2.

• We establish regularity estimates; let u be a minimizer of J in B4, we have an interior estimate

∥u∥
C

2
n+2 (B1)

≤ CnJB2(u,E)

JB1(u,E) ≤ Cn

ˆ
∂B2

udH n−1

and an exterior estimate
ˆ
∂B1

udH n−1 ≤ Cn(1 + u(0))
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• We deduce the compactness of sequences of punctually bounded minimizers; this allows us to
prove the existence of minimizers for fixed boundary data.

• We establish the monotonicity of the functional

r → W

(
u(r·)
r

,
E

r

)
,

where W (u,E) = JB1(u,E) −
´
∂B1

u2. In two dimension this is sufficient to identify the homo-
geneous minimizers obtained as blow-up around the points of {u = 0}. These minimizers are
of the form

u(x) = |x · e|, E = {x : x · e > 0},

where e ∈ R2 \ {0} is such that |e| ≤ 1
4 , or of the form u ≡ 0.

• We prove an improved version of the monotonicity formula; for any minimizer (u,E) of J in
B2 such that u(0) = 0, there exists universal constants γ, ϑ ∈]0, 1[ such that

d

dr

∣∣∣∣∣
r=1

W (ur, Er) ≥ 2
(
γ ∧W (u,E)ϑ

)
W (u,E).

This estimate is obtained by building an explicit competitor (v, F ) in B1 such that (v, F )|∂B1 =
(u,E)|∂B1 and

W (v, F ) ≤
(
1 − γ ∧W (uh, Eh)ϑ

)
W (uh, Eh),

where (uh, Eh) is the 1-homogeneous extension of (u,E)|∂B1 on B1.

• We deduce quantitative estimates of the speed of convergence to the blow-ups, thereby obtaining
the uniqueness of the blow-up at each point of {u = 0} with a C1,log dependency on the point,
as well as a “non-degeneracy” property that characterizes entirely the minimizers near small
blow-ups.

The crucial point is the second-to-last point, known in similar situations as a epiperimetric in-
equality ; similar methods have been used with success for minimal surfaces in [66], for the Alt-
Caffarelli problem and the thin obstacle problem in [67].
The regularity question is far from being fully answered, we leave open the following problems:

• Can we say that all of ∂E is smooth ? The result we obtained is very close to this, especially
with the uniform convergence of the blow-ups on each point of {u = 0}, but the continuity of
the tangent space on ∂∗E ∩ {u > 0} is unclear.

• What can we say in higher dimension ? The monotonicity formula is still true but the classifi-
cation of homogeneous solutions is not known.

2.4 A shape optimization problem linked to thermal insulation

We are now interested in a shape optimization problem where we attempt to insulate a solid at
constant temperature (higher than the outside temperature, supposed constant) by a layer of insulator
of fixed total measure, with a general heat transfer condition between the insulator and the outside
(by convection, radiation...). More precisely, given a smooth compact set K ⊂ Rn, a smooth open
set Ω ⊂ Rn that contains K, and a function Θ : [0, 1] → R+ that we suppose to be increasing, lower
semi-continuous and such that Θ(0) = 0, we let

EΘ(K,Ω) = inf
{ˆ

Ω
|∇v|2dL n +

ˆ
∂Ω

Θ(v)dH n−1, v ∈ H1(Ω) : 1K ≤ v ≤ 1
}
.
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When Θ is convex, the minimum is reached for a unique function u that represent the temperature
at rest, equal to 1 in K, 0 in the exterior, that is harmonic in the insulation Ω \ K, and when Θ is
smooth enough we have a boundary condition−∂νu = 1

2Θ′(u) (∂Ω ∩ {u > 0})
−∂νu ≤ 1

2Θ′(u) (∂Ω ∩ {u = 0})

Here are a few relevant choices of Θ:

• Θ(u) = βu2; in this case we get the Robin boundary condition

−∂νu = βu

at the boundary of Ω, in particular when Ω is smooth enough we have infΩ(u) > 0 and the
heat flow is proportional to the temperature difference. This corresponds for instance to the
heat transfer obtained when the outside temperature is uniform by convection (in a fluid) with
a boundary layer phenomenon along Ω.

• Θ(u) = c1u>0; This is the case when we have a perfect insulator with a surface cost c that we
can apply on the boundary of Ω. The resulting boundary condition is

u = 0 or ∂νu = 0

• Θ(u) = 2cu+; this corresponds to a constant heat flux, with a boundary condition

−∂νu

= c in ∂Ω ∩ {u > 0}
∈ (0, c] in ∂Ω ∩ {u = 0}

• Θ(u) = 2
5u

5
+ + 2Tu4

+ + 4T 2u3
+ + 4T 3u2

+ where T ≥ 0 corresponds to the heat transfer resulting
from a thermal radiation in a medium at temperature T , associated with the edge condition

−∂νu = (T + u)4 − T 4

• Any linear combination of the previous choices.

The optimisation problem of EΘ(K,Ω) at fixed K, among all domains Ω verifying some measure
constraint, has been studied in [46], [47]. We are interested here in the shape optimization problem
where Ω and K may both vary ; more precisely, let ωn be the measure of the unit ball of Rn, M > ωn
and Λ > 0, we are interested in the two problems

inf
K⊂Ω, |K|=ωn, |Ω|≤M

EΘ(K,Ω), (2.2)

and the penalized version
inf

K⊂Ω, |K|=ωn

EΘ(K,Ω) + Λ|Ω \K|. (2.3)

As we will see, according to the heat transfer law Θ, we can give a complete description of the
solutions of the first problem in some cases, and for a general Θ we give a complete solution of the
second problem, which gives a partial solution (i.e. for only some values of M) of the first. A notable
phenomenon is that it might be sometimes better to not use all the insulator, i.e. the |Ω| ≤ M
constraint is not necessarily saturated, especially when M is close to ωn. The main results are the
following.

Theorem 2.11 (Convective case). Let Θ(u) = βu2 and M = Rnωn (where R ≥ 1), the solution
of (2.2) consists in two concentric balls, where the exterior ball has radius 1 or R depending on the
minimum between EΘ(B1, BR) et EΘ(B1, B1)}.
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The proof of this first result is practically self-contained, based on an equivalent extremal length
formulation inspired by the work of Bossel [38], there is however in dimension n ≥ 3 a case which
escapes this analysis but is obtained thanks to a later result. More precisely, there are three possible
cases:

• If β ≥ n− 1, then EΘ(K,Ω) ≥ EΘ(B1, BR).

• If β ∈ (n−2, n−1), then there existsRn,β >
n−1
β

such that EΘ(K,Ω) ≥

EΘ(B1, BR) if R ≥ Rn,β

EΘ(B1, B1) if R ≤ Rn,β

.

• If β ≤ n − 2, something that can only happen in dimension 3 and more, then EΘ(K,Ω) ≥
EΘ(B1, B1).

The first two cases are obtained by a direct method where we establish a link between EΘ(K,Ω) and
the extremal length of a family of curves (or hypersurface, in dimension 3 and more) that separate
∂Ω from K; we prove that

EΘ(K,Ω) = sup
ρ∈L∞(Ω,R+)

inf
K⊂ω⊂Ω

(
βPer(ω; ∂Ω) +

ˆ
∂∗ω∩Ω

ρdH n−1 −
ˆ
ω

ρ2dL n

)

where the infimum is taken among all sets ω with finite perimeter. By some a method of rearrange-
ment of the optimal metric ρ = |∇ log u|, we get the first two cases but not the last one. This one is
obtained as a corollary of the following result.

Theorem 2.12 (General penalized case). For any Λ > 0 and any increasing, lower semi-continuous
Θ : [0, 1] → R+ with Θ(0) = 0, the solution of (2.3) consists of two concentric balls.

This result is proved in two steps: we first prove the existence of a minimizer, and then prove that
such a minimizer is necessarily the ball. The existence is in fact merely obtained for an approximated
version of the function Θ - which is enough for our needs - by the following result.

Theorem 2.13 (General case). There exists a constant cn > 0 such that for any increasing, lower
semi-continuous Θ : [0, 1] → R+ with Θ(0) = 0, inf0<s<1

Θ(s/3)
Θ(s) > 0, and

M < ωn + cn

(
inf

0<s<1

Θ(s/3)
Θ(s)

)2n ˆ 1

0

t2n−1dt
Θ(t)n , (2.4)

then the problem (2.2) admits a solution (K,Ω). If |Ω| < M then (K,Ω) are concentric balls. Else
Ω in an open set with rectifiable topological boundary such that H n−1(∂Ω) < ∞ and K is relatively
closed in Ω, with locally finite perimeter. The equilibrium temperature u ∈ H1(Ω) is in C0, 2

n+2
loc (Ω)

and in dimension 2, ∂K ∩ Ω is analytic.

The proof of this result is inspired by the proof of existence of isoperimetric clusters as detailed
in the book of Maggi [63]; the main idea is to consider a minimizing sequence (Ki,Ωi), to obtain
by concentration-compactness and density estimate that after cutting and translating some parts
of (Ki,Ωi), they converge to a minimizer that verify the same measure constraint. One difficulty
is added by the fact that we take the limite of the equilibrium temperature (ui) instead of taking
directly a limit of domains (Ki,Ωi), thereby relaxing the problem; a minimizer obtained through this
process is in a more general SBV space and we need to prove the regularity of such a minimizer.

Finally, we have a result on the case where the total quantity of insulating material M − ωn is
low.
Theorem 2.14. If Θ : [0, 1] → R+ is increasing, Θ(0) = 0, and moreover if Θ is C1 in a neighbour-
hood of 1 with

Θ′(1)2

Θ(1) < 4(n− 1),

then there exists M > ωn dependent on n and Θ such that the solution of (2.2) is K = Ω = B1.
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This is essentially a refinement of previous estimates; we prove that for any u ∈ SBV (Rn, [0, 1]) such
that |{u = 1}| = ωn, |{0 < u < 1}| ≪ 1, we may suppose up to reducing the support of u without
changing its energy too much that inf{u>0} u ≈ 1, then we make a Taylor development of Θ. This
criterion is optimal and we find in particular the phenomenon observed for convection conditions,
where it may be better to put no insulation.

The problem (2.3) is thus entirely solved, but we leave open (2.2) in some cases: in particular,
what if M = ωRn is such that

R /∈
⋃

Λ>0
argmin {r 7→ EΘ(B1, BR) + Λ|BR \B1|} ,

can we say in this case that EΘ(K,Ω) ≥ inf1≤r≤REΘ(B1, Br) ?

2.5 Positivity of superharmonic functions verifying a Robin boundary
condition

We consider, as may have been done previously, an open set Ω ⊂ Rn with a rectifiable topological
boundary and a function f ∈ L2(Ω), then under some weak regularity hypotheses we may define in
the variational sense a unique solution u to{

−∆u = f (Ω)
−∂νu = βu (∂Ω)

If f ≥ 0 is non-trivial, then the solution u is strictly positive in the interior of Ω by strong
maximum principle on harmonic functions. Moreover, when Ω verifies an interior tangent sphere
condition at each point of ∂Ω - for example when ∂Ω is C2 - then Hopf’s maximum principle tells
us that u and ∂νu cannot be both zero, and since these quantities are proportional in our case we
deduce that u|∂Ω > 0.

In particular, this tells us that ∂νu(x) < 0 at each x ∈ ∂Ω. In the “thermal” interpretation of this
problem, when we see u as the temperature at rest of a solid Ω with a volumetric heat production f
and a heat transfer by convection with the exterior, the condition ∂νu(x) < 0 means that there is a
non-zero heat flow through x. Borrowing the terminology used in [36], we say that a point x ∈ ∂Ω
is active when ∂νu(x) < 0, and Hopf’s lemma implies that a C2 domain is active at every point of
the boundary.

When Ω ∩ B1 = {(x1, x
′) ∈ B1 : x1 > 0, |x′| < xα1 } for some α > 0, we know instead that the

origin is active if and only if α < 2.

In [36], it is established by probabilistic methods that in a wide setting of non-smooth domains
(more precisely domain obtained as an increasing union of Lipschitz sets with uniform Lipschitz
constant, more details may be found in [36]), there exists a necessary a sufficient criterion for a
point to be active. In particular, given (Dn) a so-called “decomposition in hyperbolic blocs” in the
neighbourhood of a point x ∈ ∂Ω, the point x is active if and only if ∑n≥0 nH 1(∂Dn ∩ ∂Ω) < ∞
in dimension 2 (one may consult section 3 and 4 of [36] for more details and for the result in higher
dimension).

One of our objective was to find positivity conditions through purely variational means under
conditions that rely more explicitly the geometry of the domain, so that we can then generalize it
to elliptic operators other than the Laplacian ; we are more generally interested in the solution of a
monotone operator {

−∇ · A(x,∇u) ⪈ 0 (Ω)
A(x,∇u).νΩ + B(x, u) = 0 (∂Ω) (2.5)

44



where A ∈ C0(Ω × RN ,RN), B ∈ C0(∂Ω × R,R) verify the two following hypotheses

• There exists p ∈ (1,+∞), 0 < α1 ≤ α2 and ψ ∈ C0(∂Ω,R) such that for any x ∈ Ω, y ∈ ∂Ω,
z ∈ Rn,

α1|z|p ≤ zA(x, z), |A(x, z)| ≤ α2|z|p−1, |B(y, z)| ≤ ψ(y)|z|p−1.

• For any x ∈ Ω, y ∈ ∂Ω, z1, z2 ∈ Rn,

(z1 − z2)(A(x, z1) − A(x, z2)) ≥ 0,
(z1 − z2)(B(y, z1) − B(y, z2)) ≥ 0.

We define the isoperimetric profile of the domain Ω as the function which for any sufficiently
small m > 0 associate

I(m) := inf
{
H n−1(∂∗A ∩ ω), A ⊂ Ω open s.t. |A| ≤ 1

2 |Ω|, |A|1− 1
p H n−1(∂A ∩ ∂Ω)

1
p ≥ m

}
.

Then we establish the criterion that for any u solution of a monotonous operator of order p of the
form (2.5),

1/I is integrable in a neighbourhood of 0 =⇒ inf
x∈Ω

u(x) > 0.

This is for instance the case when Ω verifies an isoperimetric inequality of the type

H n−1(∂∗A ∩ ∂Ω) ≤ C
H n−1(∂∗A ∩ Ω)

|A|α
,

for every subset A ⊂ Ω of finite perimeter and sufficiently small measure, and for some α < 1
N

(
1 − 1

p

)
.

We also establish a more local version of this result, and study the particular case of cusp domains:

Ω =
{
x = (x1, x

′) ∈ R+ × Rn−1 s.t. x1 > 0, |x′| ≤ h(x1)
}

for an increasing function h ∈ C1(R+,R+) such that h(0) = 0 and hn−1 is convex. We prove in this
case that ˆ 1

0

´ t0 hn−2´ t
0 h

n−1

 1
p

dt < ∞ implies that ∂Ω is active for equation (2.5)

2.6 Optimization of an obstacle immerged in a Stokes fluid

In this last chapter, we address another vectorial free discontinuity problem, which is derived from
fluid mechanics. The model is the following: consider a viscous incompressible fluid flow in a box
Ω ⋐ Rn at the boundary of which the fluid has a constant velocity u∞ (taken in the sense of “the
velocity at infinity”; we can’t take Ω = Rn for technical reasons). The fluid flows around an obstacle
E ⊂ Ω which is assumed to be Lipschitz at the beginning, and verifies on the edge of E a so-called
Navier condition which can be interpreted as a partial adherence between the fluid and the boundary
of E.

More precisely, the velocity of the fluid u ∈ H1(Ω \ E,Rn) and the pressure p ∈ L2(Ω \ E,R)
verify the incompressible Stokes equation with Navier boundary condition of parameter β, meaning

(a) Incompressibility: div u = 0 in Ω \ E.

(b) Condition at infinity: u = u∞ in ∂Ω.

(c) Non-penetration: u · νE = 0 in ∂E, where νE is the outward normal vector of E.

(d) Equilibrium: we define the stress tensor σ := −pId + 2µe(u), where µ > 0 is a viscosity
parameter, e(u) = ∇u+(∇u)∗

2 is the symmetrised gradient of u and p is a pressure. We then have
div σ = 0 in Ω \ E.
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(e) Navier condition: (σνE)τ = βu in ∂E, where Vτ denotes the tangential component to ∂E of a
vector V and β > 0 is an adherence constant.

u may also be defined variationaly as the minimizer of the energy

EE(u) := 2µ
ˆ

Ω\E
|e(u)|2dL n + β

ˆ
∂E

|u|2dH n−1

in the class of admissible fields verifying conditions (a,b,c) above, denoted Vreg
E,u∞(Ω) ; the conditions

(c,d) appear as a variational equation of the energy.
The drag E is the component of the force exerted on K in the direction of u∞, given by

Drag(E) :=
ˆ
∂E

σν · u∞dH n−1

and it may also be defined variationaly by Drag(E) = infu∈Vreg
E,u∞ (Ω) EE(u).

Let Ω, u∞, µ, β the parameters of the problem, as well as c > 0, f : (0, |Ω|) → R ∪ {+∞} a lower
semi-continuous function, we are interested in the minimization of functionals of the type

J(E, u) = EE(u) + cH n−1(∂E) + f(|E|)

among Lipschitz sets E, u ∈ Vreg
E,u∞(Ω). We do not expect that there is a minimizer in this class,

not only because of the regularity of E but also due to the possible appearance of lower-dimensional
structures when the obstacle becomes “thin” in some parts, as in the figure below. This is impos-
sible under Dirichlet (or “no-slip”) boundary condition u|∂E = 0, but may be possible with Navier
conditions.

Ei
E

This calls for a relaxation of the problem; for any admissible (E, u), we may extend u in a natural
way by 0 in E, and this places u in the space of SBD functions (special bounded deformation
functions), meaning functions v ∈ L1

loc(Rn) such that Dv+(Dv)∗

2 (where Dv is the differential in the
sense of distribution) is a Radon measure that has the following structure: denote Jv the set of points
x ∈ Rn such that there exists νv(x) ∈ Sn−1, v±(x) ∈ Rn verifying

v(x+ r·) −→
L1

loc(Rn)
v+(x)1{y:y·νv(x)>0} + v−(x)1{y:y·νv(x)<0} when r → 0

then v ∈ SBDloc(Ω) when

Dv + (Dv)∗

2 = e(v)L n + (v+ − v−) ⊙ νvH
n−1⌊Jv

for some e(v) ∈ L1
loc(Rn) and where ⊙ designates the symmetrized tensor product a ⊙ b = a⊗b+b⊗a

2 .
We write

V(Ω) =
{
u ∈ SBD(Ω) : Tr[e(u)] = 0, νu · u± = 0 in Ju

}
the set of incompressible flows that are tangent to their discontinuities, and for any set of finite
perimeter E,

VE,u∞(Ω) =
{
u ∈ V(Ω) : u|∂Ω = u∞, u|E = 0

}
.
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Note in particular that u may have discontinuities outside of E, and not only on ∂∗E. We then let

J(E, u) =
ˆ

Ω
2µ|e(u)|2dL n +

ˆ
∂∗E

(c+ β|u+|2)dH n−1

+
ˆ
Ju\∂∗E

(2c+ β|u+|2 + β|u−|2)dH n−1 + f(|E|)

and we are interested in the minimization

inf {J(E, u), E of finite perimeter, u ∈ VE,u∞(Ω)} . (2.6)

This is a free discontinuity problem similar to the Griffitch fracture model ([58]); the functional is
essentially the same excepted for the polynomial boundary term, but u is in a much more restricted
admissible space (corresponding to incompressible flows) in our case. We establish the following
three results.

Theorem 2.15. (2.6) admits a minimum.

This result has several components; the basic idea is to consider an admissible sequence (Ei, ui)
that converges to an infimum. Then we need to check the following points:

• We can extract a converging subsequence from (ui) ; this is possible by the compactness results
of [37], and we may suppose that (ui) converges to a limit u in L1

loc.

• The limit u verifies the incompressibility and nonpenetration constraint; the first one is direct,
but for the second we make use of a recent lower-semicontinuity result on jointly symmetric
functionals of [55], among which is the functional

ˆ
Ju

(
|u+ · νu| + |u− · νu|

)
dH n−1

• The energy of u is minimal ; this means we need a new lower semicontinuity result of the
functional ˆ

Ju

(
|u+|2 + |u−|2

)
dH n−1.

A minimizer of (2.6) is said to be strong if H n−1(∂∗E ∪ Ju \ (∂∗E ∪ Ju)) = 0; this means that
setting F to be the complementary of the union of the connected components of Ω \ ∂∗E ∪ Ju where
u = 0, then F is a closed set with rectifiable topological boundary, u ∈ VF,u∞(Ω) with u ∈ H1

loc(Ω\F ),
and J(F, u) takes the minimal value in (2.6). In particular we get that u is a solution of the Stokes
equation in the classical sense in Ω \ F , and u verifies the Navier boundary conditions on ∂F in the
variational sense.

Theorem 2.16. In 2 dimensions, if additionally f is nonincreasing and Ω is simply connected, then
(2.6) admits a strong minimizer in the class of compact set K such that K and R2 \K are connected.

This result can be obtained almost independently of the previous one, with simplifications on the
closure of the boundary constraints and the semicontinuity; the idea is to reformulate the functional
and the constraints with the stream function of u, i.e. the scalar function ψ such that ∇⊥ψ = u,
which amounts to saying that the level sets of ψ are the trajectories of the fluid in the field u. Uniform
estimates in Hölder spaces are available on ψ, and the Goła̧b theorem on connected compacts sets
of R2 allows to obtain the compactness at a lower cost.

Theorem 2.17. Suppose that n = 2 and f is Lipschitz. Let (E, u) be a minimizer of (2.6), then

H 1(Ω ∩ Ju ∪ ∂∗E \ (Ju ∪ ∂∗E)) = 0.
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This means that (E, u) is locally a strong minimizer. This result is neither stronger or weaker
than the previous one, in particular its reasoning uses test functions that do not preserve the connexity
of the obstacle. The proof of this result is similar to the proof of the closure of the jump set of SBV
minimizers of Mumford-Shah by De Giorgi, Carriero, Leaci [53]. More precisely, this strategy was
used with success to prove that SBD minimizers of the Griffith functional are strong, in dimension 2
(in [51]) and later in any dimension (by [49]). The general idea is to prove the closure by establishing
a uniform density estimate around the discontinuities. More precisely, denote Qx,r = x + [−r, r]n,
we establish the existence of r, ϵ, C > 0 depending only on the constants µ, c, λ > 0 (and suprisingly
not of β) such that if u ∈ V(Qx,r) is a local minimizer of (2.6) in Qx,r for r ∈ (0, r), and if

ˆ
Qx,r

|e(u)|2dL 2 + H 1(Ju ∩Qx,r) ≤ ϵr

then for every ρ ∈ (0, r),
ˆ
Qx,ρ

|e(u)|2dL 2 + H 1(Ju ∩Qx,ρ) ≤ Cr− 1
2ρ

3
2 ,

which excludes in particular the existence of jump in a neighbourhood of x.

This bound is obtained through a compactness argument similar to [53], for which one of the
main component is the following approximation lemma that may have other uses beyond that.

We fix ρ ∈ C∞
c (B1/8,R+) a radial function of integral 1, and we write ρδ := δ−2ρ(δ−1·).

Theorem 2.18. There exists constants C, η > 0 sucht that for every u ∈ V(Q1) verifying H 1(Ju) ≤
η, there exists r ∈ [1 − H 1(Ju)

1
4 , 1], φ ∈ C∞

c (Qr, [0, 1]) such that Q
r−

√
H 1(Ju) ⊂ {φ = 1}, and a

function v ∈ V(Q1) ∩H1(Qr) such that

• {u ̸= v} ⊂ Qr, H 1(Jv \ Ju) = 0,

•
´
Q1

∣∣∣∣e(v) −
(
ρ√

H 1(Ju) ∗ e(u)
)
φ
∣∣∣∣2 dL 2 ≤ CH 1(Ju)

1
6
´
Q1

|e(u)|2dL 2.

Said differently, an incompressible flow with few discontinuities may be smoothed. THe general idea
of the proof is to let δ =

√
H 1(Ju), and choose a radius r close to 1 such that any squares of size

δ
2k at distance δ

2k−1 of ∂Qr contains few jump compared to the length of its boundary, whichi is only
possible in two dimension by a Vitali covering argument. From this we begin similarly as [49] by
dividing the square Qr in smaller squares of side rδ inside, and side rδ

2k near the boundary ∂Qr (by
a dyadic decomposition). On each square we find an affine function sufficiently close to the flow
u through a generalized Korn inequality for SBD functions, proved in [48]. We join these approx-
imations and verify that the flow we obtain can be adjusted to respect the zero-divergence constraint.

This method is robust enough to work on so-called “almost quasi-minimizers” of more general
functionals, details can be found at the end of chapter 10.

These results open several new questions. The regularity of the relaxed minimizers in dimension
three remains open, and would require for example to prove a weakened version of the approximation
lemma (which in the current state cannot generalize to higher dimension). The numerical approxi-
mation (even in two dimensions) of the drag by a phase field method with a functional similar to the
Ambrosio-Tortorelli one for the Mumford-Shah problem, seems to be affordable thanks to the above
approximation lemma, but it still raises open questions about the formulation of the non-penetration
constraints. Finally, it is natural to try to generalize these results to the Navier-Stokes equation, and
it seems that one cannot expect to obtain the same conclusions because of the potential appearance
of microstructures at the boundary of the obstacle that change the behavior of the fluid on the walls.
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Chapter 3

A survey of rectifiable sets and special
bounded variation functions
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In this section we introduce some notions of geometric measure theory and more specifically we
present rectifiability, sets of finite perimeter and special bounded variation functions, that will be
used extensively in most of the following chapters. The source of this exposition is mainly extracted
from [72] for the basics of geometric measure theory and [70] for the fine properties of BV and SBV
functions. The proofs are sketched but not given in full details.

3.1 Generalities on geometric measure theory

In all the following, an outer measure on Rn is a function µ : P(Rn) → R such that µ(∅) = 0 and
E ⊂ ∪i∈NEi implies µ(E) ≤ ∑

i∈N µ(Ei). An outer measure µ is said to be a Borel measure when
open sets (and by extension Borel sets) are measurable for µ, and it is said to be a Radon measure
when it is Borel and finite on every compact set.

For any measure µ and any measurable set E, µ⌊E will be the measure µ⌊E(F ) := µ(E ∩ F ), in
particular if µ is Borel and µ(E) < ∞ then µ⌊E is a Radon measure.

We remind a fundamental property of Radon measure, the Besicovitch differentiation theorem
that we will use extensively.

Theorem 3.1 (Besicovitch’s differentiation theorem). Let µ, ν two Radon measure in Rn, then the
quantity

dν

dµ
(x) = lim

r→0

ν(Bx,r)
µ(Bx,r)

is defined with value in R+ ∪ {+∞} for µ-almost every x ∈ Rn, with dν
dµ

∈ L1(µ). Moreover,

ν = dν

dµ
µ+ νsµ,

where νsµ⊥µ, meaning that there is a Borel set E such that µ(E) = νsµ(Rn \ E) = 0.
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The statement of the Besicovitch differentiation theorem of [72] has more details on the support of
νsµ. One consequence that will prove useful later is that for ν = 1Eµ (where E is some Borel set),
we have dν

dµ
= 1E µ-a.e, so E has density (with regard to µ) 1 for µ-a.e. point of E, and 0 for µ-a.e.

point of Rn \ E.

Likewise, for µ = L n and ν = fL n for some f ∈ L1
loc(Rn), we get that

ffl
Bx,r

|f −f(x)|dL n −→
r→0

0
for L n-almost every x ∈ Rn. We shall call Sf the set of x ∈ Rn such that there is no c ∈ R verifyingffl
Bx,r

|f − c|dL n −→
r→0

0 - or equivalently that y 7→ f(x+ ry) does not converge in L1
loc(Rn) to a finite

constant as r → 0 - and the Besicovitch differentiation theorem implies that L n(Sf ) = 0.

We will also extensively use Riesz’s theorem applied to vector-valued Radon measures. Let U an
open subset of Rn, we say a linear application L : C0

c (U,Rm) → R is continuous if for every compact
set K ⋐ U , there is some constant CK > 0 such that for every f ∈ C0(U,Rm),

{f ̸= 0} ⊂ K implies |L(f)| ≤ CK∥f∥L∞(U,Rm).

Theorem 3.2 (Riesz’s theorem). Let L : C0
c (U,Rm) → R be continuous, then there is a Radon

measure denoted |L| and a |L|-measurable function g : U → Rm such that |g| = 1 |L|-a.e. and

∀f ∈ C0
c (U,Rm), L(f) =

ˆ
U

(f · g)d|L|.

A proof may be found at [29, Th 4.7].

Definition 3.3 (Hausdorff’s measures). Let 0 ≤ k ≤ n, E ⋐ Rn, we define

H k(E) = sup
δ>0

H k
δ (E), where

H k
δ (E) = inf

ωk∑
i∈N

(
diam(Ui)

2

)k
, Ui open s.t. diam(Ui) ≤ δ, E ⊂ ∪i∈NUi

 .
Here ωk is a normalizing constant given by ωk = πk/2

Γ(1+s/2) , chosen such that H k([0, 1]k × {0}n−k) = 1.

It is known that H k is a Borel measure that coincides with the Lebesgue measure when k = n, with
the counting measure when k = 0, and when k ∈ {1, . . . , n− 1} it coincides with the surface measure
of dimension k; more precisely, let f ∈ Lip(U,Rn) where U is an open subset of Rk, then

H k(f(U)) =
ˆ
U

Jf(x)dL k,

where Jf(x) =
√

det(Df(x)∗Df(x)) is defined almost everywhere by the following theorem of
Rademacher.
Theorem 3.4 (Rademacher’s theorem). Let f ∈ Lip(Rk,Rn), then f is differentiable almost every-
where.
More precisely we prove that f is differentiable at every Lebesgue point of its weak gradient.

Proof. Let ∇f ∈ L∞(Rk) be the distributional gradient of f , and let S∇f be the points of Rk that are
not Lebesgue points of ∇f ; the Lebesgue-Besicovitch differentiation theorem states that L n(Sf ) = 0.
Let now x ∈ Rk \ Sf and fx,r(y) := f(x+ry)−f(x)

r
. Then (fx,r)r→0 is a family of uniformly Lipschitz

functions, and by choice of x
∇fx,r = (∇f)(x+ r·) −→

r→0
∇f(x) · in L1

loc

By Ascoli theorem, let g be a limit of a subsequence of (fx,r)r→0, then ∇g = ∇f(x) almost everywhere,
so g(y) = ∇f(x)y and (fx,r)r→0 converges uniformly to a linear function, which means exactly that
f is differentiable at x.
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Note that for k < n, H k is a Borel measure, but not a Radon measure as H k([0, 1]n) = +∞.
We will restrict it to sets E such that H k(E) < ∞, with in general the additional (weak) regularity
hypothesis that E is rectifiable.

Definition 3.5 (Rectifiability). Let 0 ≤ k ≤ n two integers, we say E ⊂ Rn is a countably (k-
)rectifiable set if there exists a countable set of functions (fi)i∈N in Lip(Rk,Rn) such that

H k
(
E \ ∪i∈Nfi(Rk)

)
= 0

Moreover, the fi maybe be supposed to be C1, although we will not use it in our case. We may also
suppose that for every x ̸= y in Rk, and every i, |f(x)−f(y)|

|x−y| ∈ [1 − ϵ, 1 + ϵ] for any arbitrarily small ϵ.
We say E is locally (k-)rectifiable if it is countably rectifiable with finite H k measure on every
compact set, meaning that H k⌊E is a Radon measure.

In our case we will mostly use (n− 1) countably rectifiable set, although for the sake of the presen-
tation we keep k-rectifiable sets for any integer k in this subsection. Later on, when we say a set is
countably rectifiable, we implicitely assume it is countably k-rectifiable for k = n− 1.

In general it is hard to verify directly the definition of rectifiability, so we start by proving a few
criteria for rectifiability. We begin by a geometric criteria.

Theorem 3.6 (A geometric rectifiability criteria). For any k-plane π ⊂ Rn and M > 0, we let pπ
the orthogonal projection on π, p⊥

π = pπ⊥, and

KM(π) =
{
x ∈ Rn : |p⊥

π (x)| ≤ M |pπ(x)|
}

Let R ⊂ Rn be such that for H k-almost every x ∈ R, there exists r > 0, M > 0, and π a k-plane
such that

R ∩Bx,r ⊂ x+KM(π)
Then R is (k-) countably rectifiable.

Proof. For any x we let π(x), M(x), r(x) the associated constants. It is enough to prove that R is
rectifiable when r,M are bounded from below, since a countable union of rectifiable sets is rectifiable.
Moreover, up to considering a dense subsequence of the k-planes, it is enough to suppose that π(x)
is constant (which up to rotation we suppose to be Rk × {0}n−k). For any x ∈ Rn, we decompose
x = (x′, x′′) in Rk × Rn−k, and so our (strengthened) hypothesis is that for any x ∈ R,

Br ∩ (R − x) ⊂ {y : |y′′| ≤ M |y′|}

Without loss of generality we suppose 0 ∈ R and R ⋐ Br/2, then for any x′ ∈ Rn−1, let

u(x′) = inf
y∈R

(y′′ +M |x′ − y′|)

Automatically, u is M -Lipschitz and R ⊂ {(x′, u(x′))}, hence the conclusion.

We now prove a blow-up criteria, meaning a critera for rectifiability from the local information
obtained by zooming in on every point. A notation that will be frequently useful for us is the
k-dimensional density: for any Borel measure µ in Rn, and x ∈ Rn, we write

Θ∗
k(µ;x) = lim sup

r→0

µ(Bx,r)
ωkrk

, Θk∗(µ;x) = lim inf
r→0

µ(Bx,r)
ωkrk

and if both coincide we write Θk(µ;x) their common limit. For a set E ⊂ Rn, its k-dimensional
density is by convention the density of the measure H k⌊E. A useful fact about densities, which can
be obtain by Besicovitch covering lemma, is the following; let µ be a Radon measure and M a Borel
set.
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• If for every x ∈ M , Θ∗
k(µ;x) ≥ 1, then µ(M) ≥ H k(M).

• If for every x ∈ M , Θ∗
k(µ;x) ≤ 1, then µ(M) ≤ 2kH k(M).

Definition 3.7 (Tangent plane). Let M ⊂ Rn and π a subspace of dimension k of Rn. We say M
admits the k-tangent plane π at x if

H k⌊
(
M − x

r

)
⇀
r→0

H k⌊π,

in the sense that for any φ ∈ C0
c (Rn),

1
rk

ˆ
M

φ
(
y − x

r

)
dH k(y) −→

r→0

ˆ
π

φ(y)dH k(y)

Similarly, let µ be a Radon measure in Rn, we say πx is a k-tangent space (or blow-up) of µ at x if
the sequence of measure

E 7→ µ(x+ rE)
rk

converges weakly to H k⌊πx.

In particular, a measure µ that admits a k-tangent plane at x verifies Θk(µ;x) = 1.

Theorem 3.8 (Rectifiability by blow-up). • Let R ⊂ Rn be a locally k-rectifiable set, then for
H k-almost every x ∈ Rn there is a unique k-plane πx that is tangent to R at x.

• Reciprocally, let µ be a Radon measure in Rn and R a Borel set of Rn on which µ is concentrated
such that for every x ∈ R we have a unique blow-up H k⌊πx for some k-plane πx, then R is
locally k-rectifiable and µ = H k⌊R.

Proof. • First see that if R = f(E) for some f ∈ Lip(Rk,Rn) with |f(x)−f(y)|
|x−y| ∈ (1/2, 2) for any

x, y, and E ⊂ Rk, then for H k almost every x ∈ R, there is a y ∈ E that is a Lebesgue point
of ∇f such that f(y) = x. Then from the fact that it is a Lebesgue point, we obtain the result.
Let us go back to the general case. Since R is rectifiable we may write that R = R0 ∪i∈N Ri

where Ri = fi(Ei) as previously and H k(R0) = 0. Then its is a consequence of Besicovitch
differentiation theorem that for H k-almost every x ∈ R \ Ri, Θk(Ri;x) = 0. In particular, for
almost every x ∈ Ri we have such a blow-up for Ri and the same blow-up for R.

• We use the previous geometric criteria to prove the rectifiability. Notice that for any two k-
space π, σ that are close enough and for some small enough λ ∈ (0, 1), we have that for any
w ∈ Rn \K2(σ), then B(w, λ|w|) ∩K1(π) = ∅. Consider σ1, . . . , σN a set of k-spaces such that
any k-space π is close enough to one of the σi for this property to hold.

Suppose first that for every x ∈ M , the limits

µ(Bx,r)
ωkrk

→ 1, µ(Bx,r \ (x+K1(πx))
ωkrk

→ 0

are uniform in x. Let ϵ > 0, δ > 0 such that for any r ∈ (0, δ) and any x ∈ M we have

µ(Bx,r)
ωkrk

≥ 1 − ϵ,
µ(Bx,r \ (x+K1(πx))

ωkrk
≤ ϵ

We denote Mi the set of points x ∈ M such that πx is closest to σi, and we apply the geometric
criteria of rectifiability to Mi. Indeed we claim that for any x ∈ Mi,

Mi ∩Bx,δ ⊂ (x+K2(σi)).
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If it were not the case we could find some y ∈ Mi ∩ Bx,δ \ (x + K2(σi)), so B(y, λ|x − y|) ⊂
Rn \ (x+K1(πx)), and since λ|x− y| < δ we have

(1 − ϵ)ωkλk|x− y|k ≤ µ(By,λ|x−y|) ≤ µ(Bx,|x−y|) ≤ ϵωk|x− y|k

so for a small enough ϵ (depending only on k, λ) we get a contradiction, meaning that each Mi

(so M) is rectifiable.

Let us go back to the general case. The sequences of functions

fr : x ∈ M 7→ µ(Bx,r)
ωkrk

, gr : x ∈ M 7→ µ(Bx,r \ (x+K1(πx))
ωkrk

converges punctually to 1, 0 respectively as r → 0, so by Egoroff theorem we may find for any
ϵ > 0 some subset M ′ ⊂ M with µ(M \M ′) < ϵ where the convergence is uniform, taking this
for some sequence ϵk → 0 gives that M is countably rectifiable.

Finally, the fact that the k-density of µ at every point of M is 1 gives that µ(M) ≥ H k(M),
thus M is rectifiable and H k⌊M is a Radon measure. µ⌊M = H k⌊M is then obtained by
Besicovitch differentiation theorem.

3.2 BV functions - definition, embedding and compactness properties

Definition 3.9 (BV space). Let Ω ⊂ Rn be an open set, we let BV (Ω) be the set of functions
u ∈ L1(Ω) such that the distributional derivative Du is a finite Borel measure, meaning

sup
{ˆ

Ω
udiv(φ)dL n, φ ∈ C1

c (Ω, B1)
}

=: V (u; Ω) < ∞

And in term of measure, we may write V (u; Ω) = |Du|(Ω). In general we will not see V (·,Ω) as
a (semi-)norm, because its topology is too strong for our purposes. We will prefer to look at the L1

loc
topology on BV , it is for instance easy to prove that

• If ui −→
L1(Ω)

u, then V (u; Ω) ≤ lim infi→∞ V (ui; Ω). Moreover, if the right-hand side is finite then
Dui ⇀ Du

• Let u ∈ BV (Ω), ρ ∈ C∞
c (B1,R+) that is radial with integral 1, and ρϵ = 1

ϵn
ρ
(

·
ϵ

)
, then the

sequence uϵ := ρϵ ∗ u is smooth, converges to u in L1
loc(Ω), with Duϵ ⇀ Du.

In the following, we denote Ki
r = Πn

k=1[ikr, ikr+ r] the cube of side r based in ir for some i ∈ Zn.
For any compact K and u ∈ L1(K), we denote uK := 1

|K|

´
K
u.

Proposition 3.10 (Poincaré inequality in BV). Let u ∈ BV (Rn), then
ˆ
Kr

|u− uKr | ≤ r
n∑
l=1

|∂lu|(Kr)

Proof. By scaling we may suppose r = 1. By convolution we may suppose that u ∈ C1(Rn) and
proceed by induction on the dimension; in dimension 1 it is direct that |u− u[0,1]| ≤

´ 1
0 |u′|. Suppose

now that n ≥ 2, and denote x = (x′, xn) where x′ ∈ Rn−1.
Let v(x) =

´
[0,1] u(x′, yn)dyn, then we apply the induction on v to see that

ˆ
[0,1]n

|v − v[0,1]n| ≤
n−1∑
l=1

ˆ
[0,1]n−1

|∂lv|(y′)dy′ ≤
n−1∑
l=1

ˆ
[0,1]n

|∂lu|(y)dy
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We apply the result for n = 1 to u(x′, ·) for each x′, then by integrating along x′, we get
ˆ

[0,1]n
|u− v| ≤

ˆ
[0,1]n

|∂nu|

Notice that u[0,1]n = v[0,1]n , so we get the result.

This has an interesting consequence when applied to a function u = 1E; it means that

|E ∩Kr|
|Kr|

× |Ec ∩Kr|
|Kr|

≤
√
n|D1E|(Kr)
rn−1 (3.1)

In particular when the right-hand side is small enough, then the density of E in Kr is either close to
0 or to 1.

Corollary 3.11. Let u ∈ BV (Rn) ∩ L1(Rn), and let ur the function equal to uKi
r

in Ki
r and 0

elsewhere. Then
∥u− ur∥L1(Rn) ≤ r

n∑
l=1

|∂lu|(Rn)

This is direct by applying the previous proposition to each square.

Corollary 3.12 (Compactness of BV). Let (ui)i be a sequence of BV (Rn) with support in some open
bounded set Ω, such that lim supi→∞ V (ui; Ω) < ∞. Then there exists a subsequence (ik)k∈N and a
function u ∈ L1(Rn) such that

uik −→
L1(Rn)

u

This is obtained by diagonal extraction: for any fixed r ∈ Q∗
+, the sequence (uri )i∈N is bounded in

L1(Ω) in some finite dimensional subspace (of functions that are constant on every square that meet
Ω and zero elsewhere). Thus we find a convergent subsequence (ik)k such that (urik)k∈N converges in
L1(Rn) for every r ∈ Q∗

+, and with the uniform estimate of the previous corollary we get the result.

Proposition 3.13 (Embedding of BV). Let u ∈ BV (Rn) ∩ L1(Rn), then

∥u∥
L

n
n−1 (Rn) ≤ V (u;Rn)

Proof. When u ∈ C1
c (Rn,R), this is a consequence of the classical Gagliardo-Nirenberg inequality,

ˆ
Rn

|u|
n

n−1 dL n ≤
(

n∏
i=1

ˆ
Rn

|∂iu|dL n

) 1
n−1

and the general case is obtained by convolution and cut-off.

The constant here is not actually optimal, the optimal one being given by u = 1B where B is a
ball.

3.3 Sets of finite perimeter

Definition 3.14. Let E ⊂ Rn measurable and Ω an open set, we define

Per(E; Ω) = sup
{ˆ

Ω
1Ediv(φ)dL n, φ ∈ C1

c (Ω, B1)
}

and we say that E has finite perimeter (in Ω) when this quantity is finite.

56



Notice that this is just a special case of BV functions of the form 1E, in particular Per(E; Ω) =
V (1E; Ω) = |D1E|(Ω).

When E has finite perimeter, we will denote it µE the Radon measure −D1E. Notice that for
any Borel set A we may extend the definition of Per(E; ·) by

Per(E;A) := |µE|(A)

If E is a smooth open set then µE = νE|µE| for νE is its the outward normal vector of E (this is
the reason for the minus sign in the definition of µE) and |µE| = H n−1⌊∂E. We will see however that
for a general set, the topological boundary is too large and we need to define a notion of boundary
more dependent on the measure µE.

Definition 3.15 (Boundaries). Let E be a set of finite perimeter in Ω and µE = −D1E, we define
the following three notions of boundary.

• According to the Besicovitch differentiation theorem, the limit limρ→0
µE(Bx,ρ)

|µE |(Bx,ρ) exists and has
unit norm |µE|-almost everywhere. We call ∂∗E the set where it exists and has unit norm, and
we write νE : ∂∗E → Sn−1 its value. ∂∗E is called the reduced boundary.

• We let E(1/2) = {x ∈ Rn : Θ∗
n(E;x) = Θn∗(E;x) = 1

2} the points of density exactly 1
2 .

• We define the essential boundary ∂eE = Rn \ (E(0) ∪ E(1)), where

E(0) = {x ∈ Rn : Θ∗
n(E;x) = 0}, E(1) = {x ∈ Rn : Θn∗(E;x) = 1}

An advantage of each of these notions is that they only depend on E almost everywhere. As we
will see, ∂∗E is a strong enough notion of boundary such that the blow-up of E around any point of
the reduced boundary is a half-plane, we have an inclusion

∂∗E ⊂ E(1/2) ⊂ ∂eE,

and H n−1(∂eE \ ∂∗E) = 0 so all of these notions coincide up to a negligible set.

Proposition 3.16. Let E ⊂ Rn be a set of finite perimeter, then for any x ∈ ∂∗E, we have

E − x

r
−→
r→0

{y : y · νE(x) < 0} in L1
loc(Rn)

as well as Θ∗
n−1(|µE|;x) < ∞.

Proof. Suppose 0 ∈ ∂∗E, we assume without loss of generality that ν(0) = en, and we write
x = (x′, xn) ∈ Rn−1 × R for any x ∈ Rn. We claim that µE∩Br = µE⌊Br + µBr⌊E, the proof of
this may be found in [72].

We first prove a control on the perimeter of E in Br for any small enough r. Indeed, according
to the previous claim one has µE(Br) = −µBr(E). For any small enough r, |µE(Br)|

|µE |(Br) ≥ 1
2 , so

|µE|(Br) ≤ 2|µE(Br)| ≤ 2|µBR
(E)| ≤ 2nωnrn−1

This implies the second conclusion, that Θ∗
n−1(|µE|;x) < ∞. Let now m(r) = |E ∩Br|, then m(r) is

absolutely continuous with m′(r) = H n−1(∂Br ∩ E), and

m(r)n−1
n ≤ Per(E ∩Br) ≤ 3H n−1(∂Br ∩ E) = 3m′(r),

so integrating from 0 to r (small enough), which is possible since m > 0 on (0, r), we get |E∩Br|1/n ≥
r

3n . Notice that the same reasonning works seamlessly on the complementary of E.

Let now Er = E
r
, then we have prove that (Er)r→0 is a sequence of sets with locally uniformly

bounded perimeter, such that |Er ∩B1| and |Ec
r ∩B1| are strictly bounded from below for any small

57



enough r. As a consequence, from any subsequence of radius converging to 0 we may re-extract a
subsequence ri → 0 such that Eri

−→
i→∞

F in L1
loc(Rn) for some set F with locally finite perimeter,

and |F ∩B1| ∧ |F c ∩B1| > 0. It is then enough to prove that F is the half-plane {xn < 0}.

We know µEri
⇀ µF (by uniform bound on the perimeter). By using the fact that x is in the

reduced boundary with normal vector en,

Per(F ;BR) ≤ lim inf
i→∞

Per(Eri
;BR) = lim inf

i→∞
en · µEri

(BR) = en · µF (BR) ≤ |µF |(BR),

so this is a chain of equality and

0 = |µF |(BR) − en · µF (BR) =
ˆ
BR

(1 − en · νF ) d|µF |.

as a consequence νF (x) = en for |µF |-almost every x ∈ Rn, or equivalently that |∂i1F |(Rn) = 0 for
i = 1, . . . , n− 1, and that ∂n1F is a nonpositive measure. Consider (ρϵ)ϵ→0 a radial smooth mollifyer
and uϵ := 1F ∗ ρϵ, then uϵ only depend on xn and is decreasing, and so does its limit. This implies
that F is a half-plane {x : xn < α} and clearly α must be 0, which concludes this proof.

Corollary 3.17 (Structure of the boundary). Let E ⊂ Rn be a set of finite perimeter, then ∂∗E is
rectifiable and µE = νEH n−1⌊∂∗E.

Proof. The previous proposition implies that for any x ∈ ∂∗E, the sequence of measures µE(x+r·)
rn−1

converges weakly to H n−1⌊νE(x)⊥. Using the rectifiability criteria by blow-up this implies the
result.

Proposition 3.18 (Identification of boundaries). Let E ⊂ Rn be a set of finite perimeter, then ∂eE
is rectifiable and H n−1(∂eE \ ∂∗E) = 0.

Proof. using the formula (3.1) (note that it was for cubes instead of balls, but the proof does not
change up to a constant) we know that for any ball Bx,r,

|E ∩Bx,r|
|Bx,r|

· |Ec ∩Bx,r|
|Bx,r|

≤ cn|µE|(Bx,r)
rn−1

Since |µE| = H n−1⌊∂∗E, then for H n−1-almost every x /∈ ∂∗E we have Θ∗
n−1(µE;x) = 0, meaning

(with the formula above) that x ∈ E(0) ∪ E(1).

3.4 Unidimensional BV functions, structure theorem

In this whole section, I is a bounded interval on R, and we study in particular the decomposition of
BV functions on an interval.

When u ∈ BV (I), then for any t ∈ I the approximate right-limit and left-limit are well defined
(since having two possible values would implies infinite variation), and we shall denote them u+(t)
and u−(t). We will write [u](t) = u+(t)−u−(t); note that [u](t) is zero except for a possibly countable
subset of I, since V (u; I) ≥ ∑

t∈I |[u](t)|.

Proposition 3.19 (Decomposition of BV ). Let u ∈ BV (I), then there exists, up to a constant, a
unique decomposition of u in three parts

u = ua + uj + uc

where ua ∈ W 1,1(I), Duj = ∑
t∈I [u](t), and uc is continuous and Duc is singular with respect to the

Lebesgue measure.
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This is simply an application of the Besicovitch differentiation theorem on the derivative Du with
respect to the Lebesgue measure.

Definition 3.20. Let u ∈ BV (I), we will write Dua = ∇uL 1, and Ju = {t ∈ I : [u](t) ̸= 0}. We
say that u is in SBV (I) when Duc = 0, meaning that

Du = ∇uL 1 +
(
u+ − u−

)
H 0⌊Ju.

The space SBV (I) is not closed for the L1-induced topology (under bounded total variation)
; indeed the most well-known example of function with non-constant uc is the Cantor staircase,
which is obtained as a limit of (non-uniformly) increasing Lipschitz functions. Similarly, a piecewise
constant function may approximate any Lipschitz function. As a consequence we need a stronger
constraint on both the absolutely continuous part and the jump part to ensure that a sequence of
such functions stay in SBV at the limit. We do not state the Ambrosio compactness theorem in its
full generality, we refer to the classical reference [70] for this.

Theorem 3.21 (One-dimensional compactness). Let I a bounded open interval of R, (ui)i∈N be a
sequence in SBV (I), let p > 1 and suppose that

lim sup
i→∞

(
V (ui, I) +

ˆ
I

|∇ui|p + H 0(Jui
)
)
< ∞,

and suppose that ui −→
L1(I)

u ∈ BV (I). Then u ∈ SBV (I) and

∇ui −→
i→∞

∇u weakly in Lp(I)

H 0(Ju) ≤ lim inf
i→∞

H 0(Jui
)

Proof. We decompose ui = ci + uai + uji where ci ∈ R converges to some limit c ∈ R, uai ∈ W 1,p(I)
and uji = ∑

t∈Jui
[ui](t), such that both uai and uji have zero average. Now we may suppose that uai

converges weakly in W 1,p(I) to some limit ua, and likewise with the uniform bound on the number
of jump we get that uji converges in L1(I) to some jump function uj (such that the jumps of uj are
included in the Hausdorff limit of (Jui

)i). Then u = c+ ua + uj is in SBV (I) with the two required
inequalities.

3.5 Fine properties of BV functions

We let Ω ⊂ Rn be an open set in all this section, for n ≥ 2. Let us first mention this useful result
that makes stronger link between sets of finite perimeter and BV functions.

Proposition 3.22 (Coarea formula for BV functions). Let u ∈ BV (Ω), then

V (u; Ω) =
ˆ +∞

−∞
Per({u > t}; Ω)dt

Proof. One side (≤) is obtained by direct application of Fatou’s lemma on the definition of V (·; Ω)
and using the formula u =

´ +∞
0 1u>tdt. For the other side, we consider a convolution uϵ := ρϵ ∗ u for

a standard mollifyer (ρϵ)ϵ→0, and since the classic coarea formula is valid on (uϵ) we get

V (u; Ω) = lim
ϵ→0

ˆ +∞

−∞
Per({uϵ > t}; Ω)dt ≥

ˆ +∞

−∞
lim inf
ϵ→0

Per({uϵ > t}; Ω)dt ≥
ˆ +∞

−∞
Per({u > t}; Ω)dt

where the last inequality is due to the fact that {uϵ > t} −→
L1(Ω)

{u > t} for every t such that {u = t}

has zero Lebesgue measure, which is L 1-a.e. t.
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A consequence of this formula is that BV function may be uniformly approximated from below by
combination of indicator of sets with finite perimeter. Indeed, let δ > 0, for every k ∈ Z there is
some tk ∈ [kδ, (k + 1)δ) such that

ˆ (k+1)δ

kδ

Per({u > t}; Ω)dt ≥ δPer({u > tk}; Ω)

We then let uδ = ∑
k∈N(tk − tk−1)1u>tk , meaning that uδ = tk on {tk < u ≤ tk+1}. Then V (uδ,Ω) ≤

2V (u; Ω) and |u − uδ| ≤ 2δ. This means that some properties of sets of finite perimeter directly
transfer to BV functions with this.

We define the following singular and jump sets.

Definition 3.23 (Jump set). Let u ∈ BV (Ω), we say x ∈ Ω is singular (for u), and we write x ∈ Su,
if and only if there is no z ∈ R such that

 
B(x,r)

|u− z| → 0

We define the jump point Ju to be the particular subset of points x ∈ Su where moreover there exists
νu ∈ Sn−1, u+, u− ∈ Rn distincts, such that

u(x+ r·) −→
r→0

u+1{z:z·ν>0} + u−1{z:z·ν<0} in L1
loc(Rn)

The idea here is that Ju represents the points at which u changes from one value u− to another u+

along a flat hypersurface. What we see with the following two results is that in general H n−1-almost
every point of Su are of the form of Ju.

Theorem 3.24 (Structure of the singular set). Let u ∈ BV (Ω), then Su is countably rectifiable.

Proof. We let

Z =
{
x ∈ Ω s.t.

 
B(x,r)

|u|
n

n−1 −→
r→0

+∞
}

By the BV coarea formula there is a countable dense subset D of R+ such that Per({u > t}; Ω) < ∞
for all t ∈ D.

Claim 1: Su \ Z ⊂ ∪t∈D∂
e{u > t}, where we remind that ∂eE = Rn \ (E(0) ∪ E(1)).

Claim 2: H n−1(Z) = 0.
This implies the rectifiability of Su, since the ∂e{u > t} are rectifiable.

• Proof of Claim 1: Let x that is neither in Z or ∪t∈D∂
e{u > t}, we prove that x is a Lebesgue

point of u. Let z = sup{t ∈ D : x ∈ {u > t}(1)} then for any s < z < t, s, t ∈ D, we have
z ∈ {u > s}(1) ∩ {u > t}(0) by definition of x and z. Now let ρ > 0 be small enough such that
Bx,ρ ⋐ Ω, then for any ϵ > 0,

ρ−n
ˆ
Bx,ρ

|u− z| = ρ−n
ˆ
Bx,ρ∩{|u−z|≥ϵ}

|u− z| + ρ−n
ˆ
Bx,ρ∩{|u−z|<ϵ}

|u− z|

≤ ρ−n|Bx,ρ ∩ {|u− z| ≥ ϵ}|
1
n

(ˆ
Bx,ρ

|u− z|
n

n−1

)1− 1
n

+ |B1|ϵ

which is less than |B1|ϵ as ρ → 0, and since ϵ is taken arbitrarily small this means that x is a
Lebesgue point of u with value z.

• Proof of Claim 2: we will need the following lemma.
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Lemma 3.25. Let (Ei)i∈N be a sequence of measurable subset of Rn such that |Ei|,Per(Ei) → 0,
then

H n−1(Rn \ ∪iE
(0)
i ) = 0.

Proof. Let E ⊂ Rn such that |E| and Per(E) are finite, α ∈ (0, 1/2) and δ =
(

|E|
ωnα

)1/n
, we

prove that
H n−1

2δ ({x : Θ∗
n(E, x) > α}) ≤ Cn

α
Per(E)

which is sufficient. For any x such that Θ∗
n(E, x) > α we know there are arbitrarily small ρ

such that |E ∩ Bx,ρ| > α|Bρ|. By our choice of δ we also know that |E ∩ Bx,δ| ≤ |E| = α|Bδ|,
so in particular we find by intermediate value theorem a ρx ∈ (0, δ) such that

|E ∩Bx,ρx|
ωnρnx

= α

The Poincaré inequality applied to 1E on Bx,ρ gives(
1 − |E ∩Bx,ρ|

|Bρ|

)
|E ∩Bx,ρ|

|Bρ|
≤ CnρPer(E;Bx,ρ)

|Bρ|
,

so in particular Per(E;Bx,ρx) ≥ cnαρ
n−1
x . The balls (Bx,ρx)x:Θ∗

n(E,x)>α cover the set {x :
Θ∗
n(E, x) > α} so we may extract a Besicovitch covering (Bxi,ρxi

) (meaning a covering with
at most ξn intersections for ξn depending only on the dimension), obtaining

H n−1
2δ ({x : Θ∗

n(E, x) > α}) ≤
∑
i

ωn−1ρ
n−1
xi

≤ ωn−1

cnα

∑
i

Per(E;Bxi,ρxi
) ≤ ξnωn−1

cnα
Per(E)

Now that this lemma is proved, suppose without loss of generality that u is nonnegative and
for each k ∈ N, there is some tk ∈ [k, k + 1) such that

Per({u > tk}; Ω) ≤
ˆ k+1

k

Per({u > t}; Ω)dt

and so by integrability of u, the sets ({u > tk})k∈N verify the hypothesis of the lemma.
Let D = {x : Θ∗

n−1(|Du|, x) = ∞}, then by Besicovitch covering argument |Du| ≥ +∞H n−1⌊D
and since |Du| is a Radon measure, D must be H n−1-negligible. We prove that if x ∈ Rn is
not of upper density 1 in all of the {u > tk} and not in D, then x in not is Z, which prove the
claim.
The Poincaré inequality gives that

 
Bx,ρ

|u− (u)x,ρ|
n

n−1 ≤ Cn

(
|Du|(Bx,ρ)

ρn−1

) n
n−1

And so for x /∈ D the right-hand side is bounded as ρ → 0 ; to prove that x /∈ Z it is
then enough to prove that ((u)x,ρ)ρ→0 is bounded. Suppose it is unbounded, meaning there is
some subsequence ρi → 0 such that ci := (u)x,ρi

diverges to infinity. Consider then vi(y) =
u(x+ ρiy) − ci, we knowˆ

B1

vi = 0, V (vi, B1) = V (u;Bx,ρi
)

ρn−1
i

= Oi→∞(1) because x /∈ D,

so vi is bounded in BV (B1) and by compactness converges in L1(B1) and almost everywhere
to some limit v that is finite almost everywhere. In particular, for any k ∈ N,

Θ∗
n({u > tk}, x) ≥ lim sup

i

|{u > tk} ∩Bx,ρi
|

ωnρni
≥ lim sup

i
ω−1
n |{vi > tk − ci} ∩B1| = 1

where the last equality is because v = lim(vi) is finite almost everywhere. As a consequence, x
must be in ∩k(Rn \ {u > tk}(0)). This concludes the result.
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Theorem 3.26 (Trace on rectifiable sets). Let u ∈ BV (Ω) and R a countable rectifiable set oriented
by ν, then for H n−1-almost every x ∈ R there exists u+

|R, u
−
|R ∈ R, such that

u(x+ r·) −→
r→0

u+
|R1{z:z·ν(x)>0} + u−

|R1{z:z·ν(x)<0} in L1
loc(Rn).

When R = Ju, we just write u± := u±
|Ju

and this is coherent with the notations of the definition of
Ju.

Proof. Suppose first that u = 1E for some set E with finite perimeter. Then we know from the
structure theorem that H n−1-a.e. point x is either in E(0), E(1), or ∂∗E. Moreover, νE(x) = ±ν(x)
for H n−1 almost every x ∈ R ∩ ∂∗E. Such for H n−1-almost every x in R we are in one of the three
following cases:

• If x ∈ E(0), u±
|R(x) = 0 works.

• If x ∈ E(1), u±
|R(x) = 1 works.

• If x ∈ ∂∗E with νE = ν (resp −ν), then we let u±
|R = u± (resp u∓)

Now, for a general u ∈ BV (Ω), that we suppose to be bounded without loss of generality, with the
BV coarea formula we may approximate it uniformly by a function of the forme ∑N

i=1 ti1Ei
for sets

of finite perimeter Ei, and the definition of u±
|R follows.

As a corollary of the two previous result we directly obtain the following.

Theorem 3.27 (Rectifiability of the singular set). Let u ∈ BV (Ω), then H n−1(Su \ Ju) = 0.

Proof. Su is countably rectifiable so for H n−1-almost every x ∈ Su there exists u+
|Su

(x), u−
|Su

(x) ∈ R

as previously. However u+
|Su

(x) = u−
|Su

(x) implies that x /∈ Su, so necessarily u+
|Su

(x) ̸= u−
|Su

(x) and
x ∈ Ju.

Definition 3.28 (Decomposition of BV functions). Let u ∈ BV (Ω), we write

Du = Dau+Dju+Dcu

where

Dau = ∇uL n where ∇u ∈ L1(Ω) is the absolutely continuous part of Du,
Dju = (u+ − u−)νuH n−1⌊Ju is the jump part,
Dcu = Du−Dau−Dju is the Cantor part.

Dcu verifies that Dcu⊥L n, and |Duc|(R) = 0 for any rectifiable R. The terminology “Cantor part”
originates from the fact that the most classical example of a function with non-zero Cantor part is
the Cantor staircase. A corollary of the trace theorem is that Dcu is purely unrectifiable, meaning
that for any rectifiable R we have |Dcu|(R) = 0. In this sense it is foreign to both L n and H n−1 ;
this is for instance what happens for the Cantor staircase, for which the derivative is a measure that
has support on the Cantor set (which is L 1-negligible) with no atom (so singular to H 0).

Definition 3.29. Let u ∈ BV (Ω), we say u is in SBV (Ω) when Dcu = 0.
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3.6 Compactness of SBV functions

This space SBV is the one we will use in most of the following chapters. It is a non-trivial subspace
of BV (because of, says, the Cantor staircase) but notice that it is not closed for the L1 topology:
the uniform approximation of any BV function with combinations of indicators of finite perimeter
sets - which are actually in SBV with Dcu = Dau = 0 - proves this. Thus for a compactness theorem
we will ask a slightly stronger control of both the gradient and the jump ; it is actually the same
result as in SBV (R) due to the following result that identify the decomposition of Du with the
decomposition of its one-dimensional sections.

Definition 3.30. Let u : Ω → R, y ∈ Rn, ξ ∈ Sn−1, we call Ωξ
y the open set of R such that

Ω ∩ (y + Rξ) = y + Ωξ
yξ

And we define the slice of u as
uξy : t ∈ Ωξ

y 7→ u(y + tξ)

Theorem 3.31 (Slicing). Let u ∈ BV (Ω), ξ ∈ Sn−1, then for H n−1-almost every y ∈ ξ⊥ we have
uξy ∈ BV (Ωξ

y) and for every φ ∈ C0(Ω,R),
ˆ

Ω
φ(x)d(ξ ·Dau)(x) =

ˆ
ξ⊥

(ˆ
Ωξ

y

φ(y + tξ)dDauξy(t)
)
dH n−1(y)

ˆ
Ω
φ(x)d(ξ ·Dju)(x) =

ˆ
ξ⊥

(ˆ
Ωξ

y

φ(y + tξ)dDjuξy(t)
)
dH n−1(y)

ˆ
Ω
φ(x)d(ξ ·Dcu)(x) =

ˆ
ξ⊥

(ˆ
Ωξ

y

φ(y + tξ)dDcuξy(t)
)
dH n−1(y)

For this we refer to [70, Th. 3.107, 3.108].

An important corollary is that if for a basis (ξi)i=1,...,n of Rn, and for H n−1-almost every y ∈ ξ⊥
i ,

uξi
y ∈ SBV (Ωξi

y ), then u ∈ SBV (Ω). With this we can prove the very useful compactness theorem.

Theorem 3.32 (Compactness of SBV functions). Let Ω be a bounded open set of Rn, (ui)i∈N be a
sequence in SBV (Ω)), let p > 1 and suppose that

lim sup
i→∞

(
V (ui,Ω) +

ˆ
Ω

|∇ui|pdL n + H n−1(Jui
)
)
< ∞,

and suppose that ui −→
L1(Ω)

u ∈ BV (Ω). Then u ∈ SBV (Ω) and

∇ui −→
i→∞

∇u weakly in Lp(Ω)

H n−1(Ju) ≤ lim inf
i→∞

H n−1(Jui
)

Proof. We know u ∈ BV (Ω) and then we use the slicing lemma along a basis (ξi) and the one-
dimensional compactness theorem for H n−1-almost every section; this tells us that almost every
section is in SBV , thus the full function is in SBV . The lower semicontinuity is obtained by a
section argument as well: for any ξ ∈ Sn−1, the semi-continuity of each term in the one-dimensional
case gives the lower semi-continuity of

ˆ
Ω

|ξ · ∇u|pdL n and
ˆ
Ju

|ξ · νu|dH n−1.
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In particular the first one implies the lower semi-continuity of the gradient term. More precisely the
weak convergence ∇ui ↪→ ∇u is a consequence of the weak convergence of each ek · ∇ui to ek · ∇u.

Now for the lower semi-continuity of the second term ; let ϵ > 0, for every Lebesgue point x ∈ Ju
for νu and for any arbitrarily small r > 0,

ˆ
Bx,r∩Ju

νu(x) · νu(y)dH n−1(y) ≥ (1 − ϵ)H n−1(Bx,r ∩ Ju)

By Vitali covering lemma (see for instance [72, cor. 5.5]) we deduce a covering of Ω by balls (Bk)k∈N
of arbitrarily small radius, of vectors ξk ∈ Sn−1, such that H n−1(Ju \ ∪kBk) = 0 and

(1 − ϵ)H n−1(Ju) ≤
∑
k

ˆ
Bk∩Ju

ξk · νudH n−1 ≤ lim inf
i→∞

∑
k

ˆ
Bk∩Jui

ξk · νui
dH n−1 ≤ lim inf

i→∞
H n−1(Jui

),

and we get the result as ϵ → 0.

3.7 A quick overview of SBD functions

Bounded deformation functions (abbreviated as BD) are a vectorial generalization of BV functions
for which we only have control on the symmetric gradient. This is something that arose from elastic
material theory in which one only has control on the deformation tensor, meaning the symmetrised
gradient.

Definition 3.33. Let Ω be an open set of Rn and u ∈ L1(Ω,Rn), we say u ∈ BD(Ω) when

Eu := Du+ (Du)∗

2
is a Sn-valued Radon measure, where Sn is the set of real n× n symmetric matrices..

We can define the singular set Su and the jump set Ju the same way we do for BV functions, and
we let SBD(Ω) be the space of function u ∈ BD(Ω) such that

Eu = e(u)L n + (u+ − u−) ⊙ νuH
n−1⌊Ju,

where e(u) ∈ L2(Ω) and (a ⊙ b)ij = aibj+ajbi

2 . While there are analogies between the properties of
SBD and SBV functions, there are also some knowledge gap ; for instance it is unknown whether
for u ∈ BD(Ω) we have H n−1(Su \ Ju) = 0. Let us state without proof basic properties of SBD
functions, mainly taken from [69] and [71].

The slices of BD functions are done differently ; for any y ∈ Rn, ξ ∈ Sn−1, we still define uξy as
previously, however there is no reason its components should have bounded variation. Instead we let

ûξy(t) = ξ · u(y + tξ),

defined for t ∈ Ωξ
y. Then a similar theorem as its equivalent for BV functions holds.

Theorem 3.34. Let Ω ⊆ Rn be open, u ∈ SBD(Ω), and let ξ ∈ Rn with |ξ| = 1. Then for H n−1-a.e.
y ∈ Ωξ we have

ûξy ∈ SBV (Ωξ
y)

with ∇ûξy(t) = (e(u)ξ · ξ)(y + tξ) and Jûξ
y

= (Jξu)ξy, where Jξu = {x ∈ Ju : ξ · (u+(x) − u−(x)) ̸= 0}.

Similarly, we have the following useful compactness theorem.
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Theorem 3.35. Let Ω ⊆ Rn be open, bounded and with a Lipschitz boundary, and let (ui)i∈N be a
sequence in SBD(Ω) such that

sup
i

[
|Eui|(Ω) + ∥ui∥L1(Ω;Rn) + ∥e(ui)∥Lp(Ω;Mn

Sn
) + H n−1(Jui

)
]
< +∞

for some p > 1. Then there exists u ∈ SBD(Ω) and a subsequence (uik)k∈N such that

uik → u strongly in L1(Ω;Rn),

e(uik) ⇀ e(u) weakly in Lp(Ω; Mn
sym),

and
H n−1(Ju) ≤ lim inf

k→+∞
H n−1(Juik

).
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Chapter 4

Degenerate free discontinuity problems
and spectral inequalities in quantitative
form

This is a joint work with Dorin Bucur and Alessandro Giacomini.

Contents
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.2 Introduction of the new functional, main results and strategy of the proofs . . 70
4.3 Analysis of the analytic-geometric functional . . . . . . . . . . . . . . . . . . . . . 72

4.3.1 Preparatory results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.3.2 Nondegeneracy of the minimizers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.3.3 Closedness of the jump set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.3.4 The optimal function is radially symmetric . . . . . . . . . . . . . . . . . . . . . . . 79
4.3.5 Existence of minimizers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.4 The ball minimizes the geometric functional . . . . . . . . . . . . . . . . . . . . . 87
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4.1 Introduction

Free discontinuity problems emerged in the context of the analysis of the Mumford-Shah functional,
later on around different crack propagation models of Francfort and Marigo type and more recently
around shape optimization problems of Robin type. The common feature of all those problems is,
roughly speaking, the minimization of a sum between an energy term corresponding to a certain
state equation issued from the model and of some more geometric terms involving the volume of
the domain of the PDE, the length of the jump set or some more complex jump energy. A formal
example could be written as

min{E(u) + Hn−1(Ju) : u ∈ SBVloc(Rn)}.

The balance between the energy E(·) of the PDE and the geometric term (above the length of the
jump set) is the key phenomenon leading to a solution of the free discontinuity problem.

The main focus of this paper is to introduce and analyse a new analytic-geometric functional
involving both an energy of a PDE and the length of the jump set, in which the geometric term
appears with negative sign. The exact description is given in the next section but, formally, this
could be written as

min{E(u) − Hn−1(Ju) : u ∈ SBVloc(Rn)}.
Of course, at a first sight this may appear surprising! Presumably, the negative sign would lead to
non-existence of a solution and ill posedness. However, this is not always the case, as the presence
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of the jump energy with a negative sign can sometimes be balanced by the energy of the PDE. As
we will show in the next section, this is the case if the jump set acts as an obstacle and the energy
contains some mass of the state function on the jump set. Robin boundary conditions can be suitably
adapted to play this role. Ultimately, this leads to a new (degenerate) problem which takes the form
of a free discontinuity problem above the obstacle and of a free boundary problem at the level of the
obstacle.

This kind of problems pops up naturally in the context of searching quantitative forms of spectral
isoperimetric inequalities for eigenvalues of nonlinear Robin Laplacian problems, in which the ball is
expected to be a solution. Proving that the minimizer of the associated analytic-geometric functional
is the ball, gives straight away a spectral isoperimetric inequality in a quantitative form.

In order to introduce the functional, we recall our objectives.

The context of quantitative isoperimetric inequalities. The sharp quantitative isoperimetric
inequality proved by Fusco, Maggi and Pratelli in 2008 (see [87]) reads

|Ω|
1−n

n Per(Ω) − |B|
1−n

n Per(B) ≥ C(n) A(Ω)2, (4.1)

where Ω ⊆ Rn is a measurable set, B is a ball of the same volume as Ω, Per(Ω) is the generalized
perimeter of Ω and

A(Ω) = inf
{

|Ω△B|
|Ω|

: B ⊂ Rn, |B| = |Ω|
}
,

is the Fraenkel asymmetry.
In the vein of this inequality, in the last decade intensive research was carried to obtain quan-

titative versions of some classical spectral inequalities, like Faber-Krahn, Szegö-Weinberger, Saint-
Venant, Weinstock and many others. We refer the reader to the recent survey by Brasco and De
Philippis [75] for an overview of the topic.

In [78], Brasco and Pratelli prove a sharp quantitative form for the Szegö-Weinberger inequality

|B|2/Nµ1(B) − |Ω|2/nµ1(Ω) ≥ C(n) A(Ω)2,

and in [76] Brasco, De Philippis and Ruffini found a similar quantitative form of the Brock-Weinstock
inequality. The common feature of both results is that the ball corresponds to a maximal value.
Loosely speaking, the strategy to prove such an inequality relies on studying some weighted form of
(4.1), via a suitable choice of test functions.

Spectral inequalities where the ball is minimal, like the Faber-Krahn inequality for the Dirichlet
Laplacian, requires a completely different approach, since the use of fixed test functions is not any-
more useful. The first results on the quantitative form of the Faber-Krahn inequalities were obtained
by Melas [90] and Hansen and Nadirshvili [89] for simply connected sets in dimension 2 and convex
sets in Rn, but the complete proof of the sharp form of the quantitative inequality was given only
in 2015 by Brasco, De Philippis and Velichkov [77]. A fundamental idea in their proof is to use
a selection principle, in the spirit of Cicalese and Leonardi [85], which, roughly speaking, reduces
the class of sets Ω for which the inequality has to be proved to a much smaller one, consisting on
smooth, small graph perturbations of the ball which can be handled by local perturbation arguments.
The selection of those sets is done by solving a suitable auxiliary free boundary problem; this part
concentrates the most of the technicalities. Following the same strategy, nonlinear eigenvalues were
discussed by Fusco and Zhang in [88].

The purpose of this paper is to get quantitative isoperimetric inequalities for the best constants of
Sobolev-Poincaré inequalities with trace terms. Those constants are fundamental semilinear eigenval-
ues of the Laplace operator with Robin boundary conditions and can be expressed by minimization
of suitable Rayleigh quotients. Our objective could be compared to the quantitative inequalities of
Faber-Krahn type obtained for Dirichlet boundary conditions in [77] and [88], but from a technical
point of view the solution is completely different.

Quantitative spectral inequalities for the Robin Laplacian. Let β > 0. For every bounded,
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open Lipschitz set Ω ⊆ Rn and for every q ∈ [1, 2n
n−1) one defines

λq(Ω) = inf
u∈H1(Ω),u̸=0

´
Ω |∇u|2dL n +

´
∂Ω βu

2dH n−1(´
Ω |u|qdL n

)2/q . (4.2)

Our objective is to prove that
λq(Ω) − λq(B) ≥ C A(Ω)2 (4.3)

where the constant C > 0 depends on n, β, q and |Ω|, but not on Ω.
The non-quantitative version of (4.3): the case C = 0. Before proving (4.3) in its quantitative form,
with C > 0, it is convenient to recall that the inequality is true with C = 0 for every q ∈ [1, 2]. The
minimality of the ball among all Lipschitz sets of the same volume for the first Robin eigenvalue of
the Laplacian (i.e. q = 2)

λ2(Ω) − λ2(B) ≥ 0 (4.4)
was proved in two steps, by Bossel in R2 in 1986 (see [74]) and by Daners in Rn in 2006 (see [86]).
The proofs are quite involved and definitely require new ideas with respect to the Faber-Krahn
inequality, namely the analysis of the so called H-function. As we do not use this function here and
because it is quite technical, we shall not detail it here (the reader is referred to [86]). Nevertheless,
it is important to say that intensive efforts were done to build similar H-functions for other values
of q ̸= 2, in particular for the special case q = 1 corresponding to the torsional rigidity, with the
objective to extend the Saint-Venant inequality. Up to now, they were not successful and it is likely
that such an H-function may not exist, so that a proof similar to Bossel-Daners in the case q ̸= 2
cannot be produced. However, the inequality λq(Ω) − λq(B) ≥ 0 has been proved, using a different
strategy, for any q ∈ [1, 2] in [81] (see also [80]), while for q ∈ (2, 2n

n−1) it has been proved in a slightly
weaker form. The proof is based on a free discontinuity approach in which the inequality is seen as
a minimization problem in the class of special functions of bounded variation in Rn (see Section 4.3
below).
The quantitative version of (4.3): the case C > 0. Coming back to the quantitative form (4.3), in
[79] the result was proved for q = 2, only. The reason was of technical nature. Precisely, the proof
makes crucial use of the H-function, available only for q = 2. Indeed, there are two steps in the proof
([79]): the first step is based on a deeper analysis of the H-function of Bossel and Daners which led
to the intermediate inequality

λ2(Ω) − λ2(B) ≥ β

2 inf
x∈Ω

u2(x)(Per(Ω) − Per(B)). (4.5)

By itself, this inequality is interesting and already quantitative, but not uniform, as the difference of
the perimeters on the right hand side is multiplied by the infimum of an L2-normalized eigenfunction
u, which depends on Ω. In a second step, one uses the selection principle to replace Ω by a new
set which, roughly speaking, has lower eigenvalue, comparable Fraenkel asymmetry and a controlled,
uniform, lower bound of the eigenfunction. The new set is build as a minimizer of a suitable auxiliary
free discontinuity problem. This last step recalls both the strategy of Cicalese and Leonardi for the
quantitative isoperimetric inequality and the one of Brasco, De Philippis and Velichkov for the first
Dirichlet eigenvalue. The difference is however fundamental, as one has to solve a free discontinuity
problem with a completely different objective. Indeed, one aims to compare a general set with
another set, with a comparable Fraenkel asymmetry and lower eigenvalue, for which the lower bound
of the state function is controlled from below (in order to use the intermediate inequality of Step
1). Meanwhile, in [85] and [77] the solutions of the associated free boundary problems had the
objective to compare a general set with a set which is graph over the ball (in order to use second
order differential inequalities).
A new functional to handle quantitative inequalities. The main purpose of the paper is to
obtain the quantitative inequality (4.3). While the selection principle in association with the auxiliary
free discontinuity problem can be extended to the case 1 ≤ q < 2, it turns out that the main difficulty
is to prove an intermediate inequality similar to (4.5). Indeed, the absence of H-functions requires a
completely new strategy.
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The key idea is to introduce a new analytic-geometric functional involving both the energy of an
obstacle problem and geometric terms. Precisely, we add a perimeter term with negative sign, which
may appear surprising for a minimization problem. However, this term is balanced by the obstacle
energy. Indeed, the PDE and the geometric terms interact in the minimization process, which can be
carried out in the framework of free discontinuity problems. We prove that the minimizer corresponds
to a ball and, quite directly, this fact provides the intermediate quantitative inequality.

4.2 Introduction of the new functional, main results and strategy of the
proofs

Let q ∈ [1, 2) and β > 0 be given. Let Ω be a bounded, open, Lipschitz set and B a ball such
that |B| = |Ω|. Instead of working with the functionnal λq(Ω), we work with the following: for all
u ∈ H1(Ω), u ≥ 0, we define

E(u; Ω) = 1
2

ˆ
Ω

|∇u|2dL n + β

2

ˆ
∂Ω
u2dH n−1 − 1

q

ˆ
Ω
uqdL n,

and
E(Ω) = min{E(u; Ω) : u ∈ H1(Ω), u ≥ 0}.

E(Ω) and λq(Ω) are linked by the relation:

E(Ω) = q − 2
2q λq(Ω)

q
q−2 , (4.6)

Here are the main results of the paper.

Theorem 4.1. For every, Ω, β and q as above, and let uΩ be a minimizer of E(·; Ω), then the
intermediate inequality

E(Ω) − E(B) ≥ β

2

(
inf
x∈Ω

uΩ(x)
)2

(Per(Ω) − Per(B)) (4.7)

holds true.

This intermediate inequality may have its own interest although it is not uniform. Using the
relation between E and λq, we obtain the following inequality on λq(Ω)

2 − q

2q

(λq(Ω)
λq(B)

) q
2−q

− 1
λq(Ω) ≥ β

2

(
inf
x∈Ω

u(x)
)2

(Per(Ω) − Per(B)),

where u is a minimizer of the Rayleigh quotient (4.2) that is normalized in Lq. Notice that when
q → 2, the left-hand side diverges while the right-hand side converges; we do not recover (4.5) with
this. However, we still obtain the following.

Theorem 4.2. For every, Ω, β and q as above:

λq(Ω) − λq(B) ≥ CA(Ω)2,

where C > 0 depends on n, β, q and |Ω|, only.

In fact, both results are proved in a more general framework than stated above. They take the form
of a Sobolev-Poincaré inequality with trace terms in SBV (see Theorem 4.15 in Section 4.5) with
improved constant. However, as most readers are interested only by the classical setting, we prefer
to present our result for Lipschitz sets, and push technicalities in the second part of the paper.
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To obtain the (intermediate) inequality in Theorem 4.1, we will study a different problem that
depends on a parameter c ≥ 0. For every c ≥ 0, for any nonnegative u ∈ H1(Ω), we set

Ec(u; Ω) = E(c+ u; Ω) − β

2 c
2Per(Ω) + cq

q
|Ω|

Ec(Ω) = min{Ec(u; Ω) : u ∈ H1(Ω), u ≥ 0}

= min{E(u; Ω) : u ∈ H1(Ω), u ≥ c} − β

2 c
2Per(Ω) + cq

q
|Ω|.

This functional involves both an obstacle problem and geometric terms. When we minimize Ec(Ω)
among sets of constant measure, the perimeter term, coming with negative sign, will interact with
the solution of the obstacle problem, while the measure part does not play any role. At fixed Ω, the
geometric terms do not play any role in the obstacle problem.

Clearly, for every c ≥ 0
Ec(Ω) ≥ E(Ω) − β

2 c
2Per(Ω) + cq

q
|Ω|. (4.8)

If 0 ≤ c ≤ infΩ uΩ then the equality sign occurs in (4.8) since uΩ − c is also solution of the obstacle
problem. If c > infΩ uΩ then the solution of obstacle problem is different from uΩ − c and the
inequality is strict. As an example, with q = 1 and Ω = BR (the ball of radius R), the minimizer u
of Ec(·;BR) takes the form:

u(x) =
(
R

nβ
− c

)
+

+ R2 − |x|2

2n ,

and
Ec(BR) = −|BR|

2

((
R

nβ
− c

)
+

+ R2

n(n+ 2)

)
.

The strategy to prove Theorems 4.1 and 4.2 is based on the following steps.
Step 1. Minimization of Ω 7→ Ec(Ω). We prove that the ball minimizes Ec, i.e.

Ec(Ω) ≥ Ec(B) where |Ω| = |B|. (4.9)

Before describing how we do it, we point out that (4.9) leads quite directly to the intermediate
quantitative inequality (4.7) in Theorem 4.1. Indeed, it is enough take c = infΩ uΩ in (4.9) and use
(4.8) to get

E(Ω) − E(B) ≥ β

2 (inf uΩ)2 (Per(Ω) − Per(B)) . (4.10)

The proof of (4.9) requires the most of our work, and is based the following arguments.
• We naturally relax the original shape optimization problem

min{Ec(Ω) : Ω ⊆ Rn, |Ω| = m},

as a new free discontinuity problem in the space of special functions of bounded variation (see
[80, 81] and Section 4.3 below). Precisely, we consider

min{Ec(v) : v ∈ SBV 1/2(Rn), |{v > 0}| = m},

where

Ec(v) = 1
2

ˆ
Rn

|∇v|2dL n + β

2

ˆ
Jv

[
(v2 + 2cv) + (v2 + 2cv)

]
dH n−1 −

ˆ
Rn

(
(c+ v)q − cq

q

)
dL n

is chosen such that, if v is in H1(Ω) with v ≥ 0 on Ω then, when extended by 0 outside Ω, we
have

Ec(v) = Ec(v; Ω) = E(c+ v; Ω) − β

2 c
2Per(Ω) + cq

q
|Ω|.

In particular, for c = 0 we write E = E0 and for any such function u we have E0(u) = E(u,Ω).
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• The presence of the perimeter term with negative sign leads to a critical behavior of the bound-
ary energy of the solution near the contact with the obstacle c. This is managed by approxi-
mation of the boundary energy: the terms of the form

ˆ
Jv

(v2 + 2cv)dH n−1 are replaced by
ˆ
Jv

(v2 + 2cv1+ε)dH n−1

for ε > 0, small (see Definition 4.3).

• We prove that the minimizer of the approximating functional is a radial function with support
on a ball. First, we study qualitative properties of minimizers (non-degeneracy, closedness
of the jump set, radial symmetry) and, second, we show the existence of a solution. The
approximation of the jump terms involving the parameter ϵ is in particular fundamental for the
nondegeneracy result (see Lemma 4.8).

• Pass to the limit ε → 0 and get that the minimizer of Ec is a radial function with support on a
ball.

Step 2. Use of the selection principle to control uniformly infx∈Ω uΩ. The intermediate
inequality (4.10) together with the quantitative isoperimetric inequality leads to

E(Ω) − E(B) ≥ β

2Cn
(

inf
Ω
uΩ

)2
A(Ω)2.

This quantitative inequality is not uniform in Ω since the right hand side is multiplied by infΩ uΩ.
We regularize Ω by replacing it with Ωopt, a minimizer of

ω 7→ E(ω) + k|ω|

among all ω ⊂ Ω for some small enough k > 0. Following the main lines of [79], we prove that
inf

x∈Ωopt
uΩopt(x) ≥ α > 0 where α depends on n, β, q and |Ω|, while A(Ωopt) is comparable to A(Ω).

This will conclude the proof.
The paper is organized as follows. In Sections 4.3 we study the minimization of the geometric

functional Ω 7→ Ec(Ω), by relaxation in SBV and approximation. In Section 4.4 we prove that the
minimizer corresponds to a ball. These two sections concentrate most of the technicalities of the
paper. In the last section we prove Theorems 4.1 and 4.2.

It should be noted that for the quantitative inequality with Dirichlet boundary condition, in [77]
the authors reduced their study to the sole study of the torsion functional Ω 7→ infu∈H1

0 (Ω)
´

Ω

(
1
2 |∇u|2 − u

)
dL n

(corresponding to the case q = 1). This is due to a hierarchy of the eigenvalues relying on the Kohler-
Jobin inequality (see [75, Chapter 7, Section 7.8.1]). To our knowledge, there is no such inequality
with Robin boundary conditions, the reason for which we have to directly work on the general case.

4.3 Analysis of the analytic-geometric functional

In this section we study the minimization of Ω 7→ Ec(Ω) in the class of open, bounded, Lipschitz
sets of measure m. For that purpose, we introduce the relaxed form of the functional in the space of
special functions of bounded variation. We refer the reader to [73] for an introduction to the SBV
space, as subspace in BV (Rn). Below, we denote by Du the distributional gradient of u and recall
that

SBV (Rn) = {u ∈ BV (Rn) : Du is absolutely continuous with respect to dx+ H n−1⌊Ju}.

The following space was introduced in [80],

SBV 1/2(Rn) = {u ∈ BVloc(Rn) : u ≥ 0, u2 ∈ SBV (Rn)}.
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We refer to [80, 81] for the main properties of SBV 1/2(Rn). In particular, we recall the following
Poincaré inequality with trace term proved in [81] for q ∈ [1, 2]; for all u ∈ SBV 1/2(Rn), |{u > 0}| ≤
m:

λq(Bm)
(ˆ

Rn

uqdx

) 2
q

≤
ˆ
Rn

|∇u|2dL n + β

ˆ
Ju

(u2 + u2)dH n−1. (4.11)

Where Bm is the ball of volume m, and for every x ∈ Ju, u(x) and u(x) refer to the lower and upper
approximate limits of u at x. The constant λq(Bm) is optimal.

Definition 4.3. Let c ≥ 0. For any function v ∈ SBV 1/2(Rn) we set:

Θ(v) =
(

(c+ v)q − cq

q

)
.

We introduce the following regularization of Ec

Ec,ϵ(v) := 1
2

ˆ
Rn

|∇v|2dL n + β

2

ˆ
Jv

[
(v2 + 2cv1+ϵ) + (v2 + 2cv1+ϵ)

]
dH n−1 −

ˆ
Rn

Θ(v)dL n,

which is well posed thanks to (4.11). We shall also work with the penalised version

Ec,ϵk (v) = Ec,ϵ(v) + k|{v > 0}|,

where k > 0 is a positive constant.

Below is the key result of this section. Let us denote by

Um := {u ∈ SBV 1/2(Rn) : |{u > 0}| = m}

the class of admissible functions.

Theorem 4.4. For every ε > 0 and c ≥ 0 the minimizer of

inf{Ec,ϵ(u) : u ∈ Um}

is a radial function and its support is a ball of measure m.

The rest of the section is devoted to the proof of this theorem. The strategy is as follows.

• We first assume the existence of a minimizer u and study its properties to arrive at the conclusion
that it is a radial function with the support being a ball of measure m.

• We then prove the existence of a minimizer by analyzing a minimizing sequence using the a
priori properties proved before. The key point is to show that, up to a subsequence and up to
translations, a minimizing sequence necessarily has to concentrate the mass around the origin
and to converge.

4.3.1 Preparatory results

We write Ec,ϵ as
Ec,ϵ(u) = Q(u) +N c,ϵ(u) −

ˆ
Rn

Θ(u)dL n,

where
Q(v) = 1

2

ˆ
Rn

|∇v|2dL n + β

2

ˆ
Jv

(v2 + v2)dH n−1

and
N c,ϵ(v) = βc

ˆ
Jv

(v1+ϵ + v1+ϵ)dH n−1.
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For any non trivial u ∈ SBV 1/2 such that Ec,ϵ(u) < ∞, we have for small t > 0

Ec,ϵ(tu) < 0.

While Ec,ϵ(u) is not necessarily positive, its terms coming with positive and negative sign, control
each other in certain cases. We summarize this observation as follows.

Lemma 4.5. For every function u ∈ Um there is constant C > 0, depending on n,m, β, q, c, Ec,ϵ(u)
such that

Q(u) +N c,ϵ(u) + ∥Θ(u)∥L1 < C.

Proof. For any such u, we have, using (4.11)

ˆ
Rn

udL n ≤ λ1(Bm)− 1
2

(ˆ
Rn

|∇u|2dL n + β

ˆ
Ju

(u2 + u2)dH n−1
) 1

2

and (ˆ
Rn

uqdL n

)1/q

≤ λq(Bm)− 1
2

(ˆ
Rn

|∇u|2dL n + β

ˆ
Ju

(u2 + u2)dH n−1
) 1

2

,

where Bm is the ball of volume m. We then know that for a certain constant C,
ˆ
Rn

Θ(u)dL n ≤ C(Q(u)1/2 +Q(u)q/2),

so that
Q(u) +N c,ϵ(u) − C(Q(u)1/2 +Q(u)q/2) ≤ Ec,ϵ(u).

This means that Q(u)+N c,ϵ(u) is bounded by a constant that depends only on Ec,ϵ(u) and C (which
depends on n,m, β, q, c); this proves the result.

Let us now study the monotonicity of Ec,ϵ on scale change. This will imply that minimizing Ec,ϵ(u)
under the constraint |{u > 0}| = m or |{u > 0}| ≤ m is equivalent.

Lemma 4.6. Let u ∈ SBV 1/2(Rn) be a non-trivial function and t > 1. Then:

Ec,ϵ (u (·/t)) < tnEc,ϵ(u)

Proof. It is immediate by a change of variable and using tn−1, tn−2 < tn.

We have to compare a minimizer u with a function whose support does not necessarily have the
same measure. The following lemma allows us to use Ec,ϵk , the volume-penalised version of Ec,ϵ with
a suitable k.

Lemma 4.7. Let u ∈ Um be a minimizer of the functional Ec,ϵ. Then

• For k = −Ec,ϵ(u)
m

, u is a minimizer of Ec,ϵk in the class

{v ∈ SBV 1/2(Rn) : |{v > 0}| ≤ m}.

• For k = 2∥Θ(u)∥L1
m

, u is a minimizer of Ec,ϵk in the class

{v ∈ SBV 1/2(Rn) : |{v > 0}| ≥ m, ∥Θ(v)∥L1 ≤ 2∥Θ(u)∥L1}.

Proof. First case: Let v be such a function, we write |{v>0}|
m

= 1 − η with η ∈]0, 1[. Let

w(x) := v((1 − η)1/nx).
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Notice that w is in Um with

Ec,ϵ(w) = (1 − η)−1+ 2
n

1
2

ˆ
Rn

|∇v|2dL n

+ (1 − η)−1+ 1
n
β

2

ˆ
Jv

[
(v2 + 2cv1+ϵ) + (v2 + 2cv1+ϵ)

]
dH n−1 − (1 − η)−1

ˆ
Rn

Θ(v)dL n,

so that Ec,ϵ(w) ≤ (1 − η)−1Ec,ϵ(v). The minimality of u yields

(1 − η)Ec,ϵ(u) ≤ Ec,ϵ(v),

which, with our definition of k and η, is exactly

Ec,ϵk (u) ≤ Ec,ϵk (v).

Second case: We proceed in the same way. Let us consider such a function v, write |{v>0}|
m

= 1 + η
where η > 0. Let

w(x) := v((1 + η)1/nx).
Again w is in Um with

Ec,ϵ(w) = (1 + η)−1+ 2
n

1
2

ˆ
Rn

|∇v|2dL n

+ (1 + η)−1+ 1
n
β

2

ˆ
Jv

[
(v2 + 2cv1+ϵ) + (v2 + 2cv1+ϵ)

]
dH n−1 − (1 + η)−1

ˆ
Rn

Θ(v)dL n.

For any η > 0, we have the inequalities

(1 + η)−1+ 2
n , (1 + η)−1+ 1

n ≤ 1, (1 + η)−1 ≥ 1 − η.

From the minimality of u and the choice of v we can write

Ec,ϵ(u) ≤ Ec,ϵ(w)

≤ Ec,ϵ(v) + η

ˆ
Rn

Θ(v)dL n

≤ Ec,ϵ(v) + 2η
ˆ
Rn

Θ(u)dL n,

which, following the definition of k and η yields

Ec,ϵk (u) ≤ Ec,ϵk (v).

4.3.2 Nondegeneracy of the minimizers

In this part, we prove that a minimizer lies above a strictly positive threshold, on the set where it is
non vanishing. We refer to [83], [84], [81], [79] for similar arguments.

Lemma 4.8. Let u ∈ Um be a minimizer of the functional Ec,ϵ. There exists δ > 0, depending on
n, c, β,m, ϵ, Ec,ϵ(u), such that u ≥ δ1{u>0}.

Proof. In this proof, which follows the main lines of [84, Theorem 3.2], we denote by C a positive
constant that may change from line to line which depends on the parameters only. Let k be defined
as in the first part of the previous result. We introduce the following function

ftmin(t) =
ˆ

{tmin≤u≤t}
uϵ|∇u|dL n,
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where 0 < tmin < t. Since (u − tmin)+ is in SBV , we can apply the coarea area for SBV functions
(see [84]) to get

ftmin(t) =
ˆ t

tmin

sϵPer({u ≤ s};Rn \ Ju)ds.

Define f(t) = ftmin=0(t); by taking the limit tmin → 0+ in the above formula, we see that by monotone
convergence

f(t) =
ˆ

{0≤u≤t}
uϵ|∇u|dL n =

ˆ t

0
sϵPer({u ≤ s};Rn \ Ju)ds.

The first form yields the fact that f is bounded (for bounded t at least). Indeed, it is controlled
by the positive part of Ec,ϵ(u), and more precisely by Q(u) + k|{u > 0}|

f(t) ≤ tϵ
ˆ

{u≤t}
|∇u|dL n ≤ tϵ|{0 < u ≤ t}|1/2

(ˆ
{0<u≤t}

|∇u|2dL n

)1/2

.

We can then apply Lemma 4.5 to infer that the positive part of Ec,ϵ(u) is controlled by a constant
that depends on Ec,ϵ(u) and the parameters of the problem. As u is a minimizer, f is bounded by a
constant that only depends on the parameters.

Next, we use the optimality of u against u1{u>t} in view of Lemma 4.7, which gives

Ec,ϵk (u) ≤ Ec,ϵk
(
u1{u>t}

)
or, after computations,

Q
(
u1{u≤t}

)
+N c,ϵ

(
u1{u≤t}

)
+ k|{0 < u ≤ t}| −

ˆ
{0<u≤t}

Θ(v)dL n

≤ β

2

ˆ
∂∗{u>t}\Ju

(u2 + 2cu1+ϵ)dH n−1.

In the rest of the proof, we will only consider t small enough

t < Θ−1(k/2) ∧ c
1

1−ϵ ,

which allows us to write

k|{0 < u ≤ t}| −
ˆ

{0<u≤t}
Θ(v)dL n ≥ k

2 |{0 < u ≤ t}|,

and
β

2

ˆ
∂∗{u>t}\Ju

(u2 + 2cu1+ϵ)dH n−1 = β

2 (t2 + 2ct1+ϵ)H n−1(∂∗{u > t} \ Ju)

= β

2 (t2−ϵ + 2ct)f ′(t) ≤ 3
2βctf

′(t).

With these, the optimality condition becomes

Q
(
u1{u≤t}

)
+N c,ϵ

(
u1{u≤t}

)
+ k

2 |{0 < u ≤ t}| ≤ 3
2βctf

′(t). (4.12)

By Hölder,

f(t) ≤ |{0 < u ≤ t}|
n−(n−1)ϵ

2n ∥1{0<u<t}∇u∥L2 ∥1{0<u≤t}u
2∥

ϵ
2

L
n

n−1

≤ C
[
tf ′(t)

]1− n−1
2n

ϵ

∥u21{0<u≤t}∥
ϵ
2

L
n

n−1
.
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To estimate the last factor, we use the continuity of the embedding BV (Rn) ↪→ L
n

n−1 (Rn) and (4.12)
to get

cn∥u21{0<u≤t}∥L n
n−1 ≤ [u21{0<u≤t}]BV = |D(u21{0<u≤t})|(Rn)

=
ˆ

{0<u≤t}
2u|∇u| dL n +

ˆ
Ju∩{u<t}0

(u2 + u2)dH n−1 +
ˆ
Ju∩∂∗{u>t}

u2dH n−1 +
ˆ
∂∗{u>t}\Ju

u2dH n−1

≤ C
[
Q
(
u1{u≤t}

)
+ |{0 < u ≤ t}| + t2Per({u > t};Rn \ Ju)

]
≤ Ctf ′(t).

Coming back to the estimate of f(t), we obtain

f(t) ≤ C
[
tf ′(t)

]1+ ϵ
2n

.

This implies that, for all t such that f(t) > 0, we have:

d

dt

[
f(t)

ϵ
2n+ϵ

]
≥ 1
Ct
.

Let t0 be such that f(t0) > 0 and t1 := min(c
1

1−ϵ ,Θ−1(k/2)). We integrate on [t0, t1]

(f(t1)
ϵ

2n+ϵ ≥)f(t1)
ϵ

2n+ϵ − f(t0)
ϵ

2n+ϵ ≥ 1
C

log(t1/t0).

Using our uniform bound on f(t1), we obtain a lower bound δ on t0 that only depends on the
parameters of the problem, meaning that f(δ) = 0 for an explicit δ > 0. We apply the optimality
condition in t = δ:

Q
(
u1{u≤δ}

)
+N c,ϵ

(
u1{u≤δ}

)
+ k

2 |{0 < u ≤ δ}| ≤ 0,

and so |{0 < u ≤ δ}| = 0.

4.3.3 Closedness of the jump set

We prove below that the support of the minimizer u is an open set Ω with finite perimeter. For this
we prove that the jump set of u is closed as Ju is identified with ∂Ω.

Lemma 4.9. Let u ∈ Um be a minimizer of the functional Ec,ϵ. Then u ∈ SBV (Rn) ∩ L∞(Rn) and
H n−1(Ju) < ∞. Moreover, H n−1(Ju \ Ju) = 0.

Proof. We divide the proof in several steps.

Step 1. We prove that u ∈ L∞(Rn). Let us set

uM = (u−M)+, f(M) =
ˆ
Rn

uMdL
n and α(M) = |{uM > 0}|,

and let λ2,β(Bm) be the best constant in (4.11) with q = 2 and β as boundary parameter, among
sets with mass m. We suppose that u is not bounded, and so that f(M) > 0 and α(M) > 0 for all
M > 0. Let

g(M) =
λ2,α(M)1/nβ(B1)

α(M)1/n .

The results we will use here is that

λ2,β(Bα(M)) = α(M)− 1
n g(M) with lim inf

M→∞
g(M) > 0.
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We test the optimality of the function u against the function u ∧M . We get

1
2

ˆ
{u>M}

|∇u|2dL n + β

2

ˆ
{M≤u<u}

(u2 + 2cu1+ϵ + u2 + 2cu1+ϵ)dH n−1

+ β

2

ˆ
{u<M≤u}

(u2 + 2cu1+ϵ −M2 − 2cM1+ϵ)dH n−1 ≤
ˆ

{u>M}
(Θ(u) − Θ(M))dL n.

This implies:
Q(uM) ≤

ˆ
{u>M}

(Θ(u) − Θ(M))dL n (4.13)

and (4.11) gives
g(M)α(M)− 1

n

ˆ
Rn

u2
MdL

n ≤ Q(uM). (4.14)

Using 1 ≤ q < 2, we know that for all 1 ≤ a ≤ b, we have bq −aq ≤ b2 −a2, which implies, for M ≥ 1,
that ˆ

{u>M}
(Θ(u) − Θ(M))dL n ≤ 1

q

ˆ
{u>M}

((c+M + uM)2 − (c+M)2)dL n

= 1
q

ˆ
{u>M}

(u2
M + 2(c+M)uM)dL n.

Combining this with the estimates (4.13),(4.14), we get:(
g(M)α(M)− 1

n − 1
q

)ˆ
Rn

u2
MdL

n ≤ 2
q

(c+M)f(M).

Since lim infM→∞ g(M) > 0 and α(M) −→
M→∞

0, we know that for all big enough M ,

g(M)α(M)− 1
n − 1

q
≥ 1

2g(M)α(M)− 1
n .

Holder’s inequality gives:
α(M)−1f(M)2 ≤

ˆ
Rn

u2
MdL

n.

Thus we get:
1
2g(M)α(M)− n+1

n f(M)2 ≤ 2
q

(c+M)f(M),

which can be rewritten as (
q

4
g(M)
c+M

) n
n+1

≤ α(M)f(M)− n
n+1 .

The left side is not integrable because lim inf g > 0. Since f(M) → 0 and f ′(M) = −α(M), the
right side is integrable (its integral on [M0,+∞[ is 1

n+1f(M0)
1

n+1 < ∞): this is a contradiction. We
deduce that u is bounded by a certain constant M > 0.

Step 2. We get H n−1(Ju) < ∞. Indeed, by Lemma 4.8 we have u > δ1{u>0} which implies

δ2H n−1(Ju) ≤
ˆ
Ju

(u2 + u2)dH n−1 < ∞.

Step 3. The function u belongs to SBV (Rn). The proof follows the same arguments as in [81], by
considering the function uη =

√
u2 + η2 for η → 0.
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Step 4. We show the closedness of the jump set H n−1(Ju \ Ju) = 0. Following [83], we only
need to show that u is a local almost quasi-minimizer of the Mumford-Shah functional. We use
δ1{u>0} ≤ u ≤ M to prove this.

Indeed, consider v ∈ SBV (Rn) such that {u ̸= v} ⋐ Br for a ball Br of radius r > 0 small
enough. Let v′ = v ∧ M . Since u ≤ M , then {u ̸= v′} ⋐ Br and v′ still belongs to SBV . Applying
Lemma 4.7, either |{v′ > 0}| ≤ m and we are in the first case or |{v′ > 0}| ≥ m and we are in the
second one. In the second case we need to verify that ∥Θ(v′)∥L1 ≤ 2∥Θ(u)∥L1 ; this is true for small
enough r since ∥Θ(v′)∥L1 ≤ ∥Θ(u)∥L1 + |Br|Θ(M). Thus for a small enough r there exists k > 0
depending only on the parameters such that

Ec,ϵk (u) ≤ Ec,ϵk (v′).

This can be rewritten
1
2

ˆ
Br

|∇u|2dL n −
ˆ
Br

Θ(u)dL n

+ β

2

ˆ
Ju∩Br

[
(u2 + 2cu1+ϵ) + (u2 + 2cu1+ϵ)

]
dH n−1 + k|{u > 0} ∩Br|

≤ 1
2

ˆ
Br

|∇v′|2dL n −
ˆ
Br

Θ(v′)dL n

+ β

2

ˆ
Jv′ ∩Br

[
(v′2 + 2cv′1+ϵ) + (v′2 + 2cv′1+ϵ)

]
dH n−1 + k|{v′ > 0} ∩Br|.

Using u > δ1{u>0} and v′ ≤ M , as well as |∇v′| ≤ |∇v|, Jv′ ⊂ Jv, we get
ˆ
Br

|∇u|2dL n + β(δ2 + 2cδ1+ϵ)H n−1(Ju ∩Br)

≤
ˆ
Br

|∇v|2dL n + 2β(M2 + 2cM1+ϵ)H n−1(Jv ∩Br) + 2αn (k + Θ(M)) rn,

where αn = |B1|. Up to a renormalization of u, this is exactly the definition of a local quasi-almost
minimizer. Following [83, Theorem 3.1], this implies

H n−1(Ju \ Ju) = 0.

Lemma 4.10. Let u ∈ Um be a minimizer of the functional Ec,ϵ, then there exists an open domain
Ω such that the following items hold true.

(a) ∂Ω = Ju, H n−1(∂Ω \ Ju) = 0 and u = 0 a.e. on Rn \ Ω

(b) u|Ω ∈ H1(Ω) and verifies δ < u|Ω < M for certain constants δ,M > 0 and

−∆u = (c+ u)q−1 in D′(Ω).

In particular, u is analytic on its support.

Proof. The proof is the same as Theorem 6.15 of [81].

4.3.4 The optimal function is radially symmetric

Now we prove that the optimal function is radial and is supported on a ball of measure m.

Lemma 4.11. Let u ∈ Um be a minimizer of the functional Ec,ϵ, then u is radial and its support is
a ball.
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Proof. Using Lemma 4.10, we know that u is an analytic function on an open domain Ω with finite
perimeter. We divide the proof in several steps.
Step 1. The set Ω is connected. We first show that Ω is connected: suppose that Ω = V ⊔ W
for two open sets V,W , then we write v = u1V and w = u1W : these functions are in U|V | and U|W |.
We also set

ṽ(x) := v

[ |V |
m

]1/n

x

 and w̃(x) := w

[ |W |
m

]1/n

x

 .
The functions ṽ and w̃ are in Um so, by comparison to u and Lemma 4.6,

Ec,ϵ(u) ≤ |V |
m

Ec,ϵ(ṽ) + |W |
m

Ec,ϵ(w̃) < Ec,ϵ(v) + Ec,ϵ(w) = Ec,ϵ(u).

This is a contradiction which implies that Ω is connected.

Step 2. The function u is locally radial. Here we call locally radial any function u that is locally
the restriction of a radial function on a support that is not necessarily radial; when u is smooth on
its support, which is the case here, it is equivalent, up to a translation, to ∇u(x) being proportional
to x for every x ∈ Ω.

We first build a symmetrized version of Ω called Ωs such that any hyperplane going through the
origin cuts Ωs in two parts of same volume. The procedure is the following: take λ1 ∈ R such that the
hyperplane {x1 = λ1} cuts the support of u in two parts of equal volume. Let S1 be the symmetry
across this hyperplane, and

u+
1 =

u in {x1 > λ1}
u ◦ S1 in {x1 < λ1}

u−
1 =

u in {x1 < λ1}
u ◦ S1 in {x1 > λ1}

Then u±
1 both have a support of volume m and Ec,ϵ(u+

1 ) + Ec,ϵ(u−
1 ) ≤ 2Ec,ϵ(u) (the inequality is only

there because some part of Ju lying on {x1 = λ1} might be deleted in u±
1 : when this does not happen,

there is equality). In particular u+
1 and u−

1 are also minimizers of Ec,ϵ in Um. Now apply the same
procedure to u+

1 across an hyperplane {x2 = λ2}, and so on: we get in the end a minimizer us ∈ Um
that coincides with u on the quadrant {x : xi ≥ λi, ∀i = 1, . . . , n}, and that is symmetric relative to
every hyperplane {xi = λi}.

Without loss of generality, we can suppose that every λi is 0. Let Ωs be the support of us, we
know that it is symmetric relative to every {xi = 0}. The composition of all those symmetries is
the central symmetry relative to the origin, and so Ωs has a central symmetry. In particular, any
hyperplane that goes through the origin cuts the volume of Ωs in half.

We now show that us is locally radial: this implies that u is locally radial because u = us on
Ω ∩ Ωs(̸= ∅), u and us are analytic, and Ω is connected, so we can use analytic continuation. To
show that us is locally radial, take Π any hyperplane going through 0, and S the symmetry across
this hyperplane. Let Π+ and Π− be the two half-space defined from Π, we define

us,± =
us in Π±,

u ◦ S in Π∓.

Moreover, Ec,ϵ(us,+) + Ec,ϵ(us,−) ≤ 2Ec,ϵ(us), so us,+ (and us,−) is a minimizer. Since it is a
minimizer, it is C1 on its support which is an open set. us and us,+ are both C1 and coincide on
Π− ∩ Ω: this implies that ∇us is purely normal to Π on Π ∩ Ω. Since this is true for any hyperplane,
we have shown that us is locally radial, which implies that u is locally radial by analyticity.
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We know that u is locally radial on a connected open set, and verifies −∆u = (c + u)q−1, which
means that it can be written u(x) = ψ(|x|)1Ω(x) where ψ verifies the following ordinary differential
equation:

ψ′′ + n− 1
r

ψ′ + (ψ + c)q−1 = 0. (4.15)

Step 3. The set Ω is radial. To prove this we use the argument developed in [82]. We show that
the topological boundary of Ω coincides with the measure theoretical one, up to a H n−1-negligible
set. Since u = ψ(| · |)1Ω where ψ is analytic and bounded below, the singular part (relative to the
Lebesgue measure) of the derivative of u is:

Dsu = ψ(| · |)Ds1Ω.

And so its support (which is Ju up to a H n−1-negligible set) is the support of Ds1Ω, which is ∂∗Ω
up to a H n−1-negligible set. Since ∂Ω = Ju, it means that H n−1(∂Ω \ ∂∗Ω) = 0, and so Ω has no
inner boundaries. This will allow us to use symmetrization technique on Ω in the framework of sets
with finite perimeter, to show that Ω itself is radial.

Let Ω̃ be the symmetrization of Ω by spherical caps in the direction e1, and ũ(x) = ψ(|x|)1Ω̃(x).
We aim to show that Ω is necessarily radial, which is implied by the property |Ω̃ ∩ {x1 < 0}| =
|Ω̃ ∩ {x1 > 0}|. We suppose it is not the case, then there is a point p = λe1 for λ > 0 such that
all hyperplanes going through p cuts Ω̃ in two parts with same volume. This is because it is the
case for n orthogonal hyperplanes, namely the {xi = 0} for i ≥ 2 (by property of the spherical cap
rearrangement), and a certain {x1 = λ} for λ > 0 (because |Ω̃ ∩ {x1 < 0}| < |Ω̃ ∩ {x1 > 0}|).

Moreover, ũ is a minimizer. This is a consequence of the properties of the spherical rearrangement
and the fact that u is radial with no inner jump, which implies

Ec,ϵ(ũ) =
ˆ

Ω̃

(1
2 |ψ′(|x|)| − Θ(ψ(|x|))

)
dL n +

ˆ
∂Ω̃

(
ψ(|x|)2 + 2cψ(|x|)1+ϵ

)
dH n−1

≤
ˆ

Ω

(1
2 |ψ′(|x|)| − Θ(ψ(|x|))

)
dL n +

ˆ
∂∗Ω

(
ψ(|x|)2 + 2cψ(|x|)1+ϵ

)
dH n−1

= Ec,ϵ(u).

Where in the last line we used that Ju = ∂∗Ω up to a H n−1-negligible set, and either u or u is 0 for
H n−1-every point of ∂Ω (since there are no inner boundaries).

We know from the above procedure that ũ is locally radial in 0 and in p ̸= 0. Thus, for any point
x ∈ Ω̃ \ (0, p), ∇u(x) is proportional to x and x− p, which means that it is 0. This means that ũ is
locally constant, which is not the case because of the equation −∆u = (c+ u)q−1 verified by u.

The consequence is that |Ω̃ ∩ {x1 < 0}| = |Ω̃ ∩ {x1 > 0}| which proves that Ω is a radial set.

Step 4. The set Ω is a ball. We already know that Ω is a connected radial set. To show that Ω
is a ball, it suffices to exclude that it is an annulus. Suppose by contradiction Ω = Br2 \ Br1 , where
we can assume that r1 > 0, since a point has zero capacity.

We know that u is of the form ψ(|x|)1Ω(x) where ψ verifies (4.15), with the modified Robin
boundary condition

(−1)iψ′(ri) + β (ψ(ri) + c(1 + ϵ)ψ(ri)ϵ) = 0, i = 1, 2.

We also know that ψ > δ > 0 on Ω. This means that ψ can be extended slightly to a neighbour-
hood of [r1, r2] as a solution of (4.15), as long as ψ > 0. We can thus extend u as ũ(x) = ψ(|x|).
Let:

g(ϱ1, ϱ2) = Ec,ϵ(ũ1Bϱ2 \Bϱ1
),
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where ρ1, ρ2 are taken close to r1, r2. We know that g is minimal in (r1, r2) among the set {(ϱ1, ϱ2) :
ϱn2 − ϱn1 = rn2 − rn1 }. This implies:

∂ϱ1g(r1, r2)
rn−1

1
+ ∂ϱ2g(r1, r2)

rn−1
2

= 0.

This gives the following inequality, in which we shortened ψi = ψ(ri), ψ′
i = ψ′(ri)

1
2(|ψ′

2|2 − |ψ′
1|2) + (Θ(ψ1) − Θ(ψ2)) + β

2 (n− 1)
(
ψ2

1 + 2cψ1+ϵ
1

r1
+ ψ2

2 + 2cψ1+ϵ
2

r2

)
+ β (ψ1 + c(1 + ϵ)ψϵ1)ψ′

1 + β (ψ2 + c(1 + ϵ)ψϵ2)ψ′
2 = 0.

We know that the (modified) Robin boundary condition is verified in r1 and r2, which means that
β (ψi + c(1 + ϵ)ψϵi ) = ±ψ′

i (+ for i = 1, − for i = 2). We rewrite the previous inequality as:(
1
2 |ψ′

1|2 + 1
q

(c+ ψ1)q
)

−
(

1
2 |ψ′

2|2 + 1
q

(c+ ψ2)q
)

+ β

2 (n− 1)
(
ψ2

1 + 2cψ1+ϵ
1

r1
+ ψ2

2 + 2cψ1+ϵ
2

r2

)
= 0.

In particular, this means
1
2 |ψ′

1|2 + 1
q

(c+ ψ1)q <
1
2 |ψ′

2|2 + 1
q

(c+ ψ2)q.

This is a contradiction because ψ verifies (4.15), which implies:

d

dϱ

(
1
2 |ψ′|2 + 1

q
(c+ ψ)q

)
= −n− 1

r
|ψ′|2 ≤ 0.

This means that a nontrivial annulus cannot be stationary for Ec,ϵ, which implies in particular that
it cannot be a minimizer.

4.3.5 Existence of minimizers

Before proving the existence of minimizer, we need some technical results to localize the mass of a
function in SBV 1/2. Below, we denote by Kp the unit cube centered in p ∈ Zn.

Lemma 4.12. Let u be a non-trivial positive function on SBV 1/2(Rn). There exists p ∈ Zn such
that

|{u > 0} ∩Kp| ≥
(

C∥u∥2
L2

∥u∥2
L2 +Q(u)

)n
,

where C = C(n) > 0.

Proof. The family (Kp)p∈Z is a covering of Rn. For all p, we have

∥u∥2
L2(Kp) ≤ |{u > 0} ∩Kp|1/n∥u2∥

L
n

n−1 (Kp)

≤ C

(
sup
q

|{u > 0} ∩Kq|
)1/n (

∥u∥2
L2(Kp) +Q|Kp(u)

)
since u2

|Kp
∈ BV (Kp) for each p. Summing over p, we get, for possibly a different constant,

∥u∥2
L2 ≤ C

(
sup
q

|{u > 0} ∩Kq|
)1/n (

∥u∥2
L2 +Q(u)

)
.
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Below, we give an obvious variation on the compactness result of [80].

Lemma 4.13. Let (ui) be a sequence of SBV 1/2(Rn) such that

lim sup
i

(
Q(ui) +N c,ϵ(ui) + ∥ui∥2

L2

)
< ∞.

Then there exists a subsequence, still denoted with the same index, and a function u ∈ SBV 1/2(Rn)
such that ui → u in L2

loc(Rn) and for all open set A ⋐ Rn,

Q|A(u) ≤ lim inf
i→∞

Q|A(ui) and N ϵ
|A(u) ≤ lim inf

i→∞
N ϵ

|A(ui).

We are now in a position to prove Theorem 4.4

Proof of Theorem 4.4. In view of the preceding results, it suffices to prove the existence of a mini-
mizer. The proof goes as follows. Let (ui) be a minimizing sequence.

• We show that up to a translation and up to subsequences, (ui)i converges in some sense to a
non-trivial function u such that |{u > 0}| =: m′ ∈]0,m].

• We show that u minimizes Ec,ϵ in Um′ .

• We suppose by contradiction that m′ < m: this allows us to find a sequence (pi) such that
|pi| → ∞ and (ui(·−pi))i converges to another non-trivial minimizer v in Um′′ form′′ ∈]0,m−m′].

• Then, knowing the structure of minimizers (smooth function defined on balls), we modify the
sequence (ui)i to build a new minimizing sequence that converges to a function whose support
is given by the union of two disjoint balls, which is absurd. Thus m′ = m and u ∈ Um is the
minimizer we were looking for.

We proceed in several steps.

Step 1: Convergence of (ui). We remind that, according to Lemma 4.5, a minimizing sequence
(ui)i verifies

sup
i≥1

(Q(ui) +N c,ϵ(ui) + ∥Θ(ui)∥L1) < ∞.

Moreover, since for all w ∈ Um, Ec,ϵ(tw) < 0 for small enough t, we can suppose without loss
of generality that −Ec,ϵ(ui) is bounded away from 0. In particular this implies that ∥Θ(ui)∥L1 is
bounded away from 0. This with the fact that u ∈ Um implies that ∥ui∥L2 is bounded away from 0.
We let

Si := sup
p∈Zn

ˆ
Kp

u2
i dL

n.

Then (Si) is a bounded sequence and we can suppose that it converges up to subsequences to a limit
S ≥ 0.

We show that S > 0. Indeed, assume by contradiction that S = 0. Let Kpi
be a cube chosen

by applying Lemma 4.12 to ui, with pi ∈ Zn. Since Q(ui) is bounded and ∥ui∥L2 is bounded below,
then for a constant δ > 0 that does not depend on i

|Kpi
∩ {ui > 0}| ≥ 2δ.

Let
vi := ui1Rn\K̃pi

,

where K̃pi
is a slightly smaller version of Kpi

chosen so that the integral of u2
i on ∂K̃pi

goes to 0 as
i → ∞ (using the assumption that S = 0), and |K̃pi

∩ {ui > 0}| ≥ δ. Then, since S = 0

Ec,ϵ(vi) ≤ Ec,ϵ(ui) + oi→∞(1)
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so that (vi) is also a minimizing sequence. Since |{vi > 0}| ≤ m− δ, letting t :=
(

m
m−δ

)1/n
, vi(·/t) is

in Um and we get

inf
Um

Ec,ϵ ≤ lim inf
i→∞

Ec,ϵ (vi(·/t)) ≤ tn lim inf
i→∞

Ec,ϵ(vi) = tninf
Um

Ec,ϵ,

which is absurd (recall that inf
Um

Ec,ϵ < 0). Hence, for all i large enough there exists pi ∈ Zn such that
ˆ
Kpi

u2
i dL

n ≥ S

2 > 0. (4.16)

We translate each ui in Rn and assume that pi = 0 for all i. Using Lemma 4.13, there exists
u ∈ SBV 1/2(Rn) such that

ui −→
L2

loc

u ̸= 0

with local lower semicontinuity on Q and N c,ϵ.

Step 2: The limit of (ui)i is a minimizer of Ec,ϵ in Um′ where m′ := |{u > 0}| ∈]0,m]. By
Step 1 we know that u is nontrivial. Let v ∈ Um′ , and let us consider the functions in SBV 1/2(Rn)
given by

vr = 1Brv + 1Rn\Bru and vri = 1Brv + 1Rn\Brui.

We claim that we can find a set D ⊆ R with |D| = 0 such that for r ̸∈ D

Ec,ϵ(u) − Ec,ϵ(vr) ≤ C lim inf
i→∞

(
1 − m

mr
i

)
+
, (4.17)

and
lim inf
i→∞

(mr
i −m) ≤ er −→

r→∞
0, (4.18)

where mr
i := |{vri > 0}|, and C does not depend on i and k.

We can then find rk → +∞ with rk ̸∈ D such that

Ec,ϵ(vrk) −→
k→∞

Ec,ϵ(v). (4.19)

Indeed we have
Jvr = (Ju ∩ (Rn \Br)) ∪ (Jv ∩Br) ∪ Jr,

where Jr is the subset of points in ∂Br where u1Rn\Br ̸= v1Br . Choose r such that H n−1(∂Br∩Ju) =
H n−1(∂Br ∩ Jv) = 0, which amounts to choosing almost any r > 0. Then

Ec,ϵ(vr) − Ec,ϵ(v) = Ec,ϵ(u1|Rn\Br) − Ec,ϵ(v1|Rn\Br) + Sr

where
Sr = β

2

ˆ
Jr

[
(u2 + 2cu1+ϵ) + (v2 + 2cv1+ϵ)

]
dH n−1. (4.20)

Ec,ϵ(u1|Rn\Br) − Ec,ϵ(v1|Rn\Br) goes to zero as r goes to infinity by dominated convergence. Since
u and v belong to L2 with supports of volume m′, they belong also to L1+ϵ, which means that´ ∞

0 Srdr < ∞; in particular this implies that we can find rk → +∞ with rk ̸∈ D such that Srk → 0,
so that (4.19) follows.

Taking (4.19), (4.17) and (4.18) into account, we infer easily that

Ec,ϵ(u) ≤ Ec,ϵ(v),

i.e. u is a minimizer of Ec,ϵ in Um′ . In particular, u is supported on a ball.
In order to conclude Step 2, we prove claims (4.17) and (4.18).
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(a) Let us consider claim (4.17). Comparing vr and u we get

Ec,ϵ(u) − Ec,ϵ(vr) = Ec,ϵ(u1|Br) − Ec,ϵ(v1|Br) − Sr,

where Sr is given by (4.20). Setting

Sri = β

2

ˆ
∂Br∩{u̸=v}1

[
(u2

i + 2cu1+ϵ
i ) + (v2 + 2cv1+ϵ)

]
dH n−1

we have for a.e. r > 0
Sri −→

i→∞
Sr

as ui →
L2(∂Br)

u for a.e. r > 0. We infer

Ec,ϵ(u) − Ec,ϵ(vr) ≤ lim inf
i→∞

(
Ec,ϵ|Br

(ui) − Ec,ϵ|Br
(v)
)

− Sr (4.21)

= lim inf
i→∞

(Ec,ϵ(ui) − Ec,ϵ(vri ) + Sri ) − Sr

= lim inf
i→∞

(Ec,ϵ(ui) − Ec,ϵ(vri ))

= inf
Um

Ec,ϵ − lim sup
i→∞

Ec,ϵ(vri ).

If mr
i ≤ m, we know this last quantity is nonpositive. Suppose now that mr

i > m, and let

wri (x) := vri

([
mr
i

m

]1/n
x

)
.

Then wri has a support of volume m, and so with a change of variable

inf
Um

Ec,ϵ ≤ Ec,ϵ(wri ) ≤ Ec,ϵ(vri ) +
(

1 − m

mr
i

)
∥Θ(vri )∥L1

≤ Ec,ϵ(vri ) +
(

1 − m

mr
i

)
∥Θ(v) + Θ(ui)∥L1

≤ Ec,ϵ(vri ) + C

(
1 − m

mr
i

)
,

where C does not depend on i, r. Then

inf
Um

Ec,ϵ ≤ lim sup
i→∞

Ec,ϵ(vri ) + C lim inf
i→∞

(
1 − m

mr
i

)
,

so that coming back to (4.21) we deduce

Ec,ϵ(u) − Ec,ϵ(vr) ≤ C lim inf
i→∞

(
1 − m

mr
i

)
.

Collecting both cases mr
i ≤ m and mr

i > m, we get precisely claim (4.17).

(b) Let us come to claim (4.18). We have for every r > 0

lim inf
i→∞

(mr
i −m) = lim inf

i→∞
(|{v > 0} ∩Br| − |{ui > 0} ∩Br|)

= |{v > 0} ∩Br| − lim sup
i→∞

(|{ui > 0} ∩Br|)

≤ |{v > 0} ∩Br| − |{u > 0} ∩Br| =: er −→
r→∞

0.
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Step 3: Existence of another sequence (ui)i such that (ui(· − pi))i converges if m′ < m.
Let R > 0 be such that the support of u is contained in BR, so that

ui −→
L2

loc
(Rn\BR)

0. (4.22)

We can suppose that
∥ui∥L2(∂BR) → 0.

Let
vi := ui1Rn\B2R

.

Notice that
Q(vi) +N c,ϵ(vi) ≤ C. (4.23)

We claim
lim inf
i→∞

∥vi∥2
L2 > 0 (4.24)

Indeed by contradiction, we would have (up to a subsequence) ∥vi∥L2(Rn) → 0, which implies strong
L2 convergence of (ui) to u and so ∥Θ(ui)∥L1 → ∥Θ(u)∥L1 . This implies by lower semicontinuity of
Q and N c,ϵ

Ec,ϵ(u) ≤ lim inf
i→∞

Ec,ϵ(ui) = inf
Um

Ec,ϵ.

But since m′ < m, then for t :=
[
m
m′

]1/n
> 1, we get

Ec,ϵ(u(·/t)) < tn inf
Um

Ec,ϵ

which is absurd since u(·/t) is in Um (recall infUm Ec,ϵ < 0). Then (4.24) follows.
This gives, in particular, that

lim inf
i→∞

(
c∥vi∥2

L2

∥vi∥2
L2 +Q(vi)

)n
> 0.

Taking into account (4.23), we can then proceed as in Step 2 (by defining the “concentration" S) to
show that for each i there exists pi ∈ Rn such that

lim inf
i→∞

(
∥vi∥L2(Kpi )

)
> 0.

Notice that in view of (4.22) we know that necessarily
|pi| → +∞. (4.25)

As previously, we can show that ui(· − pi) converges in the L2
loc sense to a function v in Um′′ , where

m′′ ∈]0,m−m′] that is a minimizer of Ec,ϵ in Um′′ . As a consequence, its support is also a ball.

Step 4: Construction of an incompatible minimizing sequence in the case m′ < m. The
idea is now to bring together u and v constructed in Step 2 and 3. While each ball is optimal, the
union of two disjoint balls is not (because it is not a ball, which is the only possible minimizer). Let
R > 0 be big enough such that the supports of u and v are contained in BR. Let

wi(x) := (1BR(pi)ui)(pi + x).
We can choose R slightly bigger such that ∥wi∥L2(∂BR(pi)) → 0. Let

ũi(x) := 1Rn\(BR(2Ren)∪BR(pi))(x)ui(x) + wi(x− 2Ren).
Then, up to choosing a slightly bigger R (so that the boundary terms all go to 0), we get

Ec,ϵ(ũi) ≤ Ec,ϵ(ui) + oi→∞(1).
By construction |{ũi > 0}| ≤ m, so up to a dilation that can only decrease Ec,ϵ, (ũi) is also a
minimizing sequence.

By similar arguments, we know ũi converges to a minimizer ũ for a certain volume less than m.
But by construction, the support of this limit is exactly the union of two balls, so it cannot be a
minimizer. This means that our assumption m′ < m is false.

The consequence is that m′ = m, and so that u is a minimizer of Ec,ϵ in Um.
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4.4 The ball minimizes the geometric functional

Proposition 4.14. Let u ∈ Um, then

Ec(u) ≥ Ec(Bm).

Proof. Let uc,ϵm be a minimizer obtained in Theorem 4.4 whose support is Bm. Then

Ec(Bm) ≤ Ec(uc,ϵm ).
Moreover:

Ec(uc,ϵm ) − Ec,ϵ(uc,ϵm ) = cβ

ˆ
∂Bm

[
uc,ϵm − (uc,ϵm )1+ϵ

]
dH n−1.

A sufficient condition for this term to go to 0 when ϵ goes to 0 is

lim sup
ϵ→0

∥uc,ϵm ∥L∞(∂Bm) < ∞.

Since uc,ϵm is radial,

C(n, β, c,m) = Ec,ϵ(1Bm) ≥ Ec,ϵ(uc,ϵm ) =
[
Q(uc,ϵm ) −

ˆ
Bm

Θ(uc,ϵm )dH n−1
]

+N c,ϵ(uc,ϵm ).

The first term is bounded below uniformly in ϵ due to inequality (4.11) and

N c,ϵ(uc,ϵm ) = cβH n−1 (∂Bm) ∥uc,ϵm ∥1+ϵ
L∞(∂Bm),

so ∥uc,ϵm ∥L∞(∂Bm) is bounded uniformly as ϵ → 0.
Take u in Um. We know from Theorem 4.4 that

Ec,ϵ(u) ≥ Ec,ϵ(uc,ϵm )

The previous discussion gives
lim inf
ϵ→0

Ec,ϵ(u) ≥ Ec(Bm).

In order to conclude, we may assume Ec(u) < +∞ and it suffices to check that

Ec,ϵ(u) −→
ϵ→0

Ec(u),

which amounts to show

lim
ϵ→0

ˆ
Ju

(u1+ϵ + u1+ϵ)dH n−1 =
ˆ
Ju

(u+ u)dH n−1.

Since u1+ϵ ≤ u+ u2 for all u and all ϵ ∈]0, 1[, the dominated convergence leads to the result.

4.5 Proof of Theorems 4.1 and 4.2

Proof of Theorem 4.1. Recall that

E(u) = 1
2

ˆ
Rn

|∇u|2dL n + β

2

ˆ
Jv

[
u2 + u2

]
dH n−1 − 1

q

ˆ
Rn

uq dx.

We shall prove the following stronger result.

Theorem 4.15. Let u ∈ Um. Then

E(u) − E(Bm) ≥ β

2

(
essinf
{u>0}

u

)2 [ˆ
Ju

(
1{u>0} + 1{u>0}

)
dH n−1 − H n−1(∂Bm)

]
.
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Remark 4.16. Note that
´
Ju

(
1{u>0} + 1{u>0}

)
dH n−1 is larger than H n−1(Ju), since it counts twice

the points in Ju on which both u and u are positive.

Proof. We may assume essinf
{u>0}

u > 0. Let c ∈]0, essinf
{u>0}

u[. Then (u−c)+ belongs to Um and Proposition
4.14 gives

Ec((u− c)+) ≥ Ec(Bm).

Moreover
Ec((u− c)+) = E(u) − β

2 c
2
ˆ
Ju

(
1{u>0} + 1{u>0}

)
dH n−1 + cq

q
m

and
Ec(Bm) ≥ E(Bm) − β

2 c
2H n−1(Bm) + cq

q
m,

so that the result follows. This proves as well Theorem 4.1 taking u to be the minimizer of E(·; Ω),
extended by 0 on Rn \ Ω.

Proof of Theorem 4.2. It is enough to show:

E(Ω) − E(B) ≥ CA(Ω)2, (4.26)

where C > 0 depends on n, β, q and |Ω|, only. Indeed we know that E(Ω) = q−2
2q λq(Ω)

q
q−2 , so

CA(Ω)2 ≤ q − 2
2q λq(Ω)

q
q−2 − q − 2

2q λq(B)
q

q−2 .

Since A(Ω) ≤ 2, up to replacing C with a smaller constant, we loose no generality by supposing that
λq(Ω) is close to λq(B). For λq(Ω) close enough to λq(B), we have:

q − 2
2q λq(Ω)

q
q−2 − q − 2

2q λq(B)
q

q−2 ≤ λq(B)
2

q−2 (λq(Ω) − λq(B)) ,

which proves the result. Let us now show (4.26).

From now on, we let m := |Ω|. The idea is to use an intermediate set A such that A(A) and
A(Ω) are of the same order, but inf uA ≥ C(n, β, |Ω|) for a certain positive constant. This may be
done by considering the following auxiliary minimisation problem

inf{E(A) + k|A|, A ⊂ Ω}, (4.27)

for a suitable constant k > 0 (that may be chosen such that if we restrict the admissible sets to
balls of volume less than m, the optimal ball has the measure equal to m). We need to check such
a minimizer exists. Showing the existence and regularity of such a minimizer is similar to the work
that has been done in Section 4.3, we outline the main steps.

Step 1. We introduce the following relaxed version in SBV
1
2

inf{Ek(u), |{u > 0} \ Ω| = 0},

where Ek(u) = E(u) + k|{u > 0}|.

Step 2. We show the existence of a minimizer of the relaxed problem. Take a minimizing sequence
(ui), up to subsequences we can suppose it converges in L2

loc(Rn) to a function u with support in Ω.
Since Q is lower semi-continuous, we only need to show that (ui) is tight in the sense that

lim sup
R→∞

sup
i≥1

(
∥ui∥L2(Ω\BR)

)
= 0.
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With the L2
loc convergence, this will prove that ∥ui∥Lq(Rn) −→

i→∞
∥u∥Lq(Rn). Let χR be a smooth function

such that 
0 ≤ χR ≤ 1
χR ≡ 1 in Rn \BR

χR ≡ 0 in BR−1

∥∇χR∥L∞(Rn) ≤ 2,
and let vi,R = χRui. Then:

∥ui∥2
L2(Rn\BR) ≤ ∥vi∥2

L2(Rn\BR)

≤ λ2
(
B|{vi>0}|

)−1
Q(vi) using inequality (4.11) for q = 2

≤ λ2
(
B|Ω\BR−1|

)−1
(2Q(ui) + 8∥ui∥2

L2(Rn)) since |∇vi|2 ≤ 2|∇ui|2 + 8u2
i

≤ Cλ2
(
B|Ω\BR−1|

)−1
Q(ui) where C depends on n,m.

Q(ui) is bounded uniformly in i and λ2
(
B|Ω\BR−1|

)−1
goes to 0 when R → ∞: this proves what we

wanted to show.
Thus we know that

Ek(u) ≤ lim inf
i→∞

Ek(ui)

which means u is a minimizer.
Step 3. We show that u ≥ c1{u>0} for a certain c = c(n, β, k, E(Ω)) > 0; this is essentially the same
proof as Lemma 4.8 in the case ϵ = 1. We then show that u is bounded and defines an open domain
A the same way we did in Lemma 4.9 and Lemma 4.10.

Step 4. The map ρ 7→ E(Bρ) is a strictly decreasing function since for any ball B′ ⋐ B, one has:

E(B) ≤ |B|
|B′|

E(B′),

which implies
d

dρ
E(Bρ) ≤ nE(Bρ)

ρ
(< 0).

We deduce that for any k > 0 small enough depending only on the parameters (n, q, β,m), the
function [0, rm] → R

ρ 7→ E(Bρ) + 2k|Bρ|
(4.28)

admits a minimum in rm (where rm is such that |Brm| = m).

Step 5 As remarked at the beginning of the proof, we can suppose without loss of generality that
E(Ω) ∈ [E(B), 1

2E(B)]. Letting k be given by Step 4, the solution u of the relaxed problem (4.27) is
thus such that u ≥ c on its support A, where c depends only on the parameters (n, q, β,m).

We can then write (with c being a constant only depending on (n, q, β,m) that may not be the
same from line to line):

E(Ω) ≥ E(A) − k|Ω \ A| because A solves (4.27),

≥ E(B|A|) − k|Ω \ A| + c
[
H n−1(∂A) − H n−1(∂B|A|)

]
in view of Theorem 4.1,

≥ E(B|A|) − k|Ω \ A| + c|A△B|A||2 using the inequality (4.1),
≥ E(B|Ω|) + k|Ω \ A| + c|A△B|A||2 using that (4.28) has a minimum in rm,

≥ E(B|Ω|) + c
[
2|Ω \ A| + |A△B|A||

]2
because |Ω \ A| ≥ |Ω|−1|Ω \ A|2,

≥ E(B|Ω|) + cA(Ω)2 we detail that point below,
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so that Theorem 4.2 is proved.
We detail the last inequality. Let B|Ω| be any ball containing B|A|. Then:

2|Ω \ A| + |A△B|A|| =
(
|Ω \ A| + |A \B|A||

)
+
(
|Ω \ A| + |B|A| \ A|

)
.

On one hand

|Ω \ A| + |A \B|A|| ≥ |Ω \B|A|| ≥ |Ω \B|Ω||.

On the other hand
|Ω \ A| + |B|A| \ A| = |Ω| − |A| + |B|A|| − |B|A| ∩ A|

= |B|Ω|| − |B|A| ∩ A| = |B|Ω| \ (A ∩B|A|)| ≥ |B|Ω| \ Ω|.
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Chapter 5

Stability and instability issues of the
Weinstock inequality

This is a joint work with Dorin Bucur.
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5.1 Introduction

Let Ω ⊆ R2 be a bounded, open, connected set with a Lipschitz boundary (generically called through-
out the paper smooth set). We consider the Steklov eigenvalue problem on Ω−∆u = 0 in Ω,

∂u
∂n

= σu on ∂Ω.

For k = 0, 1, 2, . . . we denote by σk(Ω) the k-th eigenvalue defined by

σk (Ω) = inf
U∈Uk(Ω)

sup
u∈U\{0}

´
Ω

|∇u|2dx
´
∂Ω
u2ds ,

where Uk(Ω) is the family of subspaces of dimension k + 1 of H1(Ω). Then

0 = σ0(Ω) < σ1(Ω) ≤ · · · → +∞.

Below, we denote by dH the Hausdorff distance between two sets. The first result of the paper reads
as follows.

Theorem 5.1. Let Ω, ω be two smooth conformal sets. Then there exists a sequence (Ωϵ) of smooth
sets homeomorphic to Ω such that dH(∂Ωϵ, ∂Ω) −→

ϵ→0
0 and

|∂Ωϵ|σk (Ωϵ) −→
ϵ→0

|∂ω|σk (ω)

for any k.
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In other words, for every k ∈ N, in any tubular neighbourhood of Ω, one can find a smooth set
Ωϵ which has almost the same first (normalized) k eigenvalues as ω.

Theorem 5.1 answers in the negative a question raised by Girouard and Polterovich in [103] (see
also [102, Open problem 5.21]) concerning the stability of the Weinstock inequality. Weinstock proved
in [110] that the disk maximizes the product between the perimeter and the first Steklov eigenvalue
in the class of simply connected planar sets. For the disk, the value of this product equals 2π. The
open problem of Girouard and Polterovich reads
"Let Ω be a planar simply connected domain such that the difference 2π − |∂Ω|σ1(Ω) is small. Show
that Ω must be close to a disk (in the sense of Fraenkel asymmetry or some other measure of prox-
imity)."

Theorem 5.1 gives a negative answer to the question and, even more, it states that the maxi-
mal value 2π can be asymptotically achieved in the geometric neigbourhood of any smooth simply
connected set.

However, in the recent years, several spectral isoperimetric inequalities have been proved to be
stable, in the vein of the quantitative isoperimetric inequality proved by Fusco, Maggi and Pratelli in
2008 [97]. Stability, involving the Fraenkel asymmetry, holds for the Faber-Krahn, the Saint-Venant
or the Sezgö-Weinberger inequalites, but also many others. For the Steklov problem, it was proved
by Brasco, De Phillipis and Ruffini in 2012 [93] that the Brock version of the Weinstock inequality
is stable. This inequality involves the volume of the set instead of the volume of the boundary as
a constraint. Precisely, it is proved in [93] that in RN , for every open, bounded and smooth set, it
holds

|B|
1
N σ1(B) − |Ω|

1
N σ1(Ω) ≥ CNA2(Ω),

where B is a ball and A is the Fraenkel asymmetry.
Coming back in R2 to the original Weinstock inequality, if one restricts to the class of convex

sets, Weinstock himself implicitly found a stable version of the inequality. Precisely, he proved that
if Ω ⊆ R2 is a bounded, convex set containing the origin, then

π

ˆ
∂Ω

|x|2ds− |Ω||∂Ω| ≥ |∂Ω|
2

ˆ
S1

(h− h)2ds,

where h is the support function of the convex set, and h is its average. This inequality, readily gives
a quantitative form of the inequality, in the class of convex sets

2π − |∂Ω|σ1(Ω) ≥ |∂Ω|´
∂Ω |x|2dx

ˆ
S1

(h− h)2ds. (5.1)

In a recent paper [98] (still in the class of convex sets) the right hand side is replaced by CA 5
2 (Ω).

We point out that, very surprisingly, inequality (5.1) is published only in the preprint version [111]
and does not figure in the final version the paper [110].

In RN , for N ≥ 3, under a boundary volume constraint, a similar version to the Weinstock
inequality is proved to hold in the class of convex sets (see [94]) and it is proved, by Fraser and
Schoen, not to hold in the class of contractible domains (see [96]). Under convexity hypotheses (see
[94]) one has ´

∂Ω |x|2ds
|∂Ω||Ω| 2

N

≥ ω
− 2

N
N , (5.2)

which by standard use of test functions leads to theN -dimensional version of the Weinstock inequality
(above ωN is the volume of the unit ball in RN , and the right hand side corresponds to the ball). A
quantitative version in terms of the Fraenkel asymmetry has been established in [98].

Theorem 5.1 in this paper asserts that there is no general stability of the Weinstock inequality in
the class of simply connected sets in R2. We analyse this issue and give a stability result provided
some rigidity is a priori known on the boundary. The convexity assumption in [98] is such a rigidity.
Our result involves some control of the norm of the conformal mapping but allows oscillations of
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the boundary. Precisely, for all K > 0, α ∈]0, 1], we denote A(K,α) the family of smooth simply
connected sets Ω with perimeter 2π such that there exists a conformal mapping g : D → Ω with

∥ log (|g′|) ∥C0,α(∂D) ≤ K.

Theorem 5.2. There exists a constant C = C(K,α) > 0 such that for any Ω ∈ A(K,α)

σ1(D) − σ1(Ω) ≥ C
(
dH(Ω,D)

)2(1+α−1)
.

Above, dH(Ω, ω) = infz∈R2 dH(Ω, ω+ z). We shall prove that this result is sharp in the sense that no
weaker a priori estimate is enough to obtain stability; in particular, a bound on ∥ log (|g′|) ∥C0(∂D) is
not sufficient. However, there is no indication that the exponent 2(1 + α−1) is sharp.

The paper is organized as follows: in the second section, we prove Theorem 5.1. The key of the
proof is an approximation result of a weighted Steklov problem by a sequence of Steklov problems
without weights but with oscillating boundaries. In the third section, we study the stability of the
Steklov eigenvalue on the disk in terms of perturbation of the constant weight on the boundary. The
geometric interpretation of this result gives us Theorem 5.2. The last section is devoted to the study
of the sharpness of this result with some explicit computations.

5.2 The Steklov problem and some stability properties

Throughout the paper we identify R2 with C by (x1, x2) → z = x1 + ix2. For any smooth set Ω of
R2 and any non-negative function Θ ∈ L∞(∂Ω),Θ ̸= 0 (generically called below weight) we define
the (generalized) Steklov eigenvalues with the weight Θ on the boundary by

σk (Ω,Θ) = inf
U∈Uk(Ω)

sup
u∈U\{0}

´
Ω

|∇u|2dx
´
∂Ω

Θu2ds ,

where Uk(Ω) stands for the family of subspaces of dimension k + 1 in H1(Ω). The spectrum is well
defined, as a direct consequence of the continuous embedding H1(Ω) ↪→ H

1
2 (∂Ω) and of the compact

embedding H 1
2 (∂Ω) ↪→ L2(∂Ω).

In particular, we have

σ1(Ω,Θ) = inf
u∈H1(Ω)´
∂Ω

Θu=0

´
Ω

|∇u|2dx
´
∂Ω

Θu2ds .

The instability result lies on two observations:

• Assume Ω and ω are two smooth domains with weights ΘΩ ∈ L∞(∂Ω, (0,+∞)), Θω ∈ L∞(∂ω, (0,+∞))
on the boundary, such that there exists a conformal mapping g : Ω → ω with g ∈ C1(Ω, ω)
and g′ ̸= 0 everywhere on Ω, and |g′(z)|Θω(g(z)) = ΘΩ(z). Under this condition, one has
σk(Ω,ΘΩ) = σk(ω,Θω).

• By a boundary homogeneization process, a domain Ω with a bounded weight Θ ≥ 1 can be
geometrically approximated by domains (Ωϵ) such that σk(Ωϵ) −→

ϵ→0
σk(Ω,Θ). Roughly speaking,

the sets (Ωϵ) are perturbations of Ω with boundaries ∂Ωϵ which are locally build as graphs of
functions fϵ on ∂Ω, with small L∞ norm, and such that

√
1 + |f ′

ϵ|2 ≈ Θ.

As a notation, throughout the paper, by (Ωϵ) we denote a sequence of open sets consisting of
geometric perturbations of a set Ω, where ϵ is a sequential, vanishing, positive parameter. We start
by introducing a notion of convergence of domains.
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Definition 5.3. We say that a sequence of smooth sets (Ωϵ) converges uniformy to a smooth set Ω
if

• ∂Ωϵ −→
ϵ→0

∂Ω in the Hausdorff sense

• (Ωϵ) verify a uniform cone condition (see for instance [104]), meaning that there exists δ ∈]0, π/2[
such that for any ϵ > 0 and any x ∈ ∂Ωϵ, there exists ζx,ϵ a unitary vector such that for all
y ∈ Ωϵ ∩B(x, δ)

{z ∈ B(y, δ) with ⟨z − y, ζx,ϵ⟩ ≥ cos(δ)|z − y|} ⊂ Ωϵ.

In particular (see [104]), this convergence implies that

lim sup
ε→0

|∂Ωϵ| < +∞.

Under the hypotheses of Definition 5.3, the set Ω also satisfies the uniform cone condition and there
exists a constant M > 0 such that all u in H1(Ω) or H1(Ωϵ) can be extended to a function of H1(R2)
with

∥ũ∥H1(R2) ≤ M∥u∥H1(Ωϵ) or H1(Ω).

In addition, there exist a finite number of squares (Ci)i=1,...,K centered in pi ∈ R2 with radius ri, that
cover ∂Ω and all ∂Ωϵ, and such that for any i there exist an orthonormal basis (ei, fi) such that

Ci = {pi + tei + sfi, t, s ∈ [−ri, ri]},
∂Ω ∩ Ci = {pi + tei + gi(t)fi, t ∈ [−ri, ri]},
∂Ωϵ ∩ Ci = {pi + tei + gi,ϵ(t)fi, t ∈ [−ri, ri]},

where the (gi) and (gi,ϵ) are uniformly Lipschitz functions. Moreover, the Hausdorff convergence of
(∂Ωϵ) gives

sup
1≤i≤K

∥gi − gi,ϵ∥L∞ −→
ϵ→0

0.

The following proposition extends a result from [92].

Proposition 5.4. Let (Ωϵ) converge uniformly to Ω and the weights Θϵ ∈ L∞(∂Ωϵ), Θ ∈ L∞(∂Ω)
be such that

lim sup
ϵ→0

∥Θϵ∥L∞(∂Ωϵ) < ∞ and ΘϵH
1

⌊∂Ωϵ
⇀ ΘH 1

⌊∂Ω

weakly-∗ in the sense of measures. Let (uϵ)ϵ be a sequence of functions in H1(R2) converging weakly
to u. Then ˆ

∂Ωϵ

Θϵu
2
ϵds −→

ϵ→0

ˆ

∂Ω

Θu2ds.

Proof. We fix a i ∈ {1, . . . , K}, and we let v(t, s) = u(pi + tei + sfi) and vϵ(t, s) = uϵ(pi + tei + sfi).
We also take (ψi)i a partition of unity associated to the covering (Ci), and

J(t) = ψi(t, gi(t))
√

1 + |g′
i(t)|2Θ(t, gi(t)),

Jϵ(t) = ψi(t, gi(t))
√

1 + |g′
i,ϵ(t)|2Θϵ(t, gi,ϵ(t)).

Denoting I = [−ri, ri], we only need to show that
ˆ
I

vϵ(t, gi,ϵ(t))2Jϵ(t)dt −→
ϵ→0

ˆ
I

v(t, gi(t))2J(t)dt.
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We split the difference in three and use the bound |J |, |Jϵ| ≤ M for a certain M > 0 that only
depends on the Lipschitz constant of the (gi,ϵ), on ∥Θ∥L∞(∂Ω) and on supϵ ∥Θϵ∥L∞(∂Ωϵ)∣∣∣∣∣

ˆ
I

(vϵ(t, gi,ϵ(t))2Jϵ(t) − v(t, gi(t))2J(t))dt
∣∣∣∣∣ ≤ M

ˆ
I

|vϵ(t, gi,ϵ(t))2 − vϵ(t, gi(t))2|dt

+M

ˆ
I

|vϵ(t, gi(t))2 − v(t, gi(t))2|dt

+ |
ˆ
I

v(t, gi(t))2(Jϵ(t) − J(t))dt|.

• First term. We first show that vϵ(t, gi,ϵ(t)) − vϵ(t, gi(t)) −→
ϵ→0

0 in L2(I). Since vϵ ∈ H1(R2),
Fubini theorem gives that that s 7→ vϵ(t, s) belongs to H1(R) for almost every t ∈ I, with
derivative ∂sv. Thus for almost every t ∈ I, we may write

|vϵ(t, gi,ϵ(t)) − vϵ(t, gi(t))| ≤
ˆ

[gi,ϵ(t),gi(t)]

|∂svϵ(t, s)|ds

≤ |gi,ϵ(t) − gi(t)|1/2


ˆ

[gi,ϵ(t),gi(t)]

|∇vϵ(t, s)|2ds


1/2

.

Summing for t ∈ I and using ∥∇vϵ∥2
L2(R2) = ∥∇uϵ∥2

L2(R2),ˆ
I

|vϵ(t, gi,ϵ(t)) − vϵ(t, gi(t))|2dt ≤ ∥gi − gi,ϵ∥L∞(I)∥∇uϵ∥2
L2(R2) −→

ϵ→0
0.

Now, we write

vϵ(t, gi,ϵ(t))2 − vϵ(t, gi(t))2 =
[
vϵ(t, gi,ϵ(t)) − vϵ(t, gi(t))

]2

+ 2vϵ(t, gi(t))
[
vϵ(t, gi,ϵ(t)) − vϵ(t, gi(t))

]
,

and we use the fact that (uϵ) is bounded in L2(∂Ω), since it is bounded in H1(R2). Consequently,
(vϵ(t, gi(t)) is bounded in L2(I) by a constant C > 0, so thatˆ
I

|vϵ(t, gi,ϵ(t))2 − vϵ(t, gi(t))2|dt ≤ ∥∇uϵ∥2
L2(R2)∥gi,ϵ − gi∥L∞(I) + 2C∥∇uϵ∥L2(R2)∥gi,ϵ − gi∥

1
2
L∞(I)

−→
ϵ→0

0.

• Second term. uϵ converges weakly to u in H1(R2), so their traces converge weakly in H 1
2 (∂Ω)

and strongly in L2(∂Ω). This implies that vϵ(t, gi(t)) converges to v(t, gi(t)) in L2(I), which
gives that the second term goes to 0.

• Third term. We use here the hypothesis that ΘϵH 1
⌊∂Ωϵ

⇀ ΘH 1
⌊∂Ω weakly-∗ in the sense of

measures. This gives that for any continuous function φ ∈ C0(I), we haveˆ
I

φ(t)(Jϵ(t) − J(t))dt −→
ϵ→0

0.

Since v(t, gi(t))2 ∈ L1(I), we can approximate it with a continuous function φ in the L1 sense.
Then ∣∣∣∣∣

ˆ
I

v2(Jϵ − J)dt−
ˆ
I

φ(Jϵ − J)dt
∣∣∣∣∣ ≤ 2M

ˆ
I

|v2 − φ|dt,

where M is an upper bound for the L∞(I) norms of Jϵ and J . This gives the result.
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We are now in position to prove the following homogeneization result.

Proposition 5.5. Let (Ωϵ) be a sequence of domains that converges to Ω uniformly and the weights
Θϵ ∈ L∞(∂Ωϵ), Θ ∈ L∞(∂Ω) be such that

lim sup
ϵ→0

∥Θϵ∥L∞(∂Ωϵ) < ∞ and ΘϵH
1

⌊∂Ωϵ
⇀ ΘH 1

⌊∂Ω

weak-∗ in the measure sense. Then for all k ≥ 1

σk(Ωϵ,Θϵ) −→
ϵ→0

σk(Ω,Θ).

Proof. We prove the result in two steps.
Lower semicontinuity. For all ϵ > 0, let Uϵ ∈ Uk(Ωϵ) be a subspace that attains σk(Ωϵ), and let
(up,ϵ)p=0,...,k be an adapted basis of it (that is, a basis that is orthonormal relative to the quadratic
form

´
∂Ωϵ

Θϵu
2 and orthogonal relative to

´
Ωϵ

|∇u|2).

Since |∂Ωϵ| converges, and |∂Ωϵ|σk(Ωϵ) is bounded by 2πlk according to [101, Theorem 1.2] (where
l is the number of connected components of the boundary, which does not depend on ϵ due to the
uniform cone condition), we know that the (up,ϵ) are bounded in H1(R2). Up to an extraction we
suppose they converge weakly to some (up)p=0,...,k ∈ H1(R2), in particular we have the following
semi-continuity inequality: for all (a0, . . . , ak) with ∑p a

2
p = 1

ˆ

Ω

|∇
∑
p

apup|2dx ≤ lim inf
ϵ→0

ˆ

Ω

|∇
∑
p

apup,ϵ|2dx ≤ lim inf
ϵ→0

σk(Ωϵ,Θϵ).

Moreover, according to the previous theorem, for all p, p′, we have

δp,p′ =
ˆ

∂Ωϵ

Θϵup,ϵup′,ϵds −→
ϵ→0

ˆ

∂Ω

Θupup′ds.

This shows in particular that (up) is orthonormal for this scalar product. Thus Span(u0, . . . , up) lies
in Uk(Ω) and

σk(Ω,Θ) ≤ sup∑
p
a2

p=1

ˆ

Ω

|∇
∑
p

apup|2dx ≤ lim inf
ϵ→0

σk(Ωϵ,Θϵ).

Upper semicontinuity. Let V ∈ Uk(Ω) be a subspace that attains σk(Ω,Θ), and let (v0, . . . , vp)
be an adapted basis of it. When we extend it, (v0, . . . , vk) is a linearly independant family of H1(Ωϵ)
for small enough ϵ. For all ϵ, let aϵ = (ap,ϵ)p=0,...,k ∈ Sk be chosen such that

sup
w∈Span(v0,...,vk)

´
Ωϵ

|∇w|2dx
´
∂Ωϵ

Θϵw2ds =

´
Ωϵ

|∇∑
p ap,ϵvp|2dx´

∂Ωϵ

Θϵ|
∑
p ap,ϵvp|2ds

.

We can suppose each ap,ϵ converge to a certain ap. Using the previous theorem, we know that
ˆ

∂Ωϵ

Θϵ

∣∣∣∣∣∑
p

ap,ϵvp

∣∣∣∣∣
2

ds −→
ϵ→0

ˆ

∂Ω

Θ
∣∣∣∣∣∑
p

apvp

∣∣∣∣∣
2

ds.

And the fact that Ωϵ −→
ϵ→0

Ω gives
ˆ

Ωϵ

|∇
∑
p

ap,ϵvp|2dx −→
ϵ→0

ˆ

Ω

|∇
∑
p

apvp|2dx.
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Using the two previous limits

lim sup
ϵ→0

σk(Ωϵ,Θϵ) ≤

´
Ω

∣∣∣∇∑
p apvp

∣∣∣2 dx
´
∂Ω

Θ
∣∣∣∑p apvp

∣∣∣2 ds
≤ σk(Ω,Θ).

We refer the reader to the recent paper [95], where continuity of the Steklov eigenvalues under
geometric domain perturbations is studied in the absence of homogeneization of the boundaries, but
under weaker geometrical assumptions not requiring uniform cone condition.

Lemma 5.6. Let Ω, ω be two smooth sets of C and g : Ω → ω a conformal map such that g ∈ C1(Ω, ω).
Let Θ ∈ L∞(∂ω) be a positive function. Then

σk (ω,Θ) = σk (Ω, g∗Θ) ,
where g∗Θ = |g′|Θ ◦ g.

Proof. For a function u ∈ H1(Ω), we introduce v = u ◦ g−1. By change of variable we get
ˆ
ω

|∇v|2dx =
ˆ

Ω

|∇u|2dx and
ˆ

∂ω

Θv2ds =
ˆ

∂Ω

(g∗Θ)u2ds.

Moreover, if U is in Uk(Ω), then the subspace V = {u ◦ g−1, u ∈ U} is in Uk(ω) and the Rayleigh
quotient are the same on both space: we have a bijection between Uk(Ω) and Uk(ω) that preserves
the Rayleigh quotient, which proves the result.

The question on how to approximate a Lipschitz set by a sequence of smooth sets, is a standard
question in analysis. The most technical part of the conclusion of the next lemma is contained in
[109, Theorem 1.12].

Lemma 5.7. Let Ω be a smooth domain and Θ ∈ L∞(∂Ω, [1,+∞)). There exists a sequence of
domains Ωϵ that converges uniformly to Ω and such that

H 1
⌊∂Ωϵ

⇀ ΘH 1
⌊∂Ω

weakly-∗ in the sense of measures.

Proof. Roughly speaking, the proof of the lemma has two components:

• prove first the assertion for a C2-domain Ω and for a smooth weight Θ ∈ C1(∂Ω).

• second, use an approximation procedure to approach both a smooth (Lipschitz) domain Ω
uniformly by C2 domains (Ωϵ) and the L∞-weight Θ by Θϵ ∈ C1(∂Ωϵ, (1,+∞)) such that

ΘϵH
1

⌊∂Ωϵ
⇀ ΘH 1

⌊∂Ω.

Finally, use a diagonal procedure.

Assume that Ω is of class C2 and Θ ∈ C1(∂Ω). We construct the sequence (Ωϵ) such that ∂Ωϵ

is locally a graph on ∂Ω. Roughly speaking, we shall add oscillations on the boundary of Ω whose
(local) amplitudes are chosen such that the perimeter of Ω is locally multiplied by Θ. This is the
reason why we need Θ to be larger than 1.
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Let us define the basic oscillation d : R
Z → R by

d :
x ∈ [0, 1/2] 7→ x

x ∈ [1/2, 1] 7→ 1 − x.

Each connected component of ∂Ω, denoted B1, . . . , Bl, has a unit-length parametrization ci :
R

|Bi|Z → Bi. For ϵ = 1/n (where n ∈ N∗) we define dϵ : ∂Ω → R by:

dϵ(x) = ϵ|Bi|d
(
c−1
i (x)
ϵ|Bi|

)
, for x ∈ Bi.

Finally, let λ : ∂Ω → R∗
+ be a smooth C1-function that will be made precise later. We define the

oscillations (fϵ) by:

fϵ :
∂Ω → R+

x 7→ λ(x)dϵ(x),

and observe that fϵ verifies ∥fϵ∥L∞(∂Ω) = O (ϵ) and f ′
ϵ = ±λ+ dϵλ

′(x) = ±λ+ O (ϵ). Here we use the
fact that λ belongs to C1.

We consider the domain Ωϵ defined as a perturbation of Ω, with boundary given by

∂Ωϵ = {x+ fϵ(x)ν(x), x ∈ ∂Ω}.

Roughly speaking, this means that Ωϵ is defined for any small enough ϵ as the union of Ω and of the
segments [x, x+ν(x)fϵ(x)] for x ∈ ∂Ω. It has a piecewise smooth boundary, and since it is defined as
the graph of a Lipschitz function (where the Lipschitz constant does not depend on ϵ) on the smooth
compact set ∂Ω, then by [104, Theorem 2.4.7], the sequence (Ωϵ) verifies a uniform cone condition.

We now show that H 1
⌊∂Ωϵ

⇀ ΘH 1
⌊∂Ω weakly-∗ in the sense of measures for a suitable choice of λ.

Let φ be any continuous function, then(
H1

⌊∂Ωϵ

)
(φ) =

ˆ

∂Ωϵ

φ(x)ds

=
ˆ

∂Ω

φ(x+ ν(x)fϵ(x))
(√

1 + λ2 + O(ϵ)
)

ds

−→
ϵ→0

(
√

1 + λ2H 1
⌊∂Ω)(φ).

By explicit computation, one can notice that the O(ϵ)-term contains not only the derivative of λ,
but also the curvature of Ω; we implicitly use the fact that ∂Ω is C2. Choosing λ =

√
Θ2 − 1 (which

is possible since Θ is C1), we get the result.

Assume now that the set Ω is (only) Lipschitz and the weight Θ ∈ L∞(∂Ω). We proceed by
regularization and use the previous result. Following [109, Theorem 1.12], there exists a sequence of
C2 domains (Ωϵ) that converges uniformly to Ω. In particular ∂Ω, ∂Ωϵ may be parametrized by a
finite number of uniformly Lipschitz functions γi, γi,ϵ : R/Z → R2 such that γi,ϵ converges uniformly
to γi and |∇γi,ϵ| converges pointwise a.e. to |∇γi|. In particular, this implies that H 1

⌊∂Ωϵ
⇀ H 1

⌊∂Ω
weakly-∗ in the sense of measures. We build now a sequence Θϵ ∈ C1(∂Ωϵ, (1,+∞)) which is uniformly
bounded in L∞ and such that

ΘϵH
1

⌊∂Ωϵ
⇀ ΘH 1

⌊∂Ω,

weakly-∗ in the sense of measures. We let (ρϵ) be a standard mollifying sequence on R/Z, and we
define the regularization Θϵ ◦ γϵ := ρϵ ∗ (Θ ◦ γi). Then the sequence (Ωϵ,Θϵ) suits our purposes.

For each ϵ, we apply the previous result to get a sequence Ωϵ,η −→
η→0

Ωϵ with

H 1
⌊∂Ωϵ,η

⇀
η→0

ΘϵH
1

⌊∂Ωϵ
.
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Using the fact that the space of Radon measures endowed with the weak-∗ convergence is metrizable,
by a diagonal extraction we can find a η(ϵ) > 0 for each ϵ such that

H 1
⌊∂Ωϵ,η(ϵ)

⇀ ΘH 1
⌊∂Ω.

Theorem 5.8. Let Ω, ω be two smooth sets and g : Ω → ω be a conformal map between the two.
Then there exists a sequence (Ωϵ) of smooth sets homeomorphic to Ω such that dH(∂Ωϵ, ∂Ω) −→

ϵ→0
0

and

|∂Ωϵ|σk (Ωϵ) −→
ϵ→0

|∂ω|σk (ω)

for any k.

Remark 5.9. Before the proof, let us point out that when Ω and ω are such that there exists a
conformal mapping g : Ω → ω with g ∈ C1(Ω, ω) and g′ ̸= 0 everywhere on Ω (this is for instance the
case when Ω and ω are Dini-smooth or C1,α, see [107, Theorem 3.5]), then a stronger conclusion can
be obtained, namely that Ωϵ −→

ϵ→0
Ω uniformly and (|∂Ωϵ|)ϵ>0 is uniformly bounded. This is implicitly

proved in the first step below.

Proof. (of Theorem 5.8) We split the proof in two steps.
Step. 1. Let us assume first that there exists a conformal mapping g : Ω → ω such that g ∈ C1(Ω, ω)
and g′ does not vanish on Ω. We let Θ(z) = Λ|g′(z)| for z ∈ ∂Ω, where Λ > 0 is a constant chosen
large enough to have Θ > 1 everywhere on Ω. From Lemma 5.7 and Proposition 5.5 there exists a
sequence (Ωϵ) that converges uniformly to Ω such that for all k

σk(Ωϵ) −→
ϵ→0

σk(Ω,Θ).

A consequence of Lemma 5.6 is that for all k

σk(Ω,Θ) = σk(ω,Λ) = Λ−1σk(ω),

and
|∂Ωϵ| −→

ϵ→0

ˆ

∂Ω

Θds = Λ|∂ω|,

which proves the result.

Step 2. Let us now assume that g : Ω → ω is a conformal mapping, without any information about
its boundary behavior. We use a smoothing argument, as follows. Let (ωϵ) be a sequence of smooth
sets such that

• ∀ϵ > ϵ′ > 0, ωϵ ⊂ ωϵ′ ⋐ ω and ωϵ is homeomorphic to ω.

• ωϵ −→
ϵ→0

ω uniformly.

• H 1
⌊∂ωϵ

⇀ H 1
⌊∂ω.

In particular, the second and third conditions imply |∂ωϵ| −→
ϵ→0

|∂ω| and σk(ωϵ) −→
ϵ→0

σk(ω) for all k.
Let Ωϵ := g−1(ωϵ), the sequence (Ωϵ) verifies

dH(∂Ωϵ, ∂Ω) −→
ϵ→0

0.

Moreover, g|Ωϵ
∈ C1(Ωϵ, ωϵ) and g′

Ωϵ
does not vanish; we may proceed as in Step 1, and build for

each ϵ > 0 a sequence (Ωϵ,δ)δ>0 such that
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Ωϵ,δ −→
δ→0

Ωϵ uniformly,

∀k ≥ 0, |∂Ωϵ,δ|σk(Ωϵ,δ) −→
δ→0

|∂ωϵ|σk(ωϵ).

By a diagonal extraction we find for each ϵ > 0 a small enough δ(ϵ) > 0 such that

dH(∂Ωϵ,δ(ϵ), ∂Ω) −→
ϵ→0

0,

∀k ≥ 0, |∂Ωϵ,δ(ϵ)|σk(Ωϵ,δ(ϵ)) −→
ϵ→0

|∂ω|σk(ω),

so that (Ωϵ,δ(ϵ)) verifies the conclusion.

A corollary of Theorem 5.8, for k = 1, leads to a negative answer to the stability question raised
by Girouard and Polterovich, for the Weinstock inequality. In order to fit the hypotheses of the
inequality, below we assume that Ω is simply connected.

Theorem 5.10. Let Ω be a simply connected smooth set of R2. Then there exists a sequence of
simply connected smooth sets (Ωϵ) such that dH(∂Ωϵ, ∂Ω) −→

ϵ→0
0 and

∀k ∈ N, |∂Ωϵ|σk (Ωϵ) −→
ϵ→0

2πσk(D).

5.3 A stability result under a priori bounds

In this section, we show that the stability of Weinstock’s inequality could be obtained provided some
a priori information on the conformal map g : D → Ω is known. The family of convex sets, where
stability occurs e.g. [98], can be described in terms of conformal mappings by the constraint

Re
(

1 + z
g′′(z)
g′(z)

)
≥ 0.

Our a priori condition will only include smooth enough sets but will allow for non-convex and non-
starlike domains.

The strategy, based on the relationship between the Steklov problem on Ω and the weighted
Steklov problem on D, with weight Θ = |g′| on ∂D, is as follows.

• We begin by the study of the stability of Θ 7→ σ1(D,Θ). From the information that
(´

∂D Θds
)
σ1(D,Θ)

is close to |∂D|σ1(D) we obtain that Θ is close to a constant in the H− 1
2 (∂D) norm. This as-

sertion holds provided that Θ is normalized to have its center of mass in 0, which amounts to
replacing g with g ◦ ϕ where ϕ is a certain conformal automorphism of the disk.

• Using the a priori information on g, we improve the norm and get that Θ is close to a constant
in L∞(∂D).

• We give a geometric interpretation and transfer this result to sets Ω by showing that the
Hausdorff asymmetry of Ω is small when |g′| is close to a constant in L∞(∂D).

In view of Theorem 5.10, the a priori information on the conformal mapping is crucial.
As previously mentioned, we first begin by the study of the Steklov problem of the disk with

weight Θ. For all Θ ∈ L∞(∂D,R∗
+) it will be practical to introduce the deficit

def(Θ) = 1
σ1(∂D,Θ) − 1.
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If f ∈ L2(∂D), we denote by f̂(n) = 1
2π

´ 2π
0 f(eit)e−intdt its Fourier coefficients, and we define the Hs

semi-norm by
∥f∥2

Hs(∂D) =
∑
n∈Z∗

|n|2s|f̂(n)|2.

Provided we restrict ourselves to functions that verify f̂(0) = 0, this becomes a norm. Using this
definition, it can be checked with Fourier series decomposition that for all f ∈ H

1
2 (∂D), the harmonic

extension Hf of f is well-defined and
ˆ
D

|∇Hf |2dx = 2π∥f∥2
H

1
2 (∂D)

.

Proposition 5.11. Let Θ ∈ L∞(∂D,R+) be such that Θ̂(0) = 1 and Θ̂(±1) = 0. Assume morever
that def(Θ) ≤ δ0 for a small enough constant δ0 ∈]0, 1[. Then, for some constant C > 0 independent
of Θ, we have

∥Θ − 1∥
H− 1

2 (∂D)
≤ C

√
def(Θ).

Proof. Let u(z) = z be the first (complex) eigenfunction associated to Θ ≡ 1. Let ϕ be a normalized,
real-valued H

1
2 (∂D) function and assume, without restricting generality, that ϕ̂(0) = 0. Let also

ζ ∈ C be a number that will be fixed later. Then, from the definition of def(Θ)

(1 + def(Θ))
ˆ
D

|∇(u+ ζHϕ)|2dx ≥
ˆ
∂D

Θ|u+ ζϕ|2ds− 1
2π

∣∣∣∣∣
ˆ
∂D

Θ(u+ ζϕ)ds
∣∣∣∣∣
2

.

This can be rewritten as

(1 + def(Θ))
(

2π + 2π|ζ|2 + 2Re
(
ζ

ˆ
∂D
uϕds

))

≥ 2π +
ˆ
∂D

Θ
(
2Re(ζuϕ) + |ζ|2ϕ2

)
ds− 1

2π |ζ|2
(ˆ

∂D
Θϕds

)2

.

Thus

2Re
(
ζ

ˆ
∂D

(Θ − 1)uϕds
)

≤ 2def(Θ)Re
(
ζ

ˆ
∂D
uϕds

)
+ 2πdef(Θ) + |ζ|2

2π(1 + def(Θ)) + 1
2π

(ˆ
∂D

Θϕds
)2
 .

Using def(Θ) ≤ 1, this can be simplified to

Re
(
ζ

|ζ|

ˆ
∂D

(Θ − 1)uϕds
)

≤ def(Θ)Re
(
ζ

|ζ|

ˆ
∂D
uϕds

)
+ πdef(Θ)

|ζ|
+ |ζ|

2

4π + 1
2π

(ˆ
∂D

Θϕds
)2
 .

Moreover ˆ
∂D

Θϕds =
ˆ
∂D

(Θ − 1)ϕds ≤ 2π∥Θ − 1∥
H− 1

2 (D)
,

and ∣∣∣∣∣
ˆ
∂D
uϕds

∣∣∣∣∣ = |2πϕ̂(1)| ≤ 2π.

Thus, after normalization by 2π we get

Re
(
ζ

|ζ|

 
∂D

(Θ − 1)uϕds
)

≤ def(Θ) + def(Θ)
2|ζ|

+ |ζ|
2

(
2 + ∥Θ − 1∥2

H− 1
2 (D)

)
.
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We optimize with respect to ζ, and get∣∣∣∣∣
 
∂D

(Θ − 1)uϕds
∣∣∣∣∣ ≤ def(Θ) +

√
def(Θ)

(
2 + ∥Θ − 1∥2

H− 1
2 (D)

)
.

From the hypothesis we have def(Θ) ≤
√

def(Θ), so that∣∣∣∣∣
 
∂D

(Θ − 1)uϕds
∣∣∣∣∣ ≤

(
1 + 1√

2

)√
def(Θ)

(
2 + ∥Θ − 1∥2

H− 1
2 (D)

)
.

Since ϕ is free (but normalized in H1/2(∂D)), we get

∥(Θ − 1)u∥H−1/2(∂D) ≤
(

1 + 1√
2

)√
def(Θ)

(
2 + ∥Θ − 1∥2

H− 1
2 (D)

)
.

By direct computation, using Θ̂(1) = Θ̂(−1) = 0,

∥(Θ − 1)∥
H− 1

2 (∂D)
≤
√

3
2∥u(Θ − 1)∥

H− 1
2 (∂D)

,

so that
∥Θ − 1∥H−1/2(∂D)√
2 + ∥Θ − 1∥2

H− 1
2 (D)

≤
(

1 + 1√
2

)√
3def(Θ),

which gives the conclusion with
δ0 = 1

6(3 +
√

8)

In order to get the improved estimate on ∥Θ − 1∥L∞(∂D), we assume some knowledge on the
smoothness of Θ.

Proposition 5.12. Let Θ ∈ C0,α(∂D,R) for α ∈]0, 1] be such that Θ̂(0) = 1, Θ̂(±1) = 0, and
def(Θ) ≤ δ0. Then

∥Θ − 1∥L∞(∂D) ≤ Cα(∥Θ∥C0,α(∂D))∥Θ − 1∥
1

1+α−1

H− 1
2 (∂D)

.

Proof. Let ϕ be a positive function, smooth with support in [−1,+1]. Let ϕϵ(eit) = ϕ(t/ϵ). One can
check that

∥ϕϵ∥
H

1
2 (∂D)

= Oϵ→0(1).

Indeed, denoting F the Fourier transform in R, we have

∥ϕϵ∥2
H

1
2 (∂D)

=
∑
n∈Z

|n||ϕ̂ϵ(n)|2 =
∑
n∈Z

ϵ|ϵn||Fϕ(ϵn)|2 −→
ϵ→0

ˆ
R

|ξ||Fϕ(ξ)|2dξ < ∞.

Suppose now that Θ reaches its maximum 1 + m in eit0 . With ϵ =
(

m
2[Θ]Cα

)α−1

, we have (Θ −
1)ϕϵ(ei(t0+·)) ≥ 1

2mϕϵ(e
i(t0+·)), and thus

ˆ
∂D

(Θ − 1)ϕϵ(ei(t0+·))ds ≥ 1
2m

ˆ
∂D
ϕϵ(ei(t0+·))ds = cm1+α−1

.

For a certain constant c that only depends on ϕ, [Θ]Cα and α.
This gives m ≤ C∥Θ − 1∥

1
1+α−1

H− 1
2 (∂D)

. We can do the same for the minimum of Θ − 1 by taking −ϕϵ
instead, getting the result.
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Definition 5.13. For all K > 0, α ∈]0, 1], we denote A(K,α) the family of simply connected sets Ω
with perimeter 2π such that there exists a conformal map g : D → Ω with

∥ log (|g′|) ∥C0,α(∂D) ≤ K.

Remark 5.14. In particular, these domains are C1,α, so this class excludes domains with angles (e.g.
polygonal sets).

Our main stability result reads as follows.

Theorem 5.15. Let K > 0, α ∈]0, 1]. Then there exists a constant M = M(K,α) > 0 such that for
any Ω ∈ A(K,α)

σ1(D) − σ1(Ω) ≥ M
(
dH(Ω,D)

)2(1+α−1)
.

We previously showed that ∥Θ − 1∥L∞(∂D) = ∥|g′| − 1∥L∞(∂D) is small when σ1(Ω) is close to σ1(D).
The link between this estimate and its geometric interpretation in terms of the Hausdorff asymmetry
of Ω is given by the following lemma.

Lemma 5.16. Let g be a conformal map that sends D to Ω, then

dH(Ω,D) ≤ 3∥|g′| − 1∥L∞(∂D).

Remark 5.17. The main argument of the proof relies on the Bloch theorem that we recall here for
the convenience of the reader (see [91]): let f be any holomorphic function defined on a disk Dz,r.
Then the image of f contains a disk of radius L|f ′(z)|r where L > 0 is a universal constant called
the Landau constant. A version of this result is proven in [91], and asserts that L ≥ 1

2 .

Proof. We write ϵ = ∥|g′| − 1∥L∞(∂D). Using the maximum principle, we know that for all z ∈ D:

1 − ε ≤ |g′| ≤ 1 + ε.

For all z ∈ D, the disk Dz,1−|z| is in D, and so, according to Bloch’s theorem, the image of g′ constains
a disk of radius L|g′′(z)|(1 − |z|) where L is the Landau constant. Since the image of g′ contains no
disk with radius larger than ϵ, we deduce that for all z ∈ D

|g′′(z)| ≤ ε

L(1 − |z|) .

Now, this implies in particular that for all z ∈ D

|g(z) − g′(0)z| ≤
ˆ 1

0
|(1 − t)|z|2g′′(tz)|dt

≤
ˆ 1

0
(1 − t)|z|2 ϵ

L(1 − t|z|)dt

≤ ϵ

L
.

In particular,
D1−(1+L−1)ϵ ⊂ g(D) ⊂ D1+(1+L−1)ϵ.

Since L ≥ 1
2 , we conclude the proof of the lemma.

We can now return to the proof of Theorem 5.15.

Proof. (of Theorem 5.15) The set Ω belongs to A(K,α), so there exists a conformal representation
g of Ω for which ∥ log (|g′|) ∥C0,α ≤ K. We let Θ = |g′||∂D. The perimeter constraint gives Θ̂(0) = 1
and we assume for now that Θ̂(±1) = 0.
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The hypothesis Ω ∈ A(K,α) implies that ∥Θ∥C0,α is controlled by a constant depending only on
K. Since dH(Ω,D) is bounded above, we only need to show the inequality when σ1(D) − σ1(Ω) is
small enough, so we may suppose that def(Θ) < δ0. From Proposition 5.12, there exists a constant
M = M(K) > 0 such that

∥|g′| − 1∥L∞(∂D) ≤ M |σ1(D) − σ1(Ω)|
1

2(1+α−1) ,

so according to the previous lemma, we get

dH(Ω,D) ≤ 3M |σ1(D) − σ1(Ω)|
1

2(1+α−1) .

Let us show that we can always normalize g without changing ∥ log(|g′|)∥Cα(∂D) too much: the
idea is that there exists a unique ζg ∈ D such that g ◦ ϕ−1

ζg
is well-normalized, where ϕζ(z) := z+ζ

1+ζz is
a conformal automorphism of the disk. It could happen that the C0,α norm of g ◦ ϕ−1

ζg
explodes when

|ζg| gets too close to 1. The following lemma shows that it is not the case.

Lemma 5.18. Let g be a conformal map, then there exists r = r
(
∥ log (|g′|) ∥L∞(D)

)
in [0, 1[ such

that |ζg| ≤ r.

Proof. We let Θ = |g′
|∂D|, and K = ∥ log (|g′|) ∥L∞(D). This means that e−K ≤ Θ ≤ eK . We are

interested in the quantity

F (ζ) =
ˆ
∂D

|(g ◦ ϕ−ζ)′(z)|zds =
ˆ
∂D

Θ(ϕ−ζ(z))
1 − |ζ|2

|1 − ζz|2
zds.

To estimate |ζg|, we use the following topological criteria: if ⟨F (ζ), ζ⟩ > 0 for all ζ ∈ ∂Dr, then
|ζg| ≤ r. Let r > 0, we have

1
1 − r2 ⟨F (reit0), eit0⟩ =

ˆ
∂D

Θ(ϕ−reit0 (z)) ⟨z, eit0⟩
|1 − rz|2

ds

=
ˆ 2π

0
Θ(ϕ−reit0 (ei(t0+t))) cos(t)

|1 − reit|2
dt

≥
ˆ

|t|≤π/2
e−K cos(t)

|1 − reit|2
dt+

ˆ
|t|≥π/2

eK
cos(t)

|1 − reit|2
dt

≥ e−K
ˆ

|t|≤π/2

cos(t)
|1 − reit|2

dt− π

2 e
K

−→
r→1

+∞ (uniformly in t0).

This proves that for a certain r ∈]0, 1[ that only depends on K, we have |ζg| ≤ r.

5.4 Further remarks

The study of the stability of Θ 7→ σ1(D,Θ) is independent of the fact that Θ = |g′| for a certain
conformal map g. A natural question is to understand whether there is an equivalence between the
study of the Steklov problem on domains Ω and the study of the weighted Steklov operator on the
disk. We prove below that this is the case provided we slightly relax the setting and formally allow
domains that might overlap, meaning they are immerged in the plane and are seen as images of
holomorphic functions with non-vanishing derivative which are not necessarily globally injective. We
also show that in our stability result, the domains cannot overlap when the first Steklov eigenvalue
is close to that of the disk.

106



Proposition 5.19. Let Θ ∈ C0(∂D,R∗
+), then there exists an holomorphic function with non-

vanishing derivative g : D → C such that |g′
|∂D| = Θ which, moreover, is unique up to an affine

isometry.

Proof. Let u be the harmonic extension of log(Θ) on D. Let v be a harmonic conjugate of u (it can
be unique if we fix v(0) = 0). Then take g as an integral of eu+iv (it exists because D is simply
connected). Then |g′| = eu, which is equal to Θ on ∂D.

For the uniqueness, consider f and g two such functions, then log(|f ′|) and log(|g′|) are two
harmonic functions that coincide on ∂D, so they are the same. Then Im(log(f ′)) and Im(log(g′))
(which are defined up to a constant in 2πZ) are conjugated to the same harmonic functions, so they
differ by a constant.

Here is a criterium to get a domain that does not overlap, meaning that the function g defined
above is injective.

Proposition 5.20. Let Θ ∈ C0(∂D,R∗
+). If ∥Θ − 1∥L∞(∂D) ≤ 1

5 , then Θ defines a domain that does
not overlap.

Remark 5.21. In particular, for all α ∈]0, 1[, K > 0, there exists δ > 0 such that if g : D → C is a
holomorphic function with non-vanishing derivative that verifies

´
∂D |g′|ds = 2π, ∥ log (|g′|) ∥C0,α(D) ≤

K, σ1(D, |g′
|∂D|) ≥ 1 − δ then g is injective and defines a domains that does not overlap. Indeed,

Proposition 5.12 shows that ∥|g′| − 1∥L∞(∂D) ≤ C(K,α)δ2(1+α−1), which is less than 1
5 when δ is small

enough.

Proof. (of Proposition 5.20) Write ∥Θ − 1∥L∞(∂D) = ϵ, g a conformal map such that |g′
|∂D| = Θ. We

want to show that g is univalent. Using [107, Theorem 1.11] it is enough to show that for all z ∈ D

(1 − |z|2)
∣∣∣∣∣z g′′(z)
g′(z)

∣∣∣∣∣ ≤ 1.

Since ||g′| − 1| ≤ ϵ, it means that g′(D) contains no disk with larger radius than ϵ, and so, using
Bloch’s theorem

L(1 − |z|)|g′′(z)| ≤ ϵ.

Thus we can verify the univalence criteria

(1 − |z|2)
∣∣∣∣∣z g′′(z)
g′(z)

∣∣∣∣∣ ≤ (1 − |z|2) ϵ

L(1 − |z|)(1 − ϵ) ≤ 2ϵ
L(1 − ϵ) ,

the right hand side being less than 1 when ϵ ≤ L
2+L . Since L ≥ 1

2 , it is enough to chose ϵ ≤ 1
5 .

Sharpness of the stability result. One could wonder if an a priori bound on
∥ log (|g′|) ∥L∞(∂D) is enough to obtain stability. We prove below that this is not the case.

Proposition 5.22. Let Ω be the image of a smooth conformal map g ∈ C1(D) such that

max
∂D

|g′| < 4
π

min
∂D

|g′|.

Then there exists a sequence of domains Ωn = gn(D) with gn ∈ C1(D) such that

|∂Ωn|σk(Ωn) −→
n→∞

|∂D|σk(D), for all k ≥ 0,
Ωn −→

n→∞
Ω uniformly,

sup
n∈N

∥ log |g′
n|∥L∞(D) < ∞.
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Proof. Consider f an holomorphic function defined on D that never vanishes and such that |f | < |g′|
on ∂D. We introduce

gn(z) = g(z) + zn+1

n+ 1f(z)

and show that, starting with some n large enough, this defines a sequence of domains that converges
uniformly to Ω. We only need to check the uniform cone condition. Since Ω is C1, there exists a finite
number of squares that cover ∂Ω, called (Ci) and oriented by the orthonormal basis (ei, fi) such that

Ci = {pi + tei + sfi, t, s ∈ [−ri, ri]},
∂Ω ∩ Ci = {pi + tei + hi(t)fi, t ∈ [−ri, ri]}

for some ∥hi∥C1(∂D) ≤ δ (with δ chosen arbitrarily small) . We also write c(t) = g(eit) and cn(t) =
gn(eit), as well as Ii = c−1(Ci). Then, for all t ∈ Ii we have

∣∣∣∣∣⟨c′, fi⟩
⟨c′, ei⟩

∣∣∣∣∣ ≤ δ.

For a large enough n, there exists η > 0 such that |(cn − c)′| < (1 − η)|c′|, because of the condition
that |f | < |g′| (any η smaller than inf |g′|−|f |

|g′| works for n large enough). In particular, |c′
n| ≤ 2|c′| and

|⟨c′
n, ei⟩| ≥ |⟨c′, ei⟩| − |c′

n − c′|
≥ |⟨c′, ei⟩| − (1 − η)|c′|
≥ |⟨c′, ei⟩| − (1 − η)|⟨c′, ei⟩| − (1 − η)|⟨c′, fi⟩|
= (η − (1 − η)δ) |⟨c′, ei⟩| .

We choose δ ≤ η
2(1−η) so that ∣∣∣∣∣⟨c′

n, fi⟩
⟨c′
n, ei⟩

∣∣∣∣∣ ≤ 4
η

|c′|
|⟨c′, ei⟩|

.

Consequently, letting M = maxi
(

4
η

maxIi

|c′|
|⟨c′,ei⟩|

)
, there exists a sequence of M -Lipschitz functions

(hi,n) such that for all i

∂Ωn ∩ Ci = {pi + tei + hi,n(t)fi, t ∈ [−ri, ri]}.

Which proves that the sequence (Ωn) verifies a uniform cone condition.

Lemma 5.23. For the sequence (Ωn) build above, we have that

H 1
⌊∂Ωn

⇀
n→∞

ΘH 1
⌊∂Ω weakly-∗ in the sense of measures,

where
Θ = P

(∣∣∣∣∣ f ◦ g−1

g′ ◦ g−1

∣∣∣∣∣
)

and P (a) :=
 2π

0

√
1 + a2 + 2a cos(t)dt.

Moreover, P is a strictly increasing function with P (0) = 1 and P (1) = 4
π
.

Proof. We already know that gn converges uniformly to g, and so it is easier to prove the lemma on
the pullback of these measures through g and gn on ∂D. Let φ ∈ C0(∂D,R), we search for the limit
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of
´
∂D φ|g′

n|ds. We compute
ˆ
∂D
φ|g′

n|ds =
ˆ
∂D
φ|g′ + znf + O(1/n)|ds

=
ˆ
∂D
φ|g′ + znf |ds+ O(1/n)

=
ˆ
∂D
φ|g′|

∣∣∣∣∣1 + zn
f

g′

∣∣∣∣∣ ds+ O(1/n)

−→
n→∞

ˆ
∂D
φ|g′|P

(∣∣∣∣∣ fg′

∣∣∣∣∣
)

ds.

Above, we used the fact that for any continuous and 2π-periodic function ψ, the sequence x ψn−→ ψ(nx)
converges weakly-* in L∞ to

ffl
ψ.

Consequently, in order to have |∂Ωn|σ1(Ωn) → 2π, we chose f such that
(´

∂Ω Θds
)
σ1(Ω,Θ) =(´

∂D g
∗Θds

)
σ1(D, g∗Θ) is equal to 2π, which is the case of equality in Weinstock’s inequality. In

other words, we introduce the constant Λ > 0 such that g∗Θ = Λ or, equivalently,

P

(∣∣∣∣∣ fg′

∣∣∣∣∣
)

= Λ
|g′|

.

This is only possible when Λ
|g′| takes value in

(
1, 4

π

)
, and so there exists such a constant Λ if and only

if max∂D |g′| < 4
π

min∂D |g′|. For such a value Λ, the previous relation can be written

|f | = |g′|P−1
(

Λ
|g′|

)
.

This drives us to define f as f = eu+iv, where u = H log
(
|g′|P−1

(
Λ

|g′|

))
and v is an harmonic

conjugate of u. With this definition, since 0 < P−1 < 1, we get that 0 < |f | < |g′| on ∂D, and with
the maximum principle we get 0 < |f | < |g′| on D. With f defined in such a way, we obtain that for
all k ≥ 0

|∂Ωn|σk(Ωn) −→
n→∞

(ˆ
∂Ω

Θds
)
σk(Ω,Θ) =

(ˆ
∂D

Λds
)
σk(D,Λ) = |∂D|σk(D).

Remark 5.24. A consequence of this instability result is that no inequality of the form

dH(g(D),D) ≤ ϵ
(

∥|g′| − 1∥λ
H− 1

2 (∂D)
∥|g′| − 1∥1−λ

L∞(∂D)

)
,

can hold true, where λ ∈]0, 1], ϵ(t) is a function that goes to 0 as t → 0, and g is any conformal
map. Indeed, such an inequality would lead to a stability result with a priori bound in L∞, which
was shown to fail.

Lower bound on the exponent. We now compute the spectrum on the special case where Θ − 1
is a sine function. This allows us to prove that the optimal exponent of stability is not less than 2,
whereas the exponent we are able to obtain is 2(1 + α−1).

Lemma 5.25. Let α ∈]0, 1[, N ≥ 4, and Θ (eit) = 1 + α cos(Nt). Then

def(Θ) ≤ α2

N − 3 .
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Remark 5.26. This result may be compared to proposition 5.11; when α2

N−3 < δ0, it applies to Θ and
it gives:

def(Θ) ≥ cα2

N

For a constant c > 0 that does not depend on α nor N . This means that in this case, proposition
5.11 and lemma 5.25 are sharp up to a constant.

Proof. Let u ∈ C∞(∂D) be a finite sum of trigonometric functions, we denote cn its Fourier coefficients
(only a finite number are not vanishing). Let (Θn) be the Fourier coefficients of Θ. The harmonic
extension of u is given by

Hu(reit) =
∑
n∈Z

cnr
|n|eint,

and we can computed explicitly
ˆ

D

|∇Hu|2dx = 2π
∑
n∈Z∗

|nc2
n|,

ˆ

∂D

Θu2ds = 2π
∑
k,l∈Z

ckclΘl−k,

ˆ

∂D

Θuds =2π
∑
n∈Z

cnΘk.

Since we are only interested in test functions such that
´
∂D

Θu = 0, we can assume from now on that

c0 = −
∑
n∈Z∗

cnΘk.

Under the previous hypotheses, def(Θ) is the smallest value that verifies, for all finitely supported
(cn)n∈Z∗ and c0 := −∑

n∈Z∗ cnΘk:

(1 + def(Θ))
∑
n∈Z∗

|nc2
n| ≥

∑
k,l∈Z

ckclΘl−k.

This inequality may be rewritten as:

(1 + def(Θ))
∑
n∈Z∗

|nc2
n| ≥

∑
k,l∈Z∗

ckclΘl−k −

∣∣∣∣∣∣
∑
n∈Z∗

cnΘn

∣∣∣∣∣∣
2

.

If we find a value δ such that for all finitely supported sequence (cn)n∈Z∗ , we have

∑
k,l∈Z∗

ckclΘl−k ≤ (1 + δ)
∑
n∈Z∗

|nc2
n|,

then def(Θ) ≤ δ.

Here Θn =


1 for n = 0
α/2 for n = ±N.
0 elsewhere
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We write, for a parameter ϵ > 0 that will be chosen below,∑
k,l∈Z∗

ckclΘl−k =
∑
n∈Z∗

|cn|2 + α

2
∑

k,l∈Z∗, |k−l|=N
ckcl

≤
∑
n∈Z∗

|cn|2 + α
∑

k,l∈Z∗, |k−l|=N, |k|≤N/2
|ckcl| + α

2
∑

k,l∈Z∗, |k−l|=N, |k|,|l|>N/2
|ckcl|

≤
∑
n∈Z∗

|cn|2 + α
∑

k,l∈Z∗, |k−l|=N, |k|≤N/2

ϵ

2 |ck|2 + 1
2ϵ |cl|

2

+ α

2
∑

k,l∈Z∗, |k−l|=N, |k|,|l|>N/2

1
2 |ck|2 + 1

2 |cl|2

≤
∑

n∈Z∗, |n|≤N/2
(1 + αϵ) |cn|2 +

∑
n∈Z∗, |n|>N/2

(
1 + α + α

2ϵ

)
|cn|2

≤
∑

n∈Z∗, |n|≤N/2
(1 + αϵ) |cn|2 +

∑
n∈Z∗, |n|>N/2

(
2 + α

2ϵ

)
|cn|2.

We choose ϵ such that
(
2 + α

2ϵ

)
= N+1

2 , so we take ϵ = α
N−3 . Hence

∑
k,l∈Z∗

ckclΘl−k ≤
∑

n∈Z∗, |n|≤N/2

(
1 + α2

N − 3

)
|cn|2 +

∑
n∈Z∗, |n|>N/2

|nc2
n|

≤
(

1 + α2

N − 3

) ∑
n∈Z∗

|nc2
n|,

Proposition 5.27. Let ϵ > 0, α > 0. There exists a sequence of domains Ωn converging to D such
that

|∂Ωn| = 2π for all n,
sup
n∈N

∥ log |g′
n|∥C0,α < ∞,

sup
n≥0

σ1(D) − σ1(Ωn)(
dH(Ωn,D)

)2−ϵ < ∞.

Remark 5.28. Above, α can be arbitrarily large, which means we can ask for a much stronger a
priori bound and that the optimal exponent is still larger than 2.
Proof. Consider the sequence Ωn = gn(D) defined by the weight Θn(t) = 1+an cos(nt), for a sequence
an that will go to 0. Since ∥Θn − 1∥L∞(∂D) is less than 1

5 , for n large enough this defines a domain
that does not overlap. The estimate above gives us that

def(Θn) ≤ a2
n

n− 3 ≤ C
a2
n

n
,

for some constant C > 0. Let hn be defined by hn = log (|g′
n|). This is the unique harmonic function

verifying hn = log(Θn) on the boundary. We develop it as

hn(eit) = log (1 + an cos(nt))

=
∑
k≥1

(−1)k−1

k
akn cos(nt)k

=
∑
k≥1

(−1)k−1

k
akn

⌊k/2⌋∑
p=0

1
2k

(
k

p

)
(2 cos(n(2k − p)t)1p ̸=k/2 + 1p=k/2)

 .
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In particular, since hn is harmonic, its expression in the disk is

hn(reit) =
∑
k≥1

(−1)k−1

k
akn

⌊k/2⌋∑
p=0

1
2k

(
k

p

)
(2rn(2k−p) cos(n(2k − p)t)1p ̸=k/2 + 1p=k/2)

 .
We can verify the a priori hypothesis on hn = log (|g′

n|), precisely, there is a constant Cα > 0 such
that

[log (|g′
n|)]C0,α(∂D) ≤ Cα

∑
k≥1

(nk)αakn.

The right hand side is bounded as soon as nαan is bounded: this will be verified later. Then hn is
the real part of the holomorphic function

log(g′
n(z)) = ibn +

∑
k≥1

(−1)k−1

k
akn

⌊k/2⌋∑
p=0

1
2k

(
k

p

)
(2z2k−p1p ̸=k/2 + 1p=k/2)

 ,
for a certain branch of the logarithm and bn ∈ R. In particular, for a certain constant C > 0

|gn(z) − ibn − anz
n| ≤

∑
k≥2

1
k
akn ≤ Ca2

n.

This means that g′
n(z) = elog(g′

n(z)) = eibn (1 + anz
n + kn(z)) where kn is an holomorphic function

that verifies |kn(z)| ≤ Ca2
n for a certain constant C.

We lose no generality if we assume that bn = 0 for all n. Suppose now that n is odd, dH(Ωn,D)
can be estimated from below by:

gn(1) =
ˆ 1

0
g′
n(r)dr = 1 + an

n
+ O

(
a2
n

n

)
,

gn(−1) =
ˆ 1

0
g′
n(r)dr = −1 − an

n
+ O

(
a2
n

n

)
.

Thus, for a certain constant c > 0
dH(Ωn,D) ≥ c

an
n
.

Using this and the upper bound def(Θn) ≤ C a2
n

n
, we obtain

σ1(D) − σ1(Ωn)(
dH(Ωn,D)

)2−ϵ ≤ Caϵnn
1−ϵ,

which is bounded for an = n− 1−ϵ
ϵ . For a small enough ϵ, (nαan) is bounded, so the a priori condition

holds, which proves the result.

5.5 Stability of the Hersch inequality

This section is extracted from a work in common with Iosif Polterovich, Mikhail Karpukhin and
Daniel Stern, that was at the origin motivated by estimates like the one of proposition 5.11 in a more
general setting.

In this section, we prove a quantitative version of the Hersch inequality with elementary tools.
We also discuss the sharpness of this quantitative inequality.
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We call S2 the unit sphere of R3, g = 1
4πg

e (where ge is the euclidian induced metric), vg its
surface measure (note that g was normalized such that vg(S2) = 1). We say that a measure µ on
S2 is admissible if it is positive, and if the identity of C1(S2,R) continuously extends to a compact
embedding H1(S2, g) ↪→ L2(S2, µ), where H1(S2, g) is the usual Sobolev space associated to the
metric g with the norm

∥u∥H1(S2,g) :=
(ˆ

S2

(
u2 + |du|2g

)
dvg

) 1
2

.

For any (nonnegative) measure µ on S2, we define the eigenvalues of the Laplacian with respect to µ
as

λk(µ) = inf
{

sup
u∈U

´
S2 |du|2gdvg´
S2 |u|2dµ , U subspace of H1(S2, g) : dim(U) = k + 1

}
.

When µ is admissible these are reached for eigenfunctions (uk) such that −∆uk = λk(µ)ukµ in the
weak sense. Hersch’s inequality in the framework of eigenvalues of measures (as developped in [105])
is stated as follows:

For any admissible probability measure µ on the sphere, λ1(µ) ≤ 8π.

The proof is in two steps: first, up to replacing µ with Φ∗µ for a certain conformal automorphism
of (S2, [g]) (that is uniquely defined by µ as long as it has no atom of measure equal or greater than
µ(S)

2 , which is the case since it is admissible), we may suppose that µ is balanced, meaning
ˆ
S2
zdµ(z) = 0.

The inequality is then obtained using the coordinate functions as test functions. We prove the
following quantitative version:

Proposition 5.29. Let µ be an admissible and balanced probability measure on the sphere. Then
there are constants c1, c2 > 0 such that

λ1(µ) ≤ 8π − c1 min
(
c2, ∥µ− vg∥2

H−1(S2,g)

)
.

Since any admissible measure has no atom and may be sent conformally to a balance measure, it
directly implies the corollary that for any admissible probability measure µ on S2:

λ1(µ) ≤ 8π − c1 min
(
c2, inf

φ∈Conf(S2)
∥φ♯µ− vg∥2

H−1(S2,g)

)
.

Proof. Let δ > 0 be defined by λ1(µ) =: 8π
1+δ ; we prove that if δ is small enough (not depending on

µ) then
∥µ− vg∥H−1(S2,g) ≤ C

√
δ,

for a certain constant C > 0 that does not depend on µ. λ1(µ) = 8π
1+δ implies that, for all u ∈

H1(S2, g), ˆ
S2
u2dµ−

(ˆ
S2
udµ

)2

≤ 1 + δ

8π

ˆ
S2

|du|2gdvg.

We let X, Y, Z be the coordinate functions and φ be any H1(S2, g) function that verifies
ˆ
S2
φdvg = 0,

ˆ
S2

(
|dφ|2g + φ2

)
dvg = 1.

Let t ∈ R that will be fixed later, taking u = X + tφ above we obtain
ˆ
S2

(X + tφ)2dµ−
(ˆ

S2
(X + tφ)dµ

)2

≤ 1 + δ

8π

ˆ
S2

|d(X + tφ)|2gdvg.
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Using the hypothesis on µ, φ and the fact that X is an eigenfunction for vg with eigenvalue 8π,
ˆ
S2

(
X2 + 2tXφ+ t2φ2

)
dµ ≤(1 + δ)

(ˆ
S2
X2dvg + 2t

ˆ
S2
Xφdvg + t2

8π

)

+ t2
(ˆ

S2
φd(µ− vg)

)2

.

This implies, after a few simplifications,
ˆ
S2

(
2tXφ+X2

)
d(µ− vg) ≤ δ

ˆ
S2
X2dvg + 2δt

ˆ
S2
Xφdvg + (1 + δ) t

2

8π

+ t2
(ˆ

S2
φd(µ− vg)

)2

− t2
ˆ
S2
φ2dµ

≤ δ

3 + 2√
3
δt+ t2

4π
(
1 + 4π∥µ− vg∥2

H−1(S2,g)

)
.

We may do the same for Y and Z that share the same properties, and by summing these three
inequalities (and denoting W = X + Y + Z) we obtain

2t
ˆ
S2
Wφd(µ− vg) ≤ δ + 2

√
3πδt+ 3t2

4π
(
1 + 4π∥µ− vg∥2

H−1(S2,g)

)
.

After optimization in t:∣∣∣∣∣
ˆ
S2
Wφd(µ− vg)

∣∣∣∣∣ ≤ C1

√
δ
(
1 + 4π∥µ− vg∥2

H−1(S2,g)

)
. (5.3)

This may be done for any L2(vg)-unitary function W in Span(X, Y, Z) and for any φ that verifies
ˆ
S2
φdvg = 0, ∥φ∥H1(S2,g) = 1.

The first condition may be dropped (up to changing C1 in a larger constant C2), since the left-hand
side of the estimate (5.3) is invariant when adding a constant to φ by orthogonality of µ − vg with
W . Now write, for any φ ∈ H1(S2, g) with unit norm:

ˆ
S2
φd(µ− vg) =

ˆ
S2

(X(Xφ) + Y (Y φ) + Z(Zφ)) d(µ− vg)

≤ C3

√
δ
(
2 + ∥µ− vg∥2

H−1(S2,g)

)
.

Where C3 = C2 sup∥φ∥H1 =1(∥Xφ∥H1 + ∥Y φ∥H1 + ∥Zφ∥H1). And so

∥µ− vg∥H−1(S2,g) ≤ C3

√
δ
(
2 + ∥µ− vg∥2

H−1(S2,g)

)
,

which ends the proof.

We now prove that the proposition 5.29 is sharp in two ways: the exponent is optimal, and so is
the choice of distance in a certain way.
As will be detailed later, the eigenvalue functional µ 7→ λ1(S2, µ) is not continuous in W−1,2 :=
W−1,2(S2, g) norm. In general, we may see in the definition

λ1(µ)−1 = sup
∥du∥L2(S2,g)=1

ˆ
S2
u2 dµ−

(ˆ
S2
u dµ

)2


that λ1(µ) is naturally continuous with respect to the dual of the space of the squares of W 1,2

functions. Following [100, Proposition 4.11] we introduce the Orlicz-Sobolev space below.
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Definition 5.30. For a function u ∈ L1(S2, g) let

∥u∥
L2(LogL)− 1

2
:= inf

{
η > 0 :

ˆ
S2

|u/η|2

log(2 + |u/η|) dvg ⩽ 1
}
.

The Orlicz-Sobolev space W 1,2,− 1
2 := W 1,2,− 1

2 (S2, g) is defined to be the space of functions such that

∥u∥
W 1,2,− 1

2
:= ∥u∥

L2(LogL)− 1
2

+ ∥du∥
L2(LogL)− 1

2
< ∞.

In what follows, the only property property of W 1,2,− 1
2 we are using is that there exists a constant

COr such that for any u ∈ W 1,2 one has

∥u2∥
W 1,2,− 1

2
⩽ COr∥u∥2

W 1,2 ,

which implies the continuity of µ 7→ λ1(µ) := λ1(S2, µ) in the dual of W 1,2,− 1
2 (see [100] for more

details). In the next proposition, we prove that if a balanced measure µ is close enough to vg in the
dual of W 1,2,− 1

2 (and hence in W−1,2 as well), then the exponent two in the stability estimate 5.29 is
sharp on a finite codimension subspace of admissible measures.
Proposition 5.31. There exist ϵ0, c > 0 such that, for any balanced admissible measure µ, if

ˆ
S2
φ2 d(µ− vg) ⩽ ϵ0∥φ∥2

W 1,2 (5.4)

for any φ ∈ W 1,2, then

λ1 (µ) ⩾ 8π
1 + c (∥µ− vg∥W−1,2 + ∥µ− vg∥2

W−1,2) . (5.5)

Moreover, if in addition one has
´
S2 w

2 d(µ− vg) = 0 for any w ∈ E1, then

λ1 (µ) ⩾ 8π
1 + c∥µ− vg∥2

W−1,2
. (5.6)

In particular, the exponent in the stability estimate 5.29 is sharp.

Remark 5.32. Assumption (5.4) is verified whenever ∥µ− vg∥(
W 1,2,− 1

2
)∗ is smaller than C−1

Or ϵ0.

Remark 5.33. Inequality (5.5) can be interpreted as continuity of λ1(µ) at µ = dvg with respect to
the W−1,2 distance in the class of measures satisfying (5.4). We will see in Corollary 5.39 below that
an additional assumption (5.4) is necessary.
Proof. In this proof, we denote by E1 the eigenspace corresponding to the eigenvalue λ1(S2, g) spanned
by the coordinate functions. Since

λ1(µ) = inf
φ∈W 1,2

´
S2 |dφ|2g dvg´

S2

(
φ−

´
S2 φdµ

)2
dµ
,

and both numerator and denominator are invariant up to the addition of a constant to φ, λ1(µ) may
be written as

λ1(µ) = inf
φ∈1⊥

´
S2 |dφ|2g dvg´

S2 φ2 dµ−
(´

S2 φdµ
)2 ,

where 1⊥ = {φ :
´
S2 φdvg = 0}. For any δ > 0, in order to prove that λ1(µ) ⩾

8π
1 + δ

it suffices to
show that for any φ ∈ 1⊥ one has ˆ

S2
φ2 dµ ⩽

1 + δ

8π

ˆ
S2

|dφ|2g dvg. (5.7)
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We write φ = w + ψ, where w ∈ E1, ψ ∈ {1, E1}⊥. Notice that, since λ1(dvg) = λ3(dvg) = 8π and
λ4(dvg) = 24π, it follows that 24π

´
S2 ψ

2 dvg ⩽
´
S2 |dψ|2g dvg and 8π

´
S2 w

2 dvg =
´
S2 |dw|2g dvg. Thus,

one obtains
1 + δ

8π

ˆ
S2

|dφ|2g dvg = 1 + δ

8π

ˆ
S2

(
|dw|2g + |dψ|2g

)
dvg

⩾ (1 + δ)
ˆ
S2

(
w2 + ψ2

)
dvg + 1 + δ

12π

ˆ
S2

|dψ|2g dvg

⩾
ˆ
S2

(
φ2 + δw2

)
dvg + 1

12π

ˆ
S2

|dψ|2g dvg

Thus, to obtain (5.7) it is sufficient to show that
ˆ
S2
φ2 d(µ− vg) ⩽ δ

ˆ
S2
w2 dvg + 1

12π

ˆ
S2

|dψ|2g dvg. (5.8)

Before proving this inequality, let us first remark that since E1 is finite dimensional, there exists a
constant C such that ∥w∥W 1,∞ ⩽ C∥w∥L2 . Similarly, for any ψ ∈ {1, E1}⊥, since λ4(dvg) = 24π we
have ∥ψ∥2

W 1,2 ⩽ (1 + (24π)−1) ∥dψ∥2
L2 , and for a certain constant C > 0

∥wψ∥W 1,2 ⩽ C∥w∥L2∥dψ∥L2 .

Let us first verify (5.6). With the hypothesis on µ,
´
S2 w

2 d(µ − vg) = 0, thus, the l.h.s. of (5.8)
may be estimated as follows,

ˆ
S2

(w + ψ)2 d(µ− vg) =
ˆ
S2

(
2wψ + ψ2

)
d(µ− vg)

⩽ 2∥µ− vg∥W−1,2∥wψ∥W 1,2 + ϵ0∥ψ∥2
W 1,2

⩽ 2C∥µ− vg∥W−1,2∥w∥L2∥dψ∥L2 +
(

1 + 1
24π

)
ϵ0∥dψ∥2

L2

⩽ 24πC2∥µ− vg∥2
W−1,2∥w∥2

L2 +
( 1

24π +
(

1 + 1
24π

)
ϵ0

)
∥dψ∥2

L2 ,

where we used the arithmetic-geometric mean inequality in the last step. As a result, we obtain (5.8)
with δ = 24πC2∥µ − vg∥2

W−1,2 as long as we choose ϵ0 = 1
1 + 24π . Substituting this δ in (5.7)

completes the proof.
To show (5.5) it is sufficient to note that

ˆ
S2
w2 d(µ− vg) ⩽ ∥µ− vg∥W−1,2∥w2∥W 1,2 ⩽ C∥µ− vg∥W−1,2∥w∥2

L2 .

Adding this term to the computation above, we obtain (5.8) with

δ = C∥µ− vg∥W−1,2(1 + 24πC∥µ− vg∥W−1,2).

We now prove that the Hersch inequality is not stable in
(
W 1,2,− 1

2
)∗

, and, consequently, is also
not stable in (W 1,2−ϵ)∗ for any ε > 0. Note that by Sobolev embedding theorem, it is thus not
stable in (W 1−ε,2)∗ either. We claim that in order to show this it is sufficient to prove the following
theorem.

Theorem 5.34. There exists a sequence (µϵ)ϵ of admissible, balanced probability measures on S2,
such that λ1(µϵ) −→

ϵ→0
8π and

lim inf
ϵ→0

∥µϵ − vg∥(
W 1,2,− 1

2
)∗ > 0.
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Indeed, assume that there exist conformal automorphisms Φϵ ∈ Conf(S2) such that (Φϵ)∗µϵ → vg in(
W 1,2,− 1

2
)∗

. Note that since λ̄1(µϵ) → 8π and µϵ are balanced, an application of proposition 5.29
with u = id: S2 → S2 yields that µϵ → vg in W−1,2. Suppose that Φϵ converges (smoothly up to
a choice of a subsequence) to a conformal automorphism Φ0. Then µϵ → (Φ−1

0 )∗vg in
(
W 1,2,− 1

2
)∗

and, at the same time, µϵ → vg in W−1,2. Since the space
(
W 1,2,− 1

2
)∗

embeds in W−1,2, one has
(Φ−1

0 )∗vg = vg in contradiction with the conclusion of Theorem 5.34. If Φϵ does not converge, then
(up to a choice of a subsequence) Φϵ sends most of S2 into a shrinking neighbourhood of a single
point. In particular, µϵ ⇀ δp for some p ∈ S2, which contradicts µϵ → vg in W−1,2.

In order to prove Theorem 5.34 we need the following lemma, where we use the notation aϵ ∼
ϵ→0

bϵ

to mean that lim
ϵ→0

aϵ
bϵ

= 1.

Lemma 5.35. Let Bϵ be a disk of radius ϵ in R2, then

sup
u∈W 1,2

0 (B1), ∥du∥L2(B1)=1

ˆ
Bϵ

u2 dx ∼
ϵ→0

1
2ϵ

2 log(1/ϵ), (5.9)

sup
u∈W 1,2

0 (B1), ∥du∥L2(B1)=1

ˆ
Bϵ

u dx ∼
ϵ→0

ϵ2
√
π

2 log(1/ϵ), (5.10)

where W 1,2
0 (B1) is the completion of C∞

0 (B1,R) with its respective norm.

Proof. We start with the proof of (5.9). The inverse of this quantity may be rewritten as the
eigenvalue problem

λϵ := inf
u∈W 1,2

0 (B1)

´
B1

|du|2 dx´
Bϵ
u2 dx .

By compactness of W 1,2
0 (B1) ↪→ L2(B1) the infimum is attained for some function uϵ ∈ W 1,2

0 (B1).
Its Schwarz rearrangement has lower energy, so we may suppose without loss of generality that
uϵ(x) = ψϵ(|x|) for a certain function ψϵ(r) defined for r ∈ [0, 1]. The Euler-Lagrange equation
associated to this problem is

ψ′′
ϵ + 1

r
ψ′
ϵ = −λϵ1r<ϵψϵ,

which implies that ψϵ ∈ C1((0, 1]) by elliptic regularity. On B1 \ Bϵ we know that for a certain
constant k > 0:

uϵ(x) = k
log(1/|x|)
log(1/ϵ) .

Notice also that at |x| = ϵ we have ∂ruϵ

uϵ
= − 1

ϵ log(1/ϵ) , thus uϵ|Bϵ is an eigenfunction associated to the
first eigenvalue of the Laplacian with Robin condition of parameter 1

ϵ log(1/ϵ) , denoted λ1
(
Bϵ; 1

ϵ log(1/ϵ)

)
.

Now by applying Stokes’ formula to uϵ on B1 \Bϵ we see that

λϵ =
´
B1

|∇uϵ|2´
Bϵ
u2
ϵ

=
´
Bϵ

|∇uϵ|2 + 1
ϵ log(1/ϵ)

´
∂Bϵ

u2
ϵ´

Bϵ
u2
ϵ

= λ1

(
Bϵ;

1
ϵ log(1/ϵ)

)
.

At the same time, λ1
(
Bϵ; 1

ϵ log(1/ϵ)

)
= ϵ−2λ1

(
B1; 1

log(1/ϵ)

)
∼ 2

ϵ2 log(1/ϵ) , where we use in the first step
the general scaling property

λ1(rΩ;α) = r−2λ1(Ω; rα),

and in the second step the well-known asymptotic formula λ1(Ω;α) ∼
α→0+

α |∂Ω|
|Ω| ([108], see also

[106, 99]).
Similarly, let us now prove (5.10). By compactness of W 1,2

0 (B1) ↪→ L1(B1), we find that the
supremum is attained for a positive function uϵ. Using the Schwarz rearrangement argument as
earlier, we may suppose that uϵ is radial and satisfies the Euler-Lagrange equation −∆uϵ = cϵ1Bϵ for
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a certain constant cϵ. In particular, u ∈ C1(B1) by elliptic regularity. Thus, up to multiplication by
a scalar, uϵ is given by:

uϵ(x) =
log(1/|x|) if ϵ ⩽ |x| ⩽ 1

log(1/ϵ) + ϵ2−|x|2
2ϵ2 if |x| ⩽ ϵ.

An explicit computation yields the result.

Consider two antipodal points x1, x2 on S2, e.g. the north pole N = x1 and south pole S = x2. Let
r > 0 be such that Bg(xi, 2r) is the corresponding hemisphere. Using the stereographic projection
from xi onto the equatorial plane one can construct conformal flat metrics gi := e2wig on Bg(xi, 2r),
such that

• wi(x) is bounded and only depends on distg(x, xi);

• Bg(xi, r) = Bgi
(xi, 1);

• if ρi(ϵ) is such that Bg(xi, ϵ) = Bgi
(xi, ρi(ϵ)), then ρi(ϵ) ∼

ϵ→0
ewi(xi)ϵ.

Corollary 5.36. There exists a constant C0 > 0 such that for any ϵ > 0 small enough one has

C−1
0 ϵ2 log(1/ϵ) ⩽ sup

∥u∥W 1,2 =1

ˆ
∪2

i=1Bg(xi,ϵ)
u2 dvg ⩽ C0ϵ

2 log(1/ϵ), (5.11)

C−1
0 ϵ2

√
log(1/ϵ) ⩽ sup

∥u∥W 1,2 =1

ˆ
∪2

i=1Bg(xi,ϵ)
u dvg ⩽ C0ϵ

2
√

log(1/ϵ). (5.12)

Proof. We prove (5.11), the proof of (5.12) is identical. Let χi ∈ C∞(S2, [0, 1]) be such that {χi ̸=
0} ⋐ Bg(xi, r) and Bg(xi, r/2) ⋐ {χi = 1}. The estimate (5.9) implies that there exists a constant
C1 > 0 such that for any small enough ϵ > 0,

C−1
1 ϵ2 log(1/ϵ) ⩽ sup

u∈W 1,2
0 (B1), ∥du∥L2(B1)=1

ˆ
Bϵ

u2 dx ⩽ C1ϵ
2 log(1/ϵ).

Since the functions wi are bounded, for any φ ∈ W 1,2, one has
ˆ

∪2
i=1Bg(xi,ϵ)

φ2 dvg ⩽ C
2∑
i=1

ˆ
Bgi (xi,ρi(ϵ))

(χiφ)2 dvgi

⩽ CC1

2∑
i=1

ρi(ϵ)2 log(1/ρi(ϵ))∥d(χiφ)∥2
L2(S2,gi)

⩽ CC1
(
1 + ∥dχi∥2

L∞

)
ϵ2 log(1/ϵ)(1 + o(1))∥φ∥2

W 1,2 ,

where C is a constant depending only on ∥wi∥L∞ , possibly changing from line to line.
Conversely, for each ϵ > 0 there is a function φϵ ∈ C∞

0 (Bg(x1, r)) such that
´
Bg1 (x1,ρ1(ϵ)) φ

2
ϵ dvg1 ⩾

C−1
1 ρ1(ϵ)2 log(1/ρ1(ϵ))∥dφϵ∥2

L2 . As a result,
ˆ

∪2
i=1Bg(xi,ϵ)

φ2
ϵ dvg ⩾ CC−1

1 ρ1(ϵ)2 log(1/ρ1(ϵ))∥dφϵ∥2
L2

⩾
CC−1(1 + o(1))

(1 + λ∗(Bg(x1, r), g))
ϵ2 log(1/ϵ)∥φϵ∥2

W 1,2 ,

where λ∗(Ω, g) is the first eigenvalue of the Laplacian with Dirichlet boundary conditions on ∂Ω.
The proof of (5.12) is the same, except φ2 is replaced with φ.
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We are now ready to define our sequence of measures. For any M, ϵ > 0 set

νϵ =
1∪2

i=1Bg(xi,ϵ)

ϵ2 log(1/ϵ) dvg, µ
M
ϵ = vg +Mνϵ

1 +Mνϵ(S2) .

The following lemma motivates the definition of νϵ.
Lemma 5.37. For any M, ϵ > 0 the measures νϵ, µMϵ possess the following properties,

1. ∥νϵ∥W−1,2 → 0 as ϵ → 0. In particular, one has

∥µMϵ − vg∥W−1,2 → 0;

2. There exists c > 0 such that

lim inf
ϵ→0

∥µMϵ − vg∥(
W 1,2,− 1

2
)∗ > cM > 0.

Proof. The upper bound (5.12) implies that

∥νϵ∥W−1,2 ⩽ C0 (log(1/ϵ))− 1
2 → 0.

As a result,

∥µMϵ − vg∥W−1,2 =
∥∥∥∥∥Mνϵ(S2)dvg +Mνϵ

1 +Mνϵ(S2)

∥∥∥∥∥
W−1,2

→ 0,

since νϵ(S2) ⩽ C (log(1/ϵ))−1 → 0. This completes the proof of (1).
To show (2) we write

∥µMϵ − vg∥(
W 1,2,− 1

2
)∗ ⩾ sup

φ∈W 1,2

´
S2 φ

2 d(µMϵ − vg)
∥φ2∥

W 1,2,− 1
2

⩾ sup
φ∈W 1,2

M

1 +Mνϵ(S2)


´
S2 φ

2 dνϵ
COr∥φ∥2

W 1,2
−
νϵ(S2)

´
S2 φ

2dvg
∥φ2∥(

W 1,2,− 1
2
)∗


⩾

cM

1 +Mνϵ(S2)(1 − Cνϵ(S2)),

where in the last step we used the lower bound (5.11). Since νϵ(S2) → 0, the proof is complete.

Proposition 5.38. There are constants M0, C > 0 such that

1. lim supϵ→0 λ1(µMϵ ) ⩽ C
M

;

2. If M < M0, then λ1(µMϵ ) → 8π as ϵ → 0.

Proof. To prove (1) we write

λ1(µMϵ )−1 = sup´
S2 |dφ|2dvg=1

ˆ
S2
φ2dµMϵ −

(ˆ
S2
φdµMϵ

)2


This formula is invariant up to the addition of a constant to φ, so we may take φ ∈ 1⊥ :={
ψ :

´
S2 ψdvg = 0

}
without loss of generality. Let H = {φ ∈ 1⊥,

´
S2 |dφ|2dvg = 1}, this may be

rewritten
λ1(µMϵ )−1 =

= 1
1 +Mνϵ(S2) sup

φ∈H

ˆ
S2
φ2d(vg +Mνϵ) − M2

1 +Mνϵ(S2)

(ˆ
S2
φdνϵ

)2


⩾
M

1 +Mνϵ(S2) sup
φ∈H

ˆ
S2
φ2dνϵ − (1 + (8π)−1)M2∥νϵ∥2

W−1,2

(1 +Mνϵ(S2))2 .
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The second term goes to 0 by Lemma 5.37. Moreover, according to the estimate (5.9), we may find
a function ψϵ with support on Bg(x1, r) such that ∥dψϵ∥L2(S2,g1) = 1 and

ˆ
Bg1 (x1,ρ1(ϵ))

ψ2
ϵdvg1 ⩾

1
2C

−1
1 ϵ2 log(1/ϵ).

Let ϕϵ be the same function on Bg(x2, r) (which is isometric to Bg(x1, r)), then ϕϵ−ψϵ√
2 ∈ H and there

is a constant c > 0 such that

sup
φ∈H

ˆ
S2
φ2dνϵ ⩾

ˆ
S2

(
ϕϵ − ψϵ√

2

)2

dνϵ ⩾ c.

Thus, as ϵ → 0, we obtain λ1(µMϵ )−1 ⩾ cM .
To show (2) we note that (5.11) implies that for any φ ∈ W 1,2,

ˆ
S2
φ2 dνϵ ⩽ C0M∥φ∥W 1,2 .

Therefore, the assumption (5.4) of Proposition 5.31 is satisfied for M < M0 := C−1
0 ϵ0. An application

of (5.5) concludes the proof.

Let M be large enough so that lim supϵ→0 λ1(µMϵ ) ⩽ C
M
< 8π. Then by Lemma 5.37 part (1) the

sequence (µMϵ )ϵ→0 gives the proof of the following corollary.

Corollary 5.39. µ 7→ λ1(µ) is not continuous in W−1,2 and the Proposition 5.31 fails without the
assumption (5.4).

At the same time, when M < M0 we obtain Theorem 5.34.

Proof of Theorem 5.34. ConsiderM < M0 and (µMϵ )ϵ as defined in proposition 5.38, then λ1(µMϵ ) −→
ϵ→0

8π. An application of Lemma 5.37, part (2) completes the proof the corollary.
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Chapter 6

Existence and regularity of optimal
shapes for spectral functionals with
Robin boundary conditions
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6.3.3 Regularity of minimizers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

6.4 The functional Ω 7→ λk(Ω; β) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
6.4.1 Regularization and perturbation lemma . . . . . . . . . . . . . . . . . . . . . . . . . 141
6.4.2 Non-degeneracy lemma and the main result . . . . . . . . . . . . . . . . . . . . . . . 143
6.4.3 Discussion about the properties of open minimizers . . . . . . . . . . . . . . . . . . . 146

6.1 Introduction

Let Ω be a bounded Lipschitz domain in Rn, β > 0 a parameter that is constant throughout the
paper, and f ∈ L2(Ω). The Poisson equation with Robin boundary conditions is−∆u = f in Ω,

∂νu+ βu = 0 in ∂Ω,

where ∂ν is the outward normal derivative that may only have a meaning in the sense that for all
v ∈ H1(Ω), ˆ

Ω
∇u · ∇vdL n +

ˆ
∂Ω
βuvdH n−1 =

ˆ
Ω
fvdL n.

This equation (and in particular its boundary conditions) has several interpretations: we may see the
solution u as the temperature obtained in an homogeneous solid Ω with the volumetric heat source
f , and insulator on the boundary (more precisely, a width β−1ϵ of insulator of conductivity ϵ for
ϵ → 0) that separates the solid Ω from a thermostat.
Another interpretation is to see u as the vertical displacement of a membrane with shape Ω on which
we apply a volumetric normal force f , and the membrane is fixed on its boundary by elastic with
stiffness proportional to β.
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This equation is associated to a sequence of eigenvalues

0 < λ1(Ω; β) ≤ λ2(Ω; β) ≤ . . . → +∞,

with eigenfunctions uk(Ω; β) that verify∆uk(Ω; β) + λk(Ω; β)uk(Ω; β) = 0 in Ω,
∂νuk(Ω; β) + βuk(Ω; β) = 0 in ∂Ω.

The quantities (λk(Ω; β))k may be extended to any open set Ω in a natural way, see Section 2 for
more details.

In this paper, we study some shape optimization problems involving the eigenvalues (λk(Ω; β))k
with measure constraint on general open sets. In particular we prove that when F (λ1, . . . , λk) is a
function with positive partial derivative in each λi (such as F (λ1, . . . , λk) = λ1 + . . .+ λk), then for
any m,β > 0 the optimisation problem

min {F (λ1(Ω; β), . . . , λk(Ω; β)) , Ω ⊂ Rn open such that |Ω| = m}

has a solution. Moreover the topological boundary of an optimal set is rectifiable, Ahlfors-regular,
with finite H n−1-measure. For functionals of the form F (λ1, . . . , λk) = λk, while minimizers are only
known to exist in a relaxed SBV setting (that will be detailed in the second section), we show that
any SBV minimizer verifies

λk(Ω; β) = λk−1(Ω; β)
in any dimension n ≥ 3.

6.1.1 State of the art

The link between the eigenvalues of the Laplace operator (or other differential operators) on a domain
and the geometry of this domain is a problem that has been widely studied, in particular in the field
of spectral geometry.

The earliest and most well-known result in this direction dates back to the Faber-Krahn inequal-
ity, that states that the first eigenvalue of the Laplacian with Dirichlet boundary conditions is, among
sets of given measure, minimal on the disk. The same result was shown for Robin boundary condi-
tions with positive parameter in [115] in the two-dimensional case, then in [125] in any dimension for
a certain class of domains on which the trace may be defined, using dearrangement methods. It was
extended in [117], [118] in the SBV framework that we will describe in the next section, such that the
first eigenvalue with Robin boundary condition is minimal on the ball among all open sets of given
measure. In order to handle the lack of uniform smoothness of the admissible domains, the method
here is to consider a relaxed version of the problem, so as to optimize an eigenfunction instead of a
shape. Once it is known a minimizer exists in the relaxed framework, it is shown by regularity and
symmetry arguments that this minimizer corresponds to the disk.

Similar problems of spectral optimization with Neumann boundary conditions or Robin condi-
tions with negative parameter have been shown to be different in nature, in the former case the first
eigenvalue is maximal on the disk, and this is shown with radically different method, mainly building
appropriate test functions since the eigenvalues are defined as an infimum through the Courant-
Fischer min-max formula. Let us also mention several maximization result for Robin boundary
condition with parameter that scales with the perimeter, obtained in [134], [127] with similar meth-
ods.

The existence and partial regularity for minimizers of functions F (λD1 (Ω), . . . , λDk (Ω)) (where
λDi (Ω) is the i-th eigenvalue of the Laplacien with Dirichlet boundary conditions) with measure con-
straint or penalization has been achieved in [116], [135], [132], [133]: it is known that if F is increasing
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and bi-Lipschitz in each λi then there is an optimal open set that is C1,α outside of a singular set
of codimension at least three, and if F is merely nondecreasing in each coordinate then there is an
optimal quasiopen set that has analytic boundary outside of a singular set of codimension three and
points with Lebesgue density one. It has been shown in [122], [133] that a shape optimizer for the
k-th eigenvalue with Dirichlet boundary conditions and measure constraint admits Lipschitz eigen-
functions. In these papers the monotonicity and scaling properties of the eigenvalues with Dirichlet
boundary condition (ω 7→ λDk (ω) is decreasing in ω) plays a crucial role, however eigenvalues with
Robin boundary conditions have no such properties so the same methods cannot be extended in a
straightforward way.

The minimization of λ2(Ω; β) under measure constraint on Ω was treated in [130]; as in the Dirich-
let case, the minimizer is the disjoint union of two balls of same measure. For the minimization of
λk(Ω; β) or other functionals of λ1(Ω; β), . . . , λk(Ω; β), nothing is known except for the existence of a
minimizer in the relaxed setting with bounded support for λk(Ω; β), see [119]. The regularity theory
for minimizers of functionals involving Robin boundary conditions was developped in [123], [131] and
we will relay on some of its results in our vectorial setting.

Numerical simulations in [113] for two-dimensional minimizers of λk(·; β) (for 3 ≤ k ≤ 7) with
prescribed area suggest a bifurcation phenomena in which the optimal shape is a union of k balls for
every small enough β, and it is connected for any large enough β. In [113], the connected minimizers
were searched by parametric optimization among perturbations of the disk, however a consequence
of our analysis in the last section is that minimizers of λ3(·; β) are never homeomorphic to the disk.

6.1.2 Statements of the main results

In the first part of the paper, we are concerned in what we call the non-degenerate case; consider

F :
{
λ ∈ Rk : 0 < λ1 ≤ λ2 ≤ . . . ≤ λk

}
→ R+

a Lipschitz function with directional derivatives - in the sense that for any λ ∈ Rk there is some
positively homogeneous function F0 such that F (λ + ν) = F (λ) + F0(ν) + oν→0(|ν|) - such that for
all i ∈ {1, . . . , n}, and all 0 < λ1 ≤ . . . ≤ λk

∂F

∂±λi
(λ1, . . . , λk) > 0, F (λ1, . . . , λk−1, µk) −→

µk→∞
+∞, (6.1)

where ∂
∂±λi

designates the directional partial derivatives in λi. This applies in particular to any of
these:

Fp(λ1, . . . , λk) =
(

k∑
i=1

λpi

) 1
p

.

Our first main result is the following.

Theorem 6.1. Let F be such a function, m > 0, then there exists an open set that minimizes the
functional

Ω 7→ F (λ1(Ω; β), . . . , λk(Ω; β))
among open sets of measure m in Rn. Moreover any minimizing set is bounded, verifies H n−1(∂Ω) ≤
C for some constant C > 0 depending only on (n,m, β, F ), and ∂Ω is Ahlfors-regular.

Here are the main steps of the proof:

• Relaxation. We relax the problem in the SBV framework; this is introduced in the next
subsection, following [117], [118], [119]. The idea is that the eigenfunctions on a domain Ω
are expected to be zero almost nowhere on Ω; we extend these eigenfunctions by zero outside
of Ω (thereby creating a discontinuity along ∂Ω) and reformulate the optimization problem
on general functions defined in Rn that may have discontinuities, with measure constraint on
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their support. The advantage is that we have some compactness and lower semi-continuity
results to obtain the existence of minimizers in the relaxed framework, however a sequence of
eigenfunctions extended by zero may converge to a function that does not correspond to the
eigenfunction of an open domain, so we will need to show some regularity on relaxed minimizers.

• A priori estimates and nondegeneracy. We obtain a priori estimates for relaxed interior
minimizers (meaning minimizers compared to any set that it contains). More precisely for any
interior minimizer that corresponds to the eigenfunctions (u1, . . . , uk), we show that for almost
any point in the support of these eigenfunctions, at least one of them is above a certain positive
threshold. We also obtain L∞ bounds of these eigenfunctions and deduce a lower estimate for
the Lebesgue density of the support, from which we obtain the boundedness of the support.

• Existence of minimizers. We consider a minimizing sequence and show that, up to a trans-
lation, it either converges to a minimizer or it splits into two minimizing sequences of similar
functionals depending on p and k− p (where 1 ≤ p < k) eigenvalues respectively, and we know
minimizers of these exists by induction on k.

• Regularity. Finally, we show the regularity of relaxed minimizer, meaning that a relaxed
minimizer corresponds to the eigenfunctions of a certain open domain that were extended by
zero, by showing that the singular set of relaxed minimizers is closed up to a H n−1-negligible
set.

Notice that in the second step we do not show that the first eigenfunction (or one of the l first
in the case where the minimizer has l connected components) is positive, which is what we expect
in general for sufficiently smooth sets; if u1 is the first (positive) eigenfunction on a connected C2

set Ω, and suppose u1(x) = 0 for some x ∈ ∂Ω then by Hopf’s lemma ∂νu1(x) < 0, which breaks
the Robin condition at x, so infΩ u1 > 0. In our case, we get instead a "joint non-degeneracy" of the
eigenfunctions in the sense that at every point of their joint support, at least one is positive.

Notice also that the second hypothesis in (6.1) is not superfluous: without it, a minimizing
sequence (Ωi) could have some of its first k eigenvalues diverge. This is because, unlike the Dirichlet
case, there is no upper bound for λk(·;β)

λ1(·;β) in general even among sets with fixed measure. While λk(·; β)
is not homogeneous by dilation, we still have the scaling property

λk(rΩ; β) = r−2λk(Ω; rβ).

Consider a connected smooth open set Ω. Since each λk(Ω; rβ) converges to λk(Ω, 0) (the eigenvalues
with Neumann boundary conditions) as r → 0, and 0 = λ1(Ω, 0) < λ2(Ω, 0), then for any k ≥ 2,
λk(rΩ;β)
λ1(rΩ;β) −→

r→0
+∞. A counterexample among sets of fixed measure may be obtained with the disjoint

union of rΩ for small r and a set ω with prescribed measure such that λ1(ω; β) > λk(rΩ; β), such as
a disjoint union of enough balls of radius ρ > 0, chosen small enough to have λ1(ω, β) = λ1(Bρ; β) >
λk(rΩ; β).

In the second part of the paper, we study the minimizers of the functional

Ω 7→ λk(Ω; β).

A minimizer in the SBV framework (see the introduction below) was shown to exist in [119], and
aside from the fact that its support is bounded nothing more is known. We show that, in this SBV
framework, a minimizer necessarily verify that λk−1(Ω; β) = λk(Ω; β), in the context of definition
6.6.

This is a long lasting open problem for minimizers of λk with Dirichlet boundary condition (see
[129, open problem 1] and [136]).
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However, although we prove it for Robin conditions, we do not expect this result to directly
extend to the Dirichlet case ; simply put, even if some smooth sequence of minimizers Ωβ of λk(·; β)
approached a minimizer Ω of λDk that is a counterexample of the conjecture, then there is no reason
why the upper semi-continuity λDk−1(Ω) ≥ lim supβ→∞ λk−1(Ωβ; β) should hold.

Theorem 6.2. Suppose n ≥ 3, k ≥ 2. Let m > 0, and let u be a relaxed minimizer of

v 7→ λk(v; β)

among admissible functions with support of measure m. Then

λk−1(u; β) = λk(u; β).

Here are the main steps and ideas of the proof:

• First, we replace the minimizer u = (u1, . . . , uk) with another minimizer v = (v1, . . . , vk), with
the property that v1 ≥ 0, λk(v; β) > λk−1(v; β), and v ∈ L∞(Rn). One might think this
estimate also holds for u, however there is no particular reason why span(u) should contain
eigenfunctions for λ1(u; β), . . . , λk−1(u; β) in a variational sense.
This phenomenon may be easily understood in a finite-dimensional setting as follows: consider

the matrix A =

λ1
λ2

λ3

 with λ1 < λ2 < λ3. Then Λ2

[
A
]

is given by:

λ2 = inf
V⊂R3,dim(V )=2

sup
x∈V

(x,Ax)
(x, x) .

This infimum is reached by the subspace span(e1, e2), but also by any subspace span(e1 +te3, e2)
for |t| ≤ λ2−λ1

λ3−λ2
, and these subspaces do not contain the first eigenvector e1.

• Then we obtain a weak optimality condition on uk using perturbations on sets with a small
enough perimeter. The reason for this is that we have no access to any information on
u1, . . . , uk−1 apart from the fact that their Rayleigh quotient is strictly less than λk(Ω; β),
so we must do perturbations of uk that do not increase dramatically the Rayleigh quotient of
u1, . . . , uk−1.

• We apply this to sets of the form Bx,r ∩ {|uk| ≤ t} where r is chosen small enough for each t.
With this we obtain that |uk| ≥ c1{uk ̸=0}.

• We deduce the result by showing that the support of u is disconnected, so the k-th eigenvalue
may be decreased without changing the volume by dilations.

While the existence of open minimizers is not yet known, we end with a few observations on the
topology of these minimizer, in particular with the fact that a bidimensionnal minimizer of λ3(·; β)
with prescribed measure is never simply connected.

6.2 Relaxed framework

Throughout the paper, we use the relaxed framework of SBV functions to define Robin eigenvalues on
any open set without regularity condition, and more importantly to transform our shape optimization
problem into a free discontinuity problem on functions that are not defined on a particular domain any
more. The SBV space was originally developed to handle relaxations of free discontinuity problems
such as the Mumford-Shah functional that will come into play later, we refer to [112] for a complete
introduction. SBV functions may be thought of as "W 1,1 by part" functions, and this space is defined
as a particular subspace of BV as follows:
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Definition 6.3. A SBV function is a function u ∈ BV (Rn,R) such that the distributional derivative
Du (which is a finite vector-valued Radon measure) may be decomposed into

Du = ∇uL n + (u− u)νuH n−1
⌊Ju

,

where ∇u ∈ L1(Rn), Ju is the jump set of u defined as the set of point x ∈ Rn for which there is
some u(x) ̸= u(x) ∈ R, νu(x) ∈ Sn−1, such that

(y 7→ u(x+ ry)) −→
L1

loc(Rn)
u(x)1{y:y·νu(x)>0} + u(x)1{y:y·νu(x)<0} as r → 0.

We will not work directly with the SBV space but with an L2 analog defined below, that was
studied in [117].

Definition 6.4. Let Uk be the space of functions u ∈ L2(Rn,Rk) such that

Du = ∇uL n + (u − u)νuH n−1
⌊Ju

,

where ∇u ∈ L2(Rn,Rnk) and
´
Ju

(|u|2 + |u|2)dH n−1 < ∞. The second term will be written Dsu
(s stands for singular). The function u is said to be linearly independant if its components span a
k-dimensional space of L2(Rn).
We will also say that a function u ∈ Uk is disconnected if there is a measurable partition Ω, ω of the
support of u such that u1Ω and u1ω are in Uk, and:

Ds(u1Ω) = (u1Ω − u1Ω)νuH n−1
⌊Ju

,

Ds(u1ω) = (u1ω − u1ω)νuH n−1
⌊Ju

.

In this case we will write u = (u1Ω) ⊕ (u1ω).

The following compactness theorem is a reformulation of Theorem 2 from [117].

Proposition 6.5. Let (ui) be a sequence of Uk such that

sup
i

ˆ
Rn

|∇ui|2dL n +
ˆ
Ju

(|ui|2 + |ui|2)dH n−1 +
ˆ
Rn

|ui|2dL n < ∞,

then there exists a subsequence (uϕ(i)) and a function u ∈ Uk such that

uϕ(i) −→
L2

loc

u,

∇uϕ(i) ⇀
L2

loc−weak
∇u,

Moreover for any bounded open set A ⊂ Rn

ˆ
A

|∇u|2dL n ≤ lim inf
i→+∞

ˆ
A

|∇uϕ(i)|2dL n,
ˆ
Ju∩A

(|u|2 + |u|2)dH n−1 ≤ lim inf
i→+∞

ˆ
Ju∩A

(|uϕ(i)|2 + |uϕ(i)|2)dH n−1.

Proof. The proof is an adaptation of [117, theorem 2] to a multidimensional case.

We define a notion of i-th eigenvalue of the Laplace operator with Robin boundary conditions that
allows us to speak of the functional λk(·; β) with no pre-defined domain, and to define the k-th
eigenvalue on any open set even when the trace of H1 functions is not well-defined.
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Definition 6.6. Let u ∈ Uk be linearly independant. We define the two Gram matrices:

A(u) =
(
⟨ui, uj⟩L2(Rn,L n)

)
1≤i,j≤k

,

B(u) =
(
⟨∇ui,∇uj⟩L2(Rn,L n) + β⟨ui, uj⟩L2(Ju,H n−1) + β⟨ui, uj⟩L2(Ju,H n−1)

)
1≤i,j≤k

.

We then define the i-th eigenvalue of the vector-valued function u as

λi(u; β) = inf
V⊂span(u),dim(V )=i

sup
v∈V

´
Rn |∇v|2dL n + β

´
Ju

(v2 + v2)dH n−1´
Rn v2dL n

= Λi

[
A(u)− 1

2B(u)A(u)− 1
2

]
,

(6.2)
where Λi designates the i-th eigenvalue of a symmetric matrix.
We will say that u is normalized if A(u) = Ik and B(u) is the diagonal (λ1(u; β), . . . , λk(u; β)).
Following the spectral theorem, for any linearly independant u ∈ Uk there exists P ∈ GLk(R) such
that Pu is normalized.
Although we expect the optimal sets to have rectifiable boundary, we may define the eigenvalues
with Robin boundary conditions for any open set Ω ⊂ Rn as

λk(Ω; β) := inf
[
λk(u; β),u ∈ Uk linearly independant : H n−1(Ju \ ∂Ω) = L n({u ̸= 0} \ Ω) = 0

]
.

(6.3)

It may be checked that for any bounded Lipschitz domain, the admissible space corresponds to
linearly independant functions u ∈ H1(Ω)k so this definition is coherent with the usual.

6.3 Strictly monotonous functionals

Let us first restate the first main result in the SBV framework. We define the admissible set of
functions as

Uk(m) = {v ∈ Uk : v is linearly independant and |{v ̸= 0}| = m} .
For any linearly independant u ∈ Uk, we let:

F(u) := F (λ1(u; β), . . . , λk(u; β)),
Fγ(u) := F(u) + γ| {u ̸= 0} |.

Our goal is now to show that F has a minimizer in Uk(m), and that any minimizer of F in Uk(m) is
deduced from an open set, meaning there is an open set Ω that essentially contains {u ̸= 0} such that
u|Ω ∈ H1(Ω)k. This is not the case for every SBV functions: some may have a dense and non-closed
jump set, while ∂Ω is closed and not dense.
The lemma 6.10 will make a link between minimizers of F in Uk(m) and minimizers of Fγ among
linearly independant u ∈ Uk for which the support’s measure is less than m.

6.3.1 A priori estimates

An internal relaxed minimizer of Fγ is a linearly independant function u ∈ Uk such that for any
linearly independant v ∈ Uk verifying | {v ̸= 0} \ {u ̸= 0} | = 0:

Fγ(u) ≤ Fγ(v).

To shorten some notations, we introduce the function G : S++
k (R) → R such that

Fγ(u) = G
[
A(u)− 1

2B(u)A(u)− 1
2

]
+ γ| {u ̸= 0} |,

meaning that for any positive definite symmetric matrix S, G
[
S
]

= F
(

Λ1

[
S
]
, . . . ,Λk

[
S
])

. The
smoothness of F does not imply the smoothness of G in general, because of the multiplicities of
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eigenvalues. However the monotonicity of F implies the monotonicity of G in the following sense:
suppose M,N are positive symmetric matrices, then:

G
[
M +N

]
≤ G

[
M
]

+

 max
i=1,...,k

sup
Λj

[
M

]
≤λj≤λj(M+N)

∂F

∂±λi
(λ1, . . . , λk)

Tr
[
N
]
,

G
[
M +N

]
≥ G

[
M
]

+

 min
i=1,...,k

inf
λj

[
M

]
≤λj≤λj

[
M+N

] ∂F

∂±λi
(λ1, . . . , λk)

Tr
[
N
]
.

Above ∂F
∂±λi

designates the directional partial derivatives of F . Moreover, G has directional derivative

everywhere; let M =


λ1

. . .
λk

 be a diagonal matrix with p distincts eigenvalues and 1 ≤ i1 <

i2 < ip ≤ k be such that for any i ∈ Il := [il, il+1):

λil = λi < λil+1 .

Then for each i ∈ Il the function N 7→ Λi

[
N
]

admits the following directional derivative at M :

Λi

[
M +N

]
= Λi

[
M
]

+ Λi−il+1

[
N|Il

]
+ o

N→0
(N),

where N|I := (Ni,j)i,j∈I . Since F has a directional derivative everywhere, this means that G admits
a directional derivative

G
[
M +N

]
= G

[
M
]

+ F0

(
Λ1

[
N|I1

]
, . . . ,Λk−ik+1

[
N|Ip

])
+ o

N→0
(N) , (6.4)

where F0 is a positiverly homogeneous function that is the directional derivative of F at (λ1, . . . , λk).

Proposition 6.7. Let u be a relaxed internal minimizer of Fγ, suppose it is normalized. Then there
exists constants M, δ,R > 0 that only depend on (n, k, β,Fγ(u), F ) such that

δ1{u ̸=0} ≤ |u| ≤ M.

Moreover, up to translation of its connected component, u is supported in a set of diameter bounded
by R.

Estimates of the form |u| ≥ δ1{u ̸=0} for solution of elliptic equations with Robin boundary conditions
appear in [121], [118], [123], see also [114] in a context without free discontinuity. It is a crucial steps
to show the regularity of the function u; once u is known to take values between two positive bounds,
then it may be seen as a quasi-minimizer of the Mumford-Shah functional

´
Rn |∇u|2dL n+H n−1(Ju)

on which the techniques used to show the regularity of Mumford-Shah minimizers (see [126]) may
be extended (see [123], [121]).

Proof. We show, in order, that the eigenvalues λi(u; β) are bounded above and below, the L∞ bound
on u, the lower bound on u|{u̸=0}, a lower bound on the Lebesgue density of {u ̸= 0}, and then the
boundedness of the support.

• Since | {u ̸= 0} | ≤ Fγ(u)/γ, then by the Faber-Krahn inequality with Robin Boundary condi-
tions (as proved in [117]) λ1(u; β) ≥ λ1(B|Fγ(u)|/γ; β) =: λ.
In a similar way, since

F (λ, . . . , λ, λk(u; β)) ≤ F (λ1(u; β), . . . , λk(u; β)) ≤ Fγ(u)
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and F diverges when its last coordinate does, so λk(u; β) is bounded by a constant Λ > 0 that
only depends on the behaviour of F and Fγ(u). Let us write:

a = inf
1
2λ≤λ1≤λ2≤...≤λk≤2Λ

inf
i=1,...,k

∂F

∂±λi
(λ1, . . . , λk),

b = sup
1
2λ≤λ1≤λ2≤...≤λk≤2Λ

sup
i=1,...,k

∂F

∂±λi
(λ1, . . . , λk).

a and b are positive and only depend on Fγ(u) and the behaviour of F .

• For the L∞ bound we use a Moser iteration procedure (see for instance [128, Th 4.1] for a similar
method). We begin by establishing that ui is an eigenfunction of λi(u; β) in a variational sense.
Let vi ∈ U1 be such that {vi ̸= 0} ⊂ {u ̸= 0} and Jvi

⊂ Ju, we show that V (ui, vi) = 0, where

V (ui, vi) :=
ˆ
Rn

∇ui · ∇vidL n + β

ˆ
Ju

uividH n−1 − λi(u; β)
ˆ
Rn

uividL n.

For this consider ut = u − t(vi −∑
j ̸=i V (vi, uj)uj)ei. Since A(ut) converges to Ik, ut is linearly

independant for a small enough t and
Fγ(u) ≤ Fγ(ut).

This implies, since {ut ̸= 0} ⊂ {u ̸= 0}, that
F (λ1(u; β), . . . , λk(u; β)) ≤ F (λ1(ut; β), . . . , λk(ut; β)),

which may also be written

G
[
B(u)

]
≤ G

[
A(ut)− 1

2B(ut)A(ut)− 1
2

]
.

Now, A(ut)− 1
2B(ut)A(ut)− 1

2 = B(u) − (eie∗
i )V (ui, vi)t+ O(t2). Suppose that V (ui, vi) > 0. Let

i′ be the lowest index such that λi′(u; β) = λi(u; β). Then knowing the directional derivative
of G given in (6.4) we obtain (for t > 0)

G
[
A(ut)− 1

2B(ut)A(ut)− 1
2

]
= G

[
B(u)

]
+ tV (ui, vi)F0 (0, 0, . . . , 0,−1, 0, . . . , 0) + o

t→0
(t),

which is less than G
[
B(u)

]
for a small enough t: this is a contradiction. When V (ui, vi) ≤ 0 we

may do the same by replacing vi with −vi. Thus for all vi with support and jump set included
in the support and jump set of u

ˆ
Rn

∇ui · ∇vidL n + β

ˆ
Ju

uividH n−1 = λi(u; β)
ˆ
Rn

uividL n.

Now we use Moser iteration methods. Let α ≥ 2 be such that ui ∈ Lα, then by taking vi to be
a truncation of |ui|α−2ui in [−M,M ] for M → ∞ in the variational equation above, we obtain

ˆ
Rn

(α− 1)|ui|α−2|∇ui|2dL n +
ˆ
Ju

(|ui|α + |ui|α)dH n−1 = λi(u; β)
ˆ
Rn

|ui|αdL n.

Using the embedding BV (Rn) ↪→ L
n

n−1 (Rn) we have:
∥uαi ∥

L
n

n−1 ≤ Cn∥uαi ∥BV

≤ Cn

(ˆ
Rn

|∇(|ui|α−1ui)|dL n +
ˆ
Ju

(|ui|α + |ui|α)dH n−1
)

≤ Cn

(ˆ
Rn

α
(
|ui|α + |ui|α−2|∇ui|2

)
dL n +

ˆ
Ju

(|ui|α + |ui|α)dH n−1
)

≤ Cn,β (α + λi(u; β)) ∥ui∥αLα .
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And so ∥ui∥L n
n−1 α ≤

[
Cn,β (α + λi(u; β))

] 1
α

∥ui∥Lα . We may apply this iteratively with αp =

2
(

n
n−1

)p
to obtain an L∞ bound of ui that only depends on n, β and λi(u; β). In fact using the

Faber-Krahn inequality for Robin conditions λi(u; β) ≥ λ1
(
B|{u̸=0}|; β

)
the previous inequality

applied to αp may be simplified into

log
(

∥ui∥Lαp+1

∥ui∥Lαp

)
≤
(
C(n, β, |{u ̸= 0}|)(p+ 1) + 1

2 log λi(u; β)
)(

n− 1
n

)p
,

and summing in p we obtain an estimate of the form ∥ui∥L∞ ≤ C(n, β, |{u ̸= 0}|)λi(u; β)n
2 .

• Lower bound on u: our goal is first to obtain an estimate of the form

Tr
[
Bt

]
+ | {0 < |u| ≤ t} | ≤ 1

ϵ
Tr
[
βt

]
, (6.5)

where ϵ > 0 is a constant that only depends on the parameters and

(Bt)i,j =
ˆ

|u|≤t
∇ui · ∇ujdL n + β

ˆ
Ju

(
ui1|u|≤t · uj1|u|≤t + ui1|u|≤t · uj1|u|≤t

)
dH n−1,

(βt)i,j = β

ˆ
∂∗{|u|>t}\Ju

uiujdH n−1.

This is intuitively what we obtain by comparing u and u1{|u|>t}. From this we will derive a
lower bound of inf u̸=0 |u| with similar arguments as what was done in [123]. Suppose (6.5) does
not hold. This means that, since Bt ≤ B and | {u ̸= 0} | ≤ Fγ(u),

βt ≤ (B(u) + Fγ(u)Ik) kϵ ≤ cϵB(u),

for a certain c > 0 since B(u) ≥ λIk. Let us now compare u with ut = u1{|u|>t}; this function
is admissible for a small enough t because A(ut) = Ik − A

(
u1{0<|u|≤t}

)
, so

∥A(ut) − Ik∥ ≤ Ct2| {0 < |u| ≤ t} |.

Notice also that B(ut) = B(u) −Bt + βt. Then the optimality condition Fγ(u) ≤ Fγ(ut) gives

G
[
B(u)

]
+ γ| {0 < |u| ≤ t} | ≤ G

[
A(ut)− 1

2 (B(u) −Bt + βt)A(ut)− 1
2

]
. (6.6)

We first show that Bt is small enough for small t. With our hypothesis on βt and the fact that
A(ut)− 1

2 ≤ Ik + Ct2Ik ≤ (1 + cϵ)Ik for a small enough t

G
[
B(u)

]
+ γ| {0 < |u| ≤ t} | ≤ G

[[
1 + 2cϵ

]
B(u) −Bt

]
.

So G
[
B(u)

]
≤ G

[
(1 + 2cϵ)B(u) −Bt

]
. Now, there exists i ∈ {1, . . . , k} such that

Λi

[
(1 + cϵ)B(u) −Bt

]
≤ (1 + cϵ)Λi

[
B(u)

]
− 1
k

Tr
[
Bt

]
.

And so, using the monotonicity of F and the definition of a, b in the first part of the proof:

G
[
B(u)

]
≤ G

[
(1 + cϵ)B(u) −Bt

]
≤ F

(
(1 + cϵ)λ1(u; β), . . . , (1 + cϵ)λi−1(u; β), (1 + cϵ)λi(u; β) − 1

k
Tr
[
Bt

]
, . . . , (1 + cϵ)λk(u; β)

)
≤ G

[
B(u)

]
+ bcϵTr

[
B(u)

]
− amin

(
1
k

Tr
[
Bt

]
,
λ

2

)
.
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With a small enough ϵ, we obtain Tr
[
Bt

]
≤ λ

2 . Now we may come back to (6.6), and using the

fact that A(ut)− 1
2 ≤ (1 + Ct2| {0 < |u| ≤ t} |)Ik we obtain

G
[
B(u)

]
+ γ| {0 < |u| ≤ t} | ≤ G

[
B(u) + βt −Bt + Ct2| {0 < |u| ≤ t} |Ik

]
,

and so with the monotonicity of G

G
[
B(u)

]
+ γ| {0 < |u| ≤ t} | ≤ G

[
B(u)

]
+ bTr

[
βt

]
− aTr

[
Bt

]
+ Cbt2| {0 < |u| ≤ t} |.

In particular, for a small enough t > 0 (depending only on the parameters)

aTr
[
Bt

]
+ γ

2 | {0 < |u| ≤ t} | ≤ bTr
[
βt

]
,

and so we obtained that there is a big enough constant C > 0, and a small enough t1 > 0, such
that for any t ∈ (0, t1]

Tr
[
Bt

]
+ | {0 < |u| ≤ t} | ≤ CTr

[
βt

]
. (6.7)

Now we let
V := |u| =

√
u2

1 + . . .+ u2
k

(
≥ δ1{u̸=0}

)
.

Let f(t) =
´ t

0 τH
n−1(∂∗ {V > t} \ Ju)dτ . Notice that the right-hand side of (6.7) is Ctf ′(t).

Then for any t ≤ t1:

f(t) ≤
ˆ t

0
τH n−1(∂∗ {V > τ} \ JV )dτ =

ˆ
ωt

V |∇V |dL n

≤ | {0 < V ≤ t} |
1

2n

(ˆ
{0<V≤t}

|∇V |2dL n

) 1
2
(ˆ

{0<V≤t}
(V 2)

n
n−1 dL n

)n−1
2n

≤ C(tf ′(t)) 1
2n

+ 1
2
(
|D(V 2)|({0 < V ≤ t})

) 1
2

≤ C(tf ′(t)) 1
2n

+ 1
2

(ˆ
{0<V≤t}

V |∇V |dL n +
ˆ
JV ∩{0<V≤t}

V 2dH n−1
) 1

2

≤ C(tf ′(t)) 1
2n

+ 1
2

t| {0 < V ≤ t} |
1
2

(ˆ
{0<V≤t}

|∇V |2dL n

) 1
2

+
ˆ
JV ∩{0<V≤t}

V 2dH n−1


1
2

≤ C(tf ′(t))1+ 1
2n .

The constant C > 0 above depends only on the parameters and may change from line to line.
This implies that f ′(t)f(t)− 2n

2n+1 ≥ ct−1, so for any t ∈]0, t1[ such that f(t) > 0 this may be
integrated from t to t1 to obtain

1
2n+ 1f(t1)

1
2n+1 ≥ c log(t1/t).

Since f(t1) ≤ | {u ̸= 0} | 1
2
(´

Rn |∇V |2
) 1

2 ≤
√
kFγ(u)Λ/γ, then t is bounded below in terms of

the parameters of the problem. This means that f(δ) = 0 for a certain explicit δ > 0. In
particular, (∇u)1{|u|≤δ} = 0, and by comparing u with uδ, (6.5) becomes | {0 < |u| ≤ δ} | ≤ 0,
so we obtained

|u| ≥ δ1{u̸=0}.

• To show the support {u ̸= 0} (or its connected components) is bounded, we begin by showing
a lower estimate for the Lebesgue density on this set. This is obtained by comparing u with
ur := u1Rn\Br where Br is a ball of radius r > 0.
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As previously, we first need to check that ur is admissible for any small enough r > 0. With
the L∞ bound on u, we get |A(ur) − Ik| ≤ C| {u ̸= 0} ∩Br|. In particular, |A(ur) − Ik| ≤ Crn,
which proves that A(ur) is invertible for a small enough r.

Let f(r) = | {u ̸= 0} ∩ Br|. By comparing u with ur we obtain

G
[
B(u)

]
+ γ| {u ̸= 0} ∩ Br| ≤ G

[
Ar(B −Br + βr)Ar

]
,

where Ar, Br, βr are defined as previously: Ar = A(ur)− 1
2 and

(Br)i,j =
ˆ
Br

∇ui · ∇ujdL n + β

ˆ
Ju

(
ui1Br · uj1Br + ui1Br · uj1Br

)
dH n−1,

(βr)i,j = β

ˆ
∂Br\Ju

uiujdH n−1.

With the same argument as what we did to obtain the lower bound, this estimate implies that
for any r ∈]0, r0] where r0 is small enough

cTr
[
Br

]
≤ Tr

[
βr

]
+ f(r),

for a certain c > 0. With the L∞ bound and the lower bound on u, we deduce that for a certain
constant C > 0:

H n−1(Br ∩ Ju) ≤ C
(
f(r) + H n−1(∂Br ∩ {u ̸= 0})

)
.

Notice that f ′(r) = H n−1(∂Br ∩ {u ̸= 0}), so with the isoperimetric inequality

cnf(r)1− 1
n ≤ H n−1(Br ∩ Ju) + H n−1(∂Br ∩ {u ̸= 0}) ≤ C(f(r) + f ′(r)).

Since f(r) ≤ Crn → 0, we deduce that for a certain constant C > 0 and any small enough r
(r < r0) we have

f(r)1− 1
n ≤ Cf ′(r).

Suppose now that f(r) > 0 for any r > 0. Then by integrating the above estimate from 0 to
r0, we obtain that for a certain constant c > 0 and any r ∈ [0, r0]

| {u ̸= 0} ∩ Bx,r| ≥ crn.

Consider now a system of points S ⊂ Rn such that for any x ∈ S and any r > 0, | {u ̸= 0} ∩
Bx,r| > 0, and such that for any distinct x, y ∈ S, |x− y| ≥ 2r0. Then

Fγ(u) ≥ γ| {u ̸= 0} | ≥ γ
∑
x∈S

| {u ̸= 0} ∩ Bx,r0| ≥ cγrn0 Card(S),

so Card(S) is bounded. Then by taking a maximal set of separated points S as above, the
balls (Bx,2r0)x∈S cover {u ̸= 0}. This means in particular that the support of u is bounded by a
constant only depending on the parameters, up to a translation of the its connected components.
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6.3.2 Existence of a relaxed minimizer with prescribed measure

This section is dedicated to the proof of the following result.

Proposition 6.8. Let m,β > 0, then there exists u ∈ Uk that minimizes F in the admissible set
Uk(m).

We begin with a lemma that will help us to show that any minimizing sequence of F in Uk(m) has
concentration points, meaning points around which the measure of the support is bounded below by
a positive constant.

Lemma 6.9. Let u ∈ Uk, we let Kp := p+ [−1
2 ,

1
2 ]n, then there exists p ∈ Zn such that

|{u ̸= 0} ∩Kp| ≥

 cn∥u∥2
L2(Rn)

∥u∥2
L2(Rn) +

´
Rn |∇u|2dL n +

´
Ju

(|u|2 + |u|2) dH n−1

n .
Proof. It is the consequence of the BV (Kp) ↪→ L

n
n−1 (Kp) embedding, see [120, lemma 12].

The following lemma makes a straightforward link between minimizers of F with fixed volume
and interior minimizers of Fγ for a sufficiently small γ, which means that all the a priori estimates
apply.

Lemma 6.10. Let u ∈ Uk be a minimizer of F in the admissible set

{v ∈ Uk : v is linearly independant and |{v ̸= 0}| = m} .

Then there exists γ > 0 depending only on (n,m, β,F(u), F ) such that u is a minimizer of Fγ in the
admissible set

{v ∈ Uk : v is linearly independant and |{v ̸= 0}| ∈]0,m]} .

Proof. Consider a linearly independant v ∈ Uk such that δ := |{v ̸=0}|
|{u̸=0}| ∈]0, 1]. Let w(x) := v(xδ1/n).

Then the support of w has the same measure as u and so F(u) ≤ F(w). Looking how the matrices
A and B scale with the change of variable x → xδ− 1

n we obtain

A(w)− 1
2B(w)A(w)− 1

2 ≤ δ
1
nA(v)− 1

2B(v)A(v)− 1
2 ,

hence
F(u) ≤ F

(
δ

1
nλ1(v; β), . . . , δ 1

nλk(v; β)
)
.

By the Faber-Krahn inequality for Robin eigenvalues, λ1(v; β) ≥ λ1(B|{v ̸=0}|; β). Moreover since F
diverges when its last coordinate does, we may suppose without loss of generality that λk(v; β) is
bounded by a certain constant Λ > 0 that does no depend on v. This in turn means that |{v ̸= 0}| is
bounded below by a positive constant depending only on n, β,Λ by the Faber-Krahn inequality, so δ is
bounded below. Then by denoting a the minimum of the partial derivatives of F on [δ 1

nλ1(Bm; β),Λ]k,
we obtain

F(u) ≤ F(v) − a(λ1(v; β) + . . .+ λk(v; β))(1 − δ1/n) ≤ F(v) − kaλ1(Bm; β)
nm

(|{u ̸= 0}| − |{v ̸= 0}|).

This concludes the proof.

We may now prove the main result of this section.

Proof. We proceed by induction on k. The main idea is that we either obtain the existence of a
minimizer by taking the limit of a minimizing sequence, or we don’t and in this case the minimizer
is disconnected so it is the union of two minimizers of different functionals depending on strictly less
than k eigenvalues.
The initialisation for k = 1 amounts to showing there is a minimizer for λ1(u; β) in U1(m): this has
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been done in [118] and it is known to be the first eigenfunction of a ball of measure m.
Suppose now that k ≥ 2 and the result is true up to k− 1. Consider (ui)i a minimizing sequence for
F in Uk(m). Then the concentration lemma 6.9 may be applied to each ui to find a sequence (pi)i
in Zn such that

lim inf
i→∞

|Kpi
∩ {ui ̸= 0}| > 0. (6.8)

We lose no generality in supposing, up to a translation of each ui, that pi = 0. Now with the
compactness lemma 6.5, we now up to extraction that ui converges in L2

loc to a certain function
u ∈ Uk with local lower semicontinuity of its Dirichlet-Robin energy.
We now split ui into a "local" part and a "distant" part; we may find an increasing sequence Ri → ∞
such that

ui1Bpi,Ri
−→
L2(Rn)

u.

Up to changing each Ri with a certain R̃i ∈ [1
2R

i, Ri], we may suppose that
ˆ
∂BRi \Jui

|ui|2dH n−1 = o
i→∞

(1),

so that for each i ∈ {1, . . . , k}

λi
(
(u1BRi

,u1Bc
Ri

); β
)

≤ λi(u; β) + o
i→∞

(1).

Since A
(
u1BRi

,u1Bc
Ri

)
and B

(
u1BRi

,u1Bc
Ri

)
are block diagonal (with two blocks of size k× k), then

up to extraction on i there is a certain p ∈ {0, 1, . . . , k} such that[
λ1(ui1BRi

; β), . . . , λp(ui1BRi
; β), λ1(ui1Bc

Ri
; β), . . . , λp(ui1Bc

Ri
; β)

]Sk

≤ (λ1(ui; β), . . . , λk(ui; β))+ o
i→∞

(1),

where
[
a1, . . . , ak

]Sk

designate the ordered list of the values (a1, . . . , ak). There are now three cases:

• p = 0: we claim this can not occur. Indeed this would mean that ui1Bc
Ri

is such that

F(ui1Bc
Ri

) −→
i→∞

inf
Uk(m)

F .

However, because of (6.8) we know there is a certain δ > 0 such that for all big enough i

the measure of the support of ui1Bc
Ri

is less than m − δ. Letting vi = ui1Bc
Ri

([
m−δ
m

] 1
n

·
)

,

vi is a linearly independant sequence of Uk, with support of volume less than m, such that
F(vi) < infUk(m) F for a big enough i: this is a contradiction.

• p = k. In this case u(= limi ui1BRi
) is a minimizer of F with measure less than m. This is

because, in addition to the fact that ui1BRi
converges to u in L2, the lower semi-continuity

result tells us that for each z ∈ Rk:

z∗B(u)z ≤ lim inf
i

z∗B(ui1BRi
)z,

thus for any j = 1, . . . , k, λj(u; β) ≤ lim infi λj(ui1BRi
; β). And |{u ̸= 0}| ≤ lim inf |{ui1BRi

̸=
0}| ≤ m.

• 1 ≤ p ≤ k − 1. This is where we will use the induction hypothesis. We let:

λj = lim
i→∞

λj(ui1BRi
; β), ∀j = 1, . . . , p mloc = lim

i→∞
|{ui1BRi

̸= 0}|,

µj = lim
i→∞

λj(ui1cBRi
; β), ∀j = 1, . . . , k − p mdist = lim

i→∞
|{ui1Bc

Ri
̸= 0}|.
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Then by continuity of F

inf
Up(m)

F = F

([
λ1, . . . , λp, µ1, . . . , µk−p

]Sk
)
.

Let us introduce

Floc : v ∈ Up(mloc) 7→ F

([
λ1(v; β), . . . , λp(v; β), µ1, . . . , µk−p

]Sk
)
.

This functional verify the hypothesis (6.1), so following the induction hypothesis we know it
has a minimizer v. Moreover, according to the a priori bounds, v is known to have bounded
support. Since |{ui1BRi ̸=0}| →

i→∞
mloc, then by the optimality of v we get

Floc(v) ≤ lim inf
i→∞

Floc(ui1BRi
) = F

([
λ1, . . . , λp, µ1, . . . , µk−p

]Sk
)

= inf
Uk(m)

F .

Now consider the functional

Fdist : w ∈ Uk−p(mdist) 7→ F

([
λ1(v; β), . . . , λp(v; β), λ1(w; β), . . . , λk−p(w; β)

]Sk
)
.

With the same arguments, there is a minimizer w with bounded support. By comparing w
with ui1Bc

Ri
we obtain

Fdist(w) ≤ lim inf
i→∞

Fdist(ui1Bc
Ri

) = Floc(v)
(

≤ inf
Uk(m)

F
)
.

Since both v and w have bounded support we may suppose up to translation that their support
are a positive distance from each other. Consider u = v ⊕ w, then F(u) = Fdist(w) so u is a
minimizer of F in Uk(m).

6.3.3 Regularity of minimizers

Here we show that the relaxed global minimizer u that we found in the previous section corresponds
to the eigenfunctions of an open set. What this means is that there is an open set Ω that contains
almost all the support of u such that u|Ω ∈ H1(Ω)k and λ1(Ω; β), . . . , λk(Ω; β) as defined in (6.3) are
reached for u1|Ω, . . . , uk|Ω respectively (provided u is normalized). Moreover we show that this open
set ∂Ω is Ahlfors regular and H n−1(∂Ω) < ∞.
The main step is to show that Ju is essentially closed, meaning H n−1

(
Ju \ Ju

)
= 0. This is obvious

for functions u that are eigenfunctions of a smooth open set Ω, since Ju = ∂Ω, however an SBV
function could have a dense jump set.
This is dealt using similar methods as in [126], [123]; we show that for every point x ∈ Rn with
sufficiently low (n − 1) dimensional density in Ju, the energy of u decreases rapidly around that
point (this is lemma 6.12). This is obtained by contradiction and blow-up methods, by considering
a rescaling of a sequence of function that do not verify this estimate. As a consequence we obtain
uniform lower bound on the (n − 1) dimensional density of Ju, which implies that it is essentially
closed. We point out that in similar problems (see [121]), the essential closedness of the jump set is
obtained using the monotonicity of 1

rn−1

(´
Br

|∇u|2 + H n−1(Ju ∩ Br)
)

∧ c + c′rα for some constants
c, c′, α > 0 (where u is a scalar solution of some similar free discontinuity problem). However our
optimality condition (see (6.11) below) does not seem to be enough to establish a similar monotonicity
property, namely due to the remainder on the right-hand side and the multiplicities of eigenvalues.
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Proposition 6.11. Let u be a relaxed minimizer Fγ. Then H n−1
(
Ju \ Ju

)
= 0 and Ω :=

{
|u| > 0

}
\

Ju is an open set such that (u1, . . . , uk) are the first k eigenfunctions of the Laplacian with Robin
boundary conditions on Ω.

Since the proof is very similar to what was done in [123], we only sketch the specific parts of the
proof that concern the vectorial character of our problem.

Proof. We first establish an optimality conditions for perturbations of u on balls with small diameter.
We suppose u is normalized and, using the same notations as in (6.4) for M = B(u) we denote

G0

[
N
]

= F0

(
Λ1

[
N|I1

]
, . . . ,Λk−ik+1

[
N|Ip

])
, (6.9)

such that:
G
[
B(u) +N

]
= G

[
B(u)

]
+G0

[
N
]

+ o
N→0

(N). (6.10)

While G0 is not linear (except in the particular case where ∂F
∂λi

= ∂F
∂λj

for each i, j such that
λi(u; β) = λj(u; β)), it is positively homogeneous. We let

E0

[
N
]

= max
(
G0

[
N
]
,Tr

[
N
])
.

E0 is also positively homogeneous and verify that for any non-zero S ∈ S+
k (R), E0

[
− S

]
< 0. We

show that:
For any v ∈ Uk that differs from u on a ball Bx,r where r is small enough, we have

E0

[
B(v;Bx,r) −B(u;Bx,r)

]
≥ −Λrn − δ(r)|B(u;Bx,r)|. (6.11)

Where Λ > 0, δ(r) →
r→0

0, and

B(w;Bx,r)i,j :=
ˆ
Bx,r

∇wi · ∇wjdL n + β

ˆ
Jw

(
wi1Bx,r · wj1Bx,r + wi1Bx,r · wj1Bx,r

)
dH n−1.

To show (6.11), we may suppose that Tr
[
B(v;Bx,r)

]
≤ Tr

[
B(u;Bx,r)

]
(or else it is automatically

true) and that v is bounded in L∞ by the same bound as u. The optimality condition of u gives

Fγ(u) ≤ Fγ(v),

where the right-hand side is well defined for any small enough r > 0 since |A(v) − Ik| ≤ Crn. This
implies

G
[
B(u)

]
≤ G

[
(1 + Crn)(B(u) −B(u;Bx,r) +B(v;Bx,r))

]
+ γ|Bx,r|.

Thus, using the monotonicity of G and the developpement (6.10) we obtain the estimate (6.11). Let
us now show that this estimate, along with the a priori estimate

δ1{u̸=0} ≤ |u| ≤ M, (6.12)

implies the closedness of Ju, following arguments of [123] that were originally developped in [126] for
minimizers of the Mumford-Shah functional. The crucial argument is the following decay lemma.

Lemma 6.12. For any small enough τ ∈]0, 1[, there exists r = r(τ), ϵ = ϵ(τ) > 0, such that for any
x ∈ Rn, r ∈]0, r], w ∈ Uk verifying the a priori estimates (6.12) and the optimality condition (6.11)(
H n−1(Jw ∩ Bx,r) ≤ ϵrn−1, Tr

[
B(w;Bx,r)

]
≥ rn− 1

2

)
implies Tr

[
B(w;Bx,τr)

]
≤ τn− 1

2Tr
[
B(w;Bx,r)

]
.
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Proof. The proof is sketched following the same steps as [123]. Consider a sequence of functions
wi ∈ Uk with a sequence ri, ϵi → 0 and a certain τ ∈]0, 1[ that will be fixed later, such that:

H n−1(Jwi ∩ Bri
) = ϵir

n−1
i , (6.13)

Tr
[
B(wi;Bri

)
]

≥ r
n− 1

2
i , (6.14)

Tr
[
B(wi;Bx,τri

)
]

≥ τn− 1
2Tr

[
B(w;Bri

)
]
. (6.15)

And let
vi(x) = wi (x/ri)√

r2−n
i Tr

[
B(wi;Bri

)
] .

Then, since
´
B1

|∇vi|2dL n ≤ 1 and H n−1(Jvi ∩ B1) = ϵi → 0, we know there exists some sequences
τ−
i < mi < τ+

i such that the function: ṽi := min(max(vi, τ−
i ), τ+

i ) (where the min and max are taken
for each component) verifies:

∥ṽi −mi∥
L

2n
n−2 (B1)

≤ Cn∥∇v∥L2(B1) (≤ 1) ,

L n({ṽi ̸= vi}) ≤ CnH
n−1(Jvi ∩ B1)

n
n−1

(
= Cnϵ

n
n−1
i

)
.

One may prove (using a BV and a L
2n

n−2 bound) that ṽi − mi converges in L2 with lower semi-
continuity for the Dirichlet energy to some v ∈ H1(B1). We claim v is harmonic as a consequence
of (6.11): for this consider a function φ ∈ H1(B1)k that coincides with v outside a ball Bρ for some
ρ < 1. Let ρ′ ∈]ρ, 1[, η ∈ C∞

compact(Bρ′ , [0, 1]) such that η = 1 on Bρ and |∇η| ≤ 2(ρ′ − ρ)−1. Then we
define

φi = (mi + φ)η + ṽi(1 − η)1Bρ′ + vi1Rn\Bρ′ ,

Φi(x) =
√
r2−n
i Tr

[
B(wi;Bri

)
]
φi(rix).

Φi coincides with wi outside of a ball of radius ρ′ri, so it may be compared to wi using the optimality
condition (6.11). With the same computations as in [123] we obtain, as ρ ↗ ρ′, that

E0

[
B(φ;Bρ′) −B(v;Bρ′)

]
≥ 0.

Taking φ to be the harmonic extension of v|∂Bρ in Bρ, we find that B(φ;Bρ′) ≤ B(v;Bρ′) with
equality if and only if v is equal to its harmonic extension. If it is not, then

E0

[
B(φ;Bρ′) −B(v;Bρ′)

]
< 0,

which contradicts the optimality. This means that the components of v are harmonic. Since´
B1

|∇v|2dL n ≤ 1, then |∇v| ≤
√

1/|B1/2| on B1/2, so for any τ < 1
2n|B1| we find that

´
Bτ

|∇u|2dL n <

τn− 1
2 ; this contradicts the condition (6.15).

The decay lemma implies the existence of r1, ϵ1 > 0 such that for any x ∈ J reg
u and r ∈]0, r1[:

H n−1(Ju ∩ Bx,r) ≥ ϵ1r
n−1. (6.16)

Suppose indeed that it is not the case for some x ∈ Ju. Let τ0 ∈]0, 1[ be small enough to apply
lemma 6.12. Then for a small enough τ1,

Tr
[
B(u : Bx,τ1r

]
≤ δ2ϵ(τ0)(τ1r)n−1.
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Indeed, either Tr
[
B(u;Bx,r)

]
is less than rn− 1

2 and this is direct provided we take r1 < δ4ϵ(τ0)2τ
2(n−1)
1 ,

or it is not and then by application of the lemma (and using the fact that Tr
[
B(u;Bx,r)

]
≤ C(u)rn−1,

which is obtained by comparing u with u1Rn\Bx,r) we get

Tr
[
B(u;Bx,τ1r)

]
≤ C(u)τn− 1

2
1 rn−1 ≤ δ2ϵ(τ0)(τ1r)n−1,

provided we choose τ1 ≤ C(u)−2δ4ϵ(τ0)2 (and ϵ1 = ϵ(τ1), r1 < r(τ1) so that the lemma may be
applied). Then we may show by induction that for all k ∈ N,

Tr
[
B(u;Bx,τk

0 τ1r)
]

≤ δ2ϵ(τ0)τ
k(n− 1

2 )
0 (τ1r)n−1. (6.17)

Indeed (6.17) implies that H n−1(Ju ∩ Bτk
0 τ1r) ≤ ϵ(τ0)(τ k0 τ1r)n−1, so with the same dichotomy as

above we may apply the lemma 6.12 again to obtain (6.17) by induction.

Overall this means that 1
ρn−1

(´
Bx,ρ

|∇u|2dL n + H n−1(Ju ∩ Bx,r)
)

→
ρ→0

0, which is not the case
when x ∈ Ju (see [126], Theorem 3.6), so (6.16) holds. By definition it also holds for x ∈ Ju
with a smaller constant, however according to [126], lemma 2.6, H n−1-almost every x such that
lim infr→0

H n−1(Ju∩Bx,r)
rn−1 > 0 is in Ju, which ends the proof.

As a consequence of the existence of a relaxed minimizer and the regularity of relaxed minimizers,
we obtain the theorem 6.1.

Proof. We know from the proposition 6.8 that there exists a relaxed minimizer u of F in Uk(m), and
from lemma 6.10 that u is an internal relaxed minimizer of Fγ for some γ > 0 that only depends
on the parameters. From the proposition 6.7 we obtain that for certain constants δ,M,R > 0
only depending on the parameters, δ1{u̸=0} ≤ |u| ≤ M and the diameter of the support of u (up to
translation of its components) is less than R. From proposition 6.11 we know that H n−1(Ju\Ju) = 0.
Since |u| ≥ δ1{u̸=0}, we obtain

H n−1(Ju) = H n−1(Ju) ≤ δ−2
ˆ
Ju

(
|u|2 + |u|2

)
dH n−1

≤ β−1δ−2 (λ1(u; β) + . . .+ λk(u; β)) ≤ C(n,m, β, F ).

Let Ω be the union of the connected components of Rn\Ju on which u is not zero almost everywhere.
By definition ∂Ω = Ju, and u is continuous on Rn \ Ju and do not take the values ± δ

2 , thus |u| ≥ δ

on Ω. In particular, {u ̸= 0} and Ω differ by a L n-negligible set, and Ju ⊂ ∂Ω, so u|Ω ∈ H1(Ω)k.
This means that for every i = 1, . . . , k, λi(Ω; β) ≤ λi(u; β), so Ω is optimal for F .

In the proof of proposition 6.11 we obtained the existence of a certain ϵ1, r1 > 0 such that for every
x ∈ ∂Ω(= Ju), r < r1, then H n−1(Bx,r ∩ ∂Ω) ≥ ϵ1r

n−1. By comparing u with u1Rn\Bx,r (similarly to
what was done in the proof of the proposition 6.7), we obtain the upper bound H n−1(Bx,r ∩ ∂Ω) ≤
Crn−1; this concludes the proof.

6.4 The functional Ω 7→ λk(Ω; β)

We are now interested by the specific functional

Ω 7→ λk(Ω; β).

While it is not covered by the previous existence result, relaxed minimizers of this functional were
shown to exist in [119]. To understand its regularity, it might be tempting to consider a sequence of
relaxed minimizers with the function F (λ1, . . . , λk) = λk + ϵ(λ1 + . . .+ λk−1) where ϵ → 0, however
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while the L∞ bound does not depend on ϵ, the lower bound does and it seems to degenerate to 0 as
ϵ goes to 0.
This prevents us to obtain any regularity on relaxed minimizers of this functional. We are, however,
able to treat the specific case where the k-th eigenvalue would be simple, and this analysis allows us
to prove that this does not happen in general. In particular, we shall prove λk(u; β) = λk−1(u; β).

6.4.1 Regularization and perturbation lemma

We begin with a density result that allows us to suppose without loss of generality that u is bounded
in L∞. This relies on the same procedure as [119, Theorem 4.3].
We remind the notation for admissible functions used previously:

Uk(m) = {v ∈ Uk : v is linearly independant and |{v ̸= 0}| = m} ,

as well as the fact that if u is a relaxed minimizer of λk(·; β) in Uk(m) then according to lemma 6.10
there is a constant γ > 0 such that u is a minimizer of

v 7→ λk(v; β) + γ|{v ̸= 0}|

for linearly independant function v such that |{v ̸= 0}| ∈]0,m].

Lemma 6.13. Let u = (u1, . . . , uk) be a relaxed minimizer of λk(u; β) in Uk(m). Suppose that
λk(u; β) > λk−1(u; β). Then there exists another minimizer v ∈ Uk(m) that is linearly independant,
normalized, such that v1 ≥ 0, v ∈ L∞(Rn), and

λk−1(v; β) < λk(v; β).

This justifies that in all the following propositions we may suppose that u ∈ L∞(Rn) without loss of
generality.

Proof. Without loss of generality suppose that u is normalized. Then according to [119], which
itself relies on the Cortesani-Toader regularization (see [124]), there exists a sequence of bounded
polyhedral domains (Ωp) along with a sequence up ∈ Uk ∩H1(Ωp)k such that up →

p→∞
u in L2, and

lim sup
p→∞

B(up) ≤ B(u), lim sup
p→∞

|Ωp| ≤ | {u ̸= 0} |.

Let vp = (vp1, . . . , vpk) be the first k eigenfunctions of Ωp (with an arbitrary choice in case of multiplic-
ity; notice vp1 may be chosen positive), then B(vp) ≤ B(up) and with Moser iteration vp is bounded
in L∞ by Cn,β,mλk(u; β)n

2 (which, in particular, does not depend on p). Using the compactness result
6.5, we find that up to an extraction vp converges in L2 and almost everywhere to v ∈ Uk with lower
semi-continuity on its Dirichlet-Robin energy, thus v is a minimizer in L∞ with v1 ≥ 0. Moreover,

λk−1(v; β) ≤ lim inf
p→∞

λk−1(vp; β) ≤ lim inf
p→∞

λk−1(up; β) ≤ λk−1(u; β) < λk(u; β) ≤ λk(v; β).

Lemma 6.14. Let u = (u1, . . . , uk) ∈ Uk(m) ∩ L∞(Rn) be an internal relaxed minimizer of λk(u; β)
in Uk(m), that we suppose to be normalized. Suppose that λk(u; β) = λk−l+1(u; β) > λk−l(u; β). Then
there exists δ, γ > 0 such that, for all ω ⊂ Rn that verify

|ω| + Per(ω;Rn \ Ju) < δ,

there exists α ∈ ({0}k−l × Rl) ∩ Sk−1 such that
ˆ
ω

|∇uα|2dL n + β

ˆ
Ju

(
uα1ω2 + uα1ω2

)
dH n−1 + γ|ω| ≤ 2β

ˆ
∂∗ω\Ju

u2
αdH n−1 + 2λk(u; β)

ˆ
ω

u2
αdL n.

(6.18)
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As may be seen in the proof, the factors 2 on the right-hand side may be replaced by 1 + o
δ→0

(1),
however this will not be useful for us.
This result will only be applied in the particular case where l = 1: when l > 1 it gives a very weak
information on the eigenspace of λk(u; β) and it would be interesting to see if the regularity of one of
the eigenfunctions might be deduced from it as was done in [122] (in the same problem with Dirichlet
boundary conditions). In this case better estimates were obtained by perturbing the functional into
(1 − ϵ)λk + ϵλk−1, considering a minimizer Ωϵ that contains the minimizer Ω of λk, and separating
the cases where λk(Ωϵ) is simple or not. However these arguments use crucially the monotonicity
and scaling properties of λi, which are not available for Robin boundary conditions.

Proof. Let us denote v = u1Rn\ω, A,B = A(v), B(v), and for any α, β ∈ Rk,

Aα,β =
k∑
i=1

αiβiAi,j,

Bα,β =
k∑
i=1

αiβiBi,j.

We study the quantity
λk(v; β) = max

α∈Sk−1

Bα,α

Aα,α
.

Due to the L∞ bound on u and the fact that |ω| + Per(ω;Rn \ Ju) ≤ δ:

inf
α∈{0}k−l×Rl∩Sk−1

Bα,α

Aα,α
−→
δ→0

λk(u; β),

sup
η∈Rk−l×{0}l∩Sk−2

Bη,η

Aη,η
−→
δ→0

λk−l(u; β)(< λk(u; β))

Thus for a small enough δ the maximum above is attained for a certain α+tη√
1+t2 where α ∈ {0}k−l ×

Rl ∩ Sk−1, η ∈ Rk−l × {0}l ∩ Sk−1 and t ∈ R. α and η are fixed in what follows and so

λk(v; β) = max
t∈R

Bα,α + 2tBα,η + t2Bη,η

Aα,α + 2tAα,η + t2Aη,η
.

We let

bα,η = Bα,η

Bα,α

, bη,η = Bη,η

Bα,α

,

aα,η = Aα,η
Aα,α

, aη,η = Aη,η
Aα,α

,

F (t) = 1 + 2tbα,η + t2bη,η
1 + 2taα,η + t2aη,η

.

Then we may rewrite
λk(v; β) = Bα,α

Aα,α
max
t∈R

F (t). (6.19)

Moreover,
aη,η −→

δ→0
1, lim sup

δ→0
bη,η ≤ λk−l(u; β)

λk(u; β) < 1.

We look for the critical points of F ; F ′(t) has the same sign as

(aα,ηbη,η − aη,ηbα,η)t2 − (aη,η − bη,η)t+ (bα,η − aα,η).
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Since F has the same limit in ±∞, this polynomial has two real roots given by:

t± = aη,η − bη,η
2(aα,ηbη,η − aη,ηbα,η)

1 ±

√√√√1 − 4(bα,η − aα,η)(aα,ηbη,η − aη,ηbα,η)
(aη,η − bη,η)2

 .
Since F ′ has the same sign as (aα,ηbη,η − aη,ηbα,η) in ±∞, we find that the maximum of F is attained
in t−. For any small enough δ we obtain

|t−| ≤ C1|aα,η − bα,η|,

where C1 only depends on λk(u; β), λk−1(u; β). We evaluate F in t− to obtain, for small enough δ,

F (t−) ≤ 1 + C2(A2
α,η +B2

α,η),

where C2 is another such constant. With the Cauchy Schwarz inequality we obtain

A2
α,η = o

δ→0

(ˆ
ω

u2
αdL n

)
,

B2
α,η = o

δ→0

(ˆ
ω

|∇uα|2 + β

ˆ
Ju∪∂∗ω

(
uα1ω2 + uα1ω2) dH n−1

)
.

Moreover,

Bα,α = B(u)α,α −
ˆ
ω

|∇uα|2dL n − β

ˆ
Ju

(
uα1ω2 + uα1ω2) dH n−1 +

ˆ
∂∗ω\Ju

u2
αdH n−1,

Aα,α = 1 −
ˆ
ω

u2
αdL n.

Thus for a small enough δ, we obtained the following estimate in (6.19)(
1 −

ˆ
ω

u2
αdL n

)
λk(v; β) ≤ B(u)α,α − (1 − o

δ→0
(1))

(ˆ
ω

|∇uα|2dL n + β

ˆ
Ju

(
uα1ω2 + uα1ω2) dH n−1

)

+ (1 + o
δ→0

(1))
ˆ
∂∗ω\Ju

u2
αdH n−1 + o

δ→0

(ˆ
ω

u2
αdL n

)
.

The optimality condition on u (λk(u; β) + γ|ω| ≤ λk(v) for a certain γ > 0 that does not depend on
ω, obtained through Lemma 6.10) coupled with the fact that λk(u) = B(u)α,α gives us the estimate
(6.18) for any small enough δ.

6.4.2 Non-degeneracy lemma and the main result

Proposition 6.15. Let u = (u1, . . . , uk) ∈ Uk ∩L∞(Rn) an internal relaxed minimizer of λk(u; β) +
γ| {u ̸= 0} |. Suppose n ≥ 3, and that λk(u; β) > λk−1(u; β). Then there exists c > 0 such that
|uk| ≥ c1{uk ̸=0}.

Proof. We actually prove that there exists r, t > 0 such that for any x ∈ Rn, |uk| ≥ t1Bx,r∩{uk ̸=0},
since this is sufficient to conclude. We suppose x = 0 to simplify the notations. We cannot proceed
as in the proof of result 6.7 because we do not know whether Per({|uk| > t} ;Rn \ Ju) is less than a
constant δ or not. The idea is to compare u with u1Rn\ωt where

ωt = Br(t) ∩ {|uk| ≤ t} ,

for t > 0 and r(t) > 0 chosen sufficiently small such that Per(ωt;Rn \ Ju) is sufficiently small.

Lemma 6.16. Under these circumstances, there exists t1 > 0 such that for all t < t1,ˆ
ωt

|∇uk|2dL n + β

ˆ
Ju

(
uk1ωt

2 + uk1ωt

2
)

dH n−1 + 1
2γ|ωt| ≤ 2β

ˆ
∂∗ωt\Ju

u2
kdH n−1, (6.20)

where ωt = {|uk| ≤ t} ∩ Br(t) with r(t) := ϵt
2

n−1 for a small enough ϵ > 0.
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Proof. As we said previously, this estimate will be obtained by comparing u and u1Rn\ωt where
ωt = Br(t) ∩ {|uk| ≤ t}. This is direct if we can apply Lemma 6.14, we only need to show the
hypothesis

H n−1(∂∗ωt \ Ju) < δ.

Suppose that

βt2H n−1(∂∗ {|uk| ≤ t} ∩ Br(t) \ Ju) ≤
ˆ
ωt

|∇uk|2dL n + β

ˆ
Ju

(
uk1ωt

2 + uk1ωt

2
)

dH n−1 + γ|ωt|.

Indeed if this inequality is false then we obtained the result. Then, comparing u with u1Rn\Br(t) with
the lemma 6.14 (which is allowed for any small enough r > 0) we obtain the estimate

ˆ
Br(t)

|∇uk|2dL n + β

ˆ
Ju

(
uk1Br(t)

2 + uk1Br(t)
2
)

dH n−1 + 1
2γ|Br(t)| ≤ 2β

ˆ
∂Br(t)\Ju

u2
kdH n−1

≤ C(n, β, ∥uk∥L∞)r(t)n−1.

Combining the two previous inequalities,

H n−1(∂∗ {|uk| ≤ t} ∩ Br(t) \ Ju) ≤ C(n, β, ∥uk∥L∞)r(t)
n−1

t2

= C(n, β, ∥uk∥L∞)ϵn−1

≤ 1
2δ for a small enough ϵ.

And so Lemma 6.14 may be applied, concluding the proof.

We introduce the sets

ωsup =
{
x : |uk(x)| ≥ |x/ϵ|

n−1
2
}
, ωinf =

{
x : |uk(x)| ≤ |x/ϵ|

n−1
2
}

and the function

f(t) =
ˆ
ωt

(|∇uk|1ωsup + 1ωinf) |uk|dL n.

From the coarea formula we get

f(t) =
ˆ t

0

ˆ
∂∗{|uk|≤τ}∩Br(τ)\Ju

|uk|dH n−1

 dτ +
ˆ r(t)

0

ˆ
∂Br∩

{
|uk|≤(r/ϵ)

n−1
2
}

\Ju

|uk|dH n−1

 dr.

So f is absolutely continuous and

f ′(t) =
ˆ
∂∗{|uk|≤t}∩Br(t)\Ju

|uk|dH n−1 + 2ϵ
n− 1t

− n−3
n−1

ˆ
∂Br(t)∩{|uk|≤t}\Ju

|uk|dH n−1.

We use here the fact that n ≥ 3, so that for all small enough t we get

1
ϵ
f ′(t) ≥

ˆ
∂∗{|uk|≤t}∩Br(t)\Ju

|uk|dH n−1 +
ˆ
∂Br(t)∩{|uk|≤t}\Ju

|uk|dH n−1.
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We will now estimate f in a similar manner as in result 6.7.

cn

(ˆ
ωt

|uk|2
n

n−1 dL n

)n−1
n

≤ D(|uk|21ωt)(Rn)

=
ˆ
ωt

2|uk∇uk|dL n +
ˆ
Ju

(
uk1ωt

2 + uk1ωr,t

2
)

dH n−1

+
ˆ
∂∗ωt\Ju

|uk|2dH n−1

≤ |ωt| +
ˆ
ωt

|∇uk|2dL n +
ˆ
Ju

(
uk1ωt

2 + uk1ωr,t

2
)

dH n−1

+
ˆ
∂∗ωt\Ju

|uk|2dH n−1

≤ Cβ,γ

ˆ
∂∗ωt\Ju

|uk|2dH n−1

≤ Cβ,γ
ϵ
tf ′(t).

We used the lemma 6.16 in the penultimate line, which is only valid for small enough t. The
hypothesis that n ≥ 3 was used in the last line. Finally,

f(t) =
ˆ
ωt

(|∇uk|1ωsup + 1ωinf) |uk|dL n

≤ |ωt|
1

2n

(ˆ
ωt

|∇uk|2dL n

) 1
2
(ˆ

ωt

|u|2
n

n−1 dL n

)n−1
2n

+ γ|ωt|
n+1
2n

(ˆ
ωt

|uk|2
n

n−1 dL n

)n−1
2n

≤ Cn,β,γ (tf ′(t))
2n+1

2n ,

which implies for a certain t > 0 that f(t) = 0. Let r = ϵt
n−1

2 , we show |uk| ≥ t1Bx,r∩{uk ̸=0}. From
f(t) = 0 we get that uk = 0 on Br ∩

{
x : |uk(x)| ≤ |x/ϵ|n−1

2
}
. In particular, up to reducing slightly r

and t we may suppose
H n−1(∂Br ∩ {|uk| ≤ t}) = 0.

Moreover, f(t) = 0 also gives that ∇uk = 0 on Br ∩ {0 < u ≤ t}. Consider u′ = u1Rn\ω where
ω = Br ∩ {|uk| ≤ t}. Note that Ju′ ⊂ Ju, and for any small enough t > 0,

λk(u; β′) ≤ λk(u; β) + 2t2|ω| − 1
2β

ˆ
Ju

(
uk1ω2 + uk1ω2

)
dH n−1.

This contradicts the minimality of λk(u; β) + γ| {u ̸= 0} | as soon as |ω| > 0. This concludes the
proof.

Note that the proof fails when n = 2 ; we need to choose r(t) ≪ t
2

n−1 to ensure that the
competitor u1Rn\ωt yields information, but later we use inft<1 r

′(t) > 0 in a crucial way. When n = 2
the inequalities are weakened to instead yield f(t) ≥ ct5, which is not enough to conclude.

We now deduce the second main result as a consequence.

Proposition 6.17. Suppose n ≥ 3, k ≥ 2. Let u = (u1, . . . , uk) a relaxed minimizer of λk(u; β) in
Uk(m). Then

λk(u; β) = λk−1(u; β).

Proof. Suppose that λk(u; β) > λk−1(u; β). We may apply lemma 6.13 to assume without loss of
generality that u1 ≥ 0 and u ∈ L∞, so that all the previous estimates apply.
Let Ω be the support of uk, with Ω+ = {uk > 0} and Ω− = {uk < 0}.
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We first notice that | {u ̸= 0} \ Ω| = 0. Suppose indeed that it is not the case, and let ω =
{u ̸= 0} \ Ω. Since |uk| ≥ δ1Ω, u may be written as a disconnected sum of two Uk functions

u = (u1Ω) ⊕ (u1ω).

We may translate Ω and ω so that they have a positive distance from each other. Then consider
t > 1 and s = s(t) < 1 chosen such that

|tΩ| + |sω| = |Ω| + |ω|,

and ut the function built by dilation of u on tΩ ∪ sω. Then for t = 1 + ϵ with a small enough ϵ we
have λk(ut; β) < λk(u; β) with support of same measure, which is absurd by minimality of u. Thus
|ω| = 0.

Since u1 is nonnegative, has support in Ω, and ⟨u1, uk⟩L2 = 0, this means that |Ω+|, |Ω−| > 0. We
may again decompose u into

u = (u1Ω+) ⊕ (u1Ω−).
Consider v ∈ Up(m) for some p ∈ {k, . . . , 2k} an extraction of (u1Ω+ ,u1Ω−), such that it spans the
same space in L2(Rn) and v is linearly independant. Then for each i ∈ {1, . . . , k},

λi(v; β) ≤ λi(u; β),

with equality if i = k by optimality of u. Since A(v) and B(v) are block diagonals we may suppose
v is normalized such that its components have support in either Ω+ or Ω−: say vk is supported in
Ω+. This means that v = (v1, . . . , vk) is a minimizer in L∞ such that λk(v; β) > λk−1(v; β), and by
the previous arguments we know that up to a negligible set {v ̸= 0} ⊂ {vk ̸= 0}, thus |Ω−| = 0: this
is a contradiction.

6.4.3 Discussion about the properties of open minimizers

Here we make a few observations on the properties of minimizing open sets, provided we know such
sets exist.

Proposition 6.18. Let Ω be an open minimizer of λk(Ω; β) among opens sets of measure m, for
k ≥ 2, with eigenfunction u1, . . . , uk. Suppose λk−l(Ω; β) < λk−l+1(Ω; β) = λk(Ω; β). Then we know
that

∩k
i=k−l+1

(
u−1
i ({0}) ∩ Ω

)
= ∅.

In particular, for k = 3 and n = 2, Ω is not simply connected.

Proof. By contradiction, consider x ∈ ∩k
i=k−l+1u

−1
i ({0}), and ur = (u1, . . . , uk)1Rn\Bx,r . For a small

enough r, ur is admissible and, with the same estimate as in Lemma 6.14, there is a (L2-normalized)
eigenfunction uα associated to λk(Ω; β) such thatˆ

Bx,r

|∇uα|2dL n + γ|Bx,r| ≤ 2β
ˆ
∂Bx,r

u2
αdH n−1.

This implies that for any small enough r > 0, 
∂Bx,r

u2
αdH n−1 ≥ rγ

2nβ .

However, if x is at the intersection of every nodal line associated to eigenfunctions of λk(Ω; β), and
since these eigenfunctions are C1, there is a constant C > 0 such that for all α, |uα(y)| ≤ C|x − y|,
thus  

∂Bx,r

u2
αdH n−1 ≤ C2r2,

which is a contradiction.
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Let us now suppose that n = 2, k = 3, and that Ω is simply connected. Since any eigenfunction
related to λ3(Ω; β) has a non-empty nodal set, we know that

λ1(Ω; β) < λ2(Ω; β) = λ3(Ω; β).

Let u1, u, v be the associated eigenfunctions. Every non-trivial linear combination of u and v is an
eigenfunction associated to λ2(Ω; β) so it has a non-empty nodal set and no more than two nodal
domains, thus, with the simple connectedness of Ω, its nodal set is connected (either a circle or a
curve) and the eigenfunction changes sign at the nodal set.
Let us parametrize the eigenspace with

wt(x) = cos(t)u(x) + sin(t)v(x).

We show that the nodal sets ({wt = 0})t∈ R
πZ

are a partition of Ω and that there is a continuous open
function T : Ω → R

πZ such that x ∈
{
wT (x) = 0

}
for all x ∈ Ω. Indeed, the sets ({wt = 0})t∈ R

πZ
are

disjoints because u and v have no common zeroes, and for any x we may define

T (x) = −arctan
(
u(x)
v(x)

)
,

where arctan(∞) = π
2 [π] by convention. The function T is continuous, x ∈

{
wT (x) = 0

}
, and since

eigenfunctions change sign at their nodal lines then T is open. Since Ω is simply connected T may
be lifted into

Ω −→
T ′

R −→
p

R/πZ.

Let I be the image of T ′, since T is open, then T ′ is too so I is an open interval. If T (x) = T (y),
then x and y are in the same nodal line and since these are connected we know T ′(x) = T ′(y). In
particular, if t is in I, then t± π /∈ I; this implies that I =]a, b[ where a < b and b− a ≤ π. However
every wt has a non-empty nodal set so R

πZ = T (Ω) = p(]a, b[): this is a contradiction, thus Ω is not
simply connected.
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Chapter 7

Regularity of a free boundary problem
with transmission condition

This is a joint work with Bozhidar Velichkov.
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7.1 Introduction

Given an open set D ⊂ Rn, a non-negative function u ∈ H1(D) and a measurable set E such that
Per(E; {u > t}) < ∞ for every t > 0, we define the energy

JD(u,E) :=
ˆ
D

|∇u|2dL n +
ˆ
∂∗E∩{u>0}∩D

udH n−1

where the trace of u on ∂∗E ∩ {u > 0} is well-defined by the rectifiability of ∂∗E ∩ {u > 0}. Our goal
in this paper is to understand the properties of a local minimizer of this functional. This study is par-
tially motivated by the interaction between two different kind of boundary problems similar to what
is mentioned in [138] in a free discontinuity setting, and more particularly about the minimizers of a
functional of the form u ∈ SBV (D,R+) 7→

´
D

|∇u|2dL n+
´
Ju∩D (u+ + u−) dH n−1 +k|{u > 0}∩D|

for some constant k > 0, that comes from a variational elliptic equation with Robin boundary con-
dition and an obstacle from below.

Our case is closer to a free boundary version of the transmission problem studied in [139], with
the addition of a natural obstacle phenomena. It is also similar to the free boundary problem [140]
wich deals instead an energy of the form

´
D

|∇u|2dL n +
´
∂∗E∩{u>0}∩D u

2dH n−1, and the regularity
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theory is perfectly analog as long as u > 0. This still applies to our functional on the parts where u
is larger than a constant, but in their case the solution u is guaranteed to be positive everywhere.

We establish a C1 regularity up to the boundary of the contact set {u = 0} in two dimensions,
through an epiperimetric inequality of a monotonicity formula of Weiss type. This epiperimetric
inequality is obtained by careful construction of competitors away from the critical blow-up, and by
a formulation in terms of gradient descent near the critical blow-up.

Definition 7.1. For any open set D, we say (u,E) is a minimizer of J in D if and only if

• u ∈ H1
loc(D,R+) ∩ C0(D) and for all t > 0, and any open subset ω ⋐ D, we have

Per(E|{u > t} ∩ ω) < ∞.

• Jω(u,E) ≤ Jω(v, F ) for every (v, F ) verifying the first point and such that {v ̸= u}, E∆F ⋐
ω ⋐ D for some open ω.

In this case we will write (u,E) ∈ M (D). For any measurable set A, we will write (u,E) ∈ M (A)
as soon as there is a neighbourhood D of A and (ũ, Ẽ) ∈ M (D) such that (ũ|A, Ẽ ∩ A) = (u,E).
Similarly, we write (u,E) ∈ Mm(A) when u ≥ m and (u,E) is a minimizer when compared with any
competitor (v, F ) such that v ≥ m.

We will see later how, for any sufficiently smooth domain D and boundary data, there exists an
associated minimizer. Let us summarize that in particular

• For any x ∈ {u > 0} ∩ ∂E, ∂E may be decomposed in a neighbourhood of x as the union of a
C∞ hypersurface R and a singular set S of codimension at least 8, with u ∈ C∞(R) as well as
in a neighbourhood of R in E and in Ec. At R, we have the so-called transmission condition

νE ·
(
∇u|Ec − ∇u|E

)
= 1

2
on R, where νE designates the outward normal vector on ∂∗E relative to E, and ∇u|E (resp
∇u|Ec) is the trace of the gradient of u|E (resp u|Ec) on ∂∗E.

• For any x ∈ {u = 0} such that ∂∗E ∩ {u > 0} is bounded away from x, then (1E − 1Ec) is a
harmonic function and as a consequence, ∂E is a zero set of an harmonic function near x with
u smooth on both sides of the boundary, with moreover the weak transmission condition

νE ·
(
∇u|Ec − ∇u|E

)
≤ 1

2
So there are two “competing” regularity theory for the free boundary; either a free boundary trans-
mission problem, which is very similar to a minimal surface, or a zero of harmonic function that may
have multiple branching points even in two dimensions. Our subject of interest in this paper is to
understand how these two regularity join up at the junction between ∂∗E ∩ {u > 0} and {u = 0}.
Here is the main result of the paper.

Theorem 7.2. Let (u,E) be a minimizer of J in a domain D ⊂ R2, and let Ω ⋐ D be a subdomain,
then Per(E|Ω) < ∞, ∂∗E ∩ {u > 0} ∩ Ω is locally C∞ and {u = 0} ∩ Ω is included in a finite union
of C1,log curves.

We actually we prove a quantitative flatness estimate for the full boundary (∂∗E∩{u > 0})∪{u = 0}
(that we may simply write ∂∗E with the knowledge that E has locally finite perimeter) around any
point of the contact set {u = 0}. This means more precisely that there are constants C > 0,
r ∈

(
0, 1

2dist(B, ∂Ω)
)

depending only on B,Ω, and a universal exponent α > 0 such that for any
x ∈ {u = 0} ∩B and any r ∈ (0, r),

∂∗E ∩Bx,r ⊂
{
y ∈ Ω : |(y − x) · νx| ≤ Cr log

(1
r

)−α}
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where νx is the normal vector of ∂E at x.
Here is the plan of the proof. Some sections work in any dimension, that we denote by the letter
n ≥ 2.

• We begin by establishing basic regularity estimates on minimizers (u,E), namely that if (u,E)
is a minimizer of J in D and B ⋐ D, then

∥u∥
C

1
n+1 (B)

≤ C(B,D)JD(u,E)

JB(u,E) ≤ C(B,D)
ˆ
∂D

udH n−1

Moreover, if (u,E) is a minimizer of J in the centered ball B4, we establish the existence of a
constant Cn > 0 such that ˆ

∂B1

udH n−1 ≤ Cn(1 + u(0))

From this we get in particular the compactness of punctually bounded sequences of minimizers.

• We prove several properties of compactness of uniformly bounded minimizers, that will also
give us the existence of minimizers with prescribed boundary data.

• We establish the monotonicity of the Weiss-type functionnal

r → W

(
u(r·)
r

,
E

r

)
,

where W (u,E) = JB1(u,E) −
´
∂B1

u2. All up until this point works in any dimension, and from
now on we work in two dimension. In two dimensions this monotonicity formula allows us to
identify the blow-ups of minimizer (u,E) around a point in {u = 0} as being either of the form

u(x) = |x · e|, E = {x : x · e > 0},

for some e ∈ R2 \ {0} such that |e| ≤ 1
4 , or of the form u ≡ 0, and E being whatever.

• We prove a refinement of the monotonicity formula; for any (u,E) minimizer of J in B2 such
that u(0) = 0, there are some universal constants γ, ϑ ∈]0, 1[ such that

d
dr

∣∣∣∣∣
r=1

W (ur, Er) ≥ 2
(
γ ∧W (u,E)ϑ

)
W (u,E)

This is obtained by building an explicit competitor (v, F ) in B1 such that

W (v, F ) ≤
(
1 − γ ∧W (uh, Eh)ϑ

)
W (uh, Eh),

where (uh, Eh) is the 1-homogenenous extension of (u,E)|∂B1 on B1.

• We deduce quantitative estimates for the speed of convergence to the blow-up, and thus obtain
C1,log regularity, as well as a “non-degeneracy” property that fully characterizes the behaviour
of minimizers near small blow-ups.

Notations:

• For two quantities a, b, we will say that a ≲ b when a ≤ Cb for some C > 0 that only depends
on the dimension n.

152



7.2 Uniform regularity estimates

By uniform estimate, we mean in particular estimates that will be true in particular for all minimizers
(u,E) ∈ M (B1) that vanishes at the origin, which is the case we will focus on later.

We begin with a few non-uniform estimate. The presence of the parameter m is merely here for
the proof of existence later on.

Lemma 7.3. Let m ≥ 0 and (u,E) ∈ Mm(B1) with u ∈ H1(B1), then

∥u∥
C0, 1

n+1 (B1/2)
+ JB1/2(u,E) ≤ Cn

ˆ
∂B1

udL n

Proof. The proof is divided in several steps.

• u is subharmonic. Indeed, let φ ∈ C∞
c (B1,R+), and t > 0, we compare (u,E) to ((u−tφ)∨m,E).

Notice this is the only place in the proof where we use a competitor that is lower than u. The
comparison givesˆ

{u≤tφ+m}
|∇u|2dL n +

ˆ
{u>tφ+m}

(
2t∇u · ∇φ+ t2|∇φ|2

)
dL n +

ˆ
∂∗E

(u ∧ tφ)dH n−1 ≤ 0

Dividing by t and taking t → 0+, we obtainˆ
{u>m}

∇u · ∇φdL n ≤ 0

And since 1{u=m}∇u = 0, this proves the subharmonicity of u.

• We then establish the L∞ bound. This is direct by subharmonicity of u; for any z ∈ B1,

u(z) ≤
 
∂B1

1 − |z|2

|x− z|n
u(x)dH n−1 ≤ 2

(1 − |z|)n−1

 
∂B1

udL n.

• Here we establish the Hölder bound, and the bound on JB1/2(u,E) is obtained as a byproduct.

Let x ∈ B1/2, r > 0 that will be chosen arbitrarily small later, and R > 0 such that 0 < 2r <
R < 1

4 . Let M := ∥u∥L∞(B3/4)(< ∞) and h be the function that coincides with u on B1 \ Bx,R

and with the harmonic extension of u|∂Bx,R
on Bx,R. Then the minimality of (u,E) compared

to (h,E \Bx,r) gives
ˆ
Bx,R

|∇(u− h)|2dL n +
ˆ
∂∗E∩Bx,R

udH n−1 ≤
ˆ
∂Bx,R

udH n−1,

so, using the harmonicity of h (and the Cacciopoli inequality) in Bx,R,

JBx,r(u,E) ≤ 2
ˆ
Bx,r

|∇(u− h)|2dL n + 2
ˆ
Bx,r

|∇h|2dL n +
ˆ
∂∗E∩Bx,R

udH n−1

≤ 2
ˆ
Bx,R

|∇(u− h)|2dL n + 2
(

r

R/2

)n ˆ
Bx,R/2

|∇h|2dL n +
ˆ
∂∗E∩Bx,R

udH n−1

≤ 2
ˆ
∂Bx,R

udH n−1 + 2n+6 rn

Rn+2

ˆ
Bx,R

h2dL n

≤ 2nωnMRn−1 + 2n+6ωnM
2 r

n

R2

Then letting R := r
n

n+1 which is valid for any small enough r we obtain

JBx,r(u,E) ≤ CnM
2n

n+1 r
n−1
n+1n
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In particular, this implies that for any small enough r and for any x ∈ B1/2,
ffl
Bx,r

|∇u|2 ≤
CnM

2n
n+1 r− 2n

n+1 , which by classical embedding results (see for instance [141, cor 3.2]) implies the
Hölder bound.

We then establish the following uniform estimate (we call it uniform because in the case that
interests us the most in the following sections - when u(0) = 0 - then the bound on

´
∂B1

u depends
only on the dimension).

Proposition 7.4. Let m ≥ 0 and (u,E) ∈ Mm(B4), then
ˆ
∂B1

udH n−1 ≤ Cn(1 + u(0))

Remark 7.5. Notice how in this proof (u,E) is only compared with competitor larger than u.

Proof. In the following, we let M = 1 + 8u(0) and Cn designates constants that depend only on n
and that may change from line to line. For every t ∈ [0, 4], define

ωt := {x ∈ B1 : u(x)/M + |x| < t}

Notice a few consequences of the definition of ωt:

ωt ⊂ Bt, ω1/8 ̸= ∅, ω2 ⊃ B1 ∩ {u < M}

The proof is in two steps; we give a bound from below of |ω1| that depends only on (n,M), and then
use a capacity argument to prove that

´
∂B1

u is uniformly bounded as a result.
We let t0 ∈ [0, 1) be the smallest real number such that ωt0 ̸= ∅ ; we know it is smaller than 1/8 by
our choice of M . Then we let

f(t) =
ˆ t

t0

Per(ωτ )dτ
(

=
ˆ
ωt

∣∣∣∣∇(
u

M
+ |x|

)∣∣∣∣ dL n

)
, g(t) =

ˆ
ωt

∣∣∣∣∇(
u

M
+ |x|

)∣∣∣∣2 dL n

The strategy is to bound f from below and g from above with the following estimate. The comparison
between (u,E) and (u ∨

[
M(t− |x|)

]
, E \ ωt) gives:

ˆ
ωt

|∇u|2dL n ≤ M2|ωt| +
ˆ
∂∗ωt

udH n−1

Which may be simplified into
ˆ
ωt

|∇u|2dL n ≤ M2|ωt| +MtPer(ωt)

So with triangular and Cauchy-Schwarz inequality we get

f(t) ≤ 2|ωt| + (M−1t|ωt|Per(ωt))
1
2 (7.1)

Using the isoperimetric inequality |ω|n−1
n ≤ CnPer(ω) and the estimate |ωt| ≤ |Bt| ≤ Cnt

n, we obtain
the following estimates:

f(t) ≤ Cnt
1
2f ′(t)

2n−1
2n−2 .

Integrating from t0 to t ∈ (t0, 4), we get the lower bound

f(t)
1

2n−1 ≥ cn

(
t

n
2n−1 − t

n
2n−1
0

)
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Let us now estimate g from above. We let G(t) =
´ t
t0
g, and we use that

g(t) ≤
ˆ
ωt

∣∣∣∣∇(
u

M
+ |x|

)∣∣∣∣2 dL n ≤ 4|ωt| + 2M−1tPer(ωt)

Now,

G(t) ≤
ˆ t

t0

(
4|ωτ | + 2M−1τPer(ωτ )

)
dτ ≤ 4t|ωt| + 2tM−1f(t)

Now, for any t > 2t0, we have f(t) ≥ cnt
n ≥ cn|ωt| so |ωt| ≤ Cng(t). As a consequence,

G(t) ≤ Cnt|ωt|
1
2 g(t) 1

2

Reminding that G′ = g, we integrate this from t to 2t for some t ∈ (2t0, 2);

1
G(t) ≥ 1

G(t) − 1
G(2t) ≥ Cn

t|ω2t|

And so for any t ∈ (2t0, 1),

g(t) ≤ 1
t

ˆ 2t

t

g ≤ Cn|ω4t|,

so using the previous estimate on f we get

cnt
n ≤ f(t) ≤ |ωt|

1
2 g(t) 1

2 ≤ Cn|ω4t|.

From this we obtain two important estimates; with t = 1/4 and t = 1 we get

|B1 ∩ {u < M}| ≥ cn,

ˆ
B1∩{u<M}

|∇u|2dL n ≤ CnM
2

Now we use the inequality of [137, lem. 3.2] that states that for any v ∈ H1(B1), denoting Hv
the harmonic extension of v|∂B1 on B1 we have

|{v = 0}|
(ˆ

∂B1

|v|dH n−1
)2

≤ Cn

ˆ
B1

|∇(v −Hv)|2dL n (7.2)

We will apply this to (u−M)+. The optimality condition J(u,E) ≤ J(Hu,E \B1) gives
ˆ
B1

|∇(u−Hu)|2dL n ≤
ˆ
∂B1

udH n−1

Now, separate u = (u − M)+ + u ∧ M and Hu = H(u − M)+ + H(u ∧ M). The inequality of
Alt-Caffarelli inequality (7.2) and the estimate |B1 ∩ {u < M}| > cn give

(ˆ
∂B1

(u−M)+dH n−1
)2

≤ Cn

ˆ
B1

|∇((u−M)+ −H(u−M)+|2dL n
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Thus for a certain constant Cn > 0 (different than above):( 
∂B1

udH n−1
)2

≤ 2M2 + 2
(ˆ

∂B1

(u−M)+dH n−1
)2

≤ 2M2 + Cn

ˆ
B1

|∇((u−M)+ −H(u−M)+|2dL n

≤ 2M2 + 2Cn
ˆ
B1

|∇(u−Hu)|2dL n + 2Cn
ˆ
B1

|∇(u ∧M −H(u ∧M))|2dL n

≤ 2M2 + 2Cn
ˆ
∂B1

udH n−1 + 2Cn
ˆ
B1

(|∇(u ∧ 1)|2 − |∇H(u ∧ 1)|2)dL n

≤ 2M2 + 2Cn
ˆ
∂B1

udH n−1 + 2Cn
ˆ
B1∩{u<M}

|∇u|2dL n

≤ AnM
2 +Bn

 
∂B1

udH n−1

The inequality X2 ≤ AnM
2 + BnX implies X ≤ CnM for some constant Cn > 0; this proves the

result.

Corollary 7.6. Let (u,E) ∈ M (B1), r ∈ (0, 1), then there is a constant Cn(r) > 0 such that

∥u∥
C0, 1

n+1 (Br)
+ JBr(u,E) ≤ Cn(r) (1 + u(0))

This is obtained by combining the two previous results.

7.3 Convergence of minimizers

We establish a compactness argument for minimizers. We first prove the following density estimate.

Proposition 7.7. Let (u,E) ∈ Mm(B1) for some m ≥ 0 such that |B1/2 ∩ E| > 0. Then there is a
constant cn > 0 such that

|B1 ∩ E| ≥ cn

(
infB1(u)
supB1(u)

)n

Remark 7.8. The same conclusion holds for Ec by symmetry of the problem.

Proof. Consider f(r) = |Br ∩ E|, then by the isoperimetric inequality applied to Br ∩ E and with
the comparison J(u,E) ≤ J(u,E \Br),

f(r)n−1
n ≤ CnPer(Br ∩ E) ≤ Cn

supB1(u)
infB1(u) f

′(r)

If f > 0 on ]1/2, 1[ we may integrate f− n−1
n f ′ from 1/2 to 1 to get the result.

Proposition 7.9. Let (ui, Ei) be a sequence of Mmi
(B1), such that

lim sup
i

ui(0) < ∞, mi → m(≥ 0).

Then either (ui) converges to 0 strongly in H1(B1) ∩ C0(B1), or there is a subsequence (uϕ(i), Eϕ(i))
such that uϕ(i) converges in H1

loc(B1) ∩ C0
loc(B1) to a non-zero function u, and Eϕ(i) converges in

L1
loc({u > 0}) and in the local Hausdorff sense to a set E in {u > 0}, such that (u,E) ∈ Mm(B1)

and for almost every r ∈ (0, 1):
JBr(u,E) = lim

i→∞
JBr(ui, Ei)
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Proof. Due to the bound on ui(0), ui is bounded in C
1

n+1
loc (B1) ∩ H1

loc(B1), so up to a subsequence
we may suppose that (ui) converges to a function u ∈ H1

loc(B1) in the C0
loc(B1), L2

loc(B1) sense, and
weakly in H1

loc(B1). We will straight-away suppose that u is non-zero.
For any t > 0 and for any large enough i that depends on t, ∥ui − u∥L∞(B1) ≤ t

2 , meaning ui ≥ t
2

on the open set {u > t} (that is non-empty for some any small enough t). Thus

Per(Ei; {u > t}) ≤ 2
t

ˆ
B1∩∂∗Ei

uidH n−1 ≤ Cn
t

Thus we may suppose up to an extraction that Ei converges in L1
loc({u > t}) to a certain Et ⊂ {u >

t}. Taking E = ∪t>0E
t, we know that Ei converges in L1

loc({u > 0}) to E. As a consequence, using
the uniform convergence of (ui), we have ui1Ei

→ u1E in L1
loc(B1), with

ˆ
Br∩∂∗E

udH n−1 ≤ lim inf
i→∞

ˆ
Br∩∂∗Ei

uidH n−1,

for every r ∈]0, 1[. The density estimate on the sets (Ei) yield that this convergence is in the local
Hausdorff sense in {u > 0}. Let us now show that the convergence ui → u is strong in H1, and
J(ui, Ei|Br) → J(u,E|Br); since we already have a weak convergence and semicontinuity we merely
need to show that

J(u,E|Br) ≥ lim sup
i→∞

J(ui, Ei|Br)

for almost every r. For this we use the minimality of each ui. Let 0 < r < R < 1, η ∈ C∞(B1) such
that η = 1 on B1 \BR, η = 0 on Br.

• Let us first check that the conclusion holds when infB1(u) =: ϵ > 0. Notice that, for any large
enough i, ui ≥ ϵ

2 on BR, so we have the uniform perimeter estimates

Per(Ei|Bx,r) ≤ Cn
ϵ
rn−1

by comparing (u,E) and (u,E \ Bx,r). Moreover, we have Ei → E in L1
loc, so for almost every

R > 0, H n−1(E∆Ei ∩ ∂BR) → 0. We now make the comparison

J(ui, Ei|BR) ≤ J(ûi, Êi|BR),

where
ûi = ηui + (1 − η)u, Êi = (Ei \BR) ∪ (E ∩BR),

where 0 < r < R < 1, r is a point of continuity of ρ 7→ Per(E|Bρ), and R is chosen such that
H n−1(E∆Ei ∩ ∂BR) → 0. This comparison gives

0 ≤
ˆ
BR

(
|∇ûi|2 − |∇ui|2

)
dL n +

ˆ
Bτ ∩∂∗Êi

ûidH n−1 −
ˆ
Bτ ∩∂∗Ei

uidH n−1

=
ˆ
BR

(
(η2 − 1)|∇ui|2 + (1 − η2)|∇u|2 + 2η(1 − η)∇ui · ∇u

)
dL n + oi→∞(1)

+
ˆ
Br∩∂∗E

udH n−1 +
ˆ
BR\Br∩∂∗E

ûidH n−1 +
ˆ
E∆Ei∩∂BR

uidH n−1 −
ˆ
BR∩∂∗Ei

uidH n−1

=
ˆ
BR

(1 − η2)
(
|∇u|2 − |∇ui|2

)
dL n + oi→∞(1)

+
ˆ
Br∩∂∗E

udH n−1 +
ˆ
BR\Br∩∂∗E

udH n−1 + oi→∞(1) −
ˆ
BR∩∂∗Ei

uidH n−1

=
ˆ
BR

(1 − η2)
(
|∇u|2 − |∇ui|2

)
dL n +

ˆ
BR∩∂∗E

udH n−1 −
ˆ
BR∩∂∗Ei

uidH n−1 + oi→∞(1)
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where we used dominated convergence (since Per(E|BR) is bounded on
´
BR\Br∩∂∗E

ûi, as well
as the fact that

´
E∆Ei∩∂BR

ui → 0). Thus, taking the limit i → ∞, and then R → r (using the
fact that r is a continuity point of r 7→ Per(E|Br)), we get that for almost every r ∈]0, 1[,

lim inf
i→∞

(J(u,E|Br) − J(ui, Ei|Br)) ≥ 0

• Let us now handle the case where inf(u) may be zero.
We make the comparison

J(ui, Ei|BR) ≤ J(ũi, Ẽi|BR),

where
ũi = ηui + (1 − η)vi, vi = u ∧ 2ui, Ẽi = (Ei \Br) ∪ (E ∩Br)

Here r, R are chosen such that s 7→
´
Bs∩∂∗E

u is continuous at r and
´
∂Br∩E∆Ei

ui → 0. Let us
make a few preliminary estimates: let ρ be a smooth function that takes the value 1 in Br, 0
outside BR, and t > 0, then the comparison between (ui, Ei) and ((ui − tρ)+, Ei) gives:
ˆ
Br∩{ui<t}

|∇ui|2dL n +
ˆ
∂∗E∩Br∩{ui<t}

uidH n−1 ≤
ˆ

{ui<tρ}
|∇ui|2dL n +

ˆ
∂∗E∩{ui<tρ}

uidH n−1

≤ J(ui, Ei|BR) − J((ui − tρ)+, Ei|BR)

+
ˆ

{ui>tρ}

(
−2t∇ρ · ∇ui + t2|∇ρ|2

)
dL n

≤ Cρ
√
J(ui, Ei|BR)t+ C̃ρt

2

≤ Cρt,

where the last inequality is only true for t < 1. Notice that as a consequence, since {u > 2ui} ⊂
{ui < ∥u− ui∥L∞}, then vi → u in L2

loc and H1
loc; indeed,

ˆ
Br

|∇(u− vi)|2dL n =
ˆ
Br

|∇(u− 2ui)|21{u>2ui}dL n

≤ 2
ˆ
Br

|∇u|21{u>2ui}dL n + 8Cρ∥u− ui∥L∞(Br) −→
i→∞

0

Now, the comparison between (ui, Ei) and (ũi, Ẽi) gives
ˆ
BR

(
|∇ũi|2 − |∇ui|2

)
dL n +

ˆ
BR∩∂∗Ẽi

ũidH n−1 −
ˆ
BR∩∂∗Ei

uidH n−1 ≥ 0

The first term is handled as previously; since vi → u in H1
loc we get

ˆ
BR

(
|∇ũi|2 − |∇ui|2

)
dL n =

ˆ
BR

(
1 − η2

) (
|∇u|2 − |∇ui|2

)
dL n + oi→0(1)

Now, for the perimeter term, it may be decomposed into
ˆ
BR\Br∩∂∗Ei

ũidH n−1 +
ˆ
∂Br∩E∆Ei

vidH n−1 +
ˆ
Br∩∂∗E

vidH n−1 −
ˆ
BR∩∂∗Ei

uidH n−1

The most problematic term is the first one that we treat separately. Notice first that

• By our choice of r,
´
∂Br∩E∆Ei

vidH n−1 ≤ 2
´
∂Br∩E∆Ei

ui → 0.

• By dominated convergence (since vi ≤ u),
´
Br∩∂∗E

vidH n−1 →
´
Br∩∂∗E

udH n−1.
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• Finally, let ϵ > 0 that will be taken arbitrarily small. We suppose i is large enough such
that ∥u− ui∥L∞(BR) ≤ ϵ.

ˆ
BR\Br∩∂∗Ei

ũidH n−1 ≤
ˆ
BR\Br∩∂∗Ei∩{ui>ϵ}

ũidH n−1 +
ˆ
BR\Br∩∂∗Ei∩{ui<ϵ}

2uidH n−1

≤
ˆ
BR\Br∩∂∗Ei∩{u> ϵ

2 }
ũidH n−1 + Cρϵ

Then, applying the previous case to the open set {u > ϵ
2}, we know that.

ˆ
BR\Br∩∂∗Ei∩{u> ϵ

2 }
ũidH n−1 −→

i→∞

ˆ
BR\Br∩∂∗E∩{u> ϵ

2 }
udH n−1

To summarize, we get

0 ≤ JBR
(ũi, Ẽi) − JBr(ui, Ei)

≤
ˆ
BR

(
1 − η2

) (
|∇u|2 − |∇ui|2

)
dL n + oi→∞(1)

+
ˆ
BR∩∂∗E}

udH n−1 −
ˆ
BR∩∂∗Ei}

uidH n−1

Then proceeding as previously by choosing r a continuity point of r 7→
´
Br∩∂∗E

u and R ↘ r
we get the result.

As a consequence, ui → u in H1
loc. It follows by the same method that (u,E) is a minimizer; let

(v, F ) be any admissible competitor, that coincides with (u,E) in a ball Br, then with the same
computations as earlier we get J(v, F |Br) ≥ limi J(ui, Ei|Br) = J(u,E|Br).

Corollary 7.10. Let Ẽ ⋐ Rn and ũ ∈ H1/2(∂B1,R+). Then there exists (u,E) ∈ M (B1) such that
JB1(u,E) < ∞ and u|∂B1 = ũ, E \B1 = Ẽ \B1.

Proof. Let m > 0, we claim there exists (um, Em) ∈ Mm(B1) such that um|∂B1 = ũ ∧ m, Em \ B1 =
Ẽ \B1, and JB1(um, Em) is bounded independently of m (for m ≤ 1).
Indeed, notice first that denoting h the harmonic extension of ũ in B1, then for any m ≥ 0, (h ∧
m, Ẽ \B1) is a valid competitor so the minimal energy is less that

J(h ∧m, Ẽ \B1) ≤ ∥ũ∥2
H1/2(∂B1) + |∂B1|

Consider (uim, Ei
m) a minimizing sequence (it exists since ũ ∈ H1/2(∂B1) so it admits some H1(B1)

extension with finite energy). Due to the previous point we may assume that J(uim, Ei
m) is bounded

independently of m by a constant C that depends on the boundary conditions only. Then the perime-
ter of Ei

m in B1 is less that C
m

, so by compactness we may assume Ei
m converges strongly in L1 to

some set Em.

Similarly,
´
B1

|∇uim|2dL n ≤ C, so we may assume uim converges strongly in L2(B1) and weakly
in H1(B1) to some limit um.

Lemma 7.11. (um, Em) ∈ Mm(B1).

For the proof of this we refer to [140] as the functional is essentially the same when u is bounded
from below. Now that we have the existence of (um, Em), then using the previous result we know it
converges to some (u,E) ∈ M (B1) that verifies the right boundary condition.
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7.4 Monotonicity formula and blow-ups

Now that the existence of minimizers is established, we shall only deal with (u,E) ∈ M (Ω) instead of
Mm(Ω) for some m ≥ 0. We begin by establishing a few classical computations about the stationnary
condition of minimizers (u,E) along a flow ξ.

Lemma 7.12. Let (u,E) ∈ M (D) for some domain D and ζ ∈ C1
c (D,Rn); Let also ζt(x) = x+tζ(x),

which is a C1-diffeomorphism for any small enough t. Then the comparison:

JD(u,E) ≤ JD(u ◦ ζ−1
t , ζt(E)), ∀t ∈ (−ϵ, ϵ)

yields, as t → 0, the condition:
ˆ
D

(
div(ζ)|∇u|2 − 2∇u ·Dζ∇u

)
dL n +

ˆ
∂∗E

udivE(ζ)dH n−1 = 0

This is obtained by a simple change of variable, we refer to [142, Ch. 17] for more details on the
second term.

From this we deduce the two following result; the first one will help us establish a precise mono-
tonicity formula while the second one will be useful in the classification of blow-ups.

Corollary 7.13. Let (u,E) ∈ M (D) for some open set D, suppose that u > 0 in D and ∂∗E is a
C2 submanifold with mean curvature H (for the outward normal vector with respect to E). Then

|∇u|E|2 − |∇u|Ec |2 = uH on ∂∗E

Proof. Let ξ be a vector field defined on a neighbourhood of a point of ∂∗E, then the comparison
between (u,E) and (u ◦ (I + tξ)−1, (I + tξ)(E)) as t → 0 givesˆ

D

(
div(ξ)|∇u|2 − 2∇uDξ∇u

)
dL n +

ˆ
∂∗E

udivEξdH n−1 = 0

Since u is harmonic on E and Ec, notice that div(ξ)|∇u|2−2∇uDξ∇u = div (ξ|∇u|2 − 2(ξ · ∇u)∇u),
soˆ

Γ

(
ν · ξ

(
|∇uE|2 − |∇uEc |2

)
− 2(ξ · ∇uE)(ν · ∇uE) + 2(ξ · ∇uEc)(ν · ∇uEc) + divE(ξ)u

)
dH n−1 = 0

We choose ξ = ψνE, for a scalar function ψ and where νE = ∇ ((1Ec − 1E)dist(·, ∂∗E)) is an
extension of the outward normal vector of E that is well-defined and C1 in a neighbourhood of ∂∗E.
This way divE(ξ) = HEξ on ∂∗E. This simplifies intoˆ

Γ

(
|∇uEc |2 − |∇uE|2 + uHE

)
ψdH n−1 = 0

thus we get the result.

In all the following, for any (u,E) ∈ M (D), and any x ∈ D, r > 0 such that B(x, r) ⊂ D we
write

(ux,r, Ex,r) :=
(
u(x+ r·)

r
,
E − x

r

)
And when x is not mentioned, it is implicitely assumed to be the origin. Notice that (ux,r, Ex,r) ∈
M (B1). Now, for any (u,E) ∈ M (B1), we define the normalized functional

W (u,E) = JB1(u,E) −
ˆ
∂B1

u2dH n−1

We establish the monotonicity of the normalized functional, inspired by the Weiss monotonicity
formula.
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Proposition 7.14. Let D be an open set and (u,E) ∈ M (D), then the function{(x, r) ∈ D × R+ : Bx,r ⋐ D} → R
(x, r) 7→ W (ux,r, Ex,r)

is continuous and nondecreasing is its second coordinate. Moreover the absolutely continuous part of
its derivative is

d
drW (ux,r, Ex,r) = 2

r

ˆ
∂B1

|z∇ux,r − ux,r|2dH n−1 + 1
rn

d
dr

(ˆ
Bx,r∩∂∗E

(x · νE)2udH n−1
)

≥ n

r

(
W (uhx,r, Eh

x,r) −W (ux,r, Ex,r)
)

(≥ 0)

Where (uhx,r, Eh
x,r) is the 1-homogeneous extension of (ux,r, Ex,r) in B1. Moreover for any (u,E) ∈

M (Rn), x ∈ Rn, r 7→ W (ux,r, Ex,r) is constant if and only if (u,E) is 1-homogeneous around x.

Proof. The continuity of (x, r) 7→ W (ux,r, Ex,r) is a direct consequence of dominated convergence
theorem, and in the following we will lose no generality in supposing that x = 0, r ∈ (0, 1), and that
(u,E) is a minimizer of B1. In this proof we denote

p(r) =
ˆ
Br∩∂∗E∩{u>0}

udH n−1, q(r) =
ˆ
Br∩∂∗E∩{u>0}

|x · νE|2udH n−1

We first obtain two relations from the minimality of (u,E). The first is obtained by the equation
verified by u with the Stokes formula

ˆ
Br

|∇u|2dL n =
ˆ
∂Br

u∂rudH n−1 + 1
2p(r) (7.3)

The second is obtain by variation of E, using lemma 7.12 on the vector field ξ = ξr where:

ξr(x) = φr(x)x,

where φr(x) = φ
(

|x|
r

)
for some smooth function φ ∈ C∞

c (R∗
+,R+). Then we have the formulas:

Dζr = φ

(
|x|
r

)
In + |x|

r
φ′
(

|x|
r

)
x

|x|
⊗ x

|x|

div(ζr) = nφ

(
|x|
r

)
+ |x|

r
φ′
(

|x|
r

)

∇u ·Dζr∇u = φ

(
|x|
r

)
|∇u|2 + |x|

r
φ′
(

|x|
r

) ∣∣∣∣∣ x|x|
· ∇u

∣∣∣∣∣
2

divE(ζr) = (n− 1)φ
(

|x|
r

)
+ |x|

r
φ′
(

|x|
r

)(
1 − (x · νE(x))2

|x|2

)

The optimality condition becomes:

ˆ
D

(n− 2)φ
(

|x|
r

)
|∇u|2dL n +

ˆ
∂∗E

(
(n− 1)φ

(
|x|
r

)
+ |x|

r
φ′
(

|x|
r

))
udH n−1

=
ˆ
D

|x|
r
φ′
(

|x|
r

)(
(∂ru)2 − (∂τu)2

)
dL n +

ˆ
∂∗E

1
r|x|

φ′
(

|x|
r

)
(x · νE(x))2udH n−1

We now take the function φ = φϵ, where ϵ ∈]0, 1[ and φϵ(t) =


1 when t < 1 − ϵ
1−t
ϵ

when 1 − ϵ ≤ t ≤ 1
0 when t > 1

. The
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optimality condition becomes, as ϵ → 0+ (and for r = 1 without loss of generality):

d
dr

∣∣∣∣∣
r=1−

(ˆ
Br∩∂∗E

[
1 − (x · νE(x))2

]
udH n−1

)
= (n− 2)

ˆ
B1

|∇u|2dL n + (n− 1)p(1)

+
ˆ
∂B1

(
(∂ru)2 − (∂τu)2

)
dH n−1

(7.4)

Notice the left-hand side is a left derivative that is known to exist because the derivative of
the right-hand side exists. Now for the derivative of W (ur, Er) there are two cases ; either r is a
Lebesgue point of r 7→

´
Br∩∂∗E∩{u>0} u and then directly the derivative of W (ur, Er) in the sense of

distributions has a positive atom in r (which may happen for at most a countable number of r), or
we are at a Lebesgue point, which we will suppose from now on. Combining (7.3) and (7.4) we get

p′(1) − q′(1) =
ˆ
∂B1

(
(n− 2)u∂ru+ 2|∂ru|2 − |∇u|2

)
dH n−1 + n

2p(1) (7.5)

The proof of the monotonicity is now direct using equation (7.3), (7.5). Indeed,

d
dr

∣∣∣∣∣
r=1

W (ur, Er) = − n

ˆ
B1

|∇u|2dL n +
ˆ
∂B1

(
|∇u|2 + 2u2 − 2u∂ru

)
dH n−1 + p′(1) − np(1)

So replacing p′(1) by what is given in (7.5), and
´
B1

|∇u|2dL n with what is given in (7.3) we get
exactly

d
dr

∣∣∣∣∣
r=1

W (ur, Er) = q′(1) +
ˆ
∂B1

(u− ∂ru)2dH n−1

which is the first part of the result. From this relation we directly get that ifW (urEr) is constant, then
x · ∇u = u so u is homogeneous, and u(x)(νE(x) ·x)2 = 0 for H n−1-almost every x so {u > 0} ∩∂∗E
is homogeneous, meaning E is homogeneous. Now for the second part of the result, compute

ˆ
B1

|∇uh|2dL n = 1
n

ˆ
∂B1

(u2 + |∇τu|2)dH n−1

ˆ
B1∩∂∗Eh

uhdH n−1 = 1
n

ˆ
∂B1∩∂∗E

udH n−2

Thus:

d
dr

∣∣∣∣∣
r=1

W (ur, Er) − n
(
W (uh, Eh) −W (u,E)

)
=
ˆ
∂B1

|∇u|2dH n−1 + d
dr

∣∣∣∣∣
r=1

ˆ
∂∗E∩Br

udH n−1

+ 2
ˆ
∂B1

(u2 − u∂ru)dH n−1 −
ˆ
∂B1

(u2 + |∇τu|2)dH n−1

−
ˆ
∂B1∩∂∗E

udH n−2

≥
ˆ
∂B1

|u− ∂ru|2dH n−1 ≥ 0

Up until now we worked in general dimension n ≥ 1; from now on everything will be in two
dimension. In this cas we can fully caracterise the possible blow-ups.

Proposition 7.15. Let (u,E) ∈ M (B1) be 1-homogeneous around the origin. Then either u = 0
and E is whatever, or there exists some vector |e| ≤ 1

4 such that

u(x) = |x · e|, E = {x : x · e > 0}
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Remark 7.16. Notice the peculiar fact that in the blow-ups, ∂∗E ∩ {u > 0} is empty, meaning that
the “perimeter” part of the problem vanishes at the limit. For any homogeneous minimizers (u,E)
in general dimension the transmission condition on u gives

W (u,E) = 1
2

ˆ
∂∗E∩{u>0}∩B1

udH n−1

and in particular, for any homogeneous minimizers in two dimension we have W (u,E) = 0.

We will see in proposition 7.37 that reciprocally, these are all minimizers.

Proof. Up to rescaling we may suppose (u,E) is a minimizer on an arbitrarily large ball.
Let x, y ∈ ∂B1 ∩ ∂∗E, we suppose x ̸= ±y. Then by the comparison

J(u,E) ≤ min(J(u,E ∪ Tx,y), J(u,E \ Tx,y))

where Tx,y is the triangle formed by 0, x, y, we find:

1
2(u(x) + u(y)) ≤ 1

2(u(x) + u(y))|x− y|

Thus |x − y| ≥ 1; we know E and Ec are a finite union of sectors of angle at least π
3 . We denote

(Sl)l the sectors of E and Ec enumerated in the trigonometric order, each directed by two unitary
vectors (xl, xl+1). Since u is harmonic and 1-homogeneous on each sector, then for each l there is a
vector wl(= ∇u|Sl

) such that u(x) = x · wl on Sl. Then we claim that for each l,

wl is the orthogonal reflexion of wl−1 through Rxl

Indeed, the continuity at xl gives xl · (wl − wl−1) = 0, and the first variation of the boundary of
lemma 7.12 gives |wl| = |wl−1|.
Notice moreover that in the case wl · xl = 0, then u|E − u|Ec extends as an harmonic function in a
neighbourhood of xl so necessarily wl ∝+ x⊥

l , wl−1 = −wl, and in the case wl ·xl > 0 the transmission
conditions gives |wl − wl−1| = 1

2 .

We know that for every l, arg(xl+1/xl) ∈ [π3 , π], we now show that arg(xl+1/xl) > π
3 . Suppose

indeed that there is equality for some l. By symmetry of the problem we may suppose that the
triangle Tl formed by (0, xl, xl+1) is in E and that u(xl) > 0. Then with the same computations as
previously,

J(u,E) = J(u,E \ Tl)
So (u,E \ Tl) is a minimizer too. In particular this means that u is harmonic on Sl−1 ∪ Tl: this
implies that wl−1 = wl, which contradicts the transmission condition at xl. Thus every sector is
strictly larger that π

3 , so there are either 2 or 4 sectors.

If there are 2 sectors, it is straightforward that u(x) = |x · w| and E = {x : x · w > 0} for some
vector |w| ≤ 1

4 . Let us now focus on the case with 4 sector. Then the conditions on (xl, wl) implies
that the (wl) (as well as the (xl)) form a square and up to rotation

E = (R+)2 ∪ (R−)2, (wl)l=0,1,2,3 = (±1,±1)
4

We let C be the square of vertices e1, e2,−e1,−e2; notice that with this choice u is constant on

∂C, with u|∂C ≡ 1
4 . We let F = E \ C, v = u ∨ 1

4 =
u outside C

1
4 inside C

. Then by explicit computation

we see (v, F ) has lower energy than (u,E) in C;

JC(v, F ) = 1√
2
<

3
4 = JC(u,E)
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Using the monotonicity, we actually get the stronger, Bernstein-type result

Corollary 7.17. Let (u,E) ∈ M (R2) such that u(0) = 0, then either u = 0 and E is whatever, or
there exists some vector |e| ≤ 1

4 such that

u(x) = |x · e|, E = {x : x · e > 0}

Proof. Consider (v, F ), (w,G) a limit of
(
u(r·)
r
, E
r

)
for r → 0,∞ respectively. Then (v, F ) and

(w,G) are homogeneous minimizers and in particular W (v, F ) = W (w,G) = 0. By monotonic-
ity, W (ur, Er) = 0 for all r > 0, so (u,E) is homogeneous.

7.5 Epiperimetric inequality at the contact set

In this section we establish the refinement of the monotonicity formula, through an epiperimetric
inequality that quantifies the speed of convergence to the blow-up.

Theorem 7.18. There are constants γ > 0, ϑ ∈ (0, 1), such that for any (u,E) ∈ M (B2) with
u(0) = 0, then

W (u,E) ≤
(
1 − γ ∧W (uh, Eh)ϑ

)
W (uh, Eh),

where (uh, Eh) is the 1-homogeneous extension of (u,E) on B1.

The result is established in five successive steps, that is mostly due to the fact that the set of
blow-ups is not compact and small blow-ups must be treated separately. In a way the epiperimetric is
obtainable through the explicit construction of “rough” competitor near any blow-up that is bounded
away from the blow-ups

{
1
4 |x · e|, e ∈ S1

}
which act as a critical case. Denoting B the set of blow-ups

in R2, we separate this set in
B = Blow ∪ Bhigh,

with Blow consisting of blow-ups (u,E) such that
´
∂B1

u ≤ 1
2 (including the case u = 0 and E being

whatever) and Bhigh consisting of blow-ups (u,E) such that 1
4 ≤

´
∂B1

u ≤ 1. In particular Bhigh is
compact, and this will be used in the last step.

• We first establish the result along minimizers (u,E) with inf∂B1∩∂∗E u small enough (which is
the case near any blow-up) and

´
∂B1

u ≤ 1
4 (which is the case near Blow) by explicit construction

of a minimizer that vanishes on ∂∗E. This is what is done in lemma 7.21.

• Then by compactness argument we establish the inequality outside any neighbourhood of Bhigh.
Indeed, if the inequality is wrong, then there is some sequence of minimizers that approach the
equality case, and since it must converge to some element of Blow we get a contradiction with
the previous point. This is done in lemma 7.22

• Near any point of Bhigh, we construct a competitor that has only two sectors in a small disk.
This is done by first damping the high-frequency modes on small sectors and then removing said
sector. Either this operation concludes the inequality or the energy of the two-sector competitor
we built is close to the original and we proceed with the next point. The computations for this
are done in subsection 7.5.3 and the proof of this is done in lemma 7.27.

• Near any point of Bhigh that has only two sectors with openness close to π, we construct a
competitor that depend only on a finite number of parameters in a smaller disk. This is done
by damping the high-frequency modes on each sector. A subtle point is that on the smaller
disk the high-frequency modes are not zero but instead depend on the parameters being the
openness of the sectors, the low-frequency mode on each side, and the values of u on the
boundary of the sector. As previously, either this concludes the inequality or the change of
energy is actually small compared to the previous competitor and we may proceed with the last
step. The computations are very similar to the previous step, and this is done in lemma 7.28.
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• Now we are left with (u,E) that only depends on five parameters, so it is in a five-dimensional
submanifold in a neighbourhood of Bhigh. Since Bhigh is compact, then for a small enough
neigbourhood we may see the energy functional as an analytic function of five variables that
verify the Lojasiewicz inequality, and then we implicitely build a competitor by controlled
gradient descent. A subtle point is that there are two constraints on the parameters, and once
gradient descent hit those constraints we need to continue a gradient descent on the constrained
submanifold. This is proved in lemma 7.29.

Let us introduce a few shorthand and notations that will be useful to us in this section in our use
of polar coordinate. For a function ϕ : S1 → R and E ⊂ ∂B1, we will write ϕh, Eh the 1-homogeneous
extension of (ϕ,E) on B1, meaning ϕh(x) := |x|ϕ(x/|x|) and Eh := ∪0<r≤1rE. While the trace of
u ∈ H1(B1) on S1 is in H1/2(S1), notice that a homogeneous function is in H1(B1) if and only if its
trace is also in H1(S1).

It will be useful to see a function ϕ ∈ H1(B1) as a choice, for every r ∈ (0, 1), of a function

ϕ|r := ϕr|S1

in H1/2(S1,R+) (that is actually in H1(S1) for almost every r), meaning ϕ|r is the usual rescaling
ϕr(x) := ϕ(rx)

r
restricted to S1. Likewise, we will write E|r = E(1)

r
∩ S1. This decomposition is

useful because it allows us to decompose the energy of (ϕ,Eh) itself as an integral of energies of ϕ|r

(restricted to the circle) with a penalization on the variation ∂rϕ|r (seen as a derivative of ϕ(rx)
r

in r,
and not as a radial derivative).

Lemma 7.19. Let ϕ ∈ H1(B1,R+) and E ⊂ S1, then

W (ϕ,Eh) =
ˆ 1

0

(
rF(ϕ|r) + r3

ˆ
S1

|∂rϕ|r|2dθ
)

dr, where

F(ϕ,E) =
ˆ
S1

(
|∂θϕ|2 − |ϕ|2

)
dθ +

∑
x∈∂∗E1

ϕ(x)

F(·, E) is defined on H1(S1), and when we apply it to a H1(B1,R+) function we implicitely assume
we apply it to its trace on S1 (with the convention that it is infinity if the trace is not in H1).

Proof. This is done by writing in polar coordinates |∇ϕ|2 = (ϕr + r∂rϕr)2 + (∂θϕr)2, and with one
integration by part along r.

Remark 7.20. Notice that in the last three steps of the proof the minimizer becomes simpler and sim-
pler, the main idea behind this “iterative” process is the following: suppose (ϕ,E) is an homogeneous
function and set, and suppose that we may build a competitor (ψ, F ) such that

• There is some radius ρ > 0 such that (ψ, F ) is homogeneous on Bρ.

• There is a constant ν > 0 such that either W (ψ, F ) ≤ (1 − ν)W (ϕ,E) or we have both
W (ψ, F ) ≤ W (ϕ,E) and F(ψ|ρ, F|ρ) ≥ 1

2F(ϕ|1, E|1).

• We are able to build (χ,G) such that (χ|1, G|1) = (ψ|ρ, F|ρ)|S1 and

W (χ,G) ≤
(
1 − γ ∧W (ψh|ρ, F h

|ρ)ϑ
)
W (ψh|ρ, F h

|ρ).

Then the logarithmic epiperimetric inequality holds for (ϕ,E). To be more precise, in the second
point the constant 1/2 could be replaced by any positive constant and the epiperimetric inequality
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could be replaced by the weaker logarithmic epiperimetric inequality, but this is what we will prove.

Indeed, if W (ψ, F ) > (1 − ν)W (u,E) then letting (χ,G)|r =
(ψ, F )|r if r > ρ

(χ,G)|ρr if r ≤ ρ
, we have

W (χ,G) −W (ϕ,E) = W (χ,G) −W (ψ, F ) +W (ψ, F ) −W (ϕ,E)
≤ ρ2

(
W (χ,G) −W (ψh|ρ, F h

|ρ)
)

≤ −ρ2(γ ∧W (ψh|ρ, F h
|ρ)ϑ)W (ψh|ρ, F h

|ρ),

and W (ψh|ρ, F h
|ρ) = 1

2F(ψ|ρ, F|ρ) ≥ 1
2W (ϕ,E), hence

W (χ,G) −W (ϕ,E) ≤ −1
2ρ

2(γ ∧ (W (ϕ,E)/2)ϑ)W (ϕ,E).

7.5.1 Estimate near small blow-ups

Lemma 7.21. There exists two universal constants ν, δ such that, for any u ∈ H1(S1,R+), E ⊂ S1,
with W (uh, Eh) < ∞, if ˆ

S1
udθ ≤ 1

2 , u|∂∗E ≤ δ,

then there exists (v, F ) that coincides with (u,E) on the boundary and such that

W (v, F ) ≤ (1 − ν)W (uh, Eh)

Proof. We let m = sup∂E u; we know that m ≤ δ0. Let us begin with the case m = 0; then u(1E−1Ec)
is smooth and we consider its fourier serie decomposition:

u(1E − 1Ec)(eiθ) =
∑
n∈Z

cne
inθ

Let v be the harmonic extension of u(1E − 1Ec) in the ball, and denote F = {v > 0}, then

W (v(1F − 1F c), F ) =
∑
n∈Z

(|n| − 1)|cn|2

W (uh, Eh) =
∑
n∈Z

|n|2 − 1
2 |cn|2

From (|n| − 1) ≤ 2
3

|n|2−1
2 we deduce that W (v(1F − 1F c), F ) ≤ 2

3W (uh, Eh). Note that this is still the
case if W (uh, Eh) < 0, though in this case the inequality is trivial.

We now suppose that m > 0, the idea is to first build a first competitor v by its section v|r
such that sup∂∗E v|ρ = 0 for some small enough ρ, and then use the previous harmonic extension to
conclude. Let ρ ∈]0, 1[ that will be fixed later, as well as a function f : [0, 1] → [0, 1] with value 1 on
[0, ρ], 0 in 1, and that is decreasing. We let

v|r = (u− f(r)m)+
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We compare v and uh. We have

W (v, Eh) −W (uh, Eh) =
ˆ 1

0

ˆ
S1

(
r
(
|∂θv|r|2 − |∂θu|2

)
− r

(
|v|r|2 − |u|2

)
+ r3|∂rv|r|2

)
dθdr

− P where P :=
∑

x∈∂∗E

ˆ 1

0
r(mf(r) ∧ u(x))dr

=
ˆ 1

0

ˆ
S1

1u>mf(r)
(
r
(
|∂θv|r|2 − |∂θu|2

)
− r

(
|v|r|2 − |u|2

)
+ r3|∂rv|r|2

)
dθdr

+
ˆ 1

0

ˆ
S1

1u≤mf(r)
(
r
(
|∂θv|r|2 − |∂θu|2

)
− r

(
|v|r|2 − |u|2

)
+ r3|∂rv|r|2

)
dθdr

− P

=
ˆ 1

0

ˆ
S1

1u>mf(r)
(
2urf(r)m− rf(r)2m2 + r3f ′(r)2m2

)
dθdr

−
ˆ 1

0

ˆ
S1

1u≤mf(r)
(
r|∂θu|2 − r|u|2

)
dθdr − P

≤ 2
(ˆ 1

0

ˆ
S1
rf(r)u1u>mf(r)dθdr

)
m

−
ˆ 1

0

ˆ
S1

1u≤mf(r)
(
r|∂θu|2 − r|u|2

)
dθdr

− P + Cfm
2

Where Cf is a constant that depends only on the choice of f . Let now (w|r, F|r) be defined as
à (v|r, E|r) for r > ρ, and with the same harmonic extension as previously for r < ρ. Through the
same Fourier serie decomposition we have

W (w,F ) −W (v, Eh) ≤ −ρ2

6

ˆ
S1

(
|∂θv|ρ|2 − |v|ρ|2

)
dθ

= −ρ2

6

ˆ
S1

1u>m
(
|∂θu|2 − |u−m|2

)
dθ

= −ρ2

6

ˆ
S1

1u>m
(
|∂θu|2 − |u|2

)
dθ − ρ2

3

(ˆ
S1
u1u>mdθ

)
m+ Cm2

So, regrouping the two previous computations,

W (w,F ) −W (u,Eh) ≤ 2
(ˆ 1

0

ˆ
S1
rf(r)u1u>mf(r)dθdr

)
m−

ˆ 1

0

ˆ
S1

1u≤mf(r)
(
r|∂θu|2 − r|u|2

)
dθdr

− ρ2

6

ˆ
S1

1u>m
(
|∂θu|2 − |u|2

)
dθdr − ρ2

3

(ˆ
S1
u1u>mdθdr

)
m+ Cfm

2 − P

≤ 2
(ˆ 1

0
rf(r)dr

)(ˆ
S1
udθ

)
m− 1

2

ˆ
S1

1u≤m
(
|∂θu|2 − |u|2

)
dθ

− ρ2

6

ˆ
S1

1u>m
(
|∂θu|2 − |u|2

)
dθdr − ρ2

3

(ˆ
S1
udθ

)
m+ Cfm

2 − P

≤ −ρ2

6

ˆ
S1

(|∂θu|2 − |u|2)dθ +
(ˆ

S1
u

)(
2
ˆ 1

0
rf(r)dr − ρ2

3

)
m+ Cfm

2 − P

= −ρ2

3 W (uh, Eh) +
(ˆ

S1
u

)(
2
ˆ 1

0
rf(r)dr − ρ2

3

)
m+ Cfm

2 − 2
3P
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where Cf is a constant depending only on f that may change from line to line. Now we just have to
prove that the sum of the three last term is negative. For this, notice that since m = sup∂∗E u, then
there is some x ∈ ∂∗E such that u(x) = m (it is actually reached, else the energy would be infinite),
so

P ≥
(ˆ 1

0
rf(r)dr

)
m,

so it is enough to prove

2
3

ˆ 1

0
rf(r)dr ≥

(ˆ
S1
u

)(
2
ˆ 1

0
rf(r)dr − ρ2

3

)
+ Cfm

2

We fix ρ ∈ (0, 1), and f(r) = 1 −
(
r−ρ
1−ρ

)1/K

+
for a large enough K such that

´ 1
0 rf(r)dr ≈ ρ2

2 . Then
when

´
S1 u ≤ 1

2 and m is small enough this condition is true and we get the result.

7.5.2 Estimate away from large blow-ups

Lemma 7.22. For any small η > 0, there is a constant νη > 0 such that, for any (u,E) ∈ M (B2)
with u(0) = 0, dist(u|B1 ,Bhigh) ≥ η, if we denote (uh, Eh) the 1-homogeneous extension of u in B1,
then

W (u,E) ≤ (1 − νη)W (uh, Eh)

An appropriate η > 0 will be fixed at the very end of the proof.

Proof. Suppose there exists a sequence νi → 0, and a sequence of minimizers (ui, Ei) on B2 such that
for every i:

W (ui, Ei) > (1 − νi)W (uhi , Eh
i )

Then up to a subsequence, we may suppose that (ui, Ei) converges to a minimizer (u,E) (we remind
that the convergence for u is strong in H1

loc(B2) ∩ C0
loc(B2) and that W (ui, Ei) → W (u,E)). Under

these circumstances,
W (uh, Eh) ≤ lim inf

i→∞
W (uhi , Eh

i )

by lower semicontinuity. In particular, W (uh, Eh) ≤ W (u,E), so (uh, Eh) is a homogeneous mini-
mizer on B1; in particular we know that W (uh, Eh) = 0, which in turn implies that W (ur, Er) = 0
for every r ∈]0, 1[ by monotonicity, so (u,E) is an homogenous minimizer. In particular, for any
large enough i the hypothesis of lemma 7.21 are verified, meaning that

(1 − ν)W (uhi , Eh
i ) ≥ W (ui, Ei) > (1 − νi)W (uhi , Eh

i ),

which is a contradiction for any large enough i for which νi < ν.

7.5.3 Preliminary computations

Consider ϕ ∈ H1(S1), E ⊂ S1, such that F(ϕ,E) < ∞. Suppose that E and Ec each form a countable
number of sectors (Si)i∈I , on which, up to a rotation that makes Si = [0, παi], ϕ is equal to

ϕi = mi + li cos
(
θ

αi

)
+
∑
n≥1

cn,i sin
(
nθ

αi

)

Then the energy F(ϕ,E) decomposed into the contribution of each sector as

F(ϕ,E) =
∑
i∈I

(
ϕi(0) + ϕi(αi)

2 +
ˆ αi

0
(|∂θϕi|2 − |ϕi|2)dθ

)
=:
∑
i∈I

Fαi(ϕi)

In this subsection we fix α ∈ (0, 2), φ ∈ H1([0, πα]), and compute Fα(φ) for several parametriza-
tions.
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Lemma 7.23. Let α ∈ (0, 2), and let φ ∈ H1([0, α]), Fα can be decomposed as

φ = m+ l cos
(
θ

α

)
+
∑
n≥1

cn sin
(
nθ

α

)

Then

Fα(φ) =m− παm2 + π

2
(
α−1 − α

)
l2

+
∑

odd n

(
π

2
(
α−1n2 − α

)
c2
n − 4

n
αmcn

)

+
∑

even n

(
π

2
(
α−1n2 − α

)
c2
n + 4n

n2 − 1
(
α−1 − α

)
lcn

)

Proof. We compute separately:

ˆ πα

0
φ2 =

ˆ α

0

∣∣∣∣∣∣m+ l cos
(
θ

α

)
+
∑
n≥1

cn sin
(
nθ

α

)∣∣∣∣∣∣
2

dθ

=
ˆ πα

0

[
m2 + l2 cos(θ/α)2 +

∑
n≥1

c2
n sin(nθ/α)2

+ 2m
∑
n≥1

cn sin(nθ/α) + 2l cos(θ/α)
∑
n≥1

cn sin(nθ/α)
]
dθdθ

= α

ˆ π

0

m2 + l2 cos(θ)2 +
∑
n≥1

c2
n sin(nθ)2 + 2m

∑
n≥1

cn sin(nθ) + 2l cos(θ)
∑
n≥1

cn sin(nθ)
 dθ

= α

πm2 + π

2 l
2 + π

2
∑
n≥1

c2
n + 2m

∑
n≥1

cn

ˆ π

0
sin(nθ)dθ + 2l

∑
n≥1

cn

ˆ π

0
cos(θ) sin(nθ)dθ


Then notice that

ˆ π

0
sin(nθ)dθ = 2

n
1odd n,

ˆ π

0
cos(θ) sin(nθ)dθ = −n

ˆ π

0
sin(θ) cos(nθ)dθ = 2n

n2 − 11even n

Thus ˆ πα

0
φ2dθ = α

πm2 + π

2 l
2 + π

2
∑
n≥1

c2
n + 4m

∑
odd n

cn
n

+ 4l
∑

even n

ncn
n2 − 1


Similarly,

ˆ πα

0
|∂θφ|2dθ = α−2

ˆ α

0

∣∣∣∣∣∣−l sin
(
θ

α

)
+
∑
n≥1

ncn cos
(
nθ

α

)∣∣∣∣∣∣
2

dθ

= α−1
ˆ π

0

∣∣∣∣∣∣−l sin (θ) +
∑
n≥1

ncn cos (nθ)
∣∣∣∣∣∣
2

dθ

= α−1

π
2 l

2 + π

2
∑
n≥1

n2c2
n − 2l

∑
n≥1

ncn

ˆ π

0
sin(θ) cos(nθ)dθ


= α−1

π
2 l

2 + π

2
∑
n≥1

n2c2
n + 4l

∑
even

ncn
n2 − 1


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Thus

Fα(φ) = m+ α−1

π
2 l

2 + π

2
∑
n≥1

n2c2
n + 4l

∑
even

ncn
n2 − 1


− α

πm2 + π

2 l
2 + π

2
∑
n≥1

c2
n + 4m

∑
odd n

cn
n

+ 4l
∑

even n

ncn
n2 − 1


= m− παm2 + π

2
(
α−1 − α

)
l2 +

∑
odd n

(
π

2
(
α−1n2 − α

)
c2
n − 4

n
αmcn

)

+
∑

even n

(
π

2
(
α−1n2 − α

)
c2
n + 4n

n2 − 1
(
α−1 − α

)
lcn

)

We now introduce a change of variable that will be practical to isolate high-frequencies contribu-
tion, meaning either every (cn)n≥2 for α ≈ 1 or every (cn)n≥1 for α ≈ 0.

Lemma 7.24 (small sector). Let α ∈ (0, 1/
√

2), and let φ ∈ H1([0, α]) be decomposed as

φ = m+ l cos
(
θ

α

)
+
∑
n≥1

cn sin
(
nθ

α

)

for any n ≥ 1 we let

cn = bn +


4α2m
πn(n2−α2) for odd n

4n(1−α2)l
π(n2−1)(n2−α2) for even n

,

such that

φ(θ) =
1 +

∑
odd n>1

4α2

πn (n2 − α2) sin
(
nθ

α

)m
+
(

cos
(
θ

α

)
−

∑
even n

4n (1 − α2)
π(n2 − 1) (n2 − α2) sin

(
nθ

α

))
l

+
∑
n≥1

bn sin
(
nθ

α

)

Then Fα(φ) = Fα(φ) +∑
n≥1 Fα

n (φ), where

Fα(φ) =m−
(
π + 8α2

π

∑
odd n

1
n2(n2 − α2)

)
αm2

+
(
π

2 − 8(1 − α2)
π

∑
even n

n2

(n2 − 1)2(n2 − α2)

)
1 − α2

α
l2

Fα
n (φ) = π

2α(n2 − α2)b2
n

While Fα might seem complicated, notice that it is an analytic function that only depends on a
finite number of variables, while the high-frequency term are now much easier.
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Proof. Let n ≥ 1 (if α is small), then we may write

π

2
(
α−1n2 − α

)
c2
n − 4

n
αmcn = π

2
(
α−1n2 − α

)(
cn − 4α2m

πn(n2 − α2)

)2

− 8α3m2

πn2(n2 − α2) for odd n

π

2
(
α−1n2 − α

)
c2
n + 4n

n2 − 1
(
α−1 − α

)
lcn = π

2
(
α−1n2 − α

)(
cn + 4n(1 − α2)l

π(n2 − 1)(n2 − α2)

)2

− 8n2(1 − α2)2l2

πα(n2 − 1)2(n2 − α2) for even n

Replacing these in the formula for Fα, we obtain the result.

For large sector (α ≈ 1) we have the completely analogous decomposition.

Lemma 7.25 (large sector). Let α ∈ [1/
√

2, 2), and let φ ∈ H1([0, α]) be decomposed as

φ = m+ l cos
(
θ

α

)
+
∑
n≥1

cn sin
(
nθ

α

)

for any n ≥ 2 we let

cn = bn +


4α2m
πn(n2−α2) for odd n

4n(1−α2)l
π(n2−1)(n2−α2) for even n

,

such that

φ(θ) =
1 +

∑
odd n>1

4α2

πn (n2 − α2) sin
(
nθ

α

)m
+
(

cos
(
θ

α

)
−

∑
even n

4n (1 − α2)
π(n2 − 1) (n2 − α2) sin

(
nθ

α

))
l

+ c1 sin
(
θ

α

)
+
∑
n>1

bn sin
(
nθ

α

)

Then Fα(φ) = Fα
1 (φ) +∑

n>1 Fα
n (φ), where

Fα

1 (φ) =m−

π + 8α2

π

∑
odd n>1

1
n2(n2 − α2)

αm2

+
(
π

2 − 8(1 − α2)
π

∑
even n

n2

(n2 − 1)2(n2 − α2)

)
1 − α2

α
l2

+ π

2
α2 − 1
α

c2
1 − 4αmc1

Fα
n (φ) = π

2α(n2 − α2)b2
n

The proof is the same, only we isolate the first fourier coefficient.
Now, if we consider a function φ ∈ H1(B1) and E ⊂ S1 that we extend homogeneously, with

countable sectors (Si)i∈I (of both E and Ec) of angle παi, then on each sector and for each r ∈ (0, 1)
we can parametrize the restriction of φ|r to Si by parameters (mi(r), li(r), αi, (bi,n(r))n≥1) following
7.24 or 7.25. We make the hypothesis that for all i, mi(r) and li(r) do not depend on r. Then we
have a decomposition

W (φ,E) =
∑
i∈I

Wαi(φ|Si),
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where each term is decomposed as
Wαi(φ|Si) = W

αi(φ|Si) +
∑
n≥1

Wαi
n (φ|Si)

where (in the small sector case, the large sector case is completely analog using 7.24) each term is
defined by

W
αi(φ|Si) = W

αi(φh|1|Si) = 1
2F

αi(φ|1|Si) as in lemma 7.24

Wαi
n (φ|Si) = π

2αi
ˆ 1

0

(
r3b′

i,n(r)2 + r

(
n2

α2 − 1
)
bi,n(r)2

)
dr

Lemma 7.26. There exists ρ ∈ (0, 1), that may be taken arbitrarily small, such that, denoting

h(r) = 1
r

(
r − ρ

1 − ρ

)1+ρ2/3

+

Then for any κ ≥ 1, we have
ˆ 1

0

(
r3h′(r)2 + rκh(r)2

)
dr ≤

(
1 − 1

2ρ
2/3
)
κ

2

We see in particular this lemma applies to the quantity Wαi
n when n2

α2
i

− 1 ≥ 1, meaning any
n ≥ 1 when αi ≤ 1√

2 , and for any n ≥ 2 in general (we may suppose that we are only dealing with
sectors of angle no more than

√
2π, since we already know the epiperimetric inequality away from

large blow-ups, which are flat).

7.5.4 Erasure of small sectors and high frequencies

Lemma 7.27. There exists three universal constants ρ, ν, η such that, for any ϕ ∈ H1(S1), E ⊂ S1,
with F(ϕ,E) < ∞, dist((ϕ,E),Bhigh) ≤ η, then there exists ψ ∈ H1(B1), F ⊂ B1 that coincides with
(ϕ,E) on the boundary, such that W (ψ, F ) ≤ W (ϕh, Eh) and more precisely

• (ψ, F ) is 1-homogeneous on Bρ and has only two sectors with angles close to π.

• Or W (ψ, F ) ≤ (1 − ν)W (ϕh, Eh) or F(ψρ, Fρ) ≥ 1
2F(ϕ1, E1).

Proof. When η is small enough, we may assume that the angles of the sectors of E and Ec are
arbitrarily close to either 0 or π. As previously, we let (Si)i∈I the (countable) sectors of E and Ec.
We write I = {1, 2} ⊔ J where S1, S2 are the two large sectors (with S1 ⊂ E, S2 ⊂ Ec) and the Sjs
are the small sectors (we suppose that J is non-empty, otherwise there is nothing to prove).

We define as previously the associated parameters (mj, lj, αj, (bj,n)n≥1) associated to ϕ|Sj for any
j ∈ J , and we build ψ by variation of the parameters (bj,n) on each sector. We also let ρ ∈ (0, 1),
and h chosen as in the lemma 7.26. Now for any sector Si we define ψ|r by the following:

ψ|r|Si =
ϕ|Si if i = 1, 2,
ϕ|Si − (1 − h(r))∑n≥1 b

j
n sin

(
nθ
α

)
if i ∈ J.

meaning that the Fourier coefficient associated to ψ|r|Sj for a small sector Sj are bj,n(r) = h(r)bj,n,
which is in particular zero for r ∈ (0, ρ], and

ψ|r|Sj(θ) =
1 +

∑
odd n>1

4α2
j

πn
(
n2 − α2

j

) sin
(
nθ

αj

)mj

+
cos

(
θ

αj

)
−

∑
even n

4n
(
1 − α2

j

)
π(n2 − 1)

(
n2 − α2

j

) sin
(
nθ

αj

) lj
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Notice that there is a universal constant C > 0 such that for any small sector Sj,

ψρ|Sj ≤ Cmj

Up to switching E and Ec, we suppose ∑
j∈J,Sj⊂E

mj ≥ 1
2
∑
j∈J

mj

We then define F to be

F|r =
E if r > ρ

S1 if r ≤ ρ

Such that (ψ, F ) is a 2-sector homogeneous function on Bρ. Notice then that for a small enough η
(depending on C only), all the angles (αj)j∈J are small enough such that,

W (ψ, F ) ≤ W (ψ,Eh) − ρ2 ∑
j∈J,Sj⊂E

(1
2 − Cαj

)
mj ≤ W (ψ,Eh) − 1

8ρ
2 ∑
j∈J

mj

Now, we decompose W (ψ,Eh
1 ) using the notations of lemma 7.24

W (ψ,Eh) = Wα1(ψ|S1) +Wα2(ψ|S2) +
∑
j∈J

Wαj (ψ|Sj) +
∑
n≥1

Wαj
n (ψ|Sj)


and likewise for F . Then by the choice of h in lemma 7.26,

W (ψ,Eh) = Wα1(ϕh|S1) +Wα2(ϕh|S2) +
∑
j∈J

Wαj (ϕh|Sj) +
∑
n≥1

Wαj
n (ψ|Sj)


= Wα1(ϕh|S1) +Wα2(ϕh|S2)

+
∑
j∈J

Wαj (ϕh|Sj) +
(

1 − 1
2ρ

2/3
)∑
n≥1

Wαj
n (ϕh|Sj)


= W (ϕh, Eh) − 1

4ρ
2/3 ∑

j∈J

∑
n≥1

Fαj
n (ϕ|Sj)

And so

W (ψ, F ) ≤ W (ϕh, Eh) − 1
4ρ

2/3 ∑
j∈J

∑
n≥1

Fαj
n (ϕ|Sj) − 1

8ρ
2 ∑
j∈J

mj

let ν > 0 that will be fixed later, suppose that the right-hand side is not lower than (1−ν)W (ϕh1 , Eh
1 ),

meaning that
1
4ρ

2/3 ∑
j∈J

∑
n≥1

Fαj
n (ϕ|Sj) + 1

8ρ
2 ∑
j∈J

mj ≤ ν

2F(ϕ,E)

Then

F(ψ|ρ, F ) = F(ψ|ρ, E) + (F(ψ|ρ, F ) − F(ψ|ρ, E))
= F(ϕ,E) −

∑
j∈J

∑
n≥1

Fαj
n (ϕ|Sj) −

∑
j∈J :Sj⊂E

mj

≥
(

1 − 4ν
ρ2

)
F(ϕ,E)

Choosing a small enough ν (depending on ρ, which is fixed) we obtain F(ψρ, F ) ≥ 1
2F(ϕ,E), which

is the result.
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Lemma 7.28. There exists three universal constants ρ, ν, η such that, for any ϕ ∈ H1(S1), E ⊂ S1

with only two sectors with angles close to π, and W (ϕh, Eh) < ∞, dist((ϕh, Eh),Bhigh) ≤ η, then
there exists ψ ∈ H1(B1), F ⊂ B1 that coincides with (ϕ,E) on the boundary, such that W (ψ, F ) ≤
W (ϕh, Eh) and more precisely

• (ψ, F ) is 1-homogeneous on Bρ and up to rotation is of the form

Fρ =[0, π(1 + δ)]

ψρ(θ) =
ψ+

ρ (+θ) in Fρ

ψ−
ρ (−θ) in F c

ρ

, where

ψ±(θ) =
1 +

∑
odd n>1

4(1 ± δ)2

πn (n2 − (1 ± δ)2) sin
(

nθ

(1 ± δ)

)m
+
(

cos
(

θ

(1 ± δ)

)
−

∑
even n

4n (1 − (1 ± δ)2)
π(n2 − 1) (n2 − (1 ± δ)2) sin

(
nθ

(1 ± δ)

))
l

+ c±
1 sin

(
θ

(1 ± δ)

)

for some δ,m, l, c+
1 , c

−
1 ∈ R5.

• Either W (ψ, F ) ≤ (1 − ν)W (ϕh, Eh) or F(ψρ, Fρ) ≥ 1
2F(ϕ,E).

Proof. We proceed the same way as previously. Write S± = ±[0, π(1 ± δ)] the two sectors, and
decompose ϕ on each sector as in lemma 7.25. Let h be as defined in lemma 7.26, then we let

ψ|r|S±(θ) = ϕ|S±(θ) − (1 − h(r))
∑
n≥1

b±
n sin

(
nθ

1 ± δ

)

We use the notations of lemma 7.25, and we will denote W± (resp F±) for W π(1±δ). Then

W (ψ,Eh) =
(
W

+
1 (ψ|S+) +W

−
1 (ψ|S−)

)
+
∑
n≥2

(
W+
n (ψ|S+) +W−

n (ψ|S−)
)

≤
(
W

+
1 (ϕh|S+) +W

−
1 (ϕh|S−)

)
+
(

1 − 1
2ρ

2/3
)∑
n≥2

(
W+
n (ϕh|S+) +W−

n (ϕh|S−)
)

So if the right-hand side is larger than (1 − ν)W (ϕh, Eh) then

1
2ρ

2/3 ∑
n≥2

(
F+
n (ϕ|S+) + F−

n (ϕ|S−)
)

≤ νF(ϕ,E),

so

F(ψ|ρ, E) = F(ϕ,E) −
∑
n≥2

(
F+
n (ϕ|S+) + F−

n (ϕ|S−)
)

≥
(

1 − 2ν
ρ2/3

)
F(ϕ,E)

≥ 1
2F(ϕ1, E1) when ν ≤ 1

4ρ
2/3
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7.5.5 Gradient descent on low-frequency solutions near large blow-up

Here we treat the most critical case; the case where E and Ec are both one sector of angle πα =
π(1 ± δ) ≈ π for a small δ, and where the “bn” coefficient defined previously are all 0, meaning that
(ϕ,E) takes the following form:

E =[0, π(1 + δ)]

ϕ(θ) =
ϕ+(+θ) in E

ϕ−(−θ) in Ec
, where

ϕ±(θ) =
1 +

∑
odd n>1

4(1 ± δ)2

πn (n2 − (1 ± δ)2) sin
(

nθ

(1 ± δ)

)m
+
(

cos
(

θ

(1 ± δ)

)
−

∑
even n

4n (1 − (1 ± δ)2)
π(n2 − 1) (n2 − (1 ± δ)2) sin

(
nθ

(1 ± δ)

))
l

+ c±
1 sin

(
θ

(1 ± δ)

)

(7.6)

meaning that (ϕ,E) is a smooth function of the five parameters P := (m, l, δ, c+
1 , c

−
1 ) (that we write

(ϕ(P ), E(P ))), with the constraint that 0 ≤ |l| ≤ m. In this situation, F(ϕ,E) is actually an analytic
function of the parameters P ;

F (P ) := F(ϕ(P ), E(P ))

= 2m−

2π + 8
π

∑
odd n>1

(
(1 + δ)3

n2(n2 − (1 + δ)2) + (1 − δ)3

n2(n2 − (1 − δ)2)

)m2

+
(

πδ2

1 − δ2 − 8
π

∑
even n

(
n2(1 − (1 + δ)2)2

(1 + δ)(n2 − 1)2(n2 − (1 + δ)2) + n2(1 − (1 − δ)2)2

(1 − δ)(n2 − 1)2(n2 − (1 − δ)2)

))
l2

+ π

2
(1 + δ)2 − 1

(1 + δ) |c+
1 |2 − 4(1 + δ)mc+

1 + π

2
(1 − δ)2 − 1

(1 − δ) |c−
1 |2 − 4(1 − δ)mc−

1

Notice however two important facts; first there is a constraint on the parameter P , it must evolve in
the admissible subspace {

(m, l, δ, c+
1 , c

−
1 ) : 0 ≤ |l| ≤ m

}
Secondly, lemma 7.19 was only valid for a homogeneous E; here if we consider (ϕ,E) that is smoothly
parametrized by a parameter curve P (r), meaning ϕ|r = ϕ(P (r)), E|r = E(P (r)) for some curve
(P (r))0<r<1 in the admissible parameter space, then W (ϕ,E) is given by

W (ϕ,E) =
ˆ 1

0

(
rF(ϕr) + rR(ϕr, Er) + r3

ˆ
S1

|∂rϕr|2dθ
)

dr,

where R(ϕr, Er) = π(m(r) − l(r))
(√

1 + r2δ′(r)2 − 1
)

dr

So it doesn’t split as nicely as the case where E is homogeneous. In our case since m and l will be
arbitrarily small, then the additional term R verifies R ≪ δ′(r).

We start by a logarithmic reparametrization of the radius; let κ > 0 that will be fixed later, and
P = P (t)t≥0 a curve in the parameter space

P (t) = (m(t), l(t), δ(t), c+
1 (t), c−

1 (t)),

meaning a smooth curve in R5. We associate to it the function ϕ ∈ H1(B1) and the set E given by

(ϕ|r, E|r) := (ϕ(P (e−κt)), E(P (e−κt))).
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In these circumstances, W (ϕ,E) takes the expression

W (ϕ,E) =: G (P (t)t≥0)

=
ˆ +∞

0

1
κ

∥∥∥∥∥ d
dtϕ ◦ P (t)

∥∥∥∥∥
2

L2(S1)
+ 1
κ
Rκ(t, P (t), P ′(t)) + κF (P (t))

 e−2κtdt

Where Rκ(t, P (t), P ′(t)) = κ2π(m(t) − l(t))
(√

1 + 1
κ2 δ′(t)2 − 1

)
is defined as R above, and notice

in particular that |Rκ(t, P (t), P ′(t))| ≤ πm(t)δ′(t)2

Lemma 7.29. There exists three universal positive constants ϑ, γ, η, such that for any ϕ,E of the
form (7.6) with dist((ϕ,E),Bhigh) ≤ η, then there exists (ψ, F ) such that (ψ|1, F|1) = (ϕ,E) and

W (ψ, F ) ≤
(
1 − γ ∧W (ϕh, Eh)ϑ

)
W (ϕh, Eh).

Proof. With our change of variable in the parameter space, it is equivalent to prove the following;
there exists three universal positive constants ϑ, γ, η, such that for any admissible P0 ∈ R5 with

dist (P0, Z) ≤ η, where Z :=
{

(0, 0, 0, t, t), 1
4 ≤ t ≤ 1

}
then there exists P ∈ W 1,1(R+,R5) such that P (0) = P0, P (t) is admissible for all t and

G (P ) ≤
(
1 − γ ∧ G (P0)ϑ

)
G (P0),

where by abuse of notation P0 is seen as the constant function egal to P0.

This will be done by a gradient descent on F . Notice that F is analytic in a neighbourhood
of Z ⊂ F −1(0), so by the Lojasiewicz inequality there exists a η > 0, ϑ ∈ (0, 1), such that in a
2η-neighbourhood of this set (denoted Z2η) we have

|∇F |2 ≥ |F |1+ϑ

Let T := η
∥∇F∥L∞(Z2η)

. Then if P0 ∈ Zη, let P the variation defined on [0, T ] as
P (0) = P0

P
′(t) = −∇F (P (t)) (0 ≤ t ≤ T )

the definition of T makes it so P is well-defined and in Z2η at all time. Then we define a stopping
time T ; either F (P (T )) ≥ 1

2F (P0) and we let T := T , or we let T the smallest time for which
F (P (T )) = 1

2F (P0), and

P (t) =
P (t) if 0 ≤ t ≤ T

P (T ) if t ≥ T

For the sake of clarity let us suppose for now that P (t) is admissible for all t, meaning that at all
time we have 0 ≤ |l(t)| ≤ m(t). Then, just using the fact that P is constant for t ≥ T we get

G (P ) − G (P0) =
ˆ +∞

0

1
κ

∥∥∥∥∥ d
dtϕ ◦ P (t)

∥∥∥∥∥
2

L2(S1)
+ 1
κ
Rκ(t, P (t), P ′(t)) + κ(F (P (t)) − F (P0))

 e−2κtdt

=
ˆ T

0

1
κ

∥∥∥∥∥ d
dtϕ ◦ P (t)

∥∥∥∥∥
2

L2(S1)
+ 1
κ
Rκ(t, P (t), P ′(t)) + 1

2⟨∇F (P (t)), P ′(t)⟩
 e−2κtdt

Then,
1
κ

∥∥∥∥∥ d
dtϕ ◦ P (t)

∥∥∥∥∥
2

L2(S1)
= 1
κ

∥Dϕ(P (t)) · P ′(t)∥2
L2(S1) ≤ C

κ
|P ′(t)|2 ≤ 1

8 |P ′(t)|2

176



for some universal constant C that depends only on η, and for a large enough κ (depending on η)
that is now fixed (notice that we used the equation of P here). Similarly,

1
κ
Rκ(t, P (t), P ′(t)) ≤ 1

κ
πm(t)δ′(t)2 ≤ 1

8 |P ′(t)|2

when m (so η) is small enough and if we only consider t ≤ 1 (which we can do without loss of
generality), then we get as a consequence that

G (P ) − G (P0) ≤ 1
4

ˆ T

0
⟨∇F (P (t)), P ′(t)⟩e−2κtdt

Let us now separate two cases:
• If F (P (T )) = 1

2F (P0), then by a simple integration by part

G (P ) − G (P0) ≤ 1
4

ˆ T

0

d
dt

[
F (P (t)) − F (P0)

]
e−2κtdt

= e−2κT

4

[
F (P (t)) − F (P0)

]
+ κ

2

ˆ T

0

[
F (P (t)) − F (P0)

]
e−2κtdt

≤ −e−2κT

4 G (P0)

• If F (P (T )) > 1
2F (P0), then

G (P ) − G (P0) ≤ 1
4

ˆ T

0
⟨∇F (P (t)), P ′(t)⟩e−2κtdt

= −1
4

ˆ T

0
|∇F (P (t))|2e−2κtdt

≤ −1
4

ˆ T

0
|F (P (t))|1+ϑe−2κtdt

≤ −1 − e−2κT

22−ϑκ
G (P0)1+ϑ

This ends the proof in the case where P (t) stays in the admissible space{
(m, l, δ, c+

1 , c
−
1 ) : 0 ≤ |l| ≤ m

}
Let us first detail what happens should there exists some τ ∈ [0, T ) (supposed to be minimal)

such that l(τ) = ±m(τ) with m(t) > 0 on [0, τ ]. Then instead of stopping P at time T we stop it at
time τ . This way we obtain (ψ, F ) a competitor for (ϕh, Eh) such that

• (ψ, F ) is 1-homogeneous on Bρ with ρ = e−κτ ≥ e−κT .

• W (ψ, F ) −W (ϕh1 , Eh
1 ) = G (P ) − G (P0) ≤ −1

4

´ τ
0 |∇F ◦ P |2dt ≤ 0.

• F(ψρ, Fρ) = F (P (τ)) ≥ 1
2F (P0) = F(ϕh1 , Eh

1 ).
So by the remark 7.20, it is enough to prove the epiperimetric inequality for (ψ|ρ, F|ρ); this is done
in the exact same way as previously except the gradient descent is done in the submanifold

{(m, l, δ, c+
1 , c

−
1 ) : 0 < |l| = m}

which is the union of two hyperplanes. From this we define new constants η′, ϑ′ and we do the exact
same proof; in the end we need to take the minimum between all these constants. If we hit the
constraint m = 0, then we stop the descent at the time the constraint is hit and do a new gradient
descent on {(0, 0, δ, c+

1 , c
−
1 )} (notice this one may also be done by “by hand” by simple harmonic

extension of (1Ec − 1E0)ϕ and we get a “strong” epiperimetric inequality, although it is not needed
in our case).
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7.6 Nondegeneracy and regularity of the contact set

Proposition 7.30. Let (u,E) ∈ M (B1). We let r(u,E) be the smallest r ∈ [0, 1] such that
W (ur, Er)ϑ ≥ γ. Then

r(u,E) ≥ 1 ∧
(

γ1/ϑ

W (u,E)

) 1
2γ

Moreover, for any r(u,E) ≤ s < r ≤ 1,

W (us, Es)
W (ur, Er)

≤
(
s

r

)2γ
,

and for any 0 < s < r ≤ r(u,E),

W (us, Es)−ϑ −W (ur, Er)−ϑ ≥ 2ϑ log
(
r

s

)
.

Proof. Suppose that r(u,E) < 1. Let r ∈ (r(u,E), 1), then the monotonocity formula and the
epiperimetric inequality give

d
drW (ur, Er) ≥ 2

r

(
W (uhr , Eh

r ) −W (ur, Er)
)

≥ 2γ
r
W (ur, Er)

Integrating this from r(u,E) to 1 we get the lower bound on r(u,E), and then integrating this from
s to r for r(u,E) ≤ s < r ≤ 1 we get the first inequality. For the second inequality, with the same
computation we get

d
drW (ur, Er) ≥ 2

r

(
W (uhr , Eh

r ) −W (ur, Er)
)

≥ 2
r
W (ur, Er)1+ϑ,

and the rest follows by integration.

Proposition 7.31. Let (u,E) ∈ M (B2) be such that W (u2, E2)ϑ ≤ γ and u(0) = 0. Then there
exists a universal C > 0 such that for any 0 < s < r ≤ 1 we have

∥ur − us∥L1(S1) ≤ C log
(1
r

)− 1
2( 1

ϑ
−1)

In all the following we will denote α := 1
2

(
1
ϑ

− 1
)

the exponent that appears here.

Proof. We have W (u2, E2)ϑ ≤ γ, so the logarithmic epiperimetric applies for any radius lower than
2. In particular, using the previous proposition we get for any r ≤ 1 that

W (ur, Er)−ϑ −W (u1, E1)−ϑ ≥ 2ϑ log
(1
r

)
,

so
W (ur, Er) ≤ (2ϑ)− 1

ϑ log
(1
r

)− 1
ϑ

Let 0 < s < r ≤ 1, we write w(r) = W (ur, Er) and D(r) =
´
S1 |x · ∇u− u|2. Then

∥ur − us∥L1(S1) =
ˆ
S1

∣∣∣∣∣
ˆ r

s

d
dρuρ(x)dρ

∣∣∣∣∣ dH n−1 =
ˆ
S1

∣∣∣∣∣
ˆ r

s

x∇̇uρ(x) − uρ(x)
ρ

dρ
∣∣∣∣∣ dH n−1

≤
√

2π
ˆ r

s

√
D(ρ)
ρ

dρ ≤
√
π

ˆ r

s

√
w′(ρ)
ρ

dρ ≤
√
π log

(
r

s

)
w(r)
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In particular, for s ≥ r2, we get

∥ur − us∥L1(S1) ≤ π
1
2 (2ϑ)− 1

2ϑ log
(1
r

)− 1
2( 1

ϑ
−1)

Denoting rk := e−2k , we thus get that for any k > l in N∗,

∥url
− urk

∥L1(S1) ≤
∑
l≤j<k

∥urj
− ur2

j
∥L1(S1) ≤ π

1
2 (2ϑ)− 1

2ϑ

∑
l≤j<k

2− 1
2( 1

ϑ
−1)j

≤ C2− 1
2( 1

ϑ
−1)l = C log

( 1
rl

)− 1
2( 1

ϑ
−1)

And so for any 0 < s < r < e−1, by finding l, k such that r ∈ [r2
l , rl] and s ∈ [r2

l , rl], we obtain

∥ur − us∥L1(S1) ≤ C log
(1
r

)− 1
2( 1

ϑ
−1)

For r ∈ [e−1, 1] it is obvious up to taking a large enough C due to the uniform bound on ∥ur∥L1(S1),
so we get the result.

Corollary 7.32. There exists R > 1, C > 0 such that, for any (u,E) ∈ M (BR) with u(0) = 0, and
for any 0 < s < r ≤ 1 we have

∥ur − us∥L1(S1) ≤ C log
(1
r

)−α

Proof. Due to the uniform bound of proposition 7.4 we know that W (uR/2, ER/2) ≤ C for some
uniform C. Then, we know r(uR/2, ER/2) ≥ c for some uniform c > 0, and we choose R large enough
such that Rc > 2, meaning that for any (u,E) ∈ M (BR) with u(0) = 0 we have W (u1, E1)ϑ ≤ γ, so
the previous result applies.

R is now a constant that is fixed in all the following.

7.6.1 Nondegeneracy lemma

Proposition 7.33. There exists ϵ, r > 0 such that, if (u,E) ∈ M (B1) verifies ∥u∥L∞(B1) ≤ ϵ then

∂∗E ∩ {u > 0} ∩Br = ∅

Proof. We let ϵ, r > 0 that will be fixed small enough at the end, with ϵ depending on r. Suppose
that ∂∗E ∩ {u > 0} ∩Br contains some point x. In all the following, we suppose r ≤ 1

24 .

• Claim: {u = 0} ∩ B2r ̸= ∅. Indeed, suppose that it is not the case. Then ∂∗E ∩ {u > 0}
contains an arc from ∂∗E ∩Br to ∂∗E ∩B2r, of length at least r. Let φ ∈ C∞

c (B1,R+) be such
that φ = 1 on B2r, then

1
2r ≤

ˆ
B2r\Br

φ∆udL 2 ≤
ˆ
B1

φ∆udL 2 ≤ ∥∆φ∥L∞(B1)ϵ

which is absurd for a small enough ϵ depending on r. In all the following we let x0 be a
projection of x on {u = 0}, and so we know that |x− x0| < 3r.

• Since x0 is a projection of x on {u = 0}, this means that H 1(∂∗E∩{u > 0}∩Bx,r) ≥ 2|x−x0|.
We will consider the rescaling

(v, F ) = (ux0,3|x−x0|, Fx0,3|x−x0|).
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We write y := x−x0
3|x−x0| , and we know that ∆v(By,1/3) ≥ 1/3. We let φ ∈ C∞

c (B1,R+) be such
that φ|By,1/3 ≡ 1, and integrating φ against ∆v we get

1
3 ≤

ˆ
B1

v∆φdL 2 ≤ ∥∆φ∥L∞(B1)

ˆ
B1

vdL 2

so by subharmonicity of v there is a constant c > 0 such that
´
S1 v ≥ c.

• Using the a priori bounds of proposition 7.3, we have JB1/2(u,E) ≤ C∥u∥L∞(B1) ≤ Cϵ. In
particular

W (ux0,
1
2 −|x0|, Ex0,

1
2 −|x0|) ≤ Cϵ

so for a small enough ϵ we get r(ux0,
1
2 −|x0|, Ex0,

1
2 −|x0|) = 1, meaning the logarithmic epiperimetric

inequality applies. We apply it from 3|x− x0| to ρ ∈ [3|x− x0|, 1
2 − |x0|], and we get

∥ux0,ρ − v∥L1(S1) ≤ C log
(

1
ρ

)−α

And so

c ≤ ∥v∥L1(S1) ≤ ∥ux0,ρ∥L1(S1) + ∥ux0,ρ − v∥L1(S1) ≤ C

 ϵ
ρ

+ log
(

1
ρ

)−α


Choosing ρ := 10r (which is possible since r ≤ 1
24 so 3|x − x0|(≤ 9r) ≤ 10r ≤ 1

2 − |x0|) we
obtain that for some universal c > 0,

c ≤ ϵ

10r + log
( 1

10r

)−α

which for a small enough r and a small enough ϵ ≪ r is a contradiction.

Corollary 7.34. Let r, ϵ > 0 be defined as previously, then for any (u,E) ∈ M (B1) with ∥u∥L∞(B1) ≤
ϵ and u(0) = 0, there exists n ∈ N∗ and a conformal map g : Bρ → R2 for some ρ ∈ (0, r] with
g(0) = 0, such that

u|Bρ ≡ |Re (gn)| , E ∩Bρ = g−1 ({w : Re (wn) > 0})

Proof. With the previous result, we know that for a small enough ϵ there is a harmonic function such
that u = |h| and E = {h > 0} in a neighbourhood of the origin. Let f be the unique holomorphic
function such that f(0) = 0 and Re(f) = h, then there exists a number n ∈ N∗, a radius ρ ∈ (0, r]
and a holomorphic function g defined on Bρ such that g(0) = 0, g′ ̸= 0, and f = gn, which proves
the result (up to taking a slighty smaller ρ so that g is injective).

7.6.2 Regularity of the contact set

For two sets E,F ⊂ R2, we write

dB1(E,F ) = max
(

sup
x∈E∩B1

inf
y∈F

|x− y|, sup
y∈F∩B1

inf
x∈E

|x− y|
)
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Proposition 7.35. Let (u,E) ∈ M (D) for some open set D and Ω ⋐ D. There exists r = r(Ω, D)
such that

• For any x ∈ {u = 0} ∩ Ω, there is a unique blow-up (ux, Ex) at x and for any r ∈ (0, r),

∥ux,r − ux∥L1(S1) ≲ log
(1
r

)−α

dB1(Ex,r, Ex) ≲
log

(
1
r

)− α
3

∥ux∥
1
3
L1(S1)

with the second inequality being trivial if ux ≡ 0.

• For any x, y ∈ {u = 0} ∩ Ω such that |x− y| ≤ r, we have

∥ux − uy∥L1(S1) ≲ log
(

1
|x− y|

)−α

dB1(Ex, Ey) ≲
log

(
1

|x−y|

)− α
3

∥ux∥
1
3
L1(S1)

Proof. We let R > 0 be defined as in corollary 7.32. r will be different in the three following points;
in the end it is enough to take the minimum of the three.

• We chose r = min
(
1, 1

R
dist(∂D, ∂Ω)

)
, such that for any x ∈ Ω ∩ {u = 0}, Bx,r ⊂ Bx,Rr ⊂ D.

Thus, corollary 7.32 applies to (u,E) on Bx,r and as a consequence (ux,r)r→0 is a Cauchy se-
quence in L1(S1) and has a unique limit as r → 0. Passing the estimate of corollary 7.32 to the
limit this gives the first point of the proposition.

Moreover, either ux = 0 and (u,E) is thus given by corollary 7.34 in a neighbourhood of E, so
the limit of Ex,r is also unique, or ux ̸= 0 and the convergence of Ex,r to the blow-up Ex is in
the local Hausdorff sense. The quantification of dB1(Ex, Ex,r) will be treated separately later.

• Let r :=
√

|x− y|, which is supposed small enough such that Bx,Rr∪By,Rr∪Conv(Bx,r∪By,r) ⋐
D, which is possible by compactness when |x− y| ≤ r(Ω, D). Then we compare directly

∥ux − uy∥L1(S1) ≤ ∥ux − ux,r∥L1(S1) + ∥uy − uy,r∥L1(S1) + ∥ux,r − uy,r∥L1(S1)

The first two terms are bounded by C log
(

1
r

)−α
by corollary 7.32. For the third one, notice

uy,r(z) = ux,r
(
z + y−x

r

)
, so using the uniform C0, 1

n+1 (B2) bound on ux,r we get

∥uy,r − ux,r∥L1(S1) ≤
ˆ
S1

∣∣∣∣ux,r (z + y − x

r

)
− ux,r(z)

∣∣∣∣ dH 1(z) ≲ r− 1
n+1 |x− y|

1
n+1

As a consequence,

∥ux − uy∥L1(S1) ≲

log
(

1
|x− y|

)−α

+ |x− y|
1

2(n+1)

 ≲ log
(

1
|x− y|

)−α

• We prove the bound on dB1(Ex, Ex,r). It is enough to prove that the boundaries of these two
sets verify the same estimate. Let z ∈ B1 ∩∂Ex,r and ρ := dist(z, ∂Ex) ∈ [0, 1], that we suppose
to be strictly positive (or else there is nothing to prove). Now ∂Ex,r ∩Bz,ρ/2 has length at least
ρ. Moreover:
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• ∆ux,r ≥ 1
2H

1
⌊∂∗Ex,r∩{ux,r>0},

• For all w ∈ {ux,r = 0} ∩Bz,ρ,

∥(ux,r)w − ux∥L1(S1) ≲ log
(1
r

)−α

So for a small enough r,
∆ux,r ≥

∥ux∥L1(S1)

4 H 1
⌊{u=0}∩Bz,ρ

We let φ ∈ C∞
c (B1,R+) such that φ = 1 on B1/2. We also let φz,ρ(w) := φ(z + ρw). Then

∥ux∥L1(S1)

4 ρ ≤
ˆ
B1

φz,ρ∆ux,rdL 2 =
ˆ
B1

φz,ρ∆(ux,r − ux)dL 2

=
ˆ
B1

(ux,r − ux)∆φz,ρdL 2 ≲
1
ρ2 ∥ux,r − ux∥L1(S1),

so ∥ux∥L1(S1)ρ
3 ≲ ∥ux,r − ux∥L1(S1).

The distance of any point of B1 ∩ ∂Ex to ∂Ex,r is obtained similarly, so we obtain the bound
on dB1(Ex, Ex,r).

• Finally, taking r :=
√

|x− y|,

dB1(Ex, Ey) ≤ dB1(Ex, Ex,r) + dB1(Ey, Ey,r) + C
√

|x− y|

and we use the previous estimate.

We can summarize our result in the following.

Theorem 7.36. Let (u,E) ∈ M (D) for some open set D ⊂ R2, and Ω ⋐ D an open set. Then
Per(E|Ω) < ∞, ∂∗E ∩ {u > 0} is locally C∞ and {u = 0} ∩ Ω is included in a finite union of C1,log

curves. Moreover,

• the set Z := {z ∈ D : uz = 0} is locally finite and we know that for every x ∈ Z, (u,E) has the
form

u = |Re(zn)| ◦ g, E = g−1 ({z : Re(zn) > 0})
where n ∈ N∗ and g is a conformal map defined ina neighbourhood of x such that g(x) = 0.

• For every x ∈ {u = 0} ∩ Ω and any small enough r (depending only on (Ω, D)) we have

∥ux,r − ux∥L1(B1) ≤ C log
(1
r

)−α
, dB1(Ex, Ex,r) ≤

C log
(

1
r

)− α
3

∥ux∥
1
3
L1(S1)

• A connected component of {u = 0} ∩ Ω is a C1,log segment that has, at its end x, either x ∈ ∂Ω,
ux = 0, or ux(z) = 1

4 |νx · z| where νx is the unit normal vector of Ex.

Proof. The fact that {u = 0}∩Ω is included in a finite number of C1,log curves is obtained by applying
the previous proposition 7.35 on a coverinf of {u = 0} ∩ Ω with small enough balls. In particular
this gives a lower bound on H 1({u = 0} ∩ Ω), and since ∆u ≥ 1

2H
1⌊∂E ∩ {u > 0} this gives us a

uniform bound on the whole boundary ∂E. We also get the rectifiability (since both ∂E ∩ {u > 0}
and {u = 0} are rectifiable).

182



Now, the first point is just a rewriting of 7.34, the second point of 7.35, and for the third point
; suppose that we are not is the first two cases, then there is a sequence zn ∈ ∂E ∩ {u > 0} that
converges to x. Consider rn = 2|x− zn|, then up to rotation and extraction on (zn)n we get that

ux,rn −→
n→∞

(
w 7→ λ

4 |w2|
)

for some λ ∈ [0, 1],

with ux,rn > 0 on B 1
2 e1,

1
2
, and 1

2e1 ∈ ∂Ex,rn . Since ∂Ex,rn ∩ {u > 0} ∩ B 1
2 e1,

1
2

has length at least 1,
then by the transmission condition we obtain

∆ux,rn(Bz̃n,1/2) ≥ 1
2 .

So ux verifies the same estimate, meaning λ = 1.

7.7 Study of an example

In this section we study a simple explicit example, which has the advantage of spanning all the (non-
zero) blow-ups. This implies that the blow-ups that were classified previously are also solutions,
something which wasn’t known previously.

Proposition 7.37. Let t > 0, then there is a unique (ut, Et) ∈ M (B1) such that ut|∂B1
= t, Et\B1 =

{x2 > 0} \B1. Moreover, (ut, Et) verifies:

• Et = {x2 > 0}, ut is symmetric around {x1 = 0} and {x2 = 0}.

• ut|{x2>0} ∈ C1,α
loc (B1 ∩ {x2 > 0}) for some α ∈ (0, 1).

• There exists 0 < t0 < t1 < ∞ and c1 > 0 such that

inf(ut)
= 0 if t < t0

≥ c1(t− t1) if t > t1

• There exists c > 0 such that ut(x1, 0) > 0 for some x1 ≤ 1 − e−c/t.

Proof. Notice that for any admissible (u,E), u may be written as t − φ for some φ ∈ H1
0 (B1,R+),

and then we can always lower the energy by taking the Steiner rearrangement of φ and replacing E
with {x2 > 0}, as in the example of [140]. For a fixed E the problem is strictly convex, so it has a
unique solution. Then

• The symmetry in {x2 = 0} follows from the Steiner rearrangement and the symmetry in {x1 =
0} follows from the uniquness.

• This can be obtained for instance through classic viscosity methods that we shall not detail
here. In the next corollary we will only use the continuity of the blow-up on the contact set,
which we already know through the epiperimetric inequality in this arguably much simpler case.

• The first point can be obtained applying the non-degeneracy lemma for any small enough t.
For the second point, suppose the minimum of ut is attained is some x; by the transmission
conditions and minimum principle we know x2 = 0. The uniform estimate of proposition 7.4
gives that utx,1−|x| ≤ C(1 + ut(x)/(1 − |x|)) on B1/2, meaning

ut ≤ C(1 + ut(x)) in B
x,

1−|x|
2
.

Then notice that, extending ut naturally by t outside B1, and denoting C the square of center
1+|x|

2 and side 1 − |x| we get
ˆ
B1

|∇ut|2dL 2 ≥
ˆ
C

|∇ut|2dL 2 ≥
(
t− C(1 + inf(ut))

)2
.
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On the other hand, ˆ
B1

|∇ut|2dL 2 ≤ JB1(ut, {x2 > 0}) ≤ 2t

by using the constant competitor, hence(
t− C(1 + inf(ut))

)2
≤ 2t.

• This is obtained by iterating the previous reasonning in xk = (1 − 2−k, 0) as long as ut(xk) = 0.

Corollary 7.38. Let e ∈ S1, λ ∈ (0, 1], and

u(x) = λ

4 |x · e|, E = {x : x · e > 0}

Then (u,E) is a global minimizer.

Notice that all along we knew that any homogenous minimizer necessarily had this form, but not
the converse that these are minimizers.

Proof. Let t > 0, and ut the minimizer defined previously, for a small enough t. Let r(t) be the
projection of (0, 0) on {x2 = 0, x1 > 0} ∩ {ut > 0} which is non-empty according to the previous
result, then

r ∈ [0, r(t)] 7→ ut(r,0),0

is a continuum of homogeneous non-zero minimizer. Observe that

ut(r(t),0),0 = 1
4 |x2|, ∥ut(0,0),0∥L∞(B1) −→

t→0
0,

hence the result.
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Chapter 8

Shape optimization of a thermal
insulation problem

This is a joint work with Dorin Bucur, Carlo Nitsch, Cristina Trombetti.
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8.1 Introduction

Given a measurable set K ⊆ Rn along with a Lipschitz open set Ω ⊃ K, we consider the energy
functional

EΘ(K,Ω) := min
{ˆ

Ω
|∇v|2dL n +

ˆ
∂Ω

Θ(v)dH n−1, v ∈ H1(Ω, [0, 1]) : v = 1 a.e. on K

}
(8.1)

where Θ : [0, 1] → R+ is a rather general nondecreasing function that vanishes at 0. If all data are
smooth, meaning Ω is a smooth open set, K is a smooth compact set and Θ ∈ C1, a minimizer u
satisfies 

∆u = 0 Ω \K,
−∂u
∂ν

= 1
2Θ′(u) ∂Ω ∩ {u > 0} \ ∂K,

−∂u
∂ν

≤ 1
2Θ′(u) ∂Ω ∩ {u = 0},

u ≡ 1 K.

(8.2)

A classical prototype, Θ(u) = βu2 for some β > 0, corresponds to the so called Robin boundary
conditions ∂u

∂ν
+ βu = 0 for the harmonic function u minimizing the energy, ν being the outward

normal at the boundary. The physical motivation which leads us to study the functional EΘ(K,Ω)
and related shape optimization problems can be found in optimal design in thermal insulation.
Consider a body K of given constant fixed temperature TK , surrounded by an insulator A. The
temperature distribution T inside the insulator satisfies the classical heat equation (Laplace equation)
with the condition that T is continuous across the boundary which separates A and K. If we now
assume that the body Ω = K ∪A is immersed into an environment of fixed temperature Te, the heat
exchange rate across the surface of Ω (between the body and the environment) has to be modeled
according to the physical process governing the mechanism. The most common assumption is to
assume that the temperature at the boundary of Ω is kept constant (Te), leading to the so-called
Dirichlet boundary conditions, which corresponds to conduction heat transfer. But if we assume that
the environment is a fluid (gas or liquid) then, convection heat transfer, radiation heat transfer or
even more general laws, have to be taken into account. If for instance, convection heat transfer is
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the leading mechanism, then the rate of heat flux per unit of surface, across the solid fluid interface,
is proportional to T |∂Ω − Te (also known as Newton’s law of cooling), T |∂Ω being the temperature T
at the solid surface. While for radiation heat transfer (according to Stefan-Boltzmann law), the heat
flux per unit of surface, across the solid fluid interface, is proportional to T 4

∂Ω − T 4
e .

On the other hand, the heat flux across a solid surface is proportional (Fourier’s law) to the
normal derivative of the temperature −∂T

∂ν
.

Assume that TK > Te and denote by u = T−Te

TK−Te
. One can easily check that, up to a constant of

proportionality, convection corresponds to

Θ(u) = u2.

Radiation, on the other hand, is modeled up to a multiplicative constant by

Θ(u) = u5

5 + γu4 + 2γ2u3 + 2γ3u2, (8.3)

where γ = Te

TK−Te
.

Both mechanisms can be taken into account simultaneously, upon considering a linear combination
of the previous functions. When considering a quadratic Θ (pure convection heat transfer at the
boundary), EΘ is proportional to the heat loss rate. In general, regardless of the choice of Θ, the
energy functional EΘ can be considered a measure of the goodness of the thermal insulation; the less
the energy the better the insulation.

In this article we are interested in the shape optimization problem of both K and Ω of prescribed
volume which lead to a minimal energy configuration. For a given set K, when only the geometry of
Ω is unknown, the problem has already been considered in the literature in [151], [152], [156], with a
different purpose, namely to obtain qualitative information on the free boundary of Ω. Its analysis
relies on the fine study of optimal configurations in the framework of free discontinuity problems in
SBV .

We search to optimize both K and Ω and the purpose is to understand whether or not an optimal
configuration is given by two concentric balls (as common sense suggests). From this perspective, our
problem is more of isoperimetric type. As we shall prove, depending on the dissipation law Θ, we can
give either full description of the optimal sets as two concentric balls (for instance in the convection
case) or some partial answer leading to the same geometric configuration for more general dissipation
laws. A striking phenomenon, which has been observed in some specific geometric configurations in
[154], and that we have to handle is the following: if only a small amount of insulator is available,
then in some cases it is better to not use it (Ω = K).

Let us denote by ωn the volume of the unit ball and by M := Rnωn the volume of the ball of
radius R ≥ 1. Without restricting generality, we shall fix the measure of K to be ωn and leave the
other parameters free (the general case is obtained by rescaling). Given M ≥ ωn and Λ > 0, we are
interested in the following minimization problem: find an open set Ω and a relatively closed set K,
solutions of

inf
K⊂Ω, |K|=ωn, |Ω|≤M

EΘ(K,Ω), (8.4)

or in its penalized version
inf

K⊂Ω, |K|=ωn

EΘ(K,Ω) + Λ|Ω|. (8.5)

Throughout the paper we assume that Θ : [0, 1] → R is a lower semicontinuous, nondecreasing
function such that Θ(0) = 0. Here are our main results.

Theorem 8.1 (The convection case). For Θ(u) = βu2 and M = Rnωn, the solutions of problems
(8.4) consist of two concentric balls. The radius of the outer ball equals either R or 1, according to
min{EΘ(B1, BR), EΘ(B1, B1)} and the associated state function u is radial.

Theorem 8.2. For any Λ > 0 and any admissible Θ, the solution of problem (8.5) consists of two
concentric balls and the associated state function u is radial.
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We introduce the following hypothesis

inf
0<s<1

Θ(s/3)
Θ(s) > 0. (8.6)

Theorem 8.3 (The general case). There exists some dimensional constant cn, such that if Θ satisfies
hypothesis (8.6) and

M < ωn + cn

(
inf

0<s<1

Θ(s/3)
Θ(s)

)2n ˆ 1

0

t2n−1dt
Θ(t)n , (8.7)

then problem (8.4) has a solution (K,Ω). If |Ω| < M then (K,Ω) are two concentric balls. Otherwise,
Ω is an open set with rectifiable topological boundary such that H n−1(∂Ω) < ∞ and K is relatively
closed in Ω with locally finite perimeter in Ω. The temperature u ∈ H1(Ω) is C0, 2

n+2
loc (Ω). In two

dimensions, ∂K ∩ Ω is analytic.
If moreover Θ is C1 in a neighbourhood of 1 and

Θ′(1)2

Θ(1) < 4(n− 1),

then there exists M > ωn depending on n and Θ such that the solution of problem (8.4) is K = Ω =
B1.

Remark 8.4. Notice that any homogenous functions Θ(u) = uα, α > 0 satisfies the assumption
(8.6). Moreover, if Θ(u) = O(u2) then in (8.7) any value M ∈ [ωn,+∞) is accepted. In the convec-
tion case Θ(u) = βu2 the full picture of the solutions is understood. Other interesting choices of Θ
may be given by (8.3), corresponding to thermal radiation, or Θ(u) = cu corresponding to a constant
heat flux. Moreover, discontinuous functions Θ, with Θ(0+) > 0, are admissible. This means that
one can consider functions like Θ(u) = c11u>0 + c2u

α on [0, 1] which models a cost of the highly
insulating material on ∂(A ∪K), cost which is proportional to its surface measure.

The function Θ may be extended to R as a nondecreasing and nonnegative function, and the
constraint 1K ≤ v ≤ 1 a.e. in (8.1) may be relaxed into v|K ≥ 1 a.e. Whatever the extension of Θ is
outside [0, 1], the new problem is equivalent to the original one, by truncation below 0 and above 1.

Clearly, we know many more things on the penalized problem (8.5) than on the constrained
problem (8.4), in particular that the solutions are always concentric balls. This stills leaves open the
following question:

Under reasonable hypotheses on Θ, is it true that the solution of (8.4) always consists on two
concentric balls?

The organisation of the paper is as follows.
• In Section 8.2 we discuss the convection case and we prove Theorem 8.1. The proof follows the

strategy of Bossel and Daners for the Faber-Krahn inequality for the Robin Laplacian and is
based on the construction of a so called H-function. Up to knowledge of the authors, this is the
only case (aside from Faber-Krahn) where this strategy works. However, we point out that this
strategy is fully working only in dimension 2, while for n ≥ 3 it works only for β > n− 2. This
section is mostly independent from the rest of the paper, except for the case n ≥ 3, β ∈ (0, n−2]
which is a consequence of the analysis by free discontinuity techniques, for which we refer to
Corollary 8.21 and Remark 8.22.

• Section 8.3 is devoted to the analysis of the existence of relaxed solutions for the constrained
problem (8.4) in the context of a general dissipation functions Θ, and to the regularity of the free
boundaries. These results are rather technical and they prepare the proofs of Theorems 8.2 and
8.3. The key idea is that once we know that problem (8.4) has a sufficiently smooth solution,
we can extract qualitative information out of its optimality. We work in the framework of free
discontinuity problems, based on the analysis of special functions with bounded variation.
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• In Section 8.4 we prove Theorem 8.2 and in Section 8.5 we prove Theorem 8.3.

8.2 The convection case: proof of Theorem 8.1

In this section we consider Θ(s) = βs2. In this case, the energy EΘ is simply denoted by Eβ and
takes the form

Eβ(K,Ω) := inf
v∈H1(Ω),v≥1K

ˆ
Ω

|∇v|2dL n + β

ˆ
∂Ω
v2dH n−1. (8.8)

For fixed K, minimizers of the functional Ω → Eβ(K,Ω) + Λ|Ω| have been studied in [151], [152]
and [156], in particular the existence of an optimal set Ω and its regularity.

The claim of Theorem 8.1 is that the solution of the constrained problem (8.4) consists of two
centered balls for every M > ωn, and the size of the balls is then given by the study of the function

R 7→ Eβ(B1, BR).

Let us first describe this function in detail. We let

Φn(ρ) =
log(ρ) if n = 2

− 1
(n−2)ρn−2 if n ≥ 3,

where the sign convention is taken such that Φn is always increasing. Relying on the expression
of radial harmonic functions (x 7→ a + bΦn(|x|)) and the boundary conditions we obtain that the
temperature associated to (B1, BR) is given by

u(x) = 1 − β(Φn(|x|) − Φn(1))+

Φ′
n(R) + β(Φn(R) − Φn(1))

and
Eβ(B1, BR) = βPer(B1)Φ′

n(1)
Φ′
n(R) + β(Φn(R) − Φn(1)) .

Notice in particular that

d

dR
Eβ(B1, BR) ≤ 0 iff d

dR
(Φ′

n(R) + βΦn(R)) ≥ 0 iff R ≥ n− 1
β

.

Moreover the extremal values are

Eβ(B1, B1) = βnωn, lim
R→∞

Eβ(B1, BR) = (n− 2)nωn.

In two dimension there are two cases

• if β ≥ 1 then R ∈ [1,+∞[ 7→ Eβ(B1, BR) is decreasing.

• if β < 1 then R ∈ [1,+∞[ 7→ Eβ(B1, BR) increases on [1, β−1] and decreases on [β−1,+∞[, with
the existence of a unique Rβ > β−1 such that Eβ(B1, BRβ

) = Eβ(B1, B1).

In higher dimension there are three cases

• if β ≥ n− 1 then R ∈ [1,+∞[ 7→ Eβ(B1, BR) is decreasing.

• if n − 1 > β > n − 2 then R ∈ [1,+∞[ 7→ Eβ(B1, BR) increases on [1, n−1
β

], decreases on
[n−1
β
,+∞), with the existence of a unique Rβ >

n−1
β

such that Eβ(B1, BRβ
) = Eβ(B1, B1).

• if β ≤ n− 2 then R ∈ [1,+∞[ 7→ Eβ(B1, BR) reaches its minimum at R = 1.

We postpone the analysis of the last case, and start by proving the result for the first two cases.
For this we will need the following.
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Lemma 8.5. Let R > 1, β > 0, and let u∗ be the (unique) minimizer in (8.8) on (B1, BR). Then
|∇u∗|
u∗ ≤ β on BR \B1 if and only if

∀ρ ∈ [1, R], Eβ(B1, Bρ) ≥ Eβ(B1, BR).

Proof. We remind the expression

u∗(x) = 1 − β(Φn(|x|) − Φn(1))
Φ′
n(R) + β(Φn(R) − Φn(1)) ,

so by straightforward computations

|∇u∗|
u∗ ≤ β iff Φ′

n(ρ) + βΦn(ρ) ≤ Φ′
n(R) + βΦn(R) iff Eβ(B1, Bρ) ≥ Eβ(B1, BR).

We may now prove the result. The proof relies on the study of the so called H function introduced
by Bossel [145], see also [153] and [148], for the study of the Faber-Krahn inequality involving the
first eigenvalue of the Laplace operator with Robin boundary conditions.

Proof of Theorem 8.1. Let (K,Ω) be smooth sets such that K ⊆ Ω, |K| = ωn, |Ω| ≤ M (and R
the radius defined by M = |BR|). Let u be the minimizer of Eβ(K,Ω) and denote Ωt = {u > t}.
We decompose ∂Ωt into two disjoint (up to a H n−1-negligible set) sets; ∂iΩt = {u = t} ∩ Ω, and
∂eΩt = ∂Ωt ∩ ∂Ω. Then for a.e. t ∈ [0, 1]

0 =
ˆ

{t<u<1}

∆u
u

dL n =
ˆ

{t<u<1}

(
∇ ·

(∇u
u

)
− ∇u · ∇1

u

)
dL n

=
ˆ
∂{t<u<1}

νΩt · ∇u
u

dH n−1 +
ˆ

Ωt

|∇u|2

u2 dL n

=
ˆ
∂K∩Ω

|∇u|dH n−1 −
ˆ
∂iΩt

|∇u|
u

dH n−1

− βH n−1(∂{t < u < 1} ∩ ∂Ω) +
ˆ

Ωt

|∇u|2

u2 dL n.

Since

Eβ(K,Ω) =
ˆ

Ω\K
∇ · (u∇u)dL n + β

ˆ
∂Ω
u2dH n−1

=
ˆ
∂K∩Ω

|∇u|dH n−1 +
ˆ
∂Ω\∂K

(
βu2 + u∂νu

)
dH n−1 +

ˆ
∂K∩∂Ω

βu2

=
ˆ
∂K∩Ω

|∇u|dH n−1 + βH n−1(∂K ∩ ∂Ω)

then injecting this in the previous equation we obtain

Eβ(K,Ω) = βH n−1(∂eΩt) +
ˆ
∂iΩt

|∇u|
u

dH n−1 −
ˆ

Ωt

|∇u|2

u2 dL n.

Let us define, for all t ∈ [0, 1] and ϕ ≥ 0,

H(t, ϕ) = βH n−1(∂eΩt) +
ˆ
∂iΩt

ϕdH n−1 −
ˆ

Ωt

ϕ2dL n.

Lemma 8.6. For any nonnegative L∞ function ϕ, there exists some t ∈]0, 1[ for which H(t, ϕ) ≤
Eβ(K,Ω).
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Proof. Let w = ϕ− |∇u|
u

, then

H(t, ϕ) − Eβ(K,Ω) = H(t, ϕ) −H

(
t,

|∇u|
u

)

=
ˆ
∂iΩt

wdH n−1 +
ˆ

Ωt

( |∇u|
u

)2

− ϕ2

 dL n

≤
ˆ
∂iΩt

wdH n−1 − 2
ˆ

Ωt

|∇u|
u

wdL n

= −1
t

d

dt

(
t2
ˆ

Ωt

|∇u|
u

wdL n

)
,

where the last line is obtained by coarea formula on the level sets of u. So in particular
ˆ 1

0
t(H(t, ϕ) − Eβ(K,Ω))dt ≤ −

[
t2
ˆ

Ωt

|∇u|
u

wdL n

]t=1

t=0
= 0,

which proves the lemma.

Proof of Theorem 8.1, (continuation). Recall that u∗ is the solution on (B1, BR), which is radially
symmetric and decreasing. Let ϕ be the dearrangement of |∇u∗|

u∗ on Ω following the level sets of u.
To be more precise, for any x ∈ Ω \K, let r(x) > 0 be defined by the formula

|Br(x)| = |{u > u(x)}|,

then we let ϕ(x) be the value of |∇u∗|
u∗ on ∂Br(x).

Let t be chosen as in Lemma 8.6, so that H(t, ϕ) ≤ Eβ(K,Ω). Assuming that |∇u∗|
u∗ ≤ β on ∂Br(x),

we have

H(t, ϕ) = βH n−1(∂eΩt) +
ˆ
∂iΩt

ϕdH n−1 −
ˆ

Ωt

ϕ2dL n

≥
ˆ
∂Ωt

(
|∇u∗|
u∗

)
|∂Br(x)

dH n−1 −
ˆ

Ω∗
t

|∇u∗|2

(u∗)2 dL n

≥
ˆ
∂Ω∗

t

|∇u∗|
u∗ dH n−1 −

ˆ
Ω∗

t

|∇u∗|2

(u∗)2 dL n

= H∗
(
u∗

|∂Br(x)
, |∇u∗|/u∗

)
= Eβ(B1, BR)

The inequalities above rely on the rearrangement properties, the isoperimetric inequality and on the
hypothesis β ≥ |∇u∗|

u∗ .
We conclude by discussing when the assumption |∇u∗|

u∗ ≤ β is verified. If β ≥ n− 1 the inequality
|∇u∗|
u∗ ≤ β is verified since R 7→ Eβ(B1, BR) is decreasing on [1,+∞), by Lemma 8.5.

If instead n − 2 < β < n − 1, two situations occur. If M ≥ |BR(n,β)|, then Lemma 8.5 still
works and the previous computation applies, with the same result. If M ∈ [ωn, |BR(n,β)|] then we
may consider u∗ the solution on (B1, BR(n,β)) restricted to BR; it verifies |∇u∗|

u∗ ≤ β and the same
argument applies. We obtain that

Eβ(K,Ω) ≥ Eβ(B1, BR(n,β)).

Since Eβ(B1, BR(n,β)) = Eβ(B1, B1), we conclude with the minimality of the couple (B1, B1).
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The case n ≥ 3, β ≤ n − 2 can not be treated directly with the H function, but is a di-
rect consequence of Corollary 8.21. Indeed, it is enough to take Λ → 0 in Corollary 8.21, since
Eβ(B1, BR) ≥ Eβ(B1, B1) for all R ≥ 1 in this case.

Remark 8.7. Finally we have the following picture for problem (8.4) with M = Rnωn; the minimizer
is (B1, Br), where r is defined through the following case disjunction.

(a) If n− 1 ≤ β then r = R.

(b) If n − 2 < β < n − 1, then defining R(n, β) > n−1
β

as the unique non-trivial solution of the
equation EΘ

(
B1, BR(n,β)

)
= nβωn we have

• if R(n, β) > R ≥ 1 then r = 1
• if R = R(n, β) then r = 1 or r = R

• if R > R(n, β) then r = R

(c) If β ≤ n− 2 then r = 1.

8.3 Preparatory results: existence and regularity of relaxed solutions

We analyze in this section the existence of a solution of problem (8.4) for general Θ. Precisely, our
purpose is to prove the following.

Proposition 8.8. Let M > ωn and Θ admissible, such that, for some dimensional constant cn (that
will be specified)

M < ωn + cn

(
inf

0<s<1

Θ(s/3)
Θ(s)

)2n ˆ 1

0

t2n−1dt
Θ(t)n , (8.9)

Then problem (8.4) has a (sufficiently regular) solution (K,Ω).

The word "sufficiently" above will be described later, and refers to the regularity that we need in
the proofs of Theorems 8.2 and 8.3. The proof of this proposition relies on ideas inspired from the
the relaxation strategy in the SBV framework (defined below) as introduced in [148] and from [157,
Chapter 29] on the existence proof of minimal clusters for the perimeter. The main difficulty in our
case comes from both the generality of the function Θ and from the fact that two measure constraints
have to be satisfied simultaneously.

As mentioned previously, the functional space used for our relaxation procedure is the SBV space,
on which more information may be found in the books [146, 143]. In few words, for an open set
Ω ⊂ Rn, SBV (Ω) is defined as the set of functions u ∈ L1(Ω) such that Du (the differential of u in
the sense of distribution) is a Radon measure that decomposes as

Du = ∇uL n + (u+ − u−)νuH n−1⌊Ju,

where ∇u ∈ L1(Ω) and Ju is the set of jump points, meaning points x ∈ Rn such that y 7→ u(x+ ry)
converges in L1

loc(Rn) as r goes to 0 to

u+1y:y·νu>0 + u−1y:y·νu<0

for some u+ ̸= u− ∈ R, νu ∈ Sn−1. The set Ju turns out to be rectifiable. We will make use of the
following compactness result, which can be obtained by combination of [146, Th. 2.3] and [146, Th.
2.12] applied to ϕ(z, w) = Θ(z) + Θ(w).
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Proposition 8.9. Let (ui)i∈N be a sequence in SBVloc(Rn) with values in [0, 1] such that for any
R > 0,

sup
i∈N

(ˆ
BR

|∇ui|2 + H n−1(Jui
∩BR)

)
< ∞

then up to the extraction of a subsequence, there is a function u ∈ SBVloc(Rn) such that

ui −→
a.e.

u

∇ui ⇀
L2

loc

∇u

∀R > 0,
ˆ
Ju∩BR

[Θ(u+) + Θ(u−)] dH n−1 ≤ lim inf
i→∞

ˆ
Jui ∩BR

[Θ((ui)+) + Θ((ui)−)] dH n−1

Here is the main strategy.

Step 1. (Relaxation) We change the problem into finding a minimizer for the following problem

inf
u∈SBV (Rn),|{u=1}|≥ωn,|{u>0}|≤M

EΘ(u), (8.10)

where
EΘ(u) =

ˆ
Rn

|∇u|2dL n +
ˆ
Ju

(Θ(u+) + Θ(u−))dH n−1. (8.11)

This means that we will need afterward to prove that such a relaxed minimizer (meaning a
minimizer of the relaxed problem) corresponds to a classical minimizer.

Step 2. (A priori regularity) We prove that we may restrict to considering functions that verify an a
priori estimate of the form u ≥ δ1{u>0} for some explicit δ; for Robin boundary conditions this
kind of estimate is a cornerstone of the regularity theory. This is the only place where we use
the hypothesis (8.9). Similar estimates may be found in [151], [149] and [152] (see also [144] for
a related problem). Moreover, we prove a concentration lemma that says all the support of u -
up to a set of measure ϵ - is contained in a union of Cϵ−n unit cubes for some explicit constant
C, and we prove a cut-off lemma that says that one may replace u by 0 outside a large enough
cube and lower its energy by a controlled amount.

Step 3. (Existence of a relaxed solution) We rely on Step 2 to prove the existence of a minimizer.
This is done by the direct method, considering a minimizing sequence, applying the concen-
tration lemma a first time to translate the minimizing sequence such that it converges to a
non-trivial solution, and then applying again the concentration lemma and cut-off lemma for
an appropriately small ϵ.

Step 4. (Regularity of the relaxed solution) Finally we prove the regularity of such a relaxed minimizer
by using the theory of almost quasiminimizers of the Mumford-Shah functionnal to handle the
support of u, and the theory of the regularity of Alt-Caffarelli problem inside Ω.

As mentioned above, we are first interested in the relaxed problem (8.10). Notice that the
generalized energy (8.11) takes into account “cracks”, meaning part of the jump set where u may be
nonzero on both sides. The general energy (8.11) may also be used to define EΘ(K,Ω) in a more
general setting ; for any open set Ω, and any measurable K ⊂ Ω, we let

EΘ(K,Ω) = inf
{
EΘ(u), u ∈ SBV (Rn, [0, 1]) : |K \ {u = 1}| = |{u ̸= 0} \ Ω| = H n−1(Ju \ ∂Ω) = 0

}
When Ω is a smooth open set, this is coherent with the first definition.

Lemma 8.10. Assume that (8.9) is verified. There is a constant δ = δn,Θ,M > 0 such that for any
admissible u in (8.10), there is some t > δ verifying EΘ(u1{u>t}) ≤ EΘ(u).
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Proof. We actually show the stronger result; there is some t > s > e−cn,ΘM such that

EΘ(u1{s<u<t}c) ≤ EΘ(u).

Let ϵ > 0, suppose EΘ(u1{s<u<t}c) > EΘ(u) for every ϵ < s < t < 1. We write

• Ω (s, t) = {s < u ≤ t}.

• γ (s, t) =
´
Ju

(
1s<u+≤t + 1s<u−≤t

)
dH n−1.

• h(t) = H n−1({u = t} \ Ju).

Our hypothesis becomes that for every η ∈]2ϵ, 2
3 [, t ∈]0, η2 [, EΘ(u1{η−t<u<η+t}c) > EΘ(u) so

ˆ
Ω(η−t,η+t)

|∇u|2dL n + Θ
(1

2η
)
γ (η − t, η + t) ≤ Θ

(3
2η
)

(h (η − t) + h (η + t)) . (8.12)

The proof is based on a lower bound of
´

Ω(η−t,η+t) |∇u|dL n and an upper bound of
´

Ω(η−t,η+t) |∇u|2dL n

that are in contradiction when ϵ is small enough.

• For all t ∈]0, 1
2η[ we let:

fη(t) =
ˆ η+t

η−t
h(s)ds =

ˆ
Ω(η−t,η+t)

|∇u|dL n.

fη is absolutely continuous and

f ′
η(t) = h (η − t) + h (η + t) .

Moreover,

Then, fη(t) ≤ |Ω (η − t, η + t) |
1
2

(ˆ
Ω(η−t,η+t)

|∇u|2dL n

) 1
2

≤ CnPer(Ω (η − t, η + t))
n

2(n−1)

(
Θ
(3

2η
)

(h (η − t) + h (η + t))
) 1

2

by isoperimetric inequality

≤ Cn (h (η − t) + γ (η − t, η + t) + h (η + t))
n

2(n−1)

(
Θ
(3

2η
)

(h (η − t) + h (η + t))
) 1

2

≤ CnΘ
(3

2η
) 2n−1

2n−2
Θ
(1

2η
)− n

2n−2
f ′
η(t)

2n−1
2n−2 .

Raising to power 2n−2
2n−1 , after summation on [0, t]

ˆ
Ω( 1

2η,
3
2η)

|∇u|dL n

 1
2n−1

≥ cntΘ
(3

2η
)−1

Θ
(1

2η
) n

2n−1
.

And so ˆ
Ω( 1

2η,
3
2η)

|∇u|dL n ≥ cnη
2n−1Θ

(3
2η
)−(2n−1)

Θ
(1

2η
)n
.

• We let
gη(t) =

ˆ
Ω(η−t,η+t)

|∇u|2dL n, Gη(t) =
ˆ t

0
gη.
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We begin by finding a upper bound for Gη. We take t in [0, η/2], then:

Gη(t) ≤
ˆ t

0
Θ
(3

2η
)

(h(η − s) + h(η + s))ds

≤ Θ
(3

2η
)

|Ω (η − t, η + t) |
1
2G′

η(t)
1
2 .

Thus:
G′
η(t)Gη(t)−2 ≥ Θ

(3
2η
)−2 ∣∣∣∣Ω(1

2η,
3
2η
)∣∣∣∣−1

.

We integrate from t to 2t (up to supposing t < η/4)

Gη(t)−1 ≥ tΘ
(3

2η
)−2 ∣∣∣∣Ω(1

2η,
3
2η
)∣∣∣∣−1

.

Thus:
Gη(t) ≤ t−1Θ

(3
2η
)2 ∣∣∣∣Ω(1

2η,
3
2η
)∣∣∣∣ .

Since gη is increasing, then up to supposing t < η/8

gη(t) ≤ 1
t

ˆ 2t

t

gη ≤ Gη(2t)
t

≤ t−2Θ
(3

2η
)2 ∣∣∣∣Ω(1

2η,
3
2η
)∣∣∣∣ .

Combining the previous inequalities, that are valid for t ∈ [0, η/8], we get

cnη
2n−1Θ

(3
2η
)−(2n−1)

Θ
(1

2η
)n

≤
ˆ

Ω(η−t,η+t)
|∇u|dL n

≤ |Ω (η − t, η + t) |
1
2

(ˆ
Ω(η−t,η+t)

|∇u|2dL n

) 1
2

≤ t−1Θ
(3

2η
) ∣∣∣∣Ω(1

2η,
3
2η
)∣∣∣∣ .

Taking t = η/8, we get: ∣∣∣∣Ω(1
2η,

3
2η
)∣∣∣∣ ≥ cnη

2n

Θ
(

3
2η
)2n

Θ
(

1
2η
)−n ,

for a constant cn that may be made explicit. Now, suppose that the quantity ϵ chosen at the start
was of the form 3−K for some K ∈ N∗, and then by taking η = 2

3k for k = 1, . . . , K, we get

M − ωn ≥ |{u > 3−K}| ≥
K∑
k=1

∣∣∣∣Ω( 1
3p ,

1
3p−1

)∣∣∣∣
≥ cn

K∑
k=1

3−2nk

Θ (3−(k−1))2n Θ (3−k)−n

≥ cn

(
inf

0<s<1

Θ(s/3)
Θ(s)

)2n ˆ 1

3−K

t2n−1dt
Θ(t)n .

Thus if the hypothesis (8.9) in the result is verified, this gives an upper bound on K.

With this, we may replace any minimizing sequence (ui) by a minimising sequence (ui1{ui>ti})
such that

inf
{ui>0}

(ui) ≥ δ

so we will now suppose that all the functions we consider verify this property.

For any p ∈ Zn, let us write Kp = p+ [0, 1]n.

195



Lemma 8.11. Let u be admissible for (8.10) and δ > 0 such that u ≥ δ1{u>0}. Let ϵ > 0. Then
there exists a set F = ∪i∈IKi where I ⋐ Zn is such that

|I| ≤ CnM

(
Θ(δ)−1EΘ(u) +M

ϵ

)n
, |{u > 0} \ F | ≤ ϵ.

Proof. We first prove the following technical result. Let (Ki)i∈I be a finite family of unit cubes,
F = ∪i∈IKi, then

max
p/∈I

|{u > 0} ∩Kp| ≥ cn

(
|{u > 0} \ ∪p/∈IKp|

|{u > 0}| + Θ(δ)−1EΘ(u)

)n
.

For any p /∈ I, we may write

|{u > 0} ∩Kp| = |{u > 0} ∩Kp|
1
n |{u > 0} ∩Kp|1− 1

n

≤ Cn

(
max
q /∈I

|{u > 0} ∩Kp|
) 1

n (
|{u > 0} ∩Kp| + H n−1(Ju ∩Kp)

)
by the embedding BV(Kp) ↪→ L

n
n−1 (Kp)

≤ Cn

(
max
q /∈I

|{u > 0} ∩Kp|
) 1

n (
|{u > 0} ∩Kp| + Θ(δ)−1EΘ(u|Kp)

)
.

where the last term is defined as

EΘ(u|Ω) :=
ˆ

Ω
|∇u|2dL n +

ˆ
Ju

(Θ((u1Ω)+) + Θ((u1Ω)−)) dH n−1

And so, by summing in p ∈ Zn \ I:

|{u > 0} \ ∪q /∈IKq| ≤ Cn

(
max
q /∈I

|{u > 0} ∩Kp|
) 1

n (
|{u > 0}| + Θ(δ)−1EΘ(u)

)
,

which is the result.
We now construct F by induction starting with F0 = ∅ and as long as |{u > 0} \ Fk| ≥ ϵ, we

take Ik+1 = Ik ∪ {p} where p /∈ Fk is chosen with the previous lemma such that |{u > 0} ∩Kp| ≥
cn
(

ϵ
|{u>0}|+Θ(δ)−1EΘ(u)

)n
. Suppose that this goes on until a rank N , then

M ≥ |{u > 0}| ≥
∑
i∈IN

|{u > 0} ∩Ki| ≥ cnN

(
ϵ

|{u > 0}| + Θ(δ)−1EΘ(u)

)n
,

so N is bounded uniformly and conclude the proof of the lemma.

For a closed set F , we shall write dF (x) = infy∈F |x− y|.

Lemma 8.12. Let u be admissible for (8.10) and δ > 0 such that u ≥ δ1{u>0}. Then there exist
constants τn,Θ,δ, Cn,Θ,δ such that for any closed set F there exists some r ∈

[
0, Cn,Θ,δ|{u > 0} \ F | 1

n

]
such that

EΘ(u1{dF<r}) ≤ EΘ(u) − τn,Θ,δ|{u > 0} ∩ {dF > r}|1− 1
n .

Proof. Let Ωr = {u > 0} ∩ {dF ≥ r}, and m(r) = |Ωr|. Suppose that the result we want to prove is
not true for r ∈ [0, r1] for some r1 > 0, meaning that for a constant τ > 0 that will be chosen later
and for any r ∈]0, r1[,

EΘ(u|Ωr) ≤
ˆ
∂∗Ωr\Ju

Θ(u)dH n−1 + τ |Ωr|1− 1
n ,
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where we remind EΘ(u|Ω) :=
´

Ω |∇u|2dL n +
´
Ju

(Θ((u1Ω)+) + Θ((u1Ω)−)) dH n−1. Now, for any
r ∈]0, r1[,

m(r)n−1
n ≤ CnPer(Ωr) (by isoperimetry)

≤ CnΘ(δ)−1
(ˆ

∂∗Ωr\Ju

Θ(u)dH n−1 +
ˆ
∂∗Ωr∩Ju

(Θ((u1Ωr)−) + Θ((u1Ωr)+))dH n−1
)

≤ CnΘ(δ)−1
(ˆ

∂∗Ωr\Ju

Θ(u)dH n−1 + EΘ(u|Ωr)
)

≤ CnΘ(δ)−1
(

2
ˆ
∂∗Ωr\Ju

Θ(u)dH n−1 + τ |Ωr|1− 1
n

)
,

so for τ := Θ(δ)
2Cn

this implies

m(r)n−1
n ≤ 4CnΘ(δ)−1

ˆ
∂∗Ωr\Ju

Θ(u)dH n−1 ≤ 4Cn
Θ(1)
Θ(δ)H n−1(∂∗Ωr \ Ju).

Moreover H n−1(∂∗Ωr \ Ju) ≤ −m′(r). So by integrating this for every r ∈]0, r1[, we get

m(r1)
1
n ≤ m(0) 1

n − Θ(δ)
4CnΘ(1)r1.

Since m(r1) ≥ 0 this means that necessarily

r1 ≤ 4Cn
Θ(δ)
Θ(1) |{u > 0} \ F |

1
n .

Thus, there is always some r ∈
[
0, 8CnΘ(δ)

Θ(1) |{u > 0} \ F | 1
n

]
such that

EΘ(u1{dF<r}) ≤ EΘ(u) − τ |{u > 0} ∩ {dF > r}|1− 1
n ,

where τ = Θ(δ)
2Cn

as defined earlier.

In all that follows we will need the following lemma for controlled infinitesimal volume exchange
between measurable set, that may be found for instance in [157, Lemma 29.13].

Lemma 8.13. Let U be a connected open set, E1, . . . , EN be a measurable partition of U such that,
for every i, |Ei ∩ U | > 0. Then there are vector fields Xij with disjoint support such that for any
i, j, k,

ˆ
Ek

div(Xij) =


+1 if k = i,

−1 if k = j,

0 else.

Proof. Consider the linear application

L :
C∞

c (U) → RN ,

X 7→
(´

Ei
div(X)

)
i=1,...,N

.

The range of L is included in {(m1, . . . ,mN) : ∑N
i=1 mi = 0}. If it were not equal to this subspace,

there would be a non trivial vector (a1, . . . , aN) independant of (1, . . . , 1) such that, for any X,∑N
i=1 ai

´
Ei

div(X) = 0, meaning that ∇
(∑N

i=1 ai1Ei

)
= 0 in D′(U), which is a contradiction by the

connectedness of U .
Proposition 8.14. Under the hypotheses of Proposition 8.8, there exists a minimizer of EΘ in
Problem (8.10).

Proof. Consider a minimizing sequence (ui); up to truncation we may suppose that inf{ui>0}(ui) ≥
δn,Θ,m,M . We may apply Lemma 8.11 with ϵ = m/2 to find sequences (pki )1≤k≤N,i≥0 such that
|{ui > 0} \ ∪kKpk

i
| ≤ ωn

2 . In particular, |{ui = 1} ∩ ∪kKpk
i
| ≥ ωn

2 so for each i there is some ki such
that |K

p
ki
i

∩{u = 1}| ≥ ωn

2N . Up to a translation we will suppose that pki
i = 0, such that K

p
ki
i

= [0, 1]n.
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Now, by compactness arguments in SBV , see theorem 8.9, we know that up to an extraction
(ui) converges almost everywhere (with lower semicontinuity on the energy) to a non-trivial limit
u ∈ SBV , in particular such that |{u = 1}| > 0 and Fatou’s lemma tells us that for any cube
K, |{u = 1} ∩ K| ≥ lim supi→∞ |{ui = 1} ∩ K|. We also denote R := (2M)1/n to be such that
|[0, R]n ∩ {u = 0}| ≥ M .

Lemma 8.15. Up to extraction, either |{u > 0} ∩ [0, R]n| > lim supi→∞ |{ui > 0} ∩ [0, R]n|, which
we call the loose case, or

1{ui=1}∩[0,R]n → 1{u=1}∩[0,R]n

in the weak-∗ sense, which we call the saturated case.

Proof. Suppose that |{u > 0}∩ [0, R]n| = lim supi→∞ |{ui > 0}∩ [0, R]n|. We denote ν a weak limit of
the sequence of measures given by the density 1{ui=1}; by hypothesis ν([0, R]n) = |{u = 1} ∩ [0, R]n|.
Moreover for any nonnegative continuous function φ ∈ C0([0, R]n,R), by Fatou’s lemma,

ν(φ) = lim
i→∞

ˆ
[0,R]n

φ1{ui=1}dL n ≤
ˆ

[0,R]n
φ lim sup

i→∞
1{ui=1}dL n ≤

ˆ
[0,R]n

φ1{u=1}dL n,

which concludes the lemma.

We now let ϵ > 0 to be a small number (it will be fixed later), and we find a union of N(=
Nn,Θ,m,M,ϵ) cube (we also include cubes to cover [0, R]n), denoted Fi, such that |{ui > 0} \ Fi| ≤ ϵ;
by applying Lemma 8.12 to (ui, Fi), we find a radius ri ≤ Cn,Θ,M |{ui > 0} \ Fi|

1
n such that

EΘ(ui1{dFi
<ri}) ≤ EΘ(ui) − τn,Θ,M |{ui > 0} ∩ {dFi

> ri}|1− 1
n .

We let vi = ui1{dF<ri}, and we now differentiate between the loose and the saturated case.
• Loose case: here we may choose ϵ < |{u = 1} ∩ [0, R]n| − lim supi→∞ |{ui = 1} ∩ [0, R]n|. Since

the support of vi is on a finite (not depending on i) number of cubes, they may be moved around
so that vi is supported in a compact set. Then by SBV compactness theorem 8.9 we obtain
that vi → v, such that EΘ(v) ≤ lim infi→∞ EΘ(vi) = inf |{u=1}|≥ωn,|{u>0}|≤M EΘ(u). Moreover,
|{v > 0}| = limi→∞ |{vi > 0}| ≤ M and

|{v = 1}| ≥ |{u = 1} ∩ [0, R]n| − lim sup
i→∞

|{ui = 1} ∩ [0, R]n| + lim sup
i→∞

|{vi = 1}|

≥ |{u = 1} ∩ [0, R]n| − lim sup
i→∞

|{ui = 1} ∩ [0, R]n| − ϵ+ ωn

≥ ωn,

so v is admissible and this proves the result.

• Saturated case: based on the partition {u = 0}, {0 < u < 1}, {u = 1} of [0, R]n, where the first
and last set have positive measure, there exists a vector field ξ ∈ C∞

c ((0, R)n,Rn) such thatˆ
{u=1}

div(ξ)dL n = 1,
ˆ

{0<u<1}
div(ξ)dL n = 0,

ˆ
{u=0}

div(ξ)dL n = −1.

Moreover notice that ϕt(x) := x + tξ(x) is a diffeomorphism with compact support for any
small enough t; ϕt will be used to regulate the measure of {ui = 1} after truncation. Using the
weak convergence of the measure of the supports of the (ui), we may suppose that for any large
enough i and any small enough t (not depending on i)

|{ui ◦ ϕ−1
t = 1}| =

ˆ
{ui=1}

det(Dϕt)dL n =
ˆ

{ui=1}

(
1 + tdiv(ξ) + t2Pξ(t)

)
dL n

≥ |{ui = 1}| + t

2 ,

|{0 < ui ◦ ϕ−1
t < 1}| =

ˆ
{0<ui<1}

det(Dϕt)dL n =
ˆ

{0<ui<1}

(
1 + tdiv(ξ) + t2Pξ(t)

)
dL n

≤ |{0 < ui < 1}| + Ct2.
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where Pξ is a polynomial of degree n− 2 that depends on ξ.
Now, let ti = 8(ωn − {vi = 1}). We know that ti = 8|{ui > 0} \ {dFi

> ri}| ≤ 8ϵ; when ϵ is
small enough, for any |t| < 8ϵ we know ϕt is a diffeomorphism and the estimates above hold for
any large enough i. Consider

wi(x) = vi ◦ ϕ−1
ti

[ ωn
ωn − 1

4ti

]1/n

x

 .
Then

|{wi = 1}| =
ωn − 1

4ti
ωn

|{vi ◦ ϕ−1
ti

= 1}| ≥
ωn − 1

4ti
ωn

(
|{vi = 1}| + 1

2ti
)
,

≥ |{vi = 1}| + ti
8 = ωn

|{0 < wi < 1}| =
ωn − 1

4ti
ωn

|{0 < vi ◦ ϕ−1
ti
< 1}| ≤

ωn − 1
4ti

ωn

(
|{0 < vi < 1}| + Ct2i

)
≤ |{0 < vi < 1}| ≤ |{0 < ui < 1}|,

where in both lines we use that ti is taken arbitrarily small (less than 8ϵ > 0, not depending on
i). Thus (wi) is admissible. Then it may be computed with a similar method that

EΘ(wi) − EΘ(vi) =
ˆ

{ξ ̸=0}

(∣∣∣((I + tiDξ)∗)−1 ∇ui
∣∣∣2 det(In + tiDξ) − |∇u|2

)
dL n

+
ˆ
Ju∩{ξ ̸=0}

(
Θ(u+

i ) + Θ(u−
i )
) (
ν∗
Jui

(In + tiDξ)νJui
− 1

)
dH n−1

≤ C0ti where C0 does not depend on i.

And then, due to Lemma 8.12,

EΘ(wi) ≤ EΘ(ui) + 8C0|{ui > 0} \ {dFi
> ri}| − τn,Θ,M |{ui > 0} ∩ {dFi

> ri}|1− 1
n ≤ EΘ(ui),

where the last inequality is due to |{ui > 0} ∩ {dFi
> ri}| ≤ ϵ and ϵ is chosen small enough

(depending on the flow, which was defined before ϵ). So (wi) is an admissible minimizing
sequence that is confined in a disjoint union of N unit cubes, and up to moving these cubes
we may suppose that wi has support in a certain ball B not depending on i. So with the
compactness result 8.9, it converges to a minimizer.

Lemma 8.16. Let u be a relaxed minimizer of (8.10). Then Ju is H n−1-essentially closed, and
there exists a bounded open set Ω with ∂Ω = Ju and a relatively closed set K ⊂ Ω such that (K,Ω)
is a solution of (8.4), associated to the function u, with u ∈ H1(Ω) ∩ C0, 2

n+2
loc (Ω) and K = {u = 1}.

Proof. We assume without loss of generality that |{0 < u < 1}| > 0; otherwise the minimizer is
directly identified by the isoperimetric inequality.

• We first prove that u is an almost quasiminimizer of the Mumford-Shah functionnal, meaning
that there are constants cu, ru > 0 such that for any ball Bx,r with r < ru and any function
v ∈ SBV (Rn) that differs from u on Bx,r only,
ˆ
Bx,r

|∇u|2dL n+Θ(δ)H n−1(Bx,r∩Ju) ≤
ˆ
Bx,r

|∇v|2dL n+2Θ(1)H n−1(Bx,r∩Jv)+cu|{u ̸= v}|.

(8.13)
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Let U be the union of two balls of arbitrarily small radius δ such that

|U ∩ {u = 1}|, |U ∩ {0 < u < 1}|, |U ∩ {u = 0}| > 0 (8.14)
|U c ∩ {u = 1}|, |U c ∩ {0 < u < 1}|, |U c ∩ {u = 0}| > 0. (8.15)

The second condition (8.15) is automatic as soon as δ is small enough, and the first condition
(8.14) may be obtained by continuity of x 7→ |Bx,δ ∩A| for A = {u = 1}, {0 < u < 1}, {u = 0}.
We may apply lemma 8.13 for these three sets in U , thus obtaining three smooth vector fields
(X, Y, Z) with support in U that transfer measure between ({u = 0}, {0 < u < 1}, {u = 1}), in
particular

ˆ
{u=1}

div(X) = −
ˆ

{u=0}
div(X) = 1,

ˆ
{0<u<1}

div(X) = 0
ˆ

{u=1}
div(Y ) = −

ˆ
{u=0}

div(Y ) = 1,
ˆ

{0<u<1}
div(Y ) = 0

Write ϕt(x) = x+ tX(x), ψt(x) = x+ tY (x), and Φs,t = ϕs ◦ ψt. Consider the application

G :
R2 → R2

(s, t) 7→ (|Φs,t({u = 1})| − |{u = 1}| , |Φs,t({0 < u < 1})| − |{0 < u < 1}|) .

Then G is smooth and DG(0, 0) = I2; there exists ϵ0 > 0 such that G is invertible on Bϵ0

with 1
2 | (s, t) | ≤ |G (s, t) | ≤ 2| (s, t) | and G(Bϵ0) ⊃ Bϵ0/2. Let r > 0 and x ∈ Rn be such that

|Bx,r ∩ U | = 0 and |Bx,r| < ϵ0/4, and v ∈ SBV be such that {u ̸= v} ⋐ Bx,r. Up to truncating
v from above (by 1, that can only decrease the energy) and from below (by some t ≥ δ, by
lemma 8.10) we assume that δ1{v>0} ≤ v ≤ 1.

Let (a, b) = (|{u = 1}| − |{v = 1}|, |{0 < u < 1}| − |{0 < v < 1}|)(∈ Bϵ0/2), and (s, t) =
G−1

|Bϵ0
(a, b). Then v ◦ Φ−1

s,t satisfies the measure constraints (ωn,M), so

EΘ(u) ≤ EΘ(v ◦ Φ−1
s,t ).

Soˆ
Bx,r

|∇u|2dL n + Θ(δ)H n−1(Bx,r ∩ Ju) ≤
ˆ
Bx,r

|∇v|2dL n + 2Θ(1)H n−1(Bx,r ∩ Jv) +R,

where

R =
ˆ
U

(∣∣∣(DΦ∗
s,t)−1∇u

∣∣∣2 det(DΦs,t) − |∇u|2
)

dL n

+
ˆ
U∩Ju

(
ν⊥
u DΦs,tν

⊥
u − 1

)
(Θ(u−) + Θ(u+)) dH n−1

≤ C(|s| + |t|) ≤ 2C(|a| + |b|).

This proves that u is an almost quasiminimizer at any positive distance of U . Now by our
choice of U , the condition (8.15) allows us to choose similarly a set U ′ ⊂ Rn \U that is a union
of two balls of arbitrarily small radii such that

|U ′ ∩ {u = 1}|, |U ′ ∩ {0 < u < 1}|, |U ′ ∩ {u = 0}| > 0

and by choosing similarly vector fieldsX ′, Y ′, Z ′ with support in U ′ that transit measure between
these three sets, u is an almost quasiminimizer at any positive distance of U ′. Thus u is an
almost quasiminimizer, and this concludes the proof of the estimate (8.13).
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• By [151, Theorem 3.1], u being an almost quasiminimizer of Mumford-Shah implies that Ju is
essentially closed, meaning H n−1(Ju \ Ju) = 0. We now let Ω be the union of the bounded
connected components of Rn \ Ju, then u ∈ H1(Ω) and ∂Ω = Ju.

• Let us prove Ω is bounded by proving an explicit lower density estimate; indeed, we let r := ru
as defined in the first point and considering v = u1Rn\Bx,ρ for any x ∈ Rn and ρ ∈]0, r[ in (8.13)
we get
ˆ
Bx,ρ

|∇u|2dL n+Θ(δ)H n−1(Bx,ρ∩Ju) ≤ 2Θ(1)H n−1(∂Bx,ρ∩{u > 0}\Ju)+cu|Bx,ρ∩{u > 0}|.

Let m(ρ) = |Ω ∩Bx,ρ|, then by the isoperimetric inequality

cnm(ρ)1− 1
n ≤ H n−1(∂Ω ∩Bρ) + H n−1(Ω ∩ ∂Bρ) ≤

(
1 + 2Θ(1)

Θ(δ)

)
m′(ρ) + cum(ρ).

So if |Bx,r/2 ∩ Ω| > 0 then by integrating this estimate, |Bx,r ∩ Ω| ≥ crn for a constant c that
does not depend on x. Since |Ω| ≤ M then there are at most N ≤ M

crn points (xi)i=1,...,N such
that |xi − xj| ≥ r for all i ̸= j and |Ω ∩B(xi, r/2)| > 0, meaning that Ω is bounded.

• We prove that u is locally Hölder, which implies the relative closedness of K with K = {u = 1}.
Indeed let K = {u = 1} and B ⋐ Ω be a small ball inside Ω such that |B ∩K| and |B \K| are
positive (such a ball exists as soon as |Ω| > |K|, otherwise K and Ω\K would be disconnected,
and (K,K) would have strictly lower energy than (K,Ω)). Let ξ ∈ C∞

c (B,Rn) be such that
ˆ
B∩K

div(ξ)dL n = 1,
ˆ
B\K

div(ξ)dL n = −1,

and let ϕt(x) = x+ tξ(x) be the associated diffeomorphism for a small enough t. Consider then
any ball Bx,r ⋐ Ω such that

B
x,r

n
n+2 ⋐ Ω \B,

we prove that provided r is small enough (depending only on the choice of the flow and the
parameters of the problem and not on x) there is a constant C > 0 not depending on x and r
such that ˆ

Bx,r

|∇u|2dL n ≤ Cr
n2

n+2 .

This directly implies the local Hölder continuity in Ω \B and the relative closedness of K using
classical integral growth argument (see for instance [155, cor. 3.2]), and the same may be done
for another small ball B′ that has positive distance from B which conclude the result. Let us
now focus on this estimate.

Let R = r
n

n+2 and h be the harmonic extension of u|∂Bx,R
on Bx,R (that we extend simply by u

outside Bx,R). We suppose that r is small enough such that r < R
2 . Notice that h might not be

admissible, however |{h = 1}| ≥ ωn − |BR|; we let t = 2|BR| and for a small enough R, we have

|{h ◦ ϕ−1
t = 1}| ≥ ωn,

so h ◦ ϕ−1
t is admissible. By comparison with the minimizer u we get

ˆ
Bx,R

|∇(u− h)|2dL n ≤
ˆ
B

(∣∣∣((I + tDξ)∗)−1 ∇u
∣∣∣2 det(I + tDξ) − |∇u|2

)
dL n ≤ CRn.
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for some constant C that depends on n, u|B and on the flow ξ. Now, using the subharmonicity
of |∇h|2 on Bx,R,

ˆ
Bx,r

|∇u|2dL n ≤ 2
ˆ
Bx,r

|∇(u− h)|2dL n + 2
ˆ
Bx,r

|∇h|2dL n

≤ CRn + 2
(

r

R/2

)n ˆ
Bx,R/2

|∇h|2dL n

≤ CRn + C ′ r
n

R2 by Cacciopoli inequality on the second term.

This ends the proof.

Remark 8.17. Summarizing our results, we know that Ω is an open set with rectifiable topological
boundary such that H n−1(∂Ω) < ∞ and that the temperature u ∈ H1(Ω) is C0, 2

n+2
loc (Ω).

8.4 The penalized problem: proof of Theorem 8.2

In this section we prove Theorem 8.2. For any Λ > 0, we denote

EΘ,Λ(K,Ω) = EΘ(K,Ω) + Λ|Ω \K|, EΘ,Λ(u) = EΘ(u) + Λ|{0 < u < 1}|.

We claim that it is enough to prove the result in the case for a function Θ which satisfies (8.6)
and such that Θ(u) = Ou→0(u2). Indeed, for any small ϵ > 0 one may replace Θ on [0, 1] with a
perturbation that verifies (8.6), namely

Θϵ(u) = min
(

(Θ(1) + ϵ)
(
u

ϵ

)2
,Θ(u) + ϵ1(0,1]

)

and define EΘϵ , EΘϵ,Λ, accordingly. Then we know EΘϵ,Λ is minimal on some (B1, BRϵ), and that the
associated state function has the form

uϵ(x) =


1 if |x| ≤ 1,
1 − (1 − uϵ(Rϵ)) Φn(|x|)−Φn(1)

Φn(Rϵ)−Φn(1) if 1 ≤ |x| ≤ Rϵ,

0 if |x| > Rϵ,

due to the general form of radial harmonic functions (x 7→ a+bΦn(|x|)). The associated energy takes
the form

EΘϵ,Λ(B1, BRϵ) = (1 − uϵ(Rϵ))2 Per(Br)Φ′
n(1)

Φn(Rϵ) − Φn(1) + Per(BRϵ)Θϵ (uϵ(Rϵ)) .

Rϵ is bounded uniformly in ϵ; indeed, due to the penalization term,

|BRϵ | ≤ Λ−1EΘϵ(B1, BRϵ) ≤ Λ−1EΘϵ(B1, B1) = Λ−1(Θ(1) + ϵ)Per(B1)

so we may suppose without loss of generality that Rϵ −→
ϵ→0

R and uϵ(Rϵ) −→
ϵ→0

l ∈ [0, 1], and define

u(x) =


1 if |x| ≤ 1,
1 − (1 − l) Φn(|x|)−Φn(1)

Φn(R)−Φn(1) if 1 < |x| < R,

0 if |x| > R,

Then by lower semicontinuity of Θ and the fact that Θ(0) = 0 we get

EΘ,Λ(B1, BR) ≤ EΘ,Λ(u) ≤ lim inf
ϵ→0

EΘϵ,Λ(B1, BRϵ)
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and then for any admissible v we get by dominated convergence

EΘ,Λ(v) = lim
ϵ→0

EΘϵ,Λ(v) ≥ lim inf
ϵ→0

EΘϵ,Λ(B1, BRϵ) ≥ EΘ,Λ(B1, BR)

This is a similar method as what was used in [150] to handle a similar function with Θ(v) ∼ 2βcv
near 0 for some constants c, β > 0.

Lemma 8.18. Problem (8.5) has a solution.

Proof. We let Θϵ(u) defined above. Notice that

inf
0<s<1

Θϵ(s/3)
Θϵ(s) ≥ min

(
1
9 , inf

0<s<1

Θ(s/3) + ϵ

Θ(s) + ϵ

)
≥ min

(
1
9 ,

ϵ

Θ(1) + ϵ

)
> 0

and Θϵ(v) = Os→0(s2) so the hypothesis (8.7) is automatically verified. For what comes next we
drop the ϵ to lighten the notations.
The results of Section 8.3 apply; for any M ≥ ωn, there exists a minimizer (KM ,ΩM) of problem (8.4).
M 7→ EΘ(KM ,ΩM) is nonincreasing, and we prove that it is lower semicontinuous. Indeed, consider
Mi −→

i→∞
M , and consider the sequence of minimizers (KMi ,ΩMi), with their state function (ui). Then

proceeding as in the proof of Proposition 8.14, we find a modified sequence (wi) obtained from (ui)
through truncation with uniformly bounded support, such that its limit w verifies |{w = 1}| ≥ ωn,
|{w > 0}| ≤ M , and EΘ(w) ≤ lim infi→∞ EΘ(ui); this prove the lower semi-continuity. Since

EΘ,Λ(KM ,ΩM) ≥ Λ(M − ωn) −→
M→+∞

+∞,

then there is a (non-necessarily unique) MΛ > 0 such that [ωn,+∞) ∋ M 7→ EΘ,Λ(KM ,ΩM) is
minimal at M = MΛ and (KMΛ ,ΩMΛ) is a minimum of EΘ,Λ with |Ω| ≤ M .

We may now prove the main result of this section. We will say a set A has the center property
if any hyperplane that goes through the origin divides A in two parts of same measure. This is in
particular the case if A has central symmetry. We will also call a minimizer (K,Ω) “centered” if K
has the center property.

Proof of Theorem 8.2. Consider u a minimizer of EΘ,Λ with the associated sets Ω = {u > 0}, K =
{u = 1}. We remind that we know Ω to be open and u ∈ H1(Ω). When e is a unit vector and λ ∈ R,
we will write

u+
e,λ(x) =

u(x) if x · e ≥ λ

u(Se,λ(x)) if x · e < λ
, u−

e,λ(x) =
u(Se,λ(x)) if x · e ≥ λ

u(x) if x · e < λ
,

where Se,λ is the reflexion relative to the hyperplane {x : x · e = λ}.

• We first show that there exists a minimizer with the center property by building a minimizer
with central symmetry. Indeed, consider u a minimizer associated to (K,Ω), λ1 ∈ R such that
{x : x1 = λ1} cuts K in half. Then u+

e1,λ1 and u−
e1,λ1 are also minimizers; we may in particular

replace u with u+
e1,λ1 or u−

e1,λ1 (the choice does not matter here) to suppose u has a symmetry
along {x : x1 = λ1}. We do the same for {x : xi = λi} successively for i = 2, . . . , n; in the end
we arrive to a minimizer

ũ =
(
. . .
(
u±
e1,λ1

)±

e2,λ2

)
. . .
)±

en,λn

,

that is symmetric relative to every Sei,λi
. Up to a translation of λ, ũ is invariant for every Sei,0,

and so it is invariant by their composition which is the central symmetry x 7→ −x.

• Suppose that u is a minimizer (with K = {u = 1}, Ω = {u > 0}) where K has the center
property (we know such a minimizer exists from the previous point). We prove that the free
boundary ∂K ∩ Ω is a union of spherical arcs centered at the origin.
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If {0 < u < 1} is empty then the problem is equivalent to the isoperimetric inequality and we
are done, so we suppose that it is not. Consider A a connected component of {0 < u < 1},
which is open by the regularity of minimizers. The set ∂A ∩ ∂K is not empty, since it would
otherwise mean that EΘ(u1Rn\A) < EΘ(u).
Let He = {x : x · e = 0} be a hyperplane going through the origin such that He ∩ A ̸= ∅, then
u+
e,0 is also a minimizer; in particular this means by analyticity of u in A that ∇u|He is colinear

to He. Since this is true for every e, then u|A is a radial function (restricted to a set A that
may not be radial), and since it is harmonic it has an expression of the form

u|A(x) = aA − bAΦn(|x|),

where Φn is the fundamental solution of the Laplacian (taken with the sign convention that it
is increasing). Moreover, since u is 1 on ∂K ∩ ∂A, we know this set is an arc of circle around
0, and we call its radius rA. While rA might depend on the component A, notice that the
optimality condition for the Alt-Caffarelli problem near ∂K ∩ Ω is exactly that for a certain
constant λ > 0 that does not depend on A,

∀x ∈ ∂K ∩ ∂{0 < u < 1}, |∇u(x)| = λ,

where ∇u(x) refers in this case to the limit of ∇u(y) as y(∈ A) → x. With u(x) = 1 this
exactly reduces to aA − bAΦn(rA) = 1,

−bAΦ′
n(rA) = λ,

so (aA, bA) are fully determined by rA.

• We prove a reflexion lemma that will be useful for successive reflections.

Lemma 8.19. Let u be a centered minimizer. Then for any vector e, u+
e,0 is also a centered minimizer.

Proof. We let v = u+
e,0. If {0 < v < 1} has zero measure then as a solution of the isoperimetric

problem we know v is the indicator of a ball so we are done; we suppose it is not the case. We
may consider A a connected component of {0 < v < 1} as previously and Z ⋐ ∂A∩∂K a small
spherical cap that is open with respect to ∂BrA

. Consider another vector f that is completed
in an orthogonal basis f = f1, f2, . . . , fn of Rn. As previously we may reflect v successively as

ṽ =
(
. . .
(
v±
f1,λ1

)±

f2,λ2

)
. . .
)±

fn,λn

,

Where the signs are chosen such that v and ṽ coincide on a quadrant that has non-empty
intersection with Z. By construction ṽ is centrally symmetric around the point λ = (λ1, . . . , λn),
so Z is a spherical cap both around the origin and λ; this implies that λ = 0 so in particular
λ1 = 0, which means that Hf,0 cuts {u+

e,0 = 1} in half; this is what we wanted to prove.

• Consider a centered minimizer u (it exists due to the first step, since there exists a centrally
symmetric minimizer), such that |{0 < u < 1}| > 0. We construct another centered minimizer
v such that for some connected component A of {0 < v < 1}, ∂A∩∂{v = 1} contains a centered
sphere. We do this by iteration of the following lemma.

Lemma 8.20. Let u be a centered minimizer, let A be a connected component of {0 < u < 1} and
let λ ∈]1, 2[ and D∂Br

x,ρ ⋐ ∂A ∩ ∂K be a small spherical disk in the sphere of radius r := rA. Then
there exists another centered minimizer v obtained by a finite number of reflexions on u, associated
to the sets (K ′,Ω′) = ({v = 1}, {v > 0}), such that for some connected component A′ of {0 < v < 1},
D∂Br
x,λρ ⊂ ∂K ′ ∩ ∂A′.

Proof. We will denote D(x, ρ) the ball relative the the unit sphere. If ρ > π
2 r then one reflexion

along the hyperplane x⊥ is enough; we suppose that ρ ≤ π
2 r.
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Let ϵ = 1 − λ
2 . For every y ∈ ∂D(x, (1 − ϵ)ρ), the reflexion by the hyperplane going through

y and tangent to ∂D(x, (1 − ϵ)ρ) reflects a neighbourhood of [x, y] on a neighbourhood N(y)
of [x′, y] for some point x′ in the continuation of the geodesic [xy) at distance λρ from x. By
compactness there is some finite set (yi)i∈I in ∂D(x, (1 − ϵ)ρ) such that ∪i∈IN(yi) ⊃ D(x, λρ).
By iterating the associated reflexions we obtain the result.

• There exists a centered minimizer u such that {u = 1} is a ball. Indeed, consider a minimizer
(K,Ω) with a function u as previously, such that there is some r > 0 for which ∂Br ⊂ ∂K. For
every such r, the function ur = max(u, 1Br) is also a minimizer associated to (K ∪Br,Ω ∪Br)
that has the same energy as u, thus u = 1 on Br. In particular this means that u is radially
decreasing on the whole component of Ω that contains a small neighbourhood of Br; let us
denote Ω1 this component and Ω2 = Ω\Ω1, as well as ui = u1Ωi

. Then u = u1 +u2 where u1, u2
have disjoint support and Ju1 ∪ Ju2 ⊂ Ju. If u2 is not zero this means that u is a disconnected
minimizer; let us prove that this is not possible.

Indeed, let mi = |{ui = 1}| and vi(·) = ui

((
mi

ωn

)1/n
·
)

. Then |{vi = 1}| = ωn and

EΘ,Λ(ui) =
(
mi

ωn

)1− 2
n

ˆ
Rn

|∇vi|2dL n+
(
mi

ωn

)1− 1
n

ˆ
Jvi

Θ(vi)dH n−1+mi

ωn
Λ|{vi > 0}| > mi

ωn
EΘ,Λ(vi),

where the inequality is strict because EΘ(vi) > 0 and mi < ωn (or else one of the vi is zero,
which we supposed is not the case). Now,

EΘ,Λ(u) = EΘ,Λ(u1) + EΘ,Λ(u2) >
m1

ωn
EΘ,Λ(v1) + m2

ωn
EΘ,Λ(v2) ≥ inf EΘ,Λ.

This contradicts the fact that u is a minimizer. Thus u2 = 0 and u = u1 with {u1 = 1} = Br,
which turns out to be the ball of volume ωn, this determines r to be 1 and in turns means that
u is of the form

u(x) = φ(|x|)1Ω,

for some radial function φ that takes the value 1 on [0, r] and some set A that contains B1, and
takes the value 1 − c(Φn(|x|) − Φn(1)) on Ω for some c > 0.

• Consider such a minimizer u associated with the sets (K,Ω), such that {u = 1} is the ball B1,
{u > 0} contains a neighbourhood of B1 and u(x) is a radial function φ(|x|) restricted to a
non-necessarily radial set Ω. Then we prove that for some R > 0, φ1BR

is also a minimizer.

First replace Ω with its spherical cap rearrangement Ωs around the axis {te1, t > 0}, meaning
that for every t > 0, Ωs∩∂Bt is a spherical cap centered in te1 with the same H n−1-measure as
Ω ∩ ∂Bt. Said differently this means that H n−1(Ω ∩ ∂Bt) = H n−1(Ωs ∩ ∂Bt) for all t > 0 with
∂Ωs = {f(e · e1)e, e ∈ Sn−1} for some nondecreasing f : [−1, 1] → (r,+∞) that is continuous in
1 by openness of Ωs (it may also be checked afterward that in our case, f is continuous at −1
by minimality although we will not need it). A property of spherical cap rearrangement (see
for instance [158, Prop. 3 and Rem. 4]) is that

ˆ
∂∗Ωs

φ(|x|)dH n−1 ≤
ˆ
∂∗Ω

φ(|x|)dH n−1

and |Ωs| = |Ω|,
´

Ωs |φ′(|x|)|2dx =
´

Ω |φ′(|x|)|2dx. As a consequence, φ(|·|)1Ωs is still a minimizer.
Write R := f(1), for any small ϵ > 0, there is a small enough ρ > 0 such that

f([1 − ρ, 1]) ⊂ [R − ϵ, R].
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We may iterate Lemma 8.20 again to obtain a minimizer (uϵ, Kϵ,Ωϵ) such that uϵ is still given
by the same radial function φ on a non-necessarily radial set, and such that

Kϵ = Br, BR−ϵ ⊂ Ωϵ ⊂ BR.

Since this may be done for any arbitrarily small ϵ, by lower semi-continuity as ϵ → 0 we obtain
that (φ(| · |)1BR

, Br, BR) is a minimizer.

Notice we could have done the same for (B1, BF (−e1)); if F (−e1) < F (e1) it means we are in a
case in which argmin{R ≥ 1 7→ EΘ,Λ(B1, BR)} is not uniquely defined.

Corollary 8.21. If, additionally to the hypotheses of Theorem 8.2, Θ is such that [1,+∞[∋ R →
EΘ(B1, BR) is minimal at 1, then for any (K,Ω)

EΘ(K,Ω) ≥ EΘ(B1, B1).

Proof. (B1, B1) is always the minimizer of EΘ,Λ as Λ → 0, hence the result.

Remark 8.22. This covers the case β ≤ n− 2 for Θ(u) = βu2.

8.5 Proof of Theorem 8.3

Part of the assertions of the Theorem 8.3, namely the existence of a solution to problem (8.4) and its
regularity, have already been proved in the preparatory section 8.3 (see Proposition 8.8 and Remark
8.17).

Proof of Theorem 8.3. In order to complete the proof of Theorem 8.3, we give the following.

Lemma 8.23. Let (K,Ω) a solution of (8.4). Then K has locally finite perimeter in Ω and ∂K ∩ Ω
is analytic when n = 2.

Proof. We refer to [147] where a closely related problem is treated. The same arguments apply in
our case.

Lemma 8.24. Let Θ be l.s.c. and nondecreasing. Let (K,Ω) be a solution of (8.4) for M = Rnωn.
Then either |Ω| = M or EΘ(K,Ω) = infr∈[1,R] EΘ(B1, Br).

Proof. Suppose there is a minimizer with measure strictly less than M . Roughly speaking, in this
case the measure constraint is not saturated so that the problem behaves under many aspects an
unconstrained one.

By compactness, there exists (K,Ω) that is the minimizer with the lowest volume, associated to
a function u. Indeed, consider (Ki,Ωi) a sequence of such minimizers, associated with functions (ui),
then reproducing the existence proof in Section 8.3 on the sequence (ui), we obtain a new minimizer
with minimal volume, still denoted (K,Ω).

If |Ω| = ωn then we are done, so we suppose that this is not the case.

Let H be the set of every hyperplane that cuts K in half. It is not quite identified with RPn−1

since there may be several parallel hyperplanes that cut K in half if K is not connected. It is,
however, straightforward that H is a connected set for the natural topology given by {(H, v) ∈
RPn−1 × Rn s.t. v ∈ H⊥}. For every hyperplane H, we write

m(H) = sup
{∣∣∣H+ ∩ Ω

∣∣∣ , ∣∣∣H− ∩ Ω
∣∣∣}

206



and we let

H< =
{
H ∈ H : m(H) < M

2

}
,

H= =
{
H ∈ H : m(H) = M

2

}
,

H> =
{
H ∈ H : m(H) > M

2

}
.

Then H< and H> are open relatively to H by the continuity of m. The minimality of the volume of
Ω and the fact that |Ω| < M implies that H= is empty (otherwise we could construct a minimizer
with stricly lower volume by reflection around an element of H=).

Finally, H< is not empty, as may be seen by considering, for each θ ∈ R
πZ , an hyperplane or-

thogonal to cos(θ)e1 + sin(θ)e2 and using intermediate value theorem after making a full turn. By
connectedness, this directly implies that H> = ∅ and so H< = H. Now, let H ∈ H, then Ω may be
reflected on both sides of H: since the measure of Ω is minimal among minimizers, then∣∣∣H− ∩ Ω

∣∣∣ =
∣∣∣H+ ∩ Ω

∣∣∣ .
Thus, for every hyperplane that cuts K in half, Ω is also cut in half; this means that we can

use the same arguments than for the penalized problem in Theorem 8.2: by successive reflections,
we find a solution with minimal volume such that the free boundary of u is ∂B1. By spherical
rearrangement around {te1, t > 0} we obtain a new minimizer (K,Ω). Now, if Ω is not a ball, then∣∣∣H+

e1 ∩ Ω
∣∣∣ > ∣∣∣H−

e1 ∩ Ω
∣∣∣, which is a contradiction.

We prove now the last assertion of Theorem 8.3. We begin with an a priori estimate that is
similar to Lemma 8.10, only that it is done with in mind the idea to find a lower bound arbitrarily
close to 1.

Proposition 8.25. Let Θ be l.s.c and nondecreasing. There exists a constant Cn > 0 such that, if
δ ∈]0, 1[ verifies

δ + Cn
Θ(1)√
Θ(δ)

(M − ωn) 1
2n < 1,

then for all u such that |{u ≥ 1}| ≥ ωn, |{u > 0}| ≤ M , there is some t > δ such that EΘ(u1{u>t}) ≤
EΘ(u).

This lemma is applicable in particular when δ is close to 1 and M − ωn is small.

Proof. This proof is very similar to Lemma 8.10, so some steps are only briefly described. We actually
show the stronger result; there is some t > s > δ such that

EΘ
(
u1{s<u<t}c

)
≤ EΘ(u).

Let ϵ = 1 − δ > 0, suppose EΘ(u1{s<u<t}c) > EΘ(u) for every 1 − ϵ < s < t < 1. We write

• Ω (s, t) = {s < u ≤ t}.

• γ (s, t) =
´
Ju

(
1s<u+≤t + 1s<u−≤t

)
dH n−1.

• h(t) = H n−1({u = t} \ Ju).
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Let η := 1 − ϵ
2 , our hypothesis becomes that for every, t ∈]0, ϵ2 [, EΘ(u1{η−t<u<η+t}c) > EΘ(u) so

ˆ
Ω(η−t,η+t)

|∇u|2dL n + Θ(1 − ϵ)γ(η − t, η + t) ≤ Θ(1) (h (η − t) + h (η + t)) . (8.16)

The proof is, as previously, based on a lower bound of
´

Ω(η−t,η+t) |∇u|dL n and an upper bound
of

´
Ω(η−t,η+t) |∇u|2dL n that are in contradiction when ϵ is too large.

• For all t ∈]0, 1
2ϵ[ we let:

f(t) =
ˆ η+t

η−t
h =

ˆ
Ω(η−t,η+t)

|∇u|dL n.

f is absolutely continuous and
f ′(t) = h (η − t) + h (η + t) .

Moreover,

f(t) ≤ |Ω (η − t, η + t) |
1
2

(ˆ
Ω(η−t,η+t)

|∇u|2dL n

) 1
2

≤ CnPer(Ω (η − t, η + t))
n

2(n−1) (Θ(1)(h (η − t) + h (η + t)))
1
2 by isoperimetric inequality

≤ CnΘ(1) 1
2 (h (η − t) + γ (η − t, η + t) + h (η + t))

n
2(n−1) (h (η − t) + h (η + t))

1
2

≤ Cn

(
Θ(1)

Θ(1 − ϵ)

) n
2(n−1)

Θ(1) 1
2f ′(t)

2n−1
2n−2 ,

so:

f ′(t)f(t)− 2n−2
2n−1 ≥ cnΘ(1)− n−1

2n−1

(
Θ(1)

Θ(1 − ϵ)

)− n
2n−1

.

We integrate on [0, t]:(ˆ
Ω(η−t,η+t)

|∇u|dL n

) 1
2n−1

≥ cnΘ(1)− n−1
2n−1

(
Θ(1)

Θ(1 − ϵ)

)−n

t.

And so: ˆ
Ω(η−t,η+t)

|∇u|dL n ≥ cnΘ(1)−(n−1)t2n−1.

• We let:
g(t) =

ˆ
Ω(η−t,η+t)

|∇u|2dL n, G(t) =
ˆ t

0
g

We begin by finding a upper bound for G. We take t in [0, ϵ/2], then:

G(t) ≤
ˆ t

0
Θ(1)(h(η − s) + h(η + s))ds

≤ cnΘ(1)|Ω (η − t, η + t) |
1
2G′(t) 1

2 .

Thus:
G′(t)G(t)−2 ≥ cnΘ(1)−2|Ω (1 − ϵ, 1) |−1.

We integrate from t to 2t (up to supposing t < ϵ/4):
G(t)−1 ≥ cntΘ(1)−2|Ω (1 − ϵ, 1) |−1.

Thus:
G(t) ≤ CnΘ(1)2t−1|Ω (1 − ϵ, 1) |.

Since g is increasing, then up to supposing t < ϵ/8:

g(t) ≤ 1
t

ˆ 2t

t

g ≤ G(2t)
t

≤ cnΘ(1)2t−2|Ω (1 − ϵ, 1) |.
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Combining the previous inequalities, that are valid for t ∈ [0, ϵ/8], we get:

cnΘ(1)−(n−1)
(

Θ(1)
Θ(1 − ϵ)

)−n

t2n−1 ≤
ˆ

Ω(η−t,η+t)
|∇u|dL n

≤ |Ω (η − t, η + t) |
1
2

(ˆ
Ω(η−t,η+t)

|∇u|2dL n

) 1
2

≤ CnΘ(1)t−1|Ω (1 − ϵ, 1) |.

Taking t = ϵ/8, and with |Ω(1 − ϵ, 1)| ≤ M − ωn, we get:

ϵ ≤ CnΘ(1)Θ(1 − ϵ)− 1
2 (M − ωn) 1

2n ,

for a constant Cn > 0 that only depends on n; this proves the result.

Proof of Theorem 8.3 (continuation). Let Θ be l.s.c. and nondecreasing. Suppose moreover that it
is of class C1 near 1 and

Θ′(1)2

Θ(1) < 4(n− 1).

Then there is some M0 > ωn depending on n,Θ such that, for any M ∈ [ωn,M0] and for any
admissible u with |{u ≥ 1}| ≥ ωn, |{u > 0}| ≤ M ,

EΘ(u) ≥ EΘ(B1, B1) (= Θ(1)nωn) .

Denote for simplicity Ω = {u > 0}, K = {u = 1}, and let δ be defined as in the previous result
(it is always possible when M − ωn is small enough), and suppose that it is close enough to 1 such
that Θ in C1 on [δ, 1]. Using the previous lemma, we lose no generality in supposing u|Ω ≥ δ, and
|Ω| = M . Then

ˆ
∂Ω

Θ(u)dH n−1 +
ˆ

Ω
Θ′(u)|∇u|dL n =

ˆ
∂Ω

Θ(u)dH n−1 +
ˆ 1

δ

Θ′(t)Per({u > t}; Ω)dt

=
ˆ
∂Ω

Θ(u)dH n−1 −
ˆ 1

δ

Θ′(t)Per({u > t}; ∂Ω)dt

+
ˆ 1

δ

Θ′(t)Per({u > t})dt

= Θ(δ)Per(Ω) +
ˆ 1

δ

Θ′(t)Per({u > t})dt

≥ Θ(δ)
(
M

ωn

)1− 1
n

Per(B1) +
ˆ 1

δ

Θ′(t)Per(B1)dt

= Θ(1)Per(B1) + Θ(δ)Per(B1)
(M

ωn

)n−1
n

− 1
 .

Now,
ˆ

Ω
Θ′(u)|∇u|dL n ≤

ˆ
Ω

∥Θ′∥∞,[δ,1]|∇u|dL n ≤
ˆ

Ω
|∇u|2dL n +

∥Θ′∥2
∞,[δ,1]

4 (M − ωn),

Thus,
ˆ

Ω
|∇u|2dL n +

ˆ
∂Ω

Θ(u)dH n−1 − Θ(1)Per(B1) ≥Θ(δ)Per(B1)
(M

ωn

)n−1
n

− 1


−
∥Θ′∥2

∞,[δ,1]

4 (M − ωn).
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So we obtain the result as soon as

∥Θ′∥2
∞,[δ,1]

Θ(δ) ≤ 4Per(B1)

(
M
ωn

)n−1
n − 1

M − ωn
.

As M → ωn, we may take δ → 1, and this gives the result.

Remark 8.26. Conversely, suppose that

Θ′(1)2

Θ(1) > 4(n− 1),

then for every R > 1 close enough to 1, EΘ(B1, BR) < EΘ(B1, B1). Indeed, let ϵ > 0 and

uϵ(x) =
1 (B1),

1 − |x|−r
2 Θ′(1) (B1+ϵ \B1).

Then

EΘ(B1, B1+ϵ) ≤ EΘ(uϵ) = nωn(1 + ϵ)n−1Θ
(

1 − 1
2Θ′(1)ϵ

)
+ ωn ((1 + ϵ)n − rn)) Θ′(1)2

4
= EΘ(B1, B1) +

(
(n− 1)Θ(1) − 1

4Θ′(1)2
)
ϵPer(B1) + oϵ→0 (ϵ) .

The first-order term is negative and this proves the converse for a small enough ϵ.
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Chapter 9

Boundary behaviour of solutions of
elliptic equation with Robin boundary
conditions on rough domains

This is a joint work with Dorin Bucur and Alessandro Giacomini
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9.1 Introduction

The purpose of this paper is to study the boundary behavior of the solution of a Robin problem for
the p-Laplace operator associated to some non-negative right hand side in a non-smooth domain. For
instance, for the Laplace operator, if both the domain and the solution were smooth, a consequence
of the boundary Hopf principle is that the solution is strictly positive on the boundary (and of course
in the interior of the domain). In this paper, we are interested in this question in the context of non
smooth boundaries where the strong form of the boundary condition may not hold.

To introduce the problem, let Ω ⊂ RN be an open, connected, bounded set with a boundary
which, for the moment and for expository reasons, is assumed to be of class C2 (this regularity
assumption will be removed later). Given a parameter β > 0 and a smooth function f : Ω → R, we
consider the problem −∆u = f in Ω

∂u
∂ν

+ βu = 0 on ∂Ω,
(9.1)

ν being the outer normal at the boundary. Under the hypothesis f ≥ 0 in Ω one gets from the
maximum principle that u ≥ 0 in Ω and, if f ̸≡ 0, u is strictly positive inside Ω. The minimum of
u has to be searched on the boundary of Ω where, as a consequence of the Hopf lemma, the normal
derivative has to be strictly negative. Consequently, from the strong form of the Robin boundary
condition ∂u

∂n
+βu = 0 one gets that u has to be strictly positive at its minimum. Finally, there exists

some δ > 0 such that
∀x ∈ Ω, u(x) ≥ δ > 0. (9.2)

If Ω is not of class C2 (for instance it is Lipschitz, or less regular but smooth enough to give
sense to a weak form of the problem), then the Hopf lemma can not be anymore used to arrive to

213



the same conclusion. The normal direction at the boundary might not be properly defined at some
specific point of the boundary, and the strong pointwise form of the Robin boundary conditions may
not apply. Nevertheless, lower bounds as (9.2) may hold provided that, intuitively, there is no "too
high" concentration of the boundary around one point.

Looking for strict positive estimates similar to (9.2) in non smooth domains, the first result is
due to Bass, Burdzy and Chen [162], by probabilistic methods in the context of harmonic functions.
They identify a class of nonsmooth domains, including the Lipschitz ones, for which (9.2) holds for
non-negative harmonic functions solving a Robin problem (see also [164, 165] for a similar question
in the context of free discontinuity problems). The result of [162] relies on a probabilistic method
and applies to the Laplace operator. The key argument strongly uses the linearity of the equation,
involving the study of Green functions and the use of a uniform boundary Harnack inequality. In
particular, the geometric conditions given in [162] require that the domain should be written as
union of sets with Lipschitz boundaries sharing the same bound on the Lipschitz norm, up to a set
of H N−1− Hausdorff measure equal to zero. This covers the case of Lipschitz domains, of some
domains with cusps and of some fractal domains.

Two more recent results by Gesztesy, Mitrea and Nichols [166] on the one hand, and by Arendt
and ter Elst [161] on the other, show that a first non-negative eigenfunction of the Robin Laplacian
in a Lipschitz set Ω satisfies the bound from below (9.2), as soon as it is is not identically equal
to 0. Their arguments are based on the analysis of related semigroups acting on C(∂Ω) and are
a consequence of a regularity property of the eigenfunctions of the Robin Laplacian in Lipschitz
domains, in particular their continuity up to the boundary.

The purpose of this paper is to analyze the boundary strict positivity inequality (9.2) in a more
general context of non-smooth domains and of nonlinear PDEs of p-Laplacian type (even if they are
not of energy type). Our technique is based on variational arguments, it allows to handle global and
local results and to give quantitative estimates of the lowest value in terms of some average sum of
the solution. The key ingredient is the behaviour of a kind of global (or local) isoperimetric profile
of the set, which depends on p.

We deal with bounded, open, connected sets with a rectifiable topological boundary which have
finite (N −1)-Hausdorff measure. In this case, traces of W 1,p-Sobolev functions are H N−1-pointwise
well defined on ∂Ω and the Robin problem is well posed in a weak form for operators of p-Laplacian
type. The geometric properties which play a crucial role in the validity of (9.2) can, in some situations,
be related to the local control of the L1 norm of the trace of an BV function on ∂Ω and to local
reinforced isoperimetric inequalites via the summability of an isoperimetric profile function. Of
course, a class of domains which satisfy naturally these geometric properties includes all Lipschitz
sets. Nevertheless, Lipschitz regularity is not, in general, required for the property to hold. Our
analysis provides a quantitative estimate for the constant δ in (9.2) in terms of the geometry and of
the mass of the solution u on low sublevels.

For simplicity, we focus on the p-Laplacian equation which obeys an energetic variational principle.
It turns out that the energetic principle is useful for the comprehension of the existence of a solution
in a nonsmooth domain, but it is not a key tool for the boundary behaviour. We discuss in the last
section how the results for the p-Laplacian extend (under the assumption that a weak solution exists)
to more general monotone elliptic operators in divergence form, which are not necessarily related to
energy minimization.

9.2 Global boundary behavior

Let Ω ⊂ RN be a bounded, open, connected set such that ∂Ω is rectifiable and H N−1(∂Ω) < +∞.
Let β > 0 be a constant, p ∈ (1,+∞), p′ = p

p−1 . Let f ∈ Lp
′(Ω), f ≥ 0 not identically equal to 0.

Let v ∈ W 1,p(Ω). Then for H N−1-a.e. point x ∈ ∂Ω the function v extended by 0 outside Ω has
upper and lower approximate limits, denoted v+ and v−. Moreover,

v →
ˆ
∂Ω

(|v+|p + |v−|p)dH N−1
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is lower semicontinuous for the weak topology in W 1,p(Ω). There exists a function u which minimises
in W 1,p(Ω) the following energy

E(v) = 1
p

(ˆ
Ω

|∇v|pdL N + β

ˆ
∂Ω

(|v+|p + |v−|p)dH N−1
)

−
ˆ

Ω
fvdL N , (9.3)

and the minimizer is unique, from the strict convexity of E. For the existence part, the key results are
the Poincaré inequality with trace term which occurs in this setting together with the compactness
result in Lp(Ω) which holds for a sequence of functions with bounded energy. For all these results we
refer to [159] and more specifically to [163]. Alternatively, relying on the space of special functions
with bounded variation SBV 1/p(Rn,R+) (see [159]), this procedure to define weak solutions can be
seen by the minimization of E over SBV (Rn,R+)-functions with support in Ω and jump in ∂Ω (see
[163]). As the existence part is not relevant for our purpose in this paper, we shall not detail it.

If Ω is Lipschitz, then u is the (weak) variational solution of
−∆pu = f in Ω,

|∇u|p−2 ∂u
∂ν

+ β|u|p−2u = 0 on ∂Ω,

meaning that u ∈ W 1,p(Ω) and for every v ∈ W 1,p(Ω)
ˆ

Ω
|∇u|p−2∇u∇vdL N + β

ˆ
∂Ω

|u|p−2uvdH N−1 =
ˆ

Ω
fvdL N .

If Ω has rectifiable boundary with finite Hausdorff measure, the weak solution u ∈ W 1,p(Ω) satisfies
for every v ∈ W 1,p(Ω)

ˆ
Ω

|∇u|p−2∇u∇vdL N + β

ˆ
∂Ω

(
|u+|p−2u+v+ + |u−|p−2u−v−

)
dH N−1 =

ˆ
Ω
fvdL N ,

where u+(x), u−(x) (and v+(x), v−(x)) denote the traces of u at x ∈ ∂Ω, ordered by the choice of a
normal vector normal to ∂Ω at x which is well-defined H N−1-almost everywhere.

For a measurable set with finite perimeter ω ⊂ Ω, we denote ∂∗ω its reduced boundary and

P e(ω) :=
ˆ
∂Ω

(
1+
ω + 1−

ω

)
dH N−1 and P i(ω) := P (ω,Ω),

the exterior and the interior perimeter of ω, respectively. Note that the exterior perimeter counts
the both sides of a crack of ∂Ω which crosses ω. In particular, P e(Ω) equals the sum between the
Hausdorff measure of the topological boundary points of density 1

2 in Ω and twice the Hausdorff
measure of topological boundary points of density 1. For simplicity, we denote ∂iω = ∂∗ω ∩ Ω and
∂eΩ = ∂∗ω ∩ ∂Ω.

We define the p-isoperimetric profile of Ω as follows

I :
(

0, 1
2P

e(Ω)
1
p |Ω|

1
p′

)
→ R ∪ {+∞},

I(m) = inf
{
P i(ω) : ω ⊂ Ω, |ω| ≤ |Ω|

2 ,m ≤ P e(ω)
1
p |ω|

1
p′

}
.

The value of I(m) is well defined for every 0 < m ≤ 1
2P

e(Ω)
1
p |Ω|

1
p′ since the set above is not empty.

Moreover, the function I is non decreasing. Note that the main interest is related to in the behavior
of I when m is small.
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Theorem 9.1. Assume 1
I

is summable. Then

inf
x∈Ω

u(x) ≥ T

2 > 0,

where T > 0 denotes the largest number such that

|{u < T}| ≤ 1
2 |Ω| (9.4)

and

β
1
p

ˆ P e(Ω)
1
p |{u<T}|

1
p′

0

dm

I(m) ≤ 1
2 . (9.5)

Before the proof, let us make some remarks. The summability condition on the isoperimetric profile
seems abstract and difficult to handle. However, as we shall point out in some examples, there are
situations where efficient estimates of I can be obtained under controllable geometric assumptions,
for instance in the case of cusps. Note as well that T is indeed strictly positive, otherwise the solution
u would vanish on a set of positive measure, which is impossible for a nonvanishing, nonnegative,
p-superharmonic function ([167, Theorem 7.12]).

Let also point out that a similar result could be obtained for a nonconstant β ∈ L1(∂Ω,R+).
However, in this case, a fine study would require the analysis of an isoperimetric profile involving the
function β, which is not easy in practical situations. In the particular case in which the function β
is bounded, our result applies to the constant ∥β∥∞. In the next section, where we perform a local
analysis, considering such functions β which are locally bounded may be of more interest.

Proof. We note first that u ≥ 0. For every t > 0, let ωt = {u < t} and g(t) =
´
ωt

|∇u|. From the
minimizing property of u compared to max(u, t), we have the estimateˆ

ωt

|∇u|p ≤ βtpP e(ωt). (9.6)

Consequently, Hölder inequality gives

g(t) ≤ t(βP e(ωt))
1
p |ωt|

1
p′ . (9.7)

We denote t0 = sup{s ≥ 0 : g(s) = 0} = inf(u), our goal being to estimate t0 from below. If
t0 ≤ t ≤ T , thanks to (9.4) and to the monotonicity of I we get

I

(
g(t)
β

1
p t

)
≤ I

(
P e(ωt)

1
p |ωt|

1
p′

)
≤ P i(ωt) = g′(t).

Summing from t0 to t, we obtain (using again the monotonicity of I)
ˆ t

t0

g′(τ)dτ
I(g(τ)/β

1
p t)

≥
ˆ t

t0

g′(τ)dτ
I(g(τ)/β

1
p τ)

≥ t− t0,

and the change of variable m = g(τ)/β
1
p t, the inequality becomes

β
1
p t

ˆ g(t)/β
1
p t

0

dm

I(m) ≥ t− t0.

With the initial estimate (9.7) and equation (9.5) for T , we finally obtain

1 − t0
T

≤
ˆ P e(Ω)

1
p |ωT |

1
p′

0

dm

I(m) ≤ 1
2 ,

so that t0 ≥ T
2 .
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9.2.1 Examples

To be more precise, we discuss now some global geometric assumptions on Ω which can be verified
and which lead to strict positivity. We denote by ∂Ω the topological boundary and by ∂∗Ω the
measure theoretical boundary of Ω.
Geometric interpretation. Let Ω ⊂ RN be a bounded, open, connected set such that ∂Ω is
rectifiable and H N−1(∂Ω) < +∞. Below, the constant G > 0 may change from line to line. Assume
that that there exist constants G > 0 and 1 ≥ a, b ≥ 0 such that for all ω ⊂ Ω with finite perimeter
satisfying |ω| ≤ |Ω|

2 ∧ 1 we have

P e(ω) ≤ G
P i(ω)
|ω|a

. (9.8)

|ω|
N−1

N ≤ G
(
P i(ω) + P e(ω)

)(P i(ω)
P e(ω)

)b
. (9.9)

The first inequality gives a control for the ratio between the boundary and inner perimeters by a
constant which can blow up when the measure of the domain is small, while the second inequality
can be interpreted as an improved isoperimetric inequality for domains with small measure with a
large isoperimetric quotient. Then, Theorem 9.1 applies for certain values of a, b, provided (9.8) and
(9.9) are satisfied. We point out the following examples.

• In general, if

M := 1
p

+
1
p′ − a

p
N−1
N

+ a(1 − b)
> 1, (9.10)

then the integrability hypothesis of Theorem 9.1 is satisfied and strict positivity occurs. Indeed,
assume that (9.10) occurs. We study the integrability of the p-isoperimetric profile of Ω. Take
ω ⊂ Ω such that

m ≤ P e(ω)
1
p |ω|

1
p′ .

We deduce from (9.8) and (9.9) a lower bound on P i(ω), which implies a lower bound on I(m)
by taking the infinimum among all admissible ω.

If P e(ω) ≤ P i(ω), then the usual isoperimetric inequality applies and so there is a constant
cN > 0 such that |ω|N−1

N ≤ cNPer(ω) ≤ 2cNP i(ω), so

P i(ω) = P i(ω)
Np−N
Np−1 P i(ω)

N−1
Np−1 ≥ AN |ω|

(N−1)(p−1)
Np−1 P i(ω)

N−1
Np−1 ≥ ANm

Np−p
Np−1

for some AN > 0. On the contrary if P i(ω) ≤ P e(ω) then we have

P i(ω)b ≥ c|ω|
N−1

N P e(ω)b−1

P i(ω) ≥ c|ω|aP e(ω)

for some c > 0, so combining those as previously we obtain

P i(ω)M = P i(ω)
b

1− 1+a
p

N−1
N

+a(1−b)P i(ω)
1
p

+
(1− 1+a

p )(1−b)
N−1

N
+a(1−b) ≥ c|ω|

1
p′P e(ω)

1
p ≥ m

In conclusion
I(m) ≥ c

(
m

1
M ∧m

Np−p
Np−1

)
.

Hence
´ m0

0
1

I(m)dm < +∞.

• For N = 2, the case b = 1
2 , a = α−1

α+1 , α ∈ (1, 2) covers the cuspidal domains in R2 {(x, y) : 1 >
x > 0, |y| < xα}. The proof it is not direct, we refer to Section 9.4 for a general approach of
cusps. For the Laplace operator, the case a = 1

3 and b = 1
2 is critical as M defined above equals

to 1, and the positivity property does not hold (see [162]).
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• For a Lipschitz set Ω, inequalities (9.8)-(9.9) are satisfied with a = b = 0. Indeed (9.9) reduces to
the isoperimetric inequality. Concerning (9.8), the trace theorem in BV applied to 1ω together
with the relative isoperimetric inequality in a Lispchitz domain (recall |ω| ≤ 1

2 |Ω|) yield

P e(ω) ≤ CΩ
[
P i(ω) + |ω|

]
≤ CΩ

[
P i(ω) + |Ω|

1
N |ω|

N−1
N

]
≤ ĈΩP

i(ω),

for some constants CΩ, ĈΩ > 0.

Remark 9.2. More generally, we notice that inequality (9.8) entails an inner density estimate for
the set Ω in the case a = 0. Indeed, taking a boundary point x0 ∈ ∂Ω, and A = B(x0, t), from the
isoperimetric inequality and (9.8) we get by the co-area formula that for a.e. t ∈ (0, t0) that

m(t)N−1
N ≤ CN(1 +G)m′(t).

Above, t0 is the radius of the ball of the same measure as |Ω|
2 and m(t) = |Ω ∩ B(x0, t)|. Then, by

summing from 0 to r, with r ≤ t0, one gets

|Ω ∩B(x0, r)| ≥ rN(
NCN(1 +G)

)N ,
giving the uniform inner density estimate. More generally a ∈ [0, 1/N) this implies an estimate

|Ω ∩B(x0, r)| ≥ cr
N

1−Nα .

If a = 0, inequality (9.8) is in fact related to the BV-trace theorem of Anzellotti and Giaquinta,
for which we refer the reader to [160]. Indeed, if the topological boundary of Ω coincides H N−1-a.e.
with its reduced boundary, the existence of a constant C1 above is related to the following inequality

C

ˆ
∂Ω

|u|dL N ≤
ˆ

Ω
|Du| +

ˆ
Ω

|u|dL N ,

by |Du| denoting the total variation measure associated to the BV function u. If ∂Ω differs from
∂∗Ω by a set of positive H N−1-measure (for instance Ω has cracks), then the result of Anzellotti
and Giaquinta does not apply directly. It is not our goal here to analyze the existence of continuous
traces.

Remark 9.3. Let us sketch briefly a direct argument to prove that infΩ u > 0 in the Lipschitz case,
which employes the standard relative isoperimetric inequality and the trace operator in BV (see the
considerations above). Using the same notation as in the proof of Theorem 9.1, let

ωt := {x ∈ Ω : u(x) < t}

and let us assume by contradiction that ωt ̸= ∅ for every t > 0. Below C indicates a constant
depending only on Ω which can very from line to line. The Lipschitz regularity of the boundary
entails for t small

P e(ωt) ≤ CP i(ωt) and |ωt| ≤ CP i(ωt)
N

N−1 ,

so that the comparison between the functions u and u ∧ t leads to
ˆ
ωt

|∇u| dL N ≤
(ˆ

ωt

|∇u|p dL N

) 1
p

|ωt|
1
p′ ≤ [βtpP e(ωt)]

1
p |ωt|

1
p′ ≤ CtP i(ωt)1+ϵ, (9.11)

where ϵ > 0. Setting h(t) := P i(ωt), the coarea formula yields
ˆ
ωt

|∇u| dL N =
ˆ t

0
h(τ) dτ =: H(t),
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so that
1
t1−η ≤ C

H ′(t)
H(t)1−η ,

where 0 < η < 1. Summing from 0 to t we get

t ≤ C

ˆ t

0
h(τ) dτ. (9.12)

Coming back to (9.11), we may write

C

tp|ωt|
p
p′

≤ h(t)(´ t
0 h(τ) dτ

)p ,
so that, using the monotony of |ωt| and integrating on [t1, t2]

C(t2 − t1)
tp2|ωt2|

p
p′

≤ 1
p− 1

1(´ t1
0 h(τ) dτ

)p−1 .

Setting t2 = 2t1 we obtain ˆ t1

0
h(τ) dτ ≤ Ct1|ω2t1|.

In view of (9.12) we get

t1 ≤ C

ˆ t1

0
h(τ) dτ ≤ Ct1|ωt1|

which is false if t1 is small enough, so that the result follows.
A similar reasoning can be used starting from the more general inequalities (9.8) and (9.9), but

the approach through the isoperimetric profile I(m) encompasses all the situations in a very elegant
way.

9.3 Local boundary behaviour

In this section, we give a localized positivity result. In particular, this applies to the case in which
β is a function, locally bounded from above. In the computations below we assume without loosing
generality that β ≤ 1.

Under the previous hypotheses on Ω, let Γ be a relatively open subset Γ ⊂ ∂Ω. For a measurable
set ω ⊂ Ω with finite perimeter, we denote the exterior/interior perimeters relative to Γ

P e
Γ(ω) =

ˆ
Γ
(1+
ω + 1−

ω )dH N−1, P i
Γ(ω) = H N−1(Ω ∩ J1ω) +

ˆ
∂Ω\Γ

(1+
ω + 1−

ω )dH N−1,

and the associated isoperimetric profile IΓ : (0, 1
2P

e
Γ(Ω)

1
p |Ω|

1
p′ ] → R ∪ {+∞}

IΓ(m) = inf
{
P i

Γ(ω), ω ⊂ Ω s.t. |ω| ≤ 1
2 |Ω|, P e

Γ(ω)
1
p |ω|

1
p′ ≥ m

}
.

We start with a general result, which applies, in particular, to the minimizers of (9.3), as soon as
f ≥ 0, f ̸= 0 and β ≤ 1.
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Theorem 9.4. Let u ∈ W 1,p(Ω), u ̸= 0, be a non negative function such that for any v ∈ W 1,p(Ω)
with v ≥ u, dist({v > u}, ∂Ω \ Γ) > 0,

ˆ
Ω

|∇u|p dL N ≤
ˆ

Ω
|∇v|p dL N +

ˆ
Γ
[vp+ + vp−] dH N−1. (9.13)

Suppose also that 1/IΓ is summable in a neigbourhood of the origin. Then for any compact set K in
Γ,

ess−liminf
z(∈Ω)→K

u(z) > 0,

meaning that there exist r, ϵ > 0 such that

|{u < ϵ} ∩ {z ∈ Ω : dist(z,K) < r}| = 0.

We start with a technical result.
Lemma 9.5. Let IΓ be as defined above and let JΓ be defined by

JΓ(m) := inf
{
P i

Γ(ω), ω ⊂ Ω s.t. |ω| ≤ 1
2 |Ω|, P e

Γ(ω)
1
p |ω|

1
p′ + |ω| ≥ m

}
.

Then 1/IΓ is summable if and only if 1/J is summable.

Proof. Let m > 0. Clearly IΓ(m) ≥ JΓ(m). We claim that there exist C, ε > 0, that depend only on
N and |Ω|, such that

JΓ(m) ≥ IΓ(εm) ∧ Cm
N−1

N . (9.14)
Then since

1
IΓ(m) ≤ 1

JΓ(m) ≤ 1
IΓ(εm) + 1

Cm
N−1

N

,

the conclusion follows.
Let us check claim (9.14). Indeed, let ω ⊂ Ω be a domain such that |ω| ≤ 1

2 |Ω|, and |ω| +
|ω|

1
p′P e

Γ(ω)
1
p ≥ m. Let η > 0 that will be fixed later, and suppose that

P e
Γ(ω) ≤ η|ω|.

Then, by the classical isoperimetric inequality, there is a constant aN > 0 such that

aN |ω|
N−1

N ≤ P i
Γ(ω) + P e

Γ(ω) ≤ P i
Γ(ω) + η|ω|

N−1
N |Ω|

1
N .

We fix η := aN

2|Ω|
1
N

. Then

P i
Γ(ω) ≥ aN

2 |ω|
N−1

N ≥ aN

2(1 + η
1
p )N−1

N

m
N−1

N .

On the other hand, suppose that P e
Γ(ω) > η|ω|. Then

m ≤ |ω|
1
p′P e

Γ(ω)
1
p + |ω| ≤ (η− 1

p + 1)|ω|
1
p′P e

Γ(ω)
1
p ,

so
P i

Γ(ω) ≥ IΓ

(
m

η− 1
p + 1

)
.

Claim (9.14) follows by choosing ε := 1
η

− 1
p +1

and C := aN

2(1+η
1
p )

N−1
N

.

Proof of Theorem 9.4. Since K is compact, let x0 ∈ K and r > 0 be small enough such that

r < dist(x0, ∂Ω \ Γ) and |Bx0,r ∩ Ω| ≤ 1
2 |Ω|.
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It is enough (by compactness) to prove that u is essentially bounded below on a smaller ball Bx0,r′ ∩Ω
for some r′ < r. We proceed by contradiction and suppose without loss of generality that

ess−liminf
x(∈Ω)→x0

u(x) = 0.

Let γ > 0 that will be fixed small enough at the end of the proof. For any t ∈ (0, rγ) we set

ωt := {x ∈ Ω : u(x) < t− γ|x− x0|}

and
g(t) :=

ˆ
ωt

|∇(u(x) + γ|x− x0|)| dL N .

Notice that ωt ⊂ Bx0,r. By our hypothesis, ωt has positive measure for all t ∈ (0, rγ), and g(t) = 0
for some t > 0 implies that x 7→ u(x) + γ|x − x0| would be locally constant in ωt, which is at most
true for one γ, thus we suppose that g(t) > 0 for all t ∈ (0, rγ).

Testing u against max(u, t− γ| · −x0|) gives
ˆ
ωt

|∇u|p dL N ≤ γp|ωt| + tpP e
Γ(ωt),

which can be simplified further into
ˆ
ωt

|∇u|p dL N ≤ γp|ωt| + rpγpP e
Γ(ωt).

Now,

g(t) ≤ γ|ωt| + |ωt|
1
p′

(ˆ
ωt

|∇u|p dL N

) 1
p

≤ 2γ|ωt| + rγ|ωt|
1
p′P e

Γ(ωt)
1
p ,

so in particular g(t)
(2+r)γ ≤ |ωt| + |ωt|

1
p′P e

Γ(ωt)
1
p . By monotonicity of JΓ, and since ωt is at positive

distance from ∂Ω \ Γ we get

JΓ

(
g(t)

(2 + r)γ

)
≤ P i

Γ(ωt) = g′(t).

Summing from t = 0 to rγ we obtain

rγ ≤
ˆ rγ

0

g′(t)dt
JΓ
(

g(t)
(2+r)γ

) = (2 + r)γ
ˆ g(rγ)

(2+r)γ

0

dm

JΓ(m) .

Using our previous estimate on g, we obtain

ˆ |ωrγ |+|ωrγ |
1
p′ P e

Γ(ωrγ)
1
p

0

dm

JΓ(m) ≥ r

r + 2 .

In particular this means that |ωrγ| + |ωrγ|
1
p′P e

Γ(ωrγ)
1
p is bounded below by a constant that does not

depend on γ. However P e
Γ(ωrγ) ≤ 2H N−1(Γ) < ∞ and |ωrγ| ≤ |Bx0,r ∩ {u < rγ}| −→

γ→0
0, which is a

contradiction.

9.4 Analysis of cusps

We focus in this section on the behaviour of the solution of the Robin problem in a cusp in RN . We
consider h ∈ C1(R+,R+), an increasing function such that h(0) = 0, h′(0) = 0, supR+ |h′| < ∞ and
assume that hN−1 is convex. Let

Ω := {x = (x1, x
′) ∈ R × RN−1 s.t. x1 > 0, |x′| < h(x1)},
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and for t ∈ (0, 1) let us set
Ωt := Ω ∩ {(x1, x

′) ∈ Ω : x1 ≤ t}.

We introduce the isoperimetric profile of Ω restricted to revolution sets by

Isym(m) = inf
{
P i(ω) : ω ∈ A and m ≤ P e(ω)

1
p |ω|

1
p′

}
, (9.15)

where

A := {A ⊂ Ω open, rotationally symmetric with respect to the x1-axes, and |A| < +∞} .

The following technical result, whose proof will be given at the end of the section, will be essential to
recover the summability property related to the isoperimetric profile of Ωt, which is the key ingredient
of our approach. Of course, the summability depends on the behaviour near the origin of the function
h which defines the cusp.

Lemma 9.6. We have

lim inf
t→0

Isym

(
2P e(Ωt)

1
p |Ωt|

1
p′

)
P i(Ωt)

> 0.

The main result of the section is the following estimate near the cusp of Ω. We fix t = 1.

Theorem 9.7. Let f ∈ Lp
′(Ω1), f ≥ 0, f ̸≡ 0 and let u ∈ W 1,p(Ω1) be a minimizer in W 1,p(Ω1) of

E(v) = 1
p

(ˆ
Ω1

|∇v|pdL N + β

ˆ
∂eΩ1

vpdH N−1
)

−
ˆ

Ω1

fvdL N ,

under the constraint v = 1 on ∂iΩ1. Thenˆ 1

0

´ t0 hN−2´ t
0 h

N−1

 1
p

dt < ∞

 ⇒
(

inf
Ω1/2

u > 0
)
.

Proof. Let Isym be the restricted isoperimetric profile associated to h as defined in (9.15). Note that
for t ∈ (0, 1) we have

|Ωt| = αN−1

ˆ t

0
hN−1 ,

P e(Ωt) = NαN−1

ˆ t

0
hN−2√1 + h′2 ,

P i(Ωt) = αN−1h
N−1(t).

So according to the estimate on Isym given by Lemma 9.6 , and since |h′| is bounded by a constant,
we know that there exist two constants a, b > 0 such that for any t ∈ (0, 1),

Isym

a(ˆ t

0
hN−1

) 1
p′
(ˆ t

0
hN−2

) 1
p

 ≥ bh(t)N−1. (9.16)

We set

m0 := a

(ˆ 1

0
hN−1

) 1
p′
(ˆ 1

0
hN−2

) 1
p

.
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By change of variable, an easy computation which relays on (9.16) and the fact that h is increasing,
shows that

ˆ m0

0

dm

Isym(m) =
ˆ 1

0

d
dt

(
a
(´ t

0 h
N−1

) 1
p′
(´ t

0 h
N−2

) 1
p

)
Isym

(
a
(´ t

0 h
N−1

) 1
p′
(´ t

0 h
N−2

) 1
p

)dt (9.17)

≤ a

b

ˆ 1

0

´ t0 hN−2´ t
0 h

N−1

 1
p

dt < ∞.

Let Γ := ∂Ω ∩ {1/4 ≤ x1 ≤ 3/4}. We apply Theorem 9.4 to Ω ∩ {1/4 ≤ x1 ≤ 3/4} and Γ and get
that infΩ∩{1/3≤x1≤2/3}(u) > 0. In particular,

inf
Ω∩{x1=1/2}

(u) =: c > 0.

Let v be the p-harmonic function on Ω1/2 that verifies v = 1 on Ω∩{x1 = 1/2} and a Robin boundary
condition on ∂Ω ∩ {x1 ≤ 1/2}. By comparison principle,

u ≥ cv on Ω1/2.

Now, as v is the unique minimizer of w 7→
´

Ω1/2
|∇w|p dL N + β

´
∂eΩ1/2

|w|p dH N−1 among functions
that verify the constraint w = 1 on ∂iΩ1, then it is rotationally symmetric; in particular its sublevel
sets {v < t} belong to A for t ∈ (0, 1).

Suppose then inf v = 0, value which is reached approaching the cusp. For any t ∈]0, 1[ let
ωt := {v < t}, and f(t) :=

´
ωt

|∇v| dL N . With the same computations as in the proof of Theorem
9.1, we find that

f(t) ≤ β1/ptP e(ωt)
1
p |ωt|

1
p′ .

so that
Isym(f(t)/β1/pt) ≤ f ′(t).

The contradiction follows by integration, taking into account the summability property (9.17).

Remark 9.8. Theorem 9.7 particularly applies to h(t) = tα provided that 1 ≤ α < p. In fact,
α ∈ [1, p) is also a necessary condition to get the bound from below.

Let indeed u be the p-harmonic function on Ω1 equal to 1 on ∂iΩ1 and with Robin boundary
conditions on ∂eΩ1. We claim that u extends continuously to Ω1. Indeed the continuity on the
boundary ∂Ω1\{(0, 0)} is a consequence of boundary elliptic regularity (see for example [168, Theorem
4.4]). Let now for 0 < t ≤ 1

δ+
t = sup

x∈Ω1:x1=t
(u) and δ−

t = inf
x∈Ω1:x1≤t

(u).

Notice that δ+
t is nondecreasing: indeed, if δ+

t1 > δ+
t2 for some t1 < t2, we can consider the admissible

function

v(x) :=
u(x) if x1 ≥ t2
u(x) ∧ δ+

t2 if x1 < t2

for which E(v) < E(u), a contradiction. Let us denote with δ±
0 the limits of δ±

t as t → 0. To prove
the continuity up to (0, 0), it suffices to show δ+

0 = δ−
0 . Let (ti)i be a sequence converging to 0 such

that
inf

x∈Ω1:x1=ti
u =: δti → δ−

0 . (9.18)

Let
Ω̃i := Ω − (ti, 0)

h(ti)
∩ {y : |y1| ≤ 1},
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which is a domain that is C1-close to the cylinder [−1, 1] × BN−1
1 where BN−1

1 is the unit ball of
RN−1. Let

ui(x) := u(ti + h(ti)x1, h(ti)x′)
be defined on Ω̃i. Since the sequence ui is uniformly bounded and ∂νui ∈ [0, h(ti)β], then by boundary
elliptic regularity (see for instance the proof of [168, Theorem 4.4], thanks to which ui can be extended
across the boundary satisfying an extension of our PDE) one can use Harnack inequality up to the
boundary and infer that there exists a constant C > 0 such that

sup(ui − δ−
ti+h(ti)) ≤ C inf(ui − δ−

ti+h(ti)) on Ω̃i ∩ {x ∈ RN : |x1| ≤ 1/2}.

In view of (9.18), this yields

δ+
ti

≤ δ−
ti+h(ti) + C(δti − δ−

ti+h(ti)) −→
i→∞

δ−
0 ,

from which we get δ+
t → δ−

0 as t → 0+, leading to the desired equality δ+
0 = δ−

0 .
Suppose now that u satisfies a bound from below, that is (δ−

0 ≥) infΩ1 u > 0. Then for any t > 0,
and ϵ ∈ (0, 1) to be fixed small enough later, consider the competitor

ut(x) =


u(x) if t ≤ x1 ≤ 1
min

(
(1 − ϵ)δ−

0 +
(

2x1
t

− 1
) (
δ+
t − (1 − ϵ)δ−

0

)
, u
)

if t
2 ≤ x1 ≤ t

(1 − ϵ)δ−
0 if 0 ≤ x1 ≤ t

2 .

Notice that for a small enough t (depending on ϵ) we have ut ≤ u (as u ≥
(
1 − ϵ

2

)
δ−

0 for x1 ≤ t).
The energy comparison gives

β

ˆ
∂eΩt

[up − upt ] dH N−1 ≤
ˆ

Ωt

[|∇ut|p − |∇u|p] dL N

which is simplified into

cpβϵ(δ−
0 )pP e(Ωt/2) ≤ 2p

tp

∣∣∣(δ+
t − δ−

0 ) + ϵδ−
0

∣∣∣p |Ωt|.

Taking into account the expression of h(t) = tα, this gives

cp,αβ
1
p t1− α

p ≤ δ+
t − δ−

0

δ−
0 ϵ

1
p

+ ϵ1− 1
p .

Letting t → 0+, and since ϵ is arbitrary, we conclude that α < p.

Remark 9.9. For the Laplace operator, in [162, Examples 3.4 and 4.13] the authors discuss the
cusps corresponding to h(t) = tα. Their analysis is based on estimates of Green function and relies
on a uniform boundary Harnack inequality. Although general functions h are not considered [162],
it seems that for functions h ∈ C0([0, 1],R+) with h(0) = 0, h(t/2) > ch(t) for any t > 0 and some
c > 0, the decomposition of the cusp Ω given by into blocs Dn = {x ∈ Ω : tn+1 ≤ x1 ≤ tn} where the
sequence tn is chosen such that each Dn is close to a square, links their criteria to the summability
of

´ t
0 h

N−2

h(t)N−1 . This is not equivalent to our criteria of summability of
√ ´ t

0 h
N−2´ t

0 h
N−1 , as may be seen from

the example h(t) = t2 log(1/t)α for α ∈ (1, 2]. Presumably, the reason our criteria is weaker lies in
our method that gives sharp inequalities as long as the sets {u < t} are not too far from a minimizer
of the relative perimeter, which is not what happens in this kind of cusps.

We conclude the section with the proof of the technical Lemma 9.6.

Proof of Lemma 9.6. We rely on the classification of constant mean curvature revolution surfaces in
Rn, meaning connected surfaces of Rn with constant mean curvature which are invariant for any
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isometry that fixes e1. These surfaces are given by the revolution of a curve (x(t), y(t)) in R2 which,
after parametrization by unit length, is defined by the equationx′ = cos(σ), y′ = sin(σ)

σ′ = −NH + (N − 1)y−1 cos(σ).

Above, σ is the angle of the tangent vector and H is the mean curvature. Moreover the quantity
T := yN−1 cos(σ) − HyN is constant and the signs of (H,T ) fully classify the type of surface (see
[170, Proposition 2.4]).

The main idea of the proof is the following : we consider a minimizing sequence (Ak), and we
change it into another sequence (Ãk) that is quasi-minimizing (it verifies the same constraint and
P i(Ãk)/P i(Ak) is bounded) and that decomposes into the union of a set of the form Ωt and a set
that is far from the axis of revolution, on which the analysis is simpler.

Below we will write a ≲ b when a ≤ Cb for a positive constant C that may depend on N and h
but not on the other quantities.

Given t > 0, let us set
mt := 2P e(Ωt)

1
p |Ωt|

1
p′ .

Consider (Ak)k a minimizing sequence for Isym(mt). We lose no generality in replacing each Ak
with the minimizer of

inf
{
P i(A), A ∈ A s.t. A∆Ak ⊂ {x ∈ Ω : dist(x, ∂Ω) ≥ 1

k
, x1 ≤ k}, |A| ≥ |Ak|

}
.

This problem is well posed and has a solution, by classical compactness arguments. Due to the
classification of constant mean curvature revolution surfaces, we know that in the set {x ∈ Ω :
dist(x, ∂Ω) > 1

k
, x1 < k}, Ak is smooth and ∂Ak is a union of nonnegative constant mean curvature

surfaces (when the normal vector is oriented outward). We denote ∂eAk := ∂∗Ak ∩ ∂Ω and ∂iAk =
∂∗Ak ∩ Ω. The perimeter of (Ak)k is locally bounded so there is a subsequence of (Ak)k (that we
denote with the same index) and a set A ∈ A such that Ak → A in L1

loc(Ω), with also a local
Hausdorff convergence in Ω due to the interior minimality of the sets (Ak).

• Note that |Ak| and P e(Ak) are bounded from above and below. To prove that they are bounded
from above we consider the projection Φ : (x1, x

′) ∈ Ω 7→ (h−1(|x′|), x′). It may be checked that

sup
|x′|≥h(1)

∥DΦ∥ < ∞ and H N−1
(
∂eAk \ Φ(∂iAk)

)
= 0

so
P e(Ak) ≤ P e(Ω1) + H N−1(∂eAk ∩ {|x1| ≥ 1}) ≲ P e(Ω1) + Isym(mt).

Similarly,
|Ak|1− 1

N ≲ Per(Ak) ≲ P e(Ω1) + Isym(mt),
by the classical isoperimetric inequality. In particular we know that |A| < ∞.

• We have Isym(mt) > 0. Suppose indeed that Isym(mt) = 0. Then for any τ > 0 we get with the
same reasonning on Ω ∩ {x1 ≥ τ} that

P e(Ak ∩ {x1 > τ}) ≤
(

sup
|x′|≥h(τ)

∥DΦ∥
)
P i(Ak) −→

k→∞
0

for every τ , so that P e(Ak) → 0, which contradicts the previous point.

• ∂A is a revolution surface of constant mean curvature, such that its section
A ∩ {(x1, x2, 0, . . . , 0), x1, x2 > 0}

is a union of convex sets that meet ∂Ω with an angle less than π
2 as in Figures 9.1 and 9.2.

Indeed, by regularity argument on minimal surfaces we know ∂A is a union of rotationally
symmetric surfaces with (nonnegative) constant mean curvature, which are moreover bounded
(because |A| < ∞). In view of the classification of such surfaces, the components of A may
only be the intersection of Ω with
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Figure 9.1: Possible connected components of A, seen in the section R+ ×R×{0}N−2. From left to right: hyperplane,
sphere, catenoid, nodoid.

1) a half-space {x1 ≤ λ} or a ball centered on {x′ = 0} (observe that the boundary angle
condition and the interior regularity implies that the ball meets ∂Ω).

2) the exterior of a catenoid or the interior of the loop of a nodoid (see the figure below).

In particular each component of the section is convex. Finally, let us check the angle condition;
let Ã be one of the connected components of A, and parametrize ∂iÃ ∩ (R2

+ × {0}N−2) by
a smooth curve c : [0, T ] → R2

+ that rotates clockwise where c(0), c(T ) ∈ ∂Ω. There exists
a sequence of curves ck : [0, T ] → R2

+ that converges in C1 to ck such that ck((0, T )) ⊂ ∂iAk.
Suppose the angle condition is not verified at c(0) = (x1, x2) (c(T ) is handled similarly), meaning
c′(0)·(1, h′(x2)) > 0. Then there is a small δ ∈ (0, 1) such that c′(t)·(1, h′(x2)) > 2δ for t ∈ (0, δ),
which implies that for any large enough k,

c′
k(t) · (1, h′(x2)) > δ, ∀t ∈ [0, δ].

Let pk, qk be the orthogonal projections of ck(0), ck(δ) on the graph of h (and similarly p, q the
projection of c(0), c(δ); notice p = c(0)) and let Tk be the trapezoid formed by the graph of
h between pk and qk, [qk, ck(δ)], ck([0, δ]), [ck(0), pk]. Let T revk ⊂ RN be the revolution of Tk
around the axis. We claim that the sequence (Ak ∪ T revk )k still verifies the constraint (this is
direct because the measure and exterior perimeter can only increase) while

lim inf
k→∞

P i(Ak ∪ T revk ) < lim inf
k→∞

P i(Ak)

which is a contradiction because (Ak) is already a minimizing sequence. This last estimate is
obtained from

P i(Ak ∪ T revk ) − P i(Ak) ≤ H N−1([pk, ck(0)]rev) + H N−1([qk, ck(δ)]rev) − H N−1(ck([0, δ])rev)
−→
k→∞

H N−1([q, c(δ)]rev) − H N−1(c([0, δ])rev)

< 0 when δ is small enough.

Let
Ω′ = {(x1, x

′) ∈ Ω : |x′| ≤ 1
2h(x1)}, Ω′′ = {(x1, x

′) ∈ Ω : |x′| ≤ 1
4h(x1)}.

We will now make a few modifications on the sequence (Ak)k, to obtain a new sequence Ãk verifying
the same constraints such that

Ãk = Ωtk ⊔Dk,

where tk > 0, Dk ⊂ Ω \ Ω′′, and P i(Ãk) ≲ P i(Ak).
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Figure 9.2: The shaded region is added to Ak.

• First modification: let δt > 0 be such that P i(Ωδt) = Isym(mt) (note that we do not know a
priori how to compare δt and t). change Ak into A′

k := Ak ∪ Ωδt . Notice that A′
k still verifies

the constraint and by choice of δt,

P i(A′
k) ≤ 2Isym(mt) + ok→∞(1).

• Second modification: suppose there exists a point (τ, 0) ∈ ∂A for some τ > δt, with τ chosen
maximal. This means that for any large enough k, ∂Ak contains

Sk ∩
{
x ∈ Ω : x1 ≤ k and dist(x, ∂Ω) ≥ 1

k

}
,

where Sk is either a hyperplane or a sphere going through (τk, 0), where τk → τ (the hyperplane
is orthogonal to the x1 axes, while the center of the sphere is on the x1-axes, and has an abscissa
less that τk). In this case we let A′′

k := A′
k∪Ωτk

. Again, we may assume τk to be chosen maximal.
Consider the projection

(x1, x
′) ∈ Sk 7→

(
τk,

h(τk)
h(x1)

x′
)

∈ {x1 = τk}.

Its differential is locally bounded on Sk because for any such (x1, x
′) ∈ Sk one has h(x1) ≥

1
1+∥h′∥2

L∞
h(τk). Indeed the minimal value on x1 here is given by the intersection of Sk with

∂Ω ; the boundary angle condition gives that (τk − x1,−h(x1)) · (1, h′(x1)) ≤ 0, so h(τk) ≤
h(x1 + h(x1)h′(x1)) ≤ (1 + ∥h′∥2

L∞)h(x1). As a consequence,

P i(A′′
k) ≲ Isym(mt) + ok→∞(1).

• Third modification: suppose A ∩ {x1 > τ} ∩ Ω′′ is not empty, where τ is the same as in the
previous point. Then ∂A contains a part of catenoid or nodoid C that passes through ∂Ω′. We
now make a disjunction of two cases.

Case 1. The rightmost point of C is in Ω \ Ω′′. Then, for a large enough k we know ∂Ak contains
a part of a catenoid or nodoid Ck that approaches C in C1 such that its rightmost point is
in Ω \ Ω′′, and it meets ∂Ω′′ at some (Tk, 1

4h(Tk)). Then we let

Ãk = A′′
k ∪ ΩTk

.

Again Ãk verifies the constraint and with the same horizontal projection argument as in
the previous point

H N−1(∂iΩTk
) ≲ H N−1(∂iΩTk

∩ (Ω \ Ω′′)) ≲ P i(Ak)
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so P i(Ãk) ≲ P i(Ak), where the second inequality is obtained by projection of Ck on the
annulus

{
(Tk, x′) : 1

4h(Tk) ≤ |x′| ≤ h(Tk)
}

through the application ψ : (x1, x
′) ∈ Ck 7→(

Tk,
h(Tk)
h(x1)x

′
)

∈ {x : x1 = Tk}.
Case 2. Or the rightmost point of C is reached in Ω′′, so the rightmost point of Ck is reached in

Ω′. We then denote Tk its abscissa and we let

Ãk = A′′
k ∪ ΩTk

as previously. With the same projection, P i(Ãk) ≲ P i(Ak).

After having performed the previous modifications, we went from Ak to Ãk such that

Ãk = Ωtk ⊔Dk,

where tk ≥ δt,
Dk ⊂ Ω \ Ω′′,

and
P i(Ãk) ≲ Isym(mt) + ok→∞(1).

Notice that the “classical” relative isoperimetric inequality applies to Dk. If we consider indeed
the projection π : Ω \ Ω′′ 7→ ∂Ω such that

π(x1, x
′) :=

(
x1,

x′

|x′|
h(x1)

)

then its differential is bounded on Ω \ Ω′′. Moreover ∂eDk ⊂ π(∂iDk) up to a H N−1-negligible set,
from which we get

P e(Dk) + |Dk|1− 1
N ≲ P i(Dk).

As well, for k large enough

P i(Ωtk) ≲ P i(Ãk) and P i(Ãk) ≲ Isym(mt). (9.19)

If tk ≥ t then inequality (9.6) follows. Assume that tk < t. Then

2P e(Ωt)
1
p |Ωt|

1
p′ = mt ≲ P e(Ãk)

1
p |Ãk|

1
p′

= (P e(Ωtk) + P e(Dk))
1
p (|Ωtk | + |Dk|)

1
p′

≤
(
P e(Ωt) + cP i(Dk)

) 1
p
(
|Ωt| + cP i(Dk)

N
N−1

) 1
p′

for some constant c > 0. We thus infer

P i(Dk) ≳ |Ωt|1− 1
N ∧ P e(Ωt).

Since in view of (9.19)

P i(Dk) ≤ P i(Ωtk) + P i(Ãk) ≲ P i(Ãk) ≲ Isym(mt) =: σtP i(Ωt)

for some σt > 0, we deduce

σt ≳
|Ωt|1− 1

N ∧ P e(Ωt)
P i(Ωt)

.

The conclusion follows if we estimate σt from below. Since P i(Ωt) = ot→0 (P e(Ωt)) it is enough to
bound from below |Ωt|1− 1

N

P i(Ωt) . Using the convexity of hN−1 we deduce

|Ωt| =
ˆ t

0
hN−1(x1) ≥ 1

2
h(t)2N−2

d
dt
hN−1(t)

= h(t)N
(2N − 2)h′(t) ,

so we get σt ≳ 1 ∧ 1
h′(t)1− 1

N
, which ends the proof.
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9.5 Further remarks

More general operators. The results of the paper extend naturally to more general elliptic
problems with Robin boundary conditions, which are not of energy type. So let Ω ⊂ RN be a
bounded, connected, open set, with rectifiable boundary, such that H N−1(∂Ω) < +∞.

Let
A : Ω × RN → RN

B : ∂Ω × R → R

ψ : ∂Ω → R

be three continuous functions such that for some 0 < α1 ≤ α2, and every x ∈ Ω, y ∈ ∂Ω, z ∈ RN , v ∈
R,

α1|z|p ≤ zA(x, z), |A(x, z)| ≤ α2|z|p−1,

|B(y, v)| ≤ ψ(y)|v|p−1.

Assume moreover that for every x ∈ Ω, y ∈ ∂Ω, z1, z2 ∈ RN , v1, v2 ∈ R

(z1 − z2)(A(x, z1) − A(x, z2)) ≥ 0,

(v1 − v2)(B(y, v1) − B(y, v2)) ≥ 0.
We consider the (formal) problem−div(A(x,∇u)) = f in Ω

A(x,∇u) · n + B(x, u) = 0 on ∂Ω.
(9.20)

We do not develop around the question of existence of a (weak) solution in this framework and refer
to the paper by R. Nittka [169] for an introduction to general Robin problems in Lipschitz sets,
to [167] for the analysis of A-superharmonic functions and to [163] for details on the framework of
domains with rectifiable boundary.

Let f ∈ Lp
′(Ω), f ≥ 0, f ̸= 0. Assume that a weak solution exists in our nonsmooth context,

namely that there exists u ∈ W 1,p(Ω) such that ∀v ∈ W 1,p(Ω)
ˆ

Ω
A(x,∇u)∇vdL N +

ˆ
∂Ω

[B(x, u+)v+ + B(x, u−)v−]dH N−1 =
ˆ

Ω
fvdL N .

The fact that u ≥ 0 is a consequence of the properties of A,B and can be noticed by testing the
equation with u ∧ 0. Taking u ∨ t as test function for t > 0, and using again the properties of A,B
and ψ one gets directly an inequality similar to (9.6)

ˆ
ωt

|∇u|p dL N ≤ |ψ|∞
α1

tpP e(ωt), (9.21)

which is the key ingredient of our results. The proofs of Theorems 9.1 and 9.4 can be continued from
this point on.
More general open sets. It could be possible to deal with more general open sets, removing the
rectifiability hypothesis, but some important drawbacks occur. However, this removes the Robin
problem from Sobolev spaces, the natural context being the one of the SBV functions, the very first
question being its well posedness. The traces can occur only on the rectifiable part of the boundary;
on the purely non-rectifiable part, the functions that we consider do not have jumps ! In other words,
they do not behave as boundary points, even though they belong to the topological boundary.
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Chapter 10

Shape optimization of an obstacle
immerged in a creeping flow

This is a joint work with Dorin Bucur, Antonin Chambolle and Alessandro Giacomini.
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10.1 Introduction

Consider an obstacle E ⊂ Rd (d = 2, 3 in real applications) contained in a (finite) channel Ω in
which a fluid with viscosity coefficient µ > 0 is flowing. Assume that the flow is stationary and
incompressible, and that the associated velocity field u is equal to a constant vector V∞ on the walls
of the channel. The obstacle E experiences a drag force, whose component in direction of V∞ will be
denoted by Drag(E). If we assume that the velocity of the fluid is tangent and satisfies the Stokes
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equation with Navier boundary conditions on ∂E with coefficient β > 0, as detailed in Subsection
10.3.2, up to a multiplicative constant we have

Drag(E) = 2µ
ˆ

Ω\E
|e(u)|2 dL d + β

ˆ
∂E

|u|2 dH d−1, (10.1)

where e(u) := 1
2(Du+ (Du)∗) denotes the symmetrized gradient of u.

We are interested in minimizing the drag force under some penalizations concerning the volume
|E| and the perimeter H d−1(∂E). The model problem we are interested in is of the form

min
E

{
Drag(E) + cH d−1(∂E) + f(|E|)

}
, (10.2)

where c > 0 and f : (0, |Ω|) → R ∪ {+∞} is lower semicontinuous. Roughly speaking, the terms
involving perimeter and volume can be thought as a price to pay in order to build the obstacle E,
and we can give the two relevant choices of function f :

f(m) = +∞1{m̸=m0} for some m0 ∈ (0, |Ω|), or f(m) = −λm for some λ > 0.

Many similar optimisation problems have been considered under the “no-slip” boundary condi-
tion, meaning flows for which u = 0 at ∂E. Under measure constraint this has been studied in [199]
on smooth surfaces, in [195] where it was conjectured that the optimal profile in three dimension
is a prolate spheroid with sharp ends of angle 120 degree. Let us also mention the slender body
approximation of [198].

The Navier boundary condition gives many new challenges, namely the possible apparition of
lower dimensional structures in the obstacle that minimize the drag, something which was absent
under the no-slip condition. The Navier boundary condition may be seen as a partial adherence
to the boundary of the obstacle, and it may be asymptotically obtained as a limit of flows with
no adherence on an obstacle with rough boundary. More precisely, a periodic microstructure with
the right scaling on the boundary is modelled at the limit by a Navier boundary condition, as was
proved in [183]. In dimension higher than two it is also necessary to take into account more complex
geometries for the microstructure, which at the limit produce an anisotropic factor that favors certain
directions of the flow.

The minimization of the drag for a fixed obstacle E, with respect to the parameter of the Navier
conditions (meaning, with respect to the microstructure on the boundary) has been studied in [176],
for both Stokes and Navier-Stokes flows, in particular for the monotony of the drag with respect to
the Navier parameter β which is not true for Navier-Stokes flows in general.

Since the stationary velocity field associated to E turns out to be characterized variationally as
the minimizer of the right hand side of (10.1) in the class of admissible velocities Vreg

E,V∞(Ω) (see the
definition 10.21 in subsection 10.3.1), we can conveniently rephrase the minimization problem by
letting also the velocity fields intervene explicitely in the form

min
E,u∈Vreg

E,V∞ (Ω)

{
2µ

ˆ
Ω\E

|e(u)|2 dL d + β

ˆ
∂E

|u|2 dH d−1 + cH d−1(∂E) + f(|E|)
}
. (10.3)

The main goal of the paper is to find suitable relaxations of problem (10.3) for which we can prove
the existence of minimizers.

In order to avoid unnatural geometric restrictions on the obstacle E, it is natural in view of the
third term appearing in (10.3) to let it vary within the class of sets of finite perimeter (see Subsection
10.2.2), and replace the topological boundary with reduced one ∂∗E.

In order to describe properly obstacles with very narrow spikes which in the limit degenerate to
(d−1)-surfaces and that cannot be taken into account through the reduced boundary, it is convenient
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to consider admissible velocity fields which can be discontinuous outside E (see Subsection 10.3.3).
Since the symmetrized gradient e(u) is involved explicitly in (10.3), a natural family for the admissible
velocities is given by the space of functions of bounded deformation SBD. The natural relaxation of
the energy takes the form

J (E, u) :=2µ
ˆ

Ω\E
|e(u)|2 dL d + β

ˆ
∂∗E

|u+|2 dH d−1 + β

ˆ
Ju\∂∗E

[|u+|2 + |u−|2] dH d−1

+ cH d−1(∂∗E) + 2cH d−1(Ju \ ∂∗E) + f(|E|),
(10.4)

where u is set equal to zero a.e. in E, while Ju denotes the discontinuity set of u and u± are the
traces of u on ∂∗E and Ju (the trace u− vanishes on ∂∗E by choice of orientation).

Within this framework the global obstacle is given by E ∪ Ju, so that it contains also lower
dimensional parts, namely Ju \ ∂∗E: the admissible velocities must be tangent to the obstacles,
meaning the u± are orthogonal to the normal νu along the jump set. The contribution of the Navier
surface term takes naturally into account the contribution from both sides given by u±. Concerning
the perimeter term, we count twice the lower dimensional parts because we see the relaxed obstacle
as a limit of regular obstacles, such that points of Ju \ ∂∗E correspond to thin parts of the regular
obstacle that collapse on a lower-dimensional structure. We could also see the perimeter term as a
price to pay in order to construct the obstacle and just keep H d−1(∂∗E ∪ Ju) instead, in particular
the lower semi-continuity results will not be affected.

The optimization problem can be seen as a minimization problem on the pairs (E, u) which has
the features of classical geometrical problems for E coupled with a free discontinuity problem for u,
with a surface term depending on the traces which are subject to suitable tangency constraints and
boundary conditions.
The main results of the paper are the following. The first main result is theorem 10.1, where we
prove the existence of a minimizer of (10.4) in a relaxed setting, and that is valid in any dimension.

We say that a couple (E, u) of a set E in Ω and a function u ∈ SBD(Ω) is admissible when

• E is in the subset of Ω of finite perimeter, denoted A(Ω).

• u ∈ VE,V∞(Ω) which means that u1E = 0, div(u) = 0, u±
|Ju

· νu = 0 on the jump set Ju, and
u|∂Ω = V∞.

See the definition 10.13 for more details.

Theorem 10.1 (Existence of optimal obstacles). The minimization problem

min
E∈A(Ω),u∈VE,V∞ (Ω)

J (E, u) (10.5)

admits a solution.

The main difficulties we have to face in order to prove that the problem is well posed are the
following:

(a) the closure of the tangency constraint for the velocity on ∂∗E ∪ Ju under the natural weak
convergence of the problem;

(b) the lower semicontinuity of energies of the form
ˆ
Ju

[|u+|2 + |u−|2] dH d−1 (10.6)

associated to the Navier conditions.

Point (a) is a consequence of a lower semicontinuity result for the energy
ˆ
Ju

[
|u+ · νu| + |u− · νu|

]
dH d−1
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which is proved in Theorem 10.18, by resorting to recent lower semicontinuity results for functionals
on SBD by Friedrich, Perugini and Solombrino [193].

The energy of point (b) naturally appears in a scalar setting when dealing with shape optimization
problems involving Robin boundary conditions (see e.g. [178, 181, 180, 182]), and it is easily seen
to enjoy lower semicontinuity properties by working with sections. The lower semicontinuity result
in the vectorial SBD setting is given by Theorem 10.20 and cannot rely on an easy argument by
sections, which would yield the lower semicontinuity of an energy of the form

ˆ
Ju

[
|u+ · ξ|2 + |u− · ξ|2

]
|ξ · νu| dH d−1

with ξ ∈ Rd with |ξ| = 1: the optimization in ξ in order to recover (10.6) does not seem feasible
in dimension d ≥ 3. We thus follow a different strategy based on a blow up argument in which we
reconstruct the vector quantities u± by controlling them along a sufficiently high number of directions
(see Subsection 10.5.3 for details): in this way we can deal with more general energy densities of the
form ϕ(u+) + ϕ(u−), where ϕ is a lower semi-continuous function.

In section 10.7 we will consider a different relaxed form of problem (10.2) in dimension two, in
which the admissible obstacles are given by a suitable family of closed connected sets, and prove
the existence of minimizers (Theorem 10.2). The issue of the tangency condition and its closure
explained in point (a) can be dealt with the use of a stream function (Lemma 10.27). The lower
semicontinuity result of point (b) can be obtained in this case through a classical slicing argument
which takes advantage of the two dimensional setting and of the tangency condition (Theorem 10.28)

A couple (K, u) of a connected compact set K in Ω and a function u ∈ SBD(Ω) is in the regular
admissible space when

• K ∈ K(Ω), the set of connected compact sets K such that R2 \K is connected and H 1(∂K) <
∞.

• u ∈ Vreg
K,V∞(Ω) which means that u1K = 0, div(u) = 0, u±

|∂K · νK = 0 on the boundary ∂K, and
most importantly that H 1(Ju \ ∂K) = 0.

More details are given in the definition 10.22.

Theorem 10.2 (Existence of optimal obstacles). Suppose d = 2 and f is non-increasing. The
minimization problem

min
K∈K(Ω),u∈Vreg

K,V (Ω)
J (K, u) (10.7)

admits a solution.

We prove this result almost independantly of the previous one. In particular we heavily use the
structure of connected compact sets of finite length in two dimension (that they are automatically
rectifiable, that the length is lower semi-continuous with respect to Hausdorff convergence). We also
use the stream function of u, meaning the scalar function ψ defined up to a constant by the equation
∇⊥ψ = u; this and the fact that ψ may be extended continuously as a constant in K encapsulates
both the divergence-free and the non-penetration constraint on u.

The second result of the paper concerns the regularity of the relaxed minimizers of (10.4). Pro-
vided that f is Lipschitz and that we are in two dimensions, we prove that a minimizer (E, u) (that
we know exists from Theorem 10.1) is locally a strong minimizer in the classical sense. Precisely, the
optimal obstacle is a closed set and the velocity is a Sobolev function ; we prove that

H 1(Ω ∩ ∂∗E ∪ Ju \ (∂∗E ∪ Ju)) = 0,

so setting F = Ω \ ∪iCi where the (Ci)s are the connected components of Ω \ Ju ∪ ∂∗E where u is
nonzero, F is a closed set of Ω with Ω∩∂F ⊂ Ju ∪ ∂∗E, u ∈ H1

loc(Ω\F,Rd) and (F, u) is a minimizer
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of the functional

J strong(G, v) =
ˆ

Ω
2µ|e(v)|2dL 2 +

ˆ
Ω∩∂∗G

(c+ β|v+|2)dH 1

+
ˆ

Ω∩G(0)∩G
(2c+ β|v+|2 + β|v−|2)dH 1 + f(|G|),

(10.8)

defined on the strong admissible space of compact perturbations of (F, u):{
(G, v) : G closed with Ω ∩ ∂G rectifiable, H 1(Ω ∩ ∂G) < ∞, v ∈ H1

loc(Ω \G), div(v) = 0,ˆ
Ω\G

|e(v)|2dL 2 < +∞, v±
|∂G · νG = 0 on ∂G, (G, v) ≡ (F, u) on a neighbourhood of ∂Ω,

}
.

(10.9)

Above, the normal νF is well-defined by rectifiability of ∂F and when F is smooth we may apply
Korn’s inequality on Ω \F to prove that the trace of v on ∂F are well-defined. However for a general
F , it is not obvious that these are well-defined and will be the subject of the beginning of section
10.8.

Theorem 10.3. Let (E, u) be a minimizer of the functional (10.4) in dimension d = 2, and suppose
that f is Lipschitz. Then

H 1(Ω ∩ Ju ∪ ∂∗E \ (Ju ∪ ∂∗E)) = 0.

The technical ideas to prove Theorem 10.2 stem in the pioneering result of De Giorgi, Carriero
and Leaci on the Mumford-Shah problem in [190], where the key of the proof is a decay estimate
obtained by a contradiction/compactness argument. For vectorial problems, a similar strategy, but
definitely more involved, was used for the Griffith fracture problem in [188] (for the two-dimensional
case) and [185] (for higher dimension). In the fracture problem, the key compactness result relies on
the possibility to approximate a field u ∈ SBD([−1, 1]d) with a small jump set by a Sobolev function
which is locally controlled in H1 (via the classical Korn inequality).

In our case, within the approximation procedure, we have to handle two additional constraints:
incompressibility and non-penetration at the jumps. From a technical point of view, this is prob-
lematic since the bound in [188] in not strong enough to stay in divergence-free vector fields and the
method in [185] creates new jumps on which the non-penetration constraint is not verified.

However, when restricted to two dimensions, the method of [185] leads to a stronger result, where
both both constraints can be handled.

The paper is organized as follows. In Section 10.2 we recall fix the notation and recall some basic
facts concerning sets of finite perimeter, functions of bounded deformation and Hausdorff convergence
of compact sets. Section 10.3 is devoted to the precise exposition of the drag optimization problem.
In Section 10.4 we detail the relaxation of the problem in the family of obstacle of finite perimeter
and with velocities of bounded deformation, and formulate the main existence result in Theorem
10.16. The proof is given in Section 10.6, and it is based on some technical results for SBD functions
collected in Section 10.5. Section 10.7 is devoted to the formulation of the relaxation in dimension
two with topologically closed obstacle, and is almost independant from the rest aside from the
compactness result of SBD. The last main result is proved in section 10.8, and finally we discuss
generalizations to Navier-Stokes in 10.9.

10.2 Notations and Preliminaries

10.2.1 Basic notation

If E ⊆ Rd, we will denote with |E| or L d(E) its d-dimensional Lebesgue measure, and by H d−1(E)
its (d − 1)-dimensional Hausdorff measure: we refer to [191, Chapter 2] for a precise definition,
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recalling that for sufficiently regular sets H d−1 coincides with the usual area measure. Moreover,
we denote by Ec the complementary set of E, and by 1E its characteristic function, i.e., 1E(x) = 1
if x ∈ E, 1E(x) = 0 otherwise.

If A ⊆ Rd is open and 1 ≤ p ≤ +∞, we denote by Lp(A) the usual space of p-summable functions
on A with norm indicated by ∥ · ∥p. W 1,p(A) will stand for the Sobolev space of functions in Lp(A)
whose gradient in the sense of distributions belongs to Lp(A,Rd). Finally, given a finite dimensional
unitary space Y , we will denote by Mb(A;Y ) will denote the space of Y -valued Radon measures on
A, which can be identified with the dual of Y -valued continuous functions on A vanishing at the
boundary.

We will denote by Md×m the set of d×m matrices with values in R: when d = m we will simply
write Md, and we will denote by Md

sym the subspace of symmetric matrices. For a ∈ Rd and b ∈ Rm

we will denote with a⊗ b the element of Md×m such that

(a⊗ b)ij = aibj,

while if a, b ∈ Rd we denote with a⊙ b the matrix in Md
sym such that

(a⊙ b)ij = aibj + ajbi
2 .

Given ξ ∈ Rd with |ξ| = 1, we denote with ξ⊥ the hyperplane through the origin orthogonal to ξ.
If E ⊆ Rd, we set

Eξ := πξ⊥(E),
where π denotes the orthogonal projection, and for y ∈ ξ⊥ we set

Eξ
y := {t ∈ R : y + tξ ∈ E}. (10.10)

10.2.2 Functions of bounded variation and sets of finite perimeter

If Ω ⊆ Rd is open, we say that u ∈ BV (Ω;Rm) if u ∈ L1(Ω;Rm) and its derivative in the sense of
distributions is a finite Radon measure on Ω, i.e., Du ∈ Mb(Ω;Md×m). BV (Ω;Rm) is called the
space of functions of bounded variation on Ω with values in Rm. BV (Ω;Rm) is a Banach space under
the norm ∥u∥BV (Ω;Rm) := ∥u∥L1(Ω;Rm) + ∥Du∥Mb(Ω;Md×m). We call |Du|(Ω) := ∥Du∥Mb(Ω;Md×m) the
total variation of u. We refer the reader to [171] for an exhaustive treatment of the space BV .

We say that u ∈ SBV (Ω;Rm) if u ∈ BV (Ω;Rm) and its distributional derivative can be written
in the form

Du = ∇uL d + (u+ − u−) ⊗ νuH
d−1⌊Ju,

where ∇u ∈ L1(Ω;Md×m) denotes the approximate gradient of u, Ju denotes the set of approximate
jumps of u, u+ and u− are the traces of u on Ju, and νu(x) is the normal to Ju at x.

Note that if u ∈ SBV (Ω;Rm), then the singular part of Du is concentrated on Ju which is a
countably H d−1-rectifiable set: there exists a set E with H d−1(E) = 0 and a sequence (Mi)i∈N of
C1-submanifolds of Rd such that Ju ⊆ E ∪ ⋃i∈NMi.

We will say that E ⊆ Rd with |E| < +∞ has finite perimeter if 1E ∈ BV (Rd). The perimeter of
E is defined as

Per(E) = |D1E|(Rd).
It turns out that

D1E = νEH d−1⌊∂∗E, Per(E) = H d−1(∂∗E),
where ∂∗E is called the reduced boundary of E, and νE is the associated inner approximate normal
(see [171, Section 3.5]). We have that ∂∗E ⊆ ∂E, but the topological boundary can in in general be
much larger than the reduced one. If A ⊆ Rd is open and bounded with H d−1(A) < +∞, then A
has finite perimeter with Per(A) ≤ H d−1(∂A).
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10.2.3 Functions of bounded deformation

If Ω ⊆ Rd is open, we say that u ∈ BD(Ω) if u ∈ L1(Ω;Rd) and its symmetric gradient Eu := Du+(Du)∗

2
in the sense of distributions is a finite Radon measure on Ω, i.e., Eu ∈ Mb(Ω; Md

sym). BD(Ω) is called
the space of functions of bounded deformation on Ω. We refer the reader to [197, 196] for the main
properties of the space BD.

We will make use of a subspace of BD(Ω) called the space of special functions of bounded deforma-
tion introduced in [172]. We say that u ∈ SBD(Ω) if u ∈ BD(Ω) and its symmetrized distributional
derivative can be written in the form

Eu = e(u) L d + (u+ − u−) ⊙ νuH
d−1⌊Ju,

where e(u) ∈ L1(Ω; Md
sym) denotes the approximate symmetrized gradient of u, Ju denotes the set of

approximate jumps of u, u+ and u− are the traces of u on Ju, and νu(x) is the normal to Ju at x.
As in the case of functions of bounded variation, Ju is a H d−1-countably rectifiable set.

We will use the following compactness and lower semicontinuity result proved in [174].

Theorem 10.4. Let Ω ⊆ Rd be open, bounded and with a Lipschitz boundary, and let (un)n∈N be a
sequence in SBD(Ω) such that

sup
n

[
|Eun|(Ω) + ∥un∥L1(Ω;Rd) + ∥e(un)∥Lp(Ω;Md

sym) + H d−1(Jun)
]
< +∞

for some p > 1. Then there exists u ∈ SBD(Ω) and a subsequence (unk
)k∈N such that

unk
→ u strongly in L1(Ω;Rd),

e(unk
) ⇀ e(u) weakly in Lp(Ω; Md

sym),
and

H d−1(Ju) ≤ lim inf
k→+∞

H d−1(Junk
).

We will need also some properties of the sections of SBD-functions. If Ω ⊆ Rd is open and
u ∈ SBD(Ω), let us consider the scalar function on Ωξ

y given by

ûξy(t) := u(y + tξ) · ξ

and the set
Jξu := {x ∈ Ju : (u+(x) − u−(x)) · ξ ̸= 0}

The following result holds true (see [172]).

Theorem 10.5 (One dimensional sections of SBD-functions). Let Ω ⊆ Rd be open, u ∈
SBD(Ω), and let ξ ∈ Rd with |ξ| = 1. Then for H d−1-a.e. y ∈ Ωξ we have

ûξy ∈ SBV (Ωξ
y)

with
(ûξy)′(t) = (e(u)ξ · ξ)(y + tξ) for a.e. t ∈ Ωξ

y

and
Jûξ

y
= (Jξu)ξy.
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10.2.4 Hausdorff convergence

The family of closed sets in Rd can be endowed with the Hausdorff metric dH defined by

dH(K1, K2) := max
{

sup
x∈K1

dist(x,K2), sup
y∈K2

dist(y,K1)
}

with the conventions dist(x, ∅) = +∞ and sup ∅ = 0, so that dH(∅, K) = 0 if K = ∅ and dH(∅, K) =
+∞ if K ̸= ∅.

The Hausdorff metric has good compactness properties (see [173, Theorem 4.4.15]).

Proposition 10.6 (Compactness). Let (Kn)n∈N be a sequence of compact sets contained in a fixed
compact set of Rd. Then there exists a compact set K ⊆ Rd such that up to a subsequence

Kn → K in the Hausdorff metric.

Compact and connected sets with finite length in the plane. In Section 10.7, we will deal
with the the family of compact and connected sets in R2 with finite H 1-measure. For our analysis
we will need the following lower semicontinuity result for the length due to Goła̧b: for the proof we
refer the reader to [192, Theorem 3.18] or [173, Theorem 4.4.17].

Theorem 10.7 (Goła̧b). Let (Γn)n∈N be a sequence of compact and connected sets in R2 with

Γn → Γ in the Hausdorff metric.

Then
H 1(Γ) ≤ lim inf

n→+∞
H 1(Γn).

The following result contains some rectifiablity property of compact and connected sets with
finite length which will be important for our analysis: recall that a set Γ is said to be H 1-countably
rectifiable if it is contained up to a H 1-negligible set into the union of a countable family of C1

curves.

Theorem 10.8. Let Γ ⊆ R2 be compact, connected and with H 1(Γ) < +∞. Then the following
items hold true.

(a) Γ is H 1-countably rectifiable, so that in particular it admits an approximate unit normal νΓ(x)
for H 1-a.e. x ∈ Γ.

(b) Let x ∈ Γ be a point for which νΓ(x) exists. Then for ϵ → 0+

Γx,ϵ → ℓΓ,x locally in the Hausdorff metric, (10.11)

where
Γx,ϵ := 1

ϵ
[Γ − x] :=

{
y − x

ϵ
: y ∈ Γ

}
,

and ℓΓ,x is the line orthogonal to νΓ(x) through 0.

Proof. Point (a) can be found in [192, Lemma 3.13] (indeed this property holds true even if Γ ⊂ Rd).
The existence of the approximate normal yields that for H 1-a.e. x ∈ Γ

H 1⌊Γx,ϵ ∗
⇀ H 1⌊ℓΓ,x weakly∗ in Mb(R2), (10.12)

The reinforced property of point (b) can be found e.g. in Step 2 of the proof of [175, Proposition
2.6] and we report here the argument for completeness.
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Up to a translation, we may assume x = 0 and write Γϵ and l in place of Γx,ϵ and lx. Given any
sequence ϵn → 0, by the compactness of Hausdorff convergence and using a diagonal argument, we
can find a subsequence (ϵnh

)h∈N such that for every m ∈ N, m ≥ 1

Γϵnh
∩ Q̄m(0) → Γm0 in the Hausdorff metric.

It is readily checked that for every m ≥ 1

Γm0 ⊆ Γm+1
0 and Γm0 ∩Qm(0) = Γm+1

0 ∩Qm(0). (10.13)

Let us set Γ0 := ⋃∞
m=1 Γm0 . The conclusion follows by showing that

Γ0 = l. (10.14)

(a) We have Γ0 ⊆ l. Indeed, assume by contradiction that ξ ∈ Γ0 \ l with Bη(ξ) ∩ l = ∅. Using the
measure convergence (10.12), we obtain that

H 1(Γϵnh
∩Bη(ξ)) → 0. (10.15)

But Γϵnh
is connected by arcs (see [192, Lemma 3.12]), so that the points ξnh

∈ Γϵnh
such that

ξnh
→ ξ are connected to 0 through an arc contained in Γϵnh

, against (10.15).

(b) We have on the contrary l ⊆ Γ0. Indeed, assume by contradiction that ξ ∈ l \ Γ0. Then there
exists η > 0 such that Γϵnh

∩Bη(ξ) = ∅ for h large, against (10.12).

In view of (10.13) and (10.14) we deduce that for ϵ → 0 and for every m ≥ 1

Γϵ ∩ Q̄m(0) → l ∩ Q̄m(0) in the Hausdorff metric,

i.e., convergence (10.11) holds true.

The following result concerning Hausdorff convergence by slicing will be useful.

Lemma 10.9 (Hausdorff convergence by sections). Let (Γn)n∈N be a sequence of compact and
connected sets in R2 with supn H 1(Γn) < +∞ and

Γn → Γ in the Hausdorff metric.

Then given ξ ∈ R2 with |ξ| = 1, there exists an at most countable set E ⊂ ξ⊥ such that for every
y ̸∈ E

(Γn)ξy → (Γ)ξy in the Hausdorff metric.

Proof. We may assume up to a rotation that ξ = e1, where (e1, e2) is the canonical basis of R2.
To simplify the notation, we will write (Γn)y for (Γn)e1

(0,y) to denote the section of Γn along the line
{(x, y) : x ∈ R}.

Let us consider the maps fn : R2 → [0,+∞]

fn(x, y) := dist(x, (Γn)y),

where we adopt the convention dist(x, ∅) = +∞. If f := lim infn→+∞ fn, we have that

f(x, y) = dist(x,Hy),

where Hy is the Kuratowski limsup of the sequence ((Γn)y)n∈N: in view of the Hausdorff convergence
of Γn to Γ we have Hy ⊆ Γy. If we consider

g(x, y) := dist(x,Γy)

we thus deduce f ≥ g.
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For every x ∈ R, let
Ex := {y ∈ R : f(x, y) > g(x, y)}. (10.16)

We claim that Ex is at most countable. If we set

E := ∪x∈QEx,

we infer that E is at most countable and that f(x, y) = g(x, y) for y ̸∈ E: indeed if xn ∈ Q with
xn → x, then as y ̸∈ Exn and f, g are continuous (Lipschitz) with respect to the first component,

f(x, y) = lim
n
f(xn, y) = lim

n
g(xn, y) = g(x, y).

We conclude that Hy = Γy for every y ̸∈ E: this entails that on every section except an at most
countable family, Hausdorff convergence takes place towards the section of Γ, so that the conclusion
follows.

In order to conclude the proof, we need to show that Ex defined in (10.16) is at most countable
for every x ∈ R.

It is not restrictive to assume x = 0. Given k, h ≥ 1 let us consider the set

Ek,h
0 :=

{
y ∈ R : h

4k ≤ g(0, y) < h+ 1
4k and f(0, y) > g(0, y) + 1

k

}
.

We claim that the set Ek,h
0 has at most 2(Ck + 1) points, where C := supn H 1(Γn). Since

E0 := {(0, y) : f(0, y) > g(0, y)} =
⋃
h,k

Eh,k
0 ,

we deduce that E0 is at most countable, so that the conclusion follows.
In order to prove the claim, assume that Ek,h

0 contains {y1, . . . , y2N}, with yi < yj for i < j, for
some N ≥ 1. Let us consider for j = 1, . . . , 2N the rectangles

Rj :=
{

(x, y) : |x| < max{g(0, yj), g(0, yj+1} + 1
4k , yj < y < yj+1

}
and the larger ones

R̂j :=
{

(x, y) : |x| < max{g(0, yj), g(0, yj+1} + 1
2k , yj < y < yj+1

}
.

Let Ŝ1
j and Ŝ2

j denote the horizontal segments of ∂R̂j at height yj and yj+1 respectively. Notice that
for n large enough we have that

Ŝhj ∩ Γn = ∅.

Indeed if for example Ŝ1
j ∩ Γnk

̸= ∅ along a subsequence (nk)k∈N, there would exist xj ∈ Hyj
such

that (recall that yj, yj+1 ∈ Eh,k
0 )

f(0, yj) ≤ |xj| ≤ max{g(0, yj), g(0, yj+1} + 1
2k < g(0, yj) + 1

4k + 1
2k = g(0, yj) + 3

4k ,

which is against the definition of Ek,h
0 .

Notice that if Γn ∩Ri ̸= ∅ and Γn ∩Rj ̸= ∅ for some i ̸= j, then

H 1(Γn ∩Ri) ≥ 1
4k . (10.17)

Indeed since Γn is connected by arcs (because it is connected and with finite H 1-measure), there is
a curve contained in Γn with the first extreme in Ri and the second in Rj. Since Γn cannot intersect
the horizontal segments Ŝhi for every i = 1, . . . , 2N and h = 1, 2, then we get that Γn intersects one
vertical segment of ∂R̂i and one of ∂R̂j, so that inequality (10.17) follows by projection onto the
horizontal axis.
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For every i = 1, . . . , 2N , let zin = (xin, yin) ∈ Γn be such that

xin → g(0, yi) and yin → yi.

Notice that for n large enough we have that at least N − 1 points among the zin belongs to different
rectangles of the type Rj. In view of (10.17) we deduce

C ≥ H 1(Γn) ≥ N − 1
k

which yields that the set Ek,h
0 contains at most 2(Ck + 1) points, so that the claim is proved.

Remark 10.10. Notice that exceptional directions can indeed occur in a countable number.
In a first step, if we consider Γn of the form

Γn := ∂B ∪ Lξn

where B is a ball and Lξn is its diameter in the direction ξn → ξ with ξn ̸= ξ, then Γn → Γ in the
Hausdorff metric with

Γ := ∂B ∪ Lξ.

We see that along every line in the ξ direction except the one containing Lξ we have Hausdorff
convergence of the corresponding sections; along the line rξ through Lξ the sections of Γn converge
indeed to the two point set ∂B ∩ rξ which is strictly contained into the section of Γ given by Lξ.

The example can be constructed by considering a countable family of disjoint smaller and smaller
disks accumulating to a point, inside which we consider varying diameters which approach a fixed
direction belonging to a countable family of directions: we can connect the various disks in order to
create a sequence of compact and connected sets with bounded length.

10.3 Obstacles in Stokes fluids and drag minimization

In this section we explain the drag problem for an obstacle immersed in a stationary flow.

10.3.1 The flow around the obstacle

Let Ω ⊂ Rd be an open bounded set with Lipschitz boundary, and let V ∈ C1(Rd;Rd) be a divergence
free vector field. Given E ⋐ Ω open and with a Lipschitz boundary, let us consider the stationary
flow for a viscous incompressible fluid around E with boundary conditions on ∂Ω given by V , and
with Navier boundary conditions on ∂E. More precisely, if u : Ω \ E → Rd is the velocity field, we
require that the following items hold true.

(a) Incompressibility: div u = 0 in Ω \ E.

(b) Boundary conditions: we have

u = V on ∂Ω and non-penetration u · ν = 0 on ∂E,

where ν denotes the exterior normal to E.

(c) Equilibrium: considering the stress

σ := −pId + 2µe(u), (10.18)

where µ > 0 is a viscosity parameter, e(u) the symmetrized gradient of u (also denoted by
D(u)) and p is the pressure, we require

div σ = 0 in Ω \ E. (10.19)
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(d) Navier conditions on the obstacle: we have

(σν)τ = βu on ∂E,

where β > 0 is a friction parameter, and (σν)τ denotes the tangential component of force σν.

The stationary flow has the following variational characterization: u is the minimizer of the energy

E (u) := 2µ
ˆ

Ω\E
|e(u)|2 dL d + β

ˆ
∂E

|u|2 dH d−1 (10.20)

among the class of (sufficiently regular) admissible fields

Vreg
E,V (Ω) := {v ∈ H1(Ω \ E,Rd) : v satisfies points (a) and (b)}, (10.21)

where H d−1 stands for the (d−1)-dimensional Hausdorff measures, which reduces to the area measure
on sufficiently regular sets. Indeed if u is a minimizer, and φ is an admissible variation, so that φ = 0
on ∂Ω, we get

0 = 2µ
ˆ

Ω\E
e(u) : e(φ) dL d + β

ˆ
∂E

u · φdH d−1

= 2µ
ˆ

Ω\E
e(u) : ∇φdL d + β

ˆ
∂E

u · φdH d−1

= −2µ
ˆ

Ω\E
div e(u) · φdL d +

ˆ
∂E

[−2µe(u)ν + βu] · φdH d−1

In particular, choosing φ with compact support in Ω \ E we have

2µdive(u) = ∇p

for some pressure field p: as a consequence σ := −pId + 2µe(u) satisfies (10.19) of condition (c).
Since the admissible functions φ are tangent to ∂E, the optimality condition reduces to

0 =
ˆ
∂E

[−2µe(u)ν + βu] · φdH d−1 =
ˆ
∂E

[−σν + βu] · φdH d−1. (10.22)

Notice that every tangential vector field η on ∂E can be extended to a divergence free vector field
on Ω \ E which vanishes on ∂Ω, hence it is the trace of an admissible variation φ: indeed any
extension W which vanishes on ∂Ω has a divergence with zero mean, so that considering W1 with
divW1 = divW with W1 = 0 on ∂Ω and on ∂E (whose existence is guaranteed, for example by [177,
Theorem IV.3.1])), the required extension is given by W − W1. We conclude that the optimality
condition (10.22) yields the Navier condition of point (b).

10.3.2 The drag force

Assume now that the external vector field V is equal to a constant V∞ ∈ Rd \{0}, i.e. the obstacle E
is immersed in a uniform flow. The flow is perturbed near E, assuming the value u, and the obstacle
experiences a force which has a component in the direction V∞ which is given, up to a multiplicative
constant (V∞ has not unit norm in general), by

Drag(E) :=
ˆ
∂E

σν · V∞ dH d−1,

which is called the drag force on E in the direction of the flow.
We claim that

Drag(E) = E (u), (10.23)
where E (u) is the energy defined in (10.20). Using the facts that σ is symmetric and with zero
divergence (so that also the vector field σV∞ is divergence free), and that u = V∞ on ∂Ω, we may
write
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ˆ
∂E

σν · V∞ dH d−1 =
ˆ
∂E

σV∞ · ν dH d−1 =
ˆ
∂Ω
σV∞ · ν dH d−1 =

ˆ
∂Ω
σu · ν dH d−1

=
ˆ

Ω\E
div(σu) dL d +

ˆ
∂E

σu · ν dH d−1 =
ˆ

Ω\E
σ : ∇u dL d +

ˆ
∂E

σν · u dH d−1.
(10.24)

Using again that σ is symmetric and that u is divergence free, together with the constitutive
equation (10.18), we have

ˆ
Ω\E

σ : ∇u dL d =
ˆ

Ω\E
σ : e(u) dL d =

ˆ
Ω\E

(−p Id + 2µe(u)) : e(u) dL d

=
ˆ

Ω\E
(−p divu+ 2µ|e(u|2) dL d = 2µ

ˆ
Ω\E

|e(u)|2 dL d,

while in view of the Navier conditions on ∂E and the fact that u is tangent to the obstacle
ˆ
∂E

σν · u dH d−1 =
ˆ
∂E

(σν)τ · u dH d−1 = β

ˆ
∂E

|u|2 dH d−1.

Inserting into (10.24), we get that (10.23) follows.

10.3.3 The optimization problem

Let c > 0 and f : (0, |Ω|) → R ∪ {+∞} a lower semi-continuous functions that is not identically
equal to +∞. We are concerned with the following optimization problem:

min
E

{
Drag(E) + cH d−1(∂E) + f(|E|)

}
.

We are thus interested in finding the optimal shape of an obstacle which minimizes the drag force,
under a penalization involving its perimeter and its volume.

In view of the energetic characterization of the drag force established in Subsection 10.3.2, we
can formulate the problem as a minimization problem among the pairs (E, u), where u is a velocity
field belonging to the family Vreg

E,V∞(Ω) defined in (10.21):

min
E,u∈Vreg

E,V∞ (Ω)

{
2µ

ˆ
Ω\E

|e(u)|2 dL d + β

ˆ
∂E

|u|2 dH d−1 + cH d−1(∂E) + f(|E|)
}
.

Setting all the constants equal to 1, and replacing V∞ by a given divergence free velocity vector
field V as in Subsection 10.3.1, the drag minimization problem above is a particular case of the
following shape optimization problem

min
E,u∈Vreg

E,V∞ (Ω)

{ˆ
Ω\E

|e(u)|2 dL d +
ˆ
∂E

|u|2 dH d−1 + H d−1(∂E) + f(|E|)
}
. (10.25)

If we want to apply the direct method of the calculus of variations to the problem, i.e., if we want
to recover a minimizer by looking at minimizing sequences (En, un)n∈N, the following considerations
are quite natural.

(a) Since the problem involves the perimeter of E, the sequence (En)n∈N is relatively compact in
the family of sets of finite perimeter (see Section 10.2).

(b) Concerning the velocities, it turns out naturally that it is convenient to consider also discontin-
uous vector fields. Indeed if un → u in some sense, and ∂En collapses in some parts generating a
surface Γ outside the limit set E, the limit velocity field u can present, in general, discontinuities
across Γ.
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En
E

Γ

We thus expect an extra term in the surface integral related to the Navier conditions, which
amounts at least to ˆ

Γ\∂E
[|u+|2 + |u−|2] dH d−1,

where u± are the two traces from both sides of Γ.

The previous considerations yield to formulate a relaxed version of problem (10.25) in which the
obstacle E varies among the family of sets of finite perimeter contained in Ω, while the family of
associated admissible velocity fields is naturally contained in the space of special functions of bounded
deformation SBD(Ω) (see Section 10.2).

In Section 10.4, we will give a precise formulation of problem in this weak setting, which guarantees
existence of optimal solutions, describing in particular how the boundary conditions on ∂Ω and on
the obstacle have to be rephrased in this context.

10.4 A relaxed formulation of the shape optimization problem and ex-
istence of optimal obstacles

Let Ω ⊆ Rd be open, bounded and with a Lipschitz boundary, and let V ∈ C1(Ω′;Rd) be a divergence
free vector field defined on some bounded open set Ω′ such that Ω ⊂ Ω′.

Definition 10.11 (Admissible obstacles). The class of admissible obstacles in Ω is given by

A(Ω) := {E ⊆ Ω : Per(E) < +∞},

i.e., by the subsets of Ω which have finite perimeter.

Definition 10.12 (Admissible fields). Given an open set Ω, we denote by V(Ω) the family of
velocity vector fields

u ∈ SBD(Ω) ∩ L2(Ω;Rd)
that verifies the two following constraints:

(a) The flow is divergence free: we have

div u = 0 in D′(Ω).

(b) Non-penetration condition on the discontinuity set: we have

u± ⊥ νu on Ju

Definition 10.13 (Admissible set-field pairs). Given E ∈ A(Ω) and V as above, we denote by
VE,V (Ω) the family of vector fields u ∈ V(Ω) such that u = 0 a.e. on E and by extending u by V on
a neighbourhood Ω′ of Ω, it is in V(Ω′).

The crucial difference between VE,V (Ω) and Vreg
E,V (Ω) is that u ∈ VE,V (Ω) may have discontinuities

outside of E. Let E ∈ A(Ω) and u ∈ VE,V (Ω), since ∂∗E is rectifiable (with outward normal vector
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νE) the traces of u on both sides are well-defined H d−1-almost everywhere and we will orient them
such that u+ is in the direction of νE, so u− = 0 a.e. on ∂∗E. The non-penetration constraint is
automatically verified; for any x ∈ ∂∗E, either u+(x) = 0 and it is verified, or x ∈ Ju so outside of a
H d−1-negligible set and up to a choice of orientation we have νE(x) = νu(x) and the condition (b)
of definition 10.12 applies.

Remark 10.14. Note that the obstacle E may touch ∂Ω only on those part where V is tangent to
Ω: this is due to the fact that on ∂∗E ∩ ∂Ω the sets E and Ω share H d−1-a.e. the same exterior
normal, and u+ = V . A similar property holds true for the discontinuity set Ju.

Let f : [0, |Ω|] → [0,+∞] be a lower semicontinuous functions not identically equal to +∞. For
every E ∈ A(Ω) and u ∈ VE,V (Ω), let us set

J (E, u) :=
ˆ

Ω\E
|e(u)|2 dL d + β

ˆ
∂∗E

|u+|2 dH d−1 + β

ˆ
Ju\∂∗E

[|u+|2 + |u−|2] dH d−1

+ H d−1(∂∗E) + 2H d−1(Ju \ ∂∗E) + f(|E|),
(10.26)

Remark 10.15. Let E ⋐ Ω be open and with a Lipschitz boundary. Then we can find W ∈
H1(Ω \ E;Rd) such that W = V on ∂Ω, W = 0 on ∂E and divW = 0. Indeed if φ ∈ C∞(Rd) is
such that φ = 1 on a neighborhood of Rd \ Ω and φ = 0 on a neighborhood of E, we can consider
the vector field V1 := φV , whose divergence has zero mean on Ω \ E (by Gauss theorem). Then
we can find V2 ∈ H1

0 (Ω \ E;Rd) such that divV = divV1 (see [177, Theorem IV.3.1]), so that the
field W := V1 − V2 is an admissible choice. In particular we get that W ∈ VE,V , so that the class of
admissible velocities is not empty.

The following is the first main result of the paper.

Theorem 10.16 (Existence of optimal obstacles). The minimization problem

min
E∈A(Ω),u∈VE,V (Ω)

J (E, u) (10.27)

admits a solution.

The proof of Theorem 10.16 will be given in Section 10.6, based on some technical results for
SBD functions collected in Section 10.5.

10.5 Some technical results in SBD

In this section we collect some technical properties concerning the space SBD that will be fundamental
in the proof of etiquette Theorem 10.1. In particular in Theorem 10.17 we will prove that admissible
velocity vector fields enjoy higher summability properties (indeed they belong to L

2d
d−1 ). In Theorem

10.19 we will prove that velocity fields u with u± tangent to the discontinuity set Ju form a closed set
under the natural convergence of minimizing sequences for the main optimization problem. Finally
in Theorem 10.20 we will prove a lower semicontinuity result for surface energies depending on the
traces, which entails in particular the lower semicontinuity of the term associated to the Navier
conditions.

10.5.1 An immersion result

The following embedding result holds true.
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Theorem 10.17. Let Ω ⊆ Rd be a bounded open set, and let u ∈ SBD(Rd) be supported in Ω such
that

E (u) :=
ˆ

Ω
|e(u)|2 dL d +

ˆ
Ju

[
|u+|2 + |u−|2

]
dH d−1 < +∞.

Then u ∈ L
2d

d−1 (Ω) with
∥u∥ 2d

d−1
≤ C

√
E (u),

where C depends on d and diam(Ω) only.

Proof. It suffices to follow the strategy of the proof of the classical embedding of BD into Ld/d−1

explained in [196], but concentrating on the square of the components.
Let us consider the unit vector

ξ := 1√
d

(1, 1, . . . , 1) ∈ Rd.

Employing the characterization by sections recalled in Section 10.2, for H d−1-a.e. y ∈ ξ⊥ we have

ûξy ∈ SBV (Ωξ
y)

with ˆ
Ωξ

y

|(ûξy)′|2 dt+
∑
t∈J

û
ξ
y

[
|(ûξy)+(t)|2 + |(ûξy)−(t)|2

]
< +∞.

Then we can write for a.e. t ∈ R

∥ûξy∥2
L∞(Ωξ

y) ≤
∣∣∣D(ûξy)2

∣∣∣ (Ωξ
y) =

ˆ
Ωξ

y

2|ûξy(ûξy)′|dt+
∑
t∈J

û
ξ
y

∣∣∣|(ûξy)+(t)|2 − |(ûξy)−(t)|2
∣∣∣

≤ 1
2∥ûξy∥2

L∞(Ωξ
y) + 2|Ωξ

y|
ˆ

Ωξ
y

∣∣∣(ûξy)′
∣∣∣2 dt+

∑
t∈J

û
ξ
y

(∣∣∣(ûξy)+(t)
∣∣∣2 +

∣∣∣(ûξy)−(t)
∣∣∣2) , (10.28)

Let us set
gξ(x) :=

ˆ
Ωξ

y

|(ûξy)′|2 dt+
∑
t∈J

û
ξ
y

[
|(ûξy)+(t)|2 + |(ûξy)−(t)|2

]
,

where y := πξ
⊥(x), i.e., the projection of x on the hyperplane ξ⊥. gξ(x) only depends on the projection

of x on ξ⊥ and
ˆ
ξ⊥
gξdH

d−1 =
ˆ

Ω
|e(u)ξ · ξ|2 dL d +

ˆ
Ju

[
|u+|2 + |u−|2

]
|ξ · ν| dH d−1

≤ C

[ˆ
Ω

|e(u)|2 dL d +
ˆ
Ju

[
|u+|2 + |u−|2

]
dH d−1

]

where C depends only on d. Thanks to (10.28) we have

|ξ · u|2 ≤ Cgξ a.e. on Ω, (10.29)

where C depends on the diameter of Ω, and from now on all the constants C that appear depend on
n, diam(Ω). For every k = 1, . . . , d− 1, we can write

ξ = 1√
d
ek +

√
d− 1
d

hk,
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where ek is the k-th vector of the canonical base, and hk is the unit vector in the direction
√
dξ− ek.

Reasoning as above on the decomposition

ξ · u =
√
d− 1
d

hk · u+ 1√
d
ek · u

we obtain a similar estimate
|ξ · u|2 ≤ C (ghk

+ gek
) , (10.30)

Multiplying inequality (10.29) with inequalities (10.30) for k = 1, . . . , d − 1, we obtain reasoning as
in [196, Chapter II, Theorem 1.2]

∥(ξ · u)2∥ d
d−1

≤ C

[ˆ
Ω

|e(u)|2 dL d +
ˆ
Ju

[
|u+|2 + |u−|2

]
dH d−1

]
.

Working similarly with ξ̃ = 1√
d
(1,−1,−1, . . . ,−1) and using that

1
d
u2

1 = (ξ · u+ ξ̃ · u)2 ≤ 2
[
|ξ · u|2 + |ξ̃ · u|2

]
,

we get the embedding result for the first component, and hence for the entire function u reasoning
similarly on the other components.

10.5.2 Closure of the non-penetration constraint

In the context of equi-Lipschitz boundaries, the preservation of the non-penetration property for a
sequence of Sobolev functions converging weakly, comes rather directly via the divergence theorem
(we refer the reader, for instance, to [179]). However, in the case of collapsing boundaries, so that the
limit function lives on both sides of a surface and in absence of any smoothness of the limit set, this
technique does not work. The proof of the non-penetration preservation requires different technical
arguments that we handle in the SBD context.

Let us start with the following lower semicontinuity result.

Theorem 10.18. Let Ω ⊆ Rd be a bounded open set, and let (un)n∈N be a sequence in SBD(Ω) such
that

sup
n

[ˆ
Ω

|e(un)|2 dL d + H d−1(Jun)
]
< +∞

with
un → u in measure

for some u ∈ SBD(Ω). Then
ˆ
Ju

[
|u+ · νu| + |u− · νu|

]
dH d−1 ≤ lim inf

n→+∞

ˆ
Jun

[
|u+
n · νun| + |u− · νun|

]
dH d−1.

Proof. Let us consider a countable set of functions {φh : h ∈ N} which is dense with respect to
∥ · ∥∞ inside the set {

f ∈ C0
c (]0,+∞[) :

ˆ +∞

0
f dt = 0 and ∥f∥∞ ≤ 1

}
.

Given ϵ > 0, let us consider

gh,k(x) :=
ˆ 1

2 |x−xk|2

0
φh(t) dt,

where {xk : k ∈ N} is a countable and dense set in Bϵ(0) ⊂ Rd with x0 = 0. Clearly gh,k ∈ C1
c (Rd)

with
Gh,k(x) := ∇gh,k(x) = φh

(1
2 |x− xk|2

)
(x− xk).
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We have that Gh,k is a continuous conservative vector field with compact support on Rd.
Let us set for (i, j) ∈ Rd × Rd and ν ∈ Rd with |ν| = 1

fϵ(i, j, ν) := sup
h,k

(Gh,k(i) −Gh,k(j)) · ν.

By construction fϵ is a symmetric jointly convex function according to [193, Definition 3.1]. We claim
that for i ̸= j

|i · ν| + |j · ν| ≤ fϵ(i, j, ν) ≤ |i · ν| + |j · ν| + 2ϵ. (10.31)
In view of the lower semicontinuity result [193, Theorem 5.1] we have

lim inf
n→+∞

ˆ
Jun

fϵ(u+
n , u

−
n , νun) dH d−1 ≥

ˆ
Ju

fϵ(u+, u−, νu) dH d−1.

We can thus write

lim inf
n→+∞

[ˆ
Jun

[
|u+
n · νun| + |u−

n · νun|
]
dH d−1 + 2ϵH d−1(Jun)

]
≥ lim inf

n→+∞

ˆ
Jun

fϵ(u+
n , u

−
n , νun) dH d−1

≥
ˆ
Ju

fϵ(u+, u−, νu) dH d−1 ≥
ˆ
Ju

[
|u+ · νu| + |u− · νu|

]
dH d−1,

so that the result follows taking into account the bound on H d−1(Jun) and letting ϵ → 0.
In order to complete the proof, we need to show claim (10.31). The estimate from above follows

from
[Gh,k(i) −Gh,k(j)] · ν ≤ |(i− xk) · ν| + |(j − xk) · ν| ≤ |i · ν| + |j · ν| + 2ϵ

since ∥φh∥∞ ≤ 1 and |xk| < ϵ. Let us prove the estimate from below. We select xkn → 0 such that
|i − xkn| ≠ |j − xkn| (which is always possibile in view of the density of {xk : k ∈ N} inside Bϵ(0)
and since i ̸= j) and then φhn such that for n → +∞

φhn

(1
2 |i− xkn|2

)
→ i · ν

|i · ν| + η
and φhn

(1
2 |j − xkn|2

)
→ − j · ν

|j · ν| + η
,

where η > 0. By definition of fϵ we infer that

fϵ(i, j, ν) ≥ |i · ν| + |j · ν| − 2η,

so that the estimate from below follows by sending η → 0.

We are now in a position to prove the main result of the section.

Theorem 10.19 (Closure of the non-penetration constraint on the jump set). Let Ω ⊆ Rd

be a bounded open set, and let (un)n∈N be a sequence in SBD(Ω) such that

sup
n

[ˆ
Ω

|e(un)|2 dL d + H d−1(Jun)
]
< +∞

and
un → u in measure

for some u ∈ SBD(Ω). If
u±
n · νun = 0 H d−1-a.e. on Jun ,

then
u± · νu = 0 H d−1-a.e. on Ju.

Proof. By Theorem 10.18 we may writeˆ
Ju

[
|u+ · νu| + |u− · νu|

]
dH d−1 ≤ lim inf

n→+∞

ˆ
Jun

[
|u+
n · νun| + |u− · νun|

]
dH d−1 = 0,

so that the result follows.
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10.5.3 A lower semicontinuity result for surface energies in SBD

In this section we deal with the lower semicontinuity of the surface term of the functional J in
(10.26) connected with the Navier conditions on the obstacle. The following lower semicontinuity
result holds true.

Theorem 10.20. Let Ω ⊆ Rd be an open set, un, u ∈ SBD(Ω) such that

un → u strongly in L1(Ω;Rd)

and
sup
n

[ˆ
Ω

|e(un)|2 dL d + H d−1(Jun)
]
< +∞.

Then if ϕ : Rd → [0,+∞] is a lower semi- continuous function, we have
ˆ
Ju

[ϕ(u+) + ϕ(u−)] dH d−1 ≤ lim inf
n→+∞

ˆ
Jun

[ϕ(u+
n ) + ϕ(u−

n )] dH d−1.

This applies in particular to ϕ(u) = |u|2 and ϕ(u) = 1{u̸=0}, which will be of interest to us.

Proof. Notice first that ϕ may be supposed to be continuous. Indeed for any lower-semicontinuous
nonnegative ϕ, there is a sequence of continuous nonnegative functions ϕk ↗ ϕ (meaning with
punctual convergence and 0 ≤ ϕk ≤ ϕ). Then once the property is known for each ϕk,ˆ

Ju

[ϕ(u+) + ϕ(u−)] dH d−1 = lim inf
k→∞

ˆ
Ju

[ϕk(u+) + ϕk(u−)] dH d−1

≤ lim inf
k→∞

lim inf
n→+∞

ˆ
Jun

[ϕk(u+
n ) + ϕk(u−

n )] dH d−1

≤ lim inf
n→+∞

ˆ
Jun

[ϕ(u+
n ) + ϕ(u−

n )] dH d−1

Through a blow-up approach, we can reduce the problem to the following lower semicontinuity
result.

Let Q1 ⊆ Rd be the unit square centred at 0, and let us set

H := Q1 ∩ {xd = 0} and Q±
1 := Q1 ∩ {xd ≷ 0}.

Given u± ∈ Rd with u+ ̸= u− and un ∈ SBD(Q1) with

un → u := u+1Q+
1

+ u−1Q−
1

strongly in L1(Q1;Rd), (10.32)

sup
n

H d−1(Jun) < +∞ (10.33)

and
e(un) → 0 strongly in L1(Ω;Rd×d

sym), (10.34)
then it is enough to prove that

ϕ(u+) + ϕ(u−) ≤ lim inf
n→+∞

ˆ
Jun

[ϕ(u+
n ) + ϕ(u−

n )] dH d−1.

Indeed, let un, u ∈ SBD(Ω) be as in the statement of Theorem 10.20. Let µn = [ϕ(u+
n ) +

ϕ(u−
n )]H d−1⌊Jun , then µn is a sequence of Radon measures with uniformly bounded mass, so we

may suppose that up to taking a subsequence, µn ⇀ µ for some Radon measure µ. Our goal is to
prove that

ˆ
Ju

[ϕ(u+) + ϕ(u−)] dH d−1 ≤ lim inf
n→+∞

ˆ
Jun

[ϕ(u+
n ) + ϕ(u−

n )] dH d−1. = µ
(
Rd
)
,
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and for this it is sufficient to prove that the Besicovitch differential of µ in H d−1⌊Ju is larger that
ϕ(u+) + ϕ(u−) ; we want to prove for H d−1-almost every x ∈ Ju that,

µ(x+ rQ1)
H d−1(Ju ∩ (x+ rQ1))

≥ ϕ(u+(x)) + ϕ(u−(x)) + or→0(1).

and we assume without loss of generality that we are at a point x for which νu(x) = en (up to a
rotation of the square Q1, using [171, Th. 5.52]), with H d−1(Ju ∩ (x+ rQ1)) ∼ rd−1, meaning that
it is enough to prove

µ(x+ rQ1)
rd−1 ≥ ϕ(u+(x)) + ϕ(u−(x)) + or→0(1).

We may additionnaly suppose, up to the exclusion of a H d−1-negligible set, that the left-hand side
limit exists (so it is enough to prove the result for a subsequence) and

1
rd−1

ˆ
x+rQ1

|e(u)|dL d −→
r→0

0,

lim sup
r→0

α(x+ rQ1)
rd−1 < +∞, where α is the weak limit of H d−1⌊Jun

which is true for H d−1-almost every x since the Besicovitch derivative of e(u)L d to H d−1⌊Ju is zero,
and the one of α to H d−1⌊Ju is finite H d−1-almost everywhere. Let rk be some sequence converging
to 0. Using the measure convergence of H d−1⌊Jun → α, (ϕ(u+

n ) + ϕ(u−
n ))H d−1⌊Jun → µ and of

|e(un)|L d → |e(u)|L d (due to the uniform L2 bound on |e(un)|), and the strong L1 convergence of
un to u, there exists for each k ∈ N some nk(→ ∞) such that

H d−1(Junk
∩ (x+ rkQ1)) ≤ α(x+ rkQ1) + rdkˆ

Junk
∩(x+rkQ1)

[ϕ(u+
nk

) + ϕ(u−
nk

)]dH d−1 ≤ µ(x+ rkQ1) + rdk

ˆ
x+rkQ1

|e(unk
)|dL d ≤

ˆ
x+rkQ1

|e(u)|dL d + rdk

∥u− unk
∥L1(x+rkQ1) ≤ rd+1

k

Then we let vk(y) = unk
(x+ rky) ∈ SBD(Q1), such that the conditions (10.32), (10.33), (10.34) are

verified and
µ(x+ rkQ1)

rd−1
k

≥ −rk +
ˆ
Jvk

∩Q1

[ϕ(v+
k ) + ϕ(v−

k )]dH d−1

So once we know the inferior limit of the right-hand side is larger than ϕ(u+(x)) + ϕ(u−(x)), we are
done as claimed.

We now divide the proof in several steps, and we will employ the characterization by sections of
SBD functions explained in Section 10.2.

Step 1. Let ϵ > 0 be given. We fix δ > 0 and N ∈ N with N > d: these numbers will be subject to
several constraints that will appear during the proof.

Let us fix N unit vectors {ξi}1≤i≤N such that

|ed · ξi − 1| < δ (10.35)

and such that any subset of d of them forms a basis of Rd. Moreover, we may assume in addition
that

(u+ − u−) · ξi ̸= 0 (10.36)
for every i = 1, . . . , N .

Thanks to (10.32) and (10.33), we can fix a > 0 small such that setting H± = H×{±a}, we have

(un)|H± → u± strongly in L1(H±;Rd)
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and
∀n ∈ N : H d−1(Jun ∩H±) = 0. (10.37)

Step 2. We claim that, up to a subsequence, we can find H−
ϵ ⊂ H− with

H d−1(H− \H−
ϵ ) < ϵ (10.38)

such that for every i = 1, . . . , N , for every y ∈ H−
ϵ and for every n ∈ N

H−
ϵ ∩ Jun = ∅, (10.39)

and
1 ≤ H 0((Jun)ξi

y ) < +∞. (10.40)

Moreover setting
(̂un)

ξi

y := un(y + tξi) · ξi,

for every y ∈ H−
ϵ we have

(̂un)
ξi

y ∈ SBV ((Q1)ξi
y ), (10.41)

J
(̂un)

ξi
y

= (Jun)ξi

y (10.42)

∥[(̂un)
ξi

y ]′∥L1 → 0 uniformly for y ∈ H−
ϵ , (10.43)

and
(un)|H− → u− uniformly on H−

ϵ . (10.44)

Indeed, if the number δ appearing in (10.35) is small enough, we can find A−
ϵ ⊆ H− with

H d−1(H− \ A−
ϵ ) < ϵ

2 (10.45)

and such that for every y ∈ A−
ϵ the lines {y+tξi : t ∈ R} intersect H+ for every i = 1, . . . , N . In view

of (10.32), (10.33) and (10.34), and since pointwise convergence implies almost uniform convergence,
we can find Nϵ ⊂ A−

ϵ with
H d−1(Nϵ) <

ϵ

2 (10.46)

and such that, up to a subsequence

∥(̂un)
ξi

y − ûξi
y ∥L1 → 0 uniformly for y ∈ A−

ϵ \Nϵ (10.47)

∥[(̂un)
ξi

y ]′∥L1 → 0 uniformly for y ∈ A−
ϵ \Nϵ (10.48)

(un)|H− → u− uniformly on A−
ϵ \Nϵ, (10.49)

and for every y ∈ A−
ϵ \Nϵ

H 0((Jun)ξi
y ) < +∞. (10.50)

Notice that for n large enough and for every y ∈ A−
ϵ \Nϵ we have

(Jun)ξi
y ̸= ∅. (10.51)

Indeed otherwise, we would get for nk → +∞ the existence of yk ∈ A−
ϵ \ Nϵ with (̂unk

)
ξi

yk
∈

W 1,1((Q1)ξi
yk

), and (10.49) together with (10.48) would yield

∥(̂unk
)
ξi

yk
− u−∥1 → 0
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against (10.47) (recall that by the choice (10.36) of the ξi, the functions ûξi
y have a jump). The claim

follows by setting

H−
ϵ := Aϵ \

[
Nϵ ∪

⋃
n

(Jun ∩H−)
]
.

Indeed (10.38) follows from (10.45), (10.46) and (10.37), while (10.39) is clearly satisfied. Relation
(10.40) follows by (10.50) and (10.51), while relation (10.43) follows from (10.48). Finally relation
(10.44) follows from (10.49).

Step 3. For every i = 1, . . . , N , let us consider the set J i,−n given by the first point of intersection
(with t > 0) of the line {y + tξi : t ∈ R} with the jump set Jun as y varies in the set H−

ϵ defined in
Step 2 (recall (10.40) and (10.42)). In view of (10.43) and (10.44), we can find ηn → 0 such that for
every x ∈ J i,−n with νun · ξi > 0

|u−
n (x) · ξi − u− · ξi| < ηn. (10.52)

Step 4. We claim that, for δ small enough and N large enough, up to a subsequence, we can find
J̃−
n ⊆ Jun with

H d−1(J̃−
n ) ≥ 1 − cϵ, (10.53)

where cϵ → 0 as ϵ → 0, and such that for every x ∈ J̃−
n

x ∈ J i,−n for d different indices i ∈ {1, . . . , N}, (10.54)

where J i,−n is defined in Step 3. Moreover, we can orient νun on J̃−
n in such a way that

ed · νun > 0 and ξi · νun > 0 for every i = 1, . . . , N. (10.55)

Intuitively speaking, the points in J̃−
n are seen from H−

ϵ under d different directions: moreover the
associated lines cut the jump transversaly, from the “lower” to the “upper” part.

Indeed, in view of the very definition of ξi (which form a very small angle with ed as δ → 0) and
of the area formula, we can assume that δ is so small that for every i = 1, . . . , N

H d−1(J i,−n ) ≥
ˆ
Ji,−

n

|νun · ξi| dH d−1 = H d−1((H−
ϵ )ξi) = 1

1 + ĉδ
H d−1(H−

ϵ ), (10.56)

where ĉδ → 0, so that, taking into account (10.38), for small δ we have

H d−1(J i,−n ) ≥ 1 − 2ϵ. (10.57)

By Lemma 10.21 below (with X = Jun , µ = H d−1, and M given by the family of Borel sets) if N
is large enough we can find an index ī such that

H d−1

J ī,−n \
⋃

i1<i2<···<id
ih=1,...,N

(
J i1,−n ∩ J i2,−n ∩ · · · ∩ J id,−n

) < ϵ. (10.58)

Intuitively speaking, most of the points in J ī,−n are seen from H−
ϵ at least under d different directions:

we call this set J̃−
n , i.e.,

J̃−
n := J ī,−n ∩

⋃
i1<i2<···<id
ih=1,...,N

(
J i1,−n ∩ J i2,−n ∩ · · · ∩ J id,−n

)
. (10.59)

In view of (10.57) and (10.58) we get

H d−1(J̃−
n ) ≥ 1 − 3ϵ. (10.60)

Finally, if we set

Gn,ϵ := {x ∈ J̃−
n : |νun · ξī| > ϵ} and Bn,ϵ := J̃−

n \Gn,ϵ,
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coming back to (10.56) we have

H d−1(Gn,ϵ) + ϵ2H d−1(Bn,ϵ) > 1 − 3ϵ,

so that
H d−1(Gn,ϵ) > 1 − 3ϵ− ϵ2C,

where C := supn H d−1(Jun) < +∞. Finally we orient the normal νun on Gn,ϵ in such a way that

νun · ξī > ϵ.

The inequalities (10.55) then also hold true on Gn,ϵ if δ is small enough thanks to (10.35). Reducing
J̃−
n to Gn,ϵ if necessary, the full claim follows taking into account (10.59) and (10.60).

Step 5. Let J̃−
n ⊆ Jun be the set given by Step 4. Since the points of this set are seen from H−

ϵ

under d different directions, in view of (10.52) we infer that there exists η̃n → 0 such that for every
x ∈ J̃−

n

|u−
n (x) − u−| < η̃n.

Reasoning in a similar way starting from the upper part H+
ϵ , and employing the opposite directions

{−ξi : i = 1, . . . , N}, we can construct J̃+
n ⊆ Jun with νun oriented such that again

ed · νun > 0 and ξi · νun > 0 for every i = 1, . . . , N,

such that
H d−1(J̃+

n ) ≥ 1 − cϵ (10.61)
with cϵ → 0 as ϵ → 0, and such that for every x ∈ J̃+

n

|u+
n (x) − u+| < η̃n.

Notice that for x ∈ J̃−
n ∩ J̃+

n , the orientation chosen is compatible with that of (10.55), so that indeed
u−
n (x) and u+

n (x) are the two traces of un at x.
We can thus write, in view of the continuity of ϕ

ˆ
Jun

[ϕ(u+
n ) + ϕ(u−

n )] dH d−1 ≥
ˆ
J̃+

n ∩J̃−
n

[ϕ(u+
n ) + ϕ(u−

n )] dH d−1 +
ˆ
J̃+

n ∆J̃−
n

[ϕ(u+
n ) + ϕ(u−

n )] dH d−1

≥
ˆ
J̃+

n ∩J̃−
n

[ϕ(u+
n ) + ϕ(u−

n )] dH d−1 +
ˆ
J̃+

n \J̃−
n

ϕ(u+
n ) dH d−1 +

ˆ
J̃−

n \J̃+
n

ϕ(u−
n ) dH d−1

≥
ˆ
J̃+

n

ϕ(u+
n ) dH d−1 +

ˆ
J̃−

n

ϕ(u−
n ) dH d−1

≥ [ϕ(u+) − η̃n]H d−1(J̃+
n ) + [ϕ(u−) − η̃n]H d−1(J̃−

n )

where η̃n → 0, so that, taking into account (10.53) and (10.61)

lim inf
n→+∞

ˆ
Jun

[ϕ(u+
n ) + ϕ(u−

n )] dH d−1 ≥ [ϕ(u+) + ϕ(u−)](1 − 2cϵ).

The conclusion follows by letting ϵ → 0.

We made use of the following abstract lemma.

Lemma 10.21. Let (X,M, µ) be a finite measure space. Let ϵ > 0 and d ≥ 2. Then there exists
N ∈ N that only depends on µ(X), ϵ, d such that if {Ei}i=1,...,N is a family of sets in M, we can find
ī such that

µ

Eī \
⋃

j1<j2<···<jd
(Ej1 ∩ Ej2 ∩ · · · ∩ Ejd)

 < ϵ.
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Proof. Up to dividing ϵ by µ(X) we suppose without loss of generality that µ(X) = 1. It is enough
to prove that for any d ≥ 2, ϵ > 0, there is some N(d, ϵ) such that any family of N ≥ N(d, ϵ) ∈ N∗

of sets (Ei)1≤i≤N there is some i that verifies

µ

Ei \
⋃

J⊂[1,N ]\{i},|J |=d−1

⋂
j∈J

Ej

 < ϵ.

meaning that there is some i such that every point of Ei outside a set of measure ϵ is in (at least)
d − 1 other sets Ej (for j ̸= i). We prove it by recursion. If d = 2, let N =

⌈
1
ϵ

⌉
and sets (Ei)1≤i≤N ,

then consider the sets
(
Ei \ ⋃1≤j≤N,j ̸=iEj

)
1≤i≤N

. These are disjoint and µ(X) = 1 so there is some
i such that

µ

Ei \
⋃

1≤j≤N,j ̸=i
Ej

 ≤ 1
N

≤ ϵ,

which proves the initialisation. Let now d ≥ 2 and

N := N
(
d,
ϵ

2

)
, M :=

⌈2
ϵ

⌉
,

consider N ×M sets that we classify into N groups of M sets, written (Ek,i)1≤k≤N,1≤i≤M . For every
k ∈ [1, N ], the sets

(
Ek,i \ ⋃1≤j≤M,j ̸=iEk,j

)
1≤i≤M

are disjoints so there is some ik such that

µ

Ek,ik \
⋃

1≤i≤M,i ̸=ik
Ek,i

 ≤ 1
M

≤ ϵ

2 .

Considering the sets (Ek,ik)1≤k≤N , since N = N
(
d, ϵ2

)
we find some k such that

µ

Ek,i
k

\
⋃

K⊂[1,N ]\{k},|K|=d−1

⋂
k∈K

Ek,ik

 ≤ ϵ

2 ,

so outside a set of measure at most ϵ
2 , every point of Ek,i

k
is in d− 1 sets of the form Ek,ik for k ̸= k.

Similarly every point outside a set of measure at most ϵ
2 is also in one set of the form Ek,i for some

i ̸= ik. We conclude that outside of measure at most ϵ, every point of Ek,i
k

is in d other sets, meaning
N(d+ 1, ϵ) is well-defined and N(d+ 1, ϵ) ≤ N

(
d, ϵ2

) ⌈
2
ϵ

⌉
.

As a consequence, we obtain the lower semi-continuity of our energy defined on set-functions pairs
(10.26).

10.6 Proof of Theorem 10.16

We are now in a position to prove the first main result of the paper.

Proof of Theorem 10.16. Let (En, un)n∈N be a minimizing sequence: since the function f is not iden-
tically equal to +∞, and in view of Remark 10.15, there exists C > 0 such that

J (En, un) ≤ C.

Since un = 0 a.e. on En we may write
ˆ
∂∗En

|u+
n |2 dH d−1 +

ˆ
Jun \∂∗En

[|u+
n |2 + |u−

n |2] dH d−1 =
ˆ
Jun

[|u+
n |2 + |u−

n |2] dH d−1
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so that we infer

H d−1(∂∗En) ≤ C and
ˆ

Ω
|e(un)|2 dL d + H d−1(Jun) +

ˆ
Jun

[|u+
n |2 + |u−

n |2] dH d−1 ≤ C.

Notice that

|E(un)|(Ω′) =
ˆ

Ω′
|e(un)| dL d +

ˆ
Jun

|u+
n − u−

n | dH d−1

≤
ˆ

Ω′\Ω
|e(V )| dL d +

ˆ
Ω

|e(un)| dL d +
ˆ
Jun

[|u+
n | + |u−

n |] dH d−1

≤
ˆ

Ω′\Ω
|e(V )| dL d + 1

2

[
|Ω| +

ˆ
Ω

|e(un)|2 dL d + H d−1(Jun) +
ˆ
Jun

[|u+
n |2 + |u−

n |2] dH d−1
]

≤ C̃,

for some C̃ > 0. Moreover, thanks to Theorem 10.17 applied to u− V we may assume also that

∥un∥
L

2d
d−1 (Ω′)

≤ C̃. (10.62)

By the compactness result in SBD (see Theorem 10.4), there exist a subsequence (unk
)k∈N and

u ∈ SBD(Ω′) with u = V on Ω′ \ Ω and such that

unk
→ u strongly in L1(Ω′;Rd), (10.63)

e(unk
) ⇀ e(u) weakly in L2(Ω′;Rd×d

sym), (10.64)
and

H d−1(Ju) ≤ lim inf
k→+∞

H d−1(Junk
). (10.65)

Concerning the sets Enk
, we may assume, up to a further subsequence if necessary, that there exists

a set of fine perimeter E ⊆ Ω such that

1Enk
→ 1E strongly in L1(Rd) (10.66)

with
H d−1(∂∗E) ≤ lim inf

k→+∞
H d−1(∂∗Enk

).

In particular we get
f(|E|) ≤ lim inf

n→+∞
f(|En|). (10.67)

Let us prove that
u ∈ VE,V (Ω). (10.68)

Indeed, in view of (10.62) we infer that u ∈ L
2d

d−1 (Ω′;Rd) so that in particular u ∈ L2(Ω′;Rd).
Moreover u = V on Ω′ \ Ω, while u = 0 a.e. on E thanks to (10.63) and (10.66).

Since the divergence constraint is intended in the sense of distributions on Ω, this passes easily
to the limit thanks to (10.63). Moreover, in view of Theorem 10.19 we deduce

u± ⊥ νu on Ju.

In particular this entails
u+ ⊥ νE on ∂∗E ∩ Ω,

since for x ∈ ∂∗E we have either x ∈ Ju or u+(x) = 0. We conclude that the tangential constraint
for the velocity field holds on ∂∗E and on Ju \ ∂∗E. We conclude that (10.68) holds true.

Let us prove the pair (E, u) is a minimizer for the problem. Thanks to (10.64) we get
ˆ

Ω
|e(u)|2 dL d ≤ lim inf

k→+∞

ˆ
Ω

|e(unk
)|2 dL d,
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while in view of Theorem 10.20 we have that
ˆ
Ju

[|u+|2 + |u−|2] dH d−1 ≤ lim inf
k→+∞

ˆ
Junk

[|u+
nk

|2 + |u−
nk

|2] dH d−1,

which entails
ˆ
∂∗E

|u+|2 dH d−1 +
ˆ
Ju\∂∗E

[|u+|2 + |u−|2] dH d−1

≤ lim inf
k→+∞

ˆ
∂∗Enk

[u+
nk

|2 dH d−1 +
ˆ
Junk

\∂∗Enk

[|u+
nk

|2 + |u−
nk

|2] dH d−1

 (10.69)

since u = 0 a.e. on E and unk
= 0 a.e. on Enk

.
Let us prove that

2H d−1(Ju \ ∂∗E) + H d−1(∂∗E) ≤ lim inf
i→∞

(
2H d−1(Jui

\ ∂∗Ei) + H d−1(∂∗Ei)
)
. (10.70)

We claim that that we can find h ∈ Rd such that setting

v := u+ h1E and vnk
= unk

+ h1Enk

we have

Jv = Ju ∪ J1E
= ∂∗E ∪ Ju and Jvnk

= Junk
∪ J1Enk

= ∂∗Enk
∪ Junk

(10.71)

up to H d−1-negligible sets. The first relation follows from the fact that the sets

{x ∈ Ju ∪ ∂∗E : u+(x) = −h or u−(x) = −h}

are disjoint as h varies, so that, except for a countable family of possible vectors, they all have zero
H d−1-measure. This yields v+ − v− ̸= 0 H d−1-a.e. on Ju ∪ ∂∗E which gives the first relation in
(10.71), since Jv ⊆ Ju ∪ ∂∗E. The second follows from a similar argument, so that the claim follows
since in the choice of the vector h we simply need to avoid a countable family of vectors.

Then the previous lower semicontinuity result applied to (vnk
) with ϕ(v) = 1v ̸=0 gives

ˆ
Jũ

[ϕ(ũ+) + ϕ(ũ−)]dH d−1 ≤ lim inf
i→∞

ˆ
Jũi

[ϕ(ũ+
i ) + ϕ(ũ−

i )]dH d−1

so that (10.70) follows. In view of (10.64), (10.69), (10.67) and (10.70), we deduce

J (E, u) ≤ lim inf
k→+∞

J (Enk
, unk

)

so that, taking into account (10.68), the pair (E, u) is a minimizer of the main problem (10.27).

10.7 The two dimensional case

In this section we deal with a different formulation of the optimization problem in a two dimensional
context, in which the obstacles are topologically closed: some arguments in the proof of the existence
of optimal obstacles turn out to be greatly simplified.
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10.7.1 A two dimensional setting

Let Ω ⊆ R2 be open, bounded and with a Lipschitz boundary, and let us consider Ω′ ⊆ R2 open such
that Ω ⋐ Ω′.

Definition 10.22 (Admissible obstacles). We say that K ⊆ Ω is an admissible obstacle, and we
write K ∈ K(Ω), if K is compact and connected, R2 \K is connected and H 1(∂K) < +∞.

Remark 10.23. The connectedness of Ω \ K implies that K has no cavities, which are indeed not
relevant for the drag problem. Notice that in general int(K) ⊂ K, so that ∂K may contain thin
parts which depart from the “main bulk” of the obstacle.

Remark 10.24. If K ∈ K(Ω), we have that ∂K is compact and connected with finite H 1-measure.
In particular thanks to point (a) of Theorem 10.8 we have that ∂K is H 1-countably rectifiable, so
that an approximate tangent line and an approximate normal are well defined at H 1-a.e. x ∈ ∂K.

Let V ∈ C1(R2;R2) be a divergence free vector field.

Definition 10.25 (Admissible velocities). Let K ∈ K(Ω). We say that u ∈ L2(Ω′;R2) is an
admissible velocity for K and V , and we write u ∈ Vreg

K,V (Ω), if the following conditions are satisfied.

(a) Boundary condition: u = V a.e. on Ω′ \ Ω.

(b) Existence of a stream function: There exists ψ ∈ H1(Ω′) with ψ = 0 c2-q.e. on K and such
that

u = ∇⊥ψ,

where ∇⊥ψ denotes the rotation of 90 degrees counterclockwise of ∇ψ, and c2 denotes the
two-capacity measure.

(c) Regularity: we have u ∈ SBD(Ω′) with H 1(Ju \K) = 0 and
ˆ

Ω′\K
|e(u)|2 dL d +

ˆ
∂K

[|u+|2 + |u−|2] dH 1 < +∞. (10.72)

Remark 10.26. The function ψ is a stream function describing the associated admissible velocity
field. If K has a regular boundary and u is sufficiently smooth on Ω′ \K, we get that u is divergence
free in Ω′ and tangent to ∂K. In particular, ∂K may touch ∂Ω, but on those parts where V is
tangent to ∂Ω.

The following result collects the main properties of the family of admissible velocities.

Proposition 10.27 (Properties of admissible velocities). Let K ∈ K(Ω) and u ∈ Vreg
K,V (Ω). The

following items hold true.

(a) Divergence condition: we have divu = 0 in D′(Ω′).

(b) Slip condition on the obstacle: for H 1-a.e. x ∈ ∂K we have

u±(x) ⊥ ν∂K(x),

where ν∂K denotes the approximate normal to the rectifiable set ∂K, while u±(x) denote the one
sided Lebesgue values of u at x with respect to ∂K.

Proof. Point (a) follows immediately from the equality u = ∇⊥ψ, where ψ is the stream function for
u. Let us come to point (b). We proceed through a blow-up argument. Let us fix x ∈ ∂K such that
there exist the approximate normal ν and the one sided Lebesgue limits u±: up to a translation and
a rotation, we may assume x = 0 and ν = e2.
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Since ∂K is connected, from point (b) of Theorem 10.8 we have that

1
r
∂K → l locally in the Hausdorff metric as r → 0+, (10.73)

where l denotes the horizontal axis.
Let us fix ϵ > 0. For r small enough we get

Γr := 1
r
∂K ∩Q ⊆ Q ∩ Sϵ,

where Sϵ is the strip {(x1, x2) ∈ R2 : |x2| < ϵ} and Q := [−1, 1]2. Let us consider the two vertical
segments

Hϵ
−1 := {(−1, x2) : |x2| < ϵ} and Hϵ

1 := {(1, x2) : |x2| < ϵ}.

In view of (10.73) and since ∂K is arcwise connected (since it is connected with finite length), we get
that for r small enough every point in Γr can be connected by means of a continuous curve contained
in Γr either to a point of Hϵ

−1 or to a point of Hϵ
−1. This implies that if we denote by Ir the set of

abscissa x1 such that the vertical line through (x1, 0) does not intersect Γr, we have that Ir is an
interval and

|Ir| → 0. (10.74)

In view of the properties of the one sided Lebesgue values, setting

ur(x) := u(rx),

we have
ur → u+1Q+ + u−1Q− strongly in L1(Q,R2) as r → 0+,

where Q± := {(x1, x2) ∈ Q : x2 ≷ 0}.
Let rn → 0, and let us write Γn, In and un for Γrn , Irn and urn . If we consider the continuous

functions
φn(x) := 1

rn
ψ(rnx),

since ∇φn(x) = ∇ψ(rnx), we get that

∇φn → Ru+1Q+ +Ru−1Q− strongly in L1(Q;R2), (10.75)

where R denotes a rotation of 90 degrees clockwise.
By integrating along the vertical lines, and recalling that φn = 0 on Γn we obtain for a.e.

x = (x1, x2) ∈ Q with x1 ̸∈ In

|φn(x1, x2)| ≤
ˆ 1

−1
|∂2φn(x1, s)| ds,

so that ˆ
Ic

n×]−1,1[
|φn(x)| dL 2 ≤

ˆ
Q

|∇φn| dL 2. (10.76)

For a.e. x = (x1, x2) ∈ Q with x1 ∈ In, by integrating horizontally we have that for a.e. ξ /∈ In

|φn(x1, x2)| ≤ |φn(ξ, x2)| +
ˆ 1

−1
|∂1φn(s, x2)| ds,

so that by integrating in x1 ∈ In, ξ ∈] − 1, 1[\In, and since H 1(In) → 0, we get
ˆ
In×]−1,1[

|φn| dL 2 ≤
ˆ
Ic

n×]−1,1[
|φn|dL 2 + 2

ˆ
Q

|∇φn| dL 2 ≤ 3
ˆ
Q

|∇φn| dL 2. (10.77)
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In view of (10.76), (10.77) and (10.75), we get that φn is bounded in W 1,1(Q), and we already know
∇φn = Run −→

L1(Q)
Ru+1Q+ + Ru−1u− . Thus up to a subsequence there is some φ ∈ L1(Q) such that

φn → φ in W 1,1(Q) with
∇φ = Ru+1Q+ +Ru−1Q− . (10.78)

Notice that φ is Lipschitz continuous, and it vanishes on the horizontal axis. Indeed, since

Γn → l ∩Q in the Hausdorff metric,

reasoning as above through integrations on vertical lines we get for a.e. x1 ̸∈ In,

|φn(x1, 0)| ≤
ˆ ϵ

−ϵ
|∂2φn(x1, s)| ds.

and then by horizontal integration to reach (x1, 0) for x1 ∈ In as previously,
ˆ 1

−1
|φn(x1, 0)|dx1 ≤ C

ˆ
]−1,1[×]−ϵ,ϵ[

|∇φn|

which converges to 0 as ϵ → 0 uniformly in n by uniform integrability of (∇φn)n. As a consequence,
and by continuity of the trace W 1,1(Q) ↪→ L1(l), we get that φ is zero on l. It is also Lipschitz so we
get directly that Ru+, Ru− must be in the direction of ±e2, which is the result.

The following lower semicontinuity result concerns the surface term in the main problem associ-
ated to the Navier conditions on the obstacle.

Theorem 10.28 (Lower semicontinuity of Navier surface energies). Let (Γn)n∈N be a sequence
of compact and connected sets in Ω with H 1(Γn) ≤ C and

Γn → Γ in the Hausdorff metric

for some Γ ⊂ Ω. Let un ∈ SBD(Ω) be such that Jun ⊆ Γn, u±
n ⊥ νΓn H 1-a.e. on Γn,

sup
n

[ˆ
Ω

|e(un)|2 dL d +
ˆ

Γn

[|u+
n |2 + |u−

n |2] dH 1
]
< +∞

and
un → u strongly in L1(Ω;R2)

for some u ∈ SBD(Ω) with Ju ⊆ Γ and u± ⊥ νΓ H 1-a.e. on Γ. Then we have
ˆ

Γ
[|u+|2 + |u−|2] dH 1 ≤ lim inf

n→+∞

ˆ
Γn

[|u+
n |2 + |u−

n |2] dH 1. (10.79)

Proof. Fix a unit vector ξ ∈ R2. Thanks to Lemma 10.9 we know that

(Γn)ξy → (Γ)ξy in the Hausdorff metric (10.80)

for every y ∈ ξ⊥ except a countable set.
Working by sections, for every ϵ > 0 we have thatˆ

Ωξ

lim inf
n→+∞

[
ϵ

ˆ
Ωξ

y

|(ûnξy)′|2 dt+ ϵH 0((Γn)ξy) +
ˆ

(Γn)ξ
y

[|(ûnξy)+|2 + |(ûnξy)−|2] dH 1
]

≤ lim inf
n→+∞

ˆ
Ωξ

[
ϵ

ˆ
Ωξ

y

|(ûnξy)′|2 dt+ ϵH 0((Γn)ξy) +
ˆ

(Γn)ξ
y

[|(ûnξy)+|2 + |(ûnξy)−|2] dH 1
]

= lim inf
n→+∞

[
ϵ

ˆ
Ω

|e(un)ξ · ξ|2 dL d + ϵ

ˆ
Γn

|ξ · ν| dH 1 +
ˆ

Γn

[|u+
n · ξ|2 + |u−

n · ξ|2]|ξ · νn| dH 1
]

≤ lim inf
n→+∞

[
ϵ

ˆ
Ω

|e(un)|2 dL d + ϵH 1(Γn) +
ˆ

Γn

[|u+
n |2 + |u−

n |2] dH 1
]

≤ C,
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for some C > 0 independent of n. Let A ⊆ Ω be an open set. Taking into account (10.80), by lower
semicontinuity in one dimension we get for a.e. y

lim inf
n→+∞

[
ϵ

ˆ
Aξ

y

|(ûnξy)′|2 dt+ ϵH 0(Aξy ∩ (Γn)ξy) +
ˆ
Aξ

y∩(Γn)ξ
y

[|(ûnξy)+|2 + |(ûnξy)−|2] dH 1
]

≥ ϵ

ˆ
Aξ

y

|(ûξy)′|2 dt+ ϵH 0(Aξy ∩ Γξy) +
ˆ
Aξ

y∩Γξ
y

[|(ûξy)+|2 + |(ûξy)−|2] dH 1.

By integrating in y and letting ϵ → 0 we deduce
ˆ
A∩Γ

[|u+ · ξ|2 + |u− · ξ|2]|ξ · νΓ| dH 1 ≤ lim inf
n→+∞

ˆ
A∩Γn

[|u+
n · ξ|2 + |u−

n · ξ|2]|ξ · νΓn| dH 1.

In view of the tangency condition for u on Γ and un on Γn, and since we are in dimension two, we
may write

ˆ
A∩Γ

[|u+|2 + |u−|2](1 − |ξ · νΓ|2)|ξ · νΓ| dH 1

≤ lim inf
n→+∞

ˆ
A∩Γn

[|u+
n |2|u−

n |2](1 − |ξ · νΓn|2)|ξ · νΓn| dH 1

≤ C1 lim inf
n→+∞

ˆ
A∩Γn

[|u+
n |2 + |u−

n |2] dH 1,

where
C1 := max

|ξ|=1
ξ2

1 |ξ2|.

We can now employ a covering argument optimizing with respect to the direction ξ to obtain the
factor C1 also on the left hand side, so that (10.79) follows.

Remark 10.29. The lower semicontinuity result of Theorem 10.20 covers the case of general surface
energies ϕ. The simpler arguments of the previous proof take advantage of the choice ϕ(u) =
|u|2 (indeed a homogeneous polinomial is admissible), of the tangency condition and of the two
dimensional context (to cope with the jacobians arising by working with sections). Notice finally
that the integration is carried out on a set Γ which is in principle larger than the jump set Ju.

10.7.2 The optimization problem and existence of solutions

We are now in a position to propose a reformulation of the optimization drag problem in this new
two dimensional context. Given an obstacle K ∈ K(Ω) and a velocity field V ∈ Vreg

K,V (Ω), we can
rephrase the energy (10.26) as

J (K, u) :=
ˆ

Ω\K
|e(u)|2 dL d +

ˆ
∂K

[|u+|2 + |u−|2] dH 1 + H 1(∂K) + f(|K|),

where f : [0, |Ω|] → [0,+∞] is a lower semicontinuous non increasing function not identically equal
to +∞.

Remark 10.30. Let K ∈ K(Ω) be the closure of an open set with Lipschitz boundary well contained
in Ω. Then we can find W ∈ H1(Ω \K;R2) such that W = V on ∂Ω, W = 0 on ∂K and divW = 0.
Indeed if φ ∈ C∞(R2) is such that φ = 1 on a neighborhood of R2 \ Ω and φ = 0 on a neighborhood
of K, we can consider the vector field V1 := φV , whose divergence has zero mean on Ω\K (by Gauss
theorem). Then we can find V2 ∈ H1

0 (Ω\K;Rd) such that divV = divV1 (see [177, Theorem IV.3.1]),
so that the field W := V1 − V2 is an admissible choice with J (K,W ) < +∞. In particular the class
V(K,V ) is not empty.

We can now state the main result of the section.
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Theorem 10.31 (Existence of optimal obstacles). Suppose f is non-increasing, the minimiza-
tion problem

min
K∈K(Ω),u∈Vreg

K,V (Ω)
J (K, u) (10.81)

admits a solution.

Remark 10.32. When V is a constant, the hypothesis that f is non-decreasing may be replaced by
the hypothesis that Ω is star-like. Indeed, in the proof we obtain at some point a compact set H that
is a Hausdorff limit of sets Kn ∈ K(Ω), with |Kn| → |H|, however R2 \ H might not be connected
and we instead define K to be the complementary of the unbounded connected component of R2 \H,
meaning |K| ≥ |H|. Then if Ω is star-like we may define ut(x) = u(x/t) for an appropriately chosen
t ∈ (0, 1) such that |tK| = |H|, extending u by the constant V outside Ω, and (tK, ut) will be the
minimizer.

Proof. Let (Kn, un)n∈N be a minimizing sequence: in view of Remark 10.30 and since the function f
is not identically equal to +∞, there exists C > 0 such that

J (Kn, un) ≤ C.

Up to a subsequence we may assume that

Kn → H in the Hausdorff metric (10.82)

and
Γn := ∂Kn → Γ in the Hausdorff metric

for some compact and connected sets H,Γ ⊆ Ω. Notice that ∂H ⊆ Γ, so that thanks to Goła̧b
Theorem 10.7 we infer

H 1(∂H) ≤ H 1(Γ) ≤ lim inf
n→+∞

H 1(∂Kn) ≤ C. (10.83)

We have
|Kn| → |H|. (10.84)

Indeed, if A ⋐ Ω′ \H is open, then A ⋐ Ω′ \Kn for n large, which yields

lim sup
n

|Kn| ≤ |H|.

On the other hand, if A ⋐ int(H), then A is at a positive distance from Γ, hence also from ∂Kn for
n large. We infer that A ⋐ int(Kn) for n large so that (as |Γ| = 0)

|H| = |int(H)| ≤ lim inf
n→+∞

|Kn|,

so that we recover (10.84). In particular we get

f(|H|) ≤ lim inf
n→+∞

f(|Kn|). (10.85)

Concerning the velocities un ∈ SBD(Ω′), since Jun ⊆ ∂Kn, we get

|E(un)|(Ω′) =
ˆ

Ω′
|e(un)| dL d +

ˆ
Jun

|u+
n − u−

n | dH 1 ≤
ˆ

Ω′
|e(un)| dL d +

ˆ
∂Kn

|u+
n − u−

n | dH 1

≤ |Ω′| +
ˆ

Ω′
|e(un)|2 dL d + H d−1(∂Kn) +

ˆ
∂Kn

[|u+
n |2 + |u−

n |2] dH d−1 ≤ C̃.

Moreover thanks to Theorem 10.17 we may assume also

∥un∥L4(Ω′) ≤ C̃. (10.86)

By compactness in SBD (see Theorem 10.4), up to a subsequence, we have

un → v strongly in L1(Ω′;R2) (10.87)

261



for some v ∈ SBD(Ω′) ∩ L4(Ω′;R2). Clearly v = V a.e. on Ω′ \ Ω, and in particular v ∈ L2(Ω′;R2).
Thanks to the Hausdorff convergence (10.82) we get that

ˆ
Ω′\H

|e(v)|2 dL d ≤ lim inf
n→+∞

ˆ
Ω′\Kn

|e(vn)|2 dL d. (10.88)

Indeed, since (e(un))n∈N is bounded in L2(Ω′,M2
sym), we may assume

e(un) ⇀W weakly in L2(Ω′,M2
sym).

If A ⋐ Ω′ \H, we get that A ⋐ Ω′ \Kn for n large, and from (10.87) we get

W = e(v) on A.

Letting A invade Ω′ \H, inequality (10.88) easily follows.
Let ψn be the stream function associated to un. Thanks to (10.86), we infer that ∇ψn is uniformly

bounded in L4(Ω′;R2). Since Ω′ has a Lipschitz boundary, by setting

ψ̃n := ψn − 1
|Ω′|

ˆ
Ω′
ψn dL

d,

we get (ψ̃n)n∈N is a bounded sequence in W 1,4(Ω′). Up to a subsequence we may assume that

ψ̃n ⇀ ψ̃ weakly in W 1,4(Ω′)

for some ψ̃ ∈ W 1,4(Ω′). By Sobolev embedding, we get that the functions are continuous and that
the convergence is also uniform: this yields in particular that ψ̃ is equal to a constant cψ̃ on H and
on Γ. Passing to the limit in un = ∇⊥ψ̃n, we deduce that

v = ∇⊥ψ̃.

Finally from the lower semicontinuity result of Theorem 10.28 we finally deduce
ˆ

Γ
[|v+|2 + |v−|2] dH 1 ≤ lim inf

n→+∞

ˆ
Γn

[|u+
n |2 + |u−

n |2] dH 1. (10.89)

Let us define
K := (AHc)c,

where AHc is the unbounded connected component of Hc. Notice that K ∈ K(Ω) with ∂K ⊆ Γ.
Intuitively, K is obtained form H by adding the possible (open) cavities created by the Hausdorff
convergence of Kn to H.

Let us consider the stream function ψ ∈ H1(Ω′) such that ψ = ψ̃ on Ω′ \ K and ψ = cψ̃ on K.
The function ψ differs from ψ̃ on the open inner cavities of H, where it is set equal to a constant.
Let us set

u := ∇⊥ψ ∈ Vreg
K,V (Ω).

Notice that
u = v on Ω \K

while v = 0 on K \H. Since ∂K ⊆ Γ,
ˆ

Ω\K
|e(u)|2 dL d ≤

ˆ
Ω\H

|e(v)|2 dL d and
ˆ
∂K

[|u+|2 + |u−|2] dH 1 ≤
ˆ

Γ
[|v+|2 + |v−|2] dH 1,

taking into account (10.88), (10.89), (10.83), (10.84), and since f is non increasing, we deduce that

J (K, u) ≤ lim inf
n→+∞

J (Kn, un),

so that (K, u) is a minimizer for the problem, and the proof is concluded.
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10.8 Regularity of two-dimensional minimizers

In this section we are interested in the regularity of the minimizers given by Theorem 10.1, precisely
whether they are of classical type, in the sense that the obstacle is a closed set and the flow is Sobolev
outside the obstacle.

We begin by discussing the strong setting for closed obstacle that are not necessarily smooth;

Definition 10.33. (F, u) is said to be strongly admissible on Ω when

• F is closed in Ω, Ω ∩ ∂F is rectifiable and H 1(Ω ∩ ∂F ) < +∞.

• u ∈ H1
loc(Ω \ F ), div(u) = 0,

´
Ω\K |e(u)|2dL d < +∞.

• u±
|∂F · νF = 0 on Ω ∩ ∂F .

and we define their energy

J strong(F, u) :=2µ
ˆ

Ω\F
|e(u)|2 dL d + β

ˆ
Ω∩∂∗F

|u+|2 dH d−1 + β

ˆ
Ω∩F (0)∩F

[|u+|2 + |u−|2] dH d−1

+ cH d−1(Ω ∩ ∂∗F ) + 2cH d−1(Ω ∩ F (0) ∩ F ) + f(|F |),
(10.90)

It is not clear the traces of u are well-defined and it is a consequence of the following lemma.
Since before knowing the traces are defined we have a-priori control only over the total elastic energy
of u and the length of ∂F , we have to work in an “unbounded” version of SBD, the GSBD setting
as defined in [189]. More precisely we will make use of the compactness theorem [186, Th 1.1].

Lemma 10.34. Let F ⊂ Ω be a relatively closed set such that H 1(Ω∩∂F ) < ∞ and u ∈ H1
loc(Ω\F )

such that
´

Ω\F |e(u)|2 < ∞, and let ũ =
u in Ω \ F

0 in F
, then ũ ∈ GSBD(Ω) with H 1(Jũ \ ∂F ) = 0.

So up to a choice of orientation of Ω ∩ ∂F (by rectifiability) there is no ambiguity to defining the
traces u±

|∂F of u on H 1-almost all ∂F .

Proof. Since H 1(Ω ∩ ∂F ) < ∞, we may find for any small ϵ some covering of ∂F by a finite union
of balls of radius less than ϵ, denoted (Bϵ

i )1≤i≤Nϵ , such that ∑Nϵ

i=1
diam(Bϵ

i )
2 ≤ C for some C > 0 that

does not depend on ϵ. Let Bϵ be the union of these balls - which is a Lipschitz set up to a small
perturbation of the radii - and uϵ = u1Ω\Bϵ . Then uϵ ∈ SBD(Ω) with

Euϵ = e(u)L 2⌊(Ω \ (F ∪Bϵ)) + uH 1⌊∂Bϵ

and we have
uϵ −→

a.e.
ũ, lim sup

ϵ→0

ˆ
Ω

|e(uϵ)|2 + H 1(Juϵ) < ∞.

We apply [186, Th 1.1] to (uϵ); since ũ is finite almost everywhere, we directly identify ũ with the
limit that is obtained, and ũ ∈ GSBD(Ω). Moreover up to a negligible set, Jũ ⊂ ∂F by construction.

As a consequence of this lemma, if (F, u) is as in definition 10.33 and J strong(F, u) < ∞, then
ũ ∈ v(Ω) and (F, ũ) is admissible in the sense of definitions 10.11,10.12. Indeed it is enough to prove
that ũ ∈ SBD(Ω), which is the case since for every direction ξ ∈ Sd−1 we have a bound

J strong(F, u) ≥
ˆ
ξ⊥

2µ
ˆ

Ωξ
y

|(ũξy)′(t)|2dt+
∑
t∈J

ũ
ξ
y

(
c+ β|(ũξy)+(t)|2 + β|(ũξy)−(t)|2

) dH 1(y)
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What we prove in this section is that when d = 2, relaxed minimizer of (10.26) in the relaxed
setting defined in definitions 10.11,10.12 are locally strong in the sense that H 1(Ω ∩ ∂∗E ∪ Ju \
(∂∗E ∪ Ju)) = 0; as a consequence, setting F to be the complementary of the union of the connected
components of Ω \∂∗E ∪ Ju where u is nonzero, we find that (F, u|Ω\F ) is a strong local minimizer in
the sense given above. There is a missing piece to get a full correspondance with the strong problem,
which is a boundary regularity H 1(∂Ω ∩ ∂∗E ∪ Ju \ (∂∗E ∪ Ju)) = 0.

The general strategy used by De Giorgi, Carriero and Leaci for the Mumford-Shah problem in
[190] faces the new difficulties given by the vectorial context and the extra conditions satisfied by
the competing fields: incompressibility and non-penetration. We follow the main lines of [188] and
[185] developed for the Griffith fracture problem. However, for now, technical difficulties allow us to
deal only with dimension 2.

For simplicity, we shall assume f is a Lipschitz function (although C0,α regularity, for some α > 1
2 ,

would be enough).
We begin with a technical result which allows us to approximate any function u ∈ V([−1, 1]2) with

few jumps by a Sobolev function in a slightly smaller domain, while keeping control on the energy.
This result is inspired by [185]. In the second part, we prove the decay estimate and conclude.

10.8.1 Smoothing lemma

We fix a standard radial, smooth, nonnegative mollifier ρ with support in a disc of radius 1/8 and
denote ρδ(x) = δ−2ρ(x

δ
).

Instead of working directly with functions u ∈ V(Ω), we have to work with pairs (J, u); the reason
for this is that we will apply this result in the end to ∂∗E ∪ Ju for an admissible set-function pair
(E, u), and some points of ∂∗E may not be jump points of u. We will write that the pair (J, u) of a
rectifiable set J and a function u ∈ V(Ω) is admissible, and we write (J, u) ∈ V(Ω), when in addition
to u ∈ V(Ω) one has

H 1(Ju \ J) = 0, u±
|J · νJ = 0

where νJ is the normal vector of J and u±
|J are the traces of u on J , both of which are well-defined

by rectifiability of J . However all that follows may be adapted seamlessly to the case where J is
simply Ju.

de definit V(Ω) si Qr

Proposition 10.35. There exists constants C, η > 0 such that for any (J, u) ∈ V(Q1) such that
H 1(J) < η, then denoting δ =

√
H 1(J), there is a radius r ∈ [1 −

√
δ, 1], a function v ∈ V(Q1) ∩

H1(Qr), and a cut-off function φ ∈ C∞(Qr, [0, 1]) such that

(a) {u ̸= v} ⊂ Qr, H 1(Jv \ J) = 0,

(b) φ = 0 on Qr \Qr− δ
2
, φ = 1 on Qr−2δ.

(c)
´
Qr

|e(v) − (ρδ ∗ e(u))φ|2 dL 2 ≤ Cδ
1
3
´
Q1

|e(u)|2dL 2,

In particular (J \Qr, v) ∈ V(Q1).

Proof. In this proof, we write a ≲ b when a ≤ Cb for some universal constant C. There is no
compactness argument in this proof so the constants involved are fully explicitable, although we
shall not attempt it. We begin by a lemma due to Nečas that will allow us to project a H1 field into
divergence-free fields.

Lemma 10.36. Let Ω be a bounded, connected Lipschitz open set, we let L2
0(Ω) be the set of zero-

average L2-functions. Then there is a continuous linear map Φ : L2
0(Ω) → H1

0 (Ω,Rd) such that
div ◦ Φ = IdL2

0(Ω).
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We shall also write, for any u ∈ H1(Ω,Rd) such that
´

Ω div(u)dL 2 = 0 (or equivalently that´
∂Ω u · νΩdH 1 = 0),

PΩ[u] = u− Φ[ div (u)]

the “projection” of u on divergence-free vector fields. The proof of this lemma may be found for
instance in [177, Th IV.3.1]. We let N := 1 + ⌊1/

√
H 1(J)⌋, in the following it will be supposed

arbitrarily large. We also let δ := 1/N . Then for any k ≥ 0 we write

Ck
r = Qr \Qr− δr

2k

We now make the choice of radius r such that the density of jump near ∂Qr is small, following a
similar method as [187, th 2.1].

Lemma 10.37. There is a choice of r ∈ [1 −
√
δ, 1] such that

∀k ≥ 0, H 1(J ∩ Ck
r ) ≤ 20H 1(J) 3

4
δr

2kˆ
C−2

r

|e(u)|2dL 2 ≤ 80H 1(J) 1
4 r

ˆ
Q1

|e(u)|2dL 2

Proof. We prove that this is verified for a set of r ∈ [1 −
√
δ, 1] of measure larger than

√
δ

2 . Define
the measure µ on [0, 1] as

µ(E) = H 1(J ∩QE)
H 1(J) +

´
QE

|e(u)|2dL 2´
Q1

|e(u)|2dL 2 ,

where QE := ∪r∈R∂Qr is the cubic shell associated to E ⊂ [0, 1]. Denoting Ikr = [r− δr
2k , r] (such that

QIk
r

= Ck
r ), our goal is to prove that for some choice of r, we have

∀k ≥ −2, µ(Ikr ) ≤ 20
H 1(J)1/4 |Ikr |

Indeed, this implies

∀k ≥ 0, H 1(J ∩ Ck
r ) ≤ H 1(J) 20δr

2kH 1(J) 1
4

≤ 20H 1(J) 3
4
δr

2kˆ
C−2

r

|e(u)|2dL 2 ≤ 80δH 1(J)− 1
4 r

ˆ
Q1

|e(u)|2dL 2 ≤ 80H 1(J) 1
4 r

ˆ
Q1

|e(u)|2dL 2

Let I be the union of all intervals that do not verify this, notice that any r ∈ [1 −
√
δ, 1] \ I yields

an answer so we only need to prove |I| <
√
δ. Let (Iki

ri
) be a Vitali covering of I, then

2 = µ([0, 1]) ≥
∑
i

µ(Iki
ri

) ≥ 20
H 1(J)1/4

∑
i

|Iki
ri

| ≥ 4|I|
H 1(J)1/4

hence |I| < 1
2

√
δ and we get the result.

In all the following, r is fixed and we denote δk := δr
2k , rk =

(
N − 1

2k

)
δr = r − δk. Then we

consider a partition of Qr by cubes, by filling Qr0 with cubes of side δ0 denoted (q̃0,j)j and then each
Qrk

\Qrk−1 by cubes of side δk denoted (q̃k,j)j (note that there is only one way to do this).
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For any square q = z + [−t, t]2, we write q′ = z + [−8
7t,

8
7t]

2 and q′′ = (q′)′. We will denote
qj,k = (q̃j,k)′.

We may notice that with our choices, q′′
j,k ⋐ Qrk+1 \ Qrk−1 and (q′′

j,k) is a covering of Qr with a
fixed finite number of overlapping; each (q′′

j,k) meets at most 8 neighbours (q′′
i,p), and they all verify

|k−p| ≤ 1, meaning δk/δp ∈
{

1
2 , 1, 2

}
. This is because the factor 8

7 above is chosen such that
(

8
7

)3
< 3

2 .

With our choice of r, we know that for every k ≥ 1, H 1(Ju ∩ q′′
j,k) ≲ δk

√
H 1(J), and H 1(Ju ∩

q′′
j,0) ≲ δ0

√
H 1(J). This means that the jump set of u in every cube is arbitrarily small compared

to its sides, when H 1(J) gets smaller.
We apply [185, Proposition 3.1], for every (j, k) there is a set ωj,k ⊂ q′

j,k and an affine function
aj,k with e(aj,k) = 0, such that

• |ωj,k| ≲ δkH 1(Ju ∩ q′′
j,k). Notice that as a consequence of the choice of r, |ωj,k| ≲ δ2

kH
1(J) 1

2 ≪
|q′′
j,k|: this is where we most use the fact that we are in two dimensions.

•
´
q′

j,k
\ωj,k

|u− aj,k|4 ≲
(
δk
´
q′′

j,k
|e(u)|2

)2
.

• The function vj,k = u+ (aj,k − u)1ωj,k
verifies

ˆ
qj,k

|e(vj,k ∗ ρδk
) − e(u) ∗ ρδk

|2dL 2 ≲

(
H 1(Ju ∩ q′′

j,k)
δk

) 1
3
ˆ
q′′

j,k

|e(u)|2dL 2

≲ δ
1
3

ˆ
q′′

j,k

|e(u)|2dL 2,

where ρ is the mollifier defined previously.

We now let (φj,k) be an approximation of unity associated to the covering (qj,k) and such that
|∇φj,k| ≲ 1

δk
. We then let wj,k = ρδk

∗ vj,k and

w = 1Q1\Qru+ 1Qr

∑
j,k

φj,kwj,k

Lemma 10.38. The function w defined above verifies

• w ∈ SBD(Q1) ∩H1(Qr),

• {u ̸= w} ⊂ Qr, H 1(Jw \ J) = H 0(J ∩ ∂Qr) = 0,

•
´
Qr

∣∣∣e(w) −∑
j,k φj,kρδk

∗ e(u)
∣∣∣2 ≲ δ

1
3
´
Q1

|e(u)|2.

The proof of this lemma follows the strategy introduced in [185]. Some steps of the proof are referred
directly to [185]. However, since our conclusion is slightly different, we prefer do develop some
computations in detail.

Proof. Notice that as soon as qj,k and qi,p intersects, then |qj,k ∩ qi,p| ≳ max(|qj,k|, |qj,p|),

∥aj,k − ai,p∥L4(qj,k∩qi,p) ≲
√
δk∥e(u)∥L2(q′′

j,k
∪q′′

j,p)

Indeed, since |qj,k ∩ qi,p ∩ (ωj,k ∪ ωi,p)| ≪ |qj,k ∩ qi,p| and aj,k, ai,p are affine, then using [185, Lemma
3.4],

∥aj,k − ai,p∥L4(qj,k∩qi,p) ≲ ∥aj,k − ai,p∥L4(qj,k∩qi,p\(ωj,k∪ωi,p)) ≤ ∥aj,k − u∥L4(qj,k\ωj,k) + ∥ai,p − u∥L4(qi,p\ωi,p)

≲
√
δk∥e(u)∥L2(q′′

j,k
) +

√
δp∥e(u)∥L2(q′′

i,p) ≲
√
δk∥e(u)∥L2(q′′

j,k
∪q′′

i,p).
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And so in particular ∥aj,k − ai,p∥L2(qj,k∩qi,p) ≲ δk∥e(u)∥L2(q′′
j,k

∪q′′
i,p). Now,

e(w) =
∑
j,k

(φj,ke(wj,k) + ∇φj,k ⊙ wj,k)

=
∑
j,k

φj,ke(wj,k) +
∑

qj,k∩qi,p ̸=∅
∇φj,k ⊙ (wj,k − wi,p) in qi,p.

So

e(w) −
∑
j,k

φj,kρδk
∗ e(u) =

∑
j,k

φj,k

[
e(wj,k) − ρδk

∗ e(u)
]

+
∑

qj,k∩qi,p ̸=∅
∇φj,k ⊙ (wj,k − wi,p) in qi,p.

(10.91)

We begin by an estimate of the second term of the right-hand side of (10.91).
• If q′′

i,p ⋐ Qr−1 , then qj,k ∩ qi,p ̸= ∅ means that δk = δp = δ, k = p = 0, and we may rewrite
|∇φj,0 ⊙ (wi,0 − wj,0)| ≤ ∥ρδ ∗ ∇φj,0∥L∞|vi,0 − vj,0|.

On one hand ∥ρδ ∗ ∇φj,0∥L∞ ≲ 1
δ
, on the other hand

|vi,0 − vj,0| ≤ |u− ai,0|1ωj,0\ωi,0 + |u− aj,0|1ωi,0\ωj,0 + |aj,0 − ai,0|1ωj,0∩ωi,0 .

So integrating on qj,0 ∩ qi,0 we get
∥vi,0 − vj,0∥L2(qj,0∩qi,0) ≤ ∥(u− ai,0)1ωj,0∥L2(qi,0\ωi,0) + ∥(u− aj,0)1ωi,0∥L2(qj,0\ωj,0)

+ ∥(aj,0 − ai,0)1ωi,0∪ωj,0∥L2(qi,0∩qj,0)

≤ |ωj,0|
1
4 ∥u− ai,0∥L4(qi,0\ωi,0) + |ωi,0|

1
4 ∥u− aj,0∥L4(qj,0\ωj,0)

+ |ωi,0 ∪ ωj,0|
1
4 ∥aj,0 − ai,0∥L4(qi,0∩qj,0)

≲ δ1+ 1
4 ∥e(u)∥L2(q′′

i,0∪q′′
j,0).

Integrating everything we get
ˆ
Qr−1

∣∣∣∣∣∣
∑
j,k

∇φj,k ⊙ wj,k

∣∣∣∣∣∣
2

dL 2 ≲
ˆ
Qr−1

∑
i,p

1qi,p

∣∣∣∣∣∣
∑

qj,k∩qi,p ̸=∅
∇φj,k ⊙ (wj,k − wi,p)

∣∣∣∣∣∣
2

dL 2

≲
ˆ
Qr−1

∑
i

1qi,0

∑
j:qj,0∩qi,0 ̸=∅

|ρδ ∗ ∇φj,0|21qj,0|vi,0 − vj,0|dL 2

≲ δ−2∑
i

∑
j:qj,0∩qi,0 ̸=∅

∥vj,0 − vi,0∥2
L2(qi,0∩qj,0)dL

2

≲ δ
1
2
∑
i

∑
j:qj,0∩qi,0 ̸=∅

∥e(u)∥2
L2(q′′

i,0∪q′′
j,0)dL

2

≲ δ
1
2

ˆ
Qr0

|e(u)|2dL 2

where we used several times the finite overlapping property of the covering.

• If qi,p ⊈ Qr−1 , then for any qj,k that meets qi,p, we decompose
wi,p − wj,k = ρδp ∗ (vi,p − ai,p) − ρδk

∗ (wj,k − aj,k) + (ai,p − aj,k).
Notice the crucial step that ρδk

∗ aj,k = aj,k due to the fact that aj,k is harmonic (since it is
affine). Then we have:

∥ρδk
∗ (vi,p − ai,p)∥L2(qj,k∩qi,p) ≤ ∥vi,p − ai,p∥L2(q′

i,p) ≲ δp∥e(u)∥L2(q′′
i,p)

∥ρδk
∗ (vj,k − aj,k)∥L2(qj,k∩qi,p) ≤ ∥vj,k − aj,k∥L2(q′

j,k
) ≲ δp∥e(u)∥L2(q′′

j,k
)

∥ai,p − aj,k∥L2(qj,k∩qi,p) ≲ δp∥e(u)∥L2(q′′
j,k

∪q′′
i,p)
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where we also used the fact that δp and δk differ from at most a factor 2. And so we obtain
with the same computations as the previous point that

ˆ
Qr\Qr−1

∣∣∣∣∣∣
∑
j,k

∇φj,k ⊙ wj,k

∣∣∣∣∣∣
2

dL 2 ≲
ˆ
Qr\Qr−2

|e(u)|2dL 2.

Thus, using the choice of r in Lemma 10.37,

ˆ
Qr\Qr−1

∣∣∣∣∣∣
∑
j,k

∇φj,k ⊙ wj,k

∣∣∣∣∣∣
2

dL 2 ≲
√
δ

ˆ
Q1

|e(u)|2dL 2.

And so the second term of (10.91) is bounded by C
√
δ
´
Q1

|e(u)|2. For the first term, we have

ˆ
Qr

∣∣∣∣∣∣
∑
j,k

φj,ke(wk,j) −
∑
j,k

φj,kρδk
∗ e(u)

∣∣∣∣∣∣
2

dL 2 ≤
ˆ
Qr

∣∣∣∣∣∣
∑
j,k

φj,k (e(ρδk
∗ vj,k) − ρδk

∗ e(u))
∣∣∣∣∣∣
2

dL 2

≲
∑
j,k

ˆ
qj,k

φ2
j,k |e(ρδk

∗ vj,k) − ρδk
∗ e(u)|2 dL 2

≲ δ
1
3
∑
j,k

ˆ
q′′

j,k

|e(u)|2dL 2

≲ δ
1
3

ˆ
Qr

|e(u)|2dL 2.

This proves the lemma.

Now, in all the following we let
φ :=

∑
j

φj,0

which is a cut-off function as stated in the proposition. This way,

e(w) −
∑
j,k

φj,kρδk
∗ e(u) =

[
e(w) − φ(ρδ ∗ e(u))

]
−
∑
j,k>0

φj,kρδk
∗ e(u).

And this last term is estimated by∥∥∥∥∥∥
∑
j,k>0

φj,kρδk
∗ e(u)

∥∥∥∥∥∥
2

L2(Qr)

=
∥∥∥∥∥∥
∑
j,k>0

φj,kρδk
∗ e(u)

∥∥∥∥∥∥
2

L2(Qr\Qr−1 )

≲
ˆ
Qr\Qr−1

∑
j,k

φ2
j,k(ρδk

∗ e(u))2dL 2

≲
ˆ
Qr\Qr−2

|e(u)|2dL 2 ≲
√
δ

ˆ
Q1

|e(u)|2dL 2,

where we used the property of our initial choice of r in the last line. To summarize, we obtained
w ∈ C∞(Qr) such that

∥e(w) − φ(ρδ ∗ e(u))∥L2(Qr) ≲ δ
1
6 ∥e(u)∥L2(Q1).

From this estimate we deduce that the divergence of w is small, indeed
ˆ
Qr

|div(w)|2dL 2 =
ˆ
Qr

|Tr(e(w))|2 dL 2 =
ˆ
Qr

|Tr (e(w) − φρδ ∗ e(u))|2 dL 2 ≲ δ
1
3

ˆ
Q1

|e(u)|2dL 2.

Lemma 10.39. As it is defined, w ∈ H1(Qr) and the trace of w on both sides of ∂Qr is the same.

Proof. We refer to [185].
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We may now enforce the divergence-free condition; since u is divergence-free in the sense of
distribution and it admits a trace on Qr, then

´
∂Qr

u · ν = 0, where ν is the outward normal vector
of Qr. Since the trace of u coincide with the trace of w here, then

´
∂Qr

w · ν = 0, meaning that:
ˆ
Qr

div(w)dL 2 = 0

Thus div(w) is a L2
0(Qr) functions; using lemma 10.36, there exists a vector field q ∈ H1

0 (Qr) such
that

div(q) = div(w), ∥∇q∥2
L2(Qr) ≲ ∥div(w)∥2

L2(Qr) ≲ δ
1
3

ˆ
Q1

|e(u)|2dL 2

And thus the function v := w − q verifies the conclusion of the result.

10.8.2 Decay estimate

In all the following, we will denote

G(J, u|Ω) =
ˆ

Ω
|e(u)|2dL 2 + H 1(J ∩ Ω).

Definition 10.40. For any open set Ω ⋐ R2, we say (J, u) ∈ V(Ω) is a (Λ, ϑ, r) almost quasi-
minimizer (in Ω) if G(J, u|ω) < +∞ for any open ω ⋐ Ω, and for any v ∈ V(Ω) such that

• {u ̸= v} ⊂ Qx,r for some cube Qx,r ⋐ Ω with r ∈ (0, r),

• H 1(Jv \ J) = 0 and v|Qx,r ∈ H1(Qx,r),

• lim sups→0+
1
s
H 1 (J ∩ (Qx,r \Qx,r−s) < 1,

then we have ˆ
Qx,r

|e(u)|2dL 2 + H 1(J ∩Qx,r) ≤ (1 + ϑ)
ˆ
Qx,r

|e(v)|2dL 2 + Λr2.

The last inequality may be written G(J, u|Qx,r) ≤ (1 + ϑ)G(J \ Qx,r, v|Qx,r) + Λr2. This defini-
tion is tailor-made for the application of the smoothing lemma, in particular it is only useful in two
dimension for functions with few jumps so we know that we can find squares with no jump on the
boundary. More precisely when applied to the case of an admissible pair (E, u) we will prove the
third condition implies that ∂Qx,r separates E in two connected components, in the sense that the
reduced boundary of either E ∪Qx,r or E \Qx,r is included (up to a H 1-negligible set) in ∂∗E \Qx,r.
The third condition is automatically verified for the competitor built through the smoothing lemma
since the choice of r implies lim sups→0

H 1(J∩Qr\Qr−s)
s

≤ 40H 1(J ∩Q1)
3
4 < 1.

This notion is weak enough to include any local minimizer of a functional of the form
ˆ

Ω
|e(u)|2dL 2 +

ˆ
Ω∩Ju

Θ(νu, u+, u−)dH 1

where Θ is a measurable function such that inf(Θ) ≥ 1 (or, inf(Θ) > 0 up to scaling).

Proposition 10.41. There exists a universal constant τ ∈ (0, 1) such that for any τ ∈ (0, τ),
Λ, r > 0, then there exists r̂ ∈ (0, r), ϑ, ϵ > 0 such that for any (Λ, ϑ, r)-almost quasiminimizer (J, u)
in Qr for some r < r̂, we have[

G(J, u|Qr) ≥ r3/2, H 1(J ∩Qr) ≤ ϵr
]

⇒
[
G(J, u|Qτr) ≤ τ 3/2G(u|Qr).

]
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Lemma 10.42. There exists a constant C0 > 0 such that for any divergence-free vector field u ∈
H1(Q1,R2) such that ∆u = ∇p for some pressure p ∈ L2(Q1), we have

∀τ ∈ (0, 1/2],
ˆ
Qτ

|e(u)|2dL 2 ≤ C0τ
2
ˆ
Q1

|e(u)|2dL 2

As a consequence, for any τ ≤ τ := 1
4C2

0
∧ 1

2 we get
´
Qτ

|e(u)|2dL 2 ≤ 1
2τ

3/2 ´
Q1

|e(u)|2dL 2.

Proof. Notice that e(u) is invariant by the addition of an asymmetric affine function a. Up to a
translation by such a function, Korn’s inequality tells us that

ˆ
Q1

u2dL 2 ≤ C

ˆ
Q1

|e(u)|2dL 2.

The equations verified by u are equivalent to the existence of φ ∈ H2(Q1) such that φ(0) = 0,
u = ∇⊥φ, and ∆2φ = 0. By elliptic regularity there is a constant C ′ such that

sup
Q1/2

∣∣∣∇2φ
∣∣∣2 ≤ C ′

ˆ
Q1

|∇φ|2dL 2

and so for any τ ≤ 1/2,
ˆ
Qτ

|e(u)|2dL 2 ≤ 4|Qτ | sup
Q1/2

∣∣∣∇2φ
∣∣∣2 ≤ 4CC ′|Q1|τ 2

ˆ
Q1

|e(u)|2dL 2.

Proof. We reason by contradiction; suppose that there exists τ > 0, and sequences ri → 0, ϑi → 0
ϵi → 0, of (Λ, ϑi, r)-minimizers (Ki, wi) in Qri

such that for all i,

G(Ki, wi|Qri
) ≥ r

3/2
i , H 1(Ki ∩Qri

) ≤ ϵiri, G(Ki, wi|Qτri
) > τ 3/2G(Ki, wi|Qri

)

We let gi = G(Ki, wi|Qri
), and

Ji = Ki

ri
, ui(x) = wi(rix)

√
gi

.

Then (Ji, ui) is a (Λ√
ri, ϑi, 1)-minimizer of Gi(·|Q1), where

Gi(J, u|Ω) :=
ˆ

Ω
|e(u)|2dL 2 + ri

gi
H 1(J ∩ Ω)

with
Gi(Ji, ui|Q1) = 1, Gi(Ji, ui|Qτ ) > τ 3/2, H 1(Ji ∩Q1) = ϵi

Let ρi ∈ [1 − √
ϵi, 1] and vi be as defined in the smoothing lemma, such that

• {vi ̸= ui} ⊂ Qρi
,

• vi ∈ H1(Qρi
) ∩ V(Q1), div(vi) = 0,

•
´
Q1

|e(vi)|2 ≤ (1 + cϵ
1
6
i )
´
Q1

|e(ui)|2,

•
´
Q1/2

|e(vi) − ρ√
ϵi ∗ e(ui)|2 ≲ ϵ

1
6
i

´
Q1

|e(ui)|2.

By the classical Korn inequality on Qρi
there is an asymmetric affine function ai such that´

Qρi
(vi − ai)dL 2 = 0 and

ˆ
Qρi

|∇(vi − ai)|2dL 2 ≲
ˆ
Qρi

|e(vi)|2dL 2.
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So (vi − ai) is bounded in H1(Qρi
); by Rellich theorem we can take a subsequence (that we denote

by the same indice to not overload the notations) such that, for some w ∈ H1(Q1), we have

vi − ai −→
L2

w

with weak convergence in H1 (notice that these are taken on square Qρi
of slightly different radius,

but we can do a minor rescaling). Since every vi − ai has zero divergence, then so does w. Then for
any φ ∈ C∞

c (Q1,R2) with zero divergence, and for some η ∈ C∞
c (Q1, [0, 1]) that will be fixed later

(and such that {φ ̸= 0} ⋐ {η = 1}), we can compare ui and PQρi

[
(1 − η)vi + η(ai + w + φ)

]
;

Gi(ui|Q1) ≤ (1 + ϑi)Gi

(
PQρi

[
(1 − η)vi + η(ai + w + φ)

]
|Q1

)
+ Λ√

ri,

meaning that

Gi(ui|Qρi
) ≤ (1 + ϑi)

∥∥∥∥e(PQρi

[
(1 − η)vi + η(ai + w + φ)

])∥∥∥∥2

L2(Qρi )
+ Λ√

ri

≤ (1 + ϑi)
(
∥e ((1 − η)vi + η(ai + w + φ)) ∥L2(Qρi ) + C∥div((1 − η)vi + η(ai + w + φ))∥L2(Qρi )

)2

+ Λ√
ri

≤ (1 + ϑi)
(
∥e ((1 − η)vi + η(ai + w + φ)) ∥L2(Qρi ) + C∥∇η · (w + ai − vi)∥L2(Qρi )

)2
+ Λ√

ri.

Then, notice first that
∥∇η · (w + ai − vi)∥L2(Qρi ) −→

i→∞
0.

Moreover,

∥e ((1 − η)vi + η(ai + w + φ)) ∥L2(Qρi ) = ∥(1 − η)e(vi) + ηe(w + φ) + ∇η ⊙ (w + ai − vi)∥L2(Qρi )

≤ ∥(1 − η)e(vi) + ηe(w + φ)∥L2(Qρi ) + oi→∞(1).

And so we obtain,

Gi(ui|Qρi
) ≤ ∥(1 − η)e(vi) + ηe(w + φ)∥2

L2(Qρi ) + oi→∞(1),

Now, we haveˆ
Qρi

|e(vi − ai)|2dL 2 ≤ (1 + ϵ
1
6
i )
ˆ
Qρi

|e(ui)|2dL 2 ≤ (1 + ϵ
1
6
i )Gi(ui|Qρi

),

and so, keeping in mind that φ = 0 on {η ̸= 1},ˆ
Qρi

(
1 − (1 − η)2

)
|e(vi−ai)|2dL 2 ≤

ˆ
Qρi

(
2η(1 − η)e(vi − ai) : e(w) + η2|e(w + φ)|2

)
dL 2+oi→∞(1).

Taking the limit we get

lim sup
i→∞

ˆ
Q1

(
1 − (1 − η)2

)
|e(vi − ai)|2dL 2 ≤

ˆ
Q1

(
2η(1 − η)e(w) : e(w) + η2|e(w + φ)|2

)
dL 2.

With φ = 0 this gives the strong convergence of vi − ai to w in H1
loc, and with a general φ this can

be rearranged into ˆ
Q1

η2|e(w)|2dL 2 ≤
ˆ
Q1

η2|e(w + φ)|2dL 2

for every such η, meaning
´
Q1

|e(w)|2dL 2 ≤
´
Q1

|e(w + φ)|2dL 2. In particular w is a minimizer of
this functional ; ∆w = ∇p for some pressure p. Using the previous lemma, we have for any τ ∈ [0, τ ]
(that in particular does not depend on w):ˆ

Qτ

|e(w)|2dL 2 ≤ 1
2τ

3
2

ˆ
Q1

|e(w)|2dL 2 ≤ 1
2τ

3
2
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Since e(vi) − ρ√
ϵi ∗ e(ui) tends to 0 in L2(Q1/2), vi − ai converges in H1

loc to w, and e(ui) is bounded
in L2(Q1), then e(ui) converges weakly to e(w), and so we get

lim inf
i→∞

ˆ
Qτ

|e(ui)|2dL 2 ≤ 1
2τ

3
2 .

And so for any large enough i we get the contradiction:

τ
3
2 ≤

ˆ
Qτ

|e(ui)|2dL 2 + H 1(Ju ∩Qτ ) ≤ 1
2τ

3
2 + oi→∞(1) + ϵi

Let us remind the following useful fact about rectifiable sets: for any rectifiable set J ⊂ R2 (and
there is an equivalent for k-rectifiable set in Rd), we may denote

J+ =
{
x ∈ J : lim sup

r→0

H 1(J ∩Qx,r)
r

> 0
}

(10.92)

and it is known that H 1(J \ J+) = 0 (see for instance [194, Th 10.2]).

Proposition 10.43. Let Λ, r > 0,then there exists ϑ, ϵ, r̂ > 0 such that of any (Λ, ϑ, r)-almost
quasiminimizer (J, u) in Ω for some Ω ⋐ R2, and for any Qx,r ⋐ Ω with r < r̂,

G(J, u|Qx,2r) ≤ ϵr implies H 1(J ∩Qx,r) = 0.

Proof. We begin by a lemma on the decay rate of G(J, u|Qx,r) as r goes to 0.

Lemma 10.44. Let τ0 be small enough such that the decay lemma applies, associated to (r0, ϑ0, ϵ0).
Let τ1 ∈ (0, ϵ2

0) be small enough such that the decay lemma applies with the associated (r1, ϑ1, ϵ1).
Finally, let

r̂ := min
(
r0, r1, ϵ

2
0τ

2
1 , ϵ

2
0τ

3
0 r

−1
)
, ϑ := min(ϑ0, ϑ1).

Suppose that (J, u) is a (Λ, ϑ, r)-minimizer and G(J, u|Qx,r) ≤ ϵ1r for some r ∈ (0, r̂), then for all
k ∈ N,

G(J, u|Qx,τk
0 τ1r) < ϵ0τ

3
2k

0 τ1r.

Proof. In the following, we write g(r) = G(J, u|Qx,r). We start with the initialization, and we fix in
the proof of this lemma some r ∈ (0, r̂).

• Either g(r) > r3/2 so g(τ1r) ≤ ϵ1τ
3/2
1 r ≤ ϵ0τ1r by definition of τ1.

• Or g(r) ≤ r3/2, so g(τ1r) ≤ r3/2 ≤ ϵ0τ1r by definition of r̂.

Then we prove the induction; suppose that it is true for some k ∈ N, notice that by definition of G
we have

H 1(J ∩Qτk
0 τ1r) ≤ g(τ k0 τ1r) ≤ ϵ0τ

k
0 τ1r,

so the decay lemma may be applied. Then again we separate two cases

• Either g(τ k0 τ1r) > (τ l0τ1r)3/2 so applying the decay lemma we have

g(τ k+1
0 τ1r) ≤ τ

3/2
0 g(τ k0 τ1r) ≤ ϵ0τ

3
2 (k+1)

0 τ1r,

• Or g(τ k0 τ1r) ≤ (τ k0 τ1r)3/2 and in this case,

g(τ k+1
0 τ1r) ≤ g(τ k0 τ1r) ≤

√
τ1r

τ 3
0 ϵ

2
0
ϵ0τ

3
2 (k+1)

0 τ1r ≤ ϵ0τ
3
2 (k+1)

0 τ1r.
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In particular this may be rewritten as: if G(J, u|Qx,r) ≤ ϵ1r, then for any ρ ∈ (0, r),

G(J, u|Qx,ρ) ≤ C0r
− 1

2ρ
3
2 , where C0 = max

(
ϵ1τ

− 3
2

1 , ϵ0τ
− 3

2
0 τ

− 1
2

1

)
.

Let now u be a (Λ, ϑ, r) minimizer in Qx,2r for some r < r̂ and suppose that

G(J, u|Qx,2r) ≤ ϵ1r.

By rectifiability of J , let J+ be defined as in (10.92). Notice that for any y ∈ Qx,r, we have
G(J, u|Qy,r) ≤ ϵr so G(J, u|Qy,ρ) = oρ→0(ρ), meaning J+ ∩ Qx,r = ∅. As a consequence, we get
H 1(J ∩Qx,r) = 0.

Proposition 10.45. Let Λ, r > 0, then there exists ϑ > 0 such that for any (Λ, ϑ, r)-almost quasi-
minimizer (J, u) of G(·|Ω) for some Ω ⋐ R2, we have

H 1
(
Ω ∩ J+ \ J+

)
= 0.

Proof. Let ϵ, r be chosen as previously. There is a H 1-negligible set N ⊂ Ω \ J such that

∀x ∈ Ω \ (J ∪N), G(J, u|Qx,ρ)
ρ

−→
ρ→0

0.

Let us quickly remind the proof of this: let µ be the Radon measure on Ω defined by

µ(E) =
ˆ
E

|e(u)|2dL 2 + H 1⌊J(E),

let N t =
{
x ∈ Ω \ J : lim supρ→0

µ(Qx,ρ)
2ρ ≥ t

}
, then by a classical Besicovitch covering argument,

µ⌊N t ≥ tH 1⌊N t,

so H 1(N t) < ∞, meaning L 2(N t) = 0, which implies

H 1(N t) ≤ t−1
ˆ
Nt

|e(u)|2dL 2 = 0,

and we let N = ∪t∈Q∗
+
N t
u.

According to the previous corollary, Ω ∩ J+ ⊂ J ∪N = J+ ∪ (J \ J+) ∪N , and the last two sets
are H 1-negligible so H 1(Ω ∩ J+ \ J+) = 0.

We now arrive at the conclusion of this section, with the proof of the second main theorem 10.2.

Proof of etiquette Theorem 10.2. In all the following we let Λ := 4Lip(f) and J = Ju∪∂∗E. We also
suppose (up to multiplying u by c− 1

2 ) that the constant c of (10.26) is 1. We first prove that (J, u)
is an almost quasiminimizer according to Definition 10.40. Indeed, let v ∈ V(Ω) be a perturbation
of u on a square Qx,r as in Definition 10.40, notice then that either

H 1(∂∗(E \Qx,r) ∩ (Qx,r \ ∂∗E)) = 0 or H 1(∂∗(E ∪Qx,r) ∩ (Qx,r \ ∂∗E)) = 0

Indeed suppose both conditions are false, then there exists p ∈ E(1) ∩ ∂Qx,r and q ∈ E(0) ∩ ∂Qx,r

that are not in one of the corners. Without loss of generality we suppose p, q ∈ {x− re2 +Re1} with
p1 < q1, the case when both are in different sides is analog. We let:

• ϵ > 0 that will be chosen small later,

• Cp = p+ [−s, 0] × [0, s], Cq = q + [0, s]2, Cp,q the convex envelope of Cp ∪ Cq,
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• gs : [p1 − s, q1 + s] → [0, 1] that is zero on the boundaries, affine on [p1 − s, p1] and [q1, q1 + s]
and equal to 1 on [p1, q1],

• fs : [0, s] → [0, 1] such that f is zero on the boundary and f = 1 on [ϵs, (1 − ϵ)s],

• φs(x) = gs(x1)fs(x2).

Then

H 1(J ∩ (Qx,r \Qx,r−s)) ≥
ˆ
∂∗E

φs(νE)1dx =
ˆ
E

∂1φs = 1
r

ˆ
Cp∩E

fs(x2)dx− 1
r

ˆ
Cq∩E

fs(x2)dx

≥ |E ∩ Cp|
|Cp|

(1 − 2ϵ)2r − |E ∩ Cq|
|Cq|

r

Since |E∩Cp|
|Cp| → 1, |E∩Cq |

|Cq | → 0, and ϵmay be taken arbitrarily small we get lim sups→0
H 1(J∩(Qx,r\Qx,r−s))

s
≥

1 which is contrary to the third hypothesis of definition 10.40. In the case where H 1(∂∗(E ∪Qx,r) ∩
(Qx,r \ ∂∗E)) = 0, then taking a competitor F = E ∪ Qx,r, w = u1Qc

x,r
implies by minimality that

u|Qx,r = 0 almost everywhere and H 1(∂∗E ∩ Qx,r) = 0 so there is nothing to prove. In the second
case then using the competitor (E \Qx,r, v) we get:

J (E, u) ≤ J (E \Qx,r, v),
which gives exactly ˆ

Qx,r

|e(u)|2dL 2 + H 1(J ∩Qx,r) ≤
ˆ
Qx,r

|e(v)|2dL 2 + Λr2

so according to the previous result, H 1(Ω ∩ J+ \ J+) = 0. Let B be an open ball in Ω \ J+, then
u ∈ SBD(B) with H 1(Ju ∩ B) ≤ H 1(J+ ∩ B) = 0, so u ∈ H1(B) and it is locally a solution of
Stokes equation. In particular it is analytic, so Ju ∩B = ∅. This last fact implies that Ω ∩ Ju ⊂ J+,
and every point of ∂∗E is in J+ by definition of the reduced boundary (see [194, Th 15.5, Th 15.9]).
Notice finally that J+ ⊂ Ju ∪ ∂∗E. As a consequence

Ω ∩ J+ ⊂ Ω ∩ (Ju ∪ ∂∗E) ⊂ J+

so Ω ∩ Ju ∪ ∂∗E = Ω ∩ J+ and we get the conclusion.

10.9 Remarks on the Navier-Stokes equation

Some of the previous results extend to the Navier-Stokes equation to some extent. Say indeed that
for any obstacle with finite perimeter E, we say u ∈ VE,V (Ω) is a solution of the (stationnary)
Navier-Stokes equation when for every φ ∈ VE,0(Ω) with Jφ ⊂ Ju,ˆ

Ω\K
(2µe(u) : e(φ) + ∇uu · φ) dL d+β

ˆ
∂∗E

u+·φ+dH d−1+β
ˆ
Ju\∂∗E

(
u+ · φ+ + u− · φ−

)
dH d−1 = 0

and the drag exerted on E associated to u is still given by

E (u) := 2µ
ˆ

Ω\E
|e(u)|2 dL d + β

ˆ
∂∗E

|u+|2 dH d−1 + β

ˆ
Ju\∂∗E

(
|u+|2 + |u−|2

)
dH d−1

Now, consider (Ei, ui) a sequence of solutions of Navier Stokes that minimizes (10.26) ; then using
the compactness and lower semicontinuity result we obtain that for some subsequence of (Ei, ui),
there is a set of finite perimeter E and a function u ∈ VE,V (Ω) such that Ei → E in L1(Ω), ui → u
in L2(Ω), with e(ui) converging L2(Ω)-weakly to e(u) and

J (E, u) ≤ lim inf
i→∞

J (Ei, ui)
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Suppose then that we are in the two-dimensional setting where E is compact, connected and Ju ⊂ E,
with a Hausdorff convergence of Ei to E. Then for any φ ∈ Vreg

E,0(Ω) with support in Ω \ E, φ has
support in Ω \ Ei for any large i and passing to the limit the variational Navier-Stokes equation on
ui we get ˆ

Ω\K
(2µe(u) : e(φ) + ∇uu · φ) dL d = 0

so u is a variational solution of Navier-Stokes in Ω \ E.
However we do not necessarily expect that the limit u would verify the Navier condition of

parameter β on ∂E. One argument against this is that the drag associated to the Navier-Stokes
equation is generally not increasing in term of β as was demonstrated in [176] (while it is clearly
for the Stokes equation, due to the variational caracterization of the solution). More precisely, it
was proved in [183],[184] that fast, small periodic oscillation of the boundary in the (Navier-)Stokes
equation creates at the limit a Navier condition with a new friction β̃ ∈ [0,+∞] that may be higher
than the initial friction β, and even possibly a anisotropic factor that favors certain directions for
the flow (in dimension three and more). In other words, the minimum of the drag may be reached
through the addition of friction - corresponding to Navier condition with different characteristic than
ours - that is asymptotically obtained by the apparition of a microstructure on the boundary.
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